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Abstract

Narratives play a significant role in many computer games, and this is especially
true in genres such as role-playing and adventure games. Even so, many games have
narratives which possess a certain number of flaws that can deteriorate the playing
experience. This less than satisfying gameplay experience can obviously affect the
commercial success of a given game. Our research originates from the need to identify
these narrative flaws. In response to this need, we present a framework for computer
game narratives analysis. Our work focuses on Interactive Fiction games, which are
textual, command-line and turn-based games. We first describe a high level computer
narrative language, the Programmable Narrative Flow Graph (PNFG), that provides
a high level, user-friendly interface to a low level formalism, the Narrative Flow Graph
(NFG) [38]. The PNFG language is delivered with a set of enhancements and low
level optimizations that reduce the size of the generated NFG output. As part of our
work on the analysis of narrative structures, we developed a proof of concept heuristic
solver that attempts to antomatically find solutions to games from a lightweight high
level representation. We also define narrative game metrics and present a metrics
framework that simplifies the measurement and development of such metrics. These

metrics contribute to broadening our general knowledge about game narratives.



Résumé

Les structures narratives jouent un roéle important dans les jeux pour ordinateurs
et cette affirmation se confirme particulierement dans des genres ludiques comme le
jeu de role ou le jeu d’aventure. Malgré tout, plusieurs jeux possedent des struc-
tures narratives comptent un certain nombre de problémes qui peuvent contribuer a
détériorer l'expérience de jeu. Cette méme diminution peut aller jusqu’a affecter le
succes commercial du jeu. Notre recherche émanne de ce besoin d’identifier ces fautes
dans la structure narrative des jeux. En réponse cette méme demande, nous présentons
une structure applicative ayant pour but analyse des structures narratives. Notre
travail s’effectue sur les jeux de fiction interactive, qui sont de nature textuelle et
qui réagissent a des commandes entrées par le joueur. Tout d’abord, nous décrivons
un langage de programmation haut niveau, le Programmable Narrative Flow Graph
(PNFG) (Plan de Flux Narratif Programmable), qui offre une interface conviviale vers
une base formelle, le Narrative Flow Graph (NFG) (Plan de Flux Narratif) [38]. Le
langage PNFG est livré avec une série d’améliorations et d’optimisations qui réduisent
la taille du NFG généré. Dans le cadre de nos recherches sur 'analyse des structures
narratives, nous avons développé la preuve de concept d’un solutionneur heuristique
dont le but est de trouver la solution du jeu et ce a partir d'une représentation haut
niveau légere. Nous définissons également des mesures pour les structures narratives
et présentons une structure applicative qui simplifie I’évaluation de ces mesures. Ces
derniéres contribuent a élargir nos connaissances générales au sujet des structures

narratives.
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Chapter 1

Introduction and Contributions

Narratives play a significant role in many computer games, and this is especially
true in genres such as role-playing and adventure games. Even so, many games
have narratives which possess a certain number of flaws that can deteriorate the
playing experience. Some of these problems are inconsequential, affecting only minor
elements of game aesthetics, although even these interfere with a game player’s sense
of immersion. Other problems, however, can lead to narrative dead-ends where the
player is completely stuck and is not able to finish the game at all. This leads to a less
than satisfying gameplay experience, and obviously can affect the commercial success
of a given game. Our research originates from the need to identify these narrative
flaws.

In response to this need, we present a framework for computer game narratives
analysis that includes a high level computer narrative language, a framework for mea-
suring narrative metrics, and a heuristic solver that attempts to automatically find
solutions to games from a high level representation. Our work focuses on Interactive
Fiction games, which are textual, command-line and turn-based games. The player
typically controls an avatar through a natural language interface, and playing usually
consists of reading text on screen, entering a command, and then reading the text
that appears as a result of the command being processed by the game. This sequence
of events is repeated until the game ends in a win or a loss. This game genre is suit-

able for our research because it possesses the narrative properties we wish to analyze



while being relatively simple from a technical point of view. We describe this game
genre in detail in Section 3.1.

We have previously explored the design for a high level language that allows
for formal analysis of game narratives [29]. Programmable Narrative Flow Graphs
(PNFGs) provide a high level, user-friendly interface to a low level formalism, the
Narrative Flow Graph (NFG) [38]. This direct translation of PNFG programs to
NFGs allows us to access a wide variety of research on understanding, optimizing
and analyzing Petri Nets while maintaining our high level narrative programming
environment,.

We now extend and further develop the PNFG language. Our initial design in-
cluded only quite basic language features; here we present the design in greater depth,
and also extend the language with several useful syntactic forms. Although these
extensions are largely “syntactic sugar” for patterns of lower-level operations they
reduce programmer effort, and more importantly they allow for a reduction in the
amount of redundancy in the low level NFG translation. We show how these more
complex constructs are compiled to NFG structures, and also how this translation
ensures a more efficient output structure.

Even with appropriate syntax, non-trivial narratives cannot be feasibly analyzed
from a naive PNFG—NFG translation. Since our overall goal is to be able to analyze
game narratives, we have also considered more general, low level optimizations that
reduce the size of the NFG output, eliminating various kinds of redundancy. Reducing
the size and complexity of the NFG is a crucial step in practical, formal analysis
of non-trivial game narratives, and we discuss the necessity for optimizations and
their relative impact. Since our design includes a practical implementation, we are
also able to get real results on NFG output size reductions. These results show
the significant effects of simple game optimizations, and also give guidance on the
kinds and magnitudes of impacts due to specific game constructs, behaviours, and
programming styles.

Our original work in [29] also featured a solver module, using the NuSMV formal
model checking software [9]. This software uses a brute force approach on a Binary

Decision Diagram (BDD) [8] boolean representation of a generated NFG to find the
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1.1. Contributions

minimal solution to the game narrative, among other properties. In a narrative game,
a solution is a sequence of commands entered by the player that lead to winning the
game. Because of this brute force nature, the size of the state-space of the narratives
we wish to solve is always a key issue. Even with many optimizations, considering the
full state space for larger narratives is not realistic, and we investigated the potential
of developing a heuristic solver that uses high-level information found in the PNFG
intermediate representation. This heuristic solver looks at the conditions that need to
be satisfied when winning the narrative in order to build a solution. Such high-level
strategies can contribute to make possible the analysis of very complex narratives. We
have developed a proof of concept version of the heuristic solver and we will discuss
the possibilities that arise from our results using this initial version in Chapter 5.
We also sought to use high-level information to measure and evaluate game prop-
erties. We will present a set of narrative game metrics, and discuss the results from
measuring them on some example narratives whose complexity range from very sim-
ple to fairly complex. Some of theses examples are even based on commercial works
of interactive fiction. We devoted significant efforts on creating an intuitive repre-
sentation that made use of the structure of the PNFG file itself, and we will give a
detailed description of the metrics framework we are using to evaluate the different

properties.

1.1 Contributions

Specific contributions of this work include:

o We give a detailed overview of the basic PNFG language, design and compila-

tion.

o We present language extensions to the PNFG language, including specific NFG
compilation strategies. These constructs reduce both redundancy in the initial
PNFG code and in the underlying NFG.

o We define and provide experimental data on the effect of a variety of low-level



1.2. Roadmap

NFG optimizations. These optimizations have varied effects, but can overall

greatly reduce the NFG size.

e We present a proof of concept narrative game solver that uses chaing of condi-
tions in the PNFG source file to heuristically build a solution, and discuss the

potential of this method.

s We provide a metrics framework that works with the PNFG intermediate rep-

resentation to allow the evaluation of metrics in narrative games.

e Through the use of our metrics framework, we can determine whether a game
can be won or not. This can be viewed as the first step towards detecting flaws

in narrative games.

1.2 Roadmap

In the next Chapter, we discuss related work on narrative analysis and representation.
In Chapter 3 we give an overview on the structure of PNFG programs by presenting
core functionalities of the language. We then explain how the different constructs and
syntactic components of PNFG are translated into an NFG representation. Chapter
4 describes our different NFG optimizations, and Chapter 5 deals with the heuristic
solver and how it differs from our previous approach at finding a valid solution auto-
matically. We will refer to this as solving narrative games. The metrics framework
and the metrics themselves are presented in Chapter 6. Chapter 7 describes each ex-
ample narrative we have used and gives results for our optimizations, solutions found
by the heuristic solver, and metrics results. We conclude in Chapter 8 and discuss

future work in the area of computer narrative analysis.



Chapter 2
Related Work

Interactive Fiction (IF) is one of the first and also one of the oldest computer
genres, largely because it has a very limited technical overhead. IF can be defined
as being “A computer program that generates textual narrative in response to user
input, generally in the form of simple natural-language commands” [1]. The term was
first used in a 1987 BYTE magazine article as a label for story centered computer
games [35]. Among the most famous titles, we find examples such as Adventure (also
known as ADVENT or Colossal Cave) [11], Zork [20], and The Hitchhiker’s Guide
to the Galaxy [2]. IF’s popularity reached its peak in the mid eighties, and was all
but dead by 1990. Today, a very active if small IF online community exists and is
organized around different USENET newsgroups such as rec.games.int-fiction
(or r.g.i-f), [37] and rec.arts.int-fiction (or r.a.i-f) [16], the first focusing mainly
on playing games, while the latter deals with the creation of new IF works. Detailed
examples of IF games can be found in Section 7.1.

In recent years, attempts have been made at analyzing IF from a theoretical
approach, arguing that it is a legitimate literary art form [23]. When we look at what
has been written on IF from this point of view, the term Interactive Fiction in itself
is problematic and has faced a very tough opposition from literary theorists. It has

been criticized as ¢

‘...facing enormous problems” and that “Interactive fiction is [...]
in reality largely the rhetoric for a Utopia” [17]. Since the term has been accepted as

representing the game genre we are exploring, we will continue to use it, but keep in
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mind the term can be controversial at times.

Traditional approaches at narrative analysis have included the decomposition of
stories from films, such as Christopher Volger’s Hero’s Journey [39], and have been
proposed as narrative patterns for computer game design [32]. Within the realm of
computer games, two different types of narrative can be observed: embedded, and
emergent narrative [19], where the former is “pre-generated narrative content that
exists prior to a player’s interaction with the game”, and the latter refers to the
narrative that “..arises from the set of rules governing interaction with the game
system” [33].

It has been said that computer games fall within a continuous space that goes from
ludological, the extreme being computer chess, to narratology, with DVD movies at
the other end of the spectrum [21]. As we move towards the narratology extrema, the
notion of game logic becomes a bigger concern and can also lead to critical failures
within the game. For example, a player needs a key which she cannot obtain in order
for the game to progress. This problem of unwinnability has led to the definition of
p-pointlessness where a small value of p ensures a quick termination of an unwinnable
game [38]. This is one example of a property we would want to derive from our
computer narrative analysis.

Different solutions have been discussed to reduce problems in narrative games,
an example being a plot diagramming module for the popular IF authoring tool
TADS [4]. This particular module uses Directed Acyclic Graphs (DAG) to represent
the narrative, but it has been shown that DAGs are not suitable for the representation
of computer game narratives [38]. Other game construction kits such ScriptEase [22]
contribute to reducing the number of logical errors in games by providing a simpler
approach to game authoring. Other approaches reduce the programming effort to
a minimum, and aim to allow the user to express games from a limited genre such
as board games with the Metagame [28] game generator, to offering a broader scope
with the Fztensible Graphical Game Generator [27].

Interactive Fiction toolkits are very popular among the IF community, and the
most popular authoring kits are probably Inform [25] and TADS [13,31]. Inform is

based on the tool used by the company Infocom, who published some of the most
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successful works of IF during the eighties. Inform 7, the latest version of the toolkit,
features an advanced IDE that allows users to create IF by writing natural English
language sentences [26], an approach that radically differs form the traditional com-
puter programming used in previous versions of Inform and other toolkits. TADS
features an very detailed object-oriented language with features such as dynamic ob-
jects, structured exceptions, and automatic garbage collection, among others. The
different authoring tools allow programmers to create complex storylines, although
none of these systems directly address the issue of game analysis.

The representation of a game narrative as a Petri Net is at the core of our work,
and builds on our previous, somewhat naive approach to Petri Net generation. Petri
Nets for complex systems can be quite large in practice, and different solutions have
been proposed to reduce the state space of Petri Nets. Work has been done, for
instance, to develop reductions that are compatible with bisimulation principles [34];
examples include the fusion of equivalent places and the replacement of some places
by others. Abstract interpretation has also been considered as a means to derive non-
structural invariants of a given Net [10]. Similar Petri Net reductions have also been
used in Artificial Intelligence to represent a team plan and its projections on individual
agents, by using techniques such as fusion of consecutive activities, fusion of parallel
activities, and fusion of choice between activities [7]. Using structural reductions like
projection and redundancy removal, it is possible to reduce the size of probabilistic
timed Petri Nets [18]. Reusing existing Petri Net reductions and applying them to
a domain-specific representation can be rewarding, as demonstrated in [12], where
reductions suggested by Berthelot [6] are applied to Task-Interaction Graph-based
Petri Nets.

The narrative programming language we present here as part of our framework
directly extends our initial definition of Programmable Narrative Flow Graphs (PN-
FGs), a high level language that is easily mapped to a Petri Net model [29]. Other
work on game narrative structure has led to the definition of a Classical Game Struc-
ture [30] where the player starts with a few choices that lead to moré, and where these
choices “gradually narrow back down again to a few, or single action the player must

accomplish”. This concept is defined as a “convexity”, and a series of such convexities
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can be seen as representing the different parts of a game.

In his survey of interactive fiction, Smith modelled what he refers to as the “tra-
ditional interactive fiction”. He separated it in sections where “the interactor may
operate with some freedom. But to get to the next section he must bow to the
prescriptions of the story and thus temporarily abandon his freedom in order to
progress” [35]. While other such models of “traditional” game narratives exists, we

do not know of any model that is backed by any data.



Chapter 3
PNFG Language Design

Flaws in game narratives can be easily identified during the gameplay, but we
currently lack the tools to analyze these narratives in order to detect these flaws and
have good narrative properties. From that problem arises the need for a high level
programming language that is built on formal principles. Such a language will provide
the strong base that is needed to formally analyze these narratives.

In this chapter, we first give a description of an interactive fiction narrative and
the representation we use in order to do the analysis (Section 3.1). In Section 3.2, we
define the basic PNFG language constructs, and Section 3.3 details the PNFG game
control flow. Section 3.4 describes the different PNFG statements that can be used
to represent a game narrative. Finally, in Section 3.5, we discuss the syntactic sugar
components we have added to the PNFG language in order to extend its expressive

power and reduce code duplication.

3.1 Narrative Representation as a PNFG

Interactive Fiction games (IF) are textual, command-line and turn-based games typ-
ically composed of an avatar moving through a fairly minimal virtual environment
consisting of rooms or locations, and including some number of objects. The avatar is
usually controlled by the player through a natural language interface, incorporating

simple commands to take, drop, and use objects in different manners. Game progress
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3.1. Narrative Representation as a PNFG

and conflict is represented by different puzzles or obstacles that must be overcomed
by suitably arranging or employing game objects. The game can be won by solving
all or most of the problems, or lost by incorrectly solving one or more puzzles.

IF is a very interesting game genre for our research because it allows us to focus
on the narrative qualities of a game, while limiting the technical complications that
invariably come with other genres, such as 3D graphics (or even 2D graphics), sound,
networking, and other non-narrative aspects of more contemporary game designs. In
our case we further exclude the natural language interface, as another aspect that is
tangential to the main narrative structure of the game.

To represent IF games, we use the Narrative Flow Graph (NFG) [38], a special
class of 1-Safe Petri Nets that provides a simple syntax and operational semantics
for describing narratives. A Petri Net is composed of nodes (places) and transitions,
and directed edges, where edges run between places and transitions. When all the
incoming nodes connected to a particular transition ¢ have a token, t can fire, removing
tokens from the input nodes and inserting tokens into the output nodes of ¢. This
state transition easily represents the typical IF behaviour of triggering an event during
game play based on existing game state, which explains why NFGs are based on Petri
Nets. 1-Safe Petri Nets have the added property that each place can contain only
one token. With NFGs, we also note the presence of Context Edges that behave
like a bidirectional connection to a transition in a Petri Net. These edges are used
to represent that a certain property in the narrative will remain true even after an
action has been executed. For example, the player will still have a key in his inventory
even after she has used it to unlock a door. The NFG definition also explicitly defines
specific starting and ending nodes. The starting node a is unique, while there are two
ending nodes: the losing node l and winning node w. Having these starting and ending
nodes allows for paths to be defined in the structure. The starting node a represents
axiomatic precedence, all initial conditions are connected to a The NFG definition
explicitly states that the nodes [ and w must no be simultaneously-reachable. This
last specification is crucial when representing narrative games, because we cannot win
and lose a game at the same time. A formal definition and further details on NFGs

can be found in [38]. Figure 3.1 shows a basic NFG representation for the trivial
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narrative used as a motivating example in [21].

“Yowte bilof the .7 “Type helpforlia,*

eyewlah

Figure 3.1: A NFG for the trivial narrative The Wizard [21].

3.2 PNFG Data and Declarations

Representing a narrative directly in NFG form can be very tedious; as can be seen
from Figure 3.1 the size and the complexity of the graph can make the task overwhelm-
ing, even for a relatively small narrative. As a more practical means of developing
narratives, the Programmable NFG (PNFG) language, first introduced in [29], is a
high-level representation of a game narrative that is translated to a corresponding
NFG. This allows for a much more intuitive representation of the narrative, while
also offering a translation mechanism that is structured and efficient.

The design of the PNFG language has been based on the more popular IF toolk-

its, albeit stripped down to only essential features. Through object, room, and action
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declarations, the user can express the basic game narrative structure. Using addi-
tional constructs such as states, counters, and timers, it becomes possible to represent
complex IF games. For each of these language components, we must always have a
way to translate them to a valid NFG representation. In following sections, we will
describe this translation, along with the PNFG syntax and the general structure of a
PNFG program.

3.2.1 Objects & Rooms

Objects and rooms are the two most basic components of narrative games; as de-
scribed above, in [F' games the player usually moves from one room to another and is
required to interact with different objects in order to eventually win the game. In the
PNFG language, objects can be declared quite simply, as shown in Figure 3.2. This
particular statement will be translated into a unique game object called “dagger.” In
the PNFG language all object declarations must be performed statically; this does
not allow for infinite or arbitrary numbers of objects, but is nevertheless appropriate
and adequate for most IF games, and has so far not proven to be an obstacle to

complex game development.

object dagger { }

Figure 3.2: A simple object declaration.

Rooms in the PNFG language have an almost identical declaration syntax to
objects. The major difference between objects and rooms is simply that rooms can
function as containers, and can hold objects, even other rooms. The player herself is
in fact typically described using a room declaration in order to allow her to have an
inventory. Containment is presumed to form a tree structure in the PNFG language,
with every object and room having exactly one parent (container) room at any one
time. To guarantee this property holds at all points in the game, the PNFG language
pre-defines a reserved offscreen room where all objects and rooms initially reside,
and to where they can be moved when they are no longer part of active game play.

The offscreen room is unique in that it cannot be moved or contained itself.
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The mapping of object containment from the PNFG space to the NFG is achieved
through the creation of two unique NFG nodes for each game object or room in each
possible containing room. For an object A and a room B, a node representing “A in
room B” and a node representing “A not in room B” will be generated. These nodes
function with complete complementarity, and the NFG constructed will guarantee
that if the node “A in room B” is active (contains a token), the node representing
“A in room R” is inactive (does not contain a token) for all other possible rooms R.
This means that the narrative begins with the nodes “x in offscreen” active for all

objects and rooms z, except of course offscreen itself.

3.2.2 Sets

Many operations in an IF game will be identical for some number of different objects
or rooms. Drop and take actions, extremely common actions in IF games, for instance
tend to be quite similar or identical for a large subset of game objects. To lessen the
amount of coding redundancy subsets of objects (and/or rooms) can be declared in a
PNFG program, and elements of the set referred to by abstract set variables. Use of
the set variable is then internally expanded according to the semantics associated with
the context of the use of the set variable: such variables can be bound or unbound.
In an unbound context set variables are merely macros for replicating a program
command over some number of distinct objects or rooms; when bound by an enclosing
statement and scope, however, a set variable refers to a particular element of the set
used as part of its declaration. We will further discuss the use of set variables, bound
and unbound in Section 77.

An example of both bound and unbound set variable declarations is shown in Fig-
ure 3.3. Notice that set definitions can refer to other sets as well as individual objects
and rooms, and can also be constructed through subtraction as well as addition of
elements or other sets. To avoid declaration-ordering constraints forward references,
and recursive definitions are permitted, although infinite and contradictory set con-
structions are of course not allowed. Actual set contents are computed at compile

time using a (least) fixed point algorithm.
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carryable = { dagger, banana }
uncarryable = { widget, kleinbottle }
stuff = { everything, -you }

everything = { carryable, uncarryable, you }

stuff $mystuff;

carryable $c;

Figure 3.3: Set declarations and set variables.

3.2.3 States

Having both rooms and objects allows a game programmer to express some very
simple narratives, and is in fact sufficient to achieve our desired level of expressive-
ness. The PNFG language, however, also offers State declarations to be associated
with rooms and objects as an alternative way of representing current and changeable
properties of the game. States are binary, and can be set to true (+) or false (=), as
we will discuss in Section 3.4. Figure 3.4 shows a room declaration with two states

being declared, trapOpen and 1it.

room bedroom {

state {trapOpened,lit}

}

Figure 3.4: A room with 2 declared binary states.

Similar to containment, in the translated NFG output each individual object
or room state declaration will be represented by two nodes, one for each binary
value. For example, the states declared in Figure 3.4 would be represented by four
nodes, -bedroom.trapOpened, +bedroom.trapOpened, -bedroom.lit, and +bedroom.-
lit. Again, since both state values are mutually exclusive the two nodes forming the
pair representing a particular object or room state cannot both be active at the same
time. All states begin with the false node active.

A few special states are defined to indicate the player winning or losing the game.

A reserved object name game is used for this, and includes win and lose states. When
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win or lose is set to true (+), it means that the game has been won or lost, respectively,

and game play is automatically terminated.

3.2.4 Counters and Timers

Many IF games require counting: some typically small and finite number of steps
or events must occur in order to trigger a subsequent event. Using states it is quite
possible to build finite counters by composing a series of states for each possible
counting value; e.g., x.value0, x.valuel, x.value2, x.value3 for a counter with range
0...3, with the game programmer ensuring that at most one of these positive states
is true at any one time.

Counters automate and abstract this process, and allow the programmer to declare
variables which can be set, incremented, or decremented by a constant value within a
given range. This eliminates potential programmer error in use of counters, and also
allows for easier optimization of the ensuing NFG code generation. Figure 3.5 shows
an example of a counter declaration for a counter you.lives that can assume a value

in the range 0. .. 3.

room you {

counter {lives 0 3}

}

Figure 3.5: A counter definition for the inclusive range 0..3.

Counters are trivially represented in an output NFG by generating an equivalent
set, of states, initializing the state representing the minimal value to true and all others
to false. Operations on counters are then required to ensure the corresponding set
of states continues to guarantee that exactly one of the states is true. This unary
representation strategy is not necessarily optimal, and we intend to explore binary
representation as an optimization in later work.

With counters the programmer can specify exactly how the value will be incre-
ment or decremented, according to the desired behaviour. The PNFG language also

supports timers, which are in fact special counters that are automatically incremented
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after each action the user executes. How this is achieved will become more obvious
in the following section. Timers, however, act only as further syntactic sugar on

counters in order to avoid some code duplication.

3.3 PNFG Execution

Interactive Fiction games, or turn based adventures, are typically made up of three
different phases: the prologue where the game is initialized, the cycle of waiting for the
user commands and processing them, and finally, an epilogue phase [24]. The PNFG
compiler generates a similar structure, and the general control flow of a PNFG game

is shown schematically in Figure 3.6.

Thread1 Thread2 Timers

5

game.lose

Figure 3.6: The general NFG structure for a PNFG program. The entry points for the
main phases of execution are prologue, user commands, user threads, timers, and epilogue.

Taken from [29]

At the beginning of the narrative the start node is active and triggers the prologue
or game initialization. This first stage terminates at the idle node, where control flow
waits for user input. When a user command is received it is processed, moving
control into the appropriate action or set of execution statements. After an action
has been completed the game may terminate in a win or loss, or pass control to a set
of user-defined and internal threads. Threads are not concurrent in our language, and
are in fact used primarily to append fixed execution behaviours to the end of each

user-initiated action. A primary internal thread is responsible for incrementing timer
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values as discussed in Section 3.2.4. Finally, control returns to the idle node, where
it waits for the next user input command.

User commands or actions are composed of PNFG statements, and have a similar
appearance to standard procedural languages such as C or Java. Figure 3.7 shows
a code snippet for the action triggered by the user command “kill npc” in one of
our example games, The Return to Zork - Chapter 2, where the player can kill a
non player character (NPC). Executing the action results in each statement being
processed according to the execution semantics we will define below. In the case of
this example action we first define a set of items at line 02. Then we check whether or
not the player has the knife in her inventory. If she does, it means she can actually
kill the npc; in the actual game the “Guardian” appears and strips the player of all
her inventory items as punishment, and further sets some player states indicating
that the player has performed this violent act. Later actions in the game branch on

these states, resulting in a permanent (and undesirable) impact on the player.

01 (you,kill,npc) {

02 stuff = { knife, rock, vine, ...}

03 if(you contains knife) {

04 "You kill the npc";

05 " . . . The Guardian appears . . . ";
06 "The Guardian : I must relieve you of your belongings";
07 for(stuff $s) {

08 if(you contains $s){

09 move $s from you to offscreen;

10 }

12 }

13 ~?7you.friendly;

14 +you.killer;

5 3} } }

Figure 3.7: A sequence of PNFG statements corresponding to a “kill npc” command. State-

ments are referred to by number in the text.
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3.3.1 Basic control flow

Each statement in a PNFG program is expected to be executed in the order specified.
Since Petri Nets transitions do not enforce this sequentiality by definition, a general
structuring principle is used to enforce correct control flow through the use of context
nodes. The context nodes form a set of nodes that are guaranteed to have exactly
one node active. Transitions generated for individual statements rely on an input
context being active to allow the statement transition(s) to fire, and must guarantee
the activation of a single output context to feed to the subsequent statement.

The start node is in fact a context node (the only initially-active context node),
and allows control to flow through the game prologue to idle, also a context node.
The idle node then passes control to the first statement of an executed action and
is expected to receive control back from the last statement in each action, or the last

statement in the last thread if any threads (or timers) are defined.

3.4 Basic PNFG Statements

The example of Figure 3.7 illustrates most of the core operations available in the
PNFG language. This section describes each of the basic operations, as well as how
each of these actions is translated into some number of transitions in the underlying
output NFG.

3.4.1 Output Statements

One of the most important components of Interactive Fiction is the actual output
produced when the player enters a command. With output statements, we allow
the narrative programmer to print messages, and thus communicate with the game
player. They are created by declaring a string constant, as shown in statements 04,
05, and 06. The strings are sent “as-is” to the game console, although there is some
rudimentary syntax to allow output to mention objects referred to indirectly by set
variables; Figure 3.8 shows a generalized example. The corresponding NFG pattern

is a simple transition expressing the output string, as shown in Figure 3.9.
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stuff $s;

"You are carrying too much.";

"Drop the ${s}.";

Figure 3.8: Syntaz for an Output statement.

INPUT PLACES

You are carrying too much.

OUTPUT PLACE

Figure 3.9: NFG structure for the first output statement in Figure 3.8

3.4.2 Set Statements

Several approaches are available to the programmer for changing the value of a par-
ticular state inside the game. As shown in line 14 a simple set of the you.killer state
is expressed as +you.killer. This basic statement is considered a blind operation, in
the sense that if the state is already true prior to execution of the statement the NFG
output transition will be unable to fire and the execution will stall, unable to activate
the appropriate output context, as shown in part a of Figure 3.10. Using the blind
set statement is perfectly valid when the value of the state is certain, but in the case
when it is not surely false on input a safe set operation is also available. An example
of a safe set is shown at line 13, with a schematic NFG generation as shown in part
b of Figure 3.10; here two transitions are generated, one for the case of the incom-
ing state being false, and one that acts as an identity in the case that the incoming
state is already true. Since states will be either true or false this guarantees exactly
one transition will fire, and the output context will become appropriately activated.

Finally, a toggle operation can be used to flip the state value, whatever its incoming

19



3.4. Basic PNFG Statements

status. The NFG translation for all three forms of the set statement are displayed in

Figure 3.10.

)
VS
s 9 ¥

a) Set: +x.y b) Safe set: +?x.y c) Toggle: ~x.y

Figure 3.10: NFG structure for the 3 main variations of the set statement. Similar opera-
tions are defined for the symmetric unset operations, -x.y and -7x,y. Lines with two short

lines intersecting represent context edges (Section 3.1)

3.4.3 Move Statements

Movement, of objects is accomplished in a similar fashion to state manipulation; state-
ment 09 provides an example of a move statement, and Figure 3.11 shows the gen-
erated NFG. In general moving x from y to z involves deactivating the nodes corre-
sponding to “y contains z” and “z does not contains z” and activating the nodes
representing “y does not contains z” and “z contains z.” For move statements
safe versions are not provided, primarily to help ensure efficient code generation.
Safe versions of state changes are relatively efficient, requiring only two transitions
to implement effectively. For move statements, however, all potential locations of an
object © would have to be accommodated, and this could result in a much larger
NFG output. Similar safe effects can be achieved through the use of an enclosing

if-statement, as we describe below.
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() 6 (2
() () (o

Figure 3.11: NFG structure for statement, “move x from y to z”.

3.4.4 Counter operations

As discussed in Section 3.2.4 counters are represented in unary, in a manner quite
similar to basic object/room state variables. Modifying a counter is thus a simple
manner of adjusting the appropriate subset of unary value states. Figure 3.12 shows
an example of code generation for a counter increment following the semantics of the
well-known “++” C/Java operator; a transition is generated to move each unary value

to the next higher value, predicated on the unary value having a true state. Exactly

one of these transitions will actually be executed at runtime.

Figure 3.12: Counters. NFG structure for a counter increment.
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Code generation for increment or decrement of a counter by an arbitrary constant
value follows the same pattern, and increment or decrement by a variable value (an-
other counter) would be easy to add. The latter operations are not currently defined
in the PNFG language, primarily to avoid the temptation by programmers to use
non-trivial counter ranges and operations, given the potentially large code generation
that can result in our simplistic, unary compilation strategy.

A final concern in code generation for counters is how to handle overflow and
underflow. Various approaches are possible, including error-generation or implicit
application of modulus; in our case we have elected to make overflow and underflow

operations identity functions.

3.4.5 If Statements

Branching is an essential feature of any significant programming language. In the
PNFG language the narrative programmer can test for properties such as contain-
ment, state values, and counter/timer values. The statement at line 03, for instance,
checks whether or not the knife is contained in the player’s inventory, and if so will
execute lines 04-14. The NFG representation of a simple if-statement is shown in
Figure 3.13. Conditional statements in general introduce distinct control flows for
the two branches, with only one of the corresponding contexts active after the test.
A final output context is then generated for the merge of the two branches.

The use of set variables in conditionals adds an extra complexity. The inten-
tion of a statement “if (x contains $y) {...}” is that the body of the if-statement
would be executed if x contains any of the objects represented by the set variable $y.
Moreover, within the if-statement body the variable $y would then be “bound” to a
particular set member, and could be referenced and used as a normal object/room
reference. The NFG representation for this kind of set variable binding through if-
statements can be seen in Figure 3.14. Of course, this kind of compilation schema
leads to redundant structures inside the generated NFG; under certain conditions this

redundancy can be optimized away, as we will discuss in Chapter 4.
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Figure 3.13: NFG structure for o statement, “if (x.y) {...} else {...}”. Negative state

tests (“x!.y”) and positive/negative containment tests are structurally identical.

»

Figure 3.14: Using variables. NFG structure for a statement, “if ($x contains y)
where “$x” is an element of the set “{a,b}”. Branch bodies and the following merge are

not shown.
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3.4.6 Actions

The statements described above can be executed as part of three different constructs of
the PNFG language, namely the initialization of the game, actions that are triggered
by the user, and threads that are automatically executed after each action. We will
now describe how actions can be constructed.

In most IF systems the user enters commands using a natural language interface,
and discovering the appropriate language for an action can be a central, if often vexing
part of the assumed game play. The PNFG language does not model this interface,
and instead user commands are represented and derived from a simplified, canonical
language. Actions in the PNFG language are defined by either a (subject,verb) or
(subject,verb,object) declarations. When user input is received and matches an action
declaration its underlying PNFG statements are executed. In its current version, the
PNFG language assumes the subject of the action is always the player, represented by
the room “you”. Thus the user input “kill npc” triggers the action (you,kill,npc).
The ability to define and use other subjects is intended to support concurrent game
play, and is part of our future work.

Basic action declarations such as in Figure 3.7 can be executed at any time, and
are considered to have a global scope. A nice syntactic feature of PNFG allows for
actions to be “scoped” to individual rooms by nesting their declaration within the
room declaration. The action is then only available to the game player when she is
located in that particular room. This feature turns out to be particularly useful when
it comes to encoding the “map,” or room connectivity inside the game, as shown in
Figure 3.15.

Encoding room-specific actions is straightforward; an action with subject s defined
in room r is semantically identical to embedding the action within a statement “if (r

contains s) {...}".
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room lighthousefront {
(you,look) {
"You are standing in front of the";
"lighthouse. From here you can travel";
"in the four cardinal directions.";
}
(you,go,north) {
"You walk up to the mountain pass.";
move you from lighthousefront to
mountainpass;
)
(you,go,east) {
"You step behind the lighthouse.";
move you from lighthousefront to

lighthouseback;

}

Figure 3.15: Room-specific actions. These actions shadow global actions with the same user

command specification, while the subject (you) is in the declared room (taken from [29]).
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3.5 Syntactic Sugar Components

The PNFG language, with the constructs presented thus far, allows for the expression
of complex narratives, but certain parts of these narratives can be very tedious to
write and usually involve code duplication. In this section, we present additional
“syntactic sugar” components whose goals are to improve the usability of the high
level language and to limit the amount of code duplication that needs to be done. Our
contribution includes the proposal of these components and their implementation in

the language. Note that we will continue to refer to statements from Figure 3.7.

3.5.1 Variables & Sets

Most of the basic PNFG statements can also accept set variables as object/room
specifiers instead of specific objects. This contributes to reducing code redundancy
inside the PNFG source file. In their simplest, unbound form the use of set variables
causes the corresponding statement to be replicated, one copy for each possible in-
stantiation of the set variable, all sequentially linked in an arbitrary order. In the
case of bound set variables, and as discussed in reference to the if-statement (and
for-statement below), a set variable will represent a single, specific object or room,
and compilation is identical to the case where the set variable is suitably substituted

by the object/room name.

3.5.2 For & Forall Statements

Statement 07 shows an alternative method for replicating sections of code over multi-
ple objects, the for-statement. The for-statement in the PNFG language will execute
the body statements for each member of the set it receives in its declaration, bind-
ing a corresponding set variable for use in the body of the for-statement. The for
statement in Figure 3.16a can be seen as a sequence of body executions, each with
the set variable substituted by a different set element. The PNFG language also has
a forall (Figure 3.16b) statement that allows for parallel execution via concurrent

activation of transitions. This latter variation is provided primarily as part of future
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work on concurrency in IF games.

FOR - START FOR - START

Generic Place Generic Place 1 - IN Generic Place n - IN

!

"You see object 1"

FOR - END FOR - END

"You see object 1" s "You see object n"

Generic Place 1 - OUT Generic Place n - OUT

a) b)

Figure 3.16: a) Using for execution of each case is sequential. b) Using for-all execution

of each case is parallel.

3.5.3 Enter & Exit.

When a player moves from one room to another, a good game design strategy is to
have an output statement that informs the player that she is now in the other room,
and/or has left the previous room—this acts as confirmation or essential feedback
for the activity. This can of course be hand-coded at every player (you) movement
statement; enter and exit blocks, however, simplify the effort by allowing us to define
statements that are automatically executed when the player enter and exits a room.
This not only reduces the code duplication, it also leads to code that is much easier
to understand for the programmer.

Enter/exit blocks have a relatively simple syntax, consisting of just a keyword
and compound statement declaration, within the declaration scope of the relevant

room, as shown in Figure 3.17. Semantically, an exit block is executed just prior to
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the actual move, while the enter block is executed immediately after the movement

is performed.

room oldMillBack {
enter {

"You arrive in the backyard of the mill";

exit {
"You go back inside the mill.";
}

}

Figure 3.17: Enter and Ezit blocks. The statements in the enter block get executed when
the player enters the room, while those in the exit block get executed when the player leaves

the room.

3.5.4 Threads

Threads can be used to define sequences of PNFG statements that will be executed
after a player action has been fully executed. In the absence of threads these blocks
of statements would have to be copied after each and every action, which would in-
troduce severe code redundancy. Threads are usually executed unconditionally after
each action (and order of thread execution is undefined); conditional threads, how-
ever, are also available and execute only if a specific boolean condition is satisfied.
Conditional threads effectively behave like “triggered” events, a common behaviour
found in narrative games. Examples of unconditional and conditional threads are
shown in Figures 3.18 and 3.19 respectively. Note that the behaviour of a condi-
tional thread can also be easily mimicked by an unconditional thread by moving the

condition inside the thread body.
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thread {
you.moves+tt+;
if (you.moves==55) {
"You have no more time.";

+game.lose;

}

Figure 3.18: Threads. After each move made by the player a counter is incremented; if the

limit of moves has been reached the game ends with a loss.

thread (bomb.active) {
if (bomb.ticksLeft==0) {

"ballg | " ;
+game.lose;
}
bomb.ticksLeft-—;

}

Figure 3.19: A conditional thread declaration. This thread only executes when the state

bomb.active is true (taken from [29]).
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3.5.5 Timers

In the previous section we addressed the issue of compiling counters into a corre-
sponding narrative flow graph. It is also convenient to support the concept of self-
incrementing counters, or timers. Many IF games contain sections where the player
has a limited number of moves to complete a certain task. Reproducing this be-
haviour with counters alone meant the programmer had to insert a counter increment
statement after each action or to have a thread for incrementing counters, as shown
in Figure 3.18. Timers obviate that manual specification, but are merely counters
incremented automatically by an internal, system-defined thread. An example of a
timer declaration is shown in Figure 3.20. Timers begin at the minimum declared
value, increment by 1 each turn after all user threads have executed, and as with
counter overflow timers that reach the maximum value remain at that value from
that turn onward.

timer {

moves O 60
}

Figure 3.20: Declaration of timers. This block declares a counter for the number of moves

made, beginning at 0 and reaching a maximum of 60.

3.5.6 Functions

Having functions in our high-level language allows the programmer to isolate certain
narrative behaviours. Functions are very useful when the programmer wishes to have
actions that are available in more than one room but not all rooms, or just to reuse
a particular behaviour. We have defined a set of replacement rules for each type
of PNFG statement that allows one to pass parameters to defined functions, and
customize their behaviour. Figure 3.21 illustrates the definition of a function that
uses one parameter. At compile-time, each call to the function takePicture will
be replaced by its statements, and photo at line 03 and 05 will be replaced by the

parameter used in the function call.
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01 function takePicture(photo) {

02 if(you contains camera){

03 if(you contains photoalbum && photoalbum !contains photo){
04 "You took a picture";

05 move photo from offscreen to photoalbum;

06 } }}

Figure 3.21: Punction declaration. This function can then be called in any action, and the

actual function call will be replaced by the function body.

3.5.7 Default Actions

Actions defined within rooms are not typically intended to be available when the
player is in other rooms. A player attempting to execute an action specific to room
r in a different room s will thus find the action is silently ignored. This is fine and
correct from a compilation perspective, but is clearly not particularly user-friendly—
at the very least there should be feedback to the player indicating that that the
command entered is (currently) invalid.

This can be easily accomplished by generating appropriate negative feedback ac-
tions in all rooms other than the ones in which a given room-specific action is defined.
This is highly-repetitive, however, and so the PNFG also provides default actions to
automate the process of emitting negative feedback. Default actions may be thought
of as global actions, filling in the gaps introduced when there is no room-specific defi-
nition for an action in room s for a room-specific action defined in room r. The basic
default action is to emit a simple response “What?” to an invalid user command.
Syntax to allow further variation on the default actions would be straightforward to

include, and is part of our future work.

3.6 Summary

The goal of the PNFG language as a whole is to be able to analyze properties of
game narratives, and to make the creation of complex narratives a much easier task

than writing an NFG from scratch. The basic framework presented so far allows a
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programmer to represent complex narratives which can then be compiled down to
a Narrative Flow Graph. Many linguistic components are provided to reduce the
amount of redundant code inside the PNFG source file, and improved the overall us-
ability of the PNFG language. Although these are effective and useful, unfortunately
they are insufficient to generate highly minimal NFGs for the purpose of verification.
In the next section we explore a variety of low-level NFG optimizations designed to

help further reduce the compiled output size and improve verification possibilities.
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Chapter 4
PNFG Optimizations

The PNFG allows for a straightforward expression of game narratives, but the
generated NFGs tend be very large, to the extent where the NFG generation pro-
cess for our largest example narrative would not terminate in a reasonable amount of
time. Another side effect of producing large structures is that it becomes increasingly
difficult to analyze them. In this chapter, we present the different optimizations we
have applied to the PNFG translation process in order to reduce the size of the gen-
erated NFG/Petri Net. By reducing the size of the output we can analyze properties
faster, while also increasing the limit on the size of narratives we can analyze using
the NuSMYV driven narrative solver we presented in earlier work [29].

Optimizations we will present fall into two categories, safe optimizations (Section
4.1) and unplayable optimizations (Section 4.2). Safe optimizations simply mean that
we are reducing the size of the compiled output while still functionally generating the
same narrative, with identical execution behaviour. Unplayable optimizations imply
that we remove certain statements and behaviours that are not necessary in order to
correctly execute and verify the game, but which result in a game that is difficult for
human beings to actually play. An example of an unplayable optimization we present

is the removal of all output statements.
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4.1 Safe Optimizations

4.1.1 Redundant Transition Removal.

PNFG statements can have complex interdependencies, not always fully captured and
made disjoint by the language definition. Thus the corresponding NFG generation
cannot easily take advantage of that dependency, and occasionally identical, redun-
dant transitions can be generated. This sometimes occurs due to our simplistic code
generation for compound conditional testing, and can also occur as a consequence
of the application of other optimizations, particularly sequence collapsing (described
below). Removal of redundant transitions is shown in Figure 4.1, and is a well-known,
standard optimization on Petri Nets. In our case we must further ensure that any
textual output associated with otherwise identical transitions is also identical—this
would represent, however, an unusual and rare situation (concurrent output is tech-
nically possible in our system as a consequence of the use of the forall statement,

but its value is unclear).

Figure 4.1: Redundant Transition Removal. The two transitions on the left have the
same inputs and outputs, and so accomplish the same task. One of the transitions is thus

sufficient, and the other can be safely removed.

4.1.2 Dead Code Removal.

Generated code that cannot affect execution behaviour of the output NFG is func-
tionally useless, and can be safely removed. Such “dead code” can take the form of

isolated places (nodes) or transitions, nodes that cannot contain a token, and which
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do not constrain the firing of any connected transitions, and symmetrically transitions
which cannot fire, but do not constrain the presence or absence of tokens in connected
nodes.

In actual Petri Nets, one must be very careful of the constraints mentioned above.
A node with no input transitions and no initial token can still have meaning by
preventing its output transitions from actually firing. Given our code generation
strategy, however, all transitions must be live (eventually, potentially fireable from
the initial marking/token-assignment), or the game execution will stall—the “How” of
a token through the context nodes must continue for the game to run properly. Thus
a node which can never contain a token is necessarily “dead,” and can be removed,
as well as any output transitions connected to such a node. Similar logic applies
to nodes that cannot be “emptied” of tokens—if a transition cannot fire, and is the
only output from a node that contains a token, then, due to the 1-safe nature of the
output, no input transitions to that node can fire either. The schematic nature of

these cases is shown in Figures 4.2 and 4.3.

Y
¥

Figure 4.2: Dead Code Removal. Nodes are dead if all inputs transitions are dead and no
token exists, or if all outputs transitions are dead. Dashed arrows represent a link to a dead

transition.

]
Figure 4.3: Dead Code Remouval. Transitions are dead if any input or output node is dead.

Dashed arrows represent a link to a dead node.
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The removal of these dead portions of the code is done iteratively. First of all,
we mark all places that are trivially dead-—ones without any tokens and without
any inputs (or that have only input transitions that are also output transitions),
and ones which contain a token but have no outputs (that are not also inputs). We
then repeatedly identify dead transitions as ones that cannot fire because an input or
output place is dead, and nodes which are dead because all input transitions are dead
or all output transitions are dead. Once all dead transitions and nodes are identified

they are removed from the NFG output.

4.1.3 Collapsing Sequences.

As discussed above, all sequences of transitions that share a context node must be
executed in turn—failure to do so would result in execution stalling, violating the
general principle we use of “moving” a single token from context node to context
node in order to enforce control flow.

This code generation property suggests a simple, and quite effective optimization
for reducing the state space of the generated NFG: we can look for sequences of
transitions connected by a single context node, and “collapse” them into a single
transition. This process is shown schematically in Figure 4.4. Here T'1 and T2 are
sequentially connected only through the context C-2; C-2 is itself not connected to
any other transitions, 72 has only C-2 as a context input, and thus it is necessarily
true that if 7'7 fires so must 72. Token movements based on 12 can thus be combined
with the effects of T'1; in particular, inputs of 72 such as node B can become inputs
of T1, and outputs of 72 such as nodes D and C-3 can become outputs of T1. The
result is that transition 72 and context node C-2, as well as any other nodes that are
both outputs of 77 and inputs to T2 are now isolated, trivially dead code, and can
be deleted.

There are a few minor complications to this process not shown diagrammatically.
Any textual output associated with 72 must be of course appended to T, and nodes
that are both inputs and outputs to both T7 and T2 must avoid being duplicated.
Note that nodes cannot be just inputs to both T7 and T2, nor can they be just
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outputs to both transitions—in either case this would disallow T2 from firing once

T1 had fired.

T1 T1

ORCROEENONCINO

R
() (3 ()

Figure 4.4: Collapsing sequences of transitions. C-1, C-2, and C-3 are context nodes, while

other nodes represent generic (non-context) input and output places.

4.1.4 Code Commoning.

Much of the “syntactic sugar” present in the syntax of the PNFG language is designed
to help reduce duplication in code generation at the programmer/source level. A
good example is the use of threads and timers, which would otherwise require many
sequences of identical programmer code, and thus generated code at the end of each
and every action specification.

In early versions of implementing our code generation we treated these structures
very naively, simply appending each thread and timer update after each action in the
NFG representation. Current code generation is more efficient, treating these blocks
of code as common code that can be combined into a single output representation,
but reused from multiple input paths. This is in fact a general optimization strategy,

and is shown in Figure 4.5.
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OE O
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Figure 4.5: Code Commoning. A, B, and C represent arbitrary code blocks, with 4; C;
forming one action and B; C forming another action. In this case C can be easily commoned,

with A and B redirected to a single instance of C.

Commoning the tails of actions has the advantage that the termination of each
action is known, and identical-—we simply return to the idle state. However, it
is also possible to common arbitrary sequences of code within actions, albeit with
a little more effort and cost. Figure 4.6 shows an example of how to common an
intermediate sequence of code found to be identical in two different actions. Note
that in order to exit from the common code and return to the appropriate sequence,
an extra “context” node must be generated for each sequence. This extra context
will be filled in upon entry to the common code, and consumed to branch properly
on exit. Thus in order to common code C we need to minimally generate two extra,
nodes. Reductions in code size due to this optimization must therefore be balanced
against the extra costs and complexities of additional code generation, as well as of
course the very significant cost of locating such common code. For these reasons
we have not yet implemented this optimization in its full generality, and a detailed,
experimental investigation of the relative benefits and costs of general commoning is
part of our future work.

As a specific form of the above generalization, however, we have experimented
with code commoning for simple functions. Functions with no parameters are es-
sentially common code where the programmer has already identified the common
instance, and semantically suggested its value as common code as well. Parameters
add greater complexity, and require extra contexts to identify the parameter variables

if the function code is in fact common—a cost calculation becomes necessary to be
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sure such common code really does result in a reduced output size. For these reasons
we currently only generate common code for O-parameter functions; other functions

are implemented as macro-expansions.

ONOONO
© © - )}
ONOONO

Figure 4.6: Code Commoning. Only a single instance of code block C is really required;
however, extra nodes are necessary to ensure that upon exit from C control flows back to
the appropriate code block, either D or E, depending on whether C was entered from A or

B respectively.

4.1.5 No Not Nodes.

Translating our output NFG to a form consumable by the NuSMV solver relies on a
few known facts in the PNFG language semantics. Specifically, different (and disjoint)
sets of nodes form “mutexes,” in the sense that of all the nodes in a given mutex
set only and exactly one will have a token. Partitioning nodes into mutexes allows
NuSMV to search the state space much more efficiently than with a naive input
specification. Our context nodes, for instance, form a mutex set, as does the set of
nodes corresponding to a given counter’s value, and also the pair of nodes (positive
and negative) generated for each object state variable.

For object locations, our default code generation produces two nodes for each
object in each location, as outlined in Section 3.2.1. Thus simple mutex generation
implies a mutex set for each object/location combination, and this is our default
mutex generation strategy. Objects in a PNFG program, however, can only be one

room at one time, and must always be in one room. As an alternative then, we could
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specify mutexes based on this property, producing much larger mutex sets, and fewer
of them.

In order to do this effectively we also need to change code generation: nodes
representing the absence of an object in a location, or “not” nodes, are not defined
or emitted. Moving an object = from location y to z then involves generating a
transition relying on “z in y” as an input and producing “z in 2” as an output, without
requiring or modifying negative location state indicators. The main disadvantage of
this technique is in the use of conditionals. In order to test whether x is not in y (or
equivalently as the else-part of testing if x is in y), it is not possible to simply inspect
the node representing “r not in y.” Instead, a whole collection of transitions must
be generated, each inspecting “z in 2” for every z # y. This is shown schematically

in Figure 4.7.

Figure 4.7: No Not Nodes. A conditional must test all possible locations to determine

whether to follow the negative location branch.

Note that while the use of the “no not nodes” optimization (or alternative code
generation strategy) may have a positive impact on the size and number of mutex sets,

it has a negative effect on the number of generated transitions. In our admittedly
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highly-limited experiments so far this optimization has a large measured effect on
mutexes, but no obvious effect on NuSMV solution time, and so unlike the above

optimizations it is not enabled by default.

4.2 Unplayable Optimizations

4.2.1 No Default Actions.

Default actions, discussed in Section 3.5.7, provide the player with feedback when
entering a command that is not defined for the current room. This is convenient from
a human perspective; for verification, however, it generates an excessive amount of
choice. Each default action is a potential branch for verification to consider—these
choices accomplish nothing, and so can be quickly ruled out, but the sheer number
of default choices nevertheless has a very large impact on verification cost. From a
verification perspective an extremely effective optimization is thus to no longer gener-
ate default actions. Results we will show in Section 7.2 indicate that this verification
impact is not well-reflected in the size of the output NFG—mainly because default

actions are trivially small.

4.2.2 No Output Statements.

For automated, computer verification actual console output is obviously unnecessary—
a narrative can be analyzed and verified entirely by the actions accepted and the states
reached, without need to examine or emit real output.

From this perspective we can remove all output statements from the PNFG. In
practice this means we convert output transitions to simple null-effect transitions, al-
lowing other optimizations (such as sequence collapsing) to perform more effectively.
With no visible feedback human inspection of results naturally becomes more dif-
ficult, and actual game play by humans becomes extremely challenging, practically
impossible in larger games. This optimization in particular is thus applied only to

final, confidently bug-free versions of our PNFG compiler, optimizer, and example
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narratives.

Unplayable optimizations are applied if an appropriate command-line option is
specified. Prior, safe optimizations are applied by default. In terms of verifying
narratives, however, it is important to know the extent to which each of these opti-
mizations can or could contribute to making verification faster or more general. NFG
size itself is not a perfect indicator, as suggested in our discussion of the elimination
of default actions, but remains a primary heuristic. In the next section we investigate

the impact of individual optimizations on the output NFG size.
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Chapter 5

A Heuristic Narrative Solver

Previous attempts at solving game narratives [29], have used brute-force ap-
proaches on optimized representations of the narrative. As narratives become more
complex, their corresponding state space grows exponentially and solving the game
via a brute force approach requires significant computational resources. On the other
hand, it might be possible to use extra information from a high level representation
in order to reduce the search space. With that idea in mind, we developed a simple
heuristic search that locks for a game solution. Our long term goal is to be able to
derive complete solutions, even for complex narratives.

In Section 5.1, we define the heuristic we use to simplify the search, and formally
define our algorithm in Section 5.2. We will further explain the workings of the
heuristic solver by applying it to an example narrative in section 5.3. At this point,
the solution produced by our heuristic solver cannot be guaranteed to be optimal
or complete. We will discuss these limitations in detail in Section 5.4. Section 5.5
mentions the possible ways to extend our current approach. We also compare the
heuristic solver to the other approach we have been using to solve narrative games in
Section 5.6.
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5.1 The Heuristic Defined

The approach consists of looking at the pnfg source code of the narrative and finding
where the game can be won and finding a sequence of actions that leads back to
the initial state of the game. Our heuristic tries to build this sequence of actions by
looking at the if statements in the high level PNFG source file. Overall, this approach
is heuristic in nature because it assumes the conditions that need to be satisfied in
order to win the game are independent from each other, and that they can be satisfied
independently during gameplay. The heuristic will not perform well when dependent
conditions exists, because it will not be able to properly order each action to produce

a valid solution.

5.2 Algorithm Definition

solver ()

01 followCondition(game.win)

02 if the room (r) of the first action of
the solution is not the initial room

03 followCondition(r contains you)

followCondition(conditional statement)

04 For each condition of the conditional statement:

05 Find the statement that make the condition satisfiable
06 For each statement found:
o7 add the action in which

it is contained to the solution
08 if the statement is in a conditional C

and C has not been seen

09 mark C as ’seen’
10 followCondition(C)
11 else return

Figure 5.1: Heuristic Solver Algorithm
We start by looking for the statement that sets the state game.win to true

44



5.2. Algorithm Definition

(+game.win). If a game can be won, then this statement must be present in at
least one action definition, inside the PNFG source file. The function call followCon-
dition(game.win) will look at the bodies of all room actions of the game, searching
for the +game.win statement (Statement 05).

When this statement is found, the action that contains it is added to the solution
(Statement 07). We then check whether or not that statement was enclosed in a
conditional statement (Statement 08). If that is the case, we must now look for the
statement that, once executed, will satisfy the condition needed in order to go into
the branch that contains the statement that sets game.win to true.

We continue following conditions until they have all been satisfied. To avoid
looping infinitely, we follow a given condition only once (Statement 08). We then look
at the room r that contains the last statement to have been added to our solution
and compare it to the room where the player starts the game. This initial room will
be the room s in the statement move you from offscreen to s that must be present in
the start action of the PNFG source file. If r is different from s (Statement 02}, our
solution is not complete. We must then find actions that will move the player from
the starting room of the game to the room where the first action of our list can be
executed. This is done by creating a new condition (room contains you) and calling
the followCondition function (Statement 03). As a result, we will have constructed
the full solution from the starting room to winning the game.

In the event that a particular condition is composed of a logical operator (AND or
OR) the two parts (cI satisfied by sI and ¢2 satisfied by s2) will be treated indepen-
dently. In the case of an OR, our solution will suggest doing s7 or s2. When it is an
AND, we have no way of determining the order to place s and s2. We cannot guar-
antee the validity of the solution anymore. This is the behaviour we were referring
to in Section 5.1 when mentioning the solver does not perform well when there are
dependent conditions.

From this heuristic approach, we see the emergence of a naive game decomposition.
Our heuristic assumes that the entire game can be decomposed into two sections, the
first being A: Get to the room where we can start executing a series of actions that

lead to winning the game, and B: execute these actions to win the game.
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5.3 Solving an Example Narrative

Consider the following game narrative in Figure 5.2. We will now demonstrate how
our heuristic solver would go about finding a solution for this narrative. Internally,
we are building a solution tree that reflects the different uncertainties in our solution

that appear when we deal with conditional statements that use logical operators.

01 start {

02 move you from offscreen to street;
03 }

04 room street {

05 (you, enter){

06 move you from street to pub;

07 }}

08 room pub {

09 (you, takeoutmoney) {

10 if(you.cool |} you contains wallet) {
11 move money from offscreen to you;
2 3}

13 (you, takeoutwallet) {

14 move wallet from offscreen to you;
15 }

16 (you,relax) {

17 +you.cool;

18 }

19 (you,talk) {

20 "Hello ladies";

21 if (you contains money) {

22 +game.win;

23 } else {

24 +game.lose;

25} }

Figure 5.2: Small narrative that uses a conditional statement.

We first start with a root for our solution tree.
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Figure 5.3: Initial configuration of solver graph

Searching for +game.win, we find it in the action (you,talk) of the room pub,
so we add this action to the solution (Figure 5.4). Thus it means that (you,talk) in
the room pub is the last command the player will need to execute to win the game.
Because the +game.win statement is enclosed in an if statement, we now look for the

statement that will satisfy the condition (you contains money).

Figure 5.4: The action (you,talk) is added

To satisfy the previously identified condition, we need to find any statement that
moves the object money from any room 'r’ to 'you’. Looking at the example in Figure
5.2, the only statement that satisfies the condition is "move money from offscreen to

you', from executing the action 'takeoutmoney’ in the room ’pub’ (Figure 5.5).

(you,takeoutmoney)
in pub

Figure 5.5: The action (you,takeoutmoney) is added

Again, that statement is enclosed inside an if statement, but this time, the if
statement has two conditions. We simply consider the two conditions independently,
and we will add the actions that satisfy the condition as branches in our solution,
illustrated by Figure 5.6.
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you,takeoutmoney)
in pub

in pub in pub
Figure 5.6: The actions that satisfy the conditions of the OR have been added.

This effectively concludes the first section of our solution, and we must now de-
termine the initial room. In our example, the room street is our initial room. We
now look at the rooms where the first actions of our current solution take place and
determine whether or not they correspond to the initial room. In both cases, the
player must be in the room pub. We create a condition (pub contains you) and find
that the action enter in room street will satisfy the condition. Since the action is
in the initial room, the solver terminates and we are left with the solution in Figure
5.7.

(you,relax)
in pub

(you,takeoutwallet)

in pub

(you,enter)
in street

(you,enter)
in street

Figure 5.7: The action to get from the initial room to pub.
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5.4 Limitations

In its current form, the solver does not keep track of the current game state, and this
information would certainly allow it to perform better. For example, the solver will
not be able to detect a looping sequence of statements for the solution, and a given
non-movement, action cannot appear more than once in the game solution. A side-
effect of this limitation is that we maintain a list of conditional statements we have
already visited (Statement 04 in Figure 5.1). We avoid visiting the same condition
twice, but in practice, a certain condition might need to be evaluated many times,
especially when dealing with counters.

The solver ignored all threads and timers, as well as global actions. This limitation
was mainly motivated by the fact that most of the example narratives available to
us do not use these features, or if they do, they play secondary roles in the narrative
and are not required to win the game. Also, the heuristic solver in its current form
was meant to be a proof of concept exploring the possibilities and overall usefulness
of high level information as a way of solving games, as opposed to the brute force
approach of the NuSMV model checker.

5.5 Possible Extensions

Maintaining information about the game state as we search for a solution would allow
us to generate solutions for more complex narratives. Since this algorithm is a result
of wanting to make use of extra information available to us, maintaining a game state
for each part of the solution seems like the next logical step if we were to extend the
solver.

Another possibility would be to use our heuristic approach to generate hints in
real-time during gameplay. Using the current game state, the solver could check which
conditions need to be met in order to move closer to the game winning action and
then indicate the action that needs to be executed next. The number of conditions
that have been satisfied at a given point in the game could be used as a measure of

the player’s progress in the game.
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Finally, an easy way to resolve some uncertainties in our solution would be to
verify the solution by simply playing it automatically. As we have seen, the solution
tree can have more than one action at a given level, but it might be the case that

only one of these actions applies when we play the game.

5.6 Heuristic Solver Versus NuSMV

The heuristic solver presented in this section was developed as an alternative to our
other method of building narrative game solutions automatically, using the NuSMV
symbolic model verifier [9]. NuSMV uses a very efficient Binary Decision Diagram
(BDD) [8] representation to reduce the state space of the input it receives, which
allows it to analyze larger problems. One of the properties it can derive is reachability,
which is exactly what we try to accomplish when looking at a NFG representation in
order to find paths that lead to winning.

"The problem we rapidly encountered with this approach is that the size of NFGs
grows to be very large as the narrative increases in size and complexity. As a result,
the NFG we feed to NuSMV is simply too big, and cannot be analyzed formally.
Still, neither of the two approaches should be ignored and we will now analyze their
different strengths.

NuSMYV is a highly generic solver and has been applied to a wide variety of problem
domains, which gives us a lot of related work from which we can probably find some
ways to further optimize our representation. Also, NuSMV will produce the game
solution which has the fewest number of moves, while our heuristic solver cannot
guarantee that the solution it finds is minimal, or even in the right order. Using this
model checker makes it very easy to identify dead code inside the representation we
give it, since dead code is also a reachability problem.

NuSMYV is not able to find solutions for large narratives, because we are using the
full representation of the game as the input. For our heuristic solver, we focus on the
dependencies between conditions that originate from the +game.win set statement.

This represents the fundamental difference between the two approaches: NuSMV uses
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5.6. Heuristic Solver Versus NuSMV

a rigorous approach to find the minimal solution, while our solver uses a heuristic
algorithm to give a solution that represents an indication of what the player needs
to do in order to win the game. Also, the heuristic solver operates on the PNFG
source file, which allows it to use an abstract representation much smaller than the
corresponding NFG, especially with the PNFG language improvements we presented
in section 3.5.

Another important difference between the two approaches are the resources needed
for their execution. The heuristic solver only operates on the PNFG source file, which
makes it very fast and very compact. NuSMV deals with a compact representation
of the full state-space of the narrative. As a result, the model checker has very
high memory requirements, and is very slow to produce a solution, even for small
narratives. We will show the differences in execution time in our experimental results
(Section 7.3).

In its current implementation, our heuristic solver is still in its early stages, but
it plays a very important role in our narrative analysis research. It allows us to
determine the benefits of using high level information to rapidly find a solution, as
opposed to a costly brute-force method. The best solution is probably a combination
of both approaches, where we would use a rigorous solver that operates on a highly
reduced version of the game narrative to produce the minimal solution, as shown in

Figure 5.8.

Heuristic).....
Solver .,

- Heuristic - Complete

- Domain - Generic
specific - Well-understood

- PNFG Level . - NFG level

- Outputs a Desired | |- Outputs a
possible Solver valid minimal
solution solution

- Limit on size of
input narrative

Figure 5.8: The different advantages of each the two solving approaches we use.
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Chapter 6

Narrative Metrics

The underlying goal of developing the PNFG framework has always been to derive
properties about game narratives. We have developed a metrics framework that uses
information found in the PNFG high-level representation of narratives in order to
derive interesting properties about these games. For example, we wish to analyze the
number of possible actions available to the player during the game, in order to look
at the convexity of the game. We will present this framework in Section 6.1, and then

look at the different metrics we measure in Section 6.2.

6.1 Metrics Framework

Below we discuss the design of our metrics framework and how it operates with
the PNFG system. This interaction allows us to use high-level information about
narratives that was previously ignored when doing analysis. The framework itself
gives us a representation that is much easier to work with than dealing directly with
PNFG source code, or the corresponding NFG. We will now go over the details of
this framework by explaining the GameTree representation we use to derive metrics,
and the role of each component of our framework.

An overview of the metrics framework can be seen in Figure 6.1. The high-level
intermediate representation used internally by the PNFG compiler is also used by

the metrics framework in order to build a GameTree which is then fed to the metrics
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analyzer. From this representation of the game, we can then derive different metrics,
produce an html report containing all the results, as well as a graphic representation

of the GameTree, which is generated using the dot [15] tool.

PNFG Compiler Metrics Framework

Metrics
Analyzer

E—Iigh-Level Intermediate\

Representation J

visual
representation

Figure 6.1: Metrics Framework Overview.

The need for a new representation of the narrative originated from the metrics we
wanted to measure. Deriving metrics from a Narrative Flow Graph is certainly possi-
ble, but we wanted to have a representation that still contained high-level information

in an organized manner to make the metrics development much faster.

6.1.1 The GameTree Representation

The first stage of metrics analysis consists of building a GameTree, which corresponds
to a tree representation of all possible action paths from the start of the narrative to
winning or losing the game. This structure is composed of GaMeNodes, representing
the game state in terms of the values of all variables in the game, and GameFEdges,
which symbolize actions executed by the player. The relationship between these
elements is shown in Figure 6.2. We will now describe the different components
that are used to generate this representation (Figure 6.3). As we go along, we will
also explain how the generation of the GameTree takes place. Note that currently,
the generation process of the GameTree ignores default actions, threads, and timers,
which contribute to a large state explosion and prevent us from deriving any metrics.
GameTree Loader

Internally, the GameTree is represented by a set of GameNode objects. The Ga-

meTree Loader is responsible for building the GameNodes that represent the game
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Metrics Framework

GameTree
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GameNode

(Forward) i
/ GameEdge
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6.2: Elements of a GameTree.
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narrative. We use the high-level intermediate representation of the PNFG compiler,
which contains all the game construct definitions. Starting from the start room, it
will do a breadth-first search traversal of the game space. In this GameTree we are
building, the edges represent the execution of an action, and the nodes represent a
particular game state.

A very important detail to note, we do not allow a particular GameState to
be repeated in our GameTree. We discuss handling these redundant states in our
description of GameEdges.

Game State Factory

When an action is executed, it may lead to a new GameState or to a state that has
previously been encountered. So, before a GameNode is actually created, we need
to evaluate the GameState that this node will represent. This is done by the Game
State Factory, which receives the current GameState, and updates it by evaluating
each statement of the action. In practice, we are playing the game and evaluating
every possibility by interpreting the statements of the action. We start by creating
a GameState that contains all the game objects, and all the game rooms with the
default values for each of their properties. We also keep track of all the GameStates
seen so far, and if a GameState as already been encountered, it is discarded, and no
GameNode is created. This ensures termination of our tree-building algorithm.
GameState and StateObject

The GameState is composed of two sets representing all the objects, and all the rooms
respectively. Inside these sets, we store StateObjects, which act as containers for the
current state of either an individual room, or an individual object. Each StateObject
has a name and a specific location that corresponds to the room in which it is currently
contained . Also, a StateObject has a set of properties where each entry has the name
of the property and its value. This representation of the GameState, shown in Figure
6.3 is structured very similarly to the PNFG source code, and retains its straight
forward organization.

GameNode

As mentioned previously, a GameNode represents a unique GameState. It has a link

to its parent, as well as a list of GameEdges, which represent the possible actions
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6.2. Narrative Game Metrics

that can be executed at this particular node.

GameEdge

Having a GameEdge object defined explicitly gives us more flexibility, and allows us
to have edges with more information in the GameTree we are producing. We have
defined three different types of edges: forward, backward, and unnecessary (see Figure
6.2). When a GameNode is successfully created, we add a forward edge that goes
from that new node’s parent to the new node, and store that edge in the parent’s
list of edges. When a GameState is found to be identical to another one previously
created, we first consider the GameState’s level in the GameTree. If it is found to
be at the same level than the original state, we create an unnecessary edge, since the
same GameState can be reached using another path in the graph. If the redundant
state’s level is lower than the original state, we create a backward edge that goes to
the GameNode that has the original GameState. Since we traverse the game in a
breadth-first search manner, this ensures that for a given state, we will create the
GameNode for its first occurrence in the closest position to the root of the tree. By
definition, the total number of forward edges will always be one less than the total
number of GameNodes.

GameTree Generation

In our description of each GameTree component, we have briefly explained the details
of the generation of the tree. You will find a complete description of this process in
Figure 6.4.

6.2 Narrative Game Metrics

In the following section, we will present the different metrics we are currently able to

measure using our metrics framework.

6.2.1 Edges to Nodes ratio

The edges to nodes ratio is a metric that allows us to quickly have an idea of the shape

of the Game'lree, and also hints a certain complexity in the narrative. A higher node
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buildGameTree()

01
02
03
04

Build initial GameNode g
loadFromAction(start,g)

while(queue is not empty)

loadFromAction(dequeue())

loadFromAction(Action a, GameNode g)

01
02
03

04

05
06

07
08

09
10
11

Using a, update the GameState s, found in g
if s already exists
if the level of s is equal to that of
the original state o
create an ‘unnecessary’ edge e from g to
the GameNode associated with o
else
create an ‘backward’ edge e from g to
the GameNode associated with o
else
create new GameNode g’ with g as parent
and s as state
create a ‘forward’ edge e from g to g’
for all the actions a’ available in g’

enqueue( (a’,g’) )

Figure 6.4: GameTree Building Algorithm
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count indicates a large narrative, while the number of edges represents the number of
actions. Therefore, as the ratio becomes bigger, it means that there are less actions

that have an impact on the game state.

6.2.2 Forward to Backward edge ratio

Our metrics framework allows us to easily differentiate between edges that lead to
a new game state, and those that bring the player back to a previously encountered
state. If there are much more backward edges, it probably equates to a complex

game, since many actions will not make the narrative progress.

6.2.3 Convexity

The concept of convexity as a way of analyzing game narratives has been presented
in [30], but no actual data has been presented to show that convexity can be actually
observed in game narratives. The idea behind convexity is that number of possible
choices the player has starts out small, increases, and then converges to winning of
the game.

In [30] the concept was presented from a very high-level perspective, where the
term convexity represented what was being referred to as the classical game structure,
as shown in Figure 6.5. An actual measurement for convexity was not provided, and
the authors did not address the fact that most narratives have “useless” actions
that do not move the player closer to winning the game. While convexity looks to
analyze the number of choices available to the player, the description from [30] does
not mention if that number corresponds to the number of choices from the entire
narrative, or if it is limited to one play sequence. It could also represent the average
number of choices the player has after having entered a certain number of commands.

It was also argued there that this convexity structure could be serialized through-
out a game as a series of “levels”, “acts”, or “worlds” (Figure 6.6). One of our goals
in analyzing game narratives has been to look for chapters inside games, and the de-
tection of these chapters could be possible using such a convexity metric, that focuses

on shape of the narrative. Since no standard measurement of convexity exists, we will
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Figure 6.5: A convexity, as defined in [30]

use two different measurements. First, we count the total number of GameNodes at
each level in the tree, where a level is the number of actions that have been executed
to get to a certain GameNode. The second one consists of looking at the convexity
of individual winning paths, and we will discuss the details of this approach in the

next section.
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Figure 6.6: A series of convexities, as defined in [30]

6.3 Analyzing Winning Paths

From our first experiments with measuring metrics, we found out that our example
narratives have more than one solution, which we define as Game Winning Paths
in terms of the GameTree. More precisely, a Game Winning Path is a sequence
of actions going from the start node to a winning node, and in which all actions

affect the game state. Also, a Game Winning Path cannot visit the same game state
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twice. In the event where no such path could be found, we can declare the game as
being unwinnable. The metrics framework we are using allows us to produce a tree
representation of our game, and using forward edges, we can easily track down paths
that lead to winning the game. Using these game winning paths, we look to further

analyze the overall narrative.

6.3.1 Convexity of Winning Paths

When we analyze the shape of the GameTree, it can be hard to find a well defined
pattern like that of Figure 6.5, because many “useless” actions give false positives
when measuring convexity. By focusing on game winning paths individually, we look
to analyze their convexity as well. This is the second convexity measurement we
referred to in the previous section. To measure convexity, we again count the total

number of GameNodes at each level in the tree.

6.3.2 Subsets and Supersets

In most case, there are many solutions to a game, but since we keep track of the full
game state, many solutions can be very similar, to the point where they only differ
due to the player having a non-essential item in his inventory or not. By keeping track
of the subsets and supersets of each game winning path, it becomes much easier to
draw links between each path. Figure 6.7 illustrates this relationship between paths,
where a node represents a particular game winning path, and an arrow indicates the

source path is contained in the destination solution.

6.3.3 Analyzing the Shortest Winning Path

While the length of the shortest Game Winning Path can give us an idea of the
complexity of the game, we will also look at the effects of changing a side quest from
being optional to mandatory. Our goal is to determine if we can isolate game quests

by looking at the actions that make up the shortest game winning path.
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path7

6 moves
pathO

7 moves

path10
9 moves

pathl1
8 moves

path5
11 moves

path4
11 moves
path2

12 moves

pathl
13 moves

Figure 6.7: Dependencies of Game Winning Paths for Return to Zork, chapter 1.
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Chapter 7

Experimental Results

The experiments we have done with our system consist of measuring the effects
of the different optimizations, looking at the quality of the solutions produced by
our heuristic solver, and measuring the different metrics we present. We also analyze
the different Game Winning Paths, and make observations about the solutions of the
games we used for our experiments. We will first describe the example narratives we
have used for our experiments in Section 7.1, and then proceed with the results for
our optimizations (Section 7.2), heuristic solver (Section 7.3), and metrics (Sections
7.4 and 7.5).

7.1 Example Narratives

To test our system we have used four different game narratives, ranging from from very
small to fairly large. We will present each game along with their different properties
and usefulness in our experiments. We will also present maps of each narrative, which
have been generated using the PNFG compiler to get the list of actions that move
the player, and the dot directed graph generation tool [15]. In theses maps, the nodes
represent the different rooms in the game and an edge indicates that it is possible to
move from room a to room b using the command that appears on the edge, near the
source node. For example, in Figure 7.1 the player can move from the cloakroom to

the foyer by entering the e command, assuming that the current game state satisfies
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7.1. Example Narratives

all conditions that apply to this movement. We will also call on Tables 7.1 and 7.2
(page 68) for data on the main properties of each narrative. We played through our

implementations of theses narrative manually to ensure winning was possible.

1) Cloak of Darkness (CoD), acts as our base case in all of our experiments, and it was
originally designed to be an example that would help programmers learn the syntax
of various IF toolkits [14]. In the game (see map in Figure 7.1), the player starts
by wearing a cloak, and as long as she is wearing it, the bar remains in darkness.
The player can score a point by hanging the cloak in the cloak room at which point
the bar becomes lit, and score another point by reading a message in the bar once
it has been lit. Every time the player executes a non-movement action or an invalid
movement action in the darkened bar, a counter is incremented. If the value of the
counter is above a certain limit, reading the message cannot win the game.

Having only three game objects and three game rooms, CoD can be classified as
being very simple. On the other hand, it has all the basic features we find in works of
IF, such as room and object interaction, player movement, actions which have non-
local effects, object with states, as well as some counting. The game map of CoD can
be seen in Figure 7.1. We also include a more detailed version of CoD that heavily
relies on the use of functions and global actions in CoD(func). The PNFG and NFG

data for both version of CoD can be seen in columns 1 and 2 of Tables 7.1 and 7.2.

cloakroom

Figure 7.1: Map for Cloak of Darkness. Taken from [29)

2) Return to Zork (RTZ) [5] was released in the midst of the CD-ROM era of narrative
games, and heavily relied on the use of video and sound to deliver to story. It is set
in the same world as its prequel, the IF classic Zork [20]. While CoD was chosen for
its overall simplicity, representing RTZ in PNFG source code was motivated by the

following two reasons. First of all, it gave us the opportunity to verify the feasibility
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and challenges of translating a multimedia game into a strictly text-based game. Also,
RTZ has previously been divided into chapters [36], another narrative game feature

that interests us. We will be using the first two chapters of the game.

2.1) Return to Zork - Chapter 1 (RTZ-01) is a fairly simple narrative where the
objective consists of building a raft in order to reach the town of West Shanbar, while
avoiding the deadly Road to the South (See Map in Figure 7.2). We also include an
alternate version of the first chapter, RTZ-01 (bonding), where the object bonding
plant must be present in the player’s inventory in order to win the game. Also the
bonding plant must be alive, which is accomplished in the game by digging the plant
as opposed to cutting it. In the original game, the bonding plant is not required
to finish the chapter, but the player needs to have it in order to eventually win the
game in the final chapter. The data for both versions of the narrative can be found

in columns 3 and 4 of Tables 7.1 and 7.2 respectively.

lighthouse mountain
balcony pass
3 [
n
n
lighthouse
inside
3

W

Figure 7.2: Map for Return to Zork - Chapter 1 Taken from [29]

The underlying goal of having this modified version is to analyze the impact of
adding a requirement to winning the game. To accomplish the goal of having the
bonding plant in his inventory, the player must first pick up a rock and throw it at

the vulture that guards the plant. In the original RTZ-01, the action of picking up
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the rock was implemented in the PNFG source file as the global action take. Since
our heuristic solver and metrics framework ignore global actions, we added special
versions of two global actions take and drop in the room mountainpass. These
versions only deal with the object rock, and it allows our metrics framework to
detect the needed actions to win the game. We will discuss the impact of making this
side quest mandatory in Section 7.6.

2.2) Return to Zork - Chapter 2 (RTZ-02) is more complex than the first chapter,
because the player must take part in a drinking game, where a series of commands
must be executed the right number of times in order to get a key that leads to the
next chapter. The map of the narrative in Figure 7.3 reveals that the different drawers
of a filling cabinet were represented as individual rooms. When a player consults a
file, a set of output statements is used. This a very good example of actions, and
rooms that do not affect the game state, because reading the different files is optional.
Column 5 of Tables 7.1 and 7.2 show the basic PNFG and NFG data.

3) The Count (Count) [3] is a famous work of interactive fiction by Scott Adams where
the player must confront count Dracula. It is particularly interesting for us, because
it is fairly complex, to a point where we cannot currently solve it automatically with
our system. In terms of number and rooms and objects, The Count is not much
bigger than the second chapter of RTZ, but its NFG data from column 6 of Table 7.2
reveals that it is much more complex than any of the example narratives.

Many of the language enhancements we presented have been added in order to
facilitate the representation of The Count in PNFG source code. As a matter of fact,
we can see in column 6 of Table 7.1, that the narrative uses all the PNFG language
features, such as threads, timers, and functions. Figure 7.4 shows a map of the game.
The game itself contains properties we wish to be able to verify automatically using
our system. For example, the game can become pointless when the player loses an
essential item, or when a certain timer runs out. The Count also has some logic flaws,
a narrative consistency problem we also wish to be able to determine. In terms of
finding the solution automatically, the 180-step solution of The Count represents a
long term target for our system, and will also motivate further exploration of more

efficient ways to solve narrative games. While The Count is too large to be used in
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Figure 7.3: Map for Return to Zork - Chapter 2 Taken from [29)]
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most of our tests, the task of representing it with PNFG has already yielded several

optimizations, and it will certainly continue to be a great source of improvements in

the future.

Using Alternate Versions of Example Narratives

For the optimization results, we only considered the “complete” version of each

narrative. We have therefore ran our experiments on CoD(func), RTZ-01, RTZ-02, The

Count. The alternate versions of CoD and RTZ-01 will be used in our results for the

heuristic solver and metrics. We needed CoD for the solver and metrics experiments

because these two modules currently ignore global functions, which CoD(func) uses

extensively.
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dumbwaiter

windowbox

Figure 7.4: Map for The Count. Taken from [29]

7.2 Optimization Results

General statistics about each narrative are shown in Tables 7.1 and 7.2. The “BDD
Booleans” gives the sum of [log, Jm|] for all mutex sets m in the NuSMV representa-
tion; this gives a rough sense of narrative complexity (in conjunction with the number
of transitions), and also an indication of the size of the state space that may have to
be searched for each game. BDD boolean values themselves are most dramatically
affected by the no not nodes optimization, and so for the optimizations we investigate

below we concentrate on transition and node changes.

Methodology for results

Since the optimizations build incrementally on one another, and thus have large
interdependencies, a separate analysis of each optimization would be misleading, and
moreover would not sum to the total effect of applying all optimizations together.
Instead we generated an NFG using all the implemented safe optimizations (except
for “no not nodes” ), and then tested the impact of each one by removing it from that

all-inclusive optimization. We also considered the incremental impact of available
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property CoD| CoD (RTZ-01| RTZ-01 |RTZ-02{Count
(func) (bonding)
rooms 4 4 10 10 21 22
objects 1 1 19 19 36 29
threads 0 0 0 0 0 8
timers 0 0 0 0 0 4
functions 0 20 2 2 2 1
global actions|| 1 15 5 5 4 29
PNFG lines || 218 | 535 563 583 1133 | 1966
steps to win 6 6 6 11 19 180

Table 7.1: Basic PNFG data on ezample narratives. The number of steps to win has been
calculated from the optimal solution, except in the case of The Count, where we cannot

guarantee our solution is optimal, because we cannot solve it automatically yet.

property CoD| CoD |RTZ-01| RTZ-01 |RTZ-02|Count
{func) (bonding)

places 123 | 274 965 944 1764 | 12603

transitions 147 | 335 | 1498 1470 3806 (40762

BDD booleans|| 25 | 29 181 175 241 686

verifiable yes | yes no no no no

Table 7.2: Basic NFG data on example narratives. Each graph was generated using all the

optimizations available. We will present the effects of each optimization in Section 7.2

unplayable optimizations such as the removal of output statements and exclusion of

default actions.

Effects of Redundant Transition Removal

Table 7.3 shows the impact of the basic redundant transition removal optimization.
Unsurprisingly, since this optimization affects only transitions, there is no change in
the number of nodes. Number of transitions, however, is significantly improved, up to
a little over 31% in RTZ chapter 2. Unfortunately, the largest narrative (Count) does

not show an equally large or larger improvement, mainly due to its more complex
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CoD |RTZ-01|RT7Z-02| The Count

(func)
Places 274 965 1764 12603
Difference || 0% 0% 0% 0%

Transitions|| 347 1882 5538 46921
Difference || 3.5% | 20.4% | 31.3% 13.1%

Tablc 7.3: Effects of redundant transition removal on NFG Size

control structure.

Effects of Dead Code Removal

CoD {RTZ-01|RTZ-02| The Count
(func)
Places 278 986 1800 12714
Difference || 1.4% | 2.1% { 2.0% 0.9%
Transitionsl| 338 1564 3951 41021
Difference || 0.9% | 4.2% | 3.7% 0.6%

Table 7.4: Effects of dead code removal on NFG Size

Dead code removal has a disappointingly minimal impact. From Table 7.4 the lack
of dead code removal only results in a narrative (NFG) between 1% and 4% larger
than a fully-optimized version. In a general sense the programmer will of course
write statements that are designed to be executed at some point, and so dead code
should be minimal. Most identified dead code is likely due to programmer errors or
imprecision in specification of sets. As well, even for objects or game events that are
not actually used in a significant or important way, the existence of feedback messages
or other error handling within the game will result in otherwise unnecessary nodes
and transitions being conservatively identified as live. More aggressive “useless” as
opposed to actually dead code identification would likely have a much larger impact,

and is one of our main directions for future work.
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Effects of Collapse Sequences of Transitions

CoD |RTZ-01|RTZ-02{The Count
(func)
Places 440 1742 3421 20885
Difference ||37.7%| 44.6% | 48.4% | 39.7%
Transitionsj| 501 2275 5463 49044
Difference 1/33.1%| 34.2% | 30.3% | 16.9%

Table 7.5: Effects of Collapse Sequences of Transitions on NFG Size

The sequence collapsing optimization has a fairly large impact on game narratives.
Table 7.5 shows that the number of nodes are reduced by 38%-48%, and transi-
tions by 17%-34%. This very nice effect is of course to be expected given our naive
code generation—NFG output for each statement is generated in isolation, and so
non-branching sequences of PNFG statements will naturally translate to sequences
suitable for optimization. Better results are obtained on both Cloak of Darkness and
the Return to Zork games. This is to some extent likely due to the fact that these

games, as opposed to The Count, have a lot of dialog, often coded as multi-line output

statements.

Effects of Code Commoning

CoD |RTZ-01|RTZ-02|The Count
(func)
Places 319 | 3401 | 15201 —
Difference ||14.1%| 71.6% | 88.4% —
Transitions|| 413 | 6452 | 25209 —
Difference |/18.9%| 76.8% | 84.9% —

Table 7.6: Effects of code commoning on NFG Size

Table 7.6 shows that code commoning can provide quite spectacular results. Size in-

creases of up to 89% of nodes and 85% of transitions are possible without commoning,
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and for The Count code commoning is in fact essential for producing any output in
a reasonable time.

The main source of this benefit is in how the code for actions is generated. For
simplicity in code generation, each room includes a specific copy of the code for
every possible action—in larger narratives with many rooms and many possible user
commands this can have a very significant cost. Code commoning allows the bodies
of identical actions to be reused, effectively resulting in only one action body for each
distinct action, irrespective of other conditions such as player location that control
whether the action can be executed. Commoning in fact has a greater impact not
shown in Table 7.6—threads and timers also benefit from a form of commoning, and
this effect is not included in the data above.

From these encouraging results we wish tohe investigate other possible uses of
code commoning in order to reduce the size of the NFGs we generate. The main
difficulty at this point is to efficiently find patterns inside game narratives that can

be commoned.

Effects of Commoning Functions

CoD |RTZ-01|{RTZ-02| The Count

(func)
Places 309 965 1764 12647
Difference [[11.3%| 0% 0% 0.3%

Transitions|| 446 1498 3806 41124
Difference [}24.9%| 0% 0% 0.9%

Table 7.7: Effects of commoning functions on NAG Size

As we can see in Table 7.7, useful reductions can be made to the generated NFG
when we apply code commoning to functions, even when limiting that strategy to
functions without parameters. This does not apply in all cases of course—there must
obviously be a significant number of user-defined functions in the PNFG source file

in order to achieve good results. The two examples from Return to Zork have no
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such functions, The Count has only 1 function used in only 2 places, while Cloak of
Darkness makes extensive use of functions for most game activitics. The performance

of the optimization directly mirrors this pattern of function usage.

Effects of Unoptimizing

CoD [RTZ-01|RTZ-02|The Count
(func)
Places 654 | 1772 | 3441 21342
Difference {58.1%| 45.5% | 48.7% | 40.9%
Transitions|| 812 | 2742 | 7343 56442
Difference ||58.7%| 45.4% | 48.2% 27.8%

Table 7.8: Effects of turning off all the above optimizations, except for basic code com-

moning, on NFG Size.

Table 7.8 gives data for our narratives when compiled with all optimizations turned
off, excepting basic code commoning. The latter optimization is included regardless
since it has such a large impact, and is necessary to compile The Count at all.

Lack of optimizations results in output on the order of twice as large as optimized
output. Thus, while the optimizations described above have quite variable effects,
and depend greatly on narrative programming style and choices, the overall effect is
quite significant, and well worth applying.

The next two Subsections describe the effects of “unplayable” optimizations.
These are presented in a positive, rather than negative form, added in rather than
subtracted out from a default usage. This represents their intended application as ex-
tra effects applied only during analysis rather than as part of the normal compilation

process.

Effects of No Default Actions (Incremental)

Default actions are generated to provide simple, error feedback to the player when

they enter an action that is undefined in their current situations. This has different
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CoD |RTZ-01|RTZ-02|The Count
(func)
Places 274 963 1762 12601
Difference || 0% | 0.2% | 0.1% 0%

Transitions}| 335 | 1400 | 2687 40181
Difference || 0% | 6.5% | 29.4% 1.4%

Table 7.9: Effects of no default actions on NFG Size (incremental).

effects depending on how the game is defined. In the case of Cloak of Darkness
and to only a slightly lesser extent The Count, there is sufficient error handling
already built into the game specification to obviate much of the use of automatically-
generated default actions. In Return to Zork chapter 2 in particular, almost no
explicit error handling is provided by the game programmer, and default actions have
a significant impact. Note that default actions are quite small, consisting of a single
output statement, and are also subject to commoning. The large impact in Return to
Zork chapter 2 can be more correctly attributed to the combination of a large number

of rooms and a large number of room-specific actions.

Effects of No Output Statements (Incremental)

CoD |RTZ-01|RTZ-02|The Count
(func)
Places 221 658 1246 9897
Difference |/19.3%] 31.8% | 29.4% | 21.5%
Transitions|| 283 1191 3288 38056
Difference ||15.6%| 20.4% | 13.6% 6.6%

Table 7.10: Effects of removing output statements on NFG Size (incremental)

Even though the narratives would be unplayable by a player we can see from Ta-
ble 7.10 that the removal of all output statements leads to a significant reduction of
both the number of nodes and the number of transitions in the generated NFG. The

impact of this optimization certainly motivates further exploration of these types of
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simplifications, which can be described in broad terms as the removal of everything
that is useless for verification.

This topic of identifying useless components of computer game narratives is in
itself a very relevant field of computer game analysis. Being able to identify what
is meaningful or not when it comes to winning or losing a game can tell us a lot
about game design patterns that are found in many games, including the general
structure of individual game tasks, and how “chapters” or other logical divisions may
be incorporated or identified. This is certainly an area of work we wish to further

explore.

7.3 Solver Results

The heuristic solver we developed uses a very simple approach and makes an attempt
at finding a solution for a narrative game, and assumes a rather simple narrative
structure in order to generate this solution. The following tables contain the solutions
produced by our heuristic solver. We first present the optimal solution, and compare
it against the solution given by the solver. The strategy used by our heuristic solver
consists of first finding the actions that need to be executed in order to satisfy the
winning conditions. The second part consists of adding the movement actions in order
to get to the rooms where the actions must be executed. Running times for optimal
solutions were obtained using the NuSMV model checker. We will use the notation
~~-~ when no solution was produced by NuSMV. This notation is also used for the
validity of the optimal solution, because it is valid by definition. An invalid solution
means entering the commands does not lead to winning the game. The running times
were obtained on a 1.2GHz AMD Athlon machine with 512MB of memory.

Solution for CoD

In CoD, the player starts out in the Foyer, and must go west to the cloakroom (w),
where she can then hang the cloak on the hook (put). She must then move to the

Bar (e, s) and read the message on the floor to win the game (read). If the player
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Optimal |Heuristic
Solution| Solution
01 w w
02 put put
03 e e
04 s w
05 read wear
06 drop
07 e
08 s
09 read
Valid — no
Time(ms)| 1397 176

Table 7.11: Solutions for CoD.

enters two or more invalid actions in the darkened Bar, reading the message will
cause him to lose the game. The much longer heuristic solution in Table 7.11 is due
to the structure of the PNFG source code. The game.win statement is nested inside
two conditions, and they can both be satisfied by the executing the put command.
However, since our heuristic solver does not keep track of the game state as it builds
the solution, it looks to satisfy both conditions independently. This also explains why
the set of suggested actions can contain actions which satisfy the same condition. The
very important detail to note from the results for CoD is the running time for both
approaches. It shows the heuristic approach is much faster than NuSMV. By working
with the PNFG source instead of fhe entire state space, the heuristic solver can find

a solution very rapidly.

Solution for RTZ-01

In the first chapter of Return to Zork, the player must build a raft to reach the city
of West Shanbar. After reaching the back of the lighthouse (s, s, ), the player can

build the raft (cut vines, tie vines), and finally ride it to win the narrative (ride
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Optimal |Heuristic
Solution | Solution
01 8 8
02 s S
03 e e
04 cut vines|cut vines
05 tie vines | tie vines
06 ride raft | ride raft
Valid — yes
Time(ms)| — 185

Table 7.12: Solutions for RTZ-01.

raft). This version of the first chapter has an optional side-quest where the player
can get a bonding plant. It is possible to lose the game by removing the bonding
plant while the vulture is still present (cut bondingplant or dig bondingplant),
killing an npe, or venturing on the Road to the South. As we can see from Table
7.12, the heuristic solver was able to generate a valid and optimal solution. This
is explained by the fact that RTZ-01 uses a simple structure. For example, all its
conditional statements verify only one property at a time, and the narrative itself
does not use advanced PNFG language features such as counters, threads, or timers.
Being able to generate a valid solution in 185 milliseconds, while the NuSMV checker
does terminate when analyzing RTZ-01 gives us great confidence in the potential of

our heuristic method of solving narrative games.

Solution for RTZ-01 (bonding)

RTZ-01 (bonding) adds the side-quest of getting the bonding plant as a requirement
for winning the game. The bonding plant must also be alive in order for the player
to win. This is done by first scaring away the vulture by throwing a rock at it (take
rock, throw rock), and then moving closer to the signpost (examine). At this stage,
the bonding plant can be retrieved, and it is crucial that the player digs the plant
rather than cutting it (dig bondingplant). Then, the player must go back to the
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Optimal Heuristic
Solution Solution
01 take rock S
02 throw rock S
03 examine e
04 dig bondingplant cut vines
05 n tie vines
06 S n
07 S n
08 e n
09 cut vines examine
10 tie vines dig bondingplant
11 ride raft n
12 drop rock
13 take rock
14 throw rock
15 examine
16 cut bondingplant
17 n
18 S
19 S
20 e
21 rideraft
Valid — no
Time(ms) — 235

Table 7.13: Solutions for RTZ-01 (bonding).
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7.3. Solver Results

mountainpass (n), and execute the solution from RTZ-01. As we saw in Table 7.11 for
CoD, we have a heuristic solution that is considerably longer than the optimal one,
because the solver first looks to satisfy the condition of building the raft, and then
backtracks to get the bonding plant. For that particular objective, we can see two
flaws in the heuristic solution. First, executing the action dig bondingplant before
scaring away the vulture will result in losing the game, and we will explain why it
gets added before take rock and throw rock.

At that point in its execution, the solver is looking to satisfy the condition of the
player having the bonding plant in his inventory. It first finds cut bondingplant, and
considers the condition that the vulture must not be present, and therefore adds take
rock and throw rock to satisfy the condition. By doing so, the vulture condition gets
marked as being 'seen’ (see Section 5.1), therefore getting ignored when later finding
dig bondingplant as another action that satisfies the bonding plant condition.

Also, executing the cut bondingplant action prevents the player from winning
because the bonding plant must be alive in order to win the game. Because it satisfies
the condition of having the bonding plant in the player’s inventory, it gets added to

the solution.

Solution for RTZ-02

When the player starts the second chapter, she first needs to enter the Old Mill (s, e,
n). Once inside, the drinking game starts, and to pass this test, the player must fool
the npc by pretending to drink exactly three times (toast, empty drink, drink, ...).
After those three drinks, the npc will be willing to hand over his key (askAboutKey).
The player must then open a secret trap door, by removing a chock that blocks the
water mill outside (n, remove chock). She can return inside the mill to find a hole
in the floor which leads to a door (n, climbdown). Finally, the door can be unlocked
and opened to win the game (use booskey, n).

As we can see in Table 7.14, the heuristic solution is only missing the steps from
the drinking game, and is otherwise complete. Much like the problems encountered

when attempting to find a solution for RTZ-01 (bonding), the omission is due to
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Optimal Heuristic
Solution Solution
01 S S
02 e e
03 n n
04 toast askAboutKey
05 empty drink n
06 drink remove chock
07 toast n
08 empty drink | climbdown
09 drink use boosKey
10 toast n
11 empty drink
12 drink
13 askAboutKey
14 n
15 remove chock
16 n
17 climbdown
18 use hoosKey
19 n
Valid — no
Time(ms) — 192

Table 7.14: Solutions for RTZ-02.

a condition being marked as ’seen’. This strategy allowed us to avoid running into
conditional loops, while not having to maintain information about current game state.
In this particular case, we are dealing with a group of statements that must repeated
a certain number of times. Also, if the player was to drink too much, or drink without
emptying his drink, she would have to restart the drinking game from scratch. This
particular narrative trait is more complex than the other example narratives, but it

nonetheless represents a good objective for our heuristic solver.
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Heuristic Solver and The Count

We do not present any results for the example narrative The Count, because it uses
features of PNFG language that are not supported by the heuristic solver. Namely,
global actions, threads and timers play a crucial role in the PNFG implementation
of the narrative. In its current form, the solver simply ignores these constructs.
Extending the solver to support these two features is part of our future work. Table
7.1 shows the solution length is around 180 steps, much larger than any of our other
examples narratives. In order for the solver to produce a solution for a large narrative
like The Count, we will need to maintain information about the current state of the

game as we build the solution.

Closing Remarks

While the solver in its current form is very simple, we can already appreciate the value
of high level information contained in the PNFG source file in order to automatically
solve narrative games. The solutions it can produce are not always valid, but we must
remember they were all generated in less than 300 milliseconds, while the NuSMV
solver was only able to produce a solution for CoD. The amount of time taken to
build the solutions is a good indicator of the potential of this heuristic method, and
also shows that the solver itself is still in a preliminary phase. While, heuristically
building solutions that are optimal may prove infeasible for very complex narratives,
this approach is certainly able to find large parts of the solution, as we have seen for
CoD, RTZ-01(bonding), and RTZ-02. In most of these cases, we see that the solution
generated by the solver contains all the steps of the optimal solution. Hence, even if
the solution presented is not valid it can still be of great use to the player, and the

solver could be used as the basis for a very useful hint generator.

7.4 Metrics Results

Our analysis of game narratives has previously been limited to verification. We now

extend our analysis to measuring different game metrics. Using the Metrics framework
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presented in section 6.1, we first build a GameTree, and use this new representation
to evaluate each metric. In the generation of our GameTrees, we only considered
actions which affected the state of the game. To determine these actions, we build
a set of properties that are modified for each action, and then ignore actions whose
“write set” are empty. We will now present results for each metric, and also show a

graphical representation of a GameIree in Figure 7.11, on page 92.

Edges to Nodes Ratio

Calculating the Edges to Nodes ratio allows us to get a general idea of the shape of
the generated GameTree. In this representation, each Node corresponds to a unique
Game State, and the edges symbolize an action execution. When there are more
edges than actions, it means that there exists groups of edges that lead to the same
node. Therefore, a higher ratio should correspond to a more complex narrative game,

since many actions lead to visited game states.

CoD|RTZ-01{ RTZ-01 |RTZ-02
(bonding)
Number of Nodes 33 | 414 1896 17148
Number of Edges 90 | 1110 5970 62220
Number of Win Nodes || 4 12 12 96
Number of Win Edges || 2 12 12 96
Number of Lose Nodes|f 2 114 444 6420
Number of Lose Edges || 2 170 556 6756
Edge to Node ratio 2.73| 2.68 3.15 3.63

Table 7.15: Nodes to Edge ratio metric results

From Table 7.15, we see that among the examples we considered, the larger narratives
tend to have a bigger Edges to Nodes ratio, and more actions that are not needed
in order to win the game. Also, it also indicates that our larger narratives are more
complex. Including the number of win nodes in Table 7.15 also tells us if there are a

lot of ways to win the games. We also note that in most of our example narratives,
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the number of lose nodes is much larger than the number of win nodes, which also

represents a measure of the level game difficulty.

Game Edges

By looking at the different types of edges we have in our generated Gamelrees, we
can refine the general view we had with the Edges to Nodes ratio. It is particularly
interesting to find from Table 7.16 that around 20% of the edges in RTZ-01 are
unnecessary, which means that they play the same role as an already existing forward
edge. It might be possible to reduce the size of our narratives by removing these
unnecessary actions from the narrative, provided that their lack of usefulness can be

generalized to all cases.

CoD RTZ-01 RTZ-01 RTZ-02
(bonding)
Forward Edges |32 (35.56%) 413 (37.21%)|1895 (31.74%)|17147 (27.56%)
Unnecessary Edges|| 4 (4.44%) [232 (20.90%)|1072 (17.96%)| 8695 (13.97%)
Backward Edges || 54 (60.0%) |465 (41.80%)|3003 (50.30%)|36378 (58.47%)

Table 7.16: Game Edges metric results

We can also use the data on different types of edges to analyze the shape of the
GameTree. The data from Table 7.16 points to the same conclusions as Table 7.15,
because the proportion of Forward edges decreases as narrative complexity increases.
In the case of RTZ-01, we have to keep in mind it represents the beginning of the
entire Return to Zork game, which might explain why the ratio of forward edges is
higher. As it has been mentioned in [30], a Classical Game Structure suggests fewer

choices for the player when she starts the game.

Convexity

The convexity metric also deals with the shape of the GameTree, but in a much more
precise way. With this metric, our goal is to find whether or not the number of possible

choices presented to the player starts out small, increases, and then decreases as the
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player approaches the end of the game. Figure 7.5 plots the level in the GameTree

versus the number of GameNodes for each example narrative.

¢) RTZ-01(bonding) d) RTZ-02

Figure 7.5: Narrative Convexity.

An important thing to note about this convexity measurement is that the end of the
graph should not be interpreted as being necessarily the end of the game. The graphs
represent the convexity of the entire narrative, a measure that considers all paths
at the same time. In other words, the endpoint at level 14 of Graph 7.5b) means
the longest path of actions that have a measurable effect on the game state has 14
actions.

The shapes of each graph in Figure 7.5 shows that the majority of GameNodes are
located in the middle of the distribution. We can see a significant difference between
the distribution of RTZ-01 and RTZ-02, where the latter’s central concentration of

83



7.5. Results from Game Winning paths

GameNodes is much more pronounced. The graphs indicate there are many middle-
length paths, which can be interpreted as more choices for the player the middle of the
game. This does not contradict the concept of convexity presented by Rabin in [30].
To get another point of view on the convexity of our example narratives, we will also
analyze the convexity of individual game winning paths in the following section in
order to get the number of choices the player has when actually playing the game and

winning.

7.5 Results from Game Winning paths

In the following results, we only considered paths that are composed of Forward
Edges. Table 7.17 shows some statistics about the Game Winning Paths we were
able to measure using our metrics framework. The use of Game Winning Paths
to measure game metrics allows us to get a closer look at the way the narrative is
structured, without considering many sequences of actions all at the same time. As
we can see, each narrative has Game Winning Paths, which verifies that they are in

fact winnable.

CoD|RTZ-01| RTZ-01 |RTZ-02
(bonding)
Number of Paths 4 12 12 96
Number of Sets of Dependent Paths| 2 1 1 1
Shortest Path Length 5 6 11 19
Longest Path Length 8 13 18 35

Table 7.17: Game Winning Paths

Dependency between Winning Paths

A set of dependent paths represents a group of paths that depend on each other.
For example, the two paths in Figure 7.6 form a set of dependent paths because all

the actions of path a) are found in path b). In that particular case, we say path
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b) depends on path a). Furthermore, we can see from Table 7.17 that even though
some narratives appear to offer many solutions to win the game, for three narratives,
they all depend on the same minimal-length solution. We have also produced a graph
representation of the dependencies between different paths, as shown in Figure 6.7
on Page 61.

Path a) w --> put --> e --> s --> read

Path b) s --> look --> n --> w --> put -—=> e —-> s --> read

Figure 7.6: Two dependent Game Winning Paths.

In order to get a different perspective on Game Winning Paths, we have plotted
the convexity of three Game Winning Paths for each narrative: the shortest, the
median, and the longest paths (Figures 7.7, 7.8, 7.9, and 7.10, Pages 88 to 91). In the
case of CoD, there was no such median length path. As we can see from these Figures,
the solutions share the same general shape, but seem to be shifted laterally from one
another. This is due to additional actions which affect the state of the game, but can
be interpreted as not being necessary in order to win the game. Of course, this brings
back the question of properly defining what is a necessary action, since a particular
action might not be necessary to winning the game, but might appear essential for
the player’s comprehension of game objectives.

This very strong dependency we are observing between the different paths origi-
nates from the fact we are considering the full game state in our game tree, without
making any distinction with respect to objects that actually matter in order to win
the game. Therefore, modifying the value of one property can lead to the creation
of an isomorphic subtree, where each GameState differs only by the value of this
property. This effect is particularly easy to spot, when we look at the GameTree of
Return to Zork - Chapter I in Figure 7.11 on Page 92.

Convexity of Winning Paths

We can also look at the graphs in Figures 7.7, 7.8, 7.9, and 7.10 to analyze the

convexity from a different perspective. In these graphs we can see the number of
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choices the player will have when executing actions that lead to winning the game.
This may be closer to the definition of Convexity as presented in [30].

From the different Figures, we cannot see any specific trend indicating that there
are much less moves available to the player when the game starts, then more moves
in the middle of the game, and less moves near the end of the game. We must
remember that the notion Convexity is a desired property in games, and the graphs
in Figures 7.7, 7.8, 7.9, and 7.10 indicate that our example narratives do not follow
that trend. On the other hand, in every narrative, there is a point where very few
actions are available, and this may very well indicate the presence of chapters. In
the next section, we will look at another potential indicator of sections in narrative

games.

7.6 Measuring the impact of adding a mandatory Game

Quest

The division of games into different sections, or quests, is an area of narrative analysis
that is of great interest to us, because we would like to use these divisions as a way
of reducing the size of the narratives we analyze. In this section, we compare two
versions of Return to Zork - Chapter 1. They differ only in that in one of them the
player must have the living bonding plant in his inventory in order to win the game.
Aside from that added condition, the games are identical. Table 7.18 presents the
data we have collected on each version. In this section, we are comparing two versions
of RTZ-01(bonding), we are not using RTZ-01. We also compare the shortest game
winning paths of each narrative in Table 7.19.

As we can see from Table 7.18, the only significant difference between the two
version is the number of win nodes in the GameTree. This difference is due to the
fact that the “optional quest” version has two actions that affect the game state (take
rock and drop rock) but are not necessary to win the game. Also, it is important to
note that all paths depend on the same one, which is another example of the what we

saw in our metrics results for Dependency between Winning Paths in Section 7.4. The
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Bonding plant NFG GameTree

Quest nodes|trans.| BDD |nodes|edges|Edge to Nodej win | lose
booleans ratio nodes|nodes

Optional 940 | 1464 175 1944 | 5970 3.07 60 | 444

Mandatory 944 | 1470 175 1896 | 5970 3.14 12 | 444

Table 7.18: Effects of adding a mandatory quest on NFG and GameTree properties

Bonding Plant Shortest Game

Quest Winning Path

Optional § - s - e - cut vines - tie vines - rideraft

Mandatory take rock - throw rock - examine - dig bondingplant - n
- §-8-e-cut vines - tie vines - rideraft

Table 7.19: Effects of adding a mandatory quest on the shortest game winning path

more interesting results come when we look at the shortest game winning paths in
Table 7.19. Here, we can easily identify the impact of adding an additional condition
on winning the game, and can easily determine the actions that compose each quest .
Quest 1 would be composed of the actions take rock — throw rock - examine -
dig bondingplant - n, while Quest 2 would be made up of the actionss - s - e -
cut vines - tie vines - rideraft. From these results, we see a possible strategy
for identifying sections of game narratives would consist of removing conditions from
the PNFG source file, and determining the impact on the game solution. On the other
hand, this method requires the minimal solution to be efficient, and we could not use
it on narratives that are larger than our current size limits. Still, these results will help
orient our efforts in the future in order to come up with a solid quest identification

mechanism.
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0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9

a) Shortest Path (5 moves)
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b) Longest Path (8 moves)

Figure 7.7: Two Game Winning Paths Normalized convexities for CoD.
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Figure 7.8: Three Game Winning Paths Normalized convexities for RTZ01.
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Figure 7.9: Three Game Winning Paths Normalized convexities for RTZ01(bonding).
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Figure 7.10: Three Game Winning Paths Normalized convexities for RTZ02.
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Figure 7.11: GameTree for Return to Zork - Chapter 01.
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Chapter 8

Conclusions and Future Work

This work represents a very detailed description of the PNFG narrative game anal-
ysis framework. The PNFG language, its formal basis, and the accompanying code
generation strategy are designed to allow for rigorous and algorithmic investigation
of game narratives. Narrative problems are common in a variety of game genres, and
by concentrating on the minimal, though narratively complex world of interactive
fiction/adventure games we hope to produce practical solutions that are effective in
many popular game genres.

Naively generated computer narratives have a surprisingly large state space. Even
small games can result in structures that are far too large to search exhaustively, and
the need for optimizations and other strategies to reduce the problem size is rather
obvious. We have designed, implemented and tested several low-level optimizations
that significantly reduce the output size. These have different effects, often dependent
on the style of programming used to create the narrative, but collectively have quite
a large impact. For larger narratives such as Return To Zork - Chapter 2 and The
Count such optimizations may be necessary to even express the game, and are also
an important, incremental step toward fully automatic verification.

We have also investigated the possibilities of using a very different strategy to
deal with the large state spaces. Our Heuristic Solver has been designed to use high-
level information found in our PNFG compiler intermediate representation to quickly

derive the solution for narratives. While this exercise was a proof of concept, initial
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results show great potential for this new approach at solving game narratives. In the
future, we would like to extend the solver to make decision based on the game state,
and to consider all the PNFG constructs, in order to produce better solutions for
more complex games. A likely scenario would be to use the Gamelree representation
from the metrics framework to keep track of the game state.

Narrative game analysis can also benefit from high-level information, and we have
created a new framework to measure different game metrics. By transforming our
intermediate representation of the narrative in a Gamelree, we can model the game
on a representation that facilitates the task of deriving interesting properties about
our example narratives. This new representation allowed us to obtain results for the
larger narrative Return To Zork - Chapter 2, and we wish to continue extending the
GameTree generation process in order to represent the full narrative, and analyze
larger narratives.

The metrics framework presented opens the door to a new area of game narrative
analysis by offering a representation that contains a very intuitive representation of
the narrative. We certainly wish to pursue our research in this area and come up
with new metrics for games. For example, we would like to keep track of the set of
actions that are reachable by the player throughout the game and look for significant
variations. We refer to this notion as continuity, and measuring this new metric, or
looking at a game’s overall complexity are but two examples of other metrics we wish
to analyze using our framework.

Our current efforts suggest a large number of interesting and useful directions
to explore. The overall complexity of large narratives shows the need for further
optimizations and consideration of new ways to reduce the size of game narratives.
For example, using a chapter decomposition for Return to Zork allows us to verify
the first chapter; applying the same strategy to other narratives is highly desirable,
and we are investigating automatic techniques that can help in this respect.

The detection of chapters is certainly a non-trivial problem, and will require some
reflection on the notion of a game chapter itself, before something like the automatic
detection of chapters can be investigated seriously. We have looked at the possible

use of a convexity measurement on game winning paths as a way to identify chapters.
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Also, the results we obtained from applying unplayable optimizations to our PNFG
translation process give us motivation to pursue our efforts in order to further reduce
the size of the NFGs we produce. We feel that identifying and removing useless
components from the narratives shows great potential for future optimizations.

We have previously mentioned that the example narrative The Count represented
a good long term goal for the size of narratives we would like to be able to analyze.
As it stands now, the difference of size between our two biggest examples is relatively
large, and we would like to analyze increasingly larger medium-size narratives, to
eventually reach a game on the order of The Count. We believe representing new
narratives in PNFG can yield improvements on all layers of the framework.

We believe the creation of narratives in PNFG code could benefit from an Inte-
grated Development Environment. We have already explored this possibility inter-
nally, and a PNFG IDE offers the opportunity to assemble all the components of the
PNFG framework and make them readily accessible to developers. Using the Eclipse
Platform as a staring point is one of the possible scenarios we are considering for an
eventual PNFG IDE.

Another interesting possibility for the PNFG framework would be to support
concurrency in narratives, in order to allow multiple users to play simultaneously.
The PNFG language already possesses some constructs that can support concurrency,
and extending other components would allow us to analyze a different category of
narratives.

Extending the PNFG language and the interpreter to support multimedia elements
such as images and sound would make it very appealing to developers of 2D adventure
games, and allow us to test the usability and overall usefulness of narrative analysis
in the context of game development. This stage in the framework’s evolution remains
far off in the distance, but it certainly represents one of the many directions the

framework may take in the future.
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