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Abstract 
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" 

The problems of implementing a relational database are considered. 

. ~ 

, ID:~ part l, a"new class of data structures for pro .. cessing range queries 

i8 described. A I\lember of;, this class i8 derived from a data structure 

which supports random and sequential accessing. We' also describe 

two new data structures with this property that seem tD' have better 

performance than t~ Btree. In 'p~rt 2, a new d~sign ,for the physical 
• ' D 

. 
. database ,is-proposed. This design is based on the separatio~ of a relat·ion 

'into ~wo p~ts: a static "master file" and a dyn';nii~ .':dffferential 

file ll which stores updates. Our\design includes a n.ew system for 

r~cpvering fro~, system :t'ailures and alil..ows greater" concurrency than 
1 e , . 

'is possible with existing systems. 
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Ré'sumé 
... " . 

. On c~idere ~es probl~meB d' implantatior d'une base ~é,l~tionriel1e 

de donn~es. ~~ pre~ier,e-~ie~, on ~écri t ~ne n'ouve:le cla!'jse, d~ 
structures de donnees pour le tral.temen t Ides requetes sur des 

Cv 

rangees des vale;Urs ("range queries")". Un meJJfbre de cette~ ~lassè 

• es~ dé~ivê d I~ne 's'truc tu~e;,:<ie ~nn~es qui sou tient l'accès 
1-'" -J.' f_ 

aléatoire ou s~que~tial" On~'&~q:t:Ù aussi deux nouv.elies struc t,Jlres ,........ ~ 

,.- '<; '. A 

de donnees avec fette proptietê, let qui parais~~nt avoir une • 

meilleure perfoqnance, que l'arbre liB" (flB-tJ:ee"). En deuxi'eme 

lieu,' on' propose 
'. ,/ 

Ce plan ,es t base 

un nouveau.lplan pour lé\ base physique de donn~es. 
",. • ~ '" " !> 

sur',la separation d'ufle rel~tion en. deux partle~: 

-. 

, 0 

un fichier principal statique et un fichier differ'ential, C'dVfereritial 

, file") dynamique 'qui garde les changements en mémoire. La l. 

plan compr'end .~n nOl;l'ireau .système pour la reprise des ê'checs de 

syst~me et permet un parallelisme plus grande Que oIes ~yst~m~s 

,existants. 
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Chapter 1 2 

,. 
Thè r elational m()del of data [Codd70] pr ovides 

, 
a simple view 

, ~ 

of dataJ and powerful operators for manipulating i t;. 
t, 

In sI;li'te of 
, " 

thi s, r e1ational 
" 

, . 
da.tabases are not owidely used. More common1y,', 

database systems are based ·on other models of data which are more 

complicated an'd provide lower "level operators, or, systems are 
• 

cus tom.:.built for s,pecific applications. 

One of the reasons for this situation is that: the relational 

modelof data i5 difficult to implement efficiently .. , 'l'he abstract 
\ 

view of' the da,ta does not correspond to any hardw~e facility , ,,) 
, 

provided by current cornputers. The ,operators are therefo~ "high 
, , 

,1 \ 
level": they 'must be 'implernented using complex software. " The 

network mode1 [CODA 711, on the other hand, pr ovides a "1ow level" 
. 0 1 .,. 

view of 'data which strongly indicates a particular storage 

scheme. The operators of ,.-fhls data moÇlel are relative1y easy to 

!> imp1ement" 

Several re1ationa1 database systems, rnostly experimental, were 

imp1emented be tween Since then, ,the , . 
\ 

problems of 
') 

1970 and 197.6. 

implementing a distributed relationa1 database system have 

received a lot ,of attention. The sit-e~ of a diptributed database 
, . , 

, 
- are loosely' coupled: 

" 
each site can fLinction, to. sorne extent, as 

~n. independent databas€' system., In this thesis, ,the problem of 
! 

implementing the -lowest level of 'a database system, the JI physical 

databa.se", is considered. This is an important practical problem 
r' 

because the central ized systems developed through 1976 are 

unne~cessarily cornp1icated and 
- 'l}. 

slow, because, as' SUggl..d ted 

above, solutions to thi s problem also appl icab,le to 

distributed datab<l,se systems. 

w~ assume that the database will run on' a typical computer 

sys tem: a CPU wi th volatile pr imary memory and a much larger 

, . 

'\ 

f: 
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,Çl.mQunt of non-volatile;" r andom ac.ce~s '~econdary memory', e.g. di sk 

stox:: age .. 

\ ~'. .. 

1. Ârch:l tectur e of ii"" Î:-elational 

, "A re1a t ional database sys tern cari seeÎ1 as' 'a .hJ~rar,chy of 
)' ~ .... ~ 

.' 1" 
machines as shown in figu~e 1. Each user cornmunicates.o·'wi-:f:h the , . 

. -" 
10gica1 da tabase in a language meaningfu1 to the ~ user'-• ..." Several 

~: ':. , ," .......... 
~·r 

us'ers may use 'the data~ase simu1t.aneously. ..,' 

The lo<iical database translates :"the opérati~ns speci~ ie~ ,by a 
• ~j'" 

user into operations. on rel'ations: oper:ations of the:,...rela-eiona1 

a1ge~ra and operations for updating the'- relations. 

'The physical "da tabase (PDB) pro:v1des the 
,'" 

1 

opera.tions on relations té opèratiohs,on -aata 
~ _ .J. J., ~ 

sttY,ctur;es l?Jored 
'" .. 

in disk'f,iles. 
~ 

,';""'" 

.i' 

" 

,~ 

'"- "'! 

A majo, r ben. ef it of 
~ 

lS 
""'-

. . 
tR-at the vatious 

levelli1 , 

thi-s' or9ani za ti~n 

a'hd . phys ical databases ·''ë·tc. )...,. are 
!.;-

~W~ l"e-ve). ~c~.n independent of one 
\ _ 0 ...:. ~,.~. \ 

anothet ,: The implernentation of 
..... '" ......... -

be changed wi thout af fect)ng -othees leyélS. Thi s thesi s 'ptopo13es' a,.-

new design for the physical dat'abase'" ~hicl) "ïs qui te differen't 
~' ", .. ...,.-

" 

from previ9usdesigns. Due to the indep~ndènce of tne vadous .. ,-
.. .'7" -- . .., -

• l ' 

levels of the da·tabas.~ ther~ is no impact on -I"evels , aQove --and 

o-below. (However a usefu1 ~xtensian of ,the.relati'oniü modèl cari be 
..... r ... _ • -,. >_ .. l . _~ '(""f 

easîly supported" using ou.I' design. ,,-

., . .. -
~''''' '\-' .. ~' 

..... ..... .. . 
.Jo ... ~.. .r.,. _'.":: 

.- .. 
. , 
i· ',~ 1 • 

..... .... or .. ~ ~,. _"" .. - .... - ... ,. 

-" 

.' 
.. 

"'­, 

" , 
" 

.' 

, . 
,-1· 
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l' 
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CHaptèr 1 Section ''i 4· 

. , 

2'. Opérations on relations 

AlI actjons on the d~tabase, initiated by users, are 

translated int'o operations on relations. These opeJ;ations ~re 

deDcribed in.this secticin." 
. . . 

, An Mtribüte.'is an idéntifier .• Associated with each attribute, , . 'f- ' , 
Â, i8>a ornain' ç1orn(A):' a s~t,'Oft values. A. k-ary relation, R, on. 

i 

the 5 t of .attributes {AO' ••. , Ak _1), 'R(AO' .•• : " Ak_1 ) ts a 
~ p '" • .,. 

'su set of the" cartesian. I?;Oduct dom (AO), , x .~'. x dOm(A
k

_
1 

). An' 

element of the relatio,n, caO' ••• ," ~k-1]', is a tuple. 

,dom ~Ai ) ~ i /~ 0, , k-l. ' ,c-

a. e 
, 1 

, The values in a domain are' aIl of the s.arne type and these 
! ' 

types are usua11y atomic, e.g. strings or numbers. In 'prac~ice. 

, t~e ... cardinali'ty of·-each dom(A j ~ is finite anp is know~ • 

•• 
2.1. The relitipnal algebra 

Codd defined sorne oper.ators for' manipulating relations. These 
~ 

def ined _.: . -,emprise th,e .relatio~al' algebra [COdd~O]. Merrett has 

/' ~ddi bonal operators which gener,ali~e those of Codd [Merr77, 

'!J' . Chiu82]. We now describe these operators using relations R{X,yR) 

• l" f 

. , 
,and S{YS;~}: dO~(YR} = dorn(-YS)' Upper ,case letters: R, S, X, Y, Z 

,', . , 
den9te .. rela'tions;and attributés. J.,ower Case' 

\ 

z denote, 'tuples avd 'domain va1ue~., 

,"' 

, ' 

'letters: r, s, x, -y, 

, . 

.-

" 

. ' 

. ";" 
, ' "'" 
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2.1.1. Selection '<' 

, , 

R(Q) = { r : r è R & Q (r) } 
'''~ • 

Q is~_ query (or Il pr edicate" ) . R{Q) consists of those tuples of R 

which sati.sfy the query. )'lote that Q has exaçtly one 'tuple,as i ts 
, • 0 

gurnent. 1 

t 

... V ious.kinds of queries are discussed in section 2~1.7. 

"r 2 .• 1.2. pro'e ion Q , 

R[X] ,= r [xj ': r e R} 

r (~J is a tuple o ·R with the YR vaIùe removed. Note" that 
.. . 

duplicates,are "'removedn"-$,i~èe. a r:ela1::.ion is a'-set .. 
, ' 

,ReX, YRV is an abbreviation 
c • 

for R(){ = x) (Y R J, 

followed by projection). 

2 ~ 1. 3.' e-join 
.' . " , , 

- " 

• //RTYR9 YS] S 

f~/ 
.. 

,\ 

{ . It 
? [X'YR':S,'Z]: [X'YR] € R· 

& [yS' z l € S & e (y R ' YS ) } 

('select ion " 
.1. 

" 

where e@j) i5 one of the comparison operators: i = j, i '1 j, :i: 

< j, i'~ j" i > j ·or i ~ j. 

The natural join is 

: 

~ 

.. 

, 1 

, . 
• 1 : 

\ 
,1. 
l 
1 

..j 

r 
'j .~ 

~ \ ,!... 

.1 
•• l 

.. 
, " 

R[YR * YS] may be abbreviated,to R*S when there is no ambiguity. 
-' "" , . [ \ } 

,2.1.4. ,u'-join 
f 

-
The natural j'Qin R[Y

R 
R(Y

R * YS]S = 

.' • f" 
.li .. ,' .. 

* YS1S can be defined 

{ [x', y, z J : y € R (Y
R
] n 

& [x ,y] € R&,y] 

& [y,z]'€ S[y,~]} 

a 

as follows: 

S {y"] 
S 

1" . 

. 1 
, '. { . 
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Thus thè natu'r al join is the "intersection", 'joln: 
, , 

ar e, created. These are the fl-j oins., Sorne of these 
-Ct 

th~ u~ion join) require the introduction of null'.values. For 
CI 

,example" . suppose that R[X ,y] = ~nd S[y,Z] = {[y,zf}. 'The 

intersecti?n jo\n. does, not : h.ave' a tuple C?ontaining Y, but the 
'. 

union join has t'he tuple f- ,y,z] • 

2. 1. 5. tr - j oi n 
\ -., 

R(YR cr YSIS = {[le] : x e, R[X] &. :O"(~[x'YR] ,S[YS])} 

wherEt o-(P ,Q) i s one of the set compar i son operator8': ,p C Q, P:2 

1 • 
. , ' 

Q, P C Q, P :J Q, p n Q := ~ or P 'n Q t- 1l1,. Cod~"'s, division operator 
• 

is obtaineo with ~(P,Q) = P ~ Q. 

2.1.6. Set ,operations 

Relations X,<AO" .' •••. ' ,Ak-1 ): and .. ,; are 
• l' 

union-compatible if :k = j and' 'dom (AI) = dom (B i ), i = 0, .. . . 
k-l. The set operations can be pppi ied to union-compa tib1e 

" . 
relations to yiel"d other r~ons. - ,(N. B. It does nolt rnake ~~nse 

operatiJr to relations, which ar e not 
"t\ 

ta set , 
union-compa tible. For exa,mpl:,. X (AO' A1) U y (BO ~ B1 ' B2) i 8 not even 

a relation since- it contains bath 2-ary and 3-ary tuples.) 
o 

, 
2.1. 7. Important classes of queries 

We will be mostly concerned with t'he selection opera\.lon. 

There are severaJ.." reas'ons for this: . 
1 

It i8 a fundamental operatipn. Finding efficient ways t9 

searcp for information in a file, '(e,ssentially the same problem) 

has been the motivation for a huge amount'of"research. 
, . ;., 

'il 

o 
'. 

l' 

1 
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As far as performance is concerned, selec~ion is the most 
J " 

important operator, (see chapter 5 section 4.2) . 

Da ta Is tru'ctur es and algoli i thms for searching mul tidimensional 

data (i.e. relations) efficiently is ~urrently an active reséarch 

topic. 

" It will be' convenient to consider each domain as a set of 

integers {O, ... , D-l} where D is the cardinality of the domain. 

This point is discussed further in section 4. 

,The query used in selection is Q(t~, a logi?al function of one 

tuple. A large and important 
l . . 

class of quer r'es is the class of. \ 

range queries. A range query is 

. .. , a k,_1]) = LO < aO. 2. Uo & 
1 

& 

L k -1 .:: aR -1 .s. ,uk_1 
That is, a lower and upper bound is specified for each attrib~te. 

"<" is a numerical comparison since we are considering each 

domain to be composed"of integers. 

, \ -
If no r 'r:Tct'iOrlls placed on attribute i then L· 

t 

= Di -1 w ere Di = Idom(Aj) 1· 
~..- artial matcfi query is a 

restrIction is 

~ 

range 1 querq:; 

(LI .= 0 and 

= 0 and Ui 

Even the' , 

class of partial match queries is. an import~n~ 'one. For exarnp'le ~ 

'- locating a r'ecord given i ts' key is a partial match query . . ~ 

+ , 

, ., 

f "'1 '. 
" 
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," . 
',. 

2.2. Updating relatiol1s. 
/ 

'It is usually 'assllmed that a relatiop is updated by, Lns~rting , 

'a tuple, deléÜng. a tuple or modifying on'~ or more attrjbute, 

values ~cilf a tuple. Ot'hér ways of thinking about updqtes will be 
l 

pre~e~ted in sèction 4. ln that section we will discus$. the 
r 

advantqges of hs'~ng~ just two updaŒe 'operati?ns: inser 1::' and 

delete. 

( 
, , 

• ., 
" ' . 

.. 

2.3. l, Forming transaction's 
• ,. ,,,, 

A sequence of operations on relatà9I)s· can be groupeq into a 
.. 

transaction using the commands Start and End ~s delimit;.ers. A 

'" 

transaction ls, a sequence' éi' operati~ns that ,should be treatedO as 

~,ato~iC ~peration .(from the useI:"s Point of view). Thab is, a" 
, , 

transaction takes effect at sorne irf'stant. Before that instant, 

none' of its updates are ,in effect; afterwa~ds7 aIl of Jhe~ al'e. 

.' 

3. The physièal dat~ba'se, "(PDS) 
f' 

" The problem considered i.n this the~is ,is the implementation of 

the physical ,database; Le. the software that creates the machine 

used by the logical: database. Relations must be re~res~nted using 
; 

data s tructur es s tored in files in secondary memory. Oper a tions 
'1 

'on relations must be translated to operations on these data 

structures .• Finally,' the atomicity of transa'ctio.I1s mus t be 

guaranteed. This last requ.irement would not be a proQlem except 

, for two facts of life: \ 

-1) Several users can work on\, the database simultaneously. 

l ' 

• < 
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Atorniei ty requi res that a user not see the databqse in a ptate 

cor r es po ndi ng to 
~ 

'transact ion. 

/, 

the part'ial exe eut ion of another us er -- s 

2) The system w~ll oecas ionaJ:ly ': cr ash" , > somedrnes damaging the , 
contents of secçmdary memory: Following recovery, transactions 

iryterrupted by the crash must not remain "partial'ly 'executed". 

'For these r easops, a G.0ncUr r ency contr,ol system and a oreeovery 
, , 

system must be included in the physiéa.l dataoase. 
, • e 

Both of these issues are more cornplicated in, a distributed 
'0'., 

sys tem but the adçH tional complexi ty doe's not show up in ~he 

, 
phys ical da,tabase-; i t has to dO" wi th ôommurlication among the 

Sit~,s) ,The a~tions~ ~o be ~rforrn~d a't eaoh',site are 

for a ceri~~~zed' database. Thùs dur techniques l~e 
the same as 

appl ica,ble i~r 

'both envi ronments •.. 
J - v. ... .,..~\ 

, ' J 

4. Models of re,lations 
\ 

" , A relaqon i s commonly tYlought of as a tâble where ·a eolumn 

represents an attr-ibute and a row represeI)ts a tuple. Other 

'models bf re'lations can be irnagined. Our solutions to sorne of the , . ' 
pr oblem s of phys ical databas~ design were obtai~ed only after an 

appropriate model was selected. 

of rela tlons are explaioned. 

<, 

In this.section, various modela 

The "table" model seems to have had a very strong influenc €.' on 
. , 

builders of databases. In. all relational database systems that 

'we know of, relations ,are stored in indexed-sequential or hash 

files, augmented by inversions. t'his is a very obvious 

organizatiOn if a relation is ,th9ught of as a 'table: the model 

1 • 

" 

• 

; . 

, 0 
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allows the implem'enter to think in terms of 'poin,ters to rows of 'a 

tabie. Furthermore, any ordeçing of the rows is refleeted in the 

ordering provided 
J, 

by an indexed-sequential, f,ile. Sever al 

problems with this organization are .discussed in chapter 2. , 
\ Another model, the "spaee" model, has ~enerated several data 

structures for range searching and has motivated our own work in 

th.i s ar ~a. Recall that each domain i s cQns idered ta be a fini te '. set of integers, {O, ..•. , D-r} where D is the cardinality of the' 

domain'. 
l '>0 

The transf6rmation of non-integer data, e.g. str!ngs and 
'.? 

reals, to integers is triJial. The "<" ordering -of the integers 

can be used ta ref lect an ordering of the elemen-t.s of' the 

or'iginal domaine. 

Now, th~ car tesian product, dom (AO) x • •• x can be 

seert as a k-dimensional spaee of bits. 

.", , a k _
1 

) is on' iff . .. , 
The bi t at coordinates (ao-' 

éÎ
R
_
1
] is a tup~e of th; 

-, 

1 

1 

1 

relation, (see figure 2). 'Our work in chapter 3 is based on this \' 

model. 

The" table" and" space" models are sui table for thi'1king about 
, 

s tatic relations. But the problems of coneur rency controa ' v.and ,. " 

, 'r ecovery invol ve dynamic relations . . , Furthermore, if, the recent 

h.i s tory of the rel a tion is avai lable, i t i,s possible to uS,e 

1 
concurrency control and recovery syst~ms which are simpler and 

have better perfor~ance than would otherwi se 
., 

bé possible. , 1':1 
o 

dealing w i th these issues i t was help!ul to' use another mode! of 

(dynamie) relations and to use a redueed set of ub da te 

operations. 

. We view ev?ry element of dom (AO) x • •• x dom (A k_1 ) as ~~ tupl~ 

',whether i t is pr esen't or not in the relation at a given tlme. At 
" . 

any time, each tuple has a status of "present" or "absent". In 

:' 
} 
\ 

1 

i 
1 

! 
'! 

1. 
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this 'model,' thfPidea pf "modi fying" a' tuple i s meani ngless. If 

any attribute value of a tuple 
.. 

is "changed" it becomes another 

" 
tuple. Thu;:; the. only updates' possibl~ are insertion . , (change 

status f'rom absent to present) ,and deletlon (chang'e status from 

pregent to absent). What: iS,normally thoughtof ~~ a modificatIon 

can- be achieved by an insertion-and a deletion. This model,is 

dèmons tr ated 
, \ 

in figure 3 which shows the history' of a l-ary' 

relation. 

A model which allows a "modi fy" update could b~ used but- i t i s 
, , 

more compl~cated and the algQrithms of chapters 5, 6 and 7 would 
• 

b~ more compli..cated ~ a result. Al?o, if a tuple can be modiqed 
, . , . 

:tJ then i ts namè mus t ,not he affected by the modifh::ation. Then 

" 

" 

pr i,mary key attri butes (for examr51e) cannot be moBif ied. 

Ta summarize, - the modify ,ope,ration is Q unnecessary, it 

compli'cates the algorithms of \the physical database and it isn"'t 

• 
alw~ys permissible sa we do not ~inc:;lude ·it. 

o ' 

5. Thesls outline 

The' thesis is dividèd in-to thr~e part's. Part 1 \is concerned 

w i th data s tructur es: chapter 2 i s a survey of data s tructur es 

for searchrng files. The emp~asis lS on associative searching; 

finding aIl tuples that satisf:?, sorne predicate~ Chapter 3 

contiüns new results in this field. A class of· .. data struc\..ures 
. 

f,or 'range searching, is desaribed. A data structure in this class 

can be derived from a data structure which supports random and 

sequential accessing. We also descr ibe two new. data', structures 
. 

with this important property. 
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v 
In part 2, transaction processing is considered: cbapter 4 lS 

a sur vey of recov€ry and concurrency control techniques, 

,~proposed ,ahd implemented) . In chapter 5, a design for the 

physical database is given. The design is based on the 

"di ffer ent:.ial file" which simplifies bath recovery and 

concur r ency contrôl. 

In par t 3, the resul ts from par ts 1 and 2 are. integr ated: 

chapter 6 discusses data structures for the representation of the 

components of the differential file system •. In chapte.r; 7, the 

design is extended to prov{de archives, (so that previQus states 

of the database can Çe examined), and to provide improved 

pr otection f rom cr ashes. Chapter 8 contains a s~It1IDary and 

concl us·fon . 
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Ch~pber 2 

This-chapter is a surveYoof the literature o~n data~structures 
, .. 

.. -\ .." ~ 

fbr~use ip,a relationàl database. 
< ~ • 

.,' 

Most 'of the rese~rch o.n data . 
, , . 

str~èture~ for s~arching has considereq the retri~vàl of a ~eèord 
" 

, " giy'én i ts' key.. Thi s 
" 

dat'a'.. In a, rerati~nal databa-se system,'" th~ l' d'ata is; 
't:\ .. "' , l , 

multidirne~sionai" arid othertechn1qu'è{3 are' needed.' Some of thes~ 
, v . . .. 

t~chniqu~s are ~as~~,on thdse ~sed for one dimensional dàta. 
" 

'- ,I,n sect\oD l, ~ data structures' for one dimensional • and' 
. 

·,multidime,ns'ional' }dàta' are described. In sect-ion 2, the data' 
.. .. - . 

, 

structures used in sorne implementation~ are"described.~ , , ' .. 

, -
... 

't -- _ i 

, , 

{, 

"J,.. Dat'a stractur'es· for- associative searching 

The'problem of associative searching is to find aIl ~he. tuples , .. 
ln a 

o 

pr'.edïca t ~ . We will restrict our 
>' • 

a'ttent'ipn to' tl1e 
. .' 

c-las's of, r'ange queri,es, ,(see chapter'l section , . . \ ' 

2.l.7)'.,' : : 
' . 

. , .. 
,In o~der, r al)ge, queries to ~upport , , 

the .processing of ~n 
. , 

• r el~t'fons, a" .<Tata s'tructur e shQuld have at; least ',the f'9l1owing, 
" ... ~ . 
tbree pr,ope.~ti.es;'· 

.. , ' , . - , 
1)' The cos t .. o~ pi-ocess)ng' the query. shoulÇi , decr'e,al;;e"as.>: more. " 

w _ ... • ~ «. 1 " • ~ ,"" , h 

, alttr'i 1;>ut~B ,ar,e 'speclf ied in th~ qu.ery. , . , 

.. 2), accèsslng 'the Sequential pos si'bl ~ • ' Tha t should 
t 

be is, 

succèssor' . accordi.ng to s'OIÎ\e order ing can be loca,ted qùh:kly. 
" ' 

. Thi s is - impo,rtan~ since many alg<;> ri thn,l s, (e.go' for' set' 
o 

operations), are based on rnerging whiah requi~~s that t'he 'data he .. 

orderèd .. .. 
.' , QI.. 

_ 3) .. 1,: should 'be dynam:i.c un~e?s the data is k~own to 00. ~~ati'9. 

; . 

, , , . 
l 
i 

1 ' 

. l 
. \ ; 

l 

1 
l 

} , 

\ , 

," 

~- \ .. _~~e.~,*,,~ .. 
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" 1 

1.1. Seans and inversions 

Th~ simp1est m~thod ,idr 
, 

16 

of guery is to 

store a' 1ist of tuples and, scan the entire 1ist, 'checking ~ach 
J 

1 

tuple~against the query. This metnoâ is used by MRDS [Merr761, and 
. , 

'PRrY [Todd76]. Thi.s organlzation is very' easy to màintain,but it 

•• l-
I · 
i 
l, 

. ' . 

i~ very ineffici~nt when selective queries are 

H is not re,ally a 'feasible 'approach.-

; 

being 'processed., r-/ \ 

/" j 

The most- popu1ar me~hod is, t? use inve.rsions, (see [K!'lu\73]). 

An- inversion ls a list of' pai'rs (value, poil'lte~-set), (possibly 

ordered. on va1u'e) whi'ch -permf ts t~e efflcient retr'ièval of (v, P) 

'g,iven v'- "The value v, may be the concatenation of values from 
t , 

sever~l ,~·ttributes. ~hé access set is" the .set of attributes used 

to,fQrm v. Ta find the tuples assaciated,with ~ v~lue v, find 

the (v 1 P) entry in the inversion and ',then retri.eve the tuples ~ 

pointed ta by.each opointer"in P. If t~e ~nversian is ~dered.on . . 
the value fiel~ then sequential pracessirig ts po~sible. The. file 

, . 
may al sa, be .sor ted on s,ome ~cces~ set, ( i t i s then of reqords 

_n clus bered", [Astr76]) 1 improving the performance of sequentia+ 
, 1\' 

, ' proce~sin~ on that acçess set. The . relation may be clustered on .. 

no more than one set' of attribut,es at; ~ tUne: ,. 

An inversion ,rnay 'be stor~d i'n a varlet y of data structures 
. ' , 

.: such as ·ISAM [IBM66L, pr the Btree [~aye72] or: one of' i'ts var.i,'ants 
, " 

l ' , . , 
i s sui table for JCome79] : A' ,'single ülyersion, by i,tself, 

", , ' , ~ 

pr6qess~ng ral}ge queries.·on~y on the' access 'set', of. the i~version.' 
< l ~ • \0 • 

\ .' 
,1' , " 

\ 

,. '- ' -

, , 

" 

. " ~: . , . 

1 

" 
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" 

1. L 1. Hashing 

Inver sions d'an be stor ed' in hash tables, bu't 1 unless the hash 

function is monotonic (i. e. 'or der Rr'eserving) the proeessing of . ., 
range queries will requi re ,a scan ..of', the '·relation.' Fur therIl}ore, 

relations are often dynarnic. Therefore, t,tadi ~ional haslüng 

methods, (see [Knut73'] or ['Stan80]' for 

suitable for use in a re1ational databa~e. 

has~lipg methoqs have, been proposed which 

and/or dyn,amie ~ 
, '. 

. 
a s'ur vey) 1 are not 

Recently, sorne new . 
. 

are order prèserving 
. . 

Ext~n~ible' hashing .[Fagi 791 applies a hash function yielding a 

uniform distribution in [0, ~)-. The, pre~'ïxes of the binary 

'(~er:itati';n~ of the hash v.lues are used to c'Luster groups of . "'. 

records together~ ,when used with the hash function h(k) <= k, 
j 

extendible hashing 'is order pre~erving and thè processing' of one 

dimensional range quer tes i's pOssïble, but the . di stribution may 

no longer be unrl'orm. . (Thi s is a special case of EXCELL', 

[Tarnm80]. See section' 1. 2.)' Records can be ins'erted and deleted 
l ' ,., 

without causing de.grada~ion of ~rformance. 

Tri~ hashing [Litw8lJ ',is' a r'elated method. Tl1e, records are 

stored in ,a 'trie. 
l • 

ha'shing l:Seeause It ,i scons idered a form of 

only ,the , pt ef ix of the key 

not aIl 

of the record ii used in 
, 1 \. ' 

classific~tion, (1..,e. . ' 
the information. is .used} • ·If, a 

... t'I?ïe'cofi\plete' to·its height'wer~ used, the 1eaf nodes 
I ... '<;=-

would be 
, ~ 

'thé structure formed 'in order.' pçeserving extendible 
, ,)J • 

hashing: 
, • ,- t • 

Bqth extendible'hashing and trie hashing are dynamic. 

Liriear: haslÙng \-'{Li twBO] i's another dyn amic ',method. l t gr ows 

and shr inks, as does' extendib~e hashing but overflow, records , , 

appear in the structur e occas ionallY. 
~ . . ~ 

:rhe 'contents 'of the 

o'verflow records are eventual~y rnov'ed to the 'pr i,rnary . storage 

.. 1 .... 

''1. 
',' 1-

\ 
1 ,. , 
! 

~ . 
l ,. 
1 

.. -

1 
1 

! 
.1 
l 

1 
\. 
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) -

l 
area. L,inear pashing is '"discussed in I!\ore detail in chapter ',3 

" ' . 
's ect ion 3. 1. 1. 

'" ". -Two order-pr,esérvi':lg variations of l'inear hashi ng arE! 
.. 

d~ Scussed in chapt er 3 ,sect ion 3,_ A variatiah qf linear hashing 
", 

by Larson [LarsB~] allows f-or ,a more even distribution of r'ecards-
,l' • ~ • '*, 

to bucketsbut the order' pr-.eserving vari:atio,ns de not apply. 

l •. ~. 2. Inversions used 

( TWÜ' ad hoc methods 
> 1 

for multidirnensional data 

have be,en prapbsed ta use in,versions for 

multidimensional data. ' Modifications of this type are necessary 

if ,g~nèral range q;ueries are to be supported efficiently using 

inversions. , " One method is ta create a key by concatenating the 

'values of. several .attributes into a single value (Lurn70]. 
. , 

This 

organiza tian suppor~s ,gue,ries involving a pref ix of the 

synthesized key and i5 therefore not completely general. C,(k, 

Lk/2J) ~uch ~nversions are necessary to o,btain full generalit~. 

Anather rnethod is to store several invers.ians each provitH'ng 

access on a different access set. A complex ?query on several 

a t tri bu tes rnight access sever al ,inver sians.. Set oper atiorrs 6n 
" . 

the retr.ïeved pointer sets yield pointers to the tup:J.es 
.... 

'satisfying the query. There.are two drawbacks to this rnethod: 

1) Each addïtional inversion has a cost in space ~d' in tirne for 

mai ntenance. 

2}' A query involving sever~~ inversi,ons reqQires the merging of 
~ 

Pointer-sets. F~r, cGnjunctive quer;'ies,. the cost of' this work' 

increases ,as the 'siz~ of the result decreases, (viol~ting 'r 
~ \ ,', 

requirement (1). / 

. ' There are a number of 'ways to counter ttiese 'problems., 'The 

problern 'of" deci.dirig which inversions to ·mai~tain çan- be 

, 

, 1 .. 

1 
\ . 

1 -, 

1 
1· 
1 
J 
l, 

i 
t 

i - , 

1 

1 
1 
JI 

·1 " 
, 1: , ;j 



, 

". 

( 

• 1 

, 

. Chapter 2 $ection l 19 

approached a~lYticallY (Schk75, Lum70] , or, the decision can be 

based on observations of usage [Hamm76]. 
.. 

The t ime spent performing merges of. pointer-sets from 

·inversions in evaluating complex quer ies can be reduced by 

rearranging the parse tree which r~resents tne query and using 
~ 

the transformed q~ery' for the search [Liu76]. Another apptoach to 

reducing merging costs is t~ simply rgnore sorne inversions in 
1 

certain situations. The rnerging cost" is reduced ,but, in the case· 

of conjunction, the, number of tuples returned is greater'. This 

~ethod is used bY'System R [Astr76, Seli79]. 

l t should be clear from thi s sur vey that i nver s ions alone ar e 

i~adequate fpr use in a relational dat.abase. There are data 

structures that can be used to implement inversions properly 

(e.g. Bt~ee and trie hashing) but generality, the âbili~y to " 

process any range query efficiently, is achieved at -'a h'igh priee ..... 

1. 2. Mul tidirnens ional data s truet,ur e5" 

The methods for processing multidimensional range quer ies, . . 
'di Scus sed above, aIl us e techniques des'igned for one dimens ional 

data. Many data s truct"ur es designed spe c'i f ically for 

rnultidirnenslonal data are known. Sorne of these have been 

sur veyed i n ~aent 7gb] • 

The multilist organization [Dodd69] organizes the records into 

several o lists. Tuples eontaining the same val ue for sorne 

attribute are linked into a list representing the attribute 

value. This organization is expensive to maintain and the "bost 

grows as more lists,are maintained. Also, the method is no't 

ef'fîeient for the eval uation of complex quer i es. It is not a 
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suitable data structure for processing range queries. 

The doubly chained tree [Suss63], multiple attribuie tree 

'[Kash 77], modif,ied mul tiple attribute ,ree [Gopa80] and the 

, mui tidimens ional B tree- (MDB tree) [Sche,82 ] are based on the 

follœling ldea: select the m attributes of the relation that will 

be , quer ied. Order the at tri butes (so that sorne performance 

criterion such as access time or s tor age space will be 

optimizedY, yielding the permutation i1 ' ... , im• 
r 

tllple in an m level trif as dictated by i ts attribute 

Stor e eaçh 

values a , 
11 

... , , a· . Queries 
lm 

are evaluated by traversing the nodes , at 

level s of the trie corresponding to attributes s pe ci fie d i n the 

que'ry. (Not aIl nodes of each such level would be vi si ted.) 

These data structures differ primarily in the way the trie is 

repr esented. 

at tri,butes low 

AlI of these data structures are biased 

~e /ordering: it is more expensive 
V"" . 

against 

to query 

these attributes than thope higher in the ordering. The MDB tree 

is'th~ most recent data structure in this line of evolution. It: 

can handle range queries and it i5 dynamic . . 
The mlJltiple attribute tr'ee and its relatives are not actually 

trees. They are tries of the type Bescribed by Rivest [Rive74]. 

Rivest considered the evaluation of partial match queries on 

relations stored in hash tables and tr~es. To~store a relation in 

a hash table is to partition its records. Eac ..partition contains 
" 

aIl records in a "sub-cube" of the space representing the 

relation, (see chapter l section 4) • One wa'l of performing such 

a partitioning is to classify the tuples according to characters 

,in the attribute values. This can be d<2ne in such a way that the 

average search Ume is minimized (assuming'that all partial match 

queries are equally likely). The partitioning imposed is similar 

« 
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to that of a trie~ i t 'was, found tha t the trie has performanc~ 

, close to that of the hash table (for partial match quer ies) . 
'\ 

The hashing scheme has al$o been proposed by Rothnie and 

,Lozan6: Multiple key. hashing [Roth74] appl ies hash functions to 

attributes that will be queried. The 'concatenation of the hash 

val~~s cr~tes "characteristic tuples". AlI tuples yielding the 

same'cnaraderistic ~uple pre stored together. A partia~ match 
t • 

query i s processed' by applying the hash functions to the val ues 

specified in 'l:he query and retrieving 
, l, 

the cells associated wi th 

,the referenced charac'teristic tuples. 
. 1 ,<' 

Since 1974, several da~a structures have appeared which are' 

'based on the view or a relation as a space of bi ts, (see chapter 

1 section "4) : A relation of degr e,e \ k can he repr esented by a k 

dimensional space of bits. Attribut\e values are represented by 

i'nt~~rs 0, ,l, ... Idom (Ai) 1-1, i = 0, ... , k-l. The tuple 

[aO' ... , ak_11 is r~pr esented 

. , . , ~k-1) . The assumption 

,reas6nabl.e c;>ne in.practice. The 

to integers is trivial. 

by an on bit a~ coordi nates (aO' 
that each domain isfinite is a 

.translatiO'n of reals'and strings 

-­These data structur es par ti tion the space into cells 

containing no more than c'on bits (or "points") each, where c is 

the ecapaci ty of a cel],. Typically, a c~ll would he s.tor ed on one 

disk page.' Sorne methods, instead of sub-dividiJ;lg, aIl cells 
. . ~ 

cOl)talnl.ng more than c points, allow sorne cells to overflow. 
.P 

The cells are stored in a data structure which is searched 

when a query is evaluated. Under this view of. a relation,7a query 

i s a region Qf the space (usually, but not necessar i ly 

~ a range connect ed) . In particular, query i s repr esented by a 
~ 

hypeF-rectangl e ~ To procesi the query, 

, \ \ 
the set of cells 
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", 

. 
over~apping the query region are retrieved. 'Each 

cells is tested fOt inçluslon ,in the query region. 

22, 

poi:nt i. the~e 
, '.!, 

# 

The data struct\lr es based on these ideas differ pr irnarlly in 
.. 

{the w~':( they parti tion the space. 

The f irst pr6posed data structure of thi s type was thE1 quad 
\ 
1 

tree [Fi'nk'74.]. A quad tre~ node represents a ,point and has up té 
, 

,2k 'children, 'one for each non-empty sub-region generated by 

splitting the .region through the
1 

point in all k directions. The 

size of a quad tree hode'isO(2k ) and the ~rée has n such nodes. 

F,or large k the storagejrequ~rements are infeasible. 

The k dimensional tree (abbreviated t'o "kd tr~e") [Berlt75a, 

Bent79a] is a related dat;i structure whi9h avo,ids the problem: 

the kd tree has O(n), nodes with up to two children each 

regardless of k.,'This· is achieved by. splitt~ng sub-regions in,one 

di rection only. Typically, a node on 
J, 

level 'i wduld represent a 

iLtead of 

, 

partition splitting attribute i mod k. 

A balanced kd tree has C1 (log n) levels the' quad 

tree"s O~ (log n)/k\.levels. A balanced kd tree can be built in 

time 0 (n log n) [Be'nt7.9a] but a 'balahced gu~d tree is not always 

possible. 

Néither th~ quad tree nor the kd tree ~r~ suitable fOJ; dynamic 

appl ications. 80th can ,de~ener ~te r esul ting in degr adation of 

performance. No method for maiptaining the balance of a kd tree 

" ls known. 

The k dimensional B tree (K-D-B tree) [Robi81J is a 

mul tidimensional version" of the Btree [Baye72]. Inter,nal nodes 

store. 'repr esentations of 'regiol)s and leaves store p:>ints. The 
. , 

insertion ,algorithm is more' compl.icated than for a standard 
, , 

Btree. The deletiol1 âlg~z:i thm bas not. been. fully worked out. 
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, , "" 
Experiments s'l0w that storage utilization, following a sequentie of 

insertions lS 50% to ' 70% but there ,is no Iower bourid nor is the 

aver age known. 

Mul tidi mensiona1 cl us ter ing ,[Liou77] parti tions the s~ce on 

each att~ibutè in turn until each c~ll contâinsno more than c 

points. The positions of the partitions are stored in a, list 

which, when.searched, yields cell addresses. 6 The entire di~ect,oçy" 

is scanned to evaluate a query. The method is not truly dynamic.' 

Insertions and ,delet4ons fran the cells can ~ made as, long as 

there is room and cells may become empty. But~ . there 18 no 

provision 
. '\ 

·for changing .. cell boundaries and 'updating the cell 

. directory other than by reorganization. 
~ . 

In mul tidimensional, . paging [Merr78] ea~h k-l dimensional 

partition spans the entire k dimensional spaçe. Thus a 9rid i5 

creqted. The selection of the boundary positions ls. more 

diff icul t than wi th mul tidi rn~'n9'fénal clus ter ing. ,The marginal 

distributions of the points are needed to determin~ good bounciary 

positions'. Due to the global nature of ~he part.ition~ ove,rflow i5 

sanetirnes unavoidable . (given a 
.' , 

lower . bound on load factor). 

Multipaging was originally a static data 'structure but a dynamic 

ve.rsion has been propO-sed [Merr8'2]. 

EXCELL, the ext:endible cel!' method rTamm80], uses a very 

'simple parti tioring, (also a grid) , which ~s independent of, the 

data distributi~n. AlI cells have the sarne dimensions. The grid 

is made fine enough to avoid overflow, (there is no lowe-r round, 

on storage utilizati(;>n). EXCELL uses extendible has'~ing [Fagi79J 

with a hash function that interleaves the bi ts of the binary 

representations of the attribute val'ues, (see chapter 3 sect~on 

2.1) • , case problems. EXCELL has severe worst A relate~, 
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, , 

" 
structure, HCE,LL [Tamm8l1 has worst case problems which are -less.' 

1 ikely, a~d ,less severe. 

HCELL pa-.r:ti tions the space as' does EXCELL but doés it 

recursively. EXCÈLL provides a grid fine enough 50 that every 

cell has no more than c points. , HCELL May use a coarser gr id. 

otl Cells wi th more than c points are handled usi~g another fICELL 

di rectory. 
, 

L 

'Table l summarizes' this survey.' A data structure is 
, . 

considered 
, 

to be s tatic, ,if, i ta ~rfc>rmance can degener atE!! 

following updates (and then has to be rebuilt). "Bias" refers" ta 

the general <> scheme in whlch the space is partitianed. It, La a 

.0 

qualitative rneasure of the degree to which the data structure ' 
j 

fava-rs searching' on sane attributes over others, All of the data 
, 

~tructures with low bi~s can be made more b~a~ed but high bias 
Il 

data s tructur es cannot he made less so. 

A high bias data struo/ure ha;!J J:X>or. performance for searching 

on sane attributes. For example, consider the mu'ltiple attribute, 

tree of figure 10 .:rt classifies tuples on three' att'ributes, AO' " 

.A1, At dom(A O) :: dOm(A1>' = dom (A2) = {O, l, 2}. To pracess any 
1 " 

].-match query on AO ',requi res the accessing of 3 of the.6 pages. 

But 6 accesses· are required to process any l-match 
/ 

1 

query on A2• 

The problem is tha€ the "efficiency" of the search decreases' as 

tne attribute being queried gets farther away frcm the root. 

("Efficiency" is di scussed in chapter 3 section 1.6.2.) 
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Figure 1. The multiple attribute tree: A ~igh bias multiûimensional 
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Table 1: 

Data structure 
Query 
type Updqting Bias 

~ 

EXCELL " R D L 

. HCELL R D L 

inversions h R S/D H 

kd tree ~ R S LI 
> 

, K-O-B tree R D L\ 
, 
\ 

Multiple attribute tree R S H 

MDB tree R D H 

Multidimensional cl us ter ing p S L 
, 

MUl{ipl~ key 
-

hashi ng p S H 
1 

Mul tipaging R . S/D L 

Quad tree R S L 

Trie , R D H 

, 

R: Range 

P: - Partial Match' 
.. 

S: Static 

D: Dynamic 
1 

S/D: Static and dynarnic versions exist 

~: Low 

H: ,- High 

25 
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The most desirable kind of gata structure can process range 

queries, 1s dynamic and l'las low b1as .. Table 1 has several entries 

of thi s type. However ,le ach such data s tructur e i s bas~d on one 
. , 

part:j.cular storage structure for searching. For 
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1 

,exarnple, the kd t.t;'ee';is l?as-ed on the binary tree b'ut t.~ere is no 

AVL version of the ko tree. Il) 'chapter 3 we ~ill discuss a class 
~ 

of .dé\ta st"ructures f'or associative searchtng. A çata structure 

in ,this class cari qe created given any data structure that 

supports . random and s'eque ntial accessing. Another desirable 
~ 

.(lat a- s tructur es i s tha t they 
, 

provide a certain feat"ure of thes'e 
,1 

ordering of the tuples, faci11tating aigorit}'lffiS based on rnerging. 

. , 

2. Data s truètur es us ed in implemented sys·tem s 
" 

The main fé-atur,es of our design for' the physlca1 database wi:ll 

be . campar ed wi th cor r~sponding featur es of two implernented 

s,ys tans: Sys tem R and INGRES. These 'systan 5 and others wer t 
sur veyed in 1979 [K im79] • 

We concentrate on bhese systems because they are the mos't 

completè centi~l ized . systems implemented: for examp1e, none of 
, r, 

the ?ther s'yst'erns I}le~tione~ in t·he survey ~nclude a concurren,cy 

Implêmentat:i;(:ms" of di stributed 'databas,es are based on 
, . 

'centra1ized dat'a'basés s9,their PDBs contain no new ideas. For 
.. , '. 

example,~' Syst;.em. R*- f,WiU82], distributed INGRES [Ston79) and 
, -

SDD-l ['Roth8,O] -are all based on centralized systems • . '. 

In thi s' sect i~n, ,t he :dâ ta structur es us ed. by System Rand 

are di sc~ssed. (0 ther f eatur es of these sys tems are 

qiscussed in chapter 4.') The data structures used by INGRES, are 
. -
similar to t,hose used in other, systems. Most of the ;Eollowing 

, , 

infoJ:rnatiol1 is fran two overvièws of System R , [Astr76, B1aS8~]~ 

an-d 'an,overview of INGRES [Ston76]' • 
.. 

. ')' . 
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, , 

.R are quite,compl·icateQ. Th~e 
CI,J, 

'ar e '$eyer al .~ompO·nents which we descr ibe' be"low. 

1 < ~ • 

2:·1..1.' s~gments 
, ,-

. . . 
, . 

A segJnent i~ a~ s'et.of logical- pages. All ·(iatabase ~bje~ts', 
... ~ ~ .-' 

(e.g': r,~latJ~ns', inv#;'sio,ns) are'j;tored in
t 

segroents. Eac~.object 
i,s comp+.etely contained in~ a s~gment. Each segment may conta~n 

- . 
s.e.ver al ,obj e,cts. 

A pag.e map i s 

~ gi ven l~gica'l 

used" to '-;o~~te' ~he' ph)/sical p/,ge assc!âted. wi th 
. , 

Page., . Ph ys ical pages' ar e allocatec!i ta segments 

oynamically. Various Opèrations on segments deallocate pag~s • 
-1 ' . 

" Logically sequentiaJ,. pages ar.e kept physically' sequél1tlal 

Whene:er possible: ,', ~hiS, i,~ • easy ~()enSU~~~I(\he segment is 

initialized. When a.physicaI" page is uPdated, the old .90PY is 
... .! J~ -

. kept for 
';»' . 

r~cover'y purpo.Sès and a "nearby" physicai page is 
~ # • 

aJ.loc~ted, (e.g, •. ' trre_two'Pag~s ar'e on the sam~ cylinder). l'bois 

" ,.'Of' 

• 

r ' . ,. ~ ." 

,mech~nism '~'aimost ~~ays~ works' [Lori 77] and' when it 'doesn"t it 

ia -1 ikely . ta ~~:r re~~'- i,tse~ f 'following upd~tes af ter' out of date·' 
f ' , ,. ... .c;.,' 

, , , 

pag~s have been reclaimed." .. \ 
~ys tem . R .has 

e~pl ;i.ci,~ f r eed. 

i t~· oWh mfi!lllory man.agement sys tem. ~ges ar e 
'\. 

,The least r~centIy used frée 'page . i ~wapped .• 
<\, . 

mal's are' O!lt on .~. Pcl"ge 'f au! ~. S~9n!ent "page,~ and" bIo'cks" ',of page 
,. ~ .... •• c . ~ ,." , .'\ .. ' - Y'" '. ... • 1 --

1J\an~ge'9 .. in separ ~te Par.t;s of. pd.màry m~ory . .' . 

.. . 
, . \ 
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2'.1. 2. ReLations 
, 

Relations are th'e basic objects of·! Sys.tem R. T'hey can be 
•• 'l.. _ 

created and des·troyed dynamica11y. Tup1es consist' of fixed 1engt.h 
i. o 

and"'varying length fields (attributes). New attriQutes, may be' 

added 'dyn.ar~lical1y wi thout a total reorganiza tion of, the s tor age , . . 
structure containin.g the re1<;1tion •. (The :vé!-~ue of an added" 

attribute i5 undefined in a tup1e until 

changed. ) 

i t i s' ~~pl ici t1 Y . 
, ' 

Associated wi th each tuple is' a tuple identi·f ier (TID). wJ:iich, 

is not ~isible o'utside the PDB~ Pointers stored 'in inversions 'and 

"1inks~ (see"'section 2.1.5') refe~ to TI,DS. 

The tuple,s of a r e1ati'cn can be .11 scànneq" in, s,ever al ways. 
. - . 

They can be scanned' in a system def ined ,order l ,according to the 
f' ~ ~ 

-
sequence of index values fn sane inversion or in an' order 

" . .. 
specified,by'a unary ~ink (sèe section 2.1.5). 

1 , 
1 
j , 

( l' 
1 
\, 

.; l, 

-, 

l 

l' 
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i 
1 

-) 

1 
, f, 

f , 
!, , 

1 
. .\ 

, 1 ' .' 1 

.-1 
j. 

, 2.1.3. pages of relations 

-
The 0F9anization of a System'R page'" (al1ocated to 8; relation) 

/ . 

i s more 
. , 

comp1 icated than in m.any other database systems. There' 
~", , ' . 

are sevefal reasons ror this: 

.- A page' can store tuples fran .more than one relation. 

- Tup1es can ,grOw and shrink (d,u~ to the varying 1ength fields) • 

- L'inks, (pointers assoc:i!ated wi th tup1es), can be ,created and 
- ! 

destr~ed dyn2lnic'al1y. 

. A TJD (see ,sectioA :'2.1. 2) , cons! sts of a '10gioa1 page address 
" 

anq,.a byte off8e~ with~n the: pa~e. At 'th~ specified location 18 a 
" -

. pointer to a tuple within ~he page. This indirection al10ws 

tuples to he shifted ' wi'thin ~he. _~ge. Only the 'intra-page 
" 

. poin~er ,is ,affect.::.d:.the !l'IQ is unchanged. In case,ot overf1ow, . 
1 ' 

r 
r 

" . 
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. " 

, tpe ,tuple' ls rep'~aced on' t~é~ pagë 

overf16w record. Thus', given a TID, 

br. a (shorter) pointer to an ' .. '"' . 
, 

a .tuple gan almost always be, 
" 

found in oné Page acces,s but never ,\more t.han 1:wo. 

, 
.+ 

'ln'·System. R terrninology, ,~n invérsion is an "iIIJage". Images 

can be cr'eated and destroyed dynamicaliy. The images ar e s tor.ed 

in B+trees (see [Cane79]) -r eSiding -{n ,the .,E?ame \ s,e~ent as the 

,:'rela't~on 'being ind,exed. The leaves are dO,Ub,ly l,~nketd to support 
• 
. fast' sequential acce,Ss. Each en~~y in

1 
a leaf ~'nsists of 

1 

an' 

index value and the TIDs for aIl tuples"containing the value. ' 

Up to Qne image per relation cah be clustered: _ tuples' 'with 

logicàIly sequepflal index values are' stored sequentially in. 

"physical storage. 'l'hi s eXPedi tes' sequential pr ocessing us ing the', 
• 0 -;' 

clustered image. 

2.1.5. Links 

, .. • 

J . 

Links are used to co~nect tuples fran one or two relation!;) , 
, ( 

into à doubly l ink1'!d l ist; ....... 
.. 

connect tuples" fran one an order , . 
i 

which does not ne~ess'arily correspond to lè~icographic orderiti:9 
J • • 

(of the attribute values ass.ocÏ,ated. w,ï th tl1e lri:nk). 

Binary l'inks ,st~ongly resemhl:e D'B'Î'G sets [C9DA1l]. , As with 
-

images .. ~he decision t~ incl·ulie'a certai'n:binary link Ii'es with 
, . , 

',the .. database admini'!ttator but aIl ~a:i:ri:!:el)ano~ is-do,ne by Sys. tem , . . 

a; Binary links allow. the' efficient' implemént~t:ion Qf, certain 

, Ç>perations. '. For exampl.e,. a nat'ural jo~n can be .. 'pr,ocessed ve~y" . . 

,. e,ff-iciently if a binary link' ~xists ~h the -access set ;nv6ived in 

the join. That is, 'eacl:i tuple' in one ,r;l.âtion ~~lI ~ or< ,t'!:le sani,è 
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\ 

link as' the tliples i~'theioth,~r' relation with -m~tching value~.'{y ~ 
. binar'y 1 ink may be cl us t'ered; further increasing t'he spee4 of 1:1., 

, " 

ri attir al jOi n: ttte "owrier" and" member" tupl~s will ilJ.1 he' 

physically close. 
, , 

L~S can pe created and de~troyed dyrramically .. Addi tion of. a 

1 in'k causes the' pages to be r.epacked when the tupl-es are placèd 

in the .lists sinee room for' the poin1;ers must he' allocated. 

. , "Obvi'ously, there ax:e .mal'ly ,ways to evalu~te queri"E~s on these. 

data struotùr·es. Scans-, images,' links or sane combination of 

" 
" . 

~. 

, these, may be tlsed. 'An optimizer considers several Possibi'lities if 
" 

... and selects the eheapest (based 'on estimat'es of the cost çf each 
" . 

s,trat'egy). The ,optîmizér has been described in [S~li79.l. 
- " 
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2.2~ Th~data structures of,INGRES .. . ' 

The ,data struct.ures used' by l;NGRES are much simpler than thos'e, 

of System R. 'This, is,- in ~rt, du~ 'tq the decision'to' implement 
, • - 1 • 

,I~~S u,sing th,e ~ {'-le s'ys tem and memory'm~~agerilent facil i Hes .o~ 

the UN IX oper àting sy*.3 t~· [Ritc7~}.' " , 

Relations éa~,' be' created an~ destroyed 'd~amically. AIl '.' 

attf:lbu'tes' are fixed length an~ . new attribut~l~nnot 'he 'added 

dynamically. 
1 

Relatiqns, at:e ~tored in UN'IX files. A file consists ' of 512, 

byte pages. The' concept of a ~ nearby" page' i s. meaningless in. 

UN l,X 50 ph ys ical sequential,itY,cannot be guar anteed. ' 

, 

Relations can be 
\ 

store~ in a~y of' 

an "ISAM-like" tile or hashing can be 

five organizations. Either 

used. Raw or compr esse,d 

data can ~ stored i,n. either kind of file. The fifth organization, 
3' 

. . 

1 
. f 
j' 

, 1 



, 1 
, t 
! 

',-

j ., 
, , 

, .. 
, -, 

1 "-, 
'1 (Jo' 

.' f, ' ,: ! ' 
, ' ,r ' 

! 
"" " .. , 

" ' 

, 
1 
! 

"t, 

, 
i-

l 
f 

, f ' 
! 

1 r 
1 

, -

l'ü 

" 

, , , 
~ - _. _._~--~- --~- - ---...,.~ - ---- ~- .... ~ -........... __ ...... ~-... ...... ~ 

, , 

Chapt'er 2 Section 2 ,31 
n , • 

i.s . a r andomly order ed sequen.ti~l file. 
- , 

The keyed organi za tions ar e accesseQ via TrDs resembl ing those 

of System R. If a primary pagè Decomes,full-then a linear list 

of overflow ~eco~~ ois. set up. 
" ' 

ft' % 
Inversions can be created and 'destroyed dynamica~ly. No 

" 
facility resembling the links of Sy'stem R wàs included, (ohe df 

,the r<easons has to do wi th the UN IX flle sys tem) • 1 
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In this !Jqapter, we "aesèri be "and analyze a class of 
. 

"mul·tidÏmensional' data structures" (MDSS) which ,support ,thé 
- " . -

ef'f icient eval ua tion of range and parti al match queries. _ Our 
-,6 

appr oach will he to transform- tuples into integers and store the 

in~eg~rs in an "indexed-seque'ntial da.ta st:.:.uctur~", (e.9. il 

bi"nary tree) • 
• 1 

An indexed-sequ,ential 
<> -

data structure, (ISœ) has 
o . ,. 

the following two pr operties: 
'J 

1) Any record can be . located ,by a random access in time' f (n), 

wher e n i s the number of records. (Typiçally the ISDS is a tree 
1 '. 

of sane, ki nd in 'which, cas'e f en) = 0 (log n) .• ) 
. " 

..,,» 2) A recor d"" s successor {accor-ding t.o sane total <;>rder ïn9) oan be 

located by ~ sequential access in time"not exceedi~g f (n) .• 

~. 
-,\ 
" 

Since we are deali:ng with large files stored ,on disk, our unit 

of time measurement will be one disk acc'ess. 
" ' 

'Many weIl known file organizations are ISDSs. For exampl'e: 

ISAJ"f [IBM66], the Stree [Baye72] anc;i its variant& [~ane79~t 

traàltional hash files which do not preserve order are excluded • . 
• Thi s app"oach has the fol,low~n9 consequences: 

Many exi sting file s ys tem ~ can he adapt ~à quickly and easil,y 
-'\ 

. 
to deal wi th mul tidimensional data. , . 

New ISDS S immediately yield new MOSs. 

This chapter i sorgani zed as follows'. seJion l describes the 

·'kd trie", a data s,tructure based on the "space" model of a 
" 

relation, (see chapter l seçtion 4).' In section 2 the 

trarisformation of an Isœ to a certain kind of ,MOS iS.explained. 
~. 

Thi s transformation follows di rectly fran -an ~'interpr etation" of . 

the kd trie. Seçtion 3 descMbes a pai r of new ISDS s whose· 
, 

performance i s at leas t campar able to that of the Btree, (and i s ./ 

l ikely to be ~~tter) o. Since ,t'hey 

~. 

e I8 OS s they yi'eld new MOS s. 
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In seetions 2 an,d 3 we will.' use the fol.lowing notation:, <s1 ~ n
1 

,1 52: n2 l' ••• ~m: IJn> denotés the, 's,tr:ing '? 

s1 s1 . . . 51 52 s2 , ••• 52 ... s " s s t m m m 
l ",J , .J .. 

, ~ rl'1 n" nr 

2 m 
where each s' is a string of one or more char act er s . ,If n, = 1 

1 1 

then ft ' " ,ma y he abbr evia:ted to ft S. n S. : n. . 
1 1 " . 1 

'. 
\, . 

li' 

1., Multidimensional tries used tor range searching 
/Ir ~ \ t 1 

We _ propoîé a' data s tructur e ~ t,he kd tri e, for r ange s~archi ng. 
. \. \ Thl,S data s tructur e lS rel.ated to the kd t ree [Bent75a, Bent79a 1. 

f ' 

(.n kd" i5' an abbr eviation for "k dimen5ionai n ,.), In most cases, 
! 

the kd trie has superior performance for searching and updating: . . 
the tim~ir~énts for th~se operations are at· least' 'as good . 
as for the kd tree and the kd trie is smaller, (resulting in 

fewer accesseS ,t~ secondary storage). Most i~IX>rtantl~y, the\ kd 

to tHe di5covery 9f a class of data structures for 
Iii 

-
trie leads 

I;:,ange s ear c~1 ng , ~ s ee s ect.i on 2) " 
< 

Most of the Iria,teria~ in this section has appeared in [Oren8l, _. 
Oren82a 1. 

.' 

L 1. The ',kd trie il 

\~. 
chapter 1 seçtion 4" a k-at'y relation can he AS' di scus sed ,i:n 

r ~pr esented by a k dimens'ional space of 'bï ts in whfch each tuple 

•. _i·S, repre5ented by an on bit. We will r,efer to these on bits as 

,"points". The kd trie is a concise representation of this space. 
,.'!.- .. . 

Figur e l shows a two dimensional space of bi ts and th~ 2d trie 
\ . 
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,.. 

reference 
.' D 

The numbers ooly). The thick l ines repr esent parti tions. .. 
o 

associated with these lines refer to the labels of the inter~al 

(round) nodes of the 2d trie. The partitions 

~~ttern: each partitiob. splits a ragion into 

equal si ze. The or i entation of a par ti tion 

follbw a simple 

two sub-regions ~f 

being plac~d in a 

region R -i5, perpendicular to that boundary of R which WaS most 

recently placed. (For example,. parti tion 7 i s ~rpendicul,pr to 

parti tion 5.), Anode " 
of ~he 2d trie represents a regio~ of the 

. ,space'. AlI nodes on level ï split attribute i mod 2; \ (the root is 

at level 0). A null link indicates that a sub-région is empty, 

(Le. it contains no points). A non-nul1 link points to the 

slib- trie descr ibin.g the sub- regi on or to an exter nal node which 

stor'es the 'tuples corresponding to the points 'in the sub-reg~on. 

The'generalization to k dimensions is simple: AlI nodes. on levei 

i split attrib~tè i mbd k. 

, The splitting terminates in one of two ways: 

J) In a Il pure" " ') -
kd ,tri~, splitting cqntinues 'as far as possible, 

that is, until each leaf represents an occupied one bit region.' 

The coordinates of t1f{t point are not stoted a~ywhere sinee t~ey 

can be derived when the path to the leaf i{3 b:aver'sed. (The 

derivation is similar to a binary sear.ch.) 
" 

2) In ,a "hybrid" kd trie, splitting continue's until a sub-region 

co.ntains no more than s points,' EXternal nodes store the tuples 

themselves. (Figure 1 shows a hybrid 2d trie with s = 1.) 
\ 

Unless stated otherwise, when we say "kd t~ie" we r.efer to the 

hybr id version. 

The depth of 'the pur e kd tÏ'ie i s determined by the si ze of the 

spa.ce rapr ~sentin9 the relatic;m. If the space con,tains 
1 c 
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then the depth o:g;"the pure ·kd trie is h :!:" {log Co)l .. This i5 also 
:;' 

$;he nùmber of bits required to represent a 'tup1e: each tup1e is 

représe'nted by the path fran the root to the 1eaf corresponding, 

to the tup1e. There i5 no theoret'ical bound on h but in :(>ractice 
, r 

i t would be' measur ed by the hundreds or thousands: a tuple 
......... 

requiring more than a few thousqnd bits to represent. is unusual. 

No inter nal node in a hybr id kd trie can be deeper thàm l~vel 

,. h.,. Knuth [Knut73) has proven that the average ,depth of a trie is 

o (log (n» under the assumption that the keys are uniformly 

, distributed' real . numbers in' [0,1), ~epre5ented in binary. 
o 

.bevroye [Devr82] has provided a-shorter proof of this rèsu1t and 

has also shown that the expected depth is 0 (1'og(n» for a very~ 

la~ge clas s of di stri butions, inc1 uding all di stribut ions that .. 
can at i se in pr act i ce • 

The kd trie is related to the non-homogeneous ka tree 

[Bent79a] and algotittuns for the latter apply to the former. Both 

data, structures can evaluate boolean combinations of range 

gueries (wi thout resorting to a scan of a~l tup1es). 

A discriminator is a" k-l d~mensional hyperp1ane which spiits 

one k dimensional region into two regions.' Thé di scr iminatot is 

perpendicular to the axis whic'h répresents the attdbute l?eing 
e." 

split. Both kd trees and kd tries select the attributes to be 

split cyclically, (i.e. 0, 1, ••• , (k-l), 0., 1, ••• 

...• ) , but other rnèthods alie possible [Bent76., Bent,19a]. 

(k-l) , 

The kd tree and kd trie differ in thei r methods of selecting 

the position, within a region of. the discrirninator: A 

d~scriminator in a ekd tree evenly divides the set of points in a 

rcegion. Thi,'s strategy results in a well-balanced kd tree. A kd 

t;rie discriminator is independent of the data; it evenly divides 
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, 

. \ 

" 1 

1 
1 

! 
1 

,1 



• ~f • 

( 

, 

, , 

. , 
!' 

1 

" 

l' 
f, 

f 
f 

1 
"'~. 

.. ,,'. 

,'. 

• 
, ' 

Chflpter 3 Section 1 37 

a region. (Canpare figures 1 and 2.) 

A consequ.ence 'of thi s differ ence ï s that a gi ven set of tuples 

can he r epr es ent ed by any one of a large number of kd trees but 

the kd trie _is unique: it is completely determined FlY the data. 

,This obser:vation has two impl ications concer ning the pe rf armance 

of the kd trie relative ta that af the kd tree. 

1) ,Since kd tries cannat be rebalanced in any way, (other than by 
.,.,~ 

transforming the data), there is nothing that can be done ta 

improve the performance of a bad kd trie. Qn the other hand, a 

bad kd trée can always be rebalanced. 

02) Updates of a kd trie causé degeneration only if they l~ad to a 

distribution of tupI es , that determines a bad kd trie, (we 

Qescri,be such tries in·section 1.3). Updates can cause 9 kd tree 

to degenerate regardless of the tuples contained in the upClated 

relation. -Another différence between the two ,data structures is that the 

discriminator.values need to he stared in kd tree nodes but not 

in kd trie nodes. Kd trie di scriminators can always be 

calculated. 

The kd trie 
1 

r esembles Har dgr aves quatree which .. 
represent sets of integers i.n a given'range'[Hard76]. 

1. 2. Dynamic 'operations on the kd trie , 

is used to 

The tuples of a hybrid kd trie are stored in external nodés. 

Each external node has a capacity of s tuples. Insertions and 

deletions usually affect the external nodes only. 
r 

When an 

external node overflows, it is replaced by a chain of nodes, (see 

figure 3) • 
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3.8 : 
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.' 
""" _ .. ~. . - -

.:. - ~Eàch nod~, in the ·chain (excep,t, the last) corresponds to a bït 

: '-:posi:Ùo'n whose ,.valué is ·'ident~-Gfll in. aIl, the tuples of the 
• ~. '0 1.>. ....' JI 

'e~'t:ernél;l nodë whl.ch"oVer~low~<:l. The tuples do not all agree in . 
, 

'tt,he bi1~ corrésponding to the last node'of the ch~in. Thus,'the 

, tUPle~ .ct ~he ,ext;r;ai~~~(l~~d Çlre '. split' ~ntotw9 
,1. '~... ' 

9roups .' 

This chain 
/' /. 

as 111 fèwer than h node'â '(whe'r e h i s the, I}~ber oi(, 

hi ts.' riee to 
l', - ", 

represe~t ,a .tuple). _I~. ea<?h bit'.~sition ne'ed~d 'ta· 

Or eso e pvEirflow has an even chance of being 6' o,~ l in eacQ' 'tuple 

en we can easil.Y,~calculate the èxpected length of the
d 

overflo\tl 

chain, (see 'section 1. 5.1) .. The expected lengtb is" bOunded by 
" . 

28/9 and a'? s in'cr-~ases, it.approaches l. 
4 ~ ~ ", 

When, pue 't.o deleti·ons., two frater nal exter nat nodes be'come :. 
... ,~"," ,. , • ~ • ' 0' 

empty enoùgh' to be combined, t:he };?rocess is revèuled. . ,.., . . -
, 

.,' The kd trie grows and 'shrinks gracefully. The kd tree, on the 

other hand, qannot be updat~d wfthout s~ane probl~s. It can 

l'- de.gèn~t: at-e- and" then r eb:al~anc~'ng ï s . regui. red to avoid poor . . 

. ' 

pe If orm9nce' • 

. \\ 

" 

1. 3. Performance ,of th~ kd td,~-

Tables 1 and 2, li-st. the 'a~er'age, and 'worst 'case space and' time 

requiFèments or the hybrid kd 'trH~; The requirenents of the 

'no~- homogeneous kd t'ree ar.e gi yen for compar i son. ( The r es ul ts 

éoncer ning the kd tree. are fran [Bent75a~ e~ where st..ated' 

~Qtherwise.) The following abbreviations are used in tables 1 and 
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h., N~~.(;~:~red t~represent a tuple. 

F: NlUn r 'Of tuples sati st:ying thé 9Ue.ry. 

... ' 

N1,lIIIber of dimensions. 

L:' Lifespan of .one rebalancing. 

n: NlUnber 0f tu pl es " 

,t: Nunber of attributes ëeing querie'd, t < k. 
. \­

\ 

-Table 1: 
Average case 

S ize 

Creation, 

Exact Match Query 

Partial Match Query' 

Ran,ge Query 

,i'nsertion 

Deletion. 

hybr ~d ' 
kd trie 

o (n) 

o (n log (n» * 
o (log (n» 

0(tn1- t/k ) 

o (log (n) +F) 

o (log (n» 

o (log (n) ) 

non- homogeneous 
kd tree 

o (n) 

O(n log'(n» [Bent79a] 

o (log (n) ) 

o (tn 1-t/k' ) 

O(log(n)+F) [Bent79a} 

O,flog(n) + n log (n)/L) 

O(log(n) + n log(n)/L) 

* The expected depth of a hybrid trie is 0 (log (n)) [Knut73]. 

Table 2.: hybr id non- hornogeneous 
. 'Worst case kd trie kd tree 

Sü;e 
. 

o (hn) o (n) 

Creation o (hn) o (n log (n) ). [Bent79a] 

Exa ct Match Query o (h) o (log (n}) 

Partial Match Query o (hn1- t/k') o (tn 1-tl k ) 

Range Query o (hn) 0(tn1- 1/k) [Lee77] 

Insertion - o (h) O'(log (n) + n log (n)/L.> 

Dele~ion . 0 (h): o (log (n) + n 10g(n)/L) 
~ . 

. 
The kd tree costs for insertion and deletion include the terrn 
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n log (n) / L • 

'~s term represents'thecost 'of rebal;ancing , (the numerator)~ 
.amor·e zed over the "life~pan." of that operation (the denominator, 

L, . hich, can also be thought. of as "rnean time between 

; ebalanci ngs" ) -. For a s tatie file, L is inf ini tely lar ge. 

,. 
The case results for the kd have de ri va t ions 

--. 
1 
j 
~ 

1 
1 

1 
l 
i 
1 
1 
1 
1 

~verage tJ;ie 

i~~ similar to those for the non- homogeneous kd tree. Thèy a~pear 

.' 

('\ 

s'ection 1. 5.2. 

Two points eoncerning tandom kd bties should be emphasized .. 

'1) The average ease resu.! ts of Knuttt, [Knut 731 and Devroye 

[qevr821 apply ta (Id) tries. Our application of these results to 

kd tries is val id sinee the two " types. of tries are 

indi stingu:i: shable: a trie can he "inte~pr eted" as a kd trie g1 ven 
\ 

k • 

2) The notions ,o~ "randomness" foc triès and t rees' ar e not the 

same. In LDevr 8.2] pe;i'0yé regards the, dat'a stored in ~ as' 

real nrmbers in.' [0, 1) (selected ,frop a given di stribution) . 

éxpressed in binary. In .[Bent7Sa] BÉmtley assumes that aIl 

permutations of the data are equarly likely. It would seem then 

that the aver age case r esul ta for t ries and trees cannot he 

eompar ed. However, the two notions' can' he r eeonciled: The t ree 

results hold for aIl distributions of data (sinee the results are , , 
, '. ~ 

in,dependent of the 'distribution). Si.milarly,. the trie results 

hold for aIl permutations of the data. 

The worst case r esuI ts for the kd trie have trivial 

derivatiQns; they appear in section 1. 5.3: 

, In the aver'age case, the kd trie is at least as.good as the kd 

tree. We ~1l1 'sq.ow in section 1.4 that the kd trie has a more 
. 

compaet cepr esentation. Thus, for large relations on secondary 
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, t 
storage, the kd trie will out-perform the kd ttree. In the worst 

0, 

casc::~ the kd tree is superior. To encounter the worst case times 
~ 

'for the 'kd' trie, t.he data being queried must have many clusters 

of at leas t s+,1 points each, (wher e ~ is the capa ci ty . of an 
.<Y 

ex.ter nal node) , ànd e ach cl US t:er must he conf ined to certain , 
small regions, (those r-egions repr esented by the kd trie nodes at: 

or 51 ightly above. l"evel h-log (s) ) • (See figure' 4:) The 

probabilityof this occurring can be decreased by increasing s. 

s cannot be made arbitrarily larg'e: in practice, considerations 

such as memory capaci'ty and page size' place :l,imits on s. 
1 

o 
1. 4. Implementation of the kd trie 

In this section we describe a storage structure for the hybrid 

kd trie. Because internal nodes do not store di scrim1,nat,orSi,r an . , 

extranely compact repr esent.ation, of the kd trie i5 possible. A 

search on this structure yields a set of point~rs to external' 

nodes which hold t~ tuples ~atisfying the qUery. Each external 

node has a capa ci ty of 5 tuples. 

An interna! kd trie node can be repre5ented by two bi~s: The 

only information needed i8 whether each link i8 null. The 

addressing information of a link i 5 u~necessary if an n impl ici t" 
, p , 

repre5.entation i5 used. 

Each inter.nal "node i s, then, r epr esented by two bi ts, one 

cone5ponding to eaph l ink. !'J,. bi t i s on iff the corresponding 

1ink i5 not null. The nodes of each level are stored 

consecutively. We will refer to this storage structure as the 

"bit string" represe!l...tatÏf>n. The pure kd trie \corresponding to 

the data of figure l would be repre5ented by th~ following bit 

• 'J/I 

1 
1 

, : 
, , , 

l 
! , 
J 
\­
f 

1 . ! 
J 
i , 



j .."-' . 
t 

1· Cr 
1 r 
i 
f 
[ , 
" 
" 

{ . 
i 
[ 

1 

1 
If ' 

1 ; 
t 
t r 

t 
1 ! " , 
! 
i 
1 , 
" 

, 
" 

~ . 

t 

" 

., 

" . 

Figure 4. 

14 

B 

2 

1 

13 

~ 

) 
11 5 
.. A 

B 

, 

E 

F 
4 10 1 

! 

, , 

6 12 

-

[ 
17 

1 5 
0 

3 
1 

, '\ 
\ 

An exàmple of a "bad" distribution of data and the corresponding .' 

2d trie. 

41A 

,1 
1 
1 

1 

1 

'f 
l 
i 
! 



- i 
1 , 

, 

, ...... 

;.; 

" 

, -

Chapter 3 Section 1 42 

string: (A "0" indicates a null link, a ft 1 " indicates a non-null 

link. Beneath each leaf" s links are the' labels of the tupI es , 

fran figure 1.) 

level bi t string 
"II:t 

0 11 

l 11 Il 
" 

2 11'11 Il 10 

" 
3 .? 10 01 10 01 10 01 10 

4 10 01 01 10 10 10 al 

5 al 10 10'11 10 01 01 

'G F D ,BA H E C 

'''"''' 
New consider the ith on bi t ot' level j which is at position 

ooj!>o.{) 

C j' The node which i s pointed to by, the 1 ink repr esented by bi t 

'C j has a .displacement or 2(i-1) bits in the next' level. 4" 

Unfortunately, , finding that the Cj th" bit- was the ith on bit 

involved scanning Cj bits. This scanning must he done for every 

level and is expensive. However, by ot:gani,sing the bit string 
<P ~ 

into "blocks", the number of bi ts scanned in each .le~el~ is 

reduced t 0 an arbi trary cons tant (dependent on the bloc,k_si ze) ~ 

Figur e 5 shows a pur e kd trie organi zed into' blocJs,s. Each 

block contains for several consecuti~é level~I,' a contiguous 

~egment of each level"l:1 bit string. In addition, either aIl the 
fi' 

c:hildr en of the nodes of segment x ar e in the sarne block as, x or 

none of them are. Now instead of scanning levels we scan segments 

of lève1 s. \ , 

4 

Extra storage is required to support blocking. A small, 

constant nurnber of integers associated with each block provides 

i'nformation which permits linking across block boundaries. 

f 

" \ 
1 

\ 
1-

, , 
,1 
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1 , , 
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. ,\ 
.' ,'~,' ... The storage ·~cheme 'described i5 suitable for a pure kd trie 

,,' which' s tor es aIl 'leaves on the sarne level. In the hybr id version, 

. a l~af. may appear on any level.. A Isimple modification of the bi t 

'stiing representation will p~ndle a hybrid kd trie. 

No internaI node in a kd tr1e hàs two. null links so the only 

possible riodes in th' bit string representation are "01", "10" 

and "11". The unused combination, "00", can be used to indicate a 

link fran an internaI. no.de to .. ·an external. node. Wè calI such a . . . 
node a terminator. The. ·terlpinator is followed in the bi t string 

bY,i. a ~pointer', ~o a~ extel!nal nod~. Blocking and implicit 

a ~,essin,g are possible even with terminato,:s and pointers 
''', , 

= ptese t in 
"" . - ;, 

iépX' eseri 
1 1;., ~'W. ... 

~ .. , " 
~ '~" 

the bi t string. 

::ts{~he fol:l.owing bi,t, string: 
.:~ , 

The kd t rie of figure 1 would he 

lével ? bi.t'· string 

0 11 
-~ \'t 

l 11- Il ' 
.... , 

~"{" , 2 Il Il 11 00 [->Cj < \ . 
·00 [-t1 3· 00 [->G] OO[->F] 00 [->0] 01: 00 [->H] 

,,"t 4 ! 10 
(-~' 

t ) 

5" '11' i' 

6 00 [->B] OO[-~Al-_, -

/ 

. Note: noo[-.>.xr~ ii'ldicates a terminator followedby a IX>inter to 

the page containing X. (occupying 2 or 3 bytes tYPiTllYl . 

Thi s stor age structur e allows eff icient imPlementation of the 

.update operations of section 1.2:' ~locking ensures that the 
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changes to a level"s bit ,string are l'ocalized (to the block 

contai ning the segment being changed) • 
, .. 

,Ç;,iven this stor~ge structure, a ka t.rie almost certainly 
1 

occupies much ,less spa ce , ~han does <a kd tree (even if the latter 

uses an n impl ici t n representation as suggest~d in [Bé1'?t79a 1) . 

(See, tàble 3.) 'A maj·or benef i t of ' ,tbi ,s compa ctness i s 'tha t a' 

lar,ge portion of the kd trie can fit in primary memory at onçe. 

Caripared to the kd tree, relativeÎy few', accesses to seco,ndary 

storage would be required. Again, t:he worst case 'corresponds to a 

highly unlikely clustering of poin~s. 

Table 3. r--­
Spa.ce -r equl rements 

, . 
, 

, 
. 

Node size 

N lD1lbe r of poi nters 
to external nodes. 

.. '" .... 
NlD1lbe r of nodes 
(expected) 

NlD1lbe-r of nodes 
(wors t'case) 
-

. 

. 

" 
, , 

' . 

. 

. 

hybrid . non-homogeneous 
kd trie kd ,b:ee 

2 bits ~10 byt es [Benp9a] 
= 80, bi ts 

• o (n/,s) 4' 
, o (n/ s) '. 

. 
o (n) ~ o (n) 

. 
o (hn) o (n) . -

" 
~ 

" 

,,. 

We now give the deriva'tions'·of the kd trie,resulta in sections 
. 

1'.2 and 1. 3. 

. 
1. 5.1. The expected length of the overflow chain 

We assume, that each bi t p:>si tion needed to r es 01 ve overf low 
~ 

bas an even.'" cçance of being 0 or 1 in each tuple. Then the 

'pr.,oba'bility, thab,.r bit (XIsitions do not suffice to resolve 

- \' 

i 
1 
1 
! 

,1 
1 

! 
1 

! 

l 

b :~ 
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overflow, (i.e. the sH tuples all~a9r ee in 

to the i th node of the chain, i=1, 

expeèted l'eng~h of the chai'lfl is 

sinee h 

':, .. 

h 

E = 1 im L r ~ 1 (1 -' P r) 
h-+«> r=l 

can be àr~:t trari.ly 1 arge • 

1 1 
E .. 

(1_2-8 )2 (1-4 :--8)2 

2, .. .. , 

Thus 

" .. 

.. 
45 

.t·he bi t correspo.nding 

r) " i s P =2-- ~S· • 
r 

. " 

E is bounded by 2s19( (ol?1;~ined,·at s = l),'andas s,in'creases, E 

appr oaches 1. 

Q 

1. 5.'2. Avera2e. case kd trie results 
--;._.-' 

In analyzi ng the quad tree, Bentley and S tanat ,[Bent75b J 

derived r esul ts for. the" perfect." quad tree ~ They then com~r ed 

the results with the behaviour of randomly built quad trees and 

found close agr eement. 
• D 

We will consider an anaiogous variat·ion of the kd trie:' t-he 

pe'rfect kd trie. The perfect kd trie has 2 i nodes on levei i, i 

= 0, l, , log (n) - l, (assuming n = 2J for integer j > 

0) 

log(n). According to [Devr82] the 

.' 

.. 

A perfect kd trie has depth 

,depth of the average Id trie is slightly above this. ThJlf . 

theoretical result i6 demonstrated by the data of Fredkin 

[Fred60]. Furthermore, a kd trie has the sarne size and shape as 

a Id trie: The kd trie i5 essentially a Id trie whose keys are 

permutations of the bi ts of 'the k- tuples. These facts-', 

considered together, suggest that the perfect kd trie is a good 

. 
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;JI> 

- ~ , . 
~. 

. . 
model for the average kd r1e. 

1.5.2.1.' Size of th,e. kd trie 

. The, per,f,ect kq trie has 21 nodes on level i, i = .. '0, 1.t ... , 
log.<n) - 1. The si ze of the perf ect kd tri e is 

log(n)-~ 
S';;' ~ '21 . 

i=O 

" 

• ri "- '1 :0 D(n) 

1. 5.2.2. Cost of exact match queries 

An exact match query specif ies a single 

attribute. At each ,level, exactly one node is 

null' l~nk or external node IÎs reached). The 

vi si ted i s at mos 1; 

,v~ ;: O(log(n» 

. ' 

1.5.2.3. Cost of partial match queries 

f . 

\ 

val ~e for each 

examined (until a 

number of noaes 

A partial ~atch query specifies values for t < k attributes. 

Suppose (pessimally) t ha t a t t ri bu t es 0 , ~ ••• , k - t-:- l are not 
~ 

s~cified and tha t the r E!l\ai ni ng a t tri bu t es, k - t , k - t+ 1 , . .. , 
k-l are specified in the query. ' 

Since there is no selection on attributes 0 through k-t-l, aIl _ 

the children of aIl the nodes on these lev..els must be visited. /" ' 

a perfect kd trie, e ach inter nal node has two ohildr en. 'l'hus the 

: 
i 

1 
1 
!. 
~ , 

l' . , 
j' 
! 
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number of ~odes visited in, the first k-t levels is 

1+2 + 
k-t-l + 2 , 

In the next t level:,s, selection occurs on each level ànd only one 

child 

these 

in t,he 

\ 

of each node ~i1l be visited. The cont'ribution fran each of 

t level s is 2k -t nodes. The total- number of nodes vi si ted 

f irs t k levels ,i~ 

VpM(k), (1 + 2 + ... + 2k-t-l) + t2~-t 
- C 

/ 

" ,., 
.. ~) 

, " 
Now, eaèh ot:.the sub-tr:j.es whose root was ~isited in the kth 

level can be analrzed as if i t wer e the r oot of a kd trie 0' Thus,' 

in the second "ba:d" of k levels, 2k-t VPM~k) nodes are visited. 

There are log (n)/k bands in the perfect kd trie 50 that the total 

nœber of nodes visited in a partial match query is bounded by 

= 

(log (n) 
k 

2 

10g(n) _ l 
k - , 

i=O 

(1 + 2 + 

2k-t[ (1 + 2 + 

l)(k-t) 

+ 2k-t-l) + t2k-t + 

+ 2k-t-l) ... t2k-t] + ... + -

[(1 + 2 =+ ••• + 2k-t-;1) + t2k- t J, 

, j 
, . 

L 

" 
~.,., ..... :,. ....... -....r" ... --.... ..... ~I1 ... ::..~,'~~.~~H-I~ l '~ 
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, 

Thls is an ·upper bound because '!fie asswned an arrangement of 
, 

attributes that maximized VPM •. 

1. 5. 2 . .4. Cast <\\ range queries 

We will first obtain results for ~feç~ 2d trie and then , . 

generalize to k dimensions. A 2d range query specifies a rançge of 

values for each attr,ibute. In our view of a reiati9n, this 

corr,esponds to specifying a r~ge ô-J; values on each axis. The 
, 

query dimensions are x and y where x, y € [0, 1] denote the 

portion of each axi s that is covered by the query. The nwnber of 
o 

nodes vi si'ted i s bounded by (cf .. [Bent 75b] ) 
\ 1 

log (ri) _ 1 
2' . 

~ 

i=O 

=oxy(n-l) + (3x +..2y) Cn1
/

2_1) + 10g(n) 

Becaùs'e the 2d trie is perfect, xyn is the nUmbè.r of tupI es 

accessed:by the query. This quantity was called F in s.ection 4. 

,Thus 

V
R 

= O(log(n) + F) 

-
-

We now gen,er al i ze, to k di mensi'ons. The query has dimensions 

i = 0, 1, . .. , k-l." The number 

,-
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of 'ri,bdes' vi si ted i s , , 

: ' 

v = , R 

log(n) _ l 
k ' k-1 
EL' 

i=O 3=0' 
'. 

, , 
10'g{n) : ' 

k - l k-l k-l 
V 'l: 2j - 1 i· R < , L II -(x 2 +1) 

. i=O, j'=O m==O m 

, \, ' ' , ( 
log(n) _ l 

k k-l 
r 'TI (x 2 i +1) 

i=O m"'O ' m 
" 

'The't.erms dominating V
R 

are 

. k-l 
(n-l) -II .,~ = O(F) 

m=O m 

'and (f,rem the pr eci se formula fO~,VR) 

" 
log (n) _ l 

k 

L: k' = ü(log(n) 
1=0 

• 1 

[ 
k-l 

Il (xm2
i +Ù] 

m=j 

~" '"--

; , 
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1 

The ,number of nodes visited in a r<mlJe qu.ery of a, perfect kd trie 

is' 

V
R 

,= O(log(n) + F) 

-, 
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L'S'. 2. 5. ',Creation, 'ins€rtion and deletion costs 
.--

,AlI of thes,e operations perform exact match 'quer.,ies.. An 

insertion traces a ~th' of le'ng~'~ 0 (lo9~» through the - kd' 'trie.' 
- . 

A deletiono
' (in which aIl attr'ibute values of the-·tupl:e being 

deleted are known) mus t perform an exact match query to locate 

the tuple. The actual updatinç('of -the,. kd trie 'r etrace's ~ll or 1 
, . 

,'(more l ikely) , par t of thi.s 
, , , 

path. 'Th'us" inser'tion 
" 

and dèletion 

cast o (log (n) ) e ach. F inally, a, kd -'", tri e can be . cr ea~ ed by, 

performing n insertions for a cost of 0 (n'l-og(n).). -, , 

1-.5.3. Worst case kd trie resul ts 
. , 

The worst case kd trie has - been described in section" 1.3. 

Figure 6 shows the profile,of such a kd' ,trie and illustrates the 

terms "head" and "tail". ·The first,O(log(n}) levels 'comprise the 
" 

head of the kd trie. This is the ~rt containing aIl nodes with 

two children. The tail consists' of long cnains, of nodes which do 

not bifurcate. Resolution of points very. close together in the 

space occurs ne,ar the bottan of thf,:! tàil .. 

],..5.3.l. Size of the 
" 

kd trie 

The width of the tail is ni (s+l) . (wher e s i.s 'the number of 
~ 

> " 
,tuples in each exter nal node) • The .. .' length of the tail is 

'" o (h -log (n) ) nodes and i t i s much longer t,han the head. The taii 

determines the' s i ze of the kd tri e: ' 

n 

s == O(hn) 

" 

" 
, , 

D ' .. 

, 
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f. ~.,3 .. 2. Crisl: of exact match queries , , 

... At each 1~ve1, exact1y one node- is exam,ined (until a nuLL. l:ink 
" 

i 5 reached) • -The n\Jl1\ber of nodes . 'or externa1 node visited is at 
... .. ~ '..' 

. most 

, " 

,< 
1 

1.5.3.'3. Cost of partial mat'ch qu.er.ies' 1 

Let v . 'denote the number of nodes vi,si ted on leve1 
1 

i of the kd . 

'," trie durinq' a partial match query. Then, in the worst case 

\ 

" 

v. =. 
1 

v 

2v. l' > level i-1 e h~ad and 
. 1- attri-but,e' i-1 'is queried •. 

v. 1 ' 1-

v. l' 1-

, . 
level i'71 e head and 
attribut;e i-l i~ not queried. 

" 
lev,el i-1 etai 1. 

_. lo~n) 
is the number 'of' nodes examined in the 'fits~ level of the 

taï!. 

, 10g'(n) 
, , 

V = (Zk-t) k 
log(n) 

.' . 
, . 

-, 

In the worst case, the chain desce'ndinq fran each of the nodes 

visited on level log(n) must be completely travèrsed. Thi's cost 

is 

F J;Qn the ,aver age case r .esu! ts , " 

" , 

" 
1 ., -
i , 
1 

~. 
\ 

J 1 
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-n0des have been examined in ti:le "head. The total mlllber of ,nodes 

visit:ed is 

-. 

1. 5.3. 4. Cost of 6ge queries 

Given a pessimal combination of _ data" and query, the cost of a 

range query can. be D (hn) : 

The query boundaries coincide w~ th parti tions correspondi ng to 

nodes near the bottan of the kd !:t'rie. Furtnermofe, 0 (n) points 

- ar e imme~i at~ly adj aaent to these' boundar ies (on one side or the 

~ther,) .SlO that the entire tail, containing D(hn) ,nodE7s, must he 

e~m~rieq' to determine whether each point is in the query region. 

CI 

,.1. 5. 3. 5. Creation, insertion and deletion costs 

proc;~èding as. in the average case analysis, insertion and 

deletibn have the sarne cos't- as does an exact match query: 0 (hl • 

The kd 'trie- can be built by n inserèions at a cost of 0 (hn) • 

1 

'1. 5. 4. Numher of pages accessed' ')" 
, -., \ 

The set of pages can be viewed as the fi(sr l§!'Çel of the k+lst 

band of lev~l:S in the perfect kd trie. j 

1.5.4.1. Partial match guerie~ 

The number of pages aocessed ls 

log(p) (k-t) 

PpM = 2 k I-t/k = p , " 

, , 
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where p i8 the namber of pages storing the data. 

1.5.4.2. Range eweries 

The number of pages accessed'"is 

= O(Vp) 
... 

where V is the , "volume" of thé query: -the fraction of the space 

covered by the query. \ -
,) 

6 
l' 

1 • 

"1.6. Expe ri men t al resui ts ~ 

An implementation.of the kd trie -'was progr~med in C and 

experiments were carried out on il PDP-II/45 running UNIX V6. The 

motivÇltion for expeEimentation is that our analysis assumed a .. " 

particulat distribution of data: ,that the aata yields a "perfept n 

kd trie. This corresponds to a distribution as shown in figure 7: 
o 

the space is parti tioned into cells and each cell contains one 

point. It was hoped that this would adequately model a uniform 

di stribut ion of dat a. Thi s strategy i s similar ta that of Bent~ey 

and S tanat in thei r an al ys i s of the quad tree [Bent 75b] • 

Our f irs t experi ment, a' ft eont rol" , invol ved a 2d 'trie star i ng 

,points in a 1024 x 1024 space. I.e. dom (AO) = dOm(A1) = {a, ••. 

, l023}'. Page capaci ty was 10 tup1es. Various range and partial 

match queries were evaluated on files of 100, 200, , 3000 

tupl-es. For aIl expet iments, at tri bute values '11er e gener at eq 

us ing a random number generator with uniform di stribut ion. For 

each query we m.easur ed 'the number of internaI node vi si ts, number 
-

of data pages accessed and ef f iciency (di scussed beIow). ' In 
. .. 

t 
"! ' 1 

i ~ 
l' 
1 

1 
r 

• ". 1 , 

, 1 

.. 

addition storage utilization of the data pages was measured. ,< ~ 
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Next, the effects of varying 'dimension an-~ page 0 capaci ty were 

'studied. 

1.6. 1. NLUnber of, inter nal nope ,vi si ts 

. 
1. 6. 1.1. Partial match quer i es • 

. . 
The nLmlber of interna! node vis!ts for a ,parti~l match "query 

in a perf ect kd trie i s 

J 

(see section -1.5.2.3). Recall that this is an upper bound for: a11 ..:. 

partial match queriés. ~t is exact (for a perfect !id trie) for'!' 

~he pessimal case in which the 1ast t attri but es , 

Table 4 compares the reaul ts of experi~entr with 

values. The' values are in c~ose agreement. 

Table 4. 

number of, . 
number of number of attributes 

are queried. 

~ ex:eqted 

t 

tuples attri butes quer ied 
Vit 
(obs .) 

VR 
(es t.) 

428 .2 1 55 59 

" 

," . 
289 3 1 91 100 

289 3 2 29 28 

143 4 1 79 86 

143 . 4 2 40 40 

143 4 
, 3·, 17 17 

" 
c, - Jo. __ ~ ______ _ . . 'iil,'un" ... 

1 

1 

r 
1 

i 
! 
1 

i 
l' 
;, 

1 
( 
• 



, , 

. 1 C 
... 

,1 

/)~ 

- -- \ - . - -~'- -

\ ' . >. ' ' ., 
Chapter 3 Section· 1 55 , \ 

1~. 6.1,. 2. ~ange queries 

An upper 'bound for the number of inter nal node vi si ts for a 

raJ'lge query in a pèrfect k,d trie,was derive~ tn section 1.~'-2.4. 

The formulae for k = 2,' 3 and 4 are, respective1y: 
-

1/2 
V

R2
, = xOx

1 
(n-l) + (3xO+2x1 ) (n ~l) + log(n) 

n 2/3_1 
~R3, .. xOx1x 2 (n-lL+ (7xoxi+SxOx2+4xlx2) 3 " 

.. 

Ta~les 5, 6 and 7 compare' the resu1ts of exper,iments with the 

i ~ expe,ct ed val ues. R~ca11 that this i\s, an up~r bound (for \ the 
.~ 

perfect ,kd trie);' .it i8 a poor estimate. 
Î' 

• l' 

Table 5. 

n :: 428 
, 

Xo 0 *1 > 
VK Vil 
(obs. ) (up. bd .) 

l 
\ 
l ' 

\ 
1./2 1'/2 159 165 , 

.j '. 

1/8 1/2 61 63 '. 

1/8 1/32 . 18 19 
- .; 

1/32 1/32 " Il 12·' 

.' 
\ . 

. , 
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Table 6. 

n '= 28·9 
. 

Xo 

1/4 ' 

,1/4 
\ , \ 

1/4 
, \ J 
1/4 

x . l' " 

1 , , 

l ...,.. 

1/4 

1/16 

. , ------- - --~_._'--*-,-~ -~--_ .. _---. --...... -- -- -... - , 
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" , 

, Vp, V ' x2 ~ 
(ohs .l (up.'bd.) 

-, 
1 , 127 ,2~6 

, 

1-/4 .- 67 103 '-

, 
1/16 24 31 . 
. 
1/16 14 21 

-

" i' 

Table 7. 

n ==' 143 
r 

t'o 
1 

1/4, 

1/2 

. 1/4 

1/4 

. 
1 x 1 X2 

1/4 1 

1/4 1 

1/2 1/2 

1/4 1/4 . 

1/4 1/4 

~ . , 

X
3
, 

'. . 
1 

1 
0 

1/2 

,1/4 

1/16 

1. 6. 2.' Effièiency and ntUnber of pages accessed 

VTt. -Vp. 
(ohs .).,' (up. 

83 264 

44 114 

97 97 

26 26 

25 21 

The efficiency of a search measures 'the amount of work done in 

eva1uating a quèry relative to the minimum possible. For exàmp1e, 

. RObinson, in ana1yzing experiments on, the K-D-B tree [Robi81] 

def ines i t to be 
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\ 
where, N i5 the number of luples, N'" ia the number of tuples 

~ 1 
sati sfying the query., P is the number o~ pages in the file and p'" 

is the number of pages accessed, ·to retrieve the required' tuples. , 

The numer ator i s the' minimum number - of ,pages that could be 

acces sed in eval uati ng the que-ry, (assuming ,a_ load factor . of 

100%). We now discuss various factors that have sane effect on 
1 • ,. 

efficiency and on the ab50l.ute numbel of pages accessed~ 

1.6.2.1. Volume of the gyery 

The volume of a range qpery is the fraction of the space 
1\ 

obseaon, covered by the query. 'A consistent in aIL 

experiments, was that as volume decreased, so did efficiency. 

Table 8 shows the data for queries of à given aspect ratio. That 

is, the ratio of the l;engths of the sides atays const'ant but the 

(vol~e is alLowed to va~y. 
The reason for'this iS,as ~oll~~s: pages whose tuples ,lie 

inside' the 

tuples to 

query, (n internaI" ~ges) ,~-~ibutè 

the- result~~ Pages whose tuples lie 

aIL of thei"r 

in a region 

overlapping a query, (n boundary" boundary of the pages) , 
\: 

contr~bute only sane of thei r tuples. As the- volwne decreases, 

the fraction of the latter type of page increases, resulting in 

lower efficiency.' The Low efficiency·at Law voltnnes is not a 

serious pr oblem sinee only a small fractio~ of the pages are 

actually accessed. 
" 

1 
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'. 
Table 8.' 

n = 428, aspect = 1:4. 

fraction of 
volume eff iciency pages accessed 

1/4 

1/16 

1/256 

1/1024 

< 1 

1 
1 

0.88 

0.67 

0 ... 29 

0.17 

- , 1. f' .2.2. Aspect ratio 

28% 

9% 

1% 

1% 

,58 

\:FrcÎn the 'result of section 1.5 .• 4~2, the 'aspect ratio, (X
O
:x

1 
2d data~, should have an effect on the nllllber of 

accessed in evaluating a range query. For k = ·2 

PR = xOx1n + (xO+x1)n1/ 2 + l 

pages 

It i,s. the Xo + ,x1 term that 

't f ixed vol~'e V, x x = V) o 1 '. 

i s affect ed .by the ratio, (for. a 

Table 9 shows the observed r~sults 

and the es timates. 
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Table 9. 

n = 428, vol ume ::: 1/1024. 

Xo X1 
pages read pages read 
(obs • ) (es t.) 

\ 

1/64 1/16 2.7 3.0 
( 

1/16 1/64 3.7 3.0 

1/32 1/32 2.7 2.7 

1/1024 1 * 16.0 22.1 
, , 

1 1/1024 * 25.0 \ . 22.1 

* ~artial match quèries ( 

, \ ' .' ... 
, .; 

" 1 

1. 6. 2.3. File size and page capaci ty . 
It was noticed that ef~iciency inorease,d with file,size. Thïs 

i's not due to pages becoming more dense1y f i11ed: load factor 

hovers around 70% as the file grows fran 100 ~ 3000 tup1~s, (see 

o sec~ion 1. 6.2.4) • .. 
The .explanation has to do wi th the number of boundary pages 

relative to the nurnber 'of internaI ~ges. As the file grows, the 

number of 
1 

internaI pages grows more quickly than the number of 

boundary pages (for, a gi ven quéry). Thi s e~p1ai ns why the tr;end 

was not 50 pronounced for 'partial match queries:" thet'e are no 

boundary pages and thi s keeps the eff ici ency low., (See table 

10. ) 

Page capacity has an effect on efficiency for a similar 

reason. A file of a given size is stored on fewer pages if page 

.0 capa ci ty i ncreases but this i s due to the smaller number of pages 

which.j,results in relatively fewer internaI pages. Of qourse', the 

decr ease in ef f ici ency i s accompani ed by a sma1ler absolut e 
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nl.l{lber 0-6 pag~ reads sinee the pages are 1arg~r. 
" . 
. , 

Table 10. 
! 

! 

.. 
~ 

~ 

Xo , 

1/4 , 

1/2 

1/16 

1/1024 

1 
~ 

/ 

> 
X1 

, n = , . 
·1 .0.67 

l/S', 0.43 

1/16 0.21 -
1 * 0.01 .' , 

jV 

• 
1/1024 * 0.00 

',* Part'ia1 match cpery 

Efficiency 

500 n ::; 1000 n' = 2000 

0.79 
. 

0.S2 

: 
0.52 0.60 

0 

.~ 0.31 0.36 
- , 

~O. 03 0.02 

0.01 , 0.01 

60 

" ' 

, 

n = 3000 
, 

0.88 

0.61 . 

0.40 

0.03 

O. Dl 
) 

+ -~~~ 
" . 

'1.6.3 .. Load factor 

,'l'ne load factor was observed to be fairly constant at about 

70% under a wide variety of ço~ditions. As points were added in 

the control experiment, load factor was measured after every 100 

insertions. The range was fran 67% to 73%. At the end of the . 
':, 

experiment, (3000 insertions), the load factor· was 11%. 

For 3 and 4 dimensional data, with 2000 and 1000 tuples 

resepectively, the load factors were 70% and 69%. 

,. Load factor varied with page capacity but no pattern was 

\ 

discernible, (see table Il) • 
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·load ,factor 

71% 

67% 
. 

73% , 

64% , 

77% 

,. <i' 

l' 

2. ~ class of data structur eS for r~ge searchin$l 

61 

" - '~ 

' '\ 

" \ 
t\ 

j' 

.' 

, 1 

In this section we describe a class of data sft-iuctures for 0 

range searching. ' This class includes a type ,--,.of kd tree whosè 
" . 

bal ance can be maintai ned eff iciently, (unI ike: Bentley" s kd 'tree 

[Bent75a, Bent?9a])'~ and a' multidirnensional Btree which is 

simpler than Robinson l s K-D-B tree [Robi81] and Scheuermann and 
\. 
Duksel"'s MDB tree [DuksSl, Sche82]. 

Our approach i8 to transform 
~ 

the tuples into "''integers which 

will be stor'ed in a · .. .one dimensiona1" data structure such as a 

binary tree, (i.e. the multidiIlfenstG!L.a1 
• ' f' 

tuples are ordered in a 
"'''''" 

. ~way to be described belOw) • 

We require that ,the underlyi ng data, tructure he 

indexed-sequentia~:' our data structur-es are multidimensio~l 

generalizations.' The advantages of this appr0$1ch 'have been 

discussed in· the introduction of this chapter'-è 

The class of indexed-sequentiai data structures includes, sane 

. 

,; 

Ô 

" 

JI 

\ 
t 
! 

j 
1 ., 
, 
1 
~ , 

1 

! 
~ ., 

, 

of the most widely used f île organizations: e.g. ISAM"-[lSM6'6fF,===::---'lI1-
, 

- ----" ~-~------~--~---- - -
Btree [Baye721 the i ts and variants 

.' 
[Cane79] • ~ 

"Ihdexed-sequential data structures" (ISœs) were ,defined'in the J , 
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, 
introduction of this chàpter. 

appéars as [Oren82b]. 

This sect,ion, .with a few changes, 

, . 
, " 

\ 

'2'01. The z ordering 
, 

~ ino~der traversaI of ·the kd t~ie of figure 8 corresponds to 

th~ aIphaœtical order ing of . the tuple Ia~l s A, B, C, D, E, F, 

G, H, I~ This motivates the total o~de.ring which can \5ê defined 

,for any set of ~multidimenslonal) tuples: the z order. 

A kd tree (for example') could not be used to' def ine ~uch {an 

ordering because ~ given kd tree representing a-r set of tuples is 
-

not unique. The inorder traversaIs of two such kd trees are not 

necessariIy the sarne. 

The Kd trie provides an objective ordering, (ï.e. an order!ng 

'dependent on the data ooly,): if tugle t pr ecedes t'" in th~ 

inorder traversaI of a kd trie .99ntaining 

pr ecedes t'" tn Z order, (t ~z t'). 

The Z ordering of tuples can he seen as 

both tii then t 

a path, the .. z curve" , 

whtch passes t'hrough aH the bits- in the space. Figufe 9 

demo9strates the Z curve in02 dimensions. The· path starts in the 

Iower left corner and ends in the upper right co~ner. 

Suppose that each of the domaLns 1 (fran w!t\Ç~ ',the att'ribute 

values are dr awn) contain 2d elements: Then, if thé aHr i,bute 
, 

\, 1 ~,I, 

values of P = [PO' •• '., P
k

-
1

] are, represented1n bl.nary, P = 

[POO'P01", PO,d-1 ' : ... , Pk-1,O Pk-1,1 ..• Pk-1,d-j ] ~here Pij iS,., the 

jth bit of: ·P. "'s binary representation. The Z order is defined by 
1 

,"" P < Q <==> shuffle(P) _< shuffle(Q) -z 
where shùffIe(X) = xOO x10 ... X k_1,O x01 X11 : .. Xk_1,1 "'~O,d-(1,d-1 

•• 'X
k
_
1 

d-1' i~ the integer created by, the concatenation of the 
" ' \ . 

'1, 
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_ Figl?-~e 8. A 2d space and the 2d'· trie representing it. 
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indicated bits. Thts point A of figure 8 corresponds to the tup1e' 

[OP.l 2' 0102] and shuff,le(A) = 0001102 = 6. Point B is the tup1e 

\ [011 2, OOO~J. and its shuff1e';value ~s 0010102 = 10, soA 5..7.&', 

The kd trie is .essentiallY a trie s'toring shuff1ed tup1es. The 

trie lS an IS05. We will show tlùit any·>"IS05' storing .shuff1ed 
\ . , ..... 

tuples' can he u~ed for the eva1uation of range quer ie'S. 
" 

While ' z 'order ing can be def ined in terms of an inorder-
,1 

tr.aversa1 of the kd trie, the 
'. 

kd trie does not have to be 
1 

constructed to generate z ordered tup1es. The function shuffle 

(given below) performs the inter1eaving of the bits. ' The hash . 
function used by Tamminen in EXCELL [Tamm80] is equivalent ,to 

shuffle. 

In the exarnp1e given above, the interleaving, was performed 

-':"'cyc1icéÜly: The ith bit of 'shuffle(t) is frem attribut-e i mod k 

of tup1e' t. This corresponds t~ a cyc1ic sp1itting pattern for 

the kd trie. We can generalize to patterns other than cyclic. 

, 
1 

l' 
1 

• 1 
1 , 

1 
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l 

i 

1 
; 

l 
J 
1 

1 

\ 
l 
l , 
~ 
~ , 

-. ,', Another genera1ization i5 that the domains need not he the same, 

size. Both of tl:lese genera:lizations can be accornplished by 

, 

setting the values in the a-%t\ array. For examplé, in a 4 x 8 

space with attr[O]-O, ~tt]=l, attr[2]=1, attr[3]=O' .and 

attr[4]=1,' shUffle([002' 111 2]) = 01101 2 and shUffle([lOZ' 001 2]) f,' 

= 100012 so [00 2, 1112] ~Z (102, 001 2], By modif~ing the shuffle j 
function in this way, it is possible to obta:i,.n "high bias" MOSs, 

(see chapter a 2 se'ction 1.2) • 
1-

," 

C 1ear1y ,unshuff1 ing i8 also possible. That is, given 
1 

shuf fIe (~) (and the at,tr val ues) the at tribute values of t can be • 
-' 

determined. The unshuffle function (given below) is applied to 

tupl.es ~etrieved in a search before they are reported. 
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shuffle (tuple) 'Shuffle is an array of h = Wo + ••• + wfC -1 bits 
wherew, = Idorn(A.>I, i = 0, _..:;:" k-l. Tuple i5 an arrayof k .. 
integers, one for each attribute. The' ith attribute value is 
repr esented by a 8 tr~ng of w, bi ts la,belled (fran MSB to LSB) 0, 
1, ". , wi -1. Attr[i] indicates the attribüte of the tuple fran 
which the i th bi t of the shuffle value should he selected. Count 
is an array of k counters: count[a] is the next bit position of 
the ath attribute to he included in the shuffled tuple. 

for a : = 0 t a k-l 
count [a] := 0 

end 

f or i : = 0 t 0 h-l ' 
a.:= attr [il 
shuffle[i] := (bit count[à]-of 
count [a'] ::0; count [a] + 1 

end 
r eturn 

end shuffle 

" , \ 

l' ,. 
tuple [a] > 

unshuffle (s tuple) 1 

Stuple is an array of h bits representing the. shùffled tuple. 
Unshuffle i8 an array of k integers (of wo , ••• , w __ -1 bit~ 
respectively), one for each' attribute, wbtch wil~ store the 
unshuffled tuple. 

for a : = 0 t 0 k-l 
count [a] ::0; 0 

end 

f or i : == 0 t 0 h-l 
-ç----a' : = a t t r [i] 

(bit count [a) of unshuffle(al) := stuple[i] 
count [a) := count [.] + 1 

end 
r eturn 

end unshuffle 

2.2. Eva"luating range queries 
1 

" 

In thi'ssection we describe an algor'ithrn for 'the evaluation of 

queries. This algori thm can ~ applied to any 

indexed-sequential data structur e that stores ,tuples' in Z order. , 
(The idea of ~torin9 shuffled tuples in unidimensional data 

s tructur es is attributed ,to McCreight by Bentley in [Bent75al.) 

" 

1 
1 
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In ,each step' of the search alg~ri thm 

generated and tested for overlap' wi.th 

Thr ee cas es can occur: 

1) "The SR is autside the QR: T'he SR daes 

whose tuples satisfy the query. 

a search region 

the 
1 
query region 

(t;' t 

1} <t) 

not 'cantain any 

v 

• 65 

'(SR) is 

(QR) • 
o 'j'" 

points 

2) The SR is inside the OR: AlI of the, points' inside the SR 
- 1 

," 

correspond tOduples, satisfying the, query. The tupI es"" are' .. 

retrieved, unshuffled and reported. 

3) The SR overlaps (but ia not inside) the QR: The 'SR ls split 

into two srnaller SRs which "are searched recursively • 

1 
1 

! 
1 , i 

. In case (3) the various. SRs are constructed. The method af ' . ~. 
splitting is exact'ly the sarne rnethod used ta split r;egians in the 

, r 

kd v trie. Therefore, the tuples retrieved in case (2) ,are 

consecutive in 'Z order. (Recall that the tuples in the externat 

nodes descended fran any kd trie node ar e cons ecut i v.e in the z 
" 

arder. ) 

The retrieval of tuples in case (2) is simple given an 1Soo: 

Su.ppose that the SR i8\ [lO:uO' ••• , lk_1:.uk_11. Then the tuples 

to be retrieved have ~huffle values in the range [shuffle( [10 ' 

••. , lk_11) f shuffle([uO' ••• , uk-1]) J. ~he 'first' tuple of the 

Z order whose shuffle value is in this range ,can be located by a 

r andorn access to the 1500' storing the shuffleCi tuples. The other~ 

" can be retrieved by sequential accesses. 

The search algorithm is given below in greater det:"~iL The 

algorit~ is invoked by calling Rangesearch(QR, [0:°0-1 , ... , 

O:Ok_,-lJ, 0). 

- -~ -- \ 

, . 
1 
t ' ,1 

" 
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, -
. - - -, . R'angesear ch (QR, SR, level) 

.Level i.s· 'the depth 
bi ts' 50 level -. < 

\ correspondi ng SR 15 

of recursion. ôA tuple i s repr esented by h 
h. If level .., h' then the size of the 
one bi t. and ei ther SR C OR or SR fl OR == ~. 

if SR n QR = fJ (* case 1 *) ~, 
then (* do nothing *) 

pass 
else if SR C OR (* case.2 *) 
·then (* rëtrieve aIl tuples in 

t :=- randac(loval(SR» 
while tuple (t) < hi val (SR) 

report unshuffle (tuple«t"}) 
t : = s ega c (t ) 

end 

the SR 'Ir) 

else (* SRn QR 1-~, case 3 *) 
Remgesearch (QR, left(SR, attr{levell) , 'levèl+l) .( 
Ranges ear ch (QR, r ight (SR, att r [l.evel]/) , level+l) 

end'if 
" retur'n 

c~~.geSearCh 

left(SR, ~) 
(* The range of attribut'" 0f SR 
u ~ : = (la + \,la - l)j 2 
r.etur n (SR) 

end left 

right (SR, a) 

is 1. : ua *) 

(* The range of attribute a of SR is li:Ua *) 
'la : = (la + ua + l) / 2 

r etur n (SR) 

end right 

. ' . 

.. 

. , 

I-.~ 

.. . l f SR' ,.., '[ 1 0 : uO' ••• " l'k_1: u
k

_
1
l then lovaI (R) =. shuffle ('[10 ' 

••• , lk_1]) ~nd hival(SR) = shuffle([uO' U
k

_
1
]). Tuple(t) 

returns the shuffled tuple located at address t. Randac(x) 

locates the first tuple of the relation in the Z order whose 

shuffled vaJ,.ue 15 at least x and returns the address of that 

tuple. Seqac(t) finds the succesSor.· of the tuple located at .. 

/ 

·f 

~_ .... ---... --
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" 

addre~s t. If tup1e(t) ,has no s,ucc~ssor ~hen seqa'c(t)~ retur ns an 

address such that tup1e,(t)' = 00. Left.{SR,a) splits the SR on '1 
1 
i 

..... ~ ~ 1 .. 

attribute a and returns the 1eft sub-region. Right (SR,a) returns 
" , 

the corresiX)nding .right suh- region. For. example, if the ath , 

a,ttri but. e of, SR 'is 1011000 2:1011111 2 
a) ,is 10110002 :10110112 

. 
1ef t (SR, 

right (SR, a) i s 10111002 :101111],2. 

2.3.° Ref inements to Rangesearch 

, , 
then the ath 

l ",' .. 

attribute of 

and the ath a t t'ribut e of;r 
~ " 

1. 

The .Rangesearch a1gorithm of section 2.'-2 pas sane problems. In 

this section we discuss these problems and sane solutions. 
\ 

The most serious probleID i s th~.t Rangesearch may gener ate a 

vast number of SRs, each o~ whi'ch genetates a random access'. Most 

of these SRs will not generatè page .faults given a typical @ge 

management systE!l\, but the amount of CPU work involved will be 

overwhelming. Figure 10 illustrates the problem. Near the query 

boundaries, Many very small SRS, (one and two bit regions in 

figure 10)" may be generated. The number of these SRs is 

determined by . ~he, location and dimensions' of the query and is 

independent of the data stored. (In section 2.7 we derive an 
c 

expr es sion f or the number of random accesses gener ated by a 

certain 2d query. In the worst case, 'a query of size XO' x X1 can 

generate O(X
O 

,+ X
1
) random ·accesses.) The prob1em larises because 

many spl.its may be 'required before SRs not over1apping the QR are 
[i> 

'gener at ed. 

Another problem with Rangesearch is that the stack of SRs 

generated by the recursive calls 

maximum depth of recursion, h, 

may becoJne c;lui te large. 
\ 

i s al so the h I.D1Ibe r of 

The 

bits 

", 

1 . 

1 
f 
i 
1 

, ' 
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\ 
.. 

r ep~esènt 
, 

a, tuple. Each SR occupies 2h bits for a required ta 

total of 2h2 bits. Since, in practice, h may be in the thousands, 
, , .... 

the size of the stack can be a problem •. 

\ 
2.3. l. Eliminatin9 the- stack 

, 
The 'stack of be ~l imi nated. By storing just the top SRs can 

- \. " 

SR, previous SRs can be derived.' Thus the' stack can ,bë 

t;epresented in 2h bits. 

,Let SR(i) denote the SR on the ith level calI of Rangesearch., 

~ran SR( i) , two SRs can be deri ved: T1;le lef t child of SR'( i) i s 

LSR(i} and the riQht child ,of S~(i) i5 RSR(i). Giyeli SR(i), 

either SR(i+ll = LSR(!) or SR(i+l) = RSR(i). 

The stack of SRs can be eliminated since SR(i) can be 

,can, ~ reconstructed 

(r ecall tha-t = 
, 

fran LSR( i) 

(la+ua-1)/2) • 

sinee ua = 

Similarly, SR( i) can be - , 

reconstrueted fran RSR(i): la = 2 la Ua - 1. New, the stack of 

SRs has beén reduced ta a stack of bits. The ith bit indicates 

whether SR(i+l) = LSR(i) or SR(i+l) = !SR(i). 

Even this small 'stack can be eliminated. Using the notation 

given in the introduction of thi s 
, 

chaJ?t er , tl:le binary 

tepresent'ation of la:ua (o~ la:Ua) is 

, <*:d-c-1 1 y lo:c> <*:d-c-1 1 y 11:c> 
- , 

. wher e c 2 0, d = w i s the ,number of bi ts re,quirecf to represent a 
values fran the ath doma~n, each' * is ei ther 0 or 1 and Y is 0 or 

1. The cor r es po ndi ng r ang~ in the par en t: reg! on i s la: ua = 
a 

<* : d- 0-1 l, 0 JO: c> <* : d- c-1 - 1 1 1 1: c> 

i, , 
l' 

1 , 
! ' 
1 

! 
! 
i· 
1 

• • 
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.... " .' 
If Y .= 0 then the child was a left child'1 if y = 1 then the child f 

was a right child. 
". ( 

This view of ranges provides another way to calculate LSR{i) 

and RSR(i). If la = <* :d-c-1 

1 : c> the nUa :;: <*: d- c- 1 1 0 

1 0 l, 0 : c> and ua = <*: d- c-l 1 1 1 

1: c> and lâ :;: <*: d- c-1 1 1 0: c>. 

That is, the calculation can be achieved by complE!Tlenting a 

-, single bi t. 

To summê:'rize, the stack is unnecessary since the SR{f) fran 

which SR(i+1) was derived can be reconstructed. The technique 

presented here will be of use in ~olving the more serious, problern 

of reducing th~ nurnber of random accesses. . , 

2.3 •. 2. Reducing the number of random accesses 

2.3.~.1. B~~homogeneous I8DSs 

A non-homogeneous tree-based data structure stores aIl the 

records in the leaves. InternaI nodes store only di scroiminators 

which guide the search, (e.g. a B+tree). The leaves can be 

1 inked together i nto a l ist. Sequential accesses are then very 

cheap, recjuiring a't most one page access and usually none. 

A leaf page of a non-homogeneous 1800 contains tuples whose 

shuf fIe. val ues ar e 51 ••• 

on the page, and s1 < ••• < 

between 5ucce5si ve tupI es: 

, s where pis the number of tuples 
p \ 1 

sp' Many.small SIS are likely to fall 

Along a query boundary_of size x there 

can be up to 0 (x) small SRs, (see section 2.7)-. Typically, the 

space representing a relation is so sparse that the vast majority 

of these SRs contain no tuples satisfying the query. 

To avoid deal ing wi th these SRS, the' Rangesearch algori thm 

r. 

1 

, 1 
, j 

1 

. , 
-4 

1 
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could test aIl the tuples on "~a retrieved pagEl for inclusion in 

the OR. The- pr oblem wi th thi s appr oach ,j._s that the s tate of the 

search algori thm, as described by SR and level, is out of date 

after t.he page has been proces~ed. Sanehow, these variables must 

be reset so that the search can- resume. 

-}:'he last value on the page is Spa This tuple, (or any other), 

-----,ce-,an-k)e<"""r egar ded as a one 
, .....,~, 

, ~k=-+)~-bl' t reg{on. If [ ~~~~' ... 
"" 

then the cor r es pb ndi ng (one bi t) r egi on i s faO : ~~O' ... 
,a

k
_

1
:a

k
_

1
1. To begin recons'truction of the state of the search 

algorithm we .set SR = a
k
_

1
: a

k
_
1

] and level = h. 

(In general, an m bit region is explored at level h-log(m). The 

cu;-rent SR contains 1 bit.) Using the ptocess described in 

section 2.3.1, ancestral SRs can be reconstructed. This ls 

an al ogo us ta "cl imbi·ng up" a trie. Attr indicates which 

attribute"s range ta mo'difyat each step of the reconstruction. , \ 

Each time a parent SR is reconstructed, level is decranented by 
, 

one. This process continues until the SR overlaps the ,QR and the 

child of SR was a left child. (If there is nooverlap then we are 

in a part of the tr.ie that should not he explored. " If there is 

overlap and the dhild was a right child then both children of the 

SR have been explored.) With SR and level reset, the search 

resumes wi th RSR(level). The modif ied Rangesearch algori thm is 

gi ven below. 

Figure 11 illustrates the search using the data of figure' 8 

and the QR of f igur e 10. The tuples have be-en stored on pages 1-4 
. 

in Z order. The tuples 'have been placed at "posl tions in the 

diagram representing their shuffle values. The query is brok~, 

into SRs (di splayed beneath the tuples). In the original vèrsion 

of Rangesearch, each SR would be searched in tu.rn yielding tuples' 

l 
" , 

1· , 

1 

l 
1 
j 

1 
j 

1 
" 
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.. 
A, Band C. The modi f ied 

c 
fol10ws: 

~ 
version of ~angesearch would proceed as 

The leftmost SR is gener/ated, causing page 1 te' be read. AlI 
-

the tuples on the page ar e checked for incl usion in Jhe OR. Bott) 

A and B ar e i nel uded in the OR al though nei ther be'1on9s ta the SR 

which generated the page r ead. 

~econstruction of the ~tate of thesea~YieldS an SIR which 

\causes cPélge 2 to be read. Tuples è} and D ar"e checkèd aga:i.ns t the 
,.. 'Î.. ' 

OR. 'C is inside the QR but D is not. Note .that the three smal1 
2, 

SRS between C and 0 were not generated. 

, 

i· 
1 

Reconstruction fran tuple D. causes the ~search ta terminate Il 

since'O is pas t the last SR. Pages 3 and 4 are not accessed. 

- ". 
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Rangesearch(QR) 
Rangesearch is now specified iteratively since the reconstruct 
al go ri thm "jumps across" level s of recur sion. D ir indicates 
whether we are climbing up (towa}.ds the root) or down the trie. 
Childside i5 left or right dependl.ng on whether the child of the 
cur rent SR was LSR or RSR. 

SR: = [0 : Do - 1- , 
level : = 0 

, 0: D~.1 -1] 

di r := down 
repeat until level = 0 and childside 

swi tch di r 
= dght -

end 

case down: 
if SR C OR 

process (SR; t) 

r eco.ns truct (t, 
dir :=·up 

(* get aIl the tuples in the --SR and *) 
('Ir scan the r~ainder of the last page read'; 

SR, level, childside) 

else if SR n QR ~ 13 ('Ir explore the left SR first *) 
SR:= left(SR, attr[level]) 
levél := level + 1 

(* retur n the new SR and increment level 'Ir) 
else (* SR n OR = fJ *) 

di r : = up . 
(* tes tore i s done be;tow: cas e up and SR n OR = fJ *) 

end if 
case up: 

·if SR () QR '1 fi' (* Have just reconstructed or resto):ed *) 
di r : = down , ~ ,-
SR := right (SR, attr[level]) 
~evel := level + l 

(* return the new SR' and ~ncrement level *) 
else (* SR fi OR = fJ *) '--_/ 

restore(SR, level, childside) 
end if 

end swi tch 

r etur n 

end Rangesearch 

, 
,< 

" 
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r 
pr ocess (SR, t) Ij 

Retrieve aIl tuples in the SR, ·starHng on the page accessed oy 
10val(SR). (This may require reading more pages.) Then, test aIl 
tuples ,on the last page read for inclusion in OR. L(t) i8 the 
address of the last tuple on the page containing t. 

t := randac(loval(SR» 
while tuple{t) < hival (SR) 

report tuple1t) 
t := seqac(t) (* may cause a new page to be read *) 

end 

(* Fini sh u p the las t pa ge r ead *) . 
end"'of-page := L(t) 
while t < end-of-page 

if tuple (t) € OR' then report tuple '(t) 
if t < end-of-page then t := seqac(t) 

end tl 

r etur n· 

end process 

restore(SR, level, childside} 
level : = level - 1 
a : = attr [level] 

(* The r ange of attribute a of SR, 1 : u expr essed in binary i s *) 
(* <* :d-c- 1 1 y 1 O:c> <* :d-c-1 1 y i 1 :c>. *) 

if y = 0 
then , 

childside := 
ua : = 2 ua -

else 
chil~s.ide := 
là: = 2 la 

r etur n 

end restoz::e 

left 
la + 1 

, right 
ua - 1 

reconstruct(t, SR, level, childside) 
[aa' ~ .. , a ~.1 J := tuple (L(t) 

(* reconstruct fran last tuple of page *) 
SR : = [a o : ao , ••• , aJr-1 : ak"_1. ] 
level := h 
repeat until~SR n OR fi 9J and childside = left 

restore{SR, level, childside) 
end, 
.t.etur n 

end r e~ons truct 
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2.3.2.2. Hornogeneous ISDSs 
. 

A homogeneous ISDS 'stores reco'rds in bath the internaI and 

leaf nodes of a tree-based data structur e, (e.g. a Btree). For 

such data structures, the technique of section 2.3.2.1 is not 

always corçect: the tuplesfon one page s1' ... , Sp do not. 

represent aIl the tuples t, 5uch that 51 .s. shuffle(t) ~ sp unles5 

the page is a leaf. That is, an SR between 51 ~n~_, sp ma~ 

actually caver tuples on a descendent page. UnleSs- oi val (SR) i:s 

the shuffle value of a tuple of the relation appearing on a 

non-leaf page the processing ôf the ,SR terminates on a leaf page. 

It will, therefore, be an extremely rare event that the search 
, 

terminates on a non-Ieaf: the probability tha t hi val (SR) 

corresonds to a tup~e is very small since, in practice, the space 
" 

is 50 5parse. Furt~rmore, in practice, the ISDS is a balanced 
}. 

tree of high degree 50' IDost of t;he pages are leaves. 

For a homogen~ous 1S OS then,. the "r8ion of the pr ocess 

algorithrn given below would be used. If the search terminates on 

a leaf page, the rest of the page is scanned a~ in section 

2.3.2.1. If the search terminates on a page which is not a leaf, 

(this will rarely occur), then the leaf page containing the 
, 

successor of the last tuple seen is scanned. 

J 

" 

I~ 
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procE!SS (t, SR) 
Page (t) is the page containing tuple t. 

t := randac(loval (SR» 
while tuple(t) < hiV'al(SR) 

. report tuple(t) 
t : = seqac (t) <.* may cause a new page to be read *),' 

end 

if page (t) i s not a leaf 
then t := seqac(t) (* the successor i8 on a leaf page *) 

end-of-page := L{t) 
while t< end-cf-page 

if tuple(t) € QR then report tuple(t) 
if t < end-of-page then t ::::: seqac(t) 

end ' , 
r etur n 

end pr ocess 

2.3.2.3. Query expansion 

75 

Query expansion i s another method for reducing the number of 

random accesses generated by a QR. It is applicable regardless 

of the ISDS used. The basic idea i6 to embe'd the OR in a larger 

region, QR", which generate6 fewer ,random accesses, (but po6sibly 

more séquential accesses). (See figure 12.) The Rangesearch 

algorithm is mOd~fied to process QR'" and(fi~ter'lu.t tuples in OR" 

- QR. 

Our <;li scussion of query expansion follows frani the analys'i 6 of 

a certain QR in section· 2.7. The QR considered i s [0: Xo -l, 

The binary representations of Xo and' X1 determine 

R (QR), the number of random accesses generated by the OR. 

For the special case"{ = Xo = X1' we show in sect~on 2.7 that 

R(QR) = O(2Q) where q is the distance, (number of bit positions), 

betwee'n the leftmost and rightmost, 1 in the bînary tepresentation 

of X. (In sect ion 2.7 we al so di scuss the case ~ yi X
1
.) Thi 5 

result says, in a sense, that R(QR) is independent of the size of , , . ~. 
the query: R( [O:X-l, O:X-l]) = R( [O:2X-l, O:2X-I). This is.so 

" , 
! 

~ 
~ 
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Original quary. 1001 011, 000 100] 

6 SRs 

Expanded Query: [000.011,000'101] 

3 SRs 

Figure 12. Query expansion. 
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because doubl ing X i5 equi valent -ta a "left shi ft" which does not 
, "'"' 

affect q. 

In arder ta reduce R(QR), QR c~n 't"he rep1~ced by QR" suq:h that 
t 

QR C QR~' and q (QR) > q (QR~) • For ~xam pl 'e, if QR = [0 : X-l, 10:' X-I ] 
',,<, 

where X = 001101012 then OR'" 
~ " 

= [0: X'" -l, 

001110002" satisf ies our requirements. 

0: X" -1] whei" e X" = 

'There is, a re1at.ionship between the bi ts of 'X and the 

partitions creating' the SRs. Increasing X to X" corresponds to 

ffiQvi ng the 'boundaries of the query out ward s 0 tha t largef (and 

fewer) SRs will be rieeded to process the guery. 

"A modified version of Rangesearéh which employs query . 
expansion is given below. 

l' 
, 

There is a cost to be paid for using QR'- instead of QR: a 
r 0 

1 l, 
, , 

larger po-rtion of the' s~ce is covere'd and it is likely th~t mor~ , , 

bvp1es will be retri ved. Simple ca1culations based on the 
. 

formula for R(OR) su~ge t that it is weIl worth expanding the 

query by a "large amount Jasswning a uniform di stribution of 

tupI es ). For examyle, if = <0: r_ J 10 1 * :d- r-2> i8 ,expanded to 

x' = <O:r 11 1 O:~-r-2> then t.he p:)rtion of the sp~ce c9~ered 
( 

incr eases as much as 125% but the number of random acce8ses i 8 

exa ctly 5. 

.. 
RangesearchOE(QR) 
Find OR" (* wi th properties given in text- *) 
Rangesearch (QR') (* tuples 'are placed in -,report 
For 1 eacn t € report 

if t $ OR then delete t l fran repor.t 
end 
r etur n 

end RangesearchQE 

fil e *) 

\ .. ~. ~ 1 ... ,' , 

~ 
1 
) 

~ . 

" 

, ;i 
1 , 
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2.4. Multidimensional data structures based on Z o;rder, (ZMDSs) 

77 
J 

/ 
! 

T,he Range s ear ch al go r.i thrn . can be us ed i ri conj unct ion "W-lth any 1 

ISDS. A large number, of such data structures are known. The 

randac and seqac procedureS. (calle~ by Rangesearch) must be 

supplied for ea~h such datacstructure. 

Multidimension.al dat~ structures based on z ordering (ZMDSs) 

éan be generated by applying the shuffle, unshuffle and 

Rangesearch algorithms to one of these ISDSs, (see figure 13). 

W-e now dis~uss)a mnnber of ZMDSs. Many of these are new data 

structures for range searching.· 

2.4.1. Zkd binary search 

The simplest ISDS is the array' oÎ ordered data. By s toring 

shuffled tuples, the ar.ray can be used for the evaluation of 

range queries. Randac(x) is a binary search for the smallest 

entry greater, t~an or equal to x. Seqac(t) .. increments. t (a 

subscri-pt painting to an array location) by,1. 

Of course, this data structure can only be used efficiently 

for s tatic f Hes. 
.. 

\ 
\ 

2.4.2 .. Zkd tree 

By using the binary tree as the 15OS, a more pynamic ,MDS is 

obtained. rt is nbt the sarne . as Bentley~s kd tree [Bent75a).: the 

inorder tcaversal of the kd tree does not necessarily yield the 

tuples in Z order. (There are also !ilane 6 zkd trees 'which do not 

b correspo nd to any kd tree.) As di sC'us sed in ·section .. 2.5, . 

maïnten,ance of. any ordee is a useful 'property. 

AlI the modifications of bina,ry: trees apply to zkd trees' .. In 

particul.ar ~ if the AVL tree [Knut 73] is used i ns te ad of ,the 

/ 
/ 
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Figure '13.0 Converting.à.n ISDS into 8 ZMDS. 
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btnary tree., then the resul t i s a zkd ttee which does not 

,degenerate. Except .. for r ebui ldi ng, no 'rnethod i s known for 

mai ntaini n9 the bal:ance of I$d trees. 

2.4.3. Zkd Btre~ / 

The classical ISDS for secondary storage' is the Btree 

[Baye72]. The derived ZMD~ the. zkd Btree. As with binary 

trees, any variant of the Btree,' (see [Cane79] for a survey), cari 

be used,in place of the standard Btree •. 

The zkd Btree is much simpler that \ Robinson' s K-D-B tree 

[Robi81] and Scheuerman and Ouksel"'s MDB tree [Sche82]. 

Furthermore, it inherits fran the Btree an expect'ed -load factor 

of about 70% [Ya078], and a worst case load factor of 50% 

[Baye 72] • The K-D-B tree does not have e'i ther of these 

proper).i~s • 

'2.4.4. Kd trie 

The kd trie is based on F redki n" strie [Fred60] whiqh is an 

ISOS • 

2.4. S. EXCBLL 

Tarnmin~n' s extendi ble .cell method (EXCELL) [Tarnm80] iE? clos~ly 

related ta the kd trie but uses a diffe'rent 1500. The I5œ on 

which EXCELL is based is extendible h~shing of Fagin, et al.. 

[Fagi 79]. ld EXCELL is obtai ned by using ~xtendible hashi ng wi th ' 

the hash functi(~>n h(k) = k. Ml,1ltidimensional EXCELL is the Id 

version augmented by shuffl.e, , un;;huffle and Rangesearch. (Note: 

Tamminen did not. give an alg~rit·hm for evaluating range queries 

·on EXCELL.) A related Qata structure, HéELL ['l'amm81], (see 

" , 
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·chapter 2 section L2), is also a ZMD~. 

2.4.6. Multiple attribute trees 

The MDB tree of Scheuërmann and Ouksel [Sche82] is descended , , 
1 

fran the doubly ... chained tree [Sus s63] , the mul tiple attribut e 

t ree [Kash77] and the modi f ied mu! tiple attribut e tree [G~pa80] .• 

These can aIl be seen as ZMDSs wh'ich use a "trivial" s'huffle 

funct ion: using the notation of section 2.1" if X = 

[XûQ )(01 .. ·)CO d-1 ' , x x •• :x ] thEfl, ',the trivial 
k-10 k-11 k-1 d-1 , , , ~ , 

shuffle function is 

Trivi plShuffle (X) = xOOx01 " .xO,d-1 ••• 

. x k- 1,O xk-1,1 .... xk- 1,d-1 "-
The four data structures use different ISDSs but they all 

/' 
t.r=ansforrn the data using T rivia::J,Shuffle. Custanized search 

algpri tl\rns, diffEtrent fr~ Rangesearch, were proposed for these 

data s truct ur es. 

2.5. Other, 'uses of Z ordering 

Data in files are often ordered to allow eff icient 
. ' 

irnplernent'ation of ~lgorithms requiri~g merging. Since aIl ZM,DSs 

store tuples in z arder, the efficient merging of riles' of 

tlt~dimen,sional data stored in ZMDSs" is possible, (even if the, 

operands are based on different ISDS.s) '" 

,In particular " linear time implementation of the set 

operations . is possible. This, is not possible with 
~ 

mul tidj. mens i anal .data s truotur es that 
, 

do .not preserve order, 

.(e.g •. ,the kd tree and multidimensional clustering). 

, , 

, 
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Many of the performance char acter i stics 

.J , 80 

.. 
of a ZMDS are 

inhert ted fran the under1ying rsDS. These properties include· 

storage utilization and dynamic behaviqur (e.g. tirne required for 

insértion) . 

Sane general statements can be made iabout the performance of 

ZMDSs. In section 2.7 we ana1yze the ,expected cost of partial 

, match and range queries for nbn-homogeneous ZMDSs given a certain 

di stri bution of tuples. We bel ieve that the reau1 ts ar el also 

valiëi for certain homogeneous ZMDSs. (The zkd Stree for exarqple. 

-------S ince most pagès are 1eaves, i t, i s ft almost" non-homogeneous.) 

The r~sults are the same as for the kd tree, the kd trie (see 

section 1.5.4) and EXCELL: for a relation stored on P pages, a 

partial. match query costs o(p1-t/k) page reads wher~ t < k is the 

number of attributes specified in the query; a range query costs 
, 

O(VP) page reads where V is.the "volume" of the qu~ry, (the 

fraction of the space covered by the query)., 

2.7. Analysis of the ZMDSs 

2.7.1. NumQe~ of search regions in a ',guery re9ion 

The prob1em considered here is to deterrnine R(OR), the 'number 

of SRs g~nerated in the exp.loration of l a giyen OR. 

We consïder square 2d spac~s and aeswne that attr [i] == i mod 
,0 d 

2. Each domain contains 2 elements. We consider ~ spe cial case" 

OR = [0: x-l, 0: y-l) 
, d 

where x and y are integers between, land 2 

inclus ive. ... ~d-1 .. and va he- the binary 

r epresentations of x and y respective1y. 

l, 

... 
J' 

1 

\ 

\ 
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~u~pose the f'irst split of ~,he. space - is vertical and i~ 

partitions the domain of ~ into the sets {OO~ •• OO, 00 ••• 01, ••• ~ 

01 ••. lll and [10 ••• <10, io~ .. 01, ••• , 11 ••• ll}. If x < ad-1 
= rO 

t;hen,this split is outside the OR. <see figure 14a) otherwise it 

14 ' < ..1-1 . passes ~~rough the OR (s ee f igur e b). C learly, x T" 1. f f uo, 
" = o. 

Now, af ter the f irst spl it we have 

__ ' _{A<ro"Y,) 
A(x, y) 

, A(x,y)', 

+ A(x-r 6' y) 1 u =1 o 

u =0 
_(D __ 

'. 

(1) 

. 
To clarify thé analysie we will rename the 

,nB (ro'y }.n 50' that i t cor responds .to r-~gion B of 

analysi s of the B term will be simpl.er than ~ of 

. , 

f irs,t tert 

14b. Th 

when we do further splits it will. genei'ate other B terms, not 

both A and B terms. 'l'hi s ia because th.e' f irst argutne ot' B is 

always a power of 2 whereas the fir-st argument of Amay ngt be. 
." , 

Splitting B vertically corresponds ta ,division of thé f-irst 
1 

argument by 2, yieldiI\g another pOwer' of 2, (hence, a B term, not 

an A term). 
'1 .. 

The A 'region is next split 
o , 

at position ra in ,the. horizontal 

~rection. Prôçee.ding as above, the' split may, or may, not pass 

through the region. ,Two,cases are possible (se.e figure 15) and 
.. 

we have (after rénami~9 one of' the A: regions a C region as above) 

", i 

1 

, if 
>1 

~. 

~N" r''f' ......... ~ .... ;.t,_..".~ .. ~· .. 
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Combi!'li ng (1) and ('2): 

, . 
A(x,y) uOa(~O'Y)'~ ~;C(.x-uOrO,rO) 

+ A(X-UOrO,y-vÔrO) 

If Uo - :> l'' and V , 0 = I then tnese two spI its have 

r eg10ns (s ee f igur e 16) • - . 

(.2-) • 

(3) 

\ 

82 

creaJed three 

T'he A ,region can be analy~ed exactIy as was the original QR~ 

F'or: -example, after two more splits: 

A(x,y) = uoB(ro'y) + voC{x-uoro,ro ) 

+ u1B(r1,y-vOro ) + vIC(x~uOrO-ù,1r1:il) 
• 

(4 ) 

. (Il is defined below.) Clearly, ~(O, 0) =. O .• We c;:an now give an 

expression for A(x,y) in terms ot t.ne Bs. and·C's. 

d-1 i-1 
1\(~ .. y) ,=" L a,B(ri,y - L vjr j ) 

i=O ~ j"'O 

,~ . 

d-l ' i 
:r 'l viC(x - 1: u,r:,ri ), 

i=O j =0 J ] 

\, 

We now derive e.xpressions for the ~ and C term-s. 

The B region ~as create.d by a' vertical split. 

(S) 

The next spI i t 
~ 

i s ho r i zo nt al. AS' abo~e, ,t'Wo ca'ses ca.n .OCC.U~. Consider B (r
O 

,y) , 

(see figure' 17) 
. . 

In the first- case. one SR "and another: B term is 
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Figure 16. After the first two splits . 
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Figure 17. Horizontal split of the space in t,he vicinity of a B region. 1 
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.' 

The ~plit is inside the ~egion iff Vo = 1. 

B(ro'y), 

Vo + B(ro,y-voro) 

v =1 . 0 

v =0 o 
(6) 

83 

The next spI it is gerpendicular t~ the ~ery ooundary and is 
.. .... 

certain to, split the B region into two B ragions. 50 after a 

horizontal and a vertical split of a B region two cases are 

possible, (see figure 18). (Note that the SR i5 not split 

fur'ther.) In either case 

(7) 

.' 

wher e r
1 

= The Clearly, B(r ,0) = 0 where r = 
- l 1 

second argument to B is never negàtive •. The v coef f iclent • 
~ 

insures this since v. is ze,-o whenever subtraction of r~ would-
1 1 

give a negative result. 50 we have 

(8 ) 
o 

(The value of is the integer created 

binary representation of y backwards!) 
~ '" ~ .... 

5imilar -analys~ for the Qther B terms yields 

i-1 
B(r ,y- L:'v.r.) 

1 j=O.J J 

d-l k-i 
L 2 v

k k=i 
(9) 

by wri ting the 
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The analysi,s of the C terms is similar to that of the B terms. 

The r esul t i s ' 

l 

C (x- LU, r . ,r . ) 
- 0 J J 1-J= 

d-l 
L k .... l-i 

2 u
k k=i+l 

Combining (5), (9) and (10) 

A(x,y) 

(10) 

( 11) 

To unders tand (11) better we will di scuss those factors mos t 

heavily influencing A(x,y). Consider the special case x = y. Then 
, ' 

the fol1owing two results are derivable fram (11): 

If x has 15 in bit [X>sÎtions p and p~ ànd Os elsewhere then 

A(x,x) ::: 3 (2
q-1) +2. 

( 12) 

If x has 15 fram- position p to position p+q inclusive and Os 
- 1 -

elsewhere then A(x,x) = 3(2
q

+ ) - 2q - 5. 

( 13) 
,-

Furthermor~, ·for aIl x, y, changing any 0 ta a ~ in x or y 

increases A(x,y) . 

( 14) 

These three facts estabLish R(QR) ;: O(2
Q) for square queries 

... wher e q i s the di stance (Le. -number of bi t~ posi tions) between 

the f irst and last 1 in x: (12) is a lower -bound. Applying (14) 
1 
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to any 0 in pesitions p+l through p+q-l inclusive increases 

A(x,x) and (1~) i5 an ~pper boupd. Both (12) and (13) are-O(2q)~. 

It is interesting to note that A(x;~) in (12) and'('i3) is 

independent of p. This imp1ies that scaling by factors of 2 has 

no effect of R(QR) (for square queries). These resu1ts can be 

genera1ized to non-square queries (in square spaces).'" The proof 

proceeds as in (12) - (14) and is simple and tedious. The resu1t 

i5 that R(QR) i5 dominated by an Q(2r ) term where r is the 

longest distance (Le. m.unber of' bit positions) between a 1 bit 

in x and a 1 bi t in y. (E.g. if x = 011010002' and y = 000001102 

then r = 6.) 

2.7.2. ZMDS Performance 

We present evidence that the expec~ed pe~formance of any ~MDS 

on secondary storage is the same as for the kd trie: , 

- 'A'partial match query on t attributes costs O(p1-t/k) where P 

i5 the number of pages storing the data. 

,A range query :costs 0 (VP) where V is the nvolwnen of the 
.. , 

query: tpe fraction of the spacé covered by the qûery. 

These res,u1eS depend on sane properties of the z curve. 

2. 7 • 2. 1. Z c ur ve pr ope r t i es 

We will ana1yze z curves in k dimensions where each attribute 
d, , d 

has 2 posslble values: 0, ••• , 2 -1. 

F~.now, consider a po,i nt P (x,y) in a 2d space such tha t x, y 

< 2d• Let s (P) or s (x,y) denote the' shuffle val ue of (x,y). We 

observe that s{x+l,y)-s(x,y) is independent of y. Simi1arly, 

s(x,y+1)-s(x,y) is independent of x, (see figure 19>. The 

" 



D 

( 

21 23 29 31 53 55 61 

20 22 28 ~O 52 54 60 
( 

17 19 2S 27 49 S1 57 

16 18 24 26 48 50 56 

5 7 13 15 37 39 45 

4 6 12 14 36' 38 44 

1 3 9 11 33 3S 41 

0 2 8 10 32 34 40 

slx ... 1, y)-slx,y) 2 6 2 22 2 6 2 

Figure 19. Gap sizes. 
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quantities s(x+l,y)-s(x,y) and s(x,y+l)~s(x,y) are "gaps". 

Let us label X as attribut'e 0 and y as attribute 1. Also, let 

T(u) be the length of thé longest suffix of the binary 

'-representation of ù consisting of ls only, (e.g. T(OlOll12} ::: 3). 

Then G (i ,T(u» is the gap along attrib'J-te i, i=O, -l, be-tween 

attribute i values u and tH!. 

In the example given ibove: 
i 

.J 

" i 

G 0 l 

0 ,~ l 

T(u) l 6 3 

2 ~ 22 11 

, 
Wé also notice that G(O,r) = 2 G(l,r). 

", \ , 

The observa~ions made 'here will be general~zed and proven. A , 
'1 

formula~for G(i,r) will be given; First, we sketch the derivation 

for k ::: 2. We then give a more 'rigorous treatment for k > 2. 

2.7.2.1.1. Proof for k = 2 

We want to establish that 

s(x+l,y) - s(x,y) = G(O,T(x» 

( 1) 

and 

s(x,y+l) - s(x,y) = G(l,T(y» 

( 2) 

. 
and derive a formula for G(i,r), i = 0, 1. The proof is 

inducti ve. 

First consider a 2 x 2 space, (see figure 20}. 
c 

l' 
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By inspection, G(O,O) = 2 andG(l,O) = 1. ,(1) and (2) have 

béen estal;:>lished,f,or the triyial case. 

Next, consider a re<Ùon of size 2 r..,' x 2
r +1, (see figure 21) • 

, A, B, C and. D ar e the four bi ts a~ 'the' center of thi s regi on. 

Their coordinates are 

A: (2 r_1, l) 
B: (2 r -l, ~r -1) 

1> 

'" C: (2 r , 2~) , 

D: (2 r , l-l) 

Our induction hypothesis (lH) is that (1) and (2) hald in Bs 

region far G(i,s), s < r, i = 0, 1. 

It can be shown that the lH àlso halds in the other three 

quadr ants, (we will' pr ove thi s far k > 2 later). 

We will extend the IH ta G(i,r) in the.followin9 way: 

Canpute 9L = s(A) - s(a) and 9J;( = s(C) - s(D). 

Show ~hat, gL = gR (=~). 
r r Show that s(x,2) - s(x,2 -1) = g for 0 < x < 2r+ 1 -1, . (l • e . 

aIl along the G(l,r) bou~dary). 

These resul€s establish (2) and p~aw that G(l,r) = g. 

Repeat these steps (using C, A, D, B in place of A, B, C, D 

respectively) to establish (1) and derive G(O,r). 

and 

The caardinates of A, (2 r -1, 2
r ) , expr essed in bi nary, ar e 

( < 0 : d- r- 1 -, 0 , 1: r>, < 0 : d- r-l , 1 , 0 : r > ) 

s (A) = <OO:d-r-l 1 01 1 10:r> 

or, in bas e 4 notation: 

s(A) = <O:d-r-l 111 2:r> 

Sirnilarly, in base 4 notation, 

s (B) .= <O:d-r-l ,. 0 1 3:r> 

~ 

, 

, 

1 
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Figure 20. Gap sizes for a 2 x 2 region. 
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Tne dif~erence in the shuffle values is 9 =. s{A) - s(B). This 

can be easily.calçulàted using "grade-school" ~otation (note that 

<X:m> == ,<X:'m-l X» : 

<'a :d- r-l 1 2: r-l 2> 

... <0 :d- r-l a 3: r-l 3>, 

<0 :d"'r-l' i a 2: r-_l -1 3> 

So 

gL = <0: d- r 1 2: r-l 1 3> 

r-l 
4

j 2 [ + 3 
j==l 

(1+ 2x 4
r

)/3 

Repeating these steps for points C and D, (working in base 4): 

and 

s (C) = <0 :d-r-l 

s (D' :::: <0: d- r-l 

gR = s(C) s(D) 

3 0: r> 

2' 1: r> 

:::: < a : d- r-l l' 0 1 2: r- 1 3> 

= gL 
Let 9 = 9L = 9R• 

Now consider E and F, the points immediately to the left of A. 

and B, (see figure 22). Fran the induction hypothesis: 

, r . 
S{Et = s(A) - G(l,TCj -2» 

s{F) = s(B) - G(1,T(2
r
-2» 

" 

r 
where 2 -2 is the, x coordinate of E and F. (It can be shown that~ 

-! ~ , .. .,"' .... , • 

i 
~ 



, , 

( 

.SSA 

E A 
F B 

J 
-- - -- .----- - ---- - - -~------------ --------

Figure 22. Applying the inânction hypothesis. 
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T(/-2) < T(2r 
-I) = ri thus the lH can be applied.) Th~refore 

s (E) s (F) = s (A) s (B) 

:::; g. 

We can continue stepping left, (and right fran C and D) using the 

lH at each step to show that 
1 \ . r r 

s (x, 2 ) "':' S (x, 2 .... 1) :::; O < X < 2r+1 -1. g, 

We have established (2) and shown that G(l,r) ... (1 + 2xl)/3. 

Proceeding as above, we can establish (1) and show that G(O,r) 

= (2 + 4X4 r )/3 = 2 G(l,r). 

2.7.2.1.2. Proof for k ~ 2 

We want to show that for Any pai r of ,adj acent points, P and Q, 

whose coordinates differ ~by one) only in the ith position, (P = 

( PO' .•• , Pk -1 ), Q = (qo': ." , q k -1 ), P j = 

1) , 

q. , j ~ i, P. - q. = 
J 1 t 

s (P) - s (Q) depends on1y on' 'i and p • 

We also -want a formula for G (i ,T(p », i = 0, ••• , k-1. 
1 

( 3) 

The proof fo~1ows the outline of the previous one.we.start 
k . 

with the trivial case, a 2 -bit hyper-cube.. Each point has k 

coordinates, each of which is either 0 or 1. New wri te the 

coordinates of each point as a hi t string of length k. These bi t 
• 0 t<-1·. Cçmsider a pair strings are the shuffle val.ues 0,. l, . .. , 

of neighbouring bits.~If their coordinates differ ir attribute i 
, 1 k-1- i 

then the difference 
k-1-i 

G (i ,0) = 2 

in their shuffle values is ~ • Thus 
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,": .. 
1 M~ • 

'" We now perfor~ the inducti~n '~tep. General izing fran 
'. -, ~ kf~+l\) , k 

case, co.nsider" a space of J.... l bi ts and the 2 bi ts 

the 2d 

in the 

c:enter ~(the space. Th~ coordi~atesof -one of these qits are (2 r\ 
r 

-€O' •.. ,2 -'€k-1) where each.9. i·s ei ther 0 or 1.. 

Oùr IH is that (3) 
. ) . 

holds'for G(i,s), i ,= 0, ' .•• r k-l, s < r 
" 

in the~ 'sub- region 
r . r 

(0:2 -l, ••• , 0:2 -1), (correspondi ll9, to the 
-

quadrant coptaining bi t" B ln the pr-e~ious '·section). The IH holds 

in aJ.l other sub- regions. if 
(J 

G(i,T(X+2r..') = G(i,'f(x» 

for i = 0, ... f k-l, x = 0, ••. 2r-2. It is suffic~ent to show' 

'" that 

., T(x+2 f ) =T(x). 

Intui tive1y, ,addi tion of· 2 r does not affect the r - 'leas t 

significant bit:s, (those bits representing' x)~ More formally: 

Since Ji: < 2r-l = <O?d-r-·1 0 1 .1:r>, ,x = <O:d-r-l 1 0 1 *:.r> 
t 

where eaçh * is ei ther a' 0 or' -a ·1 (but at least one is a zero):: 
" -

Cleàrly., 
./ 

x+2f "'li' <0 :d- r::-l 1 1 _ *: r>. 

~~. insPection, T(x) = T(X+2 f ) ~.ince 'both x and x+l have th~ same . . ~ .. 
suff1X, <~: r>;. whlch contains at, l.east one zero. 

• ~. y. ., ... "L. ~ 

:'" ~ that the-' IH has been established in aIl $ub-regions, 

consider."a .'~ir' 9f poin..~s, ~ ~nd 0 t,hat are neighbours bu~ lie' in . 

Each p , ,~rf,fér~nt' sub-regiops due' 'tt> ~pe 'split of at.tribute i. 

jlod f.1. 1s ei the~ 2r :~r 2~ -1: "We ~ilI arbi trarily set 
'1 ' 

1 
r' 

p. ='~1 and 1 ~ r ," '.' . .' k 
~~, =.2-1:., s-(Pt and.s'(o,).oc~n-be ex~reB'sed in base 2 

1 .~. • • 
nota~ on:, 

.... --, ' s- (P)· =. u -O' •• .. , u d :'1 l' 

, , " ", ~nO) ,=-. v <> '. " . .'.v d ~ l' - .' 
\- whe'r-e&'ea~h U j a,nd Vi • is a ba:s~ ~ .. ' (U~i f,. and can 

',. 

th~refore be 

rèpr~S~nte~ by k bits. Then" sinee ,r 

. , " , 
/ 

1 • 
i \ 

,Y 

1 
1 

1 
1 

1 
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(2
r :~}2 . = <0 :d- r-l 0 1: r>-

.. 
and ::--~ 

(2 r ) =. <0 :d-r-l 1 1 1 '0: r> 
2 

s (P) and s (Q) can be depicted as 

o d-r-2 d-r-1 d-r 

s (P) ---0--- ---0--- - ---1--- ---0--- ... 
s (Q) ---0 --- ---0--- ---0--- ---1---

-' 
'!.> 

More forma11y (let u 
. Jm 

and and v· denote the mth 
Jm 

v r es pe ct i ve 1 y) : 
J 

U, = v
Jm

' j 
Jill 

0, ... ,d-l; mi=i 

U
ji 

= v
ji 

= 0, j = 0, ..... , d-r-2 

U = 1 
d-r-l,i 

v = 0 d-r-l, i 

u" = 0, j = d-r, d-l 
J) 

l, j d-r, d-l v '" J 1 1 

91 

d-l 

- .... -0 ---

---1---

bit of U
J 

and 

Computing the difference in these shuffle values and expressing 

the.result in base 2k: 

9 = s (P) - s (Q) 

= <O:d-r-l 1 {2k-1- i -1) 

k k-1-; 
(2"-2 » 

k k-1-1 
(2 -2 -1) : r-l 

r-l 
L [2k_2k-l-i_l]~kj + (2k_2k-l~i) 

j=l 

2k - 1- i 

__ [(2k_2)2kr + 1] 
l-l 
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Since this result is indepeqpent of € , j -1 i, it applies to 
J 

all 2k-1 pairs of points separated by the spI it of attribute i. 

The result also applies to any pair of points on either side 

of the sarne boundary wi thi n the sarne (2r )k -bi t sub-cube: 

In travelling fran p to sane other point in the sarne sub-cube, 

p"', we cross gaps of size G (w ,t), 0 ~ w .2. k-l, t < r. (That t < r 

is obvious fran the binary representations of the coordinates.) 
, 

The path V fran P to p" can be represented by a sequence of 

crossed boundaries~ the l H, the sarne gaps ar e 

encountered in travelling fran 0 tO 0", (the neighbor of p" 

acr oss the boundary cor r espondi ng to G (i 1 r) ). Thus, 

sep') s(P) + L G (w ,t ) 
p6V P P 

and .. 

~ (Q') s(Q) + E G (w ,t ) 
p6V p P 

so s (P") - s(O") = s{P} - SeO) = g. T'his e~tablishes {3) 'and 

shows that 

G(i,r) 

2k- 1- i 

--- [(2k_2)2kr + 1] 
2k_l 

2.7.2.2. Cast of partiàl match queries 

The data is p'arti tioned into pages. Suppose the shuffle 

values of the tuples are' distributed 50 that every set' of b 

consecutive z nurnber~': mb, mb+l, ••. 1 (m+l) b - l, contain c 

" , 

" 

" ," 
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tuples, (where c is the capacity of one page). Then the pages 

impose a pa r ti tioni ng on the sequence of z nlD1\be rs (and on the 

space). Each page covers 

b 
n 

\ 

bits of the space, where n is the number of tuples in the 

rel ation. Figure- 23 5 hows the par ti tioni ng for b = 5. Sane 

pages cover two di stinct regions of the space as indicated by the 

page numbers (e.g. pages 2 and 7 in figure 23) • 
;;-

In pc oces sing a par t i al match query, aIl the pages covering 

the query must be retrievèd. (E.g. for the partial match query x 

= 3, in the abo ve di agr am, pa ge s 3, 4, 6 and 7 would be 

r et ri eved.) 

We will establish an upper bound for the number of page reads 

required' to process a partial match query (given that each page 

covers b bi ts) . 

Consider a 2d space and a partial match query on attribute O. 

The gap sizes éncountered along attribute l are l" 3, l, Il, l, 

3, l, (as in figure 19) • 

In visiting the bits of the space covered by the query, gaps 

of various sizes are encountered. Each gap may contain zero,' one 

or more page boundaries. In crossing a gap without a page 

bo undar y, a page r ead i s not generated.·Crossing,a gap with at 

lea$t one page boundary generates exactly one page read. Suppose 

for concreteness that b = 5. Then gaps' of size '1 and 3 may or may 

. not generate page reads. The gap)of size Il certainly will (sin'ce' 
1 • 

b < Il). This observation, /o~bi~ed with the results of the 

previous section, implya cér"tain regularity in the partitiçning 

, ' 
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of the space. 

The space can he partitioned by a regular .grid. The boundaries 

of this grid represent gaps of size greater than or equal to b. 

When crossed they are certain to generate page reads. Figure 24 
-t.;, 

demon$trates this grid for b = 5. Each sub-region of this grid 

is a "chunk". In order to derive an upper bound for the cost of a 

pa r.tial match query we will pr oceed as follows: 

F ind a cons tant which i s an upper bound for the number of 

pagés in a chunk. 

F iAd the number of chunks accessed in the pr ocessing of a 
, 

pa r tial match query. 

The product of these quantities yields the result (since, to 

process a chunk, we have to read every page of the chunk in the 

wor s t ca 5 e) • 

We can place more grid lines in the space tlo simplify the 

analysis. The effect of this is to "force" more page reads. This 

techniql1e i s val id s ince we ar e inter es ted in an upper bound. We 

therefore place extra grid lines 50 that each chunk i5 a 

hyper-cube, (see figure 25). 

2. 7. 2. 2. 1. Si ze of a ch un k ~ 

The finest sUb-division of an axis (before "extra" grid lines 

were placed) was on attribute 0 (since G(i ,r). increases as i 

decreases). Solving 

G(O,x) = b 

yi elds the si ze of a chunk~ s sid~ 
k-l 2 

[(2
k 

_2)2 kx + 1] 
,2k_l 

b 

l 'k k-1 
log[ 

b(Z -1) - Z 
x 

zk-1-(2k_Z) k 

J 
j 

i 
j 
n 

~ 



94A 

( 

6 22 6 

Figure 24. Grid for b = 5. 

1 

Figure 25: Grid for b = 5 wi th extra grid lines. 
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where the side has length 2X • To get an upper bound on chunk 

size dèfine 

u = fxl 
(since the x in G (D,x) i s an integer). Thus 

u < x + 1 

and the size of the chunk is 

That is, each chunk contains, (depending on k), no more than 2 or 

3 pages, since, within each chunk, the z num~rs are consecutive. 

Thi sis guar anteed sinee each chunk i s a kd hypercube r esul ting 

t ran the even spl i tting of each axi s. 

2.7.2.2~2. Number of chunks read 

Each axis has been divided into 
d-u . 

2 pleces (during the 

construction of the ehunks). A partial match query on t 

attributes covers 

PM = 2 (k-t) (d-u) 

chunks. Usin.g the value of u given above, 

PM 
2(k-t) (d-l)[ 2k-l(2k_2) ]l-tlk 

b(2k-l) _ 2k - 1 

k-1 S ince 2 < k-1 2 < 

" 
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(2k -l) < (2k-l) / 2k •· , 

PM ~ 2 (k-t) (d-1) [ 2
k 

-1 ] I-t/k 
2 (b-1) 

In practice, 2k « b so (2k-l)' 1 (2b-2) < (2k +l) 1 2b 

k 
r " PM < 2 (k - t) (d -1) (2 + l ) 1-t / k ( 1. ) 1- t / k 

/ - 2 b 

Recall that b = 2kd c/n and P = nie. 

PM < 2-(k-t) 2k+l )l-t/k p1-t/k ( -2-

Each chunk contains no mo~e than S/b pages: 

PM < 
S -(k-t) 2k+l )l-t/k p1- t / k 
b 2 (2 

= O(p1- t/k) pages. 

This cost i s the same as for the .kd trie. 

2.7.2; 3. Cast of range queries 

The nLDnbe, of chunks covered is 

wher e f. 
1 

k-l 
R< TI (f.2d -

u
+1) 

- i=O 1 

is the fraction of attribute i covered by the query. 

k-l 
R < 2k (d-u) TI f + low order terms 

. 0 i . 
1== 

96 

1 

DI 

2k(d-u) is the total mlllber of chunks and Of
l 

is'V, the "volume" 

of the query. Since each chunk has no more than S/b palC]es, 

R=O(VP). 

/ 
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3. An ISOS based on linear hashing 

Linear hashing [Lltw80J ls a dynamic hashing method. It 

pr ovides access to the pr imary page of any bucket in one access. 

But linear hashing is not an ISOS because it is not order 

preserving. That is, the successor of r, a record in the file, is 

not related to the address of r. Other hashing methods can be 

made order-preserving in a trivial way: by using the hash 

function h(r) = LrlsJ where r is an integer and s is a scaling 

factor. Linear hashing requires the use of hash functions that 

make this strategy imIX'ssible. 

In thi s section, we pr0IX'se two variations of linear hashing 

whi ch ar e order-pr eserving. Both random and sequential accessing 

will then be possible. Such a data structure is very useful: it 

i5 functionallyequivalent to a Stree but should have better 

performance because i t is based on hashing. 

Since these variations of linear hashing are order-preserving, 

they are ISDSs and the techniques of section 2 can be used te 

create the corresponding ZMDSs. Since this process has been 

di scussed in detai l, we r es tri ct our attention to ld data: the 

data to be stored is a set of integers in a given range. 

Little will be said about the performance of these new data 

structures. We expect that the performance will be typical of 

hashing meth~ds, (e.g. a r andom access should usually cost one 

disk access). In the worst case, the ~haviour ls almost never 

wors e than that of a Stree. The only exception i. s that 

insertion will occasionally cost 0 «10g(n»2) if the data 

highly clustered. 

an 

ls 
1 

\ 
,l' 

l 
j 
.; 

~I 
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3.1. A variation of linear hashing , 

3.1. 1. Lijlear hasjling 

A description of a special case of linear hashing is a 

prerequ~site. The data to he stored consists of records of d 

bits 'each. Record r can be regarded as the integer '<r
O 

1· ..• 1 

r
d
_
1

> where ri is the ith bit of the record. The records are to 

be s tored in buckets 0, l, The nllll\ber of a bucket will 

also be the address of the bucket"'s primary page. Overflow pages 

are allocated fran a separate address space. 

The file ls accessed using hash functions of the form 
1 

h t (r) :;: r mod 2 t 

The value of i i5 one of two consecutive integers, m and m+l, 

wher e mis the level of the file. , A pointer to the file, n, 

indicates whether hm or hm+1 shOuld be used, (see figure 26> . 

Buckets 0 through n-l and 2m through 2m + (n-l) are at level 

m+l; buckets n through 2
m 

- lare at level m. n is a pointer t6 

the next bucket to be split. It travels fran left to right so 

that every bucket is split in turne When bucket n is split, its 

recor ds ar e di stribut ed between buckets n and 2m + n, both of 

which will then he at level mH, (since n was incremented). When 

n r eaches 2m aIl buckets ar e at level m+l; n i s res et to 0 and 

star t s tr avelling r ight agai n. 

A record is assigned to a bucket based on the value of rd ; -m 
the m th leas t signif icant bi t. So aIl records in a level m bucket 

agree in their last m bi ts. 

A bucket is split (and n 18 incremented) whenever a record 

hashes to a full primary page, (i.e. there is a COllision). The 
~" 

bucket that is split is not, in general, the one involved in the 

If 
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Figure 26. Linear hashing. 
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J 

collision. But eventually, every bucket will be spI it and 

(hopefully) the overflow pages will be reclqimed. If splitting 

" -p' 

creates empty bu<?kets, (because ei ther aIl or none of the records ~. 

moved) , and the load factor threatens to be corne Il too low", the 

split is suppressed. 
, 

- Litwin c~aims that a linear hash fÙe can also shrink [LicY/SO] 

• 
although he does not give the deletion algori thm. It i s not 

difficult to imagine how dele~ions might be handled. For examp~e, 

when the overflow pages of aflY bucket become empty, buckets n and 

n + 2
m 

could be combineil and n decremented. 

To locate a 
1 

r ecor d, r, Randac (r) (for "random access") is 

called tO,locate the bucket. We are not concerned with searching 

within the bucket. 'Randac returns the nLUnber of the bucket 

containing r. 

Randac (r) 
Offset (r) locates the r ank of record r wi thin the bucket. 

B := 
if B 
then 

B 

h", (r) 
< n 

has been spI it to give two buckets on level m+l *) 
(r) 

(* B 
: = hlltf1 

end 
return(B,offset(r) ) 

end Randac 

, 

Generally, the range of hm(r) i6 [0, 2m-l]~ That i~, hm and hm+
1 

bath hash to [0, 2m-l). Consider the buckets in JO, n-l}. Since n 

< 2Rl, both hm and hm+1 hash to [0, n-l). But .any bucket in this 

range has been spI i t so hr.n+1 i s the correct funetion to us e. , 
i One attractive feature of linear hashing is that it grows 

smoothIYi one bucket at a time. The, growth i6!' 11near'i. The 

directory of extendiQle hashing, on the other hand, grows 

exponentialIy: i t dou'bles in size periodically -(but there ar e few 

1 
i 



( 

Chapter 3 Section 3 ~oo 

of these expansions). In addi tion, huckets of extendible hashing 
( 

split when they become full, requi.dng an update pf one directory 

entry. 

3.1.2. Order-pr eserving l inear hashing, (OPLH) 

Consider the par'titioning imposed by the hash function hm(r) = 

r mod 2 m• Ail of the records in a given bucket (at level m) agree 

in LSB(r ,m), the m least significant bits, <r 1 ••• 1 
d-m rd >. -1 

If, i nstead, the r ecor ds agr eed in the most signif icant bi ts, 

each bucket would store aIl of the records of the file that fall 

( in a certain range. The hash ,table would then be order 

preserving. Let left(s,k) and right(s,k) denote, respectively, 

the k lertmost and rightmost characters of string s. Mir «c
1 

1 C 24-

cv» i s the ~mirror image", <cv ••• 1 c 2 1 c 1> where 

each c. is a single character. 
1 

The simples t way to parti tian the f He on the bas i S of- the 

most significant bits is to store record r in bucket h (mir(r». 

That is, the bits are reversed before hashing. C>l~arly 

hV\(mir(r) = right(mir(r),m) 

= mir (left (r ,m» 

The bucket ntunber is obtained by. reversing the bits of the m bit· 

prefix of the r-ecord. Searching and splitting work exactly as for. 

linear ftashing •. .JThiS haS to -'be true since, in effect, ,. we are 

dealing with another 
, ' 

r, has . been. file in which each record, 

replaced with mirer) • 

If the bits of the p~efix were not reversed, Le. hm(r) = 

left(r,m), then splitting warks differently. This alternative is 

explored in section 3".2. 

Figure 27 shows an example of 'an order-pres-erving U:near hash 

1 
j 
" 

,~ 
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file. Notice tha t the mir ror image of the m (or m+ 1) bi t pr ef ix 

of a record at leve1 m (or m+l) matches the m (or m+l) bit 

repr esentation of the bucket munber. So bucket 3 = 011 2 i8 at 

level 3 and storés records with prefix 1102' 

Burkhard has independently discovered OPLH [ijurk82]. He also 

appl ies shuf fI ing to yield an MDS but hi s sear ch algor i thrn i s 
1 

different fran the Rangesearch algorithm (and variations) give~' 

in section,2. Burkhard does not discuss "sequent.ial" OPLH, (s,ee\ 

section 3.2), nor does he address certain problems with OPLH' 

which are dealt; with in detail in section d 3.4. 

3.1.3. Algorithms 
r 

The variation of linear hashing described above supports 

random and sequentilfll accessing. Randac, given in section 3.1.1, 

can be used except that the argument to hm and h m+1 is mirer) 

lns tead of r. 

Su ppos e that ther e ar e N Cb) records in buc ket b. The addr es s 

of a record i5 (b,i) where b is a bucket I1tunber and l < i ~ N(b). 

If i ~ N (b) then the successor of R(b, i), the '.e~b, i) i s ' 

R(b,i+l). The number of records in aIl buckets is NR. N is the 

numbe r of bucke ts. 

Consider the problem of f indi ng the successor ,of R(b (N(b» • 

The leve1 of the bucket is known: the level, mb , is m if b < n, 

m-l otherwise. This bucket repr esents aIl records in the range 

[<mir(b) (recal1 that b 
\ 

<mir (b) 1 l::d-~b>l, 

bi t numbe r). The smalle~ t 'r ecor d above thi s range i s 

S = <mir (b) 1 l:d-m
b

> + l 

= «mir(b)+l) 1 O:d-m
b

>, ~ 

A search for S (us i ng Randac) will locat e b"', "t;he bucke t 

, 
, j' 

1 
1 
! 
i 
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containing the successor of R(b,N(b). There is one problem: b" 

may be empty. Repeating the above procedur e until a non-empty 

bucket lS . found yields the bucket containing the succ~ssor of 

R(b,N(b». Tbe complete algorithm for sequential accessihg is 

gi ven below. 

Seqac (p) 
p lS a poi.nter to a record, (b,i). 

if i < N (b) 
then 

i := i + l 
else 

(* find next bllcket *) 
r epeat until NotEmpty(b) 
if n < b <. 2m -1 
then - {*-Level m-l; bis an m-l 

S := «mir (b)+l) 1 O:d- (m-l) > 
el se (* Leve 1 m; bis an m bit 

S:= «mir(b)+l) 1 O:d-m> 
end 
p := Randac(S) 

end 
r eturn 

end Seqac 

• 

bit number. *) 

number. *) 

The bllcket splitting and· joining algorithms are Split and 

Join. 

,; 
" 

'~ 
:i 

, ,,, 

l 
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S~l i t () 
Blt«C 1 ... 1 c >,i) is c .. 
,1 V J 

fpr i := 1 .. N(n) 
r := R(n,i) 

(* Bucket n is being split. *) 

if bi t (r ,m) = 0 
then '" 

(* the record'does not move *) 
else 

move r to bucket n + 7."' 
end 

end' 

n := n + 1 
if n -, 2'" 
then (* 

n := 0 
m := m 

end 
r etur n 

end SpI i t 

Joi n () 

n := n - 1 
if n < 0 

AlI buckets are ~t 

+ I 

1evel 

then (* go down one level *) 
m := m - I 
n : = 2W'o - 1 

end 

n' : ~ n + 2m 

for i := L toN(n") 
m ove R ( n" ,i) t,o bu c ke t n 

end 
r eti;1r n 

end Join 

In *) 

l03 

3.2. Another variation of linear hashing, ("Sequential'~_qPLH) 

As suggested in section 3.1.2, another order-pre~erving 

variation of linear hashing can -be obtained by using the has'h 

function hm(r); lef~(r,m). The method of section 3,1.2 has the 

following property: b "" -<x ' 1 ... 1 x > is the numbei of a m 0 m-1 . 

1 
, bucke t on 1evel m, (each x, is 0 or 1) " and b = <0 Xc ... 

J m+1 
x 1> is the m- number of a bucket on level m+1. 

, 
Since b i5 ,m+1 

-
, 

1 
1 
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deri{,ed f r'an 

,will never be 

bm, during a split of the latter, the two buckets 

present at the same tiine. This property does nO,t 

hold if the new hash function, hm(r) = left(r,m) i5 used. It is 

possi bl e t 0 hav.e bm and ,bm+ 1 pr es ent si mul tan~ousl y and thi s 
-

requiie,s that the otganïzation of the hash file be reconsidered. 
-", 
'eonsider the situation of fig(]r~ 28. When bucket 0 is split, 

the third bit will be used to separate the records (since level 3, 

i s bel ng s tarted). The buckets cr eated will be 0002 and 001
2

, But 

there are now two buckets with the sarne number; 1: 001
2 

and 01
2

. 

G ener aIl y, bue ke t 'n i s being replaced by buckets 2n and 2n + 1. 
. . 

m-1 
l f n < 2 - 1 the n 2n + 1 ~ 2

m - l so the created buckets will 

have the same address as existing buckets. 

There is a simple solution to this problern: pLace aIl level 

m+l buckets in locations following the last level m bucket. 

Applying this strategy, the file of figure tS, afte-r being split 
1"-

twice, woulq appear as in figure 29. 

Locatlng a bucket is slightly more complicated: a. (bucket 

nurnber can no longer be used as an absolute address. It l~now a 

(base, offset) p"~he base is the absolute address of. the 

f irst bucket of the level and the,;:\ offset is the bucket nurnbeç' 
'V 

i tsel f, (thus bm and bm~1 can he di stingui shed: 

the same but the bases are,different). 

the of t'sef s ar e 

In figure 29, the base of level 2 i6 0 and the base of level 3 
-

i s 4. In general, ,let 

file starts at level 0 

B. 
1 

<1, 

be the bas e addr ess of level 'i. If the 
',-1 o t h~ n B = B '+ 2 S 0 B, ,= 

'1-1 1 
and Ba = 

- . 
,; 
; 
d 
1 . 

" 

,. , 

.. 
,.1 

, , _ li 

gr'ows bYiÎ,l 
" 'j 

at level '~ , 

Thts organization, aè with 'standard linear hashing, 

one bucket at each spI i t: 'when two bucke ts ar e added 

m+l, the bucket being' spl,lt' (at l,evei m) ~s di scarded, (e .g • 
, i 

j 
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, • 

Buc k et .0 1 2 3 
,; 

Prefix 1 l l' 
i! 

00 01 10 11 , 
\ 

2 . , Level 
" 

Figure 28. Using hm(r) = left(r,m) 

Bu ( k e t '0 ·1 2 3 4 5 6 7 

~ r e fI X Il.---_IL.......· ~ _ _:_'__--f-1_--I--00-1 --,-l-o 1_0 '.....1-.1_0 1~~ 1: vel -10 211.000 

, , 

Figu~e 29. Levèl m+l buckets follow level m buckets . 

. ' 
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buckets 002 and 01 2 of figure 28 do not appear in figure 29). The 

problem i s that the file i scons tantly "moving forw~rd". , In 

practice, a file has a fixed number of buckets. If these buckets, 

0, ... , F-l pre treated circularl~, (bucket 0 follows bucket 

. F-l) , then the problem is eliminated. The modifications of the 

algorithms to deal with this circularityare simple. But for 

s impl ici ty of pr esentation we continue ta work wi th an open ended 

sequence of pages, 0, l, •.• • 

The Randac algori thm of section 3.1. 1 can be used but the hash 
~ ~ 

function must be mQdified to incorporate both components of 

bucket addr erses. 

hm~ - Bm + left(r,m) 

returns the required absolut·e address. 

Seqac requires only a slight modification. Bucket b is on 

level m if b < Bm ' ·,(instead of n < b < 2m - 1). 

Split places the contents of bucket n (at level m) in buckets 

2n and 2n + l (at levei m+l). The absolute addresses of these 

buckets are Bm + ni Bm+1 +\2n and Bm+1 + 2n + 1 respectively. 
.' . 

'An. at tracti ve ' featur e of thi s variation i s . tha t, exc~pt for 
, 

one discontinuity, consecutive ranges are in consecutive buckets 

(and the cor r es~nding pr imary pages ar e ph ys ically adj acent) • 

Thi s impl ies be tter ~rformanc~ dur ing sequential pr ocessing 

5 ince the di sk arm wHl not have to rnove very much. The method of 

section 3.1. 2 doès not have this property. Becaus.e physical 

sequentiality of logically se~ential 'pages is guara~teed by this 

rnethoà we calI it "'sequential n OPLH, (SOJ?LH,.~ 
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3 :~ . Ove r f low 

OPLH places severe restri~tions on the hash fUl1ctions that can 

be us ed. The hash functions, that have been used are left(r ,m) 

and rnir(left(r,m». It is possible that these values, prefixes 

of records, will he -clustered. That :i.s.,. left(r ,m) may not 

scat ter the dat a very weIl. 50 overflow will be more common than 

wi th other hashi ng ~\thods. 
So far, almos t nothing _ has been said about how oyerflow i s 

dealt with. Both Litwin and Burkhard suggest the use af overflow 

chains [Litw80, Burk821. A Btree (or variant) is a much more 

appropriate data structure in the present contexte Since OPLH is 

indexe d- sequenti al, the data structure r epr es en t i ng an 

overf lowing bucket shou1d he also. 

We have also said very 1 ittle about the performance of OPLH. 

Our only concern will be to prevent the performance fran being 
-

worse than for a Btree, (whenever possible). If the data is 

distributed uJ1'\formly, \_he performance is better. 

We will use a B+tree instead of a Btree: 

non-homogeneous data structure. I.e. all t'he records 

leaves. Thi s results in' simJù ied a1gori thms. 

it i s a 

ar e in the' 

To simplif'y 

matt-ers further, a bucket which has not overflowed will he 

regarded as a B+tree contairdng one 1eaft (Le. aIl pointers are 

n,ull) • 

A bucket which has not overflowed 'stores aIl of its records on 

the primary page. Abucket wh-ich has overflow.ed- stores the r.oot 

of the B+tree on the pr imary page and us es pa'ges oI.fran a separ ate 

address space.for the descendents. 

The use of a B+tree (instead of a l inear l ist of overflow 
t 

pages) complicates operations, on buckets: Split and JÔin. -Tt is 

" ~ 
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essential that thege operations preserve the properties of 

B+trees, (the load factor in particular) .. 
t 

In section 3.4 these 

B+tree operations and others will be referred to. The 

implementation of these and other B+tree operations will be 

discussed in section 3.7. 

3.4. Multi-level OPLH, (MLOPLH) 

3.4.1. Problems w(th OPLH 

Ah OPLH file may contain an arbi trary m.unber of sparsely 

f illed buckets. This can result in poor performance for 

5 equent i al accessi ng. Consi der t~ situation show n in f igur e 30. 

To retrieve aIl the tuples whose prefix is 00 2 buckets 0, 4 and 8 

must be accessed. These three disk accesse1; yield two tuples. If 

the entire file were at level 2 then bucket 0 would contain the 

tuples which would be retrieved in one access, (since prirnary 

page capacity is 4). But if the file were at level 2, other 

searches, (e .g . fOl"- pr ef ix 1002) ~ _ would be more expensive. 

Furthermore, it would take six joins to reach level 2. So the 

problern i5 not 50lved,by joining more frequently. 

The situation demonstrated in~ figure 30 is characterized by 

the appearance of several sparsely tiilled buckets. It can occur 

followiI!g a s~quence of splits. which distribute the tuples 

unevenly or following repeated deletions ~~oncéntrated in a few 

buckets. Since it can occur -as a result of deletions, suppressing-

split5 does not solve the problem either. 
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Bucke t o 1 2 5 6 7 s 9 

N 1 4 2 5 5 o 4 

Level 4 3 4 

Tf 

Figure 30. OPLH with spars~ buckets. (A bucket is sparse if it contains 
o or 1 record.)' 
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3.4.2. Adding more levels to OPLH 

Linear hashing, as descri~d in section 3.1.1, is based on the 

binary trie: it classi~ies records according to a sequence of 

bits, (the suffix). Other data structures based on this idea are 

extendible hashing [Fagi79J, EXCELL [TammB01, HCELL [Tamm811, 

trie hashing [Litw8l] and, of course, the trie [Fred60, Knut73]. 

Wh';t aIl of these data structures have in common is the notion of 

"level". The level of a record is the number of bits used in its 

classification. Records are usually grouped into buckets (as we 

are doing) . The level of a bucket i s the level common to all
r

) 

" 
records in the bucket. 

The trie stores a record at the lowest level providing a 

classification which avaids bucket overflow. The same is true of 

ext endi bl e hashi ng, EXCELL and HCELL but each of thes e has a 
h . • 

di rectory wi th aIl ent-ries at the sarne level. Linear hashing and 

OPLH use no more than two consecutive leveis. 
, , 

The problem with OPLH, descri~d above, would he alleviated if 

parts of i t could be stored at lower levels than normal. E. 9 • 

if, ln figure 30, the contents of buckets 0, 4 and 8 COUld'\ 

stored in a level 2 bucket, (corresponding to pr ef ix 0°2) , 

leaving the r es t of the file at levels 3 and 4, the problem would 

be sol ved. Next, we discuas a "muI ti-level ft version of OPLH, 

MLOPLH. A mul ti-Ievel version of" sequential OPLH ( SOPLH) is 

br ief.ly discussed in section 3~5.3. 
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3.4.3. Sub-normal buckets 

A bucket is ~parse if it conta;ins no more than a given number 

of records (which is a fraction of the capacity of the primary 

page). A spars e buc ket will not he permi tted to exi st. l t wi 11 be 

combined wi th i ts brother to form a sub-normal bucket: a bucket 

whose 1 eVEü is lower than normal. If level (b) < NormalLevel (b) 

then bis sub- normal. (Level (b) i s the level of the bucket an..d 

NormalLevel (b) i s m or m+l. band b'" are I5rothers if level (b) => 

1eve1 (b") and 1 b - b" 1 =' 21eveUbl -1 . 

Consider the file of figure 30. Buckets 0, 4 and 8 are sparse. 

To el iminate the problem, buckets 0 and 8 are jolned, (they are 

brathers at the same level), yielding the level 3 bucket for 

pr ef ix 0002. Jai ni ng buckets 0 and 4 yields a +evel 2 bucket at 

address 0, (see figure 31). 'Note that bÙcKets 4 and, 8 could not 

have been j oi ned f irs t: they wer e at di t'fer ent level s. 

3.4.3.1. Degenerate splits 

A split may yield one or two sparse b~ckets. It is not 

feasible to refrain fran splitting until the situation changes: 

aIl further splits are also delayed. Instead, the' bucket that 

should have been split can remain at its current level and n, 

(the pointer ta the next bucket to he split), is advanced. This 

is a degenerat'e, split. For example, suppose tha.t a split, of 

buc'ket 2 in figure 31 yields a sparse. bucket. 

split leaves the' bucket at level 3, (it ls then sub-normal; see 

figure 32). 

. ... 



o 1 2 3 4 5 6 7 B 

2 4 2 6 - 5 6 5 -

Le vel 2 4 3 3 - 3 3 3 -

Normal le ve l 4 3 . 

Figure 31. Multi-level OPLH: sparse buckets have been eliminated. 
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F~gure 32. Bucket 2 has undergone a degenerate split. 
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3 • 4. 3. 2.. For ci ng j oi ns 

A bucket can aiso become sparse following a de~etion. When 

thi S occurs, the bucket is j oined . wi th i ts brother., For example, 

if "a record is deleted fran bucket' 2 of figure 31, it becomes 

sparse,.' It is then joined with its brother, bucket 6, (see figu,re 

33) \!".~ . 

3.4.3.3. A $parse bucke,t rnay become non-swrse 

A sub-normal bucket can, due to insertions, yield hlgher level 

buckets that are ooth non-sparse. For exampl'e if the re~ord 

deleted fran bucket 2 were put· back, i t w-euld be correct to 

distribute the records of bucket 2 in figur~ 33 returning to the , 
sittlation of figure 31. This operation is similar to, but not the 

s am e as a spI i t . 

3.4.4. A'lgori!:hms 
i ~~ 

The modifications of OPLH given in sect ions 3. 4". 3. l - 3. 4. 3. 3 

are extensi ve. We now g±ve all the algori thms'" needed for the.' 

implernentation of ~OPLa;. L 

3.4.4.1. Random accessing 
• 

Since records are not always .in the buckets ,they shoul4 be in, 

(e.g. due to a forèed jOin), sarie mechanism is required for 

locating a record. Reading an empty bucket (e.g. bucket 4 in 

f igur e 31) i s an indication that the records of, the bucket have 
~. 

moved to the br other bucket: (and dow~ one level).· Ther e "i si a 

, -pr oblem wi th thi ~ an MLOPLH file contai ning buckets 

at mafty levels, a been moved down sever al levEns. 

One disk i'ead i5 required .. to tflo>8fOlO\1 that th~' r eqords of a 
" * 

, 
1 

-1 
f 

, , 
l' 

... 
\ 
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bucket have been moved down one level. 

To avoid the disk reads, an array of bits, Moved, can be used: 

it contains one bit for each bucket. Moved{b) is true iff the 

contents of bucket b have -been Iiloved (to bucket brother (b». The 

array entries for the file of figure 3~ are shown in figure 34. 
, t 

Since i\.he space requirement of Moved is only one bi t per 

butket, it can be kept in primary memoryeven if'the file i5 

quite large. 

The Randac algor i thm uses Moved to find the level of a gi ven 

record. 

" 
Randac (r) 
L is the level of the bucket whose ran'ge contains r. Offset 
locates the rank of the record within the bucket. 

if h4'\(mir{r-» < n 
then L := m+-l 
else L := m 

(*",Skip over empty buckets *) 
w hi leM ove q Ch Cm i r Cr) ) ) 
,. L:= L - l 
end 

return«(hL{r),offset{r») 

end Randac 

, . 
3.'4.4.2. Seql.!ential accesslng 

As bèforé, Seqa~ must construct a successor record and perform 

a random acce,ss. But since there are no sparse buckets the loop 
"t 

which skips over empty buckets cah qe removed. 

f' '''''~~ 

., , 
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Segac (p) 
"P is a pointer to a record, (b, i). 

if i <'"N (b) 
then i : = i + l 
else 

(* bis a n um he r -of le ve l (b) bits *) 
S := «mir(b)+l) 1 0:d-1evel(b»' 
P :'" Randac (S) 

end 
r etur n 

end Seqaç 

3.4.4.3. Splitt.ing 

112 

The SpI it al go ri thm mus t be modit ied to deal wi'th the cr eat i on , 
... ~ . 

of spar"se bucke ts. Th~ detai 15 of thi s will be" dea1 t wi th by the 

Distribute algorithm': (Distribute will also ha)1dle sub-normal 

« -
'--/ buckets becomirg "more normal".) The split may be degenerate; 

Distribute is, not called if Oistril::OK indicates thi s candi tian, 

(see/section ~. 7.1). 

Spl i t () 

if" level (n) = m 
then (* the bucket i s not sub- normal *) 

if D~strit:OK(n) then Distribute(n) end 
else 

," (* The bucket is sub-normal. The records will be distributed *) 
(* as soon as insertions to the bucket ensure a *) 
(* non-degen'erat~ 'distribution of the records. *) 

end 

(* Inorement 
C. bucke t to 
N ,:~ N + l-
n :-= n + ~ 
'if n = 2'" 
then 

h :'" "0 
m := m + 1 

end 
r eturn 

end Splït 

m.Dbber of buckets "(N) and pointer ta next *) 
he spl-~ t (n).- *) 

i· 
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3 . 4. 4. 4. J oi ni n9 

Join must bé modified to deal with sub-normal buckets. Co11ect 

,combines tlie contents of brother' buckets. (and will 'he used to 

deal with buckets which become sparsé due to, deletion). 

Join () 

N := N - 1 
n := n - 1 
i'f n < 0 
then 

m : = m' - 1 
n := 2''' - 1 

end 

,i f 1 eve l (n) =;= m+ l 
t hen {* t:he bue ke t i s not sub- normal *) 

Collect (n) 
else 

(* The bucket is sub-normal and already. at or below level m. *) 
end 
r etur n 

e'nd Joi n 

3.4.4.5 ..... Insert a record 

When a, record i s inserted, the receiv~ng tiucket may be able to 

distribute, its records without 'creating spar-se buckets. 

AddToBucket performs the update of the bucket"s data structure 

and is discussed in section 3.7. 

l nser t (r) . 
r i9 the reco~ bein9 inserted. p. is the address of the smallest 
recorç3 gr eater than or equal to r. N'Cb) i s -the number of records 
in bucket b. N~ is the number of recor,ds in the file. 

p :~ Randaç(r) , 
b : = ,bucke t (p) (* the bucket porti.on of the addr ess * >. 
AddTC6ucket (r..JIP) 
N{b) := Nfb} + 1 
NR := NR + 1 
if It' ime'l'oSpl i t (NR, N) then SpI i t () end 
if DistribOK Cb)' then 0 istribute (b) end 
r eturn 

end l nSt;!rt 

î , 
\ 
j 
l , , 
l 

" 

, 
" , 

1 _ 

1 
; 

i 
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\, 

3.4.4.6. Deletion of a record 

If deletion create5' a sparse b4cket it i5 deleted by calling 
v 

Collect. The a1gor1 thrn is analogous to Insert. 

Delete (p) 
p ~ints to the record being deleted. 

b :\: bucket.(p} 
Rero6veFranBucket (p) 
N(b) := N(b) - 1 
NR := NR - l 
if TimeTruoin(NR, N) then Join() end 
if' s{)drse(b) then collèct (b) end 
r etur n 

end Delete ,. 
1 

\ 
3.4.4.7. [\istribution of records in a buck~t , 

Distribute is o:alled by Split and Insert when the records of a 

buc~et b at level level (b) are to be di stributed to brother 

buckets at level le'vel (b) + 1. The records are clas'sif ied 

a'ccording to the value of the level(b) + Ist bit. SplitBucket"b) 

performs this classification. 
c''' '.., 

Note that D:j.stribute i5 ,recursive • ..consider the situation of 

f igur e 35. Bucket 0 s tor es aIl the r ecoI'ds whose pr ef ix i 5 O
2 

but 

the distribution of these' records is biased. As ,soon as two 

records' with prefix 012 are inserted", bucket 0 çan he split to 

yield buckets '0 and 1 (corresponding to prefixes 'OOZ.and 102 

re~pectively)., Now, bucket 0 has 24 records. Asswning an even 

di stdbution, the di stributions shown in figure 36 can occur;;I" 

(the prefixes are shawn). These distributions are performed by 

the recursive calls. 

\ 

\ 

\ 
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Bucket 0 1'"": 2 ' 3 4 5 6 
1( 

N 24 3 - 4 - .3 - 2 

Level 1 4 - 3 - 3 - 3 

Normal level ,4 3 

)( 

00: 24 
Q1: 0 

Figure 35. A large cluster of rec~rds in bucket: O. 
, , 

00 

/~. 
000 001 

1\ 
0000 0001 

( Figure 36. Distribution of the bucket 0 recor~s. 
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Distribute (b) 

if le ve l (b) < m 

, . 

then (* distribution is possible *) 
oldlevel ,:= level (b) 
b' := brother (b) 
SpI i tBucket (b) 
level (b) := oldlevel + l 
level (b') ::;: oldlèvel + l 
i f Dis tri tû K (b) the n 0 i st ri bu t e (b ) 
if DistritDK(t)"') then Distrip4te(b') 

else _ 
('Ir brother(b) does not eKist yet *) 

end 
r etur n 

end Di stri but e 

3.4.4.8. Collection of brother buckets 

end 
end 
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Collect is called by Join and Delete to combine a sparse 

bucke t wi th i ts br other. Joi nBucke ts manipul ates the buckets'" 

data structures. 

Collect i s al so recursive. Consider a Collect of bucket b at 

l evel I,. and b' = brother (b) a t level L' > L. Befor e the Collect 

can occur, b'" must he at levei L. To ensure this~ b'" is 
1 

collected, even though nei ther b'" nor brother (b') (f b) is 

sparse. 



, 
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COllect-(b) 

b'" := brother (b) 

(* Bring b'" to level of b *) 
if level (b:) < level (b) 
t hen (* :i.nterchange band b' *) 

b : =: b .... 
end 
while level (b) < level (b') 

Collect (b") 
end 

{* Place result in lower bucket b *) 
if b'" < b then b :==: b~ end 
JOit:\Buckets (b,b") 

/ 

1 evel (b) ::;:: level (b) - l 
r etur n 

,,-
end Collect 

3. 5. P roblem 5 wi th MLOPLH 
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By el iminating sparse buckets, the problem of potentially poor 

performance ~or sequential proces~ing has been sol ved. For 

searching, MLOPLH' is not worse than the Btree. It can be expected 

tq.have better performance since most buckets will. not overflow. 

Updates occasionally generate calls to Distribute or Collect. 

These calls can generat,e a lot of work; a scan of the entire file 

i s requ i red in ext rerne casÇ!s. In thi s ,section, the problem is 

explained and a solution is proposed. 

3. 5.1. The .et oblem 

Cons idee the si tuation of f igur e 37. A rash of deletions f ran 
-

bucket 0 have caused it to become sparse. It mus-t be collected. 

Its brother is bucket l which is at level4. Bucket l must 
.- . 

therefore be collected_, putting it at level 3. By the time ·that 

bucket l reaches level l, the contents of buckets 3, 5, 7 and 9 
. 

will have been moved to bucket 1. Half of the bucket,s have been 
i 

I~ 
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Bucket o 1 2 3 4 5 6 7 9 

f' N f 7 - 8 - 7 - 8 1 - 1 S 

Level 1 4 - 3 - 3 - 3 - 4 

Normal level 4 3 4 

Figure 37. Half of all the buckets are lnvolved when bucket 0 18 collected. 
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A similar problero plagues Distribute. Generally, Collects and 

Distributes involving buckets at very low l~vels: 0, 1, 2, etc. 

involve very large fractions of the file. 

The cast of mov~ng records fran one bucket to another is a 

minor concern: the records in br other buckets band b' can be 

merged in time 0 (log(N(b» + 10g(N(b"'»), (see section 3.7) . This 

is possible because alJ the records in bUG:ket b are smaller than 

those in bucket b"', (and only the iiedges" of tpe B+trees have to 

be moàif ied) . 

Thé major concern i5 the number of·buckets whose contents have . "- . 
ta be moved. For example, collecting a bucket on level L may 

L 
cause as many as about N 12 buckets ta be accessed • .. 

3.5.2. The solution 

Clea,ly, the solution involves placing a lower bound on the 
-

level of a bucket. For example,- if the loWest level permitted is 

5, then a bucket being collected will be at least on level 6 and 

no more than 1/64th of the buckets will be involved in any 

Collect. 

A consequence of this strategy is that a few sparse buckets 

mayexist. In general, if, the' lowest level permitted is L then 

ther e may be as man; as 2L sparse buckets. 

A few modifications te MLOPLH are required 'ta make this work: 

-' The f He i s ini tial ized wi th 2L empty bucke ts, (i n~'tead of one 

empty bucket). , , 

- Spa l'se buckets mus t be kept track of. The adàress and level of 

each must be known. When a new sparse bucket is 

r eason, and the number of sparse buckets exceeds 

created for any 

L 2 • the sparse 

, 
:Î 

.j , 
i 
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bucket at the hj..ghest level is èoll~cted, (this i5 the cheapest 

one ta ~ollect)'. 

- The modifications ot the split, Join, Distribute and Collect 

algorithms are straightforward. 

l t i s inter es ti ng that the r e i s a tradeofU'- between the wors t 

case cos ts of sequenti al pr ocessi ng and updat.i ng: an upda te may 

r equi r e acçessing N 1 2 L buckets and ther e ar e up to 2L sparse 

buckets which can slow down sequential processing. 

3.5.3. Seque~tial MLOPLH 

AI'l of the modifications of OPLH through section 3.5.2 can 

also he applied to SOPLH. The.only difference lS that brother 

buckets band b", b < b"', when collected would reside in bucket 

b" instead of bucket b. 

3.6. Performance 

MLOPLH is a complicated but potentially faster alternative to 

the Btree. Random_ accessing is definitely faster in MLOPLH: in 

the warst case a Btree containing the entire file has to be 

searc;hed. Sequential accessing will be about the same for bath 

data . s truct ur es unless a large numbe r of sparse buckets ar e 
1 

permitted in an MLOPLH file. 

It is difficult to compare 

operations. The frequency of 

i nvol vi n9 page spI its for a Stree 

the performance Qf dynamic 

n exceptional" 

and bucket 

updates (e.g. 

di str! bution for 

MLOPLH) rnay not ?e the sarne for the two data structures. AIso, oit 

is difficult to compare the 

updates. 

cos ta of executing the n exceptioniü n 

;1 

i 
\ 
1 
~ 
1 
~ 
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It i s clear that in sane ea$es MLOPLH may access a f ixed 

fraction of the buckets:' thi s is def ~ni t~ly slower than the 

slowest Btree update. 

It is aiso clear that a lot of work is neces,sary 

can be r ecommended .as the successor of the Btree. 'Thi s work f aIls 

in three area~: 

1) Fine tuning: select,ing v'alues for parameters (e.9. threshhold 

for sparseness, number of sparse buckets permitted). ", 

2) Studying various strategies for administrative details such as 

when to spI i t'and when to j oin, (i.e. the T imeToSpl i t and 

TimeToJoin algorithms). 

3) Experiments comparing MLOPLH and the Btree . 

3.7. B+tree algori thms 

We now ai scuss the var ious s+tree oper~ti?ns requi red by 
... 

MLOPLH. AddToBucket and RernoveF r9IIBucket are the' normal B+tree 
• 

insertion and deletion algorithms. The' others are discussed 

below. 

We use the B+tree instead of the Btree because it simplifies 

the algorithms which follow. For simplicity of ex,planation we 

suppose that a di scriminator used· in an inter nal node i s a 

complete record, (i .e. an integer of the file). So bath leaves 

and internaI nodes have the fol1owing format: [PO' r1 ' P1 , r 
2 ' 

P2' ... , r 
C ' 

P ] where p la a 
C 

pointer and r is a record. e is 

the capaci ty of a page. The records in the subtree pointed ta by 

p. ar e gr eate.r 
J 

the number of 

tharl or equal ta r., i = l, ••. , a, where a is 
1 

records actually present in the page'~ 'l'he records 

page are strictly less than' r1' For a l~af page, p = 
1 

, 
1 

1 
l 
\ 

1 
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null, i = 0, ••• , a. 

Ta maintain a m~nil\\um load factor of 50%, each page (el.Ccept 

possibly the root) must contain at least 0/2' records. The 

algorittuns below will preserve this property. 

3. 7.1. D istritj)K 

~istr i I::QK examines the contents of a'· bucket, r etur ning 't rue 

iff the records can be distributed non-degenerately. If this ·i5 

possible then Distribute will be cal.led and two non-spar.se 

buc kets will he cr eated. 
-

The records in a bucket, b, are divided into two sets-! S. is 
J 

the set of records whose Level (b) + ls t bi t = i,. i = 0, 1. x e 

So and y e 81 implies x < y since aIl -records in the bucket agree 

in the f lrst level (b) bi ts. 

A bucket is sparse if it contains fewer than a given 'number of 

records, s. The sparseness of SO" can be oecided in 0 (log 

n) time, where n = ISO tJ S1' is_the number of records 

bucket: 

- F ind the f irs t record Oh the lef tmos t leaf. 

Find the s-lst succeséor. This i's record R(b,s). 

SA is sparse if R(b,~) e 51 

records in S • 

, 
sinee ther e wer e fewer 

The sparseness of S1 can be decided' in a s'imHar way. 

3.7.2. SpI itBucket 

in the 

than s 

T,he 80 records wilt form one bucket and the S1 records ,wi~ll 

" form al'lother. These ar e buckets BO' and-~. reS~ct i vely. On ea'ch' 
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. 
level of the B+tree there is one discriminator on one page which 

acts as a "boundary" between So and S1 on that level. Each page 

of this ,type will be split yieldi ng pnè page for each bucket'" s 

B+tree. So splitti\1g",of the B+tree can be achieved in one pass of 

the set of boundary 
'I!> 

page. 

Splitting a page , 

records. ~hese pages 

pages fran 

may yield 

will be 

the root to the ' leaf boundary 
,~ - . .,. 

0, 1 or 2 pages with 'toc. few 

called deficient. The " right 

f·ringe" of BO and tpe n left ~ringe" of ~1 have to be adjust~d to 

el iminate such pages. For example, a def ~cient. page on the right 

fri~ge of B would be combined wi th its :left neighbour, (P?ssibly 
~ 

a br other). If thi s caus es., overf low, , i t i s deal t wi th' ln the 

normal way (and the net effect i sa" rotation" of records into . 

the def ici ent page). 
t 

We are assuming that the neighbour of a page cao be found 

quickly. 'rohi sis possible if. the pages on each level ar e 

organized into a doubly linked list. • 

., 

" 

.. , 

.. 1) T;:n:l::\~t~~:;::;f·t::re:+:::s. containing the' bpundary J r_ 
~ ____ ----=----:t""-

. :g:: ~ i t the B+tr ee th.; oUgh .. the bounda"'}. pages. ~ . <'. 1 
3) Eliminate, def icient pages fran the right frï"nge of Ba and fran 1. 

the left fr~ng&- of .B1 • 

, • 
. 

l ,. 

! 
/ 

'. 
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8p l i tB u c ke t (b ) 

FindBoundary(b,stack) 
SpI i tO nBoundar y (s tack, Ao~' At) 
F ixRightF r"inge (A o ' Ro ) 
F ixLef tF ri nge (A l' Ri.) 
r ~ot (b) : = Ro 
root {br other (b » : = Rt 
retur n 

end SpI i tBuc ke t 

3.7.2.1. FindBoundary 

122 j 

Thi 5 algor i thm i s straightforward. On each l.eveI, the f irs t 81 

record i5 located and its, address i8 pl:aced in st,ack. 

FindBoundary(b,stack) 

P := b 
stack := EmptyStack() 
r epeat until p = null 

j := FindF1rstS (P) 
push ( (PI j) ,s tack) 
p := p 

l' end 
r etur n 

end FindBoundary 

,3.7. 2.2. SpI i tOnBouodari ' 

Each page in.stack is split at the indicated 

r~sulting pages are' entet~Q ·into stacks :AO and A1 
used in the el iminati,on of' deficient' pages. 

.. 

.. 

. , 

posi tion •. The 

which will be 

i 
l 

\ 
i 
J 
j 

" 
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,,0 

SpI i tOnBound~ry ~s tack ,A", A1 ) 
Page P i5 Spl1 t to yield pages P and p". C and C· .. are, the 
pr evious, val ues of P and ,P', (i.e. fran the lower level) .. 

C := null 
C,. : = null 
tepe at· unt il Empty (s tack) 

(P,j) := pop{stack) 
(* p :;: [Po' r 1 , P1' ••• , ra' Pa J *) 

GetPage (p") 

P :== [po' ri' Pi' ... , rJ.1 , Prl 
(* note: p' -i = C *) , .. J 1-

P : '" [C , r j , PJ' .'.. , ra' P -cl ] 
push (J?,. Ao) 
push (p'" ,Ad 
C := P 
C' := p'" 

end 
r etur n (~ 

end SpI i tOnBoundary 

3.7.2.3. FixRigqtFringe 

We now show how to elirninate deficient pages fram the right 

fringe of BO. A similar algorithm ls used for B1 • The fringe 

pages were stored in a stack. Popping the stack yields the fringe 

pages," starting with the root. Each page will he combined with 

'" 
its left neighbour. If overflow results, it is handled in the 

,. 
usual way. Fina~ly, 'there ,may' he sané empty. pages at the t,op of 

BO. These are el ifl!inated and the root ls s-tored rh R. 
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FixRightFringe(A,R) 

R := t6p(A).-, 
r epe at lfi:iJ!il. E mp~ y (A) 

P :== pop (A) , 
if defici'ent,(P) 
then 

\ 

if P has ~ left neighbour 
then 

end 

end 
el se 

P ::;; Lcombine (P) 

(* P is OK *) 
end 

(* Fin d the r oot *) 
whi le R has no records 

P := R 

end 

R := page (R) .po 
Retur nPage (P) 

r eturn 

end F ixR ightF ringe 

Lcombine concatenates two 

( 

\ 
\ 

pages and 

.. y' - ~", ~~ , .. '!. . , 

retur ns the 

124 

/~ 
re~;ulting 

page. To do this, a discriminator must be located •• 

Thi s involves 0 (log n) t-ime where n is the nl,Illlber of records 

in B, (sinee the· discriminator is t,he leftmost record in p"s 

subtree). Since tqe &earch for a diseriminator may occur O(log 

n) times, the' runriling: time of Fix~igh,tFri,nge (and therefore 

Spl i tBucket) i s 0 ( (log (n) )2) • (But recall that a B+tree exi sts 

only in:case of overflow and that n ~ NR, t~e number,of records 

in the èntire file.) 
1 

• \ 

\ 
3. 7,,3. J oi nBu c ke ts 

Two buckets, band b'" are to be· joined. Th~ records in one 
\ 

bucket pr ecede all those in the other. Suppose ~hat b cOJ)tàins 

the small:r re,cords. In gener al, the heights of ~ and b"" ar,e not 
1 

the same. Let h be the height of b and let h" be, the height of ., 

~: 
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( 

, b\~. FfI' h h h'" or pur poses 0 exp anatlon assume t at > • 

An essential property of,B+trees is that aIl leaves are at the 

fil ame level. 50 the leaves of band b"" mus t he at the same level. 

'Therefore, the root of b'" will be at the same le'vel ~s level h ~ 

h"" of b, (the root is at level 0) • 

Now consider the root of b"', p"',' and its neighbour in b: P, 

the r ightmos t page of level h - h"". The layouts of P and p" ar e 

[Po 1 r l' P 1 ' 
r es pe ct i ve l y • 

, r , 
a 

To merge 

. .. , 

the two B+trees, replace node 

ra' 1 P~,] 

P by [PO' 

r1 , P1' ... ra' Pa' M"", PÔ' r" P1' .. : ,r~" P~,] whereM" is 

the minimum record in b". This can be found in logarithmic time. 

Overflow resulting fram this concatenation is handled in the 

usual way. 

The main resJlts of this chapter are summarized in 

chapter 8, sections 1 - 3 • 

~ \ 
1 
" 

1 
'~ 

J;j 

~~ 

" 
! 

" 

" 

~ 
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In thi s chapt er we r evi ew the relevant 1 i ter atur e on r ecover y 

and conc)Jrrency control. It may seem odd that these subjects are 
\ 

deal t wi th together: they have tradi tionally been considered to 
( 

be separate problems. This p:>int of view has contributed to tne 

compl exi ty of 'implernentations. 

Recently, the database communi ty has noticed that the two 

problems are not independent: pa r'al leI ism can be' enhanced by 

using slightly out of date information which is kept for purposes 

of recovery. 

In- 1978, Reed considered the relationship between the two 

problerns in a more general context [Reed78]: A relation can he 

s een as a sequence of vers ions. Each updat~ gener ates a new 

vers:i,on. Recovery can he achieved by bringing a recent version ùp 
to date. Concurr,ency can be enhanc~d br permi.tting cr user to read 

a selected (old) version of the relation. /:,.,. 
i 

Sone of Reed'" s ideas have been incQrporated into the design of 

the Local Database Manager (LDM) [C han82] • .Their design 

resembles ours in sane ways but there' are large differences, also. 

In sections land. 2, recovery and c6ncurrency control 

techniques are sur.veyed. In se6tion 3, the jesigns -of System R, 

INGRES and LDM are. examined • 

. . 

.. 

1 
1 

_1 
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1. Recovery 
i' 

A database system must be able to recover fran a system 

failure or "crash". A soft crash leaves the contents of secondary 

storage intact. A hard crash damages the contents of secondary 

stor-age. Following recovery, the state of the relations must be 

correct and interrupted transactions must he backed out, (Le. 

aIl the changes due to the incomplete execution are reverseg) , 

and re-executed. 

In section 3 the recovery sys tans of thr ee relational database 

systems will be described. What follows is a description of 

techniques fran which recovery systems can be built. These 

techniques have been summarized in [Verh78]. 

An obvious technique is to take "checkpoints" (make backup 

copies) periodically. Following a crash a previous state of the 

sys tem will be available. A pr oblem wi th thi s technique i s that 

it is expensive to copy large relations. 

The audit, trail [Bjor7S] (or "log" or "journal") is a 

chronological list of operations carried out on the database. It 
-

serves a variety of purposes: it can be used to bring an old copy 

of the daëabase up to date fol:'lowing a cr ash; i t can be used to 

back out transactions (in case of deadlock or a failure); it can 

be eXiimineq to ver if Y that pol icÎes regarding the use of 
f) 

the 

system are observed. The audit trail is, therefore, likely to be 

a camp:> nent of any database sys tem even if i t i s not used for 

r ecover y pur pos es . 
. 

The checkpoint is often used in conjunction with a log to 

cestore the current state of the dat abas e. Thi s has the 

undesirable property that transactions which committed after the 

cheqkpoint and before the crash 'Rave ta he re-executed. We will 
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propose a soft crash recovery system that does not have this 

problem: checkpoints always include the results of all committed 

transactions: 

When a log is used for recovery, the database containa three 

components: ebe cur rent version of the database: an old version 

of the database; the log which allows the old version to be 

brought up to date. The differential file [Seve76] is a related 

idea. One version of the database is kept. This is the static 

"mas ter file", (an old version of the database). The 

"differential file" stores the changes accumulated since the 

master file was created. The difference between the log and the 
, 

differential file is the following: the log records transactions 

and is not searched in the evaluation of a query (since the 

current version of the database is available). The differential 

file stores the actual tuples being changed (old and new 

vetsions) in a form suitable for efficient searching. It is 

searched to obtain any tuples mTerriding tuples in the master 

file. Lorie has p:>inted out a number of problems concerning the 

pèrformance of a database based on differential files [Lort 77]. 

However, if implemented properl'y, aIl 
\J 

of these problems can be 

solved, (see chapter 5 section 1. 2). The differential file will 

play a central role in our design for the pœ. 

Another method of maintaining an old copy of a relation is to 

store both original and updated versions of the pages storing the 

relation. (This is the backup/current version method. It is used 

in System R [Astr76] and is described in detail in (LQri77]. See 

section 3.) Two directories to the pages ~re stored. One gives 

access to the current' version; the other represents the old 

version. Unchanged pages will have matching entries in the two 
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directories. To create 9 new checkpoint, the current directory is 

copied to the old-directory. This ~echanism protects against 

f ai lur es that leave s torage intact. 

To ensure correctness of processing, multiple copies of the 

data can be stored. If aIl copies are not in agreement, (except 

during the actual updating of the copies), the majority is 

assumed to be correct. Thi s method has not been used in any 

database systems that we know of but has been us.ad in other 

applications. An obvious drawback of,Jtfi~ method is the cost of 

keeping several copies current. 

Careful replacement is a technique of rewriting upd~ted data. 

The idea is to avoid updating in place: the new version is 

written in a different location fram that of the or~ginal. When , 
this has been done correctly the original can" be retùrned to free 

storage. This method should not be used for files whose pages 
-~< 

contain pointers directly t~ oth~ pages since" when a .ldgical 

page is updated, its physical address changes [V~rh77]. (If one 

levelof indirection is~used, e.g. the page map' of System R, this 

problem can he avoided.) 

In chapter 5 we will propose the use of the differential file 

for 50ft crash recovery. The mQtivation is that the differential 

file simplifies bath recovery and concurrency' control and has 

other advant,ages concerning performance. The / differential file 

can be seen as storing aIl previous ,states of a relation (since 

the cr eati-on of the MF) . 

1 
~. 

;f 

1 
1 

.' 
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2. Concurrency control 

To improve the performance of a database system, several users 

should be abl e to açcess, the databas e s imul taneously. ,If, in such 

an envi ronment, access' to the data i s not regulated, anomal ies 

can, arise [Eswa76J. 1 Concurrency control methods provide the 

regulation that avoids these anomalies. 

2.1. Concurrency control in central'ized systems 

Several basic notions were introduced in [Eswa761: 

A database is a collection of entities,' each of which may be 

"locked" by no'--iObre than one transaction at a time. A lock 

guarantees exclusivè access to t~e entity by the transaction 

until the entity is "unlocked". Some locks need not be 
1 

exclusive: a transaction performing a read of an entïty x must 

exclude writers of x but can allow other readers. A writer must 

have exclusive possession of an entity. 
<II, 

If the database system 'contains a single processor then the 

steps of the transactions will be interleaved. The sequence of 

steps i s a Il scnedule" . A correct (0 r n co ns i sten t n or 

"seriâlizablen ) schedule must give the sarne result as sane seriaI 

execution of the transactions (i.e. as if there were no 

inter l eavi ng) since ' transactions are atanic, (see chapter l 

section 3). 'The interleaving of steps of transactions is 

controlled by lock and unlock operations. A correct schedule is 

obtained if the locking protocol described 'above iS observed anÇl 

if, in addition, aIl transaction are ntwo phasen • A transaction 

is two phase if aIl lock operations are performed before aIl 

unlock operations. 
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For recovery pur poses locks should be held until transaction 

commi ttal: Suppose that a transaction T then wri tes . x and 

releases its lock on x. x is then read by transaction T"'. If T 

is backed out, (e.g. the user ,hO initiated T cancel s the 

transaction), then T'" is incorrect since it has read the value of 

x !breated by T. If T had not unlocked x until after backout was 

complete, T'" would have the correct (original) value of x. 

The entities that can be locked are relations, attributes, 

tuples or ph ys ical obj ects such as files and pages. There are 

sane pr oblem s in us ing tuples as the enti ties to be locked: 
." 

A tuple is a value, not a variable.t A tuple is locked in order 

to update it but when the tuple (i.e. the value) is changed it 
, 

becomes another tuple, (see chapter l section 4). One way around 

thi sis to identify tuples by keys. Then only non-key attributes 

can be modified. Another solution is to create a key known as the 

"tuple identifier". 

A lock can only control access to tuples that are pr esent. As 

exp1ained 'ln [Eswa76], i t is also necessary to lock "phantan" 
1 

tuples: tuples that are not present in the relation. Such a 

tuple, t, mus t not be inserted by one transaction while another 

transaction holds a lock that would have included t had it been 

pr esent. 

Other logica1 enti ties (relations and attributes) are too , 

"coarse" for locking: parallelism is severly restricted. 

In response to sane of these problems, the "predicate lock" 

was proposed [Eswa76]. Predicat.es can be used to describe the 

tuples beJng read and wri tten by a transaction. The pr edicates of 

actions fran di,ffêrent transactions are in conflict if at least 

one of them i s a wri te and if tl)ere exists a tuple (which may or 
, 
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may not he. pr esent in the relation) that satisfies both 

predicate~. In case of a conflict one of the transactions must 
• 

wai t or be aborted and re-executed later. 

Detecting conflict is not always possible unless the class of , , 

, . 
pr edlcate$ i s res trict ed (see [Eswa76]) . Fo~ pr edicatès 

correspon~Ung to range queries, detecting conflict is triviÇll. 

A var,iation of the pr edicate lock i s the ," pr eci sion lock" 

[JordSI]. The idea is to restrict the class of predicates 

describihg writes to predicates specifying a value for each 

attribute, (i.e. a point). This is reasonable since, in 

pr act ice, tuples are wri tten one at a time and a'll attribute 

val ues are known. Now, tes ti~ conflict is simple. 

Another scheme based on locki\tlg can be us-ed when the r ecovery 

system maintains bo~h the' old and new values of updated objects 

[Baye80, Stea81] (as in the recovery system of System R [Lori77]. 

or wi th di ffer ential files). Rather than have a transactidn wai t-
"-

or abort when a conflict occurs, it is 'sanetimes possible to give 

the transaction access to 'old vqlues. This,method has the useful 

property that read-only transactions never have to be aborted 

when deadlock oceurs, (deadlock is discussed .below). This'" is 

important since, in many applications, read-o_nly transactions are 

by far the mos t common ~ 

Little is known 

conèurr<ency control 

, 
about the performa~ce ',of the . var i ous 

methods. Ries and S tonebr aker • [Ries 77, 
<;; .1. 

Ries79] have. - studied the problem of lock gr anular i ty. That i s, 

how large should be the enti ties controlled by locks?" nCoarse" 

locks have low~ maintenance costs t~" locks but reduce 

parallelisme They conclude that the size of the locked entity 

should be dependent on the size of the port~on of the relation 
-. 
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. accessed by the transaction. A "lc;>ck hier?,rchy" was pr.oposed:'f> 

Coarse lockff fot:- transactions that access a large portion of the 

relation and fine locks for more selective transactions. A 

threshhold of 1% is suggested by the simrulation. A coarse lock 
~ . ~~ 

protects a ielatïon and a fine 1-e-t:k protects a tuple. 

Although predicate locking was not;. tested in the simulations, 

osever al concl u~'ions i ndicate that thi s method might be sui tabl e: 

for example, the gr anular i ty of the lQck autanatical·ly. adj us ts to 

the selectivi ty of the tran~action. Furthermore, the num-ber of 
, 

read. locks i s pr opOrt~onal· to the number of tratlsactions, not. 't.Q,~~ 

the nLUnber of entities being locked. '" , 
Any ~ocking method can give rise to dead~oCk. ). ".waits for" 

.--.-/ 
~/7~ 

graph shows which transactions are waiting/ for which other 

transactions to r elease locks. For example, T -> . T'" (T wai ts for 

'1''') says that T has requested a lock wnich T" is currently 

holding. There are four necessary conditions for the existence of~ 

deadlock [Cof'f?l]: 

1) Excl.usiv.è co.Xltrol of resources: this occurs when a writer sets 
~. -

a lock' (which mU,st be' e~~~e) ~ 

2) Waiting for a lock while.holding anothe'r lo·c,k., .. 1ft 

3) Transactions 'are not pr~ernpt:ed. 

4) There ~s a 'cycl.e in the wai~ for gra;r. 

Dead;Lock,: on<;:e detected,' cano hé resa.lv~d by abort;ing one of 
L ~ 

the deadlocked t~ai'lE~act~ons, (causing condition (3) not ta hold). 
~ 

A cycl~ can ·be detécted by searching the graph (in time 
. . 
propè>~.~i9nâl .to. the number --of nodes in the gr aph). The algori thm 

gillea--in-- {Ah074] applies_ t'o=un-di.~~i:s- simpl~ to .. , '~-' . 
ada~t 'i~ for di'rècted g'raphs. . , 

Deachock can be . ayoided- by causing condi tions (2), or (4) not 

; 
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to hold. By obtaining aIl locks at once (ii\nd not starting if any 

lock i5 'denied) deadlock is avoided sinee (2) is violated 

[Have6 8] • 

If the loekable resources are ordere4 and if locks must be ,. 

r eques ted in that order then cycles 

graph (violating '(4) ).' 

e~nnot fdrm in the wai'~s for, 

An entirely different approaeh to concurrency control~s taken 
, J 

by K ung and Robinson'. [Kung81], 'Ph~y make the ft optimi $ tic'" 

assumption that transactions us'ually do not °confli'ct. After a 

transaction completes its processing (but before it is cornmitted) 

Lt is val idated: conflicts 
~ , with éimultaneousIY rùnning 

transactions are tested for. If a conflict is found, the 

transac;tion is backed out and~re-~ecuted. With th! s method the 
1 

over head of Locki ng 'i s avoided at 
/ 

the cost of running validation 
,.' 

t ~s ts. Fur thermor'e, deadloek does nQt occur. 

" 
2.2., Concurrency eo~ttol in dfstributed systens 

Most of the recent work in the field of eoncurren6y conttol 

has been concerned with distributed databases. Bernstein and 

Goodman have deeomposed the problejlt into sub-problems. [BernSll. 
, 

T!ley claim th~t Most concurrency control methods "fall into this 

v framew~rk and diffe~ onl~ .. in their solutions to the SUb-prQbl,emà; 
o t >i' ... 

. The 'database is di-stributed amon,g several ~ites. There May be 

partial or total redundancy of data or none 'at aIl. A log at eaeh 
~ , " 

site l ists, in \ chr onologi cal oraè'r, the actions performed at that 
,\ . 

S1 te, (a . log is 1 ikel'- the sbhedule of a central ized system) '. A' 

transaction may he ·exeouted at sever al s,i t-e~; the 'locj at eaeh 

, 

• iteW.O_Ul~, ~Il~n.~> ~~~ ai ~ e~t ri es for· th~ t r ansact ion 0. ._~_ -'l,wJ--
, 

, 
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As wi th a central ized sys tem, the exe cut ion of 'the 

transactions in a dist,ributed system must give the same result::s 

as the seriaI execution of sane total ordering of the 

transactions. Ne will refer to this sequence of transactions as 

the serializatiori. Serializabi1ity is guaranteed by the 

fol1owing: in every log containing conf1icting operations 0 and 

0'# fran transactions T and T'# respect~vely, 0 precedes 0'# if and 

only if T precedes T'# in the serialization (see [BernaI]). In 

other words, each log places certain constraints on the total 

ordering of the transactions. T -> T~ indic~es t{lat T must 

precede T'in the total ordering due to a conflict in sane log. 

Conflic'"ts may involve a reader and a wrlter, (T ->rwr T'#), or 

two writers, (T ->ww T'#). T -> T' if T ->rwr T'# or T ->ww T'#. Th~ 

execution of the transactions is serializable if -> rwr and ->ww 
f 

are acycl ic and if there is a- total "ordering consistent wi th 

-> rwr and ->ww. l," 
l , 

NOW, a concurrency control method can he seen as a composition 

of two "synchrpni za tion techniques" [Ber n81] : 

1) A technique for read-write 
\ 

(rw) synchronization. That is, a 

technique for ensuring that ->rwr ~s acyclic. 

2) A t:.~chnique for wri,te-wri te (ww) synchroni za tion, 

that ->ww is acyclic) . 

(ensuring 

A complete concurrency control method must, in addi tion, 

guarantee that -> is acyc1ic. 
~ 

Most 'of the techniques avai1ab1e for solving rw ànd ww 

synchronization fall into two categories: two-phase locking (2PL) 

and times tamp order i ng (T/O). 
v 

2PL has been described in section 2.1. Various extensions ha.ve· 

been pr op::)sed for dealing with the redundant data of a 
" 1 "_ 
:~~~~ -'"-............... ~#<_-.." ..... ~"'"' ...... ~ ......... 

/ 

1 
·1 
1 
1 
{ 
1 

l 

. 
j 

1 



1 

,. 
t 

·; .. 
Cha"pter 4 Section 2 138 

distributed system. 

Deadlock is a problem characteristic of locking (whether or 
-J> 

not the system is distributed). As with a centralized system, 

deadlock can be avoided or detected and broken. 

Deadlock can be pr evented by assigni n9 pr iori 1;:i es to 

transactions. A transaction T can wait for'T'" if T has a lower 
, 

prlority. No cycle can res'Ult sinfe the priorities create a total 
, J 

ordering. If'T has a higher priority it might preempt T . 

To avoid the situation in which a~,ow priority transaction is 
".,. 

repeatedly restarted, the priority df ;;---e-ransaction could be 

related to its age (as in [Stea81I>. If the oldest transaction 

in the sys tem cannot be ~reempted then no transaction Il starves". 

Deadlock i6 deteqted by searching for cycles in a global 

" wai ts- for Il gr aph. Thi s pr ePents ~roblems in a distributed , , ..., 
envi ronment since communication wi th the pr ocessor r es po risible 

for the gr aph i s necessary to update the gr aph [G ray78, Ston79]. 

Menasce and Muntz' [Mena791 pr es ented t wo methods for 

distributed deadlock detection. One method organizes the 

processors into a tree. Any change in the waits for graph is 

propagated up the tree. Deadlock, if it occurs, is detected at 

the node furthest fran the root whose des'cendents 'ate deadlocked. 

Thei r other algor i thm does not place the pr ocessors in a 

hierarchYi aIL processors have the same status. Thi s algor i thm 

is incorrect [Glig80J and to fix it would render it impractical. 

A general' problem wi th detection methods i6 that deadlock can 

tie up the system betw~en searches of the w\aits-for graphe This, 

and the difficulties- of det~ctin9 deadlock in a d'istr.ibuted 

system suggest that deadlock free concur'I'en'cy inethods are more 

suitable. T/O methods are deadlock free. 

. . 
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T/O methods operate by assigning "tirnestamps" to transactions. 

A tirnes tarnp d,motes the time of sane signi f icant event: e.g. tirne 

of initiation of the transaction or tirne of committal. The sites 

of the network are synchronized 50 that a timestamp at one site 
# 

is meaningful at anothér. Timestamps are unique. At any site, 

conf1icting operations are process~d in order of increaslng 

timestamp; the seriaI execution of transactions in order of 

increasing timestatnp would result 
.... 
]. n the same database s tate. 

, Oeadlock does not occur uS,ing T/O but transactions may he aborted' 

in sane; cases. 

Rw synchronization is achieved in the following way: if a 

transaction with timestamp T attempts to read a~ object I}lost 

r ecentl y wei t ten .. tirne W > T then the r ead i s i nval id and the 

reading transaction is aoorted. A sirnilar strategy handles a 

writer j.n conflict with the most recent read of an object. Ww 

synchronization is al.so based on this scheme. Our design for the 

PDB permits the 'us"e'\of a 'simpler ww synchronization technique. 

To ensure that aIl' copies of redundant data are updated (or 

none of them are), writing consists of two phases: a "prewrite" 

which is a command to each site to make secure copi~s of the data 
~~ ! 

to he wri tten. The actual wri te i s triggered by a separ ate ., 
command after aIl prewrites aJ:e performed. Since there is sane 

tilDe hetween the prewrite, and the actual writ~, conflicting reads 

and writes recelved in timestamp or~dèr lare buffered, (o~o that 

they can be pr<::)c~ssed in ti1nestamp order). Conflicting::operations / 

received out of or~er.~cause .restarts as described aoove "1 
Canplete concurrency control meth~ds ~se two SynCh~Onization 

. 1 

synchroni zation. There are 48. combinations \' invo~'iTing th 

\ 

l ' 
1 ! 

" 

1 

" 

1: echniques: on~ far rw synchroni za tion and another for w~ 
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variants of 2PL and T/O summarized in [Bern81] (except tha t one 

of them is incorrect, see [Bern81]). 

The two techniques mus t combine/" to pr oduce a total order i ng of 

transactions. For methods where both techniques are 2PL or both 

ar;e T/t," this is autanatically guaranteed. For hybrid methods, it 

is possible ta generat~estamps for transactions based on the 

locking scheme. The timestamp represents the lock point: a time 

between the last lock and the first uniock (recall that Iocking 

is two phasé). (These generated timestam,ps aiso determine the 

serializati~n for pure 2PL methods.) 

Performance issues are outside the scope of [BernaI] but they 

are important: T/O methods have a serious drawback. When used for 

ww synchroni za tion, the timestamp of the las t transaction to 

write each tuple must be known. ~ used for rw synchronization, 

the timestarnp of the most recent readèr of each tuple must also 
, , , , 

be known. This impl ies a wri te (of the timestamp) cprresponding 

to each read. In chapter 5 section 3.1. 2 we will discuss these 

issues in more detail. The differential file will he useful in 

solving one of these problems. In chapter 5 we will also show 

how sever al other synchroni za t~on techniques can he implemented 

using the differential file. 
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3. Recovery and concurrency control in practice 

In this section the recovery and concurrency control systems 

of System R and INGRES are described. These are" tradi tionaP 

systems in that they treat the two problems separately. We also 

discuss LDM which 15 a "multiversion database" (MVDB). In an 

MVDB, a state of a relation is derived -fran its predecessor by 

the appl ication of aIl of the updates of sane transaction. The 

avai.lability in an MVœ of past versions of the database 

simplifies the recovery and concurrency control systems. 

3.1. System R 

3.1. 1. Recovery 

The "shadow" mechanisrn of System R"s recovery system has been 

descr i he d in detail in [Lor i 77] • The recovery of a segment 

following a crash is considered. Thus, the objects in the segment 

need not he consider ed separ a t,el y • Recovery f ran both hard and 

sof t cr ashes i s conaidered. 

A page map is used to translate logical page addresses into 

physical pq.ge addresses. The shadow mechanism depends on the use 

of two page maps: the current version and the 

When a logi~al page i s updated for the f ir/t 

page i s 'located usfng 0 the c9r rent page map. 

shadow (a 

time, the 

Instead of 

backup) • 

physical 

updating 

that physical page, a new onè ia allocated and is written wi th 

the new version of the page. (l. e. updates are not done "in 

place" .) The 
1 

ia updated to point -to current page I,map the new , . ," 

~Physical 
. 

page. The shadow page map still points. to the original 

physical page which has not been changed o~ di scarded. ,Subs~ent;. 

1 

! • 
! 

~ 
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-f 

changes affect the new physical page. Since a backup is present, 

i t i s safe ta update the new physical page in place. 

If a soft crash occurs at any point, the shadow version of the 

page map stores, an old state of the database. (The current page 

map is unreliable fOl1:9win9 the failure). Ta recover, then, the 

shadow page map i8 copied ta the current page map. (If this 

pr ocess i sint er rupt ed by another f ai lur e, i t i8 simply 

restarted.) '; 

It is preferable to restore a recent' state. To allow this, the 

shadow page map should be updated periodically. That is, tne 
@ 

current page map must be backed up. When this is done, the 

original, (now out of date), versions of updated pages can be 

freed. The systen then has shadow and current versions that 

match. 

The mechanism descr,ibed i8 inadequate for restoring the 
\ 

eur r ent state of the segment. For thi s purpose, a eheckpoi nt and 

log ar e us ed. (For det ails see [G ray81 J .) Thi s method makes the 

shadow mechani sm unnecessary, ('See chapt er 5 section 2.4.1) • 

To recovEjr fran a hard crash, a cheekpoint must be available. 

Thi s checkpoi nt should be mor e secur e than those us ed for sof t 

crashes. System R uses a tape. This "long" checkpoint coincides 

'with the tast of a~ fixed nLUnber of backup page ma'p saves. The 

copyi ng ta the tape i s run as 3 separ ate pr ocess. The basic 

scheme for reclaiming pages has "been modified to keep oid pages 

(i.e. they are not freed) unti'l they have been copied to tape. 

3.1.2. Concurrency control 

Transactions m~y be run at any of ,three cpnsistency levels. 

The highes t ',level is the one 'normally considered in the 
~. 

',-
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liter at ur e on concur r ency cont roI. 

Concurrency control i5 implemented using locks. Logical 

objects (segments, relations, TIDs, ranges of index values) .can 

be locked. Phys ical locks on pages ar e also necessary: 
, 

transactions which do not conflict logically may try to update 

the sarne page simul taneously. 

A dynamic lock hierarchy protocol is used ,(hat adapts the 

granularityof the lock to the selectivity of the transaction. 

Thi s idea i s supported by a simulation study of locking 

gr anul ar i ty [Ries 77, Ries 79] • 

The duration of a wei telock 15 to the end of a transaction 

{for ! recovery purposes) • The phY5ical lock on a page may be 

r eleased as soon as the update of the page (in pr imary memory) is 

comp1et.ed. 

When a transaction is lockedout, deadlockis testedfor. If 

deadlock is found then one 

backed out (using the disk 

" young" transaction holding 

physical locks on pages) . 

cheapes t to re-execute. 

1 

/ 

of the 

log) • 

locks 

Such a 

deadlocked t ransact ions i8 

The pt eterr ed victim 

of short duration 

transaction would be 

is a 

(i.e. 

the 

" • i 



) , 
" 

Chapter 4 Section 3 144 

3. 2. INGRES 

The recovery and concurrency control systems of INGRES have 

been discussed in [Ston76}. 

3.2.1. Recovery 

The pages of an INGRES file are updated in place. 80 the soft 

crash recovery mechanism is necessarily' different fran that of 

Sys tem R. 

Relations and inversions are not updated until after the 

transaction which generated the updates is committed. Updates are 

stored in a file. If the transaction is backed out for any reason 

then the file i9 discarded. 

- The use of deferred updates is also motivated by semantic 

problems connected with updates. Stated briefly, two of the 

problems have ta do with repeated updates to the same tuple (as 

identif ied by i ts T ID) : a tuple sati sfyi ng a s earch pr edi cate 

which i s updated once rnight be found agai n and updated again. 

Thi s problem is avoided in INGRES since the updates are not 

regi ster ed in the relation until af ter aIl upÇJates have been 

stored in the deferred update' file. 

Recovery fran hard failur~s is accomplished by using' a backup 

tape to reloaÇ! a checkpoint and then . re-executing the 

transactions stored in a log. 

3.2. 2. Concue r ency control 

The only enti ties available for locking are the attri butes of 
-

relations. This coarse granularity was selected to avoid the ,need 
f 

,.for a large lock table in primary memory, (INGRES was originally 

implemented on a minicanputer wi th a 64K memory 1 imi tation). A 



1 

( 

Chapter 4 Section 3· 145 "--

"erude" form of predicate locking is being considered as a 

replacement. Predicate locks also have small space requ'rements. 

Deadlock is avoided by requiring transactions to acquire aIl 

necessary locks before execution starts. ~f the transaction is 

blocked t hen ,i t i s pos tponed for a f ixed amount of time. Thi s 

"predeclaration" strategy is reasonable given the granularity of 

the loeks. It would be less sui table in a predicate locking 

scheme. 

3.3. LDM 

The Local Database Manager (LOM) [C héjln82] is a mul ~.i version 
l' 

database (MVDB). 
t 

That is, aIl of the previous states of each 

relation (since sane previous time) are available. Several LOMs 

can be connected to farm a distributed database system. 

The current version of a relation is stored in a segment: a 

-set of pages. Each page of the segment is the head of a list of 

previous version of the (logical) page. A traversaI of sueh a 

1 ist encounters the version in reverse chronological order. The. 

previous versipns are stored in the version pool. 

Eventually Ithe version pool will become full of old versions. 
1 ~ 

Garbage cOlleition is - llecessary to reclaim ndead pages". A dead 

~ is a ver1ion of a page which will never again be referenced. 

AU transactipns which could have accessed a given dead page have 

com~leted. In [Chan82] an eff icient garbage collection scheme is 

descr ibed. A small number of pointers to the version pool, (a 

cireular buffer), are maintained. Pages behind such a pointer are 

d~f ioi tely garbage, those in front may or may not œ. 
transactions fini sh pr,o,cessing the pointers ar e advanced. 

As 
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3 . 3. 1. !eco ve r y 

The mai nt enance of versions makes recovery simple. Fol lO\i i n9 a 

! crash, a scan of the v~rsion pool brings tlle system to a state in 

which only uncommitted transactions have to be re-executed. 

To ensure that a committed transaction is stored' securely, all 

buffers containing updates of the' transaction are forced to disk 

before the transaction ends. 

LDMs recovery scheme is very similar to our own. Thi sis due 

to the fact that both systems are multiversion databases. Our 

recovery scheme is described in detail in chapter 5. 

3.3.2. Concurrency control 

Transactions which perform updates use two-phase Ioeking on 

the set of pages being aecessed. Deadlock is searched for 

periodically. A novel featur,e (for real systens) is the way in 

which read-only transactions are handled: they read old versions,' 

(available in the version pool) , and are not even eonsidered by 
1 fi 

thé concur r enéy control system . (Thi s method . ié desc'ribed in 

detail in chapter 5 section 3.2.) An old version is retrieved by 

searching the current version. For each accessed page, the 'list 

of verswns ls searched far the "appropriate version of the page. 

Again this facility closely resembles our own design 'sinee 

both systems are multiversion databases. In our design though, 

the" time" attdbute will be treated as another .attributJ ~f the 
t 

relation. The query will be modified to inciude a restriction on 

the time attribute. Thus searching for an old version- can . be . 
achiev~d by guery modif ication, (a technique proposed for other 

purposes by Stonebraker [Ston75}). 
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In this chapter, a new design fOI: the PDIt~is proposed. This 

design has two inter esting featur es: 

1) It is a multivers'i..on database, (MVOB). This allows the use of 

simple r ecovery and concur rency control sys tans which do not have 

high overhead costs. Furtherrnore, gr eater par allel ism is 

possible. 

2) The multiversion capabilities derive fran the presence of a 

"dilferential file". our design differs fran that Thi s is where . /' , 

of LDM, another MVDB: LOB uses 
''''-' . 

a li version pool n ins tead of a 

differential file. 

AlI previous database systE!l\S suffer fran a fundamental design 

flaw: a relation is stored in a single dynarnic file. It is the 

need to keep the data.. in this file current . that causes many 

pr oblem!?: . ' 

1) It restricts the choi ce of file 
, 

organi za tions which can be 

considered; adynamie organization is required. 7 
2) Since each inversion (to the relation) must be maintained, the .. 
number of inversions which can be used is limited. 

3) Physi,cal sequentiality of logically sequential pages i8 

difficult to maintain. This can cause perfo~manc~ to suffer. T~is 
is _t'fue ,even if updates arè done "in place". · \ -, 

4) Either transaction backout 'or transaction commi ttal is slow: 

the current; version has to be changed during these operations. In 

System R, backout is SlOW., Chan~es al,read~ incorporated must he 

baq'ked out. Thi s takes time ana r equires thât locks be hel~' qntil 

backout i s complete. INGRES, on the other hand, aehieves baèkout 
,1 

" relatively easily: a "deferr~d update" file is discarded. But 

cOlllmi ttal is slow [Ston76). 

'~li th a differential" file ~8ec1 sys t_, ther~ i,1f a ;large static 
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master file and a smë;41ler dynamic file. Since the master 'flle is 

static, pr oblem s (1) - (3) are avoided. They still affect the 
..j 

differential file but most of the work in processing a query 

involves the master :file because it is much ,larger. ·Problem (4) 

i5 avoided sinee th~ differential ~ile allows' the co-exiS\:ence' of 
'--~- \ ' 

"before" and" after" versions of relations. 

1. D iffer ential files 

The idea of a differen.tial fi.le . . is .not new. It was propsed 

for us,e in a general purpose datàbase system. in, {Se,v~j6]. That 
" 

pâper also discusses sane special ized applications in which the 

idea has already· be~n used. 
. , , 

. .., 
l.1. Out}: ine of the !:lys tem 

,1 
The bas ie idea is to represènt· a relatipn uSing two files: a 

\' o 

mas ter f i).e (MF) and a dift~l!ential file (OF). Thé 'iF ia a 

snapshot of the. database at sane time. The DF is a much smaller 
, '[ . 

file,whieh stores u~ates issued since the MF was built. We will 

assume that the MF'.is consistent: the HP, represents 'a 

which aIl transactions have ei ther completed OI have 

iS tar ted. (Thi sis easy ,to guarantee.) .. 

s tate in 
1 • 

not been. 

To process a query both the.MF. and the D~ are s~arched. The 

results fran the MF are corrected by the relevant 
o 

'" updat'es frŒt; 

the DF. .. 

Our design for tJle differen,tial file systeso. 'fot-loWs fran the 

model of· dy?amic' relati<ol'ls presented in chapter 1. sect-.ion 4. 
____ .. ~_ .~ _ .. _~ .. - .-.,.~ ... _- .... -1- ....... - -~-~, .... -- ---,----......... ·~-.. --~-... O,.. _.... ----........ . , 

t • 

i . 
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that an update is ei ther an insertion or a deletion. Each 

OF record will therefor~ contain a "status" flag to indicate 

whether the tupI e i 5 be i ng inser ted (5 tatus = pr es ent) 0 r deI eted 

( 5 ta tus = a bs en t) . 

Since the sarne tuple can be updat~d several tirnes, (e.g. it is 

inserted, deleted and re-inserted), the updates must be 

chronologically ordered. 50 a OF r ecor d al so s tor es the 

timestamp of the transaction that generated it. The t i mes tarnp 

can he used to identify the transaction which generated the 

update si nce t imes tamps ar e unique. 

To summarize, if a tupl~ of"the relation is (a
O

' ••• :, a ) 
k -1 

then the format of a OF record is (a
O

' •• : ' a
k

_
1

, t, s) ,/where t 

'is the timestarnp and s is ,the status. The meaning of such a 

record is that tuple [a
O

' ... , a
k

:..
1

] changed its status to s at 

ti me t. 

The life cycle of the MF and DF is as follows;, (see figure 1). 
/ 

lni tially, the MF i s up to date and the MF is empey../ Upda tes ar e 
... 

placed in the OF. All queries on the relation combine results 

fran the MF and OF. When the DF reaches a certain size, (or 

af ter a cert ai n pe r iod of time), the MF and DF ar e merge d to 

create a new MF. The DF is then cleared and the cyole begins 

atJIin. We will call this process "reorganization". 

1. 2. Advantages and disadvantages of the differential file 

( The advantages of using the diffe-rential file have" been 

di scussed in the int roduct ion of this chapter. Lorie has raised 

a n wnbe r of obj ectidns to the us e of the DF [Lor i 77]. Each of 

thes e obj ections can be' overcome. 
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Updates are placed 
"-' ln the OF ,_ 
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MF is up te dâte. 
OF is 'elnpty. 

MF is "too old". 
OF is "too full". 
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j 1 

1 

The MF and OF are 
merged to create 
a new MF. 

Figure 1. Life cycle of the master file (MF) and the differential file (DF). 
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1.2.1. Double accesses 
, 

One disadvantage of using an MF and a OF is the need to search 

bath files. (It is puzz1ing that Lode raises this pJint: sincé 
... 

his reference for differentia1 files, [Seve76], discusses this 

point in detai1.) 

As discussed in [Seve76] this cost can be reduced by using a 

filter [810070]. The filter is a device for answer.ing the 

question "does the OF contain relevant updates?" with one of two~ 

answers: "no" or "passib1y". The DF has to be searched on1y if 

the 1 at ter answer i s recei ved. Of course, consulting the filter 

shoul cl cos t less than accessi ng the D~. It is therefore kept in 

primary memory at aIl times. We discuss the Jilter in more detai1 

in chapter 6 section 2.3. 

1.2.2. Cost of merging 

Periodical1y, the 

con~ng ope~atio~i 
( 

this operation: 1 \ 

MF and DF mus t "merged. Thi s i 5 a time 

Ther e ar e two ways to lessen the impa ct of 
" 

1) The merge can be done by a concurrent proces$. That i5, it is 

not necessary to shut down the system. A method for performing an 

"on-line" merge of this kind was briefly described in [Seve76], 

(see sect'ion 4.1;.2). Another method will ~given in section 
J 

4.1.3. The merge can be run during periods of low activity 

fur ther re~ucing the effect of r~rgani za tion on the sys tem" s 

pe~formance • 

2) In order to recover fran a hard crash, dumps must he t'aken 

periodica1ly (whether or not a OF is used)" If the dump i s done 

at the sarne time as the merge, the apparent cost of the merge is 

lowered. 
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1. 2. 3. Multiple updates to a tuple 

The DF must be able to deal with an update to la tuple already 

updated in the OF. In our view of upd~tes thi s reans that the 

t upl e appe ar s and di sappe ar s, (or di sappe ar sand ,r e- appe ar s) • 

This will not be any problem in our proposed irnplementatiot;l of 

the OF. 

2. A recovery sys tem based on the OF 

In this section we describe a recovery system for a POB based 

on the di ffer ential f He. The sys tem will be ab1 e ta r ecover f ran 

soft crashes and hard crashes that damage the MF, OF or both. We 

assume that the contents' of primary mernory are lost following 

ei ther type of crash. 

Soft crashes are more frequent than hard crashes. It is 

easier ta recover fràn a soft crash: c;1ear1y, the soft crash 

recovery system is not concerned with t,he static MF; it(1JIust deal 

anly wi th the DF and associated dynarnic obj ects, (e.g. a list 'of 

"act ive transactions). 

Transaction processing can be model1ed by tfie graph of figure 

2. A transaction spends sane time in each state along a path 
, 

fran Start to End. (The Backout state is entered when the user 

aborts the transaction.) A soft or hard crash may occur in any 

state. Transition fran one state to another is instantaneous. 

We will discuss the normal processing of each state, soft 

crash <kecovery and hard 'cras1;l recovery.-

There are seven dynarnic objects which are modified in the , 

proc~ing of updates: 
,./ 
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Figure 2. Model of transaction processing. 
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1) The OF. \ . 
2) The f il ter. 

3) The page map:- a table showing which disk pages are in use. 

4) The progress report: A small disk file which records the state 

most recently entered by ;~Ch active transaction., 

5) The active list: a list of identifiers of aIl executing 

transactions, (those. that have entered Start but not End). The 

starting time of each transaction i8 stored in this list. ,": 
~ 

6) ':t'he loc'k table: A list of locks held by each transaction'-: 

(required on19 if 10cking is used,for conc'urrency control). 

7) The update lists: Assoèiated with e'ach transaetion is a list 

of pointers to the updates i t has generated. , 
The DF, page map, progress report and update lists ar~ stored 

on disk and updated in primary memory. The soft crash r.ecovery 

mechanisrn operates porrectly even when upda tes of these obj ects , . . 
wri tten into a page buffer, have not reached the disk when a 

o 1 

crash oceurs. The ae)dve list and filter are in primary rnemory 
(1 

only. The lock table may or may onot he small enough ta fit in 

primary memory. 

For hard crash reeovery, a copy of the MF and a log are stored 

on tape . ~ 
.. 

l-

, , 

i 
l 
~ 
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2.1. Normal processing 

The processing of the Start, Update, Canmi t: Backout and End 

states is described below. We assume that locking ia used for 

concurrency control but the algorithms are easl-11 modified for 

other concurrency control methods. 

Wri ting into the log consists of sending a message ta the tape 

log. This wrLte goes to tape immediately; it dces not wai t in a 

buffer. Wri ting ta the progr ess report (on di\k) proceeds in the 

same way. ~~ 

There i5 a problem concernfng the times tamps of OF records due 

to the use of locldng. If transactions are net assigned 

times taIl!.ps when they ~gin execution (as i s the case wi th locking 

and optimistic concurrency. control) then the timestamp is unknown 

when the update i s placed in the DF. Following committal, the 

times tamps should correspond to the, ser ial iza tion enforced by 

locking. That is, if T. 
1 

appe ar s to pr ecede 
1 • 

T. because of locklng, 
J , 

than that of T.'. 
J 

then the timestamp of T .. should be smaller 
1 

Bernstein points out that the "lock point" of a transaction 

can be used as the timestamp (if locldng is being used) [Bern81]. 

The lock point is a time af,ter the last lock has been claimed and 

Jbefore th~ first unlock. '(Recall that locking i s two-phas ed; see • 

chapter 4 section 2.1.) For recovery purpos es, no locks ar e 
~ 

1 

released until committal is complete, 50 a logical choice for the 

times tamp would he the time at which commi ttal begins. 

Thi s sugges ts the followi n9 s trateg~: When transaction T 
1 

places an update, use timestamp 00., a vety large timestamp unique 
1 

to Ti ,which means Athis update fran Ti has not I:)een cornmi tted" 

(since the current time does not 0 exceed (j),.). 
, 1 

Thus, concur r ent 

tra~actions will ignore the update. During comm,ittal, DO
i 
will be 
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r eplaced wi th TC., tne 
1 

2..1.3). The processing 

~ ~ 
Il 

. tl,~me of commi ttal ~ of TL' (s ee sect ion 
\1 

pf the various states is described below. . ,. 

Our ,.e th€> d, does' not have sone overhead costs of other methbds: 

e.g. the cost of creating d~h~ckpointQ periodical1y. 

2. 1.1. ~tart 

1) Write the Start message ~n the log and the progress report. 
, \1 

2) Enter the tr~saction"'&l identifier in the active list and 

allocate an update ]. ist for the transaction. 
'1 

A startin-g transaction must he a110cated space in the progress 

report. The space used by a transa,ction which has reached End may 

be re-used, (see section 2.1.5). 

2.1.2. Update 

This state is entered when the first upda,te i.§.. generated by 

the transaction. 

1) Wri te the Update message in the pr ogr ess report. 

2) For each- uppate: 

2.1) Record the update in the DF, (assign i ng à times tamp of OOi 

as di scussed above) • 

2.2) Place a pointer to the update in the update list .. 

2.3) Wri te the update in the log. ,. 
2. 1. 3. C anmi t 

1) For,ce to disk all pages in the buffers containi ng 

generated by the transaction. 

upda t.es 
-~ r-

-~---' ( 

2) Wri te the Canmi t message to the log and the progr ess report. 

The message i ncludes TC, the time at which Canïni t was enter ed. 

This will be the timestamp of the transaction •. 

, 
; , 
, 
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~ 

c 3) Tt,averse the update list' of the transaction. For each update, 

set thè corresponding bit in th,e filter and reset the timestamp 

ta TC. 

2.1.4. Backout , 

1) Wri te the Ba CkOllt message to the log and the pr agr ess repor t. 

2) Traverse the update list of the transaction, deleting each 

e ncount er ed update. 

2.1.5. End 

1) Write the End message ta the log and the progress report. 

2) Release aIl locks. 

3) Remove the trans action fran the active 1 ist and di scard the 

update l ist. 

The appearance of End in the progres5 report indicates that 
~ 

another transaction can us~ the space in the progress report 

occupied by the transaction that wrote the End. 

2.2. Soft crash recovery 

Soft crash recovery proceeds in two phases. First, the DF i5 

scanned ta res tore data 5 tructur es, fini sh commi ttals and perf orm 
• 

backouts. Then, interrupted transactions are re'started.' 

A scan of the DF is feasible since it i s a small file. The 

scan could be avoided but then norma1 processipg would he more 

( 
expensive. 

le 

1 
~ 
~ f 
i 
1 

l 

f ,. 
1 , 
i 
\ 
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2.2.1. Phase 1 

The filter, active list, page map, lock table and update lists 

were partially or totally resident in primary memory when the 

crash ocqurred. 

These could aIl be updated securely (using careful replacement 

for example) but extra 1;0 would be generated. It is preferable 
J' 

to "penali'ze" the recovery system. That i5, aIl of these data 

structures can be recovered fran the progress report (which is 
( 

1-
reliable following a soft crash) and a scan of the OF. 

d 1 d · h f l ' d ,l h OF recor sare fand e ln t e 01 oWlng way unng t e scan: 

'. An update fran a transaction in Canrnit causes a filter bit to 
.." 

be set and the timestamp i s res-et ta the TC of the transaction 

(available from the proqress report). 

An update fran a transaction in Backout or Update i8 deleted. 

AlI other OF records are fr,an trans&ctions that 
1.1 

have ended. 

Each such record is used to set a bit in ~he filte\. 

When phas'e 1 is complete, aIl commi tting transactions 

interrupted by the cr~ash will have finished committal and aIl 

transactions tha't were. in Update or Backout have been backed out. 

Below, we the r ecover-y of the dyn am lc compo rients of 

the system. 

2.2. 1. 1. The act ive 1 i st 

The active l_t can be reconstructed fran the progress report: 

Transactions WhlCh are nqt/ in the End state are active. A 

transaction in the End state has fini shed 5tep 1 of processing 

End (see section 2.1.5). The crash rnakes steps 2 and 3 

lmnecessary (in case they have not been executed yet) • 

.. 
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2.2.1.2. The filter ) 

'f , 
, t 
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The 'filter can be reconstructed during a sc~n of the DF. Any 

update frem a transaction that has completed (Le. reached End) 

or is in\ the Ccmmit stat~ sets a bit in the filter. 

2.2. 1. 3~ The update 1 ists 

These l ists ar e no longer necessary (50 they are nct 

recenstructed) . Any transaction in the Update state will be 

backed out and resubmi tted: OF records from transactions in 
" 

Update are deleted. Thus the backout will be. achieved during the 

scan of the DF. Transactions in Backout will also' be backed out 

dur i ng the scan. Canmi tH ng transact ions rel ied on the the 
J' 

updat e l ists. However\J, coromi ttal is comp;t eted dur ing the scan. 

2.2.1.4. The page map 

When transactions start liunning again', the page map will be 

naeded. Dur ing the scan of the OF, aIl pages in use will be 

10cated: they are entered in the 
" 

page map. All othe'r pages are 

,assumed te be free, (90 pages that were allocated to update lists 

a,re autanatically reclai'Illed). 
-

Note tilàt the page map is nQt neede>d. during the scan sinee the 

update lists are nct being recons,tructed. ~ storing the page 

map on fixed pages, outside the page allocation scheme, the 

problern of finding pages for storing the page map is avoided. 

: \ 
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2. l.l. 5. Th!' lock table 
t· 

The lock table dqfes not have t? he 

DF scan, on1y committal~ and backouts 

r econstructed. ouring the 
o \ 

are being prpcessed and 

these processes cannot' ~onf'1 ict. Resubmi tted transactions rnust~ 

re-acquire their locks in the normal way but resubmittal does not 

begin until the OF scan is complete. ' 

To s~marize, phase l of soft crash recovery fol1ows: 

(transaction(u) is the transaction "which generated update u. 

-state{T) :i9 the s,tad:! that transaction T' was in when the crash 

o cc ur f"-ed-;~ \ 

1) Reconstruct ~he active list fran t~e progress report. , 
2) Scan the' OF pages. For each page: 

2.1) Enter the page in the page map. 

2.2) For each update, u, on ,the page: 

case state(transaction(u») of 
" / . 

Start: ,(* cannot occur *) 

u'pdate: Remove the update. , 
~ 

Canmit: Set the corresponding filter bit "and reBet 

timestamp to TC (transaction (u) • 

Backout: Remove the update. 

End: (* do nothi ng *) 

default: (* the transaction ended before' the crash'" *) 

Set the corresponding fil ter bi t. 

2. 2.2. Phase 2 ... 

After phaS'e 1 the page map has been reconstructed. AU 

transactions that were in Update, Backout ,or Cann.li t (in the 
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reconstruct-E~d active list) have been processed. 'In phase. 2', End . , 
is wr,itten to. the, log and progress, report for aIl" active 

\ 
o 

~r an~act ions. . All that rem ai ns tS . to r esubmi t illterrupt ed 

tr ansact ions that' are still not complete; namely, tho,s,e 
1 

transaction t'hat wer"e in Update 'or Start when the crash occurred. , , , 
d' 

The 'execut'ion of r(tsul:mi tted transaction,s and new transactions 
___ ,A 
~-

can proceed concurrently. 

Soft crash reco~ery; is complete fOllowing phase 2~ 
4 

ri 

2.2.3. C,orrectness of the soft crash recovery mechanism 

We will now re-examine the alg'ori tlnns of section 2".1. 'The 

possibil i ty of a soft crash during each step of each ,algorithm 
t 

r ecovery mechanism oper ates corr ectly in each case_ 

2.2.3.1. 'Start 
..: ' 

A transaction in S tart has' not ge'ner'ated any updates and ther~ 
\ 

i s nothi:ng 'to back out. Phase 2 qf recovery ends and r esubni ts 
'1 ' 

the transactioI1. It does not matter whetl}er step 2, has been 
'. 

executed or' not since -the a active list i,s reconstructed f0l1ow'i:ng 
"', 

the qrash ~ 
,. 0' 

2.2:'3.2. Updatç 
1 

,If the erash occurred aft~r .. 'step 1 then nÉ) updates have,been 

gener jited. The 
../ " ~ 

tranS"actlon 1S" ended and restarted in phase 2. 
\ 

If, the c~ash occurr'èd during step 2 th~n\all updates twill be 

bac~ed out in phase 1 of recovery". 

Note that s'tep 2.1 may involve the a~location of a .new page 

for the DF. The a~location 18 reflected in the page,map. It is 

. " 

.. '" 

, l 

- ... ~) ~ • _ .. .......- ... ...-...... \.- ....... ~ ''l' .. b~~l'''''"l 
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possible for a crash to occur after the a'lloca t ion i s noted in 
\ 

the page map but before the new page is linked into the DF. The 

page is not lost sinee it will be r eclai med in phase l of 

recovery. The update on the page is lost but would h.ave been 
, 

backed out anyway (s Ince the t r an s a ct ion ha s not commi tted) . 

2. 2. 3. 3. C cmm i t 

S Ince the pr ogr ess r epor t has the Con'Imi t message, aIl the 

updates gen~rated by the "transaction must have reached the disk, 

(due to the ordering of steps 1· and 2). Thus the DF contains aIl 

that is needed for committal, (which will occur during phase 1) 

~ step 3. i s inter rupted by a cr asl1 then commi ttal i5 

cornpleted during phase l of recovery. (The filter is lost in the 

crash and is reconstructed during the scan.) 

2.2.3.4. Backout 

• 
Any records rnissed due to the interruption of step 2 will be 

backed out during phase l of recOvery. 

2.2.3.5. End 

Steps 2 and 3 are "achieveg" bY,)the crash itself. 

2.2.4. Soft crash during reeovery 

If a crash occurs during recovery, the recovery âlgorithm i5 

simply restarted. The OF and progress report are unchanged 

following the second crash and nothing else is needed for 

r ecovery. 

~, : 

l, 

1 
II 
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2: 3. Hard ash recover 
~~~~~~~~~~~L 

Any damag d dynamic object can be reconstructed using the log. 

\ 
\ 

2.3.1. Rebuilqing the MF 

The tape copy of the (old) MF is copied to,.disk . 

.. 

2.3.2. Rebuilding t~e DF 

To r ebu i Id t he OF; the updates and ba ckouts s tor ed in the tape 

log are Fe-executed. '1:'he execution of each log entry proceeds as 

in section 2.1. Each update must be preceded by a writelock to 

ensure correctness. The readlocks held when the transactions 

originally executed are not necessary. 

Update lists are maintained as the log is re-executed 50 that 

the filter ca,n be set proper1y on tr'ansaction committa1. 

As for soft crash recovery, the page map is not av'âilable 
IR 

during hard crash recovery. However since the PF was damaged and 

is being discarded, the page map can be çl-éâ~ed and reconstructed 

during the reconstruction of theDF-.-

.. When the DF has been recovered, spf--t/ crash recovery can be 

start~d at phase 2. 

2.3.3. RebUilding the progr ess report 

The pr ogr ess ,r epor t can al so he r ebui l t in a scan of the log. 

The states recorded in the log are wz::itten onto the progress 

report. When a change of state is encountered, it i5 ref1ect~ in 

the pr agr ess report i 11' the usua1 way. By the time the log has 

been scanned, the progress report is up to date. 

1: 
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3. Concurrency control 

The final maj or component of . the PDB is the concur rency 

control system. System R and INGRES have considered these to be 

i nderdent pr oblens. In fact, concurrency control was an 

afte.tthought in INGRES [Ston76]. . . 
Recently, concurrency control has been seen as a problem 

related to recovery: both old and new versions of updated objects 

are kept for recovery purposes. The availability of both versions 

enhances parallelism [Ba.ye80a, Stea8l]. 

MVDBs have been shown to be of use in recovery and concurrency 

cont roI [e han82] , (see also [Reed78] for a mor e gener al 

discussion). The old versions can hé used for reeovery pur poses 

and to enhance parallelisme It is a generalization of the idea of , 

us ing old and new ' val ues: all old values> sinee a gi ven time ar e 

maintained. The advantages of storing a history instead of just 
. 

the most recent version are explained in section 3.2.2:, 

f 

J 
)3 . 1. The r 01 e of the DF in eoncurrency control 

Vi rtually every concurrency control method r equi res sane 

information that is present in the OF •. In this section, we will 
o 

sbow how th~ OF can be us e,d by sever al concur r ency control 

methods. These techniques are applicable in a centralized system 

and at the sites of a distributed system. 

3.1.1. Transaction backout 

Wi th the DF, transaction backout i s very simple and does not 

require locking. 

s imul taneously. 

Furthermore, backout 

These are important 
(J 

and resuanittal can occur 

considerations because most 
D 
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concur rency control methods Jequi re sane transactions to he 

backed out. Backout is slower and incompatible with resubmission 

in other systems. 

3.1.2. The OF stoJbes write sets 

Sorne concurrency control methods depend on the writ~ set of a 

transaction: the set of objects modified by the transaction. 

G iven our view of updates, (see chapter l section 4), the wri te 

set of a transaction is the set of tuples whose status was 

changed by the trAnsaction. These methods also require other 

information but the write set is already availab1e in the OF: it 

i8 the set of OF entries pointed to by the transaction's update 

1 ist. 

3.1.2.1. Precision locking 

Precision locking [Jord81) is a variant of predicate locking. 

Reads an~writes are' descrihed by predicates which are stored in 

a lock tabl e. The wri te pr edicates ar e r es tri ct ed to he exa ct 

match queries. When a write is performed, it is checked against 

the lock table for conflicting reads, (the simplicity of the 

... write predicate makes this test easy to perform). If no conflict 

occurs, the write predicate is entered in the lock table. 
, 

The lock table contains both read and write predicates. The 

wri te ~redicates are those DF entries pointed to fran an update 

list. Ta test a read predicate for conflict, the updates on aIL 

update 1 ists could be examined. l t may be mor e ef f icient to 

process the query (corresponding to the read predicate) on the OF 

in thè usual way, ignoring aIL committed updates. 

the set of conflicting updates. 

Thi s yie1dS 
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Testing a write predicate for conflict involves scanning the 

read predicates in the lock table. To.expedite this process, it 

may be feasible to store the read predicates in' a kd trie-like 

data strücture. We have found such a data structure whose space 

5equirenents seem to he linear in the number of predicates stored 

(if the predicates are restricted to he range queries). 

3.1.2.2. ~ptirnistic concurrency control 

Thé main 

co ncur r ency 

difference between precision locking and optim~stic 

control is that the latter postpones testing fo~ 
conflict until just before committal. At this point, it is too 

late to lock so if a conflict is detected, one of the involved 

transactions must be backed out and re-executed. 

The mechanisrns of testing for conflict are the.same as for , 

pr eci sion locking. 

3.1.3. TheDF stores timestamEs , 

A T/O method orders transactions by assigning timestamps to 

transactions in increasing order. Transactions with smaller 

timestamps have higher priority. Due to this ordering, deadlock 

. cannot occur but transactions will be backed out if sane sequence 

of operations does not respect the chosen ordering. 

Using Bernstein~s terminology [Bern81], T/O methods can be 

used for rw synchronization, ww synchronization or both. When 

used for ww synchronization, associated with{aCh object, (tuple 

in our case), is the timestamp of the most recent writer of the 

objecte When used for rw synchronization the timestamp of the 

most recent reader is alsô required. This is a veryexpensive 

j 
l 
1 
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-
~anent. Let R-TS(x) be the time$tamp of the youngest 

tr s ction that has read x. ( Its times tarnp i s larger than that , 

of aIl other readers of x. ) Then every time a read of x takes 

place, R-TS(x) rnay have to Qe updated. This can generate a lot 

of 1/0. AIso" R-TS(x.) must be kept for aIl tuples wf1ether present 

or absent (in the current version). For these reasons, T/ 

methods should not he used for rw synchroni zation. 

For ww synchronization, only the W-TSs are needed: the 

youngest writers of each tup~e. The sarne objections regarding 1/0 

and space requirements can he raised but, using the OF, these 

problems can he solved since only the W-TSs of tuples in the OF 

are needed: 

The MF represents a "consistent" state. That is, it represents 

the state of a relation after one transaction has executed and 

before i ts successor (in the ordering guar anteed by / 

serializability) has executed. In other words, no transaction 

that cornmits after the creation of the MF has a timestamp less 

than M-TS: the time at which the MF appears to have been ereated. 

Now consid~r a write of x fran a transaction T wi~h timestamp 

t. Aeeording to the ww synchronization protoeol, T must abort if 

t < W-TS(x). Sinee T is executing, t > M-TS. If t > W-TS(x) then 

t does not have·d
, to abort (whether or not W-TS (x) < M-TS'). 1 f t < 

W-TS (x), (T has to abort) , then W-TS (x) > M-TS (since t > M-TS) . 

'Thus, if T has to abort it is because of an ùpdate stored in 

the OF. If x has not been updated in the current DF then T does 

not have to abort. In other woçds, if W-TS(x) < M-TS then 

W-TS(x) is not needed. 

In fact this synchronization technique does not use the DF to 

full advantage. This point is' discussed in the following 

r 

! 
1 
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section .• 

3.1~4. The DF is a multiversioJ;l database 

3.1. 4.1. Using old and new versions 

Bayer et al. [Baye80a] have proposed a concurrency control 

method that makes use of the fact that, for recovery purposes, 

two versions of t'lpdated objects existe Readers try to read the 

new value unless this would violate serializabilitYi then the old 

value is read. A writer can create a new value for an object if 

only one version of it exists and no other writer is preparing a 

new vaue. There are a numher of variations' of the basic methodi 

two of them are particularly interesting:. 

1) A read-only transaction n,ever has to he backed out. When 

backout is required ther:e is always at least one writer that can 
, 

be backed out. (But i t may he cheaper to back out a r ead-only 

t r ans acti on.) 

2) If wr i ters ar e ser ial ized then no backouts will ever he 

necessary and aIl reads will obtain the af ter values.. Thi s 

strategy is only feasible in a centralized systen. 

Thi s concurrency control method causes transactions ta abort ., 
when deadlock occurs or when serializability is. violated. Both 

occur r ences ar e i ndica ted by a cycle in a dependency gr aph. For 
" 

this reason, the method may not be suitable in a distributed 

environment [BernSI]. (A distributed version of this method has 

been gi ven [Baye 80b] • Stear ns and Rosenkr antz have al 50 pr opos ed 

a distributed concurrency control method that uses old and new 

versions [Stea81].) 
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AlI of these methods can use the DF as a source of old 

versions. But these methods can be irnproved upon since the DF 

stores aIl old versions since the creation of the MF. 

3.1.4.2. Using multiple versions 

An MVDB provides an environment suitable for the use of the 

concurrency control metbods of Bayer et al. and Stearns and 

Rosenkr antz. These authors take advantage of old , values 

" 
pr esent for r easons of "recovery. 

Other authors take a di ffer ent appr oach: they note that 

multiple versions ar~> useful in bath recovery and concurrency 

control [Reed78, Chan82]. Even greater concurrency is possible 

us ing an MVDB. 

The use of an MVpB makes ww synchr~nization unnecessary. Even 

if writes tothe sarne .object are received "out of order", the 

database will be in a correct state after processing them. 

Processing the older update after the younger one does not affect 

the current version~ another old version is created. The 

i nser tion of thi s old version, however, may conf l ict wi th a 

reader. This would -be detected 

technique. 

3.2. Read-only b{ansactions 
i 

by t-he rw ·synchroni zation 

\ 

In a static database, concurrency control would be unnecessary 

since any nLUnber of readers can share an object. In adynamie 

database, concurrency control is necessary but, under certain 
. 

~ condi ti ons, the execution of read-only t ransact ions, (i.e. 

transactions which do not place updates), can be expedited. 

/ 

.. 

i 
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If updates are performed in place then nothing can be done for 

read-only transactions: writers cannot share with readers (or 

other writers). But if old and new versions of updated objects 
~ 

are available then a read-only transaction can avoid waiting or 

abortion if slightly out of date values are acceptable. Such 

values are often available as a by-product of a recovery system 

Also, multiversion databases are more generali they store aIl 

previous versions. 

3.2.1. Using old and new versions 

As noted in [BayeBOa], the old ver~ion which is kept for 

recovery pur~ses can be given to a read-only transaction ta 

avoid waiting. Permitting this read implies a certain ordering: R 

is read-only, W is a wri ter. Suppose that R reads the old version 

of x after W has prepared a new ver~ion. Then R precedes W in 

serialization. Subsequent actions must be consistent with this 

arder i ng. 

If deadlock or an inconsistency is later discavered it is 

necessary to abort a transaction. ~t is shown in [Baye80a] that 

i t i s never necessary to abort and restart a read-only 

transaction (although it may be cheaper to do this than to 

restart sane writer). 

3.2.2. Using multiple versions 

In a multiversion database, a read-only transaction can select 

any previous version to read or it can wait for an up to date 

version. In a system based on the differential file, any version 

since the creation of the MF can he read. 

When a read-only transaction, R, is submitted, the time of the 
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version to be read, r, must be selected. r will determine the 

position of R in the serialization of aIl transac;tions. Clearly, 

if a transaction Tends before R begi ns then T pr ecedes R. Now 

consider a writing transaction T which started lIe'fore Rand is 

'" active when R begins. It may commit after R beg,i.ns, (allof its 

updates will have timestamp TC > r). These updates should be 

ignored by R. Finally, if T starts committal befor€ R begins, 

(committal has not finished when R begins), then R cannot read 

any of T~s updates since they do not all have the correct 

timestamp until T is finished ~ommittirtg. Thus~r should be set 

just below the smallest TC of all ,transactions which are 
<" 

committing when R begins. LDM handles read-only transactions in 

this way. 

This treatment of read-only transactions is more generous than 

that of Bayer et al. Since all past versions are stored, there is 
. 

no constraint involving the writer of a new version and readers • 

of the old version; there is no "p~sure" for the old version to 

di sappear due to replacement by the new version. In fact, 

r ead-only transactions can be comple~ely ignor ed by the 

concurrency control system. 

4. Operations on the physical database 
<1 

In thi s section the implementations of basic PDB operations 

are considered. These are: reorganization, querying, the other 

oper ators of the relational algebra, update, backout and 

commi ttal. 

.' 
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4.1. Reorganization 

4.1.1. Basic algorithm 

As more and more updates are stored in the DF, the performance 

of the system will deteriorate. This is because ,the DF will 

almost always have to be searched (as the filter Qecomes fqled). 

Also, the DF is growing: searches are more expensive for larger 

files than for smaller ones. To prevent the performance fram 

deteriorating too much, a new MF is created periodically and the 

DF is then cleared. The obvious method of doing this is to merge 

the two files. This requires that the MF and DF be ordered in the 

same way, i.e. they must be merge compatible. We will discuEis 

merg~ compatability later. Assuming that the files are merge 

compatible and that updates to the same tuple are stored in 

reverse chronological order (Le. the most recent update appears 

first), the algorithrn given below performs the merge. 

1 

1 
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Reorgani ze 
m and d are records fran the MF and DF respectively. d.tuplè is 
the OF record with the timestamp and status fields deleted. Read 
r etur ns the next record in a f He Qr co if no more records ar e 
present. Next locates the next record in the DF which updates a 
different tuple: that is, aIl further (older) updates to the 
current d. tùple are skipped. 

m := read(MF) 
d := read(OF) 
repeat until m = d = /)0 

case m < d: (* m has not been deleted *) 
write(m) 
m := read(MF} 

case ID = d: (* m has been deleted. However, the most *) 
(* r4cent update could be either an insertion *) 
(* or a deletion. In any case, the current *) 
(* update is the most recent ~nd oider updates *) 
(* can be ignored. *) 

if d.status = present 
then write(m) ,(* the tuple was re-inserted *) 
next (d) (* skip over out of date updates *) 

!case m > d: (* A tuple has been inserted. As above, the *) 
(* most recent update is the only one of *) 
(* interest and couJd be an insertion or *) 
(* a deletion. *) 

if d is an insertion then wri~e(d.tuple) 
next (d) 

end 
clear (OF) 
clear (f il ter) 
r eleas e old MF pages 
return 

end Reorgani ze 

r ead (f ile) 
get next record in file 

J 

if end-of-file then return(.oo) else return record 
end 
r etur n 

end r ead 

next Cd) 
d" := d 
r epe a t un t i Id. tupI e > d". tupI e 

d := read(DF) 
end 
r etur n 

end next 

, ' 
J 

1 

_1 
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The system must: œ closed to users when Reorganize is 

executed. The only reason for this is that ·the DF must not 

change while the merge occurs. Otherwise, same updates that occur 

during reorganization would be included and same would not. Also, 

very recent updates (fram uncommitted transactions) may be 

intermediate or they may be backed out. 

4.1. 2. On-line' reorganization 

To avoid shutting down the sys.tem while reorganization occurs, 

the us e of the "differ ential differ ential file" (DDF) has been 

proposed [Seve76]. (The DDF would have its own filter.) When 
1 

reorganization is about to begin, the OF is closed (i.e. it will 

not receive more updates). Subsequent updates are p~aced in the 

DDF. Searches must now _ refer to as many as three files: f!he MF, 

the DF and the DDF. 

Reorgani zation begins when the OF is closed and proceeds ,al:; in . 
section 4.1.1 (except that the system 'is not shut down). When the 

reorganization is finished, the new MF replaces the old one ahd 

the DDF replaces the DF. 

T.here are sane subtleties involved in using the DOF. These 
o 

concer n transactions that ar e executing at C, the tirne at which 

reorganization starts. Clearly, transactions that end before or 
. 

start after C are not a problem. updates fram these transactions 

are aIl 1 in the OF or aIl in the DOF respectivel,y. However, a 

transaction that starts before and ends after C must be treated 

carefully: 

- Consider a transaction that has not 'reached C<;mmit .,at time C, 

(suppose it is in Update). lJpdates fram this transaction t-hat are 

in the OF t'will not - bel included in the new MF. When the OF is 

1 
J 

J . 
1 , \ 
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d'iscarded, the updates will be lost. Two possible solutions are: 

1) Abort the tran~action and restart it 50 that·all uPdates will-

appe ar in the DOF. 
1 

2) Ouring Reorganize; move such updates into t;he OOF ca~ thevare 

encountered during the merge. 

Sane traflsactions may be in the Canmit state at time C. Th~ 

timestamps of these fransactions are less than C. If 

reorganization starts ,as scheduled thèn sane updates that have 

not yet been committed may ~ missed; A,n easy solution is to wai t 
. 

gomini tting " until aIl transactions end and then start 

reorgani zation. Qf course, more transactions may enter Canroi t 
0 

during the wait. This is 'not a problem since their timestamps 
j 

exceed C. Thei r updates will be included in the next merge. 

4.1. 3. Al10ther .pn-.~ine reorgani',:2:ation method 
~ , , 

The on-iine reorganization method described penal,izes query 
o 

processing since as many as three files may be searched. On-line 

reorganization can also be accomplisheà without using the ODF. 

The DDF allows the OF to remain fixed even though uPd,ates are 

being processed. ·Suppose that reorganization is ini'tiated at time 

C. InsteaÇl of' putting updates in the DDF, they are ~~ill place~ 
in the DF (i .e.' the OF . is not closed). The reorganizing 

algorithm is modified to ignore updates whose timestamps exce~d 

C. After the merge i"s complete, the oltd DF records, those wi th 

t imes tamps' not exceedinDg C, are deleted fran the Dlf" (for 

pur poses 0f re,?overy they are not deleted . during the merge). 

Then, the OF contains only new u:p:lat,es ~ 
, 0 i~ 

THi s al go ri thm has a number of problems: 

The reorganizing process d~letes recotds fran the DF. These 

\ 

\ 

! 
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updates must not int~rfere with other users of the DF.' (Short 

term locks would be placed by Reorgani ze.) 

Every record inserted into the DF will eventually be deleted 

(during reorganization). The data structure representing the OF 

must be able to cope with aIl these deletions efficientlyand 

Wl thout degeneration. 

Two passes of the DF- are required since de1etion of a OF 

record cannot immediately follow i ts inclusion in the merge: , 

Suppose a crash occurs just after th~ deletion appears in a 

buffer. Since the new MF ,:record had not reached di sk when the 

crash occurred, the upclate is lost. 

The DOF avoids aIl of these problems. In pr actice, using the 

DDF would not seriously affect performance. It is very sparse1y 

filled and is only required during reorganization. We therefore 

r ecommend the use of the DDF. 

4.1.4. When to reorganize 

The process which reorganizes does not have exclusive control 

of the system, (if, for example, the' DDF mechanism is used). It 

can he run on a time-sharing basis during periods of low 

activity. 

The question of how often to reorg'if,ize, (Le. the time 

between initiations of the process), i5 open. The problem of when 

to r eorgani ze (or take a checkpoi nt etc.) ,has been consider ed but 

i t was always assumed that reorganization required shutting down 
" 

the sys tem to users. 

Under this a5sumption (and several others) Shneiderman shows 

'that the"bpt imal time he tween r eorgani zations i s 

t = 
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where R is the cost of reorganization and 9 is the rate of 

deterioration of the cost of searching [Shne73]. Lohman and • 
Muckstadt obtained a similar but more general result in [Lohm77]. 

In sane sense, there really is not much of a problem here: 

reorganization is not a serious burden since it is performed 

durlng periods of low activity. As soon as one reorganization is 

complete, the next one could be started. 

To formulate an opt imi za tion pr oblem would requi re an 

understanding of how the performance of the system is affected by 

the reorganlzation process. 

4. 1. 5. Recove ry of the r eorgani za tion pr ocess 

Since reorgani zatlon i s a lengthy process, a crash should not 

cause the reorganization to abort and restart. Instead, it shouLd 

be able to resume with little or no loss of progress. 

The essential information is L, the value of the last tuple 

wrltten to the new MF. The merge can be reswned after locating 

the smallest value greater than L in the old MF and in the OF. 

Lean be located easily: it is the largest value stored in the 

new MF (according to the order used for merging) . 

4.2. Queryiryg 

•• 
In the context of a OF based POB, querying involves these four 

s teps: 

1) Search the filter. 

2) Search the OF ~orrElsponding to 

f il ter. 

3) Search the MF. 

po si ti ve r es po ns es fran the 

" 
1 
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4) Caublne the results of (2) and (3). 

The details of the algorithrn depend on the design of the MF, 

OF and f ilter. We therefore postpone giving more detail until 

the des ign of these components have been discussed. 

algorithm 15 described in chapter 6 section 2.4 . ....,.., 

4.3. Other relational algebra operators 

The 

1 

In this section we consider the implernentation of more complex \ 

operators: set operators, project, 9-join, .A-join and cT-join .... 

These may be 'executed directly on the base relation represented 

by the MF and OF but i t is more l ikely that these operators would 

be appl ied af ter sel ection. Movi ng sel ect ion "down" the par s e 

tree of the guery has been suggested to reduce the size of 

Intermediate results [Smit75, Hal176]. The selection may be 

qui te selective and produce output which is much smaller than the 

rel.ation which was searched. There are two consequences of this 

pol nt: 

1) This is a very important optimization in practice. 

2) As far as performance is concerned, selection is the most 

important operator since it will usually hâve to deal with the 

largest volume of data. The operations carried out following 

selection will be expedited since they will receive smaller 

operands than they would have otherwise. 

This sttategy has been used by optimizers in System R 
.t 

[Seli79], INGRES [Ston76] andPRl'V [Todd76]. 

We will di scuss the implementation of operators in both 

cont exts, (Le.' executed on the base relation directly and' 

f 011 ow i n~ 0 t he r ope rat or s) • When an oper é\nd i s a base relation 

the algor i thm implementing the operator must see the current 

/. \ 
, 1 
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version of the relation. This will be accomplished by performing 

a merge (as in the Reorganize algorithm) passing the results to 

the algori thm via a pipe. 

4.3.1. ..§E;t: operators 

These operators ar e, in most cases, most efficiently 

implemented using a merge. Sorting may he necessary to ensure 

mer ge compa tabi 1 i ty. 

Z ordering is ~fUl here. Z ordered base relations are merge 

compatible. Even if selection is first applied ~o the base 

relations, Z ordering is preserved. The Rangesearch algorithm 

returns tuples in Z order. Of course, relations clustered on sane 

access set also have this property' as long as selection preserves 

thi 5 or der. 

4.3.2. proj ~ctlon 

The usual method of implementing projection is to project the 

tuples and sort them. One more pass is used to eliminate 

dupl icates. Thi s method appl ies t9 base relations, (tuples piped 

f ran the merge would be pr oj ect ed), and to r esul ts r etur ned f ran 

other oper ators. 

C lus ter i ng on 5 ane access 5 et i s mor e us ef ul than (low bi as) Z 

ordering for projection: projection on a prefix of the access set 

can be done in one pass. 

~ 

4 • 3. 3. e- j 0 i n 

l t has be en sugges ted by 5 imulat ion s tudi es that using one of 

two methods for computing the natural join following selection is 

, -• , 

~ 
'! 

i 
,1 
'i 



1 

( 

1 Chapter 5 Section 4 179 

nearlyalways optimal [Blas77]: 

1) This method assumes that inversions on the join attribute 

exi st for both oper ands. The inversions ar e merged to f ind 

matchi ng index val ues. When a match i s f.ound, a tupI e f rcÎn one 

operand is retrieved ând the predicate is applied to it. If the 
. 

tuple satisfies the predicate then "Jtçatching tuples fran the other 

rel at ion (which sati sfy the pr edi cate) ar e r et ri eve d. TupI es of 

the join are then constructed. 

2) This method does not require any inversions. Each operand is 

sorted on the join attribute. During the sort, tuples not 

satisfying the predicate can be discarded. The join lS carried 

out during a merge of the sorted tuples. 

Method (1) is not always applicable. Method (2) can always be 

used but (1) is usually preferable. 

For other joins (e.g. <-join) the inversions of (1) are not as 

useful as for the natural join. Also, (1) cannot he used if the 

join follows operators other than selection, (since inversions 

would be unavailable). 

If ZMDSs are used then another algorithm become;s feasible: 

Suppose the join is R[X 9 Y]S where e € {=,~, <,2., >,~}. 

Perform a selection on R using the predicate. For each tuple 

returned, r, perform a selection on S, appending to ~he predicate 

the condition r[XI 9 Y. Then combine r with the tuples rletrieved 

fran S to create the tuples of, the join. 

This algorithm has ~not been analyzed as those of [Blas77]. It 

is essentially the" tuple substi tution" method used in INGRES , 
[Ston76]. 

< 
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4.3. 4. g- j oi n 

A .f'<-join can be implemented using a merge. The details depend 

on wh.i.ch ,A-jain is being performed. For example, consider R[Y
R 

ft 

YS1S (as in section l section 2.1.4). If r[~] ~ S[Ys] then the 

n -join would not create a t,uple but the' U-join would. 

Z ordering does not seem ta he useful for the Implementation 

of !J.-- j ai ns . 

4 . 3. 5. (J - j oi n 

Consider / R (X, Y) [Y (J' Yj S (Y , Z). Ta implement this operaticn 

eff 1ciently, S should he sorted on Y and R should he sorted on 

(X, Y). Then a merge yields the X values of the result. The 

relations may already be sarted as indicated, 
j 

def in1 tely will not he if ZMDSs are used) . 

(but they 

Other algarithms which make use of inversions and ZMDSs could 

be used. We are not aware of a study comparing the costs of 

thes e methods. 

4.4. Updating, transaction backaut and transaction committal 

The process of updating the OF has aiready beén described 

briefly. Here we cansider the process in more detaii and the 

related issues of transaction backout and transaction committai. 

4.4.1. Updating 

The basic idea is to place in the DF a record describing the 

update. 

takes 

• •• , a
k

_
1

, t, s) indicates that tuple (aO' ••• , 

on status s at time t, the timestamp of the 

transaction generating the update • 
....; 
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Two successive updates to a tuple should have opposi te stati, 

(e • .q. it does not make sense to insert a tuple that is already 

pr esent) • In other words, whenevér a tuple is updated, i ts 

s tatus changes. 

Consider a transaction that updates the same tuple more than 

once, (e.g. a tuple is inserted, deleted and re-inserted). If 

each up:3ate of the same tuple generated a new OF record then the 

OF will have several records with the same values for (a
O

' ..• 

a
k

_
f 

t). They will differ only .in 5 tatus. Thus i twill not be 

known whi ch s tatus i s cor r ect (Le. most recent). To correc.t 

this, subsequent updates could operate by just negating the 

status flag. But then it rnay appear as if there are two 

successive insertions or deletions. The correct procedure is to 

check for the existence of the OF record identified by (a
O

' 

a
k
_
1

, t). If none is found, the update is processed by insertl.ng 

the record. If the record is found then i t i s deleted. 

"(Intuitlvely, the transaction has "changed its mind"). 

Each transaction should mai nt ain a l ist of poi nter s to DF 

entries i t has generated (to facilitate backout; see section 2) . 

If a OF entry is deleted as described above, the list of fX>inters 

mus t be updated to reflect the change . 

. 2. Transaction backout 

nsactions may be backe d out for a var i et y of reasons. When 

deadlock occurs (in a locking scherne) one transaction must be 

aborted. In other concurrency control methods backout is also 

required (e.g. ~a transaction which fails validation in optirnistic 

concurrency control [Kung81]). A transaction interrupted by a 

system failure has to be backed out. Finally,- the transaction may 

, 
'j 
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be cancelled (if it has not been commi tted) by, the user who 

i ni ti a t ed i t. 

Recall that each transaction keeps a list of pointers to the 

DF entries it has created. To" back out a transaction, the 

i ndica ted DF recor ds ar e mer ely deI eted. Thi s does not r equ i re 
li 

any locking at the logical level: the DF entry was not visible to 

other transactions. (But physical locking of DF pages being 

updated is required during the actual deletion of the record. 

See chapter 6 section 2.2.2.) 

This method is simpler than that of System R [Astr76] which 

has to run the log "backwards" on the current version of the 

relation. Logical locking is required. The method used in INGRES 

is simpler than ours: a file Gontaining the updates of the 

t r ans action i s di scar ded [S ton76) . 

4.4.3. Transaction committal 

The exi stence of a list of active transactions has been 

as sumed, (s ee sect ion 2) A trans action not on thi s lis t i s 

assumed to ~ commi tteG. 

To commit a transaction, each OF record generated by the 

transaction i s us ed to set the corr espondi ng f il ter bi t, the time 

of committal is placed in eaCih such record and the transaction is 

ranoved frcm the active list'. Updating the active list must be 

done last. Otherwise, anotht\H rransaction may not f ind aIl of 

the updates generated by the committing transaction. 

A surnmary of this chaptèr can be found in chapter 8 section 4. 
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In sections land 2, three problems in the design of the PDB 

wer e cons ider ed: 

1) Data structures for storing and searching relations. 

2) Recovery fran soft and hard crashes. 

3) Concurrency contro~. 

We proposed a design for a multiversion database based 
\ 

on th~ , , 
1 

differential file .. In this chapter, the imp~ementation of the 

master file, differential file and filter are considered. The 

results of chapter 3 will be very useful. 

1. Design flaws in existing systems 

The designers of Sys tan R and INGRES have wri tten 

r et r os pe ct ions of their systems [ChamSl, StonBOJ. These 

observations and others will help in the design of new PDBs. 

1.1. Lessons learned fran System R 

An early version of System R was built on top of a relational 

memory sys tem called XRM (extended relational memory) [Lori 74 J • 

XRM stores tuples consisting of pointers to attribute values 

stored in representations of domains. The time needed to 

construct the actual tuples makes this organization undesirable, 

(although it saves storage space). The pages of System R 
~ 

segments store values instead of pointers to values since 

efficiency is of greater concern than space requirements. 

Another lesson learned fran the prel iminary version was that 

tuple identifiers (TIDS) returned fran searches of inversions, 
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are expensive to manipu1ate. ,Thus the System R optimizer will 

never consider the use of more than one inversion [Astr76', 

SeIi79]. (The most selective inversion will be searched. Tup1es 

retrieved will then be tested individua1ly ta see if they satisfy 

the restrictions on"other attributès.) We regard this as evidence 

that MDSs are more sui table for processing anything other than 

very simple queries which do not require the manipulation of 

TIDs. 

In the r etrospection, i t) was emphasi zed that clus tering is an 

impor tant pr operty. If inver sions ar é used t hen cl us ter i ng i s ..,. 
possible on one access sèt on1y, (recal1 that inversions are 

highly biased). Thi s < further supports the us e of low bi as MDS s 

which cluster on severa1 attributes simu1taneously. 

We agree wi th the designers of INGRES who did not implement 

links [Ston76]. Thei r lncl us ion compi icates the PDB sinee they 

cause the space required by tup1es to vary dynamically. If, (as 

in most systE!lls), tuples are fixed in width, then only the 

inclusion of links causes the spac~ requirE!TIent of a tuple to 

change. Links aiso have maintenance costs which 1imit their use. 

Mos t importan tly 1 clus ter ing on a . bi nary l ink is of 

questionable value: the tuples of two different relations (in the 

sarne segment) may he stored on one page due to a c1ustered binary 

link. It is claimed that this expedites the processing of certail'! 

joins [Astr76]. But a join is usually preceded by selection on 

one or bath operands. This selection redùces the sizes of the 

operands and speeds up execution of the join. The selection is , 
often highly sel Îctive , (see chapter ~ '5 section 4.?). When 

discussing joias, then, it is important to consider the effect of 

cl us ter ed bi nary links on the performance of selection: the 
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performance is worse than wotlld be the case if each page-stored 

tuples fran one relation only. .. 

1. 2. Lessons lear ned fran INGRES 

INGRES makes use of the UNIX 1/0 facilities. Much better 

performance could have been obtained by a custanized facility, 

(tor exaftlple,. physical clustering- would have been possible). 
L 

This alternative approach was takèn by the designers of System R. 

INGRES stores sane re1ations in an "ISAM-like" file [Ston76]. 
. /' 

ISAM [IBM661 is a static or~fzation. The designers of INGRES 
/ 

regret not having used ~<iynamic organization, (e.g. the Stree). 
/' 

It avoids è~- 1'Î~d for periodic reorganization (which i5' 
_ ____.. _~__ ;1' 

scheduled by the database adnini strator) /nd degr adation of 

performance due ta the elÇistence of averflow records. 

2. Data structures for the physical database 

In this section we consider the problern of selecting data 

structures for the major components of the POO: the MF, the OF 

and the f il ter . 
• 

Our primary concern i s to minimize the amount of 1/0 gener ated 

in pr ocessing transactions. Storage util ization ie a sécondary 

consider ati on. These pr iori ties are jus tified by the rapidly 

falling cost of secondary storage. 
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2.1. The MF 

The data s tructur e sel ected to repr esent the ~ should support ~ , 

the efficient evaluation of range queries. 'Another important "1 
-' consideration is thit,t the MF should be built as tuples ar'e 

supplied (in a certain order) fran the _me.~ge of. the old MF and 

the OF. Hopefully, i twill not be necessary ta s tore the tuples 

i11 a temporary file for preprocessing. 

2. 1. 1. U se an MOS , ' 
i 

The two main contenders fOr the MF ar~t 

1) An indexed-sequential file, clustered on one access set wi th 

inversions on one or more access sets. 

2) An MDS. 

As noted in chapt er 2, inversions are sui table for processing 

simple,. queries but net complex queries. (System ~ never ~ses more 
'. , 

than one inv;rsion to process a query. See section 1.1.) 

MOSs, on the other hand, process compI'e,x queries efficient1y 

but do not perform as weIl as inversions for simple queries. 

These two choices are not mutua1ly exclusive '. An MDS can be 

used. This will dictate a 'certain clustering which will not 

correspond to clus tering on any access set (unless a high bias 

MDS is l;1sed). Then, inversions on s eleot ed aqcess sets oan be 

constructed. Simple queries will use one of the inversions if 

possible. Other querles will US'e the searching capabilities 'of 

the MOS. 

The advantages 6f using an MDS outweigh the lOBS of phys.ical 

clustering on sane access set (which is incompatible with the use 

of a low bias MDS) • 
~ 

Ph ys i cal cl us ter i ng pe rmi t~ ef fic}. ent 

sequentLal processing on one attribute but not on others. An MOS 
JO 

, 
1 

,1 

\ 
1

0 

î 
; 

• 

l 

t 
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prcDvides sane clustering on aIl attributes simultaneously and 

also suppor ts the ef f ici ent pr ocessi ng of range and partial match 

queries. 

Note that any number of inversions can be set up for the MF 

and there is no maintenance involved. Since the MF is static, sa 

are the associated {nversions. The only penal ty paid for the use 

of an inversion lS the cast of setting it IIp, but thiSl is done 

during r eorgani za tian whi ch does not shut down the sys tem. (And 

we are not concerned with storage costs.) 
\ 

2.1.2. Which MDS? 

Now the problem is to select an MDS. An MOS requiring a sort 

of the old MF to ensure merge compatability with the OF should 

not be used: the MF may' be qui te large. For this reason, the kd 

~e, the K-O-B tree, mu~tidimensional c1ustering and multipaging 
; 

are" ruled out. These MOSs do not arder the tuples in any 

consistent way. For example, an inorder. traversa! of the kd tree 

does not yield the tuples in a sequence determined by the tuples 

themselves. The order of insertions and deletions also plays a 

role in determining the sequence, (see chapter 3 section 2.1) • 

AlI of the other MDSs described in chapter 2 are ZMDSs. We 

reject the use of high bias ZMDSs. They offer no advantages over 

low bias ZMDSs which can he made more biased if so'desired. 

An important property of the ZMDSs is that they store tuples 

in a specific arder: z arder. 'fhus, if the MF and OF are not 

merge compatible, ooly the DF has to be sorted. 

S@lIe candidates for the MF data structure are· discuSsed in the 

next seC~ion •. c 
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2.1. 3. Practical ZMDSs for the MF 

.. 
2.1. 3.1. EXCELL 

" 

EXCELL has sev~~rst case problerns. They can be alleviated 
~' 

but t~is--'wôuld require sane preprocessing r so EXCELL cannot be 

bui l t wi th tupI es pi pe d di rectly f ran the merge. 

2 • L 3. 2. HCE LL 

HCELL parti tions the space i nto a gr id as does EXCELL but 

allows overflow to occur, (thus HCELL may use a coarser grid). 

When a cell overflows, it is dealt with by imposing another grid 

on it and using another EXCELL-type structure. Thus a tree is set 

UPi in most cases a very shallow one. (The kd trie 18 a special 

case of HCELL: A region of the space is split into two 

s u b- reg ions. ) 

For any ·cell which does not overflow, a random access costs 

usuallyone but no more than two disk accesses: one access is 

sanetimes requ i red to r ead the HCELL di rectory page and another 

to retrieve the page representing the cell. Most rëyldom accesses 

will require one di sk access since the directory is much smaller 

than the set of pages storing the tuples and since the 

Rangesearch algorithm would never require a directory' page to De 

r ead mor e than once. (Also, a sequential access never references 

the directory if the pages are linked.) Note that the pages 

representing the cells can be ailocated sequentially on disk. 

This allows for efficient processing of sequential accesses , ' 

across cell boundaries (which would be generated by the 

Rangesearch algorithm). 

If a cell overflows then the corresponding primary page stores 

J ,1"­,. 

" " 
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all or part of another HCELL directory. In either case, the pages 

of this second level can also he allocated sequentially. These 

pages interrupt the sequence of the pages of the first level of 

HCELL (as they should to rnaintain z order). 

HCELL avoids the worst case of EXCELL since overflow affects 

individual cells, not the entire directery. However, a worst case 

resernbling that of the kd trie does exist. It is possible to have 

a deep HCELL resulting in low storage utilization and slower 

randorn acçess. 
"{II 

2.1.3.3. The zkd Btree 

The zkd Btree cannot degenerate as HCELL can but it gives 

poor er perf ormance than HCE LL for pr ocessi ng r andow accesses, (i f 

the HCELL i s net degener ate) • 

A zkd Btree node has a smaller branching factor than an HCELL 

node: An HCELL directory entry consists of a pointer to a page. A 

zkd Btree entry must, in addition, store a discriminator 

(possibly a complete tuple) • The di scr iminator occupies sever al 

bytes. Thus a zkd Btree is usually less "bushy" than HCELL and 

is deeper resulting \.n slower random accessing. ' 

2.1.3.4. zkd MLOPLH 

..... 
Zkd MLOPLH is the MLOPLH data s tructur e (see chapter 3 section 

3) transformed into a ZMDS (as in chapter 3 section 2). This data 

s trllctur e combi nes the best featur es of HCELL and the zkd Btree. 

Random accessi ng i s at leas t as fas t as for HCELL (5 ince a 
(il 

directory is not needed), and definitely faster than for the zkd 

Btree. Th~-'"'. cost of sequential accessing i 5 comparable to the 

cos t for a zkd B tree. 

\ 

, 
, 
" 
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The performance of zkd MLOPLH can be improved due to same 

characteristics of the)MF and the way in which it is built. 

Tuples ar e piped fram the merge in a speci f ic order. 

Af~er the merge is finished, the MF is static. Thi s al10ws 

the creation of a zkd MLOPLH without any sparse buckets since the 

cost of update operations is not a concern. (Reca11 that there 

is a tradeoff involving the worst case times of updating and 

sequential accessing. See chapter 3 section 3.5.2.1.) 

- The size ;f the new MF is known in advance. Therefore, the zkd 

MLOPLH should not be gr awn fran a single bucket. In thi s way a 

lot of splits are avoided. 

Based on these observations, the zkd MLOPLH can be grown as 

f ol1aws: 

Allocate enough primary pages to store the entire file without .' 
overflow (assuming a perfectly smooth distribution) . 

Place records in buckets according to the prefix of the 

shuffle value. Note that aIl insertions to a bucket will occur 

When bath buckets of a pair /:other buckets have been 

consecutively. 

created, join them if at least .. one of them is ~rse, (and keep 

doing this recursive1y until the sparseness is eliminated). 

The a1gorithm MFLoad, given below, creates the zkd MLOPLH. 

This data structure appears to be the most suitable one for 

representing the MF. Random accessing costs one disk access if 

the accessed bucket did not overflow. Otherwise, the cost is no 

worse than for a zkd Btree. Sequential accessing is as fast as 

for a zkd Btree since no sparse pages exist. 
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• 
MFLoad () 
The file is initialized with ~ empty buckets. b ia the number of 
the buc'ket being filled. The coroutine GetNextTuple supplies t, 
a tuple fran Reorgani ze, and sends a value of IX) when Reorgani ze 
Is finished. Define h ... (~) = 2'"+1. CloseBucket ls responsible for 
eliminating sparse buckets. 

b := 0 
GetNextTuple (t) 
whil e t < (10 

if h~(t) > b 
then (* t is the first 

for i := b to h",(t)-l 
CloseBucket (i ,m) 

end 
b := hlM(t) 

end 
AddI'cBucket (t,b) 
GetNextTuple (t) 

end 
r etUI n 

end MFLoad 

C loseBucket Cb ,m) 

tuple of a new bucket *) 

-, 

If b is the Wright" 
Canbine them if 
recursively for the 

br other then both br others have been set up. 
ei ther is sparse (and. calI CioseBuc,ket 
resul ting bucket). 

level(b) :=m 

~~ ~= b - 2/-~ 
hen - (* b ~ is he lef t br othe~, bis the r ight br other. *) 

i sparse (b) or spaJ:se (b") 
t n 

J oi nBuckets (b" ,b) (* See chapter 3 section 3.7.3 *) 
CloseBucket (b" ,m-l) 

end < 

else (* b is the left brother *) 
end 
r etur n 

end C loseBucket 

il 

/ 
" 

l 
" 
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2.2. The OF 

The requirements of the OF are quite different fran those of 

the MF. The OF is highly dynamic: there are many insertions and 

sane deletions. The OF is also used in query processing and in 
-< 

the merge with the MF. 

2.2.1. Use a zkd Btree or zkd MLOPLH 

The use of many inversions is not feasible sinee each would 

have a maintenance cost, and the OF is highly dynamic. (Also, 
. 

the presence of inversions would complicate the recovery system.) 

So aIl accessing wil have to be done through an MOS. There are 

several adf:ages by using a OF which is merge 

compatible wi th the MF: 

- The OF does not have to be sorted before reorganization. 

- The pr ocessi ng 'of range quer ies will be s impl if ied. l t wi Il 

also 'he faster since sorting will not be necessary to ensure 

merge compatability. 

We therefore restrict our attention to ZMDSs. 

A OF record has two more fields than an MF, record: timestamp 

and status (which we will refer to as t and s respeetively). The 

bits of these values must be included during shuffling, (a ZMDS 

is being used). Clearly, to maintain merge compatability with 

the MF, aIl of these bi ts should appear after the bi ts of the 

attribute values. AIso, i twill be useful to have aIl of the 

updates to a tuple stored in reverse chronologieal order. So 

after the bits of the attribute values, the complemented bits of 

the timestamp are appended. Finally, the status bit is appended. 

In other words, the shuffle funetion for the OF is 

shuffleOF([aO' ••• , ak_1, t, s» = 
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<shuffle ([a
O

' ••• , a
k
_

1
]) complement Ct) 1 s> 

Since the OF is dynamic, static organizations are rejected. 

HCELL has sane pr"oblems wi th stor age ut il iza tion and therefore, 

sequenti~l accessing, (since it is not multi-level in the SéUJle 

way as zkd ML9PLH) • 

We therefore recomrnend the use of a zkd Btree or zkd'MLOPLH 

for the DF. We cannot recommend the use of zkd MLOPLH wi thout 

reservation. Oue to the static nature of the MF, certain 

improvements to zkd MLOPLH were possible, (e.g. the el imination 

of sparse pages). But with the dynamic OF, these improvements are 

not possi bl e. 

2.2.2. Concurrent operations on the DF 

Two transactions which do not conflict logically rnay conflict 

physically. Suppose that transaction T locks the predicate X ~ 

10 and that transaction T' locks the predicate.X > 10 (where X is 

an attribute oJ the relation). If T writes a tuple with X < 10 

and T' wri tes a tuple wi th X > 10 then there i s no logiéal '\ 

conflict. But if both updates are directed to the same pag~ of 

the OF there is a physical conflict. ) 
This is a much simpler concurrency control problem than the 

problern of guaranteeing serializability. For example, if zkd 

MLOPLH is used, then a very simple locking scheme is possible: a 

transaction merely locks the bucket being updated for the 

duration of the update. 

The problem of concurrent Btree operations has been studied. 

A slightIy rnodified Btree requires a writer to lock a small 

number of pages [LehmSl]. This method does not handle deletions 

weIl, but the OF does not have to process rnany ~of themi the entry 

J 

l 
l 

l 
il 
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can be flagged as deI eted. 
/ 

Optimistic concurrency control can also be used for both data 
(, 

structures. Instead of locking out a cOnflicting writer, the 

younger transaction involved in the conflict is forced to 

re-execute. This method requires that each writer make a private 

copy of the pages or buckets being updated. 

2.3. The filter 

The function of the filter ls to indicate when a DF may have 

an update relevant to a query [Seve76]. We will design a filter 

for the poo. Analysis of the filter will show that it is 

virtually worthless in the context of a relational database. We 

then discuss filters that are heJpful in this contexte 

2.3.1. !he original proposaI 

The filter for a relationaI" database, as originally proposed, 

is an array of M bits [Seve76]. Initiallyall the bits are set to 

o. When a' record wi th key k is updated the hash values h
1 

= 
1 

f 1 (k) , ... , hX = fX(k) ar e comput ed. (Each f· 
J 

retur'ns an 

integer in {a, M-I] . ) Bits h1 ' 
... , hX are set to l. 

To use the f il ter, the hash functions are applied to the 

search argument. If aIl of the accessed bits have values of l 

then it i5 possible (but not certain) that the OF 'contains a 
'\. 

relevant updatè of the record corresponding to 'tpe search 

argument. If any of the bits are 0 then the DF does not contain 

a relevant update." 

The parameters M and X control the accuracyof the filter. 

Obviously, M should be as large as is feasible, (9:6ven that the 

l 

l 
J 

1 

~ 
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fUter should be kept in primary memory). Given M, X can be 

selected to optimize performance according to a variety of 

criteria (see [Seve76]). 
... 

The filter as descrihed is not sui"table for our purposes. It 

can handle match queri~s on Id data. In the next section we 

discuss a more general filter. 

2.3.2. A filter for a relational database 

The filter described above is not satisfactory for two 

reasons: 

1) The queries to he processed are range queries, not just match 

queries. 

2) The data is multidimensional. 

The f !rst point suggests that the hash function(s) should be 
r 

order preserving. Without any knowledge of the distribution of 

the points (corresponding to the updates) the only logical choice 

for the hash function is 

h(k) = Lk / sJ 
where s is sane scaling factor. 

The second !?Oint is easily dealt with: multidimensional data 

can be treated as one dimensional following shuffling. 

The filter, then, is designed as follows: tuples consist of d 

bits; shuffling yields an integer in [O,2d-lJ. The filter 

contains M bits and, in practice, M « 2d• The hash function to 

be used is 

h ( t ) = L (M / 2 d) s h uf fIe (t ) j 

w he r e t i s the tupI e being updated. Each bi t in the f il ter 

d 
r epr esents 2 lM bi ts of the space consecutive in il order. Thus 

each bi t cor responds to one n cell n of the space. 

': , 
< 
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2 . 3. 3. The f il t.er i s us el es s 

It can be argued that the filter proposed is almost useless in 

a r elational database. Suppose that the f il ter has M bi ts and 

that n updates have been placed in the DF. Then, assuming that 

the updates are uniformly distributed, the probability that a 

given update falls in the cell of a given filter bit is liMe The 

probability of a miss is l - liMe The probability of aIl n 

updates missing the cell is (1 - l/M)n. So the probability that 

at least one of the n updates falls in the cell is p = 1 - (1-

l/M)n. This is the probability that a given filter bit 

partial match query on t of the k attributes covers M1- t / k 

f il ter'" s bi ts . 

Now, the probability that aIl of these bits are off is 

Ml - t / k 
p = (l-p) 

o 

Po is usually very close to zero. 

l-t/k 
log (p ) = M n log (l-l/M) 

e 0 e 

p '" o 

= _n/M t / k 

_n/M t / k 
e 

is on. A 

of the 

Po i s strongly dependent on t/k. Figur e 

; 210 and M = 216 • The graph shows that 

1 plots p vs. t/k for n o 
the filter is virtually 

certain to refer a query to the OF unless over half of the 

attributes are specified (in a partial match query). The results 

hold for a wide range of M and n. 

The use of the filter in the ori~inal proposaI [Seve76] was 

c) 

f: 
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justified: t = k = l and t/k = 1- But for mul tidi mensional 

the benef i t of the f il ter is not so clear. 

New consider how many of the accessed fHter bi ts are 

partial match query covers M1- t/k fil ter bi ts. Each 

pr obabil i ty 

p ~ l - (l-l!M)n 

-n/M 
- e 

\ 

199 

data, 

/' 

on. A 

has 

of being on. The expected number of filter bits that are on is 

appr oximatel y 

l-t/k -n/M) N ~ M (l-e 

F igur e 2 shows how N gr ows wi th n. 

To summarize these results, it is very unlikely that the OF 

will not be referred ta. 

Now recall how the DF is accessed. The Rangesearch algorithm 

examines a search region, SR, by generating a random access and 

one or more sequential accesses. The random access uses the 

filter, and, as shawn, is almost certain to be referred ta the 

OF. From this point on, the filter.can be ignored: the filter 

will indicate which regions of the space (inside the SR) have 

been updated but this is helpful only if a random access is beiog 

processed. 

The filter, as designed, is useless. 

2.3.4. Multiple filters 

Recall from section 2.1 that the MF is represented by an MDS 

augmented by inversions. Consider a simple query: X = x, and 

suppose that an inversion on X exists. From section 2.3.3 it is 

almost certain that the OF will have to be accessed, (t = 1) • 

S ince the MF is accessed quickly using an inversion,' i t i s 
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. 
possible that it will be more expensive to access the DF (which, 

does not have an inversion on X) than the MF. 

But consider~nother filter, designed ta dèal ely wi th 
, . 

accesses on X. Then k : 1 and for the above que~--~ Fran 

the resul ts of section 2.) 3 i t can be s~h' that thi s f il ter 
~ 

would be valuable in processing queries on X. 

We therefore propose ti'he following: for each inversion, l, set 

up for the MF, a filter should be set up for c;3ealing with quer:ies 

on the access set of I,. These filters should be kept in pJ;"imary 
Q 

,,,,. 
memory. The modification of the algorithms given in this chapter 

to deal with multiple filters is straightforward. 

2.4. Searching the MF and DF 

Now that the design of the MF, DF and fil ter have been 

specified, the algorithm for processing a range· query can be 

specif ied. The outline of chapter 5 secti6n 4.2 can now be 

simpl if ied since the (mul~idimensional) f il ter has been 

eliminated. AlI that is requi r:ed to process ~êc~ SR is a simple 

merge of the MF and DF. The basic algori thm and" opt imi za tions 

are discussed below. 
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2.4. 1. The basic algor i thm 

The tuples of the MF and DF which lie inside a given SR are to 
.-
)~ • j 

be merged. The Reorganize algo'rithm, (see chapter 5 section 

4.1), can be used with two modifications: 

l) The i ni tial val ues of m and d ar e de termi ned by r an dom 

a cce s s es ba s ed 0 n the SR: 

m .- randac (MF, loval (SR» 

d := randac(DF, loval(SR» 

2) The merge terminates when m > hi val (SR) and d > hi val (SR) . 

2.4.2. Optimizations 

The ""appl ication of the optimizations of RangEiRSearch,\ (see 

chapt er 3 section 2), to the current stiuation is not 

straightforward. For example, there are now two pages (one fran 
"'"-. 

the MF and one fran the OF) to "sci)n to the end" of • 

Recall that the original mot;~ va tion for the opt i mi za t ion was 
') 

to avoid the processing of a huge number of small SRs. Let us 

def~e a "small SR" as an SR completely contained within an MF 

celle To process a small SR it is not i.ncorrect to process 

ins~ad the. entire MF cell contaiping the SR, filtering out 

tuples which do not actually satisfy the query,' This strategy 

wi Il "ski p over" ]1ear by small SRs whiéh f aIl in the same cell. 

Afte( the MF celi is processed, the search can be reconstructed 

to resume at the tuple whose shuffle value is the smal1est 

excee di ng t he hi val of the cell. 
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1 2.4.3. Using MF inversions 

To process a simple • query on an access set for which an 

inversion exists, a different search algorithm is required. We 

can take advantage of the OF filter corresPonding to the MFs 

inversion (see section 2.3.4) • 

. The inve r sion s tor es the index val ues (and cor r es po ndi ng 

pointers) in an indexed-sequential data structure, ordered by 

index val ue. Each f il ter bi t repr esents a rçmge of index val ues. 

To process a range query on the access set of an inversion we 

begin wdth the filter. If a given filter bit is off, the MF is 

accessed through the inversion. Otherwise, the retrieved MF 

tuples are merged wi th the entries fran the OF co-cresponding to 

the range of index values represented by the filter bit. 
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It is sanetimes useful to he- able to evaluate a query on a 

previous state of the database. For example, if sane statistic, 

(e.g. average salary), is to he p'lotted against time, the 

neces sary data can be ext ract ed by accessi ng certai n pas t 

versions. 

It is not feasible to anticipate aIl such reques,ts and then 

r et ai n the r equ i red information. A mor e gener al appr oach 

maintain archives: aIl previous states of the database. 

Current relational database systems do not support archives. 

The idea is not even present in the relational algebra: a 

relation represents the state of a set of objects at sorne 

instant; it is a "snapshot" so the relational algebra does not 

contain operators for querying past states. 

The differential file provide,s the ability to access the 

recent past: it stores aIl versions of a relation since the 
.,. 

creation of the MF. (Thi s capabi li ty i s us ed t 0 allow r ead-onl y 

transJctions to avoid concur rency control.) In this chapter, the 

idea of the differential file is extended to provide archives. 

The implementation will be discussed. Archives will occupy a very 

large amount of memory and new mass storage technology will be 

useful in dealing with this volume. This issue will also be 

addr essed. 
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archives into a relational dataqase system 

of archives affects aIl levels of a relational 

database system. As indicated above, the notion of "relation" 

needs' to be reconsidered and the relational algebr a mus t be 

extended. These problems are beyond the scope of this thesis. We 

will discuss the implementation of archives. 

1.1. Querying recent versions 

Regardless of how tge relational algebra is extended, one 
1 

point is clear: it will ~ necessary to refer to the relation as 
\ 

it eXlsted at a specifie manent in the pasto The extraction of 

this verSIon has been called the surface operator by Merrete 

[Merr8ll. If each tuple is seen as being either present or absent 

in relation R at aIl times then surface(R,t) is the set of' tuples 

" 
that was present in R at time t, (see figure 1). Recall that aIl 

the updates of a trartsaction are marked with the timestamp of the 

t r ansact ion. Tha t i s, aIl of the updates take ef fect at the same " 

time. In this way, surface sees either aIl of the updates fran a 

given transaction or none of them. 

For now, consider versions no older than the MF, (i.e. 

"recent" versions). Surface(R,t) can be retrieved as follows: 

perform a merge of the MF and DF, ignoring DF entries whose 

timestamps exceed t. The Reorgani ze al go ri thm of chapt er 5 

section 4. l is easily modi f ied to ignore the DF entries 

descr i: he d. 

" To retrieve a very recent state it may he necessary to wait 

until commi tti ng transactions fini sh commi tting, ( i . e • 

transactions which started committing but did not finish when the 



1 

Tuples 

( 

( 

0 

1 

2 

3 

4 

5 

6 

7 

Time 

o 1 2"""'3 4 5 6 7 S 9 

.. 

[X [X [><J lX c>( ~ lX] 

~ t>< ~ t>< LX [X 
[X [X [X X 

~ Present 

D Absent 

X X 

Surface(R,5) = ( 2,4) 

Figure 1. The surface operator. 
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search was ini tiated.) ~ 

The algorithm for querying a recent version (at time t) is 

-
simple. Normally, the DF is searched with a range query Q. To ,;, 

ignore aIl updates in Q"s region dated later than t, search the 

DF using 

Q t = Q and (times tamp ~ t) 

In the DF, the timestamp was treated l ike any other attribute 50 

Q t i s a range query and the usual sear ch algori thm can be us ed. 

(This i s essentially the "query modi f ication" techni que 

[Ston75).) 

1. 2,. -Queryin<;{ any pr evious version 

We now consider the problem of accessing versions oider than 

the MF. There are a m.nnber of ways to modify the basic 

differential file scheme to support such accesses. 

1. 2. 1. Neve r r eo r <;{ an i ze 

If the entire relation is stored in the OF fran- the time it is 

cr eated, (the MF is then empty and unnecessary), then aIl 

versions of the relation are present in the OF and the techniques 

of section 1.1 can be used. 

This method is clearly impractical. Since the OF grows without 

l imi t i twill become very expens i ve to search and keep on 1 ine. 

It i s 'therefor e necessary to update the MF and· clear the DF 

pe r iodically. 
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1. 2. 2. !~ old DFs 

Following reorganization, the old OF i s di sca r de d. 1 f it i s 

kept then states that existed before reorganization can be 

accessed. If all old DFs are kept then any previous state can be 

accessed. These old DFs will be used as "anti-differential files" 

(ADFs) to construct earlier states fran the MF, (see figure 2) • 

The use of' ADFs to implement archives was prCposed by Merrett 

[Merr8IJ. Note that a DF can be used as an ADF by just reversing 

the meaning of the status flag. That is, [ao' .." , a k _ l' t, s ] 

" a
k
_
1

] was changed in the OFo means that the status of 

to s at ~ime t. In the ADF it means that before time t, the 

" 5 tatus was \ the opposi te of s. 

To query a version at time t < tH (where t
M 

is the time at 

whieh the MF was created) a new search predicate is defined: 

Q t :; Q and (times tamp ~ t) 

Each ADF 
1 

such that t < t is searched 
1 

using 0t and the MF is 

searehed using Q. The results fran these files are merged as in 

Reorgani ze . (Actually, only the oldest aecessed ADF, AOF where 
J 

t
J
- 1 < t 2. tJ' needs to be searched 

searched using 0 sinee t < t, and t. 
1 

wi th Q t" 

< t .. ) 
J 

ADF., i > jean be 
1 

Note that the DF stores tuples in reverse chronological order 

but the ADF mus t be accessed in (forwar d) ehronologicql order. 

That is, to undo aIl of the upda·tes of a tuple stored in an AOF, 

only the earl iest update is of interes~. The required 

modification to the merge aigori~ is trivial. 

The time regui red to evaluate a query on a version is di rectly 

related to the age of the version: older version· will access more 

ADF s than yo unge r ver s ions. 

"''' .... 
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1. 2. 3. ~eep old MFs and DFs 

If old MFs and OFs are kept then the time to access a previous 

version will be independent of the version"s age. The priee for 

this improved performance is that the MFs will occupya very 

large amount of storage. This issue is discussed in section 3. 

This organization is shown in figure 3. 

To access a pr evious version at: time t, f ind i such tha t t 1 
1-

< t < t . 
1 

Then s earch MF and OF 
1 

(using Qt :;: Q and (timestamp ~ 

t) instead of Q for OF.) and merge the results. This method is 
1 

simpler than the use of ADFs since only two files ar-e being 

merged and because there is no distinction made between recent 

versions (t ~ t
M

) and older versions (t < t M). 

1. 2.4. Keep sane old MFs and aIl old OFs 

Neither of the methods proposed in sections 1.2.2 and 1.2.3 is 

enti rely s ati sf actory. For example, the use of AOFs may be 
~ 

unacceptably slow but the retention of aIl MFs may be 

impr actical • Those methods are special cases of the following 

method: Store the r mos t recent MFs and DFs. All older versions 

can be r eco ns trtlct ed using ADFs (see figure 4) 

Given a fi>ted amount of storage for the MFs, the value of r 

can be determined. 

2. Implementing archives 

We now di scus s the data s tructur es sui tabl e for MF s, DF sand 
'. 

AOFs in the archives. The related issue of storage media is also 

addressed. We begin with the following two assumptions: 



208A 
.~ 

! 

MF 

AOF1 ADF2 ADF3 OF 

" / 

Figure 2. Archives using anti-differential files (ADFs). 
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1) The archives are accessed much less frequently than is the 

cur rent ver sion. 

2) Since the archives will be large and grow indefinitely, the 

issues of cast of storage and storage utilization are of( primary 

importance. 

The emphasis then, is on conserving storage, not on speed. 

Eventually the archi ves will become 50 large that they cannot 
.,f 

be managed at a reasonable cost. The obvious way to . deal wi th 

this situation is to reclaim space occupied by the oldest ADFs, 

(assuming archives are s tored as in section 1. 2.4) • 

2.1. The MF 

Two versions of the latest MF existe One is stored on disk and 

is used for query processing. The other is a backup version 

s tored on tape. Ei ther version could be placed in the archives. 

Tape i 5 ohe aper but slower to use. 

The dat a s tructur e us ed for the MF, the zkd MLOPLH ilDpr oved as 

in chapter 6 section 1.3.4,; is sui table for use in the archives. 

The storage utilization is likely to be high (since it can be 

controlled) . Furthermore, i t is easy to show that storage 

utilization cannot fall below 25%. (More importantly, it cannot 

get arbitrarily close to zero.) 

Based on our assumptions given abOve, inversions should not be 

s tored: they occupy a si9nif icant amount ' of storage and speed i s 

not a pr imary consider,ation. 

" 
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2.2. The DF , 
The DF data structure, (zkd Btree or zkd MLovt~), is aiso 

sui table' for us e in the archi ves. Storage util~a'ti<?n is kept in 

a f ixed range. 
/ 

No backup for the DF exists so it wbuld have to he copied to ëI. 

s tor: age de vi ce e xpl ici tl Y for of archi.ving: either to a 

disk Jor old"DFS (and ADFs) or to the tape containing the old 

MFs. 

" 2.3. Hard cr ash r ecovery reconsider ed 

The pur pose of the hard cr ash 
. 'J 

recovery system l:S to restore 

damaged data structures. 'The log is used to recover the DF, 

fUter and other dynamic objects. The MF is restored fràn a 

ba cku p copy. 

Thi s sys tem 

Arbitrarily high 

dupl ication of 

i s as secur e as i ts 1 eas t secur e component. .­
Cl 

de gr ees of secur i ty can be achieved by' 

logs and backups but' 190% protection is not 

possi bie. It i s commonly assumed however, ~t the log i s 

"stable", i. e . complet ely rel iable. 

The need for a baèkup of the MF can·he reconsidered ·now that 

there are severar old MFs present. Given that the log is stable 

and available as far back as the oldest MF, a backup of the 

current MF is unnecessary. 

Suppose that the current MF, MF r is dam.aged. (MF1 is the 

oldes t MF.) Tt can be constructed fran the previous MF, 

and th~ log. If MFr -1 ia damaged during reconstruction then 

can he used to restore MFr-1 which in turn can he used to restore 

MFr' That is, a systen with the r moat recent MFs provides. 
~_ ... _~,~.~ ~ "~-!.. .... I < ...... ~ •• r 
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security equivalent to r-1 backup MFs. 

211 

Generally, any MFj can be r es tor ed f r an MF
J

, j < i, so the 

archi ves ar e also pr otected, but the older 'arr-MF- the-- r-esssecur e 
, 

it is. The only irteplaceable componen,t i8 MF1' the oldest MF. 

If thi sis unacceptable then ~ t could be protected by . a backup 

. copy cr eated per i odically. Thi s backup would be cr eated only 

during idie manents: its creation is 'not urgent. The most recent 

~ackup of' this kind can be used with the log to res~ore MF1 

3. Wri te-once memory 

"Video disks n are new mass storage devices that are expected 

to be used in information sys terns in the, near futur e [vand80]. 

Funct i ona11y, a video di sk i sa" wri'te-once memoryn (WOM). They 
. 

are' written and then used as read-on1y memory. These disks store . 
data very densely and cheaply • They are, therefore, ideal for 

• s toring archi ves. 

" WOM i8 also ideal for backup purposes~ After ,being written, 

the stored information is difficult ta corrupt: the disk will 

never be put into a wri ting device again so 
, 

only phys ical damage 

could af fect the information. 

If'~M were used,' the llife cycle of an 'MF would be as follows: 

The MF is- created on WOM dur in~ eorgani zation and is used' for 

pr?cessing queries. 

When the . next MF 18 cr eated the old MF i8 s tored as ~r t .of /) 

the archives. Thi s is also a sui table backup sinee WOM .is 

difficult to corrupt. 

WOHs carthot be er,ased and r eused. ThllS 1 the only 1 imi t to the 

l , 
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1 mnnber of MFs that can he kept is warehouse space. 
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Chapter 8 

In this, th~is,/\ a new design for the physical 

proposed. The d~inctive features of this design 

214 

database was 

are the data 

structures used, (the ZMDSs), and the use of the differential 

file scheme instead of a single dynamic file. In this chapter, 

the main results are summarized. 

1. The kd tr ie 

The kG trie (chapter 3 section 1) is a data structure which 

supports the efficient evaluation of ~rt,ial match and range 
..,~"- ~ 

queries. It resembles the kd tree but 4il~ers in the way that 

discriminators are selected: with the kq trie, the dis~riminator 

that splits a region is cornpletely deterrnined by the region 

itself. The choice of a kd tree discriminator, on the other hand, 

" is influenced by the points in, the region. This difference has 

consequences in performance: The kd trie for a given set of 

points is unique. So updating cannot cause àegradation~ of 

performance un~ess a "ba:d" distr ibution is achieved. The kd tree 

may degenerat~. Furthermore, the balance of a kd tree cannot be 

ma in tained. 

Analysis and experirnents on the kd trie show that it is a 

prac~ical data structure to use, (although it does have bad worst 

case perforrna"nce1. 

The kd trie provides a consistent ordering of data. If tuple t 

precedes tuple t~ in the inorder traversaI of a kd trie 

pontaining both, then this 'ordering of t and t" occurs in aIl 

such kd tries. The kd tree does 
- ~~ 

not have, this propert~. In fact, 

two different kd trees sid~in,g the ,same data may yie.ld different 
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inorder.traversals. 
( ~ 

The ordering of tuples provided by the kd trie is"z order". 

The kd trie made obvious the discovery of Z order but is not 

necessary: precedence in Z order can be decided without using a 

kd trie. This is so because tne kd trie can be seen as a trie 

storing "shuffled" tuples, (Le. the bits' of the bipary 

representations of the attribute values are interleaved). Z order 

corresponds to the usual numeric ordering of "shuffle values". 

2. Z ordered multidimensional data structures, (ZMOSs) 

The essential property of the trie, (as far as range searching 

is concerned), is that it is an indexed-sequential data structure 

(ISOS). That is, it supports random and sequential accessing. By 

storing shuffled tuples in any data structure with this property 

a ZMDS is obtained, (see chapter 3 section 2) 1 the tuples are 

stored in Z order. A ZMDS can be used to evaluate range queries 

efficiently. 

The procedure for using a ZMOS is as follows: 

- Shuffle aIl the tuples and store them in an ISOS. 

- Evaluate range queries using the Rangesearch algorithm. 

- Unshuffle the tuples returned by Rangesearch. 
, 

The input te the Rangesearch algorithm is a range query. It 

generates a sequence of "search regions" each of which generates 

one random access (to the ISOS) and at least one sequential 

access. 

The advantages of the ZMDSs are due to their reliance on 

ISDSs. Existing ISOSs (e.~. ISAM, Btrees, etc.) can be used. The 
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anal~ses of the ISDSs also app1ies to the corresponding ZMDSs. 

F~rthermore, any new results on ISDSs are irnrnediately applicable 

to the ZMDS5.' 

3. Multi-level order preserving linear hashing, (MLOPLH) 

We. have modified linear hashing so ~hat it can support 

sequential accessing, (see chapter 3 section 3). It i5 then an 

ISDS and therefore yields a ZMDS. This modification of linear 

hashing, order preserving linear hashing (OPLH), was achieved by 

using a monotonie hash funçtion. The hash function used may not 

distribute the records ta the buckets uniformly. If this happens, 

sequential proeessing may be slow. The problem is due to the 

appearanee of buckets whieh are sparsely filled. "Multi-level" 

OPLH (MLOPLH) avoids this problem by combining sparse buckets 

with other buçkets. 

In its final form, MLOPLH has the following properties, (n is 

the number of tuples): 

A bit map containing bne bit pee bucket is used. 

Random accessing usually costs 0(1) but is never worse than for 

a B+tree. 

Sequential aceessing usually costs the same as for- a B+tree; i~ 

may occasionally cost ",*lightly more. 0 

- Updates are usually no s10wer than 0(10g(n». The worst case i8 
L 

0(n/2 ), for sorne integer L. L can be set arbitrarily but there 

is a tradedff: the worst case cost of a sequential aceess is 

o (2 L
) • 

, , 
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1 
To summar ize our work on data structu res: we have found a 

class of data s tructu res, (ZMDSs) , for evaluating range queries 
,( 

which is based on the class lft3'f ISDSs. The kd tr ie is the 
n) 

"founding member" of the ZMOS class. We have also found a new 

ISOS whose performance may be better than that of the B+tree. 

This therefore yields another ZMDS which has very good 

performance. 

4. Transaction processing 

In addition to supporting the basic operations on relations, a 

complete relatlonal databqse system must be able to support 

concurrent access and be able to recover from soft and hard 

crashes. 

The proposed design for the phys ic.al da tabase is based on the 

use of a "differential file" system, (see chapter 5). A relation 

is stored in two parts: 

1) The static master file (MF) represents l/"snapshot ll of the 

rela tion. 
.;J' 

2) The dynamic differential file (OF) stores updates generated 

since the creation of the master file. 

Both the MF and OF' are searched in the evaluation of a query. 

Periodically, the MF ~and OF are merged to create a more 

up-to-date MF; the OF i9 then cleared. 

This organization is, in sorne ways, more complica ted' than 

( using a single dynamic file. jFOr example, searching is more 
, 1 

complicated. But other aspects of transaction processing are 

simplified. These are discussed below. The use of the 

; . , 
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differential file organization also has advantages in performance 

due ta the static nature of the MF. 

The us~ of the differential file results in a "multiversion u 

database: aIl versions of a relation (since the creation of the 

MF) are available in the OF. This allows the use of (soft crash) 

recovery and concurrency control techniques that would not 

ot~erwise be possible. 

The recovery system is simplified because the Or stores the 

most recent state of the relation: it is not necessary to recover 

from an out of date checkpoint, (which 15 slower and more 

complicated). Also, the cost of creating the checkpoint is 

avoided. Concurrency is enhanced because of the availability of 

old versions. Read-only transactions can be completely ignored by 

the concurrency control system. 

5. Data structures far the system 

The class of ZMDSs is a good source of data structures for the 

representation af the MF and OF, {see chapter 6} : 

- A large number of ZMDSs are known (due ta the large number of 
Ir 

known ISDSs). 

They can be searched efficiently. 

Tuples are stared in z arder in aIl ZMOSs. Thus algorithms 

requir lng merging can be used without sorting, either aperand, 

{even if the operands are stored in ZMDSs based on different 

ISDSs). Therefore the mergè of the MF and DF does not r~quire a 

sort of the large MF. Other multidimensional data structure~ do 
, 

not have this property. 
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The MF shou1d be represented by a zkd MLOPLH, (the ZMDS 

derived from MLOPLH). Since the MF ls static, the tradeoff 

between the worst case costs of updating and.sequentiai accessing 

is not a concern. Inverpions on "important" access sets should 

be set up for dealing with simple queries. A large number of such 
e: • 

inversions can be used because the MF i5 static. 

The OF should be represented by the zkd Btree or zkd MLOPLH. 

(The latter cannot be recommended without reservation for use in 

a dynamic situation untii more is known about its performance 

relative ta that of th~ zkd Btree.) 

A fiiter is worthless in processing complex partial match and 

range quer ie s. 
~ 

But for pcocessing simple queries on a single 

access set, a fiiter for the access set is quite valuabie. One 

filter should, therefore, be set up,for each MF inversion. 

6. Archives 

The design'proposed for the physical database can be extended 

to provide archives, (see chapter 7), the ability to access old 

(eut recent) states, (states created after the MF), By storing 

old DFs and/or old MFs it is possible ta access any previous 

. sta te. 

If old MFs are stored they provide increased proteçtion from 

hard crashes. Recovery is possible from the most recent undamaged 

MF and a log of transactions. 
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7. C~onclus ion 

Existing implerne n ta t ions 

unnecessarily complicated and 

of relational databases are 

slow. Ou~ design for the physical 

database is based on the differential file organization. This 

creates a "multiversion" database. The availability· of old 

versions results in relatively simple recovery and concurrency 

control systems. There are also advantages in performance. 

The cornponents of the differential file organization should be 

represented by ZMOSs. Thts simplifies reorganization and permits 

the efficient evaluation of partial match and range queries. The 
1 

MF should be augrnented by inversions for processing simple 
<~ 

queries. For each MF inversion, there is a corresponding filter 

for the OF. 

By storing old MFs and OFs, the design can be extended to 

provide archives and improved protection from hard crashes. 
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