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RESUME

La conductivité thermique est une excellente sonde des quasiparticules électroniques
présentes dans les phases supraconductrices et normales des supraconducteurs. Nous
avons utilisé cette technique pour ’étude de deux supraconducteurs non-conventionnels,
soit le composé a fermions lourds UPt; et le supraconducteur a haute température
critique YBa,CuzOs_s.

Dans le cas de UPt3, nous démontrons pour notre cristal de haute pureté, que
la conductivité thermique est complétement dominée par les électrons, fournissant
ainsi une sonde directe de la symétrie du gap supraconducteur. Nous soulignons que
nos mesures de l’anisotropie entre les axes b et c de ce cristal hexagonal restreignent
le nombre de candidats possibles pour la symétrie du gap telle que déduite a partir
d’arguments de théorie des groupes. En comparant nos résultats & des calculs récents,
nous concluons qu'un gap de symétrie hybride II fournit un bon accord entre la théorie
et ’expérience. Ceci favorise un parameétre d’ordre de symétrie E,, dans le cas d’un
couplage spin-orbite fort, ou 4,, pour un couplage spin-orbite faible.

Pour YBa,Cu307_s, la conductivité thermique posséde une contribution électroni-
que et phononique. Nous mettons en évidence la présence d’un terme de nature
électronique, méme & des températures ~ 7,./1000. Ceci est une indication claire de
la présence d’un gap supraconducteur non-conventionel dans ce composé. Par la suite,
nous présentons notre étude de dopage au zinc dans YBa,Cu30O;_s et démontrons la
présence d’un régime universel a T=0. L'ordre de grandeur de ce terme électronique
residuel est tres pres de la valeur prédite par certaines théories récentes. Nos résultats
confirment la validité d’une approche “diffusion résonnante par les impuretés” dans
les supraconducteurs & haute température critique, et I’excellent accord avec la théorie
renforce ’énoncé que la symétrie du gap dans YBa,Cu3zO7-s est de type d.2_,3.

Finalement, nous présentons des mesures de diffusion de neutrons dans UPt3;. Dans
ce chapitre, nous étudions la dépendance en champ magnétique du moment antiferro-
magnétique dans le plan de base. Nous montrons qu'un champ magnétique de I’ordre
de 3 Tesla n’a aucun effet sur ’ordre magnétique: le champ ne peut ni sélectionner
un domaine magnétique, ni induire une rotation des moments. Trés simples en ap-
parence, ces résultats ont un impact important sur les théories du diagramme de

phase supraconducteur de UPt3.



ABSTRACT
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Thermal conductivity is an excellent probe of quasiparticle excitations in supercon-
ductors both in the normal and superconducting state. We have applied this tech-
tique to the study of two unconventional superconductors, namely the heavy fermion
superconductor UPt; and the high-T, cuprate YBa,CuzO7_;.

[n the case of UPts, after reviewing previous low temperature thermal conduc-
tivity measurements, we show that, for our high quality single crystals, the thermal
conductivity is totally dominated by electrons and therefore provides a direct probe
of the superconducting gap structure. We demonstrate that our measurements of the
anisotropy of heat conduction between b-axis and c-axis in this hexagonal crystal pro-
vide strong constraints with respect to the possible gap structures inferred by group
theoretical arguments. By comparing our results with recent theoretical calculations,
we show that a hybrid II gap structure provides good agreement between theory and
experiments favoring an order parameter of F,, (strong spin-orbit coupling) or A,,
( weak spin-orbit coupling) symmetry.

For YBa,;Cu307_s, the thermal conductivity typically consists of both a phononic
and an electronic contribution. After reviewing low temperature thermal conductivity
measurements that address this question, we demonstrate the presence of electronic
quasiparticles even at temperatures of ~ T./1000, a clear indication of an unconven-
tivnal gap structure. We then proceed to discuss zinc doping studies in YBa,CuzO7_;
and show that we find a universal residual linear term at 7=0 of a magnitude very
close in value to that predicted by recent theories. These results validate the ap-
proach of resonant impurity scattering in the high-T., and our excellent agreement
with theory reinforces the view that the gap structure in YBa;Cu3O7_s is of da_pa
symmetry.

Finally, we present neutron scattering results in UPt3. In this chapter, we study the
magnetic field dependence of the antiferromagnetic moment lying in the basal plane.
We find that magnetic fields of order 3 Tesla have no effect on the magnetic order: it
can neither make the sample a magnetic monodomain in field cooling nor can it rotate
the moment. The results, very simple in appearance, have profound consequences for
the superconducting phase diagram of this heavy-fermion compound.
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The following thesis reports on new contributions I have made to scientific knowledge.
I briefly outline those here:

e My thermal conductivity results on UPt; are the first instance of the successful
use of heat conduction to probe the superconducting gap anisotropy in an un-
conventional superconductor. One similar attempt had previously been made on
UPt3 by another group but with no success. This original contribution has lead
several theorists to use my data in comparing their calculations to experiments,
and a comprehensive understanding of heat transport in UPt; is near.

e A systematic study of high-quality zinc-doped crystals of YBa,Cu307_s had
never been performed at low temperature. I provide the first firm evidence for
a universal transport coefficient at T — 0 in any superconductor. This con-
firms current theories of transport in unconventional superconductors based on
a d-wave gap and resonant impurity scattering. Having shown that the conven-
tional analysis of low temperature data in YBa,Cu3O7_; made by most other
groups is not adequate, I provide a way of accounting for my low temperature
thermal conductivity results over the whole temperature range covered by the

experiments.

o Finally, my neutron scattering results are also an original contribution. The
behavior of the magnetic moments in UPt; had been taken for granted without
any measurements as to the domain behavior and possible reorientation of the
moments in the presence of a magnetic field. The simple result of no rotation
and no domain re-population has profound implications for theories of the phase
diagram in UPt;.

[ should stress that these experimental results were only possible after a large
amount of time was invested in designing a reliable thermal conductivity setup and
several problems (wiring, sample mounts, thermometry, electronics, ...) linked with
the installation of a new dilution refrigerator were solved. This occupied a great deal
of my first years at McGill. I can say that most problems were solved and that thermal
conductivity results can now be routinely obtained in our lab at temperatures down
to 50 mK.
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Heat conduction in unconventional superconductors
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INTRODUCTION

Since the late 1970’s, great achievements in the field of superconductivity have re-
shaped the landscape of solid-state physics especially with regards to strongly corre-
lated electron systems. It all began with the discovery of superconductivity in the
heavy fermion materials, first in CeCu;Si; by Steglich et al. [1]. This discovery was
very surprising since these materials are close to magnetic instabilities and in some
cases, superconductivity was found to coexist with magnetic order. There are, at
present, six heavy fermion superconductors all with a transition temperature below
2 K. In 1986, the work of Bednorz and Miiller [2] opened the ever growing field of
high-T. superconductivity. Their discovery of superconductivity in (La,Sr);CuQy4 in
the 30 K range was followed by a worldwide investigation of copper-oxide systems
resulting in the synthesis of new families of systems each with a higher superconduct-
ing transition temperature now reaching up to 150 K. Even though both classes of
systems have superconducting transition temperatures differing by two orders of mag-
nitude, they share common features: both are strongly correlated electron systems,
both are close to magnetic instabilities and both are thought to be unconventional
superconductors!. Other classes of unconventional superconductors have been discov-
ered, such as the organic superconductors (for a review see [3]). In this thesis, all of
our attention will be devoted to the heavy fermions, represented by UPt; (7. = 0.5 K),
and to the high-T, cuprates, represented by YBa,Cu3O7_5 (T, = 93 K for §=0.1).
Heavy fermions systems are inter-metallic compounds containing rare-earth or
actinide ions whose fshell electrons are only slightly delocalized and therefore strongly
correlated. These systems display a variety of ground states such as antiferromagnetic

order in U,Zn,7 and UCd,,, no order at all in CeAl; and CeCug, and superconductivity

'What we mean by unconventional superconductor will be defined in section 2.3.
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in CeCu,Si; (0.6 K), UBey3 (0.9 K), UPt; (0.5 K), URu,Si; (1.2 K), UNi;Al; (1 K),
and UPd,Al; (2 K). It should be noted that in four out of the six superconductors
the superconducting order is preceeded by magnetic order with Ty~ 107, i.e. UPt3
(Tx =5 K), URu,Si, (Tx = 17 K), UNi;Aly (T~ = 5 K), and UPd,Al; (Ty = 14 K).
The magnetic order is found to coexist with superconductivity. The name heavy-
fermion arises from the large effective masses that can be deduced from the electronic
linear term « in the specific heat. For an ordinary metal, the «y-value is of the order of
1-10 mJ/K?mol. For heavy-fermion systems, it ranges from 400 to 1000 mJ/K?mol
or more u.e. a factor up to 10% to 10° times larger. In this thesis, our attention will be
tucussed on UPty as this material is the most studied of all heavy fermion compounds
because it shows the strongest evidence for unconventional superconductivity.

The high-T, cuprates are all highly anisotropic oxides and belong to the wide class
of perovskites. They are characterized by two-dimensional copper-oxygen planes from
where the superconductivity is thought to arise. Some widely studied materials in this
class include La;_.Sr,CuQOy4 (7T.=38 K), YBa,Cu307 (T.=93 K), Bi;Ca;Sr;Cu30;o
(T.=110 K), and Tl,Ca;Ba;Cu30,0 (T.=125 K). We concentrate on YBa;Cu3zO7_;.
Note that this compound can have its properties tuned by changing the oxygen con-
centration (i.e. §). It is an insulating antiferromagnet for §=1 while it becomes
superconducting for §<0.6.

The thesis is divided as follows. Chapter 2 outlines the basic properties of sim-
ple metals, conventional and unconventional superconductors, all in the context of
heat transport. Chapters 3 and 4 review the basic properties of the two compounds
with respect to normal and superconducting state properties. Chapter 5 summa-
rizes the experimental aspects of our thermal conductivity setup. In chapters 6 and
7, a brief review of previous thermal conductivity measurements is given, followed
by the presentation and discussion of the measurements we have performed. A de-
tailed comparison between our experimental data and current theories of transport in
unconventional superconductors is made. Before concluding the thesis, our neutron
diffraction results on UPt3 are presented, and their implications on the phase diagram

will be discussed in light of recent theoretical developments.
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THERMAL CONDUCTIVITY: A REVIEW

2.1 Heat transport in metals

In this section, we present an outline of transport theory for both charge and heat
as applied to typical metals. We will derive the well-known equations for electrical
(o0 = -"51) and thermal (k. = ;cyviT) conductivities, whose terms will be defined
later. This will serve to illustrate one fundamental property of metals, namely the
Wiedemann-Franz law. We will then proceed to discuss the possible scattering me-
chanisms that can diminish the conduction of charge and heat, whereby the infinite
conductivity derived via Bloch’s formalism becomes finite in the presence of lattice
vibrations (which scatter electrons) and static defects. The reader is also referred
to the book by Abrikosov [4] for a more detailed treatment of the Boltzmann equa-
tion, while the book by Berman [5] gives a longer discussion on the applicability of
the Wiedemann-Franz law and transport by phonons. Furthermore, the paper by
Klemens {6] (and references therein) discusses in detail the various scattering me-
chanisms. Before the derivation of transport theory, we briefly sketch the general
behavior of the electrical and thermal conductivities in a typical metal, i.e. one for
which the electronic contribution to thermal conductivity is much larger than the
phonon contribution at all temperatures.

In a solid, heat is conducted by electrons, phonons, magnetic excitations, etc.,
namely:

K= Ke+ Kph + ... (2.1)

In typical metals, the heat transport is totally dominated by electrons while in dirty
alloys both phonons and electrons have comparable contributions. In insulating solids,

only phonons carry heat.
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Conductivity 7 or A€

Defects Phonons
Temperature

Figure 2.1: Electrical (o) and electronic thermal (x¢) conductivities of a metal as a function of
temperature. The dominant electron scattering mechanisms are indicated along the abscissa. The
upper curves in each case are for more perfect specimens than the lower curves (after [5]).

Figure 2.1 displays the electrical and thermal conductivities of a metal as a function
of temperature along with the electron-scattering mechanisms responsible for the
shape of the curve. At high temperatures, the effectiveness of the lattice in scattering
electrons is proportional to the lattice vibrational energy, which in turn is proportional
to temperature. The mean-free path £ is then inversely proportional to T and so is the
electrical conductivity. As the temperature is decreased, phonons are less effective
in limiting the mean-free path and the increase in conductivity is faster than the
1/T regime established at higher temperatures. Eventually, the electronic mean-free
path reaches a constant value determined by elastic scattering, i.e. impurities or
imperfections in the lattice and the electrical conductivity becomes constant. As for
the thermal conductivity, it is a constant at high temperatures because the specific
heat is linear in temperature (as long as kgT <« ep) while the mean-free path is
again inversely proportional to temperature. As the temperature is reduced, the heat
conduction changes from being a constant to varying as 1/7? because the scattering
time for electron-phonon processes is proportional to T3, At the lowest temperature,
the mean-free path being a constant, the only temperature dependence remaining is

that of the specific heat and the thermal conductivity is linear.
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2.1.1 Charge transport
‘ We start this discussion with the Boltzmann equation, which states that the driving
force is equal to the dissipative effects of collisions. The central quantity is the non-

equilibrium distribution function f.

8f eE - af
E - TV},]‘-F'U V f= (&)m“ (2'2)

with ¢ the velocity and £ the electric field.
The collision term on the right hand side of equation 2.2 is very difficult to calculate
from first principles. One often makes the relaxation-time approximation:
where f, is the equilibrium distribution, namely the Fermi function fo = (exp (£2) +1)
and 7 is the relaxation time'. This approximation is exact for an isotropic Fermi
surface, isotropic impurity scattering and for a spatially homogeneous temperature
gradient [4].
We now focus on the conduction of charge in a metal. When an electric field
. is applied, it causes variation in the k-space distribution leading to a non-zero Vef
term. In steady-state conditions and with no spatial inhomogeneties, the first and

third terms on the left hand side of equation 2.2 are zero and to first order:

0fo .0
ka kao = —‘&V,.ek = vk—;fg (2.4)
ek Oey
Substituting in equation 2.2 and making use of the relaxation time approximation,
we get:

8fo
fe— fo= —€E- vaka (2.5)

€k

The expression for the electric current is simply:
distribution function

Je =2 z ( . eyey o

ot \displaced from equilibrium

states

) (charge carried) (velocity) (2.6)

&k
(2x)

' The scattering rate [, which will be discussed later in the thesis, is simply the inverse of the scattering

. time e. L =1/7.

=2 [ [fa — foleTum—e (2.7)
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Inserting equation 2.5 into the last expression, changing the integration over k into

. an integral over energy and carrying out the angular integration, we get:
+o0
= 1 = [ Ofo
jo = —getviryE o/ SN (e)de (2.8)

where we have assumed an isotropic Fermi surface (i.e. v — vr) and isotropic scat-
tering (i.e. 7. — tn)!. To first order %{Q is a §-function centered at the Fermi level

(z.e. %F(e)ds = —F(er) + ...). The charge current then becomes:

. 1 .
Je Eez’uf;-TNN(EF)E (2.9)

up to corrections of order (kgT)? /c%. By replacing the density of states at the Fermi
level by the known result N(ep) = 22 = 2% and making use of the definition of the
m”F

2p
electrical conductivity which states that f, = O'E, we get the well known result:

ne’ry

(2.10)

o =
m

. 2.1.2 Electronic thermal conductivity

We now turn to the heat conduction by electrons in a metal. We again apply the
Boltzmann equation 2.2 to heat transport. In this case, the presence of a tempera-
ture gradient causes the spatial gradient term V., f to be non-zero. In steady-state
conditions and with no electromagnetic forces, the first two terms on the left hand

side of equation 2.2 are zero. Using the relaxation-time approximation, we then get:
fe=fo=-mi-V,f (2.11)

[v first order. we can replace V, f by V, fo- Then making use of the fact that fp is

the Fermi function, we get:

8fo €k dfo .,

T-Viefo=t-VT

!The s-wave scattering approximation will always be used even when we discuss resonant impurity
scattering. The implications of this is that the scattering rate does not depend on the initial direction
of the electron but depends only on energy. When discussing superconductors, special attention has

. to be given in order to avoid confusion between s-wave scattering, s-wave potential and s-wave gap.
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Equation 2.11 then reduces to:

VT 8f,
- fo= —TVr - 75— 2.13
fe = fo = —euneti - Ber (2.13)
The heat current due to an electron with wavevector k is given by the product of the
thermal energy of that mode and the velocity of propagation times the distribution

function. namely:

- ( distribution function ) ( ed) (velocity) (2.14)
= energy carried) (veloc .
e a1\ displaced from equilibrium i y
states
=2) [fe — folexti (2.15)
P)
== Z uiel zfovkn.VT (2.16)

where y; is the direction cosine i.e. cos @ where § is the angle with respect to the tem-
perature gradient axis. Again, we assume an isotropic Fermi surface and isotropic
scattering. Substituting and changing the summation over momentum into an inte-

gration over energy:

Jo = {v,, "T/ af"N(s de/cos o@}VT (2.17)

Carrying out the angular integration, and using the definition of thermal conductivity
_;;, = —m,ﬁT, we get:

1
Ke = -3-CV1J§~TN (2.18)

where we have made use of the fact that:

ov = o [ eN(EMle)de = —x [ 2N (e) Lode (2.19)

2.1.3 The Wiedemann-Franz law

Integrating equation 2.19 and writing it in terms of the density of states at the Fermi
level, we get:

2
v x %N(ep)kg,T (2.20)

up to corrections of order kgT /er. Inserting this expression into that for the thermal

conductivity and assuming the same scattering time for both thermal and electrical
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relaxation processes, we get:

K w2k}
—= = 2.21
oT 3e? ( )

Equation 2.21 is called the Wiedemann-Franz (WF) law while the ratio =g is the
Lorenz number. The constant % = Lo = 2.44 x 10~® WQK~2 is the Sommerfeld

value.

We now discuss the validity of the Wiedemann-Franz law. Since the electronic
charge is fixed, the only way collisions can degrade an electric current is by changing
the momentum of the electrons. In analogy with the electrical conductivity, for
thermal conductivity, the “charge” carried by the electron is simply the energy of
that electron. Therefore, in the case of elastic collisions, the energy will be conserved
and both the thermal and electric currents will be degraded in the same way hence the
Wiedemann-Franz law holds. However, in the case of inelastic collisions, the thermal
current has a degradation mechanism with no analog in electrical current (:.e. charge
is conserved but not the kinetic energy) and the Wiedemann-Franz law is expected
to fail.

At low temperatures, the main scattering mechanism for electrons comes from
impurities. This being an elastic process, the WF law holds and the thermal conduc-
tivity is simply & = % with po the residual electrical resistivity. The law will also
hold if scattering by phonons involves large changes in momentum as is the case for
Umklapp processes. Such processes occur at high temperature, namely for T > 8p.
As discussed at the beginning of section 2.1, in this temperature range, «. is constant
while ¢ x 1/T and the WF law is obeyed. Therefore, as the temperature is reduced,
the WF law breaks down when the dominant phonons have such small wavevectors
that they cannot bring about, in one collision, the large wavevector changes needed to
produce electrical resistance, but can yet bring about the small wavevector changes
effective in causing thermal resistance (by inelastic scattering). Finally, in the pres-
ence of electron-electron interactions (an inelastic process) one finds again 3% < Lo.
This effect is small in simple metals such as nickel [7] (since the electron-electron
interaction is small}, but is much larger in heavy-fermion compounds like UPt; (see

section 6.2).
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2.1.4 Scattering mechanisms

We now turn to the various scattering mechanisms which can impede the flow of
heat, thereby causing thermal resistivity. The discussion will cover phonons and
electrons separately. In UPt3 (see section 6.3), we will show that the electrons are
the dominant carriers of heat over the whole temperature range. This is not the case
for YBa,Cu30+_s and inclusion of phonons and their various scattering mechanisms

1S necessary.

Table 2.1: Frequency variation of the scattering rate and low-temperature dependence of the thermal
conductivity for phonon heat carriers in the presence of various scattering mechanisms (after [6]).

Phonons
Scattering mechanism  I['(w) #u4(T)
Boundaries w° T3
Mosaic + stacking faults w? T!
Phonon-electron w! T?
Dislocations (strain field) ! T?
Dislocations (core) w? T°
: Point defects wt T!
Umklapp processes - T3e8/oT
Tunneling states - T?

Table 2.1 compiled by Klemens [6] summarizes the various scattering mechanisms
affecting phonons heat carriers, their frequency variation and the temperature depen-
dence of the thermal conductivity (x,5) when the process dominates. For each item

in the table, we give a short definition (see (5, 6, 8] and references therein):

1. Boundaries. The external boundaries of a crystal or the grain boundaries in a
polycrystalline solid can limit the heat conduction. Such boundaries give rise
to a scattering rate independent of frequency and the heat conduction is then
proportional to the phonon specific heat, which at low temperature goes as
~ T*. In this case and for a sample with rough surfaces (diffuse scattering),
the phonon mean-free path is simply the smallest dimension of the crystal for
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single-crystals or the average size of the grains composing a polycrystal.

2. Mosaic and stacking faults. Sheet-like faults and crystal mosaic causes phonon
scattering due to the small difference in orientation of the domains. The scat-
tering rate is proportional to w? and the thermal resistivity to T~!. Stacking
faults also behave in a way similar to mosaic and have the same frequency

dependence of the scattering rate.

3. Phonon-electron. When the phonon conduction is limited by conduction elec-
trons, the scattering rate is proportional to w' and the thermal resistivity is

proportional to 7 2.

4. Dislocations. The main features of the scattering by static dislocations can be
deduced by considering separately the effects of the core and of the surrounding
strain field. The core of a dislocation consists of a narrow region along its axis,
within which there is a drastically altered structure which can be represented
by a change in density. As for the strain field from a dislocation, it can be

. understood with the following analogy borrowed from optics: owing to the
anharmonicity in real crystals, the strain alters the phonon velocity and this
corresponds to a change in refractive index so that the wave deviates upon
passing through the strained material. The core (strain field) leads to a w®

(w') dependence in the scattering rate resulting in a 7° (T'?) dependence of the

thermal conductivity.

Point defects. A defect which extends over a volume with linear dimensions

i

uiuch smaller than the phonon wavelength can be considered a point defect. An
atom on the wrong lattice site substituting for the correct atom!, a vacancy at a
lattice site, an interstitial atom, or a combination of these are all candidates for

a point defect. The scattering is then caused by the difference in mass and the

'We illustrate this in the case of UPts for two cases: substitutional impurity and disorder. In the
first case an impurity atom can substitute for one of the atoms of the compound, for example a Pd
atom is found on a Pt site. The second case refers to disorder within the compound: a U atom is

. located on a Pt site or vice-versa.
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difference in bonding between the atoms. Point defects have a w* dependence

on the scattering rate leading to a thermal conductivity varying as 7.

6. (Umklapp processes. Umklapp processes are elastic and involve three phonons.
The process obeys the conservation of energy, and the conservation of momen-
tum involves a reciprocal lattice vector g: ki + bk, = ks + g. Such processes can
be shown to be dominant at high temperatures in insulating crystals with their
thermal conductivity varying as T3e%/T. Due to the exponential behavior, this

scattering mechanism will be neglected at low temperatures.

7. Tunneling states. The tunneling states model was developed by Phillips [9] and
by Anderson et al. [10] to explain the non-Debye behavior of glassy materials
at low temperatures. These materials showed an unexpectedly large specific
heat with an unusual T2 variation in the thermal conductivity. The model is
based on the idea that in a disordered solid, certain atoms or groups of atoms can
occupy two different configurational sites represented by a double-well potential.
Because of the amorphous state, one expects a broad distribution of potential
barriers. and consequently a wide range of tunneling-state relaxation times. In
these conditions, it is possible to show that the thermal conductivity will have

a quadratic temperature dependence.

Once again, by using the Boltzmann equation formalism in the relaxation-time
approach, the thermal conductivity for phonon heat carriers can be derived (see for

example [5]):
8/T .

Koh = (%")3:03 / r(z)(—;?""l?dz (2.22)

272

with 6 the Debye temperature, v,, an average phonon velocity and z = hw/kgT. The
scattering time 7(z) is simply the inverse of the sum of the various scattering rates
(t.e. Matthiesen’s rule 77! = 3" 7;!) listed in table 2.1 relevant to the crystal under
investigation. When the phonlm velocities are known, the average phonon velocity
vpn is given by vy(2s? +1)/(2s® + 1) (see {5]) where s is the ratio of longitudinal to
transverse phonon velocity, v;/v;. In general, integrals of the form (2.22) have to be
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evaluated numerically with:
r(z) = A(1+ 82T + BT + e2°T° + az*T* +...) (2.23)

The term § includes the effects of the strain field of dislocations (é4;,) and electron-
phonon coupling (8.—px). The 3 term is for sheet-like faults, ¢ for the core of disloca-
tions and a for point defects. Finally, the constant A is for boundary scattering and
is proportional to the phonon mean-free path. More specifically, it is equal to the
sample thickness in the case of diffuse scattering off the crystal boundaries. Specular
reflections can lead to a phonon mean-free path larger than the thickness. Note that
for the remainder of the thesis, we make a particular choice of units for the scattering
time 7: the numerical constant -2?"5; ('—‘,{1)3 in equation 2.22 will be included in the A
term of equation 2.23. The units for A will then be mW s/K*cm, § will be expressed
in s7'K~! while 3 will be in s"'K2.

[able 2.2: Temperature variation of the electrical resistivity and the thermal conductivity for elec-
tronic heat carriers in the presence of various scattering mechanisms (after [5]).

Electrons
f_Scattering mechanism p(T) &.(T)
ir Impurities or defects T T!
Phonon-electron - " T
Electron-electron T* T
Kondo effect <-InT -

“This is in the limit where T < 6p only.

We now turn to a discussion of some of the processes that can cause resistance to

the electronic flow of heat (or charge). The conclusions are summarized in table 2.2.

!. Impurities or defects. In this case all the electrons involved in conduction have
a small wavelength and there is little change in their energy with tempera-
ture. The impurity scattering cross-section is then effectively independent of
the electron wavevector, hence the electrical resistance is then independent of

temperature (and leads to the residual resistivity at low temperature), while
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the electronic thermal conductivity is proportional to temperature (due to the

. linear specific heat).

2. FElectron-phonon. For T > fp, the number of phonons in a mode is propor-
tional to temperature and therefore, the electrical resistivity limited by electron-
phonon scattering will also be linear in temperature. For temperatures well
below the Debye temperature fp, the change in electron energy, after an inter-
action with a phonon, will be small but since the phonon wavector gp can be
comparable to kr, the change in the electron wavector can be large. One can
show (see 11]) that the relaxation rate for such a process is proportional to
T3. and that the thermal resistivity is proportional to T2 while the electrical

resistivity is proportional to T%.

3. Electron-electron. In simple metals, electron-electron scattering processes can

be shown to dominate only in exceptionally perfect metallic specimens (see [7]).

[t gives rise to a T'? scattering cross-section, a thermal resistivity proportional to

T and an electrical resistivity proportional to T2. In heavy fermion compounds,

. the electron-electron cross-section is enhanced by the large effective masses and

does become very significant.

4. Kondo effect. Small concentrations of magnetic ions in a non-magnetic metal
can have important consequences. In the vicinity of the magnetic impurity, the
conduction electron gas becomes polarized. This results in an antiferromagnetic
exchange interaction which produces a virtual bound state between the magnetic
moments and the conduction electrons. This is the well-known single-ion Kondo
interaction. The trademark of this is a resistivity minimum and a logarithmic
increase of resistivity with decreasing temperature below the minimum. For
example, the minimum occurs around 30 K for 0.1-0.2% of Fe in Cu [12]. This
mechanism is thought to play a fundamental role in the origin of the large
effective masses in heavy fermion compounds which are viewed as lattices of

Kondo impurities.

In UPt; at low temperature, where electronic carriers dominate, a direct appli-

‘ cation of Matthiesen’s rule in the presence of impurities and electron-electron inter-
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actions leads to an electrical resistivity of the form p = pg + AT? and a thermal
. conductivity £ = (e + bT?)~! which is precisely what is observed below 1 K.

2.2 Conventional superconductors

The theory of Bardeen, Cooper and Schrieffer (BCS) [13] is a complex many-body
theory that can account for many of the unusual properties of superconductors. In
tus section. only the main ingredients of BCS theory will be outlined. This will
then be followed by the Boltzmann equation treatment of thermal conductivity in
conventional superconductors. A more complete review of BCS theory can be found
in the books by Tinkham [14] and de Gennes [15]. As for the thermal conductivity, we
refer the reader to the original paper by Bardeen, Rickayzen and Tewordt (BRT) [16].

2.2.1 Pairing mechanism and the energy gap

The phenomenon of superconductivity was discovered by Heike Kamerlingh Onnes
in 1911, when he found that below 2 critical temperature labelled T, the resistivity
. of mercury abruptly dropped to zero. Numerous metals were then investigated lead-
ing to the discovery of the highest transition temperature in the elemental metals:
T. = 9.2 K in niobium. In 1933, Meissner and Ochsenfeld noticed that the magnetic
Hux was expelled from the interior of a sample when cooled below the superconduct-
g transition. Various authors put forward different phenomenological models to
account for the stunning properties of superconductors: the London model for the
Meissner effect, the two fluid model for the temperature dependence of certain proper-
ties, the Pippard model to explain the non-local electrodynamics of superconductors
and the Ginzburg-Landau (GL) theory, a general phenomenological theory of phase
transitions'. Theoretical developments culminated with the microscopic theory of su-
perconducticity by Bardeen, Cooper and Schrieffer (BCS) [13] which we now proceed
to outline.
The BCS theory is based on the fact that in the presence of an attractive potential

between electrons, an instability in the electron gas develops leading to the formation

LA detailed discussion of GL theory is delayed until section 3.2.2, where both conventional and
. unconventional superconductors will be treated within this formalism.
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Figure 2.2: Temperature dependence for the isotropic BCS gap in the weak-coupling limit (after
13 ). Iln therr notation, g is the gap parameter.

of bound electron pairs, the so-called Cooper pairs. The electrons in a pair have the
same momentum but in opposite directions. The pairing leads to the formation of a
many-body coherent superposition of identical pair states that can be described by a

macroscopic wave function ¥gcs:

¥pes = H (u; + v;ai-Tat_Ei) ['vac) (2.24)

where 'v,;lz is the probability of a pair state k being occupied, Iu,;lz is the probability
of a pair state k being unoccupied and the a!’s are standard creation operators from
second quantization.

In conventional superconductors, the attractive pairing interaction is mediated
by the lattice and can be accounted for schematically in the following way: a first
clectron passes through point 7 at time ¢ and polarizes the medium by attracting the
neighbouring positive ions. While the electron moves off very fast i.e. at the Fermi
velocity, the disturbance in the lattice relaxes slowly with a characteristic frequency
of the order of the Debye frequency. At a later time t¢’, a second electron passes
at a point 7' nearby and is attracted by the still partially polarized lattice. Due to
the retardation, the interacting electrons are spatially separated thereby reducing the
repulsive Coulomb interaction. This distance between the two electrons in a Cooper
pair is called the coherence length £. For example, £ = 16000 A in pure aluminum
and £ = 380 A in niobium.

The next step in understanding superconductors has to do with the presence of an
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energy gap A of order kg7, in the quasi-particle excitation spectrum of the system.
A solution of the BCS Hamiltonian using equation 2.24 as a variational wavefunction

sbtained by making a series of substitutions (see for example [14]): ux = sin Oy,
te = cost, and defining Ap = —%Xl,‘{/}d sin 20,. Using these, Bardeen et al. [13]
arrived at a self-consistent gap equation directly relating the k-dependence of the

superconducting gap A, to the symmetry of the pairing potential Vi:

_ ——Z i 2)1/21/ (2.25)

where ¢, is the electron energy measured with respect to the Fermi energy. In their
derivation, the potential is taken to be isotropic (i.e. s-wave symmetry) and non-zero
only in a thin shell of thickness ~ wp about the Fermi surface. This leads to a
gap with no k-dependence. As we shall see later, symmetries other than s-wave are
possible for the pairing potential which would lead to an anisotropic gap.

In solving the gap equation (eq. 2.25), the BCS model being a mean field theory,
one finds that close to T, the gap order parameter behaves as -‘é@l x (T, — T)=
with A(U) = 1.76kgT. being the conventional BCS value, chosen to be isotropic and
intte over the whole Fermi surface. Since numerical solution of equation 2.25 is
necessary when calculating physical properties that depend on the gap, an analytic
approximation is often made to simplify calculations:

kBT 2 ACT. - T)"‘]
A(0) 3h cC T
where AC/C is the specific heat jump at 7. and h is the mean square value of the

(2.26)

A(T) = A(0) tanh [

gap relative to the maximum value (defined in equation 2.65). For an isotropic BCS
gap, AC/C = 1.43 and h = 1. The temperature dependence of the superconducting
gap, as derived by BCS, is displayed in figure 2.2. From this figure, one can notice
that the gap becomes essentially constant (i.e. A(T) = A(0)) below T'/T.~0.4

An important quantity that needs to be introduced when discussing excited states

and transport properties in the superconducting state is the quasiparticle energy Ex:

E. = e + A (2.27)

where €, is the single quasiparticle energy measured from the Fermi level and A, is

the energy gap. It turns out that the elementary excitations, called quasiparticles, out
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[

Figure 2.3: Superconducting quasiparticle energy spectrum (solid line) as a function of its wave-
vector. The energy spectrum in the metallic state, given by ||, is represented by the dashed line.
Notice that both quantities differ only in a narrow region around k7 where E; has a minimum in
cnergy equal to the superconducting gap.

of the BCS ground state behave like fermions with energy E,. The gap then plays
the role of a minimum excitation energy, as displayed in figure 2.3. This quantity
will be used extensively in the next section when we discuss thermal conductivity in
superconductors. Such an excitation gap can either be accessed via thermal proper-
ties such as specific heat or heat transport, electromagnetic absorption or tunneling
experiments. For thermal properties, the gap leads to an exponentially activated be-
havior at low temperatures. As an example, figure 2.4 displays the specific heat in
aluminum.

We conclude this section by deriving the superconducting density of states N,(E).
In going through T, the number of quantized states is preserved and therefore
N, E)E = N(¢)de =~ N(0)ds. We find:
T E> A

2.28
0, E<A ( )

NJE) =~ N(O)dfg- = {

This quantity is plotted in figure 2.5. We immediately notice that (i) there are no
states below A, (ii) there is a significant increase in the density of states just above
E=A and (iii) a superconductor behaves like a normal metal for E 2 3A. The absence

of states below A leads to an absorption edge as seen in microwave and far infrared
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Figure 2.4: Specific heat for aluminum as a function of temperature in both the normal and supercon-
ducting state (after [17]). Notice the exponential behavior at low temperature in the superconducting
state.

experiments (see for example [18]). For energies hiw < 2A, the superconductor is
totally reflecting while for Aw > 2A absorption by the material under investigation
can be measured.

In summary, we have explained that superconductivity arises from a pairing be-
tween electrons and that there exists a gap between the ground state and the first
excited state which gives rise to exponentially activated behavior in many physical

pruperties.

2.2.2 Thermal conductivity in conventional superconductors

Let us now mention two properties of the condensate that derive from BCS theory:
(1) Cooper pairs carry no entropy — only thermally excited quasiparticles can carry
thermal currents - and (ii) Cooper pairs are not effective in scattering phonons or
electrons. Item (i) implies that at low temperatures, due to a finite gap, the number
of excited quasiparticles will have an exponentially activated behavior and therefore
ke, will fall off exponentially. Item (ii) implies that since the paired electrons can

no longer scatter phonons, the phononic mean-free path will increase as the tempe-
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Figure 2.5: Superconducting density of states for a BCS superconductor as a function of the quasi-
particle energy. The loss in density of states for E/A < 1 (area 2) is exactly compensated by the
increase just above E/A =1 (area 1).

rature is lowered until it is limited by defects or the size of the sample much as in
an insulator. This means that in the superconducting state, the phonon contribution
to thermal conductivity can become comparable to or even dominant over the elec-
tronic contribution. These general conclusions will become useful when looking at
experimental data.

In this section, we present a brief sketch of transport theory in conventional su-
perconductors treating only the simplest case of impurity scattering as first derived
by Bardeen, Rickayzen and Tewordt (BRT) [16].

We start with equation 2.16 in which we replace the free-electron energy by the

quasiparticle energy F defined in the previous section:

== Z zE,, 200 2 v,,r,,VT (2.29)

The problem is then to calculate the relaxation time 7, and the group velocity v of
the quasiparticles in the superconducting state.
The group velocity is given by:
1

v = ¢ Vi (2.30)
1
= E (lEkI T Vier + |Ak| £ VkAk) (2.31)

The last term on the right can be shown to be small, and thus will be neglected.
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Hence:

_ '3&.[ vp = (0)
TIEST T NJ(E)
with N(0) the density of states at the Fermi level in the normal state and N,(E) the

UF (2.32)

Uk

quasiparticle density of states. Note that in the limit of low energies, ,];ix_l.lo v, =0, i.e.
quasiparticles at kr have zero group velocity. We will come back to the implications
of this when we discuss the results for the scattering time.

Then, Bardeen et al. proceeded to compute the scattering time in the supercon-
ducting state 7,. They start with Fermi’s Golden rule which we write schematically:

( probability ) 2 ( matrizc element) ( probability of

- ) (2.33)

of an event of potential initzal state occupied

( probabilitiy of ) ( conservation \

X

final state unoccupred of energy /

We sum all scattering processes which lead to transition into states with wave vector

k minus those out of k. We get for the collision integral:

(%) = S UK IVIRE (el ~ fi) = full = full S(Bu— Bw)  (2.34)
coll k'

By taking into account all possible elastic scattering mechanisms, Bardeen et al.
showed that:
(2.35)

EkEir — AkA;,l)
EiEy
where the factor multiplying |V (k' — k)|? is called the coherence factor. It will play

! —_ / 1
VIR = VK - B 5 (1+

a major role when we come to discussing transport properties in unconventional
superconductors (see section 2.3.2). The physical origin of these coherence factors
has to do with the BCS wavefunction which is a coherent superposition of identical
pair states. This means that when an electron is scattered, one cannot make a single-
particle approximation, as in the normal state, because the occupancy of the final
state will depend on all other pair-states through the coefficients u, and v, introduced
in equation 2.24. See the book by Schrieffer [19] for a thorough discussion of these
coherence factors and their physical meaning.

In going back to our discussion, Bardeen et al. assume that the departure from
equilibrium is given by:

fu= £ - kO(B)ZE (2.36)



2.2 Conventional superconductors 21

where f? is the Fermi function, z is the direction of the disturbance and C(E) an
arbitrary function of energy.
Replacing equation 2.35 in equation 2.34 and converting the sum over &’ into an

integral over energy:

of _ 2T dQ? e'e — DAy
(5?)“,‘, == N(e)de/ V(K — k)2 = ( + T)
[k C’(E)af k k’C(E’) ofe ] §(E — E') (2.37)

Assuming an isotropic gap (ArAw — A?) and integrating over energy:

(2{) = MO, C’(E)
coll

= - [ dQ V(K - k) (—kFi) (2.38)

We now apply the relaxation time approximation in the normal state (E — ¢),
assuming isotropic scattering i.e. 7 — 7y and using equation 2.36, we find the

scattering rate:

L N(O = [ da vk —k)l( kl) (2-39)

™ F
Keturning to the superconducting state, we find that using the relaxation time appro-
ximation' and replacing the normal state scattering rate in equation 2.38,

A
=~ No) ¥

(2.40)

We see that at low energies, the scattering time diverges: elj.I_I?b T, — +oo but, com-
bining this last expression with the group velocity (equation 2.32), we see that this
divergence is cancelled by the energy dependence of the group velocity yielding a
constant mean-free path: £, = .

By going back to equation 2.29 and changing the sum into an integral, and in-
serting the expression for the scattering time (equation 2.40) and the group velocity

(equation 2.32), we get:

+oo

%U;TNN(O) [ dE Ez( gf;) / cos? 8 (2.41)

A(T)

Keg =

'In this case also, we assume s-wave scattering, namely: . — 1,.
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Figure 2.6: Ratio of superconducting to normal state thermal conductivity for aluminum as
a function of T/T. for samples of various purities indicated by the residual resistivity ratio
(273K )/p(1.2K) of 26, 430 and 3660 (after [20]). The solid lines represent the BRT calculation [16]
in the presence of impurity scattering for three values of the gap parameter, namely 2A(0) = 3.00,
3.25 and 3.52 kgT..

By letting A — 0, we obtain the expression for the normal state thermal conductivity

xn (equation 2.18). Dividing «., by xy, we finally get:

ces +00 +o0
selD) = [ dE E*8L [ [ de 2Y (2.42)
A(T) 0
For T«T. this expression reduces to [16]:
Kes o (_A_)ze—A/kaT (2.43)
KN kBT

A comparison of the theory with experimental data on aluminum is provided in
ngure 2.6. BR'T theory with the BCS value for the gap provides an excellent agreement
with the experimental data for the three samples of varying impurity concentration.

In the case of niobium (7, =9.1 K), the critical temperature is 8 times higher than
in aluminum. According to BRT, this implies a negligible electronic contribution
for T <2 K!. In this case the phonon contribution, which has increased due to the

'ke,/xn has dropped to 4% at T/T.=0.25.
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Figure 2.7: Thermal conductivity of niobium in the normal (triangles) and superconducting (cir-
cles) state. The solid lines through the points are guides to the eye while the lowest curve is the
expected result from BRT theory (after [21]). Notice the strong deviation from BRT theory at low
temperatures arising from the phonon contribution.

disappearance of electron scattering, becomes large and even dominates at low tem-
peratures. This is what was observed by Kes et al. [21] whose findings are displayed
in figure 2.7. The low temperature peak arises from the competition between the
increasing phonon mean-free path (until limited by the sample boundaries) and the

decrease in the number of phonons.

In the preceeding discussion, it was assumed that the thermal conductivity was
mostly electronic in the normal state and that the electron mean-free path was limited
by impurities. Other cases may become relevant later on in the thesis and will be

discussed here.

We discuss the case when phonon conduction is not negligible in the normal state.

As seen above, in going through T, the decrease in the number of unpaired electrons
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Figure 2.3: The thermal conductivity of lead-30% bismuth as a funrction of temperature in both
the normal (solid circles) and superconducting state {(open circles) (after [22]). The normal state
conductivity is obtained by applying a magnetic field larger than the critical field.

reduces the amount of electron-phonon scattering. This leads to an increase of the
phonon conductivity which usually for pure metals is small compared with the fall
in the electronic contribution. However, in disordered alloys, where the phonon con-
ductivity provides a significant fraction of the total normal state conductivity, this
rise in phonon conductivity can lead to a thermal conductivity which is higher in
the superconducting state than in the normal state. This is shown for an alloy of

lead-bismuth in of figure 2.8.

2.2.3 Thermal conductivity as a probe of anisotropic conventional su-

perconductors

In this section, we illustrate how thermal conductivity can be used to probe an
anisotropic superconducting gap. The reader is referred to the study on zinc and
cadmium {23] and on gallium [24] by N. V. Zavaritskii in the late 50’s and early 60’s.
Only the latter will be discussed in this section. We provide a rather lengthy dis-
cussion of Zavaritskii’s results as a way of illustrating what we have discussed until
now with regards to thermal conductivity in normal metals and conventional super-
conductors. A detailed discussion is also justified in light of our results on UPtj;:
anisotropy of the thermal conductivity and thermal conductivity ratios will b;e briefly

discussed here in the simpler case of BCS superconductors. The experienced reader
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can skip this section (and refer back if necessary) while people unfamiliar with this
field should benefit from this discussion.

Measurement of the electronic thermal conductivity in the superconducting state
(Kes) and along various crystallographic directions can reveal anisotropy of both the
absolute value of k., and also in its temperature dependence. The former can be
related to the anisotropy of the normal state, which simply reflects anisotropy in the
Fermi velocities, while the latter can be related to the superconducting gap.

In light of the fact that the electronic thermal conductivity is greatly reduced upon
entering the superconducting state, the phonon heat conductivity can start to play
an increasingly important role as the temperature is lowered. Therefore, Zavaritskii
[24] chose to make use of superconductors with a minimum ratio of 7./0p such as
cadmium® (7. = 0.56 K, p = 209 K), zinc (T. = 0.88 K, 8p = 327 K), aluminum
(T. = 1.14 K, 6p = 428 K), gallium (7. = 1.09 K, 6p = 320 K) or rhenium (7. =14 K,
6p = 430 K), in order to have the largest possible ratio of &.,/Kphonon- We illustrate
his findings for one anisotropic superconductor: gallium.

This metal crystalizes in an orthorhombic lattice with a = 4.526 A, b = 4.520 A
and ¢ = 7.660 A. The single crystals were grown from starting material of different
impurity concentrations ranging in concentration from 0.1% down to 0.001%. The
samples from the highest purity batch are denoted by the letter P while the lower
purity samples are denoted by the letter D (see figure 2.9).

As a first result, Zavaritskii [24] showed that in the normal state in the temperature
range from 2.0 to 4.2 K, the thermal conductivity obeyed the following equation:

1
r_1 + aT? (2.44)
KN Ko

where ko = Lo/po represents the scattering of the electron heat carriers by defects
and Lg is the Sommerfeld value and pg is the residual resistivity. The second term
represents the scattering of electrons by thermal vibrations. The author showed that
in the range from 2 K down to 7, = 1.08 K, the scattering of electrons by phonons is
negligible in comparison with their scattering with defects; for example, for sample
3PI oriented along the c-axis (largest electron-phonon coupling), one can compute

L455+ ~ 0.8% and similarly for the a and b directions.

All values for T. and 6p were taken from tables compiled by Kittel (1986) [25].
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Figure 2.9: Temperature variation of the electronic thermal conductivity of gallium (normalised at
T) in the superconducting state in the principal crystallographic directions. The solid lines are
guides to the eye and the curves for the b and ¢ axis have been shifted for clarity (after [24]).

In the superconducting state, the author proceeded to estimate the phonon thermal
conductivity. By using xpp = %Cph'vphlph and substituting the known Debye tempe-
rature in the expression for the phonon specific heat Cpi, the mean-phonon velocity
< wn known for gallium. and using the phonon mean-free path [, to be the diameter of
the sample. the author was able to compute the phonon conductivity. For his lower
purity samples, this contribution is shown to be dominant at temperatures lower than
0.2-0.3 K while for the purest samples, where the normal state thermal conductivity
exceeds by a factor 10 that of the impure samples, the phonon contribution can be

neglected over the whole temperature range. Explicitely, for the b-axis samples of the
series 3D and 2P, at 0.3 K, the ratio ;22 exceeds 45% in the lowest purity samples
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(3D) while it is around 0.1% in the purest samples (2P). For the high purity samples,
. the phonon heat conduction estimated for boundary scattering does not exceed 2%
even at the lowest temperatures reached by the experimentalist. Furthermore, one
has to note that the phonon contribution of 45% to the total thermal conductivity
is certainly an overestimate: for instance, again for boundary scattering, the ratio
2 amounts to 120% at 0.15 K showing that electrons must still be playing a role
in diffusing the phonons at these temperatures even for the impure samples. More-
over, the exponential activation in the number of quasiparticles displayed by BCS
superconductors will certainly cause the phonon conduction to drop rapidly as the

temperature is increased, making it negligible for temperatures above 0.4 K.

Figure 2.9 shows the electronic thermal conductivity normalized at T. as a func-
tion of 7./T for all samples'. From this figure, it is clear that the dependence of
the thermal conductivity with T, /T follows a universal law for samples grown in one
direction. Neither the purity (varied by a factor of 100 which affects the electronic
mean free path) nor the method of preparation (multiple recrystallization) nor the
sample’s dimensions influence this dependence. Furthermore, Zavaritskii [24] not

. only showed that the absolute value of thermal conductivity differed for different
crystalline directions but also that the temperature dependence in the superconduct-
ing state was different. The author noticed that from 7. down to ~0.257. there
was a linear relationship between log(x.,(T)/x(7.)) and T./T. Assuming that only
excitations travelling in the direction of the temperature gradient contribute to the
thermal conductivity and that in this temperature range &, < e 27, he was able to
extract the gap parameter for all three directions: 1.49 K (a-axis), 1.57 K (b-axis)
and 1.26 K (c-axis). The author claims that the deviation from linear behavior at
lower temperature results from the temperature dependence of the factor multiplying
the exponent. Furthermore, he claims that the deviation is close to what is predicted
theoretically. Even though, the author seems to be unaware of the BRT paper [16]
published earKier that year, an exact determination of the gap parameter would re-

quire a full calculation assuming an ellipsoid of revolution for the gap parameter.

! Zavaritskii {24] included the data for the impure samples for the temperatures where he estimated

. the phonon contribution to heat conduction to be smaller than ~20%.
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Figure 2.10: Temperature dependence of the relative anisotropy of the electronic thermal conductiv-
ity of gallium. The curves shown are 10x3/x, (upper curve), x3/x. (middle curve) and x,/x. (lower
curve). The solid lines are guide to the eye while the dashed line corresponds to exp(-0.29/T) (after
24

Nevertheless. this measurement shows different temperature dependence in different

crystallographic directions and that can only be ascribed to an anisotropic gap.

By plotting the ratio of thermal conductivities for different directions, the tem-

~AT might cancel. The remaining

perature dependence of the prefactor in front of e
curve would then simply be proportional to e(41-22)T  Figure 2.10 shows the relative
anisotropy ratios of thermal conductivity. Notice that the ratio x3/x. (middle curve)
and k,/k. (lower curve) both go to zero due to a smaller gap in the c-direction. This
is reflected by the dashed line which represents an exponential e~%-2®/T, In the case of
the ratio k;/%,, it extrapolates to a finite value reflecting the fact that both gaps are
identical (within experimental error [24]). The finite ratio is simply the normal state
anisotropy. Thermal conductivity ratios will be exploited in section 6.3 in comparing

the results for UPt; with various theories for the gap structure of this compound.

l he measurements of Zavaritskii, in the case of anisotropic conventional super-
conductors., show the power of thermal conductivity as a directional probe for gap

anisotropy when the heat conduction is dominated by electrons.
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2.3 Unconventional superconductors

. We start this section by emphasizing the difference between the BCS model and the
generalized BCS theory.

The BCS model rests on four basic assumptions: (i) an electron-phonon mech-
anism is responsible for the formation of Cooper pairs, (ii) an s-wave potential is
assumed 1.e. there is no angular dependence to the pairing interaction, (iii) the gap in
the excitation spectrum is isotropic and (iv) the weak-coupling limit is assumed. As
discussed earlier, the BCS model can be extended to encompass anisotropic super-
conductors such as zinc and gallium. Furthermore, generalization to strong coupling
superconductors can be made to account for the properties of lead and mercury. The
BCS model can be relaxed further so as to account for non-phononic pairing me-
chanisms such as spin-fluctuations as in *He!. The case of 3He is also relevant for
assumptions (ii) and (iii) because in this case; the pairing potential is p-wave and the
gap has nodes. We will therefore speak of BCS theory as long as there is a pairing of
fermions mediated by some attractive interaction. Keeping all the generalizations in
mind, in the strictest sense, an unconventional superconductor is a superconductor in

. which the superconductivity is not due to a pairing of electrons. However, the term
“unconventional superconductor” is now employed more loosely to also encompass
those superconductors that can be described by BCS theory (i.e. pairing of electrons)
but in which the pairing potential is non-s-wave and the superconductivity is non-
phonon mediated. Thus there can be additional broken symmetries? such as point
group and or time reversal symmetry. This typically yields a superconducting gap
with nodes, but it can also lead to a possible magnetic moment associated with the
Cooper pairs or to multiple superconducting phases. In this sense, 3He is a truly un-
conventional superfluid: the pairing is not via phonons, the symmetry is p-wave and
there is more than one superfluid phase. In studying unconventional superconductors,
one is interested in the fundamental question: “Can pairing be purely electronic?”
This is unconventional superconductivity and it typically implies a gap with nodes

and non-s-wave symmetries. For the remainder of the thesis, we use the term “un-

!Liquid 3He also causes us to generalize the pairing, not only for electrons, but also to encompass

fermions such as 3He atoms.
. 2A conventional superconductor only breaks gauge symmetry.
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conventional superconductor” to represent superconductors that can be described by
BCS theory but for which the electron (or fermion) pairing potential, and hence the
gap, iIs non-s-wave.

We will now proceed in the same way as with conventional superconductors and
discuss the pairing mechanism and the energy gap followed by a discussion of thermal

conductivity in unconventional superconductors.

2.3.1 Pairing mechanism and the energy gap

This section is devoted to pointing out some of the evidence indicative of uncon-
ventional superconductivity in UPt; and YBa,Cu30;_5. Experimental properties
displaying unconventional behavior in these compounds will be reviewed in more de-
tail in chapters 3 and 4. Our intent is only to convince the reader, by some simple
arguments, that these two compounds are unconventional. But first, in analogy with
the lattice polarization mechanism for conventional pairing, we discuss the spin fluc-
tuation mechanism believed to be responsible for the unconventional superfluidity in
3He. A similar mechanism, in which the 3He atoms are replaced by the conduction
electrons, is one of the postulated mechanisms for superconductivity in UPt3 and
YBa,Cuz07_;.

Consider the spin polarization mechanism described by Leggett [26]: a 3He atom
at point 7 and time ¢ will produce a molecular field which in turn produces a spin
pularnization of the neighboring liquid. This polarization persists for a fair time before
dying out. [f now at time ¢’ a second *He atom comes by at point 7', it will either be
attracted or repelled (depending on its spin) by the liquid polarization. The attraction
arises from the Pauli exclusion principle and the dipole-dipole interaction between
the *He atom and the polarized medium. In this way, a spin-dependent effective
interaction is generated between two *He atoms. In the case of the lattice polarization
mechanism, the lattice is essentially an independent system and its motion is almost
unaffected by the pairing occuring in the electron gas. For the spin polarization
mechanism in *He, the medium which is polarized is identical to the atoms undergoing
the indirect attraction. Therefore, if as a result of the attraction, the behavior of the
atoms is changed (i.e. when they form Cooper pairs), the response of the polarizable

medium is automatically affected. The pairing mechanism produces an attraction



2.3 Unconventional superconductors 31

between parallel spin particles and a repulsion between antiparallel spin ones. Thus,

it intninsically favors spin triplet pairing and tends to suppress singlet pairing.
1. Ewndence of unconventional superconductivity in UPty

In heavy fermions, the Fermi and the Debye temperatures are of the same order
of magnitude i.e. the Fermi velocity is approximatly vr = 5000 m/s, while the sound
velocity is around ¢, = 3000 m/s. An electron-phonon type interaction is therefore
unlikely responsible for the superconductivity in the sense that the electrons move so
slowly that the lattice follows the electrons adiabatically. Therefore, in order for a sec-
ond electron to profit from the polarized lattice, it would need to be very close to the
first one making the Coulomb repulsion so large as to prevent any pairing. The obser-
vation that the ratio of the normal and superconducting specific heats (C, — C,.)/Cn
is close to unity suggested that the heavy quasiparticles were participating in the
superconducting state. These observations led several theorists to postulate that in
vrder to avoid the large overlap of the wave functions of the paired particles, the sys-
tem would choose an anisotropic channel, like a p-wave spin triplet or a d-wave spin
singlet or triplet state, as is done in superfluid He (p-wave spin triplet pairing). Fol-
lowing these conclusions, alternative mechanisms mediated by antiferromagnetic spin
fluctuations have been proposed for UPt; (see for example [27, 28, 29] and references
therein). Furthermore, several properties of the superconducting state do not display
exponentially activated behavior, the trademark of a s-wave gap. As will be discussed
in section 2.3.2, nodes in the gap result in power law dependence, as a function of
temperature, of thermodyna.mic‘ and transport properties. Finally, the observation
of multiple superconducting phases in UPt; has provided the strongest case for un-
conventional superconductivity in this system. The superconducting state properties,
with respect to multiple superconducting phases and power law dependences, will be

reviewed in chapter 3.
2. Euidence of unconventional superconductivity in YBa; Cuz O7_;

Following the book by Burns [30], we proceed to list some of the unusual features
of the cuprates, as they stood in late 1990.

There are many reasons why phonon-mediated superconductivity in the high-T.’s
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is unlikely. First, the T, values are too high with T, ~ 6p. Thus, extremely strong-
coupled BCS theory would be needed, but such large electron-phonon coupling would
likely cause a structural phase transition. Secondly, early specific heat measurements
gave a residual linear term which was interpreted as residual normal fluid! indicating
an unconventional gap or no gap at all. Furthermore, there are many suggestions
that the cuprates could well be non-Fermi liquids and many exotic models for the

superconductivity were put forward. These models will not be reviewed here.

On the other hand, several experiments indicated that electrons were paired. This
would seem to favor a BCS theory with a pairing mechanism other than phonon
mediated and possibly with a superconducting gap symmetry other than s-wave. Due
tu 1ts proxamity to an antiferromagnetic ordered phase, spin fluctuations are thought
to play a role in the pairing. Furthermore, several experiments indicate power law
behavior, suggesting that the superconducting gap has nodes. At the moment, the
leading scenario for the gap parameter is that it has the d,a_,» symmetry. Since most
papers discussing heat conduction in YBa,Cu3;O7_s adopt this point of view, it is
the example that we choose for the discussion in the remainder of the thesis. We
caution the reader that just because this viewpoint appears to be the most popular
does not necessarily make it the correct one even though several experiments confirm

the features of this gap symmetry.
3. Generalization of the BCS model to unconventional superconductivity

For this brief description, we follow the reasoning of Mineev [32]. The paper of
Sigrist and Ueda "33" also provides a good (and lengthy) discussion of what we are

abuut tu describe.

As we have seen above, the superconducting ground state is composed of electronic
pairs that can be represented by a two-electron wavefunction Aaﬁ(iC), a gap function,
where we have explicitly introduced the spin indices a and 3, and where & is a unit
vector in the direction of the momentum of one of the electrons in the pair. Since we

are dealing with fermions, the function Aag(l::) should be antisymmetric with respect

!We will review some experiments that see a residual linear term in the specific heat in chapter 4.
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Table 2.3: Deg; basis functions for UPtg for strong spin-orbit coupling and d || £ (after [31]).

Even parity
J r ¥, J:‘ node topology name
g 1 none s-wave
Aay im(k, ~ ik, )® lines at k- = 0 and ky = 0 and 8 “special” lines * -
Biy  k:Im(k; - tky)? lines at k; = 0 and &, = 0 and 4 “special” lines -
Bag  k.Re(k: — iky)? lines at k; = 0 and k; = 0 and 4 “special” lines -
‘ Eyg k. (::) line at k. = 0 and points at k; =k, =0 hybrid I
| k2 — k2 , :
E3q ( 2k.E, ) points at k; =k, =0 axial IT
0Odd parity
[ Aju zk, lineat k; =0 polar
Ay ik Im(k, + iky)® same as Az, + line at k; =0 -
Biw  ZIm(k; + iky)® line at ky = 0 and 4 “special” lines -
B3y ZRe(k. +iky)8 line at k; = 0 and 4 “special” lines -
Ey, 2("’) points at k; = k, =0 axial I
k2 _ k2
Eq zk, ( ;k,k:) line at k. = 0 and points at kz: =k, =0 hybrid II

“tur the Aa,. the 8 “special” lines occur when sing = :':\/g and sin¢g = i\/%. Four other gap

structures have “special” lines with either sin¢ = :i:@ or cos¢ = :t?. This type of node will not
be considered for the remainder of the thesis.

to the permutation of two particles:
Aap(k) = —Dga(—Fk) (2.45)

Furthermore, in the presence of an inversion center (as in UPts and YBa;Cu3O-_s),

this function also has a definite parity, namely:
PAs(k) = Ans(—k) = £Aup(k) (2.46)

where P is the parity operator. We therefore find Aaﬁ(l-e) = —Aga(k) for P = +1 and
Aas(k) = Aga(k) for P = -1. The general shape of A,p(i:) can therefore be expressed

explicitly, using Pauli matrices, into an even or an odd function:

Das(k) = f(k)ia, (2.47)
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with f(—k) = f(is:) (even parity) and,
Aqs(k) = (d(k) - &) ia, (2.48)

where f( k) = -d(k) (odd parity). The functions f(k) and J'(/::) are eigenfunctions
of the spin operator 5 of the Cooper pair. The function f(k) represents the amplitude
of the spin zero antisymmetric pairing state [T]) —!|/T}. The components (—d. +1d,),
d., (d; + tdy) are the amplitudes of spin up [TT), symmetric spin zero |T]) + || T), and
spin down |||} pairing states, respectively.

As is the case for the motion of a particle in a central potential where the different
values of angular momentum L determine the values of the energy, the order para-
meter can be decomposed in a linear combination of spherical harmonics Y;(k). So,

L determines the type of pairing (s, p, d, f, ... ) such that T. = T.(L). Explicitly:

- L -~
fE(k) = _ZanlG"‘(k) (2.49)
-— - L -
dtk)= Y dmY[(k) (2.50)
m=-L

where L=0, 2, 4, ...in equation 2.49 and L=1, 3, 5, ...in 2.50.
When crystal anisotropy is present, the spherical harmonics have to be replaced
by the basis functions of the different irreducible representations I' of the point group

of the crystal symmetry. Equations 2.49 and 2.50 now look like:

d

fF (k) = 3w (k) (2:51)
d

dT(k) = 3 e (k) (2-52)

where the subscript g and u refer to even and odd basis functions respectively. One
then invokes group theoretical arguments to decompose the point group symmetry
into its irreducible representations. This procedure has been carried out by numerous
authurs 34. 33 in the case of strong spin-orbit coupling and by Ozaki et al. [35] for
weak spin-orbit coupling. Table 2.3 summarizes the Dg; basis functions, relevant for

UPts, for strong spin-orbit coupling (with the special choice d || 2 in the case of odd
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parity wavefunction) as compiled by Sauls {31] for uniaxial symmetry only. A similar
. table can be generated for the point group symmetry of YBa;Cu3O7_;.

A schematic k-space representation of some of the gaps listed in table 2.3 is shown
in figure 2.11. We emphasize that these gaps are drawn not for a crystal with hexa-
gonal symmetry but for uniaxial symmetry only. From this figure, we see that the
conventional s-wave gap is finite everywhere, while the polar gap has a line of zeros in
the basal plane and the axial’ gap vanishes along points at the poles. The hybrid gap
is simply a combination of a polar and axial gap with both a line of zeros in the basal
plane and points along the c-axis. The tropical gap, not mentioned in this table, has
two line nodes at the “tropics”. This case will become relevant when we discuss the
ellipsoidal harmonics decomposition of Norman and Hirschfeld [36] in chapter 6. The
line nodes of this gap are not imposed by symmetry considerations but arise from
an accidental cancellation. Furthermore, we stress that in figure 2.11 the plotted
quantity is [A| so that any ¢ dependence is not obvious from such drawings. We
emphasize that in thermal conductivity measurements, one probes the magnitude of
the gap. The phase cannot be directly measured but enters in a subtle way through

. the coherence factors.

2.3.2 Thermal conductivity and unconventional superconductors

In this section we discuss the electronic thermal conductivity in both the heavy-
fermions and the high-7.. The main emphasis will be put on resonant impurity
scattering of electrons as a means of qualitatively understanding the magnitude and
the temperature dependence of the thermal conductivity at low temperature. Due
to their relative simplicity and to the direct paralle] that can be drawn with the
previous sections, we only discuss the early models which use the Boltzmann equation
approach. This will enable us to draw some general conclusions and to better grasp
the physics underlying such calculations. Since these models were first developed in
the context of heavy fermions, the discussion will be more detailed for these systems
while only the main results will be given for the cuprates. We will also point out the
limitations of such calculations which will pave the way for the more recent theoretical

1 We use the term axial to refer to gaps with nodes at the poles with a linear k-dependence near the

. node i.e. axial I.
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Polar Tropical s-wave

Hybrid Axial

Figure 2.11: Schematic k-space representation for 5 possible gap structures in UPty.

results presented along with our experimental data in chapters 6 and 7.
1. Heavy fermions and resonant impurity scattering

In the superconducting state of conventional superconductors, the electronic thermal
conductivity falls off exponentially with decreasing temperature as T — 0. So does
the specific heat and the ultrasound attenuation. Early measurements on polycrys-
talline UPt; showed x(T') to vary roughly as T'? between 35 and 100 mK (37]. These
results combined with the anisotropy of transverse sound seen by Shivaram et al. [38]
established UPt; as a strong candidate for an unconventional superconductor. At
the same time, theorists were examining gap structures similar to the polar p-wave
state of *He. Calculations of the quasiparticle mean free path by Coffey et al. [39]
and by Pethick and Pines [40] showed that the mean free path diverges at low tem-



2.3 Unconventional superconductors 37

Figure 2.12: Schematic representation of the k-space volume of quasiparticles participating in trans-
port near a node at the pole.

perature for the axial and polar p-wave states if the scattering is treated in the Born
approximation. The latter authors showed that the ultrasonic attenuation in the su-
perconducting state is of the same order as in the normal state and, that the thermal
conductivity over temperature would tend to a large finite value as T — 0, contrary
to what was observed experimentally. We proceed to illustrate this. Recall that the
scattering time in the superconducting state is given by 7, = NT'(%?TN (equation 2.40)
for a singlet state. For a triplet superconducting state, such as the axial and polar
gaps considered by Pethick and Pines [40] and Coffey et al. [39], these authors show
that in the Born approximation:

N(0)
N,(E)

The difference with respect to the s-wave result (equation 2.40) comes from the co-

™ (2.53)

T =

herence factors. For example, consider an axial state with A = Agsind = Acf;-. The

number of states with energy lower or equal to E, n(E) is given by:

4 ) Vo,
n(E) = s X (volume in k — space) = e (é-rkzkz) (2.54)

and is represented by the dashed region in figure 2.12.

The density of states is by definition:

on(E) V Ok Ok
N"' E)= = : = T z’_'E 2.
E) =5 =12 (kz 55 T 2k 5g (2:55)
Using simple geometric arguments, we can show that %—;’.’- = %‘: and that %‘ = ;‘,"%;.

Combining these, we get that the superconducting density of states for a linear point
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node is proportional to E?2:

V"“'m) E (2.56)

N(E) = (W y;
Similarly, it is possible to show that N,(E) « E for a line node (as with the polar
gap, A x cosf) and that N,(F) < E for a quadratic point node (as with the hybrid
Il gap, A x sin?fcos§ near § = 0). As first pointed out by Coffey et al. [39], this
leads to a mean-free path that diverges as 1/¢? and 1/¢ in the axial and polar cases
respectively. Using equation 2.29 and in the case of the axial gap, we can show that

t the case of a heat current along the node direction (i.e. for &k || &, vk = vp):

Kes(T) 1 af 2 2
T P (—_BE,.) Eivim (2.57)
1 af 2,2 N(0)
’CN(TC)
T (2.59)

where we have used the fact that near a node vi — vr because E = ¢. Furthermore,
the density of states derived above enters in many physical properties such as the
specific heat. It is possible to show (see for example [41]) that a linear point node
results in a T specific heat at low temperature, while a line and a quadratic point
both result in a T power law.

Table 2.4: Summary of scattering time and group velocity for the BRT theory and the axial state
reeated in the Born and resonant impurity scattering (RIS) approximations.

. BRT  axial (Born) axial (RIS)

T

|

f -1 -1 _N(9) -1 N.(E) -1_1_ N(0)

' T, TN N(E)y TN N(0) TN (B Nu(E)
ve (k] 2) ;X% vF vF vF

We find it convenient to pause here and summarize the results for the scattering

rate and the group velocity for the BRT theory and for the Born approximation result
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for the axial state. Table 2.4 includes these results along with what we are going to
find when we discuss the resonant impurity scattering approach to calculate thermal
conductivity. Note that in going from BRT to the axial state in the Born approxima-
tion, the density of states are reversed and this leads to a divergent scattering time
for the axial state. As we saw, a consequence of this is a large finite linear term in
the thermal conductivity. The function g(E), introduced below, will solve this prob-
lem and enable a qualitative comparison of theoretical calculations with experimental

data.

Pethick and Pines [40] showed that if, instead of using the Born approximation,
one assumes that multiple interactions of a quasiparticle with an impurity are im-
portant, which corresponds to the phase shift in the normal state being close to /2,
the qualitative temperature dependence of the transport coefficients in the supercon-
ducting phase is in better agreement with experiment. The physical motivation for
the large phase shifts arises from the fact that in the heavy fermion materials, the f
electron atoms. such as U and Ce, are thought to be responsible for the heavy-electron
behavior. When non-magnetic impurities are introduced into a heavy-electron mate-
rial, it is possible for an impurity to replace an felectron atom. The impurity then
corresponds to the absence of a magnetic site, and might therefore be expected to
give rise to a phase shift close to /2. In the case where the impurity replaces one of

the other atoms, the phase shift is likely to be small.

Various authors [42, 43, 44] then proceeded to calculate specific heat and transport
properties using a self-consistent T-matrix approach in the case of resonant impurity
scattering for both an axial and a polar gap. Comparison with experiments by these
authors seemed to favor the polar gap, even though a perfect agreement could not be
obtained. Because of their Boltzmann equation approach, similar to that described in
sections 2.1.2 and 2.2.2, we choose to illustrate the later findings of Arfi and Pethick

45". These authors calculated the thermal conductivity in anisotropic superconduc-
turs in the limit where the scattering of quasiparticles by non-magnetic impurities is
the dominant process. The calculations where performed in the Born approximation
where §y <« 7/2 and in the resonant impurity scattering limit where §y = n/2. Their

approach was not self-consistent in the sense that they did not consider the effect of
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the unpurities on the gap parameter, but they argue that such effects would only
be present at the lowest temperatures, i.e. that their approach is valid for kgT2Al,
which in good crystals means T /7T.20.1. It is instructive to discuss their results as
they contain many ingredients of the more recent theories discussed in chapter 6.

As with our description of the BRT theory, we start with equation 2.16 in which
we replace the free-electron energy by the quasiparticle energy Egl:

- 1 2m20f0 2 =
= — 2p2 —~— \V/ 2.
Ja T Z“t kaEkvak T ( 60)

The problem is again to calculate the relaxation time 7 and the group velocity v of
the quasiparticles in the case of resonant impurity scattering and for gaps with nodes.

In a similar approach as in BRT theory, Arfi and Pethick [45] computed the quasi-
particle relaxation time in the case of interest starting from Fermi’s golden rule. They

arrive at the result (valid in the unitary limit only):
1 _ 1 1 N,(Ek)

- = — 2.61
T T~ |g(Ex))* N(0) (2.61)
where the function g( E) is defined by:
9(E) = i—n z 17 (2.62)
™ (B2 - Iaf)

The function g(E) has a real contribution proportional to the density of states, and
an imaginary part which corresponds to a dispersive correction to the quasiparticle
self-energy [45]. The imaginary part vanishes if the magnitude of the energy is above
the maximum value of the energy gap as a function of angle on the Fermi surface,
but is non-zero below. As a consequence, this function is important only in uncon-
ventional superconductors (with anisotropic gaps), since in isotropic ones there are
no excitations with energies less than the maximum energy gap?. The function g(E)
was computed for the axial, polar and hybrid I® gaps by Arfi and Pethick [45] and
we show their results in figure 2.13 for the scattering time as a function of energy for

both small phase shifts (§ <« 7/2) and for resonant impurity scattering (§ = «/2).

' The factor 2 difference arises from the sum over spin indices o explicitly put in by Arfi and Pethick.
*Note that in putting g(E) = 1 we do not recover the BRT result (equation 2.40) because the

coherence factors are different for a triplet state (axial and polar gap) than that of a singlet state

(BCS gap).
3In their paper, the hybrid I gap is called the d-wave gap.
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rigure 2.13: Quasiparticle relaxation times in the axial, polar and hybrid I or d-wave states as a
funcuon of energy for the cases of small phase shifts (¢§ < x/2) and for resonant impurity scattering
(6 = x/2) (after [45]).

Replacing equation 2.61 for the scattering time and equation 2.32 for the group
velocity (identical to the BRT case for gaps with nodes) into equation 2.60 and as
usual, changing the sum into an integral, Arfi and Pethick found:

. 2\1/2
s = AN(0)E / dE E? ( g‘g)r,(E) f %}pg (5 I;"' ) (2.63)
A< E?
By letting A — 0, the integral can be evaluated to yield the normal state thermal

conductivity. Normalized by the normal state, equation 2.63 becomes:

1/2
ki _T18'F _ E*( 8f\n(E) o ,(E? - AL
(L) Ta? [ & T(‘a—E) e [ E (2:64)
0 jayli<E?

Arfi and Pethick computed this integral for the three gaps discussed above for a heat
current in the basal plane (in their notation XX) and along the c-axis (ZZ). They as-
sumed a BCS temperature dependence for the superconducting gap as approximated
by equation 2.26. They chose a AC/C = 0.86 from Sulpice et al.’s data {37} and the
parameter h, being the mean square value of the gap relative to its maximum value

was computed according to:

heL A'f" (2.65)

The results of Arfi and Pethick are presented in figure 2.14 for the axial, polar and
hybrid I gaps. Notice that in the Born approximation, x../T in the axial case and
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Figure 2.14: Normalized thermal conductivity over temperature along (ZZ) and perpendicular (XX)
to the c-axis for §y < 7/2 and §y = x/2 for the axial (left panel), polar (middle panel) and hybrid
[ or d-wave state (right panel), after [45].

nzz/T for both the polar and hybrid I gaps, all tend to values 0.8-1.0 of the value at
T. as was qualitatively argued above. Comparison with Arfi and Pethick’s results will
be provided in chapter 6 when discussing our thermal conductivity results on UPt;.
Betore concluding this section, we go back to discuss the function g(E) and its
physical implication on the thermal conductivity. In normal metals or in the BRT
case, the thermal conductivity is simply a peak average (because of the directional
cosine u;) in the direction of the propagation of heat. Therefore, if we imagine a
pathological case of an anisotropic s-wave gap with nodes along the c-axis treated
in the Born approximation, i.e. g(E) = 1, then the thermal conductivity at low
temperature would be dominated by the narrow region near the node in the direction
of propagation yielding a power law dependence, and would be exponentially activated
for a direction perpendicular to the nodes. A consequence of the numerous collisions
of the carriers undergoing resonant impurity scattering, the function g(E) samples all
of the Fermi surface. This can lead to non-negligible contributions from parts of the
Fermi surface not in the vicinity of the nodes. The papers by Barash and Svidzinsky
46 and Arfi and Pethick [45] provide a good discussion of the function g(E) with
respect to its real and imaginary parts and its effect on the thermal conductivity.
Finally, Arfi et al. (47}, in a following paper, also calculated the viscosity which
is proportional to the ultrasonic attenuation. By comparing their calculations with
experimental results on UPt;, they are able to deduce a normal state scattering rate
of 3 x 10'® s~!. This estimate will be compared with estimates from resistivity and

dHvA in chapter 3. Its importance will become clear when we discuss the recent self-
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tgure 2.15. Normalized thermal conductivity over temperature as a function of reduced temperature
for 64 = zx/2 where z=0.1, 0.3, 0.5, 0.7, 0.8, 0.9 and 1.0 for the c-axis (ZZ) and basal plane (XX)
thermal conductivity for the hybrid I gap (after Arfi et al. 1989).

consistent theory of thermal conductivity and compare those with our experimental

results on UPt,.
2. Resonant impurily scattering and the influence of an arbitrary phase shift

In a subsequent paper, Arfi et al. [47] investigated the effect of an arbitrary phase
shift in the normal state. This approach is justified since when an impurity replaces
a Kondo lattice atom it results in a large phase shift, as discussed above, while the
replacement of any other atom would not. Since the impurities are expected to be
distributed at random, an intermediate overall phase shift would be expected. We

will come back to such an hypothesis in chapter 6.

The reasoning of Arfi et al. [47] is again based on a Boltzmann equation formalism.
In the case of arbitrary phase shifts, the calculations are somewhat more involved and
only the results will be given here. Figure 2.15 summarizes their results for both heat

current directions for a d-wave gap (or hybrid I) structure previously discussed.

They find that for all superconducting states, and for all phase shifts, the ther-
mal conductivity shows a strong anisotropy. This is a consequence of the enhanced
conductivity when the heat flow is along the direction of nodes (axial state), or in
the plane of nodes (polar and hybrid I) compared with a direction orthogonal to the

nodes. Another common feature is that the results for a phase shift 5 = 0.97/2 or
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Figure 2.16: Schematic representation of the two gap structures investigated by Arfi [48]. The Fermi
surface is taken to be square (i.e. tetragonal symmetry) and the gap is represented by the shaded
area. The + or - signs refer to the phase of the gap.

greater are almost indistinguishable from those obtained in the unitary limit, except
at low temperatures. At the lowest temperatures, the authors note that the thermal
cunductivity increases as the phase shift decreases. The dependence is reversed in the
interinediate temperature range.

We would like to emphasize that the study of the anisotropy of the thermal con-
ductivity seems to be well suited for distinguishing different gaps (see figure 2.14).

3. Resonant impurity scattering applied to the high-T. superconductors

Arfi et al’s formalism discussed above in the case of the three dimensional heavy-
fermions was also applied to high-temperature superconductors by Arfi [48]. A key
feature of these materials, as will be discussed in chapter 4, is the important role of the
copper-oxygen planes. These planes give rise to a quasi-two dimensional character.
The author calculated the thermal conductivity using the formalism developed by Arfi
et al. [45] using Boltzmann’s equation for s-wave scattering by nonmagnetic impurities
at a very dilute concentration for a two-dimensional square lattice. As before, two
cases were studied: the Born approximation and the unitary limit. Furthermore, two
superconducting order parameters were considered, namely those with d;2_,» and d;,
symmetries (see figure 2.16). These two gaps differ only in the position of the nodes

on the Fermi surface. The calculated thermal conductivity, in the approximation
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of a circular Fermi surface, is found to be equal for both gap symmetries which is a
consequence of the fourfold symmetry of the square lattice. As for heavy fermions, Arfi
found a large intercept for x/T of the order of 0.8x(T.)/T. in the Born approximation,
but found a power law dependence at low temperature for resonant impurity scattering

(see figure 2.17):

AT _4( T )\
xv/T 5 (A(T)) (260)

Assuming' M(0) = 2.14kgT. and taking 3 = -[";:=24.4 mW/K%cm (see section 7.1)
we get that at low temperature, the electronic thermal conductivity should follow
k/T = 4.87 x 107*T? mW/K?cm. We will see that at 100 mK, our measured ther-
mal conductivity over temperature is ~ 0.5 mW/KZ%cm, 6 orders of magnitude larger
than Arfi's estimate. Furthermore, the theory does not yield a residual linear elec-
tronic term as observed in YBa,Cu3sO7_s (see chapter 7). On the other hand, it
provides a qualitative understanding of heat conduction by electrons in the cuprates
ruling out the Born approximation and generalizing the conclusions of resonant im-
purity calculations to the high-7, cuprates. Some of the problems of Arfi’s formalism
at low temperature may well be corrected by including self-consistency (essentially at
low temperature) and inelastic scattering of quasiparticles (essentially at high tem-
perature). The models of Graf et al. [49] and Hirschfeld and Putikka [50] include
these and a direct comparison of their findings with our experimental results will be

provided in chapter 7.

1. Summary

To conclude this chapter, we would like to emphasize that the results of Arfi ef al. [45,
47, 48] lack several of the ingredients used in current theories of thermal conductivity
in the heavy-fermions and the cuprates. For example, they lack the self-consistency
that enable direct comparison with experimental results at the lowest temperatures.
This might not be a problem in UPt; but is certainly so in YBa;Cu3O7_;. They
also neglect anisotropy of the Fermi surface and inelastic scattering which are known
to be important near 7. in the case of UPt;. Nevertheless, their theory provides

strong qualitative results, namely that the Born approximation cannot account for

! This value is the weak-coupling d-wave gap ratio (see for example [49]).
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7,

Figure 2.17: Normalized x/T (F(T)=xT./xn(T.)T) as a function of reduced temperature in the
unitary limit and Born approximation case for a d;a_,a gap structure (after [48]).

the observed behavior of the thermal conductivity below T.. Furthermore, in the case
of UPts, their thermal conductivity curves display anisotropy in the superconducting
state that could be detected by measuring thermal conductivity on one single crystal
along both the basal plane and the c-axis direction. We will come back to all of these
points when we discuss the more complete theories of Fledderjohann and Hirschfeld
(51], Norman and Hirschfeld [36], Graf et al.[52, 49] and Hirschfeld and Putikka [50].
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THE HEAVY FERMION COMPOUND UPT;

In this chapter, the normal and superconducting state properties of UPt; will be
reviewed. The reader is also referred to the papers by de Visser [53, 54] and Rauch-
schwalbe [55] for early normal state and magnetic properties while Grewe and Steglich
[56] review both early normal and superconducting properties. More recent reviews,
mostly concerning the superconducting state can be found in the paper of Taillefer

(57], Lohneysen [58] and Heffner and Norman [59].

3.1 Normal state properties

In this section, we review some of the normal state properties of UPt3. Our attention
will be focussed mainly on low temperature properties of quantities that will be
useful later on in the thesis. The normal state properties represent a vast subject
(especially with respect to the origin of the large effective masses) which we will
not discuss. We simply mention that the Kondo effect and spin fluctuations are the
leading mechanisms thought to be responsible for the unusual normal state properties

and possibly also for the superconducting pairing.

3.1.1 Crystal structure

UPt; crystallizes in the MgCd;-type structure, a closed-packed hexagonal structure
with 2 formula per unit cell. The compound belongs to the space group P63/mmc and
the lattice parameters are given by : a = b = 5.764 A and ¢ = 4.899 A. The crystal
structure is shown in figure 3.1 along with the magnetic moments (to be discussed
in section 3.1.3). One should note that when discussing transport properties such as
resistivity or thermal conductivity, the b-axis is chosen perpendicular to the a-axis

and therefore corresponds to the b®-axis.

47
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Figure 3.1: Crystal structure of UPt3. The solid circles represent the position of the uranium atoms
while the open circles are for the platinum. The arrows indicate the direction of the magnetic
moment (for one possible domain) detected by neutron diffraction (to be discussed in section 3.1.3).
Note that when discussing transport properties, the b-axis is chosen perpendicuniar to the a-axis and
corresponds to the b*-axis.

Recent transmission electron microscope results (TEM) found an incommensurate
structural modulation of the hexagonal structure [60, 61]. In these papers, satellites
were shown to exist around the structural Bragg peaks. These correspond to real-
space modulations with domain size of ~ 5000 A or more. Such modulations have not
been observed in careful X-ray studies [62] nor in neutron diffraction experiments and
might therefore correspond to an artifact inherent to the surface preparation necessary
for TEM measurements. The presence of such modulations could have repercussions
on the superconducting phase diagram to be discussed later in this chapter but will

be ignored in light of the absence of conclusive evidence.
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3.1.2 Thermal, transport and elastic properties

We now proceed to briefly discuss the specific heat, the charge transport, the elastic
properties and the Fermi surface topology. Discussion of previous thermal conductiv-

ity results is left for chapter 6.
1. Specific heat

For temperatures below 20 K, the normal-state specific heat of UPt; obeys the rela-
tionship:

c=T + B84 T% + ... (3.1)

The first term of equation 3.1 represents the electronic specific heat, the BT is
the phonon specific heat while other terms are attributed to spin fluctuations [54].
Contributions to specific heat arising from long-range magnetic order, crystal-field
effects, magnetic impurities and band-structure effects can all be shown to be absent
by studying the specific heat in magnetic fields [54]. A fit to equation 3.1 gives
v=422 mJ/K?’mol U and By1=0.85 mJ/K*mol U (other terms are not discussed).
The 9T term, about 10? to 10® times larger than in simple metals, can be related to
the effective mass through m* = 3k%y / k3krVar. Assuming a Fermi wave-vector of
kr = (37rzZ/Q)l/2=1.06 A-! where Z is the number of heavy electrons per unit cell
of volume (), using the measured molar volume Vi = 42.43 x 107® m®/mol and
making use of the fitted value for v, an average effective mass of m* = 180m,. (m, is
the free electron mass) can be deduced [54]. These results will be compared with the

direct mass measurements by the de Haas-van Alphen effect.
2. Sound velocities

Crystals with hexagonal symmetry require five independent elastic constants to spec-
ify the relationships between stresses and strains. They may be listed as ¢, c;2,
€13, €33, and c4y. These quantities can be determined by sending ultrasonic waves
through properly oriented crystals and measuring the sound velocities which depend
on the elastic constants and the density. The results obtained by de Visser et al. are
summarized in table 3.1 [54]. These constants are weakly temperature dependent and

they typically increase by ~2% in going from room temperature down to 4 K.
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Table 3.1: Sound velocities and elastic constants of UPt3 at room temperature. The ¢;; values
are based on a density p = 1.940 x 10* kg/m3. k is the direction of propagation and ¢ is the
polarization. ¢ya = 1.421 Mbar comes from a combination of c;; and cgg while ¢;3 is calculated
trom four velocities (see 54: and references therein). ug served as a cross check. The b’ direction is
oniented at 45° between the b and ¢-axis but in a plane perpendicular to the a-axis.

Mode type k& velocity (m/s) elastic constant (Mbar)
" longitudinal ¢ ¢ v = 3860 css = pv? = 2.801
shear c ab v = 1385 cae = pvi = 0.372
longitudinal b b v3 = 3993 c11 = pvz = 3.093
| shear b a v =2076 ca=1(c11 —c1z) =pv?=0.836
shear b ¢ vs = 1388 cas = pv¢ = 0.374
quast longitudinal b’ b’ vg = 3754 c13 = 1.732
quasi shear b’ ¢ vy = 1827 ci13 = 1.695
E shear b’ a vg = 1753 :—cn — %Clz + :—,644 = p’vg

By using the procedure outlined by Alers [63] for integrating the sound velocities
over all crystallographic directions in hexagonal crystals, it is possible to calculate
the Debye temperature. Numerical integration yields a value of 217 K which agrees
perfectly with the estimate from specific heat. This number along with the sound
velocities will prove useful when estimating the maximum phonon contribution in the

superconducting state in UPt3 (see section 6.3.1).
3. Resistivity and magnetoresistance

As seen in figure 3.2, the resistivity is strongly anisotropic between the basal plane
and c-axis, while no anisotropy, within experimental uncertainty, is detected within
the basal plane. The value of the resistivity at room temperature is 230 (130) zlcm
for the b (c)-axis and will be used to determine the geometric factor of our samples.
Unlike most heavy-fermions, UPt; does not have a minimum in resistivity character-
istic of the Kondo-effect.

Below 2 K, the resistivity (p) can be described very well by p = pg + AT? as
expected from Fermi liquid theory with po being the residual resistivity depending on

sample quality and A represents the inelastic electron-electron term. It amounts to
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Figure 3.2: Electrical resistivity (p) versus temperature for unannealed single crystals of UPtg for
current directions as indicated (after {54]).

A = 1.6 (0.58) pQ2cmK~? for b (c¢)-axis, namely four orders of magnitude larger than
in simple metals [54]. De Visser et al. obtained typical values of pg of 6.2 (1.7) uQcm
resulting in residual resistance ratios (RRR=R(300K)/R(0K)) of 37 (76) for b (c)-
axis. Crystal purity has tremendously improved since then, and RRR’s of the order of
600 are not uncommon for bulk single crystals. Another way to gauge crystal quality
is to look at the ratio of the inelastic term over elastic contribution in the resistivity:
A/po. For de Visser’s crystals, we get: 0.26 (0.34) K=2. In the best crystals, this ratio
is around 3 K~2. Note that the uncertainty in his geometric factor is around 10%.
Since we use de Visser’s resistivity values to determine the geometric factor of our
UPt3 samples, the same uncertainty applies to our measured resistivities and thermal
conductivities.

[f we refer back to section 2.1.1, we can relate the electrical resistivity to a scat-
tering rate [o: po = =0¢ with n = k} /372 Taking kr=1.06 A~ and m* = 180m,,
we get [ = 1.1 x 10'' s7! for de Visser’s c-axis crystal. In good crystals, this residual
resistivity is now down to approximately 0.2 uflcm which amounts to a scattering
rate of g = 1.4 x 10 s1. Recall that the estimate of Arfi et al. [47] is comparable
to that of good crystals, i.e. 3 x 10'° s, These are simple-minded estimates which
assume a spherical Fermi surface. The de Haas-van Alphen effect provides a much

more reliable and direct estimate of the scattering rate. We discuss such an esti-
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mate below. The quantity I'y enters as an important material parameter in theories
that discuss the superconducting properties of UPt;. We will come back to this in
chapter 6.

Magnetoresistance was first measured at low temperatures by Sulpice et al. {37]
on a good quality polycrystal. The magnetoresistance is large and positive and the

authors find that:

p(H,T) = pg + AT?* + aH (3.2)

for temperatures lower than 1 K and fields smaller than 0.6 T. More recent results
on single crystals by Taillefer (unpublished) give an anisotropic field dependence of
a =6.8x10"% uQcm/T for J || ¢ and H L ¢ and is negligible for H || é&. These
numbers obtained on crystals similar in quality to our own will be used to correct the

normal state thermal conductivity.
4. Ferma surface

The Fermi surface of UPt; was mapped out by Taillefer et al. [64, 65] by means
of angle-resolved measurements of the de Haas-van Alphen effect. The results are
summarized in table 3.2 and in figure 3.3. The authors were able to resolve a total of
10 branches all for fields in the basal plane. No dHvA oscillations were observed in
the vicinity of the hexagonal c-axis. By comparing their findings with Fermi surface
calculations (see (65, 66/ and references therein), a good agreement is found between
the calculated and experimental Fermi surface topology. On the other hand, the
measured and calculated cyclotron masses are far apart: the ratio of measured to
band-calculated masses is in the range 10-25. This discrepancy or mass enhancement
is due to the strong electron-electron interactions not included in the band structure
calculations. As an example, the largest surface I'3, which accounts for most of
the density of states has a Fermi velocity of vp = 5500 m/s and a mean-free path
of €y = 2200 A. The corresponding scattering rate for the electrons on this sheet is
vrily = 2.5 x 10'° s7! about twice as large as what we inferred using a simple-minded
estimate based on the resistivity on good crystals of comparable high quality. Note
that [4gua is likely to be somewhat higher than Iyrgnpore simply because dHvA is

more sensitive to low angle scattering than transport. A good value for ['iransport 1S
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Table 3.2: Experimental values of Taillefer et al. [64, 65] for the average wavevector (ko) and the
effective mass (in units of m,) for various Fermi surface sheets as measured by the dHvA effect.
Refer to figure 3.3 for the sheets’ notation.

I:L Sheet | ko (A~!) mass (m.) & (A)
[1(e) ' 0.12 25 1000
CAL5 (h) 1 0.14 - 21000
| La(e) | 0.16 40 21000
K3'(e) | 0.21 50 21000
r2(e) | 0.25 60 1500
I3 (e) | 0.43 90 2200
| L4 (b) - - -

1-1.5x10'° 57! for po=0.2 pQlcm for crystals J || & This scattering rate corresponds
to 0.15kBTc.

3.1.3 Magnetic properties

Magnetism often plays an important role in unconventional superconductors. As
we will see in chapter 4, the high-T. compounds are close to an antiferromagnetic
instability as a function of oxygen doping. As to the organic superconductors, one
can induce spin-waves as a function of hydrostatic pressure and magnetic field. The
heavy fermions are unique in the sense that both the magnetic and the superconducting
order are found to coexist. As discussed in chapter 2, this has led many theorists to

postulate that the superconducting pairing came about through spin fluctuations.
1. Antiferromagnetic correlations

The fluctuation spectrum in UPt; was first investigated by Aeppli et al. [67] using
inelastic neutron scattering. At a gross level, a local magnetic moment of ~ 1 upg
fluctuates at a typical energy of the order of 10 meV. On a finer scale, moments on
neighbouring sites tend to be correlated in direction. Weak ferromagnetic alignment
within the basal plane with antiferromagnetic alignment in neighbouring planes tends

to appear at a fluctuation energy of the order of 5 meV. The characteristic wavevector
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Figure 3.3: Left panel: angular variation of the fundamental dHvA frequencies with orientation of
the magnetic field in the planes a-b, a-c and b-c (after Taillefer et al. [64, 65]). Right panel: Section
of the Fermi surface as derived from conventional band-structure calculations (after [66]).

for this AFM coupling is Q= (0,0,1). At even lower energies, of the order of 0.3 meV,
there is another antiferromagnetic correlation with wavevector Q = (:i:%,O,l). The
effective moments associated with this fluctuation is of the order of 0.1up. Part of
these low-energy fluctuating moments eventually become statically ordered at 5 K
and give way to an antiferromagnetic order. The unusual properties of this ordered

phase is the subject of the next paragraph.
2. Antiferromagnetic ordering

Aeppli et al. [68] were the first to establish UPt; as an ordered antiferromagnet. They
find a doubled unit cell in the basal plane and an ordered moment of (0.02 + 0.01)xp
parallel to the doubling direction (see figure 3.1). The magnetic Bragg intensity
Ig proportional to the square of the magnetization is found to rise linearly with
decreasing temperature below Ty = 5 K. Thus, the mean-field expression M «
(Ty — T)'/? adequately describes the temperature dependence of the magnetic order
parameter over a much wider range in T/Tn than is ordinarily the case [68]. As we

shall see in section 3.2.3, the authors showed that this linear increase in the intensity
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stops when the superconducting state sets in. Finally, the measured Bragg peaks are
not resolution limited indicating that the magnetic order is not of infinite range. A

correlation length of ~200 A is obtained [69].

3.2 Superconducting properties

In this section, we review the superconducting properties of UPt;. We first proceed
to discuss the multiple superconducting phases followed by some low temperature
properties of the superconducting state. The interplay of magnetism and supercon-
ductivity followed by a discussion of some theoretical models for the superconducting

phase diagram will conclude this section.

3.2.1 Multiple superconducting phases

The most compelling evidence for unconventional superconductivity came from the
discovery of a split superconducting transition in the specific heat measurements of
Fisher et al. [70], a feature also observed in the unconventional superfluid *He. In the
case of UPt3, only in the highest quality crystals could the splitting be resolved; the
double specific heat jump is replaced by a broad transition in lower quality crystals.
At present, no single discontinuity of a sharpness comparable to that associated with
each double transition (equal to 15 mK) has been observed. Double transitions have
now been measured in specific heat by numerous groups and are believed to be an
intrinsic property of UPt;. Furthermore, such anomalies have also been seen in sound
velocity, thermal expansion and other types of measurements. The high quality single
" crystal measured in this thesis displays the double transition. Discussion of this is
delayed to chapter 6 when we talk about sample characteristics; the reader is referred
to figure 6.4.

Adenwalla and co-workers mapped out sound velocity anomalies associated with
the superconducting transition in the temperature and magnetic field plane [71]. They
find qualitatively the same result for a field in the basal plane and along the c-axis.
Their results for a magnetic field perpendicular to the hexagonal axis are displayed
in figure 3.4. The two transitions, well separated in zero field, eventually merge at
T* =0.39 K and H* = 0.40 T at a tetracritical point. A third line is also observed and
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Figure 3.4: H-T phase diagram of UPtg for a field in the hexagonal basal plane (after [71]).

is nearly horizontal in the H-T plane. The upper critical field H.,(0) then displays
a kink at (T*. H*). The phase diagram is therefore divided in three superconducting
phases labeled A (high temperature, low field), B (low temperature, low field) and
C (low temperature, high field). Furthermore, this phase diagram was shown to be

isotropic in the basal plane [72].

From early on, it was known that uniaxial stress and hydrostatic pressure, of
moderate strengths. had a profound effect on the superconducting transition (see
Greiter :73| and Taillefer [72]). The phase diagram in the pressure-temperature plane
was first mapped out by Trappmann et al. {74] and their results are displayed on the
bottom panel of figure 3.6. The double superconducting transition is found to merge,
not cross, at a critical pressure of p* = 3.7 kbar and 7* = 419 mK. Such a tricritical
point is forbidden by thermodynamic analysis (see [75]) and an additional line, close
to vertical, was believed to exist from p* down to lower pressures. A similar phase
diagram was obtained later on by the specific heat measurements of Jin et al. [76]
under uniaxial stress applied parallel to the c-axis. A complete temperature-field-
stress phase diagram was recently proposed by Boukhny et al. [77] on the basis of

their sound velocity measurements. Their measurements confirm the merging of the
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double transition in the stress-temperature plane and furthermore, the authors claim,
by fitting the surfaces of the field-temperature phase diagrams obtained at constant

stress, an additional line in the stress-temperature plane can be inferred.

A thorough understanding of the various phase transitions under field and pressure
has been one of the major pursaits in the field for the past seven years. We therefore
skip directly to theoretical models for the multiple superconducting phases in UPts.
We will come back later to the physical properties of the superconducting state.

3.2.2 Theoretical models for the multiple superconducting phases

Two basic models have been proposed to explain the multiple superconducting phases
in UPts: (i) theories based on nearly degenerate order parameters belonging to two
different irreducible representations or (ii) theories based on different order parame-
ters belonging to a single two-dimensional representation. In the second model, the
degeneracy of the order parameter for the different possible states within the 2D rep-
resentation is lifted as a result of a coupling to a weak symmetry breaking field (such
as the antiferromagnetic order in the basal plane) giving rise to two superconduct-
ing phases with very close transition temperatures. Of the four 2D representations
listed in table 2.3, the E,;, and E,, have received the most attention because the
gap structure of the proposed state at low temperature (phase B) is compatible with
various physical properties (see section 3.2.4) unlike the F,, and E,,. We start this
section by discussing models with an accidental degeneracy. We then show, using
Ginzburg-Landau theory how a symmetry-breaking field (SBF) could produce a split
transition in zero field if the order parameter is two-dimensional (either Eyg,, Eq,, Fyy

or E,,). We will then review several models which rely on a SBF.
1. Models with accidental degeneracy

As observed in *He for the B to A phase transition, Chen and Garg [78] have
postulated that the phase diagram of UPt; is based on two primary order parameters
belonging to different irreducible representations that are accidentally degenerate.
Their goal was to search for two representations that can yield a crossing of the

H.,(0) lines for all field directions. They chose to study a case where both order
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parameter ¥, and ¥, have the same parity'. In this case, one of them must belong
. to an A representation (A4; or A;) while the other to a B representation (B, or
B,). Table 2.3 listed the node topology of these representations in the case d || c.
Chen and Garg do not assume any direction for the d vector and therefore obtain
different positions for the nodes. Because of the presence of zeros in the gap implied
by early transport measurements displaying power law behavior, the 4;; and A4,,?
representations were not studied. This left the A,, (axial) and the A,; (2 lines and
point nodes in the basal plane). The authors justify their approach by noting that the
results of Hayden et al. [79], which seem to disfavor accidental degeneracy, pose severe
thermodynamic problems: the Néel line Tnx(p) ends in midplane (see figure 3.6) which
is impermissible, as is the junction in the T-p phase diagram of three second-order
lines with non-zero specific heat jumps. Boukhny et al.[77], using ultrasound velocity
measurements. claim to see an extra line in the T-p plane not observed in the specific
heat measurements of Trappmann et al.[74] which would solve the thermodynamic
imbroglio with respect to the stability of the tetracritical point in the T-p plane of
the phase diagram. As we shall see in section 6.3, the high temperature, low field
. phase A cannot have an axial gap ruling out the A,, representation at least for this
particular choice of d vector. This leaves only the A,, representation for phase A and
the B,, or By, representations for the low temperature low field phase, phase B. Both
B-representations have a line node in the basal plane and therefore are consistent with
early transport measurements. Since there is no symmetry breaking term in the GL
expansion, the free energy is invariant under all rotations about the c-axis. Theories
which rely on a SBF will not be invariant under rotation and therefore rotation of the
moments within the plane will have to be invoked to explain the isotropy of the phase
diagram. The AB theory of Chen and Garg can explain all global features of the
phase diagram in going from the slope of H.(0) to the specific heat jumps at the two
transition temperatures and is believed by the authors to provide a strong candidate

for explaining the phase diagram. On the other hand, the accidental degeneracy of

‘It is also possible that ¢, and ¥, have different parity, in which case they can have any rotational

symmetry. These authors do not study this possibility.
*When d is arbitrary, the basis function for this representation is a combination of Zk; + gk, and 2k,

. {33] and therefore has no nodes.
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two transitions unrelated by symmetry, with AT./T. ~ 10%, seems implausible to
other authors [31] given the sensitivity of T, to the strength of the pairing interaction
and the disappearance of the magnetic moment at a similar pressure as the splitting

in the superconducting transition would have to be regarded as coincidental.
2. The Ginzburg-Landau approach to a split superconducting transition !

The Ginzburg-Landau (GL) phenomenological theory is well known in the field of
phase transitions. The central quantity is a pseudowavefunction ¥(7), a complex
order parameter. As was shown by Gor’kov, the GL theory is a special case of the
BCS microscopic theory. The function () can be shown to be proportional to the
gap parameter A(7) both being in general complex quantities. We now proceed to
illustrate a special case of GL theory, where we neglect spatial variation in %(7) and
where there is no magnetic field. This special case is often labelled Landau theory.
This short presentation will be followed by a sketch of GL theory in which a vector
order parameter couples to some symmetry breaking field. The features deduced from
this discussion will act as a starting point in describing models that rely on a SBF to
explain the phase diagram.
We start with the free energy f, in the superconducting state:

B

fosfatalpf + 3 1p* (3.3)

where f, is the free energy in the normal state and 8 > 0. We look for 2 minimum

in the free energy:

a(Af) a(f- — fn) 2

Sl = o = 2+ 2811 ¥ (34)
For « > 0, the minimum occurs for || = 0 which corresponds to the normal state.
When a < 0, the minimum occurs for || = (—%)1/2. Therefore, we can expand a

close to T.: a = ao(T — T.) with ag > 0. By adding gradient terms, one can also

!For the remainder of this chapter, the superconducting transition temperatures will be labelled 7.,
and T.. for the upper and lower transition respectively. We choose this notation for consistency
reason (i.e. T,_will be the temperature where a_ changes sign, see below) with theoretical papers
in order to avoid confusion. In subsequent chapters, we will revert to the previous notation of above

with T.. and T._ for the upper and lower transition temperatures.
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deduce, among other quantities, the critical field, the jump in the specific heat, the
coherence length and the London penetration depth.
In the case of a vector order parameter belonging to the 2D representations (i.e.

k.. E5y. £y, and E,,) listed in table 2.3, the free energy can be written as:
-2 - - -
Af =aAT)|b| +Bu|v 97| + B2 [¥ - 4] (3.5)

with a(T) = ao(T — Tw)- At T, a changes sign and a minimum in the free energy
can be found (provided 3; > 0) which means that we enter the superconducting state.
Four different types of order parameters can be found to minimize the free energy: two
one-component ones i.e. the (1,0) and (0,1) types, and two two-components ones i.e.
the real (1,1) type and the complex (1,i) type. By back substituting all four solution
types in equation 3.5, we can obtain the free energy minimum for each. From this,
we find that the states (1,0), (0,1) and (1,1) are degenerate with the free energy in
the ordered state given by: A fuq = _4(5_:!18_:5' The (1,i) is stabilized with a different
free energy given by: Afu) = —:sz' The condition lzl-flz > 0 and Af < 0 gives the
stability of the phases as a function of temperature and also as a function of the ratio
3, 3..

A symmetry breaking field will couple differently to each component of the order

parameter. For example, we take':
(Af)sgr=¢ N’zlz —€ valz (3.6)

with ¢ > 0. By posing [¢| = (¥=,%,) = (J¥=l , [#oy| €#) and including the SBF term,

we can then rewrite equation 3.5:
Af = Af + Afspr
= a !+ alty + (81 + B2) (10=]* + I9]*)
+2(B1 + Bz cos 29) 9= |” [ty |” + € [9=|” — € [, (3.7)

By making use of the following definitions:

(a+a)=ao(T—Tco+aio)=ao(T—T..)Ea_ (3.8)

*Machida and Ozaki {80! use a group theoretical argument to study the subgroup of the magnetic

order to justify such a coupling term.



3.2 Superconducting properties 61

(a—-e):ao(T—Tco—i)=ao(T—T¢+)_=_a+ (3.9)
Qg

where T is the superconducting temperature in the absence of a SBF, we can rewrite

the free energy:
Af = o [¥:* +ar ¥

+(B1 + B2) (#=l* + 1¥yl*) + 2081 + Bacos 29) 19" [ |°  (3.10)

Again, there will be four cases. The minimum in free energy for each case is summa-

rized in equations 3.11-3.14:

az

Mion = =35 25 (3.11)
Aflg = _ETB_I%_@ (3.12)
Afhyy = —Rﬁﬁ—ﬂz) (3.13)
Aflygy = —% (3.14)

where the prime refers to the free energy in the presence of a SBF. The highest
superconducting transition being T.., a superconducting transition to the state (0,1)
will occur at this temperature. At T._, a_ changes sign and 2 new minimum can be
attained for a finite value of |¢),| below this temperature. But the free energy A f{y ),
is always smaller than Af(, ) such that the state (1,0) will never be stabilized. We

rewrite equation 3.10:

Af = a. = Jac + 2By + B2 cos 20) [, ] 1= l* + O (91*) (3.15)
The second transition will occur when the coefficient of |%.|*> changes sign. If we
back substitute the value of |%,| obtained by minimizing the free energy 3.10 for
the (0,1) state into the coefficient of |¢.|* of equation 3.15, the value for the second
superconducting transition, labelled T, can be obtained. The (1,1) phase is found
to be unstable and therefore the second tranmsition is from the state (0,1) into state

(1,i) with critical temperature given by:

T,. = Too — % (i) (3.16)
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This approach clearly demonstrates the possibility of a split superconducting tran-
sition in zero field when a symmetry breaking field is coupled to a vectorial order
parameter. Up to now, this approach is general to any of the 2D representations.
Differences will arise when the gradient terms and the effect of a magnetic field are
added to this formalism in order to explain the H-T phase diagram. It is beyond
the scope of this thesis to go into details and to outline this treatment. Instead, we
will overview the different approaches for calculating the phase diagram for the case
of UPt;, the problems associated with each method and their relevance to thermal
conductivity calculations. Before going into the models, let us point out a difficulty

that was noted early on.

Within the coupling scenarios, the kink in the H.;(0) curve is basically the result of
a sudden reorientation of the vector order parameter 1/; in the basal plane (81, 80, 82].
Both the moment M, and the field A will couple to 1,5', each trying to align it in
the minimum energy direction. Without loss of generality, let us consider the case
of M, L H with both couplings to ¢ favoring parallel alignment. At low fields,
the coupling to the magnetic order dominates and M, determines the orientation of
. Then. when the field is increased to the point where its coupling dominates, a
reorientation of v occurs, causing a kink in H.(T). Of course if the field direction
is instead made parallel to M,, no kink is predicted, since there is no competition
between the two couplings. As a result, within a single antiferromagnetic domain, the
upper critical field in the basal plaine of UPt; is predicted to show a sharp kink only
for one direction of the field (say H || &), and no kink for the 4° direction 90° away.
As mentioned above, a kink is observed for any high-symmetry direction (0°, 90°,
and 120° relative to @) [72]. The phase diagram for a field along the hexagonal c-axis
is also expected to not display a kink as again there is no competion. Within the
models of accidental degeneracy, this explanation comes naturally. However, theorists
working on models with a symmetry breaking field will have to find a way to solve
this problem.

Machida and Ozaki [80] summarized the conditions for a split transition to occur:
there must exist (i) degenerate states in the ground state which would come from

either the spatial part of a vector order parameter of the wavefunction in the case of
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strong spin-orbit coupling or from the spin part of a one dimensional spatial wave-
function in the case of weak spin-orbit, and (ii) external or internal perturbations
which are strong enough to lower the symmetry, but weak enough so that they don’t
completely wipe out the lower transition. We now briefly outline the two types of

scenarios based on either weak or strong spin-orbit coupling.
3. Models that rely on a SBF

To circumvent the difficulties associated with a qualitatively isotropic phase dia-
gram in the basal plane and along the c-axis, Machida and Ozaki [83] consider an
odd parity one dimensional pairing state in the weak spin-orbit case. This assump-
tion rests on the argument of Miyake [84] which states that the effective spin-orbit
coupling for the Cooper pair may be weak, although individual quasi-particles near
the Fermi level are subject to strong spin-orbit coupling. Machida and Ozaki consider
the case where the spin-space degeneracy is lifted via a symmetry breaking field asso-
ciated with the antiferromagnetic moment in the basal plane. Furthermore, Machida
and Ozaki point that the absence of change in the Knight shift below 7., observed
by both NMR [85] and uSr [86] indicate that the parity of the pairing function is odd.
Machida and Ozaki [83] are able to obtain topologically identical phase diagrams for
both H || § (i.e. H L M) and H || 2. To explain the isotropic phase diagram in the
basal plane, they require that the moment rotates so as to keep M 1 H. Furthermore,
the A;, basis function chosen seems to have the right nodal symmetry (a hybrid II
gap structure) as inferred by various experiments. Machida et al. [87] have extended
their treatment to calculate the specific heat. They claim that the large linear term
can be reconciled naturally within their 1D formalism.

Sauls [31, 88, 89] and Park and Joynt [90, 91] recently completed detailed calcula-
tions of the phase diagram of UPt; within a two-dimensional scenario with symmetry
breaking field. It is beyond the scope of this thesis to rederive their results and we

simply outline them here.

Sauls uses a odd-parity spin-triplet order parameter with d || & belonging to the
E5, class with the magnetic moment in the basal plane playing the role of the SBF.

We summarize some of his conclusions:
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o A double transition occurs in zero field and the splitting of the transition tem-
. perature is AT, «« M? with M the magnitude of the magnetic moment. Fur-
thermore, the correlation between magnetism and superconductivity can be

accounted within this model.

e Within this scenario, it is possible to explain the anisotropy in the upper critical

field over the full temperature range.

e The upper critical field exhibits a tetracritical point for H L éand H || & The
kink H: is isotropic in the basal plane provided M rotates so as to maintain

M _H.

As to Park and Joynt [30, 91], they arrive at similar conclusions but by using an
even parity spin-singlet order parameter belonging to the E); representation. They
find that a true tetracritical point occurs only for a field in the basal plane and that
the model predicts a near coincidence of the inner and outer transition lines when
the field is along the c-axis. They are also able to explain the anisotropy of the

. upper critical field curve, a feature previously believed to be evidence for a spin-
triplet state. Furthermore, these authors are able to explain the features of the phase
diagram under pressure and field, a problem not yet studied with the E;, model.

Our thermal conductivity measurements will be sensitive, at low temperature, to
the node topology. We therefore emphasize the difference in nodal structure for the
three scenarios listed above. The E,, and A3, both have a hybrid II structure, namely
juadratic point nodes along the c-axis and a line in the basal plane while the E,; gap
has also a line in the basal plane but a linear node along the poles. We will come
back in more details to calculations of thermal conductivity within these scenarios
and compare them to our results in chapter 6. Up to now, no experimental probe has

been able to distinguish between a hybrid I or II gap structure.

3.2.3 Interplay of magnetism and superconductivity

The first evidence of interplay between the magnetic order and the superconductivity

‘ came from the early neutron diffraction results of Aeppli et al. [68, 92]. In a first
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Figure 3.5: Normalized temperature-dependent (left) and field-dependent (right) (1, ;,0) magnetic
Bragg intensities (upper frames) and ac susceptibilities (lower frames) (after [92]).

paper, the authors showed that the magnetic Bragg' intensity in zero magnetic field
at ¢ — (3,1,1) rose linearly for T. < T < Ty and saturated below I.. We now
refer to the left hand-side of figure 3.5 where the magnetic Bragg intensity is plotted
as a function of temperature for various fields directed perpendicular to the basal
plane. The most important result is that at the lowest fields, the (1,3,0) peak is
actually reduced by ~5% while for larger fields, the Bragg intensity is independent of
temperature and field for T < T.. From these results, the authors conclude that the
antiferromagnetism and the superconductivity coexist and interact at the microscopic

level.

Later on, the neutron results under hydrostatic pressure of Hayden et al. [79] com-
bined with the specific heat of Trappmann et al. [74] clearly demonstrated the direct

coupling between magnetism and superconductivity. Hayden et al. [79] used elastic

'The wave-vectors are expressed in reciprocal lattice units where a* = b° = 4r/ay/3 = 1.261 A1

. and ¢” = 2r/c = 1.285 A1,
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Figure 3.6: (a) Variation of the integrated intensity of the magnetic peaks (},1,0) (closed circles)
and (3,0,1) (open circles) with hydrostatic pressure. This is 2 measure of M 3. The solid kine is
a fit of M « (p. — p)* and the dashed line M2 o (p. — p). (b) Variation of the Néel temperature
as a function of pressure. (c) Low temperature specific heat anomalies in UPt3 as measured by
Trappmann et al. [74]. This figure is taken from the paper by Hayden et al. (79].

neutron diffraction to study the effect of hydrostatic pressure on the small ordered
antiferromagnetic moment in UPt;. They found that pressure suppresses and even-
tually destroys the magnetic order. A comparison of their results along with those
of Trappmann et al. [74] is displayed in figure 3.6. Hayden et al. conclude that the
splitting of the superconducting transition is well correlated with the magnitude of
the ordered moment. The critical pressure at which the ordered moment is destroyed,
pc = 5.4 £ 2.9 kbar, is found indistinguishable from that at which the two anomalies
in the heat capacity cease to be resolvable. They therefore conclude that the antifer-
romagnetic order appears to be responsible for the double superconducting transition
in UPt,;.

By combining the use of neutron scattering and magnetic X-ray scattering, Isaacs
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et al. [93] repeated the experiment of Aeppli et al. [68, 92] and were able to draw
additional conclusions. From their data, they conclude that the decrease in the in-
tensity (o< M?) upon entering the superconducting state is not due to a rotation of
the moments but is consistent with a uniform reduction of the squared staggered
magnetization thus confirming the coupling between the superconductivity and the
magnetism.

All these results have various implications on the phase diagram of UPt;. Further-
more, our neutron results, presented in chapter 8, will add to the unusual properties

of the magnetic moments.

3.2.4 Physical properties of the superconducting state

In this section, we are concerned with the superconducting properties of UPt3.- Only
few experimental results will be discussed focussing mainly on results that probe the
gap anisotropy. More thorough reviews can be found in the papers by Grewe and
Steglich [56], by Taillefer [57], by Lohneysen [58] and by Heffner and Norman [59].

The thermal conductivity results prior to our own will be reviewed in chapter 6.
1. Power law dependence in the superconducting state

The specific heat has been measured by numerous groups (see the review by Brison et
al. {94] and by Grewe and Steglich [56]) and we outline only the gross features. The
specific heat over temperature is linear (not exponential as for BCS superconductors)
in the range 0.27. up to close to 7,.. From this dependence, one can infer a linear
term ranging from 0 to 60% of the normal state value at 7.. This residual term has
been attributed to residual normal fluid at T = 0 but the strong sample dependence
would rather seem to favor an explanation relating this term to an extrinsic property
of UPt3;. Below 0.27,, deviations from linearity start to appear, and a huge upturn in
c/T is observed (see for example [94]). In some samples, at the lowest temperature
reached, the value of ¢/T is up to three times the value at T.. This upturn has been
investigated in samples of different quality and does not seem to be linked to the
superconductivity as there are reports indicating it is still present in the normal state
195, 96].

Power law behavior has also been seen in NMR measurements [85, 97]. These
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Figure 3.7: a»® (proportional to viscosity) versus temperature for transverse sound propagation in
the basal plane (§ || b) with polarization é || @ (open circles) and é || é (closed circles) (after [38]).

authors find a T power law which points to a line node in the basal plane. Other
power laws have been seen in ultrasound attenuation measurements and we proceed

below to discussing one experiment by Shivaram et ai. [38].
2. Ewidence of gap anisotropy in UPl3

The anisotropy in the transverse ultrasound attenuation measurements of Shivaram
¢t al '38] provided the first evidence of gap anisotropy, beyond that of the normal
state. Their results, displayed in figure 3.7, showed an increasing attenuation as 7'
for a transverse sound polarization perpendicular to the c-axis, while sound polarized
along ¢ had a T?! temperature dependence. These provided evidence for a line of
zeros in the hexagonal basal plane.

The London penetration depth of Broholm et al. [98] was the first measurement
pointing to a hybrid type of gap structure. Although their interpretation was ques-
tioned by Luke et al. [99], we proceed to describe their findings. At T = 0, Broholm
et al. find slight anisotropy in the values of the penetration depths parallel and per-
pendicular to the c-axis, namely: \=7070+30 A and ), =7820+30 A. A different
temperature dependence, i.e. A7? decreases proportionally with temperature while
A7? decreases with a higher power. Modeling of their data enables these authors to
conclude to a weak-coupling superconductor, with A(0) = 940 £ 15 mK, with a line

of nodes in the basal plane and point nodes along the c-axis.
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Point-contact spectroscopy measurements by Goll et al. [100] and De Wilde et
al. ‘101’ provide a more firm basis for a hybrid type gap structure. The difference in
the two measurements resides in the fact that Goll et al. probed the anisotropy while
De Wilde et al. measured contacts only for currents along the c-axis. In summary,
Goll and coworkers find (i) a gap-related spectra for a current flow parallel to the c-
axis and only weak features (if any at all) for currents in the basal plane, and (ii) that
the gap features are only observed in the low-temperature, low-field superconducting
phase. This would hint at a different order parameter between the A and B phase.
The authors therefore conclude that the gap must vanish on a line in the basal plane.
I[n their measurements, De Wilde et al. claim that they can qualitatively model their
spectra with a gap vanishing along the c-axis. Their fits would seem to indicate a
hybrid II gap structure either from a E,, gap as used in the theory of Sauls [31] or a
A,, as postulated by Machida and Ozaki [83]. More detailed calculations, including

Fermi surface anisotropy, are needed to arrive at a firm conclusion.
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THE HIGH-T, CUPRATE YBA;CU307_5

[u this chapter, the normal and superconducting state properties of YB2,Cu3O7_5
are reviewed. To our knowledge, since the field of high-T. evolves so fast, there is
no comprehensive review of the properties of this class of superconductors. For more
information, the reader is therefore referred to the original papers that discuss the
properties that we quote. The books by Burns [30] and Cyrot and Pavuna [102] also
provide an introduction to the properties of high-T. up to 1991.

4.1 Normal state properties

In this section, we review some of the normal state properties of YBa,CuzO7_5. As
was the case with UPt;, we focus on quantities that will be useful later on in the
thesis. The number of papers on high-7, being astronomical, this review is by no

means complete.

14.1.1 Crystal structure

. General crystallographic considerations

As was realized early in the history of the cuprates, the existence and stacking of
copper-oxygen planes is critical, since it is believed that it is those planes that are
responsible for the superconductivity in these systems. In looking at all of the families
of high-T, superconductors, one can notice some general trends: (i) many compounds
have more than one immediately adjacent Cu-O planes, each plane separated by a
sparsely populated plane of Y or Ca atoms, and (ii) groups of immediately adjacent
planes are separated from the next group by metal-oxygen isolation planes (also called

charge reservoirs), where the metal atoms usually are La, Ba, Tl or Bi. This gives

70
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this class of materials a strong quasi-two-dimensional character as evidenced by many
strongly anisotropic properties.

Consider the structure of YBa,;Cu307 shown in figure 4.1. This compound has two
adjacent (3.2 A) Cu-O planes separated by a plane of Y atoms. This pair of Cu-O
planes is ~8.2 A from the neighboring set of planes. The presence of the chains,
running along the b-axis, was at first believed to be responsible for the high critical
temperature but later on, compounds with no chains were discovered that had a higher
T.. As we shall discuss in the next paragraph, when reducing the oxygen content, it
is the oxygen in the chains that is removed (atom labeled O.(b) in figure 4.1) leaving
“sticks” of O-Cu-O parallel to the c-axis. The complete deoxygenation results in a
tetragonal structure for the compound YBa,Cu3Og with similar unit cell dimensions
as YBa,CuzO,. For § 0.1, the lattice parameters are a = 3.84 A, b = 3.88 A and
¢ = 11.63 A for a unit cell volume of ~173 A3.

In this thesis, we will be only concerned with measurements along the a-axis of
YBa;Cu30-_s 1.e. perpendicular to the chains and therefore they will not contribute

to the thermal conductivity.
2. Tunnning

In air and above ~800°C YBCO is tetragonal. Upon cooling, oxygen enters in the
chains and makes the crystal orthorhombic creating an asymmetry between the a and
b-axis. The sample becomes twinned with small domains with the b-axis along some
axis £ while other domains grow with the a-axis also along Z.

Flux grown crystals can be mechanically detwinned by applying a uniaxial stress
and heating the sample at 500°C. This will favor the shorter a-axis domains to be
parallel to the applied stress and therefore one obtains a true single crystal. The
tvpical width of a twin domain is 1 pm which can be revealed by chemical etching,

polarized optical microscopy or by scanning electron microscopy.
3. Ozygen doping

The physical properties of YBa;Cu3O_s are strongly dependent on the oxygen

content of the sample. For example, YBa;Cu3Og is an insulating antiferromagnet.

'This is the approximate oxygen content in the crystal to be discussed in this thesis.
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Figure 4.1: Representation of the crystal structure of YBaCugO7_s5. (a) emphasizes the labeling

of the atom positions and (b) shows the copper coordination polyhedra. Notice the two adjacent

copper-oxygen planes separated by a Y atom and the chains runring along the b-axis below (above)
. the lowest (highest) Ba atom (after [30]).

The ordering is with antiparallel spins in the planar Cu atoms. Increasing the oxygen
content in the chains rapidly suppresses the Néel transition until it vanishes around
4=0.64'. Increasing the oxygen content further from §=0.64 down to zero makes
the crystal metallic, nonmagnetic and superconducting. The left panel of figure 4.2
shows a schematic phase diagram for YBa,Cu3O7.5 as a function of the number of
holes in the CuO, plane (this is proportional to 1-§), while the right panel shows the
superconducting transition dependence upon doping. The maximum 7. is reached
for § ~0.1. The oxygen content is controlled by annealing crystals for several days
in flowing oxygen, with the annealing temperature dictating the amount of oxygen
entering the crystal. The sample is then quenched to room temperature.

The proximity to antiferromagnetic ordering in YBa;Cu3O7_s has been taken as

evidence for spin fluctuations being responsible for the superconducting pairing. How-

YAt this oxygen content, the crystal symmetry changes from being tetragonal for § >0.64 to or-
. thorhombic for smaller §’s.
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Figure 4.2: Left panel: schematic phase diagram as a function of oxygen doping (or holes in the CuO;
plane) for YBa;CuzO7_s. Right panel: vanation of the superconducting transition temperature as
a function of doping, = 1 — § for YBa;Cu3O7_4 (after [102]).

ever. contrary to UPt3, there is no coexistence of magnetism and superconductivity.
Upon replacing Y by Gd, one can induce an antiferromagnetic transition at 2.2 K but
the electrons responsible for this ordering do not participate in the superconductivity
(i.e. there is still magnetic ordering even when, upon reducing the oxygen content,

the sample is insulating) and there is no coupling between the two types of order.

4.1.2 Electrical resistivity and elastic properties

We now proceed to discuss the sound velocity, the phonon specific heat and the
resistivity. Discussion of previous thermal conductivity results on powders, twinned

and untwinned crystals is left for chapter 7.
1. Sound velocities

As discussed earlier, the sound velocities are important in estimating the phonon
contribution to the thermal conductivity at low temperature in the limit of boundary
scattering. In the case of YBa;Cu30O7_5, not many reliable measurements of the
complete set of nine elastic constants exist. This is due mostly to the small dimensions
of the crystals that can be grown resulting in significant uncertainties on the travelling
time of ultrasonic waves. Measurements on ceramics are also not very reliable: these
contain voids and intergranular material that influence the results. Nevertheless, in

this section, we summarize the elastic properties of YBa;Cu3O7_s5 as reviewed by
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Dominec [103].

We first start by summarizing results on powders corrected for the void-free state.
In polycrystals, only two independent elastic moduli exist and can be represented by
longitudinal and transverse velocities. The longitudinal velocities range from 4190 to
7165 m, s while the transverse go from 2350 to 3061 m/s [103]. The resulting Debye
temperature is in the range of 329 to 480 K [103]. An average of these figures yield a
longitudinal velocity of 4516 m/s and a transverse velocity of 2595 m/s. The average
phonon velocity is then (see [5]): vpn = 2862 m/s.

A more reliable way to extract the sound velocities is from measurements of the
elastic constants as we showed in section 3.1.2. The advantage of this method is
that we can average only those modes that participate in the heat transport, namely
for transport along the a-axis. We simply average the longitudinal and transverse
velocities in this direction. The previous estimate was for an overall phonon velocity
average over all modes, c-axis and basal plane included. Calculations of velocities from
elastic constants in an orthorhombic crystal are rather elaborate but since most of our
results are for the a-axis, the whole procedure becomes very simple. Carrying out the
procedure outlined in the books by Truell et al. and Dieulesaint and Royer [104, 105]
and using the elastic constants (c;;) listed in the review paper of Dominec [103], we
find: v = /3L =5841 m/s, v} = /%2 =3734 m/s and +; = /2 =214 m/s where
p=6381.62 kg/m? is the density, and v{ the velocity of the mode with the propagation
direction ¢ and polarization . Averaging these velocities with the method of Berman
(5], and taking only the faster of the two transverse modes, we find an average phonon
velocity of v,,=3977m/s. We would like to emphasize that an average of the elastic
constants listed by Dominec [103] yield a Debye temperature of 371 K, approximately
10% lower than what can be deduced from the specific heat measurements.

In estimating the maximum phonon contribution to the thermal conductivity using
Kph = %cp;,vp;,lph, we will be interested in the highest possible velocity. We choose to
use the velocity calculated from the elastic constants. This procedure will provide a

realistic estimate for the heat conduction of phonons at low temperature.
2. Resistivity

The electrical resistivity in YBa;Cu307_s was known early on to be linear, except
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for some unexplained slight upward curvature. Gagnon et al. [106] performed a syste-
matic study of the resistivity in several crystals in order to reveal any anisotropy that
might arise from the presence of chains along the b-axis. They measured the electrical
resistivity along the a and b-axes of YBCO on high-quality detwinned single crystals.
Below 300 K and above the superconducting fluctuations regime, they find a linear
pa(T) with negligible (or even negative) extrapolated residual resistivity. Viewing the
b-axis conductivity as the sum of the conductivities in the CuQ; planes and along
the CuQ chains, they were able to extract a T? dependence for the chains with a
large residual resistivity of order 100 pQdcm. As a consequence of this large residual
chain resistivity, isotropic electronic transport in the basal plane is predicted at low
temperature.

In section 7.2, we will present resistivity measurements for a-axis zinc-doped
YBa,Cu307_s5. We will show that the linear relationship of the resistivity is pre-

served upon doping but that the extrapolated residual resistivity increases.

4.2 Superconducting properties

There exists a wealth of experiments in the high-T,, which range from vortex dynam-
ics, tunneling junctions, photoemission and many others, and it is too vast for us
to cover here. Instead, we limit ourselves in this first section to discussing thermal
properties at high temperature (T>1 K), namely the thermal conductivity® and the
Righi-Leduc effect along with specific heat data which seems to point at uncondensed

electronic carriers at T=0.

4.2.1 Thermal properties

1. Residual linear term in the specific heat

There exist numerous specific heat measurements on YBa;Cu3O+_s performed by
various groups. We choose to illustrate the findings of this technique through the
review paper by Fisher et al. [107].

Many contributions to the specific heat of YBa;Cu3O-_;s (in and out of a magnetic

'Low temperature (T<1 K) thermal conductivity will be reviewed in chapter 7.
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field) have been observed. These can be separated into five categories: linear, mag-
netic, hyperfine, lattice and possibly an aT? term associated with line nodes. The

first, Cpin can be written in the form:
Cuin(H) = [v(0) + AY*(H)] T (4.1)

v*(0) includes sample-dependent contributions from non-superconducting regions. It
could also be intrinsic and associated with the CuO chains {107]. Recall that a big
sample dependent residual term is also seen in UPt;. A H!/? field dependence to
the A+°( A ) has been predicted by Volovik for a gap with line nodes and would be a
manifestation of d-wave pairing.

In fitting experimental data, the second term Cp,,g is taken to be a Gaussian-
broadened Schottky anomaly. Its origin comes from the moments associated with the
Cu?T ions which order under the influence of internal interactions.

The hyperfine contribution Chyp(H) = D(H)T? is modeled through a quadratic
field dependence for the D(H) term. Finally, the lattice specific heat is represented
by the harmonic lattice series: Cio; = BT + BsT® + .... The term Bj; in Fisher et
al.’s paper will be from now on called 3 for consistency with our discussion in UPts.

Qualitatively speaking, the specific heat over temperature has a large upturn at
low temperature in zero field. As the field is increased, this anomaly eventually
becomes a Schottky-type anomaly as discussed above. Although probably different
in origin, this upturn is reminiscent of what happens in UPt; where the extraction of
a residual linear term was obscured by a large sudden increase of ill-understood origin
in C'T at the lowest temperatures. Due to the large number of fitting parameters,
experimentalists proceed to fix certain parameters by global fits performed at different
magnetic fields. Fisher et al. [107] provide an extensive discussion of the fitting
procedure putting special emphasis on reducing systematic errors that could arise
from such global fitting. Although not seen in early measurements, many authors now
find the predicted H'/? field dependence in the linear term, adding to the evidence
that YBa,Cu3O7_s is a d-wave superconductor (see for example [108, 107]).

From the point of view of thermal conductivity at low temperatures, we will
be interested in the maximum phonon contribution to our results. At the lowest

temperatures, the anharmonic term can be neglected, and the 8 term ranges from
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0.3-0.4 mJ/molK* (see [108, 107] and references therein) which correspond to 2.88-
. 3.84x107°* mJ/K*cm®. We emphasize an advantage of thermal conductivity over
specific heat: thermal conductivity measurements enable us to distinguish the itiner-

ant quasiparticles from the large 4*(0) which has many postulated origins.
2. High temperature thermal conductivity

Soon after its discovery in 1987, many experimentalists set forth to measure the
thermal conductivity in sintered YBa;Cu3O;_s. The thermal conductivity could
equally weid probe the normal and superconducting state of this compound, some-
thing that could not be achieved with electrical conductivity (see for example the
review by Uher [109]). Results on detwinned crystals only appeared five years later
with the measurements of Yu et al. [110] and Cohn et al. {111]. The main feature of
their results is that the thermal conductivity increases in the superconducting state,
giving rise to a large peak centered around 40 K*.

Cohn et al. [111] interpret the appearance of a peak below T, using a conventional
phonon dominated approach. They establish that the thermal conductivity in the

. normal state is dominated by phononic carriers, accounting for roughly 60-70% of
the total conductivity. In going through T, the electrons form Cooper pairs which,
as seen in chapter 2, are not effective at scattering phonons. This results in an in-
crease in phonon mean-free path and a concomitant increase in thermal conductivity.
This is what happens in disordered alloys as shown in figure 2.8. In going to lower
temperature, the number of phonons decreases and as a consequence, a peak appears.

Yu et al. {110 obtain similar data except for a reverse anisotropy between x, and
Ky to that of Cohn et al. However, Yu and collaborators interpret their results in
terms of a purely electronic scenario. First, they argue that phononic scenarios, such
as described above, would predict an enhancement in the c-axis thermal conductivity
as well, which is not observed experimentally. Secondly, the quasiparticle scattering
rate has been assumed to be unaffected by the superconductivity, much like in the
BRT theory. On the other hand, the microwave conductivity measurements of Bonn

et al. {112] indicate a rapid suppression of the scattering rate below 7. and Yu et al.

! Note that this peak was also present in powders but much smaller in amplitude due to the disordered

. nature of the sample.
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Figure 4.3: High temperature thermal conductivity (a-axis) as a function of temperature for
Y Ba2(Cuy -:2n;)307-4 crystals with x=0, 0.6, 2 and 3% (after [113]). Notice the rapid drop in
the peak height with small zinc doping and the shifting of the peak to lower temperatures (after
'113))

base their electronic scenario on this observation. The reduced scattering leads to an
increased electronic mean-free path resulting in an increase in thermal conductivity.
At the same time, the number of quasiparticles decreases, as the electrons form pairs,
and the two competing effects result in a peak. Measurements of the thermal Hall
effect (discussed below) also attribute a large fraction of the peak to an electronic

scenario.

Figure 4.3 displays the recent thermal conductivity measurements at high tempe-
rature of Pu et al [113]. We emphasize that the measurements presented in chapter 7
were performed on the same crystals as that of Pu et al.. The motivation for their
zinc doping studies was to discriminate an electron-type scenario from a phonon-type
~cenario. Upon introducing small concentrations of impurities, the phonons should
not be affected and the peak below T, should stay qualitatively the same. On the
other hand, impurities will strongly limit the electronic mean-free path and the peak
should be strongly suppressed. The results of Pu et al. lie in between the two ex-
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tremal scenarios. In going from the pure sample to the 0.6%, the peak is reduced by a
factor of 1.7, while additional impurity concentration seem to have a smaller impact
on the overall magnitude of the conductivity. Hirschfeld and Putikka [50] provide an
explanation in terms of a phonon peak centered around 15 K and a peaked electronic

contribution strongly suppressed by the zinc impurities.
3. Thermal Hall effect or the Righi-Leduc effect

We now proceed to discuss the thermal Hall effect measurements of Krishana et
al. {114].

When a quasiparticle in a type II superconductor is incident on a pinned vortex,
the “handedness” of the superfluid velocity around the vortex core leads to an asym-
metric scattering i.e. the amplitude for scattering to the right is different from that to
the left. However in order to probe this asymmetry, it is desirable to avoid applying
an electric field in order to keep vortex motion to a minimum. This complication can
be circumvented by the use of a weak thermal gradient and sensing thermally the
deflected quasiparticles. This detected transverse thermal current is equivalent to a
thermal Hall effect (called the Righi-Leduc effect). Krishana et al. [114] used this
effect, with a field perpendicular to the planes, to separate the asymmetric quasi-
particle scattering from the symmetric phonon scattering on the vortices in order
to extract the quasiparticle contribution to the longitudinal thermal conductivity.
Furthermore, these authors show that the transverse thermal conductivity &, also
provides a measurement of the zero-field mean-free path of the in-plane quasiparticles.

Krishana et al. find that the Hall thermal conductivity in their twinned crystal
is hole-like and anomalously large. In inverting the thermal resistivity tensor, the
authors are able to calculate the electronic contribution to thermal conductivity in
the plane. They find the familiar peak, observed in longitudinal thermal conductivity,
centered around 40 K. This peak roughly amounts to one third of the total measured
thermal conductivity. In fitting their k., as a function of field for fixed temperatures,
they are able to extract a quasiparticle mean-free path £, which goes from ~90A
at T. up to 2500 A at 15 K. A value up to 6000 A has now been obtained in high-
quality detwinned crystals [115]. By comparing their results for {o with the scattering
rate deduced by Bonn et al. [116], Krishana et al. [114] deduce a Fermi velocity
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vF = 2 x 10° m/s. The authors conclude that their measurements imply that a
large fraction of the thermal conductivity peak below 7. arises from quasiparticle

excitation.



o

EXPERIMENTAL ASPECTS

5.1 General introduction

All measurements for this thesis were done using a brand new Oxford Kelvinox 300
dilution refrigerator. It was delivered in October 92, a month after my arrival at
McGill University. Such a cryostat can reach a temperature of 8 mK without heat load
as demonstrated using a nuclear orientation thermometer. The cryostat is equiped
with a 15 T superconducting magnet with a compensated region centered on the
bottom plate of the mixing chamber. Furthermore, it came with minimal wiring,
most of which was used for diagnostic sensors. A 24-pin connector was already wired
down to 4 K while a 26-pin connector was added. Furthermore, in collaboration
with B. Ellman, four coaxial cables for ultrasound measurements and two capillaries
for stress experiments were also added. Proper heat sinking was provided at all
of the cold stages of the refrigerator for all new wiring and tubing while careful
choice of materials (for the wiring) and diameter (for the capillaries and wiring) was
made in order to keep the heat load on the dilution refrigerator to a minimum. All
these improvements were started after the commissioning of the refrigerator by an
engineer from Oxford Instruments in January 1993 and completed later in the year.
In parallel, a preliminary design of the thermal conductivity setup was built and
tested at dilution temperatures leading to a first publication on UPt3 in 1994 [117].
The final design of the thermal conductivity setup was completed in 1994 while minor
improvements continued up until completion of the thesis (strain gauge heater in 1995,

new thermometer mount in 1996; see section 5.3).

A major problem that was encountered came from the radio transmitting anten-

nae on top of Mont-Royal in direct line of sight with our laboratory. The antennas
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generate high frequency electromagnetic waves (~100 MHz) which couple to cold
experimental devices via parasitic capacitance in the wires. Due to the low tempera-
tures and the high resistance of the thermometers (~ 20 k2), this parasitic power can
becotne significant and cause the thermometer to self-heat, leading to a bad reading
of temperature. This problem is made worse by the nature of the measurement: the
thermometers measuring the temperature gradient on the sample are isolated from the
outside world and have no way to dissipate this extra heat except through the sample
itself. In going to lower temperatures, other problems arise: (i) the resistance of the
thermometer increases exponentially causing even more Joule heating; (ii) boundary
resistances (or Kapitza resistance) can become dominant virtually isolating the ther-
mometers even from the sample itself and preventing it from dissipating this extra
heat and; (iii) the cooling power of the dilution refrigerator goes to zero at the base
temperature making it harder to extract this extra heat.

Use of low pass capacitive-inductive filters on all electrical lines and the building of
a Faraday cage were necessary. The cage consisted of a wooden frame with a double
layer of fine copper mesh. This cage rested on an aluminum plate and was used to
-urround the measuring electronics. The filters were low-pass capacitive-inductive
filters from Spectrum Control (part# 19F2456) with an attenuation of 20 dB (70 dB)
at 3 MHz (1 GHz). Before these improvements, thermal conductivity measurements
were reliable down only to approximately 150 mK. This range has now been extended
to below 50 mK for the best conducting samples to which good thermal contacts can

be made.

5.2 Introduction to measurements below 1 K

In view of the numerous publications on the principles of operation of the *He- ‘He
dilution refrigerator (see for example [118, 119]), only a brief description will be given
here. When a mixture of *‘He and 3He is cooled below 0.87 K, a phase separation takes
place. The concentrated phase of almost pure liquid 3He floats on top of the dilute
phase consisting of approximately 6% *He in superfluid *He. Due to its superfluid
properties and zero nuclear spin the *He is ’inert’ and the diluted 3He behaves as an

ideal gas. The *He is pumped out of the lower phase with a powerful roots blower.
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Due to the osmotic pressure, the *He atoms from the concentrated phase migrate

. across the phase boundary from the concentrated phase to the dilute phase. This
phenomenon is analogous to the evaporation of a liquid into a vapour phase and one
obtains cooling. In order to operate continuously, the *He has to be re-injected into
the mixing chamber. So as to prevent excessive heat inputs, the gas has to be liquefied
by putting it in thermal contact with a bath of pumped *He and pre-cooled via heat
exchangers before re-entering the mixing chamber.

Temperatures were measured by means of a calibrated germanium thermometer
from Lakeshore. This GR-200A-30 is calibrated from 50 mK up to 5 K. For lower
temperatures, a ruthenium oxide thick film resistor was used!. Temperature regu-
lation was done using the TS-530 temperature controller from RV-electronikka used
in conjunction with either an AVS-46 resistance bridge from the same company or
preferably with a LR-700 resistance bridge from Linear Research. All regulating ther-
mometers were well anchored on the bottom plate of the mixing chamber away from
the heater in the field compensated area of the magnet. Electrical current for the

magnet was supplied with the PS-120-10 power supply from Oxford Instruments.

5.3 Thermal conductivity: experimental details

The thermal conductivity was measured using a steady state method (see for exam-
ple [5]). Heat was supplied at one end of a parallepiped shaped sample and removed
at the other end. Two thermometers attached at two places along the length of the
sample were used to measure the temperature gradient. The thermal conductivity «
is given by :

HL

K= M_T (5-1)

where H is the rate at which the heat is supplied, L is the distance between the two
thermometers, A is the cross-sectional area of the sample and AT = Thoe — Teota is
the temperature gradient. In all our experiments, we kept AT/T ~5%.

This steady-state longitudinal heat-low method can be used if one assumes that

'It was calibrated against the germanium thermometer down to 50 mK. The thermometer displayed
a variable range hopping law which is known to hold down to 25 mK [120]. We have used this
. calibration only down to 40 mK.
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Figure 5.1: Schematic diagram of experimental apparatus for measuring thermal conductivity. Top:
Actual temperatures measured on the mount for a regulating temperature of 199 mK and a heater
power of 9.2 nW for a pure YBa;CuaO7_s5 sample.

essentially all of the heat supplied at the hot end travels through the sample to the
cold end. This assumption can fail due to bad thermal contacts resulting in losses
through the measuring electrical leads or supports for the thermometers and heater, or
in losses through radiation or conduction by residual gas molecules. Careful design of
the experimental setup was achieved such that all heat losses could be safely neglected
{see section 5.3.1). A schematic diagram of the thermal conductivity setup is shown

in figure 3.1.

In our setup. two kinds of heaters were used. The first kind consisted of a resistive
thin film deposited on a quartz transducer. We bought the transducer with one
side coated with gold (including a buffer layer of chromium) and on the other side
200 A of CoggZrs0 was deposited by Dr. R. Cochrane at Université de Montréal.
This film gave a resistance of about 100 §2 per square and is non-magnetic and non-
superconducting at least down to 50 mK [121]. Electrical contacts on the film were
made with 25 um niobium-titanium wire attached to the heater with silver epoxy
from Epotech. Thermal contact to the sample was achieved by wire-bonding several
(up to six) 50 um gold wires on the the gold side of the quartz transducer. The wire-
bonding was done at Ecole Polytechnique, Département de Génie Physique under
the supervision of A. Lecours and P. Ciuranu. The thin film heater was found to
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be temperature insensitive with negligible magnetoresistance in the temperature and
field ranges studied. On the down side, this kind of heater was time consuming to
make and the film was easily damaged by the vapors of the acid flux used to make
the soldered contacts on and around the sample. The second kind of heater consisted
in a strain gauge from Micro-Measurements. The gauge came encapsulated in a resin
with leads already attached. This heater was glued, using GE 7031 varnish to a thin
copper plate to which a 100 pm silver wire had previously been soldered with non-
superconducting solder from Oxford Instruments. As with the thin film resistor, the
gauge was found to be temperature and field insensitive. Because of its low cost and
its robustness, the strain gauge is now the preferred heater for thermal conductivity
measurements. Finally, the heater current, ranging from 0.1 to 20 A was provided

by a Keithley 224 constant current source.

The thermometers used consisted of 1 k2 ruthenium oxide thick films (room tem-
perature nominal value) that were given to us by S. Kreizmann of TRIUMF. These
thermometers are known to have an excellent sensitivity (see for example (120, 122])
at low temperatures. They were mounted in a similar way as the strain gauge heater.
They were glued with GE 7031 varnish to a thin copper plate to which a 100 pm sil-
ver wire had previously been soldered with non-superconducting solder. Four 25 ym
manganin wires (each 15 cm long coiled like a spring so as to save space) were soldered
to each thermometer for four-probe electrical measurement. Later on, a more refined
thermometer mount was designed: Copper wires were soldered to the ruthenium oxide
and then wound around the small cylindrical part of the thermometer mount to ensure
better thermalisation. Manganin wires were then used to connect to the measuring
electronics. This thermometer mount is bulkier (approximately 2.8 x 4.5 x 1.8 mm?® as
opposed to 3.1 x 2.7 x 0.5 mm?® for the plate) and more difficult to assemble but has
the advantage that the contacts on the thermometer are permanent. Repeated sol-
dering on the contact pads was found to be quite damaging to the thick film resistors.
The measurement of the temperatures T_ and T, was made using two SR850 lock-in
amplifiers from Stanford Research Systems. Each instrument sends a low frequency
(below 20 Hz) ac voltage. This voltage is converted into a current by means of a

2.2 MQ limiting resistor. The voltage drop across each thermometer is detected at
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T (K)

Regulated
temperature

Figure 5.2: Example of analysis performed in order to extract the thermal conductivity. The circles
(open for T_ and closed for T, ) represent the data points used to obtain the calibzation (solid lines).
In this example. the fridge temperature is regulated at 199 mK and a heater power of approximately
v nW s applied. The new values of the resistances for both thermometers (R_(Q) and R.(Q)),
+.th the temperature gradient on, are used to read off the temperature. The temperature gradient
1> then sunply the difference between these two temperatures while the sample temperature is the
average of the two. Typically, gadients around 5% of the stabilized temperature were used.

the excitation frequency and converted into a resistance. This procedure is repeated
at each germanium regulated temperature with and without the heat current on. One
therefore obtains an in-situ calibration of the thermometers (from the data at zero
heat gradient) and uses these calibrations to obtain the two temperatures T_ and T,
with the current on. An example of this analysis is presented in figure 5.2 for a pure
YBa,Cu3z07_s sample. We emphasize that the largest source of relative error comes
from this calibration. We therefore tried various fits over many temperature ranges
until the fit residuals became small yielding errors in the thermal conductivity of the

size of the dots.

Both heater and thermometers were mechanically supported by posts made of
Vespel from Dupont. The posts were 5.7 mm long with a small cross-sectional area of
approximately 0.3 x 0.3 mm? so as to prevent significant heat losses from conduction
(see section 5.3.1 and section A.2). The posts were cut with a diamond saw and
polished to the desired thickness. A platform, made from Ecobond 286 white epoxy,
was then shaped at one end so as to provide a flat surface to glue with GE 7031

varnish the copper mount of either a heater or a thermometer. The posts were then



5.3 Thermal conductivity: experimental details 87

glued to the mount using the same epoxy.

. In the case of UPt; samples, two types of contacts were made. Each thermometer
contact was made by wire-bonding four 50 pm gold wires. Two wires were attached
side by side to the sample while the remaining two were thermo-compressed on top.
The four wires were then soldered together at the other end with non-supeconducting
solder from Oxford Instruments and attached to the silver wire leading to the ther-
mometers. For the heat sink contact, the whole cross-sectional face of the sample
was soldered to a copper plate with non-superconducting solder. This plate was then
bolted with a brass screw to a mount in good thermal contact with the mixing cham-
ber of the dilution fridge. As to the other end of the sample, a 100 um silver wire
was soldered to it and thermally connected to the heater with non-superconducting
svider. This method of mounting enabled us to use the same contacts for measur-
ing thermal and electrical conductivity. In the case of YBa,Cu307_5 samples, the
contacts were made by R. Gagnon with diffused silver epoxy onto a 100 gm silver
wire for the current contacts while, for the voltage contacts, 50 ym silver wire were
used. As with the soldered or wire-bonded contacts, this type of contact gave very

. low thermal contact resistances! yielding linear temperature gradients.

3.3.1 Heat losses

As seen in the previous section, the steady-state longitudinal heat- low method can be
used if the heat losses to the outside world are minimal. Due to the low temperatures
(T < 1 K), heat losses through radiation are small and can safely be neglected (see
section A.l).

As to the conduction from residual gas, the only gas that can cause a problem is
helium since all other substances are solid at the temperatures in which experiments
are carried out. The problem with helium is that it can liquefy and form a superfluid
layer between different parts of the dilution refrigerator or even on the sample itself
and short out the temperature gradient. The only way to prevent this problem is
by pumping all helium exchange gas at 4 K for at least 12 hours. Experiments on
gold (see section 5.3.2) not only show that heat losses from experimental leads are

!The electrical resistance of these contacts was typically ~100 mf (~3.5 m{l) st room temperature

. (helium temperature).
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Figure 5.3: Schematic description of the thermal circuit for the thermal conductivity measurement
1see sectton 3.3.1).

negligible, but that the conduction from superfluid helium films can also be avoided.

Finally, we come to the problem of heat losses through the measuring electrical
leads or supports. A schematic thermal circuit of the possible paths for the heat
current is shown in figure 5.3. Each W; represents a thermal resistance while the
ground symbol represents the heat sink. The setup was designed such that the sum
W, + W3 + Wiampte + We was much less than W, and W], and W; (W;) was much
greater than W, (W]). Figure A.1 (in appendix A.2) gives the detail for each of the
W,. A detailed calculation of the heat losses in the worst case scenario is also done
in appendix A.2. Basically, we find that we can safely ignore the heat losses in our

experiments on UPt; and YBa;CuzO,_;.

3.3.2 Results with Au and the Wiedemann-Franz law

As discussed earlier in section 2.1.3, at low temperatures, the ratio of electronic ther-
mal conductivity over electrical conductivity is proportional to temperature. Verifi-
cation of the Wiedemann-Franz law on a metallic sample at low temperatures would
certainly demonstrate the validity of our thermal conductivity setup especially with
regards to Kapitza resistances (see appendix A.2). Given that the setup was designed
so that the electrical and thermal conductivity can be measured using the same sam-
ple contacts, this eliminates all uncertainty in the Lorenz number with regards to the
geometric factor.

In order to achieve this, measurements of both the thermal and electrical conduc-
tivity were carried on a gold wire. The geometry of the sample was chosen such that

its heat conductance would be comparable to the least conducting sample measured.
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Figure 5.4: Measured Lorenz number divided by Sommerfeld value for the Au sample as a function
of temperature.

The wire had a diameter of 25 um and a length of 1.31 cm (obtained from the room
temperature resistivity of 2.35 zQcm [123]) between the two thermometer (or voltage)
contacts. This sample was found to have a residual resistivity po of 0.042 pQcm. Using
the Wiedemann-Franz law, this geometry yields a thermal conductance at 100 mK of
2.2 x 107* mW/K which is comparable to 1.1 x 10™* mW/K found in YBa;Cu3zO7_s
but is much less than the 1.8 x 10~ mW/K found for UPt; at the lowest tempe-
rature achieved. The results for the Lorenz number, obtained in collaboration with
M. Chiao, B. Ellman and L. Taillefer and displayed in figure 5.4, are consistent with
L = (1.03 £ 0.03)L, from 100 mK up to 500 mK so that an agreement within 3%
is obtained, demonstrating that heat losses were at a minimum even for such a high
thermal resistance sample.

To conclude this experimental techniques chapter, we mention that besides the
results presented in this thesis, the thermal conductivity has been measured at dilu-
tion refrigerator temperatures on other systems as well, using the same experimental
setup. Results on UPd,Al; were obtained by Chiao et al. [124] and data on qua-
sicrystals were obtained by Legault et al. [125]. A total of three thermal conductivity
setups can now be operated simultaneously on our dilution refrigirator and allow
measurements in both magnetic field and zero field (in the compensated region of the

magnet).
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THE THERMAL CONDUCTIVITY OF UPT;

[n this chapter, our thermal conductivity results on UPt; will be presented. They
will be preceeded by a review of thermal conductivity results obtained on poly and

single-crystals of UPt;.

6.1 Experimental review

6.1.1 Previous thermal conductivity results on polycrystalline UPt,

Soon after the discovery of superconductivity in UPt;, many groups set forth to mea-
sure the thermal conductivity of polycrystalline samples (see [126, 127, 37, 128]). An
example is shown in figure 6.1 where we reproduce the data of Franse et al. Power
law dependences were observed and it was claimed that the gap had to have zeros
at certain points in k-space. However, due to the relatively poor crystal quality at
the time the thermal conductivity at low temperatures probably included a signifi-
cant phonon contribution. To illustrate this, we take a generic sample dimension of
| mm and make use of Kpn = Fcorvpnlpa With the phonon specific heat ¢, = BT®
(3 =20 JK~*m™3 [54]) and a phonon mean free path ({,s) of the size of the crystal
(see also section 6.3.1). The polycrystalline average phonon velocity is taken to be:
vph = 5, + 3ub, with each velocity calculated from equation 6.2 (see section 6.3.1)
and from the data of de Visser (see table 3.1 and reference [54]). The calculated
polycrystalline velocity is 1730 m/s. At 100 mK, the phonon contribution to x/T
amounts to 2.4 mW/K2%cm namely 84% of Ott et al. [126], more than 95% of the
data of Jaccard et al. [128] and Sulpice et al.’s data [37], and it amounts to 80% of
the thermal conductivity of Franse et al. {127]. On the other hand, as we discuss

below, a true 7 regime is never attained in these samples due to the large number
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Figure 6.1: Thermal conductivity of polycrystalline UPtg, left panel: high temperature region; right
panel: close-up of low temperature region for both the normal and superconducting state (see [127]).
The WF estimate in the left panel is obtained using the temperature dependence of the resistivity
on the same sample. Notice that at low temperature the agreement between the WF law estimate
and the measured thermal conductivity is very good.
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of quasiparticles that scatter the phonons even at 100 mK. Therefore, our estimate
is certainly an overestimate of the phonon contribution. We will show later that in
single crystals of high quality, even this upper bound for the phonon conduction oc-
cupies a much smaller fraction of the total thermal conductivity due to the enhanced

electronic mean-free paths.

Furthermore, all these authors, except Ott et al., conclude that their thermal
conductivity results obey a law of the form: 7 = k¢ + aI'. The range of validity
of such a law differs from one experiment to the next. xq is taken to be indicative
of a residual linear term. Although not mentioned in their paper, Ott et al find
a negative intercept for the residual thermal conductivity. When discussing single
crystals (see 6.1.2), we will see that such negative intercepts are not uncommon. This
only means that the fitted expression ceases to be valid at lower temperatures and
that the thermal conductivity levels off. The results of the fits are summarized in
table 6.1 and the results of Behnia et al., discussed in the next section, are included

for comparison.
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Table 6.1: Low temperature fits of the form § = xo +aT to previous thermal conductivity measure-
ments. The temperature range for the validity of the fit is also tabulated along with the references.
The results of Behnia et al. [129] on single crystals are included for comparison. These results are
discussed in section 6.1.2.

Ko a range of reference
i (mW/K?cm) (mW/K3cm) validity (mK)
| 0.55 20 35 < T <200 {128, 37]
; 0 32 85 < T < 150 [127]
-0.34 32 IB<T<T0 [126]
| 1.2 62 70 < T < 250 c-axis [129]
-0.7 55 70 < T < 250 b-axis [129]

6.1.2 Previous thermal conductivity results on single crystalline UPt;

Behnia et al. [130, 129], were the first to use thermal conductivity in UPt; to probe the
anisotropy of the superconducting phase. They made use of a whisker (c-axis needle)
and a b-axis cut single crystal for their measurement. As suggested by the residual
resistivity ratio 513—;..?—1{) = 290 (163) and by the ratio of inelastic to elastic terms in the
resistivity ﬁ = 1.9 (0.75) K~2 for the b (c)- axis sample, the two crystals did not have
the same quality. Their results are displayed in figure 6.2 for the thermal conductivity
over temperature as a function of temperature. By using the same procedure as above
with the velocities for a single crystal (see section 6.3.1), we estimate the phonon
thermal conductivity at 65 mK to be of the order of 3% of the total x !. This small
phonon conductivity is a direct consequence of the smallness of the crystals used in
their investigation as well as long mean-free paths.

Figure 6.3 displays the anisotropy in thermal conductivity for both directions of
the heat current normalized at 7. as a function of reduced temperature. The fact
that these authors made use of two crystals with different impurity concentrations
precluded any firm conclusion as to what type of gap structure was present in UPt;.
The slight increase in the ratio s./x; could even suggest an axial gap (see section 6.3.3)

even though most transport measurements pointed to the presence of a line node in

'These authors quote their sample dimensions [130); c-axis: 4 x 0.25 x 0.25 mm®, b-axis:

4 x 0.35 x 0.6 mm3. The smallest sample dimension was used for the phonon mean-free path.
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Figure 6.2: Data of Behnia et al. for thermal conductivity over temperature as a function of tempe-
rature on UPtg, for sample A with J || ¢ and for sample B with J || b. The solid lines are linear fits
to the low-temperature data (after [130]).

the basal plane (see for example [38]). The ambiguity and inconclusiveness of their
study prompted us to perform the same thermal conductivity measurement on one

single crystal along the b and c-axis.

6.2 Sample characteristics

A single crystal of cylindrical shape (20 mm length, 6 mm diameter) was grown by
L. Taillefer using Czochralski pulling in ultrahigh vacuum. Two sections (of length
2 mm) separated by 10 mm were cut out and then annealed at 1200 °C for six
days. The specific heat of both sections was measured by Bogenberger and Lohneysen
(131] between 0.15 and 1.0 K and found to be identical (within 1%), thus confirming
homogeneity (the result for one section is shown in figure 6.4). The two well-separated
transitions are complete at T} = 0.50 K and T, = 0.44 K, with respective widths of
25 and 20 mK (see inset of figure 6.4). Out of one section, two small and adjacent
rectangular pieces were spark cut, each with dimensions 2.0 x 0.7 x 0.7 mm3. The

length of one is parallel to the c-axis and that of the other to the b-axis. The high
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Figure 6.3: Data of Behnia et al. for thermal conductivity over temperature normalized at T._ as a
function of temperature. Notice the slight anisotropy between the two curves (after [130]).

purity is attested to by the low residual resistivity or conversely the high residual
resistivity ratio RRR=p(300K)/po=650 and A/pp=2.7 K~2 for our c-axis crystal.
These values are to be compared with results on the best bulk single crystals of
UPt; quoted in the literature: A/po=3.1 K-? and RRR=882 for Huxley et al. (132]
and 4/pg=2.7 K=2 and RRR=625 for Shivaram et al. [133]. From figure 6.4, a
linear extrapolation to T = 0 yields a residual linear term of vy = 18% 4x with
yn=440 mJK2mol~!. We will come back to a discussion of residual normal fluid at
T = 0 later on in this chapter.

The electrical resistivity, showing the superconducting transition for the b-axis
sample, is displayed in figure 6.5. The resistivity obeys the Fermi liquid behav-
ior p(T) = po + AT? perfectly below 0.8 K, with po = 0.61 (0.23) pQlcm and
A = 1.60 (0.59) pQcmK~2 for J || b (J || é). The anisotropy in both elastic and in-
elastic components is virtually the same: 2.65 and 2.71, respectively, and py/p. = 2.7
to within 1% from 0.5 to 0.8 K giving a temperature independant anisotropy for the

electrical resistivity.

6.3 Thermal conductivity results

The two components of the thermal conductivity over temperature, x;,/T and %./T,

are displayed in figure 6.6 as a function of temperature.
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Figure 6.4: Specific heat over temperature as a function of temperature. Above T} = 0.5 K, the
specific heat is linear yielding a vy = 0.44 J/molK? while a finite intercept of 7o = 0.08 J/molK? is
observed at T = 0. Inset: Close up of the double superconducting transition region. This specific
heat data can clearly resolve both T} and 7. This data was collected by B. Bogenberger and
H. v. Lohneysen [131]

Before going further in the discussion of the thermal conductivity results, let us
show that this measurement is a privileged probe in UPt; in the sense that the
phonons can be neglected over the whole temperature range thereby making the
interpretation of the results much more straightforward. Such simplifications will not

be possible in the case of YBa;CuzO7_;.

6.3.1 Phonons

In chapter 2 we discussed the possibility that, upon entering the superconducting
state, the phonon contribution, even if it was negligible in the normal state, can
become significant at the lowest temperatures. In this section it will be shown that
the phonon contribution can be neglected in both the normal and superconducting

states in UPt;.

In the superconducting state, as seen in sections 6.1.1 and 6.1.2, an estimate of
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Figure 6.5: Resistivity as a function of temperature for the b-axis sample. Inset: Resistivity as a
function of the square of the temperature showing the Fermi liquid behavior: p = 0.61 + 1.60T2. A
similar plot for the c-axis sample yields: p = 0.23 + 0.59T3

the maximum phonon contribution is obtained using the formula:

1
Kph = 3CpnUpnlon (6.1)

where c,n = BT? is the low-temperature phonon specific heat, vy, is the average
sound velocity, and {,; is the phonon mean-free path. The maximum contribution
will be attained when ¢,, takes on its maximum value, namely the size of the crystal,
equal to 0.7 mm. The sound velocity needs to be averaged over the longitudinal and

transverse modes using the following equation [5]:
vpn = vi(28% +1)/(28* + 1) (6.2)

where s = v;/v,, v; and v, are, respectively, the longitudinal and transverse phonon
velocities. Using the published sound velocities from de Visser et al. [54] (or refer to
table 3.1), von = 1880 (1440) m/s for the b (c) axis and their value of 8 = 20 JK~*m ™

the phonon heat conduction can be estimated. The maximum phonon contribution to
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Figure 6.6: Thermal conductivity over temperature of UPts for a heat current along two directions
of the hexagonal crystal lattice: J || & (open circles) and J || 4 (solid circles). The dashed lines are a
fit to the normal state and agree very well with the thermal conductivity data obtained by applying
a field above H.2(0) and correcting for the known magnetoresistance.

the thermal conductivity in the superconducting state will be x,,=85 (67)T®* mW /Kcm
for the b (¢) axis. For T < 150 mK, this represents at most 15% (6%) of our x;
(k). Recall that in the polycrystals, this fraction could be as large as 80-95%. As
emphasized above, our phonon contribution is a smaller fraction of the total thermal
conductivity only because of the enhanced electronic mean-free paths (i.e. lower resid-
ual resistivity) due to a lower density of defects. In absolute numbers, the thermal
conductivity of our crystal (Kawg = 3%c + 2#s) is more than four times larger than
that of Franse et al. [127] at T..

The phonon contribution in the normal state near 7. can be estimated from the
high-temperature thermal conductivity data of Franse et al. [127] shown in figure 6.1.
Using the Wiedemann-Franz law to estimate the electronic heat conduction, one can
extract from their results £, =~ 0.5k=4 mWK lcm™! at 5 K. The T? dependence

due to electron scattering (the dominant process below 10 K) then yields sp4(T:) =
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Figure 6.7: Thermal conductivity divided by temperature vs reduced temperature for the two direc-
tions of heat current. x5/ T and x./T are both normalized to unity at T = 0.5 K. Note the additional

anisotropy appearing below T._ (arrow).

0.04 mW/Kcm, namely 0.4% of our measured x3(7.). We can therefore conclude that
heat conduction by phonons can be neglected both in the normal and superconducting

state of UPts.

6.3.2 Normal state properties

We have seen in chapter 3 that the normal state of UPt; has has all the character-
istics of a Fermi liquid: there is a Fermi surface and amongst other properties, the
specific heat is linear in temperature with a coefficient v (C = qnT') that is huge.
[t is interesting to ask whether the heavy electrons, accessed through the linear term
in the specific heat, are also the carriers of heat. We make use of x./T = %‘YN‘UF‘(;
with v = 440 mJK2mol™! (see section 6.2) and vrp ~5000 m/s'. We also use the
scattering rate estimated in section 3.1.2, i.e. € = vp/Ty with [ = 1 x 10%% 571,

We find x./T=64 mW/K?cm. The measured values are xx/T = Lgo/po = 40.0

'This value is an average over various orbits in the b-c plane [65).
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(106) mW /K?cm for the b (c)-axis. The estimated value based on an average Fermi
velocity for the b-c plane lies between the measured values for the b and c-axis.
This excellent agreement confirms the Fermi liquid picture of heavy and itinerant
quasiparticles in UPt;.

As mentioned earlier, the estimate of I'o will be an important input in the theories
to be discussed in this chapter. For the c-axis sample, we have [y = 1.0 x 109 s~1.
In terms of the critical temperature, k:—rn = 0.15. As a result, Fledderjohann and
Hirschfeld use values® of the order 0.1 in fitting our thermal conductivity results [51].
This result is substantially larger than that used in previous theoretical treatments
42. 134, 47.

The normal state behavior obeys sky(T)/T = (a + bT?)™!, with a= 0.025
(0.009) cmK2mW™! and b= 0.100 (0.037) cm mW~! for J || b (J || &). It is charac-
terized by strong quasiparticle-quasiparticle inelastic scattering as evidenced by the
importance of the b7 term i.e. it is as large as the elastic impurity component at 7T.:
a = bT?. From figure 6.7, we see that the anisotropy is independent of temperature
above T, a feature more clearly seen in figure 6.9 when we plot the ratio x./x; and
Ke/Kp=2.8 up to 0.8 K.

As discussed in section 6.2, we emphasize that the anisotropy in the electrical resis-
tivity is also independent of temperature with a similar ratio ps/p.=2.7 within 1% from
0.5 to 0.8 K. This implies that the Lorenz number, although strongly temperature-
dependent, is isotropic. By applying a magnetic field of 3 T (i.e. larger than H_,(0))
and correcting for the known magnetoresistance (see section 3.1.2), the normal state
thermal conductivity was measured down to 0.1 K. The Wiedemann-Franz law was
obeyed at the lowest temperatures i.e. the measured Lorenz number L = xp/T yielded
L(0.1 K) = 0.99L, where Lo = 2.45 x 1078 WQ/K? is the Sommerfeld value. Upon
going to higher temperatures, the Lorenz number was found to decrease as a result
of electron-electron scattering. At 800 mK, it reached L(0.8 K) = 0.75L,.

The picture that emerges for the normal state is then surprisingly simple. The
anisotropy is the same for both charge and energy transport, and for impurity and

electron scattering: % = % = 2.7. This is close to the average Fermi surface

!They define ' = 1/27.
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Figure 6.8: Comparison of thermal conductivity of UPts b-axis normalized at T (solid circles)
with various BCS gaps (solid lines): from left to right %, 3, 1 and 2 times the standard BCS value
A(0) = 1.76k T

anisotropy é:—g% = 2.1 as calculated from the band structure [66]. This seems to
indicate that even though the Fermi surface of UPt3 is fairly complicated with its
five sheets, it is possible to model transport properties with a single ellipsoidal Fermi
surface of mass ratio m, = 7t = 2.7. It is interesting to note that the ratio of the

slope of H.y(0) at T.. for both directions is: FAlE) = 1.61 = /2.6 [135], which agrees

closely with the standard relation for an s-wave BCS superconductor:

Bl e) _
L) = V™ (8:3)

This picture of simple mass anisotropy implies s-wave scattering i.e. that both
relaxation times T.igutic a0d Tinelaetic are isotropic. This in itself is a surprising result:
one would expect an isotropic mean-free path for elastic scattering, namely £, =
UFTelastic and an anisotropic inelastic electron-electron scattering due to the complex

Fermi surface.

6.3.3 Unconventional nature of the superconductivity in UPt;

Figure 6.8 shows a comparison of our UPt; data with the electronic contribution to
thermal conductivity as calculated from BRT [16] using a multiple of the conventional
gap parameter A(0) = 1.76kpT,. For the standard BCS gap, the thermal conductivity
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calculated for impurity scattering only, normalized by the normal state conductivity,
increases very slowly at low temperature reaching only 4% of its value at 7. by
T = T./4. This is what is observed in pure Al [136], and similarly for other pure
superconductors with low T./6p: 3% in Nb (137}, 2%-3% in Sn [138], and 1%-2%
in Zn and Cd {23]. On the other hand, in UPt3, x/xx has already risen to 27%
of its normal state value at T./4 (J || b ). More than any power law dependence,
this order-of-magnitude difference in the rate of thermal excitation of quasiparticles
is compelling evidence for nodes in the gap. Of course, this is reflected in other

properties; for the electronic specific heat, C., /7. = 4—10- at T./4 in conventional

superconductors [136], while it equals ; in UPt; (see figure 6.4). Furthermore, as
displayed in figure 6.8, a BCS gap of a different amplitude does not qualitatively
reproduce the behavior observed in UPt; either rising too fast at low temperature
and saturating too early or rising too slowly and displaying an exponential behavior

over a wide range of temperature.

Our main result is the additional anisotropy which develops in the superconducting
state, as seen in figure 6.7. The large, temperature-independent anisotropy of the
normal state is considerably reduced at low temperature. This is made evident in
figure 6.9, where the ratio x.(T')/xs(T) is plotted as a function of temperature. Such
a change can only be due to gap anisotropy. A conventional s-wave gap A(fé), although
finite everywhere on the Fermi surface, can be smaller for certain E directions and
thus lead to an anisotropy in the electronic thermal conductivity . below T,. This is
what happens in gallium [24] (as discussed in section 2.2.3) where A(K) is smaller for
k along the hexagonal axis. Despite this anisotropy, the thermal conductivity ratio
for the two directions has to go to zero (or to infinity depending on which gap is
smaller) due to the exponential nature of the thermal conductivity in both directions.
An unconventional gap, however, which actually vanishes for certain % directions,
will not only lead to anisotropy and to a rapid increase in x., but can lead to a finite
thermal conductivity ratio for two directions with different nodal structures. This is
what we observe in figure 6.9: the ratio x./x, extrapolates to a finite value at T=0.
This definitively excludes an anisotropic s-wave gap. We will come back to discuss
this in more details below. We conclude that the finite ratio and the sheer magnitude



102 6 THE THERMAL CONDUCTIVITY OF UPT;

3 T LT
-_—_ — — —_ — = = u'o".o'—.-.c“.
2.6 — .o. A “
!-Q 2.2 - ,. 91 5 ; —
* ¥ ? i
T~ - [ ] -~ " 1 -
v’ 18- 5 X A
i ' .§ :
=
1.4 —® S n
‘ g ]
1 ; i
0 0.2 0.4 0.6 0.8

T (K)

Figure 6.9: Anisotropy ratio vs temperature. The constant anisotropy of the normal state drops
below T._ (arrow) excluding the possibility of an axial gap for phase B. Inset: x./x3 normalised
at T._ vs t = T/T._; data (circles), and theoretical curves for three gap structures: axial (dotted),
polar (dashed) and d-wave (solid) (after [45]). Note that the feature at 0.2 K is probably not real
and arises from the linear interpolation to our experimental data which enabled us to deduce the
ratio.

of x. clearly distinguishes UPt; from conventional superconductors.

Now that we can exclude a conventional s-wave gap, the position of the nodes is the
question of interest. A careful distinction must be made between phase A (from T._
to T..) and phase B (below T._). Inspection of the data (see figure 6.7) reveals little
change in either x; or x. with the appearance of phase A. This unusual insensitivity
15 suggestive of a nodal structure isotropic in the b-c plane, such as a line in that
plane. Such a line is consistent with both the E,, and E;; models [36] but modeling
of the double superconducting transition has proven difficult for theorists and has
not yet been carried out. It would necessitate the calculations to be performed for
orthorhombic symmetry with two different gaps and appropriate domain averaging
136]. Therefore, the usual approach is to ignore this symmetry breaking and normalize
the thermal conductivities at T._ [51, 36, 52] when looking at phase B.
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As first introduced by Taillefer et al. [139], we define three temperature regimes: (i)
. the diagnostic regime, (i) the elastic regime and, (iii) the gapless regime. The truly
diagnostic regime is at low temperatures where excited quasiparticles have wavectors
near the nodes in the gap, and thermal properties are governed by the topology of the
gap about the nodes. As argued by Graf et al. [52], only a knowledge of the asymptotic
topology of the gap at the nodes is needed, in which case the complicated details of
the Fermi surface are unimportant and it can be approximated by an ellipsoid with
uniaxial symmetry about the c-axis and anisotropy governed by the anisotropy in
the mass tensor'. In this context, the gap will be a linear combination of ellipsoidal
harmonics Y.y each of which vanishes at certain values of ¢ (except the s-wave gap
Yo0). The nodes can therefore be points at the poles (# = 0°), a line around the equator
(8 = 90°), or two lines above and below the equator (6 = 90° £ 23° for a mass ratio of
2.7). The five lowest harmonics are plotted in figure 6.10 while table 6.2,taken from
[36], gives the functional form and the thermal conductivity ratio at T = 0 for some
harmonics up to L=5 and M=4. We define the diagnostic regime in the following way:
consider a gap with a linear point node at § = 0 (such as the axial or hybrid I gaps):
A(8) = A(T = 0)sin 6 ~ A(0)8. The asymptotic topology is obtained for & such that
. sin § >~ 6, namely for §520°. Thermally excited quasiparticles will have wavevectors
predominently in the solid angle defined by § < 20° when the temperature is such
that kgT ~ A(20°). Making use of A(T = 0) ~ kgT., we get that the diagnostic
regime is for T/7.50.3.
The elastic regime can be defined from our normal state thermal conductivity. We
require a > bT?; taking bT?/a <10%, we get the elastic regime when T/7. < 0.3.
Finally, in a self-consistent treatment, impurities lead to a broadening of the nodes in
the gap of unconventional superconductors, giving rise to a gapless regime defined by
kgT < 2hT [36, 51, 140]. In this regime, the density of excited quasiparticles has a
modified energy dependence such that the topology of the gap near the nodes can no
longer be accessed by looking at temperature dependence of physical properties. In

!We note that calculations with Fermi-surface harmonics has been performed [36]. The authors find
that these functions have a large number of nodes which are unlikely to arise out of any microscopic
gap equation. Norman and Hirschfeld [36] are unable to fit our experimental data using such

harmonics.
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section 6.3.4, we will see that theories can account for our data if EZFT = 0.05 or less.
This means that in our crystal the gapless regime would be below 0.1T, i.e. below

our lowest data point.

In conclusion, by focussing on data between 0.1 and 0.37. (namely the diagnostic
regime), we avoid all the complications arising from gaplessness (at lower temper-
atures) and inelastic scattering (at higher temperatures) and a direct comparison
with theories will prove very powerful in determining the full symmetry of the order

parameter.

Table 6.2: x.(0)/x3(0} in the clean limit for several ellipsoidal harmonics Yz gap fanctions for
an isotropic mass ratio. The Y3, and Y3; harmonics have E;, symmetry and the Y33 and Y5; have
E3y symmetry (after [36]). The roman numeral following the gap name refers to the k-dependence
near the node for 8§ = 0. Note also that the ratio of 1 for the s-wave gap is relevant for a perfectly
isotropic gap. In the presence of anisotropy, this ratio goes to zero if xp>x., or to oo if Kp<xe.
For ellipsoidal harmonics, the quantity v2, which is unity for spherical harmonics, is equal to r? =
cos3(8) + "—::sinz(a) where m, is the mass ratio.

LM Form k:(0)/x5(0) name
| 00 r? 1 s-wave
£ 10 cos(8) 0 polar
1 sin(0) 0 axial I
20 3sin?(4) — r? 1 tropical
21 sin(8) cos(6) 0 hybrid I
|22 sin?(9) oo axial II
30 cos(8)[5 cos?(6) — 3r?] 6/7 -
31 sin(8)[5 cos?(8) — r?] 1/2 -
32 sin2(6) cos(6) 1 hybrid IT
33 sin®(9) oo axial ITT
| 41 sin(8)[7 cos®(8) — 3 cos(6)r?] 0.647 -
| 52 sin?(6)[3cos3(8) — cos(f)r?]  0.744 -
. 54 sin*(8) cos(8) oo hybrid IV
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Figure 6.10: Uniaxial gaps vs polar angle 8. Left panel: five lowest ellipsoidal harmonics: anisotropic
s-wave, polar, axial, hybrid and tropical. Right panel: two hybrid gaps consistent with Ey4 and E3y
symmetry: Y3, — 0.15Ys2 and Y33 + 0.25Y5; (after [36]). Note the linear k-dependence of the Ey,
gap near ¥ = 0 while the E;, has a quadratic k-dependence.

6.3.4 Comparison with theory

In contrast with the isotropic phase A, the anisotropy x./xs, plotted in the right
panel of figure 6.9, starts to drop with the onset of phase B at 7._. This may be
an indication of a different nodal structure in the gap of phases A and B. In order
to use our results to identify the gap structure in phase B, we adopt a chronological
approach and start by comparing our results with the early calculations of thermal
conductivity of Hirschfeld et al. [134] and Arfi et al. [45, 47] and work our way towards
more recent calculations. We have already discussed in detail the calculations of Arfi
et al. [45, 47] and we compare our measurements with their calculations. As we
have seen in section 2.3.2, these authors calculated x;(T) and x.(T) for three simple
gap structures assuming resonant impurity scattering: A(k) = Apnae(T') cos 8 (polar),
Amaz(T)e sin 6 (axial), and 2Amq2(T)e* sin 6 cos 8 (hybrid I or d-wave). In the inset
of figure 6.9, the results of Arfi et al. [45] are shown along with our data for the ratio
of x./Ks in the B-phase (i.e. k./x;, normalized at T._). The fact that the ratio x./xs
drops allows us to discard unambiguously the possibility of an axial gap for phase B
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(see table 6.2). This immediately eliminates the axial E,; and Ej, (see table 2.3) as
candidate representations for the order parameter in the "2D theory” for the phase
diagram of UPt; {81, 82, 80, 141, 31]. This decrease suggests that there are more
thermally excited quasiparticles with velocities along the b-axis than along the c-
axis. This could either result from a finite gap being larger along c than along b
(anisotropic s-wave), from the presence of nodes in the gap along the b-axis in the
absence of any along the c-axis (polar gap), or from the presence of nodes along both
axes (hybrid gap) provided the nodal structure is such that more quasiparticles have
i . b

As displayed in figure 6.9, another striking finding is that the ratio does not go
tu zero as T—0. Instead, it extrapolates to a large finite value (around half that of
the normal state). This definitively excludes a polar gap, which gives x./x;—0 as
T—0. as a result of the clear difference between excitation of quasiparticles with ¥ || ¢
\across a finite gap) and with 7 || b (in the vicinity of a line node) (see table 6.2).
We can also exclude the s-wave gap with A. > A, which must go to zero. We
therefore conclude that the gap of phase B in UPt; must have nodes along the c-
axis. With the possible exception of recent studies of point-contact spectroscopy
{101, 100], no previous experiment could discriminate between a polar gap and a
hybrid gap [56]. This leaves the tropical gap, which does not have nodes along the
c-axis but still can yield a finite ratio, and the hybrid gaps (refer to table 6.2), as
well as various combinations of the three basic nodal elements. Of particular interest
are the two lowest hybrid gaps (~ sin" @ cos §, n=1,2), plotted in figure 6.10, because
they correspond to two of the states most often postulated for phase B [57, 59]. They
belong respectively to the E,, and E,, representation and their overall structures
are very similar except near the poles, where the gap opens up linearly in E,, and
quadratically in E,,. No experiment to date has been able to discriminate between

these two proposed gap structures.
1. Spherical Fermi surface: the calculations of Fledderjohann and Hirschfeld

The discovery of a finite thermal conductivity ratio x./x; as T — 0 has prompted
theorists to perform detailed calculations for both the E;, and E,, symmetries (see
for example (36, 52, 51]). We start by first discussing the results of Fledderjohann
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Figure 6.11: Behavior of the anisotropy ratio x./x; versus reduced temperature and normaligzed to
1 at T._. Our preliminary data (points) are compared with the calculations of Fledderjohann and
Hirschfeld [51] for the three indicated gaps with I'i=0.17.. Note the isotropic result for a hybrid II
gap of E3, symmetry.

and Hirschfeld [51]. These authors applied the theory of heat conduction in a weak-
coupling BCS superconductor [142] assuming unconventional candidate order param-
eters of the type polar (i.e. Yi0), Eyg (i.e. ¥2,) and E,, (i.e. Y3;). Their main focus

was on the ratio x./x.

In their self-consistent treatment, they use a spherical Fermi surface and include
the inelastic scattering which we know to be important in these samples (above 0.3T;).
Their result is displayed in figure 6.11 where it is seen that the E,, state yields an
isotropic ratio, t.e. K.(T)/%s(T) = 1. One can justify this result from the fact that
the number of thermally excited quasiparticles is the same for a quadratic point node
as it is for a line (see section 2.3.2). We note that the F,, state appears to reproduce
(at least qualitatively) the behavior of the ratio and of the anisotropy. We will now
see how inclusion of our later data [143] at lower temperatures and the fact that the

Fermi surface is not spherical favors the E,, very strongly over the E,,.
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2. Elhpsoidal harmonics: the calculations of Norman and Hirschfeld

To consider the possible effect of the Fermi surface, Norman and Hirschfeld [36]
extended the treatment of Fledderjohann and Hirschfeld [51] by considering an ellip-
soidal Fermi surface and linear combinations of gap functions represented by ellip-
soidal harmonics up to L = 5. Some of the harmonics used are given in table 6.2.
Norman and Hirschfeld also calculated thermal conductivity with Fermi-surface har-
monics and tight-binding basis functions which should in principle be more realistic.
However, these should only make a difference above the asymptotic (or diagnostic)
regime; these calculations will not be discussed here. The ellipsoidal harmonics ap-
proach is exactly equivalent to that of Graf et al. [52]. Norman and Hirschfeld find
that harmonics with L=M all have axial gaps i.e. Y1 = sin” § and therefore the
ratio x./k; always diverges. Functions with M=0 are all found to possess only line
nodes. These lines are not necessarily in the basal plane (as for the polar gap Yjo)
but can be at a different “latitude” (as for the tropical gap Y39 which has two lines at
¢ = 90° =23°). Figure 6.12 displays the thermal conductivity ratio x./x; as a function
of reduced temperature for all the harmonics up to L=5 calculated by Norman and

Hirschfeld.

The authors note that none of the pure harmonics provides a good fit to the
experimental data. They therefore investigated mixed solutions in which mixing of
the higher harmonic Y;; (Y52) with the lowest harmonic Y;; (Y32) is included for the
Eig (E2.) symmetry. As we saw in equations 2.50 and 2.49 of chapter 2, the gap is
in general a linear combination of harmonics (spherical or ellipsoidal). Furthermore,
such a linear combinations can also be multiplied by any function of 4;, symmetry
(t.e. s-wave) such that the overall symmetry of the state is preserved. The nodal
structure of the best fit for both E,; and E,, symmetries is displayed in the right
panel of figure 6.10 while figure 6.13 shows the resulting thermal conductivity and
anisotropy ratio. The temperature dependence of x;/T is well reproduced by both
gap symmetries, even though there is no indication of a residual linear term at T=0
in the data such as predicted by the I'¢=0.057, used in the calculation. This good
agreement between the E;;, and E,, is not surprising as both symmetries have the

same nodal structure in this direction. This is not the case for the c-axis, the direction
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Figure 6.12: Normalized x./xp as a function of reduced temperature for various harmonics up to
L=5 for ellipsoidal harmonics with a mass tensor anisotropy of 2.8. The curves are labeled by L,
M. The scattering rate [ is 0.17¢ in the unitary limit with phenomenological inelastic scattering
included (after {36]).

along which the gaps differ. A better agreement is obtained with the E,, curve. The
. difference in the two gaps is dramatically brought out by looking at the ratio x./xs.
The data is almost flat and extrapolates to a value of 0.4-0.5 at T=0, as also seen
in the recent study by Huxley et al. {132], a feature which the F,, gap can easily
reproduce, irrespective of I'y. On the other hand, the F;, gap above the gapless
regime is qualitatively different, being characterized by a smooth extrapolation to
zero. If the gapless regime is pushed to even lower temperature by reducing Iy (as
seems to be necessary for agreement at the lowest temperatures for x/T'), it does
eventually go to zero [36, 51}. We can therefore conclude that the anisotropy of heat
conduction favors a hybrid gap of E,, symmetry® over one of E;, symmetry for phase
B of UPt,.
Recently, we became aware of very low temperature (down to 15 mK) thermal
conductivity data on UPt; by Suderow et al. [144]. These authors find that 2];'_1% 2=

0.5%. The same limit for the c-axis yields zero intercept. These very low upper

!Recall that the A3, gap within weak spin-orbit coupling posseses the same node topology, namely
. quadratic points at the poles and a line in the basal plane.
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Figure 6.13: x,/T (left panel) and x./k; (right panel) as a function of reduced temperature for
mixed harmonics on an ellipsoid with mass anisotropy of 2.8. In the left panel, the solid (open)
circles are for data along the b (¢)-axis while the solid (dashed) lines are the theoretical results for
the E3, (E14) gap which correspond to Y33 — 0.2Y5; (Y3; — 0.15Y%;) (after [36]). In the right panel,
hybrid I (hybrid II) refers to E1g (Eay).

bounds on a residual linear term, in perfect agreement with our own data, are difficult
to reconcile with values of I'4=0.05-0.1T, in the calculations but are more compatible
with a value like 0.017,, namely a factor 20 smaller than what was first estimated by
Fledderjohann and Hirschfeld [51] from our normal state thermal conductivity.

3. The universal regime and normal carriers at T = 0

Graf et al. 152, 49! and Norman and Hirschfeld [36] point out that the thermal con-
ductivity ratio at T=0, t.e. in the gapless regime, is universal in the case of the
E;. gap structure while for E,, this ratio depends on impurity concentration (i.e.
on [p). In this gapless regime, a new energy scale, v corresponding to the width
of the impurity-induced band, develops and can alter the excitation spectrum near
the nodes on the Fermi surface. Instead of removing a node, as would be the case
in an extreme case of anisotropic s-wave, the impurities can create little regions of
normal metal on the Fermi surface leading to a broadening of the nodes. In order to

distinguish between the E,, and E;; gap in that regime, careful thermal conductivity
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measurements on crystals with various impurity concentrations would be required at
very low temperature. Such studies are not yet available in UPt; but the same kind
of universal regime can also be investigated in YBa;Cu3O7_s [49]. Our zinc doping

studies on YBa,;Cu3O7_; presented in chapter 7 concentrate specifically on this issue.
4. An alternative approach: calculations of Moreno and Coleman

Recently, Moreno and Coleman [145] presented a new approach for calculating the
thermal currents in a highly-correlated system. These authors show that the ther-
mal conductivity, like charge conduction, can be regarded as a boundary condition
response which is computed as a response to a fictitious gauge field. The authors are
not able to reliably reproduce our thermal conductivity results for a polar gap with
realistic values of Ag/er but their approach would seem more promising in the case
of the heavy-fermion superconductor UBe,3 in which the superconductivity develops
before a Fermi liquid regime has been established (i.e. a large A/ep ratio) and where
a line node has been suggested to explain NMR measurements [146]. Before ruling
out this approach for UPt3, calculations for the hybrid I and hybrid II gap structures

are needed.

6.4 Conclusion

I[n this chapter, we have presented thermal conductivity results on one high-quality
single crystal of UPt;. This is the first conclusive study of anisotropy of thermal
conductivity on a heavy fermion superconductor. We conclude that any residual
linear term is small (less than 2-3% of the normal state) and that our results are
consistent with a scattering rate Iy ~0.05T, or less. Such a small scattering rate
implies that our results are above the gapless regime and squarely in the diagnostic
regime where the data has the power to distinguish between different gap topologies.
The main result of our study is the finite ratio x./xs as T — 0. This places severe
constraints on the gap structure and allows us to conclude that the gap vanishes at
the poles with a quadratic k-dependence as well as along a line of zero in the basal
plane, favoring a hybrid II gap structure such as that proposed for the E,, scenario

(with strong spin-orbit coupling) of Sauls {31] or the Aj,, model (with weak spin-orbit
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coupling) of Machida et al. [83]. We emphasize that ours is the first experimental
result that distinguishes between E,; and E,, symmetries, two of the most popular

representations for the order parameter.
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The importance of resonant impurity scattering in the cuprates was only realized
recently. In this sense, identical theoretical approaches, as those used in UPt3, may
not be as “mature” and detailed comparisons as those made in chapter 6 will not
be possible. Furthermore, there are not many detailed experimental verifications of
those theories. In this context, our new results on high-quality untwinned single
crystals will certainly contribute to the understanding of transport properties in the
high-T.'s. We start off this chapter with a review of selected thermal conductiv-
ity experiments on sintered, twinned and untwinned YBa,Cu3O+_s samples at low
temperatures. We then present our low temperature thermal conductivity results on
untwinned YBa,Cu3O;_s. Using a similar approach as with UPt3, we will determine
the upper bound for the phonon contribution and discuss the possibility of tunnel-
ing states as the dominant scattering mechanism. We also discuss the “standard”
analysis, namely s = aT + bT? frequently used in the literature for interpreting ther-
mal conductivity in YBa;Cu3O7_s. From fits to conventional thermal conductivity of
phonons with various scattering mechanisms, we will show that an electronic linear
term is necessary to account for our data. A discussion of possible specular reflec-
tions for phonons is also included as a means of accounting for the large 7° term that
arises from a mixed (phonons + electrons) approach. We then proceed to discuss our
measurements in zinc doped a-axis YBa;Cu3zO7_; samples. Discussion with regards
to a residual linear term at zero temperature and the possibility of a universal regime

will be provided in direct comparison with the paper by Graf et al. [49].
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7.1 Previous thermal conductivity at low temperature

7.1.1 Results on powdered samples

The earliest papers on sintered samples established the general trend in the ther-
mal conductivity of YBa,Cu3zO7_s: a dominant phonon contribution and significant
phonon-electron scattering. Subsequent experiments confirmed this behaviour and ex-
plored the effects of the role of the microstructure, the effect of oxygen stoichiometry,
changes resulting from neutron irradiation, and the very low temperature dependence
of the thermal conductivity. In this section, we review only the latter. For a complete
review on powdered high-7,. and early results on twinned single crystals, the reader

is referred to the extensive review by Uher [109].

In the dilution refrigerator, temperatures can be varied roughly from 5 x 10~ up
to 1072 of T.. In this temperature range, the thermal conductivity of high-7. material
is expected to be dominated by phonons i.e. nearly all electronic carriers should have
condensed into the superconducting ground state. In a first measurement, Gottwick
et al. {147] were able to fit their data remarkably well to x(T) = aT + bT® with
a =0.16 mW/K?cm and b = 0.47 mW/K*cm. The authors ascribe the linear term to
uncondensed quasiparticles and the cubic term to phonon carriers with their mean-
free path limited by grain size. Then, they proceed to estimate the fraction of normal
carriers resulting from the linear term in the following way: by using the Wiedemann-
Franz law, the authors obtain an effective residual resistivity pf,f f which they then
compare with a linear extrapolation of the normal state resistivity to zero temperature
p5=t". The ratio pg*" /pS// amounts to approximately 15%. Similar trends have been
observed by many groups (see the review by Uher [109]). In summary, they all find
similar values, namely: 0.092< a <0.36 mW/K?%cm and 0.47 < b < 3.60 mW/K*cm.
All these results suggest a normal carrier concentration of approximately 10-15% of
the normal state and they seem to establish the presence of uncondensed carriers even
at T./1000. One should note that such an extrapolation fails in good quality single

crystals as p§¥" can be negative.



7.1 Previous thermal conductivity at low temperature ' 115

7.1.2 Twinned single crystals

Due to their greater structural integrity, single crystals are expected to have a scat-
tering rate smaller than that of their powdered counterparts. This is even more true
in the case of phonon heat carriers where previoulsy the mean-free path was limited
by grain size, now it will be limited by either the twin boundaries or the sample

thickness.

In their early results, Graebner et al. [148] find a T'® dependence to the thermal
conductivity down to 30 mK. This approximate power law dependence serves as a
basis for their tunneling states model of heat conduction. On the other hand, the re-
sults of Sparn et al. [149] indicate a thermal conductivity of the form «(T') = aT +bT*
with a = 0.028-0.120 mW/K?cm and b = 1.03-5.50 mW/K*cm for various samples.
The T2 is again attributed to phonons and is enhanced by a factor of approximately
15 over the powdered samples while the 7" term, again assumed to represent uncon-
densed quasiparticles is roughly of the same magnitude. The difference in conclusion
from both these groups arises from the range over which they both fit their data.
Graebner et al. [148] fit their T'® power law from 30 mK up to close to 10 K while
the aT + bT3 fit of Sparn et al. [149] is valid only up to 300 mK. We will come back

to discuss such fits when we present our experimental data in section 7.3.

Later on, Bredl et al. {150] measured the heat conduction both parallel and per-
pendicular to the copper-oxide planes in YBa;Cu3zO7_s (T.= 84 K). In their study, a
fit to their data from 0.08 K up to 0.2 K gave a linear term of 0.17 mW/K?%cm and
a cubic term of 8 mW/K*cm corresponding, according to the authors, to a phonon
mean-free path of 0.3 mm (to be compared with a sample thickness of ~0.9 mm).
Their results also indicate that a linear term for heat conduction along the c-axis,
if present, is at least an order of magnitude smaller than in the basal plane. Fur-
thermore, by applying the internal multilayer (IML) model of Tachiki et al. [151],
they extract a chain contribution larger than the plane contribution and predict a
strongly anisotropic thermal conductivity in the plane. Finally, an unpaired carrier
concentration of 15%, mostly present in the chains, is obtained within the framework
of this model. The anisotropy of the basal plane was investigated at low temperatures

by only two groups and these results are the subject of the next paragraph.
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Figure 7.1: The results of Behnia et al. [152] for the in-plane anisotropy of the thermal conductivity
in YBaaCugO7_s. The open circles are for the a-axis while the solid squares are for the b-axis.
The results for both directions are exactly on top of each other making it hard to distinguish the
individual symbols.

7.1.3 In-plane anisotropy at low temperature

The first low temperature study of the planar anisotropy (or lack of it) came
from a collaboration between K. Behnia at Orsay and our group [152]. The crystals
. were prepared by R. Gagnon in the same way as will be described in section 7.2
and the geometric factors, crucial when studying anisotropy on two different crystals,
were obtained from the well-characterized resistivity on the same sample using the
same contacts [106]. Behnia et al. estimate that an uncertainty of 3% is expected
in the anisotropy ratio xs/x,. They find an isotropic in-plane thermal conductivity
with a linear term of 0.47 mW/K2cm along both directions of the heat current.
Their data is shown in figure 7.1. They fit their results with x = a7 + bT® for
temperatures lower than 350 mK and a value of b = 10 mW/K*m is found and
quoted to amount to a mean-free path of 0.3 mm?!. The isotropy found excludes the
attribution of the linear term to the existence of unpaired electron carriers in the
chains as postulated by Bredl et al. (see previous paragraph). This isotropic regime
has not vet been reconciled with the anisotropy in thermal conductivity observed at

higher temperature (down to 4 K) (154] and with the results of Zhang et al. [155]

*A typical crystal thickness of ~100um was established later for the crystals grown by R. Gagnon

. 133;.
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Figure 7.2: Example of a scanning electron microscope picture displaying the geometry of a twinned
YBa;Cu307_5 sample. The left panel displays the thickness of the sample while the right panel
shows a view from the top with both thermometer contacts. Notice the width of the comtacts
responsible for the uncertainty in the geometric factor.

which show an anisotropic microwave conductivity down to 2 K. This might have to
do with a thermal conductivity dominated by an isotropic phonon contribution.
The paper by Wand et al. [156] also addresses the question of the anisotropy of the
planar conductivity in YBa,Cu3zO7_s. Their rather low and broad superconducting
. transition (7, = 91 K with AT.<1.2 K) seems to indicate a sample of lower quality
than that of Behnia et al. (T. = 93.4 K with AT, = 0.2 K [152]). Furthermore, a
large uncertainty of a factor 2 in the geometric factor was a direct consequence of
the large contact resistances leading to the inability of measuring the resistivity using
the same contacts. Nevertheless, the authors find an isotropic thermal conductivity

down to 0.2 K reinforcing the claim of Behnia et al. that « is isotropic in the planel.

7.2 Sample characteristics

All YBa;Cu30+,_s and YBay(Cu;-.Zn.)307-s samples were grown by R. Gagnon
using a self-flux method (see [106] and references therein), starting with powders of
Y.03 (99.9999%), BaCO; (99.999%), and CuO (99.9999%) mixed in a molar ratio
Y:Ba:Cu of 1:18:45. The crystals were grown in yttrium stabilized zirconia (YSZ)
crucibles as they are known to contaminate the crystals very weakly (see [106] and

! Wand et al. seem unaware of the results of Behnia et al. and claim that, due to the large uncertainty
. in their geometric factor, the question of an in-plane anisotropy is still open.
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Figure 7.3: Electrical resistivity of detwinned a-axis single crystals (pure and zinc doped). From left
to right: 3%, 2%, 0.6% and pure samples. Notice the increase in resistivity and the decrease in the
transition temperature with increasing zinc content. All geometric factors were determined using a
scanning electron microscope.

references therein). To ensure optimal doping, the crystals were oxygenated for 6
days at 500°C in flowing oxygen gas and quenched at room temperature. Crystals
with the most rectangular shapes and without macroscopic defects were chosen for
thermal conductivity measurements. The crystals were then detwinned which was
achieved by applying a uniaxial pressure of approximately 50 MPa at 550°C in air
for less than 30 minutes. Detwinned crystals were then reoxygenated for one day
at 500°C. Electrical and thermal contacts on the samples were made, as seen in
section 5.3, with silver epoxy, annealed on the crystals at 500°C in oxygen for one hour.
Table 7.1 summarizes the characteristics of all YBay(Cu;_,Zn.)3O7_s crystals used
in this thesis. Characterization of the samples was done by measuring the resistive
superconducting transition with a low frequency resistance bridge (LR-400 or LR-700
from Linear Research). The geometric factors, essential for an absolute comparison
between different samples, were obtained using a scanning electron microscope (SEM).

An example of a SEM micrograph is shown in figure 7.2 for a twinned YBa;Cu3O7_s
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sample, while figure 7.3 shows the resistive superconducting transition of the pure,
0.6%, 2% and 3% zinc doped crystals. Notice the sharpness of 7. which confirms the
high quality of the samples and the linearity of the resistivity with temperature. By
fitting p = po — AT above the fluctuation region (i.e. above 130 K), we obtain the
coefficients pg and A listed in table 7.1. The dependence of T. with zinc doping was
found to be linear and equal to 2= =-7 K/% Zn.

Table 7.1: Sample characteristics for the untwinned a-axis zinc doped crystals: x is the nominal sinc
content, t is the thickness, w is the width and 1 is the distance between the voltage contacts, G = é
is the geometric factor. T, is the superconducting transition temperature while po and A are both

extracted from the normal state resistivity (see text).

a-axis zinc doped samples

x (%) |5 (pm) w(mm) (mm) G(m™) |T.(K)|po(s@ cm) A (uQemK-?)
0.0 86 0.74 1.3 20585 + 6% 93.6 -14.5 0.94
0.6 93 0.63 1.2 20415 + 7% 89.2 -7.5 1.01
i 2.0 58 0.54 0.7 23154 + 12% 80.0 10.8 0.94
3.0 69 0.82 1.3 23096 + 3% 74.6 19.2 1.09

7.3 Thermal conductivity results on pure YBay;Cu3zO7_s

Figure 7.4 displays our results for the thermal conductivity over temperature as a
function of temperature for the pure (undoped) YBa;Cu30O;_; a-axis sample.

In this section, we try to ascertain the carriers of heat in the temperature range
covered by our experiments, T' < 1 K. We show that we cannot account for our results
with phonons alone. Then we proceed to analyze our results within the theoretical

framework of Graf et al. [49] so as to extract the electronic contribution.

7.3.1 Phonons as carriers of heat

1. Tunneling states

Early low temperature thermal conductivity in YBa;Cu3O7_5 and La;_.Sr.CuOy4

revealed a T? power law dependence (see [109] and references therein). This was
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Figure 7.4: Thermal conductivity over temperature versus temperature for the pure sample.

viewed as an indication that the thermal carriers are phonons and that the main
. scattering mechanism was due to the presence of two-level tunneling systems (TS).

It is possible to show that [157]:

k% pv 2
x(T) = (61‘;2) (T’?) T (7.1)

where v is the TS-phonon coupling constant, v is the phonon mode velocity, p is the
material density and P is the density of TS. Nufiez Regueiro and Castello [157] also

give examples! of crystalline solids in which TS have been seen to play a major role
in the scattering of phonon carriers. These authors postulate that oxygen vacancies,
which always exist in these materials, are the most likely candidates for a TS scenario.
[n fitting their results to equation 7.1, Graebner et al. [148] obtain Py? = 4.8 x
10° Jm~3, a value comparable to vitreous silica?. Closer inspection of their data

reveals systematic deviations from the fit over the whole temperature range.

! For example, some materials develop spin-glass characteristics because of magnetic frustration which
leads to TS. Examples related to specific materials are given by Nuiles Regueiro and Castello (see

(157] and references therein).
. 3This value was obtained using a sound velocity ~7000 m/s. Using the average phonon velocity
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Figure 7.5: Power law fit to the thermal conductivity as a function of temperature. Notice that the
exponent found is close to 2. This was taken as evidence for a phonon thermal resistivity dominated
by tunneling states (see [157] and references therein). Inset: close-up of low temperature region.

Figure 7.5 shows a log-log plot of our thermal conductivity results with a power
law fit. We see that for low temperatures (below T<0.3 K), the power law fits the
data fairly well with a quadratic exponent. Using equation 7.1 for our detwinned
crystal, we get Py2 = 8.6 x 10° Jm™2 using v=3977 m/s for the phonon velocity.
Our thermal conductivity is about 20 times higher® than that of Graebrner et al. [148]
which would mean a TS concentration 20 times lower (assuming the same coupling
constant v for both crystals). This is difficult to reconcile with oxygen vacancies play-
ing the dominant role as the tunneling states since both crystals have approximately
the same oxygen content. If one were to believe the TS scenario, a different origin for
the tunneling states would have to be invoked. However, the definitive objection to

this scenario (only based on power laws) is the sheer magnitude of 5 in our crystal

deduced from the elastic constants in Dominec’s review paper [103], i.e. 3977 m/s, we obtain that

P+* = 1.7 x 107 Jm~3 for Graebner et al.’s crystal.
' The fact that our thermal conductivity is significantly larger reflects our higher crystal quality and

that our sample is a detwinned single crystal.
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Figure 7.6: Low temperature thermal conductivity over temperature as a function of temperature for
the a-axis (open circles) along with the maximum phonon contribution estimated from equation 7.2
with apa= 6.437° mW/Kem.

which will be shown to be greater than the maximum possible phonon conductivity
(in the absence of all scattering except sample boundaries). In light of the systematic
deviations over a wide temperature range from the T behavior, we view this ap-
proximate power law dependence as arising from a combination of mechanisms other
than tunneling states. We therefore abandon this approach and concentrate on the
idea whereby both electrons and phonons carry heat with scattering from impurities,

electron-phonon, dislocations and sample boundaries.
2. Erpected mazimum phonon contribution

[n section 4.1.2, we were concerned with a precise determination of the sound velocities
from elastic constants in YBa;CuzO7_s5. In this section, we will use these to put an
upper bound on the phonon thermal conductivity.

To estimate this upper bound, we take the measured phonon specific heat coef-

ficient 8 = 3.84 x 10~ mJ/K*cm?® (i.e. the largest value quoted in the literature,
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see section 4.2.1) and the average sound velocity obtained in section 4.1.2, namely
voa=3977 m/s. Then, we take the longest mean-free path possible, namely the sample
thickness, 86 pm in the case of the pure a-axis YBa;Cu30-,_; sample (see table 7.1).
We get:

won /T = %ﬂvphl = 6.43 mW/K*cm (7.2)

By lumping! all numerical constants of equation 2.22 into a single parameter A,
and taking 7(z) = A (equation 2.23 for boundary scattering alone), we get A =
0.25 mW s/K*cm. This number will be used as a reasonable estimate when fitting
the thermal conductivity with equation 2.22 when other scattering mechanisms are
also present.

Figure 7.6 shows the measured low temperature thermal conductivity for the pure
a-axis sample along with the maximum phonon contribution estimated from equa-
tion 7.2, which amounts to approximately 35% of the measured x at 200 mK and
10% at 60 mK. In conclusion, this can either mean two things: (i) we have another
conduction mechanism, i.e. electrons, with a lower temperature dependence than that
of the phonons, or (ii) the phonon mean-free path is larger than the sample thickness
as is the case when specular reflections off the crystal boundaries occur. Of course,
a combination of the two is possible and we will find that such a possibility explains

our thermal conductivity data for zinc-doped samples.
3. An all phonon conduction?

In this section, we use a more qualitative argument to reinforce our claim about the
presence of quasiparticles at T=0. We proceed by the contrary and show that we need
an electronic contribution in our thermal conductivity simply because we cannot fit
our results using conventional phonon conduction alone.

With complete disregard for our maximum phonon contribution evaluated above,
we calculate a phonon thermal conductivity using equations 2.22 and 2.23 for several
values of § and 3 and leaving A as an entirely adjustable parameter. Only these two
scattering terms were included (in addition to boundary scattering) simply because

they have the strongest effect at low temperatures. The value of A was adjusted such

lSee section 2.1.4 for our choice of units.



124 7 THE THERMAL CONDUCTIVITY OF YBA,CU307_;

s a8 ? Q@ o ®me
N //7(5) : .
—_— 4 - a - — 4 9
g ) g ‘( )
= - =
E, - E,
— P
¥ ¢
0 0
0 02 04 06 08 1 0 02 04 06 0B 1
T (K} T (K)

Figure 7.7: A phonon-only fit to the low temperature thermal conductivity of YBaz;CugO7_s. In
the left panel, the scattering term § is varied for 3 = 0. The value of A is chosen such that the curve
goes through the experimental point at the lowest temperature. The right panel shows the effect of
varying 3 for § = 10 with A determined as above. As discussed in section 2.1.4, A is exxpresed in
mW s/K%*cm, é§ in s~ 'K~! and B in s 2K—3. The parameters are: (1) A = 3.23,5 = 0; (2) A = 6.67,
6 =5;(3) A=1591, 6 = 20; (4) A = 21.88, 6§ = 30; (5) A = 63.05, § = 100; (6) 4 = 9.82, § = 10,
3=0.04;(T) A=9.87,6=10,8=0.4; (8) A =9.956 =10, 3=1; (9) A = 10.16, § = 10, 8 = 2.5;
(10) 4 =10.36,§ = 10, 8 = 10.

that the curve went through the experimental point at the lowest temperature. As we
can see from figure 7.7, none of the calculated curves provide a good fit. Basically, we
find that, in order to go through the experimental point at the lowest temperature,
we need a very large A (4 > 3 mW s/K*cm, i.e. at least 12 times larger than our
maximum estimate). This large T term needs to be “brought down” by scattering
mechanisms in order to provide an adequate fit at higher temperatures. The large
scattering terms then impose a curvature not observed in the experimental data.
Another way of saying this is that the T — 0 behavior of /T is not T2 as it must for
phonons. We are therefore left with the conclusion that we need another conduction
mechanism, one which has a weaker temperature dependence than phonons. We

conclude that we need an electronic contribution to the heat conduction.

7.3.2 Electronic contribution to thermal conductivity

From our discussion of previous results in section 7.1, the claim that our thermal

conductivity results support the fact that there are uncondensed quasiparticles even
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at temperatures as low as T./1000 does not seem very novel. My claim is that the

conclusion reached by previous authors was based on an invalid analysis of their data.

Table 7.2: Selected results of a standard analysis x = aT +bT® for thermal conductivity in powders,
twinned and untwinned samples of YBa;Cu3zO7_;. In the case of the results of Bernasconi et al. [158],
the phonon mean-free path £ (mfp) is taken as the quoted grain size and the phonon velocity is taken
to be 2862 m/s (see section 4.1.2). For Behnia et al. [152, 159], no sample dimension was available
and therefore a generic thickness of ~ 100 um was used for the phonon mfp. In the case of Bredl et
al., we use the sample dimensions quoted in their paper [150]. The a and b values are taken from fits
of the form x = aT + bT2 quoted in the respective papers. The temperature range over which these
fits are valid are included when available. For the estimates of the phonon thermal conductivity in
crystals, an average velocity of vpa=3977 m/s is used. For both powders and crystal, the phonon
specific heat is taken to be =0.4 mJ/molK* = 3.84 x 10~3 mJ/K*cm3.

Type a b T-range £ rpn /T3 reference
(mW/K2cm) (mW/K'em) (#m) (mW/Ktcm)

powders 0.28 1.4 T <03K 20 1.08 {158]
powders 017 2.5 T < 0.3K 150 8.07 (18]
twinned 0.17 8.00 0.08 < T < 0.20K 900 67.3 (150]
twinned 0.32 6.20 0.18< T < 0.35K 100 7.48 [158]
detwinned 0.47 10.0 010< T < 0.35K 100 7.48 [152]

detwinned 0.43 8.52 021 < T < 035K 86 6.43 this work

- detwinned ! 0.19 i6.6 0.05< T < 0.14K 86 6.43 this work

L. A standard analysis

Figure 7.8 presents the usual analysis used until now as applied to our own data (see
for example {109]). Line (1) is fitted for temperatures lower than 140 mK, while line
(2) is for the range 210 < T < 350 mK, and the results are displayed in table 7.2
along with previous results on powders, twinned and detwinned samples. We see
that our “high” temperature fit agrees well with the results of Behnia et al. [152] on
detwinned crystals but not our “low” temperature fit (done in a temperature range not
measured by Behnia et al.). For our “low” temperature fit, our results for parameter
a are closer to what is observed in twinned and sintered samples but our term b is
significantly larger. Furthermore, for detwinned samples, the b-term obtained from
such analysis is always larger than the estimated maximum phonon contribution. We
conclude that such linear extrapolations over a reduced temperature range do not
provide an adequate representation of the data. The restricted temperature ranges

used are simply a reflection of a changing slope as a function of temperature. Also,
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Figure 7.8: Conventional analysis of YBa;CugO7_; thermal conductivity: «/T vs T2. Line (1) is
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over a small temperature range.

we would like to point out that the agreement between our a-term extracted from
the “low” temperature fit and the results on powders is likely coincidental. We will
therefore adopt a mixed approach in which we consider an electronic linear term and

where we treat the phonons using the standard formalism outlined in section 2.1.4.

2. A muzed approach

A more reasonable description over a wider temperature range might be obtained if
we use equations 2.22 and 2.23 for the phonon conduction combined with an electronic
linear term <./T. Having performed this, we show our best fit in figure 7.9 with again
only the § and 3 as scattering terms. We computed equation 2.22 for several values
of § and § for a fixed A. Then, we varied the linear term from 0 to 0.25 mW/K?cm
adjusting A such that the calculated curve passed through the experimental point at

the lowest temperature.
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Figure 7.9: Mixed analysis for the pure sample. Notice that the A term is 2.8 times larger than the
estimated maximum value.

We immediately see that this fit provides an adequate description of the data over
the whole temperature range with only very small systematic deviations from the
measured curve. More quantitatively, we have A=0.7 mW s/K%cm, i.e. some 2.8
times larger than our maximum estimate for the phonon contribution and x./T =
0.19 mW/K?*cm, i.e. approximately 2.5 times smaller than the extrapolated result of
Behnia et al. [152]. On the other hand, the linear electronic term thus obtained comes
very close to the value predicted by the theory of Graf et al. [49] for YBa;Cu3Oy_s,
namely 0.11-0.14 mW/K?cm. We will discuss in greater detail the theory of Graf et
al. in section 7.4. Due to the significant discrepancy in A with what we estimated
in section 7.3.1, we searched for mechanisms that could possibly increase the phonon
mean-free path such that it could become a few times larger than the sample thickness.

Such a mechanism exists and is discussed below.
3. Specular reflections

Specular reflections on the crystal faces can lead to a phonon mean-free path larger
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than the sample dimensions. It is possible to show (see [160, 161]) that if F is the

. fraction of collisions that are diffuse and therefore 1 - F represents the fraction of
specular reflections, the mean-free path is increased by a factor (2-F)/F. Whether a
surface appears rough or smooth to phonons depends on the size of the asperities
and the phonon wavelength, meaning that F is temperature dependent. Berman et
al. 160! measured thermal conductivity in diamond at helium temperatures. For
temperatures below 6 K, they find a variation proportional to T%# which means that
the mean-free path is temperature dependent!. In modeling their results to account
for specular reflections, these authors deduce F = 0.5-0.6 which, at 3 K translates into
a mean-free path 2.5 times their sample size. In another study, Berman et al. {161]
tind a T® thermal conductivity for sand-blasted sapphire crystals with a mean-free
path equal to the size of the crystal. Polished crystals did not yield a 7 relationship
but had a phonon mean-free path dependent on temperature which grew as large as 3
times the crystal diameter. From these studies, one concludes that maximum phonon
mean-free paths of 2-3 times? the sample size can arise from perfectly reflecting sample
surfaces.

. Although tempting as an explanation of our large 7° phonon term in our fitted
thermal conductivity, we point out that our crystal does not quite fulfill the criteria
of well-polished surfaces. When looking at our samples under a microscope with
only 50X magnification, we can see growth steps on the (001) surface of pyramidal
structure with spiral morphology. Such growth steps were first noticed by Sun et
al. 162" and extend over the whole sample surface on one side only® with sizes varying
from sub-micron to several tens of microns. Inspection of the other surface at the
same magnification reveals no such steps and the surface is mirror-like. Therefore, the
phonon mean-free path could be at most twice the sample thickness since reflections
would be specular on one face and diffuse on the other.

We conclude that the mixed approach provides a satisfactory fit to the thermal

'The T3 regime is well established in the specific heat at these temperatures and therefore any

temperature dependence other than T° has to be ascribed to a changing mean-free path.
3This number could be larger at lower temperatures as Berman et al. only went down to 3 K.
3 According to R. Gagnon [153], the largest YBa;CusO7_; (and without flux spots) flux grown crystals

grow at the liquid-air interface. This results in a smooth surface (for the surface in the flux) and a
‘ rough surface (for the surface exposed to air).
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Figure 7.10: Thermal conductivity over temperature for the zinc doped samples. Notice the rapid
suppression in going from the pure to the 0.6% sample and then the saturation at higher concentra-
tions.

conductivity of the pure sample. This approach will therefore be extended to zinc
doped samples in order to study the universal regime.

7.4 Thermal conductivity results on YBas(Cu;_,Zn; )307_s

Figure 7.10 shows our results for the four samples measured, namely the pure and
the 0.6%, 2% and 3% zinc-doped samples (all nominal concentrations). Notice that
at 1 K, the pure sample has a thermal conductivity roughly 40% greater than the
0.6% and some 60% larger than the 2 and 3% samples. The rapid suppression of
the thermal conductivity with small zinc concentration and saturation for large zinc
content is reminiscent of what happens at high temperature for the peak height (see
section 4.2.1). In this case, we remind the reader that the rapid suppression was
interpreted in terms of the electronic mean-free path being rapidly reduced by the
low concentrations of zinc impurities while for higher concentrations the phonons

dominated x and were much less affected.
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Figure 7.11: Mixed analysis for the 2% sample. Notice that the A term is 2.2 times larger than
estimated.

As with the pure sample, an all phonon fit was not possible and we therefore need
an electronic term. Such unsuccessful fits will not be discussed here as they yield
similar results as those of section 7.3.1. Therefore we adopt the mixed approach
explained above and include a linear electronic term along with equation 2.22 for our
phononic conduction. The result of such a fit is displayed in figure 7.11 for the 2%
sample. The fit accounts very well for the data over the whole temperature range
with some negligible systematic deviations. Table 7.3 summarizes the results for all
three zinc doped samples.

As with the pure sample where the A term was some ? times larger than expected
from our estimate of the average sound velocity, in all three zinc doped samples, this
term is again about twice as large as our estimate. This factor 2 comes in naturally
if we assume that we have specular reflections on one face only as inferred from the
presence of growth steps on one side. The linear term obtained from such fits is fairly

robust and we estimate that the error on this term is at most +0.01.

The parameter § includes the effects of the strain field of dislocations (64,) and
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Table 7.3: Fit parameters used in the mixed (electrons+phonons) fitting approach. Refer to sec-
tion 2.1.4 for the definition of the terms A, § and 8. x./T is the electronic residual inear term. Note
that the values of A are about twice as large as A" calculated from sound velocities and scaled by

the sample thickness.

sample | A 5 3 re)T Avel A/ A%
' (mW s/K*em) (s7'K°!) (s72K~2) (mW/K?cm) | (mW s/K*cm)
"~ pure 0.70 0.3 0.09 0.19 0.25 2.8
0.6% - 0.5 0.6 0 0.15 0.27 1.9
2% 0.37 0.4 0.06 0.24 0.17 2.2
3% . 0.46 0.8 0.02 0.18 0.20 2.3

electron-phonon coupling (8.—ps). In looking at table 7.3, we cannot find any systema-
tic way to account for the increasing number of electrons with doping and, possibly,
the increasing number of dislocations as well. This conclusion applies also to the
sheet-like faults term 3 where no correlation can be drawn with zinc doping. We
also would like to emphasize that the apparent decrease in the magnitude of thermal
conductivity with increasing zinc content (in going from the 0.6% to the 3%) can
be almost entirely attributed to the sample thickness which affects the A term only.
We also draw the readers attention to the fact that the 2% sample has an unusually
high electronic term. We cannot account for such a discrepancy: using our resistivity
measurements, we know that the zinc content of the sample does not seem to be very

far off.

7.4.1 Comparison with theory: the calculations of Graf et al.

In chapter 6, we briefly discussed the question of a universal regime with respect to
the calculations of Graf et al. {49]. In the same paper, on top of their analysis for the
various gap structures in UPt;, they provide thermal conductivity calculations for
the d,2_,» gap structure believed to account for many properties of YBa,CusO7_s.
Recently, similar theoretical results were also obtained by Hirschfeld and Putikka [50].

We recall that for a clean superconductor with an order parameter that vanishes

along a line on the Fermi surface, the density of states is linear in excitation energy.
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Figure 7.12: Normalized thermal conductivity over temperature as a function of reduced temperature
for different phase shifts (left panel) and different scattering rates in the unitary limit (righ panel)
after 49:).

In the presence of impurities, a new energy scale v develops below which the deunsity
of quasiparticles is constant and non-zero at zero energy. This can be viewed as
a broadening of a node by impurities. Therefore, if the role of the impurities was
solely to act as pair breaking, the thermal conductivity should increase. On the other
hand, adding impurities also reduces the electronic mean-free path as evidenced by
the increased residual resistivity. It turns out that for the d.2_,2 gap in YBa;Cu3O7_s
and the E,, gap in UPt3, the increase in quasiparticles arising from the pair breaking
action of the impurities is ezactly compensated by the decrease in the electronic
mean-free path (for ' « Ap). Hence the name universal heat conduction.

In calculating the electrical conductivity (for w — 0) and the thermal conductivity,
these authors find that the Wiedemann-Franz law is obeyed for kg7 < v, namely
lim 2 = 00L0=0.12-0.15 mW/K2cm where we have used the residual conductivity
of 0.5-0.6 (#Q2m)~! measured by Bonn et al. [112] which agrees perfectly with the
theoretical estimate of Graf et al. [49] (0.11-0.14 mW/K2%cm). We note that this

residual conductivity value was obtained from a somewhat high temperature (7' >
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1K) on a pure crystal. Recall that from our pure and zinc doped crystals we deduced
'zl'iglo £=0.15-0.24 mW/K?cm.

Graf et al. [49] use a similar formalism already applied for UPt; to calculate the
thermal conductivity on a cylindrical Fermi surface for a two-dimensional supercon-
ducting gap of the form d,a_,2 for elastic scattering only. Their results are shown in
figure 7.12. The parameter a = 1/(2xT 7o) is a measure of the scattering rate (with
T.o the superconducting tramsition and 7o the scattering time) while & = sin? &, is
the normalized cross section and &g is the scattering phase shift. The Born approxi-
mation, as we discussed in chapter 2, does not give a good description of the data
because of the large intercept at T=0 and we need to appeal to the resonant impurity
scattering limit. This is what is shown in the left panel of figure 7.12 where a = 0.01
and the phase shift is varied. The right panel of figure 7.12 shows the dependence on
a. Using the results of Ong [115] we can deduce a 7 = 3 x 107! s which combined
with 7.=93.6 K yields @« = 0.004. This estimate implies that the universal regime
is well established at 1 K for all samples, including the pure crystal. This results
in a constant x./7 all the way to 1 K, as we found in our mixed approach. We
therefore conclude that the theoretical framework of Graf et al. provides an excellent

description of our experimental data.

7.5 Conclusion

In this chapter, we presented a systematic study of thermal conductivity for a-axis
YBa,;(Cu;-.Zn;)307_5 samples at low temperature. We demonstrate the existence of
a universal electronic contribution at T — 0 in excellent quantitative agreement with
current theories for a d-wave gap [49]. We showed that a conventional analysis of the
type £ = aT+bT3 in YB2;Cu307_5 is not adequate and we provided 2 way to account
for the zinc-doped crystals results over the whole temperature range covered by our
experiments. For YBay(Cu;_.Zn.);07_s, a constant electronic linear term up to 1 K is
found to be consistent with our results. As to the phonon contribution, a satisfactory
quantitative explanation is obtained in terms of scattering by the boundaries and by

invoking specular reflections on one side of the crystal.
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MAGNETISM AND SUPERCONDUCTIVITY IN UPT3

Besides the thermal conductivity results which occupied most of my time during my
Ph. D., other areas of research were also explored: X-ray studies to search for the
structural modulation in UPt3, application of uniaxial stress at dilution refregirator
temperature measurements of thermal conductivity in YBa,Cu30O-_s in high magnetic
field, and neutron scattering studies. In this chapter, we choose to include our neutron
diffraction results as they have direct implications on current theories of the phase
diagram. This chapter is a slightly more detailed version of our published paper [163].
A brief review of relevant theoretical and experimental results will be presented. The
implications of our results for the current theories of the phase diagram will also be

discussed.

8.1 A brief experimental and theoretical review

Most of the heavy fermion superconductors order antiferromagnetically before the
onset of superconductivity, with Ty ~ 10 T.. The possible relation between the
phenomena is one of the central issues in the field. However, no two compounds
have exactly the same magnetic behavior. While both UPt; [68] and URu,Si, [164,
165] show an extremely small ordered moment, of order 0.01 xg/U atom, it is as
large as 0.85 pp/U atom in UPd,Al; [166]. The specific heat anomaly at Ty is
large in URu,Si, [167], yet absent in UPt; [168]. The ordered structure breaks the
hexagonal symmetry in UPt; and UPd;Al;, with the moments aligned in the basal
plane, while the tetragonal symmetry of URu,Si, is preserved. The magnetic order
and fluctuations are unaffected by the onset of superconductivity in UPd,Al; [169,
170], while a slight decrease in the amplitude of the moment is cbserved in UPt;
(92, 93] and a saturation of the moment in URu,Si, [171].

134
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The coexistence of magnetism and superconductivity in these compounds has been
viewed as evidence for an unconventional pairing mechanism. Unlike the Chevrel
phases, where the electrons responsible for the superconductivity are distinct from
those responsible for the magnetism, it appears that in the case of UPt;, in particular,
the same electrons participate in both phenomena. Indeed, in this material a division
of labor is implausible in view of the presence of the f-electrons at the Fermi level and

the fairly uniform effective mass around the Fermi surface [65, 66].

The unconventional nature of the superconducting state in UPt; is most strikingly
manifest in the existence of several superconducting phases (see chapter 3). The
magnetic field (H)-pressure (P)- temperature (T) phase diagram shows two distinct
transitions at 7., =0.5 K and T._=0.44 K for H=P=0 [70]. Application of a magnetic
field in the basal plane (H L &) brings the two transitions together at a tetracritical
point [172], which shows up clearly on the H,(T) line as a kink at a field H* of
about 0.4 Tesla {173, 55]. Hydrostatic pressure also causes T., and T._ to merge, at
a critical pressure of about 3.7 kbar [74]. A complete theory for the phase diagram
of UPt3 has been one of the major pursuits in the field over the past five years. As
discussed in chapter 3, two types of scenarios are currently debated: in the first type,
the proximity of 7., and T.. is considered accidental and the two zero-field phases are
attributed to different representations of the order parameter [174, 78, 175]. In the
second type, the double transition is viewed as a splitting resulting from the lifting of
the degeneracy of a state (within a single representation for the order parameter) by
some symmetry-breaking field [81, 80, 82, 31, 90, 87, 176]. An obvious choice for such
a field is the antiferromagnetic order, with its moment and propagation vector both
lying in the basal plane (M, || § || &°). The moment configuration has been described
so far in terms of a single-g structure with a given sample in general possessing three
equivalent domains [92, 93, 79|. However, the existing data is also compatible with a

triple-q structure.

In their neutron study under pressure, Hayden et al. [79] found that the antiferro-
magnetic moment of UPt3 is fully suppressed by applying 3 to 4 kbar, which is also
the critical pressure for the merging of T., and T._. The parallel disappearance of

magnetism and phase multiplicity under pressure is strong evidence in favor of the
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coupling scenarios (the second type), with the antiferromagnetic order acting as the
symmetry-breaking field. Within the coupling scenarios, the kink in the H., curve is
basically the result of a sudden reorientation of the (vector) order parameter 1 in the
basal plane {81, 80, 82]. Both the moment M, and the field A will couple to 7, each
trying to align it in the minimum energy direction. Without loss of generality, let us
consider the case of M, L H, with both couplings to 77 favoring parallel alignment.
At low fields, the coupiing to the magnetic order dominates and M, determines the
orientation of 7. Then, when the field is increased to the point where its coupling
dominates, a reorientation of 7 occurs, causing a kink in Hy(T). Of course, if the
field direction is instead made parallel to AZ,, no kink is predicted, since there is no
competition between the two couplings. As a result, within a single antiferromagnetic
domain (assuming a single-g structure for the magnetic order) the upper critical field
in the basal plane of UPt; is predicted to show a sharp kink only for one direction
of the field (say H || &), and no kink for the &° direction 90° away [81, 80, 82]. Ex-
perimentally, however, a kink is observed at H* =~ 0.4 Tesla for any high-symmetry
direction (0°, 90°, 120° relative to @) {177]. The theory can be reconciled with a
ubiquitous kink by supposing that the moment is not fixed to the lattice but rather
follows the field in such a way that M, L H for all field orientations in the basal
plane. This is possible provided the in-plane magnetic anisotropy energy is negligible
compared to the Zeeman energy acting on M,. Sauls [89] showed that a rotation
of M, in the basal plane is accompanied by a modulation of its amplitude M, with
60° periodicity, which in turn causes H.,(8) to exhibit 60° oscillations, such as those
observed recently in UPt3 [135]. The first goal of our experiment was to determine
whether a magnetic field lower than one Tesla can indeed cause the magnetic moment
to rotate in the basal plane away from its zero-field configuration (M, || ¢ || &*) and

remain perpendicular to H.

If the magnetic ground state of UPt; has only one propagating vector (single-q),
as assumed until now by all authors [68, 92, 93, 79], then there should in general be 3
independent domains with M, oriented at 120° with respect to each other. Agterberg
and Walker [178] have recently considered the effect of having 3 possible domains
on the H.; curve of UPt; in the basal plane. They assume that M, is fixed with
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respect to the crystal laitice (i.e. parallel to any one of the 3 a*-axes), but that
only the most thermodynamically stable domain will be populated for any given field
direction. Within the coupling scenario, the implications are fairly straightforward:
the angle between M, and H can only range over +30° and the domain selection by
the field as it is rotated causes a 60° variation in H.,(T). The limited range of angles
could perhaps explain why a straight H., curve is never observed. The second goal of
our experiment was therefore to establish whether a magnetic field of less than one

Tesla can select a single domain.

8.2 Neutron diffraction: experimental aspects

Due to its magnetic moment, energy and wavelength, the neutron is a unique probe of
magnetism on an atomic scale: neutrons can be scattered by the magnetic moments
associated with unpaired electron spins in magnetic samples. In this section, we
present the experimental details associated with our neutron diffraction experiments
on UPt; for which the results will be presented in section 8.3.

The triple-axis spectrometer provides the preferred diffraction geometry for single-
crystal neutron diffraction experiments. The three axes are those of the monochro-
mator, the sample and analyser crystal. Each of these needs to be automatically
controllable. For this purpose all moving parts rest on air-cushion tables and are
computer controlled from a distance.

Our experiments were done with the DUALSPEC triple axis spectrometer at the
NRU reactor at Chalk River Laboratories. With this instrument, it is possible to
perform many types of experiments i.e. elastic and inelastic scattering, and polarized
neutron studies all at cryogenic temperatures in the presence of a magnetic field either
parallel or perpendicular to the scattering plane. A schematic diagram of a triple-axis
spectrometer is shown in figure 8.1. The reader is referred to C. G. Windsor’s chapter
in the book Methods of Experimental Physics [179], which discusses the numerous
applications of triple-axis spectrometers along with the components of neutron beam
experiments. We now proceed to discuss some of the relevant parts of the triple-axis

spectrometer.

1. Monochromator and analyzer. The monochromator crystal is used to select
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Figure 8.1: Schematic diagram of a triple-axis neutron spectrometer, after {179].

a particular wavelength. The mean wavelength selected, A, depends on the
scattering angle (4,,) and on the crystal plane spacing (dn) according to Bragg’s
law:

A= 2dnsin by, (8.1)

In elastic magnetic scattering experiments (such as those described in sec-
tion 8.3), the analyzer crystal is tuned to the same wavelength (or energy)
as the monochromator. In our case both the analyzer and the monochromator
consisted of pyrolytic graphite and the neutron wavelength was chosen at 2.37 A.
A combination of a bent focussing silicon monochromator and graphite analyzer

was also tried but gave a slightly lower flux and therefore was abandoned.

2. Collimation. The simplest collimators consist of a long rectangular tube lined
with absorbing material. Better collimation can also be achieved by use of
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Soller collimators which are simply a large number of parallel slits included in
the beam guide. In order to have the largest neutron flux, we chose the largest
collimation available. It was 0.6 degree between the monochromator and sample

and 0.8 degree between sample and analyzer.

3. Filters. The filters’ main purpose is to remove the thermal neutrons with wave-
length greater than the Bragg cut-off. These neutrons can lead to an increase
in background and therefore longer counting time would be needed. Use of a
cooled beryllium filter with a cut-off at 3.97 A was made. Furthermore, a py-
rolytic graphite filter was also used to remove second-order scattering (or A/2
neutron wavelengths) from the crystal monochromator. The filter is oriented
to provide maximum scattering of the second-order reflected neutrons. Since
antiferromagnetic Bragg peaks occur at half integer Miller indices, contamina-
tion from A/2 neutrons could show up at these positions and cause increased

background.

4. Monitor. The purpose of the monitor is to provide a signal proportional to the
number of neutrons that pass through it. Due to variation in the neutron flux
from the reactor, counts were integrated over fixed monitor counts as opposed

to fixed time intervals.

5. Cryostat. The cryostat consisted of a continuous flow helium cryostat with a
base temperature of approximatly 1.6 K. The cryostat was also equiped with a
horizontal field magnet that could provide horizontal fields of up to 3.2 Tesla

at any angle in the scattering plane.

6. Sample. The sample, used in previous neutron experiments [79], was a high-
quality single crystal of UPt; that exhibits two sharp successive superconducting
transitions, a moment of 0.03 xp/U atom and a Néel temperature of approxi-
mately 6 K. It was aligned with its hexagonal plane in the scattering plane of
the spectrometer. The sample was held in place by means of thin aluminum
foil. Thermal contact was insured by the continuous flow of helium gas in the

pumped cryostat.
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Figure 8.2: Reciprocal space diffraction geometry for both domains. The q; indicate the propagation
vector while Q; show the scattering vector.

7. Detector. Detectors usually consist of 3He gas. Capture of a neutron by the gas
results in a tritium atom and a proton. These particles ionize the buffer gas
which produces a pulse on a wire in the centre of the detector. The number of

pulses is then proportional to the number of neutrons that hit the detector.

8.3 Neutron diffraction results

In a first measurement, the magnetic field was applied in the basal plane along the
{1, 2, 0] direction, which is perpendicular to the a* direction and to the wave vector
of the ¢; = (%, 0, 0) domain. This should favor the ¢; domain and remove the ¢; =
(1, 1, 0) and ¢ = (0,1, 0) domains, each of which is at 30° to the applied field. The
intensity of the ¢; peak, observable at a scattering wave vector Q; =(3, 1, 0), which
is at an angle to M, ||; in order to sense the moment (see figure 8.2), should then
increase by a factor three on application of a sufficiently strong field. Concomitantly,
the intensities due to the ¢ domain at Q}:(g, %, 0) and the ¢3 domain at Qs = (1,
% , 0) should vanish.

From scans such as those displayed in figure 8.3, in which the crystal angle ¥
was rotated through the Bragg position at a fixed temperature of 1.8 K and a fixed
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field orientation, namely H1L g1, we find that the Bragg peaks corresponding to the
three wave vectors persist up to a magnetic field of 3.2 Tesla, as shown in figure 8.4.
There is no significant increase in the population of what should be the most ther-
modynamically stable domain (¢;). A slight increase of order 30% at 3 Tesla is not
inconsistent with the error bars in figure 8.4. This would then be compatible with a
roughly equivalent decrease observed in the ¢ intensity, and suggest that complete
domain repopulation could be achieved at higher fields. However, as far as the super-
conducting phase diagram is concerned, it is important to stress that this anisotropy
field is larger than H.,(0), so that the sample is multi-domain in all superconducting

phases.

In order to make ¢; the least favored domain, we rotated the field by 30° to lie along
the ¢; direction. At 1.6 Tesla, we again observed that both the ¢; and ¢ modulations
remain present. Within the statistical error of 20%, the integrated intensity of the ¢>
modulation observed at a scattering vector dgz(%,%,ﬂ) was unchanged between 0 and
1.6 Tesla. For independent (and weakly pinned) domains the intensity would have
vanished. A similar independence of field was observed for the ¢; modulation seen at

Q1=(},1,0), where the peak should have grown by a factor of 2.

This is in contrast with the behavior of UPd,Al; {180, 181], where a field of less
than one Tesla in the hexagonal basal plane perpendicular to §=(1,1,0) clearly en-
hances the population of that particular domain at the expense of the other two. If a
similar effect occured in UPt3, the relative intensities of the ¢; and ¢3 domains would

be expected to follow the solid lines shown in figure 8.4.

In UNi,Al;, where the moment is 0.12 z/U atom, intermediate between that of
UPt; and that of UPd,Als, the propagation vector (0.61,0,0.5) also has a component
in the basal plane but it is incommensurate with the crystal lattice [182]. In this case,

a field of 3 Tesla is insufficient to produce a monodomain {183].

In zero field cooled (ZFC) experiments, such as those described above, it is pos-
sible that domains, having already formed, cannot attain the new thermodynamic
equilibrium associated with the applied field. To check for this possibility, we slowly
cooled the sample through its 6 K magnetic transition in a field of 3.2 Tesla along the

(1,2,0) direction. All three wave vector modulations were found to have condensed
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Figure 8.3: Magnetic Bragg peaks at ¢i and g3 for H = 0 and 2.8 Tesla, with L gj. Selection of
a single domain by the 2.8 Tesla field would eliminate the g3 Bragg peak and increase the intensity
of the ¢1 Bragg peak by a factor up to 3.

with the same intensity as for cooling in zero field. For the ¢ modulation we can
exclude at the 20 level any increase in peak intensity beyond 30% relative to the
ZFC intensities; field selection of one domain would have produced a three-fold in-
tensity increase. These results exclude the possibility that an energy barrier, arising
from the reduced orthorhombic symmetry of single-§ ordered state, might have pre-
vented the attainment of an equilibrium domain configuration at low temperature.
We therefore conclude that in UPt; the three modulations are present with roughly
equal importance for all field strengths at which the superconducting state exists.
Even if all three wave vectors survive the application of a magnetic field, the

moments themselves might still rotate away from being longitudinal (AZ, It §). To test
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Figure 8.4: Integrated intensity as a function of field for ¢; (open circles) and ¢; (solid circles) with
H 1 q¢i. The solid lines show the expected behavior for both magnetic domains for an anisotropy
field of order 0.5 Tesla (as observed in UPd;Als).

this possibility, we monitored the scattering wave vector 9] =(£,§,0), where neutron
diffraction senses the g; spatial periodicity, but where, in the absence of a field, the
scattering amplitude is zero because the moment is parallel to Q (see figure 8.5).
Moment canting in the field would then give a non-zero amplitude. Applying a field
of 2.8 Tesla along (1,2,0) - perpendicular to ¢; and at 30° to ¢; — we observed no
measurable growth in intensity above background. The statistics allow us to put an
upper-bound of 26° on any rotation at the o confidence level (a realignment of the
M, moment of domain ¢2 by the field would have meant a 60° rotation). This shows
that the moment does not follow the field as the latter is rotated in the basal plane,
and this for field strengths much greater than H*=0.4 Tesla. This suggests that M,
is strongly coupled to the crystal lattice, in agreement with the observation that M,

does not rotate upon entering the superconducting state at 0.5 K [93].

Let us look more closely at the single-§ assumption. Isaacs et al. [93] have shown
that a collinear structure with three separate domains gives a diffraction pattern

consistent with the observed structure factors. The question is: why are all 3 domains
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Figure 8.5: Reciprocal space diffraction geometry for both domains. The q, indicate the propagation
vector while Q, show the scattering vector.

equally favored upon cooling in a field of 3.2 Tesla which is only perpendicular to
one of the associated moments? For a collinear antiferromagnet, the fact that the
transverse susceptibility is larger than the longitudinal susceptibility should lead to
the selection of the domain perpendicular to the applied magnetic field, as is seen
in UPd,Al;. A simple explanation for the ubiquitous presence of all 3 wavevectors
is that the magnetic structure might be triple-g. With a symmetric superposition of
three equivalent modulations, the diffraction pattern would be the same as with three
single-g¢ domains. A magnetic field would have no effect at low fields; it would only
produce a single-¢' domain sample when the Zeeman energy developing from distortion
of the 3-q structure exceeded the binding energy of the 3-¢ state. Triple-g structures
are known to occur in uraninm compounds, such as USb [184] and UPd; [185], and are
characterized by an insensitivity to applied magnetic fields and uniaxial stress [184].
Now, it is far from obvious that such a magnetic order could break the hexagonal
symmetry (in zero field), and even more so that a coupling to the superconducting
order can lead to a split transition. Therefore, if such a structure is the correct one

for UPt3, a2 major reassessment of the coupling theories mentioned above is needed.
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8.4 Conclusion

In conclusion, we have shown that basal plane magnetic fields of up to 3.2 Tesla have
no effect on the magnetic order in UPt3, whether it be in rotating the moments or in
selecting a domain with a single wave vector. Because the upper critical field of UPt;
is less than 3.2 Tesla, the absence of rotation makes it difficult to reconcile the fact
that a kink in H.2(T) is observed experimentally at 0.4 Tesla [172, 173, 55, 177, 135]
for various field directions in the basal plane, with the prediction of current theories
[81, 80, 82, 31, 87, 90, 176, 89] that it should only occur for one direction of H with
respect to M,. In this respect, a calculation with three fixed domains would prove
helpful. Our results also invalidate the respective assumptions (moment rotation
and domain selection) underlying two recent explanations (89, 186] for the slight 60°
variation of H,, in the basal plane [135]. Finally, there is a distinct possibility that the
antiferromagnetic order in UPt; has a triple-¢ structure, as opposed to the single-¢
structure assumed until now, which would require a major reassessment of current

theories for the superconducting phase diagram.
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CONCLUSION

In this thesis, we presented a detailed experimental study of thermal conductivity in
a heavy fermion and a high-7, superconductor.

In the case of the heavy fermion compound UPt3;, we presented thermal conduc-
tivity results on one high-quality single crystal for two directions of the heat current.
This is the first study of the anisotropy of thermal conductivity on a heavy fermion
superconductor. We concluded that any residual linear term is small and that our re-
sults are consistent with a scattering rate I'y ~0.057T. or less. Such a small scattering
rate implies that our data (down to 45 mK) do not reach the gapless regime (below
~0.17.). The main result of our study is the finite ratio x./x; as T — 0. This places
severe constraints on the gap structure, and we conclude that the gap vanishes at
the poles with a quadratic k-dependence and along a line of zero in the basal plane.
This significantly reduces the number of possible candidates for the gap structure of
phase B and we are left with a hybrid II gap structure such as that proposed for the
E,, scenario (with strong spin-orbit coupling) or the A,, model (with weak spin-orbit
coupling). We feel that thermal conductivity in UPt; is now a mature subject and
that 2 comprehensive understanding of heat conduction in UPt; is near.

We also presented a systematic study of thermal conductivity on a-axis high-
quality zinc-doped crystals of YBa,Cu3O7_s at low temperature. The main result is
the existence of universal electronic linear term at 7 — 0 in excellent quantitative
agreement with current theories for a d-wave gap. We also emphasized that a con-
ventional analysis of the type k = aT + bT" of low temperature data in YBa;CuzO7_s
is not adequate and we provided a way to account for the zinc-doped crystals results
over the whole temperature range covered by our experiments. A constant electronic

linear term up to 1 K is consistent with the results for all zinc concentrations. As to
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the phonon contribution, a satisfactory quantitative explanation is obtained in terms
of scattering by the boundaries and by invoking specular reflections on one side of
the crystal.

Our neutron scattering experiments have shown that applying a magnetic field up
to 3.2 Tesla along the basal plane of UPt; has no effect on the magnetic order: it
neither rotates the moments nor selects a domain with a single wavevector. Because
the upper critical field of UPt; is less than 3.2 Tesla, the absence of rotation makes it
difficult to reconcile the fact that experimentally a kink in H.,(T) is always observed
for any direction in the basal plane with the predictions of current theories for the
superconducting phase diagram. Moreover, our results also reveal the possibility that
the antiferromagnetic order in UPt; is a triple-g structure, as opposed to the single-¢

structure assumed until now.



APPENDIX

A.1 Losses through radiation

In this section, we present the estimated losses through radiation. We choose the
worst possible case: the hottest part of the experimental setup is the heater that
provides the temperature gradient and we assume that its temperature is about 1
K for the whole temperature range and that it has an emissivity of 1. The power
lost to radiation P,.q is then (assuming that the surrounding temperature is 0 K):
Pga = 0 AT* with ¢ = 5.67 x 1072 W/cm?K* and A = 7 x 1072 cm? (see table A.1).
The power radiated is then 0.4 nW. This number has to be compared with the total
power dissipated in the heater which is of the order of 100 nW and therefore can be

neglected.

A.2 Losses through the measuring leads and experimental

supports

In this section, we present a detailed calculation of the thermal resistances involved in
our thermal conductivity setup showing that heat losses are negligible for all samples
measured in the temperature range from 0.1 to 1 K. Experimental data for these
calculations are taken from the books by Lounasmaa [118] and Pobell [119] and ref-
erences therein. Figure 5.3 and figure A.1 show the thermal circuit and the various
resistances involved. In table A.l, the geometry and the thermal conductivity of
the various parts of the setup used are summarized. These values are then used to
compile the thermal resistances shown in table A.2.

In order for heat losses from the heater to be negligible, we want the thermal path
from the heater through the sample to the heat sink (i.e. Wo + W3 + Woampie + Ws)
to be much less resistive than the direct path from the heater to the heat sink (i.e.
W, or W, + W{). Also, in order for the heat losses from the thermometer to be
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Figure A.1: Detailed description of each thermal resistance involved in the thermal conductivity
setup.

negligible, we require Wy(W,) < W5(W;). Inspection of table A.2 together with the
knowledge that the least conducting sample measured had W,ampte < 1072 K/mW,

we get: tTathempetWe - 897(1.1%), FatTatFeempetPe — 10-3%(6 x 1072%)
1

and :’—V': = %V:; = 1%(0.9%) at 0.1 K (1 K). From these figures, it is clear that heat
losses can be safely ignored over the whole temperature range covered by the thermal

conductivity experiments presented in this thesis.
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Table A.1: Geometry and thermal conductivity of the various components used in the thermal
conductivity setup.

Name Length Area x(0.1 K) s(1 K)
(cm) (cm?) (mW/Kecm) (mW/Kcm)
Nb-Ti wire * 25x10° 49x10® 1.1x10°* 75x1072
Vespel post 57x107! 9.0x10™* 1.1x10"®* 18x10?
GE varnish  1.0x1072!' 7.0x107% 4.0x10™* 3.0x10°?
Copper plate  1.0x 10°! 7.0x1072 4.0 x 10* 4.0 x 10°
Silver wire 1.0 x 10° 7.9 x 1075 1.0 x 10! 1.1 x 10?
Alumina 50x1072: 4.0x10"2 5.8x10* 2.9 x 1072
Manganin wire 15x10° 49x10~% 5.0x10"? 5.0x107!

“The only data found for this material [119] was a T'8% power law valid for the range 4 < T < 9
K. Since we know that the electronic contribution to the thermal conductivity has an exponentially
activated behavior and that the phonon mean-free path will become limited by the boundaries of
the wire giving a T° contribution, this power law will certainly be an upperbound to the total heat
conduction of the wire at low temperatures.

'This quantity could not be measured and was estimated.

‘Due to the contacts on the thermometer and the ruthenium oxide film, this quantity could not be
measured directly, it was therefore estimated.
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Table A.2: Thermal resistances (W} of the various components used in the thermal conductivity

setup.
Name W(0.1K) W(1K) used in
(K/mW) (K/mW)

Nb-Ti wire 48 x 10® 6.8 x 10° W, and W,

Vespel post 5.6 x 10° 3.5 x 10* W, and W;
Kapitza resistance = 1.0 x 102 1.0 x 107! W,, Wy and W,
GE varnish 3.6 x 10> 4.8 x10° W, W, and W
Copper plate 40x10"% 4.0x107? W,, W, and W,
Silver wire 1.3 x10® 1.2 x10° Wi, W, and W}

Contact on sample ' 1.4 x 10®° 1.4 x 10> W;, Wy, W, and W;
Alumina 22x10°% 4.3x10* W, and W,
Manganin wire 6.1 x 107 6.1 x 10° Wy and W,

“For this thermal resistance, we used a generic value given by Pobell(and references therein) [119]
for a boundary between copper and glues: ARxT3=0.007 cm®*K*/mW where A = 7.0 x 10~2 cm?
is the area of the contact, R is the Kapitza or boundary resistance and T is the temperature.

'The thermal resistance of a contact was estimated from the Wiedemann-Franz law assuming a good
metallic contact and an electrical contact resistance of 3.5 mQ as measured in YBa;CusO7_s at 4.2 K.
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