
Confluent, bifurcated and unsplittable
flows

Löıc Séguin-Charbonneau

Master of Science

Department of Mathematics and Statistics

McGill University

Montreal, Quebec

October 5, 2009

A thesis submitted to McGill University in partial fulfilment of the requirements of
the degree of M. Sc. Mathematics and Statistics

Copyright 2009 Löıc Séguin-Charbonneau

ACKNOWLEDGEMENTS

I would like to thank my parents for continuous support and encouragements.

My close friends, Xavier, Julien, Philippe and Romain have been there support me

in the hard moments of my studies and I thank them for that. Also, I am grateful

to my office mates Atefeh, Sarah, Thomas and Darrio for the great discussions and

the relief of a couple of jokes. I want to thank Bruce Shepherd for being a great

supervisor, supportive and motivating. He has provided me with lots of fun and

challenging problems to chew on during the last two years and working with him

was a pleasure. Finally, I want to thank the National Science and Engineering

Research Council, Bruce Shepherd and the Department of Mathematics and

Statistics for their financial support.

ii

ABSTRACT

This thesis studies network flow problems. More specifically, we mostly

consider single-sink multicommodity flows with constraints on how nodes may

“process” flow. In the unsplittable flow problem, the demand sent from a source to

its destination must follow a single path. In d-furcated flows, each node is allowed

to send flow to at most d out-neighbours. The special case with d = 1 is called

confluent flow. We make a survey of many of the known algorithms to tackle these

problems. Finally, we present a new result which uses confluent flows and a special

type of clustering we call rooted clustering to give an approximation algorithm

for the maximum edge-disjoint path problem. This algorithm routes a constant

fraction of the demand with maximum edge congestion at most 3, thus improving

the previous known bound of 4.

iii

ABRÉGÉ

Cette thèse étudie les problèmes de flots sur réseau. Plus particulièrement,

nous portons notre attention sur les flots à puits unique et à multiples sources

avec des contraintes de degré. Dans le problème de flot indivisible, la demande

envoyée par une source doit suivre un chemin unique. Dans le problème de flot d-

furqué, chaque sommet peut envoyer du flot à d voisins au plus. Le cas particulier

avec d = 1 est appelé flot confluent. Nous présentons un survol de certains des

algorithmes utilisés pour attaquer ces problèmes. Finalement, nous présentons

un nouveau résultat qui utilise les flots confluents et un type particulier de

regroupement des sommets que nous appelons regroupement enraciné pour obtenir

un algorithme d’approximation pour le problème de maximisation des chemins

disjoints (en terme d’arêtes). Cet algorithme satisfait une fraction constante de

la demande totale avec une congestion d’arête d’au plus 3. Il s’agit donc d’une

amélioration de la meilleure borne précédente de 4.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

ABSTRACT . iii

ABRÉGÉ . iv

LIST OF FIGURES . vii

1 Introduction . 1

2 General network flow theory . 4

2.1 Definitions, the maximum flow and the minimum cut problems . . 4
2.1.1 Ford-Fulkerson algorithm 8

2.2 Single-sink Multicommodity flows 11
2.3 General multicommodity flows . 14

2.3.1 Column generation for general multicommodity flows . . . 15
2.3.2 Polynomial time algorithms for multicommodity flows . . . 17

2.4 The undirected case . 17
2.5 Minimum cost flow problem . 18

3 Unsplittable flows . 22

3.1 Statement of the single-sink unsplittable flow problem 22
3.2 Known results . 24
3.3 Solving the congestion minimization unsplittable flow problem . . 27
3.4 The ring loading problem . 29
3.5 Minimum cost unsplittable flows 35

3.5.1 dmin-integral demands . 35
3.5.2 Arbitrary demands . 40

4 Bifurcated flows and d-furcated flows . 42

4.1 Statement of the problem . 42

v

4.2 Known results . 44
4.3 Sawtooth cycles and sawtooth cycle-free digraphs 44

4.3.1 Detecting clean cycles . 47
4.3.2 Structure theorem for sawtooth cycles 48

4.4 A congestion 1 + 1/(d− 1) algorithm for d-furcated flows 48
4.4.1 Phase I . 48
4.4.2 Phase II . 50

4.5 d-furcated flows with costs . 54
4.5.1 Hardness of finding negative-cost clean cycles 56

5 Confluent flows . 64

5.1 Statement of the problem and known results 64
5.2 Minimizing congestion . 66
5.3 Maximizing satisfied demand . 71

6 Rooted clustering and the maximum edge-disjoint path problem in pla-
nar graphs . 74

6.1 Statement of the MEDP problem and known results 74
6.1.1 Maximum edge-disjoint paths 74
6.1.2 LP relaxation . 75
6.1.3 Outline of the congestion 4 algorithm 76

6.2 Rooted Clustering . 79
6.2.1 Edge-disjoint rooted clustering 81
6.2.2 Partial clusterings via trees 81
6.2.3 Reducing to Node-Normalized Instances. 83
6.2.4 From Confluent Flows to Clusters 84
6.2.5 Proof of Theorem 6.2.2 . 86
6.2.6 Proof of Theorem 6.2.1 . 87

6.3 Congestion 3 algorithm for EDP in planar graphs 87
6.3.1 The congestion 3 algorithm 87

7 Conclusion . 89

References . 90

vi

LIST OF FIGURES
Figure page

3–1 An instance of the ring loading problem. Node names are indicated
in regular type and edge names are in italics. The chords show de-
mands between various pairs of terminals. 30

4–1 The acyclic digon-tree representation of a digraph with sources s1, s2, s3

and sinks x1, x2, . . . , x6. 51

4–2 Clause gadget for clause Ci = x1 ∨ x̄2 ∨ x3. Note that the ending arc
for path pi8 has cost 1 since this path corresponds to the unique
assignment x̄1, x2, x̄3 which makes the clause false. 57

4–3 The clause gadgets attached together. 58

4–4 An example of how the literal gadgets are attached together. Here,
the literal gadget x1

k is attached to each of the gadgets x̄pk by do-
ing the node identifications along the dotted lines. 59

4–5 xk-gadgets are shown with solid arcs while x̄k-gadgets are shown with
dotted arcs from an x̄k node. Here we see the eight appearances of
the xk variable in clause Ci and how they are linked together. The
arcs in the digons have cost −L, the arcs not in the digons have
cost L and the arcs leaving si have cost 0. 60

6–1 There is no arc-disjoint rooted total clustering (splittable or unsplit-
table). 82

vii

CHAPTER 1
Introduction

The concept of “network” is now in the common knowledge. Networks occur

in transportation and logistics [26], food chains and social relationships [34],

scheduling [50], protein interactions [66], the Internet [24], computer chips design

[6], etc. These “objects” that can be found almost everywhere where one dares

to look are also very rich and interesting from a mathematical point of view. Not

only does the mathematical study of networks allow us to understand the “real”

networks better, but it also gives rise to numerous beautiful results (see for e.g.,

[17]).

Mathematically, we represent networks as graphs, i.e., sets of nodes some pairs

of which are linked by edges. Graph theory formally started with the work of Euler

in 1736 and the famous Königsberg bridge problem was probably the first graph

theoretic question to be considered. Since then, graph theory has come a long

way and the structure of graphs is now much better understood. It is only in the

middle of the twentieth century, however, that network flows began to be studied.

The first published results were mainly by Ford and Fulkerson [28, 26, 27, 29]

even though Menger [51] published a result that was basically the Maximum-flow

Minimum-cut Theorem of Ford and Fulkerson a couple of years before them.

However, Ford and Fulkerson were really the first ones to introduce network flows

as we know them today with costs and capacities.

1

In a graph, some nodes might want to send “information” to other nodes.

For instance, lets consider an Internet graph. A server might want to send files to

other computers. This is done by splitting the file into packets and sending these

packets of information along wires towards some intermediary computers until the

packets reach the source. This flow of information is constrained by how much

information can transit on a given edge (e.g.: wire, wireless link, optical fibre, etc.)

at the same time. Such constraints are called capacity constraints in the jargon

of flow theory. It is also possible that a given node, i.e., intermediary computer,

can only send flow along a single wire. Even if files are often divided into packets,

the packets themselves are often “unsplittable”, i.e., they have to travel as a whole

unit throughout the network. These sorts of constraints are ones we will consider

in this thesis.

First, we introduce the basics of network flows and do a quick survey of some

of the known algorithms to solve network flow problems. We present various

network flow problems (single-commodity, multicommodity, demand maximization,

etc.). Among the algorithms that we consider is the well-known Ford-Fulkerson

algorithm for the single-commodity maximum flow problem.

In Chapter 3, we consider the unsplittable flow problem where the flow

originating at a node must travel to its destination along a single path. These

flows were introduced by Cosares and Saniee [14] and were later studied by

Kleinberg [43, 44] who actually coined the term “unsplittable”. They have been

the subject of a huge amount of literature in the last decade. The notion of

2

sawtooth cycles is introduced in this chapter and plays a predominant role in the

other chapters.

We then present flows where nodes have out-degree constraints in Chapter

4. These flows are called d-furcated. Such flows are of particular importance for

the Internet network routing since some routing protocols constrain nodes to only

send flow to a very small set of other nodes. This is due to the very nature of hop

by hop routing using next-hop tables. We present an algorithm from [21] that

approximately solves the congestion minimization problem for d-furcated flows.

There is no known results for the cost version of d-furcated flows and we present a

complexity proof of a related result. This proof has been published before in [59],

but some details were omitted. We present the complete proof.

The special case of d-furcated flows for d = 1, i.e., every node can send flow

along only one arc, is called confluent flows. It was studied in [12, 11, 10]. We

defer the study of such flows to Chapter 5 since the techniques used are somewhat

different from d-furcated flows.

Finally, Chapter 6 contains a new result concerning the maximum edge-

disjoint paths problem in planar graphs. We present a constant factor approxima-

tion (with respect to the number of connected terminals) for this problem where

each edge is used at most 3 times, thus improving the previous bound of 4 [9].

The approximation algorithm is based on the demand maximization algorithm for

confluent flows and on the theory of the rooted clustering problem which we define

and study in this chapter.

3

CHAPTER 2
General network flow theory

We introduce the basic notions of network flows needed in the rest of this

document. Most of the content of this chapter is covered in greater details in [1]

and [13]. We assume the reader knows basic graph theory (see, for instance, [17]).

2.1 Definitions, the maximum flow and the minimum cut problems

We start by presenting the theory of single-commodity flows in directed

graphs. Consider a digraph D = (V,A) with two special nodes: a source s and

a sink t. The pair (s, t) is called a commodity. We suppose that |V | = n and

|A| = m. The source wishes to send flow to the sink along the arcs of the graph.

We define the capacity of the arcs to be a function u : A→ R+ ∪ {∞} that assigns

to each arc a ∈ A a non-negative1 capacity u(a). Since the arc set is discrete, the

capacities can also be seen as a vector u ∈ (R+ ∪ {∞})A, where u is indexed by

the arc set, i.e., ua = u(a). Both approaches are equivalent, but we adhere to the

second one. For simplicity, we denote an arc (u, v) simply as uv. When we need

them, we denote (undirected) edges by {u, v}. Note that we allow the capacity

of an arc to be ∞ which simply means that this arc has no upper bound on the

amount of flow it can receive. A network flow (or just a flow) on graph D with

1 in this document, R+ = {x ∈ R : x ≥ 0}

4

capacities u, is a vector f ∈ RA
+ that assigns a flow value to each arc and that

satisfy the two following constraints.

fa ≤ ua ∀ a ∈ A (2.1)∑
u:uv∈A

fuv =
∑

w:vw∈A

fvw ∀ v ∈ V \ {s, t} (2.2)

Equations 2.1 are the capacity constraints which ensure that no arc receives more

flow than its capacity, and Equations 2.2 are the flow conservation constraints

which ensure that the flow arriving at a node leaves that node, i.e., only the source

can “generate” flow and no flow is allowed to accumulate at any node except the

sink. The value of a flow is the net flow out of the source

∑
v:sv∈A

fsv −
∑

w:ws∈A

fws. (2.3)

Note that this is equal to the net flow into the sink by flow conservation.

To simplify the notation, we use f+(v) =
∑

w:vw∈A fvw to represent the

outflow at node v, i.e., the flow leaving v. Similarly, we define f−(v) =
∑

u:uv∈A fuv

to be the inflow at node v, i.e., the flow coming into v. The flow conservation

constraints can then be written simply as

f+(v)− f−(v) = 0 ∀ v ∈ V \ {s, t}. (2.4)

Given a set of nodes S ⊆ V , the cut induced by S, denoted by δD(S), is the set of

arcs with tail in S and head in V \ S. When it is clear from the context that the

cut is in graph D, we denote the cut by δ(S). If S consists of a single node v, we

abuse the notation and write δ(v). An (s, t)-cut is a cut δ(S) where S contains s

5

and V \ S contains t. If x ∈ RA is a vector of arc variables, and F ⊆ A, we use the

notation

x(F) =
∑
a∈F

xa. (2.5)

Most of the time, the value of interest is the capacity of a cut u(δ(S)). If x is a

flow vector, we define the net outflow from set S to be x(δ(S)) − x(δ(V \ S)).

Similarly, the net inflow into set S is x(δ(V \ S)) − x(δ(S)). Note that the net

outflow at s is equal to the value of the flow.

A natural question is to ask what is the maximum amount of flow that can

be sent from s to t. We use variables xa to denote the flow on arc a. Since all

such flow must leave the source by some arc incident to it, the quantity that is

being maximized is the value of the flow x(δ(s))− x(δ(V \ s)). The maximum flow

problem can be formulated as the following linear program (LP).

max x(δ(s))− x(δ(V \ s)) (2.6)

s.t. x+(v)− x−(v) = 0 ∀ v ∈ V \ {s, t} (2.7)

xa ≤ ua ∀ a ∈ A (2.8)

xa ≥ 0 ∀ a ∈ A (2.9)

6

The dual of this LP is

min
∑

a∈A yaua (2.10)

s.t. −zu + zv + yuv ≥ 0 ∀uv ∈ A, u, v ∈ V \ {s, t} (2.11)

−zv + ysv ≥ 1 ∀ sv ∈ A (2.12)

zv + yvs ≥ −1 ∀ vs ∈ A (2.13)

−zv + ytv ≥ 0 ∀ tv ∈ A (2.14)

zv + yvt ≥ 0 ∀ vt ∈ A (2.15)

ya ≥ 0 ∀ a ∈ A (2.16)

This dual is closely related to the minimum cut problem which consists

of finding the (s, t)-cut in D that has the smallest capacity. If a dual solution

is fractional, it cannot be interpreted as a cut since in a cut, an arc is either

selected or not, so its corresponding variable should be integral. However, the

Ford-Fulkerson algorithm that is presented in Section 2.1.1 implies that any basic

solution to this dual LP is 0 − 1 valued, i.e., it identifies an (s, t)-cut. Weak LP

duality implies that the value of any (s, t)-cut is an upper bound on the value of

the maximum flow. Strong duality implies that the optimal value for the primal

and the dual are the same thus, solving the minimum cut problem is equivalent to

solving the maximum flow problem [51, 28, 48].

Theorem 2.1.1 (Maximum-flow Minimum-cut). If a maximum flow exists, then

the value of the maximum flow is equal to the value of the minimum (s, t)-cut.

7

An operation that is often done on a flow to simplify its structure is to

eliminate directed cycles. Define the support of a flow f to be the set of arcs of

D with nonzero flow. Suppose a flow f has a directed cycle C in its support. Let

ε = min{fa : a ∈ C}. Then subtracting ε from the flow on each arc of C will

bring the flow on at least one arc to zero, thus “breaking” the cycle. This is called

augmenting the flow on the cycle C. In doing so, the net flow at each node in the

cycle does not change since flow on one incoming arc is decreased by ε but so is

the flow on one outgoing arc. So the new vector is still a flow and its value remains

the same.

We are sometimes interested in node capacity as opposed to the arc capacities

considered up to now. One way to transform node capacities u ∈ RV
+ into arc

capacities is to split every node v into two nodes v− and v+. Add a node arc v−v+

of capacity uv for every node and let the capacity of every other arcs be infinity.

All uv arcs in the original graph are replaced by uv− arcs and all vw arcs are

replaced by v+w arcs. This new instance is a flow problem with arc capacities

which can be solved using techniques shown in this chapter. Once done, one needs

only to contract the node arcs to get a solution for the node capacitated instance.

2.1.1 Ford-Fulkerson algorithm

We present one of the most well known efficient combinatorial algorithms to

solve the maximum flow problem [28]. This algorithm also proves the Maximum-

flow Minimum-cut Theorem. Note that more recent algorithms have an improved

running time, e.g.: [35] (see [1] and [56] for an overview).

8

The Ford-Fulkerson algorithm starts with a feasible flow, i.e., a flow that

satisfies the constraints 2.7, 2.8 and 2.9. For instance, one starts with a zero

flow x = 0. The auxiliary digraph of D is a digraph Dx that has the same node

set, V , as D and that has the following arcs. If a = uv ∈ A, and xa < ua,

then arc uv is in A(Dx); it is called a forward arc. If a = uv ∈ A, and xa > 0,

then arc vu is in A(Dx); it is called a reverse arc. At every iteration of the

algorithm, we have a feasible flow x and we build the auxiliary digraph Dx. In

this digraph, we look for a directed (s, t)-path. If none exists, the algorithm stops.

If such a path P exists, then it is possible to augment the flow along this path,

i.e., to increase the flow on forward arcs and to decrease it on reverse arcs. Let

ε1 = min{ua − xa : a is a forward arc}, ε2 = min{xa : a is a reverse arc} and

ε = min(ε1, ε2). Then, the augmentation consists of increasing the flow on forward

arcs by ε and decreasing the flow on reverse arcs by ε. It is possible to do so

since by definition, forward arcs can sustain an increase of ε in their flow without

violating their capacity, and reverse arcs have at least ε flow on them, so their flow

can be decreased by ε without violating the non-negativity constraint.

The stopping condition is crucial in proving the Maximum-flow Minimum-cut

Theorem. One can find an (s, t)-path by greedily growing an arborescence rooted

at s using, for instance, depth-first search. If no such path is found, then we have a

maximum arborescence T (with respect to the number of nodes) rooted at s such

that all arcs of Dx having a node of T as its tail also has a node of T as its head.

Otherwise, there would be an arc uv with u ∈ T and v /∈ T and adding uv to T we

would obtain an arborescence with one more node, a contradiction. Let S = V (T)

9

be the set of vertices in T . Then, δDx(S) = ∅. The following lemma shows that this

is a minimum capacity (s, t)-cut in D.

Lemma 2.1.2. If S is obtained as described above and δDx(S) = ∅, then δD(S) is

a minimum capacity (s, t)-cut.

Proof. Let a be an arc in δD(S). Since a /∈ δDx(S), we have that xa = ua. Let

r = uv ∈ δD(V \ S). Since vu /∈ δDx(S), we have that xr = 0. Hence the net

outflow from S is x(δD(S)) = u(δD(S)). Since the capacity of a cut is an upper

bound on the value of a flow by weak LP duality, x is a maximum flow and δD(S)

is a minimum cut.

Note that we obtain the Maximum-flow Minimum-cut Theorem as an imme-

diate corollary. Also, the algorithm gives a nice existence condition for maximum

flows. The capacity of a directed path is the minimum of the capacities of every

arc on this path. To determine whether a maximum flow exists, one can use the

following simple corollary.

Corollary 2.1.3. A maximum flow exists if and only if there is no directed

(s, t)-path of infinite capacity.

The Ford-Fulkerson algorithm runs in weakly polynomial time when all

capacities are rational, more precisely, it has a running time of O(mM), where M

is the maximum flow value (which is not necessarily polynomially bounded in the

size of the input). If capacities are irrational, the algorithm may fail to converge to

a maximum flow [29]. An improvement to this algorithm was proposed at the same

time by Edmonds and Karp [23] and by Dinitz [19]. The idea is to always choose

the shortest (s, t)-path, with respect to the number of arcs. The running time of

10

this improved version is O(nm2) which is strongly polynomial (does not depend on

the capacities). The first strongly polynomial algorithm for minimum cost flow was

suggested by Tardos [63].

Since the Ford-Fulkerson algorithm guarantees that solutions to the primal

and the dual LP are integral, the maximum flow problem can also be solved using

any algorithm that solves linear programs such as the simplex algorithm [16]. This

algorithm is, however, not polynomial. It is also possible to apply the ellipsoid

algorithm [42] to get an optimal fractional solution that is sufficiently close to an

integral solution to be able to find this integral solution in polynomial time.

2.2 Single-sink Multicommodity flows

A natural generalization of the single-commodity flow problem is to consider

the case where there is more than one sink and/or more than one source. Consider

the case where there is only one sink t but there are k sources s1, s2, . . . , sk.

This is referred to as the single-sink multicommodity flow problem. This case

can be reduced to the single-commodity case by adding a new node s to D and

adding an arc ssi with infinite capacity for each i ∈ {1, 2, . . . , k}. The maximum

(s, t)-flow in this new modified instance is the same as the maximum single-

sink multicommodity flow. In this thesis, we will mainly consider single-sink

multicommodity problems with additional constraints such as the ones in [60].

These constraints make it impossible to use the above reduction and new tools

have to be developed.

A variant of the single-sink multicommodity flow problem is that each source

si is assigned some demand di. The demand is the amount of flow that the source

11

wants to send to the sink. For such problems, it is convenient to use the path

formulation as opposed to the arc formulation used for the single-commodity

flows. The path formulation is defined as follow. Let Pi be the set of directed

paths from si to t and P = ∪iPi. For each source si, we want to find what amount

of flow xP to send along each P ∈ Pi so that the following constraints are satisfied.

∑
P :a∈P

xP ≤ ua ∀ a ∈ A (2.17)

xP ≥ 0 ∀P ∈ P (2.18)

We call a flow satisfying these constraints fractional or standard (as opposed to

unsplittable, confluent or d-furcated). Note that since we have a variable for each

path, this results in an exponential number of variables. A flow x satisfies the

demand of commodity (si, t) if ∑
P∈Pi

xP = di (2.19)

We then say that the demand has been routed. With demands, the multicommod-

ity flow problem becomes a decision problem where we ask whether or not a flow

that satisfies all demands exists.

Clearly, if there exists a cut δ(S) with t /∈ S such that the sum of the demands

di for si ∈ S is greater than the capacity of the cut, there can be no flow satisfying

all demands. Interestingly, the converse is also true. Indeed, consider adding a

source s with arcs ssi of capacity di. It is easy to show that the minimum capacity

(s, t)-cut in this new (single-commodity) instance has capacity
∑

i di and thus,

by the Maximum-flow Minimum-cut Theorem, the maximum flow has the same

12

value. In the original instance, this gives a flow satisfying all demands. This result

is known as the cut condition (see, for instance, [1]).

Theorem 2.2.1 (Cut condition). Let D be a digraph with sources {s1, s2, . . . , sk},

demands d = (d1, d2, . . . , dk) and arc capacities u. A fractional flow f satisfying all

demands exists if and only if

∑
i:si∈S

di ≤ u(δ(S)) (2.20)

for all S ⊆ V such that t ∈ V \ S.

We usually make a couple of simplifying assumptions. Denote the maximum

demand by dmax = max{d1, d2, . . . , dk} and the minimum capacity by umin =

min{ua : a ∈ A}. Throughout this thesis, we suppose, unless otherwise mentioned,

that dmax ≤ umin, i.e., the maximum demand can be routed on the smallest

capacity arc. This condition is referred to as the no bottleneck assumption. By

scaling the demands and the capacities by a constant factor, we can make the

assumption that all demands are at most 1 and all capacities are at least 1.

Finally, most of the time we consider uniform capacities, i.e., all arcs have the

same capacity2 .

Also, if we are considering an instance with node congestion and we do the

node splitting operation described in Section 2.1, the demand of node v has to be

assigned to v− in order to reduce the problem to the edge capacitated problem.

2 We also refer to instances with uniform costs and uniform demands, meaning
that all arcs have the same cost and all nodes have the same demand, respectively.

13

If the cut condition does not hold, there are three main questions of interest.

In the demand maximization problem, one asks what is the subset of demands with

the maximum value that can be routed while still obeying the capacity constraints.

Another question of interest is if we allow to increase the capacities, what is the

minimum increase that will result in a flow satisfying all demands. In this context,

the flow on an arc is called its congestion and the maximum flow on an arc of D is

the congestion of the flow. The question thus becomes to minimize the congestion

of the flow. This is the congestion minimization problem. Finally, in the rounds

minimization problem, we try to route the demands in a minimum number of

rounds, i.e., to find a set of feasible flows f1, f2, . . . , fν such that the union of these

flows satisfies all demands and ν is minimized. These questions will come back

later when we talk about bifurcated, unsplittable and confluent flows.

2.3 General multicommodity flows

When sources and sinks come in pairs, i.e., a source has to route its flow

to a given sink, we have a general multicommodity flow problem. Let the set of

all sources and all sinks be called the set of terminals T . To be as general as

possible, we allow to have more than one terminal at a given node. Let X be a

set of terminal pairs (si, ti), also called commodities, composed of one source and

one sink. The question is to determine the maximum flow that can be sent from

sources to their destination without violating the edge capacities. We refer to this

problem as the throughput maximization problem.

14

2.3.1 Column generation for general multicommodity flows

General multicommodity flows are substantially more complicated both

theoretically and computationally. For instance, on the theory side, the cut

condition is no longer sufficient for the existence of a general multicommodity flow

(instances on expander graphs for uniform demand are one class of examples).

Empirically they have proved more difficult as well. In this section, we present an

algorithm to solve the multicommodity flow throughput maximization problem

using the path formulation. Let Pi be the set of directed paths from si to ti and

P = ∪iPi. For each terminal pair, we want to find what amount of flow xP to send

along each P ∈ Pi so that the following constraints are satisfied.

∑
P :a∈P

xP ≤ ua ∀ a ∈ A (2.21)

xP ≥ 0 ∀P ∈ P (2.22)

These constraints, except the non-negativity ones, can be written as Cx ≤ u

where C ∈ RA×P , x ∈ RP , u ∈ RA. The columns of C are just the characteristic

vectors of paths in P , i.e., for a given path P , (cP)a is 1 if a ∈ P and 0 if a /∈ P .

The objective is to maximize
∑

P∈P xP . This formulation can have an exponential

number of variables, thus any algorithm that solves linear programs will possibly

take an exponential time to solve this problem. However, in a basic solution

a huge number of variables will have value 0 and we can use the strategy of

column generation to set them to positive values as needed. This leads to a non

polynomial, but sometimes useful, approach for solving the multicommodity flow

15

problem. The following algorithm is a variation of the simplex algorithm due to

Fork and Fulkerson [27].

First, add a slack variable σa to each capacity constraint to make it an

equality constraint and let x′ =

 x

σ

 where σ is the vector of slacks. The

capacity constraints become [C I]x′ = u. Let w ∈ RP+A have an entry of 1 for

all paths and an entry of 0 for all arcs. Then the objective function is maximize

wTx′. Consider the basic solution obtained by setting all xP = 0 and all σa = ua.

The columns of [C I] corresponding to non-zero variables form a basis B. The

algorithm moves from basis to basis while ensuring that an improving move is

made at all steps.

The dual of this problem is the following.

min uTy (2.23)

s.t. yT cP ≥ 1 ∀P ∈ P (2.24)

ya ≥ 0 ∀ a ∈ A (2.25)

where y ∈ RA. For any basis of the primal problem, there is a corresponding

solution to the dual problem obtained by solving yTB = wB where wB is the part

of w corresponding to the variables in the basis. Once y is found, one can check

whether it satisfies the constraints of the dual. Checking for the non-negativity

of the arc variables is easy. The key to tackling the path constraints 2.24 is to

consider the ya as costs on the arcs of the graph and to run a shortest path

algorithm such as Dijkstra’s [18], Floyd-Warshall’s [25] or Johnson’s [41]. With

16

this interpretation, the path constraint says that every path should have cost at

least 1. Hence, if the shortest (si, ti)-path has length less than 1, we can move this

path into the basis. The variable that leaves the basis is chosen by solving for z in

Bz = ea (where ea is the vector in RA consisting of all zeroes except for the ath

entry which is a 1) if the entering variable is σa or Bz = cP if the entering variable

is path xP .

2.3.2 Polynomial time algorithms for multicommodity flows

There exists (theoretically) more efficient algorithms to solve the multicom-

modity flow problem in polynomial time such as the one by Grötschel et al. [37].

The dual separation problem for multicommodity flows is similar to the shortest

path approach described above. Thus, the ellipsoid algorithm can be used to solve

the problem. There are also a wealth of polynomial time approximation algorithms

such as those presented in [65, 49, 53, 32].

2.4 The undirected case

In the previous sections, we saw how to reformulate the maximum flow

problem using the path formulation instead of the arc formulation. This formula-

tion is useful if we want to define maximum flow problems on undirected graphs

G = (V,E). The flow conservation constraints can not be implemented in the

undirected case since there is no notion of inflow or outflow for undirected graphs.

However, we can try to find the maximum flow sent on paths from a source to a

sink such that the capacity constraints are satisfied.

In particular, the multicommodity flow problem on undirected graphs has the

same path formulation as the directed version where we replace directed paths by

17

undirected paths and arcs by edges. The problem can be solved using the column

generation method presented in the preceding section.

For single-commodity flow, the path formulation also gives a way to solve the

undirected version of the problem. Another approach is based on bidirecting edges.

More precisely, given and undirected graph G = (V,E) one can bidirect it, i.e.,

replace each edge e = {u, v} ∈ E by two arcs a1 = uv and a2 = vu. Then the graph

is transformed into a directed graph and the usual algorithms (such as the Ford-

Fulkerson algorithm) can be used. Since we can always augment along directed

cycles to remove them, flow is never going to be sent on both arcs corresponding

to the same edge. Thus, the flow can be reinterpreted as an undirected flow in the

original graph.

2.5 Minimum cost flow problem

The minimum cost flow problem generalizes maximum flow problems, includ-

ing shortest path problems. For instance, a maximum flow problem is basically

a minimum cost problem with uniform costs and a shortest path problem is a

minimum cost problem where every arc has unit cost, infinite capacity and every

node wants to send 1 unit of flow to every other node. As such, minimum cost flow

problems are usually harder to solve and require more sophisticated algorithms.

Lots of algorithms have been developed to solve these problems, some of which run

in polynomial time. These algorithms are quite involved and we do not describe

them in detail here. We just present the important notion of negative cost cycles

which will be useful in understanding why the cost version of the d-furcated flow

problem is hard to solve.

18

Consider a directed graph D = (V,A) with cost c ∈ RA
+ on the arcs, arc

capacities u ∈ RA
+, and demands d ∈ RV . The cost of an arc is to be interpreted

as the cost per unit of flow. The cost of a flow x is just cost(x) =
∑

a∈A caxa. The

demand of a node is the amount of flow it wants to send (if dv > 0) or receive (if

dv < 0). We assume that as much flow needs to be sent as to be received, i.e.,

∑
v∈V

dv = 0 (2.26)

The minimum flow problem is then the following linear program.

min
∑

a∈A caxa (2.27)

s.t. x+(v)− x−(v) = dv ∀ v ∈ V (2.28)

xa ≤ ua ∀ a ∈ A (2.29)

xa ≥ 0 ∀ a ∈ A (2.30)

The first set of constraints are the equivalent of flow conservation where we take

into account the demand of the node.

As for the maximum flow problem, we construct an auxiliary digraph Dx with

V (Dx) = V . If uv ∈ A, add a forward arc uv to A(Dx) if xuv < uuv and give it

cost cuv and capacity uuv − xuv. If uv ∈ A, add reverse arc vu to A(Dx) if xuv > 0

and give it cost −cuv and capacity xuv. Using this auxiliary digraph, it is relatively

easy to establish an optimality condition for a feasible flow x. Define the cost of

a directed path to be the sum of the cost of its arcs. We need the following cycle

decomposition theorem stated in [1].

19

Theorem 2.5.1. Let x1 and x2 be two feasible flows. Then x2 can be obtained by

augmenting x1 along at most m cycles in the auxiliary digraph Dx1 and the cost of

x2 is equal to the cost of x1 plus the cost of the augmenting cycles.

Theorem 2.5.2. If x is a feasible solution to the minimum cost flow problem, it is

an optimal solution if and only if the auxiliary digraph does not contain a negative

cost cycle.

Proof. (⇒) Suppose there exists a cycle C of cost −δ in Dx, δ > 0. Let ε1 =

min{ua − xa : a ∈ C, a is a forward arc}, ε2 = min{xa : a ∈ C, a is a reverse arc}

and ε = min(ε1, ε2). Then one can augment the flow along C by increasing x by ε

on forward arcs and decreasing it by ε on reverse arcs. We thus obtain a solution

x′ which is still feasible but which has cost cost(x)− δε < cost(x).

(⇐) Suppose x is a feasible solution and x∗ 6= x is an optimal solution.

By Theorem 2.5.1, x∗ can be obtained by augmenting x along at most m cycles

in Dx. Each of these cycles has non-negative cost so cost(x∗) ≥ cost(x) but x∗

being optimal means that cost(x∗) ≤ cost(x). Hence, cost(x∗) = cost(x) and x is

optimal.

Theorem 2.5.2 provides a nice characterization of when a flow is optimal. It

also suggests a simple algorithm to find a minimum cost flow. The pseudo code for

this algorithms is shown below.

20

NegCycleAugmentation

Start with a feasible flow x

While Dx contains a negative cost cycle C

ε1 = min{ua − xa : a ∈ C, a is a forward arc}

ε2 = min{xa : a ∈ C, a is a reverse arc}

ε = min(ε1, ε2)

Augment x by ε along C

There exists a lot of more efficient algorithms to solve the minimum cost

flow problem such as successive shortest path [40, 39], minimum cost mean cycle

augmentation [36] and the network simplex [15].

21

CHAPTER 3
Unsplittable flows

Unsplittable flows have been introduced Cosares and Saniee in their paper

on the ring loading problem [14]. Later, Kleinberg studied them and coined the

name “unsplittable” [43, 44]. Unsplittable flows have since been the subject

of a huge amount of literature (see, for e.g., [3, 4, 20, 46, 47, 61, 62]). Like

network flows presented in Chapter 2 there exists multicommodity and single

commodity unsplittable flow problems (UFP). We will only consider single-sink

multicommodity UFP. There are several types of questions that one can ask about

unsplittable flows but we will focus on only two of them. First, it is not true, in

general, that the cut condition is sufficient for the existence of an unsplittable

flow. Thus, it is natural to ask how much extra capacity we must add to the edges

to guarantee that such a flow exists. We call this the congestion minimization

problem. In particular we will present the algorithm of Dinitz et al. [20] and

the ring loading algorithm of Schrijver et al. [57]. The second question that

we will consider is to determine how much capacity one needs to add to get an

unsplittable flow whose cost is at most the cost of an optimal splittable flow. This

is the minimum cost UFP.

3.1 Statement of the single-sink unsplittable flow problem

Consider a graph G = (V,E) directed or undirected with arc capacities

u ∈ RE, terminals {s1, s2, . . . , sk} and a single sink t ∈ V . Terminals have demand

22

d1, d2, . . . , dk respectively. An unsplittable network flow is a flow f such that for

every terminal si there exists P ∈ Pi with f(P) = di and hence flow is routed

along a single path. In other words, the demand coming from a source cannot be

divided into smaller demands that route to the sink using different paths. Note

that there can be more than one terminal at any given node and each of these

terminal can use a distinct path for their demand.

This problem is a specialization of the more general UFP where we are

given terminal pairs (si, ti) and we are asked to route the demand between any

terminal pair along a single path. This general problem has a lot in common

with the edge-disjoint path problem (see Chapter 6). Indeed, a solution to the

edge-disjoint path problem gives an unsplittable flow since every terminal pair gets

routed along a single path. Of course, MEDP is more restrictive since is requires

the paths to be edge-disjoint. Raghavan and Thompson [54] gave a logarithmic

approximation for the congestion minimization problem for unsplittable flows

using the randomized rounding technique. They actually applied this technique to

integral multicommodity flow problems but the same ideas extend to unsplittable

flows. Unsplittable flows had actually not been introduced yet when they were

published. Hence, it is known that a logarithmic approximation exists for the

congestion minimization problem on general instances. It is interesting to note

that for the single- sink problem, there is an O(1) approximation algorithm despite

it being NP-hard. We later go into considerable details on the current best known

algorithm due to Dinitz et al. [20].

23

The four main questions of interest are the same as the ones presented in

Section 2.2. Namely, we can consider the feasibility problem (i.e., to determine

whether an unsplittable flow exists for a given instance), the congestion minimiza-

tion problem (i.e., to determine what is the minimum increase in congestion for

which we can get an unsplittable flow), the demand maximization problem (i.e.,

to determine the subset of maximum demand that can be routed unsplittably

without increasing congestion) and the round minimization problem (i.e., to find

the minimum number of rounds of feasible unsplittable flow necessary to satisfy all

demands). All these questions were considered in the thesis of Kleinberg [44]. Note

that the exact same questions are of interest for d-furcated and confluent flows

which we consider later.

Let OPTc be the optimal value for the congestion minimization problem,

OPTd be the optimal value for the demand maximization problem and OPTr be

the optimal value for the number of rounds minimization problem.

3.2 Known results

The first published results regarding single-sink unsplittable flows were by

Kleinberg [43, 44]. Note that Kleinberg considered flow from t to the si’s and it

was thus a single-source flow problem. In order to be consistent with Chapter

5, we consider the equivalent single-sink version. He presented constant factor

polytime approximation algorithms to solve the congestion minimization, the

demand maximization and the number of rounds minimization problems. He made

the no bottleneck assumption and scaled the demands and capacities such that

all capacities are at least 1 and all demands are at most 1. The key result that he

24

uses is due to Ford and Fulkerson [29] (note that a similar result is also used by

Skutella in his cost minimization algorithm for unsplittable flows [61]). For d ∈ R,

we say that x ∈ R is d-integral if it is a multiple of d. A real vector is d-integral if

all its components are d-integral.

Theorem 3.2.1. Let G = (V,E) be an undirected graph, t ∈ V be the sink,

{s1, s2, . . . , sk} ⊆ V be terminals with uniform demand d. Suppose that the capacity

vector is d-integral. Then, there exists an unsplittable flow whose value is equal to

the value of a maximum (fractional) flow and that flow can be found in polynomial

time.

We now give a high level sketch of the idea used by Kleinberg. The basic

idea is to find a particular “tree cover” for G, i.e., a set of trees in G such that

every node of G is in at least one such tree. This tree cover is such that every tree

contains approximately the same amount of demand and that edges of G are in

a “small” number of trees. It can be found by performing a depth-first search on

a spanning tree T of G and grouping the terminals as they are encountered while

making sure that the total demand in a group is within predefined bounds. Then,

he chooses a node to be the leader in each tree and he finds a path from the leader

to the sink. Using the tree covering, it is then relatively easy to route the nodes

in each tree to their leader using the edges of the tree and concatenating this path

with the path from the leader to the sink we get the desired unsplittable flow. This

idea is very similar to the one we use in Chapter 6 to solve the MEDP problem.

Our tree cover is built differently and in particular we wish to choose edge-disjoint

trees. These techniques allow Kleinberg to devise an algorithm that routes all

25

demands unsplittably with congestion at most (1 + O(
√
dmax/OPTc))OPTc. We

also briefly mention his other results. His demand maximization algorithm routes

(1 − O(
√
dmax))OPTd. Finally, if dmax < 7/4 −

√
3 and a maximum fractional

flow exists, then he can route unsplittably in two rounds. On a more negative

note, Kleinberg pointed out that all four problems stated above are NP-hard. He

presented a reduction from the Partition problem.

Kolliopoulos and Stein [46] gave improved approximation algorithms for all

problems except the feasibility problem. They start with a maximum flow satis-

fying all the demands and modify it to make it unsplittable. For the congestion

minimization problem, their algorithm is a (3.23 + o(1))-approximation algorithm,

for demand maximization they obtain a 0.075-approximation algorithm, and for

the minimum number of rounds they are able to route all demand in at most

13 rounds, whatever the demand values. The algorithms they use for all these

problems are very similar to each other. They are based on a sort of divide-and-

conquer approach where they consider the terminals with similar demands as a

single subproblem that can be solved independently.

The next major advance in unsplittable flow theory appears in the paper

by Dinitz et al. [20] and it largely forms the state of the art for most versions

of the problem today. For the congestion minimization problem, they obtain an

unsplittable flow where the increase in congestion is at most dmax.

Theorem 3.2.2. Given a fractional flow f satisfying all demands in an instance

where the no bottleneck condition holds, there exists a polynomial time algorithm

26

that finds an unsplittable flow such that the congestion on any arc a is at most

fa + dmax.

If all capacities are at most 1, this gives an unsplittable flow with congestion

at most 2. They also show that this is best possible by providing an example

where any unsplittable flow has congestion arbitrarily close to 2. For the rounds

minimization problem, they give an algorithm that routes all demands in 5

rounds and for demand maximization, they can route 0.226 of the total demand

provided that the cut condition holds, i.e., a fractional flow for the demands exists.

Furthermore, they extend their results to the case where the cut condition is not

satisfied, i.e., there does not exists a fractional flow satisfying all demands. The

general ideas of their algorithm are given in Section 3.3.

More recently, there is interest in a generalization of unsplittable flows called

k-splittable flows [5, 22, 45] where each demand can be routed along k paths

instead of just one. We do not discuss this problem.

3.3 Solving the congestion minimization unsplittable flow problem

Dinitz et al. [20], like Kolliopoulos and Stein, start from a fractional flow

satisfying all demands in their single-sink (actually single-source for them)

multicommodity flow problem, and then modify it to get an unsplittable flow. To

be consistent with the rest of this thesis, we adapt their result to the case of single-

sink multicommodity flows. This can be done by simply reversing the direction

of every arc. The capacity of an arc can be taken to be the (fractional) flow on

that arc in the originally computed flow, call it f . Their algorithm proceeds

to “move” the terminals towards the sink while keeping track of the path that

27

each terminal follows. When all terminals have reached the sink, the paths they

followed gives the unsplittable flow. At any point, a terminal is said to be irregular

if its demand is less than the capacity on an arc out of the node containing the

terminal. Such a terminal can be moved along that arc and the arc capacity

reduced accordingly. When all terminals have been moved so that they are regular,

i.e., all arcs leaving the node at which a terminal sits have capacity less than the

demand of that terminal, they start to look for so-called sawtooth cycles (which

they call alternating cycles in their paper).

A sawtooth cycle (whose name was coined in [10]) is a simple directed cycle

of the form (P1, P̄
−1
2 , P3, P̄

−1
4 , . . . , Pν−1, P̄

−1
ν) where Pi is a directed path called a

forward path and P̄−1
j is a reverse path. Reverse paths are the reverse order of the

nodes in a directed path P̄j. Moreover, these paths have the following properties:

• the last node of Pi is the last node of P̄i+1 for all i ∈ {1, 3, . . . , ν − 1};

• the first node of P̄i is the first node of Pi+1 for all i ∈ {2, . . . , ν} where we

define Pν+1 = P1;

• all nodes on a forward path except the first one have outdegree one.

Sawtooth cycles are a recurrent theme in this thesis. They are used to find d-

furcated flows and confluent flows for instance. In Section 4.3 we see that in

the applications we are interested in, forward paths can be replaced by a single

forward arc as a result of so-called “contraction” operations to be defined later.

We now sketch the algorithm of Dinitz et al. for congestion minimization.

Dinitz et al. look for sawtooth cycles of a particular kind; namely, ones in which

the first node of each forward path is a terminal. They augment the flow on

28

these sawtooth cycles by increasing the flow on forward paths and decreasing

it on reverse paths. By doing the augmentations carefully and then moving the

terminals according to specific rules they guarantee that, for each arc, by removing

the flow from at most one terminal, the remaining flow on that arc is at most its

original capacity. Thus, in the final flow, the total demand on each arc is at most

its original capacity plus dmax. This implies Theorem 3.2.2.

3.4 The ring loading problem

The ring loading problem is a subclass of the general unsplittable flow

problem. The interest of this class of problems arose from the design of optical

networks. For instance, the Synchronous Optical Network (SONET) standard

uses rings of optical fibres. In the ring loading problem, we consider an undirected

graph G = (V,E) which is a cycle of length n. The nodes are named sequentially

on the cycle from 1 to n. The edge between nodes i and i + 1 is named edge i. See

Figure 3–1 for naming conventions. We use the interval notation to denote only

the integer values in this interval, e.g., [i, j) denotes the set {i, i + 1, . . . , j − 1}.

Arithmetic is done modulo n. The demands can be represented as a symmetric

n×n matrix whose entry di,j is the demand for a terminal pair (s, t) with s at node

i and t at node j. We suppose that di,i = 0 for all i. We abuse the terminology

and refer to (i, j) with i and j in V as a terminal pair. Let X = {(i, j) : di,j >

0 and i < j} be the set of terminal pairs with nonzero demand. For each terminal

pair (i, j) ∈ X, we simply want to determine whether the flow is going to be

sent on edges [i, j) (we then say that flow is sent clockwise) or on edges [j, i) (we

then say that flow is sent counter-clockwise). Let φ ∈ {0, 1}X be an assignment

29

or routing vector that determines whether the demand for a given pair is sent

clockwise (φi,j = 1) or counter-clockwise (φi,j = 0).

1

2

3

i-1

i

i+1
i+2

n-1

n
1

2

i-1

ii+1

n-1

n

di,n-1

d1,i-1

di-1,i+2

Figure 3–1: An instance of the ring loading problem. Node names are indicated
in regular type and edge names are in italics. The chords show demands between
various pairs of terminals.

Once φ has been determined, the flow on each edge k is given by

fk =
∑
{di,j : φi,j = 1 and k ∈ [i, j)}+

∑
{di,j : φi,j = 0 and k /∈ [i, j)} (3.1)

and the congestion minimization problem, also called the ring loading problem,

is to find φ such that max1≤k≤n fk is minimized. This in an integer programming

30

problem since we have the restriction that φ is an integral vector and the deci-

sion version of this optimization problem is NP-complete as can be shown by a

reduction from PARTITION [31]. A natural relaxation of this problem is to allow

φ ∈ [0, 1]X (where [0, 1] represents the real interval). Let φ∗ be such a fractional

assignment. Then, φ∗i,j is the fraction of the demand that is routed clockwise and

1 − φ∗i,j is the fraction that is routed counter-clockwise. The flow on edge k in this

fractional routing is given by

f ∗k =
∑
{di,jφ∗i,j : k ∈ [i, j)}+

∑
{di,j(1− φ∗i,j) : k /∈ [i, j)} (3.2)

This relaxation can be solved in polynomial time using general LP but there are

also simple polynomial time combinatorial methods (see the paper by Schrijver et

al., for instance, [57]).

We now present an overview of the algorithm proposed by Shrijver et al. [57]

to solve the ring loading problem. Their main result is the following.

Theorem 3.4.1. Let φ∗ be a solution to the relaxed ring loading problem that gives

a fractional flow f ∗ of minimum congestion. Then, there is an integral assignment

φ such that maxk fk ≤ (maxk f
∗
k) + 3

2
dmax.

First, they propose a polynomial time algorithm that finds an assignment φ∗ such

that at most n/2 of the terminal pairs have their demand split, i.e., 0 < φ∗i,j < 1.

Once they have such a solution, they go through an “unsplitting” phase where

split demands are sent either completely clockwise or completely counter-clockwise

while trying to keep the congestion as low as possible. We now describe some of

the details.

31

If (i, j) ∈ X and (g, h) ∈ X, we say that their demands cross if exactly one

of i or j lies in the interval (g, h). If demands do not cross, they are parallel. As

in Figure 3–1, demands can be represented as chords and we say that edges lying

between the chords of parallel demands are between the demands. An assignment

φ∗ for the relaxed ring loading problem is said to be minimal if for all other

assignments φ′ the flow on every edge is f ′k ≥ f ∗k . For a minimal assignment φ∗, we

have the following lemma.

Lemma 3.4.2. Let φ∗ be a minimal assignment for the relaxed ring loading

problem. Then, if an edge lies between two parallel demands it does not receive flow

from both demands.

Proof. Suppose edge k receives flow a from demand di,j and flow b from demand

dg,h, and these demands are parallel. Suppose, without loss of generality, that a

is less than b. Consider sending an amount of flow a in the opposite direction for

both demands. Then, the flow on all edges between the demands decreases by 2a

and the flow on the remaining part of the ring stays the same. Doing so results in

a new feasible flow satisfying all demands but where at least one edge, namely k,

has a strictly lower flow. This contradicts the minimality of φ∗. Thus, any edge

between parallel demands does not receive flow from both demands.

This lemma says that in a minimal routing φ∗, all split demands cross. Hence,

we can assume from now on that we have such a flow. It is now possible to remove

all the nodes that are not an endpoint for a split demand. Suppose (i, j) is not

split and is routed on the path [i, j). Then, remove di,j from the flow on each edge

of this path and delete the demand. If a node i is not part of any terminal pair,

32

delete it and add an edge {i − 1, i + 1} with f ∗{i−1,i+1} = f ∗i−1. Repeat until only

split demands remain.

After performing these operations, we have a ring with an even number of

nodes where all demands are split. We now limit ourselves to crossing demand

instances on a ring. Since a demand must cross all others, each demand must be of

the form di,i+n/2 where n is the number of nodes in the ring.

Define ui = φ∗i,i+n/2di,i+n/2 and vi = (1−φ∗i,i+n/2)di,i+n/2. Since the demands are

split, both of these quantities are greater than zero. There are two possible choices

to unsplit the demand di,i+n/2: either we send the clockwise flow ui counter-

clockwise, or we send the counter-clockwise flow vi clockwise. Either way, the flow

on one of the intervals [i, i + n/2) or [i + n/2, i) increases and the flow decreases

by the same amount on the other interval. In particular, the change in flow on

edge j ∈ [i, i + n/2) is the negative of the change in flow on edge j + n/2. Let

zi be a variable which is equal to vi if we set the variable φi,i+n/2 to 1 and to −ui

otherwise. We need to define these quantities only for i ∈ [1, 2, . . . , n/2] since this

covers all the demands. Then, the change in load on edge j ∈ [1, n/2) in the new

unsplittable flow is given by

Mj =

j∑
i=1

zi −
n/2∑
i=j+1

zi (3.3)

and by symmetry the change on edge j + n/2 is −Mj. Schrijver et al. show that

there is a way to set the values of the zi’s such that the sum of the first j values is

always in the interval [−dmax/2, dmax/2].

33

Lemma 3.4.3. It is possible to set the values of zi such that

j∑
i=1

zi ∈
[
−dmax

2
,
dmax

2

]
for all j ∈ {1, 2, . . . , n/2}.

Proof. The proof is by induction. It is true for z1 since u1 + v1 = d1 ≤ dmax thus

at least one of u1 or v1 is less than or equal to dmax. Setting z1 accordingly ensures

that the inequality holds for i = 1. Suppose that
∑j

i=1 zi ∈ [−dmax/2, dmax/2]. If∑j
i=1 zi − uj+1 < −dmax/2, then

j∑
i=1

zi + vj+1 =

j∑
i=1

zi − uj+1 + uj+1 + vj+1

≤
j∑
i=1

zi − uj+1 + dmax

<
dmax

2

and thus setting zj+1 = vj+1 gives the desired inequality. If
∑j

i=1 zi − uj+1 ≥

−dmax/2, then we may set zj+1 = −uj+1.

Theorem 3.4.1 easily follows. Note that

Mj =

j∑
i=1

zi −

 n/2∑
i=1

zi −
j∑
i=1

zi


= 2

j∑
i=1

zi −
n/2∑
i=1

zi

and both of these sums are in [−dmax/2, dmax/2] so Mj ∈ [−3
2
dmax,

3
2
dmax]. The

maximum increase in congestion is thus max1≤j≤n/2 |Mj| ≤ 3
2
dmax.

34

3.5 Minimum cost unsplittable flows

In this section we present the algorithm of Skutella [61] for approximating

the minimum cost single-sink UFP in directed graphs. Throughout, we make the

no bottleneck assumption. We consider an instance of the UFP where arcs have

costs c ∈ RA
+. Note that the congestion algorithms discussed so far do not consider

the existence of costs. Skutella gives a 3-approximation algorithm in terms of

congestion that gives an unsplittable flow f̄ of cost no more than a fractional flow

f of minimum cost.

3.5.1 dmin-integral demands

We first consider the case where all demands are multiples of one another, i.e.,

for any pair di, dj we have that di|dj or dj|di. By renumbering the demands, we

can suppose, without loss of generality, that d1|d2| . . . |dk. We present an algorithm

for these particular instances and then we generalize it to arbitrary demands by

using a rounding procedure. The following well-known result (see, for e.g., [1]) is

crucial in proving that the algorithm works.

Theorem 3.5.1. Let D = (V,A) be a directed graph with arc capacities u ∈ RA,

terminals s1, s2, . . . , sk ∈ V and a single sink t ∈ V . Terminals have demand

d1, d2, . . . , dk respectively. Suppose that every capacity and demand is a-integral

for some nonnegative real number a and that the cut condition holds. Then, there

exists a minimum cost a-integral flow satisfying all demands and computable in

polynomial time.

The pseudo code for the algorithm follows. It roughly proceeds as follows.

First, start with a fractional flow f 1
0 of minimum cost satisfying all demands. If the

35

algorithm ever finds an arc with 0 flow, it is removed. Otherwise, it considers the

demands in non-decreasing order. For simplicity, we suppose that all demands are

different, i.e., d1 < d2 < . . . < dk. If this is not the case, demands that are equal

are treated at the same time. At each iteration i, we process the terminal with the

next smallest demand di. We use the flow from the previous iteration f 1
i−1 to set

new arc capacities uia. Then, we find a di-integral feasible flow f 0
i whose cost is at

most the cost of the previous flow (such a flow exists by Theorem 3.5.1). Since this

flow is di-integral and satisfies all demand, there is at least one path Pi from si to

t and all arcs on this path have at least di flow. Hence, the demand of source si

can be routed along Pi and the flow on this path is then decreased by di. The flow

at the end of this iteration is denoted by f 1
i . When the algorithm ends, we have

a set of paths P1, P2, . . . , Pk along which demand for each terminal can be routed

to the sink. The flow on any arc a1 is at most f 1
0 (a) + dmax and the cost of the

flow is less than the cost of f 1
0 . Here is the pseudo code for the algorithm called

MinCostDivisible.

1 In this section, and only in this section, f ji (a) is the flow on arc a. We use this
notation to avoid confusion in the indices.

36

MinCostDivisible(G, d, f 1
0)

For all i in {1, 2, . . . , k}

For all arcs a ∈ A

uia ←
⌈
f1

i−1(a)

di

⌉
di

f 0
i = FindIntegralFlow(G, di)

RemoveZeroArcs(G, f 0
i)

Find an (si, t)-path Pi

For all arcs a ∈ Pi

f 1
i (a)← f 0

i (a)− di

RemoveZeroArcs(G, f 1
i)

Remove terminal si

RemoveZeroArcs(G, f)

For all arcs a ∈ A

If f(a) == 0

Remove a from G

In order to show that the algorithm works, we need the following simple

lemma.

Lemma 3.5.2. Let a and c be distinct positive real numbers, and b be a nonneg-

ative real number. Suppose that b and c are multiples of a. Let x be the smallest

multiple of c greater than or equal to b. Then x ≤ b+ c− a.

Proof. We can write x = mc for some integer m ≥ 0. Then, b ∈ ((m − 1)c,mc].

Since a is also a divisor of c, (m − 1)c = (m − 1)na for some integer n > 0 and

37

b ∈ ((m− 1)na,mc]. But b is a multiple of a so b ∈ [((m− 1)n+ 1)a,mc], i.e.,

b+ c− a = b+ c− c

n

≥ ((m− 1)n+ 1)a+ c− c

n

= (mn− n+ 1)
c

n
+ c− c

n

= mc = x

Theorem 3.5.3. MinCostDivisible finds an unsplittable flow f̂ whose cost is

bounded above by the cost of a minimum cost fractional flow f and for which the

congestion increased by at most dmax. Moreover, it runs in polynomial time.

Proof. Since FindIntegralFlow finds a flow of minimum cost given the current

arc capacities and these capacities are increasing at every iteration, the cost of

the flow never increases. Thus, the final flow has cost bounded by the cost of the

original fractional flow f . Moreover, at every iteration we obtain a flow satisfying

all remaining demands. If we added back the flow paths found from previous

iterations, we would have a flow satisfying all demands, and the previous demands

would be routed unsplittably.

In every iteration, finding a di-integral flow can be done in polynomial time by

Theorem 3.5.1 and finding an (si, t)-path can be done in linear time. Hence, the

algorithm runs in polynomial time since it executes in exactly k of these iterations.

We only have to show that the congestion increase is at most dmax. Consider

an arc a. The total flow through a at the end of iteration j, denoted by φj(a), is

38

f 1
j (a) plus the flow path on Pj if it uses the arc a plus the sum of any flow path

from previous iterations using arc a.

φj(a) = f 1
j (a) +

∑
a∈Pj

dj +
∑

i<j,a∈Pi

di (3.4)

The sum of the first two terms is clearly bounded above by the capacity of a at

iteration j since f 1
j (a) +

∑
a∈Pj

dj = f 0
j (a) ≤ uja. Now apply Lemma 3.5.2 with

a = dj−1, c = dj and b = f 1
j−1(a). Since uja is the smallest multiple of dj greater

than f 1
j−1(a), we get that uja ≤ f 1

j−1(a) + dj − dj−1. Thus

φj(a) ≤ f 1
j−1(a) + dj − dj−1 +

∑
i<j,a∈Pi

di (3.5)

Observe that this only holds for j > 1. To make this hold for j = 1 we need

only to define d0 > 0 small enough. Any d0 ≤ min({d1} ∪ {f 1
0 (a) mod d1 :

f 1
0 (a) not d1-integral}) will make the inequality hold.

In Equation 3.5, the sum of the first and the last terms is just φj−1(a). So we

obtain the following recursive formula.

φj(a) ≤ φj−1(a) + dj − dj−1 (3.6)

Going through the recursion shows that the sum of di is telescoping and consider-

ing j = k gives

φk(a) ≤ φ0(a) + dk − d0 ≤ f 1
0 (a) + dk (3.7)

i.e., the increase in congestion is at most dk = dmax.

39

3.5.2 Arbitrary demands

It is striking perhaps that in the case where demands are multiples of each

other, we can achieve a minimum cost flow whose congestion is at most that

of Dinitz et al. (which is known to be the best possible). It is conjectured by

Goemans that this is actually possible for all demands. However, the best result so

far is due to Skutella, and we now outline his extension to general demands. Here

he must give up a little more congestion to guarantee a minimum cost flow.

For arbitrary demands d1 < d2 < . . . < dk (again, if demands are equal, they

are treated at the same time), start with a minimum cost fractional flow f 1
0 . The

idea is to first round down demand di to d̄i = 2blog(di/d1)cd1 for all i so that they

satisfy the conditions of Theorem 3.5.1. Then, decrease the flow f so that it is a

valid flow for the rounded down demands d̄i. To do this, for each source si, as long

as the outflow at si is greater than d̄i, we find a maximum cost (si, t)-path and we

decrease the flow on this path as much as possible (we can decrease the flow either

by the minimum amount of flow on an arc of the path or by the difference between

the outflow and d̄i, whichever is smaller), removing any arc with zero flow. Once

this is done, we have a new instance with a fractional flow satisfying all demands.

We can apply MinCostDivisible to obtain the set of paths P1, P2, . . . , Pk along

which to route the demands of each terminal to the sink. Now, instead of just

routing the rounded down demand d̄i along the (si, t)-path Pi, route all of the

original demand di. Clearly, this gives an unsplittable flow satisfying all demands.

The pseudo code for this algorithm is shown below.

40

MinCostUnsplittable(G, d)

f 1
0 = MinCostFlow(G, d)

For all i in {1, 2, . . . , k}

d̄i = 2blog(di/dmin)cdmin

While f 1
0−(si) > d̄i

Find a maximum cost (si, t)-path P

ε = min({f 1
0−(si)− d̄i} ∪ {f 1

0 (a) : a ∈ P})

For all arcs a in P

f 1
0 (a)← f 1

0 (a)− ε

MinCostDivisible(G, d̄, f 1
0)

Using this algorithm, Skutella can show the following result.

Theorem 3.5.4. MinCostUnsplittable finds an unsplittable flow of cost

at most than the cost of a minimum cost fractional flow and the increase in

congestion on arc a is at most f 1
0 (a) + dmax.

The author also prove that the problem of finding an unsplittable flow whose

cost is less than the cost of an optimal fractional flow while keeping the congestion

as low as possible is NP-hard to approximate with a performance guarantee

strictly better than (1 +
√

5)/2, i.e., it is NP-hard to find an unsplittable flow

where the maximum congestion is strictly less than (1 +
√

5)/2 times the optimal

solution. Thus, there is still a gap between their algorithm with performance

guarantee 3 and the theoretical limit. Our personal attempts to improve this

algorithm have failed.

41

CHAPTER 4
Bifurcated flows and d-furcated flows

We examine a single-sink multicommodity flow problem with constraints

on the number of outgoing arcs allowed at a node. This category of problems,

includes confluent flows (introduced in [11]) which are discussed in Chapter 5 and

d-furcated flows (introduced in [21]) with are discussed in this chapter.

4.1 Statement of the problem

Let D = (V,A) be a directed graph with sink t and terminals s1, s2, . . . , sk

with demand d1, d2, . . . , dk respectively. Define the load of a node v under some

single-sink multicommodity flow as the sum of its inflow and its own demand.

Alternatively, this is just the outflow at a node. Every node has a capacity which

is defined to be the maximum load it can receive. The congestion of a node

is its load divided by its capacity. Since we generally only consider digraphs

with uniform node capacities U , the congestion of every node will be the same

as its load divided by U . Hence, the load and congestion are the same up to a

multiplicative factor. The congestion of a flow is the maximum congestion of a

node in the graph. Since we consider uniform capacities, we may also assume that

U is simply 1 by scaling. We suppose that the no bottleneck assumption holds, i.e.,

if each capacity is 1, then dmax ≤ 1.

Without loss of generality, since we only consider node congestion we can

also suppose that D has no parallel arcs and no loops. Indeed, parallel arcs can

42

be replaced by a single arc and loops can be removed by the usual directed cycle

augmentation. A flow f is d-furcated if every node has at most d outgoing arcs

with positive flow. If we allow d to be infinity (which is equivalent to d ≥ n − 1),

then there is no constraint on the number of outgoing arcs and the problem is just

the standard single-sink multicommodity flow. If d = 2, we call the flow bifurcated.

Finally, for d = 1, the flows are called confluent. Confluent flows were introduced

in [11] and later the theory was more fully developed in [10]; for d ≥ 2 the notions

appear to be first studied in [21].

In this chapter, we will focus on finding constant factor congestion bounds

for d-furcated flows for d ≥ 2. This is normally attacked as follows: first find a

fractional flow on the digraph D with the smallest possible congestion. This can

be done by doing the node splitting operation described in Section 2.1 and then

solving the following linear program.

min L (4.1)

s.t. L ≥ xa ∀ node arcs a (4.2)

x+(v−)− x−(v−) = dv ∀ v ∈ V (4.3)

x ≥ 0 (4.4)

One thus finds a flow f satisfying all demands with minimum node capacity U .

In a second phase, one tries to modify this flow to get a d-furcated flow with

a constant (multiplicative) factor increase in congestion. Let the congestion of

an optimal fractional flow be OPT and the congestion of an optimal d-furcated

flow be OPTd. The worst case ratio OPTd/OPT over all instances is called the

43

congestion gap for d-furcated flows. As mentioned earlier, by scaling the demands,

we can suppose that the maximum fractional flow has congestion 1.

4.2 Known results

The congestion minimization problem for d-furcated flows has dramatically

different answers in the case where d = 1 and d ≥ 2. In particular, in Chapter 5

we will see that when d = 1 we cannot even guarantee a bounded node congestion.

We will see that a congestion of log(n) is possible and that it is best possible.

Interestingly, if one allows one extra arc out of each node (i.e., d = 2) the situation

is a lot better. Donovan et al. [21] showed that the congestion gap for d-furcated

flows is bounded above by 1 + 1/(d− 1). In particular, for bifurcated flows we have

a congestion gap of at most 2. We give a comprehensive sketch of the methods

used to obtain these results.

There are no known results for the cost version either of the d-furcated or

the confluent flow problem. We have tried, without success, to generalize the

algorithm in [21] to the case where arcs have costs. We discuss this further and

give a complexity proof for a related problem in the last section of this chapter.

4.3 Sawtooth cycles and sawtooth cycle-free digraphs

We defined sawtooth cycles in Chapter 3. They were first used in [20, 10], but

both used particular types of sawtooth cycles. In [21], a structure theorem is given

for the general sawtooth cycle detection problem. In particular, they show that

either there is a sawtooth cycle somewhere in the digraph or the digraph has a

specific structure. This specific structure is that the graph is acyclic and “layered”

44

in a sense that we make clear later. They also present a polynomial time algorithm

that either finds a sawtooth cycles or concludes that there is none.

The definition of a sawtooth cycle that we gave in Chapter 3 is different from

the definition that is given in [21] but they are equivalent as we explain now. In

[21], they call a sawtooth cycle any sequence (u1v1, P
−1
1 , u2v2, P

−1
2 , . . . , urvr, P

−1
r)

where uivi are called forward arcs and Pi is a path from ui+1 to vi called a reverse

path (index arithmetic modulo r). However, they also perform contraction opera-

tions defined as follows. Call a node decided if it has outdegree 1. A contraction

operation consists of contracting a decided node and its out-neighbour into a single

node. In our definition, every node on a forward path except the first one have

outdegree one and is thus a decided node. Performing contractions on these nodes

gives a sawtooth cycle according to the definition in [21]. For the remainder of the

thesis, we adhere to the definition of [21]. In other words, we assume contraction

operations are being performed, and hence the forward segments all have length 1.

We now describe the polynomial time algorithm that either finds a sawtooth

cycle or shows that none exists. Consider a digraph D = (V,A) without parallel

arcs. Check if D has a directed cycle using, for instance, Tarjan’s algorithm [64]. If

it does, then D has a sawtooth cycle since any directed cycle is a sawtooth cycle.

Thus, we suppose from now on that D is acyclic. First, we build an auxiliary

digraph D̂ as follows. For each node v ∈ V , D̂ has two nodes v− and v+ and a

node arc v−v+. For every arc uv ∈ A, D has two arcs: a real arc u−v+ and a

complementary arc v+u−. Define a clean cycle to be a simple directed cycle of

length at least 3. They then show the following result.

45

Theorem 4.3.1. An acyclic directed graph D without parallel arcs contains a

sawtooth cycle if and only if D̂ contains a clean cycle.

Proof. (⇐) Let C be a clean cycle in D̂. First, observe that D is bipartite with all

nodes indexed by “+” in one stable set, we call these the plus nodes, and all nodes

indexed by “−” in the other stable set, we call these the minus nodes. Suppose

C has no real arc. Since every arc starting at a plus node is a complementary arc

and every arc starting at a minus node that is not real is a node arc, C consists of

alternating complementary and node arcs. However, such a cycle corresponds to

the reverse of a directed cycle in D and we supposed that D is acyclic. Thus, C

must contain at least one real arc u−v+. A real arc can only be followed by an odd

number of alternating complementary and node arcs since otherwise the ending

node a plus node and no real arc starts at a plus node. Thus C consists of sections

composed of a real arc followed by an odd number of alternating complementary

and node arcs. In D, this corresponds to a forward arc followed by a reverse path,

i.e., a sawtooth cycle.

(⇒) If S is a sawtooth cycle in D, then it corresponds to a cycle in D̂. Since

a sawtooth cycle has length at least three (because we do not allow parallel arcs),

the resulting cycle in D is clean.

Thus, looking for a sawtooth cycle in D is the same as looking for a clean

cycle in D̂. The next step is to determine whether D̂ contains a clean cycle. This

can be done in polynomial time as is shown in the next subsection.

46

4.3.1 Detecting clean cycles

The objective is to find a clean cycle in an arbitrary digraph D̂. To do this,

we introduce the notion of a digon-tree representation. Consider the subgraph of

D̂ obtained as follows. First, eliminate all arcs not in a digon1 . Now replace every

digon by a single undirected edge and call the resulting graph H. Search for cycles

in this undirected graph using, say, breadth-first search. If there is a cycle, it must

have length at least three since D̂ contains no loop and we just removed all digons.

Hence, this corresponds to a clean directed cycle in the original digraph. Thus, if

D̂ does not have a clean cycle, we must have that H is a forest. Next, consider

contracting every component of H into a single node to obtain a minor D of D̂. D

is called the digon-tree representation of D̂. Note that if D has a directed cycle,

then this would give rise to a clean directed cycle in D̂. So we assume that this is

not the case, and so D has an acyclic ordering of its nodes, i.e., of the shrunken

components of H. The following theorem is shown in [59].

Theorem 4.3.2. If D̂ is a directed graph without loops, then D̂ has no clean cycle

if and only if it has an acyclic digon-tree representation.

Once we have the digon-tree representation, it is easy to check for directed

cycles using, for instance, Tarjan’s algorithm [64]. Hence, we have outlined a

polynomial time algorithm to find clean cycles.

1 Recall that a digon is a directed cycle of length 2.

47

4.3.2 Structure theorem for sawtooth cycles

Theorem 4.3.2 can now be used to give a good characterization of the struc-

ture of a digraph D without sawtooth cycle. Such a graph has an auxiliary digraph

D̂ whose digon-tree representation is acyclic. Thus, it can be shown that D can be

partitioned into edge-disjoint trees such that every node is in at most two trees, all

incoming arcs to a node are in the same tree and all outgoing arcs from a node are

in the same tree. Moreover, these trees have an acyclic ordering. The details are

provided in [21].We give a pictorial representation of the structure result in Figure

4–1 to help the reader visualize.

4.4 A congestion 1 + 1/(d− 1) algorithm for d-furcated flows

We now present the algorithm of Donovan et al. [21]. Start by finding a

fractional flow f satisfying all demands with minimum congestion. Scale this flow

so that the maximum node congestion is 1. Perform the usual simplification of

removing any directed cycle by reducing the flow along any such cycle until some

arc disappears. Let X = {x ∈ V : xt ∈ A} be the set of in-neighbours of the sink.

We may remove the sink and consider a flow where the terminals have to route to

any combination of nodes in X. If at any point of the algorithm an arc has zero

flow, we remove it from the graph, i.e., we only work with the support of the flow.

The algorithm has two phases.

4.4.1 Phase I

The first operation that is used is Contraction of decided nodes as de-

scribed in Section 4.3. When such a contraction is performed, we keep track of the

48

demands by assigning to the new node the sum of the demands of the contracted

nodes.

Contraction(D)

While there exists a decided node u with out-neighbour v

Contract arc uv into a single node u′

Assign demand du′ = du + dv to the new node

The second operation is to find a sawtooth cycle and “break” it with a

routine called BreakSawtooth. Suppose we found a sawtooth cycle S =

(u0v0, P
−1
0 , u1v1, P

−1
1 , . . . , urvr, P

−1
r where Pi is a reverse path. Let ε = min{fa :

a ∈ Pi for some i}. Then, it is possible to decrease the flow along reverse paths

by ε and to increase it along forward arcs by ε. Doing so does not violate the flow

conservation constraints, and the congestion of every node either decreases or stays

the same. Indeed, the congestion of internal nodes in a reverse path decreases by

ε and the congestion of nodes that are the endpoints of a forward arc stays the

same. This augmentation drives the flow on at least one arc on a reverse path to

zero, which “breaks” the sawtooth cycle.

49

BreakSawtooth(G, f)

While there exists a sawtooth cycle S

ε← min{fa : a ∈ Pi for some i}

For all arcs a ∈ S

If a is a reverse arc

fa ← fa − ε

Else

fa ← fa + ε

Phase I repeatedly executes Contraction and BreakSawtooth until

it is no longer possible. Each of these operations runs in polynomial time. Since

the former removes a node at each iteration and the later removes an arc at each

iteration, Phase I runs in polynomial time.

4.4.2 Phase II

Phase II starts with an acyclic sawtooth cycle-free graph D (see Figure 4–1).

For a source node s ∈ D, the node s+ in D̂ will be in a digon-tree consisting of

only itself since no arc of D points into sources. Whenever we have a source node

s, we can thus contract s+ into s− in D̂. Hence, if D still contains some arcs, there

is at least one digon-tree in D̂ with least two nodes whose minus nodes are sources.

A round of Phase II consists of processing a digon-tree T ∗ that has no arcs leaving

it, i.e., we process the digon-trees in the reverse of the acyclic ordering given by

Theorem 4.3.2. A minus node v− ∈ T ∗ has only complementary incoming arcs,

thus the corresponding node v of G only has outgoing arcs in the subgraph of G

50

corresponding to T ∗, i.e., it acts as a source in this subgraph. Also, observe that

every minus node in T ∗ has at least two distinct neighbours. Otherwise, in G, this

would correspond to a node v with only one out-neighbour, but then v would be a

decided node and a contraction would have been performed. The steps in a round

consists of processing the minus nodes of T ∗.

s1

1

-

s3-

- -

-
-

-

-

s2-

+

+
++

+ +

+

x

3
+x

4
+x

6
+x

5
+x

2
+x

Figure 4–1: The acyclic digon-tree representation of a digraph with sources
s1, s2, s3 and sinks x1, x2, . . . , x6.

To choose the minus node to be processed, Donovan et al. use the following

lemma.

Lemma 4.4.1. In a tree T with bipartition classes A and B, if every node in A

has degree at least 2, then there exists a node v ∈ A whose neighbours are all leaves

except at most one.

51

Applying this lemma to the undirected tree T ∗ insures that we can find a minus

node s− whose neighbours u1, u2, . . . , ur are all leaves except at most one, say ur.

This is the node that is going to be processed next using the d-Furcate routine.

At the time where s is processed, it may already have some extra congestion

ω coming from previous steps or rounds. Once the flow at node s has been d-

furcated, s is removed from G.

d-Furcate(G, s, u1, . . . , ur, ω)

If r ≤ d

fsu1 ← fsu1 + ω

Else

Ω = 0

For arcs sui such that i > d

Ω← Ω + fsui

fsui
← 0

For arcs suj such that j ≤ d

fsuj
← fsuj

+ (Ω + ω)/d

We no ensure that d-Furcate operations do not increase the congestion of

any node above 1 + 1/(d− 1).

Theorem 4.4.2. There exists a d-furcated flow with node congestion at most

1 + 1/(d− 1).

Proof. The proof is by induction. Clearly, for the first processed node, there is no

extra congestion. Suppose we are processing node s and it has extra congestion

52

at most 1/(d − 1) by induction. If r ≤ d, then its neighbour u1 receives this

extra congestion but it is a leaf, thus after removal of s, it becomes a source whose

congestion is still bounded by the desired constant.

If r ≥ d + 1, then the leaf neighbours u1, . . . , ud of s receive the extra

congestion of s as well as the flow from the other neighbours ud+1, . . . , ur. The

increase in congestion for the first d leaf neighbours is bounded by

1

d

(∑
i≥d+1

fsui
+

1

d− 1

)
≤ 1

d

(
r∑
i=1

fsui
+

1

d− 1

)
(4.5)

≤ 1

d

(
1 +

1

d− 1

)
(4.6)

=
1

d− 1
(4.7)

The first inequality holds since the outflow at s is greater then the flow

sent to any combination of the out-neighbours of s. The second inequality holds

since the outflow at s is precisely the congestion at s which is at most 1. Thus,

all neighbours that receive extra flow have their congestion increase by at most

1/(d − 1) and they become sources after the removal of s. Thus the induction

carries through and we get the desired result.

In [21], they also point out that this bound is tight. More precisely, they show

the following theorem.

Theorem 4.4.3. For any ε > 0, there exists a digraph admitting a fractional flow

with maximum node congestion 1 but for which all d-furcated flows have congestion

at least 1 + 1/(d− 1)− ε.

53

4.5 d-furcated flows with costs

It is an open question to find the congestion gap for the d-furcated flow

problem on digraphs with costs on the arcs. More precisely, we ask what is the

congestion required in order to find a d-furcated flow whose cost is no more

than the optimal fractional flow. We also do not know of a nontrivial bicriteria

approximation. That is, we do not know if we can get within a constant factor of

the optimal cost, while maintaining a constant factor congestion. There has been

work done on cost version of other bounded degree problems, e.g., minimizing

the cost of a spanning tree with bounded degree [55]. In trying to modify the

bifurcated algorithm to incorporate costs, the first problem arises with the

sawtooth cycle operation. This is because we must reduce flow on the reverse

paths in order to maintain the congestion bound. However, it may be the case that

this is the expensive direction in terms of cost augmentation.

Suppose we start the algorithm with a fractional flow of minimum cost satis-

fying all demands. One idea is to modify this flow in order to get an unsplittable

flow whose cost is at most the cost of the fractional flow. This could result in an

increased congestion, but as long as this increase is within a constant factor of

the optimal congestion, we will be satisfied. Build an auxiliary digraph D̂ from

D in the same way as in Section 4.3. Node arcs all have cost 0, real arc u−v+ has

cost equal to the cost of uv, and complementary arc v+u− has cost equal to the

negative of the cost of uv. We add reverse node arcs u+u− with cost 0. In this

auxiliary digraph, every clean cycle corresponds either to a sawtooth cycle or to

the reverse of a sawtooth cycle in D, and the cost of the clean cycle is the same

54

as the cost of the corresponding sawtooth cycle (or reverse sawtooth cycle). If we

find a negative cost clean cycle in D̂ and it corresponds to a sawtooth cycle in D,

then the usual flow augmentation on this sawtooth cycle breaks it and the cost

of the new flow is at most the cost of the original flow. If the negative cost clean

cycle corresponds to the reverse of a sawtooth cycle, then we could try to augment

along the opposite direction, i.e., decrease flow along forward arcs and increase it

on reverse paths. Doing so may increase the load of internal nodes on the reverse

paths, but we can try to bound this increase by some other fashion.

Suppose there is a good bound on the increase in congestion. Then, we

could eliminate all sawtooth cycles while never increasing the cost of the flow.

The flow obtained would have a sawtooth free support and thus it would have

the nice layered structure described above. We could then hope to find a way to

generalize the d-furcation phase of the algorithm. However, even before trying

to find a bound on the increase in congestion, there is a major problem with this

approach. It lies in the fact that the procedure to find sawtooth cycles using the

digon-tree representation outlined in Section 4.3 does not extend to find negative

cost sawtooth cycles. To do so we would need to find negative cost clean cycles in

D̂, but it turns out that this problem is NP-hard. The proof of this is given in [59].

We present this proof but we give all the details in the next section.

Note that this does not imply that the cost version of the d- furcated flow

problem is intractable. It only means that new ideas will be needed to tackle the

problem.

55

4.5.1 Hardness of finding negative-cost clean cycles

We want to show that given a digraph D = (V,A) and cost vector c ∈ QA

it is NP-hard to find negative cost clean cycles. This result was shown in [59],

however we describe the proof more completely below. Recall that a clean cycle is

a directed cycle of length at least 3. The heart of the proof is to show that finding

a shortest clean path is NP-hard.

Theorem 4.5.1. Given a digraph D = (V,A) and cost cost vector c ∈ QA it is

NP-hard to find shortest clean paths.

Proof. To prove this, we show a reduction from 3-SAT. We have an instance of 3-

SAT consisting of m clauses C1, C2, . . . , Cm and n variables x1, x2, . . . , xn. Variable

xk appears in nk clauses. We now build a directed graph D using two kinds of

gadgets.

For each clause there is a clause gadget (see Figure 4–2). Consider a clause

Ci with variables x1, x2, x3. There are 8 different assignments for those three

variables. The clause gadget has 8 node-disjoint directed paths pi1, p
i
2, . . . , p

i
8 and

each of these paths has three segments, one for each variable. These segments will

consist of a literal gadget which we describe later. Add a vertex si and arcs of cost

0 from si to the first vertex of each pij. Add another vertex ti and arcs from the

last vertex of each pij to ti. These arcs all have cost 0 except for the arc that links

to the path whose corresponding variable assignment makes the clause false. This

arc has cost 1. The clause gadgets are then attached together by identifying ti and

si+1 for i = 1, 2, . . . , n− 1 as shown in Figure 4–3.

56

si

ti

x1

x2

x3

x1

x2

x3

x1

x2

x3

100

0 0 0

. . .

p1i p2i p8i

Figure 4–2: Clause gadget for clause Ci = x1∨ x̄2∨x3. Note that the ending arc for
path pi8 has cost 1 since this path corresponds to the unique assignment x̄1, x2, x̄3

which makes the clause false.

Notice that in a clause gadget for a clause having variable xk, there are four

xk-gadgets and four x̄k-gadgets. And since xk appears in nk clauses, the whole

graph has 4nk xk-gadgets and 4nk x̄k-gadgets.

Now, we describe the literal gadgets. For variable xk, a literal gadget is a

directed path of length 8nk whose arcs have cost L and −L alternatively, starting

with an arc of cost L. Thus there are 4nk arcs of negative cost in this path.

We attach the literal gadgets together. Consider variable xk and the 8nk

corresponding literal gadgets labelled x1
k, x

2
k, . . . , x

4nk
k , x̄1

k, x̄
2
k, . . . , x̄

4nk
k . Let xjk

be the path uj0u
j
1 . . . u

j
8nk

where the ujl are vertices. Similarly, let x̄jk be the path

vj0v
j
1 . . . v

j
8nk

. Identify uj2p−1 with vp2j, and uj2p with vp2j−1 for all j = 1, 2, . . . , 4nk and

57

..

.

s1

s2 = t1

sm-1 = tm-2

sm = tm-1

tm

C1

C2

Cm-1

Cm

Figure 4–3: The clause gadgets attached together.

p = 1, 2, . . . , 4nk. An example of this identification with j = 1 is provided in Figure

4–4.

The results of this operation is shown in part in Figure 4–5.

This completes the reduction from 3-SAT. We refer to the graph just de-

scribed as G. In this graph, each xk-gadget crosses each x̄k-gadget at exactly one

directed digon. Each digon is composed of two arcs of cost −L and all arcs of

negative cost are in a digon.

We claim that any directed clean path P has cost cost(P) greater than or

equal to the cost of the first arc of the path. This is proved in Lemma 4.5.2. Since

a directed path starting at s1 first encounters an arc of cost 0, we know that any

directed clean path starting from s1 has nonnegative cost. In particular, we have

that there is no s1 − tm clean path of negative cost.

58

xk1

xk1

u01

v01 v11 v21 v31 v8nk-1
1 v8nk

1 u11

u21

u31

u41

u8nk-1
1

u8nk
1

. . .

v02 v12 v22 v32 v8nk-1
2 v8nk

2

. . .xk2

v04nk v14nk v24nk v34nk v8nk-1
4nk

v8nk
4nk. . .xk4nk

..
.

..
.

L

L

L

L L

L L

-L
-L

L

-L

L

-L

-L

-L -L

-L -L

Figure 4–4: An example of how the literal gadgets are attached together. Here, the
literal gadget x1

k is attached to each of the gadgets x̄pk by doing the node identifica-
tions along the dotted lines.

Now, we show that finding a shortest clean s1 − tm path in G is equivalent to

finding a satisfying assignment in the 3-SAT instance.

First, suppose we have a satisfying assignment. Then the shortest clean

s1 − tm path is obtained as follow. In each clause gadget, follow the path pij from

si to ti that corresponds to the assignment. For instance, if clause Cj has variables

x1, x2 and x3 and the satisfying assignment is x̄1, x2, x3 then follow pij whose literal

gadgets are x̄1, x2, x3. Since this is a satisfying assignment, in each clause gadget

we get a path of cost 0. Indeed, recall that only the false assignment has an ending

arc with cost 1, and every literal gadget has as many positive cost arcs as negative

cost arcs. So we end up with a unique path of cost 0, i.e., a shortest path since

there are no negative cost clean paths. This path is clean since we use the same

59

..
.

. . .s i

s i

x k
1

x k
2

x k
3

x k
4

x k
1

x k
2 x k

3 x k
4

0

0

0

0

0
0 0

0

L

L L L L L

L

L

L

L

-L -L -L -L

-L

-L

-L

Figure 4–5: xk-gadgets are shown with solid arcs while x̄k-gadgets are shown with
dotted arcs from an x̄k node. Here we see the eight appearances of the xk variable
in clause Ci and how they are linked together. The arcs in the digons have cost
−L, the arcs not in the digons have cost L and the arcs leaving si have cost 0.

literal for each variable in each clause gadget where this variable appears and the

only way to get a digon would be to use xk in some clause gadget and x̄k in some

other clause gadget. Thus, a satisfying assignment gives a unique shortest clean

s1 − tm path.

Then, suppose we have found a shortest clean s1 − tm path P . If every

time this path uses one arc in a literal gadget then it uses all the arcs in that

gadget (i.e., in each clause gadget a path pij is completely traversed), we say that

the literal gadget is completely traversed. In a shortest path, a literal gadget is

either completely traversed or not traversed at all. Indeed, if a literal gadget is

not completely traversed, then at some point an arc a1 of cost L is immediately

60

followed by another arc a2 of cost L since this is the only way to leave a literal

gadget. Let P1 be the part of P from s1 to the endpoint of a1 and P2 be the part

of P from the endpoint of a2 to tm. By Lemma 4.5.2, we have cost(P1) ≥ L and

cost(P2) ≥ −L. Thus

cost(P) = cost(P1) + L+ cost(P2)

≥ L+ L+ (−L) = L

Thus, the cost of P is at least L. Note that here exists a clean s1 − tm path Q

of cost at most m which is just a path corresponding to an assignment for which

some of the clauses are false. This path completely traverses literal gadgets that it

touches. If we select L > m, then P is a shortest path only if it traverses variable

gadgets completely or not at all since otherwise cost(P) ≥ L > m = cost(Q) and P

is not a shortest path. As a consequence, a shortest clean path always corresponds

to a consistent assignment. If this path has cost 0, then the assignment satisfies all

the clauses. If not, then the 3-SAT instance is not satisfiable.

Since 3-SAT is NP-hard, so is shortest clean path.

Now we prove the following lemma which we used in the preceding proof.

Lemma 4.5.2. In the graph G described in the proof of Theorem 4.5.1, let P be

a directed clean path such that the first arc has cost cf and the last arc has cost cl.

Then the cost of P is bounded by cost(P) ≥ cf . Moreover, if P has more than one

arc then cost(P) ≥ cf + max{0, cl}.

61

Proof. We prove this by induction on the number of arcs of the path. If the

path has only one arc, it has cost cf . Suppose we have a path P with l − 1 arcs

and cost cost(P) ≥ cf + max{0, cl} ≥ cf . If the last arc of P has cost L, we

know by induction that removing this arc from P gives a clean path P ′ with cost

cost(P ′) ≥ cf . Thus P has cost at least cf + L and adding any arc with cost c′l

at the end of P gives a path of l arcs with cost at least cf + max{0, c′l}. If the

last arc of P has cost −L, then we just followed an arc in a digon. The only arc of

negative cost we can append to P is in the same digon but this is not permitted in

a clean path. So we can only add an arc of nonnegative cost. If the last arc of P

has cost 1, we are at a vertex si and the only arcs leaving si have cost 0. Finally,

if the last arc has cost 0, then we are either at a vertex si or at the first vertex of

a literal gadget. In both cases, there are no negative cost arc leaving that vertex.

Thus, the only arcs we can append to P lead to a longer clean path of cost at least

cost(P) + c′l ≥ cf + c′l where c′l is the cost of the appended arc.

Lemma 4.5.3. There is no negative cost clean cycles in the graph G described in

the proof of Theorem 4.5.1.

Proof. For any directed clean cycle C we can choose two vertices on the cycle, v1

and v2, and consider the paths P1 from v1 to v2 and P2 from v2 to v1 such that

C = P1 ∪ P2. By Lemma 4.5.2

cost(C) = cost(P1) + cost(P2) ≥ c1f + c2f + max{0, c1l }+ max{0, c2l }

where cif and cil are the costs of the first arc and the last arc of Pi respectively.

If c1f and c2f are nonnegative, we are done. Thus we only need to worry about

62

the case where at least one of the first arc has cost −L. If c1f = −L, then c2l = L

otherwise C is not clean. Thus cost(C) ≥ −L+c2f+max{0, c1l }+L = c2f+max{0, c1l }.

If c2f is nonnegative, we are done. Otherwise, c1l = L and we are also done.

We can use Theorem 4.5.1 to show that finding a negative cost clean cycle is

NP-hard.

Corollary 4.5.4. Finding a negative cost clean cycle is NP-hard.

Proof. We use the same reduction as in the preceding proof. Add an arc of cost

−1 from tn to s1. Then, if we find a shortest clean s1 − tm path of cost 0 we

obtain a clean cycle of cost −1 by appending the arc tns1 to this path and by

Lemma 4.5.3 this is the only negative cost clean cycle. So a satisfying assignment

gives a negative cost clean cycle and a negative cost clean cycle gives a satisfying

assignment. So finding a negative cost clean cycle is NP-hard.

63

CHAPTER 5
Confluent flows

We study the single-sink multicommodity confluent flow problem. This

problem was introduced in [11] and further studied in [12, 10]. First, we state the

problem and give some known results. We then present two algorithms: one for

the congestion minimization problem and the other for the demand maximization

problem.

5.1 Statement of the problem and known results

In the single-sink multicommodity confluent flow problem, one is given a

simple graph (directed or undirected) G = (V,E) and a sink t. In addition, we

have terminals s1, s2, . . . , sk where each si wishes to route di units of flow to t. A

confluent flow is one where the flow out of any node must travel on a single edge.

Confluent flows are a special case of d-furcated flows where d = 1 and also of

unsplittable flows. Alternatively, one can view confluent flows as partitioning V

into node-disjoint trees (or arborescences, for directed graphs) Ti rooted at distinct

neighbours ti of t, and the flow is routed from the terminals along the edges of Ti’s

accordingly. The load (or congestion, assuming that all node capacities are 1) of a

confluent flow is then simply the largest flow on one of the edges into t. Since we

are only concerned with the maximum node load and uniform capacities, we can

scale our demands and hence assume without loss of generality that the di’s lie in

[0, 1]. We then refer to a confluent flow as feasible if its load is at most 1.

64

One natural objective is to find a confluent flow such that the maximum load

is minimized, i.e., the congestion minimization problem. In [10] it is proved that

there is a confluent flow whose maximum load is 1 + log k. Moreover, they show

that, in directed graphs, it is NP-hard to determine the minimum congestion of a

confluent flow to within a factor of 1
2

log k. Given this hardness result, it is perhaps

surprising that they can also devise an O(1)-approximation for the demand

maximization confluent flow problem. Namely, if the instance admits a fractional

flow satisfying all demands, there is a feasible confluent flow which routes ∆/3 of

the demand where ∆ =
∑

i di. A few comments are in order. First, in the factor

3-approximation, they guarantee that in the confluent flow of ∆/3, each demand

either entirely routes its di units, or routes nothing (the unsplittable case). Second

as they point out, the initial instance may not have a standard flow for all the

demands (with maximum load of 1). In this case, one may run an algorithm, [20]

or [43], for the maximum unsplittable flow problem, to unsplittably route some

amount of demand within a constant factor (where the constant is 0.226) of the

optimal. Applying the confluent algorithm to the resulting flow, then yields a

factor 13.29-approximation for the maximum confluent flow problem.

In [10], they also raise the question of whether there is an O(1) approximation

for the “routing in rounds” version of confluent flow. More specifically, they point

out that their techniques show that any instance can be routed in O(log n) rounds

of feasible confluent routing but that it may be that a constant, or even two,

rounds suffice. This remains an intriguing open question.

65

5.2 Minimizing congestion

We present the congestion minimization algorithm of Chen et al. [10].

Throughout, we let D = (V,A) be the simple input digraph (the undirected case

follows from the directed version) and we suppose that we have an initial standard

network flow f that routes all of the demands such that the maximum node load

is 1. As they do, we actually ignore the sink t, and consider only the neighbours

of t denoted by T = {t1, t2, . . . , tk}; they call these sinks since, without loss of

generality, we may assume our starting flow has an acylic support and also that

there are no arcs between these nodes (since we only require node loads to be at

most 1). As the algorithm runs, it will modify the flow, and we let b ∈ Rk
+ denote

the current vector of node loads of the sinks.

A frontier node is a node u that has an out-neighbour which is a sink, i.e.,

there is an arc utj for some j. (By our assumptions, no sink is a frontier node.) A

decided node is a frontier node that has exactly one out-neighbour (note that in

Chapter 4 we defined a decided node as any node with exactly one out-neighbour;

for simplicity, we use the new definition in this chapter). Node aggregation is an

operation that refers to marking an arc uv for some decided node u and then

aggregating u into v, removing any loops thus created.

A remote node is some sink tj that has only one in-neighbour u, called a

pivot node, amongst the frontier nodes, but u itself also has at least one other sink

out-neighbour ti. Finally, let D̂ be the graph obtained from D \ {t}, by adding a

reverse arc tju for every arc of the form utj. In [10], they refer to a simple directed

cycle of length greater than two in D̂ as a sawtooth cycle. Note that this is just a

66

particular case of the more general definition of a sawtooth cycle given in Chapter

3.

The algorithm in [10] repeatedly performs three operations: node aggregation,

sawtooth cycle breaking, and pivoting. (We defer the definitions of the latter two

for a moment.) These operations gradually contract arcs from decided nodes to

sinks until the only nodes remaining are the sinks ti. Reversing the contractions

then reveals a collection of node-disjoint arborescences rooted at the ti’s. Note that

these steps are similar to the ones in the congestion minimization algorithm for

unsplittable flows presented in Chapter 3. Indeed, aggregating a decided node with

its sink is basically the same as moving the “source” located at that decided node

towards the sink. Chen et al. show that if there are still non-sink nodes and there

is no possible node aggregation or sawtooth cycle operation, then there is some

sink node that is remote. Hence we can perform the Pivot operation. We now

specify the last two operations in more detail.

First, consider some sawtooth cycle S. In D, the sawtooth cycle is a cycle

with forward arcs, i.e., arcs of D, and reverse arcs, i.e., arcs of D that are used in

the reverse direction. Note that the reverse arcs are always used from a sink to a

frontier node and so any reverse subpath is of length 1 exactly. It follows that the

operation does not increase the load of any node since flow is only increased on

reverse arcs. Moreover, at least one of the arcs will have its flow decreased to 0;

that arc may then be eliminated from D̂.

67

BreakSawtooth(D, S, f)

fmin = min{fa : a ∈ S}

For all forward arcs a of S

fa ← fa − fmin

For all reverse arcs a of S

fa ← fa + fmin
We now show that if there are still non-sink nodes in the graph and it is no

longer possible to do the node aggregation or sawtooth cycle breaking operations,

then there exists a remote node on which to do the Pivot operation.

Lemma 5.2.1. Suppose that D has at least one non-sink node and it is no longer

possible to do the node aggregation or sawtooth cycle breaking operations, then

there exists a remote node.

Proof. Start a walk at any node of D̂ such that, whenever possible, the walk does

not go to a sink and it does not use arc uv right after vu. Every node in D̂ has

outdegree at least 1 since every sink as at least one reverse arc into a frontier node

and every other node is connected with the rest of the graph. Thus, it is possible

to walk indefinitely. Since the graph has a finite number of nodes, there is a node

v that will be the first to be visited twice. Since there is no sawtooth cycle in D,

there is no directed cycle of length greater than two in D̂. Hence, the last two arcs

in the walk were vw and wv for some node w. Moreover, D has no directed cycles

so one of these arcs must be a reverse arc, i.e., v or w is a sink. If possible, the

walk would have avoided arc wv, so w has all its outgoing arcs into v. If v was

a sink, w would be a decided node which contradicts the impossibility of doing

68

a node aggregation. Thus, w is a sink and it has only one in-neighbour v. v has

at least another out-neighbour otherwise it would be a decided node and all its

out-neighbours are sinks since otherwise the walk would have avoided going to w.

Thus, w is a remote node.

We refer to the following operation where we move flow from one arc to

another as pivoting. Pivoting starts with a frontier node u with two out-neighbours

ti, tj where in addition tj is remote.

Pivot(D, u, b, f)

If bj + futi ≤ bi − futi

Remove uti

futj ← futj + futi

Else

Remove utj

futi ← futi + futj

Deactivate sink tj
Pivoting is the only operation that increases the load at some sink. To show

the O(log(n)) bound on congestion, we use a potential function φ : T → R defined

for sink ti by φ(ti) = 2bi . The sum of the potential of all active sinks is referred to

as the potential of the flow. Note that for the initial flow, the potential is at most

2k.

Lemma 5.2.2. During the execution of the algorithm, the potential of the flow

never increases. Moreover, when a sink is deactivated, its potential is no more than

the potential of the flow before the deactivation.

69

Proof. The node aggregation and sawtooth cycle operations do not increase the

load of any node thus they don’t increase the potential of any sink. In a pivot

operation, first suppose that no sink is deactivated, i.e., bj + futi < bi − futi .

This implies bj < bi. Then, only the potential of ti and tj change. We can write

bj + futi = λbj + (1 − λ)futi for some λ ∈ (0, 1). By convexity of the potential

function

λ2bj + (1− λ)2bi ≥ 2bj+futi (5.1)

Similarly, we can obtain

(1− λ)2bj + λ2bi ≥ 2bi−futi (5.2)

and adding these two inequalities gives 2bj +2bi ≥ 2bj+futi +2bi−futi , i.e., the potential

of the flow does not increase.

Now, suppose that a sink is deactivated. Then bj + futi ≥ bi − futi which

implies that bj > bi − 2futi . So the potential before the deactivation is

2bj + 2bi > 2bi−2futi + 2bi . (5.3)

The same convexity argument as above gives

2bi−2futi + 2bi ≥ 2bi−futi + 2bi−futi = 2bi−futi+1. (5.4)

Finally, since the load at u is at most 1 we have that futi + futj ≤ 1 so

2bi−futi+1 ≥ 2bi+futj and this last expression is just the potential of sink ti af-

ter the deactivation. Thus 2bj + 2bi > 2bi+futj and the potential of the flow does not

increase.

70

The potential of the deactivated sink is clearly less than or equal to the

potential of the flow since the potential of the flow is the sum of the potentials of

the sinks.

It is now easy to prove the main result.

Theorem 5.2.3. Given an instance of the unsplittable flow problem with k sinks,

there is a polynomial time algorithm to find a confluent flow satisfying all demands

with congestion at most 1 + log(k).

Proof. Expanding the marked arcs gives a set of node-disjoint arborescences rooted

at the sinks. Thus, we obtain a confluent flow. Initially, the potential of the flow is

at most 2k since every one of the k sinks has load at most 1. This potential is an

upper bound on the potential of any deactivated sink by Lemma 5.2.2. Thus, any

deactivated sink has load at most log(2k) = 1 + log(k). Any sink that has not been

deactivated has a potential that is less than 2k. Consequently, the load of any sink

is at most 1 + log(k).

Finding a sawtooth cycle can be done in polynomial time. At every iteration,

an arc or a node is removed. Thus, the algorithm runs in polynomial time.

The authors of [10] also present an improved version of the algorithm with

which they achieve a congestion of at most 1 + ln(k).

5.3 Maximizing satisfied demand

Chen et al. [10] also give an algorithm for approximately solving the demand

maximization problem. Similar to the congestion minimization algorithm, the

demand maximization algorithm repeatedly performs nodes aggregations, sawtooth

71

cycle breaking and pivoting. However, the pivoting step is slightly different and

there is a post-processing phase. We show the pseudo code for the modified Pivot

operation below. Again, sj is a remote node with in-neighbour u who is adjacent

to at least one other sink si.

Pivot(D, u, b, f)

If bj − futj ≤ 1/2

Remove uti

futj ← futj + futi

Else

Remove utj

futi ← futi + futj

Deactivate sink tj
Note that pivoting is the only operation that increases the load at some

sink. Note also that as long as a sink’s load is “small”, then the pivot will shunt

flow onto it. However, when its load goes above 3/2, then the flow is shunted

elsewhere and tj is shut down or deactivated. The reason that 3/2 is an upper

bound on the cutoff for deactivation is because futj ≤ 1, and hence if bj > 3/2,

then bj − futj > 1/2. It follows that any sink which occurs as a remote node, will

either be deactivated, or still has load at most 3/2. Once this part of the algorithm

is over (i.e., it is no longer possible to do any of the three operations), we have a

set of disjoint arborescences {T1, T2, . . . , Tk} where Ti is rooted at ti. Some of these

arborescences, however, may have total demand greater than 1.

72

The post-processing step finds a subset of the terminals with total demand

at most 1 in each tree. If a tree Ti has total demand b̂i in (1, 3/2], partition the

demands into sets of total demand at most 2
3
b̂i select the largest of these sets and

route the corresponding demands. For trees with total demand larger than 3/2, it

is possible to select a subset of the demands that sum up to at least 1/2 and these

demands can be routed without violating the node capacities.

Using this algorithm, Chen et al. show the following result.

Theorem 5.3.1. Given a fractional flow f for the demands si, di with maximum

node congestion 1 on a digraph D, there is a polynomial time algorithm that finds

a confluent flow with maximum node congestion 1 that satisfies demands summing

up to at least ∆/3, where ∆ =
∑

i di.

73

CHAPTER 6
Rooted clustering and the maximum edge-disjoint path problem in

planar graphs

We start by presenting the maximum edge-disjoint paths (MEDP) problem.

We then introduce the rooted clustering problem which consists of grouping

demands in a graph into clusters each of which has a constant amount of demand,

with the additional restriction that each cluster must be connected and contain

a given root node. Then, using ideas from rooted clustering and confluent flows,

we present an algorithm to give a constant factor approximation to the maximum

edge-disjoint paths problem on planar graphs with edge-congestion 3, thus

improving the previously best known bound of 4 given in [9]. Namely, we prove the

following theorem.

Theorem 6.0.2. There is a polynomial time constant approximation for MEDP in

planar graphs, using edge congestion 3.

The material in this chapter is joint work with Bruce Shepherd [58].

6.1 Statement of the MEDP problem and known results

6.1.1 Maximum edge-disjoint paths

MEDP is formulated as follows. We are given a graph G = (V,E) and

a set of terminal pairs T = {(s1, t1), (s2, t2), . . . , (sk, tk)} where we assume,

without loss of generality, that all nodes are distinct and thus form a matching.

Indeed, if a node v appears in more than one pair, say (v, t1) and (v, t2), we can

74

split that node into v1 and v2 and the pairs become (v1, t1) and (v2, t2). Define

X = {s1, s2, . . . , sk, t1, t2, . . . , tk}. The nodes in X are called terminals and the

two terminals in a pair are called siblings. For v ∈ X we denote its sibling by

σ(v). The objective is to find a collection of paths joining as many terminal pairs

as possible with the constraint that these paths need to be edge-disjoint. If a pair

has a path joining its two terminals, we say that the demand for the pair has

been routed. The MEDP problem can be formulated using flows: we search for

a maximum (with respect to the number of routed demands) multicommodity

unsplittable flow where arc capacities are all 1 and demands between terminal

pairs are all 1.

It is well-known that the natural linear programming formulation for MEDP

may have a Ω(nε) gap [33] in the worst case (even in undirected planar graphs). In

[7], however, it was shown that in planar graphs, the gap is at most O(log n) if one

allows congestion 2 on each edge (i.e., our paths may use each edge up to twice).

This is a bicriteria result where the first criteria is the integrality gap and the

second is the congestion. More recently, it was shown [9] that there is a constant

factor approximation in planar graphs if congestion 4 is allowed. It may yet be,

however, that a constant factor is possible with at most congestion 2. We attempt

to improve the congestion bound of 4 by focusing on a clustering phase used in

the algorithm; in [9] this step incurs a congestion of 2. We show an alternative

approach, based on confluent flows, that gives a congestion 1 clustering.

6.1.2 LP relaxation

The natural LP relaxation of MEDP is the following:

75

max
k∑
i=1

xi s.t.

xi −
∑
P∈Pi

f(P) = 0 1 ≤ i ≤ k∑
P :e∈P

f(P) ≤ 1 ∀e ∈ E

xi, f(P) ∈ [0, 1] 1 ≤ i ≤ k, P ∈ P

where Pi is the set of paths between si and ti and P = ∪ki=1Pi is the set of

all paths in G. The variable xi is the total amount of flow that is going to be sent

from si to ti. The flow sent on a path P is denoted by f(P). It is well known that

this problem can be solved in polynomial time.

This is a relaxation in two ways. First, we allow fractional xi whereas in

the MEDP problem a pair has xi ∈ {0, 1}. Second, we allow the demand for a

terminal pair to be routed along more than one path instead of just one for the

MEDP problem, i.e., in MEDP, f is a 0-1 vector. If we let OPT denote an optimal

solution for the LP relaxation, then the optimal solution for the instance of MEDP

is clearly less than or equal to OPT. In [9], they show the following theorem.

Theorem 6.1.1. For the MEDP problem in a planar graph, there is a polynomial

time algorithm to route Ω(OPT) demand pairs with congestion 4, where OPT is

the value of the above multicommodity flow LP.

6.1.3 Outline of the congestion 4 algorithm

In [9], they first do a preprocessing phase to reduce the original graph to one

where the degree is bounded by 4. Given a planar graph G = (V,E) it is possible

76

to transform it to a graph in which every vertex has degree at most 4. This can be

done in polynomial time and in such a way as to preserve planarity. The procedure

is detailed in [30] and [7]. Thus, they suppose, without loss of generality, that

every node has degree at most 4. Also, they show that the problem can be reduced

to the two-node connected case. We do not present the details of this reduction.

Solving the LP from the previous section gives a flow f of value OPT. For

v ∈ {si, ti}, let fv be the total flow that belongs to this pair, i.e., fv = xi. fv is

called the demand of node v.

In [9], they then show that there exists a subgraph GC of G, which can be

found in polynomial time, with one face being C and with the following properties:

• C has exactly
⌈

1
10

∑
v∈GC

fv
⌉

nodes

• Each node v of GC can send simultaneously a flow of value fv/10 to nodes of

C in such a way that no node of C receives more than one unit of flow.

By the first property and the bound on the degree of every vertex, it is possible to

show that for such a subgraph GC , the demand that is routed completely inside

GC is at least 1/10 of the total flow that intersects any node of GC . Let bv ≤ fv be

the amount of flow sent from node v ∈ V (GC) that remains completely inside GC

and

p :=
1

2

∑
v∈v(GC)

bv (6.1)

be the total demand that remains inside GC . They ignore all demand not routed

completely in GC and simply try to route a constant fraction Ω(p) of the pairs

inside GC . Then they delete GC and repeat the process. We now focus on the key

step of finding Ω(p) pairs in GC which can be routed in GC with low congestion.

77

If p ≤ 10, it suffices to route one demand pair to get a constant fraction of the

optimal solution, so we can suppose that p > 10. The routing in GC is done in two

phases.

Phase I. First, they run a clustering phase where they cluster the terminals

(with weights bv) of GC into edge-disjoint connected subgraphs (called clusters)

H1, H2, . . . , Hh such that each cluster has demand Θ(1). They also find paths

P1, P2, . . . , Ph that are edge-disjoint in G and such that each Pi has one end on

C and one end in Hi. Moreover, these paths have the property that no node

of C is the endpoint of more than one path. However, since the Pi’s might go

through edges of Hj’s for i 6= j, this procedure leads to a congestion two clustering

where the clusters are Hi ∪ Pi. It is this phase that can be formulated as a rooted

clustering problem (where the root is a node with unit capacity edges to each node

of C). We defer the definition of rooted clustering to section 6.2. We would like a

clustering which is edge-disjoint instead of their congestion 2 scheme.

Phase II. The second phase consists of setting up an Okamura-Seymour

(OS), i.e., an instance where all demand pairs lie on the contour C. The OS

theorem (see [52]) states that for any such instance, if the cut condition holds

and the demands are integral, it is possible to find a routing of the pairs with a

congestion of 2. Setting up the OS instance requires some work; we do not give all

the details.

The final solution is obtained as follows. There are two cases to consider.

First, if there are lots of clusters which contain both siblings from a demand, then

we can route that pair in Hi itself; this already produces a (congestion 1 in fact)

78

routing of a constant fraction of demands. The hard case is where most siblings

live in separate clusters Hi. For each i, let ui denote the endpoint of Pi that lies

in C. In this case, they insure that the OS instance created includes demands

for pairs (ui, uj) with the property that there is some original pair (v, σ(v)) such

that v ∈ Hi and σ(v) ∈ Hj. This pair is then routed as follows. Let Qvσ(v) be

the path used to route (ui, uj) in the OS instance. Let Pv (respectively Pσ(v)) be

the path from v (resp. σ(v)) to an endpoint of Pi (resp. Pj) in Hi (resp. Hj). We

then route on the path Pv, Pi, Qvσ(v), Pj, Pσ(v). We call the non Qvσ(v) part of the

path the tails. Clearly the collection of all Qvσ(v) paths induces a congestion of 2

by the OS theorem. Since the Hi’s and Pi’s induce an edge congestion of at most

2, the collection of all tails also has congestion 2. Thus, the overall routing has

congestion 4.

6.2 Rooted Clustering

In the rooted clustering problem we are given a graph G = (V,E) (not

necessarily simple, and either directed or undirected) with a specified root node

t ∈ V also called a sink. We are also given terminals s1, . . . , sk each with a weight

di ∈ [0, 1]. A (unsplittable) rooted clustering is simply a collection of connected

subgraphs (called clusters) H1, . . . , Hr each containing t, and an assignment

f : {s1, s2, . . . , sk} → {H1, H2, . . . , Hr}. In other words, if f(si) = Hj, then

terminal si is said to be assigned to cluster Hj; we also say that si is covered by

Hj. We assume each cluster to be valid in the sense that

∑
si assigned to Hj

di = Θ(1) (6.2)

79

The congestion of such a clustering is the maximum number of times that any

edge appears in the list of clusters. If the congestion is 1, then we also refer to it

as an edge-disjoint rooted clustering. Note that a node (including any terminal)

may appear in several clusters. However, we require that each terminal is assigned

to a single cluster. This condition can be relaxed to obtain a splittable version of

the problem, where a demand of di may be split across multiple clusters. We also

note that the existence of an edge-disjoint rooted clustering implies the existence

of an unsplittable flow for the demands with congestion equal to the largest cluster

size.

Clustering, i.e., grouping of some weighted terminals si, di in a graph into so-

called clusters, is a key step in many approximation algorithms for flow problems.

For instance, in [38, 2, 8] a collection of connected subgraphs are sought such

that each subgraph contains Θ(1) of demand. Such clusters are usually easy to

construct greedily from a spanning tree. In [9], however, they are actually looking

for a rooted clustering with sink t1 . They are able to find a rooted clustering with

congestion 2. More precisely, they show that if G has bounded degree, and G, t

and the si, di’s admit a fractional flow with maximum edge-congestion 1, then

there is a rooted clustering with congestion 2. Roughly speaking this is achieved

by first taking a spanning tree and breaking the tree into edge-disjoint, valid (but

non-rooted) clusters covering all of the terminals. Secondly, they use the existence

1 In [9], the sink is in fact a face of the planar graph, but one can think of
adding a new sink node t connected to all nodes of the face.

80

of the standard network flow for the si’s to show that a certain cut condition is

satisfied, and this implies the existence of edge-disjoint paths from each cluster to

t. Combining the clusters with the paths yields the congestion 2 result.

6.2.1 Edge-disjoint rooted clustering

Our main application of rooted clustering is to MEDP where we seek to

improve on the congestion 2 clustering above; thus we focus in this section on

finding edge-disjoint clusterings. Unfortunately, it is not the case that any instance

has an edge-disjoint rooted clustering. This is shown by the following example (see

Figure 6–1).2 In the directed setting, consider a cluster containing the top node.

Since the cluster must contain a directed path P to the root, and since all arcs are

directed downwards, every terminal on this path must be contained in the same

cluster. Hence this cluster includes at least one terminal of demand 1
i

at each level

i, and hence it is invalid since it has a total demand of
∑k

i=1
1
i

= Ω(log n). We also

believe the undirected version should not admit a valid clustering, but this is an

open question.

6.2.2 Partial clusterings via trees

Instead of finding a rooted clustering, where each terminal is assigned to some

cluster, we show that one can cluster a large fraction of demands if we are allowed

to sacrifice a small (constant) fraction of them. We call this a partial clustering.

2 This example is an extension of an example given in [10] to show a Ω(log n)
gap for the congestion minimization LP for confluent flows.

81

1

1/2

1/3

1/k

1/4

. . .

..
.

..
.

..
.

..
.

+

-

+

-

+

-

1/21/2

2/3 2/31/31/3

3/4 1/4 2/4 2/4 1/4 3/4

(k-1)/k (k-1)/k1/k 2/k(k-2)/k 1/k

Figure 6–1: There is no arc-disjoint rooted total clustering (splittable or unsplit-
table).

Theorem 6.2.1 (Cluster Covering). For any κ ≥ 1 and any instance which admits

a fractional flow of maximum edge-congestion 1, there is an edge-disjoint rooted

partial clustering that covers at least κ−1
2κ(κ+2)

∆ of the total demand ∆ =
∑

i di.

To maximize the covered portion of the demand, the optimal value for κ is

1 +
√

3 which gives a routing for approximately 0.134∆.

We consider a further relaxation on the clustering that is useful to our

application to MEDP. In particular, we allow incomplete clustering where not the

full demand di from a terminal has to be assigned in order to accrue “profit”. The

techniques used extend to the case where terminals come in pairs (si, ti), each

with a demand di. (Recall that, without loss of generality, the terminals are all

82

distinct.) We say that a clustering captures x ≤ di of pair i’s demand, if at least x

demand from each of si and ti is assigned to some cluster (not necessarily the same

one). Specifically we prove:

Theorem 6.2.2 (Cluster Capture). For any κ ≥ 2, and any instance which

admits a fractional flow with maximum edge-congestion 1, there is an edge-disjoint

rooted partial incomplete clustering satisfying at least κ−1
κ(κ+2)

∆ of the total demand.

If terminals come in pairs, then we can capture at least κ−2
κ(κ+2)

∆ of the pairwise

demand.

In this paired case, the κ value that maximizes the routed demand is 2
√

2 + 2

which gives a routing for approximately 0.0858∆.

We now turn our attention to proving these results. Our first step is to show

that we may reduce to instances where there is a fractional flow such that the load

at every node is at most 1. We call these instances node-normalized.

6.2.3 Reducing to Node-Normalized Instances.

First, we modify our instance to be node-normalized. We may first assume

that our standard flow for the instance is acyclic (note that this makes sense also

in the undirected version via the standard bidirection of edges). Next, we may

assume that any node v has been split into v−, v+ so that any flow destined to t

through v traverse an edge/arc v−v+. If the total load on any such edge is at most

1, then we are node-normalized already. Otherwise, we make multiple copies of the

node v such that each of the new nodes has load at most 1.

Once we have performed the above reduction, we can apply the ideas from

[10] presented in Chapter 5 for computing confluent flows on node-normalized

83

instances. In particular, we use their demand maximization algorithm to route

a large fraction of our demands. Note that such a confluent flow actually gives

a node-disjoint rooted clustering (not just edge-disjoint). This is in the reduced

graph however; it corresponds to an edge-disjoint clustering in our original graph.

6.2.4 From Confluent Flows to Clusters

We first present a modified version of the demand maximization algorithm

from [10]. We also modify the analysis slightly so as to obtain the Cluster Covering

Theorem.

Throughout, we let D = (V,A) be the simple input digraph (the undirected

case follows from the directed version) and we suppose that we have an initial

standard network flow that routes all of the demands such that the maximum node

load is 1. As in Chapter 5, we actually ignore the sink t, and consider only the

neighbours of t denoted by {t1, t2, . . . , tk}; we call these sinks since, without loss

of generality, we may assume our starting flow has an acylic support and also that

there are no arcs between these nodes (since we only require node loads to be at

most 1). As the algorithm runs, we let b denote the vector of node loads of the

sinks; to start, each bi ≤ 1 but in time, some of these values may become quite

large.

As before, the algorithm repeatedly performs three operations: node ag-

gregation, sawtooth cycle breaking, and pivoting. The first two operations are

unchanged, but the pivoting operation is modified as follows.

84

Pivoting starts with a frontier node with at least two out-neighbours ti, tj

where in addition tj is remote. We introduce the use of a threshold parameter κ

which is the only distinction from the demand maximization algorithm in [10].

Pivot(D, u, b, f)

If bj − futj ≤ κ

Remove uti

futj ← futj + futi

Else

Remove utj

futi ← futi + futj

Deactivate sink tj

Pivoting is the only operation that increases the load at some sink. Note

also that as long as a sink’s load is “small”, then the pivot will shunt flow onto it.

However, when its load goes above κ + 1, then the flow is shunted elsewhere and tj

is shut down or deactivated. The reason that κ+ 1 is an upper bound on the cutoff

for deactivation is because f(u, tj) ≤ 1, and hence if bj > κ + 1, then bj − futj > κ.

It follows that any sink which occurs as a remote node, will either be deactivated,

or still has load at most κ+ 1.

In [10] for sink deactivation they use κ = 1/2; it is more convenient for us to

consider an arbitrary threshold for when to deactivate. In particular, to obtain a

good clustering, we need to consider κ larger than 1 with the optimal being 1+
√

3.

After running the algorithm, we say that a tree is big if it has total demand

greater than κ + 2. The key idea is to show that by removing a small amount of

85

the demands, we no longer have any big trees. We use the resulting trees with

demands scaled down to act as our clusters.

6.2.5 Proof of Theorem 6.2.2

Proof. Call a partial flow from some terminal bad if at any time during the

execution of the algorithm it was pivoted into a sink whose current congestion was

greater than κ + 2. Note that the sink’s congestion could later decrease, but once

some flow was labelled bad, it remains so. Call a demand bad if it is the source of

some bad flow. Let A be the total amount of bad flow. When we perform the sink

deactivation step, if a sink tj is not deactivated, then it had congestion at most

κ + 1 (since node congestion at each non-sink node remains at most 1 throughout

the algorithm). After pivoting the flow from ti into tj, tj thus has congestion at

most κ+ 2, i.e., the pivoted flow is not bad so A does not increase.

Thus A only increases only when a sink is deactivated and then it increases

by at most 1 since futj is a most 1. If ν is the number of deactivated sinks in the

algorithm execution, then we clearly have A ≤ ν. A deactivated tree has total

demand greater than κ, and so κν < ∆ and thus A < ∆/κ. Consider throwing

away all bad demand, and hence we lose only ∆/κ of the total demand.

Routing the remaining demand would result in node congestion at most κ + 2

in each arborescence. Hence scaling down the demands by a factor 1/(κ + 2) we

route κ−1
κ(κ+2)

∆ demand with node congestion 1.

If demands come in pairs, then eliminating a bad demand may implicitly

eliminate demand from its sibling. (We are assuming ∆ accounts for the di from

each sibling.) Hence, the overall loss of pairwise demand may be up to 2∆/κ.

86

Scaling down the remaining demands we have at least

κ− 2

κ(κ+ 2)
∆

pairwise demands which are in rooted clusters with congestion 1.

6.2.6 Proof of Theorem 6.2.1

Proof. Think again of throwing away the bad demand and look at the remaining

trees. It is sufficient to show that in any such tree, we may route with congestion

1 at least 1
2(κ+2)

fraction of its remaining demand, and we must route any demand

in an all-or-nothing fashion. Note that, the act of throwing away a bad demand,

may reduce some demands di to values d′i < di, but we may ignore that in terms

of selecting our final demands to route. Consider the full demand to be available

for selection. In particular, it is sufficient to show that in each tree we may pick

a subset of demands of total weight at most 1, and at least 1/2. If this were not

possible, then the total demand in that tree was at most 1 to begin with, and

hence we can route everything. This completes the argument.

6.3 Congestion 3 algorithm for EDP in planar graphs

We present a constant factor approximation algorithm for the maximum

edge-disjoint paths (MEDP) problem on planar graphs with edge-congestion 3.

The algorithm is based on the one found in [9].

6.3.1 The congestion 3 algorithm

We now modify the clustering phase of their algorithm to achieve a congestion

3 routing algorithm. To do this, we need to ensure the OS instance can be

constructed. It is actually built in two steps. The first finds a fractional OS

87

instance satisfying the cut condition. The second (completely independent) step,

takes any such fractional instance and turns it into an integral instance with Ω(1)

of the original demand.

The key ingredients to setting up the fractional OS instance is that if there

is positive demand duiuj
between nodes ui, uj ∈ C, then this was the result of

summing values Ω(bv) for each terminal pair vσ(v) with v ∈ Hi and σ(v) ∈ Gj.

Scaling down bv appropriately results in a weighted demand graph H that one can

argue satisfies the cut condition in GC .

Thus the key is to find a similar “rooted” clustering Hi, Pi as before, except

we need not have every terminal clustered. Instead it is sufficient to find some

subset of the demands X ⊆ {1, 2 . . . , k} such that si, ti are both clustered if

i ∈ X, and in addition
∑

i∈X bsi
= Ω(p). Note that it is not necessary to route the

whole bsi
: it is sufficient to route a constant fraction of it. This is precisely what

is achieved by the Cluster Capture Theorem 6.2.2. Phase II remains unchanged

and thus a congestion of 2 is still incurred there. Hence, the overall routing has

congestion 3, proving Theorem 6.0.2.

88

CHAPTER 7
Conclusion

This thesis contained a quick survey of known results in network flows. In

particular, we focused our attention on problems with various degree constraints.

After considering unsplittable flows, d-furcated flows and confluent flows, we

introduced the new notion of rooted clustering and used it to show an improved

bound for the maximum edge-disjoint paths problem. Namely, we showed that

there exists a polynomial time algorithm to route a constant fraction of the

demand while incurring an edge congestion of at most 3.

There remain many interesting open question in the areas covered by this

thesis. For instance, nothing is known regarding the cost version of the d-furcated

flow problem. Even though we tried to design an approximation algorithm for

the rounds minimization problem for confluent flows, some crucial step could not

be made to work. Computer experiments suggest that there is still a chance to

succeed, but further work is needed. Finally, we still do not know if it is possible

to find an edge-disjoint rooted clustering in undirected graphs. We conjecture that

it is not the case, but a proof is still needed.

89

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
Flows: Theory, Algorithms and Applications. Prentice Hall, New Jersey, 1993.

[2] S. Antonakopoulos, C. Chekuri, B. Shepherd, and L. Zhang. Buy-at-bulk
network design with protection. Foundations of Computer Science, 2007.
FOCS ’07. 48th Annual IEEE Symposium on, pages 634–644, 2007.

[3] Alper Atamtürk and Deepak Rajan. On splittable and unsplittable flow
capacitated network design arc–set polyhedra. Mathematical Programming,
92(2):315–333, 04 2002/04/25/.

[4] Baruch Awerbuch, Yossi Azar, and Amir Epstein. Large the price of routing
unsplittable flow. In STOC ’05: Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing, pages 57–66, New York, NY, USA, 2005.
ACM.

[5] Georg Baier, Ekkehard Köhler, and Martin Skutella. The k-splittable flow
problem. Algorithmica, 42(3):231–248, 07 2005/07/01/.

[6] L. Benini and G. De Micheli. Networks on chips: a new soc paradigm.
Computer, 35(1):70–78, 2002.

[7] C. Chekuri, S. Khanna, and F. B. Shepherd. Edge-disjoint paths in planar
graphs. In Foundations of Computer Science, 2004. Proceedings. 45th Annual
IEEE Symposium on, pages 71–80, 2004.

[8] Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. The all-or-
nothing multicommodity flow problem. In STOC ’04: Proceedings of the
thirty-sixth annual ACM symposium on Theory of computing, pages 156–165,
New York, NY, USA, 2004. ACM.

[9] Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. Edge-disjoint
paths in planar graphs with constant congestion. In STOC ’06: Proceedings

90

91

of the thirty-eighth annual ACM symposium on Theory of computing, pages
757–766, New York, NY, USA, 2006. ACM.

[10] Jiangzhuo Chen, Robert D. Kleinberg, László Lovász, Rajmohan Rajaraman,
Ravi Sundaram, and Adrian Vetta. (Almost) tight bounds and existence
theorems for single-commodity confluent flows. J. ACM, 54(4):16, 2007.

[11] Jiangzhuo Chen, Rajmohan Rajaraman, and Ravi Sundaram. Meet and
merge: Approximation algorithms for confluent flows. Journal of Computer
and System Sciences, 72(3):468–489, 2006/5.

[12] Jiangzhuo Chen, Ravi Sundaram, Madhav Marathe, and Rajmohan Ra-
jaraman. The confluent capacity of the internet: Congestion vs. dilation.
Distributed Computing Systems, International Conference on, 0:5, 2006.

[13] William J. Cook, William H. Cunningham, William R. Pulleyblank, and
Alexander Schrijver. Combinatorial Optimization. Wiley-Interscience series in
discrete mathematics and optimization. Wiley-Interscience, 1998.

[14] Steve Cosares and Iraj Saniee. An optimization problem related to bal-
ancing loads on sonet rings. Telecommunication Systems, 3(2):165–181, 06
1994/06/29/.

[15] G. B. Dantzig. Application of the simplex method to a transportation
problem. In T. C. Koopmans, editor, Activity analysis of production and
allocation. Wiley, 1951.

[16] G. B. Dantzig. Linear Programming and Extensions. Princeton University
Press, Princeton, N.J., 1963.

[17] Reinhard Diestel. Graph Theory. Springer, 2006.

[18] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1(1):269–271, 12 1959/12/01/.

[19] E.A. Dinitz. Algorithm for solution of a problem of maximum flow in
networks with power estimation. Soviet Math. Doklady, 1970.

[20] Yefim Dinitz, Naveen Garg, and Michel X. Goemans. On the single-source
unsplittable flow problem. Combinatorica, 19(1):17–41, 01 1999/01/04/.

92

[21] P. Donovan, B. Shepherd, A. Vetta, and G. Wilfong. Degree-constrained
network flows. In STOC ’07: Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, pages 681–688, New York, NY, USA,
2007. ACM.

[22] Christophe Duhamel and Philippe Mahey. Multicommodity flow problems
with a bounded number of paths: A flow deviation approach. Networks,
49(1):80–89, 2007.

[23] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorith-
mic efficiency for network flow problems. J. ACM, 19(2):248–264, 1972.

[24] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the internet topology. In SIGCOMM ’99: Proceedings of
the conference on Applications, technologies, architectures, and protocols for
computer communication, pages 251–262, New York, NY, USA, 1999. ACM.

[25] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345,
1962.

[26] Jr. Ford, L. R. and D. R. Fulkerson. Solving the transportation problem.
Management Science, 3(1):24–32, 1956.

[27] Jr. Ford, L. R. and D. R. Fulkerson. A suggested computation for maximal
multi-commodity network flows. Management Science, 5(1):97–101, 10
1958/10/1.

[28] L.R. Ford and D.R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956.

[29] L.R. Ford and D.R. Fulkerson. Flows in networks. Princeton University Press,
Princeton, N.J., 1962.

[30] A. Frank. Packing paths, cuts, and circuits - a survey. In B. Korte, László
Lovász, H. J. Prömel, and Alexander Schrijver, editors, Paths, Flows and
VLSI-Layout, pages 49–100. Springer Verlag, 1990.

[31] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. WH Freeman and Company, San Francisco, CA,
1979.

93

[32] N. Garg and J. Konemann. Faster and simpler algorithms for multicommodity
flow and other fractional packing problems. In Foundations of Computer
Science, 1998. Proceedings.39th Annual Symposium on, pages 300–309, 1998.

[33] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-dual ap-
proximation algorithms for integral flow and multicut in trees. Algorithmica,
18(1):3–20, 1997.

[34] M. Girvan and M. E. J. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Science, 99:7821–
7826, June 2002.

[35] Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier.
J. ACM, 45(5):783–797, 1998.

[36] Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circula-
tions by canceling negative cycles. J. ACM, 36(4):873–886, 1989.

[37] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization. Algorithms and Combinatorics. Springer-Verlag,
1988.

[38] Refael Hassin, R. Ravi, and F. Sibel Salman. Approximation algorithms
for a capacitated network design problem. Algorithmica, 38(3):417–431, 03
2004/03/01/.

[39] M. Iri. A new method of solving transportation-network problems. Journal of
the Operations Research Society of Japan, 3:27–87, 1960.

[40] W. S. Jewell. Optimal flow through networks. Operations Research Center,
MIT, Cambridge, MA, 1958.

[41] Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks.
J. ACM, 24(1):1–13, 1977.

[42] L. Khachiyan. A polynomial algorithm in linear programming. Soviet Math.
Doklady, 20(1):191–194, 1979.

[43] J. M. Kleinberg. Single-source unsplittable flow. Foundations of Computer
Science, 1996. Proceedings., 37th Annual Symposium on, pages 68–77, 1996.

94

[44] Jon Michael Kleinberg. Approximation algorithms for disjoint paths problems.
PhD thesis, Massachusetts Institute of Technology, 1996.

[45] Ronald Koch, Martin Skutella, and Ines Spenke. Maximum k -splittable s , t
-flows. Theory of Computing Systems, 43(1):56–66, 07 2008/07/01/.

[46] S. G. Kolliopoulos and C. Stein. Improved approximation algorithms for
unsplittable flow problems. In Foundations of Computer Science, 1997.
Proceedings., 38th Annual Symposium on, pages 426–436, 1997.

[47] Petr Kolman and Christian Scheideler. Improved bounds for the unsplittable
flow problem. Journal of Algorithms, 61(1):20–44, 2006/9.

[48] A. Kotzig. Súvislost’ a pravideliná súvislost’ konečných grafor. Vysoká Škola
Ekonomická, 1956.

[49] Tom Leighton, Clifford Stein, Fillia Makedon, Éva Tardos, Serge Plotkin,
and Spyros Tragoudas. Fast approximation algorithms for multicommodity
flow problems. In STOC ’91: Proceedings of the twenty-third annual ACM
symposium on Theory of computing, pages 101–111, New York, NY, USA,
1991. ACM.

[50] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of vehicle routing and
scheduling problems. Networks, 11(2):221–227, 1981.

[51] K. Menger. Zur allgemeinen kurventheorie. Fund. Math, 1927.

[52] Haruko Okamura and P. D. Seymour. Multicommodity flows in planar graphs.
Journal of Combinatorial Theory, Series B, 31(1):75–81, 1981/8.

[53] Tomasz Radzik. Fast deterministic approximation for the multicommodity
flow problem. Mathematical Programming, 78(1):43–58, 07 1996/07/01/.

[54] Prabhakar Raghavan and Clark Tompson. Randomized rounding: A technique
for provably good algorithms and algorithmic proofs. Combinatorica,
7(4):365–374, 12 1987/12/23/.

[55] R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt III.
Approximation algorithms for degree-constrained minimum-cost network-
design problems. Algorithmica, 31(1):58–78, 12 2001/12/21/.

95

[56] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency.
Springer, 2003.

[57] Alexander Schrijver, Paul Seymour, and Peter Winkler. The ring loading
problem. SIAM Review, 41(4):777–791, 1999.

[58] Löıc Séguin-Charbonneau and F. Bruce Shepherd. Routing and clustering via
confluent flows. Unpublished manuscript, 2009.

[59] F. B. Shepherd and A. Vetta. Visualizing, finding and packing dijoins. Graph
Theory and Combinatorial Optimization, pages 219–254, 2005.

[60] F. Bruce Shepherd. Single-sink multicommodity flow with side constraints.
Research Trends in Combinatorial Optimization, pages 429–450, 2009.

[61] Martin Skutella. Approximating the single source unsplittable min-cost flow
problem. Mathematical Programming, 91(3):493–514, 02 2002/02/25/.

[62] A. Srinivasan. Improved approximations for edge-disjoint paths, unsplittable
flow, and related routing problems. In Foundations of Computer Science,
1997. Proceedings., 38th Annual Symposium on, pages 416–425, 1997.

[63] Éva Tardos. A strongly polynomial minimum cost circulation algorithm.
Combinatorica, 5(3):247–255, 09 1985/09/01/.

[64] Robert Tarjan. Depth-first search and linear graph algorithms. In Switching
and Automata Theory, 1971., 12th Annual Symposium on, pages 114–121,
1971.

[65] P. M. Vaidya. Speeding-up linear programming using fast matrix multiplica-
tion. In Foundations of Computer Science, 1989., 30th Annual Symposium on,
pages 332–337, 1989.

[66] Christian von Mering, Roland Krause, Berend Snel, Michael Cornell,
Stephen G. Oliver, Stanley Fields, and Peer Bork. Comparative assessment of
large-scale data sets of protein-protein interactions. Nature, 417(6887):399–
403, 05 2002/05/23/print.

