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Abstract

Wild blueberry (Vaccinium angustifolium Ait.) is a key crop in the Lac-Saint-Jean region
of Quebec. The industry totals $45 million annually. Wild blueberry is a lowbush species
which flourishes in heterogeneous agronomic conditions where conventional crops cannot.
It grows in areas of varying topography on sandy, acidic soils where competition with other
plants is limited. Rhizome establishment takes years to develop, thus, bare spots are a com-
mon feature of young or poorly managed fields. Given the variation of soil, topography,
and crop density, wild blueberry production would benefit from site-specific management,
where levels of nutrient input are tailored to local needs based on within-field variation. A
classic approach to site-specific management is the delineation of management zones, sub-
field areas of relatively homogenous agronomic properties with uniform management rates.
A second SSM approach is regression based, where a prescription regression equation based
on sampled variables and known crop response to treatment is used for more continuous tar-
geted treatment within the field. This thesis articulates the thematic mapping of agronomic
variables and the comparison of two site-specific management strategies for wild blueberry
using conventional soil sampling, proximal soil sensors, and multispectral satellite imagery.
Two experimental sites were selected, one of varying topography and the other relatively
flat. Soil samples were collected in a 33-m grid scheme and tested for chemical and gran-
ulometric attributes. Soil apparent electrical conductivity (EC,) was collected with the
non-contact DUALEM-21S sensor (Dualem Inc., Milton, ON) and the contact Veris 3100
sensor (Veris Technologies, Salina, KS). Elevation was mapped with real-time-kinematic
(RTK) level global navigation satellite system (GNSS) receiver. Multispectral imagery ac-
quired from the SPOT6 archive was radiometrically and atmospherically corrected, and a
number of vegetation indices were derived from the image to map bare spots and compare
VIs prediction of vigor to the sampled yield. Thematic maps were predicted from the sam-

pled data using the Ordinary Kriging (OK) method and cross-validated to determine the



strength of various data layers in predicting spatial patterns within-field. Classical statistics
and geostatistics were performed on all sampled data. A classic approach to site-specific
management through unsupervised classification of management zones was compared with
a new regression-based approach which targets four field condition scenarios. Means of all
properties in each of four scenarios were tested with ANOVA and Tukey’s post-hoc test. In
both MZA and the regression-based method, field conditions were most contrasted between
scenarios EC)y, & Elevpig, and EChg, & Elevyy,. The regression-based method separated
data similarly or better than the MZA approach, while providing more precise areas to

develop a regression-based prescription map.



Résumé

La culture de bleuet nain sauvage (Vaccinium angustifolium Ait.) représente une valeur
de $45 millions annuellement dans la région de Lac-Saint-Jean au Québec. Le bleuet nain
sauvage fleurit dans des conditions agronomiques hétérogenes ou la récolte conventionnelle
ne peut pas. Il grandit dans les zones de topographie variante sur les sols sablonneux
et acides ou la compétition avec d’autres plantes est limitée. L’établissement rhizomique
prend quelques années pour se développer, donc les endroits dénudés sont une fonction
commune de champs jeunes ou mal gérés. En raison de la variation du sol, de la to-
pographie et de la densité de culture, la production de bleuet nain sauvage profiterait
d’une gestion spécifique, ol les niveaux d’apport nutritif sont adaptés aux besoins locaux,
basés sur les variabilités intra-parcellaires. Une approche classique a la gestion spécifique
est la délimitation de zones d’aménagement (ZA), constituées de propriétés agronomiques
relativement homogenes avec les niveaux uniformes de gestion. Une seconde approche
est a base d'une régression, lorsqu’une équation de régression sur ordonnance basée sur
les variables échantillonnées et une réponse de culture connue au traitement est utilisée
pour un traitement ciblé plus continu dans le champ. Cette these articule la cartogra-
phie thématique de variables agronomiques et la comparaison de deux stratégies de gestion
spécifique pour le bleuet nain sauvage, utilisant 1’échantillonnage de sol conventionnel, les
capteurs proximales de sol et les images satellite. Deux sites expérimentaux ont été choisis,
une de topographie variante, l'autre relativement plate. Les échantillons de sol ont été
rassemblés dans un plan de grille de 33-m et testés pour les attributs granulométriques et
le produit chimique. La conductivité électrique apparente du sol (CEA) a été rassemblée
avec les capteurs DUALEM-21S et Veris-3100 afin de comparer les deux. L’élévation a été
capturé avec la technologie de positionnement global cinématique en temps réel (OTF).
L’image satellite a été acquisé de ’archive de SPOT6 et a été corrigé pour les effets ra-

diométriques et atmosphériques. Un certain nombre d’indices de végétation (VI) ont été



dérivés de I'image pour comparer avec le rendement mesuré et afin d’identifier les endroits
dénudés. Les cartes thématiques ont été cartographiées avec la méthode d’interpolation
par krigeage, puis contre-validées afin d’évaluer la variabilité spatiale de diverses propriétés
agronomiques. Les statistiques classiques et les géostatistiques ont été exécutés sur toutes
les données échantillonnées. La délimitation de ZAs utilisant 1'algorithme de classifica-
tion k-moyennes a été comparée avec une nouvelle approche a base de régression qui vise
les endroits extrémes du champ. Les moyens de toutes les propriétés dans chacun de
quatre scénarios ont été testés avec ANOVA et le test de post-hoc de Tukey. Avec les
deux approches, les deux champs montrent le contraste le plus grand entre les scénarios
ECrowEleviigh et ECHighElevry,. La méthode basée sur la régression a séparé les données
de facon similaire ou meilleure que I'approche de ZA, tout en fournissant des zones plus

précises pour développer une carte de prescription basée sur la régression.
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Chapter 1
Introduction

In the Saguenay-Lac-St-Jean region of Quebec, 27,000 ha of land are used for wild blueberry
cultivation, producing a business industry value of over $45 million annually in Quebec [?].
Wild blueberry (Vaccinium angustifolium Aiton) is a low maintenance crop; it grows on
low shrubs in naturally acidic, sandy soils and can withstand long, harsh winters [?]. Wild
blueberries thrive when competitors are limited, which entails maintaining low pH soils and
applying herbicides to control weed growth. Though it is a perennial crop, bushes are cut
in the sprout year to produce new stems, and fruit is harvested every second year. Wild
blueberries may be cultivated in fields of heterogeneous growing conditions, with local
changes in topography, key soil properties, and crop density. With such heterogeneous
growing conditions and unique production challenges, wild blueberry cultivation should

greatly benefit from precision agriculture techniques and site-specific management.

1.1 Wild Blueberry Production Challenges

Wild blueberry responds positively to Nitrogen (N) and Phosphorus (P) applications. Her-
bicides are applied as needed to control annual and perennial weeds. Fungicides are applied
to control for Septoria leaf spot (Septoria spp.) and Valdensinia leaf spot ( Valdensinia het-
erodozra) in affected fields. N is the principle limiting nutrient in wild blueberry cultivation
[?](Lafond and Ziadi, 2011). However, excess N application will cause an overgrowth of
leaves, delayed and stunted fruiting, and disease susceptibility (Percival and Sanderson,
2004; ”Soil fertility and fertilizers for wild blueberry production”, 2013). Furthermore,

mis-application of nutrients and pesticides threaten the surrounding ecosystem. When N
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fertilization exceeds crop needs and soil pH is above average, N will volatilize as ammo-
nia from the soil and crop (Jones and Jacobsen, 2005). Volatilized ammonia deposits in
the environment as ammonium, acidifying soils (Jones and Jacobsen, 2005; Istas et al.,
1988). High N application in conjunction with heavy rainfall over sandy soils may also
cause nitrate (NOs.) leaching, threatening water quality (Favaretto et al., 2006; Saleem et
al., 2013). Site-specific nutrient management based on variability of within-field conditions

ideally reduces both the cost of inputs and environmental waste.

A secondary challenge to wild blueberry production is the occurrence of bare spots in
young and/or poorly managed fields. One study by Zaman et al. (2008) found the percent-
age of bare spots in their wild blueberry study sites varied between 30 and 50%. Bare spots
may be found in areas of varying terrain where plant growth is sparse and more exposed to
winter frost (“Filling Bare Spots in Wild Blueberry Fields”, n.d.). Wild blueberries have a
shallow rooting depth, generally less than 40 cm with lateral rhizomes (Hicklenton, 2000).
Frost will destroy blueberry rhizomes which take multiple years to recover in agriculture
fields. Producers typically manage large, contiguous bare spots separately from the rest of
the field because they require different nutrient rates and less frequent cutting. Identifying

these areas saves resources and optimizes bare spot treatment.

Due to heterogeneous growing conditions and the cultivation challenges discussed, wild
blueberry crops would benefit from within-field site-specific management (SSM), where
nutrient inputs are tailored to specific regions of the field depending on their site-specific
needs. To date, few studies have applied SSM practices to wild blueberry cultivation.
Saleem et al. (2013) delineated sub-fields, or management zones (MZs), for SSM in New
Brunswick using slope and soil property data in conjunction with bare spot maps. Similarly,
Farooque et al. (2012) developed MZs based on soil apparent electrical conductivity (EC,),
digital color photography, and sampled soil properties. Present research has established a
link between soil EC,, soil properties, and wild blueberry yield (Farooqueet al., 2012;
Saleem et al., 2013). However, previous studies have focused on the conventional MZ
delineation approach to SSM, whereby sub-field classified zones are treated with uniform
rates. This research project draws from previous studies’ utilization of topographical and
EC, data to characterize within-field variation of yield and nutrient requirements. However,

this project proposes a new approach which only identifies areas of extreme contrast within-
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field in order to develop a regression-based prescription map. Furthermore, this project
investigates the use of satellite imagery to supplement yield data and to identify bare spots
within wild blueberry fields.

1.2 Research Objectives

The goal of this study as proposed by Agriculture and Agrifood Canada was to characterize
soil spatial variability in wild blueberry fields and investigate the potential of SSM of wild
blueberry based on proximally-sensed EC,. Building upon this principle objective, the

specific objectives of this masters project were to:

1. Develop thematic maps to characterize and classify within-field variability based on
sampled soil data and measurements from proximal contact and non-contact EC,
sensors. It was hypothesized that spatial variability patterns in soil texture and

chemistry would correlate with yield patterns.

2. Evaluate the use of satellite imagery to supplement yield information and to identify
bare patches in the fields. It was hypothesized that ratio-based green vegetation
indices would correlate strongly with yield and that bare spots would be delineated

by satellite imagery.

3. Identify extreme agronomic conditions within-field using elevation and EC, data in
order to develop a regression-based prescription for SSM. It was hypothesized that
identified extreme areas would be spatially distinct as well as distinct in sampled

yield and soil attributes.

4. Compare results of this regression-based approach to the conventional MZ approach
for SSM. It was hypothesized that the regression-based approach would be more
distinct in yield and soil attributes than the MZ approach.
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Chapter 2

Literature Review: Site-Specific

Management

Site-specific management (SSM) is the practice of treating crop within a field according to
local needs. In the 1990s, advancement in variable rate (VR) seeding and fertilization equip-
ment allowed for more precise measurement and input application, spurring researchers and
farmers to map and classify within-field variation of several yield-limiting factors for SSM
practices (Sawyer, 1994; Wollenhaupt, 1994; Khosla et al., 2008).

The conventional approach to SSM in Precision Agriculture is to subdivide a field into
management zones (MZ) of relatively homogenous characteristics which influence yield
and require similar treatment levels. The methodology behind MZ delineation varies in
degree of complexity, but the fundamental procedure involves (1) selecting and sampling
possible yield-limiting field parameters; (2) separating parameters using various numerical
methods such as unsupervised classification; (3) validating separability; and finally, (4)
implementing SSM within classified zones with the prescribed treatments. Detailed in this
literature review is a description of the classic methodology of MZ delineation, followed
by its existing challenges, some proposed solutions, and finally, a newer regression-based

approach to site-specific management which producers and researchers should consider.
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2.1 Selection of Yield-Limiting Factors to Characterize
Within-Field Variation

Due to the complex biotic and abiotic factors affecting variability in yield — from seasonal
fluctuations to historic management to soil quality — MZ delineation based on yield alone
is often unreliable (Kerry et al., 2016). Yield is challenging to quantify particularly in
specialty crops where standard yield sensors are not applicable. For example, Zaman
et al. (2008) identified debris, uneven topography, and fragility of fruit as limitations to
monitoring wild blueberry yield. Instead, MZ delineation is more often based on temporally
stable soil variables which have been demonstrated to directly affect yield. Mzuku et al.
(2005) divided corn fields by productivity potential and compared soil attributes across
zones. Mallarino and Wittry (2004) investigated how traditional soil sampling captured
within-field yield variability. However, soil sampling is expensive, time consuming, and does
not necessarily capture spatial patterns if sampled at too great an interval (Bianchini and
Mallarino, 2002; Lauzon, et al., 2005). Researchers have turned to proximal and remote
sensing for quick, dense sampling of data that is auxiliary to soil and yield samples. Most
commonly soil apparent electrical conductivity (EC,), field elevation, and aerial or satellite
imagery provide high-density data sets to be used either alone, or in conjunction, with
sampled soil attributes to create thematic maps and delineate MZs when correlation with
soil attributes and/or yield are well established (Khosla et al., 2008; Kerry et al., 2016).

2.1.1 Apparent electrical conductivity

Soil EC, represents conductance through soil particles and soil water solution that envelops
soil particles (Rhoades, 1993). Conductance is higher in finer textured particles because
increased porosity in fine textured soils has a greater water to air ratio (Robain et al., 1996).
Additionally, soils with higher clay content and organic matter will have higher cation ex-
change capacity (CEC) due to their negatively charged surfaces. Conductance is higher in
soils with greater CEC because of the higher concentration and mobility of ions (Helfferich,
1962). A number of studies have demonstrated soil EC, to be correlated with soil organic
matter (SOM), CEC, moisture content, and soil texture, characteristics which directly
affect crop yield (Johnson et al. 2001; Carroll and Oliver, 2005; Kitchen and Sudduth,
2005; Whelan and McBratney, 2003; Friedman, 2005). Soil EC, is measured either with
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non-contact sensors (Hedley et al., 2004; Kachanoski et al., 1990) or with contact sensors
(Farahani et al., 2004; Halvorson et al., 1976). Non-contact sensors utilize electromagnetic
induction (EMI) to measure EC, while contact sensors are electrode-based. In non-saline
soils, EC, variability is largely due to variations in soil water content (Kachanoski et al.,
1988). When soil is saturated EC, measurements indicate water storage potential in var-
ious parts of the field (Kachanoski et al., 1990). Unsaturated non-saline soil will indicate
variations in both moisture availability and soil texture (Kitchen and Sudduth, 2005). The
depth at which soil conductivity is measured is related to the distance and configuration of
the current transmitters and receivers. In many instruments, EC, is measured at multiple
depths simultaneously, providing insight into soil characteristics through the crop rooting
zone to the parent material. Saey et al. (2009) used multiple depths of EC, to map depth
to clay in a field and Park and Vlek (2002) used multiple depths of EC, data to model soil

variability in three dimensions.

A number of studies have compared contact and non-contact EC, sensors (Serrano et
al., 2013; Sudduth, 2001; Saey et al., 2009). When paired with a global navigation satellite
system (GNSS), both types of sensors will record and provide georeferenced data almost
instantaneously. EMI sensors offer the benefit of being non-invasive. Furthermore, the
reliability of EMI sensors depends on the thermal stability of the instrument (Abdu and
Robinson, 2007). Drift is a common issue in EMI sensors as the instrument temperature
increases with time. Sudduth et al. (2001) suggest that a calibration transect be taken
which crosses other transects so any drift over time may be detected and corrected in data
post-processing. Myers et al. (2008) combines EMI and penetrative EC, sensors to further

improve accuracy.

2.1.2 Elevation and topography

Elevation and topographic information derived from elevation data (topographic wetness
index, slope, aspect) are also commonly used in MZ delineation (Khosla et al., 2002; Fraisse
et al., 2001; Vitharana et al., 2008). Topography indirectly affects yield by influencing water
holding capacity, nutrient storage, and water movement. Elevation and slope are correlated
with texture and organic matter as they affect the distribution of fine and coarse-grained

soils, in turn indirectly influencing EC, measurements.
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Kravchenko and Bullock (2000) studied how topographical information correlated with
soybean yield and soil properties. They found that elevation had the greatest influence on
yield, with higher yield in lower landscapes. They further found curvature, slope, and flow
accumulation significantly affected yield in extreme topographical locations with very high
or very low precipitation. Elevation can be measured at high precision and accuracy with
real-time kinematic (RTK) and GNSS sensors. Similarly, automated slope measurement
and mapping systems have been used to proximally measure field slope (Zaman et al.,
2008). Studies have had success relating yield to topography when combined with soil
attribute data (Kravenchenko and Bullock 2000; Nolan et al. 2000). Given the movement
of Ny in low drainage areas and NOj. leaching in coarse textured areas, Khosla et al.
(2002) developed MZs for N management based on topography, historical yield, soil color,
and aerial photographs. Additionally, a review by Vitharana et al. (2008) concluded that
combining pH, EC,, and elevation provided the most important properties for defining MZs

in combinable crops.

2.1.3 Remote sensing

Remote sensing in precision agriculture is most often applied to yield mapping. One study
by McCann et al. (1996) demonstrated that aerial photography effectively evaluated soil
color, but the focus of research remains on supplementing crop yield data (Anderson and
Yang 1996). Zaman et al. (2010) successfully developed a method for mapping wild
blueberry yield with digital color photography calibrated to ground truth data. Kerry et
al. (2016) used multispectral satellite images to delineate cranberry bogs and disaggregate
yield estimates. Multispectral imagery that includes near-infrared (NIR) reflectance has
also been used to map vegetation indices (VIs) (Aparicio et al., 2000; Shanahan et al., 2001;
Curran, 1980). VlIs are ratios or linear combinations of band reflectance which serve to
quantify image vegetation properties, such as the photosynthetic activity, vigor, and other
growth factors. The near-infrared (NIR) range of reflectance is often utilized in VIs because
vegetation reflectance increases dramatically from the red to NIR wavelength ranges in
a pattern referred to as the “red edge” due to chlorophyll absorption and leaf internal
scattering (Dawson and Curran, 1998). The normalized difference vegetation index (NDVI)

is often used to characterize canopy growth of green vegetation, but other VIs have been
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developed to account for noise in reflectance data which can affect NDVI. Soil reflectance
will impact both red and NIR reflectance in a linear relationship referred to as the “soil
line” (Baret et al., 1993; Richardson et al., 1977). The modified soil-adjusted vegetation
index (MSAVI2) is one of many soil-adjusted VIs which factor in the soil line (Qi et al.,
1994b). Other VIs, such as the new atmospheric effect resistant vegetation index (IAVI),
will correct for atmospheric effects. Liu and Huete (1995) found an interaction between
the influence of soil and the atmosphere, such that a reduction in one increased the other.
They proposed the enhanced vegetation index (EVI) as a feedback to balance the two. VIs
have been well researched and are especially robust for quantifying yield in green crops like
maize, but little research has investigated satellite imagery for yield estimation in fruit (Lee
et al., 2010). Limiting factors to remote sensing are spatial resolution when dealing with
specialty crops like wild blueberries, cost of data, and quantifying yield. Mapping yield
alone is not often recommended for MZ delineation unless long term temporal patterns
have been established (Kerry et al., 2016). However, it is useful when combined with other
data layers (Lark and Stafford et al. 1998).

2.2 Data Interpolation

To predict sampled variables as continuous values on a map, geostatistical principles are
most commonly applied. A key principle of geostatistics is that points which are located
more closely together in space are more similar to each other than points further apart.
This concept is known as the principle of autocorrelation. The variogram model illustrates
the principle of autocorrelation. As lag distance between two spatial points increases, vari-
ance will increase at a decreasing rate until it reaches a constant variance. The rate at
which it increases varies, and several theoretical variogram models exist to characterize it.

The main three are the Gaussian, Spherical, and Exponential models (Table 2.1).

If no autocorrelation is apparent, the variance is a constant value at all distances and
is called a pure nugget model, where the only variance occurring is due to random nugget
effects. The theoretical variogram comprises three components: the range, the partial sill,
and the nugget. The range is the distance up to which autocorrelation exists. The partial
sill is the variance exhibited from the autocorrelation, and the nugget is the variance ex-

hibited from a random component. The partial sill and nugget together make up the total
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sill, which represents the constant variance.

Table 2.1 Three common variogram models that depict autocorrelation.
~(h) is the variance at lag distance h; a is the distance up to which autocor-
relation exists, until constant variance is reached.

Model Equation

Gaussian v(h)=1-— %ea:p(—%)(ll)
Spherical ~ y(h) = £ + 2(1.5% — 0.52—2)(2.2)

Exponential v(h)=1-— %exp(%)(l?))

The Gaussian model increases to constant variance more slowly while the Exponential
model increases to a constant variance more quickly. The spherical model increases at rate

faster than the Gaussian model but slower than the Exponential model.

2.2.1 Ordinary kriging

The geostatistical principles outlined are utilized in the kriging method of interpolation.
The kriging method was developed in the 1951 by D.G. Krige and later finessed by Matheron
(1962). The most standard version, Ordinary Kriging (OK), is predicted as follows:

ZA’OK(S()) = iwi(SO) . Z(SZ) = )\g v/ (24)

=1

where )\ is the vector of kriging weights derived from the variogram,w; at new locations
So, and z is the vector of observations at primary locations s; (Hengl 2009). OK depends

on some basic assumptions:

1. Mean stationarity: the mean between two samples is independent of location so that

mean is constant;
2. The variogram is constant in the entire area;

3. The target variable is roughly normally distributed (Hengl, 2009).
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These assumptions are rarely met in practice. External factors cause drift in data so that
the mean stationarity is not met. This is often ignored for practical reasons. Further,
data that is not normally distributed can be transformed either with a log or box-cox

transformation.

2.2.2 Ordinary kriging vs. kriging with auxiliary variables

Proximally and remotely sensed data sets may be used as auxiliary variables in predicting
yield and soil attributes. Kriging with auxiliary variables falls into three categories: Co-
kriging (CK), Kriging with External Drift (KED), and Regression Kriging (RK). The latter
two methods yield the same results using slightly different methodologies. The simplest
method is CK which use a cross-variogram model to in addition to the variogram model in
order to predict a variable correlated to the densely sampled auxiliary variable. Co-kriging
EC, with soil properties has been successful when correlations are well established (De
Caires et al., 2015; Frogbrook and Oliver, 2003). However, Knotters et al. (1995) warns

CK relies on over-simplified relationships between variables.

The other two kriging methods, KED and RK, address the condition of mean stationar-
ity which is a required assumption for OK. Mean stationarity is seldom met in the natural
environment as external factors will cause drift in the data. KED uses auxiliary variables
to model the deterministic component in kriging. Similarly, RK adds a model of the drift to
the deterministic component in the prediction, and residuals of the model are interpolated
with simple kriging. The distinction between the two methods is that RK models drift
and residuals separately and then combines the two (Wackernagel, 2003). Regression coef-
ficients for the model may be derived from fitting generalized least squares (GLS) (Hengl,
2007). If no spatial autocorrelation exists in the residuals, the equation simply reflects a
multiple linear regression. Similarly, if there is no correlation between the auxiliary vari-
ables, the model mathematical resolves to the OK model. Regression kriging has become
a favorite method for soil thematic mapping (Minasny and McBratney, 2007). Carré and
Girard (2002) utilized multiple linear regressions of terrain attributes from elevation and
land cover attributes from multispectral bands to represent soil types and to krige residuals.
Several studies have found the prediction power of RK exceeds OK and CK (Odeh et al.,
1995; Simbahan et al., 2006).
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The question of whether or not to model drift depends on the objective of the thematic
mapping and quality of soil sampling. RK will produce a more coarse but accurate map to
OK. A drawback of RK is the processing time to determine how many and which variables
to use (Hengl et al., 2004). Additionally, output in RK may be outside the physical range if
predicted values are negative (Goovaerts, 1997). Consensus is generally that OK is simpler
to use and more accurate when spatial structure is strong in the data, but otherwise RK
with auxiliary variables can yield higher accuracy prediction maps (Zhu and Lin, 2010;

Goovaerts, 1997, Li and Heap, 2014). For the purposes of this research, OK was selected.

2.3 Data Separation & Classification

Once yield-limiting variables have been selected and measured, the data is separated using
one or more numerical techniques. For multivariate datasets, the number of variables
are reduced using principal components analysis (PCA) or partial least squares (PLS)

regression in order to determine the greatest sources of variation in the dataset.

2.3.1 Principal components and partial least squares

PCA treats multi-variate data to determine which variables contribute most to within-field
variation. PCA reduces multivariate datasets to uncorrelated vector components repre-
senting the greatest source of variation in descending order. Principal components (PCs)
reduce the overlap of multivariate data attributed to pairwise correlation and can be used
to determine the smallest possible number of significant predictors of a target variable.
Hengl (2004) recommends reduction of data to principal components prior to mapping and
classification. The top two or three components are used to classify management zones.
Fraisse et al. (2001) used PCs with highly correlated variables EC,, N, OM, CEC, and
NDVI to develop MZs that maximized variation. Moral et al. (2010) used PCs to map
field variability.

PLS is similar to PCA in that it reduces datasets and multicollinearity. However, while
PCA maximizes the variation in predictor variables, PLS maximizes the variation in both
the predictor and the target variables by maximizing covariance. Bronson et al. (2005)

utilized PLS regression analysis to determine the percentage of variation observed in EC,
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measurements that were explained by sampled soil attributes. Components may be further

separated with unsupervised classification methods.

With the classic method of SSM, MZs are delineated by classifying sampled variables
into clusters according to similarity. Numerical methods of classification may be super-
vised or unsupervised. Briefly, a distinction should be noted between management zones
and classes - multiple classes in a field may belong to the same management zone if they

share the same prescribed treatment.

Many statistical methods for clustering spatial data exist; the most common clustering
methods in the MZ delineation literature are unsupervised, specifically k-means or c-means
clustering (Fraisse et al., 2001; Li et al., 2007; Moral et al., 2010; Fridgen et al., 2000; Ortega
et al., 2007). K-means and c-means have been used interchangeably, but they consist of
slightly different algorithms. Both algorithms optimize similarity of sample points and can
be adjusted to include a fuzziness component where sample points may belong to more

than one class.

2.3.2 K-means & c-means clustering

The k-means clustering algorithm is an unsupervised classification in which an initial k
number of classes is set and k centroids are defined for each class in the data (MacQueen,
1967). With each iteration, each object in space is assigned to the closest centroid, and
the positions of the k centroids are recalculated until they no longer move. The algorithm

aims to minimize a squared error function that characterizes within-cluster variability:

kK n )
T=3"3 |z — ¢ (2.5)
j=11i=1

()

i

where ||x§] - ¢j|| is a chosen distance measure between a data point z;”’ and the cluster
center ¢; is an indicator of the distance of the n data points from their respective cluster
centers (MacQueen, 1967). The algorithm minimizes within-cluster variability and maxi-
mizes diagonal distance between the mean cluster values of each data layer. The original
hard k-means-clustering algorithm has since been adapted to include a fuzziness compo-

nent where points may belong partially in multiple classes (Gruijter and McBratney, 1988;
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Boydell and McBratney; 2002; Lark and Stafford, 1997). The free software FuzME (v.3.0,
Australian Centre for Precision Agriculture, Sydney, Australia) applies the fuzzy k-means
algorithm and retains the option for hard k-means clustering. This algorithm is commonly
used in MZ delineation (Taylor et al., 2002; Vrindts et al., 2005; Davatgar et al., 2012).

Another popular classification software, Management Zone Analyst (MZA) (v.1, US
Department of Agriculture, Washington, D.C., USA) employs unsupervised classification
with the fuzzy c-means algorithm (Fridgen et al., 2004). Fuzzy c-means was developed by
Dunn (1973) and fine-tuned by Bezdek (1984) and is essentially identical to fuzzy k-means.
The algorithm seeks to minimize the sum of squared distances from all data points in a

cluster to the cluster center:

=Y

i=1j

ultllz; — ¢, 1 <m < oo (2.6)
1

c

where m is any real number greater than 1, u;; is the degree of membership of z; in the
cluster j, z; is the i of d-dimensional measured data, c;; is the d-dimension center of the
cluster, and || || is any norm expression the similarity between any measured data and the

center (Bezdek, 1984).

Like k-means, the algorithm updates cluster centers ¢; with every iteration until a ter-
mination criterion between 0 and 1 is reached. The addition of the vector v} distinguishes
fuzzy c-means from hard k-means because it provides a weighting to the point’s associa-
tion with a cluster. MZA has been used in many precision agriculture studies (Moral et
al. 2010; De Caires et al. 2015; Zhang et al., 2010). The software includes summaries of
the fuzziness performance index (Odeh et al., 1992) and normalized classification entropy

(Bezdek, 1984) which allows the user to decide how many classes they consider optimal.

2.3.3 Hierarchical classification

Hierarchical classification is less commonly used in MZ delineation. More often an agglom-
erative hierarchical classification is used, where two clusters are merged where they have
the smallest distance between two points in a space. Ward’s method of hierarchical clas-

sification merges clusters when the smallest increase in the combined error sum of squares
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from a one-way univariate ANOVA for each variable is minimized. It has been used to
separate yield performance classes (Farooque et al. 2012). Fleming et al. (2000) used this

technique to separate EC, data into classes prior to interpolation.

2.3.4 Neighborhood Search Analyst

An alternative method of unsupervised classification which accounts for spatial structure
is the Neighborhood search analyst (NSA). NSA groups adjacent cells, ranking classes ac-
cording to their strength of similarity. The algorithm calculates the field mean square error
(MSE), then iteratively clusters adjacent cells and re-calculates the field MSE (Dhawale
et al., 2014). If the new MSE is less than the MSE of the entire field, more neighboring
cells are added until adding new cells no longer results in a lower MSE. Then a new cluster
search is initiated until the criteria is met again. When clustering no longer reduces the
MSE of the entire field, the algorithm ends. NSA differs from the more commonly used
MZA in that cells are not necessarily assigned to a class if they do not meet a certain degree
of similarity. Instead classes are ranked in NSA by how distinct they are, producing more

site-specific regions of similarity.

2.4 Validation of Classes or Management Zones

MZs are finalized by validating the significant difference between classes. Attributes tested
for significant difference include soil chemical attributes, texture, and yield (De Caires,
2015; Urretavizcaya, 2015). Yield and yield limiting variables can be tested with a two-
way analysis of variance (ANOVA) to determine if the classes are significantly different
(Urretavizcaya et al., 2015; Farooque et al., 2012). Tukey’s post-hoc means comparison
test uses ANOVA results to compare zones and individual variables. The Tukey test is

useful when a large set of variables are being compared.

The Pearson correlation coefficient measures linear correlation between two variables.
Pearson’s correlation is ubiquitously used in data analysis, but it is limited because it
evaluates linear relationships. Prior to correlation analysis, a box-cox transformation may
be applied to normalize data so that the linear model is applicable (Box, 1964). The box-
cox transformation is preferable to a log transformation because it allows for more subtle

changes in the data distribution. Pearson’s correlation is used to evaluate the correlation
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among soil parameters and yield in many studies as a preliminary step in MZ delineation
(e.g. Moral, 2010; Farooque, 2012).

2.5 Implementation with Variable Rate Technologies

Site-specific management is implemented with variable rate (VR) applicators. The au-
tomatic section control feature of many VR technologies allows spreaders, planters and
sprayers to automatically turn on, or off, based on their location in the field. When properly
calibrated, these technologies allow for greater precision of application and can accommo-
date irregularly shaped areas. With the classic approach to MZ delineation, VR applicators
apply uniform nutrient levels in each delineated zone. However, VR applicators are capa-
ble of applying a more continuously variable treatment through the field using isolines. A
regression-based approach to SSM would ultimately produce a surface prescription map in
which treatment applied is proportional to changes in field condition. The variations in
this output surface can then be converted to isolines and input into a VR applicator for

more emprical and precise treatment.

2.6 Persisting Challenges in Site-specific Management

While SSM and MZ delineation have been developed and thoroughly researched for decades,
debate remains over the technical feasibility of SSM (Tisseyre and McBratney, 2008). Apart
from the cost of VR equipment, sampling and analysis can be time consuming and expen-
sive. The expectation is that savings attributed to reduced inputs and/or increased yields
will make up for the costs of implementing SSM. A number of researchers have attempted
to address financial concerns by developing low-cost, simple methodologies for SSM (Tay-
lor et al., 2007) in an effort to make precision agriculture practices more accessible and

wide-spread.

Accessibility of precision agriculture practices is an important step to noticeable and
lasting environmental mitigation. While individual farms may benefit economically from
SSM, the environmental benefits are negligible unless SSM is adopted on a wide scale. To
start, McBratney et al. (2005) suggest studies of SSM precision agriculture be applied to

whole farms rather than single fields. Additionally, more studies should include the assess-
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ment of environmental indicators before and after site-specific treatment in order to quantify
environmental effects. Furthermore, research should focus on developing SSM strategies
that are replicable and scalable for greater widespread use, should the strategies be found
to be environmentally beneficial. McBratney et al. (2005) recognize Precision Agriculture
(PA) strategies are tailored to individual farms but the development of decision support

systems (DSS) and adaptable SSM strategies would assist farmers in adopting PA practices.

Finally, recent debate questions the efficacy of subdividing fields into zones with cate-
gorical attributes. Fuzzy classification recognizes that attributes can belong in more than
one class, but MZ delineation still subdivides fields into smaller uniform application sites.
The NSA clustering algorithm by Dhawle et al. (2014) suggests that entire fields need
not be subdivided into MZs to identify regions of distinction. Data separated to maximize
contrast of field conditions is more desirable when enacting regression-based site-specific
management. With this in mind, this study proposes a new regression-based approach to
separating topographical and EC, data to be used to develop a continuous prescription map
proportional to the changes in field condition. This regression-based prescription based on
field conditions is not only more empirical, it is also less computationally intensive and has

the potential to be streamlined into a DSS for producers.
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Chapter 3

Materials & Methods

3.1 Site Description

For the purposes of this study, two experimental fields were selected (Fig. 3.1). The ex-
perimental blueberry fields lie 6 km southwest of Normandin, QC (48.8369° N, 72.5279°
W), north of the Chamouchouane River. Soil here is primarily podzolic, mixed with finer
eolian deposits. Field 140b (11.3 ha) represents a uniform low-lying topography ranging
from 123-125 m and Field 21 (13.2 ha) represents a more heterogeneous topography with

elevation ranging from 127-136 m.

3.2 Historic Yield and Management Practices

During the autumn of the crop year, the study sites were mowed in alternating strips so
that un-mowed strips would retain snow on the field. In the sprout year, the blueberry
plants were pruned in springtime, and fertilizer was applied uniformly. Herbicides were
applied uniformly as well as in spot treatments where weed presence was visually assessed.
Insecticides were applied to control for Altica sylvia mallcoch. No pesticides or fertilizers
were applied in the harvest year. Nitrogen (N) applications varied season to season as illus-
trated in Tables 3.1 & 3.2. Leaf analyses were performed in the growth year. Phosphorus

(P) and boron (B) were applied when leaf analyses indicated nutrient deficiency.

Yield in 2016 was a record high for wild blueberry producers in Lac-Saint-Jean. Despite
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Normandin, QC
*

T T T T T T 1]
0 125 25

Field 21 Field 140b
T T T [ T T T ] * Sensor track
0 150 300 600 m A Sampling grid

Fig. 3.1 Experimental fields 21 and 140b with soil/yield sampling locations
and elevation/EC, sensor track.
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Table 3.1 Field 21 summary of yield and treatments 2009-2016.
Year Average Yield N P K B Herbicide Herb. Rate
(kg ha'!) (kg ha') (kg ha') (kgha') (kg ha') (kg ha'!)
2016 6,398 - - - - - -
2015 - 30.2 20.1 20.1 0 Velpar*® 2
2014 4,530 - - - - - -
2013 - 30.5 0 0 0.7 Velpar 2
2012 3,313 - - - - - -
2011 - 26.3 21 15.8 0 Velpar 2
2010 1,337 - - - - - -
2009 - NA NA NA NA PrononeY 2

NB: Fertilizer is applied as a mix of N-P-K ratio. Boron is added when leaf analyses show it to
be deficient.
X Active ingredient: Hexazinone (DuPont™)

Y Active ingredient: Hexazinone (DuPon

Table 3.2 Field 140b summary of yield and treatments 2009-2016.

tTM)

Year  Average Yield N P K B Herbicide Herb. Rate
(kg ha'l) (kg ha'l) (kg ha!) (kgha') (kgha') (kg ha'l)
2016 3,788 - - - - - -
2015" - NA NA NA NA - -
2014 4,250 NA NA NA NA - -
2013 - 30.5 0 0 0.7 Velpar* 2
2012 2,052 - - - - - -
2011 2,931 - - - - - -
2010 - 14.5 11.7 8.6 0.4 PrononeY 16
2009 4,020 - - - - - -

NB: Fertilizer is applied as a mix of N-P-K ratio. Boron is added when leaf analyses show it to
be deficient.
“Penergetic was an experimental fertilizer /herbicide mix which resulted in 75% loss of crop.

* Active ingredient:Hexazinone (DuPon

tTM)

Y Active ingredient: Hexazinone (DuPont™™)
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its more heterogeneous topography, Field 21 has historically been more productive than
Field 140b. In circumstances of low yield, the producer will extend the cycle to a third
year, as the producers did in Field 140b in 2011 and 2012 (Table 3.2). Producers tested
Penergetic, a commercial product, as a replacement to fertilizer and herbicide and lost 75%
of crop in the 2014-2015 cycle.

3.3 Description of Data Layers

Data layers can be divided into proximally and remotely sensed data, soil samples analyzed
in the lab, and sampled yield (Fig. 3.2). The selected data layers are meant to encompass
the various properties and processes which affect yield. Figure 3.2 summarizes the interre-

lationships between crop yield, sensor data, and chemical and granulometric data.

Soil and yield samples were obtained in both fields with a 33 x 33 m (0.1-ha) grid
sampling scheme for a total of 136 points in Field 21 and 116 points in Field 140b. Yield
samples were collected on August 8-9, 2016 before the fields were harvested. Blueberries
were combed from a square meter of blueberry bush at each point, and the weight of the
fresh blueberries was measured and recorded on site for every sample. Satellite imagery
was acquired on August 11, 2016. EC, was sampled the last week of September 2016, just
after mowing. Soil samples were collected one week later in the beginning of October 2016
at two depths (0-5 cm and 5-15 cm).

3.3.1 Laboratory analysis of chemical and granulometric soil properties

Soil samples were dried and ground to 2 mm for textural and chemical laboratory anal-
ysis. All soil samples were weighed. Both depths were analyzed for nutrient content. A
Mehlich-I1T soil extractant was used to extract nutrients (Ziadi and Tran 2007). P content
was determined by colorimetry (Lachat Instruments, model 8500, series 2, Loveland, USA)
(Murphy and Riley 1962). Potassium (K) content was determined with spectrophotom-
etry flame emission (Isaac and Kerber, 1971). Calcium (Ca) and Magnesium (Mg) were
determined with atomic absorption spectrophotometry (Agilent Technologies, model 200,
series AA, Santa Clara, USA). Total Carbon (C) and Nitrogen (N) content were evaluated
with the Elemental vario MAX CN analyzer (Elemental Analysensysteme, GmbH, Hanau,
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Fig. 3.2 Depiction of data layers and their relationships. TWI is the to-
pographic wetness index derived from elevation and slope data. EC, is the
soil apparent electrical conductivity captured by two sensors, DUALEM and
Veris. Multispectral SPOT6 is the multispectral satellite image, comprising
four wavelength bands: R (red), G (green), B (blue), and NIR (near infrared).
Sample and sensor data encompass yield-determining properties such as cation
exchange capacity, water holding capacity, soil porosity, crop density, and el-
ement exposure. Soil pH indirectly influences yield by limiting weeds.
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Germany), and soil organic matter (S.0.M.) was calculated from the total C percentage.

Soil texture was analyzed for all soil samples at the 5-15 cm depth using the pipette
method (Day, 1965). Texture was categorized in terms of g per kg of very coarse sand,
coarse sand, medium sand, fine sand, very fine sand, total silt, and total clay according to
the Canada Soil Survey Committee standards (Sheldrick, 1984). Descriptive statistics on

all attribute data were summarized.

3.3.2 Apparent electrical conductivity sampling

EC, was collected with two sensors, the DUALEM-21S (Dualem Inc., Milton, ON) and
the Veris 3100 (Veris Technologies, Inc., Salina, KS). Measurements were taken at 1 Hz.
The depth of investigation of EC, measurements depends on the configuration of the trans-
mitter and receiver coils. The DUALEM-21S has one transmitter coil and four receiving
coils to capture four depths. Coils arranged in the horizontal co-planar (HCP) receive
lower depths than the perpendicular co-planar (PRP). Additionally, coil spacing affects the
depths received. The DUALEM-21S configuration has two PRP coils at 1.1 m and 2.1 m
from the transmitter, and two HCP coils 1 m and 2 m from the transmitter (Fig. 3.3).
Receiver coils closer to the transmitter have a shallower depth of investigation. Depth is

determined at 70% of the cumulative response in a column of heterogeneous soil (Table 3.3).

Transects were spaced about 10-m apart, guided with a GPS steering guidance system.
The DUALEM-21S was run for twenty minutes before being calibrated to reduce the pos-
sibility of drift in sensor data. It was pulled on a sled by a John Deere Gator at a relatively
constant speed to maximize contact with the ground. At the end of sampling, the sensor

was passed over previous transects so that data could be reviewed for evidence of drift.

The Veris 3100 is a galvanic contact resistivity sensor and derives conductivity from its
inverse relationship with electrical resistivity. The Veris 3100 is configured with six rolling
coulter electrodes (Lund et al., 1999). Electrical current flows through the second and fifth
coulters. The voltage drop is measured between the third and fourth coulters and first and
sixth coulters (Sudduth et al., 2003). The electrodes are equally spaced in a Wenner array

so that resistance is measured at two depths (Fig. 3.4).
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Fig. 3.3 Dipole arrangement of DUALEM EMI sensor. T is the transmitter
coil. H1 and H2 receivers receive the induced current in horizontal co-planar
(HCP) arrays at 1-m and 2-m respectively. P1 and P2 receiver receive the
current in perpendicular co-planar (PCP) arrays at 1.1-m and 2.1-m respec-
tively. Receivers at a further distance from the transmitter coil capture EC,

at a greater depth.

The depth of investigation is related to about one-third the outer electrode spacing

(Rhoades, 1993) and summarized in Table 3.3. Sensor transects were 3-m apart, and

measurements were taken at a density of 1 sample/s. The sensor was pulled by an SUV at

a relatively constant speed(Fig. 3.5).

Table 3.3 Derived depths of EC, instruments where cumulative response is

70% (Mat Su, 2016).

Measurement Effective sensing depth (m)
Veris Shallow 0.30
Veris Deep 0.90
DUALEM PRP 1.1 0.54
DUALEM PRP 2.1 1.03
DUALEM HCP 1.0 1.55
DUALEM HCP 2.0 3.18
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Fig. 3.4 Veris 3100 configuration of six roller coulters, one pair which passes
a current through the soil and two pairs which measure resistance to extract
EC, at two depths (Oguri et al., 2009).
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Fig. 3.5 Veris 3100 set up. Photo credit to Agriculture and Agrifood
Canada.

3.3.3 Satellite imagery

A multi-spectral satellite image of the fields was obtained from the Airbus SPOT-6 satellite
archive (Airbus Defense and Space, Ottobrunn, Germany), for the month of August 2016
- shortly after yield sampling occurred and a month before soil sampling. The SPOT-6
satellite measures reflectance in five wavelength ranges referred to as bands (Table 3.4).
The SPOT-6 images were delivered georeferenced, corrected for off-nadir acquisition and
terrain effects using the standard Reference3-D model for ground corrections (Astrium Ser-
vices, 2013). The panchromatic and multispectral images were simultaneously acquired,

allowing for geospatially accurate pan-sharpening of the satellite images to 1.5-m resolution.

The pansharpened image was radiometrically and atmospherically corrected in ENVI
image analysis software (Exelis, Inc., Boulder, CO). Several broadband greenness vegeta-
tion indices (VIs), which detect vegetation and vigor were calculated from the multispectral
bands using the band math function (Table 3.5). Many of the VIs compare changes in the
near-infrared and red bands (e.g., NDVI, DVI, TDVI, MSR, RDVI). NDVT is a widely used

VI because it is resistant to topography changes and sensitive to biomass, while TDVT is
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Table 3.4 SPOT Multi-spectral and Panchromatic Image wavelength bands.

Band Wavelength Range (nm)
Pan 450 — 745
Blue 450 — 520
Green 530 — 590
Red 625 — 695
Near-infrared 760 — 890

less saturated than NDVI at close canopy and may detect subtler variations. Other VIs
utilize ratios between the near-infrared and green bands (e.g., GARI, GDVI, GRVI), in
order to detect a greater range of chlorophyll concentrations. A number of indices which
account for the soil line were tested (e.g., MSAVI2, OSAVI, MNLI) in order to reduce noise
attributed to soil reflectance. The leaf area index (LAI) was also tested to characterize

canopy cover.

In addition to a number of ratio-based indices, Principal Components Analysis (PCA)
was performed in ENVI to transform the band space and reduce the multispectral image to
two or three principal components which maximize variation and reduce noise. The second
principal component is often recommended as a seasonal VI (Eklundh and Singh, 1993;
Townshend, 1985). Once all VIs were calculated, sample points were imported into ENVI
as regions of interest so that the values of the VIs at the sample points could be extracted
and compared statistically to other measured attributes at the same location. Pearson’s
correlation coefficient was calculated for VIs and yield to assess how well VIs correlated with
sampled yield. The best performing VI was classified by the Jenks optimization method
to delineate bare patches within the field (Jenks, 1967). The effectiveness of bare patch
prediction was assessed by calculating Pearson’s correlation with a binary classification of
sampled yield where yield values of 0 kg ha™' were assigned a 0 and all other values were

assigned a 1.
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Table 3.5 Summary of ratio-based vegetation indices (VIs) calculated from
SPOT6 satellite image. NIR is the near-infrared wavelength range, R is the
red wavelength range, G is the green wavelength range, and B is the blue
wavelength range. < is a weighting function for aerosol conditions in the
atmosphere. L the canopy background adjustment factor.

Name Formula Reference
Difference Vegetation =NIR-R Tucker (1979)
Index (DVI)
Enhanced Vegetation = 2.5% 7 ng}?:?@* BT Huete et al.
Index (EVI) (2002)
Green Gitelson,
Atmospherically = %fﬁl%gjgg:gﬂﬁ =1.7 Kaufman, and
Resistant Index (GARI) Merzylak (1996)
Green Difference =NIR-G Gitelson and
Vegetation Index (GDVI) Merzlyak (1998)
Green Ratio = % Sripada et al.
Vegetation Index (GRVI) (2006)
Leaf Area Index (LAI) = (3.618 «x EVI — 0.118) Boegh et al. (2002)
Optimized Soil Rondeaux,
Adjusted Vegetation = % Steven, and
Index (OSAVI) Baret (1996)
Modified Non-Linear = %%, L=05 Yang, Willis,
Index (MNLI) and Mueller (2008)
Modified Simple Ratio (MSR) = % Chen (1996)
Normalized Difference Rouse et al.
Vegetation Index (NDVI) = &k (1973)
Renormalized Roujean and
Difference Vegetation = % Breon (1995)
Index (RDVI)

Transformed Difference =4/0.5+ %ﬁ% Bannari, Asalhi,
Vegetation Index (TDVI) and Teillet (2002)
Modified Soil Qi et al.

Adjusted Vegetation = Z*NIRH_\/(2*N12R+1)2_8*(NIR_R) (1994b)

Index (MSAVI2)
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3.4 Map Interpolation

3.4.1 Pre-processing

Elevation and EC, data were averaged to 1 value per 5 s. Data distribution was examined
for normality and values outside of two standard deviations were removed. Slope and TWI
were calculated from the elevation data using SAGA GIS (v.6.3, System for Automated
Geoscientific Analyses, Hamburg, Germany). TWI models field water storage based on
slope and catchment area modeling (Beven and Kirkby, 1979).

3.4.2 Spatial prediction

Sampled chemical, granulometric, EC,, and elevation data were interpolated to three-
dimensional, continuous surfaces using the Ordinary kriging (OK) method in R statistical
software (R Foundation for Statistical Computing, Vienna, Austria). Predicted surfaces
were cross validated with the original samples to assess strength of the prediction. Geo-
statistics were calculated on all data layers. An R script utilizing the ‘gstat’ package

(Pebesma and Graeler, 2017) standardized the process of interpolation as follows:

1. The data was automatically fit with a box-cox transformation (Box, 1964). The
‘forecast’ package in R (Hyndman et al., 2017) applies Guerrero’s (1993) method
to assign a transformation value which minimizes the coefficient of variation for the

dataset.

2. A theoretical variogram model was fitted to the experimental variogram of the box-
cox-transformed data. Possible models were gaussian, spherical, exponential, or pure
nugget. The fitting method used to fit the theoretical variogram to sampled data was
an iterative reweighted least squares estimation which prioritized variances of point
pairs at shorter lag distances in the experimental variogram (Pebesma and Graeler,

2017). Range, nugget, partial sill, and total sill were calculated for the best fit model.

3. The nugget to sill ratio was calculated from the theoretical nugget and partial sill
variances to determine the degree of spatial structure (Camberdella et al., 1994). A
smaller nugget to sill ratio indicates stronger autocorrelation in the dataset. A ratio
of 100% is indicative of a pure nugget and considered a random spatial structure with

no autocorrelation.
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4. The fitted variogram was used in the OK method with the box-cox transformed data.

5. Predicted maps were cross validated with the leave-one-out (LOO) or k-fold method.
LOO is an iterative process where the value of a point is predicted using all of the
dataset with the exception of that point. This was repeated for every point in the set
so that the error could be estimated. The k-fold method divided the original data
set into k parts to determine error. The k-fold method was used with dense EC, and

elevation data, where k=10.

6. The root mean square prediction error was calculated:

RMSE — } S Bz, y) — = (e, ))? (3.1)

Jj=1

where [ is the number of validation points, Z(x,y) is the estimate value at location
(x,y), and z*(x,y) is the actual observation at location (x,y). RMSE quantifies
the accuracy of a prediction map. To compare RM SE among several variables, it is

divided by the total variation s.,:

RMSE

z

RMSEgsp = (3.2)

A standardized RM SFEgsp value around 40% is considered satisfactorily accurate. A
value greater than 71% signifies that less than 50% of variability of the validation
points were represented in the model, so a majority of points are inaccurate (Heng],
2009, p. 25).

7. The kriging output grid was back-transformed from the box-cox transformation to
initial values so that predicted vs. sampled values could be plotted and compared.
A cross validation plot was generated with a best fit line using the back-transformed
values. Correlation coefficients were calculated for both the transformed and the

back-transformed data.
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3.5 Correlation Analysis & PLS

Pearson’s correlation matrix was calculated with all box-cox transformed soil properties,
EC, layers, and yield. The sample Pearson correlation coefficient (r) measures linear cor-

relation between two sampled variables. It is defined as:

_ iy (i — ) (yi — ¥)
Vo (2 — 2)2/S (v — 9)°

(3.3)

r

where n is the sample size, x; and y; are individual sample points indexed in ¢, and * and

y are the sample means. Significance of the correlation was tested using,

r

t= (3.4)

1—72
N-2

where N is sample size, r is the correlation coefficient, and ¢ is the distribution of two

perfectly correlated variables given the population.

Data was also analyzed with partial least squares (PLS) regression with the PROC
PLS function in SAS Statistical software (SAS Insitute Inc., Cary, North Carolina, USA)
to determine sources and degree of variation in predictor variables EC,, topography, and
VI and dependent soil attributes. Five PLS models were analyzed in each field, separating
dependent variables by chemical attributes (0-5 cm) and (5-15 cm), overall texture, sand
texture, and yield. Wold’s criterion (1994) was used to determine the extent of contribution

a variable makes to the PLS model.

3.6 Classification & Data Separation

Data layers were initially classified using fuzzy c-means in the software Management Zone
Analyst (MZA)(v.1, US Department of Agriculture, Washington, D.C., USA). A second
data separation methodology for regression-based site-specific management was applied
which equally weights elevation and Shallow EC, data. Veris EC, shallow values and
elevation values were extracted from their raster grids to the sample points so they could
be compared with other sample attributes. Elevation vs. Shallow EC, values were then

projected onto a scatter plot, and ten points in the four corners of the scatter plot were
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sub-set to represent four extreme growing conditions of EC.Eleviow, ECLowEleviign,
ECHighElevigy , ECHignElevyigy. Shallow EC, was selected because its depth of response
(30 cm) most closely corresponds with the depth of soil samples. A Two-way Analysis of
Variance (ANOVA) was calculated to compare the four scenarios for significant differences.
Additionally, Tukey’s post-hoc test was used to compare the significant difference of the

means of individual soil properties in the four scenarios.
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Chapter 4

Results & Discussion

4.1 Laboratory Analyses

Summary statistics of the laboratory analyses are presented in Tables 4.1 & 4.2. Re-
sults indicate considerable variability in soil properties, except for total sand (C'V5;=8.6%,
CV3140p=3.4%) and pH (C'Va1=6.0%, CV140,=3.5%). While total sand is not highly variable,

sand grain size (e.g. very fine vs. very coarse) does vary considerably in both fields.

The high variability among soil properties and yield indicate both sites could benefit
from site-specific management. One property that stands out is soil pH(Tables 4.1 and 4.2).
Soil pH is important in wild blueberry for controlling weed growth, and the optimal range
of pH is between 4.6 and 5.2 (NBDAAF, 1998). The average pH in both fields is within
the acceptable range, but the maximum pH exceeds the optimal range. For example, the
thematic pH maps of Field 21 (Fig. 4.3) show a concentrated area of the field where pH
is 5.5 - 5.6, above optimal range. This same area coincides with finer texture soil. Excess
N application here has a greater risk of volatilization. This is one example of how tailored
nutrient application could theoretically benefit the field. N may be limited in this area to
reduce the risk of volatilization, and/or site-specific sulfur application may be considered

to lower pH.

Similar recommendations for nutrient prescription of N, P, or K cannot be drawn from
the soil sample data because crop nutrient levels for wild blueberry are presently determined

with leaf analysis rather than soil analysis . Soil analyses were used for this project instead
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Table 4.1 Field 21 summary statistics of chemical and granulometric soil
attributes; n is the sample size, STD is standard deviation, and CV% is coef-

ficient of variation.

Unit n Min Max Mean STD CV%
Soil Particle size (5-15 cm)

Clay gkg™! 136 12.0 373 235 5.2 22.1

Silt gkg™! 136 354 3458 119.7 756 63.1

Sand gkg™! 136 636.4 948.1 856.8 74.1 8.6

Very coarse sand gke-1 136 0.0 76.6 12.0 13.7 113.7

Coarse sand gkg™! 136 0.9 333.7 999 888 889

Medium sand gkeg™! 136 3.7 570.1 284.8 163.2 57.3

Fine sand gkeg™! 136 1052 679.8 312.2 123.2 395

Very fine sand gkg™' 136 25.7 509.0 147.8 130.3 88.1
Chemical analysis (0-5 cm)

S.0.M. gkeg™! 136 179 489.6 169.6 99.5 58.7

Total N % 136 006 150 046 027 59.1

Soil pHyater - 136 3.8 6.9 4.7 0.5 10.6

P mg kg™! 136 5.5 2652 63.4 54.0 85.1

K mg kg=! 136 13.6 388.8 107.3 70.1  65.3

Total C % 136 1.2 32.0 111 6.5 58.7

Ca mg kg=! 136 104.9 564.2 361.1 764 21.2

Mg mg kg=! 136 5.3 4104 107.3 719  67.0

Al mg kg=! 136 489.5 2,104 889.0 287.0 32.3

Fe mg kg=! 136 60.0 5,370 1,502 932.6 62.1
Chemical analysis (5-15 cm)

S.0.M. gkg™! 136 9.7 594 197 81  40.9

Total N % 136 0.04 0.17 0.07 0.02 355

Soil pHyater - 136 4.5 6.5 5.1 0.3 6.0

P mg kg™! 136 1.1 249.1 67.0 485 723

K mg kg™! 136 8.1 256.8 38.7 25.0 64.4

Total C % 136 064 388 129 053 40.93

Ca mg kg=! 136 106.8 644.3 2953 103.6 35.1

Mg mg kg™! 136 2.7 1182 7.9 10.0 1278

Al mg kg=! 136 749.9 2238 1653 260.3 15.7

Fe mg kg=! 136 19.3 1393 148.2 155.9 105.2




4 Results & Discussion

Table 4.2 Field 140b summary statistics of chemical and granulometric soil
attributes; n is the sample size, STD is standard deviation, and CV% is coef-

ficient of variation.

Unit n Min Max Mean STD CV%
Soil Particle size (5-15 cm)
Clay gkg™! 116 9.9 38.1 26.5 6.1 23.1
Silt gkg™! 116 19.2 2576 775 305 39.3
Sand gkg™! 116 7189 9684 896.0 30.2 3.4
Very coarse sand gkeg! 116 14 731 254 153  60.0
Coarse sand gkg™' 116 12.0 3353 170.1 889 52.3
Medium sand gkg™' 116 81.6 552.5 356.8 103.1 28.9
Fine sand gkg™' 116 99.8 633.7 280.3 126.2 45.0
Very fine sand gkg™' 116 17.0 2719 63.3 493 779
Chemical analysis (0-5 cm)
S.0O.M. gkg™' 116 17.3 391.3 1350 776 575
Total N % 116 0.08 1.19 044 025 56.7
Soil pHyater - 116 3.7 5.6 4.5 0.4 7.8
P mg kg™! 116 3.0 411.6 387 48.0 124.2
K mg kg=! 116 16.1 290.3 929 56.1 60.4
Total C % 116 1.1 25.6 8.8 5.1 57.5
Ca mg kg=! 116 107.2 691.5 386.8 99.1 25.6
Mg mg kg~! 116 6.7 2563 775  53.2  68.7
Al mg kg™! 116 477.3 2,655 939.1 293.9 31.3
Fe mg kg=' 116 3.5 1,805 465.4 338.2 727
Chemical analysis (5-15 cm)
S.0.M. gkg™! 116 3.0 630 178 8.7 488
Total N % 116 0.02 022 0.08 0.03 35.0
Soil pHyater - 116 4.6 5.8 5.0 0.2 3.5
P mgkg=! 116 1.1 1343 243 214  88.0
K mg kg™! 116 34 952 404 184 456
Total C % 116  0.20 4.12 1.17 0.57  48.8
Ca mg kg=! 116 41.5 390.5 213.7 79.0 37.0
Mg mg kg=! 116 1.7 235 6.4 2.9  45.6
Al mg k™! 116 1307 2925 2015 2734 13.6
Fe mg kg™t 116 7.9 1000 205.8 164.5 79.9
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of leaf analyses in order to investigate relationships between soil EC,, soil properties, and
yield. Prescribed nutrient level needs will be determined in field trials, detailed further in

the concluding chapter.

4.2 Proximal Sensor Data

An initial objective of the project was to compare the results from the DUALEM and Veris
sensors. Prior to filtering, the DUALEM data showed more noise, likely due to contact
with air and changes in driving speed. However, the datasets were comparable in dis-
tribution post-filtering. The coefficient of variation (CV) values reflect roughly normally
distributed data among the EC, measurements except in the Veris Deep layer which was
poorly distributed and skewed left in both fields (Tables 4.4 & 4.3). Both sensors satis-
factorily captured EC, variability in the field. Pearson’s correlation analysis showed Veris
Shallow (0.30 m depth) to be significantly correlated (p < 0.0001) with DUALEM PRP1.1
(0.54 m depth) and PRP2.1 in both fields (1.03 m) (Table 4.5).

Both the Veris and DUALEM datasets returned a number of negative EC, values (Ta-
bles 4.3 & 4.4). Negative EC, values are sometimes considered anomalous and filtered, but
the negative values belonged to the normally distributed data. In fact, both PRP 1.1 and
Veris Deep means were negative. Overlapping transects collected at the beginning and end
of the field sampling were similar, confirming there was no sensor drift in the DUALEM
measurements from the beginning to the end of the data collection process. Even after off-
set, both sensors showed low EC, values, indicating a very sandy soil. This was validated
by the granulometric analysis of sampled soil. Higher EC, values in HCP1.0 and HCP2.0
may suggest a finer texture parent material under the sandy soil surface. EC, values are
also higher in Veris Deep than Veris Shallow. However, further conclusions of soil strati-
fication cannot be drawn from the data without further three dimensional analyses. For
the purposes of this project, the spatial relativity of EC, values is of interest, so both the
Veris depths and all the DUALEM depths were offset by their minimum values to correct

for negative readings, and the relative field variation was analyzed.
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Table 4.3 Field 21 summary statistics for EC, data and derived topographic
attributes; n is the sample size, STD is the standard deviation, and CV% is
the coefficient of variation. Offset values are the original sensor values plus
the minimum value collected from all depths. The offset was applied to all
layers so that depths could be compared.

Unit n Min Max Mean STD CV%
HCP1.0 mSm~! 2005 -1.07 449 290 0.73 -
HCP1.0 offset mSm~' 2005 032 588 429 073 17.04
PRP1.1 mSm~! 2005 -1.39 0.70 -0.05 0.14 -
PRP1.1 offset mSm~' 2005 0.00 208 134 014 10.7
HCP2.0 mSm~' 2005 150 3.48 246 0.31 -
HCP2.0 offset mSm~! 2005 2.88 4.87 385 0.31 8.06
PRP2.1 mSm~' 2005 -028 0.80 027 0.11 —
PRP2.1 offset mSm~' 2005 1.11 219 166 0.11 6.90
Elevation m 1749 1275 136.6 1322 255 1.93
Slope deg 17493  0.00 254 191 256 134.1
TWI - 17517 -5.14 13.6 6.45 3.33 51.65

Veris Shallow mSm~! 6850 0.14 0.68 0.30 0.08 -
Veris Shallow offset mS m~! 6850 3.05 3.59 3.21 0.08 2.45

Veris Deep mSm~' 6850 -2.92 3.33 -0.02 0.64 —
Veris Deep offset  mSm~! 6850 0.00 6.23 289 0.64 22.01
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Table 4.4 Field 140b summary statistics for EC, data and derived topo-
graphic attributes; n is the sample size, STD is the standard deviation, and
CV% is the coefficient of variation. Offset values are the original sensor values
plus the minimum value collected from all depths. The offset was applied to
all layers so that depths could be compared.

Unit n Min Max Mean STD CV%
HCP1.0 mSm~! 1608  1.41 4.62 3.15  0.35 11.09
HCP1.0 offset mSm~' 1608  2.52 5.73 426 035 8.20
PRP1.1 mSm-! 1608 -1.11 084  -0.08 0.11 -
PRP1.1 offset mSm-! 1608  0.00 1.95 1.03  0.11 10.54
HCP2.0 mSm-! 1608  1.10 2.72 1.84 022 12.14
HCP2.0 offset mSm-! 1608  2.21 3.83 295 022 7.59
PRP2.1 mSm-! 1608 -0.34  0.74 0.20 0.11 -
PRP2.1 offset mSm~! 1608  0.76 1.85 1.31  0.11 8.61
Elevation m 1521 123.23 12547 124.25 0.52  0.42
Slope deg 26602 0.00 10.22 0.89 1.17 130.43
TWI - 26638 -9.15  14.08 497 280 56.45

Veris Shallow mSm~' 6181 0.10 0.42 0.26 0.06  23.82

Veris Shallow offset mS m~! 6181 2.51 2.83 2.67 0.06 2.34
Veris Deep mSm~! 6181 -2.36 2.72 -0.14  0.78 —

Veris Deep offset  mSm~! 6181  0.05 5.13 227  0.78  34.2
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4.3 SPOT Imagery and Vegetation Indices

Of the VIs tested, a few were significantly correlated with yield, but no VIs were strongly
correlated. In Field 21, the best performing VIs were TDVI (r=0.29) and MSR (r=0.26).
The VI derived from the second principal component (PC2) using Principal Components
Analysis outperformed the ratio-based indices. In Field 21, correlation with yield was r=-

0.41, and in Field 140b, r=-0.36, where bare soil represents a higher eigenvalue.

The VI derived from PC2 was used to classify bare patches in the field. In distinguish-
ing bare from vegetation, Field 21 correlation between PC2 and sampled yield was r=0.68
and Field 140b was r=.40. Based on the classification using PCA, 75.5 m? or 8.5% of
Field 21 is bare and 29.3 m? or 10.7% of Field 140b is bare. Figure 4.1 shows the bare
spot classifcation derived from the PC2 VI. Low correlation coefficients indicate VIs alone
cannot capture yield patterns in the field, in part because greener and denser growth do
not necessarily indicate higher blueberry yield but may represent weed patches or more leaf

growth than fruiting in blueberry bush.

One challenge with the VIs was that especially dry soil has a high reflectance similar to
vegetation. Soil adjusted indices like OSAVI and MSAVI2 are meant to correct for this, but
a number of bare soil pixels were still indexed at high values with vegetation. Topography
will also affect soil reflectance. Bare patches of soil coincide with topographic changes,

explaining why some of the bare patches were mis-classified as dense vegetation.

The PC2 correlation values are still not satisfactorily high. Validating the VIs with
sampled yield proved challenging because SPOT imagery pixels were pan-sharpened to 1.5

m? resolution while ground-truthed yield was sampled at 1 m?

. This may explain why
the PC2 classification did not capture smaller bare spots. Furthermore, sampled yield had
high variance due to the sampling process itself which left room for measurement error.
Sampling was done by combing blueberry bushes. Blueberries were not always thoroughly
removed from the bush or sometimes twigs and leaves would be collected with the blue-
berries. The clearest issue, however, is that the satellite image was captured 2-3 days after
yield sampling was conducted. Areas of the field which were sampled were already dis-

turbed when the image was taken, affecting surrounding biomass.
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Fig. 4.1 Classification of bare spots in SPOT6 satellite image using the
vegetation index derived from Principal Components Analysis.
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The VI derived from PCA was nevertheless useful for classifying larger bare patches
to be excluded from the regression approach. Average soil conditions in bare patches dif-
fer from general field conditions and will not respond linearly to a regression-based SSM
treatment. The standard scores of average soil conditions in bare patches are summarized
in C. The z-score represents distance from the field mean, so a value close to 0 has little
difference from mean. Ny; = 8 and Ny = 2 (Appendix C). The average soil conditions
in bare patches were found to have a slightly lower Shallow EC, (z2;=-0.143 2z140,=-0.090),
yet soil at the 5-15 cm depth showed higher than average pH (291=0.33, z140p=2.53) and Al
(291=0.21, z140b=0.13) and lower than average TC(z91=-0.27, z140p=-1.19), K(291=-0.59,
21400=-1.347), and Ca(z9;=-0.25, z140p0=-1.725). Given the non-linear relationship between
EC, and soil nutrient levels, excluding bare patches from the regression-based is recom-

mended.

4.4 Correlation & PLS

Due to the high variability of yield, it was difficult to establish strong correlations between
yield and other agronomic factors. Nevertheless, yield was significantly correlated with
shallow measurements of total C, total N, Mg, and SOM in both fields (Table 4.5). These
correlations were higher in Field 21 than Field 140b. Of all sampled properties, total N
was most correlated with yield (r9;=0.40, 7140,=0.34) (Table 4.5).

Veris Shallow EC, was significantly correlated with chemical attributes Mg and Fe
at the 0-5 cm depth, and pH, Mg, and Fe at 5-15 cm depth (Table 4.5). Correlation
with pH was higher in Field 21 than Field 140b (r2;=0.38, r140,=0.25). In both fields,
Veris Shallow EC, was significantly correlated with soil texture properties, particularly
sand (191=-0.34, r140,=-0.31), medium sand (ry;=-0.45, r140,=-0.57), and very fine sand
(ro1=0.48, 1140p=0.54), indicating finer texture soil is positively correlated with EC,. Thus,
in this growing environment, EC, appears to be an adequate predictor of soil texture and
other agronomic attributes like nutrients . EC, was not significantly correlated with TWI
in Field 21 and was weakly correlated in Field 140b ( ry40,=0.25). It is possible that due
to the well-drained soils, moisture had less effect on EC, readings and the wetness index

was not significant.
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Table 4.5 Pearson’s correlation coeflicients.

Field 21 Field 140b
Yield Elevation Shallow EC, Yield Elevation Shallow EC,
Yield 1.00 -0.22* -0.2 1.00 -0.06 0.18
Elevation -0.22* 1.00 -0.50%*** -0.06 1.00 -0.28*
Veris Shallow -0.02 -0.50%** 1.00 0.18 - 28%* 1.00
Veris Deep 0.02 -0.40%%* 0.52%** 0.14 -0.19% 0.17
PRP 1.1 0.05 -0.73*** 0.70%** 0.09 -0.30* 0.65%**
HCP 1.0 0.20%* -0.16 -0.05 0.14 -0.16 -0.04
HCP 2.0 0.21* -0.69*** 0.33** 0.06 -0.36*** -0.07
PRP 2.1 0.12 -0.85%** 0.61*** 0.28* -0.15 0.54%**
TWI -0.02 0.16 -0.16 0.06 -0.22%* 0.25*
Slope -0.14 0.29** 0.05 -0.03 0.04 0.13
0-5 cm
Total C 0.37%** 0.00 0.00 0.33** -0.15 0.39%**
Total N 0.40*** -0.03 -0.01 0.34** -0.19 0.44%**
pH -0.14 -0.34%** 0.33*** -0.16 -0.30%* 0.07
P -0.183* -0.29** 0.35** -0.09 -0.31** 0.10
K 0.36*** -0.05 0.06 0.28* -0.02 0.20*
Ca -0.01 -0.06 0.16 0.15 -0.08 -0.14
Mg 0.21* -0.11 0.20* 0.28* -0.24* 0.38***
Al -0.17* -0.04 0.14 -0.06 -0.29** 0.15
Fe 0.12 -0.20* 0.28* 0.12 -0.22% 0.42%**
S.O0.M. 0.37*** -0.01 0.00 0.33** -0.15 0.39***
5- 15 cm
Total C 0.10 -0.02 0.16 0.25* 0.00 0.28*
Total N 0.08 -0.04 0.14 0.23 -0.14 0.36%**
pH -0.04 -0.50*** 0.38%** -0.18 -0.46*** 0.25*
P -0.02 -0.11 0.04 0.02 -0.31** 0.17
K 0.25% 0.22* -0.07 0.25%* 0.04 0.16
Ca 0.10 0.02 0.14 0.26* -0.07 0.21*
Mg -0.01 -0.14 0.33** 0.03 -0.12 0.28*
Al 0.01 0.22* -0.16 0.15 -0.03 0.16
Fe -0.04 -0.32%* 0.48*** 0.05 -0.22%* 0.38***
S.O0.M. 0.10 -0.02 0.16 0.10 -0.02 0.15
Total Sand -0.16 0.60%** -0.34%** -0.20 0.12 -0.31%*
Total Silt 0.19* -0.69*** 0.38*** 0.12 -0.06 0.25*
Total Clay -0.14 0.55%** -0.28%* -0.02 0.15 -0.12
V. Coarse Sand  -0.13 0.34%** -0.22* -0.02 -0.12 0.03
Coarse Sand -0.11 0.63%** -0.44%** -0.15 0.39%** -0.32%*
Med. Sand -0.11 0.73*** -0.45%** -0.09 0.49*** -0.57F**
Fine Sand -0.08 -0.22* 0.26 0.12 -0.52%** 0.38***
V. Fine Sand 0.12 -0.74%** 0.48*** 0.17 -0.35%** 0.54***

NB: T-test significance denoted as *p < 0.05, **p < 0.001, ***p < 0.0001.
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Elevation showed significant correlation with pH in both fields at both depths with
higher elevations correlating to lower pH. Lower pH is usually considered better for wild
blueberry growth as it suppresses competitors, but analysis showed this not to be the case
at the experimental sites. One possibility is that although pH was significantly lower in
high elevation areas, other agronomic factors corresponding with high elevation areas lim-
ited yield. Elevation was negatively correlated with P (0-5 cm) (r9;=-0.29, 7140,=-0.31)
and Fe (5-15 cm) (r1=-0.32, r140,=-0.22).

Gravity causes redistribution of soil texture, which explains why the correlation between
soil texture and elevation was significant. Very fine sand, fine sand, and silt contents were
negatively correlated with elevation while medium to very coarse sands and clay were posi-
tively correlated with elevation. Finally, given their respective correlations with texture, it
is unsurprising the EC, and elevation are significantly correlated (r;=-0.50, r140,=-0.28).
The relationship was stronger in Field 21, likely because the topography varied more dra-
matically (Table 4.5).

The intent of modeling with Partial Least Squares (PLS) regression was to observe the
relationship of variability of multiple dependent agronomic variables and variability of sen-
sor data. In Field 21 the model accounted for about 65% of EC, and topographic features
and about 23% of yield or 20% of 0-5 cm chemical attributes. 62% of the variance of EC,
and topographic features accounted for about 14% variance of 5-15 cm chemical attributes.
All factor percentages are summarized in Table 4.6. By Wold’s criterion, the variables of
greatest influence in the regression for texture and sand content were Elevation and PRP
2.1; for chemical attributes (5-15 c¢m) influential variables were PRP 2.1 and slope; and
for chemical attributes (0-5 cm) and yield, the VI was most influential. However, the PLS
model only accounted for a small percentage of total variability in the target soil properties,
indicating that there are external processes affecting the targeted properties which could
not be modeled in PLS.

In Field 140b 24% percent variance of EC, and topography accounted for about 14% of
yield variance, notably less than in Field 21 where topography varies much more dramati-

cally. The other factors of independent variables in Field 140b, summarized in Table 4.7,
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captured a smaller percentage of the total variance than in Field 21, but more percent
variance of the dependent variables were captured. By Wold’s criterion, the VI and PRP
2.1 most influenced the yield model; The VI and Shallow EC, most influenced the model of
chemical attributes at both depths; Elevation, Shallow EC,, and PRP 1.1 most influenced
the sand content model; and the VI, PRP1.1 and Shallow EC, most influenced the model
of total texture. Once again, the PLS model only accounted for a small percentage of total
variance in the target soil properties. Thus in both fields, external processes affect the

target properties.

The exercise of PLS modeling is a reminder that external factors which were not sampled
play a role in agronomic conditions. A certain degree of yield variability is to be expected
in physical environments due to environmental factors such as weather fluctuations. For
this reason yield maps will vary year to year. Historically factors such as topography
and EC, have been used to predict yield variability because they are more temporally
stable. However sensor noise and environmental factors will also cause some variability in
these measurements. This can explain why correlation is not always strong between yield,
EC, and topography variables. In Field 21, PLS accounted for 65.4% of EC, , VI, and
topography variance, as opposed to the 24% in Field 140b. With this model, 23% of yield
variance could be accounted for. Other studies have used the same variables to capture
70% yield variability (Guo et al. 2012). This indicates latent factors exist which caused the
high variability in yield. The year that yield was collected was a record year for yields in
the region due to favorable weather patterns. The study would benefit from multiple years

of yield sampling to determine a more temporally stable yield pattern within the field.

4.5 Geostatistical Analysis

A geostatistical summary produced from the R script is found in Tables 4.8 and 4.9. In
general, the box-cox transformation effectively fit the data to a normal distribution. In
some variables, such as pH, the automatic box-cox transformation was redundant, so it
was not used. Tables 4.8 and 4.9 include the box-cox transformation variable A to show
which variables were transformed. A A value of 1 signifies no transformation. Automation
of the process allowed for a consistent methodology for interpolating different variables.

The theoretical variogram model selection initially included the gaussian model. However,
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the maps produced with the gaussian model were overly smooth and devoid of meaningful
spatial patterns. When a spherical model was applied instead, the practical range of the

variogram model better represented field variation patterns.

Strong spatial dependence was not observed in several properties (Tables 4.8 and 4.9),
so OK could not accurately predict most chemical soil properties, with RMSFEgp val-
ues greater than 0.90. Spatial dependence is classified by the nugget to sill ratio ac-
cording to standards outlined by Camberdella et al. (1994). A variable belonging to
a stronger spatial class should yield a better prediction from OK because the autocor-
relation can be modeled. Unsurprisingly, elevation showed the strongest spatial depen-
dence (R%, = 1.00,R?,, = 1.00) . Maps were interpolated with RMSFEgsp=0.02 and
RMSFEsp=0.08 in Fields 21 and 140b, respectively. Most soil chemical attributes showed
poor spatial structure. In Field 21, total C, K, total N (0-5¢cm), Ca (0-5 ¢cm), and Mg (0-
5cm) were completely random, fitted with a pure nugget model, and could not be predicted
by kriging. In Field 140b, spatial dependence was moderate so that soil properties could
be predicted except for total sand. However high RMSFEsp and low R? for most chemical

attributes indicate the properties predicted with OK were not truly accurate.

Table 4.6 Field 21 total percent variation accounted for by PLS factors.

EC, and Topo. Dependent variables
Model Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3
Yield 31.3 54.2 65.4 14.9 21.2 23.0
Chemical (0-5 cm) 37.8 52.1 65.2 8.3 18.2 20.1
Chemical (5-15 cm) 40.2 49.2 62.6 8.6 12.0 13.6
Sand Content 40.9 — - 35.8 — —
Total Texture 40.9 — - 37.8 — -

According to the correlation coefficients calculated in the cross-validation process, in
Field 21 well predicted maps were Silt (R?=0.70), Medium sand (R*=0.80), Very fine sand
(R?=0.85), HCP10 (R?=0.92), HCP20 (R?*=0.95), and Veris Shallow (R*=0.73). Moder-
ately accurately predicted maps were Sand (R%*=0.68), Coarse sand (R?=0.65), pH at both
depths (R?=0.56 and 0.64, respectively), PRP1.1 (R?=0.62), and PRP2.1 (R?=0.67). In
Field 140b well predicted maps were coarse sand (R*=0.76), medium sand (R?=0.75), fine
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Table 4.7 Field 140b total percent variation accounted for by PLS factors.

EC, and Topo. Dependent variables
Model Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3
Yield 24.0 - - 13.8 — -
Chemical (0-5 cm) 25.2 39.3 50.0 18.9 26.7 31.8
Chemical (5-15 cm) 24.6 36.8 45.6 9.00 23.3 29.7
Sand Content 25.4 38.0 48.7 29.3 35.5 39.7
Total Texture 26.0 39.2 - 14.0 19.4 -

sand (R*=0.77), very fine sand (R?=0.76), HCP1.0 (R*=0.88), and HCP2.0 (R?=0.81).
Moderately accurately predicted maps were Clay (R?*=0.68), Al at both depths (R*=0.60
and 0.62, respectively), Fe (5-15 cm) (R?=0.53), and Veris Shallow EC, (R?=0.70). They

are presented in Figures 4.2 - 4.7.

Coeflicients of variation were generally greater in properties in Field 21 than in Field
140b. Geostatistical analysis also showed random spatial structure among a number of
chemical properties in Field 21, including S.O.M., total N, total C, K, Ca, and Mg at
the 0-5 cm depth(Table 4.8). Yield values were high but sampled agronomic properties
were randomly distributed, so establishing a relationship between yield variability and soil
property variability was limited. Therefore, developing a management regime on the soil

attributes alone could not reliably predict yield.

Conversely, several nutrients showed greater spatial structure in Field 140b (Table 4.9),
and certain nutrients could be mapped with moderate cross validation results, namely Al
at both depths and Fe (5-15 cm). EC, was significantly correlated with a number of chem-
ical attributes in Field 140b in addition to soil texture as in Field 21. Chemical attributes
included TC, TN, Mg, Fe, and OM at both depth, and K (0-5 cm), Ca (5-15 cm). Tukey
results show a number of these attributes significantly separated with the regression based
method (Figures 4.15-4.17).

Based on the spatial structure and variability, the most useful prediction maps for the
blueberry fields are the soil texture maps, EC, maps, and topography. Texture maps can

be compared to EC, to verify EC, as a predictor of soil texture. Given that nutrient avail-
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Table 4.8 Geostatistical summary of agronomic properties in Field 21.

b

Model® Nugget ratio Spatial class® Range (m) R? RMSEsp A

Yield p.-n. 1.0 R — - - 1.0
Elevation sph 0.0 S 3032 1.00 0.02 1.0
Veris Shallow sph 0.5 M 405 0.73 0.69 1.0
Veris Deep sph 0.7 M 131 0.45 0.89 1.0
PRP 1.1 exp 0.5 M 239 0.62 0.78 1.0
HCP 1.0 sph 0.1 S 121 0.92 0.39 1.0
HCP 2.0 exp 0.0 S 87 0.95 0.32 1.0
PRP 2.1 sph 0.1 S 5423 0.67 0.74 1.0
0-5 cm

S.0.M. p.n. 1.0 R - - - 0.0
Total N p-n. 1.0 R - - - 0.2
Total C p.n. 1.0 R - - - 0.1
Soil pHyater exp 0.35 M 69 0.56 0.83 1.0
P sph 0.6 M 29 0.36 0.93 -0.2
K p.n. 1.0 R — - - -0.3
Ca p.n. 1.0 R - - - 1.0
Mg p.n. 1.0 R - - - -0.1
Al sph 0.3 M 18 0.23 0.97 -0.9
Fe p-n. 1.0 R - - - -0.2

5- 15 cm
S.0.M. p.n. 1.0 W - - - -1.0
Total N sph 0.9 W 376 0.13 0.99 -1.0
Total C sph 1.0 R - - - -1.0
Soil pHyater sph 0.36 M 416 0.64 0.76 1.0
P sph 0.8 W 168 0.16 0.97 0.1
K p-1. 1.0 R - - - -0.4
Ca exp 0.9 W 26 0.20 0.98 1.0
Mg sph 0.4 M 5537 0.26 0.96 -0.8
Al sph 0.5 M 138 0.45 0.89 2.0
Fe sph 0.3 M 2629 0.50 0.86 -0.3
Clay sph 0.3 M 3223 0.55 0.83 0.5
Silt sph 0.0 S 13725 0.72 0.69 0.0
Sand exp 0.3 M 616 0.67 0.74 0.0
V. coarse sand sph 0.58 M 608 0.40 0.92 0.1
Coarse sand sph 0.0 S 8885 0.78 0.62 0.2
Medium sand sph 0.0 S 4986 0.81 0.58 0.7
Fine sand sph 0.8 W 313 0.29 0.95 0.5
V. fine sand sph 0.1 S 749 0.85 0.53 0.1

2 p.n.= pure nugget (p.n.), sph.= spherical, exp.= exponential. ® S = strong, M = moderate, W
= weak, R = random.
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Table 4.9 Geostatistical summary of agronomic properties in Field 140b.

b

Model® Nugget ratio Spatial class® Range (m) R? RMSEsp A

Yield p.-n. 1.0 R — - - 1.0
Elevation exp 0.0 S 167 1.00 0.08 1.0
Veris Shallow sph 0.47 M 110 0.70 0.72 1.0
Veris Deep sph 0.81 A\ 112 0.23 0.97 1.0
PRP 1.1 exp 0.8 W 157 0.38 0.92 1.0
HCP 1.0 sph 0.1 S 191 0.87 0.48 1.0
HCP 2.0 sph 0.2 S 249 0.81 0.58 1.0
PRP 2.1 exp 0.9 A\ 52 0.31 0.95 1.0
0-5 cm

S.0.M. exp 0.7 M 63 0.28 0.96 -0.1
Total N exp 0.6 M 87 0.35 0.93 -0.2
Total C sph 0.7 M 63 0.28 0.96 -0.1
Soil pHyater exp 0.3 M 857 0.48 0.87 1.0
P sph 0.6 M 564 0.42 0.90 -0.1
K sph 0.7 M 2298 0.11 0.99 0.0
Ca sph 0.1 S 5570 0.33 0.94 1.0
Mg sph 0.4 M 4331 0.23 0.97 0.0
Al exp 0.1 S 55 0.62 0.78 -0.8
Fe exp 0.1 S 11820 0.39 0.92 0.2

5- 15 cm
S.0.M. sph 0.2 S 3926 0.37 0.93 -0.2
Total N sph 0.3 M 1175 0.42 0.91 -0.4
Total C p.n. 1.0 R 3927 0.37 0.93 -0.2
Soil pHyater sph 0.1 S 4416 0.50 0.86 1.0
P sph 0.5 M 604 0.50 0.86 0.0
K sph 0.6 M 3026 0.18 0.98 0.5
Ca exp 0.4 M 25 0.21 0.97 1.0
Mg sph 0.6 M 147 0.33 0.94 -0.4
Al sph 0.2 S 82 0.54 0.84 -1.0
Fe sph 0.7 M 410 0.38 0.92 0.2
Clay sph 0.3 M 112 0.61 0.79 2.0
Silt exp 0.8 W 25 0.23 0.97 0.0
Sand p.n. 1.0 R - - - 2.0
V. coarse sand sph 0.4 M 125 0.55 0.83 0.2
Coarse sand sph 0.1 S 240 0.79 0.61 1.4
Medium sand sph 0.2 S 542 0.76 0.65 2.0
Fine sand sph 0.1 S 345 0.80 0.59 0.3
V. fine sand sph 0.1 S 469 0.85 0.51 -0.6

2 p.n.= pure nugget (p.n.), sph.= spherical, exp.= exponential. ® S = strong, M = moderate, W
= weak, R = random.
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Fig. 4.2 Field 21 strongly correlated elevation and EC,
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Fig. 4.3 Field 21 moderately correlated EC, and chemical properties
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Fig. 4.4 Field 21 strongly correlated granulometric maps.
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Total Sand Content (g/kg) Coarse Sand Content (g/kg)
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Fig. 4.5 Field 21 moderately correlated granulometric maps.

ability is linked with EC,, texture, and elevation (Fig. 3.2), the thematic maps produced

encompass both physical and chemical yield factors.

Maps with poor prediction may benefit from de-trending. However, co-kriging with
elevation did not dramatically improve the accuracy of chemical variables. Correlation
between elevation and chemical attributes was not strong enough to improve the prediction
in either field. Regression kriging may also be considered but is only useful in variables

which show strong spatial structure.

4.6 Data Separation for Regression-Based Approach

The scatter plots in Figures 4.9 and Figure 4.10 illustrate how extreme field conditions
were identified for the regression-based approach. The two distinct clusters in Figure 4.9
represent the bimodal distribution and high variability of elevation in Field 21. EC, is
generally lower in the high elevation cluster, so EC, is significantly different among the
four scenarios according to Tukey’s test (Fig. 4.12). The red points highlighted in the
scatterplot represent occurrences of zero yield. They all occur in the high elevation cluster

and are mostly distributed among higher EC,. Tukey’s post-hoc test revealed slope to also
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Fig. 4.6 Field 140b strongly correlated elevation and EC, maps.
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be significantly higher in the Elevpign EChign scenario. Bare patches may coincide with

steep slope among other factors.
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Fig. 4.7 Field 140b strongly correlated granulometric maps.

Analysis of variance (ANOVA) in Field 21 did not show a significant difference between

the four scenarios (p=0.81). Tukey results showed a significant difference in soil texture

among high and low elevation scenarios. Figure 4.16 shows medium sand content, silt,

and very fine sand content to be separated by elevation, but not distinguished by EC,.

Figure 4.14 shows the combination of EC, and elevation distinguishes other granulometric
and chemical attributes (sand, coarse sand, Fe (0-5 ¢cm), and pH at both depths). Three
important field conditions were separated by this method: 1) slope, 2) pH, and 3) texture.

Average pH was significantly higher in Elevq, & ECH;g, slightly above the optimal range.
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Fig. 4.8 Field 140b moderately correlated granulometric and chemical maps.
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Fig. 4.9 Field 21 scatter plot of Elevation vs. EC, values. The bimodal
distribution of elevation is apparent in the scatter plot as two distinct clusters.
Bare spots are highlighted in red and correspond with higher elevation.
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Finally, texture was most correlated with yield in Field 21 and represents the field’s nutrient

and water storage potential.
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Fig. 4.10 Field 140b scatter plot of Elevation vs. EC, values. Bare spots

are highlighted in red
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ANOVA in Field 140b showed an overall significant difference between the four sce-
narios at 90% confidence (p=0.06). Elevation in Field 140b is unimodal, but EC, is still
slightly lower in high elevation areas (Fig. 4.10). Like Field 21, the greatest distinction is
between scenarios Elevro, X Crigh and Elevi;gn/Cryw. The variables total sand, total silt,
very fine sand, total C (5-15 cm), total N (5-15 ¢cm), P (5-15 cm), and S.O.M. (5-15 cm),
are all distinguished by these combinations (Fig. 4.15 and 4.16). A number of chemical
attributes are also distinguished by high vs. low EC, (Fig. 4.16 and 4.17). pH was found

to be significantly different in Elevggn ECrey, but still within ideal range. Elevation was

less variable in Field 140b, so EC, was more useful in separating data.

Based on the results of the Tukey post-hoc test, the greatest contrast in both fields
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Fig. 4.11 Management zones classified with fuzzy c-means in MZA for Field
21 (left) and Field 140b (right). Targeted scenarios from the regression-based
approach overlay the zones for comparison.



4 Results & Discussion 72

136 c 35 a
.
b
. = .
134 € 34
P ) D
E E
c ©
o
'E 132 Q 33 5
[0} ;
w a 2 o
i E
3.2
1 —
3.1 ]
128
EleviowECiow EleviowEChign ElevhghECiow  EleVhighEChign EleviowECiow EleviowEChigh ElevhghECiow  EleviighEChign
Class Class
15 b

Slope (deg)

a

==

EleviowECiow  EleviowEChigh  EleVhighECiow  ElevhighEChign

Class

Fig. 4.12 Tukey plots of Field 21 elevation, EC,, and slope. Slope is signif-
icantly higher in scenario Elevyign& ECl;gp, than the other three scenarios.



4 Results & Discussion

73

Medium Sand (g/kg)

Total Silt (g/kg)

600
b
a |
400
a
200
| ,
0
EleviowECiow EleviowEChigh ElevhighECiow
Class
a
300 a
200
b
100
[

ElevhighE Chigh

L

T

EleviowECiow ElevioyEChigh  ElevhighECiow
Class

l

ElevhighE Chigh

Very Fine Sand (g/kg)

500

IS
o
]

[
o
[s]

n
o
]

100

| 1
[ ] ]
EleviowECiow EleviowEChign ElevhighECiow  EleVhighEChigh
Class

Fig. 4.13 Field 21 attributes that are significantly different based on contrast
in elevation. Texture is influenced by elevation.



4 Results & Discussion

74

1000
ab
ab a b
g | ==
<
=
el
c
?
.‘_9 800
o
'_
700
EleviowECiow ~ EleViowEChigh  ElevhighECiow  EleVhighEChign
Class
a
ab
ab
55
b
€
O 50
©
S5
5
4.5 ]
4.0 l
.
EleviowECiow ElevioEChigh  ElevhghECiw  EleVhighEChigh
Class
600
a
)i ab
.
— 400
g ab
f .
|
©
[}
L 200 .
b
0

EleviowECiow EleviowE Chigh

Class

ElevhghECiow  EleVhighEChign

Coarse Sand (g/kg)

pH (5-15 cm)

400

300

200

100

6.0

55

5.0

ab

EleVhighE Ciow
Class

ab
.
a
.
EleviowECiow EleviowEChigh
a
.
ac
EleviowECiow EleviowEChigh

ElevhighECiow
Class

-

ElevhighE Chigh

EleviighEChigh

Fig. 4.14 Field 21 soil attributes that are contrasted by the combination of

elevation and EC,.



4 Results & Discussion 75

125.0 b b 7

.

5

= 124.

EM E

c

S g 270

g i 3

) 2

I} 124.0 a % 265 b
ey
n

L= -5 =

EleviowECiow EleviowEChigh  ElevhighECiow  ElevhighEChign EleviowECiow EleviowEChigh ElevhghECiow  ElevhighEChigh
Class Class

Fig. 4.15 Field 140b elevation and EC, separation.

occurs between Elevro, EChigh, and Elevyigh2CLo,. These contrasts can be used to de-
termine a regression-based treatment. Tables in Appendices A2 and A3 show the average
values of each soil attribute in the four scenarios, standardized to the field average and

standard deviation in order to illustrate the degree of difference from the average.

4.7 MZA vs. Regression-Based Approach

Three zones were selected in both fields using the MZA methodology (Fig. 4.11). In Field
21, Class 1 is a high elevation, low EC,, low slope scenario; Class 2 is a high elevation, low

EC,, steep slope scenario, and Class 3 is low elevation, high EC,, low slope scenario.

The higher elevation portion of the field somewhat coincides with the scenarios Elevation g,
ECHhign and Elevationo,ECLow. Elevationggn, ECHg, occurs close to but not within
Class 2 while ElevationpewECLe, falls within Class 1. Scenarios Elevie,ECHig, and
Elevpo, ECrq are encompassed by Class 3. These overlaps are largely due to the changes
in topography and the fact that EC, is correlated to elevation in this field. However, Class
2 does not identify the areas of highest EC,. The greatest contrast exists between classes 1
and 3, irrespective of slope. This contrast exists in the variables total sand, total silt, total
clay, very coarse sand, medium sand, very fine sand, pH deep, K (5-15 c¢m), P, and fine
sand (Appendix A). Yield was significantly different between Class 2 and Class 3, likely
because bare patch incidence coincides with steep slope in Field 21. In both the scatter

plot separation method and the MZA method, the low elevation, low EC, scenario is not
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significant, and steep slope areas are isolated.

Like the scatter plot data separation method, the greatest contrast from the MZA out-
put occurs between ElevighECLoy and Elevr, ECHqg,. Because Field 21 is topography
driven, MZA performs well in separating the data. However, it fails to distinguish the areas

of contrasting EC,, which would be used in a regression-based approach.

In Field 140b, the classes are separated by elevation, slope & TWI, and to a lesser
extent EC, (Appendix B). Class 1 represents high elevation, high slope, high TWI, and
high EC,; class 2 represents high elevation, low EC,; and class 3 represents low elevation
and low EC, (Appendix B). Scenarios Elevationpign ECign and Elevationgign, ECLo, co-
incide with Class 2 and parts of Class 1. Scenario Elevationyy, ECpr., coincides with
Class 3. Scenario Elevationre, ECrign, however, is not meaningfully distinguished by
MZA. Between classes 1 and 2 silt, clay, TC (0-5 cm), TN (0-5 cm), and OM (0-5 c¢m)
are separated, indicating a distinction of agronomic properties by slope and EC,. Between
classes 2 and 3, Fe (5-15 cm), Mg, P, and pH are separated, indicating indicating a distinc-
tion of agronomic properties by elevation (Appendix B). Because topography varies less in

Field 140b, fewer agronomic properties were separated by MZA than the targeted approach.

Topographic features were more dominant in the MZA classification. Given the corre-
lation of soil texture and properties with elevation, and given particularly the variability
of topography in Field 21, this method of unsupervised classification performs well if the
objective is to segment the field into smaller sub-fields. However, analyses show that areas
of contrasting soil EC, were not distinguished in either experimental field. For a prescrip-
tion regression based on both soil EC, and topography, the scatter plot selection method

is more rapid and precise in identifying areas of extreme contrast.
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Chapter 5

Conclusions & Recommendations

5.1 Research Study Summary

The conclusions of the study which relate to the study objectives are:

1. Spatial variability could be characterized through soil EC, and topographic data.
Soil EC, and topography showed strong spatial dependence and significantly corre-
lated with a number of physical and chemical soil properties as well as yield in both
fields. However yield and a number of soil properties showed weak or random spa-
tial structure, so thematic maps of properties using Ordinary kriging produced high
error. Thematic mapping of soil nutrients using Ordinary kriging generally yielded
low-accuracy maps (RMSEgp > 0.90) for chemical attributes, but physical soil at-
tributes and pH showed greater spatial dependence and could be mapped with high
accuracy. In the future, to map chemical attributes, strategic soil sampling should
be implemented to try to detect spatial dependence at a shorter interval, and/or Re-
gression kriging should be investigated using elevation and EC, data where there is

a correlation between proximally sensed variables and the target soil attribute.

2. Vegetation indices were not strongly correlated with yield partly due to the noise of
soil reflectance and topography and partly because validating yield was challenging

2. The greatest

when yield wass sampled at 1 m? and image resolution was 1.5 m
challenge in validating yield was that yield sampling was done two days prior to the

date the satellite image was captured, disturbing biomass. However, the PCA-derived
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vegetation index did successfully classify large contiguous bare spots which may be

separated from the regression-based treatment.

3. While unsupervised classification with MZA software divided the field into three dis-
tinct areas by topographical traits, it did not distinguish the areas of most contrasting
EC, in either field. A comparison of means in the four targeted scenarios showed the
greatest contrast in soil attributes to be between Eleviow EChign andElevigh ECrow-
These findings indicate an integration of elevation and EC, data improves targeting
within-field variation in order to develop a regression-based prescription map. Based
on the agronomic properties in these contrasting scenarios, it is expected that areas
in the field of low elevation and high EC, will require less nutrient input than areas
of the field of high elevation and low EC,. Field trials are the next step to test this
hypothesis.

5.2 Future Research

Fertilization recommendations in wild blueberry are based on leaf nutrient measurements
rather than soil nutrient levels. Therefore, nutrient application rates cannot be inferred
from the sampled soil data. Instead, field trials will test yield response in the selected areas
within each of the four scenarios. In May 2017, AAFC began treatment in the sprout year
of the wild blueberry fields. The study design is one 30 x 30 m experimental plot within
each of the four scenarios in both fields. Within each plot, there are four 4 x 4 m subplots
with a buffer for a total of 16 trials in each scenario. A variable rate sprayer applied levels of
0, 30, 60, and 90 kg N ha-1 at four repetitions (Fig. 5.1). Crop response to the treatments

will be used to model prescribed treatments in each of the four scenarios.

In addition to concluding the fertilization trials at this site and the implementation of a
management plan based on the conclusions of that study, future research should investigate
the holistic effects of SSM in wild blueberry plots, including tracking both environmental
and economic impacts in the short and the long term. The costs and savings of SSM
implementation should be carefully studied and quantified once fertilization levels are de-

termined.
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Fig. 5.1 Schematic of the field trial with one 30 x 30 m plot containing 16
subplots for 4 treatments of 0, 30, 60 and 90 kg N/ha at four repetitions.
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Future studies should address the question of scalability of site-specific management
strategies on this specialty crop in this region. Furthermore, the regression-based fertiliza-
tion strategy lends itself to the development of a decision support system for determining

fertilization levels based on sampled EC, and elevation data.

Finally, future research should investigate how remote sensing can better predict crop
density in wild blueberry fields. Higher spatial resolution imagery may improve VI util-
ity. Archived satellite images would also allow for temporal mapping of yields and may be

useful for determining the rate of rhizome development in bare patches of the field over time.
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Table A1 Field 21 Tukey test comparison between MZA classification and
targeted approach.

MZA Targeted
Property Unit MZ7Z1 MZ2 MZ3 EILECy, ElLECy ElgECY, ElgECy
Yield kg ha=! 6259 ab 4827 b 7198 a 7172 a 6316 a 6714 a 5426 a
RTK m 13403 b 135.07 a 12929 ¢ 129.07 d 129.66 c 133.94 b 134.53 a
TWI — 6.87 a 7.24 a 5.69 a 6.70 a 5.54 a 6.60 a 6.94 a
Slope deg 0.96 b 6.26 a 1.53 b 1.50 b 1.23 b 0.31 b 4.79 a
Shallow mS m™! 3.16 ¢ 3.20 b 3.26 a 3.17 c 3.37 a 3.11 d 3.23 b
Deep mS m~! 2.60 ¢ 2.83 b 3.13 a 3.01 a 3.23 a 2.25 b 2.69 ab
PRP11 mSm™! 1.26 b 1.28 b 1.41 a 1.35 b 1.46 a 1.23 c 1.31 b
HCP10 mSm™! 4.28 ab 4.06 b 4.43 a 4.29 a 4.42 a 4.51 a 4.12 a
PRP21 mSm™! 1.59 b 1.60 b 1.73 a 1.69 b 1.74 a 1.58 c 1.61 ¢
HCP20 mSm™! 3.69 b 3.62 b 4.07 a 3.99 a 4.04 a 3.75 b 3.64 b
0-5 cm
Total C % 11.62 a 10.82 a 10.64 a 9.69 a 13.12 a 9.24 a 13.91 a
Total N % 0.50 a 0.37 a 0.44 a 0.42 a 0.54 a 0.39 a 0.58
pH - 4.48 b 4.80 a 4.97 a 4.72 ab 4.89 a 4.38 b 4.61 ab
P mg kg-1  44.47 b 64.71 ab  82.24 a 61.40 a 81.48 a 51.65 a 39.93 a
K mg kg-1  121.30 a 90.77 a 99.05 a 99.05 a 119.58 a 116.48 a 162.67 a
Ca mg kg-1 364.18 a 33442 a 367.82 a 370.84 a  395.26 a 367.35 a 331.73 a
Mg mg kg-1  102.85 a 107.70 a 111.75 a 89.92 ab 136.46 ab 79.06 b 171.11 a
Al mg kg-1 883.61 a 875.69 a 89930 a 880.16 a  906.00 a 831.42 a 762.81 a
Fe mg kg-1 1153.90 b 1779.60 a 1754.90 a 1339.10 a 199540 a 105230 a 2003.30 a
S.0.M. g kg-1 17779 a 16550 a 162.74 a 14825 a  200.72 a 141.31 a 212.77 a
5-15 cm
Total C % 1.17 b 1.48 a 1.33 ab 1.13 a 1.16 a 1.05 a 1.53 a
Total N % 0.06 a 0.07 a 0.07 a 0.07 a 0.06 a 0.06 a 0.07 a
pH - 4.90 b 5.01 b 5.27 a 5.13 ab 5.25 a 4.91 c 4.92 bc
P mg kg-1  52.54 b 71.32 ab  80.19 a 78.12 a 61.85 a 38.35 a 71.10 a
K mg kg-1  46.08 a 3776 ab  31.58 b 30.17 a 34.91 a 40.07 a 45.54 a
Ca mg kg-1 285.28 a 32489 a 29466 a 276.30 ab 330.62 ab  234.92 b 358.60 a
Mg mg kg-1 7.68 a 8.73 a 7.71 a 6.19 a 8.57 a 5.41 a 8.83 a
Al mg kg-1 1737.23 a 1560.11 b 1600.85 ab 174232 a 162352 a 174940 a 1639.08 a
Fe mg kg-1  93.81 b 18448 a 19021 a  109.65 ab  215.98 a 60.25 b 152.09 ab
S.0.M. g kg-1 17.96 b 22.61 a 20.33 ab  17.35 a 17.81 a 16.10 a 23.46 a
Sand g kg-1 896.00 a 89749 a 801.82 b 823.96 ab 819.01 b 892.17 a 887.83 ab
Silt g kg-1 78.15 b 76.35 b 17793 a 153.62 a 159.41 a 81.18 b 84.68 b
Clay g kg-1 25.85 a 26.16 a 20.24 b 22.43 ab  21.58 b 26.65 ab 27.49
STG g kg-1 16.29 a 17.72 a 5.58 b 4.70 a 8.14 a 15.19 a 10.67
SG g kg-1 141.85 a 14030 a 42.39 b 75.41 ab  34.08 b 151.77 a 113.22  ab
SM g kg-1 38731 a 385.64 a 14340 b 21633 b 142.61 b 395.14 a 390.76 a
SF g kg-1 284.06 b 28532 ab 350.71 a 34288 a  398.92 a 261.19 a 306.73 a
STF g kg-1 66.48 b 68.50 b 25975 a 184.65 a  235.26 a 68.89 b 66.44 b
PC2 - -39.72 ab 10505 a -9147 b -83.26 ab -237.81 b -25.99 a -58.43  ab
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Table A1 Field 140b Tukey test comparison between MZA classification
and targeted approach.

MZA Targeted
Property Unit MZ1 MZ2 MZ3 ElLECy, ElL ECy ElgECy, ElgECh
Yield kg ha-1 4846 a 3717 a 4058 a 3893 a 5487 a 3359 a 4755 a
RTK m 12445 a 12460 a 12371 b 12359 b 123,67 b 124.76 a 124.62 a
TWI - 7.46 a 4.60 b 5.13 b 4.41 a 6.04 a 4.97 a 5.90 a
Slope deg 2.33 a 0.65 b 0.65 b 0.78 a 0.59 a 0.44 a 1.10 a
Shallow mS m-1 2.69 a 2.65 b 2.67 ab 2.61 c 2.76 a 2.59 c 2.71 b
Deep mS m-1 2.07 a 2.22 a 2.28 a 2.14 a 2.48 a 2.26 a 2.13 a
PRP11 mS m-1 1.04 a 1.01 a 1.03 a 1.01 be 1.08 a 0.97 c 1.05 ab
HCP10 mS m-1 4.24 a 4.25 a 4.33 a 4.33 a 4.37 a 4.40 a 4.26 a
PRP21 mS m-1 1.33 a 1.29 b 1.30 ab 1.28 b 1.34 a 1.26 b 1.34 a
HCP20 mS m-1 2.94 b 2.89 b 3.05 a 3.07 a 3.01 ab 2.97 ab 2.97 b
0-5 cm
Total C % 11.78 a 7.70 b 9.34 ab 9.30 ab 1294 a 4.72 b 12.10 a
Total N % 0.60 a 0.37 b 0.47 ab 0.45 ab 0.70 a 0.24 b 0.59 a
pH - 4.56 ab 4.40 b 4.67 a 4.58 a 4.64 a 4.51 a 4.28 a
P mg kg-1  28.20 a 30.23 a 52.62 a 40.63 a 70.40 a 26.42 a 24.89 a
K mg kg-1  95.87 a 91.45 a 93.91 a 96.39 ab  99.83 ab 56.78 b 13358 a
Ca mg kg-1  340.22 b 384.08 ab 40481 a 45692 a 375.85 a 377.77 a 38556 a
Mg mg kg-1  97.28 a 61.60 b 9146 ab 7791 ab 11326 a 36.33 b 12437 a
Al mg kg-1 1001.56 a 857.40 a 1023.22 a 990.60 ab 1232.30 a 898.60 ab 79220 b
Fe mg kg-1  551.89 a 374.09 a 55412 a 45470 ab  766.20 a 211.30 b 775.20 a
S.0.M. g kg-1 180.19 a 11777 b 14287 ab 14235 ab 19799 a 72.14 b 185.13 a
5-15 cm
Total C % 1.26 a 1.12 a 1.20 a 1.09 ab 1.37 a 0.87 b 1.19 ab
Total N % 0.09 a 0.08 a 0.09 a 0.08 ab 0.10 a 0.07 b 0.08 ab
pH - 5.00 ab 4.92 b 5.10 a 5.08 a 5.05 a 4.96 b 4.90 ab
P mg kg-1  26.31 a 19.46 a 29.81 a 27.19 ab  33.00 a 9.59 b 19.13  ab
K mg kg-1  40.97 a 41.00 a 39.40 a 43.21 ab  46.55  ab 30.83 b 55.16 a
Ca mg kg-1 22517 a 19732 a 23097 a 23332 a 217.34 ab  147.26 b 269.10 a
Mg mg kg-1 6.70 a 5.66 a 7.25 a 7.89 a 8.11 a 4.97 a 7.19 a
Al mg kg-1 2068.21 a 1986.07 a 2034.08 a 1920.70 a 2057.10 a 198290 a 2100.60 a
Fe mg kg-1 22631 ab 156.82 b 26148 a 219.07 ab 323.80 a 87.27 b 27650 a
S.0.M. g kg-1 19.22 a 17.07 a 18.40 a 16.69 ab  20.93 a 13.34 b 18.14  ab
Sand gkg-1 88137 b 90218 a 892.68 ab 898.09 ab 867.55 b 910.24 a  889.95 ab
Silt g kg-1 95.39 a 81.37 ab  70.15 b 76.93 ab 103.98 a 60.59 b 85.67  ab
Clay g kg-1 23.24 b 27.67 a 25.95 ab  24.98 a 28.47 a 29.17 a 24.38
STG g kg-1 19.91 a 23.96 a 29.05 a 26.43 a 31.74 a 30.57 a 32.46
SG g kg-1 121.70 b 20230 a 14446 b 14341 b 126.09 b 277.73 a 195.36  ab
SM gkeg-1 30978 b 40829 a 30625 b 33433 ab 22396 b 442.70 a  336.00 a
SF gkel 32603 a 22439 b 33681 a 32999 a 373.04 a 134.65 b 24649 ab
STF g kg-1 103.96 a 43.24 b 76.11 a 63.93 ab 11272 a 24.60 b 79.64  ab
PC2 - 96.59 a 49.54 a 52.22 a 54.16 ab -150.31 ¢ 88.77 a -73.97  bc
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Bare Spot Standards Scores
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Table A1 Standard score of soil variables in bare patches. The score rep-
resents distance from the field mean. A value close to 0 has little difference
from mean. No; = 8 and Nysgp=2.

221 Z140b
HCP10 -0.641 -1.378
PRP11 -0.465 0.168
HCP20 -0.880 -0.725
PRP21 -0.941 -1.022

Veris Shallow -0.143 -0.090
Veris Deep 0.077 -1.245

Elevation 1.090 -1.159
Yield -1.838 -1.768
Slope 0.676 0.471
TWI -0.371  0.140

0-5 cm
S.0.M. -1.144  -1.240
Total N -1.169 -1.163
Total C -1.144  -1.240
Soil pHyater 0.845 2.287
P 0.530 1.196
K -1.047 -1.141
Ca -0.337 -1.461
Mg -0.821 -1.092
Al 1.352 0.524
Fe -0.404 -0.805

5-15 cm
S.0.M. -0.266 -1.186
Total N 0.087 -1.239
Total C -0.266 -1.186
Soil pHyater 0.329 2.530
P -0.297 1.478
K -0.587 -1.347
Ca -0.254 -1.725
Mg -0.041 -0.297
Al 0.212 0.125
Fe 0.053 -0.574
Clay 0.329 -1.570
Silt -0.594 -1.124
Sand 0.583 1.453

Very coarse sand -0.378 0.220
Coarse sand 0.010 -0.642
Medium sand 0.437 -0.639
Fine sand 0.408 1.321
Very fine sand  -0.569 -0.064
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Field 21 Standard Scores
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Table A1 Field 21 standard scores of soil variables by regression-based sep-
aration method.
EleviowECLow EleviowECHigh  EleviighECLow  Eleviigh ECHigh

Yield 0.212 -0.033 0.081 -0.287

Shallow EC -0.466 2.185 -1.357 0.311

Deep EC 0.317 0.776 -1.264 -0.345

PRP1.1 0.301 1.426 -1.039 -0.145

HCP1.0 -0.025 0.176 0.317 -0.290

PRP2.1 0.545 1.152 -0.978 -0.542

HCP2.0 0.558 0.743 -0.309 -0.690

Elevation -1.206 -0.978 0.666 0.894

Slope -0.275 -0.282 -0.655 0.948

TWI 0.135 -0.280 0.046 0.280
0-5 cm

Total C -0.214 0.313 -0.284 0.434

Total N -0.135 0.320 -0.234 0.449

PH ypater -0.039 0.301 -0.713 -0.254

P -0.037 0.334 -0.218 -0.435

K -0.117 0.176 0.132 0.791

Ca 0.127 0.447 0.082 -0.384

Mg -0.242 0.405 -0.393 0.887

Al -0.031 0.059 -0.200 -0.439

Fe -0.175 0.529 -0.483 0.537

OM -0.214 0.313 -0.284 0.434
9-15 cm

Total C -0.288 -0.230 -0.444 0.471

Total N -0.108 -0.269 -0.321 0.227

PH ypater 0.185 0.566 -0.541 -0.519

P 0.229 -0.107 -0.592 0.084

K -0.343 -0.153 0.054 0.273

Ca -0.184 0.341 -0.583 0.611

Mg -0.167 0.070 -0.244 0.096

Al 0.344 -0.112 0.371 -0.052

Fe -0.247 0.435 -0.564 0.025

oM -0.288 -0.230 -0.444 0.471

Total Sand -0.443 -0.510 0.478 0.419

Total Silt 0.449 0.526 -0.510 -0.463

Total Clay -0.216 -0.379 0.597 0.760

V. Coarse Sand -0.536 -0.284 0.231 -0.099

Coarse Sand -0.276 -0.742 0.584 0.150

Medium Sand -0.420 -0.871 0.676 0.649

Fine Sand 0.249 0.704 -0.414 -0.044

V. Fine Sand 0.283 0.672 -0.606 -0.625
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Table A1 Field 140b standard scores of soil variables by regression-based
separation method.

Ele'ULowECLow EleULowECHigh ElevHighECLow El@UHighECHigh

Yield -0.041 0.666 -0.278 0.342
Shallow EC -0.929 1.371 -1.306 0.589
Deep EC -0.167 0.270 -0.008 -0.183
PRP1.1 -0.170 0.485 -0.511 0.259
HCP1.0 0.199 0.333 0.424 0.017
PRP2.1 -0.197 0.337 -0.413 0.287
HCP2.0 0.543 0.246 0.090 -0.314
Elevation -1.274 -1.127 0.972 0.714
Slope -0.072 -0.267 -0.433 0.263
TWI -0.295 0.355 -0.073 0.300
0-5 cm
Total C 0.094 0.811 -0.810 0.645
Total N 0.023 1.048 -0.805 0.599
PHypater 0.170 0.336 -0.039 -0.685
P 0.041 0.660 -0.255 -0.287
K 0.062 0.123 -0.645 0.725
Ca 0.707 -0.111 -0.091 -0.013
Mg 0.008 0.672 -0.774 0.881
Al 0.175 0.997 -0.138 -0.500
Fe -0.031 0.889 -0.751 0.916
oM 0.094 0.811 -0.810 0.645
5-15 cm
Total C -0.133 0.354 -0.518 0.034
Total N -0.153 0.558 -0.575 0.081
PHypater 0.457 0.319 -0.574 -0.214
P 0.135 0.407 -0.688 -0.242
K 0.154 0.335 -0.518 0.803
Ca 0.248 0.046 -0.841 0.700
Mg 0.512 0.585 -0.488 0.272
Al -0.343 0.155 -0.116 0.314
Fe 0.081 0.717 -0.721 0.430
oM -0.133 0.354 -0.518 0.034
Total Sand 0.070 -0.942 0.472 -0.200
Total Silt -0.020 0.867 -0.556 0.266
Total Clay -0.244 0.327 0.442 -0.341
STG 0.065 0.412 0.335 0.459
SG -0.300 -0.495 1.210 0.284
SM -0.218 -1.289 0.833 -0.202
SF 0.394 0.735 -1.154 -0.268

STF 0.012 1.001 -0.785 0.331




