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RÉSUMÉ

Nous développons des modèles de solidification permettant de traiter la phase solide de

façon plus réaliste. Tout d'abord, nous modifions un modèle assez récent de croissance

dendritique dû à Kobayashi [93] afin d'étudier la croissance polymorphe de dendrites.

Pour cela, nous introduisons un paramètre d'ordre vectoriel au lieu d'un paramètre

d'ordre scalaire. Ceci nous permet d'avoir des joints de grain dans les solides. Ce

modèle est utilisé pour l'étude de l'amorphisation d'un matériau polycristallin ainsi

que pour l'étude de la croissance de plusieurs dendrites d'orientations différentes.

Un modèle de phase développé par Grossmann et al. [93] est utilisé afin d'étudier

une technique importante en métallurgie, la solidification dirigée. Plus précisément,

nous examinons une des instabilités secondaires, le mode optique ou oscillatoire. Nous

trouvons que la fréquence de l'oscillation est reliée au nombre d'onde du motif selon

la loi w ,......, q. Ceci est en accord avec l'expérience de Cladis et al. [91].

Finalement, nous examinons l'effet de l'élasticité sur la croissance. Un modèle

est proposé afin expliquer la croissance quasi-dendritique des îlots de Co déposé sur

une surface Pt(11l) telle qu'observée lors d'une expérience récente de Grütter et

Dürig [95] . Une ressemblence qualitative est trouvée entre nos simulations et ces

résultats expérimentaux. L'importance des dislocations est abordée à la fin de cette

thèse. Un modèle de la dynamique des dislocations est présenté qui permet d'inclure

des interfaces. Ce modèle qui a été construit afin d'étudier l'effet des dislocations sur

la solidification nous permet aussi de reproduire certains résultats bien connus de la

théorie des dislocations tels l'empilement.

vii
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ABSTRACT

Sorne models of solidification are developed by treating the solid in a more realis­

tic manner than that has been done ta date. In order to further investigate the

polymorphous dendritic growth, a recent phase-field model of dendritic growth due

to Kobayashi [93] is modified by introducing a vectorial arder parameter. This new

model allows for the existence of grain boundaries and is used to study the amorphiza­

tian of polycrystalline material as weIl as the growth of many dendrites of different

orientations.

One of the major techniques of solidification, namely the directional solidification

is further analyzed by using the phase field model proposed by Grossmann et aL [93].

Nlore precisely, a particular secondary instability, the vacillating breathing mode, is

investigated. The relation between the frequency and the wavenumber, W rv q, found

in the experiment of Cladis et al. [91] is recovered through qualitative simulations.

The effect of elasticity on growth is investigated. A model is proposed ta explain

the quasidendritic growth of the Co islands deposited on a Pt(111) surface observed in

a recent experiment of Grütter and Dürig [95]. Qualitative resemblance between their

experimental results and our simulations is found. The importance of dislocations is

addressed by presenting a model of dislocation dynamics that takes into account the

possibility of interfaces. This model not only incorporates the effect of dislocations

on solidification, but also qualitatively reproduces sorne weIl known phenornena of

dislocation theory known as "pile up" .

viü
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1

INTRODUCTION

Solidification, the growth of a stable phase of material into the unstable liquid phase,

has been studied for many years for practical reasons. During solidification, diverse

microstructures can appear which influence greatly the mechanical properties of the

rnaterial. The most spectacular example of such a microstructure is the dendrite.

The term dendrite was apparently first introduced to the world of crystal growth

by Tschernoffl at the end of the 19th century. He used it ta describe the branched

structure he found in the center of a metal ingot. A dendrite is characterized by

its tree-like shape2 as clearly seen in figure LI. Dendrites are found in every kind

of crystal growth process. The most cornmon dendrites are snow flakes, which are

characterized by six dendritic branches3 . Because of its increased surface free en­

ergy, a dendritic crystal is thermodynamically unstable as compared to a droplet, its

equilibrium shape. Thus: the shapes of the crystal are of dynamical origin.

Metallurgists have also encountered other types of regular structures. These in­

clude lamellar eutectics and the cellular growth of dilute alloys. In the solidification

of an impure melt, segregation of solute takes place since the solid and the liquid

phases of a given mixture have different concentrations at equilibrium. This chem­

ical inhomogeneity has a profound impact on the mechanical as weIl as electronic

performance of the material.

The growth patterns mentioned above have a typical size of 10 - 1DO/-Lm. A

mesoscopic description of the solidification, i. e. where we consider the liquid and

l Doherty [75]. More historical details cau be found in the book of Smith [60].
2This explains the etymology of the word dendrite. 5€I/TPOI/ (dendron) means a tree.
3 A standard reference in the study of snowflakes is the book of the Japanese scientist Nakaya [54J
who investigated during 20 years in the island of Hokkaido the shape of the snow crystals, in nature
and in laboratory.

1
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Figure 1.1: Scanning e1ectron micrograph showing the development of dendrites in a nickel-based
superalloy single-crystal weld [picture reproduced from David, DebRoy and Vitek [94]].

solid phase as continuous media, is then legitimate. Solidification will be described

throughout this dissertation as a first-order phase transition characterized by the

release of latent heat at the interface or, in the case of a mixture, by the rejection of

the component of the mixture that has a lower concentration in the solid, i.e., the

solute.

This minimal model neglects effects such as fluid flow due to temperature, concen­

tration gradient as weIl as volume changes, and elastic effects. These elastic effects

are particularly important in the solidlsolid transition, or in the growth of solid on

solid, and therefore will he discussed later in this thesis. It is well known that the

structural (Martensitic) transformations also have a strong influence on the properties

of the material. The hest example is steel. As these transformations do not involve

any diffusion of atoms they will not he studied in this thesis.

The interest in the mathematical problem of solidification goes hack ta the middle

of the 18th centuryl with the work of Lamé and Clapeyron. The problem was posed in

its standard form by Stefan in 1889. The fundamental mechanism limiting the growth

of a solid is the diffusion away from the interface of the latent heat released by the

solidification Of, in the case of a mixture, the diffusion away of the solute. The problem

l Rubinstein [71] .



of solidification has thus as a basic Ingredient a field obeying a diffusion equation in

both phases. This equation has to be supplemented by two boundary conditions

at the solidification front: Heat (or solute) conservation at a point on the moving

interface and a statement of local thermodynamic equilibrium which determines the

temperature at the interface. The latter condition will bring into the problem the

surface tension which is the crucial stabilizing force necessary for pattern formation.

This free-boundary problem, the Stefan problem, is representative of one of the most

challenging areas of applied mathematics.

Solidification started to attract the attention of statistical physicists in the late

70's. Solidification, an out-of-equilibrium process, is a subclass of the general prob­

lem of pattern formation in dissipative systems. Other examples1 can be found in

hydrodynamics with the Rayleigh-Bénard convection of fluid heated from below, in

chemistry with the weIl studied Belousov-Zhabotinsky reaction and also in biology. A

better understanding of one of these problems can shed new light on the solidification

problem and vice versa.

The study of pattern formation has benefited greatly from recent careful experi­

ments. Also, new concepts as weIl as new analytical and numerical tools have been

introduced. In this thesis sorne of them will be explained. However, the phase-field

model will be the major method expounded. The basic idea behind this model is

to replace the dynamics of the boundary by an equation of motion for a phase-field

which changes from one value to the other quickly but smoothly, corresponding, for

example, to liquid and solid phases. The explicit interface motion is thus described

by hvo coupled partial differential equations, one for the temperature (or concentra­

tion) and the other for the phase-field. As will be seen later in this thesis, phase-field

models have been successful in reproducing the intricate pattern of dendrites as weIl

as sorne other growth structures.

The phase-field model is closely related to model C introduced by Halperin, Ho­

henberg and Ma [74J in their study of non-equilibrium phenomena. We will briefly

review the three dynamical models, namely models A, Band C that are often encoun­

tered in the study of dynamic critical phenomena. They also describe the dynamical

1See Cross and Hohenberg [93] and the references therein.

•
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properties of a large class of first-order transitions phenomena such as nuc1eation and

spinodal decomposition.•
1: INTRODUCTION 4

1.1 Dynamical Models

The field theoretical approach to the dynamics of metastable states is weIl known

to statistical physicists for the last thirty years. One focuses on a small set of semi­

macroscopic variables whose dynarnical evolution is slow compared to the remaining

degrees of freedom. The dynamical equations of motion for the slow variables are

obtained, either by phenomenological arguments or projection operator techniques.

The remaining variables enter only in the form of random forces.

A simple dynamical model is model A, in wmch 'if; is a nonconserved arder pa­

rameter refiecting the degree of local ordering in the system. It obeys the following

dynamics
8'if; (r , t) 5F

8t = -r51/J(r) + ((r, t) . (1.1)

:F is a coarse-grained free energy functional usually assumed to be of the Ginzburg­

Landau form,

F{7f;} =f dT [~K",IV1/112 + f(1/1)] ,

'where the function f (7/J) has the double weIl structure

(1.2)

K1/J and u are positive constant while r(T) is dependent on the temperature T in

the following way: For T > Tc Cr < 0) only a single minimum exists at 7/J = o. For

T < Tc (r > 0), there are two degenerate stable minima. They correspond to the two

phases coexisting at equilibrium. The mobility r gives the rate at which the system

dynamically evolves.

The term ((r, t) is a Gaussian white noise with zero mean

•
and its correlation is

< ((r,t) >=0

< ((r, t)((r', t') >= D5(r - r')5(t - t') ,

(1.3)

(1.4)



where D is a constant. For consistency with equilibrium, the strength of the fluctu­

ations D must be related ta the temperature and the strength of the dissipation r
by•
1: INTRODUCTION 5

where k B is the Boltzmann's constant. This is known as the fluctuation-dissipation

relation.

Without the noise term, equation (1.1) simply states that the rate at which the

system releases back to equilibrium CB?j;/8t) is proportional to the deviation from

equilibrium (5F/81/;). It is a purely relaxational dynamics. The noise term makes

sure that it evolves towards a global and not a local minimum.

Nlodei A is used to describe the dynamics of binary alloys undergoing order­

disorder transition, and magnetic phase transitions, for example.

The dynamics of phase separation in a binary system is governed by the diffusion

of the chemical potential gradient. The conservation of material is expressed by

BeCr, t) _ -V ..C )
Bt - J r,t ,

O() r' oF
J r, t = - v oc(r) ,

where r' is a kinetic coefficient. The local chemical potential is defined as

where c(r, t) denotes the local concentration of one of the species. The diffusion

cnrrent j (r, t) is

oF
f-L(r) = 5c(r)

with

F{c} =! dr [~KclvcI2 - r~) c2 + ~C4] . (1.5)

The free energy functional (1.5) was studied by Cahn and Hilliard [58}, in the context

of binary alloys. The dynamical equation for the concentration becomes

•
(1.6)

Cook [70} observed that it was necessary to add a noise term to (1.6) ta have a correct

statistical description of the alloy dynamics.



The dynamical equation for the concentration is the Cahn-Hilliard-Cook equation

âc~, t) = r''V2 [-Kc 'V2c + ~~] + ((r, t) ,•
1: INTRODUCTION 6

•

which is also known as model B following the classification of Hohenberg and Halperin

[77]. (r, t) satisfies equation (1.3) but its correlation is now

< (r, t)(rf , tf) >= -2rfkBTV26(r - r')6(t - tf) .

The factor of _\72 arises because of the conservation law.

The dynamics of a system with two coupled dynamical variables, a nonconserved

order parameter 7j; and a conserved variable c, is described by model C,

and
Bc(r, t) 2 [ 2 ai]at = r c \7 -KcV e + Be + (c(r, t) .

The terms (t/J(r, t) and (c(r, t) are Gaussian white noise satisfying (1.3) and the

correlations are

and

The cross correlation functions are zero.

1.2 Thesis Overview

The aim of this thesis is to serve as an illustration of the usefulness of the phase-field

models to further develop successful models of solidification. In particular, we treat

the solid phase in a much more realistic manner than has been done to date. The

thesis is divided into four main chapters. Original results are found in chapters 3, 4

and 5.

The most cornmon models of solidification are presented in chapter 2. After pre­

senting the usual thermodynarnics description of the free growth of a pure solid, we



introduce another important system pertaining to solidification, directional solidifi­

cation. The local models of solidification are briefiy presented, even though they

will not be of great use in this thesis. Their historical importance however justifies

their presence in this dissertation. A general presentation of the phase-field model

concludes the chapter.

Chapter 3 deaIs with phase-field models of dendritic growth. Recent models of

dendritic grO'wth are reviewed and we show how to incorporate grain boundaries and

polymorphous crystallization into these models.

In chapter 4, we show how to address recent experiments on directional solidifi­

cation with a more realistic mode!. This phase-field model developed recently by

Grossmann et al. [93J is used ta study one of the secondary instabilities encountered

in directional solidification, namely the vacillating-breathing mode.

In chapter 5, we incorporate the fundamental feature of the liquid-solid transition

- elasticity - into models of solidification. In the first part of this chapter, the elastic

field is coupled to growth. This is rnotivated by recent experirnental results of Grütter

and Dürig [95] on the quasidendritic growth of Co islands deposited on a Pt(lll)

surface. In the other half of the chapter, a model of dislocation dynamics is introduced

and sorne qualitative results are discussed.

•

•
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2

MODELS OF SOLIDIFICATION

2.1 The Basic Model of Solidification

In the conventional model of the solidification of a pure substance from its melt, the

diffusion of latent heat produced at the interface between the solid and the liquid is

the fundamental mechanism controlling solidification. The heat in the neighborhood

of the interface has to diffuse away from the interface, before further solidification can

take place. The liquid is assumed to be free of any impurities whose slow diffusion

would limit the crystal growth. Here the growth is limited solely by the diffusion

of latent heat. The purely chemical model, where the diffusion of impurities is the

limiting process, is similar to this thermal model l and will be discussed later in the

context of directional solidification.

The dimensionless thermal diffusion field is chosen to be

T-Tco
u = Lie (2.1)

where Tco is the temperature of the liquid far from the solid, L is the latent heat and

C is the specifie heat. The temperature field U obeys the diffusion equation

au _ Dr72 (2.2)at - v u,

where D is the thermal diffusion constant. We shall consider here the simplest limit,

namely the symmetric model where D is the same in bath liquid and solid phases2
•

It greatly simplifies the calculations without altering tao much the physical results.

This is because it is the difference in free energy, not transport coefficients, which

drives the transformation from the metastable liquid to the stable solid.

1 Langer [80].
2The other limit useful in the study of the solidification of an impure melt is the one-sided model

w here the chemical diffusion in the saUd is neglected.

8
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LIQUID

SOLID

Figure 2.1: Sketch of the solid-liquid interface.

9

The crucial equations of this model are the boundary equations imposed at the

solidification front. First, there is heat balance1 across the solid (S) - liquid (L)

interface, which expresses the conservation of the total energy when sorne matter is

transformed from liquid into the solid:

V n = D(Vu[s - VuIL) . ft , (2.3)

where ft is the unit normal directed outward from the solid as shown in figure 2.1 and

V n · is the normal interface velocity. The left-hand sicle of (2.3) is the rate at which

latent heat is generated at the interface and the right-hand side is the rate at which

it is diffused away.

vVhen the interface is assumed ta be rough, the attachment of the atoms or

molecules of the liquid onto the liquid-solid interface is quasi-instantaneous, ï. e. 7 very

fast (rv 10-12 s) compared to the time of growth of an atornic layer of solid (in typical

experiments where the velocity of the interface is of the arder of 10 /-Lm/s, this time

is rv 10-4 s).

The interface is then considered to be in a local equilibrium. In practice, rnost

metal interfaces as well as organic materials (e.g. succinonitrile and CBr4) on which

many of the most precise experiments have been performed, are rough.

The second boundary condition determines the temperature Ui of the interface

where

Ui = .6. - do fi. , (2.4)

•
~ = TML/;["" . (2.5)

Equation (2.4) is known as the Gibbs-Thomson equation for a pure material. .6.

denotes the dimensionless undercooling and TM the melting temperature. fi, is the

1 AIso known as the Stefan-Lamé condition.



total curvature of the interface, defined as positive for a convex solid, and do =

'yCTlttf / L2 is the capillary length. The capillary length is proportional ta the solid­

liquid surface tension 1 and is typically of the arder of a few Ângstr6ms. When a

bulge of solid penetrates inside the melt, the temperature at the tip of the bulge is

lower than the melting temperature of the planar interface.

Nlore generally, one has to add to (2.4) a kinetic correction

•
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(2.6)

(2.7)

•

where !3(vn ) is a function of the normal interface velocity. A linear function {3 = f30vn

would be accurate for a rough interface. For faceted interfaces, /3 is an oriented­

dependent function which can be highly non-linear. In that case, both do and {3 carry

information about the orientation of the solidification front relative to the crystalline

a..""{es.

The set of equations (2.2, 2.3 and 2.4) supplemented by initial data, and boundary

conditions for u far from the solidification front, constitutes a closed mathematical

problem of the free-boundary type. It is known as the modified Stefan problem which

has been extensively studied by mathematicians1
. With zero surface tension (do = 0),

it becomes the classical Stefan problem.

This basic model of solidification is also known as the minimal model. We assume

that there is no flow in the liquid phase: convection and advection are neglected.

However, even with these simplifications, the mathematical problem is highly non­

trivial. Non-linearities come into play via the curvature (equation (2.4)) and the unit

normal vector (equation (2.3)). For a one-dimensional interface, given by z = z(x) in

the two dimensional x - z plane, K. = -zxx(l + z;)-3/2 and n z = (1 + Z;)-1/2.

2.1.1 The Planar Stationary Solution

The planar solidification front constitutes the simplest problem. Consider a planar

front moving forward in the z direction at a constant velocity Va. The stationary

diffusion equation in the reference frame of the interface takes the following form

82u au
D 8z2 + Va ai = 0 ,

l Rubinstein [71].



where z = z - vot. With the boundary condition for the classical Stefan problem,

K, = 0, u(D) = .6., the solution of (2.7) becomes•
2: MODELS OF SOLIDIFICATION

{

.6. e-2i/e
u(z) =

.6.

for z > 0;

for z < 0,

Il

(2.8)

where e= 2D/vo is the thermal diffusion length. For growth velocities in the 10/-Lm/s

range, eis of the arder of centimeters. This solution must satisfy the other boundary

condition, heat balance (2.3). vVe find that a planar stationary growth is possible

only 'when .6. is equal unity (Toc = -80o e for water). This could have been deduced

directly from the heat balance equation: when .6. = 1, the latent heat reLeased is

exactly equal to the heat necessary to bring the temperature of the liquid from T00

ta TA-t. Figure 2.2 shows the behavior of the field u(z).

:-v1-----------,. 0

u

,
,,
1

iE'

l

seLlo z L1aUIO

•

Figure 2.2: Temperature profile of the planar stationary solution.

If .6. < 1 (and indeed, most experiments are conducted at very Law undercooling,

i. e. .6. « 1) not aIl the latent heat is absorbed by the solid and this heat builds up

in front of the interface. As a result, the solidification rate decreases and the planar

front moves following a diffusion law Zr ~ t 1/ 2 . This law can be derived using a

similarity transformation1•

ISee for instance Langer [87] and the literature related ta the one dimensional Stefan problem in the
book of Rubinstein [71] .



The most interesting feature of the planar solidification front described above is its

morphological instabilityl. Let us consider the stability of the planar solidification

moving at a constant velocity2 Vo. The diffusion equation in the moving frame of the

interface is

•
2: MODELS OF SOLIDIFICATION

2.1.2 Linear Stability Analysis

12

1 au _ ~2 28u
D at - v U + ë8z ' (2.9)

where the tildes have been omitted on the z for simplicity. Say the unperturbed

solidification front is (r(x) = 0, where x denotes positions in the plane perpendicular

to z. The perturbed solidification front takes the form

Similarly, the perturbed temperature fields

and,

vVe write the perturbations as the sum of their Fourier components

ouL(x, z, t) = ûL(k) e(ik.:z;-qz+wt) ,

Jus (x, z, t) = û.S (k) e(ik.:z;+qz+wt)

and

d((X, t) = ((k) e(ik.:z;+wt) .

From the diffusion equation (2.9), we obtain

w 2 2 2 -2 2 - 2
D = q - f.q - k = q + ëq - k . (2.10)

••

Using the Gibbs-Thomson condition and the heat balance equation, we obtain the

two following equations after linearizing:

-l((k) + ûL(k) = û S (k) = -dok 2((k)

lLanger [87J; Caroli, Caroli and Roulet [92].
2This linear stability analysis is performed for the academic case 6. = 1 which allows one to identify
the main mechanisms responsible for most of the front instabilities. Moreover1 this algebra is aIso
valid in the quasistationary approximation where the diffusive growth is approximated as constant
growth on the time scale of the instability.
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and
W A (2)2 -D((k) = - f ((k) + qûL(k) + qûS(k) .

Eliminating ( and û from the last two equations, we get

2D ( 2)w = T q - e - Ddok 2
(q + ij) .

13

(2.11)

The physical interpretation of the last equation becomes easier after nvo cornmon

approximations. Fust, the thermal diffusion length is considered to be much greater

than the wavelength of the perturbation (kt ~ 1). Secondly, the diffusion of heat

along the perturbation is fast compared to the growth of the solid. This is known

as the quasistationaïlJ condition (w ~ Dk2 ). The front moves slowly enough to let

the temperature field adapts to its instantaneous shape as if it were stationary. It

amounts ta neglecting au/et in equation (2.9). \Ve deduce then from (2.10) that

q ~ ij ~ Ikl, and thus (2.11) simplifies to

(2.12)

•

As shawn in figure 2.3, the planar solidification front is linearly unstable against

OIoC---------------=\r-------
k

Figure 2.3: Growth rate spectrum.

(w > 0) long wavelength defarmations. This is known as the Mullins-Sekerka in­

stabilityl. Also, the front is stable (w < 0) against short wavelength fluctuations .

l ~Iullins and Sekerka [63].
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Figure 2.4: Schematic plot of the directional solidification setup.
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•

The k3-term responsible for this in (2.12) is proportional ta the capillary length

do. The capillarity acts as a stabilizing agent whereas the diffusion destabilizes

the planar front. The typical scale of the patterns resulting from this instability

is Às = 2rr1ks = 27rVPdo which is the geometrical mean of the capillary length do

and the diffusion length P.. The scale of the front structure is typically of the arder of

microns.

2.2 Directional Solidification

Directional solidification is a well known technique in metallurgy which is used for

purifying solids and preparing materials with specifie properties1. The prînciple of di­

rectional solidification is illustrated by figure 2.4 and a typical phase diagram, which

defines the parameters used, is shown in figure 2.5. An impure solid is grown at the

expense of a liquid by pulling the sample at a constant velocity v in a temperature

gradient established by hot and cold contacts. The contacts A and B are at a temper­

ature respectively higher and lower than the liquidus and solidus temperature. In the

study of non-lïnear dynamics, the experiments are usually carried out using Iiquids

l Kurz and Fisher [92}.
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T

Figure 2.5: Phase cliagram for dilute alloys.

c
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instead of solids. The group of Libchaber pioneered the use of the isotropic/nematic

transition occurring in sorne liquid crystals to study directional solidificationL• The

other liquid crystal phases that can be used are cholesteric/isotropic2 There are ex­

perimental and theoretical advantages to work with liquids. For instance, the crystal

anisotropy is absent and the two phases are more symmetric, thus the system is doser

to the simple theoretical models.

Solidification of an impure melt is similar to the pure liquid solidification described

in the last section but the diffusion of solute is now the rate limiting process. In

directional solidification, the imposed external temperature gradient serves to limit

the instability and allows one to study patterns doser to the planar interface. We

assume that the thermal diffusion is instantaneous3 which allows us to neglect the

effect of the latent heat released on the imposed linear temperature gradient. Let

e denote the concentration of the impurities. The diffusion of the concentration

expressed in the laboratory frame is:

ae 2 ae
at = D\l e + v az '

1.0swald, Bechhoefer and Libchaber [87]; Simon, Bechhoefer and Libchaber [88]; Flesselles, Simon
and Libchaber [91].

2See for example Claclis et al. [91].
3The diffusion constants of the solute are D '""-J 10-5 cm2 /s whereas the thermal diffusion constants
range from 10-l.cm2/s for the metals to 10-3cm2 /s for organic materials.



where D is the diffusion constant assumed to be the same in the two phases. This

equation has to be supplemented by the continuity conditions expressing the conser­

vation of solute at the interface,•
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•

and two local equilibrium equations, the Gibbs-Thomson condition

and

where ft is a unit vector normal to the interface, painting from the solid phase iuto

the liquid phase, ç is the position of the interface, m is the absolute value of the

liquidus slope, K is the equilibrium segregation or partition coefficient (the ratio of

the slopes of liquidus and solidus Unes) which is close to Ullity in typical experiments,

do is the capillary length, and '" is the curvature of the interface. Finally, another

boundary condition for c is

limc=CQ.
Z-POO

There are three typical lengths in the system. The diffusion length l = 2D / v, the

thermal length lT = ~T/ G and the chemical capillary length le = doTM / 6.T. G is

the applied thermal gradient, .6..T = m.6.c is the temperature difference between the

liquidus and the solidus line at the concentration Co and D.c = Co (1 - K) / K is the

equilibrium concentration gap.

As for the free growth problem, the planar stationary solution is easy ta find. It

is given in the liquid by

c(z > () = Co (1 + 1~K e-2Z
/
l ) = Co + é>.ce-Zz

/
t

and in the solid

c(z < () = Co •

The solidification gives rise ta the build up of impurities in front of the interface. This

layer of impurities is of thickness l .



As in section 2.1.2, a linear stability analysis of the planar stationary solution can

be performed1 to get:

w(k) = ~ [JI + (kf)2(1 -I!/er -l!cl!k
2

) - 1] .•
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Here, the partition coefficient K is set to 1 as it is often done in the analytical studies

of directional solidification2. The dispersion relation is shown in figure 2.6. At large

k, w (k) rv - 2fcD k3 • Then the planar front is stabilized against short wavelength

deformation by capillarity. On the other hand, the translation along the z axis is

stable since w(k = 0) = -V/fT < o. This is due to the presence of the external

thermal gradient. If the front moves ahead, the temperature becomes too high and

it melts.

k, .... -- k ..... "'" ".".::-- c" ,
.?~ '"" '" "" '.

\ \
\ '
\ \ v>v

\ c
\

\
\
\
, v=v

c

Figure 2.6: Growth rate spectrum for directional solidification.

•

The directional solidification has two controiling parameters, v and G. Let us as­

sume that G is fixed and v varies. As the velocity is increased, the interface remains

fiat until a critical velocity V c where a wavy pattern appears. This is the weIl known

cellular structure. Such a morphological transition is called a bifurcation. Near this

instability threshold, the interface can be described by simple models known as ampli­

tude equations3 • These models are used to characterize the bifurcation (supercritical

lSee appendix A.1 for the derivation.
2In the experiments discussed in Flesselles, Simon and Libchaber [91], K ~ 0.9.
3For the amplitude equations as weil as a discussion of the Eckhaus instability, see e.g. Caroli, Caroli
and Roulet [92] and Cross and Hohenberg [93].



or subcritical), and to obtain the boundary of phase instability (Eckhaus instability) .

For the symmetric model, the bifurcation is said to be supercritical or normal. The

amplitude of the pattern close to the onset of the instability can be calculated by a

linear analysis. Oswald, Bechhoefer and Libehaber [87] showed that the bifurcation

is supercritical for the case of the nematic/isotropic transition. Just above the onset,

they observed a sinusoidal interface deformation of arbitrarily small amplitude. In

the one-sided model, the bifurcation is found experimentallyl to be subcritical or

înverted. Right above the onset of instability, the interface develop a highly non­

linear state characterized by grooved cellular pattern. In this case, even the weakly

non-linear theory is not appropriate. Subcritical bifurcation has been observed in

organic materials as succinonitrile. This is another advantage of working with liquid

crystals.

The instability of the structureless state is named as the primary instability while

an instability of the cellular structure is known as a secondary instability. A weIl

known secondary instability is the solitary mode discovered by Simon, Bechhoefer

and Libchaber [88] in the context of the growth of a nematic. This mode is character­

ized by the ineiusion of a few asymmetric cells connecting regions of "normal"-sized

background cells which propagate along the interface at a constant velocity. Other

secondary instabilities include tip splitting and optical modes. At higher speed, the

interface motion enters a chaotic regime. We will focus later in this thesis on the

optical modes 1,vhere the cell width oscillates in phase opposition with its neighbors.

These modes are aiso called vacillating-breathing modes.

•
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2.3 Local Models of Solidification

Because of their spatial and temporal nonlocality, realistic models of solidification

are difficult to solve, except for the geometrically most trivial situations. The local

models of solidification were invented in the early eighties in order to simplify the

mathematieal problems.

The solidification front is modeled by a string moving in the two-dimensional space

but having dynamical degrees of freedom associated only with the one-dimensional

LSee Caroli, Caroli and Roulet [92] and references therein.
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(2.14)

Figure 2.7: Coordinate system for local models of solidification.

variable s. The local curvature K(S, t) is defined by

ae
K(S, t) = a$ , (2.13)

where 8 is the angle between the normal to front and a fixed direction as shown in

figure 2.7. If we have a form for K(S, t), then we can obtain 8(s, t) from equation

(2.13) .

The equation of motion for K is

(~;)n = - (::2 +K
2

) Vn ,

which must be supplemented by the metric condition

(2.15)

•

The subscript n indicates a differentiation along the outward normal to the front.

Equations (2.14) and (2.15) are purely geometrical statements. A clear derivation of

these equations can be found in Langer [87].

The oversimplification of these models cornes from the assumption of locality. The

motion of any piece of the string is determined only by its immediate neighborhood,

e.g., its curvature and the derivatives of the latter.

2.3.1 The Geometrical Madel

In the geometrical model!, one assumes that V n = V n (K, V K, .••). An attractive choice

is

(2.16)

1Brower et al. [83] j Brower et al. [84].
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(2.17)
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where the second term of the right hand side stabilizes the system at short wave­

lengths for 'Y > O. This is equivalent to the roIe played by the capillarity. However

equation (2.16) Iacks control parameters for the undercooIing and the minimum nu­

cleation size. Therefore, the most studied form is the following:

2 3 82
rt.

V n = J<i, + 0!J<i, - {3J<i, + T 8s2 •

•
As one can deduce from equation (2.17), a fiat interface (J<i, = 0) can never move.

In fact, this is wrong since, as we saw in section 2.1, the velocity of such an interface

follows v "" 1/t1/2
• However, the geometrical model exhibits interesting pattern form­

ing pr.operties1, even though they are not quite dendrites. Despite these problems,

the geometrical modeI has been extensively studied for its mathematical simplicity.

2.3.2 The Boundary-Layer Model

In the boundary-layer mode12
, sorne non-Iocality is introduced.

We want ta solve the diffusion equation for u everywhere in the liquid subject

to the usual boundary conditions at the solidification front. We suppose that the

thermal field u (shown in figure 2.8) in front of the interface is3

where Ui = il - dort. as in (2.4).

If the range of the diffusion field e is much smaller than the radius of curvature,

i. e., td. «::: 1, then the diffusion is confined to a small region, known as the boundary­

layer. Now, instead of solving for the exact diffusion field u, we consider the dynamics

of the heat content per unit length of this boundary layer. The heat content per unit

length of this boundary layer is

(2.18)

(2.19)

•

where a is an adjustable parameter of the arder unity. The heat balance then becomes

DUi Dau;
V n = -e- = 1l

1 Brower et al. [83]; Langer [87].
2Ben-Jacob et al. [83]; Ben-Jacob et al. [84] .
3For simplicity, we omit the conventional factor 2 for l.
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Figure 2.8: Thermal field u in front of the interface.

In this model, V n is determined by the thickness of the interface. Consider the heat

content 1-l6s in a length os of the boundary layer. It obeys the following dynamical

equation

(~(1ldS))n :::: dsvn(l-U,) +adsDVs ·eVsUi·

The first term of the right-hand side of this equation is the total rate of heat gener­

ation. The total rate of heat generation is V n . An amount VnUi is used to heat the

solidified liquid from u = a to u = Ui and vn(l - Ui) enters the boundary layer. The

second term describes lateral heat diffusion. The geometrical formula l

yields

(~~)n :::: vn(l - Ui -1lK) + DVs ·1lVs(ln u,) . (2.20)

The lateral diffusion term mimics the retarded non-local interaction between different

points on the solidification front.

The basic model of solidification (section 2.1) and the boundary-Iayer model are

in good agreement when Ki. « 1. The fiat interface can be shown ta move with

1Using equation (2.15).



the appropriate law of t 1/ 2 . The needle crystals in the l vantsov limit do = 0 are

parabolas (section 3.1). Furthermore the stability spectra of the two prohlems are

similar for long wavelengths. However, discrepancies at small wavelengths (kt » 1)

are important.

•
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2.4 Phase-Field Models

The term phase-field model has been introduced by FLx1 . His idea was to replace the

dynamics of the boundary by an equation of motion of a phase-field which applies

in the whole domain. In this sense, phase-field models are similar to the enthalpy or

weak-formulation methods2 • The phase-field (or the arder parameter) ifJ labels the

liquid and solid phases. It takes a constant value in each bulk phase, e.g. ifJ = 0 in

the liquid and cP = 1 in the solid. At the interface, cP varies quickly but smoothly.

The equation of motion for if; can he written as

8 if> 5F
T 8t = - 8if> ' (2.21)

where T is a time scale for the kinetics of r/J and F, a Landau-Ginzburg free energy

functional

:F = Jdr [/(1, u) + ';; IV'W] . (2.22)

The free energy density f(r/J, u) is a double weil function with respect to r/J and

u = (T - TM) / (L / c) is the dimensionless diffusion field. The term 1V cP 1
2 is the

contribution of the interface. The surface tension is defined as the additional free

energy per unit area introduced by requiring the presence of a planar phase boundary

between two phases in equilibrium. For a one-dimensional system with ifJ = ifJ(x) and

f(l,O) = f(O, 0) = 0, the surface tension per unit area is given br

(2.23)

At equilibrium and in one-dimension, the dynamical equatian (2.21) reduces ta

•
_ 2,1, + 8f(ifJ, 0) = 0

€ 'f'xx 8ifJ

l Fix [82]; Fix [83].
2See for example Smith [81] and Fix [83] .
3Cahn and Hilliard [58]; Allen and Cahn [79].

(2.24)
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Figure 2.9: Double well structure of the free energy density.
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(2.25)

The surface free energy 'Y is then

1
+00

'Y = €2 -00 1; dx . (2.26)

•

Various precise forms of f (1, u) have been suggested. Let us consider the follow­

ing1
,

(2.27)

The term Cl.u(c/J - 1/2) is a nonequilibrium driving force and the bulk free energy

difference between the phases is au. From this consideration, one may determine a =

L2 jcTM . When u is negative, the solid phase is favored and vice versa (figure 2.9). At

equilibrium, the interfacial profile has the well-known hyperbolic tangent (figure 2.10).

The parameter € introduced in (2.22) which measures the energy cost of the interface

gives aiso the thickness of the interface.

The equation of heat diffusion is modified to take into account the latent heat

released at the interface
8u _ 2 _1_ 81 ? )
8t - DV u + tJ..1 et 1 (2 ....8

where /::11 = 1+ -1- = 1 and the last term of (2.28) represents the interfacial source.

It can be worthwhile to keep cP fixed in the bulk so that the latent heat is released

at the interface only. We write the free energy density as

(2.29)

lSee for instance Langer [86], Collins and Levine [85] and Collins, Chakrabarti and Gunton [89]
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Figure 2.10: Equilibrium interfacial profile r{J(x). The thickness of the interface is prapartianal ta
the parameter €.

where 8g/64Jlo,1 = o. The obvious form of 9 would be a solution of 6g/61J = [4J(4J-1)]n

where n is a positive integer. The simplest choice n = 1leads to the model proposed

by Kobayashi [93] with g(q;) = 4J3/3 - 1J2/2 (see section 3.3). Another solution,

n = 2, gives the models proposed by Wang et al. [93J and Umantsev and Roitburd

[88J (section 3.4).

EfIect of the noise

Up to now, we have not considered the influence of internaI or external noise on the

growth. Intrinsic thermal fluctuations are always present in the system but, as we

will see below, the size of these fluctuations is small for the macroscopic phenomena

we are dealing with in this thesis. The influence might become more important when

the scale of the pattern decreases. The external noise that arises from defects in the

apparatus, vibrations in a laboratory, or impurities in the sample, is nat under the

control or the observation of the experimentalist.

The effect of thermal noise is taken into care as in model A by adding ta equation

(2.21) a stochastic term (Cr, t) such that

a4J 6:F
at = -r 6ifJ + ( ,

where ( is a Gaussian white noise with zero mean < ((r, t) >= 0 and correlation

< ((r, t)((r' , t') >= 2rkBT6(r - r ' )6(t - t') ,



with T the temperature and k B is the Boltzmann's constant. Thermal noise is impor­

tant when kBT ,...." foçd where fa and ç are respectively a typical energy density and

a typicallength scale in the system. For the succinonitrile system l
, the bulk melting

temperature is TM = 58.2°C, and the typical undercooling is T - Ttvr ,...." 0.1 - l.Ooe.

The latent heat L = 4.5 X 108 erg/cm3 and Lie = 23.1°C. The diffusion length

e rv 0.01 - 1.0 cm and the capillary length do = 192 À. The dendrites studied have

tip radii p rv 1 - 100 f.Lm. The heat contained in a small volume p3 in front of the

interface is C(T - T~f )p3 rv 10-2 erg which is much higher than kBT rv 10-13 erg.

There is no general way to introduce the effect of external noise. Usually, one makes

the sensible hypothesis that the external noise is also uncorrelated and additive. The

noise obeys the same relations as above. Its mean value is zero and the correlation is

•
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now

< ((r, t)((r, t) >= rFA5(r - r')c5(t - t') ,

where FAis a phenomenological parameter.

A discussion of the influence of noise in the Swift-Hohenberg equation (modeling

the onset of the Rayleigh-Bénard convection) can be found in Cross and Hohenberg

[93].

Sharp-interface limit

The equations for the phase field and the temperature reduce to the basic equations

of solidification in the so-called sharp-interface limite The formal procedure is sirnilar

to the one employed by Caginalp [89] and is described at length in appendix A.2. It

allows one to relate the coefficients a and T to the capillary length and the kinetic

coefficient. Following the lisual method, one can write r rv bE2 and a rv ey where E,

the interface thickness, is a small parameter. With the matched asymptotic expan­

sion, we obtain do rv Ela and {3 rv r/€a. Hence, this method introduces a kinetic

term in the Gibbs-Thomson condition. This is not very appropriate if one wants to

get quantitative results for the usuai experiments where the kinetic correction {3v is

negligible. Also, with this method, the temperature u does not vary across the inter­

face. This implies that the variation of the temperature across E, Ic5ul rv EvnlD must

lThese are the values given in the review of Kessler, Koplik and Levine [88] .



be much smaller than {3vn . This leads to the constraint do » c:31DT. Hence, we have

to deal with large lattices to get computational results that are independent of the

computational parameters, as argued by Wang and Sekerka [96a].

I(arma and Rappel [96b] have performed a sharp-interface limit calculation on

the phase-field which includes a variation of u in the interface region. This is for­

mally equivalent to choosing '1 "-' bc:2 and a rv "f. They obtained do "J Ela and

{3 rv (1- nc:2AIDT)T/ ac: where A is a numerical factor depending on the choice of the

function g(if». The form for the capillary length is similar to the previous one, but it

is now possible to tune the parameters such as {3 = O. The constraint do » c:3 / DT

does not exist anymore and a small do is possible. It greatly enhances computational

efficiency and makes 3-D simulations possible1
• A. similar calculation was performed

earlier by Caginalp and Fife [88] where they 0 btained basically the same expressions

for {3 and do .

•
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• l Karma and Rappel [96a].
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DENDRITIC GROWTH

3.1 Introduction

In section 2.1, it has been mentioned that a steady-state planar solution is impossible

for an undercooling .6. different from one. Ivantsov [47] found that in the absence

of surface tension (do = 0), a whole family of steady-state needle crystal (branchless

dendrites) solutions exists for any .6. < 1. A constant velocity is allowed by the

needle shape because the heat produced at the interface can diffuse to the sides and

therefore, there is no slowing down of the solid due to a build up of heat at the

interface. The corresponding needle crystals are paraboloids in three-dimensions and

parabolas in two-dimensions with tip radius p, moving with the constant velocity v

in the direction Oz, the axis of revolution or symmetry, as seen in figure 3.1. Going

to parabolic coordinates, one obtains in three-dimensions

00 -y
.6. = PeP r ~dy,

}p y (3.1)

•

where P is the thermal Péclet number defined as the ratio of the tip radius to the

thermal diffusion length P = pl/!' = pv/2D. The velocity is not determined. For a

given .6., only the product pv is determined.

The paraboloid shape of the needle crystal can be understood qualitatively by the

following argument. The heat released at the interface is advected along Oz according

to the law z = vt and it diffuses along a transverse direction as y = (Dt) 1/2 . An

equation of an isotherm is then z = y2v1D which describes the paraboloid.

The relation .6. = .6.(P) can be anticipated by a dimensionless analysis1
. From the

1See for instance Pelcé [88] and aIso Pomeau and Ben Amar [92]. The latter derived proper scaling
laws from boundary layers estimates when only latent heat (or soLute) diffusion Limits the growth
but also in the presence of an axial flow.

27
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parameters involved in the problem of the growth of needle crystal without surface

tension, one can build only the following two dimensionless expressions: 6. = C(Tft;f­

Too )/Land CTM / L. The velocity of the crystal v cannot be related to 6.. However, by

adcling a length p, another dimensionless expression involving the velocity is possible,

the Péclet number P = pv/2D. Hence, one must have.6. = .6.(P). The surface tension

'Y introduces a new length into the problem, 'Y/ L. Thus, it is not necessary anymore

to introduce p and the new dimensionless expression can be written as DL/v'"'!. The

velocity must be related to the other dimensionless quantities as v = DL/'Yf(.6.).

The Ivantsov solution has been verified quantitatively by many precise experiments

on the growth of dendrites, such as the one of Huang and Glicksman [81] using

succinonitrile. But these experiments also tell us that for a given .6., only dendrites of

a given p and v can grow. Hence , the existence of a family of Ivantsov's solution was

a puzzle and the object of research for forty years. Langer and Müller-Krumbhaar [78]

put forward a theory of marginal stability to explain this selection mechanism. They

conjectured that the naturally selected states are those which sit just at the margin

of stability. The same idea was applied to front propagation by Dee and Langer [83]

who suggested than the natural velocity v* of fronts propagating into an unstable



state is related to the stability of these fronts through the marginal stability. The

fronts that move slower that v* are unstable to perturbations, while those that move

faster are stable. This is indeed the case in sorne situations as sho\v by van Saarloos•
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[87] .

(3.3)

IFor example, refer to Huang and Glicksman [81].

Corning back to the dendrite problem, we saw in section 2.1.2 that a planar solidi­

fication front moving at a speed v is linearly unstable against sinusoidal perturbation

of waveiength greater than À s = 2rr.jf.do. EssentialIy, Langer and Müller-Krumbhaar

[78] conjectured that a dendrite with a tip radius p greater than >"s will be unsta­

ble against splitting. In addition, they argued that a dendrite with a tip radius tao

small would thicken due a piling up of side branches in the taïl of the dendrite. The

operating point is at a state of marginal stability characterized by the dimensionless

number

a = 2Ddo = (~) 2 (3.2)
vp2 21fp

which is independent of the dimensionless undercooling~. If we set p = À s then

a* ~ (1/27r)2 ~ 0.025 which is consistent with experiments1 giving a* ~ 0.0195.

Equations (3.1) and (3.2) would determine the unique dynamicai operating state.

However, intensive studies of the simplified models of solidification introduced in

section 2.3, the geometrical and the boundary-layer models, as well as later calcula­

tions on the full model of solidification led to a major breakthrough in the mid 1980's.

It was argued that a subtie mathematical mechanism called microscopie solvability

was responsible for determining the operating conditions, that is the radius and ve­

10city, of the tip of a dendrite. The main insight of the solvability mechanism was

that the tip's operating conditions were determined by the smallest - the micro­

scopic - length scale in the description. Unlike the marginal stability mechanism,

whieh was dynamic, the microscopie solvability mechanism was based on the existence

of steady-state solutions.

The problem ean be divided into two regions. Far from the tip (the outer region),

the effect of surface tension is negligible and the shape of the interface obeys the

Ivantsov solution (3.1) which for small undereooling becomes

pv 6.
_rOoJ

D - In(~)'

•



Close ta the tip (the inner region), the integral equation reduces to a non-linear

eigenvalue problem and the velocity of the dendrite is•
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4D(.6. )2
V ~ C do In(.6.) ,
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(3.4)

where C is the eigenvalue of a non-linear integral equation. C is equal to 8/(J" where

(T is given by (3.2). However, p is not the tip radius of the needle crystal but the tip

radius of the Ivantsov paraboloid that describes the needle crystal at large distances

from the tip. Numerical calculation of Chas shown that there is no stationary solution

of the needle crystal problem in the presence of isotropie surface tension. Thus, Langer

and Milller-Krumbhaar [78] studied the dynamical stability of a solution that did not

exist.

However, the introduction of anisotropy in the surface tension leads to a discrete

set of steady-state solutions. Among those solutions, only one is stable with respect to

small perturbation of the tip. The hypothesis that it is the unique solution and that

it describes the tip of the dynamically selected dendrite is known as the solvability

theory. A stationary solution of needle crystal exists only if anisotropy in the surface

tension is introduced. Sorne reviews of the solvability theory can be found in Langer

[89], Pelcé [88] and Ben Amar [88].

The work Led to a clear new understanding of crystal growth but was very technical.

Directly or indirectly, work began on microscopie models of crystal growth, wherein

an length scales are weIl described. The most successful such approach is called the

phase-field model.

3.2 Phase-Field 1Vlodels of Dendritic Growth

Following is the free energy functional

(3.5)

•
where

J(eP, u) = ~<p2(1 - <p)2 - ÀuifJ2(1 - ifJ)2 (3.6)
4

with minima at ifJ = 0 and ifJ = 1 corresponding to the liquid and solid phases,

respectively. The angle e is the angle between the normal to the interface and the x



axis which we can assume has a crystallographic signification. It is more convenient

to use dimensionless unïts. We rescale the space coordinates using a typical length

scale w that could be the radius of the curvature of the interface. Thus, the diffusive

time scale is W2 / D. In these units, the dynamics of the order parameter is deseribed

by

•
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8cjJ 6:F
T-=--

et 6cjJ

and it is eoupled to the equation of the diffusion field

au _ \ï2 8cjJ
8t- vu +at·

31

(3.7)

(3.8)

In the sharp-interface limit1 where €K. ~ 1, one can get the anisotropie form of the

Gibbs-Thomson condition2
,

(3.9)

•

Numerical Implementation

For two climensional caleulations, equation (3.7) becomes

where we used € := Ë'T/(B). The prime denotes a derivative with respect to (J. The

normal to the interface is

A Vr/J BA. a A
n:= 1v r/J 1 = cos x + Sin y

and
cP

tan a := cP: .

Neumann boundary conditions are used for both fields: VcP· fi = 0 and Vu· fi := 0

where n is the normal to the boundary. In other terms, the change of phase is

forbidden along n and the heat cannot leak outside the system.

We solve the equations (3.8) and (3.10) by discretization in a way that will be

simple to implement. More elaborate computational techniques are described in Wang

l McFadden et al. [93]; Karma and Rappel [96b].
2Herring [53] .



and Sekerka [96a]. The grid spacings in the x and y directions are identical and equal

ta Llx. The time step is denoted by Llt. Hence, Xi = iLlx, Yj = jLlx and t = nôt.

For the space derivatives, we use the usual central difference scheme•
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We have several choices for representing the time derivative term. If an explicit

scheme is employed for both dynarnical equations, then a von Neumann stability

analysis leads to two stability conditions, !:lt < Llx2 /(4l2 /r) for (3.10) and Llt <
Llx2 /4 for (3.8). For the values that we will use, the condition on the dynamical

equation for cP is more restrictive. Hence ta maximize computational efficiency, we

use a forward time centered space scheme for (3.10) and an altemating direction

implicit (ADI) scheme! for (3.8).

The discretized version of (3.10) is then

,;,.n+l _ ,l.,n ~t [ t5f -2(" )
lfJi,j - lfJi,j + -:;:- - t5~ - € 77yTJ + TJTJy + 2T)TJx cPx

+ l2( -TJxT)' - TJ77~ + 27777y)4Jy + l2TJ2\72q;] . (3.11)

Equation (3.8) is discretized by the ADI method. We difference this equation in

two half-steps

•
where we have used

l Press et al. [92] .

..I,.n+l ;/.,n
NJ'"-J-l = lfJi,j - lfJi,j

~J 2 (3.12)
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and

Putting the unknowns on one side in the matrix notation, we finally get

(1 - aLx ) . U n+I / 2 = (1 + aLy) . un + N n +1 ,

(1 - aLy) . u n +1 = (1 + aLx ) . U
n + I

/
2 + N n + l

,

33

where a = ~t/2~X2. The matrices 1 - aLx and 1 - aLy are tridiagonal so the

equations can be solved using a standard tridiagonal algorithm. Given un, we get

first U n+I / 2 and by substitution, u n +1.

Anisotropy

In the isothermal case with u = 0 and without anisotropy, using (3.6), equation (2.26)

reduces to

'Y = E2 [+00 cP; dx = E2 rI ifJx difJ = EH;' (3.13)
J-oo Jo 6v 2

\vhere we have used in the last step that cPx = J2f(cP, 0)/E2 (equation (2.25)).

Now, when anisotropy is introduced, a planar interface for the isothermal case will

have the solution cP = cP(r . il,) where il, is the normal to the interface. Then the

phase-field obeys the equation

1 [ ( x· il, )]cP = - 1 - tanh y'2
2 2 2E(O)

and the surface free energy then becomes

(3.14)

(3.15)

•

Here, the interface width, defined as being the distance for cP ranging from 0.05 to

0.95 is deduced frOID (3.14) to be

(3.16)

Hence, both 'Y and w are proportional to E(O), i.e. they have the same anisotropy.



Kobayashi [93] performed numerous simulations of a solid dendrite growing into an

undercooled melt. He observed various dendritic patterns and realistic features such

as tertiary side arms and the coarsening of side arms away from the tip. It was the

first time that computation of a model of solidification had shown these features. His

work was however purely qualitative.

As a free energy density, he chose

•
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3.3 The Model of Kobayashi

f(,p, u) = ~,p4 + m(u)3- 3/2,p3 _ m(u) 2- 1/2 </>2 ,
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(3.17)

where U = (T - TM)/(TM - Tao) and Im(u)1 < 1/2 so that the minima of the free

energy stay at <P = 0 and 4J = 1. A possible choice is m(u) = a/1i arctan( -"'lU) \\ith

a < 1. The anisotropy is introduced via the parameter E(0) = f7](B). The dynamics

of the order parameter is gjven by

and the equation of diffusion of heat is

(3.19)

•

where .6. = (TM -Too)/(L/c) denotes the dimensionless undercooling. .6. is an impor­

tant tuning parameter in these simulations.

Following what has been done before, we will not include the external noise as in

equation (1.1) but rather add a term a4J(l - 4J)X to the dynamical equation (3.10),

where X is a random number uniformly distributed in the interval [-!,~] and a is the

strength of the noise. In fact, this term adds noise only at the interface to stimulate

sicle branching. This way of introducing noise is acceptable since we are not interested

in, for example, nucleation process.

An example of a dendritic growth simulation is shown in figure 3.2. The parame­

ters are the following: 7] = 1+6 cos(6B) where 6 = 0.04, f = 0.01, T = 0.0003, Cl: = 0.9,

7 = 10, a = 0.01, Ll = 0.6 and the mesh size is taken to be 0.03. We start with a
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•
Figure 3.2: Growth of a dendrite in an undercooled melt for a 6-fold (left) and a 4-fold (right)
anisotropy. The large dots show the phase field contour (if> = 0.5) while the small dots represent the
isotherm Cu = -0.5). From top to bottom, the times are: 0.06, 0.15 and 0.3.



small solid disk at the center of the system. At the beginning of the simulations, the

system is at the undercooling temperature u = -1.

Because of the boundary conditions used, the whole liquid will change to crystal

for .6. greater than 1. If .6. is less that 1, a fraction .6. of the whole region will solidify

and the system will lose aU its supereooling.

•
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3.4 Thermodynamical1y-Consistent Models

Arguing that the approach above is not appropriate for the non-isothermal case, vVang

et al. [93] used an entropy funetional for the system,

(3.20)

•

instead of the Helmholtz free energy.

The evolution equations for the temperature and the phase-field are derived by

requiring that u and ifJ evolve sa as ta ensure positive locally entropy production.

This phase field model is discussed at length in Wang et al. [93]. It leads to a pair of

coupled partial differential equations:

and

au = yr2u _ ~ 'C"') 84>
8t .6.P "fJ at '

where p(cP) = ifJ3 (la - 15rj> + 6ifJ2) and the prime denotes differentiation with respect

to r/J. In this model, the order parameter ifJ is a in the saUd and 1 in the liquide These

equations result from the following choiee of the entropy density funetional:

s(</J, u) = t' [((1 - () ( -D+ iCïLhP'()] d( .

As in the Kobayashi model, the two states are given by fixed values of cP. Using this

model, Wheeler, Murray and Schaefer [93] have condueted a detailed study of den­

dritic growth. They eompared the results of their computations of dendritie growth

with the eurrent theories of dendritic tip selection (see section 3.1). With the same

model, Wang and Sekerka [96b] have also earried out simulations of dendrites grown

from pure melts where they have carefully eonsidered the diverse length scales: the



capillary length, the interface thickness, the tip radius and the computational domain

size. They showed that results independent of computational parameters can only

be obtained at very large supercoolings. In contrast to Kobayashi, these works are

quantitative. The reader is referred to these articles for a detailed account of their

results.

Umantsev and Roitburd [88] have developed a similar thermodynamically consis­

tent approach. Their model is based on a Ginzburg-Landau functional which is an

integral of the Gibbs free energy density of the homogeneous phase and a gradient

energy contribution.

•
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3.5 Dendritic Growth in a Polymorpnous Material

In the last sections, the problem of the free growth of a dendrite into a melt was

discussed. The technique used can be generalized to address two other problems: the

growth of a dendrite in a polymorphous crystal and the growth of many dendrites of

different orientations in a melt.

A.ccording to Johnson [86], the melting phenomenon is equivalent to solid state

amorphization, because thermodynamically, the amorphous phase is the low tem­

perature state of the undercooled liquid. Numerous investigations on amorphization

have been carried out on Ti-Cr systems1
. Analyses of the thermodynamics of the sys­

tem and of the transformation behavior have shown that inverse melting of the b.c.c.

solid in the concentration range between 40 and 65 at.% Cr is possible. Furthermore,

complete amorphization is possible for alloys containing 55 at.% Cr. For this system,

the free energies of the liquid and amorphous phases are shown with r~spect to the

b.c.c. solid in figure 3.3. Below the inverse melting temperature TrM , the crystalline

phase is a metastable state of the solid.

FollO'wing the work of Morin et al. [95], we introduce a d-component non-conserved

vector field, (j). The direction of (j) mimics the local orientation of the crystal while

its magnitude, 14>1, indicates if we are in the solid or the amorphous phase. Grain

boundaries exist between the crystallites composing the system. Hence, one has to

add a term that will explicitly break the continuous symmetry of the free energy and

1Bormann [94] .
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Figure 3.3: Free energy curve of the liquid and the amorphous phase with respect ta b.c.c. saUd
solution for a concentration of Ti-55 at.%Cr. H.c.p. Ti and b.c.c. Cr are taken as energy reference
states at each temperature. TM and TIM denote the melting and the inverse melting temperature
respectively [from Bormann [94]].

the spin waves associated with it. Since there is no reason why the crystal orientation

should depend on the temperature, the temperature u is coupled symmetrically to 4>.
The distortion free energy, which has to be invariant under a rigid rotation of the

system, is built following the Frank free energy for the nematic phase1 :

where 71,(T) is the local director and Kt, !(2 and K 3 are respectively the elastic coeffi­

cients for the splay, twist and bend deformations. In two dimensions, there is obviously

no twist. AIso, the bend term reduces to (VA ftf. This free energy can be simplified

more by assuming /(1 = K 3 = (;2.

Then, the free energy functional reads

(3.21)

•
The term cos(nB) is an important term of this model that breaks the rotational

symmetry of the free energy by introducing n wells in B (figure 3.4). Here, cos(e) =

x . cP/lePl. Physically, a crystallite can take any orientation and we should have an

l See for instance de Gennes and Prost [93].
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Figure 3.4: Contour plot of the free energy (3.21) with u = 0 and b = -0.03
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infinite number of wells. However, we choose n = 12 or n = 15 in the next simulations.

If n is too large, the damain wall between neighboring orientations becomes very small

and we have to reduce the mesh size b.x, and hence the time step, to avoid numerical

instabilities. This would increase the simulation time.

The reduced temperature u is defined with respect to T[M instead of TM' At

the temperature u = 0, it can be shown that in arder to have saddle points at

() = (2n + 1) .15° (in the case of n = 12), b has ta obey the condition -1/16 :5 b < O.

The value of the free energy at a saddle point (see figure 3.5) is then

f(4)5' U = 0) ~ -b/2 .

Sa, b dictates the type of domain walls which will form. For small values of Ibl, it is

energetically favorable for 4> ta jump between neighboring orientations. It mimics a

grain boundary. For large values of Ibl, a zero 14>1 is favored and amorphous material

is trapped at the grain boundary. When m(u) becomes negative, the saddle point

can disappear. This introduces another constraint. Choosing m = ~ arctan( -ou), we

have ta select œ depending on the value of b.
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Figure 3.5: Free energy curve for different orientations of the phase-field.

The system evolves ta its equilibrium state according ta the following equations

and

T Bc/Jx = [t:2 \72 _ 1 + bcos(nB) 1<p1 2 - (m - ~) 1<p1 + m- ~] cP
ât l+b 2 2 x

4(ln~ b) sin(nO) 14>1
2 cPy ,

T a~y = [_2\72 _ 1 + ~~osb(no) 14>12- (m - ~) 14>1 + m - ~] cPy

+4(ln~ b) sin(nO)I4>1
2

cPx

Bu _ "2 ~ 81<p1
Bt - v u + .6. 8t .

(3.22)

(3.23)

(3.24)

•

Noise is introduced in the same way as in the model of Kobayashi.

The growth on an amorphous seed was studied in diverse conditions. Figure 3.6

shows the dendritic amorphization of a bilayer of solid. It is observed experimentally

that amorphization takes place at the grain boundaries as weIl as at other defects.

Hence, the seed is placed originally at the grain boundary. The initial "undercooling"

temperature of the system is u = -1. The parameters used for this simulation are the

following: € = 0.01, T = 0.0003, a = 0.9, 'Y = 10, a = 0.01, D.. = 0.6 and b = -0.001.

The top layer is a crystal of orientation () = 300 and at the bottom layer, () = 60° .
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Figure 3.6: Dendritic amorphization of a bilayer of crystal. From left to right, top to bottom the
tilles are: 0.036, 0.12, 0.24 and 0.36.

It is important to stress that anisotropy is not introduced by hand through the

parameter E. However, the branches growing along the grain boundary exhibit a

dendritic behavior. In the other directions, the tips are subject ta repeated splitting

as expected for the case of a growth in absence of anisotropie surface tension. The

existence of an interface between the two layers costs energy (rv IV4>12 ) but less than

the cost of energy of an amorphousjcrystal interface. The growth of a dendrite at

the grain boundary is favored as it will remove an extra energy cost.

The same model can be used to model the free growth of many dendrites. Since

each well in the free energy corresponds to a crystal of different orientation, it is

now possible to grow dendrites of different orientations (different (J). We will now

introduce an anisotropie surface tension by letting the parameter E depend on the

surface orientation il. Then

E(l9) = €"(l + 1] cos(il - (J)) ,

where
814Jlj8y

tan(O) = 814Jlj8x .

The terms E2'\j2</Ja with Cl! = x, y in equations (3.22) and (3.23) have to be replaced



Ë
2:x (7]('l9)7]'('l9) a~et ) + Ë

2~ (7]('l9) 7]' ('l9)~: ) H 2V . (7]2 ('l9) V </Jet) .

We simulate now the growth of three six-fold dendrites. We choose n = 15 so

that the six-fold dendrites with orientation e= 0, 24° and 48° will alllook differently

oriented. vVe use boundary conditions with the system size 256 x 256. AlI the

other parameters are the same as before. The results of the simulation are shown in

figure 3.7. At the beginning, as long as the dendrites are far enough from each other,

their growth does not differ from the case of the isolated dendrite. However, when

they come close enough to each other, because of the latent heat released in front

of the interface, they will melt each other and particularly the small structures as

the secondary branches. At longer times, when the system has reached the melting

temperature, the growth takes place only through the curvature. The system will

reduce its energy by minimizing the interface. At this time, the secondary branches

will completely disappear.

•

•
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Figure 3.7: Many dendrites growing in an undercooled melt. From left to right, top to bottom, the
times are: 0.1, 0.2, 0.3, 0.5, 1.0, and 2.0 .
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4

DIRECTIONAL SOLIDIFICATION

Contrary to dendritic growth, the amplitude of the patterns developing at the solid/

liquid interface in directional solidification experiments can be made as small as we

want by tuning the external imposed gradient. This problem then has a lot in common

with other pattern forming systems such as Rayleigh-Bénard convection. In this

chapter, we limit our discussion ta the study of a particular secondary instability, the

vacillating-breathing mode.

Cladis et al. [91] studied the directional growth from the isotropie phase of a

cholesteric liquid crystal. They used a mixture of the nematic liquid crystal 8CB

(cyano-octyl biphenyl) and the chiral impurity CI5 (cyano (methy!) butoxybiphenyl)

at a concentration 9% of weight. An important length scale in the cholesteric liquid

crystals is the pitch defined as the distance for a 21r rotation of the director n. In

the experiments detailed in Cladis et al. [91], the temperature gradient is G ­

7.5 ± O.OIK/cm and the critical velocity Vc = 19 ± 0.5/-Lm/s. At a value of E ­

Cv - vc)fvc = 0.56, they found a bifurcation to an oscillatory or breathing mode as

shown in figure 4.1.

Following the groove positions in time, Cladis et al. [91] obtained the disper­

sion relation shown in figure 4.2. These data show that w rv q. Their best fit is

W/Wel = -0.23 + l.I3q/2qo where 21rfqo is the helical pitch and Wel is the character­

istic frequency for the director diffusion.

In this experiment, the helical pitch plays an important rôle. However, the breathing­

mode is generic. It has also been observed in eutectic systems l and in addition, an

optical mode has been reported by Flesselles, Simon and Libchaber [91] for the case

of the nematicfisotropic transition.

l Zimmermann, Karma and Carrard [90] .
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Figure 4.1: Breathing-mode pattern decorated behind the interface by disclination lines when € =
0.56. The black region at the extreme left is the isotropie phase. The bright band next to it is the
cholesteric-isotropic meniscus [from Cladis et al. [91]].

4.1 Sorne Local Descriptions of Directional Solidification

The Kuramoto-Sivashinsky (K-S) equation models pattern formation in different sys­

tems. Kuramoto and Tsuzuki [76] derived it in the context of reaction-diffusion

equations modeling the Belousov-Zhabotinsky reaction. Sivashinsky [77] derived it to

model instability of the plane front of a laminar flame. Most of the studies focused

on the chaotic behavior of the K-S equation,

(4.1)

•

where the function h(x, t) describes the position of the front at time t 7 at height h

above the point x.

:NIisbah and Valance [94] have studied the instabilities displayed by a modified

version of the K-S equation, which they named the stabilized Kuramoto-Sivashinsky

equation

(4.2)

where a is a parameter that mimics a stabilizing effect, as the imposed thermal gradi­

ent in directional solidification. The surprising feature is that despite the simplicity of
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Figure 4.2: Dispersion relation for the breathing-mode. The frequency W is scaled with an elastic
frequency WeI and q/2 by qo. The sample thickness are 41tLm (e) and 37tLm (0). See Cladis et al.
[91] for more details.

this equation, Misbah and Valance [94] found five secondary instabilities: (i) the Eck­

haus instability, (ii) the Parity-Broken instability, (iii) the period-halving instability,

(iv) the vacillating-breathing instability, and (v) an oscillatory instability 'which they

named as the irrational vacillating-breathing. From equation (4.2), the dispersion

relation for an infinitesimal perturbation around the solution h = 0 is given by

(4.3)

Figure 4.3 shows the neutral curve (w = 0) below which the solution h = 0 is unstable.

•

Close to the instability threshold, a weakly nonlinear analysis is possible and

has been performed by Misbah and Valance [94]. We perform numerical simula­

tions on (4.2) to recover the breathing-modes. Figure 4.4 displays the dynamics of a

vacillating-breathing mode.

The numerical simulations are performed as follows. The spatial derivatives are cal­

culated by Fourier transforming h(x, t) and multiplying by the power of the wavevec­

tor corresponding to the derivative and then, by transforming everything back in real

space. For the time integration we use the semi-implicit eJo..rtrapolation method due

to Bader and Deufihardl , an implicit scheme that is appropriate for stiff differential

l Press et al. [92].
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Figure 4.3: Neutra! curve of the stabilized Kuramoto-Sivashinsky equation.

equations. However, when the system is large, the efficiency of this method may suffer

as the matrix (the Jacobian) to be inverted is not sparse. Even then, for the system

shown in figure 4.4, the method of Bader and Deuflhard is very competitive.

By realizing that in the directional solidification experiments most of the dynamical

phenomena appear in a regime where the wavelength is much larger than the diffusion

length (typically À/I! ~ 10), Kassner, Misbah and Müller-Krumbhaar [91] have derived

an equation of motion for the interface in a quasilocal regime. They discovered

that this equation supports a vacillating-breathing instability. More details on the

calculations can be found in Ghazali and Misbah [92].

4.2 Phase-Field Madel of Directional Solidification

Grossmann et al. [93] introduced a phase-field model to study directional solidification

in two and three dimensions. Here, the free energy used is given by

•
where q; is the non-conserved field describing the liquid/solid transition, U =c+4J/.6..ifJ

with c, the dimensionless concentration field of impurities and .6..T =T - TM with T

the temperature and TM, the melting temperature. Furtherrnore, .6..ifJ is the miscibility

gap and Drj>, {3 and 'Y are phenomenological constants. The dynamical equation for c
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Figure 4.4: Interface dynamics exhibiting a vacillating-breathing mode Ca = 0.1 and q = 0.64).

and if> are
a4J _ r 5:F
at - - if> 5if>

and

48

ae _ f c \J26:F
at - -y!:l4J 8c

where r if> and r c are the mobilities for if> and c respectively. In the frame moving in

the z direction at speed v, the dynamics becomes

(4.5)

•

and
dU 2 1 difJ
dT = Du'l U + !:leP dT ' (4.6)

where Zl =z - VT, d/dT =a/aT - va/8z, Du = fc/r 1J and T =f 1Jt. The moving

temperature gradient !:lT(Z') is -!:lTo for z' < -W, z'G for Iz11 < W and !:la for

z' > W with G =!:lTo/W the external imposed temperature gradient. The average

concentration is taken ta he Co = o. The partition coefficient is assumed ta be equal

ta unity. This model can be shown to lead to the basic equations of solidification

in the apprapriate limit and the phenomenological constants are then related ta the



physicallengths: fT = fiG, do = a/2, and a =D cP Jdu (8if}D leu) where if>lD is the

one dimensional solution of equation (4.5).•
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4.2.1 The Phase Diagram

A phase diagram can be built by rninimizing the free energy with respect to cP. This

minimization leads to

3 ('Y ),e+ 6.T
if> + ifJ f36.if> - 1 + f3 = 0 .

For small of , / f3C1<jJ and (,c + 6.T)1{3, the values of <jJ in the solid and the liquid are

-.::f.- + 7c+6.T
,/.. _ 1 _ {3ÂcP /3
If"soL - 2

and
J...--. _ YC+ÂT

,,/.,. - -1 + {:J6.cP {3
If"hq -

2

respectively. With the same approximations1 the free energy of each phase is

, 1C1<jJ 2
F soL = ~T + 2~c/J +,e + -2-C

and
, ,D..<jJ 2

.niq = - 6.T + 26.r/J - IC + -2-c .

By using the double tangent construction, we finally find equations for the liquidus

and solidus lines as follows:

(L':.T)solidus = 'Y ( - ;</J - C)

and

(t.T)liquidUS = 'Y (;</J - C) .
Figure 4.5 indicates the part of the phase diagram corresponding to the above ap­

proximation. vVe deduce from this phase diagram that the hot contact has to be at

a temperature ~T > ,/6.if> and the cold contact at b..T < -,1~c/J for directional

solidification experiments with the average impurities concentration Co around O.
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AT

Figure 4.5: Part of the phase cliagram for the model of directional solidification.

4.3 Numerical Simulations

50

Numerical simulations of (4.5) and (4.6) were performed on a discrete lattice with

free boundary in the oZ direction and periodic in the x direction. For the Laplacian,

the usual central difference scheme with the nearest neighbors was used. The Euler's

method was used for the time derivatives. In the following simulations, the parameters

{3 = 1 and ~To = 0.38. Various non-steady state effects can be seen, such as the tip­

splitting instability and the colliding solitary modes (figure 4.6).

time
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•
Figure 4.6: Non-steady state interfaces showing tip splitting (left) and collision of two solitary modes
(right) [from Grossmann et al. [93]] .

A simulation of a breathing-mode is shawn in figure 4.7(a). The oscillation of



•
4: DIRECTIONAL SOLIDIFICATION

time

x

(a)

lime

x

(b)

51

•

Figure 4.7: Example of a numerical simulation of a breathing-mode pattern with 2rr/q = 43 and
v = 0.195: Ca) a large system, Lx = 516, (b) the small system where most of the simulations have
been performed, Lx = À = 43.

neighboring grooves are in antiphase while the next-nearest neighbors are in phase.

This breathing-mode is obtained by starting with an interface of the form ((x, t =

0) = cos (241rx/Lx) + cos (127rx/Lx) with Lx = 495, 1 = 0.63, Dl/> = 1.5, Du = 1,

W = 100 and v = 0.2.

We perform numerical simulations on the breathing-modes. We assume that the

breathing-mode exists and for numerical efficiency, we work on a smaller system

containing only one groove (figure 4.7(b)). Neumann conditions at the boundaries

in the x direction (gradients of the fields are zero) are used. vVe fix the wavelength

and look for the velocity giving rise to the breathing-mode. This is the inverse of

what is done experimentally where the pulling velocity is the control parameter. The

results of the simulations are summarized in figure 4.8. As observed experimentally,

the wavelength decreases when the velocity increases (figure 4.8(a)). However, in

addition, these results show the existence of breathing-modes of different velocities

(and of different vacillating frequencies) for a given wavelength, contradicting what is
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Figure 4.8: Results of the numerical simulations: Ca) v versus q, Ch) Dispersion relation for the
breathing-mode.

known from the experiments. The dispersion relation is plotted in figure 4.8(b). As

before, the numerical results agree qualitatively with the experiment of Cladis et al.

[91], W "J q, but the broadening prevents us to make any strong statements. Noise

has been added to the Langevin equations but it did not change the results.

This raises the issue of whether or not true selection occurs during directional

solidification. However, long transients may be present in our numerical work which

we have not identified. Nevertheless, it is clear that further study of this phenomena

would be of use.
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ELASTIC EFFECTS

It is known that the domain morphology in phase-separating alloys can be strongly

influenced by elastic fields (Khachaturyan [83]). These long-range fields originate

from lattice misfit or the difference in the lattice constants of the two phases.

Onuki and Nishimori l introduced a Ginzburg-Landau approach to analyze the elas­

tic effects in phase-separating alloys in a model B system. They assumed the coherent

condition, which states that the planes are continuous through the interfaces. In their

scheme, the elastic strain is a subsidiary tensor variable coupled to a conserved order

parameter, the concentration c, in the free energy. They obtained a closed description

of c by eliminating the elastic field from the mechanical equilibrium. Sagui, Somoza

and Desai [94] applied this formalism to the study of the effect of an elastic field in

an order-disorder phase transition described by dynamics corresponding to a model

C system. The elastic field was coupled to bath the concentration and the arder

parameter.

A recent experiment by Grütter and Dürig [95] illustrates the importance of the

elastic field. They reported on the observation of the dendritic growth of Co on

Pt(1!1) surface. An example is shO'wn in figure 5.l.

The dendrite arms are 3-5 nm wide, 0.20 nm high (a monolayer of Co) and can be

up to 250 nm long. The lattice constant of Co is 9.7% smaller than that of Pt. Renee,

the Co islands cause substantial surface strain which induces the reconstruction of the

Pt(!!l) surface. These reconstructed areas act in turn as templates for the growth of

the Co islands. Figure 5.2 shows the reconstruction of the Pt surface in front of the

dendrites characterized by parallel double lines.

10nuki [89a]; Onuki [89b]; Nishimori and Onuki [90]; Onuki and Nishimori [91] .

53
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Figure 5.1: 8canning tunneling micrograph overview of 0.1 ML Co deposited at 400K on Pt(111)
[From Grütter and Dürig [95]].

5.1 Dendritic Growth. due ta Elastic Fields

Vve will simulate the growth of the Co islands on the Pt(11!) using a phase field

moclel. The field if; is 1 when the atoms of Co are present and a when the substrate

is free of Co adatoms. The external driving force, h, models the deposition of Co

onto the Pt(!11) surface. This driving force is assumed to be constant. The total

free energy :F is

J [- ~ 2]:F = dr Jeif;, h, Uij) + 21VcPi . (5.1)

The bulk free energy density f (if;, h, Uij) is given by

- 1 4 h - 3/2 3 h - 1/2 2
f(if;, h, Uij) = 4</> + 3 if; - 2 cP + f.q;</>V . U + fei , (5.2)

where é4J is the coupling constant between if; and V . u. With this linear coupling,

the pt(111) surface is strained only when sorne Co atoms (if; = 1) are present. fei is
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Figure 5.2: Left: Magn#ication of the dendrite region (200 nm x 200 nm). A localized reconstruction
of the pt(111) surface is seen in front of the Co branch. Right: Zoom of the reconstruction (15 nm
x 36 nm) [From Grütter and Dürig [95]].

the isotropie elastic free energy given byl

( )

2
1 2 60

fel = 2~(V. u) + f.t~ Uij - TV. U .
'I.,J

(5.3)

Here, te and f.J. are the bulk and shear moduli respectively and Uij = ~ (g;; + ~) is

the elastic strain.

A. Constant Elastic Moduli

First, we eonsider constant elastic moduli. Later, we will consider the case where the

elastic moduli depend on cf;.

The elastic field instantaneously relaxes ta adjust to a given cP. This is the condition

of mechanical equilibrium,

•

6:F = L Baij = O.
6Ui j 8xj

With the definition of the elastic stress tensor

(Yij = B:F = (f.cjJcf; + ~V .u)c5ii + 2p. (Uii - c5ij V . u) ,
8uij 2

l Landau and Lifshitz [90].

(5.4)

(5.5)



•
5: ELASTIC EFFECTS

the condition of mechanical equilibrium (5.4) becomes

56

(5.6)

Under the assumption of zero external stress, the solution of this equation is1

ErP
V·u = --4>,

Cl!
(5.7)

where Cl! = ~+ J.L. In agreement with what Cahn [61] has shown in the case of spinodal

decomposition, if the system is isotropie and the elastic moduli are independent of cP,

then the induced elastic field is simply proportional to cP and thus there will be no

long-range interaction present.

A.fier substituting the expression for V . u in (5.6), we find

ErP 82 vVcP

Cl! 8xj8xi '
(5.8)

with

or

If we substitute equation (5.8) in (5.2), we find2

(5.9)

Hence, the coupling with the elastic field favors the growth of the Co islands even if

h is zero. We remove this undesirable effect by using the free energy density

(5.10)

•

B. The EfIect of Anisotropy

The dendritic pattern in the experiment of Grütter and Dürig [95] is due mainly

ta the anisotropy of the lattice strain. For simplicity, only a four-foid anisotropy is

considered.

l We apply V· ta equatian (5.6) and use the identity \72u = VV . u - V 1\ CV1\ u).

2Notice that J dr Li; (::i~:j)2 is equal ta l dr (\72W<p)2 because of the periadic boundary condi­
tions.



The elastie energy for a two-dimensional crystal with the point group symmetry

of a square is given byl

_ 1 2 2 1 2
Jei - 2"Cn (UXX + U yy ) + 2"C12(UxxUyy) + C44Uxy - (5.11)

This energy ean be rewritten as2

Jel = ~K(V -U)2 + J.L~ (Uij - 6~j V . u) 2 + ~fJ:L U~i , (5.12)
lJ 1

which is the isotropie elastic energy plus a part due to the square anisotropy_ The

elastic moduli are given by

•
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J.L = C44 ,

K = C12 + C44 ,

f3 = Cn - C 12 - 2C44 ­

and the anisotropy is defined3 as ç = (3/C44 -

The elastie strain tensor beeomes

(
5·· )

O"ij = (EepifJ + K.V . U + j3uii)6ij + 2J.L Uij - ~ V . u

and the condition of mechanical equilibrium reads in Fourier space as

ik . û(k) = EtPx.(k)~(k)
1 + K.x.(k) ,

where we introduee
~2

X(k) = 2: ki ~ 2 •

i JL(l + t;ki )

A linear approximation in the anisotropy ç gives

(
k2k2)ik . û(k) = Eep ~(k) - ç/-L Er/J 1 - 22-1!. ~(k)

a a 2 k4

or in real spaee

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

•

Erp E4J ( \7~\7~ )V· u = --ifJ+çJ.L- 1- 2 ifJ.
a a 2 \74

Rence the anisotropy introduces a long-range interaction.

1Landau and Lifshitz [90]_
2Sagui, Somoza and Desai [94].
3 A eubic lattice is eonsidered to be isotropie when C44 = (Cu - C12)/2. At this value of the elastic
moduli, the sound speed for the transversal and longitudinal waves are equal (see e.g. Weillmantel
and Hamann [89] and Nishimori and Onuki [90]). This definition of anisotropy differs from the one
of Chaikin and Lubensky [95] for whom the ratio (Cu - C44 )/C12 is the measure of the anisotropy
of eubie solid.



NO\V we will consider the case when the elastic moduli depend on the arder parameter

rP as follows:
•
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c. Order Parameter Dependent Elastic Moduli

58

•

and

This dependence of the elastic moduli on the arder parameter will also introduce

long-range interactions.

As before, we want to express the elastic field in terms of order parameter. The

part of the free energy depending on the elastic field \vill be computed ta first order

in the elastic coefficients, "'q" J-Lt/J and /3.

The condition of mechanical equilibrium now reads

8ifJ 8 8
ét/J- + "'o-V, U + K,t/J-(ifJV· u)

8Xi 8Xi 8 Xi

+2J.Lo L ~ (Uii - Oij V· u) + 2J-Lt/J L ~ifJ (Uii - Oij V· u)
j a~ 2 j a~ 2

a a
+/30-

8
Uii + /3t/J-a (ifJuii) = 0 . (5.18)

Xi Xi

To zeroth order, the strain tensor is given as before by

aUi ét/J 82~V4>
-

aXj a 8XjaXi .

Applying 2:â8/aXi to (5.18), we find

2 2 '" a
2

( Oij ) '" 8
2

érP \1 cP + KO \1 V . u + 2J.Lo L..J Uij - -V . u + /30 L- -2 Uii
i,j 8Xi8xj 2 i 8Xi

2 ) '" 8
2

( Oii ) '" a
2

(A.. )+Kt/J \1 (ifJV, u + 2J.L4> L..J cP Uij - -V . u + P<!J L..J -2 If' Uii = 0 .
i,j 8xi 8xj 2 i 8Xi

In the terms containing K-t/J and J-Lt/J as weIl as (Jo and f3t/J, we replace V . u by its zeroth

arder. The condition of mechanical equilibrium now reads

ft/J érP 2 1 1 '" 8
2

(ét/J) ( 8
2
W rP Oij )V . U = --ifJ + K-q,-<p + 2-- L..J f.L<!J<P - --ifJ

a 0'2 a: \12 i,j 8Xi8Xj a 8xj8xi 2

é<!J ( \1;\1~) ét/J 1 '" 8
2

( 8
2

W4»
+/30 0'2 1 - 2 \14 <P + f3t/J 0'2 \12 7 8x'f 4J 8Xl .
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The part of the functional derivative of the free energy due to the elastic terms is

59

After we substitute the expression for V . u and Uij, ~el translates to

E~ 3 (Et/J) 2 2
~el = - -cP + -K.t/J - 4>

a 2 a

2 E,p 1 '" a
2

[,!,. (Et/J) ( a
2
wt/J 5ij ",)]+ f.Ltf>-2 LJ '/J - - -0/

Q \1 i,j aXiaXj Cl: aXjaXi 2

+ f.Lt/J L (Etf»2 (
a2W

tf> _ 5ij 4»2 + f30 (Etf»2 (1 _2\1;\l~) cP
i,j a aXj 8Xi 2 a \l4

+ f3t/J (Etf»2", (
82VV

f/J)
2

+ 13 (Ef/J)
2
~~~ (4) 8

2

VVf/J) .
2 a ~ ax~ t/J a \12 ~ ax~ ax?

t t t t t

Finally, the Langevin equation for the order parameter is

(5.19)

(5.20)

•

(
a2w a.. )

where bij = Et/J aXja;i - TeP and Q = Eij b;j' Also, the coefficient Etf> is redefined so

that Er/J = Etf>/a.

5.1.1 Numerical Simulations

Because of the terms ~2 in equation (5.20), it is necessary to go to Fourier space. We

use an isotropie form for the Laplacian ~f.; = (cos(kx.6.x) cos(kx~Y) + cos(kx.6.x) +
cos(ky.6.y) - 3)/!::lx2 as well as for \lx, \ly, "V; and "V;. The system size is 256 x 256

and periodic boundary conditions are used throughout the simulations. The time

integration is performed using the standard Euler's rnethod. We have neglected noise

in these simulations.

A. Quasidendritic growth

In the following simulations, ltf> = 0.33, r c/J = 3 and €c/J = 0.5. Also, KO = 0.9, J-lo = 0.3

and f3t/J = O. Moreover, we set "'c/J = 0 since the dependence of the bulk rnodulus on



1J is small compared ta the dependence of f.L over 1J. The other parameters, /30, "'(jJ

and f.L(jJ take different values during the simulations. The spatial mesh is taken to

be ~x = 6.y = 1.0 whereas 6.t = 0.1. The time integration is performed using the

standard Euler's method. Finally, the external field is chosen ta be h = 0.45.

Figure 5.3 shows the time evolution for a system with isotropic elastic constants.

The time sequence (a) corresponds to the case where the difference of the elastic

•
5: ELASTIC EFFECTS

•

•
Ca)

•

•
(b) Cc)
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Figure 5.3: Growth in the presence of isotropie elastic field. The anisotropy is chosen to be f30 = o.
The pictures shown correspond to t = 40 and t = 70 from top to bottom. Ca) {tf/J = 0, (b) {tf/J = 0.05
and Cc) {ttiJ = -0.05. In (h), the background gray color corresponds ta t/J = O. Around the black
phase, the white ring is a region of small negative value of t/> due to the long range force. In (c), the
white regions correspond to t/> = 0 whereas in the gray ones, <p has a small positive value.

moduli in the two phases is zero, i. e., fîJf/J = f.Lf/J = 0 and thus elasticity has no effect

on the growth. In Cb) and Cc), we include the dependeI?-ce of the elastic modulus f.Lf/J

on 1J. We choose f.LrjJ = 0.05 in (h) and f.Lf/J = -0.05 in (c).

When J.Lf/J > 0, .6.J.L =/-L(1J = 1) - fL(1J = 0) = fLf/J > 0 and 1J = 1 is the hard

phase, while when fL(jJ < 0, 1J = 1 is the soft phase. The integration of the two terms

containing fLrjJ in (5.19) give f.Lf/J4J Q. Hence, this contribution is positive when 4J = 1

is the hard phase (f.LrjJ1J > 0) and it is minimized for spherical morphologies of this



phase. In this case, the elastic forces slow down the growth. The elastïc contribution

is negative when if; = 1 is the soft phase (/-lq,tP < 0) and this phase will deform

anisotropically. Here, the elastic forces favor the growth. The four-fold symmetry

exhibited in Cc) is due to the anïsotropy induced by the underlying grid used in the

numerical calculations.

The introduction of an anisotropy in the elastic moduli changes drastically the

morphology of the ifJ = 1 domains (hereafter named as the black phase) as weIl as

the speed of growth. This is illustrated by the left side of figure 5.4 where {3o =

-0.1 and {3,p = f.lq, = o. After the black domain has reached a critical radius, we

observe the growth of branches exhibiting a four-fold anisotropy. The growth of the

black phase in front of the tip is greatly favored. This can be visualized by the

contour plot of D..el (equation (5.19)). The contour plots are shown on the right side

of figure 5.4. Lighter colors correspond to positive values of the functional derivatives.

These positive regions repel the particles from the dark regions and the growth takes

place preferentially in the darker regions of the contour plot. This quasidendritic

gro,vth is characterized by an absence of secondary branching.

Figure 5.5 illustrates the effect of the introduction of a dependence of /-l on the

order parameter. For a positive /-lq" it slows down the growth as expected but do not

alter the quasidendritic structure.

The morphology of the growth is similar to the one observed in the experiment

of Grütter and Dürig [95], except that we used a square anisotropy to simplify the

algebra.
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B. Dendritic growth

One can use the same model ta check if the main features of a solid, i.e., its rigidity

and often its anisotropy, are enough to obtain the dendritic growth. This approach

is more natural than introducing by hand an anisotropy in the surface tension as we

did before in section 3.3. To reach this goal, we will use equation (5.20), but now the

field h is given by h(u) = a/1r arctan(-6u) where u is the reduced temperature of

section 3.3. It obeys the following equation



5: ELASTIC EFFECTS 62

• 250

i 1 > 0.0003

200 till <0.0003
1 • < -0.0017
1

150 i .. <-0.0037

• 1 • <-0.0057
i

100 ! • <-0.0076

• < -0.0096

t • < ~0.0116
50

1 • <-0.0136
i • < ~0.0156
10 • < -0.0176a 50 100 1.50 200 250

250

0 >0.001

200 ~ <0.001• < -0.001 1

+"
150 • <-0.0033

• <-0.0054

100 • < -0.0075

• < -0.0096

• < ~0.0117
50 • < -0.0138

• < -0.0159

50 1.00 150 200 250 • <-0.018

0 > 0.0043

1~~1 <0.0043
1 • < 0.0015

1 • < -0.0013
1 • < -0.0041

1 •i < -0.0068

• < -0.0096

• < -0.0124
50 • < -0.0152

• < -0.0179

50 100 150 200 250 • < -0.0207

Figure 5.4: Quasidendritic growth in the presence of anisotropie elastic field. On the left, the phase
field is plotted. On the right, the corresponding contour plot of the functional derivative of the
elastic free energy is shawn. The anisotropy Po = -0.1, J1.r/J = 0 and ""r/J = o. The pictures shawn
correspond to t = 10, t = 25, and t = 40 from top ta bottom.
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Figure 5.5: Quasidendritic growth in the presence of anisotropie elastic field and a phase dependent
shear modulus. f30 = -0.1 and J1..p = 0.05. The pictures shown correspond to t = 10, t = 25, t = 40
and t = 50 from top to bottom and left to right.
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Figure 5.6: Growth of a dendrite in the presence of anisotropie elastie field. {34J = -0.2 and f.J.4J = 0.05.
The pictures shown correspond to t = 0.1, t = 0.2, t = 0.3 and t = 004 from top to bottom and left
to right.

where .6. = (TJv[ - Too)/(L/c) denotes the dimensionless undercooling.

In the following simulations, l</J = 0.01, r = 3333, tri> = 0.2 and .6. = 0.6. Noise

has been added at the interface as in section 3.3 with an amplitude a = 0.03. Also,

Ka = 0.9, J-La = 0 and {la = 050 that the liquid has no anisotropy and does not support

shear. As before, we neglect the dependence of the bulk modulus on the phase, fl,4J = O.

The spatial mesh is taken to be .6.x = .6.y = 0.03 whereas .6.t = 0.0001. Figure 5.6

shows the result of a simulation for f.L4J = 0.05 and {leP = -0.2 and a contour plot .6.el

is shown in Figure 5.7.

We recover indeed dendritic features. Simulations have also been performed for

different values of the shear modulus and the anisotropy. As before, in front of the

main branches of the dendrites, one observes a long-range influence of the elasticity.
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Figure 5.7: Contour plot of the functional derivative of the e1astic energy of the dendrite at t = 0.3.

Grnwth in the x and y axis is favored or, equivalently, the growth of the dendrite

in the diagonal direction is impeded. This feature is observed also for the secondary

branches where we note higher values of 6.el in the diagonal direction.

5.2 Modeling of the Dislocations Dynamics

The presence of dislocations is known to have a major impact on the strength of

materials. It is the major reason for the plastic mechanical properties of crystalline

solids. The density of the dislocations defined as the number of dislocation lines

intersecting a unit area in the crystal ranges from weIl belO'w 102 dislocations!cm2

in the best germanium and silicon crystals to 1011 or 1012 dislocations!cm2 in some

heavily deformed metal crystals. Dislocations may also be a controlling factor in

crystal growth. For example, the presence of a screw dislocation will favor the growth

of the crystal in a spiral fashion. Due to the IDisfit between the substrate and the film,

dislocations are often present in the first few layers of the epita.."'Cial growth. Given the

impact of the dislocations on the materials, IDuch research has been devoted to the

problem of dislocation dynamics. The reader is referred ta Kosevich [79] and Kroner

[81] for comprehensive reviews of the field.

The model presented below is inspired partly by the work of Nelson and cowork-



ers1 on melting in two dimensions. In their theory of dislocation-mediated melting,

the transition from liquid to solid takes place in two steps with increasing temper­

ature. Dissociation of dislocation pairs first is responsible for the transition from a

solid phase with long-range translational and orientational order to an hexatic phase

characterized by a short-range translational order but a quasilong-range orientational

arder. Dissociation of disclination pairs at a higher temperature then produces an

isotropie fluid. In the various stages of the derivation of the model of dislocation

dynamics, some ideas of the two dirnensional melting will be used.

Let us imagine that in a crystalline solid represented in figure 5.8, an e),.i;ra half

•
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Figure 5.8: Definition of the Burgers vector by means of a Frank's circuit [from Kroner [81]].

crystalline plane (parallel to the plane z-y in the figure) is inserted. The edge of this

half-plane (parallel to the z axis) is called an edge dislocation. We form in the real

crystal (a) a Frank's circuit which lies entirely in the good material (as opposed to the

bad region near the dislocation where the displacements are large) and encloses the

dislocation. Then we draw the same circuit in the reference crystal (b). This circuit
-r

does not close in the reference crystal. The closure failure, here denoted by EA is

called the Burgers vector, b. The Burgers vector is equal in magnitude and direction

to a lattice vector. Macroscopically, this is written as

(5.21)

•
When b is parallel to the dislocation line, it is a screw dislocation. For an edge

dislocation, bis perpendicular to the dislocation line. In two dimensions, we obviously

l Nelson [78]; Nelson and Halperin [79]; Nelson [83]; Toner and Nelson [81]; Nelson, Rubinstein and
Spaepen [82].
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have only the edge dislocations.

It is convenient to introduce the notation

aUi
Wji =-­

aXj

allows us to rewrite equation (5.21) as
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(5.22)

(5.23)Ir i 8ui Ir
dUi = -a dXj = Wjidxj = bi .

r r Xj r

This equation can also be written in a differential form. The integral over the contour

r transforms to an integral over the surface ~ spanned by r to give

(5.24)

where the SUffi is over the Burgers vectors ber. of ail the dislocations enclosed in r. Eij

is the antisymmetric tensor, Eij = -Eji. In terms of the dislocation densityl, ber),

(5.25)

Because of the large number of dislocations in solid, we shall not consider the micro­

scopie details of the configuration, but rather the "large scale" properties. vVe will

hence work with a continuous description of the problem or, in other words, with the

dislocation density.

5.2.1 Energy of the Distribution of Dislocations

The displacement field u is a solution of the equilibrium equations

(5.26)

everywhere except at the core of the dislocations. Due to the presence of the dislo­

cations, u has a singular part. We write formaily2

(5.27)

•

lIn general, the dislocation density is a second rank tensor named conventionaUy Q. It is defined
as J d8 . Q = b where b is the resulting Burgers vector of aU the dislocations crossing the surface
S spanned by any contour r. The first subscript in Oij indicates the average line direction of the
dislocations piercing through the area element dS, whereas the second subscript gives the direction
of the Burgers vector. In two dimensions with straight dislocation lines in the z axis, the only two
components of Q are bx(r) == o.::x(r) and by(r) == oZll(r).

2We follow in this section the notation and the derivation of Chaikin and Lubensh.-y [95]. See also
Nelson [78]; Nabarro [67].



where rPij(r) is the strain associated with the smoothly varying displacements cjJ(r)

and u~(r) is the contribution from the dislocations.

By definition, Ir:' d4J = o. The singular part of the displacement has to obey the

constraint ir:' dus = b. The solution is uS = bf) f27r where {) is an angle in the plane

perpendicular to l.

In two dimensions, the equilibrium condition equations (5.26) are fulfilled auto­

matically if the stress tensor is written as

•
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(5.28)

(5.30)

where X is the Airy stress function. The strain Uij is related to the stress by the

relation

sIs À S
Uij = 2f.L aij - 4f.L(A + J.L) cSijakk

= 1 + a2 ê-k t -l'l/c'llX _ U2 V2 XcS'- (5.29)Y2 1 J Y2 IJ ,

where in two dimensions, the Young's modulus is Y2 = 4BJ-L/(B + f.L), U2 = (B ­

f.L)f(B + f.L) is the Poisson ratio and B = f.L + À denotes the bulk modulus.

Applying êilcêjl VicVl to both sicles of the equation, we obtain

1 4 sIs s)Y2 V" X = êilcEjl"Vk VlUij = "2êikEj[ V"1cV[(w ij + wji

= tilc \libfc ,

where it is assumed that no disclination is present in the system.

Following Nelson [78], the elastic free energy breaks into two parts,

:F=:Fo+:Fo,

where :Fo is the purely harmonie contribution

•
and the dislocation contribution is given by

11 s s:FD = - dra- -u--2 Il Il

= _1_1dr(\l2x)2 + 1~U2 / drEilcEjl Vk \ll(ViXVjX) ,
2}2 2

(5.31)



where we have used (5.29). We consider the simple case where the total Burgers

vector is zero, i.e., f dr b = O. This means that there is no macroscopic bending of

the crystal. Also we neglect disclinations, which are higher energy excitations. In this

case, the last integral, which can he transformed into an integral over the boundary,

vanishes. Then, the free energy of the dislocation reduces to
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rD = 2~ Jdr('V
2x)2

which translates using (5.30) in Fourier space to
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(5.32)

(5.33)

We have added to this equation the contribution of the core energy of a dislocation, Ec '

In real space, the free energy of the dislocations is1

:F
D

= y; Jdr r dr'[-b(r) . ber') ln(lr ~ r'l) +ber) . (r - r') ber') . Cr - r')]
81r J1r-r'l>a Ir - r'I 2

+Ec / dr b2 (r) ,

where a is a short distance cut off. It can also he seen as the core diameter of the

dislocations.

5.2.2 Local Formulation of the Dislocation Problem

It is possible to reformulate the interaction energy of the dislocations in a more

convenient way. We introduce a local field ç and 'write the dislocation free energy as

(5.34)

•

where 1](r) = €ij \Jibj. The field ç can be integTated out of the equilibrium distribution

of the dislocation field b(r )

J 'V [ç]e-Ff:, [b,ç]fkBT e-FD[b]fkBT

P[b] = J 'V [ç]'V [b]e-Ff:,[b,ç]/kBT - JV[b]e-FD[b]/kBT 1

where .rD[b] in this equation is given by (5.33) as we will show below. Thus, the

non-local interaction between the dislocations is introduced by integrating out the

field ç.

lSee Nelson and Halperin [79] for the mathematical details.
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In Fourier space, the free energy (5.34) of the interacting dislocations is

! dq [q4 _ _ A _ _ ]

Fb = (21rF 21'2 ç(q)ç(-q) + iç(q)ij( -q) + Ec b(q) . b(-q)

\iVith the change of variable

A A Y2
ç(q) = 7/J(q) - i 4 ij(q)

q

translates to

! dq [q4 - - 1'2 - - ]Fb = (27r)2 2Y2 'l/J(q)'lj;( -q) + 2
q

4 ij(q)fj( -q) + E c b(q) . b(-q)
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(5.35)

The fields 'l/J and TJ are now separated and once ;j;(q) is integrated out, we end up

with the desired form (5.33).

We assume now that the dynamics of 'lj; and b is entirely dissipative1 and their

motion is driven by the minimization of .rD' The dynamical equations read

and
81ÎJ(q) = -r ~.rD = -r q4,.i.( )et 1/1 87/J( _q) 1/1 Y2 0/ q ,

or in terms of the fields ç using (5.35)

and
B~(q) _ r (q4 i( ) + .A()) .Y2 Bfj(q)-- - - "" -~ q 'LTJ q - '1.- .m . Y2 ~ m

•
l In a recent paper, Rickman and Vifials [97J introduced a model of dislocation dynamics for the
three-dimensional situation. They justify at length the choice of a dissipative dynamics as well as
tackling the interesting situation where an external stress is present.



This dynamics does not discriminate between the glide and climb1 motion of the

dislocations. Also, we neglect the purely harmonie contribution ta the free energy

dissipation.

"Vhen the system has reached a steady state, the equation for ç reduces to
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Thus, ç(r) is simply related to the Airy stress funetion

ç(r) = ix(r) .

5.2.3 The Presence of a Liquid-Solid Interface

If one wished to study only a crystal with dislocations, working with (5.34), in other

words introducing the field ç, would be devoid of interest. The dynamical equations

of the dislocation density can be derived directly from the free energy (5.33). The

relevanee of this method lies in the possibility of introducing an interface.

In the presence of a liquidjsolid interface, one can use the same dislocation free

energy

.r~[b, ç, 4>] = Jdr [2~ç(r) V'4ç(r) + iç(r )'1(r) + E c b2 (r)] , (5.36)

where'TJ is now given by TJ(r) = cI> (r)Elm \llbm. with cI>(r) = if;2(r). if; is the phase-field

chosen ta be 0 in liquid and 1 in solid. Because of this coupling, the fields band

ç decouple in the liquid phase. In this model, the liquid is described as a random

distribution of dislocations that do not interact. Another approximation is made by

having the same term 1/1'2 for the solid and the liquid.

The algebra is very similar ta the above. Following are the final equations for the

dynamics of ç and b:

l For a dislocation with a Burgers vector b and dislocation Line l, the glide plane is defined as b" l.
It is particularly easy for the dislocation to move in this plane in a purely mechanical manner.
This motion is called gLide or conservative motion. It is different for cllmb or non-conservative
motion. The climb takes place in the direction perpendicular to the Burgers vector. It requires the
displacement of an entire plane of atoms and this is the reason why it is often neglected.



a~(q) =-r (q4 ê( )+--( ))_ oY2 8f}(q)et 1/J 1'2 ~ q 1,7] q 1, q4 at .
Following the model of Kobayashi [93] (section 3.3), the dynamics of the arder

parameter in real space is given by
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~~ - r .. [-~ :x (7)(6)7)'(6):) H
2~ (7)(6)7)'(6) ~:) + ë

2V . (7)2(6) V ,p)

+ 4>(1 - 4» (4) - ~ + m(u)) + 2i~,p€lm\71bm] (5.37)

The equation of diffusion of heat is

5.2.4 Numerical Simulations

As before, it is easier to integrate numerically the partial differential equations going

into Fourier space. We use periodic boundary conditions throughout the simulations.

For the dYllamics of cP and u, we choose r cP = 3.0, Cl! = 0.9, 5 = 10.0, 'Y = 0.04,

é = 0.33 and ~ = 0.6. For the dynamics of band ç, the coefficients r b , r x' 12 are

set ta unity throughout the simulations. Also, E c = 0.05. The mesh size is taken to

be ~x = .6..y = l.0 whereas 6.t varies for the different simulations depending on the

system studied.

Polygonization

Peach and Koehler [50] derived an expression for the force exerted on a dislocation line

by a stress as weIl as an expression for the stress fields produced by the dislocations.

This allows to describe the interaction between two dislocations. Let us consider two

edge dislocations in the x - y plane and having their glide planes parallel to the x - z

plane. If one dislocation bl is along the z-axis, it exects on the other dislocation b2 at

the point (r, B), a force whose component in the glide plane is

F - /-L b b cos(B) cos(2B)
x - 27[(1 _ v) l 2 r '

where v = A/2(/-L+À) is the Poisson's ratio. It follows from this that if the dislocations

have same signs, B = 1r/2 is the stable configuration and if the dislocations have
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Figure 5.9: Stable equilibrium of two edge dislocations. Left: the dislocations have same signs.
Right: the dislocations have opposite signs.

opposite signs, () = 'Tf/4 is the stable configuration as illustrated by figure 5.9. Hence,

straight dislocations lying in parallel glide planes, and having saille signs, will have

the tendency to gather in one plane perpendicular to their glide planes and form a

dislocation wall. This phenomena is known as polygonîzation.

In the model described above, the dynamics of b do not discriminate between the

glide and climb motion. vVe expect however that sorne aspects of polygonization to

be recovered. On the left side of figure 5.10, the time evolution of a simple system is

shown. We start with two peaks of dislocation of value +1 and -1 places respectively

at (16,16) and (48,32). It is important to stress that we work with a dislocation

density, and hence the dislocations do not stay localized. As can be seen in this figure,

the dislocations will organize in a stripe pattern. However, these vector graphs can

be misleading because even if the length of the arrows do not vary much in time, the

dislocation density reduces due to the annihilation of dislocations of opposite sign.

To visualize the meaning of this pattern, it is more appropriate to consider the local

orientation of the lattice.

The dislocation field produced by edge dislocations gives rise to an antisymmetric

part in 8i uj or, equivalently, to local rotations1

1 1 1 'b(T') . (T - T')
B(r) = -') (8x U y - 8yux ) = -2 dT 1 '12 •

~ ~ T-T

Upon Fourier transformation, it becomes

A -iq· b(q)
B(q) = q2 (5.38)

l Nelson and Halperin [79]; Chaikin and Lubensky [95].
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Figure 5.10: Dynamics of the dislocations. From top to bottom, the times are : 0, 300 and 1000.
Left: configuration of the Burgers vector. Right: contour of the local orientation of the lattice as
calculated from equation (5.38) .



The local orientation of the lattice is shown on the right side of figure 5.10. As

expected, the dislocations annihilate and the local orientation of the lattice reduces

as time goes on.•
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Pileup
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Figure 5.11: Dislocation pileup.

Let us consider a large nUInber N of similar edge dislocations lying in the same glide

plane and constrained by some obstacles (a lattice defect, a grain boundary or, as we

will see, an interface) to a segment (-t'j2, t'/2J of the x axis. In the absence of an

external applied field, the dislocations will repel each other and accumulate at the

two ends as illustrated by figure 5.11. If N is large, we consider the dislocations to be

continuously distributed, and look for their equilibrium distribution V. It is known

to bel

(5.39)
N

D(x) = 11" [W 2 _ x2r2 .
As for the polygonization problem, the analytical results are derived for dislocations

\vith a given glide plane. Our dynamics do not differentiate between the glide and

climb and hence we expect to recover only qualitative behavior.

We start with the initial configuration illustrated by figure 5.12. Two squares

of solids of width t' = 20 are placed in a liquid. Dislocations with Burgers vector

pointing in the x and -x direction are placed in the middle of the squares. We

choose to have two lines of Burgers vectors pointing in the opposite direction to obey

the condition of zero total Burgers vector. On the lines, bx(r) = ±ljf. and by(r) = O.

The liquid is at a reduced temperature u = 0 so growth will not take place due to the

undercooling. The results of the simulations are shown in figure 5.13. We observe

along the line A the dislocation density. The distribution of dislocations given by

equation (5.39) is also fitted on top of bx . The only adjustable parameter in this

1 Kosevich [79]; Hirth and Lothe [82].•
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Figure 5.12: Initial configuration for the study of the pileup.

fitting is N jrr. The dislocation density along A decreases in time due ta the diffusion

in the y direction. The dislocations distribution agrees weIl with the theoretical

distribution at times t ~ 5. Later, we believe that the differences between the actual

dislocations distribution and the one assumed for deriving (5.39) (i.e., dislocations

constrained ta their glide planes) are so large that any agreement is out of reach.

From this figure and also with the help of longer simulations, we can conclude

that the interface acts like an obstacle. vVe have verified that the dislocatioGs do not

escape from the solid to annihilate ,vith the dislocations of opposite sign in the other

solid. In the language of electromagnetism, one can say that the liquid acts as an

insulator. Also, one would expect that the solid domain would shrink to reduce the

interfacial energy cost with a law v rv 1jT where v is the velocity of the interface and

T is the radius of curvature1. It is interesting ta note that the dislocations trapped in

the solid oppose this reduction of the domain size.

In the liquid, the dynamical equation for the b is 8b(r)j8t = (21bEc)V'2b(r).

Hence, the diffusivity 21bEc can be tuned by changing Ec• For a small value of Ec ,

the diffusion of the dislocations out into the liquid is suppressed and the interface acts

as an obstacle. On the other hand, with a large value of Ec , this diffusion happens

on shorter time scales. One would observe the dislocations leaving the solid.

l Allen and Cahn [79] .
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Figure 5.13: Nwnerical simulation of the dislocation pileup. The solid line corresponds to the x
component of the dislocation density bx • The dashed line is the fitted dislocations distribution as
calculated frOID equation (5.39). The dotted line shows the position of the liquid/solid interface.

Growth with a Dislocation Field

•

vVe demonstrate no'\v the influence of the dislocations on the growth of the solid.

We use the equation (5.37) to simulate the growth of a dendrite in the presence of

dislocations.

In the liquid, we start with a random distribution of dislocations bx = a{h and

by = af22 where el and e2 are random numbers uniformly distributed in the intervai

[-~,~] and a is the strength of the noise. We use a six-fold anisotropie surface tension.

Figure 5.14 illustrate the results. At small values of the dislocation density, these



defects do not influence greatly the growth. However, for higher values of this densïty,

the defects act like a random noise at the int.erface and start to destroy the anisotropy.•
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Figure 5.14: Dendritic growth in presence of dislocations shown at t = 100. On the left: the phase
field. On the right: a contour plot of Ibl. Darker colors correspond to higher values of Ibl. From top
to bottom, the magnitude a of the noise increases: a = 0.05 and a = 0.1.
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CONCLUSION

In this thesis, we have developed sorne successful models of solidification by treat­

ing the solid phase in a more realistic manner than that has been done before. In

chapter 3, we presented the recent phase-field rnodels of dendritic solidification which

have successfully reproduced sorne of the features of the dendritic growth. In the

aim of accounting for elastic effect in solidification, we have extended these models

by having a vectorial order parameter. This new model of polymorphous growth of

dendrites allows for the existence of grain boundaries. First, this model was used

to perform a study of the amorphization of a polycrystalline solide Then, a slightly

modified version was used ta simulate the growth of dendrites of different orientations.

A study of a particular secondary instability in directional solidification, namely

the vacillating-breathing mode, was performed in chapter 4 by using a phase-field

modeL The results of the simulations have shawn qualitative agreements with the

experiment of Cladis et al. [91]. In particular, the relation that the frequency of the

vacillation is inversely proportional to the wavelengths (w rv q) was recovered. The

reason for the apparent lack of selection in our results can be attributed ta the fact

that our simulations were performed on a small system with limited computer time.

Thus it is necessary to carry out further studies of this phenomena on a larger system.

In chapter 5, we have addressed the infiuence of the elasticity on growth. At first,

the strain field was coupled ta the arder parameter in a model A system. Byassuming

that the elastic field relaxes very fast, we have expressed it in terms of the order

parameter. We have shown how this relatively simple coupling drastically modifies

the growth and the morphology when anisotropy of the elastic field was taken into

account. This simple model allows us to recover sorne of the experirnental results of

Grütter and Dürig [95], i.e., the quasidendritic growth of Co deposited on a Pt(lll)
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surface. However, in order to facilitate our calculations, a four-fold anisotropy was

used. In addition, the problem of the influence of the dislocation dynamics on the

growth was tackled hy introducing a model where the dislocation density field was

coupled ta the arder parameter, and a passive field related ta the Airy stress function.

vVe have shown that this model can reproduce qualitatively weIl known phenomena

of the dislocation theory such as the piling up. Furthermore, we have presented also

qualitative results on the influence of this dislocation field on the growth.

The model of the dynamics of dislocations could he generalized in future works ta

take into account other effects such as the presence of an external stress and vacancies.

It would he also interesting to investigate the influence of dislocations on the model

of polymorphous growth that was introduced at the beginning of the thesis.

•

•
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ApPENDICES

Linear Stability of the Planar Front in Directional

Solidification

Let C denote the concentration of the impurities. The diffusion of the concentration

expressed in the laboratory frame is:

~ 8c _ \72 ~ 8c
D 8t - c+ l!.8z ' (.'1..1)

\vhere D is the diffusion constant assumed to be the same in the two phases, l!. = 2D/ v

is the diffusion length and v is the pulling velocity. This equation is supplemented by

the Gibbs-Thomson condition

(A.2)

and the continuity condition

(A.3)

AIso, at the interface,

(A.4)

fi is a unit vector normal to the interface, pointing from the solid phase into the

liquid phase, ç is the position of the interface, m is the absolute value of the liquidus

slope, K is the partition coefficient, do is the capillary length, and fi. is the curvature

of the interface. Finally, the boundary conditions for c are

There are three typical lengths in the system: the diffusion length e, the thermal

length .eT = b..T/ G and the chemical capillary length .ec = doTM / b..T where G is•
lim CL = Hm Cs = Co •
z~oo z-+-oo

(A.5)
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the applied thermal gradient, ~T = m~c is the temperature difference between the

liquidus and the solidus line at the concentration Co and ~c = Co (1 - K) / K is the

equilibrium concentration gap (see figure 2.5 for the phase diagram).

The thermal profile is linear with a gradient G

•
A: ApPENDICES

T(z) = Tl + Gz ,

82

where Tl is adjusted so that z = 0 corresponds ta the position of the planar interface~

([. This planar interface solution is given by

CL(z) = Co + ~ce-2zle ,

CS(z) = Co

and

The perturbed solidification front takes the form

((x, t) = ([ + 5((x, t) .

Similarly, the perturbed concentration fields are

and,

We write the perturbations as the SUll of their Fourier components

6cS(x, z, t) = êS(k) e(ik.::c+qz+wt) ,

6cL (x, z, t) = êL(k) e(ik-::c-qz+wt)

and

6((x, t) = ((k) e(ik.:c+wt) .

•
From the diffusion equation (A.1), we obtain

(qf)2 (kf)2 (qf)2 _ (kE)2
WT = -- - qi - -- = -- - qf. - --

2 2 2 2 '
(A.6)



In arder ta use the linearized version of the boundary conditions~ we need the

following approximations
•

A: ApPENDrcEs

where T = f.jv .

T(() '" T(([) + :-Iz=" IS( = T(O) + CIS(,

1<; = ( ("';)3/2 '" k
2Ç(k) ,

1 +(x

nz = (1 + (;)-1/2 ~ 1 + 0(&;2) ,

nx = -(xCI + (;)-1/2 ~ 0(c5()

and

n·v~v+(.
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Up to first order in the perturbation, the Gibbs-Thomson condition (A.2) gives

-mêL(k) + [m~cG-eck 2
) - C] ((k) = 0 .

The continuity condition (A.3) leads ta

(
1 - K- ql!) êL(k) _ ijf. êS(k) + 2~c (K + WT) Ç(k) = 0

2 2 l! 2

and finally (A.4)

vVe have to solve the set of equations

-m ~(k)

(1- K - ql!j2) ~(k) -ijf.j2 êS(k)

[< ~(k) - êf(k)

with

+ (m~c [2jl! - f.ck2
] - G) ((k) = a 1

+2~cj(K + wTj2)/f. ((k) = a ,
-2K~cjl! Ç(k) = a ,

•

WT = (qf.)2 _ qf. _ (kf.)2 = (ijf.)2 _ ijP. _ (kë)2 .
2 2 2 2

This set of equation has a non trivial solution if

-m [qK~c+2~c(K + W
2
7)] +

[m~c (~- ece) - C] [- (1- K- ~e) + K;e] = O.



\Vith the quasistationary approximation which amounts of neglecting ac/at in (A.IL

equation (A.6) reduces to•
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qe ~ 1 + JI + (kf)2 ,

and

(je ~ I- JI + (ke) 2 •

AIso, we simplify further the problem by assuming that K ~ 1. \Vith these approxi­

mations, we finally get

A.2 Sbarp-interface limit

The phase field equations are the following

Bc/J. 2 2 ) (I .)T-=é \lcP+cP(l-cjJ cP---m(u)Bt 2

and
au _ ~2 ~ acjJ
at-vu+~at'

(A..7)

(A..S)

•

Following Kobayashi [93], we write T = bé2 and m = eyufV2. We will obtain an

interface equation in the limit of é tending ta zero. For this, we use the method of

matched asymptotic expansions!.

We divide our system in two subregions: 1. the inner region in the vicinity of the

interface where the gradient of the order parameter is large and 2. the outer region

in the bulk phases where the arder parameter is approximatively constant.

A. Outer solution

In this region where the variation of cP is small and this variation is on an 0 (1) length

scale, the solution is formally expanded in power of E7

u = u(O) + EU(l) + f.2U(2) + ...
lSee for instance Caginalp and Fife [88] and CaginaIp [89] .
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and
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The leading order of the phase field equations (A.7) and (A.8) gives respectively,

and

cj>(O) (1 - cj>(O») (c/J(O) - ~) = 0 (A.9)

BuCO) ( ) 1 8q/0)
fit = \12u 0 + .6.fit . (l\.lO)

The leacling arder solutions are given by cj>(0) = 1 and cP(O) = 0 in the solid and the

liquid respectively. For the temperature, we find the usual diffusion equation

B. Inner solution

B (0)
_u_ _ ~2 (0)

8t -v U . (A.11)

We introduce a local coordinate system based on a parameterization of the curve

cj>(x, y, t) = 1/2. We use the arclength 5 as one of the local coordinates and T, the

distance along the normal as the other coordinate. In the curvilinear coordinate

system, the Laplacian and the time derivative take the following form:

•

and

Ut = Ut + Tt Ur + St Us •

We also introduce the scaled coordinate z = r / é and we write

U(x, y, t, é) = U(z, S, t, é)

=U(O} (z, S, t) + EU(l} (z, S, t) + ...

and

cP(x, y, t, é) = <p(z, S, t, é)

= <I>(O} (z, 5, t) + E<I>(l) (z, S, t) + ....

(A.12)

(A.13)



Now, the equations (A.7) and (A.8) can be written in the following form

eJ?zz + eJ?(1- eJ?) ( eJ? - ~) +e { eJ?(1 - eJ?) :nU-br,eJ?z + V2 ,-<pz} + e2
{- ••} = a (A.14)•
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and

(A.15)

1. lvlatcbing conditions

IvIatching conditions provide the far field boundary condition for the inner solution1.

The outer solution is written as a function of the inner variables and the resulting

expressions are expanded in E. vVe drop the s variable since the matching conditions

are with respect to only the coordinate orthogonal to the interface layer. Near the

layer, we formally equate the two expansions

U(z, t, E) = u(f(t, E) + EZ, t, E) , (A.16)

where Z = (x - f(t, E))/E is the scaled coordinate and f(t, E) is the equation of the

interface. The right hand side of (A.16) is expanded in a Taylor series in E

where

N

U(z, t, €) = L EnPn(Z, t) + E
N + 1RN l

n=O

(A..17)

1 an
Pn(z, t) = -'-au(f(t, E) + €Z, t, E)le=o . (A.18)

n. En

NIatching is accomplished by letting E --r a and z --r ±oo provided that EZ
N +1 -+ o.

With this constraint, the remainder term in equation (A.18) is of lower arder than

any of the preceding terms.

The two first matching conditions are

(A..19)

•
and

(A.20)

with z -+ ±oo .

1Caginalp and Fife [88].
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2. Leading order solution

The leading order solutions takes the form

u(O) = 0
zz

and

<p~~ + ep(O) (1 - ep(O») ( ep(O) - ~) = 0 .
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(A.21)

(A.22)

Using the matching condition (A.19) we have U(O) = c(s, t) for the temperature.

U(O) is independent of the normal coordinate. The leading order solution of the phase

field is

<T!(O)(z, s, t) = ~ {1 - tanh C~)}.
3. First-order solutian

The fust-arder inner equation has the form

U(l) = r O-.!..c]?(O)
zz t.6. z ,

L:<T! (1) =<T!~~ + <T! (1) (3<T! (0) _ 3(<T!(O»)
2

- ~)

= ep(O) (ep(O) _ 1) :fi,uCO) - bv(O)cI>~O) _ ~CO)<I>~O) •

(A..23)

(A.24)

(A.25)

where we have used the normal velocity of f, v = -rt and its curvature, K- = '\l2r .

Integration of equation (A.24) gÏves

•

Using the matching condition (A.20)

lim U(l) (z t) = u(O) (fO t)
z-+±oo Z' r ±, ,

we get the appropriate heat balance condition

(A.26)

(A.27)

(--\..28)



Differentiation of (A.22) respect to z shows that <1>~O) is a homogeneous solution

of (A.25), i.e. .c~~O) = o. The right-hand-side of this equation must then be orthog­

onal to this function. This is known as the Fredholm alternative1. It provides the

solvability condition

•

•
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1+00 <1>~O) {<1>(O) (<1>(0) - 1) ..lU(O) - bvCO) <I>CO) - ~(O) <1>(0)} dz = 0 .
-00 - V2 Z Z

Noticing that <l>~0} = <I>(O)(~(O} - 1)/-/2, we get the Gibbs-Thomson equation

lSee for example Haberman [87].
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