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Abstract 

 

Complex diseases are common diseases influenced by a combination of numerous genetic as 

well as environmental factors. Omics data, including genomics, transcriptomics, proteomics, and 

metabolomics, have contributed to our understanding of the pathophysiology of complex 

diseases and their treatment. The molecular basis of psychiatric disorders is beginning to be 

understood under the lens of various genomic-wide association studies, and omics studies. 

Furthermore, advances in pharmacogenomics have uncovered the associations between omics 

and medications. However, current approaches still mainly involve the use of univariate 

approaches, and there is a need for multivariate approaches to extract further insights from omics 

data. 

In this thesis, we focus on psychiatric disorders, including schizophrenia (SCZ) and 

major depressive disorder (MDD), as our model of complex diseases. Psychiatric disorders have 

multifactorial etiologies with influence from both genetics and environmental factors, similar to 

other diseases with “complex inheritance”.  They display a broad range of symptoms and 

heterogeneity. Our understanding of the molecular basis of psychiatric disorders is suboptimal, 

and so is their medical treatment, thus making them important candidate diseases to focus on. 

Machine learning is a field that focuses on the development of algorithms that can learn 

from data to uncover generalizable patterns which are useful for predictive, classification, or 

clustering purposes. We investigated the potential of ML in identifying and understanding the 

molecular basis of psychiatric disorders through omics. Furthermore, we extended the scope of 

ML to the broader context of treatment optimization for different multifactorial diseases based 

on pharmacogenomics. 
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More specifically, we applied an ML approach to analyze gene expression data from the 

database of Genotypes and Phenotypes (dbGaP) to improve our understanding of the 

pathophysiology of SCZ and MDD. Furthermore, we explored the use of supervised and 

unsupervised ML analysis of microRNA for disease severity and treatment response prediction 

in MDD. In our final chapter, we expanded the scope of the application of ML in the broader 

context of pharmacogenomics through the development of a graph-based approach for 

prioritizing medications based on individual genetic data from the United Kingdom Biobank 

(UKBB). 

Our research has led to the development of general frameworks for ML analysis of omics 

data in the context of understanding the molecular basis of complex diseases, and in the context 

of pharmacogenomics for treatment optimization. With this thesis, we aim to advance the 

development of methods for understanding complex diseases and optimization of their treatment, 

which could be used as groundwork for future applications of ML towards more targeted 

(precision) medicine. 
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Résumé 

 

Les maladies complexes sont des maladies courantes influencées par une combinaison de 

nombreux facteurs génétiques et environnementaux. Les données omiques, incluant la 

génomique, la transcriptomique, la protéomique et la métabolomique, ont contribué à notre 

compréhension de la physiopathologie des maladies complexes et de leur traitement. La base 

moléculaire des troubles psychiatriques commence à être comprise sous l'angle de diverses 

études d'association génomique à grande échelle et d'études omiques. De plus, les progrès en 

pharmacogénomique ont révélé les associations entre les omiques et les médicaments. Cependant, 

les approches actuelles impliquent encore principalement l'utilisation d'approches univariées, et il 

est nécessaire de recourir à des approches multivariées pour extraire de nouvelles informations à 

partir des données omiques. 

Dans cette thèse, nous nous concentrons sur les troubles psychiatriques, notamment la 

schizophrénie (SCZ) et la dépression majeure (MDD), en tant que modèle de maladies 

complexes. Ces troubles psychiatriques ont des étiologies multifactorielles influencées à la fois 

par des facteurs génétiques et environnementaux, similaires à d'autres maladies à "héritage 

complexe". Ils présentent une large gamme de symptômes et une grande hétérogénéité. Notre 

compréhension de la base moléculaire de ces troubles est sous-optimale, et leur traitement 

médical est également insuffisant, ce qui en fait d'importants candidats sur lesquels se concentrer. 

L'apprentissage automatique est un domaine qui se concentre sur le développement 

d'algorithmes capables d'apprendre à partir de données pour découvrir des modèles 

généralisables qui peuvent être utiles à des fins de prédiction, de classification ou de 

regroupement. Nous avons étudié le potentiel de l'apprentissage automatique pour identifier et 

comprendre la base moléculaire des troubles psychiatriques à travers les omiques. De plus, nous 
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avons élargi le champ d'application de l'apprentissage automatique au contexte plus large de 

l'optimisation du traitement pour différentes maladies multifactorielles basée sur la 

pharmacogénomique. 

Plus précisément, nous avons utilisé une approche d'apprentissage automatique pour 

analyser les données d'expression génique de la base de données des génotypes et des 

phénotypes (dbGaP) afin d'améliorer notre compréhension de la physiopathologie de la SCZ et 

de la MDD. De plus, nous avons exploré l'utilisation d'analyses d'apprentissage automatique 

supervisées et non supervisées des microARN pour la prédiction de la gravité de la maladie et de 

la réponse au traitement dans la MDD. Dans notre dernier chapitre, nous avons élargi le champ 

d'application de l'utilisation de l'apprentissage automatique dans le contexte plus large de la 

pharmacogénomique en développant une approche basée sur des graphes pour hiérarchiser les 

médicaments en fonction des données génétiques individuelles provenant de la Biobanque du 

Royaume-Uni (UKBB). 

Nos recherches ont conduit au développement de cadres généraux pour l'analyse de 

l'apprentissage automatique des données omiques dans le contexte de la compréhension de la 

base moléculaire des maladies complexes et dans le contexte de la pharmacogénomique pour 

l'optimisation du traitement. Avec cette thèse, nous visons à faire progresser le développement de 

méthodes pour comprendre les maladies complexes et optimiser leur traitement, ce qui pourrait 

servir de base pour de futures applications de l'apprentissage automatique vers une médecine 

plus ciblée (de précision). 

 

 



6 
 

Table of Contents 

Abstract ........................................................................................................................................................ 2 

Résumé ......................................................................................................................................................... 4 

Table of Contents ........................................................................................................................................ 6 

List of Abbreviations .................................................................................................................................. 9 

List of Figures ............................................................................................................................................ 12 

List of Supplemental Figures ................................................................................................................... 13 

List of Tables ............................................................................................................................................. 14 

List of Supplemental Tables ..................................................................................................................... 15 

Contribution to Original Knowledge ...................................................................................................... 17 

Format of the Thesis ................................................................................................................................. 18 

Contribution of Authors ........................................................................................................................... 19 

Chapter 1. General Introduction ............................................................................................................. 21 

1. Complex diseases ............................................................................................................................... 21 

2. Role of omics in complex diseases .................................................................................................... 22 

3. Psychiatric disorders ........................................................................................................................ 25 

4. Role of omics in psychiatric disorders ............................................................................................. 26 

5. Pharmacogenomics ........................................................................................................................... 27 

6. Machine learning .............................................................................................................................. 27 

7. Role of machine learning for modelling psychiatric disorders ..................................................... 29 

8. Hypothesis and objectives ................................................................................................................ 31 

9. Background ....................................................................................................................................... 32 

Chapter 2. Transcriptomics and machine learning to advance schizophrenia genetics: a case-

control study using post-mortem brain data .......................................................................................... 49 

Abstract .................................................................................................................................................. 50 

1. Introduction ....................................................................................................................................... 52 

2. Material and methods ....................................................................................................................... 54 

3. Results ................................................................................................................................................ 62 

4. Discussion........................................................................................................................................... 66 

5. Conclusion ......................................................................................................................................... 70 

References .............................................................................................................................................. 71 

Supplemental Figures and Tables ....................................................................................................... 78 

Bridging statement to Chapter 3 ............................................................................................................. 89 



7 
 

Chapter 3. Machine learning and bioinformatic analysis of brain and blood mRNA profiles in 

major depressive disorder: a case-control study .................................................................................... 91 

Abstract .................................................................................................................................................. 92 

Introduction ........................................................................................................................................... 93 

Methods .................................................................................................................................................. 95 

Results .................................................................................................................................................. 103 

Discussion ............................................................................................................................................ 107 

References ............................................................................................................................................ 115 

Figures and Tables .............................................................................................................................. 121 

Supplemental Figures and Tables ..................................................................................................... 128 

Bridging statement to Chapter 4 ........................................................................................................... 143 

Chapter 4. Machine learning analysis of blood microRNA data in major depression: a case-control 

study for biomarker discovery ............................................................................................................... 145 

Abstract ................................................................................................................................................ 146 

Introduction ......................................................................................................................................... 147 

Methods ................................................................................................................................................ 148 

Results .................................................................................................................................................. 154 

Discussion ............................................................................................................................................ 156 

Conclusion ........................................................................................................................................... 160 

Tables ................................................................................................................................................... 161 

References ............................................................................................................................................ 162 

Bridging statement to Chapter 5 ........................................................................................................... 167 

Chapter 5. Graph representation learning for the prediction of medication usage in the UK 

Biobank based on pharmacogenetic variants ....................................................................................... 170 

Abstract ................................................................................................................................................ 171 

Introduction ......................................................................................................................................... 173 

Methods ................................................................................................................................................ 175 

Results .................................................................................................................................................. 182 

Discussion ............................................................................................................................................ 183 

Tables and figures ............................................................................................................................... 188 

References ............................................................................................................................................ 192 

Supplemental Figures ......................................................................................................................... 195 

Chapter 6. General Discussion ............................................................................................................... 198 

Chapter 7. Conclusion and Future Directions ...................................................................................... 208 



8 
 

Chapter 8. General References .............................................................................................................. 211 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

List of Abbreviations 

 

ANN 

ATC 

AUC 

BA 

BCE 

CARTs 

CIHR 

COX 

COX6A1 

CTL 

DAAM2 

DEGs 

DLPFC 

DMHUI 

DNA 

DNN 

DSM 

DSM-IV 

EDTA 

EEG 

ENPEP 

FDR 

FN 

FP 

FPR 

GABA 

GBM 

GCN 

GEO 

GNN 

GO 

GPL 

GRCh37 

GRL 

GSA 

GWAS 

HBHL 

KEGG 

Artificial Neural Network 

Anatomical Therapeutic Chemical 

Area Under the Receiver-Operating Characteristics Curve 

Brodmann's Area 

Binary Cross-Entropy 

Classification and Regression Trees 

Canadian Institutes of Health Research 

Cytochrome C Oxidase 

Cytochrome C Oxidase Subunit 6A1 

Control 

Dishevelled Associated Activator of Morphogenesis 2 

Differentially Expressed Genes 

Dorsolateral Prefrontal Cortex 

Douglas Mental Health University Institute 

Deoxyribonucleic Acid 

Deep Neural Network 

Diagnostic and Statistical Manual of Mental Disorders 

Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition 

Ethylenediaminetetraacetic Acid 

Electroencephalogram 

Glutamyl Aminopeptidase 

False Discovery Rate 

False Negative 

False Positive 

False-Positive Rate 

Gamma-Aminobutyric Acid 

Gradient Boosted Machines 

Graph Convolutional Network 

Gene Expression Omnibus 

Graph Neural Network 

Gene Ontology 

GEO Platform License 

Genome Reference Consortium Human Build 37 

Graph Representation Learning 

Gene Set Analysis 

Genome-Wide Association Study 

Healthy Brains, Healthy Lives 

Kyoto Encyclopedia of Genes and Genomes 



10 
 

MADRS 

MDD 

MDE 

ML 

MSigDB 

NARSAD 

NESDA 

NGS 

NMDAR 

NRES 

NTR 

OXPHOS 

PCR 

PGx 

PharmGKB 

PrP(C) 

Q 

R 

RAS 

RCT 

RES 

RIN 

RNA 

ROC 

SCID-I 

SCID-IA 

SCZ 

SD 

SGD 

SSD 

SSRIs 

SVM 

T0 

T8 

TGF-β 

TN 

TP 

TPR 

UKBB 

US 

Montgomery-Asberg Depression Rating Scale 

Major Depressive Disorder 

Major Depressive Episode 

Machine Learning 

Molecular Signatures Database 

National Alliance for Research on Schizophrenia and Depression 

Netherlands Study of Depression and Anxiety 

Next Generation Sequencing 

N-Methyl-D-aspartate Receptor 

Non-responder 

Netherland Twin Register 

Oxidative Phosphorylation 

Polymerase Chain Reaction 

Pharmacogenetics 

The Pharmacogenomics Knowledgebase 

Cellular Prion Protein 

Phred quality 

R programming language 

Renin-Angiotensin System 

Randomized Controlled Trial 

Responder 

RNA Integrity Number 

Ribonucleic Acid 

Receiver-operating characteristics curve 

Structured Clinical Interview for DSM-IV 

Structured Clinical Interview for DSM-IV Axis I Disorders 

Schizophrenia 

Standard Deviation 

Stochastic Gradient Descent 

Subsyndromal Symptomatic Depression 

Selective Serotonin Reuptake Inhibitors 

Support Vector Machines 

Timepoint 0 

Timepoint 8 

Transforming Growth Factor-beta 

True Negative 

True Positive 

True-Positive Rate 

United Kingdom Biobank 

United States 



11 
 

XGBoost 

cDNA 

eQTL 

dbGaP 

mRNA 

p75NTR 

Extreme Gradient Boosting 

Complementary DNA 

Expression Quantitative Trait Loci 

Database of Genotypes and Phenotypes 

Messenger RNA 

p75 Neurotrophin Receptor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 
 

List of Figures 

 

Chapter 1: 

Figure 1. Major omics categories and their relationships.. ........................................................... 47 

Figure 2. Microarray data generation ............................................................................................ 47 

Figure 3. RNA-seq data generation. .............................................................................................. 48 

Figure 4. Basic process of supervised learning ............................................................................. 48 

 

Chapter 2: 

Figure 1. ML analysis and gene set analysis pipeline. .................................................................. 61 

Figure 2. Testing set results for discriminating schizophrenia cases vs. controls. ....................... 64 

 

Chapter 3: 

Figure 1. Brain mRNA testing set results for discriminating MDD cases vs. controls. ............. 121 

Figure 2. External brain mRNA testing set results for discriminating MDD cases vs. controls. 123 

Figure 3. Logistic regression coefficients for gene features. ...................................................... 125 

Figure 4. Blood mRNA testing set results for discriminating MDD cases vs. controls. ............ 126 

 

Chapter 5: 

Figure 1. GCN model architecture. ............................................................................................. 188 

Figure 2. Distribution of testing set AUC values for each approach. ......................................... 189 

Figure 3. Mean AUC at each medication sample size percentile range. .................................... 190 

Figure 4. Odds ratio between usage of a medication and having a rank value within the top five.

..................................................................................................................................................... 191 

 

 

 

 



13 
 

List of Supplemental Figures 

 

Chapter 5: 

Supplemental Figure 1. Visual representation of the PharmGKB graph. ................................... 195 

Supplemental Figure 2. Node types present in the final PharmGKB graph. .............................. 196 

Supplemental Figure 3. Edge types present in the final PharmGKB graph................................ 196 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

List of Tables 

 

Chapter 3: 

Table 1. Model cross-validation and testing set AUC scores (gene expression data models).... 127 

 

Chapter 4: 

Table 1. Model cross-validation and testing set AUC scores. .................................................... 161 

Table 2. Most important microRNA features used by the case-control classification model. ... 162 

 

Chapter 5: 

Table 1. Summary of model performance. ................................................................................. 192 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

List of Supplemental Tables 

 

Chapter 2: 

Supplemental Table 1. Most important features identified by the best machine learning model 

listed from most to least importance. ............................................................................................ 78 

Supplemental Table 2. Hypergeometric test of enrichment of piano ranked gene sets in machine 

learning model genes. ................................................................................................................... 79 

 

Chapter 3: 

Supplemental Table 1. Summary of the covariates between the training and testing sets from the 

brain mRNA dataset. ................................................................................................................... 128 

 Supplemental Table 2. Summary of the covariates between the training and testing sets from the 

blood mRNA dataset. .................................................................................................................. 130 

Supplemental Table 3. List of all 62 genes selected by XGBoost algorithm in the construction of 

the classifier for distinguishing MDD cases from controls for the brain mRNA dataset, ranked 

from most important to least important. ..................................................................................... 132 

Supplemental Table 4. Summary of the covariates between MDD cases and controls from the 

brain mRNA dataset. ................................................................................................................... 132 

Supplemental Table 5. Summary of the covariates between the correctly and incorrectly 

classified subjects from the brain mRNA testing set. ................................................................. 134 

 Supplemental Table 6. Hypergeometric test of enrichment of piano ranked gene sets in machine 

learning model genes from brain mRNA dataset. ....................................................................... 136 

 Supplemental Table 7. List of all 1376 genes selected by XGBoost algorithm in the construction 

of the classifier for distinguishing MDD cases from controls for the blood mRNA dataset, ranked 

from most important to least important. ..................................................................................... 138 

Supplemental Table 8. Summary of the covariates between MDD cases and controls from the 

blood mRNA dataset. .................................................................................................................. 140 

Supplemental Table 9. Summary of the covariates between the correctly and incorrectly 

classified subjects from the blood mRNA testing set. ................................................................ 141 

 



16 
 

Acknowledgements 

 

I am grateful to the numerous individuals who have supported me throughout my graduate 

studies, providing encouragement, guidance, and assistance at every stage of this journey.  

First and foremost, I would like to express my appreciation to my supervisor, Dr. Yannis 

Trakadis, for believing in me and giving me the opportunity to work under his supervision. I am 

grateful for his constant guidance and understanding throughout these years. Furthermore, my 

sincere gratitude goes to my supervisory committee members, Dr. Celia Greenwood and Dr. Jeff 

Xia, for their invaluable guidance, expertise, and feedback throughout this process. 

I would like to acknowledge my fellow lab member, Mr. Sameer Sardaar, for the 

countless insightful discussions and collaborative efforts we have shared over the years. I would 

also like to thank my co-authors, Ms. Sonia Boscenco, Ms. Janani Ramamurthy, and Ms. Imane 

Bennani for their diligent assistance with our manuscripts. 

Special thanks to Dr. Laura M. Fiori and Dr. Gustavo Turecki for their collaboration on 

the microRNA project, a significant contributing chapter in this thesis, which provided valuable 

perspectives and knowledge to this work. 

I am also grateful to the thesis reviewers for dedicating their time to evaluate my thesis. 

Furthermore, I would like to extend my appreciation to Mr. Ross MacKay and Ms. Rimi 

Joshi for their assistance in ensuring an efficient administrative process throughout my graduate 

studies. 

I am also thankful to the Canadian Institutes of Health Research (CIHR) for providing me 

with a scholarship that allowed me to focus on my research.  

Finally, to my friends and family, your belief in me has been a constant source of 

motivation, and I am always grateful for your presence in my life. 



17 
 

Contribution to Original Knowledge 

 

The work presented in this thesis is a substantial contribution to the development of machine 

learning (ML) approaches for understanding complex diseases, with novel model selection, 

evaluation, and interpretation methodologies to ensure the robustness of the insights derived 

from omics data. Using psychiatric disorders as models of complex diseases, we identified genes, 

and molecular functions associated with schizophrenia and major depressive disorder (Chapters 

2 and 3). Furthermore, our work demonstrated the potential of ML approaches for disease 

severity monitoring and treatment response prediction (Chapter 4). Lastly, we highlighted the 

effectiveness of a novel approach based on graph representation learning for integrating 

biomedical domain knowledge into ML for medication usage prediction based on individual 

genotype data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

Format of the Thesis 

 

The work presented in this thesis follows the manuscript-based format guidelines of the 

Department of Graduate and Postdoctoral Studies. The work consists of three published 

manuscripts (Chapters 2, 3, and 4), as well as a manuscript in preparation for submission 

(Chapter 5). The manuscript chapters and journals they are published in are as follows: 

- Chapter 2: Transcriptomics and machine learning to advance schizophrenia genetics: A 

case-control study using post-mortem brain data. Computer Methods and Programs in 

Biomedicine 214: 106590. 

- Chapter 3: Machine learning and bioinformatic analysis of brain and blood mRNA 

profiles in major depressive disorder: A case–control study. American Journal of Medical 

Genetics Part B: Neuropsychiatric Genetics 186(2): 101-112. 

- Chapter 4: Machine Learning Analysis of Blood microRNA Data in Major Depression: A 

Case-Control Study for Biomarker Discovery. International Journal of 

Neuropsychopharmacology 23(8): 505-510. 

- Chapter 5: Graph representation learning for the prediction of medication usage in the 

UK Biobank based on pharmacogenetic variants. (In preparation for submission) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

Contribution of Authors 

 

Bill Qi prepared this thesis under the supervision of Yannis Trakadis. All work included as part 

of this thesis was performed under the supervision of Dr. Yannis Trakadis. Yannis Trakadis 

reviewed the thesis and provided constructive feedback. 

Chapter 2 is a manuscript authored by Bill Qi, Sonia Boscenco, Janani Ramamurthy, and 

Yannis, J. Trakadis. Bill Qi performed the bioinformatic and machine learning analyses and 

drafted the manuscript under the supervision of Yannis Trakadis who conceived and coordinated 

the project. Bill Qi and Yannis Trakadis designed the original methodology. Sonia Boscenco and 

Janani Ramamurthy performed the background literature review. All authors reviewed and 

provided feedback on the manuscript. 

Chapter 3 is a manuscript authored by Bill Qi, Janani Ramamurthy, Imane Bennani, and 

Yannis J. Trakadis. Bill Qi performed the bioinformatic and machine learning analyses and 

drafted the manuscript under the supervision of Yannis Trakadis who conceived and coordinated 

the project. Bill Qi and Yannis Trakadis designed the original methodology. Imane Bennani and 

Janani Ramamurthy performed the background literature review. All authors reviewed and 

provided feedback on the manuscript. 

Chapter 4 is a manuscript authored by Bill Qi; Laura M. Fiori; Gustavo Turecki, and 

Yannis J. Trakadis. Bill Qi performed the bioinformatic and machine learning analyses and 

drafted the manuscript under the supervision of Yannis Trakadis who conceived and coordinated 

the project. Bill Qi and Yannis Trakadis designed the original methodology. Gustavo Turecki 

coordinated patient recruitment and data collection. Laura Fiori oversaw the production of the 

microRNA data and put together the Sample Processing and Small RNA-seq sections of the 

methodology section. All authors reviewed and provided feedback on the manuscript. 



20 
 

Chapter 5 is a manuscript authored by Bill Qi and Yannis J. Trakadis. Bill Qi performed 

the machine learning analyses and drafted the manuscript under the supervision of Yannis 

Trakadis who conceived and coordinated the project. Bill Qi and Yannis Trakadis designed the 

original methodology. All authors reviewed and provided feedback on the manuscript.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 
 

Chapter 1. General Introduction 

 

1. Complex diseases 

 

Complex diseases, also commonly referred to as multifactorial or polygenic diseases, have a 

genetic basis (i.e., are heritable) consisting of the combined effects of and interactions between 

multiple genetic and environmental factors in their etiology and progression [1, 2]. Examples of 

complex diseases include cardiovascular disease, diabetes, cancer, autoimmune diseases, as well 

as psychiatric diseases, and many more. In contrast to Mendelian diseases, which often involve a 

single gene and well-documented inheritance types [3], complex diseases do not have well-

established patterns of inheritance. However, a polygenic inheritance model with a liability 

determined by the minor effects of many genetic variants has been proposed to explain the 

underlying inheritance of complex diseases [1]. The polygenic inheritance model has been 

validated by the identification of numerous genetic loci associations based on genome-wide 

association studies (GWAS) [2], and the genetic basis of thousands of complex human diseases 

and traits and diseases have been elucidated [4]. 

 However, GWASs thus far have explained only a limited proportion of the heritability of 

many complex diseases. This could be due to the fact that GWAS is a univariate approach that 

considers only the linear effect of each genetic variant separately (i.e., without considering the 

heterogeneity of effects, non-linear effects, as well as epistasis and gene-environment 

interactions), which hinders the power for detecting significant loci [5]. These limitations suggest 

a need for the development of novel multivariate methods to advance our understanding of 

complex diseases. 
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2. Role of omics in complex diseases 

 

In complex diseases, the impact of each genetic variant on the disease is complex and 

interconnected through multiple molecular functions, pathways, and networks, rarely involving 

only a single factor [6]. Moreover, non-genetic factors including social, environmental, and 

lifestyle add additional layers of complexities to complex diseases [7]. 

Effective means of comprehensively quantifying biological molecules are needed to 

characterize complex diseases, and identify biomarkers associated with outcomes of interest (e.g., 

disease severity, recurrence, response to treatment, etc.). In contrast to monogenic diseases, 

complex diseases more often involve the collective effects of hundreds to thousands of genetic 

and non-genetic factors. Identifying effective means of treating complex diseases is expected to 

be more challenging, and comprehensive measurements of the biological system are needed to 

enable a better understanding of the causal mechanisms of disease for the development of better 

preventive and therapeutic strategies. 

Recently, advancements in high-throughput technologies, such as sequencing and mass 

spectrometry, have enabled the efficient capture of entire classes of genomic, epigenomic, 

transcriptomic, proteomic, metabolomic, and other “omics” classes of molecules, ranging from 

genetic variants to RNA (ribonucleic acid) transcripts and protein abundances to products of 

metabolism [8]. 

Omics data have been applied to complex disease research to characterize the 

pathophysiology of complex diseases. As mentioned before, efficient quantification of genetic 

variants has enabled the identification of the genetic basis of complex diseases using GWAS, as 

well as leading to the development of disease risk prediction tools such as polygenic risk scores 

(PRS) [9]. Transcriptomics, which quantifies genome-wide gene expression levels, and other 
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functional omics classes have enabled a further understanding of the biological mechanisms of 

complex diseases at the gene and transcript levels through the identification of expression 

qualitative trait loci (eQTLs) [10], differential gene expression signatures [11], and biological 

pathways and networks [12].  

In addition to the four major omics classes (genomics, transcriptomics, proteomics, and 

metabolomics), more recent developments include epi-omics (e.g., epigenomic, 

epitranscriptomics, and epiproteomics), which focuses on the modifications of the existing omics 

molecules, as well as more specialized knowledge-based omics focused on specific diseases such 

as immunomics, microbiomics, and redoxomics [13]. 

Furthermore, omics data could potentially improve the treatment of patients with 

complex diseases through precision medicine [14]. Precision medicine is an approach towards 

disease treatment by taking into account individual variability using methods for detailed 

characterization of patients (e.g., omics) and computational tools to enable more effective 

treatment and prevention of disease [14]. Pharmacogenomics, as a cornerstone of precision 

medicine, deals with the study of how variations of genomics and other omics influence response 

to medications at the individual level with the aim of improving medication efficacy and 

reducing side effects [15].  

Precision medicine driven by omics has led to many advances in the biomedical field. 

Most notably in the field of oncology, precision medicine has already shown significant potential 

in improving patient outcomes. For instance, the use of genomics has led to the identification of 

gene targets for directed therapy, resulting in positive clinical effects in individuals who did not 

respond to conventional chemotherapy [16]. Applications for resolving disease heterogeneity 

have also revealed disease subtypes with unique genetic and epigenetic signatures associated 
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with survival outcomes have been identified in cancer patients [17]. Furthermore, functional 

omics such as transcriptomics capturing both genetic and non-genetic information relevant to 

disease have been shown to be useful for informing treatment of breast cancer [18].  

Beyond cancers, much of the advancement in precision medicine of non-cancer related 

complex diseases has been in terms of genomics. Risk prediction methods such as PRS have 

been found to have strong evidence of clinical utility in cardiovascular diseases for guiding 

diagnosis and management of disease [19]. Moreover, in various complex diseases, ranging from 

cardiovascular diseases, diabetes, obesity, allergic diseases, and psychiatric diseases, the use of 

genomics and other omics along with other data modalities such as clinical and imaging data 

have been shown to be useful for risk, outcome, and treatment response prediction, as well as for 

identify subgroups of patients with similar characteristics to reduce the heterogeneity of complex 

diseases [20]. 

Individual omics data types have shown some successes, however, the emerging trends in 

the field of include the use of multi-omics integration [21] as well as single-cell omics [22]. 

Multi-omics integration can provide a more comprehensive and unbiased view of complex 

diseases compared to using single omics modalities alone. For example, multi-omics approaches 

have been used for treatment response prediction in immune-mediated diseases [23]. 

Furthermore, single-cell omics approaches can provide a higher resolution than current bulk 

omics approaches, and potentially provide a better understanding of complex diseases and enable 

precision medicine. For example, single-cell transcriptomics have been used to identify cell-type 

specific gene signatures to enable a more precise understanding of Alzheimer’s disease [24]. 

While these approaches appear promising, there are still challenges which need to be 

addressed, particularly in terms of data analysis including sample size, high-dimensionality and 
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noise, and computational methods such as machine learning would be necessary to leverage 

omics data to further advance precision medicine [20, 25]. 

 

3. Psychiatric disorders 

 

We choose to study psychiatric (or mental) disorders, in particular schizophrenia (SCZ) and 

major depressive disorder (MDD), under the framework of complex diseases. These selected 

disorders constitute common conditions that affect thinking, behavior, emotions, and mood. A 

recent meta-analysis study estimated a median lifetime prevalence of SCZ and other psychotic 

disorders to be 0.75% [26]. For MDD, the prevalence varies between different demographic 

categories, however, a recent study estimated the lifetime prevalence to be around 20.6% [27].  

These disorders are moderate to highly heritable. For SCZ, an analysis of twin studies has 

estimated the heritability to be around 81% [28]. For MDD, a similar analysis has estimated the 

heritability to be around 37% [29]. Furthermore, environmental factors also play a role in these 

disorders. Early life adversity, such as childhood trauma, has been linked to both SCZ and MDD 

[30, 31]. Moreover, the interaction between genetic risk factors and environmental stressors may 

be important in the development of these disorders, suggesting gene-environment interactions 

[32, 33]. 

Treatment of psychiatric disorders is suboptimal. For example, 10-30% of patients with 

SCZ show no response to conventional antipsychotics, with 30-60% of patients experiencing 

side effects and little improvement [34]. A similar lack of successful treatment has been reported 

for MDD [35]. Despite the significant genetic basis of these disorders, psychiatry, the specialty 

concerned with the diagnosis and treatment of mental disorders, has lagged behind in the use of 

advanced diagnostic and therapeutic technologies relative to other clinical specialties [36]. For 
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example, the classification and diagnosis of psychiatric disorders are currently based on signs 

and symptoms criteria documented in the Diagnostic and Statistical Manual of Mental Disorders 

(DSM) [37], rather than underlying biological factors, as there is a poor understanding of the 

pathophysiology of these disorders [36].  

 

4. Role of omics in psychiatric disorders 

 

Recent GWAS have identified numerous genetic associations for SCZ [38] and MDD [39], and 

confirmed the polygenic nature of these psychiatric disorders. Genomics has also yielded risk 

predictors for these disorders through the development of PRSs [40], and machine learning-

based methods [41]. 

The use of transcriptomic reference panels has enabled the identification of hundreds of 

transcriptome-wide associations encompassing 157 unique genes in SCZ [42]. Furthermore, the 

use of gene expression microarrays from cases with SCZ and controls has identified 

differentially expressed genes of various biological processes including neurotransmission, 

synaptic plasticity and potentiation, gene regulation, cell cycle progression, etc. [43, 44].  

Similarly, proteomic studies have highlighted differences at the peptide and protein level 

for psychiatric disorders, including replicated differences in insulin-related peptides, interleukins, 

and brain-derived neurotrophic factor for SCZ, and differences in proteins involved in 

inflammation, and oxidative stress for MDD [45]. Lastly, at the end of the omics cascade, 

metabolomics and lipidomics have provided insights into the products of metabolism involved in 

psychiatric disorders, such as eicosanoids, a class of metabolites involved in inflammatory 

processes [46]. 
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5. Pharmacogenomics 

 

 Pharmacogenomics combines the study of pharmacology and genomics to understand 

how an individual's genetic variations influence their response to drugs [47]. Pharmacogenomics 

is particularly relevant to complex diseases. Patients with complex diseases often have 

significant variations in their responses to drug treatment and experience of side-effects [48]. 

Pharmacogenomics holds the promise of improving the management of these diseases by 

enabling more precise and effective drug therapies based on the molecular basis of complex 

diseases. 

 Pharmacokinetics and pharmacodynamics are two key aspects of pharmacology that are 

directly influenced by genetic variation [49]. Pharmacokinetics refers to how a drug is absorbed, 

distributed, metabolized, and excreted by the body [50], while pharmacodynamics involves the 

biochemical and physiological effects of drugs and their mechanisms of action [51]. Genetic 

variations can affect both these processes, leading to individual variations in drug response 

phenotypes.  

 

6. Machine learning 

 

Machine learning (ML) is a branch of artificial intelligence focused on developing algorithms 

and methods for learning from data. Broadly, ML aims to identify generalizable patterns and 

knowledge underlying a series of data observations with the goal of making accurate predictions 

[52]. The two primary types of ML are supervised and unsupervised. With supervised ML, the 

goal is to train an algorithm using labeled data. Each data sample consists of a set of input 

features and a target variable. The algorithm is then trained to predict the target variable based on 

the values of the input features. Examples of popular supervised ML methods include decision 
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trees [53], support vector machines [54], and gradient-boosting machines [55]. With 

unsupervised learning, the data is unlabeled, and the focus is to identify statistical structure and 

patterns within the input data. Some examples of unsupervised learning include clustering using 

the K-means algorithm [56], and dimensionality reduction using the uniform manifold 

approximation and projection algorithm [57]. 

 In contrast to classical statistical methods (e.g., null hypothesis testing, parameter 

estimation), ML focuses on making accurate predictions at the individual level. This capability is 

useful for the study of complex diseases, where individual-level variation (i.e., heterogeneity) is 

a significant contributing factor to complexity. Furthermore, ML methods are well suited for 

handling complex, high-dimensional data such as omics data through data representation, feature 

selection and engineering, and regularization techniques [58]. 

Graph representation learning 

Graph representation learning (GRL) is a subset of approaches in ML focused on effectively 

representing and encoding graph-structured data to be used in ML algorithms [59]. Graphs are 

mathematical structures that use edges or connections to represent relationships between 

different entities. For example, social networks model the social connections between individuals. 

Furthermore, biological networks, such as protein-protein interaction networks, model the 

associations between proteins [60]. Graph neural networks (GNN) are a class of GRL methods 

which generalizes deep neural networks for the analysis of graph data. One popular method of 

GNN is graph convolutional networks (GCNs), which learn low-dimensional embedding 

representations of nodes and their local graph structure using an efficient localized first-order 

approximation of spectral graph convolutions [61]. 
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7. Role of machine learning for modelling psychiatric disorders 

 

ML has been extensively explored for modelling psychiatric disorders. However, we will focus 

on its utilization for individual-level prediction or classification purposes, primarily using omics 

data types, which is relevant to the context of this thesis. 

Supervised ML analysis of genomic data (e.g., single nucleotide polymorphisms, copy 

number variations, and exome variants) has mainly been conducted to examine the diagnostic 

utility of ML. A systematic review showed that the area under the receiver operating 

characteristic curve (AUC) performance metric varied widely from 0.48 to 0.95 among 

psychiatric disorders including SCZ, bipolar disorder, autism, and anorexia [41]. However, a 

lack of common ML practices including model validation procedures, hyperparameter search, 

and a lack of general reporting guidelines in the field were pointed out as potential limitations for 

the validity of the findings. 

 Similarly, ML analysis of transcriptomic data in psychiatric disorders has also been 

conducted. Several studies have explored the classification of psychiatric disorders using 

transcriptomic data and ML. Most studies utilized an approach involving the identifications of 

differentially expressed genes, disease relevance analysis, and modelling using supervised ML 

for classification of psychiatric diseases [62-67]. Nearly all studies utilized differential 

expression signatures in blood as input features for ML. However, one study did perform a 

comparison of the use of messenger RNA and long non-coding RNA from brain tissue as input 

features for ML modelling to identify biomarkers for SCZ [68]. Reported ML performance 

metrics are typically moderate to high, with several studies reporting over 90% AUC metrics, 

however, all studies have used small datasets with at most a few hundred samples. Furthermore, 



30 
 

most studies used traditional ML algorithms such as support vector machines, random forests, 

but a few studies did make use of more recent neural network algorithms or ensemble methods. 

 Relatively few studies have examined the use of ML with proteomic data. ML analysis of 

proteomic data has been explored for diagnosing bipolar vs. unipolar depression [69]. Recent 

work has demonstrated the value of proteomic data as a predictor of remission in MDD [70]. 

Proteomic biomarkers have also been successfully used to predict the onset of psychotic disorder 

in clinically high-risk individuals [71]. Similarly, a few studies have explored the use of ML 

analysis for metabolomic data. Studies have used metabolomic profiles to distinguish depression 

cases from healthy controls [72, 73], and to predict depressive symptoms [74]. A study has also 

been conducted involving differential diagnosis of SCZ and bipolar disorder using metabolomic 

profiles [75].  

Additionally, there have been a few examples of multi-modal approaches, such as using 

methylome and transcriptome data to distinguish suicide attempters, MDD cases, and healthy 

controls [76], and using a combination of omics and clinical data for the prediction of remission 

in MDD [70]. 

ML modelling of the pharmacogenomics aspects of psychiatric disorders has also been a 

research focus. The main goal of this area of research is to predict the individual-level treatment 

response to a medication and remission based on genomic features. For example, there have been 

promising findings in the prediction of response to antidepressants [77], which are a broad class 

of medications used to treat MDD, and antipsychotics [78], which are used to treat SCZ. 

Currently, most studies have been focused on case-control designs for biomarker 

discovery and diagnostic purposes, with few studies on prognosis and treatment response 

modelling. All studies applying ML in modelling psychiatric disorders usually have a low 
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number of samples, while omics data are high-dimensional. In these scenarios, almost all ML 

algorithms can easily identify a model by overfitting to the data resulting in inflated performance 

results. Thus, the emphasis of ML modelling for these types of datasets needs to be on 

methodologies to reduce the risk of overfitting and proper model validation. 

 

8. Hypothesis and objectives 

 

In this thesis, our overarching hypothesis is that ML analysis of omics data can enhance our 

understanding of the pathophysiology of, and treatment for, complex diseases.  

In Chapter 2, we utilized SCZ as our model for complex disease, and gene expression 

microarray data for the development of our ML methodology. Our specific hypothesis was that 

our ML methodology could distinguish disease cases from controls based on gene expressions 

from the dorsolateral prefrontal cortex (DLPFC) better than random chance and generalize to 

unseen data (i.e., not overfitting). We further hypothesized that genes with significant relevance 

to disease could be prioritized through the integration of genes identified through ML and 

biological gene set (pathway) analysis. Our objective was to leverage established ML methods 

for high-dimensional omics data and model selection procedures to reduce the risk of overfitting. 

More specifically, we aimed to develop ML methodologies for analyzing omics data to identify 

and understand the molecular basis of complex diseases, which could be valuable for the 

identification of treatment targets and the development of novel treatments.  

In Chapter 3, we focused on MDD and improved upon our initial methodology by 

incorporating model evaluation on independent datasets, analyzing blood gene expression data, 

and utilizing covariate data for model interpretation. Our hypothesis was that patterns identified 
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through ML in MDD are relevant to disease and generalizable across independent datasets. 

Moreover, we hypothesized that ML analysis of both blood and DLPFC gene expressions can 

yield useful diagnosis biomarkers for MDD.  

In Chapter 4, our hypothesis was that ML analysis of omics data could yield biomarkers 

for diagnosis, disease severity, and treatment response. Our objective was to investigate the 

application of ML and microRNA data for optimizing the treatment of MDD. We focused on an 

analysis of microRNA data from MDD patients to identify robust biomarkers for disease severity 

and treatment response. 

Furthermore, in Chapter 5, we hypothesized that the incorporation of pharmacogenomic 

domain knowledge as part of ML modelling could enhance performance in the prediction of 

medication usage to advance precision medicine. Here, our objective was to explore the potential 

of ML for prioritizing medications that a patient may require based on their genetic data. We 

focused on larger-scale genomic data analysis using more advanced deep learning approaches 

and developed a novel graph-based methodology for incorporating pharmacogenomic domain 

knowledge as part of ML modelling. 

 

 

9. Background 

 

Omics  

 

Genomics is the fundamental level of omics and provides insights into the potential associations 

of genetic variations and diseases. Genetic variations can often lead to cascading events in 

downstream omics levels [79]. We will explore an analysis of genetic variation data in Chapter 5. 

Transcriptomics focuses on the transcription of genetic information stored in DNA to RNA 

transcripts, which have crucial functional properties in transcript splicing, protein synthesis, and 
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gene regulation. For example, microRNAs (miRNA) are a class of non-coding RNAs that have 

been shown play roles such as suppressing the translation of messenger RNA (mRNA) into 

proteins, and upregulating transcription when bound to promoter DNA sequences [80]. In 

Chapters 2 and 3, we focus on the analysis of mRNA data, while Chapter 4 shifts the focus on to 

miRNA data.  Proteomics focuses on the study of the set of proteins encoded through translation 

of mRNA, including their expression, structure, and function [81]. Lastly, metabolomics focuses 

on the study of a comprehensive set of metabolites including lipids, glycans, and other small 

molecules produced as a result of biochemical reactions [82]. Figure 1 illustrates the major omics 

categories and their relationships. 

 

Omics data generation 

The work in this thesis makes use of genomic and transcriptomic data based on microarray [83], 

and next-generation sequencing (NGS) [84], molecular biology data generation technologies, in 

particular expression and genotyping microarrays, and RNA sequencing (RNA-seq), which will 

be introduced in further detail. 

Microarrays can be used to genotype multiple regions of the genome simultaneously. 

They can also be used for the purpose of quantifying the expression levels of genes. Typically, 

microarrays utilize a 2D matrix structure consisting of DNA probes fixed to beads placed on a 

surface (e.g., glass or silicon). The probes correspond to a predefined set of sequences of interest 

(e.g., sequences containing single nucleotide polymorphisms for genotyping microarrays, and 

gene sequences for expression microarrays). 

 For expression microarrays, the goal is to quantify the level of mRNA molecules 

corresponding to genes. Typically, RNA extraction is performed to extract total RNA from cells 
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or tissues. The mRNA portion of total RNA is selected based on hybridization binding of the 

mRNA poly(A) tail sequences to extraction beads. To be compatible with the DNA probes on the 

expression microarray, the mRNA is reverse transcribed into complementary DNA (cDNA) 

molecules with nucleotides which are fluorescently labeled. Next, the cDNA is hybridized to the 

probes on the microarray. Finally, a scanning process measures the fluorescence signals emitted 

by the hybridized cDNA and used as a proxy for the expression level of the corresponding genes. 

 With genotyping microarrays, a similar process occurs using DNA, however, no 

complementary DNA is needed, but two versions of probes corresponding to different alleles, as 

well as fluorescent labels of two different colors are used to differentiate the genotype of a given 

genomic locus.  

Figure 2 shows an illustration of the data generation process for expression microarrays, 

starting with RNA extraction and isolation from cells or tissues, followed by reverse 

transcription and fluorescence labelling, and microarray hybridization and scanning of the 

signals.  

More recently with the lowering cost of NGS technologies, complete sequencing of the 

genome or transcriptome through the parallelized generation of short sequence reads has been 

increasingly adopted. We will focus on describing RNA-seq technology in the context of 

transcriptomics as it is of relevance to this thesis. RNA-seq offers more comprehensive and 

accurate quantification of the transcriptome compared to expression microarrays by sequencing 

of novel and low expression transcripts without needing knowledge of the predefined set of 

sequences of interest. The process involves extraction of total RNA, isolation of specific RNA 

types (e.g., poly(A) selection for mRNA sequences, and ribosomal RNA depletion), reverse 

transcription into cDNA, construction of the sequencing library, PCR amplification, and 
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sequencing. Variations in RNA-seq such as small RNA-seq have been developed for more 

optimized targeting of miRNAs using size selection techniques. Furthermore, RNA-seq typically 

makes use of existing DNA-based NGS technologies, rather than direct sequencing of RNA, 

through the conversion to cDNA. The sequencing library is constructed through fragmentation of 

the sequences and addition of sequencing adapters. A step of polymerase chain reaction (PCR) 

amplification of the sequencing library is used to ensure sufficient material for sequencing.  

Figure 3 illustrates the general process of RNA-seq data generation as described above, 

starting with RNA extraction and isolation from cells or tissues, followed by reverse 

transcription and library construction, PCR amplification, and finally sequencing using a NGS 

platform. 

The majority of the work in this thesis focuses on data generated through microarray 

technologies, with the exception of Chapter 4, which utilized NGS for the generation of miRNA 

data. 

 

Omics data preprocessing 

Raw omics data requires quality control and preprocessing before they can be used in 

downstream analyses. For data generated through microarray technology, starting from raw 

fluorescence intensities, background correction is needed to separate the background noise from 

the true underlying biological signal. The specific methodology depends on the manufacturer of 

the microarray, however, the general process involves the deconvolution of observed intensities 

from localized background intensity around each probe, or from negative control probes 

intensities to obtain an estimate of the true signal intensity. After background correction, signals 

across multiple microarray samples need to be normalized to correct for systematic technical 
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sources of biases (e.g., variations in sample preparation, hybridization, scanning, etc.) which are 

unrelated to the underlying biological signal. For genotyping microarrays, an additional step of 

genotyping is performed in order to convert the intensity values into genotype calls. 

 In the case of RNA-seq data, after the generation of raw sequence reads, a process 

involving filtering of raw sequence reads for adapter sequences and read quality is performed 

prior to alignment of filtered reads to a reference genome using specialized alignment tools (e.g., 

BWA, STAR, etc.), followed by an estimation of transcript counts or abundance levels. Similar 

to microarray samples, normalization of RNA-seq transcript counts is necessary to ensure that 

different samples are comparable. However, in the case of RNA-seq, normalization methods 

need to account for library size (i.e., total number of reads obtained) and library composition (i.e., 

relative abundances of different RNA types). Multiple RNA-seq normalization methods are 

available each with specific assumptions by which they normalize samples [85]. 

 

Omics databases 

The work in this thesis makes use of several omics data sources. Individual omics 

samples were obtained from three sources: Database of Genotypes and Phenotypes (dbGaP) [86], 

Gene Expression Omnibus (GEO) [87], and the United Kingdom Biobank (UKBB) [88]. 

Knowledge-based omics databases consisting of domain knowledge related to omics were also 

used, including The Molecular Signatures Database (MSigDB) [89], and The Pharmacogenomics 

Knowledgebase (PharmGKB) [90]. Chapters 2 and 3 leveraged data from dbGaP and GEO, 

while Chapter 5 focused on the analysis of data from the UKBB. 

dbGaP is a National Institutes of Health (NIH) sponsored repository consisting of 

datasets with individual-level data from studies examining the relationship between genotype (as 
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well as other omics assay data such as gene expressions) and phenotype in humans. GEO is a 

similar repository, however, the primary type of data are gene expressions and other functional 

omics data, covers multiple organisms. The UKBB is a population-scale biobank consisting of 

genomic data (i.e., genotype microarray and NGS data), as well as in-depth health information 

from over half a million individuals. 

 MSigDB is a database that provides a collection of comprehensive gene sets representing 

various biological functions and processes for the purpose of enabling a better understanding of 

groups of genes. PharmGKB is a curated knowledgebase specific to pharmacogenomics 

including associations between drugs, genes, genetic variants, and phenotypes.  

 

Statistical analysis methods of omics data 

Numerous statistical techniques and methods have been developed for the analysis of omics data, 

however, we will cover the techniques and methods which are relevant to this thesis, including 

differential gene expression analysis, covariate adjustment, multiple testing corrections, gene set 

analysis, and imputation. 

 The goal of differential gene expression analysis is to determine which genes have 

significantly upregulated or downregulated levels of expression between different conditions 

(e.g., health vs. disease). Basic methods such as t-tests can be used to compare the means of 

expression levels between two groups. More advanced methods such as limma (linear models for 

microarray data) has been introduced to leverage information borrowing techniques to obtain 

better statistical estimates in small sample sizes [11].   

Complementary to differential gene expression analysis which focuses on individual 

genes, gene set analysis is used to identify whether groups or pathways containing functionally 
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related genes (e.g., molecular functions, biological processes, or cellular components) show 

statistically significant differences between conditions, which could enable a better 

understanding of the biological mechanisms associated with conditions being studied. 

Covariate adjustment is needed to control confounders when performing statistical 

estimation. Confounders are variables which are related to both the independent variable and the 

dependent variable. In the context of omics data analysis, covariate adjustment ensures that an 

observed association between omics variables and a dependent variable are correctly attributed 

and not driven by the confounders. The application of this technique is especially relevant to 

Chapters 2 and 3 when analyzing mRNA expression data. 

Given that statistical tests are performed for tens of thousands of variables in high-

dimensional omics data, the probability of observing at least one false positive result is inflated. 

Multiple testing correction is needed to adjust for the chance of false positives. Two commonly 

used correction methods are the Bonferroni correction [91], and the Benjamini-Hochberg 

procedure [92]. Bonferroni correction focuses on controlling the probability of making one or 

more false discoveries among all performed tests by adjusting the significance threshold by 

dividing by the number of tests performed. However, the Bonferroni method can be overly 

conservative, and lead to issues with inflated false negatives. The Benjamini-Hochberg 

procedure performs a more lenient adjustment by allowing for a reasonable proportion of false 

discoveries (i.e., false-discovery rate (FDR)) to be present among the significant results. We 

have applied multiple testing correction in several contexts with repeated hypothesis testing in 

Chapters 2-4. 

 Lastly, imputation refers to a technique used to estimate unobserved values in a dataset. 

In the context of genomics, imputation is often applied to genotype data to increase the 
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resolution of genotyping by estimating the genotypes at unobserved loci of interest, as 

genotyping microarrays cannot capture the full set of variations in a genome. The process 

leverages haplotypes, which are specific combinations of alleles often inherited together due to 

linkage disequilibrium (i.e., the non-random association of alleles at different genetic loci) to 

infer the most likely unobserved genotypes given the observed data. Imputation is a technique 

that has been applied to the genetic data from the UKBB analyzed in Chapter 5. 

 

Machine learning 

A brief introduction to machine learning theory, with specific on supervised learning concepts is 

provided to help contextualize the ML methodology used in this thesis. 

 In supervised learning, an algorithm is used to learn from a labelled dataset of elements 

consisting of features (𝑋), and corresponding labels 𝑦 (i.e., dependent variable) for each element. 

The elements of a dataset are typically required to be generated independently and sampled from 

the same underlying distribution (i.e., independent, and identically distributed – “IID” 

assumption). 

The goal is to identify a mapping function 𝑓 (i.e., model) that represents the relationship 

between 𝑋 and 𝑦, such that 𝑓(𝑥𝑖) can accurately predict 𝑦𝑖, where (𝑥𝑖, 𝑦𝑖) is a previously unseen 

pair of features and label. Two common tasks in supervised learning are regression and 

classification. In regression problems, the labels to be predicted are on a continuous scale, 

whereas the labels are discrete for classification problems. In general, a process involving data 

preprocessing, model development, and model evaluation are necessary for supervised learning. 

 Preprocessing of features is needed to prepare the data prior to analysis using supervised 

ML. A process of feature engineering (including feature selection and extraction) is often used to 



40 
 

transform or combine raw features based on domain understanding with the aim of obtaining 

more meaningful feature representations. Some commonly used techniques include feature 

scaling and normalization to standardize input features to reduce effects of outliers and noise. 

Alternative representations of features are sometimes useful for categorical features (e.g., 

creating binary features for each category) or using distributed representations [93]. Feature 

aggregation (e.g., combining multiple features) is also used to reduce the number of possibly 

redundant features. More complex methods such as principal component analysis (PCA) and 

genetic algorithms are utilized to discover latent variables and reduce dimensionality [94]. 

Feature engineering is a difficult process and typically requires in-depth domain knowledge and 

can lead to bias (e.g., placing higher importance on specific features) and loss of information if 

not properly performed. However, more recent ML methods such as deep neural networks can 

often automate the process of feature engineering by automatically extracting meaningful feature 

representations as part of the training process without the need for prior domain expertise [95]. 

 Next, dataset splitting is performed to divide a dataset into separate training, validation, 

and test sets. The training set facilitates the process of creating a model that captures underlying 

patterns for making accurate predictions. Concurrently, the validation set is used in evaluating 

potential overfitting of a trained model in a method known as cross-validation, which is used to 

inform model selection. Of importance, overfitting refers to a scenario where a model fits the 

training data too closely, losing the ability to generalize to new, previously unseen data. The test 

set is used to evaluate the generalization performance of a model selected based on the training 

and validation data in previously unseen data points, thus providing a less biased assessment of 

the model's predictive capability. 
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 The model development process requires selecting a ML algorithm based on the specific 

problem being addressed and characteristics of the dataset. ML algorithms are used to create 

models, which can be classified into two broad categories: parametric and non-parametric [96]. 

Parametric models are characterized by a fixed number of parameters. Examples of parametric 

models include logistic regression, support vector machines, and neural networks. Typically, 

training a parametric model involves finding the optimal parameters of the model which results 

in the optimal prediction of labels given input data. Non-parametric models are not defined by a 

fixed set of parameters. An example is the decision trees algorithm [97], for which the depth and 

complexity of a tree can vary during the model construction process. 

The process of training prediction models requires defining a cost (or loss) function that 

encapsulates the difference between observed model predictions and the actual labels, and 

identifying parameters which minimize the cost function using mathematical procedures or 

optimization algorithms. 

 In addition to model parameters, most ML algorithms also have hyperparameters which 

need to be defined prior to the training process. Hyperparameters can have a major influence on 

a resulting model’s performance. Hyperparameters differ from the model parameters which are 

updated based on the data. For example, hyperparameters are typically used to define the settings 

of the ML algorithm such as the model architecture (e.g., depths of the tree for a decision tree 

model) or the learning rate during parameter updates by the optimization algorithm. There is no 

general rule for choosing the set of hyperparameters for an algorithm, however, hyperparameter 

search such as grid search, random search, and more advanced and efficient methods such as 

Optuna [98], can be used to find combinations of hyperparameters that result in more optimal 

model performance. 



42 
 

 After a model has been selected from the model development process, evaluation is 

performed using the test set which has not been previously used to obtain a less biased estimate 

of model performance. For regression models, metrics such as mean squared error and 

proportion of variance explained are often used to evaluate the performance of a model. For 

classification models, it is often necessary to decide upon a probability threshold to enable the 

classification of samples based on predicted probabilities prior to calculation of evaluation 

metrics. Simple accuracy is a commonly used metric under scenarios with balanced classes. In 

situations where class imbalance is present, accuracy has bias and metrics such as balanced 

accuracy is necessary. However, a more comprehensive way to understand classification 

performance is through a confusion (or error) matrix consisting of a quadrant which captures the 

True Positives (cases where the model correctly predicted the positive class; TP), True Negatives 

(cases where the model correctly predicted the negative class; TN), False Positives (cases where 

the model incorrectly predicted the positive class; FP), and False Negatives (cases where the 

model incorrectly predicted the negative class; FN). 

Metrics including precision, recall, and F1 score can be derived from values of the 

confusion matrix. Precision measures the accuracy of positive predictions, and is calculated as 

the ratio of TP to the sum of TP and FP. Recall measures how well positive instances are 

identified, and is calculated as the ratio of TP to the sum of TP and FN. Precision may be 

prioritized in situations where misclassification of negative cases as positive (i.e., FP) incurs a 

high cost, whereas recall may be prioritized in situations where capturing all positive cases (i.e., 

minimizing FN) despite misclassifying some negative cases is important. The F1 score is the 

harmonic mean of the precision and recall emphasizing poor performance in either metric using a 

single summary score. 
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The area under the receiver-operator characteristics (ROC) curve (AUC) metric is 

another often used metric in assessing classification performance as the likelihood of positive 

cases ranking higher than negative cases (i.e., the ability of the model to distinguish between 

positive and negative cases). Unlike previously mentioned metrics, the AUC metric does not 

depend on a classification threshold. The AUC metric is calculated by plotting the ROC curve 

and taking the area under the curve. The ROC curve shows the TP rate (i.e., proportion of items 

in the positive class correctly predicted as positive) against the FP rate (i.e., proportion of items 

in the negative class falsely predicted as positive) at all possible classification thresholds (i.e., 

probability threshold to divide samples into two classes) thus providing a more comprehensive 

view of the model performance without requiring a fixed decision threshold. 

Given the numerous decisions and choices to be made in model development, there has 

been a movement to develop AutoML (Automated Machine Learning), which are methods that 

simplify the model development process by framing it as a search problem for identifying 

optimal combinations of feature engineering, ML algorithm, and hyperparameter tuning in a 

fully automated manner [99]. 

Figure 4 illustrates the basic process of supervised learning described above starting with 

a labelled dataset, performing feature engineering, dataset splitting, model development and 

selection, to final model evaluation. 
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Summary of key machine learning algorithms  

Several ML algorithms including logistic regression, XGBoost, neural networks, and 

graph convolution networks are used in this thesis. A brief overview of each algorithm will be 

provided. 

Logistic regression is a fundamental method used for binary (i.e. positive vs. negative 

class) classification tasks. The model is defined by a logistic (i.e., sigmoid) function of a linear 

combination of predictor variables (𝑋) and model parameters (𝛽). The output of the model is in 

the range of 0 and 1, which can be interpreted as the probability of the positive class: 

𝑃(𝑌 = 1 | 𝑋) =
1

1 + 𝑒−𝑧  where 𝑧 =  𝛽0 +  𝛽1𝑋1  +  𝛽2𝑋2 + . . . + 𝛽𝑛𝑋𝑛 

The parameters of the logistic regression model can be estimated using maximum 

likelihood estimation, however, numerical optimization methods would be necessary in more 

complex models. Logistic regression has the advantage of being simplistic (e.g., no tuning of 

hyperparameters required) and highly interpretable, yet, due to its simplicity, it is relatively 

limited in capability for modelling data with complex relationships, heterogeneity, interactions, 

and high dimensionality. 

XGBoost (Extreme Gradient Boosting), is an optimized implementation of an ensemble 

technique called gradient boosting [100]. Gradient boosting theorizes that weak learners, such as 

individual decision trees, when combined, can form a strong predictive model. In gradient 

boosting, each new model is trained to correct the residuals (i.e., prediction errors) made by the 

current ensemble of previous models. Specifically, the direction and magnitude of corrections are 

guided by the negative gradient of a chosen loss function in the iterative optimization process. 

By using the gradient in this manner, the algorithm ensures that each new model's adjustments 
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are oriented towards minimizing the loss function. The main hyperparameters of XGBoost are 

the number of estimators (i.e., the number of individual decision trees to build), max depth of 

each tree, gamma (i.e., a regularization parameter that controls the complexity of the trees), and 

learning rate, which controls the fraction of residuals (prediction errors) to correct at each 

boosting iteration. The use of ensembles of individual decision trees gives the algorithm the 

advantage of being highly flexible to model complex relationships and interactions. The 

optimizations of the XGBoost implementation have the additional advantage of enabling rapid 

construction of these models. 

Neural networks refer to a class of methods composed of interconnected layers of nodes 

called artificial neurons. Inputs to a neural network are summarized and modelled through 

iterative transformations within successive layers of the neural network model. At each layer, 

each neuron takes a weighted sum of its inputs added to a bias term and passes the sum through a 

non-linear function called the activation function. The weights and biases are parameters of the 

model to be optimized during model training. Neural networks are flexible and can model 

complex interactions and non-linear relationships in data, however, they typically require large 

amounts of data to train, and can be less interpretable. Various classes of neural networks have 

been developed over the years including convolution neural networks which introduced the 

convolution operator to enable more effective feature extraction for image data [101], as well as 

recurrent neural networks for modelling sequence data [102]. The hyperparameters of neural 

networks often include model architecture (e.g., number of layers, number of nodes of each 

layer), choice of non-linear activation function, and learning rate. 

Graph convolutional networks (GCNs) are a class of neural networks designed for 

modelling graph (network)-structured data [61]. Graphs are used to represent dependencies 
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between entities in data using nodes and edges between nodes in a way that is not possible with 

Euclidean (tabular) representations of data. For example, graphs can be used to describe regular 

structured data including images, language, but also more irregular structures such as social 

networks and molecular structure. The generalized convolution operator introduced by the GCNs 

enables the learning of a low-dimensional Euclidean representation of each node in a given graph 

that captures the features of the node as well as preserves the surrounding graph neighborhood of 

that node, which can be leveraged in tasks including node classification, link prediction, and 

graph-level prediction tasks [103]. 

Knowledge graphs (KGs) were originally introduced to enhance the searching of 

information on the web [104]. KGs can be understood as a special use case of a graph to 

represent multiple entities and semantic connections between them as a way to capture and store 

knowledge. Learning from KGs with the aim of capturing semantic information of entities within 

KGs has been explored in depth [105]. GCNs could be combined with KGs by capturing low-

dimensional representations of concepts in the knowledge graph for use in ML modelling tasks 

[106]. Furthermore, biomedical KGs are a domain specific type of knowledge graph that 

represents biomedical relationships between entities such as genetic variants, genes, diseases, 

and drugs as nodes, and their relationships as the connections. Biomedical KGs can be used for a 

variety of precision medicine uses, including drug repurposing, comorbid risk prediction, disease 

risk prediction, and patient subtyping [107]. 
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Figures 

Figure 1. Major omics categories and their relationships. 

 

Figure 1. The relationships between the major omics categories are illustrated, starting from 

genomics level, which quantifies DNA data, down to the functional genomics levels including 

transcriptomics, which quantifies RNA data produced from the transcription of DNA, proteomics, 

which quantifies proteins produced from translation of RNA, and lastly, metabolites which 

quantifies the products of biochemical reactions. 

 

Figure 2. Expression microarray data generation. 
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Figure 2. The process of expression microarray data generation is illustrated. The process begins 

with extracting RNA from cells or tissues followed by reverse transcription and fluorescence 

labelling, and microarray hybridization and scanning of the signals. 

 

Figure 3. RNA-seq data generation. 

 

Figure 3. The process of RNA-seq data generation is illustrated. The process begins with 

extracting RNA from cells or tissues followed by reverse transcription and library constructions. 

PCR amplification of the library is performed prior to sequencing using an NGS platform. 

 

Figure 4. Basic process of supervised learning. 

 

Figure 4. The basic process of supervised learning is illustrated. The basic process starts with a 

labelled dataset, followed by feature engineering, dataset splitting (into training, validation, and 

test sets), model development and selection using the training and validation sets, and final 

model evaluation using the holdout test set. 
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Chapter 2. Transcriptomics and machine learning to advance schizophrenia genetics: a 

case-control study using post-mortem brain data 
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Abstract 

 

Background and Objective: Alterations of the expression of a variety of genes have been 

reported in patients with schizophrenia (SCZ). Moreover, machine learning (ML) analysis of 

gene expression microarray data has shown promising preliminary results in the study of SCZ. 

Our objective was to evaluate the performance of ML in classifying SCZ cases and controls 

based on gene expression microarray data from the dorsolateral prefrontal cortex. 

Methods: We apply a state-of-the-art ML algorithm (XGBoost) to train and evaluate a 

classification model using 201 SCZ cases and 278 controls. We utilized 10-fold cross-validation 

for model selection, and a held-out testing set to evaluate the model. The performance metric 

utilizes to evaluate classification performance was the area under the receiver-operator 

characteristics curve (AUC). 

Results: We report an average AUC on 10-fold cross-validation of 0.76 and an AUC of 0.76 on 

testing data, not used during training. Analysis of the rolling balanced classification accuracy 

from high to low prediction confidence levels showed that the most certain subset of predictions 

ranged between 80-90%. The ML model utilized 182 gene expression probes. Further 

improvement to classification performance was observed when applying an automated ML 

strategy on the 182 features, which achieved an AUC of 0.79 on the same testing data. We found 

literature evidence linking all of the top ten ML ranked genes to SCZ. Furthermore, we leveraged 

information from the full set of microarray gene expressions available via univariate differential 

gene expression analysis. We then prioritized differentially expressed gene sets using the piano 

gene set analysis package. We augmented the ranking of the prioritized gene sets with genes 

from the complex multivariate ML model using hypergeometric tests to identify more robust 

gene sets. We identified two significant Gene Ontology molecular function gene sets: 
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“oxidoreductase activity, acting on the CH-NH2 group of donors” and “integrin binding.” Lastly, 

we present candidate treatments for SCZ based on findings from our study 

Conclusions: Overall, we observed above-chance performance from ML classification of SCZ 

cases and controls based on brain gene expression microarray data, and found that ML analysis 

of gene expressions could further our understanding of the pathophysiology of SCZ and help 

identify novel treatments. 

Keywords 

Schizophrenia, Transcriptomics, Machine learning, Bioinformatics, Post-mortem 
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1. Introduction 

 

The point prevalence of schizophrenia (SCZ) in Western societies is estimated to be 5 per 

1000 with disablement of up to 70% [1]. In 2013, a study found that the total estimated cost of 

SCZ was $155.7 billion [2]. This includes costs for prescription medication, hospitalization, 

diagnosis, and long-term care, but also indirect costs, such as increased unemployment, 

decreased workplace productivity, and premature mortality.  

Genetics plays a major role in the etiopathology of SCZ. The heritable component to SCZ 

has been estimated to be 80% from twin studies [3], however, deciphering the genetics of SCZ 

has been challenging. In the largest genome-wide association study on SCZ to date, 108 genetic 

loci were found to be associated with SCZ based on common variants [4]. In addition to common 

variants, rare, de novo, and structural variations have also been implicated in SCZ [5]. Overall, 

current findings in the literature support a complex polygenic pathophysiology for SCZ. 

However, polygenic risk score approaches, which are additive models, have limited effectiveness 

in predicting disease status [6]. Alterations of the expression of a variety of genes have been 

documented in SCZ, suggesting that gene expression microarrays can be useful for biomarker 

discovery. For example, one study analyzed gene expression in the blood of 32 untreated patients 

with newly diagnosed SCZ using Affymetrix microarrays [7]. Significantly altered expression of 

180 genes was found when compared to healthy controls. In particular, the authors found that 

DAAM2 gene expression levels returned to control levels in patients who were in remission 

following their first episode of psychosis. This suggested that DAAM2 may be a biomarker for 

SCZ.  

Machine learning (ML) refers to a promising collection of methods which can address the 

complexity of large high-dimensional data. ML comes in two varieties: supervised and 
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unsupervised ML. The focus in this paper is on supervised ML, which aims to make predictions 

of a specific outcome [8]. Labeled data is used as input, then the supervised algorithm is trained 

to produce outputs which accurately reflect the labels. In medicine, applications include risk 

estimation, radiology report classification, complex disorder prediction, and disease 

classification [8]. Within supervised ML, there exist both classification and regression 

algorithms [9]. Regression outputs are continuous, whereas classification outputs are discrete 

values.  

Supervised ML algorithms have been used to analyze microarray gene expression data in 

SCZ. For example, Takahashi et al. (2010) used bioinformatics to explore if whole blood cell 

gene expression can be used as a biomarker for SCZ. Unpaired t-tests of gene expression data 

sets from 52 untreated SCZ patients and 49 normal controls identified 792 differentially 

expressed gene probes. After subdivision of the samples into training and testing sets, quality 

filtering and stepwise forward selection identified 14 probes as predictors of the diagnosis. 

Artificial neural networks (ANNs) were trained with the selected probes as the features. In the 

training set, 91.2% diagnostic accuracy was achieved, with 87.9% for the hold-out testing set 

[10]. Another study applied ML to gene expression microarray data from skin fibroblasts and 

post-mortem brain tissue samples and was able to achieve average AUC scores over 0.9 on 4-

folds of cross-validation; however, the sample size was small: the skin fibroblast dataset 

consisted of 20 SCZ patients and 20 healthy controls, while the post-mortem brain tissue samples 

consisted of 23 SCZ patients and 19 healthy controls [11]. Another study collected blood-based 

microarray gene expression data of a total of 152 SCZ patients and 138 controls from 4 different 

datasets and developed a classifier with nearly 100% classification accuracy over 10-folds of 
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cross-validation [12]. These studies, albeit not perfect, suggest that ML analysis of microarray 

gene expression data can lead to clinically useful biomarkers in SCZ. 

In this study, we use a methodology that aims to address the challenges identified in the 

previous ML studies using mRNA data. We apply a state-of-the-art supervised ML algorithm to 

gene expression microarray data from the dorsolateral prefrontal cortex (DLPFC) of post-

mortem SCZ patients and controls. DLPFC is an area involved in executive functions. Chechko, 

Cieslik [13] showed differential functional connectivity patterns in regions of the DLPFC with 

other brain regions between SCZ patients and controls using resting-state magnetic resonance 

imaging. Furthermore, there is also support that the transcriptome of neurons in the DLPFC is 

altered in SCZ patients [14]. We contrast our methodology and findings to those of the previous 

studies and highlight potential biomarkers. Through bioinformatic analyses of our findings, we 

try to further our understanding of the pathophysiology of SCZ and identify novel candidate 

treatments. 

 

2. Material and methods 

 

2.1 Schizophrenia gene expression microarray dataset 

We obtained a gene expression dataset of adult post-mortem patients with SCZ (n=201) 

and control subjects (n=278) from dbGaP (dbGaP Study Accession: phs000979.v1.p1). The gene 

expression data were obtained from the DLPFC, using the Illumina HumanHT-12 v4 Expression 

BeadChip platform. The dataset was then background corrected with normexp and quantile 

normalized using the “neqc” function from the R limma package (version 3.42.0).   

2.2 Algorithm selection 
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 Many powerful ML algorithms render themselves uninterpretable, making it difficult to 

understand their decision-making process. For our ML analysis of the data, we decided to use a 

state-of-the-art yet interpretable regularized gradient boosted machines (GBM) approach 

(XGBoost implementation, [15]). Even though regularized GBM is still a complex algorithm to 

interpret, it is state of the art and has been proved successful in a wide range of tasks, as 

illustrated in a recent study from our group (Trakadis et al., 2018). Its highly regularized built-in 

feature selection and reduction characteristic and ability to rank features based on their relative 

importance to its decision process made it a great candidate for our study. Of note, a regularized 

algorithm penalizes itself for complexity, and thus uses only features that are relevant and brings 

the most intelligence to its architecture. In our study, this means selecting only transcriptomic 

features that have high predictive power and discarding the less informative ones.  

Specifically, XGBoost (Extreme Gradient Boosting), is a method of learning an ensemble 

of 𝐾 classification and regression trees (CARTs), where each additional tree (𝑓𝑘) is selected 

from the set of all possible CARTs (ℱ) and added to correct errors of the previous learning 

iteration. The input features for a sample is 𝑥𝑖, and the corresponding model prediction is �̂�𝑖, 

�̂�𝑖 = 𝜙(𝑥𝑖) = ∑ 𝑓𝑘(𝑥𝑖)

𝐾

𝑘=1

, 𝑓𝑘 ∈ ℱ 

 

CARTs differ from parametric methods such as linear and logistic regression in that it is 

a non-parametric method where data is recursively partitioned into smaller subsets of data to 

form a tree structure [16]. Using a combination of CARTs gives the ability to model non-linear 

combinations of data, as seen in random forest algorithms [17], which merge randomly generated 
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decision trees into a single “learner” [18]. The predictor space of these trees is created by 

division of all the possible values into distinct and non-overlapping regions. 

XGBoost is similar to the random forest algorithm, however, the process of adding trees 

to the learner in XGBoost is an iterative process of improving the previous learner at each 

iteration of training, as illustrated below: 

�̂�𝑖
(0)

= 0 

�̂�𝑖
(1)

= �̂�𝑖
(0)

+ 𝑓1(𝑥𝑖) 

�̂�𝑖
(2)

= �̂�𝑖
(1)

+ 𝑓2(𝑥𝑖) 

⋯ 

�̂�𝑖
(𝐾)

= �̂�𝑖
(𝐾−1)

+ 𝑓𝐾(𝑥𝑖) 

 

The objective function for learning a binary classification XGBoost model is defined as 

the sum of the logistic loss (𝑙), and a regularization term (Ω), with 𝑇 being the number of leaves 

in a tree, 𝑤 the leave weights, and 𝛾 and λ as hyperparameters. 

obj(𝜙) = ∑ 𝑙(𝑦𝑖, �̂�𝑖)

𝑖

+ ∑ Ω(𝑓𝑘)

𝑘

 

where 𝑙(𝑦𝑖, �̂�𝑖) = ln(1 + 𝑒−�̂�𝑖) + (1 − 𝑦𝑖) ln(1 + 𝑒�̂�𝑖) 

and Ω(𝑓) = 𝛾𝑇 +
1

2
λ ∑ 𝑤𝑡

2
𝑡  
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2.3 ML analysis  

We randomly sampled 80% of the full dataset to be the training set, to identify the best 

classification model, and 20% to be the testing set. For model selection, we used 10-fold cross-

validation combined with randomized hyperparameter search for 2500 iterations (i.e., training 

2500 different models). The performance of each trained model is defined by the area under the 

receiver-operating-characteristic (ROC) curve (AUC), with cases being the positive class, 

averaged over all ten cross-validation folds.  

We repeated the above procedure to select the best baseline model (i.e., a model trained 

using the same cross-validation approach but with the labels randomly permuted). Given the 

large number of features in the microarray dataset, it is important to control for overfitting with a 

baseline model. The trained model would need to perform significantly better than the baseline 

model in order to rule out the fact that the algorithm is overfitting to the data with random 

features. A one-sided Wilcoxon signed-rank test is used to compare the AUC values on each 

cross-validation fold between the best baseline and best trained model for significance. 

Lastly, the hyperparameters of the ML algorithm (e.g., number of boosting iterations, 

max-depth of trees, learning rate, etc.) from the trained model and the baseline model with the 

best average AUC from 10-fold cross-validation are extracted. Using the extracted 

hyperparameters (which provided the best training conditions), the models are retrained on the 

full training set (without cross-validation to maximize sample size) to improve its performance 

before being evaluated on a holdout testing set (i.e., the data which was not used during the 

training phase). An overview of the complete ML analysis pipeline is shown in Figure 1. 
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2.4 Model evaluation 

We trained binary classification models using the above-described approach to 

discriminate SCZ cases from controls. To assess the best trained model, we calculated and 

plotted the ROC curve based on the testing set. In order to calculate the classification accuracy, 

the predicted class probabilities of each testing set sample need to be converted to a discrete case 

or control classification. A high probability means the sample is more likely to be a “case,” and a 

low probability means the sample is more likely to be a “control.” An optimal probability cutoff 

threshold is needed in order to split the samples into the discrete classes. To determine the 

optimal cutoff threshold, we averaged the best cutoff values derived from the ROC curves from 

each cross-validation fold during training. The best cutoff is defined as the probability threshold 

dividing the cases and controls classes which maximizes the number of true positive 

classifications and minimizes the number of false-positive classifications (i.e., maximizing the 

area under the ROC curve). After a discrete class was assigned to the testing set samples, we 

calculated an overall balanced accuracy metric since our testing set is not balanced.  

Furthermore, to provide a more detailed interpretation of the model performance, we 

looked at the balanced classification accuracy from high to low prediction confidence levels (i.e., 

deviation from the optimal cutoff threshold, where a larger deviation means higher confidence). 

The following technique was used to generate a plot of rolling (high to low) balanced accuracy 

values for the testing set. First, predictions are sorted from the highest confidence to lowest. 

Then, starting with a window of the top ten most confident predictions, a balanced accuracy is 

calculated. Then the window shifts down by one, and the process repeats until the end of the list 

is reached. A graph is then generated to visualize the trend of balanced accuracy from highest to 

lowest prediction confidence. 
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Lastly, we leverage recent advancements in automated ML (AutoML) to see whether the 

classification performance can be improved based on the top gene features prioritized from our 

training pipeline. The tool we choose for this analysis is Auto-Sklearn 2.0 [19], which utilizes 

Bayesian optimization, meta-learning, and ensemble selection to search for the best 

preprocessing, estimator, and hyperparameter configurations and produce a final ensemble model 

by combining multiple models. The total search procedure was constrained to 3600 seconds (1 

hour), with the maximum run time of each ML pipeline limited to 600 seconds (10 minutes). 

2.5 Gene set analysis 

 Gene probes mapping to the same gene were combined by averaging, and their average 

expression value was used as the set of gene expressions for this analysis. Differential expression 

statistics were obtained for each gene through the R limma package (version 3.42.0) using the 

full set of 201 SCZ cases and 278 controls. We then performed gene set analysis (GSA), which 

tests for altered expression for groups of genes (gene sets) between two classes (i.e., cases vs. 

controls). A “gene set” can represent a group of genes with a similar function or activity, or a 

group of genes belonging to the same biological process or pathway. We obtained the Gene 

Ontology (GO) molecular function gene sets [20, 21], from MSigDB (version 7.0) [22], as the 

source for “gene sets.” The GO molecular functions gene set group genes based on related 

activities performed by single or multiple gene products. GSA was performed using the R piano 

package (version 2.2.0) [23]. We applied the consensus ranking method from the piano tool by 

combining gene set significance results from all available GSA methods from piano (section 4.3 

from [24]). Lastly, any gene sets with a consensus ranking above 10 in any of the five piano 

directionality classes (i.e., five specific ways the gene sets can be significantly altered, section 

4.4.2 from [24]) were selected to be important, (i.e., different between cases and controls). A 
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heatmap of the important gene sets, along with the median p-value from all GSA methods, was 

plotted. 

2.6 Gene set filtering with ML genes 

 As described above, the piano GSA method A identified GO molecular functions gene 

sets exhibiting different expression between cases and controls. We performed a secondary 

enrichment analysis to augment the ranking of the gene sets derived from piano based on the 

genes utilized by our best trained ML model (ML genes) mentioned above. More specifically, a 

hypergeometric test was performed to determine which “gene sets” were enriched among the ML 

genes used to separate SCZ cases from controls. We applied the Benjamini–Hochberg procedure 

to adjust the false-discovery rate (FDR) with alpha set to 0.2. An overview of the complete gene 

set analysis pipeline is shown in Figure 1. 

2.7 Software 

The ML analyses were implemented using Python (version 3.7.1), with the xgboost 

package for training the models (version 0.81). K-fold cross-validation and hyperparameter 

selection during training was implemented with the scikit-learn package (version 0.21.2). 

AutoML was implemented with the auto-sklearn package (version 0.13.0) 
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Figure 1. ML analysis and gene set analysis pipeline. 

 

Figure 1. For the ML analysis (top section), the full original dataset was randomly shuffled and 

split into a training set (80%) and a testing set (20%). The training set is further shuffled and 

divided into 10 equal folds. For determining model hyperparameters, 2500 samples were 

sampled from the hyperparameter space, and 10-fold cross-validation was performed for each 
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sample. The best 10-fold cross-validation result was determined based on highest average 

validation AUC (area under the receiver operating characteristics curve) value over 10-folds. The 

corresponding hyperparameters (Best hyperparameters) were then used for final model training 

using the complete training set. Final model evaluation using the testing set was performed to 

obtain a testing set AUC value. Using a cutoff value between 0 and 1, a discrete classification is 

obtained by converting any predicted probability above the cutoff as a SCZ case, and any 

predicted probability below the cutoff as a control. The cutoff used is the Average 10-fold 

probability cutoff, which is obtained by taking the average of the probability cutoffs resulting in 

the optimal balanced accuracy for classification in each of the 10-folds during cross-validation of 

the best trained model. The final Testing set accuracy, is then obtained by calculating the 

balanced accuracy with the discretized classifications. To facilitate identification of biological 

pathways involved in SCZ, we performed a gene set analysis (bottom section). Differential 

expression analysis is first performed to obtain the Differential expression statistics. The 

statistics are then used to perform Gene set analysis to rank gene sets from the GO molecular 

function gene sets. Any gene set with a piano consensus ranking above 10 are taken as the Top-

ranked gene sets, which are then re-ranked based on evidence of overlap with ML genes to 

produce the final ML augmented gene set ranking. A literature review was conducted for any 

gene sets with a false-discovery rate below 0.2. 

 

3. Results 

 

We obtained the best classification models for SCZ vs. controls based on our model 

selection procedure. The best model had an average AUC of 0.76 (SD: 0.050) over ten folds of 

cross-validation. In contrast, the best baseline model had an average AUC of 0.52 (SD: 0.095). 
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Comparison between the cross-validation AUCs of the trained and baseline models with the 

Wilcoxon signed-rank test showed that the performance of the trained model was significantly 

greater that than that of the baseline model (p-value: 0.003).  

After retraining the best model based on the entire dataset, an evaluation was performed 

on the hold-out testing set. The retrained model achieved an AUC of 0.76 on the testing set 

(Figure 2A). After dividing the predictions into discrete classes based on the optimal cutoff 

threshold estimated from cross-validation, the actual classification results are shown in a 

confusion matrix (Figure 2B). After plotting the rolling balanced accuracy over testing samples 

ranked by prediction confidence, we observed that the most confident predictions reach a 

balanced accuracy of ~80-90% (Figure 2C). Overall, the best retrained classification model 

utilized 182 mRNA transcript features (Supplemental Table 1), with the mRNA transcripts 

corresponding to the COPS3, HBB, DTNA, ITGB4, COX7A1, MAOB, SLC38A5, LBH, NODAL, 

GALNTL1 genes being the ten most significant features. 

The 182 mRNA transcript features were selected and used in the AutoML analysis. 

Overall, 2402 ML pipeline runs were performed, with 2400 successful runs and 2 runs exceeding 

the time limit. The final ensemble model achieved an AUC of 0.79 on the testing set. 
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Figure 2. Testing set results for discriminating schizophrenia cases vs. controls. 

A.  B.  

C.   

 

Figure 2. After obtaining the best trained classification model for discriminating between 

schizophrenia cases vs. controls, several metrics were used to assess the performance of the 

model on a previously unseen testing set (20% of the full dataset). Figure 2A shows a receiver-

operating characteristics (ROC) curve for model predictions with the area under the curve (AUC) 

of 0.76, suggesting that the model performs well above random chance (red dashed line). The x-

axis of the curve shows the false-positive rate (FPR) and the y-axis shows the true-positive rate 

(TPR) at each probability cutoff threshold. The ROC curve suggests that the model could 

distinguish cases and controls with low FPR (x-axis) and high TPR (y-axis). Figure 2B shows the 

actual classification results obtained based on the optimal probability cutoff threshold estimated 
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from 10-fold cross-validation during training. With the positive class as SCZ and negative class 

as CTL, the top-left, top-right, bottom-left, and bottom-right quadrants of Figure 2B show the 

number of true-negative (CTL predicted as CTL), false-positive (CTL predicted as SCZ), false-

negative (SCZ predicted as CTL), and true-positive (SCZ predicted as SCZ) predictions, 

respectively. Figure 2C shows the prediction-confidence-ranked rolling balanced accuracy plot, 

which shows the trend of balanced classification accuracy of the most confident subset of 

predictions to the least confident subset of predictions (x-axis left to right) for the testing set 

samples. The y-axis shows the balanced accuracy value for each subset of predictions. The most-

confident predictions generally have a balanced accuracy of ~80-90%. 

GSA using piano prioritized 217 gene sets from a total of 1645 gene sets from GO 

molecular functions gene sets. We then determined which of the filtered “gene sets” were 

significantly enriched in our set of ML genes via the hypergeometric distribution p-values and 

FDR correction with alpha set to 0.2 (Supplemental Table 2). We found two significant GO 

terms meeting the cutoff: “oxidoreductase activity, acting on the CH-NH2 group of donors” and 

“integrin binding.” Specifically, the genes MAOB and GLDC from the ML genes were in the 

“oxidoreductase activity, acting on the CH-NH2 group of donors” gene set, while ITGB4, 

FERMT3, NISCH, and SRC were ML genes part of the “integrin binding” gene set 

(Supplemental Table 2). Results from the piano heatmap show that the “oxidoreductase activity, 

acting on the CH-NH2 group of donors” gene set was ranked highly on the mixed-directional up 

class suggesting that a subset of genes in the gene set had significantly increased expression, 

while “integrin binding” was ranked highly in the mixed- and distinct-directional up classes, 

suggesting that expression of most genes in the gene set are significantly increased.  
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4. Discussion 

 

 Many prior studies, such as those mentioned in the introduction, have focused on the 

analysis of a few biomarkers or univariate analysis of multiple genes. A drawback of such 

strategies is that more complex connections between genes are difficult to identify. The benefit 

of the ML approach is that it can pick up on complex effects that might not be significant in 

univariate analyses. In this study, we leveraged a supervised ML algorithm in the analysis of 

microarray gene expression profiles from post-mortem DLPFC of SCZ cases and controls. We 

trained an ML classifier that can differentiate SCZ cases and controls (AUC of 0.76 over ten 

folds of cross-validation) significantly better than random chance (p-value: 0.003). The 

difference in performance for the trained and baseline model suggests that the trained ML 

algorithm was able to pick up on disease-related signals and not based on noise or inherent 

structure in the high-dimensional dataset.  To this end, the ML classifier was able to generalize to 

a testing set split of the dataset not used during training (AUC: 0.76). Further improvement to 

classification performance was observed by applying AutoML to the 182 prioritized mRNA 

transcript features (AUC: 0.79). Additionally, the more certain model predictions were also more 

likely to be correct, with the balanced accuracy of the most confident predictions ranging from 

80-90% (Figure 2). 

Our overall results, using post-mortem brain data, are not as perfect as the ones from the 

prior studies by Takahashi, Hayashi [10] and the Zhang, Xie [12], showing a balanced accuracy 

of 87.9% and a near 100% accuracy, respectively. Obviously, one practical advantage of the 

prior studies is that they are focused on blood, which is readily accessible and thus a preferred 

sample for clinically useful biomarkers. However, only 80% of the transcriptome is shared 

between blood and brain tissue [25]. Hence, brain mRNA expression markers are expected to be 



67 
 

more accurate and more useful for furthering our understanding of the pathophysiology of SCZ 

and identifying novel drug targets. Moreover, in contrast to Zhang et al (2017), our approach 

used a separate testing set to evaluate the trained model which was not used during training. 

Furthermore, for the ANN results by Takahashi et al. (2010), the training set consisted of 35 

cases and 33 controls while the testing set consisted of only 17 SCZ cases and 16 controls. The 

authors suggested that small sample size to microarray features ratio, lack in statistical power, 

and potential confounding due to gender differences in the two groups are limitations of their 

study. We believe that our brain dataset, with 201 SCZ cases and 278 controls, while still 

relatively small when considered for ML purposes, provide a more reliable analysis. Finally, our 

study addresses another challenge identified in the literature. Both the above-mentioned prior 

studies specifically selected for differentially expressed probes using their entire dataset, which 

were then used as features during the training of a classification algorithm. This likely inflated 

the accuracy during validation of the model. Although the test sample was not used during the 

training of the ML algorithm, it had been used during the feature selection process, i.e., during 

the determination of the differentially expressed probes that the ML algorithm ultimately focused 

on. In contrast, our approach did not preselect for features and used the regularization 

mechanism of the XGBoost algorithm to reduce the effective number of features used in the final 

model. Lastly, we find that AutoML strategies such as Auto-Sklearn can yield even further 

improvements in performance using the selected features. 

To show that the genes identified in our study have relevance to SCZ, we present findings 

from a literature review for the top ten ML genes used by our classifier. All ten genes were found 

to be related to SCZ etiology. HBB expression has been shown to be downregulated in post-

mortem analysis of brain tissue [26, 27]. Similarly, DTNA was found to be differentially spliced 
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in brain samples when compared to controls [28], and to be differentially expressed in SCZ 

patients in response to clozapine [29]. ITGB4 segregated with SCZ in a study of a family 

conducted by O'Brien, Fiorentino [30]. The gene expression of COX7A1 was found to be 

downregulated in SCZ patients versus controls [31, 32]. Many studies have suggested that the 

monoamine oxidase MAOB is a significant biomarker for SCZ [33-35]. SLC38A5 has also been 

found to be significantly associated with SCZ by Guan, Cai [36], while LBH is known to be 

differentially expressed in the brains of patients with SCZ compared to healthy controls [37-41]. 

GALNTL1 (also known as GALNT16) was also recently found to be reduced in SCZ patients [42]. 

Although there are no current studies linking NODAL to SCZ, NODAL is a cytokine of the 

transforming growth factor-β (TGF- β) superfamily, and evidence suggests that TGF-β signaling 

is altered in SCZ [43].  

Finally, there was no direct link to SCZ for COPS3, the top gene from the ML model. 

However, there is evidence that the COP9 signalosome, which COPS3 is a subunit of, inhibits 

dendritic arborization in the peripheral nervous system of a drosophila model through [44]. This 

is consistent with loss of dendritic spine density observed in SCZ [45]. Interestingly, a recent 

study found that doxycycline, a commonly used antibiotic known to inhibit COP9 activity in 

vitro [46], prevented and reversed ketamine-induced schizophrenic-like behaviors in mice [47]. 

The role of COPS3, and that of inhibitors of the COP9 signalosome in SCZ, such as doxycycline 

and CSN5i-3 [48], should be investigated further. 

 Lastly, we implemented a novel approach to highlight the GO molecular function gene 

sets that are important for our ML classifier, and thus for SCZ. Our approach has some notable 

benefits. First, we performed a univariate differential gene expression analysis contrasting SCZ 

cases and controls based on all genes in the dataset, and prioritized the most important gene sets 
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based on the robust consensus gene set analysis method from the piano bioinformatic tool. The 

differential gene expression with piano approach has the benefit of utilizing the full set of gene 

expressions available; however, this approach also results in a lot of gene sets that may not be 

relevant to SCZ. To address this, we applied the gene set analysis on the genes of the ML 

classifier using a hypergeometric test and FDR adjustment. This approach allowed us to focus on 

the most important gene sets which are significantly differentially expressed based on both the 

univariate analysis using all genes, as well as the ones significantly enriched among the ML 

genes. We found two significant GO terms, among the ML classifier genes, for differentiating 

SCZ cases and controls: “oxidoreductase activity, acting on the CH-NH2 group of donors” and 

“integrin binding.” 

With regards to genes in the oxidoreductase activity gene set, we already showed 

evidence for a link to SCZ for the MAOB gene above. Furthermore, GLDC, another member of 

this gene set has also been linked to SCZ in the literature [49]. Interestingly, a placebo-controlled 

trial with two psychosis patients with the GLDC copy number variant, found that glycine and D-

cycloserine improved psychotic and mood symptoms [49].  

Four ML genes, ITGB4, FERMT3, NISCH, and SRC, were part of the integrin binding 

gene set. There is already a link to SCZ for ITGB4 detailed above (one of the top ten ML genes). 

NISCH (Imidazoline receptor 1), which reduces GABAergic synaptic transmission [50], has also 

been reported to be a SCZ risk gene and a potential treatment target by Imidazoline I1 receptor 

agonist drugs [51]. Lastly, SRC (Src kinase) activity has been found to be suppressed in SCZ 

cases, and has also been proposed to lead to decreased NMDAR signaling [52, 53]. Several drug 

targets have been proposed to increase NMDAR signaling, including glycine and D-serine which 

target the NMDAR receptors directly [54].  



70 
 

5. Conclusion 

 

To conclude, we demonstrated that supervised ML analysis of gene expression 

microarray post-mortem data from the DLPFC could effectively distinguish SCZ cases from 

controls and further our understanding of the pathophysiology of SCZ, but also the identification 

of novel candidate treatments. We showed a novel approach of integrating results from 

multivariate ML analysis with differential expression analysis to identify and prioritize and 

identify robust gene sets relevant to SCZ. Lastly, we demonstrate the usefulness of our approach 

by finding several potentially interesting treatment targets such as the COP9 signalosome, GLDC, 

NISCH, and SRC. 
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Supplemental Figures and Tables 

 

Supplemental Table 1. Most important features identified by the best machine learning model listed from most to least 

importance. 

Feature mapped to gene names or original probe IDs (n=182) 

COPS3, HBB, DTNA, ITGB4, COX7A1, MAOB, SLC38A5, LBH, NODAL, GALNTL1, 

NPW, AMIGO3, TRIM6-TRIM34, LOC338758, GJA3, LOC116412, HNRPR, ADAD2, 

PTPLA, LOC100128542, MYRIP, NUDT14, ILMN_1904618, FJX1, LOC346887, CT45-2, 

VPS25, ILMN_1877818, NEXN, ILMN_1917045, LOC643784, IDH1, CAMP, LOC642797, 

LOC644162, ABTB1, KIR2DL4, ST6GAL1, ETV5, TMTC2, MIR658, LOC100128613, 

ZNF180, LOC650612, CIB4, NEUROD6, OR4F16, MAPBPIP, SDCBP2, FABP3, STXBP3, 

TPRXL, FAM173A, AZGP1, MRPL27, XPO7, LOC653352, SDC4, MTMR8, MIR1234, 

LOC649896, NS3BP, C1R, CARD16, PAG1, SAC3D1, LOC653648, IQCA1, 

LOC100134644, C11orf70, LOC645251, LOC100128975, VSX1, LOC730226, INPP4A, 

KCNS3, CEL, LOC646452, LGALS3, OR11G2, LOC653424, CERK, LOC645662, SRC, 

TRIM14, NMUR2, CD14, SFXN4, ILMN_1866563, GLDC, SEPHS2, LOC652668, PRSS1, 

KCNK6, LOC649613, ILMN_1823752, RNF217, ZNF831, FASTKD5, PRDM1, 

LOC100131514, ILMN_1843198, LOC642147, CCNYL1, ADO, OR7E91P, LOC100130644, 

OR10X1, TGDS, LOC651728, LOC400807, IDI1, C11orf39, LOC100132807, SEMA6D, 

S100PBP, AKAP1, GPR155, LOC647163, DEPDC4, LOC728991, CCNYL1, C3orf41, 

C3orf25, LOC642980, AP1B1, MIR32, NISCH, LOC643959, LOC402160, EDEM3, 

ANXA3, HSD17B11, FOXD4L2, FERMT3, DSTN, NDUFC1, NSUN7, LOC652698, 

LOC390387, ALDH6A1, HIST2H3A, PLOD2, BCMO1, RGS1, ILMN_1847202, 

ILMN_1908780, TMEM18, TRPV6, IGFBP6, LOC390714, LOC342541, ILMN_1916146, 

USP53, MTNR1A, TIMP3, APOL1, AFAP1, DDX12, ILMN_1823270, LOC643213, 

RASAL3, LOC100128302, MCM8, FLJ36701, PPM1H, MGC10646, LOC647480, STON2, 

AFG3L1, FILIP1L, LOC100130344, LOC645176, EDN3, KLK11, ILMN_1852349, 

GOLPH4, SCARA3, OR2A25, DPP10, BCAR3, LOC642771 
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Supplemental Table 1. After obtaining the best trained classification model, we extracted the feature weights (i.e., number of times a 

feature is used in splitting the data in all XGBoost trees). The features are then ranked from highest to lowest weight. All features with 

a weight above zero are mapped to the corresponding gene. If a probe couldn’t be mapped to a known gene, the Illumina probe ID is 

shown instead. 

Supplemental Table 2. Hypergeometric test of enrichment of piano ranked gene sets in machine learning model genes. 

Gene set name p-value FDR # of 

overlap 

with ML 

genes 

Gene 

set size 

Overlapping ML genes 

GO_OXIDOREDUCTASE_ACTIVITY_ACTING_O

N_THE_CH_NH2_GROUP_OF_DONORS 

0.0003 0.0568 2 21 GLDC, MAOB 

GO_INTEGRIN_BINDING 0.001 0.1109 4 127 FERMT3, NISCH, SRC, ITGB4 

GO_METALLOENDOPEPTIDASE_INHIBITOR_AC

TIVITY 

0.0036 0.2267 1 15 TIMP3 

GO_ELECTRON_TRANSFER_ACTIVITY 0.005 0.2267 3 114 GLDC, MAOB, COX7A1 

GO_OXIDOREDUCTASE_ACTIVITY 0.0052 0.2267 10 747 IDH1, COX7A1, MAOB, HBB, NDUFC1, PLOD2, 

HSD17B11, ADO, GLDC, ALDH6A1 

GO_COENZYME_BINDING 0.0077 0.2482 5 286 IDH1, MAOB, PLOD2, GLDC, ALDH6A1 

GO_ORGANIC_ACID_BINDING 0.008 0.2482 4 205 GLDC, HBB, FABP3, PLOD2 

GO_COFACTOR_BINDING 0.0104 0.2489 7 498 IDH1, MAOB, HBB, PLOD2, SRC, GLDC, ALDH6A1 

GO_MONOSACCHARIDE_BINDING 0.0105 0.2489 2 75 PLOD2, SCARA3 

GO_FATTY_ACID_DERIVATIVE_BINDING 0.0115 0.2489 1 27 ALDH6A1 

GO_FATTY_ACID_BINDING 0.0178 0.3413 1 34 FABP3 

GO_PASSIVE_TRANSMEMBRANE_TRANSPORT

ER_ACTIVITY 

0.0198 0.3413 6 454 KCNS3, TRPV6, KCNK6, APOL1, NMUR2, GJA3 

GO_OXIDOREDUCTASE_ACTIVITY_ACTING_O

N_THE_ALDEHYDE_OR_OXO_GROUP_OF_DON

ORS_NAD_OR_NADP_AS_ACCEPTOR 

0.0209 0.3413 1 37 ALDH6A1 
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GO_CHLORIDE_TRANSMEMBRANE_TRANSPOR

TER_ACTIVITY 

0.022 0.3413 2 99 NMUR2, APOL1 

GO_OXIDOREDUCTASE_ACTIVITY_ACTING_O

N_THE_ALDEHYDE_OR_OXO_GROUP_OF_DON

ORS 

0.0289 0.35 1 44 ALDH6A1 

GO_STRUCTURAL_CONSTITUENT_OF_MUSCLE 0.0289 0.35 1 44 NEXN 

GO_BOX_H_ACA_SNORNA_BINDING 0.0298 0.35 0 5   

GO_CYCLIN_DEPENDENT_PROTEIN_SERINE_T

HREONINE_KINASE_REGULATOR_ACTIVITY 

0.0353 0.35 1 49 CCNYL1 

GO_TRANSPORTER_ACTIVITY 0.0368 0.35 12 1250 KCNS3, COX7A1, TRPV6, AP1B1, AZGP1, SFXN4, APOL1, 

SLC38A5, KCNK6, NMUR2, GJA3, FABP3 

GO_NEUROTRANSMITTER_TRANSPORTER_AC

TIVITY 

0.038 0.35 1 51 SLC38A5 

GO_ION_CHANNEL_BINDING 0.0391 0.35 2 124 DPP10, SRC 

GO_PROTEASE_BINDING 0.0399 0.35 2 125 TIMP3, CARD16 

GO_MAGNESIUM_ION_BINDING 0.04 0.35 3 213 IDH1, CERK, CIB4 

GO_LEUCINE_BINDING 0.0415 0.35 0 7   

GO_OXIDOREDUCTASE_ACTIVITY_ACTING_O

N_CH_OH_GROUP_OF_DONORS 

0.0424 0.35 2 128 IDH1, HSD17B11 

GO_HYDRO_LYASE_ACTIVITY 0.0435 0.35 1 55 TGDS 

GO_NUCLEOSOMAL_DNA_BINDING 0.0435 0.35 1 55 HIST2H3A 

GO_EXTRACELLULAR_MATRIX_BINDING 0.0464 0.3506 1 57 LGALS3 

GO_GROWTH_FACTOR_BINDING 0.0501 0.3506 2 137 IGFBP6, ITGB4 

GO_VITAMIN_BINDING 0.0501 0.3506 2 137 GLDC, PLOD2 

GO_TRANSMEMBRANE_TRANSPORTER_ACTIV

ITY 

0.0501 0.3506 10 1047 KCNS3, COX7A1, TRPV6, AZGP1, SLC38A5, SFXN4, 

APOL1, KCNK6, NMUR2, GJA3 

GO_VOLTAGE_GATED_CATION_CHANNEL_AC

TIVITY 

0.0537 0.3543 2 141 KCNS3, KCNK6 

GO_CHANNEL_REGULATOR_ACTIVITY 0.0565 0.3543 2 144 DPP10, KCNS3 

GO_RRNA_BINDING 0.0571 0.3543 1 64 FASTKD5 

GO_MONOCARBOXYLIC_ACID_BINDING 0.0587 0.3543 1 65 FABP3 

GO_CALCIUM_DEPENDENT_PROTEIN_KINASE

_ACTIVITY 

0.0588 0.3543 0 10   

GO_NUCLEOSIDE_TRIPHOSPHATE_DIPHOSPHA

TASE_ACTIVITY 

0.0645 0.36 0 11   
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GO_RAGE_RECEPTOR_BINDING 0.0645 0.36 0 11   

GO_POTASSIUM_ION_TRANSMEMBRANE_TRA

NSPORTER_ACTIVITY 

0.0715 0.36 2 159 KCNS3, KCNK6 

GO_LIPID_BINDING 0.0716 0.36 7 726 ANXA3, SDCBP2, APOL1, NISCH, CAMP, CD14, FABP3 

GO_CARBON_OXYGEN_LYASE_ACTIVITY 0.0719 0.36 1 73 TGDS 

GO_ENZYME_INHIBITOR_ACTIVITY 0.0731 0.36 4 370 TIMP3, LGALS3, ANXA3, CARD16 

GO_AMINO_ACID_TRANSMEMBRANE_TRANSP

ORTER_ACTIVITY 

0.0736 0.36 1 74 SLC38A5 

GO_DOUBLE_STRANDED_RNA_BINDING 0.0736 0.36 1 74 ADAD2 

GO_CELL_ADHESION_MOLECULE_BINDING 0.0747 0.36 5 488 IDH1, FERMT3, NISCH, SRC, ITGB4 

GO_PHOSPHATASE_ACTIVITY 0.0798 0.3649 3 269 MTMR8, PPM1H, INPP4A 

GO_FLAVIN_ADENINE_DINUCLEOTIDE_BINDI

NG 

0.0806 0.3649 1 78 MAOB 

GO_ALDEHYDE_DEHYDROGENASE_NAD_ACTI

VITY 

0.0813 0.3649 0 14   

GO_ION_TRANSMEMBRANE_TRANSPORTER_A

CTIVITY 

0.083 0.3649 8 879 KCNS3, COX7A1, TRPV6, KCNK6, SLC38A5, SFXN4, 

APOL1, NMUR2 

GO_G_PROTEIN_COUPLED_RECEPTOR_BINDIN

G 

0.0841 0.3649 3 274 NPW, EDN3, ITGB4 

GO_S100_PROTEIN_BINDING 0.0869 0.3665 0 15   

GO_NUCLEOSOME_BINDING 0.0878 0.3665 1 82 HIST2H3A 

GO_PDZ_DOMAIN_BINDING 0.0915 0.3713 1 84 DTNA 

GO_DOPAMINE_RECEPTOR_BINDING 0.0924 0.3713 0 16   

GO_ANTIOXIDANT_ACTIVITY 0.0952 0.3719 1 86 HBB 

GO_LYASE_ACTIVITY 0.0965 0.3719 2 181 GLDC, TGDS 

GO_PHOSPHOPROTEIN_PHOSPHATASE_ACTIVI

TY 

0.0977 0.3719 2 182 MTMR8, PPM1H 

GO_STEROID_HORMONE_RECEPTOR_BINDING 0.1028 0.3818 1 90 SRC 

GO_PROTEIN_C_TERMINUS_BINDING 0.1038 0.3818 2 187 SDCBP2, SRC 

GO_ACTIN_FILAMENT_BINDING 0.1076 0.387 2 190 DSTN, NEXN 

GO_ACTIN_BINDING 0.1118 0.387 4 422 AFAP1, DSTN, NEXN, MYRIP 

GO_PHOSPHATASE_REGULATOR_ACTIVITY 0.1124 0.387 1 95 LGALS3 

GO_VOLTAGE_GATED_ION_CHANNEL_ACTIVI

TY 

0.1152 0.387 2 196 KCNS3, KCNK6 
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GO_DRUG_TRANSMEMBRANE_TRANSPORTER

_ACTIVITY 

0.1163 0.387 1 97 SLC38A5 

GO_CALMODULIN_BINDING 0.1178 0.387 2 198 TRPV6, RGS1 

GO_CALCIUM_RELEASE_CHANNEL_ACTIVITY 0.1195 0.387 0 21   

GO_THREONINE_TYPE_PEPTIDASE_ACTIVITY 0.1195 0.387 0 21   

GO_PROTEIN_CONTAINING_COMPLEX_BINDIN

G 

0.1255 0.3977 9 1099 LGALS3, NEXN, FERMT3, NISCH, SRC, HIST2H3A, 

DSTN, ITGB4, MCM8 

GO_CATION_CHANNEL_ACTIVITY 0.1272 0.3977 3 319 TRPV6, KCNS3, KCNK6 

GO_ANION_TRANSMEMBRANE_TRANSPORTE

R_ACTIVITY 

0.1293 0.3977 3 321 NMUR2, SLC38A5, APOL1 

GO_TRANSFERASE_ACTIVITY_TRANSFERRING

_NITROGENOUS_GROUPS 

0.1301 0.3977 0 23   

GO_LIGAND_GATED_CATION_CHANNEL_ACTI

VITY 

0.1324 0.3985 1 105 KCNK6 

GO_MOLECULAR_ADAPTOR_ACTIVITY 0.1366 0.3985 2 212 PAG1, SRC 

GO_NUCLEAR_RECEPTOR_BINDING 0.1385 0.3985 1 108 SRC 

GO_EXODEOXYRIBONUCLEASE_ACTIVITY 0.1406 0.3985 0 25   

GO_TRANSLATION_REGULATOR_ACTIVITY_N

UCLEIC_ACID_BINDING 

0.1427 0.3985 1 110 ABTB1 

GO_PEPTIDASE_REGULATOR_ACTIVITY 0.1436 0.3985 2 217 TIMP3, CARD16 

GO_KINASE_BINDING 0.1479 0.3985 6 725 CARD16, CCNYL1, AP1B1, SDC4, NISCH, SRC 

GO_LIGAND_GATED_CALCIUM_CHANNEL_AC

TIVITY 

0.151 0.3985 0 27   

GO_MAP_KINASE_KINASE_KINASE_ACTIVITY 0.151 0.3985 0 27   

GO_OXIDOREDUCTASE_ACTIVITY_ACTING_O

N_THE_CH_NH_GROUP_OF_DONORS 

0.151 0.3985 0 27   

GO_GATED_CHANNEL_ACTIVITY 0.1511 0.3985 3 341 KCNK6, KCNS3, NMUR2 

GO_AU_RICH_ELEMENT_BINDING 0.1561 0.3985 0 28   

GO_CALMODULIN_DEPENDENT_PROTEIN_KIN

ASE_ACTIVITY 

0.1561 0.3985 0 28   

GO_STRUCTURAL_CONSTITUENT_OF_NUCLEA

R_PORE 

0.1561 0.3985 0 28   

GO_ACID_THIOL_LIGASE_ACTIVITY 0.1663 0.4168 0 30   

GO_AMIDE_BINDING 0.1671 0.4168 3 355 CD14, NMUR2, ALDH6A1 

GO_ALPHA_ACTININ_BINDING 0.1713 0.4177 0 31   
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GO_PEPTIDE_ANTIGEN_BINDING 0.1713 0.4177 0 31   

GO_PHOSPHORIC_ESTER_HYDROLASE_ACTIVI

TY 

0.1789 0.4224 3 365 MTMR8, PPM1H, INPP4A 

GO_SULFUR_COMPOUND_BINDING 0.1799 0.4224 2 242 CEL, ALDH6A1 

GO_INTRACELLULAR_LIGAND_GATED_ION_C

HANNEL_ACTIVITY 

0.1813 0.4224 0 33   

GO_SIGNALING_RECEPTOR_BINDING 0.1828 0.4224 12 1633 IDH1, SEMA6D, IGFBP6, LGALS3, CEL, NISCH, FERMT3, 

SRC, EDN3, NODAL, NPW, ITGB4 

GO_PHOSPHATIDYLINOSITOL_BINDING 0.183 0.4224 2 244 SDCBP2, NISCH 

GO_PROTEIN_TYROSINE_KINASE_ACTIVITY 0.1852 0.4231 1 130 SRC 

GO_MOLECULAR_FUNCTION_REGULATOR 0.1903 0.4278 13 1795 BCAR3, ANXA3, KCNS3, SEMA6D, CARD16, RGS1, 

CCNYL1, LGALS3, RASAL3, TIMP3, EDN3, NODAL, 

DPP10 

GO_RNA_POLYMERASE_II_REPRESSING_TRAN

SCRIPTION_FACTOR_BINDING 

0.1912 0.4278 0 35   

GO_CATION_TRANSMEMBRANE_TRANSPORTE

R_ACTIVITY 

0.1952 0.4322 5 646 KCNS3, COX7A1, TRPV6, KCNK6, SLC38A5 

GO_PROTEIN_PHOSPHATASE_BINDING 0.2005 0.4353 1 137 LGALS3 

GO_MONOVALENT_INORGANIC_CATION_TRA

NSMEMBRANE_TRANSPORTER_ACTIVITY 

0.2009 0.4353 3 383 KCNS3, KCNK6, COX7A1 

GO_LIGAND_GATED_ION_CHANNEL_ACTIVIT

Y 

0.2027 0.4353 1 138 KCNK6 

GO_CALCIUM_ION_TRANSMEMBRANE_TRANS

PORTER_ACTIVITY 

0.2049 0.4353 1 139 TRPV6 

GO_TRANSLATION_REGULATOR_ACTIVITY 0.2071 0.4353 1 140 ABTB1 

GO_ACTININ_BINDING 0.2106 0.4353 0 39   

GO_ATP_DEPENDENT_DNA_HELICASE_ACTIVI

TY 

0.2106 0.4353 0 39   

GO_UBIQUITIN_LIKE_PROTEIN_CONJUGATING

_ENZYME_ACTIVITY 

0.2154 0.4409 0 40   

GO_ENDONUCLEASE_ACTIVITY_ACTIVE_WIT

H_EITHER_RIBO_OR_DEOXYRIBONUCLEIC_AC

IDS_AND_PRODUCING_5_PHOSPHOMONOESTE

RS 

0.2201 0.4429 0 41   

GO_LIPID_TRANSPORTER_ACTIVITY 0.2204 0.4429 1 146 FABP3 

GO_GENERAL_TRANSCRIPTION_INITIATION_F

ACTOR_BINDING 

0.2249 0.4439 0 42   
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GO_CHROMATIN_BINDING 0.2251 0.4439 4 538 MCM8, HIST2H3A, VSX1, PRDM1 

GO_HELICASE_ACTIVITY 0.2271 0.4439 1 149 MCM8 

GO_ISOMERASE_ACTIVITY 0.2293 0.4443 1 150 IDI1 

GO_NUCLEAR_HORMONE_RECEPTOR_BINDIN

G 

0.2315 0.4446 1 151 SRC 

GO_CALCIUM_ION_BINDING 0.2456 0.4675 5 698 ANXA3, CIB4, C1R, EDEM3, SCARA3 

GO_PROTEIN_HOMODIMERIZATION_ACTIVITY 0.2521 0.472 6 849 VPS25, IDH1, ST6GAL1, SDCBP2, MAOB, GLDC 

GO_PHOSPHOLIPID_BINDING 0.2523 0.472 3 423 SDCBP2, NISCH, ANXA3 

GO_DNA_HELICASE_ACTIVITY 0.2616 0.4847 0 50   

GO_PEPTIDE_BINDING 0.2636 0.4847 2 295 CD14, NMUR2 

GO_HYDROLASE_ACTIVITY_ACTING_ON_EST

ER_BONDS 

0.2722 0.4891 5 724 MTMR8, AZGP1, CEL, PPM1H, INPP4A 

GO_GTPASE_REGULATOR_ACTIVITY 0.2734 0.4891 2 301 RASAL3, RGS1 

GO_METAL_ION_TRANSMEMBRANE_TRANSPO

RTER_ACTIVITY 

0.275 0.4891 3 440 TRPV6, KCNS3, KCNK6 

GO_3_5_EXONUCLEASE_ACTIVITY 0.275 0.4891 0 53   

GO_ENZYME_REGULATOR_ACTIVITY 0.2777 0.49 7 1025 ANXA3, CARD16, RGS1, CCNYL1, LGALS3, RASAL3, 

TIMP3 

GO_RAB_GTPASE_BINDING 0.2808 0.4913 1 173 MYRIP 

GO_STEROL_BINDING 0.2881 0.5001 0 56   

GO_OXIDOREDUCTASE_ACTIVITY_ACTING_O

N_THE_CH_CH_GROUP_OF_DONORS 

0.2967 0.5069 0 58   

GO_TRNA_BINDING 0.2967 0.5069 0 58   

GO_PHOSPHATASE_BINDING 0.3009 0.5101 1 182 LGALS3 

GO_HORMONE_RECEPTOR_BINDING 0.3054 0.5134 1 184 SRC 

GO_STRUCTURAL_CONSTITUENT_OF_RIBOSO

ME 

0.3076 0.5134 1 185 MRPL27 

GO_CADHERIN_BINDING 0.3113 0.5157 2 324 IDH1, SRC 

GO_MOLECULAR_TRANSDUCER_ACTIVITY 0.3277 0.5371 10 1544 OR2A25, KIR2DL4, MTNR1A, OR10X1, OR4F16, OR11G2, 

SDC4, CEL, NMUR2, CD14 

GO_METHYLATED_HISTONE_BINDING 0.3301 0.5371 0 66   

GO_NUCLEASE_ACTIVITY 0.332 0.5371 1 196 AZGP1 

GO_COLLAGEN_BINDING 0.3341 0.5371 0 67   
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GO_DAMAGED_DNA_BINDING 0.3382 0.5377 0 68   

GO_NUCLEOSIDE_TRIPHOSPHATASE_REGULA

TOR_ACTIVITY 

0.3395 0.5377 2 341 RASAL3, RGS1 

GO_KINASE_REGULATOR_ACTIVITY 0.354 0.5567 1 206 CCNYL1 

GO_PEPTIDE_N_ACETYLTRANSFERASE_ACTIV

ITY 

0.3619 0.5609 0 74   

GO_GUANYL_NUCLEOTIDE_EXCHANGE_FACT

OR_ACTIVITY 

0.3649 0.5609 1 211 BCAR3 

GO_TRANSMEMBRANE_SIGNALING_RECEPTO

R_ACTIVITY 

0.365 0.5609 8 1277 OR2A25, KIR2DL4, MTNR1A, OR10X1, OR4F16, OR11G2, 

NMUR2, CD14 

GO_PURINE_NTP_DEPENDENT_HELICASE_ACT

IVITY 

0.3696 0.5609 0 76   

GO_UBIQUITIN_BINDING 0.3696 0.5609 0 76   

GO_EXONUCLEASE_ACTIVITY 0.381 0.5719 0 79   

GO_CYTOKINE_ACTIVITY 0.3822 0.5719 1 219 NODAL 

GO_ATPASE_BINDING 0.3848 0.5719 0 80   

GO_UBIQUITIN_LIKE_PROTEIN_LIGASE_ACTIV

ITY 

0.393 0.5801 1 224 RNF217 

GO_MICROTUBULE_MOTOR_ACTIVITY 0.3996 0.5822 0 84   

GO_ALCOHOL_BINDING 0.4033 0.5822 0 85   

GO_GTPASE_BINDING 0.4053 0.5822 3 535 BCAR3, MYRIP, XPO7 

GO_PROTEIN_DIMERIZATION_ACTIVITY 0.4074 0.5822 8 1325 VPS25, IDH1, ST6GAL1, SDCBP2, MAOB, NEUROD6, 

GLDC, HIST2H3A 

GO_DNA_BINDING_TRANSCRIPTION_REPRESS

OR_ACTIVITY_RNA_POLYMERASE_II_SPECIFI

C 

0.4078 0.5822 1 231 PRDM1 

GO_SINGLE_STRANDED_RNA_BINDING 0.4105 0.5822 0 87   

GO_DNA_DEPENDENT_ATPASE_ACTIVITY 0.4141 0.5834 0 88   

GO_N_ACETYLTRANSFERASE_ACTIVITY 0.4176 0.5844 0 89   

GO_PROTEIN_DOMAIN_SPECIFIC_BINDING 0.4201 0.5844 4 703 DTNA, PAG1, SRC, CARD16 

GO_SERINE_TYPE_ENDOPEPTIDASE_INHIBITO

R_ACTIVITY 

0.4316 0.5966 0 93   

GO_CYTOKINE_RECEPTOR_ACTIVITY 0.4385 0.5985 0 95   

GO_STEROID_BINDING 0.4385 0.5985 0 95   
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GO_UBIQUITIN_LIKE_PROTEIN_BINDING 0.4419 0.5994 0 96   

GO_STRUCTURAL_CONSTITUENT_OF_CYTOSK

ELETON 

0.4487 0.6048 0 98   

GO_IDENTICAL_PROTEIN_BINDING 0.4609 0.6173 10 1711 VPS25, IDH1, ST6GAL1, CARD16, SDCBP2, MAOB, SDC4, 

NUDT14, NISCH, GLDC 

GO_CHAPERONE_BINDING 0.4653 0.6194 0 103   

GO_RNA_POLYMERASE_II_SPECIFIC_DNA_BIN

DING_TRANSCRIPTION_FACTOR_BINDING 

0.4754 0.6288 1 264 SRC 

GO_SINGLE_STRANDED_DNA_BINDING 0.4781 0.6288 0 107   

GO_ACETYLTRANSFERASE_ACTIVITY 0.4813 0.6292 0 108   

GO_KINASE_ACTIVITY 0.4879 0.634 4 760 SEPHS2, FASTKD5, CERK, SRC 

GO_SMALL_GTPASE_BINDING 0.4971 0.6421 2 439 MYRIP, XPO7 

GO_CYTOSKELETAL_PROTEIN_BINDING 0.5155 0.6619 5 950 NEXN, MYRIP, AFAP1, FABP3, DSTN 

GO_CATALYTIC_ACTIVITY_ACTING_ON_A_TR

NA 

0.5238 0.6686 0 122   

GO_PRIMARY_ACTIVE_TRANSMEMBRANE_TR

ANSPORTER_ACTIVITY 

0.5296 0.672 0 124   

GO_CYTOKINE_BINDING 0.5381 0.6789 0 127   

GO_RIBONUCLEOPROTEIN_COMPLEX_BINDIN

G 

0.5437 0.6811 0 129   

GO_UNFOLDED_PROTEIN_BINDING 0.5465 0.6811 0 130   

GO_ATPASE_ACTIVITY_COUPLED_TO_MOVEM

ENT_OF_SUBSTANCES 

0.5493 0.6811 0 131   

GO_UBIQUITIN_LIKE_PROTEIN_LIGASE_BINDI

NG 

0.5545 0.6837 1 306 SRC 

GO_MOTOR_ACTIVITY 0.5655 0.6933 0 137   

GO_GTPASE_ACTIVITY 0.5807 0.7079 1 321 RGS1 

GO_LIGASE_ACTIVITY 0.5888 0.7138 0 146   

GO_PROTEIN_HETERODIMERIZATION_ACTIVI

TY 

0.5938 0.7159 2 506 SDCBP2, HIST2H3A 

GO_ENZYME_ACTIVATOR_ACTIVITY 0.6072 0.7261 2 516 RASAL3, RGS1 

GO_DNA_BINDING_TRANSCRIPTION_FACTOR_

BINDING 

0.609 0.7261 1 338 SRC 

GO_S_ADENOSYLMETHIONINE_DEPENDENT_

METHYLTRANSFERASE_ACTIVITY 

0.6132 0.7271 0 156   
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GO_CATALYTIC_ACTIVITY_ACTING_ON_RNA 0.6265 0.7389 1 349 AZGP1 

GO_PROXIMAL_PROMOTER_SEQUENCE_SPECI

FIC_DNA_BINDING 

0.6419 0.7529 2 543 NEUROD6, PRDM1 

GO_TRANSFERASE_ACTIVITY_TRANSFERRING

_PHOSPHORUS_CONTAINING_GROUPS 

0.6498 0.7581 4 910 SEPHS2, FASTKD5, CERK, SRC 

GO_CATALYTIC_ACTIVITY_ACTING_ON_DNA 0.6681 0.7753 0 181   

GO_REGULATORY_REGION_NUCLEIC_ACID_BI

NDING 

0.6781 0.7827 4 940 ETV5, VSX1, NEUROD6, PRDM1 

GO_ANTIGEN_BINDING 0.6898 0.7858 0 192   

GO_GUANYL_NUCLEOTIDE_BINDING 0.6906 0.7858 1 393 NMUR2 

GO_HISTONE_BINDING 0.6917 0.7858 0 193   

GO_PROTEIN_KINASE_ACTIVITY 0.6971 0.7879 2 590 FASTKD5, SRC 

GO_UBIQUITIN_LIKE_PROTEIN_TRANSFERASE

_ACTIVITY 

0.7104 0.7987 1 408 RNF217 

GO_ZINC_ION_BINDING 0.7271 0.8132 3 809 TRIM14, DTNA, MYRIP 

GO_RNA_BINDING 0.7397 0.8216 9 1922 LGALS3, MRPL27, FASTKD5, NSUN7, ADAD2, ABTB1, 

AKAP1, MIR32, ALDH6A1 

GO_STRUCTURAL_MOLECULE_ACTIVITY 0.7421 0.8216 3 826 VPS25, MRPL27, NEXN 

GO_MICROTUBULE_BINDING 0.7662 0.844 0 238   

GO_SEQUENCE_SPECIFIC_DOUBLE_STRANDE

D_DNA_BINDING 

0.7743 0.8477 3 865 ETV5, NEUROD6, PRDM1 

GO_TRANSCRIPTION_COREPRESSOR_ACTIVIT

Y 

0.7774 0.8477 0 246   

GO_TRANSITION_METAL_ION_BINDING 0.788 0.855 4 1077 PLOD2, DTNA, MYRIP, TRIM14 

GO_TRANSFERASE_ACTIVITY_TRANSFERRING

_ACYL_GROUPS 

0.7958 0.8592 0 260   

GO_MRNA_BINDING 0.8024 0.862 1 492 MIR32 

GO_SEQUENCE_SPECIFIC_DNA_BINDING 0.816 0.8719 4 1120 ETV5, VSX1, NEUROD6, PRDM1 

GO_HYDROLASE_ACTIVITY_ACTING_ON_ACI

D_ANHYDRIDES 

0.8196 0.8719 3 928 NUDT14, RGS1, MCM8 

GO_DRUG_BINDING 0.8323 0.8784 7 1725 HBB, IQCA1, CERK, SRC, GLDC, SEPHS2, MCM8 

GO_ADENYL_NUCLEOTIDE_BINDING 0.8351 0.8784 6 1541 IQCA1, CERK, SRC, SEPHS2, ALDH6A1, MCM8 

GO_DOUBLE_STRANDED_DNA_BINDING 0.8379 0.8784 3 957 ETV5, NEUROD6, PRDM1 

GO_TRANSCRIPTION_COACTIVATOR_ACTIVIT

Y 

0.8564 0.8935 0 317   
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GO_TUBULIN_BINDING 0.8608 0.8937 0 322   

GO_ATPASE_ACTIVITY_COUPLED 0.8879 0.9146 0 357   

GO_ACTIVE_TRANSMEMBRANE_TRANSPORTE

R_ACTIVITY 

0.8893 0.9146 0 359   

GO_RIBONUCLEOTIDE_BINDING 0.8987 0.9178 7 1891 IQCA1, NMUR2, CERK, SRC, SEPHS2, ALDH6A1, MCM8 

GO_DNA_BINDING_TRANSCRIPTION_FACTOR_

ACTIVITY 

0.901 0.9178 6 1701 ZNF180, NEUROD6, VSX1, TPRXL, PRDM1, ETV5 

GO_TRANSCRIPTION_FACTOR_BINDING 0.9052 0.9178 1 643 SRC 

GO_PROTEIN_SERINE_THREONINE_KINASE_A

CTIVITY 

0.9319 0.9399 0 437   

GO_ATPASE_ACTIVITY 0.9356 0.9399 0 446   

GO_TRANSCRIPTION_COREGULATOR_ACTIVIT

Y 

0.9693 0.9693 0 564   

 

Supplemental Table 2. The machine learning (ML) model genes from the best trained model was extracted. A secondary enrichment 

analysis was performed to rank the filtered gene sets obtained from the piano consensus gene set analysis method. A hypergeometric 

test was performed to determine which of the filtered gene sets were significantly enriched for the ML genes. We then applied the 

Benjamini–Hochberg procedure to calculate the false-discovery rate (FDR). The gene sets are then sorted from lowest to highest by 

the p-value/FDR. 

ML: Machine learning 

BH: Benjamini–Hochberg 

FDR: False-discovery rate
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Bridging statement to Chapter 3 

 

In Chapter 2, we explored the use of ML in the analysis of transcriptomic data for understanding 

complex diseases. We hypothesized that ML analysis of gene expression microarray data can 

further our understanding of the pathophysiology of complex diseases such as SCZ. We 

performed a supervised ML analysis of gene expression microarray data from the DLPFC of 

post-mortem SCZ cases and controls and found substantial literature support for the top genes 

contributing most to the ML classifier performance having a link with SCZ. Furthermore, we 

also introduced a novel method of integration of ML findings with traditional differential gene 

expression analysis to identify robust biological functions including “oxidoreductase activity, 

acting on the CH-NH2 group of donors,” which associates the metabolism of biological amino 

groups with SCZ, and “integrin binding,” which highlights the function of cell signaling in SCZ. 

Another significant contribution of our study is that we designed our ML methodology 

specifically to address high dimensional transcriptomics data with relatively smaller number of 

samples. We noted that prior ML studies often did not explicitly address the challenges 

associated with analyzing data of this nature. We included several mechanisms for addressing 

challenges related to model selection, overfitting, and evaluation, including the use of a highly 

regularized XGBoost algorithm, hyperparameter selection with repeated k-fold cross-validation, 

and model evaluation using an independent testing set. 

In the following chapter, we discuss the application of ML and transcriptomics in MDD. 

We further validate the supervised ML and gene set analysis approaches developed in Chapter 2. 

One of the limitations of our study in Chapter 2 is that evaluation of model performance was 

based only on a single dataset source. Such an analysis could be influenced by various factors 

unique to the dataset and its findings may thus not be generalizable outside of that dataset. In 
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Chapter 3, we include an additional brain DLPFC dataset as an external evaluation dataset in the 

analysis of MDD cases and controls. Moreover, to explore whether our methodology could be 

expanded to extracting insight from blood samples, which are more widely available from living 

patients, we include an additional dataset of blood gene expressions for MDD cases and controls, 

as a comparison to brain gene expressions. Lastly, we explore the integration of covariate data 

for model interpretation and deriving further insights from ML models. 

 

Chapter 2 erratum: 

- On page 56, the logistic loss function contains an error. The correct form should be: 

𝑙(𝑦𝑖, �̂�𝑖) = 𝑦𝑖 ln(1 + 𝑒−�̂�𝑖) + (1 − 𝑦𝑖) ln(1 + 𝑒�̂�𝑖) 

- On page 58, “The best cutoff is defined as the probability threshold dividing the cases 

and controls classes which maximizes the number of true positive classifications and 

minimizes the number of false-positive classifications (i.e., maximizing the area under the 

ROC curve)” is inaccurate and should be corrected. We are not maximizing the area 

under the ROC curve, but rather, we are finding the probability threshold for which the 

rectangular area under the TPR and FPR point along the curve is maximized. Another 

equivalently correct way for defining the best cutoff is as the probability threshold 

dividing the predicted samples where the average of the true-positive rate (TPR) and the 

inverse of the false-positive rate (FPR) (i.e., 1 - FPR) is maximized. 
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Abstract 

 

This study analyzed gene expression (mRNA) data, from cases with major depression (MDD) 

and controls, using supervised machine learning (ML). We built on the methodology of prior 

studies to obtain more generalizable/reproducible results. First, we obtained a classifier trained 

on gene expression data from the dorsal-lateral-prefrontal-cortex (DLPFC) of post-mortem MDD 

cases (n=126) and controls (n=103). An average area-under-the-receiver-operating-

characteristics-curve (AUC) from 10-fold cross-validation of 0.72 was noted, compared to an 

average AUC of 0.55 for a baseline classifier (p=0.0048). The classifier achieved an AUC of 

0.76 on a previously unused testing-set. We also performed external validation using DLPFC 

gene expression values from an independent cohort of matched MDD cases (n=29) and controls 

(n=29), obtained from Affymetrix microarray (vs. Illumina microarray for the original cohort) 

(AUC:0.62). We highlighted gene sets differentially expressed in MDD that were enriched for 

genes identified by the ML algorithm. Next, we assessed the ML classification performance in 

blood-based microarray gene expression data from MDD cases (n=1581) and controls (n=369). 

We observed a mean AUC of 0.64 on 10-fold cross-validation, which was significantly above 

baseline (p=0.0020). Similar performance was observed on the testing-set (AUC:0.61). Finally, 

we analyzed the classification performance in covariates subgroups. We identified an interesting 

interaction between smoking and recall performance in MDD case prediction (58% accurate 

predictions in cases who are smokers vs. 43% accurate predictions in cases who are non-

smokers). Overall, our results suggest that ML in combination with gene expression data and 

covariates could further our understanding of the pathophysiology in MDD. 

Keywords 

Major depression, Transcriptomics, Machine learning, Bioinformatics 
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Introduction 

 

There is a lack of reliable biomarkers for Major Depressive Disorder (MDD) in clinical 

practice. Gene expression, measured in the form of messenger RNA (mRNA), could be useful to 

further our understanding of the pathophysiology of MDD and potentially lead to biomarker 

discovery and novel drug targets for treatment development. A given gene is transcribed to 

mRNA, which contains the coding instructions for the synthesis of polypeptide chains. Hence, 

mRNAs are the links between the genetic information stored in DNA and the encoded proteins, 

which are used in the different biological functions. 

Several studies have focused on analyzing, using statistics, the transcriptome (i.e., the full 

range of mRNA) in different tissues, like the brain or peripheral blood, of MDD cases and 

control subjects. For example, L. Gao, Gao, Xu, and Xie (2015) performed an analysis of 

microarray gene expression samples obtained from three human brain tissues (hippocampus, 

prefrontal cortex, and striatum) of MDD patients and healthy controls to identify differentially 

expressed genes (DEGs). They identified 241, 218, and 327 DEGs in the MDD-hippocampus 

group, the MDD-prefrontal cortex group, and the MDD-striatum group, respectively. In each 

group, there was an enhancement of a variety of biological processes associated with the DEGs. 

A different study, by Woo, Lim, Myung, Kim, and Lee (2018), focused on microarray-based 

transcriptomic data from peripheral blood. The gene expression of 38 MDD patients and 14 

healthy controls was analyzed to identify DEGs and biological mechanisms in MDD. Seven 

DEGs were identified in their subjects which were found to be involved in immune and 

inflammatory responses. Further, the authors analyzed antidepressant responders and non-

responders after six weeks of treatment, which lead to the identification of additional DEGs and 

biological mechanisms associated with treatment response in MDD. 
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As exemplified by these studies, based on statistical analyses, there exist differences in 

gene expression patterns in MDD vs. controls, as well as between non-responders and responders 

to antidepressant treatment. There are a few studies which have utilized transcriptomic data in 

combination with ML in classifying MDD case and controls. Yi et al. (2012) applied a support 

vector machines (SVM) approach on blood gene expression data to classify drug-free, first-

episode cases with subsyndromal symptomatic depression (SSD), MDD, and matched controls. 

Yu, Xue, Redei, and Bagheri (2016) applied a SVM approach to classify MDD cases and 

controls based on expression data of preselected blood RNA markers, measured using 

quantitative real-time polymerase chain reaction. Recently, a study by Bhak et al. (2019) utilized 

a multi-omics approach. A random forest classifier was applied on blood transcriptomic and 

methylomic data, combined, to distinguish between MDD cases, suicide attempters and controls. 

All of the above studies reported high classification accuracies ranging from 86-100%. 

Additionally, machine learning (ML) methods have been used for discriminating 

individuals with MDD from healthy controls. A study conducted by Guilloux et al. (2015) used 

ML methods to analyze blood transcriptomic data. Samples were collected from 34 MDD 

patients with concurring anxiety at baseline and following 12 weeks of treatment with citalopram 

and psychotherapy. The results were compared to those of a matched control group of non-

depressed patients. Using a model of 13 baseline gene expressions selected using a cross-

validation procedure on the training set, they were able to predict nonremission with a corrected 

accuracy of 79.4% in a validation cohort. The findings of this study suggest that baseline 

peripheral blood-based gene expression can potentially predict nonremission following therapy 

with citalopram, thus optimizing therapy (precision medicine).   
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However, existing ML studies involving patients with MDD have relatively low sample 

sizes, and do not adequately address the issues of overfitting and generalization, associated with 

ML models. Given the promising results from ML-based approaches in analyzing complex 

datasets and the sparsity of studies applying ML to transcriptomics data, our paper aims to 

address this important gap in the medical literature. Our objective is to build on the ML 

methodology of prior studies in the field to generate results which are generalizable/reproducible 

and interpretable. We apply a state-of-the-art supervised ML algorithm to post-mortem gene 

expression microarray datasets from the dorsolateral prefrontal cortex (DLPFC) of patients with 

MDD and controls. Of note, there is evidence that there is decreased activity in the DLPFC of 

MDD patients from functional imaging studies, and that the DLPFC could play a role in 

regulating negative affect (Koenigs & Grafman, 2009). Having said this, blood is more readily 

accessible and offers an opportunity for quick clinical translation of any findings. Blood shares 

over 80% of the transcriptome with brain tissue (Liew, Ma, Tang, Zheng, & Dempsey, 2006). 

Moreover, shared expression trends in many biological processes have been found between 

whole-blood and prefrontal cortex (Sullivan, Fan, & Perou, 2006). To compare the accuracy of 

our ML approach using post-mortem DLPFC versus blood mRNA data, we repeated the analysis 

using blood transcriptomics profiles from a separate case-control dataset. 

 

Methods 

 

Major depression gene expression microarray datasets 

First, our analyses focused on gene expression data from the DLPFC of adult patients 

with MDD and controls. More specifically, we obtained a gene expression dataset of post-

mortem patients with mental disorders and control subjects from dbGaP (dbGaP Study 



96 
 

Accession: phs000979.v1.p1). The gene expression data were obtained through the Illumina 

HumanHT-12 v4 Expression BeadChip platform. For preprocessing, the dataset was background 

corrected with the normexp and quantile normalized using the neqc function from the limma R 

package (version 3.42.0) (Smyth, 2005). To convert the probe expression values to gene 

expression values, we mapped the probes to genes based on the mappings provided in the 

illuminaHumanv4.db R package. For genes with multiple mapped probes, we took the average 

between the probe expression values as the final gene expression value. We limited the analysis 

to adults (≥ 18 years old), and Caucasian subjects, due to significant imbalances in race between 

MDD cases and controls potentially confounding downstream analyses. Further, we checked for 

outlier subjects based on inspection of subject-wise boxplots and a covariate-annotated plot of 

principal components 1 and 2. The final processed dataset consists of 126 MDD cases and 103 

controls (total of 229). Lastly, we explored the differences in covariates between MDD cases and 

controls. This dataset will be referred to as the brain mRNA dataset in subsequent sections. 

We obtained two external replication datasets from the Gene Expression Omnibus (GEO) 

repository (GEO accession: GSE54567 and GSE54568). These datasets also contain gene 

expressions from the DLPFC from MDD cases and controls. The GSE54567 dataset consists of 

14 male MDD cases and 14 matched controls, while the GSE54568 dataset consists of 15 female 

MDD cases and 15 matched controls. Both cohorts were originally described by Chang et al. 

(2014) and the datasets were obtained using the Affymetrix Human Genome U133 Plus 2.0 array 

platform. We thus combined the two datasets, and quantile normalized them together using the 

normalizeBetweenArrays function from the limma R package. The probe expression values were 

mapped to gene expressions using the probe set annotations from GEO (GEO accession: 
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GPL570). The final dataset consists of 29 MDD cases, and 29 controls (total of 58). This dataset 

will be referred to as the external brain mRNA dataset in subsequent sections. 

We also obtained another MDD dataset from dbGaP (dbGaP Study Accession: 

phs000486.v1.p1) consisting of blood-based gene expression data (RNA quantified by the 

Affymetrix U219 expression assays platform) from the blood cells of patients with major 

depression and healthy controls. The dataset consists of two different cohorts of patients and 

controls (Netherland Twin Register and Netherlands Study of Depression and Anxiety 

(NESDA)). Due to possible confounding from structural differences between the two cohorts, 

lack of MDD cases in the NTR cohort, as well as differences in sample preparation, we 

performed our analysis using patients and controls from only the NESDA cohort. The NESDA 

cohort consists of 1581 MDD cases and 369 healthy controls aged 18 and above (total of 1950).  

The dataset was normalized using the normalizeBetweenArrays function from the limma R 

package. Probe expression values were mapped to gene expressions based on the probe set 

annotations from GEO (GEO accession: GPL13667). Further, we checked for outlier subjects 

based on inspection of subject-wise boxplots and a covariate-annotated plot of principal 

components 1 and 2. Lastly, we explored the differences in covariates between MDD cases and 

controls. This dataset will be referred to as the blood mRNA dataset in subsequent sections. 

 

ML algorithm selection 

 Many powerful ML algorithms render themselves uninterpretable, making it difficult to 

understand their decision-making process. We used a state-of-the-art yet interpretable 

regularized gradient boosted machines (GBM) approach, XGBoost implementation, (Chen & 

Guestrin), which has been proved successful in a wide range of tasks, as illustrated in a recent 
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study from our group (Trakadis et al., 2018). Its highly regularized built-in feature selection and 

reduction characteristic and ability to rank features based on their relative importance to its 

decision process made it a great candidate for our study. Of note, a regularized algorithm 

penalizes itself for complexity, and thus uses only features that are relevant and brings the most 

intelligence to its architecture. In our study, this means selecting only transcriptomic features that 

have high predictive power and discarding the less informative ones. 

 

Machine learning analysis 

For each ML analysis performed, we randomly sampled 80% of the full dataset to be the 

training set, to identify the best classification model, and 20% to be the testing set for 

independent evaluation. For the brain mRNA dataset, the training set consisted of 103 MDD 

cases and 80 controls. The testing set consisted of 23 MDD cases and 23 controls. For the blood 

mRNA dataset, the training set consisted of 1267 MDD cases and 293 controls. The testing set 

consisted of 314 MDD cases and 76 controls. To ensure the training and testing datasets are 

adequately similar, we performed a comparison of the subject covariates in the training vs. 

testing sets. 

For model selection, we used a 10-fold cross-validation combined with randomized 

hyperparameters approach repeated for 2500 iterations (i.e., training 2500 different models). The 

performance of each trained model is defined by the area under the receiver-operating-

characteristic (ROC) curve (AUC), with cases being the positive class, averaged over all 10 

cross-validation folds. We then repeated the above procedure to select the best baseline model 

(i.e., a model trained using the same cross-validation approach but with randomly permuted 

labels). Given the large number of models being trained (2500) and the complexity of the models, 
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it may be possible to pick an overfit model by chance. The baseline model, therefore, is used as a 

comparison of how well the model selection procedure performed by chance based on random 

permuted labels. To assess whether performance of the trained model is higher than chance, a 

one-sided Wilcoxon signed-rank test is used to compare the AUC values on each cross-

validation fold between the best baseline and best trained model for significance. In order to 

apply the Wilcoxon signed-rank tests, the equivalence of the cross-validation folds is maintained 

between the trained vs. baseline model by utilizing consecutive splitting of the same already 

shuffled training set into 10-folds. 

Lastly, the hyperparameters of the ML algorithm (e.g., number of boosting iterations, 

max-depth of trees, learning rate, etc.) from the best trained model with the best average AUC 

from 10-fold cross-validation are extracted. Using these extracted hyperparameters, the model is 

retrained on the full training set (without cross-validation to maximize sample size) to improve 

its performance before being evaluated on a holdout testing set (i.e., the data which was not used 

during the training phase). 

 

Classification of cases and controls based on gene expression data 

We trained binary classification models using the above-described approach to 

distinguish MDD cases from controls for both the brain mRNA and the blood mRNA datasets. To 

assess the best trained model, we calculated and plotted the ROC curve based on the testing set. 

In order to calculate the classification accuracy, the predicted class probabilities of each testing 

set sample need to be converted to a discrete case or control classification. A high probability 

means the sample is more likely to be a “case,” and a low probability means the sample is more 

likely to be a “control.” An optimal probability cutoff threshold is needed in order to split the 
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samples into the discrete classes. To determine the optimal cutoff threshold, we averaged the best 

cutoff values derived from the ROC curves from each cross-validation fold during training. The 

best cutoff is defined as the probability threshold dividing the cases and controls classes which 

maximized the number of true positive classifications and minimized the number of false-

positive classifications (i.e., maximizing the area under the ROC curve). After a discrete class 

was assigned to the testing set samples, we calculated an overall balanced accuracy metric. The 

balanced accuracy adjusts for imbalanced classes and is defined as the arithmetic mean of the 

sensitivity and specificity of a classifier. The balanced accuracy is equivalent to regular accuracy 

in the case of balanced class sizes (i.e., total number of correct predictions divided by total 

number of predictions). Furthermore, we looked at the balanced classification accuracy from 

high to low prediction confidence levels (i.e., deviation from the optimal cutoff threshold, where 

a larger deviation means higher confidence). The following technique was used to generate a plot 

of rolling (high to low) balanced accuracy values for the testing set. First, predictions are sorted 

from the highest confidence to the lowest. Then, starting with a window of the top n (where n 

determines the size of the window) most confident predictions, a balanced accuracy is calculated. 

The size of the window n is chosen based on the size of the testing set, with testing sets with a 

higher number of samples or more class imbalance having a larger window size, in order to 

adequately capture samples from both classes for balanced accuracy calculation. The window 

shifts down by one each time, and the balanced accuracy calculation process repeats until the end 

of the confidence-ordered testing set is reached. A graph is then generated to visualize the rolling 

trend of balanced accuracy from highest to lowest prediction confidence subsets. 

Lastly, to provide a more detailed interpretation of covariate subgroup performance of the 

ML model, we summarized the number of 1) correctly classified MDD cases, 2) incorrectly 
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classified MDD cases, 3) correctly classified controls, and 4) incorrectly classified controls under 

each covariate subgroup (i.e., male vs. female, smoker vs. non-smoker etc.). This was done to 

assess for the consistency of the classification performance and identify any interactions between 

subgroups of covariates and classification performance. 

 

Classification of cases and controls based on gene expression and covariates 

 Using the approaches described in the previous section, we trained an ML model based 

on only covariates (sex, smoker status, alcohol status, weight, and height) from the brain mRNA 

dataset to distinguish MDD cases from controls. We also repeated the analysis by training an ML 

model based on both covariates and gene expression data. With regards to training/cross-

validation and testing set samples the same approach was used, as described before. We 

compared the 10-fold cross-validation performance from the best performing model trained on 1) 

gene expressions only (from the above section), 2) covariates only, and 3) covariates and gene 

expressions, using a two-sided Wilcoxon signed-rank test. 

 

External validation of ML classifier 

Although a separate testing set and subgroup performance analysis is used for evaluation 

of the ML models from the above sections, we obtained the external brain mRNA dataset to 

perform external validation of our ML results from the brain mRNA dataset and support their 

generalizability. 

 The external brain mRNA dataset consists of an equal number of matched cases and 

controls. However, it is not directly comparable with the original brain mRNA dataset since they 

are obtained from different array platforms. Thus, to be able to perform external validation of the 
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findings, we trained a separate logistic regression model based on the gene features selected by 

the XGBoost algorithm (XGBoost genes). Specifically, both the brain mRNA and external brain 

mRNA datasets were filtered for the common set of XGBoost genes. The gene feature columns in 

both filtered datasets were separately standardized to have zero mean and unit variance for 

compatibility. Next, the brain mRNA dataset was used for training the logistic regression model. 

Here, 10-fold cross-validation along with an exhaustive grid-search for hyperparameters 

(regularization method and weight) was performed to select the model with the highest mean 

AUC on the 10-fold cross-validation. The resulting hyperparameters were then used to refit the 

model on the whole brain mRNA dataset to produce the final logistic regression classifier. Lastly, 

the classifier was evaluated on the external brain mRNA dataset. 

 

Gene set analyses 

  Differential expression statistics were obtained for each gene through the R limma 

package (version 3.42.0) using the full set of cases and controls adjusted for covariates (age, sex, 

smoker status, alcohol status, postmortem interval, and pH). To investigate the underlying 

pathophysiology of MDD, we performed gene set analyses (GSA) using all genes available with 

the cases against controls from the brain mRNA dataset. GSA tests for altered expression for 

groups of genes (gene sets) between two classes (i.e., cases vs. controls). A gene set can 

represent a group of genes with a similar function or activity, or a group of genes belonging to 

the same biological process or pathway. We obtained the Gene Ontology (GO) molecular 

function gene sets from MSigDB (Liberzon et al., 2011) as the source for gene sets. The GO 

molecular functions gene sets group genes based on related activities performed by single or 

multiple gene products. GSA was performed using the R piano package (version 2.6.0) (Varemo, 
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Nielsen, & Nookaew, 2013). We applied the consensus ranking method from the piano tool by 

combining gene set significance results from all available GSA methods from piano (section 4.3 

from Wigge and Nookaew (2020)). Any gene sets with a consensus ranking above 10 in any of 

the five piano directionality classes (i.e., five specific ways the gene sets can be significantly 

altered; section 4.4.2 from Wigge and Nookaew (2020)) were selected to be important, (i.e., 

different between cases and controls). 

 

Gene set re-ranking with ML genes 

As described above, the piano GSA method identified GO molecular functions gene sets 

exhibiting different expression between cases and controls. We performed a secondary 

enrichment analysis to augment the ranking of the gene sets derived from piano based on the 

genes utilized by the XGBoost model trained on the brain mRNA dataset (XGBoost genes) 

mentioned above. More specifically, a hypergeometric test was performed to determine which 

gene sets were enriched among the ML genes used to separate MDD cases from controls. We 

applied the Benjamini–Hochberg procedure to adjust the false-discovery rate (FDR) with alpha 

set to 0.1. 

 

Results 

 

 For the brain mRNA dataset, the training set consisted of 103 MDD cases and 80 controls. 

The testing set consisted of 23 MDD cases and 23 controls. For the blood mRNA dataset, the 

training set consisted of 1267 MDD cases and 293 controls. The testing set consisted of 314 

MDD cases and 76 controls. We performed a comparison of the subject covariates in the training 
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vs. testing sets and confirmed that the training and testing datasets are adequately similar 

(Supplemental Tables 1 and 2 for the brain mRNA and blood mRNA datasets, respectively). 

 

Brain mRNA dataset 

We obtained the best classification models based on our model selection procedure. For 

the brain mRNA dataset, the best model trained using only gene expression data for 

discriminating MDD cases from controls had an average AUC of 0.72 (standard deviation (SD): 

0.10) over 10 cross-validation folds. In contrast, the best baseline model trained using the same 

dataset but with randomly permuted labels had an average AUC of 0.55 (SD: 0.12). Comparison 

between the 10-fold cross-validation AUCs of the trained and baseline models with the 

Wilcoxon signed-rank test showed that the performance of the trained model was significantly 

greater than that of the baseline model (p-value: 0.0048), suggesting that the performance was 

greater than expected by chance. After refitting the best model based on the entire dataset, a total 

of 62 genes were utilized in the final model (Supplemental Table 3). The final model achieved an 

AUC of 0.76 on the testing set (Figure 1A). After dividing the predictions into binary classes 

based on the optimal ROC cutoff estimated from cross-validation, the actual classification results 

are shown in a confusion matrix (Figure 1B). The overall balanced accuracy of all testing 

samples was 67%, with the most confident predictions having a balanced accuracy of around 85% 

(Figure 1C). The training AUC, baseline AUC, p-value, and testing set AUC of the external 

brain mRNA dataset are shown in Table 1. 

The differences in covariates between MDD cases and controls are summarized in 

Supplemental Table 4. We did not identify any major differences between correctly and 

incorrectly classified MDD cases and controls in each of the subgroups (Supplemental Table 5). 
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The training AUC, baseline AUC, p-value, and testing set AUC of the brain mRNA dataset are 

shown in Table 1. 

 Next, we compared a classification model trained using covariates only. The covariates 

only model had an average 10-fold cross-validation AUC of 0.83 (SD: 0.075). This is consistent 

with the significant differences noted between MDD subjects and controls, in terms of their 

covariates (Supplemental Table 4). However, when we trained a model using covariates and 

gene expressions we observed an average 10-fold cross-validation AUC of 0.71 (SD: 0.087). We 

compared the AUC obtained on each cross-validation fold to determine whether the AUCs 

obtained from each of the models and found that the covariates only model performed higher 

than the gene expressions only and covariates and gene expressions models (p-values of 0.049 

and 0.0039, respectively). Of note, adding covariates did not have a significant impact on 

classification performance. We observed no difference between the gene expressions only versus 

covariates and gene expressions models (p-value of 0.77). 

 

External brain mRNA dataset 

We evaluated the ML model on the external brain mRNA dataset, after training a logistic 

regression model on the brain mRNA dataset, using only the genes of the XGBoost classifier. 

Only 49 of the genes in the external brain mRNA dataset overlapped with the original XGBoost 

genes (i.e. 79% of the XGBoost classifier genes). The best cross-validated logistic regression 

model based on the brain mRNA dataset and these 49 genes had an average 10-fold cross-

validation AUC of 0.91 (SD: 0.049). After refitting on the whole brain mRNA dataset, the AUC 

performance of the classifier on the external brain mRNA dataset was found to be 0.62 (Figure 

2A). The overall balanced accuracy value was 62% (Figure 2B), with more confident predictions 
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having a balanced accuracy of around 72% (Figure 2C). To understand the directional effect of 

each gene, we plotted the logistic regression coefficients of each gene in the model (Figure 3). 

The training AUC, baseline AUC, p-value, and testing set AUC of the external brain mRNA 

dataset are shown in Table 1. 

 

Gene set analysis 

Lastly, we applied the GSA method to find which GO molecular functions gene sets 

exhibit different expression patterns for the brain mRNA cases vs. controls. The piano consensus 

GSA was used to prioritize GO molecular functions gene sets (n=1645). Forty gene sets were 

prioritized using the brain mRNA data. We then determined which of the prioritized gene sets 

were significantly enriched in our set of ML genes via the hypergeometric distribution p-values 

and FDR correction with alpha set to 0.1. Metalloaminopeptidase activity (mixed-directional up-

regulated in MDD; FDR: 0.019), oxidoreductase activity acting on a heme group of donors 

(distinct directional down-regulated in MDD; FDR: 0.019), and aminopeptidase activity (mixed-

directional up-regulated in MDD; FDR: 0.029) were found to be significant gene sets. The ML 

genes that overlap with these gene sets are ENPEP, COX6A1 (Supplemental Table 6). The 

dysregulation directionalities of the gene sets are also consistent with the directionalities of the 

gene coefficients for ENPEP (positive coefficient) and COX6A1 (negative coefficient) (Figure 3). 

 

Blood mRNA dataset 

 We then repeated the gene expression classification analyses with the blood mRNA 

dataset for discriminating all 1581 MDD cases from 369 controls. We found that the best trained 

model achieved an average cross-validation AUC of 0.64 (SD: 0.041). In comparison, the best 
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baseline model achieved an AUC of 0.56 (SD: 0.030). The Wilcoxon signed-rank test showed 

that the performance of the best trained model was significantly better than the baseline model 

(p-value: 0.0020). After refitting on the whole training set, the model utilized a total of 1376 

genes (Supplemental Table 7) and achieved an AUC of 0.61 (Figure 4A). The overall balanced 

accuracy was 56% on the testing set (Figure 4B), with the most confident predictions having a 

balanced accuracy of around 60% (Figure 4C). We summarized the differences in covariates 

between MDD cases and controls in Supplemental Table 8. When performing the covariate 

subgroups analysis, we observed a significant interaction between classification performance and 

subjects’ smoker status (p-value: 0.0024; Supplemental Table 9), in which a correct prediction 

was more likely given an MDD case was a smoker (58% (79/136) correct predictions 

conditioned on MDD case being a smoker, vs. 43% (77/178) correct conditioned on MDD case 

being a non-smoker). Furthermore, no major difference was observed for controls (60% correct 

for smokers vs. 64% correct for non-smokers). The values for the training AUC, baseline AUC, 

p-value, and testing set AUC of the blood mRNA dataset are shown in Table 1.   

 

Discussion 

 

ML classification performance 

We were able to successfully discriminate between MDD cases and controls using post-

mortem brain mRNA data (AUC:0.72). Furthermore, based on the gene features identified, we 

performed external validation using DLPFC gene expression values from an independent cohort 

of matched MDD cases (n=29) and controls (n=29) (AUC:0.62). We observed a lower 

performance on the external brain mRNA dataset. This should be expected due to the differences 

in array platforms (Illumina vs. Affymetrix) used to acquire the gene expression data between 
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the datasets, as well as differences in sample preparation. Of note, although the overall balanced 

accuracy value for the external brain mRNA dataset was 62% (Figure 2B), more confident 

predictions had a balanced accuracy of around 72% (Figure 2C). 

Overall, our model evaluations provide a more reliable and conservative measure of ML 

performance compared with prior studies (Bhak et al., 2019; Guilloux et al., 2015; Khodayari-

Rostamabad, Reilly, Hasey, Debruin, & Maccrimmon, 2010; Yi et al., 2012; Yu et al., 2016). 

Specifically, previously published studies perform feature selection, often through DEG analysis, 

and training of the ML classifier based on the set of preselected features, on the same dataset 

(Bhak et al., 2019; Yi et al., 2012). Further, evaluation of ML performance is through only a k-

fold cross-validations step, without a final held-out testing set (which was not used during model 

selection), or an independent cohort (Bhak et al., 2019; Khodayari-Rostamabad et al., 2010; Yi et 

al., 2012; Yu et al., 2016). Although the performance measures from cross-validations on the 

same dataset reflect internal validation for a classifier, they do not reflect the generalizability or 

replicability of the model, which requires external validation with fully independent data 

(Steyerberg & Harrell, 2016). An independent validation MDD cohort was previously only 

included in the study by Guilloux et al. (2015). However, even in this study, the reported 

prediction performance was based on cross-validation in the validation cohort (i.e., training a 

model and evaluating on the same validation cohort), and not truly external validation, which 

requires that the data not be used during the model training process.  

In our study, not only did we calculate the AUC of the classifier on a previously unused 

testing-set of our dataset (i.e. a subset of data which was used during any training or cross-

validation process), but we also reported the model performance based on external validation on 

an independent cohort. This suggests that our findings represent a more accurate reflection of 
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model generalization, as compared to past studies. Moreover, our study utilized datasets with 

relatively larger sample sizes (n=229 for brain mRNA, n=58 for external brain mRNA, and 

n=1950 for blood mRNA) compared with the similar studies (n=182 for Bhak et al. (2019); n=64 

for Yu et al. (2016); n=24 for Yi et al. (2012)) previously published. Sample size is important in 

ML, as it can help prevent overfitting and improve the generalizability of the findings. Another 

point that sets our study apart is that when classifying MDD subjects and controls, we explored 

the use of covariate data, in addition to gene expression data. Using only the covariate data, the 

ML classification performance was higher when compared with using only gene expression data. 

This comes as no surprise given the significant differences between MDD subjects and controls 

on most of the covariates (Supplemental Table 4). However, we did not observe an increase in 

classification performance when covariates were added to gene expressions, as compared to 

using only gene expressions. This could be due to the fact that the XGBoost algorithm does not 

perform an exhaustive search over all possible splits when selecting features in constructing a 

tree. Rather, it uses an approximate algorithm for split finding during tree learning, which 

attempts to find an approximate split for each feature (Chen & Guestrin). Thus, it is possible that 

the approximate splits for the covariates were less optimal, when compared with the much larger 

number of gene features with more optimal approximations, and were thus not selected to be 

incorporated into the model.  

However, our covariate subgroups analysis using the blood mRNA dataset, revealed a 

significant interaction between smoker status and a higher recall performance for MDD (58% 

conditioned on smoker cases vs. 43% conditioned on non-smoker cases). There is a known 

positive association between smoking and depression (Fluharty, Taylor, Grabski, & Munafò, 

2017), with recent Mendelian randomization studies supporting a causal effect of smoking on 
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depression (Wootton et al., 2020; Yuan, Yao, & Larsson, 2020). Smoking is also known to 

influence the expression of several genes (Kopa & Pawliczak, 2018). By conditioning on the 

smoker status variable, we have eliminated/controlled for the confounding effects of smoker 

status. Thus, combined with current literature, our finding of higher recall performance in the 

smoker subgroup of MDD cases suggest that there may be specific differences in gene 

expressions in MDD cases who are smokers, as compared with the ones who are not. However, 

since smoker status is controlled for, these differences are not due to the effect of smoking. They 

may characterize a subtype of MDD patients with distinct (shared) pathophysiology. 

 

Lessons on pathophysiology 

To advance our knowledge of genes which are important in the pathophysiology of MDD, 

we implemented a novel approach using the brain mRNA dataset. We highlighted the GO 

molecular function gene sets that are important based on the differentially expressed genes, as 

well as, based on the genes identified through the ML classifier. First, we performed a univariate 

differential gene expression analysis contrasting MDD cases and controls based on all genes in 

the dataset, while adjusting for covariates. We prioritized the ten top-ranked gene sets in each 

directionality category based on the robust consensus gene set analysis method from the piano 

bioinformatic tool. The differential gene expression with piano approach has the benefit of 

utilizing the full set of gene expressions available; however, this approach also results in a lot of 

gene sets that may not be relevant to MDD. To address this, we re-ranked the gene sets using the 

genes identified through the ML classifier, based on a hypergeometric test and FDR adjustment. 

This approach allowed us to focus on the most important gene sets which are significantly 

differentially expressed based on both the univariate analysis using all genes, as well as the ones 

significantly enriched among the ML genes. Such robust genes can be important in the 
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pathophysiology of MDD and the identification of novel candidate treatments. Based on this 

approach, we highlight the role of over-expression of the metalloaminopeptidase activity, 

oxidoreductase activity acting on a heme group of donors, and aminopeptidase activity in MDD 

pathophysiology. The specific genes from the ML model that overlap with these gene sets are 

ENPEP and COX6A1. 

Our review of the literature revealed prior evidence for a link of these two key genes to 

MDD, supporting that the molecular processes mediated by these genes may be relevant for 

MDD. The ENPEP gene encodes glutamyl aminopeptidase, which converts angiotensin II to 

angiotensin III for up-regulating blood pressure as a major part of the renin-angiotensin system 

(RAS) (Holmes, Spradling-Reeves, & Cox, 2017). Interestingly, the RAS has been proposed to 

be a potential drug target in depression, with several studies finding angiotensin-converting 

enzyme inhibitors and angiotensin receptor blockers to be effective in depression (Vian et al., 

2017). This is consistent with our findings of an up-regulation of ENPEP in MDD cases. The 

other gene that was highlighted with our novel approach, namely COX6A1, encodes a subunit of 

the cytochrome c oxidase (COX). COX is involved in the oxidative phosphorylation (OXPHOS) 

process in ATP production. Lowered activity of COX and other defects in the OXPHOS process 

leading to lowered ATP production have been reported in both patients with depression and 

relevant animal models (Allen, Romay-Tallon, Brymer, Caruncho, & Kalynchuk, 2018).  

We also performed a literature review on the top 20 genes, which were identified based 

on the brain mRNA dataset (Supplemental Table 3). Overall, we have identified links to MDD in 

literature for 11 genes (CX3CR1, TMEM245, COL4A1, PRAMEF1, TMEM52, A2M, DDC-AS1, 

GRP88, GALR3, VPS53, CRYBA1), in addition to ENPEP and COX6A1 mentioned above. 

CX3CR1 and A2M had the most literature reports linked to MDD. CX3CR1 encodes the C-X3-C 
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Motif Chemokine Receptor 1 and has been reported to be up-regulated in microglia cells of 

MDD patients (Snijders et al., 2020), as well as, in single-cell analysis of CD11b cells of MDD 

patients (Böttcher et al., 2020). In a mouse model with lipopolysaccharide- induced depression, 

increased depression-like behavior was observed in CX3CR1 knockout mice vs. control mice 

(Corona et al., 2010). The finding from this study is consistent with the down-regulation of 

CX3CR1 in the DLPFC of MDD patients noted in our study (Figure 3). Our study also shows a 

decrease in A2M expression in MDD patients. A2M encodes Alpha-2-Macroglobulin and has 

been previously identified as a candidate MDD susceptibility gene. Genetic polymorphisms 

within the gene were found to be significantly associated with MDD (Zhao et al., 2020). 

Similarly, there are reports of increased A2M expression in whole blood of MDD patients 

(Cattaneo et al., 2020). Other genes worth highlighting include CRYBA1, GALR3, GPR88, and 

DDC-AS1. The largest GWAS study conducted for MDD has identified a significant variant 

located within the CRYBA1 gene (Wray et al., 2018). GALR3 encodes for Galanin Receptor Type 

3, and this pathway has been linked to depression (Kuteeva et al. (2008). GPR88 (Del Zompo et 

al. (2014); Logue et al. (2009) and DDC-AS1, a long non-coding RNA in the antisense direction 

of the DDC gene (Giardina et al., 2011) (Børglum et al., 1999) have been linked to mood 

disorders and to the metabolism of different neurotransmitters (dopamine and serotonin). 

 

Conclusion and Future Directions 

In conclusion, we have shown that ML analysis of gene expression data could effectively 

distinguish MDD cases from controls and further our understanding of the pathophysiology of 

MDD. Our results support that the genes identified based on the brain mRNA dataset are 

important for MDD. However, we need larger sample sizes to account for the heterogeneity of 
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MDD and allow for precision medicine. In support of this statement, although the overall 

balanced accuracy value for both the brain mRNA dataset and the external brain mRNA dataset 

are not ideal, both ML algorithm performance results were significant, and more confident 

predictions had a higher balanced accuracy. The findings from brain mRNA data may be more 

useful for the development of new treatment options, than those from blood mRNA data, given 

their relevance to MDD pathophysiology. Although, our results using blood mRNA data were 

less good, the trained model performed significantly better than the baseline model. Moreover, 

our covariate subgroups analysis using the blood mRNA dataset, revealed a significant interaction 

between smoker status and a higher recall performance for MDD. The differences at the 

transcriptomic level noted in this subgroup of patients are not due to the effect of smoking, given 

smoker status was controlled for in this analysis. Our results, along with the results from 

Guilloux et al. (2015), suggest that blood mRNA-based ML models are also very promising, 

especially when analyzed along with covariate data. They can potentially serve as a valuable tool 

for precision medicine in MDD with regards to identifying subtypes of patients with unique 

pathophysiology, and for informing diagnosis, prognosis, treatment selection and response 

monitoring. 

With regards to future directions, it would be interesting to perform an ML analysis using 

transcriptomics, along with other laboratory data. Several ML studies in MDD have used 

magnetic resonance imaging (MRI) based datatypes (S. Gao, Calhoun, & Sui, 2018). A study in 

2010 proposed an ML method which used successfully the patient’s pre-treatment 

electroencephalogram (EEG) to predict the individual’s response to selective serotonin reuptake 

inhibitors (SSRIs) (Khodayari-Rostamabad et al., 2010). Bhak et al. (2019) utilized a multi-

omics approach based on ML applied on blood transcriptomic and methylomic data, combined, 



114 
 

to distinguish between MDD cases, suicide attempters and controls. Combining multi-omics data 

with brain MRI and EEG data in a future ML study could lead to clinically useful results.  
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Figures and Tables 

 

Figure 1. Brain mRNA testing set results for discriminating MDD cases vs. controls. 

A.                                                                              B.  
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Figure 1. After obtaining the best trained classification model for discriminating between MDD 

cases vs. controls from the brain mRNA dataset, several metrics were used to assess the 

performance of the model on a previously unseen testing set (20% of the full dataset). Figure 1A 

shows the ROC curve for model predictions. The x-axis of the curve shows the false-positive rate 

(FPR) and the y-axis shows the TPR for a given probability cutoff threshold. The area under the 
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ROC is 0.76, suggesting that the model performs above random chance (red dashed line). Figure 

1B shows the actual classifications based on the best positive-negative class cutoff threshold 

estimated from cross-validation during training. The overall balanced accuracy was 67%. Figure 

1C shows the prediction-confidence-ranked rolling balanced accuracy plot, which shows the 

trend of balanced classification accuracy (i.e., average of sensitivity and specificity) of the most 

confident subset of predictions to the least confident subset of predictions (x-axis left to right) for 

the testing set samples. The rolling window size n is set to 10 for calculating the balanced 

accuracies. The y-axis shows the balanced accuracy value for each subset of predictions. The 

most-confident predictions generally have a balanced accuracy of ~85%. 

CTL: Control; FPR: false-positive rate; MDD: Major depression;  

ROC: receiver-operating characteristics curve; TPR: true-positive rate  
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Figure 2. External brain mRNA testing set results for discriminating MDD cases vs. 

controls. 

A.                                                                              B.  
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Figure 2. After training a logistic regression model for discriminating between MDD cases vs. 

controls using the brain mRNA dataset, several metrics were used to assess the performance of 

the model on the external brain mRNA dataset testing set (n=58). Figure 2A shows the ROC 

curve for model predictions. The x-axis of the curve shows the FPR and the y-axis shows the 

TPR for a given probability cutoff threshold. The area under the ROC is 0.62, suggesting that the 

model performs above random chance (red dashed line). Figure 2B shows the actual 

classifications based on the best positive-negative class cutoff threshold estimated from cross-

validation during training. The overall balanced accuracy was 62%. Figure 2C shows the 

prediction-confidence-ranked rolling balanced accuracy plot, which shows the trend of balanced 
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classification accuracy (i.e., average of sensitivity and specificity) of the most confident subset of 

predictions to the least confident subset of predictions (x-axis left to right) for the testing set 

samples. The rolling window size n is set to 20 for calculating the balanced accuracies. The y-

axis shows the balanced accuracy value for each subset of predictions. The most-confident 

predictions generally have a balanced accuracy of ~72%. 

CTL: Control; FPR: false-positive rate; MDD: Major depression;  

ROC: receiver-operating characteristics curve; TPR: true-positive rate  
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Figure 3. Logistic regression coefficients for gene features. 

 

Figure 3. A logistic regression model was trained based on the XGBoost prioritized genes using 

the brain mRNA dataset. Evaluation of the model was performed using the external brain mRNA 

dataset. The coefficients of each gene features in the final trained model were extracted and 

plotted. A positive coefficient indicates that an increase in the gene expression will increase the 
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likelihood for MDD. A negative coefficient indicates that a decrease in the gene expression will 

increase the likelihood for MDD. 

 

Figure 4. Blood mRNA testing set results for discriminating MDD cases vs. controls. 

A.                                                                              B.  
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Figure 4. After obtaining the best trained classification model for discriminating between MDD 

cases vs. controls from the blood mRNA dataset, several metrics were used to assess the 

performance of the model on a previously unseen testing set (20% of the full dataset). Figure 4A 

shows the ROC curve for model predictions. The x-axis of the curve shows the FPR and the y-

axis shows the TPR for a given probability cutoff threshold. The area under the ROC is 0.61, 

suggesting that the model performs above random chance (red dashed line). Figure 4B shows the 
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actual classifications based on the best positive-negative class cutoff threshold estimated from 

cross-validation during training. The overall balanced accuracy was 56%. Figure 4C shows the 

prediction-confidence-ranked rolling balanced accuracy plot, which shows the trend of balanced 

classification accuracy (i.e., average of sensitivity and specificity) of the most confident subset of 

predictions to the least confident subset of predictions (x-axis left to right) for the testing set 

samples. The rolling window size n is set to 100 for calculating the balanced accuracies. The y-

axis shows the balanced accuracy value for each subset of predictions. The most-confident 

predictions generally have a balanced accuracy of ~60%.  

CTL: Control; FPR: false-positive rate; MDD: Major depression;  

ROC: receiver-operating characteristics curve; TPR: true-positive rate  

 

 

Table 1. Model cross-validation and testing set AUC scores (gene expression data models). 

Classification 

task 

Mean AUC (SD) 

of trained model 

from cross-

validation 

Mean AUC (SD) 

of baseline 

model from 

cross-validation 

Wilcoxon 

signed-rank 

test p-values 

Testing set AUC 

for retrained 

model 

Brain mRNA – 

MDD vs. controls 

0.72 (0.10) 0.55 (0.12) 0.0048 0.76 

Blood mRNA – All 

MDD vs. controls 

0.64 (0.041) 0.56 (0.030) 0.0020 0.61 

 

Table 1. This table summarizes the average area under the receiver-operating characteristics 

curve (AUC) from 10-fold cross-validation for the best trained models and the best baseline 

models for each of the classification analyses. The Wilcoxon signed-rank test was used to 

compare the AUC from the trained model against the baseline model. P-values from these 

comparisons are shown. After retraining the best model on the full training set, an evaluation was 

conducted on the testing set and the resulting AUCs are listed. 
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Supplemental Figures and Tables 

 

Supplemental Table 1. Summary of the covariates between the training and testing sets from the 

brain mRNA dataset. 

 Training Testing Test 

statistic 

P-value 

Diagnosis 0.36 0.55 

Diagnosis (Control) 80 23   

Diagnosis (MDD) 103 23   

Sex 0.092 0.76 

Sex (F) 53 15   

Sex (M) 130 31   

Smoker status 0.19 0.91 

Smoker status (No) 106 25   

Smoker status (Unknown) 18 5   

Smoker status (Yes) 59 16   

Alcohol status 0.0068 0.93 

Alcohol status (Negative) 126 33   

Alcohol status (Positive) 21 6   

Antipsychotic status 1.38 0.50 

Antipsychotic status (Negative) 115 29   

Antipsychotic status (Not Tested) 24 9   

Antipsychotic status (Positive) 8 1   

Antidepressant status 1.27 0.53 

Antidepressant status (Negative) 92 23   

Antidepressant status (Not Tested) 23 9   

Antidepressant status (Positive) 32 7   

Mood stabilizer status 1.29 0.52 

Mood stabilizer status (Negative) 110 29   

Mood stabilizer status (Not Tested) 27 9   

Mood stabilizer status (Positive) 10 1   

Benzodiazepine status 3.60 0.17 

Benzodiazepine status (Negative) 124 30   

Benzodiazepine status (Not 

Tested) 

9 6   

Benzodiazepine status (Positive) 14 3   

Nicotine/cotinine status 2.33 0.31 

Nicotine/cotinine status (Negative) 95 20   

Nicotine/cotinine status (Not 

Tested) 

19 7   
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Nicotine/cotinine status (Positive) 33 12   

THC status 1.04 0.59 

THC status (Negative) 118 31   

THC status (Not Tested) 28 7   

THC status (Positive) 1 1   

Cocaine status 1.09 0.58 

Cocaine status (Negative) 136 37   

Cocaine status (Not Tested) 4 0   

Cocaine status (Positive) 7 2   

Opiates status 1.89 0.39 

Opiates status (Negative) 124 36   

Opiates status (Not Tested) 3 0   

Opiates status (Positive) 20 3   

Continuous variables 

Age 44.71 43.65 0.46 0.64 

pH 6.46 6.44 0.50 0.62 

Postmortem interval 32.68 29.98 0.91 0.36 

Height 68.63 68.19 0.65 0.52 

Weight 194.84 186.29 0.96 0.34 

 

Supplemental Table 1. A summary of the covariate differences between the training and testing set 

subjects is presented. For the categorical variables, a count of subjects within each sub-category by 

diagnosis status is performed, and a chi-squared test is used to obtain a p-value for the contingency table 

for each categorical variable. For the continuous variables, the group means for the training and testing set 

subjects are recorded. An independent t-test is then performed to obtain p-values for the difference 

between the groups. 
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Supplemental Table 2. Summary of the covariates between the training and testing sets from the 

blood mRNA dataset. 

 Training Testing Test 

statistic 

P-value 

Diagnosis 0.060 0.81 

Diagnosis (Control) 293 76   

Diagnosis (MDD) 1267 314   

Sex   0.16 0.69 

Sex (Female) 1037 264   

Sex (Male) 523 126   

Smoker status 0.059 0.81 

Smoker status (No) 923 234   

Smoker status (Yes) 637 156   

Alcohol status 3.39 0.18 

Alcohol status (No) 219 55   

Alcohol status (Unknown) 3 3   

Alcohol status (Yes) 1338 332   

Menostats 5.16 0.40 

Menostats ((Recent) pregnancy) 69 13   

Menostats (Male/NA) 523 126   

Menostats (Menopause, natural) 7 0   

Menostats (Menopause, operation or 

disease) 

288 69   

Menostats (Not in menopause) 656 180   

Menostats (Unknown) 17 2   

Education 1.75 0.46 

Education (Basic) 107 23   

Education (High) 520 143   

Education (Intermediate) 933 224   

Continuous variables 

Age 42.26 41.44 1.13 0.26 

BMI 25.80 25.51 1.01 0.31 

 

Supplemental Table 2. A summary of the covariate differences between the training and testing set 

subjects is presented. For the categorical variables, a count of subjects within each sub-category by 

diagnosis status is performed, and a chi-squared test is used to obtain a p-value for the contingency table 

for each categorical variable. For the continuous variables, the group means for the training and testing set 
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subjects are recorded. An independent t-test is then performed to obtain p-values for the difference 

between the groups. 
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Supplemental Table 3. List of all 62 genes selected by XGBoost algorithm in the construction of the 

classifier for distinguishing MDD cases from controls for the brain mRNA dataset, ranked from 

most important to least important. 

CX3CR1, TMEM245, SNORD103C, COL4A1, PRAMEF1, COX6A1, ENPEP, MSS51, LRP1B, TMEM52, A2M, DDC-

AS1, TDRD9, GPR88, CCL3L3, GALR3, PHLDB3, FAM86FP, VPS53, CRYBA1, ERV3-1, RASAL3, GTPBP4, ZNF511, 

MPND, SNORA6, NEFH, SLC28A3, DCTPP1, RAPGEFL1, CLEC7A, MIR616, MIR519E, SLC4A11, FLJ45513, 

GIMAP6, LY6E-DT, DEFB133, CDX4, CAMP, SLC10A6, VENTXP7, ORC2, GRIA2, ELANE, HOMEZ, CHTF18, 

DEFB136, PTPRC, SNORD18B, MIR599, NLRP13, EP400P1, NID1, ALDH3B1, LIPN, SNX29P1, HMGCS1, SNORD114-

17, TREX2, ABCC3, MIR1289-2 

 

 

 
Supplemental Table 4. Summary of the covariates between MDD cases and controls from the brain 

mRNA dataset. 

 MDD Control Test 

statistic 

P-value 

Sex   12.34 0.00044 

Sex (F) 50 18   

Sex (M) 76 85   

Smoker status 33.34 5.74E-08 

Smoker status (No) 51 80   

Smoker status (Unknown) 20 3   

Smoker status (Yes) 55 20   

Alcohol status 22.99 1.63E-06 

Alcohol status (Negative) 59 100   

Alcohol status (Positive) 24 3   

Antipsychotic status 23.40 8.29E-06 

Antipsychotic status (Negative) 69 75   

Antipsychotic status (Not Tested) 5 28   

Antipsychotic status (Positive) 9 0   

Antidepressant status 64.63 9.26E-15 

Antidepressant status (Negative) 39 76   

Antidepressant status (Not Tested) 5 27   

Antidepressant status (Positive) 39 0   

Mood stabilizer status 24.34 5.19E-06 

Mood stabilizer status (Negative) 68 71   

Mood stabilizer status (Not Tested) 5 31   

Mood stabilizer status (Positive) 10 1   

Benzodiazepine status 18.81 8.22E-05 

Benzodiazepine status (Negative) 62 92   
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Benzodiazepine status (Not 

Tested) 

5 10   

Benzodiazepine status (Positive) 16 1   

Nicotine/cotinine status 38.07 5.40E-09 

Nicotine/cotinine status (Negative) 35 80   

Nicotine/cotinine status (Not 

Tested) 

25 1   

Nicotine/cotinine status (Positive) 23 22   

THC status 46.70 7.24E-11 

THC status (Negative) 48 101   

THC status (Not Tested) 33 2   

THC status (Positive) 2 0   

Cocaine status 13.56 0.0011 

Cocaine status (Negative) 71 102   

Cocaine status (Not Tested) 3 1   

Cocaine status (Positive) 9 0   

Opiates status 24.16 5.68E-06 

Opiates status (Negative) 60 100   

Opiates status (Not Tested) 2 1   

Opiates status (Positive) 21 2   

Continuous variables 

Age 43.42 45.82 -1.30 0.19 

pH 6.38 6.55 -4.56 8.31E-06 

Postmortem interval 34.10 29.75 1.83 0.068 

Height 67.78 69.17 -2.48 0.014 

Weight 181.81 202.02 -2.78 0.0061 

 

Supplemental Table 4. A summary of the covariate differences between MDD cases and controls is 

presented. For the categorical variables, a count of subjects within each sub-category by diagnosis status 

is performed, and a chi-squared test is used to obtain a p-value for the contingency table for each 

categorical variable. For the continuous variables, the group means for the MDD cases and controls are 

recorded. An independent t-test is then performed to obtain p-values for the difference between the groups. 
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Supplemental Table 5. Summary of the covariates between the correctly and incorrectly classified 

subjects from the brain mRNA testing set. 

 Correct-

MDD 

Incorrect-

MDD 

Correct-

control 

Incorrect-

control 

Test 

statistic 

P-value BH-FDR 

Sex 5.08 0.17 0.24 

Sex (F) 9 2 2 2    

Sex (M) 9 3 11 8    

Smoker status 10.93 0.091 0.19 

Smoker status (No) 6 2 11 6    

Smoker status (Unknown) 4 1 0 0    

Smoker status (Yes) 8 2 2 4    

Alcohol status 7.12 0.068 0.18 

Alcohol status (Negative) 9 2 13 9    

Alcohol status (Positive) 3 2 0 1    

Antipsychotic status 8.61 0.20 0.24 

Antipsychotic status (Negative) 10 4 7 8    

Antipsychotic status (Not Tested) 1 0 6 2    

Antipsychotic status (Positive) 1 0 0 0    

Antidepressant status 16.30 0.012 0.098 

Antidepressant status (Negative) 6 2 7 8    

Antidepressant status (Not Tested) 1 0 6 2    

Antidepressant status (Positive) 5 2 0 0    

Mood stabilizer status 8.61 0.20 0.24 

Mood stabilizer status (Negative) 10 4 7 8    

Mood stabilizer status (Not Tested) 1 0 6 2    

Mood stabilizer status (Positive) 1 0 0 0    

Benzodiazepine status 8.11 0.23 0.26 

Benzodiazepine status (Negative) 9 3 9 9    

Benzodiazepine status (Not Tested) 1 0 4 1    

Benzodiazepine status (Positive) 2 1 0 0    

Nicotine/cotinine status 19.20 0.0038 0.061 

Nicotine/cotinine status (Negative) 2 1 11 6    

Nicotine/cotinine status (Not 

Tested) 

6 1 0 0    

Nicotine/cotinine status (Positive) 4 2 2 4    

THC status 10.80 0.095 0.19 

THC status (Negative) 6 3 12 10    

THC status (Not Tested) 5 1 1 0    

THC status (Positive) 1 0 0 0    

Cocaine status 4.74 0.19 0.24 

Cocaine status (Negative) 10 4 13 10    
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Cocaine status (Positive) 2 0 0 0    

Opiates status 7.31 0.063 0.18 

Opiates status (Negative) 9 4 13 10    

Opiates status (Positive) 3 0 0 0    

Continuous variables  

Age 39.72 40.60 44.69 50.90 1.82 0.16 0.24 

pH 6.31 6.51 6.46 6.60 2.64 0.062 0.18 

Postmortem interval 30.47 29.60 28.85 30.75 0.059 0.98 0.98 

Height 67.02 65.88 70.46 67.80 2.68 0.063 0.18 

Weight 173.50 187.00 207.73 173.50 1.11 0.36 0.38 

 

Supplemental Table 5. A summary of the covariate differences between the correctly classified MDD 

cases and controls, and the incorrectly classified MDD cases and controls is presented. For the categorical 

variables, a count of subjects within each sub-category by diagnosis status is performed, and a chi-

squared test is used to obtain a p-value for the contingency table for each categorical variable. For the 

continuous variables, the group means for the training and testing set subjects are recorded. A one-way 

ANOVA is then performed to obtain p-values for a difference between the groups. We then applied the 

Benjamini–Hochberg procedure to calculate the false-discovery rate (FDR) based on the p-values. 

BH-FDR: Benjamini–Hochberg false-discovery rate 
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Supplemental Table 6. Hypergeometric test of enrichment of piano ranked gene sets in machine learning model genes from brain mRNA 

dataset. 

Gene sets p-value BH-FDR # overlap Gene set size Overlapping ML genes 

      

GO_METALLOAMINOPEPTIDASE_A

CTIVITY 

0.001819 0.018576 1 22 ENPEP 

GO_OXIDOREDUCTASE_ACTIVITY_

ACTING_ON_A_HEME_GROUP_OF_

DONORS 

0.003377 0.018576 1 30 COX6A1 

GO_AMINOPEPTIDASE_ACTIVITY 0.007813 0.028647 1 46 ENPEP 

GO_ELECTRON_TRANSFER_ACTIVI

TY 

0.043164 0.118702 1 114 COX6A1 

GO_STRUCTURAL_MOLECULE_ACT

IVITY 

0.085157 0.187345 4 826 COL4A1, NEFH, NID1, CRYBA1 

GO_TRANSMEMBRANE_SIGNALING

_RECEPTOR_ACTIVITY 

0.155809 0.28565 5 1277 CX3CR1, GALR3, GRIA2, PTPRC, GPR88 

GO_G_PROTEIN_COUPLED_RECEPT

OR_ACTIVITY 

0.242579 0.381195 3 866 CX3CR1, GALR3, GPR88 

GO_RIBONUCLEOTIDE_BINDING 0.305626 0.420236 6 1891 TDRD9, ABCC3, GIMAP6, GTPBP4, CHTF18, 

NLRP13 

GO_DRUG_BINDING 0.392566 0.479803 5 1725 HMGCS1, TDRD9, ABCC3, CHTF18, NLRP13 

GO_ADENYL_NUCLEOTIDE_BINDIN

G 

0.481346 0.52948 4 1541 TDRD9, CHTF18, NLRP13, ABCC3 

GO_DNA_BINDING_TRANSCRIPTIO

N_FACTOR_ACTIVITY 

0.769717 0.769717 3 1701 CDX4, HOMEZ, ZNF511 

Supplemental Table 6. The machine learning (ML) model genes from the best trained model, using the brain mRNA dataset, were extracted. A 

secondary enrichment analysis was performed to rank the filtered gene sets obtained from the piano consensus gene set analysis method. A 

hypergeometric test was performed to determine which of the filtered gene sets were significantly enriched for the ML genes. We then applied the 

Benjamini–Hochberg procedure to calculate the false-discovery rate (FDR). The gene sets are then sorted from lowest to highest by the p-value. 
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ML: Machine learning 

BH-FDR: Benjamini–Hochberg false-discovery rate 
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Supplemental Table 7. List of all 1376 genes selected by XGBoost algorithm in the construction of 

the classifier for distinguishing MDD cases from controls for the blood mRNA dataset, ranked from 

most important to least important. 

ZMAT1, GPR4, RAB5C, FUNDC2, TMEM71, TNNC1, FASN, RPS15A, SLC39A4, TOR1A, FAM129A, C1orf74, LCLAT

1, C6orf25, PPP1R3A, SAR1B, SERPINA3, DTX3, LRRC25, OR2AK2, FNDC7, IRF7, CLDN18, MLLT3, RNASE11, SPA

NXN5, GOLT1B, ATF2, SCN3B, C17orf58, GPR64, LRRC14B, CAMK1D, ABCC13, COX4NB, PRUNE2, PPP1R2P9, CN

GA1, OR5B21, PRSS23, SFRP2, LPXN, ACTN1, AP3B1, ISG20L2, PHOSPHO2, ENOX1, SCG5, TUBA3D, IL3, APPL2, 

C17orf95, NKAIN1, OTUB2, PSIP1, IGL@, DENND4C, NPM3, FAM185A, KCNJ15, BCL2L10, PEA15, MTMR6, PAX1, 

SERPINA10, ARHGEF17, LIN7C, CXCL11, MIXL1, KIAA1486, MAGI2, CHST10, C6orf1, FAM200A, AKAP12, RPL24, 

LOC100294376, AMICA1, TRPC4, HYAL4, TCEAL5, GP2, CMAS, TAS2R5, MIOS, LY75, MYEOV, TBC1D9, SPDYE2,

 PVALB, NEFM, TGFBR3, NUP85, SLC25A32, RALYL, PIK3R6, SKIV2L, LOC647979, PXDN, PKP4, PTPN5, NRAP, P

ECAM1, PSMA6, ASB8, CCDC40, C14orf138, ENPP2, RNASEH1, RPL9, SENP8, KLRB1, SIRPG, TMED3, SLC25A38, 

VPS4B, CNTN4, KPNA3, GALM, CDK9, ELAVL4, BCL6B, ATG10, CDKN1C, C21orf88, TLL2, TERT, RND2, PIK3C2

G, PFKL, ZNF560, C10orf11, MAP1D, LEKR1, PLIN3, SLFNL1, COBL, NKAIN2, TCF23, NRXN1, TBC1D2, CCDC144

C, SOCS7, DOK5, ARHGEF37, NCKAP1, HTR1D, PLD3, ABCB7, CXCL6, C15orf54, CNO, CKAP2, DAD1, TAF10, RA

B6B, QTRTD1, ISL1, ZNF487, ZNF559, ANGPTL2, LRRC17, LOC284009, SLK, CNBP, ZNF229, FBXO36, IFRD2, GNG

3, DCAF11, KRTAP5-4, UBE2O, TPRKB, FAM127B, OR51B6, PRICKLE1, ZHX3, ATXN7L3B, ATF6, MED22, PPIH, P

RX, HCFC1R1, AGAP3, GKN1, DHX36, GPR128, CRTAP, SNORA84, PDCD1, C3orf36, GSTM3, POT1, C17orf42, ENT

PD5, SLC25A12, KRTAP20-2, CENPJ, ARF4, GPR133, PSMB4, ZNF43, ProSAPiP1, WDR11, ARHGEF33, C8orf4, PCDH

B17, LEPREL1, WIPI2, SLC38A8, LOC729815, ALDH3A1, ZNF479, MESDC1, SNORA58, MPPED1, AKR1CL1, CDK11

A, GCDH, FAM20A, ZNF718, TRAF7, C9orf167, NMT1, CXorf56, SCFD1, KRT9, KDELR3, SDPR, TMEM56, MTMR2, 

LCA5L, PKD1L3, RAB27B, DLG5, C11orf45, ST6GALNAC3, TRIM62, HOOK1, ARHGAP27, TAL1, ATP5G3, OSBPL1

0, CHRNB2, BAHD1, CISD2, RGMB, SEC11C, PHF6, BZW1L1, POGZ, ARFRP1, HIPK3, SRR, ZNF726, ADARB2, CO

MTD1, TPTE, DHRS11, FLYWCH2, IL22, OR4A15, FBN1, NETO2, MTA3, ZIM3, C19orf55, DKK4, CXXC5, FAM131A,

 PRSS48, ERVFRDE1, GNAZ, LOC100289511, PDZD3, ARL13B, NTM, BAG5, PITPNA, POU4F2, THRA, SFPQ, PRKA

B2, PPP2CB, C12orf69, CARNS1, CCRL2, SPAG11A, DBX1, ERP27, OR13F1, UQCRB, CNTN6, F9, PDE5A, SYN1, NT

5M, VPS11, RYR3, OR2Z1, ADAM17, OR52B6, TRIM23, FLJ41423, NUFIP1, PNN, ZNF572, Septin 4, BHLHE41, DBF4

B, PRSS42, CCDC157, CCDC144NL, TCF25, FLJ43950, CARHSP1, ZIC5, ELN, KIAA1875, HIST1H2BF, ODF4, ART4, 

FAM86C, CNTD2, CMTM8, FBXO45, PTPN4, RSL1D1, RTL1, SUN3, GLIPR1L2, RAD21L1, PMS2CL, NSUN5, HOXC1

3, MFHAS1, GRM5, KCNK16, ASH1L, COL7A1, FAH, MGC39372, FCGR3B, NIT2, PARVG, PIGB, ASB13, MFSD2B, 

RIMS4, THEM4, MESTIT1, C5orf54, VGLL3, GPR37L1, NHEDC2, NPBWR2, ANKZF1, SRGAP3, CCNE2, POC5, AKA

P5, AIM1, FRK, CLIP4, TRAK1, C1orf26, TSKS, NIPAL2, MAS1L, GAD2, ZKSCAN1, ING3, ARV1, CTDSP2, PRRG2, 

HECTD2, TJP1, TTLL9, ENDOG, OR2J2, RC3H2, SNX21, LOC348120, PABPC5, CIDEB, ZBTB7B, COLEC11, ZNF358, 

RIN3, WBP4, MAP3K14, IL2RB, IL10RA, BBX, GATA4, C14orf177, TOP2A, ILF2, FCGR3A, MEIS1, OCEL1, CCDC67, 

MEX3A, ZNF534, CBX6, CCDC33, FIGLA, CLRN3, WDR78, NXNL1, OR2L13, P2RY2, MAP1B, FER, APOA1BP, BCL

6, TFB1M, NUTF2, GRIK4, KIF5A, PPP1R1C, CLDN19, TSC22D1, PCDHGB1, ARHGEF11, DNAJC8, MYO1H, NUDT

4, LHCGR, EIF2AK3, RPS24, SNORA78, DENND4A, VDR, RNF44, NAPG, SMAD1, ADIPOR2, SAMD12, GPR81, ZNH

IT1, FAT2, PKD1, PTPRF, C3orf57, FKBP1A, ANKMY2, MAN1C1, TAC1, TDGF3, ODF3B, SNORD94, SGCG, DSC2, 

MYT1L, RNF151, H2AFZ, TUBB2A, TBX2, LUC7L2, RP1-177G6.2, IFI30, GHRL, PAOX, GART, TTBK1, KRTAP5-7, 

DPT, GLIS2, MMD2, MED7, INSIG2, CCDC89, KIAA0146, AMZ2, REG1P, AEN, CHST2, VEGFC, GPR15, C2CD3, CO

MMD6, SNX22, FLAD1, OSGIN1, BIN2, COPB2, FLRT2, CHCHD4, CLDND1, PCTP, TES, CRB2, C12orf59, TRIM25, C

CNB1, PEX6, HPD, ASCL4, C22orf29, EGFL8, CHPF2, C10orf79, SSR4, ZNF22, GNG5, AP2B1, KLK14, PSPH, NCRNA

00205, PLEKHA8, TMEM90B, KCNV2, DVL3, C6orf118, MED13, FAM65B, P2RY12, ZNF704, C10orf91, OR3A1, DNAJ

A2, ZCCHC3, EIF3A, PRF1, SMN2, FBXW2, ACAD9, ADAMTS13, KPRP, PIP5KL1, SLCO1B1, EID3, OR51M1, FLJ375

43, ACTRT2, CTPS, DYNC1H1, GLT6D1, C8orf17, ZNF362, C16orf13, PIGP, PNPLA3, C18orf1, CARS, SCNN1B, KCN

E4, FAM71C, WDR89, CAT, RBCK1, ZNF568, MTMR12, KRTAP13-1, RPS8, EHBP1, LOC100291462, CRLF2, GANC, 

LOC440313, OR5K3, EXOSC9, CYB561, HOXC4, KLF3, SPINK2, IRS4, GNG2, CHCHD3, LOC100289409, UST, PAPL, 

SEC23B, C12orf39, NEU4, ZNF423, DECR1, MND1, NANP, CCDC93, TBC1D8B, UPF2, LRRIQ1, YIPF1, SOX6, PMS2L

11, KCNK3, ENC1, CCDC130, HARS, UGT2B11, RHBDL1, TYK2, CNOT6, EXPH5, C20orf72, C13orf38, DLEU1, ERCC

1, DRG1, NANOS1, HOXB1, IGDCC3, STX5, AGTR1, SNCA, LOC402644, KIAA0317, PLCZ1, INSC, HOXD11, RBM2

3, ATOH8, ZNF736, SLC25A18, CLLU1OS, GPR141, LMTK2, MIA3, DYTN, CMBL, CCDC84, NUDT13, LOC339803, K

LF7, NCRNA00085, KCNA1, CRISP2, CARTPT, SLC16A4, COQ9, LOC645961, PATE3, MBLAC1, PKN1, CNOT6L, FB

XO4, C2CD2, C17orf63, SAP30, EMD, MFN2, KCNJ10, HLX, C11orf21, SOAT2, ZNF587, CALCB, NR2E3, KCP, MDN

1, SLC41A2, SLC4A10, FCER1G, ZNF10, HMGB4, PROCR, TIMM50, MAP7, RMND5A, SERPINB8, ELF5, TMEM39A, 

SLC6A15, RG9MTD3, FSTL4, ESR2, ZDHHC16, S100A3, GPR20, KRTAP25-1, TSPAN6, C6orf106, DGCR8, OR56A3, F

BXL6, LOC642587, GDAP1, ADCY2, WNT2, ABT1, ZNF57, TSTD1, FNBP1L, WDR45L, LASS5, FAM166B, P2RY1, C

RADD, ANKRD30A, LSM5, NS3BP, RBM10, RQCD1, PTF1A, SATL1, FKBP6, FERMT1, CNR1, PARP10, ARHGAP29, 
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MBD5, NTS, UBD, SLC25A41, ZDHHC21, CXorf40A, CUL4B, DACT2, NR1I3, GOLGA2B, XIRP2, TSPYL4, NCRNA00

207, LIPH, GGH, IL20RB, PHF20, MT2A, C21orf125, TRPC7, HOXB13, CYP11A1, BMP10, ZNF345, BEST1, UPF3A, C9

orf24, CNIH2, IAH1, THBD, RAP2C, SEC31B, L1CAM, FAM113A, TSPAN17, NEFL, SHISA2, TMEM97, FLNC, PCBD

2, ERBB3, JAM3, DPF1, SEC16A, NME1, RPL10L, MYO1C, C1orf125, SLBP, CYP8B1, FLJ32063, KIAA0174, RPS19BP

1, IGH@, STRADA, POLR2J, TAF1, SEMA6A, PRR7, ST3GAL5, SMEK1, FREM2, SNX27, TBP, MC4R, LOC10012950

0, SLC25A44, PCGF3, NUDT21, PRSS53, KLHL15, FAM169B, ORM2, DNAJB5, COL4A4, NDUFA9, ACADSB, PCDH

1, ZNF713, CLDN5, GPRC5A, CPSF1, CLSTN2, VPS33B, MRPL1, MTMR11, REEP5, CLIC3, FAM54B, C17orf104, PIG

A, ILDR2, ZFAT, C20orf173, NARG2, RBP1, OSTCL, NTRK2, CDH17, CMPK1, SPIRE1, CAPN9, RGS17, TBX21, ZNF3

91, CLEC3A, KRT17, LMAN2L, LOC100130428, ZNF770, ANKRD52, ZNF735, PLA2G7, SLC25A43, SDHB, PRKG1, C

CR2, VAPB, MMD, TNNC2, ANTXR1, GPAM, MDK, ENO2, KCNK6, ELMOD2, KRTAP4-8, SPTLC2, PIK3R3, CLNK, 

HMGCL, LIPE, CDC123, OR4M1, ZNF441, LOC100134391, LOC220930, PSORS1C3, OR4C12, C10orf53, PTAR1, JUN

D, WDSUB1, ZNF628, SRP14, MCTP2, PHKA2, KDELC1, NKIRAS2, TOMM34, PARP16, NDUFA10, TYW1, LUC7L3, 

CEBPE, PIWIL2, KLHL21, LIN7A, DYNLRB1, CREB3L1, LOC100287301, ZBTB24, BEX1, NXT1, VAPA, IGF1, ZNF4

1, TRAF3IP1, DNAJC1, OR1L1, PIN4, OBFC1, PLEKHA9, PDE3A, CYP27A1, KCND1, RNF34, CD247, LIMS2, LOC729

678, JAG2, DCLRE1B, RBM41, FGD5, C11orf74, WIF1, SLC16A1, IFNA7, SURF1, KDM4B, POLR2H, PARD3B, ITFG2,

 MT1H, PATE2, SHE, SDHAF1, ZNF821, LOC401093, FAM45B, C6orf141, CCDC155, ZAK, PKM2, EPHA8, GBP1, AN

APC2, GNA12, SECTM1, C7orf13, COCH, DEFB1, LNX1, C1orf87, NELL1, ATP13A1, LRRC20, OAF, IGSF22, SLC2A

3, CHST15, PARP6, FKBP10, APOL3, CDH18, SLC5A12, OR10A5, MIER3, GABRR3, ATXN3L, SP100, BLVRA, FGF2

0, CCDC55, FAT3, TMBIM1, CALHM3, C7orf23, FAM70A, HOXA6, BTNL9, GRIN2D, PMS2L5, IDH3B, ADAMTS20, 

CDC42SE2, NUAK2, PEX2, HAS2, SLC41A1, OSBPL7, CALU, XAGE3, OR51B4, ZNF579, SPSB1, IL2, SBSN, NHLRC

4, CLEC1A, MAGEE1, C12orf75, IQUB, LDLR, OR6K3, PLAC1L, HTN3, LOC653888, KRTAP4-5, TBCCD1, UBE4A, P

LEKHM1, C1orf213, SLC29A4, FAM195A, F11, UBA52, MST1P9, PANK2, GUCY1A3, LHX9, PPBPL1, MAB21L2, KR

T6B, EXOSC5, March 9, MGC131512, ZPLD1, NHP2L1, RBM3, PCNA, COPS8, C4orf23, SNORA37, CAPN2, GEMIN5, 

NUDT1, C1orf130, NDUFB1, TTLL1, SNRPA1, CNPY4, DPY19L2, FZD6, MTSS1, SLC22A9, TMEM74, ABCC10, STAT

1, ITGA8, LOC727726, PTGES3, C20orf43, ATP5G1, CHST12, SCTR, ZNF185, ZNF569, KRTAP21-2, ANKRD36, MAM

L2, SAMD11, PSMD4, TMEM101, SPINK14, SMCR7L, KLK3, GABRA6, CALCOCO2, NCRNA00219, OR5AU1, NDNL

2, PPP1R14B, KBTBD13, SLC39A5, IMPDH1, ZNF681, SERPINB1, TCEA3, ITGAE, HIST1H2BE, CCDC74B, TTPA, RB

M8A, LCE2D, TF, FAM19A4, TMEFF2, ZBTB48, FAM184A, ZCCHC8, C6orf182, KAT2A, GABARAPL3, PIP5K1B, KI

AA2026, MBLAC2, ZNF193, FLJ44082, LAD1, DNAJC6, ZSCAN4, TEX19, GTSE1, COQ6, SLC7A4, TNFSF4, CPXCR1,

 HOOK2, KANK2, FAM3A, IMPG1, NBN, GBP3, FUCA2, HCP5, SAMD13, C5, FAM75B, INSR, PPFIBP2, C3orf71, PP

WD1, OTC, KIAA0100, HRK, HSPA9, DDX11, UQCRHL, C2orf82, PPAN-P2RY11, LMO4, SCD, LOC100287290, GPR2

5, UBE2G2, CCL16, NUDT8, COMMD9, TMEM231, TRAJ17, SESN1, FAM196A, SHROOM3, RP1, HPSE, MPZL1, KLR

D1, BPHL, LOC100129503, LILRA4, FBXL8, SIN3B, SDR42E1, TRPV1, KCNQ3, NLRP12, VIT, FAM64A, OR11H6, AB

HD13, HES7, ELAVL1, UGT3A1, LOC283867, FUCA1, CLYBL, HSD17B7P2, ROR1, IRX4, C9orf64, C6orf89, SLC25A3

1, SERPINB4, CUZD1, IFT81, ISCA2, OR10A2, TRBV9, ACTRT1, DDO, RBKS, KIAA0141, DOM3Z, SASH3, DPP6, PO

FUT1, PSMC4, NOP14, DCXR, F11R, USE1, CD200R1L, CMYA5, DDAH1, DENND5B, PRDM8, ZSCAN5A, ANKRD1

6, TFAP2C, ZNF433, DCAF5, PRSS50, HMX2, MUC13, ALDH4A1, ELOVL4, CHAD, ZNF614, CYP4A22, NOL3, SAP13

0, REEP2, CYC1, C19orf50, C3orf22, PSMD6, NTN1, Septin 5, GRASP, LPAR6, MLF1, NCAPG, THPO, BLOC1S2, LOC

100130539, ACBD7, MXRA5, CD163L1, C1orf103, CYP19A1, OR4D2, RPS4Y1, SRPR, GEMIN4, LOC220729, C8orf49, 

FAM9C, CRABP2, GRM4, DKFZP586I1420, PSMB2, TXNDC6, WIT1, SNTN, CDKN2B, DCTN2, PROZ, FOLR2, APBB

1, C11orf59, TCTEX1D1, DSCR3, IGFBP6, BAGE, RBP4, CACNG3, LGALS2, CORO2B, ALDH18A1, MLH3, C15orf55, 

CABC1, RNF121, TMEM143, PPP1CA, C1orf173, GALNTL2, SERP2, ARMC10, DOK2, CA7, ZNF600, FANCG, CACNB

3, FDFT1, OR10H3, FAM171A1, C12orf36, LIPK, PPM1L, VPS26A, PRDX4, GMCL1L, ADAM29, CASS4, CLIC6, GCN

T4, KCNK10, DEFB134, MTHFR, FAM84B, EXOC3, CHCHD2, PYGM, C4orf49, RSPH3, RNF17, GOLGA6L7P, GLRA

2, CRYGA, HIST1H1T, CHKA, SCARNA14, LUZP1, PCDHB1, BDKRB1, LZTFL1, RDH5, C17orf105, TMC1, MBOAT4,

 KCNC3, DPY19L3, SI, CDC42EP3, LY6G5C, MAN1A1, SLITRK1, SLC28A1, TLR6, LGALS9B, IRF2BP1, NR5A2, RPS

28, GCSH, KCNC1, HIST1H2BA, NCAM1, GPR176, OSBPL3, CYP1B1, HSBP1L1, HTRA3, LCE2C, C20orf69, IFLTD1, 

SNRPD2, BLK, KDELC2, FABP9, C10orf108, NEK9, TMEM158, SGSM3, ZBTB10, NT5C3L, C9orf47, C22orf42, LYRM

5, POLR1C, NCOA4, CNGA4, FKBP14, CCDC115, SLAMF9, ELK4, DNAI2, TGFB1I1, C11orf61, C9, PCDHGB7, TME

M192, PPFIBP1, BRP44, TBC1D30, C1orf95, ERAS, KILLIN, PRDX2, ZNF483, AMELY, VSTM2A, SERINC5, CBFB, C

18orf23, TTC1, PCDP1, SC4MOL, MRPS9, STAB2, GCG, ANKRD50, MPI, TREX1, PPP1R2P1, TUBGCP4, LRRIQ4, FR

AT2, WDR82, SNRPA, ESD, MME, MIER2, RSPO2, GALNT6, CXCR6, LOC100128108, MAPK14, KCNA4, POLG, DPP

8, EIF2AK4, SFRS14, LIMCH1, KRTAP12-1, TSGA10, ZNF28, ILVBL, SAPS2, KTI12, PCDHGA8, NOS1, LEO1 
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Supplemental Table 8. Summary of the covariates between MDD cases and controls from the blood 

mRNA dataset. 

 MDD Control Test 

statistic 

P-value 

Sex 9.18 0.0025 

Sex (Female) 1080 221   

Sex (Male) 501 148   

Smoker status 31.33 2.17E-08 

Smoker status (No) 890 267   

Smoker status (Yes) 691 102   

Alcohol status 10.95 0.0042 

Alcohol status (No) 242 32   

Alcohol status (Unknown) 5 1   

Alcohol status (Yes) 1334 336   

Menostats 16.89 0.0047 

Menostats ((Recent) pregnancy) 74 8   

Menostats (Male/NA) 501 148   

Menostats (Menopause, natural) 5 2   

Menostats (Menopause, operation or 

disease) 

285 72   

Menostats (Not in menopause) 702 134   

Menostats (Unknown) 14 5   

Education 27.42 1.11E-06 

Education (Basic) 118 12   

Education (High) 498 165   

Education (Intermediate) 965 192   

Continuous variables 

Age 41.92 42.81 -1.20 0.23 

BMI 25.83 25.36 1.57 0.12 

 

Supplemental Table 8. A summary of the covariate differences between MDD cases and controls is 

presented. For the categorical variables, a count of subjects within each sub-category by diagnosis status 

is performed, and a chi-squared test is used to obtain a p-value for the contingency table for each 

categorical variable. For the continuous variables, the group means for the MDD cases and controls are 

recorded. An independent t-test is then performed to obtain p-values for the difference between the groups. 
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Supplemental Table 9. Summary of the covariates between the correctly and incorrectly classified 

subjects from the blood mRNA testing set. 

 Correct-

MDD 

Incorrect-

MDD 

Correct-

control 

Incorrect-

control 

Test 

statistic 

P-value BH-

FDR 

Sex 4.62 0.20 0.36 

Sex (Female) 109 110 26 19    

Sex (Male) 47 48 22 9    

Smoker status 14.40 0.0024 0.017 

Smoker status (No) 77 101 36 20    

Smoker status (Yes) 79 57 12 8    

Alcohol status 8.50 0.20 0.36 

Alcohol status (No) 19 27 4 5    

Alcohol status (Unknown) 0 2 0 1    

Alcohol status (Yes) 137 129 44 22    

Menostats 10.42 0.58 0.77 

Menostats ((Recent) pregnancy) 6 6 1 0    

Menostats (Male/NA) 47 48 22 9    

Menostats (Menopause, operation 

or disease) 

24 33 7 5    

Menostats (Not in menopause) 77 71 18 14    

Menostats (Unknown) 2 0 0 0    

Education 11.57 0.072 0.25 

Education (Basic) 12 8 3 0    

Education (High) 48 59 26 10    

Education (Intermediate) 96 91 19 18    

Continuous variables  

Age 41.17 41.28 43.06 41.00 0.29 0.83 0.83 

BMI 25.55 25.66 24.54 25.17 0.54 0.66 0.77 

 

Supplemental Table 9. A summary of the covariate differences between the correctly classified MDD 

cases and controls, and the incorrectly classified MDD cases and controls is presented. For the categorical 

variables, a count of subjects within each sub-category by diagnosis status is performed, and a chi-

squared test is used to obtain a p-value for the contingency table for each categorical variable. For the 

continuous variables, the group means for the training and testing set subjects are recorded. A one-way 

ANOVA is then performed to obtain p-values for a difference between the groups. We then applied the 

Benjamini–Hochberg procedure to calculate the false-discovery rate (FDR) based on the p-values. 
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BH-FDR: Benjamini–Hochberg false-discovery rate 
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Bridging statement to Chapter 4 

 

The studies presented in Chapters 2 and 3 demonstrated the potential of ML and transcriptomic 

data in advancing our understanding of SCZ and MDD, supporting the usefulness of ML analysis 

of gene expression microarray data in furthering our understanding of the pathophysiology of 

complex diseases. Our study in Chapter 3 applied supervised ML analysis to both brain and 

blood gene expression microarray data from MDD cases and controls, providing valuable 

insights into the disorder's underlying pathophysiology. Furthermore, the methodological 

improvements implemented in this study, such as the analysis of an external brain gene 

expression dataset for additional model validation, addressed the limitations associated with 

model evaluation using a single data source. The findings from our improved methodology 

further support the confidence in the relevance of the genes identified for a role in MDD.  

The ML methodologies developed in Chapters 2 and 3, as part of our first objective, are 

important for identifying and understanding the molecular basis of complex diseases. As we 

illustrated in our publications, this work could contribute to the identification of treatment targets 

and the development of novel treatments. 

In Chapter 4, we advance our second objective towards precision medicine, investigating 

the application of ML for optimizing the treatment of complex diseases, with an analysis of 

microRNA data for disease diagnosis, severity prediction, and treatment response prediction in 

the context of MDD. MicroRNAs play a crucial role in the regulation of gene expression [108], 

and have been implicated in the pathophysiology of various diseases [109], including MDD 

[110]. Studying microRNA expression profiles could provide valuable insights into the 

molecular mechanisms underlying MDD and potentially lead to the identification of more stable 

and reliable biomarkers for the disorder. Furthermore, the transition from mRNA to microRNA 
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data offers a novel and more regulatory-level perspective on the molecular mechanisms 

underlying MDD. In addition, the incorporation of clinical measures such as the Montgomery-

Asberg Depression Rating Scale (MADRS) scores and treatment response data enable a more 

comprehensive evaluation of the utility of microRNA-based ML models in the clinical 

management of MDD patients. Our approach aims to further advance our understanding of MDD 

but also to improve patient outcomes by leveraging omics and ML for informing treatment 

decisions and better outcomes for patients through precision medicine. 

 

Chapter 3 erratum: 

- On page 100, “The best cutoff is defined as the probability threshold dividing the cases 

and controls classes which maximized the number of true positive classifications and 

minimized the number of false-positive classifications (i.e., maximizing the area under the 

ROC curve)” is inaccurate and should be corrected. We are not maximizing the area 

under the ROC curve, but rather, we are finding the probability threshold for which the 

rectangular area under the TPR and FPR point along the curve is maximized. Another 

equivalently correct way for defining the best cutoff is as the probability threshold 

dividing the predicted samples where the average of the true-positive rate (TPR) and the 

inverse of the false-positive rate (FPR) (i.e., 1 - FPR) is maximized. 
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Abstract 

 

Background: There is a lack of reliable biomarkers for Major depressive disorder (MDD) in 

clinical practice. However, several studies have shown an association between alterations in 

microRNA levels and MDD, albeit none of them has taken advantage of machine learning (ML) 

Method: Supervised and unsupervised ML were applied to blood microRNA expression profiles 

from a MDD case-control dataset (n=168) to distinguish between 1) case vs. control status, 2) 

MDD severity levels defined based on the Montgomery-Asberg Depression Rating Scale 

(MADRS) and 3) antidepressant responders vs. non-responders.  

Results: MDD cases were distinguishable from healthy controls with an area-under-the receiver-

operating characteristic curve (AUC) of 0.97 on testing data. High vs. low severity cases were 

distinguishable with an AUC of 0.63. Unsupervised clustering of patients, before supervised ML 

analysis of each cluster for MDD severity, improved the performance of the classifiers (AUC of 

0.70 for cluster 1 and 0.76 for cluster 2). Antidepressant responders could not be successfully 

separated from non-responders, even after patient stratification by unsupervised clustering. 

However, permutation testing of the top microRNA, identified by the ML model trained to 

distinguish responders vs. non-responders in each of the two clusters, showed an association with 

antidepressant response. Each of these microRNA markers was only significant when comparing 

responders vs. non-responders of the corresponding cluster, but not using the heterogeneous un-

clustered patient set. 

Conclusions: Supervised and unsupervised ML analysis of microRNA may lead to robust 

biomarkers for monitoring clinical evolution and for more timely assessment of treatment in 

MDD patients. 
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Introduction 

 

In the United States, the lifetime prevalence for MDD is 20.6% among individuals aged 

18 years or older. Almost half (49%) of the cases have severe and 39.7% moderate depression 

(Hasin et al., 2018). Without early treatment, there can be permanent consequences on the 

patient’s brain function which increase their risk of experiencing additional depressive episodes 

(Moylan et al., 2013). Overall, the economic burden of MDD is more than 170 billion per year, 

and appears to be increasing over time (Greenberg et al. (2015). However, there is still a lack of 

reliable biomarkers that can guide patient monitoring and timely assessment of treatment 

efficacy.  

Increasing evidence suggests that molecular signaling for depression is linked with 

microRNA expression and that the dysregulation of microRNA signaling can initiate or 

exacerbate depressive pathophysiology (Hansen and Obrietan, 2013). MicroRNAs are small 

noncoding RNA molecules that play a role in the regulation of gene expression and neuronal 

physiology. Smalheiser et al. (2012) found that the expression of several microRNAs was 

significantly down-regulated in the prefrontal cortex of depressed suicide individuals compared 

to matched psychiatric control subjects. Bocchio-Chiavetto et al. (2013) measured the expression 

of microRNA in 10 depressed individuals before and after treatment with antidepressants. After 

the treatment with antidepressants, two microRNAs were significantly down-regulated and 28 

were up-regulated. In a recent randomized placebo-controlled trial, we identified several 

microRNA markers of duloxetine treatment response which were replicated in two independent 

clinical trials, an animal model, and post-mortem brain samples (Lopez et al., 2017). The 

findings suggest that there is a strong possibility that microRNAs are involved in the 

pathophysiology of depression and affect the mechanism of action of antidepressants. 
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Machine learning (ML) algorithms have been created for analyzing complex multivariate 

data with a focus on empirical predictive power and generalizability. ML has demonstrated 

success in clinical psychiatry in terms of diagnosis, prognosis, treatment decisions, and 

biomarker detection (Dwyer et al., 2018). A review of the literature on ML and MDD shows a 

shortage of studies that apply ML methods to analyze microRNA data (Gao et al., 2018). 

However, a recent paper has demonstrated the effective use of ML in identifying a serum 

microRNA signature for Alzheimer’s disease that could predict disease status with 85.7% 

accuracy (Zhao et al., 2019). 

Given the important role of microRNAs in MDD, and the effectiveness of ML in taking 

advantage of complex data, we aimed to explore whether ML analysis of blood microRNA 

profiles can serve as a new approach for biomarker discovery in MDD. 

 

Methods 

 

Participant recruitment 

The study protocol was approved by the Research Ethics Board of the Douglas Mental 

Health University Institute (DMHUI). Informed written consent was obtained from all 

participants. All participants were recruited from an outpatient clinic at the Douglas Mental 

Health University Institute in Montréal, Canada, and assessed by an experienced psychiatrist 

using the SCID-I (First et al., 2012) following DSM-IV criteria. Patients were all suffering from 

a current major depressive episode as part of a major depressive disorder (MDD). Exclusion 

criteria included comorbidity with other major psychiatric disorders, bipolar disorder, alcohol or 

substance abuse over the last 6 months, or a severe medical condition. None of the participants 
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were medicated at baseline. None had received fluoxetine or lithium over the last month or any 

psychotropic medication over the last week. Depression severity was determined using the 

Montgomery-Asberg Depression Rating Scale (MADRS). MADRS measures are based on 10 

different symptoms including 1) apparent sadness, 2) reported sadness, 3) inner tension, 4) 

reduced sleep, 5) reduced appetite, 6) concentration difficulties, 7) lassitude, 8) inability to feel, 

9) pessimistic thoughts, and 10) suicidal thoughts. The MADRS scores were collected at baseline 

and again after 8 weeks of antidepressant treatment.  

Sample Processing 

Peripheral blood samples were collected at baseline and after 8 weeks, and tubes were 

frozen using a sequential freezing process. Whole blood for RNA was collected in EDTA tubes 

and filtered using LeukoLOCK filters (Life Technologies). Total RNA was extracted using a 

modified version of the LeukoLOCK Total RNA Isolation System protocol and included DNase 

treatment to remove genomic DNA. The RNA quality was assessed using the Agilent 2200 

Tapestation, and only samples with RNA Integrity Number (RIN) ≥ 6.0 were used. 

Small RNA-seq 

All libraries were prepared using the Illumina TruSeq small RNA Library preparation 

protocol following the manufacturer’s instructions. Samples were sequenced at the McGill 

University and Genome Quebec Innovation Centre (Montreal, Canada) using the Illumina 

HiSeq2000 with 50nt single-end reads. All sequencing data were processed using CASAVA 

1.8+ (Illumina) and extracted from FASTQ files. The Fastx_toolkit was used to trim the Illumina 

adapter sequences. Additional filtering based on defined cutoffs was applied, including 1) Phred 

quality (Q) mean scores higher than 30, 2) reads between 15-40nt in length, 3) adapter detection 

based on perfect-10nt match, and 4) removal of reads without a detected adapter. Additionally, 
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we used Bowtie (Song et al., 2014) to align reads to the human genome (GRCh37) and ncPRO-

seq (Chen et al., 2012) in combination with miRBase (V20) (Kozomara and Griffiths-Jones, 

2013) to match them to known microRNA sequences. Furthermore, all sequencing data was 

normalized with the Bioconductor – DESeq2 package (Love, Huber, & Anders, 2014), using a 

detection threshold of 10 counts per miRNA. 

The number of microRNA samples included for subsequent analyses includes the 

baseline (T0) and week 8 (T8) of 140 MDD cases and 28 healthy controls. The total number of 

microRNA features is 285.  

ML analysis 

 Many powerful ML algorithms render themselves uninterpretable, making it difficult to 

understand their decision-making process. For our machine learning analysis of the data, we 

decided to use a state-of-the-art yet interpretable regularized gradient boosted machines (GBM) 

approach (XGBoost implementation, (Chen and Guestrin)), which we also demonstrated as an 

effective algorithm in our previous study of schizophrenia (Trakadis et al., 2019). 

 Datasets are split into 70% and 30% for training and testing. A model selection procedure 

based on 5-fold cross-validation with 2500 iterations of parameter search is used to obtain the 

best training parameters using only the training dataset (n=122). After obtaining the best training 

parameters, we retrained the model without 5-fold cross-validation, i.e. using at once the entire 

training set, and evaluated the model on the testing set. The model performance metric we used 

is the area under the receiver-operating characteristics curve (AUC). 
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Classification analyses 

 With regards to discriminating cases from healthy controls, we trained the ML model 

using only the T0 microRNA data, to ensure that the medication effect would not act as a 

confounder in the analysis. 

 For the severity class classification, we used the MADRS cutoff scores suggested by 

Snaith et al. (1986). Individuals’ MADRS scores were classified as “normal-mild” (MADRS 

scores from 0-19) or “moderate-severe” (MADRS scores 20 and above). Using the class-labeled 

dataset, we identified the best classification model for classifying samples into these two MDD 

grades. However, for this analysis, we used the T8 microRNA data and MADRS scores, because 

at T0 all but two cases had MADRS scores ranging from 0-19 (thus, using T0, almost all samples 

would be labeled as “moderate-severe”).   

 We then repeated severity class classification after unsupervised clustering of the T8 

microRNA data, which was done to factor in the heterogeneity of MDD.  More specifically, 500 

iterations of a consensus k-means clustering method (Monti et al., 2003) were applied to the 

entire case-control dataset (n=174). The model selection and evaluation procedure were then 

performed separately for each cluster, under the assumption that the patients in each cluster are 

less heterogeneous at the pathophysiology and microRNA level. If our assumption is correct, 

training the ML algorithm to identify signatures specific for the “normal-mild” versus 

“moderate-severe” class would be more efficient after unsupervised clustering, and thus, the 

classification based on supervised ML analysis of the microRNA data would improve with this 

approach. 
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Lastly, we explored the relationship between microRNA and antidepressant response 

among MDD patients, using the difference between the T8 and T0 microRNA values (n= 138, 

because two MDD cases were missing MADRS scores at T0). With regards to severity levels, 

the scores used were based on previous definitions: “normal” (0-6), “mild” (7-19), “moderate” 

(20-34), and “severe” (> 34) (Snaith et al., 1986). Antidepressant response in our study was 

defined as a decrease of two severity levels when comparing the patient's T8 and T0 MADRS 

scores. For example, a patient with a change from “severe” to “mild” or a change from 

“moderate” to “normal” would be labeled as a responder (RES). We obtained a split of 46 RES 

and 92 non-responders (NRES). We then repeated the same ML procedure described above to 

obtain a classifier for RES vs. NRES. 

Since each patient was taking a mixture of multiple antidepressants, to address this 

heterogeneity and improve the performance of the classifier, we performed unsupervised 

clustering on the “T8-T0” dataset using the consensus k-means algorithm described above, in the 

MDD severity classification section. Samples were split into two clusters. We then performed 

ML classification analysis for antidepressant response separately in each individual cluster. To 

explore if the top microRNA for each cluster (i.e., the microRNA with the maximum importance 

in the ML classification model) was associated with antidepressant response, a permutation test 

was performed. Specifically, 500000 iterations were performed to derive the empirical p-value of 

a difference in mean between responders and non-responders. The significance threshold was set 

at 0.05. In the case of multiple top microRNAs (multiple top microRNAs having equal maximum 

importance), the p-values were adjusted using the Bonferroni correction method. To explore if 

the top microRNA(s) identified in each cluster were specific to that cluster, we performed 

permutation testing for microRNAs extracted from the first cluster using samples from the 
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second cluster, and vice versa. We also performed permutation tests for the top microRNAs 

identified from the clusters using all MDD samples (un-clustered). Finally, we extracted the top 

microRNA from the antidepressant classification model trained on all samples and performed 

permutation testing to explore if ML analysis of the data before stratification was helpful in the 

identification of a marker for treatment response. 

Clinical history analysis 

 To explore how clinical history factors into antidepressant response, we examined 

whether patients with a prior history of treatment with antidepressants responded differently 

compared to antidepressant-naïve patients. We also examined whether patients who present with 

their first major depressive episodes (MDE) (i.e., no prior episodes besides the current one) 

responded differently compared to patients with recurring MDEs (collected from SCID-IA 

(DSM-IV), question A29). Antidepressant response here is defined as a ratio of the T8 to T0 

MADRS score (T8/T0) in order to capture more precise differences in antidepressant response 

between groups using the permutation tests. Permutation tests were performed for 500000 

iterations to derive the p-value for a significant difference in antidepressant response between the 

groups compared. Multiple testing was adjusted using the Bonferroni correction method. 

Bioinformatic analysis 

 We extracted the microRNA features used by the best case-control classification model 

and performed pathway analysis using the DIANA-miRPath v3.0 pathway analysis web-server 

(Vlachos et al., 2015) to obtain KEGG pathway terms significantly related to the set of 

microRNA features. Pathways with a false-discovery rate (FDR) less than 0.05 were selected. 
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Software 

 The ML model was implemented using the Python (v.3.7.1) programming language 

(https://www.python.org/) with the ‘xgboost’ (v.0.81) library (https://xgboost.readthedocs.io/). 

The consensus clustering procedure was implemented using the ‘scikit-learn’ (v.0.21.2) 

(https://scikit-learn.org/) and ‘scipy’ (v.1.3.0) (https://www.scipy.org/) Python libraries. 

 

Results 

 

The demographics of patients and controls are summarized in Supplemental Table 1. 65% 

of MDD cases, and 46% of controls, were female. Moreover, 80% of MDD cases, and 82% of 

controls, were Caucasians. The mean MADRS score at T0 was 33 (SD: 6.2) for cases, and 0.6 

(SD: 1.1) for controls. The mean MADRS score at T8 was 17.4 (SD: 10.9) for cases, and 1.1 (SD: 

1.7) for controls. 56% (n=79) of patients reported presenting with their first MDE. 14% (n=19) 

MDD patients were antidepressant naïve prior to current treatment. 

As summarized in Table 1, for classification of cases and controls, the best trained model 

achieved an average cross-validation AUC of 0.93 (std. 0.06), and testing set AUC of 0.97. The 

best trained model trained to distinguish cases from controls utilized 33 out of 285 total 

microRNAs measured (Table 2). Pathway analysis for the 33 microRNAs found the following 

significantly enriched pathways with FDR < 0.05: 1) Prion diseases, 2) TGF-beta signaling 

pathway, 3) Morphine addiction, 4) Signaling pathways regulating pluripotency of stem cells, 5) 

Mucin type O-Glycan biosynthesis, and 6) Proteoglycans in cancer. 

Classification of individuals as normal-mild vs. moderate-severe MADRS grades using 

their microRNA data based on best trained model showed an average cross-validation AUC of 
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0.76 (std. 0.11). After retraining the best model on the full dataset and evaluating on the testing 

set, we obtained an AUC of 0.63.  

For the clustering approach, we obtained two clusters (cluster 1: 89 subjects, cluster 2: 79 

subjects) of similar sample size, which did not show differences in terms of MDD severity. The 

best model for cluster 1 samples achieved an average cross-validation AUC of 0.75 (std. 0.18), 

while the best model for cluster 2 samples achieved an average cross-validation AUC of 0.72 

(std. 0.15). When evaluated on the testing sets, the cluster 1 model achieves an AUC of 0.76, 

while the cluster 2 model achieves an AUC of 0.70. Table 1 summarizes the results for each of 

the analyses. 

For antidepressant response classification, we obtained an average cross-validation AUC 

of 0.62 (SD: 0.13), and an AUC of 0.57 on the testing set. After clustering, we again obtained 

two balanced clusters (cluster 1: 69 subjects, cluster 2: 69 subjects). We did not notice a 

separation of responders from non-responders based on clustering. The best model for cluster 1 

samples achieved an average cross-validation AUC of 0.65 (SD: 0.085), while for cluster 2 the 

average cross-validation AUC was 0.67 (SD: 0.16). On testing set evaluation, the cluster 1 model 

achieves an AUC of 0.54, while the cluster 2 model achieves an AUC of 0.49. For cluster 1, after 

supervised ML for classification of treatment response, the top and only microRNA utilized by 

the ML model was hsa-miR-5701. Following permutation testing, this microRNA was found to 

be significantly different between responders and non-responders in cluster 1 (p=0.021), but not 

in cluster 2, nor the original (un-clustered) dataset. For cluster 2, there were 4 microRNAs, all 

with equal importance, including: hsa-let-7b-3p, hsa-let-7g-5p, hsa-miR-130b-3p, and hsa-miR-

30d-3p. Following permutation testing, the only nominally significant microRNAs were hsa-let-

7b-3p (p=0.021) and hsa-miR-130b-3p (p=0.045), albeit neither were significant after Bonferroni 
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correction (p=0.082 and p=0.18, respectively). Neither of these four markers was significantly 

different between responders and non-responders in cluster 1 or the original (un-clustered) 

dataset. Finally, when extracting the top microRNA from the antidepressant classification model 

trained on all samples, the top microRNA was not found to be associated with treatment response 

following permutation testing (p=0.12). 

Of note, we observed that antidepressant-naïve patients responded significantly better 

than those with who have taken antidepressants in the past (p=0.00058, with Bonferroni 

correction), but did not observe a significant difference in response between patients who present 

with their first vs. recurring MDEs (p= 0.59, with Bonferroni correction). 

 

Discussion 

 

 In this paper, we demonstrate how ML analysis of blood microRNA data could lead to 

biomarkers with potential clinical utility. Our assumption was that if this is true, ML analysis of 

microRNA data should not only lead to the successful classification of cases from controls, but 

also to the efficient separation of individuals with mild vs. severe depression. 

First, we showed that microRNA data could be used to discriminate baseline medication-

free MDD cases from controls (AUC: 0.97 using the test dataset). Of note, this result is not 

expected to be confounded by medication effects since we used only the T0 pre-treatment trial 

microRNA data. To show that the microRNA signals are relevant to MDD, we conducted a 

pathway analysis using the microRNAs identified by the ML model (FDR < 0.05). We identified 

six pathways and highlighted the evidence in the literature for a link with MDD.  
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For example, there is evidence that endogenous prion protein (PrP(C)) is associated with 

MDD. PrP(C) were reduced in the white matter (Weis et al., 2008), and Brodmann's (BA) areas 

6 and 10 (Dean et al., 2019) in patients with MDD. PrP(C) has also been shown to modulate 

depressive-like behavior in mice (Gadotti et al., 2012).  

TGF-beta family of cytokines may also play a role in MDD. TGF-beta has been observed 

to be significantly elevated in the peripheral blood of MDD patients (Davami et al., 2016). 

Furthermore, a study found a significant decrease in TGF-beta1 in MDD patients after 6 weeks 

of treatment with an antidepressant (Kim et al., 2007).  

The dopamine and reward systems are major parts of the morphine addiction pathway 

(Kim et al., 2016), and there is a link between dopamine neurons and depression (Knowland and 

Lim, 2018).  

There is also evidence linking stem cell and cell renewal capacity to MDD. In mice with 

interferon-α induced depression, neural stem cell proliferation was found to be suppressed 

(Zheng et al., 2014). Furthermore, shorter telomere length (Verhoeven et al., 2014) is also 

associated with a higher severity of depression.  

Although no direct link exists between mucin type O-glycans and MDD, a study showed 

that the p75 neurotrophin receptor (p75NTR), a heavily glycosylated protein, had a 

polymorphism, Ser205Leu, for a predicted O-glycosylation site which had a protective effect for 

MDD (Fujii et al., 2011). 

Next, we showed that microRNAs could be leveraged to distinguish subjects with 

normal-mild from moderate-severe MDD (AUC: 0.63). We also demonstrated that the use of 

unsupervised clustering, aimed at reducing MDD heterogeneity, can improve model performance 
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in our MDD grade classification task (AUC of 0.76 for cluster 2 and 0.70 for cluster 1). This 

supported our assumption that after unsupervised clustering the individuals in each cluster were 

less heterogeneous. This lead to a more efficient training of the ML algorithm to identify 

signatures specific for the “normal-mild” versus “moderate-severe” class. The sample size of our 

dataset is relatively small. However, given our results, we expect that performance estimates 

would improve and become more precise with ML models trained on larger samples.   

We found that the differences between the T8 and T0 microRNAs were not strongly 

predictive of response status (AUC: 0.57 on the testing set). This came as no surprise, given that 

the patients were undergoing treatment with different antidepressants, thus leading to 

heterogeneity negatively impacting the performance of the ML model. Patient stratification 

partially addressed this, as we saw a slight boost to the 5-fold cross-validation performance for 

each cluster, compared to the un-clustered analysis. However, we did not see any improvement 

in classifying response status on the testing set. We believe that the poor performance of the ML 

models on the testing set is likely due to the small sample size of each cluster, but that there may 

still be intelligence derived from the approach. This is supported by the significant association of 

the top microRNA within each cluster with antidepressant response, which was specific (i.e., was 

not observed when analyzing the data of the other cluster or the un-clustered data). Furthermore, 

no marker was found for antidepressant response when extracting the top microRNA from the 

antidepressant classification model trained on all samples (i.e., un-clustered dataset). Putting 

everything together, we take this as evidence that a clustering approach, combined with 

supervised ML, could be useful to identify biomarkers in subgroups of patients which would 

otherwise be missed when analyzing heterogeneous populations. 
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Of note, our approach, using regularized ML with empirical cross-validation and testing 

as a method to prioritize features, rather than multiple univariate testing, facilitates finding 

relevant biomarkers with minor effects or complex interactions that would otherwise be filtered 

out by multiple testing correction. This is very important given the complex relationships of 

different factors contributing to MDD, such as duration of the depressive episode, duration of 

illness, and recurrence. For example, we found that patients who have no history of taking 

antidepressants responded significantly more to treatment compared to those with past history. 

At first sight, this should come as no surprise, since the usage of more antidepressant in the past 

indicates that the patient did not respond to the previous antidepressants, and thus that they are 

harder to treat. However, we did not observe a difference between patients experiencing their 

first MDE vs. patients with recurring MDEs, which contradicts this line of thinking and 

underlines the complexity of the different factors and their interaction in MDD. 

Changes at the microRNA level are downstream to the different contributing clinical 

factors, thus explaining why we were able to distinguish cases from controls (AUC: 0.97) 

successfully. However, in order to better understand the contribution of each factor in MDD, 

further studies with larger sample size and more optimal patient stratification, with the inclusion 

of genetic, functional genetic, and detailed clinical data, would be recommended. Moreover, 

future studies should not be focused on examining changes between binary time points for 

antidepressant treatment, but rather serial (i.e., at multiple time points) MADRS evaluation and 

collection of microRNA data. With this design, we could explore if early changes at the 

microRNA level after treatment initiation could predict treatment response at a later point, which 

would have major clinical implications in treatment optimization. 
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Conclusion 

 

  Our manuscript provides preliminary evidence that ML analysis of blood microRNA 

profiles may constitute a reliable approach for biomarker discovery for MDD (affected vs. 

unaffected) clinical status, but also for clinical evolution (severity and treatment response), thus 

facilitating a more personalized approach in treating patients with MDD. 
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Tables 

 

Table 1. Model cross-validation and testing set AUC scores. 

Analysis Mean AUC (SD) 

of trained model 

from cross-

validation 

Testing set AUC 

for final retrained 

model 

Classification of cases and controls 0.93 (0.06) 0.97 

Classification of MDD severity 

grades 

0.76 (0.11) 0.63 

Classification of MDD severity 

grades – cluster 1 

0.75 (0.18) 0.76 

Classification of MDD severity 

grades – cluster 2 

0.72 (0.15) 0.70 

Classification of antidepressant 

response 

0.622 (0.13) 0.57 

Classification of antidepressant 

response – cluster 1 

0.652 (0.085) 0.54 

Classification of antidepressant 

response – cluster 2 

0.670 (0.16) 0.49 
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Table 1. Model selection and evaluation were performed for each of the analyses listed in the 

table. The mean AUC across 5-folds of cross-validation during model training for the best model 

is presented, as well as the AUC from the evaluation on the testing set for the final retrained 

model. 

AUC: Area under the receiver-operating characteristics curve 

 

Table 2. Most important microRNA features used by the case-control classification model. 

MicroRNA features ordered by decreasing importance (n=33) 

hsa-miR-27a-3p, hsa-miR-197-3p, hsa-miR-22-5p, hsa-miR-221-3p, hsa-miR-126-3p, hsa-

miR-128-1-5p, hsa-miR-30b-5p, hsa-miR-339-3p, hsa-miR-301a-3p, hsa-miR-345-5p, hsa-

miR-505-3p, hsa-miR-1249, hsa-miR-132-3p, hsa-miR-550a-5p, hsa-miR-589-5p, hsa-miR-

769-5p, hsa-miR-10b-5p, hsa-miR-210-3p, hsa-miR-628-3p, hsa-let-7d-3p, hsa-miR-148a-5p, 

hsa-miR-155-5p, hsa-miR-140-3p, hsa-miR-150-3p, hsa-miR-181a-5p, hsa-miR-24-3p, hsa-

miR-629-5p, hsa-let-7a-3p, hsa-miR-194-5p, hsa-miR-28-3p, hsa-miR-378a-3p, hsa-miR-

6852-5p, hsa-miR-7706 

 

Table 2. The most important features used by the best performing machine learning model from 

the classification of cases and controls analysis, which could distinguish between cases and 

controls with an AUC of 0.97, were extracted and listed in order of decreasing importance. 

AUC: Area under the receiver-operating characteristics curve 
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Bridging statement to Chapter 5 

 

In Chapters 2 and 3, we developed ML methodologies for analyzing omics data to identify and 

understand the molecular basis of complex diseases.  

In Chapter 4, as part of our second objective to investigate the application of ML for 

optimizing the treatment of complex diseases in terms of advancing precision medicine, we 

demonstrated the use of ML analysis of microRNA expression profiles in MDD for diagnosis, 

prognosis, and treatment response prediction. Our study provided valuable insights into the 

disorder's underlying molecular mechanisms and the potential of microRNA-based ML models 

in the clinical management of MDD patients. Overall, our results showed that microRNA is 

highly predictive of MDD status, and moderately predictive of depression severity. However, 

predicting depression severity proved more challenging. Lastly, we found that predicting 

antidepressant response using baseline microRNA expressions was not feasible with the data we 

had. 

In Chapter 5, we continue exploring the application of ML in precision medicine, as part 

of optimizing the treatment of complex diseases with a broader scope. We extend our ML 

approach to predicting medication usage based on genetic data. This could potentially lead to 

improved treatment outcomes and reduced side effects for patients with complex diseases. 

We focus on the analysis of genomic data, and specifically, targeted pharmacogenomic 

variants, which are more directly related to medication response. We also leverage the UK 

Biobank to maximize the sample size for our analyses. Moreover, we utilize a graph-based ML 

approach, specifically graph representation learning (GRL), to integrate interconnected 

biomedical entities in the form of a knowledge graph as part of our ML prediction model. This 
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approach allows us to leverage the wealth of existing biomedical knowledge to inform our 

predictions and improve the performance of ML models vs. using only tabular representations of 

data. Furthermore, we developed a ranking approach for interpreting medication usage odds, 

which provides a more interpretable and actionable output for clinicians and patients. This 

approach enables the prioritization of medications based on an individual's genetic data, 

potentially leading to more personalized and effective treatment decisions. 

 

Chapter 4 note: 

- Supplemental table 1 containing the description of samples exists as an Excel spreadsheet 

and can be obtained from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689198/ 

 

Chapter 4 erratum: 

- On pages 152-153, the procedure for determining the significance of the top miRNA 

maker for antidepressant response may be argued to be inaccurately applied since the p-

values obtained after adjustment are corrected for only the top miRNAs prioritized from 

the ML analysis (out of the initial 285 miRNAs), which would increase the risk of false 

discoveries. From a multiple hypothesis testing perspective, it could be argued that a 

more stringent p-value adjustment would be to apply a correction with all 285 miRNAs 

considered as hypotheses tested out of which the top candidates were selected. In this 

case, none of the miRNA markers would pass the significance threshold after correction. 

Having said this, it's important to note that the supervised ML approach we used to 

analyze the 285 miRNA features is not exactly the same as multiple hypothesis testing. 

Correcting for multiple testing with all 285 miRNAs considered as hypotheses could be 
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overly conservative. This is because the ML model selection procedure, which includes 

cross-validation and testing evaluation, is already designed to reduce potential overfitting. 

This in turn decreases the risk of false discoveries due to chance, even before p-value 

correction. 
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Abstract 

 

Ineffective treatment and side effects are associated with high burdens for the patient and society. 

We investigated the application of graph representation learning (GRL) for predicting 

medication usage based on individual genetic data in the United Kingdom Biobank (UKBB). 

Graph convolutional network (GCN) was used to integrate interconnected biomedical entities in 

the form of a knowledge graph as part of a machine learning (ML) prediction model. Data from 

The Pharmacogenomics Knowledgebase (PharmGKB) was used to construct a biomedical 

knowledge graph. Individual genetic data (n=485754) from the UKBB was obtained and 

preprocessed to match with pharmacogenetic variants in the PharmGKB. Self-reported 

medication usage labels were obtained from UKBB data field 20003. We hypothesize that joint 

analysis of all pharmacogenetic variants can predict the treatment response of individuals for 

different medications. Moreover, we assume that an individual using a medication on a regular 

basis experiences a net benefit from the medication (when factoring in treatment response and 

potential side effects), which is consistent with the continued/chronic use of the said medication. 

ML models were trained to predict medication usage for 264 medications. The GCN model 

significantly outperformed both a baseline logistic regression model (p-value: 1.53e-9) and a 

deep neural network model (p-value: 8.68e-8). The GCN model also significantly outperformed 

a GCN model trained using a random graph (GCN-random) (p-value: 5.44e-9). A consistent 

trend of medications with higher sample sizes having better performance was observed, and for 

several medications, a high relative rank of the medication (among multiple medications) was 

associated with greater than 2-fold higher odds of usage of the medication. In conclusion, a 

graph-based ML approach could be useful in advancing precision medicine by prioritizing 

medications that a patient may need based on their genetic data. However, further research is 
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needed to improve the quality and quantity of genetic data and to validate our approach using 

more reliable medication labels. 

Keywords 

Pharmacogenetics; Machine learning; Graph representation learning; Graph convolutional 

network 
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Introduction 

 

To identify the most effective treatment for a patient affected by a given disease, 

typically, several medications need to be tried before an effective medication is identified. This 

causes an excessive burden on the patients by prolonging the suffering and decreasing the quality 

of life for patients. There are also major economic implications. Ineffective treatment and side 

effects of non-optimal treatment are associated with annual costs of around $495-672 billion in 

the US (i.e., 16% of total US healthcare expenditures in 2016) [1]. 

Pharmacogenomics (PGx) combines pharmacology with genomics with the aim of 

understanding how genes affect responses to drugs. Genetic associations of medication usage 

have been identified via genome-wide association studies. Wu et al. identified 505 linkage 

disequilibrium-independent genetic loci significantly associated with self-reported medication 

use from 23 medication categories utilizing self-reported medication-use data from the UK 

Biobank (UKBB) [2]. A more recent meta-analysis of the UKBB, Estonian Biobank, and 

FinnGen discovered 333 independent genetic loci associated with medication use patterns in 

hyperlipidemia, hypertension, and type 2 diabetes [3]. These studies, along with the numerous 

PGx variants and genes identified to be associated with medication response in the literature [4], 

provide evidence for the role of genetic variations in medication response and usage patterns and 

a strong case for their use in enabling precision (more targeted) medicine. 

Despite the number of significant genetic associations of medication response and usage 

at the population level, studies leveraging the use of machine learning (ML) methods to predict 

medication traits at the individual level have been limited. Furthermore, most of the existing 

studies have been focused on the field of oncology and transcriptomic data [5, 6]. However, in a 

recent publication from Taliaz et al., successful use of ML classifiers has been reported for 
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predicting responses to specific antidepressants (citalopram, sertraline, and venlafaxine) in major 

depressive disorder using genetic, clinical, and demographic features [7].  

Considering the potential of ML analysis of genetic data to enhance the treatment of 

patients through medication-related predictions, we explored the application of ML to a broader 

range of medications. The goal of our study is to develop a machine learning (ML)-based model 

for medication usage prediction based on genotypes of patients in the UKBB. Our study will 

address the challenge of reducing the amount of trial-and-error burden on patients by predicting 

and prioritizing medications a patient is likely to use and benefit from. A key assumption 

underlying our study involves the use of self-report data on medication usage. Since self-reported 

medication usage from the UKBB includes only regular medications and health supplements 

(taken weekly, monthly, etc.), we assume that an individual using a medication on a regular basis 

experiences a net benefit from the medication (when factoring in treatment response and 

potential side-effects), which is consistent with the continued/chronic use of the said medication. 

Furthermore, we explored the use of a graph representation learning (GRL) approach to 

integrate interconnected biomedical entities in the form of a knowledge graph as part of the ML 

prediction model. There are several successful examples of applications of GRL in the 

biomedical domain at the molecular, genomic, therapeutic, and healthcare levels [8]. However, 

to our knowledge, no study has applied a GRL approach for medication usage prediction based 

on individual genotype data. A biomedical graph capturing the relationships between genetic 

variants, genes, diseases, and medications could potentially increase the intelligence of ML 

models and prediction performance by introducing biomedical domain knowledge and 

dependencies between entities. 
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Methods 

 

Graph convolutional network 

The class of GRL we utilized is the graph convolutional network (GCN) introduced by Kipf & 

Welling [9]. GCNs extend the ideas of convolution neural networks defined for Euclidean data to 

irregular graph data. Therefore, we can apply existing neural network operations on graph 

objects. To illustrate how the GCN works, we first define a graph as consisting of a set of nodes 

and a set of edges between nodes. 

The goal of the GCN is to learn a function (𝑓) of the node features and graph structure. 

The node features are provided by a feature matrix 𝑋 with dimensions 𝑁 × 𝐷, where 𝑁 is the 

number of nodes in the graph, and 𝐷 is the number of features per node. The graph structure is 

represented using an 𝑁 × 𝑁 dimensional adjacency matrix 𝐴, and an element 𝐴𝑖𝑗  in the matrix 

denotes whether an edge exists between nodes 𝑖 and 𝑗. 

The function 𝑓 is a neural network layer consisting of a learnable weight matrix 𝑊 and a 

non-linear activation function 𝜎, and takes as input the node feature matrix 𝑋 and adjacency 

matrix 𝐴: 

𝑍 = 𝑓(𝑋, 𝐴) = 𝜎(�̂�−
1
2�̂��̂�−

1
2𝑋𝑊) 

Here, �̂� = 𝐴 + 𝐼, where 𝐼 is the identity matrix. �̂� is the diagonal node degree matrix of �̂�. The 

output of 𝑓  is a matrix 𝑍  with dimensions 𝑁 × 𝐹 , where 𝐹  is the dimensionality of the 

transformed output. The product of 𝑋  and 𝑊  is a transformed node feature matrix, and 

subsequent multiplication with �̂�−
1

2�̂��̂�−
1

2  results in a normalized aggregation of all the 

transformed neighboring nodes for each node and itself. 
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The GCN consists of multiple stacked layers of transformations and aggregations for 

increased expressivity. With 𝑋 = 𝐻(𝑙), 𝑊 = 𝑊(𝑙), and 𝑍 = 𝐻(𝑙+1), where 𝑙 is an index denoting 

the layer of the GCN model, we obtain the layer-wise propagation rule introduced in [9]: 

𝐻(𝑙+1) = 𝑓(𝐻(𝑙), 𝐴) = 𝜎(�̂�−
1
2�̂��̂�−

1
2𝐻(𝑙)𝑊(𝑙)) 

The final layer output of the GCN is taken as the embeddings of the nodes in the graph capturing 

the local neighborhood structure around each node. The embeddings can then be used in 

downstream tasks (e.g., node classification or link prediction between nodes). 

 

Biomedical knowledge graph 

The graph data source we utilized for GRL is the Pharmacogenomics Knowledge Base 

(PharmGKB) [4]. PharmGKB consists of curated relationships between variants, genes, 

medications, and diseases extracted from PubMed articles using manual curation with the 

support of natural language processing. The “relationships” table in PharmGKB summarized the 

curated edges between pairwise entities. From the “relationships” table, we filtered for all edges 

which have the attribute “associated,” and discarded those which are “ambiguous” or “not 

associated, to create a new “filtered relationships” table. Based on the table, a visualization of the 

graph was generated using the ForceAtlas2 algorithm [10], and partitioned using a community 

detection algorithm [11], in Gephi (v. 0.10.1) [12]. The visualization of the graph is shown in 

Supplemental Figure 1. 

 

Individual genotype data 

For individual genetic data, we used the imputed genotypes from the UKBB (~96 million 

variants, aligned to + strand of GRCh37 reference genome). We used PLINK2 [13, 14] to 
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remove variants with a Hardy-Weinberg equilibrium test p-value lower than 1e-15, as well as 

variants with missing call rates exceeding 0.1. We limited our analysis to the autosomes 

(chromosomes 1 to 22). All variant coordinates were subsequently uplifted to GRCh38, to be 

consistent with PharmGKB coordinates. Further sample-based filtering was applied based on 

UKBB recommendations, including the following data fields: 22010 (recommended genomic 

analysis exclusions), 22019 (sex chromosome aneuploidy), 22027 (outliers for heterozygosity or 

missing rate), and 22051 (UKBiLEVE genotype quality control for samples). A list of 

individuals withdrawn from the UKBB as of February 22nd, 2022 was removed. After filtering, a 

total of 485754 individuals remained. 

Variants present in the PharmGKB were matched to those present in the UKBB imputed 

genotypes dataset. To maximize the number of relevant variants included in the analysis, we 

matched with variants annotated in the “variants” table in PharmGKB. For variants not part of 

the “filtered relationships” table, we created additional ad-hoc variant-to-gene and gene-to-

variant edges, if the gene corresponding to the variant exists in the “filtered relationships” table. 

Overall, a total of 3962 variants overlapped between the PharmGKB and UKBB datasets. 

Furthermore, we used PGxPOP (https://github.com/PharmGKB/PGxPOP) to obtain 

inferred haplotype calls based on allele definitions for PGx genes [15]. These haplotypes were 

matched with haplotypes present in the “filtered relationships” table. For any haplotypes that 

were not present in the “filtered relationships” table, we created additional ad-hoc edges linking 

the haplotype to its corresponding gene. Overall, a total of 175 haplotypes overlapped between 

the PharmGKB and UKBB datasets. 

 

https://github.com/PharmGKB/PGxPOP
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As a final filtering step to reduce the number of uninformative features for ML analysis, 

we filtered out any features from the UKBB genotype data with less than 10 non-zero values, 

resulting in 3890 variant and 156 haplotype features used for subsequent ML analysis. 

Supplemental Figure 2 provides a summary of the types of nodes present in the final 

PharmGKB graph used in our analysis. Supplemental Figure 3 provides a summary of the edge 

types that exist between node types. The graph is undirected, thus for every edge from node 𝑖 to 𝑗 

an opposing edge exists from node 𝑗 to 𝑖. 

 

Medication usage labels 

We obtained medication usage data from UKBB data field 20003 (treatment/medication code). 

The medication codes are derived from self-reported regular treatments (taken weekly, monthly, 

etc.). Thus, we assume that an individual using a medication on a regular basis experiences a net 

benefit from the medication (when factoring in treatment response and potential side effects), 

which is consistent with the continued/chronic use of the said medication. To create medication 

usage labels, we obtained a mapping of UKBB medication codes to ATC codes and active 

ingredient names from the supplementary data in the study by Wu et. al [2]. Next, for each 

patient, we converted their UKBB medication codes to ATC codes and active ingredient names. 

Finally, we filtered for only medications present in the PharmGKB based on a match with either 

the ATC code or active ingredient name of the medication. To ensure an adequate number of 

samples for ML analysis, we kept medications taken by at least 100 patients. In total, 264 

medications met the threshold. For each patient, a 264-dimensional vector (𝑦𝑖) is created with a 

value of 1 indicating that the patient is taking the medication, and 0 otherwise. 
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GCN model architecture 

A supervised ML approach based on GCN was developed for the prediction of medication usage 

based on individual genotype data. Our approach consists of three steps: 1) learning node 

embedding using graph convolutions, 2) aggregation of feature node embeddings weighted by 

feature values, 3) prediction of class probabilities. Figure 1 shows an illustration of the approach. 

In step 1, embeddings for nodes in the graph are learned through graph convolutions, i.e., 

normalized aggregation of all the transformed neighboring nodes for each node and itself 

(example shown for node 𝑉1). The initial features for each node (𝑋) are initialized as an identity 

matrix. The reasoning for using an uninformative identify matrix is so that the model will 

leverage only structural information of the graph as part of the predictions, thus emphasizing the 

benefits of the specific graph structure, and providing a fair comparison against non-graph-based 

ML approaches. In step 2, the embeddings of nodes corresponding to features (i.e., genetic 

variant nodes 𝑉1, 𝑉2, 𝑉3, and 𝑉4), are multiplied with the feature values (i.e., genotypes of a 

patient 𝑖 (𝐺𝑖 )) to yield a feature value-weighted aggregation of the embeddings, i.e., patient-

specific aggregated embedding (𝑍𝑖). In step 3, 𝑍𝑖 is fed into a neural network model to output 

class probabilities (i.e., predict the medication(s) that patient 𝑖 is taking). The neural network 

model can be viewed as a function of the genotype inputs and the graph convolution embeddings 

(which itself is a function of the PharmGKB graph). The architecture consists of fully 

differentiable operators and the parameters of the neural network model, and the graph 

convolution layers are jointly optimized through an iterative process backpropagation and 

gradient descent. 
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ML analysis 

We developed supervised ML models using the 3890 variants and 156 haplotypes extracted as 

described above as features. We performed cross-validation with the data split as 70% training, 

10% validation, and 20% testing using a stratified split of individuals to maintain a balanced 

distribution of each medication across the splits. For cross-validation, we allocated 340027 

individuals for training and 48576 for validation. A final set of 97151 individuals were not used 

in the cross-validation process and were reserved for the final evaluation of the trained models. 

To assess the GCN model performance, we compared it with a logistic regression 

(baseline), a regular deep neural network (DNN), and a GCN model with a randomized graph 

(GCN-random). We defined the GCN model with two graph convolution layers consisting of a 

256-dimensional output (i.e., 𝐻(𝑙)) with rectified linear unit (ReLU) as the non-linear activation 

function. The neural network model composed over the graph convolution outputs consists of 2 

fully-connected layers (i.e., each layer has a linear transformation of their input followed by non-

linear activation of the transformed input) with 512-dimensional outputs, followed by a layer 

with 264 nodes and sigmoid activation to obtain the final prediction output as probabilities. The 

DNN model has the same architecture as the neural network model except genotype values are 

used as the input rather than the output from graph convolution integrated with genotypes. The 

GCN-random model is the same as the GCN model except the original PharmGKB graph edges 

are randomly permuted such that the associations information between nodes are randomized. 

All models were trained and evaluated on the same dataset splits. We trained the model 

using the following multilabel binary cross-entropy loss function with minibatch stochastic 

gradient descent (SGD) using the Adam optimizer [16]: 
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𝐿𝑜𝑠𝑠𝐵𝐶𝐸 = −
1

𝑛
∑ ∑(𝑦𝑖𝑗 ∗ log(�̂�𝑖𝑗) + (1 − 𝑦𝑖𝑗) ∗ log (1 − �̂�𝑖𝑗))

𝑘

𝑗=0

𝑛

𝑖=0

 

where 𝑛 is the number of patients in each minibatch for SGD (𝑛=4096), 𝑘 is the number of 

medications (𝑘=264), 𝑦𝑖𝑗  is the true label value for patient 𝑖  and medication 𝑗, and �̂�𝑖𝑗  is the 

model prediction for patient 𝑖 and medication 𝑗. 

To select the final model used for evaluation, we ran minibatch SGD until convergence, 

and selected the model with the lowest 𝐿𝑜𝑠𝑠𝐵𝐶𝐸  value on the validation set. The evaluation 

metric used to assess and compare model performance is the area under the receiver operating 

characteristic curve (AUC) on the testing set. An AUC value is calculated for each medication 

independently. Furthermore, we performed comparisons between approaches using paired (i.e., 

for each medication) t-tests to assess whether the model performance differences are statistically 

significant. Lastly, we analyzed the mean AUCs across five medication sample size percentile 

ranges to assess whether there is a relationship between the number of users of a medication and 

model performance. 

 

Ranking interpretation of model predictions 

We performed a downstream analysis assessing the significance of medication usage predictions. 

Using a ranking approach, we examined whether an individual having a higher rank for a 

medication (out of all medications) means higher odds of taking the medication. First, for each 

medication, we standardized the predicted probabilities for each patient into Z-scores with a 

mean of 0 and standard deviation of 1. Next, for each patient, the Z-scores are converted into 

ranks (i.e., the higher the Z-score, the higher the rank). For each medication, we use logistic 

regression to assess the association of having a rank value of the medication ranked in the top 5 



182 
 

out of all medications with actual medication usage. We limited the analysis to medications with 

a sample size of at least 5000. 

 

Results 

 

We selected the models with the lowest 𝐿𝑜𝑠𝑠𝐵𝐶𝐸  value on the validation set for each of the 

compared approaches (i.e., Baseline, DNN, GCN, and GCN-random). Final evaluations of the 

selected models were performed on the testing set. The overall mean AUC values on the testing 

set over all medications for each approach are shown in Table 1. We also provide an overview of 

the prediction performance over all medications in Figure 2 using a swarm plot of the AUC value 

of each medication. Overall, the GCN model outperformed the Baseline and DNN models. Using 

paired t-tests, we find statistically significant improvements of the GCN model over baseline (p-

value: 1.53e-9) and DNN (p-value: 8.68e-8). Furthermore, the GCN model significantly 

outperforms the GCN-random model (p-value: 5.44e-9), suggesting that a GCN model utilizing a 

specific graph structure is significantly better than one with a randomized graph. In summary, the 

prediction AUCs are statistically better than what would be expected from null predictions, 

however, in absolute terms, the prediction performance of all approaches was low, ranging from 

an AUC of 0.510 to 0.527. 

To explore how model prediction performance is related to the medication sample size 

(i.e., do medications with a higher number of users have higher AUCs), we plotted the mean 

AUC value of each bin after binning medications into percentile ranges (Figure 3). Overall, we 

observe an increase in mean AUC as medication sample size increases. We also observe that the 

performance of the GCN model is the highest in all five percentile ranges. 
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Despite the overall prediction performance in terms of AUC being low, our analysis 

using the medication ranking approach (described in Ranking interpretation of model predictions) 

revealed a significant association of medication usage with having a high rank (having a rank in 

the top 5 relative to all other medications) for many medications. Figure 4 shows the odds ratio 

of the associations accompanied by 95% confidence intervals for each medication with a sample 

size of at least 5000. Furthermore, having a high rank for several medications is associated with 

greater than 2-fold higher odds of usage of the medication (e.g., iron, insulins and analogues, 

metformin). 

 

Discussion 

 

We introduced a novel application of a graph-based ML approach for medication usage 

prediction using curated biomedical domain knowledge from the PharmGKB and targeted 

pharmacogenetic data from 485754 individuals from the UKBB. Our findings revealed the 

predictability of 264 commonly used medications based on PGx features (3890 variants and 156 

haplotypes). Although the overall performance for medication usage prediction was low, we 

found that the GCN approach outperformed all other models in our comparison, including the 

same GCN approach with a random graph, suggesting that the graph structure contained 

specifically in the PharmGKB graph could be useful to improve the performance of prediction 

models. 

The relatively poor performance of the models could be due to a combination of different 

factors. The first is that of low medication sample sizes for the majority of medications. In 

support of this factor, we saw a consistent trend of medications with higher sample sizes having 

better performance. Second, our input genetic variants are limited in terms of quality of 
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imputation and quantity (in the order of thousands). It may be important to further enrich the 

current graph to include additional sources of genetic variants and genes with impacts on the 

metabolism of medications. One potential approach would be to leverage the use of 

pharmacogenomic variant effect classifiers at the variant level [17], to prioritize relevant variants 

as features for medication trait prediction at the individual patient level. Third, the use of self-

reported medication use labels may not be an accurate reflection of response to the medication. 

To avoid making assumptions about the training labels, data from randomized controlled trials 

(RCT) or N-of-1 clinical trials [18], capturing medication responses and side effects at the 

individual level would be required. However, RCTs are expensive to conduct and often have low 

sample sizes. As a future direction, it may be feasible to explore transfer learning [19], to 

leverage the knowledge stored in the current model when training a new model from high-quality 

RCT or N-of-1 data. 

Despite the relatively poor prediction of individual medications, we found that for several 

medications, a patient with a higher relative rank of the medication (among all medications) is 

significantly more likely to be using the medication. The ranking interpretation of model 

predictions could also be more clinically meaningful in the context of precision medicine by 

providing relative ranks of medications (e.g., for comparing between multiple potential 

medications). 

Using a ranking interpretation of model predictions, we highlighted several medications 

for which our method had the highest performance, including iron, insulin, and metformin, all of 

which are widely used medications. Iron supplementation is used in the treatment of iron 

deficiency of varying causes including nutritional deficiency, malabsorption, chronic 

inflammatory state, blood loss, and others [20]. Insulin is used in the treatment of type 1 diabetes 
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and less commonly in type-2 diabetes by binding to insulin receptors on cells to reduce blood 

glucose levels [21]. Similarly, metformin is used primarily for the treatment of type-2 diabetes 

through several mechanisms, including decreasing glucose production in the liver and intestinal 

absorption, as well as increasing insulin sensitivity [22]. All three medications are associated 

with greater than 2-fold higher odds of usage of the medication given a rank of the medication 

within the top five, suggesting that individuals with specific genetic profiles have a higher 

likelihood of needing these medications. While our method is able to identify individuals 

requiring iron supplementation, our current method cannot identify individuals who would 

experience adverse effects of medications due to a lack of ground truth labels for these events. 

To capture adverse effects in future studies, integration of data on medications and adverse 

events from resources such as electronic health records with natural language processing 

methods would be required [23]. Lastly, adjustments to the current graph approach, such as 

enriching the current biomedical knowledge graph with adverse effect nodes and edges to 

medications, could enhance the prediction of adverse effects of medications. 

In conclusion, a graph-based ML analysis of targeted pharmacogenomic variants could be 

useful in advancing precision medicine by prioritizing medications that a patient may need based 

on their genetic data. This could help reduce the need for trial-and-error in finding an effective 

medication. However, further research is needed to validate the findings, and future studies 

should focus on improving the quality and quantity of genetic data and medication response data, 

including more informative genetic variants involved in the metabolism of medications and more 

reliable medication labels. 
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Tables and figures 

 

Figure 1. GCN model architecture. 

 

Figure 1. A simplified illustration of the three steps of the GCN model architecture as described 

in the section GCN model architecture is shown. The green nodes represent genetic variants in 

the graph, while the blue and red nodes are other node types in the graph such as genes or 

medications. 
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Figure 2. Distribution of testing set AUC values for each approach. 

 

Figure 2. The performance of each of the final models for each approach is shown. The y-axis 

shows the AUC values while the x-axis are labels indicating each approach. The box plots 

overlayed show a summary of the AUC ranges, while each point in the strip plot corresponds to 

the AUC value for a specific medication. The GCN approach significantly outperforms the 

Baseline (p-value: 1.53e-9), DNN (p-value: 8.68e-8), and GCN-random (p-value: 5.44e-9) 

approaches in terms of AUC values, albeit the actual AUC values were low. 

 

 

 

 

 

 



190 
 

Figure 3. Mean AUC at each medication sample size percentile range. 

 

Figure 3. The relationship between medication sample size and model prediction performance is 

shown. The x-axis indicates a percentile range of bins of medication sample sizes. Each 

percentile range is a grouping of medications with sample sizes falling in the range. For example, 

a percentile range of 0-20 includes all medications which have a sample size that falls within the 

lowest 20% percentile out of all medications. The y-axis indicates the mean AUC of all 

medications within the percentile range. We noted that as the medication sample size increases, 

the mean AUC value also increases, suggesting that prediction performance is higher for 

medications with a higher number of users. Moreover, the GCN model consistently demonstrates 

the highest performance across all five percentile ranges. 
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Figure 4. Odds ratio between usage of a medication and having a rank value within the top 

five. 

 

Figure 4. The odds ratio of the associations between the usage of a medication and having a rank 

value within the top five are shown for each medication with a sample size of at least 5000. The 

x-axis indicates each medication with a sample size of at least 5000. The y-axis indicates the 

corresponding odds ratio for having a rank within the top five for the corresponding medication. 

The error bars around each point indicate lower and upper bounds of the 95% confidence interval 

of the odds ratio estimate. Medications are sorted from highest to lowest by odds ratios. We 

noted that having a high rank for several widely used medications, including iron, insulins and 

analogues, and metformin, is associated with greater than 2-fold higher odds of usage of the 

medication. 
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Table 1. Summary of model performance. 

Approach Mean AUC 

Baseline 0.510 

DNN 0.511 

GCN 0.527 

GCN-random 0.512 
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Supplemental Figures 

 

Supplemental Figure 1. Visual representation of the PharmGKB graph. 

 

Supplemental Figure 1. A visual representation of the PharmGKB graph is shown. The size of 

nodes in the graph is defined by their degree (i.e., the number of edges a node has). Nodes are 

colored by the community they belong to as derived from community detection. The figure is 
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meant to highlight the overall patterns of the PharmGKB graph through a projection into two 

dimensions. One immediately notable pattern is that similar diseases tend to be clustered more 

closely. 

 

Supplemental Figure 2. Node types present in the final PharmGKB graph. 

 

Supplemental Figure 2. The y-axis shows each of the node types present in the final 

PharmGKB graph, while the x-axis shows the corresponding count. Nodes are sorted by highest 

to lowest count. 

 

Supplemental Figure 3. Edge types present in the final PharmGKB graph 
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Supplemental Figure 3. The y-axis shows each of the edge types present in the final 

PharmGKB graph, while the x-axis shows the corresponding count. Edge type labels denote the 

pair of node types involved in the edge. Since the PharmGKB graph is undirected, an equal 

number of edges exist for every edge type in the reverse direction. Edge types are sorted by 

highest to lowest count. Medications are labeled as “Chemical” in the PharmGKB graph. 
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Chapter 6. General Discussion 

 

Our overarching hypothesis of this thesis was that ML analysis of omics data can provide 

valuable insights into the pathophysiology of complex diseases and aid in their treatment. The 

objectives of this thesis were to explore the potential of ML approaches for identifying and 

understanding the molecular basis of complex diseases (using psychiatric disorders as our model), 

and to investigate the application of ML for optimization of the treatment of complex diseases. 

We have investigated the role of ML in achieving these objectives using various omics data 

sources such as gene expression, microRNA, and genetic data. We have included four studies as 

part of this thesis, each showcasing the effectiveness of ML analysis of omics data for producing 

novel insights. 

 

General overview of studies 

In our first study (Chapter 2), we tested the hypothesis that our ML methodology could 

effectively distinguish disease cases from controls based on gene expressions from the 

dorsolateral prefrontal cortex (DLPFC) better than random chance and generalize to unseen data. 

We utilized gene expression microarray data from the DLPFC of post-mortem SCZ cases and 

controls and developed a supervised ML pipeline using the XGBoost algorithm. Our results 

demonstrated above-chance performance in classification and generalization, with an average 

AUC of 0.76 on cross-validation and testing data. We also identified genes that were 

significantly relevant to SCZ through the integration of ML and biological gene set analysis. 

These initial findings supported our hypothesis that ML analysis of gene expressions can 

enhance our understanding of complex diseases and identify potential treatment targets. Of note, 
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we used transcriptomic data from the DLPFC, and although the DLPFC is a significant brain 

region associated with SCZ, it is important to recognize that other brain areas are also involved 

[111], as well as other systems outside of the brain [112], which may account for the non-perfect 

separation of diseases cases and controls. 

Building on the findings from the first study, in Chapter 3, we further validated our 

hypothesis that patterns identified through ML are relevant to disease and generalizable, and 

strengthened our overall approach, with a case-control analysis in MDD. More specifically, we 

applied supervised ML to gene expression data from the DLPFC of post-mortem MDD cases and 

controls, achieving an average AUC of 0.72 on 10-fold cross-validation and 0.76 on testing data. 

In this case, we included an external validation of our initial findings using an independent 

cohort, observing an AUC of 0.62. Furthermore, using covariate information, we were able to 

identify an association between smoking and recall performance in MDD case prediction, 

showing that the inclusion of covariate information for assessing model performance can lead to 

further insights in a ML analysis. Overall, Chapter 3 shows a further refinement of the ML 

methodology introduced in Chapter 2, and the findings further demonstrate the effectiveness of 

ML applied to complex diseases. However, our analysis of blood gene expression data did not 

yield promising results in MDD, underlining an obstacle towards clinical translation of the 

approach, and suggesting that different tissues may yield different results, and this choice should 

be carefully considered in future studies. 

In our third study (Chapter 4), we hypothesized that ML analysis of omics data could 

yield biomarkers for diagnosis, disease severity, and treatment response. We began our 

exploration into the potential application of ML for the optimization of the treatment of complex 

diseases. We applied supervised and unsupervised ML approaches to analyze blood microRNA 
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expression profiles from an MDD case-control dataset. We successfully distinguished MDD 

cases from healthy controls with an AUC of 0.97 on testing data. Furthermore, in addition to 

analyzing disease status, we also performed an analysis of disease severity levels. We were able 

to distinguish high vs. low severity individuals with an AUC of 0.63, partially supporting our 

hypothesis. We also found that unsupervised clustering of patients may improve the performance 

of the classifiers in predicting MDD severity. However, we could not separate antidepressant 

responders from non-responders with high accuracy, indicating that further improvements in our 

ML methodology may be needed. Of note, a potential inaccuracy in our application of false-

discovery adjustment in the study which determined the statistical significance of the top miRNA 

marker for antidepressant response (see Chapter 4 erratum) was highlighted after the publication 

of the manuscript and added as note at the bottom of page 168. Due to this, it is possible that our 

reported significance is under-corrected and an over-estimation of the actual significance. 

In our final study (Chapter 5), we hypothesized that the incorporation of 

pharmacogenomic domain knowledge as part of ML modelling could enhance performance in 

the prediction of medication usage and advance precision medicine. We continued our 

exploration into the application of ML for optimizing treatment by developing a GRL for 

predicting medication usage based using individual genetic data in the UKBB. We used a GCN 

model to integrate interconnected biomedical entities in the form of a knowledge graph as part of 

an ML prediction model. Our GCN model significantly outperformed both a baseline logistic 

regression model and a deep neural network model, demonstrating the benefits of integrating 

biomedical domain knowledge and the potential of a graph-based ML approach in advancing 

precision medicine by prioritizing medications that a patient may need based on their genetic 

data. These results support our initial hypothesis. Furthermore, although we limited the 



201 
 

application of the graph-based ML approach to genetic data, our findings provide a basis for 

future multi-omics integration in ML analysis. To achieve this, we would just need to introduce 

connections between different omics types in a graph, in addition to genetic data. 

 

Original contributions to knowledge 

Overall, the work presented in this thesis contributes to the growing body of research 

leveraging the use of ML approaches in understanding the molecular basis of complex diseases 

[113], and treatment optimization [114-116]. Specifically, we have contributed several novel 

methodologies, including (1) the ML model selection procedure for high-dimensional omics data 

introduced in Chapter 2, (2) the gene set analysis method of combining differential gene 

expression statistics with genes selected through supervised ML (Chapters 2 and 3), (3) the use 

of unsupervised clustering to reduce heterogeneity in the data prior to supervised ML analysis for 

disease severity prediction (Chapter 4), and (4) the graph approach for integrating biomedical 

domain knowledge in ML analysis of genetic data (Chapter 5). 

Although our classification results in the studies presented in Chapters 2 and 3 were not 

high compared to previous studies, our study consisted of a greater number of cases and controls 

and the use of a training/validation and testing set split, as well as external testing data for final 

evaluation, which reflects a more precise estimation of model performance and a more realistic 

estimation of the generalizability of the patterns learned by the model. 

We noted that model selection was a major challenge of these studies given the large 

number of features of our input data (~20000 genes). As we have seen, even based on the final 

set of genes prioritized by XGBoost, we saw that further classification improvements can be 
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obtained through an additional Bayesian optimization step to explore and identify an ensemble 

model, suggesting that further refinements to model selection are still possible. This two-stage 

method of model selection may be particularly useful for future applications of ML to high-

dimensional omics data. 

Furthermore, we emphasized the molecular basis of the respective diseases through the 

development of a novel gene set analysis (GSA) technique combining both a statistical testing 

method and the results from the ML analysis. The GSA method, when integrated with the 

findings from ML models, was able to enhance the biological interpretation of the results but 

also increased their robustness by reducing potential false-positive results through consensus of 

the two methods. This synergistic approach allowed us to identify significant molecular 

functions which were associated with the respective diseases in existing literature, thus providing 

further support for the effectiveness of the approach. Moreover, the identification of novel 

associations could enable us to uncover molecular targets that may be implicated in the 

pathophysiology of complex diseases and enable the development of new therapeutic strategies. 

Chapters 4 and 5 highlighted the usefulness and limitations of ML in terms of the 

optimization and treatment of complex diseases. Our findings suggest that ML may be useful for 

the purposes of complex disease diagnosis and monitoring based on omics data as demonstrated 

in Chapter 4. However, we underlined several obstacles in using ML for direct treatment 

response and usage prediction based on omics data, and further improvements to data quality, 

pharmacogenomic knowledge, and analysis methodology would be necessary to address this 

challenge. 

The study in Chapter 5 departs notably from the previous studies in both the scope, 

objective, and methodology, with a focus on the use of genetic data compared to transcriptomics. 
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The scope of the analysis in Chapter 5 covers a set of 264 medications, whereas in the previous 

studies we focused on a single phenotype at a time. Although it may be more complex to model 

multiple (vs. a single) targets, the results enable a more robust comparison between multiple 

algorithms/models by enabling the use of statistical testing procedures such as paired t-tests.  

This thesis also contributes to advancing precision psychiatry [117], an emerging field 

aiming to improve the diagnosis, prognosis, and treatment of psychiatric disorders by 

incorporating individual-level data. Specifically, we highlighted several novel genes and 

molecular functions which could help provide a more comprehensive understanding of the 

pathophysiology of psychiatric disorders and drive the development of more effective 

therapeutics (Chapters 2 and 3). Furthermore, we demonstrated the potential of using blood 

microRNA profiles as biomarkers of MDD severity and treatment response, which could enable 

a biologically informed approach to disease treatment (Chapter 4). Our findings also suggest that 

ML approaches can facilitate the prioritization of medications based on an individual's genetic 

data (Chapter 5), paving the way toward more personalized treatment strategies in psychiatry. In 

addition to our contributions to the field of psychiatry, our work may have wider implications for 

other complex diseases beyond psychiatric disorders. 

 

Machine learning challenges 

Overall, the four studies comprising this thesis showed that ML approaches offer 

considerable potential for understanding complex diseases and optimizing their treatment. 

However, during the course of our research, it was evident that the challenge was not just about 

applying the correct ML algorithm, but the entire process from ensuring data quality, data 
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cleaning and preprocessing, to model selection, evaluation, and interpretation, and the 

correctness of algorithm implementation for each of these multiple stages. Despite careful 

preprocessing of omics data, there were instances where data quality and preprocessing could 

have been further improved. For example, a step for detecting poor quality or outlier features 

could have been implemented, which might have improved the performance of resulting ML 

models and the robustness of our findings. Furthermore, methods to adjust for class imbalances, 

which are often seen as a challenge for ML algorithms designed based on the assumption of 

balanced classes [118], could have been implemented in our analysis methodology (e.g., for the 

blood mRNA dataset in the MDD cases-control analysis). 

Moreover, we also did not offer a more comprehensive interpretation of model 

performance such as precision-recall, prediction uncertainties, and calibration. We realize that 

such performance metrics would be crucial if ML classifiers were to be deployed in real-world 

clinical scenarios for classification and prediction purposes. The effectiveness of a model would 

need to be evaluated based on specific clinical situations such as patient outcomes and cost 

savings [119], and studies involving a closer collaboration between multiple expertise groups 

including clinicians, ethicists, and statisticians would be necessary to enable a proper analysis of 

the clinical utility of ML tools. However, more research focusing on improving the model 

performance through improving data quality, model architecture design, and incorporation of 

prior domain knowledge is still needed in parallel with these efforts. 

In addition to performance metrics, other factors such as the interpretability and fairness 

of the models are also important. Interpretability is crucial for the clinical translation of our work, 

as it allows clinicians to understand the reasoning behind a model's predictions. Models based on 

a foundation of prior domain knowledge (as shown in Chapter 5 with the GCN model), 
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combined with feature attribution methods of neural networks such as integrated gradients [120], 

could offer a path towards better interpretability of ML models. Moreover, fairness ensures that 

the model does not discriminate against specific patient groups, which is essential for ethical 

considerations in healthcare. Although we did not specifically focus on addressing potential 

biases in our ML models, it is important to note there are methods and tools designed specifically 

for such purposes [121], and that such analyses would be crucial in the context of clinical 

prediction models in general. 

In terms of ML applications, this thesis focused mainly on methods of binary or multi-

class classification, which simplifies model evaluation and interpretability. However, it may be 

the case that regression modelling offers more insights in terms of tasks such as disease severity 

and treatment response prediction. By employing regression models, we can potentially uncover 

more nuanced relationships between variables and better understand the factors influencing 

disease severity and treatment response. 

Furthermore, it may be difficult to directly learn a model for a complex task such as 

treatment response prediction eight weeks in advance due to a very low signal-to-noise ratio. 

This issue could arise when the relevant signal related to treatment response is obscured by a 

large amount of irrelevant biological and environmental influences, making it difficult for the 

model to discern meaningful patterns. A strategy for lowering the complexity of the task through 

incorporating multiple time points may be useful to improve the learning of temporal dynamics 

for treatment response prediction. 
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Data quality challenges 

We encountered several further challenges related to data quality during the course of 

research. First, the sample sizes used in the studies, particularly for gene expression data, were 

small relative to the number of features in the dataset. Although we have implemented several 

strategies to avoid overfitting, it should be noted that another option would be to focus on 

strategies for creating larger gene expression datasets. Large data repositories of gene expression 

containing millions of samples from an aggregate of different studies are available [122], and it 

recently has been shown that it may be effective to combine the data with proper data 

normalization and batch correction for ML analysis [123].  

Furthermore, when assessing treatment response using genetic data, a prospective study 

with better characterization of treatment response would be necessary (e.g., taking advantage of 

the N-of-1 study design to ensure objective treatment response classification, where possible). 

Finally, the generalizability of the ML models developed in this thesis may be limited by 

the specific populations and data sources used. For instance, the datasets used consisted of 

mainly individuals with European ancestry. As a result, the performance of these models may not 

hold up when applied to diverse populations with different genetic backgrounds, environmental 

exposures, and clinical characteristics. To address this limitation, future research should focus on 

validating the models using independent datasets collected from various populations and 

demographic groups, and incorporating methods for model fairness analysis mentioned 

previously. This approach would help improve the robustness and generalizability of the patterns 

learned through ML. 
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Confounding and causality 

Another challenge in ML analysis we encountered is due to the indirect effects of 

covariates, which in our context refer to explanatory variables which are not the primary interest 

in an investigation [124]. These covariates can confound the relationship between the variables 

of interest and the outcome, making it challenging to determine the true underlying causative 

relationships relevant to disease. For example, in the case that smoking is associated with MDD 

status, the effects of smoking may be reflected in the gene expression patterns of patients. In this 

scenario, it would be difficult to disentangle whether the gene expression differences are due to 

smoking, or due to disease-relevant mechanisms. There are various strategies to account for the 

potential confounding effects of covariates. As we have shown in Chapter 3, given that we have 

the smoking status of each individual in the dataset, we can perform a stratification of smoking 

status to examine how the model prediction performance differs in the smoker vs. non-smoker 

subgroups to understand the effects of smoking on model predictions of disease status. This 

stratification allows us to isolate the impact of smoking and better understand its role in the 

relationship between gene expression patterns and MDD status. Future research leveraging ML 

could leverage similar strategies to better evaluate the effects of covariates on model 

performance. Another option to address this challenge could be to leverage causal supervised 

learning which includes techniques specifically designed for learning causal relationships using 

ML [125]. 
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Chapter 7. Conclusion and Future Directions 

 

In conclusion, this thesis has demonstrated the potential of ML approaches to advance our 

understanding of the molecular basis of complex diseases and optimize their treatment. Our 

findings show the effectiveness of ML models in classifying psychiatric disorders using gene 

expression data and highlight the potential of blood microRNA profiles and genetic data as 

biomarkers for monitoring clinical evolution and treatment response in patients. In particular, we 

have illustrated the effectiveness of a graph-based ML approach for prioritizing medications 

based on individual genetic data. These findings together support the need to further develop ML 

approaches for omics data analysis that take into consideration the combined effects of multiple 

features for understanding of complex diseases. 

Moving forward, it is important to conduct further validation of the genes we have 

identified in this study. Additional research could focus on testing these genes in independent 

cohorts and different demographic groups, and exploring their potential functional roles in 

disease pathophysiology. Furthermore, certain limitations and challenges also need to be 

addressed in future research. These include increasing sample sizes, improving the 

generalizability of ML models in individuals of non-European ancestry, and addressing the 

indirect effects of covariates on ML analysis. 

Another promising direction to explore is integrating comprehensive phenotyping data 

into ML analysis. The use of a single target label (e.g., disease status) simplifies a ML task, 

however, this approach does not fully capture the details of an individual’s unique disease state. 

The application of ML and more specifically deep learning and GRL, which have the flexibility 

of modelling multiple target variables (i.e., multi-label, multi-output models) [126, 127], may be 

able to more accurately characterize an individual’s disease state and allow for more insights 
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with clinical relevance and impact to be learned about complex diseases. A promising way to 

achieve this would be to leverage the use of population-scale biobanks which provide 

comprehensive genotyping and phenotyping data of participants [128]. 

While we analyzed several different omics data types including gene expressions, 

microRNA expressions, and genetic variants, we did not explore the integration of multiple 

feature types (i.e., multi-omics integration [129]). The graph approach we introduced in Chapter 

5 could be a promising approach for multi-omics integration. The current graph-based approach 

using genetic variants as inputs could be naturally extended to integrate multiple feature types 

while being able to leverage the biological connections between the features through biological 

processes and pathways. 

In addition to integrating multiple biological omics data types, incorporating data from 

other modalities such as biomedical imaging in the ML analysis of complex disorders may 

compensate for limitations inherent to omics modalities and contribute to a more comprehensive 

view of complex disease etiology and treatment. For example, a recent study analyzed whole-

brain structural magnetic resonance imaging integrated with cerebrospinal fluid metabolomics to 

associate brain regions with metabolic disruptions [130]. Furthermore, given that a large amount 

of descriptions of a patient’s disease are in the form of clinical documentation, which consists of 

unstructured text information, an appropriate means of integrating important information should 

be integrated into complex disease research [131]. 

Another important future direction is to explore the use of temporal data for ML 

modelling for understanding of disease development, progression, and treatment responses. In 

our studies, we have not focused on the analysis of temporal data, which could be a potential 

limitation. For example, in our analysis of microRNA for antidepressant response (Chapter 4), 
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incorporating temporal data in the early stages of treatment may be useful in capturing early 

changes in microRNA levels and offer more robust signals of antidepressant response. 

Lastly, identifying potential clinical applications based on research findings is crucial for 

advancing the treatment of complex diseases. However, the implementation of these applications 

will require careful consideration of ethical and economic challenges, such as data collection and 

privacy, minimizing potential harmful biases, and evaluating the cost-effectiveness of clinical 

applications [132-134]. Ultimately, the successful translation of these research findings into 

clinical applications will pave the way for a new era in precision medicine, revolutionizing the 

diagnosis, prognosis, and treatment of complex diseases and improving patient outcomes. 
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Appendix 

Chapter 2 top brain mRNA model hyperparameter search results: 

• Mean validation score: 0.762 (std: 0.050) 

• AUC per fold: [0.8016304347826086, 0.7771739130434783, 0.7989130434782609, 

0.7159090909090909, 0.7897727272727273, 0.8636363636363636, 0.6875, 

0.7272727272727273, 0.7215909090909092, 0.7357954545454546] 

• Optimal threshold for classification: 0.443379976263868 

• Parameters: {'gamma': 0.01768780961325722, 'learning_rate': 0.07025531638428649, 

'max_depth': 3, 'n_estimators': 35} 

Chapter 3 top brain mRNA model hyperparameters search results: 

• Mean validation score: 0.715 (std: 0.100) 

• AUC per fold: [0.8181818181818181, 0.818181818181818, 0.7159090909090909, 

0.7000000000000001, 0.8, 0.7375, 0.5375, 0.775, 0.725, 0.525] 

• Optimal threshold for classification: 0.4973402112722397 

• Parameters: {'gamma': 0.5151736824068126, 'learning_rate': 0.10755413156827563, 

'max_depth': 1, 'n_estimators': 122, 'reg_alpha': 1} 

Chapter 3 top covariates only model hyperparameters search results: 

• Mean validation score: 0.834 (std: 0.075) 

• AUC per fold: [0.9431818181818181, 0.6534090909090908, 0.8636363636363636, 

0.85, 0.8562500000000001, 0.9, 0.79375, 0.875, 0.8187500000000001, 0.7875] 

• Optimal threshold for classification: 0.5238638237118721 

• Parameters: {'gamma': 0.35188483434700646, 'learning_rate': 0.0805615304784293, 

'max_depth': 5, 'n_estimators': 140, 'reg_alpha': 0} 

Chapter 3 top brain mRNA + covariates model hyperparameters search results: 

• Mean validation score: 0.705 (std: 0.087) 

• AUC per fold: [0.7613636363636364, 0.7045454545454546, 0.75, 0.75, 

0.7875000000000001, 0.7625000000000001, 0.5375000000000001, 0.75, 0.7125, 

0.5375] 

• Optimal threshold for classification: 0.5293224930763245 

• Parameters: {'gamma': 0.7486721752509908, 'learning_rate': 0.09279249545453125, 

'max_depth': 1, 'n_estimators': 87, 'reg_alpha': 1} 

Chapter 3 top blood mRNA model hyperparameter search results: 

• Mean validation score: 0.640 (std: 0.041) 

• AUC per fold: [0.5859353787673093, 0.6073852837360847, 0.6334509910399131, 

0.6663046429541135, 0.633722508824328, 0.7225088243279936, 0.624490904154222, 

0.6023809523809524, 0.6962962962962964, 0.6304232804232804] 

• Optimal threshold for classification: 0.9334825277328491 

• Parameters: {'gamma': 0.3866201726338342, 'learning_rate': 0.07624839469416081, 

'max_depth': 4, 'n_estimators': 138, 'reg_alpha': 0} 

Chapter 4 top case-control classification model hyperparameter search results: 

• Mean validation score: 0.929 (std: 0.063) 
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• AUC per fold: [1.0, 0.95, 0.9624999999999999, 0.8157894736842105, 

0.912280701754386] 

• Optimal threshold for classification: 0.7485573918391497 

• Parameters: {'gamma': 0.05816379550547579, 'learning_rate': 0.10948663171697672, 

'max_depth': 1, 'n_estimators': 163} 

Chapter 4 top disease severity model hyperparameter search results: 

• Mean validation score: 0.756 (std: 0.132) 

• AUC per fold: [0.8402777777777778, 0.5, 0.7666666666666666, 0.7916666666666666, 

0.875] 

• Optimal threshold for classification: 0.4780568954272148 

• Parameters: {'gamma': 0.14551548278735915, 'learning_rate': 0.09771275618985018, 

'max_depth': 2, 'n_estimators': 145} 

Chapter 4 top treatment response model hyperparameter search results: 

• Mean validation score: 0.622 (std: 0.127) 

• AUC per fold: [0.744047619047619, 0.42948717948717946, 0.6217948717948717, 

0.5384615384615384, 0.7692307692307693] 

• Optimal threshold for classification: 0.5066269127031168 

• Parameters: {'gamma': 0.3772859652420726, 'learning_rate': 0.010259502438364656, 

'max_depth': 4, 'n_estimators': 5} 
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