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Abstract 

Narratives play a significant role in many computer games, and this is especially 

true in genres such as role-playing and adventure games. Even so, many games have 

narratives which possess a certain number of flaws that can deteriorate the playing 

experience. This less than satisfying gameplay experience can obviously affect the 

commercial suc cess of a given game. Our research originates from the need to identify 

these narrative flaws. In response to this need, we present a framework for computer 

game narratives analysis. Our work focuses on Interactive Fiction games, which are 

textual, command-line and turn-based games. We first describe a high level computer 

narrative language, the Programmable Narrative Flow Graph (PNFG), that provides 

a high level, user-friendly interface to a low level formalism, the Narrative Flow Graph 

(NFG) [38]. The PNFG language is delivered with a set of enhancements and low 

level optimizations that reduce the size of the generated NFG output. As part of our 

work on the analysis of narrative structures, we developed a proof of concept heuristic 

solver that attempts to automatically find solutions to games from a lightweight high 

level representation. We also define narrative game metrics and present a metrics 

framework that simplifies the measurement and development of such metrics. These 

metrics contribute to broadening our general knowledge about game narratives. 



Résumé 

Les structures narratives jouent un rôle important dans les jeux pour ordinateurs 

et cette affirmation se confirme particulièrement dans des genres ludiques comme le 

jeu de rôle ou le jeu d'aventure. Malgré tout, plusieurs jeux possèdent des struc­

tures narratives comptent un certain nombre de problèmes qui peuvent contribuer à 

détériorer l'expérience de jeu. Cette même diminution peut aller jusqu'à affecter le 

succès commercial du jeu. Notre recherche émanne de ce besoin d'identifier ces fautes 

dans la structure narrative des jeux. En réponse cette même demande, nous présentons 

une structure applicative ayant pour but l'analyse des structures narratives. Notre 

travail s'effectue sur les jeux de fiction interactive, qui sont de nature textuelle et 

qui réagissent à des commandes entrées par le joueur. Tout d'abord, nous décrivons 

un langage de programmation haut niveau, le Programmable Narrative Flow Graph 

(PNFG) (Plan de Flux Narratif Programmable), qui offre une interface conviviale vers 

une base formelle, le Narrative Flow Graph (NFG) (Plan de Flux Narratif) [38]. Le 

langage PNFG est livré avec une série d'améliorations et d'optimisations qui réduisent 

la taille du NFG généré. Dans le cadre de nos recherches sur l'analyse des structures 

narratives, nous avons développé la preuve de concept d'un solutionneur heuristique 

dont le but est de trouver la solution du jeu et ce à partir d'une représentation haut 

niveau légère. Nous définissons également des mesures pour les structures narratives 

et présentons une structure applicative qui simplifie l'évaluation de ces mesures. Ces 

dernières contribuent à élargir nos connaissances générales au sujet des structures 

narratives. 
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Chapter 1 

Introduction and Contributions 

Narratives play a significant role in many computer games, and this is especially 

true in genres such as role-playing and adventure games. Even so, many games 

have narratives which possess a certain number of flaws that can deteriorate the 

playing experience. Sorne of these problems are inconsequential, affecting only min or 

elements of game aesthetics, although even these interfere with agame player's sense 

of immersion. Other problems, however, can lead to narrative dead-ends where the 

player is completely stuck and is not able to finish the game at aIl. This leads to a less 

than satisfying gameplay experience, and obviously can affect the commercial success 

of a given game. Our research originates from the need to identify these narrative 

flaws. 

In response to this need, we present a framework for computer game narratives 

analysis that includes a high level computer narrative language, a framework for mea­

suring narrative metrics, and a heuristic sol ver that attempts to automatically find 

solutions to games from a high level representation. Our work focuses on Interactive 

Fiction games, which are textual, command-line and turn-based games. The player 

typically controls an avatar through a naturallanguage interface, and playing usually 

consists of reading text on screen, entering a command, and then reading the text 

that appears as a result of the command being processed by the game. This sequence 

of events is repeated until the game ends in a win or a loss. This game genre is suit­

able for our research because it possesses the narrative properties we wish to analyze 
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while being relatively simple from a technical point of view. We describe this game 

genre in detail in Section 3.l. 

We have previously explored the design for a high level language that allows 

for formaI analysis of game narratives [29]. Programmable Narrative Flow Graphs 

(PNFGs) provide a high level, user-friendly interface to a low level formalism, the 

Narrative Flow Graph (NFG) [38]. This direct translation of PNFG programs to 

NFGs allows us to access a wide variety of research on understanding, optimizing 

and analyzing Petri Nets while maintaining our high level narrative programming 

environment. 

We now extend and further develop the PNFG language. Our initial design in­

cluded only quite basic language features; here we present the design in greater depth, 

and also extend the language with several use fuI syntactic forms. Although these 

extensions are largely "syntactic sugar" for patterns of lower-Ievel operations they 

reduce programmer effort, and more importantly they allow for a reduction in the 

amount of redundancy in the low level NFG translation. We show how these more 

complex constructs are compiled to NFG structures, and also how this translation 

ensures a more efficient output structure. 

Even with appropriate syntax, non-trivial narratives cannot be feasibly analyzed 

from a naive PNFG----7 NFG translation. Since our overall goal is to be able to analyze 

game narratives, we have also considered more general, low level optimizations that 

reduce the size of the NFG output, eliminating various kinds of redundancy. Reducing 

the size and complexity of the NFG is a crucial step in practical, formaI analysis 

of non-trivial game narratives, and we discuss the necessity for optimizations and 

their relative impact. Since our design includes a practical implementation, we are 

also able to get real results on NFG output size reductions. These results show 

the significant effects of simple game optimizations, and also give guidance on the 

kinds and magnitudes of impacts due to specifie game constructs, behaviours, and 

programming styles. 

Our original work in [29] also featured a solver module, using the NuSMV formaI 

model checking software [9]. This software uses a brute force approach on a Binary 

Decision Diagram (BDD) [8] boolean representation of a generated NFG to find the 
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1.1. Contributions 

minimal solution to the game narrative, among other properties. In a narrative game, 

a solution is a sequence of commands entered by the player that lead to winning the 

game. Because of this brute force nature, the size of the state-space of the narratives 

we wish to solve is always a key issue. Even with many optimizations, considering the 

full state space for larger narratives is not realistic, and we investigated the potential 

of developing a heuristic solver that uses high-Ievel information found in the PNFG 

intermediate representation. This heuristic solver looks at the conditions that need to 

be satisfied when winning the narrative in order to build a solution. Such high-Ievel 

strategies can contribute to make possible the analysis of very complex narratives. We 

have developed a proof of concept version of the heuristic solver and we will discuss 

the possibilities that arise from our results using this initial version in Chapter 5. 

We also sought to use high-Ievel information to measure and evaluate game prop­

erties. We will present a set of narrative game metrics, and discuss the results from 

measuring them on sorne example narratives whose complexity range from very sim­

ple to fairly complex. Sorne of theses examples are even based on commercial works 

of interactive fiction. We devoted significant efforts on creating an intuitive repre­

sentation that made use of the structure of the PNFG file itself, and we will give a 

detailed description of the metrics framework we are using to evaluate the different 

properties. 

1.1 Contributions 

Specific contributions of this work include: 

• We give a detailed overview of the basic PNFG language, design and compila­

tion. 

• We present language extensions to the PNFG language, including specific NFG 

compilation strategies. These constructs reduce both redundancy in the initial 

PNFG code and in the underlying NFG. 

• We define and provide experimental data on the effect of a variety of low-Ievel 

3 



1.2. Roadmap 

NFG optimizations. These optimizations have varied eflects, but can overall 

greatly reduce the NFG size. 

• We present a pro of of concept narrative game solver that uses chains of condi­

tions in the PNFG source file to heuristically build a solution, and discuss the 

potential of this method. 

• We provide a met ries framework that works with the PNFG intermediate rep­

resentation to allow the evaluation of metrics in narrative games. 

• Through the use of our metrics framework, we can determine whether agame 

can be won or not. This can be viewed as the first step towards detecting fiaws 

in narrative games. 

1.2 Roadmap 

In the next Chapter, we discuss related work on narrative analysis and representation. 

In Chapter 3 we give an overview on the structure of PNFG programs by presenting 

core functionalities of the language. We then explain how the diflerent constructs and 

syntactic components of PNFG are translated into an NFG representation. Chapter 

4 describes our diflerent NFG optimizations, and Chapter 5 deals with the heuristic 

solver and how it diflers from our previous approach at finding a valid solution auto­

matically. We will refer to this as solving narrative games. The metrics framework 

and the metrics themsclves are presented in Chapter 6. Chapter 7 describes each ex­

ample narrative we have used and gives results for our optimizations, solutions found 

by the heuristic solver, and metrics results. We conclude in Chapter 8 and discuss 

future work in the area of computer narrative analysis. 

4 



Chapter 2 

Related Work 

Interactive Fiction (IF) is one of the first and also one of the oldest computer 

genres, largely because it has a very limited technical overhead. IF can be defined 

as being "A computer program that generates textual narrative in response to user 

input, generally in the form of simple natural-language commands" [1]. The term was 

first used in a 1987 BYTE magazine article as a label for story centered computer 

games [35]. Among the most famous titles, we find ex amples such as Adventure (also 

known as ADVENT or Colossal Cave) [11], Zork [20], and The Hitchhiker's Guide 

to the Galaxy [2]. IF's popularity reached its peak in the mid eighties, and was aU 

but de ad by 1990. Today, a very active if small IF on li ne community exists and is 

organized around different USENET newsgroups such as rec. games. int-fiction 

(or r.g.i-f), [37] and rec. arts. int-fiction (or r.a.i-f) [16], the first focusing mainly 

on playing games, while the latter deals with the creation of new IF works. Detailed 

examples of IF games can be found in Section 7.1. 

In recent years, attempts have been made at analyzing IF from a theoretical 

approach, arguing that it is a legitimate literary art form [23]. Wh en we look at what 

has been written on IF from this point of view, the term Interactive Fiction in itself 

is problematic and has faced a very tough opposition from literary theorists. It has 

been criticized as " .. .facing enormous problems" and that "Interactive fiction is [ ... ] 

in reality largely the rhetoric for a Utopia" [17]. Since the term has been accepted as 

representing the game genre we are exploring, we will continue to use it, but keep in 
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mind the term can be controversial at times. 

Traditional approaches at narrative analysis have included the decomposition of 

staries from films, su ch as Christopher Voiger's Hero's Journey [39], and have been 

proposed as narrative patterns for computer game design [32]. Within the realm of 

computer games, two different types of narrative can be observed: embedded, and 

emergent narrative [19], where the former is "pre-generated narrative content that 

exists prior to a player's interaction with the game", and the latter refers to the 

narrative that " ... arises from the set of rules governing interaction with the game 

system" [33]. 

It has been said that computer games fall within a continuous space that goes from 

ludological, the extreme being computer chess, to narratology, with DVD movies at 

the other end of the spectrum [21]. As we move towards the narratology extrema, the 

notion of game logic becomes a bigger concern and can also le ad to critical failures 

within the game. For example, a player needs a key which she cannot obtain in order 

for the game to progress. This problem of unwinnability has led to the definition of 

p-pointlessness where a small value of p ensures a quick termination of an unwinnable 

game [38]. This is one ex ample of a property we would want to derive from our 

computer narrative analysis. 

Different solutions have been discussed to reduce problems in narrative games, 

an example being a plot diagramming module for the popular IF authoring tool 

TADS [4]. This particular module uses Directed Acyclic Graphs (DAG) to represent 

the narrative, but it has been shown that DAGs are not suit able for the representation 

of computer game narratives [38]. Other game construction kits such ScriptEase [22] 

contribute to reducing the number of logical errors in games by providing a simpler 

approach to game authoring. Other approaches reduce the programming effort to 

a minimum, and aim to allow the user to express games from a limited genre such 

as board games with the Metagame [28] game generator, to offering a broader scope 

with the Extensible Gmphical Game Genemtor [27]. 

Interactive Fiction toolkits are very popular among the IF corn munit y, and the 

most popular authoring kits are probably Inform [25] and TADS [13,31]. Inform is 

based on the tool used by the company Infocom, who published sorne of the most 
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successful works of IF during the eighties. Inform 7, the latest version of the toolkit, 

features an advanced IDE that allows users to create IF by writing natural English 

language sentences [26], an approach that radically differs form the traditional com­

puter programming used in previous versions of Inform and other toolkits. TADS 

features an very detailed object-oriented language with features such as dynamic ob­

jects, structured exceptions, and automatic garbage collection, among others. The 

different authoring tools allow programmers to create complex st ory lin es , although 

none of these systems directly address the issue of game analysis. 

The representation of a game narrative as a Petri Net is at the core of our work, 

and builds on our previous, somewhat naive approach to Petri Net generation. Petri 

Nets for complex systems can be quite large in practice, and different solutions have 

been proposed to reduce the state space of Petri Nets. Work has been done, for 

instance, to develop reductions that are compatible with bisimulation principles [34]; 

examples include the fusion of equivalent places and the replacement of sorne places 

by others. Abstract interpretation has also been considered as a means to derive non­

structural invariants of a given Net [10]. Similar Petri Net reductions have also been 

used in Artificial Intelligence to represent a team plan and its projections on individual 

agents, by using techniques such as fusion of consecutive activities, fusion of parallel 

activities, and fusion of choice between activities [7]. Using structural reductions like 

projection and redundancy removal, it is possible to reduce the size of probabilistic 

timed Petri Nets [18]. Reusing existing Petri Net reductions and applying them to 

a domain-specifie representation can be rewarding, as demonstrated in [12], where 

reductions suggested by Berthelot [6] are applied to Task-Interaction Graph-based 

Petri Nets. 

The narrative programming language we present here as part of our framework 

directly extends our initial definition of Programmable Narrative Flow Craphs (PN­

FGs), a high levellanguage that is easily mapped to a Petri Net model [29]. Other 

work on game narrative structure has led to the definition of a Classical Came Struc­

ture [30] where the player st arts with a few choices that lead to morè, and where these 

choices "gradually narrow back clown again to a few, or single action the player must 

accomplish". This concept is defined as a "convexity" , and a series of such convexities 
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can be seen as representing the different parts of agame. 

In his survey of interactive fiction, Smith modelled what he refers to as the "tra­

ditional interactive fiction". He separated it in sections where "the interactor may 

operate with some freedom. But to get to the next section he must bow to the 

prescriptions of the story and thus temporarily abandon his freedom in order to 

progress" [35]. While other such models of "traditional" game narratives exists, we 

do not know of any model that is backed by any data. 
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Chapter 3 

PNFG language Design 

Flaws in game narratives can be easily identified during the gameplay, but we 

currently lack the tools to analyze these narratives in order to detect these ftaws and 

have good narrative properties. From that problem arises the need for a high level 

programming language that is built on formaI principles. Such a language will provide 

the strong base that is needed to formally analyze these narratives. 

In this chapter, we first give a description of an interactive fiction narrative and 

the representation we use in order to do the analysis (Section 3.1). In Section 3.2, we 

define the basic PNFG language constructs, and Section 3.3 details the PNFG game 

control ftow. Section 3.4 describes the different PNFG statements that can be used 

to represent a game narrative. Finally, in Section 3.5, we discuss the syntactic sugar 

components we have added to the PNFG language in order to extend its expressive 

power and reduce code duplication. 

3.1 Narrative Representation as a PNFG 

Interactive Fiction games (IF) are textual, command-line and turn-based games typ­

ically composed of an avatar moving through a fairly minimal virtual environ ment 

consisting of rooms or locations, and including sorne number of objects. The avatar is 

usually controlled by the player through a natural language interface, incorporating 

simple commands to take, drop, and use objects in different manners. Game progress 
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3.1. Narrative Representation as a PNFG 

and conflict is represented by different puzzles or obstacles that must be overcomed 

by suitably arranging or employing game objects. The game can be won by solving 

aIl or most of the problems, or lost by incorrectly solving one or more puzzles. 

IF is a very interesting game genre for our research because it allows us to focus 

on the narrative qualities of agame, while limiting the technical complications that 

invariably come with other genres, such as 3D graphies (or even 2D graphies), sound, 

networking, and other non-narrative aspects of more contemporary game designs. In 

our case we further exclu de the naturallanguage interface, as another aspect that is 

tangential to the main narrative structure of the game. 

To represent IF games, we use the Narrative Flow Graph (NFG) [38], a special 

class of l-Safe Petri Nets that provides a simple syntax and operational semantics 

for describing narratives. A Petri Net is composed of nodes (places) and transitions, 

and directed edges, where edges run between places and transitions. When aIl the 

incoming nodes connected to a partieular transition t have a token, t can fire, removing 

tokens from the input nodes and inserting tokens into the output nodes of t. This 

state transition easily represents the typical IF behaviour of triggering an event during 

game play based on existing game state, which explains why NFGs are based on Petri 

Nets. l-Safe Petri Nets have the added property that each place can contain only 

one token. With NFGs, we also note the presence of Context Edges that behave 

Iike a bidirectional connection to a transition in a Petri Net. These edges are used 

to represent that a certain property in the narrative will remain true even after an 

action has been executed. For example, the player will still have a key in his inventory 

even after she has used it to unlock a door. The NFG definition also explicitly defines 

specifie starting and ending nodes. The starting node a is unique, while there are two 

ending nodes: the losing node land winning no de w. Having these starting and en ding 

nodes allows for paths to be defined in the structure. The starting node a represents 

axiomatic precedence, aIl initial conditions are connected to a The NFG definition 

explicitly states that the nodes land w must no be simultaneously-reachable. This 

last specification is crucial wh en representing narrative games, because we cannot win 

and lose agame at the same time. A formaI definition and further details on NFGs 

can be found in [38]. Figure 3.1 shows a basic NFG representation for the trivial 
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3.2. PNFG Data and Declarations 

narrative used as a motivating example in [21]. 

Figure 3.1: A NFG for the trivial narrative The Wizard [21]. 

3.2 PNFG Data and Declarations 

Representing a narrative directly in NFG form can be very tedious; as can be seen 

from Figure 3.1 the size and the complexity of the graph can make the task overwhelm­

ing, even for a relatively small narrative. As a more practical means of developing 

narratives, the Programmable NFG (PNFG) language, first introduced in [29], is a 

high-level representation of a game narrative that is translated to a corresponding 

NFG. This allows for a much more intuitive representation of the narrative, while 

also offering a translation mechanism that is structured and efficient. 

The design of the PNFG language has been based on the more popular IF toolk­

its, albeit stripped down to only essential features. Through abject, room, and action 
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3.2. PNFG Data and Declarations 

declarations, the user can express the basic game narrative structure. Using addi­

tional constructs such as states, counters, and timers, it becomes possible to represent 

complex IF games. For each of these language components, we must always have a 

way to translate them to a valid NFG representation. In following sections, we will 

describe this translation, along with the PNFG syntax and the general structure of a 

PNFG program. 

3.2.1 Objects & Rooms 

Objects and rooms are the two most basic components of narrative games; as de­

scribed above, in IF games the player usually moves from one room to another and is 

required to interact with different objects in order to eventually win the game. In the 

PNFG language, objects can be declared quite simply, as shown in Figure 3.2. This 

particular statement will be translated into a unique game object called "dagger." In 

the PNFG language aIl object declarations must be performed staticaIly; this does 

not allow for infinite or arbitrary numbers of objects, but is nevertheless appropriate 

and adequate for most IF games, and has so far not proven to be an obstacle to 

complex game development. 

object dagger { } 

Figure 3.2: A simple object declaration. 

Rooms in the PNFG language have an almost identical declaration syntax to 

objects. The major difference between objects and rooms is simply that rooms can 

function as containers, and can hold objects, even other rooms. The player herself is 

in fact typically described using a room declaration in order to allow her to have an 

inventory. Containment is presumed to form a tree structure in the PNFG language, 

with every ob ject and room having exactly one parent (container) room at any one 

time. To guarantee this property holds at aIl points in the game, the PNFG language 

pre-defines a reserved offscreen room where aIl objects and rooms initially reside, 

and to where they can be moved when they are no longer part of active game play. 

The offscreen room is unique in that it cannot be moved or contained itself. 
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3.2. PNFG Data and Declarations 

The mapping of object containment from the PNFG space to the NFG is achieved 

through the creation of two unique NFG nodes for each game object or room in each 

possible containing room. For an object A and a room E, anode representing "A in 

room E" and anode representing "A not in room E" will be generated. These nodes 

function with complete complementarity, and the NFG constructed will guarantee 

that if the node "A in room E" is active (contains a token), the node representing 

"A in room R" is inactive (does not contain a token) for aIl other possible rooms R. 

This means that the narrative begins with the nodes "x in offscreen" active for aIl 

objects and rooms x, except of course offscreen itself. 

3.2.2 Sets 

Many operations in an IF game will be identical for sorne number of different objects 

or rooms. Drop and take actions, extremely common actions in IF games, for instance 

tend to be quite similar or identical for a large subset of game objects. To les sen the 

amount of co ding redundancy subsets of objects (and/or rooms) can be declared in a 

PNFG program, and elements of the set referred to by abstract set variables. Use of 

the set variable is then internally expanded according to the semantics associated with 

the context of the use of the set variable: such variables can be bound or unbound. 

In an unbound context set variables are merely macros for replicating a program 

command over some number of distinct objects or rooms; when bound by an enclosing 

statement and scope, however, a set variable refers to a particular element of the set 

used as part of its declaration. We will further discuss the use of set variables, bound 

and unbound in Section ?? 

An example of both bound and unbound set variable declarations is shown in Fig­

ure 3.3. Notice that set definitions can refer to other sets as weIl as individual objects 

and rooms, and can also be constructed through subtraction as weIl as addition of 

elements or other sets. To avoid declaration-ordering constraints forward references, 

and recursive definitions are permitted, although infinite and contradictory set con­

structions are of course not allowed. Actual set contents are computed at compile 

time using a (least) fixed point algorithm. 
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3.2.3 States 

carryable = { dagger, banana } 

uncarryable = { widget, kleinbottle } 

stuff = { everything, -you } 

everything = { carryable, uncarryable, you } 

stuff $mystuff; 

carryable $c; 

Figure 3.3: Set declarations and set variables. 

Having both rooms and objects alIows a game programmer to express sorne very 

simple narratives, and is in fact sufficient to achieve our desired level of expressive­

ness. The PNFG language, however, also offers State declarations to be associated 

with rooms and objects as an alternative way of representing current and changeable 

properties of the game. States are binary, and can be set to true (+) or false (-), as 

we will discuss in Section 3.4. Figure 3.4 shows a room declaration with two states 

being declared, trapOpen and lit. 

room bedroom { 

state {trapOpened,lit} 

} 

Figure 3.4: A room with 2 declared binary states. 

Similar to containment, in the translated NFG output each individual object 

or room state declaration will be represented by two nodes, one for each binary 

value. For example, the states declared in Figure 3.4 would be represented by four 

nodes, -bedroom. trapOpened, +bedroom. trapOpened, -bedroom. lit, and +bedroom.­

li t. Again, since both state values are mutualIy exclusive the two nodes forming the 

pair representing a particular object or room state cannot both be active at the same 

time. AlI states begin with the false node active. 

A few special states are defined to indicate the player winning or losing the game. 

A reserved object name game is used for this, and includes win and lose states. When 
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win or lose is set to true (+), it means that the game has been won or lost, respectively, 

and game play is automatically terminated. 

3.2.4 Counters and Timers 

Many IF games require counting: sorne typically small and finite number of steps 

or events must occur in order to trigger a subsequent event. Using states it is quite 

possible to build finite counters by composing a series of states for each possible 

counting value; e.g., x. valueO, x. value!, x. value2, x. value3 for a counter with range 

O ... 3, with the game programmer ensuring that at most one of these positive states 

is true at any one time. 

Counters automate and abstract this process, and allow the programmer to declare 

variables which can be set, incremented, or decremented by a constant value within a 

given range. This eliminates potential programmer error in use of counters, and also 

allows for easier optimization of the ensuing NFG code generation. Figure 3.5 shows 

an example of a counter declaration for a counter you. lives that can assume a value 

in the range 0 ... 3. 

room you { 

counter {lives 0 3} 

} 

Figure 3.5: A counter definition for the inclusive range 0 .. 3. 

Counters are trivially represented in an output NFG by generating an equivalent 

set of states, initializing the state representing the minimal value to true and aIl others 

to false. Operations on counters are then required to ensure the corresponding set 

of states continues to guarantee that exactly one of the states is true. This unary 

representation strategy is not necessarily optimal, and we intend to explore binary 

representation as an optimization in later work. 

With counters the programmer can specify exactly how the value will be incre­

ment or decremented, according to the desired behaviour. The PNFG language also 

supports timers, which are in fact special counters that are automatically incremented 

15 



3.3. PNFG Execution 

after each action the user executes. How this is achieved will become more obvious 

in the following section. Timers, however, act only as further syntactic sugar on 

counters in order to avoid sorne code duplication. 

3.3 PNFG Execution 

Interactive Fiction games, or turn based adventures, are typically made up of three 

different phases: the prologue where the game is initialized, the cycle of waiting for the 

user commands and processing them, and finally, an epilogue phase [24]. The PNFG 

compiler generates a similar structure, and the general control fiow of a PNFG game 

is shown schematically in Figure 3.6. 

Thread 1 Thread 2 llmers 

Start ~ •• mew;n 

~~ ____ • • ". ~ game.lose 

Figure 3.6: The geneml NFG structure for a PNFG progmm. The entry points for the 

main phases of execution are prologue, user commands, user threads, timers, and epilogue. 

Taken from [29] 

At the beginning of the narrative the start node is active and triggers the prologue 

or game initialization. This first stage terminates at the idle node, where control fiow 

waits for user input. Wh en a user command is received it is processed, moving 

control into the appropriate action or set of execution statements. After an action 

has been completed the game may terminate in a win or loss, or pass control to a set 

of user-defined and internaI threads. Threads are not concurrent in our language, and 

are in fact used primarily to append fixed execution behaviours to the end of each 

user-initiated action. A primary internaI thread is responsible for incrementing timer 
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values as discussed in Section 3.2.4. Finally, control returns to the idle node, where 

it waits for the next user input commando 

User commands or actions are composed of PNFG statements, and have a similar 

appearance to standard procedural languages su ch as C or Java. Figure 3.7 shows 

a code snippet for the action triggered by the user command "kill npc" in one of 

our example games, The Return ta Zork - Chapter 2, where the player can kill a 

non player character (NPC). Executing the action results in each statement being 

processed according to the execution semantics we will define below. In the case of 

this example action we first define a set of items at line 02. Then we check whether or 

not the player has the knife in her inventory. If she does, it means she can actually 

kill the npc; in the actual game the "Guardian" appears and strips the player of aIl 

her inventory items as punishment, and further sets sorne player states indicating 

that the player has performed this violent act. Later actions in the game branch on 

these states, resulting in a permanent (and undesirable) impact on the player. 

01 Cyou,kill,npc) { 

02 stuff = { knife, rock, vine, ... } 

03 ifCyou contains knife) { 

"You kill the npc"; 

The Guardian appears II. , 

04 

05 

06 "The Guardian l must relieve you of your belongings"; 

07 forCstuff $s) { 

08 ifCyou contains $s){ 

09 move $s from you to offscreen; 

10 } 

12 } 

13 -?you.friendly; 

14 +you.killer; 

15 } } } } 

Figure 3.7: A sequence of PNFG statements corresponding to a "kill npc" commando State­

ments are referred to by number in the text. 
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3.3.1 Basic control flow 

Each statement in a PNFG program is expected to be executed in the order specified. 

Sinee Petri Nets transitions do not enforee this sequentiality by definition, a general 

structuring principle is used to enforee correct control flow through the use of context 

nodes. The context nodes form a set of nodes that are guaranteed to have exactly 

one node active. Transitions generated for individual statements rely on an input 

context being active to allow the statement transition(s) to fire, and must guarantee 

the activation of a single output context to feed to the subsequent statement. 

The start node is in fact a context node (the only initially-active context node), 

and allows control to flow through the game prologue to idle, also a context node. 

The idle node then passes control to the first statement of an executed action and 

is expected to receive control back from the last statement in each action, or the last 

statement in the last thread if any threads (or timers) are defined. 

3.4 Basic PNFG Statements 

The example of Figure 3.7 illustrates most of the core operations available in the 

PNFG language. This section describes each of the basic operations, as weIl as how 

each of these actions is translated into sorne number of transitions in the underlying 

output NFG. 

3.4.1 Output Statements 

One of the most important components of Interactive Fiction is the actual output 

produeed when the player enters a commando With output statements, we allow 

the narrative programmer to print messages, and thus communicate with the game 

player. They are created by declaring a string constant, as shown in statements 04, 

05, and 06. The strings are sent "as-is" to the game console, although there is sorne 

rudimentary syntax to allow output to mention objects referred to indirectly by set 

variables; Figure 3.8 shows a generalized example. The corresponding NFG pattern 

is a simple transition expressing the output string, as shown in Figure 3.9. 
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stuff $s; 

"You are carrying too much."; 

"Drop the ${s}."; 

Figure 3.8: Syntax for an Output statement. 

Vou are carrying too much. 

Figure 3.9: NFG structure for the first output statement in Figure 3.8 

3.4.2 Set Statements 

Several approaches are available to the programmer for changing the value of a par­

ticular state inside the game. As shown in line 14 a simple set of the you . kiUer state 

is expressed as +you. kiUer. This basic statement is considered a blind operation, in 

the sense that if the state is already true prior to execution of the statement the NFG 

output transition will be unable to fire and the execution will staIl, unable to activate 

the appropriate output context, as shown in part a of Figure 3.10. Using the blind 

set statement is perfectly valid when the value of the state is certain, but in the case 

wh en it is not surely false on input a safe set operation is also available. An example 

of a safe set is shown at line 13, with a schematic NFG generation as shown in part 

b of Figure 3.10; here two transitions are generated, one for the case of the incom­

ing state being false, and one that acts as an identity in the case that the incoming 

state is already true. Since states will be either true or false this guarantees exactly 

one transition will fire, and the output context will become appropriately activated. 

FinaIly, a toggle operation can be used to flip the state value, whatever its incoming 
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status. The NFG translation for aIl three forms of the set statement are displayed in 

Figure 3.10. 

a) Set: +x.y b) Safe set: +?x.y c) Toggle: '" X.y 

Figure 3.10: NFG structure for the 3 main variations of the set statement. Similar opera­

tions are defined for the symmetric unset operations, -x.y and -?x,y. Lines with two short 

Hnes intersecting represent context edges (Section 3.1) 

3.4.3 Move Statements 

Movement of objects is accomplished in a similar fashion to state manipulation; state­

ment 09 provides an example of a move statement, and Figure 3.11 shows the gen­

erated NFG. In general moving x from y to z involves deactivating the nodes corre­

sponding to "y contains x" and "z does not contains x" and activating the nodes 

representing "y does not contains x" and "z contains x." For move statements 

safe versions are not provided, primarily to help ensure efficient code generation. 

Safe versions of state changes are relatively efficient, requiring only two transitions 

to implement effectively. For move statements, however, aIl potentiallocations of an 

object x would have to be accommodated, and this could result in a much larger 

NFG output. Similar safe effects can be achieved through the use of an enclosing 

if-statement, as we describe below. 
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Figure 3.11: NFG structure for statement, '\nove x froID y to z". 

3.4.4 Counter operations 

As discussed in Section 3.2.4 counters are represented in unary, in a manner quite 

similar to basic object/room state variables. Modifying a counter is thus a simple 

manner of adjusting the appropriate subset of unary value states. Figure 3.12 shows 

an example of code generation for a counter increment following the semantics of the 

well-known "++" C / Java operator; a transition is generated to move each unary value 

to the next higher value, predicated on the unary value having a true state. Exactly 

one of these transitions will actually be executed at runtime. 

Figure 3.12: Counters. NFG structure for a counter increment. 
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Code generation for increment or decrement of a counter by an arbitrary constant 

value follows the same pattern, and increment or decrement by a variable value (an­

other counter) would be easy to add. The latter operations are not currently defined 

in the PNFG language, primarily to avoid the temptation by programmers to use 

non-trivial counter ranges and operations, given the potentially large code generation 

that can result in our simplistic, unary compilation strategy. 

A final concern in code generation for counters is how to han dIe overfiow and 

underfiow. Various approaches are possible, including error-generation or implicit 

application of modulus; in our case we have elected to make overfiow and underfiow 

operations identity functions. 

3.4.5 If Statements 

Branching is an essential feature of any significant programming language. In the 

PNFG language the narrative programmer can test for properties such as contain­

ment, state values, and counter jtimer values. The statement at line 03, for instance, 

checks whether or not the knife is contained in the player's inventory, and if so will 

execute lines 04-14. The NFG representation of a simple if-statement is shown in 

Figure 3.13. Conditional statements in general introduce distinct control fiows for 

the two branches, with only one of the corresponding contexts active after the test. 

A final output context is then generated for the merge of the two branches. 

The use of set variables in conditionals adds an extra complexity. The inten­

tion of a statement "if (x contains $y) { ... }" is that the body of the if-statement 

wou Id be executed if x contains any of the objects represented by the set variable $y. 

Moreover, within the if-statement body the variable $y would then be "bound" to a 

particular set member, and cou Id be referenced and used as a normal objectjroom 

reference. The NFG representation for this kind of set variable binding through if­

statements can be seen in Figure 3.14. Of course, this kind of compilation schema 

leads to redundant structures inside the generated NFG; under certain conditions this 

redundancy can be optimized away, as we will discuss in Chapter 4. 
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Figure 3.13: NFG structure for a statement, "if (x. y) { ... } else { ... }". Negative state 

tests ("x! . y") and positivejnegative containment tests are structurally identical. 

Figure 3.14: Using variables. NFG structure for a statement, "if ($x contains y) " 
where "$x" is an element of the set "{a,b}". Branch bodies and the following merge are 

not shown. 
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3.4.6 Actions 

The statements described above can be executed as part of three different constructs of 

the PNFG language, namely the initialization of the game, actions that are triggered 

by the user, and threads that are automatically executed after each action. We will 

now describe how actions can be constructed. 

In most IF systems the user enters commands using a naturallanguage interface, 

and discovering the appropriate language for an action can be a central, if often vexing 

part of the assumed game play. The PNFG language does not model this interface, 

and instead user commands are represented and derived from a simplified, canonical 

language. Actions in the PNFG language are defined by either a (subject,verb) or 

(subject,verb,object) declarations. When user input is received and matches an action 

declaration its underlying PNFG statements are executed. In its current version, the 

PNFG language assumes the subject of the action is always the player, represented by 

the room "you". Thus the user input "kill npc" triggers the action (you, kill, npc). 

The ability to define and use other subjects is intended to support concurrent game 

play, and is part of our future work. 

Basic action declarations such as in Figure 3.7 can be executed at any time, and 

are considered to have a global scope. A nice syntactic feature of PNFG allows for 

actions to be "scoped" to individual rooms by nesting their declaration within the 

room declaration. The action is then only available to the game player when she is 

located in that particular room. This feature turns out to be particularly useful when 

it cornes to en co ding the "map," or room connectivity inside the game, as shown in 

Figure 3.15. 

Encoding room-specific actions is straightforward; an action with subject s defined 

in room r is semantically identical to embedding the action within a statement "if (r 

contains s) { ... }". 
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room lighthousefront { 

(you,look) { 

} 

} 

"You are standing in front of the"; 

"lighthouse. From here you can travel"; 

"in the four cardinal directions."; 

(you,go,north) { 

} 

"You walk up to the mountain pass."; 

move you from lighthousefront to 

mountainpass; 

(you,go,east) { 

} 

"You step behind the lighthouse."; 

move you from lighthousefront to 

lighthouseback; 

Figure 3.15: Room-specific actions. These actions shadow global actions with the same user 

command specification, while the subject (you) is in the declared room (taken from [29]). 
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3.5 Syntactic Sugar Components 

The PNFG language, with the constructs presented thus far, allows for the expression 

of complex narratives, but certain parts of these narratives can be very tedious to 

write and usually involve code duplication. In this section, we present additional 

"syntactic sugar" components whose goals are to improve the usability of the high 

levellanguage and to limit the amount of code duplication that needs to be done. Our 

contribution includes the proposaI of these components and their implementation in 

the language. Note that we will continue to refer to statements from Figure 3.7. 

3.5.1 Variables & Sets 

Most of the basic PNFG statements can also accept set variables as object/room 

specifiers instead of specific objects. This contributes to reducing code redundancy 

inside the PNFG source file. In their simplest, unbound form the use of set variables 

causes the corresponding statement to be replicated, one copy for each possible in­

stantiation of the set variable, aIl sequentially linked in an arbitrary order. In the 

case of bound set variables, and as discussed in reference to the if-statement (and 

for-statement below), a set variable will represent a single, specific object or room, 

and compilation is identical to the case where the set variable is suitably substituted 

by the object/room name. 

3.5.2 For & Forall Statements 

Statement 07 shows an alternative method for replicating sections of code over multi­

ple objects, the jor-statement. The for-statement in the PNFG language will execute 

the body statements for each member of the set it receives in its declaration, bind­

ing a corresponding set variable for use in the body of the for-statement. The for 

statement in Figure 3.16a can be seen as a sequence of body executions, each with 

the set variable substituted by a different set element. The PNFG language also has 

a forall (Figure 3.16b) statement that allows for parallei execution via concurrent 

activation of transitions. This latter variation is provided primarily as part of future 

26 



3.5. Syntactic Sugar Components 

work on concurrency in IF games. 

FOR - START 

Generic Place Generic Place 1 - IN Generic Place n - IN 

Generic Place Generic Place 1 - OUT Generic Place n - OUT 

FOR - END 

a) b) 

Figure 3.16: a) U sing for execution of each case is sequential. b) U sing for- all execution 

of each case is parallel. 

3.5.3 Enter & Exit. 

When a player moves from one room to another, a good game design strategy is to 

have an output statement that informs the player that she is now in the other room, 

and/or has left the previous room-this acts as confirmation or essential feedback 

for the activity. This can of course be hand-coded at every player (you) movement 

statement; enter and exit blocks, however, simplify the effort by allowing us to define 

statements that are automatically executed when the player enter and exits a room. 

This not only reduces the code duplication, it also leads to code that is much easier 

to understand for the programmer. 

Enter / exit blocks have a relatively simple syntax, consisting of just a keyword 

and compound statement declaration, within the declaration scope of the relevant 

room, as shown in Figure 3.17. Semantically, an exit block is executed just prior to 
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the actual rnove, while the enter block is executed irnrnediately after the rnovernent 

is perforrned. 

room oldMillBack { 

enter { 

"You arrive in the backyard of the mill"; 

} 

exit { 

"You go back inside the mill."; 

} 

} 

Figure 3.17: Enter and Exit blocks. The statements in the enter block get executed when 

the player enters the room, while those in the exit block get executed when the player leaves 

the roorn. 

3.5.4 Threads 

Threads can be used to define sequences of PNFG staternents that will be executed 

after a player action has been fully executed. In the absence of threads these blocks 

of staternents would have to be copied after each and every action, which would in­

troduce severe code redundancy. Threads are usually executed unconditionally after 

each action (and order of thread execution is undefined); conditional threads, how­

ever, are also available and execute only if a specifie boolean condition is satisfied. 

Conditional threads effectively behave like "triggered" events, a cornrnon behaviour 

found in narrative garnes. Exarnples of unconditional and conditional threads are 

shown in Figures 3.18 and 3.19 respectively. Note that the behaviour of a condi­

tional thread can also be easily rnirnicked by an unconditional thread by rnoving the 

condition inside the thread body. 
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thread { 

you.rnoves++; 

if (you.rnoves==55) { 

"You have no more tirne."; 

+game.lose; 

} 

} 

Figure 3.18: Threads. After each move made by the player a counter is incremented; if the 

limit of moves has been reached the game ends with a loss. 

thread (bornb.active) { 

if (bornb.ticksLeft==O) { 

"bang!"; 

+game.lose; 

} 

bornb.ticksLeft--; 

} 

Figure 3.19: A canditianal thread declaratian. This thread only executes when the state 

bornb.active is true (taken fram [29]). 

29 



3.5. Syntactic Sugar Componcnts 

3.5.5 Timers 

In the previous section we addressed the issue of compiling counters into a corre­

sponding narrative ftow graph. It is also convenient to support the concept of self­

incrementing counters, or timers. Many IF games contain sections where the player 

has a limited number of moves to complete a certain task. Reproducing this be­

haviour with counters alone meant the programmer had to insert a counter increment 

statement after each action or to have a thread for incrementing counters, as shown 

in Figure 3.18. Timers obviate that manual specification, but are merely cou nt ers 

incremented automatically by an internaI, system-defined thread. An example of a 

timer declaration is shown in Figure 3.20. Timers begin at the minimum declared 

value, increment by 1 each turn after aIl user threads have executed, and as with 

counter overftow timers that reach the maximum value remain at that value from 

that turn onward. 

timer { 

moves 0 60 

} 

Figure 3.20: Declaration of timers. This block declares a counter for the number of moves 

made, beginning at 0 and reaching a maximum of 60. 

3.5.6 Functions 

Having functions in our high-Ievellanguage allows the programmer to isolate certain 

narrative behaviours. Functions are very useful when the programmer wishes to have 

actions that are available in more than one room but not all rooms, or just to reuse 

a particular behaviour. We have defined a set of replacement rules for each type 

of PNFG statement that allows one to pass parameters to defined functions, and 

customize their behaviour. Figure 3.21 illustrates the definition of a function that 

uses one parameter. At compile-time, each call to the function takePicture will 

be replaced by its statements, and photo at line 03 and 05 will be replaced by the 

parameter used in the function call. 
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01 function takePicture(photo) { 

02 if(you contains camera){ 

03 if(you contains photoalbum && photoalbum !contains photo){ 

"You took a picture"; 04 

05 move photo from offscreen to photoalbum; 

06 } } } 

Figure 3.21: Function declaration. This function can then be caUed in any action, and the 

actual function caU will be replaced by the fun ct ion body. 

3.5.7 Default Actions 

Actions defined within rooms are not typically intended to be available when the 

player is in other rooms. A player attempting to execute an action specific to room 

r in a different room s will thus find the action is silently ignored. This is fine and 

correct from a compilation perspective, but is clearly not particularly user-friendly­

at the very least there should be feedback to the player indicating that that the 

command entered is (currently) invalid. 

This can be easily accomplished by generating appropriate negative feedback ac­

tions in aIl rooms other than the ones in which a given room-specific action is defined. 

This is highly-repetitive, however, and so the PNFG also provides default actions to 

automate the process of emitting negative feedback. Default actions may be thought 

of as global actions, filling in the gaps introduced when there is no room-specific defi­

nit ion for an action in room s for a room-specific action defined in room r. The basic 

default action is to emit a simple response "What?" to an invalid user commando 

Syntax to allow further variation on the default actions wou Id be straightforward to 

include, and is part of our future work. 

3.6 Summary 

The goal of the PNFG language as a whole is to be able to analyze properties of 

game narratives, and to make the creation of complex narratives a much easier task 

than writing an NFG from scratch. The basic framework presented so far allows a 
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programmer to represent complex narratives which can then be compiled down to 

a Narrative Flow Graph. Many linguistic components are provided to reduce the 

amount of redundant code inside the PNFG source file, and improved the overall us­

ability of the PNFG language. Although these are effective and useful, unfortunately 

they are insufficient to generate highly minimal NFGs for the purpose of verification. 

In the next section we explore a variety of low-Ievel NFG optimizations designed to 

help further reduce the compiled output size and improve verification possibilities. 
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Chapter 4 

PNFG Optimizations 

The PNFG allows for a straightforward expression of game narratives, but the 

generated NFGs tend be very large, to the extent where the NFG generation pro­

cess for our largest example narrative would not terminate in a reasonable amount of 

time. Another side effect of producing large structures is that it becomes increasingly 

difficult to analyze them. In this chapter, we present the different optimizations we 

have applied to the PNFG translation pro cess in order to reduce the size of the gen­

erated NFG/Petri Net. By reducing the size of the output we can analyze properties 

faster, while also increasing the li mit on the size of narratives we can analyze using 

the NuSMV driven narrative solver we presented in earlier work [29]. 

Optimizations we will present fall into two categories, safe optimizations (Section 

4.1) and unplayable optimizations (Section 4.2). Safe optimizations simply mean that 

we are reducing the size of the compiled output while still functionally generating the 

same narrative, with identical execution behaviour. Unplayable optimizations imply 

that we remove certain statements and behaviours that are not necessary in order to 

correctly execute and verify the game, but which result in agame that is difficult for 

human beings to actually play. An example of an unplayable optimization we present 

is the removal of aIl output statements. 
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4.1 Safe Optimizations 

4.1.1 Redundant Transition Removal. 

PNFG sti:1tements can have complex interdependencies, not always fully captured and 

made disjoint by the language definition. Thus the corresponding NFG generation 

cannot easily take advantage of that dependency, and occasionally identical, redun­

dant transitions can be generated. This sometimes occurs due to our simplistic code 

generation for compound conditional testing, and can also occur as a consequence 

of the application of other optimizations, particularly sequence collapsing (described 

below). Removal of redundant transitions is shown in Figure 4.1, and is a well-known, 

standard optimization on Petri Nets. In our case we must further ensure that any 

textual output associated with otherwise identical transitions is also identical-this 

wou Id represent, however, an unusual and rare situation (concurrent output is tech­

nically possible in our system as a consequence of the use of the forall statement, 

but its value is unclear). 

Figure 4.1: Redundant Transition Removal. The two transitions on the left have the 

same inputs and outputs, and so accomplish the same task. One of the transitions is thus 

sufficient, and the other can be safely removed. 

4.1.2 Dead Code Removal. 

Generated code that cannot affect execution behaviour of the output NFG is func­

tionally useless, and can be safely removed. Such "dead code" can take the form of 

isolated places (nodes) or transitions, nodes that cannot contain a token, and which 
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do not constrain the firing of any conneded transitions, and symmetrica11y transitions 

which cannot fire, but do not constrain the presence or absence of tokens in conneded 

nodes. 

In actual Petri Nets, one must be very careful of the constraints mentioned above. 

Anode with no input transitions and no initial token can still have meaning by 

preventing its output transitions from actua11y firing. Given our code generation 

strategy, however, a11 transitions must be live (eventua11y, potentiaIly fireable from 

the initial markingJtoken-assignment), or the game execution will staIl-the "ftow" of 

a token through the context nodes must continue for the game to l'un properly. Thus 

anode which can never contain a token is necessarily "dead," and can be removed, 

as weIl as any output transitions connected to such anode. Similar logic applies 

to nodes that cannot be "emptied" of tokens-if a transition cannot fire, and is the 

only output from anode that contains a token, then, due to the 1-safe nature of the 

output, no input transitions to that no de can fire either. The schematic nature of 

these cases is shown in Figures 4.2 and 4.3. 

~ 
~' l " 

;: : ~ , 
Figure 4.2: Dead Code Removal. Nodes are dead if aIl inputs transitions are dead and no 

token exists, or if aIl outputs transitions are dead. Dashed arrows represent a link to a dead 

transition. 

Figure 4.3: Dead Code Removal. Transitions are dead if any input or output no de is dead. 

Dashed arrows represent a link to a dead node. 
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The removal of these dead portions of the code is done iteratively. First of aU, 

we mark aU places that are trivially dead~ones without any tokens and without 

any inputs (or that have only input transitions that are also output transitions), 

and on es which contain a token but have no outputs (that are not also inputs). We 

then repeatedly identify dead transitions as on es that cannot fire because an input or 

output place is dead, and nodes which are dead because aIl input transitions are dead 

or aU output transitions are dead. Once aU dead transitions and nodes are identified 

they are removed from the NFG output. 

4.1.3 Collapsing Sequences. 

As discussed ab ove , aIl sequences of transitions that share a context node must be 

executed in turn~failure to do so would result in execution stalling, violating the 

general principle we use of "moving" a single token from context node to context 

node in order to enforce control flow. 

This code generation property suggests a simple, and quite effective optimization 

for reducing the state space of the generated NFG: we can look for sequences of 

transitions connected by a single context node, and "coUapse" them into a single 

transition. This process is shown schematically in Figure 4.4. Here Tl and T2 are 

sequentially connected only through the context C-2; C-2 is itself not connected to 

any other transitions, T2 has only C-2 as a context input, and thus it is necessarily 

true that if Tl fires so must T2. Token movements based on T2 can thus be combined 

with the effects of Tl; in particular, inputs of T2 such as node B can become inputs 

of Tl, and outputs of T2 such as nodes D and C-3 can become outputs of Tl. The 

result is that transition T2 and context node C-2, as weIl as any other nodes that are 

both outputs of Tl and inputs to T2 are now isolated, triviaUy dead code, and can 

be deleted. 

There are a few min or complications to this pro cess not shown diagrammaticaUy. 

Any textual output associated with T2 must be of course appended to Tl, and nodes 

that are both inputs and outputs to both Tl and T2 must avoid being duplicated. 

Note that nodes cannot be just inputs to both Tl and T2, nor can they be just 
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outputs to both transitions-in either case this would disallow T2 from firing once 

Tl had fired. 

C-3 

Figure 4.4: Collapsing sequences of transitions. C-l, C-2, and C-3 are context nodes, while 

other nodes represent generic (non-context) input and output places. 

4.1.4 Code Commoning. 

Much of the "syntactic sugar" present in the syntax of the PNFG language is designed 

to help reduce duplication in code generation at the programmer/source level. A 

good example is the use of threads and timers, which would otherwise require many 

sequences of identical programmer code, and thus generated code at the end of each 

and every action specification. 

In early versions of implementing our code generation we treated these structures 

very naively, simply appending each thread and timer update after each action in the 

NFG representation. Current code generation is more efficient, treating these blocks 

of code as common code that can be combined into a single output representation, 

but reused from multiple input paths. This is in fact a general optimization strategy, 

and is shown in Figure 4.5. 
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Figure 4.5: Code Commoning. A, B, and C represent arbitrary code blocks, with A; C; 

forming one action and B; Cforming another action. In this case C can be easily commoned, 

with A and B redirected to a single instance of C. 

Commoning the tails of actions has the advantage that the termination of each 

action is known, and identical-we simply return to the idle state. However, it 

is also possible to common arbitrary sequences of code within actions, albeit with 

a little more effort and cost. Figure 4.6 shows an example of how to common an 

intermediate sequence of code found to be identical in two different actions. Note 

that in order to exit from the common code and return to the appropriate sequence, 

an extra "context" node must be generated for each sequence. This extra context 

will be filled in upon entry to the common code, and consumed to branch properly 

on exit. Thus in order to common code C we need to minimally generate two extra 

nodes. Reductions in code size due to this optimization must therefore be balanced 

against the extra costs and complexities of additional code generation, as weIl as of 

course the very significant cost of locating such common code. For these reasons 

we have not yet implemented this optimization in its full generality, and a detailed, 

experimental investigation of the relative benefits and costs of general commoning is 

part of our future work. 

As a specifie form of the above generalization, however, we have experimented 

with code commoning for simple functions. Functions with no parameters are es­

sentially common code where the programmer has already identified the common 

instance, and semantically suggested its value as common code as weIl. Parameters 

add greater complexity, and require extra contexts to identify the parameter variables 

if the function code is in fact common-a cost calculation becomes necessary to be 
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sure such common code really do es result in a reduced output size. For these reasons 

we currently only generate common code for O-parameter functions; other functions 

are implemented as macro-expansions. 

o 

Figure 4.6: Code Commoning. Only a single instance of code black C is really required; 

however, extra nodes are necessary ta ensure that upon exit from C control flows back ta 

the appropriate code block, either D or E, depending on whether C was entered from A or 

B respectively. 

4.1.5 No Not Nodes. 

Translating our output NFG ta a form consumable by the NuSMV solver relies on a 

few known facts in the PNFG language semantics. SpecificaIly, different (and disjoint) 

sets of nodes form "mutexes," in the sense that of aIl the nodes in a given mutex 

set only and exactly one will have a token. Partitioning nodes into mutexes allows 

NuSMV to search the state space much more efficiently than with a naive input 

specification. Our context nodes, for instance, form a mutex set, as does the set of 

nodes corresponding ta a given counter's value, and also the pair of nodes (positive 

and negative) generated for each object state variable. 

For object locations, our default code generation produces two nodes for each 

object in each location, as outlined in Section 3.2.1. Thus simple mutex generation 

implies a mutex set for each object/location combination, and this is our default 

mutex generation strategy. Objects in a PNFG program, however, can only be one 

room at one time, and must always be in one room. As an alternative then, we could 
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specify mutexes based on this property, producing much larger mutex sets, and fewer 

of them. 

In order to do this effectively we also need to change code generation: nodes 

representing the absence of an object in a location, or "not" nodes, are not defined 

or emitted. Moving an object x from location y to z then involves generating a 

transition relying on "x in y" as an input and producing "x in z" as an output, without 

requiring or modifying negative location state indicators. The main disadvantage of 

this technique is in the use of conditionals. In order to test whether x is not in y (or 

equivalently as the else-part of testing if x is in y), it is not possible to simply inspect 

the no de representing "x not in y." Instead, a whole collection of transitions must 

be generated, each inspecting "x in z" for every z # y. This is shown schematically 

in Figure 4.7. 

~ 
~ 

Figure 4.7: No Not N odes. A conditional must test aIl possible locations to determine 

whether to foIlow the negative location branch. 

Note that while the use of the "no not nodes" optimization (or alternative code 

generation strategy) may have a positive impact on the size and number of mutex sets, 

it has a negative effect on the number of generated transitions. In our admittedly 

40 



4.2. Unplayable Optimizations 

highly-limited experiments so far this optimization has a large measured effect on 

mutexes, but no obvious effect on NuSMV solution time, and so unlike the above 

optimizations it is not enabled by default. 

4.2 Unplayable Optimizations 

4.2.1 No Default Actions. 

Default actions, discussed in Section 3.5.7, provide the player with feedback when 

entering a command that is not defined for the current room. This is convenient from 

a human perspective; for verification, however, it generates an excessive amount of 

choice. Each default action is a potential branch for verification to consider~these 

choices accomplish nothing, and so can be quickly ruled out, but the sheer number 

of default choices nevertheless has a very large impact on verification cost. From a 

verification perspective an extremely effective optimization is thus to no longer gener­

ate default actions. Results we will show in Section 7.2 indicate that this verification 

impact is not well-refiected in the size of the output NFG~mainly because default 

actions are trivially small. 

4.2.2 No Output Statements. 

For automated, computer verification actual console output is obviously unnecessary~ 

a narrative can be analyzed and verified entirely by the actions accepted and the states 

reached, without need to examine or emit real output. 

From this perspective we can remove all output statements from the PNFG. In 

practice this means we convert output transitions to simple null-effect transitions, al­

lowing other optimizations (such as sequence collapsing) to perform more effectively. 

With no visible feedback human inspection of results naturally becomes more dif­

ficult, and actual game play by humans becomes extremely challenging, practically 

impossible in larger games. This optimization in particular is thus applied only to 

final, confidently bug-free versions of our PNFG compiler, optimizer, and example 
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narratives. 

Unplayable optimizations are applied if an appropriate command-line option is 

specified. Prior, safe optimizations are applied by default. In terms of verifying 

narratives, however, it is important to know the extent to which each of these opti­

mizations can or could contribute to making verification faster or more general. NFG 

size itself is not a perfect indicator, as suggested in our discussion of the elimination 

of default actions, but remains a primary heuristic. In the next section we investigate 

the impact of individual optimizations on the output NFG size. 
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Chapter 5 

A Heuristic Narrative Solver 

Previous attempts at solving game narratives [29], have used brute-force ap­

proaches on optimized representations of the narrative. As narratives become more 

complex, their corresponding state space grows exponentially and solving the game 

via a brute force approach requires significant computational resources. On the other 

hand, it might be possible to use extra information from a high level representation 

in order to reduce the se arch space. With that idea in mind, we developed a simple 

heuristic search that looks for a game solution. Our long term goal is to be able to 

derive complete solutions, even for complex narratives. 

In Section 5.1, we define the heuristic we use to simplify the search, and formally 

define our algorithm in Section 5.2. We will further explain the workings of the 

heuristic solver by applying it to an example narrative in section 5.3. At this point, 

the solution produced by our heuristic solver cannot be guaranteed to be optimal 

or complete. We will discuss these limitations in detail in Section 5.4. Section 5.5 

mentions the possible ways to extend our current approach. We also compare the 

heuristic sol ver to the other approach we have been using to solve narrative games in 

Section 5.6. 
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5.1 The Heuristic Defined 

The approach consists of looking at the pnfg source code of the narrative and finding 

where the game can be won and finding a sequence of actions that leads back to 

the initial state of the game. Our heuristic tries to build this sequence of actions by 

looking at the if statements in the high level PNFG source file. OveraIl, this approach 

is heuristic in nature because it assumes the conditions that need to be satisfied in 

order to win the game are independent from each other, and that they can be satisfied 

independently during gameplay. The heuristic will not perform weIl when dependent 

conditions exists, because it will not be able to properly order each action to produce 

a valid solution. 

5.2 Aigorithm Definition 

solverC) 

01 followConditionCgame.win) 

02 if the room Cr) of the first action of 

the solution is not the initial room 

03 followConditionCr contains you) 

followConditionCconditional statement) 

04 For each condition of the conditional statement: 

05 Find the statement that make the condition satisfiable 

06 For each statement found: 

07 add the action in which 

08 

09 

10 

11 

it is contained to the solution 

if the statement is in a conditional C 

and Chas not been seen 

mark C as 'seen' 

followConditionCC) 

el se return 

Figure 5.1: Heuristic Solver Algorithm 

We start by looking for the statement that sets the state game. win to true 
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(+game.win). If agame can be won, then this statement must be present in at 

least one action definition, inside the PNFG source file. The function call followCon­

dition( game. win) will look at the bodies of all room actions of the game, searching 

for the +game.win statement (Statement 05). 

Wh en this statement is found, the action that contains it is added to the solution 

(Statement 07). We then check whether or not that statement was enclosed in a 

conditional statement (Statement OS). If that is the case, we must now look for the 

statement that, once executed, will satisfy the condition needed in order to go into 

the branch that contains the statement that sets game . win to true. 

We continue following conditions until they have all been satisfied. To avoid 

looping infinitely, we follow a given condition only once (Statement OS). We th en look 

at the room r that contains the last statement to have been added to our solution 

and compare it to the room where the player starts the game. This initial room will 

be the room s in the statement move you from offscreen to s that must be present in 

the start action of the PNFG source file. If ris different from s (Statement 02), our 

solution is not complete. We must then find actions that will move the player from 

the starting room of the game to the room where the first action of our list can be 

executed. This is done by creating a new condition (room contains you) and calling 

the followCondition function (Statement 03). As a result, we will have constructed 

the full solution from the starting room to winning the game. 

In the event that a particular condition is composed of a logical operator (AND or 

OR) the two parts (cl satisfied by s1 and c2 satisfied by s2) will be treated indepen­

dently. In the case of an OR, our solution will suggest doing s1 or s2. Wh en it is an 

AND, we have no way of determining the or der to place s1 and s2. We cannot guar­

antee the validity of the solution anymore. This is the behaviour we were referring 

to in Section 5.1 wh en mentioning the solver does not perform weIl when there are 

dependent conditions. 

From this heuristic approach, we see the emergence of a naive game decomposition. 

Our heuristic assumes that the entire game can be decomposed into two sections, the 

first being A: Get to the room where we can start executing a series of actions that 

lead to winning the game, and B: execute these actions to win the game. 
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5.3 Solving an Example Narrative 

Consider the following game narrative in Figure 5.2. We will now demonstrate how 

our heuristic solver would go about finding a solution for this narrative. Internally, 

we are building a solution tree that reflects the different uncertainties in our solution 

that appear when we deal with conditional statements that use logical operators. 

01 start { 

02 move you from offscreen to street; 

03 } 

04 room street { 

05 (you, enter){ 

06 move you from street to pub; 

07 }} 

08 room pub { 

09 (you,takeoutmoney) { 

10 if(you.cool Il you contains wallet) { 

11 move money from offscreen to you; 

12 } } 

13 (you,takeoutwallet) { 

14 move wallet from offscreen to you; 

15 } 

16 (you,relax) { 

17 +you.cool; 

18 } 

19 (you,talk) { 

20 "Hello ladies"; 

21 if(you contains money) { 

22 +game.win; 

23 } else { 

24 +game.lose; 

25 } } 

Figure 5.2: Srnall narrative that uses a conditional staternent. 

We first start with a root for our solution tree. 
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Figure 5.3: Initial configuration of solver graph 

Searching for +game.win, we find it in the action (you, talk) of the room pub, 

so we add this action to the solution (Figure 5.4). Thus it me ans that (you,talk) in 

the room pub is the last command the player will need to execute to win the game. 

Because the +game. win statement is enclosed in an if statement, we now look for the 

statement that will satisfy the condition (you contains money). 

Figure 5.4: The action (you,talk) is added 

To satisfy the previously identified condition, we need to find any statement that 

moves the object money from any room 'r' to 'you'. Looking at the example in Figure 

5.2, the only statement that satisfies the condition is 'move money from offscreen to 

you', from executing the action 'takeoutmoney' in the room 'pub' (Figure 5.5). 

(you,takeoutmoneyJ 
in pub 

Figure 5.5: The action (you,iakeouimoney) is added 

Again, that statement is enclosed inside an if statement, but this time, the if 

statement has two conditions. We simply consider the two conditions independently, 

and we will add the actions that satisfy the condition as branches in our solution, 

illustrated by Figure 5.6. 
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(you,takeoutmoney) 
in pub 

(you,relax) 
in pub 

Figure 5.6: The actions that satisfy the conditions of the OR have been added. 

This effectively concludes the first section of our solution, and we must now de­

termine the initial room. In our example, the room street is our initial room. We 

now look at the rooms where the first actions of our current solution take place and 

determine whether or not they correspond to the initial room. In both cases, the 

player must be in the room pub. We create a condition (pub con tains vou) and find 

that the action enter in room street will satisfy the condition. Since the action is 

in the initial room, the sol ver terminates and we are left with the solution in Figure 

5.7. 

(you,takeoutmoneyJ 
in pub 

(you,relax) 
in pub 

(you,enter) 
in street 

...... 
............. 

(you,takeoutwalletJ 
in pub 

(you,enter) 
in street 

Figure 5.7: The action to get from the initial room to pub. 
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5.4 Limitations 

In its current form, the solver does not keep track of the current game state, and this 

information would certainly allow it to perform better. For example, the solver will 

not be able to detect a looping sequence of statements for the solution, and a given 

non-movement action cannot appear more than once in the game solution. A side­

effect of this limitation is that we maintain a list of conditional statements we have 

already visited (Statement 04 in Figure 5.1). We avoid visiting the same condition 

twice, but in practice, a certain condition might need to be evaluated many times, 

especially when dealing with counters. 

The sol ver ignored aIl threads and timers, as weIl as global actions. This limitation 

was mainly motivated by the fact that most of the example narratives available to 

us do not use these features, or if they do, they play secondary roles in the narrative 

and are not required to win the game. Also, the heuristic solver in its current form 

was meant to be a proof of concept exploring the possibilities and overall usefulness 

of high level information as a way of solving games, as opposed to the brute force 

approach of the NuSMV model checker. 

5.5 Possible Extensions 

Maintaining information about the game state as we se arch for a solution would allow 

us to generate solutions for more complex narratives. Since this algorithm is a result 

of wanting to make use of extra information available to us, maintaining agame state 

for each part of the solution seems like the next logical step if we were to extend the 

solver. 

Another possibility would be to use our heuristic approach to generate hints in 

real-time during gameplay. Using the current game state, the solver could check which 

conditions need to be met in order to move doser to the game winning action and 

then indicate the action that needs to be executed next. The number of conditions 

that have been satisfied at a given point in the game could be used as a measure of 

the player's progress in the game. 
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Finally, an easy way to resolve some uncertainties in our solution would be to 

verify the solution by simply playing it automatically. As we have seen, the solution 

tree can have more than one action at a given level, but it might be the case that 

only one of these actions applies when we play the game. 

5.6 Heuristic Solver Versus NuSMV 

The heuristic solver presented in this section was developed as an alternative to our 

other method of building narrative game solutions automatically, using the NuSMV 

symbolic model verifier [9]. NuSMV uses a very efficient Binary Decision Diagram 

(BDD) [8] representation to reduce the state space of the input it receives, which 

allows it to analyze larger problems. One of the properties it can derive is reachability, 

which is exactly what we try to accomplish when looking at a NFG representation in 

order to find paths that lead to winning. 

The problem we rapidly encountered with this approach is that the size of NFGs 

grows to be very large as the narrative increases in size and complexity. As a result, 

the NFG we feed to NuSMV is simply too big, and cannot be analyzed formally. 

Still, neither of the two approaches should be ignored and we will now analyze their 

different strengths. 

N uSMV is a highly generic solver and has been applied to a wide variety of problem 

domains, which gives us a lot of related work from which we can probably find some 

ways to further optimize our representation. Also, NuSMV will produce the game 

solution which has the fewest number of moves, while our heuristic solver cannot 

guarantee that the solution it finds is minimal, or even in the right order. Using this 

model checker makes it very easy to identify dead code in si de the representation we 

give it, since dead code is also a reachability problem. 

NuSMV is not able to find solutions for large narratives, because we are using the 

full representation of the game as the input. For our heuristic solver, we focus on the 

dependencies between conditions that originate from the +game. win set statement. 

This represents the fundamental difference between the two approaches: NuSMV uses 
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a rigorous approach to find the minimal solution, while our sol ver uses a heuristic 

algorithm to give a solution that represents an indication of what the player needs 

to do in order to win the game. AIso, the heuristic sol ver operates on the PNFG 

source file, which allows it to use an abstract representation much smaller than the 

corresponding NFG, especially with the PNFG language improvements we presented 

in section 3.5. 

Another important difference between the two approaches are the resources needed 

for their execution. The heuristic solver only operates on the PNFG source file, which 

makes it very fast and very compact. NuSMV deals with a compact representation 

of the full state-space of the narrative. As a result, the model checker has very 

high memory requirements, and is very slow to produce a solution, even for small 

narratives. We will show the differences in execution time in our experimental results 

(Section 7.3). 

In its current implementation, our heuristic sol ver is still in its early stages, but 

it plays a very important role in our narrative analysis research. It allows us to 

determine the benefits of using high level information to rapidly find a solution, as 

opposed to a costly brute-force method. The best solution is probably a combination 

of both approaches, where we would use a rigorous solver that operates on a highly 

reduced version of the game narrative to pro duce the minimal solution, as shown in 

Figure 5.8. 

- Heuristic 
-Domain 
specifie 

- PNFG Level 
- Outputs a 

possible 
solution 

,l·······----····_··············8
USMV 

- Complete 
- Generie 
- Well-understood 
- NFG level 
- Outputs a 

valid minimal 
solution 

- Limit on size of 
input narrative 

Figure 5.8: The different advantages of each the two solving approaches we use. 
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Chapter 6 

Narrative Metrics 

The underlying goal of developing the PNFG framework has always been to derive 

properties about game narratives. We have developed a metrics framework that uses 

information found in the PNFG high-level representation of narratives in order to 

derive interesting properties about these games. For example, we wish to analyze the 

number of possible actions available to the player during the game, in order to look 

at the convexity of the game. We will present this framework in Section 6.1, and then 

look at the different metrics we measure in Section 6.2. 

6.1 Metrics Framework 

Below we discuss the design of our met ries framework and how it operates with 

the PNFG system. This interaction allows us to use high-level information about 

narratives that was previously ignored when doing analysis. The framework itself 

gives us a representation that is much easier to work with than dealing directly with 

PNFG source code, or the corresponding NFG. We will now go over the details of 

this framework by explaining the GameTree representation we use to derive metrics, 

and the role of each component of our framework. 

An overview of the metrics framework can be seen in Figure 6.1. The high-level 

intermediate representation used internally by the PNFG compiler is also used by 

the metrics framework in order to build a GameTree which is then fed to the metrics 
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analyzer. From this representation of the game, we can then derive different metrics, 

pro duce an html report containing aIl the results, as weIl as a graphic representation 

of the GameTree, which is generated using the dot [15] tool. 

PNFG Compiler 

High-Level Intennediate 
Representation 

Metrics Framework 

Game 
Tree 

Metrics 
Analyzer 

Figure 6.1: Metrics Frarnework Overview. 

The need for a new representation of the narrative originated from the metrics we 

wanted to measure. Deriving metrics from a Narrative Flow Graph is certainly possi­

ble, but we wanted to have a representation that still contained high-Ievel information 

in an organized manner to make the metrics development much faster. 

6.1.1 The GameTree Representation 

The first stage of metrics analysis consists of building a GameTree, which corresponds 

to a tree representation of aIl possible action paths from the start of the narrative to 

winning or losing the game. This structure is composed of GameN odes, representing 

the game state in terms of the values of aIl variables in the game, and GameEdges, 

which symbolize actions executed by the player. The relationship between these 

elernents is shown in Figure 6.2. We will now describe the different components 

that are used to generate this representation (Figure 6.3). As we go along, we will 

also explain how the generation of the GameTree takes place. Note that currently, 

the generation process of the GameTree ignores default actions, threads, and timers, 

which contribute to a large state explosion and prevent us from deriving any metrics. 

GameTree Loader 

Internally, the GameTree is represented by a set of GameNode objects. The Ga­

meTree Loader is responsible for building the GameNodes that represent the game 
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GameTree 

1 

i GameEdge 
___ ••••• / (Backward) 

GameEdge 
(Unnecessary ) 

Figure 6.2: Elements of a GameTree. 
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Figure 6.3: Metrics Framework Components. 
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narrative. We use the high-Ievel intermediate representation of the PNFG compiler, 

which contains all the game construct definitions. Starting from the start room, it 

will do a breadth-first search traversaI of the game space. In this GameTree we are 

building, the edges represent the execution of an action, and the nodes represent a 

particular game state. 

A very important detail to note, we do not allow a particular GameState to 

be repeated in our GameTree. We discuss handling these redundant states in our 

description of GameEdges. 

Game State Factory 

When an action is executed, it may lead to a new GameState or to astate that has 

previously been encountered. So, before a GameNode is actually created, we need 

to evaluate the GameState that this node will represent. This is done by the Game 

State Factory, which receives the current GameState, and updates it by evaluating 

each statement of the action. In practice, we are playing the game and evaluating 

every possibility by interpreting the statements of the action. We start by creating 

a GameState that contains all the game objects, and an the game rooms with the 

default values for each of their properties. We also keep track of an the GameStates 

seen so far, and if a GameState as already been encountered, it is discarded, and no 

GameNode is created. This ensures termination of our tree-building algorithm. 

GameState and StateObject 

The GameState is composed of two sets representing all the objects, and an the rooms 

respectively. Inside these sets, we store StateObjects, which act as containers for the 

current state of either an individu al room, or an individual object. Each StateObject 

has a name and a specifie location that corresponds to the room in which it is currently 

contained . AIso, a StateObject has a set of properties where each entry has the name 

of the property and its value. This representation of the GameState, shown in Figure 

6.3 is structured very similarly to the PNFG source code, and retains its straight 

forward organization. 

GameNode 

As mentioned previously, a GameNode represents a unique GameState. It has a link 

to its parent, as well as a list of GameEdges, which represent the possible actions 
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that can be executed at this particular node. 

GameEdge 

Having a GameEdge object defined explicitly gives us more ftexibility, and allows us 

to have edges with more information in the GameTree we are producing. We have 

defined three different types of edges: forward, backward, and unnecessary (see Figure 

6.2). When a GameNode is successfully created, we add a forward edge that goes 

from that new node's parent to the new node, and store that edge in the parent's 

li st of edges. When a GameState is found to be identical to another one previously 

created, we first consider the GameState's level in the GameTree. If it is found to 

be at the same level than the original state, we create an unnecessary edge, since the 

same GameState can be reached using another path in the graph. If the redundant 

state's level is lower than the original state, we create a backward edge that goes to 

the GameNode that has the original GameState. Since we traverse the game in a 

breadth-first search manner, this ensures that for a given state, we will create the 

GameNode for its first occurrence in the closest position to the root of the tree. By 

definition, the total number of forward edges will always be one less than the total 

number of GameN odes. 

GameTree Generation 

In our description of each GameTree component, we have briefty eXplained the details 

of the generation of the tree. You will find a complete description of this process in 

Figure 6.4. 

6.2 Narrative Game Metrics 

In the following section, we will present the different metrics we are currently able to 

measure using our metrics framework. 

6.2.1 Edges to Nodes ratio 

The edges to nodes ratio is a metric that allows us to quickly have an idea of the shape 

of the GameTree, and also hints a certain complexity in the narrative. A higher node 
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buildGameTree 0 

01 Build initial GameNode g 

02 loadFromAction(start,g) 

03 while(queue is not empty) 

04 loadFromAction(dequeue(» 

loadFromAction(Action a, GameNode g) 

01 Using a, update the GameState s, found in g 

02 if s already exists 

03 if the level of s is equal to that of 

the original state 0 

04 create an 'unnecessary' edge e from g to 

the GameNode associated with 0 

05 else 

06 create an 'backward' edge e from g to 

the GameNode associated with 0 

07 else 

08 create new GameNode g' with g as parent 

and s as state 

09 create a 'forward' edge e from g to g' 

10 for aIl the actions a' available in g' 

11 enqueue( (a' ,g') 

Figure 6.4: GameTree Building Algorithm 
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count indicates a large narrative, while the number of edges represents the number of 

actions. Therefore, as the ratio becomes bigger, it means that there are less actions 

that have an impact on the game state. 

6.2.2 Forward to Backward edge ratio 

Our metrics framework allows us to easily differentiate between edges that lead to 

a new game state, and those that bring the player back to a previously encountered 

state. If there are much more backward edges, it probably equates to a complex 

game, sin ce many actions will not make the narrative progress. 

6.2.3 Convexity 

The concept of convexity as a way of analyzing game narratives has been presented 

in [30], but no actual data has been presented to show that convexity can be actually 

observed in game narratives. The idea behind convexity is that number of possible 

choices the player has st arts out small, increases, and then converges to winning of 

the game. 

In [30] the concept was presented from a very high-level perspective, where the 

term convexity represented what was being referred to as the classical game structure, 

as shown in Figure 6.5. An actual measurement for convexity was not provided, and 

the authors did not address the fact that most narratives have "useless" actions 

that do not move the player closer to winning the game. While convexity looks to 

analyze the number of choices available to the player, the description from [30] does 

not mention if that number corresponds to the number of choices from the entire 

narrative, or if it is limited to one play sequence. It could also represent the average 

number of choices the player has after having entered a certain number of commands. 

It was also argued there that this convexity structure could be serialized through­

out a game as a series of "levels", "acts", or "worlds" (Figure 6.6). One of our goals 

in analyzing game narratives has been to look for chapters inside games, and the de­

tection of these chapters could be possible using such a convexity metric, that focuses 

on shape of the narrative. Since no standard measurement of convexity exists, we will 
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Figure 6.5: A convexity, as defined in [30] 

use two different measurements. First, we count the total number of GameNodes at 

each level in the tree, where a level is the number of actions that have been executed 

to get to a certain GameNode. The second one consists of looking at the convexity 

of individual winning paths, and we will discuss the details of this approach in the 

next section. 

Figure 6.6: A series of convexities, as defined in [30] 

6.3 Analyzing Winning Paths 

From our first experiments with measuring metrics, we found out that our example 

narratives have more than one solution, which we define as Game Winning Paths 

in terms of the GameTree. More precisely, aGame 'Nïnning Path is a sequence 

of actions going from the start no de to a winning node, and in which aIl actions 

affect the game state. AIso, aGame Winning Path cannot visit the same game state 

59 



6.3. Analyzing Winning Paths 

twice. In the event where no such path could be found, we can declare the game as 

being unwinnable. The metrics framework we are using allows us to pro duce a tree 

representation of our game, and using forward edges, we can easily track down paths 

that lead to winning the game. Using these game winning paths, we look to further 

analyze the overall narrative. 

6.3.1 Convexity of Winning Paths 

Wh en we analyze the shape of the GameTree, it can be hard to find a weIl defined 

pattern like that of Figure 6.5, because many "useless" actions give false positives 

wh en measuring convexity. By focusing on game winning paths individually, we look 

to analyze their convexity as weIl. This is the second convexity measurement we 

referred to in the previous section. To measure convexity, we again count the total 

number of GameNodes at each level in the tree. 

6.3.2 Subsets and Supersets 

In most case, there are many solutions to a game, but since we keep track of the full 

game state, many solutions can be very similar, to the point where they only differ 

due to the player having a non-essential item in his inventory or not. By keeping track 

of the subsets and supersets of each game winning path, it becomes much easier to 

draw links between each path. Figure 6.7 illustrates this relationship between paths, 

where anode represents a particular game winning path, and an arrow indicates the 

source path is contained in the destination solution. 

6.3.3 Analyzing the Shortest Winning Path 

While the length of the shortest Game Winning Path can give us an idea of the 

complexity of the game, we will also look at the effects of changing a si de quest from 

being optional to mandatory. Our goal is to determine if we can isolate game quests 

by looking at the actions that make up the short est game winning path. 
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Figure 6.7: Dependencies of Game Winning Paths for Return ta Zark, chapter 1. 
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Chapter 7 

Experimental Results 

The experiments we have done with our system consist of measuring the effects 

of the different optimizations, looking at the quality of the solutions produced by 

our heuristic solver, and measuring the different metrics we present. We also analyze 

the different Game Winning Paths, and make observations about the solutions of the 

games we used for our experiments. We will first describe the example narratives we 

have used for our experiments in Section 7.1, and then proceed with the results for 

our optimizations (Section 7.2), heuristic solver (Section 7.3), and metrics (Sections 

7.4 and 7.5). 

7.1 Example Narratives 

To test our system we have used four different game narratives, ranging from from very 

small to fairly large. We will present each game along with their different properties 

and usefulness in our experiments. We will also present maps of each narrative, which 

have been generated using the PNFG compiler to get the list of actions that move 

the player, and the dot directed graph generation tool [15]. In theses maps, the nodes 

represent the different rooms in the game and an edge indicates that it is possible to 

move from room a to room b using the command that appears on the edge, near the 

source node. For example, in Figure 7.1 the player can move from the cloakroom to 

the foyer by entering the e command, assuming that the current game state satisfies 
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aIl conditions that apply to this movement. We will also calI on Tables 7.1 and 7.2 

(page 68) for data on the main properties of each narrative. We played through our 

implementations of theses narrative manuaIly to ensure winning was possible. 

1) Cloak of Darkness (CoD), acts as our base case in aIl of our experiments, and it was 

originaIly designed to be an example that would help programmers learn the syntax 

of various IF toolkits [14]. In the game (see map in Figure 7.1), the player st arts 

by wearing a cloak, and as long as she is wearing it, the bar remains in darkness. 

The player can score a point by hanging the cloak in the cloak room at which point 

the bar becomes lit, and score another point by reading a message in the bar once 

it has been lit. Every time the player executes a non-movement action or an invalid 

movement action in the darkened bar, a counter is incremented. If the value of the 

counter is above a certain limit, reading the message cannot win the game. 

Having only three game objects and three game roOlUS, CoD can be classified as 

being very simple. On the other hand, it has aIl the basic features we find in works of 

IF, such as room and object interaction, player movement, actions which have non­

local effects, object with states, as weIl as some counting. The game map of CoD can 

be seen in Figure 7.1. We also include a more detailed version of CoD that heavily 

relies on the use offunctions and global actions in CoD (tune). The PNFG and NFG 

data for both version of CoD can be seen in columns 1 and 2 of Tables 7.1 and 7.2. 

Figure 7.1: Map for Cloak of Darkness. Taken from [29] 

2) Return to Zork (RTZ) [5] was released in the midst of the CD-ROM era of narrative 

games, and heavily relied on the use of video and sound to deliver to st ory. It is set 

in the same world as its prequel, the IF classic Zork [20]. While CoD was chosen for 

its overall sim pli city, representing RTZ in PNFG source code was motivated by the 

foIlowing two reasons. First of aIl, it gave us the opportunity to verify the feasibility 
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and challenges of translating a multimedia game into a strictly text-based game. AIso, 

RTZ has previously been divided into chapters [36], another narrative game feature 

that interests us. We will be using the first two chapt ers of the game. 

2.1) Return to Zork - Chapter 1 (RTZ-Qi) is a fairly simple narrative where the 

objective consists of building a raft in order to reach the town of West Shanbar, while 

avoiding the deadly Road to the South (See Map in Figure 7.2). We also include an 

alternate version of the first chapter, RTZ-Qi (bonding), where the object bon ding 

plant must be present in the player's inventory in order to win the game. Also the 

bonding plant must be alive, which is accomplished in the game by digging the plant 

as opposed to cutting it. In the original game, the bonding plant is not required 

to finish the chapter, but the player needs to have it in order to eventually win the 

game in the final chapter. The data for both versions of the narrative can be found 

in columns 3 and 4 of Tables 7.1 and 7.2 respectively. 

Figure 7.2: Map for Return to Zork - Chapter 1 Taken from [29J 

The underlying goal of having this modified version is to analyze the impact of 

adding a requirement to winning the game. To accomplish the goal of having the 

bonding plant in his inventory, the player must first pick up a rock and throw it at 

the vulture that guards the plant. In the original RTZ-Qi, the action of picking up 
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the rock was implemented in the PNFG source file as the global action take. Since 

our heuristic solver and metrics framework ignore global actions, we added special 

versions of two global actions take and drop in the room mountainpass. These 

versions only deal with the object rock, and it allows our metrics framework to 

detect the needed actions to win the game. We will discuss the impact of making this 

side quest mandatory in Section 7.6. 

2.2) Return to Zork - Chapter 2 (RTZ-02) is more complex than the first chapter, 

because the player must take part in a drinking game, where a series of commands 

must be executed the right number of times in order to get a key that leads to the 

next chapter. The map of the narrative in Figure 7.3 reveals that the different drawers 

of a filling cabinet were represented as individual rooms. When a player consults a 

file, a set of output statements is used. This a very good example of actions, and 

rooms that do not affect the game state, because reading the different files is optional. 

Column 5 of Tables 7.1 and 7.2 show the basic PNFG and NFG data. 

3) The Count (Count) [3] is a famous work of interactive fiction by Scott Adams where 

the player must confront count Dracula. It is particularly interesting for us, because 

it is fairly complex, to a point where we cannot currently solve it automatically with 

our system. In terms of number and rooms and objects, The Count is not much 

bigger than the second chapter of RTZ, but its NFG data from column 6 of Table 7.2 

reveals that it is much more complex than any of the example narratives. 

Many of the language enhancements we presented have been added in order to 

facilitate the representation of The Count in PNFG source code. As a matter of fact, 

we can see in column 6 of Table 7.1, that the narrative uses aIl the PNFG language 

features, such as threads, timers, and functions. Figure 7.4 shows a map of the game. 

The game itself contains properties we wish to be able to verify automatically using 

our system. For example, the game can become pointless wh en the player los es an 

essential item, or when a certain timer runs out. The Count also has sorne logic ftaws, 

a narrative consistency problem we also wish to be able to determine. In terms of 

finding the solution automaticaIly, the 180-step solution of The Count represents a 

long term target for our system, and will also motivate further exploration of more 

efficient ways to solve narrative games. While The Count is too large to be used in 
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Figure 7.3: Map for Return ta Zark - Chapter 2 Taken fram [29] 

most of our tests, the task of representing it with PNFG has already yielded several 

optimizations, and it will certainly continue to be a great source of improvements in 

the future. 

Using AIternate Versions of Example Narratives 

For the optimization results, we only considered the "complete" version of each 

narrative. We have therefore ran our experiments on CoD(func), RTZ-Qi, RTZ-Q2, The 

Count. The alternate versions of CoD and RTZ-Qi will be used in our results for the 

heuristic solver and metrics. We needed CoD for the solver and metrics experiments 

because these two modules currently ignore global functions, which CoD(func) uses 

extensively. 
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Figure 7.4: Map for The Count. Taken from [29] 

7.2 Optimization Results 

General statistics about each narrative are shown in Tables 7.1 and 7.2. The "BDD 

Booleans" gives the sum of fIog21mll for aIl mutex sets m in the NuSMV representa­

tion; this gives a rough sense of narrative complexity (in conjunction with the number 

of transitions), and also an indication of the size of the state space that may have to 

be searched for each game. BDD boolean values themselves are most dramaticaIly 

affected by the no not nodes optimization, and so for the optimizations we investigate 

below we concentrate on transition and node changes. 

Methodology for results 

Since the optimizations build incrementaIly on one another, and thus have large 

interdependencies, a separate analysis of each optimization would be misleading, and 

moreover would not sum to the total effect of applying aIl optimizations together. 

Instead we generated an NFG using aIl the implemented safe optimizations (except 

for "no not nodes"), and then tested the impact of each one by removing it from that 

aIl-inclusive optimization. We also considered the incremental impact of available 
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property CoD CoD RTZ-Ol RTZ-01 RTZ-02 Count 

(fune) (bonding) 

rooms 4 4 10 10 21 22 

objects 1 1 19 19 36 29 

threads 0 0 0 0 0 8 

timers 0 0 0 0 0 4 

funetions 0 20 2 2 2 1 

global actions 1 15 5 5 4 29 

PNFG lines 218 535 563 583 1133 1966 

steps to win 6 6 6 11 19 180 

Table 7.1: Basic PNFG data on example narratives. The number of steps to win has been 

calculated From the optimal solution, except in the case of The Count, where we cannot 

guarantee our solution is optimal, because we cannot solve it automatically yet. 

property CoD CoD RTZ-01 RTZ-01 RTZ-02 Count 

(fune) (bonding) 

places 123 274 965 944 1764 12603 

transitions 147 335 1498 1470 3806 40762 

BDD booleans 25 29 181 175 241 686 

verifiable yes yes no no no no 

Table 7.2: Basic NFG data on example narratives. Each graph was generated using aIl the 

optimizations available. We will present the effects of each optimization in Section 7.2 

unplayable optimizations such as the removal of output statements and exclusion of 

default actions. 

EfFects of Redundant Transition Removal 

Table 7.3 shows the impact of the basic redundant transition removal optimization. 

Unsurprisingly, sinee this optimization affects only transitions, there is no change in 

the number of nodes. Number of transitions, however, is significantly improved, up to 

a little over 31% in RTZ chapter 2. Unfortunately, the largest narrative (Count) does 

not show an equally large or larger improvement, mainly due to its more complex 
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CoD RTZ-01 RTZ-02 The Count 

(func) 

Places 274 965 1764 12603 

Difference 0% 0% 0% 0% 

Transitions 347 1882 5538 46921 

Difference 3.5% 20.4% 31.3% 13.1% 

Table 7.3: Effects of redundant transition removal on NFG Bize 

control structure. 

Effects of Dead Code Removal 

CoD RTZ-01 RTZ-02 The Count 

(func) 

Places 278 986 1800 12714 

Difference 1.4% 2.1% 2.0% 0.9% 

Transitions 338 1564 3951 41021 

Difference 0.9% 4.2% 3.7% 0.6% 

Table 7.4: Effects of dead code removal on NFG Size 

Dead code removal has a disappointingly minimal impact. From Table 7.4 the lack 

of dead code removal only results in a narrative (NFG) between 1% and 4% larger 

than a fuIly-optimized version. In a general sense the programmer will of course 

write statements that are designed to be executed at sorne point, and so de ad code 

should be minimal. Most identified dead code is likely due to programmer errors or 

imprecision in specification of sets. As weIl, even for objects or game events that are 

not actually used in a significant or important way, the existence of feedback messages 

or other error handling within the game will result in otherwise unnecessary nodes 

and transitions being conservatively identified as live. More aggressive "useless" as 

opposed to actually dead code identification would likely have a much larger impact, 

and is one of our main directions for future work. 
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Effects of Collapse Sequences of Transitions 

CoD RTZ-01 RTZ-02 The Count 

(func) 

Places 440 1742 3421 20885 

Difference 37.7% 44.6% 48.4% 39.7% 

Transitions 501 2275 5463 49044 

Difference 33.1% 34.2% 30.3% 16.9% 

Table 7.5: Effects of Collapse Sequences of Transitions on NFG Size 

The sequence collapsing optirnization has a fairly large impact on garne narratives. 

Table 7.5 shows that the nurnber of nodes are reduced by 38%-48%, and transi­

tions by 17%-34%. This very nice effect is of course to be expected given our naive 

code generation~NFG output for each staternent is generated in isolation, and so 

non-branching sequences of PNFG staternents will naturally translate to sequences 

suitable for optirnization. Better results are obtained on both Cloak of Darkness and 

the Return to Zork garnes. This is to sorne extent likely due to the fact that these 

garnes, as opposed to The Count) have a lot of dialog, often coded as rnulti-line output 

staternents. 

Effects of Code Commoning 

CoD RTZ-01 RTZ-02 The Count 

(func) 

Places 319 3401 15201 -

Difference 14.1% 71.6% 88.4% -

Transitions 413 6452 25209 -

Difference 18.9% 76.8% 84.9% -

Table 7.6: Effects of code commoning on NFG Size 

Table 7.6 shows that code commoning can provide quite spectacular results. Size in­

creases of up to 89% of nodes and 85% of transitions are possible without cornrnoning, 
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and for The Count code commoning is in fact essential for producing any output in 

a reasonable time. 

The main source of this benefit is in how the code for actions is generated. For 

simplicity in code generation, each room includes a specific copy of the code for 

every possible action-in larger narratives with many rooms and many possible user 

commands this can have a very significant cost. Code commoning allows the bodies 

of identical actions to be reused, effectively resulting in only one action body for each 

distinct action, irrespective of other conditions such as player location that control 

whether the action can be executed. Commoning in fact has a greater impact not 

shown in Table 7.6-threads and timers also benefit from a form of commoning, and 

this effect is not included in the data above. 

From these encouraging results we wish tohe investigate other possible uses of 

code commoning in order to reduce the size of the NFGs we generate. The main 

difficulty at this point is to efficiently find patterns inside game narratives that can 

be commoned. 

Efrects of Commoning Functions 

CoD RTZ-01 RTZ-02 The Count 

(func) 

Places 309 965 1764 12647 

Difference 11.3% 0% 0% 0.3% 

Transitions 446 1498 3806 41124 

Difference 24.9% 0% 0% 0.9% 

Table 7.7: Effects of commoning functions on NAG Size 

As we can see in Table 7.7, useful reductions can be made to the generated NFG 

wh en we apply code commoning to functions, even wh en limiting that strategy to 

functions without parameters. This does not apply in aU cases of course-there must 

obviously be a significant number of user-defined functions in the PNFG source file 

in order to achieve good results. The two examples from Return to Zork have no 
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such functions, The Gourd has only 1 function used in only 2 places, while Gloak of 

Darkncss makes extensive use of functions for most game activities. The performance 

of the optimization directly mirrors this pattern of function usage. 

Effects of Unoptimizing 

CoD RTZ-01 RTZ-02 The Count 

(func) 

Places 654 1772 3441 21342 

Difference 58.1% 45.5% 48.7% 40.9% 

Transitions 812 2742 7343 56442 

Difference 58.7% 45.4% 48.2% 27.8% 

Table 7.8: Effects of turning off aIl the above optimizations, except for basic code com­

moning, on NFG Size. 

Table 7.8 gives data for our narratives when compiled with aIl optimizations turned 

off, excepting basic code commoning. The latter optimization is included regardless 

sinee it has such a large impact, and is neeessary to compile The Gount at aIl. 

Lack of optimizations results in output on the arder of twice as large as optimized 

output. Thus, while the optimizations described above have quite variable effects, 

and depend greatly on narrative programming style and choices, the overall effect is 

quite significant, and weIl worth applying. 

The next two Subsections describe the effects of "unplayable" optimizations. 

These are presented in a positive, rather than negative farm, added in rather than 

subtracted out from a default usage. This represents their intended application as ex­

tra effects applied only during analysis rather than as part of the normal compilation 

process. 

Effects of No Default Actions (Incrementai) 

Default actions are generated to provide simple, error feedback to the player when 

they enter an action that is undefined in their current situations. This has different 
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CoD RTZ-01 RTZ-02 The Count 

(fune) 

Places 274 963 1762 12601 

Difference 0% 0.2% 0.1% 0% 

Transitions 335 1400 2687 40181 

Difference 0% 6.5% 29.4% 1.4% 

Table 7.9: Effects of no default actions on NFG Size (incremental). 

effects depending on how the game is defined. In the case of Cloak of Darkness 

and to only a slightly lesser extent The Caunt, there is sufficient error handling 

already built into the game specification to obviate much of the use of automatically­

generated default actions. In Return ta Zork chapter 2 in particular, almost no 

explicit error handling is provided by the game programmer, and default actions have 

a significant impact. Note that default actions are quite smaIl, consisting of a single 

output statement, and are also subject to commoning. The large impact in Return ta 

Zark chapter 2 can be more correctly attributed to the combinat ion of a large number 

of rooms and a large number of room-specific actions. 

Effects of No Output Statements (Incrementai) 

CoD RTZ-01 RTZ-02 The Count 

(fune) 

Places 221 658 1246 9897 

Difference 19.3% 31.8% 29.4% 21.5% 

Transitions 283 1191 3288 38056 

Difference 15.6% 20.4% 13.6% 6.6% 

Table 7.10: Effects of removing output statements on NFG Size (incremental) 

Even though the narratives would be unplayable by a player we can see from Ta­

ble 7.10 that the removal of aIl output statements leads to a significant reduction of 

both the number of nodes and the number of transitions in the generated NFG. The 

impact of this optimization certainly motivates further exploration of these types of 
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simplifications, which can be described in broad terms as the removal of everything 

that is useless for verification. 

This topic of identifying useless components of computer game narratives is in 

itself a very relevant field of computer game analysis. Being able to identify what 

is meaningful or not when it cornes to winning or losing agame can tell us a lot 

about game design patterns that are found in many games, including the general 

structure of individual game tasks, and how "chapt ers" or other logical divisions may 

be incorporated or identified. This is certainly an area of work we wish to further 

explore. 

7.3 Solver Results 

The heuristic sol ver we developed uses a very simple approach and makes an attempt 

at finding a solution for a narrative game, and assumes a rather simple narrative 

structure in order to generate this solution. The following tables contain the solutions 

produced by our heuristic solver. We first present the optimal solution, and compare 

it against the solution given by the solver. The strategy used by our heuristic sol ver 

consists of first finding the actions that need to be executed in order to satisfy the 

winning conditions. The second part consists of adding the movement actions in order 

to get to the rooms where the actions must be executed. Running times for optimal 

solutions were obtained using the NuSMV model checker. We will use the notation 

--- when no solution was produced by NuSMV. This notation is also used for the 

validity of the optimal solution, because it is valid by definition. An invalid solution 

means entering the commands does not lead to winning the game. The running times 

were obtained on a 1.2GHz AMD Athlon machine with 512MB of memory. 

Solution for CoD 

In CoD, the player st arts out in the Foyer, and must go west to the cloakroom (w), 

where she can then hang the cloak on the hook (put). She must then move to the 

Bar (e, s) and read the message on the Roor to win the game (read). If the player 
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Optimal Heuristic 

Solution Solution 

01 w w 

02 put put 

03 e e 

04 s w 

05 read wear 

06 drop 

07 e 

08 s 

09 read 

Valid - no 

Time(ms) 1397 176 

Table 7.11: Solutions for CoD. 

enters two or more invalid actions in the darkened Bar, reading the message will 

cause him to lose the game. The much longer heuristic solution in Table 7.11 is due 

to the structure of the PNFG source code. The game. win statement is nested inside 

two conditions, and they can both be satisfied by the executing the put commando 

However, since our heuristic solver does not keep track of the game state as it builds 

the solution, it looks to satisfy both conditions independently. This also explains why 

the set of suggested actions can contain actions which satisfy the same condition. The 

very important detail to note from the results for CoD is the running time for both 

approaches. It shows the heuristic approach is mu ch faster than NuSMV. By working 

with the PNFG source instead of the entire state space, the heuristic solver can find 

a solution very rapidly. 

Solution for RTZ-Ol 

In the first chapter of Return to Zork, the player must build a raft to reach the city 

of West Shanbar. After reaching the back of the lighthouse (s, s, e), the player can 

build the raft (eut vines, tie vines), and finally ride it to win the narrative (ride 
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Optimal Heuristie 

Solution Solution 

01 s s 

02 s s 

03 e e 

04 eut vines eut vines 

05 tie vines tie vines 

06 ride raft ride raft 

Valid - yes 

Time(ms) - 185 

Table 7.12: Solutions for RTZ-Ol. 

raft). This version of the first chapter has an option al side-quest where the player 

can get a bonding plant. It is possible to lose the game by removing the bonding 

plant while the vulture is still present (eut bondingplant or dig bondingplant), 

killing an npc, or venturing on the Raad ta the South. As we can see from Table 

7.12, the heuristic solver was able to generate a valid and optimal solution. This 

is explained by the fact that RTZ-01 uses a simple structure. For example, aH its 

conditional statements verify only one property at a time, and the narrative itself 

does not use advanced PNFG language features such as cou nt ers , threads, or timers. 

Being able to generate a valid solution in 185 milliseconds, while the NuSMV checker 

does terminate wh en analyzing RTZ-01 gives us great confidence in the potential of 

our heuristic method of solving narrative games. 

Solution for RTZ-Ol (bonding) 

RTZ-01 (bonding) adds the side-quest of getting the bonding plant as a requirement 

for winning the game. The bonding plant must also be alive in order for the player 

to win. This is done by first scaring away the vulture by throwing a rock at it (take 

rock, throw rock), and then moving doser to the signpost (examine). At this stage, 

the bonding plant can be retrieved, and it is crucial that the player digs the plant 

rather than cutting it (dig bondingplant). Then, the player must go back to the 
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Optimal Heuristic 

Solution Solution 

01 take rock s 

02 throw rock s 

03 examine e 

04 dig bondingplant cut vines 

05 n tie vines 

06 s n 

07 s n 

08 e n 

09 cut vines examine 

10 tie vines dig bondingplant 

11 ride raft n 

12 drop rock 

13 take rock 

14 throw rock 

15 examine 

16 cut bondingplant 

17 n 

18 s 

19 s 

20 e 

21 rideraft 

VaUd - no 

Time(ms) - 235 

Table 7.13: Solutions for RTZ-Ol (bonding). 
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mountainpass (n), and execute the solution from RTZ-Ol. As we saw in Table 7.11 for 

CoD, we have a heuristic solution that is considerably longer than the optimal one, 

because the solver first looks to satisfy the condition of building the raft, and then 

backtracks to get the bonding plant. For that particular objective, we can see two 

fiaws in the heuristic solution. First, executing the action dig bondingplant before 

scaring away the vulture will result in losing the game, and we will explain why it 

gets added before take rock and throw rock. 

At that point in its execution, the solver is looking to satisfy the condition of the 

player having the bonding plant in his inventory. It first finds cut bondingplant, and 

considers the condition that the vulture must not be present, and therefore adds take 

rock and throw rock to satisfy the condition. By doing so, the vulture condition gets 

marked as being 'seen' (see Section 5.1), therefore getting ignored when later finding 

dig bondingplant as another action that satisfies the bonding plant condition. 

Also, executing the cut bondingplant action prevents the player from winning 

because the bonding plant must be alive in order to win the game. Because it satisfies 

the condition of having the bonding plant in the player's inventory, it gets added to 

the solution. 

Solution for RTZ-02 

Wh en the player st arts the second chapter, she first needs to enter the Old Mill (s, e, 

n). Once inside, the drinking game starts, and to pass this test, the player must fool 

the npc by pretending to drink exactly three times (toast, empty drink, drink, ... ). 

After those three drinks, the npc will be willing to hand over his key (askAboutKey). 

The player must then open a secret trap door, by removing a chock that blocks the 

water mill outside (n, remove chock). She can return inside the mill to find a hole 

in the fioor which leads to a door (n, climbdown). Finally, the door can be unlocked 

and opened to win the game (use booskey, n). 

As we can see in Table 7.14, the heuristic solution is only missing the steps from 

the drinking game, and is otherwise complete. Much like the problems encountered 

when attempting to find a solution for RTZ-Ol (bonding), the omission is due to 
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Optimal Heuristic 

Solution Solution 

01 s s 

02 e e 

03 n n 

04 toast askAboutKey 

05 empty drink n 

06 drink rem ove chock 

07 toast n 

08 empty drink climbdown 

09 drink use boosKey 

10 toast n 

11 empty drink 

12 drink 

13 askAboutKey 

14 n 

15 remove chock 

16 n 

17 climbdown 

18 use boosKey 

19 n 

Valid - no 

Time(ms) - 192 

Table 7.14: Solutions for RTZ-02. 

a condition being marked as 'seen'. This strategy allowed us to avoid running into 

conditionalloops, while not having to maintain information about current game state. 

In this particular case, we are dealing with a group of statements that must repeated 

a certain number of times. AIso, if the player was to drink too much, or drink without 

emptying his drink, she would have to restart the drinking game from scratch. This 

particular narrative trait is more complex than the other example narratives, but it 

nonetheless represents a good objective for our heuristic solver. 
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Heuristic Solver and The Count 

We do not present any results for the example narrative The Count, because it uses 

features of PNFG language that are not supported by the heuristic solver. Namely, 

global actions, threads and timers play a crucial role in the PNFG implementation 

of the narrative. In its current form, the solver simply ignores these constructs. 

Extending the solver to support these two features is part of our future work. Table 

7.1 shows the solution length is around 180 steps, much larger than any of our other 

examples narratives. In order for the solver to produce a solution for a large narrative 

like The Count, we will need to maintain information about the current state of the 

game as we build the solution. 

Closing Remarks 

While the solver in its current form is very simple, we can already appreciate the value 

of high level information contained in the PNFG source file in order to automatically 

solve narrative games. The solutions it can produce are not always valid, but we must 

remember they were aIl generated in less than 300 milliseconds, while the NuSMV 

solver was only able to produce a solution for CoD. The amount of time taken to 

build the solutions is a good indicator of the potential of this heuristic method, and 

also shows that the solver itself is still in a preliminary phase. While, heuristically 

building solutions that are optimal may prove infeasible for very complex narratives, 

this approach is certainly able to find large parts of the solution, as we have seen for 

CoD, RIZ-Oi (bonding), and RIZ-02. In most of these cases, we see that the solution 

generated by the sol ver contains aIl the steps of the optimal solution. Hence, even if 

the solution presented is not valid it can still be of great use to the player, and the 

solver could be used as the basis for a very useful hint generator. 

7.4 Metrics Results 

Our analysis of game narratives has previously been limited to verification. We now 

extend our analysis to measuring different game metrics. Using the Metrics framework 
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presented in section 6.1, we first build a GameTree, and use this new representation 

to evaluate each metric. In the generation of our GameTrees, we only considered 

actions which affected the state of the game. To determine these actions, we build 

a set of properties that are modified for each action, and then ignore actions whose 

"write set" are empty. We will now present results for each metric, and also show a 

graphical representation of a GameTree in Figure 7.11, on page 92. 

Edges to Nodes Ratio 

Calculating the Edges to Nodes ratio allows us to get a general idea of the shape of 

the generated GameTree. In this representation, each Node corresponds to a unique 

Game State, and the edges symbolize an action execution. When there are more 

edges than actions, it means that there exists groups of edges that lead to the same 

node. Therefore, a higher ratio should correspond to a more complex narrative game, 

sinee many actions lead to visited game states. 

CoD RTZ-01 RTZ-01 RTZ-02 

(bon ding) 

Number of Nodes 33 414 1896 17148 

Number of Edges 90 1110 5970 62220 

Number of Win Nodes 4 12 12 96 

Number of Win Edges 2 12 12 96 

Number of Lose Nodes 2 114 444 6420 

Number of Lose Edges 2 170 556 6756 

Edge to Node ratio 2.73 2.68 3.15 3.63 

Table 7.15: Nodes to Edge ratio metric results 

From Table 7.15, we see that among the examples we considered, the larger narratives 

tend to have a bigger Edges to Nodes ratio, and more actions that are not needed 

in order to win the game. Also, it also indicates that our larger narratives are more 

complex. Including the number of win nodes in Table 7.15 also tells us if there are a 

lot of ways to win the games. We also note that in most of our example narratives, 
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the number of lose nodes is much larger than the number of win nodes, which also 

represents a measure of the level game difficulty. 

Game Edges 

By looking at the different types of edges we have in our generated GameTrees, we 

can refine the general view we had with the Edges to Nodes ratio. It is particularly 

interesting to find from Table 7.16 that around 20% of the edges in RIZ-Ol are 

unnecessary, which means that they play the same role as an already existing forward 

edge. It might be possible to reduce the size of our narratives by removing these 

unnecessary actions from the narrative, provided that their lack of usefulness can be 

generalized to aIl cases. 

CoD RTZ-01 RTZ-01 RTZ-02 

(bonding) 

Forward Edges 32 (35.56%) 413 (37.21%) 1895 (31.74%) 17147 (27.56%) 

Unnecessary Edges 4 (4.44%) 232 (20.90%) 1072 (17.96%) 8695 (13.97%) 

Baekward Edges 54 (60.0%) 465 (41.89%) 3003 (50.30%) 36378 (58.47%) 

Table 7.16: Game Edges met rie results 

We can also use the data on different types of edges to analyze the shape of the 

GameTree. The data from Table 7.16 points to the same conclusions as Table 7.15, 

because the proportion of Forward edges decreases as narrative complexity increases. 

In the case of RIZ-Ol, we have to keep in mind it represents the beginning of the 

entire Retum ta Zark game, which might explain why the ratio of forward edges is 

higher. As it has been mentioned in [30], a Classical Came Structure suggests fewer 

choices for the player when she starts the game. 

Convexity 

The convexity metric also deals with the shape of the GameTree, but in a much more 

precise way. With this metric, our goal is to find whether or not the number of possible 

choices presented to the player starts out small, increases, and then decreases as the 
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player approaches the end of the game. Figure 7.5 plots the level in the GameTree 

versus the number of GameNodes for each example narrative. 

a) CoD b) RTZ-Oi 

c) RTZ-01(bonding) d) RTZ-02 

Figure 7.5: Narrative Convexity. 

An important thing to note about this convexity measurement is that the end of the 

graph should not be interpreted as being necessarily the end of the game. The graphs 

represent the convexity of the entire narrative, a measure that considers aU paths 

at the same time. In other words, the endpoint at level 14 of Graph 7.5b) means 

the longest path of actions that have a measurable effect on the game state has 14 

actions. 

The shapes of each graph in Figure 7.5 shows that the majority of GameNodes are 

located in the middle of the distribution. We can see a significant difference between 

the distribution of RTZ-Oi and RTZ-02, where the latter's central concentration of 
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GameNodes is much more pronounced. The graphs indicate there are many middle­

length paths, which can be interpreted as more choices for the player the middle of the 

game. This does not contradict the concept of convexity presented by Rabin in [30]. 

To get another point of view on the convexity of our example narratives, we will also 

analyze the convexity of individual game winning paths in the foUowing section in 

order to get the number of choices the player has wh en actuaUy playing the game and 

winning. 

7.5 Results from Game Winning paths 

In the foUowing results, we only considered paths that are composed of Forward 

Edges. Table 7.17 shows sorne statistics about the Game Winning Paths we were 

able to measure using our metrics framework. The use of Game Winning Paths 

to measure game metrics aUows us to get a doser look at the way the narrative is 

structured, without considering many sequences of actions aU at the same time. As 

we can see, each narrative has Game Winning Paths, which verifies that they are in 

fact winnable. 

CoD RTZ-01 RTZ-01 RTZ-02 

(bonding) 

Number of Paths 4 12 12 96 

Number of Sets of Dependent Paths 2 1 1 1 

Shortest Path Length 5 6 11 19 

Longest Path Length 8 13 18 35 

Table 7.17: Game Winning Paths 

Dependency between Winning Paths 

A set of dependent paths represents a group of paths that depend on each other. 

For example, the two paths in Figure 7.6 form a set of dependent paths because aU 

the actions of path a) are found in path b). In that particular case, we say path 
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b) depends on path a). Furthermore, we can see from T'able 7.17 that even though 

sorne narratives appear ta offer many solutions ta win the game, for three narratives, 

they aIl depend on the same minimal-Iength solution. We have also produced a graph 

representation of the dependencies between different paths, as shawn in Figure 6.7 

on Page 61. 

Path a) w --> put --> e --> s --> read 

Path b) s --> look --> n --> w --> put --> e --> s --> read 

Figure 7.6: Twa dependent Came Winning Paths. 

In arder ta get a different perspective on Game Winning Paths, we have plotted 

the convexity of three Game Winning Paths for each narrative: the short est , the 

median, and the longest paths (Figures 7.7,7.8,7.9, and 7.10, Pages 88 ta 91). In the 

case of CoD, there was no such median length path. As we can see from these Figures, 

the solutions share the same general shape, but seem ta be shifted laterally from one 

another. This is due ta additional actions which affect the state of the game, but can 

be interpreted as not being necessary in order ta win the game. Of course, this brings 

back the question of properly defining what is a necessary action, since a particular 

action might not be necessary ta winning the game, but might appear essential for 

the player's comprehension of game objectives. 

This very strong dependency we are observing between the different paths origi­

nates from the fact we are considering the full game state in our game tree, without 

making any distinction with respect ta abjects that actually matter in arder ta win 

the game. Therefore, modifying the value of one property can le ad ta the creation 

of an isomorphic subtree, where each GameState differs only by the value of this 

property. This effect is particularly easy ta spot, when we look at the GameTree of 

Return ta Zork - Chapter 1 in Figure 7.11 on Page 92. 

Convexity of Winning Paths 

We can also look at the graphs in Figures 7.7, 7.8, 7.9, and 7.10 ta analyze the 

convexity from a different perspective. In these graphs we can see the number of 

85 



7.6. Measuring the impact of adding a mandatory Came Quest 

choices the player will have when executing actions that lead to winning the game. 

This may be doser to the definition of Convexity as presented in [30]. 

From the different Figures, we cannot see any specific trend indicating that there 

are much less moves available to the player when the game st arts , then more moves 

in the middle of the game, and less moves near the end of the game. We must 

remember that the notion Convexity is a desired property in games, and the graphs 

in Figures 7.7, 7.8, 7.9, and 7.10 indicate that our example narratives do not foIlow 

that trend. On the other hand, in every narrative, there is a point where very few 

actions are available, and this may very weIl indicate the presence of chapters. In 

the next section, we will look at another potential indicator of sections in narrative 

games. 

7.6 Measuring the impact of adding a mandatory Game 

Quest 

The division of games into different sections, or quests, is an area of narrative analysis 

that is of great interest to us, because we would like to use these divisions as a way 

of reducing the size of the narratives we analyze. In this section, we compare two 

versions of Return ta Zark - Chapter 1. They differ only in that in one of them the 

player must have the living bonding plant in his inventory in order to win the game. 

Aside from that added condition, the games are identical. Table 7.18 presents the 

data we have coIlected on each version. In this section, we are comparing two versions 

of RTZ-Ql (bonding), we are not using RTZ-Ql. We also compare the short est game 

winning paths of each narrative in Table 7.19. 

As we can see from Table 7.18, the only significant difference between the two 

version is the number of win nodes in the CameTree. This difference is due to the 

fact that the "optional quest" version has two actions that affect the game state (take 

rock and drop rock) but are not necessary to win the game. AIso, it is important to 

note that aIl paths depend on the same one, which is another example of the what we 

saw in our metrics results for Dependency between Winning Paths in Section 7.4. The 
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Bonding plant NFG GameTree 

Quest nodes trans. BDD nodes edges Edge to Node win lose 

booleans ratio nodes nodes 

Option al 940 1464 175 1944 5970 3.07 60 444 

Mandatory 944 1470 175 1896 5970 3.14 12 444 

Table 7.18: Effects of adding a mandatory quest on NFG and GameThee properties 

Bonding Plant Shortest Game 

Quest Winning Path 

Optional s - s - e - eut vines - tie vines - rideraft 

Mandatory take rock - throw rock - examine - dig bondingplant - n 

- s - s - e - eut vines - tie vines - rideraft 

Table 7.19: Effects of adding a mandatory quest on the short est game winning path 

more interesting results come wh en we look at the shortest game winning paths in 

Table 7.19. Here, we can easily identify the impact of adding an additional condition 

on winning the game, and can easily determine the actions that compose each quest . 

Quest 1 would be composed of the actions take rock - throw rock - examine -

dig bondingplant - n, while Quest 2 would be made up of the actions s - s - e -

cut vines - tie vines - rideraft. From these results, we see a possible strategy 

for identifying sections of game narratives wou Id consist of removing conditions from 

the PNFG source file, and determining the impact on the game solution. On the other 

hand, this method requires the minimal solution to be efficient, and we could not use 

it on narratives that are larger than our current size limits. Still, these results will help 

orient our efforts in the future in order to come up with a solid quest identification 

mechanism. 
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lL-__ ~ ____ -L ____ -L ____ ~ ____ ~ ____ L-__ ~ ____ -J 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

a) Shortest Path (5 moves) 

lL-__ ~ ____ -L ____ -L ____ ~ ____ ~ ____ L-__ ~ ____ -J 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

b) Longest Path (8 moves) 

Figure 7.7: Two Came Winning Paths Normalized convexities for CoD. 
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'OL., ----:o~.2----":c--O~.4--0-'-c5-~O.6-~C--~O.8C------,lO.9 

a) Shartest Path (6 mayes) 

lL-~_~~_~_~~_~_~~~ 

o 0.1 0.2 0.3 0.4 0.5 0.7 0.8 09 

b) Median Path (10 mayes) 

b) Langest Path (13 mayes) 

Figure 7.8: Three Game Winning Paths Normalized convexities for RTZ01. 
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7.6. Measuring the impact of adding a mandat ory Game Quest 

a) Shortest Path (11 moyes) 

b) Median Path (15 moyes) 

b) Longest Path (18 moyes) 

Figure 7.9: Three Game Winning Paths Normalized convexities for RTZ01 (bonding). 
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7.6. Measuring the impact of adding a mandatory Game Quest 

10,--.---,---.--,---,---,--.---,---,--, 

2L-~~-L--~--~--~--~~--~~~--~ 
o 01 0.2 03 0.4 05 06 07 0.8 0.9 

a) Shortest Path (19 moyes) 

b) Median Path (27 moyes) 

2L-~ __ -L __ ~ __ ~ __ ~ __ ~~~~~-L __ ~ 

o 01 0.2 03 0.5 06 0.7 08 

b) Longest Path (35 moyes) 

Figure 7.10: Three Came Winning Paths Normalized convexities for RTZ02. 
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7.6. Measuring the impact of adding a mandatory Game Quest 

Figure 7.11: GameTree for Return ta Zork - Chapter 01. 
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Chapter 8 

Conclusions and Future Work 

This work represents a very detailed description of the PNFG narrative game anal­

ysis framework. The PNFG language, its formaI basis, and the accompanying code 

generation strategy are designed to allow for rigorous and algorithmic investigation 

of game narratives. Narrative problems are common in a variety of game genres, and 

by concentrating on the minimal, though narratively complex world of interactive 

fictionjadventure games we hope to produce practical solutions that are effective in 

many popular game genres. 

N aively generated computer narratives have a surprisingly large state space. Even 

small games can result in structures that are far too large to search exhaustively, and 

the need for optimizations and other strategies to reduce the problem size is rather 

obvious. We have designed, implemented and tested severallow-Ievel optimizations 

that significantly reduce the output size. These have different effects, often dependent 

on the style of programming used to create the narrative, but collectively have quite 

a large impact. For larger narratives such as Return To Zork - Chapter 2 and The 

Count such optimizations may be necessary to even express the game, and are also 

an important, incremental step toward fully automatic verification. 

We have also investigated the possibilities of using a very different strategy to 

deal with the large state spaces. Our Heuristic Solver has been designed to use high­

level information found in our PNFG compiler intermediate representation to quickly 

derive the solution for narratives. While this exercise was a proof of concept, initial 
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results show great potential for this new approach at solving game narratives. In the 

future, we would like to extend the solver to make decision based on the game state, 

and to consider aIl the PNFG constructs, in order to produce better solutions for 

more complex games. A likely scenario would be to use the GameTree representation 

from the metrics framework to keep track of the game state. 

Narrative game analysis can also benefit from high-level information, and we have 

created a new framework to measure different game metrics. By transforming our 

intermediate representation of the narrative in a GameTree, we can model the game 

on a representation that facilitates the task of deriving interesting properties about 

our example narratives. This new representation allowed us to obtain results for the 

larger narrative Return To Zork - Chapter 2, and we wish to continue extending the 

GameTree generation pro cess in order to represent the full narrative, and analyze 

larger narratives. 

The metrics framework presented opens the door to a new area of game narrative 

analysis by offering a representation that contains a very intuitive representation of 

the narrative. We certainly wish to pursue our research in this area and come up 

with new metrics for games. For example, we would like to keep track of the set of 

actions that are reachable by the player throughout the game and look for significant 

variations. We refer to this notion as continuity, and measuring this new metric, or 

looking at a game's overall complexity are but two examples of other metrics we wish 

to analyze using our framework. 

Our current efforts suggest a large number of interesting and useful directions 

to explore. The ove raIl complexity of large narratives shows the need for further 

optimizations and consideration of new ways to reduce the size of game narratives. 

For example, using a chapter decomposition for Return to Zork allows us to ver if y 

the first chapter; applying the same strategy to other narratives is highly desirable, 

and we are investigating automatic techniques that can help in this respect. 

The detection of chapters is certainly a non-trivial problem, and will require sorne 

reflection on the notion of agame chapter itself, before something like the automatic 

detection of chapters can be investigated seriously. We have looked at the possible 

use of a convexity measurement on game winning paths as a way to identify chapters. 
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Also, the results we obtained from applying unplayable optimizations to our PNFG 

translation pro cess give us motivation to pursue our efforts in order to further reduce 

the size of the NFGs we produce. We feel that identifying and removing useless 

components from the narratives shows great potential for future optimizations. 

We have previously mentioned that the example narrative The Count represented 

a good long term goal for the size of narratives we would like to be able to analyze. 

As it stands now, the difference of size between our two biggest examples is relatively 

large, and we would like to analyze increasingly larger medium-size narratives, to 

eventually reach a game on the order of The Count. We believe representing new 

narratives in PNFG can yield improvements on alllayers of the framework. 

We believe the creation of narratives in PNFG code could benefit from an Inte­

grated Development Environment. We have already explored this possibility inter­

nally, and a PNFG IDE offers the opportunity to assemble aIl the components of the 

PNFG framework and make them readily accessible to developers. Using the Eclipse 

Platform as a staring point is one of the possible scenarios we are considering for an 

eventual PNFG IDE. 

Another interesting possibility for the PNFG framework would be to support 

concurrency in narratives, in order to allow multiple users to play simultaneously. 

The PNFG language already possesses sorne constructs that can support concurrency, 

and extending other components would allow us to analyze a different category of 

narratives. 

Extending the PNFG language and the interpreter to support multimedia elements 

such as images and sound would make it very appealing to developers of 2D adventure 

games, and allow us to test the usability and overall usefulness of narrative analysis 

in the context of game development. This stage in the framework's evolution remains 

far off in the distance, but it certainly represents one of the many directions the 

framework may take in the future. 
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