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ABSTRACT 

Automatic methods for segmentation of various tissues and pathologies are critical for 

systematic studies of the brain to investigate changes that occur in different components of 

the phenomenon under study. White matter hyperintensities (WMHs) are one of the major 

components of small-vessel disease in aging and Alzheimer’s disease (AD) populations that 

need to be assessed and monitored to estimate the vascular disease burden. In this thesis, a 

new fully automatic technique is proposed for segmenting WMHs from multiple contrasts of 

magnetic resonance (MR) brain images.  

The proposed segmentation technique uses a machine learning classification scheme 

by combining a set of intensity and location features obtained from multi-contrast MR 

sequences, namely T1w, T2w, proton density (PD) and fluid attenuated inversion recovery 

(FLAIR) images and a linear or nonlinear classifier to detect WMHs. The segmentations are 

performed in the native space of the optimal contrast (e.g. FLAIR or T2w) to avoid the 

blurring caused by resampling the images, especially since these images generally have 

relatively thick slices (3-5 mm). All other contrasts are linearly registered to the optimal 

contrast using a 6-parameter rigid registration. The feature set includes the voxel intensity 

value from each available contrast, spatial probability of a voxel at a specific location being a 

WMH, average intensity of healthy tissue at the voxel location, histogram distribution of the 

healthy tissue and WMH intensities, and the ratio of the two histograms. The spatial 

probability, average intensity and the histogram features are calculated from a training set 

with manually segmented WMHs. To obtain these features, the training images are 

nonlinearly registered to an average template, each feature is calculated in the template space, 

and the results are transformed back into the native space of the optimal image. The 

classifiers are then trained on the training dataset with manually segmented labels. The 
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performance of the classifiers is assessed using Dice Kappa values as the primary outcome 

measure and through a 10-fold cross validation scheme. 

Using the developed tool, the WMHs were segmented using different combinations of 

input image contrasts (i.e. T1w+T2w+PD, T1w+FLAIR, T1w) to assess the performance of 

the classifiers and the contribution of each of the contrasts in detecting WMHs. The question 

of interest was whether the WMHs loads obtained from segmentations based only on T1w 

images can be used as accurate estimates of the actual WMH loads. To assess this, the 

volumetric correlation of WMH loads in different brain lobes as well as correlation with age 

and cognitive measures were compared to investigate the effectiveness of each contrast in 

providing WMH load estimates that are highly correlated with aging and cognitive scores. 

The assessments revealed that the best Dice Kappa values are obtained while using the 

optimal FLAIR and T2w/PD contrasts. Classifications based solely on T1w images tend to 

undersegment the WMHs, only detecting the brightest of these lesions on FLAIR and 

T2w/PD images.  However, the WMH loads obtained from T1w segmentations were still able 

to provide high correlations with age and cognitive scores. 

Finally, using the developed tool, baseline WMHs were segmented in an early stage 

Parkinson’s disease (PD) database as well as age matched healthy controls. Using 

longitudinal clinical assessments and cortical thickness measures, we studied the relationship 

between baseline WMHs and future cognitive decline and cortical thinning. PD subjects with 

high WMH loads were found to present with more future cognitive decline and cortical 

thinning in comparison with (i) PD subjects with low WMH loads and (ii) age matched 

control subjects with high WMH loads. These findings show that the existence of WMHs 

affects PD patients differently from controls.  
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RESUME 

 

Les méthodes de segmentation automatique de différents tissus et pathologies sont 

primordiales pour l’étude systématique du cerveau afin d’examiner les changements qui se 

produisent dans différentes composantes du phénomène étudié. Les hyperintensités de la 

matière blanche (HMB) sont un des éléments caractéristiques de la maladie des petits 

vaisseaux qui doit être évalué chez les populations vieillissantes ou souffrant de la maladie 

d’Alzheimer (MA), afin d’estimer les impacts de la maladie vasculaire. 

La technique de segmentation proposée utilise un procédé de classification par 

apprentissage automatique, en associant un ensemble de caractéristiques d’intensité et 

d’emplacement, obtenues à partir de séquences de RM multi-contrastes, à savoir des images 

T1w, T2w, de densité de protons (DP) et d’inversion-récupération atténuée par un fluide 

(FLAIR) ainsi qu’un modèle de classification linéaire ou non-linéaire pour détecter les HMB. 

Les segmentations sont effectuées dans l’espace natif du contraste optimal (FLAIR ou T2w) 

afin d’éviter le floutage dû au rééchantillonnage des images, en particulier parce que ces 

images sont en général composées de tranches épaisses (3-5 mm). Tous les autres contrastes 

sont recalés linéairement avec le contraste optimal en utilisant un recalage rigide à 6 

paramètres. Les caractéristiques étudiées incluent la valeur d’intensité des voxels pour chaque 

contraste disponible, la probabilité qu’a un voxel à un emplacement spécifique de faire partie 

d’une zone d’HMB, l’intensité moyenne d’un tissu sain à l’emplacement du voxel, les 

histogrammes de distribution des intensités du tissu sain et des HMB et le ratio des deux 

histogrammes. La probabilité spatiale, l’intensité moyenne et les caractéristiques des 

histogrammes sont calculées à partir d’un jeu de données d’entrainement pour lequel les 

HMB ont été segmentées manuellement. Afin d’obtenir ces caractéristiques, les images 

d’entrainement sont recalées de façon non-linéaire sur un modèle moyen, chaque 
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caractéristique est calculée dans l’espace du modèle, puis les résultats sont retransformés 

dans l’espace natif de l’image optimale. Les modèles de classification sont ensuite entrainés 

sur le jeu de données dont les étiquettes ont été segmentées manuellement. La performance 

des modèles de classification est évaluée en utilisant des valeurs de coefficient de Dice 

comme mesure primaire de sortie et à travers un procédé de validation croisée en 10 étapes.  

Grâce à l’outil développé, les HMB ont été segmentées en utilisant différentes 

combinaisons de contraste comme images d’entrée (par exemple T1w+T2w+PD, 

T1w+FLAIR, T1w) afin d’évaluer la performance des modèles de classification et la 

contribution de chacun des contrastes pour la détection des HMB. La question soulevée était 

de déterminer si la charge de HMB obtenue par une segmentation basée seulement sur des 

images T1w pouvait être utilisées comme estimé précis de la charge réelle d’HMB. Afin de 

déterminer la réponse à cette question, la corrélation volumétrique de charge d’HMB dans 

différents lobes du cerveau ainsi que la corrélation avec l’âge et les mesures cognitives ont 

été comparées pour examiner l’efficacité de chaque contraste à fournir un estimé de la charge 

d’HMB fortement corrélé avec l’âge et la performance cognitive. Cette évaluation a révélé 

que les meilleures valeurs de coefficient de Dice sont obtenues lors de l’utilisation des 

contrastes FLAIR et T2w/PD optimaux. Les classifications basées uniquement sur les images 

T1w ont tendance à sous-segmenter les HMB, détectant ainsi uniquement les lésions les plus 

intenses sur les images FLAIR et T2w/PD. Cependant, les charges de HMB obtenues à partir 

de segmentations sur les images T1w présentaient tout de même une forte corrélation avec 

l’âge et la performance cognitive.  

Enfin, en utilisant l’outil développé, les HMB de base ont été segmentées pour un jeu 

de données collecté pour des patients à un stade peu avancé de la maladie de Parkinson (MP) 

ainsi que chez des sujets en bonne santé et d’âge équivalent. En utilisant des évaluations 
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cliniques longitudinales et des mesures de l’épaisseur du cortex, nous avons étudié le lien 

entre les HMB de base et le déclin cognitif à venir et l’amincissement cortical. Les patients 

atteints de la MP avec des charges de HMB élevées ont présenté des déclins cognitifs et un 

amincissement cortical plus importants en comparaison (i) des patients atteints de la MP avec 

des charges d’HMB basses et (ii) des sujets d’âge comparable possédant des charges élevées 

d’HMB. Ces résultats montrent que l’existence d’HMB affecte les patients atteints de la MP 

différemment qu’elle ne le fait chez les individus normaux. 
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CHAPTER 1. Introduction 

The main purpose of this thesis is to develop automatic image segmentation techniques to 

detect white matter hyperintensities (WMHs) using brain magnetic resonance images (MRIs). The 

motivation of this study, an overview of this thesis and its scientific contributions are presented 

below.  

1.1. Motivation 

WMHs are areas of abnormality that are observed in the white matter tissue of the 

brain in neuroimaging data. They tend to occur primarily adjacent to the cerebral ventricles, 

especially around the horns of the lateral ventricles. Although they can occur in individuals 

that are presumed free of neurological and cerebrovascular diseases, WMHs are often 

associated with aging, small-vessel disease, Alzheimer’s disease, and ischemic diseases. 

WMHs impact the cognitive function of individuals without any other comorbidities as well 

as patients with mild cognitive impairment and dementia. The presence of WMHs may 

confound diagnosis for treating physicians and potentially hinder effective care for these 

patients (Yoshita et al., 2005). As a result, WMHs need to be taken into account as potential 

confounders in diagnosis and treatment of Alzheimer’s disease patients. Unfortunately, 

WMHs are difficult to identify and quantify with high accuracy. Manually detecting WMHs 

is challenging, time consuming, expensive, and variable due to human subjectivity. Thus, 

developing automated segmentation tools that can detect WMHs robustly and with a high 

sensitivity and specificity are highly advantageous.  

1.2. Overview of thesis 

The rest of the thesis is organized as follows. Chapter 2 provides a detailed literature 

review on WMHs, their effect on cognition, and automated WMH segmentation techniques. 
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A novel automated linear regression technique for segmenting WMHs is developed in 

Chapter 3. Using a set of intensity and location features, the linear regression technique 

provides continuous outputs that can be used as subject-specific WMH maps which can also 

be thresholded to obtain binary labels. The generalizability of the segmentations is further 

assessed using an independent dataset. Chapter 4 compares the performance of 10 linear and 

nonlinear classifiers in detecting WMHs using different combinations of input image 

contrasts, validating on four different datasets. A WMH segmentation pipeline is developed 

and made publicly available along with pre-trained classifiers that can be used to segment the 

WMHs with any of the desired image contrast combinations or classifiers. In Chapter 5, the 

contribution of different image contrasts in detecting WMHs is assessed. The question of 

interest is 1) whether WMHs detected solely on T1w images can be used as estimates of the 

actual WMH volumes, and 2) whether these estimates hold significant correlations with 

measures of cognitive decline. Next, in Chapter 6, the WMH segmentation technique is used 

to detect WMHs in a database of early stage Parkinson’s disease patients, and the effect of 

WMHs in later cognitive decline and cortical thinning is assessed. Finally, Chapter 7 

concludes the thesis and provides a discussion on possible future work in this area. 

1.3. Author contributions 

I am the first author of all four manuscripts included in this thesis. I have performed 

the methodological developments, software implementations, experimental design, data 

processing, and result analysis for all the experiments. The contributions of the co-authors 

include supervision of the research, providing data and manual segmentations, technical 

discussions, and review of manuscripts. The following summarizes the contributions of each 

author by manuscript.  
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Chapter 3. Validation of a Regression Technique for Segmentation of White Matter 

Hyperintensities in Alzheimer’s Disease 

• Authors: Mahsa Dadar, Tharick A. Pascoal, Sarinporn Manitsirikul, Karen Misquitta, 

Vladimir S. Fonov, M. Carmela Tartaglia, John Breitner, Pedro Rosa-Neto, Owen T. 

Carmichael, Charles Decarli, D. Louis Collins 

• Contributions: Concepts study and design: M. D., and D. L. C.; Manual 

Segmentation: T. A. P., S. M., K. M.; Method analysis and implementations: M. D., 

Providing Data: J. B., O. T. C., C. D.; Data preparation and preprocessing: M. D.; 

Manuscript preparation: M. D.; Manuscript revision: all authors; Editing and final 

version: M. D. and D. L. C. 

Chapter 4. Performance Comparison of 10 Different Classification Techniques in 

Segmenting White Matter Hyperintensities in Aging 

• Authors: Mahsa Dadar, Josefina Maranzano, Karen Misquitta, Cassandra J. Anor, 

Vladimir S. Fonov, M. Carmela Tartaglia, Owen T. Carmichael, Charles Decarli, D. 

Louis Collins  

• Contributions: Concepts study and design: M. D., and D. L. C.; Manual 

Segmentation: J. M., K. M., C. J. A.; Method analysis and implementations: M. D., 

Providing Data: O. T. C., C. D.; Data preparation and preprocessing: M. D.; 

Manuscript preparation: M. D.; Manuscript revision: all authors; Editing and final 

version: M. D. and D. L. C. 
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Chapter 5. Validation of T1w-based Segmentations of White Matter Hyperintensity 

Volumes in Large Scale Datasets of Aging 

• Authors: Mahsa Dadar, Josefina Maranzano, Simon Ducharme, Owen T. Carmichael, 

Charles Decarli, D. Louis Collins 

• Contributions: Concepts study and design: M. D., and D. L. C.; Manual 

Segmentation: J. M., Method analysis and implementations: M. D., Providing Data: 

O. T. C., C. D.; Data preparation and preprocessing: M. D.; Manuscript preparation: 

M. D.; Manuscript revision: all authors; Editing and final version: M. D. and D. L. C. 

Chapter 6. White Matter Hyperintensities and Cognitive Decline in de Novo 

Parkinson’s Disease Patients 

• Authors: Mahsa Dadar, Yashar Zeighami, Yvonne Yau, Seyed Mohammad 

Fereshtehnejad, Josefina Maranzano, Ronald Postuma, Alain Dagher, D. Louis 

Collins 

• Contributions: Concepts study and design: M. D., and D. L. C.; Method analysis and 

implementations: M. D., Y. Z., Data preparation and preprocessing: M. D., Y. Y.; 

Manuscript preparation: M. D., Y. Y., S. M. F.; Manuscript revision: all authors; 

Editing and final version: M. D. and D. L. C. 

1.4. Scientific contributions  

The main original contributions of this thesis are listed below. 

(i) Developing and validating fully automatic segmentation tools that can detect 

WMHs. 

a. Using different combinations of imaging contrasts (e.g. T1w, T1w+T2w, 

T1w+FLAIR, T1w+T2w+PD+FLAIR). 
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b. Using ten different linear and nonlinear classifier options. 

c. In multi-site, multi-scanner datasets. 

The developed tool as well as the pre-trained classifiers have been made publicly 

available. 

(ii) Assessing whether WMH segmentations that are based only on T1w images can 

be used as accurate estimates in studies where FLAIR or T2w/PD sequences are 

not available. 

(iii) Studying the effect of WMHs on later cognitive decline and cortical thinning in 

early Parkinson’s Disease. 

  



25 

 

CHAPTER 2. Review of White Matter Hyperintensities, Their Effect 

on Cognition, and Automated WMH Segmentation from MRI 

Introduction 

Magnetic resonance imaging (MRI) is a non-invasive widely used medical imaging 

technique to create in-vivo images of the anatomy in health and disease. Fundamental 

particles such as protons have a quantized form of angular momentum referred to as spin, 

causing them to align in a static magnetic field (van der Kouwe et al. 2015). To acquire MRI 

images, the subject is positioned within a powerful electromagnetic field that aligns the 

polarity of the proton molecules in the tissues. Then, an oscillating radio frequency (RF) 

pulse with a perpendicular magnetic component is applied to, and absorbed by, the aligned 

molecules, resulting in their reorientation. Returning to their original state, the spins emit 

energy that is received and recorded by the scanner to produce an MRI image. Having 

different water molecule and therefore proton densities, different tissue types return to their 

original states (referred to as relaxation) with different rates. Consequently, they present with 

different intensities in the image (Edelman et al., 1996). By manipulating the relaxation 

behavior of the spins using a sequence of RF pulses, additional contrast between different 

tissues can be obtained (van der Kouwe et al. 2015). Since pathological processes such as 

demyelination, axonal degeneration, and atrophy result in changes in tissue densities, they 

can be detected in MR images by their differences from normal tissue intensities of healthy 

individuals.  

MRIs are generally three dimensional, composed of a series of two dimensional slices. 

There exist various types of contrasts in structural MR imaging, specifically designed to 

emphasize the contrast between different types of tissues or pathologies, by adjusting the 
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parameters of the pulse sequence that excites the tissue molecules. In structural brain MRI, 

three primary tissue types can be distinguished: gray matter (GM), white matter (WM), and 

cerebrospinal fluid (CSF). Brain atrophy is detectable on MRI as a decrease in GM and WM 

tissue volumes due to the overall brain shrinkage, along with enlargement of the ventricles 

and widening of the subarachnoid and cisternal spaces, replacing the residual volume with 

additional CSF. In addition to the atrophy observed in GM and WM tissues in MRI, severe 

levels of axonal degeneration, neuronal loss, and increased vessel wall permeability can 

become visible commonly in the WM tissue, referred to as Leuko-araiosis or white matter 

hyperintensities (WMHs) (Debette and Markus, 2010; Hachinski et al., 1987). 

2.1. White Matter Hyperintensities and Their Effect on Cognitive Function 

2.1.1. Cerebral Small Vessel Disease 

The term cerebral small-vessel disease (CSVD) refers to a combination of clinical and 

MRI findings that result from a series of pathological processes that affect the small vessels 

on the surface of and within the brain, i.e. the arteries, arterioles, capillaries, venules, and 

veins (Joutel and Faraci, 2014; Pantoni, 2010). CSVD is the most common vascular cause of 

dementia and a major contributor to mixed dementia (i.e. CSVD co-occurring with other 

pathologies) (Dubois et al., 2014; Masdeu and Pascual, 2008). In particular, CSVD frequently 

coexists with neurodegenerative diseases such as Alzheimer’s disease (AD) in the elderly 

population and may increase the cognitive and physical impairments caused by 

neurodegeneration (Dubois et al., 2014; Honjo et al., 2012; Ogama et al., 2014; Wardlaw et 

al., 2013). AD and CSVD share many risk factors and both lead to cognitive decline and 

dementia (De la Torre, 2000; Sachdev et al., 2014; Wardlaw et al., 2013). The effect of 

vascular and degenerative changes in individuals with AD are reported to be cumulative, i.e. 
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the co-occurrence of CSVD can increase the likelihood of clinical presentation of dementia, 

for the same level of AD-related pathology (Masdeu and Pascual, 2008).  

Furthermore, recent studies indicate that CSVD might be the starting point in a chain of 

events that lead to neurodegeneration and AD. The Critically Attained Threshold of Cerebral 

Hypoperfusion (CATCH) hypothesis of AD proposes that the blood supply and metabolism 

disturbances due to the hypo-perfusion and the ischemic changes associated with aging and 

vascular risk factors would cause neuronal energy failure (De la Torre, 2000). These changes 

would in turn lead to neuronal injury as well as acceleration in over-production and reduction 

in clearance of Aβ (a protein whose abnormal extracellular deposition is crucially involved in 

AD), eventually leading to AD pathology. Therefore, this process would create a chain of 

events that lead to the progressive cognitive deficits and neurodegeneration that characterize 

AD (De la Torre, 2000). Similarly, Honjo et al. hypothesize that hypo-perfusion and/or 

inflammation caused by early on vascular risk factors (which precede the Aβ increase and 

deposition) would lead to Aβ drainage dysfunction and start the neurodegenerative process 

leading to AD. Therefore, controlling vascular risk factors earlier in life and before the onset 

of these pathological processes could be crucial for prevention of AD (Honjo et al., 2012). 

2.1.2. White Matter Hyperintensities 

WMHs are one of the major MRI signs of CSVD. Other signs include infarctions or 

microhemorrhages in the WM or deep GM and enlargement of perivascular spaces (Joutel 

and Faraci, 2014). WMHs are non-specific areas of abnormality, caused by several different 

mechanisms that are generally observed in the WM tissue of the brain in MR images. They 

mainly result from chronic diffuse subclinical ischemia (i.e. a restriction in blood supply to 

the brain tissue, creating oxygen and glucose shortage and consequently disturbing cellular 

metabolism) that primarily impacts subcortical regions (Scott et al., 2014). Aβ deposition 
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could also increase the WMH burden by accelerating processes that are not necessarily 

vascular, including neuroinflammation, reactive oxygen species production, and oxidative 

stress (Scott et al., 2014; Snyder et al., 2015; Yamada, 2012). In such cases, an initial rise in 

Aβ would damage the WM, which in turn would elevate Aβ levels, leading to more WM 

damage in a cyclical process. Damage to the vascular system such as thickening and sclerosis 

of the arteries may also disrupt the clearance of molecules such as Aβ (Huang et al., 2010). 

Alternatively, WMHs from another process such as a head injury may initiate or accelerate 

the pathological effects of Aβ deposition on the WM (Wardlaw et al., 2015). Grimmer et al. 

(2012) showed a significant association between the baseline WMH load and the progression 

of Aβ between baseline and follow-up visits. This association was mostly observed in parieto-

occipital regions, especially in regions closer to the brain surface. This further supports the 

hypothesis that impaired Aβ clearance due to dysfunction in the drainage process (as 

measured by WMH volume) may contribute to Aβ deposition in AD, which in turn makes 

WMH load a relevant factor that needs to be taken into consideration in drug trials that target 

Aβ (Grimmer et al., 2012). 

2.1.3. WMH Locations 

WMHs occur primarily adjacent to the cerebral ventricles, especially around the horns of 

the lateral ventricles. The WMH distribution extends outward to other brain regions as the 

disease progresses. Similar hyperintensities can also occur in subcortical GM structures, such 

as the basal ganglia, thalamus, as well as brainstem and have sometimes been analyzed 

alongside the hyperintensities in the WM (Wardlaw et al., 2013). WMH studies sometimes 

differentiate between periventricular and deep WMHs since they appear to have different 

histopathologies, risk factors, and clinical consequences.  
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Periventricular hyperintensities can also be seen in elderly individuals without clinically 

significant cognitive symptoms and can be categorized into rims and caps. The term rim is 

referred to the laterally positioned periventricular hyperintensities surrounding the lateral 

ventricles and caps are the hyperintensities surrounding the anterior poles of the lateral 

ventricles (Kertesz et al., 1988). In general, rims and caps are both subtle and follow the 

shape of the surface of the ventricle, with caps being thicker than rims. The pathologic 

findings associated with periventricular WMHs include myelin pallor, dilation of perivascular 

spaces, and increased extracellular spaces (Gouw et al., 2010).  

Deep hyperintensities are generally categorized into punctate and confluent lesions. These 

punctate and/or confluent hyperintense areas are frequently seen in the deep and subcortical 

WM on T2w and FLAIR images, and are commonly observed in the elderly individuals, 

particularly in those with vascular risk factors (Fazekas et al., 1993). They are considered to 

be produced by chronic ischemia or brief and moderately severe repeated ischemia occurring 

in the subcortical WM (Jellinger et al., 2013; Matsusue et al., 2006).  

Figure 2.1. shows examples of periventricular (caps and rims) and deep (punctate and 

confluent) WMHs in axial FLAIR image slices of individuals with CSVD. 

 

Fig. 2.1. Examples of periventricular (caps and rims) and deep (punctate and confluent) WMHs. Arrows indicate 

different types of WMHs. Red= rims. Cyan= caps. Green= punctate. Orange= confluent. WMHs= White Matter 

Hyperintensities. 
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2.1.4. WMH Rating Scales 

WMHs can be visually scored by expert neurologists according to their level of severity. 

Manual rating of WMH severity is generally done using FLAIR and T2w images as the 

primary sequence, with the help of other available modalities to exclude artifacts and other 

pathologies. The Fazekas scale, the Age-Related WM Changes scale (ARWMC), and 

Scheltens scale are three cross-sectional visual scales for assessing the WMH burden. Table 

2.1 shows scoring details for each scale. 

(i) The Fazekas scale was designed to quantify the WMHs caused by chronic small-

vessel ischemia, dividing the WMHs into periventricular and deep WM (PVWM 

and DWM, respectively) and assigning a grade between 0 (none) and 3 

(significant amount) to each category depending on the size and confluence of the 

WMHs (Fazekas et al., 1987).  

(ii) The ARWMC scale divides the WMHs into WM lesions and basal ganglia lesions 

(striatum, globus pallidus, thalamus, internal/external capsule, and insula), giving 

a 0 (no lesions) to 3 (confluent lesions) score to each category (Wahlund et al., 

2001).  

(iii) The Scheltens scale rates WMHs in the periventricular region on a 0 (absent) to 6 

scale (significant amount), and in the subcortical regions on a 0 (no abnormalities) 

to 24 (large confluent lesions) scale, on the basis of the size and number of the 

lesions (Scheltens et al., 1993). 
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Table 2.1. Visual Cross-sectional WMH Rating Scales and their definitions. WMH= White Matter 

Hyperintensities. ARWMC= Age-Related WM Changes scale. WM= White Matter. 

Scale Details 

Fazekas 

Periventricular hyperintensities  

Absence 

Caps or pencil-thin lining 

Smooth halo 

Irregular PVH extending into the deep WM 

Deep WMHs 

Absence 

Punctate foci 

Beginning confluence of foci 

Large confluent areas 

Score 

0 

1 

2 

3 

 

0 

1 

2 

3 

ARWMC 

WMHs 

No lesions (including symmetrical, well-defined caps or bands) 

Focal lesions 

Beginning confluence of lesions 

Diffuse involvement of the entire region/with or without involvement of U fibers 

Basal Ganglia Lesions 

No lesions 

One focal lesion (≥ 5 mm) 

More than one focal lesion 

Confluent lesions 

Score 

0 

1 

2 

3 

 

 

0 

1 

2 

3 

Scheltens 

 

 

Periventricular hyperintensities  

Occipital caps                    

Frontal caps                                                  

Lateral ventricle bands                    

WMHs 

Frontal    

Parietal   

Occipital    

Temporal             

Basal Ganglia hyperintensities    

Caudate Nucleus  

Putamen 

Globus Pallidus 

Thalamus 

Internal Capsule                       

Infra-tentorial foci of hyperintensity   

Cerebellum 

Mesencephalon 

Pons 

Medulla                                                                                            

Number 

 

 

 

 

 

 

n ≤ 5                     

n > 6 

n ≤ 5 

n > 6 

n > 1 

 

Definition 

0: absent 

1: ≤ 5mm 

2: > 5mm & < 10 mm 

 

0: absent 

1: < 3 mm                                

2: < 3 mm 

3: 4-10 mm    

4: 4 mm      

5: > 11 mm  

6: confluent                                                                                       

Score 

0-6 

0-2 

0-2 

0-2 

0-24 

0-6 

0-6 

0-6 

0-6 

0-30 

0-6 

0-6 

0-6 

0-6 

0-6 

0-24 

0-6 

0-6 

0-6 

0-6 
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Rotterdam Progression Scale and Schmidt Progression Scale are two longitudinal scales 

designed for assessing the progression of WMHs. 

(i) The Rotterdam scale rates decrease, absence or presence of progression (-1, 0 or 

+1) in three periventricular regions (frontal caps, occipital caps, and bands) 

resulting in a periventricular score of -3 to +3, and four subcortical WM regions 

(frontal, parietal, occipital, temporal) resulting in a subcortical score of -4 to +4. 

Decrease is defined as disappearance or shrinkage of a previously visible lesion, 

absence of progression is defined as no significant change in the appearance of the 

lesions, and increase is defined as enlargement of a previously visible lesion or 

occurrence of a new lesion. The time between the two scans is not factored into 

this progression scale (Leeuw et al., 2001; Prins et al., 2004a).  

(ii) The Schmidt progression scale rates the change in WMHs by counting and 

categorizing the number of the lesions into (i) zero, (ii) one to four, (iii) five to 

nine, and (IV) more than nine lesions. Change of WMHs in grade and number 

from the baseline is then determined by direct scan comparison. Progression of 

WMHs is graded as absent (no WMHs in either scan), minor (a change from 

baseline by one to four punctate lesions), or marked (a difference of more than 

four lesions or a transition to early-confluent or confluent WMHs) (Schmidt et al., 

1999). 

The most important disadvantage of these visual WMH severity scales is their non-

linearity, i.e. two subjects with significantly different WMH loads (generally high loads) can 

receive the same scores, i.e. ceiling effect (Fazekas et al., 2002). This limitation makes it 

difficult to accurately assess the progression of WMHs or population differences in WMH 
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burdens, since all subjects with high WMH burden would receive the same scores, while they 

may be still significantly different in the actual WMH loads. 

Additionally, the same scans might be rated quite differently by different scales and 

raters, consequently showing different associations with clinical risk factors and cognitive 

measures (Mäntylä et al., 1997). Comparing the five rating scales, Gouw et al. reported mean 

intra-rater Kappa values of 0.79, 0.91, and 0.84 for the baseline and 0.82, 0.92, and 0.88 for 

the follow-up visits for Fazekas, ARWMC, and Scheltens scores, respectively for 2 subjects 

(Gouw et al., 2008). They also verified the inter-rater reliability for 4 subjects, showing 

Kappa values of 0.70, 0.88, and 0.80 for the baseline and 0.72, 0.86, and 0.82 for the follow-

up visits for Fazekas, ARWMC, and Scheltens scores, respectively. They further showed that 

the Rotterdam progression scale had a better sensitivity to WMH change over time compared 

with the other four scales (Gouw et al., 2008). Another study reported inter-observer Kappas 

for periventricular and subcortical WMHs of 0.37 and 0.84 on the Fazekas scale and 0.64, 

0.90 on the Rotterdam scale, and 0.56 and 0.84 on the Scheltens scale (Prins et al., 2004a). 

Different scaling systems also have different time requirements. For example, Fazekas 

scale is relatively simple and fast, while Scheltens scale is more time-consuming, requiring 

the rater to count the number/types of lesions (Mäntylä et al., 1997).  

In conclusion, although useful, visual ratings of WMH severity are generally time 

consuming, susceptible to inter-rater and intra-rater variabilities, and less sensitive to subtle 

difference/changes in the WMHs. 

2.1.5. WMH Risk Factors 

Although WMHs can occur in individuals without clinically significant 

neurodegenerative and cerebrovascular diseases, they are often associated with aging, AD, 
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and ischemic diseases.  The number and extent of WMHs increase from normal aging to mild 

cognitive impairment and to dementia. Age, a history of ischemia, CSVD, and hypertension 

(i.e. elevated blood pressure level) have been reported to be strong predictors of WMH load 

(Au et al., 2006; Gunning-Dixon and Raz, 2000). Doi et al. report subjects with mild 

cognitive impairment (MCI) that have lower mobility to suffer from higher WMH volumes 

(Doi et al., 2015). Higher baseline WMH load is associated with increased longitudinal 

progression of WMHs (Silbert et al., 2008). Furthermore, WMHs are associated with reduced 

cerebral and frontal lobe metabolism, higher systolic blood pressure (even in subjects whose 

blood pressures are in a normal range), brain atrophy, and smaller brain volumes (DeCarli et 

al., 1995a). Benedictus et al. report a significant association between WMH load and cerebral 

blood flow in AD patients, but not in controls (Benedictus et al., 2014).  

Scott et al. have shown that in subjects with hypertension, higher cerebral Aβ was 

associated with a greater WMH load than subjects with normal blood pressure (Scott et al., 

2014). Those with both elevated Aβ and hypertension had greater WMH loads than could be 

accounted for by either of these factors alone. This finding suggests that both vascular 

dysfunction and Aβ deposition may independently increase the WMH burden or alternatively, 

vascular dysfunction might accelerate both the Aβ deposition and accumulation of WMHs, 

creating a downstream association between WMH loads and Aβ levels (Scott et al., 2014). 

They thus conclude that both Aβ deposition and vascular pathology are (possibly 

independent) contributors to WM damage in cognitively normal individuals.  

2.1.6. Impact of WMHs on Cognition 

WMHs impact the cognitive function of individuals without any clinical symptoms as 

well as patients with MCI and dementia (Yoshita et al., 2005). Many studies include total 

WMH loads in their analyses when studying the cognitive performance and decline in aging 
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and diseased populations. Other measures of interest include location and number of these 

lesions (Wardlaw et al., 2013). Here we present a summary of studies that have used WMH 

related measures as correlates of impairment in different cognitive and clinical domains in 

cognitively normal, MCI, and AD populations.  

WMHs in cognitively normal populations 

In a quantitative review of 23 studies that investigate the effects of WMHs in cognitively 

normal individuals, Gunning-Dixon and Raz found WMH burden to be associated with 

poorer performance on various cognitive tasks. More specifically, WMHs were reported to be 

associated with lower memory, processing speed, executive function, and gait. They also 

found that periventricular WMHs were less likely to be associated with cognitive decline than 

deep WMHs, particularly in tasks that concern processing speed and widely distributed neural 

networks in the brain (Gunning-Dixon and Raz, 2000).  

In a cohort of 100 cognitively normal subjects followed up longitudinally for an average 

of 9.1±4.0 years, Silbert et al. reported that periventricular WMH load was associated with 

gait difficulties, while the subcortical WMH load was associated with decline in cognition 

and increased rate of memory decline, even after adjusting for the rates of cerebral or 

hippocampal atrophy (Silbert et al., 2008).  

Studying 1077 participants without dementia at baseline followed up for an average of 5.2 

years (Rotterdam Scan Study), Prins et al. observed that a higher severity of WMHs 

(specially periventricular WMHs) at baseline increased the risk of developing dementia later 

on, adjusted for age and sex and independent of risk factors (including hypertension, diabetes 

mellitus, smoking, APOE genotype, and history of stroke) and other structural brain changes 

(Prins et al., 2004b).  
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Using 1820 dementia and stroke free participants from the Framingham offspring study, 

Au et al. showed that individuals with high WMH loads perform worse on cognitive tests that 

are associated with frontal lobe systems and to a lesser extent, the medial temporal areas. The 

battery of assessments included measures of attention, planning and initiation of complex 

activity, cognitive factors of visuospatial memory and organization and visual scanning and 

motor speed as well as new learning. All findings were adjusted for the effect of age, sex, 

education, height, and Framingham stroke risk profile (Au et al., 2006). 

In a cohort of 354 older individuals that were initially cognitively normal with an average 

of 4.1 years of follow-up, Boyle et al. showed that an individual with a high WMH load was 

approximately 2.7 times more likely to develop MCI compared with a person with a low 

load. Also, every 1 standard deviation increase in WMH load was associated with a 1.43 

increase in risk of MCI (Fig. 2.2). Additionally, WMH load did not correlate with cognition at 

baseline, but it was associated with increased rate of cognitive decline as well as decline in 

perceptual speed, working memory, episodic memory, and semantic memory. WMH load was 

significantly correlated with other cognitive domains at older ages. The correlations remained 

statistically significant after adjusting for total GM volume, vascular risk factors, and 

vascular diseases (Boyle et al., 2016). 
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Fig 2.2. The relationship between WMHs and risk of MCI and rate of decline in global cognition. The 

figure shows the cumulative hazard of developing MCI (left) and rate of decline in global cognition (right) for 

subjects with low (red), medium (blue), and high (black) WMH loads (Boyle et al., 2016). WMHs= White 

Matter Hyperintensities. MCI= Mild Cognitive Impairment. Original figure from Boyle et al. 2016 (replicated 

under CC BY-NC-ND 4.0 license).  

Using Cox proportional hazard modeling in a cohort of 67 cognitively normal and 156 

MCI subjects followed up for 6.0±4.1 years, Smith et al. reported that adjusting for age, sex, 

education, smoking, and APOE status, high WMH load (defined as a log-transformed WMH 

volume more than 1 standard deviation above the mean value) predicted progression from 

normal cognition to MCI, but not conversion from MCI to dementia (Smith et al., 2008).  

 

WMHs in individuals with mild cognitive impairment 
 

Studying 514 pairs of male twin participants in the National Heart, Lung, and Blood 

Institute (NHLBI) Twin Study, Decarli et al. observed that subjects with MCI had higher 

WMH volumes. Additionally, WMHs were associated with significantly increased risk of 

MCI (DeCarli et al., 2001). Similarly, in a cohort of 3608 participants from the 

Cardiovascular Health Study (CHS) Cognition Study, Lopez et al. found that WMHs to be 

associated with symptoms of MCI (Lopez et al., 2003). In a relatively small cohort (N=41), 

Nordahl et al. showed that compared with cognitively normal subjects, MCI subjects with 

hippocampal atrophy and MCI subjects with severe WMHs were both impaired on an 
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episodic memory task, but MCI subjects with WMHs were additionally impaired on verbal 

and spatial working memory and attention control tests (Nordahl et al., 2005). 

In a recent review of 12 studies investigating the imaging and neuropsychological 

correlates of WMHs in different MCI subtypes, the authors report cognitive correlates of 

WMH loads in the amnestic MCI subtype for memory, language, psychomotor speed, 

attention and executive functions. They also hypothesize that cognitive reserve and WM 

plasticity may modulate the effect of WMHs on neurodegenerative diseases (Lam et al., 

2017). 

Li et al. performed a meta-analysis on 19 studies aiming to identify risk factors for 

progression from MCI to AD. The meta-analysis included studies that investigate MRI-

derived biomarkers such as WMHs, atrophy in hippocampal, medial temporal lobe and 

entorhinal regions. The results showed that MCI subjects with WMHs had a significantly 

higher chance of conversion to AD compared with subjects without WMHs. Other significant 

predictors included CSF p-tau, CSF tau/Aβ, hippocampal, entorhinal and medial temporal 

lobe atrophy as well as depression, diabetes, hypertension, older age, and female gender (Fig 

2.3) (Li et al., 2016). 
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Fig 2.3. Results summary of studies investigating the relationship between MRI biomarkers and the risk of 

progression from MCI to AD. MCI= Mild Cognitive Impairment. AD= Alzheimer’s Disease. RR= Relative Risk 

(Li et al., 2016). Original figure reproduced with permission from Li et al. 2016. 

Studying the effect of WMHs on cognition in an MCI cohort of 374 individuals, Tosto et 

al. investigated whether baseline WMH load and lower entorhinal cortex (EC) volume 

increase the risk for aggressive cognitive decline (ACD), defined as either a 3-point decline 

in MMSE score over 6 months or a 6-point decline in MMSE over 12 months. They also 

investigated whether there is an interaction between the two factors, or their effect is 

independent (Tosto et al., 2014). The results showed that a higher baseline WMH load, 

APOE4 status, and smaller EC volume at baseline were associated with an increased risk for 

ACD. In a survival analysis, WMH volume was also found to modify the effect of EC 

volume on the risk of ACD, i.e. individuals with low WMH loads and high EC volumes were 

at particularly low risk of ACD. In addition, individuals with ACD were more likely to 

convert to AD during a follow-up period of 48 months (Tosto et al., 2014). 
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In a cohort of 136 normal controls and 186 MCI individuals, Fujishima et al. found 

MCI, poorer episodic memory and late-life depression to be associated with WMHs as well 

as cortical thinning (Fig. 2.4) (Fujishima et al., 2014).  

 

Fig 2.4. Association between cortical thickness or WMH probability and episodic memory in subjects with 

MCI. (A) regression coefficients maps in cortical regions and FWE-corrected p-values. (B) regression 

coefficients maps for WMHs and FWE-corrected p-values. These results are adjusted for effects of age, gender, 

and years of education. WMHs= White Matter Hyperintensities. MCI= Mild Cognitive Impairment. FWE= 

Family Wise Error (Fujishima et al., 2014). Original figure from Fujishima et al. 2014 (replicated under CC BY 

license).  
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WMHs in Alzheimer’s disease patients 
 

Using the Fazekas, ARWMC, and Scheltens scales (Fazekas et al., 1987; Scheltens et al., 

1993), as well as WMH volumes in 108 AD patients, 23 individuals with MCI and 34 normal 

controls (NC), Gao et al. found that WMHs volumes, and ARWMC and Scheltens scores 

show significant negative correlations with cognitive scores controlling for age, education, 

global and hippocampal atrophy in AD patients. Additionally, they found that the Fazekas 

scale significantly separated AD, MCI and NC cohorts (Gao et al., 2011).  

Investigating the potential effects of APOE status on WMHs and their effect on cognition, 

Morgen et al. reported that among 201 AD patients, APOE ε4 non-carriers showed 

significantly higher WMH loads as well as an association between WMH load and cognition 

(Morgen et al., 2015). 

In two mixed populations of vascular dementia and AD patients (N1= 87, N2= 66), Lange 

et al. used a lesion shape irregularity score to reflect the level of WMH severity and showed 

that among subjects with total WMH loads higher than 13.5 CCs, cognitive performance in 

mental speed and fluid ability domains was more strongly associated with the shape 

irregularity score than the total volume or number of lesions (Lange et al., 2016).  

2.1.7. Prevention and Treatment 

Prevention and treatment of vascular risk factors (and WMHs downstream) is a promising 

avenue to slow down or prevent the subsequent cognitive decline, especially in early stages 

when the individuals are still mostly cognitively asymptomatic. One potential treatment 

strategy is to control elevated blood pressure.  Hypertension is a leading cause of WMHs and 

effective usage of anti-hypertensive medication has been shown to limit the severity of 
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WMHs and subsequently reduce the risk of cognitive decline (Hutton et al., 2009; de Leeuw 

et al., 2002; Schrag et al., 2017). In a randomized trial administering either anti-hypertensive 

medication or placebo to CSVD patients, active lowering of blood pressure in the former 

cohort was shown to stop or lower the progression of WMHs over 3 years of follow-up 

(Dufouil et al., 2005).  

2.1.8. Conclusion 

In summary, WMHs are clinically significant markers of CSVD in aging as well as 

neurodegenerative diseases as they reflect the level of vascular pathology and are associated 

with increase in Aβ levels and decline in various cognitive domains (Carmichael et al., 2010; 

DeCarli et al., 1995a; Pantoni et al., 2006; van Straaten et al., 2008). WMHs are used as 

outcome measures in clinical trials that investigate CSVD in the context of stroke and 

dementia (Debette and Markus, 2010) and can also be a potential biomarker of preclinical 

risk for developing AD (Brickman et al., 2012; Deoni et al., 2013; Provenzano et al., 2013).  

2.2. White Matter Hyperintensity Segmentation  

Image segmentation is a means of differentiating the voxels of interest in an image from the 

background and plays an essential role in medical image analysis. Many algorithms have been 

developed to segment different structures as well as healthy or pathologic tissue from brain MR 

images. Overviews on WMH segmentation techniques can be found in several review papers 

(Caligiuri et al., 2015; García-Lorenzo et al., 2013). In this section, we review automated techniques 

for segmenting WMHs from MRIs. 

The MRI segmentation task can generally be defined as partitioning an image into non-

overlapping regions where the pixels/voxels inside each region have similar characteristics 

(e.g. intensity, shape, texture). In the case of WMHs, the segmentation task is defined as 

assigning either a WMH or a background label to each voxel in the MRI image. 
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Segmentation of WMHs is generally performed on Fluid-attenuated inversion recovery 

(FLAIR) or T2w MR images by expert raters. A FLAIR image is essentially a T2w image, 

with the CSF signal nulled, resulting in an image in which the WMHs appear as the brightest 

intra-cranial tissue type, making FLAIR an ideal contrast for detecting WMHs (Rydberg et 

al., 1994, 1995).  

Manual WMH Segmentation 

Manual segmentation is used as the gold standard for MRI WMH segmentation. It 

requires a detailed segmentation protocol for what should be considered as WMHs as well as 

expert knowledge of brain anatomy on MR images. Accurate and consistent segmentation of 

WMHs is a complicated task due to the inherent heterogeneity in their texture and patterns as 

well as the fact that these lesions often have fuzzy borders. These complications make manual 

detection of WMHs challenging, time consuming, expensive and inconsistent due to high 

inter-rater and intra-rater variability. In a recent review, García-Lorenzo et al. report that 

inter-rater and intra-rater agreements in lesion segmentation tasks are generally modest at 

best, even when compared within the same protocol (García-Lorenzo et al., 2013). 

Challenges in manually segmenting WMHs are mainly caused by the fact that the boundary 

between healthy tissue and WMHs is indistinct and difficult to precisely determine. As a 

result, different raters draw different arbitrary distinctions between the two tissues around the 

edges. Even the same rater never achieves perfect intra-rater agreement. Therefore, these 

inconsistencies introduce an inevitable level of noise into the manually segmented WMHs. 

Automated WMH Segmentation 

Conversely to manual identifications, automated methods always apply the same policy to 

the edge distinctions, providing consistent segmentations. In addition, the extensive number 

of images being collected makes the human cost of manual identification prohibitive. These 
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make automated segmentation tools that can detect WMHs accurately highly advantageous 

since with their objectivity and reproducibility, they would essentially eliminate the intra-

rater variability and make it possible to reliably follow individual subjects over time, or 

segment WMHs in large scale studies and clinical trials. 

Since different MRI modalities have different contrasts across tissues, integrating 

information from multiple modalities can reduce uncertainty and consequently increase 

segmentation accuracy, both in manual and automatic segmentations. In automatic 

segmentations, MR image contrasts can be weighted differently to reflect specific properties 

of different anatomical structures, regions, or pathologies. The MRI contrasts that are 

commonly used in automatically detecting WMHs include:  

(i) T1w or spin lattice relaxation images for which the magnetization is allowed to 

recover before measuring the MR signal by changing the repetition time (TR). The 

higher T1 relaxation time in the CSF followed by GM (compared with WM) causes 

them to appear darker in T1w images (van der Kouwe et al. 2015). Similarly, WMHs 

appear hypointense on T1w images. Due to their excellent contrast between GM, 

WM, and CSF as well as their high spatial resolution, T1w images are mostly used for 

co-registration purposes in the literature. 

(ii) T2w or spin-spin relaxation images, for which magnetization is allowed to decay 

(characterized by a time constant, T2, also called spin-spin relaxation time) before 

measuring the MR signal by changing the echo time (TE) (van der Kouwe et al. 

2015). The CSF followed by GM have higher T2 relaxation times than WM, causing 

them to appear brighter on T2w images. WMHs also appear bright on T2w images, 

making them easy to differentiate from WM, but more difficult to distinguish from 

CSF. 
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(iii) Proton density (PD), an intermediate sequence, which reflects the actual density of 

protons, with a long TR and a short TE that shares some characteristics of both T1w 

and T2w images. CSF has the highest PD, followed by GM and WM appearing the 

brightest on PD images.  

(iv)  Fluid attenuated inversion recovery (FLAIR) images for which the inversion time 

(TI) is manipulated to suppress the effect of CSF on the image to outline the WMHs 

more clearly.  

As mentioned before, WMHs appear hyperintense on T2w, PD, and FLAIR MR images 

and hypointense on T1w images. Figure 2.5 shows co-registered axial slices of T1w, T2w, PD 

and FLAIR images as well as manually segmented WMH labels for one subject.  

 

Fig. 2.5. WMHs on T1w, T2w, PD, and FLAIR MR images. WMHs= White Matter Hyperintensities. PD= 

Proton Density. FLAIR= Fluid Attenuated Inversion Recovery. The WMHs manually detected by an expert rater 

using these four sequences are indicated by yellow color. 

The typical intensity histograms of GM, WM, CSF, and WMHs in each of the four 

contrasts (Fig. 2.6) show that WMH histograms have significant intensity overlap with GM, 

WM and CSF. However, WMH intensities have the least amount of overlap with other tissue 

histograms in FLAIR and T2w images, making them the optimal sequences for detecting 

WMHs both manually and automatically.   
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Fig. 2.6. Tissue intensity histograms. GM= Gray matter. WM= White Matter. CSF= cerebrospinal fluid. WMH= 

White Matter Hyperintensity. PD= proton density. FLAIR= Fluid Attenuated Inversion Recovery. 

 

2.2.1. Challenges in detecting WMHs 

Automated segmentation (and to some extent manual segmentation) of WMHs present a 

number of challenges, including: 

(i) Varying intensities and GM, WM, and CSF tissue contrasts between MR images 

that are obtained across different scanners, sequences, field strengths, and 

timepoints (Fig. 2.7). 

 

Fig. 2.7. Varying intensities and tissue contrasts in different sequences acquired on different scanners. Note the 

difference in contrast between the WMHs, GM and WM in different sequences. The left image shows an axial 

slice of a 3D sagittal T2 space FLAIR image. The middle and right images show axial slices of 2D axial turbo 

spin echo T2-FLAIR images. WMH= White Matter Hyperintensity. GM= Gray Matter. WM= White Matter.  
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(ii) Image intensity noise caused by the electrical current running through the 

electromagnet coil and artifacts caused by sensor noise (Fig. 2.8). 

 

Fig. 2.8. MR image intensity noise in an axial slice of a FLAIR image. 

(iii) Bias field (i.e. image intensity inhomogeneity) caused by spatially varying coil 

sensitivity, multi-coil reconstruction errors, induced currents and standing waves, 

magnetic settings, subject positioning inside the scanner, and other factors (Fig. 

2.9). 
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Fig. 2.9. MR image inhomogeneity in an axial slice of a T1w image. Note the dark to light trend 

from top to bottom. 

(iv) Motion artifacts caused by breathing as well as subject movement. These artifacts 

are generally increased in the elderly and diseased populations due to disease 

related tremors, subject discomfort as well as forgetfulness (Fig. 2.10). 

 

Fig. 2.10. Ringing artifact in MR images caused by subject movement in axial slices of FLAIR images.  

(v) Partial volume effect caused by the discretization of the continuous signal in the 

sampling (voxel) resolution blurring the tissue border intensities (Fig. 2.11). 

 

Fig. 2.11. Partial volume effect. Axial (left), coronal (middle), and sagittal (right) slices of an individual’s 

FLAIR scan. 
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(vi) Atrophy and changes in GM/WM tissue contrasts in the aging population, i.e. 

lower GM/WM contrast as age increases (Fig. 2.12). 

 

Fig. 2.12. Atrophy (large symmetric ventricles and subarachnoid spaces) and change in GM/WM tissue contrast 

in FLAIR MR images.  

(vii) Hyperintense appearance of healthy tissues such as the choroid plexus, blood 

vessels, venous sinuses, the tail of the caudate nucleus, the tangential plane of 

transition to bone at the base of the skull, and the fat signal at the diploe level of 

the skull bones, depending on the image modality and the amount of partial 

volume effects (García-Lorenzo et al., 2013) (Fig. 2.13). 

 

Fig. 2.13. Hyperintense appearance of non-WMH tissues such as choroid plexus in FLAIR images. 
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(viii) Fuzzy borders of the lesions exhibiting a degree of hyperintense signal that 

decreases gradually towards the surrounding healthy tissue (Fig. 2.14). Some 

groups identify this a dirty white matter (Moore et al., 2008). 

 

Fig. 2.14. Fuzzy borders of lesions in FLAIR images. Note the difference between the sharpness of the borders 

in different lesions. 

(ix) Inconsistency in lesion borders on different MR contrasts, generally leading to 

more generous segmentations on FLAIR images in comparison with T2w based 

labels (Ciccarelli et al., 2002) (Fig 2.15). 
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Fig. 2.15. Inconsistency in lesion borders between different contrast. First row: subject 1. Second row: subject 2. 

Left: T2w MR image. Right: FLAIR MR image.   

 

2.2.2. Image Pre-processing 

Regardless of the type of automated algorithm that is adopted to perform the 

segmentation task, the raw MRI images initially need to go through a pre-processing pipeline 

that generally includes, 

(i) Brain extraction to remove skull and non-brain tissues and obtain a brain mask 

(Eskildsen et al., 2012; Smith, 2002). 
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(ii) Image noise reduction to diminish the effects of sensor noise (Bao and Zhang, 

2003; Coupe et al., 2008; Gerig et al., 1992). 

(iii) Image intensity non-uniformity correction to correct the inhomogeneity of the 

static or applied magnetic fields within the scanner (Brinkmann et al., 1998; Sled 

et al., 1998; Van Leemput et al., 1999; Vovk et al., 2007). 

(iv) Intensity range normalization to a predefined intensity range (generally 0-100) 

(Nyúl et al., 2000; Caligiuri et al., 2015).  

For techniques that use multi-modality images, different contrasts also need to be co-

registered, using a rigid body registration (Collins et al., 1994; Maes et al., 1997), and for 

techniques that use population characteristics, the images need to be (nonlinearly) registered 

to a standard coordinate system or standard brain template. Depending on the method, 

segmentation can be performed either in the native image space to avoid the additional 

blurring that is caused by resampling the images into the template space, or based on the non-

linearly registered images since the original data generally has thick slices (3-5 mm).   

Most automated lesion segmentation methods in the literature have been developed for 

detection of lesions in Multiple Sclerosis (MS) patients (García-Lorenzo et al., 2013; 

Mortazavi et al., 2012). These methods generally use a set of features such as multi-modality 

image intensities as well as normal tissue statistics and spatial priors as inputs to various 

classifiers to segment the lesions automatically. Such classifiers can be divided into two main 

categories: unsupervised and supervised. This section is divided into two sub-sections to 

describe unsupervised and supervised WMH segmentation methods. 
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2.2.3. Unsupervised WMH Segmentation Techniques 

Unsupervised classifiers do not require pre-labeled data or user inputs to draw inferences. 

Unsupervised algorithms usually perform some form of clustering analysis to find patterns in 

the data, so that the data points within a cluster are closer to each other according to a 

similarity metric, and as distinct as possible from data points in other clusters. As a result, the 

clusters are obtained from an optimization driven by the data rather than a set of labels, as is 

the case for supervised classification. 

Thresholding Techniques 

Thresholding techniques are generally used in an unsupervised manner for segmenting 

WMHs. To achieve this, an intensity histogram is created from the optimal modality 

(generally FLAIR or T2w images). The central peak in the histogram of the FLAIR image is 

assumed to correspond to the normal tissue intensity. WMHs and CSF form the right and left 

tails of the histogram, respectively (Fig. 2.16).  
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Fig. 1.16. FLAIR image histogram. Top: two axial slices of a FLAIR image and segmentation into CSF, normal 

tissue, and WMHs. Bottom: histogram of the image intensities for the three tissue types (Caligiuri et al., 2015). 

Original figure from Caligiuri et al. 2015 (replicated under CC BY license). 

 

After calculating the histogram, the segmentation task involves determining a threshold 

value to separate WMHs from normal tissue. Jack et al. used 1/3 of the mode value of the 

histogram and a stepwise regression model estimated based on phantom image data to 

calculate the optimal cut-off threshold for differentiating WMHs from healthy tissue (Jack et 

al., 2001). Smart et al. use 1.45 times the modal pixel intensity in the GM+WM tissue as a 

threshold to detect WMHs (Smart et al., 2011). Similarly, de Boer et al. used GM 

segmentation results to create the histogram, which was then approximated with a Gaussian 

function. The threshold for WMHs was estimated as a linear function of the mean and 

standard deviation of this Gaussian function (de Boer et al., 2009).  
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Fuzzy Segmentation 

Fuzzy segmentation is performed based on a fuzzy inference methodology (Mamdani and 

Assilian, 1975; Takagi and Sugeno, 1985), which involves, 

(i) Determining a set of fuzzy rules. 

(ii) Fuzzifying the inputs using membership functions. 

(iii) Combining the fuzzified inputs to establish a fuzzy rule. 

(iv) Combining the rule and membership functions to find the output distribution. 

(v) Defuzzifying the output distribution using a threshold. 

Admiraal-Behloul et al. used T2w and FLAIR image intensities (dark, medium-bright, 

and bright) and voxel position (intracranial and WM) as fuzzy rules and developed a fuzzy 

inference technique to segment WMHs (Admiraal-Behloul et al., 2005). Wu et al. initially 

identify lesion seeds using the image intensity histogram, and a fuzzy algorithm using 

intensity and adjacency information to segment lesions (Wu et al., 2006a).  

Bayesian Clustering 

Bayesian classification can be performed through probabilistic clustering in an 

unsupervised manner (i.e. without using training data to determine the priors). The 

conditional probability density function is generally modeled as a weighted sum of N 

Gaussian density functions (Gaussian Mixture Models or GMMs) and an expectation-

maximization (EM) algorithm is then used to iteratively estimate the parameters of the 

distribution (Dempster et al., 1977). Freifeld et al. segmented MS lesions as outlier 

components of a GMM and used EM to perform parameter estimation (Freifeld et al., 2009). 

Similarly, Leemput et al. defined MS lesions as outliers to a Markov Random Field (MRF) 

tissue classification technique and used EM to iteratively perform lesion classification and 

parameter estimation (Leemput et al., 2001).  
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2.2.4. Supervised WMH Segmentation Techniques 

Supervised techniques use manually labeled training data to generate models to segment 

new examples. In the following, the supervised techniques that are generally used for lesion 

segmentation applications are reviewed, including Bayesian classifiers, decision trees, 

random forests, k-nearest neighbors (k-NN), support vector machines (SVM), and AdaBoost.   

Bayesian Classification 

Supervised Bayesian learning uses a combination of the prior knowledge and observed 

data. Let 𝑥 be a data point with an unknown class label. Supposing 𝐻 is the hypothesis that 𝑥 

belongs to class 𝑦, the goal is to estimate the probability that hypothesis 𝐻 is true given the 

observed data sample x (i.e. 𝑝(𝑦|𝑥)). MRFs can be considered as a generalization of Markov 

processes by replacing the time axis with a spatial axis (Kindermann and Snell, 1980). The 

Markov property indicates that a variable in a MRF is conditionally independent of all other 

variables, given its neighbors. The MRF theory provides a convenient tool to capture local 

spatial or contextual dependencies for highly correlated features such as image voxel 

intensities (Geman and Geman, 1984). MRF methods have also been popular in detecting MS 

lesions (Khayati et al., 2008), and WMHs in the elderly population (Schwarz et al., 2009). 

Sajja et al. used a Parzen window classification method for lesion segmentation in MS and 

minimized the false negative lesion classifications using a MRF with EM optimization (Sajja 

et al., 2006). One variant of MRFs is the conditional random field (CRF), in which each 

random variable may also be conditioned upon a set of global observations. Karimaghaloo et 

al. used CRFs combined with a variety of potential functions to detect MS lesions 

(Karimaghaloo et al., 2012).  
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Decision Trees 

Decision trees were first proposed for performing induction by Hunt et al. (Hunt et al., 1966) and 

later extended by Quinlan for performing classification tasks (Quinlan, 1986). Decision tree classifiers 

map the feature vector to decisions about the target using a tree structure in which the leaves indicate 

class labels and the nodes indicate the corresponding partitionings of the feature space. The decision 

tree is generally constructed in 2 phases; a recursive, top-down procedure that “grows” a tree to fit the 

training data, and a “pruning” phase to prevent overfitting. Decision tree classifiers have since been 

used for tissue classification (Chao et al., 2009) and lesion segmentation in MS (Kamber et al., 1992, 

1995). 

Random forests 

A single decision tree may have a large number of nodes and leaves and tend to overfit the 

training data, resulting in poor generalizability to features that are not observed by the decision tree 

(Breiman et al., 1984). To overcome these limitations, the concept of random forests was proposed to 

introduce some degree of randomization and consequently increase the generalizability of the 

predictions. Initially introduced by Breiman (Breiman, 2001), Random forests perform classification 

and regression by constructing a series of independent decision trees and using the mode or mean of 

their predictions as the output for classification or regression tasks, respectively. They have since been 

widely used for lesion segmentation in MS (Geremia et al., 2011; Maier et al., 2015; Mitra et al., 

2014; Akselrod-Ballin et al., 2009) as well as for WMH segmentation in aging and AD populations 

(Ithapu et al., 2014).  

K-nearest neighbors 

The K-nearest neighbours (KNN) is a non-parametric instance based algorithm developed by 

Altman for classification and regression (Altman, 1992; Cover and Hart, 1967). The KNN classifier 

uses majority voting between the labels for the K closest data points in the feature space from the 

training data to assign a label to the new unseen test data. The distance metric used for determining 
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the closest data points is generally the Euclidian distance for continuous variables or Hamming 

distance for discrete variables. Due to its simplicity, KNN has been popular for various applications 

including segmentation of MS lesions (Wu et al., 2006b) and WMHs (Anbeek et al., 2004).  

Support Vector Machines 

Support vector machines (SVMs) were proposed by Boser et al. (Boser et al., 1992) to perform 

classification by finding a maximum-margin hyperplane that separates the two classes while 

maximizing the distance between the nearest points from either class. SVMs have been widely used 

for lesion segmentation tasks in MS populations (Abdullah et al., 2011; Ferrari et al., 2003) as well as 

for WMH segmentation in aging and AD populations (Ithapu et al., 2014; Lao et al., 2008; Quddus et 

al., 2005). 

AdaBoost 

Adaptive Boosting or AdaBoost was developed by Freund and Schapire (Freund et al., 1999). 

AdaBoost performs classification by aggregating the outputs of other classifiers (also called weak 

learners) into a weighted sum that determines the final output. The weak learners are iteratively 

updated to improve the performance on the instances that were misclassified by previous classifiers to 

improve classification accuracy. AdaBoost has been used for MS lesion segmentation (Wels et al., 

2008), interactive lesion segmentation (Li et al., 2007), as well as segmentation of WMHs (Beare et 

al., 2009; Ghafoorian et al., 2016a; Quddus et al., 2005).  

2.2.5. Post-processing 

Many segmentation methods tend to over-segment image noise and imaging artifacts that 

appear hyperintense as WMHs, especially in cortical areas and around the 4th ventricle, where a large 

percentage of false positives are detected (Caligiuri et al., 2015). Segmentation techniques that are 

based on single MR contrasts are more susceptible to over-segmenting artifacts, since they will not be 

able to use information from other contrasts to increase the certainty of the WMH detection and 
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reduce the effect of noise and artifacts (Caligiuri et al., 2015). Therefore, such techniques generally 

need post-processing steps to remove the false positives. This post-processing generally includes, 

(i) Using WM masks or other masks of regions of interest (de Boer et al., 2009; 

Griffanti et al., 2016; Ong et al., 2012; Simões et al., 2013; Yoo et al., 2014). 

(ii) Removing lesions smaller than a certain size (Admiraal-Behloul et al., 2005; 

de Boer et al., 2009; Khayati et al., 2008; Sajja et al., 2006; Steenwijk et al., 

2013; Yoo et al., 2014).  

However, applying these post-processing techniques has the additional drawback of 

losing small WMHs as well as the lesions outside of the imposed WM mask. The latter can 

significantly affect the performance of the method since WM masks are generally obtained 

based solely on the T1w images, on which the WMH appear hypointense and are often mis-

classified by tissue segmentation techniques as GM. 

2.2.6. Validation 

The common measures used for evaluating WMH segmentation methods include Dice 

Kappa similarity metric (SI) (Dice, 1945), intra-class correlation coefficient reflecting the 

volumetric correspondence between the two segmentations (ICC), sensitivity, Jaccard index 

(JI), detection error rate measuring agreement in detecting the same regions  (DER), and 

outline error rate measuring agreement of the raters in outlining of the same lesion (OER) 

(Wack et al., 2012). Table 2.2 shows a list of these metrics as well as their definitions. 
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Table 2.2. List of similarity measures and their definitions. The metrics are listed in the table below using the 

following abbreviations: true positive (TP), true negative (TN), false positive (FP), false negative (FN), true 

positive rate (TPR), Mean Square Within samples based upon the ANOVA (MSW), Mean Square F Statistic 

Regression Slope (MSR). 𝐶𝑅1, 𝐶𝑅2, and 𝐶12 represent region from only rater 1, region from only rater 2, and the 

combination of both raters, respectively.  |𝑐𝑟|  represents area of the connected region, 𝑐𝑟 ∈ 𝐶𝑅1 𝑜𝑟 𝐶𝑅2 

represents the set of connected regions that can be labeled either as 𝐶𝑅1or 𝐶𝑅2. |𝑅1(𝑐𝑟)|, |𝑅2(𝑐𝑟)|  represent the 

areas of rater 1 and rater 2 regions within 𝑐𝑟, respectively (Wack et al., 2012). 

 

Measure Name Abbreviation Equation 

Dice Kappa SI 
2 × 𝑇𝑃

𝐹𝑃 + 𝐹𝑁 + 2 × 𝑇𝑃
 

Intra-class correlation ICC 
𝑀𝑆𝑅 − 𝑀𝑆𝑊

𝑀𝑆𝑅 + 𝑀𝑆𝑊
 

Sensitivity TPR 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Outline Error Rate OER ∑ |𝑐𝑟| − |𝑅1(𝑐𝑟) ∩ 𝑅2(𝑐𝑟)|

𝑐𝑟∈𝐶12

 

Detection Error Rate DER ∑ |𝑐𝑟|

𝑐𝑟∈𝐶𝑅1 𝑜𝑟 𝐶𝑅2

 

Jaccard Index JI 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

2.2.7. Conclusion 

Given the promising performance of the supervised classification techniques in segmenting 

WMHs from multi-contrast MR images, in this thesis, we further explore the use of different 

machine learning classifiers in accurate segmentation of WMHs from a feature set of multi-

contrast MR image intensities as well as several other intensity distribution and location 

based features. 
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2.3. WMHs as Biomarkers in Alzheimer’s Disease 

2.3.1. Biomarkers 

The term biomarker is referred to a physiological, biochemical, or anatomical variable 

that can be objectively, accurately, and reproducibly measured as an indicator of 

normal/pathological biological processes, or response to a therapeutic intervention (Jack and 

Holtzman, 2013). In the case of pathologies/diseases, biomarkers that can indicate 

abnormality before significant clinical symptoms appear can be very useful, since 

interventions and earlier treatments of the patients before too much irreversible damage 

occurs is generally more likely to be effective (Gauthier et al., 2016; Sperling et al., 2011a). 

In the specific case of AD, studies have shown that abnormal changes can be present in 

multiple biomarkers in an individual, sometimes 10-20 years before the onset of clinical 

symptoms (Iturria-Medina et al., 2016; Klunk et al., 2004; Sperling et al., 2011b; Storandt et 

al., 2009). To facilitate the development of therapies to prevent or slow down the progression 

of AD, in vivo biomarkers that can enable accurate diagnosis of the patients in earlier 

asymptomatic stages of the disease as well as monitoring of the progression and effectiveness 

of the therapies are highly advantageous.  

The clinical stages of AD have been divided into three phases (Jack Jr et al., 2010): 

(i) Pre-symptomatic phase: individuals in this phase are cognitively normal, but have 

some AD related pathological changes. The hypothetical assumption is that many of 

these individuals will eventually develop AD later in life, if they live long enough. 

(ii) Prodromal AD or mild cognitive impairment (MCI): individuals in this phase present 

with early cognitive impairment symptoms, typically episodic memory deficits.  

However, these deficits are not severe enough to meet the criteria for dementia. 
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(iii) AD dementia: individuals in this phase show severe impairment in multiple cognitive 

domains. 

Imaging and cerebrospinal fluid (CSF) biomarkers of AD can be used to predict the 

disease stage and progression to AD. These biomarkers can be divided into two categories: 

biomarkers of Aβ deposition including CSF Aβ1-42, positron emission tomography (PET) Aβ 

imaging (both CSF Aβ1-42 and PET Aβ are correlates of Aβ plaque deposition), and 

biomarkers of pathological changes and neurodegeneration including CSF tau (a correlate of 

presence of neurofibrillary tangles), FDG PET (measuring brain glucose metabolism, 

reflecting synaptic dysfunction), and structural MRI (measuring cerebral atrophy). Using 

these biomarkers, individuals that will eventually progress to AD can be identified in earlier 

stages of the disease (Jack Jr et al., 2010). 

An important difference between Aβ biomarkers and biomarkers of neurodegeneration is 

their specificity to AD.  CSF Aβ1-42 and amyloid PET are specific for Aβ deposition, while 

neurodegenerative biomarkers are not always specific to AD (Jack and Holtzman, 2013). 

Another important element of biomarker-based modeling of AD is the temporal sensitivity of 

different biomarkers.  

2.3.2. Models of Disease Progression 

Biomarkers can be used to propose and study hypothetical models of disease 

progression. In such models, the extent of abnormality in biomarker levels compared to their 

expected values in normal populations reflects disease progression. 

Jack et al. used evidence of biomarker abnormality to order different imaging and 

clinical biomarkers in AD progression (Jack Jr et al., 2010). They proposed that the earliest 

AD biomarkers are Aβ, and Tau-mediated neuronal injury and dysfunction, followed by brain 
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structural changes, memory deficits, and clinical function impairment (Fig. 2.17). In this 

model, it was simplistically assumed that all the biomarkers have a sigmoidal shape as a 

function of time with the same slope, and approach a plateau as the individual progresses to 

AD.  

 

 
Fig. 2.17. Biomarkers of AD pathological cascade (Jack Jr et al., 2010). Aβ indicates CSF Aβ42 or amyloid 

PET. Tau-mediated neuronal injury and dysfunction indicates CSF tau or FDG-PET. Brain structure indicates 

atrophy measured from structural MRI. AD= Alzheimer’s Disease. Aβ=amyloid β. MCI=mild cognitive 

impairment. FDG= fluorodeoxyglucose. PET= Positron Emission Tomography. CSF= Cerebrospinal Fluid. 

Original figure reproduced with permission from Jack Jr et al. 2010. 

 

Different brain regions are known to be affected at different stages of the disease in 

AD. Since FDG PET and structural MRI measure regional information, they can provide 

regional biomarkers, reflecting different stages of AD progression with potentially higher 

sensitivity. As seen in Fig. 2.18, Jack et al. suggest that posterior cingulate, lateral temporal 

cortex, and frontal lobe are affected first as seen on FDG-PET and that later, structural MRI 

shows AD-related changes in medial temporal, lateral temporal, and frontal lobes. 
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Fig. 2.18. Regional anatomical imaging biomarkers of AD pathological cascade (Jack Jr et al., 2010). AD= 

Alzheimer’s Disease. FDG=fluorodeoxyglucose. PET= Positron Emission Tomography. Original figure 

reproduced with permission from Jack Jr et al. 2010. 

 

In a later study, Jack et al. refined their initial model by allowing different slopes for 

different biomarkers, since later evidence showed that MRI and FDG-PET curves continue to 

significantly change in AD patients (Jack Jr et al., 2013). The horizontal axis was also 

changed to time in years (instead of disease stage) to enable traversing the disease pathway at 

a specific time. Age was not used as the horizontal axis since the specific age when a person 

starts this process can vary considerably. In addition, a range of possible cognitive 

trajectories was considered for the MCI stage, since different individuals with the same level 

of AD-related pathology have a range of possible cognitive performances, depending on 

genetic risk factors, cognitive reserve, lifestyle, or other comorbid pathological changes (Fig. 

2.19). At any given time (T), CSF Aβ42 is the most abnormal biomarker, followed by CSF 

Tau, Amyloid PET, MRI+FDG PET, and cognitive impairment. The cognitive impairment 

curve is shifted to the left (right) for subjects that are at high (low) risks of AD-related 

pathologies.  
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Fig. 2.19. Revised model of biomarkers of AD pathological cascade (Jack Jr et al., 2013). MRI+FDG PET 

indicates neurodegeneration. AD= Alzheimer’s Disease. Aβ=amyloid β. FDG=fluorodeoxyglucose. PET= 

Positron Emission Tomography. MCI=mild cognitive impairment. Original figure reproduced with permission 

from Jack Jr et al. 2013. 

More recently, Iturria-Medina et al. have used a multifactorial data-driven analysis 

approach to further validate and improve the model initially proposed by Jack et al., where 

changes in Aβ, metabolism, vascular regulation, resting state functional activity, structural 

MRI and levels of various protein biomarkers during the progression of AD are ordered 

according to their temporal characteristics (Iturria-Medina et al., 2016). They demonstrated 

that under the assumption that biomarkers represent physiological processes, cerebrovascular 

dysregulation is the earliest pathologic biomarker associated with progression to AD, 

followed by Aβ deposition, glucose metabolism dysregulation, functional impairment, and 

GM atrophy (Fig. 2.20). In a more recent study, using six different neuroimaging modalities, 

they further confirm that vascular dysregulation may be the most-likely initial pathologic 

event leading to AD, followed by functional dysregulation, glucose metabolism impairment, 

Aβ deposition/propagation and structural atrophy (Iturria-Medina et al., 2017). 
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Fig. 2.20. Data-driven model of LOAD progression (Iturria-Medina et al., 2016). LOAD=Late onset 

Alzheimer’s disease. CSF= Cerebrospinal Fluid. Aβ=amyloid β. Original figure from Iturria-Medina et al. 2016 

(replicated under CC BY license). 

2.3.3. WMHs as Biomarkers in Diagnosis and Prognosis 

In addition to modeling disease progression, different clinical and imaging biomarkers 

can be used in combination with machine learning classifiers to predict the current 

(diagnosis) or future (prognosis) status of a subject. Similarly, they can be used in 

combination with regression techniques to predict the rate or amount of cognitive decline of 

the subjects in the following years. Here we provide a short review of the few studies that use 

WMH-related features to predict the current or future status of subjects in prediction tasks 

specifically for AD. 

In an elderly cohort (age at baseline 79.55±5.20 years), Brickman et al. showed that 

WMH load in the parietal lobes (and not hippocampal atrophy) predicted AD, suggesting a 

primary role of CSVD in AD that is independent of hippocampal atrophy (Brickman et al., 

2012). Later, they report that WMH load was associated with increased frequency of AD, 
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independent of APOE ε4 status. In addition, APOE ε4 carriers were more likely to have AD 

if they also had increased parietal WMH levels (Brickman et al., 2014).  

In a later study, they used a structural equation modeling framework to show that 

smaller baseline hippocampal volume, change in hippocampal volume (i.e., hippocampal 

atrophy), higher baseline parietal lobe WMH, and increasing parietal lobe WMH volume 

independently predicted progression to AD. They also report that higher baseline WMH 

volumes were associated with rapid increases in the WMH volumes in follow-up visits 

(Brickman et al., 2015). 

In a study to assess the impact of CSVD as well as amyloid pathology on the clinical 

expression of AD, Provenzano et al. showed that Pittsburgh compound B (PIB) positivity and 

increased total WMH volume independently differentiated AD, MCI, and NC subjects, using 

a logistic regression classifier. In the PIB-positive cohort, AD patients had greater WMH 

loads than NC subjects. Using a cut-off threshold of 1.25 cm3 for the total WMH volume, 

they obtained a sensitivity and specificity of 83% and 64%, respectively for AD versus NC 

classification. In the MCI cohort, both WMH and PIB status at baseline increased the risk for 

conversion to AD (Provenzano et al., 2013). Using longitudinal data with a mean follow-up 

of 29.73±12.75 months, they found a significant increase in the proportion of MCI patients 

who converted to AD across PIB+/PIB- and WMHHigh/WMHLow groups. Results from a 

logistic regression analysis showed that PIB/WMH status and the time between baseline and 

diagnosis or latest visit (but not age) were associated with conversion to AD (Provenzano et 

al., 2013). 

In a similar study, Gordon et al. have shown that deep and periventricular Fazekas 

WMH scores differentiate between cognitively normal and demented individuals, 
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independent of Aβ level (Table. 2.3), suggesting that WMH scales can be used in addition to 

Aβ for diagnosis of AD (Gordon et al., 2015). 

Table. 2.3. Results of a logistic regression model, examining the effects of WMHs on cognition. WMHs=White 

Matter Hyperintensities. CBP = mean Cortical Binding Potential. PVWMH = Periventricular White Matter 

Hyperintensity. DWMH = Deep White Matter Hyperintensity (Gordon et al., 2015). Table reproduced from 

Gordon et al. 2015 (under CC BY-NC-ND license). 

  B Std. error p Odds ratio 

CDR 0 vs. CDR>0 

Intercept -9.16 1.67 0.00001  

Age 0.07 0.02 0.001 1.08 

Gender 1.25 0.34 0.001 3.50 

MCBP 1.30 0.25 0.0001 3.68 

PVWMH 0.71 0.19 0.001 2.03 

CDR 0 vs. CDR>0 

Intercept -10.44 1.64 0.0001  

Age 0.10 0.02 0.001 1.10 

Gender 1.28 0.34 0.001 3.36 

MCBP 1.29 0.25 0.0001 3.63 

DWMH 0.42 0.20 0.036 1.52 

 

Lindemer et al. observed that WMH load was considerably higher in AD subjects in 

comparison with MCI and NC cohorts, but was not significantly different between converter 

and non-converter MCI populations. Furthermore, they defined the Mahalanobis distance 

(MD) of WMHs from normal appearing white matter (NAWM) using T1w, T2w, and PD 

scans as MD quality and showed in a longitudinal analysis, that the MD quality changes 

faster in the converter MCI cohort in comparison to the matched non-converters, from 18 

months before conversion to AD (Fig. 2.21). The strongest difference occurred in the period 

from 6 months before to 6 months after conversion to AD. The rate of change in MD quality 

was similar to the rate of change in hippocampal volume for the same period. They suggested 

that WMHs are a critical component for conversion to AD (Lindemer et al., 2015). 
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Fig. 2.21. Longitudinal changes in differences of enduring WMSA MD from enduring NAWM (top) and 

incident WMSA from enduring NAWM (bottom) in converter and non-converter MCI subjects (*: p < 0.05, **: 

p < 0.01, ***: p < 0.0001). Red lines indicate the time of conversion to AD for converter MCI subjects. MCI-C= 

Mild Cognitive Impairment Converters. MCI-NC= Mild Cognitive Impairment Non-Converters. MD= 

Mahalanobis Distance. NAWM= Normal-Appearing White Matter. WMSA= White Matter Signal Abnormality 

(Lindemer et al., 2015). Original figure reproduced with permission from Lindemer et al. 2015. 

In an attempt to predict conversion to AD from baseline to 24 months, Callahan et al. 

investigated whether using WMH loads in combination with other MRI and CSF biomarkers 

would improve prediction accuracy, using a logistic regression classifier. Although WMH 

loads and hippocampal volumes were significantly different between the converter and non-

converters, adding either of them to the episodic memory test score features did not 

significantly increase the prediction accuracy (Callahan et al., 2015).  

2.3.4. Conclusion 

WMHs are clinically significant biomarkers of CSVD in aging as well as 

neurodegenerative diseases (Carmichael et al., 2010; DeCarli et al., 1995a; Pantoni et al., 

2006; van Straaten et al., 2008). Using WMHs, as one of the major signs of vascular 
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dysregulation, can improve the predictive power of models of disease progression and 

increase the diagnosis and prognosis accuracy of prediction models in AD (Brickman et al., 

2012; Deoni et al., 2013; Provenzano et al., 2013).  
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CHAPTER 3. Validation of a Regression Technique for Segmentation 

of White Matter Hyperintensities in Alzheimer’s Disease 

Preface 

In this chapter, we propose and validate a linear regression technique for segmenting 

WMHs from multi-contrast MR images. The proposed method combines a series of intensity 

and location features along with a spatial prior to detect WMHs from T1w, FLAIR and 

T2w/PD sequences if available. The different MR sequences provide complementary 

information that will reduce uncertainty and increase segmentation accuracy. 

The performance of the proposed technique is verified on 3 different datasets, one of 

which consists of subjects from the multi-site and multi-scanner ADNI study. The ADNI 

dataset is used as an independent validation set over which the performance of different 

techniques is compared to assess their generalizability to new previously unseen data from 

other scanners. The results show that although nonlinear classification techniques such as 

AdaBoost and Random Forests have significantly higher performances on data from the same 

scanner, when validated on data from a different scanner, their performance drops drastically, 

compared to the proposed linear technique. 

This work has been published as: 

Dadar, Mahsa, Tharick A. Pascoal, Sarinporn Manitsirikul, Karen Misquitta, Carmela 

Tartaglia, John Brietner, Pedro Rosa-Neto, Owen Carmichael, Charles DeCarli, and 

D. Louis Collins. "Validation of a Regression Technique for Segmentation of White 

Matter Hyperintensities in Alzheimer’s Disease." IEEE Transactions on Medical 

Imaging (2017). 
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Validation of a Regression Technique for Segmentation of White Matter 

Hyperintensities in Alzheimer’s Disease 

Mahsa Dadar, Tharick A. Pascoal, Sarinporn Manitsirikul, Karen Misquitta, Vladimir S. 

Fonov, M. Carmela Tartaglia, John Breitner, Pedro Rosa-Neto, Owen T. Carmichael, Charles 

Decarli, D. Louis Collins 

Abstract 

Segmentation and volumetric quantification of white matter hyperintensities (WMHs) 

is essential in assessment and monitoring of the vascular burden in aging and Alzheimer’s 

disease (AD), especially when considering their effect on cognition. Manually segmenting 

WMHs in large cohorts is technically unfeasible due to time and accuracy concerns. 

Automated tools that can detect WMHs robustly and with high accuracy are needed. Here we 

present and validate a fully automatic technique for segmentation and volumetric 

quantification of WMHs in aging and AD. The proposed technique combines intensity and 

location features from multiple magnetic resonance imaging (MRI) contrasts and manually 

labeled training data with a linear classifier to perform fast and robust segmentations. It 

provides both a continuous subject specific WMH map reflecting different levels of tissue 

damage and binary segmentations. The method was used to detect WMHs in 80 elderly/AD 

brains (ADC dataset) as well as 40 healthy subjects at risk of AD (PREVENT-AD dataset). 

Robustness across different scanners was validated using 10 subjects from ADNI2/GO study. 

Voxel-wise and volumetric agreements were evaluated using Dice similarity index (SI) and 

intra-class correlation (ICC), yielding ICC=0.96, SI=0.62±0.16 for ADC dataset and 

ICC=0.78, SI=0.51±0.15 for PREVENT-AD dataset. The proposed method was robust in the 

independent sample yielding SI=0.64±0.17 with ICC=0.93 for ADNI2/GO subjects. The 

proposed method provides fast, accurate and robust segmentations on previously unseen data 
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from different models of scanners, making it ideal to study WMHs in large scale multi-site 

studies. 

Index terms- White matter hyperintensities, segmentation, aging, Alzheimer’s disease 

3.1. Introduction 

Alzheimer’s disease (AD) is the most common cause of dementia that currently 

affects 44 million people worldwide and is increasing in prevalence (Prince et al., 2014). AD 

is clinically characterized by gradual and progressive decline in memory as well as other 

cognitive functions. The hallmark neuropathology of AD consists of extracellular deposition 

of amyloid β plaques and intracellular neurofibrillary tangles made of tau (Selkoe, 2005). In 

addition to these major contributing factors, accumulating evidence shows that progressive 

loss of white matter integrity due to the loss of axons and their neurons, synapses and 

dendrites plays an important role in the development of AD (Lee et al., 2016). Very often and 

with a higher prevalence among older subjects, AD co-occurs with cerebral small vessel 

disease (CSVD), hypertension, hypercholesterolemia and diabetes. Such subjects typically 

present additional deficits in comparison with AD in subjects without these co-morbidities 

(Dubois et al., 2014). CSVD is represented on MRI as white matter hyperintensities 

(WMHs). There is accumulating evidence that the WMH load is related to ischemic damage 

along with microbleeds and lacunar infarcts (Conklin et al., 2014; Sam et al., 2016; Gouw et 

al., 2010). WMHs can also be associated with other underlying mechanisms, such as dilation 

of perivascular spaces in the frontal and/or parietal subcortical white matter (DeCarli et al., 

1995b), increased extracellular spaces, glial cell responses, vessel wall leakage, and collagen 

deposition in the vessel walls. WMHs are highly prevalent in AD patients as well as the 

elderly population in general. They primarily occur adjacent to the cerebral ventricles, 

especially around the posterior horns of the lateral ventricles (DeCarli et al., 1995b).  
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Clinical studies commonly distinguish between periventricular WMHs and WMHs in 

the deep white matter tissue. The former are identified with thin hyperintense lines, smooth 

halos or irregular bands/caps around the ventricles while the latter are categorized as 

punctate, early confluent and confluent WMHs (Gouw et al., 2010). While mild 

periventricular WMHs are often seen in elderly individuals with no clinical symptoms, larger 

periventricular WMHs volumes have been reported to be associated with gait difficulties and 

lower motor performance (Silbert et al., 2008). Furthermore, the total volume of subcortical 

WMHs has been associated with decline in cognition and faster rate of memory decline, even 

after adjusting for rate of cerebral or hippocampal atrophy (Yoshita et al., 2005). This 

evidence suggests that accounting for the WMH burden in addition to the AD related 

pathologies can improve prediction of memory and cognitive decline.  

Manual segmentation of WMHs is generally performed on Fluid-attenuated inversion 

recovery (FLAIR) MR images by expert raters. Accurate and consistent segmentation of 

WMHs is a complicated task due to the heterogeneity in their texture and pattern as well as 

the fact that these lesions often have fuzzy borders. Manually detecting WMHs is 

challenging, time consuming, expensive and inconsistent due to inter-rater and intra-rater 

variability. As a result, inter-rater and intra-rater agreement is generally modest at best 

(García-Lorenzo et al., 2013), since the boundary between WMH and non-WMH tissue is 

difficult to determine precisely and different raters draw different arbitrary distinctions 

between the two, whereas automated methods always apply the same policy to this 

distinction. In addition, the huge number of images being collected makes the human cost of 

manual identification prohibitive. These make automated segmentation tools that can detect 

WMHs robustly and with high sensitivity and specificity highly advantageous since with their 

objectivity and reproducibility they would essentially eliminate the intra-rater variability and 

make it possible to follow individual subjects over time, or segment WMHs in large scale 
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studies with 1000s of subjects, (e.g. clinical trials). The MRI contrasts that are commonly 

used in detecting WMHs include T1w (mostly used for co-registration purposes) on which 

WMHs appear hypointense, and T2w, proton density (PD), and FLAIR on which WMHs 

appear hyperintense. Since different MRI modalities have different contrasts across tissues, 

integrating information from multiple modalities can reduce uncertainty and consequently 

increase segmentation accuracy. 

Most automated lesion segmentation methods in the literature have been developed 

for detection of lesions in Multiple Sclerosis (MS) patients (Mortazavi et al., 2012), (García-

Lorenzo et al., 2013). These methods generally use a set of features such as multi-modality 

image intensities as well as normal tissue statistics and spatial priors and input this 

information into various classifiers to segment the WMHs automatically. Such classifiers can 

be divided into two main categories: unsupervised and supervised. Unsupervised classifiers 

do not require labeled data to draw inferences. Such algorithms usually perform some form of 

clustering analysis to find patterns in the data. Thresholding techniques are generally in this 

category. To detect WMHs, Jack et al. used a histogram segmentation of FLAIR images by 

finding a cut-off threshold for differentiating WMHs from normal tissue (Jack et al., 2001). 

Similarly, de Boer et al. used tissue segmentation results to automatically find an optimal 

threshold for WMHs in FLAIR images (de Boer et al., 2009). Smart et al. use 1.45 times the 

modal pixel intensity after skull stripping as a threshold to detect WMHs and removed 

isolated pixels from the segmentation afterwards (Smart et al., 2011). Admiraal-Behloul et al. 

combined multispectral intensity images with tissue spatial distribution probability maps and 

used a fuzzy inference technique to segment WMHs (Admiraal-Behloul et al., 2005). Wu et 

al. initially identify lesion seeds using the image intensity histogram, and a fuzzy connected 

algorithm to segment lesions and iteratively update seeds (Wu et al., 2006a). Leemput et al. 

defined and detected MS lesions as outliers to a Markov Random Field tissue classification 
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technique (Leemput et al., 2001). Freifeld et al. used a similar approach and segmented MS 

lesions as outlier components of a Gaussian mixture model (Freifeld et al., 2009).  

While unsupervised techniques are favored since they do not require manual 

segmentations for the initial training, they are usually outperformed by supervised methods 

since the former often over-segment imaging artifacts as lesions (i.e. flow artifacts in the 4th 

ventricle) and need extensive post-processing to remove false positives (Caligiuri et al., 

2015). Supervised techniques use manually labeled training data to draw inference. The 

supervised techniques that are generally used for lesion segmentation applications include k-

nearest neighbors (k-NN), regression classifiers, graph cuts, neural networks, Bayesian 

classifiers, and support vector machines (SVM).  Anbeek et al. used a k-NN technique to 

segment white matter lesions from a feature space of voxel intensities and spatial information 

(Anbeek et al., 2004). Similarly, Steenwijk et al. optimized intensity normalization and used 

spatial tissue type priors to improve k-NN classification of WM lesions (Steenwijk et al., 

2013). Wu et al. combined an intensity-based statistical k-NN method with template-driven 

segmentation and partial volume artifact correction to segment MS lesions (Wu et al., 2006b). 

Garcia-Lorenzo et al. used an automated graph cuts method with expectation maximization to 

segment MS lesions (García-Lorenzo et al., 2009). Zijdenbos et al. used intensity 

information, spatial priors and neural networks to obtain a classification algorithm for MS 

WMHs (Zijdenbos et al., 2002). Mechrez et al. used a multichannel spatially consistent path-

based technique to segment MS lesions (Mechrez et al., 2016).  Beare et al. used 

morphological segmentation and an adaptive boosting statistical classifier, obtaining a two-

phase method (Beare et al., 2009). First, they used a morphological watershed to produce 

overly inclusive segmentations of WMHs. In the second phase, they used statistical classifiers 

to distinguish between real and false WMHs by examining the properties of each region. 

There has also been major interest in using Bayesian classifiers with Markov random field 
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methods to detect WMHs in MS (Khayati et al., 2008), and the elderly population (Schwarz 

et al., 2009). Sajja et al. used a Parzen window classification method for lesion segmentation 

in MS and minimized the false negative lesion classifications using HMRF-EM (hidden 

Markov Random Field with expectation maximization) (Sajja et al., 2006). Karimaghaloo et 

al. used a conditional random field method and combined a variety of potential functions to 

detect lesions with various shapes (Karimaghaloo et al., 2012). Lao et al. have used support 

vector machines (SVMs) to create a classification algorithm for detecting WMHs (Lao et al., 

2008). Ghafoorian et al. have developed a technique for detecting WMHs in CSVD across a 

large sample of patients by separating small and large lesions and training two size-specific 

AdaBoost classifiers to detect these lesions (Ghafoorian et al., 2016a). The lesion growth 

algorithm (LGT), a publicly available tool for segmentation of MS lesions from 3T T1w and 

FLAIR images by Schmidt et al. uses FLAIR intensity distribution in tissue classes to detect 

outliers which are then expanded toward a more liberal segmentation under certain conditions 

(Schmidt et al., 2012). Ithapu et al. have also developed a publicly available MATLAB 

toolbox for segmentation of WMHs in AD and aging by combining texture features generated 

by filter banks and SVM and Random Forests classifiers (Ithapu et al., 2014). 

Although many different lesion segmentation techniques have been proposed, most 

methods have been trained and validated using data obtained from small populations, all 

scanned with the same MRI imaging protocol. This simplifies the problem greatly, and may 

lead to overfitting. As a result, these techniques cannot be widely used for other datasets due 

to the unreliability and high variability of results across data that is scanned with different 

acquisition protocols (García-Lorenzo et al., 2013;  Caligiuri et al., 2015). Also, methods that 

have been designed for lesion detection in MS populations do not generally perform as well 

in segmenting WMHs in the elderly populations for two main reasons. First, the MRI contrast 

between gray matter and white matter tissues decreases with age. Second, the boundaries of 
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MS lesions are generally sharper than those of WMHs, which makes the segmentation task 

more challenging for the latter (Caligiuri et al., 2015). Due to these limitations, despite the 

number of proposed methods, an optimal algorithm has not yet been identified, leaving lesion 

segmentation in general and WMH segmentation in particular an open problem (García-

Lorenzo et al., 2013; Caligiuri et al., 2015). 

The goal of this study is to validate a robust and generalizable automatic technique for 

segmentation of WMHs in MRIs from elderly subjects and patients with AD to assess and 

monitor their vascular burden. To achieve this goal, we have investigated the performance of 

our technique across three different populations with different scanners and acquisition 

protocols. In this paper, our novel contributions are: 

(i) To describe a set of discriminative features to identify WMHs 

(ii) To describe a processing pipeline that implements a linear regression classifier 

(iii) Evaluation on three heterogeneous multi-site datasets, including images 

scanned by different scanners and different scan-parameters to show 

robustness  

(iv) To obtain results that are as good or better to previously published results 

(v) To compare our classifier to publicly available FSL, SPM, and W2MHs WMH 

segmentation tools 

 3.2. Materials and methods 

3.2.1. Subjects 

The method was implemented and validated based on 3 datasets to ensure robustness 

and generalizability. 
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(i) The first dataset (ADC) consists of 80 elderly individuals who received a full 

clinical workup and structural MR scans including T1w, double-echo 

PD/T2w, and FLAIR scans at their times of enrollment into the University of 

California, Davis Alzheimer’s Disease Center (ADC) (Hinton et al., 2010). 

Subjects were 70-90 years old with either normal cognition, mild cognitive 

impairment (MCI), or AD.  

(ii) The second dataset (PREVENT-AD) consists of 40 cognitively normal 

subjects at risk of AD aged 55-75 years obtained from “Pre-symptomatic 

Evaluation of Novel or Experimental Treatments for Alzheimer’s Disease” 

program data release 1.0., a longitudinal cohort study of healthy persons with 

a parental history of AD dementia.  The PREVENT-AD subjects had T1w, 

T2*, and FLAIR MRIs (Tremblay-Mercier et al., 2014).  

(iii) The final dataset includes T1w and FLAIR scans of 10 subjects, selected to 

have different loads of WMHs from ADNI2/GO study which was used to 

show the performance of the method on independent data from different 

scanners that was not previously used in the training and parameter 

optimization of the method. This data was obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The 

ADNI was launched in 2003 as a public-private partnership, led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI was to test 

whether serial MRI and other biomarkers, and clinical and neuropsychological 

assessment can be combined to measure the progression of MCI and early AD. 
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3.2.2. MR imaging 

We evaluated the proposed technique on datasets from three studies that were 

acquired with different MR contrasts to show the robustness of the classifier. This section 

describes scanner information and image acquisition parameters for the abovementioned 

datasets. Table 3.1. shows the summary of this information for each dataset. 

(i) ADC: MRI data was acquired on two 1.5T MRI scanners: a GE MEDICAL 

SYSTEMS Signa scanner located at UCD Medical Center (Sacramento, CA), 

and a Philips Eclipse scanner located at the Veterans Administration Northern 

California Health Care System (Martinez, CA). Analogous sequences were 

installed on both scanners. 

(ii) PREVENT-AD: MRI data was acquired on a 3T SIEMENS MAGNETOM 

TrioTim syngo MR scanner (version B17). All patients had the same MRI 

protocol for T1w, T2* and FLAIR scans.  

(iii) ADNI2/GO: The MRI data used was acquired on two different models of GE 

MEDICAL SYSTEMS scanners: Signa HDxt, and DISCOVERY MR750. All 

patients had similar MRI protocols for T1w and FLAIR scans, acquired with 

gradient-recalled echo and spin echo inversion recovery sequences, 

respectively. 
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Table 3.1. MRI acquisition parameters for ADC, PREVENT-AD, and ADNI2/GO datasets. 

 Parameter (unit) ADC PREVENT-AD ADNI2/GO 

T1w 

Slice thickness (mm) 1.5 1 1.2 

No. of slices 128 176 196 

Field of view (cm2) 250×250 256×256 256×256 

Scan Matrix (cm2) 256×256 256×256 256×256 

TR: Repetition time (ms) 9 2300 7.2 

TE: Echo time (ms) 2.9 2.98 3.0 

Pulse Sequence FSPGR IR MPRAGE 

 

 

 Slice thickness (mm) 3 2  

 No. of slices 42 52  

 Field of view (cm2) 240×240 200×200  

T2w/T2* Scan Matrix (cm2) 256×256 512×512  

 TR: Repetition time (ms) 2420 650  

 TE: Echo time (ms) 90 20  

 Pulse Sequence DSE IR  

 Slice thickness (mm) 3   

 No. of slices 42   

 Field of view (cm2) 240×240   

PD Scan Matrix (cm2) 256×256   

 TR: Repetition time (ms) 2420   

 TE: Echo time (ms) 20   

 Pulse Sequence DSE   

FLAIR 

Slice thickness (mm) 3 1 5 

No. of slices 48 176 42 

Field of view (cm2) 220×220 256×256 256×256 

Scan Matrix (cm2) 256×192 256×256 256×256 

TR: Repetition time (ms) 11000 5000 11000 

TE: Echo time (ms) 144 388 150 

Pulse Sequence FSE IR SE/IR 

 

Label segmentation: For all datasets, the WMHs were segmented independently based 

solely on the FLAIR scans by raters who were blinded to clinical symptoms of the subjects. 

Three different manual segmentation techniques were used: 

(i) ADC: a strongly validated, semi-automated method was used to detect WMHs 

based on the FLAIR scans and human input (Yoshita et al., 2005). In short, a 

threshold-based automated method identified potential WMH lesions and the 

expert rater eliminated false positives. 
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(ii) PREVENT-AD: WMHs were manually segmented by two experts using 

FLAIR images. Union of the two segmentations was then used as the gold 

standard.  Periventricular and deep WMHs were identified with different 

labels, and thus enabled a comparison between segmenting all lesions together 

or segmenting these two classes of lesions separately (but only in the 

PREVENT-AD cohort). 

(iii) ADNI2/GO: an expert rater manually painted the lesions on the native FLAIR 

scans. The manual segmentations were then reviewed and corrected by a 

second investigator. 

The cohorts presented large ranges of lesion loads: ADC (0.50-40.3 CCs), 

PREVENT-AD (0.29-23.6 CCs), and ADNI2/GO (3.56-128.12 CCs). In the experiments 

below, we evaluated the performance of the classifier across 3 different white matter lesion 

loads (WMLL): large (WMLL > 20 CCs), medium (5-20 CCs) and small (WMLL < 5 CCs). 

Fig. 3.1. shows the number of subjects in the different categories for each dataset. 

 

Fig. 3.2. Histograms of WMH load ranges for the 3 datasets (<5 CCs, 5-20 CCs, and >20 CCs). A) ADC B) 

PREVENT-AD C) ADNI2/GO. 

 



83 

 

3.2.3. Pre-processing 

All MRI scans were pre-processed using our standardized pipeline. Images were 

denoised using an automatic and multithreaded denoising method based on non-local means 

filtering (Manjón et al., 2010). The bias field and intensity inhomogeneity were estimated and 

corrected using a nonparametric non-uniform intensity normalization (N3) tool (Sled et al., 

1998). The final preprocessing step included linear intensity scaling using histogram 

matching to a template obtained from 150 subjects (50 normal control, 50 mild cognitively 

impaired and 50 dementia subjects) in the ADNI database (www.loni.ucla.edu\ADNI) (Fonov 

et al., 2011a). The T2w, PD, and FLAIR scans were then coregistered to the structural T1w 

scan of the same subject using a six-parameter rigid body registration (Collins et al., 1994).  

The T1w scans were nonlinearly registered to the ADNI template based on intensity 

correlation coefficient (Collins and Evans, 1997). Using the T1w-to-template transformations 

(i.e., linear + nonlinear), the other modalities (e.g., FLAIR, T2w, PD) were registered to the 

ADNI template as well. The manually segmented lesion maps were also registered to the 

ADNI template using the transformations of their corresponding FLAIR images. 

3.2.4. Features 

In order to reduce the feature space dimension and consequently the computational 

burden, each image voxel was treated as a separate data point. A feature set was defined 

based on a variety of intensity and probability parameters. The following features were used 

as inputs to the classifier: 

(i) Voxel intensity for each of the available modalities, e.g. T1w, T2w, PD, and 

FLAIR 

http://www.loni.ucla.edu/ADNI


84 

 

(ii) Spatial probability, i.e. the probability of the voxel in its specific location 

being a WMH 

(iii) Intensity probability of the normal healthy and WMH tissues independently 

for each modality (𝑃𝐻  and 𝑃𝑊𝑀𝐻), i.e. the probability of the voxel with its 

specific intensity being normal healthy or WMH tissue, calculated for each 

modality independently 

(iv) Average intensity of healthy tissue at voxel for each modality 

(v) The probability of each voxel being a WMH divided by the probability of it 

being healthy tissue obtained from the intensity probabilities for the different 

modalities (
𝑃𝑊𝑀𝐻

𝑃𝐻
), calculated for each modality independently 

All the features (except for the MRI intensities) were calculated based on training data 

in the cross validation step to avoid overfitting. The intensity probabilities of WMH and 

normal healthy tissues (𝑃𝐻 and 𝑃𝑊𝑀𝐻) were obtained by calculating histograms of intensity 

ranges within the manually segmented WMH masks and non-WMH brain regions, 

respectively.  

The intensity features from the different MRI contrasts are generally used in all WMH 

segmentation techniques, as they provide basic intensity information for the specific voxel. 

The spatial probability feature can inform the classifier of how likely it is for the voxel in this 

specific location in the brain to be a lesion, e.g. a hyperintense voxel in the periventricular 

regions is more likely to be a lesion, whereas a voxel with a similar intensity in the cortical 

regions is less likely to be so. This feature is most informative when the training dataset is 

large and reflects the prevalence of WMH across different brain regions accurately. The 

intensity probability features reflect the likelihood of the abnormality of the intensity of the 

current voxel, i.e. how likely it is for a voxel with such intensity to be either WMH or normal 
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tissue. The division of these two features can distinguish the tails of the distributions and 

provide yet another measure to reflect the likelihood of being a lesion. The average intensity 

of the healthy tissue feature can provide a standard of what intensity is considered normal in 

this specific location of the brain. 

Using the information from multiple contrasts can decrease uncertainty and increase 

classification accuracy, especially in cases where one modality has certain artifacts. For 

example, proximity to bones might cause an increase in the signal in the optimal FLAIR 

image due to susceptibility. As a result, there may be non-WMH voxels that are hyperintense 

on the FLAIR image, but not on the other contrasts. Integrating the information from multiple 

contrasts can eliminate these false positives.  

Since different features have different ranges, feature normalization was performed by 

variance scaling, i.e. subtraction of the mean and division by standard deviation. This results 

in zero mean and unit variance in the normalized feature set.  Fig. 3.2. shows the flowchart 

for the preprocessing and feature selection steps. 
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Fig. 3.3. Flow-chart of the proposed classifier and the preprocessing steps. The preprocessing includes 

denoising, image intensity non-uniformity correction, intensity range normalization, co-registration of T2w, PD 

and FLAIR to T1w scans, and stereotaxic registration of T1w. All modalities were then non-linearly warped to a 

template obtained from the ADNI dataset.  Spatial prior, intensity and distribution features then served as inputs 

to the linear regression classifier. 

 

3.2.5. Tissue Classification 

The main post-processing step for lesion segmentation is assigning a label (i.e. WMH 

or non-WMH) to each voxel. The segmentation method was evaluated in a 10-fold cross 

validation manner, defining different training and testing subjects for each experiment. The 

training and testing subjects were selected from the same dataset in ADC and PREVENT-AD 

studies. For the ADNI2/GO segmentations, the training data was selected from the ADC 

study while testing data came from ADNI2/GO to show the robustness of the method across 

different scanners. The training dataset was generated from a large number of manually 
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labeled voxels; i.e. all voxels inside the brain mask for the subjects that were selected for 

training were used to create the training set - this includes all positive (WMH) and negative 

(non-WMH) example voxels. (Note that subjects used for testing were not used to estimate 

any of the features, probabilities or spatial priors, and thus serve truly as independent test data 

without double dipping). After training, a classifier can segment the image voxels of new 

subjects from the test dataset either by comparing their features with the features in its current 

training set or by creating a model to estimate a relationship between the output label and the 

input features of the training set. A variety of classification algorithms can be used for this 

purpose, such as neural networks (Hornik et al., 1989; Zijdenbos et al., 2002), k-NN 

(Denoeux, 1995; Anbeek et al., 2003; Steenwijk et al., 2013; Wu et al., 2006b), and support 

vector machines (Cortes and Vapnik, 1995; Lao et al., 2008). In this work, we selected a 

linear regression classifier with thresholding due to its low variance, high accuracy and lower 

computation time compared with other classifiers. The model parameters were calculated 

based on a least-squares estimation 

𝛽 = (𝑋𝑇𝑋)−1(𝑋𝑇𝑌) = (∑ 𝑋𝑖𝑋𝑖
𝑇

𝑁

𝑖=1

)

−1

(∑ 𝑋𝑖𝑌𝑖

𝑁

𝑖=1

) 

Where 𝛽 , 𝑋  and 𝑌  denote the estimated weights, the feature matrix and target labels, 

respectively. 𝑋𝑖  and 𝑌𝑖  denote the feature set and target labels for subject 𝑖  and 𝑁  is the 

number of subjects in the training set. The output of the linear regression model for a new 

subject 𝑗 (𝐿𝑗 = 𝑋𝑗𝛽) can be considered as a probability map that reflects the likelihood of the 

input voxel being a WMH. This value can later be thresholded to create a binary lesion map. 

The value of the threshold can determine the sensitivity and specificity of the segmentations; 

i.e. choosing lower threshold values can increase the sensitivity of the segmentations with the 



88 

 

price of decreasing the specificity, and vice versa. The optimal threshold value for creating 

binary segmentation maps can be obtained through cross validation as described below. 

3.2.6. Evaluation metrics 

To evaluate the accuracy of the automatic segmentations with respect to the gold standard 

manual labels, we used a variety of volumetric as well as spatial correspondence measures 

since no single measure is capable of reflecting all the desired information regarding the 

quality of segmentations (Caligiuri et al., 2015). To assess the volumetric correspondence 

between the automated and manual labels, we used intra-class correlation coefficient (ICC) 

for total lesion volume. The per-voxel spatial correspondence between two segmentations 

was evaluated using Dice similarity index (SI) as well as true and false positive rates (TPR 

and FPR), and positive prediction value (PPV) (Caligiuri et al., 2015). A high TPR 

(sensitivity) indicates that the automatic segmentation corresponds well to manual labels. A 

low FPR indicates that the procedure does not over-segment; i.e. identify non-WMH voxels 

as WMHs.  A small PPV implies that many of the positive results are false positives. True 

positive (TP) and true negative (TN) indicate agreement whereas false negative (FN) and 

false positive (FP) indicate disagreement between the two segmentations. In cross-

validations, SI was regarded as the primary outcome measure; i.e. the parameters were 

optimized based on SI values. 

3.3 . Experiments and Results 

3.3.1. Qualitative results 

Fig. 3.3. shows the segmentation results for a subject from the ADC dataset. In each 

row, 5 axial slices are shown, containing from top to bottom: the FLAIR image, the manual 

segmentations overlaid on the FLAIR, probability maps outputted by the linear regression 
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classifier, and the binary segmentations obtained by thresholding the probability maps with 

the optimal threshold based on SI values. 

 

Fig. 4.3.  Comparison of the automated vs. manually segmented WMHs for a subject from ADC dataset. Rows 

from top to bottom: A) axial FLAIR slices B) WMH labels obtained from manual segmentations C) probability 

maps obtained from the proposed automated method D) WMH labels obtained by thresholding the probability 

map. The color bar indicates the continuous output of the classifier before thresholding. 

Fig. 3.4 shows similar segmentation results for a subject from the PREVENT-AD 

dataset. The method was trained to segment the periventricular and deep WMHs separately. 

Note the difference between the probability maps for the periventricular and deep WMHs and 

the fact that the probabilities are higher for areas closest to the ventricles for the former and 

lower for the latter. As a result, there is only a slight spatial overlap between the two 

segmentations (SI=0.05±0.04). 
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Fig. 3.4.  Comparison of the automated vs. manually segmented WMHs for a subject from PREVENT-AD 

dataset. Rows from top to bottom: A) axial FLAIR slices B) Periventricular (dark blue) and deep (light blue) 

WMH labels obtained from manual segmentations C) Periventricular and D) deep probability maps obtained 

from the proposed automated method, respectively E) Periventricular (orange) and deep (yellow) WMH labels 

obtained by thresholding the probability map. The color bar indicates the continuous output of the classifier 

before thresholding. 

Fig. 3.5 shows the segmentation results for a subject from ADNI2/GO dataset. One 

can see that in each case, the automatic output is very similar to the manual labels. 
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Fig. 3.5.  Comparison of the automated vs. manually segmented WMHs for a subject from ADNI2/GO dataset. 

Rows from top to bottom: A) axial FLAIR slices B) WMH labels obtained from manual segmentations C) 

probability maps obtained from the proposed automated method D) WMH labels obtained by thresholding the 

probability map. The color bar indicates the continuous output of the classifier before thresholding. 

 

3.3.2. Quantitative results 

The performance of the method was evaluated on 3 different populations with 80, 40, 

and 10 subjects. We investigated 3 categories of lesion load since the different datasets had 

different ranges of WMH loads. In the ADC dataset, 57.5%, 31.5%, and 11.25% of the 

population had small, medium, and large lesion loads respectively. In the PREVENT-AD 

dataset, 62.5%, 35%, and 2.5% of the population had small, medium, and large lesion loads. 

In the ADNI2/GO dataset, 20%, 40%, and 40% of the population had small, medium, and 

large lesion loads, respectively (Fig. 3.1). 

The binary segmentations were generated by applying a threshold to the probability 

map from the linear regression technique. Different values of threshold reflect different levels 

of sensitivity/specificity in the segmentations. Fig. 3.6 shows the SI between the binary 
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segmentation and gold standard manual segmentations for different values of threshold for 

the three datasets. Confidence intervals indicate the standard deviation of mean SI across 10 folds in 

the cross validation. From Fig. 3.6, we can see that the optimal threshold for generating binary 

segmentations is different for each case, since the number of available modalities is different, and 

consequently the number of features in the model are different for the 3 datasets.  

 

Fig. 3.6. SI (Dice Kappa) vs threshold for A) ADC B) PREVENT-AD C) ADNI2/GO datasets. Blue and red 

curves in B represent the results for the periventricular and deep WMHs, respectively. 

SI, ICC, sensitivity, FPR, and PPV were calculated for all subjects with the optimal 

thresholds calculated as hyper-parameters through cross validation. Since the purpose of 

using ADNI2/GO dataset was to show the performance of the method on independent data 

from different scanners (not previously used in training or in parameter optimization), only 

information from ADC dataset was used to determine the optimal threshold for classification 

on ADNI2/GO dataset. (Note that additional investigation showed that using ADNI2/GO data 

to determine the optimal threshold would not lead to a significant improvement over using 

the ADC-derived threshold, p=0.31). The results are summarized in Table 3.2. For 

PREVENT-AD, the binary segmentation is a union of the periventricular and deep 

segmentations. Fig. 3.7 shows a boxplot diagram of SI values for the 3 categories of lesion 

loads in each dataset.  
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Table 3.2. Similarity measures between the manual and automatic segmentations for ADC, PREVENT-AD, and 

ADNI2/GO datasets. 

Dataset SI ICC Sensitivity FPR PPV 

ADC 0.62±0.16 0.96±0.09 0.63±0.18 0.0002±0.0001 0.69±0.17 

PREVENT-AD 0.51±0.16 0.78±0.21 0.52±0.20 0.0002±0.0002 0.59±0.15 

ADNI2/GO 0.64±0.17 0.93 0.71±0.23 0.0014±0.0014 0.60±0.09 

 

 

Fig. 3.7. Boxplot diagrams of SI (Dice Kappa) (<5 CCs, 5-20 CCs, and >20 CCs) for A) ADC B) PREVENT-

AD C) ADNI2/GO datasets. 

An SI value of 0.7 or higher indicates an excellent agreement (Bartko, 1991). The SI 

values suggest excellent agreement for medium and large lesion loads for ADC and 

ADNI2/GO datasets, and very good agreement for medium and excellent agreement for large 

lesion loads for PREVENT-AD dataset. To investigate this further, SI values were plotted 

against total lesion loads obtained from manual segmentations (Fig. 3.8). All of the small SI 

values occur in subjects that have smaller total lesion loads. 

 

Fig. 3.8. SI (Dice Kappa) vs manually segmented WMH loads (CCs) for A) ADC B) PREVENT-AD C) 

ADNI2/GO datasets. 
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3.3.3. Contribution of the features 

In order to show how much each of the proposed feature sets contributes to the 

performance of the classifier, the classifier was trained without each feature set. Table 3 

shows the percentage of drop in SI (Dice Kappa) after removing each set of features for each 

dataset. 

Table 3.3. Percentage of drop in SI (Dice Kappa) by removing feature sets for ADC, PREVENT-AD 

(periventricular-deep), and ADNI2/GO.  

Dataset Voxel Intensity Spatial Prior Average Intensity 𝑃𝑊𝑀𝐻  𝑃𝐻  𝑃𝑊𝑀𝐻

𝑃𝐻

 

ADC 5.5 8.6 5.3 6.6 5.5 1.6 

PREVENT-AD 3.3-2.9 75.7-78.1 1.9-3.1 2.6-2.3 2.2-1.9 3.8-4.2 

ADNI2/GO 8.0 9.3 8.4 19.9 7.7 9.7 

 

3.3.4. Comparison between classifiers 

Linear discriminant analysis (LDA), LogitBoost, and random forest classifiers were 

also trained and validated on the same features (Breiman, 2001; Friedman et al., 2000). For 

these classifiers, MATLAB toolbox implementations were used. Table 3.4 summarizes the 

results.  

Table 3.4. Performance (SI) of LDA, LogitBoost and Random Forests classifiers. LDA= Linear Discriminant 

Analysis  

 ADC PREVENT-AD (PV - Deep) ADNI2/GO 

LDA 0.58±0.24 0.17±0.21 - 0.11±0.12 0.41±0.25 

LogitBoost 0.70±0.14 0.62±0.15 - 0.52±0.21 0.31±0.24 

Random Forest 0.68±0.15 0.61±0.15 - 0.51±0.22 0.32±0.23 

 

3.3.5. Impact of Size of the Training Set 

One of the important concerns for any supervised classification method that is 

dependent on training samples is the number of previously labeled samples that are required 
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to reach desirable performance on new unobserved data. To evaluate this dependence, we 

trained and validated the performance of the method using different sizes of training sets for 

the ADC dataset. The results of our investigations as shown in Fig. 3.9. suggest that the 

method shows acceptable performance (SI~0.6 and ICC~0.9) and can be used with as few as 

40 labeled training subjects. 

 

Fig. 3.9. Impact of the number of training subjects on SI (Dice Kappa) and intra-class correlation (ICC). Plotted 

SI and ICC values between the manually labeled gold standard WMHs and the WMH labels estimated by our 

automated method for the ADC dataset for different sizes of training sets. 

 

 3.4. Discussion 

In this paper, we proposed and validated a new method for fully automated 

segmentation of WMHs from MR images. The proposed method uses a variety of location 

and intensity based features and a linear regression technique to create a continuous output 

that can be considered as a subject specific probability map of lesions, which can then be 

thresholded to create binary WMH segmentations. The advantage of creating these subject 

specific continuous WMH maps over binary segmentations is that they can be thresholded 

with different values, balancing the desired level of sensitivity/specificity depending on the 

purpose of segmentation. Furthermore, such lesion probability maps can provide more 

information about the voxel tissue than a simple binary valued segmentation; e.g., lesion 

probabilities may be useful to identify dirty white matter compared to healthy white matter 
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tissue (Beggs et al., 2016). These continuous values may also reflect the level of damage to 

the tissue, since higher WMH intensities can indicate more extensive cognitive deficits 

(Lindemer et al., 2015). Finally, we demonstrated that the thresholded determined on one 

dataset (ADC) was applicable to a previously unseen dataset (ADNI2/GO), underlining the 

robustness and generalizability of the proposed method. 

A linear regression classifier was selected over other classification techniques for two 

reasons. First, because it provides a smooth continuous output that can be used as a subject 

specific probability map at low computational cost. But more importantly, our experiments 

showed that choosing more complex nonlinear classifiers may reduce the generalizability and 

applicability of the technique to new previously unseen data. For example, Random Forests 

and LogitBoost classifiers had a higher performance on ADC, but a much poorer 

performance on the independent ADNI2/GO datasets, as opposed to the simpler and more 

generalizable linear LDA and linear regression classifiers (Table 3.4).  

The automated WMH segmentation method was evaluated on three different datasets 

(n1=80, n2=40, and n3=10) with the gold standard labels obtained from manual 

segmentations and measures such as SI (Dice Kappa), intra-class correlation (ICC), 

sensitivity and specificity. The automated labels showed high agreement with manual labels 

across all the datasets. The good performance of the algorithm on the ADNI2/GO subjects, 

which were not used in training the classifier, suggests that the method is robust in dealing 

with inter-site variability and enables us to apply the classifier to other datasets. 

One of the major complications for automated segmentation of WMHs is caused by 

resampling. Since most automated tools use multiple contrasts of images to increase 

segmentation accuracy, it is necessary to co-register all the modalities to a common space. 

However, in most studies, the FLAIR scans (i.e. the modality with the optimal contrast for 
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lesion detection) as well as T2w and PD scans are obtained with thick slices (usually 3-5 

mms) in clinical studies due to acquisition timing constraints. This results in blurring effects 

after resampling. To avoid resampling as much as possible, we transformed all data (i.e. the 

spatial priors, brain masks, etc.) to the native FLAIR space for the ADC and ADNI2/GO 

datasets and performed segmentation in the native FLAIR space. This improved the 

segmentation performance significantly for the ADC (SI=0.62 native vs SI=0.53 resampled) 

and ADNI2/GO (SI=0.64 native vs. SI=0.55 resampled) datasets while it did not have any 

effect on the PREVENT-AD dataset due to its inherent high spatial resolution (1mm3 

isotropic voxels). In the PREVENT-AD dataset, separating the WMHs into periventricular 

and deep classes yielded an improvement of 10.87% in SI. This was expected since deep 

WMHs have a different contrast and were more likely to be missed if the same threshold as 

periventricular WMHs was used. 

The SI was used to validate the performance of the method as well as to determine the 

optimal threshold for creating binary segmentations from probabilistic lesion maps. However, 

as can be deduced from Fig. 3.8. the algorithm yields smaller SI values for small lesion loads 

and larger values for relatively larger WMH loads. This is not specific to the proposed 

method and is in fact due to the nature of the definition of SI, which causes the same amount 

of difference to yield lower SI values if the total volume is smaller. This prevents SI from 

being considered as the ideal similarity measure for lesion segmentation applications, since 

the reported results will then depend on the average lesion load across the population under 

study. However, since metrics such as ICC depend only on the total load rather than the 

actual segmentations, SI still remains the most informative metric, if its values are reported 

along with the average lesion loads across the population.  
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Another possible set of metrics that are commonly used to study the performance of 

lesion segmentation techniques (especially those applied to MS lesion segmentation due to 

the clinical relevance of lesion count when evaluating treatment strategies) are per lesion 

metrics. However, since most of the WMHs in AD and aging populations are relatively large 

and confluent, such measures are not as informative in these studies. In fact, most of the per 

lesion metrics that were calculated for the ADC dataset showed nearly excellent performance.  

The average Dice Kappa was lower for the PREVENT-AD dataset in comparison 

with ADC and ADNI2/GO due to several reasons. First, the PREVENT-AD subjects are 

much younger and drawn from a healthy population without any cognitive complaints, and as 

a result have significantly lower WMH loads and smaller lesions when compared to the 

ADNI2/GO and ADC subjects (p<0.0001, p=0.0044). Second, different techniques were used 

for manual detection of the WMHs in each of the three datasets. Specifically, for the 

PREVENT-AD dataset where sensitive detection was desired, the union of two raters was 

used as the gold standard. This would naturally lead to more generous segmentations as 

opposed to using the intersection between the two labels, which would have the opposite 

effect. Third, the contrast between the healthy tissue and WMHs in the FLAIR scans was 

lower in the PREVENT-AD FLAIRs, leading to a significant overlap in the intensity 

histograms, and thus making the classification task more prone to errors, both for the manual 

raters and automated tools. On the other hand, the PREVENT-AD FLAIR scans had a much 

better spatial resolution (i.e. 1 mm slice thickness) enabling the method to identify smaller 

lesions. In the future, it would be interesting to study the dependence of lesion contrast on 

lesion age and level of tissue damage.  

FLAIR is the optimal modality to detect WMHs due to the high contrast between 

WMHs and surrounding tissue. However, many studies forego FLAIR acquisition in favor of 
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other modalities. As a result, segmentation techniques that can detect WMHs without using 

FLAIR are highly desirable. The proposed technique was able to detect WMHs in the ADC 

dataset using only T1w, T2w, PD data with SI=0.45±0.18. While this is not as high as when 

using FLAIR, it shows that it is possible to segment some WMHs without using FLAIR 

information. 

The training time for the proposed method using an Intel Core i3-2120 processor at 

3.30 GHz was approximately 19 minutes for 40 subjects and the segmentation time for each 

subject after training was approximately 1.6 seconds. The low computational expense enables 

us to use this technique on large MRI databases without being concerned with computation 

burden.  

The proposed technique was also compared with FAST toolbox (FMRIB's Automated 

Segmentation Tool) (Zhang et al., 2001) from FSL (Jenkinson et al., 2012; Smith et al., 2004; 

Woolrich et al., 2009), LGA (Lesion Growth Algorithm; Schmidt et al., 2012) as 

implemented in the LST toolbox version 2.0.15 (www.statistical-modelling.de/lst.html) for 

SPM (Penny et al., 2011), as well as W2MHS  from Ithapu et al. (Ithapu et al., 2014) as three 

well-known freely available segmentation techniques in the literature on the same 3 datasets 

that were used for our validations. The results showed that the proposed technique 

outperforms all three methods in terms of Dice Kappa (SI) in segmenting all categories 

(small, medium, and large) of lesion loads across all three datasets. FAST from FSL 

oversegmented artifacts and bright regions near the cortex and was only able to segment large 

lesions with high contrast yielding SI=0.11±0.15 for the ADC dataset and SI=0.23±0.34 for 

the ADNI2/GO dataset. LGA from SPM tended to under-segment the lesions, especially deep 

WMHs across all three datasets (SI=0.09±0.12 for ADC and SI=0.20±0.24 for ADNI2/GO). 

W2MHS had a better performance for both ADC and ADNI2/GO datasets (SI=0.20±0.18 for 
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ADC and SI=0.39±0.29 for ADNI2/GO datasets). All techniques had poor performance in 

cases with small lesions or low contrast between the healthy tissue and WMHs: in the 

PREVENT-AD dataset, neither technique was able to detect the WMHs (SI=0.003±0.003 for 

FAST, SI=0.01±0.02 for LGA, and SI=0.01±0.02 for W2MHS). All results were tested for 

statistical significance (using paired t-tests) in comparison with SI values obtained from the 

proposed method for the same datasets (p<0.0001). 

It is difficult to compare our technique to previously published results. The difficulty 

lies in the differences between populations, MR image contrasts, anatomical definition of 

WMHs, and quality of manual segmentations. All three datasets have a much higher number 

of subjects with small or even no WMHs (in case of deep WMHs in PREVENT-AD) for 

which disagreement in a few voxels would lead to a very small SI (or even zero for cases 

with no WMHs). In addition, there are other factors that might lead into differences between 

the reported performances of the methods, which do not necessarily reflect the superiority of 

the WMH segmentation technique, such as: masking out difficult/prone to artifact regions, 

using WM masks, using a rule for minimum number of neighboring voxels for manually or 

automatically labelling a voxel as WMH (See Table 3.5). Still, our results are comparable to 

those published in literature, yielding the best results for patients with large lesion loads, and 

among the best for medium lesion loads (See Table 3.5).  Future work will focus on 

improving the technique for small lesion loads to facilitate application of this technique to 

datasets of cognitively normal individuals and at-risk populations.  
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Table 3.5. Comparison of SI (Dice Kappa) for different lesion loads in various studies. (S: small load, M: 

medium load, L: large load).  Notes: 1- No exclusion mask. 2- No post processing. 3- Subjects with vascular 

disease. 4- Excluded areas between lateral ventricles. 5- Excluded small lesions. 6- Population did not have 

subjects with small WMH loads. 7- Used tissue segmentation. 8- Validation on 20 slices per subject on average, 

selected based on presence of lesions with clear borders. 9- Removed periventricular flow artifacts. 10- 

Excluded areas outside WM mask. 11- Post processing to remove noisy detections. 12- Subjects with small 

vessel disease (based on appearance of WMHs and/or lacunas). 13- Aging/AD and vascular disease patients 

with minor strokes. Used exclusion mask containing dilated CSF and subcortical structures (basal ganglia) and 

entorhinal cortex. 

   Dice (SI) 

Method Notes Number (S-M-L%) S M L Total 

Proposed Method  1,2 80 (58-31-11) 0.49 0.74 0.87 0.62 

Admiraal (Admiraal-Behloul et al., 2005) 3,4,5 100 (40-35-25) 0.70 0.75 0.82 0.75 

Anbeek (Anbeek et al., 2004) 3 20 (40-35-25) 0.50 0.75 0.85 0.61 

Beare (Beare et al., 2009) 6 30  0.50 0.65 0.58 

Boer (de Boer et al., 2009) 5,7 20 0.72 0.72 

Steenwijk (Steenwijk et al., 2013) 5,7 20 (15-45-40) 

18 (40-33-17) 

0.78 

0.65 

0.85 

0.72 

0.91 

0.81 

0.84 

0.75 
Khayati (Khayati et al., 2008) 5,6,8 20 (35-50-15) 0.72 0.75 0.80 0.75 

Sajja (Sajja et al., 2006) 5,7 23 (35-65) 0.67 0.84 0.78 

Schmidt (Schmidt et al., 2012) 7 53 0.66 0.79 0.85 0.75 

Ong (Ong et al., 2012) 9,10 38 0.36 0.56 0.71 0.47 

Ithapu (Ithapu et al., 2014) 9,11 38    0.67 

Herskovits (Herskovits et al., 2008)  2,7 42    0.60 

Dyrby (Dyrby et al., 2008) 10 362 0.45 0.62 0.65 0.56 

Erus (Erus et al., 2014) 6 33 

47 

 0.54 

0.66 

0.54 

0.66 
Ghafoorian (Ghafoorian et al., 2016b) 12 46    0.79 

Simões (Simões et al., 2013) 

 

7,10 28 (14-9-5) 0.51 0.70 0.84 0.62 

Yoo (Yoo et al., 2014) 5,6,10 32 (7-10-15) 0.59 0.73 0.86 0.76 

Griffanti (Griffanti et al., 2016) 13 21 

109 

0.70 

0.41 

0.69 

0.58 

0.80 

0.68 

0.76 

0.52  

Quantification of WMH volumes is critical for evaluation of the vascular burden of 

AD. As well, this will prove especially useful in vascular cognitive impairment where 

cerebrovascular disease is believed to be the primary cause of the disease and the lesion load 

is thought to reflect the severity of disease (Gorelick et al., 2011). There is growing evidence 

that controlling vascular risk factors which are the primary cause of WMHs is associated with 

decline in dementia (Langa et al., 2016). Here, quantification of WMH will be essential for 

assessing severity, for monitoring progression and response to treatment. The proposed 

https://www-clinicalkey-com.proxy3.library.mcgill.ca/#%21/search/Sim%C3%B5es%20Rita/%7B%22type%22:%22author%22%7D
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method has several advantages including robustness, not requiring any manual intervention, 

and fast computation time. Our results suggest that the proposed automated tool can provide 

fast, robust, and accurate segmentations for WMHs and holds good potential for clinical 

studies. Hence, it is particularly useful given the emergence of large MRI databases such as 

ADNI (http://www.loni.ucla.edu/ADNI/). 

http://www.loni.ucla.edu/ADNI/


Chapter 4. Performance Comparison of 10 Different Classification 

Techniques in Segmenting White Matter Hyperintensities in Aging 

Preface 

In this chapter, we extend the previous work to build an automated pipeline for 

segmenting WMHs in large multi-cite and multi-scanner datasets. To achieve this, we obtained 

manual segmentations from subjects scanned on different scanner models and with different 

protocols from the multi-center ADNI1, ADNI2, and NACC databases. We trained and validated 

10 different linear and nonlinear classifiers on the manual segmentations and compared their 

performance in detecting WMHs using various combinations of input sequences, including 

T1w+T2w+PD+FLAIR, T1w+T2+PD, T1w+FLAIR, and only T1w. Further, we made the 

WMH segmentation pipeline along with the pretrained classifiers publicly available1. 

Our results showed that Random Forests classifier has the best performance in detecting 

WMHs in all of the experiments.  

This work has been published as: 

Dadar, M., J. Maranzano, K. Misquitta, C. J. Anor, V. S. Fonov, M. C. Tartaglia, O. T. 

Carmichael, C. Decarli, D. L. Collins, and Alzheimer's Disease Neuroimaging Initiative. 

"Performance comparison of 10 different classification techniques in segmenting white 

matter hyperintensities in aging." NeuroImage 157 (2017): 233. 

 

                                                           
1 http://nist.mni.mcgill.ca/?p=221 
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Performance Comparison of 10 Different Classification Techniques in Segmenting  

White Matter Hyperintensities in Aging 

Mahsa Dadar, Josefina Maranzano, Karen Misquitta, Cassandra J. Anor, Vladimir S. Fonov, M. 

Carmela Tartaglia, Owen T. Carmichael, Charles Decarli, D. Louis Collins, Alzheimer’s Disease 

Neuroimaging Initiative2 

 

Abstract 

Introduction: White matter hyperintensities (WMHs) are areas of abnormal signal on magnetic 

resonance images (MRIs) that characterize various types of histopathological lesions. The load 

and location of WMHs are important clinical measures that may indicate the presence of small-

vessel disease in aging and Alzheimer’s disease (AD) patients. Manually segmenting WMHs is 

time consuming and prone to inter-rater and intra-rater variabilities. Automated tools that can 

accurately and robustly detect these lesions can be used to measure the vascular burden in 

individuals with AD or the elderly population in general. Many WMH segmentation techniques 

use a classifier in combination with a set of intensity and location features to segment WMHs, 

however, the optimal choice of classifier is unknown. 

Methods: We compare 10 different linear and nonlinear classification techniques to identify 

                                                           
2 Part of the data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design 

and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A 

complete listing of ADNI investigators can be found at:  

http://adni.loni.usc.edu/wp-ontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 

 

 

 

http://adni.loni.usc.edu/wp-ontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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WMHs from MRI data. Each classifier is trained and optimized based on a set of features 

obtained from co-registered MR images containing spatial location and intensity information. 

We further assessed the performance of the classifiers using different combinations of MRI 

contrast information. The performances of the different classifiers were compared on three 

heterogeneous multi-site datasets, including images acquired with different scanners and 

different scan-parameters.  These included data from the ADC study from University of 

California Davis, the NACC database and the ADNI study. The classifiers (naïve Bayes, logistic 

regression, decision trees, random forests, support vector machines, k-nearest neighbors, 

bagging, and boosting) were evaluated using a variety of voxel-wise and volumetric similarity 

measures such as Dice Kappa similarity index (SI), Intra-Class Correlation (ICC), and sensitivity 

as well as computational burden and processing times. These investigations enable meaningful 

comparisons between the performances of different classifiers to determine the most suitable 

classifiers for segmentation of WMHs. In the spirit of open-source science, we also make 

available a fully automated tool for segmentation of WMHs with pre-trained classifiers for all 

these techniques. 

Results: Random Forests yielded the best performance among all classifiers with mean Dice 

Kappa (SI) of 0.66±0.17 and ICC=0.99 for the ADC dataset (using T1w, T2w, PD, and FLAIR 

scans), SI=0.72±0.10, ICC=0.93 for the NACC dataset (using T1w and FLAIR scans), 

SI=0.66±0.23, ICC=0.94 for ADNI1 dataset (using T1w, T2w, and PD scans) and SI=0.72±0.19, 

ICC=0.96 for ADNI2/GO dataset (using T1w and FLAIR scans). Not using the T2w/PD 

information did not change the performance of the Random Forest classifier (SI=0.66±0.17, 

ICC=0.99). However, not using FLAIR information in the ADC dataset significantly decreased 
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the Dice Kappa, but the volumetric correlation did not drastically change (SI=0.47±0.21, 

ICC=0.95).  

Conclusion: Our investigations showed that with appropriate features, most off-the-shelf 

classifiers are able to accurately detect WMHs in presence of FLAIR scan information, while 

Random Forests had the best performance across all datasets. However, we observed that the 

performances of most linear classifiers and some nonlinear classifiers drastically decline in 

absence of FLAIR information, with Random Forest still retaining the best performance.  

Keywords: White matter hyperintensities, Segmentation, Classification, Alzheimer’s Disease 

4.1. Introduction 

White matter hyperintensities (WMHs), commonly identified as areas of increased signal 

in relation with the surrounding white matter regions on T2w, PD and FLAIR MRIs, are one of 

the non-specific yet typical and constant MRI expressions of cerebral small vessel disease 

(CSVD), along with lacunar infarcts and microhemorrhages (Conklin et al., 2014; Gouw et al., 

2010). They have been shown to be more extensive in patients with Alzheimer’s disease 

compared to age-matched healthy normal populations (Yoshita et al., 2005). WMHs reflect 

ischemic injury in the elderly and AD populations and the existence and severity of WMHs can 

lead to or accelerate decline in cognitive as well as executive functions (Dubois et al., 2014). As 

a result, the location and load of WMHs are important clinical measures, raising substantial need 

for their accurate quantifications. WMHs are generally detected using fluid attenuated inversion 

recovery (FLAIR) or T2w/PD scans. Manually labeling WMHs is challenging due to time 

constraints as well as inter-rater and intra-rater variabilities (Grimaud et al., 1996). As a result, 

automated tools that can segment WMHs robustly and with high accuracy are extremely useful, 
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particularly in large scale studies such the Alzheimer's Disease Neuroimaging Initiative 

(http://www.loni.ucla.edu/ADNI/), the National Alzheimer’s Coordinating Center (NACC) 

database (https://www.alz.washington.edu/) and others where it is desired to estimate the 

contribution of neurovascular disease to cognitive decline.  

The heterogeneity in the distribution and patterns of WMHs makes the segmentation task 

intrinsically complex (Caligiuri et al., 2015). Automated segmentation tools usually integrate 

information from multiple complementary MRI contrasts including T1w, T2w, PD and FLAIR to 

reduce uncertainty and improve segmentation accuracy. Most successful fully automated WMH 

segmentation techniques extract a combination of location and intensity features from these 

images and use them as inputs to a linear or nonlinear classifier. Here we review the most 

commonly used linear and nonlinear classifiers in general as well as their application to the task 

of segmenting lesions in general or WMHs of vascular etiology specifically. 

While there have been many studies attempting to segment WMHs using these 

classification techniques, drawing meaningful comparisons between their performance is not 

possible since they have been applied to different datasets and results are highly variable across 

different populations and imaging protocols (García-Lorenzo et al., 2013; Caligiuri et al., 2015). 

To our knowledge, no studies have compared the performance of these classification techniques 

for detecting WMHs against one another on the same datasets, especially for cases where 

classification is attempted without using the optimal FLAIR information. In this paper, we have 

extensively compared the performance of these different classification techniques in detecting 

WMHs with and without FLAIR information using 3 different large publicly available datasets 

with different scanners and acquisition protocols. This enables us to draw more generalizable 

conclusions regarding the performance of the classifiers. Our contributions include an extensive 

http://topics.sciencedirect.com/topics/page/Alzheimer%27s_disease
http://www.loni.ucla.edu/ADNI/
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comparison of 10 widely used classification techniques in detecting WMHs across 4 different 

datasets, three of which are from multi-site and multi-scanner studies and across different 

combinations of imaging modalities.  In addition, we make publicly available an implementation 

of the segmentation tool along with all the pre-trained classifiers 

(http://nist.mni.mcgill.ca/?p=221). The proposed tool is generalizable to data from different 

scanners since it has been trained on data from multiple scanners. 

4.2. Materials and methods 

4.2.1. Subjects 

The performances of the different classifiers were assessed based on four datasets of subjects 

with different ranges of WMH loads. Table 4.1 shows the demographic information for each 

dataset. 

(i) ADC: This dataset consists of 70 individuals (70-90 years old) with normal cognition, 

mild cognitive impairment (MCI), and AD dementia from University of California, 

Davis Alzheimer’s Disease Center (ADC) who were scanned using T1w, double-echo 

T2w/PD, and FLAIR MRI modalities.  

(ii) NACC: This dataset consists of a patient sample of 32 MCI and AD subjects obtained 

from the National Alzheimer’s Coordinating Center (NACC) database which is a 

database of subjects with a range of cognitive status, i.e. normal cognition, MCI, and 

demented who received T1w, and FLAIR MRI scans 

(https://www.alz.washington.edu/). Data consisted of variables from a Uniform Data 

Set collected from more than 30 Alzheimer’s disease centers (ADC) throughout the 

http://nist.mni.mcgill.ca/?p=221
https://www.alz.washington.edu/)
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United States and cataloged at the NACC. ADCs are National Institute on Aging–

funded centers that enroll patients using different participation recruiting practices. A 

full description of the NACC data set has been previously provided (Beekly et al., 

2004; Morris et al., 2006). NACC data used here has been acquired at six different 

ADCs using eight different scanner models of three different manufacturers. Subjects 

were selected to have low, medium, and large WMH loads. 

ADNI: Data used in the preparation of this article were obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched 

in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer’s disease (AD). 

(iii) ADNI1: This dataset consists of T1w, T2w, and PD scans of 53 subjects from ADNI1 

study. Despite the fact that all subjects had to have Hachinski Ischemic Score of less 

than or equal to 4 as part of the inclusion criteria (Petersen et al., 2010), we found 

many subjects that had high WMH loads. Subjects were selected from different sites 

and scanners and a preliminary assessment was performed to evaluate their WMH 

load with the goal of acquiring subjects with different scanner information as well as 

different loads of WMHs. For each scanner model, we selected datasets that had low, 

medium and high lesion loads. Approximately equal number of male and female 

subjects were selected. The age of the subjects was also considered for the selection, 

with the aim of achieving a normal distribution.  
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(iv) ADNI2/GO: This dataset consists of T1w and FLAIR scans of 46 subjects from 

ADNI2/GO studies. Subject selection criteria were the same as ADNI1. 

 

Table 4.1. Demographic information for ADC, NACC, ADNI1 and ADNI2/GO datasets. 

Dataset ADC NACC ADNI1 ADNI2/GO 

N 70 32 53 46 

Sex 35 M 15 M 27 M 25 M 

Age 78.0±7.3 74.9±8.0 75.7±6.6 74.1±6.5 

 

4.2.2. MR imaging 

Table 4.2 summarizes the scanner information as well as the MR imaging parameters for 

each of the datasets. 

 

Table 4.2. Scanner information and MRI acquisition parameters for ADC, NACC, ADNI1, and ADNI2/GO datasets. 

Modality Dataset ADC NACC ADNI1 ADNI2/GO 

 
Scanner 

Manufacturer 

GE MS 

Philips MS 
GE MS 

GE MS 

Philips MS 

SIEMENS 

Philips MS 

SIEMENS 

T1w 

Slice thickness (mm) 1.5 1.5 1.2 1.2 

No. of slices 128 124 160 196 

Field of view (cm2) 250×250 256×256 192×192 256×256 

Scan Matrix (cm2) 256×256 256×256 192×192 256×256 

TR: Repetition time (ms) 9 9 3000 7.2 

TE: Echo time (ms) 2.9 1.8 3.55 3.0 

Pulse Sequence FSPGR FSPGR MPRAGE GR 

Other 

Contrast FLAIR FLAIR T2w/PD FLAIR 

Slice thickness (mm) 3 3 3 5 

No. of slices 48 48 56 42 

Field of view (cm2) 220×220 256×256 256×256 256×256 

Scan Matrix (cm2) 256×192 256×256 256×256 256×256 

TR: Repetition time (ms) 11000 11002 3000/3000 11000 

TE: Echo time (ms) 144 147 95.2/10.5 150 

Pulse Sequence FSE Obl FSE SE/IR 
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4.2.3. Manual segmentation 

In ADC, NACC, and ADNI2/GO datasets, the WMHs were manually segmented by 

experts with FLAIR used as the primary contrast and the other image contrasts used to aid in the 

decision process to include or exclude a voxel from the lesion mask. For the ADNI1 dataset, 

T2w was used as the primary contrast. All WMH masks were created fully manually, without 

using any thresholding technique. ADC, ADNI1 and ADNI2/GO datasets were scored by JM, an 

MD with training in general radiology, and specialized in MRI imaging methods of quantifying 

WM pathologies in MS and AD. JM has more than 12 years of experience in reading MRI and 

developing standardized MRI guidelines to detect WM lesions using different image modalities 

(Maranzano et al., 2016). The lesions were fully manually traced using the interactive software 

package Display, part of the MINC Tool Kit (https://github.com/BIC-MNI) developed at the 

McConnell Brain Imaging Center of the Montreal Neurological Institute. The program allows 

simultaneous viewing and segmentation in the coronal, sagittal and axial planes, and cycling 

between each image volume. The image volumes were co-registered so that, when assessing a 

given voxel or region and switching from one contrast to another (e.g. T1w to FLAIR), the rater 

can assess the intensity signal of the same region of the brain on each contrast. In the NACC 

dataset, images were similarly segmented by two raters that had previously received training to 

segment WMHs, and ascertained by an expert neurologist. The between rater agreement was 

verified (Dice Kappa=0.70). All the manual raters were also asked to segment 3 scans with low 

(<5cm3), medium (5-20 cm3), and high (>20 cm3) WMH loads a second time without consulting 

the initial segmentations. Table 4.3 shows the intra-rater Dice Kappa obtained from these 

segmentations as well as WMH volume information for each dataset. Figure 4.1 shows examples 

https://github.com/BIC-MNI
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of the available contrasts as well as the manual labels for each dataset. 

 

Table 4.3. Intra-rater mean Dice Kappa, range of WMHLs, and number (N) of subjects with low (<5cm3), medium 

(5-20cm3), and high (>20cm3) WMHLs for manual segmentations of WMHs in different datasets. WMHL= White 

Matter Hyperintensity Load. 

Dataset ADC NACC ADNI1 ADNI2/GO 

Dice Kappa 0.72 0.78 0.80 0.86 

WMHL Range 

(cm3) 

0.2-148.6 0.2-109.0 0.0-119.3 0.2-63.0 

𝑁𝑊𝑀𝐻𝐿<5𝑐𝑚3
 36 6 14 16 

𝑁5𝑐𝑚3<𝑊𝑀𝐻𝐿<20𝑐𝑚3  23 11 10 11 

𝑁𝑊𝑀𝐻𝐿>20𝑐𝑚3  11 12 27 18 

 

Fig. 4.1. Axial slices comparing manual segmentations and T1w, T2w, PD, and FLAIR information for subjects from 

ADC, NACC, ADNI1, and ADNI2 datasets. Yellow color indicates regions labeled as WMH in manual 

segmentations. 
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4.2.4. Pre-processing 

All the images were preprocessed using our standard pipeline from MINC toolkit, 

publicly available at https://github.com/BIC-MNI/minc-tools (Aubert-Broche et al., 2013) 

through three steps: I) Image noise reduction using mincnlm tool (Coupe et al., 2008), II) 

Correction of image intensity non-uniformity using nu_estimate tool (Sled et al., 1998) and III) 

Normalization of image intensity into range (0-100) using an intensity histogram matching 

algorithm (volume_pol tool). The T1w, T2w, PD, and FLAIR images were linearly co-registered 

using a 6 parameter rigid registration (Collins et al., 1994). The T1w images were linearly and 

then nonlinearly registered to an average template (Collins and Evans, 1997) created based on 

data from the ADNI1 study (Fonov et al., 2011b; Fonov et al., 2011a), enabling the use of 

anatomical priors in the segmentation process. Brain extraction was performed on the linearly 

registered T1w images as part of the standard pipeline (Aubert-Broche et al., 2013).  

 4.2.5. Features 

The classical features that are most commonly used in lesion segmentation tasks are the 

intensity of the voxel in each MRI contrast (García-Lorenzo et al., 2013). Here, these classical 

features as well as a variety of intensity and spatial features were used to train the classifiers. 

These features have been previously validated and verified to be informative in detecting 

WMHs. The rationale behind the selection of the suggested feature set as well as the contribution 

of each of the features has been described in more detail in an earlier work (Dadar et al., 2017a). 

(i) Voxel intensity from T1w, T2w, PD, and FLAIR images. 

https://github.com/BIC-MNI/minc-tools
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(ii) Average voxel intensity of non-WMH tissue from T1w, T2w, PD, and FLAIR 

images for the specific voxel location obtained from averaging non-WMH voxels 

of the training subjects in stereotaxic space. Since datasets were selected to 

include subjects with very small WMH loads, there were at least several subjects 

in each training set that had no WMHs in each specific voxel location. The 

average intensity of non-WMH tissue feature was calculated using data from 

these subjects.  

(iii) Probability of voxel being a lesion (PWMH) obtained by creating a probability 

distribution function (PDF) based on the intensity histogram of the WMH labels 

from manually segmented training data across all WMH voxels. 

(iv) Probability of voxel being healthy tissue (PH) obtained by creating a PDF of Non-

WMH voxels from manually segmented training data across all non-WMH 

voxels. 

(v) Ratio of PH / PWMH 

(vi) Spatial WMH probability map created by averaging the WMH maps from the 

training dataset. 

(vii) Ratio of T2w/T1w, PD/T1w, FLAIR/T1w. 

The WMH segmentations were performed in the native space of the primary image 

contrast, i.e. T2w for ADNI1 and FLAIR for ADC, NACC, and ADNI2/GO datasets to avoid the 

blurring caused by resampling of the primary image contrast. To achieve this, all images were 

non-linearly transformed to the ADNI template space, and all the priors and averages were 

calculated in this stereotaxic space and then registered back and resampled in the native space 

using the inverse nonlinear transformations. The final segmentations were performed using the 
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features in the native space of the image with optimal contrast. Therefore, the image with 

optimal contrast is not resampled, and only a 6-parameter rigid transformation is applied to the 

other co-registered contrasts (as opposed to other techniques where the nonlinearly registered 

images are used for segmentation). Figure 4.2 illustrates a flow-chart of the preprocessing, 

registration, and feature selection steps of the pipeline. 

 

Fig. 4.2. Flow-chart of the preprocessing, registration, and feature selections steps. WMH-MM= White Matter 

Hyperintensity Manual Mask. 
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4.2.6. Classification Methods 

In a binary classification setting, a classifier is a function that maps a set of input feature 

vectors 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇  from feature space X to an output class label set 𝑦  in 𝑌 = {0,1}. 

Here, we select and compare supervised methods as unsupervised techniques have been shown to 

be less robust, dependent on initialization, and do not necessarily arrive at meaningful 

segmentations (Clarke et al., 1995).  Specifically for the task of WMH segmentation, supervised 

methods generally outperform unsupervised techniques  (Anbeek et al., 2004; Caligiuri et al., 

2015).  

 

Naive Bayes 

Naïve Bayes classifiers are a family of probabilistic classifiers that have been used for 

many simple classification tasks (Lewis, 1998). Naïve Bayes is a probabilistic classifier that 

returns the label that maximizes the posterior probability 𝑝(𝑦|𝑥)  as the output, with the 

underlying assumption that given the class label, all the features are conditionally independent 

 𝑎𝑟𝑔 𝑚𝑎𝑥𝑦 𝑝(𝑦|𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑦
𝑝(𝑦) ∏ 𝑝(𝑥𝑖|𝑦)𝑛

𝑖=1

𝑝(𝑥)
= 𝑎𝑟𝑔 𝑚𝑎𝑥𝑦 𝑝(𝑦) ∏ 𝑝(𝑥𝑖|𝑦)𝑛

𝑖=1  

Naïve Bayes classifiers have previously been used to segment diabetic retinopathy lesions (Köse 

et al., 2012). 

Discriminant Analysis 

Linear and Quadratic Discriminant Analysis methods (LDA and QDA) are 

generalizations of Fisher’s linear discriminant method that can be used for performing 
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classification (Fisher, 1936;  McLachlan, 2004). Using the assumption that the conditional 

probability density functions of the classes are normally distributed with identical covariance, i.e. 

𝑝(𝑥|𝑦 = 𝑘) =
1

(2𝜋)𝑛|Σ|
1

2⁄
𝑒𝑥𝑝(− 1

2⁄ (𝑥 − 𝜇𝑘)𝑡Σ−1(𝑥 − 𝜇𝑘))                     𝑘𝜖{0,1} 

LDA predicts input vector 𝑥 as belonging to a class 𝑦 based on the log likelihood ratio  

𝑙𝑛
𝑝(𝑦=1|𝑥)

𝑝(𝑦=0|𝑥)
 . QDA is similar to LDA, without the identical covariance assumption.  

𝑝(𝑥|𝑦 = 𝑘) =
1

(2𝜋)𝑛|Σ𝑘|
1

2⁄
𝑒𝑥𝑝(− 1

2⁄ (𝑥 − 𝜇𝑘)𝑡Σ𝑘
−1(𝑥 − 𝜇𝑘))                     𝑘𝜖{0,1} 

Amato et al. proposed a non-parametric discriminant analysis technique for segmenting 

MS lesions (Amato et al., 2003). Akselrod-Ballin et al. have used LDA technique along with 

Random Forests to segment MS lesions (Akselrod-Ballin et al., 2009). 

Logistic Regression 

The idea of logistic regression was introduced by Cox with the purpose of estimating a 

binary response based on a set of independent features (Cox, 1958). The Logistic regression 

classifier models 𝑝(𝑦|𝑥) as a logistic function ℎ𝜃(𝑥) =
1

1+𝑒−𝜃𝑇𝑥
 and estimates the error using a 

cumulative logistic distribution function. 

𝐸(𝜃) =
1

𝑚
∑(−𝑦𝑖 log(ℎ𝜃(𝑥𝑖)) − (1 − 𝑦𝑖) log(1 − ℎ𝜃(𝑥𝑖)))

𝑚

𝑖=1

 

Sánchez et al. used a logistic regression classifier for automatic detection of micro-aneurysms in 

retinal images (Sánchez et al., 2009). 
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Decision Trees 

The idea of performing induction using decision trees was first proposed by Hunt et al. 

(Hunt et al., 1966) and later developed by Quinlan for classification tasks (Quinlan, 1986). 

Decision tree classifiers map the feature vector 𝑥 to conclusions about the target value 𝑦 using a 

tree structure in which the leaves represent class labels y and the nodes represent partitionings of 

feature 𝑥 that lead to these class labels. The decision tree is generally constructed in 2 phases: 1) 

A recursive, top-down procedure “grows” a tree to fit the training data. 2) A “pruning” phase to 

avoid overfitting. Decision tree classifiers have since been used for tissue classification (Chao et 

al., 2009) and lesion segmentation in Multiple Sclerosis (MS) (Kamber et al., 1992) (Kamber et 

al., 1995). 

Random forests 

Initially introduced by Breiman (Breiman, 2001), Random decision forests perform 

classification and regression by constructing a multitude of independent decision trees and using 

the mode or mean of their predictions as the final output for classification or regression tasks, 

respectively. They have since been widely used for lesion segmentation in MS (Geremia et al., 

2011; Maier et al., 2015;  Mitra et al., 2014; Akselrod-Ballin et al., 2009) as well as for WMH 

segmentation in aging and AD populations (Ithapu et al., 2014).  

K-nearest neighbors 

The K-nearest neighbours (KNN) is a non-parametric instance based algorithm developed 

by Altman for classification and regression (Altman, 1992). The KNN classifier uses majority 

voting between the labels for the K closest data points in the feature space in the training data to 
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assign a label to the new unseen test data. The distance metric used for determining the closest 

data points is generally the Euclidian distance for continuous variables or Hamming distance for 

discrete variables. Due to its simplicity, it has been popular for various applications including 

segmentation of MS lesions (Wu et al., 2006b) and WMHs (Anbeek et al., 2004). 

Support Vector Machines 

The idea of performing nonlinear classification using support vector machines (SVMs) 

was introduced by Boser et al. (Boser et al., 1992). SVMs perform classification by finding a 

maximum-margin hyperplane that separates the two classes while maximizing the distance 

between the nearest point from either class. SVMs have been widely used for lesion 

segmentation tasks in MS populations (Ferrari et al., 2003; Abdullah et al., 2011) as well as for 

WMH segmentation in aging and AD populations (Ithapu et al., 2014; Quddus et al., 2005).  

Bagging 

Bootstrap aggregating, also called bagging, is a model averaging technique initially 

introduced by Brieman et al. with the purpose of improving stability and reducing variance 

(Breiman, 1996). Bagging is an ensemble method that builds multiple classifiers such as decision 

trees by uniformly sampling the training data with replacement, and voting, to output a 

consensus prediction. Madabhushi used bagging for detecting prostatic adenocarcinoma from 

high resolution MR images (Madabhushi et al., 2006).  

AdaBoost 

Adaptive Boosting or AdaBoost was developed by Freund and Schapire (Freund et al., 
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1999). AdaBoost performs classification by aggregating the outputs of other learning algorithms 

(also called weak learners) into a weighted sum that represents the final output of the boosted 

classifier. The subsequent weak learners are tweaked in favor of the instances that were 

misclassified by previous classifiers to improve classification accuracy. It has been used for MS 

lesion segmentation (Wels et al., 2008), interactive lesions segmentation (Li et al., 2007), as well 

as segmentation of WMHs  (Quddus et al., 2005; Ghafoorian et al., 2016a). 

For all classification tasks, the Scikit-learn Python library implementations were used 

(Pedregosa et al., 2011). For Naïve Bayes, LDA, QDA, SVM, and Decision Tree classifiers, the 

default settings were used. For KNN, 10 neighbours were used. For Bagging, KNN classifiers 

were used with the default parameters. For AdaBoost and Random Forests classifiers, 100 

estimators were used.  Ten-fold cross validation across subjects was used to train and validate the 

performance of the classifiers; i.e. no voxels from subjects used for validation were used in 

training and feature selection stages. It is worthwhile noting that the spatial WMH probability 

maps, average intensities, and PWMH and PH were also calculated through the cross-validation to 

avoid any overfitting (no data used in testing was used to generate the priors). All the 

segmentations were performed in the native space for the optimal primary modality to avoid 

resampling and further blurring of the lesion borders. To achieve this, all the priors and averages 

were first calculated in the stereotaxic template space and then registered back and recalculated 

in the native space using the inverse nonlinear transformations. 

4.2.7. Evaluation metrics 

There is no single similarity measure that can perfectly reflect the level of agreement 

between WMH segmentation maps. While Dice Kappa similarity measure (Dice, 1945) is the 
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most commonly used, the Kappa values are highly dependent on the WMH loads and lesion 

sizes. To address this, the mean Dice Kappa values are generally reported for different ranges of 

WMH loads, i.e. small (<5 cm3), medium (5-20 cm3), and large (>20 cm3) separately (Admiraal-

Behloul et al., 2005; Griffanti et al., 2016; Schmidt et al., 2012; Simões et al., 2013; Steenwijk et 

al., 2013; Dadar et al., 2017a). In this study, while Dice Kappa was used as the primary 

similarity measure for validation of the classifiers, other similarity measures such as the two-way 

mixed single measures with absolute agreement intra-class correlation coefficient (ICC) for the 

total WMH loads to assess the volumetric correspondence between the manual and automatic 

segmentations (Koch, 1982), true positive rate (TPR), positive prediction value (PPV), outline 

error rate (OER) measuring agreement of the raters in outlining of the same lesion (Wack et al., 

2012), and detection error rate (DER) measuring agreement in detecting the same regions (Wack 

et al., 2012) are reported to facilitate comparison with previously published papers. Table 4 

shows the list of these metrics along with their definitions. 

Table 4.4. List of similarity measures and their definitions. The metrics are listed in the table below using the 

following abbreviations: true positive (TP), true negative (TN), false positive (FP), false negative (FN), true positive 

rate (TPR), Mean Square Within samples based upon the anova (MSW), Mean Square F Statistic Regression Slope 

(MSR). 𝐶𝑅1, 𝐶𝑅2, and 𝐶12 represent region from only rater 1, region from only rater 2, and the combination of both 

raters, respectively.  |𝑐𝑟| represents area of the connected region, 𝑐𝑟 ∈ 𝐶𝑅1 𝑜𝑟 𝐶𝑅2 represents the set of connected 

regions that can be labeled either as 𝐶𝑅1or 𝐶𝑅2. |𝑅1(𝑐𝑟)|, |𝑅2(𝑐𝑟)|  represent the areas of rater 1 and rater 2 regions 

within 𝑐𝑟, respectively (Wack et al., 2012). 

Name Dice Kappa Intra-class 

correlation 

Sensitivity Outline Error Rate Detection Error 

Rate 
Abbreviation SI ICC TPR OER DER 

Equation 2 × 𝑇𝑃

𝐹𝑃 + 𝐹𝑁 + 2 × 𝑇𝑃
 

𝑀𝑆𝑅 − 𝑀𝑆𝑊

𝑀𝑆𝑅 + 𝑀𝑆𝑊
 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 ∑ |𝑐𝑟| − |𝑅1(𝑐𝑟) ∩ 𝑅2(𝑐𝑟)|

𝑐𝑟∈𝐶12

 ∑ |𝑐𝑟|

𝑐𝑟∈𝐶𝑅1 𝑜𝑟 𝐶𝑅2
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4.3. Results 

4.3.1. Segmentation using T1w, T2w, PD, and FLAIR  

The performance of each classifier was validated through 10-fold cross validation using 

T1w, T2w, PD, and FLAIR images for the ADC dataset. All voxels within a brain mask that 

contained the cerebrum, cerebellum and brain stem were classified.  Table 4.5 shows the average 

Dice Kappa, detection/outline error rates (DER/OER), ICC, TPR, and PPV values for different 

classifiers. Figure 3 shows boxplot diagrams for the same results separately for subjects with 

small, medium and large WMH loads. Figure 4.4 shows the manual and automatic segmentation 

results of different classifiers on axial slices of one subject. To assess the statistical significance 

of the results, paired t-tests were performed on the Dice Kappa values of all pairs of classifier 

comparisons, and p-values were corrected for multiple comparisons using false discovery rate 

(FDR). Figure 4.5 shows the negative logarithm of the FDR corrected p-values. 

Table 4.5. Comparison between mean Dice Kappa, detection/outline error rate (DER/OER), intra-class correlation 

(ICC), true positive rate (TPR), and positive prediction value (PPV) values of different classifiers for segmentation 

of WMHs using T1w, T2w, PD and FLAIR data in the ADC dataset. Blue color indicates the best performance in 

terms of SI. 

Dataset SI DER OER ICC TPR PPV 

Naïve Bayes 0.32±0.27 0.53±0.34 0.82±0.21 0.27 0.23 0.96 

Logistic 

Regression 

0.57±0.22 0.32±0.36 0.54±0.14 0.97 0.65 0.57 

LDA 0.56±0.23 0.41±0.38 0.46±0.20 0.88 0.48 0.83 

QDA 0.36±0.26 0.55±0.36 0.74±0.17 0.44 0.26 0.96 

KNN 0.66±0.17 0.18±0.18 0.52±0.18 0.99 0.73 0.65 

Decision Trees 0.57±0.18 0.27±0.28 0.58±0.18 0.96 0.58 0.62 

Random Forests 0.66±0.17 0.16±0.15 0.53±0.19 0.99 0.73 0.64 

Bagging 0.63±0.19 0.21±0.26 0.57±0.03 0.99 0.75 0.58 

SVM 0.57±0.24 0.32±0.42 0.54±0.11 0.98 0.66 0.60 

AdaBoost 0.63±0.20 0.21±0.24 0.53±0.10 0.98 0.70 0.65 
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Fig. 4.3. Dice Kappa (SI) for different classification methods for (<5 cm3, left), medium (5-20 cm3, middle), and 

high (>20 cm3, right) WMH load using T1w, T2w, PD, and FLAIR information for the ADC dataset. 

 

Fig. 4.4. Axial slices comparing manual and automatic segmentations using T1w, T2w, PD, and FLAIR information 

for a subject from ADC dataset. Yellow color indicates regions labeled as WMH in both manual and automatic 

segmentations, blue color indicates regions only segmented by the automatic technique, and red color indicates 

regions only segmented by the manual rater. 



124 

 

 

Fig. 4.5. Negative logarithm of FDR corrected p-values of paired t-tests between Dice Kappa values of classifier 

pairs. Values higher than 1.3 are statistically significant. 

 4.3.2. Segmentation using T1w and FLAIR data 

The performance of each classifier was validated through 10-fold cross validation using 

T1w and FLAIR images for the ADC, NACC, and ADNI2/GO datasets (recall that ADNI1 does 

not have FLAIR data). Table 4.6 shows the average Dice Kappa and detection/outline error rate 

(DER/OER) values for different classifiers. Table 4.7 shows corresponding ICC, TPR, and PPV 

values. Figure 4.6 shows boxplot diagrams for the same results separately for subjects with 

small, medium and large WMH loads. Figure 4.7 shows the manual and automatic segmentation 

results of different classifiers on axial slices of one subject. Figure 4.8 shows the negative 

logarithm of the FDR corrected p-values of t-tests on Dice Kappa values of different classifier 

pairs. To assess the contribution of T2w+PD features in the performance of different classifiers, 

paired t-tests were performed between the Dice Kappa values of the segmentations based on 

T1w+T2w+PD+FLAIR and T1w+FLAIR in the ADC dataset. The “*” in Table 4.7 indicates the 

significant differences between the two segmentations, after correction for multiple comparisons 

using FDR. The performance of Naïve Bayes, QDA, and Bagging has significantly dropped 
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without using FLAIR information. 

Table 4.6. Comparison between mean Dice Kappa and detection/outline error rate (DER/OER) values of different 

classifiers for segmentation of WMHs using T1w and FLAIR data in the ADC, NACC, and ADNI2/GO datasets. 

Blue color indicates the best performance in terms of SI. 

Dataset ADC NACC ADNI2/GO 

Measure SI DER OER SI DER OER SI DER OER 

Naïve Bayes 0.42±0.25* 0.34±0.27 0.82±0.30 0.50±0.21 0.34±0.20 0.65±0.25 0.50±0.29 0.35±0.26 0.65±0.39 

Logistic 

Regression 

0.56±0.18 0.27±0.24 0.61±0.19 0.65±0.13 0.13±0.13 0.58±0.18 0.64±0.20 0.19±0.25 0.52±0.22 

LDA 0.58±0.19 0.35±0.33 0.49±0.17 0.69±0.13 0.15±0.15 0.50±0.19 0.60±0.23 0.15±0.17 0.66±0.37 

QDA 0.42±0.23* 0.44±0.32 0.73±0.22 0.54±0.21 0.39±0.25 0.54±0.20 0.51±0.29 0.40±0.29 0.57±0.34 

KNN 0.65±0.16 0.18±0.18 0.51±0.18 0.71±0.13 0.09±0.09 0.49±0.21 0.72±0.18 0.14±0.21 0.42±0.20 

Decision Trees 0.58±0.16 0.25±0.25 0.58±0.14 0.65±0.12 0.16±0.16 0.54±0.14 0.65±0.22 0.21±0.28 0.49±0.21 

Random Forests 0.66±0.14 0.18±0.18 0.50±0.16 0.72±0.10 0.09±0.10 0.46±0.16 0.72±0.19 0.14±0.21 0.42±0.22 

Bagging 0.14±0.16* 0.27±0.28 0.63±0.27 0.69±0.13 0.10±0.11 0.51±0.21 0.69±0.17 0.14±0.22 0.46±0.21 

SVM 0.56±0.24 0.31±0.37 0.56±0.26 0.67±0.13 0.09±0.08 0.56±0.22 0.68±0.22 0.19±0.28 0.46±0.28 

AdaBoost 0.65±0.15 0.18±0.18 0.50±0.17 0.72±0.11 0.09±0.11 0.46±0.16 0.71±0.20 0.14±0.21 0.43±0.23 

 

Table 4.7. Comparison between intra-class correlation (ICC), true positive rate (TPR), and positive prediction value 

(PPV) values of different classifiers for segmentation of WMHs in different datasets using T1w and FLAIR data for 

ADC, NACC, and ADNI2/GO datasets. Blue color indicates the best performance in terms of SI. 

Dataset ADC NACC ADNI2/GO 

Measure ICC TP

R 

PP

V 

ICC TP

R 

PP

V 

ICC TP

R 

PP

V 
Naïve Bayes 0.81 0.31 0.93 0.45 0.38 0.89 0.54 0.41 0.91 

Logistic 

Regression 

0.98 0.73 0.48 0.85 0.78 0.59 0.86 0.70 0.70 

LDA 0.98 0.56 0.65 0.92 0.78 0.63 0.80 0.63 0.71 

QDA 0.77 0.30 0.94 0.53 0.42 0.91 0.57 0.41 0.95 

KNN 0.99 0.76 0.60 0.94 0.80 0.69 0.96 0.74 0.78 

Decision Trees 0.99 0.62 0.58 0.94 0.67 0.69 0.96 0.65 0.76 

Random Forests 0.99 0.62 0.58 0.93 0.79 0.71 0.96 0.72 0.80 

Bagging 0.16 0.63 0.09 0.89 0.83 0.63 0.91 0.76 0.70 

SVM 0.95 0.70 0.56 0.90 0.83 0.60 0.95 0.67 0.79 

AdaBoost 0.99 0.73 0.63 0.94 0.78 0.72 0.96 0.71 0.81 
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Fig. 4.6. Dice Kappa (SI) for different classification methods for low (<5 cm3, left), medium (5-20 cm3, middle), and 

high (>20 cm3, right) WMH load using T1w and FLAIR information for ADC (red), NACC (black), and ADNI2/GO 

(magenta) datasets. 

 

 

Fig. 4.7. Axial slices comparing manual and automatic segmentations using T1w and FLAIR information in one 

subject from each of ADC, NACC, and ADNI2/GO datasets. Yellow color indicates regions labeled as WMH in 

both segmentations, blue color indicates regions only segmented by the automatic technique, and red color indicates 

regions only segmented by the manual rater. 
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Fig. 4.8. Negative logarithm of FDR corrected p-values of paired t-tests between Dice Kappa values of classifier 

pairs. Values higher than 1.3 are statistically significant. 

4.3.3. Segmentation using T1w, T2w, and PD data 

While FLAIR scans have the optimal contrast for differentiating WMHs from normal 

appearing white matter (Barkhof and Scheltens, 2002; Alexander et al., 1996; Bakshi et al., 

2001), many studies forgo acquisition of FLAIR images in favour of other modalities. In order to 

take advantage of large studies such as ADNI1 that do not have FLAIR, segmentation methods 

that can provide accurate segmentation results without using the optimal FLAIR contrast are 

highly advantageous. A relatively easier task (in comparison to using FLAIR) is to segment 

WMHs from T1w, T2w, and PD or T1w, and T2w images. While segmenting WMHs solely 

from T1w images with high accuracy proves to be extremely difficult, being able to obtain an 

estimate of the WMH load that is significantly correlated with the actual loads can still be useful.  

To address the first challenge, we trained and validated the performance of the classifiers 

using the features obtained from T1w, T2w, and PD images from the ADC and ADNI1 datasets. 

Table 8 shows the mean Dice Kappa, detection/outline error rates (DER/OER), and the 

corresponding ICC, TPR, and PPV values for each classifier and dataset, respectively. Figure 4.9 

shows the corresponding boxplot diagrams for these results separately for subjects with small, 
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medium and large WMH loads. Figure 4.10 shows the segmentation results on the axial slices for 

different classifiers and datasets. Figure 4.11 shows the negative logarithm of the FDR corrected 

p-values of t-tests on Dice Kappa values of different classifier pairs. To assess the contribution of 

FLAIR features in the performance of different classifiers, paired t-tests were performed between 

the Dice Kappa values of the segmentations based on T1w+T2w+PD+FLAIR and 

T1w+T2w+PD in the ADC dataset. The “*” symbol in Table 4.8 indicates the significant 

differences between the two segmentations, after correction for multiple comparisons using 

FDR. The performance of all classifiers has significantly dropped without using FLAIR 

information. 

Table 4.8. Comparison between mean Dice Kappa (SI), detection/outline error rate (DER/OER), intra-class 

correlation (ICC), true positive rate (TPR), and positive prediction value (PPV) values of different classifiers for 

segmentation of WMHs using T1w, T2w, and PD data, ADC and ADNI1 datasets. Blue color indicates the best 

performance in terms of SI. 

Dataset ADC ADNI1 

Measure SI DER OER ICC TPR PPV SI DER OER ICC TPR PPV 

Naïve Bayes 0.17±0.17* 0.88±0.39 0.77±0.32 0.10 0.11 0.84 0.34±0.22 0.73±0.33 0.59±0.32 0.09 0.24 0.89 

Logistic 

Regression 

0.09±0.14* 1.26±0.73 0.55±0.55  0.46 0.24 0.06 0.44±0.23 0.38±0.48 0.73±0.33 0.68 0.65 0.39 

LDA 0.28±0.21* 0.08±0.05 1.35±0.42 0.45 0.24 0.66 0.48±0.28 0.08±0.27 0.96±0.55 0.62 0.46 0.73 

QDA 0.13±0.13* 0.63±0.38 1.11±0.37 0.08 0.08 0.90 0.31±0.21 0.64±0.34 0.74±0.31 0.12 0.20 0.93 

KNN 0.28±0.24* 0.77±0.68 0.66±0.34 0.69 0.44 0.22 0.59±0.23 0.26±0.37 0.57±0.28 0.74 0.67 0.58 

Decision Trees 0.38±0.20* 0.55±0.47 0.69±0.19 0.93 0.38 0.44 0.57±0.25 0.30±0.41 0.56±0.25 0.94 0.57 0.67 

Random Forests 0.47±0.21* 0.36±0.34 0.69±0.21 0.95 0.60 0.42 0.66±0.23 0.18±0.33 0.50±0.27 0.94 0.67 0.71 

Bagging 0.17±0.18* 0.88±0.70 0.77±0.46 0.37 0.51 0.11 0.54±0.22 0.22±0.38 0.70±0.33 0.59 0.75 0.47 

SVM 0.31±0.21* 0.62±0.54 0.76±0.31 0.65 0.48 0.31 0.61±0.24 0.18±0.33 0.61±0.37 0.83 0.62 0.70 

AdaBoost 0.44±0.21* 0.43±0.47 0.69±0.21 0.93 0.53 0.42 0.64±0.24 0.18±0.33 0.55±0.34 0.94 0.66 0.73 
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Fig. 4.9. Dice Kappa (SI) for different classification methods for low (<5 cm3, left), medium (5-20 cm3, middle), and 

high (>20 cm3, right) WMH load using T1w, T2w, and PD information for ADC (red) and ADNI1 (blue) datasets. 

 

Fig. 4.10. Axial slice comparing manual and automatic segmentations using T1w, T2w, and PD information for a 

subject from each of ADC and ADNI1 datasets. Yellow color indicates regions labeled as WMH in both 

segmentations, blue color indicates regions only segmented by the automatic technique, and red color indicates 

regions only segmented by the manual rater. 
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Fig. 4.11. Negative logarithm of FDR corrected p-values of paired t-tests between Dice Kappa values of classifier 

pairs. Values higher than 1.3 are statistically significant. 

4.3.4. Segmentation using T1w, and T2w data 

Many studies forgo acquisition of PD images in favour of acquiring a higher resolution 

T2w image. Here we assess the performance of the classifiers without using PD images. Table 

4.9 shows the mean Dice Kappa and detection/outline error rates (DER/OER), and the 

corresponding ICC, TPR, and PPV values for each classifier and dataset, respectively. Figure 

4.12 shows the corresponding boxplot diagrams for these results separately for subjects with 

small, medium and large WMH loads. Figure 4.13 shows the segmentation results on the axial 

slices for different classifiers and datasets. Figure 4.14 shows the negative logarithm of the FDR 

corrected p-values of t-tests on Dice Kappa values of different classifier pairs. To assess the 

contribution of PD feature in the performance of different classifiers, paired t-tests were 

performed between the Dice Kappa values of the segmentations based on T1w+T2w+PD and 

T1w+T2w in ADC, and ADNI1 datasets. The “*” symbols in Table 4.9 indicate the significant 

differences between the two segmentations, after correction for multiple comparisons using 

FDR. No classifier has performed significantly worse after removing PD features for either 

dataset. 
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Table 4.9. Comparison between mean Dice Kappa (SI), detection/outline error rate (DER/OER), intra-class 

correlation (ICC), true positive rate (TPR), and positive prediction value (PPV) values of different classifiers for 

segmentation of WMHs using T1w, and T2w data – ADC and ADNI1 datasets. Blue color indicates the best 

performance in terms of SI. 

Dataset ADC ADNI1 

Measure SI DER OER ICC TPR PPV SI DER OER ICC TPR PPV 

Naïve Bayes 0.25±0.22 0.59±0.37 0.68±0.41 0.37 0.18 0.79 0.43±0.26 0.51±0.30 0.62±0.38 0.51 0.33 0.87 

Logistic Regression 0.16±0.16 0.62±0.70 0.71±0.47 0.43 0.42 0.12 0.42±0.25 0.38±0.51 0.78±0.40 0.79 0.66 0.35 

LDA 0.28±0.21 0.08±0.23 1.08±0.55 0.46 0.24 0.66 0.48±0.28 0.08±0.28 0.96±0.55 0.61 0.46 0.72 

QDA 0.20±0.18 0.61±0.32 0.80±0.38 0.23 0.13 0.86 0.36±0.23 0.61±0.33 0.68±0.33 0.28 0.25 0.92 

KNN 0.27±0.24 0.46±0.59 0.54±0.25 0.83 0.44 0.21 0.58±0.23 0.30±0.42 0.54±0.21 0.90 0.67 0.55 

Decision Trees 0.37±0.21 0.38±0.45 0.59±0.22 0.93 0.38 0.43 0.57±0.25 0.30±0.42 0.56±0.24 0.94 0.57 0.66 

Random Forests 0.45±0.22 0.25±0.37 0.55±0.27 0.93 0.56 0.41 0.65±0.23 0.19±0.34 0.51±0.27 0.95 0.67 0.70 

Bagging 0.24±0.22 0.49±0.65 0.60±0.34 0.68 0.55 0.17 0.57±0.24 0.26±0.43 0.59±0.26 0.86 0.73 0.52 

SVM 0.37±0.18 0.47±0.51 0.71±0.35 0.58 0.48 0.48 0.46±0.23 0.36±0.42 0.73±0.37 0.23 0.54 0.62 

AdaBoost 0.44±0.21 0.29±0.47 0.57±0.31 0.92 0.53 0.42 0.64±0.25 0.19±0.34 0.54±0.32 0.95 0.66 0.72 

 

Fig. 4.12. Dice Kappa (SI) for different classification methods for low (<5 cm3, left), medium (5-20 cm3, middle), 

and high (>20 cm3, right) WMH load using T1w and T2w information for ADC (red) and ADNI1 (blue) datasets. 
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Fig. 4.13. Axial slice comparing manual and automatic segmentations using T1w and T2w information for ADC and 

ADNI1 datasets. Yellow color indicates regions labeled as WMH in both segmentations, blue color indicates regions 

only segmented by the automatic technique, and red color indicates regions only segmented by the manual rater. 

 

 

Fig. 4.14. Negative logarithm of FDR corrected p-values of paired t-tests between Dice Kappa values of classifier 

pairs. Values higher than 1.3 are statistically significant. 

4.3.5. Segmentation using only T1w data 

To address the second challenge, we trained and validated the performance of the 

classifiers with features only from T1w images from ADC, NACC, ADNI1, and ADNI2/GO 

datasets. Table 4.10 shows the mean Dice Kappa and detection/outline error rates (DER/OER), 

for each classifier and dataset. Table 4.11 shows the corresponding ICC, TPR, and PPV values. 

Figure 4.15 shows boxplot diagrams for these results separately for subjects with small, medium 

and large WMH loads. Figure 4.16 shows the segmentation results on the axial slices for 
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different classifiers from each study. Figure 4.17 shows the negative logarithm of the FDR 

corrected p-values of t-tests on Dice Kappa values of different classifier pairs. 

Table 4.10. Comparison between mean Dice Kappa and detection/outline error rate (DER/OER) values of different 

classifiers for segmentation of WMHs using T1 data for ADC, NACC, ADNI1, and ADNI2/GO datasets. Blue color 

indicates the best performance in terms of SI. 

Dataset ADC NACC 

Measures SI DER OER SI DER OER 

Naïve Bayes 0.24±0.21 0.08±0.03 1.44±0.21 0.32±0.15 0.07±0.04 1.27±0.30 

Logistic 

Regression 

0.11±0.14 1.26±0.80 0.52±0.14 0.08±0.13 1.32±0.85 0.51±0.64 

LDA 0.25±0.20 0.09±0.05 1.40±0.20 0.34±0.14 0.08±0.05 1.25±0.29 

QDA 0.20±0.17 0.28±0.16 1.30±0.17 0.32±0.14 0.18±0.09 1.17±0.30 

KNN 0.28±0.18 0.57±0.48 0.86±0.18 0.33±0.13 0.26±0.20 1.06±0.21 

Decision Trees 0.24±0.18 0.76±0.49 0.75±0.18 0.30±0.11 0.34±0.15 1.05±0.13 

Random 

Forests 

0.34±0.19 0.51±0.44 0.82±0.19 0.40±0.12 0.22±0.14 0.97±0.20 

Bagging 0.03±0.03 0.98±0.72 0.86±0.03 0.08±0.12 0.91±0.77 0.96±0.68 

SVM 0.16±0.11 0.65±0.41 1.02±0.11 0.28±0.10 0.24±0.17 1.20±0.18 

AdaBoost 0.26±0.10 0.48±0.36 0.99±0.10 0.36±0.11 0.20±0.12 1.08±0.20 

 
 ADNI1 ADNI2/GO 

Measures SI DER OER SI DER OER 

Naïve Bayes 0.42±0.27 0.07±0.28 1.10±0.55 0.38±0.25 0.05±0.04 1.19±0.50 

Logistic 

Regression 

0.37±0.19 0.19±0.34 1.07±0.37 0.31±0.15 0.29±0.34 1.10±0.29 

LDA 0.44±0.26 0.09±0.27 1.04±0.52 0.41±0.24 0.08±0.05 1.10±0.47 

QDA 0.44±0.27 0.07±0.28 1.05±0.55 0.41±0.25 0.06±0.04 1.12±0.49 

KNN 0.51±0.22 0.27±0.42 0.72±0.30 0.46±0.19 0.31±0.42 0.77±0.25 

Decision Trees 0.41±0.23 0.34±0.35 0.84±0.28 0.39±0.21 0.34±0.27 0.89±0.21 

Random 

Forests 

0.51±0.24 0.25±0.40 0.73±0.31 0.48±0.21 0.26±0.34 0.77±0.23 

Bagging 0.30±0.21 0.35±0.51 1.12±0.45 0.20±0.17 0.47±0.61 1.12±0.51 

SVM 0.36±0.24 0.15±0.32 1.13±0.48 0.39±0.18 0.15±0.15 1.07±0.36 

AdaBoost 0.50±0.23 0.18±0.35 0.81±0.37 0.48±0.19 0.20±0.27 0.84±0.27 
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Table 4.11. Comparison between intra-class correlation (ICC), true positive rate (TPR), and positive prediction value 

(PPV) of different classifiers for segmentation of WMHs in different datasets using T1w data for ADC, NACC, 

ADNI1, and ADNI2/GO datasets. Blue color indicates the best performances in terms of SI. 

Dataset ADC NACC ADNI1 ADNI2/GO 

Measure ICC TP

R 

PP

V 

ICC TP

R 

PP

V 

ICC TP

R 

PP

V 

ICC TP

R 

PP

V 
Naïve Bayes 0.24 0.20 0.67 0.01 0.28 0.56 0.30 0.37 0.74 0.06 0.33 0.74 

Logistic Regression 0.08 0.27  0.0

9 

0.00 0.20 0.07 0.22 0.61 0.34 0.17 0.65 0.25 

LDA 0.32 0.22 0.64 0.07 0.29 0.54 0.45 0.42 0.68 0.19 0.39 0.68 

QDA 0.40 0.15 0.67 0.52 0.25 0.56 0.38 0.40 0.74 0.17 0.37 0.73 

KNN 0.36 0.49 0.22 0.14 0.61 0.25 0.55 0.63 0.50 0.54 0.61 0.43 

Decision Trees 0.55 0.24 0.37 0.36 0.30 0.38 0.63

3 

0.41 0.54 0.62 0.40 0.51 

Random Forests 0.56 0.45 0.31 0.54 0.55 0.36 0.60 0.59 0.56 0.65 0.57 0.50 

Bagging 0.01 0.59 0.02 0.23 0.58 0.05 0.23 0.73 0.21 0.16 0.71 0.15 

SVM 0.03 0.49 0.13 0.10 0.54 0.22 0.20 0.59 0.41 0.14 0.56 0.43 

AdaBoost 0.25 0.49 0.21 0.10 0.61 0.30 0.52 0.60 0.56 0.51 0.59 0.51 

 

 

Fig. 4.15. Dice Kappa (SI) for different classification methods for low (<5 cm3), medium (5-20 cm3), and high (>20 

cm3) WMH load using only T1w information for ADC (red), NACC (black), ADNI1 (blue), and ADNI2/GO 

(magenta) datasets. 
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Fig. 4.16. Axial slice comparing manual and automatic segmentations using T1w information for ADC, NACC, 

ADNI1, and ADNI2/GO datasets. Yellow color indicates regions labeled as WMH in both segmentations, cyan 

color indicates regions only segmented by the automatic technique, and red color indicates regions only segmented 

by the manual rater. 

 

Fig. 4.17. Negative logarithm of FDR corrected p-values of paired t-tests between Dice Kappa values of classifier 

pairs. Values higher than 1.3 are statistically significant. 

4.3.6. Over-segmentation/Under-segmentation 

To provide information regarding over-segmentation/under-segmentation of WMHs, 

paired t-tests were performed between total WMH loads in small, medium, and large groups on 

T1w+FLAIR (n=147) and T1w+T2w+PD (n=123) experiments. Table 4.12 shows the mean and 

standard deviation of the volumes as well as statistical significance of the differences after 
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correcting for multiple comparisons using FDR correction. From the results, we can see that 

Naïve Bayes and QDA significantly oversegment WMHs in all three groups. Logistic regression 

and Bagging significantly undersegment medium and large WMHs. LDA and Decision Trees 

seem to work well with T1w+FLAIR images, but they tend to significantly oversegment when 

dealing with T1w+T2w+PD sequences. AdaBoost, KNN, SVM and Random Forest seem to 

work very well for medium and large WMHs, but slightly oversegment small lesions. However, 

KNN and SVM seem to show a lot of variability (high standard deviations) for small lesions 

using T1w+T2w+PD sequences. 

 

Table 4.12. Mean ± standard deviation of WMH loads in small (<5cm3), medium (5-20cm3), and large (>20cm3) 

groups. Statistically significant differences from manual segmentations after corrections for multiple comparisons 

using false discovery rate (FDR) correction are indicated with *.  

Sequences T1w-FLAIR T1w-T2w-PD 

Method Small Medium Large Small Medium Large 

Manual 1.85±1.39 12.07±4.58 40.02±23.33 1.47±1.14 10.81±4.27 47.62±25.74 

Naïve Bayes 18.65±12.52* 33.45±16.79* 68.31±37.88* 91.29±98.89* 89.85±33.56* 148.31±48.49* 

Logistic Regression 2.53±2.59* 9.83±4.98* 34.03±25.35* 2.18±5.68 4.44±8.32* 32.80±27.80* 

LDA 3.97±3.09* 12.48±5.76 39.49±30.83 22.44±8.16* 28.72±12.14* 53.47±19.22 

QDA 17.26±11.21* 32.53±16.05* 73.04±42.40* 121.10±89.30* 129.28±43.98* 205.15±69.82* 

KNN 2.42±2.46* 11.00±5.81 41.53±30.49 4.74±21.28 8.74±8.53 45.50±25.54 

Decision Trees 3.44±3.24* 12.64±6.35 41.63±25.35 5.10±4.41* 14.03±9.86* 54.30±26.60* 

Random Forests 2.62±2.61* 11.47±5.87 40.79±25.37 2.58±3.29 11.51±9.72 51.57±27.38 

Bagging 1.46±2.41 7.13±6.23* 28.13±21.69* 3.12±14.95 5.16±7.17* 32.86±20.56* 

SVM 2.76±3.23* 11.05±5.90 41.17±30.55 5.49±8.53* 11.98±14.87 49.28±29.49 

AdaBoost 2.85±2.78* 11.93±5.97 41.08±25.60 3.42±4.05* 11.94±10.25 52.47±29.93 

 

4.3.7. Computational burden 

In order for a segmentation technique to be applicable to large-scale datasets, reasonable 

computation time and memory demands are crucial. To assess this, all classifiers were trained on 

the same dataset consisting of 50 subjects and used to segment 20 subjects on an Intel(R) 
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Core(TM) i7-5600 CPU @ 2.60 GHz machine with 20.0 GBs RAM. Table 4.13 shows the 

training as well as segmentation time per subject in seconds for each classifier. 

Table 4.13. Comparison between training and segmentation times (s) between different classifiers 

Classifier Training Time (s) Segmentation Time 

(s)  
Naïve Bayes 12.45 0.38 

Logistic Regression 333.38 0.11 

LDA 66.31 0.52 

QDA 100.56 0.45 

KNN 7718.98 3021.88 

Decision Trees 1225.63 0.53 

Random Forests 22620.11 7.29 

Bagging 8992.54 981.55 

SVM 14581.04 0.26 

AdaBoost 100766.02 71.16 

 

4.4. Discussion 

In the recent years, there have been many different studies in the literature that address 

the challenge of automatically segmenting WMHs (Caligiuri et al., 2015; Admiraal-Behloul et 

al., 2005; Anbeek et al., 2004; Beare et al., 2009; De Boer et al., 2009; Dyrby et al., 2008; 

Ghafoorian et al., 2016a; Griffanti et al., 2016; Ithapu et al., 2014; Lao et al., 2008; Ong et al., 

2012; Schmidt et al., 2012; Simões et al., 2013; Steenwijk et al., 2013; Wu et al., 2006a, 2006b; 

Yoo et al., 2014; García-Lorenzo et al., 2013; Shiee et al., 2010). However, drawing meaningful 

comparisons between these segmentation techniques proves to be practically impossible since 

the results are greatly influenced by the MRI acquisition characteristics and resolution as well as 

the quality of the manually segmented labels that are used for training and validation. Here we 

have validated and compared the performance of a variety of different supervised linear and 

nonlinear classifiers in segmenting WMHs using 4 relatively large datasets. We also provide our 

fully automated tool for segmentation of WMHs from multiple contrasts of MR images along 
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with the pre-trained classifiers. 

Several commonly used linear and nonlinear classifiers with different levels of 

computational complexity were employed for segmentation of WMHs from multiple contrasts of 

MR images. In presence of FLAIR information, most methods performed relatively well and can 

be employed for WMH segmentation. However, the performance of the classifiers declined 

significantly in absence of the optimal FLAIR modality information, with Random forests and 

AdaBoost classifiers still retaining the best performance. Using only T1w images, the 

performance of all classifiers declined drastically with random forest and AdaBoost classifiers 

still providing the best results. These segmentations tend to detect only the brightest of the 

WMHs. However, their high volumetric correlation with the gold standard values shows that 

while not perfectly accurate, they still might be used as surrogate measures to reflect WMH 

burden if they are also associated with risk factors and clinical measures. This can prove 

extremely valuable in studies that only have T1w scans and need to take into account the WMH 

burden. 

One of the major issues when using automated techniques for segmenting WMHs is the 

variability caused by differences in the scanner and acquisition sequences which would in turn 

lead to differences in contrast and borders of WMHs. As a result, classifiers that are trained on 

data from a single scanner with a specific acquisition sequence tend to perform poorly on data 

from different scanners and/or sequences. To increase the generalizability of our tools, we have 

trained and validated our classifiers using data from different scanners/sites.  

It would be worthwhile to note that all of the voxels inside the brain were input to the 

classifiers and no white matter mask or any mask excluding either ventricles or cerebrospinal 
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fluids were used. This makes the classification task more challenging, but on the other hand, 

makes the performance of the classifiers more easily comparable with other methods since the 

results will not be dependent on the quality of the tissue segmentation algorithm or whether 

specific regions such as brainstem or cerebellum which are generally more challenging to 

segment are masked out. Another valid concern in using tissue segmentation results is that most 

tissue classification techniques use only T1w images, on which some of the WMHs appear 

hypointense. This makes the tissue classification results prone to error since they will be likely to 

classify WMHs as grey matter while most WMHs occur in the white matter. This 

misclassification in the initial tissue segmentation will add an extra level of noise to the data that 

can significantly affect WMH segmentation results. One limitation of our technique is that it has 

not been validated on patients with stroke; the intensity profile in such subjects is likely very 

different from the subjects evaluated here. 

In detecting WMHs, FLAIR is of the highest importance since it provides the best lesion 

to WM contrast when compared with T1w, T2w and PD sequences. PD provides the most 

variable contrast difference between tissue types directly related to the parameters used in its 

acquisition. The more T2 weighted the PD sequence, the less supplemental contrast information 

it provides (since the information is already provided by the T2w sequence). Hence, the PD 

sequence is most meaningful if the parameters allow the CSF to be of the lowest possible signal. 

The T1w sequence on its own should only be considered in cases where other modalities are not 

available or their poor image quality prevents their use. The lower information given by T1w 

images resides in a poorer contrast between the signal of lesions and surrounding WM. Lesion 

intensity spans from iso-intense to WM to deep hypointense, causing the difficulty in detecting 

lesions using only T1w images. Another factor that can significantly affect the quality of both 
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manual and automated segmentations is the signal to noise ratio (SNR). A lower SNR will 

impact the image quality and number of artifacts, which would then translate into poorer 

performance of either software or manual rater. The ADC, NACC, and ADNI2 FLAIRs had an 

average SNR value of 17.25±2.37, 20.11±5.52, and 35.11±7.26 as estimated by our denoising 

tool (Coupe et al., 2008), respectively. This may partially explain the poorer results for ADC 

data. As a general rule, the highest possible SNR should be attained in each modality employed. 

In addition to SNR, ringing or ghosting caused by movement and inter-package motion also 

contribute to the deterioration of image quality. 

Manually segmenting WMHs is a challenging task. Lesion edges always exhibit a degree 

of hyperintense signal that decreases gradually towards the healthy surrounding WM. In other 

words, no lesion edge goes from one pathologic hyperintense voxel, to a contiguous healthy 

hypointense WM voxel, and the edges may shift from scoring to scoring by one or two voxels.  

Additionally, when cases have multiple lesions, the surface to volume ratio of the lesions 

increases. Even when the rater identifies exactly the same lesions, one extra voxel around the 

edge of a small lesion may have a large impact on the Dice Kappa value. The small DER values 

for the manual segmentations further confirm that most of the disagreement between the manual 

segmentations occurs around the edges (0.03±0.04, 0.05±0.04, 0.03±0.04, and 0.04±0.04 for 

ADC, NACC, ADNI1, and ADNI2, respectively). Also, the poorer image quality, in terms of 

SNR, of the ADC dataset, could partially account for the worse intra-rater performance for that 

dataset. 

Segmenting WMHs without the optimal FLAIR modality is a challenging task. 

Additional errors might arise from comparing segmentations obtained without FLAIR with 

manual labels that are based on FLAIR images. The extent and borders of WMHs generally do 
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not look the same on the different MRI sequences (Filippi et al., 1996). It has been shown that 

FLAIR sequence is less sensitive in detecting thalamic lesions in vascular disease populations 

(Leite et al., 2004). Furthermore, FLAIR may present hyperintense artifacts that can lead to an 

increase in false positives such as the hyperintensities often observed in insula (Hirai et al., 

2000). As a result, a certain degree of disagreement between segmentations obtained with and 

without FLAIR information is expected. This explains the higher SI values for the ADNI1 

dataset where the manual segmentations are based on T2w/PD scans compared with automatic 

segmentations with the same contrasts in ADC dataset (T1w, T2w, and PD) where FLAIR 

information was used for the manual segmentations. Additionally, the difference in tissue 

contrast between the PD sequence of the ADC dataset and ADNI1 may also partially account for 

the higher SI value for ADNI1. The PD scans in ADNI1 dataset had a higher white-to-grey 

matter contrast, higher white matter-to-lesion contrast, and better delineation of CSF as a 

different tissue type, given its low signal. All these characteristics were absent in the ADC 

dataset, where PD was heavily T2 weighted. These differential characteristics are critical in the 

WMHs segmentation process either by a rater or an automatic tool, improving the accuracy of 

the segmentation in the ADNI1 cases. 

Using classifiers such as KNN and Bagging with KNN has the additional drawback of 

longer computation time for segmenting new data. The fact that they do not require rigorous 

training is generally outweighed by their longer classification times, especially when one needs 

to segment 100s or 1000s of MRI volumes in larger datasets. In addition, these methods are 

generally more susceptible to skewedness in class distributions, which is the case in lesion 

segmentation tasks, since most voxels in the brain are non-WMHs. As a result, the examples of 

the more frequent non-WMH class tend to dominate the new predictions, simply owing to the 
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fact that they are more common.     

Accurate quantification and localization of WMHs is critical since they are important 

clinical measures in the elderly and AD populations. A Dice Kappa value of 0.7 is considered as 

a good segmentation in the literature (Caligiuri et al., 2015). Random forest was able to obtain 

average Dice Kappa values higher than 0.7 for the medium lesion load and 0.8 for large lesion 

load groups, which is considered as excellent agreement. Their average Dice Kappa for the small 

lesion group was higher than 0.5, which is still considered as a very good agreement, especially 

considering the fact that Dice Kappa values are smaller for objects with a high surface to volume 

ratio, as is the case for subjects with small lesion loads.  

The Random Forests technique consistently had the best results across all the experiments 

when using Dice Kappa (SI) as the primary measure of comparison. Considering the fact that it 

also had a shorter computational time than the second-best classifier (AdaBoost), Random 

Forests was the best classifier amongst the nonlinear classification techniques tested. The Linear 

Discriminant Analysis method was the best linear classifier considering the Dice Kappa results 

and computation times.  

Random Forests and AdaBoost classifiers are both highly non-linear (locally) compared 

to other methods such as SVM, QDA, and LDA which estimate a model to explain the variability 

in the data and perform classification. In addition, due to its nature, Random Forest works well 

with a mixture of categorical variables and numerical variables with various scales, while 

classifiers that rely on a notion of distance such as SVM and KNN have difficulty in such 

problems. 
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In cases where different classifiers have different strengths and weaknesses, using an 

ensemble of all the classifiers can improve the overall classification accuracy. Here, performing 

a voting between the outputs of all 10 classifiers achieved Dice Kappa values of 0.68±0.17, 

0.74±0.10, 0.66±0.22, and 0.72±0.19 (versus 0.66±0.17, 0.72±0.10, 0.66±0.23, and 0.72±0.19 

for the Random Forest classifier) for ADC, NACC, ADNI1, and ADNI2 datasets, respectively, 

suggesting a slight improvement for ADC (p=0.001), and NACC (p=0.004), and no difference 

for ADNI1 and ADNI2 (p>0.05). 

As mentioned previously, drawing meaningful comparisons between techniques that have 

been applied to different datasets, using different brain masks, and with different definitions of 

WMHs should be done with care. Taking these considerations into account, our Random Forests 

classifier performs very well in comparison with other methods in the field (Table 4.14).  

Table 4.14. Comparison of SI (Dice Kappa) for different lesion loads in various studies. (S: small load, M: medium 

load, L: large load). 

Method Technique Number (S-M-L%) Dice (SI) 

S M L Total 

Proposed pipeline Random Forests 
70 (36-23-11) 

32 (6-11-12) 

46 (16-11-18) 

 

0.55 

0.57 

0.53 

0.75 

0.73 

0.79 

0.84 

0.84 

0.86 

0.66 

0.72 

0.72 Dadar (Dadar et al., 2017a) 
Linear regression + 

thresholding 

80 (58-31-11) 

40 (25-14-1) 

10 (2-4-4) 

0.49 

0.48 

0.36 

 

0.74 

0.64 

0.58 

0.87 

0.74 

0.74 

0.62 

0.51 

0.64 
Admiraal (Admiraal-Behloul et al., 2005) Fuzzy inference 100 (40-35-25) 0.70 0.75 0.82 0.75  

Anbeek (Anbeek et al., 2004) K-nearest neighbors 20 (40-35-25) 0.50 0.75 0.85 0.61 

Beare (Beare et al., 2009) AdaBoost 30  0.50 0.65 0.58 

Boer (De Boer et al., 2009) K-nearest neighbors 20 0.72 0.72 

Steenwijk (Steenwijk et al., 2013) K-nearest neighbors 
20 (15-45-40) 

18 (40-33-17) 

0.78 

0.65 

0.85 

0.72 

0.91 

0.81 

0.84 

0.75  

Khayati (Khayati et al., 2008) Adaptive Mixture Model 20 (35-50-15) 0.72 0.75 0.80 0.75 

Sajja (Sajja et al., 2006) Parzen Window 23 (35-65) 0.67 0.84 0.78 

Schmidt (Schmidt et al., 2012) Markov random field 53 0.66 0.79 0.85 0.75 

Sheei (Shiee et al., 2010) Fuzzy segmentation 10 0.63 0.63 

Ong (Ong et al., 2012) Adaptive trimmed mean 38 0.36 0.56 0.71 0.47 
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Ithapu (Ithapu et al., 2014) 
Random Forests 

Support Vector Machine 

38 
0.67 

0.54 

0.67 

0.54 

Herskovits (Herskovits et al., 2008)  Bayesian classification 42 0.60 0.60 

Dyrby (Dyrby et al., 2008) Neural networks 362 0.45 0.62 0.65 0.56 

Erus (Erus et al., 2014) 
Abnormality detection + 

principal component analysis 

33 

47 

 
0.54 

0.66 

0.54 

0.66 

Ghafoorian (Ghafoorian et al., 2016b) Convolutional neural networks 46 0.79 0.79 

Simões (Simões et al., 2013) 

 

Gaussian Mixture Model 28 (14-9-5) 0.51 0.70 0.84 0.62 

Yoo (Yoo et al., 2014) Variable thresholding 32 (7-10-15) 0.59 0.73 0.86 0.76 

Griffanti (Griffanti et al., 2016) K-nearest neighbors 
21 

109 

 

0.70 

0.41 

0.69 

0.58 

0.80 

0.68 

0.76 

0.52 

 

Accurate quantification of WMHs is critical for evaluating the vascular burden 

contributing to cognitive deficits in the vascular dementia and AD patients as well as the aging 

population in general. Due to the high variability across different populations, image acquisition 

parameters and manual segmentation protocols, comparing different techniques in a meaningful 

way is practically impossible. Here we have extensively compared 10 most widely used off-the-

shelf classifiers in segmenting WMHs with and without FLAIR information in terms of accuracy 

and computational burden. These experiments have enabled us to draw meaningful and 

generalizable comparisons between different methods and determine which classifiers are best 

suited to the task of segmenting WMHs. 

 

 

  

https://www-clinicalkey-com.proxy3.library.mcgill.ca/#%21/search/Sim%C3%B5es%20Rita/%7B%22type%22:%22author%22%7D
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Chapter 5. Validation of T1w-based Segmentations of White Matter 

Hyperintensity Volumes in Large Scale Datasets of Aging 

Preface 

In this chapter, we assess whether T2w/PD and FLAIR sequences are necessary for 

studying WMHs in aging and AD populations. WMHs in ADNI1 and ADNI2/GO datasets were 

segmented using the pipeline proposed in the previous chapter and a Random Forest classifier, 

once using all available modalities and once using only T1w images. The WMH volumes were 

extracted for each lobe and hemisphere separately using these two sets of segmentations and 

correlated with i) manually segmented volumes, ii) each other, iii) cognitive and clinical 

measures. 

The results showed that even though the T1w segmentations underestimated the WMH 

volumes, they still were able to hold strong correlations with the actual WMH loads as well as 

cognitive and clinical measures, and that there was no statistically significant difference between 

the correlations based on these volumes and the more accurate volumes based on all available 

modalities.  

This work has been published as: 

Dadar, M., Maranzano, J., Ducharme, S., Carmichael, O. T., Decarli, C., & Collins, D. L. (2018). 

Validation of T1w‐based segmentations of white matter hyperintensity volumes in large‐scale 

datasets of aging. Human brain mapping, 39(3), 1093-1107. 
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Validation of T1w-based Segmentations of White Matter Hyperintensity 

Volumes in Large Scale Datasets of Aging 

Mahsa Dadar, Josefina Maranzano, Simon Ducharme, Owen T. Carmichael, Charles Decarli, D. 

Louis Collins, Alzheimer’s Disease Neuroimaging Initiative3 

Abstract:  

Introduction: Fluid-attenuated Inversion Recovery (FLAIR) and dual T2w and Proton Density 

(PD) magnetic resonance images (MRIs) are considered to be the optimum sequences for 

detecting white matter hyperintensities (WMHs) in aging and Alzheimer’s disease populations. 

However, many existing large multi-site studies forgo their acquisition in favour of other MRI 

sequences due to economic and time constraints.  

Methods: In this paper, we have investigated whether FLAIR and T2w/PD sequences are 

necessary to detect WMHs in Alzheimer’s and aging studies, compared to using only T1w 

images. Using a previously validated automated tool based on a Random Forests classifier, 

WMHs were segmented for the baseline visits of subjects from ADC, ADNI1, and ADNI2/GO 

studies with and without T2w/PD and FLAIR information. The obtained WMH loads (WMHLs) 

in different lobes were then correlated with manually segmented WMHLs, each other, age, 

                                                           
3 Part of the data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design 

and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A 

complete listing of ADNI investigators can be found at:  

http://adni.loni.usc.edu/wp-ontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 

 

 

 

http://adni.loni.usc.edu/wp-ontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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cognitive and clinical measures to assess the strength of the correlations with and without using 

T2w/PD and FLAIR information. 

Results: The WMHLs obtained from T1w-Only segmentations correlated with the manual 

WMHLs (ADNI1: r=0.743, p<0.001, ADNI2/GO r=0.904, p<0.001), segmentations obtained 

from T1w+T2w+PD for ADNI1 (r=0.888, p<0.001) and T1w+FLAIR for ADNI2/GO (r=0.969, 

p<0.001), age (ADNI1: r=0.391, p<0.001, ADNI2/GO: r=0.466, p<0.001), and ADAS13 

(ADNI1: r=0.227, p<0.001, ADNI2/GO: r=0.190, p<0.001), and NPI (ADNI1: r=0.290, p<0.001, 

ADNI2/GO: r=0.144, p<0.001), controlling for age. 

Conclusion: Our results suggest that while T2w/PD and FLAIR provide more accurate estimates 

of the true WMHLs, T1w-Only segmentations can still provide estimates that hold strong 

correlations with the actual WMHLs, age, and performance on various cognitive/clinical scales, 

giving added value to datasets where T2w/PD or FLAIR are not available. 

Keywords: White Matter Hyperintensities, Aging, Alzheimer’s Disease 

5.1. Introduction 

White matter hyperintensities (WMHs), defined as regions of higher signal than the 

surrounding normal appearing white matter (NAWM) on T2w or FLAIR MR images, are one of 

the most common findings in structural MR imaging in older adults, reflecting demyelination 

and axonal loss (Prins and Scheltens, 2015).  While sensitive as an expression of abnormality in 

the white matter (WM) tissue, the etiology of WMHs is quite varied, with ischemia due to 

cerebral small vessel disease playing an important role in the majority of older subjects (Gouw et 

al., 2010; Yoshita et al., 2005). This age-related ischemic small vessel disease is also referred to 
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as arteriolosclerosis, hypertension-related or vascular-risk-factor-related small vessel disease 

(Pantoni, 2010). However, the term small vessel disease is also related to other pathologies that 

affect small arteries, arterioles, venules and capillaries, such as cerebral amyloid angiopathy, 

genetic small vessel disease distinct from amyloid angiopathy (e.g. cerebral autosomal 

dominant/recessive arteriopathy with subcortical infarcts and leukoencephalopathy or 

CADASIL/CARASIL), inflammatory mediated small vessel disease (e.g. primary angiitis of 

central nervous system CNS, Wegener’s granulomatosis), and venous collagenosis (Pantoni, 

2010).  

Some of the consequences of small vessel disease include lacunar infarcts, WMHs, micro 

and macro bleeding.  The first two phenomena are easily detected on MR images. In contrast, 

small vessels cannot be seen using MRI, so the term small vessel disease on MRI has been used 

for (and become equivalent to) WMHs and lacunar infarcts (Pantoni, 2010). Unfortunately, there 

is great heterogeneity across neuropathological centers regarding the definition of MRI small 

vessel disease, with overall agreement lower than 50% (Pantoni et al., 2006). Since there is no 

conclusive data showing the levels of specificity and sensitivity of WMHs on MRI as a reflection 

of a specific etiology of small vessel disease, we consider, in our cases, that the two major 

groups (arteriolosclerosis and amyloid angiopathy) are probably the main substrates of the 

WMHs. These two etiologies on their own have a crucial role in three major clinical areas: 

stroke, neurocognitive disorders (dementia), and aging related cognitive decline (Pantoni, 2010).  

The location and load of WMHs have been shown to correlate with age, a history of 

hypertension, hyperinsulinemia (Hawkins et al., 2017), as well as cognitive deficits (Biesbroek et 

al., 2017; DeCarli et al., 1995a; Dubois et al., 2014). Therefore, WMHs constitute a clinically 

meaningful biomarker of cognitive decline related to general aging and pathological vascular 
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processes, which are known contributors to multi-factorial neurodegenerative diseases (Iturria-

Medina et al., 2016). They are a particularly important clinical measure in the elderly 

populations (Carmichael et al., 2010; De Groot et al., 2002; DeCarli et al., 2001; Dubois et al., 

2014; Longstreth et al., 1996; van Straaten et al., 2008).  

WMHs are generally assessed using FLAIR or T2w/PD scans which have optimum 

contrast for detecting such lesions (Caligiuri et al., 2015). T2w/PD and FLAIR WMHs have been 

shown to correspond to myelin stain lesions in post-mortem histology studies (Fernando et al., 

2004; Takao et al., 1999). However, WMHs can also be detected on T1w scans to some extent. 

The characteristic bright WMH signal of FLAIR, T2w and PD, manifests in the T1w sequence as 

a hypointense area, heterogeneous in the value of the lower signal, ranging from iso-intense to 

hypo-intense in relation to the surrounding NAWM. In other words, a FLAIR, T2w/PD 

homogeneous hyperintense area would correspond, in the T1w modality, to a similar area of 

heterogeneous hypointense signal, ranging from values close to fluid, to isointense in relation to 

the surrounding NAWM. This phenomenon is probably determined by the different types and 

degrees of change occurring in the WM at the same time (e.g. more/less intense demyelination 

and axonal loss). This range of T1w hypointensities in a region of WM tissue is more 

homogeneously represented by the bright signal of T2w and FLAIR sequences. Since the 

quantification of lesion volumes in a given MRI modality depends on the contrast between the 

lesional area and the surrounding NAWM, these volumes will always be larger if the detection 

considers the bright signal of FLAIR or T2w scans, as opposed to using only T1w images. The 

hypointensity seen on T1w images presumably reflects the most severe spectrum of WM injury.  

Although FLAIR or T2w/PD scans are the optimal sequences to detect WMHs, many 

especially large-scale studies forgo acquisition of either one or all of the optimal modalities 
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because of time and financial constraints. There can also be differences in WMH volume levels 

when comparing T2w/PD with FLAIR scans, with FLAIR scans tending to give higher overall 

levels. Consequently, it would be extremely useful if one can get an estimate of the load and 

location of WMHs without requiring these optimal modalities. While there have been other 

studies that define and use T1w white matter signal abnormality (WMSA) detected by Freesurfer 

(Fischl, 2012) as a measure of WMH in aging and AD populations (Jacobs et al., 2013; Leritz et 

al., 2014; Salat et al., 2010), to our knowledge, no studies have investigated and validated the 

relationship between these T1w hypointensities and FLAIR or T2w/PD based WMH 

segmentations and whether there is a significant difference in their relationships with clinical 

measures. 

In this paper, we aimed to compare the ability of T1w, T2w/PD and FLAIR scans in 

differentiating between healthy tissue and WMHs, both in terms of (i) detection in comparison 

with manually segmented labels and (ii) correlation with a variety of clinical measures. Our goal 

is to determine if WMHs can be partially but accurately segmented based only on T1w images, 

and how reliable T1w-based assessments are in comparison with the more accurate estimates 

obtained based on FLAIR or T2w/PD sequences.  

5.2. Materials and Methods 

5.2.1. Subjects 

The WMHs were segmented both manually and automatically in three different datasets 

to ensure generalizability of the results. Table 5.1 summarizes the information for each dataset. 
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(i) The first dataset (ADC) consists of 70 elderly individuals who received a full 

clinical workup and structural MR scans including T1w, double-echo PD/T2w, 

and FLAIR scans at their enrollment into the University of California, Davis 

Alzheimer’s Disease Center (ADC) (Hinton et al., 2010). Subjects were 70-90 

years old with either normal cognition, mild cognitive impairment, or AD. All 

subjects were manually segmented by an expert rater.  

(ii) The second dataset included subjects selected from ADNI study. This data was 

obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary 

goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of 

mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). ADNI was 

carried out with the goal of recruiting 800 adults aged from 55 to 90, and consists 

of approximately 200 cognitively normal, 400 MCI, and 200 AD subjects. 

ADNIGO is a later study that followed ADNI participants that were in cognitively 

normal or early MCI stages (http://www.adcs.org/studies/imagineadni.aspx). 

ADNI2 study followed patients in the same categories as well as recruiting 550 

new subjects (http://www.adcs.org/studies/ImagineADNI2.aspx). Baseline visit 

data from ADNI1 and ADNI2/GO subjects were used in this study (Table 5.1). 46 

subjects with T1w and FLAIR scans and different loads of WMHs were selected 

from ADNI2/GO study for manual segmentation. To ensure that the datasets used 

http://www.adcs.org/studies/imagineadni.aspx
http://www.adcs.org/studies/ImagineADNI2.aspx
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for training and validation of the method have a wide range of WMHs, 

segmentation techniques generally make sure to include subjects with small, 

medium and large WMH loads (Dadar et al., 2017b; Griffanti et al., 2016; 

Schmidt et al., 2012; Simões et al., 2013). Here, subjects were selected from 

different sites and scanners and a preliminary assessment was performed to 

evaluate their WMH load with the goal of acquiring subjects with different 

scanner information as well as different loads of WMHs. For each scanner model, 

we selected datasets that had low (<5 CCs), medium (5-20 CCs) and high lesion 

loads (> 20 CCs). Equal numbers of male and female subjects were selected. The 

age of the subjects was also considered for the selection, with the aim of 

achieving a normal distribution. Using a similar strategy, 53 subjects with T1w, 

T2w and PD scans and different WMH loads were selected from the ADNI1 

study for manual segmentation. 

5.2.2. Clinical evaluations 

We did not have the clinical evaluations available for the ADC study. The clinical 

assessment and cognitive testing of ADNI study followed a standardized protocol that has been 

described previously (Petersen et al., 2010). At each visit, the participants underwent a 

standardized clinical evaluation and cognitive tests including Mini-Mental State Examination 

(MMSE), Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), Functional 

Assessment Questionnaire (FAQ), Neuropsychiatric Inventory (NPI), a composite score for 

executive function (Gibbons et al., 2012), and Immediate, Forgetting and Learning sub-scores 

from Rey Auditory Verbal Learning Task (RAVLT). Each individual had a self-reported history 
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of hypertension, and cardiovascular risk factors available. Table 5.1 summarizes this information 

for the subjects that were used in this study. For details on the administration and scoring see 

http://www.adni-info.org/Scientists/ADNIData.html. 

Table 5.1.  Descriptive statistics for the ADNI subjects enrolled in this study. Data are number or mean± standard 

deviation. ADNI=Alzheimer’s Disease Neuroimaging Initiative. MMSE= Mini-Mental State Examination. ADAS= 

Alzheimer's Disease Assessment Scale. FAQ= Functional Assessment Questionnaire. RAVLT= Rey Auditory 

Verbal Learning Task (I=Immediate, F=Forgetting, L=Learning). Executive= Executive Function. NPI= Total 

Neuropsychiatric Inventory Score. 

Test ADNI1 ADNI2/GO 

Number (Male) 669 (393) 481 (298) 

Age 75.26±6.84 72.62±7.54 

MMSE 26.71±2.70 27.58±2.76 

ADAS11 11.63±6.24 9.89±6.80 

ADAS13 18.45±9.08 15.29±9.66 

FAQ 4.88±6.47 3.44±5.70 

RAVLTI 32.09±11.17 37.72±13.08 

RAVLTF 4.31±2.38 4.29±2.62 

RAVLTL 3.61±2.62 4.65±2.80 

Executive 0.71±0.52 0.91±0.60 

NPI 10.30±0.51 7.39±7.77 

 

5.2.3. MR imaging 

This section describes the scanner information and image acquisition parameters for the 

abovementioned datasets. Table 5.2 shows the summary of this information for each sequence in 

each dataset. 

(i) ADC dataset: MRI data was acquired on two 1.5T MRI scanners: a GE 

MEDICAL SYSTEMS Signa scanner located at UCD Medical Center 

(Sacramento, CA), and a Philips Eclipse scanner located at the Veterans 

Administration Northern California Health Care System (Martinez, CA). T1w 

http://www.adni-info.org/Scientists/ADNIData.html
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scans were acquired with a FSPGR pulse sequence with 1.5 mm slice thickness, 

128 slices covering the entire brain, a 250×250 mm field of view, a 256×256 scan 

matrix, voxel size of 0.9765×0.9765×1.5 mm, repetition time (TR) of 9 ms and 

echo time (TE) of 2.9 ms. FLAIR scans were acquired with a fast spin echo (FSE) 

sequence with 3 mm slice thickness, a 220×220 mm field of view, and a 256×192 

scan matrix, voxel size of 0.9765×0.9765×3 mm, TR = 11000 ms and TE = 144 

ms. Analogous sequences were installed on both the GE and Philips scanners. 

(ii) ADNI1 dataset: The MRI data used was acquired on scanners from three different 

manufacturers, GE, Philips, and SIEMENS. All patients had similar MRI 

protocols for T1w and T2w/PD scans. T1w scans were acquired in 3D with a 

gradient recalled sequence with 1.2 mm slice thickness, 160 sagittal slices, 

covering the entire brain, a 192×192 mm field of view, and a 192×192 scan 

matrix, voxel size of 1.2×0.9375 ×0.9375 mm, TR = 3000 ms and TE = 3.55 ms. 

T2w/PD scans were acquired in 2D with a FSE sequence with 3.0 mm slice 

thickness, 56 axial slices covering the entire brain, a 256×256 mm field of view, 

and a 256×256 scan matrix, a voxel size of 0.8594×0.8594×5 mm, with TR = 

3000 ms, TE = 95.2 ms for T2w and TE=10.5 ms for PD images. 

(iii) ADNI2/GO dataset: The MRI data used was acquired on scanners from three 

different manufacturers, Philips, GE and SIEMENS. All patients had similar MRI 

protocols for T1w and FLAIR scans. T1w scans were acquired in 3D with a 

gradient recalled sequence with 1.2 mm slice thickness, 196 sagittal slices, 

covering the entire brain, a 256×256 mm field of view, and a 256×256 scan 

matrix, voxel size of 1×1×1.2 mm, TR = 7.2 ms and TE = 3.0 ms. FLAIR scans 
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were acquired in 2D with a spin echo inversion recovery sequence with 5.0 mm 

slice thickness, 42 axial slices covering the entire brain, a 256×256 mm field of 

view, and a 256×256 scan matrix, voxel size of 0.8594×0.8594×5 mm, with TR = 

11000 ms, TE = 150 ms. 

Table 5.2. Scanner information and MRI acquisition parameters for ADC, ADNI1, and ADNI2/GO datasets. 

Modality Dataset ADC ADNI1 ADNI2/GO 

 Scanner Manufacturer GE/Philips GE/Philips/SIEMEN

S 

Philips/SIEMENS 

T1w 

Slice thickness (mm) 1.5 1.2 1.2 

No. of slices 128 160 196 

Field of view (cm2) 250×250 192×192 256×256 

Scan Matrix (cm2) 256×256 192×192 256×256 

TR: Repetition time (ms) 9 3000 7.2 

TE: Echo time (ms) 2.9 3.55 3.0 

Pulse Sequence FSPGR MPRAGE MPRAGE 

Other 

Contrast T2w/PD/FLAIR T2w/PD FLAIR 

Scanner Manufacturer 3/3/3 3 5 

Slice thickness (mm) 42/42/48 56 42 

No. of slices 240×240/240×240/220×220 256×256 256×256 

Field of view (cm2) 256×256/256×256/256×192 256×256 256×256 

Scan Matrix (cm2) 2420/2420/11000 3000/3000 11000 

TR: Repetition time (ms) 90/20/144 95.2/10.5 150 

TE: Echo time (ms) DSE/DSE/FSE FSE SE/IR 

 

5.2.4. Pre-processing 

All MRI scans were pre-processed using our standardized pipeline. Images were denoised 

(Manjón et al., 2010), corrected for image intensity inhomogeneity (Sled et al., 1998) and 

intensity scaled (Fonov et al., 2011a). The T2w, PD, and FLAIR scans were then co-registered to 

the structural T1w scan of the same subject using a six-parameter rigid body registration (Collins 

et al., 1994).  The T1w scans were nonlinearly registered to the ADNI template based on 

intensity correlation coefficient (Collins and Evans, 1997). The quality of the nonlinear 

registrations was visually assessed and the results that did not pass this quality control were 
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discarded. Using the T1w-to-template transformations (i.e., linear + nonlinear), the other 

modalities (e.g., FLAIR, T2w, PD) were registered to the ADNI template as well. The manually 

segmented lesion maps were also registered to the ADNI template using the transformations of 

their corresponding FLAIR images. 

5.2.5. Manual segmentation 

In ADC and ADNI2/GO datasets, the WMHs were manually segmented by an expert 

with more than 12 years of experience in reading MRI and developing standardized MRI 

guidelines to detect WM lesions using different image modalities (Maranzano et al., 2016) with 

FLAIR used as the primary contrast and with T1w used to aid in the decision process to include 

or exclude a voxel from the lesion mask. In ADNI1, T2w images were used as the primary 

contrast with T1w and PD used to aid in the decision process. The rater defined the voxel of 

interest according to anatomical location and intensity information in all given MRI modalities. 

To be considered a WMH, a given voxel had to be hyperintense in relation to the surrounding 

NAWM on T2w, PD or FLAIR. The same voxel had to be iso to hypointense in relation to the 

NAWM on T1w images. Previous work (Dadar et al., 2017b) showed that intra-rater Dice Kappa 

was 0.72, 0.80 and 0.86 for ADC, ADNI1 and ADNI2/GO, respectively. 

5.2.6. Automatic segmentation 

A previously validated fully automatic WMH segmentation technique was used to 

automatically segment the WMHs in all three datasets using a set of intensity and spatial features 

and a Random Forest classifier (Dadar et al., 2017b, 2017a). The intensity features include voxel 

intensity for all available modalities, the probability of a specific intensity value being a WMH 
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(PWMH) or non-WMH (Pnon-WMH) for each available modality, and the ratio of these two 

probabilities for each available modality. The spatial features include a spatial WMH probability 

map indicating the probability of a voxel at a specific location being a WMH and the average 

intensity of a non-WMH voxel at that specific voxel location for each available modality. After 

preprocessing and co-registration of all available modalities, these spatial and intensity features 

are calculated for each modality. The Random Forest classifier is then trained using these 

features to segment the WMHs (Dadar et al., 2017b).  

For each dataset, the automatic technique was first trained and validated based on the 

manual segmentations. Two sets of automatic segmentations were completed, first with all 

available modalities (referred to as All-Contrasts segmentations) and second without using the 

T2w, PD, and FLAIR information (referred to as T1w-Only segmentations). The trained 

classifiers were then used to segment the entire ADC, ADNI1 and ADNI2/GO datasets. The 

quality of the segmentations was then assessed and verified by a human expert. The volumes of 

the WMHs for the left and right frontal, parietal, temporal, and occipital lobes as well as the 

entire brain were calculated by nonlinearly warping the Hammers atlas (Hammers et al., 2003) to 

the T1w scans of individual subjects and normalized for head size to make population 

comparisons possible.  

The WMH volumes obtained from the T1w-only segmentations were then correlated with 

All-Contrasts volumes as well as clinical scores. False discovery rate (FDR) correction was 

performed to correct for all multiple comparisons separately for each dataset (significance 

threshold = 0.05). All the correlations with clinical scores were performed with log transformed 

WMHs (to achieve normal distribution), controlling for age.  
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The key concern when using T1w-only segmentations is whether the WMH portions that 

are not captured by T1w-only segmentations are clinically significant. To assess whether the 

difference between the WMH volumes provided by T1w-Only and All-Contrast segmentations is 

statistically significant, a general linear model was used to regress the contrast (WMHLAll-Contrast-

WMHLT1-Only) and each measure. 

Figure 5.1 shows axials slices of T1w, T2w, PD, and FLAIR images for a subject from 

ADC, T1w, T2w, and PD images for a subject from ADNI1 and T1w and FLAIR images for a 

subject from ADNI2/GO, along with the manual segmentations, as well as T1-Only and All-

Contrasts automated segmentations. While All-Contrasts segmentations conform very well with 

the manual labels, the T1-Only segmentations seem to mostly capture the brightest of the 

WMHs. 

 

Fig. 5.1. Axial slices showing T1w, T2w, PD, and FLAIR images as well as manual (yellow), All-Contrasts (cyan), 

and T1w-Only (red) segmentations of subjects from ADC (top), ADNI1 (middle), and ADNI2/GO (bottom) 

datasets.  
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5.3. Results 

5.3.1. Comparison of Tissue Histograms 

Here we compare the histograms of WMHs with white matter (WM), gray matter (GM) 

and cerebrospinal fluid (CSF) density histograms using the manually segmented labels for each 

dataset (Fig. 5.2). Table 3 shows the percentage of overlap between the density histograms of 

WMHs and WM, GM, and CSF. The tissue histograms show the greatest separation of WMH 

with GM, WM, and CSF in FLAIR contrast images, followed by T2w, PD, and T1w. 

 

Fig. 5.2. Intensity histograms of white matter (WM), grey matter (GM), cerebrospinal fluid (CSF), and white matter 

hyperintensities (WMHs) for a. ADC and b. ADNI datasets. 
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Table 5.3. Percentage of overlap between density histograms of WMHs and GM, WM, and CSF. WMH= White 

Matter Hyperintensity. GM= Gray Matter. WM= White Matter. 

Dataset Dataset WM GM CSF 
 T1w 22.33 37.71 5.33 

ADC 
T2w 9.02 29.80 30.75 

PD 15.77 36.47 56.91 
FLAIR 2.73 3.76 1.02 

ADNI 

T1w 29.69 42.20 9.45 

T2w 9.32 23.95 32.95 
PD 28.96 39.90 32.37 

FLAIR 12.41 14.53 5.00 

 
 

 

5.3.2. Comparisons with Manual Segmentations 

In order to assess the importance of using the T2w, PD, and FLAIR information, the 

WMH loads obtained from segmentations with and without the information of the optimal 

modality (i.e. T2w/PD and FLAIR sequences for ADNI1 and ADNI2/GO datasets, respectively) 

were correlated with the equivalent volumes obtained from the manual segmentations. 

Correlations were computed for total brain WMH, and for lobar WMH loads. Fig. 3 shows this 

information for the three datasets. While the T1-Only volumes systematically underestimate the 

gold standard volumes (obtained from the manual segmentations), they are still able to retain 

high correlations in all regions and datasets (r=0.963, p<0.001 for ADC, r=0.743, p<0.001 for 

ADNI1, and r=0.904, p<0.001 for ADNI2/GO for whole brain T1w-Only correlations), the 

dynamic WMH range (i.e. the range of the WMH volumes obtained from T1w-Only and All-

Contrasts segmentations) is also substantially reduced (e.g. 0-42.5 CCs vs. 0-124 CCs for ADC, 

0-74 CCs vs. 0-116 CCs for ADNI1, and 0-67 CCs vs. 0-104 CCs for ADC, for T1w-Only and 

All-Contrasts segmentations, respectively). 
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Fig. 5.3. Total brain and per lobe correlations for automatic versus manually segmented WMH volumes (CCs), 

using all contrasts available (red) and using only T1w contrast (blue) for a. ADC, b. ADNI1, c. ADNI2/GO datasets.  

 

5.3.3. Large Scale Correlations 

A correlation analysis of the WMH loads for the whole brain as well as different lobes 
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was performed between the automatic segmentations obtained with and without T2w/PD and 

FLAIR information (All-Contrasts and T1w-Only, respectively) for the subjects from ADNI1 

and ADNI2/GO datasets. Figure 5.4 shows the results of these comparisons for each dataset. The 

correlations were significant for every lobe in both datasets (r=0.888, p<0.001 for ADNI1, and 

r=0.969, p<0.001 for ADNI2/GO for whole brain correlations).  

 

Fig. 5.4. Total brain and per lobe correlations for automatically segmented WMHs volumes (CCs) based on all 

available contrast images versus only T1w contrast image for ADNI1 (left) and ADNI2/GO (right) datasets. 

The results show a trend of under-segmentation that remains consistent with the change 

in the WMH load. The amount of this underestimation is also highly correlated with the total 

WMH load for both datasets (r= 0.790, p<0.00001 for ADNI1 and r= 0.717, p<0.00001 for 

ADNI2/GO). 
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The log transformed WMH loads were also correlated with age. Figure 5.5 shows the 

results of the correlations with age for ADNI1 and ADNI2/GO datasets.  

 

Fig. 5.5. Total brain and per lobe correlations for z-scored log transformed automatically segmented WMH volumes 

correlated with age (z-scored) based on all available contrasts (red) versus only T1w images (blue) for ADNI1 (left) 

and ADNI2/GO (right) datasets. WMHL= White Matter Hyperintensity Load. 

If one considers the T1w intensity profile of the tissue that is segmented as WMH based 

on FLAIR or T2w images, the intensities range from hypo-intense to iso-intense in relation to the 

neighboring tissue. To investigate whether the T1w-Only segmentations have different 

sensitivity levels for detecting WMHs (i.e. whether the T1w-Only segmentations label the hypo-

intense portion of the WMHs and not the iso-intense areas), the manual WMH masks created by 

the expert were thresholded based on T1w intensity of NAWM at different values, reflecting 
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different levels of sensitivity. The resulting WMH masks were then compared with the T1-Only 

and All-Contrasts WMH segmentations for different threshold values using Dice Kappa 

similarity measure and volumetric correlation (Fig. 6). The results show higher Dice Kappa 

values as well as stronger correlations with T1-Only segmentations at lower threshold values, 

confirming that the T1w-Only segmentations correspond to the more hypointense regions of the 

manual WMH masks, with the optimal intensity threshold at approximately 63 (note that the 

intensity range of all the images has been normalized to the range of 0-100).  

 

Fig 5.6. Dice Kappa and volumetric correlation between T1-Only and All-Contrasts segmentations and thresholded 

manual labels based on T1w image intensity. 

 

5.3.4. WMHs and clinical measures 

Tables 5.4 and 5.5 summarize the results of correlating different cognitive measures and 

the log transformed WMH loads (to achieve normal distribution) in different lobes obtained from 

All-Contrasts and T1w-Only segmentations, controlling for age for ADNI1 and ADNI2/Go 

datasets, respectively. The “*” indicates significant correlations, after multiple comparisons 

correction using false discovery rate (FDR), controlling for age for ADNI1 and ADNI2/GO 
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datasets. Figure 5.7 shows an example of these correlations for ADAS13 score. 

 

Table 5.4. Coefficients of correlation between WMH loads in different lobes and cognitive measures for ADNI1 

subjects, controlling for age. WMH= White Matter Hyperintensity. LFL/RFL=Left/Right Frontal Lobe. LPL/RPL= 

Left/Right Parietal Lobe. LTL/RTL=Left/Right Temporal Lobe. LOL/ROL= Left/Right Occipital Lobe. WB= Whole 

Brain. MMSE= Mini-Mental State Examination. ADAS= Alzheimer's Disease Assessment Scale. FAQ= Functional 

Assessment Questionnaire. RAVLT= Rey Auditory Verbal Learning Task (I=Immediate, F=Forgetting, L=Learning). 

Executive= Executive Function (Gibbons et al., 2012). NPI= Total Neuropsychiatric Inventory Score. 

 Test LFL RFL LPL RPL LTL RTL LOL ROL WB 

T
1

+
T

2
+

P
D

 

MMSE -0.165* -0.171* -0.139* -0.145* -0.081* -0.090* -0.125* -0.134* -0.174* 

ADAS11 0.203* 0.199* 0.183* 0.192* 0.108* 0.131* 0.129* 0.172* 0.217* 

ADAS13 0.219* 0.217* 0.201* 0.199* 0.127* 0.151* 0.141* 0.190* 0.236* 

FAQ 0.209* 0.215* 0.171* 0.192* 0.109* 0.128* 0.139* 0.208* 0.216* 

RAVLTI -0.174* -0.179* -0.161* -0.163* -0.119* -0.168* -0.130* -0.157* -0.197* 

RAVLTF 0.074 0.051 0.062 -0.028 -0.005 -0.005 -0.023 -0.020 -0.061 

RAVLTL -0.084* -0.100* -0.079 -0.079 -0.070 -0.085* -0.084* -0.095* -0.103* 

Executive -0.111* -0.110* -0.121* -0.107* -0.112* -0.113* -0.182* -0.139* -0.130* 

NPI 0.210* 0.199* 0.279* 0.273* 0.270* 0.239* 0.242* 0.221* 0.277* 

O
n

ly
 T

1
 

MMSE -0.203* -0.211* -0.127* -0.147* -0.031 -0.057 -0.144* -0.162* -0.187* 

ADAS11 0.231* 0.230* 0.149* 0.180* 0.054 0.083* 0.132* 0.146* 0.217* 

ADAS13 0.251* 0.251* 0.168* 0.186* 0.069 0.092* 0.148* 0.156* 0.236* 

FAQ 0.226* 0.238* 0.150* 0.182* 0.065 0.089* 0.160* 0.224* 0.218* 

RAVLTI -0.220* -0.217* -0.166* -0.179* -0.100* -0.130* -0.133* -0.141* -0.217* 

RAVLTF 0.074 0.067 0.054 0.043 0.053 0.033 0.036 0.044 0.073 

RAVLTL -0.109* -0.113* -0.059 -0.070 -0.020 -0.037 -0.070 -0.084* -0.097* 

Executive -0.128* -0.135* -0.117* -0.113* -0.018 -0.077 -0.124* -0.092* -0.130* 

NPI 0.228* 0.237* 0.308* 0.300* 0.211* 0.200* 0.200* 0.228* 0.290* 
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Table 5.5. Coefficients of correlation between WMH loads in different lobes and cognitive measures for ADNI2/GO 

subjects, controlling for age. WMH= White Matter Hyperintensity. LFL/RFL=Left/Right Frontal Lobe. LPL/RPL= 

Left/Right Parietal Lobe. LTL/RTL=Left/Right Temporal Lobe. LOL/ROL= Left/Right Occipital Lobe. WB= Whole 

Brain. MMSE= Mini-Mental State Examination. ADAS= Alzheimer's Disease Assessment Scale. FAQ= Functional 

Assessment Questionnaire. RAVLT= Rey Auditory Verbal Learning Task (I=Immediate, F=Forgetting, L=Learning). 

Executive= Executive Function. NPI= Total Neuropsychiatric Inventory Score. 

 Test LFL RFL LPL RPL LTL RTL LOL ROL WB 

T
1

+
F

L
A

IR
 

MMSE -0.153* -0.124* -0.145* -0.137* -0.095 -0.086 -0.147* -0.083 -0.152* 

ADAS11 0.210* 0.191* 0.199* 0.189* 0.166* 0.130* 0.231* 0.135* 0.219* 

ADAS13 0.197* 0.184* 0.184* 0.180* 0.161* 0.119* 0.227* 0.138* 0.208* 

FAQ 0.160* 0.148* 0.155* 0.148* 0.132* 0.104* 0.124* 0.099* 0.167* 

RAVLTI -0.108* -0.115* -0.096 -0.104* -0.064 -0.024 -0.180* -0.070 -0.121* 

RAVLTF -0.069 -0.048 -0.077 -0.046 -0.036 -0.087 -0.022 -0.061 -0.072 

RAVLTL -0.124* -0.143* -0.126* -0.138* -0.096 -0.102* -0.088 -0.011 -0.137* 

Executive -0.057 -0.078 -0.056 -0.074 -0.036 -0.013 -0.104 -0.100 -0.080 

NPI 0.179* 0.204* 0.175* 0.213* 0.200* 0.247* 0.175* 0.195* 0.215* 

O
n

ly
 T

1
 

MMSE -0.126* -0.094 -0.109* -0.106* -0.055 -0.067 -0.097 -0.041 -0.118* 

ADAS11 0.209* 0.183* 0.186* 0.158* 0.136* 0.102* 0.140* 0.097 0.199* 

ADAS13 0.192* 0.165* 0.162* 0.145* 0.120* 0.084 0.126* 0.083 0.179* 

FAQ 0.151* 0.118* 0.113* 0.096 0.071 0.037 0.055 0.051 0.127* 

RAVLTI -0.115* -0.105* -0.101* -0.112* -0.057 -0.033 -0.072 -0.012 -0.111* 

RAVLTF -0.057 -0.056 -0.062 -0.024 -0.037 -0.042 -0.050 -0.073 -0.061 

RAVLTL -0.158* -0.156* -0.094 -0.105* -0.134* -0.108* -0.067 -0.021 -0.142* 

Executive -0.075 -0.077 -0.069 -0.095 -0.016 -0.055 -0.046 -0.031 -0.083 

NPI 0.125* 0.130* 0.113* 0.152* 0.145* 0.153* 0.034 0.108* 0.144* 
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Fig. 5.7. Total brain and per lobe correlations for log transformed automatically segmented WMH volumes (CCs) 

versus ADAS13 while controlling for age, based on all available contrasts (red) and based only on T1w images 

(blue) for ADNI1 (left) and ADNI2/GO (right) datasets.   

The key concern when using T1w-only segmentations is whether the WMH portions that 

are not captured by T1-only segmentations are clinically significant. To assess whether the 

difference between the WMH volumes provided by T1-Only and All-Contrast segmentations is 

statistically significant, a general linear model was used to regress the contrast (WMHLAll-Contrast-

WMHLT1-Only) and each measure. None of the contrasts was significant after correcting for 

multiple comparisons using FDR. 
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5.3.5. WMHs and other measures 

The log transformed total WMH loads were significantly different between subjects with 

and without cardiovascular risk factors and history of hypertension, for both T1w-Only and All-

Contrasts segmentations (p<0.0001). Figure 8 shows boxplots of the log transformed WMH 

loads in Normal Control (NC), Mild Cognitive Impairment (MCI), and Dementia groups, 

separately for T1w-Only and All-Contrasts loads in ADNI1 and ADNI2/GO datasets. In all 

cases, the Dementia cohort has significantly larger WMH loads than the other two groups (Note 

that the log transformed values are plotted here, and that a 0.4 difference in the log transformed 

values is equivalent to approximately 3 CCs of WMHs).   

 

Fig. 5.8. Boxplots of log transformed WMHLs for NC, MCI, and Dementia Cohorts. In all cases, the Dementia 

cohort has significantly larger WMH loads than the other two groups. WMHL= White Matter Hyperintensity Load. 
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NC= Normal Control. MCI= Mild Cognitive Impairment. 

Tables 5.6 summarizes the results of correlating different risk factors with the log 

transformed total WMH loads from T1w-Only images and All-Contrasts segmentations, for 

ADNI1 and ADNI2/Go datasets, respectively. The “*” indicates significant correlations, after 

multiple comparisons correction using false discovery rate (FDR). None of the contrasts 

(WMHLAll-Contrast-WMHLT1-Only) was significant after correcting for multiple comparisons. 

Table 5.6. Coefficients of correlation between WMH loads in different lobes and measures for ADNI1 and 

ADNI2/GO subjects. WMH= White Matter Hyperintensity. FDG= Fluorodeoxyglucose PET. AV45= Florbetapir. 

PET= Positron Emission Tomography. CSF= Cerebrospinal Fluid. 

Dataset ADNI1 ADNI2/GO 

Measure N T1+T2+PD T1 N T1+FLAIR T1 

Systolic blood pressure 148 0.002 -0.014 409 0.162* 0.199* 

Diastolic blood pressure 148 -0.052 -0.027 409 0.103 0.089 

Hyperhomocysteinaemia  667 0.124* 0.146* 47 0.016 0.048 

FDG 342 0.183* 0.135* 448 0.284* 0.261* 

AV45 0 - - 443 0.172* 0.162 

Serum Glucose 626 0.119* 0.112* 417 0.048 0.043 

Cholesterol 557 0.065 0.080 382 0.153* 0.105 

CSF Protein 333 0.209* 0.125* 73 0.232* 0.247* 

 

5.4. Discussion 

White matter hyperintensities are an important clinical marker of small vessel disease in 

aging, and patients suffering from stroke and dementia (Carmichael et al., 2010; DeCarli et al., 

1995a; Pantoni et al., 2006; van Straaten et al., 2008). In recent years, there has been an 

increasing interest in using WMHs as an outcome in clinical trials investigating cerebral small 

vessel disease in the context of stroke and dementia (Debette and Markus, 2010). They reflect 

the burden of the disease in relation to a small-vessel component (Pantoni, 2010), and are 

associated with decline in different cognitive domains. Specifically in AD, WMHs are emerging 
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as a potential biomarker of the preclinical vulnerability risk for the disease (Brickman et al., 

2012; Deoni et al., 2013; Provenzano et al., 2013).  

The optimal MRI sequences for detecting WMHs are FLAIR and T2w/PD scans. 

However, many previous large-scale datasets have forgone the acquisition of these sequences in 

favor of other imaging modalities or due to time and financial concerns. WMHs are also visible 

as hypointense regions on T1w images, but their range of hypointensity is more spread out when 

compared to the bright signal obtained in FLAIR and T2w/PD, with large isointense areas, or 

almost isointense in relation with the surrounding NAWM (Fig. 9). This lower contrast between 

the NAWM tissue and WMHs on T1w sequence makes accurate detection of the full extent of 

WMHs more challenging in this MRI modality. However, by assessing, even to some extent, the 

load and location of WMHs using only T1w data, it is possible to study them in other 

retrospective datasets, where T2w/PD, or FLAIR information are not available. The key concern 

when using T1w-Only segmentations would be whether the WMH portions that are not captured 

by T1-Only segmentations are clinically significant.  
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Fig. 5.9. Comparing T1w hypointensities and FLAIR hyperintensities. a) T1w image showing different hypointense 

values: short and long arrows indicate lower and higher signals, respectively. b) T1w manual mask corresponding to 

a given level of hypointensity in T1w image. Note that only the lower signal areas are labeled as WMHs. c) FLAIR 

image d) FLAIR and manual mask corresponding to WMHs detected based on FLAIR image d) FLAIR and T1w-

based mask. Note how the hypointense information of the T1w sequence colocalizes only with a portion of the 

WMHs on FLAIR even though the signal on the FLAIR sequence is mostly homogeneous. 

In our study, a previously validated automated technique was used to segment the WMHs 

with and without the optimal FLAIR and T2w/PD information. In a previous study, we have 

shown that this automated tool was able to detect WMHs using different combinations of MRI 

sequences (Dadar et al., 2017b). Here, a random forest classifier was chosen to report our results 

based on our previous experiments and validations since it had the best performance in detecting 

WMHs among the studied linear and nonlinear classifiers. However, similar experiments were 

also performed using the other available classifiers such as AdaBoost which showed similar 

results regardless of the choice of classifier. 
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Our results suggest that the measures obtained from using only T1w images 

underestimate the actual WMH burden, since they only capture the portion of the lesions that co-

localizes with the lower intensity signal of the overall T1w hypointense area (Fig. 5.9). We 

speculate that these deeper hypointense portions are probably due to more severely affected 

tissue (i.e. more extensive demyelination, and/or more axonal loss) which are likely to be more 

clinically relevant (hence the maintained correlations). Future studies correlating histological 

specimens and MR T1w information would be necessary to clarify the specific histological 

substrate of the full range of hypointense signal captured by T1w sequence and the more 

homogeneous bright signal on FLAIR/T2w/PD. Nevertheless, despite the absence of a 

histopathology gold standard, T1w-Only WMHs volumes are still able to hold strong 

correlations with both manual and automatic segmentations obtained using the optimal 

modalities. Additionally, the assessment of colocalization shows higher Dice Kappa values for 

the T1w-Only classifications when they are compared with the manual mask thresholded to a 

percentage value of the T1w NAWM, confirming that the partially detected WMH area 

colocalizes with the lower T1w signal voxels (Fig. 5.6). Likewise, the volumetric correlation of 

the T1w-Only volumes with the threholded manual expert volumes reinforces the concept of 

specific partial detection of hypointense voxels on T1w images. 

Regarding the assessment of clinical outcomes, the T1w-Only WMH volumes mostly 

correlate with age, cognitive and clinical measures as strongly as the WMH volumes determined 

using the optimal modalities of FLAIR or T2/PD. This is true for WMHs in whole brain and in 

different single brain lobes. Likewise, vascular risk factors show a significant correlation with 

T1-Only WMHs volumes, similar to those obtained with all the optimal modalities. This suggest 

that, although the WMH burden might be underestimated in T1w-Only segmentations, the 
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identified lesions can be used for clinical correlations in datasets where the optimal sequences 

are not available. This will enable us to generate and use the WMH loads obtained from the T1w 

images as an estimate of the actual WMH loads in datasets where the FLAIR or T2w/PD 

information is unavailable, and also in T1w scans that do not have full FLAIR or T2w/PD brain 

coverage. 

Finally, many studies acquire T2w/PD or FLAIR information in their baseline visit, or at 

longer intervals compared with the T1w scans, which are acquired at every MRI visit. Even 

though the T1w-Only segmentations systematically underestimate the volume of WMHs, having 

an estimate of the accurate WMH load from the baseline T2w/PD or FLAIR images, one may 

correct for this bias to obtain more accurate estimates of WMH loads, for the visits that only 

have T1w acquisitions. In addition, T1w images are generally acquired at higher resolutions (i.e. 

1 mm thick slices) than the T2w/PD or FLAIR scans which are generally acquired at 3-5 mm 

slice thicknesses. The higher spatial resolution of T1w images can also be used to obtain more 

spatially accurate segmentations, where such information may not available due to the higher 

slice thickness of the T2w/PD and FLAIR images.  

Our study indicates that datasets that lack T2w/PD and FLAIR modalities may still 

benefit from the estimation of WMHs using our T1w-Only segmentation approach, in order to 

correlate this MRI data with other clinical variables available for the subjects.  
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Chapter 6.  White Matter Hyperintensities Predict Cognitive Decline in 

de Novo Parkinson’s Disease Patients 

Preface 

In this chapter, we use the proposed WMH segmentation pipeline to study the effect of 

WMHs in Parkinson’s disease. We use data from the Parkinson’s Progression Markers Initiative 

(PPMI), a multi-center and multi-scanner database of unmedicated early stage Parkinson’s 

disease patients and age matched healthy controls. The WMHs were segmented using either 

T1w+T2w or T1w+FLAIR sequences from baseline visits of the subjects. Using mixed effects 

modeling and survival analysis, the relationship between baseline WMHs and future cognitive 

decline was assessed.  

Our results showed that Parkinson’s patients that had higher loads of WMHs, have higher 

rates of decline in different cognitive domains than can be explained by normative aging. 

This work has been revised and re-submitted to Jama Neurology as: 

Dadar, M., Y. Zeighami, Y. Yau, S.M. Fereshtehnejad, J. Maranzano, R. Postuma, A. 

Dagher, D. L. Collins. " White Matter Hyperintensities and Cognitive Decline in de Novo 

Parkinson’s Disease Patients." 

 

 

 
  



175 

 

White Matter Hyperintensities and Cognitive Decline in de Novo Parkinson’s Disease 

Patients 

Mahsa Dadar, Yashar Zeighami, Yvonne Yau, Seyed-Mohammad Fereshtehnejad, Josefina 

Maranzano, Ronald Postuma, Alain Dagher, D. Louis Collins  

Key points: 

Question: Does existence of white matter hyperintensities (WMHs) in de Novo Parkinson’s 

disease (PD) patients affect their future cognition differently from non-affected controls 

subjects? 

Findings: In a cohort of early stage drug naïve PD patients and age matched healthy controls, we 

measured baseline WMH loads. Using longitudinal cognitive scores (follow-up: 4.09±1.14 

years), we found that PD subjects with high WMH loads had significantly higher decline in 

cognition, compared with i) PD subjects with low WMH loads and ii) HC subjects with high 

WMH loads. 

Meaning: WMHs in PD patients are associated with more pronounced cognitive decline than 

healthy controls. 
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Abstract: 

Importance: White Matter Hyperintensities (WMHs) are associated with cognitive decline in 

normative aging and Alzheimer’s disease. However, the pathogenesis of cognitive decline in 

Parkinson’s disease (PD) is not as clearly related to vascular causes, and therefore the role of 

WMHs as a marker of small-vessel disease (SVD) in PD remains unclear. Currently, SVD in PD 

is assessed and treated independently of PD. However, if WMH as the major MRI sign of SVD 

has a higher impact on cognitive decline in PD patients than in healthy controls, vascular 

pathology needs to be assessed and treated with a higher priority in this population. 

Objective: To assess at the earliest stages of PD, whether WMHs are associated with faster 

cognitive decline, and if these effects relate to cortical thickness alterations. 

Design, setting, and participants: Cohort study of the role of WMHs in PD in recently 

diagnosed and non-treated (de novo) PD patients. De novo PD patients (NPD =365) and age-

matched controls (NHC =174) with FLAIR or T2w MRI scans at baseline were selected from the 

multi-center Parkinson’s Progression Markers Initiative (PPMI) database. Baseline WMHs and 

longitudinal cortical thickness were measured to analyse the relationship between baseline 

WMHs and future cognitive decline (follow-up: 4.09±1.14 years) and cortical thinning (follow-

up: 1.05±0.10 years). 

Main Outcomes and Measures: WMH loads, cortical thickness, and cognitive scores.  

Result: Within de novo PD patients, high WMH burden at baseline was associated with 

increased cognitive decline, significantly more than i) PD patients with low WMH loads 

(χ2=31.5, p<0.00001) and ii) controls with high WMH loads (χ2=6.2, p=0.012). Furthermore, PD 

patients with higher baseline WMH loads showed more cortical thinning in right frontal lobe 
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than subjects with low WMH loads. Cortical thinning of this region also predicted poorer 

performance on a cognitive test as well as the change in performance between baseline and 

follow-up. 

Conclusion and relevance: Presence of WMHs in de novo PD patients predicts greater future 

cognitive decline and cortical thinning than can be accounted for by normal aging. Recognizing 

WMHs as a potential predictor of cognitive deficit in PD provides an opportunity for timely 

interventions. 

Key words: Parkinson’s disease, white matter hyperintensities, magnetic resonance imaging, 

cognitive decline, de Novo Parkinson’s disease patients 

6.1. Introduction 

While Parkinson’s disease (PD) is typically characterized by motor symptoms, cognitive 

deficits occur in approximately 15% of patients in early drug-naïve stages(Poletti et al., 2012). 

Two decades after disease onset, this prevalence increases to over 80% (Hely et al., 2008). Early 

mild cognitive impairment (MCI) is a strong predictor of later development of dementia (Anang 

et al., 2014; Pedersen et al., 2017), which is a key determinant of mortality and poorer quality of 

life in PD (de Lau et al., 2005). Cognitive impairment in PD is related to subcortical dysfunction 

in early stages, followed by cortical α-synuclein pathology and loss of neurotransmitters. 

However, it remains unclear to what degree white matter changes, historically described as 

leukoaraiosis (Hachinski et al., 1987) which are major signs of  small-vessel disease (SVD) 

(Halliday et al., 2014; Merino and Hachinski, 2000) may contribute to  cognitive dysfunction in 

PD. 

White matter hyperintensities (WMHs) or leukoaraiosis are areas of increased signal in 
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T2w and FLAIR structural MRI. The neuropathologic correlates of WMHs are varied: loss of 

axons and glial cells, myelin rarefaction, spongiosis, perivascular demyelination, gliosis, 

subependymal glial accumulation and loss of the ependymal lining (Merino and Hachinski, 

2000). Despite the various findings, consensus exists regarding the association of WMHs and 

SVD (Pantoni and Garcia, 1997). The term small-vessel disease is mainly related to two 

etiologies: 1) age-related vascular disease, also referred as arteriolosclerosis, or vascular-risk-

factor related small-vessel disease (Debette and Markus, 2010; de Leeuw et al., 2002), and 2) 

cerebral amyloid angiopathy (Pantoni, 2010). These two play a crucial role in stroke, dementia 

and aging, and could also be relevant in PD.  Therefore, early detection of WMHs and treatment 

of cardiovascular risk factors could have a positive impact on cognitive decline in PD (Biesbroek 

et al., 2017; Dufouil et al., 2005; Hawkins et al., 2017; Veselỳ and Rektor, 2016).  In AD, 

WMHs have been extensively studied and strongly predict rapid cognitive decline in individuals 

with MCI (Dubois et al., 2014; Tosto et al., 2014). In PD, the pathogenic role of vascular risk 

factors is less clear (de Lau et al., 2005) and results have been contradictory (Veselỳ and Rektor, 

2016). The WMHs might cause cognitive decline independent of PD, or the synergy between the 

two mechanisms may accelerate cognitive impairment (Veselỳ and Rektor, 2016). Alternatively, 

the WMHs might aggravate the pathologic spread of misfolded α-synuclein or amyloid-β 

proteins. Of the few studies that have investigated WMHs and cognitive decline in PD, most are 

cross-sectional, include patients that are on dopaminergic medication, and are typically from 

cohorts that are at later stages of disease (Auning et al., 2014; Jones et al., 2017; Mak et al., 

2015). Additionally, different groups implement different tests to assess cognition and many do 

not perform a comprehensive neuropsychological battery. 

Capitalizing on the longitudinal assessment of cognitive abilities and imaging biomarkers 
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in the multi-centre cohort of de novo PD patients from the Parkinson’s Progression Markers 

Initiative (Marek et al., 2011), we investigated the relationship between WMH burden and: 1) 

cognitive decline over time and 2) cortical grey matter changes over time (as indexed by cortical 

thinning) in early stages of PD. 

6.2. Methods 

6.2.1. Patients 

The Parkinson’s Progression Markers Initiative (PPMI) is a longitudinal multi-site 

clinical study of de novo PD patients and age-matched healthy controls (HC) (Marek et al., 2011) 

(http://www.ppmi-info.org). The study was approved by the institutional review board of all 

participating sites and written informed consent was obtained from all participants before 

inclusion in the study. In the present study, we included all subjects that had either FLAIR or 

T2w MR images at their baseline visit and had follow-up visits for at least one year after the 

baseline scan (NPD=365, NHC=174). All subjects were regularly assessed (yearly follow-ups, 

mean total follow-up period of 4.09±1.14 years) for clinical characteristics (motor, non-motor 

and neuropsychological performance) by site investigators, including Montreal Cognitive 

Assessment (MoCA), Hopkins Verbal Learning Test–Revised (HVLT), Benton judgement of 

line orientation test for visuospatial skills, Letter-Number Sequencing test for verbal working 

memory, and semantic fluency test to detect cognitive decline (Table 6.1). The executive 

function score is calculated as the sum of letter number sequencing and semantic fluency scores 

(Chan et al., 2008). To validate the correlation between these two components, we verified their 

relationship in the PD population (r=0.56, p<0.0001). For more information on clinical 

measurements, see Appendix, section Cognitive Testing. 

http://www.ppmi-info.org/
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Table 6.1. Descriptive statistics for the PPMI subjects enrolled in this study. Data are number of participants in each 

category (N), percentage of the total population (%), and mean (SD) of key variables. PPMI=Parkinson’s 

Progression Marker Initiative. FLAIR= Fluid Attenuated Inversion Recovery. MoCA= Montreal Cognitive 

Assessment Score. HVLT= Hopkins Verbal Learning Test Revised Total Score. Benton= Benton Judgement of Line 

Orientation Score. WMH= White Matter Hyperintensity. 

 Control De novo PD 

Participants (NTotal) 174 365 

Female (N) 57 (33%) 114 (32%) 

T1w and FLAIR Scans (NBaseline) 79 (45%) 167 (46%) 

T1w and T2w Scans (NBaseline) 95 (55%) 198 (54%) 

Follow-up 3T T1w scans (NFollow-up) 55 (32%) 100 (27%) 

Age at Baseline (years) 60.07 (±11.34) 60.51 (±9.86) 

MoCA at Baseline 28.25 (±1.12) 27.24 (±2.22) 

HVLT at Baseline 35.05 (±6.78) 32.01 (±7.95) 

Benton at Baseline 26.13 (±4.12) 25.60 (±4.07) 

Executive Function at Baseline 20.94 (±4.73) 22.29 (±4.58) 

WMH Load at Baseline (cm3) 7.66 (±10.38) 6.93 (±8.03) 

 

6.2.2. Procedures 

All MR images were preprocessed using our standard pipeline (Aubert-Broche et al., 

2013) in three steps: noise reduction, intensity non-uniformity correction, and intensity 

normalization. T2w and FLAIR images were linearly co-registered to the T1w images using a 6-

parameter rigid registration. The T1w images were first linearly and then nonlinearly registered 

to the standard template (MNI-ICBM-152). The WMHs were segmented using a previously 

validated automatic multi-modality segmentation technique in the native space of FLAIR or T2w 

scans to avoid further blurring caused by resampling of the images (Dadar et al., 2017a, 2017b). 

This technique uses a set of location and intensity features obtained from a library of manually 

segmented scans in combination with a random forest classifier to detect the WMHs in new 

images. The libraries used in this study were obtained from Alzheimer's Disease Neuroimaging 

Initiative (ADNI) dataset since the T2w and FLAIR sequences for the PPMI images follow the 

same acquisition protocol as ADNI. The quality of the registrations and segmentations was 
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visually assessed and cases that did not pass this quality control were discarded (n=43). WMH 

load was defined as the volume (in cm3) of all segmented WMH voxels in the standard space, i.e. 

the WMH volumes were corrected for total intracranial volume (ICV). All MRI processing and 

segmentation steps were blinded to clinical outcomes. 

For voxel-wise analysis of WMHs, the WMH probability maps generated by the 

segmentation tool were nonlinearly transformed to the template space at 2×2×2 mm3 resolution 

and blurred with a 3D Gaussian kernel with full width at half maximum of 5 mm to compensate 

for the variability caused by differences in voxel sizes in the native FLAIR and T2w images. 

Rates of cognitive decline were calculated for subjects that had at least one-year follow-up 

information as the change of the score per year (NPD=365, NHC=174), using a linear regression 

between time and the score values at different time points along with an intercept term. 

Only subjects with T1w 3T MRI data at both initial/baseline visit and at a one-year 

follow-up MRI were included for cortical thickness analysis (NTotal=155, see Table 6.1).  Cortical 

models were generated using the CIVET 2.1 preprocessing pipeline (Ad-Dab’bagh et al., 2006), 

registered to MNI-ICBM-152 template, and analyzed using the SurfStat software package 

(http://www.math.mcgill.ca/keith/surfstat/). Distances between inner and outer cortical surfaces 

were evaluated to provide a measure of cortical thickness at each vertex. Changes in cortical 

thickness were calculated by subtracting the values (Δt = t1−t2) at the one-year follow-up (t2) 

from the baseline (t1). The average time between the baseline and follow-up visits was 1.05±0.11 

and 1.05±0.09 years for the PD and control subjects, respectively. 

6.2.3. Statistical Analysis 

We tested two major hypotheses: (1) greater WMH load will lead to more extensive and 

http://www.math.mcgill.ca/keith/surfstat/
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faster decline in cognition of the PD patients (2) patients with a higher WMH load (WMHL) will 

show more cortical thinning in their follow-up visit after one year. 

Survival analysis was used to investigate the relationship between WMH burden and 

decline in cognition. It has been previously shown that a threshold of WMHs should be present 

before cognitive deficits are observed (Boone et al., 1992; Price et al., 2012). The question of 

interest was whether there is a significant difference between the cognitive survival curves of 

subjects (normal controls and PD patients) with low versus high WMHL. The threshold for 

differentiating between high and low WMHL was set at 5 cm3 (median value, 0.7% of WM 

volume, 0.27% of brain volume). Similar to previous studies (Baracchini et al., 2012; Suzuki et 

al., 2015; Joana et al., 2013), a stable 2-point drop in MoCA (a drop that persists over the follow-

up visits) was considered as the terminal event in the survival analysis and the time from baseline 

MoCA measurement to the visit where the 2-points drop was detected was considered as survival 

time. This was consistent with recommendations from our in-house clinical consultation. Drop in 

MoCA was selected as the main terminal event since MoCA has been previously validated as a 

sensitive measure for detecting and monitoring cognitive change over time (Costa et al., 2014) in 

general and MCI or dementia in PD specifically (Hoops et al., 2009). Robustness of the results 

was verified for a WMHL threshold of 10 cm3 and 1 to 4 point drops in MoCA.  For survival 

analysis, the survdiff function from R package survival was used 

(ftp://centos.ustc.edu.cn/CRAN/web/packages/survival/survival.pdf). The function implements 

the two-sample G ρ statistics family of Harrington and Fleming, with weights on each event (2-

point drop in MoCA) of S(t)ρ, where S(t) is the Kaplan-Meier estimate of survival, i.e. the 

probability that a subject survives longer than time t (Harrington and Fleming, 1982). 

Furthermore, Longitudinal mixed-effects models were used to assess the association of 
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WMHs with changes in cognition. MoCA, Benton, HVLT, and executive function scores were 

used as measures of cognition (dependent variables). The log-transformed WMH loads and age 

were used as continuous predictors, and cohort (HC versus PD) was used as a categorical 

predictor. All continuous variables were z-scored prior to the analysis. All models contained first 

order interactions with age. Subject and contrast used for segmentation (T2w versus FLAIR) 

were considered as categorical random effects in all the models. Models were fitted using fitlme 

in MATLAB version R2015b.  

Differences in cortical thickness between high and low WMHL classes [(highWMHLt1-

highWMHLt2)-(lowWMHLt1-lowWMHLt2)] were analyzed statistically based on Gaussian 

random field theory with a threshold of p<0.05 (Worsley et al., 1996). Similar to the survival 

analysis, the threshold for differentiating between high and low WMHL was 5 cm3. Observed 

differences in cortical thickness were then correlated to cognitive measures using Pearson partial 

correlations correcting for age. 

6.3. Results 

6.3.1. Baseline WMH Load as a Predictor of Longitudinal Cognition 

Survival Analysis: 

Baseline WMH loads were not significantly different in control and PD populations 

(p>0.05) (see Appendix for further information on baseline measures). Controlling for age, the 

rate of decline in MoCA score was significantly correlated with baseline WMH load (r=-0.145, 

p=0.007) in the PD cohort, but not in controls (r=0.045, p=0.577). Figure 1 shows the Kaplan-

Meier plot for the survival analysis for progression decline in MoCA. The 4-year survival rate 
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(i.e. rate of patients maintaining MoCA stability) for the low and high WMHL groups were 

estimated as 63% (95 CI=0.55-0.70) and 37% (95 CI=0.29-0.45) in PDs and 65% (95 CI=0.52-

0.75) and 56% (95 CI=0.45-0.67) in controls, respectively (NPD-Low=186, NPD-High=174, NHC-

Low=79, NHC-High=83). In PD, the high WMHL cohort experienced a significantly lower survival 

rate than the low WMHL cohort (χ2=30.9, p<0.00001, hazard ratio= 2.42).  There was no high vs 

low difference in controls (χ2=2.5, p=0.11, hazard ratio= 1.52). Furthermore, PD patients showed 

significantly lower survival rate compared to controls in the high WMHL group (χ2=6.7, 

p=0.009, hazard ratio=1.58) while the survival rate was not significantly different between two 

groups in low WMHL group (χ2=0.1, p = 0.8, hazard ratio=1.0). Similar results were obtained 

with a threshold of 10 cm3 and 1-4 point drops in MoCA, suggesting that WMH load-based 

dichotomization is sensitive to a range in the cognitive decline as measured by MoCA. 
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Fig. 6.1. Kaplan-Meier graph of survival showing the survival curves of control and PD patients with low versus 

high WMH loads demonstrating the compounded affect of PD and WMH load. A 2-point drop in MoCA was 

considered as the survival event and the time from baseline MoCA measurement to the visit where the 2-point drop 

occurred was considered as survival time. HC=Healthy Control. PD=Parkinson’s Disease. MoCA= Montreal 

Cognitive Assessment Score. 

Mixed-Effects Modelling: 

The mixed-effects modelling results based on age, baseline WMH, and their interaction (Table 

6.2, Fig. 6.2) showed a significant negative relationship between MoCA, Benton, HVLT, and 

Executive function scores and age in both PD and HC cohorts. More importantly, in the PD 

cohort, there was a significant interaction between Age and baseline WMH load for MoCA, 

Benton, and HVLT which was not observed in the HC cohort.  
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Fig. 6.2. Density plots of longitudinal cognitive changes versus age and log transformed baseline WMH load. The 

colors indicate predicted cognitive scores by the mixed effects models, with warmer colors representing higher 

scores, and cooler colors representing lower scores. The transparency in the figures indicates the density of the data, 

i.e. areas of low transparency indicate regions where there are no subjects and the model is extrapolating (e.g. young 

subjects with high WMH loads, or old subjects with low WMH loads).  The contour lines imply the direction of 

changes (i.e. horizontal orientation indicates predominance of age effects and vertical orientation indicates 

predominance of WHM load effects). WMH=White Matter Hyperintensities. HC= Healthy Control. PD= 

Parkinson’s Disease. MoCA= Montreal Cognitive Assessment Score. HVLTRT= Hopkins Verbal Learning Test 

Revised Total Score. Benton= Benton Judgement of Line Orientation Score. Exec= Executive Function Score. 
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Table 6.2. Summary of the mixed effects models of association between baseline WMH Load and change in 

cognition. Entries show the regression coefficients for the listed fixed effect followed by the associated p values. 

Baseline WMH load was log transformed and z-scored along with age, MoCA, HVLTRT, and Benton scores prior to 

analysis. WMHL=White Matter Hyperintensity Load. HC= Healthy Control. “:” indicates the interaction between 

two variables. Global Cognition= Montreal Cognitive Assessment Score (MoCA). Memory= Hopkins Verbal 

Learning Test Revised Total Score (HVLT). Visuospatial= Benton Judgement of Line Orientation Score. Executive= 

Executive Function Score (Letter Number Sequencing + Semantic Fluency). HC= Healthy Control. PD= 

Parkinson’s Disease. 

 Cognitive Score Global Cognition Memory Visuospatial Executive 

 Variable ß p-value ß p-value ß p-value ß p-value 

PD 

Intercept -0.063 0.180 -0.098 0.029 0.013 0.737 -0.086 0.059 

Age -0.413 <0.001 -0.341 <0.001 -0.164 <0.001 -0.374 <0.001 

WMHL 0.035 0.428 -0.029 0.485 -0.093 0.021 -0.049 0.236 

Age:WMHL 

Interaction 

-0.122 <0.001 -0.091 0.006 -0.062 0.059 -0.048 0.139 

HC 

Intercept 0.251 <0.001 0.263 <0.001 0.116 0.067 0.186 0.005 

Age -0.215 <0.001 -0.113 0.030 -0.131 0.019 -0.167 0.002 

WMHL -0.031 0.495 -0.093 0.083 -0.017 0.777 -0.088 0.113 

Age:WMHL 

Interaction 

-0.047 0.180 -0.043 0.330 -0.087 0.072 0.011 0.816 

 

Cortical Thickness: 

Mean whole-brain cortical thickness decreased significantly among PD patients with both 

low (t1 = 3.3177mm ± 0.0993; t2 = 3.3087mm ± 0.1082) and high (t1 = 3.2932mm ± 0.0996; t2 = 

3.2786mm ± 0.0966) WMH at baseline.  Among PD patients, baseline WMH load did not 

correlate with whole-brain cortical thickness at baseline (r=-0.09, p>0.05) or at one-year follow-

up (r=-0.19, p>0.05), but did correlate with cortical thickness change across the one-year period 

(r=0.26, p=0.01).  When comparing high and low WMH groups in PD, cortical thinning was 

greater in the high WMH group with a significant cluster observed in the right frontal lobe 

(NVertices=1523, resels=7.99, p<0.001) which covers the lateral precentral, superior frontal, and 

middle frontal gyri (Fig. 3). Cortical thinning of this cluster at baseline was not significantly 

correlated with poorer performance on the HVLT at baseline (r=-0.169, p>0.05), but was at one-
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year follow-up (r=-0.335, p<0.001) and with declining performance over the one-year period 

(r=0.196, p<0.05). No significant correlation or vertex/cluster-wise difference was observed in 

the HC cohort. No significant correlation was observed between MoCA, Benton, and executive 

function and cortical thickness in PD cohort.  

 

 

Fig. 6.3. Differences in cortical thickness changes between high and low WMHL cohorts in PD subjects. T-maps 

(left) and areas of significant cortical thickness decreases (right) covering the precentral, superior frontal, and middle 

frontal gyri. WMHL= White Matter Hyperintensity Load. PD= Parkinson’s Disease. 

Voxel-wise Analysis: 

Within the PD cohort, significant voxel-wise correlations were observed between WMH 

localization maps and the slope of MoCA and Benton scores, corrected for multiple comparisons 

using false discovery rate (FDR) adjustment and controlled for age and modality (Fig. 4). The 

significant regions include voxels in all lobes: frontal, temporal, parietal, occipital, and also 

insular subcortical WM bilaterally. No significant associations were found for the HC cohort. No 

significant associations were found for HVLT and Executive Function scores in the PD cohort. 

No significant differences were observed between the baseline voxel-wise WMH maps of PD 

and HC cohorts after FDR correction. 
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Fig. 6.4. Correlation between WMH location and slope of MoCA (top) and Benton (bottom) score in the PD cohort, 

controlled for age and modality. Correlation coefficients (left) and thresholded areas of significant correlations after 

FDR correction.  WMH=White Matter Hyperintensity. MoCA= Montreal Cognitive Assessment. PD=Parkinson’s 

Disease. FDR= False Discovery Rate. 

 

 

6.4. Discussion 

High WMHL PD patients experienced significantly higher decline than i) low WMHL 

PD patients and ii) high WMHL control subjects. Additionally, WMHL was significantly 

associated with whole-brain cortical thinning after only one-year follow-up in PD patients, but 

not in controls.  Moreover, PD patients with a high WMHL at baseline showed significant 
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cortical thinning of a frontal cluster compared to those with low WMHL.  Taken together, these 

findings suggest that measures of WMHL in de novo PD patients can predict later cognitive 

decline, even in patients exhibiting no cognitive symptoms at baseline. 

As with previous studies (Dalaker et al., 2009), cross-sectional WMHL at baseline in 

early PD was not significantly associated with baseline cognitive performance. Rather, WMHL 

at baseline was associated with future cognitive deterioration across multiple cognitive domains 

including visuospatial, memory, and global cognition corrected for age. This suggests that we 

can extend previous work on later stages of PD, where WMH burden was significantly 

associated with conversion to dementia in patients with MCI (Kandiah et al., 2014; Sunwoo et 

al., 2014), to the earliest stages of the disease. In line with these findings, post-mortem studies 

have shown that vascular lesions are common in idiopathic PD (Lewy body disease of the 

brainstem type) (Jellinger, 2003).  

MoCA has been validated as a sensitive measure for detecting and monitoring cognitive 

change over time (Costa et al., 2014). Controlling for age, MoCA decline was significantly 

correlated with baseline WMHL in the PD cohort, but not in controls. Additionally, PD subjects 

with high WMHLs were more likely to experience a 2-point drop in MoCA than (i) the low 

WMHL PD and (ii) the high WMHL HC subjects, as evaluated by the survival analysis. The 

driver for cognitive decline in controls and PD appear to differ in that the former is largely 

driven by age, while the latter is affected by both advancing age and greater baseline WMH load.  

While the literature on PD and WMH is scarce, there has been substantial progress in 

understanding the relationship between WMHs and cognitive impairment/dementia in AD, 

especially in the context of amyloid pathology. WMHs associated with vascular risk factors (e.g., 
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hypoperfusion and inflammation) are thought to precede Aβ aggregation. Previous work found 

significant associations between baseline WMHs and later progression of amyloid load 

(Grimmer et al., 2012). This further supports the hypothesis of a chain of events; namely WMH 

impairs clearance of amyloid, which builds up and contributes to cognitive impairment and AD 

symptoms. While amyloid deposition strongly predicts progression to AD, WMH burden can 

provide additional independent information to this prediction (Provenzano et al., 2013), 

suggesting that WMH is not solely related to amyloid pathology, but can directly impact 

cognitive impairment. Whether a similar interaction between vascular lesions and α-synuclein 

formation or deposition occurs in PD remains unclear. 

WMH burden can also precede irreversible neurological damage as indexed by cortical 

atrophy.  Previous studies have found higher WMHL to be correlated with lower cortical 

thickness in frontotemporal regions which in turn are related to cognitive decline (Tuladhar et al., 

2015). Cortical thinning caused by direct or indirect effects of WMHs (tract-specific damage) 

might lead to cognitive decline and eventually dementia. Cortical thickness might be a sensitive 

measurement to detect regional grey matter micro-changes that are missed by conventional 

voxel-based techniques at the earlier stages of the neurodegeneration due to partial volume effect 

(Hutton et al., 2009; Seo et al., 2012). While we observed whole-brain cortical thinning among 

all PD patients, those with high WMH load showed greater cortical thinning of a frontal cluster, 

mostly encompassing the right dorsolateral prefrontal cortex (rDLPFC) which was further 

associated with decline in memory performance in HVLT over the one-year period. This is 

consistent with previous studies that have found significant associations between rDLPFC and 

HVLT scores (Qiao et al., 2016; Ries et al., 2012). Our results suggest that cortical changes in 

early PD are potentially moderated by WMH load, and might in turn presage cognitive decline. 
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Regardless of etiology, prevention and treatment of vascular risk factors associated with 

WMHs is a promising avenue to slow down cognitive deterioration, especially in de novo PD 

patients who are largely cognitively asymptomatic. The classical and most explored strategy 

regarding reduction of vascular disease risk and WMHs has been to control hypertension, which 

subsequently reduces the risk of cognitive deterioration (Debette and Markus, 2010; Dufouil et 

al., 2001; de Leeuw et al., 2002). In a randomized trial, active lowering of blood pressure was 

shown to stop or lower the progression of WMHs in patients with cerebrovascular disease over 3 

years of follow-up (Dufouil et al., 2005). In the present cohort, we observed an association 

between WMH load and (systolic-diastolic) blood pressure for both PDs and controls (p<0.001). 

However, there is also evidence linking WMHs and dementia in PD to orthostatic hypotension, a 

common occurrence in PD which can be aggravated with anti-hypertensive medication, 

especially as the disease progresses (Oh et al., 2013). This further indicates the need for a 

tailored blood pressure management in PD patients, while extreme care should be taken to avoid 

overtreating hypertension. Finally, other small-vessel disease risk factors (some of which have 

been explored in the context of other pathologies, mainly AD, showing significant correlations 

with WMHs (Biesbroek et al., 2017; Veselỳ and Rektor, 2016)) should be further explored to 

assess their relevance in WMHs severity and cognitive decline in PD. More importantly, most of 

these factors are potentially modifiable: percentage of small dense LDL cholesterol, triglycerides 

level, body mass index, tobacco consumption, type II diabetes, and insulin levels. More studies 

should focus on assessment of these risk factors in the context of PD and WMHL. 

From a practical standpoint, WMHs can be quantified reliably and non-invasively on 

large samples and can be measured as a continuous trait, thus providing increased statistical 

power to detect potential associations (Debette and Markus, 2010). The image processing and 
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WMH segmentation pipelines used in this study have been designed to process data from multi-

center studies, are able to control biases due to multi-site MRI scanning (i.e. differences in 

acquisition parameters), and have been previously applied successfully to a number of multi-site 

projects (Boucetta et al., 2016; Zeighami et al., 2015). The WMH segmentation pipeline has 

been trained and extensively validated on data from multiple scanners and different acquisition 

parameters to ensure inter-site and inter-scanner generalizability (Dadar et al., 2017b). 

We acknowledge there are limitations to the present study. First, though their differences 

were accounted for in our analysis, segmentations were based on either T2w or FLAIR images, 

of which the latter has the better contrast for detecting WMHs. Second, subjects had these scans 

only at their baseline visit; therefore, we were not able to study the longitudinal changes of 

WMHs. Future studies investigating WMHs in PD during prodromal and pre-clinical stages are 

warranted, though there are inherent constraints in recruiting such a cohort. Also, the population 

under study included relatively cognitively intact individuals (none of the subjects met criteria 

for dementia), limiting the ability to detect important contributors. Longer follow-ups might 

further increase the observed differences. One potential confounding factor could be PD 

medication. However, previous studies have found no significant difference between PD patients 

on PD medications and PD patients off medications in MoCA and several other cognitive tasks 

(Cools et al., 2006). Similarly, we found no relationship between MoCA and medication in PD 

patients (see Appendix, Medication Information). Another limitation is that we cannot identify 

the underlying mechanism. The WMHs might cause cognitive decline independent of PD, 

however the synergy between the two mechanisms may accelerate the cognitive decline. 

Alternatively, the WMHs might aggravate the pathologic spread of misfolded α-synuclein 

proteins in PD. Another possibility is that WMHs in PD may promote amyloid propagation, 
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similar to AD. 

In conclusion, our findings suggest that WMH burden is an important predictor of 

subsequent acceleration in cortical thinning and cognitive decline in early-stage de novo PD. 

Recognizing WMHs as early indicators of cognitive deficit, prior to onset of MCI or dementia, 

provides an opportunity for timely interventions (Marek et al., 2011; Zeighami et al., 2015). 
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Chapter 7. Conclusions and Future Work 

7.1. Discussions 

 
This chapter provides a summary of the rationale as well as the main findings of each of 

the four manuscripts included in this thesis and the prospective future work that can be pursued 

based on these contributions. The overall goal of this thesis is to create and validate a fully 

automated tool that can be used to detect and study WMHs from various MRI sequences in 

different large multi-site and multi-center studies.  

The main challenge in this task lies in the fact that the appearance of WMHs can vary 

greatly as the scanner model or MRI sequence parameters change, which is often the case in 

multi-center and longitudinal studies. In order to be able to effectively study the effect of WMHs 

in such studies, one needs an automated tool that can segment these lesions robustly using MRI 

scans obtained from different scanners and sequences (Caligiuri et al., 2015). Tools that have 

been developed and validated on data from a single scanner and sequence generally perform 

poorly in detecting WMHs using data from other scanners or different protocols. To assess the 

generalizability of segmentation tools, it is necessary to validate the performance of the 

techniques on an independent dataset, ideally collected from multiple MRI scanners and 

acquisition sequences that are not used for training the model. 

7.1.1. Feature Selection and Linear Classifier 

As an initial attempt to address this problem, we proposed a linear regression technique 

to segment WMHs from a combination of multiple contrasts of MR images as described in 

Chapter 3 (Dadar et al., 2017a). The proposed technique uses a combination of intensity and 
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location features from different input sequences along with a spatial prior and a linear regression 

model to provide continuous subject-specific WMH maps that can reflect different levels of 

damage to the tissue. These continuous maps can later be thresholded to obtain binary WMH 

labels. The threshold value can determine the desired level of sensitivity in detecting the WMHs.  

Using data from three different datasets (ADC, PREVENT-AD, and ADNI2/GO), the 

performance of the classifier was extensively validated and the contribution of each of the 

proposed intensity and location features in improving its performance was assessed. We further 

showed that the linear regression classifier outperforms several publicly available WMH 

segmentation tools as well as more complicated nonlinear classifiers when it comes to detecting 

WMHs in data from other scanners, not used in their training, confirming the generalizability of 

its results. The results showed that our proposed linear regression classifier can provide a fast 

and computationally efficient tool to detect WMHs robustly and accurately. 

7.1.2. Nonlinear Classifiers and Automated Pipeline 

The proposed technique in Chapter 3 was later expanded in Chapter 4 to a WMH 

segmentation pipeline that can use any combination of input sequences (e.g. T1w, T1w+FLAIR, 

T1w+T2w+PD, T1w+T2w+PD+FLAIR, etc.) and any of 10 linear and nonlinear classifier 

options from Scikit-learn library implementations in Python (naïve Bayes, linear and quadratic 

discriminant analysis, logistic regression, support vector machines, k nearest neighbors, decision 

trees, random forests, bagging, and AdaBoost) to detect WMHs (Dadar et al., 2017b). To achieve 

generalizability while taking advantage of the higher complexity of nonlinear classification 

techniques, we obtained manual segmentations on data selected from different scanner and MR 
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sequences, taking care to choose subjects with low, medium, and high WMH loads from each 

scanner.  

We extensively validated the performance of these ten different linear and nonlinear 

classifiers using different combinations of input sequences in 4 different multi-center and multi-

scanner datasets (ADC, NACC, ADNI1, and ADNI2/GO). We found that the random forests 

classifier had the best performance among all the classifiers evaluated in all the experiments with 

different input sequences and datasets. The results of our experiments with different classifiers 

and datasets also showed that a combination of T1w (3D isotropic) and axial FLAIR sequences 

(similar acquisition protocols to ADNI sequences rather than T2 space isotropic FLAIRs) would 

lead to the best automatic segmentations. We further made the WMH segmentation pipeline 

publicly available along with the pre-trained classifiers, for different combinations of input 

sequences.  This enables verification of our work by other groups and facilitates comparisons 

with new techniques developed in other laboratories. 

We have since successfully applied the Random Forest technique (using the pre-trained 

classifiers) to detect WMHs in a number of different populations acquired with different 

acquisition sequences and scanners, including: 

(i) The entire NACC database which includes approximately 2000 subjects with 

different pathologies (e.g. AD, PD, FTD, vascular dementia, depression, autism, 

etc.) that have been scanned at 30 different centers using T1w and FLAIR images. 

(ii) A multi-scanner dataset of subjects with FTD and age matched controls using 

T1w and FLAIR images. 

(iii) A single-scanner dataset of HIV patients and age matched controls using T1w and 

T2w images. 
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(iv) Individuals with the fat mass and obesity-associated protein (FTO) gene using 

T1w and FLAIR images. 

The successful application of the WMH segmentation pipeline to these datasets indicates 

that the proposed method is able to deal with the variations in the imaging protocols and 

scanners. Additionally, our experiments showed that the acquisition protocols used for FLAIR 

sequences from the ADNI dataset are the best in differentiating WMHs and normal tissue. They 

have since been used by several other studies such as the PPMI. 

 

7.1.3. Detecting WMHs from T1w Images 

Many large multi-center studies forgo FLAIR and T2w/PD sequence acquisition in favor 

of other modalities due to time and/or financial constraints. Being able to obtain reliable 

estimates of WMH loads in such datasets would be highly advantageous, as it would make it 

possible to study small-vessel disease and its interactions with other diseases without being 

limited to datasets with T2w/PD or FLAIR sequence acquisitions. In Chapter 5, we assessed 

whether the developed WMH segmentation pipeline can be used to detect and study WMHs in 

datasets that only have T1w images available (Dadar et al. 2018). To achieve this, we used 

baseline data from 1150 subjects from ADNI study and extensively validated the relationship 

between the WMH loads obtained from only T1w images and (i) manual labels, (ii) the WMHs 

loads obtained from automatic segmentations using the optimal FLAIR and T2w/PD sequences 

and (iii) several cognitive and clinical measures and WMH related risk factors.  

Our results showed that while the T1w segmentations generally underestimate the true 

WMH loads, they still hold strong correlations with clinical and cognitive measures and can be 



199 

 

used as estimates of the WMHs to study the vascular burden in datasets where the optimal 

sequences are not available. This enables us to take advantage of many multi-center databases 

that were previously not analyzable due to the lack of T2w/PD or FLAIR acquisitions. In 

addition, segmenting these lesions from T1w-Only data provides more opportunities to study 

WMHs and their relationship and interactions with other neurodegenerative diseases. 

7.1.4. WMHs in Parkinson’s Disease 

Finally, we used the developed pipeline to segment and study WMHs in a multi-center 

database of early stage, drug naïve de Novo Parkinson’s patients (the PPMI database) as well as 

age-matched controls (Dadar et al. 2017c). Using longitudinal cognitive measures, survival 

analysis, and mixed-effects modeling, we were able to show that the de Novo Parkinson’s 

patients with higher WMH loads at baseline were more likely to cognitively decline in the 

follow-up visits than (i) the Parkinson’s patients with lower WMH loads and (ii) the control 

subjects with higher WMH loads. Further, using longitudinal cortical thickness measures, we 

observed that the Parkinson’s patients with higher WMH loads experienced significantly more 

cortical thinning in the following year in a cluster in the frontal lobe. The cortical thinning in this 

cluster was also found to be associated with the 1-year decline in a cognitive measure.  

Our findings in the PPMI population suggest that the early on co-occurrence of WMHs 

and Parkinson’s disease can increase the rate of future cognitive decline, more than that expected 

from normative aging, in as early as the de Novo stage. In other words, WMHs have a higher 

impact on the cognitive decline in Parkinson’s patients than non-diseased individuals with the 

same amount of WMH burden, suggesting that vascular pathology needs to be assessed and 

treated with a higher priority in the PD population. 
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7.2. Future work 

The potential future works in the context of this thesis is discussed below. 

7.2.1. WMH Segmentation 

In the WMH segmentation front, there are several areas worth pursuing to further improve 

the accuracy and robustness of the classification techniques. To be specific, 

(i) Longitudinal segmentation of WMHs: In studies that assess the longitudinal 

progression of WMHs, reproducibility is essential to ensure that the differences that 

are observed between segmentations obtained from different timepoints result from 

changes in the pathology and not from the variabilities in the automated segmentation 

tool (García-Lorenzo et al., 2013). All the proposed techniques in this thesis so far are 

cross-sectional; i.e. multiple timepoints from the same subject are treated as 

independent. However, combining the information from multiple timepoints of the 

same subject can increase accuracy by enabling detection of smaller, less 

hyperintense lesions at earlier visits, as well as by reducing false positive detections.  

(ii) Adding a post-processing step: certain brain regions are known to be more susceptible 

to imaging artifacts and false positives, such as the hyperintensities observed in the 

insular regions or in the choroid plexus. In addition, in many studies, detections 

smaller than a certain size are not considered WMHs and consequently are not of 

interest. Using a second classifier, such false positives can be removed in a post-

processing step (Caligiuri et al., 2015).  

(iii) Using deep neural networks for segmenting WMHs: more recently, convolutional 

neural networks (CNNs) have shown promising results specifically in image 
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classification tasks. So far, the main hindrance in using such structures was the small 

number of available manually segmented labels which was not sufficient for training 

such networks. Through our collaborations on different projects, we have now 

acquired manual segmentations for more than 320 subjects. This will enable us to 

train complex CNN architectures to improve our WMH segmentations. 

(iv) Detecting dirty white matter: as was mentioned before, WMHs do not necessarily 

have sharp borders. In many cases, the fuzzy borders gradually dissolve into the 

normal appearing white matter. The most hyperintense regions are detected as WMHs 

in either manual or automatic segmentations. However, these less hyperintense 

regions (generally referred to as dirty white matter) can also be detected as 

continuous maps reflecting the level of damage to the tissue and studied separately, 

especially considering the fact that they might turn into WMHs later on (Beggs et al., 

2016). 

(v) Detecting lacunar infarcts and microhemorrhages: WMHs are the major signs of 

cerebral small-vessel disease, along with lacunar infarcts and microhemorrhages, both 

of which have also been shown to significantly affect the cognition in the elderly 

population (Conklin et al., 2014; Gouw et al., 2010; Sam et al., 2016). Segmenting 

these two addition aspects of small-vessel disease can provide a more thorough 

representation of the vascular disease burden in these individuals.  

(vi) Detecting WMHs in presence of other pathology: WMHs can be accompanied by 

other pathologies such as infarcts, stroke and tumors. However, the datasets that were 

used for training and validation of the proposed techniques generally exclude 

individuals with these pathologies. It would be important to assess the impact of these 
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pathological changes on WMH segmentations in datasets that have subjects with 

mixed pathologies. Our preliminary investigations have shown that since stroke 

lesions have a different intensity and location profile than WMHs (i.e. they are 

generally more hyperintense and in the surface of the brain), they are not classified as 

WMHs. However, a more thorough investigation to assess the accuracy of the 

segmentations with different combinations of input sequences in populations with 

mixed pathologies is necessary. 

7.2.2. Studying WMHs in Aging and Diseases 

The purpose of developing accurate WMH segmentation tools is to enable us to study them 

in different populations, to see how they correlate with disease and how they affect cognition. 

Using the accurate segmentations obtained from the developed WMH segmentation pipeline, we 

can attempt to study their causes and effects more thoroughly. 

(i) So far, we have only used the volume of WMHs in different lobes as WMH related 

features. While WMH loads are informative, other features might be able to provide 

further information on the vascular burden (Lindemer et al., 2015). Using WMH 

segmentations, various WMH related features such as first order statistics, shape and 

size based features, intensity and textural features and wavelet features can be 

extracted through a radiomics approach (Lambin et al., 2012; Gillies et al., 2015). 

Based on their association with cognitive measures or disease progression, a subset of 

descriptive WMH features can be selected and used as WMH related biomarkers. A 

machine learning diagnostic model can be generated based on a combination of these 

informative WMH related features and other relevant features obtained from 
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structural MRI (e.g. measures of grey matter atrophy in different structures), and 

clinical data (e.g. age, gender, level of education) to predict the cognitive state and the 

potential future decline of the patients in different neurodegenerative diseases.  

(ii) WMHs have been studied mostly in patients with small-vessel disease and to some 

extent in Alzheimer’s disease populations. However, as we were able to show in 

Chapter 6 with Parkinson's disease, the co-occurrence of WMHs along with other 

neurodegenerative diseases such as fronto-temporal dementia or Huntington’s disease 

can lead to a more extensive decline in cognition than caused by the (pure) disease 

related changes. Studying and comparing the prevalence and distribution pattern of 

WMHs along with their effects on cognition and course of the disease in these 

populations can provide further insights into the mechanisms through which WMHs 

interact with neurodegenerative processes and affect cognition.  

(iii) Specifically in PD, we have shown that the baseline WMHs are linked to the 

cognitive decline of the patients in as early as the de novo stage. Further studies to 

assess this relationship longitudinally and in the later stages of the disease are 

necessary. Additionally, adding information from other imaging metrics such as DTI 

and fMRI, one can investigate the interactions between WMHs and other disease 

components that lead to cognitive decline. 

7.3. Conclusions 

In conclusion, the proposed WMH segmentation pipeline has been found to provide 

robust and accurate segmentations in multi-center and multi-scanner databases. The pipeline can 

be used to detect WMHs from any combination of input sequences, and further validations 
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showed that even the segmentations that are produced using only T1w images correlate 

significantly with the manual labels and clinical and cognitive measures. 

From studying the longitudinal effects of WMHs in de Novo Parkinson’s disease patients, 

we were able to show that the cognitive performance of the subjects with higher WMH burdens 

declines significantly faster in the following years compared with the age matched controls with 

similar WMH loads, suggesting an interaction between the disease and vascular burden from the 

early drug naïve stages.    

Continuing studies on the effect of WMHs in neurodegenerative disease is of great 

importance since multiple studies are showing that these vascular risk factors might be one of the 

initial stages in the chain of reactions that lead to neurodegeneration. Our WMH segmentation 

pipeline provides the opportunity to accurately detect and study both the causes and the effects of 

these lesions in large multi-center and multi-scanner aging and neurodegenerative disease 

databases. That can enhance our understanding of the processes that lead to neurodegeneration 

and their associated influencing risk factors, and potentially lead to intervention of their 

progression. 
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Appendix 

 

Validation of the segmentations 

31 subjects from the PPMI study had both T2w and FLAIR scans available. In order to 

assess the consistency between the segmentations based on these two sequences, the WMHs 

were segmented once based on T1w and T2w, and once based on T1w and FLAIR scans. The 

log transformed total WMH loads obtained from these segmentations were significantly 

correlated (r=0.94, p<0.0001). Figure 1 shows the WMH segmentations on axial slices for a 

subject that had both T2w and FLAIR scans. 

 

Fig. A.5. Axial slices of a subject with T1w, T2w, and FLAIR scans along with the automatic WMH segmentations 

based on T1w + FLAIR and T1w + T2w images. WMH= White Matter Hyperintensities. 
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Cognitive Testing: 

 
Montreal Cognitive Assessment (MoCA): MoCA is a 10-minute 30-point cognitive 

screening tool for detection and assessment of mild cognitive impairment (MCI) (Nasreddine et 

al., 2005). The test involves short-term memory recall (5 points), visuospatial ability (4 points), 

executive function (4 points), attention and working memory (6 points), language (5 points), and 

orientation to time and place (6 points). A cut-off threshold of 26 (out of 30) is generally used for 

detecting MCI.  

Hopkins Verbal Learning Test–Revised (HVLT): HVLT is a brief verbal learning and 

memory task ideal for repeated neuropsychological examinations consisting of a 12-item word 

list read to subjects on 3 successive trials (Benedict et al., 1998). Free recall scores are recorded 

for each trial, followed by a yes/no recognition task. Delayed recall trial follows a 20-25-min 

interval filled with unrelated tasks with no cues, similar to free recall trial. The score is 

calculated based on the total number of items recalled per trial. 

  Benton judgement of line orientation: Benton is a 30-item task that assesses the ability 

for discriminating the direction of lines (Benton et al., 1978). The response-choice display 

consists of an array of 11 lines each separated by an angle of 18 degrees. Each stimulus consists 

of two lines that represent either the proximal, middle, or distal half of a response-choice line. 

The performance is scored based on the number of correct responses. 

  Letter-Number Sequencing (LNS): LNS is used to assess working memory (Crowe, 

2000). It consists of repeating a sequence of letters and numbers. Subjects have to repeat the 

numbers in ascending order, followed by the letter in alphabetical order. Total scores range from 

0 to 21. 

Semantic fluency: Semantic fluency is often used to study semantic memory (Capitani et 
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al., 1999). The subject is asked to name as many items as possible belonging to a given category, 

in the fixed time of one minute per category. The score is the number of names produced, 

excluding repetitions and circumlocutions. The scores generally range from 0 to 20. 

 

Baseline Information 

 
Table A.1. summarizes the results of correlating WMH loads with different cognitive 

measures at baseline. 

Table A.6. Correlation of baseline cognitive measures with WMH loads. 

Cognitive Score Global Cognition Memory Visuospatial Executive 

Cohort r p-value r p-value r p-value r p-value 

HC -0.070 0.39 -0.206 <0.001 -0.026 0.74 -0.101 0.217 

PD -0.004 0.93 -0.198 <0.001 -0.195 <0.001 -0.228 <0.001 

 

Table A.2 summarizes the cognitive scores for HC and PD subjects with low and high 

WMH loads separately. 

Table A.2. Descriptive statistics at baseline for the PPMI low and high WMHL subjects. Data are mean (SD) of key 

variables. PPMI=Parkinson’s Progression Marker Initiative. WMHL= White Matter Hyperintensity Load. MoCA= 

Montreal Cognitive Assessment Score. HVLT= Hopkins Verbal Learning Test Revised Total Score. Benton= Benton 

Judgement of Line Orientation Score. 

Cohort Control De novo PD 

Class Low WMHL High WMHL Low WMHL High WMHL 

Age at Baseline (years) 60.48 (±12.00) 59.72 (±9.58) 60.54 (±11.02) 61.25 (±9.41) 

MoCA at Baseline 27.21 (±2.00) 27.32 (±1.95) 27.30 (±2.32) 27.19 (±2.35) 

HVLT at Baseline 34.10 (±7.10) 34.26 (±6.27) 33.28 (±6.89) 32.71 (±7.15) 

Benton at Baseline 26.05 (±4.05) 26.38 (±4.30) 25.54 (±4.37) 25.17 (±4.30) 

Executive Function at Baseline 21.59 (±4.65) 22.10 (±3.62) 21.19 (±4.50) 20.58 (±4.88) 

 

Mixed-effects modeling 

 
The following mixed-effects model with random and fixed effects was used for fitting 
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different cognitive scores: 

Scoreij = β0 + β1 Age + β2 WMH Load + β3 Age:WMH Load + γ0i + Eij 

Where Scoreij is one of the four cognitive scores (i.e. MoCA, Benton, HVLT, and 

Executive function) for timepoint j of subject i, β0 is the intercept, β1 is the linear term for Age, 

β2 is the linear term for WMH Load, β3 is the interaction term between Age and WMH Load. γ0i 

is the random effects coefficient specific for subject i and Eij is the error for time point j in 

subject i.  

 

Figure A.2 shows the WMH probability distribution map for the PD group. The highest 

lesion probabilities are in the periventricular, occipital WM and centrum semi-ovale areas. 

 

Fig. A.2. WMH distribution map for the PD cohort. WMH=White Matter Hyperintensity. PD= Parkinson’s Disease. 

 

Medication Information 

None of the patients were on medication for the baseline visit for WMH and clinical 

measurements. 85.32 % of the PD subjects used in this study were put on PD medications at 

some point during the study. The Levodopa Equivalent Dose was calculated for the subjects that 
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received medications (mean= 285.01, std= 192.88). Controlling for age, we assessed the 

relationship between MoCA and LED using a mixed-effects model and found no significant 

correlation (r=0.01, p=0.47). The following is a summary of the drugs that the some of the 

patients received during the study: AMANDATIN, APOMORFIN, AZILECT, BENSERAZIDA, 

CABIDOPA/LEVODOPA, CLARIUM, CO-CARLEDOPA, CR SINEMET, DOPA MUCONA, 

DOPICAR, ELDEPRYL, ENTACAPONA, LEGANTO, LEVOCOMP RETARD, LEVODOPA 

BENSERAZIDE, LEVODOPA/CARBIDOPA, LEVODOPA/BENSERACID, 

LEVODOPA/ENTACAPONE, LEVOPAR, MADOPAR, MELEVODOPA, MIRAPEX, 

NACOM, NEUPRO, NEURPRO, PIRIBEDIL, PK MERZ, PRAMIPEXOL, RASAGALIN, 

REQUIP, RIGOTINE, ROPINEROL, ROTIGOTIN, RYTARI, SELEGELIN, SIFROL, 

SINEMET, STALEVO, SYMMETREL.  
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