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Co-Supervisor: Alexis Hannart

2022

i



Abstract

Global climate models represent major climate system components of the

planet in order to generate long term, sparse, accurate realizations of future

climatic events across the entire globe. Downscaling is the method by which

these low resolution realizations are converted into high resolution simula-

tions of climate events which can then be used by stakeholders and policy

makers.

Regional climate models dynamically downscale simulated climate by

conditioning global climate models on location-specific physical processes.

Although these models are robust and reliable, they are computationally

expensive when compared to statistical approaches for modeling a general

relationship between global climate behaviour and local climate behavior.

Therefore, there is need for downscaling methods that leverage the compu-

tational efficiency of statistical models while maintaining the performance of

regional climate models.

In this thesis, we build upon previously proposed deep learning methods

for dynamical downscaling through estimation of a regional climate model.

Our proposed model is a generative adversarial network that leverages the

effects of temporal dependencies within spatio-temporal climate events.
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Résumé

Les modèles climatiques mondiaux reproduisent les principaux composants

du système climatique de la planète afin de générer des réalisations à long

terme, éparses et précises, d’événements climatiques futurs sur l’ensemble

du globe. La réduction d’échelle est la méthode par laquelle ces simula-

tions à basse résolution sont converties en simulations à haute résolution

d’événements climatiques qui peuvent ensuite être utilisées par les parties

prenantes et les décideurs.

Les modèles climatiques régionaux réduisent dynamiquement l’échelle du

climat simulé en conditionnant les modèles climatiques mondiaux à des pro-

cessus physiques spécifiques à un lieu. Bien que ces modèles soient robustes et

fiables, ils sont coûteux en termes de calcul par rapport aux approches statis-

tiques permettant de modéliser une relation générale entre le comportement

du climat mondial et le comportement du climat local. Par conséquent, il

existe un besoin pour des méthodes de réduction d’échelle qui tirent parti de

l’efficacité de calcul des modèles statistiques tout en maintenant la perfor-

mance des modèles climatiques régionaux.

Dans cette thèse, nous nous appuyons sur les méthodes d’apprentissage

profond proposées précédemment pour la réduction d’échelle dynamique par

l’estimation d’un modèle climatique régional. Le modèle que nous proposons

est un réseau antagoniste génératif qui exploite les effets des dépendances

temporelles dans les événements climatiques spatio-temporels.
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1 Introduction

There is a clear symbiotic nature to the relationship between the planet’s

inhabitants and its climate. As our populations develop and grow, we make

use of Earth’s resources, often through means that negatively impact our at-

mosphere. This in turn leads to drastic changes in our environment such as

the endangerment of vulnerable species [25], an increase in the frequency of

extreme climate events [44], and the creation new weather patterns [70]. In

the quest of adapting to the changing climate, the ability to predict hourly,

daily, seasonal or annual climate events provides advantages and benefits

in the development and protection of our agriculture, our early warning sys-

tems, our health infrastructure, and our response to climate change. In order

to predict large scale climate features, geophysicists have developed Global

Climate Models (GCMs) which are numerical models that use the physical

properties and behavior of the Earth’s various components such as the at-

mosphere, the ocean, the cryosphere and the land surface. These models are

able to simulate long term predictions of various climate components over

coarse resolutions of space (250-600 km).

Based on equations representing the physical principles that govern the

interactions and processes of the planet, the GCMs generate reproductions

of key components of the climate system [19]. From these models, the gen-

eral behaviour of greenhouse gas concentrations, temperature, rainfall and

other climate attributes can be estimated over a wide time horizon but at a

relatively coarse scale.

Due to the spatial and temporal sparsity of the simulations, relevant

stakeholders and practitioners cannot directly make use of the generated
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patterns which challenges the saliency of the output of GCMs [19]. In fact,

several numerical models produce predictions for climate fields that are too

coarse in resolution for immediate practical application [15]. In order to fully

harness the utility of GCMs, we must use methods to recover the relationship

between large scale climate patterns and region specific climate behaviour.

The process of converting large-scale climate features into finer-scale local

climate features is called downscaling. Spatial downscaling can be used to

recover detailed region-specific climate features from coarse GCM output

while temporal downscaling can be used to extrapolate climate behaviour at

a finer resolution than the available GCM output.

For example, yearly simulations of rain in Canada can be spatially down-

scaled to yearly simulations of rain in Montreal, temporally downscaled into

daily predictions of rain in Canada, or both.

As can be expected, due to the versatility of downscaling, there have been

many approaches developed to tackle this problem. Dynamic and statistical

downscaling are two of the most popular methods of downscaling. Statistical

downscaling aims to recover a meaningful statistical relationship between

coarse GCM output data and local climate behavior. In contrast, dynamical

downscaling is usually done though the application of regional climate models

which make use of regional information and physical processes to increase the

resolution of dynamic weather models.

This thesis explores learned dynamical downscaling through temporal

climate fields in the context of precipitation. Although we focus on the

application of deep learning methods, a survey of statistical and machine

learning methods for downscaling is also provided.
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2 Data and Notation

In this chapter, we first define uniform notation for climate variables used

in this thesis. The described data notation will be used to construct general

downscaling models from low resolution data to high resolution data. This

is followed by the detailing and provenance of climate data used our exper-

iments. All diagrams in this and subsequent chapters are original creations

generated through either Microsoft Powerpoint or https://madebyevan.

com/fsm/.

2.1 Notation

Consider the set of spatial locations S = {sl : l = 1, . . . , L} ⊆ R2. Let V be

the set of all climate variables. Finally, consider the set of time points

T = {t = (y,m, d, h) : 1 ≤ h ≤ 24, 1 ≤ d ≤ 31, 1 ≤ m ≤ 12, y ∈ N}

Here y represents years, m represents months, d represents days, and h rep-

resents hours. We consider an ordering on T identical to the ordering on

calendars which amounts to the lexicographic ordering of the elements of T .

For each climate variable v ∈ V , we define the high resolution measurement

at each location sj ∈ S taken at time t ∈ T as Yv,t(sj). Similarly, we define

the low resolution measurement of climate variable v ∈ V at each location

sj ∈ S taken at time t ∈ T as Xv,t(sj). Often considered are the mean,

minimum and maximum of precipitation and temperature measured hourly,

daily, or annually.

Let P and W be two ordered partitions of our time space T of finite
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length defined as

P = {%1, %2, . . .} W = {τ1, τ2, . . .}

With the additional condition that

% < τ ∀% ∈ P , τ ∈ W

Usually, we will consider climate variables indexed by P and W as these

denote past and future realizations of climate variables respectively.

The resolution of coarse variables will be defined as NX ×MX and the

resolution of high resolution variables will be defined NY ×MY . In order to

downscale, we must define the same set of locations for for high resolution

and low resolution climate variables. Since X represents the distribution of a

coarse global variable, for each variable v, certain neighboring points in space

S at the same time index t will share the same measurement. In contrast,

the distribution of the high resolution climate variable will have more texture

and variability.

In the data analyzed in this thesis, the spatial location is associated with

a pixel on a grid. In order to have the same space S for both high and

low resolution climate variables, the measurements of the coarse variable

are repeated over certain pixels in the high-resolution grid, as illustrated in

Figure 1.
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Figure 1: Color representations of low resolution (X) and high resolution

(Y ) distributed over space S. X is represented by a 2 × 2 grid whereas Y is

represented by a 4 × 4 grid. NX = MX = 2 and NY = MY = 4.

Recall that coarse, low resolution data is generated by GCMs and can

cover hundreds of kilometers. While low resolution dynamic downscaling

models can generate simulations of climate with finer resolution than GCMs,

the resolution is still too coarse for a stakeholder use. This is the case for the

low resolution data used in the models in this thesis. High resolution data

can represent local climate station observations of climate or data simulated

by a high resolution dynamic downscaling model.

2.2 Data

In this thesis, the Weather Research and Forecasting model version 3.3.1 is

used to generate climate data. This regional climate model is used twice

to simulate climate data over the contiguous United States at 12 km (fine)

and 50 km (coarse) resolution over 3 hour intervals. Samples from these

simulations can be seen in Figure 2. The coarse and fine resolutions of
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data correspond to NX ×MX =128×64 and NY ×MY =512×256 grid cells,

respectively.

Figure 2: Low resolution (a) and corresponding high resolution (b)

simulations of precipitation by the Weather Research Forecasting model.

This data is analyzed in [61] where it is used to learn a mapping between

low resolution and high resolution regional climate models. Because of the
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structure of the RCM, the difference in spacial resolution propagates into

slight differences in spatial coverage, time scale, and simulated precipitation

[61]. This means that, ideally, the two different resolutions should not be seen

simply as high resolution and low resolution versions of the same simulation

of a given climate variable but rather as slightly different simulations of the

same climate variable at different resolutions. The difference between these

two is a substantial challenge to the modeling approach used.

Figure 3: Elevation map of a region of interest (contiguous United States)

To recover the magnitude and variability of precipitation, other variables

have also been collected that have shown high correlation with precipitation.

Such climate variables are integrated water vapour (IWV), simulated sea

level pressure (SLP), and simulated air temperature (T2). The topographical

elevation map (TOP) of the region of interest is also included and is pictured

in Figure 3.
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Variable Notation Data Range Encoding Range

50 km precipitation (mm/3 hr) xprecip [0.05, 13.62] [0,27.85]

50 km sea level pressure (hPa) xSLP [990.97, 1039.34] [0,1044.66]

50 km integrated water vapour (cm) xIWV [1.56, 116.46] [0,136.19]

50 km temperature (K) xT2 [241.75, 310.35] [0,318.88]

12 km topography (m) xTOP [0, 3204.51] [-63.07,3556.77]

12 km precipitation(mm/3 hr) yprecip [0.05, 15.66] [0,31.62]

Table 1: Data Summary

Simulations of precipitation at 3 hour interval data have been provided

for this thesis by the authors of [61]. In their article, precipitation is clipped

between 0.05 mm/3hr and the 99.5th percentile of rain at all locations in

order to avoid light drizzles or extremes. The latter is unfortunate because

any model developed with this data will be unable to properly recover the

relationship between high and low resolution simulations of extreme precip-

itation.

For each climate variable, the value at each grid cell is numerically en-

coded as can be seen in Table 1. This encoding is to facilitate the use of deep

learning models built for image processing. Unfortunately, only the encoded

data is made available by the authors of [61].
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3 Literature Review

The two most popular approaches to downscaling are dynamic downscaling

and statistical downscaling. Dynamic downscaling is done through numerical

models that use the output of GCMs as well as local regional structure and

boundaries to simulate spatially downscaled climate data at an increased

resolution. Statistical downscaling attempts to learn a mapping between

historical observed climate data at a coarse resolution and historical observed

climate data at a fine resolution. This mapping is then applied to GCM

outputs to form downscaled high resolution simulations of data.

Dynamic downscaling tends to be complex and computationally inten-

sive as the numerical model is autoregressive in nature and must sequen-

tially generate simulations. In contrast, statistical downscaling can directly

use the learned mapping on any GCM simulation. However, compared to

dynamic downscaling approaches, statistical downscaling tends to have diffi-

culties fully recovering the variability of climate events since statistical down-

scaling models are often built around assumptions of stationarity in the re-

lationship between high resolution and low resolution simulations of climate

variables [56].

Some approaches to downscaling involve both of these approaches in tan-

dem to mitigate their flaws. The three methods of downscaling discussed in

this thesis are depicted in Figure 4. For instance, statistical downscaling can

be done to learn a mapping between GCM simulations and regional climate

simulations. This creates a statistical model that can replicate the efficacy

and accuracy of a dynamic downscaling model while leveraging computa-

tional efficiency of statistical models.
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Figure 4: Downscaling Modes

3.1 Dynamic Downscaling

Following the assumption that global climate affects local climate, dynamic

downscaling uses explicit physical processes specific to a location along with

global simulations of weather to generate local simulations of weather.

Definition 1 (Regional Climate Models). Regional climate models (RCMs)

are numerical weather models that simulate local high resolution climate

behaviour following the constraints of coarse resolution GCM simulation.

RCMs are completely defined by the set regional boundary conditions

and the chosen methods to model local weather physics. As a result of this,

in practice, RCMs have displayed certain shortcomings. First, RCMs are

extremely sensitive to region size and location [49, 66]. Second, since RCMs

are numerical weather models nested within a GCM, the initial boundary

10



conditions from the GCM tend to cause induced model variability within the

RCM [49, 40]. In essence, the error in variance induced from the GCM prop-

agates to the RCM. Finally, since RCMs are time-varying models, downscal-

ing GCM simulations in the distant future can be computationally expensive

when compared to alternative methods of downscaling [49, 66, 56].

3.2 Statistical Models for Downscaling

In this section, we will cover common statistical models that have been used

for downscaling. For a given location s0, in order to generate downscaled

estimates of climate variable {Ŷi,t(s0) : t ∈ W}, statistical models aim to use

coarse resolution climate variables {Xv,t(s0) : v ∈ V , t ∈ P ∪ W} and past

realizations of high resolution climate variable {Yi,t(s0) : t ∈ P}.

3.2.1 Delta Method

The delta method is one of the simpler methods of downscaling based on

bias correction and only makes use of the coarse measurements of the target

variable. This approach relies on the assumption that the temporal change

in coarse climate variables generated by GCMs is the same as the tempo-

ral change in local climate variables. Following this assumption, the delta

method forms estimates of the temporal change within the simulated coarse

climate variables and creates downscaled local climate variables that follow

the same temporal change [24].
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Xi,P Xi,W

Yi,P Yi,W

δ

δ

Figure 5: Assumption of the Delta method. δ is the shared linear

relationship between past and future climate events.

Example 1 (Delta Method). Let {Xprecip,t(sl) : t ∈ P∪W} and {Yprecip,t(sl) :

t ∈ P} be low and high resolution monthly measurements of precipitation at

location sl. The delta method can be used to spatially downscale monthly

simulations of low resolution precipitation {Xprecip,t(sl) : t ∈ W} into high

resolution precipitation {Ŷprecip,t(sl) : t ∈ W}. Since we are considering

monthly measurements, we can reconstruct the time index from (y,m, d, h)

to (y,m). For ease of notation, we define Pyr and Wyr to be the number of

years considered in past and future realizations respectively. Lastly, assume

that Pyr = Wyr. In order to downscale GCM data from a simulated future

low resolution sequence of monthly precipitation, the delta change parameter

for each month m at location s0 is estimated as

δlm =

1
Wyr

∑
y:(y,m)∈W Xprecip,(y,m)(sl)

1
Pyr

∑
y:(y,m)∈P Xprecip,(y,m)(sl)

As a ratio of means, this gives a measure of the relative difference between

the monthly precipitation in previously simulated climate and the monthly

precipitation in future simulations. As illustrated in Figure 5, the primary
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assumption of the delta method is that this change in monthly averages

for coarse climate variables is reflected locally. From this assumption, the

downscaled high resolution climate variables are estimated as

{Ŷprecip,t(sl) : t ∈ W , sl ∈ S} = {δlmYprecip,t(sl) : t = (m, y) ∈ P , sl ∈ S}

This generates spatially downscaled sequence of estimated monthly precipi-

tation of a future unobserved sequence. 5

It should be noted that some applications of the delta method adopt an

additive rather than multiplicative model [27]. The additive delta method

is often used for temperature while the multiplicative approach is used for

precipitation. The multiplicative delta method avoids negative estimated

local precipitation whereas the additive delta method ensures negative tem-

peratures are covered by the model. Following Example 1 using monthly

temperature rather than precipitation, the monthly delta change parameter

would become

δlm =
1

Wyr

∑
y:(y,m)∈W

Xtemp,(m,y)(sl)−
1

Pyr

∑
y:(y,m)∈P

Xtemp,(m,y)(sl)

The downscaled estimates of a new sequence can then be recovered through

the function below:

{Ŷtemp,t(sl) : t ∈ W , sl ∈ S} = {δlm + Ytemp,t(sl) : t = (m, y) ∈ P , sl ∈ S}

One of the main advantages of the delta method is its simplicity. Compared

to RCMs, the computations required to build a delta method downscaling

model are quickly obtained. Additionally, this model preserves the local cli-

mate variability which tends to be one of the weaker aspects of statistical
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downscaling models. This conservation of variance arises from the fact that

downscaled values for local climate are a simple linear transformation of pre-

viously observed climate. This means the variance of simulated models will

closely resemble the variance of previously observed climate events. When

using the multiplicative delta method, the variance of a generated sequence

of monthly climate events differs from the variance of observed climate events

by a factor of

(
1
δlm

)2

. Of course, in the case of the additive delta method,

the variances are exactly the same.

However, as is apparent from its simplicity, this model lacks flexibility

and thus has some predictable limitations. Firstly, the model suffers from

sensitivity to the chosen time horizon Pyr [12]. Additionally, while the full

recovery of climate variability is important in downscaling models, the delta

method’s inability to drastically deviate from previously observed data means

that all future downscaled simulations will follow the same climate patterns as

before. This follows from the variance argument described above. This stable

assumption in variance is restrictive and unrealistic especially with the recent

volatility induced by climate change. Furthermore, the delta method does

not make use of the spatial correlation between observations. All regional

climate fields are downscaled independently of the regions surrounding them.

Finally, since GCM models produce coarse output over a large spatial

grid, the simulated climate could straddle several heterogeneous climate

zones. The delta method does not account for the fact that any coarse,

globally simulated climate event could correspond to two high resolution re-

gions with drastically different climate patterns.

By only using the mean of the simulated variables, the delta method fails
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to make use of the full probability distributions of both the GCM output

variables and the observed variables.

3.2.2 Bias Correction

While the delta method can be seen as downscaling by increasing the simi-

larity between the change in means of the observed data and GCM simulated

data, bias correcting methods increase the similarities between the two dis-

tributions by making use of the assumption of stationary differences between

low resolution and high resolution climate variables [38].

As shown in Figure 6, a bias correction model assumes a constant bias

through time between the low resolution climate variables and the high reso-

lution climate variables. Using distributional transformations, the bias in the

low resolution random variables is estimated and corrected. This correction

is done with the use of quantile mapping (QM) to eliminate the bias between

future simulations of high resolution climate variable X and low resolution

estimates Ŷ .

Definition 2 (Quantile Mapping). Given two variables ZS ∼ FZS
and

ZO ∼ FZO
where ZO and ZS represent observations and simulations of Z

respectively, the quantile mapping from ZS and ZO is defined as

ZO = F−1
O (FS(ZS))

where FO and FS are the cumulative distribution functions (CDF) of the

corresponding variables.

Quantile mapping, as used for bias correction and BCSD, is a composition

of the probability integral transform of the distribution of low resolution data
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XP XW

YP YW

Bias Bias

Figure 6: Diagram of Bias Correction downscaling

with the quantile transformation of the high resolution data used to correct

the low resolution climate data.

Definition 3 (Bias Correction). Let {Yv,t(s0) ∼ FY : t ∈ P} and let

{Xv,t(s0) ∼ FX : t ∈ P}. Methods that use bias correction downscale

through the quantile mapping:

{Ŷv,t(s0) = F−1
Y (FX(Xv,t(s0))) : t ∈ W}

Since the cumulative distribution functions are monotonically increasing, this

mapping makes the variables Ŷ and X comonotonic at a given time and lo-

cation i.e. creates strong positive association between the variables while

shifting the CDF of X to more closely resemble that of the high resolution

data Y . Several approaches for the estimation of the quantile mapping func-

tion are discussed next.

Example 2 (Distributional QM). With distributional quantile mapping, the

transformation function is estimated using known distributions. This method

is mostly used to downscale precipitation where the chosen distribution is a
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mixture of the Binomial and Gamma distributions or a simple Gamma distri-

bution. If used, the Binomial distribution identifies the probability of precip-

itation and the Gamma distribution identifies the intensity of precipitation

[14]. Other frequently used distributions include a mixture of Bernoulli and

Log-Normal as well as a Bernoulli and Exponential [21]. It should be noted

that extreme value distributions would allow for better modeling of the tail

behaviour of the low resolution and high resolution data rather than Gamma,

Exponential, or Log-Normal which are light tailed [13].

Let us assume an Exponential distribution for past realisation of low

resolution and high resolution data at location s0:

{Xv,t(s0) : t ∈ W} ∼ E(λ0,1)

{Yv,t(s0) : t ∈ W} ∼ E(λ0,2)

Using estimates for λ0,1 and λ0,2 generated through maximum likelihood esti-

mation, the QM can be constructed. The learned quantile mapping between

the GCM observed precipitation yields the following transformation:{
Ŷv,t(sl) =

λ̂l,1

λ̂l,2
Xv,t(sl) : t ∈ W , sl ∈ S

}
Depending on the goal of the downscaling model, more complex distribu-

tions can be used. For example, [30] use the Generalized Pareto distribution

to create a cumulative distribution mapping that can downscale low resolu-

tion extremes of precipitation to high resolution extremes. With this choice

of transformation, the generated high resolution samples of precipitation are

not accurate simulations of day-to-day precipitation but are accurate simu-

lations of the tail of high resolution precipitation. 5
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Example 3 (Parametric QM). Another approach to QM is to assume a

parametric relationship between the two variables of interest. In essence,

the function F−1
Y (FX(·)) can be estimated directly rather than though the

sequential use of cumulative distribution functions.

Some commonly used parametric functions [14] for dowscaling a location

s0 are listed below:

Ŷv,t(s0) = a0Xv,t(s0)

Ŷv,t(s0) = a0Xv,t(s0) + b0

Ŷv,t(s0) = a0Xv,t(s0)c0

Ŷv,t(s0) = (a0Xv,t(s0) + b0)

(
1− exp

{
Xv,t(s0)

γ0

})
The parameters a0, b0, c0, γ0 for each location can recovered through least

squares estimation using the past sequence t ∈ P . Let ̂F−1
Y0

(FX0(·)) be the

learned mapping at location s0. Future high resolution realizations of data

are then generated as

{Ŷi,t(sl) = ̂F−1
Yl

(FXl
(Xi,t(sl)) : t ∈ W , sl ∈ S}

5

Example 4 (Empirical QM). Lastly, the functions FY , FX can be estimated

individually at each location using the method of empirical cumulative distri-

bution function. This simple non-parametric approach to quantile mapping

makes fewer assumptions about the distribution of the observed climate vari-

able.

We can recover the empirical cumulative distribution functions at location

s0:
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F̂X0(x̃) =

∑
t∈P 1Xi,t(s0)<x̃

n

F̂Y0(ỹ) =

∑
t∈P 1Yi,t(s0)<ỹ

n

A spline interpolator is used to smooth the empirical cumulative distri-

bution functions. Finally, quantiles of the low resolution data are mapped to

corresponding quantiles of high resolution data.

{Ŷi,t(sl) = F̂−1
Y (F̂X(Xi,t(sl))) : t ∈ W , sl ∈ S}

One downside of this approach is that large simulations of data are usually

matched to the 99th quantile of observed data. This restricts the range of

the data that can be simulated with this model. 5

Definition 4 (Bias Correction Spatial Dissagregation). As outlined in Fig-

ure 7 and introduced in [69], bias correction spatial dissagregation (BCSD)

first aggregates the high resolution data to be on the same scale as the low

resolution data, estimates and eliminates the bias in the simulated data,

then spatially disaggregates the unbiased low resolution simulation data into

estimates of high resolution data.
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Figure 7: Diagram of BCSD downscaling.

First, neighboring spatial locations of the high resolution data are aver-

aged and used to create a new climate variable Z such that NZ = NX and

MZ = MX .

{MeanNeighbors(Yv,t(sl)) = Zv,t(sl) ∼ FZ : t ∈ P , sl ∈ S}

This creates a low resolution climate variable from the high resolution cli-

mate variable by averaging the over adjacent locations. The bias correction

required is then approximated by using the model

Zv,t(sl) = F−1
Z (FX(Xv,t(sl))) t ∈ P , sl ∈ S.

The function composition F−1
Z (FX(·)) is estimated with any of the previously

covered methods. The learned quantile mapping is used to eliminate the bias

at the coarse level of future simulated data.

{X̂v,t(sl) = ̂F−1
Z (FX(Xv,t(sl)) : t ∈ W , sl ∈ S}
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Finally, the future simulated data is interpolated to have the same spatial

variance as the past observed data. This spatial interpolation can be done

using the delta method described in the previous section but instead of esti-

mating δ between the original coarse variables XP and XW , the δ parameter

is estimated between the aggregated high resolution variable ZP and the bias

corrected coarse simulations XW .

Bias correction allows for matching moments between future and past

high resolution climate data. However, BCSD relies on the assumption that

there exist a direct quantile to quantile mapping between global simulations

of climate and local observations of climate in addition to the assumption that

changes in low resolution data are reflected in high resolution data. Neither

of these assumptions hold over long periods of time [59]. The model also

does not readily make use of any complex temporal or spatial relationships

within the observed and simulated samples and does not have the flexibility

to generate future simulations of data that are significantly different from

previously observed data.

3.2.3 Multiple Linear Regression

In simple linear regression (SLR), we assume the following relationship be-

tween the coarse predictors X and the local predictand Y :

Y = ε+ βX ε ∼ N (0, σ2)

As it is defined above, this model is not considerably different than the

parametric quantile mapping function. The appeal of linear regression comes
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from the extension into multiple linear regression model (MLR). Let

{v1, . . . , vc} = ν ⊆ V

be a set climate variables. Given low resolution climate variables

{Xv,t(sl) : v ∈ ν, sl ∈ S, t ∈ P ∪W}

and target high resolution measurement of a climate variable v1 ∈ V

{Yv1,t(sl) : t ∈ P , sl ∈ S}

we can use MLR models of the form

Yv1,t(sl) = ε+ β0 +
∑
v∈ν

βvXv,t(sl) sl ∈ S, t ∈ P , ε ∼ N (0, σ2)

In order to estimate β. Due to the assumption of normal errors, most meth-

ods make use of some transformation of the target variable Yvt,t in order to

ensure pseudo-normality in the data. Such methods include mean-variance

normalization [66] and Anbscomebe residuals [29].

From there, it is simple to generate downscaled realizations of climate

variable Yv1,t at location sl for any t ∈ W as

{Ŷvt,t(sl) = β̂0 +
∑
v∈ν

β̂vXv,t(sl) : sl ∈ S, t ∈ W}

As is standard, the parameters βv can be estimated through likelihood max-

imization or gradient based optimization. In MLR, there is still a linearity

assumption on the relationship between GCM simulation data and observed

data. Unlike previously covered models, MLR can leverage several different

climate variables. This structure allows the model to learn the linear relation-

ship between multiple coarse climate variables and local climate variables.
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Example 5 (MLR). The natural correlation between temperature, surface

pressure and precipitation could be used to build the multiple linear regres-

sion model below:

Yprecip = ε+ β0 + βprecipXprecip + βtempXtemp + βpressXpress ε ∼ N (0, σ2)

5

In practice, many MLR downscaling models adequately target the mean

of the local climate variable but are unable to capture its variance [46]. This

means in particular that the MLR models, as described here, might not

be appropriate for the downscaling of extreme climate events. There have

been some improvements in the downscaling of extremes with methods that

enforce similarities between the variance of observed data and the variance

of the MLR model. This is done by adding the constraint

(βX)TβX = Y TY

to the model parameter optimization [7]. While this implies that enforcing

similarities between the variance of the downscaled variable and the local

variable leads to be better coverage of extremes, the MLR model still assumes

a Gaussian distribution for the local variable Y .

Example 6 (SDSM). One of most often used tools for downscaling precip-

itation is the Statistical DownScaling Model (SDSM) [66] which is a hybrid

model created to make use of MLR and stochastic weather generation [67].

This duality arises from the use of global scale climate patterns to generate

precipitation events.
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Consider a single location s0 and climate variable subset ν as before. The

SDSM process is as follows: first, all input predictors are normalized to have

mean 0 and standard deviation 1.

uv,t(s0) =
Xv,t(s0)− µ̂Xv,t(s0)

σ̂Xv,t(s0)

v ∈ ν, t ∈ P ∪W

Here σ̂Xv,t(s0), µ̂Xv,t(s0) are the sample mean and sample standard deviation

respectively. This is motivated in the model’s white paper as a method that

has been empirically shown to increase model performance [67].

Following this normalization, an autoregressive regression model for the

conditional occurrence probability of daily precipitation ωt is developed from

the coarse climate variables and the past value of ω.

ωt(s0) = α0 + α1ωt−1(s0) +
∑
v∈ν

αvuv,t(s0) t ∈ P

After the estimation of parameters through least squares optimization, a

sequence of standard uniform random numbers {rt(s0) ∼ U(0, 1) : t ∈ W}

is generated and used to simulate precipitation events. This allows for a

probabilistic model for the observance of precipitation which adds texture to

the variability of the model and results in a stochastic weather generator. At

any t ∈ W , future precipitation events are generated if ω̂t(s0) ≤ rt(s0) where

{ω̂t(s0) = α̂0 + α̂1ωt−1 +
∑
v∈ν

α̂vuv,t(s0) : t ∈ W},

As explained below, the MLR model is used for past precipitation amounts,

viz.

Yprecip,t(s0) = exp

{
β0 +

∑
v∈ν

βvuv,t(s0) + ξ

}
, t ∈ P ,
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where ξ is some model error with no distributional assumptions and the

exponential function is used to ensure non-zero amounts of precipitation.

Finally, for t ∈ W , downscaled simulations of high resolution precipitation

are given by

Ŷprecip,t(s0) =


exp

{
β̂0 +

∑
v∈ν β̂vuv,t(s0)

}
if ω̂t(s0) ≤ rt(s0)

0 o.w.

This process is repeated for different locations sl ∈ S. 5

Example 7 (Multisite Downscaling). As introduced in [29], MLR can also

be used to downscale high resolution climate data at multiple locations si-

multaneously. For climate variable i measured over space S, we define the

matrix of past high resolution data as

Yi,P =


Yi,%1

...

...

Yi,%|P|

 =


Yi,%1(s1) Yi,%1(s2) . . . Yi,%1(sL)

...
...

. . .
...

... . . .
. . .

...

Yi,%|P|(s1) . . . . . . Yi,%|P|(sL)


|P|×L
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We define the design matrix of past low resolution data as:

XP =


X∗,%1

...

...

X∗,%|P|

 =


< Xv1,%1 , . . . ,Xvc,%1 >

...

...

< Xv1,%|P| , . . . ,Xvc,%|P| >


|P|×(L∗c)

=


Xv1,1(s1) . . . Xv1,1(sL) . . . Xvc,1(s1) . . . Xvc,1(sL)

...
. . .

...
...

...
. . .

...
...

. . .
...

...
...

. . .
...

Xv1,|P|(s1) . . . Xv1,|P|(sL) . . . Xvc,|P|(s1) . . . Xvc,|P|(sL)


Because the dimension of XP can lead to issues with multi-colinearity, we

first process this design matrix. This can be done through any dimensionality

reduction technique such as principal component analysis. Let X̃P be the

resulting processed matrix of dimension |P| × k. The multivariate MLR

model uses the model

Yi,P = X̃Pβ + E ,

where β is a matrix of [k × L] coefficients to be estimated and E is a [|P| × L]

matrix of model errors. Following standard regression practice, the coefficient

matrix can be estimated as

β̂ = (X̃T
PX̃P)−1X̃T

PY.

Similarly to the matrix used for calibration, the design matrix XW must first

undergo dimensionality reduction. High resolution downscaled realizations of

climate variable i with temporal and spatial correlation can then be generated

through

Ŷi,W = X̃Wβ̂.

26



The authors of [29] remark that the variance of high resolution samples gener-

ated with this method is smaller than the true variance of the high resolution

samples which is expected as the MLR model targets the mean of the high

resolution and will have difficulties recovering extremes. 5

3.2.4 Generalized Linear Regression

As previously mentioned, some distributions, specifically the Gamma distri-

bution, are better suited for modeling precipitation than the normal distribu-

tion. Generalized linear models (GLM) allow for the use of a linear estimator

to target the mean of a random variable following a non-normal distribution.

Given data from the previous example, the corresponding GLM would be

g(µprecip,t(sl)) = β0+
∑
v∈ν

βvXv,t(sl) Yprecip,t(sl) ∼ G(µprecip,t, θ), sl ∈ S, t ∈ P

where g is the link function such as the identity or log link. After parameter

estimation, a future sequence of high resolution precipitation downscaled

from low resolution simulation of precipitation would be estimated as{
µ̂precip,t(sl) = g−1

(
β̂0 +

∑
v∈ν

β̂vXv,t(sl)

)
: t ∈ W , sl ∈ S

}
The Gamma GLM with log link function g has been shown to outperform

both MLR and SDSM on select tasks [45]. However, since the GLM tar-

gets the mean and the Gamma distribution is light tailed, this precipitation

downscaling model is unable to recover the extremes of climate events.

Even with their increased flexibility and the ability to include multiple cli-

mate features, the Gamma GLM makes assumptions on the variance, thereby

restricting the data that can be modeled accurately.
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3.2.5 Copula Dependence Modeling

Recently, copula modeling of climate variables has been used to generate

spatio-temporally correlated downscaled realizations of high resolution data.

This is because copulas can be used to increase the flexibility of the depen-

dence structure of generated data.

Definition 5 (Copula). A Copula is a cumulative distribution function

whose univariate margins are standard uniform.

Copulas are used to create a link between a joint distribution function

and its univariate margins [18] by application of Sklar’s theorem [42].

Theorem 1 (Sklar’s Theorem). Given random variables Z1, . . . , Zd with

corresponding marginal cumulative distribution functions F1, . . . , Fd, there

always exists a copula C such that:

P (Z1 ≤ z1, . . . , Zd ≤ zd) = C(F1(z1), . . . , Fd(zd)) ∀z1 . . . , zd ∈ R

This means that the joint cumulative distribution of random variables {Zi}di=1

can be represented by a function of the marginal probability distributions.

Example 8 (Bivariate Copula). This example illustrates the application

of bivariate copulas for downscaling as used in [72, 58]. Let Cθ(u, h) be

a bivariate copula parameterized by θ. Consider climate variables at one

location s0

{Xv,t(s0) ∼ FXv ,0 : t ∈ P ∪W} {Yv,t(s0) ∼ FYv ,0 : t ∈ P}

As seen in QM, the cumulative distribution functions can be estimated and

used as probability integral transforms. This yields the following sequences:

{uv,t(s0) = F̂Xv ,0(Xv,t(s0)) : t ∈ P∪W} , {hv,t(s0) = F̂Yv ,0(Yv,t(s0)) : t ∈ P}
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The copula Cθ is then fitted to these approximately uniform marginal vari-

ables to estimate θ. For copulas belonging the Archimedian family of copulas,

this can be done through the use of Kendall’s τ correlation coefficient [41],

for example, or more generally, using pseudo maximum likelihood estimation

[17].

Furthermore, as explained in [51], the conditional CDF of a bivariate

distribution can be recovered from a copula as:

FH|U(h|u) = P (H ≤ h|U = u) =
∂Cθ(u, h)

∂u
.

This gives a formulation for the conditional CDF of the high resolution cli-

mate variable given the low resolution climate variable after both have under-

gone the probability integral transform. With an estimate Cθ̂, low resolution

samples generated at t ∈ W can be downscaled into high resolution samples.

First, uniform transformations of the future low resolution climate variable

are used along with the conditional CDF derived from the copula to simulate

uniform samples of the high resolution climate variable.

{ĥv,t(s0) ∼ F̂H|U=uv,t(s0) : t ∈ W} F̂H|U =
∂Cθ̂(u, h)

∂u

Then, the inverse of the approximated CDF of the high resolution climate

variable is used to generate scaled future representations.

{Ŷi,t(s0) = F̂−1
Yi,0

(ĥv,t(s0)) : t ∈ W}

This copula model is an improvement over QM methods bias correction

method described in Section 3.2.2. This is because the bivariate copula

downscaling method allows for the conservation of dependence between high
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resolution and low resolution data, but no longer assumes comonoticity be-

tween these variables. 5

Example 9 (Multivariate Copula). Higher dimensional copulas can be used

in tandem with CDF estimation methods to generate sequences that pre-

serve more of the spatial and temporal variability of high resolution climate

variables. As proposed in [6], this method of downscaling has shown its abil-

ity to produce more realistic downscaled high resolution climate data than

Multisite MLR based downscaling.

Consider the climate variable matrices defined in Example 7. As before,

matrices XP and XW must be processed with dimensionality reduction into

matrices X̃P and X̃W respectively.

First, the conditional cumulative distribution function of the target vari-

able at each location is estimated. This is done through conditional quantile

regression. As introduced in [32], this model is an extension to median re-

gression. Let {Zy,i}ni=1, {Zx,i}ni=1 be n observations of two variables. The pth

quantile of Zy conditional on Zx is modeled as

Qp(Zy|Zx) = Zxβ.

In [32] it is shown that the beta parameter can be estimated by:

β̂ = min
β∈R

[ n∑
i=1

p|Zy,i − Zx,iβ| · 1xiβ≤yi +
n∑
i=1

(1− p)|Zy,i − Zx,iβ| · 1xiβ>yi
]
.

Consider location s0 ∈ S and probability p on a gridded partition of the unit

interval. Quantile regression is used to model the pth quantile of the high

resolution climate at a specific location conditional on the reduced design

matrix.

Qp(Yi,P(s0)) = X̃Pβp,s0
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The parameter βp,s0 is estimated as above. This process is repeated for

equally spaced values of p on the unit interval in order to generate multiple

quantile coefficients. After parameter estimation, the conditional quantile of

Yi,t is estimated as

Q̂Yi,t(s0)|X∗,t(p) = X̃∗,tβ̂p,s0

These quantile estimates are then smoothed and interpolated to build the

conditional cumulative distribution function F̂Yi,t(s0)|X̃∗,t . Finally, this proce-

dure is repeated for all locations to produce location and time specific CDF

estimates

{F̂Yi,t(sl)|X̃∗,t : sl ∈ S, t ∈ P ∪W}

Using these CDFs, the high resolution variable is converted onto the unit

interval

{ui,t(sl) = F̂Yi,t(sl)|X̃∗,t(Yi,t) : sl ∈ S, t ∈ P}

Next, [6] apply the Gaussian copula to estimate the spatial dependence of

the transformed high resolution climate variables. The Gaussian copula takes

the form given, for all h1, . . . , hd ∈ (0, 1) by

CΣ(h1, . . . , hd) = Φd(Φ
−1(h1), . . . ,Φ−1(hd)|Σ),

where Φ is the standard normal CDF and Φd is the d-dimensional multivariate

normal CDF with d × d correlation matrix parameter Σ that controls the

dependence structure of the variables. Assuming that{(
Φ−1(ui,t(s1)), . . . ,Φ−1(ui,t(sL))

)
∼ NL(0,Σ) : t ∈ T

}
The matrix parameter Σ of the Gaussian copula is estimated by the sample

correlation of the rows of matrix H.
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H =


Φ−1(ui,%1(s1)) . . . Φ−1(ui,%1(sL))

...
. . .

...

Φ−1(ui,%|P|(s1)) . . . Φ−1(ui,%|P|(sL))


|P|×L

This completes the calibration step of the model. In order to generate down-

scaled observations of climate, the model first generates samples from the

Gaussian copula:

{(ûi,t(s1), . . . , ûi,t(sL)) ∼ CΣ̂ : t ∈ W}

The copula generates uniform future realizations of high resolution climate

variables generated with a similar spatial structure to those used in the cali-

bration step. These are then transformed into the appropriate scale by using

the estimated CDFs which model the temporal variability of observations in

P : {
Ŷi,t = F̂−1

Yi,t(sl)|X̃∗,t
(ûi,t(sl)) : t ∈ W , sl ∈ S

}
This model performs significantly better than multisite MLR models

when it comes to the recovery of extreme events [6]. However, the CDF es-

timation step assumes that the quantile mapping stays stable through time.

As previously discussed in Secion 3.2.2, this assumption does not hold for

wide temporal windows.

When modeling the temporal distribution, the spatial dependence is ig-

nored. Similarly, when estimating and generating samples from the copula,

dependence over time is ignored. This two step approach means that the

joint spatio-temporal dependence of high resolution and low resolution cli-

mate variables is not modeled exactly. Additionally, the choice of Gaussian
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copula is restrictive because of the spacial dependence it can model. Newer

high dimension extreme value copulas may be more useful though harder to

estimate. For example, [36] use empirical copulas to estimate the dependence

structure between high resolution and low resolution climate. 5

3.3 Machine Learning Models for Downscaling

Many machine learning (ML) techniques have been applied to the task of

downscaling. In this section we provide a brief overview of such methods.

This overview is done in the context of general machine learning models

where Y is a predictand and X = (X1, . . . , XM) is a set of predictors. The

models are calibrated and trained by estimating the relationship f :

Y = {Yi,t(sl) : sl ∈ S, t ∈ P} = f(X)

X = {Xj,t(sl) : sl ∈ S, t ∈ P , j = 1, . . . ,M}

As before, downscaled realizations of future simulations are generated as

Y = {Ŷi,t(sl) : sl ∈ S, t ∈ W} = f̂(X)

X = {Xj,t(sl) : sl ∈ S, t ∈ W , j = 1, . . . ,M}

If the predictand Y represents observations of a climate variable to be

downscaled, then ML models are used to approximate statistical downscaling

methods. As in the case in this thesis, when Y represents high resolution

simulations (such as RCM output), the ML models are used to approximate

the RCM and thus can be seen as approximations of dynamic downscaling

models.
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This thesis focuses on the application of deep learning methods for down-

scaling that have recently gained popularity. Most statistical methods are

built around distributional assumptions that hold on the actual range of cli-

mate variables. As discussed in Section 2, the data available is an encoding

of these climate variables. Applying statistical downscaling models to the

distribution of color scale encoding of the pixels that make up the image

of climate events would result in an inadequate comparison of the modeling

techniques.

3.3.1 Genetic Programming

Genetic programming (GP), first introduced by [33], can be used as a non-

parametric regressor when the nature of the relationship between the pre-

dictor and the predictand is not well understood. In contrast to standard

statistical modeling and linear regression methods, GP can allow for non-

linear relationships between the predictor and the predictand, does not rely

on assumptions of variable independence, and does not rely on the standard

MLR assumptions [8].

Given a set of functions (+, -) and a set of operations ( ln, sin, . . .), a GP

algorithm randomly generates a generation. A generation is a set of models

that uses the input functions and a subset of the coarse predictor variables

X to model the high resolution variable Y . Members of a generation are

represented by graphical trees where the nodes constitute of coarse variables

or constants, and the edges correspond to a function from the set. A GP

algorithm generates populations until a stopping criteria is reached and then

selects the best performing member of the final population.
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Figure 8: Sample members of a generation from GP algorithm with

operation set {∗,+,÷}, function set {log, exp, sin}, coarse features

X = (X1, X2, X3), and target local feature Y .

Models from a generation are then evaluated by assessing their ability to

properly downscale the local variable. The better performing models are then

kept in future generations while the worse performing models are purged. At

every generation, slight perturbations can happen to the current members.

They can be mutated, which changes the value in a node of the graph, or

crossover, which swaps any two branches from different trees.

Genetic models have been shown to have better performance than MLR

methods for the downscaling of extreme rainfall [23]. When it comes to the

actual prediction of the precipitation levels, GP algorithms tend to underes-

timate downscaled precipitation variables, though their estimate is still more

accurate than MLR approaches [26].

35



3.3.2 Support Vector Machines

With support vector machines (SVM), the target local variable Y is approx-

imated with the use of the model

f(X) = wTΦ(X) + b+ ε

where w, b are parameters to be estimated and Φ is a non-linear function

and ε is our error tolerance. Usually, SVMs are optimized through the use of

Lagrange multipliers as the function we wish to optimize consists of solving

a constrained minimization problem.

Depending on downscaling location, SVM and its variants have shown

the potential to outperform MLR approaches in terms of accuracy [50]. They

have also shown marginal improvement in the downscaling of extreme pre-

cipitation when compared to MLR models [10].

3.4 Deep Learning Models for Downscaling

Deep learning (DL) models can be used for downscaling in several ways. Like

statistical downscaling approaches, DL can be used to map the output of a

GCM to the ground truth, i.e. a function that estimates the relationship

between the coarse global climate variables and the fine local observations.

Alternatively, DL can also be used to approximate the RCM output. In this

case, the function that is approximated is the regional forcing induced by

the RCM to coerce GCM output into high resolution local variables. If this

mapping is effective, DL approaches can benefit from the accuracy of RCMs

while maintaining the benefit of computational efficiency from the statistical

approaches to downscaling.
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Furthermore, in the field of deep learning, there have been many models

proposed for image super-resolution. This tasks involves learning a mapping

from a low quality blurred image to its high resolution counterpart. It is nat-

ural to apply deep learning models to the task of downscaling as downscaling

can be thought of as a form of image super-resolution where the coarse GCM

simulations represent a blurred view of a climate variable and the climate

variable at various local regions corresponds to the fine-grain high resolution

view. Approaching downscaling as a super resolution problem allows for the

use of new tools in this task.

This section outlines some deep learning modules and architectures used

in the model proposed in this thesis.

3.4.1 Feed Forward Neural Networks

Feed forward neural networks are deep learning models that, according to

the universal approximation theorem [5], can represent a wide array of func-

tions. This means that if we assume a functional relationship between coarse

global and granular local climate variables, such networks are well suited for

estimation of this function.
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Figure 9: Example of a feed forward neural network with two hidden

layers

Multilayer perceptrons (MLP), are a class of feed forward neural networks

that consist of linear layers composed with some form of activation function.

To define an MLP, let x ∈ Rn be a vector of inputs, y ∈ Rm be a vector of

outputs, and l ∈ R be the number of layers in the model. Each layer can be

represented as a vector function

Li(z) = Fi(Wiz + bi) i = 1, . . . , l

Where z is an input vector to layer Li and Fi is a linear or non-linear function.

Each layer has vector bi and matrix Wi which are parameters to be learned

through estimation procedures. An MLP can then be defined as the model

of y through the application of the composition of layers on x.

y = Ll(Ll−1(. . . (L1(x))))

MLPs have shown to be superior to MLR models for downscaling temper-

ature and precipitation [43]. Additionally, with non-linear choices for the
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activation functions Fi, these models can also produce less biased predic-

tions for output y. In practice, MLPs have shown to be more adequate for

downscaling precipitation extremes than models like GPs or SVMs [50].

When working with spatially related data such as images or maps, the

analogue to an MLP is a convolutional neural network (CNN). These mod-

els leverage the spatial relationship of data through a convolutional layer.

Convolutions can be extended to multiple dimension,s though the definition

below focuses on the two dimensional case. Let z be a matrix in Rh×w and

let W be a matrix in RA×B such that h > A and w > B. W is termed

the convolutional filter. A convolutional operation in a convolution layer C

that takes in z as input and learns parameter W can be represented as a

transformation C : Rh×w 7→ Rh−A+1×w−B+1.

C(z) = z ∗W (�)

C(z)[i, j] =
A∑
r=1

B∑
c=1

z[i+ r − 1, j + c− 1]W[r, c]

As depicted in Figure 10, a convolution reduces the dimensions of the input

matrix. However, the input can be padded with 0s and artificially augmented

to ensure equal dimensions in the input and output.
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Figure 10: Example of a convolution on a matrix

By leveraging spatial information, CNNs can outperform standard MLPs

and have also been shown to perform better than standard regression-based

approaches [52]. One downside of these models is that the CNN structure

could require high resolution input and output data which could make the

model extremely sensitive to the chosen data resolution and greatly increase

training time [4].

3.4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are widely used in deep learning to lever-

age the time dependencies within time series data. These networks use a

hidden state h which represents historical information accumulated by the

network and generate future state information using current input x. There

are many schemes to update the hidden vector. For example, at step t, the

network generates the hidden state using the function

ht = R(ht−1, xt)
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Different choices for the function R give rise to different types of recurrent

neural networks. We focus on the gated recurrent unit (GRU) architecture

proposed in [11] and its convolutional variant (ConvGRU) proposed in [3].

A GRU updates the hidden representation of past data using an up-

date gate which signals the extent to which the hidden representation should

change:

zt = σ(Wzxt + Uzht−1)

With σ as the sigmoid function applied to each element of vector z, viz.

σ(a) =
1

1 + e−a
, a ∈ R

GRUs also make use of a reset gate which signals the extent to which past

representations should be forgotten:

rt = σ(Wrxt + Urht−1)

Using the reset gate, a candidate hidden state is created:

h̃t = tanh(Wxt + U(rt � ht−1))

Here, � refers to the Hamard product. The final hidden state is an inter-

polation (governed by the update gate) between the candidate hidden state

and the previous hidden state.

ht = (1− zt)� ht−1 + zt � h̃t

With 1 as a vector of ones. Here, Wz,Wr,W,Uz,Ur and U are all matrix

parameters to be learned through an MLP. The inputs ht−1, xt and output

ht are all vectors.
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Figure 11: Sequence of GRUs

In order to leverage both spatial and temporal dependence, the authors

of [3] propose using convolutions rather than standard matrix multiplica-

tion. The algorithm for updating the hidden representation at time t is then

changed into

zt = σ(Wz ∗ xt + Uz ∗ ht−1)

rt = σ(Wr ∗ xt + Ur ∗ ht−1)

h̃t = tanh(W ∗ xt + U ∗ (rt � ht−1))

ht = (1− zt) · ht−1 + zt · h̃t

and Wz,Wr,W,Uz,Ur and U are learned convolutional filters. The in-

puts ht−1, xt and output ht are all matrices. In order to preserve spatial

dimensions of the data, convolutional GRUs use padded convolutions.

Recurrent modules are flexible in their applications to models. For exam-

ple, GRUs can be used in a sequential manner as depicted in Figure 11 or,

they can also be used in a stacked fashion as seen in Figure 12. The stacked

GRUs architecture allows models to increase the complexity and pertinency

of the learned hidden representations of data.
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Figure 12: Stacked GRU architecture of depth 2 and length T

Standard GRUs have been shown to perform competitively with other

models on the task of downscaling [55] while convolutional GRUs have been

shown to more accurately represent the variance of the target variable [35].

These improvements do come with an increase in model complexity as at-

tempting to include spatial dependence in a model magnifies the number of

parameters to train and the amount of data necessary.

3.4.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a class of models introduced in

[20] to improve the efficacy of deep generative models. These models, often

used in imaging or video tasks, can be used to generate or evaluate samples

from a probability space. The innovative aspect of these networks comes

from the fact that they pit two models against each other.

A GAN consists of two models: a generator G and a discriminator D. Let
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Y ∼ pdata(y) be the target distribution to simulate. The generator is a model

that takes in a sample from latent variable Z and creates a mapping from Z

to Y denoted as G(z). The discriminator, defined as D(ỹ), is a model that

takes in a sample ỹ and distinguishes whether or not ỹ represents a sample

from Y. Here, G and D are differentiable functions which can be chosen to

be deep neural networks.

With these two adversaries defined, the aim is to train the generator G

to “fool” the discriminator D, while training the discriminator D to iden-

tify fraudulent samples from Y. This training paradigm enables model G to

generate pseudosamples from the distribution of Y that are indistinguish-

able by discriminator D from authentic samples. This is done through the

optimization of the following loss function:

min
G

max
D

V (G,D) = EY[logD(y)] + EZ [log(1−D(G(z)))]

For the Discriminator, the goal is to maximize this loss function while for

the generator, the goal is to minimize it. In game theory, this corresponds

to a two player min-max game with value function V (G,D).

As a natural extension to GANs, conditional GANs allow for the inclu-

sion of an external variable x on which to condition the generator and the

discriminator. By feeding in additional input x to both the discriminator

and the generator, the previous loss function becomes:

min
G

max
D

V (G,D) = EY[logD(y|x)] + EZ [log(1−D(G(z|x)))]

While GANs can be effective at generating samples, their adversarial ar-

chitecture leaves them vulnerable to a few different failure modes. These

include vanishing gradients, mode collapse, and failure to converge. Many
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modifications to the standard GAN have been proposed and drastically im-

prove model training [2, 22].

When applied to downscaling, GANs aim to learn the distribution of a

local climate variable Y conditioned on the coarse global climate variables

x. Here Y corresponds to the distribution of a climate variable over high

resolution space and time and x corresponds to coarse simulations of climate

events.

Conditional GANs devised for image super resolution have shown promise

when applied to downscaling [65, 64]. Newer GAN architectures are also

successful when applied to the use of GCM output for the approximation

of high resolution RCM output [61] and for direct application to regional

downscaling [1, 35, 9]. In this thesis, we focus on the model proposed by [61]

and improve on its performance in recovering temporal dependencies within

weather patterns.
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4 Learned Dynamical Downscaling Summary

High resolution RCM data is computationally expensive to generate. In

[61] the authors model high resolution RCM data from low resolution RCM

data as this would allow stakeholders to save on resources by producing low

resolution RCM data and using it to model high resolution RCM data. This

is referred to as as learned dynamical downscaling. The model learns an

approximation of a mapping between low resolution RCM simulation and

high resolution RCM data.

4.1 Model

The authors of [49] explore a few different models, though this thesis focuses

on their best model for downscaling. This model is a conditional GAN that

makes use of 12 km resolution topography, simulated 50 km resolution sea

level pressure (SLP), integrated water vapour (IWV), temperature (T2) and

precipitation as input climate variables and the corresponding 12 km reso-

lution rain simulation as a target. This model is henceforth referred to as

FALDD.

4.1.1 Modules

The success of both the generator G and discriminator D of FALDD can be

attributed to the modules used to form its architecture. This model makes

use of inception modules, introduced in [54], which are widely used in the

field of computer vision and have been shown to increase performance on

vision tasks while maintaining computational costs low. This is done by the
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stacking of multiple convolutional layers of different kernel sizes which allows

the model to learn a wide feature maps of the input features. A diagram of

this module is available in Figure 13. For this and subsequent diagrams, a

legend is provided in Figure 26.

Figure 13: Inception Module Diagram

Information about the extracted feature maps is gathered through the

use of convolutional block attention modules (CBAM) introduced in [68].

A CBAM module is an attention module that makes use of both a spatial

attention module [57] and a channel attention module [28]. In deep learning,

much like in humans, attention is used to increase the model’s attentiveness

on some areas of the feature space, while decreasing it on others.

The channel attention module is a multilayer perceptron which models

the relationship between the maximum and average of each feature map. This

relationship is then used to perform a re-weighting of these feature maps.
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Figure 14: Spatial attention module (left) and channel attention module

(right)

In contrast, the spatial attention module, uses convolutional network

which learns the relationship between spatial locations within the feature

maps. This spatial relationship is then used to re-weight all location features

across all maps. Both of the previous modules are used sequentially to form

the CBAM attention module.
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Figure 15: CBAM

4.1.2 Discriminator

Compared to the generator, the discriminator architecture is rather simple.

The discriminator is a convolutional neural network which outputs a 4×8

matrix of probabilities.
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Figure 16: Discriminator Diagram

The authors opted for the use of the standard conditional GAN loss for
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the discriminator D with parameters θD ,

`(θD) =
1

n

n∑
i=1

D(G(xi, vslp, viwv, vt2, vtop))−D(yi).

4.1.3 Generator

In the proposed GAN, all climate variables are processed separately using

similar convolutional encoders. These convolutional encoders serve as ex-

tractors to ensure that characteristics of the features collected are similar

across all the variables. These features are then concatenated into a 3 di-

mensional tensor.

The generator G uses the previously defined modules to downscale coarse

precipitation images into high resolution images.
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Figure 17: Generator Diagram

The loss function of G is a composition of an adversarial loss and the `1
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loss to optimize its parameters θG. The `1 loss is used to enforce a structural

similarity between the generated images and the target images.

`(θG) =− λ

n

n∑
i=1

D(G(xprecip,i, xslp,i, xiwv,i, xt2,i, xtop,i))

+
α

n

n∑
i=1

`1(G(xprecip,i, xslp,i, xiwv,i, xt2,i, xtop,i)− yi)

Where λ, α are weighting parameters for the adversarial and content loss

respectively. These are set to λ = 1 and α = 5 for the training of the

generator.
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5 Experiments and Approach

The goal for this thesis is to improve upon the model proposed in [61] through

the inclusion of time dependencies. There are few statistical downscaling

approaches that take both spatial and temporal dependencies into account.

Even the complex copula model described in Example 9 is not able to model

joint spatio-temporal dependencies.

Furthermore, none of the methods surveyed modeled spatio-temporal de-

pendence for learned dynamical downscaling. Our contribution to down-

scaling comes from the use of deep recurrent neural networks and attention

modules to model joint spacio-temporal dependence in the context of learned

dynamical downscaling.

This is done first by the incorporation of recurrent networks in FALDD

to build a model FALDDGRU, and then by the creation of a novel model

which uses a collection of tools inspired by research on both climate fore-

casting and climate downscaling. This model is termed DRDD as it is

a deep recurrent dynamical downscaling model. It is available at https:

//github.com/jdjame/GRU-DD.

5.1 Model I: FALDDGRU

The only difference between FALDDGRU and FALDD is the addition of a

GRU sequence to recover time dependencies within the data. This is done

explicitly to assess the effects of the naive implementation of recurrent neural

networks in downscaling models.

Our input is of size T × 1 × 64 × 128 where T is the time horizon we
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are contemplating. After the low resolution rain, sea level pressure, water

vapour, and temperature are preprocessed, their feature maps are passed

through to a series of GRUs (identical to the series depicted in Figure 11)

to recover a time-dependent representation of each of the variables feature

maps.

After this step, the FALDDGRU and FALDD models are identical.
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Figure 18: FALDDGRU generator

The same loss function and discriminator architectures are used in the
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FALDDGRU model and the original FALDD model.

5.2 Model II: DRDD

There are a few significant architectural differences between the proposed

model and the original FALDD model. The three most important ones are:

the chosen upsampling scheme, the inclusion of time dependencies, and the

use of a WGAN loss rather than a GAN loss.

5.2.1 Modules

Residual networks and connections have experienced success for the task

for image super resolution [34, 62] and are thus applied in DRDD. These

connections allow for an effectively deeper model without suffering stability

issues.

Figure 19: Standard Residual Block
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Rather than using transposed convolutions to increase the dimensions

of the target image, DRDD makes use of upsampling layers within residual

blocks. The general idea is that nearest neighbor upsampling followed by

two convolutions will more appropriately estimate the mapping between low

resolution features and high resolution features. This approach is inspired

by the work done in [35] to downscale time evolving temporal fields. The

method is also extended to downsampling blocks. The structure of both of

these modules can be observed in Figure 20.

Figure 20: Residual Downsampling Block (left) and Residual Upsampling

Block (right)

The DRDD model also makes use of the attention modules introduced in

Section 4.1.1.
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5.2.2 Critic

In order to improve model stability, DRDD follows the Wasserstein GAN

architecture introduced in [2]. In practice, WGANs have been shown to

have significantly better performance when compared to GANs. This slight

change from the standard GAN architecture means that the evaluating model

D that was previously termed the discriminator is instead called a critic. This

distinction is due to the fact that the model no longer outputs probabilities.

The critic in the DRDD model makes use of both the high resolution

precipitation and the corresponding T length temporal sequence of low reso-

lution precipitation. This is done so that the critic can learn the distinction

between fake and real images within the context of temporally correlated low

resolution images. This approach is motivated by the temporal downscaling

GAN described in [35]. The low resolution sequence is processed through

residual downsampling blocks integrated within a stacked GRU sequence.

The final hidden feature map from this process is used in conjunction with

the high resolution precipitation field to determine the critic score associated

with the high resolution precipitation field.
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Figure 21: Full critic architecture

The critic optimizes the WGAN loss with gradient penalty as proposed
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by [22] which penalizes the gradient of the critic in order to enforce model

stability,

`(θD) =
1

n

n∑
i=1

[D(G(xprecip,i, xslp,i, xiwv,i, xt2,i, xtop,i), xprecip,i)−D(yi, xprecip,i)]

+
n∑
i=1

(||∇ŷD(ŷi, xprecip,i)||2 − 1)2

where ŷ =εyi + (1− ε)G(xprecip,i, xslp,i, xiwv,i, xt2,i, xtop,i) and ε ∼ U(0, 1).

5.2.3 Generator

Much like FALDD, the generator of the DRDD model uses convolutional

networks to prime the input and extract feature maps. However, instead

of inception modules, residual networks are used to extract high dimension

features from low resolution precipitation, integrated water vapour, surface

level pressure, temperature and elevation.

The feature maps of the climate variables are then concatenated and

passed through an a temporal upsampling scheme. This series of modules is

inspired by the stacked GRU architecture used in [48] for precipitation fore-

casting. The upsampling modules are inter-weaved into the stacked GRU

architecture in order to give the recurrent network the ability to learn tem-

poral dependencies as the precipitation field expands spatially.

As in [35], all of the convolutional GRU layers use a transformation of

a single time step as the initial hidden state (h0) of the recurrent layer in

order to produce hidden representation (hT ). Both h0 and hT are then passed

through a residual upsampling block before being used by next convolutional

GRU layer in the stack. The upsampled previous initial state serves as the
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initial state for this GRU higher up on the stack and the upsampled previous

terminal state serves as input.

After some repetitions of the GRU-upsampling scheme, the representa-

tions of the climate variables are collated with a representation of the eleva-

tion map and further processed in order to generate the final output.
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Figure 22: Full generator architecture

As with FALDD, the generator loss is simply a sum of the adversarial loss

and the content loss. However, due to convergence difficulties the content
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loss is calculated using the `2 loss rather than the `1 loss. This decision

has negative downstream effects on the generated climate fields but greatly

improved the model stability.

`(θG) =− λ

n

n∑
i=1

D(G(xprecip,i, xslp,i, xiwv,i, xt2,i, xtop,i), xprecip,i)

+
α

n

n∑
i=1

||G(xprecip,i, xslp,i, xiwv,i, xt2,i, xtop,i)− yi||2

After some exploration, the chosen values for the loss weighting parame-

ters were λ = 1 and α = 5.

5.3 Model Training

With the inclusion of the GRUs as temporal modules and an increased depth

due to the use of residual networks, both the critic and the discriminator of

our proposed model require more parameters to fit than the model from [61].

The proposed model takes about 17 hours to train on a distributing cal-

culations to cluster of 3 NVIDIA V100 Volta GPUs. The evaluation of 3

months of data takes about 1.5 hours using two CPU cores.
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6 Evaluation metrics

This thesis uses a suite of metrics used both in the evaluation of hydrological

models and image super resolution models. For the definitions of the metrics

below, we will assume that yi ∈ Rd is the vector representation target variable

of interest and G(xi) represents the generated model estimate for yi for time

sequence i = 1, . . . , n. More specifically, yij corresponds to observed (or

simulated) high resolution precipitation at time i and location j. In contrast,

G(xi)j corresponds to downscaled estimation of precipitation at time i and

location j. The predictor xi here is overloaded to include both the low

resolution precipitation, and the climate variables xSLP,i, xIWV,i, xT2,i and

xTOP,i.

6.1 Mean Squared Error

The mean squared error (MSE) is a standard metric which is used to evaluate

the Euclidean distance between model predictions and the true values.

MSE =
1

nd

n∑
i=1

d∑
i=j

(yij −G(xi)j)
2

6.2 Pearson’s Correlation Coefficient

Pearson’s correlation coefficient ρ is used to measure the linear relationship

between two variables.

ρ(G(xi), yi) =

∑d
j=1(G(xi)j −G(xi))(yij − ȳi)√∑d

j=1(G(xi)j −G(xi))2
∑d

j=1(yij − ȳi)2
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Where G(xi) and ȳi represent the mean of the high resolution precipitation

at time i and the mean of the true high resolution at time i respectively

taken over spatial locations j = 1, . . . , d.

The mean Pearson correlation between RCM model outputs and the GAN

predictions is used as a metric to assess model performance.

6.3 Nash-Sutcliffe Efficiency

The Nash-Sutcliffe efficiency (NSE) is a metric used to compare the perfor-

mance of a predictive hydrological model against the mean of the observed

hydrological event. At a particular location j, it can be calculated as

NSE(G(x−)j, y−j) = 1−
∑n

i=1(G(xi)j − yij)2∑n
i=1(yij − ȳj)2

As can be seen from the formula, if the hydrological model performs as well as

the mean for the prediction of precipitation, the NSE will be 0. If it performs

better, the NSE will approach 1. Finally, if the model is significantly worse

than the observed mean, the NSE will approach −∞. For communication of

results, we rescale the NSE to [0,1] by using the normalized NSE:

NNSE =
1

2−NSE

The mean of the NNSE is reported on as a metric to assess model perfor-

mance.

6.4 Peak Signal-to-Noise Ratio

The peak signal-to-noise ratio is used to compare the quality between an

image and its approximation through a weighting of maximum intensity of
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the signal with the mean squared error between the two images. In our

case, that corresponds to weighting maximum simulation of precipitation

by the mean difference between GAN precipitation predictions and RCM

simulations.

PSNR(G(xi), yi) = 20 log10

(
max(yi)

1
d

∑d
j=1(G(xi)j − yij)2

)
This metric is widely used in the evaluation of image compression and super-

resolution models. The mean PSNR is used as a metric for GAN evaluation.

6.5 Structural Similarity Index

As the name implies, the structural similarity index (SSIM) assesses the sim-

ilarities between two images through a system that compares their properties

of luminance, contrast, and structure. Let z, u ∈ Rd be the vector represen-

tation of two images, the previously mentioned image properties are defined

by [63] as follows:

µz =
1

d

d∑
j=1

zj (luminance)

σz =

(
1

d− 1

d∑
i=1

(zi − µz)2

)1/2

(contrast)

σzu =
1

d− 1

d∑
i=1

(zi − µz)(ui − µu) (structure comp)

Intuitively, luminance can be seen as the mean pixel brightness of an image,

contrast can be seen as the standard deviation of pixels within an image

and the structure comparison equation can be seen to measure the pixel

covariance between two images. All these image properties are then put
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together to create corresponding comparison functions

l(z, u) =
2µzµu + C1

µ2
z + µ2

u + C1

(luminance)

c(z, u) =
2σzσu + C2

σ2
z + σ2

u + C2

(contrast)

s(z, u) =
σzu + C3

σzσu + C3

(structure)

SSIM(z, u) = [l(z, u)]α[c(z, u)]β[s(z, u)]γ (SSIM)

Here, C1, C2, C3 are coefficients for the stability of the ratios used for compar-

ison functions. α, β and γ are weighting parameters for each comparison. In

this thesis, we use the mean SSIM as a metric to compare model performance:

MSSIM(G(X), Y ) =
1

n

n∑
i=1

SSIM(G(xi), yi)
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7 Results

All models are trained on precipitation data from January to September and

evaluated on precipitation data from October to December. We report on

the choice of a 9 hour time horizon for both the DRDD and the FALDGRU

models which corresponds to 3 frames of our mm/3hr data. Smaller time

horizons fail to fully leverage the recurrent nature of the model and the tem-

poral correlation degrades as the time interval widens. Due to the inclusion

of time, FALDGRU and DRDD are trained and evaluated on 2 fewer samples

than FALD.

The results make a promising case for the inclusion of temporal depen-

dencies in dynamical downscaling models. However, as can be seen in Table

2, the method by which these are included makes a definite difference in

model performance.

Metric FALD FALDGRU DRDD

MSE 0.262 0.316 0.233

MSSIM 0.946 0.937 0.938

Mean PSNR 38.082 37.18 38.50

Mean NNSE 0.724 0.683 0.733

Mean Pearson Correlation 0.703 0.648 0.730

Table 2: Model metrics

The results from our reproduction of the FALD model are similar to those

reported in [61] and thus should serve as an appropriate proxy to evaluate the
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differences between temporal and standard approaches to learned dynamical

downscaling.

Overall, the FALDGRU model performed worse than the other two mod-

els. Downscaled precipitation fields from this model had visual artifacts pre-

viously unseen in precipitation fields. This model has the highest MSE while

also having the lowest MSSIM, PSNR, NNSE, and mean correlation. Of

course, this makes sense as this model was not built to incorporate temporal

dependencies. This experiment serves to show that the temporal correla-

tion within climate fields cannot be modeled through naive integration into

current downscaling approaches but must instead be incorporated through

original, time-based downscaling models.

In contrast, the DRDD model performs better than the FALDD model

on all metrics except the SSIM. The low observed SSIM is very likely due to

the choice of content loss in the generator of our proposed model. Due to

it’s complexity, training DRDD with the `1 loss led to exploding gradients

and a divergence in errors. This is not an unusual occurrence when working

with recurrent neural networks [47]. Using the `2 loss allowed for faster

and more stable training since this loss has a stable analytical solution but

produced overly smooth realizations of precipitation. This phenomenon has

been observed in multiple image generation tasks [71]. Some newer deep

learning models for downscaling make use of hydrological metrics as loss

functions in lieu of pixel to pixel comparisons [9].

Lower MSE for the DRDD model is expected as the using the `2 loss

equates to minimizing the `2 distance between the target images and the

generated image. However, we also observe higher measures of PSNR and
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Pearson correlation with the DRDD model which could signify that this

model is better able to capture the variance (around the mean) within the

simulated data than the standard FALDD model. The slight difference in the

NNSE of the two models of interest also signifies that the proposed model

better predicts location-specific precipitation over time. It should however

be noted that the difference in the NNSE score of the FALDD and DRDD

models is modest.

As mentioned by the authors of [61], metrics like the MSE are not always

a definitive measure of performance when it comes to downscaling. For this

reason, we also include some downscaled samples from each of the models

before moving on to a distributional comparison of both models.
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Figure 23: A comparison of downscaled precipitation by FALDD (a) to

original RCM output (b) and proposed model DRDD (c) for 3 precipitation

events.

In Figure 23, we can see three downscaled samples generated from FALDD,

some downscaled samples from DRDD and compare them to the RCM sim-

ulations. Firstly, it is immediately apparent that both of the GANs generate

low quality, blurry precipitation fields. However, both models are able to

recover the general structure of large precipitation fields in the RCM simu-
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lation.

From the three precipitation events we are considering, it appears that

DRDD is better able to model faint precipitation events which are ignored

by the FALDD model. We can also see that the DRDD model is more likely

to create artifacts which are not present in the RCM simulation. Both of

these occurences are due to the choice of the `2 loss into the DRDD model

as slight deviations are more penalized than in the FALDD model.

Figure 24: Crops of low resolution precipitation (a) high resolution RCM

output (b) downscaled precipitation by FALDD (c) and downscaled

precipitation by DRDD (d).

From Figure 24, we can note that both models have difficulties downscal-
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ing the complete texture of localized extremes. This is due to the coarseness

of the low resolution input which does not reflect the pattern observed in the

high resolution image. This observation is certainly a limitation of super-

resolution models applied to downscaling as these models will have a hard

time learning climate patterns that are not present in the low resolution

image.

Finally, the DRDD model seems to generate wide precipitation events cov-

ering simulated precipitation whereas the FALDD model generates smaller

precipitation events focused around the simulated extremes. To assess the

recovery of extremes, we perform a distributional comparison of the data

simulated by an RCM and the data downscaled by the generative models.

This comparison evaluates the distribution of the pixel intensity of the

images corresponding to precipitation fields simulated by an RCM, FALDD,

and DRDD. In this process, the spatial information is ignored in order to

gauge the most intense precipitation event each model can simulate.
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Figure 25: Distributional comparison of RCM, FALDD, and DRDD

precipitation fields

As can be seen from Figure 25, neither FALD nor DRDD properly recover

the extremes of the images generated by the RCM. Both models have dis-

tributions with a flatter right tail than the RCM simulated data. However,

there is a slight difference between the pixel distribution of the precipita-

tion of the images generated by FALDD and DRDD. The distribution of

FALDD-generated samples is slightly closer to the distribution of RCM sam-

ples. This means that FALDD has a slight advantage when it comes to

generating distributional-accurate precipitation events.

Upon close scrutiny Figure 25, one can note that the DRDD distribution

has a slightly fatter left tail than the other distributions which means the

model tends to overestimate low events of precipitation. This is in line with
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the previous observation that the DRDD generated data tends to have low-

value clouds surrounding precipitation events.

The distributional comparison of the models is done to reflect the model

evaluation done in [61]. However, it should be noted however that the dis-

tributional comparison does not evaluate the spatial spread of precipitation.

Furthermore, since only the pixel encoded data is made available, our evalu-

ation can only evaluate the distributions of pixels which is different from the

distribution of precipitation.
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8 Discussion and Future Work

From our results, it appears that there are benefits to the strategic inclusion

of time dependencies when approaching dynamical downscaling with deep

learning models. The DRDD model was better able to recover entire precip-

itation events simulated by the RCM while the FALDD model focused on

areas with high precipitation. However, the model was not able to fully cap-

ture the distribution of the simulated RCM data in the upper tail and would

therefore not serve in applications concerning the extremes of precipitation.

There are a few aspects of the modeling process to which this shortcoming

can be attributed.

Firstly, due to restrictions with the data available, our proposed model

only leverages simulations that are 3 hours apart. This could mean that the

temporal dependence which serves as the anchor to our approach is not as

notable as it would be if the data was gathered at smaller time lags. Fur-

thermore, in our experiments, the stacked GRU module was kept relatively

simple as the temporal dependence was assumed to be weak. With data that

is more temporally correlated, the DRDD model architecture could change

to include a wider and more complex stacked GRU module. Given data

collected at smaller time intervals, the performance of a deep recurrent dy-

namical downscaling model could more greatly outperform a standard deep

learning model and perhaps better represent a high resolution RCM.

Furthermore, our training data was somewhat small for the use of a gen-

erative adversarial network. An issue with GANs is that when training is

done with fewer than ideal samples, the discriminator can overfit to train-

ing data [31]. Since climate is location specific, standard computer vision
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based methods of data augmentation such as image rotation, translation,

and distortion cannot be readily utilized for downscaling temporal precip-

itation fields. Therefore, generating more RCM precipitation data may be

necessary to improve model performance.

Another avenue for progress is the sharpness of the generated climate

fields. Both FALDD and DRDD generate blurry simulations of precipitation

due to the structure of their generator. Some GAN architectures such as

[48] have had success generating crisp representations of precipitation using

Sub-Pixel Convolutional Neural Network introduced in [53] though both of

these models require significantly more data than was available to us in this

thesis.

Also, the model training procedure does not actively utilize any known

physical properties of climate. We train the model on data from January

to September and evaluate it using data from October to December. An

ideal training scheme would replicate statistical downscaling approaches like

SDSM and create separate models of precipitation for either each month or

each season. Increasing the amount of models certainly increases the amount

of computational resources and data but it could also increase performance

and specificity.

Finally, for ease of comparison with FALDD, DRDD is trained on the

clipped data described in Section 2. Using unclipped data could benefit

the model into better recovering the extremes of the RCM simulation data.

Accurate simulations of extreme occurrences of precipitation tend to be more

pertinent to stakeholders as they help in resource allocation and disaster

planning. Therefore, a hurdle before dynamical downscaling models such
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as DRDD and even FALDD can be used in conjunction with low resolution

RCMs as replacement for high resolution RCMs will be their performance on

the extremes unclipped data. Until then, models founded on extreme value

theory [60, 16, 39, 37] should be considered.
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Appendix

Figure 26: Legend of shapes used in deep learning architecture.
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