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ABSTRACT

We show that all fundamental barriers to simulations of various

supersymmetric field theories in 3 and 4 dimensions with a lattice regulator

can be removed with known and established methods and provide detailed

procedures to accomplish this end for N=1 Super-Yang-Mills theory in 3

dimensions and N=4 Super-Yang-Mills theory in 4 dimensions. We also

describe generalizations to various other 3 and 4D theories with varying

levels of detail where appropriate and analyze a novel new approach to

lattice supersymmetry: discretization of a particular topological twist of

Super-Yang-Mills in 2 and 4 dimensions.
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ABRÉGÉ

Nous montrons que les obstacles fondamentaux des simulations de

différents domaines théoretiqe de champs supersymétriques de 3 et 4

dimensions avec Régularisation sur réseau peuvent être surmonté avec

méthodes établies, et nous fournissons des procèdures dètaillées pour le

théorie N=1 Super-Yang-Mills en 3 dimensions et N=4 Super-Yang-Mills

en 4 dimensions. Nous décrivons, avec diffèrents niveaux de détail, les

généralisations à divers autres thèories de 3 et 4D, et nous analysons un

approche de réseau supersymétrie: discrétisation d’une torsion topologique

de Super-Yang-Mills dans 2 et 4 dimensions.
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CHAPTER 1
Introduction

1.1 Continuum Supersymmetry

Supersymmetry (SUSY) has been postulated to be a key element of beyond-

the-standard-model physics for over 30 years. Since the first applications of

graded lie algebras ([3], an early review) to the first SUSY extensions of the

Poincaré group [4, 5] and their applications to gauge theories [6, 7] - both

in the early 70s - to the proposal of so-called soft SUSY breaking (described

in more detail below) and the construction of the minimaly supersymmetric

extension of the standard model (MSSM) [8] in the early 80s, supersymmetry

has fascinated and surprised physicists with its phenomenological depth, its

usefulness and its theoretical simplicity. It is often relied upon as an assump-

tion in more ambitious theories of quantum gravity (such as string theory)

and may in fact be a necessity for the consistent formulation of some or all of

these theories. More importantly, as the low energy manifestation of one or

another consistent theory of quantum gravity, it represents perhaps the first

available experimental signature of these theories. Observation of a manifes-

tation of one or another supersymmetric extension to the standard model in

reality would provide the high energy physics community with the first wholly

new and unambiguous evidence that we’re “on the right track” in our quest to

unify relativity with the standard model. Indeed, its been stated (somewhat

anecdotally perhaps) that the highest percentage of physicists (by about 3 to

1 over its closest rival) believe that supersymmetry will be the next discovery
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on the march toward higher and higher energy scales in collider experiments,

and a key element in the final theory of quantum gravity.

Supersymmetry is also very important to phenomenologists. The lightest

supersymmetric partner (LSP) is by far considered to be the best candidate

for a weakly interacting massive particle (WIMP) [9] which is, in turn, the best

candidate for explaining the apparent gravitational overabundance of matter

in the universe (this is often referred to as the dark matter problem).

At the same time, supersymmetry is more often than not the major theo-

retical component in proposed solutions to the infamous hierarchy problems of

cosmology and particle physics. Any quantum theory that purports to explain

low energy particle physics from some more fundamental (and thus higher en-

ergy scale) set of principles than those that comprise the standard model must

necessarily face a problem of finely tuning quantum loop corrections so that

parameters of the standard model, particularly the mass of the Higgs boson,

are kept low enough to allow for the theoretical mechanisms of electroweak

symmetry breaking, a cornerstone of the standard model, to work appropri-

ately. Supersymmetry is similarly invoked often to try and mediate the larger,

and perhaps more infamous, hierarchy problem of the cosmological constant in

cosmology. This cosmic energy density should be a direct signature of the fun-

damental theory of quantum gravity (whatever it may be), and so one naively

expects its scale to by set by the Planck mass, which gives an estimate of the

density around 10120(eV )4, a number that people love to quote for its sheer

absurdity. Supersymmetry might ameliorate the lion’s share of this fine tuning

as well, though there is significantly more mystery and ambiguity surrounding

this side of the fine tuned renormalizations problem (or hierarchy problem).
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For a review of nonperturbative phenomena in 4-D theories see [10]. Ex-

tra symmetries and holomorphy in SUSY greatly constrain the dynamics of

these theories, allowing for the study of non-perturbative phenomena. Chi-

ral symmetry breaking [11] and confinement are examples of interesting non-

perturbative phenomena for which exact statements can be made in SUSY

theories. From this we can hope to learn things applicable to real life QCD

where the non-perturbative dynamics are far too complicated to make exact

statements.

One of the most compelling motivations for finding and implementing a

nonperturbative regulator for supersymmetric theories (and thus allowing for

the nonperturbative determination of correlation functions) is the study of

certain theoretical dualities (or dual descriptions) that appear most often in

these theories. These include early proposals of dualities between branches

of particular 3D SUSY theories called mirror symmetries [12, 13, 14, 15, 16,

17]. These are potentially useful theoretical tools, and their study might shed

light on other dual descriptions. Since the conjecture by Juan Maldecena

of a correspondence (same thing as a duality or dual description) between

strongly coupled N=4 SYM theory, a conformal gauge field theory or CFT,

and weakly coupled gravity on an AdS (Anti de Sitter space) background

[18, 19, 20, 21], this field is a (probably the most) rapidly progressing cutting

edge field in high energy theory. Moreover, gravitational duals may exist for

all or most quantum field theories, and exhaustive study of these dualities may

even provide (or provide clues to) the necessary parameter simplifications and

theoretical mechanisms to uncover the TOE (theory of everything). Lattice

simulations of the gauge theory side of these dualities are such an attractive

opportunity that researchers have even tried to construct gravitational duals
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of lattice gauge theories themselves [22] or simulate the gauge duals of specific

configurations of zero dimensional (D0) branes in type II string theory [23, 24]

(this is doable with D0-branes because the dual description is zero dimensional,

i.e. quantum mechanics).

As if this wasn’t enough to guarantee that supersymmetry retain the title

of darling theory of physics and physicists in the coming decades, applications

for it have been found accross the discipline in statistical field theory, quantum

mechanics [25], and elsewhere.

1.1.1 The basic physics

For Dirac matrix conventions - including conventions on charge conjuga-

tion, Majorana spinors, Chiral symmetry, etc. - see section 4.1, where we derive

the continuum action and SUSY transformations of 4D N=4 supersymmetry

by compactifying the 10D N=1 theory on a 6D toroid. Unless explicitly stated,

our conventions follow those of Weinberg [26].

Supersymmetry in its most basic form is simply a symmetry that exchanges

fermions and bosons. In order to accomplish this exchange between particles

whose spins differ by 1
2

the generators of the SUSY must themselves be anti-

commuting and spin-1
2
. This implies that the generators must transform non-

trivially under the action of the Poincaré group. Supersymmetry must then be

a non-trivial extension of the Poincaré algebra, i.e. a new space-time symmetry.

The no-go theorem of Coleman and Mandula, which we will not prove here

but is described nicely in [26], indicates that there can be no mixing between

internal and space-time symmetries when the generators of the symmetries

all satisfy a Lie algebra. Supersymmetry evades this constraint because the

generators instead satisfy a graded (or super) Lie algebra.
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The most instructive way to view the effects of the SUSY extension of

the standard Poincaré algebra is to treat the SUSY generators, say Q and

Q̄ schematically, as translation operators along some new fermionic spatial

directions labelled by Grassman valued coordinates θ and θ̄. One can then

construct a field theory on this new space-time as a theory of superfields, fields

that live in both the standard d bosonic dimensions and the newly introduced

fermionic ones. The finite SUSY transformation of these fields are then written

in direct analogy to standard translations such that a general translation in the

new theory is exp
(
iθQ+ iQ̄θ̄ − ixµP

µ
)
. One can therefore interpret SUSY as

a generalization of the usual space-time to include fermionic, as well as the

usual bosonic, spatial dimensions.

To be more precise, the Poincaré algebra

[
P µ, P ν

]
= 0 ,

[
Jµν , Jαβ

]
= i

(
ηνβJµα + ηνβJµα − ηνβJµα − ηνβJµα

)
,

[
Jµν , P α

]
= i

(
ηµαP ν − ηναP µ

)
, (1.1)

(the algebra of translations, generated by P µ, and of the Lorentz transforma-

tions, generated by Jµν) is extended with

[
Q, Jµν

]
= σµνQ

{
Q, Q̄

}
= 2 γ·P (1.2)

(both Q and Q̄ commute with P ).

Supersymmetry requires that particles and their super-partners, particles

with all the same quantum numbers (including mass) except for spin, be gath-

ered together in multiplets much the same as any internal symmetry. These

multiplets must contain the same number of bosonic and fermionic degrees of
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freedom. Schematically the multiplets are constructed in the same familiar

way that one would solve the quantization of angular momentum with raising

and lowering operators. For some multiplet there will exist a state with maxi-

mum helicity, say λmax, such that Q̄|λmax〉 = 0. The helicity raising operator,

Q̄, is directly proportional to the SUSY generator, thus justifying the notation.

Starting from this we can use the lowering operator, say Q, to obtain every

other state in the multiplet by

Q|λmax〉 ∝ |λmax −
1

2
〉 . (1.3)

For simple SUSY (N=1) that’s the whole story since

{Q,Q} = 0 −→ Q2 = 0 . (1.4)

So if we act on the state with maximum helicity twice, we get zero. In extended

SUSY (N>1) there are N sets of SUSY generators so that N half-integer steps

can be made.

For the phenomenology of global supersymmetry with massless particles, it

is only necessary to consider multiplets with helicity less than or equal to one,

such that two kinds of multiplets can be constructed. Where a multiplet is not

CPT self-conjugate, we are obliged to combine it with its conjugate multiplet

to construct a CPT invariant theory (since CPT flips helicity). The first is

the vector multiplet (plus CPT conjugate) which, for simple SUSY, contains a

gauge boson of helicity ±1 and a two component Weyl fermion (the gaugino)

with helicities ±1
2
. Since the gaugino resides in the same super-multiplet as a

gauge boson, it must transform under the adjoint representation of the gauge

group. The field theory of a vector multiplet is called super Yang-Mills (SYM).
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The other possibility is a multiplet with maximum helicity 1/2 and its CPT

conjugate. Its particle content is thus a two component Weyl fermion and two

real scalar fields that we can combine into one complex scalar. We will refer to

this construction as a matter multiplet since it can be made to transform under

the fundamental representation of a symmetry group, and is thus necessary to

incorporate matter into a SUSY theory. In general, for SUSY theories with

any value of N , multiplets consist of helicities {λmax, . . . , λmax−N/2}.

Since SUSY is a symmetry that exchanges bosons and fermions, it is not

surprising that there should be some relationships between the parameters in

a SUSY Lagrangian. The superspace formulation allows for the construction

of SUSY Lagrangians in a simple way and provides a simple understanding

of this fact. We will give only a brief explanation of how to extract SUSY

Lagrangians from the superspace formalism; more detailed descriptions and

derivations can be found in any number of places including [26, 27].

The basic object in the formalism is the superpotential f(Φ), which is a

function of the superfields. Superfields can be expanded in terms of bosonic

and fermionic functions of the regular space-time coordinates, which naturally

gives rise to the multiplet structure discussed above. We can thus hope to

construct actions in d bosonic dimensions with phenomenological implications

by taking some combination of superfields in the full space and integrating

out the dependence on the fermionic coordinates. In practice this can be

accomplished quite simply.

As an example we will take the superpotential

f(Φ) =
∑

ijk

λijkΦiΦjΦk . (1.5)
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Here we take the indices to be of some arbitrary label that distinguishes the

fields. The Yukawa and scalar interactions for the components of these super-

fields can then be found to be (I use the notation of 4 component Dirac and

Majorana spinors throughout this work)

Lint =

(
∑

ij

(
∂2f(φ)

∂φi∂φj

)
ψ̄iLψ

j
L + h.c.

)
+
∑

i

∣∣∣∣∣
∂f(φ)

∂φi

∣∣∣∣∣

2

, (1.6)

where we have now used φ instead of Φ to indicate that the superfields in

the functional derivative should be replaced by the scalar fields defined in the

bosonic space-time coordinates. It is easy to see that this gives scalar self

couplings with coefficients ∼λ2 and Yukawa couplings ∼λ. I will take this as

motivation for the equality of couplings and move on now to the phenomeno-

logical implications.

1.1.2 Cancellation of divergences

Figure 1–1: A simple example of divergence cancellation in a SUSY theory.
The heavy lines with heavy arrows are fermionic, the light lines with light
arrows are scalars.

Let’s consider the contribution to the inverse 2-point function of a scalar

field evaluated at zero external momentum in a theory of scalars and fermions

to get a feeling for how supersymmetry ensures the cancellation of problematic

divergences in quantum field theory. Fig. (1–1) shows the two diagrams that

contribute to the scalar self-energy at one loop in a theory of fermions and

scalars. The first diagram contributes

Πφ(fermion) = −nfλ2
y

∫

p
Tr

(
(−i/p)PL(−i/p)PR

p2p2

)
. (1.7)
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Here PL,R are the left and right chiral projectors, 1
2
(1±γ5). In 4-D this is

a quadratic UV divergence. The second diagram in Fig. (1–1) is also UV

divergent:

Πφ(scalar) = −2nsλ
2
s

∫

p

1

p2
. (1.8)

Adding these together we find

Πφ(tot) =
(
2nfλ

2
y − 2nsλ

2
s

) ∫

p

1

p2
. (1.9)

In a SUSY theory then, where the number of fermions equals the number of

scalars (nf=ns) and the couplings are equal, the quadratic divergences exactly

cancel.

1.1.3 SUSY Ward identities in the continuum

The expectation value of an operator in a QFT with Euclidean signature

is formally given by the functional integral

〈O〉 = Z−1
∫

D[X]O e−S[X] , (1.10)

with X here representing the set of all local field variables in the theory and

Z the partition function. Since we expect observables to be invariant under

infinitesimal SUSY variations, we can write

δξ〈O〉 = Z−1
∫

D[X] δξ

(
O e−S[X]

)
= 0 (1.11)

where we have used that both the path integral measure and partition function

are invariant under the SUSY transformation. Since the variation in the action

is a total divergence (of the supercurrent), we have that

δξ〈O〉 = 〈δξO〉 − 〈(∂µSµ)O〉 = 0 . (1.12)
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If we further restrict ourselves to operators localized outside the region of the

local infinitesimal SUSY transformation (x 6= y) we have δξO = 0 and thus

〈∂·Sx Oy〉 = 0 . (1.13)

1.1.4 Spontaneous SUSY breaking

It is still uncertain whether the experimental energy levels attained by the

Large Hadron Collider (LHC) will reach that required to see any evidence

of supersymmetry in the data that will begin pouring in over the next few

years. The situation is uncertain because we lack a robust understanding of

the mechanisms of spontaneous supersymmetry breaking and are thus unable

to say too much about the low energy spectrum of the theory. Part of the

reason for this is that many of the most interesting models of spontaneous

SUSY breaking rely on nonperturbative mechanisms and so they are difficult

to study analytically.

The MSSM contains 120 tunable parameters, nearly all of which are mass

and trilinear coupling parameters that are forbidden from the theory only by

the SUSY itself and so can be generated radiatively by one or another generic

UV SUSY breaking mode (presumed to come from some higher energy dynam-

ics). These terms all break SUSY softly, meaning all SUSY breaking param-

eters appear in the Lagrangian with positive mass dimension (only relevant

and not marginal terms are generated) Without this restriction the ability of

supersymmetry to solve the Higgs hierarchy problem is somewhat restricted or

alltogether ruined (depending on your prospective on the hierarchy problem).

Why is it so hard to break SUSY? One of the reasons is that nonrenormal-

ization theorems [28, 29] imply that if supersymmetry is not broken at tree

level, then it won’t be broken dynamically to any order in a loop expansion.
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That’s a pretty powerful statement; we can certainly arrange for SUSY to be

broken at tree level, but then the scale of the SUSY breaking is set by di-

mensionful parameters exlicitly in the action, and those are presumed to be

at or near the Planck scale. SUSY may very well be broken at these high

energies; if so however, it would fail to solve the most important problems in

its repertoire: it wouldn’t solve the hierarchy problems, it wouldn’t give us a

good WIMP and it wouldn’t give us information about itself or an eventual

TOE through observations at the LHC (or any other collider we can imagine

being built for a very long time).

In 1981 Witten discovered a new possible source of low energy dynamical

SUSY breaking [30] in the vacuum effects of certain nonperturbative phenom-

ena. The potential vacua of the theory may very well be supersymmetric

(meaning SUSY is not spontaneously broken by the vacuum state) at tree

level, and indeed to any loop order in a perturbative expansion (as required

by nonrenormalization theorems), with SUSY broken by instantons, purely

nonperturbative objects in quantum field theory. Agood review is [31].

The difficulty with Witten’s proposal is precisely the fact that the mech-

anism is nonperturbative and so can not be studied in the usual ways. Some

methods have been devised for analysing the potential of SUSY breaking in

a particular theory, such as by calculation of the supersymmetric (or Witten)

index. Witten has managed to do this calculation in three [32] and four [33]

dimensions, for many interesting theories (see Chapter 2 for more details), and

has conjectured the existence of dynamical nonperturbative SUSY breaking in

some of these theories, but no conclusive evidence has yet been found.

What if we could solve these theories in a nonperturbative way? Enter

lattice gauge theory.

12



1.2 Lattice Gauge Theory

A number of introductions to lattice gauge theory exist; for instance, there

is a very useful book by H. Rothe [34], which explains most of the concepts

and technology. There are also shorter papers by a number of authors: [35]

is an old but clear review of the ideas of lattice gauge theory well suited

to individuals with a background in statistical mechanics. Other reviews of

LGT, numerical LGT techniques and specific LGT concepts in general and in

QCD in particular include [36, 37, 38, 39, 40, 41, 42]. The discussion in this

section is mistly in 4D, so that comparisons to the bulk of lattice literature is

straightforward. The generalization of results to other dimensions is mostly

trivial.

The idea of a lattice calculation is to look at some field theory problem

which can be formulated in terms of a Euclidean path integral, say,

1

Z

∫
DΦ O1(Φ)O2(Φ) e−

∫
d4xLE(Φ) , (1.14)

and then actually “do the integral,” for instance by some numerical Monte-

Carlo procedure. This is an interesting thing to do when the action is so

non-Gaussian that analytic techniques, such as perturbation theory, are not

reliable. It allows us to compute from first principles nonperturbative phe-

nomena. For the current discussion we will talk about scalar Φ4 theory, to

avoid issues about gauge invariance and special complications associated with

fermions. We will return to these special complications, since, in fact, the only

reason that lattice techniques are interesting is that QCD is asymptotically

free, and this actually demands that we discuss gauge invariance.

The problem is that DΦ really means an integral over the value of Φ, for

every point in space. This is an infinite number of integrals. There is also a
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serious issue of renormalization that is being swept under the rug in the above

discussion, which has to be dealt with.

The first step is to reduce the amount of work potentially needed, by mak-

ing the spacetime considered finite. Replacing
∫∞
−∞ dτ with

∫N/m
0 dτ , with

N ≫ 1 and m the mass gap, is good enough because any Euclidean corre-

lation functions that we’ll be interested in will be exponentially suppressed

outside this region. The same is true of the spatial extent; compactifying

space with L≫ 1/m leaves only exponentially small sensitivity to L, provided

that

1. we choose a space with no boundaries (otherwise the regions near bound-

aries are messed up by boundary effects),

2. we choose a space with zero (metric) curvature (otherwise there is some-

thing local which tells you the space is finite).

a torus (or twisted torus) is an ideal choice. We make it now.

Next is the radical step; we replace continuous space with a lattice, so there

are only a finite number of points, and therefore a finite number of integrations

to be performed. So the integral we want turns into

∫
DΦ ⇒

∫ ∏

x1=[a,...,L]; x2=...

dΦ(x1, x2, x3, τ) , (1.15)

which is a finite number (L/a)3(τ/a) of integrations. That means it is at least

conceptually possible to do the integrals by some Monte-Carlo procedure. The

next few sections will be devoted to the subtleties and difficulties of deriving

the appropriate tree level lattice action to study a particular continuum quan-

tum field theory.
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1.2.1 The basics of discretization

The choice of a lattice action is not at all unique. Any local action which

reduces to the continuum action in the limit a→0 can be used. It is easy to

translate ultralocal potential terms to the lattice by simply exchanging the

continuum fields for lattice variables (fields defined only at the lattice sites)

and treating the parameters as bare parameters

∫
d4xV (Φ(x)) ⇒ a4

∑

x

Vbare(Φ(x)) . (1.16)

Derivatives are slightly more tricky because we cannot of course take infinites-

imal differences on a discrete space. Derivatives will therefore become finite

differences on the lattice. How we construct these differences depends on the

specific theory and its symmetries. The simplest solution is

1

2
(∇Φ)2(x) ⇒ 1

2

∑

µ

[
Φ(x+aµ̂) − Φ(x)

a

]2

, (1.17)

∫

x
⇒ a2

∑

x,µ

[
Φ2(x) − Φ(x+aµ̂)Φ(x)

]
. (1.18)

In the second expression we have re-arranged some terms, which is equivalent

in the continuum to integrating by parts. The term with Φ(x+aµ̂)Φ(x) is

often called a “hopping term.”

The right IR effective theory is the most general theory we can write down,

with the field content and symmetries of the lattice theory. The parameters

of that effective theory must then be determined by a matching calculation.

The symmetries are

• Discrete Φ → −Φ symmetry; Φ always appears in even powers in any

operator in the Lagrangian.

• Discrete translation symmetry

• Hypercubic point symmetry
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Discrete translation symmetry is what we have instead of continuous trans-

lation symmetry. Rather than ensuring momentum conservation, it ensures

momentum conservation up to 2π/a (Umklapp). This is good enough since

the IR effective theory only deals with small momenta p ≪ 1/a; in practice

discrete translation symmetry is just as good as full translation symmetry.

However, we will have to remember this Umklapp possibility when we think

about fermions on the lattice.

Hypercubic symmetry is that subgroup of O(4) which takes the hypercubic

lattice (points with all integer coordinates) to itself. That is the same as

permutations of the (x, y, z, τ) axes, with possible sign flips on each axis. The

group therefore has 4! 24 = 384 (in general, D! 2D) elements. It is NOT O(4)

(Euclidean rotation) invariance. Since it is a smaller invariance it less severely

constrains what operators can appear.

Is it good enough?

To answer this, let’s list some operators and see if they are allowed under

hypercubic symmetry.

(∂1Φ)2 no breaks (x1 ↔ x2) (1.19)

∑

µ

(∂µΦ)2 yes (1.20)

∑

µ

(∂µΦ) no breaks (x1 ↔ −x1) (1.21)

∑

µ

(∂µΦ)4 yes (1.22)

The last of these is something impossible under O(4) symmetry.

Generally,

• O(4): no “hanging” Lorentz indices, Lorentz indices summed in pairs;
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• Hypercubic: no “hanging” Lorentz indices, Lorentz indices summed in

even numbers (that is, µ can appear 2 times, 4 times, etc.)

There are operators allowed by hypercubic but not O(4) invariance, but they

must have at least 4 derivatives; the first such operator is

∑

µ

Φ∂4
µΦ (1.23)

(and others related to it by integration by parts). This is dimension 6, and

so nonrenormalizable. (It is actually present at tree level in the derivative

operator we constructed; even if it weren’t it would get generated radiatively.)

However, it just happens that, when we list all renormalizable and hyper-

cubic symmetric operators, that the set of operators we can write also display

full O(4) invariance. Therefore, O(4) invariance is recovered in the infrared as

an accidental symmetry (rather as parity is recovered as an accidental sym-

metry of QCD, even though it is absent in the Standard Model). This means

that the lattice treatment IS “good enough;” differences between the lattice

and continuum values of correlation functions will vanish as the second power

of (ap), so the theories are the same in the infrared (which is the most we

could have asked for).

We emphasize that renormalization will occur between lattice and contin-

uum effective theories; in particular the mass term additively renormalizes,

m2
eff ∼ λ/a2 +m2

bare. This makes taking the continuum limit at fixed physical

m2 quite challenging. However, such mass generation is protected from occur-

ring additively by symmetries in QCD, so this is one way that treating QCD

is actually easier than scalar field theories on the lattice.
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1.2.2 The gauge action

First consider the action,

S = a2
∑

x,µ

[
2Φ†(x)Φ(x) − Φ†(x)Φ(x+aµ̂) − Φ†(x+aµ̂)Φ(x)

]
, (1.24)

where we have “integrated by parts” for convenience. This action is invariant

under a global symmetry transformation,

Φ → GΦ , Φ† → Φ†G† provided G† = G−1 . (1.25)

If we now gauge this symmetry, that is, let G→G(x), this will no longer be

the case. Specifically,

Φ†(x)Φ(x+aµ̂) → Φ†(x)G−1(x)G(x+aµ̂)Φ(x+aµ̂) 6= Φ†(x)Φ(x+aµ̂) . (1.26)

This term is then not gauge invariant. The most obvious and direct solution

is to replace the term in the action with

Φ†(x) U Φ(x+aµ̂) (1.27)

and let U→G(x) U G−1(x+aµ̂) under the action of the gauged symmetry

transformation. Since the transformation of the U matrices involves the local

tranformation properties of two neighboring lattice sites, it is natural to think

of them as “living” on the link in between. They are thus referred to as link

matrices and labelled by the two sites, U=U(x, x+aµ̂) or Uµ(x).

For the gauge theory constructed in this way to be unitary, we must also

impose the condition that

U †
µ(x) = U−1

µ (x) . (1.28)
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This implies that U must (for any non-trivial symmetry transformation) have

an orientation, so that the inverse operation can be defined on the same link

as the action of the link matrix in the opposite direction. We can thus say

that Uµ(x) transports Φ at site x+µ to site x (by convention) and U †
µ(x) trans-

ports it back. These elements are enough to present a definite prescription for

constructing gauge invariant lattice field theories: fields evaluated at different

lattice sites must be connected by links to be gauge invariant.

It now remains to make the link matrices themselves dynamical field vari-

ables by constructing an action that will reproduce the familiar field strength

term in the continuum limit. This term must be constructed solely from the

lattice link variables. In order to retain gauge invariance, the construction

must form a closed loop. This is easy to see from the gauge transformation

properties. The “elementary plaquette” defined as

Tr µν(x) ≡ Tr Uν(x)Uµ(x+ aν̂)U †
ν(x+ aµ̂)U †

µ(x) (1.29)

is the simplest such construction that can be made. Since we will treat the

Us as the dynamical gauge field variables, we will have to consider any terms

generated by renormalization in the IR theory of interest,

For the rest of this section we will specialize to the case of particular interest

to this work and to the study of lattice gauge theories more generally, SU(N).

The link matrices will then be elements of some representation of SU(N),

which we will write in the standard way:

Uµ(x) = eiaAµ with Aµ = tAAAµ . (1.30)

The tA are the generators of SU(N) in some representation and satisfy the

standard Lie algebra. aAAµ parametrizes the expansion of the link matrices in
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the basis described by the tA. The Aµ carry a vector index and are the analog

of the continuum gauge fields. On the lattice, the expansion of the exponential

in powers of the argument can no longer be made to truncate at 1+iaAµ by

considering arbitrarily small a. To retain the unitarity of the link matrices,

we must treat the full series expansion of the exponential, with higher order

terms supressed by powers of the small but finite lattice spacing. The terms

generated in this way will be completely irrelevant in the IR, but will play an

important role in the maintenance of gauge invariance in the UV, where they

can be very large.

At leading order in this expansion the plaquette in Eq. (1.29) is just 1. At

next order

µν ≃ 1 + ia
(
Aν(x+ν̂/2) + Aµ(x+ν̂+µ̂/2) −Aν(x+ν̂/2+µ̂) −Aµ(x+µ̂/2)

)

≃ 1 + ia2(∂νAµ − ∂µAν) . (1.31)

If we label A fields as living at the middles of links and µν as living at the

center of the plaquette, the first corrections to this expression are order a4,

that is, are cubic in derivatives.

Since the last term cancelled at O(a), we have to go one order higher, where

there are 6 contributions from pairs of A fields and also contributions from A2

arising from a single link;

µν ≃ (above)−a2
(
A2
µ +A2

ν +AνAµ −AνAν −AνAµ −AµAν −AµAµ +AνAµ)
)

= (above) − a2
[
Aν , Aµ

]
, (1.32)

which fills out the field strength. Therefore,

µν ≃ 1 − ia2F a
µνT

a . (1.33)
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We also know that µν is unitary; therefore the −ia2F term ensures that

there is also a −a4F 2 term,

µν ≃ 1 − ia2F a
µνT

a − a4

2
F a
µνF

b
µνT

aT b + . . . , (1.34)

and so its trace contains −a4F 2/4. We can get the standard gauge action by

summing over the traces of plaquettes,

∑

x,µ>ν

[Nc − Tr µν(x)] ≃
∫
d4x

1

8
F a
µνF

a
µν . (1.35)

Lattice people always write the action with prefactor β/Nc, β plays the part

of the inverse gauge coupling. We see that at tree level,

S =
β

Nc

∑

x,µ>ν

(Nc − Tr µν(x)) ⇒ β =
2Nc

g2
0

. (1.36)

This action is called the Wilson action and is the simplest available. It

gets corrections to F 2 at dimension 6, that is, FµνD
2
µFµν ; this correction is

also not O(4) invariant. One can make more sophisticated actions, such as

one involving 1 × 2 boxes rather than just squares;

SSymanzik :
∑

µ>ν

Tr µν →
5

3

∑

µ>ν

Tr µν −
1

12

∑

µ>ν

(Tr µν + Tr νµ) . (1.37)

This action has no tree level dimension 6 operators and gives improved rota-

tional invariance convergence.

In Chapter 2 we use the Sheikholeslami-Wohlert (SW) improved fermion

action [43] to improve the convergence of the spectral properties of the fermion

matrix to O(a2). This is described in section 2.4.1, though the idea is very

similar to the Symanzik improvement described above. It is not technically

necessary to include an improved bosonic action with this implementation,

21



since the continuum limit is already approached at O(a2) for the simplest case

of the Wilson action.

Before we construct a lattice action and interesting measurables, we must

determine what the integration measure in the path integral is. Obviously we

should make the replacement,

DAµ ⇒
∏

x,µ

dUµ(x) . (1.38)

What does dUµ(x) mean, though? If we think of Uµ(x) as generated by its Lie

algebra elements,

Uµ(x) = exp(iaT aAaµ) : dUµ(x)
?
=
∏

a

dAaµ(x) ? (1.39)

This is wrong; this measure is not gauge invariant. A gauge transformation,

say, at x, must leave the measure dUµ(x) (and the measure dUµ(x−µ̂)) in-

variant. What that means is that we need a measure for the group manifold

SU(Nc) which is preserved under “rotation” of the group manifold by right or

left group multiplication.

It turns out that such a measure generally exists for compact, simple gauge

groups, and it is unique up to a dilatation (which corresponds to an uninter-

esting overall multiplicative factor in the partition function). The measure

is called the Haar measure. It can be generated as follows. Choose an or-

thonormal basis for the Lie algebra T a. The infinitesimal volume element at

the origin is T 1 ∧ T 2 ∧ T 3 · · ·. This means that we assign δN
2
c −1 measure to

the box containing all points of form g ∈ {1 + iδ
∑
a T

aea; ea ∈ [0, 1]}. Then,

the measure near the point g′ is that we assign the same volume to the set of

points g for which g(g′)−1 lies in that box.
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For an example, consider SU(2). For any ~θ of length 2π, exp(i~θ · ~T ) is the

−1 element of the group. (Recall that T a = τa/2 with τa the Pauli matrices;

exp iπτa = −1 for each a.) Obviously, then, the measure for such large ~θ

should approach zero. The correct measure turns out to be

dUµ(x) =
∏

a=1,2,3

J(A2)dAaµ(x) , J(A2) =
2(1 − cos |A|)

|A|2 , (1.40)

up to uninteresting multiplicative rescaling.

The integration
∏
dUµ(x) obviously overcounts physical configurations; in

fact it integrates uniformly over all possible gauge orbits. There is no problem

with doing this, though; because the Uµ(x) and the Λ(x) reside on compact

spaces, this amounts to a finite overall multiplicative factor in the partition

function, which is of no physical consequence. This is the lattice’s answer to

how to fix the gauge: Don’t fix the gauge. Integrate over all possible gauge

field configurations, including redundantly integrating over a configuration and

its gauge copies. With the lattice implementation this space of redundant

integrations, ΠxΛ(x), is compact and of finite volume, so no harm is done.

Building a lattice gauge theory with these components and this integration

measure, and using a gauge invariant action, automatically ensures exact gauge

invariance of the IR effective theory, which is strong enough to ensure that only

desired dimension 4 operators can appear.

1.2.3 Perturbation theory

The lattice is a nonperturbative, well defined regulation. (In fact, it is the

ONLY nonperturbatively defined regulation scheme we know.) We can study

perturbation theory in this regulation scheme, both for its own sake and as a

way to do matching calculations between the lattice and the continuum. This

is especially important for lattice supersymmetry.
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What are the fields and Feynman rules? we will outline the procedure for

getting them, but not give too great detail. H. Rothe’s book [34] contains

quite a complete account. The diagrams are collected in Appendix A.

First we must choose a definition for the gauge field, based on the link. We

want U ≃ 1 + iaTAAAµ , but this is not a unitary matrix; how do we deal with

the higher order in A piece? Two natural choices would be,

Uµ = exp(iaTAAAµ ) ,

or Uµ − U∗
µ = 2iaTAAAµ . (1.41)

The latter is more convenient for going from lattice U matrices to A fields.

The former is more convenient for perturbation theory and people usually use

it.

As usual you have to fix the gauge. This will introduce ghosts, which are

not TOO different from normal, and we will not discuss them further except to

say that we have listed the two lowest order ghost gauge vertices in appendix

A. The interesting things are that

1. inverse propagators and vertices have trigonometric momentum depen-

dence, and

2. there are extra, unexpected vertices.

These two are related to each other and are inevitable if one does gauge theory

on a lattice.

Consider the scalar action

1

2
(DµΦ)2 → a2

2

∑

x,µ

(
2Φ†(x)Φ(x) − Φ†(x)Uµ(x)Φ(x+µ̂) − Φ†(x+µ̂)U †

µ(x)Φ(x)
)
.

(1.42)
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First expand it to zero order in A to find the inverse propagator. Go to

momentum space by replacing

Φ(x) =
∫

BZ

d4p

(2π)4
eip·xΦ(p) , (1.43)

where
∫
BZ means the integral only extends over the Brillouin zone, p1 ∈

(−π/a, π/a] and similarly for the other 3 components. Note that the zone

is a hypercube, another reflection of the breaking of O(4) invariance. From

now on we will use the notation

∫

p
≡
∫

BZ

d4p

(2π)4
. (1.44)

Substituting and performing the sum over the lattice sites yields

L =
∫

pk
Φ†
p

∑

x,µ

ei(k−p)·x
[
1 + ei(k−p)·µ − e−ip·µ − eik·µ

]
Φk

=
∫

p
Φ†
p

∑

µ

[
2 − 2 cos(pµ)

]
Φp , (1.45)

from which we can read off the inverse propagator

∆−1(p) =
∑

µ

2

a2
(1 − cos apµ) =

∑

µ

4

a2
sin2 apµ

2
≡ p̃2 . (1.46)

The low ap limit of the propagator is p2 but there are a2p4 corrections; for hard

momenta the propagator is significantly different, as it must be because it is

smooth and periodic. Non-smooth behavior can only be achieved by nonlocal

actions, and would carry other costs.

The linear in A term, that is, the three point vertex, is determined by

expanding U to linear order in A. Write A as living at the middle of the link,

as is natural; the term in the action is

a2

2

∑

x,µ

iaAAµ (x+µ̂/2)
(
−Φ†(x)TAΦ(x+µ̂) + Φ†(x+µ̂)TAΦ(x)

)
(1.47)
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which, denoting the Φ momentum as k and the Φ† momentum as p (both

incoming to the vertex), gives a Feynman rule

TA
2

a
sin

(k − p)µa

2
. (1.48)

This differs from the continuum vertex by the substitution of (2/a) sin[(k −

p)µa/2] for (k − p)µ. These are equivalent at small momentum and differ at

O(a2). The quadratic in A term is also peculiar; since Φ† and Φ are evaluated

one site off from each other, it behaves as

{TA , TB}gµν cos
(k − p)µa

2
(1.49)

whereas usually the cosine term would be 1.

One may continue with the expansion; at A3 order there is a vertex with

no continuum analog, which however has an explicit a2 suppression. It is only

needed in relatively high loop calculations; in fact there are infinitely many

vertices but as they have ever more lines, they are only needed at ever higher

orders in the loop expansion. The forms of all these terms can actually be

determined completely by looking at the inverse propagator and insisting that

the derivatives there be covariant derivatives.

The gauge field action can be expanded similarly, though it is more com-

plicated. The inverse propagator is

G−1
µν = gµν k̃

2 − k̃µk̃ν , k̃µ ≡ 2

a
sin

kµa

2
. (1.50)

The cubic interaction term looks like its normal form but with the substitutions

(k1−k2)µδνλ → ( ˜k1−k2)µ cos
(k3)νa

2
δνλ etc. (1.51)
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The 4 gluon piece looks horrible. Besides the type of complication already

encountered, multiplying the expected piece ΓABCD ∝ fABEfCDE(. . .)+ per-

mutations, it has a completely unexpected symmetric in external indices piece,

of form

ΓABCDµνλρ (p, q, r, s) = (Antisymmetric piece) +

g2

12

{
2

3
δABδCD + dABEdCDE + (AC,BD) + (AD,BC)

}

×(p̃ q̃ r̃ s̃) with various Lorentz structure . (1.52)

This extra piece comes about because ≃ exp(−ia2Fµν); at a8 level there is

an F 4 term with the T indices totally symmetric as in the above, which looks

like four A fields and four derivatives. The full feynman rule, generalized to

the case of arbitrary gauge group, is given in Eq. A.1. This term is totally

irrelevant as an IR effective operator, but in the ultraviolet it is very large.

One last complication comes from the non-trivial integration measure dis-

cussed in the previous section. First we generalize to arbitrary gauge group,

rewrite the measure as

DU = e−Smeasure[A] DA (1.53)

with

Smeasure = −Tr TATB
∑

x,µ

Tr ln

(
2(1 − cosAµ)

(Aµ)2

)
and Aµ ≡

∑

A

FAAAµ , (1.54)

and then we taylor expand cos and ln to get,

Smeasure =
1

2
AAµA

B
ν ×

(
1

6
TF δµν Tr FAFB

)
+ O(A4) , (1.55)
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which gives a feynman rule

= −1

6
TFCAδµν . (1.56)

This diagram looks like a quadratically divergent mass insertion for the gauge

boson; it precisely cancels other quadratic divergences that would otherwise

spoil the gauge invariance of the theory (see the example calculation of section

1.2.7).

Its important to note that all the contributions from Smeasure will enter as

1-loop corrections to the analagous vertices. If we absorb the coupling g0 in

Eq. 1.36 into the definition of the gauge field, we see that the 2-pt measure

insertion picks up an overall g2
0 relative to the gauge field propogator – and

so enters as a 1-loop effect. The O(A4) term in the measure will then have a

g4
0 suppression and so will enter as a 1-loop correction to the 4-pt gauge field

vertex.

1.2.4 Tadpole improvement

Such large but very UV interactions lead to significant “unexpected” renor-

malizations. This means that, for instance, the matching between the lattice

coupling and the MOM scheme coupling doesn’t give µMOM ≃ 1/a as expected,

but

g2
0 = g2

MOM(µ = 83.5/a) at one loop . (1.57)

In other words, one must put in a much larger β value than naively expected

(make the gauge action “stiffer” than expected) in order to get a given physical

coupling constant. This is dominantly due to large renormalizations from

“tadpoles” (simple closed loops originating from a single vertex), mostly from

the above, symmetrical piece of the vertex (and its higher point brothers).
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These large terms are common (approximately proportional) in essentially

all operators, and can be easily, approximately, cancelled by “tadpole improve-

ment” as advocated by Lepage and Mackenzie[44]. The idea is that the correc-

tions are due to very UV corrections which make each link U look “shorter”

than it is; averaging over UV fields on a compact manifold like SU(Nc) ef-

fectively averages with some weight over a patch of the manifold around the

“infrared” value of the link. Think of SU(Nc) as an n-sphere (SU(2) actually

is the 3-sphere); such averaging gives you a point on the interior of the sphere,

that is, it effectively makes U “shorter”. To compensate, measure the mean

value of Tr , and multiply each link by (Tr1/Tr )1/4 (or just multiply terms

in the action by this quantity to the power of the number of links involved).

This crude prescription comes startlingly close to undoing the large renormal-

izations and is now widely used under the rubric of “tadpole improvement.”

1.2.5 Fermions in lattice gauge theory

The fermionic part of the usual path integral for a single fermion is sup-

posed to be

Zfermi =
∫

Dψ̄Dψ exp(−S(ψ̄, ψ, A)) ,

S(ψ̄, ψ, A) = Mψ̄ψ + ψ̄Dµγ
µψ . (1.58)

Here the fields ψ̄, ψ are Grassmanian 4-component spinors, that is, at each

point there are four Grassman variables associated with ψ̄ and four associated

with ψ.

There is a potential problem we see right away, which is that there is a

dimension 3 operator ψ̄ψ. When the regularization (lattice) is at some very

UV point, what prevents a large ∝ Λ ∼ 1/a coefficient for this operator from

being induced? The answer is chiral symmetry, which is completely broken by
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a mass term:

ψm ⇒ (LmnPL +RmnPR)ψn ,

ψ̄m ⇒ ψ̄n
(
L†
nmPR +R†

nmPL
)
ψn , (1.59)

with L, R independent U(Nf) matrices, Nf the number of fermionic flavors, an

PL,R the usual left and right handed projection operators. Because γµPL,R =

PR,Lγ
µ, the kinetic term is invariant under the transformation;

ψ̄γµψ ⇒ ψ̄
(
L†PR +R†PL

)
γµ
(
LPL +RPR

)
ψ

= ψ̄ γµ
(
L†PL +R†PR

)(
LPL +RPR

)
ψ

= ψ̄γµψ . (1.60)

However the mass term is not invariant,

ψ̄ψ ⇒ ψ̄
(
L†PR +R†PL

)(
LPL +RPR

)
ψ

= ψ̄
(
L†RPR +R†LPL

)
ψ . (1.61)

If the masses are unequal, it is not even invariant under the vector (L = R)

subgroup.

Therefore, provided that only the mass term violates this symmetry, it

is protected from being radiatively induced; if one puts a mass term into

the theory, then while it gets multiplicatively renormalized (that is, Mbare =

ZMrenorm), it is not additively renormalized.

What is a lattice implementation of ψ̄γµDµψ? Obviously the difference

between Dµ and ∂µ is that we should parallel transport group indices using

the gauge links whenever we compare things at different points. What should

∂µ mean?
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A single finite difference, ∂µψ → ψ(x+aµ̂)−ψ(x), breaks the cubic symme-

try of the lattice since it takes a difference one way, but not the other. It is

also not reflection-Hermitian (the Euclidean analog of Hermitian, where one

takes complex conjugates and performs a reflection in some direction; think of

the reflection as being in the time direction, and accounting for the fact that

e−iHt becomes eiHt and that ψ† is related to ψ̄ by a γ0
E). When you take its

reflection-Hermitian conjugate, ψ̄ and ψ change roles and there is a − sign

(except for the time component which is unchanged); so

ψ̄(x)γµUµ(x)ψ(x+µ̂) → −ψ̄(x+µ̂)γµU †
µ(x)ψ(x) . (1.62)

The forward difference becomes minus a backwards difference. Failure of re-

flection Hermiticity means that the lattice theory doesn’t correspond to a

unitary Minkowski theory (just as a non-Hermitian Minkowski action means

a non-unitary theory).

The obvious way around this problem is to take the difference one site off

the discrete position x. That is,

∂µψ → ψ(x+aµ̂) − ψ(x−aµ̂)

2a
. (1.63)

Applying this to the free fermion action yields

∫
d4x ψ̄/∂ψ → a4

∑

x,µ

ψ̄ γµ
ψ(x+aµ̂) − ψ(x−aµ̂)

2a
, (1.64)

and the calculation of the propagator proceeds in a way very similar to Sec.

1.2.3. As before, we obtain a trigonometric function of the momentum; namely

S−1
p =

i

a

∑

µ

γµ sin(apµ) ≡ i/̂p . (1.65)
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Just as in the case of the scalar field, the fermion propagator directly

reproduces the continuum expression at a→0 plus IR irrelevant high order

corrections. However, the spectrum of the theory displays a fatal flaw: the

propagator has a pole at p=0 as expected but it also has a pole at p=π/a,

i.e. inside (at the edge) of the Brillouin zone, whereas the scalar propaga-

tor, sin2(p/2), peaks at this edge. The IR effective theory being described by

this action in the continuum limit is thus a theory of more than one fermion.

In d dimensions the theory would describe 2d fermions at locations (0,0,0),

(π/a,0,0), (0,π/a,0), etc . . . . This is known as the fermion doubling problem.

In this thesis we will only be concerned with two of the solutions to the dou-

bling problem, Wilson fermions and Ginsparg-Wilson (GW) fermions. Wilson

fermions are described below, wheras GW fermions are described in section

1.2.8.

The idea is to add a high-dimension operator to the action that is non-

zero at the edges of the Brillouin zone, thus lifting the degeneracy. The most

obvious candidate for such a term, since we know that the scalar propagator

has the correct massless spectrum, is

LW = −ra
2
ψ̄∂2ψ . (1.66)

Putting the finite difference version together with Eq. (1.64), we obtain a

symmetric free fermion action with no doublers:

Sfree = a4
∑

x,µ

ψ̄(x)

[
γµ
ψ(x+aµ̂) − ψ(x−aµ̂)

2a

+
ar

2

−ψ(x+aµ̂) + 2ψ(x) − ψ(x−aµ̂)

a2

]
. (1.67)
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The value of the Wilson coefficient r is to be chosen by the practitioner (though

r > 0 is required and r ≤ 1 is desirable to ensure reflection positivity). I will

present results only for r = 1 in this thesis, as it is the vastly more common

choice. This can then be re-written in a more convenient form as

Sfree = 4ar
∑

x

ψ̄ψ +
a3

2

∑

x,µ

ψ̄(x)
[
(γµ−r)ψ(x+aµ̂) − (γµ+r)ψ(x−aµ̂)

]
. (1.68)

If we now calculate the propagator we find

Sp =
−i/̂p +Mp

p̂2 +M2
p

with p̂2 ≡ 1

a2

∑

µ

sin2(pµa) and Mp =
ar

2
p̃2 .

(1.69)

/̂p is defined in Eq. (1.65) and Mp is the momentum dependent effective lattice

mass induced by the Wilson term.

To see how this term lifts the degeneracy, look at a one-dimensional version

of the denominator in Eq. (1.69) with r=1:

1

a2
sin2(ap) +

4

a2
sin4(ap/2) =

4

a2

[
sin2(ap/2) cos2(ap/2) + sin4(ap/2)

]

=
4

a2
sin2(ap/2) , (1.70)

which is precisely a single component of the inverse scalar propagator. As was

mentioned above, this function peaks at the edges of the Brillouin zone. This

motivates the conclusion that large values (r ≃ 1) of the Wilson parameter

lift the degeneracy more definitely than small ones.

The price of this choice is that chiral symmetry has been broken completely,

at the lattice spacing scale. There is no accidental IR symmetry which will

save us, any chiral symmetry we get in the IR has to come about by explicit

tuning.
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The lowest order chiral symmetry violating term we are stuck with, is a

mass term ψ̄ψ, which will now be generated with coefficient ∼ g2/a even if we

don’t put it in. To see why, remember the discussion about tadpole corrections

to links: averaging over UV fields approximately replaces the term Uµ(x) with

ZU
IR

µ (x) with Z ∼ 1 − g2 a renormalization and U
IR

the link when only the

IR gauge fields are present. This means

−Uµ(x)ψ(x+) + 2ψ(x) − U †
µ(x−)ψ(x−)

≃ −ZU IR

µ (x)ψ(x+) + 2ψ(x) − ZU
IR†
µ(x−)ψ(x−) (1.71)

= Z
(
−U IR

µ (x)ψ(x+) + 2ψ(x) − U
IR†
µ(x−)ψ(x−)

)
+ 2(1−Z)ψ(x) .

The last piece looks like a mass term, which must be compensated for with

a negative mass counterterm. Delicate tuning of the counterterm is needed,

because a mass is radiatively generated at every loop order and nonperturba-

tively. This requires, for instance, determining the mass based on correlation

lengths (say, the pion to rho mass ratio) and tuning to get the desired mass,

separately at each lattice spacing considered. This complication is also the

basic obstacle to implementations of supersymmetry in 4 dimensions. It is

discussed extensively in Chapter 3 and overcoming it is the primary focus of

Chapter 4.

Another serious complication is that, since one is integrating over the links

Uµ, occasionally a link configuration appears with unusually small UV fluctua-

tions. Then, the mass squared counterterm (which is put into the Lagrangian,

it does not vary as we perform the path integral) will over-compensate and

the mass will be negative. Such configurations can have negative determinant.

This is a problem both for the algorithm generating gauge field configurations

(leading to extra numerical costs in performing Wilson quark simulations at
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small masses), and to the physical interpretation of what we are doing. This

problem seems to be ameliorated in the small a limit, such that the scale where

negative eigenvalues set in is m ∼ aΛ2
QCD. Therefore there is no problem in the

formal a→ 0 limit, but there are problems at values of a which are currently

realistic (a ∼ 0.1 Fermi) and m small enough to be in the chiral limit.

We should note that this problem of exceptional configurations is absent

in so-called twisted mass fermions [45] (the bare mass is flavor dependent and

chirally twisted). This only works for flavor doublets of fermions (like the up

and down quarks for example). The technique has gained serious traction in

recent years in the Wilson fermion community (though it can theoretically be

applied to any fermion implementation) precisely as a solution to the problem

of exceptional configurations.

The other problem with the Wilson action is that violating chiral symmetry

introduces unwanted corrections in physical correlation functions at the O(a)

(dimension 5 operator) level. This problem can be patched up by much hard

work [46, 47]. One must add other dimension 5, chiral symmetry breaking

operators, such as [43]

iacSW

4
ψ̄σµνG

µνψ , (1.72)

to the action, and tune the coefficient cSW to make O(a) effects vanish in

physically interesting operators. The tuning is done at the nonperturbative

level by varying cSW until axial Ward identities, which would be valid in a

chirally symmetric theory, are satisfied for infrared observables.

We use the 3D analog of this improvement in Chapter 2 to improve the

spectral properties of the fermion matrix (as mentioned already). In that

case, no difficult nonperturbative tuning is required because the theory is
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superrenormalizable and so O(a) errors are cancelled with only a tree level

determination of the coefficient.

1.2.6 Feynman rules with fermions

In Sec. 1.2.3 the basic notions of the perturbative expansion and the fun-

damental differences in momentum dependence that arise from the fourier

analysis in discrete space have been described. The complications that come

with the addition of fermions are then largely algebraic (from the inclusion of

the Wilson term in the case of Wilson fermions).

Following closely with Sec. 1.2.3 we expand the action

SF =
a4

2

∑

x,µ

ψ̄(x)

[
2rψ(x) +

(
γµ−r

)
Uµ(x)ψ(x+µ) −

(
γµ+r

)
U †
µ (x−µ)ψ(x−µ)

]

(1.73)

in powers of A to determine the gauge interactions.

The linear in A piece is

SAψ̄ψ =
ia4

2

∑

x,µ

ψ̄(x)

[
γµ
(
Aµ(x)ψ(x+µ) + Aµ(x−µ)ψ(x−µ))

)

−r
(
Aµ(x)ψ(x+µ) − Aµ(x−µ)ψ(x−µ))

)]
, (1.74)

which gives a feynman rule

- -

µ,A

p, b k, c
= −TAbc

(
iγµ cos

a(p+k)µ
2

+ r sin
a(p+k)µ

2

)
. (1.75)

Here b, c take whatever values are appropriate for the representation under

which the fermions transform (so b, c is B,C for the adjoint representation

and TABC = −ifABC). This reproduces the continuum vertex in the a → 0

limit plus corrections at O(a).
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The quadratic inA piece has no continuum analog; it is simply an artifact of

the lattice construction that arises because the expansion of the link matrices

must include powers of the gauge field at all orders. One contribution arises

from the addition of the Wilson term to remove doublers, so it will take much

the same form as its scalar analog (since the Wilson term ’looks like’ a scalar

kinetic term). This gives a feynman rule

	I

µ,A ν,B

k, c p, d

=
a

2
{TA, TB}cd δµν

(
iγµ sin

a(p+k)µ
2

− r cos
a(p+k)µ

2

)
. (1.76)

There are an infinite number of higher point vertices just like in the case of the

scalar field – with more and more gauge boson lines – but these are suppressed

by large powers of the lattice spacing and are rarely necessary for practical

calculations. The vertex vanishes linearly with a in the continuum limit.

1.2.7 Example: vacuum polorization and gauge invariance

Figure 1–2: Diagrams contributing to the gauge boson mass at one loop in
LPT.

To be precise, we will consider a non-abelian theory with an arbitrary

gauge group and arbitrary fermion content. This is discussed somewhat in

[34]; the calculation was originally performed by [48]. As in the continuum,

the diagrams containing fermion loops may be considered seperately, since the

divergences must cancel even without their inclusion. We will not include
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scalar fields in the example, though their inclusion is quite straight-forward.

We calculate only the gauge boson mass correction (gauge boson self energy

at zero external momentum, Πµν(p=0)) since the full contribution is far too

complex. The diagrams are shown in Fig. 1–2; the diagrams on the first line

exist also in the continuum, while the others are obviously artifacts of the

discretization.

Consider the contribution of a single species of fermion in an arbitrary

representation:
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-

�

µ, a ν, b = −Tr T aT b
∫

k
Tr
[
iγµ cos (akµ) + r sin (akµ)

]
Sk

×
[
iγν cos (akν) + r sin (akν)

]
Skand

-

µ, a ν, b = −a
2

Tr{T a, T b}
∫

k
δµν Tr

[
iγµ sin (akµ) − r cos (akµ)

]
Sk.

The sum will then integrate to zero because we can rewrite it as a total

derivative. Taking a cue from the continuum we consider the inverse propaga-

tor,

S−1
k = i/̂k+Mk =

1

a

∑

α

[
iγα sin (akα) + r

(
1 − cos (akα)

)]
, (1.77)

and take the second derivative of the log (the derivatives are with respect to

k)

Tr ∂ν∂µ lnS−1
k = Tr

[
Sk(∂ν∂µS

−1
k ) − (∂µS

−1
k )Sk(∂νS

−1
k )Sk

]
. (1.78)

- -

	I

It is then easy to see that, since

∂µS
−1
k = iγµ cos (akµ) + r sin (akµ) ∝

and ∂ν∂µS
−1
k = aδµν

(
− iγµ sin (akµ) + r cos (akµ)

)
∝ ,

we can express the fermion contribution to the gauge boson mass as

Πµν
fermions

= Tr T aT b
∫ π/a

−π/a

d4k

(2π)4
∂ν∂µ Tr lnS−1

k = 0 . (1.79)

The gauge gauge interactions:

A quick look at the 4 gluon vertex of Eq. (A.1) will remind you why we have

chosen to calculate the self-energy in the limit of zero external momenta; in

this limit many – indeed most – of the terms in the vertex are zero; specifically,
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the fully symmetric piece described in 1.2.3 does not contribute at all. With

these simplifications, the diagram is actually much easier to calculate than the

one with the 3 gluon vertex, so we will start with it:

µ,A λ, C

ν ρ

B

k

=−1

2
× 2FA

BEF
C
EB∆̃νρ

k

[
δµλδνρ cos(akµ) − δµρδνλ cos

akµ
2

cos
akλ
2

+
1

6
δµλk̃µ

(
2δµ(ρk̃ν)

)
− 1

12
δµνδµλδµρk̃

2

]

The 1
2

is a symmetry factor determined in the usual way familiar from contin-

uum PT. To simplify this expression we use trig half angle formulas with wild

abandon, note that

∫
k̃µk̃λ = δµλ

∫
k̃2
µ ,

and analyze sums over the gauge boson propogator such as

∑

ν

∆̃µν
k k̃ν =

1

k̃2

(
k̃µ − (1 − ξ)k̃µ

)
= ξ

k̃µ

k̃2
.

Finally we arrive at

−CAδACδµλ
∫

k


 2

k̃2
− 7

6

k̃2
µ

k̃2
+

k̂2
µ

(k̃2)2
− 1

12
+ ξ


cos (kµ) + 1

4
k̃2
µ

k̃2
− k̂2

µ

(k̃2)2




 . (1.80)

The next diagram is much the same, but the algebra is quite a bit nastier;

we will skip the details and just give you the answer:

µ,A ν,B

= CAδABδµν

[
6
k̂2
µ

(k̃2)2
+ ξ


cos2 kµ

2

k̃2
− k̂2

(k̃2)2



]
.

(1.81)

We see immediately that the ξ-dependence cancels between the two diagrams

since cos(x) = cos2(x/2)− sin2(x/2). Combining these and using the integrals

from appendix B we get
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=
1

2
CAδABδµν

(
Σ

4π
+

1

8

)
.

The Ghosts:

The ghost diagrams are much easier. Like in the continuum we have a diagram

= −i2fACDfBCD
∫
k̃µ cos

kµ
2
k̃ν cos

kν
2

= −CAδABδµν
(

1

2

Σ

4π
− 1

16

)
.

= −1

6
fACDfBCDδµν

∫
k̃2
µ

1

k̃2

= − 1

24
CAδABδµν .

and then the one with no continuum analog

From the measure counterterm, discussed extensively in Sections 1.2.2 and

1.2.3 we get
= − 1

12
CAδABδµν . (1.82)

Adding these up, we see that the contributions cancel and gauge invariance is

retained (at least at one loop).

1.2.8 Ginsparg-Wilson fermions

We will skip discussing the well known no-go theorem of Nielsen and Ni-

nomiya [49] which, stated simply, says that one cannot construct a lattice

Hamiltonian D satisfying Dγ5 + γ5D = 0, because it is described very well

throughout the literature. Instead we will proceed with its consequences and

the progress that has been made in avoiding its consequences.
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Since a chirally symmetric theory in the continuum has this property, D =

Dµγ
µ and γµγ5 +γ5γµ = 0, it looks like we cannot get chiral symmetry on the

lattice.

How close can we get? Ginsparg and Wilson asked this in a long-forgotten

but now famous paper, in 1982 [50]. They considered starting with a chirally

symmetric theory in the continuum, and arriving at a lattice theory by block-

ing; essentially, if the continuum field is φ and the intended lattice field is ψ,

we define the lattice field to follow the continuum field in some way,

ψ(x) =
∫
d4y α(y−x)φ(y) , (1.83)

with x a lattice site, y a continuous parameter, and α some (unimportant)

weighting function, which could be as simple as δ(x − y) (forcing the lattice

thing to equal the continuum one at the same point). Then, considering the

integration over φ, done in continuous space, one sees how close the induced

action for ψ can come to being chirally invariant. Ginsparg and Wilson con-

cluded that the best you could do was

Dγ5 + γ5D = aDγ5D . (1.84)

For suitably infrared fields (or for small enough a, same thing), this becomes

the desired continuum relation.

It turns out that this is much better than just “a discrepancy which vanishes

with the lattice spacing.” The propagator is the inverse of D,

Dαγ(x, z)Sγβ(z, y) = δαβδ
4(x−y) ; (1.85)
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acting with S on both sides of Eq. (1.84), we find that it satisfies

γ5S + Sγ5(x, y) = aγ5δ4(x−y) . (1.86)

The point is that, not only does this vanish as the lattice spacing is made

small; it is also ultralocal. At all finite distances, we observe a propagator

with exact chiral symmetry. This turns out to be enough to give us all the

benefits we want of chiral symmetry, such as the absence of additive mass

renormalization.

The first such closed form operator was constructed by Neuberger and

Narayanan, (see [51, 52, 53]) and is closely related to an idea developed by

David B. Kaplan [54]. A good review of the state of affairs around the time of

these developments is [42], though it should be noted that the understanding

of the connections between the two techniques were somehwat vague at the

time. One Dirac operator which satisfies the Ginsparg-Wilson relation, called

(for historical reasons) the “overlap operator,” is

D = 1 − A

[A†A]1/2
, A ≡ 1 −DW , (1.87)

where DW is the Wilson-Dirac fermion operator discussed extensively in sec-

tion 1.2.5.

To see the magic of this combination, consider the infrared behavior, and

imagine that DW has gotten an additive mass renormalization that we didn’t

want, that is,

DW ∼ m+ /∂ , so A ≃ 1 −m− /∂ . (1.88)

The derivative only appears in A†A at quadratic order; if we work to first

order in derivatives (remember, we are asking about IR behavior), we find
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A†A ≃ (1 −m)2, so

A

[A†A]1/2
≃ 1−m

1−m − 1

1−m/∂ ; 1 − A

[A†A]1/2
≃ 1

1−m/∂ . (1.89)

The renormalization of the kinetic term is harmless – it can be undone by

rescaling ψ. The mass correction, though, has disappeared.

The flip side is that the overlap operator involves the inverse of an operator.

It isn’t obvious that it will be local. It will not be local in the sense of D(x−y)

vanishing beyond some finite range; it will be local, for vacuum gauge fields,

in the sense of D(x− y) vanishing as an exponential of (x−y), so that as the

lattice spacing is taken to zero, the operator becomes exactly local. To see

that this is true, look at the Fourier transform of D,

D̃(p) = 1 − 1 − iγµp̃µ − 1
2
p̃2

√
1 + 1

2

∑
µ<ν(p̃µ)

2(p̃ν)2
. (1.90)

This function is analytic everywhere within the Brillouin zone; therefore its

Fourier transform, which is the spatial dependence, shows exponential tails.

Exponential locality is sufficient for most purposes.

It follows trivially from the Ginsparg Wilson relation that the lattice action,

ψ̄Dψ , (1.91)

has an exact invariance [55] (a very good and seminal paper; worth reading)

under the infinitesimal transformation,

δψ̄ = ψ̄γ5 ,

δψ = γ5(1 −D)ψ ≡ γ̂5ψ . (1.92)

This exact invariance is enough to give the desired properties of a chirally

symmetric theory, such as the vanishing of additive mass renormalization and
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of dimension 5, chiral symmetry breaking operators. However, the transfor-

mation under this symmetry looks different between ψ and ψ̄. Therefore, the

measure of the path integral is not necessarily invariant under this transfor-

mation. In fact, it is not; if we ask about the expectation value of an operator

O under the fermionic part of the action,

〈O〉 ≡
∫
dψ̄dψ O e−ψ̄Dψ , (1.93)

its variation turns out to be

〈δO〉 = −aTr {γ5D}〈O〉 . (1.94)

The free γ5D is traceless; but at nonzero gauge field, it turns out that Tr γ5D

is determined by the index of D, that is, the number of chiral zero modes;

and that this equals (twice) the topological number. This is exactly what is

demanded by the ABJ anomaly.

We see that “ordinary” chiral transformations of ψ are not a symmetry of

the theory; but a modified chiral transformation is an exact symmetry, except

under the measure. Its failure under the measure gives exactly the axial (ABJ)

anomaly. This is Fujikawa’s way of seeing the origin of the anomaly. The last

section of [56] contains a history of these same discoveries from the 90’s and a

more complete list of references.

An exact chiral invariance whets our appetite to write down a chiral theory.

Define projection operators,

P± ≡ 1 ± γ5

2
P̂± ≡ 1 ± γ̂5

2
, γ̂5 ≡ γ5(1 −D) as before . (1.95)
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The latter is also a projection operator, because

γ̂5γ̂5 = γ5(1 −D)γ5(1 −D) = γ5γ5 − γ5(Dγ5 + γ5D −Dγ5D) = γ5γ5 = 1 ,

(1.96)

using the Ginsparg Wilson relation in the next to last equality.

Then, since ψ̄P+ only talks to P̂−ψ and ψ̄P− only talks to P̂+ψ, why don’t

we just throw out ψ̄P− and P̂+ψ in the integration, and only integrate over

ψ̄P+ and P̂−ψ?

That will be fine, IF we can figure out what the measure of the path

integration should be. The measure depends on the gauge fields in a nontrivial

way, because P̂± do, and P± do not; so there is not a cancellation of the gauge

field dependence between the Dψ̄ and Dψ integration measures.

The problem is that the measure has a gauge field dependent phase, which

cannot in general be determined in an unambiguous way. A quantum operator

ψ is the contraction of a set of Grassman variables ci with a set of spinors ui;

ψ(x) =
∑

i

ci(x)ui(x) . (1.97)

The set of all ψ is a sum over an index α, which ranges over location and

spinorial index;

ψ =
∑

α

cαuα . (1.98)

Under a unitary change of variables,

u→ uU−1 , c→ Uc (1.99)

the Grassman determinant DetD, will get rotated by the determinant of the

unitary transformation,

DetD → DetU DetD . (1.100)
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Therefore there is a phase which depends on our choice of “canonical” spinors

ui in terms of which we write the path integral measure.

Normally we don’t worry about this, because, if we perform a rotation on

ψ, we should perform the same rotation on ψ̄, and the phase will be opposite

between them and will cancel. Now, however, we have to perform a unitary

transformation on ψ, into the basis where hP̂− is diagonal; and we do not want

to perform the same transformation on P+, since it will not be diagonal in that

basis. Therefore, we pick up a phase. If we wanted a chiral theory with no

gauge couplings, this again would not be a problem, as the phase would be

common and would factor out of the path integral. Now, however, the phase

is gauge field dependent, since γ̂5 is. It is not obvious, whether there is an

unambiguous – or even sensible – way to choose this gauge field dependent

phase.

If we are perverse, we can view a vectorlike but massless theory as a chiral

theory which happens to have an equal number of right and left handed degrees

of freedom. We are sure that such theories exist. The key, in such theories,

is that this phase is exactly the opposite between the right and left handed

species of fermions, and so it cancels between species. This suggests that chiral

theories can be constructed, but only if the phases in the definition of the

fermion measure cancel between species [57]. Hiroshi Suzuki [58] and Martin

Lüscher [59] have shown (independently) that, to all orders in perturbation

theory, this is exactly what happens, and that the criterion that the phase

ambiguity vanishes between species, is precisely the condition that the theory

is free of gauge anomalies. This means that the lattice can be used as an

all-orders regularization of chiral theories satisfying anomaly cancellation.
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One expects the nonperturbative analysis to be more challenging; for in-

stance, Witten has shown [60] that SU(2) theory with a single chiral fermion

in the fundamental representation is anomalous and cannot exist as a theory,

even though it has vanishing perturbative anomalies. Lüscher has made some

progress towards nonperturbative construction of chiral theories [59]; he has

shown the existence of certain abelian chiral theories [61], nonperturbatively.

However no results exist yet for nonabelian theories, which are more inter-

esting because of asymptotic freedom. Lüscher has written two more detailed

but still readable reviews of these and other important aspects of the construc-

tion of chiral theories on the lattice, [57] or [62]. This is an open and very

interesting problem in lattice gauge theory.

1.3 Naive lattice supersymmetry and its failings

It would be immeasurably helpful if we were able to test more of the tech-

niques for studying supersymmetric theories and more of the nonperturbative

phenomena in supersymmetric theories by “solving” the theories involved in a

non-perturbative way. The lattice is the best candidate method, in general, for

solving such theories. Unfortunately, the lattice regulator almost inevitably

breaks the supersymmetry. The lattice is, after all, a regularization scheme de-

signed to preserve exact gauge symmetry at the expense of manifest Poincaré

invariance. Since supersymmetry is a space-time symmetry, i.e. an extension

of the Poincaré group, it is of no surprise that it is broken on the lattice. A

great deal of work has gone into looking for ways to avoid or ammeliorate

this problem (see Chapter 3 for examples and discussions of some of the tech-

niques), some more successfully than others, though no general scheme for

lattice implementation of SUSY field theories with broad applicability has yet

been presented. A general scheme is precisely the goal of our work, though
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we have found it more useful and more enlightening to instead construct spe-

cific implementations of the most difficult and complex of a particular class

of theories (or simply those theories whose difficulties are unique) and provide

straightforward generalizations wherever possible.

In this dissertation we give explicit and detailed instructions for how to

make such constructions in two sample theories, both of which are of intense

theoretical interest to field theorists, 3D N=1 SYM in Chapter 2 and 4D

N=4 SYM in Chapter 4, describe how to extend our previous results for 3D

N=2 super QCD to various other gauge theories in 3D in section 2.2 and we

discuss other 4D theories briefly in Chapter 3. These constructions all have the

distinguished benefit of being on relatively well established theoretical footings

throughout.
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CHAPTER 2
3D Supersymmetry on the Lattice

One way around the difficulties of discretizing SUSY on the lattice is to

consider minimally supersymmetric Yang-Mills theory, which contains only

gauge fields and fermions. The theory is then automatically (accidentally)

supersymmetric provided one can correctly implement the fermions. Recent

advances in fermion implementations [54, 63] have made it possible to achieve

this program in 4 dimensions. A basic review of this material and extensive

references for those interested in more detailed treatments can be found in Sec.

3.2.

In this chapter we instead consider 3-dimensional minimally supersym-

metric Yang-Mills theory (N=1 supersymmetry, with two real supercharges).

This theory is free of scalars and so correct implementation of the fermions

again yields the right supersymmetric IR limit “accidentally.” However, the

implementation of the fermions is quite intricate, since one must impose a

Majorana condition, and the implementation is further complicated by phases

arising both from the fermionic determinant and from a Chern-Simons (CS)

term, which is possible (and we will show, required) in this theory.

The goal of this chapter is to give a recipe for studying N=1 SUSY in three

dimensions with a Chern-Simons term on the lattice. This theory is believed to

display very interesting nonperturbative properties that make it a prime target

for simulation. In particular, Witten has conjectured [32] that the theory either

preserves or spontaneously breaks supersymmetry, depending on the value of
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the Chern-Simons term. A lattice study of the theory would then constitute

the first test (to our knowledge) of a nonperturbative supersymmetry breaking

mechanism.

In section 2.1 we discuss superrenormalizability in quantum field theories

with D≤3 and explain briefly how it enables us to develop lattice regulated

SUSY theories (i.e. write lattice actions with supersymmetric continuum lim-

its). Much of this work is drawn from our initial studies of N=2 lattice

supersymmetry [64]. In section 2.3 we will review the continuum action of

the theory, the necessity of a Chern-Simons term, and the anomaly condition

which fixes the Chern-Simons term to take certain half-integer values. We

will also present a proof, apparently unrecognized before, that the theory with

vanishing Chern-Simons term has a vanishing partition function and is there-

fore not well defined. In section 2.4 we will describe the discretization process,

showing that the magnitude of the fermion determinant can be included using

a rooted 3-D (2 component) Wilson-Dirac fermion with SW improvement and

mass counterterm. We then show how to extract the Chern-Simons phase and

the phase of the properly regularized rooted determinant. In section 2.2 we

briefly discuss generalizations of this work (for example [64]) to 3D theories

with extended supersymmetry. We leave the simulation itself for a future work;

the goal here is to show that such simulations can be done and to provide the

required tools.

2.1 Superrenormalizability in D ≤ 3

No one is interested in the results of a lattice calculation per se. After

all, a lattice “field theory” is actually just a statistical model, not a true field

theory. The reason that the lattice technique can teach us something about

field theory, is that in the infrared, the correct effective description of a lattice
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theory is as a quantum field theory. What one must do is to ensure that the

infrared behavior of the lattice theory coincides with the continuum quantum

field theory of interest, or at least that it does so in the small lattice spacing

limit, so that the behavior of the field theory can be probed by making a zero

lattice spacing extrapolation.

It is easy to write down a lattice gauge theory which, at tree level, will

look in the infrared like the theory of interest1 . The problem is that, in the

UV (at the lattice spacing scale), the lattice theory typically does not have

the full symmetries of the theory we are interested in. Generally it is possible

to formulate lattice theories so that they have exact gauge and (hyper)cubic

symmetries. However, under supersymmetry, the variation of a fermionic field

can involve the derivative of a bosonic field; and since derivatives become finite

differences on the lattice, supersymmetry will generically be badly broken at

the lattice spacing scale. Furthermore, even if we construct the lattice theory

to satisfy supersymmetric relations in the infrared, radiative effects involving

UV (SUSY breaking) modes will typically communicate those effects to the

infrared modes of interest.

The IR effective theory is not the tree level theory. Rather, it is the theory

one obtains, by writing down the most general continuum quantum field theory

consistent with the field content and symmetries of the lattice, and performing

a matching calculation between the lattice theory and that continuum effective

1 In four dimensions this statement is true of vector-like theories, but serious
complications arise if one wants a chiral theory, that is, a theory with two
component spinors in a representation which is not real or pseudoreal and
which are not balanced by an equal number of spinors of opposite handedness
in the same representation, as we discussed in section 1.2.5.
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theory, to determine what the actual parameters of the IR effective theory are.

For instance, if we made a tree level lattice implementation of the Wess-Zumino

model (which in 3 dimensions exhibits N=2 supersymmetry, that is, it has 4

real supersymmetry generators),

Lbare = ∂µΦ
∗∂µΦ + ψ̄/∂ψ +

(
λΦψ⊤eψ + h.c.

)
+ λ2

(
Φ†Φ

)2
, (2.1)

with Φ a complex scalar and ψ a two component spinor, then we would gener-

ically recover an infrared theory where all terms permissible with this field

content were present;

LIR = Zφ∂µΦ
∗∂µΦ + Zψψ̄/∂ψ +

(
λyΦψ

⊤eψ + h.c.
)

+ λ2
s

(
Φ∗Φ

)2

+m2
φΦ

∗Φ +mψψ̄ψ + (High Dim.) . (2.2)

Here Zφ and Zψ represent the difference in field normalization between the

lattice and continuum fields; they can be removed by a field rescaling, but

we must keep them in mind when we compare lattice correlation functions

with their continuum counterparts. The point is that the IR behavior typi-

cally involves radiatively generated terms which do not respect the intended

supersymmetry. In particular one does not expect m2
ψ = m2

φ.

In 4 dimensions this problem is severe. The SUSY violating, radiatively

induced terms appear at all orders in perturbation theory, with coefficients,

at high order, which are only suppressed with respect to the lower order coef-

ficients by powers of a dimensionless coupling. Further, additive scalar mass

renormalizations are divergently large at every loop order. That is, in 4 di-

mensions, the contributions to the mass squared parameter are of order

δm2
φ at 1 loop: λ2/a2 ; 2 loops: λ4/a2 ; 3 loops: λ6/a2 ; . . . , (2.3)
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where a is the lattice spacing. Every such coefficient is problematic; a severe

non-perturbative tuning is needed to remove them. It is not at all clear how to

perform such a tuning; generally we can only perform non-perturbative tunings

in lattice gauge theories if we have one exact conservation law or Ward identity

per tuning required.

The beauty of 3D is that the theory is generally super-renormalizable.

Consequently, the UV is very weakly coupled; specifically, as the lattice spacing

is taken to zero, the coupling at the scale of the lattice spacing falls linearly

with lattice spacing a. This means that, while the SUSY breaking nature

of the UV regulator radiatively induces SUSY breaking effects in the IR, the

matching calculation which determines them converges very quickly. At each

loop order, we determine the matching of parameters to one more power of

the lattice spacing a. For instance, in the above model, if we compute the

mass squared for the scalar field, generated by UV physics, the contributions

at different orders in the loop-wise expansion are again of order λ2, λ4, λ6, . . ..

But λ2 has mass dimension 1. Since the matching calculation involves only

UV physics, the only scale which can balance the explicit powers of mass is the

lattice spacing scale. (The infrared contribution cancels between fermionic and

bosonic loops, precisely because we have arranged the interactions to respect

supersymmetry.) Therefore, the terms in the loop-wise expansion are of order

δm2
φ at 1 loop: λ2/a ; 2 loops: λ4 ; 3 loops: aλ6 ; . . . . (2.4)

The one and two loop contributions are significant and must be removed by

an appropriate counter-term. However, three and higher loop effects vanish in

the a→ 0 limit, and so can be neglected.
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Fermion mass tunings are even easier,

δmψ at 1 loop: λ2 ; 2 loops: aλ4 ; 3 loops: a2λ6 ; . . . . (2.5)

Only perturbative tuning to one loop is required to remove all SUSY violating

effects up to O(a). For the scalar self-coupling λ2
s, the one loop correction is

already O(aλ4), and so a tree level treatment is already sufficient.

It is then clear that only a finite loop order is needed before all remaining

corrections are suppressed by powers of a. It is therefore feasible to perform

the matching calculation to the requisite order analytically, and to tune the

lattice theory based on the purely analytic result of this perturbative matching

calculation, to ensure that the IR effective theory satisfies all relations implied

by SUSY up to O(a) corrections.

The example theory we have used for this discussion, the 3D Wess-Zumino

model, contains most all the complications and difficulties associated with

this tuning already because it contains scalar fields. We have performed this

matching calculation in the past for theories with scalars, including the N=2

Wess-Zumino model and N=2 SU(Nc) SYM theory, both with arbitrary mat-

ter supermultiplets (fields transforming in the fundamental representation of

the SU(Nc) and their superpartners) [64]. This work required a complex but

straightforward determination of self-energies in lattice perturbation theory to

one loop for the fermions and two loops for the scalars.

In this chapter we will examine minimal supersymmetry in 3D. This the-

ory contains no scalar fields, so it is technically possible to remove all SUSY

violating effects up to O(a) with only a relatively simple one loop calculation

of the gaugino self-energy in lattice perturbation theory. We have chosen to

take the implementation one step further however by improving the Wilson
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action up to O(a2) with a Sheikholeslami-Wohlert (SW) term [43] (described

below). It is thus necessary to tune the fermion mass to two loops to eliminate

contributions up to O(a2). Though this calculation can certainly be performed

analytically, we advocate a very simple off-line nonperturbative determination

of the appropriate tuning factor in what follows. To remove all O(a) errors

from the lattice theory, it is also necessary to perform fermionic wave function

and field strength renormalizations to one loop in perturbation theory, which

we have also done below.

We should note that it has been known for some time in the context of min-

imal supersymmetry in 4D (see section 3.2 for more details) that it is possible

to protect a lattice theory from the appearence of spurious additive corrections

to fermion masses by implementing the fermions with a remnant of chiral sym-

metry with either the domain wall or overlap techniques. This technique can

be (and has been) implemented with Yang-Mills theory + a Majorana fermion

transforming in the adjoint representation of the gauge group and the result is

that the effective IR description is accidentally Super-Yang-Mills theory (with

the bare mass of the fermion set to zero). These same techniques are available

in 3 dimensions with the same basic result, however the large increase in com-

putational power required to implement these techniques, combined with the

relative ease of tuning fermion masses in a 3D Wilson fermion implementation,

makes these techniques much less attractive.

We should note also that these arguments work even better for lattice im-

plementations of theories in D<3. A 2D theory analagous to the one described

above would require even less tuning to have a supersymmetric IR description;

[λ]=1 in 2D, so the only O(a0) SUSY violating effect in the theory is a one

loop renormalization of the scalar mass.
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2.2 Extended supersymmetry in 3D

Numerous SUSY theories in D<4 can be implemented with this approach,

and it should be possible now to study a huge amount of important physical

concepts and phenomena in lower D SUSY field theories theories with current

thoeretical technology and relatively unspectacular computing resources. We

have already mentioned the N=2 theories in 3D [64], and we see no reason

these results should not easily generalize to more extended 3D SUSY theories

such as the N=8 SYM theory in three dimensions, which has been conjectured

by Seiberg to possess a non-trivial IR fixed point (an interacting conformal

theory) [65]. We should be able to generalize the results of [64] to the case of

N=4, 6, 8 with a minimum of work in fact, because the bare mass counterterms

that we calculated in that work were independent of group structure.

For example, We can construct N=4 SYM in 3D as N=2 SYM with a sin-

gle extra Chiral supermultiplet of scalars and fermions transforming in the ad-

joint representation of the gauge group, provided that we choose the couplings

appropriately to satisfy the extra supersymmetry (or R-symmetry) transfor-

mations. In this case the necessary mass counterterms that must be added to

tune the lattice theory to its SUSY limit are (in the notation of [64])

δM = g2CA
Cgf + 2Cyf

4π

δm2 = −2g2CA
Cys
4πa

+ g4

{
C2
A

C234 − 5
18

Σ2

16π2
− 4

3
TFCA(CF − 1

6
CA)

4πΣ

16π2

}

where C234 = Cfund
g2 + Cfund

g3 + Cfund
g4 = Cadj

g2 + Cadj
g3 + Cadj

g4 . (2.6)

These counterterms are constructed from those of [64]) by nf = 1, na = 0,

λ = 0, and TF , CF → CA (except in the last term of the scalar mass counterterm

where the group structure comes largely from the fully symmetric pure lattice

artifact piece of the 4-pt gauge boson vertex). Under these exchanges, the
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scalar counterterms are the same (as expected since now all fields transform

in the same representation of the gauge group and are rotated amongst each

other by the R-symmetry). Some care must be taken with the fermionic coun-

terterms, but the result is nevertheless straightforward. The equality of the

counterterms after these exchanges is dependent upon the relation in line three

of the above Eq. (2.6). We had not realized this equality in our previous work,

but it can be easily checked from the results of our numerical integrations to

be well within the stated error bars.

The N=8 (16 real supercharge) theory can be constructed similarly as

the N=2 SYM theory with 3 matter hyper-multiplets of the N=2 theory

(matter content: 4 Majorana fermions, a gauge boston, and 7 real scalar

fields) all transforming under the adjoint representation of the gauge group.

A lattice has recently been constructed in [66] to study this theory by a very

different technique. Gerneralizations to other 3D SUSY theories should be

straightforward; though we have not examined each theory in detail, we believe

that numerical studies of any 3D SUSY theory (modulo the existence of a

fundamental hinderance to lattice implementation such as a gauge anomaly)

could be undertaken immediately.

2.3 3D N=1 SYM in the Continuum

The field content of the theory consists of a gauge field and a 2-component,

Majorana fermion in the adjoint representation (gaugino). In 4-dimensional

notation, the gaugino is a 2-component Weyl fermion which has been further

reduced from 2 complex to 2 real components by the application of a Majorana

condition (possible in 3 dimensions). The Euclidean action is

S =
1

g2

∫
d3x

(
1

4
F a
µνF

a
µν +

1

2
ψ̄a( /Dψ)a

)
. (2.7)
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With these conventions the eigenvalues of the Dirac operator are all pure

imaginary. Because the fermion is in a real representation of the gauge group,

the fermionic operator possesses a doubled spectrum; if ψλ is an eigenvector of

/D with eigenvalue iλ, then ǫψ∗
λ (where ǫ = −iσ2) is also an eigenvector with

the same eigenvalue;

σµDµψλ = iλψλ

σ∗
µDµψ

∗
λ = −iλψ∗

λ

ǫσ∗
µDµψ

∗
λ = −iǫλψ∗

λ

σµDµ(ǫψ
∗
λ) = iλ(ǫψ∗

λ) . (2.8)

The Majorana condition consists of taking only one of these degenerate sets

of eigenvalues to define the fermion contribution to the path integral. That is,

in the path integral replace

det /D =
∏

i

λi →
√

det /D =
∏

i

′ λi (2.9)

where
∏
i
′ is defined by taking only one eigenvalue from each degenerate pair.

We can add a Chern-Simons term to this action in 3D provided we include

an appropriate mass term for the fermions so that SUSY is retained:

SCS = − ik

16π

∫

x
ǫµνρ

(
F a
µνA

a
ρ −

1

3
fabcA

a
µA

b
νA

c
ρ

)
+

1

2

k

4π

∫

x
ψ̄aψa (2.10)

≡ −2πikNcs +
1

2

m

g2

∫

x
ψ̄ψ , m =

g2k

4π
.

Here k is the level of the CS theory or CS coupling. It is straightforward to

check that the action is indeed invariant under the SUSY transformations

δAaµ = ᾱσµψa , δF a
µν = ᾱ(σν∂µ − σµ∂ν)ψa

and δψa = − i

2
ǫµνρF

a
µνσρα , (2.11)
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with α the Grassman valued Majorana spinor parameterizing the SUSY trans-

formation. Our convention for Majorana spinors is s̄ = s⊤ǫ.

It has long been known [67, 32] that - for gauge group SU(Nc) - k must

equal Nc/2 modulo an integer to avoid a gauge anomaly so that, in particular,

the theory with odd Nc is ill defined for vanishing CS term. In Sec. 2.3.1

we review this argument and present a similarly motivated argument for the

theory with even Nc that implies that these theories are also ill defined for

vanishing k.

2.3.1 Anomalies in 3D SU(Nc) SYM

In [60] Witten gave the first example of a theory with a rooted determinant

that is sick with a global gauge anomaly, namely 4D SU(2) gauge theory with

an odd number of left-handed fermion doublets. The problem with this theory

is that it is impossible to define the fermionic determinant over the space of

gauge connections (gauge fields modulo all gauge transformations) such that

it is both continuous and single-valued.

We will review the 3D analog, formulated by Redlich [67] for gauge group

SU(Nc), which is slightly simpler and is of immediate importance for the cur-

rent discussion. The general issue is that there are phase ambiguities in per-

forming Grassman integrations. This is a problem in writing a path integral

unless the phase ambiguity can be reduced to a single gauge-field independent

phase, which factors out from the partition function and cancels in determin-

ing any correlation function. Therefore we pick some gauge field A0, (chosen

so that the Dirac operator has no zero eigenvalues) and call its contribution

to the path integral real and positive. Then we determine the sign for any

other configuration A by insisting on continuity of det /D along a path from A0
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to A. This is possible for any gauge field because our group manifold is path

connected.

The procedure is sketched in Fig. 2–1: we watch the low lying eigenvalues

of the spectrum as the path parameter t is varied from 0 to 1 and count the

number of eigenvalue pairs that change sign from positive to negative. This

gives the relative sign of the two determinants in the path integral.

A(t=0)
A(t=1)

t=1t=0

Figure 2–1: A path in configuration space and its associated eigenvalue flow

This prescription is unique unless the number of eigenvalue zero-crossings

depends on the path. This can happen because the space of connections is

multiply connected; if two paths from A0 to A form a noncontractible loop,

there is no guarantee that they lead to the same sign choice for det /D(A).

Call the space of 3D gauge connections X. It contains noncontractible

loops if the third homotopy group π3 of the gauge group is nontrivial. (It is

the third homotopy group because we are in 3 dimensions.) This is the case

for all SU(Nc), for which π3 = Z. Consider a nontrivial loop from A0 back to

A0. This path is effectively a 4D gauge field configuration, where the space

is S1× 3D space and the 4D gauge fields are AM = (Aµ, A4 = 0). The path

is noncontractible if the instanton number of this gauge field configuration is

nonzero. The four dimensional Weyl determinant has a number of zero modes
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A(t=0)

A(t=1)

Figure 2–2: A closed loop in configuration space with a non-trivial winding
number

determined by the Atiyah-Singer theorem [68, 69, 70]; for the fundamental

representation this is 1 and for the adjoint representation this is 2Nc. The 4D

zeros correspond to zero crossings, and therefore sign flips, of the 3D fermionic

determinant. If the number of sign flips in traversing the loop is odd, then

the definition of the determinant cannot be both continuous, nontrivial, and

single valued.

For our case this is relevant because we want the square root of the Weyl

determinant; the 2Nc zero crossings become Nc zero crossings when we choose

one from each pair of eigenvalues, and this leads to a sign flip if Nc is odd.

There is an additional sign if the theory is defined with a nonzero Chern-

Simons term. The CS term picks up a factor of 2πν in traversing a path of

instanton number ν, so the path integral picks up an overall factor of

(−1)νNc exp(i2πνk) . (2.12)

This implies that, in order to avoid a gauge anomaly, k=Nc/2 modulo an inte-

ger. Only certain (half-integer) values of the Chern-Simons term are allowed,

and in particular, the theory with Nc odd and vanishing CS term is ill defined.

We will now show that the supersymmetric theory with Nc even and Chern-

Simons coefficient k = 0 (and therefore fermion mass of zero) is also anomalous,
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a point which to our knowledge has not been noticed before. Consider a

configuration A(x) and its parity dual A′(x) = −A(−x). We claim that these

give canceling contributions to the partition function if the Chern-Simons term

is absent and the fermion mass is zero. They clearly have the same bosonic

action, so we must show only that their rooted fermion determinants are equal

and opposite. We define the sign of the rooted determinant for configuration

A(x) to be positive and connect them with a path from A(x) to the trivial

vacuum and from the trivial vacuum to A′(x) via the parity dual of this path

(see again Fig. 2–1).

The Dirac operator for the trivial vacuum configuration has (N2
c −1) pairs

of zero eigenvalues (we implicitly work on a torus with standard boundary

conditions). There are then (N2
c −1) pairs of eigenvalues that cross zero at the

vacuum configuration. Furthermore, if n+ pairs cross zero somewhere on the

path betweenA(x) and the vacuum, than the number of pairs n− that cross zero

between the vacuum and A′(x) will be the same. The total number of pairs

which change sign in going from A(x) to A′(x) is therefore (N2
c −1)+2n+. This

is odd, so the fermion rooted determinant flips sign and the configurations give

canceling contributions to the partition function, which vanishes identically.

An example of the eigenvalue flow for gauge group SU(2) is shown in Fig. 2–3

for the case m=0.

This problem is avoided at nonzero Chern-Simons term because A(x) and

A′(x) have opposite Chern-Simons number and so enter the partition function

with opposite phase, rather than canceling. Similarly, at nonzero fermion

mass the eigenvalues of the Dirac operator are complex and introduce nonzero

phases which are opposite between the configuration and its parity dual.
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A’(x)  VacuumA(x)

Figure 2–3: Flow of almost zero mode eigenvalues of the Dirac operator as
the configuration is varied between parity conjugate gauge fields on a path
through the vacuum.

Figure 2–4: Eigenvalues for 20 Wilson fermion configurations in a 83 box at
g2a = 0.5, illustrating the “return loops” in the complex plane.

2.3.2 Regularization dependence of determinant

It is necessary to clarify what is meant by the “continuum” fermionic de-

terminant. The issue is that continuum theories are always defined as limits

of discrete (or otherwise regularized) theories and in a discrete theory with

volume regularization there are a finite number of eigenvalues for the Dirac

equation. In traversing a closed loop with nonzero instanton number, we just

saw that a nonzero number of eigenvalues cross from negative to positive value.

Since the final configuration is the same as the starting one, it has the same

spectrum. Since there are a finite number of negative eigenvalues, there must
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be some compensating flow of positive eigenvalues to negative, somewhere in

the complex plane. In other words, eigenvalues must “return” somewhere in

the complex plane. We illustrate this for Wilson fermions in Fig. 2–4. The fig-

ure superimposes the eigenvalue spectra, in the complex plane, of 20 quenched

gauge field configurations in an 83 box with lattice spacing g2a = 0.5. Each

dot is a pair of eigenvalues (the pairing of the spectrum discussed in the last

section occurs for both the Wilson and overlap lattice implementations of the

Dirac operator). The spectrum of eigenvalues for /D parallels the imaginary

axis near zero but bends out into the complex plane for large eigenvalues

λ ∼ 1/a and forms a loop, so eigenvalues moving from negative to positive

values “push” eigenvalues around the loop to reappear at negative values.

These extra vanishing-imaginary-part eigenvalues are the lattice fermion dou-

blers which have been pushed out into the complex plane by the Wilson term;

for the Wilson action in 3 dimensions there are actually 3 extra places where

eigenvalues cross zero imaginary part, corresponding to (π, 0, 0), (π, π, 0), and

(π, π π) type doublers.

The problem is that this “return loop” will contribute to the partition

function even in the continuum limit. Because it represents deeply UV physics,

its contribution to the partition function must be representable in an effective

IR description in terms of local effective operators. The 3D theory has only

one marginal operator, which is the Chern-Simons term. Therefore the return

loop can (and will) induce a Chern-Simons term, but will not otherwise change

the infrared description (in the small a limit). It is easy to see that the size

of this Chern-Simons term is fixed by the rate of spectral flow near zero;

the number of eigenvalues which circle around the loop must be the number

needed to refill the negative eigenvalues when the spectrum flows upwards.
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The sign of this extra Chern-Simons term depends on whether the return loop

is at positive or negative imaginary part, which is a regularization detail. The

desired continuum theory is the one in which this regularization effect has been

removed by a Chern-Simons number counterterm.

2.4 The Discretization

This section describes the discretization of N=1 SYM with a Chern-Simons

term in 3D. The theory contains nontrivial phases; that is, different gauge

field configurations contribute to the partition function with different complex

phase as well as different magnitude. The plan is to treat this using the Ed-

inburgh method; one studies the theory on the lattice by building a Markov

chain sample weighted by the magnitude of the action
∣∣∣exp(−S)

√
det /D

∣∣∣ and

then includes the phase as part of the observable. Phase cancellation reduces

the statistical power in a volume dependent way. Therefore our implementa-

tion is on the same footing as finite chemical potential simulations in QCD;

they work in principle, but whether they work in practice depends on how

severe the phase cancellation problem turns out to be.

The implementation consists of two parts; the real part of the bosonic

action and magnitude of the fermionic determinant, and the phase. The real

bosonic action is completely standard. We describe the magnitude of the

determinant first, then the Chern-Simons part of the phase, then the phase in

the determinant.

2.4.1 Fermion Implementation

Though there may be some advantages to using an overlap fermion imple-

mentation to do the simulation, we believe that the numerical simplicity of

the Wilson implementation makes it a much more sensible choice. The usual

problems with Wilson fermions are less severe than in 4 dimensions; chiral
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symmetry is a non-issue because there is no such thing in 3 dimensions, and

the additive renormalization of the mass is well behaved because the theory is

super-renormalizable. One can easily work at a fine lattice spacing where the

problem of exceptional configurations is well under control (note that we are

only interested in the theory at finite fermion mass, since as we just argued

the massless theory is anomalous).

The fermionic action reads

SW = a4
∑

x

ψ̄x

(
m0 +

3r

a

)
ψx

−a4
∑

x, µ

ψ̄x
(r − σµ)Uµ(x)ψx + (r + σµ)U

†
µ(x−µ)ψx−µ

2a
. (2.13)

We can improve the convergence of the spectrum to the continuum limit from

O(a) to O(a2) via the 3D analog of the Sheikholeslami-Wohlert term [43] (SW)

term

Ssw = a4
∑

x, µ, ν

rcsw
16

ψ̄x[σµ, σν ]
(
Pµν(x) − P †

µν(x)
)
ψx (2.14)

Here Pµν(x) is the average of the 4 plaquettes in the µν plane as shown in

Fig. 2–5. This improvement is probably necessary to implement simulations

at reasonable lattice spacings.

? �
-

6
µ

ν

Uν

Uν

Uµ Uµ

U †
ν

U †
µ

U †
ν

U †
µ

=
1

4
Tr
(
U †
µ(x)U

†
ν (x+µ)Uµ(x+ν)Uν(x) + . . .

)

Figure 2–5: Clover field strength for the Sheikholeslami-Wohlert improvement
term.
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Since the 3D theory is superrenormalizable we need only the tree level

determination of the SW coefficient, csw=1, to remove O(a) corrections other

than mass renormalizations. Much of the complication of the improvement in

4D is thus avoided in the 3D version.

The improvement to the spectral properties is quite dramatic, though it

parallels closely the improvement in 4D so we refer the interested reader to,

for example, [71] for analysis of 4D Dirac operator spectra with improved

and unimproved actions in a situation which is fairly analogous to the cases

we consider in 3D. Fig. 2–6 shows an example of the improvement to the

physical branch of the spectrum for 20 configurations on a 143 lattice with

g2a = 0.5. Improvement “squeezes” the eigenvalues toward the solid line–a

parabola incorporating the “bending” in the complex plane present in the tree

level Dirac operator due to the k dependence of the Wilson term. The spectra

shown are shifted appropriately so that both represent a fermion determinant

for the case of zero physical mass.

The disadvantage of Wilson fermions is that we must tune the fermion

mass to remove an additive correction. To consistently improve the theory to

eliminate all O(a) errors we need to do this at the two loop level (see [64] for

a discussion). Here we present the calculation of the one-loop mass countert-

erm; in practice both one and two loop counterterms can be determined quite

easily numerically by analyzing the low-lying eigenvalues in the Dirac operator

spectrum at a few different lattice spacings.

The SW term modifies only the ψ̄Aψ vertex. Following closely the 4D

treatment of [72] we determine the new three point vertex to be (with ψ̄(p),
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Figure 2–6: Physical branch of the spectrum of the Wilson-Dirac operator; 20
superimposed configurations (left) with and (right) without improvement (143

lattices with g2a = 0.5)

ψ(p′) and A(k=p′−p))

(
Vµ
)a
bc
(p, p′)=−gT abc

(
iσµ cos

(p+p′)µ
2

+
r

2
˜(p+p′)µ +

cswr

4
[/̂k, σµ] cos

kµ
2

)
. (2.15)

The one-loop bare mass counterterm required to tune the theory to its SUSY

limit, for Wilson coefficient r = 1, is

δm =
g2CA
4π

(−2.3260) =
C2
A

2πβ
(−2.3260) , (2.16)

with CA the first Casimir of the adjoint representation of the gauge group -

CA=Nc for SU(Nc).

To eliminate all O(a) errors it is also necessary to compute a fermionic

wave-function renormalization at 1-loop (which can be interpreted as an O(a)

multiplicative renormalization of the mass) and a 1-loop renormalization of

the field strength (or equivalently of g2, or equivalently of the lattice spacing).

The contribution of bosonic loops to the gauge coupling renormalization was
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computed in [73], and the fermionic contribution is not difficult. In the same

notation as that previous work,

Llatt(x) =
2

Zgg2a4

∑

i<j

Tr(1−Pij(x))+Zψψ̄
(
DW +Dsw +

Zm
Zψ

m+
δm

Zψ

)
ψ, (2.17)

where it was determined that

Zbos.
g = 1 − ag2

4π

(
2π

9Nc

(2N2
c −3) +Nc

(
37ξ

12
−π

9

))
with ξ=0.152859325, (2.18)

we have

Zm
Zψ

= 1 − ag2Nc

4π
em with em = 2.75066732(8) (2.19)

and Ztotal
g = Zbos.

g − ag2Nc

4π
eg with eg = 0.204254488(7). (2.20)

To treat Nf fundamental representation fermions rather than one adjoint with

a Majorana condition, replace Nc → Cf in the expression for Zm/Zφ and

change Nc → Nf in the expression for Zg (the 1/2 trace normalization group

theory factor cancels a factor of 2 from not imposing the Majorana condition).

As already mentioned, δm is easily measured nonperturbatively by - for

example - looking at the lowest lying eigenvalues of the Dirac operator for a

range of β values and fitting to find what value of δm is needed to get the

zero imaginary part eigenvalues to have vanishing real part as well. To tune

out the O(a) error analytically would require a 2-loop determination of the

fermion self energy, which is much more difficult.

The numerical implementation of the magnitude of the determinant is

achieved by including (detD†D)1/4 in the path integral, which can be accom-

plished by conventional pseudofermion techniques. There should be no issues

with locality (we believe) because the operator’s spectrum is doubled, so the

fourth root is actually well defined (up to a phase).
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2.4.2 Evaluation of Chern-Simons number

Here we detail how to determine the Chern-Simons number of a 3D lat-

tice configuration. Our approach is borrowed from an investigation of the

electroweak sphaleron rate by one of us [74], but we summarize it here for

completeness.

The literal definition of Chern-Simons number NCS in terms of the inte-

gral of F∧A − 1
3
A∧A∧A, given in Eq. (2.10), is too gauge dependent and

lattice spacing sensitive to be of much use, so we use instead the following

(gauge invariant) properties of Chern-Simons number, which can be taken as

a definition of NCS, modulo an integer:

• NCS for the vacuum is 0 (modulo an integer); and

• the NCS difference between two configurations is (modulo an integer)

equal to the integral of ǫµναβ Tr FµνFαβ/32π2 along a path through con-

figuration space connecting those configurations.

The second point requires some clarification. As previously discussed, given

two 3D configurations Ai1(x), Ai2(x), one can find a path connecting them

through gauge field configuration space; that is, one can find Ai(x, τ) with

τ ∈ [0, 1] an affine parameter and Ai(x, 0) = Ai1(x), Ai(x, 1) = Ai2(x). We

may think of the path as a 4-dimensional gauge field configuration, with τ

as the fourth coordinate, D0 ≡ Dτ , and F0i = i[D0, Di]. The NCS difference

between two configurations is the integral

NCS(A2) −NCS(A1) =
∫
d3x

∫ 1

0
dτǫijk

Tr F0iFjk
8π2

. (2.21)

We have not specified how A0 is to be chosen along the τ direction, but this

turns out not to matter; a different choice leads to a change in F0i of DiδA0,

but the Di can be integrated by parts onto Fjk and ǫijkDiFjk vanishes by the
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Bianchi identity. The idea is then to define NCS for a configuration (mod-

ulo an integer) by finding a path from that configuration to the vacuum and

integrating FF̃ along that path.

The complication in using this approach to define NCS on the lattice is that

there is no lattice definition of the field strength Fµν which satisfies the Bianchi

identity; therefore the procedure is ambiguous. Further, no specific prescrip-

tion for choosing A0 generically leads to an integer NCS around a closed loop.

There are mathematically rigorous [75, 76, 77] and numerically implementable

[78, 79] methods to find the integer value around closed loops, but these are

not helpful here, since we really want the value on a path with distinct be-

ginning and end points. The trick instead is to note that the problems with

lattice implementations of FF̃ arise when the fields are “coarse” (plaquettes

far from identity, most of excitations at the lattice spacing scale). We can

define NCS uniquely by choosing any unique prescription for a path from a

configuration to the vacuum. We can ensure that the result is as close as pos-

sible to the continuum meaning of NCS if our unique prescription is one which

quickly smooths out the lattice-spacing scale fluctuations in the gauge field

configuration. The early “smoothing out” part of the path then contributes a

small UV “lattice artifact” contribution to NCS and the remaining path gives

a contribution which closely resembles the continuum value of NCS for this

configuration.

A good choice is the “cooling path” or gradient decent under the energy,

DτA
i(x, τ) = −∂H [A(x, τ)]

∂Ai(x, τ)
, H [A] ≡

∫
d3y

1

2
Tr F 2

ij [A(y, τ)] . (2.22)
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We use a Symanzik [80, 81] or “rectangle-improved” definition of H and of the

field strength appearing in FF̃ , as described in [74], which also shows extensive

tests of the approach.

To summarize, the procedure is to determine the Chern-Simons number

of a lattice configuration by integrating FF̃ along the “cooling” or gradient-

decent path through configurations to the vacuum. The procedure is unique

and gives an answer which is continuous over the space of gauge field con-

figurations except at a “sphaleron” separatrix, where it is discontinuous by

(almost exactly) an integer. If Markov-chain configurations are tightly enough

sampled, one can determine the integer part by continuity.

On fine lattices this definition of Chern-Simons number should correctly

reproduce the continuum notion up to corrections suppressed by two powers

of the lattice spacing.

A straightforward alternative method to implement integer Chern-Simons

numbers would be to evaluate the phase in the determinant of a fundamental

representation Wilson fermion with a negative mass of order the lattice spacing

(so the origin of the complex plane is inside the leftmost “circle” in Fig. 2–

4). This method would be numerically much less efficient, since the numerical

effort in taking a determinant rises as the third power of the number of lattice

points or a9, while the approach presented only grows worse as a5 and can be

reduced to a3 through the careful use of blocking [74].

2.4.3 Fermionic phase

Since in practice only the magnitude of the rooted fermion determinant

can be included dynamically in a lattice simulation, we must still describe a

prescription for assigning to the Wilson-Dirac operator a phase for each field
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configuration in order to complete the prescription for the discretization of the

theory.

One approach to do this would be to explicitly evaluate the (complex) de-

terminant of D for each configuration in the Markov chain and then halve the

phase, fixing the sign ambiguity by using a tightly sampled Markov chain and

demanding continuity. Then one must subtract the Chern-Simons phase con-

tribution from the “return loop” discussed in Subsection 2.3.2. This approach

is correct but numerically expensive.

After correcting for the Chern-Simons term induced by the “return loop”

this phase is dominated by the contributions of the low lying eigenvalues, so we

can develop a more efficient procedure by focusing on determining the phase

arising from these eigenvalues. Since this point is key to our approach we

should explain it in a little detail. Look again at Fig. 2–6. In the continuum

limit the eigenvalues will lie, not on an arc, but on a straight line with real part

m and imaginary part set by the eigenvalue under the /D operator (for the free

theory, by k). At large eigenvalue the weak-coupling approximation is valid

(since the theory is super-renormalizable this is true by a power of the eigen-

value). The density of eigenvalues therefore scales with the free theory density

of states, k2dk. An eigenvalue’s phase difference from ±π
2

is tan−1(m/k), so

naively the phase arising from large eigenvalues could be large. What is im-

portant, though, is the phase difference configuration by configuration, and

this becomes small, essentially because the large eigenvalues do not change

very much as a function of the gauge field. To see this, note that the large

eigenvalues represent short-range physics. The influence on the effective IR be-

havior can be expanded as Wilsonian renormalization of effective IR operators.

The lowest order parity-odd operator is the Chern-Simons term; all others are
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higher by at least two powers of derivatives and therefore suppressed by at

least g4/k2. Since we are allowing O(a2) errors, the only operator we need to

incorporate correctly from the large k eigenvalues is therefore their contribu-

tion to the Chern-Simons term. Therefore our strategy will be to include low

eigenvalues’ phases explicitly and to determine the phase contribution of large

eigenvalues in terms of their contribution to an effective Chern-Simons term.

We can extract the smallest M eigenvalues using the Arnoldi method at

much less numerical effort than is required to determine the full determinant.

Each such eigenvalue λi of the Wilson-Dirac operator with renormalized mass

m takes a value in the complex plane, (ri, ii). In the continuum limit the real

parts ri always equal m. At finite lattice spacing there will be O(g4a2) and

O(i2a2) deviations in the real part. (There would be O(g2a) deviations arising

from the dimension 5 operator ψ̄σµνF
µνψ had we not included the SW term.)

We “clean” the low lying eigenvalues by projecting them to the r = m axis,

see Fig. 2–7. Each eigenvalue then contributes a phase

φi = tan−1




√
(ri −m)2 + i2i

m


 . (2.23)

This amounts to projecting the physical branch of the Wilson-Dirac spectrum

onto the axis of the continuum spectrum and then calculating the phase as

sketched in Fig. 2–7. The idea is to incorporate the phase of all eigenvalues

for which the angle φi lies in a range [−φmax, φmax]. In the a → 0 limit we

must take φmax → π
2
. This requires more eigenvalues at finer lattice spacing;

this can be made more efficient by using the shifted Arnoldi method.

The Markov evolution of the gauge fields Uµ will move around the eigen-

values so that eigenvalues regularly move in and out of the “window” in which

we explicitly include them. When an eigenvalue goes above or below φmax, the
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Figure 2–7: Sketch of the projection for the phase prescription.

phase we determine will abruptly change by ∓φmax. Therefore each configura-

tion along the Markov chain must be reasonably close to the last, so that these

phases can be determined by continuity. The change in phase between neigh-

boring configurations U1,2 contributed by all eigenvalues lying above φmax and

below −φmax is simply an effective Chern-Simons term, as discussed above.

The size of the contribution can be determined by considering the amount of

spectral flow due to a changing Chern-Simons number, and is well approx-

imated by 2(π
2
− φmax)Nc (NCS(U2) − NCS(U1)). We have confirmed this in

quenched simulations, for instance by analyzing the φmax dependence of the

procedure and seeing that this contribution ensures independence on this ar-

tificial parameter. If we choose the vacuum with, for example, NCS = 0 to

have zero phase, then this prescription uniquely determines a phase for all

configurations.

2.4.4 The sign (or phase) problem

Now that the appropriate implementations of the fermionic field content

and the Chern-Simons term have been detailed there remains no fundamental
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barrier to the simulation of the theory and so we turn our attention to an

important technical issue of the simulation.

The lattice simulation consists of replacing the path integral by a sum over

a finite set of link field configurations that are distributed with a probability

given by the Boltzmann factor for the theory, | exp(−S[U ])|. For complex

action, the ensemble average for an observable O will be

〈O〉 ≈
∑N
i=1 O(Ui)e

iφi

∑N
i=1 e

iφi
, (2.24)

where φ = arg exp(−S[U ]). Obviously this leads to cancellations between link

configurations from the sampling, and thus to a reduction in statistics. That

is, for a sample of N independent configurations, the error in the numerator

scales as
√
N ; but the denominator will be smaller than N , so the error in the

operator will not be 1/
√
N . This problem could be eliminated by performing

“phase quenching” on the theory, but this does uncontrolled damage to the

theory which in our case we believe is severe. Therefore we must face this

phase cancellation issue.

To determine how bad the phase cancellations will be, we start by looking

at the theory with very large fermion mass, so that the effect of integrating

out the fermion is well approximated by a shift to the Chern-Simons coeffi-

cient, k → k − Nc/2. In large volumes, we expect that Ncs will be Gaussian

distributed around zero. The degree of phase cancellation is determined by

how badly our determination of 1 in the denominator of Eq. (2.24) is “sup-

pressed”: all measurables must be scaled by the result of the partition function

which we evaluate as 〈1〉 with the average replaced by a sum on configurations

with phases. Fluctuations go as 1/
√
N with N the number of configurations

(unless each configuration contributes better statistics–this depends on the
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measurable). The point is that these fluctuations are to be compared with an

average value which suffers phase cancellation. We estimate this by doing the

(Gaussian) integral over Ncs to find how big the partition function actually is:

〈1〉 =
∫ dNcs√

2πχ
exp(−i2πkNcs) exp(−N2

cs/2χ) (2.25)

with χ the variance of Ncs and k the effective Chern-Simons coefficient. The

integral gives

exp(−2π2k2χ) . (2.26)

Figure 2–8: (color online) Variance of NCS as a function of volume, for two
lattice spacings, in quenched SU(2) gauge theory and using the definition of
NCS presented in the text.

Fig. 2–8 shows the dependence of χ/V on the volume of the lattice, in

quenched simulations. As the figure shows, going to a finer lattice induces a

constant shift in χ, and the volume dependence becomes weak for boxes larger

than about 8/g2. At this value, on a “reasonably fine” lattice of g2a = 0.5

[β = 8], the NCS variance is about .175, leading to a sign problem induced loss

of statistical power of order exp(−2π2k2×.175) = 1/30 for k = 1. This volume

is therefore at the limit of practicality. Statistical power falls exponentially if

we try to make the volume any larger. However, a box of length 8/g2 is
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very large. The theory has a mass gap and the large volume limit should be

approached rapidly in a box a few times longer than the longest correlation

length. For the SU(2) theory, the lightest glueball mass is m0++ ≃ 1.66g2 [82]

and the inverse correlation length involved in the Debye mass is ≃ 1.14g2 [83].

These both suggest that the dominant physics is on quite short scales ∼ 1/g2,

though the string tension suggests a longer correlation length 1/
√
σ ≃ 3/g2

[82]. Therefore this volume is probably sufficient to effectively achieve the

continuum limit.

The sign problem grows more severe at large k, as indicated by Eq. (2.26).

Fortunately the mass scales with k, so we can reduce the volume as V ∝ 1/k3

in the large k limit. We must also tighten the lattice spacing a to keep ka fixed,

and since 〈N2
CS〉 turns out to have a linear UV divergence (which causes the

lattice spacing dependence observed in Fig. 2–8), this means that χ will scale

as V/a ∼ k−2. In the large k limit the severity of the sign problem therefore

approaches a finite limit.

Fig. 2–8 is based on quenched configurations. When we include the effects

of dynamical fermions, we expect the situation at small k to improve for two

reasons. The first is that inclusion of the magnitude of the determinant in

the Boltzmann factor suppresses configurations with large NCS (an effect we

have observed in preliminary quenched simulations). This is not surprising

since we know that Dirac operators for configurations with half-integer NCS

(sphalerons) have zero eigenvalues. We thus expect this suppression to be

more effective at smaller fermion masses. We will not attempt to quantify this

statement further.

The second reason is that the phase contributed by the determinant par-

tially cancels against the phase from the Chern-Simons term. For large fermion
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mass, for example, we know from continuum methods that integrating out the

fermion gives a shift in k or, equivalently, a contribution to the partition

function exp(iπNcNCS). Furthermore, we have confirmed for the case of Nc=2

Wilson-Dirac fermions – with the prescription described above for assigning de-

terminant phases – that this is approximately the phase of the rooted fermion

determinant for the relatively small masses (k=1, 2, 3) of interest here. An ex-

ample is shown in Fig. 2–9 for k=1. In this case the cancellation of the phase

in the partition function is nearly exact, and the phase problem disappears.

Finally we remark that, in the algorithm for determining NCS, one can begin

the integration of FF̃ after a short amount of cooling, eliminating the con-

tribution from the most UV modes. This eliminates a lattice artifact “noise”

contribution to χ but leaves that from interesting IR physics intact.

50 100 150 200

2

4

6

8

Figure 2–9: Evolution of the phase of the rooted fermion determinant over a
Markov chain of length 200. The continuous line is 2πNcs. The system transi-
tions through a sphaleron and subsequently fluctuates around the topologically
distinct vacuum at 2π.

2.5 Conclusion

Three dimensional minimally supersymmetric gauge theory can be imple-

mented on the lattice (as can extended supersymmetry). As we showed, this
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theory necessarily involves complex phases; the theory with vanishing Chern-

Simons term and massless fermions is anomalous because the path integral is

odd under parity transformations and the partition function therefore vanishes

identically.

Our implementation has concentrated on numerical efficiency. Lattice spac-

ing corrections should first occur atO(a2). Fermions need only be implemented

using the clover-improved Wilson method, not the much more expensive over-

lap method. The Chern-Simons phase can be determined without reference

to fermionic operators, and the phase in the rooted Dirac determinant is de-

termined by finding only the low lying eigenvalues using the Arnoldi method,

rather than by taking the full determinant. This efficiency is important be-

cause the theory suffers from a sign problem which will make it difficult to

take the large volume limit. We are guardedly optimistic that the sign prob-

lem will not be as severe as might be feared. First, the phase of the fermionic

determinant and of the Chern-Simons term are of opposite sign and partially

cancel. Second, when the Chern-Simons term is large, the theory is massive

and the volume requirement should be reduced.

Now that an implementable method has been presented, it would be very

interesting to study 3D N=1 SYM on the lattice. In particular it would

greatly improve our insight into nonperturbative supersymmetry breaking if

we could study and (presumably) verify Witten’s conjectures regarding spon-

taneous SUSY breaking in this theory [32]. It would also be interesting to

study extended SUSY theories nonperturbatively in 3D, both for their own

phenomenology and because we can learn many things through these relatively

simple and numerically inexpensive simulations that would provide valuable

insights into techniques and phenomenology for lattice studies of 4D SUSY
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field theories, which require vastly more resources. We now turn our attention

to these 4D theories.
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CHAPTER 3
4D Supersymmetry on the Lattice

3.1 Some succeed while others fail

It is often assumed that the study of supersymmetry on the lattice will be

difficult or impossible in four dimensions because multiple relevant/marginal

operators that violate SUSY are allowed by lattice symmetries (see section

1.3). This is partially correct, as we will explore in the following sections.

In Section 3.2 we will discuss some of the work on N=1 Super-Yang-Mills.

In this case SUSY arises accidentally in the continuum limit, once the appro-

priate fermion implementation has been established. In Secs. 3.3 and 3.4, we

will contrast this rather elegant result with two examples of theories that have

yet to find satisfactory lattice implementations, N=1 Wess-Zumino theory,

and N=2 Super-Yang-Mills theory. In both cases it is the presence of scalar

fields and Yukawa terms in the model that hamstring the approach, and both

offer interesting lessons that we will apply to N=4 Super-Yang-Mills in the

next chapter.

A rather large literature exists on approaches to discretizing SUSY theo-

ries in ways very much unlike conventional lattice action transcriptions. The

basic idea in each approach is to try and find creative discretizations that pre-

serve some (usually small) amount of the supersymmetry directly in the lattice

action, so that some (or perhaps even all) of the fine tunings can be made un-

necessary. Two of these approaches, the “orbifold” prescription [66, 84, 85, 86]
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and the “twisted SUSY” prescription [87, 88, 89, 90, 91] have gained some pop-

ularity and momentum in recent years. These efforts have shown some results

already in low-D supersymmetric theories [92], and the hope is that they can

be successfully extended to 4D [91]. Only a highly restricted set of theories

can be implemented with these techniques thus far however (N=D=2, 4 and

some of the respective dimensional reductions of these), and there are many

unresolved issues in general and with the 4D actions in particular. We will

discuss the twisted formulation and some difficulties of the technique in some

detail in section 3.5. We take the perspective that many different avenues of

study will be necessary to understand the vast and rich nonperturbative phe-

nomenology of supersymmetric field theory, and so none should be ignored. A

good review of these efforts is [93].

3.2 N = 1 SYM, with and without GW fermions

Pure N=1 Super-Yang-Mills [94] is a notable exception to the major dif-

ficulties of 4D lattice supersymmetry. In this case, the only SUSY-violating

operator that is generated in the effective action unsuppressed by the lattice

spacing is a gaugino mass term. Two ways to implement this theory on the

lattice have been persued heavily in the last decade. The continuum action of

N = 1 SUSY is

L = −1

4
F 2 − 1

2
ψ̄/∂ψ . (3.1)

The first method was proposed by Curci and Veneziano as early as 1987

[95], and requires only well established tools of lattice simulations. It was

popularly assumed before this that SUSY and the lattice could simply not
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be reconciled at all, barring the development of some sort of novel new the-

oretical technique. By simply implementing Yang-Mills theory and an ad-

joint Majorana gaugino both with the usual Wilson actions however, and then

tuning the gaugino mass by some nonperturbative mechanism (such as those

described in section 4.3) to zero, supersymmetry can be restored in the con-

tinuum limit. The idea is precisely the same as we employed in the last chap-

ter to implement minimal supersymmetry in 3D and it has been employed

in 4D simulations with limited to moderate success over the last ten years

[96, 97, 98, 99, 100, 101, 102, 103], mostly by the DESY-Munster-Roma col-

laboration (or subsets). The dissertation of Roland Peetz [104] gives a good

review of much of these efforts.

The other option is to implement an exact lattice chiral symmetry in the

form of Ginsparg-Wilson (GW) fermions (see section 1.2.8). This prevents

additive renormalization of the gluino mass in the continuum limit, and hence

the only SUSY-violating operator is forbidden in that limit by setting the bare

mass to zero [105, 106, 107, 108, 109, 110, 111]. It is the latter technique which

appears to hold the most promise for now; ‘See especially [111] for exciting new

results that are just being minted. We will use this technique in the following

chapter to implement the N=4 theory.

3.3 When scalars attack: N = 1 WZ theory in 4D

The N=1 Wess-Zumino model is the simplest SUSY theory one can write

down, in terms of both field content and interactions. The field content is a

single complex scalar field and a single Majorana fermion. The interaction

terms are ultralocal and so are easily transcribed to a bare lattice action. The
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continuum action is simply

L = |∂µΦ|2 + ψ̄/∂ψ + λΦψ̄ψ + λ2(Φ∗Φ)2 . (3.2)

Given these facts, we might expect that a lattice implementation of this

theory would be possible. The problem arises because there are no symmetries

in the theory to protect against generation of scalar masses from quantum

effects except for the very supersymmetry that is broken by the lattice. The

only reason that it is possible to implement minimally superysmmetric Yang-

Mills theory on the lattice is because fermions can also be protected from

obtaining a mass by Chiral symmetries (and gauge bosons are protected by

gauge symmetries of course). Chiral symmetry is also broken on the lattice,

but the breaking is less severe and its possible to arrange to retain a piece of

it (enough of it) using GW fermions or to tune the lattice theory to its Chiral

limit while simultaneously removing the lattice. While there are still difficulties

associated with simulations at very small fermion masses (see section 1.2.5 for

example) we view these as mostly technical.

There is no such secondary symmetry for scalar fields. Large quantum

corrections to the scalar mass are generated by UV SUSY breaking modes

from the lattice spacing scale appearing at every loop order (see section 2.1).

The only option left to implement this theory is numerically expensive non-

perturbative tunings of the scalar mass within the simulation itself. We de-

scribe tunings like this in great detail in section 4.3, where we have proposed

their usefulness in the implementation of 4D N=4 SYM theory on the lat-

tice. This technique would almost certainly work also to simulate the massless

Wess-Zumino model; if we consider the mass as a deformation of the SUSY

theory, there should be a well defined phase transition in the theory as we
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vary the mass through zero, allowing relatively easy nonperturbative tuning

using something like the method of Binder cumulants, described in section 4.3.

Implementation of the massive Wess-Zumino model is not so clear. Besides

the addition of a mass term for the scalar and fermion, the massive theory

also contains a scalar cubic term (because there is now a quadratic term in the

superpotential), so that the behavior is less obvious. Since the limiting factor

in the field of lattice supersymmetry will continue to be numerical resources

and cost for the near future, we do not expect Wess-Zumino models to gar-

ner enough interest to be implemented on the lattice, so that these technical

challenges are of limited importance.

This theory has one other problem that is less well known: the incompat-

ibility of lattice fermions with the Majorana decomoposition in the presence

of Yukawa terms. This fact is not at all surprising with hindsight since the

Yukawas are Chiral, they couple the left and right handed components of the

fermions independently, and Chiral symmetry is broken on the lattice. We

may have hoped that GW fermions would work unmodified in the presence

of Yukawas, but this is not quite the case. This difficulty can be resolved by

adding a set of auxilliary (nondynamical) fermion fields to the action, though

we save the details for section 4.2.

3.4 Extended SUSY: N = 2 SYM in 4D

In much the same spirit as section 2.2, the action of N=2 SYM can be

constructed as N=1 SYM with an extra Chiral supermultiplet transforming

in the adjoint representation tacked on and the couplings chosen to satisfy the

supersymmetries

L =
1

g2

{
− 1

4
F 2 − 1

2
χ̄A( /Dχ)A − |DµΦ|2 −

1

2
ψ̄A( /Dψ)A
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−
√

2fABC
(
χ̄APLψBΦ∗

C − ψ̄APRχBΦC

)
+

1

2

(
fABCΦ∗

BΦC

)2
}
. (3.3)

Obviously this theory suffers from the same difficulties as the Wess-Zumino

model. The presence of a scalar field means some form of nonperturbative

tuning would be necessary to tune this theory to a SUSY continuum limit and

the presence of the Yukawa terms mean that auxilliary fermion fields must be

added to implement the Majorana condition consistently.

What about the fact that there are two fermion fields in the theory? Does

that add extra complications to the continuum limit. The answer turns out

to be no and the reason is the following.

Extended SUSY theories have multiple sets of SUSY generators that are

connected by a symmetry, called R-symmetry (which we already discussed in

section 4.1). This symmetry survives in the action as a field space symmetry

that rotates the fermions between each other and the scalars between each

other in such a way that the action is invariant. In the case where we consider

N -extended SUSY algebras, this R-symmetry group is precisely SU(N ). The

complex scalar field Φ is thus a singlet of SU(2). The two adjoint representation

Majorana fermions transform in the fundamental 2 representation of SU(2)

(≃ SO(3), which is simply generated by the usual Pauli matrices). Provided

the lattice implementation retains this symmetry, or at least some (hopefully

large) subset of it, the UV renormalizations of the IR theory will be greatly

restricted. This picture is slightly modified in the presence of the auxilliary

fields (see section 4.2), but the results are the same.

How many tunings would then be required to tune a bare lattice action

to this SUSY continuum theory, besides of course the scalar and, if necessary,

fermion mass terms? For gauge group SU(N≤3), it turns out that the Yukawa
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and quartic terms in the bare actions are the unique R-invariant forms of these

terms. They will get renormalizations that will require tuning of course, but

that’s it. For SU(N≥4) there is one other scalar quartic term that must be

tuned. This is explained in more detail in section 4.3. Assuming that we are

using GW fermions to simulate the theory, which is probably necessary so that

all tunings are of purely bosonic terms and can be done offline (we can tune

the Yukawa term by rescaling the scalar kinetic term), this means that we

have either 3 or 4 nonperturbative tunings that we must perform to simulate

the theory.

What if we somehow broke the R-symmetry in the lattice formulation?

How different would this counting procedure be? Very. Without the unbro-

ken R-symmetry, a huge variety of scalar quadratic and quartic terms would

be generated independently in the IR theory and they would all have to be

nonperturbatively tuned away. This would be impossible, and it is one of the

reasons that we are wary of the twisted SUSY lattice approach proposed by

Simon Catterall, which mixes up the spatial and R-symmetry rotation groups

and uses the resulting twisted variables in the action instead of the usual ones.

3.5 Twisted SUSY on the lattice

3.5.1 Twisted field variables

Catterall’s twisted approach only applies to theories in D dimensions where

the number of continuum supercharges is a multiple of 2D. All we will need

to know about the technique for the analysis herein is that the action is writ-

ten in terms of twisted field variables (see [113] for a well known example of

topological twisting in SYM theory). Catterall’s twisting can be thought of

as a mixing between the internal R-symmetry rotation group and the spatial
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rotation group. We define a new spatial rotation group

SO(D)′ = diag(SO(D) × SO(D)R) , (3.4)

and then we evaluate the behavior of the SUSY generators under this new

group, and use that as our basis for translating fields to the lattice. The

limitation to N = D = 2, 4 is now clear, since otherwise the R-symmetry

group would not be appropriate for the mixing. It turns out that one of the

SUSY generators transforms trivially under this new rotation group so that

we might hope that the resulting field theory can be transcribed to the lattice

without breaking this one supersymmetry.

The full expansion of the SUSY generators in this new twisted basis is

q = QI +Qµγµ +Qµνγµν + . . . . (3.5)

Since the generators now have general tensorial Lorentz structure, the fields of

the resulting field theory, both scalar and fermion, will as well. In general then

the scalars, (φ,Aµ, Bµν ,Wµνρ, φ̄(=φ†)), and fermionic, (η, ψµ, χµν , θµνρ, κ1234),

field variables of the 4D theory (for the 2D theory we keep only the first three)

transform nontrivially under space rotations and must therefore be translated

to the lattice as site, link, plaquette or hypercube fields. Though this leads to

rather peculiar looking actions, it is really no more than an exotic change of

variables.

It turns out that the fermionic fields that result from this technique can be

precisely described in the continuum by a Kähler-Dirac (KD) fermion. For our

purposes we can think of the KD fermion as much the same as the staggered

fermion: multiple degenerate fermions composed into a single fermionic object

that gets spread out on the lattice. It is really just a matrix valued fermion field
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that satisfies, instead of the usual Dirac equation, the Käler-Dirac equation

(d− d†)Ψ = 0 , (3.6)

where d is the exterior derivative and d† its adjoint.

We will first treat the much simpler case of N=D=2 twisted lattice SUSY

[90], since numerical studies of this theory [112, 92] have already shown some

results, and have verified that the full supersymmetry is restored in the naive

IR limit (the corrections vanish as some power of the lattice spacing).

3.5.2 N=D=2 twisted lattice SUSY

The continuum action of the theory after integrating out the B field is

S = β Tr
∫
d2x

(
1

4
[φ, φ̄]2 − 1

4
η[φ, η] − F 2

12 −DµφDµφ̄− χ12[φ, χ12]

−2χ12(D1ψ2 −D2ψ1) − 2ψµDµη/2 + ψ[φ̄, ψµ]
)
. (3.7)

In order to implement the fermionic variables as link or plaquette fields, we

must define a conjugate field living on the same link. This complexification,

or doubling of the field content, means that the group is promoted from U(N)

to GL(N,C). It also means that we will have to modify the action a bit, by

switching some of the fields for their conjugates and other changes. In order

to target N=D=2, 4 SYM theory, the final path integral is constrained to

follow a contour along which all the fields are real (except φ and φ̄, which are

taken to be conjugate to one another). For the fermions, this is accomplished

by replacing the fermion determinant in the bosonic effective action for the

Pfaffian. For the bosonic sector, the projection to the appropriate contour

must be made in the action by setting ImUµ=0, ImWµνρ=0, and φA = (φ̄A)∗.

Note that we use anti-Hermitian generators of the gauge group in this section

so that the results can be compared more easily to Catterall’s work.

91



Gauge invariance must, of course, be maintained in the bosonic action after

the reality condition is enforced. We believe this is the case, though its less

than obvious. The perspective of the twisted practitioners is that the doubling

of the bosonic degrees of freedom is simply an unfortunate SUSY consequence

of the need to double the fermionic degrees of freedom in order to define the

KD fermion on the lattice and that the doubling is “natural” since links can

support pairs of fields corresponding to orientation.

That the Pfaffian of the fermion operator in the complexified theory re-

produces the weight in the bosonic path integral appropriate for a real KD

fermion can be easily seen as follows: we define

ηaā = ηATAaā ,

such that the ηA must be complex valued. The decomposition of the lattice

KD fermion is then

Ψ†MΨ =
(
Ψ⊤
R − iΨ⊤

I

)A
(TA)†M (ΨR + iΨI)

B (TB)

= ΨRMΨR + ΨIMΨI + i
(
Ψ⊤
RMΨI − Ψ⊤

I MΨR

)

= ΨRMΨR + ΨIMΨI provided M⊤ = −M .

This is indeed the case for the KD operator constructed of twisted variables.

In two dimensions it is possible to show directly that the lattice action

does indeed have a SUSY IR limit (up to possible O(a) errors) without fine

tunings. This is not at all surprising of course, since even the naive lattice

transcriptions of SUSY actions in 2D have SUSY descriptions in the IR with

corrections suppressed by the lattice spacing. We have not attempted the

calculation to higher order. Here we show the calculation of the propogator

as a warm up to 4D.

92



The fermionic lattice action in component form is

Sf = β Tr
∑

x

(
− χ†

12(D
+
1 ψ2 −D+

2 ψ1) − ψ†
µD

+
µ

η

2
+ h.c.

)
.

Here ψ1,2 are vector valued fermionic field variables in the 1, 2 direction and

so live on links ψ1,2 = ψ(x+ µ1,2/2).

The fermionic action in KD form is Ψ†M0Ψ, with

Ψ =




η/2

χ12

ψ1

ψ2




, M0 =




0 K

−K† 0


 and K =



−D−

1 −D−
2

D+
2 −D+

1


 .

Then, with (D±)† = (D±)⊤ = −D∓,

K† =



−D+

1 D−
2

−D+
2 −D−

1


 .

M is then antisymmetric as required (and trivially anti-Hermitian), The rela-

tionship with the component action is then

Lf = Ψ†M0Ψ = −η†D−
µ ψµ − ψ†

µD
+
µ η − χ†

12D
+
[1ψ2] − ψ†

[2D
−
1]χ12 .

Changing to momentum space in the usual way yields

= −η†ψµ
(
eipµ/2 − e−ipµ/2

)
− ψ†

µηe
−ipµ/2

(
eipµ − 1

)

−χ†
12e

−i
p1+p2

2

[
ψ2

(
ei(p1+

p2
2

) − ei
p2
2

)
− ψ1

(
ei(p2+

p1
2

) + ei
p1
2

) ]

−
[
ψ†

2e
−i

p2
2

(
ei

p1+p2
2 − ei

p2−p1
2

)
− ψ†

1e
−i

p1
2

(
ei

p1+p2
2 − ei

p1−p2
2

) ]
χ12

=
(
η†ψµ + ψ†

µη
)

(−ip̃µ) +
(
χ†

12ψ2 + ψ†
2χ12

)
(−ip̃1) +

(
χ†

12ψ1 + ψ†
1χ12

)
(ip̃2) .
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This we can then easily rewrite in the KD notation as

Lf = Ψ†




0
−ip̃1 −ip̃2

ip̃2 −ip̃1

−ip̃1 ip̃2

−ip̃2 −ip̃1

0




Ψ .

This matrix is again anti-hermitian, as it should be. |M0|2 = p̃2 so the inverse

is easy to find and the propogator is simply

S = −M−1
0 =

M0

p̃2
.

3.5.3 N = D = 4 Twisted SUSY

We will omit many of the details of the formulation as they are mostly

the same as the 2D theory. The details can be found in [91]. The continuum

bosonic action is actually precisely the same as the well known Marcus twisted

action of [113], after replacing the fields Wµνρ by their dual field Wσ. It turns

out that this duality transformation further complicates the implementation

of gauge invariance on the lattice, so it is not a possible simplification.

We will write all actions as they are to be simulated so that the derivation

of the feynman rules is as transparent as possible. The path integral that

would be performed numerically is

∫
DADφDφ∗DWdet

1

2 (M) e−SB .

The bosonic action and the fermion determinant are treated seperately below.

The antisymmetric W and θ fields are most easily treated perturbatively

as 4 seperate scalar degrees of freedom. For ease of writing it makes sense to

94



label these fields by the missing direction:

W123 ≡ w4 W124 ≡ w3 , W134 ≡ w2 , W234 ≡ w1 ,

and similarly for the θ fields. We have used lower case latin letters for this

missing direction label to stress the fact that it is simply a shorthand. It is not

the same as the Hodge-like duality transformation that is used to transform

Catterall’s twisted continuum action into the twisted action due to Marcus.

That duality transformation is not compatible with lattice gauge invariance.

The purely bosonic action reads

SB =
∑

x

Tr

[
1

2
F 2 + |D+

µ φ|2 +
∑

i=1..4

|D+
i wi|2 +

∑

i6=j

|D−
i wj |2

+
1

4
[φ, φ†][φ, φ†] +

∑

i<j

[wi, wj][wi, wj]
† +

∑

i

[φ, w†
i ][wi, φ

†]

]
.

Similar to the ’missing direction’ notation for the W and θ fields, we write

κ1234 ≡ κ. This notation makes it clear that κ is a Lorentz scalar living at the

lattice sites. The notation is less clear in the case of the W and θ fields. These

fields are three index antisymmetric tensor fields and so live at the center of a

cube, w1 ≡ W234 = W (x + µ2/2 + µ3/2 + µ4/2) as shown in Fig. 3–1 (the W

field here is Wνλρ, but the ν direction is projected out so that it looks like it

lives on a face).

The fermionic action can be written in KD form much the same way as the

2D case. It is

Lf = Ψ†MΨ , M =




0 K

−K† 0


 and

Ψ=
(
η

2
, χ12, χ13, χ14, χ23, χ24, χ34,

κ

2
, ψ1, ψ2, ψ3, ψ4, θ4, θ3, θ2, θ1

)
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and the free fermion part of the fermion matrix is then given by

K0 =




−D−
1 −D−

2 −D−
3 −D−

4 0 0 0 0

D+
2 −D+

1 0 0 −D−
3 −D−

4 0 0

D+
3 0 −D+

1 0 D−
2 0 −D−

4 0

D+
4 0 0 −D+

1 0 D−
2 D−

3 0

0 D+
3 −D+

2 0 −D−
1 0 0 −D−

4

0 D+
4 0 −D+

2 0 −D−
1 0 D−

3

0 0 D+
4 −D+

3 0 0 −D−
1 −D−

2

0 0 0 0 D+
4 −D+

3 D+
2 −D+

1




By analogy to the 2D case, we can see that this will give the desired doubler

free determinant.

The Yukawa terms involving the W field are

LΨw = θ†i [wi,
η

2
] +

κ†

2

(
[ψ1, w1] − [ψ2, w2] + [ψ3, w3] − [ψ4, w4]

)

+χ†
12

(
[θ[1, w2]] + [ψ†

(3, w4)]
)
− χ†

13

(
[θ[1, w3]] + [ψ†

[2, w4]]
)

+χ†
14

(
[θ[1, w4]] − [ψ†

(2, w3)]
)

+ χ†
23

(
[θ[2, w3]] + [ψ†

(1, w4)]
)

−χ†
24

(
[θ[2, w4]] − [ψ†

[1, w3]]
)

+ χ†
34

(
[θ[3, w4]] + [ψ†

(1, w2)]
)

+ h.c. .

As explained in [91], ψ†
µ must be replaced by U †

µψµU
†
µ for the action to be writ-

ten in terms of the KD fermion. This introduces SUSY breaking operators

that look like AwΨ†Ψ. The new vertex will contribute to mass renormaliza-

tions at two loops and 3-point vertex renormalizations at one loop. We will

not attempt to determine the precise form of these terms, since the calculation

is rather involved and the lattice action prescription (specifically the reality

projection) is ambiguous enough as to make the precise feynman rules unclear.
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The [θ, w] terms must be modified as well in order to retain gauge invari-

ance. The easiest way to do so is to insert an ordered path of link matrices,

[θµλρ,Wνλρ] → [θµλρ,Wνλρ]U
†
λ(x+λ+2ρ)U †

λ(x+2ρ)U †
ρ(x+ρ)U

†
ρ(x) . (3.8)

This is depicted diagramatically in Fig. 3–1, where the notational discrepencies

are clear, though unfortunate (l → λ, p → ρ, O → θ, X → χ, etc). This will

X(x)

LAMBDA

MU

RHO

W(x)

W(x+u+v+l+p)

O(x)

O(x+u+v+l+p)

Figure 3–1: A diagram of one of the SUSY breaking terms in the lattice
twisted N=4 SYM theory. The arrows represent gauge link fields that must
be inserted into the term coupling the fermionic components θ (here labelled
O) and χ (labelled X) to the three-form scalar field W in order to retain gauge
invariance in the lattice action.

introduce more SUSY violating terms of the form AwΨ†Ψ.

We will not attempt to write the position space expressions in matrix KD

form since they are rather formidable. We expand the fields in terms of the

antihermitian generators of gauge group in the fundamental representation,

X = XATA. The traces are then done using the relations of Appendix C.

The expressions are then much simpler to express in KD form. The group and
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momentum dependence of the expressions in k-space takes the form

Y A
i ≡ Y A

µνλ =
TF
2

(
ik̃µνλD

A + 2 cos(kµνλ)F
A
)

with k̃µνλ ≡ 2 sin(kµνλ) , (3.9)

where i is the label corresponding to the missing spacetime index. We have

used the notation kµνλ ≡ kµ+kν+kλ extensively.

We then write the terms as
∑
i w

A
i Ψ†(k)ViY

A
i Ψ, etc. . . . The Vi are 16×16,

each has 7 nonzero entries in the upper right quadrant corresponding to the

wχψ, wχθ, and wκψ terms, and one nonzero entry amongst the last four

elements of the first column corresponding to the wθη term. We thus quote

the results in terms of an 8×8 matrix and a 4 component column vector.

The momentum space expressions for the wχθ terms has a phase remnant,

φab ≡ eikab . The results can be found in Appendix D. It is then straightforward

to determine the feynman rules for the Yukawas. The purely bosonic feynman

rules are much easier to derive and can be determined in a similar way, except

of course for the fact that their are still ambiguities in the lattice action due

to the reality projection.

We have included these results because we feel it is an important and un-

finished avenue of research to check the severity of SUSY violations in this

approach, and we very much hope that someone more adventurous than our-

selves will continue this work, once the appropriate clarifications of the lattice

action have been made. Our concern is again amplified by the fact that it is

not clear that R-symmetry is retained in this formulation (it may be broken

by the addition of these extra terms for example, if it was exact to begin with)

and so the number of SUSY breaking terms that can appear in the IR theory

could be very large. These would all require nonperturbative tuning, and that

would certainly make simulations of the theory unmanageable
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3.6 Conclusions

Theoretically all (non-anomalous) SUSY theories can be implemented in a

lattice framework, but its not always easy. Important nonperturbative simu-

lations for 4D N=1 are logging processor cycles as we speak, and this is really

the success story of lattice SUSY. 4D theories with scalar fields hold a mon-

umental difficulty in that they require nonperturbative tunings to reach their

SUSY limit in the IR. For theories without substantial theoretical import, such

as (probably) the N=1 Wess-Zumino model, this will probably mean that sig-

nificant numerical results will have to wait until computing resources are much

(MUCH) cheaper. N -extended SYM theories in 4D should hold enough inter-

est to physicists to see results in much less time, though we will argue in the

next chapter that these efforts should be focused on N=4, not N=2. Novel

new ways to transcribe SUSY actions to the lattice might end up being viable

alternatives to the more conventional approaches, but we don’t see how they

could be superior to the (rather straightforward and well established) tuning

approach in superrenormalizable low-D theories, and are skeptical of the ad-

vantages of such a proposal in 4D. Certainly if an approach could be found

that eliminated completely the need for expensive nonperturbative tunings to

reach the IR theory, it would be a great advantage, but considering that all

the theories described in this dissertation can be implemented with the tun-

ing approach, without new and questionable techniques and with computing

resources that are starting to become available to such studies, we think this

is a much more productive avenue.
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CHAPTER 4
N = 4 Supersymmetry in 4D

N=4 SYM has scalars and Yukawa couplings, and so various masses and

couplings will receive divergent corrections in the continuum limit and must

be (nonperturbatively) fine-tuned away. Hence lattice N=4 SYM has always

seemed impractical by this fine-tuning approach. 1

We show here that this is not the case. Using GW fermions the four gluinos

can be kept massless and the SU(4)R symmetry in the lattice theory can be

preserved, which greatly restricts the form of the renormalizations. This leaves

a scalar mass, two quartic couplings, and a Yukawa coupling to tune. The

Yukawa coupling can be tuned by rescaling the scalar kinetic term2 ; so all

tunings can be done by adjusting bosonic terms in the action. This allows the

tunings to be done by the “Ferrenberg-Swendsen method” [114, 115], exploring

a wide swath of coupling constant space “offline” from the results of a single

Monte-Carlo simulation. The parameter range available with good statistics

can be enlarged using multicanonical techniques [116, 117]. Thus we arrive

at the encouraging result that all fine-tuning can be performed through an

1 Other approaches recently suggested include those of Refs. [91, 66], in-
volving “orbifold” or “twisted SUSY” lattices.

2 This is obvious because the Yukawa coupling strength y can always be
absorbed into a redefinition of the scalar fields φ→ φ/y, causing it to reappear
in the scalar kinetic term.
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“offline” analysis, i.e., new simulations and fermion matrix inversions are not

required.

In section 4.1 we derive the continuum action and supercurrent from dimen-

sional reduction of the familiar 10D N = 1 action and SUSY transformations

on a 6D torus. In Sec. 1.1.3 we derived the familiar continuum Ward identities

for comparison with the lattice derivation. In section 4.2 we give the dis-

cretization and describe those subtleties of the prescription that appear at the

level of the bare action. In section 4.3 we study the renormalized theory and

determine the (finite) set of parameters that will require fine tuning to ensure

the theory approaches its SUSY limit as the lattice regulator is removed. We

then describe our approach to the tuning, which can be summarized roughly

as follows: by artificially weighting the Boltzman factor so that the ensemble

generated in the Markov chain overlaps strongly with cannonical ensembles

at multiple parameter values, we are able to select (i.e. tune) the parameter

after the simulation (i.e. offline) to the SUSY point. This procedure easily

generalizes to an arbitrary number of parameters. The rest of section 4.3 is

devoted to finding a reasonably clean observable for each tuning parameter.

We will argue that two relatively simple conditions can be extracted from the

effective potential, with the remainder chosen variously from the set of SUSY

Ward ids. Section 4.4 collects our outlook and conclusions.

The continuum field content is SU(Nc) YM theory with an SU(4)R internal

symmetry; there are four Majorana fermions whose left handed components

transform in the fundamental 4 representation of SU(4)R and 6 real scalars in

the antisymmetric tensor representation. The six real scalars will be expressed

with a single index φm, m=1. . .6, or composed into SU(4)R Weyl matrices:
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φij=φmσ̂m,ij and φij=φm ˆ̄σ
ij
m, where σ̂’s are just SU(4)R Clebsch-Gordon coef-

ficients involved in 4∗∋6⊗4.

S =
1

g2
Tr
{

1

2
F 2 + |Dµφm|2 + ψ̄i /Dψi

+
√

2ψ̄i
(
φijPL−(φij)∗PR

)
ψj + [φm, φn][φm, φn]

}
. (4.1)

Again, this action is derived in section 4.1, though this is a somewhat more

compact and convenient form for our purposes.

4.1 Continuum action of N = D = 4 SYM

N=4 is called maximal supersymmetry because 4 sets of SUSY generators

Q1−4 is the most that can be accomodated in a theory (that does not contain

spin 2 gravitons). This can be easily seen from the results of section 1.1.1, since

4 Q’s can generate 4 half-integer helicity steps. This implies that only vector

multiplets (λmax=1) can be constructed with N=4 and that the multiplet is

self conjugate under CPT; we see immediately that this theory is a Yang-Mills

theory, and that the scalar and fermionic degrees of freedom (d.o.f.) and their

interactions are uniquely determined by the gauge d.o.f. (since the spin zero

states ∼ |0〉 and the spin 1
2

states ∼ |± 1
2
〉 can all be obtained as some function

of Qs acting on the gauge boson state | ± 1〉).

The continuum action of the maximally supersymmetric theory is most

easily derived by dimensional reduction on a 6-torus from the 10D N = 1 the-

ory. This also gives an intuitive interpretation of where the SU(4) (≃ SO(6))

internal R-symmetry in the N=4 theory comes from. In the above description

using helicity raising and lowering operators, the SU(4) symmetry survives

in the action because it is a symmetry of the supersymmetry generators the

spinor Qs transform in the fundamental 4 of SU(4) and the Q̄s transform in

the antifundimental 4̄.
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The 10D theory has a single 32 component Majorana-Weyl fermion and a

single massless 10D gauge boson (8 real fermionic and 8 real bosonic degrees

of freedom) with action

S =
∫
d10X

(
− 1

4
FA
MNF

MN
A − 1

2
Ψ̄AΓM(DMΨ)A

)
, (4.2)

where Ψ̄ = Ψ⊤C10, and the 10D reality condition is

C10Ψ = iΓ0Ψ
∗ . (4.3)

This action is invariant under

δAAM = ξ̄10ΓMΨA ,

δΨA = −1

4
FA
MN [ΓM ,ΓN ]ξ10 , (4.4)

where ξ parametrizes the SUSY transform. The action that results from the

reduction on the 6-torus will retain the SO(6) symmetry from the reduced

dimensions as an internal symmetry of the action and will be invariant under

the reduced versions of the 10D SUSY transformations. We choose a basis of

gamma matrices

ΓM = {18 ⊗ γµ, γ̂m ⊗ γ5} , with γ̂m =




0 σ̂m

ˆ̄σm 0


 ,

σ̂ = {−i1, iγ5~γ, γ5γ0, γ5} and ˆ̄σ = {+i1, σ̂5,...,9} , (4.5)

so that

γ5 = −iγ0 . . . γ3 =




1 0

0 −1


 and γ̂10 = −iγ̂4 . . . γ̂9 =




14 0

0 −14


, (4.6)
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and the charge conjugation matrices are

C4 ≡ −βγ2 =



−e 0

0 e


 = ǫ̂ and C6 = −iγ̂1γ̂3γ̂5 =




0 ǫ̂ ij

−ǫ̂ ji 0


. (4.7)

Here ǫ̂ acts on the internal R-symmetry indices after compactification; that it

takes the same matrix form as C4 is a coincidence of our choice of {γ̂} and

our convention for C. Γ11 = γ̂10 ⊗ γ5, C10 = C6 ⊗ C4 and the Majorana-Weyl

conditions in 10D,

Γ11Ψ = Ψ , and C10Ψ = iΓ0Ψ
∗ , (4.8)

allows us to parametrize the 10D spinor as

Ψ =




ψiL

ǫ̂ ijψ
j
R


 , (4.9)

where ψiL = {ψ1L, ψ2L, ψ3L, ψ4L} transforms as a vector under the internal

SU(4) (=SO(6)) after the reduction and ψiR as a contragradient vector. L,R

refer to the standard 4D left and right chiral projections of the spinor (here

taken as γ5ψL = ψL, γ5ψR = −ψR). The reality condition on the 10D spinor

is then satisfied provided that the 4D spinor components satisfy the (SU(4)

invariant) reality condition

βψ∗
iL = −C4ψ

i
R .

or ψ̄iL =
(
ψiR
)⊤
C4 . (4.10)

The second relation in Eq. (4.10) is formally the same in either Minkowski or

Euclidean space and is thus sometimes more convenient.

In order to write the action so that the SU(4) R symmetry is manifest, we

compose the 3 complex scalars - constructed from the 6 real degrees of freedom
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of the gauge boson in the reduced directions - into an antisymmetric SU(4)

tensor,

φij ≡ 1√
2
ǫ̂ ik
(∑

m

Am ˆ̄σm
)kj=




0 Φ∗
1 Φ3 −Φ2

0 −Φ∗
2 −Φ∗

3

0 Φ1

0




(4.11)

and φij ≡ 1√
2

(∑

m

Amσ̂m
)
ik
ǫ̂ kj = (φij)∗ , (4.12)

which satisfies an SU(4) reality condition, (φij)∗ = 1
2
ǫijklφ

kl.

We use the notation of [118] in 4D except where explicitly noted. The 4D

action in terms of these variables is then

S =
∫

x

[
1

4
(FA
µν )2 +

1

2
(Dµφ

ij)A(Dµφij)A − 1

2

(
ψi⊤ARC4(/DψiL)A + ψ⊤

iALC4(/Dψ
i
R)A

)

+

√
2

2
fABC

(
φAij
(
ψi⊤BRC4ψ

j
CR

)
−φijA

(
ψ⊤
iBLC4ψjCL

))
+

1

8

∣∣∣∣f
ABCφijBφ

kl
C

∣∣∣∣
2
]
,(4.13)

which, along with the above reality conditions on the fermionic and scalar

variables, is Hermitian.

The reduced SUSY transformations are

δξA
A
µ = −ξi⊤R ǫγµψiAL + ξ⊤iLǫγµψ

i
AR

δξφ
ij
A =

√
2

(
ξi⊤R ǫψ

j
AR − 1

2
ǫijklξ⊤kLǫψlAL

)
,

δξψiAL = −1

2
FA·σ ξiL +

√
2γµ

(
Dµφij

)
A
ξjR + fABCφBijφ

jk
C ξkL ,

δξψ
i
AR = −1

2
FA·σ ξiR +

√
2γµ

(
Dµφ

ij
)
A
ξjL + fABCφijBφ

C
jkξ

k
R , (4.14)

where F ·σ = Fµνσ
µν and σµν ≡ 1

2
[γµ, γν ]. In order to obtain a purely bosonic

path integral that can be integrated numerically by lattice techniques, we

must write the fermionic action in terms of Dirac variables with PLψi=ψiL
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and PRψi=ψ
i
R

Sd =
∫

x
−ψ̄iA( /Dψi)A −

√
2 fABC ψ̄iB

(
φijAPL − φAijPR

)
ψj C , (4.15)

which then decomposes into two independent copies of the fermionic action in

Eq. (4.13) under the standard Majorana decomposition

ψ =
1√
2

(
χ+ iη

)
, ψ̄ =

1√
2

(
χ⊤C − iη⊤C

)
, (4.16)

along with the appropriate R-symmetry invariant chiral decomposition, PLχi =

χiL and PRχi=χ
i
R. Notice also that the reality condition of Eq. (4.10) is then

implied by the paramterization of the Majorana spinor,

χi ≡




αi

eα∗
i


 = χiL + χiR =⇒ χiR =




0

eα∗
i


 = C4βχ

∗
iL . (4.17)

This proves as usual that the fermionic determinant resulting from Eq. (4.15)

is the sqaure of a Pfaffian and that the appropriate factor in the path integral

over the Majorana valued field can be included as the root of the determinant.

This is described in more detail in Section 4.2.1.

In terms of these variables, the action of the R-symmetry (supressing SU(4)

indices for the moment) is

ψ →
(
UPL + U∗PR

)
ψ , ψ̄ → ψ̄

(
U⊤PL + U †PR

)
and φ→ U∗φU †,(4.18)

where U is the SU(4) rotation matrix in the fundamental representation. Note

that the R-symmetry is (not surprisingly) a Chiral symmetry. The supersym-

metry transformations also generalize straightforwardly, however, since they

fail to hold anyway for the lattice action, we will have little use of them in

what follows.

106



In order to compare the derivation in this section most easily to the contin-

uum literature, we have reduced to 4 dimensions with a Minkowski signature.

By a naive Wick rotation, the only formal change to the equations of this

section is that summations on space-time indices go from 1 to 4 with γ4=β.

Instead of hermiticity, the action now displays the analogous Euclidean sym-

metry called Hermitian reflectivity. We choose the action of this symmetry

to be Hermitian conjugation along with a full space parity inversion, as is

standard. The usefulness of the second expression of Eq. (4.10) is now clear;

with Euclidean signature, ψ̄=ψ† instead of ψ†β and all further relations follow

simply from adding a parity inversion to the action of † (since parity changes

the sign of γ5 and so flips handedness L↔R).

In [119] they point out that this Wick rotation is not technically consis-

tent because the R-symmetry group should also be Wick rotated from SU(4)

(=SO(6)) to SO(5, 1) (the symmetry group of the internal space in the case

where we reduce from the 10D N=1 theory to 4 dimensions with a Euclidean

signature) and this should affect the reality conditions for ψ and φij. This is

not expected to make any difference in actual calculations (on the lattice or

otherwise). One simply treats all fields as complex without reality conditions

and since the action is holomorphic it depends only on the fields and not their

conjugates. The path integral, and specifically the Grassman integration, is

the same [120].

4.1.1 The supercurrent

The supercurrent is also most easily calculated by dimensional reduction

from the 10D supercurrent in the N=1 theory, which takes the simple form

SP =
1

4
[ΓM ,ΓN ]FA

MNΓPΨA . (4.19)
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The 4D N=4 supercurrent is then

S
(x)
iµR =

1

2
FA·σγµψiAL +

√
2 /DφAijγµψ

j
AR − fABCφBijφ

jk
C γµψkAL , (4.20)

and in terms of Dirac fermions

S
(x)
iµ=

{
1

2
FA·σ δij+

√
2 /D

(
φAijPL+φ

ij
APR

)
−fABC

(
φBikφ

kj
C PR+φikBφ

C
kjPL

)}
γµψjA.(4.21)

This is also the easiest way to determine the set of relevant and marginal

operators that have the same quantum numbers as the supercurrent and can

therefore mix with it under renormalization when SUSY is broken (as it is

on the lattice). In the N=1 theory there is only one such term, the mixing

current (since it mixes with the supercurrent),

TM = FA
MNΓNΨA . (4.22)

This implies a mixing current in the 4D N=4 theory like

T
(x)
iµ =

{
γνF

A
µνδij −

√
2Dµ

(
φijPL + φijPR

)
A

}
ψjA . (4.23)

4.2 Lattice Action

The SU(4)≃SO(6) preserving bosonic lattice action is a trivial transcrip-

tion from the continuum. Of course we must allow for generic coefficients

and non-SUSY terms, so that the SUSY-restoring counterterms can be tuned.

In our case these are entirely scalar terms. The precise type of Ginsparg-

Wilson [50] fermion to be used, be they domain wall [54] or overlap [63], is not

important for the considerations here; we need only note that it satisfies the

Ginsparg-Wilson relation

{γ5, D} = RaDγ5D , (4.24)
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and “γ5-hermiticity”

D† = γ5Dγ5 . (4.25)

Eq. (4.24) allows us to write a Lagrangian density

L = ψ̄Dψ , (4.26)

that is invariant under a lattice modified chiral transformation with

δψ = iεγ̂5ψ , δψ̄ = iεψ̄γ5 , (4.27)

where γ̂5 = γ5(1−RaD) squares to one and so defines a set of projection

operators, P̂L/R = 1
2
(1 ± γ̂5), that act on ψ. This reduces to the usual chiral

transformation and chiral projectors in the naive continuum limit.

Unfortunately, using the naive prescription for associating continuum and

lattice variables in the presence of Yukawa terms, leads to a set of lattice

actions which are inconsistent with either the lattice chiral symmetry or the

Majorana decomposition [121].

In order to write Yukawa terms that are consistent with the lattice chiral

symmetry and the Majorana decomposition, we follow the original formula-

tion of Lüscher’s exact lattice chiral invariance [55], which was applied to the

Majorana case in [122]. For each fermion ψi in the theory we associate an

auxiliary fermion field Ψi and generalize the action of Eq. (4.13) as

S = a4
∑

x,i,j

ψ̄iDψi −
ω

aR
Ψ̄iΨi + (ψ̄+Ψ̄)Bi Y

ij
BC (ψ+Ψ)Cj (4.28)

where the Yukawas can now be written as simply the naive ultralocal lattice

version of the Yukawas in Eq. (4.15), Y ij
BC ≡

√
2fABC

(
φijAPL − (φijA)∗PR

)
. The

factor of ω/R has been inserted for later convenience.
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This action is invariant under a lattice chiral transformation of the form

δψ = iε (Aψ + CΨ) , δΨ = iε (Fψ +HΨ) ,

δψ̄ = iε
(
ψ̄B + Ψ̄E

)
, δΨ̄ = iε

(
ψ̄G+ Ψ̄I

)
,

δφ = −iε (T ∗φ+ φT ) , δφ∗ = iε (Tφ∗ + φ∗T ∗) ,

(4.29)

where A→ I are matrices determined below. The transformation rule for the

scalar field is just the naive lattice version of the continuum transformation

- the infinitesimal version of Eq. (4.18) with U = exp(iεT ). This form is

necessary to avoid the no-go theorem of [121]. The invariance of the Yukawa

terms under this transformation now implies that the sums ψ + Ψ and ψ̄ + Ψ̄

must transform like a continuum fermion field

δ(ψ + Ψ)/iε = (A+ F )ψ + (C +H)Ψ = (TPL − T ∗PR) (ψ + Ψ)

δ(ψ̄ + Ψ̄)/iε = ψ̄(B +G) + Ψ̄(E + I) = (ψ̄ + Ψ̄) (T ∗PL − TPR) .(4.30)

Invariance of the quadratic fermion terms implies another four relations, in-

cluding the usual BD = −DA for which the general Ginsparg-Wilson type

solution is

A = T P̂L − T ∗P̂R and B = T ∗P̄L − T P̄R . (4.31)

The transformation is now fully and uniquely specified by the choice of

lattice projectors, P̂ and P̄ . The requirement is only that these projectors

reduce to the continuum ones in the naive limit. Two conventions are used

in the literature which we will call the non-symmetric and symmetric choices.

The non-symmetric choice is

P̂L/R =
1

2
(1 ± γ̂5) and P̄L/R = PL/R , (4.32)
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which is what we used in Eq. (4.27). This is the most common choice in the

literature because of the convenient fact that γ̂5 squares to 1 and so P̂ is a set

of projectors in the usual sense: P̂ 2
L/R = P̂L/R and P̂LP̂R = 0. The symmetric

choice (which Lüscher uses in [55]) is

P̂L/R =
1

2

(
1 ± γ5(1 − Ra

2
D)
)

and P̄L/R =
1

2

(
1 ± (1 − Ra

2
D)γ5

)
. (4.33)

Interestingly, each of these choices leads to a consistent set of transformation

for only one value of the GW parameter R. This constraint may be removed

from the GW relation at the cost of transferring it to the action by using

− ω
aR

Ψ̄Ψ as the quadratic term for the auxilliary field as we did above.

For convenience, define the continuum form of the fermion transformation

matrix to be TPL− T ∗PR ≡ u. For the non-symmetric solution we have a set

of transformations (here P̂L/R = 1
2
(1 ± γ̂5) as usual)

δψ/iε = (T P̂L − T ∗P̂R)ψ , δΨ/iε = Ra
ω

(T+T ∗)γ5Dψ + uΨ ,

δψ̄/iε = ψ̄ u∗ + Ψ̄(T+T ∗)γ5 , δΨ̄/iε = −Ψ̄u ,

δφ/iε = −T ∗φ− φT , δφ∗/iε = Tφ∗ + φ∗T ∗ ,

(4.34)

which is consistent only for ω = 2.

The set of transformations for the symmetric solution is only consistent for

ω=1,

δψ/iε = ûψ + 1
2
(T+T ∗)γ5Ψ , δΨ/iε = Ra

2
(T+T ∗)γ5Dψ + 1

2
(T−T ∗)Ψ ,

δψ̄/iε = ψ̄ū∗ + Ψ̄1
2
(T+T ∗)γ5 , δΨ̄/iε = ψ̄Ra

2
(T+T ∗)Dγ5 − Ψ̄1

2
(T−T ∗) ,

δφ/iε = −T ∗φ− φT δφ∗/iε = Tφ∗ + φ∗T ∗ ,

(4.35)
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where P̂ and P̄ are given by Eq. (4.33) and û and ū∗ are the same as above

with the projectors replaced by their appropriate lattice counterparts.

Under these transformations, the sum (ψ+Ψ) indeed transforms like a field

in the continuum theory, hence the Yukawas need not be modified on the

lattice with any higher derivative terms. This is essential for a consistent

formulation of the Majorana projection, Eq. (4.16). The requirements on the

charge conjugation matrix are straightforward,

C⊤ = −C , (CD)⊤ = −CD , (CY )⊤ = −CY . (4.36)

4.2.1 Square root prescription

Consider the theory at vanishing Yukawa terms. Each fermion species is

decoupled and contributes a factor of
√

detD to the bosonic effective action.3

The square root prescription is the following.

The determinant is defined as the product of the eigenvalues of the Dirac

operator,

Dψn = λnψn −→ detD =
∏

n

λn . (4.37)

3 We take the prospective that the ’real’ (fully regulated and unambiguous)
definition of the Dirac fermion contribution to the path integral is precisely
the appropriate limit of some regulated Dirac determinant. In this treatment,
chirality and Majorana conditions are rephrased as prescriptions for finding
roots of this determinant. We mention this only to point out that this rooting
is necessary in any regularization scheme for Majorana fermions and is totally
well defined because of eigenvalue pairing. Therefore the square root procedure
yields a local theory, as opposed to what occurs for instance when rooting a
staggered action with taste splitting, where locality and unitarity are at best
recovered only in the continuum limit.
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This determinant is real since

(detD)∗ = detD† = det γ5Dγ5 = (det γ5)
2 detD = detD . (4.38)

Furthermore, given Dψn = λnψn and γ5-hermiticity, we have

D(γ5ψ
†) = λ∗γ5ψ

† , (4.39)

which implies that the spectrum of D has a conjugate pairing (for every eigen-

state ψ of D with eigenvalue λ there is an eigenstate γ5ψ
† with eigenvalue

λ∗).

Now, writing the eigenvalues as λn = ln exp(iφn), the phases cancel and we

have

detD =
∏

n

′ l2n , (4.40)

where
∏′ is defined to include only those eigenvalues with positive (or negative)

imaginary part. The square root prescription is then simply

√
detD =

∏

n

′ ln . (4.41)

This prescription generalizes to the Yukawa theory in the straightforward

way. Writing the SU(4)R structure in vector form Eq. (4.28) becomes

S = a4
∑

x

[ψ̄1 · · · Ψ̄1 · · ·] M




ψ1
...

Ψ1
...




; M =




D + Y Y

Y − ω
aR

+ Y



BC

.(4.42)

Here YBC is just the Yukawas of Eq. (4.15) in matrix form, DBC=14⊗D δBC ,

etc. . .
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The action of hermitian reflection on individual components of the Yukawas

is (Φ1APL)
† = Φ∗

1APR and thus, as a matrix operation, Y†=Y. γ5-hermiticity

generalizes in a straightforward way

M† = (18⊗γ5) M (18⊗γ5) , (4.43)

and the square root prescription thus generalizes as well.

4.3 Tuning to N=4

4.3.1 Counterterms

We are interested in tuning the lattice action such that the effective infrared

description is N=4 SYM. Generically there is a nontrivial matching between

lattice and effective IR theories and all relevant or marginal terms consistent

with lattice symmetries will appear in the infrared, except at special points

in bare parameter space. We can arrive at the desired special point (i.e.,

N=4 SYM) by introducing the SUSY-violating operators into the bare action

and fine-tuning counterterms. These counterterms fall into three categories:

a scalar mass term, a Yukawa term, and two or four scalar quartic terms,

depending on the number of colors for the gauge group, restricted here to

SU(Nc).

As mentioned in the Introduction, the tuning of the Yukawa term, schemat-

ically yψφψ, is accomplished through a rescaling of the scalars. Thus let

y = Zyyr and then note that φ → φ/Zy fixes the Yukawa coupling to the

critical value yr, whereas the kinetic term becomes (Zφ/Z
2
y)|Dµφ|2, where Zφ

is an arbitrary constant in front of the scalar kinetic term. (This rescaling

also changes the potential terms, but they are being tuned anyway.) Thus

fine-tuning Zφ in the bare action is equivalent to fine-tuning the strength of

the Yukawa coupling y. Another way to see this is that the coupling strength y

114



can be eliminated from the Yukawa interaction term in favor of a noncanonical

kinetic term (1/y2)|Dµφ|2, through a rescaling φ→ φ/y. It is just a matter of

where one chooses to place the bare action parameters.

4.3.2 TrR and unique quartic invariants

We will need several properties of the trace over the SU(4) R indices. In

terms of our previous notation this trace is of course

TrRφ1φ2φ3φ4 = φij1 φ
2
jkφ

kl
3 φ

4
li .

Its easy to show that

4 TrRφAφBφCφD = TrR{φA, φB}{φC , φD} + TrR[φA, φB][φC , φD] ,

because the trace of the cross terms vanish. Also,

{φA, φB}ij =
1

4
TrR(φAφB) 1ij , (4.44)

and

TrR[φA, φB][φC , φD] = TrR(φAφD) TrR(φBφC) −
(
c↔ d

)
. (4.45)

We may now write the R trace of 4 φ’s as

4 TrRφAφBφCφD = TrR(φAφB) TrR(φCφD) − TrR(φAφC) TrR(φBφD)

+ TrR(φAφD) TrR(φBφC) . (4.46)

As for the gauge group traces: in SU(N<4), we only have one trace to take,

TrG φφ = 1
2
φAφA. We can then write 4 potentially distinct invariant terms,

TrR(φAφB) TrR(φAφB) , TrR(φAφA) TrR(φBφB) ,

TrR(φAφBφAφB) and TrR(φAφAφBφB) .
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By applying the appropriate contractions to Eq. (4.46) we find

4 TrR(φAφBφAφB) = 2 TrR(φAφB) TrR(φAφB) − TrR(φAφA) TrR(φBφB)

4 TrR(φAφAφBφB) = TrR(φAφA) TrR(φBφB) , (4.47)

so there are 2 unique gauge and R-symmetry invariant quartic terms and thus

only 2 quartic couplings that will require tuning.

In SU(N>3) we have one more way to take the trace and we can make a

similar argument as the above. For convenience define

TrG φφφφ ≡ φAφBφCφD CABCD

so that the four possible terms are

T1 = Tr (φAφB) Tr (φCφD)CABCD ,

T2 = Tr (φAφC) Tr (φBφD)CABCD ,

S1 = Tr (φAφBφCφD)CABCD ,

S2 = Tr (φAφCφBφD)CABCD . (4.48)

Using again Eq. (4.46) and the invariance of CABCD under index cycling yields

4S1 = 2T1 − T2 and 4S2 = T2 , (4.49)

precisely as before. We thus have two more gauge and R-symmetry invariant

quartic combinations in SU(N>3), implying a total of 4 quartic couplings that

will require tuning.

4.3.3 Reweighting

Suppose we perform a Monte Carlo simulation at one value m1 of the scalar

mass m, so that the configurations sample the distribution determined by the
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action S = Sm=0+
1
2

∫
m2

1φ
2. Following the “Ferrenberg-Swendsen reweighting”

method [114, 115] one can use the following “reweighting identity” to compute

the expectation value of an operator O for the distribution with a different

mass m2:

〈O〉 =

∑
C OCe

− 1

2
(m2

2
−m2

1
)
∫
φ2

C

∑
C e

− 1

2
(m2

2
−m2

1
)
∫
φ2

C

. (4.50)

There is a limited regime of utility to this technique, due to the so-called

“overlap problem.” For instance, if the exponential in (4.50) is large where

the simulated distribution has little weight, a finite sampling will have large

errors. The mismatch of the distributions gets worse as the number of lattice

sites increases, because the exponent is extensive.

A way to ameliorate the overlap problem, which has been found to work

in other contexts, is “multicanonical reweighting” [116]. One replaces S with

S +W [O1, O2, . . .], where W [O1, O2, . . .] is a carefully chosen function of some

small set of observables (in our case W will be a function of
∫
φ2, the distinct

∫
φ4’s, and

∫
(Dφ)2). The expectation value of an observable in the distribution

corresponding to S is:

〈O〉 =

∑
C OC e

W [OC
1
,...]

∑
C e

W [OC
1
,...]

(4.51)

The function W produces a weighted average over a continuum of canonical

ensembles, some of which will have a good overlap with the distribution that

one is reweighting to. The challenge is to design a W such that sampling is

flattened over the range of observables one is interested in.

For instance, in studying first order phase transitions (e.g., [117]), one

chooses O1 to be the order parameter of the transition; in a model with a scalar

field, typically O1 =
∫
φ2. One tunes W to cancel the nonperturbative effective
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potential for this operator, so that the Monte-Carlo simulation samples evenly

in
∫
φ2. This enhances statistics for configurations intermediate between the

phases. In the mass scan example above, one has

〈O〉 =

∑
C OCe

W [
∫
φ2]− 1

2
(m2

2
−m2

1
)
∫
φ2

C

∑
C e

W [
∫
φ2]− 1

2
(m2

2
−m2

1
)
∫
φ2

C

. (4.52)

Now wherever the exponential happens to be at its maximum, a large number

of configurations will be generated, due to the flat distribution w.r.t.
∫
φ2.

What we will describe below in Section 4.3.4 is how this should be extended

to the N=4 case.

Two approaches to engineering a good function W exist: (1) a bootstrap

method [123] that iterates between Monte Carlo simulation and adjusting W ,

and (2) optimizing W w.r.t. its parameters, in a small volume, and then using

step-scaling to extrapolate to a good estimate for W in larger volumes. For

instance one can start with 44 and 64 volumes, where statistics accumulate

rapidly and unreweighted simulations still cover broad parameter ranges.

4.3.4 Tuning with the effective potential

In our case the reweighting function W will depend on the four bosonic

contributions to the action,
∫
φ2,

∫
(Dφ)2,

∫
φ4

1 and
∫
φ4

2 (the two quadratic and

two independent quartic operators you can form from the scalars, integrated

over space). By sampling with the weight

ρ = D[A, φ] det[D] e−S[A,φ ; m2
0
,...] e−W [

∫
φ2,...] , (4.53)

and you can reproduce the ensemble at some particular set of values for m2,

Zφ, λ and λ′, via

Z =
∑
c e

+W [...] e−[(m2−m2
0
)φ2

c+(Zφ−Z
0
φ
)(Dφ)2c+...] , (4.54)
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with W chosen so that the sample has a reasonable number of configurations

for all values of
∫
φ2,

∫
(Dφ)2,

∫
φ4 and

∫
(φ2)2 within some interesting range.

Now, define the gauge invariant effective potential in finite volume as fol-

lows:

e−Ω V [A2] =
∑
c e

+W [...] e−[(m2−m2
0
)φ2

c ...]×δ(A2−φ
2
c

Ω
) (4.55)

with Ω the 4-volume (so that A2 represents the mean value of the squared

scalar field). It is easy to check that varying m2 changes V [A2] by adding a

linear component. Therefore, measuring V [A2] immediately determines how

〈φ2〉 and F= lnZ vary as a function of m2. One easily generalizes to the

effective potential as a function of all four bosonic operators, which gives a

quick way to explore the effect of varying parameters.

It remains to specify how to tune the parameters. Consider N=4 SYM

with an added a2( Tr φmφm)3 term in the potential, but deformed by mass

and quartic interactions. The SUSY point is a second order phase transition

point; for negative quartic deformation there is a first order transition as m2

is varied (the system jumps from a massive state about the origin to a massive

state with a large VEV because the quartic term bends down). For positive

quartic deformation there is no phase transition. The optimal value of m2

(fixing other parameters) is the point of maximal susceptibility 〈(∫x φ2)2〉 −

(〈∫x φ2〉)2. Determining this point in finite volume leads to O(1/L2) errors in

the determined value of m2, which can be improved by scaling over multiple

volumes. Finding the flat quartic term which gives second-order behavior

should also be possible; it has been successfully achieved in the context of

the electroweak phase transition [124]. Therefore it should be possible to use

the phase diagram to tune at least two parameters. Note that we needed to
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add a lattice-size φ6 term; this is harmless but it raises the issue that the

flat direction actually means that unbroken N=4 SYM is not well behaved

in finite volume; the moduli are not fixed and the partition function diverges

because of the integral over the infinite moduli space. Therefore it will always

be necessary to break SUSY somehow. We advocate doing so via twisted

boundary conditions; for instance, instead of periodic boundary conditions we

can add a rotation by angle Θ to all fermionic fields in one direction. The choice

Θ=π is the maximal global breaking of SUSY and corresponds to treating the

thermal ensemble; intermediate values of Θ break SUSY by smaller amounts.

This lifts the moduli degeneracy without any local SUSY breaking; the effects

of Θ are only visible in correlations at the scale of the lattice size, which is

anyway contaminated by being in finite volume.

For the case Nc > 3 the effective potential should show multiple flat di-

rections in the space of quartic operators; only one quartic direction (some

linear combination of the input quartics, due to mixing) should rise steeply.

Therefore we expect it should be possible to tune the “extra” quartic operators

in the case Nc > 3, leaving only one quartic and the Yukawa coupling/wave

function to tune.

4.3.5 Tuning with SUSY Ward identities

If supersymmetry is exact then the (R-symmetry 4) supercurrent Sµ,i is

conserved, so 〈∂µSµ,i(x)O(y)〉 vanishes at x6=y for all local operators O. We

can use this property to measure whether we are at the SUSY point in pa-

rameter space, and therefore to tune parameters to find the SUSY point. The

technique has been pioneered in N=1 SUSY with Wilson fermions by the

DESY-Münster group [99]; here we discuss the extension to N=4 SYM.
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The supercurrent Sµ,i is a linear combination of three dimension-7/2 op-

erators. It is easy to find lattice operators which reproduce these continuum

operators, at tree level and with contamination from higher dimension opera-

tors. The choices are not unique and at the nonperturbative level each lattice

operator will mix with all continuum operators in the same symmetry chan-

nel. Different choices of lattice operator will reproduce the continuum operator

with different normalization, mixings, and O(a) suppressed higher dimension

contamination. Hence we express the operators Oµ,i in a continuum language,

and leave the particulars of lattice transcription (which amounts to various

“improvements” w.r.t. O(a) discretization errors) for detailed studies. Our

intention here is to lay out the methodology.

In their analysis of the N=1 SYM case, the DESY-Münster group found

two dimension-7/2 operators, the supercurrent Sµ and another fermionic cur-

rent Tµ. These mix in the lattice-continuum matching and so one must write

down two lattice operators with undetermined coefficients in order to find

something which corresponds purely to Sµ (plus O(a) dimension-9/2 contam-

ination). In the present N=4 case there are 5 dimension-7/2 operators which

we will name O1...5
µ,i , and the renormalized N=4 supercurrent will, in all gen-

erality, take the form:

Sren.

µ,i =
{
Z1

1

2
FA·σ δij + Z2

√
2 /D

(
φijPL+φ

ijPR
)
A

−Z3f
ABC

(
φBikφ

kj
C PR+φikBφ

C
kjPL

)}
γµψjA

+
{
Z4γνF

A
µν δij − Z5

√
2Dµ

(
φijPL + φijPR

)
A

}
ψjA + O(a)

≡ ZnOn
µ,i + O(a) , (4.56)

where the terms on the righthand side are bare (lattice) operators. Note that:

(1) at tree level the supercurrent corresponds to Z1 = Z2 = Z3 = 1 and
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Z4 = Z5 = 0; (2) the renormalization constants Zn are universal w.r.t. the

index i due to the SU(4)R symmetry preserved by the lattice.

We can tune to the supersymmetric point by varying parameters to force

correlation functions of this lattice-implemented ∂µSµ,i to vanish up to O(a)

corrections. Specifically, to tune two parameters we need to choose 6 operators

On
µ,i in the same symmetry channel as Sµ,i (otherwise the correlation function

vanishes automatically). The natural choice is O1,...5
µ,i plus one dimension-9/2

operator O6
µ,i. One then measures the matrix of correlation functions

Mmn(t) ≡
∫
d3~x〈Om†

0,i (t, ~x)On
0,i(0, 0)〉 (4.57)

whose t derivative is the correlation function between ∂µOm
µ,i and On(0, i) at

vanishing spatial momentum. Since the operators involved are dimension-

7/2 we generically expect the elements of Mmn(t) to decay as t−7. At the

supersymmetric point and for the right choices of Zm, ZmM
mn decays as at−8

for all n. We can fix the undetermined ratios Z2...5/Z1 by enforcing that this

holds for n = 1 . . . 4. Forcing that it hold for n = 5, 6 gives two conditions

which can be used to check whether we are at the SUSY point–tuning to the

SUSY point is tuning for ZmM
m5 ∼ at−8 and ZmM

m6 ∼ at−8. Actually since

one of the operators is dimension-9/2 we must force one linear combination

ZmM
mncn to vanish as a2t−9.

We do not see an obstacle to using this procedure to tune more parameters,

if it proves too difficult to tune some of the vanishing quartic couplings via the

potential method. Therefore in principle the tuning to the SUSY point can be

done by any mixture of the Ward identity method and the effective potential

method.
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4.3.6 Final tally

We have seen that for Nc = 2, 3 colors, there are four fine-tunings in the

action. For Nc > 3 colors there are six. In addition, one must fix the four

relative renormalization constants in the supercurrent. All but one of the

scalar potential counterterms can be fixed by matching the effective potential,

as determined by the multicanonical simulation, to the target theory scalar

potential Tr[φm, φn][φm, φn]. The overall strength of this term cannot be de-

termined from the effective potential, because it will be expressed in terms of

the bare operators in our approach.

This leaves just six fine-tunings for all number of colors Nc: one fine-tuning

of the bare kinetic coefficient for the scalar, one overall scalar potential coeffi-

cient, and the four relative supercurrent coefficients. Thus a total of six Ward

identities must be measured well enough to distinguish their simultaneous

minimum w.r.t. Zφ, Z1/Z2, . . . , Z4/Z5.

4.4 Conclusions

By preserving the SU(4)R symmetry of the target theory, the number of

counterterms that must be fine-tuned is greatly reduced. This can be done by

implementing overlap fermions, with the chirality of the Yukawa couplings im-

plemented with auxiliary fermions, extending the method of Kikukawa [122].

Because counterterm fine-tuning can be isolated to the purely bosonic sector,

it can all be done off-line, i.e., without the expense of fermion matrix inver-

sions (the bottleneck for all dynamical fermion simulations). This is a great

advantage, because a very large number of points in the bare action parameter

space will have to be scanned in order to find the N=4 SYM point. Finally,

we have explained how the overlap problem can be alleviated by taking a mul-

ticanonical approach, flattening the distributions that will be scanned over.
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Now we breifly discuss the limitations and challenges of this proposal. The

main limitation is that, since N=4 SYM is conformal, the continuum limit is

not a weak coupling limit. Our proposal should work at weak coupling, where

one knows that the infrared description will be in terms of the same degrees of

freedom as one puts on the lattice. But there is no guarantee that one can find

lattice parameters which correspond to strongly coupled continuum theories.

The principal challenge is that the method requires GW fermions, which

are numerically expensive–especially in a theory such as this one, with massless

particles and the corresponding critical slowing down. It will be a challenge to

generate enough configurations to measure quantities with sufficient accuracy

to determine the SUSY point. Fermions are necessarily involved in the corre-

lation functions of the supercurrent, so storage of propagators during the sim-

ulations will be essential to performing the fine-tuning w.r.t. Ward identities.

The storage and computing resources that will be required will be substantial,

but we believe that for small lattice volumes (say 84) the exploratory studies

that need to be done can be performed in the near term.

For example, a first computation that needs to be done is to fix the mul-

ticanonical reweighting function. Small lattices (44, 64) should suffice to get

a rough idea of how to proceed in further studies (84, 124). Obviously early

stages of such work will be very much technical studies of the lattice theory.

Continuum results will take much longer. Nevertheless, the beginnings of first

principles nonperturbative study of N=4 SYM are not so far off, we believe, if

the current proposal is pursued with some dedication and adequate resources.

We hope to report on further progress in that direction in the near future.
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CHAPTER 5
Conclusion

In this thesis we have presented a robust technique for implementing su-

persymmetric field theories with a lattice regulator. We have given some im-

portant and very explicit examples of the necessary techniques and shown how

nearly every supersymmetric field theory can be implemented on the lattice

with minimal extensions of these techniques, which are currently available to,

and well established within, the lattice community. Both N=1 in 3D and

N=4 in 4D could be near first principle nonperturbative results from lattice

studies. We have argued that all (or nearly all) the subtleties of lattice SUSY

discretizations that have made simulations so difficult over the last several

decades, are contained in one or another of these two theories. It thus seems

reasonable to say that we have given a very general and robust prescription

for studying SUSY on the lattice that can be extended to any supersymmet-

ric theory, provided the gauge symmetry is not anomalous (if an anomalous

theory could be implemented on the lattice than it would be mathematically

well defined nonpertubatively and this would be a contradiction). Numerical

study of even the most complicated and expensive of these proposals, N=4

in 4D, is within reach, or nearly so. We stand to learn a truly vast amount

about field theory, about supersymmetry, about QCD and - hopefully - about

nature through first principles nonperturbative study of supersymmetric field

theories.
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APPENDIX A
Lattice Feynman Rules

Definitions:

p̂µ ≡ 1

a
sin (apµ), /̂p ≡ 1

a

∑

µ

γµ sin (apµ),

p̃µ ≡ 2

a
sin

apµ
2
, p̃2 ≡ 4

a2

∑

µ

sin
apµ
2
, Mp ≡

ar

2
p̃2 .

Propagators: (gauge indices are supressed where no confusion is possible)

- =
−i/̂p +Mp

p̂2 +M2
p

, - =
1

p̃2
≡ ∆̃p ,

µ ν =
1

p̃2

(
gµν − (1 − ξ)

p̃µp̃ν
p̃2

)
, -

A B
=

1

p̃2
δAB

Vertex Rules (all momenta incoming to vertex, δ(
∑
pi) implied):

- -

µ,A

p, b k, c
= −g0T

A
bc

(
iγµ cos

a(p−k)µ
2

+ r sin
a(p−k)µ

2

)

	I

µ,A ν,B

k, c p, d

=
a

2
g2
0{TA, TB}cd δµν

(
iγµ sin

a(p−k)µ
2

− r cos
a(p−k)µ

2

)

ν, B, p

µ, A, k λ, C, q

= ig0fABC

(
δνλ

˜(q−p)µcos
kν
2

+δλµ
˜(k−q)νcos

pλ
2

+δµν
˜(p−k)λcos

qµ
2

)

- -

µ,A

p,B k, C
= ig0fABC k̃µ cos

pµ
2

126



	I

µ,A ν,B

k, C p,D

= − 1

12
a2g2

0{FC, FD}AB δµν k̃µp̃µ , (FC
AE ≡ −ifCAE)

µ,A ν,B
= −g

2
0TFCA
6a2

δµν .

- -

µ,A

p, b k, c
= g0T

A
bc

˜(p− k)µ

	I

µ,A

p, dk, c

ν, B
= g2

0{TA, TB}cdδµν cos
a(p− k)µ

2
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The four point gluon vertex (reproduced from [34] and generalized to ar-

bitrary gauge group) is

µ,A, k

λ, C, q

ν, B, p

ρ,D, s

=

−g2
0

∑

E

fABEfCDE





δµλδνρ

[
cos

(p−s)µ
2

cos
(k−q)ν

2
− 1

12
k̃ν p̃µq̃ν s̃µ

]

−δµρδνλ
[
cos

(p−q)µ
2

cos
(k−s)ν

2
− 1

12
k̃ν p̃µq̃µs̃ν

]

+
1

6
δνλδνρ

˜(s−q)µk̃ν cos
pµ
2

− 1

6
δµλδµρ

˜(s−q)ν p̃µ cos
kν
2

+
1

6
δµνδµρ

˜(p−k)λq̃ρ cos
sλ
2

− 1

6
δµνδµλ

˜(p−k)ρs̃λ cos
qρ
2

+
1

12
δµνδµλδµρ

∑

σ

˜(p−k)σ ˜(s−q)σ





−
(
[ν, B, p] ↔ [λ, C, q]

)

−
(
[ν, B, p] ↔ [ρ,D, s]

)

+2g2
0 Tr T (ATBTCTD)





δµνδµλδµρ
∑

σ

k̃σp̃σ q̃σs̃σ − δµνδµλk̃ρp̃ρq̃ρs̃µ

−δµνδµρk̃λp̃λs̃λq̃µ − δµλδµρk̃ν q̃ν s̃ν p̃µ − δνλδνρp̃µq̃µs̃µk̃ν

+δµνδλρk̃λp̃λs̃µq̃µ + δµλδνρk̃ν q̃ν p̃µs̃µ + δµρδνλk̃ν s̃ν p̃µq̃µ





where the notation in the trace on group matrices is symmetrization in all four

indices (hence 1
24

Tr (TATBTCTD + TBTATCTD + . . .)).
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APPENDIX B
Some integrals for LPT

In this appendix we ennumerate a few of the integrals that come up very

frequently in LPT calculations. We set a = 1 everywhere in this section.

Define:

∫
1

k̃2
≡
∫ π

−π

ddk

(2π)d
1

4
∑
µ sin2 (kµ/2)

≡ Σ

4π
and

∫
1

(k̃2)2
≡ ξ

4π
. (B.1)

We also need that
∫

1 = 1 and we assume d ≥ 2.

Now, since
∫ k̃2

1

k̃2
=
∫ k̃2

2

k̃2

(by cubic invariance), we have

∫ k̃2
1

k̃2
=

1

d
,

∫ k̃2
1

(k̃2)2
=

1

d

Σ

4π
, and

∫ k̃2
1

(k̃2)3
=

1

d

ξ

4π
. (B.2)

We will also need (recall that k̂ ≡ sin(k) and ∂1 ≡ ∂/∂k1)

∫
k̂2

1

(k̃2)2
=

1

2

∫
cos(k1)

k̃2
− 1

4

∫
∂2

1(ln k̃
2) =

1

2

Σ

4π
− 1

4d
, (B.3)

where the last step follows from the fact that ∂1 ln k̃2 vanishes at k1 = ±π.

Now

∫
k̃4

1

(k̃2)2
= 4

∫
k̃2

1

(k̃2)2
− 4

∫
k̂2

1

(k̃2)2

=
1

d
− Σ

4π

(
2 − 4

d

)
, (B.4)
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and

∫
k̃4

1

(k̃2)2
=

1

d

∫
(k̃2)2 − d(d− 1)k̃2

1 k̃
2
2

(k̃2)2
, (B.5)

so we also have

∫
k̃2

1 k̃
2
2

(k̃2)2
=

2d− 4

d(d− 1)

Σ

4π
. (B.6)

These are all we have needed here, but just for fun:

∫ k̃4
1

(k̃2)3
=

1

2d

Σ

4π
+

d− 4

d(d− 1)

ξ

4π
, (B.7)

and
∫ k̃2

1k̃
2
2

(k̃2)3
=

1

2d(d− 1)

Σ

4π
+

d− 4

d(d− 1)

ξ

4π
. (B.8)

The specific values of Σ and ξ will depend on the dimension of course. Σ

has a UV log divergence for d=2 and is finite in all greater dimensions. The

naive degree of divergence of ξ is 4−d; that is, it has a UV log divergence in

d=4.
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APPENDIX C
Group Relations

The following relations for the matrices of the anti-Hermitian basis of the

fundamental representation of the gauge group were used in the calculation.

This is not an exhaustive list of useful relations. Since the idea is to reproduce

the adjoint representation as a product of two fundamental representations,

the relations will be expressed in terms of the generator of the adjoint repre-

sentation, FA
BC ≡ −fABC , and the completely symmetric structure functions,

DA
BC ≡ −idABC . dF is the dimension of the fundamental representation. TF

and CF are the first and second Casimirs of the fundamental representation of

the group. TF is also known as the trace normalization and is usually chosen

to be 1
2
. CA is the first and second Casimir of the adjoint representation (and

is also the same as the dimension of the representation).

We have

[TA, TB] = fABCTC and {TA, TB} =
−1

dF
δAB − idABCTC . (C.1)

The trace relations are

Tr TATB = −TF δAB ,

Tr TATBTC =
TF
2

(
DA−FA

)
BC

,

Tr TATBTCTD =
1

4dF
δABδCD − TF

4

((
DA−FA

) (
DC+FC

))

BD

, (C.2)
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and another useful relation is

TBTATB =
(

1

2
CA − CF

)
TA . (C.3)

To calculate diagrams we will also need

Tr FAFB = −CAδAB and TrDADB =
(

1

dFTF
+ CA − 4CF

)
δAB . (C.4)

132



APPENDIX D
Momentum space expressions for 4D lattice twisted SUSY

We write the terms as
∑
i w

A
i Ψ†(k)ViY

A
i Ψ, etc. . . . The Vi are 16×16, each

has 7 nonzero entries in the upper right quadrant corresponding to the wχψ,

wχθ, and wκψ terms, and one nonzero entry amongst the last four elements of

the first column corresponding to the wθη term. I will thus quote the results

in terms of an 8×8 matrix and a 4 component column vector. The momentum

space expressions for the wχθ terms has a phase remnant, φab ≡ eikab.

v4 =




−1

0

0

0




, u4 =




0

0 1

−1 0

0 φ23

1 0

0 −φ13

φ12 0

−1 0
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v3 =




0

−1

0

0




, u3 =




0

0 1

0 −φ24

−1 0

0 φ14

1 0

−φ12 0

1 0




v2 =




0

0

−1

0




, u2 =




0

0 φ34

0 1

−1 0

0 −φ14

φ13 0
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0

0

0
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1 0
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