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ABSTRACT

Reinforcement Learning is a class of methods for solving sequantial
decision problems when the model of the environment is not known. In
this framework, the agent must explore the environment to gather more
information about the model and the utility of each of its actions, while
striving to act as well as possible using limited knowledge. One of the major
obstacles that prevent reinforcement learning from being extended to real-
life settings is the fact that the agent is blind to the risk of actions during
learning, potentially ending up in catastrophic states. This thesis presents
a model-based directed exploration method for selecting actions based on a
measure of risk, characterized by entropy and expected immediate reward.
The weighted combination of this risk measure and the long term utility
of the action, or risk-adjusted utility, is used to determine the probability
of different actions. Using this approach, agents can manifest risk-averse
or risk-seeking behavior. Experimental results show that risk-directed
exploration can result in better performance during learning than the
standard Boltzmann action selection method, or other directed exploration

methods such as counter-based and recency-based methods.
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ABREGE

L’apprentissage par renforcement est une classe de méthodes utilisée
pour résoudre des problemes de décisions séquentielles dans un environ-
nement dont le modele est inconnu. Dans ce cadre, I'agent doit explorer
I'environnement pour accumuler plus d’information sur le modele et la
valeur de chaque action, tout en essayant d’agir de fagon optimale a 1'aide
de ses connaissances acquises. Un des obstacles principaux qui nous empéche
d’utiliser I’apprentissage par renforcement dans des situations réelles est le
fait que ’agent n’est pas conscient des risques associés a ses actions pen-
dant 'apprentissage. L’agent se retrouve donc réguliérement dans des états
catastrophiques. Cette mémoire présente une méthode de sélection d’actions
pour poursuivre une exploration dirigée de modeles. Cette méthode est
basée sur une mesure de risque caractérisée par ’entropie et ’espérance de
la valeur immédiate des actions. La combinaison pesée de cette mesure de
risque et de la valeur & long terme de chaque action, ou la valeur ajustée au
risque, est utilisée pour déterminer la probabilité de choisir les différentes
actions. En utilisant cette approche, I’agent peut démontrer un com-
portement averse envers le risque ou de recherche de risque. Des résultats
expérimentaux montrent que 'exploration dirigée par le risque peut donner
de meilleurs résultats lors de ’apprentissage que la méthode de sélection
d’action Boltzmann standard, ou que d’autres méthodes d’exploration
dirigée telles que les méthodes basées sur des compteurs ou les méthodes

basées sur la récence.
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CHAPTER 1
Introduction

Life is an error-making and an error-correcting process, and nature
in marking man’s papers will grade him for wisdom as measured
both by survival and by the quality of life of those who survive.
- Jonas Salk

The creation of an intelligent agent that is able to carry out tasks
autonomously requires major paradigm shifts in machine learning. First,
instead of static environments, the agent typically operates in environments
that are partially or completely unknown, uncertain, or changing. Second,
the lack of prior knowledge about the environment means that having a
provision of examples, as assumed in supervised learning, is not feasible.
With limited knowledge and no teacher, the agent must continuously learn
about the environment by selecting actions that are potentially suboptimal
but informative (exploration), while at the same time, strive to behave
optimally (exploitation).

This form of online learning, particularly in hazardous environments,
poses a unique challenge. With incomplete knowledge of the environment,
how can the agent survive by avoiding actions that lead to fatal conse-
quences? The importance of this question is revealed when we consider
the nature of some current applications of artificial intelligence. Intelligent
agents are increasingly used for tasks that humans would not or could
not perform. For example, robots may be deployed to collect data on an
unexplored planet, clean up toxic waste at a disaster zone, and recover
sunken objects from the deep sea. Artificial intelligence is used in medicine

to make diagnosis, recommend short and long term treatment strategies,



or dynamically control biomedical devices. Evidently, in these examples

of safety-critical systems, it is crucial for the system to be as conservative

as possible, in order to minimize the risk of damaging expensive robotics
machinery in the former case, and of undermining patient well-being in the
latter. Bounding the overall risk of the system does not suffice, if the system
is to be used in real time. The short term consequence of an action has to
be weighted against the long term utilities of that action.

1.1 Reinforcement Learning in Real-life Settings

This thesis addresses the fundamental issue of self-preservation during
online learning in uncertain environments within the context of reinforce-
ment learning. Reinforcement learning is a class of computational methods
which allow agents to learn how to behave optimally in a given environment.
The goal is to learn a way of selecting actions that maximizes the long term
expected return. If the model of the environment is unknown, the agent
learns by taking actions in the environment, observing the reward signals it
receives, and updating the utilities of actions in different states based on this
experience. Learning takes place over a pre-specified number of episodes.

In a hazardous environment, each episode can end either when the agent
reaches the goal, or when it encounters a fatal state.

Several characteristics of reinforcement learning make it promising for
autonomous agents. Few assumptions are made about the nature of the
environment. This allows learning to take place in partially or completely
unknown environments. Likewise, by allowing learning and execution to
happen concurrently, the need for prior knowledge about the environment is
eliminated.

Recently, there has been a lot of interest in the research community to

extend reinforcement learning to real-life settings. This attempt, however,



is faced with great challenges (Bulitko, 2004). One of the most problematic
issues is that learning takes place over multiple reincarnations of the agent.
In real life, reincarnation is rarely an option. A less extreme version of this
issue was raised also in the 2002 AAAI Spring Symposium on safe learning
agents and the 2004 AAAI fall workshop on real-life reinforcement learning
in the form of the question - “How can we guarantee online performance of
a system during learning?” This implies an implementation of an adaptive
mechanism for avoiding risk during learning, which is essentially the focus of
this thesis.

1.2 Risk-Directed Exploration

Survival is a delicate balancing act. In an unpredictable and poten-
tially hazardous environment, a single wrong choice of action may lead to
fatal and irrecoverable consequences. The ability to assess the amount of
immediate risk in any actions allows one to make minute-by-minute tradeoffs
between attaining and abandoning a goal in order to ensure survival. In a
hazardous environment, the question is not what to learn, but whether or
not to learn (Kruusmaa, 1999).

During the course of learning, the agent makes decisions about which
action to choose, either to find out more about the environment or to take
one step closer towards the goal. In reinforcement learning, techniques for
selecting actions during the learning phase are called exploration methods.
Most exploration methods are based on heuristics, and rely on statistics
collected from sampling the environment. Their goal is to sample the state
space efficiently. All of these exploration methods are blind to the risk of
actions.

In addressing the issue of self-preservation during learning, this thesis

proposes a heuristic, model-based exploration method which selects actions



based on a measure of risk. This approach is different from previous work
in that 1) a local, instead of global, measure of risk is used, and 2) the
control of risk is done on a step-by-step basis during the learning phase. -
Our method also opens the possibility that the level of risk aversion of the
agent can be customized or adjusted dynamically during the learning phase,
although we do not explore this in detail in this thesis.

This thesis is organized as follows:

In Chapter 2, we provide an overview of the RL framework and
methods for solving sequential decision problems. First, we introduce
Markov Decision Processes (MDP) and reinforcement learning. We discuss
various methods for solving MDPs. Finally, we explain the exploration-
exploitation tradeoff, which arises naturally in the reinforcement learning
framework, and review exploration methods that aim to address this
tradeoff.

Chapter 3 introduces the notion of risk by drawing insights from
decision theory in economics, which offers an argument as to why the
measure of risk can be useful in the valuation of a prospect. We also review
previous works on the control of risk in reinforcement learning.

Chapter 4 describes the model-based, risk-directed exploration method,
which is the main contribution of this thesis. We provide a definition of risk,
a justification for this definition, and an algorithm for incorporating risk
sensitivity in the exploration process.

Chapter 5 presents experimental results demonstrating the behaviour of
agents using this exploration technique in different environments.

Chapter 6 concludes the thesis by providing a review of the strengths

and weaknesses of this approach, offering suggestions for future work.



CHAPTER 2
Sequential Decision Making in Uncertain Environments

In wisdom gathered over time, I have found that
every experience is a form of exploration.
- Ansel Adams

Decision making in uncertain environments is inherently risky. Actions
often lead to many possible outcomes, some of which may have fatal
consequences. The utility of an action towards a long term goal is unknown,
and must be estimated by trial and error. Reinforcement Learning is a
method for solving the sequential decision problems when a model of the
environment is not known. Hence, the problem of risk arises naturally in
this framework. This chapter provides a detailed review of reinforcement

learning, the exploration-exploitation dilemma and existing solutions for

addressing it.
2.1 Markov Decision Processes

Markov Decision Processes (MDP) (Bellman, 1957) are used to model
sequential decision making. Formally, a finite MDP can be represented by
the tuple {S, A, P, R}, where S is a discrete finite set of states in the envi-
ronment, A is a discrete finite set of available or permissible actions within
the environment, P is a matrix consisting of the probabilities of transition-

ing from state s to state s’ given that action a is taken, specifically,

P2, = Pr(syy1 = §'|ss = s,a3 = a) Vit



and R is the matrix containing the expected reward associated with the

transition, where
a /
Rl = E[ri1|s: = s,a; = a,8,41 = 8] Vt

In this model, the state representation retains the relevant past history.
Hence, the system has the Markov property - the next state and reward can
be predicted given only the current state and action.

The goal of a decision problem is to find a way of choosing actions
which maximizes a measure of performance. In this case, the measure of
performance is the long term expected reward, i.e. E[X7 ,~'r,], where T’
is the number of decision epochs for a finite horizon problem. In an infinite
horizon problem, 7" = oo and + is a discounting factor which bounds the
sum by weighting less rewards that are received further in the future. A
policy (Puterman, 1994) 7 is a strategy for selecting actions, where 7(s, a)
is the probability of taking action a in state s under policy 7 (Sutton and
Barto, 1998).

Markov Decision Processes provide a general framework for modeling
sequential decisions. Their flexibility lies in the fact that actions, state tran-
sitions, and rewards can be either deterministic or stochastic, and hence a
variety of environments can be represented. In addition, this representation
lends itself well to divide-and-conquer solutions. Specifically, the problem of
finding an optimal policy can be decomposed into subproblems of finding,
for all states, the optimal utility value of the state s, or the optimal utility
value of each action a taken at that state. The state utility value represents

the expected return when starting in state s, following =, i.e.

oo

V7(s) = Ex[Ri|s: = 5] = Ex[Y_ v*regsaals: = s]
k=0



where the return R; is the sum of reward from time ¢ to the end of the
episode. Similarly, the action utility value represents the expected return of
starting from state s, taking action a and following 7 thereafter, i.e.
0
Q" (s,a) = E;[Rs|s¢ = s,as = a] = Ew[lg)yerHﬂst =s,a; = a
The optimal policy 7* is defined as a policy which has the best value at

all states:
V™ (s) >= V™(s)VsV¥n

The question that remains is how to compute V™ (s) for each state.
Bellman (Bellman, 1957) showed that the utility value of a state can be

rewritten in terms of values of its successor states i.e.,

V™(s) = Ez[R|s:=s]

o0
= EW[Z ’Ykrt+k+1|3t = s
k=0

o0
= Eplrep + Z7k(rt+k+2|3t = 3]

k=0
o0
= Y nw(s,a)d PL(R% +YE: D Yresrsalsir = §)
a s’ k=0

> w(s,a) > PL(RY +V7(s))

a

(2.1)

Following the same rationale, the optimal utility value of a state or a

state-action pair can be written as follows:

Vi(s) = maxQ" (s,a)

= max Y P%(R% ++V™ () (2.2)

acA;



Q™ (s,a) = Z P2, [R2, +y max Q- (s',a")]

a'EAy

where s’ represents a possible next state given an action a is taken in
state s. The Bellman optimality equations form a system of N equations,
where N is the number of states. If the entire model is known, i.e. the P
and R matrices are available, then the system of equations can be solved
using dynamic programming. The result of this computation is the optimal
value function, which attains V™ (s) for each state or Q™ (s,a) for each
state-action pair. Given the oi)timal value function, the optimal behavior
in an environment is to select at each state the action with the highest long
term utility.
2.1.1 Methods for Solving MDPs

The recursive structure of the Bellman equation makes dynamic
programming a suitable method for solving Markov Decision Processes, if
the complete model is known. Dynamic programming relies on the fact that
the optimal policy can be broken down and iteratively reconstructed from
individual optimal policies of the subproblems involving the last stage of
the computation, the last two stages, the last three stages, and so on, until
the entire policy is constructed. This has been called a backward induction
method (Puterman, 1994). The dynamic programming method, however,
has a major drawback in that it cannot be applied directly when the model
of the Markov Decision Process, i.e. the state transition matrix P and the
reward matrix R, are unknown. Reinforcement learning provides algorithms
for solving Markov Decision Processes when the model is not known.

One approach is to collect statistics from the environment in order
to build a model of the MDP, and use this model to compute the optimal
policy for the MDP. Specifically, if n(s|s,a) is the number of times state

s’ is encountered when action a is performed in state s, and n(s, a) is
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Figure 2-1: Reinforcement learning framework

the number of times action a is performed in state s, then the transition

probabilities can be estimated as

5a _ (s']s,a)
7 n(s, a)

Likewise, the reward for each transition can be estimated as
T
58 n(s'|s,a)

where r; is the i** sample of the reward observed for the particular
transition.

Another approach is to learn the value function directly. A class of
solutions known as temporal difference (TD) learning estimates the values of
a state based on the immediate rewards and the estimated values of the next
states, without using an explicit model of the environment. For example,

TD(0), the simplest temporal difference method, updates the value estimate

by moving it towards a new sample estimate as follows,

Vir1(s) « Vi(s) + afrea + vVi(sea) — Vi(se)]

Q-learning (Watkins and Dayan, 1992) and Sarsa (Sutton and Barto,
1998) are two examples of TD-based control algorithms. Instead of esti-

mating the utility values of states, these methods use TD-style updates



to estimate the utility values of state-action pairs. At every time step,

the agent selects an action based on the current state, observes the next
state and the associated reward, and updates the action value function. In
Q-learning, the action value is updated with the value estimate of the best

possible action in the next state, even if that action is not taken in the next

time step, i.e.

Qri1(8t, ar) = Qu(81, a) + afrega + 7 B Qi(5t41,0") — Q1(5t, a1))]

St+1

Because of this property, Q-learning is termed an off-policy algorithm
and is essentially optimistic. Theoretical analysis proves that action values
will converge to the optimal action-value function Q™ with probability 1
given that each action is executed infinitely often in each state, and if an
appropriate schedule for decreasing the learning rate « is chosen (Watkins
and Dayan, 1992).

In contrast, Sarsa performs the action-value update using an estimate

based on the action that is actually taken in the next time step, i.e.

Qt+1(51, ar) = Qu(se, ar) + afrepr + YQu(Seq1, A1) — Qu(Se, ar)]

In other words, Sarsa is an on-policy method and results in more
pessimistic behavior than Q-learning. Both Q-learning and Sarsa are
considered model-free or direct methods because no explicit model of the
environment is built during learning.

For both model-based and model-free methods, efficient exploration
is an indispensible part of learning. In order to learn an accurate value
function, the agent must try different actions to learn about their utility

values. Simply adhering to doing what is known to be best, without

10



having explored the environment widely, usually results in behavior that is
suboptimal.
2.2 The Exploration-Exploitation Dilemma

The study of the tradeoff between exploration and exploitation dates
back to 1960 when Feldbaum (Feldbaum, 1960) first introduced dual control
theory. The idea is that any controller, when placed in an environment
with unknown parameters, has two conflicting goals - to perform control
according to the best estimated parameters, i.e. exrploitation of existing
knowledge, or to probe the environment to derive more accurate parameters
for better control, requiring ezploration of unvisited states.

The exploration-exploitation problem is a central theme in the research
on the k-armed bandit problem (Berry and Fristedt, 1985), which is the
simplest possible reinforcement learning problem. The words k-armed
bandit refer to a slot-machine with k arms. A decision maker is given an
opportunity to have a fixed number of pulls on any of the k independent
arms. There is a payoff generated according to an unknown underlying
probability distribution unique for each arm. No cost is incurred except for
the waste of a pull. Some arms are better than others in that they deliver
higher expected reward.

Since knowledge of the statistics of each arm can only be obtained
through trial and error, the decision maker must strike a balance between
choosing the best arm according to his currently limited knowledge, and
choosing another arm in order to verify or correct his current model of
the machine. The question is how much the agent should explore, i.e. at
which point he should stop probing the system and choose the best arm in
order to maximize his reward. Some formal theories of exploration for the

k-armed bandit problem include Gittins Allocation Indices (Gittins, 1998),

11



Learning Automata (Narendra and Thathachar, 1989) and the dynamic
programming approach (Berry and Fristedt, 1985), the details of which will
not be discussed here.

Solving MDPs using reinforcement learning is also in part the problem
of optimizing the exploration-exploitation tradeoff. In Q-learning and
Sarsa, for example, it is not advantageous for the agent to always select
the best known action during the learning phase. The reason is that the
agent can only select the best action based on what it knows, which is
limited when the model is largely unknown at the beginning of learning.
To improve its behavior, the agent should attempt other actions, even at
the cost of incurring negative rewards, in order to acquire a more complete
and accurate model. Exploration and exploitation are mutually dependent
(Thrun, 1992b). In order for the cost of exploration to be minimized,
exploitation is needed; in order for exploitation to reap the most benefit
by taking place in the most relevant part of the state space, exploration is
needed. Learning is most efficient when there is an optimal balance between
exploration and exploitation such that the cost incurred is minimal and the
reward gained in the long run is maximal.

2.2.1 Undirected verus Directed Exploration Methods

During learning, the agent must select actions whose consequences are
unknown in order to learn about their effects. The action selection policy
that decides exactly which of these unknown actions to explore is called an
ezxploration policy.

The simplest strategy to steer from always picking the best known
action is to select an action randomly at least sometimes. The action
selection policy called e-greedy, for example, selects the action with the

best expected utility with probability 1 — ¢ and selects actions uniformly

12



randomly with probability €. Some variants of this strategy set € to a large
value at the beginning of the learning trial to encourage exploration, and
decay € over time.

The softmaz action selection policy improves upon e-greedy by selecting
actions with probability weighted according to their action values, using a
Boltzmann or Gibbs distribution. At any given time step ¢t and state s, it
chooses action a; with probability

th (St 7at)/T

Asel eQe(s /7

7"(St, at) =

The temperature parameter T controls whether actions are chosen greedily,
as 7 — 0, or almost uniformly randomly, when 7 > 0.

These strategies are undirected in that they do not explicitly distinguish
which states are worth visiting or which actions are worth performing. At
the beginning of learning, undirected exploration essentially reduces to a
random walk. Its complexity is proven, in the worst case, to be exponential
in the number of steps needed to reach goal state (Whitehead 91). In
the case of softmax, the strategy relies on expected utility as an accurate
measure of the goodness of an action. This assumption can be problematic
if the expected utilities of the competing actions are very close, or if the
expected utility is still inaccurate due to insufficient sampling of the state
space.

There has been considerable research on developing exploration
methods that lead to efficient sampling of the state space. By efficient, it
is meant that there should be sufficient, yet non-redundant, coverage of the
state space such that an accurate estimate of the optimal value function
is derived with as little computation as possible. Relying more on choice

than chance, these so-called directed exploration methods exploit statistics
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gathered in the environment to discriminate between unknown states, in
order to determine their potential in revealing useful information. Besides
the few theoretical approaches, e.g. E3 (Kearns and Singh, 2002) and R-
Max (Brafman and Tennenholtz, 2002), most directed exploration methods,
including the one presented in this thesis, are based on heuristics.

The central question in efficient exploration is - which states or actions
are interesting, informative and thus worth exploring? The idea is that the
probability of visiting (or revisiting) a state or state-action pair should be
proportional to a heuristic measure indicating how interesting or informative
they are. At any time step, an action is selected greedily to maximize the
expected utility plus an exploration bonus, i.e. Q(s,a) + &(s,a). What
the exploration bonus represents ultimately depends on the answer to the
central question posed, and varies among different lines of research. The
recency-based approach, for example, suggests that states that are visited
least recently (Sutton, 1990) are likely to contain useful information. Yet
other approaches propose to visit states that are visited least frequently
(Thrun, 1992a; Sato et al., 1988), or to perform actions which have the
greatest variation in their utility estimates (Thrun and Moller, 1992;
Schmidhuber, 1991; Moore, 1990), or the highest variance in the possible

outcomes (Meuleau and Bourgine, 1999; Kaelbling, 1993). We now present

these ideas in more detail.
2.2.2 Exploration Statistics and Bonuses

In this section, we review the choice and computation of exploration
bonuses for different classes of directed exploration methods.

Based on the rationale that the least visited states contain information
that is yet unknown to the agent, the counter-based method (Thrun, 1992a;

Sato et al., 1988) keeps a count of how many times each state or state-action
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pair has been tried, and selects an action which has been attempted the
least frequently. In (Thrun, 1992a), for example,
5(s,a) = _ds)

Elcls, a]

where ¢(s) is the number of times a state has be visited, and

Elc|s,a] = Z (s

is the expected value of the count over the possible next states s, given that
an action a is executed in state s. In other words, given similar () values,
the counter-based exploration bonus induces a preference for the action
that leads, on average, to a next state that is visited the least often. One
drawback of the counter-based method (Thrun, 1992a) is that the number
of visits to a state cannot always be assumed to present a measure of the
accuracy of the model. The reason is that the difficulty of learning the value
function is not homogeneous across the state space. In some regions of the
state space, the values are easy to learn, so a few visits suffice, while other
regions may require substantial revisiting. In addition, the counter-based
method does not take into account the recency of events.

The recency-based method (Sutton, 1990), in contrast, is based on
the premise that if a state has not been visited recently, there is more
uncertainty about that state due to a possibly changing environment, and

hence, the state should be revisited. The exploration bonus here is

0(s,a) = ey/n(s,a)

where n(s,a) is the number of time steps that have elapsed since action a

was executed in state s.
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Instead of equating the uncertainty of a state to the amount of en-
counters the agent has with that state, the error-based method (Thrun
and Moller, 1992; Schmidhuber, 1991; Moore, 1990) selects actions that
are associated with the greatest change in the utility estimation of V(s) or
Q(s,a) observed in the past.

In variance-based methods, the exploration bonus is based on second-
order statistics about the outcomes of a given action, such as the variance or
standard deviation. This idea originated from the Interval Estimation (IE)
method (Kaelbling, 1993) for the bandit problem. In IE, two statistics are
collected for each action: w, which is the number of successes of taking the
action, indicated by the receipt of a positive reward, and n, the number of
times the action has been tried. From these statistics, a confidence interval
of the success probability p, of receiving a positive reward is computed
for each action. The algorithm chooses the action that has the highest
upper bound of the confidence interval of this success probability. The
upper bounds are initially optimistic, and tighten as more experiences are
gathered. The upper bound can remain high for two reasons. Either the
action has an accurate utility estimate, or the action has not been tried
often enough. Hence, the result is an exploration policy which exploits by
choosing actions with the highest expected utility, or explores by choosing
actions that have not been adaquately sampled. Building on IE, the IEQL
algorithm presented in (Meuleau and Bourgine, 1999) uses an exploration
bonus that describes the degree of local uncertainty. This exploration bonus
is added to reward and backpropagated by TD learning to derive a global
measure of the bonus. The reason given is that a global measure is able to
handle certain environments that are normally misleading if a local measure

is used. The same technique is used by (Sutton, 1990) in deriving a global
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measure of recency. This dichotomy between local and global measures of
exploration bonuses is described in further detail in (Wilson, 1996).
2.2.3 Model-Based Approaches

A different strand of research in exploration methods, including the
new algorithm presented in this thesis, are model-based (Christiansen et al.,
1991; Dayan and Sejnowski, 1996; Dearden et al., 1999). One advantage
of the model-based approach is that more specific information about the
transition probabilities and rewards can be used to distinguish between
actions. For example, Ratitch et al. (Ratitch and Precup, 2003) propose a
method for guiding exploration using a combination of two characteristics of
MDPs - state transition entropy and forward controllability. State transition
entropy (STE) measures the amount of stochasticity in the environment, i.e.

STE(s,a) =—Y_ P& /log P2,
s'€S

and forward controllability (FC) measures how much the agent’s actions
actually impact the trajectories that the agent follows, and is computed
from state transition entropy and its conditional form, i.e.

=Y PC(s

s'eS
where
H(Os) _ H(OslAs)
H(Os)

>aca Pos 2aca Py
H(O;) = — == log(—5"—%
(Os) SZE:S( |A| ) log( Al )

( S|A Z |A| Z ss’log ss’

acA s'eS

C(s) =

where O; € S is a random variable that represents the outcome of a uni-
formly random action in state s and A, is an action chosen from a uniform

distribution. The exploration bonus is, then, a weighted combination of

17



these two measures. In visiting actions with high state transition entropy
and forward controllability, it is shown experimentally that more different
states will be encountered, which consequently leads to a more homogenous
exploration of the state space.

Some model-based exploration methods take the Bayesian approach
(Wyatt, 2001; Dearden et al., 1999). Bayeisan exploration (Dearden et al.,
1999) exploits ideas from information theory. Their algorithm estimates
the benefit of exploring a state by assessing the agent’s uncertainty about
its current value estimates for that state. This is done by noting the
difference between the value estimates produced by the current model and
the true value estimate derived from a distribution of possible models. In
this framework, the value of information of a state-action pair is high if
the knowledge of the true value estimate changes the agent’s policy in a
significant way, i.e. when an action previously considered suboptimal is
now considered the best choice, or when an action previously thought of as
best is actually inferior. This method is computationally expensive, when
compared to the online computation of exploration bonuses using a model,
as proposed by (Ratitch and Precup, 2003).

To reiterate, learning a model online and using it to compute a bonus
for guiding exploration has two major advantages. First, exploration
bonuses are computationally cheap to compute. Second, the exploration
bonus based on a model is a richer representation of the probabilistic
charcteristics of actions, which in some cases, allows actions to be better
distinguished. The model-based exploration method presented in this thesis

is in part based on this rationale.
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CHAPTER 3
Reflection on Risk

To make a mistake is only human; to persist in o mistake is idiotic.
- Cicero 106BC-43BC

During exploration, it is crucial for a policy to seek out informative
states by selecting actions that lead to them. In an uncertain environment,
however, the effects of actions are not known and can be potentially
catastrophic. Despite the information they may reveal, actions may not
always be worth taking. It is important to ask how much risk the agent
should be allowed to tolerate for any particular piece of information. This
chapter is intended to bring to light some intuition about the concept of
risk and risk attitude, and to review the literature on risk in reinforcement
learning.

3.1 Decisions under Risk

Decisions are said to be made under uncertainty or risk when there is
ignorance about the data due to the lack of perfect or complete information
(Taha, 1992). Despite their connections, decisions under risk and decisions
under uncertainty are distinguished by economists as two different categories
of decision making situations. In decisions under risk, an agent that is faced
with a set of actions, whose effects are unknown but can be represented
in terms of a probability distribution of outcomes. In decisions under
uncertainty, no éssumptions about the probability distribution of outcomes
can be made.

In the context of decisions under risk, actions are essentially equivalent

to lotteries, where a lottery [; is a set of outcomes o;, each of which occurs
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with probability p; and is associated with a specific reward r;. Consider
the example in Figure 3—1. How would an agent choose between the three
lotteries? One way is to select the lottery I; which has the highest expected
reward value EV(l;)

n
EV(l) = Zpﬂ"i
i=1
where n is the number of possible outcomes in the lottery. Under this

criterion, the agent should choose lottery I3.

0,33 — 2500 o 25 —O 2400

<0.6’1 —O o <0.'15 —() -300 <o.05

(a) Lottery I (b) Lottery 2 (c) Lottery I3

0.95

) 3000
—0O

-20

Figure 3-1: Actions as lotteries

In this framework, there are many ways to define the risk of an action.
Intuitively, risk implies the possibility of loss. Thus, risk can be defined as
the probability of an event with negative consequences. In Figure 3-1, for
example, lottery I, may be seen as the most risky because it has the highest
probability of leading to the most negative outcome.

Risk is also related to the stochasticity of the outcome of an action. An
action that leads to a sure gain has zero risk. In contrast, an action that
leads to many possible outcomes has high risk because its effects are less
predictable. Consider the example shown in Figure 3-2 where two actions
have the same expected reward, but different distributions of stochastic
outcomes. Action as leads to four possible outcomes, two of which occur
with probability 0.20 and give rewards of 210 and 190 respectively, and two
others which occur with probability 0.30 and give a reward of 0.33. Action
a; leads to two outcomes, a reward of 300 with probability 0.2 and a reward

of 50 with probability 0.8. While the utility of the two actions are equal in
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terms of expected value, a, is deemed less risky than a, because in addition
to generally higher reward, there are fewer possible outcomes and thus the

effects of the action are more predictable.

210

>

0.2
190

0.5 \O . 0.3

(a) Action a1 (b) Action as

33.3

YO

33.3

Figure 3—2: The stochasticity effect

These examples illustrate the fact that expected value is incapable of
fully capturing and distinguishing the probabilistic characteristics of each
action. Therefore, an alternative measure such as risk may be useful in the
valuation of prospects in a decision.

3.2 Risk Attitude and the Avoidance of Danger

In 1738, Bernouilli introduced the famous St. Petersburg Paradox which
suggests that the perceived value of a monetary reward is not necessarily
equal to the amount of reward itself, but some other function of it. To
explain the St. Petersburg Paradox, imagine the following bet where the
player has to guess how many tosses of a coin are needed before it turns
up heads. A player pays a fixed initial amount, and receives $2" if the coin
comes up heads on the n* toss. The expected value of the gain is

(4) +

2) + g@®+.=1+1+1.=00

L
4
Although the gain is infinite, there are few people who would be willing

to pay a large upfront sum on this bet. This leads to the idea that the

utility function is a subjective measure, which can mathematically represent
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different individuals’ preferences over lotteries. The rational behavior, under
the maximum expected utility (MEU) principle (Neuneier and Mihatsch,
2002), is to select the lottery /; which has the highest expected utility value
EU(l;),

EU(;) = épzu(n)

According to the MEU principle, a person is risk-neutral if the utility
function is linear, i.e. u”(r) = 0, risk-averse if the utility function is
concave, i.e. u”(r) < 0, and risk-seeking if the utility function is convex, i.e.

u”(r) > 0. These utility functions are depicted in Figure 3-3.

uir) u(r) u(r)

Rigk Aversge Rigk Neutral Risk Seeking

Figure 3-3: The shape of the utility function and risk attitude

The risk attitude of an agent can be explained by how much the agent
is willing to pay for a certain gamble. If a certain lottery yields expected
utility ¢, then a fair bet would be an amount that is equal to q. In other
words, the agent should be indifferent towards the lottery which yields an
expected amount of ¢ and having ¢ for certain. This amount ¢ is called the
certainty equivalent of the lottery.

According to the Jensen Inequality, a concave function has the property
u(E[r]) <= Elu(r)]). This suggests that due to diminishing return, the

utility of the expected utility is in fact less than the expected utility itself.
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An agent with this utility function will be less willing to pay the amount g
in the gamble. In other words, the certainty equivalent of the lottery is less
than the expected utility. The agent is considered risk-averse. A comparable
argument can be made for using a convex function to characterize risk-
seeking attitude.

In control theory, some studies have attempted to transform the cu-
mulative return by a non-linear utility function and optimize policies based
on this transformed criterion (Howard and Matheson, 1972; Hernandez-
Hernandez and Marcus, 1966; Koenig and Simmons, 1994). A prevalent
choice of non-linear utility function is the exponential function, since it has
certain properties that make the problem feasible to solve using dynamic
programming (Pratt, 1964; Howard and Matheson, 1972). However, in gen-

eral, most non-linear utility functions violate Jensen inequality, specifically,

u<§: V) # i Vu(r,)

in a infinite horizon sequential decision problem. As a result, the use of
subjective utility does not lend itself easily to dynamic programming or
model-free reinforcement learning methods such as TD(0) or Q-learning
(Heger, 1994).
3.3 Consideration of Risk in Reinforcement Learning

The attitude of the agent towards risk can be exploited for the purpose
of avoiding danger in other ways. In some domains where the safety of the
agent is particularly important, for example in robotics where equipments
are expensive, some researchers have added to the control system explicit
reflex behavior (Milan, 1996) or domain knowledge (Singh et al., 1994). In
(Singh et al., 1994), actions are no longer primitive but themselves closed-

loop policies for avoiding collision. Experimental results (Singh et al., 1994)
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for two navigation tasks show that learning with actions that have no built-
in domain knowledge took 2000 times more trials to reach the same level
of performance and crashed into walls more than 200 times. This type of
formulation, evidently, requires the use of strict conditions and very specific
domain knowledge, which may not be possible or available in every scenario.
The use of prior knowledge also diminishes the autonomy of the agent.

Risk-averse behavior can be induced by many other methods, e.g. by
solving an objective function that is penalized by the variance of the return
(Sato and Kobayashi, 2000), by updating the value function based on a pes-
simistic estimate (Heger, 1994; Gaskett, 2003), minimizing the probability of
entering fatal states (Geibel, 2001), or transforming the temporal differences
to more heavily weight events that are unexpectedly bad (Neuneier and
Mihatsch, 2002). All of the above methods use direct learning. Although
there is an underlying probability distribution for the MDP, the transition
probabilities and rewards are not explictly available. Therefore, these meth-
ods fall under the category of decision under uncertainty. Risk here refers
to cost or, in an implicit sense, the possibility of the occurrence of negative
events.
3.3.1 Transforming Temporal Difference

Neuneier and Mihatsch (Neuneier and Mihatsch, 2002) proposes a
risk-sensitive control framework that shares the same limiting behavior as
the exponential utility approach, but which is also adequate for learning.
Their approach is to transform the temporal differences by overweighing
transitions to sucessor states where the immediate return happens to be
smaller than in the average, and underweighing transitions to sucessor states

where the immediate return happens to be larger than in the average.
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Qir1(5t, ar) = Qu(st, ar) + ax®re41 + max  Qi(set1, a’) — Qi(st, ar)]

a €A8t+l

where x* is a weighting function such that

(1—k)r ifz>0
Xz

(1+ &)z otherwise.

and k € (—1,1) is a scalar parameter for specifying the desired risk
attitude. When xk = 0, the update rule is the same as the standard Q-
learning update rule, and the policy is risk neutral . When £ — 1, the
policy is risk-averse. The reason can be illustrated by the following example.
If r;11 > 0 and the action values of the current state Q:(s¢, a;) and next
state Q:(Ss41,a:41) are both positive, then this update rule will underweigh
ri+1 and the maxyca, Q1(st41,a’), and overweigh the Q;(s;, a;) term. On
the other hand, if r;;; < 0 and the action values for both states are both
negative, the update rule will overweigh r,,; and the maxyca, Q:(St+1, @r41),
and underweigh the Q;(s¢, a;) term. This is equivalent to saying that the
agent is pessimistic about the positive rewards, and at the same time, over-
emphasizes the negative rewards received in the next state. Under similar
logic, the policy is risk-seeking when k — —1.

The risk parameter x needs to be chosen carefully in order to facilitate
learning in any given environment. One suggestion (Neuneier and Mihatsch,
2002) is to set « to a small value until the algorithm converges, and then
increase « for subsequent runs. This suggests that the agent should be
risk-seeking at the beginning of learning in order to gather information, and
then become increasingly risk-averse as the amount of information increases.

In allowing for risk-averse and risk-seeking attitude at different times during
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learning, the agent is given the flexibility to exhibit a range of behavior
depending on the current context.
3.3.2 Risk as Variance

In finance, Markowitz portfolio theory (Markowitz, 1952) suggests
that the risk of individual investments can be measured by considering the
deviation of individual investments from the mean of the portfolio return,
i.e. variance. Several works in control theory study the use of mean-variance
analysis to solve this problem and attempt to maximize the variance-
penalized reward (Filar et al., 1989; Huang and Kallenberg, 1994; Sobel,
1982; White, 1992; White, 1994). An example of the ezpected value-variance

criterion is given by (Taha, 1992) as
max E[R] — \var[R)

where R is the cumulative return, and A is a pre-specified constant known
as the risk aversion factor, which indicates how much variance is weighted.
Weighting the variance by a large A implies that the agent is sensitive
to large reductions in reward below E[R] (Taha, 1992). An equivalent
formulation for TD learning is provided by (Sato and Kobayashi, 2000).
There are limitations to the approach to use variance as a measure of
risk. First, the fat tails of the distribution are not accounted for. Conse-
quently, risk can be underestimated due to the ignorance of low probability,
but highly severe events. Second, variance penalizes both positive and
negative risk equally and does not distinguish between the two. Finally,
this measure is not consistent with the expected utility approach, unless
returns are normally distributed or the utility function is quadratic. The
Markowitz model of risk has been “incorrectly applied to many cases in

which risk cannot be described by variance, dependence cannot be measured
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by linear correlation coefficient, and utility function does not even dream to
be quadratic” (Szego, 2004).
3.3.3 Bounding Risk by Pessimism

Intuitively, risk can be minimized during learning if the agent is
completely pessimistic about the outcomes of the actions. Heger (Heger,
1994) presented a variant of Q-learning called Q-learning which follows the
so called mazimin criterion, under which action values are updated with the
best of the worst outcomes of the next state, i.e.

Qi+1(5¢, ar) = max[Qy(s¢, ar), req1 + 7a'g,14i£+1 Q:(st41,a)]

The Q value is essentially a lower bound on value. The policy that is
learned is risk-averse and can be considered optimal under the assumption
that the minimax criterion is accepted as a valid basis for rationality. This
criterion is called minimaz when the action value refers to cost instead of
gain. The generally lower action values mean that the agent will see most
states as worse than they really are and act in a risk-averse way.

Q—learning and the minimax criterion are useful when the avoidance of
risk is imperative. However, Gaskett tested Q-learning in a stochastic cliff
world environment, under the condition that actions are picked greedily, and
found that Q—learning demonstrated extreme pessimism which can be more
injurious than beneficial. For example, the agent learns to jump off the cliff
from the start square to avoid the higher cost of taking a few steps before
the cliff fall accident occurs (Gaskett, 2003). Under a different condition,
where actions are selected e-greedily, Q—learning found a risky path which
follows very close to the edge of the cliff. Gaskett’s criticism of Q-learning is
that the pessimistic behavior derived from the minimax criterion is suitable

only in adversial games, but inappropriate for other problems. In general,
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the minimax criterion is too restrictive as it takes into account severe but
extremely rare events which may never occur (Neuneier and Mihatsch,
2002).

To avoid extreme pessimism, a-Hurwicz criterion provides a way for
interpolating between extreme pessimism and extreme optimism using a
weighting parameter « € [0, 1] The criterion is given in (Taha, 1992) as

rr%lax[a max Q(sj,a;) + (1 — ) ngln Q(s5, a;)]

The most optimistic behavior is produced when o = 1 since actions are
chosen according to max,, max,; Q(s;,a;). In contrast, the most pessimistic
condition is produced when o = 0 since actions are chosen according to
max,, ming, Q(sj,a;), which is equivalent to the maximin criterion. In other
words, the maximin criterion is a special case of Hurwicz a-criterion where
a = 0. A range of behavior moderated between optimishm and pessimism
can be produced by the intermediate o values.

B-pessimistic Q-learning (Gaskett, 2003) is based on this criterion,
where the action values are updated as follows,

Qer1(8s, ar) = Qulss, ae) +alri+v((1-6) max Qy(sin,a)+8 min Qi(si1,d’))]

@'€Asy 1y @C€As 1

Note that setting G to 0 or 1 renders the equation into the standard
Q-learning or the minimax algorithm respectively. Experimental results
show that when 8 = 0.5, the algorithm reaches the same level of pessimism
as Q—learning, although the agent manages to reach the goal state in some
cases, unlike in Q-learning.

3.3.4 Risk as Probability of Fatal Event
Geibel (Geibel, 2001) defines risk by equating it to the probability

of entering a fatal state, where a fatal state refers to a terminal state
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that marks the end of a learning epsiode. This definition arises from
the recognition that not only the magnitude, but also the probability of
extreme events with high negative cost needs to be bounded. The proposed
algorithm aims to find an optimal policy under which this probability is
smaller than some threshold value. In particular, p™(s), the probability of
the agent ending up in a fatal state when starting in state s and following
policy , should be bounded by w € [0, 1]. States with the property of
p"(s) < w are called safe states. A risk-minimal policy is one that possesses
the maximum set of safe states possible. The algorithm solves a constrained
MDP, deriving at the same time a value maximal policy and a risk minimal
policy.

p"(s) is in fact not a probability in the standard sense, but defined

(Geibel, 2001) as the expected value of the accumulated cost

pr(s) =E) 7
i=0

where 7 is a cost indicator function that equals 1 when a fatal state
is entered, and O otherwise. Since the probability of entering a fatal state

depend on action, the corresponding probability of entering a fatal state for

a state-action pair is defined as

o"(s,a) =Y P%p"(s)

At a given time step, the algorithm updates Q;41(st, a:) and o7, (s¢, az)

and computes the o-penalized action value

Ut>‘+1(5t, at) = )\Qt+1(3t, at) - UZTH (St, a/t)

Since actions with different action and ¢ values can have the same U*

value, actions are chosen according to the (1,2)-lexicographical ordering
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of (U 1(s,a), Qes1(s,a),0111(s,a)). Under this ordering, an action a, in a
given state s is preferred over another action ay if U(s,a;) > U*(s,az) and
if this holds, Q(s, a;) > Q(s, az).

In the beginning, A is set to 0 so that a near risk-minimal policy can
be learned. Subsequently, A is increased by € until the number of safe states
begins to decrease. Under this scheme, optimal Q-values can incrementally
exert more influence without compromising the number of safe states.

In contrast with the strategy proposed by Neuneier and Mihatsch, this
approach suggests that the agent should be risk adverse from the onset, i.e.

until & maximum number of safe states is reached, and become risk-seeking

thereafter.
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CHAPTER 4
Directed-Exploration using a Risk Measure

True genius resides in the capacity for evaluation of
uncertain, hazardous, and conflicting information.
- Winston Churchill (1874-1965)

4.1 Intuition

Common to many of the works reviewed in the previous section is
the fact that risk-averse behavior is induced by transforming the action
values. There are several reasons why this may not be desirable. First, if
the action values are updated based on a conservative criterion, the policy
may be overly pessimistic. Second, the worst thing that can happen to an
agent in an environment may have high utility in the long term, but fatal
consequences in the short term. Attention should be paid to both the short
term consequences and long term utilities of actions. Third, the distortion
of the action values means that the true long term utility of the actions are
lost. Ideally, we would like an exploration method to react to immediate
risk by manifesting different risk attitudes, while leaving the action values
untouched.

With a model-based approach, the problem of decisions under uncer-
tainty turns into decisions under risk, as the probabilities and rewards of
the action outcomes are available. As seen in Chapter 3, different measures
of immediate risk can be derived from these statistics, and computing an
exploration bonus online is also computationally cheap.

Motivated by the above reasons, this thesis presents a new model-based

directed exploration method that selects actions using an exploration bonus

31



that is based on risk. In this section, we will present the algoirthm in detail
and an analysis about how the algorithm is expected to behave under
different conditions.

4.2 The Risk Measure

A risky action generally implies that the action may lead to a negative
event, or that the effects of the action are uncertain. The risk measure in
this algorithm, which is a variant based on the definition proposed by (Yang

and Qiu, 2005), incorporates these two intuitions that characterize risk.

Risk Measure 4.2.1 Given a state, the measure of risk for a particular

action is the weighted sum of the entropy and normalized expected reward of

that action. This definition is adopted from (Yang and Qiu, 2005).
Risk(s,a) = AHq(s) — (1 — A)Fﬁ"&gR—”

where

H,(s) = —P2, log P2

] ss’

E[R%,] = Yo P&, R%,

The definition consists of an entropy term, describing the stochastic-
ity of the outcomes of a given action in a given state, and a normalized
expected reward term, describing the relative negativity of the possible
outcomes of that action. These two terms are weighed with the parameter A.

4.3 Algorithm

The risk measure of an action is combined with the action value to form

the risk-adjusted utility of an action, i.e.
UT(S,a) =p* (1 - Risk(s,a)) + (1 - p) * Q(87 a’)

where p € [0,1]. The first term measures the safety value of an action,

while the second term measures the long term utility of that action. The
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parameter p, which we will call from now on the p-value, provides a way to
interpolate between paying attention to the long term utility of an action,
when p — 0, and paying attention to safety, when p — 1. In this thesis, the
p-value is fixed at a pre-defined level.

To adjust the probability of an action being selected based on its
riskiness, the risk-adjusted utility of an action is then substituted into the
Boltzmann function instead of the Q-values, i.e.

Ur(s,a)
T

€

Ur(s,b)
b1 € T

n(s,a) =

As the p-value increases, the Boltzmann action selection rule selects the
action with higher risk with exceedingly lower probability. In other words,
the p-value controls the relative risk aversion of the agent.

In the Sarsa (Figure 4-1) and Q-learning framework, the risk value of
each action is computed from a model of the MDP, which is either given
or learned online. The risk and action value of the action is then used to
construct the risk-adjusted utility which is used in the Boltzmann function
to produce the probability of selecting that action. For Q-learning, the

algorithm is the same except that the update rule is different.

Initialize Q(s,a) = 0,n(s) =0,n(s,a) =0 Vs Va
Repeat (for each episode):
Initialize s;; n(s;) « n(s) +1
Choose a; from s; using Boltzmann with U, (s;, a;)
Repeat (for each step of episode):
Execute action a;, observe ryy1 and S¢y1; n(se, ay) — n(sg, a¢) + 1
Choose a4, from s;y; using Boltzmann with U, (841, a41)
Qi11(8, a) — Qu(8t, ar) + afregr + ¥YQi(Set1, @) — Qe(se, ar)]
Update Risk(st,a;) and U, (s;, a:) using the collected statistics
St = St415 A < Qg4
Until s, is terminal

Figure 4-1: Risk-directed exploration in Sarsa

33



4.4 Analysis
4.4.1 Effects of Risk on Probability of Action Selection

One question is how the riskiness of an action affects its probability of
being picked. The answer can be established experimentally by considering
the following hypothetical state with two actions, a; and a,. The action
value of aj is 0, while the action value of a; is varied from -1 to 1. The fig-
ure below shows the probability, computed by the risk-adjusted Boltzmann
function, of a; being selected as the action value varies. This plot is done for
the standard case where only the action value is used in the Boltzmann dis-
tribution, or where risk-adjusted utilities with various p-values, i.e. p = 0.0,
p=02p=04,p=0.6,p =038, p= 1.0, are used. In this experiment,
Risk(a1) = Risk(as) and the temperature parameter is 0.05. Note that
p = 0.0 is equivalent to the standard Boltzmann, and hence the curves for

both are overlapping.

Probability as a Variation of Q-Values
T T T T

Figure 4-2: Different trends in the probability of selecting action a, for risk-directed
exploration with different p-values

Figure 4-2 shows that for the standard Boltzmann exploration, a,
has increasingly higher probability of being selected when its action value

surpasses that of a; at 0, and lower probability of being selected when its
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action value falls below 0. The probability curve is sigmoid-shaped. A sim-
ilar trend is observed for the Boltzmann probability that uses risk-adjusted
utilities, although the curves become flatter as the p-value increases, i.e. as
the risk term is increasingly overweighted. At p = 1.0, the risk measure
completely dominates the risk-adjusted utility value. Since the two actions
have the same risk, they are picked with equal probability at all times.

For the intermediate p-values, there are two observations. As the p-
value increases, the probability of a; is lowered. A greater difference in the
predicted value is required in order for a; to be preferred. This is analogous
to risk-averse behavior. However, it is also true that unless its value is very
bad, a; still has some probability of being chosen. This is due to the fact
that the safety term in the risk-adjusted utilities can be positive even for
risky actions. As a result, it can potentially raise the risk-adjusted utilities
of both good and bad actions, causing the bad actions to be selected more
often than desirable. Some suggestions for transforming the Boltzmann
probability function are provided in the conclusion of this thesis as future
work.

What if a; has a different value of risk than as? The probability of
selecting a; when the risk value of a; is higher than a, by 0.1, 0.3, 0.5,

0.7 are plotted in Figure 4-3. The value of ay is 0 at all times, while the
value of a; is varied from -1 to 1. Within each plot in 4-3, the general
trend induced by intermediate p-values is still observed, i.e. the higher the
p-values, the flatter the curve. In addition, the more the risk value of a;
increases, the higher the predicted value has to be in order for a; to be
selected. Furthermore, the greater the p-value, the more drastically the
action selection probability is depressed as the difference of the risk values

between a; and a; becomes larger.
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Figure 4-3: The probability of selecting action a; when the risk values of the two
actions differ by varying amounts

A second, more realistic, scenario is that a; and a, are both initialized
with value equal to 0. The value of a;, the good action, approches 1
while that of aq, the bad action, approaches -1. Figure 4-4 shows how the
probability of selecting a; varies. The figure below shows three scenarios
where Risk(a;)=0.6 and Risk(as)=0.4 (Figure 4-4(a)), Risk(a;)=0.4 and
Risk(az)=0.6 (Figure 4-4(b)), Risk(a;)=Risk(az)=0.5 (Figure 4-4(c)).

When a; has higher risk than a,, its probability of being selected is
lowered using the risk-adjusted Boltzmann function. On the other hand,
when a; has lower risk than as, depending on the level of risk aversion

induced by the intermediate p-values, its probability of being selected is high
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Figure 4—4: The probability of selecting action a; for two actions with diverging action
values under different risk conditions

even when Q(a;) = Q(az) = 0. This means that the using risk-adjusted
utility, the Boltzmann action selection rule would always select the action
with lower risk with much higher probability.
4.4.2 Effects of Varying A

What is the contribution of entropy and reward in the various situa-
tions? In order to test the effects of varying A, we test the performance of
the algorithm under conditions where only the entropy term or the normal-
ized expected reward term dominates the risk measure, or the two terms
exert equal influence in the equation. In order to do that, we must set up an

environment where the entropy is not uniform throughout the environment.
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This may include the presence of obstacles, or local “slippery” regions. One
such environment is shown in figure 4-5. In this environment, actions lead
to deterministic outcomes everywhere except for the cells marked white. In

this experiment, a fixed model is assumed.

Figure 4-5: Slippery world

Figure 4-6 shows the policy learned using A = 1.0 (Figure 4-6(a)),
where the entropy term completely dominates the risk measure, and A = 0.0
(Figure 4-6(b)), where the normalized expected reward dominates. The cliff
is marked by red cells, the slippery regions by blue cells, the start state by
the yellow cell and the goal state by the letter G.

At A = 1.0, when the risk measure is represented by entropy only, the
learned policy prefers to stay far away from the slippery region. In contrast,
at A = 0.0, when the risk measure is represented by normalized expected
reward only, the learned policy yields a path around the slippery region that
is much closer than that for A = 1.0. The poliéy for the slippery region
does not distinguish between the four actions, probably because the slippery
region is not visited at all during the learning phase.

At A = 0.5 (Figure 4-6(c)), the policy learned yields a path that is
directed away from the cliff and the slippery region, similar to A = 1.0.

It can be observed, however, that the risk aversion is more tentative for
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Figure 4-6: Policy learned using Boltzmann with action values versus risk-adjusted
utilities of varying A

A = 0.5. This is possibly because part of the slippery region and the

surrounding area has been visited during learning, and hence a definite

action is learned for those states. In constrast, for A = 1.0 and A = 0.0, some

states have been avoided entirely during learning, as a result, many actions

share equal utility and are not distinguished.

In contrast, the standard Boltzmann action selection method (Figure
4-6(d)) results in a policy that follows the shortest path to the goal, less
concerned with the risk associated with the slippery region and the cliff.
The preferred path seems to stay away from the cliff by one column, but

straight through the slippery region.
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4.5 Mult-Step Risk

Multi-step risk measure, e.g. two-step risk measure Risk!/(s,a), can be
used to evaluate an action, i.e.

E 1 [Rgs’ ]

Risk™(s,a) = AHX(s) — (1 = A
(000) = M) = (N ea | BR, |

where

HM(s) = H,(s) + ZP Hoe (s

117 pa Es’ ss’[ s’ +Es” s”R s”]
BV Ry] = max, E[R2 ]

where a* is chosen to maximize Q(s’, a’).

By evaluating an action based on its riskiness over two steps instead
of one, the agent is given the advantage to looking ahead in order to avoid
states so close to the fatal states that slight stochasticity in the environment

may get the agent there.
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CHAPTER 5
Experiments

The risk-directed exploration method provides a framework in which
the probability of an action being selected is adjusted depending on a
weighted combination of its riskiness and utility. This chapter presents the
results of experiments that investigate four major questions: (1) How do
different weighted combinations of riskiness and utility, determined by the
p-value, affect learning performance and the quality of the learned policy?
(2) Is the performance of the algorithm somewhat preserved when the model
is learned online? (3) How does the performance of the algorithm vary in
different environments? (4) How does the performance of the risk-directed
exploration method compare to that of other directed exploration methods,
specifically the recency-based and counter-based methods?

5.1 Environments and Parameter Settings

An environment typically used in reinforcement learning to evaluate the
sensitivity of algorithms to risk is the cliff world. In this environment, the
objective of the agent is to travel from the start to the goal state without
falling off the cliff. The close-by-cliff world and far-eaway-cliff world are
two examples of such environments (Figure 5-1), and will be used in the
experiments.

Different configurations of the cliffs in the environment render some
directed exploration methods better than others. In environments where the
goal can be easily reached without visiting the risky regions at all, the risk-
directed exploration method has a obvious advantage over the recency-based

and counter based methods. The recency-based method tends to direct the
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Figure 5—-1: Environments

agent to less recently visited parts of the state space. In the case of the
far-away-cliff world, this is where the cliffs are located. This cost is incurred
unnecessarily, since the goal is within a short reach from the agent’s starting
position along a clear path. Using risk-directed exploration, however, the
agent should learn to avoid the far away cliff region after only a few visits
there. The conjecture that the risk-directed exploration method outperforms
the recency-based and counter-based methods in these environments will be
investigated experimentally.

In both worlds, the set of states is represented by the possible coordi-
nates of the agent in terms of the row and column where the agent may be
located. In a grid world with 20 by 20 tiles, the total number of states is
400. The terminal states include the location where the goal or the cheese
is found, and the location of the cliffs. The agents are allowed four actions,
i.e. A={up, left, right and down}. However, due to the constraints of the
boundaries of the grid, the set of permissible actions A, in each state may
be smaller than A. With probability 0.8 that the agent will enter a state as
intended, and with probability 0.2 it will slip into the neighboring cells of
the intended destination. Finally, the reward for reaching the goal is +1, the

penalties for falling off a cliff -1, and the reward for all other states is 0.
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In our experiments, the performance of the algorithm is characterized
by six measures: (a) the training score in terms of cumulative reward
averaged (b) the testing score in terms of cumulative reward averaged
(c) % of termination by cliff fall during learning (d) % of termination
by reaching the goal during learning (e) the life span during training, in
terms of the number of time steps elapsed until termination (f) in the
case where the model is learned online, the amount of model error during
training, measured by the averaged L1 distance between the learned and
true transition probabilities and rewards for each state-action pairs in the
model. The experiment is run over 100 episodes and all results are averaged
over 20 runs. Optimized for performance, the parameters oo = 0.25, A = 0.5
(except for the experiment investigating the effects of varying \), and
7 = 0.05 are used for all experiments. The constants used in the counter-
based and recency-based methods are both 400. In all experiments, the
two-step risk measure is used. It has been shown in (Law et al., 2005) that
risk-directed exploration using the two-step risk measure produces results
that are comparable to TD(A) where A = 0.7, in terms of the percentage of
cliff fall during training. Furthermore, evaluating actions using the two-step
risk measure provides the agent with lookahead, which further accentuates
the effects of risk aversion.

5.2 Results

In the analysis of the results, we compare the performance of the
algorithm under different conditions, for example, given a fixed versus
learned model of risk, various p-values, close-by-cliff world versus the
far-away-cliff world as the environment.

The exploration methods are tested in the context of both Q-learning

and Sarsa. The comparison of the performance of the exploration method
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under QQ-learning and Sarsa reflects the well-established fact that Q-
learning generally yields steeper curves and higher end scores compared to
Sarsa. Aside from this distinction, the results for Q-learning and Sarsa are
qualitatively similar. Sarsa, which updates the action values based on the
actions that the agent actually takes, is more realistic than Q-learning, and
therefore, will be the focus in this analysis of results. All equivalent results
for Q-learning can be found in the Appendix A and B.
5.2.1 Varying p-values

Figure 5-2 highlights the online learning behavior of the algorithm

using different values of p and a fixed, a priori model.
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Figure 5—2: Close-by-cliff world: training score of Sarsa using fixed model

At p = 1, the agent only considers immediate risk in selecting an action.
The training score shows a flat landscape, indicating that the agent wanders
indefinitely (averaging 40000 time steps each episode, as shown in Figure
5-3(e)) until some stochasticity in the environment makes it fall off the
cliff. Figure 5-3 shows that at p = 1, the agent’s life terminates by cliff fall
approximately 70% of the time during training (Figure 5-3(c)). The testing

score, however, indicates that the agent learned a relatively good policy for
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reaching the goal even for p = 1. This may be due to the significantly higher

amount of sampling due to the long life span (approximately 35000 steps).
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Figure 5-3: Close-by-cliff world: performance of Sarsa using fixed model
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On the other end of spectrum, at p = 0, the agent only considers expected
utilities in selecting an action. This is equivalent to the standard Boltzman
exploration method. As clearly illustrated, the results for softmax and
risk-directed exploration with p = 0 are qualitatively similar. The mid-
range p-values outperform p-values in the extremes. In particular, under
intermediate p-values, the training scores of risk-directed exploration are
higher from the very beginning. This suggests that if the model of risk
is perfectly known, the information contained in the model is capable of
directing the agent towards a safe (low risk) path around the cliff, thereby
reaching the goal more often. More complex risk averse behavior can be
observed (Law et al., 2005) when the agent is placed in a complex cliff world
with multiple cliffs and goals.
5.2.2 Fixed versus Learned Model

In order for the algorithm to be useful, it must be capable of learning
the risk model online. Since an incorrect model is learned at the beginning
and becomes more accurate only slowly through experience, the performance
of the algorithm is generally lower than when given the fixed model. In fact,
it takes twice as many trials for the algorithm to reach the same training
score (Figure 5-4) using the learned model than using the fixed model. In
addition, the testing score (Figure 5-5) for risk-directed exploration using
the learned model is significantly worse than when the fixed model is used.

The model error (Figure 5-6) is computed over the course of the
learning phase. It is observed that the model error is highest for p = 1.0
and p = 0.0, and lowest for the intermediate p-values. The model error for
p = 1.0 is high possibly because the action values are not taken into account
during the exploration. As a result, the agent consistently revisits the same

states and updates the statistics for those states accurately, while completely
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Figure 5-4: Close-by-cliff world: training scores of Sarsa using fixed versus learned
model
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Figure 5-5: Close-by-cliff world: testing scores of Sarsa using fixed versus learned model

ignoring other states. For p = 0.0, the reason for the higher model error
is possibly the fact that the agent has a much shorter life span, thus less

sampling, due to the comparatively higher number of cliff falls.
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Figure 5-6: Close-by-cliff world: model error during training

One final note is that the deterioration of performance for using a
learned model is not nearly as marked for the same experiments done using
Q-learning. In fact, both the training and testing score for Q-learning
(Figure 5-7) and risk-directed exploration using the learned model remain
superior to that of using Boltzmann exploration based only on action values.
5.2.3 Structure of Environment

Some qualitative differences in performance can be observed if we
consider the far-away cliff world instead. Whereas in the close-by-cliff world,
the policy learned by our algorithm can be worse than Boltzmann (Figure
5-5), in the far-away-cliff world, the policy is consistently better than
Boltzmann (Figure 5-8) using both fixed and learned models.

In general, the training and testing scores for the far-away-cliff world
are much higher than for the close-by-cliff world (Figure 5-9).

These results can be explained by the fact that in the close-by-cliff
world, the agent has a higher probability of falling off the cliff due to
environmental stochasticity. In contrast, in the far-away-cliff world, the

agent is able to avoid the cliff almost entirely by going straight to the goal.
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Figure 5-7: Close-by-cliff world: performance of Q-Learning using fixed versus learned
model

5.2.4 Comparison of Directed Exploration Methods

The following set of experimental results (Figure 5-10, 5-11, 5-12,
5-13) compare the performance of the risk-directed exploration method
and that of the recency-based, counter-based, and standard Boltzmann
exploration using just action values in different environments and using a
fixed versus learned model. In general, recency-based and counter-based
exploration yield higher training scores, but lower testing scores, than
Botzmann exploration based on action values. The training and testing
score of risk-directed exploration using p = 0.6 is consistently higher than

recency-based, counter-based and standard Boltzmann, except for the case
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Figure 5-8: Far-away-cliff world: performance of Sarsa using fixed versus learned model

where the learned model is used in the close-by-cliff world. This improved
learning performance can be explained by the fact that the percentage of
cliff falls is significally lower during the learning phase and that the amount
of sampling is increased significantly due to the longer life span secured by

being risk-averse.
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Figure 5-10: Comparison of the performance of Boltzmann, recency-based, counter-

based, and risk-based exploration (p=0.6) method in close-by-cliff world
using Sarsa and fixed model
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Figure 5-13: Comparison of the performance of Boltzmann, recency-based, counter-

based, and risk-based exploration (p=0.6) method in far-away-cliff using
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95



CHAPTER 6
Conclusions

The dangers of life are infinite, and among them is safety.
- Goethe

The risk-directed exploration method presented here offers a simple and
intuitive solution for preserving survival during learning by risk avoidance.
The mechanism of risk avoidance is achieved by learning the risk values of
actions during learning, based on which the probability of an action being
selected is adjusted. Our experimental results show that the training and
testing score are in general higher than other directed exploration methods,
especially during the early stages of learning.

One criticism of this method may be that by visiting only states that
are less risky, the agent does not sample widely enough to have an accurate
picture of the environment. As a result, the policy that is learned may be
suboptimal. While this is a perfectly valid argument, our standpoint is that
if the preservation of survival is one of the criteria of an efficient exploration
method, then we can sacrifice some optimality in order to keep the agent
safe. For values of the parameter p < 1, optimality can still be achieved in
the limit. This feature is not present in other algorithms which change the
action values being learned.

Similarly, the claim that risk aversion is useful for survival is likely to
provoke disagreement. One may argue that risk aversion is useful in certain
situations, but it can produce pathological behavior in others. Imagine a
cliff world environment where the cliff divides the space between the agent

and the cheese. The risk-directed exploration method will select actions
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such that the agent remains in the safer region of the environment, never
approaching the cheese, and hence, eventually running out of resources.
Being risk-averse, in this case, does not guarantee survival.

Reflection on the limitation of risk aversion suggests that it may be
beneficial for the agent to be risk-averse at certain times, but risk-seeking
at other times depending on the current context. In fact, risk sensitivity in
decision making has been widely observed in the study of animal foraging
behaviour. In one experiment, Junco phaeonotus, or yellow-eyed junco birds,
were presented with a choice between a feeding station that provides a
constant supply of three seeds and a second feeding station that provides
either no seeds or six seeds with equal probability. It is found that the
birds’ preferences for the two foraging options depended on the temperature.
At normal temperature (19°C), the birds are on a positive energy budget,
i.e. the average reward of three seeds is sufficient to maintain the energy
level above a critical threshold. It is observed that the birds prefer the
constant foraging option that provides three seeds, i.e. they are risk-averse.
At low temperature (1°C), where the average reward of three seeds can no
longer compensate for the energy expenditure, a reversal in the preference is
observed. The birds were risk-seeking, preferring the variable foraging option
that has some probability of providing enough seeds to bring the energy
level above the critical threshold (Caraco et al., 1990). This switch between
risk-seeking and risk-averse behavior is also observed when the source of
hazard is not resource depletion, but predation (Milinski and Heller, 1978).

These observations of animal foraging behavior have interesting
implication for decision making in uncertain environments. First, this
evidence supports the fact that a measure of risk, instead of expected utility,

can be potentially useful for the valuation of a prospect. Second, the ability
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to adjust risk attitude depending on context seems to have a clear advantage
in ensuring survival, and is empirically shown to exist even in human
decision making (March and Shapira, 1992). In addition, risk-sensitivity
may be useful also for modelling a wide range of emotions, behavior and
personality in the agent.

The risk-directed exploration presented in this thesis can be easily
extended to provide a framework in which the risk attitude is dynamically
altered during the learning phase based on the current context. This can
be done by adjusting the p-value subject to some predetermined schedule
of decay, or according to some other constraints. In this thesis, we focus on
understanding the behavior and performance of the risk-directed exploration
method for a fixed level of p-value. Hence, the appropriate mechanisms for
dynamically controlling the risk attitude remains an open research question.

There are many other possible extensions to this work. In Chapter
4, we note that using the risk adjusted utility in the Boltzmann function
actually boosts the probability of selecting an action with low action values,
a property that is counter-intuitive to what risk aversion means. What is
desired, instead, is a function which depresses the probability of selecting
good actions according to their risk values, but also keeps the probability
of selecting bad actions low. The function resembles the utility function for
decision making posed by the Propsect Theory, which is concave for gain

and convex for losses (as seen in Figure 6-1).
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LOSSES GAINS

Figure 6-1: Prospect theory

The empirical evidence for Prospect Theory comes from the well-known
Allais Paradox (Allais, 1953), which can be illustrated by the following

example (Kahneman and Tversky, 1979).

1000 D -100

0.50 0.50
A <0.50 Mo ¢ <o.50. Do

B —10 —()500 D —3.0 —)-500

Figure 6-2: Allais paradox

Subjects were asked to do two independent choice experiments. In one
case, they have to choose between receiving 1000 or nothing with equal
probability of 0.5 (Choice A), or receiving 500 for certain (Choice B). In
the second case, they have to choose between losing 1000 or nothing with
equal probability of 0.5 (Choice C), or losing 500 for sure (Choice D).

The majority of the subjects choose B in the first case and choose C in

the second. This suggests that people are risk-averse when prospect are
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framed in terms of gain, and risk-seeking when prospects are framed in
terms of losses. This is the reason why the corresponding Prospect Theory
utility function is concave for gain and convex for losses. The possibility
of modifying the Boltzmann action selection curve to induce risk-seeking
behavior when negative utility are involved remains to be investigated.
Another interesting enhancement would be the use of a multi-step
risk measure where the step > 2. An adjustable window of how far to
look ahead when calculating risk can be analogous to paying attention to
short term, medium term, or long term risk of an action. Second, the risk
measure can be subject to TD learning so that a global, instead of local,
measure of risk is derived. In order to subject the risk measure to dynamic
programming, the risk measure must have certain desirable properties, for
example, additivity. Hence, it would be useful to characterize exactly what
those desirable properties are, and what other definitions of risk are suitable
for application. Finally, the current approach directs exploration using a
local measure of risk that is centered around the state-action pair. One
possibility is to use of a hierarchical approach (Dayan and Hinton, 1993) to

learn, at a much higher level, which regions of the state space are risky.
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Appendix A: Performance of Risk-Directed Exploration for
Q-Learning
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Figure 6-3: Close-by-cliff world: performance of Q-Learning using fixed model
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Figure 6—4: Far-away-cliff world: performance of Q-Learning using fixed model

62



Q-Learning Training Scores

Q-Learning Testing Scores

T T T

(a) Training Score

Q-Learning % Death by Cliff Fall

50
Epochs

(b) Testing Score

Q-Learning % Goal Reached

(¢) % Termination by Cliff Fall

Q-Learring Training Life Span

Epochs

(d) % Termination by Reaching Goal

Q-Leaming Model Error

— p0

— pa10
— softmax

(e) Life Span

50 60 7 (7 %0
Epachs

(f) Model Error

Figure 6-5: Close-by-cliff world: performance of Q-Learning using learned model
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Figure 6—6: Far-away-cliff world: performance of Q-Learning using learned model
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Appendix B: Comparison of Directed Methods for Q-Learning
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Figure 6—7: Comparison of the performance of Boltzmann, recency-based, counter-

based, and risk-based exploration (p=0.6) method in close-by-cliff world
using Q-Learning and fixed model
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Figure 6-8: Comparison of the performance of Boltzmann, recency-based, counter-

based, and risk-based exploration (p=0.6) method in far-away-cliff world
using Q-Learning and fixed model
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Figure 6—9: Comparison of the performance of Boltzmann, recency-based, counter-

based, and risk-based exploration (p=0.6) method in close-by-cliff using
Q-Learning and learned model

67



Number of Steps

Q-Loarning Training Scores

G-Learning Testing Scores

v T —

¥ B
B x
x ]
e 4
——softmax H
- recancy
. X counter
— pe s S — pe06
1 L . " L . It L pe0§ . |‘ L n s A 1 L P
10 20 30 40 60 70 80 90 100 0 10 -] 30 40 60 70 80 9 100

50
Epochs

(a) Training Score

50
Epochs

(b) Testing Score

Q-Learning % Death by Cliff Fail

Q-Leaming % Goal Reached

oF — softmax
« recancy
X coumer
o . ) ) . X . L=p-0s | or i . ) ) ) X ) | L=pe0s
0 10 20 k1 40 50 60 70 80 90 100 o 10 20 30 40 50 [ 70 80 2 100
Epochs Epochs
(c) % Termination by CILiff Fall (d) % Termination by Reaching Goal
. Q-Laarning Training Life Span o Q-Laaming Model Erar
0451 B
1200 -
04F b

(e) Life Span

(f) Model Error

Figure 6-10: Comparison of the performance of Boltzmann, recency-based, counter-
based, and risk-based exploration (p=0.6) method in close-by-cliff using
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