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Abstract 

Automated Fiber Placement (AFP) is an advanced technology used to manufacture laminated 

composites with curvilinear fiber paths. During the manufacturing, AFP generally leads to the 

formation of defects, e.g. gaps and overlaps, which impact the structural properties of a laminate. 

This paper focuses on the responses of moderately-thick laminate plates with embedded gaps and 

overlaps induced by AFP. We use higher-order shear deformation theories to study the role of 

shear deformation on the plate responses. A hybrid Fourier-Galerkin method is used to obtain a 

semi-analytic solution describing the structural behavior of the plate. The numeric results show 

that shear deformation has a more severe impact on the structural responses of a variable 

stiffness than on a constant stiffness plate. We find also that gaps deteriorate the structural 

performance, while overlaps improve it. Maps representing structural responses, in particular 

buckling vs. deflection and frequency vs. deflection, are generated to gain insight into the design 

of a variable stiffness laminate plate with defects. 

Keywords: A. Structural composites, C. Multiscale modeling, C. Plate theory, C. Deformation, 

C. Buckling, Automated fiber placement   

1. Introduction 

Laminated composite structures have drawn special attention from a variety of sectors including 

aerospace, automotive, naval, and construction [1]. To achieve high strength-to-weight ratio, 
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high stiffness-to-weight ratio, fatigue strength, and resistance to corrosion, composite laminates 

are designed with either constant or variable stiffness. In a constant-stiffness design, a laminate 

has layers of straight fibers that have the highest stiffness and strength when loaded along the 

fiber direction. In a variable stiffness laminate, the fiber direction can be tailored to follow 

curvilinear fiber paths that best improve structural performance, such as buckling load [2-4], 

natural frequencies [5], and flexural stiffness [7]. Variable stiffness plates have also been 

demonstrated capable to offer trade-off properties that can concurrently optimize conflicting 

requirements, such as buckling load and in-plane stiffness [3, 8-10].  

Several approaches exist in literature for the analysis of a laminated composite. Among them, 

equivalent single-layer (ESL) [11], three-dimensional (3D) elasticity [12], and multiple model 

methods [1] have been successfully used. In this paper, we use ESL theory to reduce the 

computational effort required for the analysis of a variable-stiffness composite. The simplest 

ESL theory is the classical laminated plate theory (CLPT), whereby the lines that before 

deformation are straight and normal to the mid-plane of the laminate are assumed to keep these 

characteristics even after deformation. An outcome of this hypothesis is the neglect of the 

deformation caused by transverse shear ),( yzxz   and transverse normal )( zz  stresses. For 

moderately-thick composite laminates, first-order shear deformation theory (FSDT) and third-

order shear deformation theory (TSDT) have been introduced to account for deformation caused 

by transverse shear [13]. FSDT assumes a constant shear strain through the thickness of a 

laminate and introduces a shear correction coefficient to compute transverse shear forces. TSDT, 

on the other hand, uses a quadratic function to describe transverse shear stresses through the 

thickness, with vanishing values at the top and bottom surfaces of the laminate [1]. FSDT and 

TSDT have been extensively used to model the structural mechanics of heterogeneous isotropic 



beams and plates [15-18]. For instance, ESL and 3D elasticity theories were applied to examine 

the buckling and post-buckling responses of laminated composites [20]. Another study focused 

on the resonance frequencies of free vibration of laminated composites with constant stiffness 

[22].  

While there is a considerable amount of research that examines transverse shear deformation in 

constant stiffness composites, only a few studies look at variable stiffness laminates. One of 

these is that of Groh et al. [24], who studied via FSDT the impact of transverse shear 

deformation onto the flexural behavior of composite laminates with curvilinear fibers. It was 

shown that for a laminate with a length-to-thickness ratio of 10:1, an error of 43% may appear in 

the predicted transverse deflection if transverse shear stresses are neglected. Akhavan et al. [5, 7] 

used the finite element method and TSDT to study the natural frequency and large deflection of a 

variable stiffness laminate. It was found that a variable stiffness design can remarkably reduce 

the deflection of a plate compared to a constant stiffness design and might yield improvement in 

the natural frequency.  

Only until recently, the impact of defects within variable stiffness laminates was overlooked in 

literature. In practice, however, the formation of defects, mainly gaps and/or overlaps, is 

unavoidable in variable stiffness laminate manufactured with Automated Fiber Placement (AFP). 

A method, namely “Defect layer”, has been introduced [8, 10] to appraise the effect of gaps and 

overlaps on the critical buckling load and in-plane stiffness of a thin laminate. It has been shown 

that gaps and overlaps can significantly change the buckling load and in-plane stiffness.  In a 

study by Li et al. [25], it is suggested that gap areas can be filled with fibers from the layers 

above the gap, and those fibers dip down into gap areas. While this may be true in certain 

instances, in this paper we assume that all gap areas are relatively small; as such, the fibers 



bridge over the gaps rather than dipping down. The outcome of this assumption is that 1) gap 

regions are less stiff than those filled with composite fibers, and 2) overlaps tend to generate 

stiffener-like features, which carry higher loads. With the recent use of AFP to build thick 

composite laminates for manned submersible applications [26], and moderately thick composite 

laminates in megawatt-scale wind turbine blades [27], this paper turns the attention to  

moderately-thick laminates with variable stiffness, with the aim of assessing the effect of gaps 

and overlaps on their structural performance. In particular, we use CLPT, FSDT, and TSDT 

theories to examine the impact of transverse shear deformation on the structural responses of a 

variable stiffness plate with embedded defects.  

2. Variable stiffness laminate 

A laminate plates manufactured with curvilinear fiber paths can be modelled by defining a 

reference fiber path along which the AFP machine places the first course. The subsequent fiber 

paths can be obtained by shifting the reference fiber path perpendicular to the steering direction. 

As a reference fiber path, we consider here one with constant curvature [28]. For this, the fiber 

orientation can be written as:  
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where   is the fiber orientation along the fiber path, 
0T  and 

1T  are respectively the fiber 

orientation at the plate midpoint and edges, R is the turning radius along the path, and a 

represents the plate width (Fig. 1a). A variable stiffness design is represented by [<T0|T1>], where 

T0=T1 represents the case of straight fiber.  

During the AFP process, the course width can be changed only by a discrete value, via either 

adding or dropping tows. As a result, defects in the form of gaps and overlaps emerge within the 

laminate. There are several strategies to add or drop a tow, such as complete gap and complete 



overlap strategies (Figures 1b and 1c). [29]. To obtain the effective stiffness matrices of a 

variable stiffness laminate with embedded defects, we use here the defect layer method, recently 

introduced in [8, 10]. According to this method, a defect layer is similar to a regular composite 

layer with modified material properties, or thickness proportional to the defect area percentage. 

Compared to a regular composite layer, a gap-modified defect layer has identical thickness and 

reduced elastic properties, whereas an overlap-modified defect layer is thicker than a regular 

composite layer and has its elastic properties. Interested readers may refer to [10] for more 

details about the defect-layer method. 

3. Problem definition and governing equations  

A rectangular laminated composite plate with length a, width b, and thickness h is considered. 

We use here the CLPT to write displacement field as [1]: 
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Where (u,v,w) are the displacement components along (x,y,z) coordinate axes and (u0,v0,w0) 

stands for the displacement components of the midplane ( 0=z ). Using the TSDT, the 

displacement field for a laminated plate can be written as [1, 13]: 
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where 
x  and 

y  represent rotations about the y and x axes, respectively, and 2

1 4 3c h= . It is 

worth mentioning that by setting 01 =c  Eq. (3) reduces to the FSDT displacement field 

formulation. For small strains and moderate rotations, the von-Karman strains in terms of the 

FSDT/TSDT displacement field given in Eq. (3) are written as follows [13]: 
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where the comma represents the partial differentiation operator, and 12 3cc = . Substituting 

xx w ,0−=  and 
yy w ,0−=  into Eq. (4) eliminates transverse shear strains and leads to the CLPT 

formulation. The equations of motion using the CLPT, obtained by the principle of virtual 

displacement, are written as [1]: 
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while the FSDT/TSDT equations of motion are expressed as [13]: 
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where ),( yxq  is the distributed transverse load at the bottom/top surface of the plate and   and 

  take the symbols x  and y , 
  is the second Piola-Kirchhoff stress components, 

fc  is the 

shear correction factor,   is the mass density, and the superposed dot on a variable denotes the 

time derivation. It is worth noting that the determination of the shear correction factor (
fc ) for 

FSDT is cumbersome since it depends on lamination, geometric parameters, loading, and 

boundary conditions. We consider three values, commonly used in literature for FSDT analysis, 

1
f

c = , 5/ 6
f

c = , and 3/ 4
f

c = . To conduct a bifurcation buckling analysis, the nonlinear in-plane 

force resultant )(ˆ
0wN  should be written as [1, 13]:  
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The stiffness matrices, required for the structural analysis, are also defined as: 
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where 
ijQ  is the transformed plane stress-reduced stiffness. The governing equations of CLPT 

and TSDT, which are not given here for the sake of brevity, are derived by using Eqs. (2) 

through (9). Herein, the nonlinear terms for static as well as free and forced vibration analyses 

are omitted; only the nonlinear in-plane force resultant
0

ˆ ( )N w  is retained for buckling analysis. 

We note that in contrast to constant stiffness composites, here the elements 
ijA , 

ijB , 
ijD , 

ijE , 
ijF , 

and 
ijH  of the stiffness matrices are a function of the spatial coordinates ),( yx . As a result, the 

governing equations of motion for variable stiffness laminates are dissimilar from the 

conventional governing equations of a constant stiffness composite.  



4. Methodology 

In this paper, we consider simply-supported boundary conditions (SS-1) [1]. Due to the presence 

of the derivatives of the stiffness matrices in the governing differential equations, the Galerkin 

method along with the Fourier series expansion are used to develop a semi-analytic solution. For 

displacement fields in FSDT/TSDT analysis, we consider the Fourier series expansions that 

satisfy the SS-1 simply-supported boundary conditions [1, 16]: 


= =



























=





























y x
n

n

m

m

nmmn

nmmn

nmmn

nmmn

nmmn

y

x

yrxrtY

yrxrtX

yrxrtW

yrxrtV

yrxrtU

tyx

tyx

tyxw

tyxv

tyxu

1 1

0

0

0

)cos()sin()(

)sin()cos()(

)sin()sin()(

)cos()sin()(

)sin()cos()(

),,(

),,(

),,(

),,(

),,(





                                   (10) 

where mr m a= , nr n b= , 
mnU , 

mnV , 
mnW , 

mnX , and 
mnY  are unknown coefficients that should 

be determined to satisfy the governing differential equations, being 
yn  and 

xm  arbitrary integers 

of the summation. Using the Galerkin method and the approximate displacement field in Eq. 

(10), we can solve the governing differential equations for the FSDT/TSDT analysis [1, 16]:  
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where )5,...,1( =iRi
 are the residuals of the governing differential equations for the admissible 

displacement field (Eq. (10)). Substituting Eq. (10) into governing equations and then applying 

the Galerkin formulation (Eq. (11)), leads to an expanded formulation, which results in a 

)5()5( yxyx nmnm   system of differential equations: 
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where    
yxyxyxyxyx nmnmnmnmnmmn

T

TSDT YXWVUYXWVU 11111111= , 
TSDTK  and 

TSDTM  are 

stiffness and mass matrices, and 
TSDTF  represents the mechanical force vector. If no )(ˆ

0wN  

exists, the system of governing differential equations can be solved for static and free and forced 

vibration analyses. For the transient analysis, the Newmark integration procedure can be adopted 

[1, 13]. If )(ˆ
0wN  is present, however, a bifurcation analysis is necessary to obtain the critical 

buckling load [1]. For the CLPT analysis, applying the abovementioned Fourier-Galerkin 

methodology results in a )3()3( yxyx nmnm   system of differential equations. The derived 

differential equations are solved via MATLAB scripts developed for variable stiffness composite 

laminates with embedded defects. 

5. Results and discussion 

To validate the methodology presented in Section 4, we first compare the results available in 

literature for static bending, buckling, and natural vibration of plates with those obtained for 

constant stiffness laminated composites. Then, we examine the impact of shear stresses and 

manufacturing defects on structural responses of variable stiffness plates.  

5.1. Result validation 

We consider a simply-supported plate with constant stiffness, symmetric cross-ply 
s]90/0[  and 

planar square )1( mba ==  geometry. Its material properties are GPaE 1751 = , GPaE 72 = , 

GPaGG 5.31312 == , GPaG 4.123 = , and 25.012 = . The second row of Table 1 shows the results of 

the dimensionless midpoint deflection )(
2

2

Eh

a 
 =  of the plate subjected to a distributed 

transverse load ))sin()sin(( 0 yrxrqq nm= . The results show that all the predictions are very close 

to those provided in [1]. For a plate with the length-to-thickness ratio of 4=ha , CLPT 



underpredicts the maximum deflection by 74% compared to the solution obtained with 3D 

elasticity, whereas the FSDT and TSDT show a discrepancy of 12.5% and 3%, respectively.  The 

third and fourth rows of Table 1 show the dimensionless uniaxial critical buckling load 

)(
3

2

2

hE

aN
N cr=  and fundamental frequency )(

2

2

Eh

a 
 =  as a function of the modulus ratio 21 EE  

for 5=ha  and 10, where 21312 6.0 EGG == , 223 5.0 EG = , and 25.012 = . Similar to the case of 

maximum deflection, the application of FSDT/TSDT leads to more accurate results for critical 

buckling load and fundamental frequency. The results given in Table 1 indicate that the 

difference between the results predicted by FSDT and TSDT is much more evident in the 

maximum deflection than in the critical buckling load and fundamental frequency. 

5.2. Structural responses of variable stiffness laminates  

In this section, we use CLPT, FSDT, and TSDT to study the influence of manufacturing defects 

on the structural responses of variable stiffness plates. We consider a square plate )1( mba ==  

made of 16-ply balanced and symmetric laminate with a variable stiffness design of [±<58|39>]4s. 

The material properties of prepreg composites are: 
1 143E GPa= , 

2 9.1E GPa= , 
12 4.82G GPa= , 

13 23 4.9G G GPa= = , 
12 0.3v = , 31500 /Kg m =  while the material properties of the resin are 

specified as: 
1 3.72E GPa= , 

2 3.72E GPa= , 
12 13 23 1.43G G G GPa= = = , 

12 0.3v = , 31100 /Kg m = . 

The structural responses of the plate, including static deflection, uniaxial critical buckling load, 

and fundamental frequency are compared in Table 2 with those of a quasi-isotropic (QI) plate, 

here selected as a baseline. The plate is subjected to a uniform transverse loading, 
0),( qyxq = , 

for static analysis.  



5.2.1. Static analysis 

As shown in Table 2, all ESL theories predict very close maximum deflection for a very thin 

plate )200( =ha . However for the length-to-thickness ratio 20=ha , discrepancies up to 7% 

emerge from CLPT and TSDT results for the maximum out-of-plane deflection. For a very thick 

laminate with 5=ha , differences are greater than 55%. Furthermore, the discrepancy between 

ESL theories depends on the embedded manufacturing defects. For instance, for a plate with 

10=ha , incorporating the effect of overlap increases the deviation by about 3% compared to 

the defect-free case, whereas considering the effect of gap decreases the discrepancy by 2%. 

These trends can be attributed to the emergence of overlaps, which are thickness build-ups that 

decrease the overall length-to-thickness ratio of the plate in comparison with the defect-free case. 

On the other hand, a variable stiffness plate with gaps has effective elastic properties lower than 

a defect-free plate with higher length-to-thickness ratio.  

5.2.2. Buckling analysis 

Table 2 also shows significant discrepancies between the critical buckling load predicted with 

CLPT and TSDT for increasingly thicker plates. In particular for a plate with 20=ha  and 

5=ha , the discrepancies between results obtained with CLPT and TSDT increase from 7% to 

177% respectively. Furthermore, Table 2 reveals that shear stresses have an impact on the 

buckling load severer than that on the maximum out-of-plane deflection. For example for a plate 

with 10=ha , the difference between the CLPT and TSDT results for the maximum deflection is 

23%, while this value is greater than 33% for buckling. We can also observe that - compared to a 

defect-free case - gaps embedded in a variable stiffness plate reduce the buckling load, whereas 

overlaps increase it. For 10=ha , the buckling load reduces by 8% for a plate with gaps, whereas 

it increases by 31% for a plate with overlaps. Concerning the effect of the shear correction factor 



in FSDT, the results in Table 2 show that 65=fc  leads to the most accurate results compared to 

the other correction factors. 

5.2.3. Free vibration analysis 

From a comparison of CLPT and TSDT results for fundamental frequency (Table 2), a 

discrepancy greater than 4% can be observed for a plate with 20=ha ; this value increases  up 

to 48% for a thick plate with 5=ha . The differences between CLPT and TSDT is the least for 

fundamental frequency, followed by maximum out-of-plane deflection and critical buckling load. 

Table 2 shows also that variable stiffness plates with gaps have a fundamental frequency lower 

than defect-free laminates, whereas plates with overlaps have a higher value. The presence of 

gaps in a variable stiffness plate with 10=ha , for example, reduces the fundamental frequency 

by 3%, while overlaps increase it by 10% when compared to a defect-free case. 

5.3. Influence of curvilinear fiber path  

This section examines the impact of 0T  and 1T  on the structural responses of a variable stiffness 

plate. For the plate here under investigation, Figure 2 illustrates the area percentages for gaps and 

overlaps as a function of 0T  and 1T over the entire design space. The white areas represent plate 

designs that do not satisfy the manufacturing constraint, i.e., the minimum turning radius of 

0.635m imposed by a typical AFP machine. For straight-fiber laminates )( 10 TT = , no gaps or 

overlaps appear in the laminate, whereas the area percentage for both gaps and overlaps 

increases if the difference between 0T  and 1T  becomes larger.  

We examine a plate with 10=ha  for different manufacturing strategies. Figure 3 illustrates its 

critical buckling load and fundamental frequency versus maximum deflection, each normalized 

by the corresponding values of a quasi-isotropic laminate. As opposed to a constant stiffness 



design, whose response domain is represented by a line, a variable stiffness design yields to 

domains of a larger extent. Furthermore in comparison with the results obtained for a defect-free 

plate, overlaps shift the response domain towards a higher buckling load and lower maximum 

deflection. On the other hand, gaps shift the domain towards a lower buckling load and higher 

deflection. This behaviour is attributed to the effect of overlaps, which are thickness build-ups 

that tend to stiffen the plate along the fiber path, thereby improving its structural responses. In 

contrast gaps, resin-rich areas with reduced mechanical properties, deteriorate the structural 

responses of the plate. As shown in Fig. 2a, a complete gap strategy yields a large amount of 

gaps. In contrast, a complete overlap strategy results in an amount of overlap that continuously 

increases as the fiber path deviates from the straight path. As a result, a remarkable difference 

exists between the boundary of the feasible domain of a plate with gaps and the one with straight 

fibers. A similar behaviour can be observed in the domain fundamental frequency versus 

maximum deflection. From a comparison of Figs. 3a and 3b, we observe that the buckling-

deflection domain for a defect-free plate is significantly larger than the corresponding frequency-

deflection domain.  

6. Concluding Remarks 

This paper has examined the effect of transverse shear deformation and embedded manufacturing 

defects on the structural responses of a variable stiffness plate made by AFP. Static bending, 

buckling, and free vibration have been studied. For moderately thick plates with length-to-

thickness ratio 10=ha , major differences emerge between CLPT and TSDT predictions. In 

particular, discrepancies up to 23%, 33%, and 15% are observed for the maximum out-of-plane 

deflection, critical buckling load, and fundamental frequency. The results obtained in this paper 

show the important role played by shear deformation in thick plates with curvilinear fibers. We 



have also highlighted that the discrepancy between ESL theories depends on the amount of the 

embedded defects. In a static bending analysis of a plate with 10=ha  where the effects of 

overlaps are considered in the analysis, the maximum deflection calculated with CLPT diverges 

up to 26% from that predicted by TSDT. On the other hand, accounting for the effect of gaps 

results in about 22% difference. Finally maps have been presented to show how the structural 

responses of a defected plate changes with respect to a defect-free plate. 
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 Table 1: Dimensionless maximum deflection, critical buckling load, and fundamental frequency of a simply-

supported, symmetric, and cross-ply 
s]90/0[  plate.  



 

 

 

ha  
21 EE

 TSDT TSDT[1] FSDT* ][1*FSDT CLPT CLPT[1] 

3D 

Elasticity[1] 

100w

 

 

4 25 1.8937 1.894 1.7091 1.71 0.4311 0.4311 1.954 

10 0.7146 0.715 0.6625 0.6625 0.4311 0.4311 0.743 

N  10 20 15.2984 15.298 15.3513 15.351 19.7124 19.712 15.019 

40 23.34 23.34 23.4529 23.453 36.1597 36.16 22.881 

  5 20 9.5625 9.526 9.566 9.567 13.5108 13.511 9.56 

40 10.821 10.787 10.8529 10.854 18.2989 18.299 10.752 

* The correction factor is 5 6
f

c = . 

 



Table 2: Dimensionless maximum deflection )100( w  under uniform static load, dimensionless critical uniaxial 

buckling load N , and dimensionless fundamental frequency  . (QI: Quasi Isotropic) 

Structural 

responses
 

/a h

 
Layup 

Manufacturin

g defects 

CLPT 

FSDT 

TSDT 

1fc =  5 / 6fc =

 

3 / 4fc =

 

100w  

5 
QI - 0.6970 1.2974 1.4174 1.4973 1.3968 

[±<58|39>]4s 
Defect-free 0.5787 1.1784 1.2989 1.3793 1.2902 

Complete gap 0.6483 1.2474 1.3679 1.4482 1.3601 

Complete 

overlap 

0.4233 0.9651 1.0738 1.1464 1.0139 

10 

QI - 0.6970 0.8473 0.8773 0.8973 0.8735 

[±<58|39>]4s 
Defect-free 0.5787 0.7269 0.7569 0.7769 0.7567 

Complete gap 0.6483 0.7963 0.8263 0.8463 0.8262 

Complete 

overlap 

0.4233 0.5578 0.5848 0.6029 0.5739 

20 

QI - 0.6970 0.7346 0.7421 0.7471 0.7413 

[±<58|39>]4s 
Defect-free 0.5787 0.6145 0.6219 0.6269 0.6223 

Complete gap 0.6483 0.6841 0.6915 0.6965 0.6918 

Complete 

overlap 

0.4233 0.4565 0.4632 0.4677 0.4606 

200 

QI - 0.6970 0.6974 0.6975 0.6975 0.6975 

[±<58|39>]4s 
Defect-free 0.5787 0.5775 0.5775 0.5776 0.5779 

Complete gap 0.6483 0.6471 0.6472 0.6472 0.6475 

Complete 

overlap 

0.4233 0.4232 0.4232 0.4233 0.4230 

N  

5 
QI - 22.944

9 

11.014

5 

9.6400 8.8997 10.020

7 
[±<58|39>]4s 

Defect-free 27.387

1 

11.005

3 

9.6240 8.8359 9.8807 

Complete gap 24.437

1 

10.650

0 

9.3505 8.6476 9.5668 

Complete 

overlap 

37.407

9 

12.844

1 

11.0096 10.0458 12.615

9 10 

QI - 22.944

9 

18.599

2 

17.9207 17.4953 17.996

6 [±<58|39>]4s 
Defect-free 27.387

1 

21.429

8 

20.5281 19.9680 20.537

6 
Complete gap 24.437

1 

19.581

5 

18.8261 18.3541 18.832

5 
Complete 

overlap 

37.407

9 

27.819

6 

26.4589 25.6235 26.992

4 20 

QI - 22.944

9 

21.678

2 

21.4415 21.2866 21.465

4 [±<58|39>]4s 
Defect-free 27.387

1 

25.657

5 

25.3244 25.1071 25.312

2 
Complete gap 24.437

1 

23.051

0 

22.7818 22.6059 22.772

0 
Complete 

overlap 

37.407

9 

34.468

1 

33.9274 33.5763 34.133

1 200 

QI - 22.944

9 

22.931

5 

22.9289 22.9271 22.929

1 [±<58|39>]4s 
Defect-free 27.387

1 

27.444

9 

27.4410 27.4384 27.425

6 
Complete gap 24.437

1 

24.482

9 

24.4798 24.4778 24.467

6 
Complete 

overlap 

37.407

9 

37.419

9 

37.4134 37.4091 37.438

6   5 
QI - 14.576

6 

10.724

0 

10.2568 9.9767 10.367

1 
[±<58|39>]4s 

Defect-free 15.925

2 

11.205

9 

10.6708 10.3534 10.747

1 
Complete gap 15.283

4 

11.064

3 

10.5641 10.2655 10.634

7 
Complete 

overlap 

17.762

8 

11.863

2 

11.2461 10.8838 11.640

2 



10 

QI - 14.926

2 

13.475

5 

13.2324 13.0775 13.277

3 [±<58|39>]4s 
Defect-free 16.307

2 

14.469

9 

14.1679 13.9767 14.188

7 
Complete gap 15.650

0 

14.049

3 

13.7810 13.6103 13.800

8 
Complete 

overlap 

18.269

7 

15.818

1 

15.4348 15.1940 15.616

5 20 

QI - 15.017

7 

14.600

4 

14.5210 14.4689 14.534

7 [±<58|39>]4s 
Defect-free 16.407

1 

15.884

6 

15.7819 15.7145 15.784

1 
Complete gap 15.745

9 

15.296

2 

15.2073 15.1489 15.209

8 
Complete 

overlap 

18.403

3 

17.669

9 

17.5320 17.4418 17.595

3 200 

QI - 15.048

2 

15.043

8 

15.0429 15.0423 15.043

1 [±<58|39>]4s 
Defect-free 16.440

4 

16.457

8 

16.4566 16.4559 16.452

1 
Complete gap 15.777

9 

15.792

6 

15.7916 15.7910 15.787

8 
Complete 

overlap 

18.448

1 

18.451

0 

18.4494 18.4483 18.455

8 
 

 



 

 

  

(a) (b) (c) 

Fig. 1: (a) Fiber path definition; (b) gap (shaded area) distribution within the laminate; (c) overlap (shaded area) 

distribution within the laminate. 
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  (a)                                                                     (b) 

Fig. 2: (a) Complete gap area percentage and (b) complete overlap area percentage as a function of 0T  and 1T  for a 

variable stiffness plate.  



 

  

(a) (b) 

Fig. 3: Plate response domains for (a) buckling-deflection and (b) fundamental frequency-deflection in different 

manufacturing scenarios. 

 

 


