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Abstract 

This thesis describes a method to analyze proton magnetic resonance 

spectroscopy imaging (MRSI) of multiple sclerosis (MS) patients. Multiple sclerosis is 

a chronic disease of the central nervous system (CNS). MRSI can non-invasively 

measure the metabolites in the brains and is helpful in research of progression of MS. 

Conventional approaches to analyze MRSI data are either using region-of-interest (ROI) 

methods or averaging the resonance intensities over the whole study area. This thesis 

documents an approach to use all reliable resonance intensities in MRSI based on 

multivariate mixed effect statistical models for repeated measurement. We applied the 

method in a series of studies and demonstrated that the distribution ofbrain metabolites 

was different among MS patients in different disease phases. These studies also showed 

the correlations between the brain metabolites and clinical data such as disease duration 

and clinical disability. 
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Résumé 

Cette thèse décrit une méthode pour analyser l'imagerie spectroscopique 

par résonance magnétique de patients atteints de sclérose en plaques. La sclérose en 

plaques est une maladie chronique du système nerveux central. L'imagerie 

spectroscopique par résonance magnétique permet de mesurer de façon non invasive le 

métabolisme du cerveau et est utile dans la recherche sur la progression de la sclérose 

en plaques. Les approches conventionnelles pour analyser les données d'imagerie 

spectroscopique sont soit les méthodes utilisant des régions d'intérêt, soit des méthodes 

moyennant les intensités de résonance sur toutes la région étudiée. Cette thèse 

documente une approche qui utilise toutes les intensités de résonance, basée sur des 

modèles statistiques d'effet mixte multivariable pour mesures répétées. Nous appliquons 

cette méthode à une série d'études et démontrons que le métabolisme du cerveau sont 

différents parmi les patients à différentes phases de la maladie. Ces études ont 

également montrées des corrélations entre le métabolisme du cerveau et des données 

cliniques, comme la durée de la maladie et les incapacités cliniques. 
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1. Introduction 

Proton magnetic resonance spectroscopy (MRS) is a valuable technique for 

imaging neuronal injury in the brains of multiple sclerosis (MS) patients. Recent studies 

have shown that there are statistically significant decreases ofN-acetylaspartate (NAA) 

in MS lesions, and also in normal-appearing white matter (NA WM) and gray matter. 

CUITent approaches to the analysis ofMRS data suffer from severallimitations. Usually 

voxels from lesions or NA WM are selected arbitrarily or average values are used. 

Inconsistent voxel selection has severallimitations: 

a) These methods are prone to be subjectively biased. 

b) They use only part of the available information, which may decreases statistical 

power. 

c) They normally do not take into consideration the spatial correlation between 

voxels. 

The goal of this thesis is to improve the analysis method that uses the 

information from aIl the voxels in the MRS data. We propose to analyze MRS data 

using extensions of the multivariate mixed effect models for repeated measurement. 

This method takes into consideration the spatial correlations between the voxels. 

Inferences can be made based on general linear models, which allow one to assess the 

effect of several independent variables (e.g. disease duration or group) on MRS signal 

intensities. We hypothesize that this method will produce better results by improved 
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statistical power than the conventional MRS analysis methods to detect difference 

between different groups and difference between lesions and NA WM. 

The thesis is organized as follows. Chapter 2 introduces multiple sclerosis 

disease and relevant N euroimaging techniques, both magnetic resonance imaging (MRI) 

and MRS. Chapter 2 also overviews brain MRI registration and classification 

techniques. The last part of chapter 2 introduces the concepts of multivariate mixed 

effect models for repeated measurement. 

Chapter 3 presents data (MRI and MRS) acquisition processes and post­

processing, especially resampling data to standard space to facilitate comparison across 

different persons. 

Chapter 4 describes our statistical methods to analyze both cross-sectional and 

longitudinal data, which includes structured covariance matrix modeling, parameter 

estimation and statistical inference. 

Chapter 5 presents the results of our three studies using our analysis method. 

There are one cross-sectional study, one longitudinal study and one clinical study with 

patients treated with drug. 

Chapter 6 presents discussion and conclusion. 
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2. Review of the literature 

2.1 Multiple Sclerosis 

2.1.1 Epidemiology of MS 

Multiple Sclerosis (MS) is an inflammatory demylinating disease of the central 

nervous system. There are about 300,000 MS patients in the North America and over 2 

millions worldwide. Females are affected more frequently (2-3 times) than males. 

Almost 70% of patients show symptoms between ages 21 and 40. MS is the leading 

cause of non-traumatic neurological disability in young and middle-aged adults 1. 

2.1.2 Phases of MS 

About 85% of MS patients experience acute symptoms followed by partial or 

complete remission, entering the relapsing-remitting (RR) stage. The relapsing­

remitting cycles continue and cause chronic accumulation of clinical disability from 

incomplete remissions. After 10 years, roughly 50% ofthese RR patients will enter the 

secondary-progressive (SP) stage of the disease 2
, which is characterized by a graduaI 

worsening ofthe disease without apparent exacerbation or remission. 

2.1.3 Pathology of MS 

One characteristic pattern of MS is multi-focal demylinated lesions. The typical 

pathological patterns of white matter MS lesions are: 3,4 

• Inflammation with T cells, B cells and macrophages/microglia. 

• Demyelination and a variable degree of remyelination. 

3 



• Oligodendrocyte loss. 

• Axonal loss and degeneration. 

• Gliosis with astrocyte proliferation and intensive glial fibre production. 

Lesions in gray matter have also been found in MS 5,6,7, which are associated with 

extensive demyelination, neuro-axonalloss and microglial activation. Corticallesions 

are generally not associated with increased lymphocyte infiltration 8. Also there are 

findings oflesions in spinal cord 9,10. 

Even the normal appearing white matter (NA WM) is not 'normal' as compared 

to the normal control. The finding in NA WM includes 11,12,13 

• Perivascular inflammation. 

• Marked astrocytic proliferation. 

• Reduced axonal density. 

• Sclerosis in blood vessels. 

These findings suggest that MS is pathologically diffuse and heterogeneous. 

2.2 Neuroimaging and MS 

2.2.1 Magnetic Resonance Imaging (MRI) 

Proton eH) nuclear magnetic resonance (MR) originates from the interaction 

between proton nuclei (mainly from water) and an external magnetic field. Relaxation is 

described as the process by which spins retum to equilibrium after an initial 

perturbation (excitation). Conventional MR1 makes use of different Tl and T2 

relaxation times between different brain tissue types. In T2-weighted images, tissues 
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that have long T2 relaxation times (such as fluids) appear bright. In Tl-weighted 

images, tissues that have short Tl relaxation times (such as fat) present as bright signal. 

T2-weighted images are highly sensitive for the detection ofhyper-intense MS 

lesions as in Figure l(a). This makes them useful for diagnosing MS 14. Hypo-intense 

lesions on Tl-weighted MRI, as in Figure l(b) normally represent areas where there are 

severe demyelination and axonalloss 15. 

(a) (b) 

Figure 1: (a) Axial T2-weighted MRI and (b) Tl-weighted MRI. They presented the same brain 
location of a sigle MS patient. In (a) multiple T2 hyperintense MS lesions are visible. In (b) 
corresponding multiple Tl hypo-intese lesions. 

One limitation of T2-weighted MRI is that it lacks specificity with regard to the 

heterogeneous pathological substrates of individuallesions. Specifically, edema, 

inflammation, demye1ination, remyelination, gliosis, and axonalloss, alllead to a 

similar appearance ofhyper-intensity on T2-weighted images. 
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2.2.2 Magnetic Resonance spectroscopy (MRS) Imaging 

2.2.2.1 Chemical Shift 

Chemical compounds containing a particular nucleus can have slightly different 

resonance frequencies than those predicted for the nucleus alone due to the interactions 

of the negatively charged electrons that surround the nucleus. Electrons have spin 

properties similar to the protons and the neutrons in the nucleus of the atom. When 

placed in an externally applied magnetic field, electrons precess and generate a small 

magnetic field around the nucleus. These local magnetic fields created by the electrons 

can variably decrease the strength from the external field. As a result, the nucleus 

experiences a slightly altered magnetic field, and resonates at a slightly shifted 

frequency 16. This phenomenon is called chemical shift and is one of the important 

properties ofMR spectroscopy. Chemical shift determines the resonance frequency 

position of each peak on a MR spectrum, which, when expressed as parts per million 

(ppm) from a reference substance, is independent of the strength of the magnetic field 17 

applied. 

2.2.2.2 Long Echo MRS 

There are several important parameters for MRS sequence. Repetition time (TR) 

is the time between two consecutive radiofrequency (RF) pulses measured in 

milliseconds. Clinical MRS normally uses TR of 2000, which is long enough to get 

reasonable signal intensities. Echo time (TE) is the time from the application of an RF 

pulse to the measurement of the spectroscopy signal and is also in units of milliseconds. 
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Magnetic Resonance spectroscopy (MRS) at longecho times (TE >135) normally 

displays three major resonances as in Figure 2: 

• Choline-containingphospholipids (Cho) at 3.24 ppm 

• Creatine and phosphocreatine (Cr) at 3.02 ppm 

• N-acetyl groups, mainly N-acetyl-aspartate (NAA) at 2.02 ppm. 

~.---------------r-~----------------------~ 

NAA 
Cho 

Cr 

'-0 Ja l~ 3J1 32 lO %-6 z.. %.4 z..z Z.O 1.,. L6 1A 12 10 0,5) D5:I OC! 

CltlMttcal Stll" jppmî 

Figure 2: Long echo brain MRS Imaging 

NAA is a metabolite found primarily in neurons of mature brains 18,19,20. 

Changes ofNAA inside the brain can provide information about axonal injury or 

neuronal dysfunction. The precise role ofNAA is not c1ear. It has been implicated in 

several neural processes such as: regulation of neuronal protein synthesis 21, fattyacid 

synthesis 22,23,24 and metabolism ofneurotransmitters such as N-acetyl-aspartyl-

glutamate (NAAG) 25. 
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ln brains of MS patients, NAA reductions have been found in lesions 26, in 

normal- appearing white matter (NA WM) 27 and even in cortical gray matter (GM) 28. 

NAA in NA WM can be abnormally low in the early stages of MS, even before 

significant clinical disability is evident 29 and before clinically definite MS has been 

established 30. NAA levels are significantly correlated with patients' clinical disability 

31, selective motor impairment 32 and cognitive dysfunction 33. 

Choline-containingphospholipid (Cho) is mainly in the cell membranes and can 

be considered an index of phospholipids metabolism. Increased Cho probably suggests 

increased membrane synthesis or breakdown, and may also indicate increased number 

of cells. Cho has been shown to increase following inflammation and demyelination in 

lesions and NA WM 34,35. 

Creatine/phosphocreatine (Cr) is known to play an important role in energy 

metabolism and represent high-energy phosphates reserves that provide for homeostasis 

and energy needs. Cr levels have been shown to be the highest in astrocytes and oligo­

dendrocytes 36. In normal and sorne pathological conditions, Cr is homogeneously 

distributed inside brain and has been considered stable enough to be used as an intrinsic 

reference for reporting relative concentrations of other metabolites in the brain. 

2.2.2.3 Short echo MRS 

Using a short echo time (TE< 30 ms) allows observation of additional 

metabolites with short T2 relaxation times, such as myoinositol, glutamate, glutamine 

and glycine. Because these metabolites have very low concentrations in the human 

brains, quantification ofthem could be very complex. In our clinical studies, we mainly 

use long echo MRS. 
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2.2.2.4 Single-voxel and multi-voxel MRS 

ln the clinical application ofMR spectroscopy, localization techniques allow the 

definition of small tissue volumes of interest (VOl), using anatomical MR images as 

reference. Localization techniques may be characterized as single-volume (or vox el) or 

multi-voxel. There are three main single vox el techniques, but only two ofthem are 

commonly employed clinically. One is stimulated echo acquisition mode (STEAM) and 

the other is point resolved spectroscopy (PRESS) 67 technique. Both techniques use 

frequency selective radiofrequency pulses to excite three orthogonal planes. A spectrum 

can then be obtained from a small volume of tissue defined by the intersection of three 

orthogonal planes. 

Both STEAM and PRESS are highly effective volume localization schemes, but 

there are sorne major differences between them. The STEAM technique is better for 

measurements involving short echo times (TE < 30 ms), but the STEAM sequence loses 

signal intensity by a factor of two and is highly susceptible to motion and diffusion 

processes. PRESS is the choice of volume localization method for long echo times (TE 

> 135 ms). This sequence also has better signal intensity and is less sensitive to patient 

motion effects. 

Multi-voxel spectroscopy can be one-dimensional (ID), two-dimensional (2D), 

or three dimensional (3D), and is usually performed using chemical shift imaging (CSI). 

CSI is a technique for collecting MR spectra from multiple contiguous voxels covering 

a large region of interest. Data is obtained as spectral maps or metabolite images, and 

they can be superimposed on conventional MR images to compare changes in spectra 
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from adjacent voxels, or to obtain the distributional pattern of a particular metabolite 

within the interested tissue segment. 

The dimensionality of CSI techniques refers to the number of spatial dimensions 

that are phase encoded in the measurement sequence. ID CSI, 2D CSI and 3D CSI 

generate spectra localized to slices, columns and voxels respectively. Normally ID CSI 

and 2D CSI are combined with other localization methods to define the dimensions that 

are not phased encoded. For example, in 2D CSI, a slice of tissue is defined using a 

slice selective excitation in one dimension and using phase encoded gradients in the 

other two dimensions. 

Single-voxel spectroscopy with automated processing is widely available for 

clinical use because it is simple and easy to implement, and produces a single spectrum 

that is immediately accessible for interpretation. 

In comparison, multi-voxel spectroscopy allows acquisition of data from many 

locations at the same time and improves detection ofregional variability. Normally the 

voxel size of CSI is much smaller compared to the volume of single-vox el spectra. A 

smaller voxel volume of CSI leads to lower signal intensity. Furthermore the clinical 

scan time limits the number of averages of signaIs available for large-matrix CS!. So 

multi-voxel MRS signaIs generally have lower signal-to-noise ratio (SNR). In order to 

reach reasonable SNR, the resolutions ofCSI images are normally lower (10 x 10 x 10 

mm3
) as compared to that of conventional MRI images, which can reach to a resolution 

of 1 x 1 x 1 mm3
• 
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2.2.2.5 Quantification of MRS 

In most studies of MS using MRS, voxels are arbitrarily selected from specific 

region ofinterest (ROI). This may be subject to selection bias and partial volume effect. 

Partial volume effect occurs because each MRS voxel may contain different tissue 

types. 

Absolute quantification of metabolites in MRS can be difficult. A more practical 

and easier way to assess variations in metabolite levels is by ca1culating peak area 

ratios. Metabolite ratios, like those ca1culated in this study using Cr as a reference, are 

favored for clinical MRS because they are simple to obtain, are not dependent on 

changes in coilloading among different individuals, and are relatively unaffected by 

relaxation-times changes. AIso, ratios are not susceptible to cerebral spinal fluid (CSF) 

partial volume effect. The disadvantage ofusing metabolic ratios is that they are 

sensitive to changes in the concentration ofboth metabolites in the ratios. Using Cr as a 

reference in our study assumes that its concentration is stable. This is more or less the 

case 85. However interpretation ofNAA and other metabolites relative to Cr should be 

made with care. 
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2.3 Overview of Brain Imaging Processing 

2.3.1 Image Registration 

Registration is the determination of a transformation between the coordinates in 

one space and those in another, such that points in the two spaces that correspond to the 

same anatomic point are mapped to each other. 

There are four basic types: a) Intra-subject, intra-modality: alignment of studies 

in the same subject acquired in the same modality. b) Intra-subject, inter-modality: 

alignment of studies in the same subject across different modalities. This is relevant to 

the registration of a functional (functional MRI) study with an anatomical (MRI) study. 

c) Inter-subject, intra-modality: alignment of studies of different subjects in the same 

modality. This is commonly needed if group comparison is of interest such as using 

statistical parametric mapping (SPM). d) Inter-subject, inter-modality: alignment of 

studies of different subjects across different modalities. It can be useful, for example, 

for registration of a positron emission tomography (PET) study to an MRI template, 

although more usually it is achieved via intra-modality registration as an intermediate 

step. 

Most registration algorithms require one or several quantitative similarity 

measures of the alignment between the two images to be matched (usually defined in 

the overlapping volume). The similarity measures can be categorized according to the 

type of information used to construct the measures, as follows: 

a) Landmark measures: The similarity measure would typically represent the 

average distance between the corresponding landmarks. The subclasses of 

landmarks are: extrinsic 37,38,39, anatomical 40,41 and geometricallandmarks 42. 
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b) Surface or edge measures: They require a preliminary processing step to extract 

surfaces or edges in both images. The similarity measure quantifies an average 

"distance" between the corresponding surfaces. There is a wide range of 

techniques such as "crest lines" 43,44,45 and points on the surface 46. 

c) Voxel intensity measures: where subclasses are c.l) Principal axes: By 

determining the center ofmass (counts) and orientation (i.e. principal axes) of 

the images to be registered, a direct transformation can be calculated. 

Registration is then achieved by simply aligning both the centers ofmass and 

orientation 47,48. c.2) Cross-correlation can be applied for both intra- and inter­

modality registration problems 49,50. c.3) Use of the voxel intensity histogram: 

These include joint entropy 51, mutual information 52,53,54 and the correlation 

ratio 55,56. 

There are two types of transformations for registrations. The most common one 

is the rigid body transformation, which assumes that the distances between any two 

points in the body are preserved. It requires six parameters: three rotations and three 

translations. The other is non-rigid registration, which can be used to register brain 

images from different subjects or to monitor the change of the brain over time. 

During registration, 3-dimentional interpolations are required to estimate the 

values of the transformed image. The two simplest methods are nearest-neighbor and 

linear interpolation. Nearest-neighbor interpolation takes the value from single closest 

neighboring voxels. The linear interpolation takes the weighted values from four nearest 

voxels. The weighed values are reverse to the Euclidean distances from the resampled 

position to these discrete neighboring samples. More complicated interpolation methods 
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are the higher order interpolations where their weights are based on higher order 

polynomial functions of distances. These include quadratic interpolation 57, cubic B­

spline interpolation 58, Lagrange Interpolation and Gaussian Interpolation 59. 

2.3.2 Brain MRI Segmentation and Classification 

Segmentation is the process of separating the images into groups ofvoxels based 

on homogenous features. There are many features that can be used, such as signal 

intensity, spatial location, edge, context. Classification is the process of labeling each 

MRI vox el to different tissue types such as gray matter, white matter, cerebral-spinal 

fluid (CSF) or MS lesions. 

For automatic and semi-automatic MS lesion identification processes, most of 

the segmentation algorithms are mainly based on multi-spectral signal intensities and in 

combination of other features. These are: 

• Statistically modeling 60: parametrically models the multi-modality intensities of 

the different tissues types, while sorne treat MS les ion as outlier for the models. 

• Fuzzy connectedness 61,62: assigns fuzzy affinities to the target object during 

classification. The affinity between the two given voxels is defined as a 

combined weighted function of the coordinate space adjacency, the intensity 

space adjacency, and the intensity gradient space adjacency to the corresponding 

target object features. 

• Artificial neural networks (ANN) 63: non-parametric analysis based on a system 

of parallel and connected nodes that process information to make decisions 

indicated at output nodes, which mimics the real human neural systems. 
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• K-Nearest Neighbor (KNN) classification 64: a technique that is used for the 

identification of clusters that occur naturally in sorne form of feature space. 

• Bayesian classifier 65: uses Bayes' formula to calculate probability that a given 

voxel belongs to a certain tissue class given its intensity. 

2.4 Mu/fivariafe Sfafisfical Mode/s 

2.4.1 Normal Distribution 

The normal distribution is the most used statistical distribution because 

normality arises naturally in many physical, biological, and social measurement 

situations and normality is important in statistical inference. 

Let x be a scalar random variable. The general formula for the probability 

density function ofthe normal distribution is: 

where u is the mean of the normal distribution and cl is the variance, which describes 

the degree of variation of the distribution around mean. 

2.4.2 Multivariate Normal (MVN) Distribution 

Let X = (Xl, X2 ... Xn) , be a random vector composed of random variables Xi, 

where i = 1, 2, ... , n. We denote the n-dimensionaljoint-normal distribution with mean 

vector ).1 and covariance matrix l: as Nn ().1, l:). If l: is positive definite, the probability 

density function of the MVN is: 
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Given any pair of components Xi and Xj. we denote their covariance as cov (Xi 

,xj). The covariance is defined by the expectation: 

where Ili and Ilj are the means of Xi and Xj. By definition, covariance is symmetric, with 

COV (Xi ,xj) = cov (Xj ,Xi). AIso, the covariance of any component with itself is the 

variance of the component: 

So the detailed structure of the covariance of matrix of random vector X is: 

cov(XpX1) cov(XpXz} 

L = coV(X2,X1) coV(X2,X2 ) 

cov(X1,Xn ) 

cov(X2 ,Xn ) 

Analogous to variance, if of scalar random variable x, which is a measure of variation 

relative to the mean ofx in I-D real space, the covariance matrix, ~ measures variation 

of the random vector X relative to the mean vector, Il in a real space of dimension n. 

2.4.3 Multivariate Mixed Effect Model 

Mixed effect linear models incorporate both fixed effects and random effects. 

Fixed effects are associated with the groups as a whole or with levels of experimental 

factors, which are normally what we are interested in. Random effects describe the 

variation of individual within his own group. Mixed effect models are suitable to 
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characterize the common structure of repeated measures, growth curves or seriaI 

measurement data. 

Let Yi be a li x 1 vector containing the responses for subject i, where i = 1, .. . ,n, 

and li is the number ofrepeated or seriaI measurements for subject i. Yi are assumed to 

follow the model 

where Xi is a li x p known design matrix, fJ is a p x 1 vector of unknown regression 

parameters (fixed effect) and the Ei is independently distributed as Nn (0, ~i). And the 

elements of each covariance matrix ~i, for i = 1, .. ,n, are known functions of q unknown 

covariance parameters contained in the vector fi. 

The ability to model those ~i allows one to examine several alternative 

structures for ~i, each structure having important subject matter interpretations. Even if 

the interest is mainly in the regression parameter fJ, efficiency oftheir estimates may be 

improved considerably by modeling them parsimoniously. This is especially likely 

when sample sizes are small and the data are unbalanced. 

The simplest form for ~i is one that arise from independent, constant variance 

observations: 

Li = (72( 

where Ii is the a li x li identity matrix. This is just the ordinary linear regression model. 

One may generalize this by allowing cr to vary from group to group, or by allowing the 

variance to vary from observation to observation within subject. The latter still assumes 

that each ~i is diagonal. 
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Other important special c1ass is the random-coefficients model 66: 

, 
Li = Z/pZi + a 2 

Ii' 

This model arises by assuming: 

where Zj is a known ti X k matrix, bi and !-li are independent random vectors with hi ~ N 

(0, tjJ) and,ui ~ N(O, a2Ii). b;is the parameters for the random effect, which describes the 

variation of each individual within group. 

Another important c1ass is called incomplete data model, which is obtained by 

assuming each ~i is actually a sub-matrix of a T x T matrix ~ = ~( 0). This model 

arises in the situations where a fixed number T of measurements, corresponding to 

different times of experimental conditions, are to be collected on each of n subjects, but 

not aIl of the subjects' responses are observed. This model allows us to directly deal 

with missing data. 
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3. Data Acquisition and Processing 

3.1 MR and MRS examina fion 

Conventional proton MRI and MRS examinations of the brain were obtained in 

a single session for each examination using a Philips Gyroscan S 15 operating at 1.5T 

(Philips Medical Systems, Best, The Netherlands). A sagittal survey image was used to 

identify the anterior commissure (AC) and posterior commissure (PC). Multi-slice 

images were obtained in coronal and transverse planes, perpendicular and parallel to the 

AC-PC line, respectively (TR = 2075, TEl = 30.6, TE2 = 90, slice thickness 3 mm). 

These images were used to select an intracranial volume of interest (VOl) for 

spectroscopy. We used a VOl angled parallel to the AC and PC line measuring 

approximately 90 mm anteroposterior x 20 mm craniocaudal x 90 mm left-right and 

offset craniocaudally so that it was centered on the corpus callosum. The VOl was kept 

constant in size and position after the first examination for each subject. 

Proton spectroscopy images were acquired using a 900 
- 1800 

- 1800 PRESS 

sequence for volume selection 67 (TR = 2000, TE = 272). They are long echo CS!. 

Magnetic field homogeneity was optimized to a line-width of about 5 Hz over the VOl 

using the proton signal from water. Water suppression was achieved by a chemical shift 

selective saturation (CHESS) pulse followed by a dephasing gradient pulse 68. 

MRSs were generated by two-dimensional phase encoding (250 mm X 250 mm 

field ofview, 32 x 32 phase encoding steps and one signal average per step). After a 

water-suppressed acquisition was completed, another MRS was acquired without water 
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suppression using TR 2000, TE 272, field of view of 250 mm X 250 mm and 16 X 16 

phase encoding steps. 

3.2 MRS Post-processing 

Post-processing of the raw spectrum data was done on a SUN/SP ARC system, 

using Xunspecl software (Philips Medical System, Best, The Netherlands). The non­

water-suppressed MRS were interpolated to 32 X 32. A mi Id Gaussian k-space filter 

and an inverse two-dimensional Fourier transformation was then applied to both the 

water suppressed and unsuppressed MRS. Artifacts present in the time-domain water­

suppressed signal due to magnetic field inhomogeneities were corrected by dividing the 

water-suppressed MRS signal by the non-water-suppressed signal 69. The residual water 

signal was then fitted and removed from the water-suppressed data using the Hankel 

singular-value decomposition (HSVD) procedure 70. To enhance the resolution of the 

spectral peaks, a Lorentzian-to-Gaussian transformation was applied prior to Fourier 

transformation to the spectral domain. The result was 1024 voxels (32 X 32) each 

containing data ready for quantification and subsequent generation of the MRS. The 

nominal vox el size in plane was about 8 X 8 X 22 mm3
, giving a resolution of about 12 

X 12 X 22 mm3 after k-space filtering. 

Peaks for NAA and Cr were detected using locally developed software. The 

resonance intensity was determined from the area of each peak that was bounded below 

by a spline-corrected baseline. Chemical shifts were ca1culated relative to the NAA 

resonance at 2.02 ppm. 

After quantification, one MRS expert (Dr. Sridar Narayanan) would review the 

results. The MRS intensities with poor qualities (poor baseline shape, bad phase 
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correction, poor signal-to-noise ratio) were rejected and aH the others were treated as 

valid intensities. 

3.3 MRI Post-processing 

Multiple sclerosis lesion classification was performed mainly by Simon Francis 

and it is composed of two processes. First, the data was mn through an automatic 

Bayesian classifier, which offered the ability to toggle between the proton density, Tl 

and T2-weighted images (to facilitate discrimination between grey matter and CSF) 71. 

Next, readers reviewed the resulting lesion voxels and corrected errors. 

The automatic Bayesian classifier is composed of three stages: 

1) Pre-classification processing: includes intensity bias-field corrections, 

aligning (registering) the image modalities, isolating the brain parenchyma 

and ensuring that the images have a standardized intensity range. 

2) Classification: First using a k-means classifier in conjunction with domain­

specific heuristic and connectivity mIes to estimate the mean and covariance 

of multiple sub-classes per tissue type. Then the probabilities for each tissue 

class are calculated using Bayes theorem. The class with the highest 

probability, the maximum a posteriori (MAP), is selected for each voxel. 

3) Post-classification processing: analyzes voxel connectivity to identify 

misclassified tissue utilizing a set ofheuristic mIes which mimics the 

'common sense' judgment of a trained human expert MRI reader. 

After tissue type classification, the MS lesion volumes were calculated by multiplying 

the total number of identified lesion voxels and the unit voxel volume. 
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We also extracted the distance to MS lesion by calculating the chamfer distance 

to the lesion mask using software called 'mincchamfer', which was one ofthe 

applications from MNI Automated Linear Registration Package Version O.98k 

developed by developed by Dr. Louis Collins 72. 

3.4 Standard Spa ce 

Both MRI and MRS were acquired from a three-dimensional volume whose size 

and orientation relative to the scanner isocenter were known. Normally MRS data are 

usually presented in two-dimensional format. We oriented the spectroscopy image into 

three-dimension according to its position parameters, and resampled it to the same 

spatial resolution as corresponding MRI using nearest-neighbor interpolation. This 

placed the resulting 3-D spectroscopy image in 'native space' (a coordinate frame 

relative to the scanner isocenter). Thus MRI and MRS were in register with each other 

as in Figure 3. 

Figure 3: MRI and MRS mapping 

Because there are spatial variations in the MRS between subj ects due to 

anatomical variations, signaIs from different brain locations are not directly comparable. 
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We needed to register the individual MRl volume to an average three-dimensional MRl 

brain volume in a standard anatomical space (MNIIICBM 152) using a transformation 

consisting oflinear translation, rotation and scaling 73,74. With the same transformation, 

we also transformed the MRS box and MRllesion volumes to standard space. After 

registration ofMRl to the average brain map in standard space, we significantly reduced 

the differences between individual brains in terms of orientation, size and shape. Thus 

all MRS boxes, MS lesions volumes and MRl anatomical data from different 

individuals at different time points were anatomically matched with each other so that 

the voxe1 to voxel comparison could be possible. 

Then we redefined a new VOl in standard space that covered most of the 

individual MRS boxes. The voxel size ofthis new VOl was close to that in the original 

MRS (8 x 8 x 22 mm3
). MRS data were resampled within the new VOl by averaging 

the valid resonance intensities within each new voxel. So signaIs from voxels at the 

same resampled location in different individual images could be matched with each 

other. Now the resonance intensity from each vox el in the new VOl was associated with 

the location ofthat voxe1 in standard space and the percentage of MS lesion in that 

voxel. Appropriate statistical methods could then be applied. 
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4. Statistical Modeling 

Our goal is to quantify the relationships between metabolite concentrations (e.g. 

NAAlCr) in brain and other indepenâent variables including clinical diagnostic 

subgroup, duration of disease and hyper-intensity lesion on T2-weighted MRI. In 

addition, we want to monitor changes of metabolites during a longitudinal study of 2 

years. 

4.1 Previous Methods for MRS 

Multi-voxel MRS has an advantage over localized single vox el MRS in that it 

presents spatial information on biochemical pathological changes in brain. This is 

especially true for diseases like MS which have multiple pathological foci. A common 

approach to analyze MRS is to manually choose several voxels at different locations in 

each spectroscopie image and compare the difference in signal intensities either 

between clinical subgroups or between normal and abnormal brain tissues. Working in 

this way, valuable information from unselected voxels is ignored, diminishing the 

advantage offered by multi-voxel MRS. Another common method is to average aIl the 

valid MRS intensities to get the general indication of the metabolite level within the 

brain. 

4.2 Statistical Models for the Cross-sectional Study 

We propose to use aIl the information from MRS and treat it with the 

multivariate mixed effect mode!. The model can incorporate the spatial correlations in 
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the MRS and the variations between individuals. And the model enables us to assess the 

relationships between resonance intensities and other independent clinical or MRI 

variables. The model is 

J:v = Xivfi + Yi + Ei(V) , 

where i=1, 2, ... , N, indicates subjects and v = 1, 2, ... , V denotes the voxels in the 

spectroscopic image in standard space. X;v are1 x p vectors containing independent 

variables for each individual and fi is p x 1 vector defines the fixed effect parameters. Yi 

indicates the random effect for each individual , which is independent and identicaUy 

distributed normal variable (Yi ~ N(O, 't
2
). Yi describe the deviation ofindividuallevel of 

MRS intensities from the corresponding group level. Elv) indicates spatiaUy correlated 

residual which incorporates the intra-subject spatial correlation in MRS. SpecificaUy, 

E[Elv)] = ° and the correlation between Elv) and Ei(U), Cor(&j(v), &jeu)), is a monotonic 

decreasing function of the distance as shown below. 

Let Yi = [YiJ, Yi2, "', YiV]', for v = 1, 2, ... , Vto indicates the resonance intensities 

(or ratio) for aU the voxels within subject i. Yi is then a multivariate normal (MNV) 

variable with structured covariance, ~. 

L =r2J +R 

where J is a Vby V matrix with aU elements equal to one, ! measures the variation 

between different subjects, i.e. the random effect and R is the matrix describes the 

spatial correlations between voxels, where each element Ri} is the covariance between 

voxel i and}, Cov(Vj,Vj). 
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4.2.1 Spatial Correlation 

The causes for the spatial correlations between voxels in MRS are two-fold. 

First, the distributions of metabolites are continuous and smooth within the brains. 

Second, the interpolation function of the CSI spatial sampling extends outside the 

nominal voxel as in Figure 4. The resulting resonance intensity in one vox el partially 

contains information from surrounding areas. 

0.2 

0.1 : 

o 
.. 1 Omm o Hinm 

Figure 4: 2-D view of interpolation function of CSI sampling 

One way to measure the spatial correlations is semi-variogram. The idea was 

borrowed from geostatistics. r(h), the semi-variogram at lag h is defined as: 

where h is the lag, the distance between locations Si and Sj; Yi and Yj are the values of 

variable Y at location Sj and Sj respectively; N(h) is the number ofpairs of observed data 

points separated by a lag of h. 

Here we demonstrate one 1-dimensional semi-variogram by a simulation of a 

sequence of 1,000 samples from one uniform distributed random variable. Because each 
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sample was drawn independently, the correlation between any two samples, Yi and Yj 

would be the same. So the semi-variogram, '}(h) had the same value around 820 and was 

independent of the lag, h as in Figure 5(a) and Figure 5(b). The only trend along 

increasing lag, h was the increasing variation ofsampled '}(h). This was because with 

larger lag, the number of pairs of observed data, N(h) was smaller. 
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Figure 5: Simulation of semi-variogram (a) r(h) of raw sample; (b) r(h) of raw sample - first 50 
lags; (c) r(h) ofsmoothed sample (d) r(h) of smoothed sample - first 50 lags 

Now we introduced artificial correlations between the raw samples by applying one 15-

point moving average sequentially. The average J{h) decreased to around 70 as in 

Figure 5( c). This was because the moving-average sequence decreased the variance of 

the raw samples. We also notice that for the first 15 lag values (h=l, 2, ... , 15), J{h) 

increased almost linearly as shown in Figure 5(d) from 0 to 70. This indicated larger 

spatial correlations existed between samples with smaller lags. 
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The semi-variogram ofMRS (Figure 6) c1early shown that there were significant 

spatial correlations between adjacent voxels in our MRS data, especially for voxels 

within distance oftwo-voxel size. Here the lags were measured as 3-dimensional 

distances between the center of each voxels and were in unit of single MRS voxel size 

(10 mm). 
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Figure 6: Sampled semi-variogram of MRS 

Let Yi = [Yil, Yi2, "', yiV]/, for v = 1, 2, .", V to indicate the resonance intensities of 

voxel v within subject i. We modeled the structure covariance matrix, 1:: ofMNV Yi as 

where R is the matrix de fines the spatial correlations between voxels. Each element Rij 

of Ris the covariance between voxel i and voxelj, COV(Vi,Vj). One popular way to 

describe the spatial correlations is by a first-order auto-aggressive (AR1) model 75: 
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where dis the variance ofMRS voxels, pis the correlation parameter and lIi:i11 is the 

distance between voxel i and}. Here we assume that the variances, d, ofvoxels at 

different locations are the same. 

Furthermore, if the variances ofvoxels differ considerably, we maynot assume 

d are the same for voxels at different locations. In that case, we proposed a first-order 

ante-dependence (AD1) model 76 to describe the spatial correlation matrix R: 

where each voxel, Vi has its own variance a/, and p is the correlation parameter. 

4.2.2 Missing Data 

SignaIs from MRS normally have low signal-to-noise ratio (SNR), which makes 

the quantification ofintensities difficult. The resonance intensities from sorne of the 

MRS voxels could be invalid. 

Utilizing the idea of incomplete data model, our mixed effect mode} could deal 

with missing data naturally 77. We could exc1ude the missing voxels from the regression 

models by omitting the corresponding row and column from both the design matrix and 

the structured covariance matrix for that subject. The remaining sub-matrices can still 

contribute to the parameter estimation and inference. 
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4.3 Model fitting 

One of the most popular model fitting methods is Maximum Likelihood (ML). 

Let Yi = [Yil. Yil . .... YiVl', for v = 1, 2, ... , V to indicate the resonance intensities ofvoxel v 

within subject i. We treated Yi as a multivariate normal (MNV) variable with structured 

covariance, E= 1 J + R. The mixed effect model for resonance intensities, Yi for 

subject i is: 

Yi = Xi fJ; + Yi + E i, 

where Xi is an Vi X P design matrix for ith subject, Pi is the fixed effect parameter pX 1 

vector, Yi is the Vi x 1 random effect vector and E i is Vi X 1 residual vector. We could 

then express the marginal probability density of Yi as follows: 

f( ) 1 [ 1 ( fJ l ,,-1 fJ)] Y = ex -- y-x. L.... y-x. 
1 (2ffyi /2 1 Li 11/ 2 P 2 1 1) 1 ( 1 1 

where i = 1,2, ... n, indicates the subject, ni is the number ofvalid MRS voxel for ith 

subject, ~i is the sub-matrix of~, exc1uding the rows and columns corresponding to 

missing data. 

Because the observations between different subjects are independent, we could 

obtain the joint likelihood function of all MRS observations by multiplying all the 

individual marginal probability density,j(Yi) and the log-likelihood is as follows: 

Here 1 is the joint log-likelihood function; N is the total number of observations (valid 

voxels) ofall subjects under study. We obtained the maximum-likelihood estimate (mIe) 

ofvector parameter Ousing the fisher-scoring algorithm. The parameter vector, 0 
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contains both the fixed effect estimate vector, p, and the covariance matrix parameters 

estimate vector, s. 

4.3.1 Fisher Scoring 

The first derivative of the log-likelihood function is called Fisher's score 

function, and is denoted by: 

(B) = al ( B; Y) 
Il aB' 

where 1 is the joint log-likelihood function, Y is the observed dependent variable and B 

is the estimate vector. The Fisher's score is a vector offirst partial derivatives, one for 

each element of (J. Assuming the log-likelihood function is concave, we can find the mIe 

by setting the score to zero by solving the equations: 

J.1(9) = o. 

The Fisher's score is a random vector. When we have the true parameter(J, the score has 

mean zeros 

E[J.1(9)] = 0, 

and covariance matrix, which is called the information matrix: 

Normally the information matrix can also be obtained as negative the expected value of 

the second derivatives of the log-likelihood: 

During the iterative procedures, we can expand the score function evaluated at the mIe 

Ô around a trial value Bo using a first-order Taylor series: 
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Let H denote the Hessian matrix, which contains the second derivatives of the log-

likelihood function: 

H(O) = a
2
/(0) = af.1(O) . 

aeao' ao 

Setting Jl( ê) to zero and solving ê for the first-order approximation, we get 

The algorithm for computing the mIe is called Newton-Raphson algorithm. In Fisher 

scoring algorithm, we replace the negative Hessian by its expected value, the 

information matrix. So that the improved estimate by each score step is given as: 

The Fisher scoring algorithm requires two conditions to be met at each iteration. 

First, each sub-covariance matrix, Li should be positive definite. Second, the log-

likelihood must increase at each step. When the size of covariance matrix is too large, 

or the number of estimated parameters is too large, sometimes the first condition may 

fail and cause the algorithm fail to converge. 

4.4 Inference 

After obtaining the estimated parameters using the Fisher Scoring algorithm, we 

could test if the parameters are statisticallY significant using the wald test. We may also 

want to know if one simple regression model is efficient as compared to more complex 

regression models. We could test this kind ofhypotheses using the likelihood-ratio test. 
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4.4.1 Wald Test 

Normally in large samples, the mIe ê has approximately a multivariate normal 

distribution: 

Under the hypothesis: 

and for a fixed value Ba, the Wald statistic is defined as: 

which has approximately in large samples a chi-squared distribution with p degrees of 

freedom. p equals to the number of elements in parameter vector B. In practice, we often 

replace the covariance matrix with the inverse of the expected information matrix 

evaluated at the mIe, ê, i.e. var( ê) = r I (ê) , which can be obtained during the process 

of Fisher scoring algorithm. This facilitates estimation of the confidence intervals or p-

values of coefficient estimates. 

In particular if fJ is a single parameter and is the ith element of the parameter 

vector 8, under the hypothesis 

we will have 

~ ~ 1/2 
(fJ - fJo){I(B)ii} ~ N(O,l), 

where fi is mIe offJ , I(iJ);; is the i th element ofthe diagonal of the expected 

information matrix I(iJ) and N(O,l) is the standard normal distribution. 
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4.4.2 Likelihood Ratio Test 

Suppose we have two models, Ml and M2, and Ml is a subset ofM2, i.e. 

Ml C M 2 • We may obtain the simpler model Ml by setting sorne of the parameters in 

M2 to specific constants. 

The maximum likelihood under the smaller model Ml is 

where ê 1 is the mIe of B under model Ml. 

The maximum likelihood under the larger model M2 is 

maxL(B,y) = L(B2,y), 
(JEM 2 

where ê 2 is the mIe of B under model M2. The ratio of these two likelihoods, 

is between 0 and 1. 

The twice the negative log of the likelihood ratio has approximately in large 

samples a chi-squared distribution. That is 

where the degree offreedom, dfis the difference of the number ofparameters in these 

two models. 
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4.5 Statistical Models Extended for Longitudinal Studies 

4.5.1 Longitudinal Statistical Models 

Let Yi = [Yill. Yi2l • .... YWl. Yi12. Ym . .... YWT ]', for v = 1, 2, ... , V and t = 1,2, ... ,Tto 

indicate the resonance intensities for voxel v at exam time t within subject i. We can 

treat Yi as a multivariate normal (MNV) variable with structured covariance, I= 1 J + 

R. The mixed effect model for resonance intensities, Yi for subject i will be: 

Yi = Xi Pi + Yi + E i, 

where Xi is a Vi X P design matrix for ith subj ect for all the exam times, Pi is p x 1 fixed 

effect parameter vector, Yi is Vi X 1 random effect vector and E i is Vi X 1 residual 

vector. We can then express the marginal probability density of Yi as follows: 

f(Y) = (21ZYi/ 21 1 Li 11/2 exp [ - ~ (r; - Xi /3)/ L~I (r; - Xi /3)] 

where i = 1,2, ... n, indicates the subject, Vi is the number ofvalid MRS voxel for ith 

subject, Li is the sub-matrix of L, exc1uding the rows and columns corresponding to 

missing data. 

4.5.2 Time Correlation 

For the longitudinal study, we need to take care not only ofthe intra-subject 

spatial correlations, but also of the intra-subject time correlations. We could still use the 

semi-variogram, '){h) to explore the correlation ifthere were significant intra-subject 

time relationships between voxels at the same location. Here h is the time lag between 

examinations. 
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Figure 7: Time correlation over examination time 

Based on the semi-variogram over examination time in Figure 7, there were no 

significant time correlations over time. We could now define the structured covariance 

matrix for the longitudinal studyas: 

l:\ong = 1'2 J + G, 

where J is a V x T by V x T matrix with all elements equal to one, -1 measures the 

variation between different subjects, i.e. the random effect. Gis the matrix describes 

both the possible time and spatial correlations between the voxels. Each element Gij of 

G denotes the covariance between voxel i and}. Cov(v;,Vj) is defined as: 

and vj within the same scan 

where cl denotes the variances ofMRS voxels, pis the correlation parameter and Ili:i11 

is the distance between voxel i and voxel}. Because there were no apparent time 

correlations, all the voxels from different exams were treated as being independent. 
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Here we developed a technique to analyze longitudinal MRS data. This method 

could deal with the spatial and time correlations within data and could naturally handle 

missing data. We applied this technique in our longitudinal study as shown in the next 

chapter. In our longitudinal study, both the model fitting algorithm and the inference 

tests were similar to those used in the cross-sectional study. 
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5. Experimental Results 

5. 1 Cross-sectional Study 

5.1.1 Study Subjects 

We chose 9 nonnal control subjects and 54 c1inically definite MS patients. 

Thirty-seven of the patients were in the RR phase and seventeen were in the SP phase. 

The subjects are listed in Table 1. 

Groups Number ~DSSa DURATION ~GE ~veraged NAA/Cr 
(YEARS)b (YEARS) ~ver Scan C 

CONTROL 9 0 Not 34.5 ±9.14 3.1 ± 0.25 
Applicable 

RRMS 37 2.4±1.28 9.9 ±7.1 30.8 ± 8.5 2.8 ± 0.23 

SPMS 17 6.4 ±1.59 16.2 ± 8.2 46.5 ± 9.3 2.63 ± 0.22 

Table 1: Cross-sectional Study Subjects 

a EDSS is Kurtzke expanded disability status scale 79, a clinical rating scale ranging from 0 (normal 
neurological examination) to 10 (death due to MS). 
b DURATION is the number ofyears after clinica11y diagnosed as MS. 

C Averaged NANCr over scan: the average value ofNANCr ofa11 the valid voxels for each subject. 

5.1.2 Structured Covariance Matrices 

We chose a regression model with no independent variables 

NAA / Cr = Pal + P02 + ... + Pov 

to estimate the covariance matrix. We used the metabolite ratio, NAA/Cr to represent 

the possible NAA concentration in the brains. fJov for v=1,2, ... , V denoted the interceps 

at each MRS location. This would be applied to aIl the regression models in the 

experiments. 
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The sampled unstructured covariance matrix, :ESAMP as in Figure 8(a) showed 

that the variances of voxels at different locations (diagonal elements of :ESAMP) were not 

homogenous and there were significant spatial correlations hetween adjacent voxels (off 

diagonal peaks). 

(e) 

Figure 8: Covariance Matrices. (a) Sampled unstructured l:SAMP; (b) First-order Auto-aggressive 
modeled l:ARI; (C) First-order Ante-dependent modeled l:ADI' 

The first-order auto-aggressive modeled covariance matrix, '2:AR1 in Figure 8(h) 

assumed that the variances ofvoxels at different locations were similar. '2:AR1 required 

three parameters, 't2 for random effect, c/ for variance and p for spatial correlation. 

Compared to '2:ARJ, the first-order anti-dependent modeled covariance matrix, '2:AD1 in 

Figure 8(c) was closer to the sampled '2:SAMP, in the expense of35 extra parameters to he 
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estimated. LAD! needed 36 parameters to measure the variances at 36 different vox el 

locations in 6 x 6 MRS matrix. 

The comparison between LAR! and LAD! using likelihood ratio test was 

- 210gr = 210gL(ê ADI'Y) - 210gL(êARI'y)) = (594.6) -(-3020.5) = 3615.1, 

which had a chi-square distribution with a degree of freedom of 35. The p-value was 

smaller than 0.001. So LAD! was preferred. 

We also tested the two types of structured covariance matrices using a series of 

regression models: 

NAA / Cr = /lOI + /l02 + ... + /lov + /lI LESION and 

NAA / Cr = /lOI + /l02 + ... + /lov + /lI LESION
2 

, 

where the independent variable 'LESION' denoted the percentage oflesion volume 

within each resampled MRS voxel. This variable had a range from 0 to 1. 

In both LAR! and LAD! modeled covariance matrices, the estimates of spatial 

correlation parameter, p were both around 0.80, which were very significant. The results 

for the regression models were shown in Table 2 and Table 3. 

By the likelihood ratio tests, the regression models based on LAD! were still 

preferred. In addition, the standard errors of the estimated parameters in the regression 

models using LAD! were sm aller than those in the models using LAR!. This indicated that 

proper modeling of covariance matrices could improve inference of regression models. 

Regression models with LAR! -2*L /l1(LESION) (SE)a /l1(LESION 2 ) 
(SE) a 

NAA / Cr = /lOI + /lo2 + ... + /lov + /lI Lesion 3005.1 -0.167 (0.041) NAD 

NAA/Cr = /lOI + /l02 + ... + /lov + /lI Lesion 
2 3012.9 NAD -0.155 (0.050) 

Table 2: Regression result with ARt modeled covariance matrix 

• SE is standard error. b NA is not applicable. 
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Regression models with ~ARI -2*L /31(LESION) (SE)a /31(LESION2 ) (SE) a 

NAA / Cr = /301 + /302 + ... + /3ov + /3ILesion -594.6 -0.159 (0.034) NAD 

NAA/Cr = /301 + /302 + ... + /3ov + /31 Lesion 2 -587.3 NAD -0.162 (0.044) 

Table 3: Regression result with ADI modeled covariance matrix 

• SE is standard error. b NA is not applicable. 

The tradeoff in using the ~ADI based regression models were the CPU times. 

Generally it took more than 10 times longer for the algorithm to converge in the ~ADI 

based models as compared to the time used in the ~ARI based regression models. The 

other drawback in using ~ADI was that occasionally the Fisher Score algorithm failed to 

converge because too many parameters were required to be estimated, especially for the 

regression models in the longitudinal study. So the results shown in the following 

sections were all based on the regression models using ~ARI. 

5.1.3 NAAlCr vs. Lesion 

We checked the relationship between NAAlCr ratios and percentage of lesion 

volume within each resampled MRS voxel using a regression model 

NAA / Cr = /301 + /302 + ... + /3ov + /31 DIA G( RR) + /32DIA G( SP) + 
/33LESION x DIAG(RR) + /34LESION x DIAG(SP) 

In this cross-sectional study, 'DIAG' was a dummy variable to specify three types of 

study subjects: normal controls, RR MS patients and SP patients. Here we used the 

"treatment" coding to create dichotomous variables where each level of the categorical 

variable was contrasted to a specified reference level. In the case ofvariable 'DIAG', 

which had three levels, we specified normal controls as the reference level. We created 
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two dichotomous variables, one would contrast RR MS patients with the reference level 

(normal controls) and the other would contrasts SP MS patients with the reference level. 

The results are shown in Table 4. NAAICr ratios in normal appearing white 

matter (NA WM) ofRR patients decreased by 12.1 % and NAAICr ratios in NA WM of 

SP patients decreased by 14.9% as compared to those in white matter (WM) ofnormal 

controls. NAAICr ratios in the lesions of the MS patients were further decreased, 18.1 % 

(12.1 %+6%) for RR patients and 20.6% (14.9%+5.7%) for SP MS patients as compared 

to those in WM of normal brains. 

Variables Estimated 13 Standard Error Strength a P-value 
DIAG(RR) -0.38 0.095 -12.1% <0.001 
DIAG(SP) -0.47 0.097 -14.9% <0.001 
LESION X DIAG(RR) -0.19 0.049 -6.0% <0.001 
LESION X DIAG(SP) -0.18 0.045 -5.7% <0.001 

Table 4: Cross-sectional study, NAA/Cr vs. LESION 

a Strength is compared to NAA/Cr in WM of normal control, 3.148(0.4184) 

5.1.4 NAA/Cr vs. Oisease Ouration 

We studied the relationship between NAAICr ratios and disease duration using a 

regression model 

NAA / Cr = POl + P02 + ... + Pov + pIDURAT/ON X DIAG(RR) + P2DURAT/ON X DIAG(SP). 

The variable 'DURAT/ON' denoted the disease duration in units ofyears. 

Variables Estimated 13 Standard Error Strength a P-value 

DURATIONxDIAG (RR) -0.016 0.0052 -0.51% 0.002 

DURATIONxDIAG (SP) -0.011 0.0036 -0.35% 0.003 

Table 5: Cross-sectional study, NAA/Cr vs. DURATION 

a Strength is compared to NANCr in WM ofnormal control, 3.148(0.4184) 
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The results in Table 5 demonstrated that NANCr ratios in NA WM ofRR 

patients decreased about 0.51 % per year; while NANCr ratios in NA WM of SP patients 

decreased about 0.35% per year. They were statistically significant. 

We would like to know if MS lesions were the major contributors in the 

decrease ofNANCr ratios over the disease durations. We tested the hypothesis using a 

regression model 

NAA/Cr = /301 + /302 + ... + /3ov + /3ILESION(RR) + /32LESION(RR) + 
/33DURATION x DIAG(RR) + /34DURATION x DIAG(SP). 

The results in Table 6 showed that after controlling for MS lesions, NANCr 

ratios in NA WM ofRR MS patients decreased about 0.48% per year; while NANCr 

ratios in NA WM of SP MS patients decreases about 0.32% per year. The results 

indicated that MS lesions do not change much the effect of disease duration over 

decreased NANCr in NA WM. 

Variables Estimated J3 Standard Error Strength a 

LESION(RR) -0.179 0.0494 -5.69% 

LESION(SP) -0.186 0.0447 -5.91% 

DURATIONxDIAG (RR) -0.015 0.0050 -0.48% 

DURATIONxDIAG (SP) -0.010 0.0035 -0.32% 

Table 6: Cross-section al study, NAA/Cr vs. DURATION controlled for lesion 

a Strength is compared to NAA/Cr ofnormal control, 3.148(0.4184) 

5.1.5 NAAICr vs. EDSS 

P-value 

<0.001 

<0.001 

0.005 

0.002 

EDSS stands for Kurtzke expanded disability status scale 79, a clinical rating 

scale to evaluate the disability of MS patients. EDSS can have values from 0 to 10, the 

higher the EDSS value, the more severe the disability of MS patient is. The regression 

model to study the correlation between NANCr ratios and disability of MS patients is 
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NAA/Cr = Pal + P02 + ... + POV + pIEDSSxDIAG(RR) + P2EDSS x DIAG(SP) . 

The results in Table 7 showed that for RR and SP patients, NAAICr ratios 

decreased 3.24% and 1.68% respectively for each unit scale increase in EDSS. This 

indicated that MS patients, who suffered from more sever disabilities as measured by 

EDSS, normally had lower NAAICr ratios in their brains. 

Variables Estimated ~ Standard Error Strength a P-value 

EDSS X DIAG (RR) -0.102 0.024 -3.24% <0.001 

EDSS X DIAG (SP) -0.053 0.011 -1.68% <0.001 

Table 7: Cross-sectional study, NAA/Cr vs. EDSS 

a Strength is compared to NAAICr ofnormal control, 3.148(0.4184) 

5.1.6 NAA vs. Distance ta lesion 

We tested the idea if MS lesions would have impact on their neighboring 

NA WM using a regression model 

NAA/Cr = Pal + P02 + ... + Pov + PIDIAG(RR) + P2DIAG(SP) + 
P3DISTANCE X DIAG(RR) + P4DISTANCE X DIAG(SP), 

where the variable 'DISTANCE' denoted the distance from the center of the resampled 

MRS voxel to the edge of the c10sest T2-weighted MS lesion. 

Variables Estimated ~ Standard Error Strength a P-value 

DIAG(RR) -0.46 0.095 -14.6% <0.001 
DIAG(SP) -0.57 0.097 -18.1% <0.001 
DISTANCExDIAG (RR) 0.009 0.001 0.29% <0.001 

DISTANCExDIAG (SP) 0.015 0.000 0.48% <0.001 

Table 8: Cross-sectional study, NAA/Cr vs. Distance to lesion 

a Strength is compared to NAAICr of normal control, 3.148(0.4184) 

The results in Table 8 indicated that NAAICr ratios in NA WM ofRR MS 

patients would increase by 0.29% for each millimeter away from MS lesions; while 
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NANCr ratios in NA WM of SP MS patients would increase by 0.48% for every 

millimeter away from MS lesions. 

5.2 Longitudinal Study 

5.2.1 Study Subjects 

We selected thirty-seven clinical definite MS patients in the RR phase and 

seventeen MS patients in the SP phase. Each subject had four exams at 0,0.5, 1 and 2 

years of study. The subjects are listed in Table 9. 

Groups lNumber EDSS IDURATION AGE Averaged NAA/Cr 
(YEARS) (YEARS) Over Scan at time 0 

RRMS 37 2.4±1.28 9.9 ±7.l 30.8 ± 8.5 2.8 ± 0.23 
SPMS 17 6.4 ±1.59 16.2 ± 8.2 46.5 ± 9.3 2.63 ± 0.22 

Table 9: Longitudinal Study Subjects 

5.2.2 NAAlCr vs. Lesion 

We first checked the relationship between NANCr ratios and percentage of 

lesion partial volume within each resampled MRS voxel. The regression model used 

was 

NAA/ Cr = POl + Poz + ... + Pov + PIDIAG(SP) + pzLESION . 

In this longitudinal study 'DIAG' is a dummy variable to specify two types of study 

subjects, RR MS patients SP MS patients. This was different from the situation in the 

cross-sectional study where there were three types of subjects, including normal 

controls. We also utilized the "treatment" coding to create dichotomous variables. In 

45 



this case, we specified RR patients as the reference level. So we created only one 

dichotomous variable, which would contrast SP patients with RR patients. 

The results are shown in Table 10. NAAICr ratios in NA WM of SP MS patients 

were 6.4% less than those in NA WM ofRR patients. In addition, NAAICr ratios in 

lesions of MS patients were less than those in NA WM ofRR patients. These results 

were similar to those from the cross-sectional study. 

Variables Estimated 13 Standard Error Strength b P-value 
DIAG(SP) -0.18 0.064 -6.4% 0.028 
LESION -0.16 0.016 -5.7% 0.000 

Table 10: Longitudinal Study, NAA vs. Lesion 

b Strength is compared to NAAICr in NA WM of RR MS patients, 2.7969(0.4389) 

5.2.3 NAA/Cr vs. EDSS 

We studied the relationship between NAAICr ratios and clinical disability of MS 

patient using a regression model 

NAA / Cr = fJOI + fJ02 + ... + fJov + fJIEDSS + fJ2EDSS x DIA G(SP) . 

The results are shown in Table Il. NAAICr ratios in NA WM of RR MS 

decreased 0.076 for each unit increase in EDSS. The parameter for the interaction term 

(EDSS x DIAG) was not significant, which indicated that the correlations between 

NAAICr and EDSS were similar for both RR and SP MS patients. 

Variables Estimated (3 Standard Error Strength 0 P-value 
EDSS -0.076 0.016 -2.7% 0.0271 

EDSS x DIAG(SP) 0.003 0.013 NA 0.766 

Table 11: Longitudinal Study, NAA vs. EDSS 

b Strength is compared to NAAICr ofNAWM ofRR-phased MS patients, 2.7969(0.4389) 

t Statistically significant. 
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5.2.4 NAAICr changes over study time 

We evaluated the change ofNANCr ratios over study time by a regression 

model 

NAA / Cr = /301 + /3oz + ... + /3ov + /31 STUDYTIME + /3zSTUDYTIME x DIAG(SP) . 

The variable' STUD YTIME' denoted the study period in units of years. The 

results are shown in Table 12. We did not find significant voxel-wise changes of 

NANCr ratios over a study period of 2 years for both RR and SP patients. 

Variables Estimated Standard Strength \) P-value 

J3 Error 
STUDYTIME 0.0377 0.0259 NA 0.1455 
STUDYTIME x DIAG(SP) 0.0019 0.0456 NA 0.9669 

Table 12: Longitudinal Study, NAA changes over study time 

b Strength is compared to NANCr of NA WM ofRR-phased MS patients, 2.7969(0.4389) 

5.3 Copaxone Study 

Glatiramer acetate (Copaxone) is a random polypeptide that mimics the 

antigenic portion ofmyelin pro teins and showed efficiency in the treatment of MS in 

several clinical trials 80,81. The first purpose of this study was to see if the treatment of 

copaxone could have an effect on metabolites in brains of MS, measured as NANCr 

ratios. The second purpose was to compare our voxel-by-voxel regression method with 

the classical method which makes use of averaged MRS values. 

5.3.1 Study Subjects 

We chose 9 untreated MS patients as controls and 15 MS patients treated with 

copaxone. An are RR MS patients. Each patient had two exams over a study period of 
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one year. At baseline, there was no significant difference between the two groups in 

EDSS, DURATION and averaged NANCr. The subjects are listed in Table 13. 

Groups Number EDSS DURATION Averaged NAA/Cr 
(years) over scan 

Treated at baseline 9 2.70±1.74 8.l1±8.49 2.81 ± 0.33 

Treated at endpoint 9 2.33±1.88 9. 11±8.49 2.83±0.36 

Untreated at baseline 15 2.61±1.78 12.00±5.58 2.88 ± 0.21 

Untreated at endpoint 15 2.94±2.04 13.00±5.58 2.79±O.l8 

Table 13: Copaxone study subjects 

5.3.2 Change of NAAlCr over study time 

We examined the change ofNANCr ratios over a study period of 1 year by a 

regression model 

NAA/Cr = fJOt + fJ02 + ... + fJov + fJtSTUDYTIME+ fJ2STUDYTIMExTREAT. 

In this copaxone study, 'TREAT was a dummy variable to specify two types of 

subjects, treated and untreated MS patients. We used the "treatment" coding to create 

one dichotomous variable. We specified untreated MS patients as the reference level. So 

we created one dichotomous variable, which would contrast treated MS patients with 

untreated MS patients. And the variable 'STUDYTIME' denoted the study period in unit 

ofyears. 

We also used the averaged NANCr ratios to check ifwe could obtain similar 

results and compare the efficiency between these two methods. The averaged NANCr 

ratios (A VG _ NANCr) were the averaged values of all the valid MRS intensities in 

each exam. We also used a mixed effect model: 
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where i=1,2, .... ,24 for all the subjects in this study and t was 0 for the baseline ofthe 

studyand 1 for the endpoint. Variable 'TREAT' was the same dummy variable as in the 

above voxel-by-voxel case. bi ~ N(O,(Y~) denoted the random effect for each subject i, 

and Git ~ N(O,(Yz) denoted the residuals. The results were obtained using the function 

called 'lme' in the 'nlme' library 82 ofthe statistical application R 83. 

The results from both methods are shown in Table 14. Even though the 

estimated parameters from the two methods had similar signs, both estimated 

parameters were insignificant using our method. While both of the corresponding 

estimated parameters were statistically significant using averaged NANCr as dependent 

variable and both had smaller standard errors. 

Our Voxel-by-Voxel method A veraged NANCr 
Variable STUDYTIME STUDYTIMEx TREAT 

Estimates -0.032 0.203 

Standard Error 0.1208 0.1462 
P-value 0.789 0.164 

Table 14: Copaxone study, NAAlCr over study time 

t Statistically significant. 

5.3.3 NAA/Cr vs. DURATION 

STUDYTIME STUD YTIMEx TREAT 

-0.094 0.108 

0.0353 0.0444 
0.0142T 0.0238T 

We also applied those two types of methods to study the correlation between 

NANCr ratios and disease duration. Our method used a regression model 

NAA/ Cr = flOI + floz + ... + flov + flIDURATION. 

Whi1e the mixed effect mode! using averaged NANCr ratios was 

The comparison results ofboth methods are shown in Table 15. 
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Our Voxel-by-Voxel method 
Variable DURATION 
Estimates -0.01445 

Standard Error 0.00737 
P-value 0.0491 

Table 15: Copaxone study, NAA/Cr vs. Duration 

t Statistically significant. 

A veraged NAAICr 
DURATION 
-0.01669 

0.00405 
0.00041 

In this case the parameters from both methods were statistically significant and 

were similar to the results from the cross-sectional study. While the standard errors of 

estimates using averaged NAAICr were still sm aller than those obtained using our 

method. 

5.3.4 NAA/Cr vs. EDSS 

Again we compared the two types of methods in the study of the correlation 

between NAAICr ratios and disability of MS. Our method used a regression model 

NAA / Cr = /301 + /302 + ... + /3ov + /3I EDSS . 

The mixed effect model using averaged NAAICr is 

The results are shown in Table 16. Our method generated a statistically significant 

estimate -0.058 for variable 'EDSS' while the estimate using averaged NAAICr was not 

significant. The standard errors of estimates from both methods were comparable. 

Our Voxel-by-Voxel method 
Variable EDSS 
Estimates -0.058 

Standard Error 0.0282 
P-value 0.03921 

Table 16: Copaxone study, NAA/Cr vs. EDSS 

t Statistically significant. 
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6. Discussions and Conclusion 

6. 1 Sfafisfical modeling 

The challenge in analysis ofMR spectroscopy data is the low signal-to-noise 

(SNR) ratio ofMRS signaIs. This is especially true for multi-voxel MRS data, which 

requires appropriate statistical analysis techniques. 

Conventional approaches to analyze MRS data are either using region-of­

interest (ROI) method or averaging the metabolite values over the whole study region. 

These methods may be prone to be subjectively biased or may suffer from decreased 

statistical power. We propose to analyze MRS data using all available information 

within MRS data. And we studied the relationships between brain metabolites measured 

as NAA/Cr ratios and the clinical information of MS patients based on the multivariate 

mixed effect model for repeated measurement. 

While modeling repeated measurement data, we need to take into consideration 

the intra-subject spatial and time correlations. Borrowing an idea from geo-statistics, we 

used the semi-variogram to show that there were significant spatial correlations between 

the adjacent intensities ofMRS. And the estimated coefficient of the spatial correlations 

was a significant value of 0.8. 

We constructed the covariance matrices using either AR! type spatial 

correlations, assuming homogenous variances over different locations, or AD 1 type 

spatial correlations, in which case the homogenous variance assumption was relaxed. 

The sampled unstructured covariance matrix in Figure 8(a) demonstrated that the 
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variances at different locations were not homogenous. By the likelihood ratio tests, the 

regression models based on LAD! were preferred over the simpler models based on LARI. 

Also the standard errors of estimates using LAD! were smaller than those using LARl, 

which would facilitate better statistical inference. But there were several drawbacks in 

using LAD! based regression models. We need to estimate 35 extra parameters, taking 

far more CPU time. In addition LAD! based regression models were prone to fail to 

converge in sorne cases during parameter estimation. A better choice would be 

modeling the variances themselves based on vox el location or other possible 

information. However, we did not find any apparent trends ofvariances vs. vox el 

location. 

We did not find the expected significant intra-subject correlations ofNAAICr 

with time in our longitudinal study. The first cause may be that the time correlations 

were actually weak. The second would be that the resampling to standard space was not 

perfect. But in view ofthe relative large size ofMRS voxel, the effect ofregistration 

errors should be small. The main reason is most likely the measurement error and MRS 

quantification error due to the low SNR of spectroscopie signaIs. 

6.2 Study of MS patients with NAA/Cr 

From the cross-sectional study, we found NAAICr ratios in NA WM ofboth RR 

and SP MS patients were lower than those in WM of normal controls. The decreases of 

NAAICr ratios in MS lesions were even larger, which reflected additional focal 

neuronal in jury inside MS lesions. The decreases ofNAAICr ratios in NA WM of MS 

could result from diffuse axonal injury and decreased axonal density, or neuronal 

metabolic dysfunction 84. 
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From the longitudinal study, we found NANCr in NA WM of SP MS patients 

was lower than that in NA WM ofRR patients. This would suggest that greater 

accumulated neuronal injury accompanies the longer disease duration of SP patients. 

The result was consistent with the finding of the negative correlation between NANCr 

ratios and disease duration in the cross-sectional study. 

In both the cross-sectional and the longitudinal studies, we found weak negative 

correlation between NANCr ratios and EDSS. This implied that decrease ofNANCr 

ratios and increase in disability of patients is linked. Aiso the weak correlation suggests 

both variability in the distribution ofNAA metabolite intensities among different 

patients and also heterogeneity in the progression of MS disease. 

We found a small positive correlation between NANCr ratios and the distances 

to focal MS lesions. This suggested that MS lesions have an impact on neighboring 

NA WM and play a role in the non-Iesional, so called degenerative pathology in MS 

patients. 

From our longitudinal study, NANCr ratios ofboth RR and SP MS patients 

were stable over the 2-year study period. It could be that the change patterns of 

NANCr ratios in the brains of patients were not homogenous and were not monotonic. 

So the 2-year study period could be too short to obtain any significant alterations among 

MS patients. Another possible explanation is that the changes ofNANCr ratios over 

this 2-year period were fairly small and our technique was not sensitive enough to 

detect them because of the low SNR of spectroscopic signaIs. 
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6.3 Comparison wifh simpler sfafisfical mefhods 

In the l-year copaxone study, we compared our method with the c1assical 

method which uses averaged MRS intensities (or metabolite ratios). In the studyof 

treatment effect on NANCr ratios, our method did not find the decrease ofNANCr 

ratios for untreated MS patients and did not show the treatment effect on the changes of 

NANCr ratios. While the method using averaged NANCr ratios indicated that 

averaged NANCr ratios for untreated MS patients decreased and also showed that the 

treatment effect was statistically significant. We also noticed that the standard errors of 

estimated parameters using our method were substantially larger than those using 

averaged NANCr ratios in this case. 

In the study of the relationship between NANCr ratios and disease duration, the 

two methods produced similar results and the resulting estimates of the coefficients 

were similar to the results in the cross-sectional study. 

In the study of the relationship between NANCr ratios and disabilities of MS 

patients measured in EDSS, our method found a statistically significant negative 

correlation, which was consistent with both the results from the cross-sectional and the 

longitudinal study. The method using averaged NANCr ratios did not find statistically 

significant correlation, while the standard errors of the estimated parameters from both 

methods were comparable. 

The results from the copaxone study implied that with respect to statistical 

power, our method was not better than conventional methods using averaged metabolite 

values. Our voxel-by-voxel method did use all the information ofMRS data and had a 

larger sample size. But the intra-subject variability of the intensities from the same 
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location was greater than the intra-subject variability of averaged NAAJCr ratios 

because of the low SNR spectroscopie signaIs. This sizeable vox el-wise intra-subject 

variability eventually restrained the statistical power gained through utilizing all the 

MRS intensities. 

Our method still has several advantages over conventional methods: 

• Being able to incorporate the voxel position information and does not assume 

the distribution ofmetabolites are thoroughly identical over different locations 

in the brains. 

• Being able to measure the partial volume effect of MS lesions directly. 

• Being able to handle missing data naturally. 

• Being able to take care of the possible intra-subject correlations (spatial or time) 

between MRS intensities. 

Our method is not without limitations. One major restriction is that our method 

is not capable of dealing with high resolution imaging data, which is normally 3-

diemensional 256 x 256 x 200 volume. 

6.4 Further Work and Possible Improvemenfs 

As we know, the variances ofMRS intensities at different locations were not 

homogenous. The AD! modeled structured covariance matrix (LAD!) was too costly 

because each voxel had its own variance parameter. One possible improvement of our 

method is to model the variability of the variances of intensities at different locations. 

This would be more efficient and may converge more easily during the parameter 

estimation process. 
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Another possible extension of our method is to incorporate non-linear regression 

models. Because the relationships between the variables in the clinical studies could be 

higher order, instead ofbeing simply linear. 

6.5 Conclusion 

The studies in this thesis demonstrated that MRS combined with conventional 

MRI techniques could be helpful in measuring diffuse neuronal injury in the brains of 

MS patients and could make them useful in monitoring the progression of multiple 

sclerosis. These non-invasive imaging techniques could facilitate more efficient ways of 

evaluating the treatment and prevention ofthose diseases. 

Our method of analysis has several advantages over conventional methods. It 

can incorporate position information. It can directly measure the partial volume effect 

of different tissues (such as lesions). It does not suffer from subjective bias in selecting 

voxels; instead it makes use of aU the information available in MRS. However our 

method do es not show improvement in statistical power due to high voxel-wise 

variability ofMRS intensities, which results from the low SNR MRS signaIs. The SNR 

issue should become less important in future with advances in MRS technology, such as 

improved MRS acquisition and quantification processes, and the use of 3T or higher 

magnetic field strength scanners. 

56 



References 

1. Hauser SL. Multiple sclerosis and other demyelinating diseases. In: Isselbacher 
KJ, Wilson JD, Martin JB, Fauci AS, Kasper DL, eds. Harrison's Principles of 
InternaI Medicine. New York, NY: McGraw-Hill, 1994; 2287-2295. 

2. Weinshenker BG. Natural history of multiple sclerosis. Ann Neuro11994; 
36(suppl):S6-S11. 

3. Lassmann H. Pathology of multiple sclerosis. In: Compston A, Ebers G, 
Lassmann H, et al., editors. McAlpine's multiple sclerosis. 3rd ed. London: 
Churchill Livingstone; 1998. pp. 323-358. 

4. Lassmann H. Axonal injury in multiple sclerosis. J Neurol Neurosurg Psychiatry 
2003; 74:695-697. 

5. Kidd D, BarkhofF, McConnell R, et al. Corticallesions in multiple sclerosis. 
Brain 1999; 122:17-26. 

6. Ba L, Vedeler CA, Nyland HI, et al. Subpial demyelination in the cerebral 
cortex of multiple sclerosis patients. J Neuropathol Exp Neuro12003; 62:723-
732. 

7. Peterson JW, Ba L, Mark S, et al. Transected neurites, apoptotic neurons, and 
reduced inflammation in cortical multiple sclerosis lesions. Ann Neuro12001; 
50:389--400. 

8. Ba L, Vedeler CA, Nyland H, et al. Intracortical multiple sclerosis lesions are 
not associated with increased lymphocyte infiltration. Mult Scler 2003; 9:323-
331. 

9. Ikuta F, Zimmerman HM (1976) Distributionofplaques in seventy autopsy cases 
of multiple sclerosis in the United States.Neurology 26:26--28 NeuroI14:279-
287. 

10. Lycklama à Nijeholt GJ, Bergers E, Kamphorst W, Bot J,Nicolay K, Castelijns 
JA, van Waesberghe JHTM, Ravid R, Polman CH, BarkhofF (2001)Post­
mortem high-resolution MRI of the spinal cord in multiple sclerosis. Brain 
124:154-166 

11. Allen IV ,McKeown SR (1979) A histological, histochemical and biochemical 
study of the macroscopically normal white matter in multiple sclerosis. J Neurol 
Sci 41:81-89. 

a 



12. Allen IV,Glover G, Anderson R (1981) Abnonnalities in the macroscopically 
nonnal white matter in cases of mild or spinal multiple sclerosis.Acta 
Neuropathol (Berl) Suppl VII: 176-178 158-64. 

13. Evangelou N,Konz D, Esiri MM, Smith S, Palace J,Mathews PM (2000a) 
Regional axonalloss in the corpus callosum correlates with cerebral white 
matter lesion volume and distribution in multiple sclerosis. Brain 123:1845-
1849. 

14. McDonald WI, Compston A, Edan G et al. Recommended diagnostic criteria for 
multiple sclerosis: guidelines from the international panel on the diagnosis of 
multiple sclerosis. Ann Neuro12001; 50: 121-7. 

15. Van Walderveen MAA, Kamphorst W, Scheltens P et al. Histopathologic 
correlate ofhypointense lesions on Tl-weighted spin-echo MRI in multiple 
sclerosis. Neurology 1998; 50: 1282-8. 

16. Kwock, L. Localized MR spectroscopy: basic principles. Neuroimaging Clinics 
of North America 8(1998), pp. 713-731. 

17. Castillo, M., Kwock, L., and Mukherji, S.K. Clinical applications ofproton MR 
spectroscopy. Ajnr: American Journal ofNeuroradiology 17(1996); pp.I-15. 

18. Moffett JR, Namboodiri MA, Cangro CB, Neale JH. Immunohistochemical 
localization ofN-acetylaspartate in rat brain. Neuroreport 1991; 2:131-134. 

19. Simmons MS, Frondoza CG, Coyle JT. Immunocytochemicallocalization ofN­
acetyl aspartate with monoclonal antibodies. Neuroscience 1991; 45:37-45. 

20. Clark JB. N-acetylaspartate: a marker for neuronalloss or mitochondrial 
dysfunction. Dev Neurosci 1998; 20:271-276. 

21. D.D. Clarke, S. Greenfield, E. Dicker and L.J. Tirri, A relationship ofN­
acetylaspartate biosynthesis to neuronal protein systhesis. J. Neurochem. 24 
(1975), pp. 479-485. 

22. A.F. D'Adamo and F.M. Yatsu, Acetate metabolism in the nervous system. N­
acetyl--aspartic acid and the biosynthesis ofbrain lipid. Expl Brain Res. 13 
(1966), pp. 961-965. 

23. A.F. D'Adamo, L.1. Gidez and F.M. Yatsu, Acetyl transport mechanisms. 
Involvement ofN-acetyl aspartic acid in de novo fatty acid biosynthesis in the 
developing rat brain. Expl Brain Res. 5 (1968), pp. 267-273. 

b 



24. Burri, C. Stefffen and N. Herschkowitz, N-acetyl--aspar-tate is a major source of 
acetyl groups for lipid synthesis during rat brain development. DevI Neurosci. 
13 (1991), pp. 403--411. 

25. C.B. Cangro, M.A.A. Namboodiri, L.A. Sklar, A. Corigliano-Murphy and J.H. 
Neale, Biosynthesis and immunohistochemistry ofN-acetylaspartylglutamate in 
spinal sensory ganglia. J. Neurochem. 49 (1987), pp. 1579-1588. 

26. Larsson HB, Christiansen P, Jensen M, Frederiksen J, Heltberg A, Olesen J, 
Henriksen O. Localized in vivo proton spectroscopy in the brain ofpatients with 
multiple sc1erosis. Magn Reson Med 1991; 22: 23-31 

27. Fu L, Matthews PM, De Stefano N, Worsley KJ, Narayanan S, Francis GS, 
Antel JP, Wolfson C, Arnold DL. Imaging axonal damage ofnormal appearing 
white matter in multiple sc1erosis. Brain 1998; 121: 103-113. 

28. Kapeller P, McLean MA, Griffin CM, Chard D, Parker GJ, Barker GJ, 
Thompson AJ, Miller DH. Preliminary evidence for neuronal damage in cortical 
gray matter and normal appearing white matter in short duration relapsing­
remitting multiple sc1erosis: a quantitative MR spectroscopy imaging study. J 
Neuro12001; 248: 131-138 

29. De Stefano N, Narayanan S, Francis GS, Arnaoutelis R, Tartaglia MC, Antel JP, 
Matthews PM, Arnold DL. Evidence ofaxonal damage in the early stages of 
multiple sc1erosis and its relevance to disability. Arch Neuro12001; 58: 65-70. 

30. Tourbah A, Stievenart JL, Abanou A, Iba-Zizen MT, Hamard H, Lyon-Caen 0, 
Cabanis EA. Normai-appearing white matter in optic neuritis and multiple 
sc1erosis: a comparative proton spectroscopy study. Neuroradiology 1999; 41: 
738-743 

31. De Stefano N, Matthews PM, Antel JP, Preul M, Francis G, Arnold DL. 
Chemical pathology of acute demyelinating lesions and its correlation with 
disability. Ann Neuro11995; 38: 901-909. 

32. Lee MA, Blamire AM, Pendlebury S et al. Axonal injury or loss in the internaI 
capsule and motor impairment in multiple sc1erosis. Arch Neuro12000; 57: 65-
70 

33. Pan JW, Krupp LB, Elkins LE, Coyle PK. Cognitive dysfunction lateralizes with 
NAA in multiple sc1erosis. Appl Neuropsycho12001; 8: 155--60. 

34. Arnold DL, Matthews PM, Francis G, Antel J. Proton magnetic resonance 
spectroscopy ofhuman brain in vivo in the evaluations of multiple sc1erosis: 
assessment of the load of disease. Magn Reson Med 1990;14:154-159. 

c 



35. Husted CA, Goodin DS, Hugg JW, Maudsley AA, Tsuruda JS, de Bie SH, Fein 
G, Matson GB, Weiner MW. Biochemical alterations in multiple sc1erosis 
lesions and normal-appearing white matter detected by in vivo 31P and IH 
spectroscopic imaging. Ann NeuroI1994;36:157-165. 

36. J Urenjak, SR Williams, DG Gadian and M Noble. Proton nuc1ear magnetic 
resonance spectroscopy unambiguously identifies different neural cell types. J. 
Neuroscience, Vol 13, 981-989. 

37. Peters T, Davey B, Munger P, Comeau R, Evans A, Olivier A. Three­
dimensional multimodal image-guidance for neurosurgery. IEEE Trans Med 
Imag 1996; 15:121-128. 

38. Arun KS, Huang TS, Blostein SD. Least squares fitting oftwo 3-D point sets. 
IEEE Trans PAMI 1987; 5:698-700. 

39. Besl PJ, McKayND. A method for registration of3D shapes. IEEE Trans PAMI 
1992; 14:239-256. 

40. Ge Y, Fitzpatrick JM, Kessler RM, Keske-Janicka M, Margolin RA. Intersubject 
brain image registration using both cortical and subcorticallandmarks. In: Loew 
M, ed. Medical imaging. Bellingham: SPIE Press; 1995 :2434. 

41. Hill DLG, Hawkes DJ, Crossman JE, et al. Registration ofMR and CT images 
for skull base surgery using point-like anatomical features. Br J Radio11991; 
64:1030-1035. 

42. Thirion J. New feature points based on geometric invariants for 3D image 
registration. Int J Comp Vision 1996; 18:121-137. 

43. Monga 0, Benayoun S. Using partial derivatives of3D images to extract typical 
surface features. Comput Vision Image Understanding 1995; 61: 171-189. 

44. Gueziec A, Ayache N. Smoothing and matching of 3D space curves. Int J 
Comput Vision 1994; 12:79-104. 

45. Maintz JBA, van den EIsen PA, Viergever MA. Comparison of edge-based and 
ridge-based registration of CT and MR brain images. Med Image Analysis 1996; 
1 :151-161. 

46. Pelizzari CA, Chen GTY, Spelbring DR, Weichselbaum RR, Chen CT. Accurate 
three-dimensional registration of CT, PET and/or MR images of the brain. J 
Comput Assist Tomogr 1989; 13:20-26. 

d 



47. Alpert NM, Bradshaw JF, Kennedy D, Correia JA. The principal axis 
transfonnation - a method for image registration. J Nuc1 Med 1990; 31: 1 717-
1722. 

48. Slomka PJ, Hurwitz GA, Stephenson J, Cradduck T. Automated alignment and 
sizing of myocardial stress and rest scans to three-dimensional nonnal templates 
using an image registration algorithm. J Nuc1 Med 1995; 36:1115-1122. 

49. Junck L, Moen JG, Hutchins GD, Brown MB, Kuhl DE. Correlation methods 
for the centering, rotation and alignment of functional brain images. J Nuc1 Med 
1990; 31:1220-1276. 

50. Andersson JLR, Sundin A, Valind S. A method for coregistration of PET and 
MR1 brain images. J Nuc1 Med 1995; 36:1307-1315. 

51. Hill DLG, Studholme C, Hawkes DJ. VoxeI similarity measures for automated 
image registration. Proc SPIE 1994; 2359:205-216. 

52. Viola P, Wells III WM. Alignment by maximization ofmutual infonnation. Int 
Conf on Computer Vision. Los Alimitos: IEEE Computer Society Press; 
1995:16-23. 

53. Wells WM III, Viola P, Atsumi H, Nakajima S, Kikinis R. Multi-modal volume 
registration by maximization ofmutual infonnation. Med Image Anal 1996; 
1:35-51. 

54. Maes F, Collignon A. Multimodality image registration by maximization of 
mutual infonnation. IEEE Trans Med Imaging 1997; 16: 187-198. 

55. Roche A, Malandain G, Pennec X, Ayache N. The correlation ratio as a new 
similarity measure for multimodal image registration. In: Wells WM, Colchester 
A, Delp S, eds. Lecture notes in computer science. Proc MICCAI'98. Berlin 
Heidelberg New York: Springer; 1998; 1496:1115-1124. 

56. Lau YH, Braun M, Hutton BF. Non-rigid registration using a median-filtered 
coarse-to-fine displacement filed and a symmetric correlation ratio. Phys Med 
Biol 2001; 46:1297-1319. coordinate transfonnation for 3-D image matching. 
IEEE Trans Med Imag 1997: 16:317-328. 

57. N. A. Dodgson, "Quadratic interpolation for image resampling," IEEE Trans. 
Image Processing, vol. 6, pp. 1322-1326, 1997. 

58. H. S. Hou and H. C. Andrews, "Cubic splines for image interpolation and digital 
filtering," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-26, no. 6, 
pp. 508-517, 1978. 

e 



59. C. R Appledom, "A new approach to the interpolation of sampled data," IEEE 
Trans. Med. Imag., vol. 15, pp. 369-376, 1996. 

60. Van Leemput, K., et al., "Automated segmentation ofmultiple sclerosis lesions 
by model outlier detection", IEEE Trans. on Medical Imaging, vol. 20, pp. 677-
688, Aug. 2001. 

61. Y. Miki, RI. Grossman, J.K. Udupa, S. Samarasekera, M.A van Buchem, S. 
Cooney, S.N. Pollack, D.L. Kolson, C. Constantinescu, M. Polansky and L.J. 
Mannon, Computer-assisted quantitation of enhancing lesions in multiple 
sclerosis: Correlation with clinical classification. Am. J. Neuroradiol. 184 
(1997), pp. 705-710. 

62. Udupa, J.K., et al., Multiprotocol MR image segmentation in multiple sclerosis: 
experience with over 1,000 studies. Acad Radiol, 2001. 8(11): p. 1116-26. 

63. Zijdenbos, AP., R. Forghani, and AC. Evans, Automatic "pipeline" analysis of 
3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans 
Med Imaging, 2002.21(10): p. 1280-91. 

64. Anbeek P, Vincken KL, van Osch MJ, Bisschops RH, van der Grond 
J. "Probabilistic segmentation of white matter lesions in MR 
imaging.",Neuroimage. 2004 Mar;21(3):1037-44. 

65. Guttmann, C.R, et al., Quantitative follow-up of patients with multiple sclerosis 
using MRI: reproducibility. J Magn Reson Imaging, 1999.9(4): p. 509-18. 

66. Laid, N.M., and Ware, J.H., "Random Effects models for Longitudinal Data", 
Biometrics, 1982,38,963-974. 

67. Ordigde, R.l, Mansfield, P., Lohman, lA and Prime, S.B. volume selection 
using gradients and selective pulses. Ann. NY Acad. Sci. 1987,508,376-385. 

68. Haase A, Frahm J, Hanicke W, Matthaei D. 1H NMR chemical shift selective 
imaging. Phys Med Biol 1985; 30: 341-4. 

69. Den Hollander JA, Oosterwaal B, Van Vroonhoven H, Luyten PR Elimination 
ofmagnetic field distortions in IH NMR spectroscopic imaging. Proc Soc Magn 
Reson Med 1991; 1: 472. 

70. de Beer R, van Ormondt D. Analysis ofNMR data using time domain fitting 
procedures. NMR Basic Princip les and Progress. Vol 26. Berlin: Springer­
Verlag, 1992: 204-248. 

f 



71. Simon J. Francis. Automatic Lesion Identification in MRI of Multiple Sclerosis 
Patients, Master's Thesis, Division ofNeuroscience, Department ofNeurology 
and Neurosurgery, McGill University, Montreal, 2004. 

72. Collins, D.L., et al., Automatic 3D intersubject registration ofMR volumetrie 
data in standardized Talairach space. J Comput Assist Tomogr, 1994. 18(2): p. 
192-205. 

73. Talairach J, Toumoux P. Co-planar stereotaxie atlas of the human brain: 3-
dimensional proportional system: an approach to cerebral imaging. Stuttgart: 
Thieme, 1988. 

74. Evans AC, Marrett S, Neelin P, Collins L, Worsley K, Dai W, et al. Anatomical 
mapping of functional activation in stereotactic coordinate space. Neurolmage 
1992; 1: 43-53. 

75. Jones R.H. Unequally spaced longitudinal data with AR(I) seriaI correlation. 
Biometries 1991:47, 161-175. 

76. Zimmerman, D. L., N'u nez-Ant'on, V. and ElBarmi, H., 1998. Computational 
aspects oflikelihood based estimation offirst-order antedependence models. J. 
Stat. Comp. Simul./ 60:67-84. 

77. Little, R.J.A. and Rubin, D.B. Statistical Analysis with Missing Data. Wiley, 
New York (196). 

78. Robert 1. Jennrich, Mark D. Schlucher. Unbalanced Repeated-Measures Models 
with Structured Covariance matrices. Biometries, 1986:42, 805-820. 

79. Kurtzke JF. Rating neurologie impairment in multiple sclerosis: an expanded 
disability status sc ale (EDSS). Neurology 1983; 33: 1444-1452. 

80. Comi G, Filippi M, Wolinsky JS. European/Canadian multicenter, double-blind, 
randomized, placebo-controlled study of the effects of glatiramer acetate on 
magnetic resonance imaging-measured disease activity and burden in patients 
with relapsing multiple sclerosis. Ann Neurol. 2001; 49: 290-297. 

81. Flechter S, Vardi J, Pollak L, Rabey JM. Comparison of glatiramer acetate 
(Copaxone) and interferon beta-lb (Betaferon) in multiple sclerosis patients: an 
open-IabeI2-year follow-up. J Neurol Sei. 2002; 197: 51-55. 

82. Jose C. Pinheiro, Douglas M. Bates, Mixed-Effects Models in Sand S-PLUS, 
Springer Verlag, New York, 20000. 

83. llttp://www.r-project.orgl. 

g 



84. Matthews PM, Cianfaglia L, McLaurin J, Cashman N, Sherwin A, Arnold D, et 
al. Demonstration ofreversible decreases in Nacetylaspartate (NAA) in a 
neuronal cellline: NAA decreases as a marker of sublethal neuronal 
dysfunction. Proc Soc Magn Reson Med 1995; 1: 147. 

85. Caramanos, Z., S. Narayanan, D.L. Arnold. 1H-MRS quantitation oftNA and 
tCr in patients with multiple sc1erosis: a meta-analytic review. Accepted on 
August 17, 2005 for publication in Brain. 

h 


