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ABSTRACT

This thesis addresses calculation of Nash equilibria in a bimatrix game as well as conver-

gence in algorithmic learning for two categories of discrete and discontinuous games, namely

bimatrix games and double auction markets.

First, a method which does not use estimation is proposed for calculating a Nash equi-

librium of the bimatrix game when the fictitious play converges to a Shapley polygon. By

using a lexicographical order, the existence of a Nash equilibrium for every Shapley polygon

in a bimatrix game is proven. The calculation of the Nash equilibrium follows from a simple

matrix reduction technique which imposes no assumption about the matrices of the bimatrix

game.

Second, an evolutionary algorithm is proposed for learning in double auction markets

where the buyers and sellers follow the most successful member of their respective popula-

tion in the previous round of the game and mutate their bids by a diminishing Gaussian

distribution. The existence of a sequence of Gaussian distributions, such that the stochastic

learning algorithm converges to a Nash equilibrium, is proven for risk neutral and risk averse

players.

Finally, an evolutionary random search algorithm is proposed for learning of the opti-

mum bid in double auction markets where the agents are considered as members of either

the population of sellers or the population of buyers. Participants attempt to learn the op-

timum bid prices that maximize their individual gain in the next round of the game. The

convergence of the learning algorithm to a Nash equilibrium of the game is analyzed, and

performance of the algorithm is compared with the performance of the genetic learning al-

gorithm previously used for the same purpose.
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ABRÉGÉ

La thèse aborde le problème relatif au calcul des équilibres de Nash et à celui de la

convergence dans l’apprentissage algorithmique de deux catégories de jeux discrets et dis-

continus: les jeux bimatriciels et les doubles enchères.

Premièrement, la méthode qui n’utilise pas l’estimation, est proposée pour le calcul

d’un équilibre de Nash du jeu bimatriciel, quand le jeu fictif converge vers un polygone de

Shapley. En utilisant un ordre lexicographique, on a prouvé que dans un jeu bimatriciel pour

chaque polygone de Shapley un équilibre de Nash existe. Le calcul de l’équilibre de Nash

découle d’une technique simple de réduction de matrice qui n’impose aucune hypothèse sur

les matrices de jeu bimatriciel.

Deuxièmement, un algorithme évolutionniste est proposé pour l’apprentissage en cas

d’une double enchère où les acheteurs et les vendeurs suivent le membre le plus réussi de

leur population respective du tour précédent. Les offres des joueurs sont mutées par une

distribution gaussienne qui diminue dans le temps. Pour les joueurs averses au risque et

les joueurs neutres, l’existence d’une séquence des distributions gaussiennes, a été prouvée,

telles que l’algorithme d’apprentissage stochastique converge vers un équilibre de Nash.

Finalement, un algorithme évolutionniste de recherche aléatoire servant à l’apprentissage

de l’offre optimale dans le cas d’une double enchère est proposé. Dans cet algorithme, les

agents sont considérés comme membres d’une population de vendeurs ou d’acheteurs. Les

participants essaient d’apprendre leurs offres optimales qui maximisent leurs revenus dans le

tour de jeu suivant. La convergence de l’algorithme d’apprentissage à un équilibre de Nash

du jeu a été analysée et la performance de l’algorithme a été comparée avec la performance

de l’algorithme génétique utilisé aux mêmes fins que précédemment.
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CLAIMS OF ORIGINALITY

• A practical method is offered to calculate a Nash equilibrium of the game if fictitious

play has converged to a Shapley polygon. The existence of an answer is proven by

using a lexicographical order.

• An evolutionary algorithm is proposed for learning in double auction markets where

buyers and sellers follow the best members of their populations from the previous

round of the game and mutate their bids by a diminishing Gaussian distribution. The

existence of a sequence of Gaussian distributions, such that the stochastic learning

algorithm converges to a Nash equilibrium, is proven for risk neutral and risk averse

players. This research is partially published in [1] [2].

• A stochastic learning algorithm is suggested that imitates a trader’s behaviour in a

double auction market. The algorithm is designed based on the fundamental characters

of the utility functions for buyers and sellers. For example, a buyer’s maximum utility

occurs when the bid is closest to the price that a seller who is matched with this buyer

bids to sell. The buyers bid to buy at the minimum price and the sellers offer to sell

at the maximum price, but they both try to trade with a specific proportion of their

counterparts. The convergence of this behavioural algorithm to a Nash equilibrium is

analyzed. This research is partially published in [3].
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CHAPTER 1
Introduction

The goal of game theory is to analyze situations of the so-called strategic game, in which

one player’s best action is dependent on expectations about what other players choose to

do [4]. The theory of games of strategy may be described as a mathematical theory of

decision making [5–7]. In a strategic game, two or more players play to maximize their

outcome known in terms of the value of the utility function [8]. In many realistic situations,

it is more feasible to learn than to calculate the best player’s action, i.e., the one that

maximizes its utility function. Players can use their past experience to learn to play better

in future rounds only if the game is repeated [9–13]. The past experience used in learning

can come from either the player itself or from other players in the game [14].

Learning in strategic games may be achieved using evolutionary algorithms, which are

population based optimization algorithms inspired by the evolution process as described in

biology. An evolutionary algorithm consists of two main processes: one that creates the new

candidates to represent the new generation and the other one that decides whether or not

to accept them [15–18].

A strategic game may be either cooperative or non-cooperative. As defined by Nash

and redefined by Harsanyi [19], a Cooperative game is defined as a game where the players

are allowed to have binding agreements and binding commitments. In contrast, in a non-

cooperative game, binding agreements are not allowed. In this thesis, the strategic non-

cooperative games are investigated.

Nash equilibrium is a central concept in analyzing non-cooperative games. A Nash

equilibrium occurs if none of the players in a game has an incentive to deviate from his/her

choice unilaterally [20]. The theory of learning and evolution in games provides an explana-

tion about players’ behaviour in disequilibrium and analyzes if an equilibrium is reached as
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a result of a certain learning or evolution procedure. Moreover, if existent, the time efficient

calculation of equilibria is of primordial importance in applied economics [21].

This dissertation is written on the convergence of learning algorithms in auction markets

and bimatrix games.

Auction markets are widely used in transaction media. Examples include stock markets,

online shopping, and electricity markets. However, the discontinuity of the utility functions

of the participants in an auction introduces a significant challenge in designing of the learning

algorithms for auction markets.

A bimatrix game is a discrete game where the utility function of each players is given

by a matrix. It is well known that in a bimatrix game, learning by fictitious play, which is

a learning rule where a player’s action improves towards his/her best action at the current

situation, may not converge to an equilibrium of the game but to a cyclic behaviour called a

Shapley polygon. In the present dissertation, a proof based on lexicographical order is offered

which shows that the existence of a Shapley polygon is a sufficient condition for the existence

of a Nash equilibrium, where no player intends to deviate unilaterally.

Before describing more in detail the problems of interest, the preliminaries are reviewed.

1.1 Preliminaries

A finite game Γ in normal form is defined by the triplet Γ < I, S, U > where I = {1, ..., p}
is the set of players, S is the Cartesian product of the finite sets Si = {s1i , ..., smi

i } which

represents the mi choices available to player i ∈ I, and U is the set of utility functions

ui : S → � for all i ∈ I.

For player i ∈ I a mixed strategy xi is defined as a probability distribution on the set

Si, i.e., xi = (x1
i , x

2
i , ...., x

mi
i ), such that for every j ∈ {1, ...,mi} xj

i ≥ 0 and Σmi
j=1x

j
i = 1.

Thus, the space of mixed strategies for player i is defined as Δxi
= {x ∈ Rmi

+ |Σmi
j=1x

j
i = 1}

and is visualized as a polytope. A mixed strategy is seen as a randomization among the

options available to the player [6,22]. Action of the player i is referred to as a pure strategy,

if he/she chooses an sji ∈ Si instead of randomization on the set Si.
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To calculate the expected utility for a mixed strategy, let x = (x1, ..., xp) be a profile

of the mixed strategies for all players and s = (ŝ1, ..., ŝp), where ŝi ∈ Si, be an arbitrary

combination of pure strategies. If players independently randomize on their mixed strategies

the probability for this combination of pure strategies is calculated as

P (s) =
n∏

j=1

xj(ŝj) (1.1)

where xj(ŝj) is the probability that player j chooses ŝj, then the expected utility for player

i is calculated as

ui(x) =
∑
s∈S

P (s)ui(s) (1.2)

where S is the set of all possible profiles of pure strategies for all players. Furthermore, the

best response function for player i ∈ I is defined as

BRi(x−i) = argmaxxi∈Δxi
ui(x) (1.3)

where xi is the mixed strategy for player i, Δxi
is the set of all mixed strategies for player i

and x−i signifies the set of mixed strategies of every player but the player i.

Definition 1.1 A profile of mixed strategies x = (x1, ..., xn) is a Nash equilibrium if and

only if [20]:

xi ∈ BRi(x−i). (1.4)

A bimatrix game is defined by two matrices An×m and Bn×m where n is the cardinality

for the set of choices for player 1, S1 and m is the cardinality of the set of choices for player

2, S2. If player 1 chooses si1 ∈ S1 and player 2 chooses sj2 ∈ S2 where i ∈ {1, ..., n} and

j ∈ {1, ...,m} then the entry aij of matrix A is the value of utility for player 1 and the entry

bij of matrix B is the value of utility for player 2.

In this bimatrix game, if player 1, chooses mixed strategy x1 ∈ Δx1 , where Δx1 = {ζ ∈
Rn

+|Σn
i=1ζi = 1} and player 2 chooses x2 ∈ Δx2 , where Δx2 = {λ ∈ Rm

+ |Σm
i=1λi = 1} then the

3



utilities for both players are calculated as

u1(x1, x2) = xT
1Ax2 and u2(x1, x2) = xT

2Bx1. (1.5)

The pair (x∗1, x
∗
2) where x

∗
1 ∈ Δx1 and x∗2 ∈ Δx2 is a Nash equilibrium if and only if for every

x1 ∈ Δx1 and x2 ∈ Δx2 (see Definition 1.1):

x∗T1 Ax∗2 ≥ xT
1Ax

∗
2 and x∗T1 Bx∗2 ≥ x∗T1 Bx2. (1.6)

In economics, utility is a measure of relative satisfaction or desire for consumption,

receiving a service or a profit [4]. Utility can be defined as ordinal or cardinal. While ordinal

utility explains preference relationships, cardinal utility contains further information about

the magnitude of preference among the available choices. Hence, for player i, utility function

ui : S → R is defined as an order-homomorphism that preserves an order over the set of

possible choices Si, [4, 23, 24].

Based on these assumptions on utility function, a rational choice is defined as a choice

which is at least as good as every other choice according to the decision maker’s preferences

given his/her information [4, 25].

Definition 1.2 A learning rule is defined as a function that evolves the mixed strategy of

every player i, i.e., Li : x(k) → xi(k + 1) where k ∈ Z+ is the discrete time, x(k) is the set

of mixed strategies of all players in time k and xi(k + 1) is the mixed strategy of player i

in time k + 1. Similarly, for the continuous time, t ∈ R+, a learning rule can be defined as

Li : x(t) → ẋi(t), where x(t) is the set of mixed strategies of all players in time t and ẋi(t)

is the first derivative of the function x(t), mixed strategy of player i, with respect to time. A

learning rule is meaningful if player i, given his/her information, expects that by this change

he/she will gain more utility in a specified future.

1.2 Issues in Learning in Games

This section reviews the most important issues in learning, evolution, and computation

of Nash equilibria.
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Convergence to Equilibria: it is of primordial importance to know whether the repeated

game will converge to a Nash equilibrium, because:

i) Some of the learning rules such as fictitious play which were originally designed to

calculate the Nash equilibria of the games [26] may not converge to a Nash equilibrium.

ii) An analysis of players’ behaviour when the game is out of equilibrium may be nec-

essary. In particular, the desired is to know what occurs if players choose a specific learning

or an evolution rule.

Selection of Equilibria: Two different learning rules may converge to different Nash

equilibria of the game even if the learning process starts from the same initial profile of

mixed strategies. The selection of equilibria explains which equilibrium will be chosen as a

result of a specified learning process. From computational point of view it is important to

know if all the Nash equilibria of a game can be calculated by a specific learning rule and

from a player’s point of view, selection of equilibrium will result in different payoffs for the

player [27].

Complexity of Computation: Computation of equilibria is a central question in applied

economics that provides answers about price formation in an auction market. Calculation

of equilibria often involves solving complex problems. Even in a bimatrix game the degree

of complexity of computation increases exponentially with the dimensions of matrices [28].

Sensitivity Analysis of the Algorithms: Many algorithms have a set of parameters to

be chosen by the user at their initialization. Thus, it is important to know how a different

choice for these parameters changes an algorithm’s behaviour in terms of convergence to

equilibria, speed of convergence, probability of selection of the different equilibria, etc.

1.3 Thesis Outline

In Chapter 2, the previous works related to the problems of interest in this thesis are

reviewed.

In Chapter 3, fictitious play [26, 29] may not converge to a Nash equilibrium but a

Shapley polygon [30]. The existence of a Nash equilibrium for every Shapley polygon in

5



a bimatrix game is proven and a simple matrix reduction technique for its calculation is

proposed.

In Chapter 4, an evolutionary algorithm is proposed for learning in double auction

markets where the buyers and sellers follow the best members of their populations from the

previous round of the game and mutate their bids by a diminishing Gaussian distribution.

In Chapter 5, a novel stochastic algorithm which mimics the behaviour of buyers and

sellers in a real market is suggested for learning in double auction markets. The convergence

of the proposed algorithm under certain conditions is proven.

In Chapter 6, concluding remarks are presented and possibilities for continuation of this

research are reviewed.
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CHAPTER 2
Literature Survey

As indicated by Charles Darwin in “the Origin of Species by Means of Natural Selection”

[31], natural selection gives more chance to the most fit members of the population to survive

and reproduce. Hence, nature has the power of selection as humans do. Darwin’s theory

states that major cases of variability are recognized as follows [31]: the effect of habit, e.g.,

climate; abundance of food; use or disuse of parts; and the correlated variation which follows

from the crossing of different species.

In “The Selfish Gene” [32], Richard Dawkins promotes the idea that adaptation and

natural selection is a gene-centred evolution pursued by selfish and utility-oriented genes. In

contrast, group selection theory is based on a group’s benefit [33]. This dissertation follows

the first idea. Evolutionary game theory has its roots in biology [15,34–37].

A player may use an optimization technique when learning in a game, because he/she

wishes to improve his/her strategy. Moreover, there are learning techniques which are specif-

ically designed for learning and evolution in games. A list of the most used learning and

evolutionary rules is presented in Section 2.1.

2.1 Learning and Evolution in Games

In this Subsection, famous rules of learning in games [38–42] such as best replay dynam-

ics [14], fictitious play [26,29], stochastic fictitious play [43], and reinforcement learning [44]

are introduced. All learning rules are presented for a bimatrix game defined by matrices

An×m and Bn×m.

Partial Best Response: A discrete time partial best response dynamics is defined by the

learning rule [14, 35]:

x1(k+1) = λBR1(x2(k))+(1−λ)x1(k) and x2(k+1) = λBR2(x1(k))+(1−λ)x2(k) (2.1)

7



where BR1(.) and BR2(.) are the best response functions for the players 1 and 2, λ is the

fraction of population that implements the change, k ∈ �+ is the discrete time, x1(0) ∈ Δx1

and x2(0) ∈ Δx2 are the initial mixed strategies, and Δx1 , Δx2 are the mixed strategy

polytopes for both players. Similarly, continuous time partial best response is defined by

ẋ1(t) = λ(BR1(x2(t))− x1(t)) and ẋ2(t) = λ(BR2(x1(t))− x2(t)) (2.2)

where t ∈ �+ is the continuous time and (x1(0), x2(0)) ∈ Δx1 ×Δx2 .

Fictitious Play: The fictitious play as introduced by [26,29,45–47] is the oldest and best

known learning rule in games. In fictitious play, each player chooses his/her best response

according to his/her observation of the historic actions of other players.

A simple formulation of what happens in the fictitious play is given by

x1(k + 1) =
BR1(x2(k)) + kx1(k)

k + 1
and x2(k + 1) =

BR2(x1(k)) + kx2(k)

k + 1
(2.3)

where BR1(.) and BR2(.) are the best response functions for the players 1 and 2, k ∈ �+, is

the discrete time, x1(0) ∈ Δx1 and x2(0) ∈ Δx2 are the initial mixed strategies, Δx1 and Δx2

are the mixed strategy polytopes for both players. Similarly, the continuous time fictitious

play is defined as

ẋ1(t) =
BR1(x2(t))− x1(t)

t
and ẋ2(t) =

BR2(x1(t))− x2(t)

t
(2.4)

where t ∈ �+ is the continuous time and (x1(0), x2(0)) ∈ Δx1 ×Δx2 .

Stochastic Fictitious Play: In stochastic fictitious play [43] the utility function of players

is manipulated by Harsanyi’s random shocks [48], which means that instead of the game

Γ < I, S, U > the perturbed game Γ∗ < I, S, U > is considered for the learning process. It

is proven that convergence of both beliefs and strategies happens for a wider range of games

than what is observed for the standard fictitious play [49].
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Replicator Dynamics: In the replicator dynamics learning rule [14,50], the share of the

players using a strategy grows proportionally to the payoff of that strategy. One of the com-

mon approaches is to let population of the players who choose a strategy grow proportional

to the logarithm of the value of utility function obtained by players who have chosen this

strategy. For a bimatrix game defined by An×m and Bn×m, the replicator dynamics formulas

for x1 and x2, mixed strategies of both players are calculated as

ẋi
1 = xi

1((Ax2)
i − xT

1Ax2) and ẋj
2 = xj

2((Bx1)
j − xT

2Bx1) (2.5)

where i ∈ {1, .., n}, j ∈ {1, ...,m}, and (Ax2)
i, (Bx1)

j are the ith and the jth entries of the

vectors Ax2 and Bx1.

Reinforcement Learning: Reinforcement learning is a learning rule usually used by play-

ers in uncertain environments [44, 51–54]. There are several components of the model in-

cluding: i) the policy which is a mapping from the state of the environment to the space

of actions; ii) the reward function which is a mapping from the pairs of state-action to the

set of real numbers that indicates players’ desire; iii) the value function which is a summa-

tion over the values of the reward function starting from the given time; iv) a model of the

environment which is omitted from many examples of reinforcement learning.

Q-learning as one of the approaches to reinforcement learning is used often for learning

in games. Q-learning in a simple form is represented by the equation

ΔQ(st, at) = α(r + γmaxat+1Q(st+1, at+1)−Q(s, a)) (2.6)

where Q(st, at) is a function that values action at at the state st for time t, α is the learning

rate and γ is the discount parameter for future reward. If γ is considered equal to zero,

Q-learning will just be a combination of a dynamic programming and a Robinsson-Munro

stochastic process.
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Bayesian Learning: Bayesian Learning is one the most important tools for statistical

machine learning. Players use the Bayes’ rule to learn from each others’ actions and act

upon it to maximize their payoff [11].

2.2 Calculation of Equilibria

Besides learning and evolutionary methods which are used for the calculation of Nash

equilibria, there exists another class of algorithms which are also used for the computation

of the equilibria [21, 29, 55–57]. These algorithms usually use the general concepts of opti-

mization and mathematical programming to find the Nash equilibria. The most well-known

algorithms of this group are:

Lemke-Howson Algorithm: In [55], an algebraic proof is given for the existence of equi-

libria in bimatrix games. Since the proof is constructive, the algorithm is used to calculate at

least one Nash equilibrium of the game. The bimatrix game defined by the matrices A and

B is converted to a Linear Complementarity Problem (LCP) which thereafter is solved not

on the strategy space but on a nonnegative orthant [58]. The Lemke-Howson algorithm is

seen as the classical method for finding a Nash equilibrium of the bimatrix game [55,58], but

may never reach some of the equilibria and is recognized as a high complexity algorithm [28].

Van den Elzen-Talman Algorithm: In this algorithm, the problem of finding a Nash

equilibrium in a finite game is solved as a stationary point problem [58]. The algorithm

can start from almost any mixed strategy. The Lemke-Howson algorithm and the Van den

Elzen-Talman algorithm may reach different Nash equilibria even if they start from the same

point [59]. Reference [59] also proves that the Van den Elzen-Talman algorithm is a special

case of the global Newton method for finding the Nash equilibria [60].

Global Newton method: In this algorithm Kohlbergs structure theory and homotopy

are used to find the Nash equilibria through the topological property of the graph of Nash

equilibrium. The algorithm works for finite games and it is proven that both Lemke-Howson

Algorithm and Van den Elzen-Talman Algorithm are special cases of this algorithm [59].
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Algebraic approach to compute the Nash equilibria: Gröbner Bases are used to solve

systems of polynomial equations which result in the set of the Nash equilibria of the game,

[21]. Since Gröbner Bases are used for the computation of Nash equilibria a lot of redundant

polynomials are generated. The positive side of this type of algorithm is that the set of all

the equilibria will be found.

Before a literature survey about learning in auctions, different types of auction markets

are explained.

2.3 Types of Auction Markets

Auctions have been used since antiquity for selling objects [61–64]. There is historic

evidence for auctioning as early as 25 centuries ago. Now, a wide variety of goods and services

are sold by different auction types. Goods and services traded through auctioning include

government issued bonds and securities [65], the right to use natural resources [66,67], stock

market shares [68], and retail or whole online businesses [69,70]. References [71–78] describe

auction mechanisms. Here, common types of auction markets are described [61, 79–81]:

• English auction or open ascending auction, is perhaps the most known type of auc-

tioning, where there is an object to sell, bidding starts from a low price and it goes up

as long as there is more than one buyer interested in buying the object.

• Dutch auction, is an auction where auctioneer starts with a high price and lowers the

price until the object is sold.

• Sealed-bid first price auction, is a type of auctioning where the buyers send their bids

in closed envelops and the bidder whose bid is the highest gets the object and pays as

much as his/her bid.

• Sealed-bid second price auction, is similar to the previous auction but the winner pays

as much as the second highest bid.

• Double auction markets are the basic framework of exchange in many markets includ-

ing the New York Stock Exchange. Double auctions are also used as mechanisms of

exchange in electricity markets [82, 83]. In a double auction market, buyers bid and
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sellers offer simultaneously. A transaction is possible when a buyer is matched with a

seller that is offering a price lower than what the buyer bids to pay. In [84], behaviour

of the players in an oral double auction market is studied.

Any of these types can be extended to auctioning for multiple objects or the case in

which multiple sellers compete with each other to sell to a single buyer. Each buyer has a

value attributed to the object as the maximum price that he/she is willing to pay for and

each seller can have a floor for selling the object.

Prior to the problem of the convergence to Nash equilibria, the existence of the equilibria

must be addressed. Auctions are examples of discontinuous games [85]. References [86–89]

present conditions for the existence of equilibria in discontinuous games. Papers [85, 90]

deliver conditions of existence of equilibria in auction markets.

2.4 Learning in Auction Markets

Before introducing the novel ideas for evolution in the next chapters, a list of examples

of usual methods for learning in auctions is presented:

1) In [91, 92], learning in a double auction market is studied. A genetic algorithm is

used as the learning tool. The convergence of the algorithm is proved and confirmed by

simulation results.

2) Reference [93] shows that for first-price auctions, learning by fictitious play converges

to an equilibrium if the process is applied for a sufficient long time.

3) In [94, 95] Simulated Annealing and Genetic Algorithm are used for learning in auc-

tions.

4) Since decentralization is important for the electricity markets, multiple references

investigate how players can bid better by learning in electricity markets. For example,

in [96] an algorithm that uses the minimum information is used for learning.

5) Reference [97] uses the concepts of mean field equilibria for learning in a sequence of

second price auctions.
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6) Reinforcement learning has also been used for learning in auctions. For example,

in [98] Q-learning is used for learning in auctioning of Cognitive Radio Networks.

7) In [99], Bayesian learning is used for learning in an auction, again for Cognitive Radio

Networks.

8) In [100], an example of the Tabu Search algorithm is used for learning in a practical

auction for a maintenance scheduling problem.

9) Ant Colony heuristic optimization is used for the NP-complete problem of winner

determination in combinatorial auctions [101].

2.5 Convergence to a Shapley Polygon in Bimatrix Games

Fictitious play was introduced as a means for calculating Nash equilibria of the game

[26,29]. However, reference [47] shows that the original fictitious play was different than the

formulation used by most researchers for learning in games.

In [102], a proof that fictitious play converges to a Nash equilibrium of the game in 2×2

bimatrix games is presented. However, in [103] it is shown that an extra condition on the

tie breaking rule is needed to guarantee the convergence. This result was extended to noisy

2× 2 games by [49]. In paper [104] convergence of fictitious play to a Nash equilibrium for

every n× 2 game is proven. Convergence of fictitious play can not be guaranteed for n×m

games and examples of non convergence are well known [30,105,106]. In addition, [107,108]

explain rate of convergence of fictitious play to a Shapley polygon.

In [109], sufficient conditions for convergence of stochastic fictitious play are described.

Stochastic approximation is the traditional tool for analyzing convergence of stochastic fic-

titious play [110, 111]. Reference [105], presents a case of bimatrix games where stochastic

fictitious play does not converge to a mixed Nash equilibrium.

Furthermore, papers [50, 112] show that for a 3 × 3 game of Rock, Paper, Scissor,

learning by the rule of replicator dynamics will not result in convergence to the mixed Nash

equilibrium of the game.

13



CHAPTER 3
Existence and Calculation of a Nash Equilibrium for Every Shapley Polygon

Resulted by Fictitious Play in Bimatrix Games

3.1 Introduction

Fictitious play was originally proposed for the calculation of Nash equilibria in a bimatrix

game [26, 29]. It was then discovered that learning by fictitious play may converge to a

Shapley polygon and not to a Nash equilibrium of the bimatrix game [30]. The question is,

if fictitious play converges to a Shapley polygon, how is a Nash equilibrium calculated?

Benäım, Hofbauer, and Hopkins [105], present a game in which the utility matrix is

given by

A =

⎡
⎢⎢⎢⎢⎣

0 −3 1

1 0 −2

−3 1 0

⎤
⎥⎥⎥⎥⎦ (3.1)

In this example, none of the usual learning methods, namely, fictitious play, stochastic

fictitious play nor reinforcement learning converge to the unique Nash equilibrium of the

game, [9/32, 10/32, 13/32]. A method called the Time Average of the Shapley Polygon

(TASP) is introduced that calculates an estimate of a Nash equilibrium of the bimatrix

game if the fictitious play has converged to a Shapley polygon. However, this estimate can

be ”quite distinct” from any Nash equilibrium of the game [105].

In this chapter, firstly, it is proven that in a bimatrix game, the existence of a Shapley

polygon is a sufficient condition for the existence of a Nash equilibrium. Secondly, if ficti-

tious play converges to a Shapley polygon then this fact can be used to calculate a Nash

equilibrium of the game.
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3.2 Fictitious Play and Shapley Polygons

Let matrices An×m and Bm×n define a bimatrix game. If player 1 chooses mixed strategy

x1 ∈ Δx1 , and if player 2 chooses mixed strategy x2 ∈ Δx2 , where Δx1 and Δx2 are the sets

of all the possible mixed strategies for players 1 and 2 respectively, then the utility functions

for both players are

u1(x1, x2) = xT
1Ax2 and u2(x1, x2) = xT

2Bx1. (3.2)

The pair (x̃1, x̃2) where x̃1 ∈ Δx1 and x̃2 ∈ Δx2 , is a Nash equilibrium if and only if for every

x1 ∈ Δx1 and x2 ∈ Δx2 ,

x̃T
1Ax̃2 ≥ xT

1Ax̃2 and x̃T
2Bx̃1 ≥ xT

2Bx̃1. (3.3)

Definition 3.1 The i-th best response (reply) region [59], Δi
x1
, i ∈ {1, ...,m}, for the set of

mixed strategies for player 1, Δx1, is defined by Δi
x1

� {x ∈ Δx1 |(Bx1)
i ≥ (Bx1)

i′}, where
i′ ∈ {1, ...,m}, and (Bx1)

i denotes the i-th component of the vector Bx1. Similarly, for

i ∈ {1, ..., n}, the i-th best response region Δi
x2
, for the set of mixed strategies for player

2, Δx2, is defined by Δi
x2

� {x ∈ Δx2 |(Ax2)
i ≥ (Ax2)

i′}, where i′ ∈ {1, ..., n} and (Ax2)
i

denotes the i-th component of the vector Ax2.

Definition 3.2 (Best responses as attractors): if x2(t) ∈ Δk
x2
, then the unity vector, e1k ∈

Δx1, defined by its l-th component as

el1k �

⎧⎪⎨
⎪⎩

1 l = k

0 elsewhere
(3.4)

is a best response or an attractor for player 1 to player 2, i.e., there exists no x1 ∈ Δx1 such

that xT
1Ax2(t) > eT1kAx2(t). Hereafter, the set of all unity vectors e1k ∈ Δx1 is denoted as

E1, where every e1k ∈ Δx1 is a pure strategy for player 1.
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If x1(t) ∈ Δk′
x1
, then the unity vector, e2k′ ∈ Δx2, defined by its l-th component as

el2k′ �

⎧⎪⎨
⎪⎩

1 l = k′

0 elsewhere
(3.5)

is a best response for player 2 to player 1, i.e., there exists no x2 ∈ Δx2 such that xT
2Bx1(t) >

eT2k′Bx1(t). Hereafter, the set of all unity vectors e2k′ ∈ Δx2 is denoted as E2, where every

e2k′ ∈ Δx2 is a pure strategy for player 2.

Proposition 3.1 [105] (Attractors and piecewise linear trajectories): if for every t ∈ [t0, t1]

there exist best response regions Δk′
x1

⊂ Δx1 and Δk
x2

⊂ Δx2 such that x1(t) ∈ Δk′
x1

and

x2(t) ∈ Δk
x2

then learning by the rule of fictitious play in continuous time, defined by

ẋ1(t) =
e1k − x1(t)

t
and ẋ2(t) =

e2k′ − x2(t)

t
(3.6)

forms the following piecewise linear trajectories: ∀t ∈ [0, 1],

x1(t) =
(t− t0)

t
e1k +

t0
t
x1(t0) and x2(t) =

(t− t0)

t
e2k′ +

t0
t
x2(t0) (3.7)

where t ∈ R+ is the continuous time and e1k, e2k′ are defined in Definition 3.2.

Proof. The proof of Proposition 3.1 follows from solving the ordinary differential equation

(3.6).

Definition 3.3 A Shapley polygon, [30, 105], with the set of vertices V = {(al, bl)|al ∈
Δx1 , bl ∈ Δx2}Ll=1 and their corresponding attractors S = {(s1l, s2l)|s1l ∈ E1, s2l ∈ E2}Ll=1,

where s1l is a best response to bl and s2l is a response to al, is formed if and only if the

following conditions are met

i) For every vertex (al, bl) ∈ V , where l ∈ {1, ..., L−1}, there exist t > t0, k ∈ {1, ..., n},
k′ ∈ {1, ...,m} such that if x1(t0) = ai, x2(t0) = bi, s1i = e1k, and s2i = e2k′, then x1(t) = ai+1

and x2(t) = bi+1 in formula (3.7).

ii) For the vertex (aL, bL), there exist t > t0, k ∈ {1, ..., n}, k′ ∈ {1, ...,m} such that if
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x1(t0) = aL, x2(t0) = bL, s1L = e1k, and s2L = e2k′, then x1(t) = a1 and x2(t) = b1 in

formulae (3.7).

3.3 The Existence of a Shapley Polygon as a Sufficient Condition for the Exis-
tence of a Nash Equilibrium

This section delivers a proof that the existence of a Shapley polygon is a sufficient

condition for the existence of a Nash equilibrium. The proof follows from a matrix reduction

technique described in the following Theorem.

Theorem 3.1 Let a bimatrix game be defined by the matrices An×m and Bm×n. Assume

that fictitious play initialized at (x1(0), x2(0)) converges to a Shapley polygon which can

be identified with the set of vertices V = {(al, bl)|al ∈ Δx1 , bl ∈ Δx2}Ll=1 and attractors

S = {(s1l, s2l)|s1l ∈ E1, s2l ∈ E2}Ll=1 (see Definition 3.2). Furthermore, assume that the sets

Sa and Sb are defined as the sets of all of the attractors for the vertices of V , i.e.,

Sa � {i ∈ {1, ..., n}|∃(s1l, s2l) ∈ S, s1l = e1i} (3.8)

Sb � {i ∈ {1, ...,m}|∃(s1l, s2l) ∈ S, s2l = e2i}. (3.9)

Let matrix A′ be a submatrix of A resulted by eliminating every row i ∈ {1, ..., n} in

A if i /∈ Sa and eliminating every column j ∈ {1, ...,m} in A if j /∈ Sb. Also, let matrix

B′ be a submatrix of B resulted by eliminating every row i ∈ {1, ...,m} in B if i /∈ Sb and

eliminating every column j ∈ {1, ..., n} in B if j /∈ Sa. Furthermore, let IA and IB be

vectors such that their i-th component is equal to their row number in the reduced matrices

A′ and B′ respectively, and otherwise zero, e.g., if A has six rows and Sa = {1, 2, 6}, then
IA = [1, 2, 0, 0, 0, 3].

Then, there exist mixed strategies x̃1 ∈ Δn′ � {ζ ∈ Rn′
+ |Σn′

i=1ζi = 1} and x̃2 ∈ Δm′ �

{ζ ∈ Rm′
+ |Σm′

i=1ζi = 1}, and vectors ΓA = γA1, and ΓB = γB1, where 1 is the vector of

appopriate size with all components equal to 1, γA and γB ∈ R, n′ is the cardinality of Sa

and m′ is the cardinality of Sb, then matrices Am×n and Bn×m reduce to matrices A′n′×m′ and

17



B′m′×n′, such that A′x̃2 = ΓA and B′x̃1 = ΓB. Henceforth, (x̃1, x̃2) is a Nash equilibrium for

the bimatrix game defined by the matrices A′ and B′.

Moreover, if the vectors x̂1 ∈ Rn and x̂2 ∈ Rm are defined by

x̂i
1 =

⎧⎪⎨
⎪⎩

x̃
IiA
1 i ∈ Sa

0 i /∈ Sa

(3.10)

x̂i
2 =

⎧⎪⎨
⎪⎩

x̃
IiB
2 i ∈ Sb

0 i /∈ Sb

(3.11)

then (x̂1, x̂2) is a Nash equilibrium of the bimatrix game defined by matrices A and B.

Proof. It follows from (3.8) that for every i ∈ Sa there exist a pair of attractors (s1l, s2l) ∈ S

such that s1l = e1i (see (3.4)). In other words, there exist βi ∈ Δx2 such that (Aβi)
i ≥ (Aβi)

i′

for every i′ ∈ Sa. For the simplicity of notation, let ζi � (Aβi)
i. Since the set Sa is finite,

there exist il, iu ∈ Sa such that for every i ∈ Sa, ζil ≤ ζi ≤ ζiu . Let βil , βiu ∈ Δx2 be chosen

such that ζil = (Aβil)
il and ζiu = (Aβiu)

iu .

Let matrix A′′ be defined by row relocation in matrix A′ such that if k > k′ and ζk > ζk′ ,

then the rows k and k′ interchange. Define the mapping f : Δx2 �→ Y ⊂ Rn′
by f(λ) = A′′λ.

Let the lexicographical order for vectors v1, v2 ∈ Rn′
be defined by: v1 � v2 if and only if

there exists k ∈ {1, ..., n′} such that vk1 ≤ vk2 and vk
′

1 = vk
′

2 for every k′ ∈ {1, ..., n′}, if k′ < k.

Since ζil ≤ ζiu , there exists γA ∈ R such that ζil ≤ γA ≤ ζiu . Consequently, there

exists ΓA = γA1, such that A′′βil � ΓA � A′′βiu , where � signifies the lexicographical order

introduced above. The Intermediate Value Theorem [113] is used to prove that there exists

a vector x̃2 ∈ Δm′ such that A′′x̃2 = ΓA. In other words, there exists a vector in the range

of f(λ) = A′′λ such that all of its components are equal. To prove this claim, the following

facts are considered:

1) Δm′ is a connected set,

2) by the lexicographical order considered above, A′′βil � ΓA � A′′βiu ,

3) f(ζ) = A′′ζ is a continuous mapping.
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Also, one can conclude that A′x̃2 = ΓA, since A′′ is obtained by row relocation in A′

and the fact that all the components of ΓA are equal. By a similar argument, there exists

x̃1 ∈ Δn′ , B′′ ∈ Rm′×n′
which is obtained by row relocation in B′, and ΓB = γB1, such that

B′′x̃1 = ΓB. Also, B
′x̃1 = ΓB, since B

′′ is obtained by row relocation in B′, and since all the

components of ΓB are equal. The pair (x̃1, x̃2) is a Nash equilibrium of the bimatrix game

defined by matrices A′ and B′ because:

i) A′x̃2 = ΓA, thus for every x′1 ∈ Δn′ , u1(x
′
1, x̃2) = γA, and there exists no x′1 ∈ Δn′

such that u1(x
′
1, x̃2) > u1(x̃1, x̃2)

ii) B′x̃1 = ΓB, thus for every x′2 ∈ Δm′ , u2(x̃1, x
′
2) = γB, and there exists no x′2 ∈ Δm′

such that u2(x̃1, x
′
2) > u2(x̃1, x̃2).

Finally, to prove that (x̂1, x̂2) is a Nash equilibrium for the bimatrix game defined by

matrices A and B, the components of vectors Bx̂1 and Ax̂2 are considered. Using (3.10),

(3.11), elimination rule, and the equations A′x̃2 = ΓA, B
′x̃1 = ΓB,

(Bx̂1)
i =

⎧⎪⎨
⎪⎩

γA i ∈ Sa

γ′Ai i /∈ Sa

(3.12)

(Ax̂2)
i =

⎧⎪⎨
⎪⎩

γB i ∈ Sb

γ′Bi i /∈ Sb

(3.13)

where γ′Ai < γA and γ′Bi < γB, because the rows containing γ′Ai and γ′Bi have been eliminated

in the process of matrix reduction. Consequently, there exists no x1 ∈ Δx1 such that xT
1Ax̂2 >

x̂T
1Ax̂2, and there exist no x2 ∈ Δx2 such that xT

2Bx̂1 > x̂T
2Bx̂1. Therefore, (x̂1, x̂2) is a Nash

equilibrium for the bimatrix game defined by matrices A and B.

Corollary 3.1 To facilitate the procedure of finding a solution to the equation A′x̃2 = ΓA,

where x̃2 ∈ Δm′ and ΓA is defined in the proof of Theorem 3.1, one can solve the equation
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ΛAx̃2 = ΘA, where ΛA = [λij
A]n′×m′ is defined by

λij
A =

⎧⎪⎨
⎪⎩

1 i = 1

a′1j − a′ij i = {2, ..., n′},
(3.14)

ΘA ∈ {Rn′ |Θ1
A = 1,Θi

A = 0, ∀i ∈ {2, ..., n′}}, and restrict the answer to x̃2 ∈ Δx2.

Similarly, to find x̃1 ∈ Δn′, such that B′x̃1 = ΓB, one can solve the equation ΛBx̃1 = ΘB,

where ΛB = [λij
B]n′×m′ is defined by

λij
B =

⎧⎪⎨
⎪⎩

1 i = 1

b′1j − b′ij i = {2, ...,m′},

ΘB ∈ {Rm′ |Θ1
B = 1,Θi

B = 0, ∀i ∈ {2, ...,m′}}, and restrict the answers to x̃1 ∈ Δx1.

Proof. It follows from (3.14) that for every x̃2 ∈ {Rm′ |∑m′
i=1 x̃

i
2 = 1}, A′x̃2 = ΓA if and only

if ΛAx̃2 = ΘA. From Theorem 3.1, there exists x̃2 ∈ Δx2 such that A′x̃2 = ΓA, thus the set

of solutions for equation ΛAx̃2 = ΘA, where x̃2 ∈ Δx2 is a nonempty set which can also be

used as the set of solutions for the equation A′x̃2 = ΓA, where x̃2 ∈ Δx2 . The proof for the

second part of Corollary 3.1 is similar.

Proposition 3.2 For every row i ∈ {1, ..., n} in matrix A, i /∈ Sa, where Sa is defined

in (3.8), if and only if there exists a vertex (al, bl) of the Shapley polygon, where the i-th

component of the vector al, a
i
l = 0.

For every row i ∈ {1, ...,m} in matrix B, i /∈ Sb, where Sb is defined in (3.9), if and

only if there exists a vertex (al, bl) of the Shapley polygon, where the i-th component of the

vector bl, b
i
l = 0.

Proof. For the Shapley polygon described in Definition 3.3 by the set of vertices V =

{(al, bl)|al ∈ Δx1 , bl ∈ Δx2}Ll=1 and their corresponding attractors S = {(s1l, s2l)|s1l ∈
E1, s2l ∈ E2}Ll=1 and for the row i ∈ {1, ..., n} in matrix A, the i-th row of (3.7), for ev-

ery vertex (al, bl), l ∈ {1, ..., L− 1} is written as

ail+1 = (1− αl)s
i
1l + αla

i
l (3.15)
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where the variable αl =
(tl−tl−1)

tl
depends on the two instances of time tl and tl+1 in one

complete round of a Shapley polygon, in which x1(tl) = al+1, x1(tl−1) = al, and x(0) = a1.

For the vertex (aL, bL) the equation is written as

ai1 = (1− αL)s
i
1l + αLa

i
L (3.16)

where αL = (tL−tL−1)

tL
, x1(tL−1) = aL, and x1(tL) = a1. The recursive solution of (3.15) and

(3.16), for all l ∈ {1, ..., L}, is given as

ail =
1

1−
L∏
i=1

αi

(
∑

k=(l−2)∗,...,l
(

∏
k′=(k+1)∗,...,(l−1)∗

αk′)s
i
1k + (1− αl−1)sil−1) (3.17)

where the notation k∗ is used to show a recursive integer of length L and is defined as k∗ � k

if k ∈ {1, ..., L}, k∗ � k − L if k>L, and k∗ � k + L if k < 1.

Since for every l ∈ {1, ..., L}, si1k ≥ 0, and for every k ∈ {1, ..., L}, αk > 0, one can

conclude that for an arbitrary i ∈ {1, ..., n}, ail = 0 if and only if for every l ∈ {1, ..., L},
si1l = 0. Equivalently, for the row i ∈ {1, ..., n} in matrix A, i /∈ Sa if and only if there exists

l ∈ {1, ..., L} such that ail = 0 (see (3.8)).

The proof for the second part of Proposition 3.2 is similar.

3.4 A Description for the Process of Calculation of a Nash Equilibrium as
Suggested by Theorem 3.1

Given a particular Shapley polygon, the sets Sa and Sb hold the information which are

needed to perform the matrix reduction. It follows from the definition of Sa, (3.8), that

i ∈ Sa if and only if there exist (āl, b̄l) ∈ V and (e1i, s2l) ∈ S such that the strategy e1i is a

best response of player 1 to the strategy b̄l by player 2, or equivalently (Ab̄l)
i ≥ (Ab̄l)

i′ , for

every i′ ∈ {1, ..., n}. Consequently, if (x̂1, x̂2) is a Nash equilibrium of the game defined by

A and B and x̂2 is a linear combination of the vectors {bl}Ll=1, for every i /∈ Sa, then x̂i
1 = 0,

because there exists j′ ∈ {1, ..., n} such that (Ax̃2)
i < (Ax̃2)

i′ . Similarly, if i /∈ Sb, and x̂1 is

a linear combination of {al}Ll=1, then xi
2 = 0. Considering the necessarily zero components

in x̂1, x̂2 and the utility function in (3.2), it is explained why matrices A and B are reduced
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to A′ and B′ using Sa and Sb. Theorem 3.1 guarantees that a Nash equilibrium exists for

the reduced game.

Proposition 3.2 helps with a quick determination of the sets Sa and Sb when the fictitious

play has converged to a Shapley polygon, and Corollary 3.1 offers a practical way for finding

the solution.

In the process of reducing matrix A to matrix A′, if the i-th pure strategy of player 1,

represented by the row i in matrix A is strictly dominated by its i′-th strategy, then the row

i in matrix A will be eliminated. For every strategy of player 2, β ∈ Δx2 , (Aβ)
i′ > (Aβ)i

holds, thus i /∈ Sa. However, depending on which Shapley polygon is reached, some of the

non-dominated strategies may also be eliminated in the reduction process. Similarly, the

matrix B is reduced to B′ by elimination of all of its strictly dominated strategies. As in

the case for matrix A, the non-dominated strategies may also be eliminated.

3.5 Numerical Examples

Two numerical examples are presented here that show how a Nash equilibrium of the

game is calculated by the proposed matrix reduction technique if fictitious play has converged

to a Shapley polygon. The first example is generated by randomly choosing two 4×4 integer

matrices, A and B, and two initial mixed strategies, x1(0) and x2(0). The second example

is taken from [105], and was also presented as the motivational example in the beginning of

this chapter.

Example 1: Let a bimatrix game be defined by the matrices

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−4 0 −2 1

2 −3 2 3

−5 −3 −2 −4

−1 −1 4 −5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −3 −5 −3

−2 2 1 −2

4 1 0 −4

4 −5 1 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and let the initial strategies for learning by fictitious play be given as

x1(0) = [0.341028, 0.05402, 0.134054, 0.470817]T
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x2(0) = [0.27749, 0.31584, 0.23102, 0.17565]T .

The game converges to a Shapley polygone which induces the supports

Sa = {1, 2, 4}, Sb = {2, 3, 4},

and by the matrix reduction introduced in Theorem 3.1, the matrices A′ and B′ are obtained

as

A′ =

⎡
⎢⎢⎢⎢⎣

0 −2 1

−3 2 3

−1 4 −5

⎤
⎥⎥⎥⎥⎦ , B′ =

⎡
⎢⎢⎢⎢⎣

−2 2 −2

4 1 −4

4 −5 −3

⎤
⎥⎥⎥⎥⎦ .

Following Corollary 3.1, the equations to solve are ΛAx̃2 = ΘA and ΛBx̃1 = ΘB where

ΛA =

⎡
⎢⎢⎢⎢⎣

1 1 1

3 −4 −2

1 −6 6

⎤
⎥⎥⎥⎥⎦ , ΛB =

⎡
⎢⎢⎢⎢⎣

1 1 1

−6 1 2

−6 7 1

⎤
⎥⎥⎥⎥⎦

and

ΘA = ΘB = [1, 0, 0]T .

Nash equilibrium, (x̃1, x̃2), for the bimatrix game defined by A′ and B′ is calculated

as x̃1 = [0.2364, 0.1091, 0.6545]T and x̃2 = [0.5143, 0.2857, 0.2]T . Consequently, using (3.12)

and (3.13), the equilibrium for the bimatrix game defined by matrices A and B, (x̂1, x̂2), is

calculated, and can be verified by calculating ΓA and ΓB, as x̂1 = [0.2364, 0.1091, 0, 0.6545]T

and x̂2 = [0, 0.5143, 0.2857, 0.2]T .

Example 2: The motivation example from [105] which was presented in the beginning

of this Chapter is considered. This one population example is equivalent to a bimatrix game

in which both players have the same utility matrix, (see 3.1), and the same initial mixed

strategies.

As illustrated by [105], the continuous time fictitious play converges to a Shapley poly-

gon. In [105], the Time Average of the Shapley Polygon (TASP) is introduced to calculate
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x2

x3

x4

x1

Figure 3–1: Mixed strategy polytope for player 1. The vertices X1, X2, X3 and X4 represent
the pure strategies [1, 0, 0, 0]T to [0, 0, 0, 1]T , respectively.

x1

x2

x3

x4

Figure 3–2: Mixed strategy polytope for player 2. The vertices X1, X2, X3 and X4 represent
the pure strategies [1, 0, 0, 0]T to [0, 0, 0, 1]T , respectively.
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x1

x2

x3

Figure 3–3: Convergence of fictitious play to a Shapley polygon for both players, for the
initial mixed strategies x(0) = [1/3, 1/3, 1/3]. The vertices X1, X2 and X3 represent the
pure strategies [1, 0, 0]T , [0, 1, 0]T and [0, 0, 1]T , respectively.

only an estimate for a Nash equilibrium. However, this estimate can be distinct from a Nash

equilibrium for some games [105]. Using Proposition 3.2 and Theorem 3.1 the exact Nash

equilibrium can be found. In this case, the matrix A can not be reduced and by Corollary

3.1, matrix ΛA is calculated as

ΛA =

⎡
⎢⎢⎢⎢⎣

1 1 1

1 0 −2

−3 1 0

⎤
⎥⎥⎥⎥⎦ .

By solving the equation ΛAx̂ = ΘA, where ΘA = [1, 0, 0]T a Nash equilibrium of the

game is calculated as x̂ = [9/32, 10/32, 13/32].

3.6 Summary

Fictitious play was originally designed to calculate Nash equilibria in a bimatrix game

[26]. However, Shapley showed that fictitious play may not converge to a Nash equilibrium

but to a polygon [30]. In the present thesis, it is first proven that in a bimatrix game, existence

of a Shapley polygon is the sufficient condition for the existence of a Nash equilibrium; this
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fact is then used to calculate a Nash equilibrium of the game. Contrary to the time averaging

method proposed by [105], the Nash equilibrium calculated by the proposed method is exact.
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CHAPTER 4
Stochastic Learning by Following the Best Bidder in Double Auction Markets

Auctions are the basic framework of exchange in many markets and can be analyzed

by game theoretical methods. In any game, players attempt to maximize their individual

utility function. If the game is repetitive, the players can use the past experience to learn to

play better in the future. It is then of primary interest to determine whether the repeated

game can converge to some kind of equilibrium. Learning and convergence are particularly

difficult when utility functions exhibit discontinuities as is the case of utility functions used

in auction markets.

In this chapter, an algorithm for learning in a double auction market is proposed in

which a population of buyers and a population of sellers trade. Buyers and sellers know

all the bids of the previous round but they do not know the bids of any other players in

the current round. All the buyers bid as much as the most successful buyer in the previous

round plus a Gaussian mutation that diminishes as the game progresses. Also, all the sellers

bid as much as the most successful seller in the previous round plus a diminishing Gaussian

mutation. Evolutionary algorithms which use the concept of simulated annealing [114], share

the same principle of a diminishing probability in making a suboptimal choice.

The objective of writing this algorithm is not to calculate a Nash equilibrium of the

game which is non-unique and can be determined by easier ways but to know if convergence

to a Nash equilibrium can be guaranteed when the players update their strategies in a certain

way.

4.1 Problem Statement

A double auction market is considered in which the number of buyers and sellers is the

same and is equal to n > 0. It is assumed that in any round of the game every buyer has

the possibility of trading with m randomly chosen sellers. A transaction will take place,
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benefiting both the buyer and the seller, only if the price bid by the buyer exceeds the price

asked by the seller. The utility function for all buyers is defined as

ub(x, y) : [c, v]× [c, v] → � (4.1)

and the utility function for all sellers is defined as

us(x, y) : [c, v]× [c, v] → � (4.2)

where c is the minimum price that a seller may trade, v is the value of the object for buyers,

x and y are the prices bid and offered by the buyer i, and the seller j who is randomly

matched with this buyer. The following assumptions are made for the utility function of

buyers and sellers:

A1) ub(x, y) = 0 and us(x, y) = 0, if x < y.

A2) The utility function for buyers, ub(x, y) and the utility function for sellers us(x, y)

are twice differentiable, i.e., for every x ∈ [c, v] and y ∈ [c, x], ∂2ub(x,y)
∂x2 and ∂2us(x,y)

∂y2
are

defined1 .

A3) for all x ∈ [c, v] and y ∈ [c, x], ∂ub(x,y)
∂x

≤ 0 and ∂us(x,y)
∂y

≥ 0.

Proposition 4.1 (Similar to [91]) A double auction game employing any utility function

that satisfies the assumptions A1, A2 and A3 with populations of buyers and sellers of equal

cardinalities, is in equilibrium if all the players are bidding and offering the same price, i.e.

pbi = psj = ψ ∈ [c, v] for all i, j ∈ {1, ..., n}.
Proof. Assume that all the players are bidding ψ ∈ [c, v] i.e. pbi = psj = ψ, ∀i, j. If bidder
i decides to bid higher, pbi > ψ, because of the assumption A3, the utility function will

decrease for that player. If the same bidder decides to bid lower, his/her utility function

1 Definition of the differentiation is restricted to the interval D � {(x, y)|x ∈ [c, v], y ∈
[c, v], y ≤ x}.
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will be zero. A similar reasoning can be applied to a seller, implying that the market is in a

Nash equilibrium.�

The problem is stated as whether this game, defined with two utility functions ub(., .)

and us(., .) which satisfy all the above assumptions, will converge to a Nash equilibrium of

the game under the learning procedure stated in the Algorithm 4.1, explained below.

4.2 Algorithm Proposed for Learning in Double Auction Markets

The evolutionary iterative algorithm for learning in double auction markets developed

here belongs to the general class of random search algorithms. The underlying idea of the

algorithm is that buyers and sellers try to follow the most successful buyer or seller known

to them from the previous iteration of the algorithm. The following notation is adopted :

– n, the cardinality of the populations of buyers and sellers.

– k, the index of the current round of the game, (k ∈ Z.)

– pbi(k) ∈ [c, v], the maximal price at which buyer i is willing to buy in round k.

– psj(k) ∈ [c, v], the minimal price at which seller j is willing to sell in round k.

– c ∈ [0, 1], the cost of production for sellers.

– v ∈ [0, 1], the value of the product for buyers.

– p̄b(k) ∈ [c, v], the average of the buyers’ bid prices in round k, i.e., p̄b(k) =
∑n

i=1 pbi(k)/n.

– p̄s(k) ∈ [c, v], the average of the sellers’ ask prices in round k, i.e., p̄s(k) =
∑n

j=1 psj(k)/n.

– m, the number of sellers that any buyer will be matched to in any round of the game.

– α > 1, a shrinking factor for the variance of the randomizer function used in the

generation of the bid and offer prices.

– N(μ, σ), the normal distribution with mean μ and variance σ.

– σk > 0, the variance of the random generator function in round k of the game.

– μbk ∈ [c, v] and μsk ∈ [c, v], the mean values for the normal probability distribution

functions for buyers and sellers, respectively.

– mcount, a counter by which a buyer will be matched to exactly m sellers.

– usumbi, variable that is used in averaging the utilities of buyers. (See Step 4)
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– usumsj, variable that is used in averaging the utilities of sellers. (See Step 4)

– csj, the counter of the number of times that seller j has a chance to participate in a

transaction.

– ε ∈ (0, 1), algorithm termination threshold.

– i∗ and j∗, the indices of the buyer and seller, respectively, who achieve the highest

utility values in the current round of the game.

– ĵ, the index of the seller who is randomly chosen to match the buyer i.

Before stating the steps of the algorithm, it is helpful to explain the meaning behind

them. The values of the algorithm parameters and the initial values of the buyers’ and sellers’

prices are selected in Steps 0 and 1. The latter are variables that are used in averaging the

utility of every buyer and seller that participate in the market. Steps 3 - 6 constitute a

loop in which each buyer is matched with m sellers in the current round of the algorithm.

As a result of the matching between buyer i and seller j, both of them claim utility values

ubi(pbi, psj), and usj(pbi, psj), that add up to: usumbi and usumsj, respectively. The counter

csj is incremented to serve the averaging of utility values for every seller in Step 7. Buyers

do not need a similar counter as there is always m values to average over for each buyer.

Step 8, commences by determining the indices i∗ and j∗ of the buyer and seller, respectively,

who achieve the highest utility values in the current round of the game. The prices of this

buyer and seller are then selected as the averages μbk and μsk for the randomizer normal

distribution employed to generate the prices for buyers and sellers in the next round of the

game.

The variances of both probability distributions are shrunk by a factor 1/α for the next

round of the game. The variances of the randomizing distributions decrease as players

learn about the market whose behaviour is tightly related to the ensemble of players’ utility

functions. The algorithm is exited if the prices of the buyers and sellers are sufficiently close

to each other (close to the equilibrium of the game). Clearly, the information structure in
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this game is as follows: the players know their own utility functions, their own price, and

the current price of their opponents in the market game.

Algorithm 4.1 Learning by Following the Best in Double Auction Markets.

Step 0: Set the initial values of m, c, v, α > 1, and k = 0. Set initial values for σ0 > 0,

μb0 ∈ [c, v] and μs0 ∈ [c, v] . For i, j = {0, ..., n} draw samples of initial values of the ask

and bid prices from uniform distributions over the interval [c, v], i.e. pbi(0) ∼ U(c, v) and

psj(0) ∼ U(c, v).

Step 1: For i, j = {1, ..., n} set usumbi = 0, usumsj=0 = 0, and csj = 0 (parameters needed

for averaging the utility values for all players).

Step 2: Set i = 1, indicating that the utility function is averaged for buyer i. Set mcount = 0.

Step 3: Draw an integer ĵ ∈ {1, 2, ..., n} from a uniform distribution (i.e. Pr(ĵ) = 1/n).

Step 4: Calculate ub(i, j) and us(i, j) - the utility values for buyer i and seller j as they match.

Update the total sums: usumbi = usumbi + ubi(pbi, psj) and usumsj = usumsj + usj(pbi, psj).

Update the counter of the number of times that seller ĵ participates in asking against all

buyers: csĵ = csĵ + 1.

Step 5: Increment counter mcount = mcount + 1. If mcount < m, go to Step 3.

Step 6: i = i+ 1, go to Step 3 if i < n+ 1.

Step 7: For i, j = {1, ..., n}, set ubi = usumbi/m, and usj = usumsj/csj, the average utilities

of buyers and sellers.

Step 8: Update the price generator densities for the buyers and the sellers, as follows. First

determine the indices i∗ and j∗ of the buyer and seller, respectively, who achieve the highest

utility values in the current round of the game. Then set : μbk = pbi∗, and μsk = psj∗.

Step 9: Evolve the price of each buyer and seller according to pbi(k + 1) ∼ N(μbk, σk),

psj(k + 1) ∼ N(μsk, σk); i, j ∈ {1, ..., n}. If pbi < c, then pbi = c. If pbi > v, then pbi = v. If

psj < c, then psj = c. If psj > v, then psj = v.

Step 10: Update the variance σk, e.g., σk+1 = σk/α.
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Step 11: Verify the algorithm’s stopping condition. If |p̄b(k)− p̄s(k)| > ε, or σk > ε then set

k = k + 1, and go to Step 1, or else exit the algorithm.

4.3 Proof of Convergence

Theorem 4.1 Assume learning in a double auction by the above mentioned algorithm to-

gether with these conditions:

1) utilities of buyers and sellers satisfy assumptions A1, A2, and A3.

2) buyers and sellers are risk averse or risk neutral, i.e.,

∂2ub(pb, ps)

∂p2b
≤ 0 (4.3)

∂2us(pb, ps)

∂p2b
≤ 0 (4.4)

where ub(pb, ps) and us(pb, ps) are the utility functions for all the buyers and all the sellers,

respectively.

3) the first derivatives of utility functions ub(pb, ps) and us(pb, ps) are bounded 2 , i.e.,

λb ≤ ∂ub(pb, ps)

∂pb
≤ 0 and λs ≤ ∂ub(pb, ps)

∂ps
≤ 0 (4.5)

0 ≤ ∂us(pb, ps)

∂pb
≤ λ′b and 0 ≤ ∂us(pb, ps)

∂ps
≤ λ′s (4.6)

4) random generators used in the algorithm do not use a variance of zero.

In case these four assumptions are satisfied, then for every ε > 0 there exist n0, m0 ∈ N

and a sequence of variances, {σk > 0}∞k=1, such that for every n > n0 (number of buyers and

sellers) and m > m0 (number of times they meet); the proposed algorithm for learning in

double auction markets, Algorithm 4.1, converges in probability to a Nash equilibrium. That

is, lim
k→∞

Pr(|μbk − μsk| > ε) = 0, where μbk and μsk are the mean values of the Gaussian

random generator functions N(μbk, σk) and N(μsk, σk) for buyers and sellers, at time k.

2 Assumptions which are possible if trading happens at a midpoint for the prices of the
buyer and the seller, e.g., (4.51) and (4.52).
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Proof : In round k of the game, μ̂b(k+1) and μ̂s(k+1) are defined as

μ̂b(k+1) � argmax
λ∈[c,v]

∫ λ

c

fs(ps)ub(λ, ps)dps (4.7)

and

μ̂s(k+1) � argmax
λ∈[c,v]

∫ v

λ

fb(pb)us(pb, λ)dpb (4.8)

where fs(.), and fb(.), are the two Gaussian distributions from the algorithm.

The proof starts with showing that for every step of the game, k, and for everyσk ∈]0,Σb[

where

Σb = −
√
2ub(v, v)√

πλb

(4.9)

LB(σk) a lower bound for μ̂b(k+1) is calculated as the following

μ̂b(k+1) ≥ LB(σk) � μ̂sk +

√
2σ2

k ln(
Σb

σk

). (4.10)

To this end, let

gub
(x, σk, μ̂sk) =

∫ x

c

fs(ps)ub(x, ps)dps. (4.11)

The first derivative of gub
(x) is calculated using the Leibniz’s integral rule as

∂

∂x
gub

(x, σk, μ̂sk) =
∂

∂x

∫ x

c

fs(ps)ub(x, ps)dp (4.12)

= fs(x)ub(x, x) +

∫ x

c

fs(ps)
∂ub(x, ps)

∂x
dps.

The second derivative is calculated as

g′′ub
(x, σk, μ̂sk) =

∂2

∂x2

∫ x

c

fs(ps)ub(x, ps)dps (4.13)

=
∂fs(x)

∂x
ub(x, x) + fs(x)

∂ub(x, x)

∂x

+fs(x)
∂ub(x, ps)

∂x
|ps=x +

∫ x

c

fs(ps)
∂2ub(x, ps)

∂x2
dps.
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Next, it is claimed that if the conditions in the theorem are satisfied, then for every σk < Σb;

where Σb is defined in (4.9), the argmax set below is a singleton

{ζ∗} = argmax
x∈[c,v]

gub
(x, σk, μ̂sk) (4.14)

where ζ∗ ∈ [μ̂sk, v]. The proof follows by considering the signs of four terms of (4.13) and

f ′s(x) =
−(x− μ̂sk)√

2πσ3
k

e
−(x−μ̂sk)2

2σ2
k

which leaves only two possible cases for the sign of g′′ub
(x, σk, μ̂sk) in the interval [c, μ̂sk[.

case1: If g′′ub
(c, σk, μ̂sk) ≤ 0 then for all x ∈ [c, μ̂sk[ g

′′
ub
(x, σk, μ̂sk) ≤ 0.

case2: If g′′ub
(c, σk, μ̂sk) changes sign only once from positive to negative in the interval of

x ∈ [c, μ̂sk[, i.e., there exists x
∗ ∈ [c, μ̂sk[ such that for every x ∈ [c, x∗[, g′′ub

(pb(k+1), σk, μ̂sk) >

0 and for every x ∈]x∗, μ̂sk[ g
′′
ub
(x, σk, μ̂sk) < 0.

In both above cases, there exist no x ∈ [c, μ̂sk[ such that g′ub
(x, σk, μ̂sk) = 0, if the two

following conditions are satisfied:

c1) g′ub
(x, σk, μ̂sk) > 0 for x = c.

c2) g′ub
(x, σk, μ̂sk) > 0 for x = μ̂sk.

Satisfaction of (c1) is trivial and (c2) is satisfied if the following holds:

fs(μ̂sk)ub(μ̂sk, μ̂sk) > −
∫ μ̂sk

c

fs(ps)
∂ub(x, ps)

∂x
dps. (4.15)

Due to (4.5), (4.15) can be reduced to

1√
2πσk

ub(μ̂sk, μ̂sk) > −λb

2
(4.16)

and invoking (4.5), (4.16) is satisfied for every σk ∈]0,Σb[ where

Σb = −
√
2ub(v, v)√

πλb

. (4.17)

Therefore, for every σk ∈]0,Σb[ and for every x ∈ [c, μ̂sk]

g′ub
(x, σk, μ̂sk) > 0 (4.18)

34



while for x ∈]μ̂sk, v]

g′′ub
(x, σk, μ̂sk) < 0. (4.19)

This makes the proof of (4.14) complete, i.e., for every σk < Σb, where Σb is defined in

(4.9), there exists no ζ∗ ∈ [c, μ̂sk[ while there exists a unique ζ∗ ∈ [μ̂sk, v] such that (4.14) is

satisfied.

Then, to establish a lower bound for μ̂b(k+1), it is claimed that for any σk ∈]0,Σb[,

μ̂b(k+1) < νbk+1 if

μ̂b(k+1) = argmax
x∈[c,v]

gub
(x, μ̂sk, σk) = argmax

x∈[c,v]

∫ x

c

fs(ps)ub(pb, ps)dps (4.20)

where ub(pb, ps) = −λbpb − λsps +K, and

νb(k+1) = argmax
x∈[c,v]

gwb
(x, μ̂sk, σk) = argmax

x∈[c,v]

∫ x

c

fs(ps)wb(x, ps)dps (4.21)

where wb(pb, ps) satisfies (4.5), K is a constant, and ub(c, c) = wb(c, c). This claim is proven

by first invoking (4.5)

∀ps ∈ [c, v]
∂ub(x, ps)

∂x
≤ ∂wb(x, ps)

∂x
(4.22)

since ub(c, c) = wb(c, c) one can write that

∀x, ps ∈ [c, v] ub(x, ps) ≤ wb(x, ps) (4.23)

so for every x ∈ [μ̂sk, v]

∂

∂x
gub

(x, σk, μ̂sk) ≤ ∂

∂x
gwb

(x, σk, μ̂sk) (4.24)

and hence μ̂b(k+1), νb(k+1) ∈ [μ̂sk, v] and for every x ∈ [μ̂sk, v]

g′′ub
(x, σk, μ̂sk) < 0 (4.25)

and

g′′wb
(x, σk, μ̂sk) < 0. (4.26)
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Thus, it is concluded that μ̂b(k+1) ≤ νb(k+1).

Consequently, a lower bound for μ̂b(k+1) with the utility function given as ub(pb, ps) =

−λbpb − λsps +K may serve as a lower bound for any other utility function for the buyers.

The lower bound is the zero of (4.12), hence it can be obtained by solving

1√
2πσk

(−(λs + λb)x+K)e
−(x−μ̂sk)2

2σ2
k =

λb

2
(4.27)

because μ̂b(k+1) ∈ [μ̂sk, v] and for every x ∈ [μ̂sk, v] g
′′
ub
(x, σk, μ̂s(k+1)) < 0. Furthermore, for

every pb, ps ∈ [c, v] ub(pb, ps) ≥ ub(v, v). Thus by replacing (−(λs + λb)x+K) by ub(v, v) to

find the lower bound :

LB(σk) = μ̂sk +

√
2σ2

k ln(−
√
2ub(v, v)√
πλbσk

). (4.28)

The same arguments are used for sellers to show that if

0 ≤ ∂us(pb, ps)

∂pb
≤ λ′b and 0 ≤ ∂us(pb, ps)

∂ps
≤ λ′s (4.29)

and

Σs =

√
2us(c, c)√
πλ′s

(4.30)

then for every σk ∈]0,Σs[ the following upper bound is guaranteed for μ̂s(k+1)

UB(σk) = μ̂bk −
√
2σ2

k ln(

√
2us(c, c)√
πλ′sσk

). (4.31)

If in step k, μ̂bk > μ̂sk, then by choosing σk = σ∗, σ∗ < min(Σb,Σs) the equations (4.28)

and (4.31) together show that a contraction factor γ exists such that

|μ̂b(k+1) − μ̂s(k+1)| ≤ γ|μ̂bk − μ̂sk| (4.32)

where

γ ≤ max(1− β, 0) < 1 (4.33)
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and

β =

√
2σ∗

v − c
(

√
ln(−

√
2ub(v, v)√
πλbσ∗

) +

√
ln(

√
2us(c, c)√
πλ′sσ∗

)). (4.34)

To prove the possibility of contraction for a case where in step k, μ̂bk < μ̂sk, it is shown

that

lim
σk→0+

μ̂b(k+1) = μ̂sk (4.35)

and

lim
σk→0+

μ̂s(k+1) = μ̂bk. (4.36)

Proof of (4.35) follows from the calculation of the limit of μ̂b(k+1)

lim
σk→0+

μ̂b(k+1) = lim
σk→0+

argmax
b∈[c,v]

∫ b

c

fs(ps)ub(b, ps)dps (4.37)

= lim
σk→0+

argmax
b∈[c,v]

∫ b

c

δ(ps − μ̂sk)ub(b, ps)dps (4.38)

where δ(.) is the delta dirac function (see page 132 in [115]), hence

lim
σk→0+

μ̂b(k+1) = μ̂sk. (4.39)

Similarly, one can prove (4.36).

If in step k, μ̂bk < μ̂sk then because of (4.35) and (4.36) there exists a small σk ∈]0,∞[

that reverses the order, i.e., μ̂b(k+1) > μ̂s(k+1), henceforth there exist γ < 1 (see (4.32)) such

that

|μ̂b(k+2) − μ̂s(k+2)| ≤ γ|μ̂bk − μ̂sk|. (4.40)

Next it is shown that for every ε1, ε2 > 0, there exist n0,m0 ∈ N, and σ0 > 0 such that if

n > n0, m > m0, and σk < σ0 then

Pr(|μ̂b(k+1) − μb(k+1)| > ε1) < ε2 (4.41)

Pr(|μ̂s(k+1) − μs(k+1)| > ε1) < ε2. (4.42)
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To prove 4.41, for the buyer i who bids pbi, the probability

Pr(|ubi − gub(pbi, σk, μ̂sk)| > ε1) (4.43)

is considered as a measure which shows the difference between ubi which is stochastically

obtained in the algorithm and gub(.) which is a deterministic function. From Steps 7 and 4

of the algorithm, (4.43) is writen as

Pr(|
∑jm

j1
ub(pbi,psj)

m
− gub(pbi, σk, μ̂sk)| > ε1), (4.44)

where j1 to jm are the indices for the sellers that this buyer was matched to (Step 2). using

the definition (4.11), there exist m0 ∈ N and σ0 > 0 such that

lim
m→∞

Pr(|
∑jm

j1
ub(pbi,psj)

m
− gub(pbi, σk, μ̂sk)| > ε1) < ε2 (4.45)

because the probability of matching is uniform and the probaility of drawing a sample from a

Normal distribution is arbitrary low by choosing σk > 0, since μbk ∈ [c, v]. Thus, truncation

does not matter if (4.41) is satisfied.

On the other hand,

lim
n→∞

Pr(∀i ∈ {1, ..., n}|pbi − μ̂b(k+1))| > ε1) = 0. (4.46)

Since, bid prices for sellers are generated by a Gaussian with non-zero variance. Finally,

in the proof of the theorem the argmax function for gub(pbi, σk, μ̂) is a singleton with the

value of μb(k+1). Thus (4.41) is proven. The proof for (4.42) is similar.

Now, for every ε1, ε2 > 0, there exist n0,m0 ∈ N and σ0 > 0 such that (4.41) and (4.42)

are satisfied. Besides, by using (4.34)

β0 =

√
2σ0

v − c
(

√
ln(−

√
2ub(v, v)√
πλbσ0

) +

√
ln(

√
2us(c, c)√
πλ′sσ0

)). (4.47)

and by (4.40)

|μ̂b(k+2) − μ̂s(k+2)| ≤ (1− β0)|μ̂bk − μ̂sk| (4.48)
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where 0 < β0 < 1. Thus, (using (4.41), (4.42), and (4.48)), if |μ̂bk − μ̂sk| = dk, then

Pr(|μ̂b(k+2) − μ̂s(k+2)| > (1− β0)dk + 2ε1) < ε2 (4.49)

and in 2l, an even number, of steps

Pr(|μ̂b(k+2l) − μ̂s(k+2l)| > ((1− β0)
2ldk + 2lε1) ) < ε2. (4.50)

Thus, by defining ε3 = (1− β0)
2ldk +2lε1), there exist l0 ∈ N such that for every l > l0,

(4.50) is satisfied. �

4.4 Numerical Experiments

If c ∈ [0, 1] is the cost of the production and v ∈ [0, 1] represents the value of good

for the buyers, and under the assumption that a buyer and a seller will benefit from their

transaction equivalently, the utility functions, ubi and usj, of buyer i and the seller j in a

single round of the game can be given by the formulae below [92] [91]:

ubi(bi, sj) =

⎧⎪⎨
⎪⎩

v − pbi+psj
2

if pbi ∈ [psj, v]

0 otherwise
(4.51)

usj(bi, sj) =

⎧⎪⎨
⎪⎩

pbi+psj
2

− c if psj ∈ [c, pbi]

0 otherwise
(4.52)

in which pbi and psj denote the prices of buyer i and seller j, respectively.

Another example of a double auction market will be also considered that is created by

adopting a different set of utility functions:

ubi(bi, sj) =

⎧⎪⎨
⎪⎩

√
v − pbi+psj

2
if pbi ∈ [psj, v]

0 otherwise
(4.53)

usj(bi, sj) =

⎧⎪⎨
⎪⎩

√
pbi+psj

2
− c if psj ∈ [c, pbi]

0 otherwise
(4.54)
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The evolution of the ask and bid prices of the players in the market during the first

few rounds of the game are shown in Figure 4–1. It can be seen that the prices of both

buyers and sellers are concentrating in the neighborhoods of their corresponding best bid or

ask prices. In all these tests the parameters of the algorithm are set to n = 100, m = 20,

α = 1.1, σ0 = 0.3, c = 0, v = 1.

The curves in Figure 4–2 represent the evolution of the average prices of the population

of buyers and sellers during the game using the utility functions (4.51) to (4.54), respectively.

It is seen that convergence to a Nash equilibrium of the game is achieved in each case. Also,

in the Figure 4–2, statistics of convergence are shown for the algorithm that terminates after

100 rounds of the auction game. It is seen that the spread between the average bid and

ask prices pb − ps is marginally small which essentially demonstrates convergence to a single

market price.

4.5 Merit Based Matching

In real auction markets the buyers and sellers do not match randomly, but the system

selects the partners by their merits.

The main idea is that a buyer who bids a higher price has more merit for transaction

than a buyer who bids a lower price and a seller who asks a lower price has more merit than a

seller who asks a higher price. The buyer and the seller with highest merits are first matched

and then other buyers and sellers are matched based on their ranks of merit. Algorithm

4.2 is designed for learning in this type of market. Unless otherwise stated, notations and

definitions are identical to those of Algorithm 4.1.

Algorithm 4.2 Algorithm for Learning in Double Auction Markets with Merit Based Match-

ing.

Step 0: Set the initial values of c, v, α > 1, and k = 0. Set initial values for σ0 > 0,

μb0 ∈ [c, v] and μs0 ∈ [c, v] . For i, j = {1, ..., n} draw samples of initial values of the ask

and bid prices from uniform distributions over the interval [c, v], i.e.pbi(0) ∼ U(c, v) and

psj(0) ∼ U(c, v).
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Figure 4–1: Evolution of prices in the algorithm 4.1, where n = 100, m = 20, σ0 = 0.3,
α = 1.1, c = 0 and v = 1.
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Figure 4–2: Convergence of the algorithm 4.1 after 100 iterations. In the left column for
the utility functions (4.51) and (4.52), and in the right column for utility functions (4.53)
and (4.54). In each case, the first row shows an example of convergence to an equilibrium.
The second and the third rows show empirical frequencies of 100 trials for convergence to
different market equilibria and the spread between the average bid and ask prices (pb − ps),
respectively. The parameters of the algorithm are chosen as n = 100, m = 20, σ0 = 0.3,
α = 1.1, c = 0 and v = 1.
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Step 1: Set i = 1, indicating that the utility function is calculated for buyer i.

Step 2: Calculate r, rank of buyer i among the buyers (buyer with the highest bid has rank

1). Find j the seller that has rank r among the sellers (seller with the lowest ask has rank

1).

Step 3: Use utility functions to calculate ubi, and usj of the same rank.

Step 4: i = i+ 1, go to Step 2 if i < n+ 1.

Step 5: Update the price generator densities for the buyers and the sellers, as follows. First

determine the indices i∗ and j∗ of the buyer and seller, respectively, who achieve the highest

utility values in the current round of the game. Then set : μbk = pbi∗, andμsk = psj∗.

Step 6: Evolve the price of each buyer and seller according to pbi(k + 1) ∼ N(μbk, σk),

psj(k + 1) ∼ N(μsk, σk); i, j ∈ {1, ..., n}. If pbi < c, then pbi = c. If pbi > v, then pbi = v. If

psj < c, then psj = c. If psj > v, then psj = v.

Step 7: Contract the variance of the averages of the price generator densities for the buyers

and the sellers: σk+1 = σk/α.

Step 8: Verify the algorithm’s stopping condition. If |p̄b(k)− p̄s(k)| > ε, then set k = k + 1,

and go to Step 1, or else exit the algorithm.

Figure 4–3 represents the evolution of the average prices of the populations of buyers

and sellers to a Nash equilibrium during the game. For this test the parameters of Algorithm

4.2 are chosen as follows : n = 10, m = 20, v = 1, c = 0, σ0 = 0.1. For the left column

α = 1.1 and the test is ran for 100 iterations. For the right column , α = 1.01, and the test

is ran for 1000 iterations. The first row shows an example of convergence to an equilibrium.

A comparison of the statistics of pb−ps, shown in the third row of Figure 4–3, indicates that

a slower descent of variances (a lower α) combined with more iterations can lead to more

convergence towards a Nash equilibrium. However, more tendency for convergence to one of

the two extremes of the interval [0, 1] is also observed in this case.
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Figure 4–3: Convergence of the algorithm 4.2 while using utility functions (4.51) and (4.52).
The parameters of the algorithm are chosen as n = 10, v = 1, c = 0, σ0 = 0.1. For the
left column, α = 1.1, and the test is run for 100 iterations. For the right column, α = 1.01,
and the test is run for 1000 iterations. The first row shows an example of convergence to
an equilibrium. The second and the third rows show empirical frequencies of 100 trials for
convergence to different market equilibria, and the spread between the average bid and ask
prices (pb − ps), respectively.

44



4.6 Summary

An evolutionary algorithm is proposed for learning in double auction markets where the

buyers and sellers follow the best member of their populations from the previous round of

the game and mutate their bids by a diminishing Gaussian distribution.

The existence of a sequence of variances is proved that guarantees the convergence

of the stochastic learning algorithm for the risk neutral and risk averse players to a Nash

equilibrium.

Simulations show convergence when the sequence of variances is obtained by a geometric

series when the buyers and sellers are matched randomly (Algorithm 4.1). Convergence does

not happen as fast if buyers and sellers are matched based on their merits (Algorithm 4.2).
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CHAPTER 5
A Random Search Algorithm for Learning in Double Auction Markets

As in Chapter 4, it is also of interest to find whether learning in the repeated game of

double auction market can converge to an equilibrium.

To recapitulate, in a double auction market, buyers and sellers bid simultaneously. A

transaction is possible if a buyer is matched with a seller that is offering a lower price than

a buyer’s bidding price. In such a game the utility functions will exhibit discontinuities.

In Chapter 5, convergence for an algorithm was analyzed where the buyers and the

sellers follow the best bidders of their group. In this chapter a Random Search Algorithm

(RSA) for two populations of players (i.e. buyers and sellers) is presented. The algorithm

mimics the behaviour of buyers and sellers in a real market where individual buyers try to

know what is the lowest limit that they can bid for buying and individual sellers try to know

what is the upper limit that they can still sell. The speed of convergence of the algorithm is

compared to the speed of convergence of the Genetic Algorithm proposed in [91].

5.1 Problem Statement

It is assumed that a double auction market can be modelled as in [91]: There are n > 0

buyers and the same number of sellers. In any round of the game any buyer will be matched

with m random sellers. A transaction will take place, benefiting both the buyer and the

seller only if the price bid by the buyer exceeds the price offered by the seller.

If c ∈ [0, 1] is the cost of the production and v ∈ [0, 1] represents the value of a good

for the buyers, and under the assumption that a buyer and a seller will benefit from their

transaction equivalently, the utility functions, ubi and usj, of buyer i and seller j can be given

by the formula below
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Figure 5–1: Discontinuity of utility function of buyer i

ubi(pbi, psj) =

⎧⎪⎨
⎪⎩

v − pbi+psj
2

if pbi ∈ [psj, v]

0 otherwise
(5.1)

usj(pbi, psj) =

⎧⎪⎨
⎪⎩

pbi+psj
2

− c if psj ∈ [c, pbi]

0 otherwise

in which pbi and psj denote the prices of buyer i and seller j, respectively. Figures 5–1

and 5–2 illustrate the above utility functions. It can be seen that both utility functions are

discontinuous and that the best price bid of a buyer and the best price asked by a seller are

both very close to the point of discontinuity.

If all buyers and sellers bid the same price this game is in a Nash equilibrium (see Propo-

sition 4.1). In [91] the agents learn to do better in each iteration by genetic reproduction

from the successful agents of their appropriate group. Instead of using a genetic mutation to

produce a candidate bid, the Random Search Algorithm explained in this chapter simulates

a behaviour which uses the estimates for the best bids for buyers and sellers where they do

not make assumptions about the probability distributions of each other in the next round of
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Figure 5–2: Discontinuity of utility function of seller j

the game. In addition, a vanishing Gaussian mutation is added that lets each population per-

form a random search against their counterparts, a behaviour that is more similar to actions

in the market than the genetic learning. Hereafter, the problem is to know if this learning

algorithm for the double auction market converges to a Nash equilibrium of the game, and

if so how the speed of convergence is compared to the well-cited Genetic Algorithm for the

same application [91].

5.2 Evolutionary Random Search Algorithm for Learning in Double Auction
Markets

The evolutionary iterative algorithm for learning in double auction markets developed

here belongs to the general class of random search algorithms. The underlying idea of

the algorithm stems from a reasonable assumption that in double auction markets both

the buyers and the sellers know about other buyers and sellers being either successful of

unsuccessful in the preceding round of the game.

The following notation is adopted :

– n, the cardinality of the populations of buyers and sellers.

– k, the index of the current round of the game, (k ∈ N).

– c ∈ [0, 1], the cost of production for sellers.
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– v ∈ [0, 1], the value of the product for buyers.

– pbi(k) ∈ [c, v], the maximal price at which buyer i is willing to buy in round k.

– psj(k) ∈ [c, v], the minimal price at which seller j is willing to sell in round k.

– p̄b(k) ∈ [c, v], the average of the buyers’ bid prices in round k, i.e., p̄b(k) =
∑n

i=1 pbi(k)/n.

– p̄s(k) ∈ [c, v], the average of the sellers’ ask prices in round k, i.e., p̄s(k) =
∑n

j=1 psj(k)/n.

– avsb, the average price used by the successful buyers in a current round of the game.

– avusb, the average price used by the unsuccessful buyers in a current round of the

game.

– avss, the average price used by the successful sellers in a current round of the game.

– avuss, the average price used by the unsuccessful sellers in a current round of the

game.

– borb, a value representing a ”boundary price” for buyers, as it evolves in the iterations

of the algorithm, that separates the populations of successful and unsuccessful buyers.

– bors, a value representing a ”boundary price” for sellers, as it evolves in the iterations

of the algorithm, that separates the populations of successful and unsuccessful sellers.

– m, the number of buyers (sellers) that any seller (buyer) meets in any round of the

game.

– Tr(k), the proportion of how many times (out of m) a buyer or a seller must succeed

in order to be labelled successful in round k of the evolution, Tr(k) ∈]0, 1[.
– α > 1, a shrinking factor for the variance of the randomizer function used in the

generation of the bid prices.

– β ∈ (0, .2), a margin distance between the means of the random generator functions

and the corresponding borders of successful and unsuccessful buyers’ bids or sellers’ ask

prices.

– N(μ, σ), the normal distribution with mean μ and variance σ.

– σk > 0, the variance of the random generator function in round k of the game.

– μbk ∈ [c, v] and μsk ∈ [c, v], the means for the random generator functions for buyers
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and sellers, respectively.

– mcount, a counter that controls the number of interactions of players before an update

of prices.

– sucbi and sucsj, counters of successful transactions for buyer i and seller j, respec-

tively; i, j = {1, · · · , n}.
– sbi and ssj, flags to check if buyer i or seller j is marked as successful after meeting m

counterparts.

– ε ∈ (0, 1), algorithm termination threshold.

Before stating the steps of the algorithm, it is helpful to explain the meaning behind

them. The values of the algorithm parameters and the initial values of the buyers and sellers

prices are selected in Steps 0 and 1. The latter are the initial maximal prices at which the

buyers are willing to buy and the initial minimal prices at which the sellers are willing to

sell. Steps 2 - 5 constitute a loop in which each buyer meets m sellers in the current round

of the algorithm. Each buyer or seller who succeeded in at least Tr(k).m transactions is

then labelled as successful. At the exit of the loop in Steps 2 - 5, the average prices of

each of the so categorized four groups of buyers and sellers are then computed (Step 6)

yielding the average prices for successful as well as unsuccessful buyers and sellers. The

averaging then account of the updated prices of successful buyers and sellers. The averages

are next used to evolve the boundary prices borb and bors that separate the populations

of successful and unsuccessful buyers and sellers. The latter are employed to shape the

probability distributions of the buyers’ and the sellers’ maximal bidding prices and minimal

asking prices, see Steps 7-8. In Step 9, new prices are drawn for all the buyers and sellers.

Again, these prices represent the current maximal prices at which the buyers are willing to

buy and the minimal prices at which the sellers are willing to sell. The variance of both

probability distributions are shrunk by a factor 1/α for the next round of the game. It is

the evolution of the boundary prices separating the successful and unsuccessful players that

drives the evolution of the randomizing probability distributions for players in the market.
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These boundaries approach one another as players learn about the market whose behaviour

is tightly related to the ensemble of their utility functions. The algorithm is exited if the

prices of the buyers and sellers are sufficiently close to each other (close to the equilibrium

of the game).

Clearly, the information structure in this game is as follows: the players know their

own utility functions, their own price and the current price of their opponents in the mar-

ket game, and they can also “estimate” the current average prices employed in their own

group (of either buyers or sellers). Algorithm 5.1 can thus be viewed as an algorithm for

the simulation of the evolution of a double auction market in which players can learn pro-

gressively how to maximize their gains, respective to the ensemble of the utility functions

of the players. The evolution terminates when a market equilibrium is reached. The value

of the equilibrium clearly depends on the rate at which the variances of the randomizing

probability distributions for the prices of the players approach zero. The evolution of these

variances is meant to represent the readiness of the players to adhere to the market trend.

Algorithm 5.1 The Random Search Algorithm. Step 0: Set the initial values of m, Tr(0),

α > 1, β ∈ [0, .2), and k = 0. Set initial values for σ0 > 0, μb0 ∈ [c, v] and μs0 ∈ [c, v]

. For i, j = {0, ..., n} draw samples of initial values of the ask and bid prices from uniform

distributions over the interval [c, v], i.e.pbi(0) ∼ U(c, v) and psj(0) ∼ U(c, v).

Step 1: Set mcount = 0 and sucbi = sucsj = 0, i, j ∈ {1, ..., n}.
Step 2: Draw an integer i∗ ∈ {1, 2, ..., n} from a uniform distribution (i.e. Pr(i∗) = 1/n).

Draw an integer j∗ ∈ {1, 2, ..., n} from a uniform distribution (i.e. Pr(j∗) = 1/n).

Step 3: For each i ∈ {1, ..., n} if ( pbi∗ > psj∗ ) then increment the counters of successful

buyer and successful seller as follows: sucbi∗ = sucbi∗ + 1, sucsj∗ = sucsj∗ + 1.

Step 4: Increment counter mcount = mcount + 1.

Step 5: if mcount < m, go to Step 2.

Step 6: Label buyers as successful and unsuccessful: if sucbi > Tr(k).m, then set sbi = 1 else

set sbi = 0. Label sellers as successful and unsuccessful: if sucsj > Tr(k).m, then set ssj = 1
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else set ssj = 0.

Step 7: Using the labels set in Step 6, calculate the average price used by the successful buyers,

avsb, the average price used by the unsuccessful buyers, avusb, the average price used by the

successful sellers, avss, and the average price used by the unsuccessful sellers: avuss.

Step 8: Set borb = (avsb + avusb)/2, bors = (avss + avuss)/2.

Step 9: Update the averages of the price generator densities for the buyers and the sellers,

respectively: μbk = borb − βσk, and μsk = bors + βσk. If μbk /∈ [c, v] then μbk is reset to

μbk = c or μbk = v depending on whether μbk < c or μbk > v. Similar truncation is also

performed for μsk.

Step 10: Evolve the price of each buyer and seller according to pbi(k + 1) ∼ N(μbk, σk),

psj(k + 1) ∼ N(μsk, σk); i, j ∈ {1, ..., n}. If pbi < c, then pbi = c. If pbi > v, then pbi = v. If

psj < c, then psj = c. If psj > v, then psj = v.

Step 11: Contract the variance of the price generator densities for the buyers and the sellers:

σk+1 = σk/α.

Step 12: Verify the algorithm’s stopping condition. If |p̄b(k)− p̄s(k)| > ε, update Tr(k), e.g.,

Tr(k + 1) = Tr(k), then set k = k + 1, and go to Step 1, else exit the algorithm.

5.3 Proof of Convergence

It can be seen from Steps 8-9 and Step 11 that the probability distributions of the

prices are modified in a way which favors the averages to move towards meeting one another

(producing an equilibrium of the game).

Remark 5.1 The notation N(x;μ, σ) is used for the normal probability distribution function

with mean μ and variance σ, and the notation Φ(x) is used for the cumulative distribution

function of this distribution, Φ(x) =
∫ x

−∞N(ζ;μ, σ)dζ.

Proposition 5.1 Assume that for n, the cardinality of the populations of the players and

m, the number of their counterparts in each round of the game, the probability of success

for buyer i is denoted by Prnm(Success for buyer i|pbi) and the probability of success for the

seller j is denoted by Prnm(Success for seller j|psj). Furthermore, let us define these two
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limits

lim
n,m→∞

Prnm(Success for buyer i|pbi) � Pr(Success for buyer i|pbi) (5.2)

lim
n,m→∞

Prnm(Success for seller j|psj) � Pr(Success for seller j|psj). (5.3)

If for every Tr(k) ∈]0, 1[, xob and xos are chosen such that
∫ xob

−∞N(x;μsk, σk)dx = Tr(k),

and
∫∞
xos

N(x;μbk, σk)dx = Tr(k), then

Pr(Success for buyer i|pbi) =

⎧⎪⎨
⎪⎩

0 if pbi ≤ xob

1 otherwise
(5.4)

Pr(Success for seller j|psj) =

⎧⎪⎨
⎪⎩

0 if psj > xos

1 otherwise.
(5.5)

Proof. To prove (5.4), starting from (5.2),

lim
n,m→∞

Prnm(Success for buyer i|pbi) � Pr(Success for buyer i|pbi), (5.6)

and by using Step 6 of the Algorithm,

= lim
n,m→∞

Pr(
Number of times out of m′ that pbi > psj∗

m′ > Tr(k)). (5.7)

The index j∗ can indicate a different seller in each of the m′ trials, which is proportional

to m because matching happens with equal probability. Since the buyer i, who bids pbi is

matched with probability 1/n with a random seller who bids psj∗ , and psj∗ is drawn from a

Normal distribution in the Step 10, for pbi = xob,

lim
n,m→∞

Number of times out of m′ that pbi ≥ psj∗

m′ (5.8)

= Pr(psj∗ ≤ xob) (5.9)

=

∫ xob

−∞
N(x;μsk, σk)dx = Tr(k), (5.10)

and (5.4) is concluded. Proof of (5.5) is similar.
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Corollary 5.1 xob and xos, which are calculated in the proposition above for Tr(k), satisfy

these two relations:

xob − μbk = μsk − xos (5.11)

and

Φ(xob − μbk) = 1− Φ(xos − μsk) (5.12)

Proof. Trivial.

Theorem 5.1 For every ε > 0, there exist n0,m0 ∈ N such that if n > n0 (the cardinality of

the populations of the players) and m > m0 (the number of counterparts met in each round of

the game) then there exist a contraction factor α > 1 and a sequence of thresholds for labelling

a buyer or a seller as successful, i.e., ∃{Tr(k)}∞k=0 such that limk→∞ Pr(|μbk −μsk| > ε) = 0,

which implies that a Nash equilibrium is achieved.

Proof. At time k, choosing a Tr(k) ∈]0, 1[, xob and xos are calculated from (5.1) and the

proof starts with calculating the average bids of successful and unsuccessful buyers and

sellers, SB, USB, SS and USS.

First, average price of bids for the successful buyers is calculated

SB �
∫ ∞

−∞
xPr(pbi = x| buyer i is successful)dx

=

∫∞
−∞ xPr( buyer i is successful|pbi = x)Pr(x)dx

Pr( buyer i is successful)
.

Using Proposition 5.1, the denominator is calculated as

DSB � Pr( buyer i is successful) =

∫ ∞

xob

N(x;μsk, σk)dx = 1− Φ(
xob − μsk

σk

) (5.13)

where xob is defined in Proposition 5.1, and the numerator is calculated as

NSB �
∫ ∞

−∞
xPr(buyer i is successful|pbi = x)Pr(x)dx

=

∫ ∞

xob

x√
2πσk

e
−(x−μbk)2

2σ2
k dx. (5.14)
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By the change of variable x− μbk = ζ

NSB =

∫ ∞

xob−μbk

ζ + μbk√
2πσk

e
−ζ2

2σ2
k dζ

=

∫ ∞

xob−μbk

ζ√
2πσk

e
−ζ2

2σ2
k dζ +

∫ ∞

xob−μbk

μbk√
2πσk

e
−ζ2

2σ2
k dζ

=
σk√
2π

∫ ∞

−(xob−μbk)2

2σ2
k

e−αdα + μbk(1− Φ(
xob − μbk

σk

))

=
σk√
2π

e
−(xob−μbk)2

2σ2
k + μbk(1− Φ(

xob − μbk

σk

))

Hence, SB is calculated as

SB =
NSB

DSB

=
σk√

2π(1− Φ(xob−μbk

σk
))
e

−(xob−μbk)2

2σ2
k + μbk. (5.15)

Then, the average price of bids for the unsuccessful buyers is calculated as

USB �
∫ ∞

−∞
xPr(pbi = x| buyer i is unsuccessful)dx

=

∫∞
−∞ xPr( buyer i is unsuccessful|pbi = x)Pr(x)dx

Pr( buyer i is unsuccessful)
.

Using Proposition 5.1, the denominator is calculated as

DSB � Pr( buyer i is unsuccessful ) =

∫ xob

∞
N(x;μsk, σk)dx = Φ(

xob − μsk

σk

) (5.16)

and the numerator is calculated as

NUSB �
∫ ∞

−∞
xPr( buyer i is unsuccessful |pbi = x)Pr(x)dx (5.17)

=

∫ xob

−∞

x√
2πσk

e
−(x−μbk)2

2σ2
k dx. (5.18)

By the change of variable x− μbk = ζ
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NUSB =

∫ xob−μbk

−∞

ζ + μbk√
2πσk

e
−ζ2

2σ2
k dζ

=

∫ xob−μbk

−∞

ζ√
2πσk

e
−ζ2

2σ2
k dζ +

∫ xob−μbk

−∞

μbk√
2πσk

e
−ζ2

2σ2
k dζ

=
−σk√
2π

∫ −(xob−μbk)2

2σ2
k

−∞
e−αdα + μbkΦ(

xob − μbk

σk

)

=
−σk√
2π

e
−(xob−μbk)2

2σ2
k + μbkΦ(

xob − μbk

σk

).

Hence, USB is calculated as

USB =
NUSB

DUSB

=
−σk√

2πΦ(xob−μbk

σk
)
e

−(xob−μbk)2

2σ2
k + μbk. (5.19)

Finally, the borb is defined as

borb =
SB + USB

2
(5.20)

borb = μbk +
σk

2
√
2π

e
−(xob−μbk)2

2σ2
k (

1

1− Φ(xob−μbk

σk
)
− 1

Φ(xob−μbk

σk
)
) (5.21)

the border for successful and unsuccessful sellers, bors, is also calculated

SS �
∫ ∞

−∞
xPr(psj = x| seller j is successful)dx

=

∫∞
−∞ xPr( seller j is successful|psj = x)Pr(x)dx

Pr( seller j is successful)
.

The denominator is calculated as

Pr( seller j is successful) =

∫ ∞

xob

N(x, μsk, σk)dx = Φ(
xos − μsk

σk

) (5.22)

and the numerator is calculated as

∫ ∞

−∞
xPr( seller j is successful|psj = x)Pr(x)dx (5.23)

=

∫ xos

−∞

x√
2πσk

e
−(x−μsk)2

2σ2
k dx. (5.24)
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By introducing the variable ζ � x− μsk

NSS =

∫ xos−μsk

−∞

ζ + μsk√
2πσk

e
−ζ2

2σ2
k dζ

=

∫ xos−μsk

−∞

ζ√
2πσk

e
−ζ2

2σ2
k dζ +

∫ xos−μsk

−∞

μbk√
2πσk

e
−ζ2

2σ2
k dζ

=
σk√
2π

∫ (xob−μsk)2

2σ2
k

−∞
e−αdα + μskΦ(

xos − μsk

σk

)

=
−σk√
2π

e
−(x0s−μsk)2

2σ2
k + μskΦ(

xos − μsk

σk

).

Hence, SS is calculated as

SS =
NSS

DSS

=
−σk√

2πΦ(xos−μsk

σk
)
e

−(xos−μsk)2

2σ2
k + μsk. (5.25)

Finally, the average price of bids for the unsuccessful sellers is calculated

USS �
∫ ∞

−∞
xPr(psj = x| seller j is unsuccessful)dx

=

∫∞
−∞ xPr( seller j is unsuccessful|psj = x)Pr(x)dx

Pr( seller j is unsuccessful)
.

Using Proposition 5.1, the denominator is calculated as

DUSS � Pr( seller j is unsuccessful) =

∫ ∞

xos

N(x, μsk, σk)dx = 1− Φ(
xos − μsk

σk

) (5.26)

and the numerator is calculated as

NUSS �
∫ ∞

−∞
xPr( seller j is unsuccessful|psj = x)Pr(x)dx (5.27)

=

∫ ∞

xos

x√
2πσk

e
−(x−μsk)2

2σ2
k dx. (5.28)

By introducing variable ζ = x− μsk
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NUSS =

∫ ∞

xos−μsk

ζ + μsk√
2πσk

e
−ζ2

2σ2
k dζ

=

∫ ∞

xos−μsk

ζ√
2πσk

e
−ζ2

2σ2
k dζ +

∫ ∞

xos−μsk

μsk√
2πσk

e
−ζ2

2σ2
k dζ

=
σk√
2π

∫ ∞

−(xos−μsk)2

2σ2
k

e−αdα + μsk(1− Φ(
xos − μsk

σk

))

=
σk√
2π

e
−(xos−μsk)2

2σ2
k + μsk(1− Φ(

xos − μsk

σk

)).

Hence, USS is calculated as

USS =
NUSS

DUSS

=
σk√

2π(1− Φ(xos−μsk

σk
))
e

−(xos−μsk)2

2σ2
k + μsk. (5.29)

Then, bors is defined as

bors � SS + USS

2
(5.30)

bors = μsk +
σk

2
√
2π

e
−(xos−μsk)2

2σ2
k (

1

1− Φ(xos−μsk

σk
)
− 1

Φ(xos−μsk

σk
)
). (5.31)

Recall from Corollary 5.1 that xob−μbk = μsk−xos, and Φ(xob−μbk) = 1−Φ(xos−μsk).

Hence (5.31) can be written as

bors = μsk +
σk

2
√
2π

e
−(xob−μbk)2

2σ2
k (

1

Φ(xob−μbk

σk
)
− 1

1− Φ(xob−μbk

σk
)
). (5.32)

Then, the difference ”borb− bors” which indicates contraction is calculated as

borb− bors = μbk − μsk +
σk√
2π

e
−(xob−μbk)2

σ2
k (

1

1− Φ(xob−μbk

σk
)
− 1

Φ(xob−μbk

σk
)
). (5.33)

Let dk+1 � μb(k+1) − μs(k+1) = (borb + βσk) − (bors − βσk), and β ∈ [0, 0.2) be an

arbitrary chosen scalar. For β = 0, it follows that

dk+1 � μb(k+1) − μs(k+1) (5.34)

since borb and bors are calculated in the Step 8, and borb and bors are calculated by the

integrals.
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Using Proposition 5.1, and all the calculations above used to find borb and bors, it is

concluded that for every ε1, ε2 > 0 there exists n0,m0, k0 ∈ N such that for every n > n0,

m > m0, k > k0 (σk+1 = σk/α), if

Pr(μbk, μsk ∈]c, v[) = 1 (5.35)

then

Pr(|(borb− bors)− (borb− bors)| > ε1) < ε2 (5.36)

and by using (5.33) and (5.34)

Pr(|dk+1 − dk − σk√
2π

e
−(xob−μbk)2

σ2
k (

1

1− Φ(xob−μbk

σk
)
− 1

Φ(xob−μbk

σk
)
)| > ε1) < ε2. (5.37)

If for every k ∈ N

1√
2π

e
−(xob−μbk)2

σ2
k (

1

1− Φ(xob−μbk

σk
)
− 1

Φ(xob−μbk

σk
)
) = Ψ (5.38)

then (5.37) reduces to

Pr(|dk+1 − dk − σkΨ| > ε1) < ε2 (5.39)

(5.35) and (5.39) together result

Pr(μb(k+1), μs(k+1) ∈]c, v[) = 1 (5.40)

and for the time k′ > k > k0,

Pr(|dk′ − dk −Ψ
k′−1∑
l=k

σl| > (k′ − k)ε1) < ε2 (5.41)

and since σk+1 = σk/α,

Pr(|dk′ − dk −Ψσ0

k′−1∑
l=k

1

αl
| > ε′1) < ε′2. (5.42)

where, ε′1 = (k′ − k)ε1 and ε′2 = ε2. Next, we invoke that if

Ψσ0Σ
∞
l=k

1

αl
= −dk, (5.43)
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the theorem is proven, because there exist k′0, n0,m0 ∈ N such that for every ε′1, ε
′
2 > 0

k′ > k′0, n > n0, and m > m0,

Pr(|dk′ | > ε1) < ε2, (5.44)

where dk′ = μbk′ − μsk′ .

To this end, since α > 1, (5.43) reduces to

Ψ =
−dkα

k−1(α− 1)

σ0

. (5.45)

Therefore, if μbk ∈]c, v[, since we have (5.40), (5.45) is valid for every k′ > k (if not equation

(5.36) could not be used), and because the left side of the equation (5.38) is equal to zero for

xob = μbk, the convergence is ensured if for every k′′ > k′0, there exist α > 1 and Tr(k
′′) ∈]0, 1[

such that xob calculated from Proposition 5.1 for such a Tr(k
′′) satisfies

1√
2π

e
−(xob−μbk)2

σ2
k (

1

1− Φ(xob−μbk

σk
)
− 1

Φ(xob−μbk

σk
)
) =

−dkα
k−1(α− 1)

σ0

. (5.46)

If μbk = c, by the definition of xos in Proposition 5.1, there exists γ0 > 0 such that

for every γ0 > γ > 0, there exists a Tr(k) ∈]0, 0.5[, less than half of population, such that

xos > c + γ. Consequently, because of Step 8, there exists γ′ > 0 such that bors > c + γ′,

(since average of unsuccessful sellers is bigger than c), and because of step 9, μsk > c+ γ′ (if

β = 0) . The same is true for μbk = v, μsk = c and μsk = v. Thus, at every round k of the

game, there exists Tr(k) such that Pr(μb(k+1) ∈]c, v[) = 1, Pr(μs(k+1) ∈]c, v[) = 1, and from

time k + 1 the existence for a sequence {Tr(k)}∞k=0 can be proven as above.

Consequently, there exists α > 1 and {Tr(k)}∞k=0 such that convergence to a Nash

equilibrium is guaranteed.

5.4 Genetic Learning as a Competitor Algorithm

The proposed random search algorithm is compared to the genetic algorithm used in [91]

to observe its learning procedure in a double auction market with the same utility functions

as adopted here. The competitor algorithm is summarized in Algorithm 5.2. To seek a fair
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comparison the structure of genetic algorithm as well as all the assumptions are chosen as

close as possible to [91].

The genetic algorithm of [91] is summarized below for easier comparison.

Algorithm 5.2 The Genetic Algorithm [91] :

Step 0: Draw samples of initial values of pbi and psj ∀i, ∀j as in Step 0 of Algorithm 5.1.

Step 1: Let every buyer meet m random sellers (as in Steps 2-5 of Algorithm 5.1).

Step 2: Rank buyers and sellers according to the values of a fitness function selected. The

fitness function for a buyer is calculated as the sum of the values of his/her utility function

as he/she meets with all the m sellers. The fitness function for sellers are defined similarly

except that summation is performed over all the buyers which they meet.

Step 3: Retain buyers and sellers whose ranking exceeds a certain threshold.

Step 4: Using crossover function of the genetic algorithm, re-generate new values for any pbi

and psj that were eliminated in Step 3.

Step 5: Employing the mutation function of the genetic algorithm, update pbi and psj ∀i, ∀j
to new values.

Step 6: Go to Step 1 if the stopping conditions (similar to those of Step 12 in Algorithm 5.1)

are not satisfied.

5.5 Numerical Experiments

Convergence properties of the novel random algorithm and the genetic algorithm of [91]

are compared by way of simulations.

It is assumed that the cardinality of the populations of buyers and sellers is n = 100.

The initial prices bid by the buyers and those asked by the sellers are drawn from a uniform

distribution function on the interval [0, 1].

In the case of the random search algorithm, the algorithm parameters of Step 0 were

chosen by trial and error and as such were not selected optimally to secure fastest convergence

possible.
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The genetic algorithm of [91] was used with a mutation coefficient μ = .001 (probability

of changing a single bit in the digital representation of a price), as was assumed in [91].

Players decide to change their bids after m = 20 mutual encounters of buyers and sellers.

The total of 20 iterations of evolution of the algorithm were simulated. It was found that

small changes in the structure and the value of parameters of the genetic algorithm did not

lead to results which differ much from the ones presented.

The values of parameters in Algorithm 5.1 were chosen as follows: σ0 = 0.1, α = 1.2,

β = 0, and Trk(0) = 0.5, for all k.

The numerical tests are once run for this pair of utility functions [91] :

ubi(pbi, psj) =

⎧⎪⎨
⎪⎩

v − pbi+psj
2

if pbi ∈ [psj, v]

0 otherwise
(5.47)

usj(pbi, psj) =

⎧⎪⎨
⎪⎩

pbi+psj
2

− c if psj ∈ [c, pbi]

0 otherwise
(5.48)

and the second time for this pair of utility functions:

ubi(pbi, psj) =

⎧⎪⎨
⎪⎩

v − (
pbi+psj

2
)2 if pbi ∈ [psj, v]

0 otherwise
(5.49)

usj(pbi, psj) =

⎧⎪⎨
⎪⎩

(
pbi+psj

2
)2 − c if psj ∈ [c, pbi]

0 otherwise
(5.50)

5.5.1 Speed of Convergence

Figure 5–3 compares the convergence of the two algorithms with parameters as specified

above while using the utility functions of formulas (5.47) and (5.48) or (5.49) and (5.50).

Figure 5–3(a), shows the evolution of the average prices of the buyers and sellers in their

convergence to an equilibrium of the markets when the genetic algorithm is employed and
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mutation is not permitted. It is seen that the buyers’ and sellers’ average prices converge to

a constant which then becomes an equilibrium point (see [91]).

Figure 5–3(c), shows a sample of how average prices for buyers and sellers converge

when the genetic algorithm is implemented with mutation (see [91]).

Figure 5–3(e), depicts the evolution of the average prices of buyers and sellers as gener-

ated by the novel algorithm. Clearly, the convergence rate is much faster than that achieved

using the genetic algorithm.

A better comparison for the speeds of convergence of the genetic and random search

algorithms can be found in the left columns of Figures 5–4 to 5–6 where the histogram of

the average bid and ask spread, i.e. pb − ps is shown after 5, 10, and 15 rounds of the game

respectively. The gap pb − ps is chosen as an indicator of the speed of convergence because

pb = ps means convergence to Nash equilibrium for the average.

The new algorithm, Algorithm 5.1, is tested and compared to the genetic algorithm

using a nonlinear pair of utility functions too. In the right column of Figure 5–3, the two

algorithms are compared with parameters as specified above while using the utility functions

of formulae (5.49) and (5.50).

Similarly, the right columns of Figures 5–4 to 5–6 show more details about the speed of

convergence while using the utility functions of formulae (5.49) and (5.50).

Figures 5–7 shows histograms of the market price equilibria as found by the genetic

algorithm and the random search algorithm. It is seen that the probability distribution of

the market equilibria achieved by the genetic algorithm is characterized by a much larger

variance.

5.5.2 Small Populations of Buyers and Sellers

The random search algorithm was also tested when the populations of buyers and sellers

were small. Specifically, n = 1, 3, 5 and n = 10 were considered as part of the experiment

simulation. The plot in Figure 5–8 shows the number of times the algorithm exits if ε = 0.005
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Figure 5–3: Convergence of genetic and random search algorithms for 20 iterations, while
using the utility functions of formulas (5.47) and (5.48) or (5.49) and (5.50). The values of
parameters in Algorithm 5.1 were chosen as follows: n = 100, m = 20, σ0 = 0.1, α = 1.2,
β = 0, and for all times Tr = 0.5. The values of parameters for Algorithm 5.2 are: n = 100,
m = 20, crossover (Step 4 of Algorithm 5.2) for the upper half of the population, and
probability of mutation as reported under sub-figures.
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Figure 5–4: Empirical frequencies for the spread between the average bid and ask prices
pb−ps after 5 rounds, while using the utility functions of formulas (5.47) and (5.48) or (5.49)
and (5.50). The values of the parameters are the same as in Figure 5–3.
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Figure 5–5: Empirical frequencies for the spread between the average bid and ask prices
pb − ps after 10 rounds, while using the utility functions of formulas (5.47) and (5.48) or
(5.49) and (5.50). The values of the parameters are the same as in Figure 5–3.
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Figure 5–6: Empirical frequencies for the spread between the average bid and ask prices
pb − ps after 15 rounds, while using the utility functions of formulas (5.47) and (5.48) or
(5.49) and (5.50). The values of the parameters are the same as in Figure 5–3.
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Figure 5–7: Choice of equilibrium after 20 rounds, while using the utility functions of for-
mulas (5.47) and (5.48) or (5.49) and (5.50). The values the of parameters are the same as
in Figure 5–3.
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Figure 5–8: Convergence of the random search algorithm as affected by the cardinality of
the populations of buyers and sellers n. The graph shows number of successful exits per 100
tests for each n. The values of the parameters are the same as in Figure 5–3.

and the algorithm was run for a 100 times. As anticipated, the exit condition is much more

likely to be satisfied when the populations of players are large.

5.6 Summary

A novel stochastic algorithm which presented for learning the optimum bid in double

auction markets. The mechanism of the double auction market is similar to the mechanism

suggested by [91, 92], but the proposed learning algorithm tries to mimic behaviour of the

sellers and buyers in a real market. In spite of the utility functions for the individual players

being discontinuous, the algorithm is guaranteed to converge to a market equilibrium. Nu-

merous simulations showed that the new algorithm converges much faster to an equilibrium

than the genetic algorithm used for the same purpose [91, 92].
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CHAPTER 6
Conclusion

6.1 Conclusion

The major contributions of this work are listed as follows:

In Chapter 3: Fictitious play was originally designed to calculate Nash equilibria in

a bimatrix game [26]. However, Shapley showed that fictitious play may not converge to

a Nash equilibrium but a polygon [30]. In the present thesis, it is first proven that in a

bimatrix game, existence of a Shapley polygon is the sufficient condition for the existence

of a Nash equilibrium; then this fact is used to calculate a Nash equilibrium of the game.

Contrary to the time averaging method proposed by [105], the Nash equilibrium calculated

by the proposed method is exact.

In Chapter 4: An evolutionary algorithm is proposed for learning in double auction

markets where the buyers and sellers follow the best member of their populations from the

previous round of the game and mutate their bids by a diminishing Gaussian distribution.

The convergence of the stochastic learning algorithm for the risk neutral and risk averse

players is proven.

In Chapter 5: A novel stochastic algorithm which presented for learning the optimum

bid in double auction markets. The mechanism of the double auction market is similar to

the mechanism suggested by [91, 92], but the proposed learning algorithm tries to mimic

behaviour of the sellers and buyers in a real market. In spite of the utility functions for the

individual players being discontinuous, the algorithm is guaranteed to converge to a market

equilibrium. Numerous simulations showed that the new algorithm converges much faster

to an equilibrium than the genetic algorithm used for the same purpose [91, 92].

70



6.2 Recommendation for Future Works

In Chapter 3, a method is suggested that calculates a Nash equilibrium of the bimatrix

game if fictitious play has converged to a Shapley polygon. In continuation of this work,

analysis of the basin of convergence for each Shapley polygon is suggested. This analysis

may lead to knowledge about an upper limit on the number of Shapley polygons in a bima-

trix game. Secondly, another issue which is not addressed yet is the relationship between

degeneracy in a bimatrix game and the existence of Shapley polygons.

In Chapter 4, convergence of a certain way of learning to one of the Nash equilibria

of the double auction market is studied. In continuation, one may like to know about the

probabilities of selecting different equilibria, determining conditions for fluctuating behaviour

in the market and convergence to the equilibria when utilities are time variant.

The algorithm presented in Chapter 5 can be applied to other cases of auctions and

discontinuous games. Further research should address the dependence of the values of the

equilibria on the initial market conditions and parameters of the algorithms. A more realis-

tic matching process should be considered in the auctioning mechanism, e.g., in real auction

markets the buyers and sellers do not meet randomly, but the system selects the partners

by their merits (similar to the merit based matching in the previous chapter). It is also a

subject of interest to know how evolution of the bids progress, if the value of the the object

in auction varies over time.
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