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Abstract: The impact of a damaging earthquake striking Eastern Canada’s medium-to-high seismicity cities 
would be catastrophic. This is largely due to the predominant presence in populous urban centres of highly 
vulnerable old (or pre-code) unreinforced masonry (URM) buildings – a relevant share of schools, fire 
stations, power plants and heritage (or historic) constructions also at the national level – posing a serious 
threat to our safety, cultural values and economy. Past research, albeit informative, has not systematically 
nor coherently addressed this key issue yet, mainly focussing on individual case studies. Similarly, and 
despite the undergoing work of various building code committees and responsible governmental agencies 
on this front, dedicated national guidelines and standards are either incomplete or obsolete, leaving 
engineering professionals without clear guidance. In this paper, an effort is made to unify and critically 
review previous fragmented applications through the lens of the ISCARSAH Principles, a globally accepted 
framework for the classification, characterization and evaluation of URM structures only marginally adopted 
in Canada, enabling us to identify in a structured manner knowledge gaps, challenges and future research 
opportunities in Eastern Canada and beyond. This investigative state-of-the-art review will also provide 
researchers and practitioners with a high-level report on best practices and relevant examples from other 
seismic-prone countries, where ad-hoc guidelines for old URM buildings have been developed decades 
ago, while substantiating the current efforts of the newly formed CSCE Existing Structures Committee.  

1 INTRODUCTION 
A lower magnitude earthquake that strikes in vulnerable areas, such as densely populated urban centers 
in Eastern Canada, can still be catastrophic. This is particularly true for existing buildings made of 
unreinforced masonry (URM), which are highly vulnerable to even low-magnitude ground shakings and 
identified as the leading cause of seismic fatalities and economic losses globally (So and Spence 2013). 
Seismic events such as the 1988 Saguenay earthquake, occurred in Québec with a moment magnitude  
Mw=5.9, that have been recorded in recent years (Bruneau and Lamontagne 1994) pose a threat to Eastern 
Canadian cities’ economic, cultural and structural integrity. The overall risk associated with these seismic 
events remains low in Eastern Canada for most modern buildings. However, old (or pre-code, erected 
before the first 1941 National Building Code of Canada, NBC) non-engineered constructions are 
predominant in many of Eastern Canada’s major cities and pose a serious, yet overlooked, threat to the 
safety of our communities. In old Montréal alone, where 44% of buildings are old URM structures (Antunez 
et al. 2015), recent studies (Rosset et al. 2019) determined that the impact of a damaging earthquake would 
resemble that of the 2011 Christchurch (New Zealand) Mw=6.3 earthquake: 185 deaths, thousands of 
injured and $14 billion of direct cost (Potter et al. 2015). Further, 37% of hospitals, 25% of fire stations, 15% 
of power plants and 46% of schools in Eastern Canada are old URM buildings (McCaffrey et al. 2013) – 
this undermines disaster preparedness and recovery as well. Local old URM structures (see Figure 1) are 
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also the majority of Canada’s heritage buildings (“historic” hereinafter). Safeguarding historic assets is not 
only essential to preserve our cultural heritage and identity values, but also vital for protecting the national 
economy: heritage tourism generated $54 billion in 2019 (4% of domestic gross product), $38 billion in 
Québec/Ontario alone (Dept. of Canadian Heritage 2020). Preserving old URM buildings and thus allowing 
their reuse will also have a tangible environmental impact, avoiding demolition/reconstruction responsible 
for 20–50% of the annual municipal solid waste in Canada (Yeheyis et al. 2013). This is a goal strategically 
aligned with national (e.g., 2016-2027 Pan-Canadian Framework on Clean Growth and Climate Change, 
>$100 billion investment) and international commitments (e.g., 2020-2030 United Nation’s Agenda of 
Sustainable Development). Despite past events confirming the seismic vulnerability of Eastern Canada’s 
old URM buildings, and although preserving them contributes to the national economy and environmental 
stewardship responsibilities, their earthquake response currently requires a greater level of understanding. 

 
Figure 1: typical URM buildings in Montréal (MTL) - Ottawa (OTT), Canadian Register of Historic Places 

Due to a lack of data from past earthquakes indeed (mostly isolated epicentres, see Lamontagne et al. 
2008), the response of Eastern Canada’s old URM buildings to local seismicity is largely unknown – the 
distinctive high-frequency shaking registered in recent events could e.g., trigger amplification phenomena 
and URM collapses even at low (Mw<4) shaking intensities (Meyer et al. 2019). The most recent major 
seismic event (Mw=5.9) in Eastern Canada, the 1988 Saguenay earthquake, pointed out the 

unpreparedness of the population as well as the vulnerability of the structures (Lamontagne 2010). Based 
on multiple site visits conducted by expert reconnaissance teams, particularly poor performance was noted 
for URM buildings, which suffered most of the observed damage. Diagonal shear cracking in-plane and 
one-way out-of-plane mechanisms characterized the URM response to the ground motion (Mitchell et al. 
1989). To safeguard old URM buildings from the seismic threat, first the seismic risk must be quantified. 

To this end, various types of seismic risk assessment have been applied in Eastern Canada, typically on a 
citywide, or local (building) scale, despite the absence of ad-hoc standards and guidelines. Tools such as 
HAZUS (acronym of “Hazards United States”), a geographic information system-based analysis tool 
developed in 1997 and freely distributed by the US Federal Emergency Management Agency (FEMA) to 
calculate multi-hazard loss estimates on a regional basis in the United States, and other GIS based software 
were often used by local researchers (Hosseinpour et al. 2021) and engineering professionals (McCaffrey 
et al. 2013), making it possible to understand the potential impacts an earthquake can wreak on an area. 
Potential seismic losses have been investigated for some Canadian cities such as in Vancouver (Onur et 
al. 2011), Ottawa (Ploeger et al. 2010) and Montréal (Deng et al. 2016; Tamima and Chouinard 2016). 
However, reliable estimates require a large amount of initial data regarding the geological conditions, 
building conditions, ground motion characteristics and region demographics, most of which are presently 
missing. While various numerically based risk assessment methods have also been used across Canada, 
the large amount of data required (e.g. material properties, dimensions, etc.) allows for only small scale, 
high cost, analyses to be run (e.g., Abo-El-Ezz et al. 2013; Crowley et al. 2017; Fathi-Fazl et al. 2020; Goda 
and Tesfamariam 2015; Ploeger et al. 2010; Siqueira et al. 2014). To estimate and reduce future 
earthquake losses, regional seismic risk models and mitigation strategies tailored to the unique 
characteristics of Eastern Canada’s old URM buildings are needed, but not yet available. This is largely 
due to the scattered nature of previous building inventories, limited knowledge of their structural properties, 
and unknown effects of local high-frequency seismicity. Another potential reason is that, unlike in most 
other seismic-prone countries, updated technical standards on old URM buildings are presently missing in 
Canada. Indications provided in NBC commentaries (NBC Commentary-L 2015) are very limited, leaving 
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engineering professionals and researchers without clear guidance. The latest (yet now obsolete) official 
national guidelines on old URM buildings were published in the 1990s by National Resources Canada 
(NRC) and focused on seismic screening (NRC 1993a), evaluation (NRC 1993b) and upgrading (NRC 
1995) approaches. At the international level, subsequent developments led by the International Scientific 
Committee on the Analysis and Restoration of Structures of Architectural Heritage (ISCARSAH) resulted 
into the creation of what is now an accepted general conceptual framework for studying old and historic 
constructions from a structural engineering perspective, i.e., the Principles for the Analysis, Conservation 
and Structural Restoration of Architectural Heritage (ISCARSAH Principles hereinafter), based on three 
knowledge-based consecutive steps: typological classification, characterization and evaluation. This 
holistic methodology, despite being widely adopted globally (Cruz et al. 2015; Lagomarsino and Cattari 
2015; Lourenço 2006; Roca 2021) and implemented into several building codes at various levels 
(ASCE/SEI-41-13; NZSEE 2017; PCM 2011), has never been applied systematically in Canada as far as 
the authors are aware of, with most of past research targeting isolated case studies.  

In this paper, a state-of-the-art review of previous studies on old URM structures typical of Eastern Canada 
is proposed for identifying potential research gaps, challenges and future opportunities through the lens of 
the ISCARSAH Principles, by referring explicitly to typological classification (i.e., informed selection of 
recurrent building types, or assets, and identification of relevant structural categories, vital to ensure local 
representativeness of seismic analysis results), structural characterization (i.e., determination of the 
physical properties and integrity of key materials in old buildings) and seismic evaluation (i.e., quantitative 
estimation of the seismic response of selected assets) approaches. Through the critical investigation 
proposed herein, also complemented by the description of relevant applications from abroad, we investigate 
the feasibility of adopting such a framework in Canada, while providing local practitioners and researchers 
with a comprehensive overview and a unified repository of past national research efforts on the topic. This 
research also aims to substantiate a larger community-based effort that recently led to the creation of a 
new CSCE Existing Structures Committee, whose objectives include fostering best practices to safeguard 
the built environment and promoting a constructive interaction among researchers and engineers working 
on old buildings.   

2 TYPOLOGICAL CLASSIFICATION 
The ISCARSAH Principles provide an analysis framework designed to overcome the rigid constraints of 
applying modern codes to ensure safe intervention design without sacrificing authenticity or cultural value 
(Roca 2021) of old buildings. To adopt such a framework in Canada on a large-scale begins with the 
classification of building stock and typological analyses. This section proposes use of a unified building 
inventory to carry out a typological analysis, defined here as a domain-specific categorization of buildings 
by shared physical shape and organizational characteristics (Stouffs and Tunçer 2015). Such information 
can be utilized to provide building information e.g., structural features and other key information useful for 
seismic engineering investigations, intended in the first phase of a holistic analysis framework. 

Building stock classification used in large-scale analyses is completed using inventories created by various 
means including census data, pre- or post-disaster inventories, heritage building inventories, or site-specific 
inventories. Knowledge from building inventories is integral in determining disaster responses to be able to 
account for damage and designing potential retrofitting and upgrading interventions (Myers 2016). In 
Eastern Canada, detailed building inventories of representative districts in Montréal, Québec City (see 
Figure 2) and Ottawa were done by e.g., Abo-El-Ezz et al. (2019), Nollet et al. (2013b) and Sawada et al. 
(2014), respectively. This methodology, however, is extremely time consuming and hardly applicable at the 
regional scale. A complementary option is using existing building inventories focused on historic URM 
structures. Classified heritage buildings are better documented than other similar unclassified structures, 
due to the presence of archival sources that refer to its history and design details as well as accessibility to 
visitors and the possible location in clustered districts. Historic structures can indeed be considered in 
Canada (unlike e.g., European countries whose historic structures date to centuries ago) as a typological 
subset of old buildings with heritage value (Humphreys and Sykes 1980). Classification can be completed 
with analogous features and period of construction and applied to structures of a similar typology. 
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Typological analyses have been used as guides to understand historical architecture (Stouffs and 
Tunçer 2015) as well as for modelling purposes (García-Gago et al. 2014) and seismic analyses 
(Lagomarsino and Giovinazzi 2006; Zuccaro and Cacace 2015). The combination of data from detailed 
district-based and larger historic building inventories would be useful in the classification of Canada’s 
building stock, a possibility currently being investigated. 

 

Figure 2: Typological classification and Evolution of traditional stone masonry residential buildings in 
Québec City (adapted from (Nollet et al. 2013b)) 

Consolidation of relevant structural data from existing heritage building databases is the study of a current 
research project at McGill University. The database created by this project, henceforth referred to as the 
unified heritage building database (UHBD), aims to combine municipal, provincial and federal inventories 
into a unified, accessible database. Heritage building databases are already robust in Canada yet remain 
scattered and lack structural parameters necessary for a seismic evaluation. For example, Canadian 
Inventory of Historic Buildings was established in 1970 and created what is now known as the Canada 
Register of Historic Places (CRHP). This heritage inventory combines approximately 12,500 federal, 
provincial and territorial structures that have been heritage designated (Cameron 1986). While the CRHP 
provides adequate information about these structures, it is no longer kept to date with newly classified 
buildings, leaving heritage inventories the responsibility of the government these buildings are locally 
classified under. The CRHP also lacks data from municipal inventories, and thus buildings classified as 
heritage according to their respective city governance. In addition, heritage inventories in Canada focus on 
character-defining elements as well as cultural and historical importance. While these are important factors 
in heritage conservation, not all included data can be applied for architectural or engineering purposes 
when designing a conservation plan or seismic interventions. Structural data integral to these designs is 
often lacking in heritage inventories. Relevant parameters for seismic analysis which can possibly be 
integrated are available via e.g., Statistics Canada (Statistics Canada 2019) (e.g., storeys, footprints), as 
well as in the detailed inventories mentioned earlier. As in Western regions (British Columbia Heritage 
Branch) and abroad (US National Park Service), these inventories contain valuable, complementary, non-
protected yet hardly accessible data. Typological analyses were conducted in e.g., Québec, albeit only for 
specific types of stone URM houses (Abo-El-Ezz et al. 2013) or churches (Carrier et al. 2020). Research is 
needed to rectify the scattered nature of the existing building inventories as well as limited amount structural 
data for old URM buildings in Eastern Canada. To date, the UHBD includes information from over 2,500 
buildings including federally recognized properties, properties recognized by Québec as well as buildings 
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on the municipal building inventories of Montréal and Québec City. The database is currently expanding to 
include recognized properties from Ontario and major metropolitan areas throughout these providences—
including Toronto, Ottawa and Kingston, among others, summarizing these inventories in Figure 3. 

 
Figure 3: List of some heritage inventories and their approximate count of registered buildings 

The methodology of the UHBD processes a given listing according to a set of characteristics that can be 
applied to conservation interventions as well as seismic retrofits. To list a structure or monument with a 
level of national importance requires a level of cultural and historical significance that is valuable to the 
fabric of Canada. In this case, a specific set of guidelines and criteria apply to determine whether the listing 
meets general guidelines set in 1988 that classify its national importance (Historic Sites and Monuments 
Board of Canada 2017). For buildings, this includes consent of the property owner, boundaries of the site, 
components of the property, site condition and additional documentation. Provincial and municipal building 
inventories each have their own governing criteria for listing a site. Among these criteria and listing 
characteristics, reasonable data categories were chosen based on their prevalence within listing 
descriptions as well as the application for structural assessments. General identification data such as 
building name location, current and historic use type, date of construction and occupancy are required for 
each entry. Additional characteristics relevant to structural evaluation includes number of storeys, floor area 
and materials of the structure, veneer and foundation, useful in large-scale analyses such as Aguado et al. 
2018, Allen and Rainer 1995 and D’Ayala and Speranza 2003. Preliminary results from the UHBD show a 
corridor of heritage designated buildings within an extensive range across Ontario and Québec (see Figure 
4), with a focus of structures in Montréal and Québec City, where much of the listings have been recorded.  

 

Figure 4: Density of heritage buildings from the UHBD along the Québec City—Windsor corridor  

Based on preliminary results from the UHBD, over 70% of heritage designated buildings within Eastern 
Canada are composed of some type of masonry, see Figure 5. Masonry buildings in Eastern Canada have 
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developed from types used by some of the first European settlers and evolved with local material availability 
including an abundance of wood and many local stone quarries (Kalman 1995). Studies have followed the 
architectural evolution within Eastern Canada, especially in Québec-the advancement from rubble masonry 
walls and the creation of fire walls, to the use of cast iron and wrought iron in multi-level commercial and 
industrial structures-following the use and creation of architectural pattern books to the building code used 
today (Kalman 1995). Identifying structural evolution within a designated use type, as can be identified in 
building inventories such as the UHBD (see Figure 6), can serve as a basis of typological classification. 
Already, structural classification of common typologies is seen minimally through specific types of 
residential (Kraiem et al. 2019) and religious (García-Gago et al. 2014) buildings in Québec and by looking 
critically at the structures in old Montréal (Nollet et al. 2004). The UHBD and similar inventories can serve 
as the basis for conducting a thorough typological analysis of old URM buildings in Eastern Canada, 
constituting the foundation on which to implement informed regional seismic risk analysis frameworks 
inspired by the ISCARSAH Principles. 

 
Figure 5: Building use types (left) and main structural materials of buildings (right) in Eastern Canada 

according to the UHBD 

 
Figure 6: Main building typology vs. decade built in Eastern Canada according to the UHBD  
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Consolidated, accessible structural properties are necessary to complete the typological classifications 
proposed in the initial phase of study, as suggested by the ISCARAH Principles, is difficult to carry out in 
Canada due to lack of information and scattered nature of existing building inventories. Case studies 
outside of Canada support the methodology proposed here. Typological classification and earthquake 
vulnerability analysis based on inventories have been evaluated on a citywide scale in Italy (Polese et al. 
2019; Da Porto et al. 2013a; Rota et al. 2008) and across Central and South Asian countries Tajikistan, 
Kyrgyzstan, Pakistan, Afghanistan and India  (Lang et al. 2018). These case studies provide data regarding 
the damage characteristics and failure mechanisms that contribute to the vulnerability of a defined typology 
as well as potential intervention methods. Results from each case study provide much needed data 
regarding vulnerability in seismic risk scenarios. Applying such a typological classification strategy based 
on building inventory to Eastern Canada, such as the UHBD, has the potential to bridge the knowledge gap 
on structural vulnerability characteristics on a regional level. 

3 STRUCTURAL CHARACTERIZATION 
The second component attributed to the ISCARSAH Principles considered herein corresponds to the 
inspection and diagnosis of building characteristics, registering material and geometrical characteristics 
used to evaluate a structure and design a good intervention (ISCARSAH 2003). One of the largest hurdles 
to overcome within the accurate evaluation of old buildings—heritage designated or not—is the lack of 
information regarding geometry, material properties and integrity. For the sake of simplicity, structural 
characterizations for use in seismic evaluations are discussed below referring three distinct categories—
geometrical, material and dynamic—which this section details for commonly employed methods in Canada 
or other seismic prone areas. 

Geometrical characterization using photogrammetry and laser scanning to inform the structural and seismic 
analysis of old URM buildings are well documented in technical literature (Loverdos et al. 2021; Napolitano 
et al. 2019; Sánchez-Aparicio et al. 2014) and recently also used in combination with advanced numerical 
modelling (Castellazzi et al. 2017; Kassotakis et al. 2020). Surveying techniques and their applications are 
a vital part of the geometrical characterization of old buildings, and innovations within these aid in 
streamlining the modelling process and decreasing the cost of the structural evaluation. Canadian 
researchers also employed these tools albeit mostly outside the country (Gutland et al. 2021) and for 
building conservation purposes (Ide et al. 2020). 

To characterize masonry materials, a limited number of experimental testing campaigns have been 
conducted in Eastern Canada targeting different construction types and in various states of conservation, 
most notably by Sorour et al. (2011) using lateral load testing of stone masonry walls, as part of a larger 
campaign to restore the Ottawa West Block of Parliament (Elmenshawi et al. 2010a; b), see Figure 7. 
These walls, however, were re-created in the lab using modern materials, not necessarily representative of 
the characteristics of the original ones. In-situ tests on stone masonry elements were performed by Isfeld 
and Shrive (2015a) in the framework of a larger research on the impact of climate change on the durability 
of the Prince of Wales Fort (Churchill, Manitoba). With respect to brick masonry, material testing campaigns 
using various destructive testing methods on brick masonry wallets have been completed by Nollet et al. 
(2019) to determine mechanical properties of historic unreinforced brick masonry. Availability of tests data 
on load-bearing URM walls in Canada is limited, with one example studying the out-of-plane strengthening 
from Ontario (Ghobarah and El Mandooh Galal 2004). Other testing campaigns of typical old building 
systems of Canada have focused on reinforced concrete and concrete masonry units. Concrete beams can 
be scanned to find subsurface flaws or cracks (Rathod and Gupta 2019). Additionally, non-destructive 
testing methods such as stress-waves (Sajid et al. 2018), ultrasonic pulse velocity (Saint-Pierre et al. 2016) 
or ground penetrating radar (GPR) (Rathod et al. 2019) were used to determine concrete compressive 
strength, the coefficient of thermal expansion, deterioration levels and rebar information. The potentialities 
of these non-destructive techniques, which have also been applied to URM structures abroad (Da Porto et 
al. 2013b; Vasanelli et al. 2015) yet not fully exploited in Eastern Canada, represent a possible future 
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research direction for Eastern Canada’s structural engineering research and may help creating much 
needed material data repositories. 

 

Figure 7: (a) Stepped cracks in stone masonry wall, typical of (b) West Block of Parliament, Ottawa 
(Elmenshawi et al. 2010a) 

Dynamic or seismic testing, such as shake table tests, have also been performed in Canada especially on 
recurrent brick masonry wall typologies with ground motions seen on the West Coast (Meisl et al. 2007; 
Penner and Elwood 2016), while only one example exists for Eastern Canada’s building typologies 
(Krstevska et al. 2010). Elsewhere in Canada, tests on assemblies (Touraille et al. 2019), components 
(Meisl et al. 2007) and building prototypes (Paquette et al. 2004) using specimens built with new materials 
produce results which are not necessarily representative of old URM. Groups abroad overcame this issue 
with destructive in-situ testing (Walsh et al. 2015), typically not allowed in Canada for protected buildings. 
Further research needs to be done to fill the information gap regarding the geometrical and material 
characteristics of Canada’s old URM buildings. To infer the dynamic properties of old URM and estimate 
damping characteristics, data from ambient vibration measurements (AVM), such as the study done by the 
University of British Columbia on school URM buildings (Turek et al. 2006; Ventura et al. 2012) can begin 
to fill this gap. In Eastern Canada, however, only limited studies on this front have been conducted so far 
(Asgarian and McClure 2014; Hafeez et al. 2018; Kolaj and Adams 2021). To provide a complete and 
holistic seismic evaluation of old URM structures, the ISCARSAH principles require detailed structural and 
material identifications, vital for understanding the structure’s conditions as well as potential cause of decay 
or deterioration (ISCARSAH 2003). The methods discussed in this section using in-situ or laboratory testing 
and various surveying and monitoring techniques to characterize a structure summarizes the main 
approaches used in Canada and identify the lack of research completed on old URM structures to be able 
to apply the ISCARSAH principles in a large-scale fashion. Further research, using rigorous typological 
analysis approaches to organize the large amount of data, is certainly needed. 

4 SEISMIC EVALUATION 
Seismic evaluation for existing structures can be broadly defined as the assessment of their performance 
under a considered seismic hazard level, to meet an acceptable level of life safety, serviceability and 
remaining structural integrity. For structures with the least amount of inherent seismic resistance, standard 
(e.g., ASCE/SEI-41-13 2014) recommend a systematic evaluation procedure to assure adequate 
performance, completed with advanced structural analysis tools such as linear or nonlinear numerical 
modelling approaches. Seismic analysis via numerical modelling is also the reference URM evaluation 
approach (Lourenço 2002), as recognized by ISCARSAH principles. However, numerical modelling 
requires an in-depth knowledge of structural functioning and material characteristics, precisely where 
national research falls short. Informed numerical models tailored to the unique features of Eastern Canada’s 
old URM buildings and seismicity are essential for predicting their seismic capacities and failure modes. 
The missing data is crucial for defining proper damage limit states correlating to key performance levels on 
which to devise, before a catastrophic earthquake happens, regional seismic risk and mitigation strategies. 
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Numerical seismic analysis of old URM structures is popular in e.g., Europe, South America, Oceania 
(Lourenço and Silva 2020), where dedicated guidelines (ASCE/SEI-41-13 2014) and codes (NZSEE 2017) 
are available, yet unsuited to the unique features (e.g., stack bond walls, irregular openings, tall fire gables) 
of local old URM systems. Application of the ASCE/SEI-41 standard in Canada has been minimally used 
on steel structures (Balazadeh-Minouei et al. 2017; Mottier et al. 2018) but remains difficult to implement 
due to differences in seismicity and material characteristics. Minimal investigation of local URM systems 
has been completed (Abo-El-Ezz et al. 2013), mainly using simplified numerical models. Canada’s URM 
structural evaluation standards are obsolete (NRC 1993b) and neglect numerical modelling (Commentary-
L 2015) which leads engineers to inappropriately rely on steel/reinforced concrete analysis techniques, 
unsuitable for the analysis of URM structures. Application and creation of guidelines in Canada for the use 
of numerical modelling techniques would aid in the proper implementation of ISCARSAH Principles. 

Three levels of detail (see Figure 8) are used for URM numerical seismic analysis (Lourenço 2002), at the 
macro, meso and micro scales, requiring diverse competencies, efforts, analysis times. Macro-scale models 
characterized by practitioner use, low-cost of in-plane capacity, estimated and basic knowledge of 
component-level damage while typically neglecting out-of-plane actions. Meso-scale models can be used 
by specialized engineers, providing data on the in-plane/out-of-plane actions as well as an accurate 
representation of masonry-level failures. Micro-scale models are the most cost intensive but provide the 
most information with modelling of the joint-level damage mechanisms and in-plane and out-of-plane 
damage, used by researchers. Respectively, the level of user competency decreases with each scale of 
analysis while computational effort and analysis times increase. Their adequacy depends on the governing 
seismic response (e.g., in-plane vs. out-of-plane), which remains unknown for Eastern Canada’s old URM 
buildings. Macro (El-Dakhakhni et al. 2006), meso (Shieh-Beygi and Pietruszczak 2008), micro (Isfeld and 
Shrive 2015b)  models of Eastern Canada’s URM were used in seismic studies (see Figure 9) on residential 
(Kraiem et al. 2019), religious (Carrier et al. 2020), industrial (Karbassi and Nollet 2013) and institutional 
(Krisanova et al. 2013) buildings, but the unknown effect of uncertainties on predictions, the absence of 
comparisons among numerical strategies and the lack of informed idealizations of construction details 
prevent modelling-based recommendations from being considered by decision and policy-makers (e.g., 
National Research Council Canada, Parks Canada, Canadian Commission on Building and Fire Codes).  

 

Figure 8: Commonly employed numerical modelling strategies and conceptual differences 

Additional proposed research involves expansion of numerical modelling techniques on Eastern Canadian 
structures by assessing buildings from important building typologies with characterization data identified in 
the previous stages addressed in this paper. The most common modelling strategies include limit analysis 
techniques, finite element modelling (FEM) or discrete element modelling (DEM) strategies. Each of these 
modelling strategies brings a various simplicity of implementation, computational cost as well as the level 
of accuracy, of which recent research dives into the optimization of the outputs using simplified analysis 
methods (D’Altri et al. 2020; Giordano et al. 2002; Roca et al. 2010).  
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(a)  
 

(b)  
Figure 9: Example of (a) discrete element micro-model of Prince of Wales Fort (Isfeld and Shrive 2015b) 

(b) macro-model discretization of Québec residential building (Kraiem et al. 2019) 

To expand knowledge of structural performance of Eastern Canada’s old URM buildings, further research 
is suggested. Codes and algorithms created to aid in model creation (Funari et al. 2020; García-Gago et 
al. 2014) are methods to simplify input, while DEM macro- (Malomo and DeJong 2021) or meso- (Pulatsu 
et al. 2020) scale strategies can be applied to model in-plane and out-of-plane failure mechanisms in a 
reasonable timeframe. Following the ISCARSAH Principles, the evaluation phase considers seismic risk 
mitigation strategies including parametric analysis of applicable intervention strategies. Potential 
intervention strategies to model include steel ties or grouting to diminish delamination of masonry wythes, 
improved connections to horizontal diaphragms, or addition of shear walls. Retrofit design guided by the 
ISCARSAH Principles require minimal intervention, reversibility, compatibility between existing materials 
and those applied, as well as care for the maintenance and future of the structure (ISCARSAH 2003). 
Interpretation of the results requires special attention to the safety of the public, the preservation of the 
integrity and authenticity of old structures, their contents and cultural value (Roca 2021). Seismic structural 
evaluations, such as the numerical modelling strategies previously mentioned, can be used to verify 
acceptable levels of damage in current or rehabilitated condition, examples which could be applied to any 
building of the similar typology. Evaluation of the structural typologies commonly seen in Eastern Canada 
would allow practitioners and experts in the field to better understand their building stock and make informed 
decisions regarding the conservation, maintenance and designing effective intervention strategies. 

5 CONCLUSIONS 
Eastern Canada’s cities located in moderate seismic zones remain vulnerable to earthquakes due to a high 
population density and a high density of vulnerable unreinforced masonry (URM) structures. Increasing 
public awareness and resiliency of the building stock to respond to future seismic actions can save lives, 
protect economic losses and protect cultural values. The steps presented in the ISCARSAH Principles as 
a framework for the analysis of old buildings of - typological classification, characterization and evaluation 
- are accepted globally and included within codes in many seismic-prone countries, including New Zealand, 
Italy and the United States, yet remain unapplied in Canada. This paper presents an investigative state-of-
the-art review of large-scale structural evaluation of URM structures completed in Canada through the lens 
of the ISCARSAH Principles, identifying relevant examples, best practices as well as knowledge gaps to 
continue to guide engineering professionals, whose main outcomes are summarized below: 
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 Past seismic risk studies targeting old structures at the regional scale, vital for devising proper 
seismic upgrading and other intervention strategies, rely on international and/or generic data in 
terms of material properties and structural features, potentially leading to inaccurate predictions 

 Although district-scale building inventories represent an invaluable source of information to support 
seismic risk studies, they are time consuming to carry out and not applicable at a regional level  

 Compilation of a unified building inventory in Canada from which to conduct a typological analysis 
applicable on a regional level is recommended 

 Existing data regarding the geometrical, material and dynamic characteristics of old URM buildings, 
especially in Eastern Canada, is extremely limited, potentially leading to inaccurate estimates of 
key structural properties 

 Numerical modelling is the recommended approach for advanced structural analysis on URM 
buildings, yet no guidelines exist in Canada regarding procedures and techniques 

 Further research using a rigorous typological analysis approach is recommended to provide 
structural characteristic data as well as critical numerical evaluation examples 

Relevant results from such evaluations, as presented, can be utilized within seismic hazard management 
on a large-scale, providing accurate inputs for loss estimation models with easier access to building 
inventories and data. Future research is necessary to implement such a framework as presented by the 
ISCARSAH Principles into guidelines for old URM structures applicable in Eastern Canada and beyond.  
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