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Abstract 

It has been suggested that conserving standing tropical forests might be the most cost-

effective and fastest way to mitigate the impacts of climate change. Over the past few years, 

numerous initiatives putting tropical forests at the forefront of the climate agenda have been 

deployed. However, monitoring forest carbon stocks is still a science in progress. Recently, large 

tropical trees have attracted increased attention as they hold the bulk of forest carbon stocks, but 

accurately estimating large trees’ carbon content remains challenging. Moreover, the global 

distribution, abundance and factors influencing the distribution of large trees remain elusive. 

This thesis (1) focuses on a new method to estimate large tropical trees’ aboveground biomass 

(AGB) (a proxy for carbon stocks) using terrestrial laser scanning technology (TLS) and (2) 

investigates large tropical tree distribution patterns and its impact on the spatial variation of 

forest carbon stocks. 

Recent literature has suggested that TLS combined with Quantitative Structure Models 

(QSM) was the most accurate way to estimate large trees’ AGB. However, in tropical evergreen 

forests, QSMs have only been applied at the scale of only a few hundred trees, never providing 

estimates of AGB at the plot level. Estimates of AGB at the plot level are essential to extrapolate 

to the landscape level or to calibrate remote sensing tools and develop forest carbon maps. In 

chapter 1, I tested the applicability of QSM to 104 scans of large tropical trees. I found that QSM 

were successfully applied to only 36 trees due to occlusion problems, preventing QSM from 

providing AGB estimates for entire forest plots. To answer this gap, I developed a new method 

that I called the Compartmentalized Model. This method considers trees as fractal objects where 

tree trunks and branches are separate elements from which biomass can be estimated using TLS 
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point clouds. I then discuss the opportunities for TLS to measure different tree components from 

the ground and to improve AGB estimates of large tropical trees. 

In chapter 2, using three different forest inventory datasets that cover a total area of ~ 20 

ha and one remote sensing dataset containing large tropical tree locations across the Emberá 

Territory of the Balsas River, Panama, I found that large trees had a clustered distribution. This 

distribution of large trees resulted in a heterogenous forest landscape characterized by small 

pockets of high carbon density surrounded by areas of lower carbon density. In addition, I used 

the inventory datasets to demonstrate how plot size and plot distribution in a heterogenous forest 

landscape can lead to significantly different carbon density values and affect carbon payments in 

forest carbon finance programs. These results advance our knowledge of large tropical tree 

distribution patterns and abundance values. They also raise concerns about accurately monitoring 

forest carbon stocks in intact forest landscapes.  
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Résumé 

Il a été suggéré que conserver les forêts tropicales pourrait être le moyen le plus rentable 

et le plus rapide pour atténuer les impacts du changement climatique. Au cours des dernières 

années, de nombreuses initiatives plaçant les forêts tropicales au premier plan de l'agenda 

climatique ont été déployées. Cependant, le suivi des stocks de carbone forestier est encore une 

science en évolution. Récemment, les gros arbres tropicaux ont attiré une attention accrue, car ils 

détiennent, à eux seuls, la majorité du carbone forestier. Toutefois, estimer avec précision la 

quantité de carbone contenue dans les gros arbres reste difficile. De plus, la répartition mondiale, 

l'abondance et les facteurs influençant ceux-ci restent méconnus pour les gros arbres. Ce 

mémoire (1) propose une nouvelle méthode pour estimer la biomasse aérienne des gros arbres 

tropicaux (un proxy pour les stocks de carbone) en utilisant le Lidar Terrestre (T-Lidar) et (2) 

étudie la distribution des gros arbres tropicaux et son impact sur la variation spatiale des stocks 

de carbone forestier. 

La littérature récente suggère que le T-Lidar combiné aux modèles de structure 

quantitative (QSM) est présentement le moyen le plus précis d'estimer la biomasse aérienne des 

gros arbres. Cependant, dans les forêts tropicales humides, les QSM n'ont été appliqués qu’à 

quelques centaines d’arbres, ne fournissant jamais d’estimations de biomasse pour des parcelles 

de forêts. Les estimations de la biomasse aérienne au niveau de la parcelle sont essentielles pour 

extrapoler ces données au niveau du paysage ou pour calibrer les outils de télédétection afin de 

développer des cartes du carbone forestier. Dans le chapitre 1, j’ai testé l'applicabilité des QSM à 

104 numérisations de gros arbres tropicaux. Mes résultats démontrent que les QSM ont été 

appliqués avec succès qu’à 36 arbres en raison de problèmes d'occlusion. Cela empêche les QSM 
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de fournir des estimations de biomasse au niveau de parcelles forestières. Pour répondre à cette 

problématique, j’ai développé une nouvelle méthode que j’appelle le Modèle Compartimenté. 

Celle-ci considère les arbres comme des objets fractals où le tronc et les branches des arbres sont 

des éléments séparés à partir desquels la biomasse peut être estimée à l’aide de nuage de points 

provenant de numérisations T-Lidar. Je discute ensuite des opportunités du T-Lidar pour mesurer 

différentes composantes d’arbre à partir du sol et pour améliorer les estimations de biomasse 

aérienne des gros arbres tropicaux. 

Dans le chapitre 2, en utilisant trois jeux de données d'inventaire forestier différents 

couvrant une superficie totale d'environ 20 ha et un jeu de données de télédétection contenant 

l’emplacement de gros arbres tropicaux à travers le territoire Emberá de la rivière Balsas, au 

Panama, j’ai constaté que les gros arbres avaient une distribution groupée. Cette distribution 

résulte en un paysage forestier hétérogène caractérisé par de petites pochettes à haute densité de 

carbone entourées de zones à densité plus faible de carbone. De plus, j’ai utilisé ces jeux de 

données pour démontrer comment, dans un paysage forestier hétérogène, la taille et la 

distribution des parcelles d’inventaire forestier peuvent conduire à des valeurs de densité de 

carbone significativement différentes et affecter les estimés de paiements de carbone dans les 

programmes de financement du carbone forestier. Ces résultats avancent nos connaissances sur 

la distribution et les valeurs d'abondance des gros arbres tropicaux et soulèvent des inquiétudes 

quant à la manière de surveiller avec précision les stocks de carbone forestier dans les forêts 

intactes.  
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General Introduction 

Climate change mitigation requires both a rapid reduction in emissions from 

anthropogenic fossil fuels and maximizing the mitigation potential of natural ecosystems 

(Dooley K. et al. 2022). Natural climate solutions (NCS) propose a combination of conservation, 

improved management and restoration actions to increase natural ecosystems’ carbon dioxide 

(CO2) storing capacities, reduce greenhouse gas emissions and mitigate climate change (Griscom 

et al. 2017; Drever et al. 2021). Actions from NCS can also provide various environmental co-

benefits (Fargione et al. 2018). For example, protecting forests for their carbon sequestration 

potential also ensure enhancing air and water quality (Smith et al. 2013), conserving biodiversity 

(Lindenmayer & Laurance 2017; Bastin et al. 2018) and supporting human well-being (Berkes & 

Davidson‐Hunt 2006).  

Historically, humans have had a negative impact on the world’s forests through 

deforestation and forest degradation (Potapov et al. 2017; FAO 2018). However, this narrative 

could change as countries around the globe focus on mitigating their carbon emissions to slow 

down global warming (Allan et al. 2021) and NCS pathways involving forests attract the 

attention of forested countries (Griscom et al. 2017; Fargione et al. 2018; Drever et al. 2021). 

Globally, NCS forest pathways (e.g., reforestation and forest conservation) are allegedly the 

most cost-effective to achieve the global mitigation needed by 2030 (Griscom et al. 2017). This 

is because forests have a dual role as NCS (Drever et al. 2021). Forest conservation prevents 

emitting into the atmosphere carbon that is stored into forests’ above and belowground carbon 

stocks. At the same time, reforestation activities aim to augment forest land cover by planting 

trees, increasing forests’ atmospheric CO2 storage capacities (Drever et al. 2021). 
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Tropical forests store significant amounts of carbon and grow quickly to absorb more 

(Redondo-Brenes 2007). However, even with rapidly growing tree species, tree growth can take 

years to offset today’s emissions, and it is argued that the biggest land-based climate mitigation 

potential for achieving our short-term climate objectives resides in conserving intact forest 

ecosystems (Mackey et al. 2020). Yet, despite the urgent need to reduce global warming below 

1.5C (Atwoli et al. 2022), the last decade has seen an infatuation with planting trees compared 

to conserving intact ecosystems (Watson et al. 2018). For example, the Bonn Challenge, the New 

York Declaration on Forests and the Trillion Tree Campaign, amongst other NCS initiatives, aim 

at reforesting millions of hectares of land (Seymour 2020). But, ecosystem restoration to offset 

carbon emissions of today creates a lag in atmospheric CO2 removal (Dooley K. et al. 2022). 

Conserving long-lived and resilient standing forests ensures keeping current forest carbon stocks 

and serves to keep greenhouse gases out of the atmosphere, an immediate climate benefit 

(Mackey et al. 2008; Dooley K. et al. 2022). Intact forests are defined as forested land of at least 

500 km2 with no detectable signs of human intervention from remote sensing (Potapov et al. 

2017). They hold the highest carbon density compared to other forest types (Mackey et al. 2020) 

and the recent Land-Gap Report by Dooley K. et al. (2022) amongst others (e.g., Funk et al. 

2019; Mackey et al. 2020; Seymour 2020) suggest that land-based policies aiming at achieving 

climate change mitigation should focus primarily on preserving carbon stocks from intact forests.  

To ensure the climate benefits of conserving standing forests and to track the world’s 

greenhouse gas emissions, it is essential to accurately monitor forest carbon stocks (Grassi et al. 

2008; Mackey et al. 2008). Monitoring, Reporting and Verifying (MRV) was developed as a key 

element of the Reducing Deforestation and forest Degradation program (REDD+). MRV aims to 

provide accurate and verified data on forest carbon stocks to inform decision-making and ensure 
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the climate mitigation effectiveness of REDD+ actions (Goetz et al. 2015). Jurisdictions wanting 

to participate in REDD+ must prove that they have a reliable MRV system (Sills et al. 2014). In 

fact, MRV is essential for any forest carbon accounting system aiming at conserving standing 

forests (Mascaro et al. 2014). However, even with recent technological advances, accurately 

estimating forest carbon stocks remains challenging (Pelletier, Busch & Potvin 2015). In 2021, 

global land-use change emissions still had the highest uncertainties of all categories of emissions 

(Friedlingstein et al. 2022). The use of allometric equations to transform tree measurements into 

aboveground biomass (AGB) estimates combined with the expansion factors to transform AGB 

into carbon content and the sampling protocols used to monitor entire ecosystems are identified 

as the primary factors affecting forest carbon stock uncertainties (Pelletier, Kirby & Potvin 

2012). This thesis seeks to advance our understanding of the methods and sampling protocols to 

estimate trees’ AGB, particularly for large tropical trees. 

The abundance of large tropical trees characterizes old-growth forests compared to other 

forest types (Mateo‐Vega, Arroyo‐Mora & Potvin 2019) and large trees’ contribution to forest 

carbon stocks is undeniable as they hold the bulk of tropical forests AGB (Slik et al. 2013; 

Bastin et al. 2014; Ali et al. 2019; Mateo‐Vega, Arroyo‐Mora & Potvin 2019). However, 

accurately estimating large trees AGB is challenging because the traditionally used allometric 

equations were developed using harvested biomass datasets that were skewed towards small 

trees, creating larger uncertainties in large tree AGB estimates using these equations (Chave et 

al. 2014; Goodman, Phillips & Baker 2014; Gonzalez de Tanago et al. 2018; Lutz et al. 2018). In 

addition, large tropical trees control the spatial distribution of forest carbon stocks and affect 

forest structure heterogeneity (Slik et al. 2013; Bastin et al. 2018; Lutz et al. 2018). Yet, their 

distribution and abundance have been studied in only a few forest regions, and globally, they 
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remain poorly understood (Lutz et al. 2012; Lutz et al. 2018; Clark et al. 2019; de Lima et al. 

2022). Therefore, it is important to extend our understanding of large tropical tree distribution 

patterns to other forest regions to inform us about the global distribution of terrestrial carbon 

stocks (Muller‐Landau et al. 2006) while orienting forest monitoring protocols (e.g., MRV) and 

improve forest carbon stock estimates (Baraloto et al. 2013).  

In chapter one, I focus on the difficulty of estimating large tropical trees AGB and 

propose a new method to estimate entire forest plot AGB using Terrestrial Laser Scans (TLS). I 

call this method the Compartmentalized Model.  In chapter two, I present the distribution pattern 

and abundance value of the large trees found inside the intact tropical forest of the Tierras 

Colectivas del Rio Balsas. The Tierras Colectivas del Rio Balsas are located in the Darién 

Province of Panama and within Central America’s largest intact tropical forest (Kunz et al. 

2022). I also present the impact of large tree distribution patterns on the spatial variation of 

carbon stocks. Finally, I propose solutions to improve forest carbon monitoring protocols to 

capture the spatial variation of forest carbon stocks adequately. My findings are of particular 

importance in today’s reality because large trees and intact tropical forests are rapidly declining 

(Lindenmayer, Laurance & Franklin 2012; Lindenmayer, Messier & Sato 2016; Potapov et al. 

2017) and we still don’t fully understand their contribution the world’s carbon budget (Ali & 

Wang 2021). I hope this thesis will help improve forest carbon stock estimates to ensure the 

mitigation benefits of forest conservation and restoration. 
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1. As the world is transitioning towards a carbon-neutral economy and looking at ways to 

mitigate its carbon emissions, tropical forests are attracting particular attention. Large tropical 

trees represent the bulk of the aboveground biomass (AGB) in tropical forests. However, 

accurately estimating large tropical trees’ AGB can be challenging. This size class is 

underrepresented in the harvested biomass data used for developing allometric equations. It is 

important to improve large tropical trees’ AGB estimates to quantify forest carbon stocks 

accurately. 

2. In this study, we developed a new method using Terrestrial Laser Scan (TLS) data that seeks 

to improve AGB estimates for large tropical trees (DBH ≥ 50 cm). We call this method the 

“Compartmentalized Model”. The Compartmentalized Model considers trees as fractal objects 

where tree trunks and branches are separate elements from which biomass can be estimated. The 

Compartmentalized Model uses a simplified approach that is less dependent on point cloud 

quality than Quantitative Structure Models (QSM), which are currently considered the best 

estimation method.  

3. We found that QSM faced some challenges, preventing its successful application to all TLS 

scans of large tropical trees and preventing it from providing plot-level AGB estimates. In 

comparison, the Compartmentalized Model was applied successfully to all TLS scans of large 

tropical trees from the datasets used in this study. It also offered AGB estimates with the best 

agreement with the QSM for the largest trees compared to the other allometric equations tested 

in this study. Furthermore, we found that tree trunks’ and crowns’ biomass increased non-

linearly with DBH, leading to higher absolute biomass value for each of these components and 

suggesting using tailored AGB estimation methods for large trees. 
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4. We conclude that given the current technologies, computation tools, and challenges faced by 

QSM, estimating plots’ AGB in tropical evergreen forests using TLS data depends on finding the 

right balance between the level of detail in tree compartmentalization and availability in point 

cloud quality. The Compartmentalize Model seems to have found this balance providing AGB 

estimates for all the large trees of our forest plots with the closest estimates to the reference 

values. 

 

Keywords: Allometric equations, Tree allometry, Tropical forests, Forest carbon, Carbon stocks, 

Quantitative Structure Models, REDD+, MRV.   
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Introduction 

Large tropical trees (diameter at breast height (DBH) ≥ 50 cm) play a key role in forest 

structure, diversity, and complexity (Lutz et al. 2012). They serve as a habitat refugia for wildlife 

(Lindenmayer, Laurance & Franklin 2012), influence forest regrowth patterns (Keeton & 

Franklin 2005), and account for the bulk of tropical forest carbon stocks (Slik et al. 2013; Bastin 

et al. 2014; Ali et al. 2019; Mateo‐Vega, Arroyo‐Mora & Potvin 2019). However, around the 

world, their number is rapidly declining (Lindenmayer, Laurance & Franklin 2012; 

Lindenmayer, Messier & Sato 2016; Lindenmayer & Laurance 2017). Large trees face many 

threats (Lindenmayer, Laurance & Franklin 2012; Meakem et al. 2018). They are more 

susceptible to dying from cavitation and water deficits during drought than smaller trees 

(Nepstad et al. 2007; Bennett et al. 2015; Clark et al. 2019). The rising temperatures, extended 

drought periods, and severe El Niño events will affect large tropical trees more than smaller trees 

(Allen et al. 2010; Lindenmayer, Laurance & Franklin 2012; Bennett et al. 2015; Clark et al. 

2019), likely reducing tropical forests’ carbon stocks (Slik et al. 2013; Gora & Esquivel-

Muelbert 2021). Esquivel‐Muelbert et al. (2019) have already found an increase in tree mortality 

and a climate-induced community shift in the Amazonian forest, raising the alarm about the 

carbon sink that tropical forests represent. Although in recent years, large tropical trees have 

received increased attention due to their significant contribution to the AGB (Slik et al. 2013; 

Bastin et al. 2014; Ali et al. 2019; Mateo‐Vega, Arroyo‐Mora & Potvin 2019), their AGB is still 

challenging to estimate and little is known about their abundance and distribution (Lutz et al. 

2012; Clark et al. 2019). With the increasing initiatives to conserve carbon stocks, it is more and 

more important to accurately estimate the reduction of forest carbon stocks by the loss of its 

largest trees (Asner et al. 2005). 
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AGB is typically estimated from allometric equations calibrated from harvested tree 

biomass data. Large trees are under-represented in harvested tree samples (Clark & Kellner 

2012; Chave et al. 2014), resulting in a potential bias when estimating large trees’ AGB using 

allometric equations (Chave et al. 2014; Goodman, Phillips & Baker 2014; Gonzalez de Tanago 

et al. 2018; Lutz et al. 2018). Recent studies using Terrestrial Laser Scan (TLS) technology 

opened the door to improve estimates of large trees’ AGB. TLS is a non-destructive surveying 

technology that captures, from the ground, three-dimensional (3D) point clouds representing 

trees individually or entire forest plots (Henning & Radtke 2006; Dassot, Constant & Fournier 

2011). It has been used in tropical forests to extract tree measurements such as DBH (Hopkinson 

et al. 2004; Srinivasan et al. 2014; Calders et al. 2015), height (Hopkinson et al. 2004; Burt et al. 

2013; Srinivasan et al. 2014), crown size (Holopainen et al. 2011; Srinivasan et al. 2014) and 

AGB estimates from allometric equations (Hopkinson et al. 2004; Holopainen et al. 2011; 

Srinivasan et al. 2014; Guillemot et al. 2020). Lau et al. (2019) have also used TLS to develop 

new national allometric models to estimate Guyana’s large tropical trees’ AGB.  

A key strength of TLS technology is its flexibility to measure any part of a tree. Therefore, 

TLS allows rethinking the way we estimate AGB and to go beyond allometric equations 

(Newnham et al. 2015). Quantitative Structure Models (QSM) is a method based on individual 

tree point cloud data retrieved from TLS scans that fit many cylinders to replicate a tree’s 3D 

structure and obtain an estimated tree volume (Hackenberg et al. 2015; Raumonen et al. 2015). 

QSM reconstructs a tree’s architecture and provides a tailored estimate of its AGB. Some 

consider this model the best way to currently estimate trees’ AGB (Disney et al. 2018) and 

different studies have accurately estimated large tropical trees’ AGB using QSMs (Gonzalez de 

Tanago et al. 2018; Lau et al. 2018; Momo Takoudjou et al. 2018; Lau et al. 2019). Previous 
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studies (e.g., Bastin et al. 2015; Bastin et al. 2018) have shown that forest plots’ AGB in the 

tropics can be estimated using only the largest trees. However, to our knowledge, all studies 

providing QSM AGB estimates for large tropical trees have focused on individual trees and have 

used relatively small sample sizes (i.e., n < 61, except for Brede et al. (2022) where n = 171) 

(Supp. Info. Table S1) and none have provided QSM estimates for entire forest plots in 

evergreen tropical forests. Yet, calibration data for remote sensing tools rely on plot AGB 

estimates and not on individual trees (Goetz et al. 2009). A major milestone awaiting QSM is to 

scale up the estimate of tree AGB to the plot level to calibrate and improve the accuracy of 

landscape biomass estimates. 

Here, we developed a new estimation method that seeks to overcome the challenges faced 

by QSM reconstruction while providing AGB estimates comparable to the accuracy achieved by 

QSM estimates. The idea is to develop a model that is accessible and applicable at large scales in 

order to estimate the AGB of entire tropical forest plots using only its largest trees. We call this 

method the “Compartmentalized Model”. Like the “LoD3” model of Liang et al. (2016), the 

Compartmentalized Model takes advantage of TLS data to segment and measure tree 

components without fully reconstructing their architecture. And, similar to QSM, this model 

aims to provide estimates tailored to each tree but with the right level of detail so that the model 

is not as affected as QSM by occlusion problems (i.e., missing points in the point cloud because 

of hidden or obstructed regions from the scanner). We ensured that the Compartmentalized 

Model is accessible to current technologies, user-friendly and that it is applicable at large scales 

so it can improve tropical forest plots’ AGB estimates. 
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Materials and Methods 

Study sites and datasets 

Panama Plots 

The project is part of the Bacurú Drõa initiative developed in partnership with 

the Emberá People of the Balsas River to establish an old-growth forest observatory (Kunz et al. 

2022). Ten sampling sites, each presenting two sampling plots, were established in the Emberá 

Traditional Territories of the Balsas River (Emberá Tierras Collectivas del Rio Balsas) in Darién 

(Figure 1). Each site was selected by the local Emberá technicians and authorities to showcase 

what they consider to be their best old-growth forests. Each sampling site contained two 30 x 30 

m plots (total area of 1.8 ha). In each plot, we collected between 8-13 TLS scans with a RIEGL 

400zi and extracted all large tropical trees. Each plot contained between one to four large trees  

(Supp. Info. Section 1 for more details on the data acquisition). We define large trees as trees of 

DBH ≥ 50 cm. Hereafter, we refer to this dataset as the “Panama Plots”.  
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Figure 1: The Emberá Traditional Territory of the Balsas River in eastern Panama and the 

locations of 20 plots where TLS data was collected (i.e. Panama Plots). 

Peru, Indonesia and Guyana Plots 

We complemented the Panama Plot dataset with open-access data from Gonzalez de 

Tanago et al. (2018) (available at http://lucid.wur.nl/datasets/terrestrial-lidar-of-tropical-forests). 

This dataset contains manual field measurements, TLS scans, and QSM reconstructions for 26 

large tropical trees (DBH ≥ 50 cm) coming from 26 tropical forest plots in Peru, Indonesia, and 

http://lucid.wur.nl/datasets/terrestrial-lidar-of-tropical-forests
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Guyana (Table 1). Similar to the Panama Plots, Gonzalez de Tanago et al. (2018) plots were 30 x 

50 m in Peru and 30 x 40 m in Indonesia and Guyana.  

Table 1: Study sites and data. 

 
Panama Peru Indonesia Guyana 

Forest Type Moist tropical 
forest 

Moist tropical 
forest 

Peat swamp 
forest 

Moist tropical 
forest 

Region Balsas River 
(Darien) 

Madre de Dios 
(SW Amazon) 

Mentaya River 
(Central 
Kalimentan) 

Vaitarna 
Holding's 
concession 

Mean Elevation 
(m) 

123 3121 221 1171 

Mean Annual 
Precipitation 
(mm) 

27412 20741 26161 21951 

n manually and 
TLS-measured 
large trees 

78 9 7 10 

n QSM 12 9 7 10 

AGB estimations 

Quantitative Structure Models 

In this study, we estimated large tropical trees’ AGB using three different methods (i.e., 

QSM, Compartmentalized Model and allometric equations) and compared the performance of 

the Compartmentalized Model and allometric equations to the reference values of QSM 

reconstructions. To model trees’ architecture using cylinders, QSM requires removing leaves or 

other vegetation from the TLS point cloud retaining only woody tissues. To do so, we used the 

 

1 Data from Gonzalez de Tanago et al. (2018) 

2 Data from Kunz et al. (2022) 
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Leaf-Wood-Separation (LeWoS) algorithm (Wang, Momo Takoudjou & Casella 2020) with 

Matlab’s R2019b plugin (https://github.com/dwang520/LeWoS). After trying different Feature 

Threshold values (i.e., 0.1, 0.15, 0.2, and 0.25), we selected the Feature Threshold value at 0.2 to 

process all Panama Plots’ large tropical trees. Given the size of our trees and the quality of the 

point clouds, we found that this Feature Threshold provided the best separation of leaf and 

woody tissues. LeWoS results were judged either as good or bad following a visual inspection in 

CloudCompare (Figure 3 and Figure 4). From the 78 large tropical trees scanned with TLS, we 

retained only 17 LeWoS segmentations; the others were unsuitable for QSM reconstruction. A 

LeWoS was judged unsuited when it led to an unsuccessful separation of leaf and woody tissue, 

resulting in too much leaf tissue still present on the point cloud or in removing too much woody 

tissue, thus affecting the structure of the tree. 

We computed QSMs for the 17 large trees of the Panama Plots dataset that were judged to 

have a good LeWoS segmentation. QSMs were computed in Matlab v.2021a using TreeQSM 

v.2.4 (Raumonen et al. 2015). Following communication with Pasi Raumonen (Tampere 

University, personal communication), to improve QSM results, we set PatchDiam1 at 0.25, 0.35, 

0.5; PatchDiam2min at 0.1, 0.15, 0.2; and PatchDiam2max at 0.25, 0.4, 0.6 due the large trees. 

BallRad 1 value was equal to PathDiam1 + 0.05 and BallRad2 value was equal to 

PatchDiam2max + 0.05. We also triangulated buttressed trunks using the "inputs.Tria" function 

of TreeQSM v.2.4 (Raumonen et al. 2015). Following the method of Gonzalez de Tanago et al. 

(2018), we did 20 reconstructions per tree and recorded the average volume for each tree. We 

transformed tree volume in AGB value by multiplying it by the tree species-specific wood 

density using values from the Global Wood Density Database (Zanne et al. 2009). We retained 

https://github.com/dwang520/LeWoS
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only 12 QSM reconstructions out of the 17. The other five missed important crown parts due to 

occlusion problems (Supp. Info. Figure S2). 

 Gonzalez de Tanago et al. (2018) open-access dataset comes with results for the QSM 

reconstruction of 26 large tropical trees. As for the Panama Plot QSM reconstructions, cylinders 

smaller than 10 cm in diameter were filtered out and 20 reconstructions were computed for each 

tree to avoid random generations of the QSM patches (point cloud partition into small segments) 

(Calders et al. 2015; Raumonen et al. 2015). In total, we had QSM reconstruction for 38 large 

tropical trees. 

Compartmentalized Model 

The Compartmentalized Model assumes that trees are fractal objects (Guzmán Q et al. 

2020; Ehbrecht et al. 2021) where the tree trunk is modelized as a tapered cylinder and each 

first-order branch is akin to an individual tree. (Figure 2). The predictive equation of the 

Compartmentalized Model is divided into two parts (Eq. 1). The first part of the equation 

estimates the trunk’s biomass with the geometrical equation for a tapered cylinder using DBH 

and trunk height. It then transforms the volume to biomass using the species-specific wood 

density value (Zanne et al. 2009). The second part of the equation represents the sum of first-

order branches’ biomass, estimated using the pantropical allometric equation n.04 (Chave et al. 

2014). The basis behind the choice of this equation is that, as trees are fractal objects, first-order 

branches should follow the same allometry as the entire tree. Moreover, the pantropical equation 

is the most robust tropical allometric equation and it provides more accurate AGB estimates with 

smaller DBH and height measurements (Chave et al. 2014). Therefore, by using the diameter and 

length of first-order branches, the measurements fed into the pantropical equation will be 
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smaller. Finally, to calculate the plot AGB with the Compartmentalized Model, we summed all 

large trees AGB found within each plot. The calculations for the Compartmentalized Model were 

performed in R4.2.1 (R Development Core Team 2022). 

Equation 1. The Compartmentalized Model equation. DBH = diameter at breast height, WD = 

wood density (g/cm3) Ht = trunk height, Dtt = top trunk diameter,  Dbi = branch “i” diameter and 

Dbi = branch “i” length.  a = 0.0673. b = 0.976. 

(
𝑯𝒕
𝟑 ∗ (𝝅 ∗ 𝑫𝑩𝑯 + √𝑫𝑩𝑯 ∗ 𝑫𝒕𝒕 + 𝑫𝒕𝒕)) ∗ 𝑾𝑫 + ∑ 𝐚 ∗ (𝑾𝑫 ∗ 𝑳𝒃𝒊 ∗ 𝑫𝒃𝒊

𝟐)^𝒃
𝒌

𝒃=𝒊
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Figure 2: The different tree measurements (diameter at breast height (DBH), trunk height (Ht), 

top trunk diameter (Dtt), branch “i” diameter (Dbi) and branch “i” length (Lbi)) taken on terrestrial 

laser scan trees (DBH ≥ 50 cm) to estimate their AGB using the Compartmentalized Model. 

Allometric equations 

We compared the results from the Compartmentalized Model against the reference value of 

the 38 QSM reconstructions. In addition, we also compared the estimates from three different 

allometric equations (Table 2) to the reference value of the 38 QSM reconstructions. We selected 
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Chave et al. (2005) pantropical equation for moist tropical forests using only DBH and Chave et 

al. (2014) pantropical equation n.04 using DBH and height. To our knowledge, those two 

equations are derived from the largest harvested biomass dataset. We also chose to compare 

Ploton et al. (2016) model 3 because these authors argue that taking crown mass into account 

improved large trees’ AGB estimates and that their model 3 “closes the gap” in estimating large 

tropical trees’ AGB. We, therefore, tested each allometric equation and the Compartmentalized 

Model’s performance against the QSM reference values.  

The AGB estimates from the two pantropical equations were obtained using the R package 

BIOMASS (Réjou‐Méchain et al. 2017) and species-specific wood density were obtained from 

the Global Wood Density Database (Zanne et al. 2009).  

Table 2: The different allometric equations used to estimate trees’ AGB. Chave et al. 

(2005) equation 07 (Ch.05 eq.07), Chave et al. (2014) equation 04  (Ch.14 eq.04), Ploton et al. 

(2016) model 3 (Plo.16M3) and the Compartmentalized Model (Compartmentalized). 

  Equations a b c d 

Ch.05 eq.07 exp(−a +  b ∗ ln(D) +  c ∗ ln(𝐷)2  −  d
∗ (ln(𝐷)3)) ∗ 𝑊𝐷 1.499 2.148 0.207 0.0281 

Ch.14 eq.04 𝑎 ∗ (𝑊𝐷 ∗ 𝐻 ∗ 𝐷2)^𝑏 0.0673 0.976   

Plo.16M3 exp( 𝑎 + 𝑏 ∗ (𝐷2 ∗ 𝐻𝑡 ∗ 𝑊𝐷) + 𝑐
∗ (𝐷2 ∗ 𝐶𝑠 ∗ 𝑊𝐷)2) 0.58 0.4263 0.0283  

Compartment-
alized 

(
𝐻𝑡
3 ∗ (𝜋 ∗ 𝐷𝐵𝐻 + √𝐷𝐵𝐻 ∗ 𝐷𝑡𝑡 + 𝐷𝑡𝑡)) ∗ 𝑊𝐷

+ ∑ a ∗ (𝑊𝐷 ∗ 𝐿𝑏𝑖 ∗ 𝐷𝑏𝑖
2)^𝑏

𝑘

𝑏=𝑖

 
0.0673 0.976   
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Analyses 

Models’ performance against QSM 

Usually, to test the performance of new AGB estimation methods or allometric equations, 

the predicated AGB estimates are compared with harvested biomass data. However, in this study, 

we did not want and could not cut trees in the Panama Plots. Instead, we used the results from 

the QSM estimates as the reference value since QSMs are currently considered the most accurate 

method to estimate trees’ AGB (Calders et al. 2015). For instance, Gonzalez de Tanago et al. 

(2018) volume estimates from QSM reconstruction showed remarkably high agreement (CCC = 

0.95) to the harvested values. The concordance correlation coefficient (CCC) measures the 

agreement of the scatterplot points to a 1:1 line with the prediction’s variability. The CCC 

measures both the accuracy and precision of a model. A 1:1 linear model (slope = 1, intercept = 

0) would reflect a perfect fit or CCC = 1, while a CCC = 0 would reflect no fit between models 

(slope = ±∞, intercept = ±∞). Comparable results were found by Lau et al. (2019) and Momo 

Takoudjou et al. (2018). Moreover, large tropical trees are increasingly rare worldwide and we 

should avoid cutting more (Lindenmayer, Laurance & Franklin 2012). Finally, Kaasalainen et al. 

(2014) advanced that QSMs can be an option to replace harvested data preventing cutting down 

more trees and this was recently successfully applied by Brede et al. (2022).  

To judge the fit of every model against the QSM reference values, we computed linear 

models for each estimation method. We extracted the slope and the intercept from each 

regression as well as the R-square (R2) and the Root Mean Square Error (RMSE) to assess the 

general model’s accuracy (Table 6). We compared the agreement of the AGB predictions from 

each model to the QSM reference values using the CCC. Furthermore, absolute and relative 
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biases were calculated to assess further each AGB estimation method’s ability to produce an 

accurate estimate when all trees’ AGB is counted together. All calculations were performed in R. 

AGB’s distribution in large tropical trees 

We took advantage of the segmented data produced by the Compartmentalized Model to 

look at the relative contribution of tree trunk biomass and tree crown biomass to the overall tree 

AGB in relation to DBH size. We aimed to explain the increasing variability in AGB estimates 

as tree size increases (Supp. Info. Figure S3). We log-transformed trunk biomass, crown biomass 

and DBH values and we computed linear models for trunk biomass and crown biomass following 

DBH size. Moreover, we explored the biomass allocation within tree crowns using the biomass 

data of each first-order branch estimated from the Compartmentalized Model. This second 

analysis explored the relative impact of branch fall and/or branch damage on the total AGB of 

large tropical trees. All calculations were performed in R. 

Results 

QSM’s challenges  

Tree size, vegetation density, and occlusion problems in the point cloud were the main 

challenges found in the QSM construction process. These effects often resulted in the poor 

separation of leaf tissues from wood tissues during the LeWoS segmentation and unsuitable 

point clouds for QSM reconstructions. For example, most of the trees in the Panama Plots 

produced LeWoS results that removed too much of the tree’s woody component, leading to a 

point cloud missing too much information for QSM reconstruction (Figure 3). Also, in some 

cases, when the results of the LeWoS step were judged “suitable” (Figure 4), a manual 
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intervention to remove more of the soft tissue was needed and in some cases point clouds still 

presented too much occlusion for successful QSM reconstructions. 

 

Figure 3: Unsuccessful Leaf-Wood Separation computation where the initial point cloud (panel 

A) was split into a soft-tissue point cloud (panel B) and a hard-tissue point cloud (panel C). In 

this example the separation led to removing too much of the point cloud considered as soft 

tissue, thus adding occlusion in the point cloud and affecting tree structure significantly. 
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Figure 4: A successful Leaf-Wood Separation computation where the initial point cloud (panel 

A) was split into a soft-tissue point cloud (panel B) and a hard-tissue point cloud (panel C). The 

resulting hard-tissue point cloud represents the entire tree architecture but still contains soft 

tissues that were removed manually using the segmentation tool in CloudCompare. 

In all of the Panama Plots, QSMs were not suitable for at least one or more large trees 

and prevented this method from providing AGB estimation at the plot level. In fact, even if a tree 

produced “suitable” LeWoS results, the point cloud, in five instances, still had too much 

occlusion and resulted in bad QSM reconstruction (Supp. Info. Figure S2). As an example, 

Panama Plot 17 contained three large trees. Using QSM, we successfully separated leaf and 

wood tissues for only one tree, which ruled out the possibility of providing a plot-level AGB 

estimate from QSM. Moreover, the only large tree that underwent a QSM reconstruction for 

Panama Plot 17 was deemed inaccurate from failing to reconstruct a first-order branch (Supp. 



 44 

Info. Figure S2). In comparison, the Compartmentalized Model proved AGB estimates for all the 

large trees within this plot and resulted in a summed AGB plot value of 79,52 Mg (Figure 5). 

 

Figure 5: The process of extracting and measuring (top fork) or reconstructing QSM (bottom 

fork) for large trees using TLS plot scan to obtain plot AGB estimates with Compartmentalized 

Model (top fork) and QSM (bottom fork). 

Models’ agreement to QSM 

We found that the Compartmentalized Model provided the best-fitted AGB estimations to 

the QSM reference values (slope = 1.12 and CCC = 0.89) (Figure 6). Following the 

Compartmentalized Model, Chave et al. (2005) pantropical equation for moist forests was the 

model that compared the closest to the QSM AGB reference values (slope =1.26; CCC = 0.82), 

closely followed by Chave et al. (2014) pantropical equation n.04 (slope = 1.27; CCC = 0.82). 

Ploton et al. (2016) model 03 was the model that compared the least with the QSM AGB 
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reference values (slope = 1.86; CCC = 0.68). The Compartmentalized Model also showed the 

lowest variability (RMSE = 5.01 ), followed by Chave et al. (2005) and Chave et al. (2014) 

pantropical equations (RMSE = 6.86 and RMSE = 6.95, respectively). Ploton et al. (2016) model 

3 showed slightly higher variability in its AGB estimates (RMSE = 13.79). The 

Compartmentalized Model also had the lowest bias of all models (Relative Bias = -0.91 %). 

The Compartmentalized Model was found to be more accurate and precise than the other 

methods because it proved to be particularly good at estimating the AGB of the very large trees 

compared to the others. For example, when removing the trees of QSM AGB > 25Mg, all four 

models performed similarly (Supp. Info. Figure S4 and Table S3). However, the 

Compartmentalized Model performance improved significantly when the trees of QSM AGB > 

25Mg were included compared to the other estimation methods. Furthermore, the 

Compartmentalized Model proved more accurate because it provided smaller AGB estimates 

than the other models that tended to overestimate trees’ AGB compared to the reference values 

(Figure 9).  
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Figure 6: Scattered plot of the predicted tree AGB from (a) Chave et al. (2005) pantropical 

equation, (b) Chave et al. (2014) pantropical equation, (c) Ploton et al. (2016) model 3 and (d) 

the compartmentalized Model against the reference values of the quantitative structure models 

(QSM) AGB estimates. The solid black line represents a fitted linear regression between the 

predicted values from the equation or model and the reference value of the QSMs. The dashed 

grey line represents a 1:1 relationship. Tree measurements come from TLS scans of the Panama 

dataset and Gonzalez de Tanago (2018) dataset (n = 38). (see Table 3 for linear models’ 

parameters).  



 47 

Table 3: Models performance against QSM reconstructions. SE = standard error. R2 = 

coefficient of determination RMSE = root mean square error. CCC = concordance correlation 

coefficient. In all cases, the regression model has 38 points and, thus, 36 degrees of freedom. 

 

 

AGB’s distribution in large tropical trees 

To understand the increasing variability in AGB estimates with increasing tree size (Supp. 

Info. Figure S3), we looked at trunk and crown biomass following DBH size. Both large tropical 

tree trunk biomass and crown biomass increased exponentially with DBH size (log-transformed 

slope = 1.9760 ± 0.1012 and log-transformed slope = 2.1074 ± 0.1955, respectively) (Figure 7). 

However, large tropical tree trunks had significantly more biomass (mean = 7.89 Mg, SD = 7.26 

Mg) than large tropical tree crowns (mean = 5.47 Mg, SD = 6.73 Mg) (t = -4.216; p < 0.05).  

  Regression parameters Model performance 

  
a b SEa SEb R2 RMSE CCC Bias (abs) 

Bias 

(%) 

Chave 05 1.26 -1.15 0.11 1.64 0.78 6.86 0.82 69.19 15.68 

Chave 14 1.27 -2.50 0.12 1.72 0.77 6.95 0.82 22.67 5.14 

Plo.16M3 1.86 -7.00 0.19 2.88 0.72 13.79 0.63 111.89 25.36 

Compartmentalized 1.14 -1.71 0.09 1.29 0.83 5.01 0.89 -4.04 -0.91 
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Figure 7: Log-transformed individual tree trunk biomass values are represented in green dots 

and green linear regression line (F = 381.4; p < 0.05). Log-transformed individual tree crown 

biomass values are in dark grey dots and dark grey linear regression line (F= 116.1; p < 0.05). 

For the 104 large trees of our dataset, first-order branch count ranged from 2 to 7, with 

around 75% of the trees having 2 or 3 first-order branches. Only 25 large trees out of 104 had 

four or more first-order branches. First-order branches estimated biomass averaged 1.79 Mg (SD 

= 3.09 Mg) (Figure 8). The biggest branch of our dataset weighed 28.38 Mg and was found in a 

giant Anacardium excelsum of DBH = 213 cm that contained two first-order branches. In fact, 
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the two biggest first-order branches were found on this tree, accounting for a total crown biomass 

of 46.04 Mg. The heaviest first-order branches (biomass > 5 Mg) were found in the biggest trees 

with four or fewer first-order branches. These results highlight the significant contribution of 

first-order branches to a tree’s AGB. 

 

Figure 8: First-order branch biomass estimates coming from the Compartmentalized Model. The 

Boxplots are categorized and colored based on the number of branches in a tree crown. Boxes 

represent the interquartile range (25th and 75th percentile) with the median value represented by 

the middle line. Grey dots represent individual first-order branch biomass estimates within 1.5 



 50 

times interquartile range and the black dots are individual first-order branch biomass outliers 

found outside 1.5 times interquartile range. 

Discussion 

The future of TLS, QSM and the Compartmentalized Model 

Monitoring, reporting, and verifying is critical in any forest carbon offset program, such as 

Reducing Emissions from Deforestation and forests Degradation (REDD+) (Herold & Skutsch 

2011). Forest sector evidence-based compensation programs rely on ground estimates of carbon 

stocks to calibrate remote sensing tools for predicting AGB at large scales (Goodman, Phillips & 

Baker 2014; Mascaro et al. 2014). Accurately estimating the AGB from the ground is essential 

as the accuracy of the remote sensing AGB prediction cannot surpass the accuracy of the 

calibration data (Clark & Kellner 2012). However, accurately estimating forest carbon stocks is 

problematic in forested regions with numerous large trees for two reasons: (1) large trees’ AGB 

is difficult to estimate accurately and (2) little is known about their distribution, abundance, and 

dynamics (Lutz et al. 2012; Xu et al. 2016; Clark et al. 2019). TLS combined with QSM, 

theoretically, can address the first problem by providing accurate AGB estimates of large tropical 

trees (Gonzalez de Tanago et al. 2018; Lau et al. 2018; Momo Takoudjou et al. 2018; Lau et al. 

2019). However, calibration data for remote sensing tools rely on plot AGB estimates (Goetz et 

al. 2009), and QSM estimates would have to be scaled up to the plot level in order to calibrate 

remote sensing tools. Tropical forests present many challenges to successfully compute QSM for 

all large trees found within a given forest plot. To our knowledge, QSMs have not yet provided 

AGB estimates at the plot level for evergreen tropical forests but rather for a few singled-out 



 51 

trees (e.g., Gonzalez de Tanago et al. 2018; Lau et al. 2018; Momo Takoudjou et al. 2018; Lau 

et al. 2019).  

Similar to previous studies, we found that the main challenges of computing QSM came 

from occlusion problems in point clouds of tropical forests (Wilkes et al. 2017; Gonzalez de 

Tanago et al. 2018). QSM requires removing all vegetation from a tree before reproducing 

cylinders that mimic a tree’s architecture (Calders et al. 2020). In evergreen tropical forests, it is 

impossible to think of doing leaf-wood separation manually on all trees. This process relies on 

automated leaf-wood separation algorithms (e.g., Leaf-Wood-Separation by Wang, Momo 

Takoudjou and Casella (2020)). We identified this step as one of the main challenges facing 

QSM. It prevented computing QSM for 61 trees out of 78 trees, for the Panama Plots dataset. 

Until we have advancements in TLS technologies and leaf-wood separation algorithms (Calders 

et al. 2015), estimating plot AGB using QSM in tropical evergreen forests will have to bypass 

the limits caused by occlusion and the mandatory leaf-wood separation steps. We suggest that a 

more simplistic approach with a lower level of tree compartmentalization, such as the 

Compartmentalized Model, bypasses these limits while providing tailored and accurate tree AGB 

estimates.  

The Compartmentalized Model does not require a leaf-wood separation step and relies on 

simple tree measurements that are less affected by occlusion than QSM. Moreover, the 

Compartmentalized Model provides tailored AGB estimates that follow a tree’s architecture 

providing a minimum level of compartmentalization. Most importantly, the Compartmentalized 

Model estimates compared the closest to the QSM values for the largest trees and could be 

applied to all 104 large trees of our dataset. In comparison, QSMs could be fitted to only 38 large 
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trees. The Panama Plot 17 shows an example of a situation where QSM reconstruction was not 

possible for at least one or many large trees, thus preventing the QSM method from providing 

plot AGB estimates. In comparison, the Compartmentalized Model was applied to every large 

tree and could provide plot AGB estimates. 

Challenges in estimating large trees’ AGB  

There could be many reasons why a tree’s AGB estimate varies as size increases. 

Goodman, Phillips and Baker (2014) suggest the increasing contribution of the crown to a tree’s 

AGB and its increasing complexity as its size increases explain the difficulty in estimating large 

tropical trees’ AGB. For this reason, previous studies suggested that including crown 

measurements in allometric equations improved large trees’ AGB estimates (e.g., Goodman, 

Phillips & Baker 2014; Ploton et al. 2016; Lau et al. 2019). Similar to others (e.g., Goodman, 

Phillips & Baker 2014; Kunz et al. 2019), our results show that the biomass of large tree crowns 

increases non-linear with tree DBH size. Different theories have tried to predict tree crown 

architecture, growth, and allometries (e.g. Metabolic Scaling Theory (MST) (West, Brown & 

Enquist 1997), competitive convergence (Iida et al. 2011), sphere packing (Taubert et al. 2015) 

(Supp. Info Table S2). These theories combine genetic, ecosystemic, and biological constraints 

with mixed success in explaining tree crowns’ architecture (e.g., Muller‐Landau et al. 2006; 

Blanchard et al. 2016; Shenkin et al. 2020). But, tree crown development is also controlled by 

stochastic disturbances that may overrule predictable genetic and competitive processes (Shenkin 

et al. 2020), making it difficult to conclude about general crown architecture, growth and 

allometry patterns.  
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The Compartmentalized Model allows us to examine individual first-order branch biomass 

to understand crown biomass distribution. We found that first-order branches contributed on 

average to 12 % of the total tree AGB, with even a more important contribution for large trees 

with few first-order branches. In fact, first-order branch biomass increased with tree size and 

decreased with the number of first-order branches per tree (Supp. Info. Figure S5). The heaviest 

first-order branches were found in the largest trees with four or fewer first-order branches. The 

heaviest branch of our dataset weighed 28.38 Mg, as much as one-third of some 1-ha-plots in 

disturbed forest plots for the Darien region (Mateo‐Vega, Arroyo‐Mora & Potvin 2019) and 39% 

of its overall tree AGB. Considering that stochastic events may control crown development 

(Shenkin et al. 2020) (i.e., number of branches and branch size) and that crown’s contribution to 

trees’ AGB increase with tree size, general allometric equations that don’t include particular tree 

crown variables or first-order branch number and size should expect higher variability around 

AGB estimates of large trees. A single random disturbance affecting a large first-order branch 

would significantly impact a tree’s overall AGB or even an entire plot’s AGB depending on the 

size of this branch.  

AGB estimation models like QSMs, the Compartmentalized Model and Ploton et al. 

(2016) benefit from providing tailored AGB estimates that consider crown size or the actual 

number of first-order branches on a tree. Consequently, such methods account for first-order 

branch fall and irregularities in tree crown architecture when estimating trees’ AGB. However, 

Ploton et al. (2016) model 3, which uses crown metrics, performed well for the large trees of our 

dataset except for very large ones (i.e., QSM AGB > 25 Mg). For the trees of DBH > 150 cm, 

this equation overestimated the AGB compared to the other equations (Figure 9). Crown area 

and crown diameter, variables used in this model, are the most complicated metrics to collect in 
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the field (Blanchard et al. 2016), which could lead to higher variability when used to calibrate 

such equations. Another reason why the Compartmentalized Model performed better for the 

largest trees is that AGB scales exponentially to the DBH. Therefore, AGB estimates coming 

from allometric equations using DBH-AGB allometry into account will inherently have 

increasing variability with increasing DBH size (Clark & Kellner 2012). Compared to the other 

equations, the Compartmentalized Model applies DBH-AGB allometry coefficients from Chave 

et al. (2014) at the branch level instead of at the trunk level. Branches have smaller diameters 

than DBHs which, by default, will lower the variability from those estimates (Supp. Info. Figure 

S3). Moreover, we found that the Compartmentalized Model underestimated the AGB of the 

largest trees compared to the other equations, which compared closer to the QSM reference 

values. The Compartmentalized Model also generated lower AGB estimates compared to the 

other equations (Figure 9).  

Overall, AGB estimation models considering each tree-specific architecture seem to 

perform better than general allometric equations in predicting very large tree AGB partly 

because branch contribution to the AGB increases with tree size and the development of tree 

crown is affected by stochastic disturbances that are hardly predictable by genetic, ecosystemic, 

and biological processes. It is possible that some large trees of our dataset suffered from first-

order branch fall and the AGB difference was only fully captured by tailored estimates like to 

Compartmentalized Model and QSM.  
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Figure 9: Estimated AGB (Mg) for all 104 TLS large trees (colored points) coming from Chave 

et al. (2005) pantropical equation, Chave et al. (2014) pantropical equation, Ploton et al. (2016) 

model 3 and the Compartmentalized Model. Solid lines represent a smoothed regression line 

across the scattered points. 

Conclusion 

 So far, AGB estimates coming from QSM have been applied to individual trees in tropical 

evergreen forests with remarkable accuracy (e.g., Gonzalez de Tanago et al. 2018; Lau et al. 

2018; Momo Takoudjou et al. 2018; Lau et al. 2019). However, we conclude that given the 

current technologies, computation tools, and challenges faced by QSM, tropical plot’s AGB 

estimates coming from TLS data have to rely on a simplified estimation method with a suitable 

level of tree compartmentalization to avoid the challenges caused by occlusion problems (Liang 

et al. 2016). The Compartmentalized Model was developed based on these constraints and 
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proved to be applicable to all TLS large trees of our forest plots. It opens the door to estimating 

tropical forests plot AGB using tailored AGB estimates of its largest trees with TLS data. We 

hope this model will serve forest carbon conservation initiatives to improve estimations of 

carbon emissions from deforestation and degradation in forested landscapes with a high density 

of large trees.  

This study did not include buttress parameters in the Compartmentalized Model. The 

reason was to keep the model flexible to occlusion problems around some trees’ buttresses.  

Nölke et al. (2015) mentioned a similar difficulty to computing QSMs in computing buttress 

AGB using TLS data. An alternative could be Mobile Laser Scanning which allows moving 

dynamically with the scanner around the targeted object and may provide occlusion-free TLS 

data for tree trunks. However, for the moment, these scanners have a smaller range than the 

RIEGL 400zi and will likely provide low-quality point clouds in the tree crowns (Bauwens et al. 

2016). Nonetheless, buttressed trunks are another important source of variability when 

estimating large trees' AGB, and biomass models ignoring buttress parameters can lead to 

underestimation of tree trunks' AGB (Nogueira, Nelson & Fearnside 2006; Cushman et al. 

2014). We encourage future studies to look into simple buttress parameters, independent of 

occlusion problems, or to look into using data from a combination of technologies that allow 

including buttress AGB in the Compartmentalized Model. 
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Supplementary Information 

Data acquisition and tree measurements 

For the Panama Plots, fifteen to eighteen scans were performed in each plot using a RIEGL 

VZ-400i scanner with full-waveform analysis capabilities and a range up to 800 m. Scan design 

was focused on scanning the whole plot rather than individual trees. We scanned each plot at 15 

different positions from the plot border to its center to optimize coverage (Figure S1). Vertical 

and horizontal angular location was 0.04. For Gonzalez de Tanago et al. (2018) dataset, eight to 

thirteen scans were performed in each plot also using a RIEGL VZ-400i. Similarly to the Panama 

Plots design, Gonzalez de Tanago et al. (2018) scan design was optimized for plot scanning and 

not for individual trees. Each scan had an angular resolution of 0.06. 

For the Panama Plots data, large trees were extracted manually from the TLS point clouds 

using RiScan software. For Gonzalez de Tanago et al. (2018) each point cloud contained already 

extracted large trees. We measured DBH, tree height, trunk height, trunk top diameter, crown 

diameter, first-order branch diameter, and first-order branch length for a total of 104 TLS 

tropical large trees; 78 from the Panama Plots and 26 from Gonzalez de Tanago et al. (2018). All 

measurements were performed in the software CloudCompare v.2.11. Trunk top diameter is 

defined as the diameter at the top of the trunk before the trunks divide into first-order branches. 

First-order branches are defined as the first main branches where the tree trunk divides. First-

order branch diameter was measured using the distance between two points perpendicular to the 

branch location. First-order branch length was measured by the distance between two points 

from the extremity of the branch to its division at the trunk. DBH was measured by estimating 
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the diameter of a fitted plane surface around the tree trunk using CloudCompare’s 2D polygon 

tool. Other measures were taken using the “distance between points” tool in CloudCompare.  

 

 

 

Figure S1: Example of TLS scan design inside 30 x 30 m plots (dashed line). Triangles show 

regular scan positions (blue stroke) and additional freely selected scan positions (orange stroke) 

for optimized scan coverage. 

Other QSM studies in tropical forests 

Previous studies have computed QSMs for tropical large trees, except for Brede et al. (2022) 

(Table S1). However the sample size of these studies was relatively small and none of these studies 

provided plot AGB estimates, but rather specific trees’ AGB estimates. 
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Table S1 : Previously published scientific articles with Quantitative Structure Models (QSM) for 

tropical trees. 

Datasets n 
harvested 
trees 

n QSM 
trees 

DBH 
range 
(cm) 

H 
range 
(m) 

Instrument Results 

(Gonzalez 
de Tanago 
et al. 
2018) 

29 29 37.2 to 
128.8 

24.8 to 
48.87 

Riegl Vz-
400  

QSM provides 
accurate tree volume 
estimates (RMSE < 
2.89 ; R² > 0.90 ) 
outperforming 
allometric models. 

(Lau et al. 
2018) 

9 9 61.3 to 
97.0 

18.8 to 
29.9 

Riegl Vz-
400 

QSM reconstructs 
95% of all branches 
> 30cm and 97% of 
tree volume. 

(Lau et al. 
2019) 

26 72 16.7 to 
128.7 

16.4 to 
51.6 

Riegl Vz-
400 

Allometric models 
with crown metrics 
perform better than 
models with H, 
especially for large 
trees. 

(Momo 
Takoudjou 
et al. 
2018) 

61 61 10.8 to 
186.6 

12.6 to 
52.8 

Leica C10 QSM provides 
accurate and 
unbiased volume 
estimation (RMSE < 
2.81% and R² > 
0.98). 

(Brede et 
al. 2022) 

171 171 8.0 to 
158.8 

10.4 to 
44.6 

Riegl Vz-
400 

QSM was 
successfully used to 
calibrate allometric 
equations combining 
TLS and UAV-LS. 

Theories for tree crown development 

Table S2: Summary of theories behind tree crown size and architecture. 

Theory Summary Authors 
Metabolic Scaling Theory 
(MST) 

The MST predicts that 
scaling relationships follow a 
3/4 power law for metabolic 

(West, Brown & Enquist 
1997) 



 68 

rates. It assumes that 
biological systems minimize 
energy dissipation in 
transporting material through 
their bodies which regulates 
allometries. 

Competitive Convergence The Competitive 
Convergence theory suggests 
environmental and 
competitive factors rule tree 
allometry in tropical forests, 
resulting in architectural 
convergence and equalizing 
effects. Proving that general 
allometric equations can be 
used to estimate trees’ AGB.   

(Iida et al. 2011) 

Sphere Packing The Sphere Packing theory 
suggests that stochastic 
packing of tree crowns in 
forest canopy by random 
placement of trees, 
competition for space, and 
mortality explain tree 
allometries. 

(Taubert et al. 2015) 

 

Challenges in computing QSM 

In this study, we removed five QSM reconstructions because of point clouds that had too 

much occlusion after the LeWoS process, which resulted in an inaccurate QSM reconstruction 

where at least one first-order branch could not be reconstructed (Figure S2). 
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Figure S2: QSM reconstruction (dark colored cylinders) and tree point cloud (yellow) of 

tree17_02 where we see missing reconstruction of a second order branch in the crown center, a 

limited definition of crown reconstruction and the difficulty to capture the buttressed trunk. 
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Models’ performances 

To look at the variability in AGB estimates between the 4 models and the reference values 

coming from QSM reconstructions, we plotted the residuals of each model on a y-axis with the 

log-transformed referenced QSM-AGB on the x-axis. We found that for each model, the 

residuals increased with the referenced AGB. This result suggests that all models do not follow a 

homoscedastic pattern and that variability increases with tree size. Across all models, the 

Compartmentalized Model had the lowest residual range distribution (variability) in particular 

for the top four largest trees (QSM AGB > 25Mg) compared to the other models. 
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Figure S3: Residuals from Chave et al. (2005) pantropical equation estimates compared to the 

reference values of the QSM reconstruction (panel a) and for Chave et al. (2014) pantropical 

equation (panel b), Ploton et al. (2016) model 3 (panel 3) and the Compartmentalized Model 

(panel c) 

The linear regressions plotted using all 38 large trees that had available QSM 

reconstructions were influenced by four very large trees of QSM AGB > 25 Mg. To understand 

the models’ performance for the other large trees, we removed the 4 largest trees (QSM AGB > 

25 Mg) and performed the same analysis as described in 2.3.1. 

We found that the performance of the different models changed when removing the 4 

largest trees. Ploton et al. (2016) model 3 became the model with the closest 1:1 fit with the 

referenced values (slope = 0.94) followed by the Compartmentalized (slope = 0.82), Chave et al. 

(2005) (slope = 0.81) and Chave et al. (2014) (slope = 0.79) (Figure S4). However, Ploton et al. 

(2016) had higher variability (RMSE = 3.30) than the Compartmentalized (RMSE = 2.87) which 

led that the Compartmentalized Model having the highest CCC (0.86) even though it had a slope 

further from a 1:1 relationship than Ploton et al. (2016) model 3. Overall, all four models had 

CCC that were close to each other (Table S3) suggesting that they performed similarly for the 

large trees of QSM AGB < 25 Mg. 
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Figure S4: Scattered plot of the predicted tree AGB from (a) Chave et al. (2005) pantropical 

equation, (b) Chave et al. (2014) pantropical equation, (c) Ploton et al. (2016) model 3 and (d) 

the compartmentalized method against the reference values of the quantitative structure models 

(QSM) AGB estimates. The solid black line represents a fitted linear regression between the 

predicted values from the equation or model and the reference value of the QSMs. The dashed 

grey line represents a 1:1 relationship. Tree measurements come from TLS scans of the Panama 

dataset and Gonzalez de Tanago et al. (2018) dataset. Trees of QSM AGB > 25 Mg were 

removed (n = 34) (see Table S3 for linear models’ parameters).  
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Table S3: Models performance against QSM reconstructions. SE = standard error. R2 = 

coefficient of determination RMSE = root mean square error. CCC = concordance correlation 

coefficient. In all cases, trees of QSM AGB > 25 Mg were removed and there are 34 points and 

thus 32 degrees of freedom in the regression model. 

  Regression parameters Model performance 

  
a b SEa SEb R2 RMSE CCC 

Bias 

(abs) 

Bias 

(%) 

Chave 05 0.81 2.47 0.10 1.03 0.69 3.30 0.82 26.68 8.70 

Chave 14 0.79 1.42 0.08 0.86 0.75 2.85 0.86 -17.10 -5.57 

Plo.16M3 0.94 0.53 0.10 1.08 0.73 3.22 0.85 -0.12 -0.12 

Compartmentalized 0.82 0.62 0.84 1.13 0.77 2.87 0.86 -33.95 -11.07 

 

First-order branches’ biomass 

To understand the drivers of the first-order branch biomass, we plotted the distribution of 

first-order branch biomass following trees’ DBH by the number of first-order branches per tree 

as a category. We found that the first-order branch biomass increases with DBH size and 

decreases with the number of first-order branches per tree. The biggest first-order branches were 

found in the largest trees of our dataset with the lowest number of first-order branches in their 

crown. 
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Figure S5: Biomass (Mg) distribution of first-order branches following trees’ DBH for the 104 

TLS trees. 
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Linking Statement 

 In Chapter 1 of this thesis, I focused on the challenges in estimating the aboveground 

biomass (AGB) of large tropical trees and how it can affect our ability to scale up accurate 

estimates of AGB at the plot and landscape levels. In Chapter 2, I turn to the landscape level and 

focus on the impact of large tropical tree abundance and distribution patterns on the spatial 

variation of forest carbon stocks. I also discuss the implications of large tropical tree density and 

distribution patterns on sampling protocols for forest carbon monitoring programs. The first and 

second chapters of this thesis answer important questions regarding two sources of uncertainties 

when estimating forest carbon stocks: (1) the estimation methods at the tree level and (2) the 

sampling protocols at the landscape level. 
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Introduction 

Large trees play an important role in forest structure, diversity and complexity 

(Lindenmayer, Laurance & Franklin 2012; Lutz et al. 2012). They supply habitat refugia for many 

species and they can act as biodiversity hotspots (Dean, Milton & Jeltsch 1999). Moreover, they 

influence forests’ succession patterns and rates (Keeton & Franklin 2005) and account for a large 

portion of the world’s forest carbon stocks and fluxes (Lutz et al. 2018; Piponiot et al. 2022). In 

fact, it is suggested that the world’s forests could not stock large amounts of aboveground carbon 

without the presence of large trees (Lutz et al. 2018) and numerous studies (e.g., Lutz et al. 2012; 

Slik et al. 2013; Bastin et al. 2015; Bastin et al. 2018; Mateo‐Vega, Arroyo‐Mora & Potvin 2019) 

have shown that despite their relatively low number, large trees represent the bulk of forest plot’s 

aboveground biomass (AGB).  

Large trees and intact tropical forests present a great challenge when it comes to 

estimating their carbon stock. Intact forests are defined as seamless mosaics of at least 500 km2 

with no signs of human intervention (Potapov et al. 2008; Potapov et al. 2017). They typically 

consist of large unfragmented areas of old-growth or primary forests (Potapov et al. 2017), 

providing the environmental conditions for large trees (Lindenmayer & Laurance 2017). At the 

tree level, large tropical trees’ carbon stock is difficult to estimate accurately because of the 

inherent uncertainties of the allometric equations, which are calibrated from data on destructively 

harvested trees that invariably includes relatively few large trees (Chave et al. 2014; Goodman, 

Phillips & Baker 2014; Gonzalez de Tanago et al. 2018; Lutz et al. 2018). Uncertainties around 

AGB estimates derived from allometric equations are carried out at the landscape level through 

scaling-up processes (Clark & Kellner 2012). Moreover, large trees control the spatial 



 79 

distribution of forested landscape carbon stocks (Slik et al. 2013; Bastin et al. 2018; Lutz et al. 

2018). However, large trees’ spatial distribution patterns and abundance remain elusive 

worldwide (Lutz et al. 2012; Lutz et al. 2018; Clark et al. 2019; de Lima et al. 2022). According 

to Mitchard et al. (2013), the largest uncertainties in current carbon maps come from the spatial 

distribution of carbon and from the spatial pattern of forest cover change.  

Studying large tree distribution and abundance is increasingly urgent because they are 

rapidly declining due to logging pressure (Lindenmayer, Messier & Sato 2016) and the increased 

environmental impacts of climate change (Allen et al. 2010; Lindenmayer, Laurance & Franklin 

2012; Bennett et al. 2015; Clark et al. 2019). Variation in the abundance of large trees among 

plots in the Darien region of Panama was explained in large part by selective logging pressure 

(Mateo‐Vega, Arroyo‐Mora & Potvin 2019). Large trees are also more susceptible to die from 

hydraulic failure caused by drought than smaller trees (Allen et al. 2010; Bennett et al. 2015). 

With the warming climate, tropical forests are expected to become warmer and drier with even 

more severe El Niño events, resulting in higher large tree mortality (Allen et al. 2010; Bennett et 

al. 2015; Meakem et al. 2018). Climate change may lead to lasting decreases in the abundance of 

large trees, thereby reducing forest carbon stocks (Gora & Esquivel-Muelbert 2021).  

There are multiple definitions for large trees depending on the ecosystem, species, and 

environmental conditions (Lindenmayer & Laurance 2017). In general, large trees are of 

reproductive age, tall enough to reach the upper canopy, and larger than the majority of the woody 

stem of the forest (Lutz et al. 2018). The definition of a large tree is arbitrary and depends on the 

purpose of the study (Ali & Wang 2021). Numerous studies refer to large trees by setting a fixed 

diameter at breast height (DBH) threshold, but other approaches have also been used (e.g., using 
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the top 1 % of measured stems or the top quantile (Ali et al. 2019; Ali et al. 2020; Ali & Wang 

2021)). Here, we used different DBH thresholds to compare our results with a broad range of other 

studies. In the region where we work, previous studies have defined “large trees” as trees of DBH 

≥ 50 (Mateo‐Vega et al. 2017; Meakem et al. 2018; Mateo‐Vega, Arroyo‐Mora & Potvin 2019). 

Moreover, to compare with other studies in Central America (e.g., Clark & Clark 1996), we further 

consider “very large trees” as trees of DBH ≥ 70 cm and “giant trees” as trees of DBH ≥ 100 cm 

to compare with data coming for remote sensing analysis (Kunz et al. 2022). 

In 2017, Mateo‐Vega, Arroyo‐Mora and Potvin (2019) conducted a field campaign to 

estimate the AGB of Darién’s forests, already considered the richest forest in Panama in terms of 

AGB (Asner et al. 2013). Of the 30 one-hectare (ha) plots that were monitored by Mateo‐Vega, 

Arroyo‐Mora and Potvin (2019), the Tierras Colectivas del Rio Balsas stood out from the other 

regions as it contained the highest AGB value. In 2019, an exploratory field expedition 

established 20 0.09-ha (900 m²) plots to collect forest inventory data and terrestrial laser scan 

(TLS) data across the Tierras Colectivas del Rio Balsas. This expedition was co-led by local 

Indigenous Emberá technicians in collaboration with McGill’s Neotropical Lab to target forest 

locations that Emberá knowledge holders and traditional authorities consider as their “best 

forests”. They reported numerous large trees, including some of the largest trees recorded in 

Central America (Kunz et al. 2022). In 2022, a long-term permanent forest plot of 10 ha was 

established under the Bacurú Drõa project (Old-Growth Forests in Emberá), a partnership 

between the Emberá Indigenous peoples of the Tierras Colectivas del Rio Balsas, the 

Neotropical ecology laboratory of McGill University and the Smithsonian Tropical Research 

Institute (STRI). Here, we aim to (1) analyze the Bacurú Drõa Permanent Plot forest structure 

and diversity, (2) elucidate large tropical trees’ spatial distribution patterns within the plot and 
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beyond and (3) report on the abundance of large trees for the intact tropical forests of the Balsas 

river. These results will underline the implication of large tree contagion and heterogeneous 

forest structure for developing forest monitoring sampling protocols. 

Materials and Methods 

Study site 

This study takes place in the Tierras Colectivas del Rio Balsas located in the South-

Eastern portion of Darién’s province, in Panama, and home of the Emberá Indigenous people 

(Figure 1). The Choco-Darién region bridges Central and South America and is the only gap in 

the Pan-American highway, making this region hard to access. It is considered one of the last 

frontiers on Earth (Bryant, Nielsen & Tangley 1997). The Darién is a global biodiversity hot spot 

host to numerous endemic species (Davis, Heywood & Hamilton 1997) and high forest carbon 

stocks (Mateo‐Vega, Arroyo‐Mora & Potvin 2019). The Choco-Darién region, including almost 

the entirety of the Balsas territory, constitutes the single largest area of intact primary forest in 

Central America, according to the latest GlobalForestWatch data (Hansen et al. 2013; Kunz et al. 

2022). 
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Figure 1:  Map close-up on the Tierras Colectivas del Rio Balsas with the centroids of the 0.09-

ha plots presented in Kunz et al. (2022), 1-ha plots from Mateo-Vega et al. (2019) and the 

Bacurú Drõa Permanent Plot (10 ha) as well as the main villages and rivers. Marker size is not to 

scale. 

Bacurú Drõa Permanent Plot 

 The Bacurú Drõa Permanent Plot (Figure 2) was established following the ForestGEO 

standardized methodology (Condit 1998) after a 9-day training of lead Emberá technicians by 

ForestGEO professionals (Co-authors SA, DM and RP). The 10-ha plot followed a grid pattern 

of 20 m by 20 m quadrats forming 1-ha rectangle subplots of 20 x 500 m oriented south to north  
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(Supp. Info. Figure S1). The plot was established using a Ushikata Tracon S-25 optical 

theodolite and measuring tapes to establish the 20 x 20 m quadrats while controlling for slope. 

The plot was oriented to magnetic north at the time of its installation, ~7 deviation to the west 

of due north (Kunz et al. 2022). 

All trees of diameter at breast height (DBH) ≥10 cm were tagged, measured and mapped. 

Manual mapping on the ground was performed by trained Emberá field technicians using 

measuring tapes and a compass, giving each tree an x-y coordinate location inside its attributed 

20 x 20 m quadrat. Later, the mapped trees were digitalized using ArcGIS (Figure 2). Moreover, 

each tree was tagged and identified to its lowest taxa possible by co-authors JV, SA, RP and 

local Emberá botanists giving scientific and Emberá names to each tree. Tree DBHs were 

measured using diameter tapes and ladders were used when buttressed trees were encountered to 

ensure measuring above the buttress. In the case of a buttressed tree, the height at which the 

diameter was measured was also recorded. For multi-stem trees, each stem DBH was measured 

and stems were numbered separately under the same tree tag number.  

We calculated three stand-level metrics from the DBH measurements: DBH coefficient of 

variation (CV), basal area, and estimated aboveground biomass (AGB), and we quantified the 

contributions of large trees to both basal area and AGB.  We used DBH CV as a surrogate for 

forest structure.  We calculated the plot’s basal area, the summed cross-sectional area of tree 

trunks, because this is a convenient and widely used indicator of wood volume. Unlike AGB, 

basal area is not affected by the inherent uncertainties associated with using allometric equations 

and assigning wood densities (Lutz et al. 2013). Therefore, the basal area is easily compared 

among studies and is generally preferred in forestry (Lutz et al. 2013). We calculated AGB 
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carbon stocks because these are of prime interest in the climate change mitigation domain 

(Chenost et al. 2010). We first calculated AGB dry mass using the  pantropical equation based 

on DBH only (no height) (Chave et al. 2014), as implemented in the BIOMASS package (Réjou‐

Méchain et al. 2017) in R, with wood densities from the Global Wood Density database (Zanne 

et al. (2009). We then converted AGB dry mass to AGB carbon using the carbon-mass-ratio 

value of 0.461 by Elias and Potvin (2003) derived from a study on 32 tree species in Panama.   

Equation 1: Pantropical equation from Chave et al. (2014) where AGB is tree aboveground 

biomass (in kg dry mass), DBH is diameter at breast height (cm), WD is wood density (g/cm3) 

assigned from taxonomic identity, and E is a measure of environmental stress based on climate 

averages for the location. 

𝐴𝐺𝐵 = 𝑒𝑥𝑝(−2.024 − 0.896 ∗ 𝐸 + 0.920 ∗ 𝑙𝑜𝑔(𝑊𝐷) + 2.795 ∗ 𝑙𝑜𝑔(𝐷𝐵𝐻) − 0.0461

∗ (𝑙𝑜𝑔(𝐷𝐵𝐻))2))  
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Figure 2: Map of the Bacurú Drõa Permanent Plot, showing censused trees by DBH size class 

category. 
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In addition, we analyzed the spatial distribution pattern of the large trees (≥50 cm DBH), 

very large trees (≥70 cm DBH) and giant trees (≥100 cm DBH) within the plot.  Specifically, we 

counted the number of trees of each size class in rectangular subplots, choosing 12 quadrats of 

0.83 ha each as a scale large enough to mostly avoid 0 values and small enough to divide the area 

and control for environmental factors (Baddeley & Turner 2005). For the large and very large 

trees, we further performed a quadrat test (Baddeley 2008), testing if trees were randomly 

distributed among rectangular subplots, or if they were more clustered or more regularly 

distributed than would be expected under a homogenous Poisson process (Supp. Info. 6.2). We 

did not perform a quadrat test for the giant trees because the sample size was too small (n = 18) 

and the quadrat count revealed quadrats with 0 giant trees. The results of the quadrat-test were 

inspected with a Pearson X2 goodness of fit test to reveal if the distribution pattern was clustered, 

random or regular. These spatial distribution analyses were done in R4.2.1 (R Development Core 

Team 2022) using Spatstat package (Baddeley & Turner 2005).   

Landscape analyses 

We complemented our analysis of large tree distribution on the Bacurú Drõa Permanent 

Plot with a landscape-level analysis. For this, we used data from Kunz et al. (2022), who 

identified a preliminary 220 large tree crowns followed by an additional 860 over a concave hull 

area of 20 100 ha within the Tierras Colectivas del Rio Balsas from high-resolution satellite 

images (PlanetScope and Sentinel-2) (Figure 3). We refer to these trees as the “RS” trees for 

consistency with Kunz et al. (2022). In this study, we added another 92 RS trees after a 

secondary inspection by co-author MK following the same method. In their study, Kunz et al. 

(2022) conducted ground-truthing that tested for true-positive results (i.e., validating on the 
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ground potential giant trees identified via remote sensing). They reached 66 RS trees out of the 

preliminary 220 and confirmed the presence of all trees. They reported DBH ranging between 65 

to 350 cm with only six trees with DBH < 100 cm, leaving a 90% true-positive detection rate of 

giant trees for the RS tree survey. Moreover, we take advantage of the Bacurú Drõa Permanent 

Plot to test for false-negative (i.e., large trees present on the ground that were not spotted during 

the survey of the satellite image bank). We compared the RS trees to the giant trees (DBH ≥ 100 

cm) found inside the Bacurú Drõa Permanent Plot. 
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Figure 3: Location of the RS trees (pink dots) and ground-validated RS trees (White/blue dots) 

within the concave hull area of interest (20 100 ha). Data from Kunz et al. (2022) with the 

additional 92 RS trees. Slope quantiles are flat (0 – 2.9°), semi-flat (2.9 - 8.6°), moderate (8.6 – 

17.3°) and steep (17.3 – 60.9°). 

Building on the results of Kunz et al. (2022) reporting that ground-validated RS trees grew 

on slopes up to 20° angle, we aimed to understand the abundance of large trees at the landscape 

level according to the slope category in which they are located. To do so, we calculated a 

quadrat-count of all the RS trees by slope categories (Figure 3). Terrain slope is known to affect 

large tree distribution and abundance (Lindenmayer & Laurance 2017) and compared to the 

Bacurú Drõa Permanent Plot, where the terrain was relatively flat (elevation ranging from 110 m 

to 130 m), the terrain slope at the landscape level is more heterogeneous (0° to < 60°). Therefore, 

we defined quadrat polygons based on slope categories and counted the number of trees within 

each quadrat. Slope categories were defined by quantiles so they have equal total area (5 025 ha): 

1st quantile: flat (0 – 2.9°), 2nd quantile: semi-flat (2.9 - 8.6°), third quantile: moderate (8.6 – 

17.3°) and fourth quantile: steep (17.3 – 60.9°). Moreover, as for the Bacurú Drõa Permanent 

Plot, we tested the distribution pattern of the RS trees against a homogenous Poisson point 

process to see if their distribution was clustered, random or regular. In addition, we performed a 

quadrat-test, using the same slope quantiles as for the quadrat-count. The Slope Terrain Model 

was built using the Raster package in R from the digital elevation model (STRM 90). The 

quadrat-count and quadrat-test were also performed in R using the Spatstat package. 

To further the analysis of the impact of large tree distribution on carbon stock spatial 

variability, we estimated the carbon stock of the entire Tierras Colectivas del Rio Balsas using 
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forest inventory data of three datasets: the 10-ha Bacurú Drõa Permanent Plot, the twenty 0.09-

ha plots monitored by Kunz et al. (2022) and the eight 1-ha plots censused by Mateo‐Vega, 

Arroyo‐Mora and Potvin (2019). The 0.09-ha Plots were established in locations considered their 

“best forest” by the Emberá, thus containing an abundance of large trees (Figure 1). In these 

0.09-ha plots, DBHs and tree heights were measured for all trees of DBH ≥ 10 cm and tree 

species, genus or family was identified to the lowest taxonomic level possible (Kunz et al. 2022). 

The 1-ha Plots were established to sample disturbed forests from traditional selective logging 

activities that are not detectable from remote sensing (3 plots), and undisturbed forests 

distributed in the north-west part of the Tierras Colectivas del Rio Balsas (5 plots, Figure 1). In 

these 1-ha plots, DBHs were measured only for trees with DBH ≥ 50 cm at the 1-ha level while 

all trees of 10 cm > DBH < 50 cm were measured in 4 subplots of  12 x 12 m at each corner of 

the 1-ha plots (Mateo‐Vega, Arroyo‐Mora & Potvin 2019). Tree species, genus or family were 

identified to the lowest taxonomical level possible. We calculated individual tree AGB and 

carbon stocks following the same methods as described above for the Bacurú Drõa Permanent 

Plot.  

Once we obtained the carbon stock value for each of the three types of plots, we 

transformed them into a carbon density value per hectare by dividing them by the total area of 

each plot. For each 1-ha plot, we calculated the carbon density for trees 10-50 cm within the 

subplots, and added it to the carbon density value for trees with DBH ≥ 50 cm for the entire 1-ha 

plot. We used the “Stratify and Multiple” method to provide the total carbon stock estimate for 

the Tierras Colectivas del Rio Balsas. The Stratify and Multiply method consists in using field 

biomass inventory data to carbon density value per hectare and extrapolating the result to a given 

area of forested ground cover obtained by satellite images (Goetz et al. 2015). In addition to the 
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three estimates of the total carbon stocks found within the Tierras Colectivas del Rio Balsas 

intact forest, we present a fourth estimate of carbon stock coming from the weighted average by 

total monitored area for the three carbon density values. 

Results 

Bacurú Drõa Permanent Plot’s tree diversity and forest structure 

The Bacurú Drõa Permanent Plot contained a total of 3698 individual trees of DBH ≥ 10 

cm with a total of 4101 stems when accounting for multi-stem trees. To date, 57 % of the trees 

have been identified at the species level. Trees that could not be confidently identified by the 

field team were collected and brought to the Smithsonian Tropical Research Institute and the 

University of Panama herbarium for further identification. Overall, 1590 trees are still to be 

identified, including 68 individuals in the large tree size category (DBH ≥ 50 cm). A total of 129 

tree species were identified in the 10 ha of the Bacurú Drõa Permanent Plot, of which 27 species 

were present in the large tree community (DBH ≥ 50 cm). The six most common species for all 

trees of DBH  ≥ 10 cm were Inga oerstediana, Pterocarpus rohrii, Cecropia insignis, Gustavia 

superba, Cecropia obtusifolia and Sorocea affinis in descending order and the six most common 

species for the large tree community (DBH ≥ 50 cm) were Pterocarpus rohrii, Luehea 

seemannii, Terminalia oblonga, Inga oerstediana, Ceiba pentandra and Apeiba tibourbou in 

descending order (Table 1). Pterocarpus rohrii and Inga oerstediana are the only two species 

present in the top six most dominant species of the large tree community that were also amongst 

the top six species for all the trees. 
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Table 1 : The six most dominant tree species and families for all the trees and for the large tree 

community of the Bacurú Drõa Permanent Plot with their respective number of trees, DBH 

average and standard deviation and their population’s proportion of individuals in the large tree 

community. Species are presented by order of abundance. 

Species Emberá 
name 

Number 
of trees 

Number 
of large 
trees 

Mean 
DBH 
(cm) 

Standard 
Deviation 
DBH 
(cm) 

Proportion 
of large 
trees (%) 

Pterocarpus 
rohrii 

Guanchiru 220 20 25.8 17.7 9 

Luehea 
seemannii 

Purru 40 19 47.9 31.8 48 

Terminalia 
oblonga 

Guayabillo 16 9 48.7 32.2 56 

Inga 
oerstediana 

Ugujo 221 8 23.3 11.6 4 

Ceiba pentandra Bongo 21 8 49.7 42.2 38 
Apeiba 
tibourbou 

Tejiru 
bacuru 

52 8 29.92 19.8 15 

Cecropia 
insignis 

Eborro 162 2 20.0 8.3 1 

Sorocea affinis Quera tubu 112 1 15.7 6.1 1 
Gustavia 
superba 

Paco 136 0 14.9 5.5 0 

Cecropia 
obtusifolia 

Buriala 117 0 17.3 6.2 0 

 

The Bacurú Drõa Permanent Plot presented a high level of forest structural heterogeneity 

in terms of tree size representation with a DBH CV equal to 72.3%. The plot contained 185 large 

trees (DBH ≥ 50 cm), 73 very large trees (DBH ≥ 70 cm) and 18 giant trees (DBH ≥ 100 cm). 

The largest tree found within the Bacurú Drõa Permanent Plot was a Dipteryx oleifera (Soiba in 

Emberá) with a DBH of 160.4 cm. The basal area per hectare for all trees was equal to 2038 m2. 

The carbon density per hectare for the plot, when considering all trees, was equal to 99.4 Mg/ha. 
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The large tree community accounted for 4.5 % of the tree stems, 39 % of the basal area and 53 % 

of the carbon stock of all the trees found within the plot, and included 16% of the tree species. 

Large trees and very large trees were clustered within the plot (X2 = 42.495; p-value < 

0.05 and X2 = 22.178; p-value < 0.05). The 12 quadrats of 0.83 ha encompassed between 7 and 

36 large trees, 2 to 11 very large trees and 0 to 3 giant trees (Figure 4). The highest density of 

large trees was found in the southwest part of the plot (Supp. Info. Figure S3).  

 

Figure 4: Large trees (DBH ≥ 50 cm) distribution and overlayed quadrat-count (panel a). Very 

large trees (DBH ≥ 70 cm) distribution and overlayed quadrat-count (panel b). Giant trees (DBH 

≥ 100 cm) distribution and overlayed quadrat-count+ (panel c). 
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RS trees false-negative analysis 

We used the giant trees (DBH ≥ 100 cm) from the inventory dataset of the Bacurú Drõa 

Permanent Plot to test for false-negative results in the RS tree survey. The Bacurú Drõa 

Permanent Plot had 18 giant trees. Out of these 18 giant trees, the RS survey located three giant 

trees within the plot, leaving 15 false-negative results and a detection rate of 16.67 % (Figure 5). 

The three trees detected by remote sensing were the three largest trees of the plot: a Dipteryx 

oleifera (DBH =160.4 cm), a Luehea semennii (DBH = 148.4 cm) and a Ceiba pentendra (DBH 

= 134.6 cm).  

 

Figure 5: The Bacurú Drõa Permanent Plot with the RS trees identified (red dots) using satellite 

image analysis on the left and the evaluation against ground census data for trees of DBH ≥ 100 
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cm from inventory data of the Bacurú Drõa Permanent Plot with their DBH measurements 

identified in centimeters on the right. The satellite image on this map comes from PlanetScope 4-

Band Scene (10/13/2018). 

Landscape giant tree abundance, distribution pattern and carbon stocks  

At the landscape level, the 1172 giant trees detected from the remote sensing survey 

followed a clustered distribution pattern (X2 = 119.53; p-value < 0.05). Of the four quantiles of 

slope that were evaluated, most RS trees were found in semi-flat and moderate terrain (n = 400 

and n = 342, respectively), with fewer trees in flat terrain (n=249) and fewest in steep terrain (n = 

181). Overall, the RS analysis suggests an abundance of 0.0583 giant trees (DBH ≥ 100 cm) per 

hectare within the concave hull (20 100 ha). When correcting for the false-negative detection rate 

(16.67 %) and true-positive rate (95.45%), we estimate the abundance of giant trees at the 

landscape level would be around 0.33 giant trees per hectare. 

The average carbon density varied among the plot types. Whereas the carbon density for 

the Bacurú Drõa Permanent Plot was 99.5 Mg/ha and 158.1 Mg/ha for the 1-ha Plots, it was 

669.5 Mg/ha for the 0.09-ha plots which were selectively located in the “best forests” (i.e., 

abundant large trees). When considering the total area monitored for all the plots used in this 

study (19.8 ha), the weighted average carbon density is 175 Mg/ha (Table 2). It is important to 

note that the carbon density value per ha of the 0.09-ha Plots was extrapolated to the area of one 

hectare and likely biased towards higher values than the reality because these small plots were 

located in targeted areas of  “best forests” (i.e., abundant large trees). It is unlikely that these 

pockets of high carbon density found within the 30 x 30m plots extended to the total area of one 

hectare. Nonetheless, on average, the 0.09-ha Plots had more than half the AGB found in the 1-
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ha plot of Mateo‐Vega, Arroyo‐Mora and Potvin (2019) and found inside the 1-ha subplots of 

the Bacurú Drõa Permanent Plot.  

The total area of Tierras Colectivas del Rio Balsas represents 127 350 ha, of which 117 

637 ha constitutes intact forest, according to Global Forest Watch (Hansen et al. 2013). Only 891 

ha are considered non-forest land and 8363 ha are regarded as other forest types (Hansen et al. 

2013). The total area representing the intact forest inside the Tierras Colectivas del Rio Balsas 

under 500 m of elevation was 38 208 ha  (Supp. Info. Figure S2). Using the weighted average 

carbon density value (175.0 Mg/ha), we found a total carbon stock estimate of over 6.6 million 

tons of carbon for the area of interest. Depending on the different carbon density estimates 

coming from the inventory sampling datasets, the total carbon stocks can be significantly 

different, ranging from ~ 25.58 million tons of carbon for the 0.09-ha Plots, ~ 6.04 million tons 

of carbon for the 1-ha Plots and ~ 3.08 million tons of carbon for the Bacurú Drõa Permanent 

Plot. 

Table 2: Average carbon stocks for all the plots inventoried inside Balsa river territory and total 

carbon stocks following the Stratify and Multiply method for the area covered by intact forests 

according to Global Forest Watch data (Hansen et al. 2013).  

Data C Density 
(Mg/ha) 

Standard 
Deviation 
C Density 
(Mg/ha) 

Total C 
stock 
(Mg/ha) 

Standard 
Deviation 
on C Stock 
(Mg/ha) 

Total Area 
Monitored 
(ha) 

0.09-ha plots 669.5 409.0 25.58 x 106 15.63 x 106 1.8 
1-ha plots 158.1 40.2 6.04 x 106 1.54 x 106 8 
Bacurú Drõa Permanent Plot 99.5 23.6 3.80 x 106 0.90 x 106 10 
Weighted Average 175.0 65.4 6.69 x 106 2.50 x 106 19.8 
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Discussion 

Abundance and distribution pattern of large trees 

Other studies have reported on the density of large trees in tropical forests. Harris et al. 

(2021) reported an abundance of 5.2 to 12.5 very large trees (DBH ≥ 80 cm) per hectare in the 

Republic of Congo; Clark and Clark (1996) reported 8.9 very large trees (DBH ≥ 70 cm) per 

hectare in La Selva; Costa Rica, and 10.6 very large trees (DBH ≥ 70 cm) per hectare in the 50-

ha plot of Barro Colorado Island, Panama, in the 1995 census. However, Clark and Clark (1996) 

noted that Panamanian forests are extremely dynamic at large scales and when we looked at the 

2010 census, we found that the very large tree (DBH ≥ 70 cm) density per hectare decreased to 

7.72. The Bacurú Drõa Permanent Plot exhibits a similar abundance with 7.3 very large trees per 

hectare. On the other hand, we found that the giant tree density of the Bacurú Drõa Permanent 

Plot was lower than the giant tree density of the 50-ha Plot on BCI (1.8/ha vs. 2.44/ha 

respectively). This result was unexpected, given the previous studies reported that the Tierras 

Colectivas del Rio Balsas was a land of giant trees (Mateo‐Vega, Arroyo‐Mora & Potvin 2019; 

Kunz et al. 2022). 

Moreover, we found that large trees and very large trees of the Bacurú Drõa Permanent 

Plot and giant trees over the landscape were distributed in clusters. The clustered distribution 

affected the spatial variation of carbon stocks and led to pockets of high carbon density 

surrounded by areas of lower carbon density. The 0.09-ha Plots located in forested regions 

described as their “best forests” by the Emberá highlight this finding. The carbon density per 

hectare inside the 0.09-ha plots was 6.5 times higher than the carbon density found within the 

Bacurú Drõa Permanent Plot and around four times higher than the carbon density found inside 
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Mateo‐Vega, Arroyo‐Mora and Potvin (2019) 1-ha Plots. Inversely, the Bacurú Drõa Permanent 

Plot illustrates the opposite of this situation. The plot was located in a region of the landscape 

with abundant giant trees (Figure 3). However, a zoomed-out visual inspection reveals that the 

plot falls in between clusters of giant trees (Supp. Info. Figure S4). This finding can explain the 

lower carbon density inside the Bacurú Drõa Permanent Plot compared to the other plots and to 

the > 130 Mg/ha suggested by Asner et al. (2013) airborne LiDAR survey.  

At the landscape level, our study focused on: (1) estimating the false-negative detection 

rate for the RS tree survey and the limits affecting our ability to detect giant trees from satellite 

imagery and (2) what is the spatial distribution and abundance of giant trees at the landscape 

level. Our detection rate analysis of the RS trees at the landscape level (20 100 ha) revealed a 

true-positive detection rate of 90% and a false-negative detection rate of 16.67%. Accounting for 

both detection rates, the analysis yielded an abundance of giant trees (DBH ≥ 100 cm) of 

0.32/ha. This is lower than the giant tree density of 1.8/ha found inside the Bacurú Drõa 

Permanent Plot, suggesting that the remote sensing survey possibly underestimated the 

abundance of giant trees.  

Identifying tree crowns using 2D satellite images relies on our ability to distinguish large 

tree crowns from the surrounding canopy. While previous studies have successfully used high-

resolution (< 10 m) satellite images to identify individual tree crowns and canopy gaps (e.g., 

Asner et al. 2002; Read 2003; Clark et al. 2004; Palace et al. 2008; Barbier et al. 2010), it has 

also proved to be challenging (Asner et al. 2002; Palace et al. 2008). The difficulty of manually 

distinguishing neighboring trees and separating adjacent crowns results in larger-than-reality 

crown identification (Asner et al. 2002). It may also explain why six RS trees were smaller than 
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100 cm DBH. Moreover, shadows in the images from emergent tree crowns can help identify 

overstory trees and obscure sections of other large tree crowns, leading to false-negative results 

(Clark et al. 2004). Finally, the 66 ground-truthed RS trees encompassed six species with a 

strong bias for Ceiba pentandra and Dipteryx oleifera, representing over 75 % of the individuals. 

This result suggests for a species bias in identifying giant trees from remote sensing and also 

suggest that some species may be harder to identify as giant trees than others. Overall, our 

detection rate analysis of the RS tree survey suggests that we underestimated the number of giant 

trees inside the Tierras Colectivas del Rio Balsas. 

Other remote sensing tools such as airborne LiDAR and very high-resolution drone 

imagery are being used to identify individual tree crowns, canopy gaps or forest AGB (e.g., 

Popescu, Wynne & Nelson 2003; Getzin, Wiegand & Schöning 2012; Dash et al. 2017; Meyer et 

al. 2018; Celes et al. 2020). Airborne LiDAR provides 3D data, eliminating shadow problems 

and providing more accurate measurements that can be used to directly estimate forest AGB 

from large tree crowns (e.g., Meyer et al. 2018). However, airborne LiDAR is considerably more 

expensive and is more scarce than satellite imagery (Palace et al. 2008). On the other hand, very 

high-resolution drone imagery or drone LiDAR are financially more accessible and can have a 

quick revisit time compared to airborne LiDAR (Banu, Borlea & Banu 2016). But, despite rapid 

improvement in drones, flight time and heavy data acquisition significantly limit the total area 

that can be monitored (Torresan et al. 2017). Compared to these technologies, high-resolution 

satellite images allow studying large trees over large areas at a reasonable cost with a short 

revisit time.   
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Large tree distribution pattern’s impacts on sampling protocols 

We found that different sampling protocols can draw significantly different carbon 

density estimates in heterogeneous forest landscapes. Perret et al. (2022) explain that in the case 

of aggregated populations, to capture the spatial variability adequately, the sampling plots have 

to be larger than the clusters’ size or the sampling protocol requires multiple sampling plots 

distributed in a pattern to capture the spatial variability. Initially, to monitor forests, the Food and 

Agriculture Organization (FAO) recommended reducing fieldwork as much as possible because 

of its costs and making the greatest possible use of remote sensing data combined with 0.5-ha 

plots (FAO 1981). However, the accuracy of  ≤ 1-ha plots to monitor forest carbon stocks and 

large trees has been challenged because large tree density may be too low to be captured by a ≤ 1 

ha area (Wagner et al. 2010; Lutz et al. 2012; Lutz 2015; Ali & Wang 2021). This problem is 

also aggravated when monitoring heterogeneous forest landscapes because small sampling plots 

will likely miss aggregated populations (Phillips et al. 2003; Baraloto et al. 2013).  

Numerous authors focusing on plot size and sample design have proposed alternative 

methods to monitor forest carbon stocks accurately. Studies debate the cost and benefits of 

multiple small plots (e.g., 0.5-ha modified Gentry plots (Baraloto et al. 2013) versus large 

individual plots of 2 ha (Wagner et al. 2010) or > 4 ha (Lutz et al. 2012). There is no consensus 

on what is the best sampling protocol yet. Still, studies agree that studying large trees, dynamic 

processes and heterogenous forest landscapes (i.e., with aggregated populations and/or rare 

species) requires larger plots (Baraloto et al. 2013; Rejou-Mechain et al. 2014; Ali & Wang 

2021; Perret et al. 2022). Moreover, they agree that when studying heterogeneous ecosystems, 

small (<1 ha) multi-plot methods risk overemphasizing certain habitats across the study area 
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(Phillips et al. 2003; Baraloto et al. 2013), while systematic sampling or balance sampling 

designs will outperform random sampling designs (FAO 1981; McGarvey, Burch & Matthews 

2016; Perret et al. 2022).  

Our understanding of forest ecological phenomenon from sampling plots also depends on 

the total monitored area (Bellehumeur & Legendre 1998; Lutz 2015). The total monitored area 

represents the sum of each plot’s area that is established within the study area. For example, in 

this study, it constitutes the sum of the Bacurú Drõa Permanent Plot (10 ha), the 0.09-ha Plots 

(1.8 ha) and the 1-ha Plots (8 ha) for a total area of 19.8 ha. To our knowledge, there is no 

specific recommendation pertaining to the minimum monitored area required when establishing 

carbon density value in REDD+ projects. Yet, the total monitored area is an important source of 

uncertainty in carbon finance programs (Grassi et al. 2008). For example, in this study, we 

monitored a relative total area 15 times larger than the relative total monitored area coming from 

Panama REDD+ Reference Level of Emission’s proposal (MiAmbiente 2018). To estimate 

Balsas’ carbon density value, we exceeded the total monitored area of most carbon finance 

initiatives. Yet, our weighted average carbon density estimate presents a relative standard 

deviation of 37%, raising important concerns about the uncertainties around carbon density 

established from smaller sample sizes.  

In addition, contrary to previous studies suggesting that large trees are more abundant on 

flat low elevation terrain (i.e., elevation lower than 129 m but with no details on “flat” terrain) 

(Clark et al. 2019) but similar to the study of Mascaro et al. (2011) on tall trees and carbon stock 

in BCI, we found that giant trees were more abundant in semi-flat and moderate slope terrains. 

Shenkin et al. (2019) explain that in some conditions, slope and aspect can help provide a 
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sheltered environment to winds and favor the establishment of large trees. But, environmental 

factors can only partly explain the presence or absence of large trees as local factors such as 

competition and predation can also influence the distribution of large trees (Lutz et al. 2012). 

Cuni-Sanchez et al. (2021) also challenged the idea of large trees decreasing abundance with 

slope and elevation. They found that large trees were abundant in African Montane Forests, 

resulting in higher carbon stock values in this ecosystem than the expected default values of the 

Intergovernmental Panel on Climate Change (IPCC). These results highlight the importance of 

monitoring all types of terrain to accurately estimate forest carbon stocks (Goetz et al. 2015).  

Conclusion 

In conclusion, our results raise concerns about how to monitor forest carbon stocks 

accurately. Failing to capture the spatial variation of carbon density from the ground will lead to 

systematic errors in large-scale carbon stock estimates (Chave et al. 2004; Clark & Kellner 2012) 

and can significantly impact payments from carbon finance programs (Pelletier, Kirby & Potvin 

2012). This study highlights the importance of understanding the spatial distribution of forest 

carbon stocks to have a better understanding of the world’s carbon budget (Mascaro et al. 2014). 

We encourage future efforts to guide monitoring protocols on efficient sampling protocols to 

capture carbon spatial variability and, particularly, to inform on the total monitored area needed 

to monitor forest carbon stocks accurately when considering forest structure heterogeneity.  
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Supplementary Information 

ForestGEO forest plot design 

The ForestGEO program or Center for Tropical Forest Studies (CTFS), in Panama, has 

established numerous forest plots over the year including the notorious 50-ha plot found on 

Barro Colorado Island (BCI) (Condit 1998). ForestGEO has a pre-established surveying method 

to establish new forest plots and ensure data standardization. Forest plots are oriented south to 

north in subplots of 20 x 20m with each 10 m marked on the ground with PVC tubes. This 

method ensures an accurate tree mapping of all monitored trees and helps to reorient oneself and 

find the trees marked during the next census. 
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Figure S1 : ForestGEO forest plot design. Panel a shows the 10 ha Bacurú Drõa Permanent Plot 

with each subplot of 1 ha. Panel b shows a zoom-in on the 20 x 20 m squares surveyed on the 

ground and marked with PVC tubes to move north until completing a 1-ha-subplot.  

Poisson distribution point pattern 

Trees were considered as discrete entities represented in a point pattern in a two-

dimensional space. Basic random point pattern distribution follows a Poisson distribution where 

the number of points falling in a given area (A) follows a Poisson’s probability based on the 
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intensity parameters (𝜆), which represents the point density (Caillaud et al. 2010) (Equation S1). 

Point patterns can be analyzed by comparing the intensity in the point patterns to a Poisson 

distribution where the intensity is constant and points independent and randomly distributed 

(Baddeley 2008). The alternative suggests that points are dependent and will follow a low-

intensity pattern where points group with each other (clustered point pattern) or a high-intensity 

pattern where points avoid each other (regular point pattern).  

Equation S1 : Homogeneous point density equation where intensity units are a number of points 

per area.  

𝜆 =  
𝑛 (𝑥)

𝐴  

 

The area of interest within the Tierras Colectivas del Rio Balsas 

We used Java Script 5 m contour lines for Panama to calculate the area of interest to 

extrapolate our carbon density value to total carbon stock estimates. The area of interest 

constitutes the area of elevation lower than 500 m and of intact forests found inside the Tierras 

Colectivas del Rio Balsas. We found that the total area of < 500 m inside the territory was equal 

to 47 461 ha (Figure S2). Moreover, according to Global Forest Watch (GFW), the Tierras 

Colectivas del Rio Balsas’ total area of Intact Forests is equal to 117 636 ha, Other Forest Cover 

is equaled to 8363 ha and Other Land is equaled to 861 ha (Hansen et al. 2013). Using this data, 

we calculated that the intact forest cover within the area of and of elevation < 500 m (i.e., 47 461 
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ha ) was equaled to 38 208 ha. Therefore, we used the value of 38 208 ha to estimate the total 

carbon stock of the Tierras Colectivas del Rio Balsas. 

 

Figure S2:  Map of the Tierras Colectivas del Rio Balsas categorized by the area above 500 m 

(black) and below 500 m (blue) and with the location of the inventory data plots. 

Large tree density analysis 

We performed a kernel density analysis to get a spatial impression of the density of the 

large trees inside the Bacurú Drõa Permanent Plot. The results show that the southwest portion 

of the plot has the highest density of large trees with clusters in the north-central part, south-

central part and south-eastern part of the plot. 
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Figure S3: Kernel density plot of the large tree community of the Bacurú Drõa Permanent plot. 

Warm colors represent a higher density of large trees and cold colors represent a lower density. 

The Bacurú Drõa Permanent Plot between clusters of RS trees 

We performed a Kernel Density interpolation using the RS trees to illustrate the clusters of 

large trees at the landscape level. The Kernel density interpolation was performed in QGIS, 

setting the radius parameters at 300 m and the X and Y pixel value at 25 m. The Bacurú Drõa 

Permanent Plot was located between clusters of RS trees. It contained only 3 giant trees detected 

from the RS tree survey. However, if the plot would have been established 200 m west, it could 
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have contained up to 8 RS trees (Supp. Info. Figure S5). Conserving the same true-positive 

detection rate of 90% and a false-negative detection rate of 16.67%, this scenario would have led 

the Bacurú Drõa Permanent Plot “true” giant tree community to 43 instead of 8. On the contrary, 

if the plot was moved further west, it could have contained 0 RS, leading to a “true” giant tree 

community of 0. 

 

Figure S4: The Bacurú Drõa Permanent Plot location between clusters of giant trees presented 

using a Kernel Density interpolation using the RS trees. 
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Research limits 

Our research did not employ automated tree crown detection algorithms (e.g., Palace et 

al. 2008) to identify RS trees, making it difficult to ensure that sampling efforts were consistent 

across the area of interest. Kunz et al. (2022) did not monitor the detection time of RS trees, even 

if they had, it would still be challenging to confirm that the effort was equivalent since human 

eyes become better at locating large crowns. Therefore, monitoring the time spent on each 

subregion, for instance, would not translate into equal sampling efforts. To address this 

limitation, we recommend that future studies use automated detection algorithms to identify 

giant tree crowns in the Tierras Colectivas del Rio Balsas and compare the results with the RS 

tree survey. 
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General Discussion and Conclusion 

My Master’s thesis advances our understanding of intact tropical forests role as natural 

climate solutions (NCS) by improving how to estimate accurately large tropical trees’ 

aboveground biomass (AGB). The first chapter highlights the challenges that allometric 

equations and Quantitative Structure Models (QSM) face in estimating large tropical trees’ AGB. 

To answer this problem, I developed the Compartmentalized Model, which uses digital point 

clouds of terrestrial laser scans (TLS) to provide accurate AGB estimates of all large tropical 

trees within forest plots. This was an important milestone for tailored AGB estimation methods 

using TLS technology because plot-level AGB estimates can be scaled up to the landscape and 

QSM or other tailored AGB estimation using TLS have never produced plot-level AGB 

estimates before. Moreover, using the Compartmentalized Model, I highlighted the important 

contribution of large tree crowns and first-order branches to the overall tree AGB. Because of 

this finding, I suggested that to obtain accurate AGB estimates, large tropical trees require 

tailored AGB estimation methods that capture individual tree crown variability. 

The second chapter presents the distribution pattern and abundance of large, very large, 

and giant trees in the Tierras Colectivas del Rio Balsas. This chapter is, to my knowledge, the 

second study after de Lima et al. (2022), who worked in the Amazonian forest, to present large 

tropical tree distribution patterns in neotropical forests. In addition, this chapter discusses the 

impact of large tree clustering on the spatial distribution of forest carbon stocks by providing 

different carbon density values from different sampling protocols. Following these findings, I 

suggested that forest monitoring activities should consider forest structure heterogeneity before 
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selecting a sampling protocol to adequately capture forest carbon stock spatial distribution and 

estimate accurately intact forests’ carbon stocks. 

Both of my chapters answer important questions regarding problems for accurately 

estimating intact tropical forests’ carbon stocks. I also make recommendation for forest 

monitoring programs and fulfilled my objective to advance our understanding of the role of 

intact tropical forests as NCS. However, forests contain significant carbon stocks when they are 

old and also remove CO2 from the atmosphere (Phillips & Brienen 2017). Therefore, fully 

comprehending the role of intact tropical forests as NCS requires understanding forest carbon 

fluxes within these forests. Traditionally, intact forests have been considered a negligible active 

carbon sink because CO2 emissions from mortality and damages were thought to offset the 

carbon capture of trees’ photosynthesis (Odum 1969). Recent studies have challenged this idea 

and suggested that intact forests can also be active carbon sinks (Zhou et al. 2006; Luyssaert et 

al. 2008; Phillips & Brienen 2017).  

During one of the expeditions in the Tierras Colectivas del Rio Balsas, Kunz et al. (2022) 

found a fallen giant Ceiba pentandra. It provided the unique opportunity to measure its height 

directly and without the traditional vertical height measurement error factors since it laid 

horizontally across the river. Moreover, the research team took advantage of its position to 

collect a slice of the trunk to learn from its life history via growth ring analysis. The C. 

pentandra’s measured DBH was 270 cm and height was 71 m. At an age of approximately 204 

years-old, according to its carbon-14 dating, it constitutes one of the largest trees measured in the 

Tierras Colectivas del Rio Balsas (Kunz et al. 2022).  
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In tropical forests, studying growth rings can be challenging because not all species are 

deciduous (Boninsegna et al. 1989) and for those that are (e.g., C. pentandra), accurately 

discerning growth rings can be difficult (Worbes 1995). Nonetheless, the growth ring analysis of 

the C. pentandra revealed that this tree continually grew each year at an average rate of 5.49 mm 

per year for the last 95 years (SD = 4.43 mm) (Figure 1). When transforming to carbon content 

using Chave et al. (2014) pantropical equation and Elias and Potvin (2003) 0.461 expansion 

factor ratio, the fallen C. pentandra grew steadily at an average rate of 0.152 tons of carbon per 

year (SD = 0.0024 Mg C/yr). At this rate, the C. pentandra doubled its carbon weight in 95 

years.  

 

Figure 1: The fallen Ceiba pentandra yearly carbon uptake according to its growth ring analysis.  
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This result suggests, like others have (e.g., Sillett et al. 2010; Stephenson et al. 2014; 

Sillett et al. 2015), that large trees are sequestering an important amount of carbon despite their 

age and their size. However, answering if the entire intact forest of the Tierras Colectivas del Rio 

Balsas is an active carbon sink will require more data than just one tree. The balance of tree 

growth and recruitment vs. tree mortality and damages predicts if, as a whole, the aboveground 

portion of a standing forest is an active sink or source of carbon (Ligot et al. 2018; Yuan et al. 

2019; Gora & Esquivel-Muelbert 2021). The C. pentandra suggests that the yearly carbon uptake 

of large and old trees can be significant. However, carbon losses from large tree death represent a 

massive carbon loss compared to the yearly gain (38.7 Mg lost vs. 0.125 Mg gained per year for 

the C. pentandra). Yet, large trees are generally old, stocking carbon for extended periods (Ali & 

Wang 2021) and large tree mortality rates are low compared to mortality rates of small trees 

(Thomas et al. 2013; Clark et al. 2019). Whether intact forests are active carbon sinks or sources 

is still debated today (Sheil et al. 2017).  

The Bacurú Drõa project aims to establish a community-driven observatory of intact 

tropical forests to empower local communities and to advance knowledge on intact tropical 

forests through the data collected in the Bacurú Drõa Permanent Plot. However, answering 

dynamic processes such as forest carbon fluxes requires long-term data acquisition (Phillips & 

Brienen 2017) and will depend on the long-term viability of the Bacurú Drõa project to collect 

future census in the permanent plot.  

My Master’s thesis happened during the Covid-19 pandemic and the restriction on 

international travel. This unprecedented situation highlighted the importance of developing the 

autonomy of the local Emberá communities to conduct research to ensure the long-term 
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sustainability of the Bacurú Drõa project. Historically, indigenous communities are 

disadvantaged regarding access to digital information and technologies (Samaras 2005) and the 

Covid-19 pandemic underlined this reality (Aissaoui 2022). The restrictions on international 

travel combined with this “digital divide” limited our ability to communicate with the 

technicians in Balsas. Moreover, non-user-friendly technologies such as high-end TLS 

complicated the autonomy of the Emberá technicians to collect data. I quickly realized that the 

digital divide jeopardized the project’s long-term objectives. In fact, addressing the digital divide 

creates opportunities to develop a common language between stakeholders, to include traditional 

environmental knowledge, to decolonize datasets and to empower local communities (Brodnig & 

Mayer‐Schönberger 2000; McMahon, LaHache & Whiteduck 2015; Toth, Smith & Giroux 

2018). Following the Covid-19 pandemic, addressing the digital divide became one of the 

Bacurú Drõa project’s objectives.  

Currently, members of the project are training Emberá technicians on digital literacy and 

data processing on computers as well as terrestrial laser scanning with “user-friendly” iPad 

applications. I hope that my Master’s thesis will inspire local Emberá youth and future graduate 

students to continue advancing our understanding of intact tropical forests and leading the way in 

indigenous participatory research. I wish the best to the Bacurú Drõa project and to the Emberá 

communities of the Tierras Colectivas del Rio Balsas. 
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