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RESUME

Cette theése présente le dessein et la realization d'un interface de multi-processeur pour un
systeme d’animation de graphique en couleur. L'acces direct a 1a memowe est utiisé pour le
transfert de data entre les memoires des processeurs du systeme GRADS Les divers dimen-

sions de mots de memoire, protocol de bus, et d'interruptions sonts accomodes. Une évaluation

du systeme est incluse.
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PREFACE

The research described in this thesis was completed several years ago, but due to unavoidable

personal commitments the final presentation of this thesis was delayed untii now

it 1s beweved that despite the rapid advances in the area of microprocessors and data commu-
nication, the core of the work described 1s of equal relevance today To the extent possible, an

effort has been made to discuss the project in ight of the current state of art.
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1.0 COMPUTER GRAPHICS

1.1 Introduction

Since the invention of the digital electronic computer in the 1940s [3 ], it's tremendous proht-
eration in almost all walks of society has as much to do with its versatility as it has to do with the
continuous research into ways of making the computer practical to use by people who do not

posses detaled knowledge of it's inner workings

Aithough there have been countless and continuous refinements made to render the computer
a conviviat tool, two of these stand out as major cornerstones of computing evolution  The hirs?
of these was the development of nigh level programming languages This effectively allowed a
wider circle of "computer literates”, trained engineers and scier tists, to use ne power of the

computer to solve problems

The second revolution took place when interactive computing became a realty This allowed
users, who did not have any knowledge of computers, to use the machines; nteracting with
them to feed the pertinent input and observe the output This became doubly effective as the
mode of interaction changed from being "keyboard only” to visual Computer graphics not only
caused this major change. but sincc then has driven the design and architecture of many a
computing system Swezey and Dawis {36 | have noted that with increased use of computer
graphics in all fields of endeavour, man-machine interaction 1S becoming more and more 1m-

portant. A common exampl.» being the Macintush series of computers by Apple Corparation

The first conceptually complete interactive graphics system was developed at MIT in the early
sixties by Sutherland [35] Called "Sketchpad”, it contaned data structures descrihng the

graphical representation of real or imaginary objects It prowded a means of selecting them via
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the use of ight pens, and allowed for the rotation, scaling and transtation of the image informa-
tion Although " Sketchpad” remained impractical due to the tigh cost of hardware required, the

basic concepts are evident in most present day interactive graphics systems.

Throughout most of the 60's and the early 70’s, research into interactive computer graphics
continued, with large engineering institutions such as Boeing, General Motors, 1BM, and
Lockheed exploring the possible marnage between computer aided design and interactive
computer graphics  Suddenly, in the nwu-70’s, the price barrier that had been constraining the
widespread use of computer graphics ttarted to collapse With microprocessors, and high
density and low cost semiconductor memories, came the possibility of lower cost graphics sys-

tems {23.]

1.2 Applications

Today there are many applications of computer graptucs. but perhaps most significant are the
changes it has brought about in the areas of medicine, earth sciences, engineering, aerospace,

and entertainiment

In the radiology hiald of medical science, computer graphics 1s rapidly complementing techmques
such as Computer Aided Tomoegraphy, adding colour as a new dimension in such imaging. The
use of colour to designate different temperature zones i1s proving to be of particular importance
i the area of cramai neurology [20.] With the advent of high speed communication networks
(25 ]. computer graphics will allow radiology information on patients to be exchanged at the push
of a button, almost obviating the use of photographic films for such applhcations. Medical re-
searchers in the hields of Genology are already making use of computer graphics to model and

visualze complex DNA molecules and Gene structures {14 ].

COMPUTER GRAPHICS 2




Engineering has benefitted tremendously from computer graphics as well, mannly in the areas
of CAD, CAM, CAE Most engineers today use interactive computer graphics as a routing way
of capturing designs (VLSI designs. vehicle shapes), of modelling them or testing tham, and for
ganing rapid access to all the supplementary information. Most design workstations provide a

high level of desk-top graphics support [8 |

The aerospace industry has been the longest user of computer graphics, mainly in fhght simu-
lators [12.]. This provides a low nsk and low cost alterr.ative to the training of pilots by being
able to simulate various "situations” on the ground Computer graphics 1s now also invading the
cockpits of modern aircraft. The Boeing-767 and the Airbus-320 make use of CRT displays to
graptucally present information conventionally commumcated to the crew through electro-
mechanical meters and displays [18] The same concept 1s extended to Head-Up Displays
(HUD) on modern combat arcraft The HUD typically merges computer project targetting in-
formation with the target image, thereby minimizing eye movement in critical combat situations

(37.].

In the Geology and Meteorology fields of earth sciences, real-time graphics 1s becomiming an
indispensible tool in the analysis of large amounts of information contained in data sets [16 ]
Made up of billions of bits of information, these data sets arc updated in real-time by a plethora
of satellite and earth based remote sensing devices The application requires the raw data to
be evaluated in the context of numernical simutation models One such application developed
by the Space Science and Engineering Center at the University of Wisconsin allows three di-
mensional animation of models which make use of data on atmospheric conditions such as
temperature, pressure, humidity, and wind speeds Called McIDAS [17.], it allows scientists to

more accurately understand weather dynamics

Applications in the entertainment industry are also becoming apparent Computer arimation has

been used in such recent classics as "2001-A Space Odyssey” and "Star Wars" |7 ]  With the
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advent of High Defimtion Television (HDTV), the cross editing of real shots and computer gen-
erated images will take on real importance, and may create an extremely powerful medium

[10.]{22.].

One of the more :ecent developments in the areas of graphics animation 1s the emergence of
Mulu-Media Interactive Video {38.]. This approach to achieving spectacular graphics at low vost
1s based on the real-ttme merging of real video shots with computer generated images. By using
digitally stored actual images, the system is able to achieve projection of complex images well
beyond the modelling and amimation capabilities of modest computing platforms such as desktop
computers. The whole concept of muiti-media graphics depends upon the ability to digitally
store a vast number of complex images. Since the commercially available audio "compact
discs’ are the most viable low cost storage mediurn, the success of multi-media graphics de-

pends on the ability to compress visual informaticon to fit into a typical compact disc.

Major corporations like Phillips, Intel. IBM, Sony, and Matsushita are aggressively trying to define
the new standards tor image compression and de-compression. To date two ieading proposals
have emerged Phillips 1s championing technology called Compact Disc interactive or CDI while
Intel 1s proposing Digital Video Interactive or DVI [9.]. Though both promise to solve the same

probiem, the approach and strategy are different

The apphcations of multi-media video are indicative of its power and versathty. The Peugot
automobile company Is already using the Intel developed DVI system to train its mechanics.
The system 1< built around a single compact disc which carries diagrams, text, and videos
demonstrating repair procedures. Typically, a mechanic can watch a demonstration video on
one window on the screen, and call up images of specific parts on another window on the
screen. Other applications include real-estate sales, where "visits” to different sites can be ar-

ranged at the customer's location, complete with animated "walkthroughs”, and the ability of the
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customer to better visualize the space and proportions of the room by supenmposing images

of furniture on live shots of a room.

1.3 Graphics Hardware

The earliest graphics systems used a display technology called Random Scan (also reforred to
as vector graphics). This display required a vector generator to continuously display a sernes
of hnes and points on the screen in quick succession to form a line image or "wireframe” image.
The limitation of this type of graphics system was it's inability to display sohds and colours. Al-
though the refresh requirements were no longer required with the advent of the Direct View

Storage Tube [24.], the inherent imitations of a vector graphics system imited therr use.

In most present day systems, raster graphics i1s the dominant technology {34 ]. This has been
made possible with the low cost or colour CRTs and availability of thgh density memory Raster
display systems require a large amount of memory and a large refresh bandwidth to provide the
sequential pixel by pixel update numerous times per second, although innovative designs such

as Fuch’'s [13.] PP5 system have succeeded in reducing them significantly

Other display technologies used for graphics displays are the Plasma panel and the Liquid
Crystal Display (LCD) panel. These displays have an advantage over the CRT type raster dis-
plays due to thew relatively low power consumption and ruggedness However, they are gen-
erally monochrome, and too slow for real time animation (LCD panels) [43] These displays
are teing increasingly used in portable equipment but have not been refined to the paint of being

used in state of the art graphics systems.

The increased use of computer graphics in different applications has led to the devsiopment of
various designs which balance such requirements as speed, resolution, model sizes etc  The

availabiiity of powerful microprocessors and Application Specific Integrated Circuits (ASICS) has
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led to vanous architectures being explored. Increasingly, graphics systems use multiple
processors Patton’s article [30.] reviews the familiar Flynn classification of single‘multiple
data/instruction machines, as applied to multiprocessors and multiprocessing. An interesting
part of the article deals with a study of system performance versus the number of processors
in a highly parallel system. Rodgers further classifies systems exploiting parallelism according
to the relaton and specialization of the parallel computing elements [33.]. Two applications of
computer graphics which require enormous computational power are real tme flight simulation,
and medical imaging. Both are candidates for a multi- processor architecture involving

parallelism [1 ].

A wide vaniety of graphics systeins are commercially available today. An excelient comparison
of the Evans & Sutherland MPS-2 and Vector General VG3400 1s provided in the article by Foley
and Van Dam [11.]. One interesting aspect of both these systems is that they both use a general
purpose host computer to generate the imihal images. Another example of a multi-processor
graphics system is the IRIS system made by Siicon Graphics. This uses a pipelined architec-
ture with the key components being a Motorola 68000 and a set of "Geometry Engines” linked
via an Ethernet network [6 ]. In an attempt to provide a more general graphics engine, Texas
Instruments now markets the TMS340 Graphics Processor [40.]. When used in conjunction
with a more general host computer such as the M68020 or the 180286, a TMS34070 Video
Palette, and TMS4161 Multiport Video RAM, a single TMS340 ~an form an effective graphics

system.

When real-time animation 1s a requirement, most systems use multi-processing either through
pipelining or parallel processing. The Seillac-7 [19 ] uses a combined parallel/pipelined archi-
tecture, achieving a five fold increase in throughput. Another approach to incieased throughput
1s the GODPA system [15.]. This system divides the 3D object space into 64 parts and use as

many processing elements process the mformaton. Other advanced graphics processing ar-
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chitectures include the EXPERTS system [26.], the CHAP SIMD processor in the Lucashlm

Compositor System [21.}, and Piper & Fournier's STINT [31.].

1.4 GRADS

A graphics system capable of animating 3D coloured objects in real-tme has been developed
at McGill University [28.]. This system is called GRADS (Graphics Real-time Ammation Display

System), and, ke other advanced graphics systems, uses multiprocessing and pipelining

The objective of this thesis I1s to describe the design and implementation of the interface used

to network the various processors in the system,

in the following chapters, the architecture, design, implementation and debugging of the Host

Computer Interface are described.
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2.0 GRADS ARCHITECTURE

To satisty the processing requirements for the generation and animation of high resolution colour
images, the GRADs uses multiple processors and a pipelined architecture consisiing of three
distinct stratas of processing elements to provide the necessary processing power for such ap-

plications Figure 1 shows the processing hierarchy of GRADS

The topmast layer consists of a VAX-11,780 Host Computer, which 1s responsible for performing
the higher order graphics functions such as scene generation, hidden line removal, rotation, and
hghting effects. This typically requires a processor with a large memory and computational
throughput to support complex graphical models. To meet the requirements of real time an:-
mation, the Host Computer creates 30 static scenes or pictures every second, and then de-
composes each scene Into graphics primitives such as hnes, points and polygons. Each
primitive, along with a string of parameters describing its coordinates, colour and intensity, forms
a graphics macro-instruction. Thesa macro-instructions are then queued and passed onto the
next lower strata for further processing and display. A typical macro-instruction block consisting
of a number of nolygons and lines 1s shown in Figure 2.

The Host Computer 1s also the master controller of the GRAD system, and 1s responsible for the
correct initialization and operation of the various subsystems. This 1s achieved via a series of
software routines that download firmware and microcode upon system startup, and provide
centralized maintenance and diagnostic capabilities. These capabilities are either inherent in the

GRADOS operating systen [29.], or are provided as separate software utilities.

The second processing layer 1s a true Multiple Instruction Multiple Data (MIMD) processing
system, and 1s made up of multiple processors, each with therr own memory and data systems.
This middle layer consists of an array of 16 & 20-bit, loosely coupled microprocessors which

recewe graphics macro mstructions from the host computer and process them to generate pixel

GRADS ARCHITECTURE 8
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Figure 1. GRADS Processing Hierarchy
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Word 1

Polygon Macro (04)

Colour Word

Number of Vertices

Coordinates of Vertex 't

Word (n+3)

Coordinates of Vertex 'n’

Word 1

Line Macro {(02)

Colour Word

Number of Lines

Start Coordinates of Line '1'

End Coordinates of Line '1’

Start Coordinates of Line 'n’

Word (2n4+3)

End Coordinates of Line 'n'

Figure 2. A Typical Macro-Instruction Block.
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level information. The array concept exploits the fact that in a bit mapped, frame buttered ani-
mation system, there i1s virtually no constraint on the sequence in which picture elements in a
frame are assembled, as long as the frames are updated at least every 33 milliseconds This
means that the exact order in which the graphics primitives are processed 1s not wnportant as
long as all the information gets processed in the prescnbed time This allows the processors
to run without tight synchronization amongst themselves To ensure that all processors are
equally tasked, the host computer dynamically manages the input data streams of the process-

ors.

In the third strata, a dedicated graphics processor merges the output of all the microprocessors,
and maps it onto the pixel information stored in the wideo frame buffer memory This frame
buffer memory 1s periodically read out in a sequential fashion to a raster scanned colour display

system.

In terms of display capabiliies, the GRADs system 1s able to work in either a low resolution
mode in which 256 X 256 pixels are displayed, each with up to 32 fevels of intensity, or the high
resolution mode, cansisting uf 512 X 512 pixels with 32 levels of intensity  These two options
are selectable in real time by the application software. The low resolution mode provides much

higher throughput and 1s used during debugging of application software, or while running hard-

ware diagnostics.

Figure 3 shows the detalled architecture of the GRAD system The main components of the

system are

1. The Host Computer {on the UNIBUS or S100 Bus)
2. The Host Computer Interface (HCl)
3. The satellite microprocessors (8086, 28000, AMD2900)

4. The Graphics Controller

GRADS ARCHITECTURE 1"



5  The Video Memory

6. The TV Sequencer

2.1 Host Computer

The function of the VAX-11 780 as the Host Computer has been described above. It commu-
mcates with the Host Computer Interface of GRAD system via the UNIBUS It decomposes a
picture (or a senes of pictures) into a graphic primitives that will be further processed by the
GRAD system For a more primitive and a less computationally intensive apphication than the
generation of images, the GRAD system can also be hosted by an S-100 system via the S-100
bus to the HCI The S-100 system is a Cromenco Z-80 system with 64K of local memory The
lesser applications include debugging., maintenance, and the display of static pictures. At run

time, however, only one host computer can be active.

2.2 Host Computer Interface (HCI)

The HCI 1s the vehicle through which communication between the various modules take place.
It carnes both command and status exchanges between the various modules, and also serves
as a Direct Memory Access controller modute for the movement ot large amounts of graphics
data with little intervention between the source and destination modules. Communication (as
opposed to data transfers) between various modules 1s carried out efficiently by means of in-
terrupts Any module 1s capable of imtiating an interrupt  The HCI also serves to intialize the
GRAD system upon startup It downloads application programs to the satelite processors and
microcode for the RAM sequencet of the Graphics Controller. The HCI 1s designed in such a
manner to accomodate a myriad of different bus structures without making any changes to the

core of the machine. This 1s accomplished by the use of interfaces units that present a uniform

GRADS ARCHITECTURE 12




Graphics
Controller
Video bus
Video
Memory

Figure 3. GRADS Architecture.

v v
Sequencer

Unibus S-100 bus |
\\\\\\\\\\\\\\\ \\\\\\\‘ '////I/[I///[I//////I//I/y///
\ %
N i
Unibus Y $-100
Intertace @ ; ;/””/// Intertace
YA
Graphics Controller hus Host
.—-—’ Computer
interface
S \st“\m“
4 CPUbus
AMD2900 8086 28000
bit slice module module

Monitor

GRADS ARCHITECTURE

13



appearance to the HCl. A more detailed discussion of the architecture and working of the HCI

will follow n chapter 5.

2.3 Satellite Processors

The queue of macro instructions onginating from the host computer 1s routed via the HCI to the
appropnate satelite processors  The HCI i1s connected to the satelite processors via two
busses, the CPU bus and the MICRO bus The CPU bus differs from the MICRO bus in that it
allows for intelligent communication between the HCI and the satellite processor CPUs. The
MICRO bus, on the other hand allows the HCI to communicate only with the memory of the

satellite processars.

The satelite microprocessors include an Intel 8086, a Zilog 28000 and an Advanced Micro De-
vices AMD2900 bit shce processor. Each satellite processor has its own local memory that is
accessible to itself and also to the HCI via the MICRO bus. The Intel 8086 CPU 1s a 16-bit de-
vice and can access up to one megabyte of memory (in Real Mode) and up to 84K of 1’0 ports.
The highest clock speed that it can be run at 1s 8MHz [2.]. The Zilog Z8000-based satellite
processor 1s a 16 bit machine and 1s equipped with 64K of memory and operates with a 250
nanosecond cycle time [32.]. The third satellite processor 1s based on the AMD2300 bit-slice
ALU, utihzing five of them to form a 20-bit processor [5.]. The microcode for this application 1s
optimized for graphics piocessing and 1s stored in a fast bipolar 1K X 40 bit Random Access
Memory. lts data memoary 1s configured as a 4K X 20 bit biock. Figure 4 shows the architecture

of the satelite processor based on thz AMD2900.

These satellite processors have the task of converting the queue of high-level macro instructions
to pixel information. Exactly which macro instruction is routed to which satellite processor is
dependent upon a number of factors. Certain graphic pnimitives, such as line drawing, are best

handled by a bit slice processor such as the AMD2900 from the point of view of speed of exe-

GRADS ARCHITECTURE 14




microcode
memory

CPU bus

AMD2900
bt siice

—>

local
memory

MICRO bus

Figure 4. AMD 2900 Based Satellite Processor.
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cution  Other graphic pnmitives, on the other hand. are better handled by a general purpose
processor such as the the Z8000 or the 8086 A third vanable i1s one of avalabuity. If two
processors are already busy executing a task, it may be faster to route a new task to an 1dle third

processor that may not execute as efficiently as one of the two that are busy

2.4 Graphics Controller

The resulting pixel information from the various sateliite processors 1s then gathered and as-
sembled by the Graphics Controiler [4.] The assembled pixel information 1s then written into
video memory The Graphics Controlier ts connected to the HCl via the Graphics Controller bus.
it 1s via this bus that the Graphics Centroller can aiso receive mstructions and graphics data and

report its status to the HCI

The Graphics Controller was implemented using a RAM-based state machine, or sequencer
crcut  The RAM sequencer has a microcode memory configuration of 32 X 1K A RAM
sequencer design was chosen to lend flexibility to the operation of GRADS, and as an added
benefit, to aid in its debugging Each satellte processar 1s continuously polled by the Graphics
Controller for a completed packet of pixel data When ready, the satellite processor requests a
DMA transaction with the Graphics Controller The terms of the DMA transaction {eg word
count) are included in the DMA packet. The Graphics Controller also serves to arbitrate be-

twaen the MICRO bus and the VIDEQ bus

2,5 Video Memory

The Video Memory contains the pixel information of the picture that 1s currently being dispiayed.
It 1s wnitten 1into by the Graphics Controller, and 1s read from by the TV Sequencer. The size
of the Video Memory determines the intensity and the resolution of the picture. The Video

Met ory is designed to be modular and ncrementally expandable, with resolution and intensity
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being interchangeable. The elemental module of the Video Memory is called a Single Low Re-
solution Memary Plane (SLRMP). It consists of 684K bits of static memory organized as 4K
words of 16 bits each. To obtan a color picture, each of the three primary colors of red, blue
and green must have a color plane assignment. To obtain a low resolution color picture con-
taining 256 X 256 pixels and 32 levels of intensity each, 15 SLRMP are required A 512 X 512

pixel picture with the same intensity per color per pixel, requires four times as many planes

A varnety of ideo memory planes were assembled as the technology improved An alternate
implementation has three 4K X 16 bit static memory banks buiit on one board. Yet another type
uses Dynamic RAM, containing 768K bits of storage. It can be configured esther as 12 low re-

solution planes or 6 high resolution planes.

2.6 TV Sequencer

From the wideo memory, the pixel information 1s read out via the VIDEO bus continuously and
sequentially by the TV sequencer and converted into an analog signal to be sent to a raster RGB
monitor The image sent to the monitor 1s updated thirty times every second to provide flicker-
free images. The TV sequencer alsc generates the necessary synchronization signals for the
monitor. The TV sequencer merely converts the RGB information in the video memory planes
into analog signal; whether an image 1s of high or tow resolution 1s controlled primaniy by the

Host Computer, and secondarily, by the Graphics Coritroller.

The focus of this thesis 1s the Host Computer interface. Subsequent chapters describe 1ts de-

sign, development and integration in detail.
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i 3.0 HCI DESIGN APPROACH

In designing the host computer interface, Severai Jata communicaticris methodologles wera
considered Most of the communication options can be classified under the following thiee

categories:

1. Using a packet switched network connecting the various processors, and using an
X.25/X.75 type Open System Interconnect (OSl) netwarking pratocol. This 1s widely used
in wide area networks such as Telecom Canada’s Datapac network, and in locai area net-
works such as Ethernet (Figure 5). Since data packets in such networks are routed de-
pending upon their contents, virtual "point-to point” or "paint-to-multipoint” paths can be
created Although attractive for systems separated by at least a few meters, it turns out to

be overiy expensive in terms of processing overhead for an inexpensive muitiprocessor

Py

system. Such connectivity can provide burst transmission rates of only 10 M Bits/Sec. In
addition, transmission delays in packet networks under heavy traffic conditions are some-

what randomized, further diminishing its desireability for such real time applications.

At the time of researching; these options, single chip X.25 chips with huilt in DMA capability,

such as the Muic.uia MCB8605 [42.] were not avallable, making this option non-practical

for discrete implementation.

2. A high speed parallel backplane connecting single card microprocessors, using a central

arbitration controller. This method has been used extensively in systems like the S100

TURBODOS and Northern Telecom's DVS Meridian system (Figure 6). In such a scheme,

the central controller can either be in the data path, forming a true star network, or perform

4 only arbitration on a parallel data flow system, and thus forming a bussed data system with

a virtual star network for arbitration and control. Such systems can be extremely fast. The

HCI DESIGN APPROACH 18
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data transfer rates in such cases are only limited by memory bandwidths and system
backplane lengths. In an apphcation ke GRADS, where all processors are located in a
single shelf, a parallel bus of 16-20 bits can be made to operate at cycle times of better than
500 nano seconds. This translates into peak information transfer rates of 40 M Bits/'second.
Moreover, such sysiems can be implemented with fairly inexpensive technology. Other
vaniations of this technology to emerge since 1982 are various multi-processor bus stand-
ards such as the VME [41.], which provide shared memory options using Dual Port Mem-
ones. Such systems provide for high speed data moves between processors without the

need for dedicated communications arbitrator.

3. A fiber optic network linking vanous intelhgent modules. This is an approach well suited to
applications where both speed and wider separation are desirable. Typical present day
fiber systems can support transmission rates in excess of 100 MB/S over several kilome-
ters. Although a scaled down version of the same technology has been used to form
"optical backplanes”, the mplementation remains fairly complex due to the basic ”point-to
point” nature of a fiber connection (Figure 7). Added to this are the mechanical constraints
imposed on the system, where cards cannot be simply puiled out or replaced without hav-

ing to undo cumbersome fiber connectors.

Considering the pras and cons of the three different types of data communication options, a
parallel wired backplane approach was considered optimal for intermodule communication, given
the speed, compltexity and cost factors. Support of processors with different word lengths dic-
tated the selection of a true star system with a capability of intercepting the data, and packing

or unpacking it to match source and destination word sizes.

Having selected the topology and architecture, further design of the Host Computer Interface
necessitated the definition and design of a suitable arbitration method, and the design of a high

speed controller capable of supporting a vanety of microprocessors using different word sizes

HCI DESIGN APPROACH 20
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and bus protocols. The detalled architecture and design of the Host Computer Interface are

presented in the following chapter.
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40 FUNCTIONAL REQUIREMENTS OF THE HCI

The Host Computer Interface was designed to support three basic communication functions
between the processors in GRADS. The prnimary requirement was to provide a high speed data
transfer capability between processors. Since typical block sizes were expected to be several
kilobytes long, direct memory access to the memornies of the processors was considered to be
the most effective implementation alternative. Due to the different computers in GRADS and
thew different bus protocols, one of the key requirements was to manage block moves across
different word size boundries, leading to a word packing/unpacking capability in the HCI. To
accomodate the different bus protocols, the HCI was designed as a distributed system, with a
central process controller and satellite "personahty cards” which translate a basic data transfer

handshake protocol into specific signals and sequences reguired by the system being interfaced.

For the purpose of moving short blocks of information, the DMA approach was not deemed ef-
ficlent. Therefore a control and status word transfer capability was also required of the HCI to
support system control information transfer. Since such information in a system 1s crnitical to its
real time performance, a tigher prionty for such single word exchanges was built into the sys-

tem.

In addition to the control and status word transfer capability, an inrterrupt routing subsystem was
built into the system. This allows the processors to route interrupts to other procsssors as part
of the interprocessor signalling sequence. To avoid system lockout due to a "runaway”

processor, the interrupt subsystem has some restrictions on its usage.

The features of the HCI based on these functional requirements, and are described in the next

chapter.
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5.0 ARCHITECTURE OF THE HCI

The Host Computer Interface has been designed as an integral, independent workable system
The Host Computer Interface idles and remains dormant till such time as a request for nter-
module communication i1s received by it If a request 1s received by the HCI while it 1s busy. the
request 1s ignored. It should be noted that it 1s the responsibility of the requesting device to
maintain it's request in case the request 1s not granted by the HCI since the HCI does not log
the requests to service them in a queue fashion In the event the HCI receives more than one
request simultaneously, it grants it's resources on a pre-determined or tixed prionty basis The
typical service request cycle for data transfer, control status word transfer or interrupts, 1s re-

presented by the state diagram in Figure 8.

The HCI 1s made up of four main modules:

1. The Control Register module,
2. The DMA Controller module,
3. The Interrupt module, and

4, The Data Path module.

5.1 Control Register Module

The Control Register module 1s used to store the information that defines the terms and condi-
tions of the requested data transfer The registers are loaded inttially by the computer to which
the HCl 1s granted. Itis then the responsiblity of the requesting computer to provide the correct
information and signal to the HCI when the process may be started. The registers are used to
contain such relevant information as the source and destination of the data transfer, the source

and destination addresses, the number of words of information to be transterred and the packing
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and unpacking of the word required Some of the registers in the Control Register module are
reserved for readback only. These registers provide information to the external units regarding
the status of the HCI and of any error conditions that might have been generated by the data
move. A third category of registers is reserved for control signals which are used to request and
start the HCI Figure 9 illustrates the partitioning of register access for a four processor system
Each processor can access it's own local intiahization registers and it's own control status reg-
isters. Access acrass processor boundaries is denied  The innermost layer of DMA cantrol
registers are accessible to any processor in the system, haowever forced arbitration ensures that
only one processor has access during the iniiation of a data transfer transaction Once the re-
quested process 1s underway, the Control Registers are not accessible to any external device

This feature pravents accidental modification of any process that i1s already underway

5.2 DMA Controller Module

Closely related with the Control Register moduie s the DMA Controller module The function
of the DMA Controller module is to generate the actual sequence of control signals for the DMA
process. Inextricably linked with the DMA Controller module are the Control Registers whose
contents define the parameters for the DMA process (Figure 10) The source and destination
memory codes (4 bits each) point tc one of the sixteen memones in GRADS from where the
data is read by the DMA machine, and to which the data 1s wnitten by the DMA machine The
source address (24 bits) points to the address in the source computer’'s memory where the DMA
read cycle starts Since this pointer is incremented after each succ-ssive read, it intially points
to the beginning of the data block to be transferred. Similarly the destination address (24 bits)
points to the address in the destination computer’'s memory where the DMA write cycle starts
The word count (16 bits) indicates the number of data words to be transferred, or the size of the
data block to be moved. Since the source and destination word counts may be different due to

different bus widths, it always refers to the number ot words to be written into the destination
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memory. The packing unpacking code (4 bits) identifies one of the sixteen possible
source destination bus width ratios  This code 18 used to pack or unpack data words to ensure
compatibility with source and destination memory widths  The heart of the DMA Controller
module 1s the DMA state machine which generates the actual signals of commurnication between
the DMA module and the satellite interface module It has been realized as a sophisticated ROM
sequencer to carry out the process in an efficient fashion with a minimum amount of hardware
and a mawmum degree of flexibity The rest of the circuitry in the DMA Controller module

provides the steering logic to the various processor units

The DMA Controller module regards each computer or each bus as the same regardless of the
size and the protocols. The actual synchromzation with a particular bus 1s carned out by a
specific satelite system which matches the DMA Sequencer's request with the bus protocol of
that particular cnmputer The communication between the DMA Controller module and the
various computers 1s basically asynchronous, consisting of a regquest-grant protoco! Figure 11
shows the DMA Controller module intiating a DMA read write request with a specific target
machine via it's interface card Internally the DMA Controller module has heen designed as a

state sequencer clocked at 10MHz.

5.3 Data Path Module

The Data Path module provides the actual path for the flow of data words during a DMA process
This module provides a pipelined path to speed up data transfers between two computers The
data path 1s 40 bits wide and can therefore accept the largest word available in the system
Smaller words or bytes are sucessively strobed into various fields of this 40-bit reqister to opt-
mize memory usage. Similary, the unpacking of a large word can be carred out This feature
makes it possible to swiftly transfer data between various memuries and processors of different

word sizes.
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5.4 Interrupt Module

The Interrupt module is used to route the interrupts from one processor to another as well as
from the HCI to a processor. Interrupts are also used as an efficient means of signalling the
completion of a task assigned to the HCI. This prevents the processor from waiting and
checking ‘or the completion of a requested block move. The interrupts 1ssued by the Interrupt
madule are routed to the appropniate satellite interface which follows up the exact interrup: pro-
cedure of the specific computer system. The interrupt facility may be overridden by the re-
questing device by loading an interrupt disable bit in the appropriate control register. This s an
important feature for blocking out unwanted or undesirable interrupts for a certain duration of

time

The overall architecture of the entire interface 1s given in Figure 12. The units enclosed by the

shaded blnck are collectively called the DMA Controller module.

The HCl undergoes four distinct states when it 1s engaged by some requesting device till its task
1s brought to completion. In state one, the HCl idles. It proceeds to state two for the requesting
dewvice to load the control registurs and request the HCI to start execution. Upon receipt of the
"Start DMA” signal, 1t goes into state three where it carnes out the desired process and then
enters state four to await the terminaton of the job. It then returns to state one or the idle

condition. The four states are depicted in Figure 13,

The interaction between these modules 1s described in the following chapter.
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Figure 13. DMA State Transitions.
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6.0 HCI INTERFACES AND PROTOCOLS

The Host Computer Interface links the following different types of systems wia the appropriate

bus protocols.

1. The VAX 11.780 via the Unibus

2.  The Cromemco Z-80 via the S-100 or the IEEE 696 bus.
3. The array of microprocessors at layer 2 via the CPU bus.
4, The Video Memory via the MICRO bus.

5. The Graphics Controller via the GRACON bus.

Each of these interfaces s functionally similar for data interchange, but with different privileges
and restrictions. This chapter describes each one of these interfaces and their respective pro-

tocols in detail.

6.1 The CPU Bus

The CPU bus 1s made up of 40 bidirectional data lines, 20 bidirectional address lines, and 12
control signals as shown in Figure 14. The data lines carry the data between the HC! and the
designated microprocessor module uuring block moves, control status word transfers and HCI
resource requests. All microprocessors de: «iot use the full 40 bit width of the data bus, only the
lower 16 or 20 bits depending on their word sice  The address lines carry the source or desti-
nation address of the data being moved across the data bus Address lines can also carry the

address of the HCI control registers being ioaded or queried by a microprocessor module

When the HCI wants to move a block of data to or from a specific microprocessor module, t
asserts a CPU bus DMA REQUEST When the taiget microprocessor is in a position to grant

the HC! access to it's bus, 1t responds with a CPU bus DMA GRANT (Figure 18) Upon receipt

HCI INTERFACES AND PROTOCOLS 35



To
Bus

CPU Data W
BUS 40

CPU Address ‘ 4 - m’
Bus 20

Enable Status

To
4+— —P gsatelite

Processor

Register

Clock Control

Register

Strobe Cycle

CPU Bus

y v vV ¥V

DMA Request

Interrupt to S100 4@~

FYW(L)

HCI Machine Grant

\ 2 ]

Cycle Done <€¢—

HCI Machine Request -

CPU Bus DMA Grant «¢-

Interrupt to Unibus ¢

Strobe HCI Machine <

Registers

Figure 14. CPU Bus Signal Assignment.

HCI INTERFACES AND PROTOCOLS

36




of the CPU bus DMA GRANT signal, the HCI proceeds to generate the address and the
read/wnte signal, and transfers each word of information with a STROBE signal E£ach strobe
1s acknowledged by a CYCLE DONE signal from the microprocessor When the designated
block of information has been moved, the HCI drops the CPU bus DMA REQUEST, which n tuin
causes the microprocessor to drop the CPU bus DMA GRANT signal and rega mastership of
the bus. In reality, a maximum of 16 words of data are transferred in each bus request grant
cycle. This limit was imposed to allow higher prionty tasks such as control status word transfers
to be carned out in an interleaved fashion on the same bus This interleaving, however, remans
totally transparent to the onginating processor and is managed entirely by the HCt  The unple-

mentation of this feature i1s described in a subsequent chapter

Two of the control signals on the CPU bus are "one hot” hines that control the strobing of the
control and status registers of each microprocessor The CLOCK CONTROL REGISTER signal
strobes the contents of the data lines into the cantrol register of the microprocessor  Simniarly
the ENABLE STATUS REGISTER signal gates the contents of the status register onto the data

ines. Typical information carned in the control and stetus registers 1s given in Figure 16.

Each microprocessor can generate interrupt requests tor either of the host computers, typified
by the INTERRUPT TO S100 and the INTERRUPT TO UNIBUS signals When asserted, they
cause an interrupt in the appropnate system if the interrupt enable bit in the HCI has been set
by the target machine to recewe nterrupts Microproprocessor modules are not provided a

means of generating lateral interrupts to other microprocessors

Microprocessois on the CPU bus may, however, initiate block data moves by requesting HCI
services through the HCI MACHINE REQUEST signal. When the HCl 1s ready to service the
request, it returns a HCI MACHINE GRANT signal at which point in time the microprocessor can
access and load the control registers of the HCI with the specifics of the requested move This

13 done by putting the reqister address on the address lines, the data on the data lines, and
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Bit Name of Signal
Not used
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1 Interrupt to Unibus
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strobing the data via the STROBE HCI MACHINE REGISTER line. As mentioned in previous
sections, 16 registers need to be loaded prior to DMA imitiation.  The loading of the 16th register
(start DMA) causes the HC! MACHINE GRANT to be dropped and all further access to the HCI

control registers to be denied (Figure 17).

6.2 The S100 Bus

The S$100 or the IEEE-696 bus is the oldest standard bus for small 8 bit computer systems
iypified by the Z-80 processor and the CPM-80 operating system. In this application, a
Cromemco Z-80 system was used as an alternate host computer, and hence the HCI was re-
quired to interface with the system. The Cromemco system adheres to the S100 bus standard

and runs CDQOS, a CPM-80 ke operating system

The S100 bus consists of two data busses, DATAIN and DATAQUT, each 8 bits wide, and
carrying data to and from the CPU respectively. The 16 bit wide address bus carries the 'O
port or memory address for any transaction The remainder are control signals such as RESET,
MEMORY READ & MEMORY WRITE (indicating a memory cycle), POUT & PIN (indicating an
I'O port cycle), and PDBIN & PWRT (the read and wnte strobes). There are two further sets
of signals to interrupt the cperation of the CPU by an external device. The INTERRUPT RE-
QUEST signal 1s generated by an external device for interrupting the normal pracessing. The
CPU, if interrupts have been internally enabled, responds with an INTERRUPT ACKNOWLEDGE
signal and begins the execution of an interrupt service routine. The Z-80 vectored interrupt
mechanism allows multiple interrupt requests to be distinguished without device poling. Another
signal, HOLD REQUEST, can be used by an external device to temporarily cause the CPU to
stop 1ts processing and hand over the control of the bus to the external device. To signal the
relinquishing of the bus, the CPU uses a HOLD ACKNOWLEDGE signal. These signals are
extensively used by the HC! to communicate with the S100 bus. A compiete list of S100 bus

signais 1s shown in Figure 18

HCI INTERFACES AND PROTOCOLS 40




HCI Machine
Req (L) \.

HCI Machine
Grant (L)

A \

\
Latch Register
Address (L)

/

Strobe HCI
DMA Register (L)

\
\
Latch Register
Data (L)
\
\__/\‘ \_/f

Cycle 1 Cycle 16

Figure 17. HCI Machine Register Loading Protocol.

HCI INTERFACES AND PROTOCOLS

41




Pin No Signal Name Pin No Signal Name

1 +8V 51 +8V

2 +16V 52 -16V
3 XRDY 53 GND
12 NMI 68 MWRT
13 PWRFAIL 72 RDY
24 Clock B 73 INT
25 pSTVAL 74 HOLD
26 pHLDA 75 RESET
29 A5 76 pSYNC
30 A4 77 pPWR
31 A3 78 pDBIN
32 A1S5 79 AO
33 A12 80 Al
34 A9 81 A2
35 DO1 82 A6
36 DOO 83 A7
37 A10 84 A8
kY] DO4 85 A13
39 DO5 86 Al4
40 DO6 87 Al1
41 DI2 88 DO2
42 DI3 89 DO3
43 Di7 990 DO7
44 sM1 91 Di4
45 sOuUT 92 DIs
46 sINP 93 Di6
47 sSMEMR 94 ol
48 sHLTA 95 DI0
49 CLOCKA 96 SINTA
50 GND 97 sWO

99 POC

Figure 18. Table of S100 Bus Signals.
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To map the HCi DMA module signals into S100 bus signals, a special card was designed to
perform the function via a micro-programmed ROM sequencer machine Physically, this circuit
was built on an S100 size card and plugged into a single card slot in the Cromemco system
The ROM sequencer approach was favoured over hardwired logic cue to flexibiity and ease of
implementation reasons. Figure 19 shows the detals of the incomming and outgoing signals

from the S100 card of the HCI

When the HCI wishes to read a block of data from the $100 memory, it sends a READ RE-
QUEST to the S100 card This causes the ROM sequencer state machine to exit from the dle
mode and generate a HOLD REQUEST on the S100 bus. When the S100 CPU relinquishes the
bus, it acknowledges the HOLD REQUEST by a HOLD ACKNOWLEDGE The HOLD AC-
KNOWLEDGE cause the next state change in the ROM sequencer, which then proceeds to
generate control signals disabling the CPU bus drivers and enabiing its own bus drivers onto the
S5100 bus. In the next state, the ROM sequencer starts to read bytes of data from the memory
of the S100 system by emulating the S100 memory read signals and the address (which comes
from the source address regsiter in the HCI) As each byte 1s read, the ROM sequencer gen-
erates a strobe signal to allow it to be stored in the data path module in the HCI, and also gen-
erates a INCR SOURCE ADDR signal to advance the source address by one When the data
path module in the HCI 1s full, it sends a FINISH signal to the ROM sequencer, which causes it

to drop the control of the S100 bus by de-asserting the HOLD REQUEST signal

The wnite operation is essentially similar to the read operation except that the ROM sequencer
receives a WRITE REQUEST, and that the ROM sequencer generates a WRITE GRANT and
INCR DEST ADDR signals during the cycle. The read and write operation sequences are de-

tailed in Figure 20.

The 5100 interface card has some additional fogic on board to allow the S100 system to access

the HCI machine registers as 1 O ports The port address decode circut maps the HCI control
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registers onto the Z-80’s 'O space, the base address of which 1s selectable by a DIP switch on
board the card The S100 port assignments for GRADS are given in Figure 21. Any Interrupt
signals from the HCI destined for the S100 bus are mapped onto the S100 INTERRUPT RE-
QUEST hne. Upon receipt of the INTERRUPT ACKNOWLEDGE signal, the logic provides an
interrupt vector to the S100 system. The interrupt vector «:an be preloaded by the S100 system

onto the interface card by S100 system upon intiahzation.

The implementation of the 3100 interface card ROM sequencer was actually carried out using
static RAMS which can be loaded by the S100 system upon initalization There were two rea-
sons for this  Firstly debugging microcode that 1s downloadable makes the system trouble-
shooting much easier than having to burn new ROMs. Secondly, the speed of the EPROMS
available at the time of hardware design constramned the operation of the sequencer to less than
4 MHz. The RAM based machine can run upto 10 MHz Having a RAM sequencer reguires
some mechanism to prevent the state machine from execuiing random microcode upon power
up. An on board fip-filop locks the state machine till such time as the microcode has been

downloaded and the RAM sequencer has been enabled.

6.3 The UNIBUS Interface

The UNIBUS 1s common to DEC computers such as the PDP-11 and the VAX-11 family. Unlike
the more primitive S100 bus, it 1s and asynchronous bus with a handshake protocol between the
bus master (normally the CPU) and the memory. In addition, the UNIBUS has a "look-ahead”
arbitration scheme, whereby the next bus user 1s selected concurrently with an ongoing cycle.

A typical memory read cycle on the UNIBUS s shawn in Figure 22.

Due to the edge-driven nature of most UNIBUS signals, a ROM sequencer type implementation
was not considered suitable. Keeping in ine with the DEC design approach, dedicated logic was

used around monostable devices to generate the sequence of UNIBUS signals in response to
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00H
O1H
02H
03H
04H

05H
06H
07H
08H
09H
0AH
0BH

OCH
ODH
OEH
OFH
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11H
12H
13H
14H
15H

Base Address = C0 Hex

S$100 Local Initialization Registers

Address ot Microcode RAM (L)
Address of Microcode RAM (H)
Microcode Word (L)

Microcode Word (H)
Microcode Enable

$100 Bus Private Registers

Control Word (L)
Control Word (H)
Status Word (L)
Status Word (H)

Issue Interrups (0-7)
Request HCI Services
DMA Status

$100 Bus DMA Registers

Source/Destination Code
Saurce Address (0-7)
Source Address (8-15)
Source Address (16-23)
Destinatiun Address (0-7)
Destination Address (8-15)
Destination Address (16-23)
Word Count (0-7)

Word Count (8-15)
Packing/Unpacking Code

Figure 21. S100 Port Assignments for GRADS.
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Figure 22. UNIBUS Memory Read Cycle.
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the requests from the HCI. Figure 23 shows the hist of the HC! and UNIBUS signals The
UNIBUS interface card plugs into a vacant slot in the VAX-11 or the PDP-11, and maps some
of the address space onto the HCI's control registers, in a manner similar to the S100 bus A

typical DMA sequence on the UNIBUS s shown in Figure 24,

6.4 The GRACON bus Interface

This bus 1s used by the HCI to download the microcode into the RAM based state machine of
the graphics controller. This bus 1s fully controlled by the HCI and consists of 12 uridirectional

address lines, 8 bi-directional data lines, and 3 control ines (Figure 25).

Of the control lines, LOAD GRACON RAMS and READ BACK RAMS ., are used to detine the
made of operation of the state machine (Figure 26). In the normal operational mode, all three
control hnes must be held high. In the load mode, the third control signal, WRITE STROBE 1s
used to strobe the data present on the data bus into the graphics controller's memory  The

exact timings of the read and wnite cycles are shown in Figure 27

6.5 The MICRO bus Interface.

The MICRO bus provides a path for all the satelite processors to communicate their processed
macroinstructions to the graphics controller. The graphics controller answers requests for DMA
moves from each microprocessor, and moves data from the memary of the microprocessor into
the video memory planes. The HCI also connects to the MICRO bus as one of the devices re-
quinng a DMA service into the video memory pianes In this mode, the host computers can read
from or write directly mto the video memory of the system, a feature very useful for system de-

bugging and diagnostics.

The MICRQO bus consists of 12 umidirectional address lines and 20 bi-directional datd lines,

which are time shared across all the units on the bus. The HCI, as well as all microprocess. irs,
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Figure 23. UNIBUS Signals Used for GRADS.
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Figure 24. UNIBUS DMA Read Cycle.
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Figure 25. HCI-Graphics Controller Bus Signals.
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Load GRACON RAMS Readback RAMS Operation Mode
Low Low llegal
(no activity)
Low High Load Mode
High Low Read Mode
High High No operation

Figure 26. Graphics Controller Bus Truth Table.
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Figure 27. Graphics Controller Bus Read Write Cycle.
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have individual MICRO BUS REQUEST and MICROBUS GRANT lines The request tor DMA
IS made by asserting the request line till the grant 1s obtained. The end of the DMA cycle is in-
dicated by the DMA DONE signal which causes the request signal to be dropped. which in turn
causes the grant signal to be dropped The graphics controller moves data between the source
and the destination on a word basis it, therefore uses two more signals to manage the flow of
information within a block move The two signals are DMA CYCLE REQ and DMA CYCLE
FINISH. Each word transaction is inihated by DMA CYCLE REQ assertion, along with the cor-
rect address and data. The acceptance of the information i1s acknowledged by a DMA CYCLE
FINISH, which causes the request to be dropped, and a new cycle to be iniiated  Typical M-

CRO bus sequences are shown in Figure 28.

The bus protocols described above are essentially derived from a common DMA sequencer
machine in the HCI. The detailed implementation of these interfaces, and the common HCI

modules 1s described in the following chapter.
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Figure 28. Micro-Bus Timing Sequence.
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7.0 HCI IMPLEMENTATION

The various modules of the host computer interface were protoyped and bult using SSIMSI
logic devices, mainly of the low power Schottky (LS) family [39.]. Internally the design 1s syn-
chronous, clocked at 10 MHz by an on-board 745124 oscillator using a quartz crystal as the
tuned element. The design contains asynchronous logic only in peripheral areas where nter-

facing with an asynchronously clocked bus s required.

7.1 Control Register Module

The control register module was implemented using edge-triggered octal latches 74L.5374. Data
from the host computers 1s latched into these devices asynchronously, t e they appear = reg-
isters in the | O space of the host computers In the case of 16 bit machines, two 8 bit registers
are clocked together. The only exception to the use of latches are the DMA control registers
which contain Source Address, Destination Address, and Word Count mformation  These reg-
1sters were based on a bank of 74LS193 synchranous counters with an asynchronaus parallel
load capability Since the Source Address and Destination Address registers contain data buffer
pointers, once DMA starts they are clocked upwards with every successive source memory read
strobe and the destinaton memory wnte strobe respectively The Word Count register 1s
clocked downward with every wnte transaction on the destination bus Since packing unpacking
of information can cause a discrepancy between number of source words read and destination
words written, 1t 1s important to note that the word count specified to the HCI controls the number
of words to be written into the destination machine The Borrow signal of the counter 15 used to
generate the internal WORD COUNT ZERQ signal, which triggers the DMA control module to

terminate the process.

HCI IMPLEMENTATION 57




P

7.2 DMA Controller Module

The DMA Controller module arbitrates the requests by different GRADS resources for DMA
transactions, and controls the DMA process  Any of the computing resources in GRADS can
request a DMA transaction for block data moves This request 1s inthated by setting the DMA
REQUEST bit in their respective sections of the control register module All the request bits are
brought into the DMA Controller module and latched i 7418279 S R latches (Figure 29)

The output of these latches are fed into a set of 74L5278 prionty encoders  The highest prionty
in GRADS is given to the VAX11 host computer, followed by the S100:-Z-80 host computer, and
the 8 satelite processing units  The output of the priority encoders 1s a single DMA GRANT
signal to the highest prionty requesting device The DMA GRANT signal also locks the priorty
encaders so that request arbitration 1s frozen for the duration of the DMA process. The DMA
GRANT signal to the appropriate processor allows it to access the core DMA Control registers
in the control register module and issue the START DMA command by setting the appropriate
bit in the DMA control registers  Once the START DMA command has been i1ssued, the DMA
Controller module drops the DMA GRANT signal to the requesting CPU. This essentially denies
access to the DMA controi registers, avoiding the possibility of any CPU possibly modifying the

contents while a DMA transaction 1s in progress

At this point the DMA transaction 1s in progress, and remains so till one of the three conditions
signal the DMA Controller to terminate it. Under normal conditions the termination 1s brought
about by the WORD COUNT ZERO signal, which indicates that the requisite number of data
words have been transferred. Two abnormal conditions can also cause the DMA process to be
aborted, re the READ TIMEOUT and the WRITE TIMEQUT These conditions are caused
when the source bus or the destination bus does not respond to a bus request within 1 mS.
This timing 1s non cnitical, and 1s maintained by a parr of monostable multivibrators (74LS123).
The presence ot either termination signal results in a single pulse being generated by the pair

ot 74LS74 D fip flops working as a pulse generator. This pulse i1s ANDed with the prionty en-
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Figure 29. DMA Controller Module.
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coder's outputs to clear the appropnate DMA request. All other non-serviced DMA requests

remain latched, and are prioritized for the next DMA cycle.

7.3 Data Path Module

Ot all the modules of the host computer interface, the Data Path module 1s the most complex.
it controls the flow of data blocks between the source processor bus and the destination

processor bus, and medsiates in the flow to pack and unpack the data as requested.

The data path module inttiates a series of block read requests and write requests to the source
and destination processors (via thew respective interface modules) by providing a READ WRITE
REQUEST and the source destination address. This read or write process continues till the data
path module 1ssues a FINISH signal indicating that it’s buffer capacity has been reached, or that

the DMA session is over (Figure 30).

The Data Path module works under the control of the DMA Controller module, and s made up

of four distinct subsystems:

o Data Input Buffer
o  Data Output Buffer
o  Word Packing Unpacking Logic

o  Word Packing Unpacking Control

Figure 31 shows the typical flow of information through these subsystems The data is read in

blocks from the source computer, each block being buffered in the Data Input Buffer. The Data
Packing Unpacking logic performs the necessary word width adjustments, and the block of data

to be transferred to the destination computer 1s buffered in the Data Output Buffer.
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The Data Input Bufter 1s made up of 16 deep FIFO which can accomodate a 40 bit woid  To
achieve the 40 bit word width, 8 745225 FIFOs were used {Figure 32) It the DMA IN
PROGRESS signal 1s high. and the input buffer 1s completely empty, a read request 1s genorated
and sent to the source computer interface  This causes the source computer bus to be aquirad
by the HCI and a total of 16 words being read into the input bufter At the end of the 16th read,
the mput ready flag drops on the FIFQ, which causes the FINISH (L) signal to be genorated,
resulting the source computer bus to be relinquished The Output Ready signal needs to he
de-asserted before a new read request 1s generated This forces the FIFO to be completely
emptied before initating a fresh DMA read cycle to fill it up from the source memory The de-
cision to read 16 words tn one burst was based on a desire to optimize the data transter process
for large blocks On the other side of the input buffer, the data is extracted by the
packing-unpacking logic for word width manipulation  As the 16 words are clocked out of the
output end of the FIFO, another read of 16 words i1s iniiated This process continues till the

DMA process s abarted by the DMA Controller module

The Packing Unpacking logic consists of a set of five octal buffers (74LS244s), each corre-
sponding to one octet of the 40 bit nput word, and a set of five octal data latches (74L.S374s),
each corresponding to one octet of the 40 bit output word. Linking the input word buffers and
the output word latches 1s an 8 bit wide data bus The details of this section are shown in
Figure 33. This arrangement sliows any octet of the input word to be latched nto any octet of
the ouput word. The exact sequence is regulated by the packing unpacking state machine in
accordance with the packingunpacking code specified for a particular DMA transaction  For
example, when reading from a 16 bit processor and wnting to an 8 bit processor, both the upper
and th > lower octets of the input word are mapped onto and latched into the lowest octet of the

output word.
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Figure 33. Data Packing/Unpacking Logic.
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The packing:unpacking fogic 1s controlled by a ROM based state machine (Figure 34). This
ROM sequencer generates a predetermined sequence of signals to read from the input buffers,
control the packing unpacking logic, and write into the output buffers It takes the 4 bit
packing unpacking word as it's main input (Figure 35) Since the input and output buffers are
clocked asynchronously by the source and destination computers, the packing unpacking state
machine starts and stops are also controlled by the availability of data in the input buffer and
space in the output buffer The machine resumes from its last state when these conditions are

satisfied

The Data Output Butfer works in a fashion similar to the Data Input Buffer except that it initiates
a write request to the destination computer when there i1s a block of 16 words ready 1o be wnt-
ten This is ensured by generating the write request signal when the Input Ready signal of the
FIFO 1s de-asserted. The bus of the destination processor 1s released when the FIFO 1s empty
and the FINISH (L) signal 1s generated. The details of the Data Qutput Buffer are shown in

Figure 36.

HCI IMPLEMENTATION 66




Figure 34. Data Packing Unpacking State Machine.
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CODE SOURCE DESTINATION
WORD WIDTH WORD WIDTH
0000 8 8
0001 8 16
0010 8 32
0011 8 40
0100 16 8
0101 16 16
0110 16 32
0111 16 40
1000 32 8
1001 32 16
1010 32 32
1011 40 8
1100 40 16
1101 40 40

Figure 35. Data Packing Unpacking Table.
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Figure 36. Data Output Buffer.
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8.0 TESTING AND DEBUGGING

The testing and debugging of a system as large and as complex as the the HCI can be a chal-
lenging task indeed, the complexity of the HCI stemming from the number of signals in the
system, the asynchronous nature of all external bus signals, the sheer size of the implementa-
tron (four large cards with 100 ICs each), and the distnbuted architecture of the HCl. To make
such a task more amenable, it was decided to spend a far amount of time on the development
of a robust testing environment, which consisted of a testing and debugging strategy, and the
appropriate test tools  The following sections of this chapter describe the strategy. the tools and

the actual process in greater detail.

8.1 The Testing Strategy

The foremost consideration in the development of a suitable test plan for the HCI was the size
and complexity of the system The focus of the test plan, therefore., was to develop a method-
ology for the incremental testing of the system. To this end. the modular and distributed archi-
tecture of the HCI lent itself very well In addition, an attempt was made to reduce the number
of vanables at any given point in the testing phase so as to keep the number of monitor points

low A four step process was devised for each module.

1 Verfication of implementation accuracy.
2. Verfication of idle state charactenstics
3 Venhcation of functionalty at low speed

4  Venfication of functionality at full speed

The first involved checking the system for wiring errors. This was done by "buzzing” off each

connection aganst a winng hst and the circuit schematic  Once all corrections had been made,
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the card was powered up using a current limited bench power supply The current consumed
by the card, and the presence of "hot spots™ on the card were used as mndicators of the pras-
ence of serious errors (typically short circuits between chip outputs and ground. and signal col-
hsions between competing devices). Such problems, if present, were resolved betore turther

testing and debugging.

One of the design decisions was to implement all inter module signals as active low, and pull
them up to therr idle or inactive states on the receiving end. This feature allowed the cards 1o
be powered up individually and checked for their idie states This test proved to be one of the

most effective steps in identifying both logic and microcode errors without system integration

In the third phase, the module was exercised through tools that simulated the signals hetween
the module under test and the module to be interfaced with  The simulation tools were mostly
software packages running on a Z-80 system and simulating the signalling sequence through
parallel 1 O ports (Figure 37) As most of the protocols in the HCI are based on a handshake
type sequence, turning down the basic clock of the module under test allowed the process to
be viewed at slower speeds thereby reducing the contribution of timing and speed related con-

ditions, and allowing logical errors to be i1solated with greater ease

In the last phase, the clock was turned up to the full speed. mostly 10 MHz, and the functionality
checked again A failure between steps three and four effectively pointed to some specific areas

of the circuit  Typical problems encountered in this phase were

1. Race conditions and ghtches due to timing skews 1in coding decoding logic circuits
2. Signal colisions due to turn-on and turn-off times of drivers
3. Unrehable data transfer due to memory access time hmits

4. Signal distortion on long and unterrminated lines, due to noise pickup and reflections
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Figure 37. Signal Sequence Simulation with the 2-80 and 8PI0 Cards.
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Overall this process proved to be extremely succesfull in detection of a large fraction of bugs,

errors and design oversights before system integration was attempted.

8.2 Test Tools

In addition to the available instruments, several test jigs and tools were developed to debug the
system. The most widely used test tool was the Cromemco Z-80 microcomputer system with
an 8PIO card (providing 64 parallel latched input output lines). This system, with the appropriate
software load, could emulate any of the interfaces in the GRADS system. Some software
modules were also developed to synthesize specific signal sequences, effectively emulating a
programmable signal generator Due to the large numbers of microcode driven state machines
in the HCI, and the GRAD system n general, a microcode editor and downloader was also de-
veloped on the Z-80. This tool microcode editor allows the microcode in the system to be ad-
ited, filed and then downlnaded into the target machine in an interactive fashion  This capabihity
proved to be extremely effecuve in reducing the microcode debugging and fuang tme  Maost
modules were were debugged by repeating the entire process cycle on a continuous basis  This
enabled the progress to be monitored to a specific point using oscilloscopes and analyzers  To
prevent the systems from "hanging up” ana causing the iterative process to stop, an external
watchdog timerreset generator was developed. The system was used to ensure the continuous

looping of the test process Figure 38.

in addition to these tools, two existing laboratory test instruments were extensively used. the
Tektronix 465B dual trace 100 MHz oscilloscope, and the Tektronix 8 bit 50 nano second re-

solution logic analyzer.

TESTING AND DEBUGGING 73



Vee Vce

T=50 mS T ..I,_ T=1m8
C
Q

Start DMA (L) R RC Reset S100 (L)
a ese
e e
74LS244 . .
CLR 74LS8123 ClR
Power-On Clear (POC) (L) T Asatble Muttivibrators T Reset HCI (L)
7418240
Figure 38. Watchdog Timer Arrangement for HCI Testing.
74

TESTING AND DEBUGGING



8.3 Test Process

One of the first submodules of the HCI to be debugged was the $100 interface, leading to full
integration testing of the HCI by achieving full DMA transfers with the S100 host computer sys-

tem.

8.4 $S100 Card Testing

The $100 card was tested out in two main steps In the first step, the card was plugged into the
system bus and all bugs were traced and corrected till the card resided on the bus, in its wdle
state, without interfering with the normal operation of the Z-80 computer system  Once this was
achieved, the resident monitor (RDQOS) on the Z-80 host computer was used to load and read
local registers on the S100 card Since these registers are used to load microcode in the RAMs
of the state machine on the S100 card, a special program was developed to exercise the loading
mechanism. The program moves a block of microcode from the memory of the host Z2-80, and
loads the microcode in the S100 card It then reads it back to compare and vertfy the intagrity
of the moved data Once the correct move has been verified, thie program loads a register which

enables the S100 card to enable it's drivers under microcode control and interact with the bus

This is the true test of correct operation of the system while in the dle state  Figure 39 shows

the microcode enable circuits

The actual DMA sequence of the S100 card was debugged using an external sthmulus to emu
late the HCI READ REQUEST signal  This signal, if correctly interpreted by the rmicrocode on
the $100 card. would cause the S100 card to request the S100 bus, obtain the grant, and begin
«n indefinte block read sequence from an arbitranly chosen iocation in the host computer
memory When a FINISH signal i1s sent to the S100 card, the micrccode should release the

S100 bus in an orderly fashion and restore the narmal CPU operation  This sequence is de-
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picted In Figure 40, where the shaded areas highlight the bus aquisition and bus release

portions of the DMA cycle The crucial things to check in this cycle are

1. The currect sequence of bus request steps
2  The correct bus release procedure

3  The non-disruptive natur~ of the temporary bus mastership

The correct sequence of bus request operations was studied on an oscillocrope by generabng
repeated request and finish signais and effectively putting the process in a "loop” The same
approach was used for the bus termination sequence The non disruptive nature of the ter-
action was ensured by running the RDOS monitor program on the host computer CPU duning
the DMA attempts When the DMA was non disruptive, the monitor ran without problems. athest
slowly due to the limited fraction of time available to the CPU A typical test was to perform a
large memory dump on the terminal screen using RDOS while trying out the DMA sequence
During the black read sequence. the other signals were also venfied using the oscilloscope A
bus state indicator card constructed for quick visual confirmation of the bus state was tremeon-
dously useful dunng this process The indicator card simply picked off the standard bus signals,
such as HOLD REQUEST, HOLD GRANT and HALT, off the backplane and used coloured
LEDs to display them on the front edge Durng the the debugging stages, when the system
got locked in indeterminate states. these visual Indicators provided a quick status update without

having to laboriously check all the signals on the S100 bus

Once the S100 card had been debugged independently, it was interfaced with the central control
register module and the DMA controller module  After idle state sanity checks. debugging of the
integrated system was imtiated using an interactive software package on the Z 80 host com
puter. The software package aliowed the DMA parameters to be defined interactively so that the
HCVI’s services could then be requested by the host computer and the DMA block mave inmhated

The user menu of the software package 15 shown 1in Figure 41
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Figure 40. S100 Card Debugging Sequence.
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Figure 41. HCI Test Software Menu.
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As in the earher case, the effective debugging of the system was possible only by "looping” the
entire process The software was designed to load the registers of the HCI, start DMA, and wait
for about 10 miliseconds before restarting the process In many instances. the DMA machine

‘hung-up”, thereby jamming the host computer bus and preventng the program from repeating

the process For this purpose, an external watchdog timer was used to reset the HCI after a

certain grace penod  This external timer was based on re-triggerable monostable devices and
was tnggered via an ouput port by the software routine driving the HCI This step reset and

armed the watchdog timer  The algornthm of the test software package s shown in Figure 42.

A tunctional overview of the test setup 1s depicted in Figure 43, and the actual laboratory system

shown in Figure 44

Once the entire DMA process had been debugged using the S100 bus as one active computer,
it was extended tc other busses incrementally At the time of completion of the project, only the
UNIBUS, and the CPU bus interfaces were actually excercised due to hardware availability, the
rest of the modules being designed The remaining interfaces were. however, simulated using
the 8PIO cards as previously mentioned, and the correct transfer of information between differ-

ant busses verified

8.5 Test Results.

As the testing progressed, apart from basic logic and winng errors, two main classes of prob-
lems became apparent The first was traceable to faulty states created by defects or deficiencies
of the microcode in the various state machines. Once the faulty states had been identified, it
was a question of downloading new nucrocode Into the system and venfying the correct opera-
tion Extensive use was made of an interactive microcode editor and download utiity which were

specialty developed for this project [27 ).
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Figure 44. Laboratory Setup for HCI Testing.

TESTING AND DEBUGGING

.
f
M

83



The ather class of ptoblems were related to htming on asynchronous busses supported by the
HCI Once agan, the micracode driven seguencers used in almost every part of the HCl proved
to be of tremendous value in terms of being able to fix most timing problems via microcode up-

dates rather than hardware patches

Althaugh all the modules of GRADS were not completely integrated by the time this research
was terminated, the HCI was tested out indvidually aganst all of the 1dentifred GRADS modules
it was also observed that the debugging and venfication effort of the HCI equaled all definition.
design, and mmplementation effort of the GRADS system, re-inforcing the need for design-for-

testabiity in large systems

8.6 Performance Evaluation

The total data transter rate of the HCl 1s imited to a 40 tit word every 300 nS, or a bandwidth
in excess of 120 Mb S This figure represents ithe instantaneous burst transfer speed without
other overheads and, while 1t 1s significantly more than the 10 Mb S maximum transfer rate of
Ethernet type LANSs, it can never be realized in practice due to other factors. To evaluate the
HCI's DMA performance, typical figures for data transfers from and to an S100 bus system are

presented

One of the obvious overheads in DMA transactions 1s the time taken by a DMA machine ta gain
a master status on the bus. In the case of S100 bus machines using the Z2-80 CPU, bus re-
quests are granted by the CPU after the completion of the instruction in progress For a Z2-80
processor the longest instruction can be 4 machine cycles If running at a clock frequency of
4 MH: (Z-80A) each machine cycle 1s 250 nS, and therefore it can take upto 1 micro second
to complete the instruction prior to granting control of the bus. It takes an additional cycle to
re-clock the HOLD ACKNOWLEDGE signal from the bus, leading to a maximum bus aquisition

time (Tha) of 1 25 micro seconds  All read write cycles on the S100 bus are two machine cycles
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tong, requinng 500 nS to complete each memory cycle {Tmc). Since the HCI always reads in

packets of 16 words, the time to read one packet 1s

Tba + {16 X Tmc) = 9.25 micro seconds

The HCl reaches its maximum DMA efficiency when the data block to be transterred 1s an inte-
gral multiple of 16 source words For example, a block of 4 Kwords (4096 words) requires a
transfer of 256 packets of 16 words each, requirng a total transter time of 2 368 milli seconds
This represents an overall transfer rate of roughly 1 7 Mwords per second or 138 Mb'S o
quantify the efficiency of the system. this figure needs to be compared with the 16 Mb S maxi-

mum bandwidth of the Z2-80's memory

When block sizes are not integral multiples of 16 source wards, an aver-fetching of the nput
buffer can occur In the worst case, the data block can be 1 word more than an integral muttiple
of 16, causing an over-read of 15 source words to take piace this adds a total of 7 5 micro
seconds of over-read time (Tor) to the normal process For a block of 4097 words, the time

taken i1s represented by.

[Tba + (16 X Tmc)} X 257 = 238 mS

This 1s equivalent to a transfer rate of 137 Mb S. Comparing the two figures. 1t 1s evident that
the penalty of over-reads due to nput data buffering 1s insignificant when the HCI 1s used to

transfer large blocks of more than, say. 1K words.

If the system were to be optimized for smaller blocks of data by reducing the input bufter size

to 1 word, the time to transfer a block of 4096 words would be.

(Thba + Tmc) X 4096 = 7.2 mS
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Trus is equivalent to a data transfer rate of 4 8 Mb S. The throughput gain due to input butfering

1s clearly evident from these figures

Even in it's mast elemental application, utitizing only 8 of the possible 40 data buts, the HCl's
DMA performance exceeds that of CSMA CD type LANSs (Ethernet). As tested, the performance
of the HC! was in accordance with the design goals. and in fultiliment of GRADs' data transter

requirements

8.7 Tool Evolution

Some of the debugging methods described in this chapter are indicative of the level of com-
monly available tools at the time of the research, most of the debugging having been done with
a simple dual-trace oscillosccpe and an 8-channel logic analyzer. Use of the current state-of-
the-art tools such as in circuit emulators, and multi channel logic analysers would have dras-
tically changed the way the HCI was tested, just as large software based logic simulators would

have helped in the identification of numerous timing problems prior to iImplementation.

With the advent of the IBM PC, such software tools are now commonly available at affordable
prices, resulting in great improvements in efficiency of design and testing. Similarly, escalation
in the complexity designs 1s addressed by the dramatic electronic filing capacities of hard disks

and the advent of high resolution colour displays of modern engineenng workstations,

One cannot overlook the tremendous impact of custorn VLSI {ASICS) in modern digital design.
The availabity of CAD software packages such as CADENCE allow for rapd design and sim-
ulation of custom circuits which can then be manufactured at silicon founderies. Together with
the breakthroughs in packaging and miniaturization, the domain of digital design remains exiting

and challenging
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8.8 Future Work

The most obvious extension of this work would involve a re-implementation of the system ex-
ploiting currently avalable technology such as the TMS340 processor, multi-port video RAMs,
and video peripherals Much of the discrete logic and state machines could be buill using Pro-

grammable Gate Arrays (PGAs) and custom VLS|

Although some single card systems with impressive performance are commercially avalable,

complex real-time animation still requires an approach involving multiple concurrent processors

An even greater challenge, perhips, would be to develop a user-fnendly interactive software

environment for the preparation and execution of large graphics amimation models.
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9.0 CONCLUSION

In this thesis the design of a colour graphics system for real-time animation was presented.

After reviewing current literature on computer graphics and computer architectures, the system
requirements for real-time animation were discussed and a specific architectural solution called

GRADS was proposed, with a focus on the Host Computer Interface.

The design requirements, system implementation, and test results of the Host Computer Inter-

face were detailed, and the performance of the system discussed.
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