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ABSTRACT

This thesis reviews some of the major results in the study of expander graphs. In par-

ticular this thesis will provide proofs of the Cheeger inequality and of the Alon-Boppana

lower bound, the later leading naturally to study of Ramanujan graphs. The relationship

between expander graphs and covering spaces will be explored, leading to a generalized

notion of Ramanujan graphs. Connections between the matching polynomial and charac-

teristic polynomial of a graph will be demonstrated and these connections will be applied in

our presentation of a recent result of Marcus, Spielman and Srivastava which shows there

exists Ramanujan families of all degrees.

Several well known constructions of expander graphs will be described throughout

this exposition, including a variant of the first explicitly constructed family of expander

graphs introduced by Margulis in 1975. Some time will also be spent describing the first

construction of families of Ramanujan graphs given by Lubotzky, Phillips, Sarnak in 1988.

Throughout this review the reader will be exposed to some beautiful connections between

expander graphs and other areas of mathematics including number theory, group theory,

graph theory and basic linear algebra. This exposition hopes to serve as an accessible and

interesting introduction to the known theory of expander graphs.
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ABRÉGÉ

Cette thèse examine certains résultats principaux dans l’étude des graphes expanseurs.

En particulier, on présente les preuves de l’inégalité de Cheeger et du théorème d’Alon-

Boppana, ce dernier nous amène naturellement à l’étude des graphes de Ramanujan. Nous

allons expliquer les relations entre les graphes expanseurs et leurs revêtements et définir une

version généralisée de la notion de graphes de Ramanujan. On montrera en détail comment

le polynôme caractéristique et le polynôme de couplage d’un graphe sont reliés. On profite

de ces liens pour présenter un résultat récent de Marcus, Spielman et Srivastava qui affirme

l’existence de familles de graphes de Ramanujan de tous degrés.

Plusieurs constructions bien connues de familles de graphes expanseurs sont explic-

itées dans cette thèse, y compris une variante de la première construction introduite par

Margulis en 1975. Nous décrivons aussi la première construction de familles de graphes de

Ramanujan introduite en 1988 par Lubotzky, Philips et Sarnak. Tout au long de ce travail,

nous montrons comment l’étude des graphes expanseurs combine magnifiquement de nom-

breux domaines mathématiques, y compris la combinatoire, la théorie des représentations,

la théorie des groupes et la théorie des nombres. Cette thèse se veut être une introduction

accessible à l’étude des graphes expanseurs.
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Chapter 0
Introduction

This thesis explores the topic of expander graphs, with a focus on Ramanujan graphs.

Expander graphs are a very rich and beautiful object of study, one which touches and com-

bines many different fields of mathematics. In this thesis connections will be made between

expander graphs and group theory, representation theory, combinatorics, number theory

and linear algebra. Although this thesis views expanders as a worthwhile object of study on

their own, it should be mentioned that the applications of expander graphs are widespread.

Applications to error correcting codes and probabilistic algorithms will be introduced in

chapter 1, but expander graphs can be applied to numerous other topics of study including

communication networks, cryptography, sorting networks, and problems in pure mathe-

matics. For a more thorough discussion of the applications of expander graphs the reader is

referred to [13] and [20] and references therein. The remainder of this introduction provides

a breakdown of the contents of this thesis.

The first chapter begins with a review of some basic graph theoretic definitions. Ex-

pander graphs will then be introduced from a spectral perspective in terms of the eigen-

values of the adjacency operator. In this thesis expander graphs will be viewed primarily

from this approach, however an equivalent combinatorial definition will also be presented

in Chapter 1. The famous Cheeger inequality will be proven, verifying the equivalence of

the spectral and combinatorial definitions. Random walks on expander graphs will also be

introduced and, as previously stated, some applications of expanders will be touched on

in order to motivate further study of the subject. Chapter 1 concludes by reviewing basic

representation theoretic definitions, introducing the notion of property (T), and using these

concepts to describe a variation of the first explicitly constructed family of expanders given

by Margulis in 1975 [27].

In Chapter 2 the following question will be addressed: “What is the largest spectral gap

that a family of expander graphs can satisfy’?’ This question is answered with a proof of
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the Alon-Boppana theorem which provides an asymptotic bound on the separation between

the two largest eigenvalues. The first explicit construction of an expander family to satisfy

this optimal bound was published in 1988 by Lubotzky, Phillips and Sarnak [24]. Their

construction provided asymptotically optimal families of k+ 1-regular graphs for all prime

numbers k. Their proof uses some number theoretic notions and results, in particular it relies

on the Ramanujan conjecture. The use of the Ramanujan conjecture explains why Lubotzky

et al. call these graphs “Ramanujan”. In 1992 Morgenstern provided similar constructions

of families of k + 1-regular Ramanujan graphs for all prime powers k [28]. The question

of whether or not there exists families of Ramanujan graphs for all degrees greater than 2

was posed in Lubotzky’s book on Expander graphs [23]. A partial answer to this conjecture

will be reviewed in the final chapter of this thesis but Chapter 2 will focus on presenting the

construction of Lubotzky et al. Enough background information is provided for the reader

to follow the arguments and observe the richness of the constructions without being slowed

down by all of the details.

The focus of Chapter 3 will be on the relationship between expander graphs and cov-

ering spaces. The concept of a covering space will be reviewed so no prior training in this

subject is required. The study of a graph’s universal covering space will lead to Green-

berg’s generalized definition of Ramanujan graphs (see [25] and references therein). This

definition extends the previous definition to include irregular graphs. This chapter will fin-

ish with a review of Lubotzky and Nagnibeda’s paper which shows that not all irregular

uniform trees cover a family of Ramanujan graphs [25].

Chapters 4 and 5 will be related to a recent result of Marcus, Spielman and Srivastava

on Ramanujan graph constructions. Before their work is detailed in Chapter 5, time is spent

in Chapter 4 exploring the theory these authors use on matching polynomials. This theory

is beautiful in its own right, and it is for this reason that an entire chapter is devoted to this

topic.

The final chapter in this thesis conveniently ties together many of the previously de-

veloped results in order to present the recent breakthrough by Marcus, Spielman and Sri-

vastava. Their result serves as a partial answer to the previously mentioned conjecture on

the existence of regular Ramanujan families of all degrees  3. The authors show that at
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least in the case of bipartite graphs, such families do exist [29]. They provide a method for

constructing these graphs, and their proof builds on the theory developed in Chapters 3 and

4. Some theory on interlacing polynomials will also be introduced and applied for a proof

of their result.
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Chapter 1
Introduction to Expander Graphs

This section will cover some basic theory of expander graphs. We will begin by review-

ing some basic graph theoretic definitions. The adjacency operator will then be introduced

and some of its spectral properties will be explored. Expander graphs will then be defined

from a spectral perspective and the spectra of some well known graphs will be presented.

A definition of expander graphs from a combinatorial perspective will also be introduced,

and the equivalence of the two definitions will be proven. Finally some time will be spent

introducing a variation of the first family of expanders by applying property (T).

All graphs in this chapter are assumed to be simple unless otherwise stated. This chap-

ter follows some of the material from lectures 1 and 2 in Tao’s blog post [35] and [36].

1.1 Review of relevant terminology

An (undirected) graph is a pair G = (V,E) where V is a set called the vertex set and

E is a collection of (unordered) pairs {v, w} of elements of V called the edge set. A path

refers to a sequence of consecutive edges in G. A closed path is one that starts and ends

at the same vertex. The graph G = (V,E) is called connected if there is a path between

every pair of vertices in V . G is a finite graph if |V | is finite. A graph G = (V,E) is simple

if its edges are undirected, if every edge consists of two distinct vertices, and if no pair of

vertices is repeated in the edge set.

The notation v ∼ w will be used to signify that {v, w} ∈ E. The notations V (G) and

E(G) will sometimes be used instead of V and E respectively to stress their dependence

on G.

Definition 1.1.1. A cycle in a simple graph is a closed path that has no repeated edges. A

simple graph is called a tree if it contains no cycles and a forest is the disjoint union of one

or more trees.

Definition 1.1.2. A graph is bipartite if its vertex set can be partitioned into two sets (U,W )

so that every edge connects a vertex in U to a vertex in W . We write G = (U,W,E).
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Definition 1.1.3. For a graph G = (V,E) the degree of a vertex v ∈ V is the number of

edges containing v. If each vertex has degree k, where k ∈ N then our graph is k-regular.

In this case we call k the degree of the graph G.

Definition 1.1.4. A graph is complete if E consists of all
(n

2

)
unordered pairs. A complete

graph on n vertices is (n− 1)-regular.

Example 1.1.5. The complete graph on 4 vertices:

Definition 1.1.6. For a graph G = (V,E) with V countable, define `2(V ) to be the collec-

tion of square summable complex functions:

`2(V ) = {f : V → C :
∑
v∈V
|f(v)|2 <∞}

This space forms a Hilbert space with inner product, 〈f, g〉 =
∑
x∈V f(x)g(x).

1.2 Expanders and Expander Families

Expander graphs will now be defined from a spectral perspective in terms of their

eigenvalues. Later they will be introduced from a more combinatorial perspective.

Definition 1.2.1. Given a finite graph G = (V,E), the adjacency operator A : `2(V ) →

`2(V ) on the space of functions f : V → C is defined:

A(f(v)) =
∑

w∈V : {v,w}∈E
f(w) (1.1)

Let v1, v2, . . . vn be an enumeration of V . With respect to this enumeration A can be

expressed by an n× n matrix called the adjacency matrix of G, whose entries are:

aij =


1 if vi ∼ vj

0 otherwise
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Example 1.2.2. The following is an example of a finite graph and its associated adjacency

matrix.
v2v1

v3v4

A =



0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0



Since the graphs under consideration are undirected graphs, A is a real symmetric

matrix. The spectral theorem thus implies that A has n real eigenvalues, λ0  λ1  . . . 

λn−1, called the spectrum of G. Some basic results about the spectrum of a graph G will

now be explored.

Lemma 1.2.3. Let G be a finite graph with average degree k. Then λ0  k with equality

iff G is k-regular, and if G is k-regular graph then λn−1  −k.

Proof. Let |V (G)| = n and label the vertices vi for i = 1, . . . , n. Let ki denote the degree

of vertex vi. Let 1 ∈ `2(V ) denote the constant function sending every element of V (G) to

1. Applying the Rayleigh Quotient1 yields:

λ0 
〈1, A1〉
||1||

=
∑n
i=1 ki
n

= k

where the last equality follows from the assumption that the average degree of a vertex inG

is k. Observe that 1 is an eigenvector of A exactly when the graph G is k regular. Indeed,

A(1(vi)) =
∑

j:vi∼vj
1(vj) = ki = ki1(vi) (1.2)

This computation shows that in order for ki to be an eigenvalue ofA, ki must be constant for

all vertices vi. Hence k is only an eigenvalue of G when G is k-regular. Since the Rayleigh

Quotient R(A;x) equals λ0 only when x is the eigenvector associated with λ0 and since 1

is not an eigenvector of G when G is irregular, it follows that the inequality in (1.2) is strict

1 Given a finite Hermitian matrixA and a nonzero vector x on a complex inner product space, the Rayleigh
Quotient is defined: R(A, x) := 〈Ax,x〉

||x||2 = xTAx
xT x

. Since the eigenvectors of A form an orthogonal basis of the
inner product space it is easy to see that the Rayleigh Quotient is bounded above and below by the largest and
smallest eigenvalues of A respectively.
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for this case. It remains to show that |λi| ¬ k for all i = 0, . . . , n− 1. Let f, g ∈ `2(V ) be

two normalized functions. Then,

| 〈Af, g〉 | =

∣∣∣∣∣∣
n∑
i=1

 ∑
j:vi∼vj

f(vj)

 g(vi)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i,j:vi∼vj
f(vj)g(vi)

∣∣∣∣∣∣
¬ 1

2

∑
i,j:vi∼vj

|f(vj)|2 + |g(vi)|2

=
1
2

n∑
i=1

 ∑
j:vi∼vj

|f(vj)|2 + |g(vi)|2


=
1
2

n∑
i=1

∑
j:vi∼vj

|f(vj)|2 +
1
2
k

n∑
i=1

|g(vi)|2

=
1
2
k
∑
j

|f(vj)|2 +
1
2
k
∑
i

|g(vi)|2 = k

This means that if x is an eigenvector of A with norm 1 , and λ is its corresponding eigen-

value, then k  | 〈Ax, x〉 | = λ 〈x, x〉 | = |λ| · ||x||2 and the desired result is achieved. �

Proposition 1.2.4. Let k  1 and G = (V,E) be a finite k-regular graph. Then, a) λ1 = k

if and only if G is not connected, and

b) λn−1 = −k if and only if G contains a non-empty bipartite graph as a connected com-

ponent.

Proof. a) “ =⇒ ”: Assume λ1 = k. Let x be the eigenvector corresponding to λ1. Since λ1

is real it can be assumed without loss of generality that x is real. Define w = x+ c1 where

1 is the constant vector and c is some constant ensuring that all entries of w are greater than

0. Let wi denote the ith entry of the vector w. Without loss of generality assume w1 is the

largest entry of w (otherwise re-index the vertices). Then
∑
i a1iwi = kw1. It follows that

wi = w1 whenever v1 ∼ vi. Let r = |{i : wi = w1}|. Then r  k (since G is k-regular)

and r , n since x and 1 are orthogonal. Re-index the vertices of our graph so that the first

r entries of wi are equal to w1. Then wr+1 < w1. The adjacency matrix corresponding to
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our re-indexed vertices is of the form:
0

0


It follows that our graph is disconnected.

“⇐=”: Assume G is not connected. Let m  2 be the number of connected compo-

nents of G and let r1  r2  . . .  rm be the corresponding number of vertices in each

connected component. Re-index the vertices of our graph so that v1 to vr1 are in the first

connected component, vr1+1 to vr1+1+r2 are in the second component, etc. The adjacency

matrix corresponding to this labelling of vertices is a block diagonal with m blocks. Each

block corresponds to a connected component of the graph. Since each connected component

of the graph is itself a k-regular graph each block will have an eigenvalue equal to k. Recall

that the set of eigenvalues of a block diagonal matrix equals the union of the eigenvalues of

its blocks. Since m  2 it follows that λ1 = k.

b) “ =⇒ ”: Assume λn−1 = −k. Then Ax = −kx for some real eigenvector x.

Assume thatG is connected (otherwise consider only the component ofG whose adjacency

matrix contains the eigenvalue −k). Without loss of generality we let x1 be the largest

component of xi in absolute value (otherwise re-index the vertices of G). Assume that x1

is positive, otherwise multiply x by −1. Then:

0 =
n∑
j=1

a1jxj + kx1 =
∑

j:v1∼vj
xj + kx1 =

∑
j:v1∼vj

(xj + x1) (1.3)

By assumption −xj ¬ x1 for all j. Equation (1.3) thus implies xj = −x1 for j : v1 ∼

vj . Repeating the same argument for each vertex adjacent to v1, and then for each vertex

adjacent to a vertex adjacent to v1, and so on, it can be deduced that xi = ±x1 for all i. It

follows that G contains no cycles of odd length. Indeed, a cycle of odd length starting at vi

would imply that xi is simultaneously ±x1. This is a contradiction since x1 > 0. It follows

that G is bipartite.

“⇐=” (proof from [1]): The following stronger result will be proven: IfG = (U, V,E)

is a bipartite graph then its eigenvalues are symmetric about zero. Let U have k vertices

8



and V have n − k vertices. Label the vertices of G so that {v1, v2, . . . vk} ∈ U and

{vk+1, . . . , vn} ∈ V . The graph’s corresponding adjacency matrix, A, is of the form:

U→

V→

 0 M

M T 0


Suppose that λ is an eigenvalue of A with corresponding eigenvector

x = (x1, . . . , xk, xk+1, . . . xn)T .

Then −λ is an eigenvalue of A with associated eigenvector

y = (x1, . . . , xk,−xk+1, . . . ,−xn)T .

Indeed, for 1 ¬ i ¬ k we have:

n∑
j=1

aijyj =
n∑

j=k+1

aijyj = −
n∑

j=k+1

aijxj = −λxi = −λyi

and for k + 1 ¬ i ¬ n we have:

n∑
j=1

aijyj =
k∑
j=1

aijyj =
k∑
j=1

aijxi = λxi = −λyi

This verifies that the eigenvalues of G are symmetric about 0. It follows that if G is

a k-regular graph containing a bipartite connected component then −k is an eigenvalue of

G. �

Definition 1.2.5. For a k-regular graph G call eigenvalues λ0 = k, and λn−1 = −k if G is

bipartite, trivial eigenvalues of G.

Definition 1.2.6. Let G = (V,E) be a k-regular graph on n vertices with spectrum λ0 

λ1  . . .  λn−1. G is called an (n, k, ε)−expander if λ1 ¬ (1− ε)k for some ε > 0.

Proposition 1.2.4 implies that every finite k-regular graph is an (n, k, ε)-expander for

some ε. For this reason it is important to keep track of ε and it is often more meaningful to

consider sequences of expander graphs.

Definition 1.2.7. A sequence of finite k-regular graphs {Gi}i∈N whose vertex set tends to

infinity is called an expander family if there exists an ε > 0 satisfying λ1(Gi) ¬ (1 − ε)k

for all i.
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An equivalent definition of expander graphs can be formulated in terms of the eigen-

values of the graph Laplacian: ∆ := kI − A. Notice that if λ is an eigenvalue of A then

k − λ is an eigenvalue of the Laplacian with the same corresponding eigenvector. The sec-

ond largest eigenvalue of the adjacency operator thus corresponds to the smallest non-zero

eigenvalue of the Laplacian. This value, k − λ1, is called the spectral gap. The Laplacian

will be discussed in more detail in section 1.3

Example 1.2.8. For n  3 let Cn denote the 2-regular graph whose vertex set is the cyclic

group Z/nZ and whose edge set consists of pairs {x, x+1} for all x ∈ Z/nZ. These graphs

are referred to as cycle graphs. Note that each Cn is individually an expander since it is

connected. It is shown here, however, that the collection does not form an expander family.

Claim: The spectrum of Cn is given by: 2 cos(2πj/n) for j = 0 .... n− 1.

Proof. Label the vertices beginning with v0 so that vr ∼ vr+1 and vr ∼ vr−1 (mod n) for

all r = 0, . . . , n− 1. Then λ is an eigenvalue of A corresponding to eigenvector x iff each

coordinate xr of x satisfies xr−1+xr+1 = λxr. Let x(j) be the eigenvector corresponding to

λj . Consider x(j)
r = cos(2πrj

n ). Then applying the trigonometric identity cos(x)+cos(y) =

2 cos
(
x+y

2

)
cos

(
x−y

2

)
with x = 2π(r−1)j

n and y = 2π(r+1)j
n yields:

x
(j)
r−1 + x

(j)
r+1 = cos

(
2π(r − 1)j

n

)
+ cos

(
2π(r + 1)j

n

)
= 2 cos

(
π(r − 1)j

n
+
π(r + 1)j

n

)
cos

(
π(r − 1)j

n
− π(r + 1)j

n

)
= 2 cos

(
2πrj
n

)
cos

(−2πj
n

)
= 2 cos

(
2πj
n

)
x(j)
r

�

For j = 1, . . . , n−1, observe that 2 cos
(

2πj
n

)
= 2 cos

(
2π(n−j)

n

)
¬ 2 cos

(
2π
n

)
and hence

λ1 = 2 cos
(

2π
n

)
. Since λ1 increases to 2 as n → ∞ there is no ε which makes Kn an

ε-expander for all n. It follows that despite being connected and of constant degree, these

graphs do not form an expander family.

Example 1.2.9. Let Kn denote the complete graph on n vertices with spectrum λ0  λ1 

. . .  λn−1. Claim: λ2(Kn) = . . . = λn(Kn) = −1
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Proof. Let An denote the adjacency matrix of Kn which has entries:

aij =


0 if i = j

1 otherwise

Let B denote the n × n matrix filled with all ones. Then λ2(Bn) = . . . = λn(Bn) = 0

and λ1 = n. If λ is an eigenvalue of Bn with corresponding eigenvector x then Anx =

(Bn − In)x = Bnx− x = λx− x = (λ− 1)x and hence λ2(An) = . . . = λn(An) = −1

and λ1(An) = n− 1. �

This claim implies that complete graphs are good expanders. Indeed, Kn is an
(
1 + 1

n−1

)
-

expander. They do not, however, form a family of expanders since the degree ofKn increases

with n.

1.3 The Discrete Cheeger Constant

This section will begin by revisiting the graph Laplacian mentioned in section 1.2. The

Laplacian will be defined in an alternate way more analogous to the classical Laplacian on

manifolds. This chapter will then introduce expander graphs from a combinatorial perspec-

tive in terms of the Cheeger constant. Finally, the equivalence of the spectral definition and

combinatorial definition of expanders will be shown using the Laplacian.

In order to provide an alternate definition of the discrete Laplacian, some machinery

will first be built. Begin by choosing an arbitrary orientation on the edges of a graph. (It

will be seen later that our choice of orientation has no effect on our definition).

Definition 1.3.1. For f ∈ `2(V ) define the simplicial co-boundary operator for graphs

d : `2(V )→ `2(E) by
df(e) = f(e+) + f(e−)

where e− is the origin of the oriented edge e and e+ is the extremity.

Notice that the Laplacian can be defined in terms of the boundary operators as ∆ =

d∗d, where d∗ is the adjoint of d. 2 Indeed, following Davidoff et al. in [5], let δ : V ×E →

2 Recall that the adjoint of an operator d on a linear space V is defined to be the operator d∗ satisfying
〈du, v〉 = 〈u, d∗v〉 for all u, v in V .
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{−1, 0, 1} be a function defined:

δ(x, e) =



1 if x = e+,

−1 if x = e−,

0 otherwise.

(1.4)

Then for f ∈ `2(V ), df(e) =
∑
x∈V δ(x, e)f(x) and for g(x) ∈ `2(E), d∗g(x) =∑

e∈E δ(x, e)g(e). So,

d∗d(f(e)) =
∑
e∈E

δ(x, e)

∑
y∈V

δ(y, e)f(y)

 = kf(x)−
∑
y∼x

f(y) , (1.5)

where k is the degree of each vertex. From this calculation it is also clear that the Laplacian

does not depend on the chosen orientation.

Definition 1.3.2. For a graph G = (V,E) with F ⊆ V , the boundary of F , denoted ∂F , is

the set of edges connecting a vertex in F to a vertex in V/F .

Definition 1.3.3. For a finite k-regular graph G = (V,E), let h(G) denote the discrete

Cheeger constant 3 defined by:

h(G) = min
{ |∂F |
|F |

: F ⊆ V, 0 < |F | ¬ n

2

}

The discrete Cheeger constant can be thought of as the discrete analogue of the Cheeger

constant of a compact Riemannian manifold. Since this thesis restricts its attention to

graphs, the word “discrete" will sometimes be dropped and h(G) will simply be called

the “Cheeger constant ".

Notice that h(G) is positive exactly when G is connected. Definition 1.2.7 of an ex-

pander family is thus equivalent to the following:

A sequence of finite k-regular graphs {Gi}i∈N whose vertex set tends to infinity for

which there exists an ε > 0 satisfying h(Gi)  ε for all i.

This combinatorial perspective of expander graphs gives a little intuition behind the

connectivity properties of expander graphs, and the name “expander". Observe that if F

3 Some authors call the Cheeger constant the isoparemetric constant or the edge expansion ratio.
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is the subset of vertices that realizes h(G) then any other subset H ⊂ V of size |F | is

connected to at least |F |h(G) vertices outside of H . It could be said that sets of size |F |

“expand" by a factor of h(G).

Example 1.3.4. One can show using the Cheeger constant that the cycle graphs presented

in example 1.2.8 do not form a family of expanders. Indeed, for Cn = (Vn, En) define

Fn ⊂ Vn by Fn = {0, 1, . . . , bn2 c} . Then |∂Fn| = 2 and |Fn| = bn2 c and h(Cn) tends to

zero as n goes to infinity.

The following proposition presents a relationship between the spectrum of a graph

and the graph’s discrete Cheeger constant, and in turn it verifies that the two definitions of

expander families are in fact equivalent.

Proposition 1.3.5. For a finite k-regular graph G = (V,E) let k − λ1 denote the smallest

non-trivial eigenvalue of the Laplacian ∆(G). Then:

k − λ1

2
¬ h(G) ¬

√
2k(k − λ1)

Proof. The lower bound: (adapted from section 4.5 of [13]) Recall for a finite ∆(G) is 0

with corresponding eigenfunction the constant function. Let S ⊂ V (G) be the subset which

realizes h(G), and let S̄ denote the compliment of S. Consider the function f defined by

f = |S̄|1S−|S|1S̄ . Since this function is orthogonal to the constant function, the following

inequality involving the Rayleigh Quotient holds:

k − λ1 ¬
〈∆f, f〉
‖f‖2

The denominator of this quotient is evaluated as follows:

‖f‖2 =
∑
x∈V

f(x)2 =
∑
x∈S
|S̄|2 +

∑
x∈S̄
|S|2 = |S||S̄|2 + |S̄||S|2

= |S||S̄|(|S̄|+ |S|) = n|S||S̄|

and the numerator evaluates to:

〈∆f, f〉 = 〈(kI −A)f, f〉 = k〈f, f〉 − 〈Af, f〉 = kn|S||S̄| −

 ∑
xi∼xj

f(xi)f(xj)
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For two subsets F,G ⊆ V let E(F,G) denote the set of edges connecting a vertex of F to

a vertex of G. Using this notation the previous line can be expressed as:

kn|S||S̄| −
[
2|E(S̄, S̄)||S|2 + 2|E(S, S)||S̄|2 − 2|∂S||S||S̄|

]
= kn|S||S̄| −

[
((k|S̄| − |∂S|)|S|2 + (k|S| − |∂S|)|S̄|2 − 2|∂S||S||S̄|

]
= kn|S||S̄| −

[
nk|S||S̄| − |∂S|(|S|2 + |S̄|2 + 2|S||S̄|)

]
= n2|∂S|

which shows 〈∆f, f〉 = n2|∂(S)|. Substituting these calculations back into the Rayleigh

Quotient yields:

k − λ1 ¬
n|∂S|
|S||S̄|

=
n

|S̄|
h(G) ¬ 2h(G)

where the last inequality follows from the observation that |S̄|  n
2 .

The upper bound: (adapated from [5]): Fix an arbitrary orientation on the edges of

G. Let g be an eigenfunction of ∆ associated with the eigenvalue k − λ1. Define f(x) =

max{g(x), 0} and set:

Bf =
∑
e∈E
|f(e+)2 − f(e−)2|

In order to establish the desired results, the following bounds on Bf will be verified:

1. Bf ¬
√

2k(k − λ1)||f ||22

2. Bf  h(G)||f ||2

Inequality 1. is established first. Let βr > βr−1 > . . . > β1 > β0 denote the values

of f . Set Li = {x ∈ V : f(x)  βi}. Let i(e) and j(e) be such that for an edge e ∈ E, f

takes on values βi(e) and βj(e) at the endpoints of e. Index in such a way that βi(e) > βj(e).
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With this notation Bf can be expressed as:

Bf =
∑
e∈E

(β2
i(e) − β

2
j(e))

=
∑
e∈E

(β2
i(e) − β

2
i(e)−1 + β2

i(e)−1 − β
2
i(e)−2 + . . .+ β2

j(e)+1 − β
2
j(e))

=
∑
e∈E

((β2
i(e) − β

2
i(e)−1) + (β2

i(e)−1 − β
2
i(e)−2) + . . .+ (β2

j(e)+1 − β
2
j(e)))

=
∑
e∈E

i(e)∑
`=j(e)+1

(β2
` − β2

`−1)

Notice that every time an edge connects a vertex x with f(x) = βi(e) to a vertex y with

f(y) = βj(e) < βi(e) then (β2
` − β2

`−1) will appear in the summation for all ` satisfying

j(e) + 1 ¬ ` ¬ i(e). In other words, (β2
` − β2

`−1) will appear in the summation whenever

e ∈ ∂L`. Applying this observation Bf is re-written as:

Bf =
r∑
i=1

|∂Li|(β2
i(e) − β

2
i(e)−1)

 h(X)
r∑
i=1

|Li|(β2
i − β2

i−1) = h(X)

[
|Lr|β2

r +
r−1∑
i=1

|Li/Li+1|β2
i

]
= h(X)||f ||22

where the first inequality follows from the definition of the Cheeger constant and the last

equality follows from the observation that Li/Li(e)−1 is exactly the set of vertices x ∈ V

satisfying f(x) = βi(e).

Inequality 2. is now established. The Cauchy-Swartz Inequality and the inequality

2(a2 + b2)  (a+ b)2 are applied to obtain:

Bf =
∑
e∈E
|f(e+) + f(e−)| · |f(e+)− f(e−)|

¬
(∑
e∈E

(f(e+) + f(e−))2

)1/2(∑
e∈E

(f(e+)− f(e−))2

)1/2

¬
√

2

(∑
e∈E

f(e+)2 + f(e−)2

)1/2

||df ||2

=
√

2k

(∑
x∈V

f(x)2

)1/2

||df ||2

=
√

2k||f ||2||df ||2 (1.6)
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The term ||df ||2 will now be estimated in terms of k−λ1. Set V + = {x ∈ V : g(x) >

0}. For x ∈ V + one obtains:

(∆f)(x) = kf(x)−
∑
y∈V

Axyf(y)

= kg(x)−
∑
y∈V +

Axyg(y)

¬ kg(x)−
∑
y∈V

Axyg(y) = (k − λ1)g(x)

Applying this estimate yields:

||df ||2 =
√
< ∆f, f > =

√ ∑
x∈V +

(∆f)(x)g(x)

¬
√ ∑
x∈V +

(k − λ1)g(x)2 ¬
√

(k − λ1)||f ||2 (1.7)

Substituting (1.7) into (1.6) establishes the second inequality.

Both inequalities have now been established, and they can be combined to yield:

h(X)||f ||22 ¬
√

2k(k − λ1)||f ||22

Cancelling the ||f ||22 term on each side yields the desired lower bound. �

1.4 Random Walks on Expanders

This section discusses the behaviour of random walks on expander graphs. Random

walks on graphs are characterized in part by their spectrum, and so it is no surprise that

random walks are used in the study of expander graphs. There is much that can be said

about topic, but only an introduction is presented here. The reader is referred to [13] and

references therein for more information.

Definition 1.4.1. A walk on a graph G = (V,E) is a sequence of finite or infinite vertices

v1, v2, . . . ∈ V where vi+1 is adjacent to vi for all i. Such a sequence is called a random

walk if each vi+1 is selected uniformly at random from the neighbours of vi, independently

for each i. The initial vertex, v1, is chosen based on a given initial probability distribution,

π1.
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A random walk on a graph G = (V,E) will induce a sequence of probability dis-

tributions on V , π2, π3, . . . where πi(t) = Prob(vi = t) for all t ∈ V . If G is a finite,

regular, connected graph that is not bipartite4 then the sequence of distributions is known

to converge to the uniform distribution on V (see [26] for a proof). What is special about

expander graphs is that they converge very quickly to the uniform distribution.

Definition 1.4.2. For a k-regular graph G with adjacency matrix A, the normalized ad-

jacency matrix of G is defined by Â = 1
kA. Observe that if λ̂0  . . .  λ̂n−1 are the

eigenvalues of Â then λ̂0 = 1 and if G is an (n, k, ε)-expander then all non-trivial eigen-

values of G are bounded above by ε.

Let G = (V,E) be a finite graph with n vertices. A probability distribution π over

V can be expressed as a column vector in RV with the added property that all coordinates

be non-negative and that
∑
v∈V π(v) = 1. For example, the uniform distribution, µ, can

be expressed by µ =
(

1
n , . . . ,

1
n

)T
. Consider the probability distributions of the vertices

chosen in a random walk on G. Notice that if the initial vertex is chosen with respect to

distribution vector π1 then the probability distribution of the second vertex will be given

by Âπ1. More generally if π1 is the initial distribution vector for a random walk v1, v2, . . .

then for all i  1, Âiπ1 will represent the probability distribution of the (i+ 1)-th vertex.

Proposition 1.4.3. Let G be an (n, k, ε)-expander graph. Let µ denote the uniform distri-

bution of V . Then for any initial probability distribution vector π on the vertex set V , and

for every positive integer i, we have:

‖Âiπ − µ‖2 ¬ εi

Proof. It suffices to verify the result for the case where i = 1, namely that ‖Âπ− µ‖2 ¬ ε.

From there, induction can naturally be applied to extend the result to the case where i > 1.

To show ‖Âπ − µ‖2 ¬ ε, observe that the uniform distribution µ is invariant under the

4 The non-bipartite condition can be removed if one considers a lazy random walk on G. This is similar to
the random walk except that it allows for vi+1 to equal vi.
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action of Â and that π − µ is orthogonal to u. These two observations yield:

‖Âπ − µ‖2 = ‖Â(π − µ)‖2 ¬ ε‖π − µ‖2.

Since π is a probability distribution ε‖π − µ‖2 ¬ ε and we are done. �

This result shows that in some sense a random walk of length t on an expander graph

resembles an sample of t independently chosen vertices from the uniform distribution. Al-

though it has only been shown that the sequence of distributions converges to the uniform

distribution exponentially in the `2-norm, similar results are known to hold with other norms

as well. The reader is referred to [13] and references therein for more details on this subject.

Again, notice that this theory gives some insight into the choice of the term “expander”

to describe expander graphs. Indeed, let C be a complete graph with a loop at every vertex.

Then in a random walk on C every vertex in the walk (except possibly the first) is chosen

uniformly at random. Since random walks on expander graphs can be used to approximate

a random sample of independently chosen vertices from the uniform distribution, one could

say that from the point of view of random walks, expander graphs “expand” to resemble

complete graphs.

1.5 Applications of Expander Graphs

Before studying explicit constructions of expander families, some time is taken now

to motivate this study. This section will give the reader a very brief introduction to two ap-

plications of expander graphs: efficient error reduction in probabilistic algorithms and error

correcting codes in communication channels. The notes of Hoory, Linial and Wigderson in

[13] are given as the primary resource for this section, along with [16] for the section on

probabilistic algorithms.

1.5.1 efficient error reduction in probabilistic algorithms

Probabilistic algorithms, also called randomized algorithms, incorporate a degree of

randomness into their behaviour. In addition to the input data, probabilistic algorithms re-

quire additonal input in the form of random bits to help drive the random choices they make.
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The output of a probabilistic algorithm can vary even over runs with fixed data input. Prob-

abilistic algorithms are useful because they will perform well on average, over all choices

of random input.

One of the earlier problems for which probabilistic algorithms were employed was the

problem of primality testing: Given a d-bit integer, x, determine whether or not x is prime.

Given the number x and a string, r, of d random bits, a probabilistic algorithm computes a

boolean function, f(x, r), which behaves as follows: If x is prime then f(x, r) will return

the value of 1 for all choices of r and if x is composite then f(x, r) will return the value

of 1 with probability 1
2 . This means that if x is not prime then the algorithm fails with

probability 1
2 .

Suppose it was necessary to reduce this failure probability below a given threshold.

This could easily be accomplished by repeating the experiment a sufficient number of

times with r chosen independently at random each time. If the experiment was repeated

m times, the probability of failure would be effectively reduced to
(

1
2

)m
. The downside of

this method is that every time the process is repeated, another d random bits are required.

Is it possible to reduce the probability of failure in a more efficient manner? This section

will discuss how expander graphs can play a role in answering this question. Before doing

so these types of problems will be defined in a more general framework.

The algorithms mentioned in this primality testing problem are specific examples of

the more general class RP of Randomized Polynomial-Time algorithms. Define {0, 1}∗ to

be the set of all finite binary strings. A language L ⊆ {0, 1}∗ is in the class RP if there exists

a polynomial time probabilistic algorithm which can determine membership in L. When

given a binary string, x, of length d and a randomly selected r ∈ {0, 1}d a probabilistic

algorithm will compute a boolean function, A(x, r), to indicate whether or not x ∈ L. If

x ∈ L then A(x, r) = 1 for all r and otherwise A(x, r) = 1 with probability p. As in the

primality problem, it is desired to reduce the probability of failure below a certain threshold,

ε, in the most efficient way possible.

As previously mentioned, expander graphs can be used to solve this problem. Choose

an explicit (2d, k, α)-graph G with V (G) = {0, 1}d. For a fixed k-bit string x < L let Bx

denote the set of vertices in G for which we will obtain an erroneous result upon input x.
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In other words, Bx consists of all the vertices v ∈ V for which A(x, v) = 1. Observe

that in order to decrease the algorithm’s probability of failure, the probability of sampling a

vertex in Bx must increase. The aim is to do so while utilizing the least amount of random

bits as possible. Instead of choosing each vertex independently at random every time the

experiment is repeated, consider a random walk on the vertices G. This method requires an

initial vertex v0 ∈ V to be chosen uniformly at random. From this vertex, the algorithm

specifies a random walk on G, v1, . . . , vm, and returns A(x, vi) for all i = 0, . . .m. The

initial choice of vertex v0 required d bits, and each step in the walk requires log2(k) random

bits in order to decide between the k neighbouring vertices. Thus, this algorithm requires

a total of d + (m − 1) log2(k) random bits. Provided α is sufficiently smaller than ε, this

algorithm is known to reduce the probability of failure exponentially. In comparison, the

naive method of repeating the experiment m times independently reduces the probability

of failure exponentially, but requires dm random bits.

The result mentioned above can be made sense of intuitively by referring back to the

discussion in the previous section about random walks on expander graphs. It was shown

that the probability distributions induced by a random walk on an expander graph converge

rapidly to the uniform distribution. So, despite not having been independently chosen, it

makes sense that a collection of vertices obtained through random walk would approximate

an independent random sample of vertices, and this method clearly requires less random

bits. Of course, many details are missing from this discussion, but the aim here was simply

to provide an introduction to this topic as motivation for the study of expander graphs. The

reader is referred to sections 1 and 3 in [13] and references therein for a more thorough

investigation of this theory.

1.5.2 error correcting codes in communication channels

Another useful application of expanders is in the area of error correcting in commu-

nication. One of the main challenges in communication is disturbance which distorts mes-

sages as they pass through a communication channel. This means that the message that is

sent differs from the message that is received. To account for this distortion the sender can

send the message along with additional redundant information in hopes that the receiver

can detect errors and determine the message that was originally sent.
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This process is abstracted mathematically as follows: Adhering to conventions, the

sender in our model is called Alice, and the receiver is called Bob. Suppose Alice wants to

send an m-bit string a ∈ {0, 1}m to Bob. A bijective map is specified, φ : M ⊆ {0, 1}m →

C ⊂ {0, 1}n where n > m. Here, C is called the code and the elements of C are called

codewords. The code is linear if the setC is a linear subspace of {0, 1}n. Instead of sending

Bob the raw m-bit message a, Alice can send Bob the n-bit string φ(a). Bob would then

receive an element b ∈ {0, 1}n which may not equal φ(a). To try to decode the message Bob

receives he could measure the hamming distance, dH , between b and all of the codewords.

The hamming distance between two elements in C is defined to be the number of digits

which differ between them. Once Bob finds the codeword c that minimizes the hamming

distance to b, Bob will compute φ−1(c) to retrieve the original message that Alice sent.

This process is referred to as error correcting, and the code C can be referred to as an error

correcting code.

Definition 1.5.1. The rate, R, of a code, measures the code’s efficiency and is defined:

R =
log2 |C|

n

The normalized distance, D, measures how much error a code can effectively manage, and

is defined:

D =
minc1,c2∈C dH(c1, c2)

n

Good codes are ones which have a maximum distance with respect to their rate. Al-

though there exist many constructions of error correcting codes which utilize expander

graphs, this exposition will describe only one of them. Following Hoory, et al. in [13] and

Sipster and Spielman’s in [32], a construction of error correcting codes from unbalanced

bipartite expander graphs will be presented.

Definition 1.5.2. A bipartite graph G = (V,W,E) is a (c, d, ε, δ)-expander if every non-

empty subset S ⊂ |V | with |S| < ε|V | satisfies |∂(S)|
|S| > δ.

Observe that this definition resembles the combinatorial perspective of expander graphs

in which expanders are viewed as graphs whose Cheeger constant is bounded away from

zero. The difference here is that expansion is only considered on one side of the graph. The
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construction we present makes use of a specific type of unbalanced expander referred to as

“magical graphs" by Hoory et al. in [13].

Definition 1.5.3. A bipartite graphG = (L,R,E) is a (n,m, d)-magical graph if |L| = m

and |R| = m, every vertex in L has degree d, and the following properties hold:

• |∂(S)|  5d
8 |S| for every S ⊆ L with |S| ¬ n

10d

• |∂(S)|  |S| for every S ⊆ L with n
10d < |S| ¬

n
2

Magical graphs will now be used to construct error correcting codes with R  n
4 and

D > n
10d . Let G = (R,L,E) be a (n, 3n

4 , d)- magical graph. Notice that the adjacency

matrix of G is of the form:  0 A

AT 0


Let A denote the non-zero block whose ij-th entry is 1 if the i-th vertex of R is adjacent to

the j-th vertex in L and 0 otherwise. Define C as the kernel of A with respect to arithmetic

in F2:

C = {x ∈ {0, 1}n : Ax = 0}

It is clear that rank(A) ¬ 3n
4 and hence the dimension of C is  n

4 . Since the coordinates

of vectors in C are all either 0 or 1, it follows that |C|  2
n
4 , and thus R  n

4 .

The following claim will be needed in order to show that D > 1
10d :

Claim 1.5.4. Let G be the the magical graph G defined above. For every nonempty subset

S ⊂ L with |S| ¬ n
10d , there exists a vertex u ∈ R with exactly one neighbour in S.

Proof. Fix a subset S ⊂ L with |S| ¬ n
10d . Let e(S, ∂(S)) denote the number of edges

between S and ∂(S). SinceG is bipartite and since the vertices in L are d-regular, it follows

that e(S, ∂(S)) = d|S|. Since G is a magical graph one has by hypothesis that |∂(S)| 
5d
8 |S|. Dividing e(S, ∂(S)) by 5d

8 |S| yeilds an upper bound of 8
5 on the average number of

neighbours that a vertex in ∂(S) has in S. Since 8
5 < 2 and since every vertex in ∂(S) has

at least one neighbour in S, there must be at vertex in ∂(S) with exactly one neighbour in

S. �

The bound D > 1
10d will now be verified. Proceed by searching for the minimum

distance between any pair of codewords. Since C is linear it suffices to find the minimal
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distance between any codeword and the 0 vector. Assume by way of contradiction that there

exists a codeword x ∈ C with less than or equal to n
10d non-zero coordinates. Consider the

subset S defined, S = {j ∈ L : xj = 1}. Since |S| ¬ n
10d claim 1.5.4 guarantees the

existence of a vertex i ∈ R for which |∂(i) ∩ S| = 1. This implies that the ijth entry of

A is 1. Since the jth entry of x is 1 by definition, it follows that the i coordinate of Ax is

1 contradicting the assumption that x ∈ ker(A). It follows that the error correcting code

generated by the bipartite expander graph G has rate  n
4 and has normalized distance

> 1
10d , as claimed.

There are other ways to construct error correcting code with explicitly defined ex-

pander graphs. Some other constructions utilize regular (not necessarily bipartite) expander

graphs. The reader is referred to Speilman’s [33] for more information on such construc-

tions.

1.6 Kazhdan Property (T)

In the previous section two applications of expander graphs were presented. Both ap-

plications required explicit graph constructions. Thus far this exposition has only demon-

strated collections of graphs which do not form expander families. This chapter presents an

example of one that does. The first explicit family of expanders was discovered by Margulis

in 1975. Margulis’s constructions involve the Cayley graphs of groups satisfying a property

known as Kazhdan’s Property (T). Following Lubotzky in [23], this section will introduce a

variation of Margulis’s construction, presented by Alon and Milman in [2]. We begin by fa-

miliarizing the reader with the necessary terminology before demonstrating how Kazhdan’s

Property (T) relates to graph expansion and introducing Alon and Milman’s construction.

This section follows Lubotzky in [23] and Tao in [36].

Definition 1.6.1. Let G be a group and let S be a symmetric subset of G that does not

contain the identity. (Here, the term “symmetric” means that s ∈ S =⇒ s−1 ∈ S.) The

Cayley Graph of G with respect to S, denoted Cay(G,S), is constructed as follows: The

vertices of Cay(G,S) are the elements of G and two vertices x, y ∈ G are adjacent iff

x = ys for some s ∈ S (since S is symmetric it is equivalent to say x ∼ y iff y = xs for

some s ∈ S). Thus Cay(G,S) is a |S|-regular graph on |G| vertices, and it is connected iff

S is a generating set of G.
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Definition 1.6.2. A graphG = (V,E) is vertex transitive if for any pair of vertices x, y ∈ V

there is an automorphism f : V → V satisfying f(x) = y.

Observe that all Cayley graphs are vertex transitive. Indeed, any group G acts transi-

tively on itself (or in this case its Cayley graph) via right multiplication. This fact will be of

use in subsequent chapters.

Example 1.6.3. Cay(Z/8Z, {2, 3, 5, 6}):

The Cayley graph of Z/8Z generated by

{2, 3, 5, 6}. Here, the group operation is ad-

dition. Red edges represent addition by 2

and 6 while blue edges represent addition by

3 and 5.
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Before defining Kazhdan’s Property (T) some basic concepts from representation the-

ory and group theory are required:

Definition 1.6.4. A topological group is a group equipped with a topology such that the

group’s multiplication and inverse functions are continuous. Any group can be equipped

with the discrete topology, as continuity is trivially satisfied under this topology.

Although much of this theory can be defined in a more general context, in order to

avoid any unnecessary technical subtleties, the contents of this chapter will restrict its focus

on discrete groups which are countable.

Definition 1.6.5. Recall that a unitary operator on a Hilbert space is a linear operator that

preserves the inner product. For a Hilbert space H , let U(H) denote the space of unitary

operators on H . A unitary representation of a countable discrete group, G, is a pair (H, ρ)

where ρ is a homomorphism, ρ : G→ U(H).

Example 1.6.6. The right regular representation of a countable discrete group G consists

of the linear space of all square summable complex functions f : G → C and the homo-

morphism r defined by (r(g)(f))(x) = f(xg).

Definition 1.6.7. An invariant vector of a representation (H, ρ) is a nonzero vector v ∈ H

satisfying ρ(g)(v) = v for all g ∈ G. A subspace W ⊂ H is called an invariant subspace

if ρ(g)(w) ∈W for all w ∈W .
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Definition 1.6.8. If ρ : G→ U(H) is a unitary representation of a countable discrete group

G and W is a closed invariant subspace of V then a subrepresentation of ρ can be obtained

by restricting: ρ|W : G→ U(W ) defined: ρ|W (g)w := ρ(g)w for all g ∈ G and w ∈W .

Definition 1.6.9. An irreducible representation is one which has no non-trivial invariant

subspaces.

Property (T) is now ready to be defined. There are several equivalent ways in which one

can define this property. Although it was originally defined in terms of the Fell Topology,

this exposition follows Tao in [36] and uses the following definition.

Definition 1.6.10. Let ρ : G → U(H) be a unitary representation of a countable discrete

group G and let S be a finite subset of G. The Kazhdan constant, Kaz(G,S, ρ), associated

with S and ρ is the supremum of all ε  0 which satisfies the following inequality for all

non-zero v ∈ H:

sup
s∈S
||ρ(s)v − v||  ε||v||

Define,

Kaz(G,S) = inf
ρ
Kaz(G,S, ρ)

where ρ ranges over all unitary representations of G with no nontrivial invariant vectors. A

group G is said to have Kazhdan property (T) (or simply property (T)) if there exists some

finite set S for which Kaz(G,S) > 0.

In other words, if a countable discrete group has property (T) then there exists a non

empty finite set S and some ε > 0 so that for every unitary representation with no non-

trivial invariant vectors ρ : G → U(H) and for every v ∈ H there is an s ∈ S satisfying

||ρ(s)v − v||  ε||v||.

Remark. The above definition does not require S to be a generating set of G. It is worth

mentioning, though, that any countable discrete group with property (T) is finitely generated

(see Remark 3 in [36]). This result and the following proposition imply that in order to

determine whether a given group G has property (T), it suffices to first check if it is finitely

generated, and if so, to then check Kaz(G,S) for a finite generating set S.

Proposition 1.6.11. Let G be a finitely generated countable discrete group with finite gen-

erating set S. Then G has property (T) iff Kaz(G,S) > 0.
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Proof. The inverse direction, in which Kaz(G,S) > 0 is assumed, follows immediately

from definition 1.6.10. To verify the forward direction, assume by way of contradiction

that G has property T, but that Kaz(G,S) = 0. This means that there exists a unitary

representation ofG without nontrivial invariant vectors, call it (ρ,H) for which there exists

a nonzero vector v ∈ H satisfying ||ρ(s)v − v|| ¬ ε̂||v|| for all s ∈ S and any ε̂ > 0. But

by property (T) we know that there exists a finite set C and an ε > 0 so that ||ρ(c)v− v|| ¬

ε||v|| for some c ∈ C. Since S is a generating set we have:

||ρ(c)v − v|| = ||ρ(s1...si)v − v||

= ||ρ(s1)...ρ(si)v − v||

= ||ρ(s1)...ρ(si−1)(ρ(si)v − v) + ρ(s1)...ρ(si−2)(ρ(si−1)v − v)

+ . . .+ ρ(s1)(ρ(s2)v − v) + (ρ(s1)v − v)||

Applying the triangle inequality yields:

||ρ(c)v − v|| ¬ ||ρ(s1)...ρ(si−1)(ρ(si)v − v)||+ ||ρ(s1)...ρ(si−2)(ρ(si−1)v − v)||

+ . . .+ ||ρ(s1)(ρ(s2)v − v)||+ ||(ρ(s1)v − v)||

¬iε̂||v||

Since this holds for any ε̂ > 0 setting ε̂ = ε
i yields a contradiction. �

Theorem 1.6.12. (Proposition 3.3.1 in [23]) Let G be a finitely generated countable dis-

crete group and let S be a finite symmetric generating set of G. Let {Ni}i∈N be a sequence

of finite index normal subgroups of G and let Qi : G → G/Ni denote the associated quo-

tient maps. Assume that |Qi(Si)| = |S| for all i. If G has property (T) then the family of

Cayley graphs, Cay(G/Ni, Qi(S)) forms a family of expanders.

Proof. ([23]) Fix an i ∈ N and letH = `2(G/Ni) be the Hilbert space of complex functions

on the finite group G/Ni. Consider the unitary representation r : G→ U(H) given by the

action (r(g)f)(x) = f(xg) of G on H . Since the right multiplication action of G on G/Ni

is transitive (indeed ifNix andNiy are two distinct elements ofG/Ni then x−1y ∈ G takes

Nix to Niy) the only invariant vectors under this representation are the constant functions.
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Let H1 denote the space of constant functions on G/Ni. Then H1 is an invariant subspace

of H whose orthogonal compliment, H0 = {f ∈ H|
∑
x∈(G/Ni) f(x) = 0}, is an invariant

subspace containing no nontrivial invariant vectors. The subrepresentation rH0 : G →

U(H0) is a unitary representation with no nontrivial invariant vectors. Property (T) and

proposition 1.6.11 are applied to deduce that there exists an ε > 0 (dependent only on G

and S) such that for every f ∈ H0 there is an s ∈ S satisfying ||rH0(s)f − f ||  ε||f ||.

Choose a particular edge counting function f ∈ H0. Fix a subset A ⊂ G/Ni of cardinality

|A| := a ¬ 1
2 |G/Ni| and then define f as follows:

f(x) =


n− a if x ∈ A

−a if x < A

Then

||f ||2 =
∑
x∈A
|n− a|2 +

∑
x∈V/A

| − a|2 = a(n− a)2 + (n− a)a2 = an(n− a)

and

||rH0(s)f−f ||2 =
∑
x∈V
|f(xs)−f(x)|2 =

∑
x∈A,xs∈V/A

|−n|2+
∑

x∈V/A,xs∈A
|n|2 = 2n2|∂s(A)|

where ∂s(A) ⊆ ∂(A) denotes the edges which result from the right multiplication action of

s on a vertex. Observe:

|∂(A)|  |∂s(A)| = ||rH0(s)f − f ||
2

2n2  ε2||f ||2

2n2 =
ε2a(n− a)

2n

Since A was arbitrary, it follows that for any set A with |A| ¬ 1
2 we have:

∂(A)|
|A|

 ε2(n− |A|)
2|A|

 ε2

4

which yields the following inequality on the Cheeger constant: h(Cay(G/Ni, S))  ε2

4 for

any N ∈ {Ni}i∈N. �

A relationship between Property (T) and expansion has now been established. The

following theorem of Kazhdan is required before presenting a well known example of ex-

panders [17].
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Theorem 1.6.13. SLd(Z) has property (T) for all d , 3.

Example 1.6.14. This example follows Lubotzky in [23] and presents Alon and Milman’s

construction in [2]. It is well known that SLn(Z) can be generated by the set {An, Bn}

where An and Bn are defined as follows:

An =



0

0

0 In−1
...

0

(−1)n−1 0 . . . 0


Bn =



1 1 0 . . . 0

0 1 0 . . . 0

0 0

...
... In−2

0 0


Let Sn denote the set consisting of An, Bn and their inverses. Since the necessary assump-

tions are satisfied, theorems 1.6.13 and 1.6.12 can be applied to deduce that for a fixed

n  3 the collection of graphs given by Cay(SLn(Z/pZ), Sn) with p running over the set

of primes, forms a family of expanders.

28



Chapter 2
Ramanujan Graphs

This chapter explores the idea of being the “best" possible family of expander graphs.

The chapter will begin by proving a result of Alon-Bopanna, which gives an asymptotic

upper bound on the spectral gap. The first construction of a family of graphs to satisfy this

optimal bound will then be introduced. This construction was given by Lubotzky, Phillips

and Sarnak in [24] and it is in this paper that the term “Ramanujan" was first used to describe

these graphs.

2.1 Alon-Boppanna Lower Bound

Definition 2.1.1. Let G = (V,E) be a finite connected graph. The length of a path in

G refers to the number of edges transversed. For any two vertices u, v ∈ V the distance

between u and v refers to the length of the shortest path between them. The diameter of G

is the maximum distance between any pair of vertices in V .

Theorem 2.1.2. (Alon-Boppana Lower Bound)

Let G be a finite k-regular graph. Define λ(G) to be the absolute value of the largest (in

absolute value) non-trivial eigenvalue of G.1 Then the following inequality holds:

λ(G)  2
√
k − 1

(
1−O

(
logD

D

))
2

where D denotes the diameter of G.

The following corollary can easily be obtained by applying the well known fact that

the diameter of a k-regular graph on n vertices is Ω(logk−1(n)) 3 (see [13] and references

therein):

1 recall from definition 1.2.5 that the trivial eigenvalues are λ0 = k, and λn−1 = −k if G is bipartite

2 See Appendix A for a review of Big Oh notation

3 Here Ω is used to denote Omega notation. See Appendix A for a quick review of this topic
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Corollary 2.1.3. If {Gi}i∈N is a family of k-regular finite graphs with |V (Gi)| → ∞ as

i→∞, then

lim inf
i→∞

λ(Gi)  2
√
k − 1

Proof of Theorem 2.1.2. (adapted from proof 5.2.2 in [13]) Notice that λ(G)  |λ1(G)|

and hence it suffices to show that

|λ1(G)|  2
√
k − 1

(
1−O

(
logD

D

))

holds. Let A denote the adjacency matrix of G ∈ {Gi}. Note that λ1(A) is just another

way to write λ1(G) and this theorem will proceed to use the notation λ1(A). The equality

λ1(A2p) = (λ1(A))2p holds for any integer p. A lower bound on λ1(A2p) will be given by

estimating the Rayleigh Quotient of the following function: Let s and t be vertices of G at

a distance D apart and define:

f(i) =



1 if i = s

−1 if i = t

0 for all other i ∈ V (G)

Since f is orthogonal to the constant function the Rayleigh Quotient is applied to yield:

λ1(A)2p  fA2pf t

||f ||2
=

(A2p)ss + (A2p)tt − 2(A2p)st
2

=
(A2p)ss + (A2p)tt

2
(2.1)

where the second equality is obtained by setting p = bD−1
2 c. Let Tk denote the k-regular

tree graph. Define the tree number, a2p, to be the number of closed paths of length 2p in Tk

starting and ending at v. The positive terms in the numerator of (2.1) count the number of

closed paths of length 2p starting and ending at vertex s and t respectively. Each of these

terms will be greater than or equal to a2p, and hence λ1(A)2p  a2p is obtained. A suitable

bound for a2p will now be found.

Every closed path in a tree has a corresponding string consisting of characters {−1, 1}.

A step is assigned the character 1 if it results in being further away from the initial vertex,
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and −1 if it results in being closer to the initial vertex. Every string that can be obtained in

this way will satisfy the following conditions:

i - the sum of the characters in the string is 0

ii - the sum of the first i characters is non negative for all i ¬ 2p.

It is well known that the number of strings of length 2p satisfying these conditions is equal

to the p-th Catalan number: Cp =
(2p
p

)
/(p+ 1). Each of these Cp strings corresponds to at

least (k − 1)p distinct walks in Tk. So the following is obtained:

λ1(A)2p  a2p  Cp(k − 1)p

Using Sterling’s approximation, n! ∼ (ne )n
√

2πn, it is straightforward to show that

Cp = Θ( 4p

p3/2
) and hence λ1(A)2p  a2p  Cp(k − 1)p = Θ((2

√
k − 1)2pp−3/2). 4

Taking the 2p-th root yields:

|λ1(A)|  2
√
k − 1

(
O(p−

3
4p )
)

= 2
√
k − 1

(
O
(
e−3log(p)/4p

))
Applying the Taylor expansion of e−x 5 and substituting p = b∆−1

2 c yields:

|λ1(A)|  2
√
k − 1(1−O(log(∆)/∆))

�

Definition 2.1.4. Let G be a finite k-regular graph and let λ(G) denote the absolute value

of the largest non-trivial eigenvalue (in absolute value) of G. Following Lubotzky et al. in

[24], the graph G will be called Ramanujan if λ(G) ¬ 2
√
k − 1.

Remark. In definition (1.2.5) we define −k to be a trivial eigenvalue for bipartite graphs.

The above definition of a Ramanujan graph thus allows for the possibility of bipartite Ra-

manujan graphs. In the literature it is sometimes unclear as to wether or not the definition

4 Here Θ is used to denote big theta notation. See Appendix A for a quick review of this topic.

5 recall e−x = 1−x+ x2

2! −
x3

3! + . . . and so e−3log(k)/4k = 1− 3logk4k +
(
3logk
4k

)2 1
2!−
(
3logk
4k

)3 1
3!+ . . . =

1−O
(
logk
k

)
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allows for this possibility. Regardless, our definition does, and it is consistent with the def-

inition given by Lubotzky et al. in [24].

The Alon-Boppana Theorem shows that Ramnujan graphs are asymptotically the best

possible. Its not difficult to construct a Ramanujan graph with a small number of vertices.

For instance, the k-regular complete graphs presented in example 1.2.9 are Ramanujan.

The challenge, however, lies in constructing a Ramanujan family of graphs. Recall that the

complete graphs which are individually Ramanujan graphs do not form a Ramanujan family

since they are graphs of varying degrees. Few explicit constructions of Ramanujan families

are known.

2.2 Explicit Construction of Ramanujan Graphs

The first explicit constructions of families of Ramanujan graphs were given by Lubotzky,

Phillips and Sarnak [24] and separately by Margulis [27] in 1988. For any prime number

k, the authors were able to construct sequences of k + 1-regular Ramanujan graphs from

Cayley graphs. This section will investigate the original constructions of families of k + 1-

regular Ramanujan graphs as introduced by Lubotzky et al. To prove that these graphs form

a Ramanujan family is highly non-trivial and only a summary of the proof will be presented

here. In order to describe these constructions, some number theoretic results and definitions

will be needed. The following subsection presents this required background.

The works of Davidoff, Sarnak and Valette in [5] and [31] as well as the original paper

by Lubotzky, Phillips and Sarnak [24] are the primary references for this section.

2.2.1 Preliminary definitions and results

Definition 2.2.1. The ring of intergral quaternions, denoted H(Z), is defined:

H(Z) ={a0 + a1i+ a2j + a3k : a0, a1, a2, a3 ∈ Z, i2 = j2 = k2 = −1,

ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j}

The word “integral" will often be omitted, and an element of the ring will simply be referred

to as a quaternion. Let α = a0 + a1i+ a2j + a3k ∈ H(Z) be a quaternion. The conjugate

of α, denoted ᾱ, is defined, ᾱ := a0 − a1i− a2j − a3k. The norm of α, denoted N(α), is

defined, N(α) := αᾱ = a2
0 + a2

1 + a2
2 + a2

3. If N(α) = 1 then α is called a unit. There are
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8 units in H(Z), namely, ±1,±i,±j,±k. If ε is a unit then εα is referred to as an associate

of the quaternion α. A quaternion α ∈ H(Z) is prime if it is not a unit and if α = βγ =⇒

either β or γ is a unit.

The following elementary number theoretic results will be of use later:

Proposition 2.2.2. (see Proposition 2.5.2 in [5] for proof) Every quaternion has a factor-

ization into prime quaternions.

Proposition 2.2.3. (see Corollary 2.5.10 in [5] for proof) A quaternion ω is prime if and

only if N(ω) is prime.

Proposition 2.2.4. (see Theorem 2.1.7 Corollary 2.5.10 in [5] for proof) If p ≡ 1 (mod 4)

then −1 is a square in Fp.

Theorem 2.2.5. (Jacobi’s Theorem - see [5] section 2.3 for proof)

Let n be an odd positive integer. Let r4(n) denote the number of integer solutions to the

equation a2
0 + a2

1 + a2
2 + a2

3 = n. Then r4(n) = 8
∑
d|n d.

Since the graphs of Lubotzky Phillips Sarnak are constructed from Cayley graphs of

linear groups, the reader is now reminded of some important linear groups of degree 2.6

Definition 2.2.6. The general linear group, GL2(q), is the group of 2×2 invertible matrices

with coefficients in Fq. The projective linear group, PGL2(q), is the quotient group of

GL2(q) modulo the set of scalar matrices,
{(

λ 0
0 λ

)
: λ in F×q

}
. The projective special linear

group, PSL2(q), is the subgroup of PGL2(q) consisting of matrices with determinant 1.

2.2.2 Constructing Xp,q

Let p and q be two distinct primes, each congruent to 1 modulo 4 7 and with q “large

enough" with respect to p (more on this later). This section will construct graphs Xp,q,

dependent on the choice of p and q, from Cayley graphs of either PGL2(q) or PSL2(q)

with respect to a subset Sp,q. The subset Sp,q will now be constructed.

6 These definitions generalize to degree n, but only degree 2 linear groups are needed here.

7 The assumption that p and q are congruent to 1 modulo 4 may be omitted, but following Sarnak [31] it is
included here to allow for a simplified description.
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Theorem 2.2.5 implies that there are 8(p + 1) quaternions of norm p. Since p ≡ 1

(mod 4) each of these quaternions will have exactly one odd coordinate.8 Let α be a

quaternion of norm p. Out of the 8 associates εα of α exactly one of them satisfies the

condition that a0 is odd and positive. It can be concluded that there are p + 1 solutions to

the a2
0 + a2

1 + a2
2 + a2

3 = p whose a0 coordinate is odd and positive. Let Sp denote this set

of p+ 1 distinguished solutions.

Since q ≡ 1 (mod 4), Proposition 2.2.4 ensures that there exists some i ∈ Fq such

that i2 ≡ −1 (mod q). Define a function ϕ : Sp → PGL2(q) mapping each α = ao +

a1i+ a2j + a3k ∈ Sp to the 2× 2 matrix over Fq defined by,

α̃ =

 a0 + ia1 a2 + ia3

−a2 + ia3 a0 − ia1


The set Sp,q is defined to be the image set ϕ(Sp) of matrices in PGL2(q).9 Notice

that Sp,q is symmetric in PGL2(q) - indeed, each matrix in Sp,q is its own inverse - and

hence it forms a legitimate set from which we can construct a Cayley graph. Applying

the assumption that q is sufficiently large with respect to p (q > 2
√
q is satisfactory) and

making use of the fact that the elements of Sp,q have norm congruent to p modulo q, it can

be verified that |Sp,q| = p+1 (see Lemma 4.2.1 in [5] for more details). The Cayley graphs

constructed will therefore be p+ 1-regular. The graph Xp,q is defined as follows:

• If p is a square modulo q then Sp,q ⊂ PSL2(q) ⊂ PGL2(q). In this case Xp,q :=

Γ(PSL2(q), Sp,q) and Xp,q is a (p+ 1)-regular graph on q(q2−1)
2 vertices.

• If p is not a square modulo q thenXp,q := Γ(PGL2(q), Sp,q). ThenXp,q is a (p+1)-

regular graph on q(q2 − 1) vertices.

8 Indeed, if an integer x is even then x = 2y and x2 = 4y2 = 0 (mod 4). If x is odd then x = 2y + 1
and x2 = 4y2 + 4y + 1 = 1 (mod 4). Since the sum of all 4 coordinates squared is 1 (mod 4), only one
coordonate can be odd.

9 It is straightforward to see that Sp,q is a subset of PGL2(q): Indeed, for any α̃ ∈ Sp,q , det(α̃) ≡ p
(mod q) . 0 (mod q) since p and q are distinct primes. It follows that α̃ is invertible as claimed.
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2.2.3 Main Result

The following theorem is a special case of the results proven by Lubotzky, Phillips,

Sarnak and Margulis:

Theorem 2.2.7. Let p,q be distinct odd primes ≡ 1 (mod 4) satisfying q > 2
√
p. Then

Xp,q are (p+ 1)-regular Ramanujan graphs of cardinality q(q2−1)
2 if q is square modulo p,

and of cardinality q(q2 − 1) otherwise.

Regardless of whether or not p is a square modulo q, it is clear that as q tends to infinity

the size of the vertex set does also. Thus, by fixing p and constructing Xp,q for increasing

prime values of q, a family of (p+ 1)-regular Ramanujan graphs is obtained.

A brief summary of the proof that the graphs Xp,q are Ramanujan will now be pre-

sented. Chapter 3.4 of [31], Chapter 4.4 of [5] as well as the original paper by Lubotzky,

Philips, Sarnak [24] are cited as references for this proof.

Main ideas of the proof of Theorem 2.2.7. This proof will begin by verifying that eachXp,q

is connected. In their original paper, Lubotzky et al. describe two different constructions of

Xp,q and verifiy that they are isomorphic. One of these constructions has already been de-

scribed in this exposition. We will use the alternate construction of Xp,q to show that these

graphs are connected. The alternate construction is described as follows:

Let Λ′(2) = {α ∈ H(Z)|α ≡ 1 (mod 2) and N(α) = pv, v ∈ Z, p prime ≡ 1

(mod 4)}. Notice that Λ′(2) contains the previously defined set Sp. Define Λ(2) to be the

group given by Λ(2) = Λ′(2)/ ∼ where α ∼ β whenever ±pv1α = pv2β for v1, v2 ∈ Z.

Let Q : Λ′(2) → Λ(2) be the quotient map taking α ∈ Λ′(2) to its equivalence class

[α] ∈ Λ(2). Let Λ(2q) denote the finite index subgroup of Λ(2) consisting of all elements

α ∈ Λ(2) satisfying 2q|α − a0. The graphs Cay(Λ(2)/Λ(2q), Q(Sp)) are isomorphic to

the previous construction of Xp,q. Thus, to show that Xp,q is connected it will suffice to

show that Q(Sp) generates Λ(2)/Λ(2q). The following two results will be used:

Lemma 2.2.8. (Theorem 2.5.13 in [5]) Let m ∈ N and let α ∈ H(Z) with N(α) = pm.

Then α admits a unique factorization α = εprwm−2r where ε is a unit and wm−2r is a

reduced word of length m− 2r over Sp.
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A reduced word is one that has no subword of the form αiᾱi. The length of the word

is the number of symbols in its expression. The main ideas of the proof of this lemma will

now be provided.

Proof. Begin by proving existence. Let α ∈ H(Z) with N(α) = pm. Applying Proposition

2.2.2, write α = δ1 . . . δk where each δi is prime. Proposition 2.2.3 can then be applied to

deduce that N(δi) = p for all i, and thus k = m. For each δi write δi = εiγi where γi ∈ Sp

and εi is a unit. This yields:

α = ε1γ1 . . . εmγm

All units can be moved to the left by replacing each γε by ε′γ′ where γ′ ∈ Sp. The resulting

expression is unit followed by a word (not necessarily reduced) of length m. The word is

reduced by replacing any occurrences of γγ̄ by a factor of p. Once the word is completely

reduced the expression for α becomes,

α = εprγi . . . γj

where γi . . . γj is a word over Sp of length m− 2r. Existence has now been verified.

To prove uniqueness a simple counting argument is used. Begin by counting the num-

ber of expressions of the form εprwm−2r (for various values of r). Count the number of

quaternions of norm pm. One will find that there are the same number of each, thus proving

uniqueness. The reader is referred to Theorem 2.5.13 in [5] for more details. �

This result leads immediately to the following corollary:

Corollary 2.2.9. (Lemma 2.5.4 in [31]) If β ≡ 1 (mod 2) and N(β) = pm then β can be

expressed uniquely in the form β = ±prwm−2r where wm−2r is a reduced word over Sp.

Corollary 2.2.9 implies that the group Λ(2) is freely generated byQ(Sp). HenceQ(Sp)

generates Λ(2)/Λ(2q) and thus Xp,q are connected.

The spectrum of these graphs will now be investigated. Begin by generalizing the

notion of the adjacency matrix of a graph. For a k-regular graph G = (V,E) define Ar to

be the |V | × |V | matrix with entries:

(Ar)xy = the number of non-backtracking paths of length r from x to y
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Observe that A0 is the identity and A1 is the usual adjacency operator. A few basic

observations and calculations yield the following recursion formulas:

A2
1 = A2 + kA0 , ArA1 = A1Ar = Ar+1 + (k − 1)Ar−1 (2.2)

From these recursion formulas one can compute the generating function of the Ar. The

following relationship can then be deduced between the Chebychev polynomials of the

second kind, Um(x) = sin((m+1) arc cos(x))
sin(arc cos(x)) , and the Ar’s:

∑
0¬r¬m2

Am−2r = (k − 1)
m
2 Um

(
A1

2
√
k − 1

)
(2.3)

(See Chapter 1.4 in [5] for details on (2.2) and (2.3))

Formula (2.3) will be used to estimate the spectrum of Xp,q. Let n be the number

of vertices of Xp,q and let p + 1 = λ0 > λ1  λ2  . . .  λn−1 be the eigenvalues

of A1. (The strict inequality between λ0 and λ1 follows from Xp,q being connected.) For

j = 1, 2, . . . n− 1 write λj = 2
√
p θj where θj ∈ C.

In order to prove that Xp,q is Ramanujan, it is required to prove that θj is real for

certain values of j. More specifically, if Xp,q is bipartite then it will be required to show

that θj is real for j = 1, . . . n − 2. If Xp,q is not bipartite, then it will be required to show

that θj is real for all j = 1 . . . n − 1. To this end, proceed by calculating the trace of both

the left and right hand sides of (2.3). The right hand side yields:

pm/2 Tr

(
Um

(
A1

2
√
p

))
= pm/2

n−1∑
j=0

sin(m+ 1)θj
sin θj

(2.4)

and the left hand yields:

∑
0¬r¬m/2

Tr (Am−2r) =
∑

x∈Xp,q

∑
0¬r¬m/2

(Am−2r)xx (2.5)

Recall that since Xp,q is a Cayley graph, it is vertex transitive and thus the value

(Am−2r)xx will be constant for all vertices x ∈ Xp,q. The expression in (2.5) can thus be

written as,

n
∑

0¬r¬m/2
(Am−2r)ee
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where e is the vertex inXp,q corresponding to the identity element of the group Λ(2)/Λ(2q).

For vertices x, y ∈ Λ(2) let d(x, y) denote the distance between x and y in Tp+1. Observe,

∑
0¬r¬m/2

(Am−2r)ee =
∑

0¬r¬m/2
|{α ∈ Λ(2q) : d(α, e) = m− 2r}| (2.6)

Indeed, α ∈ Λ(2q) iff the corresponding path in Xp,q is closed. Furthermore, the length of

a non-backtracking path in Xp,q is equivalent to the distance in the tree Tp+1.

Let rQ(pm) denote the number of integer representations of pm byQ(x0, x1, x2, x3) =

x2
0 +4q2(x2

1 +x2
2 +x2

3). In other words, rQ(pm) = |{α ∈ H(Z) : 2q|α−a0, N(α) = pm}|.

Applying Corollary 2.2.9 and the fact that length of a reduced word over Sp corresponds to

distance in the tree Tp+1 yields,

rQ(pm) = 2
∑

0¬r¬m/2
|{α ∈ Λ(2q) : d(α, e) = m− 2r}|. (2.7)

The factor of 2 can be made sense of by observing that for any reduced word w in

Λ(2q) of length m− 2r both γ+ = +prw and γ− = −prw contribute to rQ(pm).

Combining 2.3, 2.5, 2.4, 2.6 and 2.7 yields,

rQ(pm) =
2pm/2

n

n−1∑
j=0

sin(m+ 1)θj
sinθj

The Ramanujan conjecture and its proofs by Eichler and Igusa (see [17] and references

therein) yield the following approximation of rQ(pm):

rQ(pm) = C(pm) +Oε(pm(1/2+ε)) as m→ ∞ ∀ ε > 0 (2.8)

where C(pm) is the pm-th Fourier Coefficient of an Eisenstein series of weight two. When

m is even Lubotzky et al. [24] show that

C(pm) =
4

q(q2 − 1)
pm+1 − 1
p− 1

Putting all of these calculations together yields that for even m, as m→∞:

4
q(q2 − 1)

pm+1 − 1
p− 1

+Oε(pm(1/2+ε)) =
2pm/2

n

n−1∑
j=0

sin(m+ 1)θj
sin θj

∀ ε > 0 (2.9)
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The term 4
q(q2−1)

pm+1−1
p−1 on the left hand side of (2.9) is exactly the contribution of

the trivial eigenvalues to the right hand side. To see this consider both cases separately:

Case 1: p is a square modulo q. Then n = q(q2−1)
2 and Xp,q is not bipartite, so there

is only one trivial eigenvalue: λ0 = p + 1. One can solve p + 1 = 2
√
p cos θ0 to get

θ0 = i log
√
p (expand the cos function as eiθ + e−iθ/2 and solve as a quadratic in eiθ).

Thus the contribution of the trivial eigenvalue to the right hand side of (2.9) is:

2
n
pm/2

sin((m+ 1)i log
√
p)

sin(i log
√
p)

=
4pm/2

q(q2 − 1)

(
p−m/2(pm+1 − 1)

p− 1

)

=
4

q(q2 − 1)
pm+1 − 1
p− 1

Case 2: p is not a square modulo q. Then n = q(q2 − 1) and Xp,q is bipartite, thus we

have two trivial eigenvalues: λ0 = p+ 1 and λn−1 = −(p+ 1) which yields θ0 = i log
√
p

and θn−1 = π + i log p. This time n fails to contribute a factor of 2 on the numerator.

However, since m + 1 is even the contribution of each trivial eigenvalue is the same, so

again the contribution of the trivial eigenvalues to the right hand side of (2.9) is:

4
q(q2 − 1)

pm+1 − 1
p− 1

In both cases, then, this term can be cancelled from both the left and right side of (2.9),

and only the contributions of the non-trivial eigenvalues is left.

Only the proof for non bipartite case is continued here, but the remainder of the proof

for the bipartite case is analogous. In the non bipartite case, the expression in (2.9) can be

written:

Oε(pεm/2) =
2
n

n−1∑
j=1

sin((m+ 1)θj
sin θj

(2.10)
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It is required to prove that the remaining θi are real. Observe that if θ is real then | sin(m+1)θ
sin θ | ¬

m+ 1.10 From this observation, deduce:∣∣∣∣∣∣ 2n
∑

i: θi∈R

sin(m+ 1)θi
sin θi

∣∣∣∣∣∣ < 2(m+ 1)

Now suppose for a contradiction that some θj is not real. Then write θj = iµj or

θj = π + iµj where µj ∈ (0, log
√
p]. In either case, the contribution of this term is:

2
n

sin(m+ 1)θj
sin θj

=
2
n

sin(m+ 1)iµj
sin iµj

=
2
n

i sinh(m+ 1)µj
i sinhµj

=
2
n

(
coshmµj +

coshµ+ j sinhmµj
sinhµj

)
> 0

In this form, it is easy to see that for large enough m the contribution made by θj is

much greater than 2(m + 1), and hence it is the dominating term in the right hand side of

(2.10). Thus, with some θj not real, 2
n

∑n−1
j=1

sin((m+1)θj)
sin θj

tends to infinity withm. For small

enough ε this contradicts the expression:

Oε(pεm/2) =
2
n

n−1∑
j=1

sin((m+ 1)θj
sin θj

.

It can be concluded that all θj corresponding to non-trivial eigenvalues are real. It follows

that Xp,q is Ramanujan. �

10 This can be proven by induction beginning with the base case where m = 1. The identity sin(α+ β) =
sin(α) cos(β) + sin(β) cos(α) is used in the induction step.
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Chapter 3
Expanders and Lifts of Graphs

The notion of a covering space turns out to be quite useful in exploring the spectrum

of graphs. In this section we will see how covering spaces can be used to construct families

of expander graphs, and how covering spaces lead to a natural extension of the definition of

expanders to the irregular case. The majority of this chapter follows Chapter 6 of [13]. All

other sources are cited throughout.

3.1 Review of Covering Spaces

Definition 3.1.1. Let G = (V,E) be a graph. For a vertex v ∈ V the neighbourhood of v,

denoted N(v), is defined N(v) := {w ∈ V : v ∼ w}.

Definition 3.1.2. Let G and H be graphs. A function f : H → G is a covering map if it is

surjective and if for every v ∈ V (H) f maps the neighbour set of v, N(v), bijectively to

N(f(v)). If there exists a covering map from H to G then H is called a covering space or

cover of G.

Definition 3.1.3. If f : H → G is a covering map then for v ∈ V (G) the set f−1(v) is

called the fiber of v. Similarly if e ∈ E(G) then f−1(e) is the fibre of e.

Definition 3.1.4. Notice that if f : H → G is a covering map of a connected graph G then

there exists a constant c ∈ N so that |f−1(g)| = c for all g ∈ G. The number c is referred

to as the degree of the map f .

For a connected graph G let Ln(G) denote the set of degree n covering spaces of G.

Notice that any graph H ∈ Ln(G) can be described in the following convenient manner:

Begin by labelling the vertices of H so that the fiber of any vertex v ∈ V (G) consists

of vertices labelled (v, 1), (v, 2), . . . , (v, n). Given such a labelling and given any edge

e = (u, v) ∈ E(G) there is a permutation πe ∈ Sn so that the set of edges in H between

vertices in the fibers of u and v are described by ((u, i), (v, πe(i))) for i ∈ [n]. Every

element of Ln(G) can be described in this way via an enumeration of the vertices and a

collection of permutations. Notice also that an element, J , of Ln(G) can be constructed
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by setting V (J) = V (G)× [n] and by choosing a collection of |E(G)| permutations from

which the edge set E(J) is assigned.

Example 3.1.5. The following is an example of a degree 2 cover of K3. Here π(u,v) = 1,

π(v,w) = 1, π(u,x) = 1, π(u,w) = (1, 2), π(w,x) = 1 and π(x,v) = (1, 2).

u

w

v

xu1

w1

v1

x2

u2

w2

v2

x1

Notice that in general, elements of Ln(G) need not be connected. Indeed, setting πe

equal to the identity for all edges produces a graph with n separate connected components.

Definition 3.1.6. The universal cover of a graph G is a connected covering space of G that

has no cycles. For example, the universal cover of K3 is the infinite tree of degree 3: T3.

3.2 Old and New Eigenvalues

Proposition 3.2.1. If H is a covering space of G then every eigenvalue of G is an eigen-

value of H .

Proof. Let f : H → G be a covering map of degree d. Suppose y is an eigenvector of

AG with corresponding eigenvalue λ, and let y(v) denote the entry of y corresponding to

the vertex v ∈ V (G). It will be shown that the pullback f∗y is an eigenvector of AH with

corresponding eigenvalue λ. Let [d] denote the set of integers 1 through d. The definition

of a covering map implies that for any v ∈ V (G), y(v) = y(f(vi)) for all i ∈ [d]. Further,

if u ∈ V (G) is adjacent to v ∈ V (G) in G then for every i ∈ [d] there is exatly one

corresponding j ∈ [d] such that uj is adjacent to vi in H . Thus for any fixed vi ∈ V (H)
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observe,

AHy(f(vi)) =
∑

uj∈V (H):uj∼vi

y(f(uj))

=
∑

u∈V (G):u∼v
y(u) = AGy(v) = λy(v) = λy(f(vi))

which verifies that AHf∗y = λf∗y holds. �

Definition 3.2.2. The eigenvalues and eigenfunctions that H inherits from G are called the

old eigenvalues and old eigenvalues respectively. All other eigenvalues and eigenvectors of

H are referred to as new.

Proposition 3.2.3. Let f : H → G be a finite covering map and let ψ be a new eigen-

function of H . Then
∑
f(x)=v ψ(x) = 0 for every v ∈ V (G), ie. ψ sums to zero on every

fibre.

Proof. Since the eigenfunctions of G span the space of real functions on V (G) the old

eigenfunctions of H will span the space of real functions on V (H) which are constant on

fibres of H . Since distinct eigenfunctions can always be chosen to be mutually orthogonal,

any new eigenfunction of H must be orthogonal to all functions that are constant on the

fibres. This can only hold when a function sums to zero on each fibre. �

WhenH is a degree 2 covering space ofG the new eigenvalues ofH can be calculated

explicitly. Before stating this result formally some terminology corresponding to degree 2

covers will be introduced.

Definition 3.2.4. A signing of the edges of G is a function s : E(G)→ {−1, 1}. A signed

adjacency matrix of G with a signing is the regular adjacency matrix of G but with -1

instead of 1 where the sign of an edge was -1. The signed adjacency matrix is denoted As.

Associated with each signing of G is a degree 2 cover where s(e) = 1 corresponds to

π(e) = 1 and s(e) = −1 corresponds to π(e) = (1, 2). In other words, if {x, y} ∈ E(G)

then s(x, y) = 1 ⇐⇒ {x0, y0} and {x1, y1} are edges in H and s(x, y) = −1 ⇐⇒

{x0, y1} and {x1, y0} are edges in H .
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Example 3.2.5. The following signed adjacency matrix corresponds to the degree 2 cover

in Example 3.1.5:

As =



0 1 −1 1

1 0 1 −1

−1 1 0 1

1 −1 1 0


The following proposition was presented as a lemma in Bilu and Linial’s 2006 paper

[4]. The proof presented here was taken from their paper.

Proposition 3.2.6. Let H be a degree 2 covering space of G encoded in the signed adja-

cency matrix As. Then the new eigenvalues of H are the eigenvalues of As.

Proof. LetAH be the adjacency matrix ofH . DefineA1 as the adjacency matrix of (V, s−1(1))

and A2 the adjacency matrix of (V, s−1(−1)). Then A = A1 + A2 and As = A1 − A2.

Notice that if the rows of the matrix AH are organized so that rows 1 through n correspond

to vertices V (G)× 1 and rows n+ 1 through 2n correspond to vertices V (G)× 2 then AH

can be written as:

AH =

 A1 A2

A2 A1


Let h be an eigenvector of A with corresponding eigenvalue µ. Then hH := (h, h)T

is an eigenvector of AH with corresponding eigenvalue µ. If g is an eigenvalue of As with

eigenvalue λ then gH := (g, g)T is an eigenvector of AH with eigenvalue λ. If hH is

constructed for all eigenvectors h of A and if gH is constructed for all eigenvectors g of As

then all 2n orthogonal eigenvectors of AH are obtained. �

3.3 Spectrum of Infinite Trees

Recall that for a finite graph G with adjacency matrix AG the spectrum of G is given

by spec(AG) = {λ : (AG − λI) is not invertible}. Usually one finds λ ∈ spec(AG) by

solving (AG − λI)v = 0. Although the spectrum for an infinite graph T with adjacency

operatorAT is defined analogously by spec(AT ) = {λ : (AT−λI) is not invertible}, there

are significant differences between the spectra of finite and the spectra of infinite adjacency
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operators. For instance, observe that for an infinite k-regular graph T , k < spec(AT ) since

the constant function is not in l2(V (T )).

In general, the spectrum of a bounded self-adjoint operator on an infinite Hilbert space

can be considered as the disjoint union of two subsets: the point spectrum consisting of all

λ such that (A−λI) is not one-to-one, and the continuous spectrum for which (A−λI) is

not onto (see, for example, chapter 9 in [14]). In the case of the k-regular tree, T , spec(T )

is known to be purely continuous (see, for example, [18] or 5.1.2 of [13]).

Definition 3.3.1. The spectral radius of an infinite dimensional operator A, denoted ρ(A),

is defined: ρ(A) := sup{|λ| : λ ∈ spec(A)}.

Proposition 3.3.2.

For a self adjoint operator, AT , one has ρ(AT ) = sup‖x‖=1 ||ATx|| (see, for example,

proposition 9.7 in [14])

Proposition 3.3.3. The spectrum of Tk is [−2
√
k − 1, 2

√
k − 1].

This theorem will not be fully proven, but the reader is referred to [7] for full details.

Instead, this exposition will prove that the spectrum of Tk is fully contained in [−2
√
k − 1, 2

√
k − 1]

as shown by Sunada in [34]. This is a much easier result to show. It suffices to verify,

|〈Af, f〉| ¬ 2
√
k − 1||f ||2

for all functions f ∈ `2(Tk). Begin by assigning an orientation to the edges of Tk so that

every vertex has one edge pointing towards it and k − 1 edges pointing away from it. The

existence of such an orientation follows from the fact that Tk has no cycles. For an edge

oriented from x to y, let o(e) = x and t(e) = y where o is for origin and t is for tail.
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Observe,

|〈Af, f〉| =

∣∣∣∣∣∣
∑
x∈V

∑
y∈V :y∼x

f(y)f(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∑
e∈E

[
f(t(e))f(o(e)) + f(o(e))f(t(e))

]∣∣∣∣∣
=

∣∣∣∣∣2 ∑
e∈E
<(f(o(e))f(t(e)))

∣∣∣∣∣
¬ 2

∑
e∈E
|f(o(e))| |f(t(e))|

¬ 2

(∑
e∈E
|f(o(e))|2

)1/2(∑
e∈E
|f(t(e))|2

)1/2

Because of the way that the edges were oriented, every vertex x ∈ V appears as o(e) exactly

once, and as t(e) exactly k − 1 times. Thus the above line is re-written as,

2

(∑
x∈V
|f(x)|2

)1/2(
(k − 1)

∑
x∈V
|f(x)|2

)1/2

= 2
√
k − 1||f ||2

as desired.

3.4 Generalized Ramanujan Graphs

This section explores the idea of Ramanujan graphs with vertices of non constant

degree. The following is a generalization of Theorem 2.1.2, the Alon-Bopanna lower bound.

Theorem 3.4.1. Let {Gi} be a family of graphs covered by the same universal cover T ,

and such that |V (Gi)| increases to infinity with i. Then λ(Gi)  ρ(T ) − o(1) where ρ(T )

is the spectral radius previously defined.

Proof. As in the proof of Theorem 2.1.2, it suffices to show that |λ1(G)| satisfies the desired

bound. The following inequality is obtained in exactly the same way as in the proof of 2.1.2:

λ1(A)2p  (A2p)ss + (A2p)tt
2

whereA2p
ss andA2p

tt denote the number of closed paths inG of length 2p starting and ending

at vertex s and t respectively. Let a(s)
2k and a(t)

2p denote the number of closed paths of length

2p in T which start and end at a fiber of s in T and a fiber of t in T respectively. Then

(A2p)ss  a(t)
2p and (A2p)tt  a(s)

2p . The following well known fact will be used:

ρ(T ) = lim sup
n→∞

a1/n
n
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where an is the number of closed paths of length n in T starting and ending from any fixed

vertex in T (see [25] and references therein). Then

(ρ(T )− o(1))2p = a
(s)
2p = a

(t)
2p

It follows that,

λ1(G)2p 
a

(t)
2k + a

(s)
2k

2
= (ρ(T )− o(1))2p =⇒ |λ1(G)|  (ρ(T )− o(1))

as claimed. �

This theorem suggests the following definition for a generalized Ramanujan graph:

Definition 3.4.2. A graph G is Ramanujan if λ(G) ¬ ρ(G̃) where G̃ denotes the universal

cover of G.

If G is k-regular then G̃ = Tk and ρ(G̃) = 2
√
k − 1 by proposition 3.3.3. This

definition thus coincides with the original notion of a Ramanujan graph when the graph

under consideration is regular.

3.5 Quotients of uniform infinite trees

The result of Morgenstern mentioned in section 2.2 can be restated in terms of cover-

ing spaces as follows: If k − 1 is a prime power then infinitely many quotients of Tk are

Ramanjan graphs. It has been conjectured that the same holds for all k  3. This conjecture

has recently been verified for bipartite graphs, as will be discussed in Chapter 5. Lubotsky

and Nagnibeda show that these types of conjectures do not hold in the irregular case. More

precicely, they show that not every infinite tree with infinitely many finite quotients cover

Ramanugan graphs. In their paper [25] they construct infinite trees which cover infinitely

many finite graphs none of which are Ramanujan. This section will review some relevant

results and terminology and then will present the proof provided in their paper.

Definition 3.5.1. An infinite tree is called uniform if it covers some (and therefore infinitely

many) finite graphs.

Proposition 3.5.2. [21] Any two finite graphs G1 and G2 with the same universal covering

tree have a common finite cover G.
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The proof of this theorem is omitted here but the reader is referred to the original

document for more information [21].

Definition 3.5.3. An automorphism of a graph G is an adjacency preserving permutation

of V (G). In other words, if two vertices are (non) adjacent then their images under the

permutation are also (non) adjacent. The set of automorphisms of a graph forms a group

under composition called the automorphism group, Aut(G).

Definition 3.5.4. The fundamental group of a graphG, denoted π1(G) is a group of equiva-

lence classes of cycles inGwhich start and end at a fixed vertex v. Two paths are considered

equivalent if one can be continuously deformed into the other within the graph G. 1 (See

Chapter 1 in [11] for more details.)

Definition 3.5.5. Given a universal covering map ρ : T → X of a graph X, and path α ∈ X

a lift of α is a path α̃ ∈ T satisfying ρ(α̃) = α.

Remark: Some authors use the term “lift" interchangeably with the term “covering

space" when graphs are the only mathematical objects under consideration. This exposi-

tion follows the more general theory in developed in [11] and uses the distinct definitions

provided.

Let ρ : T → X be the universal covering space of a finite connected graph X . There

is a natural action of π1(X) on T in which an element α ∈ π1(X) translates T by α̃. Since

α ∈ π1(X) each vertex will be permuted to another vertex in the same fiber (or else will

be permuted to itself). A fiber preserving permutation necessarily preserves adjacency, and

hence the action of α ∈ π1(X) on T yields an automorphism of T . In fact the set of permu-

tations of T obtained by the action π1(X)y T forms a subgroup of Aut(T ). In topology

this subgroup is sometimes referred to as the group of “deck transformations" or “covering

transformations" of ρ : T → X since it is exactly the subgroup of transformations which

preserve the fibers of the covering map. (See Hatcher’s book on Algebraic Topology [11]

for more details.)

1 The equivalence described here is one that some readers may already be familiar with in a more general
setting. It is called “homotopy equivalence".
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Given an action Gy T the quotient space T/G is obtained by identifying each point

t ∈ T with all of its images g(t) for g ∈ G. 2 Observe that the quotient space resulting

from the action of π1(X) on T gives back the graph X .

Example 3.5.6. Let X be the finite 2-regular graph on 3 vertices (ie. the triangle). The

universal cover is an infinite 2-regular tree, T2. The colours of the vertices below indicate

the covering map. Observe that Aut(T2) � Z× Z2 and the action of π1(X) on T2 embeds

as the subgroup 3Z. The vertices in the diagram below illustrate the action of π1(X) on T2,

and it is clear that the resulting quotient group is X .

Definition 3.5.7. A graph is called minimal if it is equal to the quotient of the universal

covering tree X̃ of X by the full automorphism group of X̃ , ie. X= X̃/Aut(X̃).

Observe that not every uniform tree covers a minimal graph. Indeed, the tree in 3.5.6

does not cover a minimal graph. Observe also that ifX is minimal and ifX ′ is another finite

quotient of X̃ then X ′ covers X . Bass and Tits provide an algorithm in [3] to determine

whether or not a given finite graph X is minimal. Their result is explained briefly in [25]

but is omitted from our discussion.

Example 3.5.8. The following minimal graph is presented by Bass and Tits in [3]. Observe

that the automorphism group of this graph is indeed trivial.

Lemma 3.5.9. (Cauchy’s Interlacing Eigenvalue Theorem) Let A be an n × n hermitian

matrix and let B be an n− 1× n− 1 principal submatrix of A. Let

2 The set {g(t) : g ∈ G} is sometimes called the orbit space of t.
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λn−1(A) ¬ λn−2(A) ¬ . . . ¬ λ1(A) ¬ λ0(A) (3.1)

denote the eigenvalues of A and

µn−2(B) ¬ µn−3(B) ¬ . . . ¬ µ0(B) (3.2)

denote the eigenvalues of B. Then λn−1(A) ¬ µn−2(B) ¬ λn−2(A) ¬ . . . λ1(A) ¬

µ0(B) ¬ λ0(A).

See Appendix B for a proof of this theorem.

Lemma 3.5.10. [LuNa98] Let T be an infinite tree with maximum vertex degree k. Then

ρ(T ) ¬ ρ(Tk) = 2
√
k − 1.

Proof. Follows from the fact that ρ(X̃) = limsupn→∞a
1/n
n where an denotes the number

of closed paths of length n in X̃ starting and ending at some fixed vertex. �

The above mentioned result of Lubotzky and Nagnimbeda in [25] is now ready to be

stated:

Theorem 3.5.11. Let X be a minimal graph with a cut vertex x0. In other words, if vertex

x0 and all edges incident to it are deleted then the resulting graph consists of two disjoint

non-empty subgraphs. Call these subgraphs Y and Z. Let k denote the maximum vertex

degree in X . Assume that the average degrees of vertices in each Y and Z are strictly

greater than 2
√
k − 1. Then the universal cover X̃ of X is a locally finite uniform tree

which covers no Ramanujan graph.

Proof. The universal cover X̃ of X is a tree with maximum vertex degree k. From Lemma

3.5.10 it follows that ρ(X̃) ¬ ρ(Tk) = 2
√
k − 1. This proof will proceed to show thatX is

not Ramanujan by verifying that λ(X) > 2
√
k − 1. LetX0 = Z∪Y be the graph obtained

by deleting x0. The Rayleigh Quotient is used to deduce that λ0(Y ) and λ0(Z) are  the

average degrees of Y and Z respectively. Thus λ0(Y ) and λ0(Z) are each strictly greater

than 2
√
k − 1 and therefore the two largest eigenvalues of X0, λ0(X0) and λ1(X0), are

both greater than 2
√
k − 1. Applying Cauchy’s interlacing eigenvalue theorem yields:

λ0(X)  λ0(X0)λ1(X)  λ1(X0) > 2
√
k − 1
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and hence

λ(X)  |λ1(X)| > 2
√
k − 1

It follows thatX is not Ramanujan. LetX ′ be any finite quotient of X̃ . Then X is a quotient

ofX ′ sinceX is minimal. This means that any eigenvalue ofX is also an eigenvalue ofX ′.

The required result follows. �

It should be mentioned that Lubotzky and Nagnibeda provide explicit examples of

graphs which satisfy the conditions of Theorem 3.5.11, and thus whose universal covering

trees cover no Ramanujan graphs.
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Chapter 4
Matching Polynomials

This section introduces some classic graph polynomials. Particular attention is paid

to the matching polynomial of a graph. A relationship between these roots and the graph’s

spectrum will be developed.

4.1 Introduction

Definition 4.1.1. For a graph G a matching in G is a set of edges in G without common

vertices.

Definition 4.1.2. For a graph G on n vertices let mi denote the number of matchings in G

with i edges. Set m0 = 1 and define the bivariate matching polynomial of G, M(G;x, y),

as follows:

M(G;x, y) =
bn2 c∑
i=0

mi(G)xiyn−2i

Definition 4.1.3. Three common matching polynomials are obtained from the bivariate

matching polynomial:

• The generating matching polynomial [19] :

g(G;x) := M(G;x, 1) =
bn2 c∑
i=0

mi(G)xi

• The partition matching polynomial [12]:

p(G;x) := M(G; 1, x) =
bn2 c∑
i=0

mi(G)xn−2i

• The acyclic matching polynomial [19], sometimes simply referred to as the matching

polynomial:

µ(G;x) := M(G,−1, x) =
bn2 c∑
i=0

xn−2i(−1)imi(G)

Notice µ(G;x) = i−np(G; ix).
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Observation 4.1.4. [10] The acyclic matching polynomial satisfies the following recur-

rence relation:

µ(G;x) = xµ(G− v;x)−
∑

w:w∼v
µ(G− v − w;x)

Proof. Let e ∈ E(G) with endpoints v and w. Let G− e be the graph obtained by deleting

edge e from the graph G. It is easy to see that the number of matchings of G of size j

satisfies the following recurrence relation: mj(G) = mj(G − e) + mj−1(G − v − w).

Substituting the right hand side of this recurrence into the definition of µ(G, x) yields:

µ(G, x) =
bn2 c∑
i=0

(mi(G− e) +mi−1(G− v − w))(−1)ixn−2i

=
bn2 c∑
i=0

mi(G− e)(−1)ixn−2i +
bn2 c∑
i=1

mi−1(G− v − w)(−1)ixn−2i

= µ(G− e;x) +
bn−22 c∑
j=0

mj(G− v − w)(−1)j+1xn−2(j+1)

= µ(G− e;x)− µ(G− v − w;x)

Let v ∈ V (G) be incident to edges e1, e2, . . ., ed and let w1, w2, . . ., wd be the set of

neighbours of v labeled such that ej = {v, wj} . Then write,

µ(G;x) = µ(G− e1;x)− µ(G− v − w1;x)

= µ(G− e1 − e2;x)− µ(G− v − w1;x)− µ(G− v − w2;x)

=
...

= µ(G− e1 − e2 − . . .− ed;x)−
d∑
j=1

µ(G− v − wj ;x)

= xµ(G− v;x)−
∑
w∼v

µ(G− v − w;x)

�

Lemma 4.1.5. If a graphG is the disjoint union of the graphsK and L thenM(G;x; y) =

M(K;x; y)M(L;x; y).
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Proof. Let G be a graph with n vertices that is the disjoint union of two connected compo-

nents, L with ` vertices and K with k vertices. Then,

M(L;x; y)M(K;x; y) =

b
`
2 c∑
i=0

ximi(L)y`−2i


b

k
2 c∑
j=0

xjmj(L)yk−2j


The terms in the above expression can be rearranged to sum over i+ j as follows:

(terms in which i+ j = 0) + (terms in which i+ j = 1)

+ . . . +
(

terms in which i+ j = b `
2
c+ bk

2
c
)

=
b `2 c+b

k
2 c∑

i+j=0

xi+jy`+k−2(i+j)
i+j∑
i=0

mi(L)mj(K)

=
b `2 c+b

k
2 c∑

r=0

xry`+k−2r
r∑
i=0

mi(L)mr−i(K)

=
b `2 c+b

k
2 c∑

r=0

xry`+k−2rmr(G)

=
bn2 c∑
r=0

xryn−2rmr(G)

obtaining the required result. �

The following corollary follows immediately from the previous lemma and from the

definition of the acyclic matching polynomial.

Corollary 4.1.6. If a graph G is the disjoint union of the graphs K and L then µ(G;x) =

µ(K;x)µ(L;x).

4.2 Roots of the Acylic Matching Polynomial

Theorem 4.2.1. [12] For any simple graph G the roots of the acyclic matching polynomial

µ(G;x) are real. Furthermore if v ∈ V (G) then the roots of µ(G, x) interlace the roots of

µ(G− v;x).

Proof. Begin by verifying that the theorem holds when G is the complete graph on n ver-

tices. Proceed by induction on n. For n = 0 and n = 1 the claim is trivially satisfied. For
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n > 1, consider the recurrence relation from observation 4.1.4:

µ(G;x) = xµ(G− v;x)−
∑

w:w∼v
µ(G− v − w;x) (4.1)

SinceG is a complete graph on n vertices, µ(G−v;x) is a degree n−1 polynomial and each

µ(G− v−w;x) is a degree n− 2 polynomial. Without loss of generality consider the case

where n is even. (If n is odd, analogous arguments hold with appropriate sign changes.)

Since the leading coefficient of each polynomial is positive, µ(G− v;x), µ(G− v −w;x)

and µ(G;x) are all positive for sufficiently large x.

Consider the sign of the right hand side of equation 4.1 as x takes on the values of

the zero’s of µ(G − v;x) and as x tends to positive and negative infinity. For each w ∈

G − v the induction hypothesis implies that the zeros of µ(G − v − w;x) are real and

interlace the zeros of µ(G − v;x), which are also real. From this information the sign of∑
w∈G−v µ(G − v − w;x) evaluated at the zeros of µ(G − v : x) can be deduced. The

following diagram:
0 0 0 0 0 0 0- + - + - + - + µ(G− v; x)

+ + - + - + - + +

∑
w∈G−v

µ(G− v − w; x)

+ - + - + - + - + µ(G; x)

From this diagram one can conclude that there are n real roots of µ(G;x) which inter-

lace the zeros of µ(G− v;x). Since µ(G;x) is a degree n polynomial this means that all of

its roots are real.

It remains to verify the theorem in the case where G is not the complete graph. Con-

sider G to be a weighted graph. By this it is meant that a non-negative value W (i, j) is

assigned to every pair of vertices, i, j. W (i, j) = 0 is equivalent to {i, j} not being an edge

in G. The definition of the acyclic matching polynomial is extended to weighted graphs as

follows:

µW (G;x) =
bn2 c∑
i=0

∑
M is a matching

of size i

∏
{v,w}∈M

W (i, j)(−1)ixn−2i (4.2)

Notice that if all W (i, j) ∈ {0, 1} then this reduces to the original matching polyno-

mial for non-weighted graphs. The previously considered recurrence relation for µ(G;x)
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extends to the weighted case also:

µW (G;x) = xµW (G− v;x)−
∑

w∈G−v
W (v, w)µW (G− v − w;x)

Applying this recurrence relation and analogous arguments as before, it can be deduced that

if G is a graph in which W (i, j) is strictly greater than 0 for all i, j ∈ V (G) then the roots

of µW (G, x) are real.

Let G′ be a graph on n vertices where edges have weights either 0 or 1. A sequence of

weighted graphs on n vertices {Gn}n>0 will be constructed where W (i, j) = 1 if {i, j} ∈

E(G) and W (i, j) = 1
n otherwise. Then G1 is the complete graph on n vertices and Gn

tends toG′ as n→∞. It has already been verified that the roots ofGn are real for all n > 0.

Since the sequence of graphs converges toG′ then given any δ > 0 we can find an i such that

each coefficients of µW (Gi;x) differ from the corresponding coefficient in µW (G′;x) by at

most δ. Since a bound on the difference in coefficients between two polynomial functions

infers a bound on the difference between roots of the two polynomials, it follows that for

any ε > 0 there exists an i such that the roots of i are at most ε away from the roots of G′.

Since the roots of Gi are real, this means that the roots of G′ must also be real. �

Definition 4.2.2. Let G be a graph and let u ∈ V (G). The path tree T (G, u) of G at u is

defined to be the graph whose vertex set is the set of distinct circuit-less paths in G which

start at u. Two vertices are adjacent if one path is a maximal subpath of the other.

Theorem 4.2.3. [9] Let T (G, u) be a path tree of G. Then

µ(G;x)
µ(G− v;x)

=
µ(T (G, v);x)

µ(T (G, v)− v;x)

and µ(G;x) divides µ(T (G, u), x).

Proof. Let |V (G)| = n and proceed by induction on n. If n ¬ 2 then G is a tree. In this

case the map taking each vertex w ∈ V (G) onto the unique path joining v ∈ V (G) to w is

an isomorphism from G to T (G, v). Thus for n ¬ 2 the result is immediate. Consider the

case where n > 2 and assume by induction that the result holds for all graphs with less than
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n vertices. Let v ∈ V (G) and N(v) = {w1, . . . , wk}. Applying observation 4.1.4 yields:

µ(G;x)
µ(G− v;x)

= x−
k∑
i=1

µ(G− v − wi;x)
µ(G− v;x)

(4.3)

= x−
k∑
i=1

µ(T (G− v, wi)− wi;x)
µ(T (G− v, wi);x)

(4.4)

where the (4.4) follows from induction. Let (*) represent µ(G;x)
µ(G−v;x) . Multiplying both the

numerator and denominator of each fraction in (4.4) by
∏
j,i µ(T (G− v, wj);x) yields:

(∗) = x−
(∑k

i=1 µ(T (G− v, wi)− wi;x)
∏
j,i µ(T (G− v, wj);x)∏k

j=1 µ(T (G− v, wj);x)

)
(4.5)

Notice that the disjoint union of T (G− v;wi)−wi with the graphs T (G− v;wi) for

i , j is equal to T (G, v) − {v, wi}. Similarily the disjoint union of T (G − v;wi) for all

∈ [k] equals T (G, v)− v. Hence corollary 4.1.6 is applied to obtain:

µ(G;x)
µ(G− v;x)

= x−
∑k
i=1 µ(T (G, v)− {v, wi};x)
µ(T (G, v)− v;x))

(4.6)

=
µ(T (G, v))

µ(T (G, v)− v)
(4.7)

where the last equality follows from observation 4.1.4.

By induction it is also assumed that µ(G − v;x) divides µ(T (G − v, u);x) for any

u ∈ V (G) − {v}. In particular, µ(G − v;x) divides µ(T (G − v, wi);x) for all vertices

wi ∼ v. Note that T (G, v)− v will be isomorphic to the disjoint union of all graphs T (G−

v, wi), and so if the matching polynomial µ(G − v;x) divides the matching polynomials

µ(T (G− v, wi);x), then clearly µ(G− v;x) divides µ(T (G, v)− v;x). Then the equation

which was just verified:

µ(G;x)
µ(G− v;x)

=
µ(T (G, v);x)

µ(T (G, v)− v;x)
(4.8)

implies that µ(G;x) divides µ(T (G, v);x). �

The following is a well known result that will be stated without proof:

Proposition 4.2.4. [22] The characteristic polynomial of a forest coincides with its match-

ing polynomial.

Observe that the following is an immediate corollary to propositions 4.2.4 and 4.2.3:
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Corollary 4.2.5. Let T (G, u) be a path tree of G. Then the matching polynomial of G

divides the characteristic polynomial of T (G, u).

This theorem implies that the roots of µ(G;x) have absolute value at most ρ(T (G, u)).

Theorem 4.2.6. (Lemma 3.5 in [29]) Let T be the universal covering tree of a graph G.

Then the roots of the matching polynomial of G, µ(G;x) are bounded in absolute value by

the spectral radius of T , ρ(T ).

Proof. Let v ∈ V (G) and let T (G, v) be the path tree rooted at v. Theorem 4.2.3 guarantees

that the roots of µ(G;x) are bounded in absolute value by

||AT (G,v)|| = sup
||x||=1

||AT (G,v)x|| = sup
||y|| = 1 s.t.AT y evalu-

ates to 0 outside of P

¬ sup
||y||=1

||AT y||2 = ρ(T )

where the inequality follows from the fact that T (G, v) is an induced subgraph of T

and hence the adjacency matrix AT (G,v) is a submatrix of AT . �
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Chapter 5
Bipartite Ramanujan Graphs of All Degrees

5.1 Introduction

As previously discussed, constructing families of Ramanujan graphs has proven to be

a highly non-trivial task. Morgenstern was able to construct infinitely many k-regular Ra-

manujan graphs whenever k−1 was a prime power. It has been conjectured that Ramanujan

families exist for all k  3. In its full generality this conjecture remains an open problem.

Quite recently, however, Marcus, Spielman and Srivastava confirmed the conjecture for bi-

partite graphs [29].

Specifically, Marcus et al. succeed in proving that there exists a signing of every d-

regular graph G so that the eigenvalues of the associated signed adjacency matrix are all

¬ 2
√
k − 1. Observe that given this result, Proposition 3.2.6 verifies the existence of a cov-

ering space of G whose new eigenvalues are all ¬ 2
√
k − 1. Thus, if G were Ramanujan

to begin with, then all non-trivial eigenvalues of the covering space would be ¬ 2
√
k − 1.

This is not yet enough to conclude that the cover itself would be Ramanujan. Indeed, an

upper bound has been obtained on the on the non-trivial eigenvalues, but no lower bound.

To solve this problem, the condition thatG be bipartite is imposed. With this added assump-

tion, it follows that all new eigenvalues of the covering space are bounded in absolute value

by 2
√
k − 1. To see this, recall that covering spaces of bipartite graphs are bipartite and

proposition 1.2.4 verifies that the eigenvalues of bipartite graphs are symmetric about zero.

So, if G is Ramanujan and bipartite then the result of Marcus et al. verifies the existence of

a Ramanujan degree 2 cover, Ĝ, of G. Inductively applying these degree 2 covers yields an

infinite sequence of k-regular, bipartite Ramanujan graphs for all k  3.

The authors were able to prove an analogous result for irregular bipartite Ramanujan

graphs as well. Their result in its full generality is stated here:
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Theorem 5.1.1. Let G be a graph with adjacency matrix A and with universal covering

tree T . There is a degree 2 covering space Ĝ of G such that all new eigenvalues of Ĝ are at

most ρ(T ).

The main tools used for the proof of this theorem involve the roots of the matching

polynomial and some theory of interlacing families of polynomials. The following two

sections will present any remaining results in these areas which are required for the proof,

and the final section will bring together these results for a presentation of the proof.

5.2 Application of the Matching Polynomial

Recall from the previous chapter the definition of the acyclic matching polynomial,

µ(G;x). Let G be a graph with edge set {e1, . . . , em}. Let s ∈ {±1}m denote a signing of

the edge set and let As denote the corresponding signed adjacency matrix. Define fs(x) to

be the characteristic polynomial of As. Let E{s:s∈{±1}m} denote the expected value over all

singings s of a random variable. Marcus et al. prove the folling lemma:

Lemma 5.2.1. (Theorem 3.6 in [29]) E{s:s∈{±1}m}[fs(x)] = µ(G;x)

Proof. Let sym(A) denote the set of permutations of the set A. For σ ∈ sym(A) let (−1)σ

denote the sign of the permutation.

Let G be a graph on n vertices with m edges. Expand the determinant as a sum over

the permutations σ ∈ sym([n]) to yield:

E{s:s∈{±1}m}[det(xI −As)] = E{s:s∈{±1}m}

 ∑
σ∈sym([n])

(−1)σ
n∏
i=1

(xI −As)i,σ(i)


Let π denote the part of σ without fixed points. Applying the definition of As yields:

E{s:s∈{±1}m}[det(xI −As)]

= E{s:s∈{±1}m}


n∑
k=0

xn−k
∑
B⊆[n]
|B|=k

∑
π∈sym(B)

(−1)π
∏
i∈B

(−As)i,π(i)


=

n∑
k=0

xn−k
∑
B⊆[n]
|B|=k

∑
π∈sym(B)

(−1)πE{s:s∈{±1}m}

[∏
i∈B

(−As)i,π(i)

]
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Observe that E{s:s∈{±1}m}[(As)i,j ] = 0 for all choices of i and j and that−Ai,j is indepen-

dent of −Ax,y whenever {i, j} , {x, y}. It follows that the only surviving terms are those

in which π contains only orbits of size 2.

Since−As is symmetric, E{s:s∈{±1}m}[(−As)ij(−As)ji] = E{s:s∈{±1}m}[(−As)ij2] =

1.

The case where π has only orbit size 2 corresponds to a perfect matching of B ⊆ [n].

Perfect matchings exists only when |B| is even, and in this case (−1)π = (−1)
|B|
2 .

Let MB denote the collection of perfect matchings on B. Then:

E{s:s∈{±1}m}[det(xI −As)] =
n∑
k=0

xn−k
∑
B⊆[n]
|B|=k

∑
π∈MB

(−1)
|B|
2

=
bn2 c∑
k=0

xn−2k
∑

πis a match-
ing of size k

(−1)k

=
bn2 c∑
k=0

xn−2k(−1)kmk

= µ(G;x).

The second equality holds since a perfect matching on 2k vertices is a matching of size

k. �

Recall Theorem 4.2.6 which implies that the roots of the matching polynomial ofG are

bounded in absolute value by the spectral radius of its universal covering tree. Lemma 5.2.1

has developed an important relationship between the eigenvalues of As and the matching

polynomial of G. However, on its own Lemma 5.2.1 is not strong enough to prove the

existence of the required Ramanujan families.

In order to construct these families through “good” degree 2 covering spaces, it will

be shown that there is a signing s in which the largest root of fs(x) is less than or equal

to the largest root of µ(G;x). Marcus et al. draw upon the theory of interlacing families of

polynomials to produce their result. The next section will be devoted to this theory.
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5.3 Interlacing Polynomials

Definition 5.3.1. A polynomial g(x) =
∏n−1
i=1 (x − αi) interlaces a polynomial f(x) =∏n

i−1(x − βi) if β1 ¬ α1 ¬ β2 . . . ¬ αn−1 ¬ βn. A collection of polynomials {fi}ki=1 is

said to have a common interlacing if there exists a single polynomial g that interlaces each

fi.

Definition 5.3.2. Let T1, T2, . . . , Tm be finite sets. For every m-tuple t1, . . . tm ∈ T1 ×

. . . × Tm let ft1,...,tm be a real rooted polynomial with positive leading coefficient. For

every partial assignment t1, . . . , tk ∈ T1 × . . .× Tk define:

ft1,...,tk =
∑

tk+1,...tm∈Tk+1×...×Tm
ft1,...,tk,tk+1,...,tm

and define:

f∅ =
∑

t1,...,tm∈T1×...×Tm
ft1,...,tm

A collection {ft1,...,tm}t1,...,tm∈T1×...×Tm forms an interlacing family if for all 1 ¬ k ¬

m − 1 and all t1, . . . , tk ∈ T1 × . . . × Tk the set of polynomials {ft1,...,tk,tk+1}tk+1∈Tk+1

have a common interlacing.

Lemma 5.3.3. (Theorem 4.4 in [29]) If T1, . . . , Tm are finite sets and {ft1,...,tm} form an

interlacing family of polynomials, then there exists some t1, . . . , tm ∈ T1 × . . .× Tm such

that the roots of ft1,...,tm are bounded above by the largest root of f∅.

Proof. Begin by verifying the following claim: Let {fi}ki=1 be real rooted polynomials of

constant degree and positive leading coefficients with a common interlacing. Then there

exists an i so that the largest root of fi is at most the largest root of f∅.

To verify this claim, let g be a polynomial that interlaces each fi. Let αn−1 denote the

largest root of g. It is easy to verify that f∅ will have a root, call it βn which is  αn−1.

Since f∅ is the sum of the fi’s it is clear that there exists some i such that fi(βn)  0. By

assumption fi(αn−1) ¬ 0. It follows that the largest root of fi is ¬ βn.

This claim is now used to prove the lemma. By assumption it is known that the poly-

nomials {ft1}t1∈T1 have a common interlacing, and by definition their sum is f∅. The above

claim can thus be applied to deduce that there exists an ft1 whose largest root is bounded
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above by the largest root of f∅. Notice that given any t1, . . . tk ∈ T1 × . . . × Tk the poly-

nomials {ft1,...tk,tk+1} have a common interlacing, and their sum is ft1,...tk . Applying the

claim again verifies the existence of some tk+1 so that the largest root of ft1,...tk,tk+1 is less

than the largest root of ft1...tk . Inductively it can be deduced that there exists some choice

t1 . . . tm so that the largest root of ft1...tm is less than the largest root of f∅. �

Notice that if the collection {fs}{s∈{±1}m} is verified to be an interlacing family, then

this would imply that there exists an s ∈ {±1}m with roots bounded above by the largest

root of f∅. By Lemma 5.2.1 the largest root of f∅ coincides with the largest root of the

matching polynomial.

In order to prove that {fs}{s∈{±1}m} is an interlacing family the following two results

(whose proofs are omitted here) will be used.

Proposition 5.3.4. (Proposition 1.35 in [6], and Lemma 4.5 in [29]) Let f and G be uni-

variate polynomials of degree n such that for all λ ∈ [0, 1] λf + (1− λ)g has n real roots.

Then f and g have a common interlacing.

Theorem 5.3.5. (Theorem 5.1 in [29]) Let p1, . . . , pm ∈ [0, 1]. Then the following polyno-

mial has real roots:

∑
s∈{±1}m

 ∏
i:si=1

pi

 ∏
i:si=−1

(1− pi)

 fs(x)

The following result can now be proven:

Theorem 5.3.6. (Theorem 5.2 in [29]) The collection of characteristic polynomials of the

signed adjacency matrices, {fs}s∈±1m , is an interlacing family of polynomials.

Proof. By Proposition 5.3.4 and by the definition of an interlacing family, it suffices to

show that for every partial assignment (s1, . . . , sk) ∈ {±1}k, 0 ¬ k ¬ m − 1, and for all

λ ∈ [0, 1] the polynomial λfs1,...,sk,1 + (1−λ)fs1,...,sk,−1 has all real roots. Fix a particular

partial assignment (s1, . . . , sk) ∈ {±1}k.
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Applying theorem 5.3.5 with pi = 1−si
2 for 0 ¬ i ¬ k, pk+1 = λ and pk+2 = . . . =

pm = 1
2 yields the following real rooted polynomial:

λ
∑(

1
2

)r
fs1,...,sk,+1,sk+2...,sm + (1− λ)

∑(
1
2

)r
fs1,...,sk,−1,sk+2...,sm

=
(

1
2

)r (
λ
∑

fs1,...,sk,+1,sk+2...,sm + (1− λ)
∑

fs1,...,sk,−1,sk+2...,sm

)
where r = m − (k + 2) and each sum is taken over si ∈ {±1} ∀ k + 2 ¬ i ¬ m. Since

multiplying a polynomial by a real scalar leaves its roots unchanged, it is concluded that

λfs1,...,sk,1 + (1− λ)fs1,...,sk,−1 is a real rooted polynomial. �

5.4 Main Result

Sufficient results have now been built up to prove Theorem 5.1.1. Recall the statement

of the theorem: Let G be a graph with adjacency matrix A and with universal covering tree

T . Then there is a degree 2 cover ofG, Ĝ so that all new eigenvalues of Ĝ are at most ρ(T ).

Proof of Theorem 5.1.1. It follows from Theorem 5.3.6 and Lemma 5.3.3 that there exists

some signing of G, s ∈ {±1}m, so that the roots of fs are bounded above by the largest

root of f∅. Lemma 5.2.1 implies that the roots of f∅ are equal to the roots of the matching

polynomial, µ(G;x). It follows from Lemma 4.2.6 that the largest roots of fs1,...,sm are

bounded above by ρ(T ). �

As previously explained, this theorem verifies the existence of families of Ramanujan

graphs. This will now be proven formally via the following corollary:

Corollary 5.4.1. (Theorem 5.4 in [29]) For every k  3 there is an infinite sequence of

d-regular bipartite Ramanujan graphs.

Proof. Let G be the complete bipartite graph of degree k. Since G is Ramanujan it follows

from Theorem 5.1.1 and Proposition 3.2.6 that there is a signing of G so that the associated

degree 2 cover has non-trivial eigenvalues bounded above by 2
√
k − 1. SinceG is bipartite

and Ramanujan, the degree 2 covering space is also bipartite and Ramanujan. The same

reasoning is used on this degree 2 covering space to obtain yet another bipartite Ramanujan

graph. Continuing to take covering spaces in an inductive manner yields an infinite family

of k-regular bipartite Ramanujan graphs. �
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Remark. Connectivity of the covering space is not mentioned in our proof, but it follows

from Theorem 5.1.1 and Proposition 1.2.4. Indeed, if all new eigenvalues of the covering

space are less than or equal to 2
√
k − 1, then sinceGwas Ramanujan (and thus connected),

all non trivial eigenvalues of Ĝ are less than or equal to 2
√
k − 1. Then by Proposition

1.2.4, Ĝ is connected.

Notice that this result can be generalized to the case where G is irregular. Given any

finite bipartite Ramanujan graph G, Theorem 5.1.1 can be applied and the arguments anal-

ogous to those made above above to construct an infinite family of bipartite Ramanujan

graphs via good degree 2 covers.
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Chapter 6
Concluding Remarks

Starting from the basics, this thesis has provided a relatively self-contained introduc-

tion to the subject of expander graphs and has built up sufficient theory to motivate the

result of Marcus, Spielman and Srivastava which confirms the existence of families of bi-

partite Ramanujan graphs of every degree. The thesis has communicated the significance

of their findings and has brought attention to the theory that played a role in their proof.

Diverse technical results used by Marcus et al. in their arguments were reviewed, including

the theory of matching polynomials and eigenvalues of degree two covering graphs.

Expander graphs are shown to be a very comprehensive area of study. The thesis out-

lines connections that expander graphs have with numerous other fields in mathematics,

including group theory, combinatorics, and number theory. Expander graphs are a very ac-

tive area of research, and it seems likely that they will continue to be so for some time.

Many questions remain to be answered after Marcus et al.’s breakthrough, including

the existence of infinite families of non-bipartite Ramanujan graphs of every degree. Al-

though it is tempting to think that a cleaver argument could easily generalize Marcus et al.’s

result to the non-bipartite case, it seems the answer might be more complicated than that.

Nevertheless, Marcus et al.’s result has brought us that much closer to a general answer to

the question. Another research problem that follows naturally from their paper is that of

explicitly defining the “good” two lifts that Marcus et al. have shown to exist. Being able

to characterize these lifts in a convenient and simple manner would make it possible to

construct the resulting Ramanujan graphs explicitly so they could be used in applications.

In addition to these questions, the author of this thesis is particularly interested in the

following questions and areas of research:

• Problem 10.1.1 posed by Lubotzky in [23]: “What is the best [Cheeger constant]

one can obtain for a family of k-regular [graphs]”. Furthermore, is it possible find

an explicit relationship between the discrete Cheeger constant and the spectrum of a
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graph? Although the Cheeger inequality confirms that the two concepts are related, it

fails to reveal how.

• An interesting topic of study is that of the higher dimensional analogues to expander

graphs and Ramanujan graphs. This higher dimensional theory is much less devel-

oped, and, as far as the author is aware, definitions in higher dimensions have not yet

been agreed upon.

• Does there exist a meaningful higher dimensional version of the Cheeger inequality?

Currently the author is only aware of the one suggested by Parzanchevski et al. in

[30], whose bound turns out to be trivial in higher dimensions. It is clear that this

question is not easy to answer.

These are a handful of questions in a field with many possible and worthwhile ar-

eas of research. The author hopes that this thesis would be helpful in learning about and

developing an appreciation for the exciting subject of Ramanujan graphs.
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Appendix A: Big Oh, Big Theta, and Big Omega Notations

All information in this section has been adapted from [8].

Big Oh Notation

A function g(n) is O(f(n)) if there exists a real number c > 0 and an integer n0 > 0

such that g(n) ¬ cf(n) for all n > n0. In other words, g(n) is O(f(n)) iff the graph of

g(n) is always below the graph of cf(n) after n0.

Big Omega Notation

A function g(n) is Ω(f(n)) if there exists a real number c > 0 and an integer n0 > 0

such that g(n)  cf(n) for all n > n0. For example 5n2 is Ω(n) because 5n2  n for all

n  1.

Big Theta Notation

A function g(n) is Θ(f(n)) if there exists two real numbers c1 > 0 and c2 > 0 and an

integer n0 > 0 such that c1f(n) ¬ g(n) ¬ c2f(n) for all n > n0.
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Appendix B: Proof of Cauchy’s Interlacing Eigenvalue Theorem

The following proof was taken from [15].

Proof of 3.5.9. : Without loss of generality assume A =

a ȳ∗

ȳ B

. Let D be the diagonal

matrix with diagonal entries the eigenvalues ofB. SinceB is hermitian there exists a unitary

matrix U satisfying U∗BU = D. Let U∗ȳ = z̄ = (z2, z3, . . . , zn)T . The result for the case

where the inequalities in (3.1) and (3.2) are strict and where zi , 0 ∀ i will be proven

first. Define the unitary matrix V :=

1 0̄∗

0̄ U

. Then V ∗AV =

a z̄∗

z̄ D

. Let f(x) =

det(xI −A) = det(xI −V ∗AV ). Calculate f(x) using the cofactor expansion method and

expand along the first row. Upon careful inspection one can see that doing so yields f(x) =

(x−a)(x−µ0) . . . (x−µn−2)
∑n−2
i=0 fi(x) where fi(x) = |zi|2(x−µ0) . . . ̂(x− µi) . . . (x−

µn−2) and the hat denotes a deleted term. Notice that if i , j then fi(uj) = 0 and

fi(ui) =


> 0 if i is even (since there are an even number of negative terms)

< 0 if i is odd (since there are an odd number of negative terms)

=⇒ f(µi) =


< 0 if i is even

> 0 if i is odd
(6.1)

Since f(x) is a polynomial of degree n with positive leading coefficient the intermediate

value theorem is applied to deduce that f(x) = 0 has n real roots (the eigenvalues of A)

satisfying λn−1(A) < µn−2(B) < λn−2(A) < . . . < µ0(B) < λ0(A). It now remains

to consider the general case where (3.1) and (3.2) need not be strict and where zi need not

be non-zero. Consider a sequence of positive numbers {εi}i∈N tending to zero such that

zi + εk , 0 for all i = 0, . . . n− 2 and all k ∈ N, and such that the non zero entries of the
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following matrix D(εk) are distinct for fixed k:

D(εk) =


µ2 + 2εk 0

. . .

0 µn + nεk

 = D + εkdiag(2, 3, . . . n)

Define z(εk) = (z2 + εk, z3 + εk, . . . , zn + εk) and Ck =

 a z(εk)
∗

z(εk) D(εk)

. Let Ak =

V ∗CkV . Notice that Ak is hermitian and tends to A with k. Using the same arguments as

above it can be deduced that λn−1(Ak) < µn−2(B)+nεk < λn−2(Ak) < . . . < λ0(Ak) <

µ0(B) + 2εk < λ1(Ak) where λi(Ak) are the eigenvalues of Ak. The desired result now

follows from the observation that λi(Ak)→ λi(A) as k →∞. �
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[5] G. Davidoff, P. Sarnak and A. Valette, Elementary Number Theory, Group

Theory, and Ramanujan Graphs. Cambridge University Press, New York:

2003. http://www2.unine.ch/repository/default/content/sites/math/

files/shared/documents/articles/valette22-04-02.pdf (retrieved June 4,

2014)

[6] S. Fisk. Polynomials, roots, and interlacing. arXiv:math/0612833, 2008.

[7] J. Friedman. The spectra of infinite hypertrees. SIAM J. Comp. 20 (1991) 951-961.

[8] G.Gimel’farb. Lecture 3: Analysing Complexity of Algorithms, Big Oh, Big Omega,

Big Theta Notation. https://www.cs.auckland.ac.nz/courses/compsci220s1c/

lectures/2013S1C/Part1/220-03.pdf (retrieved June 4, 2014)

[9] C. D. Godsil. Matchings and walks in graphs. Journal of Graph Theory, 5(3): 285-297,

1981.

[10] I. Gutman and H. Hosoya, On the calculation of the acyclic polynomial. Theoret.

Chim. Acta. 48(1978) 279-286.

[11] A. Hatcher, Algebraic Topology. Cambridge University Press. 2002. retrieved online:

http://www.math.cornell.edu/~hatcher/AT/AT.pdf

71



[12] O. J. Heilman and E. H. Lieb. Theory of monomer-dimer systems, Comm Math Phys
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