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ABSTRACT 

Reinforcement Learning is a class of methods for solving sequantial 

decision problems when the model of the environment is not known. In 

this framework, the agent must explore the environment to gather more 

information about the model and the utility of each of its actions, while 

striving to act as well as possible using limited knowledge. One of the major 

obstacles that prevent reinforcement learning from being extended to real­

life settings is the fact that the agent is blind to the risk of actions during 

learning, potentially ending up in catastrophic states. This thesis presents 

a model-based directed exploration method for selecting actions based on a 

measure of risk, characterized by entropy and expected immediate reward. 

The weighted combination of this risk measure and the long term utility 

of the action, or risk-adjusted utility, is used to determine the probability 

of different actions. Using this approach, agents can manifest risk-averse 

or risk-seeking behavior. Experimental results show that risk-directed 

exploration can result in better performance during learning than the 

standard Boltzmann action selection method, or other directed exploration 

methods such as counter-based and recency-based methods. 

iii 



ABRÉGÉ 

L'apprentissage par renforcement est une classe de méthodes utilisée 

pour résoudre des problèmes de décisions séquentielles dans un environ­

nement dont le modèle est inconnu. Dans ce cadre, l'agent doit explorer 

l'environnement pour accumuler plus d'information sur le modèle et la 

valeur de chaque action, tout en essayant d'agir de façon optimale à l'aide 

de ses connaissances acquises. Un des obstacles principaux qui nous empêche 

d'utiliser l'apprentissage par renforcement dans des situations réelles est le 

fait que l'agent n'est pas conscient des risques associés à ses actions pen­

dant l'apprentissage. L'agent se retrouve donc régulièrement dans des états 

catastrophiques. Cette mémoire présente une méthode de sélection d'actions 

pour poursuivre une exploration dirigée de modèles. Cette méthode est 

basée sur une mesure de risque caractérisée par l'entropie et l'espérance de 

la valeur immédiate des actions. La combinaison pesée de cette mesure de 

risque et de la valeur a long terme de chaque action, ou la valeur ajustée au 

risque, est utilisée pour déterminer la probabilité de choisir les différentes 

actions. En utilisant cette approche, l'agent peut démontrer un com­

portement averse envers le risque ou de recherche de risque. Des résultats 

expérimentaux montrent que l'exploration dirigée par le risque peut donner 

de meilleurs résultats lors de l'apprentissage que la méthode de sélection 

d'action Boltzmann standard, ou que d'autres méthodes d'exploration 

dirigée telles que les méthodes basées sur des compteurs ou les méthodes 

basées sur la récence. 
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CHAPTER 1 
Introduction 

Life is an error-making and an error-correcting process, and nature 
in marking man's papers will grade him for wisdom as measured 

both by survival and by the quality of life of those who survive. 
- Jonas Salk 

The creation of an intelligent agent that is able to carry out tasks 

autonomously requires major paradigm shifts in machine learning. First, 

instead of static environments, the agent typically operates in environments 

that are partially or completely unknown, uncertain, or changing. Second, 

the lack of prior knowledge about the environment means that having a 

provision of examples, as assumed in supervised learning, is not feasible. 

With limited knowledge and no teacher, the agent must continuously learn 

about the environment by selecting actions that are potentially suboptimal 

but informative (exploration), while at the same time, strive to behave 

optimally (exploitation). 

This form of online learning, particularly in hazardous environments, 

poses a unique challenge. With incomplete knowledge of the environment, 

how can the agent survive by avoiding actions that le ad to fatal conse­

quences? The importance of this question is revealed when we consider 

the nature of sorne current applications of artificial intelligence. Intelligent 

agents are increasingly used for tasks that humans would not or could 

not perform. For example, robots may be deployed to collect data on an 

unexplored planet, clean up toxic waste at a dis aster zone, and recover 

sunken objects from the deep sea. Artificial intelligence is used in medicine 

to make diagnosis, recommend short and long term treatment strategies, 
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or dynamically control biomedical devices. Evidently, in these examples 

of safety-critical systems, it is crucial for the system to be as conservative 

as possible, in order to minimize the risk of damaging expensive robotics 

machinery in the former case, and of undermining patient well-being in the 

latter. Bounding the overall risk of the system does not suffice, if the system 

is to be used in real time. The short term consequence of an action has to 

be weighted against the long term utilities of that action. 

1.1 Reinforcement Learning in Real-life Settings 

This thesis addresses the fundamental issue of self-preservation during 

online learning in uncertain environments within the context of reinforce­

ment learning. Reinforcement learning is a class of computational methods 

which allow agents to learn how to behave optimally in a given environment. 

The goal is to learn a way of selecting actions that maximizes the long term 

expected return. If the model of the environment is unknown, the agent 

learns by taking actions in the environment, observing the reward signaIs it 

receives, and updating the utilities of actions in different states based on this 

experience. Learning takes place over a pre-specified number of episodes. 

In a hazardous environment, each episode can end either when the agent 

reaches the goal, or when it encounters a fatal state. 

Several characteristics of reinforcement learning make it promising for 

autonomous agents. Few assumptions are made about the nature of the 

environment. This allows learning to take place in partially or completely 

unknown environments. Likewise, by allowing learning and execution to 

happen concurrently, the need for prior knowledge about the environment is 

eliminated. 

Recently, there has been a lot of interest in the research community to 

extend reinforcement learning to real-life settings. This attempt, however, 
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is faced with great challenges (Bulitko, 2004). One of the most problematic 

issues is that learning takes place over multiple reincarnations of the agent. 

In real life, reincarnation is rarely an option. A less extreme version of this 

issue was raised also in the 2002 AAAI Spring Symposium on safe learning 

agents and the 2004 AAAI fall workshop on real-life reinforcement learning 

in the form of the question - "How can we guarantee online performance of 

a system during learning?" This implies an implementation of an adaptive 

mechanism for avoiding risk during learning, which is essentially the focus of 

this thesis. 

1.2 Risk-Directed Exploration 

Survival is a delicate balancing act. In an unpredictable and poten­

tially hazardous environment, a single wrong choice of action may lead to 

fatal and irrecoverable consequences. The ability to assess the amount of 

immediate risk in any actions allows one to make minute-by-minute tradeoffs 

between attaining and abandoning a goal in order to ensure survival. In a 

hazardous environment, the question is not what to learn, but whether or 

not to learn (Kruusmaa, 1999). 

During the course of learning, the agent makes decisions about which 

action to choose, either to find out more about the environment or to take 

one step closer towards the goal. In reinforcement learning, techniques for 

selecting actions during the learning phase are called exploration methods. 

Most exploration methods are based on heuristics, and rely on statistics 

collected from sampling the environment. Their goal is to sample the state 

space efficiently. All of these exploration methods are blind to the risk of 

actions. 

In addressing the issue of self-preservation during learning, this thesis 

proposes a heuristic, model-based exploration method which selects actions 
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based on a measure of risk. This approach is different from previous work 

in that 1) a local, instead of global, measure of risk is used, and 2) the 

control of risk is do ne on a step-by-step basis during the learning phase. 

Our method also opens the possibility that the level of risk aversion of the 

agent can be customized or adjusted dynamically during the learning phase, 

although we do not explore this in detail in this thesis. 

This thesis is organized as follows: 

In Chapter 2, we provide an overview of the RL framework and 

methods for solving sequential decision problems. First, we introduce 

Markov Decision Pro cesses (MDP) and reinforcement learning. We discuss 

various methods for solving MDPs. Finally, we explain the exploration­

exploitation tradeoff, which arises naturally in the reinforcement learning 

framework, and review exploration methods that aim to address this 

tradeoff. 

Chapter 3 introduces the notion of risk by drawing insights from 

decision theory in economics, which offers an argument as to why the 

measure of risk can be use fuI in the valuation of a prospect. We also review 

previous works on the control of risk in reinforcement learning. 

Chapter 4 describes the model-based, risk-directed exploration method, 

which is the main contribution of this thesis. We provide a definition of risk, 

a justification for this definition, and an algorithm for incorporating risk 

sensitivity in the exploration process. 

Chapter 5 presents experimental results demonstrating the behaviour of 

agents using this exploration technique in different environments. 

Chapter 6 concludes the thesis by providing a review of the strengths 

and weaknesses of this approach, offering suggestions for future work. 
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CRAPTER 2 
Sequential Decision Making in U ncertain Environments 

In wisdom gathered over time, l have found that 
every experience is a form of exploration. 

- Ansel Adams 

Decision making in uncertain environments is inherently risky. Actions 

often le ad to many possible outcomes, sorne of which may have fatal 

consequences. The utility of an action towards a long term goal is unknown, 

and must be estimated by trial and error. Reinforeement Learning is a 

method for solving the sequential decision problems when a model of the 

environment is not known. Renee, the problem of risk arises naturally in 

this framework. This chapter provides a detailed review of reinforeement 

learning, the exploration-exploitation dilemma and existing solutions for 

addressing it. 

2.1 Markov Decision Processes 

Markov Decision Proeesses (MDP) (Bellman, 1957) are used to model 

sequential decision making. Formally, a finite MDP can be represented by 

the tuple {S, A, P, R}, where S is a discrete finite set of states in the envi-

ronment, A is a discrete finite set of available or permissible actions within 

the environment, P is a matrix consisting of the probabilities of transition-

ing from state s to state s' given that action a is taken, specifically, 
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and R is the matrix containing the expected reward associated with the 

transition, where 

In this model, the state representation retains the relevant past history. 

Hence, the system has the Markov property - the next state and reward can 

be predicted given only the current state and action. 

The goal of a decision problem is to find a way of choosing actions 

which maximizes a measure of performance. In this case, the measure of 

performance is the long term expected reward, i.e. E[Lr~o ~/rt], where T' 

is the number of decision epochs for a finite horizon problem. In an infinite 

horizon problem, T' = 00 and "( is a discounting factor which bounds the 

sum by weighting less rewards that are received further in the future. A 

policy (Puterman, 1994) 7r is a strategy for selecting actions, where 7r(s, a) 

is the probability of taking action a in state s under policy 7r (Sutton and 

Barto, 1998). 

Markov Decision Processes provide a general framework for modeling 

sequential decisions. Their flexibility lies in the fact that actions, state tran-

sitions, and rewards can be either deterministic or stochastic, and hence a 

variety of environments can be represented. In addition, this representation 

lends itself well to divide-and-conquer solutions. Specifically, the problem of 

finding an optimal policy can be decomposed into subproblems of finding, 

for all states, the optimal utility value of the state s, or the optimal utility 

value of each action a taken at that state. The state utility value represents 

the expected return when starting in state s, following 7r, i.e. 

00 

Vn(s) = En[Rtlst = s] = En[L "(krt+k+llst = s] 
k=O 
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where the return Rt is the sum of reward from time t to the end of the 

episode. Similarly, the action utility value represents the expected return of 

starting from state s, taking action a and following rr thereafter, i.e. 

00 

Q7r(s, a) = E7r[Rtlst = s, at = a] = E7r [L "'/rt+k+llst = s, at = a] 
k=O 

The optimal policy rr* is defined as a policy which has the best value at 

aIl states: 

The question that remains is how to compute V 7r* (s) for each state. 

Bellman (Bellman, 1957) showed that the utility value of astate can be 

rewritten in terms of values of its successor states i.e., 

00 

E7r[L~/rt+k+llst = s] 
k=O 

00 

E7r [rt+l + "Y L "Yk (rt+k+2I st = s)] 
k=O 

00 

L rr(s, a) L P:s,(R~s' + "YE7r[L "Ykrt+k+2Ist+1 = Si]) 
a ~ k=O 

- L rr(s, a) L psas,(R~s' + "YV7r(S')) 
a s' 

(2.1) 

Following the same rationale, the optimal utility value of a state or a 

state-action pair can be written as follows: 

max Q7r* (s, a) 
aEAs 

max L P:S, (R~s' + "Y V 7r
* ( Si) ) 

aEAs s' 
(2.2) 
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where S' represents a possible next state given an action a is taken in 

state s. The Bellman optimality equations form a system of N equations, 

where N is the number of states. If the entire model is known, i.e. the P 

and R matrices are available, then the system of equations can be solved 

using dynamic programming. The result of this computation is the optimal 

value function, which attains V1T
* (s) for each state or Q1T* (s, a) for each 

state-action pair. Given the optimal value function, the optimal behavior 

in an environment is to select at each state the action with the highest long 

term utility. 

2.1.1 Methods for Solving MDPs 

The recursive structure of the Bellman equation makes dynamic 

programming a suit able method for solving Markov Decision Processes, if 

the complete model is known. Dynamic programming relies on the fact that 

the optimal policy can be broken down and iteratively reconstructed from 

individual optimal policies of the subproblems involving the last stage of 

the computation, the last two stages, the last three stages, and so on, until 

the entire policy is constructed. This has been called a backward induction 

method (Puterman, 1994). The dynamic programming method, however, 

has a major drawback in that it cannot be applied directly when the model 

of the Markov Decision Process, i.e. the state transition matrix P and the 

reward matrix R, are unknown. Reinforcement learning provides algorithms 

for solving Markov Decision Processes when the model is not known. 

One approach is to colle ct statistics from the environment in or der 

to build a model of the MDP, and use this model to compute the optimal 

policy for the MDP. Specifically, if n(s/ls, a) is the number of times state 

s' is encountered when action a is performed in state s, and n(s, a) is 
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Figure 2-1: Reinforcement learning framework 

the number of times action a is performed in state s, then the transition 

probabilities can be estimated as 

pa, = n(s'Is, a) 
ss n(s, a) 

Likewise, the reward for each transitioncan be estimated as 

""n(s'Is,a) Ra _ L.Ji=O 'i 
ss' - n(s'Is, a) 

where 'i is the ith sample of the reward observed for the particular 

transition. 

Another approach is to learn the value function directly. A class of 

solutions known as temporal difference (TD) learning estimates the values of 

astate based on the immediate rewards and the estimated values of the next 

states, without using an explicit model of the environment. For example, 

TD(O), the simplest temporal difference method, updates the value estimate 

by moving it towards a new sample estimate as follows, 

Q-Iearning (Watkins and Dayan, 1992) and Sarsa (Sutton and Barto, 

1998) are two examples of TD-based control algorithms. Instead of esti­

mating the utility values of states, these methods use TD-style updates 
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to estimate the utility values of state-action pairs. At every time step, 

the agent selects an action based on the current state, observes the next 

state and the associated reward, and updates the action value function. In 

Q-learning, the action value is updated with the value estimate of the best 

possible action in the next state, even if that action is not taken in the next 

time step, i.e. 

Because of this property, Q-learning is termed an off-policy algorithm 

and is essentially optimistic. Theoretical analysis proves that action values 

will converge to the optimal action-value function Qrr* with probability 1 

given that each action is executed infinitely often in each state, and if an 

appropriate schedule for decreasing the learning rate 0: is chosen (Watkins 

and Dayan, 1992). 

In contrast, Sarsa performs the action-value update using an estimate 

based on the action that is actually taken in the next time step, i.e. 

In other words, Sarsa is an on-policy method and results in more 

pessimistic behavior than Q-learning. Both Q-learning and Sarsa are 

considered model-free or direct methods because no explicit model of the 

environment is built during learning. 

For both model-based and model-free methods, efficient exploration 

is an indispensible part of learning. In order to learn an accurate value 

function, the agent must try different actions to learn about their utility 

values. Simply adhering to doing what is known to be best, without 
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having explored the environment widely, usually results in behavior that is 

suboptimal. 

2.2 The Exploration-Exploitation Dilemma 

The study of the tradeoff between exploration and exploitation dates 

back to 1960 when Feldbaum (Feldbaum, 1960) first introduced dual control 

theory. The idea is that any controller, when placed in an environment 

with unknown parameters, has two confiicting goals - to perform control 

according to the best estimated parameters, Le. exploitation of existing 

knowledge, or to probe the environment to derive more accurate parameters 

for better control, requiring exploration of unvisited states. 

The exploration-exploitation problem is a central theme in the research 

on the k-armed bandit problem (Berry and Fristedt, 1985), which is the 

simplest possible reinforcement learning problem. The words k-armed 

bandit refer to a slot-machine with k arms. A decision maker is given an 

opportunity to have a fixed number of pulls on any of the k independent 

arms. There is a payoff generated according to an unknown underlying 

probability distribution unique for each arm. No cost is incurred except for 

the waste of a pull. Sorne arms are better than others in that they deliver 

higher expected reward. 

Since knowledge of the statistics of each arm can only be obtained 

through trial and error, the decision maker must strike a balance between 

choosing the best arm according to his currently limited knowledge, and 

choosing another arm in or der to verify or correct his current model of 

the machine. The question is how much the agent should explore, i.e. at 

which point he should stop probing the system and choose the best arm in 

order to maximize his reward. Sorne formaI theories of exploration for the 

k-armed bandit problem include Gittins Allocation Indices (Gittins, 1998), 
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Learning Automata (Narendra and Thathachar, 1989) and the dynamic 

programming approach (Berry and Fristedt, 1985), the details of which will 

not be discussed here. 

Solving MDPs using reinforcement learning is also in part the problem 

of optimizing the exploration-exploitation tradeoff. In Q-learning and 

Sarsa, for example, it is not advantageous for the agent to always select 

the best known action during the learning phase. The reason is that the 

agent can only select the best action based on what it knows, which is 

limited when the model is largely unknown at the beginning of learning. 

To improve its behavior, the agent should attempt other actions, even at 

the cost of incurring negative rewards, in order to acquire a more complete 

and accurate model. Exploration and exploitation are mutually dependent 

(Thrun, 1992b). In order for the cost of exploration to be minimized, 

exploitation is needed; in order for exploitation to reap the most benefit 

by taking place in the most relevant part of the state space, exploration is 

needed. Learning is most efficient when there is an optimal balance between 

exploration and exploitation such that the cost incurred is minimal and the 

reward gained in the long run is maximal. 

2.2.1 Undirected verus Directed Exploration Methods 

During learning, the agent must select actions whose consequences are 

unknown in order to learn about their effects. The action selection policy 

that decides exactly which of these unknown actions to explore is called an 

exploration policy. 

The simplest strategy to steer from always picking the best known 

action is to select an action randomly at least sometimes. The action 

selection policy called E-greedy, for example, selects the action with the 

best expected utility with probability 1 - E and selects actions uniformly 
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randomly with probability é. Sorne variants of this strategy set é to a large 

value at the beginning of the learning trial to encourage exploration, and 

decay é over time. 

The softmax action selection policy improves upon é-greedy by selecting 

actions with probability weighted according to their action values, using a 

Boltzmann or Gibbs distribution. At any given time step t and state s, it 

chooses action at with probability 

The temperature parameter T controls whether actions are chosen greedily, 

as T -+ 0, or almost uniformly randomly, when T »0. 

These strategies are undirected in that they do not explicitly distinguish 

which states are worth visiting or which actions are worth performing. At 

the beginning of learning, undirected exploration essentially reduces to a 

random walk. Its complexity is proven, in the worst case, to be exponential 

in the number of steps needed to reach goal state (Whitehead 91). In 

the case of softmax, the strategy relies on expected utility as an accurate 

measure of the goodness of an action. This assumption can be problematic 

if the expected utilities of the competing actions are very close, or if the 

expected utility is still inaccurate due to insufficient sampling of the state 

space. 

There has been considerable research on developing exploration 

methods that lead to efficient sampling of the state space. By efficient, it 

is meant that there should be sufficient, yet non-redundant, coverage of the 

state space such that an accurate estimate of the optimal value function 

is derived with as little computation as possible. Relying more on choice 

than chance, these so-called directed exploration methods exploit statistics 
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gathered in the environment to discriminate between unknown states, in 

or der to determine their potential in revealing useful information. Besides 

the few theoretical approaches, e.g. E3 (Kearns and Singh, 2002) and R­

Max (Brafman and Tennenholtz, 2002), most directed exploration methods, 

including the one presented in this thesis, are based on heuristics. 

The central question in efficient exploration is - which states or actions 

are interesting, informative and thus worth exploring? The idea is that the 

probability of visiting (or revisiting) a state or state-action pair should be 

proportional to a heuristic measure indicating how interesting or informative 

they are. At any time step, an action is selected greedily to maximize the 

expected utility plus an exploration bonus, Le. Q(s, a) + 6(s, a). What 

the exploration bonus represents ultimately depends on the answer to the 

central question posed, and varies among different lines of research. The 

recency-based approach, for example, suggests that states that are visited 

least recently (Sutton, 1990) are likely to contain useful information. Yet 

other approaches propose to visit states that are visited least frequently 

(Thrun, 1992a; Sato et al., 1988), or to perform actions which have the 

greatest variation in their utility estimates (Thrun and Moller, 1992; 

Schmidhuber, 1991; Moore, 1990), or the highest variance in the possible 

outcomes (Meuleau and Bourgine, 1999; Kaelbling, 1993). We now present 

these ide as in more detail. 

2.2.2 Exploration Statistics and Bonuses 

In this section, we review the choice and computation of exploration 

bonuses for different classes of directed exploration methods. 

Based on the rationale that the least visited states contain information 

that is yet unknown to the agent, the counter-based method (Thrun, 1992a; 

Sato et al., 1988) keeps a count of how many times each state or state-action 
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pair has been tried, and selects an action which has been attempted the 

least frequently. In (Thrun, 1992a), for example, 

C(s) 
6(s, a) = Eleis, aJ 

where c(s) is the number of times astate has be visited, and 

Eleis, aJ = L P:SIC(S') 
Si 

is the expected value of the count over the possible next states s', given that 

an action a is executed in state s. In other words, given similar Q values, 

the counter-based exploration bonus induces a preference for the action 

that leads, on average, to a next state that is visited the least often. One 

drawback of the counter-based method (Thrun, 1992a) is that the number 

of visits to astate cannot always be assumed to present a measure of the 

accuracy of the model. The reason is that the difficulty of learning the value 

function is not homogeneous across the state space. In sorne regions of the 

state space, the values are easy to learn, so a few visits suffice, while other 

regions may require substantial revisiting. In addition, the counter-based 

method does not take into account the recency of events. 

The recency-based method (Sutton, 1990), in contrast, is based on 

the premise that if astate has not been visited recently, there is more 

uncertainty about that state due to a possibly changing environment, and 

hence, the state should be revisited. The exploration bonus here is 

8(s, a) = EJn(s, a) 

where n(s, a) is the number of time steps that have elapsed since action a 

was executed in state s. 
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lnstead of equating the uncertainty of astate to the amount of en­

counters the agent has with that state, the error-based method (Thrun 

and Moller, 1992; Schmidhuber, 1991; Moore, 1990) selects actions that 

are associated with the greatest change in the utility estimation of V (s) or 

Q(8, a) observed in the pasto 

In variance-based methods, the exploration bonus is based on second­

order statistics about the outcomes of a given action, such as the variance or 

standard deviation. This idea originated from the Interval Estimation (lE) 

method (Kaelbling, 1993) for the bandit problem. In lE, two statistics are 

collected for each action: w, which is the number of successes of taking the 

action, indicated by the receipt of a positive reward, and n, the number of 

times the action has been tried. From these statistics, a confidence interval 

of the success probability Pa of receiving a positive reward is computed 

for each action. The algorithm chooses the action that has the highest 

upper bound of the confidence interval of this success probability. The 

upper bounds are initially optimistic, and tighten as more experiences are 

gathered. The upper bound can remain high for two reasons. Either the 

action has an accurate utility estimate, or the action has not been tried 

often enough. Rence, the result is an exploration policy which exploits by 

choosing actions with the highest expected utility, or explores by choosing 

actions that have not been adaquately sampled. Building on lE, the IEQL 

algorithm presented in (Meuleau and Bourgine, 1999) uses an exploration 

bonus that describes the degree of local uncertainty. This exploration bonus 

is added to reward and backpropagated by TD learning to derive a global 

measure of the bonus. The reason given is that a global measure is able to 

handle certain environments that are normally misleading if a local measure 

is used. The same technique is used by (Sutton, 1990) in deriving a global 
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measure of recency. This dichotomy between local and global measures of 

exploration bonuses is described in further detail in (Wilson, 1996). 

2.2.3 Model-Based Approaches 

A different strand of research in exploration methods, induding the 

new algorithm presented in this thesis, are model-based (Christiansen et al., 

1991; Dayan and Sejnowski, 1996; Dearden et al., 1999). One advantage 

of the model-based approach is that more specific information about the 

transition probabilities and rewards can be used to distinguish between 

actions. For example, Ratitch et al. (Ratitch and Precup, 2003) propose a 

method for guiding exploration using a combination of two characteristics of 

MDPs - state transition entropy and for ward controllability. State transition 

entropy (STE) measures the amount of stochasticity in the environment, i.e. 

STE(s,a) = - L P:s,logP:S, 
s'ES 

and forward controllability (FC) measures how much the agent's actions 

actually impact the trajectories that the agent follows, and is computed 

from state transition entropy and its conditional form, i.e. 

FC(s, a) = L P:s,C(s') 
s'ES 

where 

C( ) = H(Os) - H(OsIAs) 
S H(Os) 

H(O ) = - """" (EaEA P:s') l (EaEA P:s') 
s s7-:s lAI og lAI 

H(OsIAs) = L I~I L P:S,logP:s' 
aEA s'ES 

where Os E S is a random variable that represents the outcome of a uni­

formly random action in state s and As is an action chosen from a uniform 

distribution. The exploration bonus is, then, a weighted combination of 
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these two measures. In visiting actions with high state transition entropy 

and forward controllability, it is shown experimentally that more different 

states will be encountered, which consequently leads to a more homogenous 

exploration of the state space. 

Sorne model-based exploration methods take the Bayesian approach 

(Wyatt, 2001; Dearden et al., 1999). Bayeisan exploration (Dearden et al., 

1999) exploits ideas from information theory. Their algorithm estimates 

the benefit of exploring astate by assessing the agent's uncertainty about 

its current value estimates for that state. This is done by noting the 

difference between the value estimates produced by the current model and 

the true value estimate derived from a distribution of possible models. In 

this framework, the value of information of a state-action pair is high if 

the knowledge of the true value estimate changes the agent's policy in a 

significant way, i.e. when an action previously considered suboptimal is 

now considered the best choice, or when an action previously thought of as 

best is actually inferior. This method is computationally expensive, when 

compared to the online computation of exploration bonuses using a model, 

as proposed by (Ratitch and Precup, 2003). 

To reiterate, learning a model online and using it to compute a bonus 

for guiding exploration has two major advantages. First, exploration 

bonuses are computationally cheap to compute. Second, the exploration 

bonus based on a model is a richer representation of the probabilistic 

charcteristics of actions, which in sorne cases, allows actions to be better 

distinguished. The model-based exploration method presented in this thesis 

is in part based on this rationale. 
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CHAPTER 3 
Reflection on Risk 

To make a mistake is only hum an; to persist in a mistake is idiotie. 
- Cicero 106BC-43BC 

During exploration, it is crucial for a policy to seek out informative 

states by selecting actions that lead to them. In an uncertain environment, 

however, the effects of actions are not known and can be potentially 

catastrophic. Despite the information they may reveal, actions may not 

always be worth taking. It is important to ask how much risk the agent 

should be allowed to tolerate for any particular piece of information. This 

chapter is intended to bring to light sorne intuition about the concept of 

risk and risk attitude, and to review the literature on risk in reinforcement 

learning. 

3.1 Decisions under Risk 

Decisions are said to be made under uncertainty or risk when there is 

ignorance about the data due to the lack of perfect or complete information 

(Taha, 1992). Despite their connections, deeisions under risk and decisions 

under uncertainty are distinguished by economists as two different categories 

of decision making situations. In decisions under risk, an agent that is faced 

with a set of actions, whose effects are unknown but can be represented 

in terms of a probability distribution of outcomes. In decisions under 

uncertainty, no assumptions about the probability distribution of out cornes 

can be made. 

In the context of decisions under risk, actions are essentially equivalent 

to lotteries, where a lottery li is a set of outcomes 0i, each of which occurs 
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with probability Pi and is associated with a specifie reward ri. Consider 

the example in Figure 3-1. How would an agent choose between the three 

lotteries? One way is to select the lottery li which has the highest expected 

reward value EV(li) 
n 

EV(li) = LPiri 
i=l 

where n is the number of possible outcomes in the lottery. Under this 

criterion, the agent should choose lottery l3' 

o . 33 --0 2500 0.25 ~ 2400 

...:::::::= 
0.61 -0 0 

<::::::::. 
0.15 -0 -300 

(a) Lottery h (b) Lottery 12 

...---03000 
<:::::0.95 

0.05 --0 -20 

(c) Lottery 13 

Figure 3-1: Actions as lotteries 

In this framework, there are many ways to define the risk of an action. 

Intuitively, risk implies the possibility of loss. Thus, risk can be defined as 

the probability of an event with negative consequences. In Figure 3-1, for 

example, lottery l2 may be se en as the most risky because it has the highest 

probability of leading to the most negative outcome. 

Risk is also related to the stochasticity of the out come of an action. An 

action that leads to a sure gain has zero risk. In contrast, an action that 

leads to many possible outcomes has high risk because its effects are less 

predictable. Consider the example shown in Figure 3-2 where two actions 

have the same expected reward, but different distributions of stochastic 

outcomes. Action a2 leads to four possible outcomes, two of which occur 

with probability 0.20 and give rewards of 210 and 190 respectively, and two 

others which occur with probability 0.30 and give a reward of 0.33. Action 

al leads to two outcomes, a reward of 300 with probability 0.2 and a reward 

of 50 with probability 0.8. While the utility of the two actions are equal in 
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terms of expected value, al is deemed less risky than a2 because in addition 

to generally higher reward, there are fewer possible out cornes and thus the 

effects of the action are more predictable. 

--D 300 

<-0.2 

0.8 -0 50 

(a) Action al 

~210 

~
0.2 f"\ 

-----'.....J :190 
0.2 

0.3 --0 33.3 

0.3 

"'0 33.3 

(b) Action a2 

Figure 3-2: The stochasticity effect 

These examples illustrate the fact that expected value is incapable of 

fully capturing and distinguishing the probabilistic characteristics of each 

action. Therefore, an alternative measure such as risk may be useful in the 

valuation of prospects in a decision. 

3.2 Risk Attitude and the Avoidance of Danger 

In 1738, Bernouilli introduced the famous St. Petersburg Paradox which 

suggests that the perceived value of a monetary reward is not necessarily 

equal to the amount of reward itself, but sorne other function of it. To 

explain the St. Petersburg Paradox, imagine the following bet where the 

player has to guess how many tosses of a coin are needed before it turns 

up heads. A player pays a fixed initial amount, and receives $2n if the coin 

cornes up heads on the nth toss. The expected value of the gain is 

111 
2(2) + 4(4) + 8(8) + ... = 1 + 1 + 1... = 00 

Although the gain is infinite, there are few people who would be willing 

to paya large upfront sum on this bet. This leads to the idea that the 

utility fun ct ion is a subjective measure, which can mathematically represent 
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different individuals' preferences over lotteries. The rational behavior, under 

the maximum expected utility (MEU) princip le (Neuneier and Mihatsch, 

2002), is to select the lottery li which has the highest expected utility value 

n 

EU(li) = LPiu(ri) 
i=l 

According to the MEU principle, a person is risk-neutral if the utility 

function is linear, Le. ul/(r) = 0, risk-averse if the utility function is 

concave, i.e. ul/(r) < 0, and risk-seeking if the utility function is convex, Le. 

ul/(r) > O. These utility functions are depicted in Figure 3-3. 

. u(r) u(r) u(r) 

Risk Averse Risk Reutra1 Risk Seeking 

r r 

Figure 3-3: The shape of the utility function and risk attitude 

The risk attitude of an agent can be explained by how much the agent 

is willing to pay for a certain gamble. If a certain lottery yields expected 

utility q, then a fair bet would be an amount that is equal to q. In other 

words, the agent should be indifferent towards the lottery which yields an 

expected amount of q and having q for certain. This amount q is called the 

certainty equivalent of the lottery. 

According to the Jensen Inequality, a concave function has the property 

u(E[r]) <= E[u(r)]). This suggests that due to diminishing return, the 

utility of the expected utility is in fact less than the expected utility itself. 
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An agent with this utility function will be less willing to pay the amount q 

in the gamble. In other words, the certainty equivalent of the lottery is less 

than the expected utility. The agent is considered risk-averse. A comparable 

argument can be made for using a convex function to characterize risk-

seeking attitude. 

In control theory, some studies have attempted to transform the cu-

mulative return by a non-linear utility function and optimize policies based 

on this transformed criterion (Howard and Matheson, 1972; Hernandez­

Hernandez and Marcus, 1966; Koenig and Simmons, 1994). A prevalent 

choice of non-linear utility function is the exponential function, since it has 

certain properties that make the problem feasible to solve using dynamic 

programming (Pratt, 1964; Howard and Matheson, 1972). However, in gen­

eral, most non-linear utility functions violate Jensen inequality, specifically, 

00 00 

u(L: "/rt) =1 L: "/u(rt) 
t=û t=O 

in a infinite horizon sequential decision problem. As a result, the use of 

subjective utility does not lend itself easily to dynamic programming or 

model-free reinforcement learning methods such as TD(O) or Q-Iearning 

(Heger, 1994). 

3.3 Consideration of Risk in Reinforcement Learning 

The attitude of the agent towards risk can be exploited for the purpose 

of avoiding danger in other ways. In some domains where the safety of the 

agent is particularly important, for example in robotics where equipments 

are expensive, some researchers have added to the control system explicit 

reflex behavior (Milan, 1996) or domain knowledge (Singh et al., 1994). In 

(Singh et al., 1994), actions are no longer primitive but themselves closed­

loop policies for avoiding collision. Experimental results (Singh et al., 1994) 
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for two navigation tasks show that learning with actions that have no built­

in domain knowledge took 2000 times more trials to reach the same level 

of performance and crashed into waUs more than 200 times. This type of 

formulation, evidently, requires the use of strict conditions and very specific 

do main knowledge, which may not be possible or available in every scenario. 

The use of prior knowledge also diminishes the autonomy of the agent. 

Risk-averse behavior can be induced by many other methods, e.g. by 

solving an objective function that is penalized by the variance of the return 

(Sato and Kobayashi, 2000), by updating the value function based on a pes­

simistic estimate (Reger, 1994; Gaskett, 2003), minimizing the probability of 

entering fatal states (Geibel, 2001), or transforming the temporal differences 

to more heavily weight events that are unexpectedly bad (Neuneier and 

Mihatsch, 2002). AU of the above methods use direct learning. Although 

there is an underlying probability distribution for the MDP, the transition 

probabilities and rewards are not explictly available. Therefore, these meth­

ods faU under the category of decision under uncerlainty. Risk here refers 

to cost or, in an implicit sense, the possibility of the occurrence of negative 

events. 

3.3.1 Transforming Temporal Difference 

Neuneier and Mihatsch (Neuneier and Mihatsch, 2002) proposes a 

risk-sensitive control framework that shares the same limiting behavior as 

the exponential utility approach, but which is also adequate for learning. 

Their approach is to transform the temporal differences by overweighing 

transitions to sucessor states where the immediate return happens to be 

sm aller than in the average, and underweighing transitions to sucessor states 

where the immediate return happens to be larger than in the average. 
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where xl>: is a weighting function such that 

{ 

(1-K,)x ifx>O 
Xl>: : x 1--7 

(1 + K,)x otherwise. 

and K, E (-1, 1) is a scalar parameter for specifying the desired risk 

attitude. When K, = 0, the update rule is the same as the standard Q-

learning update rule, and the policy is risk neutral . When K, ---+ 1, the 

policy is risk-averse. The reason can be illustrated by the following example. 

If rt+! > 0 and the action values of the current state Qt(St, at) and next 

state Qt(St+l' at+!) are both positive, then this update rule will underweigh 

rt+! and the maxa'EA. Qt(St+!, a'), and overweigh the Qt(St, at) term. On 

the other hand, if rt+! < 0 and the action values for both states are both 

negative, the update rule will overweigh rt+! and the maxa'EA. Qt(St+l' at+!) , 

and underweigh the Qt(St, at) term. This is equivalent to saying that the 

agent is pessimistic about the positive rewards, and at the same time, over-

emphasizes the negative rewards received in the next state. Under similar 

logic, the policy is risk-seeking when K, ---+ -1. 

The risk parameter K, needs to be chosen carefully in order to facilitate 

learning in any given environment. One suggestion (Neuneier and Mihatsch, 

2002) is to set K, to a small value until the algorithm converges, and then 

increase K, for subsequent runs. This suggests that the agent should be 

risk-seeking at the beginning of learning in order to gather information, and 

then become increasingly risk-averse as the amount of information increases. 

In allowing for risk-averse and risk-seeking attitude at different times during 
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learning, the agent is given the flexibility to exhibit a range of behavior 

depending on the current context. 

3.3.2 Risk as Variance 

In finance, Markowitz portfolio theory (Markowitz, 1952) suggests 

that the risk of individual investments can be measured by considering the 

deviation of individual investments from the me an of the portfolio return, 

i.e. variance. Several works in control theory study the use of mean-variance 

analysis to solve this problem and attempt to maximize the variance­

penalized reward (Filar et al., 1989; Huang and K allenb erg , 1994; Sobel, 

1982; White, 1992; White, 1994). An example of the expected value-variance 

criterion is given by (Taha, 1992) as 

max E[R] - ),var[R] 

where R is the cumulative return, and), is a pre-specified constant known 

as the risk aversion factor, which indicates how much variance is weighted. 

Weighting the variance by a large), implies that the agent is sensitive 

to large reductions in reward below E[R] (Taha, 1992). An equivalent 

formulation for TD learning is provided by (Sato and Kobayashi, 2000). 

There are limitations to the approach to use variance as a measure of 

risk. First, the fat tails of the distribution are not accounted for. Conse­

quently, risk can be underestimated due to the ignorance of low probability, 

but highly severe events. Second, variance penalizes both positive and 

negative risk equally and does not distinguish between the two. Finally, 

this measure is not consistent with the expected utility approach, unless 

returns are normally distributed or the utility function is quadratic. The 

Markowitz model of risk has been "incorrectly applied to many cases in 

which risk cannot be described by variance, dependence cannot be measured 
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by linear correlation coefficient, and utility function does not even dream to 

be quadratic" (Szego, 2004). 

3.3.3 Bounding Risk by Pessimism 

Intuitively, risk can be minimized during learning if the agent is 

completely pessimistic about the outcomes of the actions. Reger (Reger, 

1994) presented a variant of Q-learning called Q-learning which follows the 

so called maximin criterion, under which action values are updated with the 

best of the worst outcomes of the next state, i.e. 

The Q value is essentially a lower bound on value. The policy that is 

learned is risk-averse and can be considered optimal under the assumption 

that the minimax criterion is accepted as a valid basis for rationality. This 

criterion is called minimax when the action value refers to cost instead of 

gain. The generally lower action values mean that the agent will see most 

states as worse than they really are and act in a risk-averse way. 

Q-learning and the minimax criterion are use fui when the avoidance of 

risk is imperative. Rowever, Gaskett tested Q-learning in a stochastic cliff 

world environment, under the condition that actions are picked greedily, and 

found that Q-learning demonstrated extreme pessimism which can be more 

injurious than beneficial. For example, the agent learns to jump off the cliff 

from the start square to avoid the higher cost of taking a few steps before 

the cliff fall accident occurs (Gaskett, 2003). Under a different condition, 

where actions are selected E-greedily, Q-learning found a risky path which 

follows very close to the edge of the cliff. Gaskett's criticism of Q-learning is 

that the pessimistic behavior derived from the minimax criterion is suitable 

only in adversial games, but inappropriate for other problems. In general, 
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the minimax criterion is too restrictive as it takes into account severe but 

extremely rare events which may never occur (N euneier and Mihatsch, 

2002). 

To avoid extreme pessimism, ct-Hurwicz criterion provides a way for 

interpolating between extreme pessimism and extreme optimism using a 

weighting parameter ct E [0,1] The criterion is given in (Taha, 1992) as 

The most optimistic behavior is produced when ct = 1 since actions are 

chosen according to maxai maxSj Q(Sj,ai). In contrast, the most pessimistic 

condition is produced when ct = 0 sin ce actions are chosen according to 

maxai minsj Q(Sj, ai), which is equivalent to the maximin criterion. In other 

words, the maximin criterion is a special case of Hurwicz ct-criterion where 

ct = o. A range of behavior moderated between optimishm and pessimism 

can be produced by the intermediate ct values. 

~-pessimistic Q-Iearning (Gaskett, 2003) is based on this criterion, 

where the action values are updated as follows, 

Note that setting ~ to 0 or 1 renders the equation into the standard 

Q-Iearning or the minimax algorithm respectively. Experimental results 

show that when ~ = 0.5, the algorithm reaches the same level of pessimism 

as Q-Iearning, although the agent manages to reach the goal state in sorne 

cases, unlike in Q-Iearning. 

3.3.4 Risk as Probability of Fatal Event 

Geibel (Geibel, 2001) defines risk by equating it to the probability 

of entering a fatal state, where a fatal state refers to a terminal state 
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that marks the end of a learning epsiode. This definition arises from 

the recognition that not only the magnitude, but also the probability of 

extreme events with high negative cost needs to be bounded. The proposed 

algorithm aims to find an optimal policy under which this probability is 

smaller than some threshold value. In particular, p1r (s ), the probability of 

the agent ending up in a fatal state when starting in state sand following 

policy 7r, should be bounded by W E [0,1]. States with the property of 

p1r (s) < w are called safe states. A risk-minimal policy is one that possesses 

the maximum set of safe states possible. The algorithm solves a constrained 

MDP, deriving at the same time a value maximal policy and a risk minimal 

policy. 

p1r (s) is in fact not a probability in the standard sense, but defined 

(Geibel, 2001) as the expected value of the accumulated cost 

00 

p1r (s) = EL Ti 
i=O 

where T is a cost indicator function that equals 1 when a fatal state 

is entered, and 0 otherwise. Sinee the probability of entering a fatal state 

depend on action, the corresponding probability of entering a fatal state for 

a state-action pair is defined as 

a1r (s, a) = L P:SIP1r(S') 
Si 

At a given time step, the algorithm updates Qt+1(st,at) and af+l(St,at) 

and computes the a-penalized action value 

Since actions with different action and a values can have the same U).. 

value, actions are chosen according to the (1,2)-lexicographical ordering 
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of (Ut\I(S, a),Qt+I(S, a),O"t+l(S, a)). Vnder this ordering, an action al in a 

given state S is preferred over another action a2 if U>'(s, ad ~ u>'(s, a2) and 

if this holds, Q(s, al) > Q(s, a2). 

In the beginning, À is set to 0 so that a near risk-minimal policy can 

be learned. Subsequently, À is increased by E until the number of safe states 

begins to decrease. Vnder this scheme, optimal Q-values can incrementally 

exert more influence without compromising the number of safe states. 

In contrast with the strategy proposed by Neuneier and Mihatsch, this 

approach suggests that the agent should be risk adverse from the onset, Le. 

until a maximum number of safe states is reached, and become risk-seeking 

thereafter. 
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4.1 Intuition 

CHAPTER 4 
Directed-Exploration using a Risk Measure 

True genius resides in the capacity for evaluation of 
uncertain, hazardous, and confiicting information. 

- Winston Churchill (1874-1965) 

Common to many of the works reviewed in the previous section is 

the fact that risk-averse behavior is induced by transforming the action 

values. There are several reasons why this may not be desirable. First, if 

the action values are updated based on a conservative criterion, the policy 

may be overly pessimistic. Second, the worst thing that can happen to an 

agent in an environment may have high utility in the long term, but fatal 

consequences in the short term. Attention should be paid to both the short 

term consequences and long term utilities of actions. Third, the distortion 

of the action values means that the true long term utility of the actions are 

lost. Ideally, we would like an exploration method to react to immediate 

risk by manifesting different risk attitudes, while leaving the action values 

untouched. 

With a model-based approach, the problem of decisions under uncer-

tainty turns into decisions under risk, as the probabilities and rewards of 

the action outcomes are available. As seen in Chapter 3, different measures 

of immediate risk can be derived from these statistics, and computing an 

exploration bonus online is also computationally cheap. 

Motivated by the above reasons, this thesis presents a new model-based 

directed exploration method that selects actions using an exploration bonus 
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that is based on risk. In this section, we will present the algoirthrn in detail 

and an analysis about how the algorithrn is expected to behave under 

different conditions. 

4.2 The Risk Measure 

A risky action generally irnplies that the action rnay lead to a negative 

event, or that the effects of the action are uncertain. The risk rneasure in 

this algorithrn, which is a variant based on the definition proposed by (Yang 

and Qiu, 2005), incorporates these two intuitions that characterize risk. 

Risk Measure 4.2.1 Given a state, the measure of risk for a parlicular 

action is the weighted sum of the entropy and normalized expected reward of 

that action. This dejinition is adopted from (Yang and Qiu, 2005). 

Risk(s,a) = ÀHa(s) - (1- À) E[Rrk1Ra li 
maxaEAs 8S' 

where 

E[R~s'] = Ls' P:S,R~s' 

The definition consists of an entropy terrn, describing the stochastic-

ity of the out cornes of a given action in a given state, and a norrnalized 

expected reward terrn, describing the relative negativity of the possible 

out cornes of that action. These two terrns are weighed with the pararneter À. 

4.3 Algorithrn 

The risk rneasure of an action is cornbined with the action value to forrn 

the risk-adjusted utility of an action, i.e. 

Ur(s, a) = p * (1- Risk(s, a)) + (1 - p) * Q(s, a) 

where p E [0,1]. The first terrn rneasures the safety value of an action, 

while the second terrn rneasures the long terrn utility of that action. The 
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parameter p, which we will caU from now on the p-value, provides a way to 

interpolate between paying attention to the long term utility of an action, 

when p - 0, and paying attention to safety, when p - 1. In this thesis, the 

p-value is fixed at a pre-defined level. 

To adjust the prob ab ilit y of an action being selected based on its 

riskiness, the risk-adjusted utility of an action is then substituted into the 

Boltzmann function instead of the Q-values, i.e. 

Ur(s,a) e-r-
1T(S, a) = n UrCs,b) 

Eb=l e-r-

As the p-value increases, the Boltzmann action selection rule selects the 

action with higher risk with exceedingly lower probability. In other words, 

the p-value controls the relative risk aversion of the agent. 

In the Sarsa (Figure 4-1) and Q-learning framework, the risk value of 

each action is computed from a model of the MDP, which is either given 

or learned online. The risk and action value of the action is then used to 

construct the risk-adjusted utility which is used in the Boltzmann function 

to pro duce the probability of selecting that action. For Q-learning, the 

algorithm is the same except that the update rule is different. 

Initialize Q(s, a) = 0, n(s) = 0, n(s, a) = ° Vs Va 
Repeat (for each episode): 

Initialize St; n(st) f- n(st) + 1 
Choose at from St using Boltzmann with Ur(St, at) 
Repeat (for each step of episode): 

Execute action at, observe rt+! and St+!; n(st, at) f- n(st, at) + 1 
Choose aHI from St+! using Boltzmann with Ur(SHI, aHI) 
Qt+!(St, at) f- Qt(St, at) + a[rHI + 1'Qt(SHl' aHI) - Qt(St, at)] 
Update Risk(st, at) and Ur(St, at) using the collected statistics 
St f- SHI; at f- at+1 

Until St is terminal 

Figure 4-1: Risk-directed exploration in Sarsa 
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4.4 Analysis 

4.4.1 Effects of Risk on Probability of Action Selection 

One question is how the riskiness of an action affects its probability of 

being picked. The answer can be established experimentally by considering 

the following hypothetical state with two actions, al and a2. The action 

value of a2 is 0, while the action value of al is varied from -1 to 1. The fig-

ure below shows the probability, computed by the risk-adjusted Boltzmann 

function, of al being selected as the action value varies. This plot is done for 

the standard case where only the action value is used in the Boltzmann dis-

tribution, or where risk-adjusted utilities with various p-values, i.e. p = 0.0, 

p = 0.2, p = 0.4, p = 0.6, p = 0.8, p = La, are used. In this experiment, 

Risk(al) = Risk(a2) and the temperature parameter is 0.05. Note that 

p = 0.0 is equivalent to the standard Boltzmann, and hence the curves for 

both are overlapping. 

o .• 

o .• 

0.7 

o .• 
. ~ 

Probabtlrty as a VarIation of a-Values 

1o51--------1--------1 
~ 

o .• 

0.3 

0.2 

0.1 

-p_o 
- p.O.2 

p .. O.4 
~ p-O.6 
._ .. p.O.8 
-p_1.0 
-softmax 

~,~_~0 .• ~~~.~~~.~-O.2~70~0~.2~0~.~0 .• ~0~.~ 
O-Value 

Figure 4-2: Different trends in the probability of selecting action al for risk-directed 
exploration with different p-values 

Figure 4-2 shows that for the standard Boltzmann exploration, al 

has increasingly higher probability of being selected when its action value 

surpasses that of a2 at 0, and lower probability of being selected when its 
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action value faUs below O. The probability curve is sigmoid-shaped. A sim­

ilar trend is observed for the Boltzmann probability that uses risk-adjusted 

utilities, although the curves become flatter as the p-value increases, i.e. as 

the risk term is increasingly overweighted. At p = 1.0, the risk measure 

completely dominates the risk-adjusted utility value. Sinee the two actions 

have the same risk, they are picked with equal probability at aU times. 

For the intermediate p-values, there are two observations. As the p­

value increases, the probability of al is lowered. A greater differenee in the 

predicted value is required in order for al to be preferred. This is analogous 

to risk-averse behavior. However, it is also true that unless its value is very 

bad, al still has sorne probability of being chosen. This is due to the fact 

that the safety term in the risk-adjusted utilities can be positive even for 

risky actions. As a result, it can potentiaUy raise the risk-adjusted utilities 

of both good and bad actions, causing the bad actions to be selected more 

often than desirable. Sorne suggestions for transforming the Boltzmann 

probability function are provided in the conclusion of this thesis as future 

work. 

What if al has a different value of risk than a2? The probability of 

selecting al when the risk value of al is higher than a2 by 0.1, 0.3, 0.5, 

0.7 are plotted in Figure 4-3. The value of a2 is 0 at aU times, while the 

value of al is varied from -1 to 1. Within each plot in 4-3, the general 

trend indueed by intermediate p-values is still observed, i.e. the higher the 

p-values, the flatter the curve. In addition, the more the risk value of al 

increases, the higher the predicted value has to be in or der for al to be 

selected. Furthermore, the greater the p-value, the more drasticaUy the 

action selection probability is depressed as the differenee of the risk values 

between al and a2 becomes larger. 
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Figure 4-3: The probability of selecting action al when the risk values of the two 
actions differ by varying amounts 

A second, more realistic, scenario is that al and a2 are both initialized 

with value equal to O. The value of al, the good action, approches 1 

while that of a2, the bad action, approaches -1. Figure 4-4 shows how the 

probability of selecting al varies. The figure below shows three scenarios 

where Risk(al)=O.6 and Risk(a2)=OA (Figure 4-4(a)), Risk(al)=OA and 

Risk(a2)=O.6 (Figure 4-4(b)), Risk(al)=Risk(a2)=O.5 (Figure 4-4(c)). 

When al has higher risk than a2, its probability of being selected is 

lowered using the risk-adjusted Boltzmann function. On the other hand, 

when al has lower risk than a2, depending on the level of risk aversion 

induced by the intermediate p-values, its probability of being selected is high 
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Figure 4-4: The probability of selecting action al for two actions with diverging action 
values under different risk conditions 

even when Q( ad = Q( a2) = O. This means that the using risk-adjusted 

utility, the Boltzmann action selection rule would always select the action 

with lower risk with much higher probability. 

4.4.2 Effects of Varying À 

What is the contribution of entropy and reward in the various situa­

tions? In order to test the effects of varying À, we test the performance of 

the algorithm under conditions where only the entropy term or the normal­

ized expected reward term dominates the risk measure, or the two terms 

exert equal influence in the equation. In order to do that, we must set up an 

environment where the entropy is not uniform throughout the environment. 
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This may include the presence of obstacles, or local "slippery" regions. One 

such environment is shown in figure 4-5. In this environment, actions lead 

to deterministic outcomes everywhere except for the cells marked white. In 

this experiment, a fixed model is assumed. 

Figure 4-5: Slippery world 

Figure 4-6 shows the policy learned using À = 1.0 (Figure 4-6(a)), 

where the entropy term completely dominates the risk measure, and À = 0.0 

(Figure 4-6(b)), where the normalized expected reward dominates. The cliff 

is marked by red cells, the slippery regions by blue cells, the st art state by 

the yellow cell and the goal state by the letter G. 

At À = 1.0, when the risk measure is represented by entropy only, the 

learned policy prefers to stay far away from the slippery region. In contrast, 

at À = 0.0, when the risk measure is represented by normalized expected 

reward only, the learned policy yields a path around the slippery region that 

is much closer than that for À = 1.0. The policy for the slippery region 

does not distinguish between the four actions, probably because the slippery 

region is not visited at aH during the learning phase. 

At À = 0.5 (Figure 4-6(c)), the policy learned yields a path that is 

directed away from the cliff and the slippery region, similar to À = 1.0. 

It can be observed, however, that the risk aversion is more tentative for 
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(a) À = 1 (b) À = 0 

(c) À=0.5 (d) Boltzmann 

Figure 4-6: Policy learned using Boltzmann with action values versus risk-adjusted 
utilities of varying À 

>. = 0.5. This is possibly because part of the slippery region and the 

surrounding area has been visited during learning, and hence a definite 

action is learned for those states. In constrast, for>. = 1.0 and>' = 0.0, sorne 

states have been avoided entirely during learning, as a result, many actions 

share equal utility and are not distinguished. 

In contrast, the standard Boltzmann action selection method (Figure 

4-6( d)) results in a policy that follows the short est path to the goal, less 

concerned with the risk associated with the slippery region and the cliff. 

The preferred path seems to stay away from the cliff by one column, but 

straight through the slippery region. 
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4.5 Mult-Step Risk 

Multi-step risk measure, e.g. two-step risk measure Ri8kII (8, a), can be 

used to evaluate an action, i.e. 

R · kII( ) 'HII() ( ) EII[R~s,l ~8 8, a = /\ a 8 - 1 - À 1 EII [Ra li 
maxaEA ss' 

where 

H~I(8) = Ha(8) + LPsas~Ha.(8') 
s' 

where a* is chosen to maximize Q(8', a'). 

By evaluating an action based on its riskiness over two steps instead 

of one, the agent is given the advantage to looking ahead in order to avoid 

states so close to the fatal states that slight stochasticity in the environment 

may get the agent there. 
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CHAPTER 5 
Experiments 

The risk-directed exploration method provides a framework in which 

the probability of an action being selected is adjusted depending on a 

weighted combination of its riskiness and utility. This chapter presents the 

results of experiments that investigate four major questions: (1) How do 

different weighted combinat ions of riskiness and utility, determined by the 

p-value, affect learning performance and the quality of the learned policy? 

(2) Is the performance of the algorithm somewhat preserved when the model 

is learned online? (3) How does the performance of the algorithm vary in 

different environments? (4) How does the performance of the risk-directed 

exploration method compare to that of other directed exploration methods, 

specifically the recency-based and counter-based methods? 

5.1 Environments and Parameter Settings 

An environment typically used in reinforcement learning to evaluate the 

sensitivity of algorithms to risk is the cliff world. In this environment, the 

objective of the agent is to travel from the st art to the goal state without 

falling off the cliff. The close-by-cliff world and far-away-cliff world are 

two examples of such environments (Figure 5-1), and will be used in the 

experiments. 

Different configurations of the cliffs in the environment render some 

directed exploration methods better than others. In environments where the 

goal can be easily reached without visiting the risky regions at aIl, the risk-

directed exploration method has a obvious advantage over the recency-based 

and counter based methods. The recency-based method tends to direct the 
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(a) Close-by-cliff world (b) Far-away-cliff world 

Figure 5-1: Environments 

agent to less recently visited parts of the state space. In the case of the 

far-away-clifJ world, this is where the cliffs are located. This cost is incurred 

unnecessarily, since the goal is within a short reach from the agent's starting 

position along a clear path. Using risk-directed exploration, however, the 

agent should learn to avoid the far away cliff region after only a few visits 

there. The conjecture that the risk-directed exploration method outperforms 

the recency-based and counter-based methods in these environments will be 

investigated experimentally. 

In both worlds, the set of states is represented by the possible coordi­

nates of the agent in terms of the row and column where the agent may be 

located. In a grid world with 20 by 20 tiles, the total number of states is 

400. The terminal states include the location where the goal or the cheese 

is found, and the location of the cliffs. The agents are allowed four actions, 

i.e. A={up, left, right and down}. However, due to the constraints of the 

boundaries of the grid, the set of permissible actions As in each state may 

be smaller than A. With probability 0.8 that the agent will enter a state as 

intended, and with probability 0.2 it will slip into the neighboring cells of 

the intended destination. Finally, the reward for reaching the goal is + 1, the 

penalties for falling off a cliff -1, and the reward for all other states is O. 
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In our experiments, the performance of the algorithm is characterized 

by six measures: (a) the training score in terms of cumulative reward 

averaged (b) the testing score in terms of cumulative reward averaged 

(c) % of termination by cliff faU during learning (d) % of termination 

by reaching the goal during learning (e) the life span during training, in 

terms of the number of time steps elapsed until termination (f) in the 

case where the model is learned online, the amount of model error during 

training, measured by the averaged L1 distance between the learned and 

true transition probabilities and rewards for each state-action pairs in the 

model. The experiment is run over 100 episodes and aU results are averaged 

over 20 runs. Optimized for performance, the parameters a = 0.25, À = 0.5 

(except for the experiment investigating the effects of varying >.), and 

T = 0.05 are used for aU experiments. The constants used in the counter­

based and recency-based methods are both 400. In aU experiments, the 

two-step risk measure is used. It has been shown in (Law et al., 2005) that 

risk-directed exploration using the two-step risk measure pro duces results 

that are comparable to TD(>') where À = 0.7, in terms of the percentage of 

cliff faU during training. Furthermore, evaluating actions using the two-step 

risk measure provides the agent with lookahead, which further accentuates 

the effects of risk aversion. 

5.2 Results 

In the analysis of the results, we compare the performance of the 

algorithm under different conditions, for example, given a fixed versus 

learned model of risk, various p-values, close-by-cliff world versus the 

far-away-cliff world as the environment. 

The exploration methods are tested in the context of both Q-learning 

and Sarsa. The comparison of the performance of the exploration method 
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under Q-Iearning and Sarsa refiects the well-established fact that Q-

learning generally yields steeper curves and higher end scores compared to 

Sarsa. Aside from this distinction, the results for Q-Iearning and Sarsa are 

qualitatively similar. Sarsa, which updates the action values based on the 

actions that the agent actually takes, is more realistic than Q-Iearning, and 

therefore, will be the focus in this analysis of results. All equivalent results 

for Q-Iearning can be found in the Appendix A and B. 

5.2.1 Varying p-values 

Figure 5-2 highlights the online learning behavior of the algorithm 

using different values of p and a fixed, a priori model. 
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Figure 5-2: Close-by-cliff world: training score of Sarsa using fixed model 

At P = 1, the agent only considers immediate risk in selecting an action. 

The training score shows a fiat landscape, indicating that the agent wanders 

indefinitely (averaging 40000 time steps each episode, as shown in Figure 

5-3( e)) until sorne stochasticity in the environment makes it fall off the 

cliff. Figure 5-3 shows that at p = 1, the agent's life terminates by cliff faU 

approximately 70% of the time during training (Figure 5-3(c)). The testing 

score, however, indicates that the agent learned a relatively good policy for 
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reaching the goal even for p = 1. This may be due to the significantly higher 

amount of sampling due to the long life span (approximately 35000 steps). 
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Figure 5-3: Close-by-cliff world: performance of Sarsa using fixed model 
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On the other end of spectrum, at p = 0, the agent only considers expected 

utilities in selecting an action. This is equivalent to the standard Boltzman 

exploration method. As clearly illustrated, the results for softmax and 

risk-directed exploration with p = 0 are qualitatively similar. The mid­

range p-values outperform p-values in the extremes. In particular, under 

intermediate p-values, the training scores of risk-directed exploration are 

higher from the very beginning. This suggests that if the model of risk 

is perfectly known, the information contained in the model is capable of 

directing the agent towards a safe (low risk) path around the cliff, thereby 

reaching the goal more often. More complex risk averse behavior can be 

observed (Law et al., 2005) when the agent is placed in a complex cliff world 

with multiple cliffs and goals. 

5.2.2 Fixed versus Learned Model 

In order for the algorithm to be useful, it must be capable of learning 

the risk model online. Sinee an incorrect model is learned at the beginning 

and becomes more accurate only slowly through experienee, the performance 

of the algorithm is generally lower than when given the fixed model. In fact, 

it takes twice as many trials for the algorithm to reach the same training 

score (Figure 5-4) using the learned model than using the fixed model. In 

addition, the testing score (Figure 5-5) for risk-directed exploration using 

the learned model is significantly worse than when the fixed model is used. 

The model error (Figure 5-6) is computed over the course of the 

learning phase. It is observed that the model error is highest for p = 1.0 

and p = 0.0, and lowest for the intermediate p-values. The model error for 

p = 1.0 is high possibly because the action values are not taken into account 

during the exploration. As a result, the agent consistently revisits the same 

states and updates the statistics for those states accurately, while completely 
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Figure 5-5: Close-by-cliff world: testing scores of Sarsa using fixed versus learned model 

ignoring other states. For p = 0.0, the reason for the higher model error 

is possibly the fact that the agent has a much shorter life span, thus less 

sampling, due to the comparatively higher number of cliff falls. 
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Figure 5-6: Close-by-cliff world: model error during training 

One final note is that the deterioration of performance for using a 

learned model is not nearly as marked for the same experiments done using 

Q-Iearning. In fact, both the training and testing score for Q-Iearning 

(Figure 5-7) and risk-directed exploration using the learned model remain 

superior to that of using Boltzmann exploration based only on action values. 

5.2.3 Structure of Environment 

Sorne qualitative differences in performance can be observed if we 

consider the far-away cliff world instead. Whereas in the close-by-cliff world, 

the policy learned by our algorithm can be worse than Boltzmann (Figure 

5-5), in the far-away-cliff world, the policy is consistently better than 

Boltzmann (Figure 5-8) using both fixed and learned models. 

In general, the training and testing scores for the far-away-cliff world 

are much higher than for the close-by-cliff world (Figure 5-9). 

These results can be explained by the fact that in the close-by-cliff 

world, the agent has a higher probability of falling off the cliff due to 

environmental stochasticity. In contrast, in the far-away-cliff world, the 

agent is able to avoid the cliff almost entirely by going straight to the goal. 
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Figure 5-7: Close-by-cliff world: performance of Q-Learning using fixed versus learned 
model 

5.2.4 Comparison of Directed Exploration Methods 

The following set of experimental results (Figure 5-10,5-11,5-12, 

5-13) compare the performance of the risk-directed exploration method 

and that of the recency-based, counter-based, and standard Boltzmann 

exploration using just action values in different environments and using a 

fixed versus learned model. In general, recency-based and counter-based 

exploration yield higher training scores, but lower testing scores, than 

Botzmann exploration based on action values. The training and testing 

score of risk-directed exploration using p = 0.6 is consistently higher than 

recency-based, counter-based and standard Boltzmann, except for the case 
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Figure 5-8: Far-away-cliff world: performance of Sarsa using fixed versus learned model 

where the learned model is used in the close-by-cliff world. This improved 

learning performance can be explained by the fact that the percentage of 

cliff falls is significally lower during the learning phase and that the amount 

of sampling is increased significantly due to the longer life span secured by 

being risk-averse. 
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CHAPTER 6 
Conclusions 

The dangers of life are infini te, and among them is safety. 
- Goethe 

The risk-directed exploration method presented here offers a simple and 

intuitive solution for preserving survival during learning by risk avoidance. 

The mechanism of risk avoidance is achieved by learning the risk values of 

actions during learning, based on which the probability of an action being 

selected is adjusted. Our experimental results show that the training and 

testing score are in general higher than other directed exploration methods, 

especially during the early stages of learning. 

One criticism of this method may be that by visiting only states that 

are less risky, the agent does not sam pIe widely enough to have an accurate 

picture of the environment. As a result, the policy that is learned may be 

suboptimal. While this is a perfectly valid argument, our standpoint is that 

if the preservation of survival is one of the criteria of an efficient exploration 

method, then we can sacrifice sorne optimality in order to keep the agent 

safe. For values of the parameter p < 1, optimality can still be achieved in 

the limit. This feature is not present in other algorithms which change the 

action values being learned. 

Similarly, the claim that risk aversion is useful for survival is likely to 

provoke disagreement. One may argue that risk aversion is useful in certain 

situations, but it can produce pathological behavior in others. Imagine a 

cliff world environment where the cliff divides the space between the agent 

and the cheese. The risk-directed exploration method will select actions 
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such that the agent remains in the safer region of the environment, never 

approaching the cheese, and hence, eventually running out of resources. 

Being risk-averse, in this case, does not guarantee survival. 

Reflection on the limitation of risk aversion suggests that it may be 

beneficial for the agent to be risk-averse at certain times, but risk-seeking 

at other times depending on the current context. In fact, risk sensitivity in 

decision making has been widely observed in the study of animal foraging 

behaviour. In one experiment, Junco phaeonotus, or yellow-eyed junco birds, 

were presented with a choice between a feeding station that provides a 

constant supply of three seeds and a second feeding station that provides 

either no seeds or six seeds with equal probability. It is found that the 

birds' preferences for the two foraging options depended on the temperature. 

At normal temperature (19°C), the birds are on a positive energy budget, 

i.e. the average reward of three seeds is sufficient to maintain the energy 

level ab ove a critical threshold. It is observed that the birds prefer the 

constant foraging option that provides three seeds, i.e. they are risk-averse. 

At low temperature (1°C), where the average reward of three seeds can no 

longer compensate for the energy expenditure, a reversaI in the preference is 

observed. The birds were risk-seeking, preferring the variable foraging option 

that has some probability of providing enough seeds to bring the energy 

level above the critical threshold (Caraco et al., 1990). This switch between 

risk-seeking and risk-averse behavior is also observed when the source of 

hazard is not resource depletion, but predation (Milinski and Heller, 1978). 

These observations of animal foraging behavior have interesting 

implication for decision making in uncertain environments. First, this 

evidence supports the fact that a measure of risk, instead of expected utility, 

can be potentially useful for the valuation of a prospect. Second, the ability 
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to adjust risk attitude depending on context seems to have a clear advantage 

in ensuring survival, and is empirically shown to exist even in human 

decision making (March and Shapira, 1992). In addition, risk-sensitivity 

may be useful also for modelling a wide range of emotions, behavior and 

personality in the agent. 

The risk-directed exploration presented in this thesis can be easily 

extended to provide a framework in which the risk attitude is dynamically 

altered during the learning phase based on the current context. This can 

be done by adjusting the p-value subject to sorne predetermined schedule 

of decay, or according to sorne other constraints. In this thesis, we focus on 

understanding the behavior and performance of the risk-directed exploration 

method for a fixed level of p-value. Rence, the appropriate mechanisms for 

dynamically controlling the risk attitude remains an open research question. 

There are many other possible extensions to this work. In Chapter 

4, we note that using the risk adjusted utility in the Boltzmann function 

actually boosts the probability of selecting an action with low action values, 

a property that is counter-intuitive to what risk aversion means. What is 

desired, instead, is a function which depresses the probability of selecting 

good actions according to their risk values, but also keeps the probability 

of selecting bad actions low. The function resembles the utility function for 

decision making posed by the Propsect Theory, which is concave for gain 

and convex for losses (as seen in Figure 6-1). 
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Figure 6-1: Prospect theory 

The empirical evidence for Prospect Theory cornes from the well-known 

Allais Paradox (Allais, 1953), which can be illustrated by the following 

example (Kahneman and Tversky, 1979). 

A 

B 

----01000 
~0.50 

0.50 ---00 

-1.0 -0500 

----0 -100 

C <::::..0.50 

0.50 --00 

o -1. ° --0 -500 

Figure 6-2: Allais paradox 

Subjects were asked to do two independent choice experiments. In one 

case, they have to choose between receiving 1000 or nothing with equal 

probability of 0.5 (Choice A), or receiving 500 for certain (Choice B). In 

the second case, they have to choose between losing 1000 or nothing with 

equal probability of 0.5 (Choice C), or losing 500 for sure (Choice D). 

The majority of the subjects choose B in the first case and choose C in 

the second. This suggests that people are risk-averse when prospect are 
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framed in terms of gain, and risk-seeking when prospects are framed in 

terms of losses. This is the reason why the corresponding Prospect Theory 

utility function is concave for gain and convex for losses. The possibility 

of modifying the Boltzmann action selection curve to induce risk-seeking 

behavior when negative utility are involved remains to be investigated. 

Another interesting enhancement would be the use of a multi-step 

risk measure where the step > 2. An adjustable window of how far to 

look ahead when calculating risk can be analogous to paying attention to 

short term, medium term, or long term risk of an action. Second, the risk 

measure can be subject to TD learning so that a global, instead of local, 

measure of risk is derived. In order to subject the risk measure to dynamic 

programming, the risk measure must have eertain desirable properties, for 

example, additivity. Henee, it would be use fuI to characterize exactly what 

those desirable properties are, and what other definitions of risk are suit able 

for application. Finally, the current approach directs exploration using a 

local measure of risk that is eentered around the state-action pair. One 

possibility is to use of a hierarchical approach (Dayan and Hinton, 1993) to 

learn, at a much higher level, which regions of the state space are risky. 
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Figure 6-6: Far-away-cliff world: performance of Q-Learning using learned model 
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Appendix B: Comparison of Directed Methods for Q-Learning 
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using Q-Learning and fixed model 
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Figure 6-8: Comparison of the performance of Boltzmann, recency-based, counter­
based, and risk-based exploration (p=O.6) method in far-away-cliff world 
using Q-Learning and fixed model 
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Figure 6-9: Comparison of the performance of Boltzmann, recency-based, counter­
based, and risk-based exploration (p=O.6) method in close-by-cliff using 
Q-Learning and learned model 
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Figure 6-10: Comparison of the performance of Boltzmann, recency-based, counter­
based, and risk-based exploration (p=O.6) method in close-by-cliff using 
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