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Abstract 

Measurement of image quality plays a central role in optimization and evaluation of imaging 

systems. The most straight-forward way to assess image quality is subjective evaluations 

by human observers, where the mean value of their scores is used as the quality measure. 

However, objective (quantitative) measures are needed because subjective evaluations are 

impractical and expensive. The aim of this thesis is to develop simple and low-complexity 

metrics for quality assessment of digital images. 

Thaditionally, the most widely used quantitative measures are the mean squared error 

and measures that model the human visual system. The proposed method uses the Discrete 

Cosine Thansform and the Discrete Wavelet Thansform to divide images into four frequency 

bands and relates the visu al quality of the distorted images to the weighted average of the 

mean squared error between original and distorted images within each band. 

The performance of the metrics presented in this thesis is tested and validated on a 

large database of subjective quality ratings. Simulations show that the proposed metrics 

accurately predict visual quality and outperform current state-of- the-art methods with 

simple and easily implemented processing steps. 

Extensions of the proposed image quality metrics are investigated. More particularly, 

this thesis explores image quality assessment when the reference image is only partially 

available (reduced reference settings), and presents a method for successfully quantifying 

the quality of distorted images in such settings. 
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Sommaire 

La mesure de la qualité d'image joue un rôle central dans l'optimisation et l'évaluation des 

systèmes d'imageries. La façon la plus simple d'évaluer la qualité d'image est de solliciter 

l'opinion de sujets humains (évaluations subjectives) et d'utiliser la moyenne de leurs scores 

individuels comme mesure de qualité. Toutefois des mesures objectives (quantitatives) de 

qualité sont nécessaires puisque les évaluations subjectives sont côuteuses. L'objectif de 

cette thèse est de développer des mesures simples pour estimer la qualité d'images digitales. 

Traditionnellement, la qualité des images est évaluée par une mesure de la dégradation 

en terme d'erreur moyenne quadratique ou par des méthodes qui consistent à mesurer 

l'erreur de visibilité entre une image dégradée et une image de référence en simulant les 

propriétés connues du système visuel humain. La méthode proposée dans cette thèse utilise 

la Transformée en Cosinus Discrète et la Transformé en Ondelettes Discrète pour diviser 

les images en quatre bandes de fréquence; la qualité visuelle de l'image dégradée est pro

portionnelle à la moyenne pondérée des erreurs (différences) entre l'image de référence et 

l'image dégradée dans chaque bande de fréquence. 

La performance des mesures de qualité proposées dans cette thèse est évaluée et validée 

par des expériences sur une large base de données d'images. Les simulations montrent que 

les mesures proposées dans cette thèse prédisent la qualité visuelle d'images dégradées de 

façon précise tout en étant simples et faciles à implémenter. 

Cette thèse examine également le problème de la mesure de la qualité d'images dans 

les cas où l'image de référence n'est que partiellement disponible et présente une méthode, 

validée par des simulations, pour estimer la qualité d'image dans ces cas. 



Hi 

Acknowledgments 

1 would like to express my sincere gratitude to my supervisor, Prof. Fabrice Labeau, for his 

guidance, valuable advice, feedback and financial support during the course of my graduate 

studies. 

Thanks to aIl my fellow graduate students in the TSP Lab for providing a friendly and 

supportive work environment. 

1 would like to acknowledge Dr. Hamid Rahim Sheikh of the University of Texas at 

Austin for giving me access to the LIVE quality assessment database. 

On a more personal note, l'd like to thank my friends Joëlle, Rahel, Ahmed and Jean

Aimé for their companionship, moral support and encouragement. 

Last but not least, 1 am deeply indebted to my parents, my husband, my brother and 

sister and the rest of my family for their unconditionallove, everlasting encouragement and 

unwavering belief in me throughout my endeavors. 



Contents 

1 Introduction 

1.1 Importance of Image Quality Assessment 

1.2 Measures of Image Quality ....... . 

1.3 Objective Image Quality Assessment .. 

1.3.1 Full, reduced and no-reference image quality assessment . 

1 

1 

2 

3 

3 

1.3.2 Approaches to full-reference image quality assessment . . 3 

1.3.3 Performance evaluation of objective quality assessment metrics . 4 

1.4 Thesis Description and Organization . . . 

2 Full Reference Image Quality Assessment: Background 

2.1 The Ruman Visual System ........ . 

2.1.1 Anatomy of the human visual system 

2.1.2 Properties of the human visu al system 

5 

6 

6 

7 

8 

2.2 Mean Squared Error .. . . . . . . . . . . . . 10 

2.3 Image Quality Assessment Based on Ruman Visual System Modeling 12 

2.4 Image Quality Assessment Based on Arbitrary Image Fidelity Criteria. 16 

2.5 Summary ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

3 Full Reference Image Quality Assessment U sing Frequency Domain Trans-

forms 20 

3.1 Description of the Proposed Quality Assessment Method 

3.1.1 Color space conversion . . . . . . 

3.1.2 Frequency domain transformation 

3.1.3 Error weighting and pooling 

3.2 Experimental Results ....... . 

21 

22 

22 

24 

26 



Contents v 
................ _._ .. _---_ ............ _---

3.2.1 

3.2.2 

3.2.3 

3.2.4 

LIVE database details 

Simulation parameters 

Performance metrics and calibration of objective scores 

Results .......................... . 

26 

26 

27 

30 

3.3 Use of Local Averaging to Improve Prediction Accuracy. . . . 39 

3.4 Addition of Chrominance Information to Improve Prediction Accuracy 40 

3.5 InternaI signaIs generated by the proposed method 44 

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 44 

4 Towards Reduced Reference Image Quality Metrics 

4.1 General Philosophy . . . . . . . . . . . . . . . . . . . . 

4.2 Reduced Reference Image Quality Assessment Using the DWT 

4.3 Experimental Results 

4.4 Summary 

5 Conclusions 

5.1 Thesis Summary 

5.2 Future Research Work 

References 

46 

46 

47 
49 

50 

52 

52 

52 

54 



List of Figures 

2.1 Schematic diagram of the human visual system ... 

2.2 Lena image altered with different types of distortions 

2.3 Framework of HVS-based quality assessment systems 

3.1 A typical image compression system ....... . 

3.2 Block diagram of the proposed image QA method 

3.3 Frequency subbands of transform coefficients ... 

vi 

7 

11 

13 

21 

21 

24 

3.4 Standard luminance and chrominance quantization matrices for JPEG . 25 

3.5 Scatter plots for the quality prediction of JPEG2000 and JPEG compressed 

images by PSNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31 

3.6 Scatter plots for the quality prediction of JPEG2000 and JPEG compressed 

images by SSIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32 

3.7 Scatter plots for the quality prediction of JPEG2000 and JPEG compressed 

images by QDCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 33 

3.8 Scatter plots for the quality prediction of JPEG2000 and JPEG compressed 

images by QDWT ........................... 34 

3.9 Scatter plots for the quality prediction of LIVE images by PSNR . 37 

3.10 Scatter plots for the quality prediction of LIVE images by SSIM . 37 

3.11 Scatter plots for the quality prediction of LIVE images by QDCT . 38 

3.12 Scatter plots for the quality prediction of LIVE images by QDWT . 38 

3.13 Prediction accuracy (CC) of QDCT and QDWT as a function of block size n 

for various distortion types . . . . . . . . . . . . . . . . . . . . . . . . . .. 42 

3.14 Prediction accuracy (CC) of QDCT and QDWT as a function of Wy for various 

distortion types . . . . . . . . . . . . . . . . . . . . . . . . 43 

3.15 Integration of the proposed metrics in compression systems . . . . . . . .. 45 



List of Figures vii 

4.1 Framework of RR quality assessment systems ............... 46 

4.2 Tradeoff between RR feature bandwidth and quality prediction accuracy 47 

4.3 DWT decomposition . . . . . . . . . . . . . . . . . . . . . . . . 

4.4 2-1evel DWT decomposition ................... . 

4.5 CC performance of QLLn as a function of decomposition levels n 

48 
49 

51 



viii --_._----------------_._._--_ .. _----_._--

List of Tables 

3.1 Details of the LIVE database ................... 26 

3.2 Weighting assignments used in experiments (luminance layer Y) 27 

3.3 Performance measures . . . . . . . . . . . . . . . . . . . . . . . 27 

3.4 Prediction performance of PSNR, SSIM, QDCT and QDWT on JPEG2000 

compressed images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 

3.5 Prediction performance of PSNR, SSIM, QDCT and QDWT on JPEG com-

pressed images ................................. 30 

3.6 Prediction performance of PSNR, SSIM, QDCT and QDWT on LIVE images 35 

3.7 Prediction accuracy (RMSE) of PSNR, SSIM, QDCT and QDWT for various 

distortion types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 

3.8 Prediction accuracy (MAE) of PSNR, SSIM, QDCT and QDWT for various 

distortion types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 36 

3.9 Prediction accuracy (CC) of PSNR, SSIM, QDCT and QDWT for various dis-

tortion types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 36 

3.10 Prediction monotonicity (SROCC) of PSNR, SSIM, QDCT and QDWT for 

various distortion types. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 36 

3.11 Prediction consistency (OR) of PSNR, SSIM, QDCT and QDWT for various 

distortion types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

3.12 Weighting assignments used in experiments (chrominance layer Cb) 41 

3.13 Weighting assignments used in experiments (chrominance layer Cr) 41 

3.14 MSE in each quadrant for the luminance and chrominance images 44 

4.1 Prediction accuracy (CC) of QLLn for n-Ievel DWT decomposition 50 



IX ------------------------_ .. _ .. _------

List of Acronyms 

CC 

CSF 

DM OS 

FR 

RVS 

LGN 

MAE 

MOS 

MSE 

NR 

OR 

PSF 

PSNR 

QA 

RMSE 

RR 

SROCC 

SSIM 

VQEG 

Correlation Coefficient 

Contrast Sensitivity Function 

Difference Mean Opinion Score 

Full Reference 

Ruman Visual System 

Lateral Geniculate Nucleus 

Mean Absolute Error 

Mean Opinion Score 

Mean Squared Error 

No Reference 

Outlier Ratio 

Point Spread Function 

Peak Signal-to-Noise Ratio 

Quality Assessment 

Root Mean Squared Error 

Reduced Reference 

Spearman Rank Order Correlation Coefficient 

Structural Similarity Index Metric 

Video Quality Experts Group 



1 

Chapter 1 

Introduction 

1.1 Importance of Image Quality Assessment 

Rumans are highly visu al creatures. A large part of the brain's neurological resources is 

devoted to visual perception and hum ans rely heavily on visual information to transmit 

information: when it cornes to communicating, an image is worth a thousand words. It 

cornes as no surprise that images, specifically digital images, are an integral part of modern 

life. The applications range from digital photography to medical imaging, from image-based 

web search to satellite images in weather broadcast. This proliferation of digital images has 

been fueled by developments in the technologies underlying the capture, transfer, storage 

and reproduction of digital media. 

As these images move through imaging systems, from the point where they are cap

tured to the point where they are viewed on a screen or on paper by a hum an viewer, 

each intervening processing stage can introduce visible degradations in the final image out

put. Acquisition systems are not perfect and sometimes introduce perceptible distortions 

(e.g. optical blur caused by lens). Improper use of equipment is another source of image 

degradation at the acquisition stage (e.g. motion blur caused by camera movement). Once 

captured, digital images are often encoded and compressed to reduce the bandwidth needed 

to store and transmit them. Lossy compression algorithms introduce compression artifacts 

which may further deteriorate the perceived quality of images. Modern transmission chan

nels, such as wireless channels or the Internet, are prone to interference, transmission errors, 

delays and packet los ses which also affect the overall quality of images at the receiver side. 

Given the large number of potential sources of quality degradation that plague practical 
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imaging systems, image quality assessment becomes a necessity. 

Measurement of perceived quality plays a central role in the specification, design, testing 

and operation of imaging systems and has both offline and online applications. Image 

quality measures may be used to assess the improvement of quality of image restoration 

and enhancement algorithms. They can also be used in the design of image coders: image 

co ding is essentially an optimization procedure that attempts to maximize perceived image 

quality with a limited number of bits and image quality measures can serve as guides for 

bit assignment. They can be used to benchmark image processing systems and algorithms 

(e.g. comparison between different compression algorithms). They can also be used in a 

real-time framework to monitor and control image quality over a network. 

For the last three decades, researchers have attempted to develop methods to accurately 

assess image quality [1]. 

1.2 Measures of Image Quality 

Since humans are the ultimate end users of most image processing applications, the most 

straight-forward way to assess image quality is to solicit the opinion of human observers. 

The pro cess of collecting and processing the opinion of human subjects to obtain a mean 

opinion score (MûS) has been standardized [2]: if executed according to established guide

Hnes, subjective evaluations are perhaps the closest we can get to the truth about perceived 

quality. However, conducting subjective quality evaluations is a complex and cumbersome 

pro cess that requires a large number of human observers, strictly controlled experimental 

conditions and severallengthy test sessions. It should also be noted that subjective rating 

results may not be reproducible as the observers' ratings can be influenced by factors such 

as environmental conditions, motivation and mood. While these tests can be considered as 

a benchmark for image quality measurement, they cannot be used for practical purposes. It 

is not economical, or even possible, to solicit human opinion each time an image has to be 

evaluated. Furthermore, because they are time-consuming, subjective evaluations cannot 

be incorporated in real-time applications. 

Objective quality metrics eliminate the need for expensive subjective studies by au

tomating the quality estimation process. The ultimate goal of objective image quality 

assessment research is to develop quality metrics that are closely related to quality as ex

perienced by human viewers. Ideally, these metrics should be generic: they should give 
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accurate quality estimation regardless of the image content and type of the distortion. 

1.3 Objective Image Quality Assessment 

1.3.1 Full, reduced and no-reference image quality assessment 

Objective quality metrics can be classified into three categories. Full reference (FR) metrics 

compare a distorted image against a reference image, which is considered to be distortion

free. Reduced reference (RR) metrics are designed to predict the quality of distorted 

images with only partial information about the reference images: a reduced set of features 

or descriptors are extracted from the reference and distorted images and quality is estimated 

based on this reduced amount of information. No reference (NR) metrics evaluate image 

quality blindly (without any reference information). 

Although hum ans can judge image quality without any explicit reference, objective NR 

image quality assessment is a very difficult task and there is no generic NR quality metric in 

literature: most proposed metrics limit their scope to specific distortion types that must be 

known a priori such as blocking artifacts [3,4, 5,6] or blur and ringing artifacts [7,8]. The 

development of RR met ri cs has been limited by the ability to find good general-purpose 

RR features that yield accurate image quality prediction with minimal data rate. Only 

a handful of RR methods have been proposed in the literature, and most they of them 

can only be used for specific distortion types (e.g. JPEG and JPEG2000 compression 

artifacts in [9]). To the best of our knowledge, only one general-purpose RR image quality 

assessment metric exists in literature [10]. The applicability of FR measures is much wider 

and therefore these metrics have received the most attention. 

1.3.2 Approaches to full-reference image quality assessment 

FR algorithms evaluate the quality of an image by comparing it against a reference image. 

In other words, they measure the similarity or fidelity between two images. The most 

obvious way to measure the similarity between two images is to compute an error signal 

by subtracting the test signal from the reference and then computing the average energy 

of the error signal: the resulting value is conventionally known as the Mean Squared Error 

(MSE) and is the most widely used FR metric. However, it does not correlate well with 

subjective image quality. This has led researchers to adopt a psychophysical viewpoint 
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where the comparison between the test and reference images is do ne in a way that mimi cs 

the different processing stages of the human visu al system. The ultimate goal of "bottom

up" approach of the QA problem is to build systems that functions the same way as the 

RYS. On the other hand, sorne researchers have taken a "top-down" approach to bypass 

the challenges of modeling the RYS and developed QA methods that are based on the 

hypothesized overall functionalities of the entire RYS. 

1.3.3 Performance evaluation of objective quality assessment metrics 

The ultimate goal of objective quality assessment metrics is to make quality predictions 

that are in agreement with the subjective opinion of human observers. Therefore objective 

metrics are evaluated against benchmark data sets (databases) of mean opinions scores 

(MOS) which are image quality ratings by human subjects. Qualitatively, objective image 

quality metrics are typically evaluated with respect to three attributes: 

• Prediction accuracy - the ability to pre di ct subjective quality ratings with low error 

• Prediction monotonicity - the degree to which the predictions made by the objective 

quality metric agree with the relative magnitudes of subjective quality ratings 

• Prediction consistency - the degree to which the objective quality metric maintains 

prediction accuracy over a wide range of impairments 

Because subjective quality assessment studies are cumbersome and time-consuming, 

most quality assessment researchers have considered it sufficient to assess the performance 

of their metrics based a limited set of subjective quality rating scores. For example in [11], 

the entire data set was derived from only three reference images (distorted by compression 

distortion only). Rowever, more extensive subjective quality rating data sets are needed in 

order for the performance assessment of image QA metrics to be statistically significant. 

To the best of our knowledge, apart from video quality studies conducted by the Video 

Quality Experts Group (VQEG), the largest database of subjective quality ratings is the 

LIVE database [12]. This publicly available database, which will be used as a benchmark 

for the simulated and proposed metrics in this thesis, is the result of an extensive subjective 

quality assessment study by the Laboratory for Image and Video Engineering (LIVE) and 

Center for Perceptual Systems (CPS) at the University of Texas at Austin. This study 



1 Introduction 5 

used 982 images distorted using five different distortions types (JPEG2000 compression, 

JPEG compression, white Gaussian noise, Gaussian blur and bit errors in a JPEG2000 

bitstream transmitted over a fast-fading Rayleigh channel) and involved more than 20,000 

human quality evaluations [13]. 

1.4 Thesis Description and Organization 

This thesis presents a low complexity image quality assessment method based on frequency 

domain transforms. The organization of the thesis is as follows. Chapter 2 presents the 

background of objective full reference image quality assessment. It begins with a brief 

overview of the anatomy and properties of the human visual system. Different objec

tive methods used in image quality assessment are reviewed and categorized according to 

their underlying principles. Chapter 3 presents the proposed full reference objective image 

quality assessment method. Two image quality measures based on frequency domain trans

formations are introduced: QDCT and QDWT are based on the Discrete Cosine Transform 

and (DCT) Discrete Wavelet Transform (DWT) respectively. These metrics express the 

quality of distorted images numerically as a scalar value and graphically as a quality map. 

The validity of the proposed met ri cs is investigated by correlating their estimation results 

with subjective scores and comparing them with the MSE and a state-of-the-art image 

quality metric. Chapter 4 extend the scope of the proposed method to reduced reference 

frameworks. Chapter 5 summarizes the thesis, highlights the contributions and suggests 

sorne recommendations for future work. 



Chapter 2 

Full Reference Image Quality 

Assessment: Background 

6 

Researchers have primarily focused on full reference image quality met ri cs because of their 

wider applicability: they can be used to estimate a wide spectrum of distortions. In this 

chapter, we present sorne full-reference methods that have been proposed in the literature. 

The simplest measure is the mean squared error (MSE) and more advanced metrics can 

be divided in two categories: those that rely on modeling the human visual system and 

those that use arbitrary signal fidelity criteria. A brief introduction to the human visual 

system (RVS) and the RVS properties relevant for quality assessment purposes is provided 

in Section 2.1. This will lay a foundation for better understanding of the material in 

subsequent sections. 

2.1 The Human Visual System 

Ruman vision is a complex pro cess that requires numerous optical, synaptic, photochemical, 

and electrical components to work together. Fig. 2.1 shows the components of the the early 

stages of the RVS. The functionality of the higher layers of the RVS (i.e. how the human 

brain extracts higher-Ievel cognitive information from the visual stimulus) is far from being 

weIl understood and is currently an active research topie in several disciplines including 

biology, anatomy, psychology, and physiology. Rowever, the functions of each of the lower 

level components of the RVS (eyes, lateral genieulate nucleus and primary visu al cortex) 

are fairly weIl understood and their description could fill volumes. A detailed description 
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of the RVS may be found in [14] and [15]. This section is not intended to be a thorough 

review of the RVS: the anatomy and properties of the lower level components of the RVS 

are discussed only to the extent to which they impact image quality. 

Fig. 2.1 Schematic diagram of the human visual system [13] 

2.1.1 Anatomy of the human visual system 

From an image processing point of view, the early RVS can may divided into four stages: 

optical processing, retinal processing, LGN processing and cortical processing. 

The optical system of the eye is composed of three main components: the cornea, the 

pupil and the lens. Visu al stimuli in the form of light rays enter the eyes through the 

cornea. The light rays pass through the pupil which controls the amount of light entering 

the eye. The lens focus the light rays onto the retina at the back of the eye. 

Photoreceptor cells on the retina capture, sam pIe and encode the focused image by 

converting the visual stimulus (light) into neural signaIs (electrical impulses). There are 

two types of photoreceptors cells: cones and rods. Rods are responsible for vision at 

low light levels (scotopic conditions). Rowever, they do not distinguish between colors 

and have low visuaJ acuity (a measure of ~:j are therefore generally neglected in 
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HVS modeling for quality assessment purposes. Cones are responsible for vision in normal 

light conditions (photopic conditions) and provide humans with basie color vision. There 

are three different types of cones each sensitive to a different portion of the visible light 

spectrum: L-cones, M-cones and S-cones, sensitive to long, medium and short wavelengths 

(different colors) respectively. The three types of cones split the image into three visu al 

streams which can be crudely approximated to the Red, Green and Blue color components. 

The neural signaIs generated in the cones pass through several layers of neurons in the 

retina before being carried off to the brain by the optic nerve. These signaIs are reorganized 

in the optic chiasm and the lateral geniculate nucleus (LGN): the visu al signaIs from the 

left visual field are projected onto the right LGN while signaIs from the right visual field are 

projected onto the left LGN. The fibers from the LGN enter the visu al cortex where vision 

pro cesses such as detection and discrimination are performed by the neurons which are 

tuned to various aspects of the incoming streams such as spatial and temporal frequencies, 

orientations and directions of motion. The visu al streams generated in the cortex are carried 

off into higher layers of the brain for further processing which involves processes such as 

motion sensing and cognition to arrive at a single interpretation (i.e. quality measurement 

or decision regarding the visibility of artifacts). 

2.1.2 Properties of the human visual system 

Neurophysiological and psychophysical studies are the primary source of information re

garding the overall functionality of the HVS. These studies have highlighted several im

portant features and properties of the human visu al system sorne of whieh are relevant to 

image quality assessment. 

Intra-eye blurring 

Due to inherent limitations and imperfections of the eye opties (e.g. refraction, diffraction), 

the retinal image turns out to be a distorted version of the input. The most noticeable 

distortion is blurring. This low-pass blur is typieally modeled as a linear space-invariant 

filter characterized by a Point Spread Function (PSF). 

Foveal and peripheral vision 

The density of photoreceptors cells varies across the retina. They are more tightly packed 

on the point that lies on the visual axis in the center of the retina (fovea). The result of this 

unequal distribution is that whenever a human observer fixates a point, the region around 
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the fixation point is resolved with the highest resolution (foveal vision) while surrounding 

regions are resolved with progressively lower resolution (peripheral vision). Most image 

quality assessment models concentrate their modeling efforts on foveal vision and neglect 

peripheral vision. 

Light adaptation and contrast sensitivity 

The RVS operates over a very wide range of light levels from a dark night to a bright sunny 

day. Yet the dynamic range of neurons is nowhere near this. Light adaptation occurs in 

order to adjust to these changing conditions of illumination. On one hand, the pupil ad

justs its size to control the amount of light entering the eye: when the light impinging 

upon the eye increases, the pupil diameter reduces and conversely in low-light condition 

the pupil gets larger letting more light into the eye. On the other hand, the retina copes 

with variable lighting conditions by encoding the contrast of the visu al stimulus instead of 

encoding the absolute light intensities: this non-linear transformation that maintains the 

contrast sensitivity of the RVS over a wide range of background light intensities in known 

as Weber's Law. 

Spatial frequency sensitivity and orientation sensitivity 

Psychovisual studies have shown that contrast sensitivity varies with spatial frequency. The 

RVS is much more sensitive to lower spatial frequencies than high ones. This is typically 

modeled by a contrast sensitivity function (CSF). The CSF is slightly band-pass in nature 

but most image quality assessment model of the RVS implement a low-pass version. It has 

also been shown that the RVS is not isotropic: the response of the RVS is maximum at 

horizontal and vertical directions and decreases to a minimum at an angle of 45 degrees. In 

reality the CSF is a multivariate function of spatial frequency, temporal frequency (which 

is irrelevant for image quality assessment but is modeled for video quality assessment), 

orientation, viewing distance and color direction. 

Multi-channel structure of cortical neurons 

Each neuron in the primary visual cortex is tuned to specifie frequeneies and orientations 

(band-limited response). This is equivalent to having several independent visu al channels. 

The collection of these ehannels spans the full range of visual spatial frequencies and ori

entations. The CSF is the overall response of the ensemble of these neurons. 

Masking 

Masking charaeterizes the response of the RVS to a combination of several signaIs (image 

components). A stimulus is pereeived differently as a function of the background (mask) 
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onto which it lies. The visibility of artifacts (or errors) is decreased (masked) in active 

areas of an image (strong edges, strongly textured areas). Similarly, errors in smooth or 

homogeneous areas are more easily detected. It has been shown that the masking effect is 

strongest when the stimulus and the mask are closely coupled (in terms of frequency and 

orientation) . 

2.2 Mean Squared Error 

The simplest and still most widely used objective full reference objective image quality met

rics are the mean squared error (MSE) and the related peak signal-to-noise ratio (PSNR), 

which are defined as: 

1 M N 

MSE = ~ ~(X·· - 1': .)2 Mx N ~~ 2J 2J 
i=l j=l 

L 2 

PSNR = 10 loglO MSE 

(2.1) 

(2.2) 

where X is the reference image, Y is the distorted image and M, N are the dimensions of 

the images. Lis the dynamic range of the pixel values (for standard 8 bits/pixel images L 

is equal to 255). 

The MSE and PSNR are appealing measures because they are easy to compute and 

are mathematically simple to deal with for optimization purposes. Rowever, the predictive 

performance of the MSE and PSNR relative to human perception is poor. Fig. 2.2 clearly 

shows that equal values of MSE for two images do es not necessarily imply equivalent quality: 

the three distorted images with the same amount of error energy have different structure 

of errors and hence different perceptual quality. A slight spatial shift of an image produces 

a large numerical MSE, but no significant visual distortion. Conversely, a small MSE can 

result in a very noticeable visual artifact if the total error is concentrated in a small area, 

which also happens to be the primary region of interest in the image. The problem lies in 

the fact that the MSE is based on simple pixel-to-pixel difference calculations and treats 

all errors equally regardless of their type [16]; it do es not take into account the perceptual 

properties of the RVS discussed in Section 2.1. For instance, the MSE does not consider the 

fact that the sensitivity of the human visual system is different for different types of errors 

depending on their spatial frequency, orientation, spatial position and visual context. AIso, 
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simple error summation, as in Eq. 2.1, may differ considerably from the way the primary 

cortex and higher level cognitive processes pool errors to arrive at an assessrnent of the 

perceived distortion. 

(a) (b) MSE = 435 

(c) MSE = 434 (cl) MSE = 429 

Fig. 2.2 Lena image altered with different types of distortions: (a) Original 
image 512 x 512, 24 bits/pixel; (b) Mean-shifted image; (c) Blurred image; 
(d) JPEG compressed image. Images (b)-(d) have similar MSE but radically 
different visual quality. 

In [11] and [17], a number of variants of the MSE (peak MSE, Laplacian MSE, norrnal

ized MSE, normalized absolute error) and other pixel-based metrics are investigated. It 

is shown that although sorne of these measures correlate weIl with subjective evaluations 
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results for a given compression technique, they are not reliable across different techniques. 

Image quality metrics in the last three decades have tried to improve upon the MSE by 

incorporating knowledge about perceptual properties of the human visual system. 

2.3 Image Quality Assessment Based on Human Visual System 

Modeling 

In an attempt to improve upon the MSE, researchers have developed image quality met ri cs 

that simulate the pro cesses of human vision from the eye to the visual cortex and try to 

sequence them in the way they occur in the RVS. These metrics come in different fiavors 

based on tradeoffs between accuracy in modeling the RVS and computational feasibility. 

They can be classified into two types, namely single channel and multiple channel models. 

Single channel models do not decompose the image into several channels and assess quality 

based on single-scale representations of the image. Multiple channel models decompose 

the image into multiple spatial frequency and/or orientations bands and perform CSF and 

mas king separately for each channel before pooling the results to obtain either a single 

numerical value that quantifies the perceptual dissimilarity between the reference and dis

torted image or a number than represents the probability that a human eye will detect a 

difference between the two images. Alternatively, the output can be a map of perceptual 

dissimilarities or a map of detection probabilities. The aim of this section is not to present 

an exhaustive review and detailed description of RVS-based methods but we discuss a few 

of the most representative methods. An extensive review of RVS-based metrics may be 

found in [18]. 

The first attempt to incorporate RVS modeling was made by Mannos and Sakrison [19] 

in 1974. This single channel model consists of a luminance non-linearity that models light 

adaptation followed by a linear space invariant element to represent the spatial frequency 

sensitivity of the RVS. The quality rating is the mean squared error between the model 

outputs of the original and distorted images. Despite its simplicity, this work pioneered 

the field of image quality assessment because it was the first work that linked the field of 

image processing with the field of vision science. 

Subsequent RVS based full-reference quality metrics employ more sophisticated models. 

AlI of these metrics share a similar pipeline structure shown in Fig. 2.3. 

The pre-processing stage ensures that the reference and distorted images are properly 
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Reference 
Transformation of 

co lor spaces Qualityl 
image Channel Error Distortion 

Distorted 
PSF filtering decomposition pooling measure 

image 
andlormap 

Light adaptation 

Fig. 2.3 Framework of HVS-based quality assessment systems 

calibrated and aligned. Input images may have undergone a number of different transfor

mations and may originate from different display devices. Most quality metrics require that 

the digital pixel values stored in computer memory be calibrated for display devices by con

verting them to luminance values of pixels on the display device. Registration establishes 

point-to-point correspondence between the reference and distorted images. 

In the second stage, the images may be converted to a color space that conforms better 

to the HVS. The traditional Red, Green, Blue (RGB) color space may not be the best way 

since the RGB channels are highly correlated which is due to significant overlap between the 

L-, M- and S-cone sensitivities. Most algorithms designed for color image convert the RGB 

values to other color spaces (e.g. opponent color space, YVY). At the stage, a low-pass 

filer simulating the PSF may be applied. Finally, the reference and distorted images need 

to be converted into corresponding contrast stimuli to simulate light adaptation. One way 

to achieve this is by a nonlinear transformation. Commonly used transformation include 

conversion to density (log) and various power laws (e.g. cube root). However, sorne metrics 

choose to implement the contrast calculation later in the system, during or after the channel 

decomposition. 

Channel decomposition models the frequency and orientation selective channels in the 

HVS: the input images are divided into different spatial and orientation subbands. In an 

effort to accurately model cortical neurons, sorne quality assessment algorithms implement 

sophisticated channel decomposition (Cortex Transform, Gabor decomposition). However, 

simpler decompositions such as the discrete cosine transforms or wavelet transform are also 

used because of their suitability for certain applications (coder-specifie applications). 

In the fourth stage, CSF filtering is typically implemented as weighting factors for each 

subband. The errors between the reference and distorted images are computed for each 

channel. Most models implement masking in the form of a gain-control mechanism that 

weights the error in a channel by a visibility threshold for that channel. If the magnitude 
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of the error is less than the threshold (also called the Just Noticeable Distortion or JND 

level), the error in that particular channel will be indistinguishable. 

In the final stage, the errors from the various frequency and orientation selective streams 

(channels) are pooled into a single number for each pixel (yielding a quality / distortion map) 

or a single numerical value E for the whole image using Minkowski pooling: 

E = (2: 2: lel,kl!1)l/t3 (2.3) 
k 

where el,k is the error of the k-th coefficient in the l-th subband (channel) and j3 is a 

constant with value typically between 1 and 4. 

Daly's Visible Differences Predictor (VDP) [20], developed for the evaluation of high 

quality imaging systems, is probably the most elaborate HVS-based image quality met

ric. This multiple channel model pro duces a probability of detection map between the 

reference and distorted images. Each point on the map describes the probability that a 

human observer will perceive a difference between the reference and distorted images at 

that point. Initially, a nonlinear response function is applied to each of the input luminance 

images to account for light adaptation and the non-linear response of retinal neurons. The 

transformation is done using cube-root power law at low luminance levels and logarithmic 

dependence at high luminance levels. The images are then converted into the frequency do

main and weighted by a contrast sensitivity function (CSF). An orientation and frequency 

selective Cortex Transform splits the images into five frequency and six orientation chan

nels. Combined with an orientation independent base frequency band this gives a total of 

31 channels. To model masking in each channel, a threshold elevation map is computed 

from the mask contrast in that channel. A psychometrie function converts error strengths 

(weighted by the threshold elevations) into a probability-of-detection map for each channel. 

Pooling is carried out across the channels to obtain an overall detection map. 

Lubin's model [21, 22] was developed for display evaluation. Similarly to Daly's model, 

it estimates a detection probability of the differences between the original and distorted 

images. First, the input images are blurred to model the PSF. They are then re-sampled 

to reflect the unequal photoreceptor sampling in the retina (peripheral vision). Channel 

decomposition is achieved through a Laplacian pyramid which decomposes the images into 

seven spatial frequency resolutions followed by a set of steerable orientation filters which 

decompose the signal in four orientations yielding a total of 28 channels. The filtered images 
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are th en converted to units of contrast. The CSF is modeled by normalizing the output 

of each frequency-selective channel by the baseline contrast sensitivity for that channel. 

A transformation by a sigmoid non-linearity models masking in each channel. Errors in 

each channel are pooled into a distortion map using Minkowski pooling across frequency. 

A single number for the entire image may be obtained by applying an additional pooling 

stage. 

Teo and Heeger [23J developed a multi-channel metric that incorporates PSF, luminance 

mas king and combines contrast sensitivity and masking into a single step called contrast 

normalization. The channel decomposition pro cess used quadrature steerable filters with 

four spatial frequency resolutions and six orientation levels. The contrast normalization 

takes the output of channels at aIl orientations at a particular frequency. The contrast 

normalization model uses parameters which were chosen to fit the authors' experimental 

data. Therefore, this model is tailored to a specific set of conditions and would require 

additional optimization to be adapted to a new set of conditions. 

Some HVS-based models have been developed specifically for image compression appli

cations. They have the same general structure as the algorithms described ab ove , the only 

difference being that they the adopt frequency decomposition of a given coder. They are 

considerably simpler than the models discussed above since they only have to consider the 

properties of the HVS that are relevant to image compression. 

Watson's DCT metric [24J is based on the 8 x 8 DCT commonly used in image com

pression standards (e.g. JPEG). The first step is to convert the reference and distorted 

images into a luminance/chromincance color space. The luminance components are then 

partitioned into 8 x 8 pixel blocks and transformed to the frequency domain using the 

DCT. A visibility threshold is computed for each of the 64 subbands within each block. 

The visibility threshold is determined by three factors: the baseline contrast sensitivity 

associated with the DCT component (determined empirically in [25]), luminance masking 

and contrast/texture masking. These thresholds are used to weight the error in each sub

band. The errors in each subband are pooled spatially using Minkowski pooling. Then, 

the errors are pooled across frequency to obtain a single distortion value. A distortion map 

may be obtained by skipping the spatial error pooling step and performing the frequency 

pooling on each block independently. 

Safranek & Johnston's perceptual image coder and metric uses the same strategy that 

Watson's DCT metric the only difference being that the channel decomposition uses a 
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generalized quadrature mirror filter (GQMF) bank which splits the frequency spectrum 

into 16 uniform subbands. 

Bradley's wavelet visible difference predictor (WVDP) [26] uses a model based on the 

wavelet transform which is intended for use with wavelet-based coders (e.g. JPEG2000). 

This model is a simplification of Daly's VDP described above. The modifications include 

the use of a separable wavelet transform instead of the Cortex Transform, the application 

of a wavelet contrast sensitivity function (CSF), and a simplified definition of subband 

contrast that allows one to predict the noise visibility directly from the wavelet coefficients. 

The RVS-based methods described in this section follow the same fundamental design 

philosophy. They approach the image quality assessment problem from a "bottom-up" 

viewpoint: they simulate the functionality of each relevant component in the RVS and 

combine in a way that mimi cs the stages in the RVS from the eye to the brain. Rowever, 

these methods are plagued by the complexity of the RVS models making them imprac

tical for inclusion in real-time image processing systems. Uncertainties about the actual 

processing of visual information in the human brain (particularly at higher levels of the 

brain) complicate the design of RVS models. Furthermore, they often require robust and 

accurate calibration for specific viewing conditions. These drawbacks have led sorne re

searchers to believe that the RVS-based framework might not be the best way to approach 

the image quality problem [1]. 

2.4 Image Quality Assessment Based on Arbitrary Image 

Fidelity Criteria 

Recently, researchers have explored novel approaches to the QA problem that are not based 

on models of the RVS. In contrast, they approach the image QA from the "top-down" where 

arbitrary signal criteria are used which assess quality in a manner that is quite different 

from that of the RVS. This approach is not concerned with accurately modeling the RVS 

provided that image quality is predicted accurately. 

The Structural Similarity Index Metric 

A recent paper [27] presents a new numerical image quality measure called the Struc

tural Similarity Index Metric (SSIM). This state-of-the art metric has proved successful 
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on large scale studies and will be used as a benchmark in this thesis. The fundamen

tal paradigm underlying this method is that the human visual system is highly adapted 

to extract structural information (relative spatial covariance) from the viewing field and 

therefore, a measurement of structural information loss can provide a good approximation 

of the perceived image distortion. The structural information in an image is defined as 

those attributes that represent the structure of objects in the scene, independent of the 

average luminance and contrast. The metric separates the task of similarity measurement 

into three comparisons: luminance, contrast and structure. 

Given two images (or images patches) x and y of size N to be compared, luminance is 

estimated as the mean of each image 

(2.4) 

contrast is estimated using the standard deviation as 

(2.5) 

and structure is estimated from the image vector x by removing the mean and normalizing 

by the standard deviation 
x - /Lx 

Çx = --- (2.6) 

These measurements are combined using a luminance comparison l(x, y), a contrast 

comparison function c(x, y) and a structure comparison function s(x, y) to give a composite 

measure of structural similarity: 

SSIM = [l(x, y)]Q . [c(x, y)]!1 . [s(x, y)P (2.7) 

where ex > 0, (3 > 0 and 'Y > 0 are parameters used to adjust the relative importance of the 

three components. The SSIM values range from 0 to 1, where zero corresponds to a loss of 

aU structural similarity and one corresponds to having an exact copy of the original image. 
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The comparison function are given as: 

(2.8) 

(2.9) 

s(x, y) = (çx, çy) + C3 = 20'xy + C3 

O'xO'y + C3 O'xO'y + C3 
(2.10) 

where 0 is the inner-product operator defining the correlation between the structure of the 

two images and the constants Cl, C2 and C3 are non-negative constants included to avoid 

instability when f.-l; + f.-l;, 0'; + 0'; and O'xO'y respectively are very close to zero. 

In this thesis, we follow the guidelines given in [27] by setting CI( = j3 = '"'1 = 1 and 

C3 = C2/2 yielding: 

(2.11) 

2.5 Summary 

In the last three de cades , the dominant paradigm in full-reference image quality assess

ment has been the "bottom-up" approach which bases itself on modeling the human visual 

system: metrics based on this paradigm simulate the functionality of each relevant com

ponent of the RVS and use these components as basic buildings blocks to assess image 

quality by combine them together in a pipeline structure. Recent state-of-the art metrics, 

such as the SSIM, follow a "top-down" approach by basing themselves on the hypothesized 

overall functionality of the entire RVS and treat it as a black-box system where only the 

input-output relationship is of concern. 

It is interesting to note that the boundary between the "bottom-up" and "top-down" 

categories is somewhat blurred because many QA algorithms contain elements from both 

categories. For instance, even though the SSIM does not make use of explicit models or 

measurements of RVS sensitivities, it implicitly accounts for important RVS properties 

such as light adaption and mas king , in addition to the perception of image structure. 

The image QA metrics based on the RVS, particularly those that aim to be general

purpose metrics (Daly's VDP [20], Lubin [21, 22], Teo and Reeger [23]) are so elaborate 
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that they tend to be difficult to implement, computationaIly intensive and difficult to match 

to a given set of conditions. On the other hand, the effectiveness of "top-down" methods 

such as the SSIM highly depends of the validity of the hypotheses they are based upon 

and the standard MSE, despite its appealing simplicity, does not perform weIl as an image 

QA metric for the reasons stated in Section 2.2. Our goal in this thesis is to design simple, 

practical and computationaIly efficient metrics. We choose to focus on image compression 

applications. We argue that a simple modification of the MSE by attaching weights (derived 

from prior knowledge about the image compression parameters) to the image samples in a 

frequency domain will achieve our goal. The metrics developed in this thesis are influenced 

by the particular application they are developed for but it will be shown that they have 

general applicability. 
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Chapter 3 

Full Reference Image Quality 

Assessment U sing Frequency Domain 

Transforms 

Image QA can be viewed from a purely general point of view or it can be analyzed in 

the context of specific tasks. FR image quality assessment assumes that the undistorted 

reference image is fully available. In practical applications, FR metrics are used in off-line 

applications. They are typically used either for optimization purposes during the design 

stage of image processing systems or for comparative analyzes between different image 

processing systems and algorithms (i.e. to determine which of them provides the best 

quality results). In such frameworks image quality assessment is the measure of degradation 

wh en an image is distorted from processing. Therefore, quality metrics need not necessarily 

rely on sophisticated general models of the RVS but on a priori knowledge about the image 

processing system un der consideration. 

Of particular interest is the design and evaluation of image compression schemes. Most 

image compression schemes consist of three c10sely connected components namely transfor

mation, quantization and and encoding as shown in Fig 3.1: compression is accompli shed 

by applying a linear transform to decorrelate the image data, quantizing the resulting 

transform coefficients, and entropy co ding the quantized values. 

To facilitate the exploitation of psychovisual redundancies, the pictures are transformed 

to a domain where different frequency ranges with varying sensitivities of the human visual 
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Fig. 3.1 A typical image compression system 
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system can be separated. After the transformation, the numerical precision of the trans

formed data is reduced in order to decrease the number of bits in the stream. The degree 

of quantization applied to each coefficient is usually determined by the visibility of the 

resulting distortion to a human observer. Quantization is the stage that is responsible for 

quality degradation. After the data has been quantized into a finite set of values, it is be 

encoded by exploiting the redundancy between the quantized coefficients in the bitstream. 

Entropy coding, which relies on the fact that certain symbols occur much more frequently 

than others, is often used for this process. 

3.1 Description of the Proposed Quality Assessment Method 

The proposed QA method is composed of three stages: 

• Color space conversion 

• Frequency domain transformation 

• Error weighting and pooling 
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Fig. 3.2 Block diagram of the proposed image QA method 
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3.1.1 Color space conversion 

In the first stage, the reference and distorted images are converted to a luminancejchrominance 

color space. The base images are in RGB (Red, Green, Blue) format which stores each 

color's value ([0,255] range) for each pixel. Most colors in the visible spectrum can be 

recreated by a combination of the RGB components. As mentioned in Section 2.3 the RGB 

color space is not the best choice for digital image processing tasks since the red, green and 

blue components are highly correlated. Therefore, the input images are converted the the 

YCbCr color space. The conversion is done through a linear transformation of the RGB 

components, as shown in Eq. 3.1, which pro duces a luminance signal (Y) and a pair of 

chrominance signaIs (Cb and Cr). 

[ 
~b ] - [ ~~~~~8 
Cr 0.439 

0.504 

-0.291 

-0.368 

0.098] [R] [16] 0.439 G + 128 

-0.071 B 128 

(3.1) 

The luminance (Y) signal conveys color brightness levels and provides the grayscale 

version of the images, and each chrominance signal gives the difference between a color 

and a reference white at the same luminance: Cb encodes the difference between the blue 

primary and luminance, and Cr the difference between the red primary and luminance. 

Only the luminance layer is considered for QA purposes. This choice is based on evidence 

that luminance is more important than chrominance from a perceptual stand point: the 

accuracy of the brightness information of the luminance channel has far more impact on the 

image discerned than that of the other two. This fact is used in many image compression 

systems where chrominance data is assessed and processed at a lower resolutions than 

luminance data. 

3.1.2 Frequency domain transformation 

In the second stage, the luminance images are transformed using the Discrete Cosine Trans

form (DCT) or the Discrete Wavelet Transform (DWT). The DCT and DWT are orthogonal 

transforms may be represented by Eq. 3.2: 

x = UAVT (3.2) 
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where A is the input image (M x N), U and V are transition matrices (M x M and N x N 

respectively) and X is the transformed data (M x N). 

The Discrete Cosine Transform 

For the DCT, the orthogonal transition matrix U is defined Eq. 3.3: 

{ 

fT i = 1, 
U(i ') = V Ni 

,] (2 [7[(2) - l)(i - 1)] 2 <_ i <_ M. V Ni cos 2M 

(3.3) 

The orthogonal matrix V is defined similarly by replacing M with N in Eq. 3.3. 

The Discrete Wavelet Transform 

Wavelet transforms decompose signaIs through the use of scaling functions and wavelet 

functions. The one-dimensional scaling function y?( x) is the solution of the following two

scale equation: 
L 

y?(x) = L hnv2y?(2x - n) xE~ (3.4) 
n=O 

where {hn } is a finite sequence of real numbers (scaling coefficients) and L < M. There ex

ists various types of wavelets transforms (e.g. Haar wavelet transform, Daubechies wavelet 

transform) each with weIl defined coefficient sequences {hn }. The one-dimensional wavelet 

function '!f;(x) is given by the two-scale expression: 

L 

'!f;(x) = Lgnv2'!f;(2x - n) (3.5) 
n=O 

In two-dimensional wavelet analysis, one uses a scaling function y?(x)y?(y) and three two

dimension al wavelets functions '!f;(x)y?(y), y?(x)'!f;(y) and '!f;(x)'!f;(y). The orthogonal transi

tion matrices U and V are defined by the foIlowing procedure: 

1. Each row of the upper M /2 x M part of U consists of the sequence {hn } . The first 

row is ho, hl, ... ,hL, 0, ... ; the second row is the first row shifted to the right by two 

places i.e. 0,0, ho, hl, ... ,hL, 0, ... ; the third row is the first row shifted to the right 
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by four places, etc. Wh en hL reaches the last column, the portion overflowing into 

the right end moves to the left end periodically 

2. Each row of the lower M/2 x M part of U consists of the sequence {gn}. As for the 

upper part, each row is the double right shift of the previous row. 

3. The orthogonal matrix V is constructed in the same way by replacing M with N. 

The DCT and DWT transform the images from the spatial (pixel) domain to the fre

quency domain using a transformation Each M x N image is transformed to an M x N ma

trix populated with coefficients that describe the horizontal and vertical spatial frequency 

characteristics of the image. The images are separated into parts (or spectral sub-bands) 

of differing importance (with respect to the image's visual quality). These transforms are 

analogous to the the multiple channel models of the HVS and are used extensively in im

age compression schemes. In this thesis, the coefficients are grouped in 4 quadrants: low 

frequency (LL) coefficients which are clustered in the left top corner, mid frequency co

efficients in the top right (HL) and bottom left (LH) corners and high frequency (HH) 

coefficients in the bottom right corner as shown in Fig. 3.3. 

Fig. 3.3 Frequency subbands of transform coefficients 

3.1.3 Error weighting and pooling 

In the third stage, the MSE between the transform coefficients of the reference and distorted 

images are computed for each quadrant (LL, HL, LH and HH). The errors in each quadrant 
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are pooled using a weighted mean as shown in Eq. 3.6 below. 

The numerical number is labeled QDCT or QDWT depending on the linear transform that 

was used in the second stage. 

There is evidenee that the human eye is much more sensitive to errors in low frequencies 

(which contain the basic image structural information) than in higher frequencies (which 

correspond to image details and noise) [14]. This fact is exploited extensively for compres

sion purposes: in the quantization stage, compression algorithms quantize high frequency 

coefficients more coarsely (higher quantization factors q) than low frequency coefficients 

as illustrated in Fig. 3.4(a) which shows the standard quantization matrix used in JPEG 

compression. Sinee quantization is the stage that is responsible for quality degradation, 

quantization steps can be used to der ive a weighing assignment as shown in Eq. 3.7 below. 

[ (-1 + -1 + -1 -1)t1 Wij = qij qLL qHL qLH + qHH (3.7) 

where {ij} = {LL,HL,LH,HH} and L: Wij =l. qLL, qHL, qLH and qHH are the average 

quantization steps for each quadrant. As an example, if the quantization matrix under 

consideration is the one in Fig. 3.4(a) then qLL is the average of the 16 quantizations steps 

in the top-left corner i.e. qLL = 16.1875. 
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3.2 Experimental Results 

In this section we present results on validation of the proposed image quality metrics on 

the LIVE database [12] and comparisons with other quality assessment algorithms namely 

the PSNR and the SSIM [27]. 

3.2.1 LIVE database details 

Our experiments are conducted on the LIVE data set [12] which contains a total of 982 

images distorted using five different distortions types: JPEG2000 compression, JPEG com

pression, white Gaussian noise, Gaussian blur and bit errors in a JPEG2000 bitstream 

transmitted over a fast-fading Rayleigh channel as shown in Table 3.1 (details of the dis

tortion parameters may be found in the LIVE database documentation [12]). Each image in 

the database is associated with the corresponding Difference Mean Opinion Score (DMOS) 

which is the average subjective rating given to the image by human subjects (the average 

number of subjects used to evaluate each image is 22.8 [13]). The DMOS is expressed in 

a 0-100 scale, where 0 indicates imperceptible quality degradation. The average standard 

deviation between the individual ratings is (JDMOS = 6.524. 

Table 3.1 Details of the LIVE database 

N umber of images 

.JPEG2000 227 

.JPEG 233 
White Noise 174 
Gaussian Blur 174 
Fast-fading Rayleigh channel 174 

Total 982 

3.2.2 Simulation parameters 

The weights used in our experiments are given in Table 3.2. For QDCT, these weights 

are computed from the quantization factors of the standard DCT luminance quantization 

matrix used for JPEG compression: the quantization step for each quadrant (LL, HL, LH 

and HH) is set as the average of the quantizer steps in the respective DCT region. The 
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weights used for QDWT are computed from the wavelet quantization factors described in 

[28]. 

Table 3.2 Weighting assignments used in experiments (luminance layer Y) 

DeT % w·· ~.1 DWT % Wij 

LL 16.1875 0.5779 LL 14.049 0.4066 
HL 54.8125 0.1707 HL 23.028 0.2481 
LH 59.1250 0.1582 LH 23.028 0.2481 

HH 100.3750 0.0932 HH 58.756 0.0972 

The SSIM parameters Cl and C2 in Eq. 2.11 are set to 6.5025 and 58.5255 respectively 

as suggested in [27]. 

The type of wavelet transform used in the simulation is the Cohen-Daubechies-Favreau 

(CDF) 9/7 wavelet transform. This wavelet is an especially effective biorthogonal wavelet 

and is used in the JPEG2000 standard. 

3.2.3 Performance metrics and calibration of objective scores 

As discussed in 1.3.3, the performance of objective image quality metrics is typically evalu

ated with respect to three attributes namely prediction accuracy, prediction monotonicity 

and prediction consistency. These attributes are evaluated through five performance mea

sures which are specified by the Video Quality Experts Groups [29] and listed in Table 3.3 

below. 

Table 3.3 Performance measures 

Prediction accuracy 

Prediction monotonicity 

Prediction accuracy 

Root Mean Squared Errol' 
Mean Absolute Errol' 
Pearson correlation coefficient 

Eq. 3.10 

Eq. 3.11 

Eq. 3.12 

Spearman rank order correlation coefficient Eq. 3.13 

Outlier ratio Eq. 3.15 

The proposed and comparison metrics (QDCT, QDWT and PSNR, SSIM respectively) 

are applied to each image in the data set. It is generally acceptable for a QA metric to 
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stably predict subjective quality within a non-linear mapping. Since the mapping can be 

easily compensated for and is likely to depend upon the subjective validation/application 

scope and methodology, it is best to leave it to the final application, and not to make it 

part of the QA algorithm. For each metric, the resulting objective quality scores denoted 

Xi (where i = 1, ... , N and N is the size of the data set) are mapped to a set of predicted 

DMOS (DMOSp ) denoted Pi = g(Xi) (where i = 1, ... , N and g(x) is the function used for 

mapping). This mapping is done to facilitate comparison between the subjective ratings 

and objective scores in a common analysis space. The function g(x) is typically a non

linear logistic function. Non-linear mapping is chosen over linear mapping to account for 

the non-linear characteristics of subjective scores at the extremes of test ranges: at the 

extremes of the scale (corresponding to very high and very low quality) the distribution of 

subjective scores tends to be quite skewed. In this thesis, a five-parameter logistic function 

with additive linear term is used as shown in Eq. 3.8 below. 

(3.8) 

where 

1 "( ) 1 1 OglstlC 7, X = -2 - 1 () + exp X7 
(3.9) 

The five parameters /31, /32, /33, /34, /35 are chosen in such a way that Pi = g(Xi) better fits 

the experimental data. The fitting was done using MATLAB's fminsearch function using 

aU of the experimental data. 

The first performance metric is the RMSE between the DMOS and the predicted subjec

tive subjective scores (DMOSp ). The RSME is also know as the standard error of estimation 

and is representative of the size of a "typical" error. 

RMSE= 

where Si is the DMOS of the i-th image in the data set. 

The second performance metric is the MAE between DM OS and DMOSp : 

1 N 
MAE = - ~ ISi - Pi 1 NLt 

~=1 

(3.10) 

(3.11) 
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The Pearson correlation coefficient (CC), is used to measure the association between 

DMOS and DMOSp . It measures prediction accuracy by characterizing the degree of scat

tering of data pairs (Si,Pi) around a linear function. 

N 

L:[Pi - P][Si - s] 

CC = --;:::==i==l==::--;::==== (3.12) 
N 

L:[Si -sj2 
i=l 

where sand P denote the me an of vectors [Sl, ... , SN] and [Pl, ... ,PN] respectively. 

The Spearman rank order correlation coefficient (SROCC) is a nonparametric corre

lation measure which describes prediction monotonicity by quantifying whether changes 

(increase or decrease) in DMOS are followed by changes (increase or decrease) in DMOSp . 

Ideally (SROCC = 1), the difference between a metrics rating of two images should always 

have the same sign as the differences between the corresponding subjective ratings. 

N 

L:[Pi - P][Si - S] 

SROCC = r====i==l==--r==== (3.13) 
N N 

L:[~-Pj2 L:[Si - Sj2 
i=l i=l 

where Si and Pi denote the ranks of Si and Pi respectively in the ordered data series and S 
and P are the midranks (average of ranks) of the respective data sets. 

The outlier ratio (OR) measures prediction consistency by computing the number of 

outliers (No). An outlier is defined as a data point for which the absolute prediction error 

1 ei 1 = 1 Si - Pi 1 is greater than a certain threshold. We set the threshold at twice the standard 

deviation of the subjective ratings: 

The outlier ratio is then given by: 

OR= No 
N 

(3.14) 

(3.15) 
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3.2.4 Results 

Since the proposed metrics are primarily intended for evaluation of compressed images, they 

are first evaluated on the subset of the LIVE database containing JPEG2000 and JPEG 

images. The results in Tables 3.4 and 3.5 show that the QDCT and QDWT outperform 

the PSNR. When compared to the SSIM, both metrics provide comparable results. The 

QDCT is not strongly biased towards JPEG, and similarly the QDWT is not biased towards 

JPEG2000. 

Graphical results in the form of scatter plots for the PSNR, SSIM, QDCT and QDWT 

are shown in Fig. 3.5 to 3.8 respectively. In each plot, each point represents one distorted 

image. The y-axis represents the subjective DMOS in a 0-100 scale (where 0 indicates 

imperceptible quality degradation). On the left side plots, the x-axis plots represents the 

quantitative measure by each method and the solid line represents the fitting with the 

logistic function in Eq. 3.8. The dashed line represents the out lier point limit. On the right 

side plots, the x-axis plots represents the predicted DMOS on a 0-100 scale (same scale as 

the subjective DMOS). The solid line represents the fitting with a linear function; the CC 

is a measure of the degree of scattering of the points around that linear function. 

Table 3.4 Prediction performance of PSNR, SSIM, QDCT and QDWT on 
JPEG2000 compressed images 

Model RMSE MAE CC SROCC OR 

PSNR 7.1805 5.5313 0.8964 0.8894 0.0711 
SSIM 6.0268 4.5145 0.9690 0.9710 0.0529 

QDCT 6.2655 4.7311 0.9665 0.9613 0.0396 

QDWT 6.3344 4.7986 0.9657 0.9614 0.0529 

Table 3.5 Prediction performance of PSNR, SSIM, QDCT and QDWT on 
JPEG compressed images 

Model RMSE MAE CC SROCC OR 

PSNR 8.1720 6.3658 0.8595 0.8413 0.1086 
SSIM 6.1691 4.5791 0.9671 0.9576 0.0429 

QDCT 6.4021 4.6235 0.9646 0.9462 0.0601 

QDWT 6.7855 4.9024 0.9601 0.9415 0.0730 
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Fig. 3.5 Scatter plots for the quality prediction of JPEG2000 and JPEG 
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Fig. 3.6 Scatter plots for the quality prediction of JPEG2000 and JPEG 
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To investigate the performance of QDCT and QDWT as general-purpose QA metrics, 

they were tested on the complete LIVE database. The performance of the proposed and 

comparison metrics on the entire LIVE data set is summarized in Table 3.6 and illustrated 

in Fig. 3.9 to 3.12. Both proposed metrics clearly outperform both the PSNR and the 

SSIM. 

Prediction performance results pertaining to specific distortion types are given in Ta

bles 3.7 to 3.11. The QDCT and QDWT outperform the PSNR not only in overall performance 

but also within each distortion type. When compared to the SSIM, both metrics provide 

comparable results. 

Table 3.6 Prediction performance of PSNR, SSIM, QDCT and QDWT on 
LIVE images 

Model RMSE MAE CC SROCC OR 

PSNR 9.0868 7.2725 0.8256 0.8197 0.1566 
SSIM 8.0485 6.2793 0.9374 0.9240 0.1202 

QDCT 7.9504 6.0169 0.9390 0.9215 0.1018 

QDWT 7.9938 6.0898 0.9383 0.9208 0.1090 

Table 3.7 Prediction accuracy (RMSE) of PSNR, SSIM, QDCT and QDWT 

for various distortion types 

Distortion PSNR SSIM QDCT QDWT 

JPEG2000 7.1805 6.0268 6.2655 6.3344 
JPEG 8.1720 6.1691 6.4021 6.7855 

White Noise 2.4692 3.6231 2.8663 2.6215 
Gaussian Blur 9.7431 7.8512 7.8466 8.3783 

FF 7.5123 5.6529 6.8956 6.8185 
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Table 3.8 Prediction accuracy (MAE) of PSNR, SSIM, QDCT and QDWT 

for various distortion types 

Distortion PSNR SSIM QDCT QDWT 

JPEG2000 5.5313 4.5145 4.7311 4.7986 
JPEG 6.3658 4.5791 4.6235 4.9024 

White Noise 1.9442 2.6881 2.1548 1.9866 
Gaussian Blur 7.6642 5.6486 5.7831 6.1252 

FF 5.7660 4.1517 5.0446 5.0484 

Table 3.9 Prediction accuracy (CC) of PSNR, SSIM, QDCT and QDWT for 
various distortion types 

Distortion PSNR SSIM QDCT QDWT 

JPEG2000 0.8964 0.9690 0.9665 0.9657 
JPEG 0.8595 0.9671 0.9646 0.9601 

White Noise 0.9880 0.9863 0.9915 0.9929 
Gaussian Blur 0.7849 0.9326 0.9327 0.9228 

FF 0.8896 0.9667 0.9500 0.9512 

Table 3.10 Prediction monotonicity (SROCC) of PSNR, SSIM, QDCT and 
QDWT for various distortion types 

Distortion PSNR SSIM QDCT QDWT 

JPEG2000 0.8894 0.9710 0.9613 0.9614 
JPEG 0.8413 0.9576 0.9462 0.9415 

White Noise 0.9853 0.9817 0.9891 0.9907 
Gaussian Blur 0.7816 0.9320 0.9134 0.8937 

FF 0.8902 0.9639 0.9427 0.9454 

Table 3.11 Prediction consistency (OR) of PSNR, SSIM, QDCT and QDWT 

for various distortion types 

Distortion PSNR SSIM QDCT QDWT 

JPEG2000 0.0711 0.0529 0.0396 0.0529 
JPEG 0.1086 0.0429 0.0601 0.0730 

White Noise 0 0 0 0 
Gaussian Blur 0.1862 0.0977 0.1207 0.1437 

FF 0.0965 0.0460 0.0805 0.0805 
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Fig. 3.11 Scatter plots for the quality prediction of LIVE images by QDCT 
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3.3 Use of Local Averaging to Improve Prediction Accuracy 

Image distortions may vary across space. This is especially true in the case of block-based 

compression schemes such as JPEG and JPEG2000 which encode images using 8 x 8 blocks. 

Therefore it is safe to assume that quality estimation can be improved if local rather than 

global averaging procedures are used. Another substantial advantage of localized quality 

measurement is that it provides a varying quality map of each image. 

Block-based versions of the QDCT and QDWT are incorporated as following: 

1. The reference and distorted images are converted to a luminance/chrominance color 

space using Eq. 3.1. 

2. Each luminance image is separated in n x n blocks. 

3. Each block is transformed using the DCT or DWT. 

4. Within each block, the MSE between the frequency coefficients of the reference and 

distorted images are computed for each quadrant (LL, HL, LH and HH). The errors 

in each quadrant are pooled using a weighted mean as shown in Eq. 3.16. 

(3.16) 

where k denotes the block number; if the image dimensions are M x N, there is a 

total of Rs = (M x N)/n2 blocks. The weights are computed following the procedure 

described in Eq. 3.7 of Section 3.1 

The set of block quality values when displayed in a graph form a distortion map 

(which is of size Min x Nin). 

5. The overall quality value is defined as the average of the block quality values. 

Rs 

LQk 
Q = ,:.:.k=_l=---_ 

Rs 
(3.17) 

Fig. 3.13 shows the CC performance of QDCT and QDWT for various blocks sizes. Ex

periments on the complete LIVE data set indicate that the QDWT is relatively insensitive 
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to variations in block sizes. When using the QDWT, the optimal block size is 8. However, 

using a block size of 8 is detrimental when evaluating images compressed using the DCT 

namely JPEG images. Baseline JPEG compression uses 8 x 8 blocks. This causes blocking 

artifacts which are visible at the edges of the blocks. If image quality is evaluated using 

8 x 8 blocks, the distortion within each block is accurately assessed but there is no way 

to capture the distortion across block edges (blocking artifacts). This fact is reflected in 

the CC performance of the QDCT where the CC drops for n = 8. One way to capture the 

blocking distortion in the case of JPEG images would be to change the type of window 

used: one could use an 8 x 8 moving window which moves pixel-by-pixel from the top-left 

corner to the bottom-right corner of the image (this however results in a distortion map 

that has the same size as the input images and this distortion map may in turn exhibits un

desirable blocking artifacts); another type of window that can be used is a smooth window 

that is slightly larger than the JPEG block size (e.g. 11 x 11 Gaussian window). Another 

potential solution would be to combine the QDWT with one of the several metric described 

in literature that evaluates blocking artifacts. 

3.4 Addition of Chrominance Information to Improve Prediction 

Accuracy 

The proposed metrics are extended to full color images by incorporating the two chromi

nance layers (Cb and Cr). 

1. The reference and distorted images are converted to a luminance/ chrominance color 

space using Eq. 3.1. 

2. For each of the three layers ( Y, Cb and Cr), a quality measure is computed using 

the procedure described in Eq. 3.6 of Section 3.1 thus yielding three quality measures 

Qy, QCb and QCr. The quadrant weighting factors (WLL , WHL , WLH and WHH ) used 

to compute Qy are those given in Table 3.2. The weights used to compute QCb and 

QCr are given in Table 3.12: for the DCT-based metric, these weights are computed 

from the quantization factors of the standard DCT chrominance quantization matrix 

used for JPEG compression (Fig. 3.4(b), the quantization step for each quadrant (LL, 

HL, LH and HH) is set as the average of the quantizer steps in the respective DCT 
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region); the weights used for the DWT-based matric are computed from the wavelet 

quantization factors described in [28]. 

3. The quality measures for each channel are pooled to yield a single numerical value. 

Q = W y Qy + WCb QCb + W Cr QCr (3.18) 

Fig. 3.14 shows the CC performance of QDCT and QDWT for various weighting assign

ments (note that WCb = W Cr in aU experiments). Generally speaking, ad ding the chromi

nance information shows no substantial improvement in the prediction accuracy of QDCT 

and QDWT. However, in the case of white noise the proposed metrics are most effective 

when only chrominance information is kept: this is due to the fact that luminance noise is 

simply a variation in the brightness of the pixels in the image while chrominance noise is a 

variation in the color and therefore is perceptually more detrimental than luminance noise. 

Note however that the improvement is of the order of 10-3
. 

Table 3.12 Weighting assignments used in experiments (chrominance layer 
Cb) 

DCT % Wij DWT % Wij 

LL 11.766 0.7372 LL 55.249 0.3954 

HL 99 0.0876 HL 86.789 0.2517 

LH 99 0.0876 LH 86.789 0.2517 

HH 99 0.0876 HH 215.84 0.1012 

Table 3.13 Weighting assignments used in experiments (chrominance layer 
Cr) 

DCT % Wij DWT Qij Wij 

LL 11.766 0.7372 LL 25.044 0.5076 

HL 99 0.0876 HL 60.019 0.2118 

LH 99 0.0876 LH 60.019 0.2118 
HH 99 0.0876 HH 184.64 0.0688 
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Fig. 3.13 Prediction accuracy (CC) of QDCT and QDWT as a function of 
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3.5 InternaI signaIs generated by the proposed method 

In this section, we take a brief look at sorne of the internaI signaIs generated by the proposed 

method namely the MSE in each quadrant. The average MSE for each quadrant (after 

transformation to the frequency domain via the DCT or DWT) is given in Table 3.14. 

These numbers were obtained by averaging the values obtained for each of the 982 test 

images in the LIVE database. 

Table 3.14 MSE in each quadrant for the luminance and chrominance im-
ages 

DCT y Cb Cr' DWT y Cb Or 

MSELL 475.19 163.90 176.91 MSELL 575.78 200.94 214.68 

MSEHI, 177.64 139.56 157.65 MSEHL 191.37 144.33 162.70 

MSELH 172.35 139.30 157.13 MSELH 196.45 144.31 161.98 

MSEHH 153.45 140.60 158.51 MSEHH 153.90 136.37 153.67 

As expected, in the luminance layer the largest errors are in the low-frequency quadrant 

(LL) and the smallest ones in the high-frequency (HH) quadrant. This is further justifica

tion of our weighting choices in Table 3.2 (biggest weight for LL quadrant, smallest weight 

for the HH quadrant). Another interesting observation is the fact that the magnitude of 

the MSE in chrominance layers is in the same range as the MSE in the higher frequency 

(LH, HL and HH) quadrants of the luminance layer: since these errors are small (compared 

to the MSE in the LL quadrant of the luminance layer), we can expect them to have less 

impact on visual quality and this fact was confirmed by our experimental results in Sec

tion 3.4 which showed that addition of chrominance information has no substantial effect 

on the prediction accuracy of the proposed metrics. 

3.6 Summary 

This chapter presented two image quality met ri cs based on the DCT and DWT. Their 

development is driven by pre-determined applications, namely visual quality assessment of 

compressed images. The metrics are suit able for direct integration into image compres

sion schemes as shown in Fig. 3.15 sinee they use the same linear transforms as modern 

compression schemes (e.g. JPEG and JPEG2000). Loss in quality is directly related to 

coefficient quantization errors. The metrics themselves turn out to be much more general 
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and prove reliable over a wide range of image distortions making them suit able to use for 

other image processing applications. In the next chapter, we seek to adapt these metrics 

to perform reliably in reduced reference frameworks 

Original 
Image 

-1 Transformation 

4 

Quantization 

T 
Quantization 

Table 

J 

Image 
QA 

f---- Encoding \---J.. 

-.. 

Compressed 
Image 

QuaIity Rating 

Fig. 3.15 Integration of the proposed metrics in compression systems 

With regards to the "bottom-up" and "top-down" classification discussed in Section 2.5, 

the proposed algorithm contains elements from both categories. While it does not explicitly 

model each stage of the RVS, it implicitly accounts for important RVS properties. For 

instance the first lines of the quantization tables vary like the inverse of CSF function; 

therefore, the sensitivity of the human eye to spatial frequencies is implicitly taken into 

account. 
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So far, the proposed scheme assumes that the reference image is available in its entirety (FR 

framework). However, in many applications (e.g. multimedia communication networks), 

the reference image data is not available in its entirety (e.g. receiving end of a transmission). 

Metrics are needed that rely only on a very limited amount of information about the 

reference image. In such RR frameworks (shown in Fig. 4.1), low bandwidth features 

extracted from the reference image are transmitted to the receiver, where they are used in 

conjunction with the receiver data to assess the quality of the received image. 

Original Imag Decoder Channel 

Ancillary 
Channel Assessment 

Fig. 4.1 Framework of RR quality assessment systems 

Distorted Image 

Quality Score 

The bandwidth available for transmitting the side information de termines the amount 

of RR features that: if a high bandwidth is available then a large amount of information 



4 Towards Reduced Reference Image Quality Metrics 47 
...... ---........ _-----------~~ 

about the reference image can be included (if this bandwidth is high enough, FR QA 

is applicable). Conversely, smaller bandwidths reduce the amount of information about 

the reference image available at the receiver. The relationship between the bandwidth 

available for RR features and the accuracy of image quality assessment can be modeled as 

a monotonically increasing function as illustrated in Fig. 4.2: generally speaking, higher 

bandwidths en able more accurate assessment of image quality. The biggest challenge in 

RR QA resides in finding efficient features to optimize image quality prediction accuracy 

under the constraints of the available bandwidth. 

RR feature bandwidth 

Fig. 4.2 Tradeoff between RR feature bandwidth and quality prediction 
accuracy 

4.2 Reduced Reference Image Quality Assessment Using the 

DWT 

The multiresolution nature of the DWT makes it an ideal feature candidate. The orthogonal 

matrices U and V Eq. 3.2 used to consist of two parts. The upper half-parts of U and V 

correspond to low-pass filters with coefficients {hn }, and the lower half-parts are high-pass 

filters with coefficients {gn}. U acts on the columns of the image and V T acts on the rows 
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of the image. The DWT is typically implemented through by filter banks which divide the 

image into four parts as follows: 

1. The top le ft part (LL) is produced by the two-dimensional scaling function rp(x)rp(y) 

and is in fact an approximation (low-pass filtered and downsampled) version of the 

original image. 

2. The top right part (HL) is produced by the vertical wavelet function 'ljJ(x)rp(y) and 

contains information on vertical details. 

3. The bottom left part (LH) is produced by the horizontal wavelet function rp(x)'ljJ(y) 
and contains information on horizontal details. 

4. The bottom right (HH) pa,rt is is produced by the diagonal wavelet function 'ljJ(x)'ljJ(y) 

nd contains information on diagonal details. 

This concept is illustrated in Fig. 4.3. The LL quadrant is smooth and has large values. 

The other three parts typically have small absolute values except for the edges. 

LL HL 

LH HH 

( a) Original Lena image (b) DWT de composition 

Fig. 4.3 DWT decomposition 

(c) DWT decomposition of 
Lena 

The DWT can be applied recursively the LL subband. This process yields a n-level 

pyramid structure with 3n + 1 different frequency bands including a single LL frequency 

band denoted LLn which is a coarse approximation of the original signal. An example is 

given in Fig. 4.4 with n = 2. 

We propose the following procedure based on the DWT to evaluate image quality in 

RR frameworks: 
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LL2 HL2 

HL 

LH2 HH2 

LH HH 

( a) Original Lena image (b) 2-level DWT decomposi- (c) 2-level DWT decomposi-
tion tion of Lena 

Fig. 4.4 2-level DWT decomposition 

1. The reference and distorted images are converted to a luminance/chrominance color 

space using Eq. 3.1. 

2. An n-level DWT is applied to the luminance images. 

3. The RMSE between the LLn DWT coefficients of the original and distorted images 

is be used to compute a RR image quality index QRR given by Eq. 4.1 below: 

(4.1) 

PracticaIly speaking, for M x N images, this means that the size of the reference data 

needed for the comparison is (M X N)/22n. 

4.3 Experimental Results 

Table 4.1 and Fig. 4.5 shows the CC performance of QLLn for different decompositions levels 

(n). The results show that as a general purpose metric, QLLn works weIl for 1- and 2-level 

decompositions and provides results that are comparable to the QDWT. However, for higher 

decomposition levels (LL3 and ab ove ) the representation of the original image becomes too 

coarse and many perceptuaIly important features are lost thus leading to a decrease in the 

performance of the metric. For distortions which dis cards a big portion of high-frequency 

components (JPEG2000 and JPEG) or those that affect mainly low-frequency components 
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(Gaussian blur) considerable reference data rate reductions are possible: in aH of these 

cases the optimal value for n is 3. 

Table 4.1 Prediction accuracy (CC) of QLLn for n-Ievel DWT decomposition 

Distortion QDWT QLLI QLL2 QLL3 QLL4 Q LL5 Q LL6 Q LL7 

AIl images 0.9383 0.9407 0.9345 0.9206 0.9062 0.8792 0.8736 0.8671 
JPEG2000 0.9657 0.9708 0.9767 0.9787 0.9784 0.9754 0.9711 0.954 

JPEG 0.9601 0.9671 0.9725 0.9738 0.9737 0.972 0.9658 0.9541 
White Noise 0.9929 0.9911 0.9868 0.9809 0.9725 0.963 0.9534 0.9408 

Gaussian Blur 0.9228 0.9429 0.9679 0.9691 0.9674 0.9664 0.9584 0.963 
FF 0.9512 0.9428 0.9008 0.8695 0.8634 0.7923 0.7692 0.7624 

4.4 Summary 

This chapter extended the scope of the frequency do main image QA method to RR frame

works. A reduced reference image quality metric based on the DWT was developed. Ex

periments confirmed the effectiveness of the RR metric making it suit able for real-time 

applications where only a limited amount of bandwidth is available for transmission of 

information about the reference image. 
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Chapter 5 

Conclusions 

5.1 Thesis Summary 

This thesis presents an quality assessment method that is based on frequency domains 

transforms, namely the DCT and the DWT. This approach is driven by pre-determined 

applications, namely visual quality assessment of compressed digital images. Two FR met

rics for image quality assessment are developed. In simulations, these metrics outperform 

state-of-the-art metrics and prove to be useful over a wide range of image distortions. The 

method is successfully extended to RR frameworks where low bandwidth features are ex

tracted from the reference image and transmitted to a RR algorithm running at the output 

of an image transmission system where these RR features are used to assess image quality. 

The metrics presented in this thesis are easy to implement, computationally efficient and 

do not require any extensive calibration. 

5.2 Future Research Work 

The metrics presented in this thesis could be extended to video quality assessment. One 

obvious and simple way to implement video quality metrics would be to apply the image 

quality assessment metrics developed in this thesis on a frame-by-frame basis and average 

the results to give a global video quality ratings. A more sophisticated approach would 

model the temporal dimension in the design of the metrics. Several implementation issues 

would need to be considered. One important factor affecting the feasibility of a video 

quality metric is its computational complexity. An extension of the FR image quality 
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metrics developed in this thesis to FR video quality assessment would require tremendous 

computational resources. A RR video quality metrics based on the RR image quality metric 

developed in Section 4.2 would be the most practical solution. The challenge would reside 

in frames finding a suitable temporal information feature. 
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