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Abstract 

   System identification is the process of building dynamical models from measured data in 

order to determine and quantify the underlying relationships between them. Ideally, the 

resulting mathematical models ought to imitate precisely the observed behavior of the system 

under examination. In this doctoral dissertation, we focus on developing effective 

methodologies for quantifying dynamic interrelationships in physiological systems using 

parametric, nonparametric and connectionist approaches. Due to the complex nature of 

physiological functions, standard system identification methods, which usually assume linear 

and time-invariant interrelationships, fail. Thus, this work describes fast and reliable modeling 

schemes that are capable of dealing with (a) multiple input systems (b) nonlinear dynamics (c) 

nonstationarities in system dynamics and (d) binary responses. These schemes were applied 

in combination with Laguerre-Volterra (LV) models, which can capture a wide range of 

nonlinear dynamic input-output causal interrelationships and Multivariate Autoregressive 

models (MVAR), which are used to detect couplings and causality between time series. The 

performance of the abovementioned methodologies was assessed using both simulations and 

experimental data. Specifically, we examined, 

 The time-varying (TV) characteristics of Cerebral Autoregulation (CA) in patients suffering 

from Vasovagal Syncope (VVS) during Head-Up Tilt (HUT) testing.   

 Exercise-induced cardiovascular and cerebrovascular changes in healthy subjects and 

stroke survivors. 

 Neuronal responses to subthalamic nucleus (STN) Local Field Potentials (LFP) in 

Parkinson’s Disease (PD) patients undergoing Deep Brain Stimulation (DBS). 
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Résumé 

   L'identification des systèmes est le processus de construction de modèles dynamiques à partir 

des données mesurées afin de déterminer et de quantifier les relations sous-jacentes entre eux. 

Idéalement, les modèles mathématiques qui en résultent doivent imiter précisément le 

comportement observé du système examiné. Dans cette thèse de doctorat, nous nous efforçons 

d'élaborer des méthodologies efficaces pour quantifier les interrelations dynamiques dans les 

systèmes physiologiques à l'aide d'approches paramétriques, non paramétriques et 

connexionnistes. En raison de la nature complexe des fonctions physiologiques, les méthodes 

standard d'identification du système, qui supposent habituellement des interrelations linéaires 

et temporelles, échouent. Ainsi, ce travail décrit des schémas de modélisation rapides et fiables 

qui sont capables de traiter (a) des systèmes d'entrée multiples (b) des dynamiques non 

linéaires (c) des systèmes non stationnaires et (d) des réponses binaires. Ces schémas ont été 

appliqués en combinaison avec les modèles Laguerre-Volterra (LV), qui peuvent capturer une 

large gamme d'interrelations causales d'entrée-sortie dynamiques non linéaires et de modèles 

autogressifs multivariés (MVAR), qui sont utilisés pour détecter les couplages et la causalité 

entre les séries temporelles. La performance des méthodes susmentionnées a été évaluée en 

utilisant des simulations et des données expérimentales. Plus précisément, nous avons 

examiné, 

 Les caractéristiques de l'Autoregulation Cérébral (AC) variant dans le temps (TV) dans 

les patients souffrant du Syncope Vasovagale (VVS) pendant le test de Head-Up Tilt 

(HUT). 

 Changements cardiovasculaires et cérébrovasculaires induits par l'exercice chez des 

sujets sains et des survivants d'accident vasculaire cérébral. 

 Réponses neuronales aux potentiels de terrain locaux (LFP) du noyau subthalamique 

(NST) chez les patients atteints de la maladie de Parkinson (PD) subissant une chirurgie 

de Stimulation Cérébrale Profonde (SCP).
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 Introduction 

1.1 Motivation 

   System identification is the science of deriving mathematical models to describe the 

relationship between measured input and output data of a dynamical system. Four main 

modeling approaches exist in the literature; the parametric, the nonparametric, the modular 

and the connectionist approach [1]. In the parametric approach, the input-output relationship 

is represented by using algebraic or differential/difference equations. In the nonparametric 

approach (known also as black-box models), no particular prior knowledge of the system is 

assumed (i.e. the model parameters are not necessarily known or fixed). The structure of the 

system is determined solely from the data. The modular approach is a hybrid parametric and 

nonparametric approach which is based on block structures that represent different system 

components, whereas in connectionist models input-output mappings are created using 

network-type models (e.g. artificial neural networks). Ideally, the extracted models should be 

able to replicate in an accurate and parsimonious manner the observed functional behavior of 

the system under consideration.  

   The past decade, physiological system identification [1], [2] has gained significant interest due 

to the emergence of a new generation of signal/imaging recording techniques. These 

techniques provide means of measuring data from a plethora of physiological processes at both 

micro and macroscale. Therefore, understanding and quantifying the underlying mechanisms 

that give rise to the obtained signals is the natural next step. Due to the complex nature of 

physiological functions however, standard system identification methods, which usually 
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assume linear and time-invariant relationships, are often not adequate. Proper study of real 

physiological systems requires reliable modeling methods that are capable of dealing with, 

A. Multiple variables of interest: Physiological mechanisms are usually subject to multiple 

influences and thus, multiple inputs (MI) should be taken into account when building 

mathematical models [3]–[5]. For example, in hemodynamics, blood flow to the brain is 

affected by both arterial blood pressure and carbon dioxide [4], [6]–[8]. Ignoring one of 

these variables may lead to biased representations of the blood flow regulation mechanisms 

and induce variability on the obtained models. An important aspect of MI modeling is that 

it provides the opportunity and the flexibility to study dynamical systems on a 

multidimensional scale. For instance, MI models can be applied to investigate neuronal 

network interactions in the brain [9] or study the multijoint properties of a limb [10] among 

others.  

B. Nonlinear dynamics: Nonlinearities are observed in most living systems [6], [7], [9], [11]–

[16] and they manifest either as a nonproportional relationship between input and output 

or switching between a set of linear systems. Static nonlinearities are usually easier to 

model, however dynamic nonlinearities (i.e., the present value of the output depends 

nonlinearly on the present and past values of the input) pose significant challenges. 

C. Nonstationarities in system dynamics: Nonstationarities may reflect the intrinsic time-

varying (TV) properties of a system, as in the case of cerebrovascular/cardiovascular [17]–

[20] and neuromuscular systems [21], but also the indirect effects of unobserved or 

unmodeled factors. In the vast majority of studies, nonstationarities are usually not 

considered for reasons of simplification. This, however, may result into substantial errors 

when describing system characteristics. On the other hand, studies that apply TV analysis 

assume constant rate of variations. Yet, in a nonstationary environment, system parameters 

may exhibit intervals of slow, fast or even abrupt changes. In the case of TV MI systems, the 

corresponding model parameters may vary with different rates too since different inputs 

can give rise to different TV dynamics. 

D. Binary responses: Biomedical researchers usually analyse continuous variables, however, 

there are applications where event-related dynamics are of main interest e.g. epileptic 

seizure prediction based on electroencephalogram (EEG) signals [22], prediction of the 

neuronal spiking activity of a brain area based on the recorded Local Field Potentials (LFP) 

[9], [23], [24], and assessment of heartbeat dynamics [25] to name a few examples. In 
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practice, when modeling such systems, the output is assumed to be a binary signal where 

‘1’ and ‘0’ indicate whether or not an event occurs at a specific time point. Traditional system 

identification approaches are designed primarily for continuous-valued data and therefore 

adapting these approaches to systems with binary outputs is vital for their proper analysis. 

   Herein, we focus on developing effective methodologies for quantifying dynamic 

interrelationships among signals of biomedical relevance using parametric, nonparametric and 

connectionist approaches. Our main interest relies on accurately identifying TV, linear and 

nonlinear physiological systems, as well as systems that produce binary outputs using 

computationally efficient and fast algorithms. Aside of the new methodological schemes 

presented in this work, we provide model optimization techniques that reduce significantly 

computation time and allow further exploration of the model capabilities under various 

conditions. Our developed methodologies are applied to answer important research questions 

regarding various physiological functions under healthy and pathological states. Specifically,  

 We investigate the link between Cerebral Autoregulation (CA) and syncope occurrence in 

patients suffering from Vasovagal Syncope (VVS). The main question that we address is 

whether loss of consciousness during Head-Up Tilt (HUT) testing is an aftereffect of 

impaired CA function. 

 We explore the hemodynamic changes that occur during and after exercise in healthy 

subjects (old and young), as well as stroke survivors in order to understand the interplay 

between different cardiovascular and cerebrovascular mechanisms. Our main aim is to 

extrapolate conclusions regarding the beneficial effects of a single bout of exercise on 

cardiovascular regulation.  

 Finally, we examine the response of different neuronal populations to Subthalamic Nucleus 

(STN) Local Field Potentials (LFP) in Parkinson’s Disease (PD) patients undergoing Deep 

Brain Stimulation (DBS). The main purpose of this study is to explain the observed 

variability in predicting accurately neuronal spikes from LFPs and explore the potential use 

of spike timing predictability as a predictive biomarker of DBS surgery response.  

1.2 Thesis Organization and Contributions 

      This is a manuscript-based dissertation interpolating material from three papers. Chapter 2 

is an introductory chapter presenting the methodological background for the work described 

in later chapters. Chapter 3, 4 and 5 are based on the following references, 
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Chapter 3 - “Modeling of multiple-input, time-varying nonlinear systems with recursively 

estimated basis expansions,” Kostoglou K., Schondorf R. and Mitsis G.D. (Submitted to Elsevier 

Signal Processing). 

Chapter 4 - “Modeling time-varying couplings between time series for biomedical 

applications,” Kostoglou K., Robertson A., Macintosh B.J and Mitsis G.D. (Submitted to IEEE 

Transactions on Biomedical Engineering). 

Chapter 5 - “Prediction of the spiking activity in the Parkinsonian subthalamic nucleus 

using Local Field Potentials and Laguerre Volterra Networks,” Kostoglou K., Michmizos 

K.P., Stathis P., Sakas D., Nikita K.S. and Mitsis G.D. (To be submitted to Journal of Neuroscience).  

   In more detail,  

   Chapter 2 introduces the time-invariant models used as a basis for Chapters 3,4 and 5. Three 

type of models are examined; the univariate/multivariate Laguerre-Volterra (LV) models 

which can be seen as nonparametric models, the Laguerre Volterra Network (LVN) models that 

belong to the category of connectionist models and the univariate/multivariate autoregressive 

models with or without exogenous inputs (AR/ARX, MVAR/MVARX) which can be described as 

parametric infinite memory models. Chapter 2 also introduces the Recursive Least Squares 

(RLS) and the Kalman Filter (KF) technique for TV model parameter estimation and outlines 

some of the model order selection methodologies developed for TV systems. Last but not least, 

the Genetic Algorithm (GA), proposed in subsequent chapters as a model optimization 

technique, is explored in detail.   

   Chapters 3 and 4 concentrate on the development of algorithmic schemes for TV system 

identification (A, B, and C of Section 1.1), whereas Chapter 5 tackles with the estimation of 

systems with binary outputs (D from Section 1.1). 

   Chapter 3 describes novel recursive schemes for estimating single- (SI) and multiple-input 

(MI) TV systems, based on a LV model formulation. The major contributions of this chapter are, 

 We developed computational schemes that are applicable to a wide class of TV systems 

(linear/nonlinear, SI/MI systems with finite memory) by extending and modifying the 

conventional RLS and KF techniques. 

 The proposed schemes achieved superior performance, compared to conventional RLS and 

KF, under different nonstationarity types (slow, fast/abrupt variations).  
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 Model order selection and tuning of the estimator hyperparameters were implemented 

using Genetic Algorithms (GA), significantly improving performance and reducing 

computation time. 

 The link between hyperparameters, model complexity and TV system characteristics was 

explored in detail. 

 We examined the behavior of different model order selection criteria under TV 

environments. 

 Our methodology was used to track changes in CA of patients suffering from VVS during a 

HUT test protocol.  

   Chapter 4 extends the TV methodology described in Chapter 3 to MVAR models. The major 

contributions of this chapter are presented below, 

 The methodology of Chapter 3 was adapted to the case of TV-MVAR model estimation.  

 Based on the extracted TV-MVAR models we computed TV measures of coupling and 

causality between time series. 

 We corrected biases on the extracted TV-MVAR connectivity measures due to 

heteroskedasticity in the error terms observed usually in experimental protocols that 

consist of phase transitions or event-related changes. 

 We investigated the TV characteristics of cerebrovascular/cardiovascular regulation in 

healthy subjects and stroke survivors during exercise.  

   Chapter 5 describes a modified LVN model that produces binary output. The main 

contributions of this chapter are summarized below, 

 Time-invariant LVN models were modified to produce probabilities of event occurrence 

in their output. The optimal threshold for transforming these probabilities to ‘0’ and ‘1’ 

was chosen based on the Matthews Correlation Coefficient (MCC). 

 Network parameters were trained by applying a hybrid optimization scheme (GA and 

interior nonlinear methods) in order to overcome the gradient-based local minima and 

convergence problems. Instead of the conventional Mean Squared Error (MSE), we 

minimized the cross-entropy loss function. 

 The modified model was extended to account for autoregressive (AR) terms (LVN-ARX). 

 The proposed framework was applied to neuronal data (i.e. LFPs and spikes) acquired 

by PD patients undergoing STN DBS.  

   Chapter 6 presents the conclusions of this study and potential future avenues. 
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 Background 

 

2.1 Time-Invariant models 

   System identification methods are divided into four main groups; the nonparametric, the 

parametric, the modular and the connectionist approaches. In the following subsections, we 

briefly present some representative nonparametric and parametric models, in order to 

facilitate the understanding of the reader. As explained in Chapter 1, nonparametric modeling 

is useful when the primary interest is in fitting the data without particular knowledge of the 

underlying structure of the system. Parametric models, on the other hand, assume a predefined 

structure. Both methods exhibit advantages and disadvantages and the choice of approach 

depends on the amount of a priori information about the identified system.  

2.1.1 Nonparametric models 

2.1.1.1 Linear 

   The task of black-box linear models is to describe basic dynamic properties of the system such 

as the system’s impulse or frequency response. The impulse response describes the reaction of 

a system to input changes and more specifically it is the output of the system when presented 

with an impulse. The unit impulse function is defined as, 

0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≠ 0, 

𝛿(𝑛) =                                                                                                      (2.1)  

 1 𝑓𝑜𝑟 𝑛 = 0,        
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Let the impulsive input 𝛿(𝑛) produce the response ℎ(𝑛). For a linear time-invariant (LTI) 

system, a time shifted impulse 𝛿(𝑛 − 𝑘) will result in an output signal ℎ(𝑛 − 𝑘). In addition, due 

to linearity, 𝑥(𝑛)𝛿(𝑛 − 𝑘) will produce 𝑥(𝑛)ℎ(𝑛 − 𝑘). By taking the infinite sum of both input 

and output it follows, 

෍ 𝑥(𝑛)𝛿(𝑛 − 𝑘)

ାஶ

௞ୀିஶ

= 𝑥(𝑛)                                                        (2.2) 

due to the properties of the impulse function and, 

෍ 𝑥(𝑛)ℎ(𝑛 − 𝑘)

ାஶ

௞ୀିஶ

= 𝑦(𝑛)                                                        (2.3) 

Equation (2.3) is known as the convolutional model and it describes the relationship between 

input and output. Consequently, if the impulse response of the system ℎ(𝑛) is known then the 

output 𝑦(𝑛) can be easily computed for any input 𝑥(𝑛). Impulse response estimation relies on 

methods such as impulse response and correlation analysis [26], [27].  

   The frequency response of a system describes the relationship between input and output in 

the frequency domain. If we choose a complex exponential as input to the LTI system, i.e. 𝑥(𝑡) =

𝐴𝑒௝(ఠ௡ାఏ), then Equation (2.3) becomes, 

𝑦(𝑛) = ෍ 𝑥(𝑛)ℎ(𝑛 − 𝑘)

ାஶ

௞ୀିஶ

= ෍ ℎ(𝑛)𝑥(𝑛 − 𝑘)

ାஶ

௞ୀିஶ

= ෍ ℎ(𝑛)𝐴𝑒௝[ఠ(௡ି௞)ାఏ]

ାஶ

௞ୀିஶ

⇒ 

𝑦(𝑛) = 𝐴𝑒௝(ఠ௡ାఏ) ෍ ℎ(𝑘)𝑒ି௝ఠ௞

ାஶ

௞ୀିஶ

= 𝐴𝑒௝(ఠ௡ାఏ)𝐻(𝑗𝜔)                              (2.4) 

Equation (2.4) states that the output is of the same form as the input, differing only by a scaling 

factor. The frequency response of the system is defined as 𝐻(𝑗𝜔) = ∑ ℎ(𝑘)𝑒ି௝ఠ௞ାஶ
௞ୀିஶ =

|𝐻(𝑗𝜔)|𝑒௝∢ு(௝ఠ). The magnitude |𝐻(𝑗𝜔)| and the phase ∢𝐻(𝑗𝜔) are commonly referred to as 

the gain and the phase shift of the system, respectively. Generally, a frequency domain 

formulation of the system can be extracted using sinusoidal, frequency response or correlation 

analysis [26]–[28]. 

2.1.1.2 Nonlinear 

   Nonlinear black-box modeling techniques include the Volterra and Wiener series models. The 

Volterra model assumes causal linear or nonlinear relationships where the input drives the 



Background 

8 

output. The transformation between input-output is generally dynamic in the sense that the 

present values of the output depend on present and past values of the inputs. The discrete-time 

single-input single-output Volterra model can be expressed as [1], 

     𝑦(𝑛) = 𝑘0 + ෍ 𝑘ଵ(𝑚)𝑥(𝑛 − 𝑚)

௠

 

                          + ෍ 𝑘ଶ(𝑚ଵ, 𝑚ଶ)𝑥(𝑛 − 𝑚ଵ)𝑥(𝑛 − 𝑚ଶ)

௠భ,௠మ

+ ⋯ 

+ ෍ 𝑘ொ൫𝑚ଵ, … , 𝑚ொ൯𝑥(𝑛 − 𝑚ଵ) … 𝑥൫𝑛 − 𝑚ொ൯

௠భ..௠ೂ

 + 𝜀(𝑛)                                             (2.5) 

where 𝑥(𝑛) is the input, 𝑦(𝑛) is the output, 𝜀(𝑛) is zero-mean white noise and 𝑘ொ  are the Q-th 

order Volterra kernels of the system. Volterra kernels can be interpreted as weighting functions 

that describe the effect of past input values (𝑘ଵ; linear kernels), as well as the effect of the Q-th 

order products between past values of the input (𝑘ொ; Q-th order nonlinear kernel) in order to 

generate the output signal (Figure 2.1). The zeroth-order Volterra kernel k0 is the output of the 

system when all inputs are absent. The Wiener model can be characterized as an orthogonal 

version of the Volterra model designed specifically for gaussian white noise (GWN) input.  

   An efficient way to estimate the Volterra kernels is by expanding them to a basis of discrete 

Laguerre functions (DLF) reducing this way considerably the number of free parameters 

especially in the case of nonlinear systems. This procedure is known as the Laguerre Expansion 

Technique (LET) [1], [29] and the resulting models are called Laguerre Volterra (LV) models. An 

equivalent LV representation is the Laguerre Volterra Network (LVN) [14], [30] that combines 

LET with artificial neural networks. The LVN belongs to the connectionist framework and its 

main advantage is that it can reduce further the total number of required model parameters.  
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(a)                                                                       (b) 

 

     (c)                                                                        (d) 

Figure 2.1 (a) A representative 1st order Volterra kernel (b) The 1st-order kernel, akin to the 

"impulse response function" of linear system theory, can be described as a weighting function 

that describes the effect of present and past input (signal depicted in black) values in order to 

generate the output. At time point t=30 (red dashed line) the output is equal to the sum of 

present and past input values (signal depicted in black before t=30) weighted by the 1st-order 

kernel (c,d) A representative 2nd-order Volterra kernel that describes the effect of the 2nd-order 

products between two input values (present or past) in order to generate the output signal.  

𝑘2(𝜏1, 𝜏2) 



Background 

10 

2.1.2 Parametric models 

2.1.2.1 Linear 

   One example of a linear parametric model is the autoregressive model with exogenous input 

(ARX). In the ARX model, the output depends on its history, as well as on present and past input 

values. In discrete-time, a SI ARX [26] of order (𝑛௔, 𝑛௕) is defined as, 

𝑦(𝑛) = ෍ 𝑎௜𝑦(𝑛 − 𝑖)

௡ೌ

௜ୀଵ

+ ෍ 𝑏௝𝑢(𝑛 − 𝑗)

௡್

଴

+ 𝜀(𝑛)                                     (2.6) 

where 𝒚 and 𝒖 are the output and the input of the system respectively, 𝜺 is assumed to be zero-

mean white noise. Equation (2.6) can be extended for multiple time series in the form of the 

multivariate ARX (MVARX) model. 

2.1.2.2 Nonlinear 

   The ARX of Equation (2.6) can be transformed into a nonlinear model if we assume that the 

output is a nonlinear function of past input and output values. The nonlinear ARX model (NARX) 

describes the data as follows [31], [32], 

𝑦(𝑡) = 𝐹[𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛௔), 𝑢(𝑡), … , 𝑢(𝑡 − 𝑛௕)] + 𝜀(𝑡)                      (2.7) 

where 𝐹[. ] denotes a nonlinear function of lagged input and output signals. NARX models are 

more difficult to estimate compared to the standard ARX models. Νonetheless, they constitute 

powerful tools for nonlinear system identification. 

2.2 Time-Invariant Basis models 

   Herein, we describe in detail the three basic models used in this work to study various 

physiological mechanisms. The LV model is a nonparametric model ideal for identifying finite 

memory linear and nonlinear systems. The LVN is functionally similar to the LV model, however 

structurally it resembles an artificial neural network and thus it belongs to the connectionist 

approaches. On the other hand, the MVAR/MVARX is a parametric technique applied usually to 

study directed interactions between time series. In the following subsections, the LV, LVN and 

MVAR/MVARX models are presented in their conventional form, deterministic and time-

invariant (i.e. the model parameters remain constant through time). Possible stochastic 

variations of the system characteristics, measurement noise or modelling error are described 



Background 

11 

by the stochastic error term of the model which is treated as a zero-mean stationary random 

process, statistically independent from the input and the noise-free output signals. 

2.2.1 Laguerre-Volterra (LV) model 

2.2.1.1 Methodology 

   As described in Section 2.1.1.2, the LV model is an optimal expansion of the Volterra model 

using Laguerre functions. The Laguerre functions are infinite response (IIR) filters and they are 

defined in the z-domain as follows [33], 

𝐵௝(𝑧) = ඥ1 − 𝑎ଶ
(𝑎 − 𝑧ିଵ)௝

(1 − 𝑎𝑧ିଵ)௝ାଵ
                                                 (2.8) 

where 𝐵௝(𝑧) is the transfer function of the j-th order discrete Laguerre function (DLF) and 𝑎 is 

a real pole, known as Laguerre parameter, that defines the decay rate of the DLFs, satisfying 

|𝑎| < 1 (The constraint on the pole |𝑎| < 1 leads to causal and stable functions). If the pole is 

chosen closer to the unit circle, then the decay rate of the DLFs will become slower accordingly. 

The DLFs form an orthonormal set that spans the function space 𝐿ଶ(0, +∞), i.e. the space of 

square integrable functions on the time interval (0, +∞). Subsequently, any function 𝑓 ∈ 𝐿ଶ can 

be represented as a Laguerre series, 

𝑓(𝑚) = ෍ 𝑐௝

ାஶ

௝ୀ଴

𝑏௝(𝑚)                                                      (2.9) 

where 𝑏௝(𝑚) is the j-th order DLF in the time domain, 

𝑏௝(𝑚) = 𝛼(௠ି௝)/ଶ(1 − 𝑎)ଵ/ଶ ෍(−1)௞ ቀ
𝑚
𝑘

ቁ ቀ
𝑗
𝑘

ቁ 𝑎௝ି௞(1 − 𝑎)௞

௝

௞ୀ଴

                  (2.10) 

and the Laguerre coefficients are given by, 

𝑐௝ =< 𝑓, 𝑏௝ >= ෍ 𝑓(𝑚)

ାஶ

௠ୀ଴

𝑏௝(𝑚)                                       (2.11) 

In practice, the expansion is truncated at order 𝐿 and thus, 

𝑓௅(𝑚) = ෍ 𝑐௝

௅ିଵ

௝ୀ଴

𝑏௝(𝑚)                                                   (2.12) 
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Based on the aforementioned, the Volterra kernels of Equation (2.5) can be expressed as 

follows, 

𝑘ொ൫𝑚ଵ, … , 𝑚ொ൯ = ෍ … ෍ 𝑐ொ(

௅ ିଵ

௝ೂୀ଴

௅ିଵ

௝భୀ଴

𝑗ଵ, … , 𝑗ொ)𝑏௝భ
(𝑚ଵ) … 𝑏௝ೂ

(𝑚ொ)                 (2.13) 

As explained earlier, the Laguerre parameter 𝑎 defines the rate of exponential asymptotic 

decline of the DLFs (Figure 2.2). The smaller (larger) the values of the Laguerre parameter the 

faster (slower) the system dynamics.  

              
(a)                                                                                (b) 

Figure 2.2 a) Graphical representation of the first 4 Laguerre basis functions for 𝛼 = 0.2. The 

number of zero crossings (roots) of each DLF equals its order. The higher the order, the longer 

the significant values of a DLF spread over time and the time separation between zero crossings. 

b) 3rd order DLF for 𝛼 = 0.1, 𝛼 = 0.3 and 𝛼 = 0.5. Increasing 𝛼 results in longer spread of 

significant values and zero crossings. Thus, kernels with longer memory may require a larger a 

for efficient representation.  

   By combining Equations (2.5) and (2.8) it follows, 

𝒚 = 𝑽𝒄 + 𝜺                                                                    (2.14) 

where 𝒚 ∈ 𝑹௺×ଵ  is the output vector, 𝛮 is the length of the data set, 𝒄 ∈ 𝑹ௗ×ଵ  is the vector of 

the unknown expansion coefficients and 𝜺 ∈ 𝑹௺×ଵ  is assumed to be a zero-mean white noise 

vector. The total number of the expansion coefficients, 𝑑, is equal to ((𝐿 + 𝑄)! 𝐿! 𝑄!⁄ ). 𝑽 is a 

𝛮 × 𝑑 matrix containing the convolution of all inputs with the Laguerre functions 𝑣 = 𝑥 ∗ 𝑏௝ , as 

well as nonlinear products between them. The variables 𝑣௝  can be estimated using the following 

autorecursive relation [34], 
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𝑣௝(𝑛) = √𝛼𝑣௝(𝑛 − 1) + √𝛼𝑣௝ିଵ(𝑛) − 𝑣௝ିଵ(𝑛 − 1)                     (2.15) 

𝑣଴(𝑛) = √𝛼𝑣଴(𝑛 − 1) + 𝑇√1 − 𝛼𝑥(𝑛)                                     (2.16) 

where T is the sampling interval. The expansion coefficients 𝒄 (Equation (2.14)) can be 

computed using ordinary least-squares (OLS) estimation based on the input and output data, 

𝒄ොை௅ௌ = (𝑽𝜯𝑽)ି𝟏𝑽𝜯𝒚                                                                  (2.17) 

The estimate of Equation (2.17) is an unbiased (i.e., its expectation is equal to the true 

coefficient), consistent (i.e., it converges in probability to the true coefficient) and efficient (i.e., 

it has minimum variance among all linear estimators) estimate if the residuals are zero-mean, 

white and Gaussian. If the residuals, however, are not white then the generalized least-squares 

(GLS) [35] can be used, 

𝒄ොீ௅ௌ = (𝑽𝜯𝜴ି𝟏𝑽)ି𝟏𝑽𝜯𝜴ି𝟏𝒚                                                       (2.18) 

where 𝜴 is the covariance matrix of the residuals and 𝜴 = 𝑮𝑮் . GLS is equivalent to applying 

OLS to a linearly transformed version of the data. By multiplying both sides of Equation (2.14) 

with 𝑮ିଵ it follows that, 

𝒚 = 𝑽𝒄 + 𝜺 ⇒ 𝑮ିଵ𝒚 = 𝑮ିଵ𝑽𝒄 + 𝑮ିଵ𝜺

𝒚∗ୀ𝑮షభ𝒚

𝑽∗ୀ𝑮షభ𝑽
𝜺∗ୀ𝑮షభ𝜺
ሳልልልልልሰ 𝒚∗ = 𝑽∗𝒄 + 𝜺∗                (2.20) 

where 𝑐𝑜𝑣(𝜺∗) = 𝑮ିଵ𝜴(𝑮ିଵ)் = 𝑰௡×௡ is the identity matrix. Thus, 𝒄 now can be estimated 

efficiently by applying OLS to the transformed data (Equation (2.20)). Note here that, 𝜴 is not 

usually known in practice. A special case of GLS is the so called, Weighted Least Squares (WLS), 

where the off-diagonal elements of 𝜴 are assumed to be zero. WLS is applied when the residuals 

are white but heteroskedastic, i.e. the variance of the residuals is non-constant. 

   Practical implications also arise if 𝑽𝜯𝑽 of Equation (2.17) is singular or ill-conditioned [1]. 

Direct inversion of 𝑽𝜯𝑽 becomes numerically ill-posed leading to large values in the estimated 

coefficients. This type of ill-conditioning arises mainly if the input is not persistently exciting 

[27] (i.e., relatively broadband) in the frequency range that spans the systems bandwith.  One 

solution is to apply regularization techniques like ridge regression [36]–[38]. An analytic 

solution can be obtained as follows, 

𝒄ොோாீ = (𝑽𝜯𝑽 + 𝛾𝜤)ି𝟏𝑽𝜯𝒚                                                   (2.21) 
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where 𝛾 is a positive scalar, known also as the regularization parameter. The addition of the 

term 𝛾𝜤 to the matrix 𝑽𝜯𝑽, in Equation (2.21), improves the condition number of 𝑽𝜯𝑽 producing 

more numerically behaved estimates. 
 

2.2.1.2 Model Order Selection  

   In order to estimate the expansion coefficients of Equation (2.14), it is necessary first to 

specify the size of the regressor matrix 𝑽. The size of 𝑽 depends on the structural parameters 

𝐿௫೔
 and 𝑄 (i.e. the number of DLFs and the order of nonlinearity) which define the LV model 

complexity. The more complex the model the higher the chances of overfitting the noise and 

overestimating the true dynamics of the system. On the other hand, an oversimplified model 

lacks the flexibility to explain accurately the data. Model order determination is based either on 

cross-validation techniques (i.e. using training and testing datasets) or model order selection 

criteria like BIC (Bayesian Information Criterion) [39] and AIC (Akaike Information Criterion) 

[40], 

𝐵𝐼𝐶(𝑑) =
𝑁

2
log ൬

𝐽

𝑁
൰ +

𝑑

2
log 𝑁                                           (2.22) 

𝐴𝐼𝐶(𝑑) =
𝑁

2
log ൬

𝐽

𝑁
൰ + 𝑑                                                      (2.23) 

where 𝑑 is the total number of unknown parameters, 𝑁 is the sample size and 𝐽 is the sum of 

squared errors between actual 𝒚 and predicted output 𝒚ෝ, 

𝑒(𝑛) = 𝑦(𝑛) − 𝑦ො(𝑛)                                                            (2.24) 

𝐽 = ෍ 𝑒ଶ(𝑛)

ே

௡ୀଵ

                                                                 (2.25) 

Along with the model complexity, it is necessary to optimize the Laguerre parameter 𝛼௜  which 

defines the memory of the system. Depending on the prior knowledge one has of the system, 

choosing 𝛼௜  is a difficult problem to solve in general. This problem has been considered in many 

publications on the use of Laguerre functions for approximation and system identification [17], 

[41]–[43]. In practice, however, tuning of 𝛼௜  (as well as 𝐿௫೔
, 𝑄) is realized using grid or 

exhaustive search. Typically, for a predefined model order, 𝛼௜  is selected by minimizing 

Equation (2.25).  
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2.2.1.3 Model Interpretation 

   LV models have been applied successfully in modeling various physiological systems (from 

neuronal networks to cerebrovascular/cardiovascular systems) and they have been used to 

deduce model-based biomarkers under several pathological conditions [9], [12], [16], [23], 

[24], [44]–[56]. Physiological systems usually exhibit an asymptotically exponential structure 

in their Volterra kernels and therefore the exponential shape of the DLFs renders the LV models 

the ideal candidates for reproducing complex biological dynamics. Interpretation of the 

obtained models relies mainly on extracting kernel characteristics either in time or frequency 

domain (e.g. gain, phase) and relating them to specific physiological mechanisms that are 

known qualitatively. For example, CA is a mechanism that retains blood flow to the brain 

constant despite variations in pressure or other external factors. CA is mainly characterized by 

the relationship between Mean Arterial Blood Pressure (MABP) and Cerebral Blood Flow 

Velocity (CBFV) (Figure 2.3a) and it exhibits high-pass filter characteristics [57]. That is, 

coherence and gain are generally lower, and phase is higher at lower-frequency ranges, 

indicating that CA is more effective with slower fluctuations in MABP. Thus, a phase-shift 

between MABP and CBFV towards zero in the low frequency (LF) range (0.04 – 0.15 Hz) 

indicates impaired autoregulation (i.e. CBFV becomes pressure-dependent) [58], [59]. In the 

case of the LV models this phase-shift can be computed from the phase response of the 1st order 

kernel and can be used, along with other model features, to assess CA functionality under 

various conditions and pathologies [7], [19], [44], [51], [53]. In [44], for example, we examined 

the effects of concussion on the CA characteristics of  young athletes. Prior to the start of the 

season, players completed baseline testing. 7 players who experienced concussions were 

brought in for repeated testing at 72 hours, 2 weeks, and 1 month post-injury. By extracting LV 

models and computing the phase response of the 1st order kernels, we observed an initial drop 

in the LF phase in all subjects 72 hours post-injury and a return around its baseline values by 

the first month.  This implies that concussion leads to impaired autoregulatory function which 

requires a period of at least one month for complete restoration.   
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(a)                                                                                 (b) 

      
    (c)                                                                               (d) 

Figure 2.3 Representative example of a physiological system (a) CA is a complex homeostatic 

mechanism that maintains a constant CBF despite variations in arterial blood pressure (ABP) 

and is frequently assessed by the dynamic relation between MABP and CBFV. Hence, MABP is 

assumed to be the system input and CBFV the system output. (b) Representative segments of 

MABP and CBFV experimental data from one subject. The sampling rate is 1Hz. (c) 1st order LV 

kernel, in the time domain, extracted from the signals presented in (b). (d) Gain and phase 

response of the LV kernel depicted in (c) in the frequency domain.  
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2.2.2 Laguerre-Volterra Network (LVN) 

2.2.2.1 Methodology 

   LET can be combined with feedforward artificial neural networks and hidden units with 

polynomial activation functions in the form of the LVN [14], [17], [30]. The input is initially 

convolved with a set of linear filters (Laguerre Filter Bank (LFB)). The obtained counterparts 

of the input are then fed into the units of the hidden layer (also known as neurons) giving rise 

to nonlinear interactions. Summation of the outputs of the units produces the final model 

output. Specifically, the j-th order DLF of the LFB is expressed as, 

𝑏௝(𝑚) = 𝛼(௠ି௝)/ଶ(1 − 𝛼)ଵ/ଶ ෍(−1)௞ ቀ
𝑚
𝑘

ቁ ቀ
𝑗
𝑘

ቁ 𝛼௝ି௞(1 − 𝛼)௞

௝

௞ୀ଴

                (2.26) 

where 𝑗 = 1 … 𝐿 and and 𝛼 is the Laguerre parameter described at Section 2.2.1.1. The 

corresponding filter output 𝑣௝(𝑛) is estimated by convolving 𝑏௝(𝑚) with the input 𝑥(𝑛). The 

variables 𝑣௝  are given by the autorecursive relations of Equations (2.15) and (2.16).  Functional 

equivalence with the Volterra model is achieved by employing polynomial activation functions 

on the units of the hidden layer. Each hidden unit 𝑘 receives as input the weighted sum of the 

LFB outputs,  

𝑢௞(𝑛) = 𝒘௞
்𝒗(𝑛)                                                              (2.27) 

where 𝑘 = 1 … 𝐾, 𝐾 is the total number of hidden units, 𝒘௞ ∈ 𝑹௅×ଵ are the weights and 𝒗(𝑛) ∈

𝑹௅×ଵ is the output of each filter bank at time step 𝑛. 𝑢௞(𝑛) is then preprocessed and transformed 

into, 

𝑧௞(𝑛) = 𝒄௞
்𝒖෥௞(𝑛)                                                              (2.28) 

where 𝒄௞ ∈ 𝑹ொ×ଵ, 𝑄 is the degree of the polynomial activation functions (𝑄 = 1 refers to a linear 

model, whereas 𝑄>1 to a Q-th order nonlinear model) and 𝒖෥௞(𝑛) = [𝑢௞(𝑛) … 𝑢௞
ொ(𝑛)]் . The 

final LVN output 𝑦(𝑛) is simply the nonweighted summation of the hidden-unit outputs 𝑧௞(𝑛) 

and a trainable offset 𝑦଴,  

𝑦(𝑛) = 𝑦଴ + ෍ 𝑧௞(𝑛)

௄

௞ୀଵ

                                                         (2.29) 

 The total number of free parameters in the LVN is equal to (𝐿 + 𝑄) · 𝐾. The Volterra kernels of 

the system can be easily expressed in terms of the network parameters [30]. A convenient and 

more interpretable LVN representation is the Principal Dynamic Modes (PDM) model, which 
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consists of a set of parallel filters (known as PDMs), defined by the number of hidden units, 

followed by a static nonlinearity [1] (Figure 2.4a). The PDMs reflect the most significant input 

dynamics that give rise to the output and can be expressed as, 

𝑃𝐷𝑀௞(𝑚) = 𝒘௞
்𝒃(𝑚)                                                        (2.30) 

where 𝒃(𝑚) ∈ 𝑹௅×ଵ consists of all the DLFs 𝑏௝(𝑚).  

   In [14] Mitsis et al. extended the original LVN model by introducing two LFBs in the input 

layer instead of one. The role of the two LFBs is to differentiate the slow from the fast dynamics 

and alleviate modelling challenges due to the presence of multiple time scales in the system 

dynamics. The LFBs can be assigned with different Laguerre parameters and a different number 

of Laguerre functions (filters) (Figure 2.4b). This can significantly reduce the total number of 

parameters needed compared to the case of a single LFB. The proposed model can also capture 

effectively nonlinear interactions between slow and fast dynamics. 

   

(a)                                                                                               (b) 

Figure 2.4 (a) PDM model composed of H filters (PDMs) that span the dynamics of the system. 

The PDM outputs are fed into a H-input static nonlinearity to generate the final output (x is the 

input and y is the output). (b) A SI fully connected LVN network with 𝐾 neurons. Each input is 

convolved with two sets of linear filters (LFBs) (i.e. red and green boxes). The LFBs are 

characterized by different Laguerre parameters and may contain different numbers of Laguerre 

functions (i.e. [𝐿ଵ, 𝑎ଵ] and [𝐿ଶ, 𝛼ଶ]).  

  PDMH 

  PDM1 

f(.) x 
y ⋮
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2.2.2.2 Training and Model Order Selection 

   A critical practical issue for the successful application of the LVN is the proper selection of its 

structural parameters, i.e., the size of the Laguerre filter banks 𝐿௜  (number of DLFs), the number 

𝐾 of hidden units and the degree 𝑄 of the polynomial activation functions. Selecting an 

excessively complex model may lead to overfitting and poor generalization. In other words, the 

model will fit perfectly the training data but it will perform poorly on new data. This is usually 

dealt with cross-validation techniques or model order selection criteria, as in the case of the LV 

models. Lately, regularization has also become a trending topic [9], [38], [52], [60], [61]. The 

idea behind regularization is to penalize complex models that have too many parameters. This 

is usually achieved by adding a complexity term to the loss function. The complexity term is 

controlled by the so-called regularization parameter 𝜆. A large 𝜆 rules out overcomplex models, 

whereas a small 𝜆 provides higher model flexibility. Regularization parameter selection is a 

challenging problem and it relies either on cross validation methods or other more 

sophisticated techniques. In the LVN models, regularization along with pruning of unnecessary 

network elements has shown promising results [61]. Once the model structure has been 

defined, training of the network parameters (i.e. the weights 𝒘௞
(௜), the Laguerre parameters 𝑎௜ , 

the coefficients of the polynomial functions 𝒄௞  and the output bias 𝑦଴) is performed using 

iterative estimation methods such as the backpropagation algorithm [14], [17]. Gradient based 

techniques however are known to suffer from convergence problems and local minima 

trapping. Thus, stochastic global optimization methods are a viable alternative solution for LVN 

training.  

2.2.2.3 Model Interpretation 

   Compared to the LV models, LVNs require a lower total number of unknown parameters. In 

the LV models, model complexity depends on the order 𝑄 of the system exponentially. For the 

LVN models, this dependence is linear. Therefore, LVNs are more practical for higher-order 

systems and they exhibit superior performance even in small datasets. The LV kernels can be 

easily reconstructed from the network parameters. Model interpretation is based on the same 

principles as those outline for LV models (Section 2.2.1.3). In addition, the equivalent PDM form 

of the LVN is a compact and parsimonious representation of the system under examination, 

providing wealth of information regarding the main input dynamics that give rise to the output. 

The LVNs have been successfully used in various biomedical applications [6]–[8], [17], [61], 
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[62]. In Chapter 5, we have developed LVN models that produce binary output predictions. 

Binary response models are useful for examining neuronal dynamics (Figure 2.5).  

 

Figure 2.5 An illustrative example of a system with binary output. The neuron responds to the 

elicited Local Field Potentials (LFP) with Action Potentials (AP) in the form of the Single-Unit 

Activity (SUA). Since the time of arrival of the AP carries all the information, the shape of the AP 

is ignored and the SUA signal is transformed to a binary signal (through amplitude 

thresholding) with ‘1’ indicating AP occurrence and ‘0’ AP nonoccurrence.  The binary signal is 

usually referred to as a spike train. 

2.2.3 Multivariate Autoregressive Model with exogenous input (MVARX) 

2.2.3.1 Methodology 

   In contrast to LV/LVN models, MVARX models are purely linear models. They consist of AR 

terms that take into account also the past history (past lags) of the outputs. An MVARX of order 

(𝑛௔, 𝑛௕) [63] describes the data as follows,  

𝒚(𝑛) = ෍ 𝑨𝒊𝒚(𝑛 − 𝑖)

௡ೌ

௜ୀଵ

+ ෍ 𝑩𝒋𝒖(𝑛 − 𝑗)

௡್

௝ୀ଴

+ 𝜺(𝑡)                              (2.31) 

where 𝒚(𝑛) ∈ 𝑹ெ×ଵ is the vector of 𝑀 response time series variables at time 𝑛, 𝒖(𝑛) ∈ 𝑹௄×ଵ is 

the vector of 𝐾 exogenous input time series variables at time 𝑛, 𝑨𝒊  ∈ 𝑹ெ×ெ is an autoregressive 

matrix for each order 𝑖, 𝑩𝒋  ∈ 𝑹ெ×௄ is a matrix representing exogenous terms for each order 𝑗 

and 𝜺(𝑛) is assumed to be a zero-mean white noise vector. In this dissertation, we focus mainly 

on the MVAR model which is the MVARX without the exogenous inputs i.e. 

𝒚(𝑡) = ෍ 𝑨𝒊𝒚(𝑡 − 𝑖)

௡ೌ

௜ୀଵ

+ 𝜺(𝑡)                                                    (2.32) 

 Equation (2.32) can be expresses in a matrix form as follows, 

Local Field Potentials  

Spike Train 

Single-unit activity 

Neuron 
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𝒀 = 𝑨𝜱 + 𝜺                                                                     (2.33) 

where 𝒀 ∈ 𝑹ெ×ே, 𝑁 is the total number of samples, 𝑨 ∈ 𝑹ெ×ெ·௡ೌ , 𝜱 ∈ 𝑹ெ·௡ೌ×ே and 𝜺 ∈ 𝑹ெ×ே. 

The coefficient matrix 𝑨 can be computed using OLS, 

𝑨෡ = 𝒀𝜱𝑻(𝜱𝜱்)ିଵ                                                          (2.34) 

Other estimation methods include the Yule-Walker correlation, the Vieira-Morf partial 

correlation and the Nutall-Strand partial correlation to name a few examples [64]. The 

predicted output is obtained from the following equation, 

𝒀෡ = 𝑨෡𝜱                                                                            (2.35) 

2.2.3.2 Model Order Selection 

   The most common approach for MVAR model order selection involves the minimization of 

one or more information criteria evaluated over a range of possible model orders (𝑛௔). For the 

MVARs the multivariate versions of BIC and AIC (Equations (2.22) and (2.23)) are commonly 

used, 

𝐵𝐼𝐶(𝑛௔) = 𝑁 log൫|𝜮෡|൯ + log (𝑁)𝑑                                                  (2.36) 

𝐴𝐼𝐶(𝑛௔) = 𝑁 log൫|𝜮෡|൯ + 2𝑑                                                         (2.37) 

where 𝑁 is the length of the data set, 𝑑 = 𝑀ଶ𝑛௔  is the total number of parameters and |𝜮෡| is the 

determinant of the estimated covariance of the error terms, i.e. 𝜮෡ = 𝑐𝑜𝑣(𝒀 − 𝒀෡). A main issue 

with the MVAR formulation is that it considers all lagged variables up to a selected order. 

Conventional regularization techniques like Least Absolute Shrinkage and Selection Operator 

(LASSO) and ridge regression do not take into account the lagged dependent structure of the 

data. Therefore, other alternatives such as Group LASSO have been proposed [65], [66]. Various 

dimension reduction techniques have also been developed to mitigate with the inclusion of 

unnecessary model regressors [67], [68]. 

2.2.3.3 Model Interpretation 

   MVAR models can capture linear interdependencies among multiple time series and identify 

causality in time and frequency domain which is highly essential when studying physiological 

systems. The human organism is by itself a complex network of interacting physiologic organ 

systems. At the microscale level for example, information is propagated through interconnected 

neuronal structures allowing different brain areas to communicate with each other. At the 
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macroscale level, cardiovascular, cerebrovascular and respiratory systems cooperate to ensure 

that enough oxygen will be supplied to organ tissues. From a signal processing point of view, 

communication between these systems is mainly achieved through couplings in different 

frequency bands. Hence, MVAR models are the ideal candidates for studying the coupling 

strength and the directionality of information flow in physiological interconnected systems and 

this has been proven by a number of studies [65], [69]–[78].  

   The most popular measures extracted by the MVAR models are the Coherence (COH) [79], the 

Partial Coherence (PC) [80], [81], the Directed Coherence (DC) [82], the Partial Directed 

Coherence (PDC) [76]. By taking the Fourier transform of Equation (2.27) it follows, 

𝒚(𝑛) = ෍ 𝑨௞𝒚(𝑛 − 𝑘)

௣

௞ୀଵ

+ 𝜺(𝑛)
ி்
ሱሮ [𝑰 − 𝑨(𝑓)]𝒀(𝑓) = 𝑬(𝑓) ⇒ 𝒀(𝑓) = 𝑯(𝑓)𝑬(𝑓)     (2.38) 

where 𝑨(𝑓) = − ∑ 𝑨𝒌𝑒ି௜ଶగ௙௞்𝒑
௞ୀ𝟏  ∈ 𝑹ெ×ெ is the coefficient matrix in the frequency domain, 

𝒀(𝑓) = ∑ 𝒚(𝑛)𝑒ି௜ଶగ௙௡்ାஶ
𝒏ୀିஶ  and 𝑯(𝑓) = [𝑰 − 𝑨(𝑓)]ି𝟏 = 𝑨ഥ(𝑓)ିଵ  ∈ 𝑹ெ×ெ is the transfer matrix 

in the frequency domain. Given the assumption of whiteness and uncorrelation of the input 

processes, the spectral power density matrix of 𝒚(𝑛) is, 

𝑺(𝑓) = 𝒀(𝑓)𝒀ு(𝑓)
(ଶ.ଷ଼)
ሳልልሰ 𝑺(𝑓) = 𝑯(𝑓)𝜮𝑯ு(𝑓)                            (2.39) 

The inverse spectral power density matrix of 𝒚 can be expressed as, 

𝑷(𝑓) = 𝑺ିଵ(𝑓) = 𝑨ഥு(𝑓)𝜮ିଵ𝑨ഥ(𝑓)                                            (2.40) 

where the superscript H stands for Hermitian transpose and 𝜮 = ቎
𝜎ଵ

ଶ … 0
⋮ ⋱ ⋮
0 … 𝜎௹

ଶ
቏  ∈ 𝑹ெ×ெ is the 

diagonal covariance matrix of 𝜺. The elements of the spectral density, transfer function, and 

coefficient matrices can be used to measure coupling and causality in the frequency domain. 

Specifically, 

𝐶𝑂𝐻்஽(𝑓) =
𝑆்஽(𝑓)

ඥ𝑆்்(𝑓)ඥ𝑆஽஽(𝑓)
                                                  (2.41) 

𝐷𝐶்஽(𝑓) =
𝜎஽𝐻்஽(𝑓)

ඥ∑ 𝜎௠
ଶ |𝐻்௠(𝑓)|𝟐ெ

௠ୀଵ

                                                 (2.42) 

𝑃𝐶𝑂𝐻்஽(𝑓) =
𝑃்஽(𝑓)

ඥ𝑃்்(𝑓)ඥ𝑃஽஽(𝑓)
                                                 (2.43) 
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𝐺𝑃𝐷𝐶்஽(𝑓) =

1
𝜎஽

�̅�்஽(𝑓)

ට∑
1

𝜎௠
ଶ |�̅�௠஽(𝑓)|𝟐ெ

௠ୀଵ

                                              (2.44) 

where 𝐶𝑂𝐻்஽  describes the Coherence from D (driver) to T (target), 𝐷𝐶்஽  the Directed 

Coherence, 𝑃𝐶𝑂𝐻்஽  the Partial Coherence and 𝐺𝑃𝐷𝐶்஽  the Generalized Partial Directed 

Coherence. These four measures describe in the frequency domain the time domain concepts of 

coupling (COH), direct coupling (PCOH), causality (DC), and direct causality (PDC). PCOH and 

PDC measure direct connectivity between two processes, while COH and DC account for both 

direct and indirect connections. Regarding causality, DC and PDC, only, contain information 

related with the directionality of the interaction. It holds that, 0 ≤ |𝐷𝐶்஽(𝑓)|ଶ ≤ 1, 

∑ |𝐷𝐶்௠(𝑓)|ଶெ
௠ୀଵ = 1 and 0 ≤ |𝐺𝑃𝐷𝐶்஽(𝑓)|ଶ ≤ 1, ∑ |𝐺𝑃𝐷𝐶௠஽(𝑓)|ଶெ

௠ୀଵ = 1. Note that DC uses 

the elements of the transfer function matrix 𝐻 while GPDC uses those of �̅�. Since the 

computation of GPDC does not involve any matrix inversion, it is computationally more efficient 

and more robust than DC. Furthermore, GPDC is normalized with respect to the total inflow of 

information, whereas DC is normalized with respect to the total outflow of information.  

   In order to facilitate the readers understanding of the MVAR measures described in Equations 

(2.39-2.44), the following three dimensional (𝑀 = 3) MVAR process is considered [83], 

𝑦ଵ(𝑛) = 2𝜌 cos(2𝜋𝑓ଵ) 𝑦ଵ(𝑛 − 1) − 𝜌ଶ𝑦ଵ(𝑛 − 2) + 𝜀ଵ(𝑛)                        (2.45) 

𝑦ଶ(𝑛) = 𝑦ଵ(𝑛 − 1) + 2𝜌 cos(2𝜋𝑓ଶ) 𝑦ଶ(𝑛 − 1) − 0.6𝑦ଵ(𝑛 − 2) − 𝜌ଶ𝑦ଶ(𝑛 − 2) +  𝜀ଶ(𝑛) (2.46) 

𝑦ଷ(𝑛) = 𝑦ଶ(𝑛 − 1) + 2𝜌 cos(2𝜋𝑓ଷ) 𝑦ଷ(𝑛 − 1) − 𝜌ଶ𝑦ଷ(𝑛 − 2) +  𝜀ଷ(𝑛)           (2.47) 

where 𝜌 = 0.9, 𝑓ଵ = 0.3, 𝑓ଶ = 0.1, 𝑓ଷ = 0.05 and 𝜺𝟏, 𝜺𝟐, 𝜺𝟑 are white noise signals (with variance 

𝜎ଵ
ଶ = 𝜎ଶ

ଶ = 𝜎ଷ
ଶ = 1) driving the process. Representative simulated signals can be found in Figure 

2.6. The sampling rate is assumed to be 1Hz. The process described in Equations (2.45-2.47) is 

one possible MVAR realization of the directed graph presented in Figure 2.7. The following 

observations can be made, 

a) The direct causality relations are 𝑦ଵ → 𝑦ଶ, 𝑦ଶ → 𝑦ଷ, 𝑦ଵ → 𝑦ଵ, 𝑦ଶ → 𝑦ଶ, 𝑦ଷ → 𝑦ଷ and this is 

captured by GPDC (Figure 2.8a) which is nonzero only for these cases.  

b) The indirect causality relations are 𝑦ଵ

௬మ
→ 𝑦ଷ (i.e. from 𝑦ଵ to 𝑦ଷ through 𝑦ଶ). Since DC (Figure 

2.8b) refers to both direct and indirect causal connections, DC is nonzero only for the 

relations described in a) and b). 
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c) The direct couplings are 𝑦ଵ ↔ 𝑦ଶ and 𝑦ଶ ↔ 𝑦ଷ. PCOH (Figure 2.8c) is thus zero for 𝑦ଵ ↔ 𝑦ଷ. 

The diagonal elements in Figure 2.8c represent the inverse spectra (P) of the time series. 

d) The indirect couplings are  𝑦ଵ

௬మ
↔ 𝑦ଷ (i.e. there is an indirect relationship between 𝑦ଵ and 𝑦ଷ 

mediated through 𝑦ଶ). COH (Figure 2.8d) represents both direct and indirect coupling thus 

it is nonzero for cases c) and d). The diagonal elements of COH are the spectra of the three 

time series. 

 

Figure 2.6 Simulated time series based on the MVAR process described in Equations (2.45-

2.47). 

 

Figure 2.7 Directed graph representing the interactions described in Equations (2.45-2.47). 

The nodes correspond to processes and the connecting arrows depict direct causal connections.  
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(a)                                                                                             (b) 

      

(c)                                                                                               (d) 

Figure 2.8 (a) GPDC, (b) DC, (c) Spectra and COH, (b) Inverse spectra and PCOH for the MVAR 

process described in Equations (2.45-2.47). yD -> yT denotes the driver and the target time 

series. COH and PCOH are symmetric measures, whereas DC and GPDC are asymmetric. Thus, 

COH yD -> yT  is equal to COH yT -> yD  and PCOH yD -> yT  is equal to PCOH yT -> yD, whereas DC yD 

-> yT  ≠ DC yT -> yD and GPDC yD -> yT  ≠ GPDC yT -> yD. The diagonal components of COH and 

PCOH are the spectra (S) and the inverse specta (P), respectively, of each time series. Notice 

how GPDC and DC adds up to one, at each frequency, columnwise and rowise respectively. 
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2.3 Time-Varying (TV) models 

   Time-invariant models that are linear in the parameters express the input-output relationship 

as follows (assuming a SI system for simplification), 

𝒚 = 𝒁𝜷 + 𝜺                                                                       (2.48) 

where 𝒚 ∈ 𝑹௺×ଵ  is the output signal, 𝛮 is the length of the data set, 𝒁 ∈ 𝑹௺×ௗ  is the regressor 

matrix (i.e. the 𝑽 matrix for the LV models and the 𝜱 matrix for the MVAR models), 𝑑 is the total 

number of model parameters, 𝜷 ∈ 𝑹ௗ×ଵ  contains the model parameters and 𝜺 ∈ 𝑹௺×ଵ  is 

assumed to be zero-mean white noise. 𝜷 can be easily estimated using OLS, 

𝜷෡ = (𝒁𝜯𝒁)ି𝟏𝒁𝜯𝒚                                                                  (2.49) 

   On the other hand, TV models assume that the model parameters are a function of time and 

thus Equation (2.48) becomes, 

𝑦(𝑛) = 𝒛்(𝑛)𝜷(𝑛) + 𝜀(𝑛)                                                       (2.50) 

where 𝒛(𝑛) ∈ 𝑹ௗ×ଵ is the regressor and 𝜷(𝑛) ∈ 𝑹ௗ×ଵ are the model parameters at time point 𝑛. 

Several approaches have been adopted for the estimation of the TV parameters 𝜷(𝑛). The 

quasistationary approach relies on identifying piecewise stationary models in sliding windows 

of data [17], [20], [84], [85]. Recursive approaches update the parameter estimates at each time 

point based on the data [19], [86]–[90]. Temporal expansion methods expand the TV 

parameters onto a set of basis sequences. The problem then becomes time-invariant with 

respect to the coefficients of the expansion [91]–[95]. Last but not least, ensemble methods use 

an ensemble of input-output realizations to produce a model of the system at each time point 

[21], [95], [96]. In the following subsections, we focus on the quasistationary and the recursive 

approaches.  

2.3.1 Quasistationary approaches 

   One of the most popular techniques for TV parameter estimation is the quasistationary 

approach. The procedure fits piecewise stationary models to the input-output data producing 

this way piecewise-constant parameter trajectories. Initially, the data is segmented into 

widows of equal length (with or without overlap). Subsequently, time-invariant models are 

estimated in each window. The obtained parameters are either linearly interpolated (if no 

window overlap is used) or averaged (in case of overlapped windows). Applying window 
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overlapping increases significantly computation time but improves time resolution. The 

window length in which the system is assumed to remain stationary is of critical importance. 

Too small of a window may lead to noisy estimates, too big of a window may underestimate the 

magnitude and the rate of changes (Figure 2.9). Usually, the window length is selected 

empirically based on some prior knowledge regarding the TV characteristics of the system or 

visually based on the variability of the obtained estimates.  

2.3.2 Recursive approaches 

   Contrary to quasistationary approaches, recursive algorithms update the model parameters 

continuously on the basis of new data. Some of the most common recursive estimation methods 

are the RLS and the KF technique [86]–[89].  

2.3.2.1 Recursive Least Squares (RLS)  

   RLS is an adaptive technique that recursively estimates model parameters by minimizing a 

weighted LS cost function [86]–[88]. The general form of RLS can be summarized in the 

following recursive equations, 

𝑒(𝑛) = 𝑦(𝑛) − 𝒛𝑻(𝑛)𝜷෡(𝑛 − 1)                                                   (2.51𝑎) 

𝑟(𝑛) = 𝒛𝑻(𝑛)𝑷(𝑛 − 1)𝒛(𝑛)                                                      (2.51𝑏) 

𝑲(𝑛) =
𝑷(𝑛 − 1)𝒛(𝑛)

𝜆 + 𝑟(𝑛)
                                                                (2.51𝑐) 

𝑷(𝑛) =
1

𝜆
[𝑷(𝑛 − 1) − 𝒛𝑻(𝑛)𝑲(𝑛)𝑷(𝑛 − 1)]                                    (2.51𝑑) 

𝜷෡(𝑛) = 𝜷෡(𝑛 − 1) + 𝑲(𝑛)𝑒(𝑛)                                                   (2.51𝑒) 

where 𝑒(𝑛) is the output prediction error, 𝑲(𝑛) ∈ 𝑹ௗ×ଵ  is a gain matrix, 𝑷(𝑛) ∈ 𝑹ௗ×ௗ  is the 

parameter covariance matrix corresponding to time 𝑛 initialized as 𝑷(0) = 𝑃଴𝑰ௗ×ௗ and 𝜆 is the 

so-called forgetting factor (FF). Equations (2.51a-e) are derived by replacing the LS error cost 

function with an exponential weighted sum of the squared error signal, 

𝐽(𝑛) = ෍ 𝜆௡ି௞𝑒ଶ(𝑘)

௡

௞ୀ଴

                                                           (2.52) 

The role of the FF (0 < 𝜆 < 1) is to reduce the influence of old data by assigning exponentially 

lower weight to less recent error samples. In the classical RLS, 𝜆 is set to one and the covariance 

matrix 𝑷(𝑛) (Equation (2.51d)) vanishes to zero with time, losing its capability to keep track of 
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changes in the parameters. In Equation (2.51d), however, 𝑷(𝑛) is divided by 𝜆 < 1 slowing 

down this way the fading out of the covariance matrix. The lower the value of the FF (closer to 

0) the faster the adaptation and the higher the sensitivity to noise. On the other hand, higher FF 

values (closer to 1) enable slower adaptation leading to less variable estimates. Therefore, the 

value of the FF is a trade-off between bias and variance of the parameter estimates (Figure 

2.10). Usually the FF is set empirically between 0.98 and 0.995 but in Chapter 3 we outline, for 

the first time, all the factors that affect its value and we present a framework for optimal FF 

selection. In addition, under the hypothesis that the parameters follow different rate of 

variations, we propose the use of multiple TV FFs that adjust their values automatically based 

on the data.  

2.3.2.1 Kalman Filter (KF) 

   TV parameters can also be adaptively estimated using the Kalman filter (KF) [87]–[89]. In 

contrast to RLS, KF assumes prior knowledge of the true parameter variations. The parameters 

change over time according to a random walk process driven by GWN with diagonal covariance 

matrix 𝑹𝟏 = 𝑅ଵ𝑰ௗ×ௗ where 𝑅ଵ = 𝜎௪
ଶ . The size of 𝑅ଵ dictates the rate of the random walks and 

the sensitivity of the estimator to noise (Figure 2.11). The Kalman filter algorithm can be 

summarized as follows, 

𝑒(𝑛) = 𝑦(𝑛) − 𝒛𝑻(𝑛)𝜷෡(𝑛 − 1)                                              (2.53𝑎) 

𝑟(𝑛) = 𝒛𝑻(𝑛)𝑷(𝑛 − 1)𝒛(𝑛)                                                 (2.53𝑏) 

𝑲(𝑛) =
𝑷(𝑛 − 1)𝒛(𝑛)

𝑅ଶ + 𝑟(𝑛)
                                                        (2.53𝑐) 

𝑷(𝑛) = 𝑷(𝑛 − 1) + 𝑹𝟏 − 𝑲(𝑛)𝒛𝑻(𝑛)𝑷(𝑛 − 1)                               (2.53𝑑) 

𝜷෡(𝑛) = 𝜷෡(𝑛 − 1) + 𝑲(𝑛)𝑒(𝑛)                                             (2.53𝑒) 

where 𝑲 is the Kalman gain matrix, which minimizes the a posteriori error covariance 𝑷, and 

𝑅ଶ is the variance of the measurement noise which is also assumed to be GWN. 𝑷 is initialized 

with a diagonal matrix of the form 𝑷(0) = 𝑃଴𝑰ௗ×ௗ. For 𝑅ଵ = 0 and 𝑅ଶ = 1, KF and RLS with 𝜆 =

1 become identical. As in the case of RLS, the accuracy of the obtained estimates depends on the 

values of 𝑅ଵ and 𝑅ଶ. In Chapter 3 and Chapter 4 we present modified versions of the KF 

algorithm that take into account the fact that each model parameter may follow a different TV 

pattern. 
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Figure 2.9 The effect of the window length (w) in quasistationary approaches for TV system 

identification. The input was GWN of unit variance and length of 3500 points. The output was 

simulated using Laguerre Volterra models (𝐿 = 3, 𝑎 = 0.5, 𝑄 = 1) with TV parameters as 

depicted in the plot “Real TV parameters”. Independent GWN was added to the output with 

20dB signal to noise ratio (SNR). The input-output data was initially segmented into windows 

of equal length w (top panel) and overlap of w-1 time points. At each window, a stationary 

system was identified and the model parameters were estimated (bottom panel). Depending 

on w, the parameter estimates were either too noisy (w=10) or too smooth (w=500). The 

window length w=50 time points was selected as optimal. The amplitude of the blue parameter 

(sinusoid) was well approximated and the step change of the yellow parameter was followed 

more accurately. Nevertheless, fast tracking induced some variability to both red and yellow 

parameters.  
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(a)                                                                                  (b) 

      

  (c)                                                                               (d) 

Figure 2.10 The effect of the FF in RLS (a) 𝜆 = 0.7 (β) 𝜆 = 0.98 (c) 𝜆 = 0.995 (d) 𝜆 = 1. The 

input-output data was simulated as described in Figure 2.9. The real TV parameters can also be 

found in Figure 2.9. The initial value for the covariance matrix was set to 𝑷(0) = 10000𝑰ଷ×ଷ. 

For smaller values of 𝜆, the estimator displays fast tracking but also higher sensitivity to noise. 

On the other hand, higher FF values produce more smooth estimates. For 𝜆 = 1 the parameters 

converge towards constant values and the system is assumed to be stationary. To increase 

accuracy all the parameters can be assigned with unique FFs. The red parameter requires a high 

valued FF since the observed variations are slow and small in magnitude. On the other hand, 

the blue parameter would require a smaller FF due to faster and larger changes. Finally, a TV 

FF would be more appropriate for the yellow parameter. The FF would initially be set close to 

1, decrease during the step change and recover again to values close to 1.   
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(a)                                                                                  (b) 

      

  (c)                                                                               (d) 

Figure 2.11 The effect of 𝑅ଵ and 𝑅ଶ in KF (a) 𝑅ଵ = 1, 𝑅ଶ = 1 (β) 𝑅ଵ = 0.01, 𝑅ଶ = 1  (c) 𝑅ଵ =

0.0001, 𝑅ଶ = 1  (d) 𝑅ଵ = 0, 𝑅ଶ = 1. The input-output data was simulated as described in Figure 

2.9. The real TV parameters can also be found in Figure 2.9. The initial value for the covariance 

matrix was set to 𝑷(0) = 10000𝑰ଷ×ଷ. Higher values of 𝑅ଵ resulted into better tracking of the 

fast parameter variations at the cost of more sensitivity to noise. For 𝑅ଵ = 0 and 𝑅ଶ = 1 the KF 

estimator coincides with the RLS algorithm with unit FF. As in the RLS case, more accurate 

estimates would be obtained if each parameter was assigned with a unique 𝑅ଵ value. 

2.3.3 Model Order Selection 

   Model order selection in TV systems is not a straightforward task. In fact, the literature on 

model order selection methodologies under TV enviroments in general appears to be limited. 
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Recursive approaches, such as RLS and KF, require a predefined model structure. Assuming 

that the model structure remains constant over time, cross-validation techniques are not 

readily applicable. Cross-validation is based on the assumption that the system under 

consideration is stationary. In practice, model structure can be determined using 

quasistationary approaches combined with model order selection criteria like BIC and AIC. A 

median or maximum model order (from all windows) representative of the whole dataset is 

usually extracted and used for recursive parameter estimation [90], [97], [98]. Some studies 

rely on the model order that minimizes BIC or AIC based on the a priori model prediction error 

of the recursive approach on the whole dataset [99], [100]. Modified variants of AIC and BIC 

that take into account the memory of the recursive estimator have also been developed [101], 

[102].  Similarly, with the case of the time-invariant models, model order determination is still 

subject to time consuming grid-search procedures. In Chapter 3 and Chapter 4 we propose a 

model order selection framework based on GAs that significantly improves accuracy and 

computation time. Moreover, we explore in detail the behavior of BIC and AIC under 

nonstationary conditions.  

2.4 Model Optimization Techniques 

   System identification consists of three main steps; the selection of an appropriate model 

structure, the optimization of the model hyperparameters (e.g. the Laguerre parameter in the 

LV models, the network weights in the LNVs) and the estimation of the model parameters. We 

have already described all three steps, and especially methods for estimating both time 

invariant and TV parameters (e.g., LS, RLS, KF etc.). Herein, we present analytically techniques 

that are employed in the following chapters for model order determination and 

hyperparameter optimization as alternatives to grid-search procedures that are usually 

computationally intractable (Note here that in the TV case, when we refer to model 

hyperparameters we also refer to the hyperparameters related with the recursive estimators 

e.g., forgetting factor in the RLS and innovation and measurement noise variance in the KF). 

Specifically, we propose heuristic optimization techniques such as mixed-integer [103] and 

hybrid local search-based Genetic Algorithms (GA). The basic concept is to transform the 

problem of model optimization into a problem of combinatorial optimization and then use the 

aforementioned techniques to realize simultaneously model structure and parameter 

identification. Recently there have been many studies on evolutionary algorithms such as 
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particle swarm optimization [104], ant colony optimization [105], artificial bee cologny 

algorithm [106], evolution strategies [107] and differential evolution [108]. However, we focus 

on the GA implementation of Matlab, Mathworks due to its availability, its ease of use and its 

flexibility with mixed-integer variables (integer variables are needed when optimizing the 

model order).   

2.4.1 Basic Genetic Algorithm (GA) 

   GA is an adaptive heuristic algorithm that solves both constrained and unconstrained hard 

optimization problems [109]–[111]. The algorithm encodes a potential solution to a specific 

problem on a chromosome-like data structure and imitates the process of natural selection and 

evolution, making use of techniques such as selection, mutation and crossover. The evolution 

begins with a random initial population of chromosomes. The GA evaluates their fitness in 

respect to a specific objective function, known also as fitness function (𝐽), and then generates 

new sample points in the search space by allocating higher reproductive opportunities to 

chromosomes (i.e., parents) that represent a better solution to the target problem. During the 

reproduction process, new chromosomes (i.e., children) are created using crossover and 

mutation operators. Crossover combines the information from two individual chromosomes 

into one chromosome, while mutation creates diversion by altering one chromosome to 

produce a new one. Over successive generations (i.e., iterations), the population evolves 

towards an optimal solution. 

   In more detail, let 𝜣௝ = [𝜃௝భ
𝜃௝మ

… 𝜃௝೘] be an individual chromosome (i.e., a combination 

of variables that consist a possible solution to the optimization problem) for 𝑗 = 1, … , 𝑁, where 

𝑁 represents the total number of chromosomes in the population (i.e., population size). The 

elements 𝜃௜  for 𝑖 = 1, … , 𝑚 are called genes. The search space 𝛺𝜣ೕ
 for 𝜣௝  is defined as, 

𝛺𝜣ೕ
= ൛𝜣௝ ∈ 𝑹௠; ห  𝜃௝భ ௠௜௡

≤ 𝜃௝భ
≤ 𝜃௝భ ௠௔௫

, … , 𝜃௝೘ ௠௜௡
≤ 𝜃௝೘

≤ 𝜃௝೘ ௠௔௫
}          (2.54)   

The outline for the basic GA is given as, 

1. [Initialize] Generate an initial random population of 𝑁 chromosomes.  

2. [Fitness] Evaluate the fitness 𝐽൫𝜣௝൯ of each chromosome 𝜣௝  in the current population.  

3. [Generate new population] Repeat the following steps:  

3.1 [Elite Selection] Select some of the fittest chromosomes (i.e. elite chromosomes) 

from the current population and pass them immediately to the new population.  
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3.2 [Selection] Select parent chromosomes from the current population (other than 

the elite chromosomes) based on their fitness value (see section 2.4.1.1). 

3.3 [Crossover] Form several new children (the total number of children depends 

on the crossover fraction for each population) from the selected parents of step 

3.2 using a crossover operator (see section 2.4.1.2). 

3.4 [Mutation] Form several new children (the fraction of mutated children for each 

population is defined as 1-crossover fraction) from some of the selected parents 

of step 3.2 by making small changes to the parent genes (see section 2.4.1.3). 

4. [Replace] Replace the current population with the new population and go to step 2. 

5. [Test] If one of the stopping criteria is met (e.g. number of generations, time limit, 

average change in the fitness function value over a specific number of generations), stop 

the algorithm and return the fittest chromosome in the current population.  

   In the following subsections, the selection, crossover and mutation operators are explained in 

more detail. 

2.4.1.1 Selection 

   The selection operator is responsible for selecting parents for the next generation. Some well-

known selection methods are the following, 

 Stochastic uniform selection – Each parent chromosome corresponds to a section of a 

line of length proportional to its fitness value. The algorithm moves along the line in 

steps of equal size (step) and depending on the section it lands it selects a parent 

chromosome. The first step (first_step) is a random number (smaller than the step size) 

selected from a uniform distribution (Figure 2.12a). 

 Roulette selection – A circular wheel is divided into 𝑁 segments, where 𝑁 is the 

population size. Each chromosome is allocated a portion of the circle which is 

proportional to its fitness value. A fixed point is then chosen on the wheel circumference 

and the wheel is rotated. The region of the wheel which lands in front of the fixed point 

determines the selected parent (Figure 2.12b). 

 Tournament selection – In 𝐾-Way tournament selection, 𝐾 chromosomes are selected 

randomly from the population. The best chromosome out of the set is chosen to be a 

parent. The same process is repeated for selecting the next parent. If 𝐾 is large, weak 

chromosomes have a smaller chance to be selected (Figure 2.12c). 
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(a) 

 

(b) 

 
(c) 

Figure 2.12 Selection operator (a) Stochastic uniform selection (b) Roulette selection (c) 

Tournament selection with 𝐾 = 3. 

2.4.1.2 Crossover 

   Crossover combines the information of two chromosomes (i.e., parents) to produce one new 

chromosome (i.e., child), attracting the population towards a local minimum (Figure 2.13). 

There are various implementations of the crossover operator; single-point, two-point, uniform, 

heuristic and the arithmetic crossover to name a few examples. Let 𝜣ଵ and 𝜣ଶbe the selected 

parent chromosomes, 
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 Single-point crossover – A single crossover point is selected. A new chromosome is 

produced by combining the genes from the beginning of 𝜣ଵ to the crossover point and 

from the crossover point up to the final gene of 𝜣ଶ (Figure 2.14a). 

 Two-point crossover – Two crossover points are selected. A new chromosome is 

produced by combining the genes from the beginning of 𝜣ଵ to the first crossover point, 

from the first to the second crossover point of 𝜣ଶ and the second crossover point up to 

the final gene of  𝜣ଵ (Figure 2.14b). 

 Uniform crossover - A random binary vector is generated. A new chromosome is 

produced by selecting the genes where the vector is a 1 from 𝜣ଵ and the vector is a 0 

from 𝜣ଶ (Figure 2.14c). 

 Heuristic crossover – A new chromosome is produced by taking a weighted average of 

𝜣ଵ and 𝜣ଶ as follows, 

𝑖𝑓 𝐽(𝜣ଵ) > 𝐽(𝜣ଶ) 𝑡ℎ𝑒𝑛 𝜣௡௘௪ = 𝜣ଵ + 𝑟(𝜣ଵ − 𝜣ଶ)                         (2.55) 

𝑖𝑓 𝐽(𝜣ଶ) > 𝐽(𝜣ଵ) 𝑡ℎ𝑒𝑛 𝜣௡௘௪ = 𝜣ଶ + 𝑟(𝜣ଶ − 𝜣ଵ)                         (2.56) 

where 𝑟 ∈ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0,1] and 𝐽൫𝜣௝൯ is the fitness value of the chromosome 𝜣௝  (a higher 

fitness value means that the specific chromosome is a better solution to the target 

problem). Note that 𝜣௡௘௪  may not be a feasible solution if its genes reside outside the 

allowable upper and lower bounds. Thus, after a predefined number of tries in selecting 

𝑟, if a feasible chromosome is not produced then the parent with the best fitness function 

is returned (Figure 2.14d).  

 Arithmetic crossover – A new chromosome is produced by taking a weighted average 

of 𝜣ଵ and 𝜣ଶ as follows, 

𝜣௡௘௪ = 𝑟𝜣ଵ + (1 − 𝑟)𝜣ଶ                                                (2.57) 

where 𝑟 ∈ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0,1] (Figure 2.14e). 

2.4.1.3 Mutation 

   Mutation creates diversity by making small changes in the genes of the chromosomes. The 

role of mutation is to occasionally pull the population out of a local optimum (minimum or 

maximum depending on the target problem) and direct it towards a better search space (Figure 

2.13). As with crossover, there are various mutation types, e.g. gaussian, uniform and adaptive 

feasible.  Let 𝜣ଵ be the selected parent chromosome,  

 Gaussian mutation – A new chromosome is produced by adding a random number 

taken from a Gaussian distribution with mean 0 to each gene of the parent chromosome 
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𝜣ଵ. The Gaussian distribution is controlled by varying the scale and shrink parameters. 

Scale represents a measure of variance of the initial population, whereas shrink controls 

how the standard deviation shrinks along with generations, 

𝜎௞ = 𝜎௞ିଵ ൬1 − 𝑆ℎ𝑟𝑖𝑛𝑘
𝑘

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
൰                             (2.58) 

where 𝜎௞ and 𝜎௞ିଵ is the standard deviation of the current and previous generation, 𝑘 is 

the number of the current generations and 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 the total number of 

generations. 

 Uniform mutation – The algorithm selects a fraction of the genes of the parent 

chromosome 𝜣ଵ for mutation, where each gene has a probability 𝑝௠ of being mutated. 

A new chromosome is generated by replacing each selected gene by a random number 

uniformly sampled in the range of that gene. 

 Adaptive feasible mutation – The direction and the step-size of the mutation is 

adapted with respect to the last generation, satisfying the lower and upper bounds of 

each gene, as well as the inequality constraints. The mutation process starts with the 

generation of a random mutation direction and an initial step size. If the mutated child 

resides into the infeasible region then the step size is adjusted to a smaller value, until 

the generated child is within the feasible region. 

 

Figure 2.13 Crossover attracts the population towards a local optimum (minimum or 

maximum), whereas mutation occasionally pulls the population out of a local minimum and 

directs it towards a better search space. 
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(a) 

 
(b) 

 
(c) 

      

(d) 

 

(e) 

Figure 2.14 Crossover operator (a) Single-point crossover (b) Two-point crossover (c) 

Uniform crossover (d) Heuristic crossover with 𝐽(𝜣ଵ) < 𝐽(𝜣ଶ) and 𝑟 = 1 (e) Arithmetic 

crossover with 𝑟 = 0.5. 
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 𝜃ଶఱ
 𝜃ଶల

 𝜃ଵళ
 

𝜣௡௘௪  

7 4 3 6 2 4 5 

1 3 2 6 1 3 2 

7 11 4 6 3 5 8 

𝜣ଵ 

𝜣ଶ 

𝜣௡௘௪  

𝐽(𝜣ଵ) < 𝐽(𝜣ଶ) 

𝜣௡௘௪ = 𝜣ଵ + 𝑟(𝜣ଵ − 𝜣ଶ),    𝑟 = 1 

7 4 3 6 2 4 5 

1 3 2 6 1 3 2 

2.5 5 2.5 6 1.5 3.5 3.5 

𝜣ଵ 

𝜣ଶ 

𝜣௡௘௪  

𝜣௡௘௪ = 𝑟𝜣ଵ + (1 − 𝑟)𝜣ଶ, 𝑟 = 0.5 
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2.4.1.4 Tuning the parameters of the GA 

   The performance of the GA may be affected from various factors. Herein, we briefly present 

some of these factors.  

 Generations – Increasing the maximum number of generations (i.e. iterations) oftenly 

leads to improved final results. However, when the mutation operator is Gaussian, the 

amount of mutation is decreased in each generation by a factor that depends on the total 

number of generations (see Equation (2.58)), leading usually to worse results. In this 

work, a total number of 100-200 generations were found to be enough for our 

optimization problems. 

 Population size – If the population is too small, the improvement per generation in the 

fitness function will be low. Increasing the population size allows the GA to explore more 

points in the search space [112]–[115]. However, the runtime of the algorithm may 

increase significantly. The GA Matlab implementation uses a default population size of 

50 if the total number of variables (i.e. genes) is less than 5 and 200 otherwise. A 200 

population size was found to be adequate in our work. 

 Crossover fraction – The crossover fraction determines the fraction of the population 

that will be generated using crossover. A crossover fraction of 0 or 1 is not an effective 

strategy [112]–[117]. A crossover fraction of 1 implies that all children are generated 

only by recombining chromosomes from the initial population. Without mutation, the 

GA will not be able to cover the search space and will be restricted around a local 

optimum. On the other hand, a crossover fraction of 0 means that all children are 

mutation children and the GA becomes a random search technique where good 

chromosomes are perturbed constantly. Practically, a crossover fraction between 0.7 

and 0.9 is desirable. The Matlab GA implementation has a default crossover fraction 

value of 0.8 which was found to be an appropriate value in our model optimization 

problems described on subsequent chapters. 

 Selection operator – Although the selection operator does not affect significantly the 

results, it has been shown that tournament selection has better convergence and less 

computational complexity compared to other selection operators [118]. 

Note that in this work, the default settings of the Matlab GA implementation overall led to 

satisfactorily results.  
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2.4.2 Mixed integer Genetic Algorithm 

   The basic GA is developed for continuous variables. In case of mixed-integer variables (i.e., 

some variables are integer-valued), several modifications are made in order for the basic GA to 

handle integer restrictions [103]. 

 Crossover operator – Laplace crossover [119] is the main crossover operator. A 

number 𝛽, that satisfies the Laplace distribution, is generated as follows, 

            𝑎 − 𝑏𝑙𝑛(𝑢), 𝑖𝑓 𝑢 ≤ 0.5 

𝛽 =                                                                                                  (2.59) 

             𝑎 + 𝑏𝑙𝑛(𝑢), 𝑖𝑓 𝑢 > 0.5 

where 𝑢 ∈ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0,1], 𝑎 is a location parameter and 𝑏 is a scaling parameter which 

is different than its default value when dealing with integer variables. If 𝜣ଵ and 𝜣ଶare 

the selected parent chromosomes, then the child is generated as, 

𝜣௡௘௪ =  𝜣ଵ + 𝛽|𝜣ଵ − 𝜣ଶ|  𝑜𝑟   𝜣௡௘௪ =  𝜣ଶ + 𝛽|𝜣ଵ − 𝜣ଶ|             (2.60) 

Based on Equation (2.60), small values of 𝛽 lead to children that are close to their parents 

and large values of 𝛽 produce children further from their parents. 

 Mutation operator – Power mutation [120] is defined as the main mutation operator. 

Let 𝜣ଵ be the selected parent. Then a mutated child is created as follows, 

                             𝜣ଵ − 𝑠(𝜣ଵ − 𝜣ଵ௅), 𝑖𝑓 𝑡 < 𝑟 

𝜣௡௘௪ =                                                                                                  (2.60) 

                               𝜣ଵ + 𝑠(𝜣ଵ௎ − 𝜣ଵ), 𝑖𝑓 𝑡 ≥ 𝑟 

where 𝜣ଵ௅ and 𝜣ଵ௎  are the lower and upper bounds of 𝜣ଵ respectively, 𝑡 =
𝜣భି𝜣భಽ

𝜣భೆି𝜣భ
 ,  𝑟 ∈

𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0,1], 𝑠 = (𝑠ଵ)௣ with 𝑠ଵ ∈ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0,1] and 𝑝 being different for the case of 

integer or continouous variables. The strength of mutation is determined by 𝑝. For small 

values of 𝑝 the genes of the child chromosome are less perturbed, whereas for large 𝑝 

values the child chromosome becomes more diverse compared to its parent. 

 Truncation for integer restrictions – After crossover and mutation, if the integer-

defined genes are not integers values anymore then these genes are truncated to [𝜃௝೔
] 

(the integer part of the gene) or ൣ𝜃௝೔
൧ + 1 each with 0.5 probability. This truncation 



Background 

41 

procedure avoids the generation of the same integers whenever a gene lyes between the 

same two consecutive integers. 

 Fitness function – The GA optimizes the fitness function plus a penalty term for 

infeasibility. Specifically, the fitness of a feasible solution is its fitness values, whereas 

the fitness of an infeasible solution is equal to the fitness value of the worst feasible 

solution in the current population and the amount of constraint violation. This implies 

that in case of two infeasible solutions the one having the smallest constraint violation 

is preferred. This procedure ensures that infeasible solutions are directed towards the 

feasible region. 

The mixed-integer GA described in this subsection will be used in Chapters 3 and 4 for 

simultaneous model order selection (note here that the model order is an integer variable) and 

hyperparameter optimization in LV and MVAR models. 

2.4.3 Hybrid local search-based Genetic Algorithm 

   An hybrid GA (known also as memetic GA [121]) is a basic GA that incorporates local searh 

techniques to improve its performance. The basic GA is known to perform well as a global 

search technique for solving large-scale problems with multiple local optima. It can be used 

efficiently in the case of both non-convex and discontinuous objective functions. However, 

depending on the target problem, it may take a relatively long time to converge to a global 

optimum. On the other hand, local search algorithms converge faster to a local optimum, but 

they lack global perspective and they are sensitive to the initial guess of the solution. 

Hybridizing the GA with local search mechanisms ensures faster convergence. In practice, the 

GA is run for a small number of generations, performing this way an initial search of decision 

space and identifying solutions close to the global optimum. Then the GA solution is fed as an 

initial point to a faster and more efficient local search algorithm. Note here that for the mixed-

integer GA, local search techniques are not supported.   

   Local search algorithms can be grossly discriminated in gradient-based and nongradient-

based approaches. Some examples of gradient-based techniques are: conjugate gradient, 

steepest descent, Levenberg-Marquadt, Quasi-Newton, Gauss-Newton, interior point and 

sequential quadratic programming (SQP) [122]–[124]. Nongradient-based techniques include: 

Nelder-Meade simplex, Powell’s method, Hook-Jeeves method and Pattern search [125], [126]. 

Gradient-based approaches usually converge faster but they require a reasonably continuous 
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and differentiable objective function. On the contrary, nongradient-based techniques are more 

flexible when dealing with discontinuities in the decision space even at a local scale. 

   In Chapter 5, we will apply a hybrid GA combined with interior point constrained nonlinear 

method to train LVN models. The interior point method (known also as barrier method) is used 

to solve both linear and nonlinear convex optimization problems. The main idea of the interior 

point method is to iteratively approach the optimal solution from the interior of the feasible set. 

In the following subsection, we describe in detail the interior-point approach to constrained 

minimization. 

2.4.3.1  Interior-point Algorithm 

   Consider the following nonlinear optimization problem, 

min
𝒙

𝑓(𝒙)   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ℎ௝(𝒙) = 0 𝑎𝑛𝑑 𝑔௜(𝒙) ≤ 0                                 (2.61)   

where 𝑖 = 1, … , 𝑚 𝑎𝑛𝑑 𝑗 = 1, … , 𝑘, 𝒙 ∈ 𝑹௡×ଵ, 𝑓: 𝑹௡ → 𝑹 ,   ℎ௝: 𝑹௡ → 𝑹  and 𝑔௜: 𝑹
௡ → 𝑹 are 

smooth functions. The approximate problem of Equation (2.61) is, 

min
𝒙,𝒔

𝑓ఓ(𝒙, 𝒔) = min
𝒙,𝒔

൝𝑓(𝒙) − 𝜇 ෍ ln(𝑠௜)

௠

௜ୀଵ

ൡ  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ℎ௝(𝒙) = 0 𝑎𝑛𝑑 𝑔௜(𝒙) + 𝑠௜ = 0 (2.62) 

where 𝒔 = [𝑠ଵ … 𝑠௠]்  is the vector of slack variables 𝑠௜  (where 𝑠௜ > 0) for each inequality 

constraint 𝑔௜ and 𝜇 > 0. The logarithmic term in Equation (2.62) is known as the barrier 

function [127], [128] and it forces the algorithm to remain in the feasible set. The Lagrangian 

of Equation (2.62) is, 

𝐿൫𝒙, 𝒔, 𝝀௚ , 𝝀௛൯ = 𝑓(𝒙) − 𝜇 ෍ ln(𝑠௜)

௠

௜ୀଵ

+ ෍ 𝜆௛௝
ℎ௝(𝒙)

௞

௝ୀଵ

෍ 𝜆௚௜
[𝑔௜(𝒙) + 𝑠௜]

௠

௜ୀଵ

                (2.63) 

where 𝝀௚ = ൣ𝜆௚ଵ
… 𝜆௚௠൧

்
 and 𝝀௛ = [𝜆௛ଵ

… 𝜆௛௞]் are vectors of Lagrange multipliers. 

The Karush-Kuhn-Tucker (KKT) optimality conditions of the problem of Equation (2.62) are, 

∇𝒙𝐿൫𝒙, 𝒔, 𝝀௚, 𝝀௛൯ = ∇𝑓(𝒙) + ෍ 𝜆௛௝
∇ℎ௝(𝒙)

௞

௝ୀଵ

+ ෍ 𝜆௜∇𝑔௜(𝒙)

௠

௜ୀଵ

= 0                 (2.64) 

∇𝒔𝐿(𝒙, 𝒔, 𝝀) = −𝜇 ෍
𝜆௜

𝑠௜

௠

௜ୀଵ

= 0                                                      (2.65) 

ℎ௝(𝒙) = 0   𝑓𝑜𝑟 𝑗 = 1, … , 𝑘                                                       (2.66)  
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𝑔௜(𝒙) + 𝑠௜ = 0   𝑓𝑜𝑟 𝑖 = 1, … , 𝑚                                                   (2.67) 

At each iteration, Equation (2.62) is solved using one of the following steps, 

 Newton step – By applying Newton’s method to the Karush-Kuhn-Tucker (KKT) 

conditions of Equations (2.64-2.67) the following step is obtained [127]–[129],  

⎣
⎢
⎢
⎡
𝑯 𝟎 𝑱௛

𝑻 𝑱௚
𝑻

𝟎 𝑺𝜦 𝟎 −𝑺
𝑱௛ 𝟎 𝑰 𝟎
𝑱௚ −𝑺 𝟎 𝑰 ⎦

⎥
⎥
⎤

൦

𝜟𝒙
𝜟𝒔

−𝜟𝝀௛

−𝜟𝝀௚

൪ = −

⎣
⎢
⎢
⎢
⎡
∇𝑓(𝒙) − 𝑱௛

𝑻𝝀௛ − 𝑱௚
𝑻𝝀௚

𝑺𝝀௚ − 𝜇𝒆

ℎ(𝒙)

𝑔(𝒙) + 𝒔 ⎦
⎥
⎥
⎥
⎤

             (2.68) 

where 𝑺 = 𝑑𝑖𝑎𝑔(𝒔), 𝜦 = 𝑑𝑖𝑎𝑔൫𝝀௚൯, 𝒆 ∈  𝑹௠×ଵ is a vector of ones,  𝑰 is an identity matrix,  

 𝑱௛ and 𝑱௚ are the Jacobians of the constraint functions ℎ(𝒙) and 𝑔(𝒙) respectively, 

𝑱௛ =

⎣
⎢
⎢
⎢
⎡
𝜕ℎଵ(𝒙)

𝜕𝑥ଵ
…

𝜕ℎଵ(𝒙)

𝜕𝑥௡

⋮ ⋱ ⋮
𝜕ℎ௞(𝒙)

𝜕𝑥ଵ
…

𝜕ℎ௞(𝒙)

𝜕𝑥௡ ⎦
⎥
⎥
⎥
⎤

 𝑎𝑛𝑑  𝑱௚ =

⎣
⎢
⎢
⎢
⎡

𝜕𝑔ଵ(𝒙)

𝜕𝑥ଵ
…

𝜕𝑔ଵ(𝒙)

𝜕𝑥௡

⋮ ⋱ ⋮
𝜕𝑔௠(𝒙)

𝜕𝑥ଵ
…

𝜕𝑔௠(𝒙)

𝜕𝑥௡ ⎦
⎥
⎥
⎥
⎤

             (2.69) 

𝑯 is the hessian of Equation (2.63), 

𝑯 = ∇𝒙
ଶ𝐿൫𝒙, 𝒔, 𝝀௚, 𝝀௛൯ = ∇ଶ𝑓(𝒙) + ෍ 𝜆௛௝

∇ଶℎ௝(𝒙)

௞

௝ୀଵ

+ ෍ 𝜆௚௝
∇ଶ𝑔௜(𝒙)

௠

௜ୀଵ

       (2.70) 

Note, that 𝑯 is positive definite if 𝑓 is convex, each 𝑔௜ is concave, each ℎ௝  is affine and 

each 𝜆௛௝
, 𝜆௚௜

≥ 0 (i.e., the nonlinear programming problem is convex). In order to solve 

Equation (2.68) for (𝜟𝒙, 𝜟𝒔) LDL factorization is applied. If the projected Hessian matrix 

is not positive definite then the conjugate gradient step (described below) is applied. 

The solution (𝜟𝒙, 𝜟𝒔) determines the direction for movement of the primal and dual 

variables, respectively. 

 Conjugate Gradient step – The problem of Equation (2.62) is solved using the 

conjugate gradient approach [127]–[129]. The main goal is to minimize a quadratic 

approximation to the approximate problem of Equation (2.62) in a trust region, subject 

to linearized constraints. Specifically, the search direction (𝜟𝒙, 𝜟𝒔) is given by solving 

the quadratic problem, 

min
𝜟𝒙,𝜟𝒔

൜∇்𝑓(𝒙)𝜟𝒙 +
1

2
𝜟𝒙்𝑯𝜟𝒙 + 𝜇𝒆்𝑺ି𝟏𝜟𝒔 +

1

2
𝜟𝒔்𝑺ି𝟏𝜦𝜟𝒔ൠ 
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subject to 𝑔(𝒙) + 𝑱௚𝜟𝒙 + 𝜟𝒔 = 0,       ℎ(𝒙) + 𝑱௛𝜟𝒙 = 0                      (2.71) 

The KKT conditions associated with the problem of Equation (2.71) are exactly specified 

by the system of Equation (2.68) and, thus, a solution (𝜟𝒙, 𝜟𝒔) of the system of Equation 

(2.68) is an optimal solution to the problem of Equation (2.71). The desirable 

characteristic of the conjugate gradient procedure is that there is no need to invert or 

factorize 𝑯.  
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 Identification of multiple input, 

linear and nonlinear, time-varying systems for 

biomedical applications 

   Physiological systems are prone to time variations either due to unobservable inputs or 

inherent variability in the system dyamics. In this chapter we describe novel recursive schemes 

for estimating single- (SI) and multiple-input (MI) TV systems that can be applied to different 

type of models that are linear in the parameters. Contrary to the conventional recursive 

methods, the proposed schemes take into account the fact that each model parameter may 

exhibit different rates and amplitude variations, achieving this way superior performance 

under slow, fast or even mixed-mode system changes. In addition, we propose a model order 

selection and hyperparameter optimization framework based on mixed integer GAs that can 

replace computationally intractable exhaustive or grid search procedures. Most importantly, 

however, we explore for the first time the link between the hyperparameter values of the 

proposed recursive estimators, the model complexity and the systems noise and TV 

characteristics. The performance of our proposed methodology was evaluated using both 

simulated and experimental data. 

 



Identification of multiple input, linear and nonlinear, time-varying systems for biomedical applications 

46 

Identification of multiple input, linear and 
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Abstract — We present novel computational schemes for estimating single- and multiple-input 

time-varying (TV) systems, combining a Laguerre-Volterra model formulation with improved 

recursive schemes based on conventional Recursive Least Squares (RLS) and Kalman Filtering 

(KF). The proposed recursive estimators achieve superior performance, particularly in the case 

of TV systems with multiple-inputs or systems that exhibit mixed-mode nonstationarities. RLS-

based schemes were found to perform better in the case of TV linear systems, while the KF-

based schemes were found to perform considerably better in the case of TV nonlinear systems. 

Model order selection and tuning of the estimator hyperparameters were implemented using 

Genetic Algorithms (GA), significantly improving performance and reducing computation time. 

Furthermore, exploiting the search efficiency in hyperparameter space yielded by the proposed 

GA, we rigorously examined the correlations between the hyperparameter values, the model 

complexity and the nonstationary characteristics of the true underlying system. The 

performance of the proposed algorithms was assessed using simulations and experimental data 

from patients undergoing head-up tilt testing for the diagnosis of vasovagal syncope. 

Index Terms — Nonstationary systems, Recursive Least Squares, Kalman Filter, Multiple 

Forgetting Factors, Laguerre Expansion Technique. 
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3.1 Introduction 

   A challenging problem in the field of system identification is modeling physical phenomena 

that are time-varying (TV). TV system dynamics, also termed nonstationarities, may reflect 

inherent variability in the system dynamics, the effect of additional modulating factors (e.g. 

unobserved or unmodeled inputs or disturbances) or both. Identification of nonstationary 

systems is usually addressed by applying either quasistationary approaches, i.e. piecewise 

stationary models, or recursive estimation methods, i.e. updating a selected model at each time 

step. The Recursive Least Squares (RLS) algorithm with constant forgetting factor (FF) [86]–

[88] and the Kalman Filtering (KF) technique [87]–[89] are the most widely used adaptive 

methods to identify TV systems.  

   Several variations of the aforementioned recursive identification techniques have been 

proposed. Under low system excitation, the RLS algorithm with constant FF may become 

extremely sensitive to noise. In order to tackle this problem, Fortescue et al. [130] proposed a 

TV FF based on the residual variance chosen to maintain the information content of the 

estimator constant at each time step. Sripada and Fisher [131] suggested a TV FF along with an 

on/off estimation criterion depending on the levels of excitation of the system under 

consideration. In another work, Saldago et al. [132] proposed an exponential resetting of the 

RLS algorithm whenever the excitation was insufficient. On the other hand, [133]–[135] 

introduced the concept of “directional forgetting”, whereby old information is discounted non-

uniformly for different parameters. In [136] and [137], the application of parallel multiple RLS 

algorithms with different constant FFs was proposed in order to identify systems with irregular 

parameter changes. Jiang and Zhang [84] proposed a sliding window blockwise least squares 

approach with automatically adjustable window length, whereas Warwick et al. [138] 

combined the classical RLS algorithm with genetic algorithms (GAs) to achieve improved 

performance. Studies [139]–[143] derived various TV FFs by using either gradient based 

techniques or recovering the true output noise from the a priori model prediction error. 

Additionally, in order to track efficiently parameters with different rates of variations, [144]–

[147] suggested matrix FFs which assign unique FFs to each parameter. Adaptive methods for 

estimating online the noise statistics of the KF algorithm were introduced in [148]–[150] 

whereas, Almagbile et al. [151] reviewed and evaluated the performance of different adaptation 

scenarios for the process and noise covariance matrices. Most of the aforementioned recursive 

approaches rely on tunable parameters that are usually selected in an ad hoc or empirical 
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manner, possibly based on some prior knowledge. This may affect the accuracy of the obtained 

estimates and makes the comparison between different algorithms difficult. Furthermore, an 

important aspect in system identification is model order selection. This issue has been 

investigated extensively under the assumption of stationarity; however there are rather few 

studies focusing on TV systems [100]–[102], [152]–[154]. The performance of various model 

order selection criteria is relatively unknown when modeling nonstationary relationships. 

   In the present paper, we propose novel data-driven computational schemes that can be used 

to identify a wide class of TV systems (linear/nonlinear, single-input (SI) and multiple-input 

(MI) systems with finite memory) efficiently. These schemes were applied in combination with 

Laguerre-Volterra models, which can capture a wide range of nonlinear dynamic input-output 

causal interrelationships; however, they can be easily extended to other type of dynamic 

models which are linear in the parameters. In Section 3.2, we introduce the proposed TV 

Laguerre-Volterra formulation [19], [90] along with improved recursive computational 

schemes for its estimation. Eight different algorithms are considered. These include RLS with a 

single constant FF, an improved version of RLS with a single adaptive FF first presented in [35] 

and [36], as well as new versions of the RLS suitable for MI nonlinear systems employing 

multiple constant and adaptive FFs. They also include the conventional KF technique and two 

novel adaptive KF algorithms for both SI-TV and MI-TV systems. Importantly, we propose a 

scheme to simultaneously perform model order selection and optimization of the recursive 

algorithm hyperparameters, based on a mixed-integer GA, significantly improving performance 

and reducing running time. In Section 3.3, we describe the simulated SI and MI TV systems that 

were used to evaluate the proposed methods. In Section 3.4, we investigate rigorously, for the 

first time to our knowledge, the relationship between the hyperparameter values of the 

aforementioned recursive estimators and the nonstationary characteristics (magnitude, 

frequency) of the true underlying system. In Section 3.5, we evaluate the performance of the 

proposed algorithms under different types of nonstationarities and noise levels. Finally, in 

Section 3.6, we apply our methodology to experimental data in order to detect changes in 

dynamic Cerebral Autoregulation (dCA) in patients suffering from Vasovagal Syncope (VVS) 

during a Head-Up Tilt (HUT) protocol. 
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3.2 Methods 

3.2.1 Multiple Input - Single Output discrete-time Volterra Model 

   The input-output relationship of a Q-th order, nonlinear, MI, single-output, causal dynamic 

system can be expressed by the following Volterra model in discrete time [1],   

     𝑦(𝑛) = 𝑘0 + ෍ ෍ 𝑘ଵ(௫೔)
(𝑚)𝑥௜(𝑛 − 𝑚)

௠

ூ

௜ୀଵ

 

                          + ෍ ෍ 𝑘ଶ൫௫೔భ ,௫೔మ൯
(𝑚ଵ, 𝑚ଶ)𝑥௜భ

(𝑛 − 𝑚ଵ)𝑥௜మ
(𝑛 − 𝑚ଶ)

௠భ,௠మ

ூ

௜భ,௜మୀଵ

+ ⋯ 

                      + ෍ ෍ 𝑘ொቀ௫೔భ ,…,௫೔ೂ
ቁ
൫𝑚ଵ, … , 𝑚ொ൯𝑥௜భ

(𝑛 − 𝑚ଵ) … 𝑥௜ೂ
൫𝑛 − 𝑚ொ൯

௠భ..௠ೂ

ூ

௜భ ..௜ೂୀଵ

 + 𝜀(𝑛) (3.1) 

where 𝐼 is the total number of inputs, 𝑥௜(𝑛) is the i-th input, 𝑦(𝑛) is the output, 𝜀(𝑛) is zero-

mean white noise and 𝑘ொ are the Q-th order Volterra kernels of the system. Volterra kernels can 

be interpreted as weighting functions that describe the effect of past values of input 𝑥௜  (𝑘ଵ(௫೔); 

linear kernels), as well as the effect of the Q-th order products between past values of each input 

(𝑘ொቀ௫೔భ ,…,௫೔ೂ
ቁ
 for 𝑥௜భ

= ⋯ = 𝑥௜ೂ
; nonlinear self-kernels) and past values of different inputs 

(𝑘ொቀ௫೔భ ,…,௫೔ೂ
ቁ
 for some 𝑥௜భ

, … , 𝑥௜ೂ
 different; nonlinear cross-kernels) in order to generate the 

output signal. The zeroth-order Volterra kernel k0 is the output of the system when all inputs 

are absent. An efficient way to estimate these kernels is the Laguerre expansion technique 

(LET) [29]. Specifically, the discretized Volterra kernels of the system can be expanded in terms 

of the orthonormal basis of discrete-time Laguerre functions (DLFs) as follows: 

𝑘ொቀ௫೔భ ,…,௫೔ೂ
ቁ
൫𝑚ଵ, … , 𝑚ொ൯ = ෍ … ෍ 𝑐ொ(௫೔భ ,…,௫೔ೂ

)
(

௅ೣ೔ೂ
ିଵ

௝ೂୀ଴

௅ೣ೔భ
ିଵ

௝భୀ଴

𝑗ଵ, … , 𝑗ொ)𝑏௝భ ൫௫೔భ൯
(𝑚ଵ) … 𝑏௝ೂ ቀ௫೔ೂ

ቁ
(𝑚ொ) (3.2) 

where 𝑏௝(௫೔)
(𝑚) is the j-th order Discrete-time Laguerre function (DLF) corresponding to input 

𝑖, 

𝑏௝(௫೔)
(𝑚) = 𝛼௜

(௠ି௝)/ଶ(1 − 𝛼௜)ଵ/ଶ ෍(−1)௞ ቀ
𝑚
𝑘

ቁ ቀ
𝑗
𝑘

ቁ 𝛼௜
௝ି௞(1 − 𝛼௜)௞

௝

௞ୀ଴

                          (3.3) 
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   The Laguerre parameter 𝛼௜  lies between zero and one and determines the rate of exponential 

decay of the DLFs. The effects of inputs with different dynamic characteristics can be captured 

more accurately and parsimoniously (lower number of DLFs) by using different Laguerre 

parameters for each input. Therefore, choosing an appropriate value for these parameters is 

important as it affects model accuracy and complexity. By combining Equations (3.1) and (3.2) 

we can write, 

𝒚 = 𝑽𝒄 + 𝜺                                                                        (3.4) 

where 𝒚 ∈ 𝑹௺×ଵ  is the output observation vector, 𝒄 ∈ 𝑹ௗ×ଵ  is the vector of the unknown 

expansion coefficients and 𝜺 ∈ 𝑹௺×ଵ  is assumed to be a zero-mean white noise vector. The 

total number of the expansion coefficients, 𝑑, is equal to ((𝐿 + 𝑄)! 𝐿! 𝑄!⁄ ) where 𝐿 = 𝐿௫భ
+

⋯ +𝐿௫಺
. 𝑽 ∈ 𝑹ே×ௗ  is a matrix containing the convolution of all inputs with the Laguerre 

functions 𝑣௝
(௜)

= 𝑥௜ ∗ 𝑏௝
(௜), as well as nonlinear products between them.  

   When modeling stationary dynamic systems, the expansion coefficients 𝑐ொ(௫೔భ
,…,௫೔ೂ

)
(𝑗ଵ, … , 𝑗ொ) 

are constant over time and can be estimated using ordinary least-squares (OLS) based on the 

input and output data [29], 

𝒄ො = (𝑽𝜯𝑽)ି𝟏𝑽𝜯𝒚                                                                 (3.5)  

In the case of nonstationary systems, the relationship between the inputs and output is time-

varying. Thus, the unknown model parameters (expansion coefficients) should also vary over 

time. 

3.2.2 Recursive Estimation Schemes 

3.2.2.1 Recursive Least Squares with Constant Forgetting Factor (RLSC) 

   One common technique used to estimate and track parameters in TV systems is the RLS 

algorithm [86]–[88] summarized as, 

𝑒(𝑛) = 𝑦(𝑛) − 𝝋𝑻(𝑛)𝒄ො(𝑛 − 1)                                                   (3.6𝑎) 

𝑟(𝑛) = 𝝋𝑻(𝑛)𝑷(𝑛 − 1)𝝋(𝑛)                                                      (3.6𝑏) 

𝑲(𝑛) =
𝑷(𝑛 − 1)𝝋(𝑛)

𝜆 + 𝑟(𝑛)
                                                                (3.6𝑐) 

𝑷(𝑛) =
1

𝜆
[𝑷(𝑛 − 1) − 𝝋𝑻(𝑛)𝑲(𝑛)𝑷(𝑛 − 1)]                                    (3.6𝑑) 
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𝒄ො(𝑛) = 𝒄ො(𝑛 − 1) + 𝑲(𝑛)𝑒(𝑛)                                                   (3.6𝑒) 

where 𝑒(𝑛) is the output prediction error, 𝝋(𝑛) ∈ 𝑹ௗ×ଵ  is the n-th transposed row of the matrix 

𝑽 (4-6), 𝑲(𝑛) ∈ 𝑹ௗ×ଵ  is a gain matrix and 𝑷(𝑛) ∈ 𝑹ௗ×ௗ  is the parameter covariance matrix 

corresponding to time 𝑛. The initial value for this matrix is usually a diagonal matrix 𝑷(0) =

𝑃଴𝑰ௗ×ௗ . Equation (3.6e) updates the current estimates by adding a correction term to the 

previous estimates. The correction term is the error between the predicted and observed 

output multiplied by a gain factor. The forgetting factor (FF) 𝜆 lies between 0 and 1. It assigns 

exponentially lower weight to less recent error samples and adapts the size of the matrix 𝑷(𝑛) 

in order to track the TV parameters of the system. The LS error cost function is replaced with 

an exponential weighted sum of the squared error signal, 

𝐽(𝑛) = ෍ 𝜆௡ି௞𝑒ଶ(𝑘)

௡

௞ୀ଴

                                                           (3.7) 

where the FF 𝜆 determines the exponentially decaying memory of the algorithm. The 

corresponding effective number of samples is given by, 

𝑛௘௙ = ෍ 𝜆௡

௡ିଵ

௞ୀ଴

                                                                         (3.8) 

Asymptotically, Equation (3.8) becomes, 

𝑛௘௙
ஶ = lim

௡→ஶ
𝑛௘௙ =

1

1 − 𝜆
                                                           (3.9) 

Based on Equation (3.9), when 𝜆 gets closer to 1 more weight is given to less recent error 

samples. On the other hand, when 𝜆 gets closer to 0, the memory length of the algorithm 

decreases and less recent information is discarded, enabling faster adaptation and tracking. 

However, for smaller values of 𝜆, the estimator exhibits higher sensitivity to noise and leads to 

more variable parameter estimates. Therefore, the choice of the FF is crucial for good 

performance. Here we select 𝜆 using the GA scheme described in Section 3.2.3. 

3.2.2.2 Recursive Least Squares with Adaptive Forgetting Factor (RLSA) 

   When using a constant FF, the parameter estimates are computed based on time windows of 

length 𝑛௘௙
ஶ approximately. Hence, it is implicitly hypothesized that changes occur with a 

constant rate. However, this is not always the case. The system parameters may exhibit 

intervals of slow, fast or even abrupt changes. Subsequently the value of the FF should be able 
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to vary accordingly. To achieve this, we modified and applied the computational scheme 

proposed in [155], [156]. The proposed procedure detects parameter changes by estimating 

the influence of new observations using Cook’s distance [157]. The algorithm follows the 

structure given in Equation (3.6). The key difference is that 𝜆 is now 𝜆(𝑛); i.e. the FF is a function 

of time. The update equations for the TV FF are as follows, 

𝐶(𝑛) =
𝝋𝑻(𝑛)𝑷(𝑛 − 1)𝝋(𝑛) 𝑒ଶ (𝑛)

൫1 + 𝝋𝑻(𝑛)𝑷(𝑛 − 1)𝝋(𝑛)൯𝜎ොଶ(𝑛 − 1)
                                 (3.10𝑎) 

𝑆(𝑛) = 𝑃ቀ𝜒ௗ
ଶ > 𝐶(𝑡)ቁ                                                        (3.10𝑏) 

𝜆(𝑛) = minൣ𝑚𝑎𝑥൫𝜆௠௜௡ , 𝑆(𝑛)൯ , 𝜆௠௔௫൧                                       (3.10𝑐) 

𝜎ොଶ(𝑛) = 𝜆௘𝜎ොଶ(𝑛 − 1) + (1 − 𝜆௘)𝑒ଶ(𝑛)                                     (3.10𝑑) 

where we have modified the scheme proposed in [155], [156] by recursively estimating the 

variance of the prediction error 𝜎ොଶ(𝑛) (Equation (3.10d)) to achieve further adaptability. 

Equation (3.10d) can be described as an exponential moving average, where 𝜆௘ is a constant 

smoothing factor between 0 and 1 and, importantly, its precise value is automatically selected 

by the proposed GA scheme (Section 3.2.3). The influence of new data is translated into a FF by 

comparing Cook’s distance 𝐶(𝑛) with a 𝜒ଶ distribution with 𝑑 degrees of freedom (Equation 

(3.10b)), where 𝑑 is the total number of unknown coefficients and 𝜆௠௜௡, 𝜆௠௔௫ are lower and 

upper bounds for the FF respectively. For instance, if a parameter change is detected, 𝐶(𝑛) will 

increase whereas 𝑆(𝑛) will become closer to zero. Consequently, based on Equation (3.10c), 

𝜆(𝑛) will acquire smaller values. The bounds 𝜆௠௜௡ and 𝜆௠௔௫ are also optimized using the GA 

(Section 3.2.3). 

3.2.2.3 Recursive Least Squares with Multiple Adaptive Forgetting Factors 

(RLSMA) 

   In the case of MI systems, different inputs typically exhibit different dynamics, suggesting that 

the corresponding model parameters may vary with different rates. A single constant FF may 

therefore compromise overall performance, since all model parameters are forced to vary in 

the same manner. For this reason, we propose a multiple forgetting factor scheme, whereby we 

allow all FFs to be adaptive. The resulting update equations for the unknown coefficient vector 

at time point n are written as, 

𝑒(𝑛) = 𝑦(𝑛) − 𝝋𝑻(𝑛)𝒄ො(𝑛 − 1)                                             (3.11𝑎) 
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𝑟(𝑛) = 𝝋𝑻(𝑛)𝑷(𝑛 − 1)𝝋(𝑛)                                                    (3.11𝑏) 

𝑲𝒂(𝑛) = 𝑷(𝑛 − 1)𝝋(𝑛) = ቎

𝐾௔భ
(𝑛) 

⋮
𝐾௔೏

(𝑛)
቏                                         (3.11𝑐) 

 𝑲(𝑛) =

⎣
⎢
⎢
⎢
⎢
⎡

𝐾௔భ
(𝑛)

𝜆ଵ(𝑛) + 𝑟(𝑛)
 

⋮
𝐾௔೏

(𝑛)

𝜆ௗ(𝑛) + 𝑟(𝑛)⎦
⎥
⎥
⎥
⎥
⎤

                                                         (3.11𝑑) 

𝒄ො(𝑛) = 𝒄ො(𝑛 − 1) + 𝑲(𝑛)𝑒(𝑛)                                                  (3.11𝑒) 

𝑾(𝑛) = 𝑷(𝑛 − 1) − 𝑲(𝑛)𝝋𝑻(𝑛)𝑷(𝑛 − 1)                                 (3.11𝑓) 

𝑷(𝑛) = 𝜦(𝑛)𝑾(𝑛)𝜦(𝑛)                                                       (3.11𝑔) 

𝜦(𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
ඨ

1

𝜆ଵ(𝑛)
0 0

0 ⋱ 0

0 0 ඨ
1

𝜆ௗ(𝑛)⎦
⎥
⎥
⎥
⎥
⎥
⎤

                                                 (3.11ℎ) 

where 𝜦(𝑡) ∈ 𝑹ௗ×ௗ  is a diagonal matrix and each element of the diagonal corresponds to 

distinct model parameters. For instance, for a two-input linear system, two FFs are used 

( 𝜆ଵ,ଶ…,௅ೣభ
(𝑛) = 𝜆௫భ

(𝑛)  and 𝜆௅ೣభାଵ,…,ௗ(𝑛) = 𝜆௫మ
(𝑛)). In the case of a two-input, second-order 

system we assign two extra FFs to the coefficients of the second-order self-kernels of each input 

(𝜆௫భೞ
(𝑛) and 𝜆௫మೞ

(𝑛) respectively) and one extra FF to the coefficients of the cross-kernels 

(𝜆௫೎ೝ
(𝑛)), as we observed that these may vary with considerably different rates compared to 

their first-order counterparts (typically, 𝜆௫೎ೝ
(𝑛) acquires values within the range between 

𝜆௫భೞ
(𝑛) and 𝜆௫మೞ

(𝑛)). In turn, this resulted in greatly improved tracking accuracy. The gain vector 

𝑲(𝑛) proposed in [144] and [158] was modified as follows: Instead of dividing the gain of each 

coefficient with 1 + 𝑟(𝑛), we used the scalar quantity 𝜆௝(𝑛) + 𝑟(𝑛) instead, where 𝑗 

corresponds to the j-th model coefficient, in order to take into account the effect of the FFs 

(Equation (3.11c-d)). The proposed gain vector yielded better performance compared to [144] 

and [158]. The influence of new data is assessed using Cook’s distance and the update equations 

for the FFs become, 
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𝐶௫೔
(𝑛) =

𝝋𝒙𝒊
𝑻(𝑛)𝑷𝒙𝒊

(𝑛 − 1)𝝋𝒙𝒊
(𝑛) 𝑒ଶ (𝑛)

ቀ1 + 𝝋𝒙𝒊
𝑻(𝑛)𝑷𝒙𝒊

(𝑛 − 1)𝝋𝒙𝒊
(𝑛)ቁ 𝜎ොଶ(𝑛 − 1)

                          (3.12𝑎) 

𝑆௫೔
(𝑛) = 𝑃 ቀ𝜒ௗ೔

ଶ > 𝐶௫೔
(𝑛)ቁ                                                    (3.12𝑏) 

𝜆௫೔
(𝑛) = min ቂ𝑚𝑎𝑥 ቀ𝜆௠௜௡௜

 , 𝑆௫೔
(𝑛)ቁ , 𝜆௠௔௫௜

ቃ                                     (3.12𝑐) 

𝜎ොଶ(𝑛) = 𝜆௘𝜎ොଶ(𝑛 − 1) + (1 − 𝜆௘)𝑒ଶ(𝑛)                                      (3.12𝑑) 

where 𝑑௜  is the total number of parameters for input 𝑥௜  and 𝝋𝒙𝒊
(𝑛), 𝑷𝒙𝒊

(𝑛) contain elements 

that correspond only to input 𝑥௜  and 𝜆௠௜௡௜
, 𝜆௠௔௫௜

 are the lower and upper bounds respectively 

for 𝜆௫೔
. In the case of nonlinear systems 𝝋𝒙𝒊

(𝑛), 𝑷𝒙𝒊
(𝑛) contain elements that correspond only 

to the first-order components of input 𝑥௜ , and 𝜆௫೔
(𝑛) corresponds to the first-order kernel 

coefficients. Additionally, 𝜆௫೔ೞ
(𝑛) corresponds to the second-order self-kernel coefficients of 

input 𝑥௜  and 𝜆௫೎ೝ
(𝑛) to the cross-kernel coefficients. All the upper and lower bounds of the FFs 

and 𝜆௘ are selected using the GA optimization scheme presented in Section 3.2.3. Note that if 

the FFs are time-invariant, the algorithm will be referred to as Recursive Least Squares with 

Multiple constant Forgetting Factors (RLSM). 

3.2.2.4 Kalman Filter (KF) 

   Another approach that has been extensively used to identify nonstationary systems is the 

Kalman filter (KF) [87]–[89]. KF can be described as a statistical adaptive approach that, in 

contrast to RLS, assumes prior knowledge of the true parameter variations. Specifically, 

parameter changes are modeled as a random walk under Gaussian white driving noise with 

covariance matrix equal to 𝑹𝟏 = 𝑅ଵ𝑰ௗ×ௗ  where 𝑅ଵ = 𝜎௪
ଶ . Small values of 𝑅ଵ indicate that small 

changes are expected. If 𝑅ଵ values are large, better tracking of fast variations can be achieved 

but at the cost of more sensitivity to noise. The KF formulation is based on the hypothesis that 

the measurement noise (i.e. innovations) is also Gaussian and white with variance equal to 𝑅ଶ. 

The Kalman filter algorithm can be summarized by the following set of equations, 

𝑒(𝑛) = 𝑦(𝑛) − 𝝋𝑻(𝑛)𝒄ො(𝑛 − 1)                                                (3.13𝑎) 

𝑟(𝑛) = 𝝋𝑻(𝑛)𝑷(𝑛 − 1)𝝋(𝑛)                                                   (3.13𝑏) 

𝑲(𝑛) =
𝑷(𝑛 − 1)𝝋(𝑛)

𝑅ଶ + 𝑟(𝑛)
                                                          (3.13𝑐) 

𝑷(𝑛) = 𝑷(𝑛 − 1) + 𝑹𝟏 − 𝑲(𝑛)𝝋𝑻(𝑛)𝑷(𝑛 − 1)                                 (3.13𝑑) 
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𝒄ො(𝑛) = 𝒄ො(𝑛 − 1) + 𝑲(𝑛)𝑒(𝑛)                                               (3.13𝑒) 

where 𝑲 is the Kalman gain matrix, which minimizes the a posteriori error covariance 𝑷. The 

initial value for 𝑷 is a diagonal matrix 𝑷(0) = 𝑃଴𝑰ௗ×ௗ. We optimally select 𝑅ଵ, 𝑅ଶ and 𝑃଴ using 

the GA (Section 3.2.3). For 𝑅ଵ = 0 and 𝑅ଶ = 1, the KF and RLS with unit FF become identical, i.e. 

the system is assumed to be stationary.  

3.2.2.5 Adaptive Kalman Filter (KFA) 

   The KFA algorithm follows the same concept as RLSA. To accurately track parameter 

variations, the innovation variance 𝑅ଶ is held fixed to a constant value and we have modified 

the standard KF by allowing the process noise covariance matrix 𝑹𝟏(𝑛) = 𝑅ଵ(𝑛)𝑰ௗ×ௗ to be 

updated adaptively at each time step based on the following equation: 

𝑅ଵ(𝑛) = 𝜆௪𝑅ଵ(𝑛 − 1) + (1 − 𝜆௪)𝑒ଶ(𝑛)                                        (3.14) 

where 𝜆௪ is a smoothing factor between 0 and 1, the value of which is selected by the proposed 

GA optimization scheme (Section 3.2.3). Equation (3.14) is based on the assumption that system 

changes are reflected on the prediction error. Hence, when the rate of change of the 

corresponding model parameters increases, the prediction error variance will also tend to 

increase. We examined all possible combinations i.e. adapting both 𝑅ଵ and 𝑅ଶ or holding 𝑅ଵ 

fixed and adapting 𝑅ଶ and vice versa and we found that the above scheme yielded the best 

results.  

3.2.2.6 Adaptive Kalman Filter for Multiple Inputs (KFMA) 

   In the case of MI systems, we extended the proposed updating scheme for the diagonal process 

noise covariance matrix 𝑹𝟏 (Eq. (3.14)) as follows, 

𝑹𝟏(𝑛) = 𝑑𝑖𝑎𝑔 ቄ𝑅ଵೕ
(𝑛)ቅ , 𝑗 = [1 2 … 𝑑]                                     (3.15) 

where 𝑅ଵೕ
(𝑛) = 𝜎௪

ଶ
௝
(𝑛) is an adaptive variance estimate for the 𝑗-th coefficient. Hence Equation 

(3.15) becomes, 

𝑹𝟏(𝑛) = 𝜦𝒘𝑹𝟏(𝑛 − 1) + (𝜤 − 𝜦𝒘)𝑒ଶ(𝑛)                                         (3.16𝑎) 

𝜦𝒘 = 𝑑𝑖𝑎𝑔 ቄ𝜆௪ೕ
(𝑛)ቅ , 𝑗 = [1 2 … 𝑑]                                           (3.16𝑏) 

Similarly to the RLSMA case, for MI linear systems the parameters associated with different 

inputs are likely to vary with different rates over time. For instance, two TV process noise 
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variances are estimated recursively (𝑅ଵೣభ
(𝑛) = 𝑅ଵభ,మ,…,ಽೣభ

(𝑛) and  𝑅ଵೣమ
(𝑛) = 𝑅ଵಽೣభశభ,…,೏

(𝑛)) in 

the case of a two-input system,  

𝑅ଵೣభ
(𝑛)  = 𝜆௪ೣభ

𝑅ଵೣభ
(𝑛 − 1) + ቀ1 − 𝜆௪ೣభ

ቁ 𝑒ଶ(𝑛)                          (3.17𝑎) 

𝑅ଵೣమ
(𝑛) = 𝜆௪ೣమ

𝑅ଵೣమ
(𝑛 − 1) + ቀ1 − 𝜆௪ೣమ

ቁ 𝑒ଶ(𝑛)                          (3.17𝑏) 

The quantities 𝜆௪ೣభ
 and 𝜆௪ೣమ

in Equations (3.17a,b) are smoothing factors assigned to the two 

inputs. For a two-input nonlinear system, additional variance terms are used for the estimation 

of the cross- and self-kernel coefficients (𝑅ଵ೎ೝ
(𝑛) and 𝑅ଵೣ೔ೞ

(𝑛) respectively). The 

hyperparameters 𝜆௪ೕ
 and 𝑅ଶ are chosen optimally using the proposed GA methodology in 

Section 3.2.3. Note that when 𝑹𝟏 is time-invariant, the algorithm will be referred to as Kalman 

Filter for Multiple Inputs (KFM). 

3.2.3 Model order selection and optimization of the recursive estimator 

hyperparameters 

   Model order selection and tuning of the recursive estimators hyperparameters can be realized 

using e.g. exhaustive search. However, this can be a very time consuming or impractical 

procedure. To mitigate this, we applied heuristic techniques, specifically Genetic Algorithms 

(GA) [109], [159]. GA can be described as adaptive search algorithms inspired from natural 

evolution. In each generation, the fitness function of a population of candidate solutions, called 

individuals, is evaluated. The fittest solutions are selected and used in the next iteration. 

Usually, the algorithm is terminated if a maximum number of iterations or a predetermined 

fitness level has been reached. In the present study a mixed integer GA [103] was used to 

optimize the model order complexity 𝐿௫೔
 for each input, the values of the Laguerre parameters 

𝛼௜  as well as all the hyperparameters of each recursive estimator. The candidate solutions 

evaluated by the GA, depending on the estimator, are of the form presented in Table 3.1. The 

GA evaluates the performance of a specific recursive estimator based on the entire dataset using 

different combinations of hyperparameters (candidate solutions) until it reaches a global 

minimum for a predefined fitness function.  

   In order to examine the behavior of different model order selection criteria in the case of 

nonstationary systems, the fitness functions that we considered were the negative Variance 

Accounted For (nVAF), the Bayesian Information Criterion (BIC) [39] and the Akaike 
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Information Criterion (AIC) [40], evaluated over the entire training dataset. For each candidate 

solution, the procedure can be summarized as follows, 

 Compute the matrix 𝑽 based on the selected values of 𝐿௫೔
, 𝑎௜ . 

 Obtain the TV estimates 𝒄ො using one of the recursive estimators described in Section 3.2.2. 

 Compute the predicted output 𝑦ො(𝑛) = 𝑽𝒄ො(𝑛). 

 Compute the error between the actual (noisy) and the predicted output, 𝒆 = 𝒚 − 𝒚ෝ. 

 Evaluate the selected fitness function (nVAF, BIC or AIC) for the entire training dataset, 

 𝑛𝑉𝐴𝐹(𝑑) = − ቆ1 −
𝜎𝒆

ଶ

𝜎𝒚
ଶ

ቇ                                                                 (3.18) 

𝐵𝐼𝐶(𝑑) =
𝑁

2
log ൬

𝐽

𝑁
൰ +

𝑑

2
log 𝑁                                                      (3.19) 

𝐴𝐼𝐶(𝑑) =
𝑁

2
log ൬

𝐽

𝑁
൰ + 𝑑                                                                 (3.20) 

where 𝑁 is the length of the training data set, 𝑑 the total number of coefficients (i.e. total number 

of Laguerre functions used), 𝜎𝒆
ଶ the variance of the prediction error, 𝜎𝒚

ଶ the variance of the actual 

output and 𝐽 = ∑ 𝑒ଶ(𝑛)ே
௡ୀଵ . 

 

Table 3.1 Hyperparameters optimized by the GA 

Method Two input linear system Two input nonlinear system 

RLSC [𝐿௫భ
, 𝐿௫మ

, 𝛼ଵ, 𝛼ଶ, 𝜆, 𝑃଴] [𝐿௫భ
, 𝐿௫మ

, 𝛼ଵ, 𝛼ଶ, 𝜆, 𝑃଴] 

RLSA [𝐿௫భ
, 𝐿௫మ

, 𝛼ଵ, 𝛼ଶ, 𝜆௠௜௡, 𝜆௠௔௫, 𝑃଴] [𝐿௫భ
, 𝐿௫మ

, 𝛼ଵ, 𝛼ଶ, 𝜆௠௜௡, 𝜆௠௔௫, 𝑃଴] 

KF [𝐿௫భ
, 𝐿௫మ

, 𝛼ଵ, 𝛼ଶ, 𝑅ଵ, 𝑅ଶ, 𝑃଴] [𝐿௫భ
, 𝐿௫మ

, 𝛼ଵ, 𝛼ଶ, 𝑅ଵ, 𝑅ଶ, 𝑃଴] 

KFA [𝐿௫భ
, 𝐿௫మ

, 𝛼ଵ, 𝛼ଶ, 𝜆௪, 𝑅ଶ, 𝑃଴] [𝐿௫భ
, 𝐿௫మ

, 𝛼ଵ, 𝛼ଶ, 𝜆௪, 𝑅ଶ, 𝑃଴] 

RLSM [𝐿௫భ
, 𝐿௫మ

, 𝛼ଵ, 𝛼ଶ, 𝜆௫భ
, 𝜆௫మ

, 𝑃଴] [𝐿௫భ
, 𝐿௫మ

, 𝛼ଵ, 𝛼ଶ, 𝜆௫భ
, 𝜆௫మ

, 𝜆௫భೞ
, 𝜆௫మೞ

, 𝜆௫೎ೝ
, 𝑃଴] 

RLSMA [𝐿௫భ
, 𝐿௫మ

, 𝛼ଵ, 𝛼ଶ, 𝜆௠௜௡ଵ, 𝜆௠௜௡ଶ, 𝜆௠௔௫ଵ, 𝜆௠௔௫ଶ, 𝜆௘ , 𝑃଴] 
[𝐿௫భ

, 𝐿௫మ
, 𝛼ଵ, 𝛼ଶ, 𝜆௠௜௡ଵ

, 𝜆௠௜௡ଶ
, 𝜆௠௜௡ଵ௦

, 𝜆௠௜௡ଶ௦
, 𝜆௠௜௡௖௥

, … 

, 𝜆௠௔௫ଵ, 𝜆௠௔௫ଶ, 𝜆௠௔௫ଵ௦ , 𝜆௠௔௫ଶ௦ , 𝜆௠௔௫௖௥ , 𝜆௘ , 𝑃଴] 

KFM [𝐿௫భ
, 𝐿௫మ

, 𝛼ଵ, 𝛼ଶ, 𝑅ଵೣభ
, 𝑅ଵೣమ

, 𝑅ଶ, 𝑃଴] [𝐿௫భ
, 𝐿௫మ

, 𝛼ଵ, 𝛼ଶ, 𝑅ଵೣభ
, 𝑅ଵೣమ

, 𝑅ଵೣభೞ
, 𝑅ଵೣమೞ

, 𝑅ଵೣ೎ೝ
, 𝑅ଶ, 𝑃଴] 

KFMA [𝐿௫భ
, 𝐿௫మ

, 𝛼ଵ, 𝛼ଶ, 𝜆௪ೣభ
, 𝜆௪ೣమ

, 𝑅ଶ, 𝑃଴] [𝐿௫భ
, 𝐿௫మ

, 𝛼ଵ, 𝛼ଶ, 𝜆௪ೣభ
, 𝜆௪ೣమ

, 𝜆௪ೣభೞ
, 𝜆௪ೣమೞ

, 𝜆௪ೣ೎ೝ
, 𝑅ଶ,𝑃଴] 

In order to acquire feasible solutions and reduce the computational complexity bounds were set for each unknown variable; 

i.e. 𝐿 ∈ [1 15], 𝛼 ∈ [0.1 0.9], 𝜆 ∈ [0.1 1], and 𝑅ଵ, 𝑅ଶ, 𝑃଴ ∈ [0 𝐼𝑛𝑓]. 
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3.2.4 Practical Issues 

3.2.4.1 Persistence of excitation 

   When applying recursive schemes to experimental data, the covariance matrix 𝑷(𝑛) may 

become close to singular. Moreover, when the excitation of the system is poor, the traditional 

FF scheme may lead to a phenomenon referred to as the covariance “wind-up” problem [130], 

[144]. During low excitation periods, the covariance matrix is continuously divided by a fixed 

FF and thus grows exponentially in time. If excitation reoccurs then the gain will be already 

very large and the parameter estimates will change abruptly affecting not only the overall 

performance of the estimator but also the interpretation of the underlying variations of the 

system dynamics. Therefore, during low excitation, it would be appropriate for the FF to take 

values close to 1. It is also possible that even under uniform excitation, different rates of 

parameter changes may lead to “wind up” problems [144]. All these problems corroborate the 

need for applying multiple variable FFs. Comparing Equations (3.6d) and (3.13d), under 

excitation failures (𝝋(𝑛) ≈ 0), the KF is considerably more robust compared to RLS. Covariance 

blowup for the KF follows a linear growth rate, whereas this rate is exponential for RLS. By 

applying KFM and KFMA, the probability of estimator “wind-up” problems decreases 

considerably. We suggest imposing additional mechanisms to ensure that 𝑷(𝑡) will not grow 

abruptly for both the RLS and KF schemes [135], [160]–[162]. For example, the regularized 

constant trace (RCT) technique [160], [161] in combination with the proposed algorithms 

results into more accurate and stable estimates. RCT scales the 𝑷-matrix by keeping its trace 

constant at each time step and adding a unit matrix scaled by a small positive constant, 

𝑷(𝑛) =
𝑞𝑷(𝑛)

𝑡𝑟𝑎𝑐𝑒[𝑃(𝑛)]
+ 𝑟𝑰                                                           (3.21) 

The additional unknown variables (𝑞, 𝑟) are also tuned during the model order selection and 

optimization step (Section 3.2.3) using the GA.  

3.2.4.2 Smoothing 

   Fast adaptation or low SNR levels may lead to parameter estimates with high variance, 

therefore a smoothing procedure can be used, particularly when the system descriptors are not 

needed in real time. A smoother utilizes future and past data when computing the estimates at 

a given time point; thus, it is applied independently once the TV model parameters have been 

computed. 
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   RLS Smoothing: For all the RLS-type estimators, the basic smoothing recursions for the 

parameter estimates are given in [163]. We have extended these to accommodate adaptive or 

multiple FFs, 

�̂�௝
௦(𝑛) = �̂�௝(𝑛) + 𝜆௝(𝑛)ൣ�̂�௝

௦(𝑛 + 1) − �̂�௝(𝑛)൧                                     (3.22) 

where 𝑗 = [1 2 … 𝑑], the superscript 𝑠 refers to the smoothed estimates and 𝜆௝(𝑛) is the FF that 

was either assigned by the GA to the 𝑗-th parameter in the RLSM case (and it is constant through 

time) or adaptively estimated in the RLSMA case. The smoothed estimates are obtained by 

updating the extracted estimates 𝒄ො backwards in time, starting at 𝑛 = 𝑁 − 1 up to 𝑛 = 1, with 

initial values �̂�௝
௦(𝑁) = �̂�௝(𝑁).  

  KF Smoothing: For the KF-type estimators, we adopted the Rauch-Tung-Striebel [164], [165] 

fixed-interval equations, 

𝑨(𝑛) = 𝑷(𝑛)[𝑷(𝑛 + 1) + 𝑹𝟏(𝑛 + 1)]ି𝟏                                   (3.23𝑎) 

𝒄ො𝒔(𝑛) = 𝒄ො(𝑛) + 𝑨(𝑛)[𝒄ො𝒔(𝑛 + 1) − 𝒄ො(𝑛)]                                    (3.23𝑏) 

As before, the smoothed estimates are obtained by updating the extracted estimates 𝒄ො 

backwards in time, starting at 𝑛 = 𝑁 − 1 up to 𝑛 = 1 with initial values 𝒄ො𝒔(𝑁) = 𝒄ො(𝑁). 𝑷(𝑛) and 

𝑹𝟏(𝑛) refer to the matrices acquired during the forward sweep. Note here that RLS smoothing 

combined with RCT cannot be applied directly; hence, for the RLS schemes we can use the KF 

smoothing approach (where the 𝑷-matrices in Equation (3.23a) are scaled as 
௤𝑷(௡)

௧௥௔௖௘[௉(௡)]
 and  𝑹𝟏 

is the small unit matrix 𝑟𝑰 added in Equation (3.21)). 

3.3 Simulations 

   SI and MI TV system kernels were initially simulated using linear combinations of DLFs (TV 

DLF kernels) with smooth periodic (i.e. sinusoidal) and mixed-mode TV expansion coefficients 

(𝒄(𝑛)). The mixed-mode case was characterized by model coefficients that exhibited occasional 

jumps, which may correspond to abrupt changes of the system operating point, and sinusoidal 

changes with varying rates and amplitudes (see Appendix).  We also generated kernels given 

by sinusoidally modulated oscillating exponential functions (SME kernels), whereby the true 

model order is not known a priori. Nonstationarities were introduced by modulating in time 

the kernel amplitude according to smooth periodic or aperiodic signals. All the systems were 

simulated for Gaussian white noise inputs of unit variance and length of 2000 points. The effect 
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of output-additive noise was evaluated by adding 100 realizations of independent gaussian 

white noise signals to the output, for SNRs of 0, 10 and 20dB.  

3.4 Effect of nonstationarity and noise characteristics on the 

hyperparameters 

   To rigorously examine the effect of nonstationarity type and noise characteristics on the 

algorithm hyperparameters, we used sinusoidally varying SI TV systems with DLF kernels 

(Appendix A1; Equation (A.1)), whereby the ground truth is known. A simulation set is 

characterized by three factors:  

 The true system complexity (𝑄௧௥௨௘  and 𝐿௧௥௨௘) and Laguerre parameter (𝑎). 

 The amplitude (𝐴) and frequency (𝐹) of the sinusoidally oscillating expansion coefficients. 

 The true system output SNR (SNR = 0, 10, 20 𝑑𝐵 – 100 independent realizations per case).  

   For each simulation set, the model order complexity was assumed to be known to avoid the 

confounding effects of incorrect model order selection. Since the model structure was known a 

priori, all hyperparameters except 𝑄, 𝐿 and 𝛼 were optimized using nVAF as the fitness function. 

Four recursive schemes were examined; RLS with single constant FF (RLSC), RLS with single 

adaptive FF (RLSA), Kalman Filter (KF) and Adaptive Kalman Filter (KFA). The effect of 

different factors and the relationship between hyperparameters were quantified using 

Spearman’s rank correlation matrices (Figure 3.1). Note that the following observations apply 

for MI systems; however, in the interest of space, we focus on SI systems. 

   For the RLSC algorithm, negative correlations (Figure 3.1a) were observed between the 

values of the FF and the magnitude and frequency of the expansion coefficient oscillations 

(𝐴, 𝐹). When the system exhibits a high degree of nonstationarity (large A) that is also fast (large 

F), the value of the FF decreases to achieve faster tracking. However, the parameter estimates 

become more sensitive to measurement noise, deteriorating the accuracy of the estimation result 

(VAFt(%), VAFk1(%), VAFk2(%)). A significant correlation was also obtained between the FF and 

the noise level; the lower the SNR, the higher the value of the FF. This was expected since in the 

presence of noise, RLS requires more samples to provide more stable parameter estimates. On 

the other hand, the value of the FF was positively correlated with the total number of expansion 

coefficients. The FF is related with the effective memory of the RLS algorithm (Equations (3.8-

3.9)). Specifically, in the case of LS estimation, the minimum window size should not be smaller 
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than the total number of parameters. Consequently, it is expected that the FF will be bounded 

below by,  

𝑛௘௙
ஶ

௠௜௡
=

1

1 − 𝜆௠௜௡
≥ 𝑑 ⇒ 𝜆௠௜௡ ≥ 1 −

1

𝑑
                                         (3.24) 

where d is the total number of parameters. In the case of high SNR and pronounced 

nonstationarities, the FF reaches its minimum value. For the same number of DLFs, nonlinear 

models require a larger number of free parameters compared to linear models. This results in 

a higher FF value, which may sometimes prevent the accurate tracking of fast changes and 

deteriorate estimation accuracy compared to the linear case. Another interesting observation 

is that 𝑃଴ was negatively correlated with 𝐴 (and in turn positively correlated with FF values) 

and the SNR. In other words, if the system is weakly nonstationary (small 𝐴) or the noise levels 

are high, a large for 𝑃଴ is selected by the GA and vice versa. 

   The RLSA algorithm exhibited similar behavior to RLSC in general (Figure 3.1b). The FF 

bounds 𝜆௠௔௫ and 𝜆௠௜௡ were negatively correlated with the degree of nonstationarity and the 

SNR, while they were positively correlated with the total number of parameters in the nonlinear 

case. The smoothing factor 𝜆௘ was also positively correlated with the FF bounds. When the 

system becomes more nonstationary, the prediction error variance changes faster, thus the 

smoothing factor 𝜆௘ decreases. 

   For the KF algorithm, we optimized the innovation (𝑅ଶ) and process noise variance (𝑅ଵ) using 

the GA. 𝑅ଵ was positively correlated with 𝐴 and SNR (Figure 3.1c). This is due to that larger 

changes can be modeled as a random walk with higher driving noise variance, whereas more 

noise in the data restricts the variance to smaller values. As was the case for the relation 

between FF values and total number of parameters, 𝑅ଵ decreased when the model order 

complexity increased. However, the positive correlation between 𝑅ଵ and 𝑅ଶ suggests that KF 

copes with this complexity issue by decreasing 𝑅ଶ. Thus, it is expected that KF will perform 

better than RLSC and RLSA in case of models with a large number of parameters (see also below 

– Figures 3.2, 3.3 and Section 3.5).  

   In the case of KFA, the smoothing factor 𝜆௪, which essentially defines the window length over 

which 𝑅ଵ changes, exhibited negative correlation with the SNR, 𝐴 and 𝑅ଶ (Figure 3.1d). The 

more nonstationary the system becomes (increased 𝐴) the higher the prediction error variance; 

thus, the smoothing factor 𝜆௪  decreases in order to be able to accurately capture fast or large 
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parameter variations affecting the prediction error variance. On the other hand, in case of low 

SNR levels, 𝜆௪ attains high values close to 1 to avoid overfitting the noise. 

                      
(a)                                                                                                 (b) 

                    
(c)                                                                                                    (d) 

Figure 3.1 Matrices depicting correlations between the hyperparameters of different recursive 

estimators, the degree of nonstationarity and the levels of noise for simulated SI-TV linear 

(lower triangular) and 2nd order nonlinear systems (upper triangular) (a) RLSC (b) RLSA (c) KF 

(d) KFA (VAF: VAF(%) between noisy and predicted outputs, VAFt: VAF(%) between noise-free 

and predicted outputs, VAFk1: VAF(%) between the true and predicted 1st order kernels, VAFk2: 

VAF(%) between the true and predicted 2nd order kernels, L: number of Laguerre functions 

used to construct the true TV DLF kernels, α: Laguerre parameter of the true TV DLF kernels, λ: 

RLSC FF, λmin: RLSA lower bound of the FF, λmax: RLSA upper bound of the FF, λe: RLSA 

smoothing factor for the prediction error variance, R1: KF variance of the driving noise, R2: 

KF/KFA variance of the measurement noise, SNR: Signal to Noise Ratio, λw: KFA smoothing 

factor for the process noise variance, P0: Initial value of the diagonal elements of the covariance 

matrix P, A: magnitude of the simulated sinusoidally TV DLF kernel coefficients, F: frequency of 

the simulated sinusoidally TV DLF kernel coefficients). Note that only significant correlations 

(𝑝 < 0.01) are shown. 
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3.5 Performance of Recursive Estimators 

3.5.1 Performance of Recursive Estimators under known model order 
complexity 

   The proposed recursive estimators were initially tested in systems with TV DLF kernels (see 

Appendix). As a measure of performance, we used the VAF (%) between noise free output and 

predicted output (VAFt %))[166]. Model order complexity was assumed to be known (SI case: 

[𝐿, 𝛼] = [4, 0.2] ; MI case: [𝐿ଵ, 𝛼ଵ, 𝐿ଶ, 𝛼ଶ] = [5, 0.2,3,0.5]) 

3.5.1.1 SI-TV systems with sinusoidal variations 

   All recursive estimators performed similarly for linear systems (not shown here). However, 

in the case of highly nonstationary (i.e. large 𝐴 and 𝐹) nonlinear systems, KF and KFA 

outperformed RLSC and RLSA (Figure 3.2a,b). As mentioned above, the values of the RLSC and 

RLSA FFs are positively correlated with the number of model parameters. Given the same 

number of DLFs, nonlinear models require a larger number of free parameters compared to 

their linear counterparts. This results in larger FF values, which may sometimes prohibit the 

accurate tracking of fast or large changes and deteriorate estimation performance. KF and KFA, 

on the other hand, are not restricted by the minimum window LS rule and can therefore cope 

with the increase of the innovation (𝑅ଶ) variance by decreasing the process noise (𝑅ଵ) variance.  

3.5.1.2 SI-TV systems with mixed-mode variations 

   The proposed RLSA and KFA recursive estimators performed better compared to the 

conventional RLS and KF techniques (Figure 3.2c,d) indicating that under mixed-mode 

nonstationarities, constant FFs (RLS) or process noise variances (KF) do not sufficiently 

capture non-periodic and/or abrupt changes in the true system. Figure 3.2c,d depicts the 

VAFt(%) achieved by each estimator under different SNR levels. RLSA yielded the best 

performance in the case of linear systems. However, in the case of nonlinear systems KFA 

outperformed RLSA. As mentioned earlier, the larger number of parameters required for 

nonlinear models prevents the FFs from acquiring low values and tracking the underlying fast 

changes accurately. Since KFA is based on a more stochastic approach, it performs better in 

such cases.  
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3.5.1.3 MI-TV systems with sinusoidal variations 

   In the case of MI-TV systems the dynamics associated with different inputs may exhibit 

different variations over time, suggesting that the corresponding model parameters may vary 

with different rates. The performance of RLSC, RLSA, KF and KFA was found to be inferior 

compared to the performance of the algorithms designed specifically for MI systems (RLSM, 

RLSMA, KFM and KFMA; Figure 3.3a,b). KFM and KFMA yielded more accurate estimates, 

particularly in the nonlinear case. As before, MI nonlinear models require a larger number of 

free parameters and, consequently, the tracking abilities of RLSM or RLSMA are limited to time 

windows determined by the total number of model parameters. 

3.5.1.4 MI-TV systems with mixed-mode variations 

   As before, MI recursive approaches yielded superior performance compared to RLSC, RLSA, 

KF and KFA. (Figure 3.3c,d). Furthermore, RLSMA and KFMA yielded more accurate estimates 

as their hyperparameters (i.e. FFs and innovation/process noise variances) were updated at 

each time step. For the reasons mentioned in the case of sinusoidal variations, KFMA performs 

better than RLSMA when modeling MI nonlinear systems.  
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(a)                                                                (b) 

    

(c)                                                           (d) 

Figure 3.2 Performance (VAFt (%)) of RLSC, RLSA, KF, KFA for (a, c) linear (Q=1) and (b, d) 

nonlinear (Q=2) SI-TV systems under different SNR levels (0, 10, 20 dB). Top panel: Systems 

with TV DLF kernels ([𝐿௧௥௨௘ , 𝑎௧௥௨௘] = [4,0.2]) exhibiting sinusoidal variations (Appendix A.1; 

Equation (A.1)) of amplitude 𝐴 = 0.2 and frequency 𝐹 = 10. Bottom panel: SI-TV systems with 

TV DLF kernels ([𝐿௧௥௨௘ , 𝑎௧௥௨௘] = [4,0.2]) exhibiting mixed mode variations (Appendix A.2; 

Equation (A.6)). *: denotes non-significant differences between estimators (p>0.001).  KFA, 

RLSA were found to perform similarly with the conventional KF and RLS respectively in the 

case of smooth, sinusoidal variations (a,b). KF estimators outperformed the RLS estimators in 

the case of nonlinear systems. In the case of mixed-mode variations (c,d), RLSA and KFA 

achieved better performance compared to the conventional RLS and KF respectively. RLSA was 

found to be superior in the linear case, whereas KFA yielded the best performance in the 

nonlinear case. Note here that the model order of the system was assumed to be known. 
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(a)                                                                                  (b) 

   

(c)                                                                              (d) 

Figure 3.3 Performance (VAFt (%)) of RLSC, RLSA, KF, KFA, RLSM, RLSMA, KFM, KFMA for (a, 

c) linear (Q=1) and (b,d) nonlinear (Q=2) MI-TV systems under different SNR levels (0, 10, 20 

dB). Top panel: System with TV DLF kernels ([Lଵ୲୰୳ୣ, αଵ୲୰୳ୣ, Lଶ୲୰୳ୣ, αଶ୲୰୳ୣ] = [5, 0.2,3,0.5]) 

exhibiting sinusoidal variations (Appendix A.3; Equations (A.8-A.12)). Bottom panel: SI-TV 

systems with TV DLF kernels ([Lଵ୲୰୳ୣ, αଵ୲୰୳ୣ, Lଶ୲୰୳ୣ, αଶ୲୰୳ୣ] = [5, 0.2,3,0.5]) exhibiting mixed-

mode variations (Appendix A.4; Equations (A.20-A.22)).* denotes non-significant differences 

between estimators (p>0.001).  The MI recursive estimators (RLSM, RLSMA, KFM, KFMA) 

yielded better performance in all cases. Under the presence of mixed-mode variations (c,d) the 

adaptive MI estimators yielded better performance compared to the estimators that used 

constant hyperparameters. Note that the model order of the system was assumed to be known. 
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3.5.2 Performance of Recursive Estimators under uknown model order 
complexity 

    We have already examined the performance of the recursive estimators assuming that the 

underlying system is exactly known. In contrast to Section 3.5.1, where we optimized only the 

hyperparmeters of each estimator, here we also performed model order selection (𝐿 and 𝛼) 

using BIC, AIC and nVAF as the GA fitness functions (Section 3.2.3). The purpose of this 

subsection was twofold. First, we aimed to examine the behavior of different model order 

selection criteria under nonstationary conditions. We initially considered the SI systems with 

TV DLF and SME kernels described in Section 3.5.1 along with the mixed integer GA 

optimization scheme (Section 3.2.3). The simulated kernels were modulated in time by 

sinusoidal waves of different amplitudes. In the DLF case, the ground truth (𝐿௧௥௨௘ = 4 and 

𝛼௧௥௨௘ = 0.2) is already known, contrary to the SME case. We considered all cases: TV SI systems 

with sinusoidal and mixed-mode variations (Appendix A1, A2) as well as MI systems (Appendix 

A3, A4). Second, we aimed to investigate the performance of the recursive estimators under 

unknown model complexity and assess the extent to which the model order selection procedure 

may be affected by the choice of a particular estimator.  

   In order to examine the behavior of different model order selection criteria under 

nonstationary conditions, we used as point of reference SI systems with sinusoidal variations 

(Appendix A1), whereby we varied the amplitude and frequency of these variations. In Figure 

3.4, results for the simulated linear (blue) and nonlinear (red) systems were ordered based on 

A (𝐴ଵ < 𝐴ଶ < 𝐴ଷ, where 𝐴ଵ = 0.05, 𝐴ଶ = 0.1, 𝐴ଷ = 0.2), while the frequency of the sinusoidal 

variations was kept constant (𝐹 = 5). In the DLF case (Figure 3.4a), all three metrics yielded 

the correct model order (𝐿 = 4 and 𝛼 = 0.2), particularly when SNR and A increased. As the 

system gradually became more nonstationary (larger A), overestimating the true order became 

less likely. For example, for the RLS-type estimators, the effective memory of the algorithm (and 

consequently the FF) is bounded below by the total number of free parameters. Overestimating 

the model order leads to an increase in the amount of the free parameters, a longer RLS effective 

memory, higher values for the FFs and subsequently inefficient tracking, which is reflected on 

the total estimation error. Nonlinear systems were less prone to overfitting with increased A 

and SNR, since an increase in the number of DLFs resulted into a larger number of free 

parameters compared to the linear case (Figure 3.4a). Some overfitting was evident mainly in 

the linear case for low SNR values combined with weak nonstationarities, especially when using 
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VAF as a fitness function (Figure 3.4a). However, for increased SNR and A, VAF yielded the 

correct model order. BIC detected successfully, under all conditions, the true model order 𝐿 

(and Laguerre parameter 𝛼 – not shown); this was expected as BIC assumes an underlying 

“true” model amongst a set of candidates. AIC performed similarly with BIC. In the SME case 

(Figure 3.4b) we observed the same pattern as for DLF systems, i.e. a gradual decrease in the 

selected number of DLFs as A increased (under the same SNR). Note the agreement between 

AIC, BIC and nVAF (𝐿 = 7) for both linear and nonlinear systems, SNR=20dB and A=0.20 (Figure 

3.4b). On the other hand, increased SNR resulted in the selection of a larger model order (with 

BIC being more conservative compared to AIC and VAF). This can be explained as follows: 

selecting a more complex model when the SNR is high offers the flexibility to reconstruct in a 

more accurate manner small details of the kernel shape (e.g. low amplitude oscillations at the 

tail of the kernel). The same observations can be extended to MI systems.  

   The results obtained using DLF kernels (Figure 3.4a) suggest that the model order selection 

procedure was mostly affected by the criterion type (AIC, BIC, nVAF) used as fitness function 

rather than the particular choice of the recursive estimator. In general, the same observations 

apply in the case of SME kernels (Figure 3.4b). Overall, the comparative performance of 

different estimators was found to be similar in the DLF and SME cases (Figures 3.2, 3.3 and 3.5 

respectively). Specifically, Figure 3.5 illustrates the performance of all estimators using the AIC 

in the case of a MI system with mixed-mode TV SME kernels. Note the resemblance with Figure 

3.3c,d, where the model complexity of the system was assumed to be known. In Figure 3.6 we 

present the true and obtained 1st-order kernels of a linear MI TV SME system (Appendix A.4) 

using RLSA for an SNR of 20dB. 
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(a)                                                                                             (b) 

Figure 3.4 Model order (L) as selected by the GA for linear (Q=1, blue) and 2nd-order nonlinear 

(Q=2, red) SI-TV systems with (a) DLF kernels ([𝐿௧௥௨௘ , 𝑎௧௥௨௘] = [4,0.2]) and (b) SME kernels 

with sinusoidal frequency variations (F=5) and different amplitude values (A=0.05, 0.1 and 0.2 

– Appendix A1; Equations (A.1-A.5)) under different SNR levels (0, 10, 20 dB). nVAF, BIC, AIC 

were used as model order selection criteria (top, middle and lower panel respectively). We 

present results yielded by all the estimation algorithms (RLSC, RLSA, KF, KFA). Note that the 

agreement between all three criteria in terms of model order as A becomes larger and SNR 

increases for both linear and nonlinear systems. 
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(a)                                                                                    (b) 

Figure 3.5 Performance (VAFt (%)) of RLSC, RLSA, KF, KFA, RLSM, RLSMA, KFM, KFMA for (a, 

c) linear (Q=1) and (b, d) nonlinear (Q=2) MI-TV systems with SME kernels with mixed-mode 

variations (Appendix A4; Equations (A.23-A.24)) under different SNR levels (0, 10, 20 dB). * 

denotes non-significant differences between estimators (p>0.001).  Note that the model order 

of the system was assumed to be unknown. Model order selection was done using the GA and 

AIC as fitness function. Note the similarities with Figure 3.3c and 3.3d.  
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(a)                                                                               (b) 

 

(c)                                                                               (d) 

Figure 3.6 (a,b) Simulated MI TV 1st–order kernels with mixed mode variations for the case 

described in Appendix A4; Equations (A.23-A.24). (c,d) TV first-order kernels estimated by 

RLSA (after applying smoothing to the extracted TV model coefficients), averaged over all 100 

realizations for an SNR of 20dB. In the bottom panel, on top of each plot we also show the 

average values of the hyperparameters, as optimized by the GA (Table I; RLSA – Two input 

linear system). The estimated kernel associated with Input 2 (d) exhibited higher variability 

between realizations compared to the estimated kernel of Input 1 (a). This is due to the abrupt 

and faster changes of (b) compared to (a). 
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3.6 Experimental Data 

   Syncope is a common clinical problem that affects up to 3.5% of the general population. VVS 

is one of the most frequent causes of transient loss of consciousness and its pathophysiology 

remains unclear. HUT is a common diagnostic tool for VVS. The procedure involves initially the 

patient lying strapped in supine position on a tilt table and then being suspended at an angle of 

60°-80°. VVS patients initially adjust normally to the upright position but, within 20-30 

minutes, arterial blood pressure (ABP) and/or heart rate (HR) drops perilously low, leading to 

reduced blood flow to the brain and ultimately to a transient loss of consciousness. The time-

varying underlying physiological mechanisms remain poorly understood. 

   In this context, we examined these mechanisms in 14 VVS patients, undergoing HUT in the 

Jewish General Hospital Autonomic Reflex Laboratory, by using the proposed methods to 

quantify the time-varying interactions between mean ABP (MABP), end-tidal partial pressure 

of carbon dioxide (PETCO2) and cerebral blood flow velocity (CBFV). The HUT protocol involves 

different stages; thus, we expect its underlying hemodynamic and cardiovascular effects to 

change over time. Our main objective was to track changes in physiological mechanisms and 

particularly dCA before and after syncope occurrence. dCA is a complex homeostatic 

mechanism that maintains a constant CBF despite variations in ABP and is frequently assessed 

by the dynamic relation between MABP and CBFV [57]. When dCA is impaired, ABP changes 

have a more pronounced effect on CBF. dCA is known to exhibit high-pass filter characteristics, 

thus a phase-shift (drop) towards zero in the low frequency (LF) range (0.04 – 0.15 Hz) may 

indicate impaired autoregulation [167]. Carbon dioxide (CO2) and its well-known vasodilating 

effects can also lead to CBF changes, even during resting conditions [168], [169]. Both one-input 

(MABP) and two-input (MABP, PETCO2) single output (CBFV) models have been used 

successfully to study dCA in a stationary and nonstationary context  [7], [19], [20], [90], [168]. 

   Prior to modeling, CBFV and MABP beat to beat values from HUT recordings were 

interpolated (spline interpolation) and resampled at 1 Hz to obtain equally spaced time series. 

Breath-by-breath values of PETCO2 were linearly interpolated and time-matched to the 

resampled data for analysis. The resulting time series were demeaned. The HUT protocol 

consisted of a 10-min resting period in the supine position and a maximum of 40 min of 80° 

HUT which ended if a subjective sensation of impending syncope was associated with a clear 

precipitous drop in ABP or HR.  
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   We extracted two-input (MABP, PETCO2) single output (CBFV) linear and nonlinear TV 

Laguerre-Volterra models using the schemes presented in Section 3.2. Model parameters were 

estimated using the multiple input versions of RLS and KF (RLSM, RLSMA, KFM, KFMA) 

combined with the RCT technique (Section 3.2.4.1). In addition to the variables given in Table 

I, the following variables were optimized using the GA: a constant bias 𝑘଴, a pure time delay 𝑑𝑒𝑙 

for the PETCO2 effects on CBFV (which is known to be around 4 sec [170]), and two variables 

for the RCT (26) (𝑞, 𝑟). We used AIC as cost function and smoothing was applied to all extracted 

estimates. 

   To illustrate the reduction in computation time achieved by the proposed GA scheme, we also 

performed exhaustive search using RLSM and linear models (DLF number: 1-10, Laguerre 

parameters: 0.1-0.9 with a step of 0.1, FFs: 0.9 to 1 with a step of 0.002 and all the remaining 

tuning variables set constant). The required computation time was 5 hours to find an optimal 

model for one subject even when parallel processing was used, while the grid of the exhaustive 

search is of relatively low resolution (note for other algorithm versions, e.g. RLSMA, exhaustive 

search would take even longer). On the other hand, the mean runtime per subject based on the 

proposed GA scheme was 24.15s/43.53s (linear/nonlinear models) for RLSM, 28.3s/57.99s for 

RLSMA, 23.04s/29.06s for KFM and 23.48s/38.08s for KFMA.  

   Based on the results, MI estimators (i.e. RLSM, RLSMA, KFM, KFMA) outperformed the 

estimators that used a single hyperparameter to track all TV coefficients (i.e. RLS, RLSA, KF, 

KFA). On the other hand, constant and adaptive realizations were found to perform similarly, 

implying periodic or slow variations. Linear models were found to be sufficient according to the 

AIC and BIC. Specifically, we selected as optimal the linear models estimated using RLSMA and 

AIC. The resulting TV MABP and PETCO2 kernels are shown in Figure 3.7. After tilting, time to 

syncope varied considerably between patients. Hence the results from all subjects were aligned 

around the time of the syncopal event and the phase values were averaged (Figure 3.8). A 

significant phase decrease was observed after the onset of syncope but not before that time 

point. These results are in accordance with [171], where it was shown that dCA in VVS patients 

was preserved during the 3 min preceding syncope. However, we detected consistent LF phase 

oscillations in all patients, which could be related to fluctuations in other physiological signals. 

Whether these oscillations are physiologic or pathologic is an interesting question but lies 

outside the scope of the present work.   

 



Identification of multiple input, linear and nonlinear, time-varying systems for biomedical applications 

74 

        

(a)                                                                                         (b) 

Figure 3.7 (a) TV MABP and (b) PETCO2 first-order kernels from a representative subject 

during HUT (Section 3.6). The blue dashed vertical lines define the onset of the tilting phase. 

The red vertical dashed lines denote the time of syncope occurrence and the green dashed lines 

denote the time point when MABP reached its minimum value. 

        

(a)                                                                                   (b) 

Figure 3.8 (a) Mean±standard error (standard deviation divided by the square root of the total 

number of subjects at each time point) of the normalized phase between MABP and CBFV across 

subjects in the LF range, centered around the time of the syncopal event (red vertical line).  The 

blue vertical dashed lines in (a) define the onset of the tilting phase for different subjects. The 

green vertical dashed lines denote the time point when MABP reached its minimum value in 

different subjects. (b) Representative normalized LF phase between MABP and CBFV from 3 

representative patients. 
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3.7 Conclusions 

   TV system identification is a challenging problem; nonstationarities may arise due to inherent 

TV dynamics or missing information. The ability to accurately track TV characteristics may help 

interpret the underlying mechanisms more precisely and in a timely manner especially in cases 

were timing plays a crucial role (e.g. event-related system changes). Extracting correctly the TV 

properties of a system may also elucidate the source of the observed variations.  For example, 

in the case of Linear Parameter Varying systems  (LPV) [172], where the dynamics vary as a 

function of (possibly unknown) TV signals termed scheduling variables (SVas), a TV model can 

be initially estimated and used to identify plausible SVas. In the present work, we have 

developed novel recursive computational schemes that are applicable to a wide class of TV 

systems (nonlinear, MI systems with finite memory) that yield excellent performance under 

different nonstationarity types (slow, fast/abrupt variations) by extending the conventional 

RLS and KF algorithms and using GA to efficiently select model order and estimator 

hyperparameters. The proposed estimators were able to track more accurately the true 

underlying system variations, leading to considerably improved performance, particularly in 

the case of fast/abrupt changes. Taking into account also that in MI-TV systems the dynamics 

associated with different inputs are likely to exhibit different rates of variations, we developed 

MI RLS and KF estimators for both periodically and aperiodically varying systems, which 

yielded more accurate estimates compared to the conventional RLS and KF methods. Our 

proposed TV system identification framework was based on finite memory Laguerre-Volterra 

models but it can be easily applied to other type of models (e.g. univariate/multivariate 

autoregressive models). Model order selection and estimation was merged in one single 

procedure; by using a mixed-integer GA we were able to simultaneously select model order and 

tune all the hyperparameters linked to the proposed recursive estimators. This led to greatly 

improved performance in terms of both accuracy and required computation time. Additionally, 

it allowed us to explore in detail the link between hyperparameters, model complexity and TV 

system characteristics. Model validation using conventional techniques (e.g. cross-validation) 

is not readily applicable under TV conditions, as the system may undergo significant changes. 

However, in many practical cases the model structure can be assumed to remain similar at 

different times, therefore the identified model structure can be used either from an initial data 

segment or previous experiment realizations in order to achieve real-time tracking. Finally, 

application of the proposed schemes to experimental data from VVS patients during HUT 
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demonstrated their ability to track time-varying changes in the case of a physiological system. 

In general, the proposed approaches yield promise for accurate real-time tracking of 

physiological signal couplings, perhaps using wearable devices, in a number of 

pathophysiologies. 
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 Modeling time-varying couplings 

between time series for biomedical 

applications 

 

   Couplings between various biological systems (e.g., couplings between neural networks in the 

brain, brain-heart interactions, cortico-cardio-respiratory couplings) are considered as one of 

the most important communication mechanisms in physiological function. One method for 

characterizing such interactions is the MVAR analysis. MVAR models can capture linear 

interdependencies between multiple time series and identify the directionality of flow of 

information in both time and frequency domain. In this chapter we develop TV-MVAR models, 

based on the recursive approaches proposed in Chapter 3, that can track efficiently TV changes 

in coupling strength and directionality. We also elucidate the source of TV variance in the MVAR 

residuals when dealing with biosignals that are obtained during experimental protocols 

consisting of phase transitions or events and we propose methods to deal with the obsesrved 

heteroskedasticity. Our proposed modeling methodology was applied to both simulated and 

experimental data. 
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Abstract — We present a modeling framework for identifying time-varying (TV) couplings 

between time series of biomedical relevance. Our proposed methodology is based on 

multivariate autoregressive models (MVAR) that have been extensively used in the literature 

to study biosignal interactions and information flow. Contrary to standard estimation methods 

that assume time-invariant relationships we tracked changes in the model parameters through 

a modified recursive Kalman filtering (KF) technique. Model determination and 

hyperparameter optimization was achieved with the use of Genetic Algorithms (GA) improving 

accuracy and computation time.  Based on simulations, our recursive estimator performed 

significantly better than the conventional KF algorithm especially when model parameters 

exhibited different rate of variations and amplitude changes throughout time. In addition, we 

addressed the issue of biased TV-MVAR connectivity measures (i.e. coherence, partial 

coherence, directed coherence and partial directed coherence) due to heteroskedasticity in the 

model residuals associated with event-related changes or phase transitions during 

experimental protocols. Our proposed modeling methodology was applied in experimental 

data to detect hemodynamic changes during exercise in young and old healthy adults, as well 

as individuals with chronic stroke. 

Index Terms — MVAR, time-varying, Kalman Filter, heteroskedasticity, coherence, exercise 
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4.1 Introduction 

   Biological functions are usually regulated by coupling of individual oscillators. Oscillations 

have been identified for example as a fundamental property of neural responses [173] and 

couplings between different oscillatory neural populations are considered as one of the most 

important mechanisms of information processing and communication between brain regions 

[174], [175]. Frequency-derived identification and characterization of the propagation of 

information under different brain states [176] and pathological conditions [177] has drawn 

growing attention of late. Coherent oscillations between electroencephalogram (EEG), 

electromyogram (EMG) and magnetoencephalogram (MEG) have been increasingly used to 

elucidate the role of the motor cortex in movement control [178]. On a macroscale level, 

cardiovascular and respiratory system interactions and their directionality have been the 

subject of much debate among researchers [179]. Based on the abovementioned examples, 

couplings are a reality in physiological systems and the development of tools to accurately 

identify and quantify them is essential. From a system’s identification point of view, one method 

of characterizing such interactions is multivariate autoregressive (MVAR) analysis [63]. MVAR 

models capture linear interdependencies among multiple time series and identify causality in 

time and frequency domain. However, the coupling strength, the type of coupling, and the 

coupling function may not necessarily remain constant throughout time, and the rate of change 

may vary as well. To address this temporal variability various studies have focused on 

identifying time-varying (TV) MVARs [180]–[188]. The main assumption behind the estimation 

of a TV-MVAR is that the parameters of the model are no longer constant but rather a function 

of time. Two main approaches exist in the literature for estimating TV parameters. The first 

approach segments the data into windows and tracks parameters variations in a piecewise 

stationary manner [180]. The second approach is based on recursive techniques, like Recursive 

Least Squares (RLS) and Kalman Filter (KF) [181]–[187]. In the quasistationary methodology, 

choosing an appropriate window length is of critical importance. If the window is too small, 

then the obtained estimates are too noisy. On the other hand, if the window is too big then the 

estimates are too smooth. Recursive approaches usually rely on the optimal tuning of 

hyperparameters i.e. the forgetting factor in the RLS case that defines the memory of the 

estimator. Conventionally, both KF and RLS assume constant rate of variations, which is not 

always valid. Moreover, all parameters do not necessarily change in the same manner. 

Parameters may exhibit intervals of slow, fast or even abrupt changes. Thus, an accurate 
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representation of TV interactions requires the development of algorithmic schemes that can 

track different type of TV patterns. Another major issue that may affect the estimation of a TV-

MVAR model is heteroskedasticity of the residuals. Classic system identification methods 

assume normality in the error terms, with zero mean and constant variance (homoscedasticity). 

However, unequal variances can arise due to changes in measurement noise, unobserved 

external factors or event-related changes and experimental phase transitions that are 

associated with different signal to noise ratio (SNR) levels. Heteroskedasticity, depending on 

its degree, may impact significantly the TV-MVAR parameter estimation procedure especially 

when applying recursive techniques. The most striking effect though is the 

overestimation/underestimation of the strength and the directionality of interactions due to 

the dependence of MVAR connectivity measures on the statistical properties of the model 

residuals. 

   Herein, we have developed a novel recursive scheme for estimating TV-MVAR models. We 

show using simulations that the proposed implementation uncovers accurately the TV 

interacting properties of a system. In addition, we examined the effects of heteroskedasticity 

on the representation of various TV-MVAR connectivity measures and we propose corrections 

that reduce coupling biases due to changes in variance of the error terms. Finally, we applied 

the developed TV framework to investigate cerebrovascular regulation during exercise across 

healthy subjects and stroke survivors.   

4.2 Methods 

4.2.1 Time Varying Multivariate Autoregressive Models (TV-MVAR) 

   In MVAR models, each variable is regressed on its past values and the past values of the other 

variables in the system. Under the assumption of time-invariance, the influence of one time 

series to the other and to itself is constant throughout time. However, in order to capture 

changes in interactions we allow the parameters of the model to evolve through time. 

Specifically, a TV-MVAR model of order 𝑝 describes the data as follows,  

𝒚(𝑛) = ෍ 𝑨௞(𝑛)𝒚(𝑛 − 𝑘)

௣

௞ୀଵ

+ 𝜺(𝑛) = 𝑨(𝑛)𝜱(𝑛) + 𝜺(𝑛)                          (4.1)  

where 𝒚(𝑛) ∈ 𝑹ெ×ଵ is the vector of 𝑀 response time series variables at time 𝑛, 𝑨௞(𝑛) ∈ 𝑹ெ×ெ 

is an autoregressive matrix for each order 𝑘 at time 𝑛 and 𝜺(𝑛) is assumed to be a zero-mean 
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white noise vector. 𝑨(𝑛) and 𝜱(𝑛) are defined as, 𝑨(𝑛) = [𝑨𝟏(𝑛) … 𝑨௣(𝑛)] ∈ 𝑹ெ×ெ௣ and 

𝜱(𝑛) = [𝒚(𝑛 − 1) … 𝒚(𝑛 − 𝑝)]𝑻 ∈ 𝑹ெ௣×ଵ. To facilitate parameter estimation, we 

reformulate Equation (4.1) as, 

𝒚(𝑛) = [𝑰ெ×ெ ⊗ 𝜱𝑻(𝑛)] 𝜞(𝑛) + 𝜺(𝑛) = 𝜱෩ (𝑛) 𝜞(𝑛) + 𝜺(𝑛)                      (4.2) 

where 𝑰ெ×ெ is the identity matrix, ⊗ denotes the Kronecker delta product, 𝜱෩ (𝑛) ∈ 𝑹ெ×ெమ௣ is 

an extended regressor matrix and 𝜞(𝑛) ∈ 𝑹ெమ௣×ଵ is the vectorized 𝑨(𝑛) containing all MVAR 

parameters at time 𝑛. 

4.2.2 TV-MVAR parameter estimation 

   The TV model parameters 𝜞(𝑛) are estimated using a modified Kalman filtering (KF) 

technique. The conventional KF assumes that parameter changes are modeled as a random 

walk driven by Gaussian white noise with covariance matrix equal to 𝑹𝟏 = 𝑅ଵ𝑰ௗ×ௗ. In effect, 𝑅ଵ 

basically defines the size of the expected parameter variations. The KF formulation is based on 

the hypothesis that the measurement noise is also Gaussian and white with variance equal to 

𝑅ଶ. The KF algorithm combined with the MVAR formulation presented in Equation (4.2) 

consists of the following recursive steps, 

𝒆(𝑛) = 𝒚(𝑛) − 𝒚ෝ(𝑛) = 𝜱෩ (𝑛)𝜞෡(𝑛 − 1)                                              (4.3) 

𝒓(𝑛) = 𝜱෩ (𝑛)𝑷(𝑛 − 1)𝜱෩ (𝑛)                                                          (4.4) 

𝑲(𝑛) =
𝑷(𝑛 − 1)𝜱෩ 𝑻(𝑛)

𝑅ଶ + 𝒓(𝑛)
                                                              (4.5) 

𝑷(𝑛) = 𝑷(𝑛 − 1) + 𝑹𝟏 − 𝑲(𝑛)𝜱෩ (𝑛)𝑷(𝑛 − 1)                                      (4.6) 

𝜞෡(𝑛) = 𝜞෡(𝑛 − 1) + 𝑲(𝑛)𝒆(𝑛)                                                     (4.7) 

where 𝜞෡(𝑛) are the estimated parameters at time point 𝑛, 𝑷(𝑛) ∈ 𝑹ெమ௣×ெమ௣ is the parameter 

estimation error covariance matrix, 𝑲(𝑛) ∈ 𝑹ெమ௣×ெ is the Kalman gain, 𝑅ଶ is the measurement 

noise variance and 𝑹𝟏 ∈ 𝑹ெమ௣×ெమ௣ is the diagonal process noise covariance matrix. 

   The issue with the conventional KF technique is that it assumes that all parameters follow a 

random walk with the same statistical properties. However, parameters that exhibit large and 

fast variations will need to be assigned with higher 𝑅ଵ values compared to those that follow 

slow and small changes. Moreover, the TV patterns may not be periodic and they may followan 

alternative mode of slow, fast or even abrupt alterations. To this end, the diagonal process noise 
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covariance matrix 𝑹𝟏 is updated adaptively at each time step based on the following proposed 

equations, 

𝑹𝟏(𝑛) = 𝜦𝒘𝑹𝟏(𝑛 − 1) + (𝜤 − 𝜦𝒘)𝑒ଶ(𝑛)                                          (4.8) 

𝜦𝒘 = 𝑑𝑖𝑎𝑔{𝝀𝒘}, 𝝀𝒘 = [𝜆௪ଵ
… 𝜆௪ௗ]                                        (4.9) 

where 𝑑 = 𝑀ଶ𝑝 is the total number of parameters and 𝜦𝒘 ∈  𝑹ௗ×ௗ  is a diagonal matrix of 

smoothing factors 𝜆௪ೕ
 for 𝜆 = 1 … 𝑑, that lie between 0 and 1. The rationale behind this 

procedure is that changes in the parameters can be detected by tracking the variations in the 

error terms. Equation (4.8) can be described as a multivariate moving average (MA) that 

follows the mean of the variance of the residuals with different rates (due to the different 

smoothing factors assigned to the diagonal elements of 𝜦𝒘). Through Equations (4.8) and (4.9), 

we are indirectly assigning unique adaptive update coefficients to each model parameter. In 

addition, we assume that the noise measurement variance is different for each time series and 

therefore 𝑅ଶ from Equation (4.5) becomes a M-dimensional diagonal matrix 𝑹𝟐 = 𝑑𝑖𝑎𝑔{𝒓𝟐}, 

 𝒓𝟐 = [𝑟ଶଵ
… 𝑟ଶெ]. 

4.2.3 Model order selection and hyperparameters optimization 

   Model order selection and optimization of the hyperparameters 𝝀𝒘, 𝒓𝟐 was realized using a 

mixed integer Genetic Algorithm (GA). The candidate solutions 𝑿௜  evaluated by the GA, were of 

the following form, 

𝑿௜ = [𝑝 𝝀𝒘 𝒓𝟐]                                                            (4.10) 

where 𝑝 ∈ [1 … 𝑝௠௔௫] is the selected MVAR model order and 𝑝௠௔௫ is the maximum order that 

we are interested in. The value of each element of 𝝀𝒘 resides between 0 and 1, whereas 𝒓𝟐 

values are simply constrained to be positive. The total number of hyperparameters optimized 

by the GA are 1 + 𝑀ଶ𝑝 + 𝑀. In the case of the conventional KF technique the only 

hyperparameters that are needed to be tuned are 𝑅ଵ and 𝑅ଶ. Thus, the candidate solutions take 

the form, 

𝑿௜ = [𝑝 𝑅ଵ 𝑅ଶ]                                                            (4.11) 

   GAs can be described as adaptive search algorithms inspired from natural evolution. In each 

generation, the fitness function (i.e. objective function) of a population of candidate solutions is 

evaluated. The fittest solutions are then selected and used in the next iteration of the algorithm. 

Crossover, mutation and selection are the basic search mechanisms of the GA. Crossover 
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combiness two individuals to produce a new one, while mutation creates diversion by altering 

one solution to produce a new one. Selection, on the other hand, reduces the search area by 

discarding poor solutions. Usually, the algorithm is terminated if a maximum number of 

iterations or a fitness level has been reached. We selected the Akaike Information Criterion 

(AIC) [40] on the entire dataset as the fitness function. Thus, for each candidate solution 𝑿௜  the 

GA estimates recursively the TV-MVAR model based on all the available data and then it 

evaluates the following quantity, 

𝐴𝐼𝐶(𝑿௜) = 𝑁 log൫|𝜮෡|൯ + 2𝑑                                                    (4.12) 

where 𝑁 is the length of the data set, 𝑑 = 𝑀ଶ𝑝 is the total number of parameters and |𝜮෡| is the 

determinant of the estimated covariance of the error terms, i.e. 𝜮෡ = 𝑐𝑜𝑣൫𝒀 − 𝒀෡൯ = 𝑐𝑜𝑣(𝒆). The 

optimal candidate solution is the one that achieves the lowest AIC value. 

4.2.4 Smoothing 

   Smoothing is applied to the extracted TV model parameters independently in order to deal 

with noisy estimates either due to fast tracking or excessive noise. For the KF-type estimators, 

we adopt the Rauch-Tung-Striebel [164], [165] fixed-interval equations, 

𝑾(𝑛) = 𝑷(𝑛)[𝑷(𝑛 + 1) + 𝑹𝟏(𝑛 + 1)]ି𝟏                                    (4.13) 

𝜞෡𝒔(𝑛) = 𝜞෡(𝑛) + 𝑾(𝑛)ൣ𝜞෡𝒔(𝑛 + 1) − 𝜞෡(𝑛)൧                                 (4.14) 

By applying Equation (4.14) and updating 𝜞෡(𝑛) in a backward manner starting from time point 

𝑛 = 𝑁 − 1 up to 𝑛 = 1 with initial values 𝜞෡𝒔(𝑁) = 𝜞෡(𝑁), the smoothed estimates 𝜞෡𝒔 are 

obtained. In Equation (4.13) the matrices 𝑷(𝑛) and 𝑹𝟏(𝑛) have been computed already during 

the forward sweep. 

4.2.5 TV-MVAR measures of coupling and causality 

   By taking the Fourier transform of Equation (4.1) the TV spectral power density matrix of 𝒚 

can be computed as, 

𝑺(𝑓, 𝑛) = 𝑯(𝑓, 𝑛)𝜮𝑯ு(𝑓, 𝑛)                                                     (4.15) 

where 𝑯(𝑓, 𝑛) = [𝑰 − 𝑨(𝑓, 𝑛)]ି𝟏 = 𝑨ഥ(𝑓, 𝑛)ିଵ  ∈ 𝑹ெ×ெ is the transfer matrix in the frequency 

domain at time point 𝑛, 𝑨(𝑓, 𝑛) = − ∑ 𝑨𝒌(𝑛)𝑒ି௜ଶగ௙𝒑
௞ୀ𝟏  ∈ 𝑹ெ×ெ is the coefficient matrix in the 
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frequency domain at time point 𝑛 and 𝜮 = ቎
𝜎ଵ

ଶ … 0
⋮ ⋱ ⋮
0 … 𝜎௹

ଶ
቏  ∈ 𝑹ெ×ெ is the diagonal covariance 

matrix of 𝜺. The superscript H stands for Hermitian transpose. Similarly, the inverse spectral 

power density matrix of 𝒚 can be written in the following form, 

𝑷(𝑓, 𝑛) = 𝑺ିଵ(𝑓, 𝑛) = 𝑨ഥு(𝑓, 𝑛)𝜮ିଵ𝑨ഥ(𝑓, 𝑛)                                 (4.16) 

   The elements of the TV spectral density, transfer function, and coefficient matrices can be 

used to measure TV couplings and causality in the frequency domain. Specifically, 

𝐶𝑂𝐻்஽(𝑓, 𝑛) =
𝑆்஽(𝑓, 𝑛)

ඥ𝑆்்(𝑓, 𝑛)ඥ𝑆஽஽(𝑓, 𝑛)
                                         (4.17) 

𝐷𝐶்஽(𝑓, 𝑛) =
𝜎஽𝐻்஽(𝑓, 𝑛)

ඥ∑ 𝜎௠
ଶ |𝐻்௠(𝑓, 𝑛)|𝟐ெ

௠ୀଵ

                                         (4.18) 

𝑃𝐶𝑂𝐻்஽(𝑓, 𝑛) =
𝑃்஽(𝑓, 𝑛)

ඥ𝑃்்(𝑓, 𝑛)ඥ𝑃஽஽(𝑓, 𝑛)
                                      (4.19) 

𝐺𝑃𝐷𝐶்஽(𝑓, 𝑛) =

1
𝜎஽

�̅�்஽(𝑓, 𝑛)

ට∑
1

𝜎௠
ଶ |�̅�௠஽(𝑓, 𝑛)|𝟐ெ

௠ୀଵ

                                   (4.20) 

where 𝐶𝑂𝐻்஽  describes the Coherence from D (driver) to T (target), 𝐷𝐶்஽  the Directed 

Coherence, 𝑃𝐶𝑂𝐻்஽  the Partial Coherence and 𝐺𝑃𝐷𝐶்஽  the Generalized Partial Directed 

Coherence. COH describes the linear relationship between two processes, whereas PCOH 

differentiates the direct from the indirect connections in the frequency domain. COH and PCOH 

are symmetric measures and they can be decomposed into subcomponents that express 

directionality (i.e. DC and PDC respectively). DC refers to the direct and indirect causal links 

between two time series. PDC on the other hand detects only directional influences without 

considering indirect paths of information flow. It holds that, 0 ≤ |𝐷𝐶்஽(𝑓, 𝑛)|ଶ ≤ 1, 

∑ |𝐷𝐶்௠(𝑓, 𝑛)|ଶெ
௠ୀଵ = 1 and 0 ≤ |𝐺𝑃𝐷𝐶்஽(𝑓, 𝑛)|ଶ ≤ 1, ∑ |𝐺𝑃𝐷𝐶௠஽(𝑓, 𝑛)|ଶெ

௠ୀଵ = 1.  

   All the aforementioned are based on the assumption that the residuals are white and 

uncorrelated. However, we observed residuals with TV variances when datasets containing 

event-related changes or phase transitions were fitted to TV-MVAR models. We speculate that 

these transitions are translated into changes in the operating point of the system where the 

SNR levels may be different. The main issue with heteroskedasticity is that it leads to 
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underestimated error covariances (𝜮) which in turn bias the connectivity measures extracted 

from the MVAR models (Equations (4.17-4.20)). In practice, the covariance matrix 𝜮෡ is 

estimated either based on the residuals acquired from all the dataset or by applying windows 

and estimating an average value. In the latter case and in piecewise stationary approaches, 

these windows usually coincide with the windows used to estimate the TV model parameters. 

In recursive approaches, these windows are comparable in size with the recursive estimator’s 

memory. Heteroskedasticity however implies that the covariance matrix 𝜮 is TV in nature and 

does not necessarily follow the same TV patterns as the model parameters.  Hence, we propose 

tracking the TV covariance matrix 𝜮෡(𝑛) using Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) models [189]. Subsequently, elements that belong to 𝜮 in 

equations (4.15-4.20) are no longer constant and acquire different values at each time step.  

4.2.6 Heteroskedasticity in the error terms 

   GARCH models are used to describe a changing, possibly volatile variance. Under 

heteroskedasticity, the variance of each error term is a function of time thus it follows that, 

𝜀௠(𝑛)~𝑁(0, 𝜎௠
ଶ (𝑛))         𝑓𝑜𝑟 𝑚 = 1 … 𝑀                                  (4.21) 

   A GARCH model of order (𝑟, 𝑞) can model these changes by expressing the current conditional 

variance as a linear combination of past conditional variances and past squared errors, 

𝜎௠
ଶ (𝑛) = 𝜔௠ + ෍ 𝛾௜௠𝜀௠

ଶ (𝑛 − 𝑖)

௥

௜ୀଵ

+ ෍ 𝛿௝௠𝜎௠
ଶ (𝑡 − 𝑗)

௤

௝ୀ଴

                            (4.22) 

   Usually a GARCH(1,1) is enough to model the variance 𝜎௠
ଶ , however the optimal model order 

is selected based on the Bayesian (BIC) [39] or Akaike Information Criterion (AIC) [40]. In a 

more refined approach, this methodology can be extended to multivariate GARCH (MV-GARCH) 

models [190] taking into account interactions between different error time series and thus 

obtaining TV covariance matrices with off-diagonal elements. To summarize, based on the 

estimated TV parameters of the MVAR models and the covariance of the error terms, TV 

coupling measures can be computed from Equations (4.17-4.20). In case of heteroskedasticity, 

the time-invariant estimate 𝜮෡ can be replaced at each time point with the TV covariance 𝜮෡(𝑛) 

extracted by the GARCH model.  
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4.3 Simulations 

4.3.1 Case 1: Homoskedastic error terms 

   We simulated fifty realizations of the following 3-dimensional (i.e. 𝑀 = 3) TV-MVAR process 

of order 2 (i.e. 𝑝 = 2), 

቎

𝑦ଵ(𝑛)

𝑦ଶ(𝑛)

𝑦ଷ(𝑛)
቏ = ෍ ൦

𝑎ଵଵ
(௞)(𝑡) 𝑎ଵଶ

(௞)(𝑡) 𝑎ଵଷ
(௞)(𝑡)

𝑎ଶଵ
(௞)

(𝑡) 𝑎ଶଶ
(௞)

(𝑡) 𝑎ଶଷ
(௞)

(𝑡)

𝑎ଷଵ
(௞)(𝑡) 𝑎ଷଶ

(௞)(𝑡) 𝑎ଷଷ
(௞)(𝑡)

൪

ଶ

௞ୀଵ

቎

𝑦ଵ(𝑛 − 𝑘)

𝑦ଶ(𝑛 − 𝑘)

𝑦ଷ(𝑛 − 𝑘)
቏ + ቎

𝜀ଵ(𝑛)

𝜀ଶ(𝑛)

𝜀ଷ(𝑛)
቏             (4.23) 

TV relationships were achieved by allowing the model parameters to vary through time as 

depicted in Figure 4.1. The TV-MVAR process was driven by white noise signals 𝜺 of equal 

variances, 

 𝜮 = ቎

𝜎ଵ
ଶ 0 0

0 𝜎ଶ
ଶ 0

0 0 𝜎ଷ
ଶ

቏ = ൥
𝜎ଶ 0 0
0 𝜎ଶ 0
0 0 𝜎ଶ

൩ = ൥
1 0 0
0 1 0
0 0 1

൩                                (4.24) 

   We estimated the TV model parameters using both the conventional KF technique (Equations 

(4.3-4.7)) and our proposed implementation (Equations (4.3-4.9)). Model order selection and 

hyperparameter optimization was achieved in both cases using the GA scheme described in 

Section 4.2.3. The GA algorithm was able to identify the right model order in all cases. The 

performance of the two estimators was assessed by computing the mean squared error 

(MSE(%)) between the actual and the extracted parameters before and after smoothing, 

𝑁𝑜 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔:                  𝑀𝑆𝐸(%) =
1

𝑁𝑑
෍ ෍ൣ𝛤௝(𝑛) − 𝛤ఫ

෡(𝑛)൧
ଶ

ே

௡ୀଵ

ௗ

௝ୀଵ

                   (4.25) 

𝑊𝑖𝑡ℎ 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔:                    𝑀𝑆𝐸(%) =
1

𝑁𝑑
෍ ෍ൣ𝛤௝(𝑛) − 𝛤ఫ

෡௦
(𝑛)൧

ଶ
ே

௡ୀଵ

ௗ

௝ୀଵ

                 (4.26) 

where 𝛤௝(𝑛) is the j-th parameter of the real parameter vector 𝜞 at time 𝑛, 𝛤ఫ
෡(𝑛) and 𝛤ఫ

෡௦
(𝑛) is the 

j-th parameter of the estimated unsmoothed (𝜞෡) and smoothed (𝜞෡𝒔) parameter vector, 

respectively, at time 𝑛. In Figure 4.2 we present the real (simulated) and the estimated TV COH 

(averaged over all 50 realizations) using our proposed implementation. Note that TV COH was 

computed based on Equation (4.17). The covariance matrix 𝜮෡ was computed based on the 

residuals acquired from the whole dataset. Based on Figure 4.3-Homoskedastic errors, our 
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approach led to significantly lower MSE(%) values compared to the conventional KF scheme 

indicating superior tracking performance. 

 

Figure 4.1 Real (i.e. simulated) TV model parameters. The parameters either remain constant 

throughout time or evolve as ramps or sinusoids with TV amplitude and frequency content. 

      

(a)                                                                        (b) 

 

Figure 4.2 Heatmaps depicting the (a) real and (b) estimated TV COH under homoskedastic 

error terms (Case 1) using our proposed implementation (average from all 50 realizations). 

The x-axis represents time and the y-axis, frequency. yD -> yT denotes the driver and the target 

time series. COH is a symmetric measure that describes direct and indirect couplings (no 

directionality is assumed) between two time series. Thus, COH yD -> yT  is equal to COH yT -> yD. 

The diagonal components of COH are the spectra (S) of each time series.  
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4.3.2 Case 2: Heteroskedastic error terms 

   Fifty realizations of the TV-MVAR process of Equation (4.23) were generated with parameters 

varying as in Figure 4.1. The process was driven by white noise signals of which were initially 

of equal variance, but that changed over time,  

𝜮𝟏 = ൥
1 0 0
0 1 0
0 0 1

൩    𝑓𝑜𝑟 𝑛 ≤ 450                                                  (4.27) 

 

𝜮𝟐 = ൥
0.5 0 0
0 0.8 0
0 0 0.2

൩  𝑓𝑜𝑟 𝑛 > 450                                           (4.28) 

   We estimated the TV parameters as in Section 4.3.1 and we additionally parametrized the TV 

covariance 𝜮෡ using the GARCH approach described in Section 4.2.6. TV-MVAR measures were 

computed based on Equations (4.15-4.20) combined with Equation (4.22). Again, our proposed 

implementation exhibited significantly better performance than the conventional KF algorithm 

(Figure 4.3-Heteroskedastic errors). Further, based on Figure 4.3, the significantly higher MSE 

values under the heteroskedastic case compared to the homoskedastic case implies that 

heteroskedasticity affects in general the parameter estimation procedure. However, our 

proposed KF algorithm combined with smoothing performed similarly in both cases proving 

the superiority of our approach.  

   We also estimated the normalized mean squared error (NMSE) between the simulated and 

the predicted TV-MVAR measures of Equations (4.15-4.20), 

𝑁𝑀𝑆𝐸(%) =
100

𝑀ଶ
෍ ෍ ൝

∑ ∑ ൣ𝑍்஽(𝑓, 𝑛) − 𝑍መ்஽(𝑓, 𝑛)൧
ଶ

௙
ே
௡ୀଵ

∑ ∑ [𝑍்஽(𝑓, 𝑛)]ଶ
௙

ே
௡ୀଵ

ൡ

ெ

஽ୀଵ

ெ

்ୀଵ

                  (4.29) 

where 𝑍்஽(𝑓, 𝑛) and 𝑍መ்஽(𝑓, 𝑛) refer to one of the simulated and estimated TV-MVAR measures, 

respectively, of Equations (4.15-4.20). In Figure 4.4a and 4.4b, we present the obtained 

NMSE(%) from Case 2, using the conventional and the proposed KF technique (after applying 

smoothing to the obtained parameters), when we either ignore or take into account 

heteroskedasticity. As expected, our proposed technique resulted into lower NMSE values for 

all TV-MVAR measures. Figure 4.5 depicts the simulated and estimated TV GPDC between all 

three time series. If we ignore the changes in the variance of the error terms then GPDC is either 

overestimated or underestimated in some time intervals (Figure 4.5b). This may lead to wrong 
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conclusions when interpreting the obtained results. For example, Figure 4.5b shows a larger 

flow of information from 𝑦ଷ to 𝑦ଶ at the frequency range of [0.2 0.3Hz] after time point 450, 

when, in reality, the causality strength between these two time series is higher before that time 

point (Figure 4.5a). This actuality is captured better when applying our proposed GARCH 

approach (Figure 4.5c). 

 

Figure 4.3 Boxplots depicting the MSE(%) between real and estimated parameters, before and 

after applying smoothing, using the conventional KF and our proposed implementation under 

homoskedastic (Case 1) and heteroskedastic (Case 2) error terms. *: denotes statistically 

nonsignificant differences (assessed using Analysis of Variance along with multiple comparison 

tests). Within and between each case all comparisons were found to be statistically significant 

except of the one denoted with a star. 

              

(a)                                                                                     (b) 

Figure 4.4 Boxplots depicting the NMSE(%) between real and estimated TV-MVAR measures 

using the conventional KF and our proposed implementation under heteroskedastic (Case 2) 

error terms (a) ignoring heteroskedasticity (b) taking into account heteroskedasticity. 
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(a) 

     

(b)                                                                                     (c) 

 

Figure 4.5 Heatmaps depicting the (a) real and (b) estimated TV GPDC for Case 2 using our 

proposed implementation ignoring heteroskedasticity (average from all 50 realizations) and 

(c) estimated TV GPDC for Case 2 using our proposed implementation taking into account 

heteroskedasticity (average from all 50 realizations). The x-axis represents time and the y-axis 

frequency. The variance of the driving noise changes at time point 450. yD -> yT denotes the 

driver and the target. GPDC is an asymmetric measure that describes direct causality between 

two time series. Thus, GPDC yD -> yT is not the same as GPDC yT -> yD.  
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4.4 Experimental Data 

   Physical exercise is known to boost physical and mental health, through a series of cardiac, 

vascular and metabolic adaptations. Growing evidence suggests that even a single exercise 

session enhances cerebrovascular function in healthy adults and patients with stroke [191]–

[193]. In order to better understand the cerebrovascular/cardiovascular changes that occur 

during physical activity we applied our proposed TV-MVAR methodology using stroke volume 

(SV), pulse pressure (PP) and middle cerebral artery pulsatility index (PI) as signals of interest 

from 3 groups; stroke survivors (17 participants), young (12 participants) and old healthy 

adults (10 participants), performing 20 min of moderate intensity stationary cycling. Prior to 

presenting the obtained results, we briefly explain the nature of the investigated signals.  

   SV is the volume of blood pumped through the left heart ventricle with each contraction. We 

obtained a non-invasive estimation of SV based on a Modelflow prediction algorithm using the 

finger arterial pulse waveform (Beatscope Software, Finapres Medial Systems, Amsterdam NL) 

[194]. PP describes the differential in arterial blood pressure (ABP) between the systolic and 

diastolic phases of the cardiac cycle, where systolic and diastolic reflect the maximum and 

minimum values, respectively. We reconstructed systolic and diastolic pressures within the 

brachial artery using a generalized waveform filter on ABP obtained using finger-cuff 

photoplethysmography (Finapres Medial Systems) [195]. PP is a function of the volume of 

blood ejected from the heart, as well as the compliance of the central arteries. As more blood is 

ejected from the left ventricle to the arteries, PP increases. With age, arteries become stiffer 

leading to increases in systolic pressure and decreases in diastolic pressure [196], [197]. It has 

been shown that, along with the observed PP increase after age 50, there is a prominent age-

related decrease in SV. The ratio of SV to PP (SV/PP) remains constant between 17 and 50 years 

before declining abruptly. Hence, SV/PP is regarded as a simplified index of arterial compliance 

[198] and has been proposed as a biomarker of cardiovascular risk [199]. PP itself and arterial 

stiffness are positively associated with increased risk of stroke and coronary heart disease 

[200]. A number of studies have shown that physical activity can lead to short- and long-term 

increases in arterial compliance, reducing the negative effects of arterial stiffness [201]–[206]. 

PI reflects the intra-beat pulsatile characteristics of cerebral blood flow velocity (CBFV) and is 

calculated as the difference between the peak systolic and minimum diastolic velocities divided 

by the mean velocity during one cardiac cycle. We measured CBFV in the bilateral middle 

cerebral arteries using 2-MHz transcranial Doppler ultrasound with a secure headframe to 
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maintain positioning throughout exercise (ST3 Transcranial Doppler, Spencer Technologies, 

Redmond WA USA). PI also increases with age due to changes in PP and arterial stiffness [207]. 

Excessive pulsatility may expose the brain to harmful levels of pressure and flow provoking 

detrimental effects to cerebral structure [208].  

   In this work, we are interested in examining the short-term relationship between PP, SV and 

PI before, during and after exercise. Studying these TV interactions may help illuminate the 

exercise-induced mechanisms of cerebrovascular/cardiovascular regulation and detect 

pathological or age-related deficits. The experimental protocol consisted of the following six 

phases,  

 Phase 1 – 5 minutes of seated rest  

 Phase 2 – 3 minutes warm-up with an increase in workload each minute 

 Phase 3 – 20 minutes of steady state exercise  

 Phase 4 – 2 minutes cool-down with a decrease in workload each minute 

 Phase 5 – 1 minute cool-down in cycling position without pedaling  

 Phase 6 – 5 minutes of post-exercise recovery and seated rest 

   The experimental protocol was approved by the Sunnybrook Health Sciences Research Ethics 

Board. All participants provided written informed consent. Beat-to-beat data was extracted 

from continuous ABP and CBFV waveforms, and interpolated to 1Hz for analysis. By applying 

our proposed methodology, we extracted TV measures of COH, PCOH, DC and PDC in all 

subjects. No preprocessing (e.g. mean removal, standardization) was applied to the data but we 

did add a constant offset vector to Equation (4.1) that was optimized by the GA along with the 

rest hyperparameters. Note that we detected heteroskedasticity on the residuals associated 

with phase transitions. Hence, we applied the GARCH approach presented in Section 4.2.6 to 

parametrize the changing variance of the error terms. For each group, i.e. healthy young, 

healthy old and stroke survivors, we computed median TV patterns of COH, PCOH, DC and PDC 

(Figure 4.6a,b,c). We also estimated the TV changes of each measure from baseline (Figure 

4.6d,e,f) as follows, 

𝑑𝑍்஽(𝑓, 𝑛) = 𝑍்஽(𝑓, 𝑛) − median[𝑍்஽(𝑓, 𝑇௕௔௦௘௟௜௡௘)]                    (4.30) 

where 𝑍்஽(𝑓, 𝑛) is one of the TV-MVAR measures (Equations (4.17-4.20)) at time point 𝑛 and 

frequency 𝑓, 𝑇௕௔௦௘௟௜௡௘  is the baseline period, and median[𝑍்஽(𝑓, 𝑇௕௔௦௘௟௜௡௘)] is the median 

baseline value of 𝑍்஽  at frequency 𝑓.  We focused on four frequency bands of interest, very low 
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(VLF; 0.01-0.04 Hz), low (LF; 0.04-0.15 Hz), high (HF; 0.15-0.3 Hz) and very high (VHF;0.3-

0.4Hz). We extracted bandlimited median values of each TV measure for all subjects during 

baseline (Phase 1), exercise (Phase 3) and post-exercise recovery (Phase 6).  

   All groups exhibited the same hemodynamic profile; a progressive dissociation between SV 

and PP after the onset of the exercise and a return to baseline or higher than baseline COH 

values during post-exercise recovery (Figure 4.6 and Figure 4.7). The loss of coherence between 

SV and PP is in accordance with previous studies that observed exercise-induced decreases in 

the SV/PP ratio [209] and the coherence between SV and SBP [210]. This implies that arterial 

stiffness increases during exercise. This may be explained by the fact that exercise stress 

activates the sympathetic nervous system [211] leading to ABP and heart rate (HR) increases 

[212] that temporarily induce vasoconstriction and arterial stiffness. By examining Figure 4.6 

one can see a progressive decrease in COH and dCOH values from young to elderly and to stroke 

survivors. This is expected since SV/PP ratio is an indirect measure of arterial compliance and 

is known to decrease with age and stroke occurrence. Overall the young group exhibited higher 

VLF and LF COH levels, whereas stroke survivors and elderly displayed higher HF COH values 

(Figure 4.6a,b,c and Figure 4.7a,b,c). During cycling, there were significant HF COH decreases 

from baseline in all groups (Figure 4.6d,e,f and Figure 4.7e). The most striking changes though 

occurred in the young group during the recovery phase. LF COH increased significantly 

compared to the other groups (Figure 4.6a,d and Figure 4.7a,d). In elderly and stroke survivors 

COH returned to its baseline values.  

   DC (not shown here) revealed that the main directionality effects were from SV to PP, 

indicating that changes in SV lead to changes in PP and this is physiologically expected. Based 

on the GPDC (SV->PP) estimates, direct TV effects from SV to PP in the young group were more 

pronounced in the HF and VHF range (Figure 4.8a,d). This component was frequency specific 

and it was observed around 0.25-0.35Hz. On the other hand, in the elderly and stroke survivors, 

SV directly affected PP more strongly in the LF range. Based on the aforementioned, 

interactions in the LF and HF range seem to represent two distinct mechanisms with the HF 

component being more active in the younger subjects. The LF and HF range in cardiovascular 

systems are known to represent sympathetic and parasympathetic activity respectively [213], 

[214]. Physiological ageing and stroke occurrence is linked with autonomic dysregulation and 

more specifically with a reduction in parasympathetic control and upsurge in sympathetic tone 

[215]–[217]. This could explain the absence of a HF GPDC component during baseline in the 
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elderly and stroke group (Figure 4.8b,c). In [218], the authors detected a lesser decrease in 

parasympathetic tone during exercise in healthy old compared to young subjects due to lower 

parasympathetic tone levels in the elderly. This is in accordance with the TV patterns seen in 

dGPDC (Figure 4.8d,e,f). The young group exhibited a larger drop in HF GPDC from baseline. 

Both elderly and stroke survivors displayed significant increases in LF and HF/VHF dGPDC 

(statistics not shown here) during recovery indicating probable increases in both sympathetic 

and parasympathetic activity. This implies that exercise induces partial restoration of 

parasympathetic tone that is lost post-stroke and with age. It should be noted here that COH 

describes both the direct and indirect influences on the SV-PP relationship. GPDC however 

expresses the directional influence of one signal to the other and thus reflects different 

regulatory actions. No group differences or exercise-related changes were found in associations 

between PI and SV or PP. The relationship between PI and the other signals was stationary and 

more prominent in the VLF/LF range. PP and PI are linked to Cerebral Autoregulation (CA) [57], 

a mechanism that retains blood flow to the brain constant despite variations in ABP. Based on 

transfer function analysis, it has been previously shown that CA is maintained during low and 

moderate intensity exercise in the LF range [219]. This has also been demonstrated in healthy 

aging [220].  
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(a)                                                    (b)                                                        (c) 

 

 

(d)                                                     (e)                                                    (f) 

 

Figure 4.6 Heatmaps depicting the median TV COH and dCOH (changes from baseline) between 

SV and PP obtained from (a,d) the young, (b,e) the old and (c,f) the stroke survivors group 

respectively. The solid black lines denote the onset and the offset of the cycling phase (onset of 

Phase 2 and onset of Phase 6). Dashed lines denote intermediate phases. 
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(a)                                                  (b)                                                        (c) 

            

(d)                                                      (e) 

Figure 4.7 Error bars depicting median COH and dCOH values between SV and PP obtained 

from all groups during baseline, cycling and post-exercise recovery in the (a) VLF, (b,D) LF and 

(c,e) HF band. *: denotes statistically significant differences (assessed using Analysis of 

Variance along with multiple comparison tests). The VHF band of dCOH and COH was omitted 

due to nonsignificant differences. The same applies for the VLF band of dCOH. In dCOH baseline 

phase was not taken into account since dCOH measures changes from baseline. 
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(a)                                         (b)                                                        (c) 

 

 

(d)                                                     (e)                                                    (f) 

 

Figure 4.8  Heatmaps depicting TV GPDC SV->PP and dGPDC SV->PP (changes from baseline) 

between SV and PP obtained from (a,d) the young, (b,e) the old and (c,f) the stroke survivors 

group respectively. The solid black lines denote the onset and the offset of the cycling phase 

(onset of Phase 2 and onset of Phase 6). Dashed lines denote intermediate phases. 
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4.5 Conclusions 

   In this paper, we have developed a TV-MVAR methodology that tracks accurately TV 

interactions between time series. Our estimation method is based on the KF technique modified 

to accommodate multiple adaptive update coefficients allowing independent tracking of each 

model parameter. A mixed integer GA was assigned to simultaneously select the optimal model 

order and tune the hyperparameters of the proposed recursive scheme avoiding this way 

exhaustive search procedures. Heteroskedasticity in the error terms was parametrized using 

GARCH models. Based on simulations, our approach achieved superior performance compared 

to conventional techniques and led to more accurate representations of the true underlying TV 

interactions in both time and frequency domain. We applied our methodology in real 

experimental data in order to track exercise-induced hemodynamic changes in young, old and 

stroke survivors. Our goal was not to conclude any clinical findings, but demonstrate the 

capabilities of the proposed method. Future work involves the incorporation of a recursive 

GARCH estimation methodology to the proposed recursive scheme in order to simultaneously 

track the heteroskedasticity in the error terms and update the model parameters.  One of our 

main priorities however is the development of a statistical framework for significance testing 

of TV COH, PCOH, DC and PDC. Although there are existing statistical techniques for the 

stationary case, only few studies have attempted to address this issue under TV conditions 

[221]–[224].   
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 Modeling systems with binary 

output for biomedical applications 

 

   In the biomedical field, reaserchers usually analyse continuous variables. Chapters 3 and 4 

focused on physiological systems with continuous output. However, there are applications 

where event-related dynamics are of main concern (e.g. prediction of the neuronal spiking 

activity in the brain or the assessment of heartbeat dynamics). In such type of systems, the 

output is expressed as a binary signal where ‘1’ indicates the occurrence of an event and ‘0’ the 

absence of an event in time. Herein, we have developed a LVN network, with and without 

autoregressive terms, that can produce binary output predictions. The modified LVN model was 

used to predict neuronal spikes from Local Field Potentials (LFP) in the parkinsonian 

subthalamic nucleus (STN) in an attempt to understand the underlying mechanisms that affect 

the responsiveness of a neuron to the LFP.   
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Abstract — In this study, we utilized a data-driven approach, without relying on feature 

selection, to model the causal and dynamic relationship between Local Field Potentials (LFP) 

and spike trains in the Subthalamic Nucleus (STN) of 20 Parkinson’s Disease (PD) patients 

undergoing Deep Brain Stimulation (DBS). Specifically, we employed Laguerre-Volterra 

Networks (LVN) with and without autoregressive terms modified to produce probabilities of 

firing in their output. Network parameters were trained by applying a hybrid optimization 

scheme (genetic algorithm and interior nonlinear method) for faster and more efficient 

training. The results indicate that LFPs can predict the PD STN spiking activity in a window of 

±1ms. Based on the predictive performance of each LFP-spike pair we detected three neuronal 

clusters with distinct spatiotemporal characteristics linked indirectly with “off” state UPDRS 

improvement following DBS surgery.    

Index terms — Spike Prediction, Local Field Potentials, Laguerre Volterra Network, 

Parkinson’s Disease, Subthalamic Nucleus. 
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5.1 Introduction 

   Extracellular microelectrode recordings (MERs) of electrical activity in the brain are typically 

separated into two major counterparts that represent different aspects of neural signaling. The 

low frequency component, known as Local Field Potentials (LFP), is mostly generated by the 

collective activity of aggregates of neurons around the recording site (0.5 – 3mm) [225] and it 

is believed to comprise the synchronised input into the observed region. On the other hand, 

action potentials (AP) of nearby neurons (in a distance of 100-300μm from the electrode tip) 

[226] as well as smaller sub-noise level spikes, which are referred to as Multiunit Activity 

(MUA), are reflected in the high frequency content of the MER signals and represent the output 

from the observed region. LFPs and their spatiotemporal characteristics have been used 

extensively in various applications (e.g. studying brain rhythms [173], detecting pathological 

network activity [227], [228] and brain-machine interface applications [229]). On the other 

hand, the temporal structure of spiking activity has been of particular interest from the neural 

coding point of view, since it has been shown that information can also be carried in terms of 

the precise timing of spikes [230]–[233]. A number of studies have shown that temporal coding 

is achieved on a millisecond time scale [233]. Although spikes have been treated as the main 

“carriers” of information it has been shown that LFP can be as efficient as a individual neuron 

in terms of decoding behaviors and brain activity [234], [235].  Given the entangled but yet 

different nature of the LFP and the MUA one might ask whether it is possible to predict spikes 

solely on the basis of information conveyed in the LFP. Previous studies, have suggested that 

there is indeed a relationship between LFPs and spike timing in both animals [236]–[239] and 

humans [54], [240]–[242]. 

   In this work, we followed a data-driven approach to capture the causal relationship between 

LFPs and spikes in the Parkinsonian Subthalamic Nucleus (STN). MERs were obtained from 20 

Parkinson’s disease (PD) patients undergoing Deep Brain Stimulation (DBS) [243]. The specific 

dataset has been used previously to classify PD patients based on their response to DBS and 

predict their improvement [228], [244]. Herein, we focus on understanding the LFP triggering 

mechanisms of the STN spiking activity and quantify the amount of LFP information that affects 

multiple or even individual neurons. In order to map the relationship between LFP and spikes 

we used Laguerre-Volterra Networks (LVN) that have been previously successfully applied in 

identifying physiological systems [14], [17]. The network was modified to produce 

probabilities of “firing” in its output and model parameters were trained using a hybrid genetic 
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algorithm (GA) – nonlinear interior point optimization technique overcoming this way 

gradient-based local minima and convergence problems. We extended the model by adding 

autoregressive terms (LNV-ARX) and we compared its performance to the initial network. 

Various time and frequency domain LFP/MUA features were examined in an effort to 

understand the observed variability in spike timing predictability between recordings. We 

extracted three neuronal clusters with different spatiotemporal and spectral characteristics 

linked with high, moderate and low predictive accuracy. These clusters are very similar to 

neuronal populations that have been observed previously in the Parkinsonian STN [245] and 

in the temporal cortex of epileptic patients [54].   

5.2 Methods 

5.2.1 Data acquisition and Signal Processing 

   MERs were obtained from 20 “off” state PD patients undergoing DBS surgery at the 

Neurosurgery Clinic, Evangelismos General Hospital, Athens, Greece. MERs were performed in 

0.5mm steps, starting 5mm above the MRI-defined target, through the STN and towards the 

substantia nigra, using 5 parallel microelectrodes in a cross “Ben Gun” configuration [246]. 

During the recording phase (10sec) no electrical stimulation was applied.  

   MERs exhibiting spontaneous STN activity were only used in this study. LFPs were acquired 

by low-pass filtering (FIR equiripple) the raw signals (sampling rate: 12k HZ) with a cutoff 

frequency of 200 Hz. MUA was extracted by applying a high-pass filter to the raw signals with 

cutoff frequency around 500 Hz. The exact procedure is described elsewhere [228], [240]. 50 

Hz power-line noise and its harmonics were removed from the LFP signal by fitting sine/cosine 

waves at the specified frequencies and subsequently subtracting the estimated components. All 

LFPs were normalized to zero mean and unit variance. Spike detection was achieved through 

amplitude thresholding of the MUA. The threshold was set to, 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 4𝜎𝒏,   𝜎𝒏 =
𝑚𝑒𝑑𝑖𝑎𝑛(|𝒉|)

0.6745
                                      (5.1) 

where 𝒉 is the MUA signal and 𝜎𝒏 is an estimate of the standard deviation of the background 

noise. Time points where the signal exceeded the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and exhibited a maximum value in 

a window of ±1ms where selected as the timestamps of the multi-unit spike train. Based on this 

vector of timestamps, a binary signal was produced, indicating the absence (‘0’) or presence 
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(‘1’) of a spike. Both LFP and spike trains were downsampled at a frequency of 1kHz in order 

to reduce the computational complexity. The new sampling rate was chosen based on the 

minimum interspike interval (ISI) observed amongst all recordings (2ms). Spike trains were 

produced by shifting each spike to the nearest sampling point after applying downsampling. 

The original waveforms acquired from each detected spike where analysed using wave_clus 

[247], a spike sorting Matlab toolbox, which applies superparamagnetic clustering for the 

identification of single-cell neuronal sources. Both single- (SUA) and multi-unit (MUA) activity 

was included in our analysis.  

   A large variety of MER features were extracted in the effort to correlate them later with spike 

prediction accuracy. Low-frequency (<200Hz) background unit activity (BUA) envelopes were 

extracted from the MUA signals following the procedure described in [245], [248]. As 

mentioned earlier, MUA is a mixture of APs of neurons very close to the electrode tip as well as 

smaller sub-noise level spikes from nearby populations that comprise the BUA. BUA 

characteristics can give us insight about the activity of neurons in closer proximity than those 

recorded from each one of the 5 microelectrodes. We computed power band ratios, peak-to-

average power ratios, and mean/max coherence between LFPs, SUA/MUA and BUA in the delta 

(D; 1–4Hz), theta (T; 4–12 Hz), low beta (LB; 12–30 Hz), high beta (HB; 30-45Hz), gamma (G; 

45–100 Hz) and high gamma (HG; 100–200 Hz) frequency bands. Power spectral densities and 

magnitude squared coherences were estimated by applying Welch’s method to consecutive 1.5s 

segments with 50% overlap. We also included information theory measures [249] like entropy 

and mutual information (MIn) in order to quantify the stochastic variability of the signals and 

their pairwise association respectively. Temporal coordination of neural activity was described 

using cross-frequency coupling (CFC) and phase-locking (PL) indices. LFP phase-amplitude CFC 

between different subbands was assessed using the mean vector length modulation index 

methodology [250]. Phase synchronisation between spiking units and LFP was computed using 

a similar approach as CFC. PL index in a specific frequency range was defined as the modulus 

of the average value of the analytical bandpass filtered LFP signal, extracted using Hilbert 

Transform [251], during spiking events. The angle of this complex number represents the phase 

preference of the neuronal unit. Features related with the neuronal firing characteristics were 

also examined (i.e. mean firing rate, interspike interval distribution, bursting index based on 

the Poisson Surprise method [252], [253]).  
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5.2.2 Modeling the relationship between LFP and Spikes 

5.2.2.1 Laguerre-Volterra Network (LVN) 

   The main aim of this study was to predict spikes from LFPs. In order to achieve this however, 

the precise knowledge of the relationship between the two signals is needed.  System 

identification is the process of building dynamical models from measured data to determine 

and express the predictive relationships between them. One commonly used nonparametric 

model structure is the Volterra model [1]. The main aim of the identification procedure is to 

extract the Volterra kernels of the system. The Volterra kernels can be viewed as weighting 

functions that describe the effect of past input values (linear kernel), as well as the effect of the 

Q-th order products between past values of the input (nonlinear kernel) in order to generate 

the output signal. An efficient way to estimate these kernels is the Laguerre expansion 

technique (LET) [1]. Specifically, the discretized Volterra kernels of the system can be expanded 

in terms of the orthonormal basis of discrete-time Laguerre functions (DLFs) achieving this way 

model compactness and estimation accuracy.  

   LET can be combined with feedforward artificial neural networks and hidden units with 

polynomial activation functions in the form of the Laguerre – Volterra network (LVN) [30]. 

LVNs require a low total number of unknown parameters and thus produce good results even 

in small datasets. The input signal is initially convolved with a set of linear filters to allow the 

identification of both slow and fast dynamics. These counterparts of the input are then fed into 

the units of the hidden layer inducing this way nonlinearities. The summation of the units 

outputs produces the model prediction. In more detail, the j-th order DLF corresponding to 

filter bank 𝑖 is defined as, 

𝑏(௜)
௝(𝑚) = 𝛼௜

(௠ି௝)/ଶ(1 − 𝛼௜)ଵ/ଶ ෍(−1)௞ ቀ
𝑚
𝑘

ቁ ቀ
𝑗
𝑘

ቁ 𝛼௜
௝ି௞(1 − 𝛼௜)௞

௝

௞ୀ଴

                 (5.2) 

where 𝑗 = 1 … 𝐿௜  and 𝛼௜  is the Laguerre parameter (0 < 𝛼௜ < 1) which determines the rate of 

exponential decay of the DLFs. The two filter banks are characterized by different Laguerre 

parameters, describing this way different interdependent input dynamics (e.g. slow and fast 

dynamics), and may contain different numbers of Laguerre functions (filters) 𝐿௜ .  The 

corresponding filter output 𝑣௝
(௜)(𝑛) is the convolution of 𝑏(௜)

௝(𝑚) with the input 𝑥(𝑛). The 

variables 𝑣௝
(௜) can be estimated using the following autorecursive relation [34], 
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𝑣௝
(௜)(𝑛) = ඥ𝛼௜𝑣௝

(௜)(𝑛 − 1) + ඥ𝛼௜𝑣௝ିଵ
(௜) (𝑛) − 𝑣௝ିଵ

(௜) (𝑛 − 1)                                (5.3) 

initialized by, 

𝑣଴
(௜)(𝑛) = ඥ𝛼௜𝑣଴

(௜)(𝑛 − 1) + 𝑇ඥ1 − 𝛼௜𝑥(𝑛)                                          (5.4) 

where T is the sampling interval. The output of each filter bank at each time step 𝑛 is 𝒗(௜)(𝑛) ∈

𝑹௅೔×ଵ. The hidden units in the second layer employ polynomial activation functions in order to 

make the network functionally equivalent to a Volterra model. The input of each hidden unit 𝑘 

is the weighted sum of the DLF filter bank outputs,  

𝑢௞(𝑛) = ෍ 𝒘௞
(௜)்

𝒗(௜)(𝑛)

ଶ

௜ୀଵ

                                                       (5.5) 

where 𝑘 = 1 … 𝐾 and 𝒘௞
(௜)

∈ 𝑹௅೔×ଵ are the weights. 𝑢௞(𝑛) then undergoes a Q-th order nonlinear 

transformation of the following form, 

𝑧௞(𝑛) = 𝒄௞
்𝒖෥௞(𝑛)                                                                 (5.6) 

where 𝒄௞ ∈ 𝑹ொ×ଵ, Q is the degree of the polynomial activation functions (Q=1 refers to a linear 

model, whereas Q>1 to a Q-th order nonlinear model) and 𝒖෥௞(𝑛) = [𝑢௞(𝑛) … 𝑢௞
ொ(𝑛)]் . The 

LVN output is given by the nonweighted summation of the hidden-unit outputs including a 

trainable offset 𝑦଴,  

𝑦(𝑛) = 𝑦଴ + ෍ 𝑧௞(𝑛)

௄

௞ୀଵ

                                                            (5.7) 

   The Volterra kernels of the system can be easily expressed in terms of the network parameters 

[1]. However, a more interpretable representation of the system is the extracted Principal 

Dynamic Modes (PDMs) model.  The PDM model, which is equivalent to the LVN, consists of a 

minimum set of parallel filters (PDMs), adequate to represent the kernels of the system, 

followed by a static nonlinearity [1]. In the LVN case the number of PDMs is defined by the 

number of hidden units (Fig.1). The PDMs are computed as, 

𝑃𝐷𝑀௞(𝑚) = ෍ 𝒘௞
(௜)்

𝒃(𝒊)(𝑚)

ଶ

௜ୀଵ

                                                    (5.8) 

where 𝒃(𝒊)(𝑚) ∈ 𝑹௅೔×ଵ consists of all the DLFs 𝑏(௜)
௝(𝑚).  
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5.2.2.2 Autoregressive Laguerre-Volterra Network with exogenous input (LVN-

ARX) 

   The LVN, in its conventional form, describes a dynamic causal effect from input to output. 

However, there are cases where feedbacks from the output enter the system. To this end, we 

extended the LVN model in an autoregressive with exogenous input (ARX) formulation, where 

the autoregressive (AR) and the exogenous terms represent the history of the output and input 

respectively (Figure 5.1). Two extra filter banks are added in the network to account for the AR 

terms. For the AR terms, Equations (5.3) and (5.4) become, 

 𝑣௬ೕ

(௜)(𝑛) = ට𝛼௬௜
𝑣௬ೕ

(௜)(𝑛 − 1) + ට𝛼௬௜
𝑣௬ೕషభ

(௜) (𝑛) − 𝑣௬ೕషభ

(௜) (𝑛 − 1)                         (5.9) 

initialized by, 

𝑣௬బ

(௜)(𝑛) = ට𝛼௬௜
𝑣௬బ

(௜)(𝑛 − 1) + 𝑇ට1 − 𝛼௬௜
𝑦(𝑛 − 1)                                (5.10) 

The two extra filter banks are assigned with different Laguerre parameters 𝛼௬௜
 and may contain 

different numbers of Laguerre functions 𝐿௬௜
. Equation (5.5) can be written as, 

𝑢௞(𝑛) = ෍ 𝒘௞
(௜)்

𝒗(௜)(𝑛)

ଶ

௜ୀଵ

+ ෍ 𝒘௬ೖ

(௜)்
𝒗௬

(௜)(𝑛)

ଶ

௜ୀଵ

                                       (5.11) 

where 𝑘 = 1 … 𝐾, 𝒘௞
(௜)

∈ 𝑹௅೔×ଵ and 𝒘௬ೖ

(௜)
∈ 𝑹

௅೤೔
×ଵ. 
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Figure 5.1 LVN-ARX schematic representation. A fully connected network with two Laguerre 

filter banks {𝑏௝
(ଵ)} and {𝑏௝

(ଶ)} that preprocess the input 𝑥(𝑛) and two Laguerre filter banks {𝑏௬ೕ

(ଵ)} 

and {𝑏௬ೕ

(ଶ)} that preprocess the output 𝑦(𝑛) . The neurons (or else hidden units) in the hidden 

layer, described by polynomial activation functions, receive input from the filter banks. The 

output 𝑦(𝑛) is given by the nonweighted summation of the hidden-unit outputs including a 

trainable offset 𝑦଴. Note that for the simple LVN there is no feedback from the output back to 

the network. 
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5.2.2.3 LVN training and Spike prediction 

   Based on Equation (5.7), the LVN (or LVN-ARX) output is a continuous signal whereas the 

output signal in our dataset is binary (‘1’: spike event – ‘0’: nonspike event). The MSE (Mean 

Squared Error) loss is typically not a good one for classification, as it forces the model to exactly 

predict the values imposed by the targets. Moreover, gaussianity assumption of the target data 

in classification is not valid, due to its discrete nature. Instead, a more commonly used, 

probabilistic objective is the negative log-likelihood. To minimize a negative log-likelihood, we 

first need to turn the predictions of our models into properly normalized log-probabilities. To 

this end, we used a sigmoidal activation function at the output layer of the LVN, transforming 

the predicted continuous output into probabilities of firing, 

𝑝(𝑛) =
1

1 + 𝑒ି(௦௬ො(௡)ା௬బ)
                                                               (5.12) 

where 𝑦ො(𝑛) is the output of the LVN at time 𝑛, 𝑠 and 𝑦଴ the slope and the bias of the sigmoidal 

function, respectively. We then trained our model using the cross-entropy loss function defined 

as 

𝐽 = −
1

𝑁
൝෍ 𝑦(𝑛) ln[𝑝(𝑛)]

ே

௧ୀଵ

+ ෍[1 − 𝑦(𝑛)] ln[1 − 𝑝(𝑛)]

ே

௧ୀଵ

ൡ                             (5.13) 

where 𝑁 is the total number of time samples, 𝑦(𝑛) is the observed binary spike signal at time 𝑛 

and 𝑝(𝑛) the probability of firing. Gradient based techniques (e.g. back-propagation) are usually 

used to train networks with fixed topologies. However, they may be easily trapped into local 

minima if they are not initialised properly. To this end, we applied a hybrid scheme, a genetic 

algorithm (GA) combined with interior point constrained nonlinear method, to minimize 

Equation (5.13) and estimate the LVN parameters (i.e. 𝒘௞
(௜), 𝒄௞ , 𝛼௜ , 𝑠 and 𝑦଴). GAs are adaptive 

search algorithms based on the idea of natural evolution. A population of candidate solutions, 

called individuals, evolves toward better solutions by operators such as crossover, mutation 

and selection. GAs can efficiently search large and complex spaces to find nearly global minima 

and can be used as a complement to gradient-based techniques. In our case, the “optimal” 

solution obtained from the GA was fed into the nonlinear optimization method as an initial 

starting point for a more efficient local search. Note here that neural networks, in general, suffer 

from permutation problems (i.e. symmetry in representation). For example, two networks with 

different ordering of their hidden units might be structurally different but computationally they 
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can perform the same. In order to facilitate the optimization procedure, we imposed structural 

constraints to the problem (for networks with more than 2 hidden units) by forcing the root 

mean square (RMS) of the hidden units output in a descending order; i.e. the first unit should 

produce the highest RMS output and the last one the lowest RMS. This was achieved by adding 

a random penalty to the cost function every time that the order was violated.  

   Training the LVN involves the estimation of the network parameters using a specific model 

order complexity (number of inputs, number of filter banks, number of Laguerre functions for 

each bank, number of hidden units, and degree of nonlinearity). Model selection on the other 

hand is the task of selecting a specific model structure from a set of candidate models in order 

to avoid overfitting and poor predictive performance in new datasets. For this reason, we 

selected the model structure that minimized the Akaike Information Criterion (AIC) [40], 

𝐴𝐼𝐶(𝑑) = 2𝐽 + 2𝑑                                                                       (5.14) 

where 𝐽 is the cross-entropy loss function (Equation (5.13)) and 𝑑 the total number of 

parameters of the model, which in the case of the simple LVN is,  

𝑑 = ൭෍ 𝐿௜

ଶ

௜ୀଵ

+ 𝑄൱ · 𝐾                                                                 (5.15) 

while for the LVN-ARX, 

𝑑 = ൥෍(𝐿௜ + 𝐿௬௜
)

ଶ

௜ୀଵ

+ 𝑄൩ · 𝐾                                                        (5.16) 

5.2.2.4 LVN performance 

   In order to quantify the performance of the LVN (or LVN-ARX) we transformed the obtained 

probabilities of firing into spikes by selecting an “optimal” threshold between 0 and 1. Under 

the assumption of equal consequences of misclassification, a classifier tends to bias toward the 

larger groups that have more observations in the training sample. The imbalanced nature of the 

spike signal (more 0’s than 1’s) can affect greatly the results leading to an imperative need of 

class skew insensitive measures. Matthews correlation coefficient (MCC) [254] is usually used 

to overcome such problems. MCC values were calculated according to the relationship,  

𝑀𝐶𝐶 =
𝑇𝑃 · 𝑇𝑁 − 𝐹𝑃 · 𝐹𝑁

ඥ(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
                                   (5.17)  
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where 𝑇𝑁 (TP) and 𝐹𝑁 (FP) are the numbers of correctly and incorrectly predicted non-spike 

events (spike events). A MCC value of 1 corresponds to an excellent prediction, while a value of 

-1 indicates a total disagreement between prediction and observation. Random results (50 % 

of both negative and positive correctly predicted) give a value of 0. In our case, the threshold 

value that yielded the maximum MCC was selected as the optimal. The time scale of toleration 

for deciding if there was a hit or miss was 1ms. In addition to MCC we computed other statistical 

measures of performance like True Positive Rate (TPR), False Positive Rate (FPR), True 

Negative Rate (TNR) and False Negative Rate (FNR) which can be derived easily from the 

obtained confusion matrices used to estimate MCC. 

   For visualization purposes we used the cumulative sum of spike timings (CDF) and the van 

Rossum distance (VRD) [255]. CDFs are useful in detecting ISIs that are missed or closely 

followed by the model prediction. VRD is defined as the integrated squared difference between 

two spike trains (one flipped) convolved with an exponential function of a time constant tc. 

Here, we used the curve produced by the difference of the spike trains before integrating in 

order to track the errors in time. 

5.2.2.5 Single- and multi-unit LVN analysis 

   Spike waveforms would either be clearly discriminated or would be difficult to cluster. In this 

study, Single-unit activity (SUA) recordings consisted of low noise and high amplitude spikes 

belonging clearly to one or more neuronal sources. On the other hand, Multi-unit activity (MUA) 

recordings comprised of action potentials from a population of neurons that were difficult to 

discriminate based on their shape or their ISI distribution characteristics. Single-unit (SU) 

analysis refers to the identification of LVN models in order to predict SU spike trains from LFPs 

of both MUA and SUA recordings, whereas Multi-unit (MU) analysis is the procedure of 

extracting LVN models that predict MU spike trains from both MUA and SUA recordings with 

more than one firing unit. Specifically, in the SU analysis we kept only the spike trains that 

belonged to the dominant cluster (i.e. highest RMS power and cluster size) whereas in the MU 

analysis we considered all detected clusters. We hypothesized that the relationship between 

LFP and MUA spikes would be different from that between LFP and SUA spikes. Subpopulations 

of neurons within a local area may exhibit different functionality and therefore respond to LFP 

oscillations in a dissimilar manner.  
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5.3 Results 

5.3.1 Estimated LVN model mapping the relationship between LFP and Spikes 

   We extracted a total of 270 pairs of LFP-spike trains (85 SUA and 185 MUA recordings) from 

all PD subjects. In 70/85 SUA cases, 2nd-order nonlinear LVN models (𝑄 = 2) exhibited the 

highest predictive performance (MCC) when applying SU analysis. For the MUA recordings, we 

trained 2 LVN models; one using the MU spike train as output (MU analysis) and one using the 

spiking activity of the dominant neuron (SU analysis). In terms of the MU analysis, in 127/185 

cases 2nd-order nonlinear models explained more accurately the relationship between LFPs and 

spikes. The rest 58/182 led to the selection of linear models (𝑄 = 1). On the other hand, in the 

SU analysis 2nd-order nonlinear models were superior in 147/185 cases (more compared to 

MU analysis). We estimated also 3rd-order nonlinear models (𝑄 = 3) however they were found 

to be redundant. The results imply that the LFP – spike relationship is overall nonlinear in 

nature and this is in line with previous studies [54], [236], [240]. Variability in the magnitude 

of linear and nonlinear contributions has been previously observed [54], [256] and it has been 

attributed to the degree of phaselocking in the lower frequencies combined with the amplitude 

of high frequency oscillations [54]. Based on the SU and MU analysis results, in our case we 

believe, first of all, that the noisy nature of MUA is the main reason that leads to the selection of 

linear models especially if the SNR levels are very low. And indeed, we found a positive 

correlation between the spike signal SNR and model order complexity. Second, we observed 

that increased cross-frequency couplings and phaselocking led to decreases in the entropy of 

the LFP signal (due to synchronized oscillatory activity [257], [258]) and the emergence of 2nd 

-order nonlinearities validating the findings of  [54].  A representative example of an identified 

LVN nonlinear model with two hidden units is shown in Figure 5.2a in its PDM form. The PDMs 

that express the fast and the slow dynamics are found in Figure 5.2b whereas the shape of the 

polynomial activation functions is shown in Figure 5.2c.  
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(a) 

       

(b)                                                                        (c) 

Figure 5.2 (a) A representative estimated LVN model from a SU recording in its PDM form 

[𝐿ଵ, 𝐿ଶ, 𝑄, 𝐾, 𝛼ଵ, 𝛼ଶ] = [5,6,2,2,0.51,0.04]. The PDMs are given by Equation (5.8). The green 

PDMs (PDM1 and PDM2) correspond to the fast dynamics of the system, whereas the red one 

(PDM3 and PDM4) correspond to the slow dynamics. The LFP is convolved with the PDMs and 

fed into a static nonlinearity defined by the polynomial activation functions of the hidden units. 

A sigmoidal function transforms the continuous output from the hidden units into probabilities 

of firing and a threshold is then applied for spike generation. The optimal threshold is selected 

by maximizing the MCC between observed and predicted spikes. (b) PDMs in time domain (c) 

Hidden unit’s activation functions.  
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5.3.2 Predicting Spikes from LFPs using LVN models 

   In Figure 5.3a we present the LVN MCC values acquired between observed and predicted 

spikes for both SUA and MUA recordings using both SU and MU analysis. SUA recordings 

combined with SU analysis resulted in a median MCC of 0.511 ([0.162 0.898]), whereas MU 

analysis led to a median MCC value of 0.489 ([0.162 0.898]). In the case of MUA recordings, a 

median MCC of 0.294 ([0.125 0.525]) and 0.368 ([0.135 0.764]) was obtained applying SU and 

MU analysis respectively. In Figure 5.3a, the grey lines provide a visual representation of how 

MCC values change depending on the analysis used for each LFP-spike pair. It is obvious that 

SU analysis favours SUA recordings, whereas MUA is more accurately represented using MU 

analysis, validating our hypothesis that single neurons respond to LFP changes in unique ways 

compared to the collective activity of a population of neurons. The low MCC values observed 

for MUA recordings and SU analysis could be due to inaccurate clustering of the detected spike 

waveforms. MUA recordings consisted of clusters that could not be easily discriminated, hence 

the extracted dominant clusters may have been erroneous. Comparing the results obtained 

using LVN and LVN-ARX models (Figure 5.3b,c), there were cases where LVN-ARX models were 

superior and recordings where LVN models had higher predictive performance. However, there 

seems to be an overall increase in predictability using LVN-ARX models for SUA recordings 

combined with SU analysis. Thus, LVN-ARX models are better suited for single-units.  

   In order to understand visually the relationship between the magnitude of the MCC and the 

prediction we present in Figure 5.4 the observed and the predicted spikes from representative 

recordings with MCC values of 0.294, 0.504 and 0.898 (maximum acquired MCC in the dataset). 

It is obvious that both 0.898 and 0.504 are good predictions. In Figure 5.4c (MCC: 0.294) the 

VRD plot reveals a stream of errors of the same amplitude. This indicates that the model is 

oftenly either missing spikes or predicting false ones. Based on the CDF plot, and since the blue 

line (cumulative spike counts of the observed spike train) exceeds the red one (cumulative 

spike counts of the predicted spike train) we conclude that the model is actually missing spikes. 

Note here that MCC values were computed with a strict temporal resolution of ±1ms. No 

correlations were found between number of spikes in a recording and MCC.  
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(a) 

         

(b)                                                                              (c) 

Figure 5.3 (a) Boxplots of LVN MCC values acquired between observed and predicted activity 

in SUA and MUA recordings using both SU and MU analysis. The grey lines provide a visual 

feedback of how the MCC changes between MU and SU analysis for each one of the recordings 

(b) Boxplots that compare LVN and LVN-ARX MCC values for SUA recordings using both SU and 

MU analysis. (c) Boxplots that compare LVN and LVN-ARX MCC values for MUA recordings 

using both SU and MU analysis. 
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(a)                                                                  (b) 

 

(c) 

Figure 5.4 Observed (blue) and predicted (red) spike trains (first and second horizontal 

panels) with MCC values of (a) 0.898 (b) 0.504 and (c) 0.294. The third horizontal panel depicts 

the cumulative spike counts (CDF) for both observed and predicted spikes. The 4th horizontal 

panel is the van Rossum distance (VRD) before integrating. Note here that no correlation was 

found between MCC and number of spikes in a recording. 
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5.3.3 Predicting Spikes from LFPs of neighboring electrodes using LVN models 

  The Ben Gun configuration allows the simultaneous recording of activity in 5 different sites. 

The distance between any peripheral electrode and the central one was 2 mm. We used LFPs 

from neighboring electrodes to predict the spiking activity of a target electrode inside the STN. 

LVN models were only considered. Based on Figure 5.5a, predictions acquired from 

neighboring LFPs were inferior and as expected MCC values decreased with increasing distance 

from the target electrode (not shown here). MU analysis led to superior performance for both 

SUA and MUA recordings. This was expected since MUA activity captured from the target 

electrode may contain spikes from neurons firing in closer proximity to other electrodes. In 

Figure 5.5b we present a representative prediction.  

 

 

      

(a)                                                                                 (b) 

Figure 5.5 (a) LVN MCC values using LFPs from neighbouring electrodes to predict the spiking 

activity of a target electrode. (b) A representative prediction using spikes from a target 

electrode and LFP from a neighbouring electrode.  
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5.3.4 LFP and Spike features related with spike timing 

   We assigned to each MER its own unique feature vector related with the LFP, SUA/MUA and 

BUA characteristics and we clustered the data into 3 meaningful groups (Figure 5.6a) using K-

medoids and correlation as distance measure. Significant discriminative features were selected 

based on the Kruskal-Wallis test (p<0.05). We ran the clustering procedure twice. Initially, MCC 

values obtained from the LVN models were not considered. The second time we included them 

as features. Surprisingly, the clustering results were very similar and MCC was a significant 

discriminative feature in the latter case. This means that there was a clear a priori structure in 

the data related with spike timing predictability.  

    

(a)                                                                     (b) 

Figure 5.6 (a) MCC boxplots of the extracted data clusters (number of recordings in each 

cluster: 𝑛ଵ = 197, 𝑛ଶ = 147, 𝑛ଷ = 195) ; median firing rate (SUA/MUA) of each cluster: 𝑀𝐹𝑅ଵ =

27/48 𝐻𝑧, 𝑀𝐹𝑅ଶ = 27/53 𝐻𝑧, 𝑀𝐹𝑅ଷ = 15/30 𝐻𝑧) (b) Coherence between actual and predicted 

spike trains for each cluster separately.  

   Another important feature that could distinguish the three clusters was the coherence 

between LFP and SUA/MUA (Figure 5.7). The cluster with the highest spiking predictability 

(cluster 1) exhibited increased coherence between LFP and spikes in the higher frequencies 

(HB – HG), whereas LFPs in clusters 2 and 3 shared more information with the spiking units in 

the lower frequencies (Figure 5.7). In more detail, cluster 1 comprised of recordings with high 

frequency characteristics. LFP power was mainly accumulated in the HB-HG range. Cross-

frequency coupling between HB and HG was dominant and SUA/MUA and BUA were firing 

synchronously in that range. Based on these characteristics, these neurons probably belong to 
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a local oscillatory network with a high frequency operating point and with partial response to 

low frequency global information.  Cluster 2, on the other hand, had enhanced low frequency 

LFP components, increased bursting activity (and thus mean firing rate) coherent with the BUA 

in the D-LB range. Spike prediction accuracy using neighboring electrodes was significantly 

higher for this cluster (followed by cluster 1 and 3) indicating a synchronized oscillatory 

population phaselocked mainly in the LB. Cluster 3 exhibited a broadband shift in LFP power. 

Due to low SNR levels (i.e. increased background noise) and coherence between LFP and spikes, 

in a large number of recordings the overall predictive performance was poor. Spikes in this 

group responded mainly to the T component of the LFP in a phaselocked manner. The 

coherence between BUA and SUA/MUA was low implying that neurons from this group were 

probably firing asynchronously with their surrounding population [248]. In addition, 

depending on the SNR levels and the mean firing rate, spike prediction would be either poor or 

moderate. The spike count was low and this may have also led to poor training of the models. 

By examining the coherence between actual and predicted spike trains (Figure 5.6b), we 

observed that cluster 2 predicted more accurately the lower frequency components of the 

SUA/MUA in the range between T and LB, whereas cluster 1 showed superior performance in 

the HB-HG band. This was expected due to the differences observed in coherence between LFP 

and spikes in each cluster. Representative MERS from each cluster along with their respective 

MCC values can be found in Figure 5.8. 

   There is a great similarity between the clusters we extracted and the so called “Low 

Frequency” (LF) and “High Frequency” (HF) cells described in [54]. The authors detected two 

different neuronal populations based on their predictive characteristics. In the LF cases, there 

was increased phaselocking and spike field coherence (SFC) in the lower frequencies. Spikes 

tended to occur at low HF LFP amplitudes and linear models were more predictive in this group. 

On the other hand, in the HF case, SFC was weak for lower frequencies and spikes were less 

phaselocked, occurring usually when HF LFP had high amplitude. The nonlinear model 

contribution was more significant in this case. We examined all the abovementioned 

characteristics and indeed we found similarities between cluster 1 and HF cells and cluster 2 

and LF cells. The authors corroborate that the differences accounted by these two types of cells 

could be attributed to their projections towards more local or more distant populations i.e. LF 

cells may be communicating with more distant populations, whereas HF cells may be projecting 

to more proximal populations. Cluster 2 and cluster 3 resemble the so called “High frequency 
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band” (HFB) and “Tremor frequency band” (TFB) neurons presented in [245]. HFB and TFB 

neurons displayed oscillatory activity at the A/LB and T band (known also as tremor band), 

respectively. The main difference between these two groups was that TFB neurons exhibited 

high SUA/MUA power, low BUA power and in general low coherence between these two signals. 

The opposite applies for the HFB neurons. Indeed, in Figure 5.7 we can see the same pattern for 

cluster 2 and cluster 3. Moreover, it was found that TFB neurons tended to oscillate in a more 

sporadic manner compared to the continuous oscillatory activity of HFB neurons. This 

phenomenon was projected in the mean firing rate of each cluster. Cluster 3 had a mean firing 

rate of 15 and 30 Hz for SUA and MUA recordings respectively, whereas the mean firing rate for 

cluster 2 was 27 and 53 Hz.  

 

 

 

Figure 5.7 Heatmaps representing median features in different frequency bands (D, T, LB, HB, 

G, HG and Broadband) for each cluster (POWERX: power band ratio of X, where X is either the 

LFP, SUA/MUA depending the type of recording or the BUA envelope; COHXY: mean coherence 

between X and Y – L refers to LFP, S to SUA/MUA and B to the BUA envelope). Note here that 

for each matrix columns were normalized between 0 and 1. Values are comparable between 

clusters only and not between frequency bands i.e. cluster 2 exhibited the highest POWERHG 

compared to cluster 1 and cluster 3. However, this does not necessarily imply that this feature 

is stronger in that specific frequency band in the same cluster.  
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(a)                                                                  (b) 

 

(c) 

Figure 5.8 Representative MERS that belong to (a) cluster 1, (b) cluster 2 and (c) cluster 3. On 

top of each subplot we denote the MCC value acquired for each recording. 

   In contrast to [245], we observed a dependence between clusters and “off” state UPDRS 

improvement (ΔΙ) following DBS. The Kruskall Wallis test returned a significant p-value 

(p=3.6915e-06) indicating statistically significant differences between the three clusters. 

Follow up multiple comparisons detected significant differences between cluster 1/cluster 3 

and cluster 2/cluster 3 with cluster 3 and 2 exhibiting the highest and smallest median ΔΙ value, 

respectively. For each patient, we then computed from all MERS a mean MCC value and a cluster 

preference probability based on the number of recordings found in each one of the three 

clusters (P1, P2 and P3 respectively). Indeed, we found significant correlations (p<0.05) 
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between MCC and ΔI (ρ=-0.45), MCC and P1 (ρ=0.47), MCC and P3 (ρ=-0.75), P1 and P3 (ρ=-

0.51), P2 and ΔI (ρ=-0.51), P2 and P3 (ρ=-0.58), P3 and ΔI (ρ=0.62) (Figure 5.9a). Overall, there 

was a decrease in MCC with increased improvement and a negative and positive relationship 

between improvement and the number of MERS detected in cluster 2 and 3 respectively. In 

[259], neuronal STN oscillations were found to be selectively associated with specific PD motor 

symptoms. Thus, in the same manner, spike predictability may also be a biomarker of PD 

phenotype or symptom severity or perhaps a predictive feature of DBS response.  

   We proceeded by comparing the performance between LVN and LVN-ARX models for all 3 

clusters. The prediction improvement (%) obtained using LVN-ARX models was defined as, 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =  
𝑀𝐶𝐶௅௏ேି஺ோ௑ − 𝑀𝐶𝐶௅௏ே

𝑀𝐶𝐶௅௏ே
%                            (5.18) 

where 𝑀𝐶𝐶௅௏ே  and 𝑀𝐶𝐶௅௏ேି஺ோ௑  is the MCC acquired using LVN and LVN-ARX models 

respectively. 38%, 23% and 32% of the recordings in cluster 1, 2 and 3 respectively showed a 

positive prediction improvement (Figure 5.9b). LVN-ARX models resulted into smaller FPR for 

cluster 1 and 3 but higher FPR for cluster 2. There was also an overall increase in the FNR. This 

imples that the extra AR terms were inhibiting spike generation. Large improvements were 

mainly observed in cluster 3. We speculate that the AR terms facilitate the prediction of 

bursting episodes. The start of a burst may be easily predicted if it is phaselocked to the LFP. 

The exact timing of the subsequent spikes though may be difficult to foresee. Consequently, the 

role of the AR terms is to extract patterns based on the spiking history of the cell. Probably 

recordings with sparse bursting patterns, like those in cluster 3, can be more easily tracked 

based on their prior history. Another hypothesis is that LVN-ARX models may be more efficient 

in the case of locally generated oscillations that cannot be inferred from the LFP [248].  
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(a)                                                                                  (b) 

Figure 5.9 (a) Matrix scatter plot depicting relationships between UPDRS improvement (ΔΙ), 

cluster preference probability (Pi where i is either cluster 1, 2 or 3) and MCC values. (b) Scatter 

plot depicting the prediction improvement (%) achieved using LVN-ARX models as a function 

of the MCC of the conventional LVN model. Different dot colors correspond to different clusters. 

The red line separates the plot into positive and negative prediction improvement areas. 

Positive prediction means that LVN-ARX models performed better than the simple LVN models.  
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5.4 Discussion and Conclusions 

   In this study we validated previous findings that suggest that it is possible to predict the exact 

timing of spikes based on past information of the LFP in the STN [240]–[242] by using models 

specifically optimized for binary response systems. We extracted SUA and MUA recordings 

from the STN of 20 PD patients undergoing DBS and we trained different LVNs for each case. In 

SU analysis 2nd order nonlinear models exhibited higher predictive performance indicating that 

the relationship between LFP and individual neuron is nonlinear. On the other hand, in the MU 

analysis we observed that in 32% of the recordings linear models were selected over the 

nonlinear ones. This could be due to the noisy nature of the MU spike train or it could indicate 

less complex dynamics associated with more asynchronous activity. Overall, predictions from 

SUA recordings were more accurate compared to MUA recordings and this again may be related 

to the fact that SUA recordings exhibited clearer spiking patterns and higher SNR levels. Our 

results are in agreement with [240] where it was shown that in the PD STN neural activity could 

be predicted by the LFP with high to moderate accuracy depending on the number of neurons 

present in a recording. We also examined the effect of the LFP of neighboring electrodes on the 

spiking activity of a target electrode. As expected the performance overall was inferior and we 

observed a decrease in MCC with distance. However, there were time windows where the 

observed and the predicted response coincided, indicating that part of the spiking information 

could be explained by LFPs of electrodes in close proximity. In order to account for past spiking 

history, we modified the LVN models by adding AR terms. Up to this point, we only observed an 

improvement for the SU cases but later we detected the conditions under which such model 

structures are more efficient. 

   In our effort to understand the reasons of variability in spike timing predictability, we isolated 

3 type of neuronal populations that exhibited high (cluster 1), moderate (cluster 2) and low 

(cluster 3) prediction accuracy. The main discriminative feature was the coherence between 

LFP and spikes. The first group displayed increased coherence in the HF range. In the other two 

groups, coherence was mainly detected in lower frequencies. Cluster 1 could be described as a 

local oscillatory population operating in the HB-HG range. Cluster 2 was characterized by 

excessive synchronized T-LB activity, whereas cluster 3 exhibited asynchronous A/T activity. 

LVN-ARX models improved the prediction performance of SU bursting cells. Large 

improvements were detected especially in cluster 3 implying possibly locally generated 

oscillations that could not be inferred from the LFP. There was a striking resemblance between 
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our detected clusters and the so called LF and HF cells in [54] and the TFB and HFB cells in 

[245]. The most interesting finding in this study was the link between spike timing 

predictability and “off” state UPDRS improvement following DBS surgery. The higher the 

incidence of finding MERS belonging to the cluster with low prediction accuracy (cluster 3) the 

higher the UPDRS improvement. On the other hand, MERS belonging to cluster 2 were more 

likely to belong to patients with low improvement. An explanation could be that the 

asynchronous activity of cluster 3 acts as neural noise that decorrelates and weakens the 

pathologic hypersynchronization detected in cluster 2, facilitating this way DBS or indicating a 

predisposition to good DBS response [260], [261].
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 Summary and Conclusions 

6.1 Thesis summary 
   It is well established that physiological systems are difficult to analyze due to their nonlinear 

and/or nonstationary characteristics. In this research work we focused on the algorithmic 

development of modeling techniques that facilitate physiological system identification and 

provide accurate representation of the underlying system dynamics.  

   In Chapter 3, we concentrated on MI linear and nonlinear TV systems and we provided 

effective tools for their identification. Initially, we highlighted the pitfalls of existing TV 

modeling estimation methods regarding the assumption of constant rate of parameter 

variations and we emphasized the need for optimal hyperparameter selection strategies. To 

this end, we developed LV based recursive schemes, inspired by the traditional RLS and KF 

techniques, that can track slow, fast or even mixed-mode variations combined with abrupt 

changes. In addition, we proposed a model order selection and hyperparameter optimization 

framework based on mixed integer GAs that can replace computationally intractable exhaustive 

search procedures. We also investigated thoroughly, for the first time, the link between the 

hyperparameter values of the proposed recursive estimators and the TV characteristics of the 

true system, as well as the behavior of different model order selection criteria when the 

stationarity assumption is violated. The performance of our proposed methodology was 

assessed using simulations. By applying our technique on real experimental data, we clearly 

elucidated the role of CA on VVS occurrence and we concluded that impaired CA is not 

associated with abrupt loss of consciousness in patients suffering from VVS. 
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   In Chapter 4, the TV analysis presented in Chapter 3 was extended to MVAR models. Although 

MVAR models assume linear interrelationships, they provide useful information regarding time 

series interactions and couplings. One of the proposed TV estimation techniques of Chapter 3 

was adapted to this type of models and we extracted TV-MVAR measures of connectivity 

between time series in the frequency domain. Initially, the TV-MVAR framework was applied 

on experimental data to track exercise-induced hemodynamic changes in healthy subjects and 

stroke survivors during cycling. However, we observed error terms with TV variances 

associated with switching from resting to exercise initiation or changes in cycling intensities. 

This led us to examine rigorously the effect of heteroskedasticity of the residuals on the 

parameter estimation procedure, as well as on the extracted TV-MVAR measures of 

connectivity. Based on simulations, heteroskedasticity resulted into significantly more variable 

parameter estimates when using conventional recursive schemes. On the other hand, our 

approach exhibited a more robust behavior. Nonetheless, due to the dependence of the MVAR 

measures on the statistical properties of the residuals, heteroskedasticity still gave rise to 

overestimated or underestimated time periods of coupling and causality between the signals of 

interest. Therefore, we parametrized the TV covariance of the error terms using GARCH models 

and corrected the observed biases on the TV-MVAR connectivity measures. Regarding the 

experimental data, we extracted exercise-induced TV coupling patterns, linked with different 

regulatory mechanisms, that could clearly differentiate the three groups. We concluded that 

immediately after exercise there is a partial restoration of parasympathetic nervous system 

activity (which is known to be reduced post-stroke or due to ageing) on both elderly and stroke 

survivors.  

   Finally, in Chapter 5, the attention was shifted towards linear and nonlinear systems with 

binary responses. We employed time-invariant LVN and LVN-ARX models modified to produce 

probabilities of event occurrence in their output. Network parameters were trained using a 

hybrid optimization scheme based on GA’s and interior point constrained nonlinear methods. 

Specifically, the optimal solution obtained from the GA was fed into the nonlinear optimization 

method as an initial starting point for a more efficient local search. Instead of the conventional 

MSE function, we minimized the cross-entropy loss function and the AIC was used for model 

order selection. The continuous output predicted probabilities were transformed into ‘0’s and 

‘1’s by selecting the threshold that maximized the MCC. The MCC is a class skew insensitive 

measure and is usually used to mitigate issues arising due to unbalanced datasets. The 
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proposed LVN and LVN-ARX models were applied to predict spikes from LFPs in parkinsonian 

patients undergoing STN DBS in order to understand the functionality of the PD STN neuron. 

Spike timing predictability was found to be associated with the characteristics of distinct 

neuronal populations, as well as motor improvement following DBS surgery, indicating the 

possible use of spike timing predictability as a predictive biomarker for DBS response. 

6.2 Future work 
   Although this work addresses some of the main issues of physiological system identification, 

there is still room for improvement in our proposed identification schemes. Herein, we briefly 

summarize potential avenues for future research based on each chapter separately.  

   Chapter 3: The TV identification methodology described in this chapter assumes zero-mean 

white noise. A potential future scope could be the investigation of the effect of colored or 

impulsive noise on the TV parameter estimation procedure and the development of robust 

recursive schemes for systems contaminated by non-white noise. A different technique for 

identifying TV systems are the so called Linear Parameter Varying (LPV) models [172]. In the 

LPV formulation the relationship between input and output is modulated externally by one or 

more TV variables, known as scheduling variables (SVa). In terms of model estimation, the LPV 

approach is mathematically simple since it treats the system as time-invariant. The model 

parameters are assumed to be functions of the SVas and usually the dependence is static. In LPV 

models the parameters appear to evolve in time. When dealing with models with TV 

parameters, the following question usually arises: Is the model time-varying or parameter-

varying? In practice, if the SVa is unknown or unmeasurable then TV models should be used. 

On the other hand, if the scheduling signal is available then we can apply a LPV model. An 

interesting research question could be the following: Is it possible to model the LPV systems as 

TV and if yes, can we reconstruct the scheduling signal using the extracted TV parameters of 

the TV model? One straightforward method to evaluate if a signal could be considered as SVa is 

by estimating its correlation with the extracted TV parameters. The higher the correlation, the 

higher the probability that this signal affects the model dynamics. Nonetheless, more advanced 

methods can be used to reconstruct the SVa without any prior knowledge. 

   Chapter 4: A main problem with the conventional MVAR model is that it includes all lags of a 

variable up to a selected order. However, some of these terms may be unnecessary and 

uninformative, adding extra complexity to the extracted models. Our proposed TV-MVAR 
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formulation allows the parameters to evolve with time and thus it permits the zeroing out of 

some of the model parameters when necessary. Nevertheless, complete zeroing out is not 

possible due to error fluctuations. Hence, there is an increasing need of developing algorithms 

that can either selectively remove in time some of the parameters from the estimation 

procedure depending on rules and thresholds, or apply recursive regularization techniques 

which is quite a challenging task. Another potential refinement on our TV-MVAR methodology 

could be the incorporation of recursive formulas for GARCH process estimation, achieving 

simultaneous recursive parameter estimation and parametrization of heteroskedasticity in the 

error terms. Since heteroskedasticity in general affects the estimation procedure, we anticipate 

that the suggested approach will lead to more accurate parameter estimates especially in cases 

where the variances of the error terms fluctuate significantly. We believe, however, that the 

most pressing matter is the establishment of a validated statistical framework for testing 

significance of the MVAR-based connectivity measures and therefore it should be certainly 

considered for future research.  

   Chapter 5: The LVN-ARX models presented in this chapter, for identification of either binary 

or continuous output systems, closely resemble the polynomial NARX models [32] (Section 

2.1.2.2). In polynomial NARX models, the output is expressed as a nonlinear (polynomial) 

function of past input and output terms. The challenging task of model order determination 

(due to the curse of dimensionality of polynomial expansions) and NARX estimation has led to 

the development of a plethora of identification methods. The LVN-ARX models on the other 

hand, can represent efficiently and with a smaller number of parameters high order 

nonlinearities. Therefore, a promising future research topic is the comparison between LVN-

ARX and polynomial or other type of NARX models in terms of both performance and 

computational complexity.



   

129 

 

 

References 
[1] V. Z. Marmarelis, Nonlinear dynamic modeling of physiological systems, vol. 10. John Wiley & Sons, 2004. 

[2] D. T. Westwick and R. E. Kearney, Identification of nonlinear physiological systems, vol. 7. John Wiley & Sons, 

2003. 

[3] P. Z. Marmarelis and K.-I. Naka, “Identification of multi-input biological systems,” IEEE Trans. Biomed. Eng., 

no. 2, pp. 88–101, 1974. 

[4] G. D. Mitsis and V. Z. Marmarelis, “Nonlinear modeling of physiological systems with multiple inputs,” in 

Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the 

Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint, 2002, vol. 1, 

pp. 21–22. 

[5] D. T. Westwick, E. A. Pohlmeyer, S. A. Solla, L. E. Miller, and E. J. Perreault, “Identification of multiple-input 

systems with highly coupled inputs: application to EMG prediction from multiple intracortical electrodes,” 

Neural Comput., vol. 18, no. 2, pp. 329–355, 2006. 

[6] G. D. Mitsis, M. J. Poulin, P. A. Robbins, and V. Z. Marmarelis, “Nonlinear modeling of the dynamic effects of 

arterial pressure and CO2 variations on cerebral blood flow in healthy humans,” IEEE Trans.Biomed.Eng, 

vol. 51, no. 0018–9294 (Print), pp. 1932–1943, 2004. 

[7] G. D. Mitsis, R. Zhang, B. D. Levine, and V. Z. Marmarelis, “Cerebral hemodynamics during orthostatic stress 

assessed by nonlinear modeling,” J. Appl. Physiol., pp. 354–366, 2006. 

[8] G. D. Mitsis, R. Zhang, B. D. Levine, E. Tzanalaridou, D. G. Katritsis, and V. Z. Marmarelis, “Autonomic neural 

control of cerebral hemodynamics.,” IEEE Eng. Med. Biol. Mag., vol. 28, no. 6, pp. 54–62, 2009. 

[9] D. Song, B. Robinson, R. Hampson, V. Marmarelis, S. Deadwyler, and T. Berger, “Sparse Large-Scale 

Nonlinear Dynamical Modeling of Human Hippocampus for Memory Prostheses,” IEEE Trans. Neural Syst. 

Rehabil. Eng., 2016. 

[10] E. J. Perreault, R. F. Kirsch, and A. M. Acosta, “Multiple-input, multiple-output system identification for 

characterization of limb stiffness dynamics,” Biol. Cybern., vol. 80, no. 5, pp. 327–337, 1999. 



References 

130 

[11] G. D. Mitsis and V. Z. Marmarelis, “Nonlinear modeling of glucose metabolism: comparison of parametric 

vs. nonparametric methods,” in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual 

International Conference of the IEEE, 2007, pp. 5967–5970. 

[12] G. D. Mitsis, M. G. Markakis, and V. Z. Marmarelis, “Nonlinear modeling of the dynamic effects of infused 

insulin on glucose: comparison of compartmental with Volterra models,” IEEE Trans. Biomed. Eng., vol. 56, 

no. 10, pp. 2347–2358, 2009. 

[13] G. D. Mitsis, A. S. French, U. Höger, S. Courellis, and V. Z. Marmarelis, “Principal dynamic mode analysis of 

action potential firing in a spider mechanoreceptor,” Biol. Cybern., vol. 96, no. 1, pp. 113–127, 2007. 

[14] G. D. Mitsis and V. Z. Marmarelis, “Modeling of nonlinear physiological systems with fast and slow dynamics. 

I. Methodology,” Ann. Biomed. Eng., vol. 30, no. 2, pp. 272–281, 2002. 

[15] D. T. Westwick and R. E. Kearney, “Separable least squares identification of nonlinear Hammerstein 

models: Application to stretch reflex dynamics,” Ann. Biomed. Eng., vol. 29, no. 8, pp. 707–718, 2001. 

[16] V. Z. Marmarelis, G. D. Mitsis, D. C. Shin, and R. Zhang, “Multiple-input nonlinear modelling of cerebral 

haemodynamics using spontaneous arterial blood pressure, end-tidal CO2 and heart rate measurements,” 

Phil. Trans. R. Soc. A, vol. 374, no. 2067, p. 20150180, 2016. 

[17] G. D. Mitsis, R. Zhang, B. D. Levine, and V. Z. Marmarelis, “Modeling of nonlinear physiological systems with 

fast and slow dynamics. II. Application to cerebral autoregulation,” Ann. Biomed. Eng., vol. 30, no. 4, pp. 

555–565, 2002. 

[18] S. Cerutti, L. T. Mainardi, and A. M. Bianchi, “Time-frequency and time-varying analysis for assessing the 

dynamic responses of cardiovascular control,” Crit. Rev. Biomed. Eng., vol. 30, no. 1–3, 2002. 

[19] K. Kostoglou, C. T. Debert, M. J. Poulin, and G. D. Mitsis, “Nonstationary multivariate modeling of cerebral 

autoregulation during hypercapnia,” Med. Eng. Phys., vol. 36, no. 5, pp. 592–600, 2014. 

[20] V. Z. Marmarelis, D. C. Shin, M. Orme, and R. Zhang, “Time-varying modeling of cerebral hemodynamics,” 

IEEE Trans. Biomed. Eng., vol. 61, no. 3, pp. 694–704, 2014. 

[21] J. B. MacNeil, R. E. Kearney, and I. W. Hunter, “Identification of time-varying biological systems from 

ensemble data (joint dynamics application),” IEEE Trans. Biomed. Eng., vol. 39, no. 12, pp. 1213–1225, 1992. 

[22] H. Kim and J. Rosen, “Epileptic seizure detection-an AR model based algorithm for implantable device,” in 

Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 

2010, pp. 5541–5544. 

[23] K. Kostoglou, K. P. Michmizos, P. Stathis, D. Sakas, S. Nikita, and G. D. Mitsis, “Prediction of the Parkinsonian 

subthalamic nucleus spike activity from local field potentials using nonlinear dynamic models,” Proc. 2012 

IEEE 12th Int. Conf. Bioinforma. Bioeng., vol. 16, no. November, pp. 11–13, 2012. 

[24] G. D. Mitsis, S. Courellis, A. S. French, and V. Z. Marmarelis, “Principal dynamic mode analysis of a spider 

mechanoreceptor action potentials,” in Engineering in Medicine and Biology Society, 2003. Proceedings of 

the 25th Annual International Conference of the IEEE, 2003, vol. 3, pp. 2051–2054. 

[25] G. Valenza, L. Citi, E. P. Scilingo, and R. Barbieri, “Point-process nonlinear models with laguerre and volterra 

expansions: Instantaneous assessment of heartbeat dynamics,” IEEE Trans. Signal Process., vol. 61, no. 11, 

pp. 2914–2926, 2013. 

[26] L. Ljung, System identification. Springer, 1998. 



References 

131 

[27] T. Söderström and P. Stoica, System identification. Prentice-Hall, Inc., 1988. 

[28] R. Pintelon and J. Schoukens, System identification: a frequency domain approach. John Wiley & Sons, 2012. 

[29] V. Z. Marmarelis, “Identification of nonlinear biological systems using Laguerre expansions of kernels,” Ann. 

Biomed. Eng., vol. 21, no. 6, pp. 573–589, 1993. 

[30] K. Alataris, T. Berger, and V. Marmarelis, “A novel network for nonlinear modeling of neural systems with 

arbitrary point-process inputs,” Neural Networks, vol. 13, no. 2, pp. 255–266, 2000. 

[31] I. J. Leontaritis and S. A. Billings, “Input-output parametric models for non-linear systems part I: 

deterministic non-linear systems,” Int. J. Control, vol. 41, no. 2, pp. 303–328, 1985. 

[32] S. A. Billings, Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal 

domains. John Wiley & Sons, 2013. 

[33] P. S. C. Heuberger, P. M. J. van den Hof, and B. Wahlberg, Modelling and identification with rational 

orthogonal basis functions. Springer Science & Business Media, 2005. 

[34] H. Ogura, “Estimation of Wiener kernels of a nonlinear system and a fast algorithm using digital Laguerre 

filters,” in 15th NIBB Conference, Okazaki, Japan, 1985, pp. 14–62. 

[35] A. C. Aitken, “IV.—on least squares and linear combination of observations,” Proc. R. Soc. Edinburgh, vol. 55, 

pp. 42–48, 1936. 

[36] A. Tikhonov, Solutions of ill-posed problems. . 

[37] J. Sjöberg, T. McKelvey, and L. Ljung, “On the use of regularization in system identification,” in Proceedings 

of the 12th IFAC World Congress, Sydney, Australia, 1993, vol. 7, pp. 381–386. 

[38] G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and L. Ljung, “Kernel methods in system identification, 

machine learning and function estimation: A survey,” Automatica, vol. 50, no. 3, pp. 657–682, 2014. 

[39] G. Schwarz and others, “Estimating the dimension of a model,” Ann. Stat., vol. 6, no. 2, pp. 461–464, 1978. 

[40] H. Akaike, “A new look at the statistical model identification,” {IEEE} Trans. Autom. Control, vol. 19, no. 6, 

pp. 716–723, 1974. 

[41] L. S. H. Ngia, “Separable nonlinear least-squares methods for efficient off-line and on-line modeling of 

systems using Kautz and Laguerre filters,” IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., vol. 48, 

no. 6, pp. 562–579, 2001. 

[42] T. O. e Silva, “On the determination of the optimal pole position of Laguerre filters,” IEEE Trans. Signal 

Process., vol. 43, no. 9, pp. 2079–2087, 1995. 

[43] G. Clowes, “Choice of the time-scaling factor for linear system approximations using orthonormal Laguerre 

functions,” IEEE Trans. Automat. Contr., vol. 10, no. 4, pp. 487–489, 1965. 

[44] K. Kostoglou, A. D. Wright, J. D. Smirl, K. Bryk, P. van Donkelaar, and G. D. Mitsis, “Dynamic cerebral 

autoregulation in young athletes following concussion,” in Engineering in Medicine and Biology Society 

(EMBC), 2016 IEEE 38th Annual International Conference of the, 2016, pp. 696–699. 

[45] P. C. Prokopiou, K. Murphy, R. G. Wise, and G. D. Mitsis, “Estimation of voxel-wise dynamic cerebrovascular 

reactivity curves from resting-state fMRI data,” in Engineering in Medicine and Biology Society (EMBC), 2016 

IEEE 38th Annual International Conference of the, 2016, pp. 1143–1146. 

[46] G. Valenza, L. Citi, and R. Barbieri, “Instantaneous nonlinear assessment of complex cardiovascular 

dynamics by laguerre-volterra point process models,” in Engineering in Medicine and Biology Society 



References 

132 

(EMBC), 2013 35th Annual International Conference of the IEEE, 2013, pp. 6131–6134. 

[47] D. Song, M. Harway, V. Z. Marmarelis, R. E. Hampson, S. A. Deadwyler, and T. W. Berger, “Extraction and 

restoration of hippocampal spatial memories with non-linear dynamical modeling,” Front. Syst. Neurosci., 

vol. 8, 2014. 

[48] S. Saleem, Y.-C. Tzeng, W. B. Kleijn, and P. D. Teal, “Detection of impaired sympathetic cerebrovascular 

control using functional biomarkers based on principal dynamic mode analysis,” Front. Physiol., vol. 7, 

2016. 

[49] D. Song et al., “Identification of functional synaptic plasticity from spiking activities using nonlinear 

dynamical modeling,” J. Neurosci. Methods, vol. 244, pp. 123–135, 2015. 

[50] M. Cole, S. Eikenberry, T. Kato, R. A. Sandler, S. M. Yamashiro, and V. Z. Marmarelis, “Nonparametric model 

of smooth muscle force production during electrical stimulation,” J. Comput. Biol., vol. 24, no. 3, pp. 229–

237, 2017. 

[51] V. Z. Marmarelis, D. C. Shin, M. E. Orme, and R. Zhang, “Model-based physiomarkers of cerebral 

hemodynamics in patients with mild cognitive impairment,” Med. Eng. Phys., vol. 36, no. 5, pp. 628–637, 

2014. 

[52] D. Song et al., “Identification of sparse neural functional connectivity using penalized likelihood estimation 

and basis functions,” J. Comput. Neurosci., vol. 35, no. 3, pp. 335–357, 2013. 

[53] V. Z. Marmarelis, D. C. Shin, M. E. Orme, and R. Zhang, “Model-based quantification of cerebral 

hemodynamics as a physiomarker for Alzheimer’s disease?,” Ann. Biomed. Eng., vol. 41, no. 11, pp. 2296–

2317, 2013. 

[54] S. Zanos, T. P. Zanos, V. Z. Marmarelis, G. A. Ojemann, and E. E. Fetz, “Relationships between spike-free local 

field potentials and spike timing in human temporal cortex,” J. Neurophysiol., vol. 107, no. 7, pp. 1808–1821, 

2012. 

[55] W. X. Y. Li, R. H. M. Chan, W. Zhang, R. C. C. Cheung, D. Song, and T. W. Berger, “High-performance and 

scalable system architecture for the real-time estimation of generalized Laguerre-Volterra MIMO model 

from neural population spiking activity,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 1, no. 4, pp. 489–501, 

2011. 

[56] V. Z. Marmarelis, D. C. Shin, and R. Zhang, “Linear and nonlinear modeling of cerebral flow autoregulation 

using principal dynamic modes,” Open Biomed. Eng. J., vol. 6, p. 42, 2012. 

[57] R. Zhang, J. H. Zuckerman, and B. D. Levine, “Spontaneous fluctuations in cerebral blood flow: insights from 

extended-duration recordings in humans,” Am. J. Physiol. Circ. Physiol., vol. 278, no. 6, pp. H1848--H1855, 

2000. 

[58] R. R. Diehl, D. Linden, and D. Liicke, “Spontaneous blood pressure oscillations and cerebral autoregulation,” 

pp. 7–12, 1998. 

[59] A. S. S. Meel-van den Abeelen et al., “Between-centre variability in transfer function analysis, a widely used 

method for linear quantification of the dynamic pressure-flow relation: The CARNet study,” Med. Eng. Phys., 

vol. 36, no. 5, pp. 620–627, 2014. 

[60] D. Song, H. Wang, and T. W. Berger, “Estimating sparse Volterra models using group L1-regularization,” in 

Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 



References 

133 

2010, pp. 4128–4131. 

[61] K. Geng and V. Z. Marmarelis, “Methodology of Recurrent Laguerre-Volterra Network for Modeling 

Nonlinear Dynamic Systems,” IEEE Trans. neural networks Learn. Syst., 2016. 

[62] K. Kostoglou et al., “Accurate spike time prediction from LFP in monkey visual cortex: A non-linear system 

identification approach,” 2014. 

[63] H. Lütkepohl, New introduction to multiple time series analysis. Springer Science & Business Media, 2005. 

[64] A. I. N. Press, “A comparison of multivariate autoregressive estimators,” vol. 86, pp. 2426–2429, 2006. 

[65] S. Haufe, R. Tomioka, G. Nolte, K.-R. Müller, and M. Kawanabe, “Modeling sparse connectivity between 

underlying brain sources for EEG/MEG,” IEEE Trans. Biomed. Eng., vol. 57, no. 8, pp. 1954–1963, 2010. 

[66] W. Tang, S. L. Bressler, C. M. Sylvester, G. L. Shulman, and M. Corbetta, “Measuring Granger causality 

between cortical regions from voxelwise fMRI BOLD signals with LASSO,” PLoS Comput. Biol., vol. 8, no. 5, 

p. e1002513, 2012. 

[67] I. Vlachos and D. Kugiumtzis, “Backward-in-Time Selection of the Order of Dynamic Regression Prediction 

Model,” J. Forecast., vol. 32, no. 8, pp. 685–701, 2013. 

[68] E. Siggiridou and D. Kugiumtzis, “Granger causality in multivariate time series using a time-ordered 

restricted vector autoregressive model,” IEEE Trans. Signal Process., vol. 64, no. 7, pp. 1759–1773, 2016. 

[69] A. Korzeniewska, M. Mańczak, M. Kamiński, K. J. Blinowska, and S. Kasicki, “Determination of information 

flow direction among brain structures by a modified directed transfer function (dDTF) method,” J. Neurosci. 

Methods, vol. 125, no. 1, pp. 195–207, 2003. 

[70] L. Faes and G. Nollo, “Multivariate frequency domain analysis of causal interactions in physiological time 

series,” in Biomedical Engineering, Trends in Electronics, Communications and Software, InTech, 2011. 

[71] L. Faes, G. Nollo, and others, “Assessing frequency domain causality in cardiovascular time series with 

instantaneous interactions,” Methods Inf. Med., vol. 49, no. 5, pp. 453–457, 2010. 

[72] L. Astolfi et al., “Estimation of the effective and functional human cortical connectivity with structural 

equation modeling and directed transfer function applied to high-resolution EEG,” Magn. Reson. Imaging, 

vol. 22, no. 10, pp. 1457–1470, 2004. 

[73] M. Hu, M. Li, W. Li, and H. Liang, “Joint analysis of spikes and local field potentials using copula,” 

Neuroimage, vol. 133, pp. 457–467, 2016. 

[74] E. Lalo et al., “Patterns of bidirectional communication between cortex and basal ganglia during movement 

in patients with Parkinson disease,” J. Neurosci., vol. 28, no. 12, pp. 3008–3016, 2008. 

[75] D. A. Gutnisky and K. Josić, “Generation of spatiotemporally correlated spike trains and local field potentials 

using a multivariate autoregressive process,” J. Neurophysiol., vol. 103, no. 5, pp. 2912–2930, 2010. 

[76] L. A. Baccalá and K. Sameshima, “Partial directed coherence: a new concept in neural structure 

determination,” Biol. Cybern., vol. 84, no. 6, pp. 463–474, 2001. 

[77] J. R. Sato, D. Y. Takahashi, S. M. Arcuri, K. Sameshima, P. A. Morettin, and L. A. Baccalá, “Frequency domain 

connectivity identification: an application of partial directed coherence in fMRI,” Hum. Brain Mapp., vol. 30, 

no. 2, pp. 452–461, 2009. 

[78] G. Wang, Z. Sun, R. Tao, K. Li, G. Bao, and X. Yan, “Epileptic seizure detection based on partial directed 

coherence analysis,” IEEE J. Biomed. Heal. informatics, vol. 20, no. 3, pp. 873–879, 2016. 



References 

134 

[79] S. M. Kay, Modern spectral estimation. Pearson Education India, 1988. 

[80] K. Yacoub, “Relationship between multiple and partial coherence functions,” IEEE Trans. Inf. Theory, vol. 

16, no. 6, pp. 668–672, 1970. 

[81] M. Eichler, R. Dahlhaus, and J. Sandkühler, “Partial correlation analysis for the identification of synaptic 

connections,” Biol. Cybern., vol. 89, no. 4, pp. 289–302, 2003. 

[82] L. A. Baccala, K. Sameshima, G. Ballester, A. C. Do Valle, and C. Timo-Iaria, “Studying the interaction between 

brain structures via directed coherence and Granger causality,” Appl. Signal Process., vol. 5, no. 1, p. 40, 

1998. 

[83] L. Faes, S. Erla, A. Porta, and G. Nollo, “A framework for assessing frequency domain causality in 

physiological time series with instantaneous effects,” Phil. Trans. R. Soc. A, vol. 371, no. 1997, p. 20110618, 

2013. 

[84] J. Jiang and Y. Zhang, “A revisit to block and recursive least squares for parameter estimation,” Comput. 

Electr. Eng., vol. 30, no. 5, pp. 403–416, 2004. 

[85] J. Jiang and Y. Zhang, “A novel variable-length sliding window blockwise least-squares algorithm for on-

line estimation of time-varying parameters,” Int. J. Adapt. Control Signal Process., vol. 18, no. 6, pp. 505–521, 

2004. 

[86] G. C. Goodwin and R. L. Payne, Dynamic System Identification: Experiment Design and Data Analysis. 

Academic Press, 1977. 

[87] L. Ljung, “System identification: theory for the user,” Englewood Cliffs, 1987. 

[88] M. Nied{ź}wiecki, Identification of Time-varying Processes. John Wiley & Sons, Ltd, 2000. 

[89] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems 1,” J. Basic Eng., vol. 82, no. 

Series D, pp. 35–45, 1960. 

[90] M. M. Markou, M. J. Poulin, and G. D. Mitsis, “Nonstationary analysis of cerebral hemodynamics using 

recursively estimated multiple-input nonlinear models,” in Decision and Control and European Control 

Conference (CDC-ECC), 2011 50th IEEE Conference on, 2011, pp. 5768–5773. 

[91] M. K. Tsatsanis and G. B. Giannakis, “Time-varying system identification and model validation using 

wavelets,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3512–3523, 1993. 

[92] R. Ghanem and F. Romeo, “A wavelet-based approach for the identification of linear time-varying 

dynamical systems,” J. Sound Vib., vol. 234, no. 4, pp. 555–576, 2000. 

[93] H.-L. Wei and S. A. Billings, “Identification of time-varying systems using multiresolution wavelet models,” 

Int. J. Syst. Sci., vol. 33, no. 15, pp. 1217–1228, 2002. 

[94] B. I. Ikharia and D. T. Westwick, “Identification of time-varying Hammerstein systems using a basis 

expansion approach,” in Electrical and Computer Engineering, 2006. CCECE’06. Canadian Conference on, 

2006, pp. 1858–1861. 

[95] B. I. Ikharia and D. T. Westwick, “On the identification of Hammerstein systems with time-varying 

parameters,” in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International 

Conference of the IEEE, 2007, pp. 6475–6478. 

[96] M. Lortie and R. E. Kearney, “Identification of time-varying Hammerstein systems from ensemble data,” 

Ann. Biomed. Eng., vol. 29, no. 7, pp. 619–635, 2001. 



References 

135 

[97] B. Schack, “Dynamic topographic spectral analysis of cognitive processes,” Anal. Neurophysiol. brain Funct., 

pp. 230–251, 1999. 

[98] L. Astolfi et al., “Estimation of the time-varying cortical connectivity patterns by the adaptive multivariate 

estimators in high resolution EEG studies,” in Engineering in Medicine and Biology Society, 2006. EMBS’06. 

28th Annual International Conference of the IEEE, 2006, pp. 2446–2449. 

[99] M. Havlicek, J. Jan, M. Brazdil, and V. D. Calhoun, “Dynamic Granger causality based on Kalman filter for 

evaluation of functional network connectivity in fMRI data,” Neuroimage, vol. 53, no. 1, pp. 65–77, 2010. 

[100] B. M. Potscher, “Model selection under nonstationarity: Autoregressive models and stochastic linear 

regression models,” Ann. Stat., pp. 1257–1274, 1989. 

[101] S. Goto, M. Nakamura, and K. Uosaki, “On-line spectral estimation of nonstationary time series based on AR 

model parameter estimation and order selection with a forgetting factor,” Signal Process. IEEE Trans., vol. 

43, no. 6, pp. 1519–1522, 1995. 

[102] C. D. Giurcǎneanu and S. A. Razavi, “AR order selection in the case when the model parameters are 

estimated by forgetting factor least-squares algorithms,” Signal Processing, vol. 90, no. 2, pp. 451–466, 

2010. 

[103] K. Deep, K. P. Singh, M. L. Kansal, and C. Mohan, “A real coded genetic algorithm for solving integer and 

mixed integer optimization problems,” Appl. Math. Comput., vol. 212, no. 2, pp. 505–518, 2009. 

[104] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of machine learning, Springer, 2011, pp. 760–

766. 

[105] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Comput. Intell. Mag., vol. 1, no. 4, pp. 

28–39, 2006. 

[106] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical function optimization: 

artificial bee colony (ABC) algorithm,” J. Glob. Optim., vol. 39, no. 3, pp. 459–471, 2007. 

[107] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies--A comprehensive introduction,” Nat. Comput., vol. 1, 

no. 1, pp. 3–52, 2002. 

[108] R. Storn and K. Price, “Differential evolution--a simple and efficient heuristic for global optimization over 

continuous spaces,” J. Glob. Optim., vol. 11, no. 4, pp. 341–359, 1997. 

[109] D. Lawrence and others, “Handbook of genetic algorithms,” Van No Strand Reinhold, New York, 1991. 

[110] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998. 

[111] D. E. Goldberg, “Genetic algorithms in search, optimization, and machine learning, 1989,” Read. Addison-

Wesley, 1989. 

[112] Y. Zhang, M. Sakamoto, and H. Furutani, “Effects of population size and mutation rate on results of genetic 

algorithm,” in Natural Computation, 2008. ICNC’08. Fourth International Conference on, 2008, vol. 1, pp. 70–

75. 

[113] S. Sarmady, “An investigation on genetic algorithm parameters,” Sch. Comput. Sci. Univ. Sains Malaysia, 

2007. 

[114] K. Deb and S. Agrawal, “Understanding Interactions among Genetic Algorithm Parameters.,” in FOGA, 1998, 

pp. 265–286. 

[115] J. Schaffer, “A study of control parameters affecting online performance of genetic algorithms for function 



References 

136 

optimization,” San Meteo, Calif., 1989. 

[116] D. Whitley, “An overview of evolutionary algorithms: practical issues and common pitfalls,” Inf. Softw. 

Technol., vol. 43, no. 14, pp. 817–831, 2001. 

[117] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,” Computer (Long. Beach. Calif)., vol. 27, no. 6, 

pp. 17–26, 1994. 

[118] D. E. Goldberg and K. Deb, “A comparative analysis of selection schemes used in genetic algorithms,” Found. 

Genet. algorithms, vol. 1, pp. 69–93, 1991. 

[119] K. Deep and M. Thakur, “A new crossover operator for real coded genetic algorithms,” Appl. Math. Comput., 

vol. 188, no. 1, pp. 895–911, 2007. 

[120] K. Deep and M. Thakur, “A new mutation operator for real coded genetic algorithms,” Appl. Math. Comput., 

vol. 193, no. 1, pp. 211–230, 2007. 

[121] P. Moscato and others, “On evolution, search, optimization, genetic algorithms and martial arts: Towards 

memetic algorithms,” Caltech Concurr. Comput. program, C3P Rep., vol. 826, p. 1989, 1989. 

[122] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004. 

[123] D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont, 1999. 

[124] S. J. Wright and J. Nocedal, “Numerical optimization,” Springer Sci., vol. 35, no. 67–68, p. 7, 1999. 

[125] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to derivative-free optimization. SIAM, 2009. 

[126] C. Audet and W. Hare, “Derivative-free and blackbox optimization,” En préparation, prévu pour, 2017. 

[127] R. H. Byrd, M. E. Hribar, and J. Nocedal, “An interior point algorithm for large-scale nonlinear 

programming,” SIAM J. Optim., vol. 9, no. 4, pp. 877–900, 1999. 

[128] R. H. Byrd, J. C. Gilbert, and J. Nocedal, “A trust region method based on interior point techniques for 

nonlinear programming,” Math. Program., vol. 89, no. 1, pp. 149–185, 2000. 

[129] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban, “An interior algorithm for nonlinear optimization that 

combines line search and trust region steps,” Math. Program., vol. 107, no. 3, pp. 391–408, 2006. 

[130] T. R. Fortescue, “Brief Paper Implementation of Self-tuning Regulators with Variable Forgetting Factors*,” 

vol. 17, no. 6, pp. 831–835, 1977. 

[131] N. Rao Sripada and D. Grant Fisher, “Improved least squares identification,” Int. J. Control, vol. 46, no. 6, pp. 

1889–1913, 1987. 

[132] M. E. Salgado, G. C. Goodwin, and R. H. Middleton, “Modified least squares algorithm incorporating 

exponential resetting and forgetting,” Int. J. Control, vol. 47, no. 2, pp. 477–491, 1988. 

[133] T. Hägglund, “Recursive estimation of slowly time varying parameters,” in 7th IFAC Symposium on 

Identification and System Parameter Estimation, 1985. 

[134] R. Kulhav??, “Restricted exponential forgetting in real-time identification,” Automatica, vol. 23, no. 5, pp. 

589–600, 1987. 

[135] J. E. Parkum, N. K. Poulsen, and J. Holst, “Recursive forgetting algorithms,” Int. J. Control, vol. 55, no. 1, pp. 

109–128, 1992. 

[136] P. Andersson, “Adaptive forgetting in recursive identiϐication through multiple models†,” Int. J. Control, vol. 

42, no. January 2015, pp. 1175–1193, 1985. 

[137] K. Uosaki, M. Yotsuya, and T. Hatanaka, “Adaptive identification of non-stationary systems with multiple 



References 

137 

forgetting factors,” Decis. Control. 1996., Proc. 35th IEEE Conf., vol. 1, pp. 851–856 vol.1, 1996. 

[138] K. Warwick, Y.-H. Kang, and R. J. Mitchell, “Genetic least squares for system identification,” Soft Comput. - A 

Fusion Found. Methodol. Appl., vol. 3, no. 4, pp. 200–205, 1999. 

[139] S. Song, J.-S. Lim, S. Baek, and K.-M. Sung, “Gauss Newton variable forgetting factor recursive least squares 

for time varying parameter tracking,” Electron. Lett., vol. 36, no. 11, pp. 988–990, 2000. 

[140] S. H. Leung and C. F. So, “Gradient-based variable forgetting factor RLS algorithm in time-varying 

environments,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 3141–3150, 2005. 

[141] C. Paleologu, J. Benesty, and S. Ciochina, “A robust variable forgetting factor recursive least-squares 

algorithm for system identification,” IEEE Signal Process. Lett., vol. 15, pp. 597–600, 2008. 

[142] M. Z. A. Bhotto and A. Antoniou, “New improved recursive least-squares adaptive-filtering algorithms,” 

IEEE Trans. Circuits Syst. I Regul. Pap., vol. 60, no. 6, pp. 1548–1558, 2013. 

[143] A. K. Kohli and A. Rai, “Numeric variable forgetting factor RLS algorithm for second-order volterra 

filtering,” Circuits, Syst. Signal Process., vol. 32, no. 1, pp. 223–232, 2013. 

[144] S. Saelid and B. Foss, “Adaptive controllers with a vector variable forgetting factor,” in Decision and Control, 

1983. The 22nd IEEE Conference on, 1983, pp. 1488–1494. 

[145] A. S. Poznyak and J. J. Medel Juarez, “Matrix forgetting factor,” Int. J. Syst. Sci., vol. 30, no. 2, pp. 165–174, 

1999. 

[146] A. Vahidi, A. Stefanopoulou, and H. Peng, “Recursive least squares with forgetting for online estimation of 

vehicle mass and road grade: theory and experiments,” Veh. Syst. Dyn., vol. 43, no. 1, pp. 31–55, 2005. 

[147] J. Li, Y. Zheng, and Z. Lin, “Recursive identification of time-varying systems: Self-tuning and matrix RLS 

algorithms,” Syst. Control Lett., vol. 66, no. 1, pp. 104–110, 2014. 

[148] A. P. Sage and G. W. Husa, “Adaptive filtering with unknown prior statistics,” Jt. Autom. Control Conf., vol. 7, 

pp. 760–769, 1969. 

[149] R. Mehra, “On the identification of variances and adaptive Kalman filtering [J],” IEEE Trans. On, Autom. 

Control., vol. 15, no. 2, pp. 175–184, 1970. 

[150] K. A. Myers and B. D. Tapley, “Adaptive Sequential Estimation with Unknown Noise Statistics,” IEEE Trans. 

Automat. Contr., vol. 21, no. 4, pp. 520–523, 1976. 

[151] A. Almagbile, J. Wang, and W. Ding, “Evaluating the Performances of Adaptive Kalman Filter Methods in 

GPS/INS Integration,” J. Glob. Position. Syst., vol. 9, no. 1, pp. 33–40, 2010. 

[152] R. S. Tsay, “Order selection in nonstationary autoregressive models,” Ann. Stat., pp. 1425–1433, 1984. 

[153] D. Tjøstheim and J. Paulsen, “Least squares estimates and order determination procedures for 

autoregressive processes with a time dependent variance,” J. Time Ser. Anal., vol. 6, no. 2, pp. 117–133, 

1985. 

[154] A. Karagrigoriou, “Asymptotically efficient order selection in nonstationary AR processes,” Test, vol. 9, no. 

2, pp. 371–391, 2000. 

[155] I. Sánchez, “Recursive estimation of dynamic models using Cook’s distance, with application to wind energy 

forecast,” Technometrics, vol. 48, no. 1, pp. 61–73, 2006. 

[156] I. Sanchez, “Short-term prediction of wind energy production,” Int. J. Forecast., vol. 22, no. 1, pp. 43–56, 

2006. 



References 

138 

[157] R. D. Cook, “Detection of influential observation in linear regression,” Technometrics, vol. 19, no. 1, pp. 15–

18, 1977. 

[158] N. Yoshitani and A. Hasegawa, “Model-based control of strip temperature for the heating furnace in 

continuous annealing,” IEEE Trans. Control Syst. Technol., vol. 6, no. 2, pp. 146–156, 1998. 

[159] K. Deb, “An efficient constraint handling method for genetic algorithms,” Comput. Methods Appl. Mech. Eng., 

vol. 186, no. 2–4, pp. 311–338, 2000. 

[160] K. J. Åström and B. Wittenmark, Adaptive control. Courier Corporation, 2013. 

[161] S. Gunnarsson, “Combining tracking and regularization in recursive least squares identification,” Proc. 35th 

IEEE Conf. Decis. Control, vol. 3, no. December, pp. 2551–2552, 1996. 

[162] A. Andersson and H. Broman, “A second-order recursive algorithm with applications to adaptive filtering 

and subspace tracking,” IEEE Trans. signal Process., vol. 46, no. 6, pp. 1720–1725, 1998. 

[163] T. Kashima, K. Fukawa, and H. Suzuki, “Recursive Least Squares Channel Estimator with Smoothing and 

Removing for Iterative-MAP Receiver of MIMO-OFDM Mobile Communications.” 

[164] H. E. Rauch, C. T. Striebel, and F. Tung, “Maximum likelihood estimates of linear dynamic systems,” AIAA J., 

vol. 3, no. 8, pp. 1445–1450, 1965. 

[165] R. S. Ers and E. S. Ers, “Estimation of Nonstationary EEG With Kalman Smoother Approach : An Application 

to Event- Estimation of Nonstationary EEG With Kalman Smoother Approach : An Application to,” no. April, 

2004. 

[166] L. Ljung and S. Gunnarsson, “Adaptation and tracking in system identification—A survey,” Automatica, vol. 

26, no. 1, pp. 7–21, 1990. 

[167] R. R. Diehl, D. Linden, D. Lücke, and P. Berlit, “Phase relationship between cerebral blood flow velocity and 

blood pressure a clinical test of autoregulation,” Stroke, vol. 26, no. 10, pp. 1801–1804, 1995. 

[168] G. D. Mitsis, M. J. Poulin, P. A. Robbins, and V. Z. Marmarelis, “Nonlinear Modeling of the Dynamic Effects of 

Arterial Pressure and CO 2 Variations on Cerebral Blood Flow in Healthy Humans,” IEEE Trans Biomed 

Engin, vol. 51, no. 11, pp. 1932–1943, 2004. 

[169] R. G. Wise, K. Ide, M. J. Poulin, and I. Tracey, “Resting fluctuations in arterial carbon dioxide induce 

significant low frequency variations in BOLD signal,” Neuroimage, vol. 21, no. 4, pp. 1652–1664, 2004. 

[170] M. J. Poulin, P. J. Liang, and P. A. Robbins, “Dynamics of the cerebral blood flow response to step changes in 

end-tidal PCO2 and PO2 in humans,” J. Appl. Physiol., vol. 81, no. 3, pp. 1084–1095, 1996. 

[171] R. Schondorf, R. Stein, R. Roberts, J. Benoit, and W. Cupples, “Dynamic cerebral autoregulation is preserved 

in neurally mediated syncope.,” J. Appl. Physiol., vol. 91, no. 6, pp. 2493–2502, 2001. 

[172] R. Tóth, Modeling and identification of linear parameter-varying systems, vol. 403. Springer, 2010. 

[173] G. Buzsáki and A. Draguhn, “Neuronal oscillations in cortical networks,” Science (80-. )., vol. 304, no. 5679, 

pp. 1926–1929, 2004. 

[174] R. Eckhorn et al., “Coherent oscillations: A mechanism of feature linking in the visual cortex?,” Biol. Cybern., 

vol. 60, no. 2, pp. 121–130, 1988. 

[175] P. Fries, “A mechanism for cognitive dynamics: neuronal communication through neuronal coherence,” 

Trends Cogn. Sci., vol. 9, no. 10, pp. 474–480, 2005. 

[176] T. H. Bullock, M. C. McClune, J. Z. Achimowicz, V. J. Iragui-Madoz, R. B. Duckrow, and S. S. Spencer, “Temporal 



References 

139 

fluctuations in coherence of brain waves,” Proc. Natl. Acad. Sci., vol. 92, no. 25, pp. 11568–11572, 1995. 

[177] A. Schnitzler and J. Gross, “Normal and pathological oscillatory communication in the brain,” Nat. Rev. 

Neurosci., vol. 6, no. 4, pp. 285–296, 2005. 

[178] B. Yao, S. Salenius, G. H. Yue, R. W. Brown, and J. Z. Liu, “Effects of surface EMG rectification on power and 

coherence analyses: an EEG and MEG study,” J. Neurosci. Methods, vol. 159, no. 2, pp. 215–223, 2007. 

[179] M. G. Rosenblum, L. Cimponeriu, A. Bezerianos, A. Patzak, and R. Mrowka, “Identification of coupling 

direction: application to cardiorespiratory interaction,” Phys. Rev. E, vol. 65, no. 4, p. 41909, 2002. 

[180] M. Ding, S. L. Bressler, W. Yang, and H. Liang, “Short-window spectral analysis of cortical event-related 

potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and 

variability assessment,” Biol. Cybern., vol. 83, no. 1, pp. 35–45, 2000. 

[181] E. Möller, B. Schack, M. Arnold, and H. Witte, “Instantaneous multivariate EEG coherence analysis by means 

of adaptive high-dimensional autoregressive models,” J. Neurosci. Methods, vol. 105, pp. 143–158, 2001. 

[182] L. Astolfi et al., “Tracking the time-varying cortical connectivity patterns by adaptive multivariate 

estimators,” IEEE Trans. Biomed. Eng., vol. 55, no. 3, pp. 902–913, 2008. 

[183] T. Milde et al., “A new Kalman filter approach for the estimation of high-dimensional time-variant 

multivariate AR models and its application in analysis of laser-evoked brain potentials,” Neuroimage, vol. 

50, no. 3, pp. 960–969, 2010. 

[184] A. H. Omidvarnia, M. Mesbah, M. S. Khlif, J. M. O’Toole, P. B. Colditz, and B. Boashash, “Kalman filter-based 

time-varying cortical connectivity analysis of newborn EEG,” in Engineering in Medicine and Biology Society, 

EMBC, 2011 Annual International Conference of the IEEE, 2011, pp. 1423–1426. 

[185] A. Omidvarnia, M. Mesbah, J. M. O’Toole, P. Colditz, and B. Boashash, “Analysis of the time-varying cortical 

neural connectivity in the newborn EEG: A time-frequency approach,” in Systems, Signal Processing and 

their Applications (WOSSPA), 2011 7th International Workshop on, 2011, pp. 179–182. 

[186] L. Hu, Z. G. Zhang, and Y. Hu, “A time-varying source connectivity approach to reveal human somatosensory 

information processing,” Neuroimage, vol. 62, no. 1, pp. 217–228, 2012. 

[187] J. O. Garcia, J. Brooks, S. Kerick, T. Johnson, T. R. Mullen, and J. M. Vettel, “Estimating direction in brain-

behavior interactions: Proactive and reactive brain states in driving,” Neuroimage, vol. 150, pp. 239–249, 

2017. 

[188] T. Milde et al., “Time-variant partial directed coherence in analysis of the cardiovascular system. A 

methodological study,” Physiol. Meas., vol. 32, no. 11, p. 1787, 2011. 

[189] T. Bollerslev, “Generalized autoregressive conditional heteroskedasticity,” J. Econom., vol. 31, no. 3, pp. 

307–327, 1986. 

[190] T. Bollerslev, “Modelling the coherence in short-run nominal exchange rates: a multivariate generalized 

ARCH model,” Rev. Econ. Stat., pp. 498–505, 1990. 

[191] A. D. Robertson et al., “Exercise intensity modulates the change in cerebral blood flow following aerobic 

exercise in chronic stroke,” Exp. brain Res., vol. 233, no. 8, pp. 2467–2475, 2015. 

[192] B. J. MacIntosh et al., “Impact of a single bout of aerobic exercise on regional brain perfusion and activation 

responses in healthy young adults.,” PLoS One, vol. 9, no. 1, p. e85163, 2014. 

[193] A. S. Rajab, D. E. Crane, L. E. Middleton, A. D. Robertson, M. Hampson, and B. J. MacIntosh, “A single session 



References 

140 

of exercise increases connectivity in sensorimotor-related brain networks: a resting-state fMRI study in 

young healthy adults,” Front. Hum. Neurosci., vol. 8, 2014. 

[194] L. W. J. Bogert and J. J. van Lieshout, “Non-invasive pulsatile arterial pressure and stroke volume changes 

from the human finger,” Exp. Physiol., vol. 90, no. 4, pp. 437–446, 2005. 

[195] I. Guelen et al., “Finometer, finger pressure measurements with the possibility to reconstruct brachial 

pressure,” Blood Press. Monit., vol. 8, no. 1, pp. 27–30, 2003. 

[196] S. S. Franklin, “Ageing and hypertension: the assessment of blood pressure indices in predicting coronary 

heart disease.,” J. Hypertens. Suppl. Off. J. Int. Soc. Hypertens., vol. 17, no. 5, pp. S29--36, 1999. 

[197] M. E. Safar, B. I. Levy, and H. Struijker-Boudier, “Current perspectives on arterial stiffness and pulse 

pressure in hypertension and cardiovascular diseases,” Circulation, vol. 107, no. 22, pp. 2864–2869, 2003. 

[198] D. Chemla et al., “Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in 

humans,” Am. J. Physiol. Circ. Physiol., vol. 274, no. 2, pp. H500--H505, 1998. 

[199] G. de Simone, M. J. Roman, M. J. Koren, G. A. Mensah, A. Ganau, and R. B. Devereux, “Stroke volume/pulse 

pressure ratio and cardiovascular risk in arterial hypertension,” Hypertension, vol. 33, no. 3, pp. 800–805, 

1999. 

[200] F. U. S. Mattace-Raso et al., “Arterial stiffness and risk of coronary heart disease and stroke,” Circulation, 

vol. 113, no. 5, pp. 657–663, 2006. 

[201] A. W. Ashor, J. Lara, M. Siervo, C. Celis-Morales, and J. C. Mathers, “Effects of exercise modalities on arterial 

stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials,” PLoS 

One, vol. 9, no. 10, p. e110034, 2014. 

[202] T. Okamoto, S. Min, and M. Sakamaki-Sunaga, “Arterial compliance and stiffness following low-intensity 

resistance exercise,” Eur. J. Appl. Physiol., vol. 114, no. 2, pp. 235–241, 2014. 

[203] H. Kawano, H. Tanaka, and M. Miyachi, “Resistance training and arterial compliance: keeping the benefits 

while minimizing the stiffening,” J. Hypertens., vol. 24, no. 9, pp. 1753–1759, 2006. 

[204] B. A. Kingwell, K. L. Berry, J. D. Cameron, G. L. Jennings, and A. M. Dart, “Arterial compliance increases after 

moderate-intensity cycling,” Am. J. Physiol. Circ. Physiol., vol. 273, no. 5, pp. H2186--H2191, 1997. 

[205] A. E. DeVan, M. M. Anton, J. N. Cook, D. B. Neidre, M. Y. Cortez-Cooper, and H. Tanaka, “Acute effects of 

resistance exercise on arterial compliance,” J. Appl. Physiol., vol. 98, no. 6, pp. 2287–2291, 2005. 

[206] H. Tanaka, F. A. Dinenno, K. D. Monahan, C. M. Clevenger, C. A. DeSouza, and D. R. Seals, “Aging, habitual 

exercise, and dynamic arterial compliance,” Circulation, vol. 102, no. 11, pp. 1270–1275, 2000. 

[207] T. Tarumi et al., “Cerebral hemodynamics in normal aging: central artery stiffness, wave reflection, and 

pressure pulsatility,” J. Cereb. Blood Flow Metab., vol. 34, no. 6, pp. 971–978, 2014. 

[208] A. J. S. Webb, M. Simoni, S. Mazzucco, W. Kuker, U. Schulz, and P. M. Rothwell, “Increased cerebral arterial 

pulsatility in patients with leukoaraiosis,” Stroke, vol. 43, no. 10, pp. 2631–2636, 2012. 

[209] T. Otsuki et al., “Contribution of systemic arterial compliance and systemic vascular resistance to effective 

arterial elastance changes during exercise in humans,” Acta Physiol., vol. 188, no. 1, pp. 15–20, 2006. 

[210] Z. Zhao, W. Lin, P. Yang, and Y. Zhang, “Spectral and Coherence Analysis of the Variabilities of Heart Rate, 

Stroke Volume, and Systolic Blood Pressure in Exercise Stress Tests,” vol. 25, no. Bhi, pp. 771–774, 2012. 

[211] R. Perini and A. Veicsteinas, “Heart rate variability and autonomic activity at rest and during exercise in 



References 

141 

various physiological conditions,” Eur. J. Appl. Physiol., vol. 90, no. 3–4, pp. 317–325, 2003. 

[212] J. Sung, S. H. Choi, Y.-H. Choi, D.-K. Kim, and W. H. Park, “The relationship between arterial stiffness and 

increase in blood pressure during exercise in normotensive persons,” J. Hypertens., vol. 30, no. 3, pp. 587–

591, 2012. 

[213] A. J. Camm et al., “Heart rate variability: standards of measurement, physiological interpretation and 

clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing 

and Electrophysiology,” Circulation, vol. 93, no. 5, pp. 1043–1065, 1996. 

[214] G. E. Billman, “Heart rate variability--a historical perspective,” Front. Physiol., vol. 2, 2011. 

[215] A. McLaren et al., “Autonomic function is impaired in elderly stroke survivors,” Stroke, vol. 36, no. 5, pp. 

1026–1030, 2005. 

[216] M. Dütsch, M. Burger, C. Dörfler, S. Schwab, and M. J. Hilz, “Cardiovascular autonomic function in poststroke 

patients,” Neurology, vol. 69, no. 24, pp. 2249–2255, 2007. 

[217] D. R. Seals and M. D. Esler, “Human ageing and the sympathoadrenal system,” J. Physiol., vol. 528, no. 3, pp. 

407–417, 2000. 

[218] W. C. Levy et al., “Effect of endurance exercise training on heart rate variability at rest in healthy young and 

older men,” Am. J. Cardiol., vol. 82, no. 10, pp. 1236–1241, 1998. 

[219] S. Ogoh et al., “Middle cerebral artery flow velocity and pulse pressure during dynamic exercise in humans,” 

Am J Physiol Hear. Circ Physiol, vol. 288, no. 4, pp. H1526–H1531, 2005. 

[220] J. P. Fisher, S. Ogoh, C. N. Young, P. B. Raven, and P. J. Fadel, “Regulation of middle cerebral artery blood 

velocity during dynamic exercise in humans: influence of aging,” J. Appl. Physiol., vol. 105, no. 1, pp. 266–

273, 2008. 

[221] C. Wilke, L. Ding, B. He, and others, “Estimation of time-varying connectivity patterns through the use of an 

adaptive directed transfer function,” IEEE Trans. Biomed. Eng., vol. 55, no. 11, pp. 2557–2564, 2008. 

[222] P. L. C. Rodrigues and L. A. Baccalá, “Statistically significant time-varying neural connectivity estimation 

using generalized partial directed coherence,” in Engineering in Medicine and Biology Society (EMBC), 2016 

IEEE 38th Annual International Conference of the, 2016, pp. 5493–5496. 

[223] C. Wilke, L. Ding, and B. He, “An adaptive directed transfer function approach for detecting dynamic causal 

interactions,” in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International 

Conference of the IEEE, 2007, pp. 4949–4952. 

[224] L. Faes, H. Zhao, K. H. Chon, and G. Nollo, “Time-varying surrogate data to assess nonlinearity in 

nonstationary time series: application to heart rate variability,” IEEE Trans. Biomed. Eng., vol. 56, no. 3, pp. 

685–695, 2009. 

[225] U. Mitzdorf, “Properties of the evoked potential generators: current source-density analysis of visually 

evoked potentials in the cat cortex.,” Int. J. Neurosci., vol. 33, no. December, pp. 33–59, 1987. 

[226] A. D. Legatt, J. Arezzo, and H. G. Vaughan, “Averaged multiple unit activity as an estimate of phasic changes 

in local neuronal activity: effects of volume-conducted potentials,” J. Neurosci. Methods, vol. 2, no. 2, pp. 

203–217, Apr. 1980. 

[227] A. A. Kühn, A. Kupsch, G.-H. Schneider, and P. Brown, “Reduction in subthalamic 8--35 Hz oscillatory activity 

correlates with clinical improvement in Parkinson’s disease,” Eur. J. Neurosci., vol. 23, no. 7, pp. 1956–1960, 



References 

142 

2006. 

[228] K. P. Michmizos, P. Frangou, P. Stathis, D. Sakas, and K. S. Nikita, “Beta-band frequency peaks inside the 

subthalamic nucleus as a biomarker for motor improvement after deep brain stimulation in Parkinson’s 

disease,” IEEE J. Biomed. Heal. informatics, vol. 19, no. 1, pp. 174–180, 2015. 

[229] M. A. Lebedev and M. A. L. Nicolelis, “Brain--machine interfaces: past, present and future,” TRENDS 

Neurosci., vol. 29, no. 9, pp. 536–546, 2006. 

[230] J. Huxter, N. Burgess, and J. O’keefe, “Independent rate and temporal coding in hippocampal pyramidal 

cells,” Nature, vol. 425, no. 6960, pp. 828–832, 2003. 

[231] R. VanRullen, R. Guyonneau, and S. J. Thorpe, “Spike times make sense,” Trends Neurosci., vol. 28, no. 1, pp. 

1–4, 2005. 

[232] A. K. Engel, P. König, A. K. Kreiter, T. B. Schillen, and W. Singer, “Temporal coding in the visual cortex: new 

vistas on integration in the nervous system,” Trends Neurosci., vol. 15, no. 6, pp. 218–226, 1992. 

[233] D. A. Butts et al., “Temporal precision in the neural code and the timescales of natural vision,” Nature, vol. 

449, no. 7158, pp. 92–95, 2007. 

[234] B. Pesaran, J. S. Pezaris, M. Sahani, P. P. Mitra, and R. A. Andersen, “Temporal structure in neuronal activity 

during working memory in macaque parietal cortex,” Nat. Neurosci., vol. 5, no. 8, pp. 805–811, 2002. 

[235] C. Mehring, J. Rickert, E. Vaadia, S. C. de Oliveira, A. Aertsen, and S. Rotter, “Inference of hand movements 

from local field potentials in monkey motor cortex,” Nat. Neurosci., vol. 6, no. 12, pp. 1253–1254, 2003. 

[236] M. J. Rasch, A. Gretton, Y. Murayama, W. Maass, and N. K. Logothetis, “Inferring spike trains from local field 

potentials,” J. Neurophysiol., vol. 99, no. 3, pp. 1461–1476, 2008. 

[237] Y. Cui, L. D. Liu, J. M. McFarland, C. C. Pack, and D. A. Butts, “Inferring cortical variability from local field 

potentials,” J. Neurosci., vol. 36, no. 14, pp. 4121–4135, 2016. 

[238] R. Storchi, A. G. Zippo, G. C. Caramenti, M. Valente, and G. E. M. Biella, “Predicting Spike Occurrence and 

Neuronal Responsiveness from LFPs in Primary Somatosensory Cortex,” PLoS One, vol. 7, no. 5, p. e35850, 

2012. 

[239] E. E. Galindo-Leon and R. C. Liu, “Predicting stimulus-locked single unit spiking from cortical local field 

potentials,” J. Comput. Neurosci., vol. 29, no. 3, pp. 581–597, 2010. 

[240] K. P. Michmizos, D. Sakas, and K. S. Nikita, “Prediction of the timing and the rhythm of the parkinsonian 

subthalamic nucleus neural spikes using the local field potentials,” IEEE Trans. Inf. Technol. Biomed., vol. 

16, no. 2, pp. 190–197, 2012. 

[241] K. P. Michmizos and K. S. Nikita, “Local field potential driven Izhikevich model predicts a subthalamic 

nucleus neuron activity,” in Engineering in Medicine and Biology Society, EMBC, 2011 Annual International 

Conference of the IEEE, 2011, pp. 5900–5903. 

[242] K. P. Michmizos, D. Sakas, and K. S. Nikita, “Parameter identification for a local field potential driven model 

of the Parkinsonian subthalamic nucleus spike activity,” Neural Networks, vol. 36, pp. 146–156, 2012. 

[243] A. L. Benabid, “Deep brain stimulation for Parkinson’s disease,” Curr. Opin. Neurobiol., vol. 13, no. 6, pp. 

696–706, 2003. 

[244] K. Kostoglou et al., “Classification and Prediction of Clinical Improvement in Deep Brain Stimulation from 

Intraoperative Microelectrode Recordings,” Trans. Biomed. Eng., 2016. 



References 

143 

[245] A. Moran, H. Bergman, Z. Israel, and I. Bar-Gad, “Subthalamic nucleus functional organization revealed by 

parkinsonian neuronal oscillations and synchrony,” Brain, vol. 131, no. 12, pp. 3395–3409, 2008. 

[246] D. E. Sakas, A. T. Kouyialis, E. J. Boviatsis, I. G. Panourias, P. Stathis, and G. Tagaris, “Technical aspects and 

considerations of deep brain stimulation surgery for movement disorders BT  - Operative 

Neuromodulation: Volume 2: Neural Networks Surgery,” D. E. Sakas and B. A. Simpson, Eds. Vienna: 

Springer Vienna, 2007, pp. 163–170. 

[247] R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, “Unsupervised spike detection and sorting with wavelets and 

superparamagnetic clustering,” Neural Comput., vol. 16, no. 8, pp. 1661–1687, 2004. 

[248] A. Moran and I. Bar-Gad, “Revealing neuronal functional organization through the relation between multi-

scale oscillatory extracellular signals,” J. Neurosci. Methods, vol. 186, no. 1, pp. 116–129, 2010. 

[249] A. Borst and F. E. Theunissen, “Information theory and neural coding,” Nat. Neurosci., vol. 2, no. 11, pp. 947–

957, 1999. 

[250] R. T. Canolty and R. T. Knight, “The functional role of cross-frequency coupling,” Trends Cogn. Sci., vol. 14, 

no. 11, pp. 506–515, 2010. 

[251] M. L. V Quyen and et al., “Comparison of {Hilbert} transform and wavelet methods for the analysis of 

neuronal synchrony,” J. Neurosci. Methods, vol. 111, pp. 83–98, 2001. 

[252] C. R. Legendy and M. Salcman, “Bursts and recurrences of bursts in the spike trains of spontaneously active 

striate cortex neurons,” J. Neurophysiol., vol. 53, no. 4, pp. 926–939, 1985. 

[253] B. Gourévitch and J. J. Eggermont, “A nonparametric approach for detection of bursts in spike trains,” J. 

Neurosci. Methods, vol. 160, no. 2, pp. 349–358, 2007. 

[254] B. W. Matthews, “Comparison of the predicted and observed secondary structure of T4 phage lysozyme,” 

BBA - Protein Struct., vol. 405, no. 2, pp. 442–451, 1975. 

[255] M. C. W. van Rossum, “A novel spike distance,” Neural Comput., vol. 13, no. 4, pp. 751–763, 2001. 

[256] K. P. Michmizos, D. Sakas, and K. S. Nikita, “Toward relating the subthalamic nucleus spiking activity to the 

local field potentials acquired intranuclearly,” Meas. Sci. Technol., vol. 22, no. 11, pp. 114021-1–9, 2011. 

[257] A. K. Sen and J. O. Dostrovsky, “Evidence of intermittency in the local field potentials recorded from patients 

with Parkinson’s disease: a wavelet-based approach,” Comput. Math. Methods Med., vol. 8, no. 3, pp. 165–

171, 2007. 

[258] C. C. Chen et al., “Complexity of subthalamic 13-35Hz oscillatory activity directly correlates with clinical 

impairment in patients with Parkinson’s disease,” Exp. Neurol., vol. 224, no. 1, pp. 234–240, 2010. 

[259] A. Sharott et al., “Activity Parameters of Subthalamic Nucleus Neurons Selectively Predict Motor Symptom 

Severity in Parkinson’s Disease,” J. Neurosci., vol. 34, no. 18, pp. 6273–6285, 2014. 

[260] T. Radman, Y. Su, J. H. An, L. C. Parra, and M. Bikson, “Spike timing amplifies the effect of electric fields on 

neurons: implications for endogenous field effects,” J. Neurosci., vol. 27, no. 11, pp. 3030–3036, 2007. 

[261] B. Voytek and R. T. Knight, “Dynamic network communication as a unifying neural basis for cognition, 

development, aging, and disease,” Biol. Psychiatry, vol. 77, no. 12, pp. 1089–1097, 201



   

144 

 

Appendix 

 

A.1. SI-TV systems with sinusoidal variations 

   Time-varying linear (𝑄 = 1) and second-order nonlinear (𝑄 = 2) kernels given by linear 

combinations of DLFs were constructed using 2, 4 and 6 functions (𝐿 = {2, 4, 6}). The 

Laguerre parameters were set to 0.2, 0.4 and 0.6 (𝛼 = {0.2, 0.4, 0.6}). TV expansion 

coefficients were constructed in the following manner, 

𝑐௝(𝑛) = 𝐴sin(2𝜋𝑓𝑛) + 𝑀௝ , 𝑓 = 𝐹 𝑁⁄                                             (A. 1)  

where 𝑗 = 1, … , ((𝐿 + 𝑄)! 𝐿! 𝑄!⁄ ) − 1, 𝑀௝ is a random number with its absolute value defined in 

the range [0.25 1] and represents the mean coefficient value, 𝐴 is the amplitude (𝐴 =

{0.05 , 0.1, 0.2}) and 𝐹 is the frequency (𝐹 = {2 ,5 ,10}) of the sinusoidally oscillating 

coefficients respectively, and 𝑁  is the total number of time samples. For the SME case, the first-

order kernel was of the form, 

𝑙(𝑚) = 𝑒ି
௠
ଷ sin ቀ

𝜋𝑚

5
ቁ                                                                   (A. 2) 

Its amplitude was modulated in time as follows, 

𝑠(𝑛) = 𝐴sin(2𝜋𝑓𝑛) + 1, 𝑓 = 𝐹 𝑁⁄                                                   (A. 3) 

𝑘ଵ(𝑛, 𝑚) = 𝑙(𝑛, 𝑚) = 𝑙(𝑚)𝑠(𝑛)                                                          (A. 4) 

𝑘ଶ(𝑛, 𝑚ଵ, 𝑚ଶ) = 𝑙(𝑛, 𝑚ଵ)𝑙(𝑛, 𝑚ଶ)                                                        (A. 5) 
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where 𝐴 and 𝐹 (same values as in the DLF case) is the amplitude and frequency of the sinusoidal 

signal 𝑠(𝑛) and 𝑘𝟏(𝑛, 𝑚), 𝑘𝟐(𝑛, 𝑚ଵ, 𝑚ଶ) are the 1st- and 2nd- TV system kernels respectively. 

A.2. SI-TV systems with mixed-mode variations 

    Mixed-mode nonstationarities were characterized by an initial period of slow sinusoidal 

kernel variations, an abrupt jump and a final period of fast sinusoidal changes. Specifically, in 

the DLF case the coefficients were varied in the following way,  

                                                           0.01sin(2π𝑓ଵ𝑛) + 𝑀௝ ,    𝑓ଵ = 2 𝑁⁄ ,    𝑛 = 1, … ,1000 

𝑐௝(𝑛) =                                                                                                                          (A. 6) 

                                                           0.4sin(2π𝑓ଶ𝑛) − 𝑀௝ ,    𝑓ଶ = 5 𝑁⁄ , 𝑛 = 1001, … ,2000 

whereas in the SME case (Equation (A.2)) the modulating signal was of the form, 

                                                              0.01sin(2π𝑓ଵ𝑛) + 1,    𝑓ଵ = 2 𝑁⁄ ,   𝑛 = 1, … ,1000 

𝑠(𝑛) =                                                                                                                          (A. 7)  

                                                              0.4sin(2π𝑓ଶ𝑛) − 1,    𝑓ଶ = 5 𝑁⁄ ,    𝑛 = 1001, … ,2000 

TV kernels were created based on Equations (A.4-A.5). 

A.3. MI-TV systems with sinusoidal variations 

   Two-input TV linear and nonlinear kernels were constructed using DTLF functions ([𝐿ଵ, 𝐿ଶ]) 

with Laguerre parameters ([𝛼ଵ, 𝛼ଶ])  set to specific values. TV expansion coefficients were 

created as follows,  

𝑐௝
(ଵ)(𝑛) = 0.4sin൫2𝜋𝑓(ଵ)𝑛൯ + 𝑀௝

(ଵ)
, 𝑓(௜) = 5/𝑁                                           (A. 8) 

𝑐௝
(ଶ)(𝑛) = 0.05sin൫2𝜋𝑓(ଵ)𝑛൯ + 𝑀௝

(ଶ)
, 𝑓(௜) = 2/𝑁                                           (A. 9) 

𝑐௝
(ଵ,ଵ)(𝑛) = 0.4sin൫2𝜋𝑓(ଵ,ଵ)𝑛൯ + 𝑀௝

(ଵ,ଵ)
, 𝑓(ଵ,ଵ) = 5/𝑁                                   (A. 10) 

𝑐௝
(ଶ,ଶ)(𝑛) = 0.05sin൫2𝜋𝑓(ଶ,ଶ)𝑛൯ + 𝑀௝

(ଶ,ଶ)
, 𝑓(ଶ,ଶ) = 2/𝑁                                   (A. 11) 

𝑐௝
(ଵ,ଶ)(𝑛) = 0.2sin൫2𝜋𝑓(ଵ,ଶ)𝑛൯ + 𝑀௝

(ଵ,ଶ)
, 𝑓(ଵ,ଶ) = 3/𝑁                                   (A. 12) 



Appendix 

146 

where 𝑐௝
(௜)(for 𝑗 = 1 … 𝐿௜) and 𝑐௝

(௜,௜)
 ቀfor 𝑗 = 1 …

௅೔(௅೔ାଵ)

ଶ
ቁ are the coefficients of the 1st-order and 

2nd-order self-kernel of input 𝑖 (𝑖 = 1,2), whereas 𝑐௝
(ଵ,ଶ)(for 𝑗 = 1 … 𝐿ଵ𝐿ଶ)  are the coefficients of 

the 2nd-order cross-kernel. For the SME case, systems were simulated with 1st-order kernels of 

the form, 

𝑙ଵ(𝑚) = 𝑒ି
௠
ଷ sin ቀ

𝜋𝑚

5
ቁ                                                               (A. 13) 

𝑙ଶ(𝑚) = 𝑒ି
௠
ଵ଴ − 𝑒ି

௠
ଷ                                                                    (A. 14) 

Their amplitude was modulated in time by the signals, 

𝑠ଵ(𝑛) = 0.4sin(2𝜋𝑓ଵ𝑛) + 1, 𝑓ଵ = 5 𝑁⁄                                         (A. 15) 

𝑠ଶ(𝑛) = 0.05sin(2𝜋𝑓ଶ𝑛) + 1,     𝑓ଶ = 2 𝑁⁄                                           (A. 16) 

respectively obtaining the TV 1st- and 2nd-order self-kernels, 

𝑘ଵ
(௜)(𝑛, 𝑚) = 𝑙௜(𝑛, 𝑚) = 𝑙௜(𝑚)𝑠௜(𝑛)                                                      (A. 17) 

𝑘ଶ
(௜,௜)(𝑛, 𝑚ଵ, 𝑚ଶ) = 𝑙௜(𝑛, 𝑚ଵ)𝑙௜(𝑛, 𝑚ଶ)                                                   (A. 18) 

for 𝑖 = 1,2 and the cross-kernel, 

𝑘ଶ
(ଵ,ଶ)(𝑛, 𝑚ଵ, 𝑚ଶ) = 𝑙ଵ(𝑛, 𝑚ଵ)𝑙ଶ(𝑛, 𝑚ଶ)                                                 (A. 19) 

A.4. MI-TV systems with mixed-mode variations 

   In the DLF case coefficients exhibited the following variations in time, 

                                          0.01sinቀ2π𝑓ଵ
(ଵ)

𝑛ቁ + 𝑀௝
(ଵ)

,           𝑓ଵ
(ଵ)

= 5/𝑁 ,        𝑛 = 1 … 1200  

𝑐௝
(ଵ)(𝑛) =       0.05sinቀ2π𝑓ଶ

(ଵ)
𝑛ቁ + 𝑀௝

(ଵ)
,       𝑓ଶ

(ଵ)
= 5/𝑁 ,         𝑛 = 1201 … 1600      (A. 20) 

                                   0.1sinቀ2π𝑓ଷ
(ଵ)

𝑛ቁ + 𝑀௝
(ଵ)

,        𝑓ଷ
(ଵ)

=
1

𝑁
,         𝑛 = 1601 … 2000                          

 

                                         0.4sinቀ2π𝑓ଵ
(ଶ)

𝑛ቁ + 𝑀௝
(ଶ)

,         𝑓ଵ
(ଶ)

= 1/𝑁 ,         𝑛 = 1 … 700                            

𝑐௝
(ଶ)(𝑛) =      0.2sinቀ2π𝑓ଶ

(ଶ)
𝑛ቁ − 𝑀௝

(ଶ)
,        𝑓ଶ

(ଶ)
= 5/𝑁 ,         𝑛 = 701 … 1400          (A. 21) 
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                                         0.4sinቀ2π𝑓ଷ
(ଶ)

𝑛ቁ + 𝑀௝
(ଶ)

,        𝑓ଷ
(ଶ)

= 1 /𝑁,         𝑛 = 1400 … 2000                             

                                        0.2sinቀ2π𝑓ଵ
(ଵ,ଶ)

𝑛ቁ + 𝑀௝
(ଵ,ଶ)

,         𝑓ଵ
(ଵ,ଶ)

= 2/𝑁 ,         𝑛 = 1 … 900  

𝑐௝
(ଵ,ଶ)(𝑛) =      0.4sinቀ2π𝑓ଶ

(ଵ,ଶ)
𝑛ቁ + 𝑀௝

(ଵ,ଶ)
,  𝑓ଶ

(ଵ,ଶ)
= 3/𝑁 ,         𝑛 = 901 … 1700    (A. 22) 

                                     0.01sinቀ2π𝑓ଷ
(ଵ,ଶ)

𝑛ቁ + 𝑀௝
(ଵ,ଶ)

, 𝑓ଷ
(ଵ,ଶ)

= 4 /𝑁,         𝑛 = 1701 … 2000  

Again, all the 𝑀௝ ’s are random numbers with their absolute value defined in the range [0.25 1]. 

The coefficients of the 2nd-order self-kernels (𝑐௝
(௜,௜)) were the same as the coefficients of their 

first order counterparts (𝑐௝
(௜)) but with different mean values (i.e. 𝑀௝

(௜,௜)
). In the SME case, the 

amplitude of the kernels of Equations (A.13-A.14) were modulated in time by the signals, 

                                                     𝑛/1000,    𝑛 = 1 … 1000  

𝑠ଵ(𝑛) =       1,    𝑛 = 1001 … 1400                                                                            (A. 23) 

                                                    0.1sinቀ2π𝑓ଵ
(ଵ)

𝑛ቁ + 1,      𝑓ଵ
(ଵ)

= 1/N, 𝑛 = 1401 … 2000 

 

                                                    0.2sinቀ2π𝑓ଵ
(ଶ)

𝑛ቁ + 1,        𝑓ଵ
(ଶ)

= 1/N,         𝑛 = 1 … 800                              

𝑠ଶ(𝑛) =                                                                                                                            (A. 24)  

                                                   0.4sinቀ2π𝑓ଶ
(ଶ)

𝑛ቁ − 1,         𝑓ଶ
(ଶ)

= 5/N, 𝑛 = 801 … 2000         

The TV 1st- and 2nd-order kernels were computed as in Equations (A.17-A.18). 

 

 

 


