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Abstract 

The superior mechanical properties of carbon nanotubes would make them excellent 

candidates for the next generation of composite materials. Researchers have tried to 

demonstrate the potential of that novel material with various degree of success. In order 

to complement the experimental efforts in this new field, the modeling of these new 

material systems is required. One challenge when modeling nanotube composites is the 

large scale span between the nanotube itself and the final component. The present study 

focuses on the creation of a framework and methodology to span three orders of 

magnitude in scale with interconnected models that relate performance of single-walled 

carbon nanotubes (SWNT) at the nanometer scale to a nano-array, nano-wire and micro­

fiber with self-similar geometries. The geometry chosen is the helical array composed of 

discontinuous SWNT. The five elastic constants of the twisted SWNT fibers are then 

predicted using a finite element analysis combined with the strain energy method. It is 

shown that the Young's modulus of carbon nanotube fiber decreases dramatically even 

for small twist angles (less than 20°) without any contribution to the transverse 

properties. Moreover, it was shown that adding the polymer and its properties can have 

important effects on the elastic properties of the SWNT/polymer fiber. Finally, this 

model is compared to the experimental data and theoretical models found in the literature. 
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Résumé 

Grâce à leurs propriétés mécaniques supérieures, les nanotubes de carbone sont 

d'excellents candidats pour les nouvelles générations de matériaux composites. De 

nombreuses études ont été faites pour essayer de démontrer le potentiel de ces nouveaux 

matériaux avec plus ou moins de réussite. Afin de compléter les recherches dans ce 

nouveau domaine, une modélisation de ces matériaux et de leurs comportements doit être 

maintenant envisagée. Un des défis pour la modélisation des composites à nanotubes de 

carbone est la compréhension et l'intégration de la large différence d'échelle entre le 

nanotube et le composé final. La présente étude à pour objectif de déterminer une 

méthodologie pour décrire trois ordres de grandeur, de l'échelle nanométrique au nano­

faisceau, nano-fil et micro-fibre, en utilisant des modèles décrivant les performances des 

nanotubes de carbone à paroi simple (single-walled carbon nanotubes SWNT) à 

géométries similaires. La géométrie choisie est la géométrie hélicoïdale composée de 

SWNT discontinus. Les cinq constantes élastiques des fibres en SWNT sont ensuite 

prédites par une méthode d'analyse par éléments finis combinée avec une méthode basée 

sur l'énergie de déformation. Il apparaît que le module d'Young des fibres en nanotubes 

de carbone diminue considérablement même pour de faibles angles d'hélice (inférieur à 

20°) sans aucune contribution des propriétés transverses. De plus, on peut remarquer que 

l'ajout d'un polymère et de ses propriétés dans le modèle numérique peut avoir un effet 

important sur les propriétés élastiques d'une fibre SWNT/polymère. Finalement, ce 

modèle a été comparé à des données expérimentales, et des modèles théoriques trouvés 

dans la littérature. 
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Chapter 1 

Introduction 

Nanoscale materials can be defined as those with characteristic length sc ale lying within 

the nanometric range, i.e. at least one dimension less than 100 nm, more typically less 

than 50 nm [1]. Within this length scale, the properties of matter are sufficiently different 

from individual atoms or molecules and from bulk materials that their study has been 

recently recognized as a new area of science, called Nanoscience. The term 

Nanotechnology relates to the ability to build functional devices based on the controlled 

assembly ofnanoscale objects, for specific applications [2]. 

Nanotechnology has become an identifiable field of research and emerging applications 

in recent years. It is one of the most visible and growing research areas in materials 

science. Nanostructured materials include atomic clusters, layered films, filamentary 

structures, and bulk nanostructured materials [1]. One specific category ofnanomaterial 

is Nanocomposites. The definition of nanocomposite material has broadened 

significantly to encompass a large variety of systems such as one-dimensional, two­

dimensional, three-dimensional, and amorphous materials, made of distinctly dissimilar 

components and mixed at the nanometer scale. 

The discovery of carbon nanotubes and their exceptional properties has the great potential 

to lead the next revolution in the development of high performance materials. Several 

research groups [3-10] have tried to make carbon nanotube/polymer fibers or plates. 

Because of the high cost of nanotubes, and the difficulties of making nanotube 

composites, the trial-and-error approach to developing these new materials can be very 

expensive and time consuming. Therefore, this work tries to investigate the elastic 

properties of carbon nanotube/polymer composites. Using the modeling approach will 

help in understanding the principal mechanisms that control the nanotube composite 

properties. This work is organized as follows: 

1 



An extensive review of the literature related to this work is presented in Chapter 2. In 

Chapter 3, a finite element model of the carbon nanotube fibers is presented and aIl 

elastic constants are determined by using a strain energy method. The question also 

whether the nanotube moduli change from the nanoscale to the microscale where 

conventional continuum mechanics is valid has to be answered. Therefore, in Chapter 4, 

the idea of self-similar analysis is used to relate the elastic properties of carbon nanotubes 

at the nanoscale to those of a carbon nanotubes/polymer fibers at the microscale. Next, 

the elastic properties of the polymer composites reinforced by a twisted carbon nanotube 

fiber are determined by using traditional micromechanics (Chapter 5). FinaIly, the results 

ofthis work are summarized in Chapter 6. 
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Chapter 2 

Literature Review and Research Objectives 

In this chapter, a review ofthe literature relevant to this research is presented. In Section 

2.1, a brief review of the history of the discovery of the carbon nanotube is presented and 

two major microscopic technologies used to characterize nanotubes are presented. In 

section 2.2, a description of the different forms of carbon product is presented. The 

structure and properties of the carbon nanotubes are then introduced in Sections 2.3 and 

2.4. In the following section, a review of three common methods to pro duce carbon 

nanotube is presented. Next, the characteristics of carbon nanotube bundles and their 

properties are given in Section 2.6. Then, in Sections 2.7 and 2.8, a summary of the 

experiments on the carbon nanotubes/polymer fibers and composites and three relevant 

nanotube composite models are summarized. FinaIly, the research objectives of this 

work are presented in Section 2.9. 

2.1 Background 

In 1985, Kroto et al. [12] used a high-powered laser to evaporate graphite and discovered 

a new carbon molecule, later called buckminsterfullerene (C60) or simply the bucky baIl, 

shown in Figure 2.1. The discovery of C60, the third type of alI-carbon crystalline 

structure other than the well-known graphite and diamond, marked the beginning of a 

new era in carbon science. Five years later, Krastschmer used a simple carbon arc 

instead of a high-powered laser to vaporize graphite in an atmosphere of helium to 

produce 90% of C60 [13]. The overall advantage of this method over the technique used 

by Kroto et al. was the possibility ofbulk production ofbuckminsterfullerene. 

In 1991, Iijima [14], an electron microscopist at NEC laboratories in Japan, discovered a 

new carbon molecule called the carbon nanotube. Iijima employed transmission electron 

microscopy (TEM) to study the soot produced by Krastschmer' s technique. He 

accidentally discovered carbon nanotubes on the surface of the graphite cathode 

previously considered as "junk". Figure 2.2, an image of soot containing carbon 
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nanotubes, shows that carbon nanotubes are accompanied by other carbon products such 

as nanoparticles (hollow, fullerene-related structures) and sorne disordered carbon. The 

structure of the carbon nanotube consists of a long graphite cylinder closed at each end 

by one buckminsterfullerene molecule cut in half (Figure 2.3). In general, the nanotubes 

found by Iijima had lengths varying from a few tens of nanometers to several 

micrometers and outer diameters of 2-30 nm [15]. These carbon nanotubes, generally 

made of two or more graphite layers, were called multi-walled carbon nanotubes, 

MWNT. In 1993, Iijima and Ichihashi of NEC, and Donald Bethune of IBM 

independently reported the synthesis of single-walled carbon nanotubes, SWNT [15,16]. 

SWNT are made of a single layer of graphite sheet and have an outer diameter typically 

around 1 nm. 

2.1.1 Experimental techniques 

Because of the extremely small dimensions of carbon nanotubes, aIl aspects of carbon 

nanotube testing such as placing carbon nanotubes in proper testing configuration, 

applying proper load and finally measuring deformation are quite challenging. A brief 

review of the equipment used to observe and test carbon nanotubes is presented here. 

Electron Microscopy (EM): Electron microscopes work exactly as optical microscopes 

except that they use a focused beam of electrons instead of light to "image" the specimen. 

EM can be used for different observations such as topology of a surface, morphology, 

composition and crystallographic information. They use high-energy electron beams in a 

range from several keV to several hundred keV. Because of the extremely short 

wavelength of electron, a fraction of an Angstrom or sub-nanometer resolution bec ornes 

possible. Two widely used types of electron microscopy are Transmission Electron 

Microscopy (TEM) and Scanning Electron Microscopy (SEM). In TEM, an accelerated 

electron beam from a thermal or a field emitter transmits through the sample and passes 

several electromagnetic lenses, and finally projects the image of the sample to a phosphor 

screen. In SEM, a nanoscale electron beam is rastered across the sample surface and the 

amplified image of the sample surface is formed by the signal from secondary electrons 

[32]. Figure 2.2 is an example of an image taken by TEM. 
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Atomic or Scanning Force Microscopy (AFM, SFM): Atomic force microscopes are 

widely used for studying carbon nanotubes mechanical behavior. They are considered as 

a standard tool for surface characterization of any material. An AFM consists of a force 

sensitive cantilever with a sharp tip with a radius of curvature around 10 nm. While 

scanning the sample surface in the x and y direction, the deflection of the cantilever is 

constantly monitored by a simple optical method. Controlling the deflection and keeping 

a constant contact force between the surface and the tip can achieve a surface profile of 

the sample. AFM can also be used to measure force-displacement behavior at the 

nanoscale. 

2.2 Description of the different forms of carbon 

A free carbon atom has an electronic structure (lsl(2sl(2pl (see Appendix 1 for further 

explanation on the electronic structure). For covalent bonds, one of the 2s electron is 

promoted to 2p, and the orbitaIs can be hybridized in four possible configurations to 

produce four different carbon products: graphite, diamond, buckminsterfullerene, and 

nanotube. 

2.2.1 Graphite 

In graphite, one of the 2s is hybridized with two of the 2p's and forms three Sp2 orbitais at 

120° relative to each other in a plane, while the remaining orbital, pz, remains 

perpendicular to the Sp2 plane (Figure 2.4). These three Sp2 orbitais form a strong cr-bond 

with other carbons in the graphite planes. On the other hand, pz or Jr makes the Van der 

Waals bonds between planes. This Jr-bond is weak compared the strong cr-bond. The 

reason for graphite's high electrical conductivity is the overlap of 1t orbitaIs on adjacent 

atoms in a given plane. A single carbon layer of the graphite structure is also called 

graphene. The stacking sequence of the layers of graphite, mostly for either natural 

graphite or high-quality synthetic one, is generally ABAB, with an interlayer spacing of 

3.355 A, as can be se en in Figure 2.5. In less perfect graphite called turbostatic, this 

distance can be significantly larger than the value for single crystal (typically 3.44 A), 

and layers are randomly rotated respect to each other, so ABAB stacking sequence cannot 
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be se en any more. Table 2.1 summarizes the structure and properties of the perfect 

graphite crystal. 

2.2.2 Diamond 

For diamond, each carbon atom is joined to four neighbors in a tetrahedral structure. The 

bonding here is Sp3 and results from the mixing of one 2s and three 2p orbitais; the angles 

between these bonds are 109° (Figure 2.6). Diamond is less stable than graphite so at the 

atmospheric pressure and a temperature of 1700°C, diamond is converted to graphite. 

Table 2.2 gives the characteristics of the diamond crystal. 

2.2.3 Buckminsterfullerene 

The most general form of buckminsterfullerene is C60, also called the "bucky baIl" in 

which 60 carbon atoms are bonded in an icosahedral structure made up of 20 hexagons 

and 12 pentagons (Figure 2.1). Each carbon atom in C60 is joined to three neighbors, so 

the bonding is Sp2 (same as graphite), although there may be a sm aIl amount of sp3 due to 

the curvature. Because of Van der Waals forces, bucky balls tend to form clusters as 

shown in Figure 2.7. Table 2.3 gives the characteristics ofbuckminsterfullerene. 

2.2.4 Carbon nanotubes 

The bonding for carbon nanotubes is Sp2, although once again there may be sorne sp3 in 

regions of high curvature. There are two possible symmetric structures for carbon 

nanotube called zigzag and armchair configurations (Figure 2.8). In practice, most 

carbon nanotubes never have these specific structures and form structures in which 

hexagons are arranged helically around the tube axis (Figure 2.9). 
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2.3 Carbon Nanotubes 

2.3.1 Structure 

The atomic structure of nanotubes is described in terms of the tube chirality, or helicity, 

defined by the chiral vector, Ch, and the chiral angle, B. In Figure 2.1 0 by cutting the 

graphene along the dotted lines and rolling the remaining so that the tip and the tail of the 

vector Ch match, carbon nanotube helicity can be modeled. Two special cases, zigzag 

and armchair, are also shown. The chiral vector Ch can be described by the equation: 

(2.1) 

where n and m (n 2 m) are two integers showing the magnitude of the unit vectors al and 

az (m of n for chiral carbon nanotube, m = 0 for zigzag tubes and m = n for armchair 

tubes). Since in graphene sheets,l~ll = 1~21 = 0.246nm the magnitude of the Cvector is: 

lël = 0.246.J n
2 + nm + m 2 (2.2) 

The chiral angle B determines the amount of twist in the tube. The angle B varies 

between 0 0 (zigzag) and 30 0 (armchair). Figure 2.11 shows these two special cases, 

zigzag and armchair. The chiral angle is given by: 

B t -l[ J3 ) - an 
1+2n/m 

(2.3) 

Figure 2.12 shows the Cvectors and Bangles for six different carbon nanotubes. 

Moreover, multi-walled carbon nanotubes (MWNT) have several graphe ne layers. 

Figure 2.13 shows a 2-layer carbon nanotube. There are two models for describing 

structure of multi-walled carbon nanotubes. The first one is called nested or Russian-doll 

(Figure 2.14-a), while the other is called scroll-like or Swiss-rolled (Figure 2.14-b). Most 

experimental studies indicate that MWNT are nested or concentric [18] while a few have 

scroll-like structures [21]. The interlayer spacing can range from 0.34 nm to 0.39 nm 
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depending on the nanotube diameter; smaller diameter tubes have the largest spacing 

because of the higher repulsive intertube force as a result of higher curvature. If we 

consider that graphene tubes are separated by a distance of 0.34 nm then successive tubes 

should have a 2rrxO.34 ~ 2.1 nm difference in circumference. Therefore, it is not possible 

for zigzag structures forming successive tubes because 2.1 nm is not a precise multiple of 

0.246 nm (the distance is equal to the first lattice parameter of graphite, a = 0.246 nm, 

shown in Figure 2.5). The closest approximation to the correct separation can occur 

when two successive tubes differ by 9 rows ofhexagons (by a 0.352 nm distance) as can 

be seen in Figure 2.15. In this figure, three zigzag tubes form a multi-walled carbon 

nanotube. As can be seen 9 and 18 atoms are added respectively to form a three-walled 

carbon nanotube. It is also clear from Figure 2.15 that the ABAB stacking is not present 

in most part of the tube. On the other hand, in the case of armchair tubes, ABAB stacking 

can be maintained by considering a 2.1 nm circumference difference between each 

successive layer. A radial distance of 0.34 nm between every layer is possible since 2.1 

nm is close to 5x0.426 ~ 2.1 nm (0.426 nm is the length of the repeat unit to form 

armchair tubes). 

2.3.2 Geometry 

By considering the carbon nanotube as a rolled graphite sheet, it is possible to 

theoretically calculate the radius of single-walled nanotubes. Figure 2.16 shows a 

schematic of a SWNT cross-section where the nanotube radius can be expressed by [23]: 

(2.4) 

where A is a function of m and n (helicity factors of carbon nanotubes) and, given by: 

(2.5) 

and, b is the C-C bond length (b= 0.142 nm). The effective radius, Rne, can be expressed 

by: 
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b r;:; v 
R =-..;3A+-

ne 27r 2 
(2.6) 

Several investigators have taken the SWNT equilibrium separation distance vto be equal 

to that of graphene at about 0.34 nm. The SWNT length is a function of different 

parameters such as processing technique, purification method, handling and mixing of 

SWNT with the polymer [23]. A study by Dresselhaus et al. [63] reveals a distribution of 

lengths with a mean length of 480 nm while Thess et al. [64] have measured lengths of 

up to 20,000 nm. 

The geometry of multi-walled carbon nanotubes can be expressed by the external radius 

(Rme), internaI radius (Rmo) , Van der Waals equilibrium distance (;.1), and the number of 

layers (N) (Figure 2.17): 

(2.7) 

The internaI radius Rmo can be expressed by: 

(2.8) 

However, interlayer spacing (Ji) is not constant and varies between 0.34 to 0.39 nm 

depending on the tube diameter [24]. Equation 2.9 can be used to compute the interlayer 

spacing as a function of the tube diameter (D) [24]: 

Ji = 0.344 + O.le-DI2 (2.9) 

Table 2.4 shows the diameters of different single-walled and multi-walled carbon 

nanotubes obtained from Equations 2.6, 2.7 and 2.8. 
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2.4 Properties of carbon nanotubes 

2.4.1 Mechanical properties 

Young's modulus: From the Young's modulus of graphite and considering the carbon 

nanotube as a graphite layer rolled to form a tube, we can compute the Young's modulus 

of carbon nanotubes. The Young's modulus of graphite (f) can be expressed as a 

function of stiffness constants en and e12 [24]: 

(2.10) 

The coordinate system used to define en and e12 is shown in Figure 2.5. Direction 1 is 

along the graphite layers while direction 2 is perpendicular to them. Now, by using an 

effective cross-section area for the carbon nanotube (Figure 2.l8), the Young' s modulus 

of the single walled carbon nanotube can be expressed by [23]: 

E = 8YRn v 
n 4R~ +4Rnv+v2 

(2.l1 ) 

Replacing Rn from Equation 2.4, En can be expressed by: 

E = 4.,f3;rYA V 

n 3b2 A2 + 2.,f3b;rA V + ;r2v2 (2.12) 

Based on [26] the Young' s modulus of graphite, Y, is equal to 1.029 TPa. The result 

from Equation 2.l2 is comparable with other work [25] where: 

A 
E =-+B 

n R 
n 

(2.l3) 

In Equation 2.l3, A and B equal 429.6 GPa-nm and 8.42 GPa respectively. Figure 2.19 

shows the variation of the Young's modulus as a function of different SWNT's 

diameters. 
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The relation for the Young' s modulus of multi-walled carbon nanotubes is derived by 

adding the contribution of each layer as follows: 

(2.14) 

In this relation, Rme and Rni are the outermost radius of the MWNT and the effective 

radius of each layer, while fi is the inter-layer thickness (Figure 2.20). Figure 2.21 shows 

the variation of MWNT's Young's modulus as a function of the tube diameter; 

meanwhile, Table 2.5 shows the Young's moduli for different carbon nanotubes. 

Several methods were used to measure the Young's modulus ofboth SWNT and MWNT. 

Lourie et al. [27] used Raman Spectroscopy to measure the Young's modulus of 

nanotubes embedded in an epoxy matrix. They measured 1.7-2.4 TPa for MWNT and 

2.8-3.6 TPa for SWNT. From tensile test of carbon nanotube bundles, Yu [28,29] 

obtained a Young's modulus ranging from 0.32 to 1.47 TPa for SWNT (mean: 1 TPa) 

and from 0.27 to 0.95 TPa for MWNT. These results are higher than those presented in 

Table 2.5, but when an effective cross section is defined for these tubes, as can be seen in 

Figures 2.18 and 2.20, these results become more comparable. 

Several researchers used molecular dynamics (MD) to calculate the Young's modulus of 

carbon nanotubes. Robertson [30] used both molecular dynamics and a continuum shell 

model to determine a Young's modulus equal to 5.5 TPa for SWNT. Lu [31] used MD to 

calculate aIl five elastic constants necessary to illustrate the elastic behavior of both 

sing1e-walled and multi-walled carbon nanotubes. A Young' s modulus of about 1 TPa 

and a shear modulus of 0.5 TPa were calculated. He conc1uded that chirality, radius and 

number of walls have a little effect on the stiffness constants. As explained previous1y, 

this conclusion is based on the wall properties. Figures 2.19 and 2.21 show the predicted 

Young's modulus using the nanotube effective area. Yao [65] investigated the effects of 

both radius and helicity on the Young's modulus of single-walled carbon nanotubes using 

mo1ecular dynamics (see Figure 2.22). 
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It is worth noting that a single value of Young's modulus cannot be uniquely used to 

de scribe both tension/compression and bending behavior of carbon nanotube, because 

tension/compression of carbon nanotubes is governed by in-plane o--bond, while bending 

behavior is affected by out-of-plane ff-bound [32]. Another method to calculate carbon 

nanotube Young's modulus is by using beam theory. Although carbon nanotubes have 

diameters only several times larger than their band length, they follow continuum 

relations very well [33]. For small deflections, the equation of motion based on Euler­

Bernoulli beam [32] is still valid for carbon nanotubes: 

(2.15) 

where u is displacement, p the density, A the cross section area, E Young's modulus, l 

moment of inertia and q(x) a distributed applied load. The natural frequency of the ith 

mode can be calculated by [32]: 

(j) = Pi
2 

~ El 
1 L2 pA 

(2.16) 

For a clamped beam ft can be given by: 

cos Pi cosh Pi + 1 = 0 (2.17) 

This equation has roots: p}::::tl.875, P2::::t4.694, and P3::::t7.855. Thus, one possible way to 

calculate Young's modulus of carbon nanotube is by using a vibrating beam theory 

model. Treacy [34] used this method to calculate Young's modulus for MWNT (1.8 

TPa). Poncharal [35] used electromechanical excitation to get resonance ofMWNT. He 

found a value in a range of 1 TPa for small diameter up to 12 nm, but for the larger 

diameter this value reduced to 0.1 TPa. This difference can be the result of differences 

between bending and compressive/tensile moduli as mentioned previously. Figure 2.23 

shows scanning electron microscopy (SEM) image of a MWNT in its first two resonance 

frequencies [36]. 
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Radial modulus: Shen [37] obtained deformability up to 46% by a radial indentation 

test of a 10 nm diameter MWNT with scanning probe microscopy. He also found the 

radial compressive elastic modulus of carbon nanotubes ranging from 9.0 to 80.0 GPa. 

Therefore, we can conclude that carbon nanotubes display a more compliant behavior in 

the radial direction than in the axial direction. In another investigation, Chesnokov [38] 

employed a quasi-hydrostatic pressure up to 3 GPa to calculate volume compressibility of 

SWNT and obtained a value of 0.0277 GPa that suggests the possibility of using 

nanotubes as an energy absorbing material. 

Strength and ultimate strain: The distribution of defects and geometric factors can 

both influence the strength of carbon nanotubes. Buckling as a case for geometric failure 

has been examined by different researchers [39,40]. In theory, because of the small size 

of the carbon nanotubes, the defect density in carbon nanotubes is lower than in bulk 

materials [32]. Simple tensile tests have been performed to obtain the tensile strength of 

carbon nanotubes. Yu et al. [42] found strengths ranging from 13 to 52 GPa for 15 

different SWNT ropes. Moreover, he obtained a maximum of 5.3% for the tensile strain 

at failure. In another investigation, Yu [42] performed tensile tests on individual MWNT 

(Figure 2.24). The failure mechanism was called the "sword-in-sheath" mechanism in 

which the inner layers were pulled out of the MWNT rope. A strain to failure of 12% 

and tensile strengths varying from Il to 63 GPa were observed. This mechanism of 

fracture limits the application of the multi-walled carbon nanotubes for structural 

applications because only the outermost layer carries the load. This is explained by the 

difference between strong a-bonds of graphene and weak Van der Waals bonds between 

shells. Wagner et al. [43] applied a tensile load on carbon nanotubes by embedding them 

in a polymer matrix. They reported a tensile strength of 55 GPa. Lourie et al. [44] 

performed compressive tests on carbon nanotubes and obtained a range between 100 and 

150 GPa for compressive strength and a compressive strain at failure of slightly less than 

5%. Yakobson et al. performed a set of molecular dynamics simulations to predict the 

tensile strength of carbon nanotubes [33, 35-47]. They reported strain to failure of 30% 

and strength of 150 GPa. In these simulations, even for very high strain rate, nanotubes 

did not break completely in half; instead two separated parts were still connected together 

13 



by a chain of atoms. Yu et al [48] obtained shear strength between the outermost layer 

and the neighboring inner layer for two different multi-walled carbon nanotubes varying 

from 0.08 to 0.3 MPa. These low values closely correspond to the strength of graphene. 

2.4.2 Physical Properties 

Density: The density of the SWNT is defined as the total mass of carbon atoms in the 

enclosed volume defined by Rne in Equation 2.6. Here, we defined N as the number of 

carbon atoms per unit length: 

N= 4A 
3b 

(2.18) 

Parameter .Ii is defined in Equation 2.5 and b is carbon-carbon bond length. Therefore, 

the density of carbon nanotubes can be defined by [23]: 

NMw 16n:MwA 

Pn = 7rNaR~e = 3Nab(3b 2 A2 + 2J3bnvA + ;rr2y2) 
(2.19) 

where Na is Avogadro's number, y is the equilibrium standoff distance between the 

SWNT and the adjacent medium, and Mw is the atomic weight of carbon. Figure 2.25 

shows the variation of the SWNT density as a function of the diameter. 

A similar approach can be utilized to calculate the density of a MWNT (Pm). 

Here i refers to the lh layer of the MWNT, and the number of atoms per layer Ni is 

defined as: 

N = 4A; 
1 3b 

(2.20) 

(2.21) 
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Rme can be obtained with Equation 2.7. The constant k=O.01995 is used to convert the 

density in g/cm3 for pm based on Avogadro's number and the atomic mass of carbon. 

Weight fraction and volume fraction: In many situations, carbon nanotubes are mixed 

with polymers to form composites. In this case, the relation between the nanotube 

volume and weight fraction is useful. If we consider the density of the mixture Pm, the 

carbon nanotube density pn, and the polymer density PP' the carbon nanotube volume 

fraction (Vn) is defined as [25]: 

(2.22) 

By defining Wn as weight fraction, the relation between Wn and Vn becomes: 

(2.23) 

Figure 2.26 shows the SWNT volume fraction versus the weight fraction for a polymer 

with PP= 1 g/cm3
• As can be seen in this figure, the density of the (18,18) SWNT is closer 

to the density of the polymer (1 g/cm3
) compared to the (6,6) SWNT. 

2.5 Carbon nanotubes production 

Several methods for making carbon nanotubes are reported in the literature [50-60]. The 

concept behind aIl the methods is similar. In general, an appropriate supply of energy, 

such as laser or electric arc, is used to locally evaporate carbon. In a proper environment 

containing a catalyst or an inert gas, carbon vapors can form carbon nanotubes. The most 

widely used methods are: arc-evaporation technique, laser ablation and chemical vapor 

deposition. These methods are explained in detail in the following sections. Others 

methods not described here such as the pyrolytic method [52,53] and the vapor 

condensation [54] are not as common as the previous ones. 
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2.5.1 Arc-evaporation Technique 

A variety of different arc-evaporation reactors have been used for nanotube synthesis, but 

a stainless steel vacuum chamber with a viewing port is probably the most common [50]. 

A typical example is illustrated in Figure 2.27. The chamber is connected both to a 

vacuum line with a diffusion pump and to a helium supply. A continuous flow ofhelium 

at a given pressure is usually preferred over a static atmosphere of the gas. The 

electrodes are two graphite rods, usually ofhigh purity, although there is no evidence that 

exceptionally pure graphite is necessary. Typically, the anode is a long rod 

approximately 6 mm in diameter and the cathode a much shorter rod of 9 mm in 

diameter. Efficient water-cooling of the cathode has been shown to be essential to 

produce good quality nanotubes. Furthermore, the anode has to be frequently cooled. 

The position of the anode should be adjustable from outside the chamber, so that a 

constant gap can be maintained during arc-evaporation. A voltage-stabilized De power 

supply is normally use d, and the discharge is typically carried out at a voltage of 20 V. 

The required current depends on the diameter of the rods, their separation, the gas 

pressure, but is usually in the range of 50-100 A. When the pressure is stabilized, the 

voltage is tumed on. At the beginning of the experiment, the electrodes are not touching 

and no current will initially flow. The movable anode is then gradually moved closer to 

the cathode until arcing occurs. When a stable arc is achieved, the gap between the rods 

is maintained at approximately 1 mm or less; the rod is normally consumed at a rate of a 

few millimeters per minute. When the rod is consumed, the power is tumed off and the 

chamber is cooled before opening. A number of factors have been shown to be important 

to produce a good yield of high quality nanotubes. Perhaps the most important is the 

pressure of helium in the evaporation chamber. Experiments show that a pressure of 500 

Torr appears to be the optimum helium pressure for nanotube production. Another 

important factor is the current; too high a current will result in a hard, sintered material 

with few free nanotubes. Therefore, the current should be kept as low as possible, 

consistent with maintaining stable plasma. Efficient cooling of the electrodes and 

chamber has also been shown to be essential in producing good quality nanotube samples 

and avoiding excessive sintering. 
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2.5.2 Laser-vaporization method 

In this method, a laser is used to vaponze a graphite target he Id in a controlled­

environment oven as shown in Figure 2.28. The carrier gas used is helium or argon and 

the oven temperature is approximately 1200°C [51]. The condensed material is collected 

on a cooled target as shown in the diagram and typically contains a significant proportion 

of high quality nanotubes and nanopartic1es. This method can also be used to produce 

single-walled nanotubes. 

2.5.3 Chemical vapor deposition 

Several research groups have used chemical vapor deposition to produce both single­

walled and multi-walled carbon nanotubes [55-60]. In this method, nanotubes are formed 

by the decomposition of carbon-containing gases. Nikolaev [55] has described the gas­

phase growth of SWNT by using carbon monoxide as a carbon-containing gas. The 

reaction that yields carbon nanotubes is: CO+CO-----fC02+C in the presence of an iron 

catalyst. Figure 2.29 shows the equipment layout where the flow channel is made of 

quartz. A range of pressure between 1-10 atm and a range of tempe rature between 800-

1200° are used. Using a cooling system to keep the gases at low tempe rature before 

injecting into the fumace causes the production of nanotubes. The highest yield of 

SWNT was reported at the highest accessible temperature and pressure (1200°C, and 10 

atm). This method has a great potential for large scale production of single-walled 

carbon nanotubes. Another technique for large-scale production of carbon nanotube uses 

hydrocarbons as carbon sources. Nikolaev pyrolized hydrocarbons on a surface heated to 

700°C [55]. In this method because of the relatively low temperature necessary to make 

carbon nanotubes, it is possible to use different substrates such as glass or metal. In 

another experiment, Ren [60] used a silicon substrate coated with nickel to grow carbon 

nanotubes via plasma enhanced chemical vapor deposition. Here, acetylene (C2H2) gas is 

the carbon source and ammonia (NH3) is the catalyst (Figure 2.30). 
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2.5.4 Comparison 

Table 2.6 [90] compares four companies now producing carbon nanotube and gives the 

production rate, price, method and type of their production. As can be seen, the 

production rate of chemical vapor deposition is generally much higher than the arc 

discharge method. Moreover, the range of the price for both methods is comparable and 

depends mostly on the quality of the product. It is worth mentioning that production rate 

of the laser evaporation method is not comparable with the other two methods, but this 

method is very promising to pro duce high quality SWNT and MWNT [51]. 

2.6 Carbon nanotube bundles 

Because of the weak Van der Waals forces between manufactured carbon nanotubes, they 

usually appear in the form of bundles or arrays rather than individual carbon nanotubes 

[32,61]. Figure 2.31 shows an image of nanotube bundle or array that appeared in a 

paper by Iijima [14]. An image analysis of the array done by Pipes and Hubert [61] 

reveals a volume fraction of 79% for hexagonal packing of the tubes (Figure 2.32). 

However, the theoretical maximum volume fraction for a hexagonal array is 0.906 [23]: 

7r 
Va = r;; = 0.906 

2v3 

2.6.1 Carbon nanotube array properties 

(2.24) 

Figure 2.33 shows carbon a nanotube array (a) and an effective reinforcement array (b) in 

which each tube is replaced by sol id one based on Figure 2.18. It is worth mentioning 

that effective radius Rna in Figure 2.33 is slightly different to that of a single-walled 

carbon nanotube, Rne defined in Equation 2.6: 

R =!!.-J3A+ A-
na 27r 2 

(2.25) 

The difference between two Equations 2.6 and 2.25 is that the separation distance for 

individual SWNT (v = 0.342 nm) is replaced by the separation distance for arrays of 
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SWNT, Â. The separation distance Â is generally a function of the tube diameter and can 

vary from 0.316 to 0.319 nm [23]. Based on the definition for the effective radius Rna 

and the volume fraction Va, it is possible to define the density (Pa) and the Young's 

modulus (Ea) of an array of single-walled carbon nanotubes: 

(2.26) 

E = V 4Jj;rYA 
a a 3b2 A2 + 2Jjb;rAÂ +;r2 Â2 

(2.27) 

Equations 2.26 and 2.27 are similar to 2.19 and 2.12 respectively, except for an extra 

term: Va multiplies the final product and vis replaced by Â. Figure 2.34 shows difference 

between the Young's modulus of SWNT and SWNT's array. Similarly, the Young's 

modulus and the density relations of the MWNT' s array only have an extra factor of Va 

compared to the individual MWNT relations (Equations 2.14 and 2.20). 

2.6.2 Measurement of elastic and shear moduli 

The first measurement of the carbon nanotube array elastic properties was conducted by 

Salvetat et al. [75]. Crystalline ropes of SWNTs were produced by the arc-discharge 

method and purified by acid treatment and filtration. For direct measurements of the 

elastic properties of SWNT ropes, the rope was dispersed in ethanol and a droplet was 

deposited on a poli shed alumina membrane. Nanotubes occasionally lie over pores with 

most of the tube in contact with the membrane surface, producing a suspended beam 

configuration at the nanoscale. Figure 2.35-a) shows a SWNT rope of 20 nm diameter 

suspended over a 200 nm pore. An AFM tip operating in air was used to apply a load to 

the nano-array and to measure the corresponding deflection (Figure 2.35-b). Based on 

Timoshenko's beam theory [77], the total deflection of the beam (l5) can be expressed by: 

8 = 8 + 8 = FL
3 

+ JsFL 
B s 192EI 4GA 

(2.28) 
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where L is the suspended length, E is the elastic modulus,!s is the shape factor (equal to 

1019 for a cylindrical beam), G is the shear modulus, 1 is the second moment of area of 

the beam, and A is the cross-sectional area. Moreover, the deflection due to shearing (Js) 

has important contribution comparing to the deflection due to bending (JB) when [77]: 

LI R ~ 4-JEIG (2.29) 

Reduced modulus, Er, equal to the elastic modulus when shearing is negligible, is 

presented for 10 ropes with different diameters in Table 2.7. By using an expression 

similar to Equation 2.12 and obtaining Erope':::-600 GPa, they were able to obtain the shear 

modulus of the ropes based on Equation 2.28 (Table 2.7). 

In a recent work [76], Salvetat et al. have introduced stable links between neighboring 

carbon nanotubes within bundles by using a moderate electron-beam irradiation inside a 

transmission electron microscope. Their measurements of the mechanical properties 

using an atomic force microscope show a 30-fold increase of the bending modulus, due to 

the formation of stable crosslinks that effectively eliminate sliding between the 

nanotubes. 

2.6.3 Lattice dynamics methods 

Lattice dynamics methods have been developed to simulate material behavior at the 

molecular scale. While molecular dynamic methods were developed in the 1950's, they 

became popular in mid 1970's when digital computers became powerful [62]. These 

methods are essentially particle methods and their essence is to numerically solve the N­

body problem of classical mechanics by using Newton's second law [32]: 

(2.30) 

where mi and ri are the mass and spatial coordinates to the lh atom respectively, V is the 

empirical potential for the system, and Vis the spatial gradient operator. In this method, 

an isolated system containing a certain number of molecules N in a fixed volume V is 
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considered. Because the system is isolated, the total energy E is also constant. These 

three constants N, V, and E determine the thermodynamic state of the problem. 

Since hexagonal arrays are orthotropic with transverse isotropy (see Figure 2.31), five 

independent constants are necessary to completely model the elastic behavior of the 

carbon nanotube arrays. Popov [24] used force-constant molecular dynamics to calculate 

both Young's moduli and Poisson's ratios of crystals of carbon nanotubes (Figure 2.36). 

Table 2.8 illustrates how we can calculate Young's moduli and Poisson's ratios based on 

elastic constants. In these relations, direction 3 refers to the direction along the carbon 

nanotubes while directions 1 and 2 are transverse directions. As can be seen from Figure 

2.36, these arrays show very anisotropic behavior. It is worth mentioning that the 

remaining constant GJ2 or G13 (GJ2=G13) and its correspondence C55 or C66 is not 

calculated with Popov's model. 

2.7 Experiments on CNT fibers and composites 

Several researches have tried to make composites with carbon nanotubes. While most of 

them have made composites with low concentration of carbon nanotubes (usually less 

than 10% by weight), a few groups have prepared composites containing highly­

concentrated carbon nanotubes (up to 60% by weight). 

2.7.1 High concentration fibers 

Several researchers have produced polymeric fibers with high carbon nanotube volume 

fraction (about 60% by weight) and high degrees of the alignment. Gommans et al. [78] 

made well-aligned carbon nanotube fibers by dispersing nanotubes in a solvent called 

N,N-dimethylformamide. Then, a commercially available carbon fiber is attached to a 

conducting wire coupled to a motor-driven translation stage. The carbon fiber is 

immersed in the nanotube suspension to a depth of a few millimeters. The set-up is 

designed so that a voltage can be applied between the carbon fiber and the suspension. 

When a voltage is applied with the carbon fiber as the positive electrode, the nanotubes 

are attracted and form a cloud around the carbon fiber. Then, the carbon fiber is slowly 

withdrawn from the suspension. As it pulls out of the liquid, a nanotube fiber is formed 
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spontaneously from the nanotube cloud. With this method they were able to produce 

long fibers of several centimeters with diameters ranging from 2 to 10 !lm. Vigolo et al. 

[3-5] used a simple spinning technique to produce aligned fibers. In this novel approach 

shown in Figure 2.37, a carbon nanotube dispersion is injected in a rotating container 

containing a solution of poly vinyl alcohol (PV A) polymer. The needle is oriented so that 

the SWNTs injection is tangential to the circular trajectory of the polymer solution. By 

using this method, they were able to produce CNT's fibers with a diameter of 35 !lm, 

volume fraction of 50%, average twist angle of 15°, and Young's modulus of 40 GPa. 

Zhu [6] has grown well-aligned single-walled carbon nanotube fibers directly by catalytic 

pyrolysis method. In this method, n-hexane solution is catalytically pyrolyzed in a 

reactor at a temperature of 1423°K to produce a few centimeters long SWNT fibers with 

a diameter around 3 Ilm. Fibers produced by this method have a Young's modulus 

between 49 and 77 GPa (Figure 2.38). In another work, Baughman et al. [7] have 

produced SWNT fibers with a diameter of 50 !lm and a weight fraction of 60%. Inspired 

by the work done by Vigolo [3], they used a type of coagulation-based carbon nanotube 

spinning method to prepare these fibers and they reported a Young' s modulus of 80 GPa. 

2.7.2 Low Concentration polymer composites 

Several groups have tried to make fibers or film with low fractions of carbon nanotubes 

(usually less than 10% by weight). Perhaps, the most common challenging aspect was 

the carbon nanotube dispersion in the polymer matrix since carbon nanotubes tend to 

agglomerate because of Van der Waals forces. Different methods of dispersion were 

examined to improve the dispersion of the tubes into the matrix such as: shear mixing [8], 

twin-screw extruding [9], using solvent [10], and intercalation of polymerie adhesives 

[11]. Figure 2.39 shows the effect of carbon nanotube volume fraction on Young's 

modulus of CNTIPEEK (poly-ether-ether-ketone) composites. The results showed a 

linear increase of the Young' s modulus with the volume fraction of carbon nanotubes. In 

this experiment, the Young's modulus of PEEK increased by 40% when 15% wt of 

carbon nanotubes (about Il % by volume) were added to the polymer. 
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The degree of the alignment in CNT/polymer composite has an important effect on the 

Young's modulus of the composite. Random dispersion of the carbon nanotubes into the 

polymer causes a slight increase in Young's modulus along any arbitrary direction. In 

other words, random dispersion produces composite films with isotropie behavior. On 

the other hand, the alignment of nanotubes in a chosen direction can significantly 

increase the stiffness in that direction. Thostenson and Chou [66] used a micro-scale 

twin-screw extruder to achieve dispersion of multi-walled carbon nanotubes in a 

polystyrene matrix. Highly aligned nanocomposite films were produced by extruding the 

polymer melt through a rectangular die and drawing the film prior to cooling, while 

random films were produced by using a hydraulic press. Figure 2.40 shows the 

importance of the alignment on Young' s modulus of the nanocomposite film where the 

modulus increase of the aligned case is six times as high as that of the random case. 

2.8 Carbon nanotube/polymer composite modeling 

In order to gain a better understanding of the interaction between carbon nanotubes and 

polymers, the modeling of carbon nanotube composites has been the objective of several 

research efforts reviewed in this section. 

2.8.1 Helical carbon nanotube arrays 

Current SWNT synthesis methods primarily pro duce bundles of hexagonal-packed 

SWNT as can be seen in Figure 2.31. The stiffness and strength of these bundles are 

directly related to the load transfer between individual nanotubes. It is estimated that to 

achieve load transfer so that the entire cross-section of the bundle becomes effective, the 

SWNT contact length must be on the order of 10 to 120 f!m [32]. However, the typical 

length of carbon nanotubes is only several hundred nanometers [64]. A theoretical study 

done by Qian [67] shows that twisting can significantly decrease the required contact 

length for complete load transfer. Based on textile mechanics, applying a twist to the 

tubes and hence producing radial force between adjacent tubes can result in better load 

transfer and, consequently, better mechanical properties for the resulting carbon nanotube 

rope. Moreover, when a tube in a twisted rope breaks, it still can bear load transferred 
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from the other tubes because of strong radial friction forces. Therefore, cons ide ring 

discontinuous, twisted carbon nanotube fibers as tubes with infinitive length seems like a 

possible solution to the nanotube "short length" problem. 

The degree of helicity of a fiber containing twisted nanotubes can be characterized by the 

number of turns per unit length t [68]. Moreover, these fibers are assumed to follow 

helical path along the length of the rope while the tangent of the helical angle of the fiber 

is linear function of its radial position and varies from 0 at the rope axis to a at the rope 

outer surface: 

tan a = 2JCRt (2.31) 

where R is the outer radius of the rope. 

Pipes and Hubert [61] employed textile mechanics and anisotropie elasticity theory to 

model the elastic behavior of fibers made of collimated carbon nanotubes. The fiber was 

modeled as a layered cylinder shown in Figure 2.41 in which every layer consists of 

discontinuous carbon nanotubes embedded in a polymerie matrix. The determination of 

the effective axial Young's modulus and Poisson's ratio may be accomplished by 

applying an extensional strain, Wo to the model (Figure 2.41) and determining the 

resultant axial force, F while enforcing the resultant torque T vanishes at extremity. A 

similar method can be used to determine the axial shearing modulus. Here, a shearing 

strain Vo is applied to the model and the resultant torque T is determined while enforcing 

the condition of zero axial force, F. This method, called relaxation, can be effective to 

ca1culate three constants out of the five necessary constants required to model elastic 

behavior of orthogonal transversely isotropie cylinder shown in Figure 2.41. 

F our coefficients A, B, C, and D are necessary to relate T and F to vo, Wo. 

(2.32) 

These four coefficients can be determined as follows: 
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A=Twhen vo=1 and wo=O. 

C=F when Vo= 1 and wo=O. 

B=Twhen vo=O and Wo= 1. 

D=Fwhen vo=O and wo=1. 

Now, to determine axial Young's modulus and Poisson's ratio, the proper boundary 

conditions are: 

Therefore, the axial Young's modulus and the Poisson's ratio can be expressed by: 

Ur=R V ----
z8 - R 

Wo 

(2.33) 

(2.34) 

(2.35) 

Similarly, the boundary conditions defined in Equations 2.36 and 2.37 can be used to 

de termine axial shearing modulus: 

2T 
Gz8 =-4-

1CR Vo 

(2.36) 

(2.37) 

Figure 2.42 shows the Young's modulus of the rope as a function ofhelical angle. In this 

figure, two other cases with no shear strain (vo=O) and also with altemate helical angles 

:f20 0 for the rope layers are shown. Figure 2.43 shows the axial shearing modulus and 

the Poisson's ratio for a layered cylinder. As can be seen from Figures 2.42 and 2.43, the 

helical angle has an important effect on the fiber properties. 
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2.8.2 Constitutive modeling of nanotube/polymer 

Interaction of carbon nanotubes and polymer is a primary challenge to model the 

behavior of their composite, since at small scales traditional micromechanical approaches 

are no longer valid. Odegard et al [69] used an equivalent-continuum modeling method 

to model the nanotube, the local polymer near the nanotube and polymer/nanotube 

interaction. As can be se en in Figure 2.44, a suitable representative volume element 

(RVE) is chosen for the model. Molecular dynamics (MD) was used to simulate the 

interaction between the polymer (LaRC-SI) and a (6,6) single-walled carbon nanotube. 

In summary, the atomic lattice has been viewed as an assemblage of discrete masses that 

are held in place with atomic forces that resemble elastic springs. The mechanical 

anal ogy of this model is a pin-jointed truss model in which each truss represents either a 

bonded or non-bonded atomic interaction. Next, the total strain energy of both truss 

model (middle of Figure 2.44) and the continuum model (right of Figure 2.44) is equal 

under identical loading conditions. By applying proper loading conditions, it is possible 

to calculate aIl elastic constants (five sets of boundary conditions to determine five 

stiffness constants). Finally, traditional micromechanics was utilized to determine the 

elastic properties of a polymer film reinforced by these fibers. Figure 2.45 shows the 

effect of carbon nanotube alignment and length on both shearing modulus and Young's 

modulus for a CNTlPolymer composite with a nanotube volume fraction of 1 %. 

Constant k in Figure 2.45 de scribes the relative amount of alignment of the fibers with 

respect to the major axis of the composite film (k= 0 for completely random case, k~oo 

for perfectly aligned case). Moreover, Figure 2.46 shows the effect of the SWNT volume 

fraction on composite properties. 

2.8.3 Micromechanics modeling of the MWNT/polymer composite 

Thostenson and Chou [70] utilized traditional micromechanics to model the elastic 

behavior of unidirectional composites made of multi-walled carbon nanotubes. Because 

of the weak layer-to-Iayer interaction in multi-walled carbon nanotubes, they considered 

that only the outermost layer will carry the load at the polymer/matrix interface. Based 

on this consideration they defined effective properties of MWNT as a fiber similar to 
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Figure 2.19, except that here the effect of intemallayers of graphene was ignored (Figure 

2.47). By considering iso-strain conditions: 

liNT = lidif (2.38) 

where the subscripts (NI) and (e./J) refer to the nanotube and effective fiber, respectively. 

By using Hooke's law, we have: 

(2.39) 

where A is the area. By considering the nanotube outer layer thickness (te = 0.34 nm) and 

the nanotube diameter D when (tclD < 0.25): 

(2.40) 

In order to model MWNT/polymer composite, tradition micromechanics of Halpin and 

Tsai [71] was used in which the Young's modulus of the composite (Ee) is given by: 

(2.41) 

(2.42) 

where V;- is volume fraction of carbon nanotube, and El and Em are Young' s moduli of 

fiber and matrix respectively. The parameter (is dependent on the geometry and the 

boundary conditions of the reinforcing phase. For the case of aligned short-fiber 

composites, (can be expressed by: 

1 
ç=2-+40V( 

D . 
(2.43) 
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For a low volume fraction (Vf) the second term is negligible compared to the first term. 

Equations 2.39 to 2.43 can express the elastic behavior of the composite as a function of 

the nanotube diameter. Since carbon nanotubes produced by different methods have 

different ranges of diameters, the distribution of nanotube diameter has to be determined 

by considering statically large sample of nanotubes. By considering the probability 

distribution of nanotubes, ç(D), volume distribution of nanotubes per unit length, If/(D), 

can be determined by: 

(2.44) 

This volume distribution can be used when calculating the overall nanocomposite 

properties. In their model, they used the concept of parallel composites as can be se en in 

Figure 2.48 where the entire volume of the composite is divided into N individual 

composites containing a specific nanotube diameter. Then, the composite Young's 

modulus can be defined by: 

N 

Ec = L vnEn ID" (2.45) 
n=l 

where En ID" is the elastic modulus of composite calculated by Equation 2.41, and Vn is 

partial volume of the nth composite. Figure 2.49 shows the results for different tube 

length, diameter and two volume fractions (2.5% and 5.0%). This model shows that the 

diameter has a significant effect on the composite elastic modulus. 

2.9 Research objectives 

In Section 2.4, it was shown that carbon nanotubes have exceptional elastic properties. 

However, the nanotube dimensions of the order of a few nanometers in diameter and a 

few hundreds of microns in length have put huge unsolved challenges before researchers. 

Perhaps, the most common challenging aspect is the carbon nanotube dispersion in the 

polymer matrix since carbon nanotubes tend to agglomerate because of Van der Waals 

forces (Section 2.7.2). Most practical experiments on carbon nanotube/polymer 
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composite reviewed in Section 2.7 showed the existence of carbon nanotube arrays 

instead of individual tubes because of Van der Waals interactions. It was estimated that 

to achieve load transfer so that the entire cross-section of the bundle becomes effective, 

SWNT contact length must be on the order of 10 to 120 flm [32]. Since the typicallength 

of the carbon nanotubes are significantly less than this range, one possible way to 

increase the load transfer between tubes is by applying a twist to them similar to what is 

done in textile fibers. A theoretical study done by Qian [67] showed that twisting could 

significantly decrease the required contact length for complete load transfer. In a recent 

work done by Windle et al. [89], a direct spinning method was used to make twisted 

nanotube fibers from chemical vapor deposition. In this method, continuous carbon 

nanotubes formed in the fumace and by using a rotating rod aligned at 25° to the fumace 

axis (Figure 2.50-a), they were able to form twisted carbon nanotube fibers. By using 

this method, they were also able to make carbon nanotube fibers with a twist angle of 

zero (Figure 2.50-b). 

In light of the issues described above, our research objectives are divided into three 

topics: 

Helical carbon nanotube fiber properties 

In Section 2.8, Pipes and Hubert employed textile mechanics and anisotropie elasticity 

theory to model the elastic behavior of fibers made of collimated carbon nanotubes. By 

using this method, they were able to obtain three out of five constants necessary to 

de scribe the elastic behavior of the fiber. In Chapter 3, a finite element model of a 

layered cylinder of helical carbon nanotube fibers is developed and a strain energy 

method is proposed to obtain aIl five fiber elastic constants as a function of the twist 

angle. 

Nanotube properties from the nanoscale to the microscale 

As reviewed in Section 2.4, carbon nanotubes have extraordinary high Young's modulus 

at the nanoscale. The question whether the nanotube moduli change from the nanoscale 

to the microscale, where conventional continuum mechanics is val id, has to be answered. 
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Therefore, in Chapter 4 the idea of self-similar analysis is used to relate the elastic 

properties of carbon nanotubes at the nanoscale to those of carbon nanotube/polymer 

fibers at the microscale. In this approach, the elastic properties of carbon nanotube 

crystals from Section 2.6.3 are considered as inputs to the model. Then, energy methods 

and conventional micromechanics are used to determine the elastic properties of carbon 

nanotube/polymer fibers at different scales. Moreover, these results are compared to the 

experimental data presented in Section 2.7.1. 

Nanotube array polymer composite properties 

Finally, in Chapter 5 the elastic properties of the polymer composites reinforced by a 

twisted carbon nanotube fiber are determined by using traditional micromechanics, and 

the effects of different parameters such as the degree of the alignment, the twist angle and 

the volume fraction of the SWNT on the polymer composite are examined and this model 

is compared to the constitutive mode of nanotube- polymer composite reinforced with 

individual SWNT (Section 2.8.2). 
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Table 2.1 

Characteristics of graphite crystals 

Space Group C6/mmc C-centered hexagonal 

Lattice Parameters* a = 2.4612 A, c = 6.708 A 

AtomslUnit Cell 4 

Cell Volume 35.l89x 1 0-24 cm3 

Density 2.2670 g/cmJ 

*Lattice parameters a and c for graphite are shown in Figure 2.5. 

Table 2.2 

Characteristics of diamond crystals 

Space Group Fd3m face-centered cubic 

Lattice Parameters* a = 3.5670 A 

AtomslUnit Cell 8 

Cell Volume 45.385xl0-24 cm3 

Density 3.5155 g/cm5 

*Lattice parameter for a diamond crystal is shown in Figure 2.6. 

Table 2.3 

Characteristics of buckminsterfullerene 

Space Group Fm3m body-centered cubic 

Lattice Parameters* a= 14.2A 

AtomslUnit Cell 240 (4 mole cules) 

Cell Volume 2.827x 1 0-21 cm3 

Density 1.693 g/cmJ 

*LattIce parameter, a, has been shown In Figure 2.7 
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Table 2.4 

Diameters for several specifie carbon nanotubes* 

Chirality Diameter Chirality Diameter Chirality Diameter 

(nm) (nm) (nm) 

(5,5) 0.678 (10,10) 1.36 (10,10)2 2.03 

(5,5h 1.36 (9,11) 1.36 (10,10)10 7.46 

(5,5)5 3.39 (17,3) 1.49 (30,30)30 23.7 

(5,5)10 5.78 (0,20) 1.63 (100,0)100 75.0 

(5,5)30 20.3 (20,20) 2.71 (100,100)100 80.7 

*Numbers under right hand ofparenthesis show layers of MWCN 

Table 2.5 

Young' s modulus for several specifie carbon nanotubes* 

Chirality Modulus Chirality Modulus Chirality Modulus 

(GPa) (GPa) (GPa) 

(5,5) 916 (10,10) 660 (10,1Oh 842 

(5,5)2 990 (9,11) 660 (10,10)10 1014 

(5,5)5 1023 (17,3) 922 (30,30)30 1007 

(5,5)10 1029 (0,20) 588 (100,0)100 1022 

(5,5ho 1032 (20,20) 408 (100,100)100 1005 

*Numbers under right hand of parenthesis show layers of MWCN 

Table 2.6 

Typical production rate and cost of carbon nanotube production [90] 

Company Method Production Price Type 

(glDay) ($/gram) 

Hyperon CVD 5000 30-60 MWNT 

Nanoamor CVD 30000-50000 3-225 SWNT,MWNT 

NanoLedge Arc Discharge 120 64-85 SWNT 

Nanocarblab Arc Discharge 3 -- SWNT 
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Table 2.7 

Reduced modulus (Er) and shear modulus (G) for different rope diameters [75]. 

D (mn) L (mn) Er (GPa) G (GPa) 
+0.5 mn 10% Â8/ÂF (miN) +50% +50% 

3.0 100 1.0 1310 
3.0 140 4.0 899 
4.5 285 9.3 642 
4.5 180 3.0 503 6.5 
6.0 200 1.8 369 2.9 
6.0 230 3.0 332 1.7 
9.0 180 0.5 189 2.3 

13.5 360 0.5 298 2.8 
13.5 360 1.0 149 0.9 
20.0 370 0.5 67 0.7 

Table 2.8 

Relation between elastic constants [24] 

Constants General Case Case Cll,C12,C13«C33 

E3 2CI'3 
C33 ---

CIl +C12 

C33 

V 13=V23 _C13 _ _C13 _ 

CIl +C12 Cil +cl , 

E 1=E2 
(Cil -c12 ), 

(Cil + C12 )C33 - 2C~3 (Cil +CI2 )(CII -C]2) 

CIl C33 - C~3 Cil 

VI2 (CI2 C3) - c:3 ) C]2 

C II C33 -c:3 Cil 

K (Cil +C12 )c33 -2C~3 C]2 + Cil 

Cil + C12 + 2C33 - 4cB 
2 
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Figure 2.1 C60: buckminsterfullerene structure, the "Bucky Bail" [74]. 

Carbon 

Nanotubes 

Figure 2.2 a) TEM image of soot containing carbon nanotube. Scale bar 100 nm. b) An 

image of individual tubes. Scale bar 10 nm. (17] 
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Figure 2.3 Drawing of a carbon nanotube capped by one half of a C60 [17]. 

1t bond 

(1 bond 

Figure 2.4 Graphite bonding [32]. 

A 

B 

A 

a=2.461 A 1 A21Â 

Figure 2.5 Characteristics of graphite layers. As can be seen, each A-layer is followed 

by a B-layer and vice versa. A unit cell for graphite structure can be seen here [74]. 

35 



Figure 2.6 Structure of diamond unit cell (a = 3.5670 A) [74]. 

Figure 2.7 Buckminsterfullerene cluster (a=14.2 A) [74]. 
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a 

b 

Figure 2.8 Drawing of the two types ofnanotube capped by one half of a C60• (a) Zigzag 

(9,0) structure (b) armchair (5,5) structure [17]. 

Figure 2.9 A chiral nanotube with hemispherical caps at both ends based on an 

icosahedral Cl40 fullerene. The corresponding chiral vector is (10,5), diameter = 10.36 A, 

and e = - 19.11 °[19]. 
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Figure 2.10 Definition of chiral vector with one pair of integers (m,n) [20]. 

a) 

Figure 2.11 Atomic structure of (a) an arrnchair and (b) a ziz-zag nanotube [20]. 

Figure 2.12 Chiral vector for different carbon nanotubes [21]. 
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Figure 2.13 Schematic of a double walled carbon nanotube [74]. 

Figure 2.14 Two possible models for multi-walled carbon nanotubes: a) nested b) scroll­

like [21]. 

Figure 2.15 A 3-layer zigzag carbon nanotube forming a MWNT. Block dots are atoms 

in the plane of paper; white dots are atoms out of plane of paper [22]. 
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Figure 2.16 Schematic ofSWNT cross-section [23] 

, .... ------ ......... 
; ... 

; "', 
Rme~; , 

~ , , , 
l ' 1 \ 

1 \ 
\ 

1 \ 
1 \ 
l , 

1 1 
1 
1 
\ 
\ 
\ 

\ 
\ , , , 

, , -"'C"'ftf-4~ .... o'o' _ ...... 

~ 
~ 

~ 
; 

1 
1 

1 

1 
1 

1 

Figure 2.17 Schematic of MWNT cross-section [25] 
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Figure 2.18 Effective area definition for a single-walled carbon nanotube [23] 
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Figure 2.19 Young' s modulus of SWNT as function of diameter [23]. 
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Figure 2.21 Young's modulus ofMWNT as a function of diameter [41]. 
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Figure 2.22 Young' s modulus of single-walled carbon nanotubes as a function of both 

diameter and helix angle [65]. 

Figure 2.23 a) First resonance frequency b) Second resonance frequency of MWNT 

[36]. 

Figure 2.24 Tensile testing ofindividual multi-walled carbon nanotube [42] 
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Top !lange 

Figure 2.27 Apparatus used for arc evaporation of carbon nanotubes [50]. 

Figure 2.28 Schematic of the laser ablation method for producing carbon nanotubes [51] 

Figure 2.29 Layout of a CO flow-tube reactor, showing water-cooled in je ct or and 

'showerhead' mixer [55]. 
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Figure 2.30 Single-standing MWNT produced by PECVD (plasma enhanced chemical 

vapor deposition) [60]. 

Figure 2.31 A hexagonal array of carbon nanotubes [14]. 

Figure 2.32 Image analysis of an array of tubes [61]. 
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Figure 2.33 (a) Carbon nanotube array and (b) its effective reinforcement array [25]. 
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Figure 2.34 Young's modulus comparison between individual SWNT and their arrays 

[25]. 
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Figure 2.35 a) AFM image of a SWNT rope bridging a pore of the alumina membrane. 

b) Schematic of the measurement. 
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Figure 2.36 Elastic constants of single-walled carbon nanotubes array [24]. Note that 
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~ 
Rotming âtage 

Figure 2.37 Spinning method to make high concentrated carbon nanotube fibers. [3]. 

Figure 2.38 Well-aligned carbon nanotube produced by [6]. a) The distance between 

black arrows is lOllm. b) SEM image of broken carbon nanotube strand after a tensile 

test. 
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Figure 2.39 Young's modulus versus carbon nanotube fraction for a PEEKlCNT 

composite [9]. 

Figure 2.40 Effect of alignment on modulus of a polystyrene/CNT composite [66]. 
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Figure 2.41 Layered cylinder and corresponding stresses in an element [61]. 
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Figure 2.42 Young's modulus of the layered cylinder ofpolymer/CNT [61]. 
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Figure 2.43 Axial shearing modulus and Poisson's ratio for layered cylinder [61]. 
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Chapter 3 

Helical Carbon Nanotube Fiber Modeling 

In this chapter, a finite element model of a helical carbon nanotube fiber is developed, as 

presented in Section 2.8.1. Then, the results of the model are compared to the anisotropie 

elasticity solution of Pipes and Hubert [61]. Next, a strain energy method is proposed to 

obtain the nanotube fiber elastic constants. 

3.1 Finite element modeling 

It is estimated that to achieve load transfer so that the entire cross-section of the bundle 

becomes effective, the SWNT contact length must be on the order of 10 to 120 !lm [32]. 

However, typicallength of carbon nanotubes is several hundred nanometers [64]. Pipes 

and Hubert [61] introduced the concept of helical nanotube fibers as an effective method 

to produce a high nanotube volume fraction fiber from discontinuous collimated 

nanotubes. A theoretical study done by Qian [67] showed that nanotube twisting can 

significantly decrease the required contact length for complete load transfer between the 

nanotubes. The carbon nanotube fiber model used in the work consists of layered 

concentric cylinders in which carbon nanotubes are oriented foIlowing a helical path 

(Figure 3.1). The degree of helicity of the fiber can be characterized by the number of 

tums per unit length, t. Moreover, the nanotubes are assumed to foIlow a helical path 

along the length of the fiber. The tangent of the helical angle is a linear function of the 

radial position and varies from 0 at the fiber axis to a maximum of amœ: at the fiber outer 

surface: 

tan a max = 21rRt (3.1) 

where R is the fiber outer radius. It is worth mentioning that twill be considered constant 

for aIl layers of the fiber. Figure 3.2 shows the variation of the helical angle with the 

fiber radius of a fiber with a radius and length of 500 nm and 500,000 nm, respectively. 

For smaIl angles of the twist (a <10°) we have tan a ~ a; therefore, the helicity varies 

linearly respect to the position. 
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In this work, the nanotube fiber is modeled by using the finite element method. Since the 

twist angle is variable through the fiber thickness (zero at the center, maximum at the 

surface), the fiber cross section is divided into m layers as shown in Figure 3.3. Each 

layer has a constant twist angle as shown in Figure 3.3 (which shows 6 layers). The 

angle of twist for each layer is determined by using: 

(3.2) 

where 1 is layer thickness (l=Rlm), and i is layer number (i = 1 for central circle and i = 

m for outermost layer). The finite element software, ANSYS 7.1 [72], was used for the 

analyses and the solid 20-node element was selected to mesh the model (Figure 3.4). This 

element defined by 20 nodes has three degrees of freedom per node: translations in the 

nodal x, y, and z directions. The element can be chosen to have any spatial orientation. 

In this work, a carbon nanotube fiber with an outer diameter of 8.97 nm and a length of 

100 nm was modeled. Figure 3.5 shows a cross section of the mesh, while Figure 3.6 

shows an isometric view of the mesh. As can be seen from Figure 3.5 each ring contains 

32 elements while the central circle has 48 elements. Therefore, 208 elements are used to 

mesh the fiber cross section. The length of the model is divided in 33 sections in order to 

have elements with appropriate shape factors. Therefore, 6864 elements are utilized to 

mesh the fiber section. 

Properties of the carbon nanotubes are obtained from Pipes and Hubert [61] (Table 3.1). 

By doing this, it becomes possible to compare results from the finite element analysis 

with the anisotropic elasticity solution used in [61]. In this table, axis 1 is along the 

carbon nanotube length while axes 2 and 3 are perpendicular to 1. Figure 3.7 shows the 

reference coordinate system of our model. Since the carbon nanotube crystals are 

orthotropic with transverse isotropy, properties along axes 2 and 3 are equal, i.e. E2=E3, 

G2=G3 and V12=V13. Properties of the carbon nanotubes (Table 3.1) are used in a proper 

element coordinate system as shown in Figure 3.4 (1 direction along x, while 2 and 3 

along y and z respectively). In order to model the helicity of the fiber for each layer, the 

element coordinate system is rotated based on the layer twist angle. 
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The properties of the fiber are constant along the fiber length. Therefore, in order to 

maximize both speed of the finite element calculation and accuracy of the result, a 

preliminary analysis is performed to measure the proper aspect ratio (ratio of the length to 

diameter) to be used. Fibers with different length are subjected to an extensional strain. 

Figure 3.8 shows the axial Young's modulus (En) of fibers as a function of aspect ratio 

for a twist angle of 20°. For a very short fiber (small aspect ratio), Poisson's effect 

causes a significant error in the modulus while a very long fiber needs longer processing 

time without any significant gain in accuracy of the results. As can be seen from Figure 

3.8, an aspect ratio of 10 is accurate enough since by further increasing the length, no 

significant change in modulus is observed. Based on the radius and length mentioned 

before (8.97 nm and 100 nm respectively), a model aspect ratio (l/R) of about Il seems 

appropriate. 

3.2 Comparison between el asti city and FEA 

As can be seen in Figure 2.42 of Section 2.8.1, two different cases were examined. For 

the first case (Case 1), a uniform extensional strain (ma) equal to 0.01 was applied to one 

end of the model in the 1 direction (or Z in cylindrical coordinate system) while points on 

the other end were fixed along Z. This case is analogous to a simple uniaxial tensile test 

where the fiber is free to rotate, so the torque (T) is zero. For the second case (Case 2), 

all points in the model are fixed against any rotation (vo=O based on Figure 2.41) while 

the other boundary conditions are similar to Case 1 and TtO. In summary, the boundary 

conditions applied to the model are: 

Case 1 (T=O): U
Z 

= 0 @ Z=O, U
Z 

= Wo x 100 @ Z=100 nm (3.3-a) 

Case 2 (vo=O): U z =O@Z=O, U
Z 

=wo xl00 @Z=100nm, Us =O@allpoints (3.3-b) 

The resultant reaction force, F is calculated from the finite element nodal forces. The 

relaxation method explained in Section 2.8.1 is used, and the fiber Young' s modulus is 

computed as follows: 
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(3.4) 

Figures 3.9 and 3.11 show the results from the finite element analysis compared to results 

from the elasticity solution [61]. Good agreement was obtained between the finite 

element analysis and elasticity solution. As can be seen in Figure 3.9, a maximum error 

ofless than 8 percent can be seen for a twist angle of 40°. Moreover, we observe a major 

reduction of the Young's modulus by increasing the twist angle from 0° (514 aPa) to 200 

(167 GPa), while further increase in twist angle results in a moderate reduction to 82 aPa 

for a twist angle of 500
• The effect of helicity can be seen in Figure 3.10 where the 

extensional strain applied to the fiber produces a rotation in the fiber, because twisted 

fibers tend to become more straight as a result of extensional strain. Figure 3.11 shows 

the variation of the fiber Young's modulus for Case 2. Here, the Young's modulus 

reduction is not as significant compared to Case 1. Table 3.2 shows the values of the 

torque at the middle of the fiber as a result of preventing the fiber from rotation (ue=O). 

The maximum torque is observed for a twist angle of25°. The error percentages between 

elasticity and finite element for the torque and Young's modulus are also presented in 

Table 3.2. 

The axial Poisson's ratio for both cases is obtained from the following equation: 

v - - Ur=R (3.5) 
zf) - R 

Wo 

where Ur=R is the radial nodal displacement at r=R. In order to determine Ur=R, we 

calculate the average nodal displacement at the outermost layer of the model (R=8.97 

nm). Figure 3.12 shows the cross section of the fiber with a twist angle of 20° for the 

case 1. As expected, the longitudinal extension of the fiber causes a radial contraction. 

Figure 3.13 shows the variation of Ur=R on the fiber surface where the average radial 

nodal displacement of -3.43 x10-3 nm was calculated. With an extensional strain of 0.01 

and using Equation 3.5, an axial Poisson's ratio of 0.37 was calculated (Note that V12= 

vze). This value is very close to the value of 0.38 calculated by elasticity [61]. The same 

method is used for different angles for both cases (Figure 3.14). As can be seen in this 
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figure, for Case 2, elasticity and FEA are in good agreement while for Case 1, a 

maximum error of 14 % occurs for large angles of twist (>20°), but for lower twist 

angles «20°) this error is less than 2 %. 

In another investigation, the stress distribution for both elasticity and finite element 

methods are examined. Figure 3.15 shows the stress distribution for the component (JR 

through the thickness of the fiber. This component has an important effect on the friction 

between carbon nanotubes. The negative stress proves that all the tubes are in 

compression which is required to transfer load between them. The result from elasticity 

solution is a little different from the finite element solution. While the finite element 

fiber is a solid cylinder producing the maximum stress at the center of the fiber, the 

anisotropie elasticity solution was done for a hollow cylinder which results (Jr=O at the 

center of the fiber. Moreover, in anisotropie elasticity in spite of finite element analysis, 

the radial stress at the outermost layer is positive (Figure 3.15). This could be explained 

by an approximation in anisotropie elasticity where it is supposed thatO'"r8 = o. This 

assumption especially for the outermost layer can generate significant error because the 

maximum O'"r8 occurs there. 

3.3 Elastic constant calculation 

Energy methods have been used to calculate composite material elastic constants since 

the 1960's. Hashin and Rosen [73] used this method to calculate elastic moduli offiber­

reinforced composites. The same method was used by Odegard et al. [69] to estimate the 

values of elastic constants of carbon nanotube reinforced composites (Section 2.8.2). In 

this method, displacement boundary conditions are applied to the model: 

(3.6) 

where S is the bounding surface, Xj is the surface coordinate, u~ is the displacement and 

&~ is the strain tensor, while i and} are indicial notations. Then, a representative volume 

element (RYE) of the model is defined where strain and stress are averaged over the 

element. The effective Hooke's law for an anisotropie is defined as: 
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(3.7) 

where O"g andE~1 are averaged stress and strain respectively and Cijkl is the effective 

elastic modulus. By applying an averaged strain and computing the resultant averaged 

stress, it is possible to determine Cijkl from Equation 3.7. In order to find the averages, a 

field solution has to be found first. This is, in general, a very complex task. On the other 

hand, energy methods are more appropriate to obtain elastic constants. Strain energy (W) 

is defined by: 

1 0 0 W =-VO"Ekl 2 IJ 
(3.8) 

where V is the volume occupied by the model. Replacing O"g with Equation 3.7, we 

obtain: 

For the nanotube fiber studied in this work, we assume transverse isotropy. By 

considering the contraction notation of ij---+m and ki-m, Hooke's law becomes: 

0 
O"lI Cil C12 C12 0 0 0 0 

EI1 

0 
0"22 Cl2 C22 C23 0 0 0 0 

E 22 
0 Cl2 C23 C22 0 0 0 0 

0"33 E33 (3.10) 
0 0 0 0 2C44 0 0 0 

0"12 E I2 
0 

0"l3 0 0 0 0 2C44 0 0 
El3 

0 
0"23 0 0 0 0 0 C22 -C23 

0 
E23 

or: 

o COCO CO 
0"11 = I1EI1 + 12 E 22 + 12 E 33 (3.1 O-a) 

o COC 0 CO 
0"22 = 12EI1 + 22 E 22 + 23 E 33 (3.1 O-b) 
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(3.1 O-c) 

(3.1 O-d) 

(3.1 O-e) 

(3.10-t) 

For this class of material, five independent constants (Cn, C]2, C22, C23, and C 44) are 

necessary to describe the fiber elastic behavior. By selecting five proper independent 

moduli that are a combination of the se constants and by specifying proper boundary 

conditions to the model, one of the se constants appears in the strain-energy function. 

Therefore, the five constants can be determined from the strain energies for five different 

sets of boundary conditions. 

The five moduli chosen are Cn, G23, K23, Gl , El, defined by [73]: 

(3.11 ) 

(3.12) 

(3.13) 

(3.14) 

In these equations K23 and G23 are the in-plane (X2X3 plane) bulk and shearing modulus, 

respectively, Gl is axial shear modulus, and El is the longitudinal Young's modulus. 

From these constants, the other elastic constants can be determined by: 

(3.15) 
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where: 

V 
- K 23 -1fIG23 

23 -
K23 + 1fIG23 

(3.16) 

(3.17) 

(3.18) 

where Vl is the axial Poisson's ratio, V23 is then transverse Poisson' ratio, and E2=E3 are 

the transverse Young's moduli. Now, five appropriate boundary conditions are necessary 

to compute the constants. These five boundary conditions are given in Table 3.3. It is 

worth mentioning that the first set of boundary conditions in Table 3.3 to obtain Cn can 

be treated by applying a uniform strain in xl-direction and preventing the lateral 

deformation in the x2xrplane by a rigid enclosure. Moreover, the second set of the 

boundary conditions to determine El is similar to a simple unidirectional tensile test. 

3.4 Results 

The five boundary conditions were applied to the model, resultant strain energies were 

obtained by using finite element analysis, and aIl five constants were determined from the 

last columns of Table 3.3. Table 3.4 shows the calculated value for aIl constants for 

different angles of twist. Figures from 3.16 to 3.20 show the predicted elastic constants 

as a result of twist angles. As can be seen in Figure 3.16, both Cn and En decrease with 

an increase in twist angle and an important reduction occurs between 0° and 20°. In 

addition, from Figure 3.17, aIl three constants K23, G23 and G12 increase with the twist 

angle while G12 exhibit a major increase from 10° (10 GPa) to 35° (45 GPa). Moreover, 

both K23 and G23 remain almost constant for a relatively wide range of twist angle (from 

0° to 20°). Figure 3.18 shows that the longitudinal Poisson's ratio (V12) reaches its 

maximum at 30°. On the other hand, the transverse Poisson's ratio, V23 constantly 

decreases after a twist angle of 20°. The transverse modulus (E22) remains almost 
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constant before 20° and increases rapidly from 18 GPa at 20° to 45 GPa at 50°. Figure 

3.19 shows aIl normalized elastic moduli versus twist angle. As can be se en in this 

figure, aIl transverse properties, Css, C23, C22 remain constant from 0° to ]50. On the 

other hand, CIl decreases by 100 % from 0° to 15° and reaches to 20% of its initial value 

(aligned case) at twist angle of 50° while Cl2 doubles from 0° to 20°. FinaIly, the axial 

Poisson's ratio for three cases: anisotropie elasticity, finite element analysis, and strain 

energy method is compared in Figure 3.20. In general, a maximum difference of 16% 

occurs at the angle of35° between energy method and elasticity. 

3.5 Discussions 

A helical carbon nanotube fiber was modeled by using the finite element method. This 

model was compared with anisotropie elasticity presented in Section 2.8.1. These two 

models showed very good agreement. For both cases (T=O and vo=O), the maximum 

differences between these two models were about 7 %. 

It was shown that strain energy is a very powerful method to compute elastic constants of 

our model. By choosing proper boundary conditions, it was possible to obtain one elastic 

constants of the model directly from the strain energy method since only one term 

appears in Equation 3.9 and other terms remain zero. Since the model is transversely 

isotropie, five sets of boundary conditions are enough to obtain material stiffness moduli 

(Equation 3.10). Results from strain energy fit very weIl with the results from elasticity. 

While errors between elasticity and finite element method are less than 1 % for small twist 

angles «20°), a maximum error of 16% observed for larger angles. This difference for 

large angle of twist can be explained by an approximation in anisotropie elasticity where 

it is supposed thatO"rU = o. While this assumption seems reasonable for small twist 

angles, it causes considerable error for large twist angles. Since each layer has a different 

twist angle, the layers tend to slide with respect to each other producing non-zero 0" rU 

(Figure 2.41). The other source of the error is the approximation in the finite element 

model since 6 layers was used to model the helicity, and each layer was divided to 32 

elements. Decreasing the size of elements can improve the results but it takes more time 

for the processors to solve the problem. 
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Finally, from the Figure 3.16, the Young's modulus of carbon nanotube fiber decreased 

dramatically even for small twist angles (less than 20°) without any contribution to the 

transverse properties since transverse properties remain constants between 0° to 15° 

(Figure 3.18). On the other hand, the stiffness carbon nanotube is directly related to the 

load transfer between individual nanotubes. It is estimated that to achieve load transfer 

so that entire cross-section of the bundle becomes effective, SWNT contact Jength must 

be on the order of 10 to 120 f!m [32]. However, typical length of carbon nanotube is 

several hundred nanometers [64]. A theoretical study [67] shows that twisting can 

significantly decrease the required contact length for complete Joad transfer. Based on 

textile mechanics, appJying a twist to the tubes and hence producing radial force between 

adjacent tubes can result in better load transfer and, consequently, better mechanical 

properties of the carbon nanotube rope. Moreover, when a tube in a twisted rope breaks, 

it still can bear load transferred from the other tubes because of strong radial friction 

forces (Figure 2.15). Therefore, considering discontinuous, twisted carbon nanotube 

fibers as tubes with infinite length similar to textile fibers seems acceptable. 
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Table 3.1 

Carbon nanotube crystal properties [61] 

Elastic constants Value 

Ell 514 GPa 

E22 = E22 18.2 GPa 

V23 0.720 

Vl2 = VI3 0.196 

G23 5.29 GPa 

Gl2 = GI3 5.71 GPa 

Table 3.2 

Torque and Young's modulus for finite element (FE) and elasticity (EL) for Case 2 

Twist Angle Tel TFE EEl E FE Error T Error E 

(0) (N.m) (N.m) (GPa) (GPa) (%) (%) 

0 -9.8 x 10-27 -9.5 x 10-27 514 513 3.0 0.05 

5 -4.9 X 10-25 _4.7xlO-25 509 509 2.8 0.01 

10 -9.5 X 10-25 -9.2 xl 0-25 495 496 2.6 0.11 

15 -lA X 10-24 -1.3 X 10-24 471 472 2.3 0.32 

20 -1.7 X 10-24 _1.6xlO-24 435 438 1.7 0.69 

25 -1.9 x 10-24 -1.9 X 10-24 388 393 0.8 1.20 

30 -1.9 x 10-24 -1.9 X 10-24 332 339 0.3 2.03 

35 -1.8 x 10-24 -1.8 xlO-24 270 279 2.1 3.27 

40 -1.5 X 10-24 -1.5 xlO-24 209 220 4.7 5.04 

45 -1.1 xlO-24 -1.2 xl 0-24 155 167 9.0 7.61 

50 -7.0 x 10-25 -8.2 x 10-25 111 123 16.5 11.12 
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Table 3.3 

Boundary conditions used to compute the elastic constants 

Set Constant Boundary Boundary Strain Energy 
conditions displacement 

1 Cn ° ° ° ° 1 ( ° y 8u = 8 U] =8 W =-VCII 8 
U~=R = 0 2 

2 El ° =8° ° ° 
W =~VE](8°Y 811 U] =8 x] 

° ° 822 = -V]28 

° ° 833 = -V12 8 

3 Gl 8~2 = 0.58° u~ = 0 W =!VG](80y 
° ° 2 

8~] = 0.58° u 2 = 8 x] 

U~ =0 

4 G23 8~3 = 0.58° UO - 0 1 ( ° y ]- W =-VG23 8 

8~2 = 0.58° 
U~ = 0.580

X 3 
2 

u~ =0.580
X 2 

5 K23 ° ° 822 =8 u~ = 0 W = 2VK
23 

(80 )2 
° ° ° ° U 2 = 8 X 2 833 = 8 
° ° U 3 = 8 X 3 
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Table 3.4 

Variation of elastic constants with the angle of twist* 

Angle(O) G23 G12 K23 Cn En E2=E3 
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) VI2 =V13 V23 

0 5.29 5.71 32.82 519 514 18.20 0.19 0.72 

5 5.29 6.62 32.77 410 400 18.16 0.28 0.72 

10 5.31 9.30 32.65 285 272 18.15 0.32 0.71 

15 5.39 13.62 32.53 221 204 18.28 0.36 0.70 

20 5.59 19.33 32.54 187 168 18.77 0.38 0.68 

25 5.99 26.10 32.86 166 146 19.86 0.39 0.66 

30 6.72 33.51 33.70 151 130 21.84 0.39 0.62 

35 7.90 41.04 35.33 139 118 24.99 0.39 0.58 

40 9.67 48.12 38.05 129 107 29.59 0.38 0.53 

45 12.20 54.09 42.15 119 96 35.86 0.37 0.47 

50 15.62 58.33 47.93 110 85 43.97 0.36 0.41 

*Note that the last three columns are calculated using Equations 3.15 to 3.17. 
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Figure 3.1 Helical carbon nanotube fiber. 
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Figure 3.2 Helical angles versus radial position [61]. 
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Figure 3.3 Angle of twist for a 6-layer model with a maximum twist angle of 20°. 
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Figure 3.4 ANSYS definition of the 20-node element (ANSYS Solid 191 [72]). 
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Figure 3.5 Cross section view of the mesh. 
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Figure 3.6 Isometric view ofthe mesh. 
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Figure 3.7 Reference coordinate system. 
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Figure 3.8 Nanotube fiber Young's modulus as a function of the aspect ratio for a twist 

angle of20°. 
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Figure 3.9 Normalized nanotube fiber Young's modulus and errors between finite 

element method and elasticity for Case 1 as a function of angle of twist. 

a) 

b) 

Figure 3.10 a) Undeformed fiber, b) deformed fiber under extensional strain for case 

showing the induced rotation. 
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Figure 3.11 Normalized nanotube Young's modulus ratio as a function of angle oftwist 

for Case 2. 

Figure 3.12 Radial displacement of the fiber under longitudinal extension for Case 1 

with a twist angle of 20°. 
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Figure 3.13 Average nodal displacement for the outermost layer nodes as a function of 

angular position for Case 1 with a twist angle of 20°. 
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Figure 3.14 Nanotube fiber Poisson's ratio as a function of twist angle. 
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Figure 3.15 Radial stress (O"R) as a function of radial position. 
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Figure 3.17 Nanotube fiber G23, G12, and K23 as a function of angle of twist. 
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Young's modulus versus angle of twist. 
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Figure 3.19 Nanotube fiber elastic moduli as a function of angle of twist. 
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Chapter 4 

Self Similar Analysis 

As reviewed in Chapter 2, carbon nanotubes have extraordinary high Young' s modulus at 

the nanoscale. The question whether the nanotube moduli change from the nanoscale to 

the microscale, where conventional continuum mechanics is valid, has yet to be 

answered. Therefore, in this chapter we use the ide a of self-similar analysis to relate the 

elastic properties of carbon nanotube at the nanoscale to those of a carbon 

nanotube/polymer fiber at the microscale. In this approach, the elastic properties of 

carbon nanotube crystal or array are considered as inputs to our model. Then, the energy 

method is used in combination with conventional micromechanics to determine the 

elastic properties of carbon nanotube/polymer fibers at different scales. 

4.8 Definition 

The goal, here, is to span three orders of magnitude from the nanoscale to the microscale 

by using the methodology depicted in Figure 4.1. The self-similar method developed by 

Pipes and Hubert [79] is used to predict the properties of a nano-array, nano-wire, and 

micro-fiber. In this analysis, the properties of carbon nanotube array are obtained from 

Popov [24] and Salvetat et al. [75]. Then, the properties of the twisted nano-array are 

determined by using the energy method explained in detail in Chapter 3 (Step 1). These 

properties are later used to determine the properties of a second helical array called nano­

wire made of the helical nano-array suspended in a polymer (Step 2). In order to obtain 

the polymer/nanotube composite properties, a conventional micromechanics model (self­

consistent field model [80]) is used. Finally, the nano-wires are assembled in the third 

helical array called the micro-fiber (Step 3). This three-step analysis is self-similar since 

the geometry used for ail steps is identical but different in scale. Here a (5,5) SWNT is 

used for our SWNT/polymer model. Figure 4.2-a shows the diameter for the SWNT 

(l.38 xl0-9 m), the nano-array (l.48 x lO-8 m), the nano-wire (l.69 x lO-7 m), and the 

micro-fiber (l.93 x 10-6 m), while Figure 4.2-b gives the number ofSWNT per unit length 

of the model at each step. 
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Modeling the interaction between the carbon nanotube and the polymer is very complex. 

In our model we assume that there is a perfect load transfer between the polymer and the 

nanotube. While this approximation is acceptable when spanning from the nano-wire to 

the micro-fiber, it is not entirely true when spanning from the nano-array to the nano-wire 

since the SWNT and the polymer are quite dissimilar at that scale [79]. Figure 4.3 shows 

a flowchart that de scribes the procedure used to obtain the elastic properties of the carbon 

nanotube/polymer fiber. It is worth mentioning that while the volume fraction of the 

carbon nanotube can theoretically reaches 90.6% (Section 2.6), a volume fraction of 70% 

is considered as a practical upper bound value [79]. 

4.9 Nano-array properties 

Popov [24] used molecular dynamics (Section 2.7) to obtain four out of five constants to 

de scribe the elastic behavior of carbon nanotube arrays. It is worth noting that the 

coordinate system shown in Figure 3.4 is different from the coordinate system used by 

Popov. While in our model axis 1 is along the fiber and axes 2 and 3 are transverse axes, 

Popov defined axis 3 along the fiber (Figure 2.26). The only constant that remains 

uncalculated is the axial shear modulus (G 12). In order to estimate this constant we 

employed a first order model described by Salvetat [75]. Based on Figure 4.4, d is the 

tube distance; R is the carbon nanotube fiber; At is the cross sectional area occupied by 

each tube and a is the lattice constant, thus: 

a=2R+d (4.1) 

(4.2) 

If we define c as the interplanar spacing of graphite (c = 0.3354 nm), the first order 

approximation between the shear modulus of the carbon nanotube rope (G12) and the 

graphite shear modulus (Gg) can be defined as: 

(4.3) 

where as can be seen from Figure 4.4: 
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Cn = acos(;r / 6) = 0.866 a (4.4) 

By considering Ggraphite= 4.5 GPa (C44 of single crystal graphite) [75] and the image 

analysis shown in Figure 2.32 (a = 1.48 nm, Cn = 1.28 nm), Equation 4.3 gives an axial 

shear modulus equal to 17.2 GPa. In summery, these five independent parameters used 

as elastic properties for the (5,5) SWNT array are given in Table 4.1. It is worth noting 

that in this table, G23 is not an independent parameter as we have: 

(4.5) 

while C22 and C23 are function of the other five elastic constants. Appendix II provides 

the relations between engineering constants (G]2, En, E22, V]2, V23) and the elastic 

constants (Cij). 

4.10 Elastic constants calculation ofpolymer/SWNT fiber 

In order to obtain the properties of the twisted polymer/SWNT fiber, the method 

explained in Chapter 3 is used. To consider the polymer in the model, self-consistent 

field models [89] (Figure 4.5) were used. We assume that the carbon nanotube array is 

located at the center of the composite fiber while the polymer is surrounding it. Only the 

relations to get the properties of composite fiber are presented here, the detail to obtain 

these relations can be found in [80]. In these equations, subscripts F, CN and P stand for 

the carbon nanotube/polymer fiber, the carbon nanotube and the polymer respectively. 

AIso, Vjis the carbon nanotube volume fraction. Figure 3.7 shows the coordinate system 

used in our model: 
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(4.8) 

(4.9) 

(4.10) 

FinaIly, we have: 

1 
E 22F = ---------

1 1 V~2F --+--+--
4K23F 4G23F EllF (4.11 ) 

(4.12) 

Here, the polymer is assumed to be isotropie. K TP is the polymer plane strain bulk 

modulus, whieh is different from the bulk modulus (K): 

(4.13) 

It is worth mentioning that the axial properties En and V]2 follow the rule of mixtures 

very weIl; therefore, the third terms in both Equations 4.6 and 4.7 ean be omitted without 

signifieant errors. Moreover, from Equations 4.11 and 4.12, it is elear that E22 and V23 are 

given as a funetion of other constants and are not independent. 

In summary, based on the flowehart shown in Figure 4.3, inputs to the model are: the 

elastie constants of the carbon nanotube array (Table 4.1), the angle of twist (between 0° 

to 50°), the carbon nanotube volume fraction (70% as a practical upper limit), and the 

polymer elastic properties. Table 4.2 summarizes the properties of three isotropie 

polymers considered in our study. 
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4.11 Results 

Table 4.3 summarizes the variation of the elastic constants for different steps shown in 

the flowchart (Figure 4.3) for a LaRC-SIISWNT micro-fiber with different twist angles. 

Figures 4.6 to 4.12 show the engineering elastic constants (En, E22, G12, G23, V12, V23, and 

K23) as a function of twist angles for three scaling steps: the nano-array (Step 1), the 

nano-wire (Step 2) and the micro-fiber (Step 3). From Figure 4.6, the longitudinal 

Young's modulus (En) significantly decreases even for small twist angles (less than 20°). 

From Table 4.1, the initial Young's modulus of the SWNT crystal is 580 GPa; however, 

after scaling from the nanoscale to the microscale, the micro-fiber Young' s modulus 

drops to 137 GPa for a twist angle of 10°. This is a four-fold decrease for the Young's 

modulus even for small twist angles. 

Figure 4.7 shows the variation of the transverse Young' s modulus (E22) as a function of 

the twist angle. In spite of En, by increasing the twist angle E22 increases. The same 

trend was previously observed in Figure 3.18. Based on Equation 4.11, E22 does not 

follow the rule of mixtures. It is clear that for small twist angles «20°), the transverse 

Young's modulus remains almost constants. Moreover, in Step 3, the modulus remains 

almost constant since the increase due to the twist angle cancels out the decrease due to 

the volume fraction. 

Figure 4.8 shows the axial Poisson's ratio (V12) as a function of the twist angle. While 

Step 1 is very similar to Figure 3.18 with a maximum of Vl2 at a twist angle of 40°, in 

Steps 2 and 3 this maximum shifts to 20° and 10° respectively. AIso, since the Poisson's 

ratio of the polymer (0040) is higher than the axial Poisson ratio of the SWNT (0.18), the 

addition of the polymer causes an increase of the Poisson's ratio at each step. On the 

other hand, the transverse Poisson's ratio (V23) decreases as twist angle increases (Figure 

4.9). AIso, the addition of the polymer causes the Poisson's ratio to decrease for the 

second and third steps (Equation 4.12). 

The axial shear modulus (G12) increases with an increase of the twist angle (Figure 4.10). 

While this increase is considerable for the first step (i.e. for twist angle of 50°, it 

increases by more than 300% compared to the 0° twist angle), for the second and third 

steps, it becomes very moderate since the negative effect of the addition of the polymer 
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cancels out the positive effect of twist angle. From Table 4.3, the addition of the polymer 

in the Step 2 has a significant effect. For instance, a nano-array with a twist angle of20° 

has a G 12 equal to 31.08 GPa. With the addition of the polymer, G12 is reduced to 8.45 

GPa based on Equation 4.9. From Figure 4.11, the transverse shear modulus (G23) 

increases by twist angles. This increase, in spite of En, mainly starts at large twist angles 

(>20°) and the effect of adding the polymer can be observed only at large twist angles 

especially between Step 1 and Step 2. 

Finally, Figure 4.12 shows that the twist angle does not have any effect on the transverse 

bulk modulus for small twist angles. A small increase can be observed for twist angles of 

30° or more only for the first step. Also, the effect of the volume fraction between Step 1 

and Step 2 is more important than between Step 2 and Step 3. 

Figures 4.13 to 4.16 show the scaling effect on the elastic properties of the SWNTlLaRC­

SI fiber for four different twist angles (0°, 10°, 30°, 50°). Based on Figure 4.13, both 

scaling and twist angles can cause the reduction of the axial Young's modulus. Here, it is 

again clear that for small twist angles, the reduction of Ell is very significant. Figures 

4.14 and 4.15 show the scaling effect on both the transverse and the axial Poisson's 

ratios. From Figure 4.14, V23 is sensitive to larger twist angles in spite of Ell (0° fiber and 

10° fiber have very little difference) and the effect of scaling is important especially for 

medium twist angles (i.e. 30°). The behavior for the v 12 is complicated here (Figure 

4.15). While the axial Poisson's ratio increases by scaling for any twist angle, the fiber 

with twist angle of 30° has the maximum value of Poisson's ratio compared to the other 

fibers, and the fiber with twist angle of 10° is the most sensitive to the scaling. Figures 

4.16 and 4.17 show the scaling effect on the transverse Young's modulus and the elastic 

constants for a twist angle of 20°, respectively. As can be seen, aIl the elastic constants 

decrease by scaling because of the addition of polymer. The only properties that 

remained almost constant for this specific twist angle is C44= G23. This fact can also be 

se en in Figure 4.11. Finally, Figure 4.18 shows the difference between Cn and Eu. As 

can be se en the difference between them remains almost constants when scaling. 

Three polymers (LaRC-SI, epoxy and polyethylene) were chosen to see the polymer 

effect on the axial Young' s modulus and the axial Poisson' s ratio of the fiber with a twist 
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angle of 20° (Figure 4.19 and 4.20, respectively). The elastic properties of these 

polymers were given in Table 4.2. From Figure 4.19, it can be seen that the polymer 

properties can have a major effect on the properties of the fiber. AlI three fibers have an 

En equal to 263 GPa at Step 1, but by adding the polymer at Step 2, the SWNT/epoxy 

fiber shows higher Young's modulus (129 GPa) comparing to the SWNTlLaRC-SI fiber 

(109 GPa) and the SWNT/polyethylene fiber (96 GPa). Based on Table 4.2, the epoxy 

has the highest Young's modulus between these polymers. However, because of the 

twist angle of the fiber (20°), these differences between the Young's modulus of the 

fibers with different polymers are more than the effect of the rule of mixture (Equation 

4.7). This fact will be clarified when comparing the effects of the twist angle and the 

polymer on the properties of the fiber. AIso, from Figure 4.20, the axial Poisson's ratio 

of the fiber increases with the addition of polymer. Since polyethylene has the highest 

Poisson's ratio (Table 4.2), the increase of the axial Poisson's ratio for 

SWNT/polyethylene is higher than the other two fibers. 

FinalIy, in Figure 4.21 the micro-fiber properties are compared to the published data 

[4,6,7]. Further details about the carbon nanotube fiber with a high concentration can be 

found in Section 2.7.1. The total volume fraction of 0.50 and a twist angle of 15° were 

considered for the model. Vigolo [4] has produced carbon nanotube fibers with a 

diameter of 35 !lm, a volume fraction of 0.5 and an average twist angle of 15° with a 

modulus of 40 GPa, while Wei [6] has made composite fibers with diameters between 5 

and 20 !lm and a SWNT volume fraction of 48%, and Baughman [7] has produced 

SWNT's fibers with a diameter of 50 !lm containing around 60% SWNTs by weight. 

4.12 Discussions 

From Figure 4.6, it was clear that even for small twist angles «20°) the axial Young's 

modulus drops dramaticalIy. Therefore, in order to maintain high stiffness of the SWNT 

crystal s, the alignment of the fibers are crucial. However, as mentioned before, this 

alignment has negative effect on the load transfer efficiency between the tubes. The 

volume fraction has also an important effect on the fiber modulus reduction. As 

explained previously, a volume fraction of 70% was considered for each scaling step; 

therefore, by considering the addition of the polymer to the model twice, the overall 
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volume fraction of SWNT in the fiber becomes 49%. In order to understand the relative 

importance of the addition ofpolymer and the twist angle on the axial Young's modulus, 

Figure 4.22 shows the En drop when scaling from nanoscale (SWNT) to the microscale 

(micro-fiber) considering both the polymer effect and the twist angle effect for three 

different twist angles. For the twist angle of zero, it is obvious that this drop is only due 

to adding the polymer to the fiber. However, for the twist angle of 20°, only 15% of the 

modulus drop is due to the addition of the polymer, and twist angle has a major effect 

(85%) on the modulus reduction. It was also shown that the transverse properties remain 

constant for twist angles less than 15°. Moreover, it was shown that the polymer 

properties can have an important effect on the elastic properties of the SWNT/polymer 

fiber. For instance, En of SWNT/epoxy is 32% higher compared to the 

SWNT/polyethylene for a twist angle of 20°. The modulus comparison between the 

model developed here and the data of the carbon nanotube/polymer fiber (Figure 4.21) 

demonstrates the appropriateness of our model to predict the elastic properties of carbon 

nanotube/polymer fiber. However, our model predicts the modulus relatively higher than 

the practical results. This could be due to the local defects in the experimental fibers, 

partial load transfer between tubes instead of complete load transferred considered in our 

model, and also uncertainty in the type and the diameter of carbon nanotube in the 

literature since the carbon nanotubes with different diameter have quite different 

properties (Figure 2.36). 
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Table 4.1 

Properties of (5,5) SWNT array 

En * 580 GPa 

E22 = E33 * 9.4 GPa 
* 0.18 V12 = VJ3 

* 0.90 V23 

G12=GJ3t 17.2 GPa 

G2/ 2.47 GPa 
*Based on Popov [24] 

tBased on Salvetat et al [75] 

t Not an independent parameter (See Appendix II). 

Table 4.2 

Elastic properties of polymers 

Polymer E(GPa) G(GPa) v 

Epoxy [82] 7.20 2.64 0.36 

Polyethylene [82] 2.55 0.91 0.41 

LaRe-SI [69] 3.80 1.36 0.40 
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Table 4.3 

Scaling effect on elastic constants 

An~le En En V12 V23 G12 G 23 K23 

0° 580 9.39 0.18 0.9 17.2 2.47 47.5 

~~ 10° 417 10.21 0.25 0.89 20.87 2.7 47.34 
I. .... ~ 

; 1:: Q 20° 264 13.35 0.31 0.85 31.08 3.61 47.31 
1 ~ ~ oc. ... 30° 192 20.64 0.33 0.76 45.46 5.85 48.65 = 0 00 

l:'iS -Z~ 40° 151 34.17 0.33 0.63 60.15 10.48 53.46 

50° 118 57.17 0.32 0.47 70.28 19.51 65.32 

- 0° 459 7.86 0.23 0.82 6.99 2.16 22.15 
~ e 10° 330 8.34 0.28 0.81 7.51 2.31 22.12 
~ 20° 209 10.01 0.33 0.76 8.49 2.84 22.12 
0 ____ 

~ ..... 
'-' 30° 152 13.1 0.35 0.69 9.27 3.88 22.36 ~ 

c. 
120 0.6 c. 40° 16.98 0.35 9.75 5.31 23.17 

< 
50° 94 20.8 0.33 0.53 9.97 6.79 24.81 

0° 459 7.86 0.22 0.82 6.99 2.16 22.15 
~ ri.! -~ 

10° 221 8.6 0.33 0.8 9.64 2.39 22.11 
·i t ~ 20° 109 11.24 0.36 0.72 13.17 3.26 22.37 

1 ~ ~ oc. ... 
30° 70 15.77 0.36 0.6 15.56 4.92 23.34 = 0 00 l:'iS _ 

z~ 40° 50 21.06 0.35 0.48 16.63 7.11 25.29 

50° 38 25.92 0.34 0.38 16 9.36 28.17 

- 0° 363 6.9 0.26 0.77 4.46 1.95 15.32 
~ e 10° 175 7.37 0.34 0.75 5.35 2.11 15.3 
~ 20° 87 8.9 0.37 0.68 6.24 2.64 15.4 o ____ 
~~ 

30° 56 11.12 0.37 0.59 6.71 3.49 15.78 ~ c. 
c. 40° 41 13.19 0.36 0.52 6.9 4.35 16.5 < 

50° 31 14.7 0.35 0.46 6.79 5.03 17.47 

0° 363.48 6.9 0.26 0.77 4.46 1.95 15.32 

- ri.! 10° 127.38 7.51 0.36 0.74 6.44 2.16 15.32 ~ ~ 
,.Q .... ~ 
'-=1:: 20° 56.91 9.52 0.37 0.65 7.9 2.89 15.6 1 ~ c-o c. ~ 

30° 35.39 - 0'" 12.27 0.36 0.53 8.35 4 16.3 .S:! _ 00 

~~ 40° 25.84 14.69 0.35 0.44 8.16 5.11 17.35 

50° 20.44 16.27 0.34 0.37 7.53 5.92 18.49 
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Figure 4.1 Self similar modeling of a twisted array of carbon nanotube/polymer fiber. 
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Figure 4.2 a) Dimension b) Number of SWNT for carbon nanotube/polymer fiber [79]. 
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Figure 4.4 Hexagonal packing of a carbon nanotube array with different parameters 

used to define the model [75]. 

MATRIX FIBER 

Figure 4.5 Geometry of self-consistent model [80]. 
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Figure 4.6 Longitudinal Young's modulus of a LaRC-SIISWNT fiber as a function of 
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Figure 4.7 Transverse Young's modulus of a LaRC-SI/SWNT fiber as a function of 

twist angle. 
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Figure 4.8 Axial Poisson' s ratio of a LaRC-SIISWNT fiber as a function of twist angle. 
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Figure 4.9 Transverse Poisson's ratio of a LaRC-SIISWNT fiber as a function of twist 

angle. 
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Figure 4.10 Axial shear modulus of a LaRC-SI/SWNT fiber as a function of twist angle. 
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Figure 4.11 Transverse shear modulus of a LaRC-SI/SWNT fiber as a function of twist 
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Figure 4.12 Transverse bulk modulus of a LaRC-SIISWNT fiber as a function of twist 

angle. 
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Figure 4.13 Scaling effect on the axial Young's modulus of LaRC-SIISWNT fiber for 

different twist angles. 
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Figure 4.14 Scaling effect on the transverse Poisson's ratio of LaRC-SIISWNT fiber for 
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Figure 4.15 Scaling effect on the axial Poisson's ratio of LaRC-SI/SWNT fiber for 

different twist angles. 
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Figure 4.16 Scaling effect on the transverse Young' s modulus of LaRC-SIISWNT fiber 

for different twist angles. 
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Figure 4.17 Effect of scaling on elastic constants of LaRC-SIISWNT fiber with a twist 
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Figure 4.18 Scaling effect on both Eu and Cu of LaRC-SIISWNT fiber with twist angle 

of20°. 
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Figure 4.20 Effeet of the different polymers on the axial Poisson's ratio. 
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Figure 4.21 Comparison between En predieted by the self similar analysis and 
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drop when scaling. 
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Chapter 5 

Twisted SWNT/polymer Composite 

In this chapter, the elastic properties of the polymer composites reinforced with twisted 

carbon nanotube fibers are determined by using traditional micromechanics (Mori­

Tanaka method [69, 85]). Here, the effects of different parameters such as the degree of 

the alignment, the twist angle and the volume fraction of the fiber on the polymer 

composite properties are examined. 

5.1 Micromechanics 

In order to determine the elastic properties of the twisted carbon nanotube fiber/ polymer 

composite, the Mori-Tanaka method [69, 85] was used. This method has been 

successfully applied to transversely-isotropic inclusions by Qui and Weng [69,86]. With 

this method, the elastic stiffness tensor of the composite is given by [69]: 

(5.1) 

where 1J is the fiber volume fraction, 1 is the identity tensor, Cm and d are the stiffness 

tensors of the matrix and the fiber, respectively, and" is the dilute mechanical strain 

concentration tensor for the fiber, given by: 

(5.2) 

where the tensor S is Eshelby's tensor given by Eshelby [87] and Mura [83]. In Equation 

5.1, the terms enclosed brackets represent the average of the term over aIl orientations 

defined by the transformation from the local fiber coordinates to the global composite 

coordinate system. In this work, only two general cases were examined, perfectly 

random and perfectly aligned cases. However, the properties of the fiber with a specific 

amount of the alignment can be found using a statistical method [69]. F or the case of 

unidirectionally aligned fibers, the orientation averaging in Equation 5.1 is not necessary, 

and the resulting elastic stiffness components of the composite have orthotropic 
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symmetry. For three-dimensional random fibers, the orientation average oftensor, A, is 

[88]: 

(5.3) 

where i, j, m, n = 1, 2, 3; the indicial summation convention is used, and Ji} is the 

Kronecker delta, and: 

1 
K=9"A;ijJ 

As can be seen from these equations, (A) is isotropie. 

(5.4) 

(5.5) 

The Eshelby's tensor, S, depends on the form of the fiber and derivation details can be 

found in [83,87]. Table 5.1 gives the tensor S for an ellipsoid inclusion [84] used to 

model the fibers. In this Table, s is the fiber aspect ratio, and v is the matrix Poisson's 

ratio, while h Q, R, T, h are given by: 

Q= 3 
8(1-v) 

R = _1_-_2_v_ 
8(I-v) 

T=Q 4-311 

3(S2 -1) 

(5,6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

lOI 



lt is worth mentioning that the last column of Table 5.1 gives the S matrix for an infinite 

cylindrical fiber, and is determined by letting s-oo for the ellipsoid fiber. 

5.2 ResuIts 

Here, the results for the composite made of the LaRC-SI polymer and the twisted SWNT 

arrays are given for the two general cases (completely random and completely aligned). 

The method to obtain the elastic properties of the SWNT arrays is given in Chapter 3. 

Figure 5.1 shows the effect of the aspect ratio of twisted carbon nanotube fibers with a 

volume fraction of 1 % on Young' s modulus for two different twist angles of 0° and 10°. 

As can be seen here for the aligned case (zero twist angle), very short fibers (aspect 

ratios<25) have considerably lower modulus. Moreover, it seems clear that composites 

made of SWNT arrays with a twist angle of 0° have a Young' s modulus 20% higher 

compared to arrays with a twist angle of 10°. Also, for a twist angle of 0°, an aspect ratio 

of 200 is required to reach the point where further increase in the aspect ratio does not 

significantly change the Young' s modulus. An aspect ratio of 100 is sufficient for the 

case with a twist angle of 10°. For the random case, the effect of the aspect ratio is 

negligible with the aspect ratio of 50 and higher. In summary, ev en for a smaIl volume 

fraction of SWNT (1 %) the modulus of the random case is almost half of the aligned case 

for both twist angles. These results show the importance of the alignment of the carbon 

nanotube fibers in the polymer. 

Table 5.2 gives elastic constants of the composite made of the aligned and random 

SWNT fibers. For the aligned case, while En increases with aspect ratio, Gn, G23 and Vl2 

remain almost constants. On the other hand, for the random case (isotropic composite), 

aIl three constants are weakly dependent to the aspect ratio of the fiber. For instance, a 

5% increase of the fiber shear modulus is observed when the aspect ratio changes from 

25 to 00. This proves that for the random case, the length of the carbon nanotube array is 

not very important compared to the aligned case. 

Figure 5.2 shows the effect of volume fraction on the axial Young's modulus of the 

composite reinforced by the aligned SWNT fiber with twist angles of 0° and 10° for two 

different aspect ratios (12 and 600). As can be seen here, in aIl cases, the moduli are a 
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linear function of the nanotube array volume fraction. For an aspect ratio of 12, both 0° 

and 10° fibers follow the same trend which proves that for low aspect ratios the twist 

angle does not have significant effect on the properties of the composites. On the other 

hand, for high aspect ratio Ell for the twist angle of 0° is about 20% higher compared to a 

twist angel of 10°. However, it is again worth mentioning that the value of the Ell for a 

twist angle of 0° could drop dramatically as a result of po or load transfer between the 

adjacent tubes. 

Figure 5.3 shows the shear moduli (G12 and G23) of the aligned case for SWNT 

arraylLaRC-SI composite with a twist angle of 10° versus the volume fraction where the 

array aspect ratio of 600. As expected, the transverse shear modulus (G23) remains 

almost constant for specified range of volume fractions (from 1.36 OPa for a volume 

fraction of 0% to 1.54 OPa for a volume fraction of 20%). This is because the aligned 

fibers cannot dramatically change the properties of the composite in the perpendicular 

direction. However, the axial shear modulus (G12) increases with the volume fraction. 

This is due to the fact that the fibers can bear load against the axial shearing (a 40% 

increase of the 0)2 was observed for a volume fraction of 20%). Moreover, the effect of 

the volume fraction on the shear modulus of random SWNT arraylLaRC-SI composite 

for two different twist angles (0° and 10°) were examined (Figure 5.3). A four-fold 

increase for a twist angle of 10° and a five-fold increase for a twist angle of 0° were 

observed with a volume fraction of 20%. These increases are significantly higher than 

the aligned case because of the isotropic behavior of the random case. Figure 5.4 shows 

the Poisson's ratio for the aligned and random cases versus the SWNT volume fraction 

for two different aspect ratios. While U)2 with an aspect ratio of 12 and U of random 

cases moderately decreases linearly with the volume fraction, U)2 with an aspect ratio of 

600 decreases considerably particularly at smaller volume fractions «10%). 

In Figures 5.5 and 5.6, the current model of a SWNT arraylLaRC-SI composite with a 

twist angle of 0° (parallel SWNT array) was compared with the constitutive model of 

individual nanotube-reinforced polymer composite of Odegard et al. [69] (Section 2.8.2). 

In Figure 5.5, the effect of aspect ratio on the Young' s modulus of the composite of both 

aligned and random dispersion of 1 % of SWNT is shown. The constitutive model 
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predicts higher modulus when compared to present model. This difference cornes from 

the fact that the properties of the SWNT arrays used in the present model are lower than 

the properties of the individual SWNT used by Odegard et al. (i.e. white the axial 

Young' s modulus of the SWNT array is 514 GPa, that of individual SWNT is about 850 

GPa). Figure 5.6 shows the effect of the volume fraction of SWNT on the Young's 

modulus of both models for both aligned and random cases. Similarly, the constitutive 

model predicts higher modulus for a specifie volume fraction. 

Here, as mentioned previously [89], it becomes possible to produce SWNT fibers with 

infinite length by applying a twist angle to the SWNT array. Therefore, in Figure 5.7 two 

models are compared by assuming that the current model consists of infinite SWNT 

arrays with a twist angle of 10° white the other model consists of individual SWNT with 

an aspect ratio of 65 as a practical value. As can be seen here, the constitutive model of 

Odegard et al. [69] predicts higher Young's modulus comparing to the current model (i.e. 

for a volume fraction of 7% their model is about 33% percent higher than the current 

model). This again can be explained by using the individual SWNT instead of the SWNT 

array. Moreover, as previously seen, even small twist angle significantly drops the 

modulus of the array. 

5.3 Conclusion 

As explained before, the composites reinforced with aligned SWNT arrays (zero twist 

angle) need higher aspect ratio to reach to the stable value of Young's modulus. 

Moreover, the composite reinforced by the aligned SWNT array shows higher modulus 

compared to the composite made of SWNT arrays with a twist angle of 10°. However, it 

is clear that in order to have perfect load transfer between the perfectly aligned tubes 

(zero twist angle), a length of at least 10,000 nm is necessary [32]; therefore, it can be 

predicted that the modulus of the composite made of fiber with a twist angle of 0° is 

lower than the predicted result shown in Figure 5.1. From Figure 5.1 it was shown that 

the alignment of the fiber can significantly increase the modulus of the composite. Also, 

for random SWNT array dispersion in the composite, it was shown that the length of the 

carbon nanotube array does not have a significant effect on the elastic properties of the 
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fiber. Moreover, it was shown that higher aspect ratio can cause higher drop in Poisson's 

ratio of the composite comparing the lower one. By comparing the current model and the 

constitutive model done by Odegard et al., it was shown that the former predicts higher 

modulus for the composite because of the higher elastic properties of SWNT compared to 

SWNT arrays. However, an important advantage of the current approach is the 

possibility of making infinite SWNT arrays due to the twist angle that provide additional 

load transfer and enable the assembly of discontinuous nanotubes. In summary, although 

the twist angle of 10° significantly reduces the Young's modulus of the array, from 

Figure 5.7 it was observed that these two models are still comparable due to the infinite 

length of the fiber of the current mode!. In practice, dispersing the individual carbon 

nanotubes into a polymer and aligning them are very difficult and is a huge obstacle in 

production of the carbon nanotube/polymer composite. However, in the CUITent model 

the twisted SWNT arrays are at least one order of magnitude larger in diameter compared 

to SWNT. Therefore, it is predicted that the process of dispersing of the SWNT arrays 

and specially aligning them could be more practica!. 
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Table 5.1 

Eshelby's constants for ellipsoid and infinite cylindrical inclusions [84]. 

Ellipsoid inclusion 
Infinite cylinder 

inclusion 

Sn 4Q +RI +2S2T 
3 3 

0 

S22 = S33 
3T 5-v 

Q+RII +-
8(1- v) 4 

S23 = S32 
Q 4T -1+4v 
--RI +-
3 1 3 8(1- v) 

S21 = S31 -RII -s2T 
v 

2(I-v) 

Sl2 = SI3 -RI3 -T 0 

Q T 3-4v 
S44 -+RI +-

3 1 4 2(1-v) 

8 55 = 8 66 
2R- RII _1+s2 T 1 

-
2 2 4 

Forother Si} 0 0 

Table 5.2 

Effect of the aspect ratio on the composite properties for a 

SWNT volume fraction of 1 % and a twist angle of 10°. 

SWNT Array Aligned Case Random Case 
Aspect Ratio G23 G12 \)12 En E G \) 

00 1.369 1.403 0.395 7.93 4.52 1.631 0.387 
250 1.369 1.403 0.395 7.84 4.51 1.625 0.387 
200 1.369 1.403 0.395 7.79 4.50 1.622 0.387 
150 1.369 1.403 0.395 7.71 4.48 1.616 0.387 
100 1.369 1.403 0.396 7.50 4.45 1.602 0.388 
50 1.369 1.403 0.396 6.78 4.32 1.553 0.390 
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Figure 5.1 Young's modulus ofa 1 % SWNT arraylLaRC-SI composite for both aligned 

and random dispersed SWNT array versus the array aspect ratio for twist angles of 0° and 

10°. 
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Figure 5.2 Axial Young's modulus of SWNT arraylLaRC-SI composite versus the 

SWNT volume fraction for twist angles of 0° and 10°. 
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Figure 5.3 Shear modulus of SWNT arraylLaRC-SI composite for both aligned and 
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Figure 5.4 Poisson's ratio of SWNT arraylLaRC-SI composite for both aligned and 

random dispersed SWNT array versus the SWNT volume fraction for a twist angle of 

10°. 
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Figure 5.5 Young's modulus of SWNT arraylLaRC-SI composite as a function of the 

aspect ratio for both aligned and random dispersed SWNT arrays with 0° twist angle and 

the SWNT volume fraction of 1 % and the comparison between this model and the 

constitutive model ofOdegard et al. [69]. 
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Figure 5.6 Axial Young's modulus of SWNTlLaRC-SI composite versus the SWNT 

volume fraction of both aligned and random SWNT arrays with 0° twist angle and the 

comparison between this model and the constitutive model ofOdegard et al. [69]. 
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Chapter 6 

Conclusion 

This work tried to investigate the elastic properties of carbon nanotube/polymer 

composites. In Chapter 3, a helical carbon nanotube fiber was modeled by using the 

finite element method. This model was compared with anisotropie elasticity presented in 

Section 2.8.1. These two models showed very good agreement. It was shown that strain 

energy was a very powerful method for computing the elastic constants of the model. 

Since the model is transversely isotropie, five sets of boundary conditions are enough to 

obtain the material stiffness moduli. It was also shown that the energy method was more 

accurate compared to the elasticity method, where it was supposed thatŒrll = o. Since 

each layer had a different twist angle, the layers tendency to slip from each other would 

induce a non-zeroŒrll (Figure 2.41). AIso, the results illustrate that the Young's modulus 

of carbon nanotube fibers decreases dramatically ev en for small twist angles (less than 

20°) without any contribution to the transverse properties as transverse properties remain 

constants for twist angles between 0° to 15°. 

In Chapter 4, it was shown that even for small twist angles «20°) the axial Young's 

modulus of a nanotube micro-fiber dropped dramatically. Therefore, in order to maintain 

high stiffness of SWNT arrays, the nanotube alignment of the fiber is essential. 

However, as mentioned before, this alignment has a negative effect on the load transfer 

efficiency between the tubes. While the entire drop in properties of the fiber with a twist 

angle of zero is caused by polymer addition, only 15 % of the modulus drop with a twist 

angle of 20° is due to the polymer addition while the other 85% is caused by the twist 

angle. It was also shown that the transverse properties of the micro-fiber remain constant 

for twist angles less than 15°. Finally, it was shown that the polymer properties can have 

an important effect on the elastic properties of the SWNT/polymer fiber. 

In Chapter 5, it was illustrated that the composites reinforced with aligned SWNT arrays 

(zero twist angle) need higher aspect ratio to reach to a constant value for the Young's 

modulus. Moreover, composites reinforced by the aligned SWNT arrays have higher 
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elastic modulus compared to composites made of SWNT arrays with a twist angle of 10°. 

However, in order to have perfect load transfer between the perfectly aligned tubes (zero 

twist angle), a length of at least 10,000 nm was necessary [21]; therefore, it is expected 

that the modulus of composites made of SWNT arrays with a twist angle of 0° is lower 

than the predicted result obtained from conventional micromechanics. AIso, for random 

SWNT array dispersions in the polymer, it was shown that the nanotube array length does 

not have a significant effect on the composite elastic properties. Moreover, by comparing 

the current model and the constitutive model done by Odegard et al., the latter predicted 

higher modulus for the composite because of higher elastic properties of individual 

SWNT compared to SWNT array. However, an important advantage of using twisted 

array of SWNT instead of individual SWNT was the possibility of making infinite 

SWNT arrays because of higher load transfer between tubes as a result of the twist angle. 

In summary, although the twist angle of 10° significantly reduced the array Young's 

modulus, it was observed that these two models were still comparable due to the infinite 

length of the fiber of the current model. 

In summary, the effect of the twist angle on the carbon nanotube/polymer fiber was 

examined. It became clear that small twist angles «20°) significantly reduced the axial 

modulus. Moreover, spanning three orders of magnitude from SWNT to SWNT/polymer 

fiber resulted in a significant drop of the properties depending on the volume fraction of 

the polymer and twist angle of the fiber. 

It is worth mentioning that while a ideal interaction or load transfer between the tubes 

and the polymer molecules was assumed in this work, further work similar to the work 

done by Odegard et al [67] is necessary to completely model this interaction. Another 

area open to further studies is the investigation of the effect of twist angle on the load 

transfer between tubes. While a preliminary model done by Qian [65] shows a 

significant increase on load transfer, more accurate models are necessary to obtain the 

optimum twist angle. 
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Appendix 1 

Carbon Atomic Structure 

Carbon has 6 electrons, 4 of the electrons are in its valence shell also called outershell 

(Figure Al.I). The circles in this figure show the energy levels, representing increasing 

distances from the nucleus. As can be se en here, carbon' s nucleus contains 6 protons and 

6 neutrons. This diagram is, however, a simplification and can be misleading. It gives the 

impression that the electrons are circling the nucleus in orbits like planets around the sun. 

Actually it is not possible to know exactly where the electrons are located. 

A more realistic representation of carbon atom is by using an energy level graph shown 

in Figure Al.2. Here we see carbon has six electrons represented by arrows (the 

direction of the arrow represents the electron spin). Two electrons are found in the ls 

orbital close to the nucleus. The next two will go into the 2s orbital. The remaining ones 

will be in two separate 2p orbitaIs. Therefore, electronic structure of a carbon atom is 

(ls/(2s/(2p/. This is because the p orbitais have the same energy and the electrons 

would rather be in separate orbitaIs. In general, when reacting, one of 2s electron jumps 

to 2pz. Thus, it would be possible for carbon to form 4 bonds. In diamond these four 

electrons makes four s/. However, in graphite these four electrons make three Sp2 while 

the remaining p (Pz) makes week van der Waals between graphite layers. The actual 

location of electrons cannot be determined with certainty and the electrons appear to be 

'smeared' into orbitaIs. 

Figure Al.I Electrons in a carbon atom. 
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Figure Al.2 Carbon energy level graph. 
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Appendix 2 

Relations between Elastic Constants 

Since both carbon nanotube crystals and twisted carbon nanotube/polymer fibers are 

orthotropic with transverse isotropy, five constants are enough to represent the fiber 

elastic behavior. Here, we summarize the relations between the engineering constants 

(Eu, E22=E33, G]2, V]2, V23= V32) and the elastic constants [79]. 

(A2.1) 

1 -V21 -V21 

ô= 
1 

1 
E II E;2 

-v12 
-V23 

-v12 -v23 1 

(A2.2) 

(A2.3) 

c - C _ 1- vl2 V21 
22 - 33 - ôE 2 

22 

(A2.4) 

(A2.S) 

(A2.6) 

(A2.7) 

(A2.8) 

As can be seen here, G23 is a function of other engineering constants. 
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