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is described. A member of this class is derlved from a data structure C e ’
~ W
which supports random and sequential accessing. We also describe ’ ) -
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. .

two new data structures with this property that seem to have better

.
”,

. performance than the Btree. In 'pz;rt 2, a new désign for the ;')hysical '
. 4 i i ! [
“database 4s-proposed. This design 1s based on the sep;aration of a relation '

)

“into two parts: a static "master file" and a dynz;n;ic Mdaffferential < .
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file" which stores updates. Our,design includes a new system for ‘ .
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.On .ccmsidere des problemes d'implantatloP d'une base \reflatlonnelle

ne mouvelle classe de

. I

. structures dé données pour le traitement|des requetes sur des

de données. En premiere{(,‘lieu, on décrit

rangees des valeurs ("range queries") Un memtbre de cette classé

‘est derive d' une structure de donnees qui soutient 1° acces

TN aléatoire ou sequential On cté(;rit aussi deux mnouvelles structures

-

.
de donnees avec cette propr“iete, ‘et qui paraissent avoir une
meilleure performance que l'arbre "B" ("B-tree'"). En deuxieme
lieu, on propose un nouveau, .plan pour la base physique de données.
Ce plan est base sur la separatlon da' une relation en deux parties.
un. fichier principal statique et un fichier differential,
dynamique qul garde les changements en mémoire. La ..
» . ~ . 7
plan comprend un nogveau -systeme pour la reprlse des echecs de

systéme et permet un parallelisme plus grande que Jdes $ystemes
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Ch;pter 1. : ’ 2

- B . l'.
The relational medel of ddta [Codd70] provides a simple view
‘ . JEE \

of data- and powerful operatoré for manipulating it. 1In spi‘;{:e of
L

thls,,prelatlonal databases are not widely used. More commonly,

’

database systems are based -on other models of data which are more

complicated and provide lower level operators, or, systems are
cus tom=built for specific applications.

One of the reasons for this situation is that the relational

model of data is difficult to implement efficiently. The abstract

view of ° the aa,ta does not correspond to any hardw\eﬁg .}facility
.provided by current computers. The operators are theref\oY\e "high
lewel": they 'must be ‘implemented \;Sing 'complex softw'a;:e.\\\ The
network model ([CODA71], on the othp; hand, provides e; "low level"
5 .
view of 'data which strongly indicates a particular storage
scheme. The operators of .this data model are relativeiy easy to
implement. ,‘ 4 T S i ) '
Several relational database systems, mdstfy experimental, were
implemented between 1970 a‘n“d 1976. Since tﬁgn,.the problems of
implementing a distributed‘v 'Jrelational \ database sysEem ha\}re
received a lot of attention.h’ll‘he sitegs of a distribute'd da}t‘abase
aﬁ'are loosely coupled: each site can fl.:H:lCtiOl’l, to. some extent, as
an indepéndent datl:abase‘ system. Iﬁ this thesis, .the problem of
implexﬁent}ng the -lowest level of a data;base system, the "pizysical
database", is considered. This is an important practical problem
because the ééntrali:zed syétems developed through l976k are

unneicessar,i%}y complicated and slow, and/ because, as' sugq.sted

abovey solutions to this problem ar% also applicable “to

A
i
i

distributed database systems.
We assume that the database will run on a typical computer
system: a CPU with volatile primary memory and a much larger

\ . v

“
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.amount of non-volatile, random access -secondary memory, e.g. disk

storage. ( “ ‘ -

S

1. Architecture of & relational databage.éiﬁtem \ .

&

+ 4

,r

logical database in a language mganingfulwtb the . user+ Several

f
ey

users may use the database simultaneously. B

"A relational database system can be seeft as 'a -hjerarchy of

machines as shown in figure 1. Each user communicateahwi?h the

The logical database translates:the operatxons specxfled by a

user into operations on relations: Operations of thewrelatlonal

s

algebra and operations for updatiné the” relations.

. .o®

‘The physical ‘database (PDB) provides the mapping from

o

4 - <
operations on relations to operations.on ‘data struyctures stored
- P N . -

. - &

. . « . . e o

in disk‘files. . . . - e _ v
) A P 1 N -

P

A major bemnefit ng this organization is that the various

levels, (the loéicaij and - physical databases "etc. )y  are

\ w0 =y J‘ tam ° .
1ndependent of one another. The 1mplementat10n of any level can

be changed without affecting othen leyéls. This theSiS'pTOPOSeS‘a,'

P ad

new design for the bhysical database” yhich“is qulte dlfferent

T
e

from previous 'designs. Due to the independénce of _the various

levels of the database there is ﬁo 1mpact on levels ,above’and

.-below. (However a useful extension of the relatlonal model can be

7

easily Supported using our de51gn.7 - ’ ”
- . o .
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2% L . Chapter 1 Section 2 . ' o, 4
L Lo © - .
(*§ , 2. QOperations on relations ' '
' . : . ,
. "~ All actions on the database, - initiated by users, are
~ v - , -
, translated into operations on relations. These operations are
v described in.this section.’ '
. . An gﬁtribute“is an identifier. Associated with each attribute,
A, issa domain’ dom(A): a sgtfof?values. A k-ary relation, R, on.
’ the sét of attributes {A,, ... , A ‘R(Ap, coe. , A is a
¢ : {2y A _q.be R orte o B q)
S ‘ supSet of the® cartesian. product dom(AO)' X «o0 X dom(Ak 1 ). An
¥ - , ¢ N -

element of the relation, [a a, ,1, is a tuple. a. €

ST T Tk i
dom‘(Ai)‘, iﬁ“o, ve o ’ k"'lo ’ ' e -
- The values in a domain are all of the same type and these

)

- * _ types are usually atomic, e.g. strings or numbers. In practice.
. thq~qardinality oﬁreach dqm(Ai% is finite ang is known.
? s . . .*

[}
~

2.1, The relatipnal algebra )

" Codd defined some operators for‘manipuiating relations. These

- /ﬂ\;\\;éjemprise the\reiational‘ algebra [Codd70]. Merrett has defined
¢ ) r i v"

. ~“additional operators which generalize those of Codd [Merr77,
/’)} Chiu82].

S

We now describe these operators using relations R(X,YR)

,and S(YS;Z); dom(YR) = dochS). Upper case letters: R, S, X, ¥, I

. . . , .
' denote ,relations and attributes. Lower case ‘letters: r, s, x,-y,
. . ’ s .~ “ o
///// z denote tuples and ‘domain values.. . . “
. g
v t
1 - * - [} ‘ . - »
'3 p
/r ¢ '
/. e s ‘ - » )
S ~ 1
A 4 [

e e e e Sy s Bl e S St R e e e
-

-
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. - ‘Chapter 1 Sectijk 2 S ; ‘5
\(:} . —2.1.1.‘Sélection' . ©
H - —
™~ S R(Q) = {r: r € R& Q(r)} N

Q is_a query (or "predicate"). R{Q) consists of those tuples of R

which satisfy the'query.,ﬁbtg that Q has exactly one tuple as its

LY

gument. ,

t v,
ious.kinds of queries are discussed in section 2:1.7.

-

‘?{'2.1.2. Proje 0 . A ‘
- : ’ . ‘ - n\y
r{X] : r & R} ° ) X D )

. -t

r[X] is a tuple of R with the YR. value removed. Note" that

L I - 4

duplicates., are "removed“\§}qye a relation is a‘set.

o e R[x,YR}i is an abbreviation for R(X = x}fYR 1, (selection’
. . . . . S,
followed by projection).
< 2,1.3. 8=join © . ‘
\ M ’- R o i ) S
SRV ‘ : R .

3 L . RIYze ¥c1s = {[X'YR'¥S’ZI= [xryp] € R-

v i g// ] & [Ysrz] € S & elerYS)}

where © i@j) is one of the comparison operators: i =3, i # j, ¢t
"< 3, 1i'¢ j,.i > jor i 2 j.
The natural join is
o R[Y, * Y.]S = (R[Yn = Yu]) [X,Y¥n,Z
. | T [ R S] (R R ’S])[ P X ] 7
_ . R[YR * YS] may be abbreviated, to R*S when there is no ambiguity.
Lo . 6( N
! , 2.1.4. M-join - T

The natural join R[YR * YS]S can be defined as follows:

. R{y. =* = ) : 7
L [tp * ¥1s = {[x,y,2) :+ y € R{¥p] N S{¥] o
& ["(IY] € R[%(rY] P
I 2 & [y,z]"€ sly,zl} T

Cere . \ -, -

.

L)

3
v
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Y
-

Thus the natural join is the "intersection" 'join: RLYR YS]Sa

¢

By replacing "M " by other .set, operations, other kinds of joins

are created. These are the /%—joinsn Some of these joins (e:g.
Q i

the union Jjoin) require the introduction of_null'.values.'\Fc&
S @ o .
example, - suppose that RI[X,y] = {} and S[y,2] = {[y,g]}z "The

Is

intersection join. does. not ‘hawe a tuple containing y, but the
: T . 4 '

'union join has the tuple [—;y,z].

2.1.5. & -join , - .
RIYp 0 YIS = {ix] : x € R(X] &-'J(R[x.YR].S[YS])}

where ¢ (P,Q) is one of the set comparison operators: P C Q, P 2

Q, PCQ, PDQ, PNQ=2g or P'O Q # @. Codd’s'division operator

is obtained with U(P,Q)'= P22Q.

Ty

2.1.6. Set.operatiods '

Relations X{Ay, ... , A _‘ ). and YfB ' osas . B; _4) are
0 Bkt 0 j-1

union—compatible if kK =3 and"dom(Al) ='dom(Bi ), 1=0, ... .,

k-1. The set operations can be applied to unioh—compatiﬁle

Y -

relations to yield other relﬁio‘ns. - (N.B. It does not make sense

to apply &et operatiols to relations. which are not
! \ i . n ' . !
union-compatible. For example, X(AO,A1)LJ Y(BOZB1’BZ) is not even

a relation since-. it contains both é—ary and 3-ary tuples.)
) o

4

-

2.1.7. Important classes of queries . e

+

We will be mostly concerned with the selectioh operacion.

¢

There are several reasons for this: .

’ 1

- It is a fundamental operation. Finding efficient ways ¢tg¢

search for information in a file, (essentially the same problem),

has been the motivation for a huge amount of research.

#

bt o bt
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»

7

"~ As far as performance is concerned, selection 1is the most

N

£ Y -
important operator, (see chapter 5 section 4.2).
- Data structures and algorithms for searching multidimensional

data (i.e. relations) efficiently is currently an active research

topic. ‘ -
, w

., It will be convenient to consider each domain as a set of

integers {0, ... , D-1} where D is the cardinality of the domain.
This point is discussed further in section 4. “
-The query used in selection is Q(t), a logical function of one

. t . .
tuple. A large and important class of queri®es is the class of

range queries. A range guery is . . -

‘(5 Q([aor e ’akr—1]) =L0§a0’"_<_U0&...&

Pr-1= 2k-1 = V-1

That is, a lower and upper bound is specified for each attribyte.

"<" is a numerical comparison since we are considering each

domain to be composed’ of integers. ’
3

»

X \ . ) N ) N B
tfiction is placed on attribute i then L; = 0 and U

If nor i

D, -1 where D; =.ldom(§j)l.
: $
A-partial match query 1s a range,quer¥ in which‘Ll = Ul or no,

restriction is placed on Ai’ (L|‘= 0 and Ui’= DI°1)‘ Even the:

class of partial match queries is, an important one. For example,

locating a record givén its"key is a partial match query.
. e ‘ . .

- .
€ . .
4oy
‘

@ui

2
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s
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[4

2.2. Upti’a'tin;q relations- ,

- k - ‘It is usually -assimed that a relétiop is updated by inserting

“a tuple, deleting.a ’tuple or modifying one or mpre attrjibute-

valkues “f a  tuple. Othér ways of thinking about updates will be

[

N »

‘preéented in section 4. In t‘bat section we will discuss . the

ad\’/anta,geS of ﬁs'ﬂng\ just two update 'operatipns:_ insert’ and

»

delete, o o

o

. 2,3.! Forming transactions ' o -
i L

. ‘ ~ o )
A sequence of operations on relatigns" can be grouped into a

transaction using the commands Start and End “as delimiters. A

transaction is a sequence of operatidns that ‘shéuld be trgated" as

“
Pt '

- // . : O e ] " . . 0 ’
~~"an atomic operation (from the user"s point of view). That is, a

txfansaction takes effect at some iMstant. Before that instant,

none of its updates are -in effect; afterwards, all of tghem arxe. )

. S <

3. The physical dat':)aba’se, "(PDH)

t “'The problem considered in this thesis is the imblementation of
the physical Lda\tabase;r i.e, the software that creates 'tt;e machine
used by the logicak databasé. Relations must be refpresented using
data structures stored in filés in secondafy memory. Operati'ons
'on relations must be translated to bperat—lons on these data .
structures. - Finally,* the atomicity of transactions must be

guaranteed. This last requirement would not be a problem except

)

v for two facts of life: 3

1) Several users can work ony the database simultaneously.

”

. .
I F o
o . B
. ¢ N . ~ ‘
. M
. - f N ‘
— ¥ : .
.~ . < A
- ‘.

P,

R

provemae s L
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L

- Atomicity requirés that a user not see the database in a state

- corresponding - to the partial execution of another user”s

. s R ¢ .. . [
‘transaction, . ‘ )

2) The system wjll occas\ional‘ly 'jcrash",usometi‘mes damaging the’

)éontents of secondary memory: Following xecovery, transactions
iijlterrupted by the crash must not remain "partially executed".
]
For these reasons, a goncurrency control system and a, recovery

system must be included in the physical database.

XN

Bothx of these issues

5
a

are more complicated in, a distributed
' ¥

G .
system but the additional complexity does not show up in the

- . physical database; it has to da with Jommunication among the
- ' PN ) ]
sites) The actions to be performed at each .site are the same as

toa

! »

both environments, -

| -~ )
!
&7 ) A
B Q\- -~ &\ .
; ' )
/
\ & a &
. : . » -
4. Models of relations - . \

' A relation is commonly thought of as a table where -a column

represents an attribute and a row represents a tuple. Other

‘models of relations can be imagined. Our solutions to some of the
) . ) . .
problems of physical database design were obtained only after an

appropr iate model was selected. In this.section, various models

. ¢ . . * »

of relations are explained.

The "table" model seems to have had a very strong influence on

\

builders of databases. In . all ielatioﬁal database systems that

‘'we know of, relations are stored in indexed-sequential or hash

files, augmented by inversions.’ This 1is a very obvious

organization if a relation is thought of as a table: "the model

@
'

for a cen‘tialized' database. Th‘ﬁs our techniques a%e applicable ig’
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table. Furthermore, any ordering of the ‘rows is reflected in the
N ordering} provided by an indexed-sequential  file. Several

problems with this organization are.discussed in chaﬁte; 2.

P \

\ Another model, the "space" model, has generated several data

@

structures for range searching and has motivated our own work in

this area. Recall that each domain is considered to be a finite
Y -
set of integers, {0,. ... , D-1} where D is the cardinality of the

o«

- = '
, domain. T?e transférmation of non-integer data, e.g. stri¥ngs and

reals, to integers is trivial., The "<" ordering ~of the integers
can be used to reéflect an ordering of the elements of  the
, \ original domain-

o

Now. thé& cartesian product, dom(AO) X ... X dom‘(faAk 1) can be

2

seen as a k-dimensional space of bits. The bit at coordinates(ao,

cee, ak_1 j is on 1iff [aOﬁ e g ak_1] is a tuplekofv ths

relation, (see figure 2). 'Our work in chapter 3 is based on this

model.

o
3

' The " table" and "space" models are suitable for thinking about

‘recovery involve ‘dynamic relations. Furthermore, if . the recent
- LI

history of the relation is available, it is possible to use
. - 1 .
concurrency control and recovery systems which are simpler and

have better performance "than would otherwise beé possiblé.. In
déaling with these issues it was helpful to  use another model of

(dynamic) relations and to use a reduced set of update

3
)

operations. ) . X

~
¥

( *We view every element of dom(AO) X oo X dom(Ak 1) as a tuple
- whether it is present or not in the relation at a given time. At

-

any time, each tuple has a status of "present" or "absent". In

allows the implementer to think in terms of -pointers to rows of @

o

static relations. But the problems of concurrency contrad '.and
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° .

this model; th® idea of "modifying" & tuple is meaningless. If

. any attribute value of a tuple |is "changed“ it becomes another

°

tuple. Thus thé_ only updates possible are insertion (change
status from absent to present) . and deletion (change status from
present to absent). What is normally thoughl of as a modification

can-be achieved by an insertion-apd a deletion. This model.is

, demonstrated in figufé 3 which shows the history” of a l-ary-

- relation. )

“

L

A model_yhicp allows a "modify" update coﬁld bg used but- it is
ﬁore complicgted and the algqrithm§ of chéptéfs 5, 6 and ; wauld
be more complicated ag a result. Also, if a tupie can be moaified

s then its. namé must .not be affected by the médiércation. Then

T primagy key attributés (for examgle) cannot be modified.

v

To summarize, -

3

\

compl fcates the algorithms of the physical database and it isn’t

always permissible so we do not -inglude -it.

L]
’

5. Thesis outline ' . v

[y

o The thesis is divided into three parts. Part 1 ‘is concerned
with data structures: chapter 2 is a survey of data structures
for searching files. The emphasis 1s on associative searching;

~finding all tuples that satisfy some predicate. Chapter 3

contains new results in this field. A class of.data struc.ures

for‘range searching is described. A data structure in this c¢lass

can be derived from a data structure which supports random and

3 . . . -
sequential accessing. We also describe two new . data: structures

with this important proéerty.

— Chapter 1 Section 4 €§ 11

the modify  operation 1is © unnecessary, it .-

"otet
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M ©

4 [

. b , » .
In part 2, transaction processing 1is considered: chapter 4 1s

a survey of recovery and concurrency control techniques,

(proposed \ahd‘implemented). " In chapter 5, a design for the

. . i
physical database 1is given. The design is based on the
"differential file" which simplifies  both recovery  and

concurrency control. ° ' <

*

"In éart '3, the results from parts 1 and 2 are integrated:‘
chapter 6 discusses data structures for the representation of:tﬁe
co&ponents‘of the differential file system., "~ In chapter 7, the
design is extended to provfde archives, (so that preyious states

of the database can be examined), and to provide improved

protection from crashes. Chapter 8 contains a summary and

. conclusion.

-

\

-
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_ This-chapter is a survey.of the literature on data-structures
3 -~ - o . . " N ” ‘ . : -
- for’use ip.a relationdl database. Most-of the research an data

Al

structures for searching has considereq fhe retrigval of a Tecord

e

'_‘-giyen its’ keyL This 1is essentially -a 'query on one dfhegsfonal
K r [ " o ‘ , ) -
dat%;z In a rekational database system,- ’the’/'data is

multldlmen51ona1 and other technrques are "needed. Some of these

. s 4

technlques are based, on those used for one dlmen31onal data.

-

; iu;n sectlpn 1,. data structures for one dlmepsional and’m
j wmultidiuenedopal Jdataiare descrioed. In section 2, the data’
strpc%ures used.in eohe‘implementatious are described. - ‘ .
o RIS ' . K .
’ ’ ! ©T ° 7 -

§

~1. Data structures for- assoc1at1ve searchlgg . .

The problem of assoc1at1ve _searching is to f1nd all the.tuples

\

restrlct our

. in a”‘relatLOn satlsfylng soine ‘predicate.

’

We w1ll

t

" attentipn to the
tod o N . ) -
2.1.7 . 0 -

In Order

‘relatfons,

three propertles.

-~

s 0

The cost _of proce551

attrlbutee are Spe01f1ed

2) Sequentlal accessing
‘ successor'-according to
Thls is . important* since

class of range queries,

to~ support the processing of

" data structure shOuld have at least

(see

.

range,

L A

’ .

ng- the

i}

in the query.

should be poss i'ble.: That

some orderlng can ‘be located

many algorlthms, (e g.

.

qUerles

chapter' 1 section

’

-
£ (-

on

".the follow1ng

query should decrease ‘as., more.

is, ‘the
quickly.
for' set -

Operations), are based orn merglng which requ1res that the data be.

¢ " ®»

ordered

-
H

-

_"3) .It should -be dynamic unless the data is kgown to befstatic.&

1
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‘: . °~  1.1. Scans and inversions - . . _ :

o Grel o R R N

et S GO TS AR
<

The simplest method fér processind ‘any kind of query is to N

é' list of tuples and- scan the entire list, "'checking each

-

. étore
S tuple-against the query. This method is used by MRDS [Merr76] and

r

PRIV [Todd76]. Th{s organization is very- easy to maintain-but it

et

' is very inefficient when selective queries are being processed.

o

L/

SR - It is not really a feasible -approach.. . ‘ . ~

LINROP ISR, PP P

The most—poPulai\method is to use inve;sions, (see pru%73]).

o e

An- inversion is:‘a‘list of pairs (value, pointei-set), (possibly‘
ordered on value) whibh—pgrmits the efficient retrieval of (v, P)

‘given v. ,--The value v 'may be the concatenation of valies from ;

' 5

sevenql.ﬁttriéutes. Ihé access set is’’ the set of attributes used ;
. to form v. To find the tuéyes associated;&ith a value v, find |
the-(v, P) entry iﬁ the invgrsioﬁ and then retrieve tﬁe tﬁples 4
pointed to by, each opoin:cer"in P. If the inversion is_q;dered‘on
. thé’valge figld then sequent{al processing is possible. The file

\

. N ¢ ' - e - .
L . of récords may also be .sorted on some access set, (it 1is then

‘ ﬁclusteredf'[Astr76]), improving the performance of sequential

-

gy

' processing on that ﬁcgesé set. The _ielation ma& be clustered on

no more than one set of attributes at a time. ’ . . R

. ’ . An inversion may be stored in a variety of data stqucturés'

‘;such'as‘ISAM TIBM66]“Qr the btree [Baye72] on‘oné oﬁ“fts vaniaﬁts
[Come79]. A 'single inversion, by itself, is suitable for
~ st ' ° . ' ) : ‘ 2 ’ . . ‘

a ‘processing range queries only on the access set of

the inversion.-

. \ t .
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jzi;EQQSEedtations of the hash values

- ' Chapter, 2 Section 1

1.1.1. Hashing | S —

Invefsions_chn bé stored in hash tables, but, unless theﬁhqsh

function is monotonic (i.e. order preserving) the

range queries will require a scan.of. the”relation.'Furthermore,

relations are often dynamic. Tﬁerefore, traditional hashing

methods, (see [Knut73] or [Stan80]° for a survey), are not

suitable for wuse in a relational database. Recently, some new.

hashing ﬁethods have. been proposed which afe order pﬁéserviné
and(gr dynmylcﬁ‘ f e, |
Extendible-hashing -[Fagi79] applies a hash function yielding a

uniform distribution in [0, 1). The. prefixes of the binary

are

records together, When used qith the

»

ha;h function" h (k) = k,
exténdible hashing 'is order preserving and thée érocessing'of one
dimensional range queries i? possible, but the distribution may
no léngef be uniform. L(This is a
[Tamm80] . See section'l.2.) Records can be inserted and deleted
without'causing dqgrad;;ion of pgrformance; >

Trie hashing [Litw81]:i5' a related method. The records are

stored in .a trie. It -is considered a form of_ hashing Kecause
only -the . prefix of the key of the record i§ used in
classification, (i;e. not all the information . is used). .If a

,'rﬁfib'quplete' to-its height were used, the leaf nodes would be

L

s

] = . . . . o~ i
‘the structure formed 'in order.- preserving extendible hashing.
Both extendible-hashing and trie ‘hashing are d&namic.

: - -~

Liﬁea: hashing ‘;/{LitwB0] is another dynahic;method. It grows
.~ and shrinks.as doesd 'extepd}blé hashing but overflow . records

' gppear’ in the étrqcturé occasionally. The -contéents ‘of the

overflow

»

records are eventually moved to the -primary - storage

. ' . ' .

used to cluster groups of

speciél case of EXCELL .

processing of .

oo aa ee as

AR Y

ot ol o ey
-

o ko

o
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;‘C‘_‘ . area. Linear hashing is ‘discussed in  more detail in chapter 3 1
i » " .section 3.1.1. . ' ' . ) . ce

° Two order~preserving variations of linear ' hashing arée

.. e
el 3 et s e e
&

. : " discussed in chapter 3 section 3. A variation of linear hashing

by Larson [Lars80] allows fo%_a more even distribution of records ‘%
+ - . " ! f .‘b .~

. < to buckets but the order pr.eserving varjations do not apply. &
- . . ) % L

.
~ .
¢ M .

lhl.zn Inversions used for multidimensional data

Al

q

‘ . NTwo ad hoc mithods have been pr0pbséd to use inversions for
multidimensional data.. Modifications of this type are necéssary o

if general ranée queries are to be supported efficiently using

e .. inversions. One method \is‘to create a key by concatenating the

¢

I , M R P
P . + wvalues of. several .attributes into a single value [Lum70]. This

-

: : organization supporés .queries involving a prefix of the
synthesized key and is therefore not completely general. C(k,
B Lk/2]) such inversions are necessary to obtain full generality. .

o Another method is to store several inversions each providing

- L access on a different access set. A complex.query on several P
]

attributes might access several -inversions. Set operatiomns on

the retrieved pointer sets yield péinters to the tuples I |

“~

- satisfying the quéry. There.are two drawbacks to this method: -

R TR gl wa
3
1

1) Each additional inversion has a cost in space and in time for

I g

maintenance. . ' . . ) _ Y
2} A query involving several inversions requires the merging of

- ~ N Q ¢ . . N
pointer-sets. For .conjunctive queries,. the cost of this work '

® -

[}

1

- increases - as the -size of the result decreases, (violating

:
.

fequirenent (1)) . ) p

There are a number of ‘ways to counter these'problems.‘ The

problem "~of, deciding which inversions to 'maintain c¢an- be

©

[

l; . N N
-~ ' . . N { PURTpR

. m»m R S e SR ST BTN T e
.
‘ ¥



. 'inversions in evaluating complex queries can be reduced by

. . .
certain situations. The merging cost-is reduced but, in the case

‘discussed above, all use techniques designed for one dimensional

multidimgnSLOnal data are known. Some‘ of these have been

‘ "Chapter 2 Section 1

[
[l=]

approached analytically [Schk75, Lum70], or, the decision can be

based on observations of usage [Hamm76].

The time spent performing merges of- pointer-sets from

rearranging the parse tree which éébresents the éuery and using
. ) ° \
the transformed query for the search [Liu76]. Another approach to

reducing merging costs is to simply ignore some inversions in

e

T s S Rk g ks o e P

of conjunction, the . ﬁumber of tuples returned is greater'. This
method is used by-System R [Astr76, Seli79].

It should be clear from this survey that inversions alone are
iqadequate fpr use in a relatidnal database. %here are data :
stFuc;ﬁres that can be used to implemen£ inversions properly
(e.g. Btree and trie haéhing} but generality, the ébility to'"

process any range query effiéiently, is achieved at a high price. ‘§
. . . . {

¥

A

v
;

1.2, Multidimensional data structures :

-

The methods for processing multidimensional range queries, Y
data. Many data structures desiéned specifically for

surveyed in [Bent79b].

The multilist organization [Dodd69] organizes the records into
several - listé. Tuples containing the éame value for some
attribute are linked into a list representing the attribute

value. This organization 1is expensive to maintain and the'%ost_ "y

grows as more 1lists.are maintained. Also, the method is not

efficient for the evaluation of complex queries. It is not a

*




-

y -
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-

sui table data structure for processing range queries.

2

| JET ORI

<

The doubly chained tree [Suss63], multiple attribute tree

‘'[Kash77], modifiied multiple attribute &fee [GopaB80] and the

‘multidimensional Btree (MDB tree) [Sche82] are based on the @

following 1dea: select the m attributes of the relation that will

be queried. Order the attributes (so that some performance
¢ A

[
TR SR

criterion such as access time or storage space will be

optimized), yielding the permutation i1 0 eee im. Store each

tuple in an m level tri% as dictated by its attribute values aH ’

LS

Taeed 4 A . Queries are evaluated by traversing the nodes , at |,

Im
levels of the trie corresponding to attributes specified in the

[} - - 14

query. (Not all nodes of sach such level "would be visi ted.)
These data structures differ primarily in the way the trieis
repr esented. All _of these data structures are biased against "

attributes low ;;\tke ordering: it is morqvgxpensive to query :

shornt

these attributes than thogse higher in the ordering. The MDB tree

1a
is the most recent data structure in this line of evolution. It :3

can handle range gqueries and it is dynamic. e 7

The multiple attribute tree and its relatives are not actually

IR AN

trees. They are tries of the type 8escribed by Rivest [Rive74].
Rivest considered the evaluation of partial match queries on :

reldations stored in hash tables and tries. To store a relation in

e e e

a hash table is to partition its records. Each partition contains
all records in a "sub-cube" of the épace representing the
relation, (see chapter 1 section 4). One way of pérforming such
a partition%ng is to qlassify .the tuples abcording to characters

in the attribute values. This can be done in such a way that the

aver age search time is minimized (assuming that all partial match

-

queries are equally likely). The partitioning imposed is similar

i &
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{ . tcs that of a trie; : it 'was found that the trie has performancg
'ciose to that of the hash table (for partial match queries).
The hashing scheme has also been\ proposed by Rothnie and
. Lozano: Multiple key. hashing [Roth74] applies hash functions to
:—:\ttributes that will be queried. The ‘'concatenation of the hash
values creates ‘"characteristic tuples". All tuples yielding the
| same.",charz

¢ .
query is processed' by applying the hash functions to the values

eristic tuple are stored togethér. A partial match

specified in the query and retrieving the cells associated with
- r .

‘the referenced characteristic tuples.
« | o

Since 1974, several data structures have appeared which are “‘ )

‘based on the view of a relation as a space of bits, (see chapter

B

1 ‘section'4): A relation of degree| k can be represented by a k

dimensional space of bits. Attributle values are repr esented by
i‘ntébgrs o, 1, ... , [dom(Ai)|—-1, i=20, ... ; k-1. The tuple

’[ao, e s s ak 1] is represented by an on bit at coordinates (ao,
cre ak 1). The assumption that each domain is finite is a °

ES

reasonable one in practice. The translation of reals and strings

. to integers is trivial. )
h :
These data structures partition the space into cells

containing no more than c-on bits (or "points") each, where ¢ 1is
the~capaéity of a cell. Typically, a cell would be stored on one
- ~ disk page. ' Some methods, instead of sﬁb-dividing, all cells
cor)taining mor e '{:harl ¢ points, allow sc;me cells to overflow.

The cells are stored in a data structure which is searched
when a query is evaluated. Under this view of. a felation,?a query
- ' is a region of the space (usually, but not; necessarily

connected): In particular,‘ a range queq'r is represented by a

- »

" »
hyper-rectangle. To proces% the query, the set of cells

‘ \
: | . 3 M
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overlapplng the query reglon are retrleved ‘"Each point 1@ the;e

A~

. 15 cells is tested for 1nclu51on in the query region. ' v

RSSO

The data structwres based on these ideas differ primarily in

F i

K

Githe way they partition the space. . .

]
s
.

»

The first proposed data structure of this type was thg quad

~ =
o h v BRI G
.

tree [Fink74], A quad treei node represents a point and has up to
‘Zk ‘ children,‘one for each non-empty sub-region generated *by
' - ) spllttlng the region through the’ point in all k diteetions. The
size of a quad tree node is 0(2k ) and the tree has n such nodes.

For large k the storage’ requ;rements ar e infeasible,

[
gy T ST Sl

The k dimensional tree (abbreviated t"o "kd tree") [Bent75a,

Bent79%9a] is a‘related dat’:;x, structure which avoids the problem:

the kd tree has O(n) nodes with up to two children each

el

regardless of k. This is achieved by splitting sub-regions in.one
Jt'iirecticn only. Typically, a node on level i would represent a

; o ; partition splii:ting attribute i mod k.

-

A balanced kd tree has O(log n) levels ilstead of the quad
tree’s OY (log n)/k). levels. A balanced kd tree can be built in

‘time 0(n log n) [Bent79a] but a 'balahnced quad tree is not always
/ .

possible.

s

-

Neither the quad tree nor the kd tree aré suitable for dynamic

P gt e Ryeminintedhd g € e o

applications. ,B‘oth can degenerate resulting in degradation of

v . performance. No method for maintaining the balance of a kd tree

is known.

The k dimensional Btree (K-D~-B tree) [Robi81] is a

P ] . multidimensional version . of the Btree [Baye72]. Internal nodes

(." store,'representations of ‘regior}s and leaves store points. The
insertion  algorithm is more complicated than for a standard

Btree. The deletion algorithm has not.t been fully worked out.

.-

¢
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Experiments show that storage utilization following a sequenfe of

insertions is 50% to ' 70% but there is no lower bound nor is the

[

average known.
|3

Multidimensional clustering .[Liou77] partitions the space on

each attribute in turn until each cell contains no more than c

points. The positions of the partitions are stored in a list

i

which, when.searched, yields cell addresses., The entire ditrectory

is scanned to evaluate a query. The method is not truly dynamic.

Insertions and deletions from the cells can be made as long as

there is room and cells may become empty. But' . there is no

° 4 ! -
provision -for changing *cell boundaries and wupdating the cell

-directory other than by reorganization.

In multidimensional. 'paging ([Merr78] each k-1 dimensional
pa“rtitidn spans the entire k dimensional space. Thus a grid is
created. The selection of the boundary positions is. more

difficult than with multidimensfonal clustering. The marginal

distributions of the points are needed to determine good boundary

positions. Due to the global nature of the partitions overflow is

sanetimes unavoidable (given a lower -bound on load factor).

Multipaging was‘originally a static data ’str_ucturé but é dynanic '

version has been proposed [Merr82].

!

EXCELL, the extendible cell method [Tamm80], uses a very

‘simple partitioping, (also a grid), which is independent of the °

data distribution. All cells have the same dimensions. The grid

is made fine enough to avoid overflow, (there is no lower bhound

on storage utilization). EXCELL uses extendible hashing [Fagi79] )

with a hash function that interleaves the bits of the binary

representations of the attribute values, (see chapter 3 section

‘2.1). EXCELL has severe worst case proBlems. A related-

- e R e lSememte Yermmians e
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@

structure, HCELL [Tamm8l] has worst case problems

whicé are less '

likely and less severe. ' | - :
HCELL 1 partitions the space as ‘does EXCELL buF does it ,‘~

recursively. .EkCELL providés agrid fine enough soll that every |

cell has no more than c points. ., HCELL may use a coarser grid.

Cells with more than ¢ points are handled using another HCELL
directory. oL o é e ., P o8

. Table 1 summarizes’ this survey.. A data_ structure is 0 |
conéi'dgred to be statip, 1f J':ts pgrfo;:mance can degenerate ;
following updates (and then has to be rebuiit). "Bias" refers to '
the general . scheme in which the space is partitioi'xed. It. is a
qualitative measure of the degree to whiqh the data st;ructurg -
favors searching on samne attributes over others, All of the data
gtructureé with low bias can bé made more biased but high bias .
data structuresu'cannot be made less so.‘

A high bias data »strug:ure hag poor.performance for searchin;_:;
on somé attributes. For example, consider the multiple attribute.
ttree of figure 1. ‘It classifies tuples on three'attributes, AO' *
‘A1’, Ryt dom(Ag) = aom‘(A1)' = dom(a,) = {o, 1, 2}. To process any °
J-match query“ on AO “‘requqires the accessing of 3 of the % pages.

/!

The problem is that the "efficiency" of the search decreases’ as ,

the attribute being queried gets farther away from the root.

("Efficiency"” is discussed in chapter 3 section 1.6.2.)

% ]
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Table 1:

“ : Query

Data structure type Updqtin% Bias Reference
EXCELL ° . R ; D L [Tamm80 ]
- HCELL R D L [Tamm81 ]
inversions : R S/D H [Knut 73]
kd tree L ' R S L, [Bent75a]
'K-D-B tree R D L % [ROb180]
Multiple attribute tree R S H i [Kash77,

' Gopa80]
MDB tree _ R D H [Sche8l]
Multidimensional clustering P A S L [Liou77] -
Mulniple key hashing P S ) H ‘[Roth74]o
Multipaging | | R = - S/D L [Merr78,
Mérrsgl
Quad tree . 'R s L [Fink74]
Trie p 1 R D H [Rive74]
' . 2

R: “ Range . o ]

P:'- Partial Matcﬁ’ .

S: A ) Static

D: Dynamic

N § /p: Static and dynamic ;ersioﬁg exist ’ b
L; Low ’ - t CT ‘ )
ﬁ:': High R | o ‘ e . )

. . ..
- - ! .
s .

-

The most desirable kind of data structure can process range

.
’

queries, is dynamic and has low bias. Table 1 has several entries

of this type. However, each such data structure is based on one

pafticular siorage structure for searching. For

:
v o KT o b e

e e i e
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‘exampl‘e, the kd tree';is based on the binary tree but there is no

-

" AVL.version of the kd tree. In chapter 3 we will discuss a class

s

of .data étructures for associative searching. A data structure
in . this class carn be created given any data structure that
supports ‘random and seqiential accessing. Another desirable

E N a - ' v
feature of these data structures is that they provide a certain
ordering of the tuples, facilitating algorithms based on merging.

- -

2. Data structures used in implemented systems

The main features of our design for* the physical database will

be “cdmpared with corresponding features of two implemented

. sys tems: System R and INGRES, These 'systems and others werg
surveyed in 1979 [Kim79].

We concentrate on these systems be cause they are the most

“ completé centralized - systems implemented: for example, none of

v ’e,

the other syst'ems {neptione‘c} in the survey i,nclude a concurrengcy
- . . !

~-\control systemw.
N . Implementapi_'éns" of ° distributed "databas-es are based on

‘centralized databasés so their PDBs contain no new ideas. For

-

example; éyst’e"ﬁl. R* LWillB?], distributed INGRES [Ston79] and
SDb—l [_'Ii_c_)£h8,0] -ar’e’ali based on central ized systems.
In.this" segtién, the ;d'éta' structures used by System R and
_ INGRES are discussed. (Other features of these systems are
Qis—cussed in chapter _4‘.’) The data structures used by INGRES. are ‘
similar to ,those used in other. systems. Most of the following

. information is from two overviews of System R . [Astr7s, BlasBl]%

and an overview of INGRES [Ston76]. N

-
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, . ' ' T - N N i , % '
s ' - .
(' - \2.1. The data structures' of~Sg’stem R - Wl -
i !
. The data st‘rpctures of Systen R are qulte complicated Thére
. : are several eomponents whach we descrlbe below.
5 ' ) 1*._‘ _'Q“ﬁ"ft
- ,211 Sgn_\ents T - )
. ’ .. A segp_\en ais a” set of 1oglca1- pages, All -database objects,
S *‘ (e g. relat;ons, Inversmns) are stored in seéments. Each ,object
1s completely contalned 1n a sggment. Each segment may contain
: seVeral obj ects. to \“". LT | :
y ” - R 3 ﬁ o %&}A
’ A page map is used to locate the physmal pgge associ'a‘te& with
‘ta glven lgoglcal page. Physx.cal pages are allocated to segments
- .
‘ o dynamically. Varlous oper_atlons on segments deallocate pages.
4 ( v : . -
Logically sequential pages are kept physically sequertial
», ® 7 ghenever possible: - this is ,easy to'ensuw(the segment is

Y Ty " o e

o

.8 ~ . - . . 3 .
initialized. When a.physical page is updated, the old .copy is
. kept for recdver"y pﬁrposes and a "nearby" phy51cal page is

-

a}located, (e.g. thre two pages are on the same cyllnder) This

‘ ﬁl : -mechanlsm "almost always" works [Lori77] and when 1t ‘doesn’t it -

4

is llkely to correct 1tself followmg updates after out of date’

‘#‘ U‘ ' pages have been recla1med : . \ | ‘. - -

‘ System Rhas 1ts3 owh memory management systan. ges are

expl 1c1t‘[\$ freed .The least recently used frée ‘page ‘i swappeds
-9

. out on a page fault Segment pages and "blocks" ‘of page maps are

- ; - managed 1n separate parts of prlmary memory

Y s bttt v 5 "
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'2.1.2. Relations

2.1.3. Pages of relations

Chapter 2" 'Section 2 l,_29

~

Te

Relatlons are the basic objects of« System R. They can be

created and destroyed dynamlcally. Tuples consist of fixed length

and ‘'varying length fields (attributes). _ New attrlbutes; may be
\ edded’dynamically without a total reorgeniéation of the storage
$tructure contadniqg " the reletioh., (The :value of an added

attribute is wundefined in a tuple until it is’ egﬁliciEIQ‘
v . - . . - [N [

chahged.)

Associated with each tuple ié’a tuple -identifier (TID):which>\

is not visible outside the PDB. P01nters stored in 1nver81ons and

1

"llnks (see”Sectlon 2. 1 5) refer to TIDs.

The tuples of a relation can be " scanned" in. several ways.

They can be scanned in a 5ystem deflned .order, accordlng to the‘

-

Sequence of 1ndex values in same 1nversion or in an order

spec1f1ed by a unary Iink (see sectlon 2 1.5).

The organization of a System R page- (allocated to a:relatiqn)

is more complicated than in many other database systems. There

are several reasons for this:

~-—4A page’ can store tuples fram more than one relation.

v

- Tuples can grbw:and shrink (due to the varying length fields).

- Links, (pointers assocfated with tuples), can be created and

destroyed dynmmically. . L
‘;‘S

A TID (see ,sectioﬁ‘z.l.Z)\consists of a ‘lOQicel page address
and.a byte offset within the page. At the specified location is a

pointer to a tuple within the page. \This indirection allowe

'tuples to be shlfted withln the page. Only the ‘'intra-page

~poinper,is,affected:.the TID is unchanged. In case of overflow,

e e b e e e e e S M e e Sk s e s Ao e S e e e S

.t
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[4

- the tuple'is replaced on'tuéipage by a (shorter) pointer to an -
. overflow record. Thus, given a TID, a tuple qan almost always be

found in one page access but never smore than FWO.

© H

-

. .‘ﬁzul.4. lmages - e

. . . DUERIE Lo
"In System R terminology, an invérsion is an "image". Images

- .

can be created and destroyed dynamically. The images are stored

/

in B+trees (see [Come79]) 'residlng in the same|segment as the
yfelatjoh'being indexed@. The leaves are doubly linked to support

"fast seguential access. Each entry in a leaf Gpn51sts of énf,"

|
'1ndex value and the TIDs for all tuples-containing the value.’

Up to one image per relatlon can be clustered . tuples w1th
logically sequeyffal index values are stored séquentially in.

®physical storage. This expedites ' sequential processing using the

\

clustered image. . v S

' 2.1.5. Links ' ‘ coe S

v

Llnks are used to connect tuples from one"or "two relations

v s

into a doubly llnked llSt v R

. 7' Unaty 1inks connect tuplesw from one relation into an order
¢ v ’ ’ ' - -

which does not nesessafily corfeSpond to lexicograpbic orderigg .

(of the attribute values assocxated with the llnk)

Binary l'inks Jstgongly resemble DBTG sets [CODA71] ~ As with ¥
images, fhe declsion to 1ncluﬂe -a certaln blnary 11nk lles with

. the database admlnlstrator but all malntenanoe is-done by Systan

e ’ R. Blnary links allow the" efficient implementation of . certaln

' operations. . For example, a natural 301n can be processed very

“efficiently if a blnary link exlsts on the access set anGlVed in

-

the JOln. That is, each tuple in one. rflation w11I be on the samg

e
e ams o S,
ST
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}ink as the tuples 1n ‘the' other relatxon with matchlng values‘y A
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.binary link may be clustered, further increaslng the speed of a.

natural JOln:_ the "owner" and "member" tuples w1ll all be -

phy51cally close. L
L{ﬂgs can be created and destroyed dynamically. Addition of a

link causes the' pages to be repacked when the tuples are placed

1n the llStS since r oom for the p01nters must be allocated

",'Obvlously, there are many ways to evaluate queries on thése,
: . . )

data structﬁfes. Scans, images,' links or Same combination of

- these may be used. An optimizer considers several possibilities

and selects the cheapest (based:on estimates of the cost of each
strategy). The optimizér has been described in [Selil9J.

2.2, Thegdata structures of. INGRES e

-

The data structures used by INGRES are much smmpler than those‘

of Systen R. ‘This 1s, in part due to the dec151on to implement
INGRES using the grle System and memory management facilities of

the UNIX operdting system’ [Ritc74].

Relations can be created an destro&ed “dynamically. a1l

dynam1ca11y

') . . , L - :
Relathns.are stored in UNIX files. A file consists ' of 512.

byte pages. The concept of a "nearby" page is. meaningless in.

UNIx so physical sequent1a1ity cannot be guaranteed.

Relatlons can be stored in any of five organizations. Either
N ‘

an "ISAM—like“ file or hashing can be used. Raw or compressed

data can ge stored in. either kind of file. The fifth organization

“

l,attrxbutes are fixed length and - new aﬁtributesﬁﬁ”hnot " be 'added

-

‘a
d
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a . .. N

.

The keyed organlzatlons are accessed v1a TIDs resanbling those

of System R, If a primary pagé becomes .full ‘then a linear list

3

of overflow recorgs is set up. - - .

[ 4

a ’

Inversions% can be created and destroyed dynamically. No

.

facility fesembling the links of System R was included, (ohe of

.

‘t‘:h.e r‘eas_ons has to do with the UNIX file system). S . "y

i
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© 'In this chapter, we deséribe -~and analyze a class of

"multidimensional- data structures" (MDSs) which .support ‘the

-

efficient evaluation of range and partizal match qu~eries. . Our
" appr oa%h will be to transform- tuples 1into integers and store the

"integers in an . 1ndexed—sequent1al data structure", (e.g. a.

binary t'ree) An 1ndexed—sequent1al data structure, (ISDé)  has

Cr
the follow:Lng two properties:
" )
1) Any record can be ' located-by a random access in tlme f(n),

where n is the number of records. (Typically the ISDS 1s a tree
R ! o . .
of some kind in which case £{(n) = O(log n).)

'
s

A 2) A record’s successor {according to same total Qrderi‘ﬁg’) can be

located by a seq‘uential access ih time-not exceeding f (n).
of {:ime measurement will be one disk access.

‘Many well known fi]:e“ organigations anr-e IsDSs. For exar_nple:
ISAMQ [IBM66], the Btree [Baye72] ar;d its wvariants [Come79 . But
traafl tional hash files which do not preser ve order are excluded

‘This appﬂoach h:’:\s the fo],low:,ng consequences:

- Many existing file systems can be adapted qulckly and easﬂ,y

. . J\
to deal with multidimensional data. C : .

- New ISDSs immediately yield new MDSs, ' -

This chapter_)is organized as follows. Sec}ion 1 describes the

"kd trie", a data structure based on the "space" model of a

relation, (see -chapter 1 section 4) . In section 2 the'

transformation of an ISDS to a certain kind of MDS is. explained.

\T'his transformation follows di rez:'tly from -an "interpr etation" of °

the kd trie. Section 3 describes a pair of new ISDSs whose:

e ISDSs they yield new MDSs.

likely to be “better).. Since t“hey
: .

-

é o ! Ch’apter 30— - ’ . +33

Since we are dealing with large files stored on disk, our unit

performance is at least comparable to that of the Btree, (and is s

- N
[ —— ~ ..J ~ e .J,.,M_A.,‘...-nuwl
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In sections 2 and 3 we will use the following notation:. <s1§n1

: i . . : ’> , s ’ . t
N Sp:ny | a:-;m no denotés the 'string ' 5
S, S, «oe Sy Sn Sh ses Spq 2es § 8 ... S {
: 1 1 172 72 2 m ™ m m
L= n — = n. - S n_ ~ )
b : 1 2 ” m
where each Si is a string of one or more characters. If ni =1
then “si :'ni " may be abbreviated to “s;i ", .
' I
\l_ LY
v

l1..Multidimensional tries used for range searchin

1
P

{ t

We_propos(e/‘é‘déta structure, the kd trie, for range searching.
This data struc‘:ture is related \!:o tpe kd tree [Bent75a, Ben£79a].
("kd" is an abbreviation for "k dimensional".). In most cases,
the kd trie has superior performance for searng:hing and updating:
the tirixe:s&guireménts for these operations are at- least as good
as for the kd tree and the kd trie is smaller, (resulting in
fewer accesses (t¥ secondary storage). Most igportantly, thé kd
‘trie lead&} to :tr}e diacovery ’9f~a class of data‘ structures for
range searching, gsee section 2). :

Most of the material in this section has appeared in [Orensl,

OrenB82al.

N N -
N ' -
\ L

~

1.1. The kd trie . #

. R ' , | _
Ag 'discussed -in chapter 1 section 4, a k-ary relation can be

representéd‘ by a k dimensional space of ‘bits in which each tuple

wi'S_represent:ed by anon bit, We will refer to these on bits as

"points". The kd trie is a concise representation of this space.

Figure 1 shows a two dimensional space of bits and the 2d trie

VA ~
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. s - o - b
‘ ./ representing i't, (the tuples are labelled for ease of reference
) . . . ) . 8
only). The thick  lines represent partitions, The numbers

~

RS
~
~N
N

P E e

associated with these lines refer to the labels of the internal 5'

k‘w
AN

e gt e ﬁ‘»‘“‘t";ﬁ
°

(round) nodes of the 2d trie. The partitions follow a simple - X

..y

o N ’ pattern: each partitiokm . splits a region into two sub-regions of

equal size. The orientation of a partition being plac%d in a' -

region R +is perpendicular to that boundary of R which was most i

. ‘ ’ recently placed. (For example, partition 7 is perpendicular to

i g st

partition 5.). A node  of the 2d trie represents a region of the
‘ space. All nodes on level i split attribute i mod 2;\ (the root is Co
at level 0). A null link indicates that a sub-region 1s empty,

(i.e. it contains no points). A non-null link points to the

TR M IS | e e e By i S Qo St

. a  sub-trie describing the sub-region or to an external node whiph .
h stores theltuples corresponding to the points in thé 'sub-reg'ion.

The 'generalization to k dimensions is simple: All nodes on level ‘ | ,

i split attribute i x-nbdlk. i

- " The splitting terminates in one of two ways;:
1, ‘ P

[

1)y In a "pure” kd ,tri‘e, gpiitting éqntinues"as far as possible,

o e ) P

that is, until each leaf represents an occupied one bit region.:

The coordinates of HE point are not stored anywhere since they

L adw

: . can be derived when the path to the leaf is traversed. (The

derivation is similar to a binary search.) ‘ - ,

2) In a "hybrid" kd trie} splitting continues until a sub—regién

o ot L ATt et 85T et i

contains no more than s points.  External nodes store the tuples
themselves. (Figure 1 shows a hybrid 2d trie with s = 1.)
\
Unless stated otherwise, when we say "kd trie" we refer to the

hybrid version.

(E’ The depth of 'the pure kd trie is determined by the size of the

space representing the relation. If the space contains D_‘big.s
.o ."’
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P , . o '
then the depth of,.the pure kd trie is h = [10g (D)] . This is also

.
.

the number of bits required to represent a tuple: eaich tuple is
représented by the path from the root to the leaf corresponding

to the ‘tuple. There is no theoretical bound on h but in pr actice
. . . . F
it would _be' measured by the hundreds or thousands: a tuple
Sy
requiring more than a few thousgand bits to represent.is unusual.

NO internal node in a hybrid kd trie can be deeper than level

~h., Knuth [Kaut73] has proven that the average ‘ciepth of a trie is

O0(log(n)) " under the assilmption that the keys are uniformly

"distributed’ real - numbers in: ' [0,1), represented in binary.
: ’

‘bevroye [Devr82] has brovided a"shorter proof of this result and

has also shown that the expected depth is O{log(n)) for a very,

lérge class of distributions, including all distributions that
- .

can afise in practice.

-

[Bent79a] and algorithms for the latter apply to the former. Both
data .structures can evaluate boolean combinations of range
gqueries (without resorting to' a scan of all tuples).

A discriminator is a k-1 dimensional hyperplane which splits

v

one k dimensional region into two regions. The discriminator is
perpendicular to “the axis which represents the attribute beix\'lg
split. Both kd trees and kd trieé select the atféributes to be
split cyclically, (i.,e. 0, 1, ... , (k-1), 0, 1, ... , (k-1),

.++), but other methods are possible [Bent76, Bent79a].

The kd tree and kd trie differ in their methods of selecting .

the pasition within a region of the discriminator: A

-

discriminator in a kd tree evenly divides the set of points in a’
reegion. Thi:s strategy results in a well-balanced kd tree. A kd

trie discriminator is independent of the data; it evenly divides

-

The kd trie is related t’o' the non-homogeneous k4 tree,

: .

i tmsonisd
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a region, (Compare figures 1 and 2.)
A consequence of this difference is that a given set of tuples

can be represented by any one of a large number of kd trees but

-

o

e

" the kd trie _is unique: it is completely determined by the data.

This observation has th implications concerning the performance
of the kd.tfie relative to tBat of the kd tree, )
1) .Since k§ tries cannot be rebalancedlin any wayék(other than by
transforming the data), there 1is nothing that can be done to
improve the performance of a bad kd trie. On the other hand, a
bad kd free can always be rebalanced.
2) Updates of a kd trie cause degeneration only if they lead to a
Qistribution of tuples : that determines a bad kd trie, (we
describe such trieéA{n»section 1.3). Updates can cause a kd tree
to degenerate regardless of éhe tuples contained 1in the upaéted
reLatioﬁ.
. - ;

Another difference between the two .data structures is that the
discriminatog-values need to be stored in kd tree nodes but not
in kd trie nodes. Kd trie discriminators can always be
éalcuiafed. ’
The kd trie resembles Hardgrave% quatree Yhich is used to

o

represent sets of integers in a givenrange ' [Hard76é].

1.2, Dypamicjéperations on the kd trie

The tuples of a hybrid kd trie are stored in external nodes.

Each external node has a capacity of s tuples. Insertions and

deletions usually affect the external nodes only. When an
exﬁernal node overflows, it is replaced by a chain of nodes, (see

figure 3).
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Figure 2. A 2d ‘space and one of the 2d trees rep:esenting it. -
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Flgure 3. The effect of overflow on an external node. The s tuples
split into two {groups of size m and s-m, (0m<s). The tuple which

Laused the dverflow will be stored in one of the new external nodes.
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'; »"Ehch node in the -chain (except the last) corresponds to a bit
pOSLtlon whose value is “identical in. all . the tuples of the

- ¥

exﬁernql node whxch overflowed The tuples do not all agree in

’~ﬁhe bif correspondlng to the last node of the chain. Thus, ‘the

:,' - o tuples of the .externa{/ggééﬂﬁﬁfgg—;;erﬁlowed are Spllt.iﬁt0~twg
e ~ . L , . o .

- groups.

Il

/,‘ . .. - ’ -
This chain fewer than h nodes - (where h is the, number of

en we can easilyfcalculate‘thé expecEed length of thé‘overflow
éhain, (see section 1.5.1). The expected length is+ bounded by

" 28/9 and as s inbieases, it approaches 1.

- ' . empty enough to be comblned, the process is reversed.
The kd trle gr ows and ‘shrinks gracefully. The kd tree, on the

other hang, cannot be updated without some prbblgms. It can

r i ) i R ) N “ . )
. Lo \ performance. R T - - S -
3 ‘ ' . R i - . '
¢ v VQ‘ '
3 . - -
L

1.3. Performance -of the kd trie

' v L

.
s ey

s

s =]

- requirements of the ﬁybria k@ ‘trie: The réquirements of the

. 'nog;homogeneous kd tree are given for comparison. ' (The results

. L T - o " .. Chapter 3 Section 1 ' : 38
. . \..,-" '\'l“_. '- R .-.r’ . X o - "" " PR 4‘ ‘ ' - N ."

~ Tables 1 and 2,1ist,§he—a§erageg and worst ‘case space and'timéu

o bits. nee to represent a tuple). If each bit position needed to-
3} S ‘resol¢e pverflow has an even chance of being 0 or 1 in each tuple

When, due tp deletlons, ‘two fraternal external nodes become -

- e

% degenerate- and” then rebalancing is .required to avoid poor.

: , concerning the kd tree. are from [Bent75al, exg;pﬁz/where stated 4
' . ., N y ° ' - g
oo . %otherwise.) The following abbreviations are used in tables 1 and
. 2: .
( ] N P _ N
0 ,'. L ,.‘
“ ‘. e
» ¢ ¢ ) :
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n: Number of tuples.

€

t: Number of att;libutes being queried, t < k.

"

Nunber of dimensions.

. .

M

ired to represent a tuple. o

oo

]

" L: Lifespan of .one rebalancing.

"~ Chapter 3 Bection 1 o C

- Table 1:

hybrid’

non-homogeneous

s S o ok e v bt oo A

Average case ' kd trie kd tree .
‘Size A "1 “o(n) 0 (n)

Creation . O(n log‘(n)) * O(n log/(n)) [Beni:79a]
Exact Match Query O0(log(n)) O(log(n))

Partial Match Query’ 0(tn1’”k) O(tn1~t/k,)

Range Query . 0 (Log (n) +F) O(log(n)+F) [Bent79a]
‘Insertion O(lag(n)) Oflog(n) + n log(n)/L)
De;etioh_ O(log(n)) O(log(n) + n log(n)/L)

* The ekxpected depth of a hybrid trie is O(log(n)) [Knut73].

‘Table 2: hybrid non-homogeneous  °

- Worst case kd trie kd tree

Size ‘ Otn) " 0(n]

Creation' O0(hn)_ O(n log(n)) [Bex_xt79a]
‘Exact Match Query O(h) ’ O(log(ny})) \

Partial Match Query 0(hn1"f/kl) ,O(tn1'f/k)

Range Query 0 (hn) O(tn1—1/k) [Lee77]
Insertion- 0(h) O(log(n) + n log (n)/.L')
Deletion g O(l‘n)'. h O(log(n) + n log(n)/L)

R

—

' The kd tree costs for insertion and deletion include the term

e i S o e !

e et e e et
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. ' .

n loé(n)]L. I

»

represents’ the cost of rebalancing, (the numerator),
. }4 :

oo . .
-
e S AUy I e sl comee e it Aoaran Ao ¢

can also be thought, of as "mean time between -

: . ;ebalancings")i For a static file, L is iﬁfinitely large.

» The average case results for the kd trie have derivatiqns

similar to those for the non-homogeheous kd tree. They appe ar ih

section 1.5.2.

D affan o e b et 8w F o

" Two points concerning random kd tries should be emphasized‘.

. 'li The average case results of Knuth b [Knut73] and Devroye

SRR A
o

[Devr82]) apply to (1d) tries. Our application of these results to

PRESRAS

kd tries is val id since the two - types of tries are
' o indistinéuiéhable:‘ a trie can be "intez;pl.:eted" as a kd trie given

k.

2) The notion.s.of‘ "randomness" for triés and trees are not the

same. In [Devr82] D_e:?oyé r egards tl:ge,dat‘a stored in @ as

i A R I P R i O AR eI P O e § 4 BB TR LR T RS

real numbers in. [0, 1) (selected from a given distribution) -

e

expressed in binary. In.[Bent75a] Bentley ‘assumes‘ that all

permutations of the data are equai"ly likely. It would seem then

that the average case results for tries and trees cannot be

\

compared. However, the two notions' can be reconciled: The tree

T
=4

results hold for all distributions of data (since the results are
’ ‘ * 6 4

independent of the ‘distribution). Similarly,. the trie results

"hold for all permut atiohs of the data.

The worst case results for the kd trie have trivial

dérivatio,ns; they appear in section 1.5.3.

’

P BRIy

‘ In the average case, the kd trie is at least as good as the kd
. ( . tree. We will 'show in section 1.4 that the kd trie has a more

compact represgnt'ation. Thus, for large relations on secondary'

~

e en s kAT B
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‘

storége, the kd ‘tr'ie will oui;—perform tpe: kd, tree. In the worst
césg;‘ the kd tree is supe;ior. To encounter the worst case times
‘for tile'kd' trie, the data being queried must have many clusters
of at least s+l points each, (wvhere s 1is the capac\i ty of an
e)ftérnal node), and each cluster muét be . confined to lcertain\
small regic'm's, (those regions representeq by the kd trie nodes at
or slightly above. level h-log(s)). iSee figure 4.) The
probal:;ilitya of this occurlring can be decreased by increasing s.
s cannot be made arbitrarily larg‘e; in p;:actic‘e, considerations

such as memory capacity and page size place limits on s.

J ‘

1.4, Implementation of the kd trie

In this section we describe a storage structure folx; the hybrild
kd trie. Because internal nodes do not store di scrim‘i_natvorg, an
e;ctremely’comp'act 'rgpresentation‘ of 1:.h.e kd trie is possible. A
search on this structure yields a set of pointers to chtiernal'
nodes which hold the. ‘tup'les satisfying the query. Each external
node has a capac’i ty of s tuples.

An “interhai kd trie node can be represented by two bits: The
only 'information needed is whether each 1link 1is null. The

-addfessing'inférmation of alink is unnecessary if any“implicit"
representation is used. ’ ;

Each internal mode 1is, then, represented by two bits, one
corresponding to each link. A bit is on iff the corresponding
lix:xk is not null. The nodes of each ’ level are stored
consecutively. We will refer to this storage structure as the

"bit string" representatiypn. The pure kd trie |corresponding to

the data of figure 1 would be represented by th following bit

RPRRE NPNRENE S

o i

L
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Figure 4. An example of a

worst _case 2d trie.
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"bad" distribution of data and the corresponding

[

o Ay e e T

T i b, o) -
ST




e g

e

£ W cenma,

L NP,

B N

¥

. f Chapter 3 Section 1 © 42
string: (A "0" indicates a null link, a "1" indicates a rion—-null
link. Beneath each leaf”s links are the labels of the tuples )

from figure 1.)

level .- bit string

0 11 DA
1 11 11 . .
5 _ 1111 11 10 _
3 .,1001 100110 0110 .. -
4 1001 01 1010 1001 A
5 0110 10°11 10 01 01"

‘GF D'BAH E C
\ ~
¢

Now%consider the ith on bit of 1level j which is at position
P N . ’

Cj + The node which is pointed to by the 1link represented by bit

.C. has a displacement of 2(i-1) bits in the nextf level., 7

J
Unfortunately, . finding that the Cj thl bit- was the ith on bit
involved scanning Cj bits. This scanning must be done for every

level and 1is expensive. However, by organising the bit string
. L@

o

into "blocks", the number of bits scanned in each ,1eve'1°‘ is
reduced to an arbitrary constant (dependent on the block.size),

Figure 5 shows a pure kd trie organized intorblocks. Each

block contains for several consecutive levels, a contiguous
vk -

segment of each 1level’s bit string. In addition, either all the
<

children of the nodes of segment x are 1in the same block as x or

none of them are. Now instead of scanning levels we scan segments

of lévels. - Vo
Extra étorage is ;equiz;ed to suppprt blocking. A small,
constant number of integerg associated with each block provides
information which permits linking across block boundaries.
' ' , ~ %

- /
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!‘ e ( ¢ The storage }:cheme described is suitable for a pure kd trie
,jw}'ﬁ'ch' stores all leaves on the same level. In the hybrid version, *

- ‘a leaf. may'aﬁpear on any level.. Aisimple modification of the bit

. : "strfing representation will handle a hybrid kd trie. -

N'o‘ internal node in a kd trie has two.null 1links so the only

<

possible nodes in thé bit string representation are "01", "10"

and "11". The unused combination, "00", can be used to indicate a ‘ ,f‘

©link from an inter nal node to.an external node. We call such a
" node a terminator. The terminator is followed in the bit string :

by, a “pointer’ to an external node. Blocking and implicit

\.‘\ ! > ] © : ] i3
o e addressing are possible even with terminators and pointers

(RN

o

: T . ptesent in the bit string. The kd trie of figure 1 would be

b{\the following bit string: '

2

bit string L '

n ‘ : i "
{
! - >

L o Y S S , B | %

; AL | 1 h l11=l 11 ® . | ‘
Eo : c, R 2 11 11 11 00[->C -

3. - 00[->G] 00[->F) 00[~>D] 0L 00[->H] 00[->E]

\ ‘ % 4, 10 | R '

é L g ll . . . >
| - 6 . 00[->B] 00[->A}— ___  _ . . |

] - &

- Note: "00[->‘X]"1' indicates a terminator féllowed by a pointer to

P

. the page containing X, (occupying 2 or 3 bytes' tyjpi;élly) .

L}
[

Q‘ ) ] fphié storage structure allows efficient implaﬁentation df the

ougda"te operations of section 1.2:° Blocking ensures that the

f‘ - . — Rl
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. Compared to the kd tree, relatively few accesses to secondary
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changes to a level’s bit - string are localized (to the block |
containing the segment being changed) . | o - .
Given this storage structure, a ki trie almost certai nly
occupies much less sp;ce-;han does @ kd tree (even if the l/atter
uses an "implici t";. representation aé suggested in [Bent79al]).
{(See table 3.—) ‘A major benefit of - _thig. compacthness is ‘that a°

lar_gé portion of the kd trie can fit in primary memory at once.

storage \_would beﬂrequired. Again, the worst case ‘corresponds to a

highly unlikely clustering of points.

Table 3.

Space requirements

, . hybrid . . non-homogeneous

kd trie . kd tree

Node size 2 bits %10 bytes [Bent79a]
‘ = 80 bits
Number of pointers * O (n/8) o v 0(n/s)
to external nodes. ’
Number of nodes s "~ O(n) 0 (n)

(expected) .

Number of nodes ) ‘ O (hn) O(n) :
(wors t -case) . h :

2

¢ "

1.5. Kd trie analy_sas o . . ¢

We now give the derxVations of the kd trie reSults in sections

1.2 and 1.3. - o _ - : .

v

1.5.1. The expected 1‘ength of the overflow chain

We assume that each bit position needed to resolve overflow

has an even . chince of being 0 or 1 in 'each tuple. Then the

probability . that. r bit positions do not suffice to resolve -

4
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-

Y .
overflow, (i.e. the s+l tuples allwaér ee in the bit corresponding

to the ith node of the chain, i=1, 2, ... , r),.is pr=2".‘3~. The-

expected length of the chain is

h

E=1im I r (l"‘p> * ot
he r=1 %l o

b

since h can be arbitrarily large. Thus ,
. ) R \ . .
- 1 1 z
«. E = —— - . T, N
(1-27%%  (1-47%)? Lo

E is bounded by 28/9, (obt &ined at s = 1) ,'a[nd as s increases, E

approaches 1. ¢ ' . - . ‘

5

1.5.2, Average case kd trie results -

s

-

In analyzing the quad tree, Bentley and Stanat .[Bent75b]
derived results for, the "perfect” quad tree. They then compgfeé

the results with the behaviour of randomly built quad trees and

found close agr eement. - - : '

]

We will consider an analogous variation of the kd trie: the

perfect kd trie.‘ The perfect kd trile has 2| nodes on level i, 1
=0,1, ..., log(n) -1, (assuming n = 2J for integer j >
Q).

A perfect kd téie has depth log(n). According to [Devr82] the
.depth of the aver age 14 trie- is sl ightly above this. Thl‘Qr .7
theoretical result is demonstrated by the data of Fredkin
[Fred60]. Furthermore, a kd trie hash the same size and shape 'as
a 1d tri;: The kd trie is essentially a id trie whose keys are
pe'rmutations of the bi tsh of ‘the k-tuples. These facts,

% considered together, suggest that the perfect kd trie is a good

-
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1.5.2.1." Size of the.kd trie

) ) ’X PR '

. -

¢ @

model for the average kd ;:\ri_e. BN

The perfect kd trie has 2! nodes on level i, i= '0; l'{ cee g

)logv(n) - 1. The size of the perfect kd trie is

, log(n)-1 i.
s= ¢ = ot
- 1=0

]
]
o

el = o)

1.5.2.2. Cost of exact match queries

An exact match query specifies a single vélue for each
at't':ri.bute. At each .level, exactly one node is examined (until a

null’ link or external node dis reached). The number of nodes

o)
,"\"

visited is at most

Cl'la}p‘tert 3' Section 1 ' L 46"

o

Vi = OCLog(a)) g , Y

1. 5 2. 3 Cost of partial match queries

A partlal match query specifies values for t < k attributes,
Suppose (pessimally) that attributes 0, 1,,\ «es 4 k=trl are not
spé;ified and that the remaining attributes, k-t, k-t+l, ...,
k-1 are specified ‘in the query.
Since there is no' selection on attributes 0 through k-t-1, all

the children of all the nodes on these levels must be visited. 1

a perfect kd trie, each internal node has two children. Thus the

L T T
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number of nodes visited in the first k-t levels is

. k-t~-1
-t) = + 24+ ...+ 2
VPM(k t) 1+ 2

.

In the next t le'vel':s, selection occurs on each level

47

:Emd only one

child of each node will be visited. The contribution from each of

these t levels is 2

in the first k levels.i$

\

Vo (k) = (1 + 2+ ...+ 2Ky 4 okt
py (K2

»
A

Now, each o;f/;.tfxe sub-tries whose root was visited

level can be analyzed as if it were the root of a kd trie.. Thus,'

in

k-t nodes. The total- number of nodes visited

the kth

~in the second "band" of k levels, Zk*fVPM(k) nodes are vhsited,

There are log(n)/k bands in the perfect kd trie so that the total

number of nodes visited in a partial match query is bounded by

)

k-t-1

k-t

©3 G AR b e B

~
P

ot i A s e mze

Vou = ' * (L+2+ ... 42 )+ 25" 4

k-t —t— -
A R I W T aus U

Lomm e A e e

g

AEERID P e ey

A ) et

2 (I +2% ... + zk‘t‘.l) + tz‘,‘“‘], . E
3
\.J ' J‘ %
‘ log(n) - 1 / ?
k- 1k-t)y [ T a k-t :
= [ > 2 ILox 20 +e27 7]
. i=0 ' =0

‘
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1-t/k _ 1

\

This is an upper bound because we assumed an arrangement of

attributes that maximize\d VPM.

1.5.2.4. Cost &f range queries
X ; :

We will first obtain results for a\peFfeqt 2d trie and then
general ize to k dimensions. A 2d range query specifies a range of
values for each attribute. In our view of a rel'atipn,_ this
corresponds to specifying a range 6‘fo values on each axis. The
query dimensions are x and y where x, y € [GO, 1] denote thé

portion of each axis that is covered by the query. The number of

[v]
nodes visi'te!d is bounded by (cf. [Bent75b]) . \ -
\ ']
L%@. -1 Lo v
2 i i i+l 5

. ,VR = I [(x27+1) (y27+1) + (x27 "+1)(y27+1)]

: i=0 ,

Y - ,

=.xy(n~-1) + (3x +.2y) (nl/z—l) + log(n)

-~ v t

. Because the 2d trie is perfect, xyn 1is the number of tuples

accessed.by the query. This quantity was called F in section 4,

Thus

- -
-~

VR = 0(log(n) + F)

- i

t

We now generalizejto k .dimensions. The query has dimensions

xi € [0, 1}, i=10,1, ..., k=-1."The number

e

® i

A bt

4 =t ot AL
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. R ?
of nodes ‘visited is - e ’ 5
, ] ,Z
) log(n) 1 - . P
: ko kel 3=l in koo “
Vo= RIS NS NCR 2z ) B G BN CIP RTINS s e
1=0 j=0" m=0 =] e
N . 1_ ‘ R R ) - L )
But (x 2+ 4 1) <. 2(x.2! +1), so : ‘
xm ) N “. ) m . ’ ° }
. Llog{n) . _ 1 . ) %
| ‘ k k=l . ) k-1 ) |
N VR < E . Z 2J H '(X Zi+1) - {
' - i=0. jEO ) m=0 m
v
. ‘:‘ i R . l__og(n) -1 ! - e
- " - . ' k"l k k"l . 4
=(2" I (x 2% - \ ‘
i=0 m=0 ' ™ ' oo
" The terms dominating VR are ) T
o= 3 - 1
e }
. k,_l . N - %
{n~1) T % = 0(F) s v
" m=0 ® s s .
B o&, ' M - l
‘and (fram the precise formula for Vv ) ‘
log(n) _, .
k . .
I k= 0(log(n)) ; . 0
i=0
The number of nodes visited in a range query' of a perfect kd ;fie °
is- , 7 o - 4 s
v, = 0(log(n) + F) YA “
N \ 3 B
- ) \ »
- - h ’; ,‘ o
\ \
) %
h 4 \
] s |
. P
N |
; \
- - - - e Y B an CPEIR PRI
\
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1.15'.2.75. ‘Creation, ‘insﬁfr’tion and deletion costs

N

All  of “these operations perform exact match "queries. An

insertion traces a path of length 0(109’%)) throtigh the - kd trie.-

A deletion (in which all attribute values of the-tuple being
deleted are known) must perform an exact match query to locate

the tuple. The actual updating ‘of the kd trie ‘retraces all or,

“(more likely), part of this path; Thus, insertion and déletion

cost O(log(n)) each. Finally, a. kd “trie can be -created by
performing n insertions for a cost of Omv(n'lqg(h).). 1

+

1.5.3. Worst case kd trie results . oL,

The worst case kd trie has been described in section 1.3.

Figure 6 shows the profile.of such a kd trie and illustrates the

terms "head" and "tail". -The first.O(log(p)) levels ‘compris—e the
head of the kd trie. This is the qpa‘r_t céntéining all nodes with
two children. The tail consists of long chains. of nodes which d‘o
not bifurcate. Resolution o‘f points very.close together in the\
gpace occurs near the bottam of the tail.

A

1.5.3.1. Bize of the kd trie c o

-

The width of the tail is n/(s+l) .(where s is the number of

tuples in each external r;ode). The . léngth of the tail Iis

O(h-log(n)) nodes and it is much 1longer t,ha;n the head. The tail

determines the size of the kd trie:’ -

1

e

S = 0(hn)

.
*

1
1ttt ot e ain o ey At B
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1.5.3.?. Cost of exact match queries

lfAt each level, exactly one node ;s exqminéd (until a null,lihk

~

/

P N

~

‘or external node is reached). The number of nodes visited is at

‘most

4

oo Ve T O '<x\v//\ " . LT

-

f
4

1.5.3.3. Cost of partial match queries ° .

. - - ¥ o i ) ’ !'
Let v -“denote the number of nodes visited on level i of the kd

i’trie_duriné'a partial match query. Ther, in the worst case

In the

» Ylog(n) B

9

2v. ., .level i-1 € head and

=1 attribute i-1'is queried.. L
’_ v. = v.1 ’ . level i-1 € head‘and,
' B B attribute i-1 is not queried.
V. R level i-1 € tail. .
i-1 . o

is the number of nodes examined in the fiist level of the

. ' log(n)
(2k-t

v
" . . . - . ‘.
. - < .

-

worst case, the chain descending fram each of the nodes

visited on level 1log(n) must be completely traversed. Thi's cost

s '
' "
cay 1-t/k
VPM(ta112 = 0O(hn )
From the average case results b .
C o lethk,
VPM(head) = 0(tn ) ,

D kT T I P P EP PPN S
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.nodes have been examined in the ‘head. "I‘he total number of ,r{odes

; - W

1\‘ ' 1-t/k
VPM = VPM(head) + V (tail) O(hn ’

) .

[

1.5.3.4. Cost of_ﬁge queries

Given a pessimal combination of . data ~and query, the cost of a

k4

range querir can. be O (hn):

" The query boundaries comcide w1th partitions corresponding to

'nodes near the bottom of the kd t"rle. urthermo;:e, O (n) points

r

- are 1mmed;ately _adjacent to these boundaries (on one side or the

“‘

1

'pther«) .90 that the entire tail, containing O (hn) ,ncdee, mus t be

exem,irieq-to determine whether each point is in the query region.

1.5.3.5, Creation, insertion and deletion costs

Procgeding as,in the average case analysis, insertion and
deletidn have the same cost as does an exact match query: Of(h).

The kd 'trie- can be‘built by n insertions at a cost of QO (hn).

¢

"1.5. 4. Number of pages accessed N -

The set of pages can be v1ewed as the flrst lpvel of the k+lst

band of levelfs in the perfect kd trie.

1.5.4.1. _Ijég_tial match queries , L.

The number of pages accessed is
’ ‘lgg'(_E’)—(k"t) N
P = 2 k = pl‘t/k - L

, , . - . v .
‘ e . — R e e E ‘-w«e?;wm».a“.

[
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where p is the nimber of pages storing the data. '

-

1.5.4.2. Range queries o o - L 1

The number of pages accessed is a C

N

P .= 1 (x;npl./k+1)y l . < ) \;

1

. = o(vp) ,

where V is the ."volume" of thé query: -the fraction of the space ‘L

covered by the query. ) |- )
S <

) , /. ~ . . T

G e . '

'l.6. Experimental results S ¥ .

-

An implementation.of the k@ trie "was programmed in C and

-

experiments were carried out on a PDP-11/45 running UNIX V6. The ,

i

motivation for experimentation is that our analysis assumed a
k . . .
particular distribution of data: that the data yields a "perfegt”

kd@ trie. This correspc;nds to a odistribution' as shown in figure 7:
the space 1is partitioned into cells and‘each cell c¢ontains one
point. It -was hoped that this would adequately model a uniform
distribution of data. This strategy ish similar to that of Bentley E
and Stoanat in their analysis of the quad tree [Bent75b]. .-
Our first experiment, a "control", involved a 2d trie storing ’
.points in a 1024 x 1024 space. I.e.' dom(AO) = dom(A1) = {0, .o .
, 1023}, Page capaciﬁy was 10 tuples. Various range and partial_ %
match queries were evaluated on files of 100, 200, ... , 3000 ‘

tuples, For all experiments, attribute values were generated

o »

using a random number generator with uniform ' distribution. For

each query we m_easuréd the number of internal ndde visits, number
of data pages accessed and efficiency (discussed below). . In

addition storage utilization of the data pages was measured. .,
o ] [ ~o - 1~-_‘M«n,—M&-\m“wr§ :

> v e Y S At e e . ikt
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o Next, the effects of varying 'diménsign and page "capacity weré
() ‘studied. ' ‘ C

e o B X

1.6.1. Number of _internal node visits " T ‘ ,
2 1.6.1.1. Pa‘rtial match queries J . 'o
- ' The number of internal node visits for a .parti‘al match ‘query

-

! .- in a perfect kd trie is

|

- ’nl—t/k‘_ 1 \ o R
) —
2k"j -1

W

v = (2K

-t .
PM Uf' 1+ t2

S = v g et ol e o bt S e =

Prr A o

L .

(see section 1,5.2.3). Recall that this i's an upper bound for all _
** ) partial match queries. It is exact (for a perfect ‘l{’d trie) for”

Jehe pessimal case in which the last t attributes K are queried.

meher

Table 4 compares the results of exper:iment% with ?g expect ed B

T‘ 'values. The values areé in close agreement. .
3 ' '
-
3 Table 4. -
2l \ .
19 ‘number of .
. number of nmber of attributes | V; \/;
' ) tuples attributes|{ queried (obs .) . (est.)
; SN e ' ' - .
¥ 428 .2 1 55 . 59 .
7
289 3 1 ' 91 1 100
3 ! ] 289 3 2 29 28 :
143 4 1 79 - 86
143 4 2 40 40
143 4 ' 3 . 17 17
r I /, )
s

. . . .
B T R e B P_— . < . [N N
. - H] - - 4 . ’ A
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1.6.1.2. Range queries
('3 . An upper bound for the number of internal node visits for a J
¢ range query in a perfect kd trie was derived In section 1.5.:2.4.
% oy
i .
i The formulae for k =2, 3 and 4 are, respectively: f
i | L xg%, (n-1) + (3x0+2x1)(n1/271) + Log(n)
L ) . : 1_12/3_1
, \']Rér.—. 0 1x2(n 1) + (7x0x +5x0x +4x% % )-—3—-? z
“+ r(Sx +4x +3x )(n 1/3 -1) + log(n) - B . " ‘ i
o : n3/4_’_1 o
‘VR[* = zcoxlx:2 3(n -1) + (15x X x2+11x0x x +9x0 2 3+8x X % 3)—-—7————— C f
é , , ‘ 1724 ’
o - , o+ (UL, 9% % +7% x4 8K, X, H6X, X, +5% 3)-;3—~ ' ] i
o : |+ (xgHEx 5x,H4x,) (0 4y + log(n) . ’
. Tables 5, 6 and 7 compare the results of experiments with the ?
' @, expected values. Recall that this i"‘\s, an upper bound (for the
perfect kd trie); it is a poor estimate. N )
. , ) B “
Table 5. . A
n =428 . L ' c J
D ' ' _i M
X, o x s iz Voo . '
0 1 (obs.) (up. bd.) \\ 1
v R ) 4
1/2 x/2 159 . 165 4 o 5
1/8 1/2 61 63 S ,
1/8 1/32 © 18 19 V;
1/32 132 . | 11 12- .
“ L}
¢

sl

P .
B ———— e e R b - . R poum - .
" T s N 3
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Tatﬁlq <6. k é
n'= 289
xo - *2 .\(Igbs.)\ ‘?x‘:p.’bd.) : ,
1/4 - 1 1 127 226 S . |
A4 L 1/4 67 103 e \ 1
18 | | o 1/16 24 31 : |
1/4 1/16 11716 14 21 ‘
.
Table 7. ' Y
n =143 ’ e
_ *0 ) 1 *2 *3 ‘(,ng.)a’ ’Yﬁp. bd.)| !
1 | 14 1 1 83 264 -
,1/4 1/4 1 1 44 114
1/2 1/2 1/2 1/2 97 97 ?
1/4 1/4 1/4 1/4 26 26
1/ 1/4 1/4 1/16 25 21

* . Robinson, in

1.6.2.: Effi¢ciency and number of pages accessed

»

The efficiency of a search measures the amount of work done in

evaluating a query relative to the minimum possible. For example,

analyziné experiments on the

defines it to be

K-D-B tree

[RobiBl]

o
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~

Lo - . )
where N is the number of ‘tuples, N° is the number of ‘tuples

h ED 5‘
satisfying the query, P is the number of pages in the file and P~

is the number of pages accessed. .to retrieve the requiredftuples..

The numerator is the minimum number - of .pages that could be
accessed in evaluating the query, (assuming a 1load factor .of
100%) . We now discuss various factors that have same effect on

efficiency and on the absolute number of pages accessed:

1.6.2.1, Volume of the query

The volume of a range gquery is ﬁhe fractioh of the space
covereg by the query. A consistent observation, in all
experiments, was tha; as volume decreased, so did efficieqcy.
Table 8 shows the data for queries of a given aspect ratio. That

is, the ratio of the lengths of the sides stays constant but the

3

/;oluﬁe is allowed to va;y;

>

The reason for'this is as follqysi pages whose tuples ,lie
inside'the query, ("internél; pgges)ﬂ”“‘nq ishté all of their
tuples to the result. Pages whose tuples lie in a regioﬁ
overlapping a boundary of the query,  ("boundary" pages),
contribute only same of their tuples; As the volume decreases,
the fractioq of the latter type of page increases, resulting in
lower efficiency.’ ?hé low efficiency‘at low volumes is not a

serious problem since only a small fraction of the pages are

actually accessed.

B s v en fas P
.
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Afgr 2d data), should have an effect on the number of pages

accessed in evaluating a range query. For k = 2

PR=xx

071

#

1/2

n + (xoixl)n + 1

b 4

It is. the x, +

0 1

® fixed volume v, xox

1

" and the estimates.

1

#

term that is affected by the ratio, (for. a

= V). Table 9 shows the observed results

&

~ ; .58
‘TAble 8.
n = 428, aspect = 154.
‘ .| fraction of
°l yolume efficiency | pages accessed
1/4 0.§8 28%
1/16 0.67 9%
1/256 0529 13
11/1024 | 0.17 1%
‘jl.%.z.z. Aspect ratio ) :
'Fran the result .of section 1.5.4.2, the ‘aspect ratio, (xozx1‘

[~}
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n = 428, volume = 1/1024.

pages read | pages read
X0 X (obs . ) (est.)

1/64 1/16 2.7 3.0
1/16 1/64 3.1 3.0
1/32 1/32 2,7 2.7
1/1024 1 * 16.0 22,1 o
1 1/1024 * | 25.0 | - |22.1

!

\
* gartial matcﬁ quéries

-/

1.6.2.3. File size and page capacity 1

It was noticed that efficiency increased with fi;e.size. Thi's

is not due to pages becoming more densely filled:

w

load factor

hovers around 70% as the file grows from 100 to 3000 tuples, (see

N

- section 1.6.2.4).

The explanation has to do witﬁh'the number of boundary pages

relative to the number of internal

number of

pages. As the file grows, the

internal pages grows mor'e quickly than the number of

boundary pages (for a given quéry). This explains why the trend

was not so pronounced for ‘partial match queries:.thete are no

boundary pages and this keeps‘the efficiency low..

10.)

Page

reason. A file of

4

capacity has an

\

ef fect

?

v

on efficiency for

(See table

a similar

a given size is stored on fewer pages if page

°capacity increases but this is due to the smaller number of pages

which¢results in relatively fewer internal pages. Of course, the

decr ease

in efficiency is

@

accompanied by a

smaller absolute

R s

2y AL, Lo R
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number of pagé reads since the pages are larger.

&

. B
H B} K

Table 10;

. £ - '

3 ' ’ 5 Eff iciéfx'cy ’

B AN I ¥ n'= 500 [ n=1000|n = 2000] n= 3000 :
1/4 g1 | 0.67 ' 0.79 | 0.82 0.88 L
1/2 | 1/8". 0.43 ‘0.52 | 0.60 0.61 |
1/16 1/1é‘ 0.21 .0.31 0.36 | 0.40 ?

{11004 [ 1% 0.01 0,03 0.02 | 0.03
1| 1/1024 *| 0.00 0.0 . [o.01, | 0.0 -
. T . ' £ \ ) _
o* partial match query . R : :

R
.

‘1.6.3.. Load factor

\

: 'l‘ﬁe' load fact‘.or was- observed to be fairly constant at about
'70% under a wide variety of conditions. As points were added in
the control ex;;eriment; load factor was measured after every 100
insertions, The range was from 67% to 73%. At the end of the
experiment, (3000 insgsctions), the load factor was 71%. .

For 3 and 4 dimensional data,, "with 2000 and 1000 tuples
resepectively, the load factors were 70% and 69%. ' ’ i

. Load factor varied with page capacity but nc°> pattern was

discernible, (see table 11).
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of the most widely used file organizations: e.g. ISAM [IBF66]

] ‘ = . N ] i
. . Kl . . D N ' i
N P . é . . ’ , s s
_ ‘ I C’gp—t\eﬁ Section 1 | : 61 . %
-~ . . oy , N K
SR SR -
Table 11. .- i
capacity - | -load .factor ’ |
04 % . 2 LY ;
= . B . Y !
10 .. S 71% . fe o 'y .
20 67% ‘
30 73% S ~
40, . 64% . - _ 2 L ;
- oo St ) o
50 ) 77% ‘ ’ . %
: — : -
“\ A ) ‘
.
» ‘ ‘\

® H

g

2. .,b class of data structures for range searching

In this section we describe a class of data s’;\t«fuctures for -
ramje searching. ' This class includes a type ‘viof kd tree whose

balance can be maintained efficiently, (unlike Beni:ley‘s kd tree

A

[Bent75a, Bent'[9a])“, and a multidimensional Btree which is
simpler than Robinson“s K-D-B tree [Robi8l] and Scheugrmann and
N\ ‘ ' )
Ouksel”s MDB tree [Ouks8l, Sche82]. . ]

Our approach 1is to transform the tuples into “integers which "

will he stored in a-"one dimensional" data structure such as a

E)

binary tree, (i.e. the multidigrens\ra&al tuple§ are ordered in a

We require) that | the underlying‘ data - \tr’uctux’:e be

3
*
3
i
s
%
’
-
¢
¥
3
H
‘
?
3
5

indexed-sequential:” our data structures are mulitidimensiogal

generalizations. The advantages of this approach have been
discussed in the introduction of this chapter. . . » ¢

The class of indexed-sequential data structures includes. some

the Btree [Baye 72] and its variants [Come79]). -

"Indexed~sequential data structures" (ISDSs) were defined in the .

Ld



- - —— - - - - » o ot Sy e i A arpg S e 2 AN [ b A T ety A o

R s : . : S o8 S e b €8 e o b
Chapter 3 Section 2 62

/

introduction of this chapter. This section, with a few ‘changes,

‘ appears as [Oren82b].

\
*2,1. The z ordering

n A TR

)

inorder traversal of the kd t;iekpf figure 8 corresponds to
tdgbnlphabetlcal orderlng of ‘the tuple labels A, B, C, D, E, F,
'G, H, I, This motivates the total ordering which can %ﬁ def ined
for any set of (multldlmensfonal) tuples: the z order.
A kd tree (for example) could not be used to define euch{an

3 l ordering because a given kd tree representing arset of tuples is

[

///~' not unique. The inorder traversals of two such kd trees are not

] .- necessarily the same. ’ ' .

1

The kd trie provides an objective ordering, (ile. an orderfng

‘dependent on the data only): if tuple t precedes t” in the :

inorder traversal of a kd trie gpntalnlng both tuplgs, then t

' * precedes t° in z order, (t‘iz t7).

The z ordering of tuples can be seen as a path, the "z curve",

vy

which passes through all the bits- in the‘ space. FlgUfe 9
demonstrates the z curve in.2 drmensions. The- path starts in the
E | : lower left corner and ends in the upper rlght corner.

Suppose that each of the domains (from wh;cq ‘the attribute

! o values are drawn) contain 2d elements. Then, if the attribute

-

values of P = [P ] afe . represented in binary, P =

0 Pk-1
. P ... y wee s . 1 where p. is the
" 001" "F0,d-1 k1,0 Pk11 " Pho1,d-1 i
jth bit of Pi's binary representation. The z order is defined by

=¥ p <, @ <==> shuffle(p) < shuffle(@) ' - 2
. where shuffle(X) = X..X_ . ...X X X, eeX ve X
oo = 00™0 0 k10 01 T k11 0,04 1"1d1
is the integer created by the concatenation of the

k- 1d9-1° 77 \
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+

indicated bits. Thhs point A of figﬁre 8 corresponds to the tuple

? 2] and shuffle(a) = 0001102 = 6. Point B is the tuple

(0115, 000, and its Shuffle:value is 001010, = 10, soA <, B

[001,, 010

The kd trie is essentially a trie storing shuffled tuples. ‘The

trie is an ISDS. We will show that any-ISDS storing shuffled
tupl‘es' can be used ;‘:or the evaluation of range queries,

While 2 'ordering can be defined in terms of an . inorder
i:'r.av;ersal of the kdi~ trie, the kd ‘trie does not have to be
constructed to generate z ordered tu-plels. The function shuffle
-(giv;en below) performs the interleavipg of the bits, - The hash

“

function used by' Tamminen in EXCELL [Tamm80] is equivalent»tb

shuf fle. ’ ' . -

In the example given above, the interleaving was performed

s cyclicdlly: The ith bit of shuffle(t) is from atfribute i mod k

of tuple t. This corresponds to a cyclic splitting pattern for
the kd trie. We can generalize to patterns other than cyclic.

Another generalization is that the domains need not be the same

size. Both of these generalizations can be accomplished by
setting the values 1in the aa:':‘?txy array. For examplé, in a 4 x 8
space with attr[0]=0, attrflli=l, attr[2]=1, attr[3]=0u .and
attr [4])=1," shuffle([002, 1112]) = OllOl2 and shuffle([loz, 0012])
= 100012 so [002, 1112] 52 [102, 0012]. By modifying the shuffle

function in this way, it is possible to obtain "high bias" MDSs,

(see chapter®2 section 1.2). ‘

o

Clearly, unshuffling is also possible. That is, given

shuf fle(t) (and the attr values) the attribute values of t can be

determined. The unshuffle function (given below) is applied to

tuples ‘:etrieved in a search before they are reported.




. r— a2

= =
TELLcom B vy M g e e S s e e AP S
.
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shuffle (tuple) Shuffle is an array of h =w, + ... + w,, bits
where w, = [dom(A,)], i =0, .« , k-1. Tuple is an array of k

integers, one for each attribute. The’ith attribute value is

represented by a string of w bits labelled (from MSB to LSB) 0,
L, ... , -1. Attr[i] 1nd1cates the attriblite of the tuple fram
which the ith bit of the shuffle value should be selected. Count
is an array of k counters: count[a] is the next bit position of
the ath attribute to be included in the shuffled tuple.

for a :=0 to k-1 ' . 4 \,L
count[a] := 0 . ‘ . . 1
end ,

Afor i ¢= 0 to h-1

a- 1= attr[i]

shuf fle[i] := (bit count]a] of tuplela])
count [a] := count[a] + 1

end

return

unshuffle(stuple) : .

Stuple 1s an array of h bits representing the . shuffled tuple.
Unshuffle is an array of k integers (0of W,, ... , Wy bits
respectively), one for each’ attribute, which will store the
unshuffled tuple. '

o
o

for a:= 0 to k-1 ,
count [a] := ) . , 5
end . ) ‘ .

for i := 0 to h-1

——a 1= attr[i] !

P

(bit count[a] of unshuffle[a]) 1= sgtuplel[i) "

count [a] := counti{as] + 1 : T ,
end . ' -
return s :

end unshuffle

2.2. Evaluating range queries

~

A

In tili“é’ section we descri‘be an algorithm for ‘the evaluation of:
range queries, This algori thm can be - applied to any
indexed—sequential data structure that stores , tuples i\n z order.
(The idea of storing shuffled tuples in unidimensional data

structures is attributed to McCreight by Bentley in [Bent75a].)

%
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4

In.each step. of the search algorithm a search region '(SR) is

generated and tested for overlap with the ""query' region (QR),.

~ Fd el
Three cases can occur: ’ .
§ L]

1) - The SR is outside the QR: The SR does not ‘contain any points

!

whose tuples satisfy the query.

2) The SR is inside the OQR: All of the- points inside the SR

IR 3

M 4
correspond tocgtuples( satisfying the . query. The tupless are’ .

©

retrieved, unshuffled and reported. )
3) The SR overlaps (but is not insiée) the QR: Theé'SR_fis_split
into two smaller‘ SRs which *are searched recursively.

In case (3) the various.SRs are constructed. The method of
splitting is exactly the same method used to spl/it regions in the

5

kd trie. Therefore, the tuples retrieved in case (2) ,are

consecutive in =2 order. (Recall that the tuples in the exter nal
nodes descended froam any kd trie node are consecutig,e’in the\ z
order.) ‘

The retrieval of tuples in case (2) is simple given\ an ISDS:
Su.pPOS'e that the SR is [lo:uo, eea g l‘k—1:‘uk~—1]' Then the tuples
to be
eee v L _q1), shuffle(luy, ..o, w _q1)1. The first tuple of the
z order whose shuffle value is in this range .can be located by a
random access to the ISDS storing the shuffled tuples. ;I'he others
can be retrieved by gequer‘x’tial accesses. .

The search algorithm is given below in greater‘ detjpil., The
algorithxp is invoked by calling Rangeseau;h(QR, [O:Do—l, cen

0:D -1]1, 0.

k-1

retrieved have shuffle values in the range [shuffle([lo, :

CPTm e s s reeis e o vt s e o
N 1
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/

SR, level) . /
the ‘depth of recursion. A tuple is represented by h
so level "< h., If level = h ~then the size of the

.Level is:
bits

- correspond:.ng SR 1s one bit_ and ei ther SR C QR or SR N = 2.

if SR NOoR =9
then
pass
else if SR C QR
then (* retrieve all tuples in the SR ¥*)
t := randac(loval (SR))
. while tuple(t) < hival (SR) .
report unshuffle(tuple(t))
t := seqac(t) .
end e
else {* SRN OR # @, case 3 %) * .
Rangesearch(QR, left(SR, attr{lewvell) , level+l) . '
Rangesearch (QR, rlght(SR, attr[levell) , level+1) .
end if . e
return

\\F\n‘ges earch

. "o
- . ¢ - .
s , -
.

(* case 1 *) -
(* do nothing *) : v

(* case.2 ¥*)

left(SR a) ;
(* The range of attributékn of SR is 1,:ua *)
ua = (la + ua - 1) / 2 ’

r,etur n(SR) B *

‘end left

g . .

r

right (SR, a)

(* The range of attribute a of SR is 1; uzg %) . -
"ly == (g + uy +1) /2 s F
retur n(SR) . ) .
- . « Py ) .

end right_ . "

i ,‘ ’ - ’
If SR =[1,:u oo . 1 tu " then loval (8R = shuffle ([},
s [ 0 OI r k"’1 k-1] ( ) , ([
cee p lk_1]) and hival (SR) = shuffle([uo, - uk_1]). Tuple(t)
returns the shuffled tuple located at address t. Randac(x)

locates the first tuple of the relation in the z order whose
[~

shuffled value 1is at 1least x and returns the address of that

tuple. the successor.’ of the

Seqac(t) finds tuple located at
. L 3

. LV TN ¢




mar e A g Y S

g TR G 47 P " NI R e A

e e A

2 v

Chapter 3 Section 2 .. . D . 67

»

('—} addregs t. If tuple(t) has no successor then seqgac(t) returns an

address such that tuple(t) = 00. Left(SR,a) splits the SR on 1
attribute ; and returns the left sub-region. Right(SR,a) returns
* the corresponding .rigpt sub-region. For _exémplge, if the ,ath‘ .

attribute of SR is 1011000,:1011111, ‘then the ath attribute of

EN

.0 - left(SR, a) -is 1011000,:1011011, and the ath attribute of
. . , R 3 .
° right (SR, a) is 1011100,:1011111,.

- . X

.
4
o . , : .
Al ’ ‘
+

e e A ettt N e 2 8

2.3." Ref inements‘ to Rangesearch
- : \

The Rangesearch algorithm of section 2.2 has some problems. In

this section we discuss these problems and same solutions.

\ - , \
The most serious probleﬁ\ is that Rangesearch may generate a T

vast number of SRs, each of which generates a random access. Most
of these SRs will not generate page .faults given a t'ypical page
management system, but the amount of CPU work involved will be

o
overwhelming. Figure 10illustrates the problem. Near the query 3

boundaries, many very small SRs, (one and two bit regions in

’ §
figure 1()., may be generated. The number of these SRs is
[, 3

determined by the location and dimensions'of the query and is

b‘* independent of the data stored. (In section 2.7 we derive an

expression for the number of random accesses generated by a

certain 2d query. In the worst case, a query of size x0~ X X1 can

generate O(X, + X,) random ‘accesses.) The problem 'ari ses because 4

“ 0 1
\ many splits may be ‘required before SRs not overlapping the QR are
&

C 'gener at ed. N !
Another problem with Rangesearch is that the stack of SRs

generated by the recursive calls may become duite large. The

g maximum depth of recursion, h, 1is also the number of bits

e A e A - SR (sl S
o
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required to repxj\ese‘nt a‘t\uple. Each SR occupies 2h bits for a

total of 2h2 bits. Since, in practice, h may be in the thousands,

. the size of the stack can be a problem.",

, 2.3.1. Eliminating the stack

3

0
/

1

' The 'stack of SRs can be eliminated. By storing just the top

e

represented in 2h bits.

o

SR, previous SRs can be derived.” Thus

i

the stack can -be

-Let SR(i) denote the SR on the ith level call of Rangesearch.

Fram SR(i), two SRS can be derived: The left child of SR(i) is

© LSR(i) and the right child of SR(i) is RSR(i). Given SR(i),

either SR(i+l) = LSR(i) or SR(i+l) = RSR(i).

The stack of SRs can be eliminated since

‘r'econsti:ucte'd §rm SR(i+l) . If SR(1i) = [lO:uO, e 7 1

... , and RSR(i)

= [10:,u0' cee o lé:ua,

.can, be reconstructed from LSR(i) since ug
that Llé = (1a+ua"1)/2) .

(recall

SR(i) can be

2 uy

15

a:ua' Lo ae ¥
L, 43U q) where a = attr[i] thén LSR(i) = [1g:ug, .- P Tarug.
’ 1k-1 :Uk_.] ].. SR(i)

+ 1,

Similarly, SR(i) can be '

reconstruci:ed from RSR(i): 13 = 2 lé - ug -h'l. Now, the stack of

. SRs has beén reduced to a stack of bits. The ith bit indicates

whether SR(i+l) = LSR(i) or SR(i+1) = RSR(i).

Even this small

given

in

the introduction

"stack can be el iminated.

of

this chapter,

representation of la:ua (or 1ai“a) is

“where ¢ > 0,

<*ig-c-1]| Y | 0:c>

<tid-c=1 | ¥ | Jie>

tthe

Using the notation

binary

a = Wy is the.number of bits required to represent

values from the ath domain, ‘eacht * is either 0 or 1 and Y is 0 or

1. The corresponding range in the parent region is 1

4

<* s 3= -1 I 0 | 0:c>

<*:g-c-1-| 1|

lie>

IS

a‘la

[

>
T e s G K
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- o

If Y =0 then the child was a left child; if Y =1 then the child &

was a right child. ’ )

This view of ranges provides another way to calculate LSR(1)

and RSR(i). If 13 = <*:d-c-1 | 0 | 0:c> and uy = <*:d-c-1 | 1 |

7 1:c> then uj = <*:d-c-1 [ 0 | lic> and 13 = *:d-c-1 |1 | 0:o>.

That 1is, the .calqulation can be achieved by complementing &
" single bit. - |
To summqrize, the stack is unnecessary since the SR(i) from

which SR(i+]1) was derived can be reconstructed. The technique

e presented here will be of use in solving the more serious. problem

3 .

L of reducing the number of random accesses.

- B .

- ——

2.3.2. Reducing the number of random accesses

2.3.2.1. Non-homogeneous ISDSs

A non-homogeneous tree-based data structure stores all the
records in the leaves. Internal nodes store only discriminators
which gquide theA search, (e.g. a B+tree). The leaves can be
linked together into a list. Sequential accesses are then very
cheap, reciui ring at most one page access and usually none.

A leaf page of a non—hompgeneous ISDS contains tuples whos e
shuf fle_values are Sy v eee s sp where p is the number of tuples
on the page. and S4 < ees < sp. Many small SRs are 1ikely‘lto fall
between successive tuples: Along a qﬁery boundary _of size x there
can be up to O(x) small SRs, (see section 2.7). Typically, the
space representing a relation is so sparse that the vast majorit:.y
of these SRs contain no tuples satisfying the query.

To avoid dealing with these SRs, the Rangesearch algorithm

o PP
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could éest all the tuples on "-a retrieved page for inclusion in
thé QR. The. problem with this approach 1is that the state of the
~seau'ch algorithm, as described by SR and level, is out of date
after the page has been processed, Somehow, tt:xese variables must
be reset so that the search can resume: —

.The last value on the page is s This tuple, (or any other),

p-
then the correSpBInéing (omi bit) region is [aO:LaO, cae g
‘ak—1:ak—1]' To begin reconstruction of the state ofv the search
algorithm we set SR = [ao:alo, cee g ak_1:ak_1] and level = h.
(In general, anm bit region is explored at level t}-—log(m) . The
current SR contains 1 bit.) Using the procgass\ described in
section 2.3.1, ancestral SRs can be reconstructed. This 1is
analogous to "climbing up" a trie. Attr indicates which
attribute”s range t;o ,modify at each st':ep of the reconstruction,
Each time a parent SR is reconstructed, level is decrepented by

one. This procéss continues until the SR overlaps the QR and the

child of SR was a left child. (If there is no overlap then we are

~in a part of the trie that should not be explored. " If there is

overlap and the ¢hild was a right child then both children of the

SR have been explored,) With SR and level reset, the search

resumes with RSR(level). The modified Rangesearch algorithm is

given below.
Figure 11 illustrates the search using the data of figqure 8
and the QR of figure 10. The tuples have been stored on pages 1-4

in z order. The tuples °-have been placed at -positions in the

diagram representi:ng their shuffle values. The quety is brokNg/

into SRs (displayed beneath the tuples). In the original version

of Rangesearch, each SR would be searched in turn yielding tuples

“w
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! :
3 ( A, Band C. The modified version of Rangesearch would proceed as
¥ i N

[w]
follows:

4+ -~ The leftmost SR is generated, c'ausing page 1 to- - be read. All
s the tuples on the page are checked for inclusion in.};he QR. Both

“ . A and B are includgd in the QR although nei ther belongs to the SR

t v
]

wl_uich generated the page read.

~ Reconstruction of the state of the 'seawh/yields an SR which

P
‘causes page 2 to be read. Tuples C*and D ar'e checked against the
gR. C is inside the QR but D Ois not. Note that the three small

) " SRs between C and D were not generated. ‘

- Reconstruction fram tuple D cauées the “"search to terminate

| since’'D is past the last SR. Pages 3 and 4 are not accessed.

o

¢

P
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A

Rangesearch (QR)

Rangesearch is now specified iteratively since the reconstruct

algorithm "“jumps across" levels of recursion. Dir indicates

whether we are climbing up (towards the root) or down the trie.

Childside is left or right depending on whether the child of the
- current SR was LSR or RSR.

SR := [0:D,-L, ..., 0:Dy, -1] P
level := 0 .
dir := down . \
repeat until level = 0 and childside = right -
switch dir }
case down:
if SR C QR

process (SR, t) (* get all the tuples in the-SR and *)
(* scan the remainder of the last page read#*
reconstruct (t, SR, level, childside)
dir :=.up
else if SRN QR # @ (* explore the left SR first *)
SR := left (SR, attr[level)) s -
levél := level + 1
(* return the new SR and increment level *)
else (* SRN QR = @ *)
dir := up
(* restore is done below: case up and SR/ QR = P *)

end if . . .
case up: ‘ .
if SRN QR # @ (* Have just reconstructed or restored *)
dir := down L .-

SR := right (SR, attr(levell])
level := level + 1
(* return the new SR and increment level *)

else (* SRN QR = @ *) N S
restore (SR, level, childside) . .
end if < '
end switch
end
. return

end Rangesearch

4

e p—— N -
oy R



¥

Chapter 3 Section 2 73
7
process (SR, t) ' v

Retrieve all tuples 1in the SR, -starting on the page accessed by
loval (SR). (This may require reading more pages.) Then, test all
tuples on the last page read for inclusion in QR. L(t) is the
address of the last tuple on the page containing t.

t := randac(loval (SR))
while tuple(t) < hival (SR)

report tuple(t)

t := seqac(t) (* may cause a new page to be read *)
end .

(* Finish up the last page read *)
end~of-page := L(t)
while t < end-of-page
if tuple(t) € QR then report tuple(t)
if t < end~of-page then t := seqac(t)
end * ,
return °

end process %

J

restore{SR, level, childside)
level := level - 1
a := attr{level]

{* The range of attribute a of SR, 1 :u , expressed in blnary is *)
(* <*:d-c-1] Y | O0ic> @ <*1d-c—1 'Y | Tie>. %)

if Yy=20
then o
childside := left
Uy 1= 2 uy - 1z + 1
else
childside := -right
la :=213-ua—
return '

end restore \

reconstruct (t, SR, level, childside)
tuple(L(t))

lags «vv a1 ] s

(* reconstruct from last tuple of page *)

SR = [@,285) o« Qg *ayq ]

level :=°h SRR L .

repeat until.SR 1 QR # @ and childside = left
restore (SR, level, childside)

end

-

.Leturn

end reconstruct

'
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2.3.2.2. Homogeneous ISDSs

[

A homogeneous 1ISDS 'stores records in ‘both the internal and

leaf nodes of a tree-based data structure, (e.g. a Btree). For

Ed

such data structures, the technique of section 2.3.2.1 1is not

s do not.
1’ [4 p

represent all the tuples t, such that 8 < shuffle(t) < sp unless

the page is a leaf. That 1is, an SR between sS4 and sp may

always correct: the tuples on one page s

s
o

actually cover tuples on a descendent page. UnleSs hival (SR) is
the shuffle value of a tuple'of the relation appearing on ‘a
non-leaf page the précessing o6f the SR terminates on a leaf page.

It will, therefore, be an extremely rare event that the search

terminates on a non-leaf: the probability that hival (SR)

corresonds to a tuéle is very small since, 1in praétice, the space
is so spa"rse. Furtﬁ%tmore,vin practice, the‘ISDS is a balanced
tree of high degree so most of the pages are leaves.

For a homogeneous ISDS then,b the &rsion o'f the process
algorithm given below would be used. If‘ the search terminates on
a leaf page, the' rest of the page 1is scanned as in section
2.3.2.1. If the search terminates 'on‘a page which is not a leaf,
(this will rarely occur), then the leaf page containing the

successor of the last tuple seen is scanned.

) ™

-

~

AL e
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process(t, SR)
Page (t) is the page containing tuple t.

t := randac(loval (SR))
while tuple(t) < hiwval(SR)
. report tuple(t) .
t := seqac(t) (* may cause a new page to be read *).
end

if page(t) is not a leaf
then t := seqac(t) (* the successor is on a leaf page *)

end-of-page := L(t)
while t< end-of-page
if tuple(t) € QR then report tuple(t)
if t < end-of-page then t := seqac(t)
end ’
return

end process

2.3.2.3. Query expansion

Query expansion is another method for reducing the number of

random accesses generated by a QR. It is applicable regardless
of the ISDS used. The basic idea is to emﬁed the QR in a larger
region, QR”, which generates fewer random accesses, (but possibly
more sequential accesses). (See figure 12.) Thg Ranéesearch
algorithm is modified to process QR and,/filter qut tuples in QR’
- OR. | )

Our discussion of query expansion follows frdm§the analysis of
a certain QR in section -2.7. The QR considered is [O:XO—l,
o:x1—1]. The binary representations of xo and 'X1 determine
R(QR), the number of random accesses generated by the QR.

For the special case'§'= xO = x1, we show in sect;on 2.7 that

R(QR) = 0(2q) where gq is the distance, (number of bit positions),

between the leftmost and rightmost.1 in the binary representation

‘of X. (In section 2.7 we also discuss the case x0 # X1.) This

result says, in a sense, that R(QR) is independent of the size of

the query: R([0:%1, 0:X-1]) = R([0:2X-1, 0:2X-1]). This is.so

o

Wmm‘é&ﬁa&.wu Ftaenew i by et 1



Originat query. [001 011, 000 100]
6 SRs

#

—=

Expanded query: [000.01,000-101]
3 SRs.

Figure 12. Query expansion.
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e

becaus’e doubling X is equivalent ‘to a "left shift" which does not
affect q. ‘ .

In order to r educe R(QR). , OR q@n "be replaced by QR’ suq(:h that
QR C QR’ and §(QR) > q(QR':) . Foréygxample, if QR = [0:X-1, lo:’x—-ll
where X = 00110101, tpe;‘/QR‘ = [0:X"~1, 0:X’-1] where X~ =
00111“00(52" satisfies our requirements.

‘There is a relationship between the bits of 'X and the
partitions creating the SRs. Increasing X to X° corresponds to

moving the ‘boundaries of the query outward so that larger (and

4

fewer) SRs will be needed to process the query.

-

A modified version of Rangesearch which employs qu‘ery
] !

expansion is given below.’

There is a cost to be paid for using QR instead of QR: a
¢ - -

larger portion of the space is covere’dvaﬁd it is likely that more

-

tuples will be retrieved. Simple calculations based on the

formula for R(QR) suggest that it is well worth expanding the

-

query by a "large amount <~(\assuming a uniform distribution of

tuples). For exam})le, if X = <0:r | 10 | *:d-r-2> is ‘expandéd to
X" = <0:r | 11 | 0:4-r-2>\then the portion of the space covered
NN

increases as much as 125% but the number of random " accesses is

exactly 5.

M L]

RangesearchQE (QR) c ,

Find QR” (* with properties given in text *)
Rangesearch (QR”) (* tuples are placed in report file *)
For,each t € report

if t ¢ QR then delete t from report .

end
return

end RangesearchQlE

' . \
\ .
. .
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!: 2.4. Multidimensional data structures based on 2z 6.rderL {ZMDS s)

The ‘Rangesearch algor,.i thm can be wused in conjunction-with any 4
ISDS. A large number of such data structures are known. The
r andac .and segqac procedures. {(called by Rangesearch) must be
suppiied for each such data‘:structure.

Multidim;znsior;.al data s‘tructures based on z ordering (ZMDSs)
can be generated by applying the shuffle, unshuffle and
Rangesearch algorithms to one of ﬁhese ]fSDSs, (see figureu13) .
We now discussja number of ZMDSs. Many of these are new data

s tructures for range searching. -

2.4.1. Zkd binary search

The simplest ISDS is the array - of ordered data. By storing
shuffled tuples, the ar,rair ca:n‘n‘ be TuSed for the evaluation of
ra;xge queries, Randac(x) is a binary search for the smallest
en‘try great;er,tban or equal to x. Segac(t) .increments. t (a
subscript pointing to an array locati'on) by .1.

Of course, this daFa structure ca;n only be used efficiently

»

for’ static files. \
5.4.2.. zkd tree

By ‘using the binary t‘:ree as the 1ISDS, a more dynamic MDS is
obtained. It is not the same as Bentley’s kd tree [Bent75a]: the
inorder travérsal of the kd tree does not nécessarily yiela the
tuples in z order. _ (There are also gome’zkd trees 'which do not

Y . -
correspond to any kd tree.) As discdussed in -section 2.5, .

~

—

maintenance of. any order_is a useful 'property.
All the modifications of binary trees apply to zkd trees. In

particulbar% if the AVL tree ([Knut73] is used instead of -.the

.
~ ' 3
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binary tree,\then the result is a zkd tree which does not
‘deégenerate. Except . for rebuilding, no 'method is known for

maintaining the balance of kd trees.

’

”

2.4.3. 7kd Btree ' ’ _

The classical ISDS for secondary storage’ is the Bt‘ree
[Baye72]. The derived ZMD is the. zkd Btree. As with binar_y
trees, any variant of the Btree, (see [Came79] for a survey), can
be used in place of the standard Btree.

The 2zkd Btree is much simpler that\Robinson’s K-D-B tree
[Robi8l] and Scheuerman and Ouksel”s MDB tree [ScheB2].
Furthermore, it inherits from the Btree an expected-load factor
of about 70% [Yao78], and a worst; case load factor _of 50%

[Baye 72]. The K-D-B tree does not have either of these

'proper):ies .

"2.4.4. Kd trie 3

7

The kd trie is based on Fredkin’s trie [Fred60] which is an

ISDS.

2.4.5. EXCELL .

Tamminen”s extendible.cell method (EXCELL) [TanmB80] is closely
related to the kd trie but uses a different ISDS, The ISDS on
which EXCELL ‘is based is extendible hashing of Fagin et al.
[Fagi79]. 1d EXCELL is obtained by using extendible hashipg with

the hash function h(k) = k. Mu}tidimens?onal EXCELL is the 1d

" version augmented by shuffle, unshuffle and Rangesearch. (Note:

Tamminen did not, give an algorithm for evaluating range queries

-on EXCELL.) A related data structure, HCELL [Talm8l], (see

.
-t
-z" ].-‘

R e St R ke i

smadn e

o e BB T e LT



.Chapter 3 Section 2 ‘ 79

¢
-chapter 2 section 1.2), is also a ZMD§. o -
2.4.6. Multiple attribute trees 5 "

The MDB tree of Scheuérmann and Ouksel [Sche82] is descended

fram the doubly-chained ’tree [Sus;63], ’the multiple attribute
tree [Kash77] and the modified .multi‘pIe attribute tree [GépaSO]_.
These can all be seen as ZMDSs wh'i,ch use a l“trivia!l" shuffle
function: using the notation oé section 2.'1,1 if X =

' xk_1'0 xk-1,1 ”:xk—f],d-‘l ] thqn' 'lthe trivial

00%01" " %0.d1 "

shuffle function is

TrivialShuffle(X) = . oX

*00%01" " 0,d-1"""
k=10 "k-11.""""k-1d-1 ~

The four data structures use different ISDSs but tﬁey all

-

- . ,4{ .
transform the data wusing TrivialShuffle. Customized search
algori thms, diffe‘\rent from Rangesearch, were proposed for these

data structures.

2.-5. Other"uses' of z ordering

Data in files are often ordered to allow efficient
implementation of “algorif:hms requirir}g merging. ‘Since all ZMDSs
store tuples in z oréer, the efficient rﬁerging of files' of
tltidimensional data stored in ZMDSs is possible, (even if the.
operémds are based on different ISDSs) . .

‘In particular, linear time implementation of the set
operations - is possible. This, is not possible with

mhltidiménsional .daEa structures that do not preserve order,

-(e.g. the kd tree and multidimensional clustering).

I
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QR = [0:x-1, 0:y-1] where x and y are integers between 1 and 2
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2.6, Performance -
I S "

Many of the performance characteristics of a ZIMDS are .

inherited from the underlying ISDS. These properties include -

Q

storage utilization and dynamic behaviour (e.g. time required for
insertion). .
Some general statements can be made iabout the performance of

ZMDSs. In section 2.7 we analyze the expected cost of partial

. match and range queries for non-homogeneous ZMDSS given a certain

distribution of tuples. We believe that the results are' also

valid for certain homogeneous ZMDSs. (The zkd Btree for example.

» / 1] (]
Since most pagés are leaves, it- is "almost" non-homogeneous.)

—_—

The results are the same as for the kd tree, the kd ‘trie (see

section 1.5.4) and EXCELL: for a relation stored on P pages, a
partial match query costs O(P1_Hk) page reads wheré t <k is the
number of attributes specified in the query; a range query costs
O(VP) page reads where V ié,the "volumé“ of the query, (the

fraction of the space covered by the query).

,
- - .
- v
Iy
. ’

2.7. Analysis of the ZMDSs

2.7.1. Number of search regions in a ‘query region

The problem considered here is to determine R(QR), the number
of SRs generated in the exploration of' a given Qﬁ.

‘'We consider square 24 spaces and assume th’at attr[i] = i mod

2. Each domain contains 2 elements. We consider a special case, .

d

inclusive. Let u u .and t in
-1 - A Vd-1 be the binary

0

representations of x and y respectively.

©
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Lét A(x,y) = R(QR). | ’ ‘
Suppose the first split of ;hej spacel‘is vertical and i

partitions the domain of x into the sets {00...00, 00...01, ... -
: ‘ d-1
2 =r

0

then this split is outside the QR (see figure 14a) otherwise it

01...11} and {10...00, 10...01, ... , 1l...11}. Ifx <

passes tprough the QR (see figure l4b). Clearly, x < 2!':"'1 iff uQ . 1
= 0. '

Now, after the first split we have . - x

- . C{AGRY) f A(x-ro-,y), u,=l

A(%,Y) =1 o

' A(X,).’)', . u0=0

—_— - Rmm e

= uOA(rO,yl) + A(x*uorg,y) 1) ‘

To clarify thé analysis we will rename the first ter
'“B(ro,y)," so that ?'.t corteSpon'd's to i:"egiop Bof figyrp 14b. Th
. analysis of the B term will be simpler than that of the A term:.
when we do further spiits it will‘ genefate otherp terms, not
-both A and B terms. This is because tl';‘e' first argument of B is
always a power of 2 whereas ttle first argument of A may not be. EE

- “ .
Splitting B vertically corresponds to division of the £first

argument by 2, yielding another power of 2, (hence, a B term, 'ﬁot
an A term). 0

?”The A region is next split at position ry in . the horizontal
ddrection. Proceeding as above, the split may or may . not pass
through the region. .Two cases are possible (éee figqure 15') and

" we have (after rénaming one of the A regions aC region as above)
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¢

| A(x—uoro,y) = VOC(x—uOrO,rO) + A(x-—uoro,y—voro) (2. -
_Combining (1) and (2): . A
O |‘ -—~ \L - 4
Alx,Y) = ugB(ryy). % YOC(_X*uﬂrp.rO) - - -
- - . . - (3
+ A(x UOIO’yAVOrO) o g )
If,uo* = I* and vo, = 1 then these two splits have created three
regions (see figure 1) . )
R -~ - - - > . L4
fﬁ e The A region can be analyzed exactly as was the original QR.
For -example, after two more splits:
.o A(x,y) = uyB(ry,y) + voC{x-uyrg,7g) o -
o : -+ ulB(rl,y—vOro) + vlC(x—‘uOrO—u’lrl,rl) y
T - . . L4 - . N
' HoAGTugrgTu Ty Y=gV Ey ) . ([‘,)’
- . - - : . . ) - \-:: -9 ’ B -
(Jfl is def ined below.) Clearly, A(0,0) =. 0. We can now give an
‘expr'esvsior_l for A(x,y) in terms of the Bs. and Cs. .
S a-l -1 .
Y .
A(x,y) =" I u,B(r,,y - I v, ,t,) . T
=0+ P gm0 1) '
-1 1 S
+ v, C(x - L u,r.,r) S ‘ (%)
-0 ! j=0 ° 4 '
. -
( We now derive expressions for the B and C terms.

The B region was cfeafgd by a vertical split. The next sp%it
is horizontal. As above, two cases cén -occur, Consider B(ro 'Y)

(see figure 17). 1In the first-case. one Sil_ ”and_anothei:: B term is

L
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i) ' -

generated. The split is inside the region iff v = 1.

0
1+ B(ry,y-ro)s Vo7l
B(ry,y) =

B(rg,¥) s v,=0

i}

vy + B(ry,y-vorg) . (6)

0

The next split is perpendicular to the query boundary and is
T o3

certain to, split the B region into two B regions. So after a

horizontal and a vertical split of a B region two cases are

possible, (see fiqure 18). (Note that the SR 1is not split

further.) 1In either case

B(ro,y) =vy t 2 B(rl,y—voro) (7)

[ "

where r, = r Zd-1—l. The

1 0

second argument to B is never negdtive. The v, coefficient *

/2. Clearly,_B(;],O) 0 where ﬂ =

insures this since vi is zero whenever subtraction of ri would"”

give a negative result. So we have

d-1 K :
B(ro,y) = 1 vk2 (8)
[} k=0 '

(The value of B(ro,y) is‘ the integer created by writing the
binary repkgsenta;ion of y backwards!)

Similar'analysf% for the other B terms fields

-1 -1,
Ber_,y- 2 er.) = I2 v (9)

j=0 J k=1

R ARE Moot
TR



83A

M R O f
y
B B
0 0
1SR y
B B
\ r0 r‘0

Figure 18. Vertical split of the space in the vicinity of of a B region.

B

i




Chapter 3 Section 2 84

The analysis of the C terms is similar to that of the B terms.

'The result is -

o 1 d-1

. k-l-1
C(x~ Z u,r.,r ) = L2 u . (10)
j=0 331 k=1+1 k :
Combining (5), (9) and (10) -
®

d-1 . d-1 i d-1

AGLy) = @ (27 1 2N + 2 Gy oM ) (11)
i=0 1 k=1 k=i+1

To understand (l1) better we will discuss those factors most

heavily influencing A(x,y). Consider the special case x = y. Then

the following two results are derlvable fram (11):

- If x has 1s in bit positions p and p%q and 0s elsewhere then

q-1 , .
A(x,x) = 3(2 )+2.

(12)

- If x has 1s from position p to position p+q inclusive and Os

+1
elsewhere then A(X,x) = 3(51 )y - 29 - 5.

(13)

-

Furthermore, -for all x, y, changing any 0 to a 1l in x or y

increases A(x,y).

(14)

These three facts establish R(QR) = O(Zq) for square queries
,where g 'is the distance (i.e. -number of bit_ positions) between

the first and last 1 ip x: (12) is a lower bound. Applying (14)

[
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’

i

to any 0 in positions p+l through p+g-l inclusive "increases
A(x,x)-and (13) i%s an upper bound. Both (12) and (13) are’0(2q){
It is interesting to note that A(x;x) in (12) and (13) 1is
independent of p. This implies that scaling by factors of 2 has
no effect of R(Qg) (for square queries). These results can Se
generalized to non-square queries (in square spaces).“ The proof
proceeds as in (12) - (14) and 1is simple and tedious. The result
is that R(QR) 1is dominated by an O(2r) term where r is the
longest distance (i.e. number of bit positions) between a 1l bit
in x and a 1 bit iny. (E.g. if x = 011010002'and y = 000001102

then r = 6.)

2.7.2. ZMDS Performance

We present evidence that the expected performance of any 2MDS
on secondary storage is the same as for the kd trie:
- 'A'partial match query on t attributes costs O(P1"f/k) where P

is the number of pages storing the data.

- A range query ‘costs O(VP) where V is the "volume" of the

query: the fracfion of the spacé covered by the query.

These resulté depend on some properties of the z curve.

2.7.2.1. Z curve properties

We will analyze z curves in k dimensions where each attribute

d d

has 2" possible values: 0, ... , 2 ~1.

For now, consider a'pqint P(x,y) in a 2d space such that x, y

< Zd. Let s(P) or s(x,y) denote the shuffle value of (x,y). We

observe that s(x+l,y)-s(x,y) 1is independent of 9. Similarly,

s(x,y+l)-s(x,y) 1is independent of x, (sée figure 19). The

LY -~

~
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quantities s(x+l,y)-s(x,y) and s (x,y+l)-s(x,y) are "gaps".
Let us label X as attribute 0 and Y as atiribute 1. Also, let
T(u) be the length“ of the longest suffix "of the binary
Nrepresentation of u consisting of 1ls only, (e.g. T(OlOlllzi = 3),
Then G(i,T(u)) is the gap aloﬁg. attr@ggte'i, "i=0, 1, between

attr}bute i values u and ua+l.

In the example given above:

ki

~ i
— v

G 0 1 ‘ & -
0 |2 1

T(u) 1 6 3
2 2 |1

3

Weé also notice that G(0,r) = 2 G(1,r).

The observations made "here will be generalized and proven. A

0

formula” for G(i,r) will be given; First, we sketch the derivation

for k = 2. We then give a more Tigorous treatment for k > 2.

-y

°

2.7.2.1.1. Proof for k = 2

We want to establish that
s(x+l,y) - s(x,y) = G(0,T(x))

(1)

and W

4

s(x,y+1) - s(x,y) = G(1,T(y)) .

(2)

and derive a formula for G(i,r), i = 0, 1. The proof Iis

inductive. |

First consider a 2 x 2 space, (see figure 20).

Brteatien bt s e
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. By inspection, G(0,0) =2 and G(1,0) = 1. (1) and (2) have
been established.for ‘the t}iyial cése.

Next, consider a reg}on of gize 2P*1 X 2P+1' (see figure 21).

. A, B, C and D are the four bits aé'£hé center of this region.

Their coordinates are |
a: (2'-1, 2')

B: (2"-1, 27-1

c: (2f, 20y

‘p: (2", 2M-1
Our induction hypothesis (IH) is that (1) and (2) hold in Bs
region for G(i,s), s < r, i =0, 1. ‘
It can be shown that the IH also hﬁlds in the other three
guadrants, (wé will prove this for k > 2 later).
We will extend the Iﬁ to G(i,r) in the_following way:
- Campute gL = s (A) —'s(B) ;nd qa = s(C) -~ s(D).
- Sho& that_gL = gR.(= g).
- Show that s(x,zr) - s(y,zr-l) =g for 0 < x < 2r+1—l, (i.e.
all along the G(1l,r) boundary).
- These results establish (2) and éhow that G(1,r) = g.
- Repeat these steps (using C, A; D, B in place of A, B, C, D
- respectively) to establish (1) and derive G(0,r). ‘
The coordinates of A, (2P—l,2r), expressed in bin;rx are
(<0:d-r-1-| 0 | l:r>, <0:d-r-1 | 1 | 0:r>)
and |
s(A) = <00:d-r-1 | 01 | 10:r?
or, in base 4 notation: |
S(A) = <0:d-r-1 | 1| 2:e>
Similarly, in base 4 notation,
s(B) .= <0:d-r-1 |- 0 | 3:r>

<

o

e g x e
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Figure 20. Gap sizes for a 2 x 2 region.
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Figure 21. Gap sizes for a 2 x 27 7 region.
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The difference in the shuffle‘values is g‘ = s{A) - s(B). This

can be easily.calculated using "gr ade-school” notation (note that

<Xim> = <Xim-1 | X>):

..

<0:d-r-1 | 1 | 2:r-1 | 2>

‘s <0:d-r-1 ] 0 | 3:r-1 | 3>

<0:d-r-1{ 0 | 2:r-1-] 3>

8o
g = <0:d-r | 2:r-1 | 3>
L
NS o
=2 ¢ 4343
3=1

= (1 + 2x45)/3

Repeating these steps for points C and D, (working in base 4):

i
§
s(C) = <0:d-r=1 | 3 | O:r> - H
s(D) = <0:d-r-1 | 2'| 1l:r> 3
and ) - - : ) - E
g, = s(C) - s(D) ?

R , : (

= <0:d-r-1 | 0 | 2:x-1 ] 3>

¢ '
=g - 4
L‘ . - it j
Let g = gL = gR. p

Now consider E and F, the points immediately to the left of A,

and B, (see figure 22). Fram the induction hypothesis:

s (E),

s(Ad) - G(1,'r‘(ir—é))

s(B) - G(L,T(2"-2)) )

s (F)

r ,
where 2 -2 is the x coordinate of E and F, (It can be shown that:«

- N



-

Figure 22.

N

Applying the induction hypothesis.
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r ’ . '
T(2 -2) < T(2r—I) = r; thus the IH can be applied.) Therefore

s(E) - S‘(F) = s(A) - s(B)

=4dg.

We can continue stepping left, (and right from C and D) using the

IH at each step to show that

s%x,zr) - s(x,zrql) =g, 0< x

I
N

We have established (2) and shown that G(l,r) = (1 + 2x4r)/3.
Proceeding as above, we can establish (1) and show that G(O0,r)

= (2 +4x4")/3 =2 G(1;r).

2.7.2.1.2. Proof for k » 2

We want to show that for any pair of adjacent points, P and Q,

i

whose coordinates differ (by one) only in the ith position, (P

(Pyr - . ECIC IRTINE SR P, =43 i p -
1), .
.s(P) - s8(Q) depeﬂds only on'd and p .
- . , (3)
We alsoiwant a formula for G(i,T(pI)), i=0, R k-1.
The proof follows the outline of the péevious ohe."We~start
with the trivial case, a Zk—bit_hyperJCubg. Each point has k

coordinates, each of which is either 0 or 1. Now write the

coordinates of each point as a bit string of length k. These bit

strings are the shuffle values 0,.1, ces g Zk—ll Consider a pair

of neighbouring bits. IF their coordinates differ i attribute i

ik-1-1

then the difference in Bpheir shuffle values is 2 . Thus

it g o A b s

e

S S it

G (i,0) =2k4—'. ' . E

¢ 2
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We now perforﬁ*the inductlan'ﬁstep. éeneralizing from the 24

case, consider: a space of 3k€r+ bits and the 2k bits in the

center of the space. The coor dinates of-one of these bits are (2r‘

PR - eo} cer 2r - Gk 1) where each e is either 0 or 1.

Our IH is that (3) holds for G(i, s), is= 0, «u. , k-1, 8 <'r
in the_‘sub-region (0:2 -1, ..., 0:2 —l), (corresponding to the

quadrant containing bit'B in the ppeyious“section). The Iﬁ‘holds

in all other sub-regions if
, ' ot ‘
. [ . ,
G(i,T(x+27)) = G(i,T(x)) ) ‘

£or i =0, ... ¥ k-1, x =0, ..., 2'-2. It is sufficient to show °

« that
r oo ,
T(x+2 ) = T(x). =,

Intui tively, addit§0n of _2P does not affect the rnuleast
~ " significant bits, (those bits representing x)., More formally:
_Since x < 2M-1 = <0:d~r-1 ] 0 | 1:r>, x = <0:d-r-1 | 0 | *:zr>

where each * is either a0 or-al (but at least one is a zero)®

v L@
. %

Clearly, . ‘ ip o -

- - x+2" = <0: d—r-l | 1] *io

By 1nspectlon, T(x) = T(x+2 ) slnce ‘both X and, x+2' have the same _

> ©

sufflx, <* .r>, which contalns at least one zZero.

fr_ Now that “the - IH has been establlshed in all sub-regions,

con51der a palr of p01n;s, P and Q that are nelghbours but lie in -

dlfferent sub—reglons due to the spllt of attrlbute i. Each pl

and qi is elther 2" .or 2M-1. we w1ll arbitrarily set p =22 ana

o

L qr = 2 -I, s(P) and s(Q) can—be expressed in base 2k notat on:

(V - g zf~i~$§P% -'eﬂ- see Uy _1 - ; ‘ ” . e
. _ Lt 81Q) =vy Ll SR . -
~ Qq} \ 0 d 1 - . R
where”each u; and vl is a base 2). digit, and can therefore be

represented by k bits. Then,. since . ) *

~ N . : v E]
N o - & s . - o - -

P
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—
~No
]ﬁ
0
%
1]

<0:d-r-1 1 0 | 1>
and B '
(2r‘)2 = <0:d-r-11]1 1 0:x>

s(P) and s(Q) can be depicted as

0 d-r-2  d-r-1 a-r
§(P) =—=0=-= .., ===0=== ' === 1--- --- 0---
s(Q) -—--0--- ~—=0-—— --- 0--- --- 1---

More formally (let. qu

v. respectively):

J
Yip = Vim = 0, ,d-1; m#i
qu = vji =0, j=0, , d-r-2
Uger-1,1 = 1
Vgr-1,1 - ©
uyy = 0, § = dor, , d-1
v;j’= 1, j = d-r, B d-1

Computing the difference in these shuffle values

the, result in base Zk:

g = s(P) - s(Q)

= <0:d-r-1 | (2F1-i - 2Rt
(2k_2k~1-l)>
k-1-1 x i AL ISP L

o grlipkr T [20- - -

=1
’ k-1

- — [(2K-2)2KF + 1]

21

(g
and and vjm denote the

1):

4

k=1-1i

mth bit of uJ

r-1 |

)
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Since this result is independent of € , j # i, it applies to
a1 2K-1 pairs of points separated by therplit of attribute i.

The result also applies to any pair of points on either side
of the same boundary within the same (ZP)k-bit sub-cube:

In travelling fram P to same other point in the same sub-cube,
P, we cross gaps of size G{w,t), 0 < w < k~1, t < r. (That t < r
is obvious fram the binary representations of the coordinates.)

The path V fram P to P~ can be represented by a sequence of

crossed boundaries, (£ ). By the IH, the same gaps are

(w
PP
encountered 1in travelling fram Q t& Q°, (the neighbor of P~

across the boundary corresponding to G(i,r)). Thus,

s(P') = s(P) + I G(w ,t)
s(P') ey PP

iand
| $(Q') = s(Q) +I G(w_,t )
pev P P
so s(P7) - s(d’) = s{(P) - s{Q) = g. This establishes {(3) and

shows that

[(25-2)2%T + 1]

~

2.7.2.2, Cost of paftial’match queries

The data is partitioned into pages. Suppose the shuffle
values of the tuplgs are distributed so that every set of b

consecutive z numbers: mb, mb+l, ... , (mtl)b - 1, contain ¢

3

-
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tupies, (where c is the capacity of one page). Then the pages
impose a partitioning on the sequence of z numbers (and on the
space). Each page covers

C2kd

n

bits of the space, wheren 1is the number of tuples in \the
relation. Fiqure—23 shows the partitioning for b = 5. Same
pages cover two distinct regions of the space as indicated by the
page numbers (e.g. pages 2 and 7 in fiqure 23). .

In processing a partial match query, all the page: covering
the query must be retrieved. (E.g. for the partial match query x
= 3, 1in the above diagram, pages 3‘, 4, 6 and 7 would be
retrieved.)

We will establish a;'x upper bound for the number of page reads
required to process a partial match query (given that each page
covers b bits). V , )

Consider a 2d space and a partial match query on attribute 0.

The gap sizes éncountered along attribute 1 are 1, 3, 1, 11, 1,

13,' \1, (as in figure 19).

In visiting the bits of the space covered by the query, gaps
of various sizes are encountered. Each gap may contain zero, one
or more page boundaries. In crossing a gap without a page

boundary, a page read is not generated.-Crossing.a gap with at

least one page boundary generates 'exactly one page read. Suppose

for concreteness that b = 5. Then _gaés~ of size 1 and 3 may or ‘tﬁay

"not generate page reads. The gap jof size‘ 11 certainly will (since

b < 11). This observation, ombined with the results of the

previous section, imply a certain regularity in the partitioning

Erradi

2

g; e o
”
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Figure 23. Partitioning the space into pages.
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of the space.

The space can be partitioned by a regular grid. The boundaries
of this grid represent gaps of size greater than or equal to b.
When crossed they are certain to generate page reads. Figure 24
demonstrates this griAXJfor b = 5. Each sub-region of this grid
is a "chunk". In order to derive an upper bound for the cost of a
partial'match query we will proceed as follows:

- Find a constant which is an upper bound for the number of
pages in a chunk.

- Find the number of chunks accessed in the processing éf a
partial matcg query.

The product of these quantities fields the result (since, to
process a chunk, we have to read every page of the chunk in the
worst case).

We can placé more grid lines in the space to simplify the
analysis. The effect of this is to "force" more page reads. This
techniqie is valid since we are interested in an upper bound. We

therefore place extra grid 1lines so that each chunk is a

hyper-cube, (see figure 25).

2.7.2.2.1., Size of a chunk §

The finest sub-division of an axis (before "extra" grid lines

were placed) was on attribute 0 (since G(i,r). - increases as i

-

decreases). Solving
G(0,x) = b

yields the size of a chunk”s sidey

k-1

2 k kx

= [(27-2)2 +1] =b
L2 -1

\ k-1
1 p(2X-1) - 2

x = - 108[“”_——"”—_~]

k KL oko2)

[T

R ST
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1M -

6 22 6

Figure 24. Grid for b = 5.

Figure 25. Grid for b = 5 with extra grid lines.
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where the side has length 2x. To get an upper bound on chunk
size define

u =[xl
(since the x in G(0,x) is an integer). Thus
u<x+1

and the size of the chunk is

I3

That is, each chunk contains, (depending on k), no more than 2 or
3 pages, since, within each chunk, the z numbgrs are consecutive.
This is guaranteed since each chunk is a kd hypercube resulting

°

fram the even splitting of each axis.

2.7.2.2:2. Number of chunks read

Each axis has been divided into Zd—u pieces (during the
construction of the chunks). A partial match gquery on t
attributes covers

C oy (D) (@-u)

chunks. Using the value of u given above, .

L.

_ ey @Dy _ 2T 1k

[
b(2k—l ) - oK1

Since zk‘15 Moy, baf-1) - 2 < (b__-l)’(2k-l). also, (F-2) /

PM
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( (-n < (Fen s K

2k-

(k-t) (d-1) 1 ]
2(b-1)

4

In practice, 2k << b S0 (Zk—l)' / (8b=2) < (2k+1) / 2b !

k
RN < 2 (kot) (d-1) 2741 1-e/k 1 \1-t/k
~ 2 b
Recall that b = dec/n and P = n/c.
-(k-t) 2k+1 1-t/k _1-t/k
PM < 2 (5—=) pt

N £

Each chunk contains no more than S/b pages:

s -(k-t), 241 1-t/k ,l-t/k

1- t/k

= O(P ) pages.

This cost is the same as for the .kd trie.

2.7.2:3. Cost of range queries

The numbe,; of chunk:-;: covered is

where f.i is the fraction of attribute i covered by the query.

%l

k-1
2k(d~u) i fi + low order terms
i=0

R <

( zk(d'U) is the total number of chunks and nfI is- Vv, the "vol
of the query. Since each chunk has no more than S/b pages,

R = O(VP).

96
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3. An ISDS based on 1linear hashing

Linear hashing ﬁ[LithO] is a dynamic hashing method. It
provides access to the primary~page of any bucket in one access.
But linear hashing is not an ISDS because it is not order
preserving. That is, the successor of r, a record in the file, is
not related to the address of r. Other hashing methods can be
made order-preserving in a trivial way: by using the hash
function h(r) = [r/sJ where r is an integer and s 1is a scaiing
factor. Linear hashing requires the use of hash functions that
make this strateqy impossible.

In this section, we propose two variations of linear hashing
which are order-preserving. Both random and sequential accessing
will then be Jpossible. Such a data structure is very useful: it
is functionally equivalent lto a Btree but should have better
performance because it is based on hashing.

Since these ;lariations of linear hashing are order-preserving,
they are ISDSs and the techniques of section 2 can be wused to
create the corresponding 2ZMDSs. Since this process has been
di scussed in detail, we restrict our attention to 1d data: the
data to be stored is a set of integers in a given range.

Little will be said about the performance of these new data
structures. We expect that the performance will be typical of
hashing methods, (e.g. a random access should usually cost one
disk access). In the worst case, the behaviour is almost never
worse than that of a Btree. The only exception is t\hat an

2

insertion will occasionally cost O0((log(n))“) if the data is

highly clustered. e

BRI BR I a G™F e e
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3.1. A variation of linear hashing .

3.1.1. Linear hashing ,

A description of a special case of limear hashing is a
prerequisite. The data to be stored consists of ;:ecords of d
bits ‘each. Record r can be regarded as the integer ‘<r0 | veve |
rd_1 > where rI is the ith bit of the record. The records are to
be stored 1in buckets 0, 1, ... . The number of a bucket will
also be the address of the bucket”s ‘primary page. Overflow pages
are allocated fram a separate address space.

Tﬁe file is accessed using hash functions of the form

h‘(r) = r mod Zi
The value of i is one of two consecutive integers, m and m+l,
where m is the level of the file. K A pointer to the file, n,
indi cates whether hm or hm” should be used, (see fi;gure 26) .

Buckets 0 through n-1 and 2m t hrough 2m+ (n-1) are at level
m+l; buckets n through 2m- 1l are at level m. n is a pointer to
the next bucket to be split. It travels from left to right so
that every bucket is split in turn. When bucket n is split, its
records are distributed between buckets n and 2M + n, both of
which will then be at level mt+l, (since n was incremented) . When
n reaches 2™ all buckets are at level mrl; n is reset to 0 ar;d
starts travelling right again.

A record is assigned to a bucket based on the value of rd_m;
the mth least significant bit. So all reco/rds in a level m bucket
agree in their last m bits,

A bucket is split (and n is incremented) whenever a record

hashes to a full primary page, (i.e. there is a collision). The
RS

bucket that is split is not, in general, the one involved in the

¢

i, AT PR
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Bucket- 0 1
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Figure 26. Linear hashing,
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) :
collision. But eventually, every bucket will l;e split and
(hopefully) the overflow pages will be reclaimed. If splitting
creates empty buckets, (because ei ther all or none of the records
moved) , and the load factor threa‘tens to become "too 1low", the
spiit is suppressed.

Litwin claims that a linear hash éi'le can also shrink [Litw80]
although he does not give. the dele’tion algorithr{x. It is not
difficult to imagine how deletions might be handled. For example,
when the overflow pages of any bucket become empty, buckets n and
n + 2m could be combined and' n decr emented.

To 1locate a record}, r, Randac(r) (for "random access") is
called to,locate the bucket‘. We are not concerned with searching

within the bucket. '‘Randac returns the number of the bucket

containing r.

Randac (r) .
Offset (r) locates the rank of record r within the bucket.

B := hm(r)

if B <'n

then (* B has been split to give two buckets on level m+l *)
B :=h,, (r) ‘

end

return(B,of £set (r))

end Randac

. m ... .
Generally, the range of hm(r) is [0, 2'-1]. fI'hat is, hm and hm+1

both hash to [0, 2™-1]. Consider the buckets in [0, n-1]. Since n

< Zm, both hm and h ash to [0, n-l1l]. But any bucket in this

me1 B _
range has been split so hm+1 is the correct function to use.

§‘0ne attraqtive feature of linear hashing is that it grows
smoothly; one bucket at a time. The growth 1is "linear®. The
directory of extendib;e hashing, on the other hand, grows

exponentially? it doubles in size periodically {(but there are few

B
[

o
:f

‘i”E‘A“
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of these expansions). In addition, buckets of extendible hashing

split when they be come full, requiring an update of one directory

>

entry.

g

3.1.2, Order-preserving 1linear hashing, (OPLH)

Consider the partitioning imposed by the hash function hm(r) =
r mod 2m. All of the records in a given bucket (at level m) agree
in LSB(r,m), the m least siénificant bits, <rd__m | een | rd_1 >.

If, instead, the records agreed in the most significant bits,
each bucket would store all of the records of the file that fall
in a certain range. The hash table would then be order
préserving. Let lef(t(s,k) and right (s,k) denote, respectively,

the k leFtmost and rightmost characters of string s. Mir (<c, | c,

1
[ ooe | c,>) is the "mirror image", <cv] eoe | ) | cq> where
each ci is a single character.

The simplest way to partition the file on the basis of- the

most significant bits is to store record r in bucket h (mir(r)).

That is, the bits are reversed before hashing. Clearly

hm\(mir(r)) right (mir (r),m)

mir (Left{r ,m))
The bucket number is obtained by ;eversing the bits of them bit
pref ix of the record. Searching and splitting work exactly as for.
linear hashing. /Thié‘has to "be true since, in effect, - we are
dealing with al:xother file in which- each record, r, hasn‘,been_‘
replaced with mi'r(r) .

If the bits of the i:n_cefix were not reversed, i.e. hm(r) =
left(r,m), then splitting works “differently. This alternative is
explored in section 3.2,

Figure 2] shows an example of -an order-preserving linear hash

2&

-

-
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[<mir (b) | Ozd-mb>, <mir(b) | l':d-mb>], (recall that b is an m
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4
file. Notice that the mirror image of the m (or m+l) bit prefix
of a record at level m (or m+l) matches them (or m+l) bit
representation of the bu'cket number. So bucket 3 = 0112 is at
level 3 and storés ‘-}:ecox:ds with prefix 1102.
Burkhard has independently discovered OPLH [Burk82]. He also

2

applies shuffling to yield an MDS but his search algorithm is

!

different from the Rangesearch algorithm (and variations) given;

in section 2. Burkhard does not discuss "sequential" OPLH, (s,ee\

section 3.2), nor does he address certain problems with OPLH

which are dealt with in detail in section ‘3. 4.
8

?.1.3. Algorithms

The wvariation of linear hashing described above supports
random and sequentifal accessing. Randac, given in section 3.1.1,
can be used except that the argument to hm and hm+1 is mir(r)
instead of r.

Suppose that there are N(b) records in bucket b, The address
of a record is (b,i) where b is a bucket number and 1 < i < N(b).
If i 2 N(b) then the successor of R(b,i), the regord at (b,i) is
R(b,i+1) . The number of recordé in all buckets iS NR, ﬁ is the
number of buckets, |

Consider the prpblean of finding the successor of R'(b,N(b)) .
The level of the bucket is knov}n: the_ level, mb, is m‘ if b < n,
m-1 otherwise. This bucket rep;'esént:s all records in the range
b
bit number). The smallest record above this range is

S

<mir(p) | l:d-m_> + 1

b

<mir(p)+l) | O:d-m > A

A search for S (using Randac) wilI/ locate b”, -“the bucket

e e A i

St S B i G <
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containing the successor of R(b,N(b)). There is oné pgoblem: b*
may be empty. Repeating the above procedure until a non-empty
bucket is - found yields .the bucket containing the successor of
R(b,N(b)). The complete algorithm for sequential 'accessing'is

given below.

Seqgac (p)

P is a pointer to a record, (b,i).

if 1 < N(b)

then
1 =1+ 1

else
(* find next bucket *)
repeat untilnyotEmpty(b)

if n<b<2M™ -1 -
then (* Level m1; bis an m-1 bit number. ¥)
S := <(mir(b)+l) | 0:d- (m-1)>
else (* Level m; b is an m bit number. *)
S := <(mir(b)+l) | 0:4-m>
end . -
p := Randac(8)
end
return
end Seqac ' d

The bucket splitting and joining algorithms are Split and

Join.

f
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split

Bit(<c c >,1) is c..
. 1 | w‘ v’ i
for i := 1 .. N(n) (* Bucket n is being split. *)

r := R(n,1i)

if bit(r,m) =0 . . )

then . . . ’ \
(* the record does not move *) ’ .

else m -
move r to bucket n + 2

end

m

* All buckets are at lével m *)

:= 0
= m + 1

+
= 2

(
end

return

end Split

I Q
(o]
o
Q
£
=]
(o]
o]
®
[
®
<
®
-
%

»

n” :=n+ 2"
for i := 1 to N(n")
move R(n”,i) to bucket n
end
return

end Join

3.2. Bnother variation of linear hashing, ("Sequential" OPLH)

As suggested in section 3.1.2, another order~preserving
variation of 1linear hashing can-"be obtained by using the hash

function hm(r) = left(r,m). The method of section 3.1.2 has the

following property: bm = <x0' | .. | xm 1> is the number of &

bucket on level m, (each x. is 0 or 1),,and b_ /= <0 | x, |
c m+1 0

X > is the number of a bucket on level mtl. ' Since b is
m-1 m+1

ngw e L AAISICN sl Oy vr mdwwn T R e
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derived from bm during a split of the latter, the two buckets

,will never be present at the same time. This property does not

hold if the new hash function, h_(r) = left(r,m) is used. It is

m

possible to have bm and _bm+1 present simultaneously and this’

requife; that the organization of the hash file be reconsidered.
T’i‘i‘cnside.r the situation of figure 28. When bucket 0 is split,
the third bit will be used to separate the records (since level 3
is being started). The buckets created will be OOOé and 0012. But
there are now two buckets with the same number, 1: 0012 and 012.
Generally, bucket n is being replaced by buckets 2n ana 2n + 1.

1 - 1 then 2n + 1 < 2"]- 1l so the créated buckets will

Ifn< Zm;
have the same address as existing buckets.

There is a simple solutioﬁ to this problem: place all level
m+l buckets in locations following the last level m bdcket.
Applying g?is strategy, the file of figure 28, after being split
twice, Qould appear as in figure 29. ; |

Locating a bucket is slightly more complicated: a bucket

number can no longer be useéd as an absolute address. It is\now a

(base, offset) ﬁéi The base is the absolute address bf'the

first bucket of the level and theiydffset is the butcket ndmber*

itself, (thus bm and b can be distinguished: the of fsets are

m+1
the same but the bases are different). ' %

~

In fiqure 29, the base of level 2 is 0 and the base of level 3

; . 1
is 4. In general, -let Bi be the base address of level i. If the

file starts at level 0 and BU = 0 then BI ='B11 -+ £—1 so Bi~=

2! - 1.
This organization, asé with standard linear hashing, grows by

one bucket at each split: ‘when two buckets are added at level

m+1l, the bucket being’ split (at level m) is discarded, (e.g.

G
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Bucket 0 1 2 3
Prefix| 00 {01 | 10 | 1
Level 2
Figure 28. Using hm(r) = left(r,m)

Bucket 6 1 2 3 4 5

Prefix 10 1 000 | 001

010

011

vel 2 . _ 3

Figure 29. Levél mtl buckets follow leQel m buckets,
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buckets 00, and 01, of figure 28 Ao not appear in figure 29). The
problem is that the file is constantly "movina forward". 1In
practice, a file has a fixed number of buckets. If these buckets,
0, ... , F-1 .are treated circularly, {(bucket 0 follows bucket
F-1) , then the problem is eliminated. The modifications of the
algorithms to deal with this circularity are simple. But for
simplicity of presentation we continue to work with an open ended
sequence of pages, 0, 1, ... .

The Randac algorithm of section 3.1.1 can be used but the hash

function must be modified to incorporate both components of

bucket addrii:js.
h = Bm + left(r,m)

m
returns the required absolute address.

-

Seqac requires only a slight modification. Bucket b is on

level m if b < Bm » {instead of n < b < 2m - 1).

Split places the contents of bucket n (at level m) in buckets

2n and 2n + 1 (at level mtl). The absolute addresses of these

buckets are Bm + n, Bm+1 + 2n and Bn+l + 2n + 1 respectively.

An.attractive . feature of this variation istthaé, excgpt for
one diécoﬁtinuity, consecutive ranges are ;n consecﬁtive buckets
(and the corr;sponding primary pages are physically adjacent).
This implies better pqrformancg during sequential processing
since the disk arm will not have to mowve very much. The method of
section 3.1.2 doés ‘not have this property. Because physical
sequentiality of logically sequential“gages is guaranteed by this

method we call it "sequential™ OPLH, (SOPLH).
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3?§. Overflow
OPLH places severe restrictions on the hash functions that can
be used. The hash functions.: that have been used are left(r,m)
and mir(left(r,m)). It 1is possible that these wvalues, prefixes
of records, will be .clustered. That is, left(r,m) may not
"scatter the data very well, So overflow will be more common than
with other hashing ;Ethods. i

So far,' almost néthing. has been said about how Oyérflow is
dealt with. Both Litwin and Burkhard suggest thé use aof overflow
chains [Litw80, Burk82]. A Btree (or variant) }s a much more
appropriate data structure in tﬂe present context. Since OPLH is
indexed-sequential, the data structure representing an
overflowing bucket should be also.

We have also said very little about the performance of OPLH.
Our only concern will be to prevent the performance fraom being
worse than for a Btree, (whenever possible). If the data 1is
distributed uﬂiformly,’phe performance is better.

We will use a B+tree instead of a Btreé: it is a
non-homogeneous data structure. I.e. all the records are in the’
leaves. This results in simplified algorithms. To simplify
matters further, a bucket which has not overflowed will be
regarded as a B+tree containing one leaf, (i.e. all pointers are
null) . ?

A bucket which has not overflowed stores all of its records on
the primary page. A bucket which has overflowea ‘stores the root
of the B+tree on tpe primary page and uses pages ‘from abseparate
address space for the descendents. -

The use of a B+tree (instead of a 1linear list of overflow

?
pages) complicates operations on buckets: Split and Join. -It is

! -
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essential that these operations preserve the properties of
. i ) Ie

B+trees, (the load factor in particular). In section 3.4 these

B+tree operations and others will be referred to. The

implementation of these and other B+tree operations will be

discussed in section 3.7.

3.4. Multi-level OPLH, (MLOPLH)

3.4.1. Problems with OPLH

An OPLH file may contain an arbitrary number of sparsely
filled buckets. This can result in poor performance for
sequential accessing. Consider thf situation shown in figure 30.
To retrieve all the tuples whose prefix is 002 buckets 0, 4 and 8
must be accessed. These three disk accessel yield~two tuples.’If
the entire file were at level 2 then bucket 0 would contain the
tuples which would be retrieved in one access, (since primary
page capacity 1is 4). But if £he file were at level 2, other

*

searches, (e.g. for prefix 1002);4,would be more expensive.

¥

" Furthermore, it would take six joins to reach level 2. So the

. problem is not solvedlby joining more frequently.

The situation demonstrated in, figure 30 is characterized by
the appearancé of severai sparsely filled buckets. It can occur
following a sequence of splits- which distribute the tuples
unevenly or ’following repeated deletions sconcentrated in a few
buckets. Sipce it can occur as a result of deletions, suppressing.

splits does not solve the problem either.

g

BRWARE 3

Lt

P
o A

i At



107A

Bucket 0 1 2 3 A 5 6 7 8 9

N1 1 4 2 6 )/ 5 6 5 0 4

Level A 3

’

¥

Figure 30. OPLH with sparse buckets.
0 or 1 record.)

\

(A bucket is sparse if it contains
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<

3.4.2. Adding more levels to OPLH

Linear hashing, as described in section 3.1.1, is based on the
binary trie: it classii}es records according to a sequence of
bits, (the suffix). Other data structures based on this idea are
extendible hashing [Fagi79], EXCELL {Tamm80], HCELL [Tamm8l],
trie hashing [LitwBl] and, of course, the trie [Fred60, Knut73].
What all of these data structures have in common is the notion of
"level"”. The level of a record is the number of bits used in its
classification. Records are usually grouped into buckets (as we
are doing). The level of a bucket 1is the 1level commoP to all”’
records in the bucket.

The trie stores a record at the lowest level providing a
classification which avoids bucket overflow. The same is true of
extendible hashing, FXCELL and HCELL but each of these has a
5Hirecto:y with ;ll entries at the same level. Linear hashing and
OPLH use no more than two consecutive levels.

The problem with OPLH, described above, would be alleviated if
parts of it could be stored at lower levels than normal. E.g.
if, in figure 30, the coﬁtents of buckets 0, 4 and 8 could
stored in a level 2 pucket, (corresponding to prefix 002),
leaving the rest of the filé at }e&els 3 and 4, the probleg would
be solved. Next, we discuss a "multi-level" version of OPLH,
MLOPLH. A multi-level version of sequential OPLH (SOPLH) is

briefly discussed in section 3.5. 3.
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3.4.3. Sub-normal buckets

A bucket is sparse if it contains no more than a given number
of records (which is a fraction of the capacity of the primary
page). A sparse bucket will not be permitted to exist. It will be
combined with its brother to form a sub-normal bucket: a bucket
whose level 1is lower than normal. If level (b) < NormalLevel (b)
then b 1is sub—normal.x(Level(b) is the level of the bucket and
NormalLevel (b) is m or mtl. b and b” are brothers if level(b) =
level (b”) and |b - b-| = 2evell®-1

Consider the file of figure 30. Buckets 0, 4 and 8 are sparse.
To eliminate the problem, buckets 0 and 8 are 3joined, (they are
brothers at the same level), yielding ¢the level 3 bucket ﬁor
pref ix 0002. Joining buckets 0 and 4 yields a level 2~buckef at

address 0, (see figure 31). Note that buckets 4 and 8 could not

have been joined first: they were at different levels.

3.4.3.1. Degenerate splits

A split may vyield one or two sparse buckets. ‘It is not
feasible to refrain from splitting.until the situétion changes:
all further splits are also delayed. Instead, the bucket that
should have been split can remain at its current level and n,
(the pointer to the next bucket to be split), 1is advanced. This
is a degenerate split. For example, suppose thdt a split of
bucket 2 in figure 31 yields a sparse bucket. The degéﬂeraée
split leaves the bucket at level 3, (it'is Fhén sub-normal; see

figure 32) . . N
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Bucket 0 1 2 3 L5 6 T 8 9
N2 4| 216 | - s 6| 5| - |4

level| 2 | 4| 3|3 - 3]3 3] -4

Normal level’ 4 \ 3 . b

&

B
Figure 31. Multi;level OPLH: sparse buckets have been eliminated. 5
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Figure 32. Bucket 2 has undergone a degenerate split.
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3.4.3.2. Forcing joins Y

A bucket can also become sparse following a deéﬁtion. When

this occurs, the bucket is joined r with its brother. For example,
if ,a record is deleted . from bucket 2 of figure 31, it becomes
sparse. It is then joined with its brother, bucket 6, (see figure

33) . '

- N

- -~ v EY

3.4.3.3. A sparse bucket may become non-sparse

q

A sub-normal bucket can, due to insertiﬁns, yield higher level
buckets Ehat are both non-sparse. For example if the record
deleted from bucket 2 were put-back, it weuld be correct to

distribute the records of bucket 2 1in figuré:33returning to the
v

situation of figure 31. This operation is similar to, but not the

.

same as a split. -

.
-~

3.4.4. AXlgorithms (

(

~

The mdﬁifications of OPLH given in sections 3.4.3.1 - 3.4.3.3 ‘

are extensive. We now give all the algorithmév needed for the:

implementation of MLOPLH, . ' L

\ . s

3.4.4.1. Random accessing

-

Since records are not always .in the buckets the¥ should be in,
(e.g. due to a forced join), same mechanism is required\MEor
lopating a rec&rd. Qeading an empty bucket (e.qg. bubkét 4 in
figure 31) is an indication that the records of thg bucket have

moved to the brother bucket', (and down one level).’ There ‘§s a

.problem with this approach: In}) an MLOPLH file containing buckets

at many Ieyels, a record may halte been moved down several levels.

~

One disk read is required . .to . er that the records of a
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bucket have been moved down one level.

To avoid\the di sk ;eads, an array of bits, Moved, can be used:
it contains one bit for each bucket. Moved(b) is true iff the
contenEé of bucket b have been moved (to bucket brother (b)). The
array entries for the file of figure 33 are shown in figure 34.

Since athg space requi;ement of Moved 1is only one bit per
bucket, it can be kept in primary " memory even 1if the file is
quite large.

The Randac algorithm uses Moved to find %he level of a given
record.

=

Randac(r) .
L 1s the level of the bucket whose range contains r. Offset
locates the rank of the record within the bucket.

if hpy(mir(r)) < n
then L := m+l
else L :=m

(*. Skip over empty buckets *)
while Moved(h (mir(r)))

r L 2= L -1

end

return((hL(r), offsetkr)))

end Randac

3.4.4.2. Sequential accessing

2

As before, Seqac must construct a successor record and perform

a random access. But since there are no sparse buckets the loop

A

which skips over empty buckets canh be removed.

L
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Level| 2 b

Normal level A 3

Figure 33, Buckets 2 and 6 have been joined.
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Moved| 0 0 0 0 1 o 11 0
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Figure 34. The Moved array.
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Segac(p) -

"p 1s a pointer to a record, (b, i). !

if i < N(b)
then 1 := 1+ 1 g
else - - )
(* is a number .of level(b) bits *)
5 <(mir(b)+l) | 0:d-1level (b)>
p Randac (S) - :
end
return

i o

end Seqac

3.4.4.3. Splitting

The Split algorithm must be modified to deal with the creation.

of sparse buékéts. The details of this will be-dealt with by the
Distribute algorithm? (Distribute will also handle sub-normal
buckets becoming "more normal”.) The split may be degenerate;
Distribute is.noé called if Distribok indicatés this condition,

(see,seqtion 3.7.1) .

split()

if level(n) = m

then (* the bucket is not sub-normal *)
if DistribOK(n) then Distribute(n) end

else . .
"(* The bucket is sub-normal, The records will be distributed *)
(* as soon as insertions to the bucket ensure a *)
(* non—degenerat¢'diStribution of the records. *)

end ' .

4

(* Inorement number of buckets (N) and pointer to next *)
(* bucket to be split (n). *)

N.:= N+ 1
n :=n +ml , ’ =~
‘if n=2 : ‘ : ‘
then
h :=-0 .
m:=m+1 , §
end T
return

end Split

e o

-
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3

3.4.4.4. Joining

Jéin must be modified to deal with sub-normal buckets. Collect
combines the contents of brother-buckets. (and will be wus'ed to

deal with buckets which become sparse due to deletion).

Join{()
N := N -1
n :=n-1
if n< 0
then
ms:= m- 1
n:=2" -1
end

if level(n) = m]

then {* the bucket is not sub-normal *)
Collect (n)
else
(* The bucket is sub-normal and already at or below level m, *)
end . ' >
r eturn
end Join

3.4.4, Sy.Insert a record

When a record is inserted, the receiving bucket may be able to
distribute K its records without - creating sparse buckets.
AddToBucket performs the update' of 'tlje bucket’s data structure

and is discussed in section 3.7.

Insert (r) ' ‘

r is the recor being inserted. P is the address of the smallest
record greatef than or equal to r. N(b) is ‘the number of records
in bucket b. NR is the number of records in the file.

p := Randac(r) ’ .

b := bucket(p) (* the bucket portion of the address *)
AddToBucket (r.ap) . .
N{b) := Nfb) + 1

NR := NR + 1 _

if TimeToSplit (NR, N) then Split() end

. 1f DistribOK(b) then Distribute(b) end
.return ,

end Insert

£ e o e T Ve d
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3.4.4.6. Deletion of a record

If deletion creates a sparse bucket it is deleted by calling

Collect. The algorithm is analogous to Insert.

Delete(p) .
P goints to the record being deleted.

b := bucket(p)

RemowveF romBucket (p)

N(b) := N(b) - 1

NR := NR - 1

if TimeToJoin(NR, N) then Join() end
if sparse(b) then Collect (b) end

r eturn

end Delete

’
+

3.4.4.7. D\%stribution of records in a bucket

Distribute ié called by Split and Insert when the records c;f a
bucket b at level level(b) are to be distributed to brother
buckets at level 1level(b) + 1. The records are clgssif ileé
according to the value of the leve!.(b) +1lst bit. SplitBucket(b)
performs this classi.fication. . ’

Note that Distribute 1is recursive. ‘Conside‘r the situation of

figure 35. Bucket 0 stores all the records whose prefix is 0, but

2
the distribution of these records is biased. As .soon as two
records with prefix 012 are inserted, bucket 0 can be split to
yieJ'.d buckets "0 and 1 (correspoﬁding to prefixes 'OOZ.and '102
respectively)'.. Now, bucket 0 has 24 records. Assuniing an even

distribution, the distributions shown in figure 36 can occur,

(the prefixes are shown). These distributions are performed by

the recursive calls.
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Bucket 0 ™ 2 " 3 4 5 6 9

N 26 | 3| - | & | -3 | - 3

Level| 1 L - 3| -3 - L

Normal level 4 ' 3
" 00: 2
01: 0
Figure 35. A large cluster of records in bucket O.

, w
/ 00\
/OOO\ ‘ 001
0000 0001

Figuire 36. Distribution of the bucket 0 records.
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Distribute(b)

if level (b) < m
then (* distribution is possible *)
oldlevel := level(b) .
b” := brother (b) ,
SplitBucket (b)
level (b) := oldlevel + 1
level (b”) := oldlével + 1
if DistribOK(b) then Distribute(b) end
if DistribOK(b”“) then Distribute(b”) end
else .
(* brother(b) does not exist yet *) . ®
end
return

end Distribute

3.4.4.8. Collection of brother buckets

Collect 1is called by Join and Delete to combine a sparse
bucket with its brother. JoinBuckets manipylates the buckets”
data structures,. )

Collect is also recursive. Consider a Collect of bucket b at
level I, and b” = brother (b) at level L > L. Before the Collect
can occur, b” must be at level L., To ensure this, b” is
collected, even thougil nei t_hér b nor brother(b”) (# b) is

sparse.

'
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Collect (b) -
b” := brother (b)

(* Bring b” to level of b *)

if level(b”) < level(b)

t hen (* interchange b and b~ *)
b :=:Db”

end ' ’

while level (b) < level(b”)
Collect (b”)

end

{(* Place result in lower bucket b *)

if b° < b then b :=: b’ end

JoinBuckets (b,b”) ’ ,
level (b) := level(b) - 1

r eturn

-
end Collect . )

/

3.5, Problems with MLOPLH g

By eliminating sparse buckets, the problem of potentially poor
performance %or sequential processing has been solved. For
searching, MLOPLH is not worse than the Btree. It can be expected
to.have better performance since most buckets will not overflow.

Updates occasionally generate calls to Distribute or Collect,

These calls can generate a lot of work; a scan of the entire file

is required 1in extreme cases. In this . section, the problem is

explained and a solution is proposed. ] .

3.5.1. The problem

Consider the situation of figure 37. A rash of deletions from

bucket O have caused it to become sparse, It must be collected,

. Its brother is bucket 1 which is at level 4, Bucket 1 must

therefore be collected, putting it at level 3. By the time - -that

bucket 1 reaches level 1, the contents of buckets 3, 5, 7 and 9

R

~

will have been moved té bucket 1. Half of the buckets have been

-
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Buckt 0 1 2 3 4 5 6 7 & g

. S - | 8 BN T
L evel 1 b - 3 - 3 - 3 - L
Normal level b 3 IA

Figure 37. Half of all the buckets are involved when bucket 0 is collected.

.

T o e e

P



- w ¥

Chapter 3 Section 3 117

I . D
a%fect,ed.

A similar problem plagues Distribute. 6enerally, Collects and
Distributes involving buckets at very low levels: 0, 1, 2, etc.
involve very large fractions of the file.

The cost of moving records fr&n one bucket to another is a
minor concern: the records in brother buckets b and b® can be
merged in til‘ne O(lgg(N(b)) + log(N(b"))), (see section 3.7). This
is possible because all the records 1in bucket b are smaller than
those in bucket b”, (and only the ""edges" of the B+trees have to

\ .
be modified).
Theé major concern ‘is‘. the numbér of . buckets whose contents have
to be moved. For example, collecting a bucket on level L may
caus e as many as about N / 2L buckets to be accessed.

*

3.5. 2. The solution

Clearly, the solution invblves placing a lower bound on the
“1eve1 of a bucket. For example,~if the lowest level pe;:mitted is
S5, then a bucket being collected will be at least on level 6 and
no more than 1/64th of the buckets will be involved in any
Collect.

A consequence of this strategy is that a few sparse buckets
may exist. In general, if. the: lowest level permitted is L then
there may be as manyh as 2L sparse buckets.

A few modifications to MLOPLH are required to make this work:
-'The file is initialized with ZL empty buckets, (ins'tead of one
empty bucket). NN
- Sparse buckets must be kept track of. The address and level of
each must be known. When a new sparse bucket is created for any

reason, and the number of sparse buckets exceeds 2", the sparse

]
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bucket at the highest level is ¢ollected, (this 1is the cheapest
one to collect)'. '
- The modifications ot the Split, Join,<Distribute and Collect
algor i thms are sﬂtraightforward.

It is interesting that there is a tradeoff/ between the worst
case costs of sequential procgssing and updating: an update may

L L

require accessing N / 2~ buckets and there are up to 2~ sparse

buckets which can slow down sequential processing.

3.5.3. Segquential MLOPLH

All of the modifications of OPLH through section 3.5.2 can
also be applied to SOPLH. The.only difference is that brother
buckets b and b°, b < b” ,' when collected would reside in bucket

b® ins tead of bucket b.

3.6, Performance .

MLOPLH is a complicated but potentially faster alternative to
the Btree. Random accessing is definitely faster in MLOPLH: in

the worst case a Btree containing the entire file has to be

__searched. Seciuential accessing will be about the same for both

data -structures unless a large number of sparse buckets are
permitted in an MLOPLH file.

It is difficult to compare the performance of dynamic
operations, The frequency of "exceptional" updates (e.qg.
involving page 'splits for a Btree and bucket distribution for
MLOPLH) may not be the same for the two data structures. Also, it

is difficult to compare the costs of executing the "exceptional"

updates . i /

s, i am AT RSS o R E




Chapter 3 Section 3 119

It 1is clear that in some cases MLOPLH rﬁay access a fixed
fraction of the bucket:vs:~ this is defini tely slower than the
Sslowest Btree ubdate. )

Tt is also clear that ‘a lot of‘worklis(neces,sary be f ore ML OPLH
can be r ecommended Lag the successor of the Btree. This work falls
in three areas:

1) Fine tuning: selecting values for parameters (e.g. threshhold
for sparseness;, number of sparse buckets‘permitted).

2) Studying various strategies fo‘r administrative details such as
when to split ‘and when to Jjoin, (i.e. the TimeToSplit and
TimeToJoin algo;rithms). ‘

3) Experiments comparing MLOPLH and the Btree.

3.7. B+tree algorithms

We now discuss the various Bttree operaltipns-required by
MEOPLH. AddToBucket and RemoveF romBucket are the: normal B+tree
insertion and deletion algorithms. 'I'h; ‘o’thers are discussed
below.

We use the B+tree instead of the Btree because it simplifies
the algorithms which follow. For simplicity 9f explanation we
suppose that a discriminator used in an internal' node is a
complete record, (i.e. an integer of the file). So both leaves
and internal nodes have the following format: [p , r‘ ’ p1 ’ rz

’ rc, pc] where p 1is a pointer and r is a record. c is

!
pz' |
the capacity of a page. The records in the subtree pointed to by
p, are greater thad or equal tor , i =1, ..., a, where a is

! ]
the number of records actually present in the page. The records

in po‘s page are strictly less than ry. For a leaf page, P, =

O
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null, i =90, ..., a.
To maintain a minimum load factor of 50%, each page (except
possibly the root) must contain at least ¢/2° records. The

algorithms below will preserve this property.

3.7.1. DistribOK

~wRistribOK examines the contents of a'bucket, returning true
iff the records can be distributed non-degenerately. If this 'i‘s
possible then Distribute will be called and two non-sparse
buckets will be created.

The r ecords in a bucket, b, are divided into two Sete:% Si '.is
the set of records whose level(b) + 1st bit = i, i= 0, 1. x &€

SG and y € S1 implies x < y since all records in the bucket agree

in the first level(b) bits. . -

A bucket is sparse if it contains fewer than a given number of

records, s. The sparseness of SOH . can be decided in O(log
n) time, where n = ISO U S1| is_the number of records in the
bucket:

PR FUUP SSSERPRCIP L WA NS W st

- Find the first record on the leftmost leaf.
- Find the s-lst successor. This i's record R¢(b,s).

- SO is sparse if R(b,8) € S.] since there were fewer than s

records in S . . . s

The sparseness of S1 can be decided - in avs'imiylvar way. ) ¥

3.7.2. SplitBucket

The e records will form one bucket and the 84 records will

" . . .
form ahother. These are buckets BO- and‘~B¥‘ respectively. On each.

[
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level of the B+tree there is one discriminator on one page which
acts as a "bou.ndary" “between S0 and S'I on that level, E‘ach page
of this  type w?ll be split yieldinb _om‘e‘page for each bucket”s
B+tree. So splitting of the B+tree can .be achieved in one pass of
the set of bound%ary pages from the root to thewf_leaf boundary

page . : _ . ": | : ) «¥
Splitting a page may yield 0, 1 or 2 pages with too few
records. 'i"hese' pages will be called deficient. The "right

fringe" of BO and the "left fringe"™ of B'I have to be adjusted to

eliminate such pages. For example, a deficient. page on the 'ri_ghtf

fringe of B would be combined with its ‘left neighbour, (possibly

<
a brother) . If this causes, overflow, it is dealt with in the

_ normal way (and the net effect is a "rotation" of records into -

»
!

‘We are assuming that the neighbour of a page can be found

quickly. This is possible if, the pages on each level are

-

org'anized into a doubly linked list.
A i

The algorjthm consists of three parts.

r

"1} Find the 'path through the B+tree containing the boundary -

—

.pages . ) ’ : T

2) Split the B+tree th:éugh, ‘the boundar-by péges.
3) Eliminate def icient pages from the right fringe of By and fram

the left fringe of By -
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SplitBucket (b)

FindBoundary(b,stack)
SplitOnBoqndary(étack,A;}A,)
FixRightFringe (A,,R,)
FixLef tFringe (A, Ry)
tqot(b) t= Ro

root (br other (b)) := Ry
return

end SplitBucket

3.7.2.1. FindBoundary

1224

This algorithm is straightforward. On each level, the first S4

record is located and its, address is placed in stack.

FindBoundary(b,stack)

P := Db .
stack := EmptyStack ()
repeat until p = null
j := FindFirstsS (P)
push ( (P,j) ,s tack) -
P := p
end J
return

end FindBoundary

3.7.2.2. SplitOnBoundary

Each page in.stack 1is split at

]

the indicated position.. The

resulting pages are  entered-into Stacks AO and A1 "which will be

used in the eliminatidn of deficient pages.
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. e e
SplitOnBoundary(stack,As,Aq) o
Page P is split to ylield pages P and P°. C and C’ are the
previous. values of P and P°, (i.e. from the lower level).

= null

:= null '
epe at "until Empty(stack)

(P,j) == pop(stack)

(* P = [Pos Lys Pyv wve s Lgr Pgl )
tPa ge(P )
= |
(

c
c”
r

po’rl’ pi' ""r,—i 'pj'i]
* note: p;,4 = C ¥*)

P* := [C’, ¢, , 1 e r Ty P
push(P,A,)
push (P~ ,Ay)
C :=P
C” := P~

end

return 3

8

end SplitOnBoundary

3.7.2.3. FixRightFringe

We now show how to eliminate deficient pages from the right

fringe of BO. A similar algorithm is used for B1. The fringe 3
pages were stored in a stack. Popping the stack yields the fringe 2
’ . §

pages,- starting with the root. Each page will be combined with %
. ” : 5

its left neighbour. If overflow results, it is handled 1in the %
usual way. Finally, there may be somé empty pages at the top of .
. ‘ s

BO. These are eliminated and the root is stored ih R. %
- » N §|

- 3

!
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FixRightFringe (A, R) \ \

R := top(A
repeat un¥il Empty (A)
P := pop(A)
if deficient (P) ¢
then
if P has a left neighbour
then
P := Lecombine (P)
end
else
(* P is OK *)
end
end

/,

(* Find the root *)
while R has no records
P := R
R := page (R) .p, ]
Retur nPage (P) .
end {
return ) :

end FPixRightFringe

Lcombine concatenates two pages and ‘rgturns the resulting
page.¢ To do this, a discriminator must‘be located. }

Tﬂis involves O(log n) time where n is the number of records

in B, (sinece the’ d{scriminator is the leftmost record in P’s

[ Y
subtree). Since the search for a discriminator may occur O(log

n) times, the' runming: time of FixRightFringe " (and therefore

2y.

SplitBucket) is O((log(n)) (But recall that a B+tree exists

only in-case of overflow and that n < NR, tge number of records

in the entire file.) ' :

‘ . \

3.7..3. JoinBuckets : ' \

Two buckets, b and b” are to be joined. Th% records in one

\
bucket precede all those in the other. Suppose ﬁhat b contains
the smallgr records. In general, the heights of H and b” ar.e not

. \ i}
the same. Let h be the height of b and let h” be. the height of
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¢

b“ . For purposes of explanation assume that h > h”.
An essential property of B+trees is that all leaves are at the
same level. So the leaves of b and 5’ must be at the same level.

‘Therefore, the root of b” will be at the same level as level h 4

h” of b, (the root is at lewvel 0).
Now consider the root of b”, P”, and its neighbour in b: P,
the rightmost page of level h - h”. The layouts of P and P” are

[po,r1,.p1, e 0 E pal and [p’é. r{,p;. e s r;,.p;,l

respectively. To merge the two B+trees, replace node P by [p ,

r1, 91, cee g ra, Pay M, pé, r{, pi, . r;,, p;,] where M” is

the minimum record in b”. This can be found in logarithmic time.

Overflow resulting from this concatenation is handled in the

usual way.

The main results of this chapter are summarized in

chapter 8, sections 1 - 3. , .
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In this chapter we review the relevant literature on recovery
and concyrrency control. It may seem odd that ghese subjects\are
dealt with toéether: they have traditionally been gonsidered to
be separate problems. This point of view has contributed to the
complexity of implementations.

Recently, the database community has noticed that the two

problems are not independent: parallelism can be enhanced by

using slightly out of date information which is kept for purposes °

of‘recovery.

In- 1978, Reed considered the relationship between the two
problems in a more general context [Reed78]: A relation can be
seen as a Ssequence of versions. Each updqte generates a new
version. Recovery can be achieved by bringiﬁg a recent version ﬁﬁ
to date. Concurrency can be enhanced by permitting a user to read
a selectea (01d) version of the relation. ;}v

~ “a
Some of Reed”s ideas have been incorporated into the design of

the Local Dat abase Manager (LDM) [Chan82]. | ,Theip desién

resembles ours in same ways but there are large differences also.
In sections 1 and .2, recovery and concurrency control
techniques are surveyed. In sebtion 3, the designs of System R,

INGRES and LDM are examined. ‘ i
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1. Recovery

A database system must be able to recover fran¢a sys tem
failure or "crash". A soft crash leaves the contents of secondary
storage intact. A hard crash damages the contents of seconda;y
storage. Following recovery, the state of the relations must be
correct and interrupted transactions must be backed out, (i.e.
all the changes due to the incomplete execution are reversed),
and re—executed,

In section 3 the recovery systems of three relational database
systems will be described. What follows 1is a description of
techniques fram which recovery systems can be built, These
techniques have been summarized in [Verh78].

An obvious technique is to take "checkpoints" (make backup
copies) periodically. Following a crash a previous state of the
system will be available. A problem with this technique is that
it is expensive to copy large relations.

The audit, trail [Bjor75] (or "log" or "journal") 1is a
chronological list of operations carried out on the database. It
serves a variety of purposes: it cén'be used to bring an old copy
of the database up to date following a crash; it can be used to
back out transactions (in case of deadlock or a failure); it can
be examined to verify that policies regarding the use of the
system are observed. The audit trall is, therefore, likely to be

.a component of any datébase system even if it is not used for
recovery purposes.

The checkpoiht is often used in conjunction with a log to
restore the current state of the database. This has the
undesirable property that transactions which committed after the

checkpoint and before the crash ‘have to be re-executed. We will

P N LA
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propose a soft crash recovery system that does not have this
problem; checkpoints always include the results of all committed
transactions.

When a log 1is used for recovery, the database contains three
components: the current version of the database; an old version

of the database; the log which allows the old version to be

brought up to date. The differential file {Seve76] 1is a related

-2

idea. One version of the database is kept. This is the static

"master file", (an old version of the database). The

"differential file" stores the changes accumulated since the

master file was created. The difference between the 1log and the
* differential file is the following: the lég records transactions
and 1is not searched in the evaluation of a query (since the
current yersion of the database is available). The differential
file stores the actual tuples being changed (0ld and new
versions) in a form suitable for efficient searching. It is
searched to obtain any tuples overriding tuples in the master
file. Lorie has pointed out a number of problems concerning the
performance of a database based on differential files [Lori77}.
However, if implemented properly, all -of theéé problems can be
solved, (see chapter 5 section 1.2). The differential file will
play a central roie in our design for the PDB.

Another method of maintaining an old copy of a relation is to
store both original and updated versioﬁs of the pages storing the
relation. (This is the backup/current version method. Itnis us ed
in System R [Astr76] and is‘ described in detail in [Lori77]. See
section 3.) Two directgrieé to the pages are étored. One gives
access to the current’ ve;sion; the other represents the old

version. Unchanged pages will have matching entries in the two

o e DRI Mol 7
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¢
directories. To create g new checkéoint, the current directory is
copied to the old-directory. This mechanism protects against
failures that leave storage intact.

To ensure correctness of processing, multiple copies of the
data can be stored. If all copies are not 1in agreement, (except
during the actual updating of the copies), the majority is
assumed to be correct. This methéd has not been used in any
database systems that we know of but has been wuswed in other
applications. An obvious drawback of\zﬁgh method is the cost of
keeping several copies current.

Careful replacement is a technidque of rewriting ubdated data.
The idea is to avoid updating in place: the new version is
written in a different location fraom that of the priginal. When
this has been done correctly the original can’ be returned t; free
storage. This method should not be used for files whose pages
contain pointers directl§ tgi;IAe pages since, when a ldgicai
page is updated, its physical address changes [Verhi?]. (If one
level of indirection is*used, e.g. the page map of System R, this
problem can be avoided.)

In chapter 5 we will propose the use of the differential file
for soft crash recovery. The motivation is that the differential
file simplifies both recovery and concufrency' control and has
other advantages concerning performance. The’ differential file
can pe seen as storing all previous ,states of a relation (since

the creation of the MF).
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2. Concurrency control

To improve the performance of a database system, several users
should be able to access, the database simultaneougly.‘lf, in suc¢h
an envirorment, access to the data is not regulated, anomalies
can . arise [Eswa76]).  Concurrency control methods provide the

regulation that avoids these anomalies.

2.1. Concurrency control in central'ized systems

Several basic notions were introduced in [Eswa76]:

A database is a collection of entities, each of which may be
"locked" by no~ mére than one transaction at a time. A lock
guar antees exclusive access' to the entity by the trapsaction
until the wentity is "unlocked". Some locks heed. not be
exclusive: a transaction performing a read of an entityi X must
exclude writers of x but can allow other readers. A writer must
‘have exclusive possession of an entity.

' If the database system contains a single processor then thé
steps of the transactions will be interleaved. The sequence of
steps 1is 'a "schedule™, A correct (or "consistent"” or
"serializable") schedule-must give the same result as some serial
execution of the transactions (i.e. as if there were no
interleaving) since \transactions are atamic, (see chapter 1
section 3). ' The interleaving of steps of ltransactions is
controlled by lock and unlock operations. A correct échedule is
obtained if the locking protocol described’above is8 observed and
if, in addition, all transaction are "two phasé”. A transacfion
is two phase if all lock operations are performed before all

unlock operations.
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For recovery purposes locks should be held until transaction
committal: Suppose that a transaction T writes x and then
releases its lock on x. x is then read by transactionT”. If T

is backed out, (e.g. the user %ho initiated T cancels the

transaction), then T” is incorrect since it has read the value of

x %treated by T. If T had not unlocked x until after backout was
complete, T” would have the correct (original) value of x.

The entities that can be locked are relations, attributes,
tuples or physical objects such as files and pages. There are
some problems in using tuples as the entities to be locked:

-~ A tuple is a value, not a variablet A tuple is locked in order
to update it but when the tuple (i.e. the value) is changed it
becomes ahother tuple, (See chapter 1 section 4). One way around
this is to identify tuples by keys. Then only nonikey attributes
can be modified. Another solution is to create a key known as the
"tuple identifier™.

- A lock can only control access to tuples that are present, As
explained in [Eswa76], it is also necessary to lock "phantom"
tuples: tuples that are not present {n the relation. Such a
tuple, t, must not be inserted by one transaction while another
transaction holds a lock that would have included t had it been

present,

Other logical entities (relations and attributes) are too

'"coarse" for locking: parallelism is severly restricted.

In response to same of these problems, the "predicate lock"
was proposed [Eswa76}. Predicates ‘can be used to describe the

tuples being read and written by a transaction. The predicates of

actions from différent trgnsactions are in conflict 1if at least

one of them is a write and if there exists a tuple (which may or
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may not be present in the relation) that satisfies both
predicateg; In case of a conflict one of the transactions must
wait or bé aborted and re-executed later. |

Detecting conflict is not always possible unless the class of
predicateé is restricted (see [Eswa76]) . ‘ For predicateés
corresponﬁing to range queries, detecting conflict is trivial.

A va;iation of the predicate 1lock is tpe‘"precision lock"
{Jord8l]. The idea is to restrict the class of predicates
descfibihg writes to predicates specifying a value for each
attribute, (i.e. a point). This is reasonable since, in
practice, tuples are written one at a time and all attribute
values are known. Now, testigg conflict is simple.

Another scheme based on lockifhg can be used when the recovery

system maintains both the old and new values of updated objects

[Baye80, Stea8l] (as in the recovery system of System R [Lori?77],.

or with differential files). Rather than have a transaction wait
or abort when a conflict occ&rs, it is 'sometimes possible to give
the transaction access to o0ld values. This method has the useful
property that read-only transactions never have to be aborted
when deadlock occurs, (déadlock is discussed .below). This"® ié
important since, in many applications, read-only transactions are
by far the most common, .

Little 1is known about the performapée ‘of the ,various

conc¢urrency control methods. Ries and S}onebraker - [Ries77,

S

Ries79] have, - studied the problém of lock granularity. ‘That is,
how large should be the entities controlled by locks?  "Coarse”
locks have lower maintenance costs than "fine" locks but reduce

parallelism. They conclude that the size of the locked entity

should be dependent on the size of the portion of the relation l

*
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‘accessed by the transaction. A "lock hierarchy" was proposed::

-

Coarse lockd ﬁo:-transactione that'access‘ a large portion of the
relation and fine locks fpr more selective transactions. A
threshhold of 1% is suggested by fhe siﬁﬁlation. A coarse lock
protects aﬁfelatfon and a fine Iwtk protects a tuplz:
' Although predicate locking'was/noa tested in the simulations,
.several conclusions indicate that this method might Ee syui table:
£Sr example, the granularlty of the lack autanatlcally adjusts to
the select1v1ty of the transaction. Furthermore, the number of
read,;ocks is prepbrtionaL to the number of transactions, notftghg

the number of entities being locked. ) TR

Any locking method can give rise to deadlock. »M};ﬂwaits foE“

graph shows which transactions are waiting/’fo; which ether
transactione to release locks. For example, T =~> T (T waits for
T”) says that T has requested a lock which T7 is currently
holdiﬂg. There are four necessary condi tions for the existence of -
deadlock [Coff71]1: ' r

-

1) Exclusive control of resources- this occurs when a writer sets

a

a lock (which must be exeigilve)

2) Waltlng for a lock while. holdlng another lock e

3) Transactions are not preﬁempted.

4) There is a cycle in the waits for graph.

Deadlock,.once detected, can- be resalvéd by aborting one of
’ | ' . . ' . * & 4
the deadlocked trahsactions, (causing condition (3) not to hold). .

. A cycle can, be detécted by searchlng the grap% (in time
proportlonal -to the number of nodes in the graph). The algorithmidﬁ
gluen;xn~ [Aho74] applles to:unqLpected:zgraphs;:itzts~4simple to

adapt it for dlrected gr aphs.

e et <ol b b s
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Deadlock can be avoided by cau51ng conditions (2) or (4) not
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to hold. By obtaining all locks at once (and not starting if any
lock 1is 'deniedi dea‘d‘lock is avoided since (2) 1is violated
{Have68].

If the lockable resources are ordered and 1if lgcks mus t be
requested in that order then cycles cgnnot form in the wai-t;s for.

~ graph (violatin;; ‘(4') ) .

An entirely different approach to concurrency controlj\is taken
by Kung and Robinsen-. [K\mgSl]; Phey make the "optimistic®
assumption that transactions usually do not ‘conflict. After a
tu:rénsaction coxﬁ‘pletes its processing (but before it is committed) i

. it is wval i_dat'eud:_ conflicts with é{multaneously ranning

trénsaétions i;re tested for. If a, conflicé is foun‘d, the
transaction is backed out and”re—éxecuted. With this method the

/ -
- . . ' 3 / () & 3
overhead of locking is avoided at the cost of running validatdon

ot

F :
tests, Furthermore, deadlock does not occur. %

2.2. Concurrency control in distributed systems

[T VI, PReNh 35 2 A R

Most of the recent work in the field of concurrenéy control

-

has been concerned with distributed databases. Bernstein and i

el

Goodman have decomposed the problem into sub-problems [Bern8l].

They claim that most concurrency control methods - fall into this

I

— « framework and differ only.in their solutions to the sub~problems.
o ' v '

The ‘database is di.stributed among several sites. There m-ay~ be

ot n

&

e vy

partial or total redundancy of data or none ‘at all. A log at each

- . !
(,, site lists, in:.chronological order, the actions performed at that
. E site, ia "log is li\ke" the sthedule of a centralized system). A’

transaction may be .executed at several sites; " the log at each

hons
[

. ——t v ek e - - . .
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site would then 2ontain entries for-the transaction. v y 7
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t

As with a centralized system, the execution of the

-

"transactions in a distributed sysiem must give the same results

-

as the serial eéxecution of some total ordering of the

transactions. We will refer to this sequence of transactions as

* the serialization, Serializability 1is guaranteed by the

following: in every log containing conflicting operations O and
b° from transactions T and T° respectively, O precedes O° if and
only if T precedes T” in the serialization((see [Bern8l1]). 1In
‘other words, each log places certain constraints on the total
ordering of the transactions. T -> T’ indic;f%s that T must
precede T~ in the total ordering due to a conflict in same log.
Conflicts may involve a reader and a writer, (T ->rwr T"), or
two writers, (T —>ww T7). T -> T if T ->rwr T~ or’T ->ww T”. The
execution of the transactions is serializable if —;rwr,and ->ww
are acyclic and if there is a total -‘ordering consistent with

9
->rwr and ->ww. /ﬂf

4 v _
Now, a concurrency control method can be seen as a composition
of two "synchronization techniques" [Bern8l]:

1) A techniqug for read-write (rw) synchrodization. That 1is, a

technique for ensuring that ->rwr is acyclic.

2) A technjque for write-write (ww) synchronization, (ensur;ng
that ->ww is acyclic).

a comp;ete concurrency control method must, in éddition,
guarantee that -> is acyclic. ~

Most 'of the techniques available for solving rw and ww

synchroni zation fall into two categories: two-phase locking (2PL)

.

and timestamp ordering (T/0). .

2PL has been described in section 2.1. Various extensions have-

been propdsed for dealing with the redundant data of a

L -
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distributed sys tem.

Deadlock is a problem characteristic of locking (whether or
notﬁ:he sy-vstem is distributed). As with a centralized system,
deadlock can be avoided or detected and brokep.

Deadlock can be prevented by assigning priorities to
transactions. A t‘ransaction T can wait for T~ if ‘T has a lower
priority. No cycle can result siﬁpe the priorities create a total
ordering, If'T has a higher priority it might preen;pt Tj.

To avoid the situation in which a‘kg:v priority transaction is
repeatedly restarted, the priority d;E ?“‘t‘ransaction could be
related to its age (as in [Stea8l]). If the oldest transaction
in the system cannot be Preempted then no transaction "starves".

Deadlock is detected by searching for cycles in a glopal
"wal ::s—for" graph. This presents Iproblems in a distr'ibuteg
enviroment since communication with the processor responsible
for the graph i”é‘necessary to update the graph [Gray78, Ston79].

Menasce qnd Muntz [Mena79] presented two methods for
distributed deadlock detecﬁion. One  method organize‘s the
processors into " a tree. Any (change in the wgi‘ts for graph is
propagated up the tree. Deadlock, if it~ occurs,l is dgtecteg] at
the node furthest from the root whose descendents rare deadlocked.
T;xeir other algorithm does not place the processors in a
hierarchy; all processors have the same status. This algorithm
is incorrect [Glig80] and to fix it would render it impractical.

A general problem with detection methods is that deadlock can
tie up the system betweoer; searches of the w,‘aits—-fo; graph., This,
and the aifficulties— of detecting dc;adlock in a dist-r.ibuted

sys tem éuggest that deadlock free concurtrercy methods ‘are more

suitable. T/0 methods are deadlock free. o e
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T/O methods operate by assigning " times tamps" to transactions,
A timestamp denotes the time of same significant event: e.g. time
of init&ation of the transaction or time of committal. The sites
of the network are synchronized so that a timestamp at one 'site
is meaningful at anothér. Timestamps are uniqu;. At any site,
Econflicting operations are processed in order of increasing \

timestamp; the serial execution of transactions in order of

increasing timestamp would result in the same database state.

* Deadlock does not occur using T/O but transactions may be aborted¢

\

in same cases.

Rw synchronization is achieved in the following way: if a

1

transaction with {:imestatnp T attempts to read an object most
recently written @t timé W > T then the read is invalid and the
reading transaction is aborted. A similar strategy handles a
writer in conflict with the most recent read of an object. Ww :
synchronization is also based on this scheme. Our design for the
PDB permits’t.he‘u‘s'é%of'a"simpler ww synchronization technique.

To ensure that all copies of redundant data are wupdated (or

none of them are), writing consists of two phases: a "prewrite"

which is a command to each site to make secure copies of the data
)

to be written. The actual write is triggered by a separate

command after all prewrites are performed. Since there is same

PN

time between the prewrite and the actual write, conflicting readd
and writes recgived in timestamp or'der are buffered, (so that
they can be proceéssed in timestamp order). Conflicting‘operations /

received out of ordericause restarts as described above.
: A

Complete concurrency control methods use two synchronization

techniques: one for rw synchronization and another for ww

synchroni zation.  There are 48. combinations z’ involving th

- o
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variants of 2PL and T/0 summarized in [Bern8l] (except that one
of them is incorrect, see [Bern8l]).

The two techniques must combine.to produce a total ordering of
transactions, For methods where both techniques are 2PL or both
age T/a? this is automatically guaranteed. For hybrid methods, it
is possible to gener atemtimestamps for transactions based on the

locking scheme. The timestamp represents the lock point: a time

between the last lock and the first unlock (recall that locking
is two phase). (These generated timestamps also determine the
serialization for pure 2PL methods.)

Performance issues are outside the scope of [Bern8l] but they
are important: T/0 methods have a serious drawback. When used for
ww synchronization, the timestamp of the 1last transaction to
write each tuple must be known. en used for rw synchronization,
the timestamp of the most recent readér of each tuple must also

o

be known. This implies a write (of the timestamp) corresponding

to each read. In chapter 5 section 3.1.2 we will discuss these’

issues in more detail. The differential file will be useful in
solving one of these problems. In chapter 5 we will also show
how several other synchronization techniques can be implemented

using the differential file.
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[

3. Recovery and concurrency control in practice

In this section the recovery and concurrency control systems
of System R and INGRES are described. These are "traditional"
systems in that they treat the two problems separately. We also
discuss LLDM which is a "multiversion database" (MVDB). In an
MVDB, a state of a relation 1is derived from its predecessor by
the application of all of the updates of same transaction. The
availability in an MVDB of past versions of the database

simplifies the recovery and concurrency control systems.

3.1. System R

3.1.1. Recovery -

The "shadoy“ mechanism of System R“s recovery system has been
described in detail in {Lori77]. The recovery of a segment
following a crash is considered., Thus, the objects in the segment
need not be considered separately. Recovery fram both hard and
sof t crashes is considered.

A page map is used to translate logical page addresses into

physical pgge addresses. The shadow mechanism depends on the use

" of two page maps: the current version and the shadow (a backup).

When a logiéal page is updated for the fir£; time, the physical
page is‘'located wusing the current page map. Instead of updating
that physical page, a new oné is allocated and is written with
the new version of the page. (I.e. updateé are not done "in
place".) The current page }nép is updated to point to the new
4physical page. The shadow paée map still éointsrto the original
physical page which has not been changed or di scarded. Subsegquent

L0 b e
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e
changes affect the new physical page. Since a backup is present,
it is safe to update the new physical page in place.

If a soft crash occurs at any point, the shadow version of the
page map storeé, an old state of the database. (The current page
map is unreliable following the failure). To recover, then, the
shadow page map 1is copied to the current page map. (If this
process 1is interrupted by another failure, it is simply
restarted.) :

It is preferable to restore a recent' state. To allow this, the
shadow page map should be updatf:d periodically. That is, the
cufrent page map must be backed up. Wben this 1is done, the
original, {(now out of 'date) , versions of updated pages c¢an be
freed. The system tﬁen has shadow and current versions that
match.

The mechanism described is inadequate for restoring the
current state of the segment. For this purpose, a checkpoint and
log are used. (For details see ([Gray8l].) fhis method makes the
shadow mechanism unnecessary, (S5ee chapter 5 section 2.4.1).

To recover fraom a hard crash, a checkpoint must be available.
This checkpoint should be more secure than those used for soft
crashes, System R uses a tape. This "long" checkpoint coincides
‘with the last of a fixed number of backup page map saves. The
copying to the tape is run as 3 separate process. The basic
scheme for reclaiming pages has ‘been modified to keep old pages
(i.e. tf;ey are not freed) until they have been copied to tape.

z

3.1.2. Concurrency control

Transactions may be run at any of three cpnsistency levels.

The highest “,level is the one normally considered in the
K,
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literature on concurrency control. B

Concurrency control is implemented using locks. Logical
objects (segments, relations, TIDs, ranges of index values) .can
be locked. Physical locks on pages are also necessary:
transactions which do not conflict logically may tr;; to update
the same page simultaneously.

A dynamic lock hierarchy protocol 1is used {hat adapts the
granularity of the lock to the selectivity of the transaction.
This 1idea 1is supported by a simulation study of locking
granularity [Ries77, Ries79].

The duration of a writelock 1is to the end of a transaction
(for recovery purposes). The physical lock on a page may be
released as soon as the update of the page (in primary memory) is
completed.

When a transaction is locked out, deadlock is \tested for. If
deadlock 1is found then one of the deadlocked transactions is
backed out (using the disk log). The preferred victim is a
"young" transaction holding locks of short duration (i.e,.

physical 1locks on pages). Such a K transaction would be the

cheapest to re-execute,

%
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3.2. INGRES

The recovery and concurrency control systems of INGRES have

been discussed in [Ston76].

3.2.1. Recovery

The pages of an INGRES file are updated in place. So the soft
crash recovery mechanism is necessarily' different fram that of
System R.

Relations and inversions are not updated until after the
transaction which generated the updates is committed. Updates are
stored in a file. If the transaction is backed out for any reason
then the file is discarded.

The use of deferred updates 1is also motivated by semantic
problems connected with wupdates. Stated brigfly, two of the
problems have to do with repeated updates to the same tuple (as
identified by its TID): a tuple satisfying a search predicate
which is updated once might be found again and updated again;
This problem is avoided in INGRE§S since the updates are not
registered in the relation until after all updates have been
stored in the deferred update file.

Recovery fram hard failur(es is accomplished by using a backup
tape to ;eload a checkpoint and then 're-executing the
transactions stored in a log.

r

3.2.2. Concurrency control

The only entities available for locking are the attributes of

relations. This coarse granularity was selected to avoid the need
¢ \ , -

for a large lock table in primary memory, (INGRES was originally

implemented on a minicomputer with a 64K memory 1 imitation). A
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"crude" form of predicate locking is being considered as a
repl acement. Predicate locks also have small space reqi@rements.

Deadlock is avoided by requiring transactions to acquire all
necessary locks before execution starts. If the transaction is
blocked then . it is postponed for a fixed amount of time. This
"predeclaration" strategy is reasonable given the granularity of

the locks. It would be less suitable in a predicate locking'

scheme.

3.3. LDM .
The Local Database Manager (LDM) [Chan82] is a multiversion
¥

da%abasa (MVDB) . That is, all of the previous states of each

“aB i el v A Y

relation (since some previous time) are available, Several LDMs
can be connected to form a distributed database system.

The current version of a relation is stored in a segment: a .
-set of pages. Each page of the segment is the head of a list of
previous version of the (logical) page. A traversal of such a

list encounters the version in reverse chronological order. The.

s KA X A b e ) 8 R By T D i S T S Y 4

wl,

pr evious vérsipns are stored in the version pool.
Eventually the version pool will become full of old ver\sions. 3
| ‘ ;
Garbage colledtion is - necessary to reclaim "dead pages". A dead

page is a vergion of a page which will never again be referenced.

All transactipns which could have accessed a giver; dead page have
comi&leted. In [ChanB82] an efficient garbaée collection scheme is
described. A small number of point;ers to Ythe version pool, (a
circuiar buffer), are maintained. Pages“behind such a pointer are

defini tely garbage, those in front may or may not be. As

transactions finish processing the pointers are advanced.
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3.3.1. Recovery .

The maintenance of versions makes recovery simple. Following a
crash, a sc;an of the version 1;001 br ings the system to a state in
which only uncommitted transactions have to be re-executed.

To ensure that a committed transaction is stored securely, all
buffe;s containing udeates of the' transaction are forced to disk
before the transaction ends.

LDMs recovery schem‘e: is very similar to our own. This is due
to the fact that both systems are multiversion databases. Our

recovery scheme is described in detail in chapter 5.

3.3.2. Concurrency control

Transactiorlls which perform updates use two-phase locking on
the set of pages being accessed. Deadlock 1is searched for
periodically. A novel featﬁr‘e (for real systems) is thé way in
which read-only transactions are handled: they read old versions,
(available in the versioh pool), and are not even considered by
the concurrency control system. (This method - i%é desc"r'ibed in
detail in chapter 5 sect}ion 3.2.) An old version is retrieved by
searching the current version. For each accessed page, the list
of versions is searched for the appropriate version of the page.

Again this facility closely resembles our own design ’'since
both systems are multiversion databases. 1In our design though,
the "time" attribute will be treated as another ‘attributei/o'f the
relation. The query will be modified to include a restriction on
the time attribute. Thus searching for' an old vergion' can . be

achieved By query modification, (a technique proposed for other

purposes by Stonebraker [Ston751),
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The Differential File
and its Use in the Physical Database
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In this chapter, a new design fox:‘the; PD%,is proposed. This
design has two interesting features: | '

1) It is a multiversion database, (MVDB). This allows the use of
simple r ecovery and concurrency control systems which do not have
high- overhead costs. Furthermore, greater parallelism is
possible.

2) The multiversion capabilities derive from the presence of a
"differential file". This is where o/gp design differs from that
of LDM, another MVDB: LDB uses a "version pool" instead of a
differential file.

All previous database systems suffer from a fundamental design
flaw: a relation is stored in a single dynamic file. It is the
need to keep the data in this file current .that causes many
problems:

1) I}: restricts the choice of file organi’zations which car; be
considered; a dynamic organization is requi\red. 7

2) Since each inversion (to the relation) must be maintaikned, the
number of inversions which can be used is limited.

3) Physi’cal sequentiality of logicaliy sequential pages 1is
difficult to maintain. This can cause performance to suffer. This
is ,t"“;:ue\even if updates are done "in place"u. '

4) Either transaction backout or transaction- committ;al is slow:
the current version has to be changed during these operations. In
System R, backout is slow. Chanfies already 1ncorporated must be
bacdked out. This takes time and requires that locks be held unt11
backout is complete. INGRES, on the other hand, achieves backout

®

committal is slow [Ston76]. ‘ ’ '

‘With a differential file bJsed system, therz is a large stat:.c .

e e s e P et e e A A T8
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relatively easily: a "deferred update" file is discarded, But

AR A

S ORI R N




£ gt

RIS o )

E )

a5 o

.
. N &
AT B B s 4 TMIRE trpre g geiin et AV s = A % e - T P N
N N
.

for use in a general purpose database system in. [Seve76). That .

results from the MF are corrected by the relevant updates fr“m\ ‘

“ model of dynamic relativops presented in chapter 1 section 4. . T

-
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master file and a smaller dynamic file. Since the master 'fiole is .
static, problems (1) - '(3) are 5voided. They#fstili af fect the
differential file but mos t of the work in i)rocessing a query
involves the ;naster cfile bec;ause it is much larger. .Problem (4)

is avoided since the differential file allows the co-exi?ﬁ:enee‘ of )
* . » \

"before" and "after" versions of relations.

-~
1. Differential files \

The idea of a differential file is .not new. It was proposed

paper also discusses same specialized applications in which the

o %

idea has already been used. ) b

‘” ' ”
-~ O N
- L} ' .

1.1. Outkine of the system .

H]

. e ‘ !
The basic idea is to represént-a relation using two files: a
N . :

master file (MF) and adif;f'gren)tial file (DF). 'i‘hé MF is a
snapshot of the database at s&ne time. ThehDF is a much smaller
file which stores updates iégue& since the MF was built. We will
assume that the MF is consistent: the MF represents a state in

which all transactions have either completed or have not been, '

started. (This is easy to guarantee.) ‘ /
.

To proceSs a query both the MF. and the DF are searched. The

‘the DF. T , - .

Our design for the differential file system ‘follows fram the

@
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Recall that an update is either an insertion or a deletion. Each
DF record will therefore contain a "status" flag to indicate
whether the tuple is being.inserted (status = present}) or deleted

(status = absent).

Since thé same tuple can be updated several times, (e.g. it is

inserted, deleted and re-inserted), the wupdates must be
chronologically ordered. So a ©DF record also stores the
timestamp of the transaction that generated it, The timestamp

can be used to identify the transaction which generated the
update since timestamps are unique.
To summarize, if a tupl? of “the relation is (a

R a )
0’ " k-1
then the format of a DF record is (ao, cee ak " t, s),/@here t

"is the timestamp and s is .the status. The meaning of such a

record is that tuple [a

0’ Tt akg1] changed its status to s at

time t.

[

The life cycle of the MF and DF is as follows, (see figqure 1).
Initially, the MF is up to date and the MF is empﬁyf/bpdates are
placed in the DF. All queries on the relation combinejre$u1ts
from the MF and DF. When the DF reaches a certain size, (or
after a certain period of time), the MF'and DF are merged to
create a new MF. The DF is then cleared and the cycle begins

a.lin. We will call this process "reorganization".

1.2. Advantages and disadvantages of the differential file

The advantages of wusing the differential file have - been

di scussed in the introduction of this chapter. Lorie has raised

a number of objectiéns to the use of the DF [Lori?77]. Each of

these objections can be’overcome.
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DF is empty.
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Updates are placed . The MF and DF are
= 1n the DF ) merged fo create
a new MF,
- % /
. MF is"too old”.

OF is “too full”.

Fi .
gure 1. Life cycle of the master file (MF) and the differential file (DF)
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1.2.1. Double accesses

One disadva'ntage: of using an MF and a DF is the need to search
both files. (It 1is puzzling that Lorie raises this point since
his reference for differential files, [Seve76],w di scusses this
point in detail.)

As discussed in [Seve76] this cost can be reduced by using a
filter [Bloo70]. The filter is a device for answering the
question "does the DF contain relevant updates?" with one of twos

answers: "no or "passibly". The DF has to be searched only if
the latter answer is received. Of course, congulting the filter
should cost less than accessing the DE.' It is therefore kept in
primary memory at all times. We discuss the filter in more detail

in chapter 6 section 2.3,

1.2.2. Cost of merging

Periodically, the MF and DF must b‘merged.. This is a time

[
cons/uméng operation< There are two ways to lesSsen the impact of

this operation: /,\ )

1) The merge can be done by a concurrent proces$. That is, it is
not necessary to shut down the syst:én. A method for performing an
"on-line" merge of this kind was briefly described in [Seve76],
(see section 4.1.2). Another method will be.\given in section
4.1.3, The merge can be run during periods of low activity
further regucing the effect of reorganization on the system’s
performance. - | ¢

2) In order to recover from a hard crash, dumps must be taken
periodically (whether or not a DF is used). If the dumpis done
at the same time as the merge, the apparent cost of the merge is

lower ed. -
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1.2.3. Multiple updates to a tuple

1

The DF must be able to deal with an update to :\a tuple already
updated in the DF. 1In our view of updétes this P\eans that the
tuple appears and disappears, (or disappears ana .re—-appears).
This will not be any problem in our proposed implementation of

the DF.

2. A recovery system based on the DF -

In this section we describe a Trecovery system for a PDB based
on the differential file. The system will be able to recover from
soft crashes and hard crashes that damage the MF, DF or both. We
assume that the contents of primary memory are lost following
either type of crash.

Soft crashes are more frequent than hard crashes. It is
easier to recover from a soft crash: clearly, the soft crash
recovery system is not concerned yith the static MF; it(l'nust deal
only with the DF. and associated dynamic objects, (e.g. a list ‘of
.active trar{sactions) .

Transaction processihg can be modelled by the graph of figure
2. A transaction spends same time in each state along a path
fram Start to End. {The Bai:kout stfate is enteredi when the user
aborts the transaction.) A soft or hard crash may occur in any
state. Transition fram one state to another is instantaneous.

We will discuss the normal processing of each state, soft

crash Orecovery and hard crash recovery.

There are seven dynamic objects which are modified in the

rocessing of updates:
processing pd

e el it b T
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Commit = Update = Backout
¥
PR
7L
<
End —= ;
m .

4

Figure 2. Model of transaction processing.
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&

1) The DF. ° c -

2) The filter. 3 : \

35 The ~pac_;e mapr a table s.howing which disk pages are in use,

4) Tr:e progress report: A small disk file which records the state
most recently entered by ggch active transaction.. “ ”

5) The active 1list: a list of identifiers of all executing

transactions, (those that have entered Start but not End). The

starting time of each transaction is stored in this list,

6) The lock table: A list of locks held by each transaction,”

(required only if locking is USed‘for conc’utrency control) .

7) The update 1lists: Associated with each transaction is a list

!

of pointers to the updates it has generated. ’

The DF, page map, progress report and update lists are stored

on disk and updated in primary memory. The soft crash r.ecovery -

mechanism operates gorrectly even when updaat;es of these objects,

written into a page Dbuffer, have not reached the disk when a

e 1

crash occurs. The ackive list and filter are in primary memory
Q
only. The lock table may or may  not be small enough to fit in

primary memory. ) =

For hard crash recovery, a copy of the MF and a log are stored

on tape. ’ ¥ *
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2.1. Normal processing o

The précessing of the Start, Update, Commit, Backout and Enci
states is descri"beci below. We assume t}'\at locking is used for
concurrency control but the algorithms are easily r‘nodified for
other concur r ency control methods. ‘

Writing into the log consists of sending a message to the tape
log. This write goes to tape immediately; it does not wait in a
buffer. Writing to the progress report ion diisk) proceeds in the
same way. i A

There is a problem concerni‘ng the times tamps“of DF records due
to‘ the use of 1locking. If transactions are not assigned
times tan;}nps when they begin execution (as is the case with locking
and optimistic concurrency control) then the timestamp is unknown
when the update is placed in' the ADF. Following committal, the
timestamps should correspond to the serialization enforced by
locking., That is, 1if Ti appears to precede ‘I'j/ because of locking,
then the timestamp of Ti , should be smaller than tl;at of Tj'.

Bernstein points out that the "lock point™ of a transaction
can be used as the timestamp (if locking is being used) [Bern8l].
The lock point is a time after the lasbt lock has been claimed and
before thé first unlock. (Recall that locking ius two-phased; see
chapt er 4 section 2.1.) For recovery purposes, no locks are
releasled until committal is complete, so a logical choice for the
times tamp would be the time at which committal begins.

This suggests ;:he following strategy: When transaction T,
places an update, use timestamp Ooi, a vety lé'rge times tamp unique

~

to Ti , which means "this update from Ti has not been commi tted"

(since the current time does not - exceed ooi). Thus, concurrent

tramsactions will ignore the update. During committal, wi will be
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f

v

replaced vwith TCi, the t]ime of committal - of Tl' (see section
o

u
2.1.3) . The processing of the various states is described below,

Our methoed does’ not have same overhead costs of other methods:

e.g. the cost of creating d{héckpoints periodically.

'
K{‘l

1) Write the Start message in the log and the progress report.

2.1.1. _§tartv N

2) Enter the transaction s\xldentifler in the active list and
allocate an update lkist for t%he transaction.

A starting transaction mus‘t be aliocated space in the progress
report. The space used by a transaction which has reached End may

be re-used, (see seétion 2.1.5) .

2.1.2., Update

This state 1is entered when t‘he first update is. generated by
the transaction. ‘
1) Write the Update messag;e in the progress report.
2) For each- update:

2.1) Record the update in the DF, (assigning a timestamp of o9;

3

as discussed above) .
2.2) Place a pointer to the update in the update list.
2.3) Write the update in the log.

”

2.1.3. Cammi t

l) Force to disk all pages in the buffers containing upggtgs
generated by the transaction. :

2) Write the Commit message to the log and the progress report,
The message includes TC, the time at which Commit was entered,

This will be the timestamp of the transaction, -

[
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&
3) Traverse the update list of the tranSaction. For each update,

set the cdrresponding bit in the filter and reset the timestamp

to TC,

2.1.4. Backout ’
1) Write the Backout message to the log and the progress report.
2) Traverse the update 1list of the transaction, deleting each' ‘
encountered update, < \\ ' ‘(
2.1.5. End
1) Write the End message to the log and the progress report.
2) Release all locks.
3) Remove the transaction from the active list and di scard the
update list.

The appearancé of End in the progress report indicates that

another transaction can usg the space in the progress report

-

occupied by the transaction that wrote the End.

it s RS b

» -~

2.2. Soft crash recovery

Soft crash recovery proceeds in two phases. First, the DF is
scanned to restore data structures, finish committals and perform
backouts. Then, interrupted transactions are restarted.’

A scan of the DF is feasible since it 1is a small £ile, The

5 o G A o AL Sk gl A b g e o ket o,
e

scan could be avoided but then normal processipg would be more

expensive.
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2.2.1, Phasel - ' - | ,

The filter, active list, page map, lock table and update lists
were partially or totally resident in primary memory when the
crash occurred. ¥ > .

These could all be updated securely (using careful replacement
for example) but extra I/0 would be generated. It is preferable
to "p;nali'ze" the recovery system. That 1is, all of these data
structures can be recovered from the pro:;ress report (which is
reliable following a soft cras/h) and a scan of the DF.

DF records are pandled in the following way duri%’xg the scan:
~ An update frc!n a transaction in Canmit causes a filter bit to
be set and the timestamp is reset to the TC of the transaction
(availa;ble from the progress report). .

An update from a transaction in Backout or Update is deleted.

All other DF records are from transd&ctions that have ended.
&

Each such record is used to set a bit in the filtetg.

When phase 1 is complete, all commi tting transactions

>
O T e

interrupted by the cr.ash will have finished committal and all
transactions that were in Update or Backout have been backed out.
Below, we discuss, the recovery of the dynamic components of

the differential fjle system. ’

2,2.1.1. The active list

The active 1‘1: can be reconstructed from the progress report:
Transactions which are th/ in the End state are active. A

transaction in the End state has finished step 1 of processing

i d
Gy e FA re Fohh B L IO B R O K O " At B € A 55wt W W

End (see section 2.1.5). The «crash makes steps 2 and 3

unnecessary (in case they have not been executed vyet).
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2.2.1.2. The filter f
The filter can be reconstructed duringv a scan of the DF. Any
update from a transaction that has completed ~(i.e. reached End)

or is it the Commit state sets a bit in the filter,

~2.2.1.3, The update lists

5

These 1lists are no longer neces;s.ary (so they are not
reconstructed). Any transaction in the Update state will be
backed out and resubmitted: DF recbrds from transactions in
Update are deleted. Thus the backout will be, achieved during the
scan of the DF, Transactions in Backout will also be backed out
during the scan. Committing transactions relied on the the

/
update lists. However', committal is completed during the scan.

v

-

2.2.1.4. The page map

When transactions start running again, the page map will be
neéeded. During the scan of the DF, all pages in use will be

located; they are entered in the page map. All other pages are

_assumed to be free, (so pages that were allocated to update lists

are automatically reclaimed).

Note that the page map is nat need@d. during the scan since the

update lists are not being reconstructed. Bf/ storing the page

map on fixed pages, outside the page allocation scheme, the

problem of finding pages for storing the page map is avoided.
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[]

2.2.2.5. Th® lock table

A3

The lock table ddes not‘hé've to be reconstructed. During he
DF scan, only committals and backouts arle being processed and -
these processes cannot &onflict. Resubm;itted transact’:ions mus t <
re-acquire their locks in the normal way but resubmittal does not
begin until the DF scan is complete. * ) .

S .

To summarize, phase 1 of. soft crash recovery proceeds! as fol lows:
(transaction(u) is tr}e transaction -which gen.erated update u.
state(T) is the ’s-taté that tfansactioﬁ T was in when the crash

occurred:]” ; |

1) Reconstruct the€ active list fron; the progress report.

2) Scan the DF pages. For each page: .

2.1) Enter the page in the page map.

2.2) For each update, u, on lthe page:

case state(transaction(u)) of

Start: {* cannot o'ccdi‘ %)

tJ,i:date: ]Remove the updateé.

Commit: Set the corresponding filter bit"ax;d res_e:.

timestamp to TC(transaction(u)).

Backout: Remqve the update.

End: (* do nothing *) a S

default: (* the transaction ended before‘ the crash'"*:)
Set the corresponding f‘iiter bit. . -

N N B

2.2.2. Phase 2

After phase 1 the page map has been reconstructed. All

transactions that were in Update, Backout .or Commit (in the
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-

reconstructed active list) have been processed. 'In phase.2, End
is written to the 1log and progress, report for all - active
Y - v .

- ;rangactio;xs. - All that remains is -to resubmit interrupted

"y

transactions that’ are still not complete; namely, those

° 1
transaction that were in Update or Start when the crash occurred,
. - s e ‘

The ekecution of resubmitted trar{sactions and new transactions

a7 ’

can proceed concurrently, L

Soft crash recovery, is complete following phase 2.°
e P

2.2.3, Correctness of the soft crash recovery mechanism

We will now re-examine the algorithms of section 2.1. "The .

possibility of a soft crash during each step of each algorithm
will be considered and it will be shown that -the soft crésh

recovery mechanism operates correctly in each case.

2.2.3.1. ‘Start ( ' .

A transaction in Start has not generated ar:y'\ updates and 'there

is nothing to back out. Phase 2 of recovery ends a’.“d. r esubmits -

the transaction. It does not matter whether step 2 has been

executed or not since ‘the ° active 1list is reconstructed following

~ i
} '

the crash: L _

2,2.3.2. Update

If the erash occurred after'step 1 then nd updates have been

! “a

g 3

generated. The translaction is' ended and restarted in phase 2,

"If the crash occurred during step 2 then\\all updates ,will be
backed out in phase 1 of recovery.
Note that step 2.1 may inwlve the allocation of a new page

for the DF. The allocation is reflected in the page map. It is

-t I
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¥

Y

possible for - a crash to occur after the allocation is noted in
the page map but before the new page is linked into the DF. The
page 1is not lost since it will be reclaimed in phase 1 of
recovery. The update on the page is lost but would have been

backed out anyway (since the transaction has not committed).

2.2.3.3. Commit
Since the progress .report has the Commit meséage, all the
updates generated by the "transaction must have reached the disk,
(due to the ordering of steps 1l-and 2) . Thus the DF contains all
that is needed for committal, (which wiil occur during phase 1).
/’;;1 step 3 1is 1interrupted by a crash then committal is

completed during phase 1 of recovery. (The filter is lost in the

crash and is reconstructed during the scan.)
2.2.3.4. Backout
Any records missed due to the interruption of step 2 will be

backed out during phase 1 of recovery.

2.2.3.5. End

Steps 2 and 3 are "achieved" by _the crash itself.

2.2.4. Soft crash during recovery

If a crash occurs during recovery, the recovery Algorithm is
simply restarted. The DF and progress report are unchanged
following the second crash and nothing else is needed for

r ecovery.

s -
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\

2.3. Hard\ggash recovery

Any damaged dynamic object can be reconstructed using the log.

‘\
2.3.1. Rebuilding the MF

The tape copy of the (old) MF is copied to.disk.

-
W

2.3.2. Rebuilding the DF

To rebuild the DF, the updates and backouts stored in the tape
log are re-executed. The execution of each log entry proceeds as
in section 2.1. Each update must be preceded by a writelock to
ensure correctness. The readlocks held when the transactions
originally executed are not necessary.

Update lists are maintained as the 1log is re-executed so that
the filter can be set properly on transaction committal.

As for soft crash recovery, the page map 1is nop/.avéfiégie
during hard c;ash recovery. However since the DP was damaged and
is being discarded, the page map can be glégféd and reconstructed
during the reconstruction of the DF.

- When the DF has been recovered, spﬁf/’crash recovery can be

"

startdd at phase 2. P

-’

\

2.3.3. Rebuilding the progress report

The progress .report can also be rebuilt in a scan of the log.
The states recorded in the log are written onto the progress
report. When a change of state is encountered, it is reflectg& in
the progress report irr the wusual way. By the time the log has

been scanned, the progress report is up to date.
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3. Concurrency control

The final major component of -the PDB is the concurrency
control system. System R and INGRES have considered these tg be
inde dent problems. In fact, concurrency ‘control was an
aftefthought in INGRES [Ston76].

Recently, concurrency control has been seen as a problem
related to recovery: both old and new versions of updated objects
are kept for recovery purposes. The availability of both versions
enhances parallelism [Baye80a, Stea8l].

MVDBs have been shown to be of use in recovery and concurrency
control [Chan82], (see also [Reed78] for a more general
discussion). The old vérsions can be used for recovery purposes
and to enhance parallelism. It is a generalization of the idea of
using old and new ‘values: all old values since a given time are

maintained. The advantages of storing a history instead of just

\— the most recent version are explained in section 3,2.2..

4
P //\

(¢

13.1. The role of the DF in concurrency control

Virtually every concurrency control method requires some

<y
information that is"present in the DF..In this section, we will
show how the DF «can be used by several concurrency control

methods. These techniques are applicable in a centralized system

and at the sites of a distributed system.

3.1.1. Transaction backout

With the DF, transaction backout is very simple and does not

3

require locking. Furthermore, backout and resubmittal can occur

simul taneously. These are important considerations because most
w
/]

i
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concurrency control methods \require some transactions to be
backed out. Backout is slower and incompatible with resubmission

in other systems.

3.1.2. The DF stores write sets

’ Some concurrency control methods depend on the writg set of a
transaction: the set of objects modified by the transaction.
Given our view of updates, (see chapter 1 section 4), the write
set of a transaction is the set of tuples whose status was
changed by the transaction. These methods also require other
information but the write set is already available in the DF: it
is the set of DF entries pointed to by the transaction’s update
list.

!
3.1.2.1. Precision locking

Precision locking [Jord8l] is a variant of predicate locking,
Reads and writes are described by predicates which are stored in
a lock table. The write predicates are restricted to be exact
match queries. When a write is performed, it is checked against
the lock table for conflicting reads, (the simplicity of the
+»write predicate makes this test easy to perform). If no conflict
occurs, the write predicate is entered in the lock table.

The lock table contains both read and write predicates. The
write predicates are those DF entries pointed to " from an update
list. To test a read predicate for conflict, the updates on all
update 1lists could be examined. It may be mo;e efficient to
process the query (corresponding to the read predicate) on the DF
in the usual way, ignoring all committed updates. This yields

the set of conflicting updates.

.
i
3
)]
4
3
3
]
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Testing a write predicate for conflict inQolves scanning the
read predicates in the lock table. To:expedite this process, it
may be feasible to store the read predicates in a kd trie—lik;
data structure. We have found such a data strucfuré whose space
gequirements seem to be linear in the number of predicates stored

{if the predicates are restricted to be range queries).

3.1.2.2, Optimistic concurrency control

The main difference between precision locking and optimistic
concufrency control is that the latter postpones testing fé?
conflict until 5ust before committal. At this point, it 1is too
late to lock so if a conflict 1is detected, one of the involved

transactions must be backed out and re-executed.

V

The mechanisms of testing for conflgct are the.same as for

precision locking.

3.1.3. The DF stores timestamps

A T/0 method orders transactions by assigning timestamps to
transactions in increasing order. Transactions with smaller
timestamps have higher priority. Due to this ordering, deadlock

.cannot occur but transactions will be backed out if some sequence
of operations does not respect the chosen ordering.

Using Bernstein”s terminology [Bern81)], T/0 methods can be
used for rw synchronization, ww synchronization or both. When
used for ww synchronization, associated withg?ach object, (tuple
in our case), is the timestamp of the most recent writer of the
object. When used for rw synchronization the timestamp of the
most recent reader is als6 required. This 1is a very expensive

4
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"

irement. Let R-TS(x) be the timestamp of the youngest
tr

’

shction that has read x. (Its timestampois larger than that
of all other readers of x.) Then every time a read of x takes
place, R-TS(x) may have to he updated. This can generate a lot
of I/0. Also, R-TS(x) must be kept for all tuples whether present
or absent (in the current wversion). For these reasons, T/
met hods should.not be used for rw synchronization.

For ww synchronization, only the W-TSs are needed: the
youngest writers of each tuple. The same objections regarding 1/0
and space requirements can be raised but, wusing the DF, these
problems can be solved since only the W-TSs of tuples in the DF

-

are needed:

The MF represents a "consistent" state. That is, it represents
the state of a relation after one transaction has executed and
béfore its successor (in the ordering guar anteed by
serializability) has executed. 1In other words, no transaction
that commits/ after the creation of the MF has a timestamp less
than M-TS: the time at which the MF appears to have been created.

Now consider a write of x from a transaction T with timestamp
t. According to the ww synchronization protocol, T must abort if
t < W-TS(x). Since T is executing, t > M-TS. If t > W-TS(x) then
t does not have’ to abort (whether or not W-TS(x) < M-TS). If t <
W-TS(x), (T has to abort), then W-TS(x) > M-TS (since t > M—TS).>

Thus, if T has to abort it is because of an Update stored in
the DF., If x has not been updated in the current DF then T does
not have to abort. In other words, if W-TSf{x) < M-TS then
W—TS(*) is not needed.

In fact this synchronization technique does not use the DF to

full advantage. This point is “discussed in the following

'
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section.

3.1%4. The DF is a multiversion database

3.1.4.1. Using old and new versions

Bayer et al. [Baye80a] have proposed a concurrency control
method that makes use of the fact that, for recovery purposes,
two versions of updated objects exist. Readers try to read the
new value unless thié would violate serializability; then the old
value is read. A writer can create a new value for an object if
only one version of it exists and no other writer is preparing a
new vaue. There are a number of variations' of .the basic method;
two of them are particularly interesting:

1) A read-only transaction never has to be backed out. When
backout is required there is always at least one writer that can
be backed out. (But\it may be cheaper to back out a read-only
transaction.) -

2) If writers are serialized thén no backouts will ever be
necessary and all reads will 6btain the after wvalues. This
strategy is only feasible in a centralized éystem.

This concurrency control method causes transactions to abort
when deadlock occurs or when sefializabilgly is. violated. Both
occurrences are indicated by a cycle in a 'dependency graph. For
this reason, the method may not be suitable in a distributed
enviromment [Bern8l]. (A distributed version of this method has
been given [Baye80b]. Stearns and Rosenkrantz have also proposed
a distributed concurrency control method that uses old and new

vérsions [Stea81].)

& et o B s
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;
All of these methods can use the DF as a source of o0ld
versions. But these methods can be improved upon since the DF
stores all o0ld versions since the creation of the MF,

3
‘

3.1.4.2. Using multiple versions

An MVDB provides an environmment suitable for the use of the

concurrency control methods of Bayer et al., and Stearns and
i

Rosenkr antz. These aqﬁhors take advantage of old values

present for reasons of,iecovery. .

Other authors take a different approach: they note that
multiple versions are useful in both recovery and concurrency
control [Reed78, Chan82]. Even greater concurrency 1is possible
using an MVDB. .

The use of an MVDB makes ww synchronization unnecessary. Even
if writes to the same -objectﬂare received "out of order", the
database will be in a correct state after processing them.
Processing the oldér update after the younger one does not affect
the current version; another old version 1is created. The
insertion of this old version, however, may eonflict with a

reader. This would -be detected by the rw synchronization

technique.

3.2. Read-only transactions
¥

o

In a static datagase, concurrency control would be unnecessary
since any number of readers can share an object. In a dynamic
database, concurrency control is necessary but, under certain
“conditions: the execution of read-only transactions; (i.e.

transactions which do not place updates), can be expedited.

F P
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If updates are performed in place then nothing can be done for
read-only transactions: writers cannot share with readers (or
other writers). But if old and new versions of updated objects
are available then a rea;ionly transaction can avoid waiting or
abortion if slightly out of date values are acceptable. Such
values are often available as a by—-product of a recovery syétem
Also, multiversion databases are more general; they store all

b

previous versions. ®

3.2.1. Using old and new versions

As noted in [Baye80a], the old version which 1is kept for
recovery purposes can be given to a read-only transaction to
avoid waiting. Permitting this read implies a certain ordering: R
is read-only, W is a writer. Suppose that R reads the old version
of x after W has prepared a new version. Then R precedes W in
serializatioﬁ. Subsequent actions must be consistent with this
ordering.

If deadlock or an inconsistency is later discovered it |is
necessary to abort a transaction. It |is sho&n in [Baye80al that
it is never necessary to aSﬁrt and restart a read-only

transaction (although it may be cheaper to do this than to

restart some writer),

3.2.2. Using multiple versions

[

In a multiversion database, a read-only transaction can select
any previous version to read or i£ can wait for an up to date
version. In a system based on the differential file, any version
since the creation of the MF can be read.

When a read-only transaction, R, is submitted, the time of the

8
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version to be read, r, must be selected. r will determine the
position of R in the serialization of all transactions. Clearly,
if a transaction T ends before R begins then T precedes R. Now
consider a writing transaction T which started bﬁfore R and is
active when R begins, It may commit after R begins, (all of its
updates will have timestamp TC > r). These updates should be
ignored by R. Finally, if T starts committal before R begins,
(committal has not finished when R begins), then R cannot read
any of T"s wupdates since they do not all have the correct
timestamp until T is finished committing. Thus*r should be set
just below the smallest TC of all transactions which are
committing when R begins. LDM handles ;ead—only transactions in
this way. |

This treatment of read-only transactions is more generous than
that of Bayer et al. Since all past versions are stored, there is
no consffaint involving the writer of a new version and readers
of the old version; there is no "pé&ﬁsure" for the old version to
disappear due to replacement by the new version. In fact,
read-only transactions can  be completely ignored by the

concurrency control system.

»
{

4. Operations on the physical database

In this section the implementations of basic PDB operations
3

are considered. 'These are: reorganization, querying, the other

operators of the relational algebra, update, backout and

committal.
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4.1. Reorganization

4,.1.1., Basic algorithm

As more and more updates are stored in the DF, the performance
of the system will deteriorate. This 1is because ,the DF will
almost always have to be searched (as the filter becomes filled).
Also, the DF is growing: searches are more expensive for larger
files than for smaller ones. To prevent the performance from
deteriorating too much, a new MF is created periodically and the
DF is then cleared. The obvious method of doing this is to merge
the two files. This requires that the MF and DF be ordered in the

same way, i.e. they must be merge compatible. We will discuss

merge compatability later. Assuming that the files are merge
compatible and that updates to the same tuple are stored 1in
reverse chronological order (i.e. the most recent update appears

first), the algorithm given below performs the merge.

1

=Y
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Reorganize &

m and d are records fram the MF and DF respectively. d.tuple is
the DF record with the timestamp and status fields deleted. Read
returns the next record in a file or o if no more records are
present. Next locates the next record in the DF which updates a
different tuple; that 1is, all further (older) updates to the
current d.tuple are skipped.

m := read(MF)
d := read(DF)
repeat until m=d4d =

case m < d: (* m has not been deleted *)
write(m)
m := read(MF)

casem = d: (* m has been deleted. However, the most *)

(* rbcent update could be either an insertion *)
(* or a deletion. In any case, the current *)
(* update is the most recent and older updates *)
(* can be ignored. *)

if d.status = present

then write(m) ‘(* the tuple was re-inserted *)

next (d) (* skip over out of date updates *)

fcasem > d: (* A tuple has been inserted. As above, the *)
(* most recent update is the only one of *)
(* interest and could be an insertion or *)
(* a deletion. *)
if 4 is an insertion then write(d.tuple)
next (d)
end
clear (DF)
clear (filter) J
release old MF pages
return

end Reorgani ze

read (file)

get next record in file

if end-of-file then return(o9) else return record
end

return

endlread

[
L~~~

d)

= 4 .
at until d.tuple > 4d”.tuple

1= read (DF)

end .
return &;\W

end next

HQTJ
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The system musé be closed to users when Reorggnize is
executed, The only reason for thislis that the DF must not
change while the merge occurs. Otherwise, some updates that occur
during reorganization would be included and same would not. Also,
very rege;t updates (from uncommitted transactions) may be
intermediate or they may be backed out.

¢ R

4.1.2. On-line reorganization

To avoid shutting down the system while reorganization occurs,
the use of the "differential differential file" (DDF) has been
proposed'[Seve76]. (The DDF would have its own filter.) When
reorganization is about to begin, the DF is closed (i.e. it will
not receive more updates). Subsequent updates are placed in the
DDF. Searches must now . refer to as many as three files: the MF,
the DF and the DDF.

Reorganization begins when the DF is closed and proceeds ab ;n
section 4.,1.1 (except.that the system is not shut down). Wﬁén the
reorganization is finished, the new MF replaces the old one and
the DDF replaces the DF.

There are some subtleties involved in wusing the DDF., These
con;ern téansactions thaf are executing at C, the time at which
reorganization starts. Clearly, transactions that end before or
start after C are not a problem. Updates from thesé transactions
are all 'in the DF or all in ‘the DDF respectively. waever, a
transaction that starts before and ends after C must be treated'
carefuliy: \ R \

" Consider a transaction that has nét ‘reached Commit -at time C,
(suppose it is in Update). Updates from this transaction that are

in the DF Will not.- be included in the new MF. When the DF is
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discarded, the updates will be lost. Two possible solutions are:
1) Abort the tranéaction and restart ié so that®all updaﬁes will:
appear in the DDF. ( ‘ ? ‘ .
2) During Redrganize, move such'updates into the DDF .as they are
encountered during the merge. L

Some transactions may be in the Commit'state at time C., The
timestamps of these transactions are less than C, If
recorganization starts as scheduled thén some updates that ﬁave
not yet been committed may be missed. Ap easy solution is to wait
until all égmmitting transactions e;d and then start
reorganization. Of couise, m?re transactions may enter Commit

during the wait. This is not a problem since their timestamps

. » 3 » ) ?
exceed C. Their updates will be included in the next merge.

4.1.3. Another pnigine reorgani'zation method
E i
The on-line reorganization method described penalizes query

processing since as many as three files may be searched. On-line

reorganization can also be accomplished without using the DDF.
<«

The DDF allows the DF to remain fixed even though updates are
being processed. Suppose that reorganization is inikiated at time
C. Instead of putting updates in the DDF, they are §£ill placed
in the DF (i.e.) the DF . is not closed). The reorganiziné
algorithm is modified to ign;re‘updates whose ti@estamps exceéd
C. After the merge i's complete, the okd DF records, those with
timestamps not exceeding C, are deleted from the ﬁE,, (forr'
purposes of recovery they are not deleted . during the merge).
Then, the DF contains only new updates:

, . >
THis algorithm has a number of problems:

s

- 'The reorganizing process deletes records from the DF. These

- 1
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updates must not interfere with other wusers of the DF. - (Short

term locks would be placed by Reorganize.)

- Every record inserted into the DF will eventually be deleted

(during reorgan&zation). The data structure representing the DF
must be able to cope with all these deletions efficiently and
wlthout degeneration.

- Two passes of the DF' are required since deletion of a DF
record cannot immediately follow ité inclusion 1in the merge:
Suppose a crash occurs just after the deletion appears in a
buffer. Since the new MF wrecord had not reached disk when the
crash occurred, the update is lost,

The DDF avoids all of these problems. In practice, using the
DDF would not seriously affect performance. It 1is very sparsely
filled and is only required during reorganization. We therefore
r ecommend the use of the DDF.

.

4,1.4. When to reorganize

The process which reorganizes does not have exclusive control
of the system, (if, for example, the DDF mechanism is used). It
can be run on a time-sharing basis during periods of 1low
activity.

The question of how often to reorg%Pize, (i.e. the time
between initiations of the process), is open. The'problem of when
to reorganize (or take a checkpoint etc.) has been considered but
it was always assumed that reorganizatioq required shutting down
the system to users. |

‘Under this assumption (and several others) Shneiderman shows

that the®ptimal time between reorganizations is

t= VY2R/® ' /

e
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where R is the cost of reorganization and © is the rate of
deterioration of the cost of searching [SQne73]. Lohman and
Muckstadt obtained a similar but more general result in {Lolm?77].

In sane sense, there really 1is not much of a problem here:
reorganization 1is not a serious burden since it is performed
during periods of low activity. As soon as one reorganization is
complete, the next one could be started.

To formulate an optimization problem would require an
unders tanding of how the performance of the system is affected by

the reorganization process.

4.1.5. Recovery of the reorqganization process

Since reorganization is a lengthy process, a crash should not
cause the reorganization to abort and restart. Instead, it should
be able to resume with little or no loss of progress.

The essential information is L, the valué of the 1last tuple
written to the new MF. The merge can be resumed after locating
the smallest value greater than L in the old MF and in the DF.

L can be located easily: it is the largest value stored in the

new MF (according to the order used for merging).

4.2. Querying

In the context of a DF based PDB, querying involves these four

s teps: '3

o

1) Search the filter. -

2) Search the DF corresponding to positive responses from the

4

filter.

3) Search the MF.
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4) Combine the results of (2) and (3).

The details of the algorithm depend on the design of the MF,
DF and filter. We therefore postpone giving more detail until
the design of these components have been discussed. The
algorithm 1s described in chapter 6 section 2.4.

P

4.3. Other relational algebra operators

In this section we consider the implementation of more complex

operators: set operators, project, ©-join, AMM-join and (-join.,

These may be ‘execut ed directly on the base relation represented

by the MF and DF but it is more likely that these operators would
be applied after selection. Moving selection "down" the parse
tree of the query has been suggested to reduce the size of
intermediate results [Smit75, Hall7e]. The selection ma; be
quite selective and produce output which is much smaller than the
relation which was searched. There are two consequences of this
pe1nt:
1) This is a very important optimization in practice.
2) As far as performance is concerned, selection 1is the most
important operator since it will usually hdve to deal with the
largest volume of data. The operations carried out following
selection will be expedited since they will receive smaller
oper ands than they would have otherwise,

This stfategy has been used by optimizers in System R
[Seli79], INGRES [Ston76] and PRIV [Todd76].

We will discuss the implemeptation of operators in both
contexts, (i.e.' executed on t};e base relation directly and
following other operators). When an operand is a base relation

the algorithm implementing the operator must see the current

doioon AERMED A5 i Bl
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version of the relation. This will be accomplished by performing
a merge (as in the Reorganize algorithm) passing the results to

the algorithm via a pipe.

4.3.1. Set operators

These operators are, 1in most cases, most efficiently
implemented using a merge. Sorting may be necessary to ensure
merge compatability.

Z ordering is Lllvgjeful here. 2 ordered base relations are merge
compatible. Bven if selection is first applied to the base
relations, z ordering is preserved. The Rangesearch algorithm
returns tuples in z order. Of course, relations clustered on some
access set also have this property as long as selection preserves

this order.

4.3.2. Projection

The usual method of implementing projection is to project the
tuples and sort them. One more pass 1is used to eliminate
duplicates; This method applies to base relations, (tuples piped
from the merge would be projected), énd to results returned from
other oper ators.

Clustering on same access sgt is more useful than (low bias) =z
ordering for projection: projection on a prefix of the access set
can be done in one pass. ) ~

o

4.3.3. ©-join

]

It has been suggested by simulation studies that using one of

two methods for computing the natural join following selection is
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nearly always optimal ({Blas77]:

1) This method assumes that inversions on the join attribute
exist for both operands. The inversions are merged to find
matching index wvalues. When a match is found, a tuple from one
operand is retrieved &nd the predicate is applied to it. If the
tuple satisfies the predicate then ‘Wwatching tuples from the other

L}

relation (which satisfy the predicate) are retrieved. Tuples of
the join are then constructed.

2) This method does not require any inversions. Each operand is
sorted on the Jjoin attribute. During ‘the sort, tuples not
satisfying the predicate can be discarded. The join 1s carried
out during a merge of the sorted tuples.

Method (1) is not always applicable. Method (2) can alwa'ys be
used but (1) is usually preferable.

For other joins (e.g. <-join) the inversions of (1) are not as
useful as for the natural join, Also, (1) cannot be used if the
join follows operators other than selection, (since inversions
would be unavailable).

If ZMDSs are used then another algorithm becomes feasible:
Suppose the join is R[X © YIS where® € {=, #, <, <, >, >}.
Perform a selection on R using the predicate. For each tuple
returned, r, perform a selection on S, appending to ‘the pr edicate
the condition r[X] © Y. Then combine r with the tuples r‘setrieved
from S to create the tuples of. the join.

This algorithm has ‘not been analyzed as those of [Blas(7'7]. It

is essentially the "tuple substitution" method used in INGRES

AN
[Ston76].
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4.3.4., u-join

A u-join can be implemented using a merge. The details depend
on which 4-join is being performed. For example, consider R[YR)a
YS]S (as in section 1 section 2.1.4) . If r[YR] ¢ S[YS] then the
Nl -join would not create a tuple but the' (J-join would.

2 ordering does not seem to be useful for the implementation

of A-joins.

4.3.5. (-join

Consider’'R(X, Y)[Y (O Y]S(Y, 2). To implement this operaticn
efficiently, S5 should be sorted onY and R should be sorted on
(X, Y). Then a merge yields the X wvalues of the result. The
relations may already be sorted‘ as indicat;d, ({but they
definitely will not be if ZMDSs are used).

Other algorithms which make use of inversions and ZMDSs could
be used. We are not aware of a study comparing the costs of

these metéods.

4.4. Updating, transaction backout and transaction committal

The process of updating the DF has already been described
{
briefly. Here we consider the process in more detail and the

related issues of transaction backout and transaction committal.

4.4.1. Updating

The basic idea is to place in the DF a record describing the
update, (ao, ces 4 ak 17 t, s) indicates that tuple (ao, e s
ak 1) takes on status s at time t, the timestamp of the

;iansaction generating the update.
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Two successive updates to a tuple should have opposite stati,
(e.g. it does not make sense to insert a tuple that is already
present) . In other words, whenever a tuple is updated, 1its
status changes.

Consider a transaction that updates the same tuple more than
once, {e.g. a tuple 1is inserted, deleted and re-inserted). If
each update of the same tuple generated a new DF record then the
DF will have several records with the same values for (a., ...

0

ak " t). They will differ only in status. Thus it will not be

known which status 1is correct (i.e. most recent). To correct
this, subsequent updates could operate by just negating the
status flag. But then it may appear as if there are two
successive insertions or deletions. The correct procedure is to

check for the existence of the DF record identified by (a

o' vt

ak X t). If none is found, the update is processed by inserting

the record. If the record is found then it 1is deleted.

(Intuitively, the transaction has "changed its mind").

Each transaction should maintain a 1list of pointers to DF
entries it h;s generated (to facilitate backout; ‘see section 2) .
If a DF entry is deleted as described above, the list of pointers

must be updated to reflect the change.

. 2. Transaction backout

-

nsactions may be backed out for a variety of reasons. When
deadlock occurs (in a locking scheme) one transaction must be
aborted. In other concurrency control methoas backout is also
required (e.g. a transaction which fails validation in optimistic

concurrency control [Kung8l]). A transaction interrupted by a

system failure has to be backed out. Finally, the transaction may

T e} AR A B X LD S Yot o RSl Xt L
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be cancelled (if it has not been commi tted) by 6 the user who
initiated it.

Recall that each transaction keeps a 1list of pointers to the
DF entries it has created. To: back out a transaction, the
indicated DF records are merely deleted. This does not require
a'ny locking at the’logical level: the DF entry was not visibfe to
other transactions. (But physical locking of DF éages being
updated is required during the actual deletion of the record.
See chapter 6 section 2,2.2.) R

This method is simpler than that of System R [Astr76] which
has to run the log "backwards" on the current version of the
relation. Logical locking is required. The method used in INGRES

is simpler than ours: a file ¢ontaining the updates of the

transaction is discarded [Ston76].

4.4.3. Transaction committal

»~ The existence of a 1list of active transactions has been
assum'ed, (see section 2). A transaction not on this list is
assumed to bgk commi tted.

To commit a transaction, each DF record generated by the
transaction is used to set the corresponding filter bit, the time
of committal is placed in each such record and the transaction is
removed from the active list. Updating the active 1list must be
done last. Otherwise, anothér transaction may not find all of

the updates generated by the committing transaction.

A summary of this chapter can be found in chapter 8 section 4.
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[

In sections 1 and 2, three problems in the design of the PDB

were considered:

1) Data structures for storing and searching relations,

2) Recovery fram soft and hard crashes.

3) Concurrency control. \
We proposed a design for a multiversion database based on th?
differential file.. In this chapter, the implementation of the
master file, differential file and filter are considered. The

results of chapter 3 will be very useful.

1. Design flaws in existing systems

The designers of System R and INGRES have written

retrospections of their Systems [Cham81, StonB80]. Thes e

observations and others will help in the design of new PDBs.

1.1. Lessons learned from System R

An early version of System R was built on top of a relational
memory system called XRM (extended relational memory) [Lori74].

XRM stores tuples consisting of pointers to attribute values

stored in representations' of domains. The time needed to

construct the actual tuples makes this organization undesirable,

(although it saves storage space). The pages of System R
%

segments store values instead of pointers to wvalues since

efficiency is of greater concern than space requirements,

Another lesson learned from the preliminary version was that

tuple identifiers (TIDs) returned fram searches of inversions,
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are expensive to manipulate. :Thus the System R optimizer will
never consider the use of more than one inversion [Astr76,
Seli79]. (The most selective inversion will be searched. Tuples
retrieved will then be tested individually to see if they satisfy
the restrictions on'other attributes.) We regard this as evidence
that MDSs arae more suitable for processing anything other than
very simple queries which do not require the manipulation of
TIDs.

In the retrospection, it,was emphasized that clustering is an
in‘\’portant property. If inversions are used then clustering is
possible on one access set only, (recall that inversions are
highly biased). This  further supports the use of low bias MDS s
which cluster on several attributes simul taneously.

We agree with the designers of INGRES who did not implemen‘t
links [Ston76). Their inclusion complicates the PDB since they
cause the space required by tuples to vary dynamically. If, (as
in most systems), tuples are fixed in width, then only the
inclusion of links causes the spacg requirement of a tuple to
change. Links also have maintenance costs which limit their use.

Most importantly, clustering on a ~ binary 1link is of
questionable value: the tuples of two different relations (in the
Same segment) may be stored on one page due to a clustered binary
link. It is claimed that this expedites the processing of certain
joins [Astr76]. But a join is usually preceded by selection on
one or both operands. This selection reduces the sizes of the
ope;:ands and speeds‘up execution of the join. The selectionis
often highly seléi':tive, (see chapter S section 4.3). When
discussing joins, i:hen, it is important to consider the effect of

clustered binary links on the performance of selection: the

e e Ml 4~
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performance is worse than wotlld be the case if each page-stored

tuples from one relation only. *

1.2, Lessons lear ned from INGRES

INGRES makes use of the UNIX I/0 facilities, Much better
performance could have been obtained by a customized facility,
(for example),&gphysical clustering: would ha‘ve been possible).
This alternative approach was taken by thg designers of System R,

INGRES stores same relations in an "ISAM-like" file [Ston76]. )
ISAM [IBM66] is a static organization. The designers of INGRES ' ,
regret not having used/a/ﬁynamic organization, (e.g. the Btree).
It avoids ﬁhg, /ﬁ’egé for periodic reorganization (which |isg

sch;duled by the database administrator) and degr adation of

performance due to the existence of overflow records.

-

) ]
2, Data structures for the physical database .
In this section we consider the problem of selecting data

structures for the major components of the PDB: the MF, the DF
and the filter.

»

. . ¥

Our primary concern is to minimize the amount of I/0 gener ated -
in processing transactions, Storage utilization is a secondary
consideration. These priorities are justified by the rapidly

falling cost of secondary stor age.
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2.1. The MF - -‘
The data structure selected to represent the MF should support N

the efficient evaluation of range «queries.‘'Another important "

v

" consideration is that the MF should be built as tuples are
supplied (in a certain order) fram the :me,rge of the old MF 'and
the DF. Hopefully, it will not be necessary to store the tuples
i a temporary file for preprocc'assing‘.

’
2.1.1. Use an MDs
The two main contenders for the' MF are:

\\\\\\ 4 M

1) An indexed-sequential file, clustered on one access set with

o
S T
&
©

inversions on one or more access sets.
2) An MDS. .

As noted in chapter 2, inversions are suitable for processing

simple queries but not complex queries. (Systemg.a never u$es more

P20, P
s

than one invgrsion to process a query. See section 1,1.)
MDSs, on the other hand, process complex gqueries efficiently
but do not perform as well as inversions for simple queries.
These two choices ar;a not' mutually exclusive".’ An MDS can be
used. This will dictate a "certain clustering which will not

e

correspond to clustering on any access set (unless a high bias

R ap o T

MDS is wused). Then, inversions on selected access sets can be

f

constructed. Simple queries will use one of the inversions if
possible. Other queries will use the searching capabilities “of
the MDS.

The advantages &f using an MDS outweigh the ]:oss of physical
clustering on sane access set (which is incompatibie with the use
of a low bias MDﬂS) . Physical clustering permits efficient

sequential processing on one attribute but not on others. An MDS

r PR - - B T M NP W
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provides same clustering on all attributes simultaneously and
also supports the efficient processing of range and partial match
queries.

Note that any number of inversions can be set up for the MF
and there is no maintenance involved. Since the MF is static, so
are the associated inversions. The only penalty paid for the use
of an inversion 1is the cost of setting it up, but this is done
during reorganization which does not s?ut down the system. (And

we are not concerned with storage costs.)
¥ A

2.1.2. Which MDS?

Now the problem is to select an MDS. An MDS requiring a sort
of the o0ld MF to ensure merge compatability with the DF should
not be used: the MF may be quite large. For this reason, the kd
Eiﬁe, the K-D-B tree, mu%tidimensional clustering and multipaging
are’/ruled out. These MDSs do not order the tuples in any
consistent way. For example, an inorder, traversal of the kd tree
does not yleld the tuples in a sequencekdetermined by the tuples
themselves. The order of insertions and deletions also plays a
role in determining the sequence, (see chapter 3 section 2.1).

Ai} of the other MDSs described in chapter 2 are ZIMDSs. We
reject the use of high bias 2ZMDSs. They offer no advantages over
low bias ZMDSs which can be made more biased if so’desired.

An important property of the ZIMDS 5 is that they store tuples
in a specific order: =z order. Thus, if the MF and DF are not
merge compatible, only the DF has to be sorted, °

Sgme candidates for the MF data structure are-discussed in the

next section.
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2.1.3., Practical zZMDSs for the MF ///»/’/’
. /~/ )
2.1.3.1. EXCELL

EXCELL has sevg;e/ﬁafst case problems. They can be alleviated
but this/—wdbld require same preprocessing, so EXCELL cannot be

built with tuples piped directly from the merge.

2.1.3.2. HCELL

HCELL partitions the space into a grid as does EXCELL but
allows overflow to occur, (thus BHCELL may use a coarser grid).
When a cell overflows, it is dealt with by imposing another grid
on it and using another EXCELL-type structure, Thus a tree is set
up; in most cases a very shallow one. (The kd trie is a special
case of HCELL: A region of the space 1is split into two
sub-regions.)

For any “cell which does not overflow, a random access costs

a

usually one but no more than two disk accesses: one access is
sametimes required to read the HCELL directory page and another
to retrieve the page representing the cell. Most rapdom accesses
will require one disk access since the directory is much smaller
than the set of pages storing the tuples and since the
Rangesearch algorithm would never require a directofy~page to be
read more than once. (Also, a sequential access never references
the directory if the pages are linked.) Note that the pages
representing the cells can _be allocated séquentially on disk.
This’ allows for efficient processing of sequential accesses
across cell boundaries (which’ would be generated by the

Rangesearch algorithm).

If a cell overflows then the corresponding primary page stores
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all or part of another HCELL directory. In either case, the pages
of this second 1level can also be allocated sequentially. These
~ pages interrupt the sequence Of the pages of the first level of
HCELL (as they should to maintain z order).

HCELL avoids the worst case of EXCELL since overflow affects
individual cells, not the entire directory. However, a worst case
resembling that of the kd trie does exist. It is possible to have
a deep HCELL resulting in 1low storage utilization and slower

random acgess.

als

2.1.3.3. The zkd Btree

The zkd Btree cannot degenerate as HCELL can but it gives
poorer performance than HCELL for processing randop accesses, (if
the HCELL is not degenerate). .

A zkd Btree node has a smaller branching factor than an HCELL
node: An HCELL directory entry consists of a pointer to a page. A
zkd Btree entry must, 1in addition, store a discriminator
(possibly a complete tuple). The discriminator occupies seweral
bytes. Thus a 2zkd Btree is usually less "bushy" than HCELL and
is deeper resulting in slower random accessing.

—
2.1.3.4. zkd MLOPLH

Zkd MLOPLH is the MLOPLH data strﬁzture (see chapter 3 section
3) transformed into a ZMDS (as in chapter 3 section 2). This data
structure combines the best features of HCELL and the zkd Btree.
Random accessing is at least as fast as for HCELL (since a
direciory is pot needed), and definitely faster than for the zkd
Btree. The-~cost of sequential accessing is comparable to the

cost for a zkd Btree.
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The performance of zkd MLOPLH can be improved due to some
characteristics of theyMF and the way in which it is built.
- Tuples are piped from the merge in a specific order.
~ After the merge is finisbed, the MF is static. This allows
the creation of a zkd MLOPLH without any sparse buckets since the
cost of update operations is not a concern. {Recall that there
is a tradeoff involving the worst case times of updating and
sequential accessing. See chapter 3 section 3.5.2.1.)
- The size of the new MF is known in advance. Therefore, the zkd
MLOPLH should not be grown fram a single bucket. In this way a
lot of splits are avoided.

Based on these observations, tﬂe zkd MLOPLH can be grown as
follows: |
- Allocate enough primarxﬁpages to store the entire file without
overfloQ (assuming a perfectly smooth distribution).
- Place records in buckets according to the prefix of the
shuffle value. Note that all insertions to a bucket will occur
consecutively. R ’
- When both buckets of a pair brother buckets have been
created, join them if at least_.one of them is ﬂggarse, (and keep
doing this recursively until the sparseness is eliminated).

The algorithm MFLoad, given below, creates the zkd MLOPLH.

This data structure appears to be the most suitable 'one for
representing the MF. - Random accessing costs one disk access if
the accessed bucket did not overflow. Otherwise, the cost is no
worse than for a zkd Btree. Sequential accessing is as fast as

for a zkd Btree since no sparse pages exist.

-
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MFLoad ()

The file is initialized with 2™ empty buckets. b is the number of
the bucket being filled. The coroutine GetNextTuple supplies t,
a tuple fram Reorganize, and sends a value of » when Reorganize
is finished. Define h, (o) = 2"+1. CloseBucket is responsible for
eliminating sparse buckets.

b :=0
GetNextTuple (t)
while t < ®
if hp,(t) > b
then (* t is the first tuple of a new bucket *)
for i := b to ha(t)-1
CloseBucket (i ,m)
end
b := h,(t) '
end .
AddaroBucket (t,b)
GetNextTuple(t)
end
return

end MFLoad

CloseBucket (b,m) w)
If b is the "right"™ brother then both brothers have been set up.
Combine them if either is sparse (and . call CloseBucket
recursively for the resulting bucket).

level (b) := m :
b” :=

“(* b” is £he left brother, b is the right brother. *)
sparse(b) /or sparse(b”)
n

JoinBuckets (b”,b) (* See chapter 3 section 3.7.3 %)
CloseBucket (b” ,m-1)
end ’
else (* b is the left brother *) '
end
return

end CloseBucket

¢
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2.2. The DF

The requirements of the DF are quite different from those of
the MF., The DF is highly dynamic: there are many insertions and
same deletiqps. The DF is also used in query processing and in

the merge with the MF,

2.2.1. Use a zkd Btree or zkd MLOPLH

The use of many inversions is not feasible since each would
have a maintenance cost, and the DF is highly dynamic. (Also,
the presence of inversions would complicate the recovery system.)

So all accessing wil have to be done through an MDS. There are

several ad{%&fages

compatible with the MF:

d by using a DF which is merge

- The DF does not have to be sorted before reorganization.

- The processing‘gf range queries will be simplified., It will
alsé Eé faster since sorting will not be necessary to ensure
merge compatability.

We therefore restrict our attention to ZMDSs.

A DF record has two more fields than an MFE record: timestamp
and status (which we will refer to as t and s respectively). The
bits of these values must be included during shuffling, (a ZMDS
is being used). Clearly, to maintain merge compatability with
the MF, all of these bits should appear after the bits of the
attribute values. Also, it will be useful to have all of the

updates to a tuple stored 1in reverse chronological order. So

after the bits of the attribute values, the complemented bits of

the timestamp are appended. Finally, the status bit is appended.
In other words, the shuffle function for the DF is

shuffle__(][a a

DF L4 tl s]) =

0r Ay
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+

<shuffle({la., ... | complement (t) | s>

0’ Tt et

Since the DF is dynamic, static organizations are rejected.
HCELL haé some problems with storage utilization‘ and therefore,
sequential accessing, (since it is not multi-level in the same
way as zkd MLQPLH) .

We therefore recommend the use of a zkd Btree or 2zkd'MLOPLH
for the DF. We cannot recommend the use of 2zkd MLOPLH without
reservation. Due to the static nature of the MF, certain
improvements to zkd MLOPLH were possible, (e.g. the elimination

of sparse pages). But with the dynamic DF, these improvements are

not possible.

2.2.2, Concurrent operations on the DF

Two transactions which do not conflict logically may conflict
physically. Suppose that transaction T locks the predicate X <
10 and that transaction T’ locks the predicate.X > 10 (where X is
an attribute gf the relation). If & writes a tuple with X < 10
and T’ writes a tuple with X > 10 then there is no 1logical
conflict. But if both updates are directed to the same page of
the DF there is a physical conflict,

This is a much simpler concurrency control problem than the
pr oblem éf guar anteeing serializability. For example, if zkd
MLOPLH is used, then a very simple locking scheme is possible: a
transaction merely locks the bucket being updated for the
duration of the update.

The problem of concurrent Btree operations has been studied.
A slightly modified Btree requires a writer to lock a small
number of pages [Lehm8l]j. This method d;es not handle deletions

well, but the DF does not have to process manyryf them; the entry
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can be flagged as deleted.
Optimistic concurrency control cadn also be used for both data
/
structures. Instead of locking out a conflicting writer, the
younger transaction involved in the conflict is forced to

re-execute. This method requires that each writer make a private

copy of the pages or buckets being updated.

2.3. The filter

The function of the filter is to indicate when a DF may have
an update relevant to a query ([Seve76]. We will design a filter
for the PDB. Analysis of the filter will show that it 1is
virtually worthless in the context of a relational database. We

then discuss filters that are heﬂpful in this context.

2.3.1. The original proposal

The filter for a relational’ database, as originally proposed,
is an array of M bits [Seve76]. Initially all the bits are set to
0. When a record with key k is updated the hash values h1 =
f1(k), eve 4 hx = fx(k) aré comput ed. (Each % returns an
integer in [0, M-1].) Bits h1, cee 4 hx are set to 1.

To wuse the filter, the hash functions are applied to the
search argument. If all of the accessed bits have values of 1
then it 1is possible (but not certain) ghat the DF 'contains a
relevanF update of the record corresponding to ‘the search
argument, If any of the bits are 0 then the DF does not contain
a relevant update. ’

The parameters M and X control the accuracy of the filter,

Obviously, M should be as large as is feasible, (géven that the

“ ¥
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filter should be kept in primary memory). Given M, X can be

selected to optimize performance according to a variety of

criterlia (see [Seve76]). i Va

&
The filter as described is not suitable for our purposes. It
Al . s *
can handle match querig§ on 1d data. In the next section we

discuss a more general filter.

~

2,3.2. A filter for a relational database

The filter described above 1is not satisfactory for two

reasons:

1) The queries to be processed are range queries, not just match
queries.

2) The data is multidimensional.

The first point suggests that the hash function(s) should be
order preserving. Without agy knowledge of the distribution of
the points (corresponding to the updates) the only logical choice
for the hash function is

h(k) = |k / s] ‘
where s is same scaling factor.

The second point is easily dealt with: multidimensional data
can be treated as one dimensional following shuffling.

The filter, then, is designed as folléws: tuples consist of d
bits; shuffling yields an integer in [0, Zd—l]. The filter
contains M bits and, in practice, M << 2d. The hash function to
be used is

hit) = [(M / 2d) shuffle(t)]
where t is the tuple being updated. Each bit in the filter
represents 2d/M bits of the space consecutive in gz order. Thus

each bit corresponds to one "cell" of the space.

az
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2.3.3. The filter is useless

It can be argued that the filter proposed is almost useless in
a relational database. Sup;ose that the filter has M bits and
thaé n updates have been placed 1in the DF. Then, assuming that
the updates are uniformly distributed, the probability that a
given update falls in the cell of a given filter bit is 1/M. The
probability of a miss is 1 - 1/M. The probability of all n
updates missing the cell is (1 - l/Mfw. So the probability that

at least one of the n updates falls in the cell isp =1 - (1 -

l/M)n. This is the probability that a given filter bit is on. A

partial match query on t of the k attributes covers MLNk of the
filter’s bits.

Now, the probability that all of these bits are off is

1-t/k
P, = (l-p)M

p0 is usually very close to zero.

log_(p,) = ml-t/ky Log (1-1/M)
= ub R iy .
_n/Mt/k 2
- e_n/Mt/k

[¢)

p0 is strongly dependepé on t/k. Figure 1 plots pb vs. t/k for n
= 210 and M = 5% . The graph shows that the filter is virtually
certain to refer a query to the DF unless over half of the
attributes are specified (in a partial match query). The results

hold for a wide range of M and n.

The use of the filter in the original proposal [Seve76] was

\ /
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justified: £t = k =1 and t/k = 1. But for multidimensional data,

the benefit of the filter is not so clear. ~

Now consider how many of the accessed filter bits are on. A

partial match query covers M1_Hk filter bits. Each has
probability
p= 1 - (3-1/m)° ) !
-n/M
1 ~ e

of being on. The expected number of filter bits that are on is

approximately

_ Ml—t/k

-n/M
e

(1- )

Figure 2 shows how N grows with n.

To summarize these results, it is very unlikely that the DF
will not be referred to.

Now recall how the DF is accessed. The Rangesearch algorithm
examines a search region, SR, by generating a random access and
one or more sequential accesses. The random access uses the
filter, and, as shown, is almost certain to be referred to the
DF. From this point on, the filter.can be ignored: the filter
will indicate which regions of the space (inside the SR) ﬂave
been updated but this is helpful only if a random access is being

processed.

The filter, as designed, is useless.

2.3.4., Multiple filters

Recall from section 2.1 that the MF is represented by an MDS
augmented by inversions. Consider a simple query: X = x, and
suppose that an inversion on X exists. From section 2.3.3 it is
almost certain that the DF will have to be accessed, (t = 1).

Since the MF is accessed quickly using an inversion, it 1is

[
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A
T

possible that it will be more expensive to ‘access the DF (which
does not have an inversion on X) than the MF. '

But considef\énother filter, designed to déal exclusifely with ;
accesses on X. Then k = 1 and for the above query; k = 1. From 7
the gesults of section 2:%,3 it c;n{be ;eéﬁ'that this filter

would be valuable in processing queries on X.

.
r

We therefore propose the following: for each inversion, I, set

up for the MF, a filter should be set up for dealing with queries

b b nbne

on the access set oOf I, These filters should be kept in primary
9

memory. The modification of the algorithms given in this chapter

+

v me gt

to deal with multiple filters is straightforward. .

1y

2.4. Searching the MF and DF

Now that the desi&h "of the MF, DF and filter have been

[ S F PPy DM RPN W,

. , &
specified, the algorithm for processing a range’ query can be

specified. The outline of chapter 5 sectidn 4.2 can now be . 4
simplified since the (multidimensional) filter has been
eliminated. All that 1is required to process each SR 1is a simple

merge of the MF and DF. The basic algorithm and optimizations

*

are discussed below.
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2.4.1. The basic algorithm

The tuples of the MF and DF which lie inside a given SR are to
be merged. The Reorganize algo}ithm, (see chapter 5 section
4.1) , can be used with two modifications:

1) The initial values of mand d are determined by random

accesses based on the SR:

m := randac (MF, lowval (SR))

d randac (DF, loval{(SR))

2) The merge terminates when m > hival(SR) and d > hival (SR).

2.4.2. Optimizations

The ‘application of the optimizations of Rangesearch,, (see
chapter 3 section 2), to the current stiuation is not
straightforward. For example, there are now two pages (one from
ththF and one fram the DF) to "scan to the end" of.

Recall that the origig@l motjvation for the optimization was
to avoid the processing of a ﬁuge number of small SRs. Let us
defdine a "small SR" as an SR completely contained within an MF
cell. To process a small‘SR it is not incorrect to process
insigad the. entire MF cell containing the SR, filtering out
tuples whicﬁ do not actually satisfy the query. This strategy
will "skip over" hearby small SRs whicdh fall in the same cell.
Afte[ the MF cell is processed{ the search can be reconstrgcted

to resume at the tuple whose shuffle value is the smallest

exceeding the hival of the cell.
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2.4.3. Using MF inversions

To process a simple quéry on an access set for which an
inversion exists, a different search algorithm is required. We
can take advantage of the DF filter corresponding to the MFs
inversion (see section 2.3.4).

.The inversion stores the index values (and corresponding
pointers) in an indexed-sequential data structure, ordered by
index value. Each filter bit represents a range of index values,
To process a range query on the access set of an inversion we
begin with the filter. If a given filter bit is off, the MF is
accessed through the inversion. Otherwise, 'the retrieved MF
tuples are merged with the entries fromlthe DF corresponding to

the range of index values represented by the filter bit,
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It is sometimes useful to be able to evaluate a query on a
previous state of the database. For example, if same statistic,
ke.g. average salary), is to be plotted against time, the
necessary data can be extracted by accessing certain past
versions.

It is not feasible to anticipate all such requests and then
retain the required information. A more general aéproach is to
maintain archives: all previous states of the database.

Current relational database systems do not support arc;hives.
The idea 1is not even present 1in the relational algebra: a
relation represents the state of a set of objects  at some
instant; it 1is a "snapshot™ so the relational algebra does not
contain operators for querying past states. #

The differential file provides the ability to access the

recent past: it stores all versions of a relation since the

creation of the MF. ("Fﬁis capability is used to allow read-only
transdctions to avoid concurrency control.) In this chapter, the
idea of the differential file is extended to provide archives.
The implementation will be discussed. Archives will occupy a very
large amount of memory and new mass storage technology will be
useful in dealing with this volume. This issue will also be

addr essed.

P

‘
'
»




Chapter 7 Section 1 205

1% Incorporating archives into a relational database system

The inclusion of archives affects all levels of a relational
database system. As indicated above, the notion of "relation"
needs’ to be reconsidered and the relational algebra must be
extended. These problems are beyond the scope of this thesis. We

will discuss the implementation of archives.

[

1.1. Querying recent versions

Regardless of how tpe relational algebra 1is extended, one
point is clear: it will E@ necessary to refer to the relation as
it existed at a specific\mdment in the past. The extraction of
this wversion has been called the surface operator by Merrett
[Merr8l1]. If each tuple is seen as being either present or absent
in relation R at all times then surface(R,t) is the set of tuples
that was present in R at tiﬁe t, (see figure 1). Recall that all
the updates of a traAsaction are marked with the timestamp of the
transaction. That is, all df the updates take effect at the same
time. In this way, surface sees either all of the updates from a
given traﬁsaction or none of them.

For now, consider versions no older than the MF,/ (i.e.
"recent" wversions). Surface(R,t) can be retrieved as follows:
perform a merge of the MF and DF, ignoring DF entries whose
timestamps exceed t. The Reorganize algorithm of chapter 5
section 4.1 1is easily modified to ignore the DF entries
described,

" To retrieve a very recent state it may be necessary to wait
until committing transactions finish committing, (i.e.

transactions which started committing but did not finish when the
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search was initiated.) ‘!ﬁﬁ‘

The algorithm for querying a recent version (at &ime t) is
simple, Normally, the DF is searched with a range query Q. To
ignore all updates in Q's reéion dated later than t, search the
DF using

Qf = Q and (timestamp < t)
In the DF, the timestamp was treated like any‘other attribute so
Qf is a range query and the usual search algorithm can be used.

(This is essentially the "query modification" technique

[(Ston75].)

1.2. Querying any previous version

We now consider the problem of accessing versions older than
the MF. There are a number of ways to modify the basic

differential file scheme to support such accesses.

1.2.1. Never reorganize

?

If the entire relation is stored in the DF from- the time it is
created, (the MF 1is then empty and unnecessary), then all
versions of the relation are present in the DF and the techniques
of section 1.1 can be used,

This method is clearly impractical. Since the DF grows without
limit it will become very expensive to search and keep on line,.

It is therefore necessary to update the MF and - clear the DF

periodically.
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1.2.2. Keep old DFs

Following reorganization, the old DF is di scarded. If itis
kept then states that existed before reorganization can be
accessed. If all old DFs are kept then any previous state can be
accessed. These 0ld DFs will be used as "anti-differential files"
(ADFs) to construct earlier states from the MF, (see figure 2).
The use’ of ADFs to implement archives was proposed by Merrett
{Merr8l1]. Note that a DF can~be‘ used as an ADF by just reversing
the meaning of the status flag. That is, [aO, cer 4 ak 17 t, s]
in the DF means that the status of [a , ... -, ak 1] was changed

0
tos at time t. In the ADF it means that before time t, the
\

status was ®the opposite of s.

To query a version at time t < tM (where t:M is the time at

which the MF was created) a new search pr edicate is defined:

Qf = Q and (timestamp > t)
Each ADF| such that t < tI is searched using Qf and the MF is
searched using Q. The results from these files are merged as in
Reorganize. (Actually, only the oldest accessed ADF, ADFJ where
tJ-1 < t < t, needs to be searched with Qf' ADFi , 1 >3 can be
searched using Q since t < t' and t:i <t L)

Note that the DF stores tuples in reverse chronological order
but Lthe ADF must be accessed in (forward) chronological order.
That is, to undo all of the u;;da-tes of a tuple stored in an ADF,
only the earliest update is of interest. The required
modification to the merge algorigrm is trivial. o

The time required to evaluate a query on a version is directly

related to the age of the version: older version-will access more

ADFs than younger versions.
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1.2.3. Keep old MFs and DFs

If old MFs and DFs are kept then the time to access a previous
version will be independent of the version’s age. The price for
this improved performance is that the MFs will occupy a very
large amount of storage. This issue is discussed in section 3.

This organization is shown in figure 3.

To access a previous version at time t, find i such that tl-']
<t < t] . Then search MF and D}?'| (using QT = Q and (timestamp <
t) instead of Q for DFi) and merge the results, This method is
simpler than the wuse of ADFs since only two files are being
merged and because there is no distinction made between recent
versions (t > t'M) and older versions (t < tM).

1.2.4. Keep sane o0ld MFs and all old DFs

Neither of the methods proposed in sections 1.2.2 and 1.2.3 1is
entirely satisfactory. For example, the use of ADFs may be
unacceptably slow 'but the retent;on of all MFs may be
impr actical. Those methods are special cases of the following
method: Store the r most recent MFs and DFs. All older versions
can be reconstructed using ADFs (see figure 4).

Given a fiked amount of storage for the MFs, the value of r

can be determined. |

2. Implementing archives

We now discuss the data structures suitable for MFs, DFs and
ADFs in the archives. The related issue of storage media is also

addressed. We begin with the following two assumptions:

Bt e tnmie mt

T

Yew]



P

20§A
MF
ADF1 ADF2 ADF3 OF
Time } L
tO f1 1'2 f3
Figure 2. Archives using anti—differential files (ADFs).
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Figure 3. Archives using ADFs and old MFs and DFs.
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1) The archives are accessed much less frequently than |is tile
current version.
2) Since the archives will be large and grow indefinitely, the
issues of cost of storage and storage utilization are of primary
importance. |
The emphasis then, is on conservi'ng storage, not on speed,
Eventually the archives will become 30 large that they cannot
be managed at a reasonable cost; The obvious way to ~deal with
this situation is to reclaim space occupied by the oldest ADFs,

(assuming archives are stored as in section 1.2.4).

2.1. The MF

Two versions of the latest MF exist. One is stored on disk and
is wused for query processing. The other is a backup wversion
stored on tape. Either version could be placed in the archives.
Tape is cheap;er but slower to use.

The data structure used for the MF, the zkd MLOPLH ipgproved as
in cha[.;ter 6 section 1.3.4, . is suitable for use in the archives.
The storage utilization is likely to be high (since it <can be
controlled). Furthermore, it is easy to show that storage
utilization cannot fall below 25%. (More importantly, it cannot
get arbitrarily close to zero.)

Based on our assumptions given above, inversion§ should not be

stored: they occupy a significant amount ' of storage and speed is

not a primary consideration,
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2.2. The DF
1
The DF data structure, (zkd Btree or zkd MLOP/LH) , 1s also

sui table for use in the archives., Storage utili}a"tiqn is kept in
a fixed range. g

. No backup for the DF ekiéts so it wb/uld have to be copied to 4
stor age device EW of archiving: either to a

disk for ©old DFs (and ADFs) or to the tape containing the old

MFs.

' )
2.3. Hard crash recovery reconsidered

The purpose of the hard crash recovery system is Jto r:'estore
damaged data structures. The log is used to recover the DF,
filter and other dyx'\amic objects. The MF is restored from a
backup copy.

This system 1is as secure as 1its least secure component.
. - !

Arbitrarily high degr ees of security can be achieved by"

duplication of 1logs and backups but - 100% protection is not
possible. It is commonly assumed however, that the log is
"stable", i.e. completely reliable.

The need for‘ a backup of the MF can be reconsidered now i:hat
there are several old MFs present. Given that the log is stable
and available as far back as the oldest MF, a backup of the
current MF is unnecessary.

Suppose that the current MF, MF, is damaged. (MF1 is the
oldest MF.) It can be constructeq fron the previous MF, MFP_»]
and the log. If MFr'—1 is damaged during reconstruction then MFI‘-Z
can be used to restore MFF__1 which in turn can be used to restore

MF.. That is, a system with the r most recent MFs provides
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s

security equivalent to r-1 backup MFs.
Generally, any MFi can be restored £rom MFJ , ‘j < i, so the

archives are also protected, but the older ‘an MF the Iess secure

v

* it is. The only irreplaceable component is MF1 , the oldest MF.

If this is unacceptable then it could be protected by a backup
.copy created periodically. This backup would be created only
during idle maments: its creation is not urgent. The most recent

backup of this kind can be used with the log to restore MF1 .

D

3. Write-once memory .

"video disks" are new mass storage devices that are expected
to be wused in information sys tems in'the‘ near future [vand80].l
Functionally, a video disk is a "write-once memory" '(;WOM) . They
are written and thén used as read-only memorfr. These disks store
data very densely and cheaplj;. They are, therefore, ideal for

.storing archives.
WOM is also ideal for bac'kup purposes. After being w?itten,

the stored information is difficult to corrupt: the disk will

\

never be put into a writing device again“so only physical damage “

could affect the inform.ation. ‘

If'WQaM were used, the life cycle of an MF would be as follows:
- The MF is. created o.n WOM durin%reorganization and is useﬁ‘ for
processing queries.

-

—~ When the '‘next MF is created the old MF is stored as part .of
the archives. This is also a suitable backup since WOM is
difficult to corrupt.

WOMs camhot be erased and reused. Thus;, the only 1imit to the
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-

' number of MFs that can be kept is warehouse space.
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In this, thesis, a new design for the physical database was
proposed. Theeé}S{lnctive features of this design are the data
structures used, (the ZMDSs), and the use of the differential
file scheme instead of a single dynamic file. In this chapter,

the main results are summarized.

1. The kd trie

The kd trie (chapter 3 section 1) is a data structure which
supports the efficient evaluation of Rgrt}al match and range
queries. It resembles the kd tree but d??fers in the way that
discriminators are selected: with the k4§ t;ie, the discriminator
that splits i region 1is completely determined by the region
itself. The choice of a kd tree discriminator, on the other hand,
is influenced by the points in the region. This difference %as
consequences in performance: The kd trie for a given set of
points is unique. So updating «<cannot cause degradation, of
performance unless a "bad" distribﬁtion is achieved. The ka tree
may degéneratg. Furthermore, the balance of a kd tree cannot be
maintained.

Analysis and experiments on the kd trie show that it 1is a
practical data structure to use, (although it does have bad worst
case performance}. .

The kd trie provides a consistent ordering of data. If tuple t
precede; tuple t” in the inorder traversal of a kd trie
containing both, then this”dfde;ing of t and t” occurs in all
such kd tries. The kd tree does not have this propértfi In fact,

4

two different kd trees stdring the .same data may yield different
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inorder.traversals.

The ordering of tuples provided by the kd trie |is "z}Zrder“.
The kd trie made obvious the discovery of z order but 1is not
necessary: precedence in 2z order can be decided without using a
kd trie. This is so because the kd trie «can be seen as a trie
storing "shuffled" tuples, '(i.e. the bits : of the binary

representations of the attribute values are interleaved). 2 order

corresponds to the usual numeric ordering of "shuffle values".

'3

2. 2 ordered multidimensional data structures, (ZMDSs)

The essential property of the trie, (as far as range searching
is concerned), is that it is an indexed-sequential data structure
(ISDS). That is, it supports random and sequential accessing. By
storing shuffled tuples in any data structure with this property
ahEMDS is obtained, (see <chapter 3 section 2); the tuples are
stored in z order. A ZMDS can be used to evaluate range queries
efficiently.

The procedure for using a ZMDS is as follows:

~ Shuffle all the tuples and store them in an ISDS.

- Evaluate range queries using the Rangesearch algorithm.

- Unshuffle the tuples returned by Rangesearch.

The input t® the ﬁangesearch algérithm is ; rangé query. It
generates a sequence of "searéh regions" each of which generates
one random access (to the 1ISDS) and at least one sequential
access.

The advantages of the ZMDSs are due to their reliance on

ISDSs. Existing ISDSs (e.g. ISAM, Btrees, etc.) can be used. The
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analyses of the ISDSs also applies to the corresponding ZMDSs.

Fyrthermore, any new results on 1ISDSs are immediately applicable

to the ZMDSs.:

3. Multi-level order preserving linear hashing, (MLOPLH)

-

We. have modified linear hashing so ‘that it can support
sequential accessing, (see chapter 3 section 3). It 1is then an
ISDS and therefore yields a 2ZMDS. This modification of linear
hashing, order preserving linear hashing (OPLH), was achieved by
using a monotonic hash function. The hash function used may not
distribute the records to the buckets uniformly. If this happens,
sequential processing may be slow. The problem is due to the
appearance of buckets whicg are sparsely filled. "Multi-level"”
OPLH (MLOPLH) avoids this problem by combining sparse buckets
with other bugkets. ’

In its final form, MLOPLH has the following properties, (n is
the number of tuples): N

~

- A bit map containing bne bit per bucket is used.

Random accessing usually costs O(l) but is never worse than for

a B+tree.

Sequential accessing usually costs the same as for a B+tree; it
¢

may occasionally cost jglightly more. °
- Updates are usually no slower than O(log(n)). The worst case is

L \ , ,
O(n/2), for some integer L. L can be set arbitrarily but there

is a tradeoff: the worst case cost of a sequential access is

a

o(2%).
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To summarize our work on d;ta structures: we have found a
class of data structures, (ZMDSs), for evéluat}ng range gueries
P .
which is based on the classgﬁf ISDSs. The kd trie 1is the
“founding member" of the ZMDS class. We have also found a new
ISDS whose performance may be better than that of the B+tree.
This therefore yields another ZMDS which has very good

performance.

4, Transaction processing

In addition to supporting the basic operations on relations, a
complete relational database system must be able to support
concurrent access and be able to recover from soft and hafa
crashes. .

The proposed design for the physical database is based on the
use of a "differential file" system, (see chapter 5). A relation
is stored in fwo parts:

1) The static master file (MF) represents /"snapshot" of the
relation.

2) The dynamic differential file (DF) stores updatéé generated
since the creation of the master file.

Both the MF and ﬂF’are searched in the evaluation gf a query.
Periodically, the MF “and DF are merged to create a more
up-to-date MF; the DF is then cleared.

This organization is, in some ways, more complicated: than
using a single dynamic file.,For example, searching is more

/

complicated. But other aspects of transaction processing are

simplified. These are discussed below. The use of the
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differential file organization also has advantages in performance
due to the static nature of the MF.

The use of the differential file results in a "multiversion”
database: all versions of a relation (since the creation of the
MF) are available in the DF. This allows the use of (soft crash)
recovery and ’concurrency control techniques that would not
otherwise be possible.

The recovery system is simplified because the DF stores the
most recent state of the relation: it is not necessary to recover
from an out of date checkpoint, (which 1is slower and more
complicated). Also, the cost of creating the checkpoint 1is
avoided. Concurrency is enhanced because of the availability of
old versions. Read-only transactions can be completely ignored by

the concurrency control system.

Feg,

5. Data structures for the system

. The class of ZMDSs is a good source of data structures for the
representation of the MF and DF, (see chapter 6);

- A large number of ZIMDSs are known (due to the laige number of
known ISDSs). - i
- They can be searched efficiently.

- Tuéles are stored in z order in all ZMDSs. Thus algorithms
requiring merging can be used without sorting either operand,
(even if the operands are stored in ZMDSs based on different
ISDSs) . Therefore the merge of the MF and DF does not require a

sort of the 1large MF. Other multidimensional data structures do

not have this property.
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The MF should be represented by a zkd MLOPLH, (the ZMDS
derived from MLOPLH). Since the MF 1is static, the tradeoff
between the worst case costs of updating and .sequential accessing
is not a concern. Inversions on "important" access sets should
be set up for dealing with simple queries. A large number of such
.
inversions can be used because the MF is static.

The DF should be represented by the zkd Btree or zkd MLOPLH.
(The latter cannot be recommended without reservation for use in
a dynamic situation until more is known about its performance
;elative to that of the zkd Btree.)

A filter is worthless in processing complex partial match and
range queries. But for processing simple dqueries on a singfe

access set, a filter for the access set is quite valuable. One

filter should, therefore, be set up for each MF inversion.

6. Archives

The design proposed for the physical database can be extended
to provide archives, (see chapter 7), the ability to access old
{but recent) states, (states created after the MF), By storing

old DFs and/or old MFs it 1is possible to access any previous

‘ State.

If old MFs are stored they provide increased protection from
hard crashes. Recovery is possible from the most recent undamaged

MF and a log of transactions.
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7. Conclusion

Existing implementations of relational databases are
unnecessarily complicated and slow. OJ} design for the physical
database is based on the differential file organization. This
creates a "multiversion" database. The availability: of old
versions results 1in relatively simple recovery and concurrency
control systems. There are also advantages in performance.

The components of the differential file organization should be
represented by ZMDSs. This simplifies reorganization and permits
the efficient evaluation of partial match and range querieg. The
MF should be augmented by inversions for processing simg}e
queries. For each MF inversion, there is a corresponding filter

»

for the DF.

By storing old MFs and DFs, the design can be extended to

provide archives and improved protection from hard crashes.
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