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Abstract 

Objective: To study the role of GBA variants in the risk for isolated rapid-eye-movement 

(REM)-sleep behavior disorder (iRBD) and conversion to overt neurodegeneration. 

Methods: A total of 4,147 individuals were included: 1,061 iRBD patients and 3,086 controls. 

GBA was fully sequenced using molecular inversion probes and Sanger sequencing. We 

analyzed the effects of GBA variants on the risk for iRBD, age at onset (AAO) and conversion 

rates.  

Results: GBA variants were found in 9.5% of iRBD patients compared to 4.1% in controls (odds 

ratio [OR]=2.45, 95% CI=1.87–3.22, p=1x10-10). The estimated OR for mild p.N370S variant 

carriers was 3.69, 95% CI=1.90–7.14, p=3.5x10-5, while for severe variant carriers it was 17.55, 

95% CI=2.11–145.9, p=0.0015. Carriers of severe GBA variants had an average AAO of 52.8 

years, 7-8 years earlier than those with mild variants or non-carriers (p=0.029). Of the GBA 

variant carriers with available data, 52.5% had converted, compared to 35.6% in non-carriers 

(p=0.011), with a trend for faster conversion among severe GBA variant carriers. However, the 

results on AAO and conversion were based on small numbers and should be taken with caution.  

Conclusions: GBA variants robustly and differentially increase the risk of iRBD. The rate of 

conversion to neurodegeneration is also increased and may be faster among severe GBA variant 

carriers, although confirmation will be required in larger samples. Screening for RBD in healthy 

carriers of GBA variants should be studied as a potential way to identify GBA variant carriers 

who will develop a synucleinopathy in the future. 
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Introduction 

Isolated rapid-eye-movement (REM)-sleep behavior disorder (iRBD) can be considered a 

prodromal synucleinopathy since >80% of iRBD patients will eventually convert to an overt 

neurodegenerative syndrome associated with α-synuclein accumulation: Parkinson’s disease 

(PD), dementia with Lewy bodies (DLB) or multiple system atrophy (MSA),1 with a conversion 

rate of about 6% a year.2 For unknown reasons, while some iRBD patients convert rapidly, 

others can remain free of parkinsonism or dementia for decades.3,
 
4 

 Variants in the gene encoding for the lysosomal enzyme glucocerebrosidase, GBA, are 

strong and relatively common risk factors for PD 
5, 6 and DLB,7 yet their role in MSA is still not 

clear.8-10 PD patients who carry GBA variants, as a group, tend to have higher rates of non-motor 

symptoms, including RBD, cognitive impairment, hyposmia and autonomic dysfunction.11 GBA 

variants can be classified as severe or mild based on the type of Gaucher disease (GD) associated 

with the variant.12 Accordingly, patients with severe GBA variants have a higher risk for PD, an 

earlier average age at onset (AAO)5 and faster cognitive decline,13, 14 compared to PD patients 

with mild or no GBA variants. 

Only few studies with small sample size have examined the role of GBA in iRBD, 

including studies of 69,15 17116 and 265 iRBD patients,17 all supporting an association between 

GBA variants and iRBD but with different risk estimates. It has been shown that in PD cohorts 

with available data on probable RBD (pRBD), GBA variants are more frequent in the group with 

pRBD.17 However, there are no accurate estimates of the risk for iRBD among GBA variant 

carriers and there have been no studies separately analyzing severe and mild GBA variants. It is 
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not clear whether GBA variants affect the rate of conversion from iRBD to overt 

synucleinopathies, as only two small sample size studies with contradicting results examined this 

hypothesis. In one, there was no association with the rate of conversion in 8 GBA variant carriers 

with iRBD;15 in the other, a faster conversion was shown for 13 GBA variant carriers with iRBD 

compared to non-carriers.18 

In this study, we analyzed GBA variants in a large, multicenter study including 1,061 

iRBD patients, more than double the sample than all previous studies combined, and 3,086 

controls, all of European origin. We further examined the effects of severe vs. mild GBA variants 

on risk for iRBD, reported AAO of iRBD, and the potential effects on conversion from iRBD to 

an overt neurodegenerative disease.
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Methods 

Population 

The patient population included 1,061 individuals diagnosed with iRBD with video-

polysomnography according to the International Classification of Sleep Disorders, version 2 or 3 

(ICSD-2/3) criteria.19 The recruiting centers and the number of patients from each center are 

detailed in Table 1. Additional data were available for subsets of samples, including reported 

AAO of RBD (n=594), age at diagnosis of iRBD (n=599), eventual phenoconversion to an overt 

neurodegenerative disease (data available for n=584, converted n=218), and rate of 

phenoconversion (n=217). The average follow-up period for GBA carriers was 4.8 years and for 

non-carriers it was 4.1 years (p=0.22). 

The data on these variables were collected in 2018. The control population included a total of 

3,086 individuals, comprised of 1,317 in-house controls of European origin (confirmed by 

principal component analysis using available genome-wide association study [GWAS] data 

compared to data from HapMap v.3 and hg19/GRCh37), and additional 1,769 previously 

published European controls in which GBA was fully sequenced and all the variants were 

reported (Supplementary Table 1 details these controls and the reported GBA variants in each of 

the papers. It can be downloaded from https://github.com/gan-orlab/GBA_RBD/). The in-house 

controls had a mean age of 46.5 ± 15.0 years and included 46.6% men, compared to 60.5 ± 9.9 

and 81% men in the patients, therefore when analyzing these populations, adjustment for age and 

sex was performed (see statistical analysis and results).  

GBA sequencing and classification of GBA variants 
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GBA was fully sequenced as previously described20 and the full protocol is available upon 

request. In brief, we designed molecular inversion probes (MIPs) targeting the coding sequence 

of GBA and performed next generation sequencing (NGS) post capture. Alignment, variant 

calling and annotations were done as previously described20 using a standard pipeline. Exons 10 

and 11 were also sequenced using Sanger sequencing since the coverage of NGS of these exons 

was low. Supplementary table 2 (https://github.com/gan-orlab/GBA_RBD/) details the probes 

used for the MIPs capture. Classification of GBA variants as severe or mild was performed as 

previously described5, 12 based on the occurrence of these variants in the severe (type II and type 

III) and mild (type I) forms of GD. The p.E326K and p.T369M variants, which do not cause GD 

but have a comparable risk for that of the p.N370S variants in PD,21, 22 were therefore included in 

the mild variant group. 

Statistical analysis 

To examine the association between GBA variants and risk for iRBD and controls, we performed 

association tests (chi-square or Fisher exact test), logistic regression adjusted for sex and age, 

and burden tests. To examine the association of GBA variants with risk for iRBD comparing all 

controls, we used Chi-square or Fisher exact tests since there was no available data on age and 

sex from the controls collected from the literature to perform adjusted logistic regression. We 

therefore also performed this association using only our in-house European controls, for which 

data on age and sex were available, using logistic regression model adjusted for age and sex. Of 

note, having younger controls may result in under-estimation of the risk, as some of the young 

controls with GBA variants may develop iRBD and/or overt neurodegeneration in the future. 

Therefore, if the statistical adjustment is not complete, the risk estimations that were calculated 

could be slightly lower (i.e. false positive results are not likely, rather under-estimated risk is 
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likely). We also performed burden tests using the R package SKAT. Association with AAO and 

specific types of GBA variants (severe or mild) was tested using the non-parametric Kruskal-

Wallis test since the group of severe GBA variants included only five patients. The association 

with conversion was tested using a chi-square test for the total number of conversions, and 

Kaplan-Meier survival analysis was performed to examine the rate of conversion. All statistical 

analyses were performed using R or SPSS v24 (IBM). 

Standard Protocols Approvals, Registrations, and Patient Consents 

All study participants signed informed consent forms, and the study protocol was approved by 

the institutional review boards. 

Data Availability 

Anonymized data will be shared by request from any qualified investigator.
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Results 

GBA variants are associated with increased risk of iRBD with differential effects of severe 

and mild variants. 

The variants in GBA identified in each of the participating centers are detailed in Table 1, with a 

total of 17 distinct variants found in patients and controls (Table 2). Supplementary Table 1 

details the variants found in each of the previously published control populations. Out of 1,061 

iRBD patients, 101 GBA variant carriers (9.5%) were identified, compared to 126 out of 3,086 

(4.1%) controls (Table 2, OR=2.45, 95% CI 1.87–3.22, p=1x10-10). We repeated this analysis 

using a logistic regression model adjusted for age and sex using the controls with available data 

(n=1,317), which yielded very similar results (OR=2.12, 95% CI 1.34-3.36, p=0.001). Burden 

tests using the R package SKAT also yielded similar results (p=2.6x10-6 using the in-house 

controls and p=1.7x10-12 using all controls). Similar to previous observations in PD, different 

GBA variants have different effects on the risk for iRBD. The mild p.N370S variant was found in 

20 iRBD patients (1.9%) compared to 16 (0.5%) in the controls (OR=3.69, 95% CI 1.90–7.14, 

p=3.5x10-5), while severe variants (p.L444P, p.D409H, p.W291X, p.H255Q and p.R131L) were 

found in six (0.6%) iRBD patients and in one (p.L444P, 0.03%) control (OR 17.55, 95% CI 

2.11–145.9, p=0.0015). Of the two polymorphisms known to be risk factors for PD, p.E326K 

and p.T369M, only p.E326K was associated with iRBD (4.4% vs. 1.5% in patients and controls, 

OR 3.2, 95% CI 2.12-4.84, p=6x10-9), and the carrier frequency of p.T369M was only slightly 

elevated in iRBD but not statistically significant (1.9% vs. 1.7%, OR 1.13, 95% CI 0.68-1.89, 

p=0.6). The carrier frequencies of the p.N370S, p.E326K and p.T369M variants in gnomAD 
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(https://gnomad.broadinstitute.org/) European population are 0.4%, 2.4% and 1.9% respectively, 

similar to the frequencies in our controls.  

Estimated age at onset of iRBD may be affected by the type of GBA variant 

AAO as reported by the patients could be an unreliable estimate and data was not available for 

all patients. Therefore, the following results should be considered with caution. Carriers of the 

severe GBA variants had an average AAO of 52.8 years ± 2.8 years (data was available for five 

out of six patients with a severe GBA variant), carriers of all other variants had an average AAO 

of 59.7 ± 9.6 years (data was available for 58 patients), and non-carriers of GBA variants had an 

average AAO of 60.6 ± 9.9 years (data was available for 531 patients). Since in the severe 

variants group there were only five patients, the non-parametric Kruskal-Wallis test was 

performed, demonstrating a possible association with the type of variant (χ
2=7.083, df=3, 

p=0.029) which will benefit from replication in a larger sample size.  

 

Do GBA variants affect the rate of conversion of iRBD to overt neurodegenerative 

diseases? 

Data on conversion of iRBD was available for 59 GBA variant carriers and 525 non-carriers of 

GBA variants. Of the GBA variant carriers, 31 (52.5%) had converted, and in non-carriers 187 

(35.6%) had converted (p=0.011). Data on time from iRBD diagnosis to phenoconversion or last 

follow-up was available for 29 GBA variant carriers and for 276 non-carriers. Kaplan-Meier 

survival analysis suggested that GBA variant carriers progressed faster but the difference with 

non-carriers of GBA variants was not statistically significant (Figure 1A). When severe GBA 

variant carriers were compared to mild GBA carriers and non-carriers, a possible association was 
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demonstrated, as the Breslow test was statistically significant and the Tarone-Ware test was at 

near statistical significance, while the log-rank test did not reach statistical significance. (Figure 

1B; Breslow p=0.017, Tarone-Ware p=0.051, log-rank p=0.24). 
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Discussion 

Our results confirm the association between GBA variants and increased risk for iRBD and 

suggest that severe and mild GBA variants have differential effects on risk, similar to previous 

reports in PD.5 These results also suggest that iRBD patients with severe GBA variants may have 

earlier AAO and may convert faster to overt neurodegenerative disease. However, the results on 

AAO and conversion should be considered as preliminary only and with caution, due to several 

limitations discussed below.  

Three previous small sample size studies have examined the association between GBA 

variants and iRBD.15-17 Two of these studies included full sequencing of the gene15, 17 and the 

third only examined two specific variants (p.N370S and p.L444P).16 Due to their size, analyses 

of specific variants or types of variants, such as severe or mild, were not possible. The current 

study includes two of the previously published cohorts16, 17 and additional cohorts of European 

ancestry. With the larger sample size accrued, we were able to demonstrate a much larger risk in 

carriers of severe GBA variants. Given the small numbers of these variants and the wide range of 

the confidence interval, the risk estimates may be different in future, larger studies. The current 

results are in line with previous results from PD, which clearly demonstrated similar 

relationships between severe and mild GBA variants and risk for PD.5 Previous studies have also 

suggested that the type of GBA variants may affect PD progression,13, 14 which is further 

supported by our preliminary findings on AAO and conversion of iRBD.    

In recent years it has been demonstrated that the two coding variants, p.E326K and 

p.T369M, which do not cause GD, are risk factors for PD.21-23 In DLB, the association between 

p.E326K and risk for the disease is clear, yet it is still unclear whether p.T369M is a risk factor 

for DLB. Only a few studies that examined p.T369M in DLB have been performed and in most 

ACCEPTED

Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.



 Krohn 15 

of them there was no association between p.T369M. A multicenter study which included over 

700 DLB patients reported lack of association, and in a GWAS with over 1,700 DLB patients, 

only the p.E326K variant was reported to be associated with the disease.7 Conversely, recent data 

from 556 DLB patients did suggest an association.24  The lack of association in the current study 

in iRBD may also provide further support for lack of association of p.T369M with iRBD and 

DLB. However, it is important to keep in mind that the association of this variant with PD was 

only reported in much larger studies21, 22 due to its lower effect on risk compared to other GBA 

variants. Only much larger studies can determine conclusively whether p.T369M is associated 

with iRBD and DLB. There was a large difference between the frequency of p.T369M in our in-

house controls (2.7%) and the controls from the literature (1.1%), perhaps due to population 

structure, however the combined frequency (1.7%) is comparable to that seen in the gnomAD 

European population (1.9%), rendering our results for this variant as likely unbiased.  

Our study has several limitations. The possible association between GBA variants and 

rate of conversion reported here, although potentially very interesting, should be taken with 

caution for several reasons: a) They include the cohort from Montreal in which it was previously 

reported that GBA variants are associated with rate of conversion, but it does not include the 

negative study from Barcelona (data could not be shared). b) The results are based on a small 

number of variant carriers (four patients with a severe GBA variant, 25 with other GBA variants). 

Larger studies will be required to conclusively determine whether GBA variants are associated 

with the rate of phenoconversion. An additional potential limitation is that the measured duration 

from age at diagnosis or iRBD to conversion might not reflect the actual length of disease 

duration, as patients can remain unaware for many years about their dream enactment behaviors, 

especially if they do not have a bed partner or if they do not have very active or violent dreams. 
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The small number of severe GBA variants is also a limitation in the risk analysis, as it created a 

wide confidence interval. Since the effect of severe vs. mild variants is in line with previous 

studies in PD, it is likely that these risk estimates for iRBD are overall correct, yet the precise 

estimate might change in future, larger studies.  

The mechanisms underlying the association between GBA variants, the enzyme encoded 

by GBA, glucocerebrosidase (GCase), and the development of neurodegeneration are still 

unknown.11 Several mechanisms have been proposed, including interaction of GCase substrates 

with a-synuclein which may lead to its accumulation,25 changes in the lysosomal membrane 

composition which may lead to reduced autophagy and mitophagy,26, 27 accumulation of 

misfolded GCase and endoplasmic reticulum stress,28 and others. The association with iRBD 

may suggest that studying these mechanisms in non-dopaminergic neuronal models which are 

involved in RBD could lead to new discoveries and better understanding of these potential 

mechanisms.  

To conclude, our results appear to demonstrate that GBA variants are associated with 

increased risk for iRBD. These results may also suggest that severe and mild GBA variants may 

have differential effects on the risk, and possibly on AAO, of iRBD and its conversion to overt 

neurodegenerative disease. Due to the limitations mentioned above, the latter associations should 

be considered as preliminary with additional, larger studies on GBA in iRBD required to confirm 

or refute them. One important implication of the association between GBA variants and iRBD is 

the possibility to perform screening for iRBD in healthy GBA variant carriers. This may allow 

for even earlier detection of prodromal neurodegeneration and could be especially useful when 

home detection of iRBD will be made possible. 
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Tables 

Table 1. GBA variants in the participating centers 

Center n GBA variant 
carriers (%) / 
n total iRBD 

patients 

GBA variants identified Conversion 
data available 
for patients, n 

Conversion in GBA carriers: 

Condition (n converted) 

  Mild Severe  Mild Severe 

Montreal, Canada 20 (15%) / 138 p.N370S – 3 

p.E326K – 5 

p.T369M – 7 

p.W378G – 2 

p.L444P – 1 

p.H255Q – 1 

p.W291X – 1 

 

125 p.E326K –DLB (2), PD 
(1), dementia (1) 

p.T369M –PD (3), 
MSA (1), dementia (1) 

p.W378G –DLB (2) 

p.L444P –PD (1) 

p.H255Q –PD (1) 

p.W291X –PD (1) 

 

Innsbruck, Austria 7 (9%) / 80 p.E326K – 7  69 p.E326K – PD (1)  

Bologna, Italy 2 (7%) / 28 p.E326K – 1 

p.R2L – 1 

 19 -  

Prague, Czech 
Republic 

3 (6%) / 47 p.E326K – 1  

p.T369M – 2 

 46 p.T369M – dementia 
(1) 

 

Paris, France 14 (6%) / 219 p.E326K – 8  

p.N370S – 4 

p.T369M – 2  

 77 p.E326K – PD (1), 
dementia(1) 

p.N370S –PD (1) 

 

Montpellier, France 
(Beau Soleil Clinic) 

5 (19%) / 26 p.E326K – 2  

p.N370S – 1  

p.T369M – 1 

 2 p.R502C – PD (1)  
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p.R502C – 1 

Lille, France 5 (22%) / 23 p.E326K – 2 

p.N370S – 2 

p.R131L – 1 15 p.N370S –PD (1),  

MSA (1) 

p.R131L – PD (1) 

Montpellier, France 
(CHU Montpellier) 

8 (8%) / 96 p.E326K – 5  

p.N370S – 2  

p.T369M – 1  

 14 p.T369M – DLB (1)  

Kessel, Germany 3 (11%) / 27 p.E326K – 2 

p.T369M – 1  

 27 p.T369M – DLB (1)  

Udine, Italy 6 (7%) / 83 p.E326K – 2  

p.N370S – 2  

p.T369M – 1 

p.D409H – 1 25 p.E326K – unknown 
(1) 

p.N370S – unknown (1) 

p.D409H – unknown 
(1) 

Milan, Italy 1 (5%) / 19 p.T369M – 1   19 none  

Oxford, UK 27 (15%) / 181 p.E326K – 12  

p.N370S – 6 

p.N227S – 1  

p.T369M – 4  

p.T369M/p.E326K 
– 1  

p.R2L – 1  

p.Y212H – 1  

p.D409H – 1  

 

97 p.E326K –PD (2) 

p.N370S – PD (1) 

 

 

iRBD, isolated REM-sleep behavior disorder; n, number. 

Centers with no GBA variant carriers are excluded from the table: Geel, Belgium (n=9), Nimes, France (n=5), Marburg, 
Germany (n=29), Munster, Germany (n=23), Cagliari, Italy (n=28).  
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Table 2. GBA variants in iRBD patients and controls 

GBA varianta iRBD patients, 
n (%) 

All controls, n 
(%) 

In-house 
controls, n (%) 

Literature 
controls, n (%) 

 n=1,061 n=3,086 n=1,317 n=1,769 

Heterozygous     

p.R2L 2 (0.2%) 2 (0.06%) 1 (0.08%) 1 (0.06%) 

p.K79M - 1 (0.03%) - 1 (0.06%) 

p.R131L 1 (0.1%) - - - 

p.Y212H 1 (0.1%) - - - 

p.N227S 1 (0.1%) - - - 

p.H255Q 1 (0.1%) - - - 

p.W291X 1 (0.1%) - - - 

p.E326K 47 (4.4%) 45 (1.4%) 18 (1.4%) 27 (1.5%) 

p.T369M 20 (1.9%) 54 (1.7%) 35 (2.7%) 19 (1.1%) 

p.N370S 20 (1.9%) 16 (0.5%) 10 (0.8%) 6 (0.3%) 

p.W378G 2 (0.2%) 1 (0.03%) 1 (0.08%) - 

p.E388K - 3 (0.09%) - 3 (0.17%) 

p.D409H 2 (0.2%) - - - 

p.L444P 1 (0.1%) 1 (0.03%) - 1 (0.06%) 

p.V460L - 2 (0.06%) - 2 (0.11%) 

p.T482K - 1 (0.03%) - 1 (0.06%) 

p.R502C 1 (0.1%) - - - 

Homozygous / compound 
heterozygous 

    

p.E326K/p.T369M 1 (0.1%) - - - 

Total 101 (9.5%) 126 (4.1%) 65 (4.9%) 61 (3.4%) 

a Variants nomenclature is according to the nomenclature typically used for GBA variants, of the 
active enzyme (497 amino acids) after the removal of the 39 amino acids of the leader peptide. 

iRBD, isolated REM-sleep behavior disorder; n, number 
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Figure 1. Conversion to overt neurodegenerative disease in iRBD patients with and without 

GBA variants 

A) Survival plot comparing GBA variant carriers (green) and non-carriers (blue) from diagnosis 
until conversion or recent follow-up. Log-Rank p=0.13, Breslow p=0.32, Tarone-Ware p=0.22. 
B) Survival plot comparing carriers of severe GBA variants, mild/other GBA variants (green) and 
non-carriers (blue). Log-Rank p=0.24, Breslow p=0.017, Tarone-Ware p=0.051. 
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