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Abstract

Wild blueberry (Vaccinium angustifolium Ait.) is a key crop in the Lac-Saint-Jean region

of Quebec. The industry totals $45 million annually. Wild blueberry is a lowbush species

which flourishes in heterogeneous agronomic conditions where conventional crops cannot.

It grows in areas of varying topography on sandy, acidic soils where competition with other

plants is limited. Rhizome establishment takes years to develop, thus, bare spots are a com-

mon feature of young or poorly managed fields. Given the variation of soil, topography,

and crop density, wild blueberry production would benefit from site-specific management,

where levels of nutrient input are tailored to local needs based on within-field variation. A

classic approach to site-specific management is the delineation of management zones, sub-

field areas of relatively homogenous agronomic properties with uniform management rates.

A second SSM approach is regression based, where a prescription regression equation based

on sampled variables and known crop response to treatment is used for more continuous tar-

geted treatment within the field. This thesis articulates the thematic mapping of agronomic

variables and the comparison of two site-specific management strategies for wild blueberry

using conventional soil sampling, proximal soil sensors, and multispectral satellite imagery.

Two experimental sites were selected, one of varying topography and the other relatively

flat. Soil samples were collected in a 33-m grid scheme and tested for chemical and gran-

ulometric attributes. Soil apparent electrical conductivity (ECa) was collected with the

non-contact DUALEM-21S sensor (Dualem Inc., Milton, ON) and the contact Veris 3100

sensor (Veris Technologies, Salina, KS). Elevation was mapped with real-time-kinematic

(RTK) level global navigation satellite system (GNSS) receiver. Multispectral imagery ac-

quired from the SPOT6 archive was radiometrically and atmospherically corrected, and a

number of vegetation indices were derived from the image to map bare spots and compare

VIs prediction of vigor to the sampled yield. Thematic maps were predicted from the sam-

pled data using the Ordinary Kriging (OK) method and cross-validated to determine the
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strength of various data layers in predicting spatial patterns within-field. Classical statistics

and geostatistics were performed on all sampled data. A classic approach to site-specific

management through unsupervised classification of management zones was compared with

a new regression-based approach which targets four field condition scenarios. Means of all

properties in each of four scenarios were tested with ANOVA and Tukey’s post-hoc test. In

both MZA and the regression-based method, field conditions were most contrasted between

scenarios EClow & Elevhigh and EChigh & Elevlow. The regression-based method separated

data similarly or better than the MZA approach, while providing more precise areas to

develop a regression-based prescription map.
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Résumé

La culture de bleuet nain sauvage (Vaccinium angustifolium Ait.) représente une valeur

de $45 millions annuellement dans la région de Lac-Saint-Jean au Québec. Le bleuet nain

sauvage fleurit dans des conditions agronomiques hétérogènes où la récolte conventionnelle

ne peut pas. Il grandit dans les zones de topographie variante sur les sols sablonneux

et acides où la compétition avec d’autres plantes est limitée. L’établissement rhizomique

prend quelques années pour se développer, donc les endroits dénudés sont une fonction

commune de champs jeunes ou mal gérés. En raison de la variation du sol, de la to-

pographie et de la densité de culture, la production de bleuet nain sauvage profiterait

d’une gestion spécifique, où les niveaux d’apport nutritif sont adaptés aux besoins locaux,

basés sur les variabilités intra-parcellaires. Une approche classique à la gestion spécifique

est la délimitation de zones d’aménagement (ZA), constituées de propriétés agronomiques

relativement homogènes avec les niveaux uniformes de gestion. Une seconde approche

est à base d’une régression, lorsqu’une équation de régression sur ordonnance basée sur

les variables échantillonnées et une réponse de culture connue au traitement est utilisée

pour un traitement ciblé plus continu dans le champ. Cette thèse articule la cartogra-

phie thématique de variables agronomiques et la comparaison de deux stratégies de gestion

spécifique pour le bleuet nain sauvage, utilisant l’échantillonnage de sol conventionnel, les

capteurs proximales de sol et les images satellite. Deux sites expérimentaux ont été choisis,

une de topographie variante, l’autre relativement plate. Les échantillons de sol ont été

rassemblés dans un plan de grille de 33-m et testés pour les attributs granulométriques et

le produit chimique. La conductivité électrique apparente du sol (CEA) a été rassemblée

avec les capteurs DUALEM-21S et Veris-3100 afin de comparer les deux. L’élévation a été

capturé avec la technologie de positionnement global cinématique en temps réel (OTF).

L’image satellite a été acquisé de l’archive de SPOT6 et a été corrigé pour les effets ra-

diométriques et atmosphériques. Un certain nombre d’indices de végétation (VI) ont été
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dérivés de l’image pour comparer avec le rendement mesuré et afin d’identifier les endroits

dénudés. Les cartes thématiques ont été cartographiées avec la méthode d’interpolation

par krigeage, puis contre-validées afin d’évaluer la variabilité spatiale de diverses propriétés

agronomiques. Les statistiques classiques et les géostatistiques ont été exécutés sur toutes

les données échantillonnées. La délimitation de ZAs utilisant l’algorithme de classifica-

tion k-moyennes a été comparée avec une nouvelle approche à base de régression qui vise

les endroits extrêmes du champ. Les moyens de toutes les propriétés dans chacun de

quatre scénarios ont été testés avec ANOVA et le test de post-hoc de Tukey. Avec les

deux approches, les deux champs montrent le contraste le plus grand entre les scénarios

ECLowElevHigh et ECHighElevLow. La méthode basée sur la régression a séparé les données

de façon similaire ou meilleure que l’approche de ZA, tout en fournissant des zones plus

précises pour développer une carte de prescription basée sur la régression.
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Chapter 1

Introduction

In the Saguenay-Lac-St-Jean region of Quebec, 27,000 ha of land are used for wild blueberry

cultivation, producing a business industry value of over $45 million annually in Quebec [?].

Wild blueberry (Vaccinium angustifolium Aiton) is a low maintenance crop; it grows on

low shrubs in naturally acidic, sandy soils and can withstand long, harsh winters [?]. Wild

blueberries thrive when competitors are limited, which entails maintaining low pH soils and

applying herbicides to control weed growth. Though it is a perennial crop, bushes are cut

in the sprout year to produce new stems, and fruit is harvested every second year. Wild

blueberries may be cultivated in fields of heterogeneous growing conditions, with local

changes in topography, key soil properties, and crop density. With such heterogeneous

growing conditions and unique production challenges, wild blueberry cultivation should

greatly benefit from precision agriculture techniques and site-specific management.

1.1 Wild Blueberry Production Challenges

Wild blueberry responds positively to Nitrogen (N) and Phosphorus (P) applications. Her-

bicides are applied as needed to control annual and perennial weeds. Fungicides are applied

to control for Septoria leaf spot (Septoria spp.) and Valdensinia leaf spot (Valdensinia het-

erodoxa) in affected fields. N is the principle limiting nutrient in wild blueberry cultivation

[?](Lafond and Ziadi, 2011). However, excess N application will cause an overgrowth of

leaves, delayed and stunted fruiting, and disease susceptibility (Percival and Sanderson,

2004; ”Soil fertility and fertilizers for wild blueberry production”, 2013). Furthermore,

mis-application of nutrients and pesticides threaten the surrounding ecosystem. When N
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fertilization exceeds crop needs and soil pH is above average, N will volatilize as ammo-

nia from the soil and crop (Jones and Jacobsen, 2005). Volatilized ammonia deposits in

the environment as ammonium, acidifying soils (Jones and Jacobsen, 2005; Istas et al.,

1988). High N application in conjunction with heavy rainfall over sandy soils may also

cause nitrate (NO3-) leaching, threatening water quality (Favaretto et al., 2006; Saleem et

al., 2013). Site-specific nutrient management based on variability of within-field conditions

ideally reduces both the cost of inputs and environmental waste.

A secondary challenge to wild blueberry production is the occurrence of bare spots in

young and/or poorly managed fields. One study by Zaman et al. (2008) found the percent-

age of bare spots in their wild blueberry study sites varied between 30 and 50%. Bare spots

may be found in areas of varying terrain where plant growth is sparse and more exposed to

winter frost (“Filling Bare Spots in Wild Blueberry Fields”, n.d.). Wild blueberries have a

shallow rooting depth, generally less than 40 cm with lateral rhizomes (Hicklenton, 2000).

Frost will destroy blueberry rhizomes which take multiple years to recover in agriculture

fields. Producers typically manage large, contiguous bare spots separately from the rest of

the field because they require different nutrient rates and less frequent cutting. Identifying

these areas saves resources and optimizes bare spot treatment.

Due to heterogeneous growing conditions and the cultivation challenges discussed, wild

blueberry crops would benefit from within-field site-specific management (SSM), where

nutrient inputs are tailored to specific regions of the field depending on their site-specific

needs. To date, few studies have applied SSM practices to wild blueberry cultivation.

Saleem et al. (2013) delineated sub-fields, or management zones (MZs), for SSM in New

Brunswick using slope and soil property data in conjunction with bare spot maps. Similarly,

Farooque et al. (2012) developed MZs based on soil apparent electrical conductivity (ECa),

digital color photography, and sampled soil properties. Present research has established a

link between soil ECa, soil properties, and wild blueberry yield (Farooqueet al., 2012;

Saleem et al., 2013). However, previous studies have focused on the conventional MZ

delineation approach to SSM, whereby sub-field classified zones are treated with uniform

rates. This research project draws from previous studies’ utilization of topographical and

ECa data to characterize within-field variation of yield and nutrient requirements. However,

this project proposes a new approach which only identifies areas of extreme contrast within-
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field in order to develop a regression-based prescription map. Furthermore, this project

investigates the use of satellite imagery to supplement yield data and to identify bare spots

within wild blueberry fields.

1.2 Research Objectives

The goal of this study as proposed by Agriculture and Agrifood Canada was to characterize

soil spatial variability in wild blueberry fields and investigate the potential of SSM of wild

blueberry based on proximally-sensed ECa. Building upon this principle objective, the

specific objectives of this masters project were to:

1. Develop thematic maps to characterize and classify within-field variability based on

sampled soil data and measurements from proximal contact and non-contact ECa

sensors. It was hypothesized that spatial variability patterns in soil texture and

chemistry would correlate with yield patterns.

2. Evaluate the use of satellite imagery to supplement yield information and to identify

bare patches in the fields. It was hypothesized that ratio-based green vegetation

indices would correlate strongly with yield and that bare spots would be delineated

by satellite imagery.

3. Identify extreme agronomic conditions within-field using elevation and ECa data in

order to develop a regression-based prescription for SSM. It was hypothesized that

identified extreme areas would be spatially distinct as well as distinct in sampled

yield and soil attributes.

4. Compare results of this regression-based approach to the conventional MZ approach

for SSM. It was hypothesized that the regression-based approach would be more

distinct in yield and soil attributes than the MZ approach.
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Chapter 2

Literature Review: Site-Specific

Management

Site-specific management (SSM) is the practice of treating crop within a field according to

local needs. In the 1990s, advancement in variable rate (VR) seeding and fertilization equip-

ment allowed for more precise measurement and input application, spurring researchers and

farmers to map and classify within-field variation of several yield-limiting factors for SSM

practices (Sawyer, 1994; Wollenhaupt, 1994; Khosla et al., 2008).

The conventional approach to SSM in Precision Agriculture is to subdivide a field into

management zones (MZ) of relatively homogenous characteristics which influence yield

and require similar treatment levels. The methodology behind MZ delineation varies in

degree of complexity, but the fundamental procedure involves (1) selecting and sampling

possible yield-limiting field parameters; (2) separating parameters using various numerical

methods such as unsupervised classification; (3) validating separability; and finally, (4)

implementing SSM within classified zones with the prescribed treatments. Detailed in this

literature review is a description of the classic methodology of MZ delineation, followed

by its existing challenges, some proposed solutions, and finally, a newer regression-based

approach to site-specific management which producers and researchers should consider.
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2.1 Selection of Yield-Limiting Factors to Characterize

Within-Field Variation

Due to the complex biotic and abiotic factors affecting variability in yield – from seasonal

fluctuations to historic management to soil quality – MZ delineation based on yield alone

is often unreliable (Kerry et al., 2016). Yield is challenging to quantify particularly in

specialty crops where standard yield sensors are not applicable. For example, Zaman

et al. (2008) identified debris, uneven topography, and fragility of fruit as limitations to

monitoring wild blueberry yield. Instead, MZ delineation is more often based on temporally

stable soil variables which have been demonstrated to directly affect yield. Mzuku et al.

(2005) divided corn fields by productivity potential and compared soil attributes across

zones. Mallarino and Wittry (2004) investigated how traditional soil sampling captured

within-field yield variability. However, soil sampling is expensive, time consuming, and does

not necessarily capture spatial patterns if sampled at too great an interval (Bianchini and

Mallarino, 2002; Lauzon, et al., 2005). Researchers have turned to proximal and remote

sensing for quick, dense sampling of data that is auxiliary to soil and yield samples. Most

commonly soil apparent electrical conductivity (ECa), field elevation, and aerial or satellite

imagery provide high-density data sets to be used either alone, or in conjunction, with

sampled soil attributes to create thematic maps and delineate MZs when correlation with

soil attributes and/or yield are well established (Khosla et al., 2008; Kerry et al., 2016).

2.1.1 Apparent electrical conductivity

Soil ECa represents conductance through soil particles and soil water solution that envelops

soil particles (Rhoades, 1993). Conductance is higher in finer textured particles because

increased porosity in fine textured soils has a greater water to air ratio (Robain et al., 1996).

Additionally, soils with higher clay content and organic matter will have higher cation ex-

change capacity (CEC) due to their negatively charged surfaces. Conductance is higher in

soils with greater CEC because of the higher concentration and mobility of ions (Helfferich,

1962). A number of studies have demonstrated soil ECa to be correlated with soil organic

matter (SOM), CEC, moisture content, and soil texture, characteristics which directly

affect crop yield (Johnson et al. 2001; Carroll and Oliver, 2005; Kitchen and Sudduth,

2005; Whelan and McBratney, 2003; Friedman, 2005). Soil ECa is measured either with
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non-contact sensors (Hedley et al., 2004; Kachanoski et al., 1990) or with contact sensors

(Farahani et al., 2004; Halvorson et al., 1976). Non-contact sensors utilize electromagnetic

induction (EMI) to measure ECa while contact sensors are electrode-based. In non-saline

soils, ECa variability is largely due to variations in soil water content (Kachanoski et al.,

1988). When soil is saturated ECa measurements indicate water storage potential in var-

ious parts of the field (Kachanoski et al., 1990). Unsaturated non-saline soil will indicate

variations in both moisture availability and soil texture (Kitchen and Sudduth, 2005). The

depth at which soil conductivity is measured is related to the distance and configuration of

the current transmitters and receivers. In many instruments, ECa is measured at multiple

depths simultaneously, providing insight into soil characteristics through the crop rooting

zone to the parent material. Saey et al. (2009) used multiple depths of ECa to map depth

to clay in a field and Park and Vlek (2002) used multiple depths of ECa data to model soil

variability in three dimensions.

A number of studies have compared contact and non-contact ECa sensors (Serrano et

al., 2013; Sudduth, 2001; Saey et al., 2009). When paired with a global navigation satellite

system (GNSS), both types of sensors will record and provide georeferenced data almost

instantaneously. EMI sensors offer the benefit of being non-invasive. Furthermore, the

reliability of EMI sensors depends on the thermal stability of the instrument (Abdu and

Robinson, 2007). Drift is a common issue in EMI sensors as the instrument temperature

increases with time. Sudduth et al. (2001) suggest that a calibration transect be taken

which crosses other transects so any drift over time may be detected and corrected in data

post-processing. Myers et al. (2008) combines EMI and penetrative ECa sensors to further

improve accuracy.

2.1.2 Elevation and topography

Elevation and topographic information derived from elevation data (topographic wetness

index, slope, aspect) are also commonly used in MZ delineation (Khosla et al., 2002; Fraisse

et al., 2001; Vitharana et al., 2008). Topography indirectly affects yield by influencing water

holding capacity, nutrient storage, and water movement. Elevation and slope are correlated

with texture and organic matter as they affect the distribution of fine and coarse-grained

soils, in turn indirectly influencing ECa measurements.
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Kravchenko and Bullock (2000) studied how topographical information correlated with

soybean yield and soil properties. They found that elevation had the greatest influence on

yield, with higher yield in lower landscapes. They further found curvature, slope, and flow

accumulation significantly affected yield in extreme topographical locations with very high

or very low precipitation. Elevation can be measured at high precision and accuracy with

real-time kinematic (RTK) and GNSS sensors. Similarly, automated slope measurement

and mapping systems have been used to proximally measure field slope (Zaman et al.,

2008). Studies have had success relating yield to topography when combined with soil

attribute data (Kravenchenko and Bullock 2000; Nolan et al. 2000). Given the movement

of N2 in low drainage areas and NO3- leaching in coarse textured areas, Khosla et al.

(2002) developed MZs for N management based on topography, historical yield, soil color,

and aerial photographs. Additionally, a review by Vitharana et al. (2008) concluded that

combining pH, ECa, and elevation provided the most important properties for defining MZs

in combinable crops.

2.1.3 Remote sensing

Remote sensing in precision agriculture is most often applied to yield mapping. One study

by McCann et al. (1996) demonstrated that aerial photography effectively evaluated soil

color, but the focus of research remains on supplementing crop yield data (Anderson and

Yang 1996). Zaman et al. (2010) successfully developed a method for mapping wild

blueberry yield with digital color photography calibrated to ground truth data. Kerry et

al. (2016) used multispectral satellite images to delineate cranberry bogs and disaggregate

yield estimates. Multispectral imagery that includes near-infrared (NIR) reflectance has

also been used to map vegetation indices (VIs) (Aparicio et al., 2000; Shanahan et al., 2001;

Curran, 1980). VIs are ratios or linear combinations of band reflectance which serve to

quantify image vegetation properties, such as the photosynthetic activity, vigor, and other

growth factors. The near-infrared (NIR) range of reflectance is often utilized in VIs because

vegetation reflectance increases dramatically from the red to NIR wavelength ranges in

a pattern referred to as the “red edge” due to chlorophyll absorption and leaf internal

scattering (Dawson and Curran, 1998). The normalized difference vegetation index (NDVI)

is often used to characterize canopy growth of green vegetation, but other VIs have been
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developed to account for noise in reflectance data which can affect NDVI. Soil reflectance

will impact both red and NIR reflectance in a linear relationship referred to as the “soil

line” (Baret et al., 1993; Richardson et al., 1977). The modified soil-adjusted vegetation

index (MSAVI2) is one of many soil-adjusted VIs which factor in the soil line (Qi et al.,

1994b). Other VIs, such as the new atmospheric effect resistant vegetation index (IAVI),

will correct for atmospheric effects. Liu and Huete (1995) found an interaction between

the influence of soil and the atmosphere, such that a reduction in one increased the other.

They proposed the enhanced vegetation index (EVI) as a feedback to balance the two. VIs

have been well researched and are especially robust for quantifying yield in green crops like

maize, but little research has investigated satellite imagery for yield estimation in fruit (Lee

et al., 2010). Limiting factors to remote sensing are spatial resolution when dealing with

specialty crops like wild blueberries, cost of data, and quantifying yield. Mapping yield

alone is not often recommended for MZ delineation unless long term temporal patterns

have been established (Kerry et al., 2016). However, it is useful when combined with other

data layers (Lark and Stafford et al. 1998).

2.2 Data Interpolation

To predict sampled variables as continuous values on a map, geostatistical principles are

most commonly applied. A key principle of geostatistics is that points which are located

more closely together in space are more similar to each other than points further apart.

This concept is known as the principle of autocorrelation. The variogram model illustrates

the principle of autocorrelation. As lag distance between two spatial points increases, vari-

ance will increase at a decreasing rate until it reaches a constant variance. The rate at

which it increases varies, and several theoretical variogram models exist to characterize it.

The main three are the Gaussian, Spherical, and Exponential models (Table 2.1).

If no autocorrelation is apparent, the variance is a constant value at all distances and

is called a pure nugget model, where the only variance occurring is due to random nugget

effects. The theoretical variogram comprises three components: the range, the partial sill,

and the nugget. The range is the distance up to which autocorrelation exists. The partial

sill is the variance exhibited from the autocorrelation, and the nugget is the variance ex-

hibited from a random component. The partial sill and nugget together make up the total
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sill, which represents the constant variance.

Table 2.1 Three common variogram models that depict autocorrelation.
γ(h) is the variance at lag distance h; a is the distance up to which autocor-
relation exists, until constant variance is reached.

Model Equation

Gaussian γ(h) = 1− 2
3exp(−

3h2

a2
)(2.1)

Spherical γ(h) = 1
3 + 2

3(1.5ha − 0.5h
3

a3
)(2.2)

Exponential γ(h) = 1− 2
3exp(

3h
a )(2.3)

The Gaussian model increases to constant variance more slowly while the Exponential

model increases to a constant variance more quickly. The spherical model increases at rate

faster than the Gaussian model but slower than the Exponential model.

2.2.1 Ordinary kriging

The geostatistical principles outlined are utilized in the kriging method of interpolation.

The kriging method was developed in the 1951 by D.G. Krige and later finessed by Matheron

(1962). The most standard version, Ordinary Kriging (OK), is predicted as follows:

ẑOK(s0) =
n∑
i=1

wi(s0) · z(si) = λT0 · z (2.4)

where λ0 is the vector of kriging weights derived from the variogram,wi at new locations

s0, and z is the vector of observations at primary locations si (Hengl 2009). OK depends

on some basic assumptions:

1. Mean stationarity: the mean between two samples is independent of location so that

mean is constant;

2. The variogram is constant in the entire area;

3. The target variable is roughly normally distributed (Hengl, 2009).
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These assumptions are rarely met in practice. External factors cause drift in data so that

the mean stationarity is not met. This is often ignored for practical reasons. Further,

data that is not normally distributed can be transformed either with a log or box-cox

transformation.

2.2.2 Ordinary kriging vs. kriging with auxiliary variables

Proximally and remotely sensed data sets may be used as auxiliary variables in predicting

yield and soil attributes. Kriging with auxiliary variables falls into three categories: Co-

kriging (CK), Kriging with External Drift (KED), and Regression Kriging (RK). The latter

two methods yield the same results using slightly different methodologies. The simplest

method is CK which use a cross-variogram model to in addition to the variogram model in

order to predict a variable correlated to the densely sampled auxiliary variable. Co-kriging

ECa with soil properties has been successful when correlations are well established (De

Caires et al., 2015; Frogbrook and Oliver, 2003). However, Knotters et al. (1995) warns

CK relies on over-simplified relationships between variables.

The other two kriging methods, KED and RK, address the condition of mean stationar-

ity which is a required assumption for OK. Mean stationarity is seldom met in the natural

environment as external factors will cause drift in the data. KED uses auxiliary variables

to model the deterministic component in kriging. Similarly, RK adds a model of the drift to

the deterministic component in the prediction, and residuals of the model are interpolated

with simple kriging. The distinction between the two methods is that RK models drift

and residuals separately and then combines the two (Wackernagel, 2003). Regression coef-

ficients for the model may be derived from fitting generalized least squares (GLS) (Hengl,

2007). If no spatial autocorrelation exists in the residuals, the equation simply reflects a

multiple linear regression. Similarly, if there is no correlation between the auxiliary vari-

ables, the model mathematical resolves to the OK model. Regression kriging has become

a favorite method for soil thematic mapping (Minasny and McBratney, 2007). Carré and

Girard (2002) utilized multiple linear regressions of terrain attributes from elevation and

land cover attributes from multispectral bands to represent soil types and to krige residuals.

Several studies have found the prediction power of RK exceeds OK and CK (Odeh et al.,

1995; Simbahan et al., 2006).
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The question of whether or not to model drift depends on the objective of the thematic

mapping and quality of soil sampling. RK will produce a more coarse but accurate map to

OK. A drawback of RK is the processing time to determine how many and which variables

to use (Hengl et al., 2004). Additionally, output in RK may be outside the physical range if

predicted values are negative (Goovaerts, 1997). Consensus is generally that OK is simpler

to use and more accurate when spatial structure is strong in the data, but otherwise RK

with auxiliary variables can yield higher accuracy prediction maps (Zhu and Lin, 2010;

Goovaerts, 1997, Li and Heap, 2014). For the purposes of this research, OK was selected.

2.3 Data Separation & Classification

Once yield-limiting variables have been selected and measured, the data is separated using

one or more numerical techniques. For multivariate datasets, the number of variables

are reduced using principal components analysis (PCA) or partial least squares (PLS)

regression in order to determine the greatest sources of variation in the dataset.

2.3.1 Principal components and partial least squares

PCA treats multi-variate data to determine which variables contribute most to within-field

variation. PCA reduces multivariate datasets to uncorrelated vector components repre-

senting the greatest source of variation in descending order. Principal components (PCs)

reduce the overlap of multivariate data attributed to pairwise correlation and can be used

to determine the smallest possible number of significant predictors of a target variable.

Hengl (2004) recommends reduction of data to principal components prior to mapping and

classification. The top two or three components are used to classify management zones.

Fraisse et al. (2001) used PCs with highly correlated variables ECa, N, OM, CEC, and

NDVI to develop MZs that maximized variation. Moral et al. (2010) used PCs to map

field variability.

PLS is similar to PCA in that it reduces datasets and multicollinearity. However, while

PCA maximizes the variation in predictor variables, PLS maximizes the variation in both

the predictor and the target variables by maximizing covariance. Bronson et al. (2005)

utilized PLS regression analysis to determine the percentage of variation observed in ECa
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measurements that were explained by sampled soil attributes. Components may be further

separated with unsupervised classification methods.

With the classic method of SSM, MZs are delineated by classifying sampled variables

into clusters according to similarity. Numerical methods of classification may be super-

vised or unsupervised. Briefly, a distinction should be noted between management zones

and classes - multiple classes in a field may belong to the same management zone if they

share the same prescribed treatment.

Many statistical methods for clustering spatial data exist; the most common clustering

methods in the MZ delineation literature are unsupervised, specifically k-means or c-means

clustering (Fraisse et al., 2001; Li et al., 2007; Moral et al., 2010; Fridgen et al., 2000; Ortega

et al., 2007). K-means and c-means have been used interchangeably, but they consist of

slightly different algorithms. Both algorithms optimize similarity of sample points and can

be adjusted to include a fuzziness component where sample points may belong to more

than one class.

2.3.2 K-means & c-means clustering

The k-means clustering algorithm is an unsupervised classification in which an initial k

number of classes is set and k centroids are defined for each class in the data (MacQueen,

1967). With each iteration, each object in space is assigned to the closest centroid, and

the positions of the k centroids are recalculated until they no longer move. The algorithm

aims to minimize a squared error function that characterizes within-cluster variability:

J =
k∑
j=1

n∑
i=1

‖x(j)i − cj‖2 (2.5)

where ‖x(j)i − cj‖ is a chosen distance measure between a data point x
(j)
i and the cluster

center cj is an indicator of the distance of the n data points from their respective cluster

centers (MacQueen, 1967). The algorithm minimizes within-cluster variability and maxi-

mizes diagonal distance between the mean cluster values of each data layer. The original

hard k-means-clustering algorithm has since been adapted to include a fuzziness compo-

nent where points may belong partially in multiple classes (Gruijter and McBratney, 1988;



2 Literature Review: Site-Specific Management 27

Boydell and McBratney; 2002; Lark and Stafford, 1997). The free software FuzME (v.3.0,

Australian Centre for Precision Agriculture, Sydney, Australia) applies the fuzzy k-means

algorithm and retains the option for hard k-means clustering. This algorithm is commonly

used in MZ delineation (Taylor et al., 2002; Vrindts et al., 2005; Davatgar et al., 2012).

Another popular classification software, Management Zone Analyst (MZA) (v.1, US

Department of Agriculture, Washington, D.C., USA) employs unsupervised classification

with the fuzzy c-means algorithm (Fridgen et al., 2004). Fuzzy c-means was developed by

Dunn (1973) and fine-tuned by Bezdek (1984) and is essentially identical to fuzzy k-means.

The algorithm seeks to minimize the sum of squared distances from all data points in a

cluster to the cluster center:

Jm =
N∑
i=1

C∑
j=1

umij‖xi − cj‖2, 1 ≤ m <∞ (2.6)

where m is any real number greater than 1, uij is the degree of membership of xi in the

cluster j, xi is the ith of d-dimensional measured data, cij is the d-dimension center of the

cluster, and ‖∗‖ is any norm expression the similarity between any measured data and the

center (Bezdek, 1984).

Like k-means, the algorithm updates cluster centers cj with every iteration until a ter-

mination criterion between 0 and 1 is reached. The addition of the vector umij distinguishes

fuzzy c-means from hard k-means because it provides a weighting to the point’s associa-

tion with a cluster. MZA has been used in many precision agriculture studies (Moral et

al. 2010; De Caires et al. 2015; Zhang et al., 2010). The software includes summaries of

the fuzziness performance index (Odeh et al., 1992) and normalized classification entropy

(Bezdek, 1984) which allows the user to decide how many classes they consider optimal.

2.3.3 Hierarchical classification

Hierarchical classification is less commonly used in MZ delineation. More often an agglom-

erative hierarchical classification is used, where two clusters are merged where they have

the smallest distance between two points in a space. Ward’s method of hierarchical clas-

sification merges clusters when the smallest increase in the combined error sum of squares
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from a one-way univariate ANOVA for each variable is minimized. It has been used to

separate yield performance classes (Farooque et al. 2012). Fleming et al. (2000) used this

technique to separate ECa data into classes prior to interpolation.

2.3.4 Neighborhood Search Analyst

An alternative method of unsupervised classification which accounts for spatial structure

is the Neighborhood search analyst (NSA). NSA groups adjacent cells, ranking classes ac-

cording to their strength of similarity. The algorithm calculates the field mean square error

(MSE), then iteratively clusters adjacent cells and re-calculates the field MSE (Dhawale

et al., 2014). If the new MSE is less than the MSE of the entire field, more neighboring

cells are added until adding new cells no longer results in a lower MSE. Then a new cluster

search is initiated until the criteria is met again. When clustering no longer reduces the

MSE of the entire field, the algorithm ends. NSA differs from the more commonly used

MZA in that cells are not necessarily assigned to a class if they do not meet a certain degree

of similarity. Instead classes are ranked in NSA by how distinct they are, producing more

site-specific regions of similarity.

2.4 Validation of Classes or Management Zones

MZs are finalized by validating the significant difference between classes. Attributes tested

for significant difference include soil chemical attributes, texture, and yield (De Caires,

2015; Urretavizcaya, 2015). Yield and yield limiting variables can be tested with a two-

way analysis of variance (ANOVA) to determine if the classes are significantly different

(Urretavizcaya et al., 2015; Farooque et al., 2012). Tukey’s post-hoc means comparison

test uses ANOVA results to compare zones and individual variables. The Tukey test is

useful when a large set of variables are being compared.

The Pearson correlation coefficient measures linear correlation between two variables.

Pearson’s correlation is ubiquitously used in data analysis, but it is limited because it

evaluates linear relationships. Prior to correlation analysis, a box-cox transformation may

be applied to normalize data so that the linear model is applicable (Box, 1964). The box-

cox transformation is preferable to a log transformation because it allows for more subtle

changes in the data distribution. Pearson’s correlation is used to evaluate the correlation
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among soil parameters and yield in many studies as a preliminary step in MZ delineation

(e.g. Moral, 2010; Farooque, 2012).

2.5 Implementation with Variable Rate Technologies

Site-specific management is implemented with variable rate (VR) applicators. The au-

tomatic section control feature of many VR technologies allows spreaders, planters and

sprayers to automatically turn on, or off, based on their location in the field. When properly

calibrated, these technologies allow for greater precision of application and can accommo-

date irregularly shaped areas. With the classic approach to MZ delineation, VR applicators

apply uniform nutrient levels in each delineated zone. However, VR applicators are capa-

ble of applying a more continuously variable treatment through the field using isolines. A

regression-based approach to SSM would ultimately produce a surface prescription map in

which treatment applied is proportional to changes in field condition. The variations in

this output surface can then be converted to isolines and input into a VR applicator for

more emprical and precise treatment.

2.6 Persisting Challenges in Site-specific Management

While SSM and MZ delineation have been developed and thoroughly researched for decades,

debate remains over the technical feasibility of SSM (Tisseyre and McBratney, 2008). Apart

from the cost of VR equipment, sampling and analysis can be time consuming and expen-

sive. The expectation is that savings attributed to reduced inputs and/or increased yields

will make up for the costs of implementing SSM. A number of researchers have attempted

to address financial concerns by developing low-cost, simple methodologies for SSM (Tay-

lor et al., 2007) in an effort to make precision agriculture practices more accessible and

wide-spread.

Accessibility of precision agriculture practices is an important step to noticeable and

lasting environmental mitigation. While individual farms may benefit economically from

SSM, the environmental benefits are negligible unless SSM is adopted on a wide scale. To

start, McBratney et al. (2005) suggest studies of SSM precision agriculture be applied to

whole farms rather than single fields. Additionally, more studies should include the assess-



2 Literature Review: Site-Specific Management 30

ment of environmental indicators before and after site-specific treatment in order to quantify

environmental effects. Furthermore, research should focus on developing SSM strategies

that are replicable and scalable for greater widespread use, should the strategies be found

to be environmentally beneficial. McBratney et al. (2005) recognize Precision Agriculture

(PA) strategies are tailored to individual farms but the development of decision support

systems (DSS) and adaptable SSM strategies would assist farmers in adopting PA practices.

Finally, recent debate questions the efficacy of subdividing fields into zones with cate-

gorical attributes. Fuzzy classification recognizes that attributes can belong in more than

one class, but MZ delineation still subdivides fields into smaller uniform application sites.

The NSA clustering algorithm by Dhawle et al. (2014) suggests that entire fields need

not be subdivided into MZs to identify regions of distinction. Data separated to maximize

contrast of field conditions is more desirable when enacting regression-based site-specific

management. With this in mind, this study proposes a new regression-based approach to

separating topographical and ECa data to be used to develop a continuous prescription map

proportional to the changes in field condition. This regression-based prescription based on

field conditions is not only more empirical, it is also less computationally intensive and has

the potential to be streamlined into a DSS for producers.
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Chapter 3

Materials & Methods

3.1 Site Description

For the purposes of this study, two experimental fields were selected (Fig. 3.1). The ex-

perimental blueberry fields lie 6 km southwest of Normandin, QC (48.8369◦ N, 72.5279◦

W), north of the Chamouchouane River. Soil here is primarily podzolic, mixed with finer

eolian deposits. Field 140b (11.3 ha) represents a uniform low-lying topography ranging

from 123–125 m and Field 21 (13.2 ha) represents a more heterogeneous topography with

elevation ranging from 127–136 m.

3.2 Historic Yield and Management Practices

During the autumn of the crop year, the study sites were mowed in alternating strips so

that un-mowed strips would retain snow on the field. In the sprout year, the blueberry

plants were pruned in springtime, and fertilizer was applied uniformly. Herbicides were

applied uniformly as well as in spot treatments where weed presence was visually assessed.

Insecticides were applied to control for Altica sylvia mallcoch. No pesticides or fertilizers

were applied in the harvest year. Nitrogen (N) applications varied season to season as illus-

trated in Tables 3.1 & 3.2. Leaf analyses were performed in the growth year. Phosphorus

(P) and boron (B) were applied when leaf analyses indicated nutrient deficiency.

Yield in 2016 was a record high for wild blueberry producers in Lac-Saint-Jean. Despite
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Fig. 3.1 Experimental fields 21 and 140b with soil/yield sampling locations
and elevation/ECa sensor track.



3 Materials & Methods 33

Table 3.1 Field 21 summary of yield and treatments 2009-2016.

Year Average Yield N P K B Herbicide Herb. Rate

(kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1)

2016 6,398 – – – – – –

2015 – 30.2 20.1 20.1 0 Velparx 2

2014 4,530 – – – – – –

2013 – 30.5 0 0 0.7 Velpar 2

2012 3,313 – – – – – –

2011 – 26.3 21 15.8 0 Velpar 2

2010 1,337 – – – – – –

2009 – NA NA NA NA Prononey 2

NB: Fertilizer is applied as a mix of N-P-K ratio. Boron is added when leaf analyses show it to
be deficient.
x Active ingredient: Hexazinone (DuPontTM)
y Active ingredient: Hexazinone (DuPontTM)

Table 3.2 Field 140b summary of yield and treatments 2009-2016.

Year Average Yield N P K B Herbicide Herb. Rate

(kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1)

2016 3,788 – – – – – –

2015* – NA NA NA NA – –

2014* 4,250 NA NA NA NA – –

2013 – 30.5 0 0 0.7 Velparx 2

2012 2,052 – – – – – –

2011 2,931 – – – – – –

2010 – 14.5 11.7 8.6 0.4 Prononey 16

2009 4,020 – – – – – –

NB: Fertilizer is applied as a mix of N-P-K ratio. Boron is added when leaf analyses show it to
be deficient.
*Penergetic was an experimental fertilizer/herbicide mix which resulted in 75% loss of crop.
x Active ingredient:Hexazinone (DuPontTM)
y Active ingredient: Hexazinone (DuPontTM)
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its more heterogeneous topography, Field 21 has historically been more productive than

Field 140b. In circumstances of low yield, the producer will extend the cycle to a third

year, as the producers did in Field 140b in 2011 and 2012 (Table 3.2). Producers tested

Penergetic, a commercial product, as a replacement to fertilizer and herbicide and lost 75%

of crop in the 2014-2015 cycle.

3.3 Description of Data Layers

Data layers can be divided into proximally and remotely sensed data, soil samples analyzed

in the lab, and sampled yield (Fig. 3.2). The selected data layers are meant to encompass

the various properties and processes which affect yield. Figure 3.2 summarizes the interre-

lationships between crop yield, sensor data, and chemical and granulometric data.

Soil and yield samples were obtained in both fields with a 33 x 33 m (0.1-ha) grid

sampling scheme for a total of 136 points in Field 21 and 116 points in Field 140b. Yield

samples were collected on August 8-9, 2016 before the fields were harvested. Blueberries

were combed from a square meter of blueberry bush at each point, and the weight of the

fresh blueberries was measured and recorded on site for every sample. Satellite imagery

was acquired on August 11, 2016. ECa was sampled the last week of September 2016, just

after mowing. Soil samples were collected one week later in the beginning of October 2016

at two depths (0-5 cm and 5-15 cm).

3.3.1 Laboratory analysis of chemical and granulometric soil properties

Soil samples were dried and ground to 2 mm for textural and chemical laboratory anal-

ysis. All soil samples were weighed. Both depths were analyzed for nutrient content. A

Mehlich-III soil extractant was used to extract nutrients (Ziadi and Tran 2007). P content

was determined by colorimetry (Lachat Instruments, model 8500, series 2, Loveland, USA)

(Murphy and Riley 1962). Potassium (K) content was determined with spectrophotom-

etry flame emission (Isaac and Kerber, 1971). Calcium (Ca) and Magnesium (Mg) were

determined with atomic absorption spectrophotometry (Agilent Technologies, model 200,

series AA, Santa Clara, USA). Total Carbon (C) and Nitrogen (N) content were evaluated

with the Elemental vario MAX CN analyzer (Elemental Analysensysteme, GmbH, Hanau,
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Fig. 3.2 Depiction of data layers and their relationships. TWI is the to-
pographic wetness index derived from elevation and slope data. ECa is the
soil apparent electrical conductivity captured by two sensors, DUALEM and
Veris. Multispectral SPOT6 is the multispectral satellite image, comprising
four wavelength bands: R (red), G (green), B (blue), and NIR (near infrared).
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ement exposure. Soil pH indirectly influences yield by limiting weeds.
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Germany), and soil organic matter (S.O.M.) was calculated from the total C percentage.

Soil texture was analyzed for all soil samples at the 5-15 cm depth using the pipette

method (Day, 1965). Texture was categorized in terms of g per kg of very coarse sand,

coarse sand, medium sand, fine sand, very fine sand, total silt, and total clay according to

the Canada Soil Survey Committee standards (Sheldrick, 1984). Descriptive statistics on

all attribute data were summarized.

3.3.2 Apparent electrical conductivity sampling

ECa was collected with two sensors, the DUALEM-21S (Dualem Inc., Milton, ON) and

the Veris 3100 (Veris Technologies, Inc., Salina, KS). Measurements were taken at 1 Hz.

The depth of investigation of ECa measurements depends on the configuration of the trans-

mitter and receiver coils. The DUALEM-21S has one transmitter coil and four receiving

coils to capture four depths. Coils arranged in the horizontal co-planar (HCP) receive

lower depths than the perpendicular co-planar (PRP). Additionally, coil spacing affects the

depths received. The DUALEM-21S configuration has two PRP coils at 1.1 m and 2.1 m

from the transmitter, and two HCP coils 1 m and 2 m from the transmitter (Fig. 3.3).

Receiver coils closer to the transmitter have a shallower depth of investigation. Depth is

determined at 70% of the cumulative response in a column of heterogeneous soil (Table 3.3).

Transects were spaced about 10-m apart, guided with a GPS steering guidance system.

The DUALEM-21S was run for twenty minutes before being calibrated to reduce the pos-

sibility of drift in sensor data. It was pulled on a sled by a John Deere Gator at a relatively

constant speed to maximize contact with the ground. At the end of sampling, the sensor

was passed over previous transects so that data could be reviewed for evidence of drift.

The Veris 3100 is a galvanic contact resistivity sensor and derives conductivity from its

inverse relationship with electrical resistivity. The Veris 3100 is configured with six rolling

coulter electrodes (Lund et al., 1999). Electrical current flows through the second and fifth

coulters. The voltage drop is measured between the third and fourth coulters and first and

sixth coulters (Sudduth et al., 2003). The electrodes are equally spaced in a Wenner array

so that resistance is measured at two depths (Fig. 3.4).
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Fig. 3.3 Dipole arrangement of DUALEM EMI sensor. T is the transmitter
coil. H1 and H2 receivers receive the induced current in horizontal co-planar
(HCP) arrays at 1-m and 2-m respectively. P1 and P2 receiver receive the
current in perpendicular co-planar (PCP) arrays at 1.1-m and 2.1-m respec-
tively. Receivers at a further distance from the transmitter coil capture ECa

at a greater depth.

The depth of investigation is related to about one-third the outer electrode spacing

(Rhoades, 1993) and summarized in Table 3.3. Sensor transects were 3-m apart, and

measurements were taken at a density of 1 sample/s. The sensor was pulled by an SUV at

a relatively constant speed(Fig. 3.5).

Table 3.3 Derived depths of ECa instruments where cumulative response is
70% (Mat Su, 2016).

Measurement Effective sensing depth (m)

Veris Shallow 0.30

Veris Deep 0.90

DUALEM PRP 1.1 0.54

DUALEM PRP 2.1 1.03

DUALEM HCP 1.0 1.55

DUALEM HCP 2.0 3.18
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Fig. 3.4 Veris 3100 configuration of six roller coulters, one pair which passes
a current through the soil and two pairs which measure resistance to extract
ECa at two depths (Oguri et al., 2009).
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Fig. 3.5 Veris 3100 set up. Photo credit to Agriculture and Agrifood
Canada.

3.3.3 Satellite imagery

A multi-spectral satellite image of the fields was obtained from the Airbus SPOT-6 satellite

archive (Airbus Defense and Space, Ottobrunn, Germany), for the month of August 2016

- shortly after yield sampling occurred and a month before soil sampling. The SPOT-6

satellite measures reflectance in five wavelength ranges referred to as bands (Table 3.4).

The SPOT-6 images were delivered georeferenced, corrected for off-nadir acquisition and

terrain effects using the standard Reference3-D model for ground corrections (Astrium Ser-

vices, 2013). The panchromatic and multispectral images were simultaneously acquired,

allowing for geospatially accurate pan-sharpening of the satellite images to 1.5-m resolution.

The pansharpened image was radiometrically and atmospherically corrected in ENVI

image analysis software (Exelis, Inc., Boulder, CO). Several broadband greenness vegeta-

tion indices (VIs), which detect vegetation and vigor were calculated from the multispectral

bands using the band math function (Table 3.5). Many of the VIs compare changes in the

near-infrared and red bands (e.g., NDVI, DVI, TDVI, MSR, RDVI). NDVI is a widely used

VI because it is resistant to topography changes and sensitive to biomass, while TDVI is
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Table 3.4 SPOT Multi-spectral and Panchromatic Image wavelength bands.

Band Wavelength Range (nm)

Pan 450 – 745

Blue 450 – 520

Green 530 – 590

Red 625 – 695

Near-infrared 760 – 890

less saturated than NDVI at close canopy and may detect subtler variations. Other VIs

utilize ratios between the near-infrared and green bands (e.g., GARI, GDVI, GRVI), in

order to detect a greater range of chlorophyll concentrations. A number of indices which

account for the soil line were tested (e.g., MSAVI2, OSAVI, MNLI) in order to reduce noise

attributed to soil reflectance. The leaf area index (LAI) was also tested to characterize

canopy cover.

In addition to a number of ratio-based indices, Principal Components Analysis (PCA)

was performed in ENVI to transform the band space and reduce the multispectral image to

two or three principal components which maximize variation and reduce noise. The second

principal component is often recommended as a seasonal VI (Eklundh and Singh, 1993;

Townshend, 1985). Once all VIs were calculated, sample points were imported into ENVI

as regions of interest so that the values of the VIs at the sample points could be extracted

and compared statistically to other measured attributes at the same location. Pearson’s

correlation coefficient was calculated for VIs and yield to assess how well VIs correlated with

sampled yield. The best performing VI was classified by the Jenks optimization method

to delineate bare patches within the field (Jenks, 1967). The effectiveness of bare patch

prediction was assessed by calculating Pearson’s correlation with a binary classification of

sampled yield where yield values of 0 kg ha-1 were assigned a 0 and all other values were

assigned a 1.
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Table 3.5 Summary of ratio-based vegetation indices (VIs) calculated from
SPOT6 satellite image. NIR is the near-infrared wavelength range, R is the
red wavelength range, G is the green wavelength range, and B is the blue
wavelength range. γ is a weighting function for aerosol conditions in the
atmosphere. L the canopy background adjustment factor.

Name Formula Reference

Difference Vegetation = NIR−R Tucker (1979)

Index (DVI)

Enhanced Vegetation = 2.5 ∗ (NIR−R)
NIR+6∗R−7.5∗B+1 Huete et al.

Index (EVI) (2002)

Green Gitelson,

Atmospherically = NIR−[G−γ(B−R)]
NIR+[G−γ(B−R)] , γ = 1.7 Kaufman, and

Resistant Index (GARI) Merzylak (1996)

Green Difference = NIR−G Gitelson and

Vegetation Index (GDVI) Merzlyak (1998)

Green Ratio = NIR
G Sripada et al.

Vegetation Index (GRVI) (2006)

Leaf Area Index (LAI) = (3.618 ∗ EV I − 0.118) Boegh et al. (2002)

Optimized Soil Rondeaux,

Adjusted Vegetation = (NIR−R)
(NIR+R+0.16) Steven, and

Index (OSAVI) Baret (1996)

Modified Non-Linear = (NIR2−R)∗(1+L)
NIR2+R+L

, L = 0.5 Yang, Willis,

Index (MNLI) and Mueller (2008)

Modified Simple Ratio (MSR) = (NIR/R)−1√
NIR/R+1

Chen (1996)

Normalized Difference Rouse et al.

Vegetation Index (NDVI) = NIR−R
NIR+R (1973)

Renormalized Roujean and

Difference Vegetation = NIR−R√
NIR+R

Breon (1995)

Index (RDVI)

Transformed Difference =
√

0.5 + NIR−R
NIR+R Bannari, Asalhi,

Vegetation Index (TDVI) and Teillet (2002)

Modified Soil Qi et al.

Adjusted Vegetation =
2∗NIR+1−

√
(2∗NIR+1)2−8∗(NIR−R)

2 (1994b)

Index (MSAVI2)
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3.4 Map Interpolation

3.4.1 Pre-processing

Elevation and ECa data were averaged to 1 value per 5 s. Data distribution was examined

for normality and values outside of two standard deviations were removed. Slope and TWI

were calculated from the elevation data using SAGA GIS (v.6.3, System for Automated

Geoscientific Analyses, Hamburg, Germany). TWI models field water storage based on

slope and catchment area modeling (Beven and Kirkby, 1979).

3.4.2 Spatial prediction

Sampled chemical, granulometric, ECa, and elevation data were interpolated to three-

dimensional, continuous surfaces using the Ordinary kriging (OK) method in R statistical

software (R Foundation for Statistical Computing, Vienna, Austria). Predicted surfaces

were cross validated with the original samples to assess strength of the prediction. Geo-

statistics were calculated on all data layers. An R script utilizing the ‘gstat’ package

(Pebesma and Graeler, 2017) standardized the process of interpolation as follows:

1. The data was automatically fit with a box-cox transformation (Box, 1964). The

‘forecast’ package in R (Hyndman et al., 2017) applies Guerrero’s (1993) method

to assign a transformation value which minimizes the coefficient of variation for the

dataset.

2. A theoretical variogram model was fitted to the experimental variogram of the box-

cox-transformed data. Possible models were gaussian, spherical, exponential, or pure

nugget. The fitting method used to fit the theoretical variogram to sampled data was

an iterative reweighted least squares estimation which prioritized variances of point

pairs at shorter lag distances in the experimental variogram (Pebesma and Graeler,

2017). Range, nugget, partial sill, and total sill were calculated for the best fit model.

3. The nugget to sill ratio was calculated from the theoretical nugget and partial sill

variances to determine the degree of spatial structure (Camberdella et al., 1994). A

smaller nugget to sill ratio indicates stronger autocorrelation in the dataset. A ratio

of 100% is indicative of a pure nugget and considered a random spatial structure with

no autocorrelation.
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4. The fitted variogram was used in the OK method with the box-cox transformed data.

5. Predicted maps were cross validated with the leave-one-out (LOO) or k-fold method.

LOO is an iterative process where the value of a point is predicted using all of the

dataset with the exception of that point. This was repeated for every point in the set

so that the error could be estimated. The k-fold method divided the original data

set into k parts to determine error. The k-fold method was used with dense ECa and

elevation data, where k=10.

6. The root mean square prediction error was calculated:

RMSE =

√√√√√1

l

l∑
j=1

[ẑ(x, y)− z∗(x, y)]2 (3.1)

where l is the number of validation points, ẑ(x, y) is the estimate value at location

(x, y), and z∗(x, y) is the actual observation at location (x, y). RMSE quantifies

the accuracy of a prediction map. To compare RMSE among several variables, it is

divided by the total variation sz:

RMSESD =
RMSE

sz
(3.2)

A standardized RMSESD value around 40% is considered satisfactorily accurate. A

value greater than 71% signifies that less than 50% of variability of the validation

points were represented in the model, so a majority of points are inaccurate (Hengl,

2009, p. 25).

7. The kriging output grid was back-transformed from the box-cox transformation to

initial values so that predicted vs. sampled values could be plotted and compared.

A cross validation plot was generated with a best fit line using the back-transformed

values. Correlation coefficients were calculated for both the transformed and the

back-transformed data.
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3.5 Correlation Analysis & PLS

Pearson’s correlation matrix was calculated with all box-cox transformed soil properties,

ECa layers, and yield. The sample Pearson correlation coefficient (r) measures linear cor-

relation between two sampled variables. It is defined as:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(3.3)

where n is the sample size, xi and yi are individual sample points indexed in i, and x̄ and

ȳ are the sample means. Significance of the correlation was tested using,

t =
r√
1−r2
N−2

(3.4)

where N is sample size, r is the correlation coefficient, and t is the distribution of two

perfectly correlated variables given the population.

Data was also analyzed with partial least squares (PLS) regression with the PROC

PLS function in SAS Statistical software (SAS Insitute Inc., Cary, North Carolina, USA)

to determine sources and degree of variation in predictor variables ECa, topography, and

VI and dependent soil attributes. Five PLS models were analyzed in each field, separating

dependent variables by chemical attributes (0-5 cm) and (5-15 cm), overall texture, sand

texture, and yield. Wold’s criterion (1994) was used to determine the extent of contribution

a variable makes to the PLS model.

3.6 Classification & Data Separation

Data layers were initially classified using fuzzy c-means in the software Management Zone

Analyst (MZA)(v.1, US Department of Agriculture, Washington, D.C., USA). A second

data separation methodology for regression-based site-specific management was applied

which equally weights elevation and Shallow ECa data. Veris ECa shallow values and

elevation values were extracted from their raster grids to the sample points so they could

be compared with other sample attributes. Elevation vs. Shallow ECa values were then

projected onto a scatter plot, and ten points in the four corners of the scatter plot were
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sub-set to represent four extreme growing conditions of ECLowElevLow, ECLowElevHigh,

ECHighElevLow , ECHighElevHigh. Shallow ECa was selected because its depth of response

(30 cm) most closely corresponds with the depth of soil samples. A Two-way Analysis of

Variance (ANOVA) was calculated to compare the four scenarios for significant differences.

Additionally, Tukey’s post-hoc test was used to compare the significant difference of the

means of individual soil properties in the four scenarios.
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Chapter 4

Results & Discussion

4.1 Laboratory Analyses

Summary statistics of the laboratory analyses are presented in Tables 4.1 & 4.2. Re-

sults indicate considerable variability in soil properties, except for total sand (CV21=8.6%,

CV140b=3.4%) and pH (CV21=6.0%, CV140b=3.5%). While total sand is not highly variable,

sand grain size (e.g. very fine vs. very coarse) does vary considerably in both fields.

The high variability among soil properties and yield indicate both sites could benefit

from site-specific management. One property that stands out is soil pH(Tables 4.1 and 4.2).

Soil pH is important in wild blueberry for controlling weed growth, and the optimal range

of pH is between 4.6 and 5.2 (NBDAAF, 1998). The average pH in both fields is within

the acceptable range, but the maximum pH exceeds the optimal range. For example, the

thematic pH maps of Field 21 (Fig. 4.3) show a concentrated area of the field where pH

is 5.5 - 5.6, above optimal range. This same area coincides with finer texture soil. Excess

N application here has a greater risk of volatilization. This is one example of how tailored

nutrient application could theoretically benefit the field. N may be limited in this area to

reduce the risk of volatilization, and/or site-specific sulfur application may be considered

to lower pH.

Similar recommendations for nutrient prescription of N, P, or K cannot be drawn from

the soil sample data because crop nutrient levels for wild blueberry are presently determined

with leaf analysis rather than soil analysis . Soil analyses were used for this project instead
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Table 4.1 Field 21 summary statistics of chemical and granulometric soil
attributes; n is the sample size, STD is standard deviation, and CV% is coef-
ficient of variation.

Unit n Min Max Mean STD CV%

Soil Particle size (5-15 cm)

Clay g kg−1 136 12.0 37.3 23.5 5.2 22.1

Silt g kg−1 136 35.4 345.8 119.7 75.6 63.1

Sand g kg−1 136 636.4 948.1 856.8 74.1 8.6

Very coarse sand g kg-1 136 0.0 76.6 12.0 13.7 113.7

Coarse sand g kg−1 136 0.9 333.7 99.9 88.8 88.9

Medium sand g kg−1 136 3.7 570.1 284.8 163.2 57.3

Fine sand g kg−1 136 105.2 679.8 312.2 123.2 39.5

Very fine sand g kg−1 136 25.7 509.0 147.8 130.3 88.1

Chemical analysis (0-5 cm)

S.O.M. g kg−1 136 17.9 489.6 169.6 99.5 58.7

Total N % 136 0.06 1.50 0.46 0.27 59.1

Soil pHwater – 136 3.8 6.9 4.7 0.5 10.6

P mg kg−1 136 5.5 265.2 63.4 54.0 85.1

K mg kg−1 136 13.6 388.8 107.3 70.1 65.3

Total C % 136 1.2 32.0 11.1 6.5 58.7

Ca mg kg−1 136 104.9 564.2 361.1 76.4 21.2

Mg mg kg−1 136 5.3 410.4 107.3 71.9 67.0

Al mg kg−1 136 489.5 2,104 889.0 287.0 32.3

Fe mg kg−1 136 60.0 5,370 1,502 932.6 62.1

Chemical analysis (5-15 cm)

S.O.M. g kg−1 136 9.7 59.4 19.7 8.1 40.9

Total N % 136 0.04 0.17 0.07 0.02 35.5

Soil pHwater – 136 4.5 6.5 5.1 0.3 6.0

P mg kg−1 136 1.1 249.1 67.0 48.5 72.3

K mg kg−1 136 8.1 256.8 38.7 25.0 64.4

Total C % 136 0.64 3.88 1.29 0.53 40.93

Ca mg kg−1 136 106.8 644.3 295.3 103.6 35.1

Mg mg kg−1 136 2.7 118.2 7.9 10.0 127.8

Al mg kg−1 136 749.9 2238 1653 260.3 15.7

Fe mg kg−1 136 19.3 1393 148.2 155.9 105.2
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Table 4.2 Field 140b summary statistics of chemical and granulometric soil
attributes; n is the sample size, STD is standard deviation, and CV% is coef-
ficient of variation.

Unit n Min Max Mean STD CV%

Soil Particle size (5-15 cm)

Clay g kg−1 116 9.9 38.1 26.5 6.1 23.1

Silt g kg−1 116 19.2 257.6 77.5 30.5 39.3

Sand g kg−1 116 718.9 968.4 896.0 30.2 3.4

Very coarse sand g kg−1 116 1.4 73.1 25.4 15.3 60.0

Coarse sand g kg−1 116 12.0 335.3 170.1 88.9 52.3

Medium sand g kg−1 116 81.6 552.5 356.8 103.1 28.9

Fine sand g kg−1 116 99.8 633.7 280.3 126.2 45.0

Very fine sand g kg−1 116 17.0 271.9 63.3 49.3 77.9

Chemical analysis (0-5 cm)

S.O.M. g kg−1 116 17.3 391.3 135.0 77.6 57.5

Total N % 116 0.08 1.19 0.44 0.25 56.7

Soil pHwater – 116 3.7 5.6 4.5 0.4 7.8

P mg kg−1 116 3.0 411.6 38.7 48.0 124.2

K mg kg−1 116 16.1 290.3 92.9 56.1 60.4

Total C % 116 1.1 25.6 8.8 5.1 57.5

Ca mg kg−1 116 107.2 691.5 386.8 99.1 25.6

Mg mg kg−1 116 6.7 256.3 77.5 53.2 68.7

Al mg kg−1 116 477.3 2,655 939.1 293.9 31.3

Fe mg kg−1 116 3.5 1,805 465.4 338.2 72.7

Chemical analysis (5-15 cm)

S.O.M. g kg−1 116 3.0 63.0 17.8 8.7 48.8

Total N % 116 0.02 0.22 0.08 0.03 35.0

Soil pHwater – 116 4.6 5.8 5.0 0.2 3.5

P mg kg−1 116 1.1 134.3 24.3 21.4 88.0

K mg kg−1 116 3.4 95.2 40.4 18.4 45.6

Total C % 116 0.20 4.12 1.17 0.57 48.8

Ca mg kg−1 116 41.5 390.5 213.7 79.0 37.0

Mg mg kg−1 116 1.7 23.5 6.4 2.9 45.6

Al mg kg−1 116 1307 2925 2015 273.4 13.6

Fe mg kg−1 116 7.9 1000 205.8 164.5 79.9
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of leaf analyses in order to investigate relationships between soil ECa, soil properties, and

yield. Prescribed nutrient level needs will be determined in field trials, detailed further in

the concluding chapter.

4.2 Proximal Sensor Data

An initial objective of the project was to compare the results from the DUALEM and Veris

sensors. Prior to filtering, the DUALEM data showed more noise, likely due to contact

with air and changes in driving speed. However, the datasets were comparable in dis-

tribution post-filtering. The coefficient of variation (CV) values reflect roughly normally

distributed data among the ECa measurements except in the Veris Deep layer which was

poorly distributed and skewed left in both fields (Tables 4.4 & 4.3). Both sensors satis-

factorily captured ECa variability in the field. Pearson’s correlation analysis showed Veris

Shallow (0.30 m depth) to be significantly correlated (p < 0.0001) with DUALEM PRP1.1

(0.54 m depth) and PRP2.1 in both fields (1.03 m) (Table 4.5).

Both the Veris and DUALEM datasets returned a number of negative ECa values (Ta-

bles 4.3 & 4.4). Negative ECa values are sometimes considered anomalous and filtered, but

the negative values belonged to the normally distributed data. In fact, both PRP 1.1 and

Veris Deep means were negative. Overlapping transects collected at the beginning and end

of the field sampling were similar, confirming there was no sensor drift in the DUALEM

measurements from the beginning to the end of the data collection process. Even after off-

set, both sensors showed low ECa values, indicating a very sandy soil. This was validated

by the granulometric analysis of sampled soil. Higher ECa values in HCP1.0 and HCP2.0

may suggest a finer texture parent material under the sandy soil surface. ECa values are

also higher in Veris Deep than Veris Shallow. However, further conclusions of soil strati-

fication cannot be drawn from the data without further three dimensional analyses. For

the purposes of this project, the spatial relativity of ECa values is of interest, so both the

Veris depths and all the DUALEM depths were offset by their minimum values to correct

for negative readings, and the relative field variation was analyzed.
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Table 4.3 Field 21 summary statistics for ECa data and derived topographic
attributes; n is the sample size, STD is the standard deviation, and CV% is
the coefficient of variation. Offset values are the original sensor values plus
the minimum value collected from all depths. The offset was applied to all
layers so that depths could be compared.

Unit n Min Max Mean STD CV%

HCP1.0 mS m−1 2005 -1.07 4.49 2.90 0.73 –

HCP1.0 offset mS m−1 2005 0.32 5.88 4.29 0.73 17.04

PRP1.1 mS m−1 2005 -1.39 0.70 -0.05 0.14 –

PRP1.1 offset mS m−1 2005 0.00 2.08 1.34 0.14 10.7

HCP2.0 mS m−1 2005 1.50 3.48 2.46 0.31 –

HCP2.0 offset mS m−1 2005 2.88 4.87 3.85 0.31 8.06

PRP2.1 mS m−1 2005 -0.28 0.80 0.27 0.11 –

PRP2.1 offset mS m−1 2005 1.11 2.19 1.66 0.11 6.90

Elevation m 1749 127.5 136.6 132.2 2.55 1.93

Slope deg 17493 0.00 25.4 1.91 2.56 134.1

TWI – 17517 -5.14 13.6 6.45 3.33 51.65

Veris Shallow mS m−1 6850 0.14 0.68 0.30 0.08 –

Veris Shallow offset mS m−1 6850 3.05 3.59 3.21 0.08 2.45

Veris Deep mS m−1 6850 -2.92 3.33 -0.02 0.64 –

Veris Deep offset mS m−1 6850 0.00 6.23 2.89 0.64 22.01
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Table 4.4 Field 140b summary statistics for ECa data and derived topo-
graphic attributes; n is the sample size, STD is the standard deviation, and
CV% is the coefficient of variation. Offset values are the original sensor values
plus the minimum value collected from all depths. The offset was applied to
all layers so that depths could be compared.

Unit n Min Max Mean STD CV%

HCP1.0 mS m−1 1608 1.41 4.62 3.15 0.35 11.09

HCP1.0 offset mS m−1 1608 2.52 5.73 4.26 0.35 8.20

PRP1.1 mS m−1 1608 -1.11 0.84 -0.08 0.11 –

PRP1.1 offset mS m−1 1608 0.00 1.95 1.03 0.11 10.54

HCP2.0 mS m−1 1608 1.10 2.72 1.84 0.22 12.14

HCP2.0 offset mS m−1 1608 2.21 3.83 2.95 0.22 7.59

PRP2.1 mS m−1 1608 -0.34 0.74 0.20 0.11 –

PRP2.1 offset mS m−1 1608 0.76 1.85 1.31 0.11 8.61

Elevation m 1521 123.23 125.47 124.25 0.52 0.42

Slope deg 26602 0.00 10.22 0.89 1.17 130.43

TWI – 26638 -9.15 14.08 4.97 2.80 56.45

Veris Shallow mS m−1 6181 0.10 0.42 0.26 0.06 23.82

Veris Shallow offset mS m−1 6181 2.51 2.83 2.67 0.06 2.34

Veris Deep mS m−1 6181 -2.36 2.72 -0.14 0.78 –

Veris Deep offset mS m−1 6181 0.05 5.13 2.27 0.78 34.2
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4.3 SPOT Imagery and Vegetation Indices

Of the VIs tested, a few were significantly correlated with yield, but no VIs were strongly

correlated. In Field 21, the best performing VIs were TDVI (r=0.29) and MSR (r=0.26).

The VI derived from the second principal component (PC2) using Principal Components

Analysis outperformed the ratio-based indices. In Field 21, correlation with yield was r=-

0.41, and in Field 140b, r=-0.36, where bare soil represents a higher eigenvalue.

The VI derived from PC2 was used to classify bare patches in the field. In distinguish-

ing bare from vegetation, Field 21 correlation between PC2 and sampled yield was r=0.68

and Field 140b was r=.40. Based on the classification using PCA, 75.5 m2 or 8.5% of

Field 21 is bare and 29.3 m2 or 10.7% of Field 140b is bare. Figure 4.1 shows the bare

spot classifcation derived from the PC2 VI. Low correlation coefficients indicate VIs alone

cannot capture yield patterns in the field, in part because greener and denser growth do

not necessarily indicate higher blueberry yield but may represent weed patches or more leaf

growth than fruiting in blueberry bush.

One challenge with the VIs was that especially dry soil has a high reflectance similar to

vegetation. Soil adjusted indices like OSAVI and MSAVI2 are meant to correct for this, but

a number of bare soil pixels were still indexed at high values with vegetation. Topography

will also affect soil reflectance. Bare patches of soil coincide with topographic changes,

explaining why some of the bare patches were mis-classified as dense vegetation.

The PC2 correlation values are still not satisfactorily high. Validating the VIs with

sampled yield proved challenging because SPOT imagery pixels were pan-sharpened to 1.5

m2 resolution while ground-truthed yield was sampled at 1 m2. This may explain why

the PC2 classification did not capture smaller bare spots. Furthermore, sampled yield had

high variance due to the sampling process itself which left room for measurement error.

Sampling was done by combing blueberry bushes. Blueberries were not always thoroughly

removed from the bush or sometimes twigs and leaves would be collected with the blue-

berries. The clearest issue, however, is that the satellite image was captured 2-3 days after

yield sampling was conducted. Areas of the field which were sampled were already dis-

turbed when the image was taken, affecting surrounding biomass.
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Field21 Field140b

Classified bare spots

Fig. 4.1 Classification of bare spots in SPOT6 satellite image using the
vegetation index derived from Principal Components Analysis.
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The VI derived from PCA was nevertheless useful for classifying larger bare patches

to be excluded from the regression approach. Average soil conditions in bare patches dif-

fer from general field conditions and will not respond linearly to a regression-based SSM

treatment. The standard scores of average soil conditions in bare patches are summarized

in C. The z-score represents distance from the field mean, so a value close to 0 has little

difference from mean. N21 = 8 and N140b = 2 (Appendix C). The average soil conditions

in bare patches were found to have a slightly lower Shallow ECa (z21=-0.143 z140b=-0.090),

yet soil at the 5-15 cm depth showed higher than average pH (z21=0.33, z140b=2.53) and Al

(z21=0.21, z140b=0.13) and lower than average TC(z21=-0.27, z140b=-1.19), K(z21=-0.59,

z140b=-1.347), and Ca(z21=-0.25, z140b=-1.725). Given the non-linear relationship between

ECa and soil nutrient levels, excluding bare patches from the regression-based is recom-

mended.

4.4 Correlation & PLS

Due to the high variability of yield, it was difficult to establish strong correlations between

yield and other agronomic factors. Nevertheless, yield was significantly correlated with

shallow measurements of total C, total N, Mg, and SOM in both fields (Table 4.5). These

correlations were higher in Field 21 than Field 140b. Of all sampled properties, total N

was most correlated with yield (r21=0.40, r140b=0.34) (Table 4.5).

Veris Shallow ECa was significantly correlated with chemical attributes Mg and Fe

at the 0-5 cm depth, and pH, Mg, and Fe at 5-15 cm depth (Table 4.5). Correlation

with pH was higher in Field 21 than Field 140b (r21=0.38, r140b=0.25). In both fields,

Veris Shallow ECa was significantly correlated with soil texture properties, particularly

sand (r21=-0.34, r140b=-0.31), medium sand (r21=-0.45, r140b=-0.57), and very fine sand

(r21=0.48, r140b=0.54), indicating finer texture soil is positively correlated with ECa. Thus,

in this growing environment, ECa appears to be an adequate predictor of soil texture and

other agronomic attributes like nutrients . ECa was not significantly correlated with TWI

in Field 21 and was weakly correlated in Field 140b ( r140b=0.25). It is possible that due

to the well-drained soils, moisture had less effect on ECa readings and the wetness index

was not significant.
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Table 4.5 Pearson’s correlation coefficients.

Field 21 Field 140b

Yield Elevation Shallow ECa Yield Elevation Shallow ECa

Yield 1.00 -0.22* -0.2 1.00 -0.06 0.18
Elevation -0.22* 1.00 -0.50*** -0.06 1.00 -0.28*

Veris Shallow -0.02 -0.50*** 1.00 0.18 -.28** 1.00
Veris Deep 0.02 -0.40*** 0.52*** 0.14 -0.19* 0.17
PRP 1.1 0.05 -0.73*** 0.70*** 0.09 -0.30* 0.65***
HCP 1.0 0.20* -0.16 -0.05 0.14 -0.16 -0.04
HCP 2.0 0.21* -0.69*** 0.33** 0.06 -0.36*** -0.07
PRP 2.1 0.12 -0.85*** 0.61*** 0.28* -0.15 0.54***

TWI -0.02 0.16 -0.16 0.06 -0.22* 0.25*
Slope -0.14 0.29** 0.05 -0.03 0.04 0.13

0-5 cm

Total C 0.37*** 0.00 0.00 0.33** -0.15 0.39***
Total N 0.40*** -0.03 -0.01 0.34** -0.19 0.44***

pH -0.14 -0.34*** 0.33*** -0.16 -0.30* 0.07
P -0.183* -0.29** 0.35** -0.09 -0.31** 0.10
K 0.36*** -0.05 0.06 0.28* -0.02 0.20*
Ca -0.01 -0.06 0.16 0.15 -0.08 -0.14
Mg 0.21* -0.11 0.20* 0.28* -0.24* 0.38***
Al -0.17* -0.04 0.14 -0.06 -0.29** 0.15
Fe 0.12 -0.20* 0.28* 0.12 -0.22* 0.42***

S.O.M. 0.37*** -0.01 0.00 0.33** -0.15 0.39***

5- 15 cm

Total C 0.10 -0.02 0.16 0.25* 0.00 0.28*
Total N 0.08 -0.04 0.14 0.23 -0.14 0.36***

pH -0.04 -0.50*** 0.38*** -0.18 -0.46*** 0.25*
P -0.02 -0.11 0.04 0.02 -0.31** 0.17
K 0.25* 0.22* -0.07 0.25* 0.04 0.16
Ca 0.10 0.02 0.14 0.26* -0.07 0.21*
Mg -0.01 -0.14 0.33** 0.03 -0.12 0.28*
Al 0.01 0.22* -0.16 0.15 -0.03 0.16
Fe -0.04 -0.32** 0.48*** 0.05 -0.22** 0.38***

S.O.M. 0.10 -0.02 0.16 0.10 -0.02 0.15
Total Sand -0.16 0.60*** -0.34*** -0.20 0.12 -0.31**
Total Silt 0.19* -0.69*** 0.38*** 0.12 -0.06 0.25*
Total Clay -0.14 0.55*** -0.28* -0.02 0.15 -0.12

V. Coarse Sand -0.13 0.34*** -0.22* -0.02 -0.12 0.03
Coarse Sand -0.11 0.63*** -0.44*** -0.15 0.39*** -0.32**
Med. Sand -0.11 0.73*** -0.45*** -0.09 0.49*** -0.57***
Fine Sand -0.08 -0.22* 0.26 0.12 -0.52*** 0.38***

V. Fine Sand 0.12 -0.74*** 0.48*** 0.17 -0.35** 0.54***

NB: T-test significance denoted as *p < 0.05, **p < 0.001, ***p < 0.0001.



4 Results & Discussion 56

Elevation showed significant correlation with pH in both fields at both depths with

higher elevations correlating to lower pH. Lower pH is usually considered better for wild

blueberry growth as it suppresses competitors, but analysis showed this not to be the case

at the experimental sites. One possibility is that although pH was significantly lower in

high elevation areas, other agronomic factors corresponding with high elevation areas lim-

ited yield. Elevation was negatively correlated with P (0-5 cm) (r21=-0.29, r140b=-0.31)

and Fe (5-15 cm) (r21=-0.32, r140b=-0.22).

Gravity causes redistribution of soil texture, which explains why the correlation between

soil texture and elevation was significant. Very fine sand, fine sand, and silt contents were

negatively correlated with elevation while medium to very coarse sands and clay were posi-

tively correlated with elevation. Finally, given their respective correlations with texture, it

is unsurprising the ECa and elevation are significantly correlated (r21=-0.50, r140b=-0.28).

The relationship was stronger in Field 21, likely because the topography varied more dra-

matically (Table 4.5).

The intent of modeling with Partial Least Squares (PLS) regression was to observe the

relationship of variability of multiple dependent agronomic variables and variability of sen-

sor data. In Field 21 the model accounted for about 65% of ECa and topographic features

and about 23% of yield or 20% of 0-5 cm chemical attributes. 62% of the variance of ECa

and topographic features accounted for about 14% variance of 5-15 cm chemical attributes.

All factor percentages are summarized in Table 4.6. By Wold’s criterion, the variables of

greatest influence in the regression for texture and sand content were Elevation and PRP

2.1; for chemical attributes (5-15 cm) influential variables were PRP 2.1 and slope; and

for chemical attributes (0-5 cm) and yield, the VI was most influential. However, the PLS

model only accounted for a small percentage of total variability in the target soil properties,

indicating that there are external processes affecting the targeted properties which could

not be modeled in PLS.

In Field 140b 24% percent variance of ECa and topography accounted for about 14% of

yield variance, notably less than in Field 21 where topography varies much more dramati-

cally. The other factors of independent variables in Field 140b, summarized in Table 4.7,
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captured a smaller percentage of the total variance than in Field 21, but more percent

variance of the dependent variables were captured. By Wold’s criterion, the VI and PRP

2.1 most influenced the yield model; The VI and Shallow ECa most influenced the model of

chemical attributes at both depths; Elevation, Shallow ECa, and PRP 1.1 most influenced

the sand content model; and the VI, PRP1.1 and Shallow ECa most influenced the model

of total texture. Once again, the PLS model only accounted for a small percentage of total

variance in the target soil properties. Thus in both fields, external processes affect the

target properties.

The exercise of PLS modeling is a reminder that external factors which were not sampled

play a role in agronomic conditions. A certain degree of yield variability is to be expected

in physical environments due to environmental factors such as weather fluctuations. For

this reason yield maps will vary year to year. Historically factors such as topography

and ECa have been used to predict yield variability because they are more temporally

stable. However sensor noise and environmental factors will also cause some variability in

these measurements. This can explain why correlation is not always strong between yield,

ECa and topography variables. In Field 21, PLS accounted for 65.4% of ECa , VI, and

topography variance, as opposed to the 24% in Field 140b. With this model, 23% of yield

variance could be accounted for. Other studies have used the same variables to capture

70% yield variability (Guo et al. 2012). This indicates latent factors exist which caused the

high variability in yield. The year that yield was collected was a record year for yields in

the region due to favorable weather patterns. The study would benefit from multiple years

of yield sampling to determine a more temporally stable yield pattern within the field.

4.5 Geostatistical Analysis

A geostatistical summary produced from the R script is found in Tables 4.8 and 4.9. In

general, the box-cox transformation effectively fit the data to a normal distribution. In

some variables, such as pH, the automatic box-cox transformation was redundant, so it

was not used. Tables 4.8 and 4.9 include the box-cox transformation variable λ to show

which variables were transformed. A λ value of 1 signifies no transformation. Automation

of the process allowed for a consistent methodology for interpolating different variables.

The theoretical variogram model selection initially included the gaussian model. However,
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the maps produced with the gaussian model were overly smooth and devoid of meaningful

spatial patterns. When a spherical model was applied instead, the practical range of the

variogram model better represented field variation patterns.

Strong spatial dependence was not observed in several properties (Tables 4.8 and 4.9),

so OK could not accurately predict most chemical soil properties, with RMSESD val-

ues greater than 0.90. Spatial dependence is classified by the nugget to sill ratio ac-

cording to standards outlined by Camberdella et al. (1994). A variable belonging to

a stronger spatial class should yield a better prediction from OK because the autocor-

relation can be modeled. Unsurprisingly, elevation showed the strongest spatial depen-

dence (R2
21 = 1.00,R2

140b = 1.00) . Maps were interpolated with RMSESD=0.02 and

RMSESD=0.08 in Fields 21 and 140b, respectively. Most soil chemical attributes showed

poor spatial structure. In Field 21, total C, K, total N (0-5cm), Ca (0-5 cm), and Mg (0-

5cm) were completely random, fitted with a pure nugget model, and could not be predicted

by kriging. In Field 140b, spatial dependence was moderate so that soil properties could

be predicted except for total sand. However high RMSESD and low R2 for most chemical

attributes indicate the properties predicted with OK were not truly accurate.

Table 4.6 Field 21 total percent variation accounted for by PLS factors.

ECa and Topo. Dependent variables

Model Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

Yield 31.3 54.2 65.4 14.9 21.2 23.0

Chemical (0-5 cm) 37.8 52.1 65.2 8.3 18.2 20.1

Chemical (5-15 cm) 40.2 49.2 62.6 8.6 12.0 13.6

Sand Content 40.9 – – 35.8 – –

Total Texture 40.9 – – 37.8 – –

According to the correlation coefficients calculated in the cross-validation process, in

Field 21 well predicted maps were Silt (R2=0.70), Medium sand (R2=0.80), Very fine sand

(R2=0.85), HCP10 (R2=0.92), HCP20 (R2=0.95), and Veris Shallow (R2=0.73). Moder-

ately accurately predicted maps were Sand (R2=0.68), Coarse sand (R2=0.65), pH at both

depths (R2=0.56 and 0.64, respectively), PRP1.1 (R2=0.62), and PRP2.1 (R2=0.67). In

Field 140b well predicted maps were coarse sand (R2=0.76), medium sand (R2=0.75), fine
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Table 4.7 Field 140b total percent variation accounted for by PLS factors.

ECa and Topo. Dependent variables

Model Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

Yield 24.0 – – 13.8 – –

Chemical (0-5 cm) 25.2 39.3 50.0 18.9 26.7 31.8

Chemical (5-15 cm) 24.6 36.8 45.6 9.00 23.3 29.7

Sand Content 25.4 38.0 48.7 29.3 35.5 39.7

Total Texture 26.0 39.2 – 14.0 19.4 –

sand (R2=0.77), very fine sand (R2=0.76), HCP1.0 (R2=0.88), and HCP2.0 (R2=0.81).

Moderately accurately predicted maps were Clay (R2=0.68), Al at both depths (R2=0.60

and 0.62, respectively), Fe (5-15 cm) (R2=0.53), and Veris Shallow ECa (R2=0.70). They

are presented in Figures 4.2 - 4.7.

Coefficients of variation were generally greater in properties in Field 21 than in Field

140b. Geostatistical analysis also showed random spatial structure among a number of

chemical properties in Field 21, including S.O.M., total N, total C, K, Ca, and Mg at

the 0-5 cm depth(Table 4.8). Yield values were high but sampled agronomic properties

were randomly distributed, so establishing a relationship between yield variability and soil

property variability was limited. Therefore, developing a management regime on the soil

attributes alone could not reliably predict yield.

Conversely, several nutrients showed greater spatial structure in Field 140b (Table 4.9),

and certain nutrients could be mapped with moderate cross validation results, namely Al

at both depths and Fe (5-15 cm). ECa was significantly correlated with a number of chem-

ical attributes in Field 140b in addition to soil texture as in Field 21. Chemical attributes

included TC, TN, Mg, Fe, and OM at both depth, and K (0-5 cm), Ca (5-15 cm). Tukey

results show a number of these attributes significantly separated with the regression based

method (Figures 4.15-4.17).

Based on the spatial structure and variability, the most useful prediction maps for the

blueberry fields are the soil texture maps, ECa maps, and topography. Texture maps can

be compared to ECa to verify ECa as a predictor of soil texture. Given that nutrient avail-
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Table 4.8 Geostatistical summary of agronomic properties in Field 21.

Modela Nugget ratio Spatial classb Range (m) R2 RMSESD λ

Yield p.n. 1.0 R – – – 1.0
Elevation sph 0.0 S 3032 1.00 0.02 1.0

Veris Shallow sph 0.5 M 405 0.73 0.69 1.0
Veris Deep sph 0.7 M 131 0.45 0.89 1.0
PRP 1.1 exp 0.5 M 239 0.62 0.78 1.0
HCP 1.0 sph 0.1 S 121 0.92 0.39 1.0
HCP 2.0 exp 0.0 S 87 0.95 0.32 1.0
PRP 2.1 sph 0.1 S 5423 0.67 0.74 1.0

0-5 cm

S.O.M. p.n. 1.0 R – – – 0.0
Total N p.n. 1.0 R – – – 0.2
Total C p.n. 1.0 R – – – 0.1

Soil pHwater exp 0.35 M 69 0.56 0.83 1.0
P sph 0.6 M 29 0.36 0.93 -0.2
K p.n. 1.0 R – – – -0.3
Ca p.n. 1.0 R – – – 1.0
Mg p.n. 1.0 R – – – -0.1
Al sph 0.3 M 18 0.23 0.97 -0.9
Fe p.n. 1.0 R – – – -0.2

5- 15 cm

S.O.M. p.n. 1.0 W – – – -1.0
Total N sph 0.9 W 376 0.13 0.99 -1.0
Total C sph 1.0 R – – – -1.0

Soil pHwater sph 0.36 M 416 0.64 0.76 1.0
P sph 0.8 W 168 0.16 0.97 0.1
K p.n. 1.0 R – – – -0.4
Ca exp 0.9 W 26 0.20 0.98 1.0
Mg sph 0.4 M 5537 0.26 0.96 -0.8
Al sph 0.5 M 138 0.45 0.89 2.0
Fe sph 0.3 M 2629 0.50 0.86 -0.3

Clay sph 0.3 M 3223 0.55 0.83 0.5
Silt sph 0.0 S 13725 0.72 0.69 0.0

Sand exp 0.3 M 616 0.67 0.74 0.0
V. coarse sand sph 0.58 M 608 0.40 0.92 0.1
Coarse sand sph 0.0 S 8885 0.78 0.62 0.2

Medium sand sph 0.0 S 4986 0.81 0.58 0.7
Fine sand sph 0.8 W 313 0.29 0.95 0.5

V. fine sand sph 0.1 S 749 0.85 0.53 0.1

a p.n.= pure nugget (p.n.), sph.= spherical, exp.= exponential. b S = strong, M = moderate, W
= weak, R = random.
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Table 4.9 Geostatistical summary of agronomic properties in Field 140b.

Modela Nugget ratio Spatial classb Range (m) R2 RMSESD λ

Yield p.n. 1.0 R – – – 1.0
Elevation exp 0.0 S 167 1.00 0.08 1.0

Veris Shallow sph 0.47 M 110 0.70 0.72 1.0
Veris Deep sph 0.81 W 112 0.23 0.97 1.0
PRP 1.1 exp 0.8 W 157 0.38 0.92 1.0
HCP 1.0 sph 0.1 S 191 0.87 0.48 1.0
HCP 2.0 sph 0.2 S 249 0.81 0.58 1.0
PRP 2.1 exp 0.9 W 52 0.31 0.95 1.0

0-5 cm

S.O.M. exp 0.7 M 63 0.28 0.96 -0.1
Total N exp 0.6 M 87 0.35 0.93 -0.2
Total C sph 0.7 M 63 0.28 0.96 -0.1

Soil pHwater exp 0.3 M 857 0.48 0.87 1.0
P sph 0.6 M 564 0.42 0.90 -0.1
K sph 0.7 M 2298 0.11 0.99 0.0
Ca sph 0.1 S 5570 0.33 0.94 1.0
Mg sph 0.4 M 4331 0.23 0.97 0.0
Al exp 0.1 S 55 0.62 0.78 -0.8
Fe exp 0.1 S 11820 0.39 0.92 0.2

5- 15 cm

S.O.M. sph 0.2 S 3926 0.37 0.93 -0.2
Total N sph 0.3 M 1175 0.42 0.91 -0.4
Total C p.n. 1.0 R 3927 0.37 0.93 -0.2

Soil pHwater sph 0.1 S 4416 0.50 0.86 1.0
P sph 0.5 M 604 0.50 0.86 0.0
K sph 0.6 M 3026 0.18 0.98 0.5
Ca exp 0.4 M 25 0.21 0.97 1.0
Mg sph 0.6 M 147 0.33 0.94 -0.4
Al sph 0.2 S 82 0.54 0.84 -1.0
Fe sph 0.7 M 410 0.38 0.92 0.2

Clay sph 0.3 M 112 0.61 0.79 2.0
Silt exp 0.8 W 25 0.23 0.97 0.0

Sand p.n. 1.0 R – – – 2.0
V. coarse sand sph 0.4 M 125 0.55 0.83 0.2
Coarse sand sph 0.1 S 240 0.79 0.61 1.4

Medium sand sph 0.2 S 542 0.76 0.65 2.0
Fine sand sph 0.1 S 345 0.80 0.59 0.3

V. fine sand sph 0.1 S 469 0.85 0.51 -0.6

a p.n.= pure nugget (p.n.), sph.= spherical, exp.= exponential. b S = strong, M = moderate, W
= weak, R = random.
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Fig. 4.2 Field 21 strongly correlated elevation and ECa
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Fig. 4.3 Field 21 moderately correlated ECa and chemical properties
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Fig. 4.4 Field 21 strongly correlated granulometric maps.
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Fig. 4.5 Field 21 moderately correlated granulometric maps.

ability is linked with ECa, texture, and elevation (Fig. 3.2), the thematic maps produced

encompass both physical and chemical yield factors.

Maps with poor prediction may benefit from de-trending. However, co-kriging with

elevation did not dramatically improve the accuracy of chemical variables. Correlation

between elevation and chemical attributes was not strong enough to improve the prediction

in either field. Regression kriging may also be considered but is only useful in variables

which show strong spatial structure.

4.6 Data Separation for Regression-Based Approach

The scatter plots in Figures 4.9 and Figure 4.10 illustrate how extreme field conditions

were identified for the regression-based approach. The two distinct clusters in Figure 4.9

represent the bimodal distribution and high variability of elevation in Field 21. ECa is

generally lower in the high elevation cluster, so ECa is significantly different among the

four scenarios according to Tukey’s test (Fig. 4.12). The red points highlighted in the

scatterplot represent occurrences of zero yield. They all occur in the high elevation cluster

and are mostly distributed among higher ECa. Tukey’s post-hoc test revealed slope to also
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Fig. 4.6 Field 140b strongly correlated elevation and ECa maps.
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be significantly higher in the Elevhigh EChigh scenario. Bare patches may coincide with

steep slope among other factors.
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Fig. 4.7 Field 140b strongly correlated granulometric maps.

Analysis of variance (ANOVA) in Field 21 did not show a significant difference between

the four scenarios (p=0.81). Tukey results showed a significant difference in soil texture

among high and low elevation scenarios. Figure 4.16 shows medium sand content, silt,

and very fine sand content to be separated by elevation, but not distinguished by ECa.

Figure 4.14 shows the combination of ECa and elevation distinguishes other granulometric

and chemical attributes (sand, coarse sand, Fe (0-5 cm), and pH at both depths). Three

important field conditions were separated by this method: 1) slope, 2) pH, and 3) texture.

Average pH was significantly higher in ElevLow & ECHigh, slightly above the optimal range.



4 Results & Discussion 68

Total Clay
r2=0.68

Al (0 - 5 cm)
r2=0.60

Al (5 - 15 cm)
r2=0.62

ElevHighECHigh
ElevHighECLow
ElevLowECHigh
ElevLowECLow

Fe (5 - 15 cm)
r2=0.53

Al content (mg/kg)
533 - 704
705 - 809
810 - 925
926 - 1047
1048 - 1191
1192 - 1368
1369 - 1595
1596 - 1944

Fe content (mg/kg)
88 - 125
126 - 159
160 - 192
193 - 226
227 - 261
262 - 300
301 - 337
338 - 377

Al content (mg/kg)
1517 - 1764
1765 - 1865
1866 - 1956
1957 - 2052
2053 - 2175
2176 - 2312
2313 - 2482
2483 - 2683

Clay content (g/kg)
11.2 - 14.9
15.0 - 18.0
18.1 - 21.2
21.3 - 24.3
24.4 - 26.5
26.6 - 28.3
28.4 - 30.0
30.1 - 34.0

¯0 150 300 450 60075
Meters

Fig. 4.8 Field 140b moderately correlated granulometric and chemical maps.
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Finally, texture was most correlated with yield in Field 21 and represents the field’s nutrient

and water storage potential.
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Fig. 4.10 Field 140b scatter plot of Elevation vs. ECa values. Bare spots
are highlighted in red

ANOVA in Field 140b showed an overall significant difference between the four sce-

narios at 90% confidence (p=0.06). Elevation in Field 140b is unimodal, but ECa is still

slightly lower in high elevation areas (Fig. 4.10). Like Field 21, the greatest distinction is

between scenarios ElevLowECHigh and ElevHighECLow. The variables total sand, total silt,

very fine sand, total C (5-15 cm), total N (5-15 cm), P (5-15 cm), and S.O.M. (5-15 cm),

are all distinguished by these combinations (Fig. 4.15 and 4.16). A number of chemical

attributes are also distinguished by high vs. low ECa (Fig. 4.16 and 4.17). pH was found

to be significantly different in ElevHighECLow but still within ideal range. Elevation was

less variable in Field 140b, so ECa was more useful in separating data.

Based on the results of the Tukey post-hoc test, the greatest contrast in both fields



4 Results & Discussion 71

Class 1 
Class 2
Class 3

ElevHighECHighElevHighECLowElevLowECHighElevLowECLow

0 150 300 450 60075 Meters¯
Fig. 4.11 Management zones classified with fuzzy c-means in MZA for Field
21 (left) and Field 140b (right). Targeted scenarios from the regression-based
approach overlay the zones for comparison.
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Fig. 4.13 Field 21 attributes that are significantly different based on contrast
in elevation. Texture is influenced by elevation.
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Fig. 4.14 Field 21 soil attributes that are contrasted by the combination of
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Fig. 4.15 Field 140b elevation and ECa separation.

occurs between ElevLowECHigh, and ElevHighECLow. These contrasts can be used to de-

termine a regression-based treatment. Tables in Appendices A2 and A3 show the average

values of each soil attribute in the four scenarios, standardized to the field average and

standard deviation in order to illustrate the degree of difference from the average.

4.7 MZA vs. Regression-Based Approach

Three zones were selected in both fields using the MZA methodology (Fig. 4.11). In Field

21, Class 1 is a high elevation, low ECa, low slope scenario; Class 2 is a high elevation, low

ECa, steep slope scenario, and Class 3 is low elevation, high ECa, low slope scenario.

The higher elevation portion of the field somewhat coincides with the scenarios ElevationHigh

ECHigh and ElevationLowECLow. ElevationHigh ECHigh occurs close to but not within

Class 2 while ElevationLowECLow falls within Class 1. Scenarios ElevLowECHigh and

ElevLowECLow are encompassed by Class 3. These overlaps are largely due to the changes

in topography and the fact that ECa is correlated to elevation in this field. However, Class

2 does not identify the areas of highest ECa. The greatest contrast exists between classes 1

and 3, irrespective of slope. This contrast exists in the variables total sand, total silt, total

clay, very coarse sand, medium sand, very fine sand, pH deep, K (5-15 cm), P, and fine

sand (Appendix A). Yield was significantly different between Class 2 and Class 3, likely

because bare patch incidence coincides with steep slope in Field 21. In both the scatter

plot separation method and the MZA method, the low elevation, low ECa scenario is not
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Fig. 4.16 Field 140b variables separated by the contrast of elevation and
EC combined.
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significant, and steep slope areas are isolated.

Like the scatter plot data separation method, the greatest contrast from the MZA out-

put occurs between ElevHighECLow and ElevLowECHigh. Because Field 21 is topography

driven, MZA performs well in separating the data. However, it fails to distinguish the areas

of contrasting ECa, which would be used in a regression-based approach.

In Field 140b, the classes are separated by elevation, slope & TWI, and to a lesser

extent ECa (Appendix B). Class 1 represents high elevation, high slope, high TWI, and

high ECa; class 2 represents high elevation, low ECa; and class 3 represents low elevation

and low ECa (Appendix B). Scenarios ElevationHighECHigh and ElevationHigh ECLow co-

incide with Class 2 and parts of Class 1. Scenario ElevationLow ECLow coincides with

Class 3. Scenario ElevationLow ECHigh, however, is not meaningfully distinguished by

MZA. Between classes 1 and 2 silt, clay, TC (0-5 cm), TN (0-5 cm), and OM (0-5 cm)

are separated, indicating a distinction of agronomic properties by slope and ECa. Between

classes 2 and 3, Fe (5-15 cm), Mg, P, and pH are separated, indicating indicating a distinc-

tion of agronomic properties by elevation (Appendix B). Because topography varies less in

Field 140b, fewer agronomic properties were separated by MZA than the targeted approach.

Topographic features were more dominant in the MZA classification. Given the corre-

lation of soil texture and properties with elevation, and given particularly the variability

of topography in Field 21, this method of unsupervised classification performs well if the

objective is to segment the field into smaller sub-fields. However, analyses show that areas

of contrasting soil ECa were not distinguished in either experimental field. For a prescrip-

tion regression based on both soil ECa and topography, the scatter plot selection method

is more rapid and precise in identifying areas of extreme contrast.
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Fig. 4.17 Field 140b variables separated by the contrast of elevation and
EC combined (P) and variables separated by high vs. low ECa.
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Chapter 5

Conclusions & Recommendations

5.1 Research Study Summary

The conclusions of the study which relate to the study objectives are:

1. Spatial variability could be characterized through soil ECa and topographic data.

Soil ECa and topography showed strong spatial dependence and significantly corre-

lated with a number of physical and chemical soil properties as well as yield in both

fields. However yield and a number of soil properties showed weak or random spa-

tial structure, so thematic maps of properties using Ordinary kriging produced high

error. Thematic mapping of soil nutrients using Ordinary kriging generally yielded

low-accuracy maps (RMSESD > 0.90) for chemical attributes, but physical soil at-

tributes and pH showed greater spatial dependence and could be mapped with high

accuracy. In the future, to map chemical attributes, strategic soil sampling should

be implemented to try to detect spatial dependence at a shorter interval, and/or Re-

gression kriging should be investigated using elevation and ECa data where there is

a correlation between proximally sensed variables and the target soil attribute.

2. Vegetation indices were not strongly correlated with yield partly due to the noise of

soil reflectance and topography and partly because validating yield was challenging

when yield wass sampled at 1 m2 and image resolution was 1.5 m2. The greatest

challenge in validating yield was that yield sampling was done two days prior to the

date the satellite image was captured, disturbing biomass. However, the PCA-derived
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vegetation index did successfully classify large contiguous bare spots which may be

separated from the regression-based treatment.

3. While unsupervised classification with MZA software divided the field into three dis-

tinct areas by topographical traits, it did not distinguish the areas of most contrasting

ECa in either field. A comparison of means in the four targeted scenarios showed the

greatest contrast in soil attributes to be between ElevLowECHigh andElevHighECLow.

These findings indicate an integration of elevation and ECa data improves targeting

within-field variation in order to develop a regression-based prescription map. Based

on the agronomic properties in these contrasting scenarios, it is expected that areas

in the field of low elevation and high ECa will require less nutrient input than areas

of the field of high elevation and low ECa. Field trials are the next step to test this

hypothesis.

5.2 Future Research

Fertilization recommendations in wild blueberry are based on leaf nutrient measurements

rather than soil nutrient levels. Therefore, nutrient application rates cannot be inferred

from the sampled soil data. Instead, field trials will test yield response in the selected areas

within each of the four scenarios. In May 2017, AAFC began treatment in the sprout year

of the wild blueberry fields. The study design is one 30 x 30 m experimental plot within

each of the four scenarios in both fields. Within each plot, there are four 4 x 4 m subplots

with a buffer for a total of 16 trials in each scenario. A variable rate sprayer applied levels of

0, 30, 60, and 90 kg N ha-1 at four repetitions (Fig. 5.1). Crop response to the treatments

will be used to model prescribed treatments in each of the four scenarios.

In addition to concluding the fertilization trials at this site and the implementation of a

management plan based on the conclusions of that study, future research should investigate

the holistic effects of SSM in wild blueberry plots, including tracking both environmental

and economic impacts in the short and the long term. The costs and savings of SSM

implementation should be carefully studied and quantified once fertilization levels are de-

termined.
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Fig. 5.1 Schematic of the field trial with one 30 x 30 m plot containing 16
subplots for 4 treatments of 0, 30, 60 and 90 kg N/ha at four repetitions.
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Future studies should address the question of scalability of site-specific management

strategies on this specialty crop in this region. Furthermore, the regression-based fertiliza-

tion strategy lends itself to the development of a decision support system for determining

fertilization levels based on sampled ECa and elevation data.

Finally, future research should investigate how remote sensing can better predict crop

density in wild blueberry fields. Higher spatial resolution imagery may improve VI util-

ity. Archived satellite images would also allow for temporal mapping of yields and may be

useful for determining the rate of rhizome development in bare patches of the field over time.
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48. F. J. Moral, J. M. Terròn and J. R. M. Da Silva, ”Delineation of management zones

using mobile measurements of soil apparent electrical conductivity and multivariate

geostatistical techniques,” Soil and Tillage Research, vol. 106, pp. 335-343, 2010.

49. B. Minasny and A. B. McBratney, ”Incorporating taxonomic distance into spatial

prediction and digital mapping of soil classes,” Geoderma, vol. 142, pp. 285-293,

2007.

50. J. D. McNeill, Electrical conductivity of soils and rocks, Geonics Limited, 1980.

51. B. L. McCann, D. J. Pennock, C. Van Kessel and F. L. Walley, ”The development

of management units for site-specific farming,” Precision Agriculture, pp. 295-302,

1996.

52. A. McBratney, B. Whelan, T. Ancev and J. Bouma, ”Future directions of precision

agriculture,” Precision agriculture, vol. 6, pp. 7-23, 2005.

53. A. B. McBratney and I. O. A. Odeh, ”Application of fuzzy sets in soil science: fuzzy

logic, fuzzy measurements and fuzzy decisions,” Geoderma, vol. 77, pp. 85-113, 1997.
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Table A1 Field 21 Tukey test comparison between MZA classification and
targeted approach.

MZA Targeted

Property Unit MZ1 MZ2 MZ3 ElLECL ElLECH ElHECL ElHECH

Yield kg ha−1 6259 ab 4827 b 7198 a 7172 a 6316 a 6714 a 5426 a

RTK m 134.03 b 135.07 a 129.29 c 129.07 d 129.66 c 133.94 b 134.53 a

TWI – 6.87 a 7.24 a 5.69 a 6.70 a 5.54 a 6.60 a 6.94 a

Slope deg 0.96 b 6.26 a 1.53 b 1.50 b 1.23 b 0.31 b 4.79 a

Shallow mS m−1 3.16 c 3.20 b 3.26 a 3.17 c 3.37 a 3.11 d 3.23 b

Deep mS m−1 2.60 c 2.83 b 3.13 a 3.01 a 3.23 a 2.25 b 2.69 ab

PRP11 mS m−1 1.26 b 1.28 b 1.41 a 1.35 b 1.46 a 1.23 c 1.31 b

HCP10 mS m−1 4.28 ab 4.06 b 4.43 a 4.29 a 4.42 a 4.51 a 4.12 a

PRP21 mS m−1 1.59 b 1.60 b 1.73 a 1.69 b 1.74 a 1.58 c 1.61 c

HCP20 mS m−1 3.69 b 3.62 b 4.07 a 3.99 a 4.04 a 3.75 b 3.64 b

0-5 cm

Total C % 11.62 a 10.82 a 10.64 a 9.69 a 13.12 a 9.24 a 13.91 a

Total N % 0.50 a 0.37 a 0.44 a 0.42 a 0.54 a 0.39 a 0.58 a

pH – 4.48 b 4.80 a 4.97 a 4.72 ab 4.89 a 4.38 b 4.61 ab

P mg kg-1 44.47 b 64.71 ab 82.24 a 61.40 a 81.48 a 51.65 a 39.93 a

K mg kg-1 121.30 a 90.77 a 99.05 a 99.05 a 119.58 a 116.48 a 162.67 a

Ca mg kg-1 364.18 a 334.42 a 367.82 a 370.84 a 395.26 a 367.35 a 331.73 a

Mg mg kg-1 102.85 a 107.70 a 111.75 a 89.92 ab 136.46 ab 79.06 b 171.11 a

Al mg kg-1 883.61 a 875.69 a 899.30 a 880.16 a 906.00 a 831.42 a 762.81 a

Fe mg kg-1 1153.90 b 1779.60 a 1754.90 a 1339.10 a 1995.40 a 1052.30 a 2003.30 a

S.O.M. g kg-1 177.79 a 165.50 a 162.74 a 148.25 a 200.72 a 141.31 a 212.77 a

5-15 cm

Total C % 1.17 b 1.48 a 1.33 ab 1.13 a 1.16 a 1.05 a 1.53 a

Total N % 0.06 a 0.07 a 0.07 a 0.07 a 0.06 a 0.06 a 0.07 a

pH – 4.90 b 5.01 b 5.27 a 5.13 ab 5.25 a 4.91 c 4.92 bc

P mg kg-1 52.54 b 71.32 ab 80.19 a 78.12 a 61.85 a 38.35 a 71.10 a

K mg kg-1 46.08 a 37.76 ab 31.58 b 30.17 a 34.91 a 40.07 a 45.54 a

Ca mg kg-1 285.28 a 324.89 a 294.66 a 276.30 ab 330.62 ab 234.92 b 358.60 a

Mg mg kg-1 7.68 a 8.73 a 7.71 a 6.19 a 8.57 a 5.41 a 8.83 a

Al mg kg-1 1737.23 a 1560.11 b 1600.85 ab 1742.32 a 1623.52 a 1749.40 a 1639.08 a

Fe mg kg-1 93.81 b 184.48 a 190.21 a 109.65 ab 215.98 a 60.25 b 152.09 ab

S.O.M. g kg-1 17.96 b 22.61 a 20.33 ab 17.35 a 17.81 a 16.10 a 23.46 a

Sand g kg-1 896.00 a 897.49 a 801.82 b 823.96 ab 819.01 b 892.17 a 887.83 ab

Silt g kg-1 78.15 b 76.35 b 177.93 a 153.62 a 159.41 a 81.18 b 84.68 b

Clay g kg-1 25.85 a 26.16 a 20.24 b 22.43 ab 21.58 b 26.65 ab 27.49 a

STG g kg-1 16.29 a 17.72 a 5.58 b 4.70 a 8.14 a 15.19 a 10.67 a

SG g kg-1 141.85 a 140.30 a 42.39 b 75.41 ab 34.08 b 151.77 a 113.22 ab

SM g kg-1 387.31 a 385.64 a 143.40 b 216.33 b 142.61 b 395.14 a 390.76 a

SF g kg-1 284.06 b 285.32 ab 350.71 a 342.88 a 398.92 a 261.19 a 306.73 a

STF g kg-1 66.48 b 68.50 b 259.75 a 184.65 a 235.26 a 68.89 b 66.44 b

PC2 – -39.72 ab 105.05 a -91.47 b -83.26 ab -237.81 b -25.99 a -58.43 ab
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Table A1 Field 140b Tukey test comparison between MZA classification
and targeted approach.

MZA Targeted

Property Unit MZ1 MZ2 MZ3 ElLECL ElLECH ElHECL ElHECH

Yield kg ha-1 4846 a 3717 a 4058 a 3893 a 5487 a 3359 a 4755 a

RTK m 124.45 a 124.60 a 123.71 b 123.59 b 123.67 b 124.76 a 124.62 a

TWI – 7.46 a 4.60 b 5.13 b 4.41 a 6.04 a 4.97 a 5.90 a

Slope deg 2.33 a 0.65 b 0.65 b 0.78 a 0.59 a 0.44 a 1.10 a

Shallow mS m-1 2.69 a 2.65 b 2.67 ab 2.61 c 2.76 a 2.59 c 2.71 b

Deep mS m-1 2.07 a 2.22 a 2.28 a 2.14 a 2.48 a 2.26 a 2.13 a

PRP11 mS m-1 1.04 a 1.01 a 1.03 a 1.01 bc 1.08 a 0.97 c 1.05 ab

HCP10 mS m-1 4.24 a 4.25 a 4.33 a 4.33 a 4.37 a 4.40 a 4.26 a

PRP21 mS m-1 1.33 a 1.29 b 1.30 ab 1.28 b 1.34 a 1.26 b 1.34 a

HCP20 mS m-1 2.94 b 2.89 b 3.05 a 3.07 a 3.01 ab 2.97 ab 2.97 b

0-5 cm

Total C % 11.78 a 7.70 b 9.34 ab 9.30 ab 12.94 a 4.72 b 12.10 a

Total N % 0.60 a 0.37 b 0.47 ab 0.45 ab 0.70 a 0.24 b 0.59 a

pH – 4.56 ab 4.40 b 4.67 a 4.58 a 4.64 a 4.51 a 4.28 a

P mg kg-1 28.20 a 30.23 a 52.62 a 40.63 a 70.40 a 26.42 a 24.89 a

K mg kg-1 95.87 a 91.45 a 93.91 a 96.39 ab 99.83 ab 56.78 b 133.58 a

Ca mg kg-1 340.22 b 384.08 ab 404.81 a 456.92 a 375.85 a 377.77 a 385.56 a

Mg mg kg-1 97.28 a 61.60 b 91.46 ab 77.91 ab 113.26 a 36.33 b 124.37 a

Al mg kg-1 1001.56 a 857.40 a 1023.22 a 990.60 ab 1232.30 a 898.60 ab 792.20 b

Fe mg kg-1 551.89 a 374.09 a 554.12 a 454.70 ab 766.20 a 211.30 b 775.20 a

S.O.M. g kg-1 180.19 a 117.77 b 142.87 ab 142.35 ab 197.99 a 72.14 b 185.13 a

5-15 cm

Total C % 1.26 a 1.12 a 1.20 a 1.09 ab 1.37 a 0.87 b 1.19 ab

Total N % 0.09 a 0.08 a 0.09 a 0.08 ab 0.10 a 0.07 b 0.08 ab

pH – 5.00 ab 4.92 b 5.10 a 5.08 a 5.05 a 4.96 b 4.90 ab

P mg kg-1 26.31 a 19.46 a 29.81 a 27.19 ab 33.00 a 9.59 b 19.13 ab

K mg kg-1 40.97 a 41.00 a 39.40 a 43.21 ab 46.55 ab 30.83 b 55.16 a

Ca mg kg-1 225.17 a 197.32 a 230.97 a 233.32 a 217.34 ab 147.26 b 269.10 a

Mg mg kg-1 6.70 a 5.66 a 7.25 a 7.89 a 8.11 a 4.97 a 7.19 a

Al mg kg-1 2068.21 a 1986.07 a 2034.08 a 1920.70 a 2057.10 a 1982.90 a 2100.60 a

Fe mg kg-1 226.31 ab 156.82 b 261.48 a 219.07 ab 323.80 a 87.27 b 276.50 a

S.O.M. g kg-1 19.22 a 17.07 a 18.40 a 16.69 ab 20.93 a 13.34 b 18.14 ab

Sand g kg-1 881.37 b 902.18 a 892.68 ab 898.09 ab 867.55 b 910.24 a 889.95 ab

Silt g kg-1 95.39 a 81.37 ab 70.15 b 76.93 ab 103.98 a 60.59 b 85.67 ab

Clay g kg-1 23.24 b 27.67 a 25.95 ab 24.98 a 28.47 a 29.17 a 24.38 a

STG g kg-1 19.91 a 23.96 a 29.05 a 26.43 a 31.74 a 30.57 a 32.46 a

SG g kg-1 121.70 b 202.30 a 144.46 b 143.41 b 126.09 b 277.73 a 195.36 ab

SM g kg-1 309.78 b 408.29 a 306.25 b 334.33 ab 223.96 b 442.70 a 336.00 a

SF g kg-1 326.03 a 224.39 b 336.81 a 329.99 a 373.04 a 134.65 b 246.49 ab

STF g kg-1 103.96 a 43.24 b 76.11 a 63.93 ab 112.72 a 24.60 b 79.64 ab

PC2 – 96.59 a 49.54 a 52.22 a 54.16 ab -150.31 c 88.77 a -73.97 bc
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Table A1 Standard score of soil variables in bare patches. The score rep-
resents distance from the field mean. A value close to 0 has little difference
from mean. N21 = 8 and N140b=2.

z21 z140b

HCP10 -0.641 -1.378
PRP11 -0.465 0.168
HCP20 -0.880 -0.725
PRP21 -0.941 -1.022

Veris Shallow -0.143 -0.090
Veris Deep 0.077 -1.245
Elevation 1.090 -1.159

Yield -1.838 -1.768
Slope 0.676 0.471
TWI -0.371 0.140

0-5 cm

S.O.M. -1.144 -1.240
Total N -1.169 -1.163
Total C -1.144 -1.240

Soil pHwater 0.845 2.287
P 0.530 1.196
K -1.047 -1.141
Ca -0.337 -1.461
Mg -0.821 -1.092
Al 1.352 0.524
Fe -0.404 -0.805

5-15 cm

S.O.M. -0.266 -1.186
Total N 0.087 -1.239
Total C -0.266 -1.186

Soil pHwater 0.329 2.530
P -0.297 1.478
K -0.587 -1.347
Ca -0.254 -1.725
Mg -0.041 -0.297
Al 0.212 0.125
Fe 0.053 -0.574

Clay 0.329 -1.570
Silt -0.594 -1.124

Sand 0.583 1.453
Very coarse sand -0.378 0.220

Coarse sand 0.010 -0.642
Medium sand 0.437 -0.639

Fine sand 0.408 1.321
Very fine sand -0.569 -0.064
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Table A1 Field 21 standard scores of soil variables by regression-based sep-
aration method.

ElevLowECLow ElevLowECHigh ElevHighECLow ElevHighECHigh

Yield 0.212 -0.033 0.081 -0.287
Shallow EC -0.466 2.185 -1.357 0.311

Deep EC 0.317 0.776 -1.264 -0.345
PRP1.1 0.301 1.426 -1.039 -0.145
HCP1.0 -0.025 0.176 0.317 -0.290
PRP2.1 0.545 1.152 -0.978 -0.542
HCP2.0 0.558 0.743 -0.309 -0.690

Elevation -1.206 -0.978 0.666 0.894
Slope -0.275 -0.282 -0.655 0.948
TWI 0.135 -0.280 0.046 0.280

0-5 cm

Total C -0.214 0.313 -0.284 0.434
Total N -0.135 0.320 -0.234 0.449
pHwater -0.039 0.301 -0.713 -0.254

P -0.037 0.334 -0.218 -0.435
K -0.117 0.176 0.132 0.791
Ca 0.127 0.447 0.082 -0.384
Mg -0.242 0.405 -0.393 0.887
Al -0.031 0.059 -0.200 -0.439
Fe -0.175 0.529 -0.483 0.537

OM -0.214 0.313 -0.284 0.434

5-15 cm

Total C -0.288 -0.230 -0.444 0.471
Total N -0.108 -0.269 -0.321 0.227
pHwater 0.185 0.566 -0.541 -0.519

P 0.229 -0.107 -0.592 0.084
K -0.343 -0.153 0.054 0.273
Ca -0.184 0.341 -0.583 0.611
Mg -0.167 0.070 -0.244 0.096
Al 0.344 -0.112 0.371 -0.052
Fe -0.247 0.435 -0.564 0.025

OM -0.288 -0.230 -0.444 0.471
Total Sand -0.443 -0.510 0.478 0.419
Total Silt 0.449 0.526 -0.510 -0.463
Total Clay -0.216 -0.379 0.597 0.760

V. Coarse Sand -0.536 -0.284 0.231 -0.099
Coarse Sand -0.276 -0.742 0.584 0.150

Medium Sand -0.420 -0.871 0.676 0.649
Fine Sand 0.249 0.704 -0.414 -0.044

V. Fine Sand 0.283 0.672 -0.606 -0.625
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Table A1 Field 140b standard scores of soil variables by regression-based
separation method.

ElevLowECLow ElevLowECHigh ElevHighECLow ElevHighECHigh

Yield -0.041 0.666 -0.278 0.342
Shallow EC -0.929 1.371 -1.306 0.589

Deep EC -0.167 0.270 -0.008 -0.183
PRP1.1 -0.170 0.485 -0.511 0.259
HCP1.0 0.199 0.333 0.424 0.017
PRP2.1 -0.197 0.337 -0.413 0.287
HCP2.0 0.543 0.246 0.090 -0.314

Elevation -1.274 -1.127 0.972 0.714
Slope -0.072 -0.267 -0.433 0.263
TWI -0.295 0.355 -0.073 0.300

0-5 cm

Total C 0.094 0.811 -0.810 0.645
Total N 0.023 1.048 -0.805 0.599
pHwater 0.170 0.336 -0.039 -0.685

P 0.041 0.660 -0.255 -0.287
K 0.062 0.123 -0.645 0.725
Ca 0.707 -0.111 -0.091 -0.013
Mg 0.008 0.672 -0.774 0.881
Al 0.175 0.997 -0.138 -0.500
Fe -0.031 0.889 -0.751 0.916

OM 0.094 0.811 -0.810 0.645

5-15 cm

Total C -0.133 0.354 -0.518 0.034
Total N -0.153 0.558 -0.575 0.081
pHwater 0.457 0.319 -0.574 -0.214

P 0.135 0.407 -0.688 -0.242
K 0.154 0.335 -0.518 0.803
Ca 0.248 0.046 -0.841 0.700
Mg 0.512 0.585 -0.488 0.272
Al -0.343 0.155 -0.116 0.314
Fe 0.081 0.717 -0.721 0.430

OM -0.133 0.354 -0.518 0.034
Total Sand 0.070 -0.942 0.472 -0.200
Total Silt -0.020 0.867 -0.556 0.266
Total Clay -0.244 0.327 0.442 -0.341

STG 0.065 0.412 0.335 0.459
SG -0.300 -0.495 1.210 0.284
SM -0.218 -1.289 0.833 -0.202
SF 0.394 0.735 -1.154 -0.268

STF 0.012 1.001 -0.785 0.331


