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Abstract 

The constant growth in complexity of engineered physical (electrical,mechanical etc.) systems 

has led to the development of software tools to store and reuse design knowledge to simplify 

the creation of such systems. Models that encode structure and behaviour of components 

in the system are currently being developed based on the techniques prescribed by Model 

Driven Engineering (MDE). We use MDE concepts to develop appropriate modelling formalisms 

to allow creation of models of a target Engineered Physical System (EPS) at different levels 

of abstraction. Each level of abstraction presents a certain view of the EPS to a domain 

expert in the development team. For instance, a high-level view is suitable for a person in a 

managerial role. An engineer who deals with the same system at a lower level of abstraction 

develops a model using idealized physical components. A physicist 's concern is the physical 

meaningfulness of the model. The physicist's model verifies if the model prescribed by the 

manager via the engineer adheres to the laws of conservation of energy and momentum. Finally, 

a mathematician or a computer scientist obtains a solution to the constrained equations imposed 

by the dynamical system by solving it analytically or numerically. This mode! usually takes 

the form of a set of Differentiai Aigebraic Equations provided by the physicist. 

We design model transformations to transform models from a high-level modelling language to 

lower-Ievellanguage. We present visual Graph Grammar rules to perform these transformations. 

We start with a high-Ievel representation of the physical system which is a model in the High­

level Physical System Model modelling language. This model is transformed in subsequent steps 

to a set of trajectories that describe the state of the physical system over time. We show 

that this hierarchy of transformations to encode knowledge about physical systems drastically 

reduces design space size at the high-level of abstraction. We search the space of an example 

EPS using a design heuristic based randomized algorithm to determine the speedup in search 

due to reduction in the number of design variables. 



Résumé 

La croissance constante de la complexité des systémes d'ingénierie (électrique, mécanique, 

etc. ) a mené au développement d'outils logiciel basés sur la réutilisation de connaissances 

en conceptions qui ont pour but de simplifier la création de tels systémes. Les modéles qui 

représentent la structure et le comportement des composants d'un systéme qui sont actuelle­

ment développés sont basés sur les techniques recommandées par la "Mo deI Driven Engi­

neering" (MDE). La MDE est utilisée pour développer des formalismes appropriés permet­

tant la création de modéles des "Engineered Physical Systems" (EPS) li différents niveaux 

d'abstraction. Chaque niveau d'abstraction présente une certaine vue de l'EPS aux différent 

experts d'une équipe de développement. Par exemple, une vue li niveau élevé convient li une 

personne qui a un rle de gestionnaire. Un ingénieur qui traite le mme systéme li un niveau 

d'abstraction plus bas, utilise un modéle ou les composants physiques sont modélises. Le souci 

d'un physicien est la réalité physique du modéle. Le modelé du physicien vérifie si le modéle 

proposé par le directeur et l'ingénieur adhére aux lois de la conservation de l'énergie et de l'élan. 

En conclusion, un mathématicien ou un informaticien obtient une solution aux équations con­

traintes imposées par le systéme dynamique en le résolvant analytiquement ou numériquement. 

Ce modéle prend habituellement la forme d'un ensemble d'équations algébriques différentielles 

fournies par le physicien. Nous concevons des solutions pour passer d'un modelé de descrip­

tion de haut niveau a un langage de plus bas niveau. Ces solutions sont en fait une gram­

maire d'outils graphiques. Nous commençons par une représentation li niveau élevé du systéme 

physique qui est un exemple de langage de représentation de systéme a haut niveau. Ce modéle 

est transformé dans les étapes suivantes li un ensemble de trajectoires qui décrivent l'état du 

systéme physique en fonction du temps. Nous prouvons que cette hiérarchie des transformations 

pour modéliser les systémes physiques réduit la taille de l'espace de conception li un niveau 

élevé de l'abstraction. Nous recherchons l'espace d'un exemple EPS en utilisant un algorithme 

heuristique de conception pour déterminer le gain de temps de recherche grâce li la réduction 

du nombre de variables de conception. 
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1 ntroduction 

Science and engineering have evolved hand in hand, one complementing the other's develop­

ment. Everyday there is new knowledge and new technology. With the growth in technology 

there is also a steady growth in complexity of engineered systems. A desktop computer and the 

Internet are examples of very complex real-world systems. The need to reuse and store the art 

and the science of developing complex devices of today has led to the development of software 

that manipulate stored engineering princip les and scientific laws. 

Modelling languages are used to represent software models or simply models of real-world 

systems. Practical examples of modelling tools include high-Ievel programming languages and 

visu al languages to model domain-specific systems. Modelling Engineered Physical Systems 

(EPS) especially for their application to the construction of embedded systems has led to 

the development of several modelling tools. Notably, MATLAB Simulink [Mat] and Modelica 

[MS97] are widely used for modelling and simulation of plant-controller systems. Simulink now 

is packaged with several libraries with visual modelling elements to build very sophisticated 

models. Simulink libraries to model the signal domain for electrical circuits and controllers have 

been extensively used in both industry and academia. Modelling libraries such as SimMechanics 

[WK03] and SimHydraulics [Sim] are new domain-specific additions to Simulink's repertoire 

for modelling mechanical and hydraulic systems. 

Modelica is an object-oriented language for modelling physical systems. A Modelica model is 

represented as a set of state variables and equations (or laws). This allows the modeller to 

declare the system behavior as physical law equations and constraints instead of functions or 

operations in imperative modelling languages such as MATLAB. Therefore, the modeller does 

not have to specify the causality of operation. The causality is automatically assigned via 

computer algebra. The non-causal nature of Modelica is the key feature that distinguishes it 

from MATLABjSimulink. The specification of a Modelica model is concise and very close to an 

original mathematical formulation. Modelica is rapidly gaining popularity for its application to 

modelling EPSs and embedded systems. 

Sorne existing modelling languages claim to allow the construction of domain-specifie libraries. 

They are however written in a Turing complete high-Ievel programming language so the mod­

eller is unconstrained. This makes it easy for an experienced modeller to encode knowledgc in 
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his/her domains in the same language, such as MATLAB. The same is the case with Model­

ica. The modeller will have to minimize the number of errors he commits for writing a tool 

for a specific domain. He/she can achieve this by writing several test cases and by using an 

implicit style of programming to write modelling elements. This implicit style or pattern is 

nothing but a mix of the modeller's experience with the domain and his prior experience with 

writing equivalent libraries. This approach leaves the domain knowledge in subjective form 

either in the modeller's mind, in text, or as a high-Ievel program. The only requirement for 

the program is to execute logically. These are the problems plaguing most existing modelling 

and simulation tools. A domain expert with such a tool at his disposaI will have the freedom 

to build anything without any conceptual feedback (apart from low-Ievel type errors) about 

the correctness of his/her model. Therefore we ask, can the modeller be implicitly constrained 

using the structural and behavioral knowledge we have about a specifie domain? 

To answer this question we use Model Driven Engineering (MDE) based techniques [Ken02] to 

develop domain-specifie modelling languages for EPSs. These languages constrain a modeller 

using known restrictions for the domain allowing the creation of only syntactically correct 

models. A meta-model with textually expressed constraints is first constructed to specify the set 

of valid models. A domain-specifie modelling environment is then synthesized from the meta­

model plus constraints specification. We use meta-modelling to synthesize visual modelling 

environments [CLOP02] that allow the creation of models at a visu al abstraction level. A 

meta-model is analogous to a grammar used to specify the syntax for textual programming 

languages. 

In the first phase we develop a modelling language at each level of abstraction. We specify 

modelling languages, to constrain modellers, using visually expressed meta-models and textu­

ally expressed constraints. The high-Ievel description of an EPS is specified using the High-Ievel 

Physical System Model (HLPSM) modelling language. The ideal physical components in the EPS 

and their interconnection is modelled using the Idealized Physical Model (IPM) modelling lan­

guage. We specify the Hybrid Bond Graph (HBG) modelling language for developing a physical 

domain-independent modelling language for encoding the energy fiow structure in the EPS. We 

then use the Modelica physical modelling language to represent the set of equations obtained 

from a HBG model. Finally, a model in the Trajectory modelling language represents the be­

haviour of the high-Ievel EPS model. The abstract syntax of models in all the visual modelling 

languages, namely, HLPSM, IPM, and HBG are represented using hierarchicallabelled graphs. 

A model specified in one visu al language is transformed to a model specified in another vi­

suaI language via graph rewriting [EEKR99]. This process in general can also be called model 

transformation. In the second phase we specify model transformations to automatically trans­

form models from high to low abstraction levels. The transformations are performed via graph 

rewriting on the abstract syntax graph representation ofmodels. Graph Grammar (GG) rules with 

pre-actions, post-actions, and pre-conditions are used to define the transformations between 
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models. Most of the formalisms used have a visual concrete syntax. The final transformations 

involve code generation and simulation je xe eut ion of low-Ievel models to obtain the behavior of 

the mode!. The model transformation MT_HLPSM_2JPM maps a model conforming to HLPSM 

to one that conforms to IPM. The transformation MTJPM_2_HBG maps IPM models to those 

that conform to HBG. An internaI transformation MT_HABG_2_HCBG assigns causality to an 

acausal HBG (HABG) model which results in a computationally causal HBG (HCBG). This trans­

formation gives us sorne insight into the physical meaningfulness of the initial mode!. Modelica 

code is generated from the HCBG via the transformation MT_HABG_2_HCBG. The Modelica 

code is an object-oriented representation of a system of Differentiai Aigebraic Equations (DAE). 

The DAEs are solved via the transformation MT _Modelica_2_ Trajectory which is nothing but the 

simulation of the mode!. The result is a set of plots in the Trajectory language that describes 

the behavior of the system. 

Using this framework of meta-models, modelling languages, and graph rewriting we separate 

the pro cess of engineering a physical system into several steps. The automatic synthesis of a 

modelling language from a meta-model specification and the graphical nature of model trans­

formations presents a key difference with respect to existing modelling tools such as Simulink 

and Modelica. Further, the constrained nature of a modelling language makes it very easy for 

a domain expert to master the language and minimize development errors. 

Many times the complexity of a target model is so high that it is difficult for a team of modellers 

to come up with an optimal model for a specific task. Under such circumstances the need for 

automatically modifying an existing basic model to obtain optimal models becomes usefu!' 

We extend this study to explore the model design space created by the meta-models for each 

modelling language. A point in a model design space is a model represented as the abstract 

syntax graph. Therefore, a model design space is a space of graphs. A modification to an 

embryonic model in the graph form is done via the application of mutation operators to the 

mode!. If a mutation operator results in a graph that does not conform to the meta-model or 

do es not satisfy its constraints then the model is out si de the model design space. We present a 

set of mutation operators MT _Heuristics_HBG described as GG rules to transform HBG models 

for exploration of their design space. We execute a randomized algorithm to construct optimal 

plans that comprise of these mutation operators. This is an attempt to investigate the long­

standing question " Can a computer replace or augment human invention ?". The constrained 

space of models specified by a meta-model is the search space for exploration by various artificial 

intelligence planning techniques. Our preliminary attempts to search the space of EPS models 

is presented in this thesis. 

In Chapter 2 we present the development of modelling languages used to develop EPS models 

at different abstraction levels. This is followed by Chapter 3 that presents the mode! trans­

formations to transform models between visual languages. In Chapter 4 we present a set of 

GG rules for exploring the design space of EPS models. In the same chapter we present a 
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genetic algorithm and preliminary results for design space exploration for a simple example. 

We conclude in Chapter 5. 



2.1 Introduction 

Modelling languages 

for Engineered Physical Systems 

Today, modelling is the first step taken toward realizing a complex real-world system. A model 

is usually expressed in a modelling language which specifies the syntax that models must respect. 

The syntax of a modelling language is specified by a meta-model or grammar in Backus-Naur 

Form (for textuallanguages) [JWvW+60]. 

We digress for a moment to ask the curios question, how do we express the syntax of the meta­

model itself? Obviously, we need ta express a meta-model in an other modelling language. 

Such a language is specified using a meta-meta-model. But, does this hierarchy of languages 

that express models of other languages not stop? The answer is, yes it does. A modelling 

language specified by a meta-meta-model is usually expressive enough to express itself. As we 

can see there are three levels of models: model, meta-model, and meta-meta-model. Amadei 

is an instance of a modelling language specified by a meta-model. A meta-model is an instance 

of a modelling language specified by a meta-meta model. The meta-model for a meta-meta­

model can be expressed using the modelling language specified by the meta-meta-model. This 

is called bootstrapping. This digression leads us to the roots of meta-modelling and MDE. 

It is important that we understand the role of a meta-meta-model in the MDE framework. The 

industry standard for the meta-meta-model is the Meta-object Facility (MOF) [MOF05]. The 

MOF is developed by the Object Management Group (OMG). The architecture for MOF is shawn 

in Figure 2.1. The essential part of MOF called Essential Meta-object Facility (EMOF) is the 

conceptual basis for specifying meta-models. It is enclosed in a rectangle in Figure 2.1. We use 

concepts in EMOF to describe meta-models and hence it is our focus. Other parts of the MOF 
are iIllpleruentation detai!:s that are Ilot of conceptual concern and are noL u:sed Lo de:scriuc our 

meta-models. 

The EMOF specifies that a meta-model comprises of classes and these classes are associated 

with properties. A property can be an attribute or a reference. An attribute is of primitive 

type and can either be a Float, Integer, Boolean, or a String. Although the official EMOF do es 
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not contain a definition for Float, we have introduced it in our meta-models to express real 

variables. A reference is a relationship end between two classes. The reference in one object 

is associated with a reference to another object of a related called. We use this to express 

user-defined types in a class. A reference is associated with a multiplicity that constrains the 

number of objects that could be referred to. 

An inheritance relationship between classes can exist where the properties of a supcr-class 

are inherited by its sub-classes. An inheritance between the super class and a sub class is 

represented using a arrow with a white triangular head at the super-class end of the inheritance 

relationship. 

The meta-model, which is a model of EMOF, is not expressive enough to incorporate arbitrary 

constraints that are invariants, pre-conditions, and post-conditions during model generation or 

transformation. These constraints that restrict the properties of a model are expressed using 

a constraint language such as the Object Constraint language (OCl) [OMG] or a high-Ievel 

programming language such as Python. We express constraints as Python code. 

We present the meta-models of three visual languages, used to model the same Engineered 

Physical System (EPS), as instances of EMOF: High-Ievel Physical System Model (HLPSM) in 

Section 2.2, Idealized Physical Model (IPM) in Section 2.3, and Hybrid Bond Graph (HBG) in 

Section 2.4. Visual modelling languages are synthesized from these meta-models. A model 

specified using a visual language is expressed in two ways. The model has a concrete visual 

syntax and an abstmct syntax gmph representation. The concrete visual syntax of a modelling 

language is a domain-specifie visual notation used to describe the entities in the model. The 

abstract syntax graph is a hiemrchical labelled graph as implemented in the Himesis sub-graph 

matching kernel [Pro05]. 

A Himesis graph comprises of nodes and connections. There are two types of nodes, either just 

a node or a primitive node. Each node is associated with a label and a unique name. Primitive 

nodes have an extra property called the value. The value in a primitive node stores the value of 

a primitive data type such as String, Float, Boolean, and Integer. Everything in a valid graph is 

a graph in its own right as a single no de is a graph too. There are two kinds of connections. A 

parent-child edge between nodes is used for representing hierarchy. A connection edge between 

nodes is used to represent a link between graph nodes. An object that is an instance of a class 

can be constructed using a graph no de representing an empty object (referred to as object 

node) and its attribut es and references created as nodes that are linked to the object no de 

using a parent-child edge where the object node is the parent and the attributes and references 

are its children. A relationship between related objects is created by a connection edge hctwcen 

the associated references in two classes. The meta-model for Himesis itself is modelled in EMOF 

as shown in Figure 2.2. Wh en we create a meta-model or model that utilizes Himesis objects 

we use the following naming scheme: 

• An object of type Graph is referred to as objectName:Graph. 
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t .. 
Graptt 

OUt 
+Graph (name: string, label: string, [parent: Node 1) 
+get(path:string): Node 
+getAt (pos: intI 

Ir +add(Node:n, [order:int]) 
+remove(path:string): Node 

* i~ 1 r,put 
+connect (Ï~~~S~t~i~tyj pathB: st ring, (ordln: int] . 

+disconnect (pat hA: st ring. pathB: st ring) 
«Abst ra et» +move( startPath: string ,destPath: string, [destOrd: int) 

Node r-
+areConnected( pathA: String, pathB: String): bool 
+getChildOrd(path:string): int 

+getName ( ) : string +getLocalConnTup1es (): ListOfConnTup1e 

+getParent (): Node 
+getInterna1ConnTup1es() : ListOfConnTuples 

+getRoot (): Node +getIndlnternalConnTuples (): ListOfConnTuples 

+getGlobalName(): string +getA11Interna1ConnTup1es (): ListOfConnTup1es 

+getLabel (): string +getExterna1ConnTuples (): ListOfConnTuples 

+getlnDegree(): int +getIndExterna1ConnTuples (): ListOfConnTup1es 

+getOutOegree() : int +getA11Externa1ConnTup1es (): ListOfConnTup1es 

+isRoot (): boal +getAHConnTup1es() : ListOfConnTup1es 

+rename (name: string) 
+isLowestCommonParent (pathA: st ring 1 pathB: st ring) : bo 

+relabel (label: string) 
+inC() : Iterator Int +getInCAt(pos:int): Node 
+outC() : Iterator +Int {[~~~~!~r~~y~ label: st ring, [parent :Node 1 
+getOutCAt (pos: int): Node e--
+getConnTuples () +setValue(v: int) 
+haslnC(path:string) : bool +getValue( ) 
+hasOutC(path:string): bool 
+getlnOrd(path: string): int 
+getOutOrd(path: string): int <l- F[oat 
+getOrd() : int 
+getElements 1): ListOfNode - +setValue(v: Hoat) 
+getAllElements (): ListOfNode +getValue () 
+getNames (): ListOfst ring +Float (?e~t~!; }tg~t 1Tbel : st ring, [parent: Node] 
+getAllNames(): ListOfstring «Abst ract» 
+getLabels (): ListOfst ring Primitive TYpe +getAllLabe1s() : ListOfstring 

Booi +i terate(t ralJersal: string): Iterator - +setValue() kt +i terateAll (traversal: string): Iterator 
+getValue() +8001 (~:~~~ ~~~~~V' label: st ring, parent :Node +size ( ): int 

+sizeAH (): int -
+setValue(v: bool) 

+hasE1ement (path: string): boo1 
+getLowestCommonParent (pathA: st ring, pathB: st rinç ) 

+getValue( ) 

+isDescendantDf(path:string): boo1 
+enter(v:Visitor) String 
+exit (v:Visi tor) 
+equa1s(n:Node) : boo1 - +setValue(v: string) 
+c10ne (): Node +getValue( ) 

+St ring( name: string ,label: string, parent: Node 
value: st ring) 

Figure 2.2: EMOF Meta-model for Himesis 
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Hoisting Deviee Domain-speeifc Model of Hoisting Deviee 

o 
o 
o 
~\II 

Figure 2.3: The First Model of a Hoisting Deviee 

• A primitive object such as Float Graph is referred to as objectName:Float:Graph. 
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The representation of an EPS model as code that describes the DifFerentiai Aigebraic Equations 

for the system is expressed in a Modelica program. We briefly discuss the grammar for Modelica 

in Section 2.5 which gives the meta-model for Modelica. The behaviour of a model is expressed 

as an instance of the Trajectory language. The Trajeetory language is a visuallanguage consisting 

of traces that show the time-dependent behaviour of the state variables in the model. A meta­

model for Trajeetory is described in Section 2.6. 

The running example of a Hoisting Deviee [Bro] is used to illustrate the models of the same 

system in aIl the modelling languages mentioned. 

2.2 High-Level Physical System Model (HLPSM) Modelling Lan­

guage 

A modeller begins the modelling pro cess by visualizing the system at a high-Ievel of abstraction 

where he/she sketches the top-Ievel components of the system. This form of modelling is 

typically done by someone in a managerial role. In Figure 2.3 we show an actual hoisting 

device and a possible high-Ievel physical model as imagined by a modeller. The high-Ievel 

mode! comprises of visual syntax to represent the clectrical mains, the motor, the pulley aIld 

the load. The high-level visual notation is domain-specifie in the sense that it do es not allow 

the modeller an arbitrary repetoire of modelling elements. 

Our goal is to provide the modeller with domain-specifie modelling tools to realize his imagi­

nation in the form of a model with syntax and semantics. A meta-model is first developed to 
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specify the properties of the objects we see in a high-Ievel view of the physical system. An ex­

tension to the meta-model are special constraints one may observe in the system. For example 

a power outlet can be only connected to a compatible power inlet, a mechanical device cannot 

be connected to an electrical device without an intermediate transducer. An EMOF based 

meta-model for the HLPSM modelling language is shown in Figure 2.5. Note that the HLPSM 

meta-model is given only to consist of components of a hoisting device. It can be extended to 

other domains simply by changing the classes in the diagram according to the system. 

The top-Ievel container class in the meta-model is the HLPSM class. There always exists one 

HLPSM object in any model as indicated by the multiplicity in the meta-model. A HLPSM object 

can contain 0 or 1 Plant objects and is associated with a name. A Plant object consists of 0 

to any number (represented by a * in the EMOF model) of PlantEnti ty objects. The classes 

that inherit from PlantEntity are the domain-specific components in the system. According to 

the meta-model the Mains class is connected via a Wire to Motor. The Motor class is connected 

to a CableDrum class via a Shaft class. The CableDrum class subtends a Load class using a Rope 

class. Due to the multiplicities, the modeller is highly restricted and can only build structurally 

valid hoisting devices. 

A visual modelling environment is automatically synthesized from the meta-model and con­

straint specification of the modelling language. We use the tool AToM3 [VdL04] to achieve 

this transformation where a visual editor is synthesized from the meta-model. In Figure 2.4 we 

see the visual edit or for HLPSM models. The visual editor performs syntax directed checking 

implying that it checks if the modeller, as he/she is constructing the model, is violating a 

constraint such as going outside the multiplicity bounds. 

The underlying Abstract Syntax Graph of a HLPSM model is expressed as a hierarchicallabelled 

graph. Any transformation to the model is performed on the abstract syntax graph. The 

meaning or the semantics of the HLPSM language is given by transformation to the Idealized 

Physical Model modelling language as discussed in Chapter 3. 

In Figure 2.6 we show an example model in the HLPSM formalism. It describes an electro­

mechanical hoisting device. 

The HLPSM model is given to an engineer who constructs an Idealized Physical Model (IPM) 

from it. The IPM modelling language is described next. 

2.3 Idealized Physical Madel (IPM) Modelling Language 

Following the development of a high-Ievel physical system model, the modeller associates mean­

ing with the components of the domain-specifie physical model by dissecting it into component::; 

with idealized physical behavior. A domain expert for creating such a model would be an cn­

gineer or a group of engineers (mechanical, electrical, chemical). An Idealized Physical Model 

(IPM) is constructed such that the model consists of only ideal elements with well defined 

physics. In our case we restrict our systems to lumped-parameter models where aggregate phe-
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~ I~~ ACMOmI~ c""D,~I~ 
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1 

1 

: 

IE<liting "ChlomJioIom3iU,,, Mo<IeI,,'Ho.jifl9..D"'c.J,WM,MDl.py' (not modil.d) 

Figure 2.4: Screenshot of a HLPSM Visual Modelling Environment 
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HLPSM f-----------------------, 
Meta·model as an EMOF model (Abstract Syntax) Concrete Visuai Syntax 

Inport1 

1 HLPSM 1 
I.Name: SI' J:Graoh 

1 
Mains 

Inport1 1llI1IIIIt----D Outport1 

Wlre 

9 •. 1 

1 Plant 1 

l'Nama: Slring:Graph 
1 

Inport1 Outport1 

a .. • 
1 PlantEntity 1 
"Nama:Slling:Grapll Inport1 Shaft 

Qutport1 

~ II1II D 

~ 1 Cabladrum Il Load 1 Mlln. Motor 
+V~lageTable:list:Graph +Ratio:Floal:Graph 1 1~~Ü 1 'Ralio: FloatGrapllll·Valu.: Floal:Graph 1 

'Resisiance:FIoaI:Graph 'R beanng: Float:Graph 1 
1 1 

'Inductance: F~al:Graph 'IJnariance: Float:Graph 
.,tartTIm.:FIoat:Graph 
'offset: Float:Graph 1 

1 1 

loport1 Rope Qutport1 

Inport1 

1 1 Rope Inport1 

1 

y Wire 1 

Laid 

Figure 2.5: EMOF Meta-model and Concrete Visual Syntax for HLPSM to Model Hoisting 
Deviees 

Ratio: 3 

[0,0;0,50;50,110;100,110) V 

500 kg 

Figure 2.6: Hoisting device mode! in the HLPSM formalism 
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nomena are described using classical physics [Mac03]. We specify the EMOF meta-model for 

the Idealized Physical Model modelling language. The IPM modelling language in general con­

tains entities from different engineering domains: electrical, mechanical, hydraulic, chemical, 

and thermodynamic. We present the IPM meta-model to model electro-mechanical systems 

comprising of electrical, translational mechanical, and rotational mechanical components. An 

extension to the hydraulic, chemical, and thermodynamic domains is straightforward if a similar 

meta-modelling pattern is followed. 

2.3.1 The Electrical Domain 

The electrical domain in the idealized physical modelling language contains two-pin electrical 

components such as resistors, capacitors, inductors, voltage, and current sources. Every elec­

trical component consists of a positive pin and a negative pin. A positive pin can be connected 

using a wire to a negative pin only and vice versa. An electrical circuit is a combination of 

electrical components connected by wires. Voltage and current are conjugate variables that 

carry energy in an electrical circuit. 

There are many different sources (voltage or current) of electrical energy. They are distin­

guished based on input wave for ms and functions. For instance, we can have a constant energy 

source, a table with a set of energy values that are interpolated over time, or a sinusoidal wave­

form commonly observed in alternating supplies. Resistors are energy dissipators that convert 

part of the input electrical energy to heat energy. Energy is lost only from a resistor since aU 

other elements are ideal. Energy storage components are capacitors and inductors. Capacitors 

store current and inductors store voltage. 

Electrical energy is transformed to rotational mechanical energy using a motor. Therefore, a 

motor has a positive pin, a negative pin and a mechanical output pin. An electrical transformer 

steps up or steps down input electrical energy and the output is electrical energy as weIl. An 

electrical transformer has two pairs of positive and negative pins. A generator converts rota­

tional mechanical energy to electrical energy and has a mechanical input pin. To represent the 

physical concepts in the electrical domain, we construct, a meta-model for the electrical part 

of the IPM modelling language. The electrical domain meta-model is shown in Figure 2.7. 

Looking at the meta-model we see that the IPMElement class is the super-class for alllPM com­

ponents. The IPMElement class consists of two properties, Element and Type. In the electrical 

domain the value of Type is "Electrical". ElectricalElement inherits from IPMElement and con­

tains the property Value. The content of Value depends on the nature of the classes inheriting 

ElectricalElement. For instance, a resistor will store the resistance in Value and a capacitor will 

store the eapacitance. 

There are two types of components in the electrical domain. The first is a TwoPin class of 

objects that inherits from the ElectricalElement class. The second is the ElectroMechEnergy­

Transform class which acts as an interface between electrical and mechanical devices and is a 

super-class for devices that act as transducers. 
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Figure 2.7: IPM Modelling Language Meta-model for the Electrical Domain 

Every object of type TwoPin contains the properties PositivePinl and NegativePinl which arc 

graph nodes used for connecting two objects in the electrical domain. In the model they reprc­

sent ports of connection. Two sub-classes of TwoPin are Resistor and Earth. The TwoPin class is 

further categorized as TwoPinStorage and TwoPinSource. The sub-classes of TwoPinStorage in­

clude the electrical Capacitor and Inductor. The InitialValue property for TwoPinStorage elements 

contain the initial amount of energy stored in the device. The sub-classes of TwoPinSource in­

clude voltage sources and current sources. The voltage sources are Voltage, tableVoltage, and 

sinVoltage. The current sources are Current, tableCurrent, and sinCurrent. The class tableVoltage 

contains three attributes which have a graph representation. The properties are table, offset, 

and start Time. Similarly, other T woPinSource classes have their own attributes as shown in the 

meta-mode!. 

The ElectroMechEnergy Transform class is inherited by three kinds of energy transformers namely, 

Motor, Transformer, and Generator. The ElectroMechEnergyTransform class has the properties 

PositivePinl and NegativePinl as ports. The Motor class has MechOutPinl for electrical to 

mechanical energy conversion. The Generator class has a MechlnPinl no de for mechanical 

to electrical energy conversion. The Transformer class represents an electrical transformer that 

steps up or steps down the voltage and has additional port nodes PositivePin2 and NegativePin2. 

The concrete visual syntax for the con crete classes presented in the electrical domain part of 

the IPM meta-model is shown in Figure 2.8. The con crete visu al syntax for the concrete classes 

in the electrical to mechanical energy transformation meta-model is shown in Figure 2.9. 
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Electrical Domain Concrete Visual 5 ntax 
Sources 

<Value> <Unit> 

Voltage 

<Value> <Unit> 

sinVoltage 

Two Pin 

POSiti~~tivePin1 
<Value> <Unit> 

Resistor 

• • PositivePin1 NegativePin1 

<Value> <Unit> 

tableVoltage 

<Value> <Unit> 

Current 

Two Pin Storage 

Positive~111 :ativePin1 

<Value> <Unit> 

Capacitor 

II-~ 
PositivePin1 NegativePin1 

<Value> <Unit> Earth 
Inductor 

<Value> <Unit> 

sinCurrent 

<Value> <Unit> 

tableCurrent 

Figure 2.8: Con crete Visual Syntax for Electrical Elements in IPM 
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Electrical To Mechanical Elements Concrete Visual 5 ntax t-------------, 

Positive!! 

Generator <Value> Motor 
Transformer 

Figure 2.9: Concrete Visual Syntax for Electrical to Mechanical Elements in IPM 
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2.3.2 The Translational Mechanical Domain 

The translational mechanical domain consists of mechanical devices that operate on the basis of 

linear /translational force and velo city applied to it. Each mechanical device has a mechanical 

input port and a mechanical output port. A translational mechanical damper provides resis­

tance against an input force or a velo city. Force is stored in a translational mechanical spring 

while momentum is stored in a translational mechanical inertance such as mass. Sources of 

translational mechanical forces and velocities have a mechanical output port. These concepts 

are modelled in the translational mechanical part of the IPM meta-model as shown in Figure 

2.10. 

Like the electrical domain element a translational mechanical element TranMechElement in­

herits from the super-class IPMElement. The TranMechElement class has properties Value and 

Unit. The contents of Value and Unit depend on the sub-classes of TranMechElement. The Tran­

MechTwoPin class inherits the properties of TranMechElement. The TranMechTwoPin class and 

its sub-classes share the common properties MechinPin1 and MechOutPinl. The TranDamper 

class directly inherits from the TranMechTwoPin class. 

The TranMechStorage class contains the property InitialValue. It is inherited by TranSpring and 

Tranlnertance. The TranMechSource class has sub-classes for force and velo city sources as shown 

in the meta-model. The properties of the sub-classes of TranMechSource sources are equivalent 

to those of the classes in the electrical domain and rotational mechanical domain. 

The con crete visual syntax for the concrete classes in the translational mechanical domain part 

of IPM is shown in Figure 2.11. 

2.3.3 The Rotational Mechanical Domain 

The rotational mechanical domain consists of mechanical devices that operate on the basis of 

the torque and angular velocity applied to it. Each mechanical device has a mechanical input 

port and a mechanical output port. A rotational mechanical damper provides resistance against 

an input torque or an angular velo city. Torque is stored in a rotational mechanical spring while 

momentum is stored in a rotational mechanical inertance su ch as rotational inertia. Sources 

of rotational mechanical torques and angular velocities have a mechanical output port. These 

concepts are modelled in the rotational mechanical part of the IPM meta-model as shown in 

Figure 2.12. 

The RotMechElement inherits from the IPMElement class. The RotMechElement class has prop­

erties Value and Unit. The contents of Value and Unit depends on the sub-classes of RotMechEle­

ment. For instance, a RotDamper object will have the units of Nm/s. The RotMechTwoPin 

class inherits the properties of RotMechElement. The RotMech TwoPin class and its sub-classes 

have share the common properties MechinPin1 and MechOutPinl. The RotDamper class directly 

inherits from the RotMech TwoPin class. 
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TranMechTwoPin 
+MechlnPin1: Graph 
+ . . r 

+table: String:Graph 
+offset: Float:Graph 
+ '. 

sinForce 
+phase: Float:Graph 
+offset: Float:Graph 
+startTime: Float 
+freq: Float:Graph 

IPMElement 
+IPMElement: Graph + . . . 

tableVelocity 
+table: String:Graph 
+offset: Float:Graph 
+ '. 

sinVelocity 
+phase: Float:Graph 
+offset: Float:Graph 
+startTime: Float 

Figure 2.10: IPM Modelling Language Translational Mechanical Domain Meta-model 
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Translational Mechanical Domain Concrete Visual S ntax 

Sources 

<Value> <Unit> <Value> <Unit> 
<Value> <Unit> 

Force tableForce sinVeloclty 

"'!., CS} .~t""i", 
<Value> <Unit> 

<Value> <Unit> 
<Value> <Unit> 

sinForce Velocity tableVelocity 

Two Pin Two Pin Storage 

MeCh!n1 • 1 1 Mec~tPin1 Mechl~ Mass t--~_ 
MechOutPin1 

<Value> <Unit> <Value> <Unit> 

Damper Inertance -
+-~ 

M hl P· 1 MechOutPin1 
ec n ln <Value> <Unit> 

Spring 

Figure 2.11: Concrete visual syntax for translational mechanical elements in 1 PM 
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Figure 2.12: Idealized Physical Modelling formalism Rotational Mechanical Domain Meta-model 

The RotMechStorage class contains the property InitialValue. It is inherited by RotSpring and 

Rotlnertance. The RotMechSource class has sub-classes for torque and angular velocity sources 

as shown in the meta-model. The properties of the sub-classes of the RotMechSource are 

equivalent to those of the classes in the electrical domain and translational mechanical domain. 

The concrete visua! syntax for the concrete classes in the rotationa! mechanical domain part 

of IPM is shown in Figure 2.13. 

Transducers for transforming mechanica! energy to mechanica! energy are inherited from the 

MechEnergyTransform class. Unlike the e!ectromechanical transducers the mechanical to me­

chanical transducers have an input port MechlnPinl and an output port MechOutPinl. The 

Cantilever sc ales up or down translational mechanical energy. The MechGear scales up or down 

rotationa! mechanica! energy. The Pulley transforms rotational mechanical energy to transla­

tional mechanical energy. The Pump transforms rotational mechanical energy to pneumatic 

energy. The Turbine is responsible for transforming pneumatic energy to rotational mechanical 

energy. The concrete visual syntax for the concrete classes for the mechanical to mechanical 

transducers is given in Figure 2.14. 

A visual modelling environment is synthesized from the meta-model using our tool AToM3. A 

screenshot is shown in Figure 2.16. The model ofthe hoisting device in IPM is shown in Figure 

2.15. 

2.4 Hybrid Bond Graph Modelling Language 

Models in the IPM modelling language can directly be given con crete mathematical meaning in 

the form of Differential-algebraic Equations (DAE) or Ordinary Differentiai Equations (ODE). An 

alternative we take is to transform the IPM first to the Bond Graph (BG) modelling language. 
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Rotational Mechanical Domain Concrete Visual S ntax 

<Value> <Unit> <Value> <Unit> <Value> <Unit> 

Torque tableTorque sinAngVelocity 

<Value> <Unit> 

sinTorque 
<Value> <Unit> <Value> <Unit> 

AngVelocity tableAngVelocity 

Two Pin Two Pin Storage 

• ro c~:1I--ro--. 
MechinPin1 j~;::~~:::Îi~~ . 

oC MechOutPln1 

ro 
<Value> <Unit> <Value> <Unit> 

RotDamper Rotlnertance 

~~. 
MechinPin1 . MechOutPln1 

<Value> <Umt> 

RotSpring 

Figure 2.13: Concrete visual syntax for rotational mechanical elements in IPM 
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Mechanical To Mechanical Elements Concrete Visual S ntax 
Transformers 

MechinPin1 <Value> 

Cantilever 

Gyrators 

<Value> 

Pump 
<Value> 

Turbine 

.) 
MechinPin1 l 

illutPin1 
<Value> 

Mechanical Gear 

Pulley 

Figure 2.14: Conerete Visual Syntax for Meehanical to Meehanical Elements in IPM 

Figure 2.15: IPM Model of Hoisting Deviee 

500 kg 
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7. 

IEdiliilg 'CJatornJ/alom3/U, .. Model'fHo"tln9)l"ce JPM}.1OL py' Inot modffisd) 

Figure 2.16: A Prototype (with simple visual syntax) Visual Modelling Environment Synthc­
sized for IPMs in AToM3 



2.4 Hybrid Bond Graph Modelling language 24 

R1 12 

11 jO,O;50,O:50,-4900;l00,-4900]Newlon 

O.05He11/y 

13 

Figure 2.17: Acausal Hybrid Bond Graph 

The BG modelling language can be used to verify the model's physical meaningfulness. This is 

done by verifying the laws of conservation of energy and momentum via causality assignment. 

The Hybrid Bond Graph (HBG) modelling language comprises of the Bond Graph (BG) mod­

eUing language for plant modelling and the Causal Block Diagram(CBD) modelling language for 

controller modelling. Therefore, in general a HBG model can comprise of a BG sub-model and 

a CBD sub-model or just either one of them. The hybrid in HBG is due to the combination 

of CBD and BG elements in one language. The interface between the CBD sub-model and the 

BG sub-model is due to two possibilities. Certain components of the BG plant model are either 

sensed (diagnostic BG elements) and processed by the CBD model or controlled (modulated 

BG elements) by it. A HBG without causality assignment is called the Hybrid Acausal Bond 

Graph (HABG). The hoisting device example in HABG is shown in Figure 2.17. After causality 

assignment it is called the Hybrid Causal Bond Graph (HCBG). The hoisting device in HCBG is 

shown in Figure 2.20. 

The EMOF based meta-model for the BG part of the HBG modelling language is shown in 

Figure 2.18. The CBD part of the meta-model is shown in Figure 2.23. A visual modeUing 

environment is synthesized from the meta-model specification. A screenshot is shown in Figure 
2.21. The visual syntax for HBG is shown in Figure 2.19. We start our discussion on the 

H BG modelling language by explaining the BG modelling language. This is followed by an 

explanation of the CBD modelling language. 
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+phase: Float:Graph 
+offset: Float:Graph 
+startTime: Float 
+freq: Float:Graph 

Junctlon 

+Bond: Graph 
+ Type: String:Graph 
+BondCon 1 : Graph 

Figure 2.18: Meta-model for the Hybrid Bond Graph formalism 
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H brid Bond ra h Concrete Visual S ntax 
Sourees 

Se -;!Coo1 
<Value> <Unit> 

Effort Source 

sinSee;!""", 

One Port 

e-R 

Resistor 

TwoPort 

e- TF-. 
BondCon1 BondCoo2 

Transformer 

Diagnostic One Port 

e-De-t> 
BondConl OutPortl 

Effort Sonso, 

26 

Bondi CaulIl BIKIls 

'. • 
""'''''''' ""'Coo2 

Bond 
'''~ L ~~, 

Sum 
<Value> <Unit> 

Sin. Effort Source 

tableSe e;!""", 

One Pori Storage 

e-C 
BondCon1 

e-GY-. 
BondCon1 BondCon2 

<Value> 

Gyralo, 

e-Df -l> 
BondCon1 OulPorl1 

"P~ n ~oo, ~_, Flow SenIor 

Bood~Dp~POrl1 
aBondCon1 fBond IBondCon1 

.. v,,,,-> <Unit> 

Tabl. EffortSou,ee 

Sf e!eoo, 
<Velue> <Unit> 

Flow Sourc. 

sinSf ~, 
Sin. Flow Sourc. 

tableSf e;!""", 
<Value> <Unit> 

Tablo Flow Sourco 

Modulllltl Sourcil 

~mSe-. 
InPortt BondConl 

Modula'ad Effort Source 

Modulatod Flow Sou,eo 

lableSe1 __ CD 
(O,D;50,O;50,110;100,110]VoIII 

Capacllo, Modulaled Two Port 

Bond~1 r 
<Value> <Unit> e-mTF-. 
Inductor BondCon1 BoI'IdCon2 

<Value> 

Modulat.d One Port Modulated Transformer 

~mR-. r InPortt BondCon1 

e-mGY-. 
BondCon1 BondCon2 

<Value> <Unit> 

Modulaled Reslslo, 
<Value> 

Modulated One Port Siorage Modulaled Gy,alo, 

~mC-. 
InPort1 BondCof11 

<Velue> <Unit> 

Modulated Capacltor 

,t;-ml,:!" 

Modulalad Induclor 

Momentum Senior 

Boo!;, Dq i;:-"", 
Position S.nlor 

Junction 
BondCOn5 BondC0n6 

" e-O-. 
1WndCo~ .. BDndG0n4 

BondCon2 BondCon3 

Zero Junctlon 

BondCon5 BondC0n6 

" e-1-. 
BondCo;(.BondC0n4 

BondC0n2 SondCon3 

One Junctlon 

P,oducl 

oBond 

Integrator 

I,p~k~"", 
Oerivallve 

'"~~~P''' 
TlmeTable 
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Figure 2.21: Screenshot of Visual Modelling Environment for HABG in AToM3 
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2.4.1 The Bond Graph Modelling Language 

The Bond Graph modelling language is a domain-independent graphical representation of energy 

flow structure in a physical system. The domain independence means that physical systems 

from different domains such as electrical, mechanical, hydraulic, chemical, and thermodynamics 

are all modelled using the same notation and give rise to equivalent dynamical equations. The 

BG formalism was first developed by Paynter [H.M61]. The idea was further popularized by 

Karnopp and Rosenberg [KMROO]. Today, it has evolved into a systems theory under the 

name of Port Hamiltonian Systems [Mac03] which uses Generalized Hamiltonian Formulation 

to model plant and controller systems. 

The BG modeller is given the Idealized Physical Model of a physical system. The modeller first 

identifies the elementary physical concepts from the 1 PM. This pro cess is called reticulation. 

A concept or BG element manipulates energy. Energy, is an aggregate phenomena [Zun94], 

which can be calculated in many domains: electrical, mechanical, chemical, hydraulic, and 

thermodynamic. A BG element can be an energy source, energy store, energy transformer, or 

an energy dissipator irrespective of the domain. AIso, the mathematical equations describing 

the energetic behaviour of the BG elements are identical for equivalent physical concepts across 

domains. Energy is exchanged between the BG elements via bonds connected to a junction 

structure. 

The BG modelling language is now explained with the help of an example. The example, 

shown in Figure 2.22 is designed to show how idealized physical models from different domains 

(electrical and mechanical in this case) become domain-independent when transformed to the 

BG modelling language. Two systems are considered in the example of Figure 2.22. First, wc 

have a purely electrical seriaI LCR (Inductor, Capacitor, Resistor) circuit as shown in Figure 

2.22(a). The second system is a purely mechanical damped mass-spring system as shown in 

Figure 2.22(b). 

We transform the LCR circuit to an electrical domain BG in the following steps: 

1. Draw the electrical domain elements, separating them by their positive and negativc pins. 

These elements appear in rectangular boxes as shown in Figure 2.22(c). 

2. We now attach a port called a power port with each of these rectangular boxes containing 

electrical elements. 

3. To this port we connect a bond or a power bond that denotes the exchange of energy 

between elements. The bond is drawn like an edge with a half arrow tip. The direction 

of energy flow il:> determined by the direction of the half arrow. 

4. We now add a I-junction ta the electrical BG model. The I-junction indicates that the 

current i in the seriaI LCR circuit is constant but the voltage across each electric clement 

varies. 

5. The voltage source is the source of energy hence it is connected to the I-junction with 
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the half arrow toward the I-junction. The inductor and capacitor elements store energy 

hence the half arrow is in the direction of the respective electric elements. The resistor 

dissipates consumed energy bringing the half arrow direction from the I-junction toward 

itself. 

Similarly, the damped mass-spring idealized physical model from the translational mechani­

cal domain is transformed to a mechanical domain BG. The transformation pro cess yields an 

equivalent mechanical domain BG as shown in Figure 2.22 (d). 

These examples serve as a good trailer to understand the modelling elements of a BG. We 

can see that the product of two variables voltage and current play the role of transferring 

power between elements in the electrical domain. The product of these two variables is power. 

Similarly, the product of force and velocity is power in the translational mechanical domain 

and the product of torque and angular velo city is power in the rotational mechanical domain. 

This common trend implies that quantities like voltage, force, and torque on the one hand and 

current, velo city, and angular velo city on the other are analogous quantities. Variables such 

as voltage, force, and torque are called effort variables. Similarly, variables such as current, 

velocity, and angular velo city are called fiow variables. The energy ftow between elements has 

the physical dimension of power which is the product of effort and ftow. Therefore effort and 

ftow are known as power-conjugated variables. 

The analogy between domains is not just between effort and ftow variables but it also exists 

between the basic elements of the different domains (electrical and mechanical in our example). 

Here is a list of analogies observed in the elements of the electrical and mechanical elements in 

our example: 

• The damper is analogous to the resistor 

• The spring is analogous to the capacitor 

• The mass is analogous to the inductor 

• The force source is analogous to the voltage source 

• The common velo city is analogous to the loop current 

The analogies in the basic elements enables us to finally specify the standard BG mode!. This 

is shown in Figure 2.22 (e). The voltage or force source are effort sources hence the standard 

bond graph notation Se is used to represent an effort source. The R symbol represents an 

energy dissipator, 1 is the ftow store, C is the effort store. The equations that describe the 

dynamics of the electrical elements are given below: 

UR = iR 

Uc = b J idt 

uL = L;# or iL = t J udt 
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Figure 2.22: (a) Idealized Physical Model of LCR Circuit (b) Idealized Physical Model of Damped 
Mass-Spring System (c) Bond Graph model of LCR Circuit using Electrical Domain Notation 
(d) Bond Graph model of Damped Mass-Spring System using Mechanical Domain Notation (e) 
Bond Graph model of LCR Circuit and Dampcd Mass Spring System using Standard Notation. 
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where UR is the voltage across the resistor, Uc is the voltage across the capacitor, UL is the 

voltage across the inductor, i is the current flowing in the circuit, Ris the resistance , C is the 

capacitance, and L is the inductance of the LeR circuit. The quantity iL is accumulated in 

the inductor. The inductor is a flow store, in the electrical domain it stores the current. 

The equations that describe the dynamics of the mechanical elements are given below: 

Pd =av 

Ps = Ks f vdt = c~ f vdt 

Pm = m ~~ or v = ~ J Fmdt 

Pa = force 

where, Cl: is the damping coefficient, Ks is the spring constant, mis the mass of the object, Pa 

is the force applied, v is the velocity. The force variable is an effort source while the velocity 

variable represents the flow source. In the rotational mechanical domain torque is mapped to 

effort and angular velcoty to a flow variable. 

Instances of the BG modelling language comprising of an interconnection of elementary com­

ponents itself is a component. This component has an interface that can be used (reused) as a 

module in a parent bond graph. Further, the non-causal nature of BG components make it a 

hierarchically composed formalism. 

The dynamical behaviour of a BG can be obtained by mapping it onto a Causal Block Diagram 

and simulating the CBD or by writing out Differentiai Aigebraic Equations and solving the set 

of equations. 

First, we describe the BG elements of the HBG modelling language. The meta-model, shown 

in Figure 2.18, is used to specify the properties of BG elements. 

Bonds 

A bond represents the flow of power, P, from one point of a physical system to another. It 

is represented by a harpoon. There are two physical variables associated with each bond, an 

effort, e, and a flow, f. The product of these two variables represents the power: P = e x f. 

When causality is assigned to a bond it gets a computational order. The fBond class implies 

that the Bond has received an effort-out causality. The eBond class implies that the Bond has 

received a flow-out causality. The equations for the bonds is given in Table 2.1. The ports for 

the non-causal Bond class are BondConl and BondCon2. The ports for fBond, eBond classes are 

eBondConl and fBondConl. Each BG element with one or more ports have names BondConl, 

BondCon2, ... and so on. The Bond class and its sub-classes fBond and eBond connect to other 

BG elements via these ports. 
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BG Element 

Bond 

fBond 

eBond 

BGElement 

Se 

tableSe 

sinSe 

Sf 

sinSf 

tableSf 

mSe 

mSf 

Energy Sources 

Table 2.1: Equations for Bond Graph Bonds 

Equation 

BondCon2.e(t) = BondConl.e(t) , BondCon2.f(t) = BondConl.f(t) 

BondConl.d = -1, BondCon2.d = +1 (d is the power direction) 

f BondConl.e(t) = eBondConl.e(t) , eBondConl.f(t) = f BondConl.f(t) 

eBondConl.d = -1, fBondConl.d = +1 

f BondConl.e(t) = eBondConl.e(t) , eBondConl.f(t) = f BondConl.f(t) 

fBondCon1.d = -1,eBondCon1.d = +1 

Table 2.2: Equations for Bond Graph Energy Sources 

Equation 

e(t) = eO 

e(t) = TimeTable(table, startTime, of f set) 

e(t)=sin(eO, freq, of fset, phase, startTime) 

f(t) = fO 

f(t) = sin(JO,freq,offset,phase,startTime) 

f(t) = TimeTable(table, startTime, of f set) 

eO = s, e(t) = s, s is the input signal 

fO = s, f(t) = s, s is the input signal 

Energy sources are interfaces of the BG with its environment. In the real world, examples 

of energy sources are: voltage and current in the electrical domain, force and velocity in the 

mechanical domain. In the bond graph modelling language sources of voltages, force, and 

torque are called effort sources and sources of current, velo city, and angular velocity are called 

fiow sources. 

In Table 2.2 we present the equations that represent the semantics of the energy sources in the 

meta-model for HBG. The basic effort source is Se and a basic flow source is Sf. The tableSe 

and tableSf are tabular sources. The table contains two element tuples. A linear interpolation 

is performed from one tuple to the next to obtain a continuous function. The sinSe and sinSf 

source are sources as sinusoidal wave forms. The amplitude, frequency, start time, and offset 

are parameters for the sinusoidal sources. The sources mSe and mSf are modulated sources. 

The modulated sources are controlled by the signal domain, hence they have an input s which 

represents the value of a signal from a controller or another external signal source. 
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Table 2.3: Equations for Bond Graph Energy Dissipators 

BG Element 

R 

mR 

BG Element 

C 

l 

mC 

ml 

Energy Dissipators 

Equation 

e(t) = R * f(t) 

R = s, e(t) = R * f(t) 

Table 2.4: Equations for Bond Graph Storage 

Equation 

f(t) = C x d~~t) 
e(t) - 1 x df(t) 

- dt 

e(t) = s, f(t) = C x d~~t) 

f(t) = s, e(t) = 1 x d~~t) 

33 

Energy dissipators are responsible for consuming energy from the system model. They are 

called resitors in the HBG modelling language and are associated with a resistance. In the 

electrical domain an electrical resistor, in the translational mechanical domain a damper and 

in the rotational mechanical domain a rotational damper are ail modelled as a BG resistor R. 

The semantics of an R element is given in Table 2.3. 

A modulated resistor, mR, is controlled by the signal domain. The semantics of a modulated 

resistor is presented is presented in Table 2.3. The s signal gives variable resistance to the R 

element. The s variable is controlled by an external controller or an other signal source. 

Energy Storage 

Energy storage in the BG modelling language is of two kinds. The storage of flow takes place 

in the capacitor element C. The storage of effort takes place in the inductor element 1. The 

equations are presented in Table 2.4. Effort is stored in the electrical inductor of the electrical 

domain and flow is stored in the electrical capacitor. In the translational mechanical domain 

effort is stored in the inertance and fiow is stored in the spring. Finally, in the rotational 

mechanical domain effort is stored in the rotational inertance and flow in the rotational spring 

elements. 

Energy Transformers 

Energy transfonuation can be formed by two kinds of clements, a transformer and a gyrator. 

If the input to the transformer TF is an effort the output is also an effort scaled up or down 

by a certain factor. A gyrator GY transforms effort to flow and flow to effort each scaled up 

or down by a certain factor. A transformer usually transforms energy within the same do­

main. Examples of transformers are the electrical transformer (electrical domain), cantilever 
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BG Element 

TF 

GY 

mTF 

mGY 

Table 2.5: Equations for Bond Graph Transformers 

Equation 

el(t) = m x e2(t), f2(t) = m x fl(t) 

el(t) = r x f2(t), e2(t) = r x fl(t) 

m = s, el(t) = m x e2(t), f2(t) = m x fl(t) 

r = s, el(t) = r x f2(t), e2(t) = r x fl(t) 
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(translational mechanical domain), and the mechanical gear (rotational mechanical domain). 

A gyrator transforms energy between two domains. Examples of gyrators include the motor 

(electrical to rotational mechanical), generator (rotational mechanical to electrical), pump (ro­

tational mechanical to pneumatic), puIley (rotational mechanical to translational mechanical), 

and turbine (pneumatic to rotational mechanical). The equations that describe the semantics 

of TF and GY elements in given in Table 2.5. The scaling factors are m for transformers and r 

for gyrators. 

Junctions 

Junctions couple two or more BG elements in a power continuous way. There is no encrgy 

storage or dissipation in a junction. Examples are a series connection or a paraIlel connection 

in an electrical network, a fixed coupling between parts of a mechanical system. Junctions 

are portsymmetric, the ports can be exchanged in the constitutive equations. Following these 

properties, it can be proven that there exist only two pairs of junctions: the I-junction and 

the O-junction. 

The O-junction represents anode at which all efforts of the connecting bonds are equal. An 

example is a parallel connection in an electrical circuit. Due to the power continuity, the sum 

of the fiows of the connecting bonds is zero, considering the sign. The power direction (i.e. 

direction of the half arrow) determines the sign of the fiows: aIl inward pointing bonds get a 

plus and aIl outward expansion pointing bonds get a minus. This summation is the Kirchhoff 

current law in electrical networks: aIl currents connecting to one no de sum to zero, considering 

their signs: aIl inward currents are positive and aIl outward currents are negative. We can 

depict the O-junction as the representation of an effort variable, and often the O-junction 

will be interpreted as such. The O-junction is more than the (generalised) Kirchhoff current 

law, namely also the equality of the efforts (like electrical voltages being equal at a paraIlel 

connection). 

The I-junction is the dual form of the O-junction (roles of effort and flow are exchanged). The 

I-junction represents anode at which aIl fiows of the connecting bonds are equal. An example 

is a series connection in an electrical circuit. The efforts sum to zero, as a consequence of the 

power continuity. Again, the power direction (Le. direction of the half arrow) determines the 

sign of the efforts: aIl inward pointing bonds get a plus and aIl outward pointing bonds get a 
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BG Element 

O-Junction 

I-Junction 

BG Element 

De 

Description 

Df 

Description 

Table 2.6: Equations for Bond Graph Junctions 

Equation 

e[2: 6](t) = e[1 : 5](t), l: f(t) = 0, 

al! efforts are equal(number in square brackets indicate the indices) 

1[2: 6] = 1[1 : 5], l: e(t) = 0, 

al! flows are equal 

Table 2.7: Equations for Bond Graph Diagnostic Elements 

Equation 

Outportl = e(t), f(t) = 0 

This component is used to sense the value of effort in a junction 

Outportl = f(t), e(t) = 0 

This component is used to sense the value of flow in a junction 

Outportl = J e(t)dt 
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Dp 

Description This component is used to sense the value of generalized momentum in a 
junction 

Dq Outportl = J f(t)dt 

Description This component is used to sense the value of generalized position in a junction 

minus. This summation is the Kirchhoff voltage law in electrical networks: the sum of al! voltage 

differences along one closed loop (a mesh) is zero. In the mechanical domain, the Ijunction 

represents a force balance (also cal!ed the principle of dAlembert), and is a generalisation of 

Newtons third law, action = reaction). Just as with the Ojunction, the Ijunction is more than 

these summations, namely the equality of the flows. Therefore, we can depict the Ijunction as 

the representation of a flow variable, and often the 1-junction will be interpreted as such. 

The equations for BG junctions is given in Table 2.6. 

Diagnostic Elements 

A BG contains many diagnostic elements that can be used to read an effort, flow, the generalized 

position and momentum from a junction. Al! diagnostic elements in the BG language inherit 

from DiagnosticOnePort. The description for the diagnostic elements in a BG is given in Table 

2.7. 

2.4.2 The Causal Block Diagram Modelling Language 

A causal block diagram pro cesses signais. A causal block diagram consists of input/output 

control blacks. These control blocks are either continuous, discrete, logical, or table blocks. 

Each black can have zero, single or multiple inputs or outputs depending on the operation 
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Block 
+BlockGraph: Graph 
+Value: Float:Graoh 

if 
XIXO 

X := M(Multlple), S(Slngle) 
Feedback 1 ( Input), 0 (Output) 

+nin: Int:Graph = 1 +u1: Graph 
ISuml +nout: Int:Graoh = 1 +u2: Graph 

/;1 +v: Graoh 
1 1 
1 1 

IConstantl Generic 

Integrator 
+param: String:Graph 
+ Tvoe: Strina:Graoh 

+v start: Float PID TimeTable 
Derivative + Ti: Float:Graph + Table: String:Graph 

+T: Float 
+ Td: Float:Graph +offset: Float:Graph 
+Nd: Graoh +startTime: Float:Graoh 

Delay 
+samplePeriod: Float 
+startTime: Float 
+v start: Float 

Figure 2.23: Causal Block Diagram part of the Hybrid Bond Graph Meta-model 
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performed. Input signaIs are processed by a control block and the output is a signal. We present 

a meta-model for the Causal Block Diagram modelling langauge with a subset of operation blocks 

in Figure 2.23 

Each block has a certain number of inputs and outputs and a output signal value based on the 

operation it performs. In the meta-model the class Block contains the properties BlockGraph and 

Value. The BlockGraph property is the root node of the abstract syntax graph that represents a 

CBD model. The Value property contains the signal value. The class XIXO inherits from Block 

and has properties that depict the number of inputs, nin, and outputs nout. 

The con crete classes inherit from XIXO and represent the operation blocks that are uscd in a 

CBD. The various operation blocks and their description is given in Table 2.8. 

2.5 Modelica Language 

In this section we present the modelling of an EPS in the object-oriented physical system mod­

elling language called Modelica. Modelica is based on an object-oriented textual representation 

of a common mathematical framework of Differentiai Aigebraic Equations (DAE). DAE systems 

possess both discrete and continuous behaviour. This allows for the representation of HBG 

models which can contain both continuous Ordinary Differentiai Equations for the BG dynamics 

and discrete transitions due to algebraic equations obtained from the controller expressed as a 

CBD. 

The Modelica language describes a model using the construct model. A model is a class that 

contains state abjects and equatians. State objects are instances of models of the components 

in the system. Equations either describe the DAE governing the evolution of the state objects 

or specify a connection between objects. The connection implies that there is flow of a physical 

quantity or information between objects. A Modelica model is flattened to obtain the algebraic 

assignment equations that are used to connect objects. For more information on Modelica refer 

to the citation [Fri03] [MS97]. The BNF grammar for Modelica in essence specifies the meta­

model for the Modelica langauge. For information on the Modelica language specification see 

[Mod05]. 

The Modelica language cornes with a standard library which contains model elements for causal 

blocks. A BG modeling library written by Prof. Francois Cellier is also available [CN05]. Wc 

use these libraries to represent HBG models in Modelica. 

The con crete textual syntax for the main module for the hoisting device model in textual 

Modelica form is given below: 

model HoistingDeviceHABG 

"Hoisting Deviee Model in Modeliea using Bond Graph Library" 

BondLib.Junetions.Jlp4 Jlp4_1; 

BondLib.Bonds.fBond fBondl; 
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CBO Element 

Constant 

Description 

Sum 

Description 

Integrator 

Description 

Derivative 

Description 

Delay 

Description 

PID 

Description 

TimeTable 

Description 

Generic 

Description 

Feedback 

Description 

Table 2.8: Equations for Causal Block DiagramElements 

Equation 

y = k, k = 0 , where k is a Real Number 

A constant signal value is given as output. There is no input. 

y = ~u, where u is the input vector 

The sum of the input signaIs is given as a single/multiple output(s). The 
number of input signaIs is two or more. 

y = J~ udu, where u is the input vector 

The integrator is a continuos block that integrates the incoming signal upto 
the current simulation time. 

y = ~~, where u is the input vector 

This block outputs the derivative of a input signal with respect to the current 
and previous time steps 

y = pre(u), where u is the input vector 

This block outputs the value of the signal at the previous time steps 

y = Nde(t) + * J~ e(t)dt + NdTdd~~t) + Ua , where e is the error signal 

Nd is the gain, ~ is the time constant of the integrator, and Td is the timo 
constant of derivative 

This block outputs the proportional, integral, derivative control signal based 
on error feedback 

y = table, table = [0, Oi 0, lOi 0, 100], where table is a collection of tuples 

This block outputs the a value at a given time from the interpolated function 
of the values in the table 

y = f (u, t), where f is a generic function 

This block pro cesses the input signal using an arbitrary generic function 

y = Ul - U2 , where Ul and U2 are input vectors 

This block outputs the difference in two input signaIs 
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BondLib.Passive.11l(1=0.05); 

BondLib.Passive.R Rl(R=0.5); 

BondLib.Bonds.eBond eBond2; 

BondLib.Passive.GY GY1(r=3); 

BondLib.Junctions.Jlp4 Jlp4_2; 

BondLib.Bonds.eBond eBond5; 

BondLib.Passive.112(1=667); 

BondLib.Passive.R R2(R=1); 

BondLib.Passive.TF TF1(m=0.11); 

BondLib.Bonds.eBond eBond6; 

BondLib.Bonds.eBond eBond7; 

BondLib.Bonds.eBond eBond8; 

BondLib.Passive.113(1=500); 

BondLib.Bonds.fBond fBond3; 

BondLib.Sensors.Dq Dql; 

BondLib.Junctions.Jlp4 Jlp4_3; 

BondLib.Bonds.Bond Bondl; 

BondLib.Bonds.eBond eBond3; 

BondLib.Bonds.fBond fBond4; 

BondLib.Bonds.eBond eBondl; 

BondLib.Bonds.eBond eBond4; 

BondLib.Sources.tableSe tableSel(table=[O,O; 50,0; 50,110; 100,110]); 

BondLib.Sources.tableSe tableSe2(table=[0,0; 50,0; 50,-4900; 100,-4900]); 

equation 

connect(fBondl.fBondConl, Jlp4_1.BondConl); 

connect(Jlp4_1.BondCon3, eBond2.fBondConl); 

connect(eBond2.eBondConl, Rl.BondConl); 

connect(Jlp4_2.BondCon3, eBond5.fBondConl); 

connectCeBond5.eBondConl, R2.BondConl); 

connect(Jlp4_2.BondCon2, eBond6.fBondConl); 

connect(eBond6.eBondConl, TF1.BondConl); 

connect(TF1.BondCon2, eBond7.fBondConl); 

connectCeBond8.eBondConl, 13.BondConl); 

connect(fBond3.fBondConl, Jlp4_3.BondCon2); 
connect(eBond7.eBondCon1, J1p4_3.BondCon4); 

connect(Jlp4_3.BondCon3, eBond8.fBondConl); 

connectCJlp4_3.BondConl, Bondl.BondConl); 

connect(Bondl.BondCon2, Dql.BondConl); 

connect(Jlp4_1.BondCon4, eBond3.fBondConl); 
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ModelTrajectory 
+Name: String 

1 

0 .. * 
Trajectory 
Name: String 

l 

0 .. * 
Point 1 

+ Time: Float 
+Value: Floa 

t e .. 1 

Figure 2.24: Meta-model for the Trajectory Language 

connect(eBond3.eBondConl, Il.BondConl); 

connect(Jlp4_l.BondCon2, fBond4.eBondConl); 

connect(fBond4.fBondConl, GY1.BondConl); 

connect(GY1.BondCon2, eBondl.fBondConl); 

connect(eBondl.eBondConl, Jlp4_2.BondConl); 

connect(Jlp4_2.BondCon4, eBond4.fBondConl); 

connect(eBond4.eBondConl, 12.BondConl); 

connect(tableSel.BondConl, fBondl.eBondConl); 

connect(tableSe2.BondConl, fBond3.eBondConl); 

end HoistingDeviceHABG; 

2.6 Trajectory Language 

40 

We see the behavior of an Engineered Physical System as a model of it. The Trajectory modelling 

language is specified to represent the evolution of the state of a model. A Trajectory model is 

obtained by solving a set of DAE or ODE that mathematically represent the model of the EPS. 

The system of DAE is solved using a solver such as DASSL [AP9S]. The result of solving the 

system is the trajectory of the state variables in the model with respect to time. 

A Trajectory model consists of several trajectories. Each trajectory consists of several state 

points or just points. A point is associated with a time stamp and a value. We present the 

meta-model for the Trajectory modelling language (Figure 2.24) to represent the syntax of Tra-
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Table 2.9: Hoisting Deviee Parameters 

Component Parameter Value Unit 
Name 

tableSe1 table [0,0;50,0;50,110; 100, 110J Volts 

tableSe1 startTime ° Seconds 

tableSe1 offset ° Volts 

tableSe2 table [0,0; 50, 0; 50, -4900; 100; -4900J Newton 

R1 R 0.5 n 
Il 1 0.05 Henry 

GY1 r 3 NA 

12 1 667 Nm/rad 

R2 R 1 Nms/rad 

TF1 m 0.11 NA 

13 1 500 kg 

jectory models. The ModelTrajectory class has a Name attribute which is of type String. It is the 

container class for 0 .. * Trajectory objects. Each Trajectory object has a Name attribute which 

is the name of a state variable in the system model. The range of values a state variable or 

a Trajectory object takes is a collection of 0 .. * Point objects. Each Point object consists of a 

Value attribute which is of type Float and its Time of occurenee. 

The concrete syntax for a Trajectory model is a set of plots. Two important plots for hoisting 

device example are shown in Figure 2.25. The voltage applied to the hoisting device is shown 

in Figure 2.25 (b). The voltage is zero until 50 seconds and then it is brought up to 110 V 

for the next 50 seconds. A mass of 500 kg is being lifted by the hoisting device. It is assumed 

to be laying on the ground. The reactive force from the ground stops the mass from plunging 

into the earth. Therefore, a downward foree cornes into play as soon as the hoisting dcvicc 

attempts to lift the mass off the ground. This occurs at 50 seconds. At the end of 100 seconds 

the hoisting device lifts the mass to a height of around 15 met ers as shown in Figure 2.25 (a). 

The parameters for all the components in the hoisting device are given in Table 2.9. 

The Trajectory model is the final model a modeller can observe for a system. It is the behavior 

of the EPS. Therefore, this model can also be regarded as the semantics of the models descrihcd 

in al! the modelling languages in the previous sections. 



Model Transformations 

3.1 Introduction 

In the previous chapter we introduced several modelling languages that specify the syntax for 

representing an EPS at different abstraction levels. In this chapter we specify the semantics 

for each of the modelling languages. The specification of the semantics along with the syntax 

of a modelling language makes it a modelling formalism. 

Most of the modelling languages described earlier are visual modelling languages. Models that 

are an instance of a visu al language have a concrete visual syntax and an abstract syntax graph 

representation as we have seen for the hoisting device example. The graph data structure for 

the abstract syntax of a visual model makes it viable to the application of graph rewriting 

[Aga03] [EEKR99] for model transformation. We use the Himesis sub-graph matching kernel 

[Pro05] to facilitate graph rewriting. 

Graph rewriting on a model is performed by an ordered set of Graph Grammar (GG) rules. A 

GG rule consists of an LHS graph and an RHS graph. The rule is applied on a host graph which 

is the abstract syntax graph of the current model. Sub-graph matching between the LHS graph 

and the host graph is performed. The result of mat ching is a set of matching nodes in the host 

graph that correspond the nodes of the LHS graph. These matching nodes have the same label 

(or type) as that of the LHS graph pattern. The matched nodes can be further checked for 

sorne properties before application of the rule. A pre-condition is a truth statement about sorne 

properties in the match. If it is true then the rule is applied. As a result of the application the 

nodes in the RHS effect the change in the model. Sorne properties of graph no de values can 

also be set as specifications or they may simply be copied from the LHS. The execution of the 

set of rules can either be programmed or be executed in a sequence. 

The denotational semantics of the visual modelling language HLPSM is given by transforming 
an HLPSM model to the IPM modelling language. The GG rule set MT _HLPSM_2JPM for 

this transformation is given in Section 3.2. The denotational semantics for the IPM modelling 

language is obtained by a transformation to the HBG modelling language. Therefore, the 

transformation MTJPM2_HABG (presented in Section 3.3) transforms the IPM to an acausal 

HBG or HABG. The computational direction for evaluating the efforts and ftows in the HABG is 
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obtained by applying the transformation MT _HABG_2_HCBG (in Section 3.4) which performs 

causality assignment on a HABG model. The set of rules mentioned so far are based on graph 

rewriting. 

The next transformation from HCBG to Modelica is a graph traversaI algorithm. This trans­

formation MT _HCBG_2_Modelica is presented in Section 3.5. The conversion of Modelica code 

to efficient C code that implements a DAE solver and its execution/simulation is discussed in 

the transformation MT _Modelica_2_ Trajectory given in Section 3.6. 

During formalism transformation we have a model in a source formalism that is transformed 

to a model in a target formalism. The model elements in the source formalism could be related 

to each other. The application of a GG rule may introduce the counterpart model element 

from the target formalism for a model element in the source formalism. Removing the source 

formalism model elements at this stage will destroy all its relationships and hence we have 

no way to find out what it connects to. Moreover, the rule may be applied to several source 

formalism model elements. To precisely identify which source formalism element was connected 

to which target formalism element we introduce a special model element called a GenericLink. 

In most transformations this link is described by a dotted purple line. 

The GenericLink connects model elements in the source and target formalism. Suppose that a 

source model element A is connected to another model element B in the source formalism. Let 

X be the model element in the target formalism that ultimately replaces A and is connected to A 

via a GenericLink. The replacement for B in the target formalism is Y and Y needs to he related 

to X. A pattern that associates A to X has already heen created using a GenericLink, hence 

we can easily formulate a rule that finds the X that corresponds to A and can he associated 

with Y that is the counterpart for B. Therefore, a GenericLink is a special model element that 

is used during formalism transformation and do es not exist otherwise when a model conforms 

to its modelling language. 

As a note, in the rules all the elements have an unique label but labels are shown only for 

the nodes relevant to the transformation. The sub-graph matching operation may result in 

several matches. The application of a rule on the matches are ordered based on the results of 

a bread-first search algorithm. Once, a rule is applied to a match a flag is set that prevents 

the application of the rule on the match a second time. In the next iteration the matching 

rule is applied to the next unprocessed match. Sometimes the application of a rule to multiple 

matches at a time does not effect the correctness of the model. In such a circumstance the rule 

is applied in parallel for all matches on the model. 

3.2 High-Ievel Physical System Madel ta Idealized Physical Madel 

We now present the GG rules used to transform a HLPSM model to an IPM model. The rules 

are presented in concrete visual syntax with textually expressed parts where necessary. Each 

rule is executed according to an execution order. If one rule is executed the next rule to be 
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Order 
1 

2 

3 

4 

5 
6 
7 
8 
9 

Table 3.1: Graph Grammar rules in execution or der for MT_HLPSM_2JPM 
Rule Name Description 
Mains_2_IPM HLPSM of electrical mains is transformed to IPM 

electrical circuit with resistance, capacitance, voltage 

delete_HLPSM_Load 
delete_HLPSM_Cabledrum 
delete_HLPSM_Motor 
delete_HLPSM_Mains 
delete_GenericLink 

source, and motor 
HLPSM of a motor is transformed to IPM components 
of the rotational mechanical domain with rotational 
inertance and damping and connected to the motor. 
HLPSM of the cable drum is transformed to an IPM 
pulley and connected to the rotational inertance 
HLPSM load is transformed to IPM mass which is con-
nected to the pulley 
HLPSM load is deleted from the graph 
HLPSM cabledrum is deleted from the graph 
HLPSM mot or is deleted from the graph 
HLPSM mains is deleted from the graph 
GenericLinks are deleted from the graph 

checked is the first rule in the order. Hence, aftcr cxecuting every matching rule the execution 

st arts from the first rule. The order prescribed is one of the many possible orders of execution. 

Sorne rules can be executed in parallel. 

The rules are shown in Figures 3.1 and 3.2. The list of rules, their execution arder and short 

descriptions are given in Table 3.1. 

3.3 Idealized Physical Model to Hybrid Acausal Bond Graph 

The Idealized Physical Model (IPM) is obtained by applying the transformation MT_HLPSM_2JPM 

to the abstract syntax graph of the HLPSM model. The next step is ta obtain the Hybrid Bond 

Graph model for the IPM. A step by step process to perform this transformation is textually 

described in [Bragg]. We present the GG rules ta perform the transformation in Figures 3.3, 

3.4, 3.5, 3.6, 3.7, 3.8. The rules for simplifying the structure of the obtained BG are given in 

Figures 3.9, 3.10. 

The rules for transforming IPM ta HABG are executed in the arder described in Table 3.2. 

The rules for simplifying the structure of a HABG are described in Table 3.3. The arder is not 

unique. Depending on the independence of one rule with respect ta another the rules can either 

be executed in a different order or cvcn in parallel. 

3.4 Hybrid Acausal Bond Graph to Hybrid Causal Bond Graph 

We now discuss the transformation MT _HABG_2_HCBG ta perform causality assignment on an 

acausai BG. We perform causality assignment to given computational direction the bonds in 

the bond graph. Each bond is either given an effort-out or a flow-out causality. 
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Rule 1 : Mains J JPM 

LHS __ RHS 
r-----------~ r------------~------r_--------~ 

Precondltlon: 
node = lHS.nodeWlthlabeI(1) 
retum node.isTransformedO 

-'<SPeC'IEO>~""'-'-_ntl>~' 

1 Rtilitorl Inductor1 

~~ .. 
Mains1 

.""', 
Elrthl 

Rule 2 : Motor 2 IPM - -

Post Action: 
node = self.lHS.nodeWithlabel(1) 
node.setTransformed(True) 

Speelfy Value: float ln Re.lstorl #3 
retum [HS.nodeWithlabel(1).Resistance.getValue() 

Speelfy Value: float ln Inductorl #4 
retum [HS.nodeWithlabeI(1).lndudance.getValue() 
Specify table: List ln tabloVoltagel #2 
retum [HS.nodeWithlabel(l).VoltageTable.getValue() 

Speelfy startTlme : float ln tableVoltagel #2 
retum lHS.nodeWithlabel(l).startTIme.getValueO 

Speclfy offset: float ln tlbloVoltagal #2 
retum lHS.nodeWithlabel(1).offset.getvalue() 

LHS -- RHS 

1 

~~ - ... .... , 
MoIor1 

Rule 3: CabieDrumJJPM 

LHS 

""~ .'MIcH~;--~l -­RotIn.rtance1 

Rule 4 : Load 2 IPM --
LHS 

3 

~ 2 

.~ 
...... , 

Pul1ey1 

1. 
l.ood1 

--

Proeondltlon: 

~ 
node = lHS.nodeWithlabel(2) 

M 4 5 return node.isTransformedO 
-_, ro.,ro :f/) 

Post Action: :: ~ll't -.ouII'In,Mod1lnP1nl°~~, 
:'Motor1 ............. <SPECIPJEO>HrMad 

node = self.lHS.nodeWithlabel(2) 

2 RotDlmper1 Rotlnértanct1 node.setTransformed(True) 
1 

-~ ... 
Specl~ Valuo : float ln RotDamperl #4 
retum HS. nodeWithlabel(2). R _ bearing.getValueO 

Spoci~ Value: flolt ln Rotln.rtlne.l #5 
return HS.nooeWithlabel(2).Unertance.getValueO 

Mlln.1 

RHS 

2 ~m 

i 
--,,, 
Pul1ly1 

-, ! 
4 . ... 

Looll <lf'ECFlEpote 

Intrtal'lCl1 

Pulle,1 

Sp.ci~ Value: float ln Motorl #3 
return HS.nodeWithlabel(2).Ratio.getValue() 

Preeondltlon: 
node = lHS.nodeWithlabel(J) 
return node.isTransformedO 

Post Action: 
node = self.lHS.nodeWithlabel(J) 
nOde.setTransformed(True) 

Specify Vllue : float ln Pulleyl #4 
return lHS.nodeWlthlabel(J).Ratio.getValueO 

Preeondltlon: 
node = lHS.nodeWithlabel(l) 
return node.isTransformed() 

Post Action: 
node = self.lHS.nodeWlthlabel{l) 
node.setTransformed(True) 
Spocl~ Value: float ln Inortaneal #. 
return HS.nodeWlthLabel(l).Value.getvalueO 

Figure 3.1: Model Transformation HLPSM to IPM: Rules 1-4 

46 
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LHS RHS 

Ernpty 
Load1 

Rule 6 : delete HLPSM CableDrum 

LHS --- RHS 

1 

'"~1~ Ernpty 
Outport1 

Rule 7: delete HLPSM Motor 

LHS --- RHS 

1 

,""""'~O"""'"' Ernpty 
Motor1 

Rule 8 : delete HLPSM Mains 

LHS --- RHS 

1 1 

-'~ Ernpty -, ._. 
Malna1 

Rule 9 : delete GenericLinks -
LHS --- RHS 

1 

Ernpty 

Figure 3.2: Model Transformation HLPSM to IPM: Rules 5-9 
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Order 
1 
2 
3 

Table 3.2: Graph Grammar rules in execution order for MTJPM_2_HABG 
Rule Name Description 
identify _efforts_K2_E 1 PM electrical link is converted to a 0-junction 
identify_efforts_M_2_M IPM mechanicallink is converted to a 1-junction 
effort_differences_Resistor An R element is inserted between junctions at the ends 

of an IPM resistor 
4 efforLdifferences_Capacitor A C element is inserted between junctions at the ends 

of an IPM capacitor 
5 effort_differencesJ:nductor An 1 element is inserted between junctions at the ends 

of an IPM inductor 
6 efforLdifferences_tableVoltage A tableSe element is inserted between junctions at the 

ends of an IPM table voltage 
7 fiow _differences_RotDamper An R element is inserted between junctions at the ends 

of an IPM rotational damper 
8 fiow _differences_Rotlnertance An 1 element is inserted between junctions at the ends 

of an IPM rotational inertance 
9 fiow _differenees_Inertanee An 1 element is inserted between junctions at the ends 

of an IPM translational inertanee 
10 motor _2_GY A GY element is inserted between junctions at the ends 

of an IPM mot or 
11 puUey _2_TF A TF element is inserted between junetions at the ends 

of an IPM puUey 
12 delete_K2_E AlI IPM K2_E links are deleted (for all matches) 
13 delete_M_2_M AUIPM M_2_M links are deleted (for aU matches) 
14 delete_Resistor AUIPM Resistor elements are deleted (for all matches) 
15 delete_Capacitor AU IPM Capacitor elements are deleted (for all 

16 

17 
18 

19 

20 
21 
22 

23 
24 

delete_Inductor 

delete_ Voltage 
delete_Rotlnertance 

delete_RotDamper 

delete_Motor 
delete_PuUey 
deleteJ:nertance 

deleteEarth 
delete_GenericLink 

matches) 
AlI IPM Inductor elements are deleted (for all 
matches) 
AUIPM Voltage elements are deleted (for all matches) 
AU IPM RotInertance elements are deleted (for aH 
matches) 
AH IPM RotDamper elements are deleted (for aH 
matches) 
AU 1 P M Motor elements are deleted (for aH matches) 
AlI IPM Pulley elements are deleted (for aH matches) 
AH IPM Inertance elements are deleted (for aH 
matches) 
AH 1 P M Earth clements are deleted (for aH matches) 
AH GenericLinks are deleted 
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LHS RHS 
,-----------------, precondltlon: 

LHS 

Rule 3 : effort differences Resistor - -
LHS --+ 

3 

~ .... "" 
'1 2 

0 0 ZoroJu_' ZoroJunc1lon2 

1 

o. 
ZlroJooctlon1 

Rule 4 : effort dlfferences Capacitor - -
LHS --+ 

E~2~Et : -il- E_2_E2 

<ANY~Coloumbs 

Capacltor1 

1 2 

0 0 
ZtroJunctlont ZoroJ,_ 

1 

D'. 
ZeroJunctlon1 

node = lHS,nodeWithLabel(l) 
return node.lsTransformed("E_2_E") 

Post Action: 
node = lHS,nodeWithLabel(l) 
node.setTransformed("E_2_E", True) 

ZlroJunctlon1 

RHS 
Precondltlon: 
node = lHS.nodeWithlabel(1) 
retum node.isTransformed("M_2_M") 

Post Action: 
node = LHS.nodeWithLabel(l) 
node.setTransformed( .... t2_M", True 

OneJunctlon1 

RHS 

6 

50~O~~'" 
Bond4 R1 

ZtroJundlon3 

~A 
,~E2E' 'V 0,12 

~ =~ 

~,4 2 

• '. • 1 • • '. ..._0 Bond1 
OntJunctlonl .""2 Zero.Iunctl0n2 

RHS 

6 

50~'~"'-BoncM Cl 

broJunctlon3 
3

1 ,,""0_0
' -.1. 1 - E_2_E2 

. . \ <COPIEO~ CoIoumba 

,,' Capacltor1 

4 2 

• '._1 • ". ....0 • . "", OnlJunctlont Bond2 ZoroJunc1lon2 

p,..condltlon: 
node = LHS.nodeWlthLabel(3) 
retum node.isTransformed{ "effort_differences_Resistor") 

POlt Action: 
node = lHS,nodeWithLabel(3) 
node.setTransformed("effort_differences_Reslstor",True) 

~ft~~~H~~~~:e=J~~e!~:I{~~:a~ue,getValueO 

Precondltlon: 
node = LHS.nodeWithLabel(31 
retum node.isTransformed( ·effort~differences_Capacitor"l 

Post Action: 
node = LHS.nodeWithLabeI(3) 
node.setTransformed("effort _ dlfferences _ Capacltor~ ,Truel 

~lt~~~H~~~~:eW;~~e!~;I(~~.:aTue.QetvaIUe() 

Figure 3.3: Model Transformation IPM to HABG: Rules 1-4 
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Rule 5 : effort _ dlfferences Jnductor 

LHS RHS 
,-----------, ,-----------------------, P",condltlon: 

E_2_E1' • ~~. E_2_E2 

"""'" 

o 
ZaroJllllctlon1 ItrOJunctlon2 

5 0/ ..... 
ZtroJunctlon3 

'. 6 

.-1 
cSPECf'IEO>Htf\I')' 

11 

4 2 

O-···---e·~B.~ndl~'~·~-·1-1-.e-~'~--~'.'--I-O 
ltroJunctlon1 OntJunctlon1 Bond2 ZtroJunctlon2 

node = LHS.nodeWithLabel(3) 
return node.isTransformed( -effort_dlfferences)nductor") 

Post Action: 
node • LHS.nodeWithLabeH3) 
node.setTransformed(Meffort_ differences -,nductor" • T rue) 

~e't~~~~H~~~~deW;~hL!~~ll:'.~:lue.getVaIUe() 

Rule 6 : effort differences tableVoltage - -
LHS --+ RHS 

3 
Precondltlon: 

6 @) ~:t~~n-n~~~:is~~:~~~r~~d:(~/IOW_difterence5_VoltageM) • • 5~Se E_2_E1 E_2_E2 
Post Action: 

<ANY> Valls o BontW 'S~;IEO>VoIII node:o LHS.nodeWithLabel(3) 
node.setTransformed("f1ow _ dtfferences _Voltage-• Truel tableVoltagel ZeroJunctlon3 .. 

~ ~~~~~H~~~~~e~t~~~:I(~r.~a~~e.getValUe(1 
l 2 .~E2Et E21:2 0 0 

ZlroJunctiont ZtmJuncUon2 \~' 
l 2 

o • • ' •• 1-.- • ..,. 1-0 ltroJunctlon1 Bond1 
OneJunctlon1 .- ZIroJunctlon2 

Rule 7 • flow dlfferences RotDamper 

LHS --+ RHS 
3 6 Precondltlon: 

node = LHS.nodeWithLabel(3) 
"_2_'" ·'iliJ'il M)_M2 51~~-- retum node.lsTransformed( "flow_differences_RotDamper") 

• ..... R1 Post Action: • ~ ;;;,i 

<ANV~Norv'~ 
OntJunctlon' node - LHS.nodeWithLabel(3) 

RotO.mper1 ~ilrv node.setTransformedC·flow_dlfferences_RotOamper",Truel 

.. ~ "_2_M'·' ~-'-'" 
~lt~~~H~~~~de~~~~~:lc~r.:afue.getVaIUe() l 2 

'~:" 1 1 
OntJunctlon1 OntJunc:tlon2 

1 2 

1~--- • Bond1 '. • 0-. • '. __ 1 
OntJunctlorU ZetoJIIIIGUon1 ..... , ....,-

Rule 8 : flow dlfferences Rotlnertante 

LHS RHS 
,-----;:"--'-'--------, r-------'-"-'-~-----_=_.-------, ~~~o:t~~~;~deWlthLabel(31 

1 1 

Rotlnertance1 

2 

1 
OneJuncUon1 OneJunctl0n2 

~
I return node.isTransformed( ~effort_differences_Rotlnertance") 

51 -~ •. -
BOIMW 11 Post Action: 

OntJunçllgn3 3 node • lHS.nodeWithLabel(31 
~ ~ r() node.setTransformed("effort_ditferences_Rotlnertance" ,Truel 

.' "_'-0' ~i-"':c • ..,o::-_,,,,_o,,,,-
.. ~ ~SPECIFIEO~ Nmur.d 

Rotlnertance1 
~ru~~~H~~~~:eW;:~:~~Ic';).~:lue.lJetValue() 

Figure 3.4: Model Transformation IPM to HABG: Rules 5-8 
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Rule 9 : flow differences Inertance 

LHS ----- RHS 

.:-a M..2...Ml 

• 2 
<COPIED> kg 

1II...2_Ml i=EJ 
Inortancol 

• "'_2_Ml 1 . 3 ;' \ ___ -----"-_ 1 

OnN ......... '" Bond3 OMJunctlollZ , 
1 

<ANY" kg 
3 

j \, Inortancol 1 
OI'IeJuncllon' OMJunellon2 

. 
4 

Se .SPECIAED>~ 

Il 
<SPEClfIEO'_ 

Sel 

Rule 10 : motor 2 GY 

~ _______ L_H_S ______________ , RHS 
5 

o .. , .... Gy~ 
2 T Bon.d.2 _ClflfD' o OYI ~J r .... " ZlroJunctlon1 

Molorl 
Molor1 

Rule 11 : pulley 2 TF 

LHS RHS 
2 3 

l ___ TF ... ~1 
~1 Bondi _ ... ~... Bond2 OMJ~ 

Pulley1 ~i Pulley1 f 
'i 

LHS ----- RHS 

1 1!~_ll Empty 

M_2..1111 

Precondltlon: 
node = LHS.nodeWithLabel(2) 
return node.isTransformed( "flow_differences_lnertance") 

Post Action: 
node = LHS.nodeWithLabel(2) 
node.setTransformed("flow_differences_lnertance",True) 

Speclfy Value: Float ln Sel #4 
1* Downward force on mass'! 
g=9.6 
return -g'LHS.nodeWithLabel(2).Value.getValue() 

Specl~ Value: Float ln Il #5 
return HS.nodeWlthLabel(2).Value.getValue() 

Precondltlon: 
node = LHS,nodeWithLabel(l) 
return node.isTransformed( "motoO_GY") 

Post Action: 
node = LHS.nodeWithLabel(l) 
node.setTransformed("motor_2_GY",True) 

Speclfv Value: FloRt ln GYl #5 
return [HS.nodeWlthLabel(l).Value.getValue() 

Precondltlon: 
node = LHS.nodeWithLabel(l) 
return node.isTransformed( "pulley_2_GY") 

Post Action: 
node = LHS.nodeWithLabel(l) 
node.setTransformed('pulley _2_ GY' ,True) 

Speclfv Value: Floet ln Tf1 #4 
return [HS.nodeWithLabel(l).Value.getValue() 

Figure 3.5: Model Transformation IPM to HABG: Rules 9-12 
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Rule 13 : delete M 2 M 

LHS - RHS 

l M_2_M1 

Empty 

Rule 14 : delete Resistor 

LHS - RHS 

Empty 
l 

~ 
<ANY> Ohms 

Resistor1 

Rule 15 : delete _ Capacitor 

LHS - RHS 

l -1 t-- Empty 
<ANY> Coloumbs 

Capacitor1 

Rule 16 : delete Inductor 

LHS - RHS 

l __ ~ 

Empty PositivePin1 NegativePin1 
<ANY> Henry 

Inductor1 

Figure 3.6: Model Transformation IPM to HABG: Rules 13-16 
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Rule 17 : delete_Voltage 

LHS - RHS 

.1. @) • Empty 
<ANY> > Volts 

tableVoltage 

Rule 18 : delete_Rotlnertance 

LHS - RHS 

<ANY> Nms/rad Empty 
Rotl nertance1 

Rule 19 : delete_RotDamper 

LHS - RHS 

<Value> <Unit> 
Empty 

RotDamper1 

Rule 20 : delete_Motor 

LHS - RHS 

Empty 
Motor1 

Figure 3.7: Model Transformation IPM to HABG: Rules 17-20 
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Rule 21 : delete_Pulley 

LHS -- RHS 
1 

~ Empty 
Pulley1 

Rule 22 : delete)nertance 

LHS -- RHS 

~Massl • Empty 
<ANY> kg 

Inertance 

Rule 23: deleteEarth 

LHS -- RHS 
Precondltlon: 
node = LHS.nodeWithLabel(l) 

1 return node.existsO 

• • PositivePin1 NegativePin1 

Empty 
Earth1 

Rule 24 : delete_GenericLink 

LHS -- RHS 

1 

"' • Il Il •• Il •• Il Empty 

Figure 3.8: Model Transformation IPM to HABG: Rules 21-24 
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Rule 25: optimlze_ZJ 
Precondltlon: 

LH 5 RH 5 Sil in=len(LHS.nodeWlthLabel{l».In connections) 
, ___________________ --, ,-___________ , 512-out ... len(lHS.nodeWithLabet!l».out connections) 

l 
• ".-- 0 _. "-

Bond1 ZeroJunctlon1 Bond2 

Rule 26: optimize _ OJ 

1 

if s12 In"''''1 and slz out_al: -
nOde .., lHS.nodeWithLabel(l) 

4 . "­Rone3 L-____________ ~ 

els~~turn node.lsTransformed(·optlmlze_ZJ") 

return False 

Action: 
Bondl-LHS.nodeWlthLabeI(2) 
Bond2-LHS.nodeWithLabeI(3) 
Bond 3.1n _ connections= Bond l.in _con nections 
Bond3.out_connectlons-Sond2.outconnections 

Post Action: 
node = LHS.nodeWlthLabel!l) 
node.setTransformed(·optimize_ZJ, True) 

Precondltlon: 
LHS RHS slz in-len(LHS.nodeWithLabel(l)).in connections) 

,-___________________ --, ,-___________ , siz-out=len(LHS.nodeWithlabel(l».out connections) 

• 

if sïz In--1 and siz out_Dl: -
nO-de ... LHS.nodeWithlabel(l) 

els':turn node.lsTransformed(Moptimlze_Zj") 

return False 

1 3 
• '._ 1 _. '. 

Bondi OneJunctlon1 Bond2 

4 . '. 
Bond3 L-________________ ~ 

Rule 27: optimlze ZJ ZJ - -
LHS ---->-

:1 
2 3 1 

" •• 

4 

0 
5 

• '.- 0 _. • • '. • """., ZlroJunctlon1 8ond2 ltroJunctlon2 Bond3 

It' 
Rule 28: optlmlze OJ OJ - -

LHS ---->-

:1 
1 2 3 ".:. 5 

• '.- 1 
_ . 

1 _.-'>e • .... , OneJunctl0ll1 Bond2 On.Junctlon2 Bond3 

li, 

RHS 

:1 
2 r l 5 o _. '.-Bondi Z.roJunctlon1 ... ., 

lt' 
RHS 

6

11 
2 r 3 l 

'._1 
_. 

Bondi O",",unc1lon1 Bond2 

li, 

". 

'. 

Action: 
Bondl ... LHS,nodeWithLabel(2) 
Bond2-LHS,nodeWithLabeI(3) 
Bond3.!n connectlons-BondI.in connections 
Bond3.0~t_connections-Bond2.0utconnections 

POlt Action: 
node - LHS.nodeWlthLabel(!) 
node.setTransformed(Moptlmlze_ZJ, True) 

Precondltlon: 
sizJn-len(lHS.nodeWithlabel(4».in_connections) 
siz _ out=len(lHS.nodeWithlabel( 4» .out _con nections) 
if siz In==l and slz out.-2: 

no-de'" LHs.nodeWithlabel{4) 
return node.isTransformed("optimize_ZLZtl 

else: 
return False 

Post Action: 
node = lHS.nodeWithLabei(1) 
node.setTransformed{"optlmize_ZLZJ. Truel 

Precondltlon: 
siz_in=len(LHS.nodeWlthLabeH4».in_connections) 
siz_out=len(LHS.nodeWithLabel(4».out_connections) 
If slz In"-1 and slz out--2: 

nO-de - LHS.nodeWithLabel(.) 
retum node.isTransformed(·optlmlze_OLOJ"1 

else: 
return False 

Post Action: 
node - LHS.nodeWithlabel(1) 
node.setTransformed("optimize_OLOj. Truel 

Figure 3.9: Model Thansformation IPM to HABG: Rules 22-28 
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Rule 29: optimize _ ZL 01. ZJ 

LHS 

" 
4 1 

5 

BondI 

OneJunctlon2 

Rule 30: optimize_OjJLOj 

LHS 

" 4 0 
BondI 

ZaroJunetion2 

" 

--+ 

RHS 

13 

~o~ 
BondI Z.roJunctlon3 B0nd4 

1 

14 ] 

1 B 
~1 "Bond7\' 

Bondl OnoJundlon3 

12 

RHS 

13 
5 11 
~ 1 -H-------"I 

Bondi OnoJundion3 Bond4 

14 1 

1 B 
~O "Bond7 " 

Bondl ZeroJunetion3 

12 

Precondltion: 
node = lHS.nodeWithlabel(l) 
return node.isTransformed("optimi2e)LOLZ),,) 
else: 

return False 

Post Action: 
node = lHS.nodeWithLabel(l) 
node.setTransformed('optimize)L 0))), True) 

Precondltlon: 
node = lHS.nodeWithlabel(l) 
return node.isTransformed('optimize _ 0UL 0)") 
else: 

retum False 

Post Action: 
node = LHS.nodeWithlabel(l) 
node.setTransformed("optimi2e_ OLZL 0), True) 

Figure 3,10: Model Transformation IPM to HABG: Rules 29-30 
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Table 3.3: Graph Grammar rules in execution order for optimizing BG 
Order Rule Name Description 

25 optimize_ZJ Transform redundant LHS O-junction pattern to a single 0-
junction 

26 Transform redundant LHS 1-junction pattern to a single 1-
junction 

27 optimize_ZJ _ZJ Transform redundant structure on LHS to simplified RHS 
28 optimize_OJ _OJ Transform redundant structure on LHS to simplified RHS 
29 optimize_ZLOJ_ZJ Transform redundant structure on LHS to simplified RHS 
30 optimize_OJ_ZJ_OJ Transform redundant structure on LHS to simplified RHS 

The Se type effort source elements al ways have an effort-out causality. The Sf element always 

has a flow-out causality. The fixed causalities assigned by the sources are propagated by 

constrained causalities to other bonds. Fixed causalities are shown in Figure 3.11. 

The causality assigned by fixed causalities are propagated to the connected junction. The 

Causality of a junction is set to +1 if the assigned causality is an effort-out causality from an 

effort source to a O-junction. The Causality is set to -1 if the assigned causality is a flow-out 

causality from a flow source to a 1-junction. The fixed causalities are described in Table 3.4. 

This causality is further propagated to connected bonds via constrained causalities. Con­

strained causalities are shown in Figures 3.12, 3.13,3.14,3.15,3.16,3.17, and 3.18. The rule 

execution or der and a short description for each rule is given in Table 3.5. 
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Rule 1 : Fe_SE _2_ ZJ (Rule inherited by tableSe,sinSe,mSe) 

LHS -----+ RHS 

1 2 

S 3 \.-0 e.. .........-
</olt!> <N/1> Bondl ZeroJunctionl 

Sel 

1 2 
Se-tO 4 'P .... 0 

'C~ED> 'COPIED> 1Bondl ZeroJunctionl 
Sel 

Rule 2 : Fe_SE _ 2 _ OJ (Rule inherited by tableSe,sinSe,mSe) 

LHS -----+ RHS 
.-----------, 

14 2 
Se~1 

1 3 2 
Se.. *1 

<N/1> <N/1> Bondi OneJunctionl 'COPIEO> ,COPEQ> 1Bondl OneJunctionl 

Sel Sel 

Rule 3 : Fe _ SF _ 2 _ OJ (Rule inherited by tableSf,sinSf,mSf) 

LHS -----+ RHS 
.-----------, 

l 2 

St " 3 "t-t-1 
<//If> <IJI(> Bondi OneJunclionl 

Sft 

1 2 

Sf~~ 
<COPIEO> 'coPIEO> eBondl OneJunctionl 

Sfl 

Rule 4 : Fe _ SF _ 2 _ ZJ (Rule inherited by tableSf,sinSf,mSf) 

LHS 

1 2 
Sf .. 3 "t-t-0 

-----+ RHS 

1 4 2 
St-t-O~O 

Specify Causality:lnteger in ZeroJunctionl #2 
return 1 

Specify Causality:lnteger in OneJunctionl #2 
return -1 

<N/1> <N/1> Bondi ZeroJunctionl ,(:OOEO> ,(:OOED> eBondl ZeroJunctionl 

Sfl Sfl 

Figure 3.11: Model Transformation HABG to HCBG: Rules 1-4 
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Table 3.4: Graph Grammar rules for fixed causality in transformation MT _HABG_2_HCBG 
Order Rule Name Description 
1 FC_SK2_ZJ Transform redundant O~junction ---+ O~junction to a single O~ 

junction 
2 FC_SK2_0J Transform redundant 1 ~junction ---+ 1 ~junction to a single 1-

3 
4 

FC_SF_2_0J 
FC_SF_2_ZJ 

junction 
Transform redundant structure on LHS to simplified RHS 
Transform redundant structure on LHS to simplified RHS 

If none of the constrained causalities match the BG model then a preferred causality is assigned 

to storage elements. The C element gets an effort-out fixed causality while the 1 dement gets 

a flow-out fixed causality. The rules to assign the causality to the bonds are shown in Figures 

3.18 and 3.19. The execution order of the rule in the graph grammar and a short description 

for each rule is given in Table 3.6. 

The bond to an R element gets indifferent causality (if not constrained causality) which means 

that it does not matter if ftow or effort cornes in. The indifferent causalities are shown in Figure 

3.19. The execution order for indifferent causality rules and a description are given in Table 

3.6. 

The execution resumes from the first rule of the GG and continues until no rule is matched. 

At this point the HABG has been completely assigned causality and is a HCBG. If any of the 

st orage elements that is C or 1 have got a non-preferred causality due to propagation of causality 

constraints then we can say that there is a problem with the physical meaningfulness of the 

model. In other words a capacitor or an inductor element does not store energy in the sense of 

integration of the incoming ftow or effort. At this point the modeller has to change the physical 

model to make it causally correct and physically meaningful. 
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Table 3.5: Graph Grammar fUIes for constrained causality propagation in MT _HABG_2_HCBG 
Order Rule Name Description 
5 CC_ZJ _2_R Effort-out causality assigned if LHS O-junction causality is 1 
6 CC_ZJ _2_C Effort-out causality assigned if LHS O-junction causality is 1 
7 CC_ZJ_2.1 Effort-out causality assigned if LHS O-junction causality is 1 
8 CC_ZJ _2_ZJ Effort-out causality assigned if LHS O-junction causality is 1 
9 CC_ZJ_2_0J Effort-out causality assigned if LHS O-junction causality is 1 
10 CC_ZJ_2_TF Effort-out causality assigned if LHS O-junction causality is 1 
11 CC_ZJ_2_GY Effort-out causality assigned if LHS O-junction causality is 1 
12 CC_OJ_2_R Flow-out causality assigned if LHS 1-junction causality is -1 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

CC_OJ_2_C 
CC_OJ_2_1 
CC_OJ_2_0J 
CC_OJ_2_ZJ 
CC_OJ_2_TF 
CC_OJ_2_GY 
CC_J_GY_J_fBond 
CC_J_GY_J_eBond 
CC_J _ TF _J _fBond 
CC_J _TF _J _eBond 
CC_ZJ_2_De 
CC_ZJ_2_Df 
CC_ZJ_2_Dp 
CC_ZJ_2_Dq 
CC_OJ_2_De 
CC_OJ_2_Df 
CC_OJ_2_Dp 
CC_OJ_2_Dq 

Flow-out causality assigned if LHS 1-junction causality is -1 
Flow-out causality assigned if LHS 1-junction causality is -1 
Flow-out causality assigned if LHS 1-junction causality is -1 
Flow-out causality assigned if LHS 1-junction causality is -1 
Flow-out causality assigned if LHS 1-junction causality is -1 
Flow-out causality assigned if LHS 1-junction causality is -1 
Flow-out causality assigned from GY input effort-out causality 
Effort-out causality assigned from GY input flow-out causality 
Effort-out causality assigned from TF input effort-out causality 
Flow-out causality assigned from TF input Flow-out causality 
Effort-out causality assigned if LHS O-junction causality is 1 
Effort-out causality assigned if LHS O-junction causality is 1 
Effort-out causality assigned if LHS O-junction causality is 1 
Effort-out causality assigned if LHS O-junction causality is 1 
Flow-out causality assigned if LHS 1-junction causality is -1 
Flow-out causality assigned if LHS 1-junction causality is -1 
Flow-out causality assigned if LHS 1-junction causality is -1 
Flow-out causality assigned if LHS 1-junction causality is -1 

Table 3.6: Graph Grammar fUIes for preferred and indifferent causality in MT _HABG_2_HCBG 
Order Rule Name Description 

31 PC_ZJ_2_C Preferred effort-out causality assigned to O-junction to C bond 
32 
33 
34 
35 
36 

PC_ZJ_2.1 
PC_OJ_2_C 
PC_OJ_2.1 
IC_ZJ_2_R 
IC_OL2_R 

Preferred flow-out causality assigned to O-junction to 1 bond 
Preferred effort-out causality assigned to 1-junction to C bond 
Preferred flow-out causality assigned to 1-junction to 1 bond 
Indifferent flow-out causality assigned to O-junction to R bond 
Indifferent flow-out causality assigned to 1-junction to R bond 
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Rule 5: CC_ZL2_R (Rule inherited by mR) 

LHS 

1 2 
o fi 3 \e-t-R 

Bondi 
ZeroJunc!ionl RI 

--. RHS 
,---------------, Precondition: 

1 2 

O~R 
return LHS,nodeWithLabel(l),Causality == 1 

ZeroJunc!ionl fBondl RI 

Rule 6: CC)JJ_C (Rule inherited by mC) 

LHS --. RHS 
,.----------, ,--------------, Precondition: 

1 2 
o fi 3 \e-t-c 

Bondi 
ZeroJunctJonl CI 

1 2 

O~c 
return LHS,nodeWithLabeI(I),Causality == l 

ZeroJunctionl fBondl CI 

Rule 7: CC_ZJJJ (Rule inherited by ml) 

LHS --. RHS 
,----------------, Precondition: 

return LHS,nodeWithLabel(l),Causality == 1 1 3 2 
o fi \e-t-I 

1 2 

O~I 
, Bondi 

ZeroJunctionl ZeroJunctionl fBondl 

LHS --. RHS 
,.----------, ,------------, Precondition: 

1 2 
o fi 3 "t-t- 0 

Bondi 
ZeroJunctionl ZeroJunlion2 

1 2 return LHS,nodeWithLabel(l),Causality == 1 

O~O 
ZeroJunc!ionl !Bondi ZeroJunction2 

Figure 3,12: Model Transformation HABG to HCBG: Rules 5-8 
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LHS -----. RHS 
r-------------, r----------~ Precondition: 

1 2 
o fi 3 ""-1 

Bondi 
ZeroJunclionl OneJunlionl 

1 2 

O~1 
ZeroJunctionl fBondl OneJunctionl 

Rule 10 : CC .IJ) JF (Rule inherited by mTF) 

LHS -----. RHS 

return LHS.nodeWithLabel(l).Causality == 1 

r---------_ Precondition: 
1 2 
o fi 3 ""-TF 

return LHS.nodeWithLabel(l).Causality == 1 1 2 

O~TF 
Bondi 

ZeroJunctionl Tf1 ZeroJunctionl fBondl TF1 

Rule 11: CC_ZJJ_GY (Rule inherited by mGY) 

LHS -----. RHS 
,...---------------, Precondition: 

1 2 
o fi 3 't-t-GY 

Bondi 
ZeroJunctionl GYl 

1 2 

O~GY 
ZeroJunctionl !Bondi GYl 

Rule 12 : CC _ OL 2 _ R (Rule inherited by mR) 

LHS -----. RHS 

return LHS.nodeWithLabel(l).Causality == 1 

r-----------, r---------- Precondition: 
1 2 
1 tt 3 't-t-R 

Bondi 
OneJunctionl Ri 

1 2 

1~R 
return LHS.nodeWithLabel(l).Causality == ·1 

OneJunclioni eBondi Ri 

Figure 3.13: Model Transformation HABG to HCBG: Rules 9-12 
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Rule 13: CC_OJ)_C (Rule inherited by mC) 

LHS ~ RHS 
,-----------, Precondition: 

1 2 
1 .. 3 ,"-C 

1 2 

1~C 
return LHS.nodeWithLabel(l).Causality == -1 

OneJunctionl Bondi CI OneJunctionl eBondl C1 

Rule 14 : CC _ 0L 2 _1 (Rule inherited by ml) 

LHS ~ RHS 
,-----------, Precondition: 

1 2 
1 tt 3 '"-1 

1 2 

1~1 
return LHS.nodeWithLabel(l).Causality == -1 

Bondi 
OneJunctionl 

Oneunctionl eBondl 

LHS ~ RHS 
,-----------, Precondition: 

1 2 
1 .. 3 '"-1 

1 4 2 return LHS.nodeWithLabel(l).Causality ==-1 

1-H~1 
Bondi 

OneJunclionl OneJunlion2 OneJunclionl eBondl OneJunclion2 

LHS ~ RHS 
,------------, Precondition: 

1 2 

1 3 \.-0 ......... 
1 2 return LHS.nodeWithLabel(l).Causality == -1 

1~1 
Bondi 

OneJunctionl ZeroJunlionl OneJunctionl eBondl OneJunclionl 

Figure 3.14: Model Transformation HABG to HCBG: Rules 13-16 
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Rule 17 : CC _ OJ))F (Rule inherited by mTF) 

LHS -+ RHS 
,------------, Precondition: 

return LHS.nodeWithLabeI(1).Causality == ·1 1 4 2 
1-tO~TF 

1 2 
1 •• 3 '*- TF 

OneJunclionl Bondi TF1 OneJunclionl eBondl TF1 

Rule 18 : CC _ OL 2 _GY (Rule inherited by mGY) 

LHS -+ RHS 
.---------~ Precondition: 

return LHS.nodeWithLabel(1).Causality == ·1 1 3 2 1.. ,*-GY 
1 2 

1~GY 
Bondi 

OneJunclionl GYI OneJunclionl eBondl GYI 

Rule 19: CC1GYJJBond (Rule inherited by mGY) 

LHS -+RHS 

1 2 1 

X ~GY-t' 4 \et X 
1 2 1 

X~GY~X 
!Bondi Bondi GYI XJunclionl XJunction2 

fBondl XJunclionl GYI eBondl XJunction2 

x = 0 or 1 

Rule 20: CC1GYJ_eBond (Rule inherited by mGY) 

LHS -+RHS 

1 3 2 4 1 
X ~GY.... \et X 

Bondi eBondl GYI XJunctionl XJunclion2 
eBondl GYI !Bondi XJunction2 

121 

X~GY~X 
XJuncllonl 

x = 0 or 1 

Figure 3.15: Model Transformation HABG to HCBG: Rules 17-20 
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Rule 21: CCJJF JJBond (Rule inherited by mTF) 

LHS -+RHS 

1 2 1 

X ~TF-t' 4 'te X 
1 3 2 5 1 
X~TF~+X 

fBondl Bondl GYl XJunctionl XJunction2 
fBond2 fBondl GYl XJunctlonl XJunction2 

x = 0 or 1 

Rule 22: CCJJF J.eBond (Rule inherited by mTF) 

LHS -+RHS 
r----------------------, 

1 2 1 

X~TF~X 1 3 2 4 1 
X ~TF-t' 'te X 

XJunctionl eBondl TF1 

x = 0 or 1 

LHS 

1 3 2 
0.. 't-.-Oe-l> 

Bondl 
ZeroJunctionl Del 

Rule 24 : CC .lJJ. Of 

LHS 

1 3 2 
0.. 't-.-Of-l> 

Bondl 
ZeroJunctlonl DlI 

XJunctionl eBondl TF1 Bondl 
XJunctlon2 XJunction2 eBond2 

-+ RHS 
r---------~Precondition: 

return LHS.nodeWithLabel(l).Causality == 1 1 4 2 
o ~Oe-l> 

ZeroJunctionl fBondl Del 

-+ RHS 
r---------~ Precondition: 

return LHS.nodeWithLabel(l).Causality == 1 1 4 2 
o ~Of-l> 

ZeroJunctionl !BondI 011 

Figure 3.16: Model Transformation HABG to HCBG: Rules 21-24 
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LHS -+ RHS 
,------------, Precondition: 

1 3 2 
o te 'u--Dp-l> 

ZeroJunctionl Bondi Dpi 

1 4 2 return LHS.nodeWithLabel(ll.Causality == 1 

o ~Dp-l> 
ZeroJunctlonl !Bondi Dpi 

LHS -+ RHS 
,----------, Precondition: 

1 3 2 
o .. , 'u-- Dq-l> 

ZeroJunctionl Bondi Dql 

return LHS.nodeWithLabel(l).Causality == 1 1 4 2 
o ~Dq-l> 

Dql ZeroJunclionl !Bondi 

LHS -+ RHS 
,----------, Precondition: 

1 2 
1 te 3 \" De-i> 

return LHS.nodeWithLabel(l).Causality ==-1 1 4 2 

1 -to~De-i> 
Bondi 0 1 

OneJunctionl e OneJunclionl eBondl Del 

LHS -+ RHS 
,--------------, Precondition: 

1 2 
1 te 3 \, ... Of-i> 

return LHS.nodeWithLabel(l).Causality == -1 1 4 2 

1 ~Of-l> 
OneJunclionl 

Bondi Df1 OneJunctlonl eBondl Df1 

Figure 3.17: Model Transformation HABG to HCBG: Rules 25-28 
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LHS ----+ RHS 
,-------------, Precondition: 

1 3 2 
1 Il \, t- Dp-l> 

1 4 2 return LHS,nodeWithLabeI(1),Causality ==·1 

1 ~Dp-l> 
Bondi D 1 

OneJunctionl p OneJunclionl eBondl Dpi 

LHS ----+ RHS 
,------------, Precondition: 

1 3 2 
1 Il \" Dq-l> 

1 4 2 return LHS,nodeWithLabeI(1),Causality == ·1 

1 ~Dq-l> 
OneJunctionl 

Bondi Dql OneJunctionl eBondl Dql 

Rule 31: PC.ZJ).C (Rule inherited by mC) 

LHS ----+ RHS 
,----------, ,-------------, Precondition: 

1 2 
o Il 3 "t-t-C 

ZeroJunclionl 
Bondi Cl 

return LHS,nodeWithLabel(l),Causality == 0 1 4 2 

O~C 
ZeroJunclionl eBondl Cl 

Rule 32 : PC .IJ.2 -' (Rule inherited by ml) 

LHS 

1 3 2 
o Il "t-t-I 

Bondi 
ZeroJunctionl 

----+ RHS 
,------------, Precondition: 

1 2 

O~I 
return LHS,nodeWithLabeI(1),Causality == 0 

ZeroJunclionl fBondl Il 

Figure 3,18: Model Transformation HABG to HCBG: Rules 29-32 
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3.5 Hybrid Causal Bond Graph to Modelica 

The HCBG model obtained from the transformation MT _HABG_2_HCBG is now ready to be 

converted to a set of Differentiai Aigebraic Equations (DAE). Instead of directly transforming a 

model in the differential equation form we generate Modelica code. Modelica code is an object­

oriented textual representation of DAEs. We represent bond graph objects in Modelica using 

the bond graph library, BondLib, developed by Francois Cellier [CN05]. 

The main routine, HCBG_2_Modelica, and its helper routines to transform the abstract syntax 

graph of a HCBG model to Modelica are given below: 

#Main Routine to transform HCBG to Modelica 

def HCBG_2_Modelica(HCBGGraph): 

ModelicaCode="model " + HCBGGraph.getNameO + "\n" 

# Define and Initialize the Physical Objects 

ModelicaCode+=getHABGObjects(HCBGGraph) + "\n" 

# Define the Equations of the Physical Model 

ModelicaCode+="equation" 

MOdeliaCode+=getConnects(HCBGGraph) + "\n" 

ModelicaCode+="end "+HCBGGraph.getName()+";\n" 

return ModelicaCode 

#Routine to obtain physical object declarations 

def getHABGObjects(HCBGGraph): 

Code=" " 

for aNode in HCBGGraph.iterateAll(): 

if self.getModelicaObject(aNode) !=None: 

Code+="\t"+getModelicaObjectCaNode)+";\n" 

return Code 

#Routine to obtain physical object connections 

def getConnects(HCBGGraph): 

Code=" " 
for aNode in HCBGGraph.getAllConnTuplesC): 

connectCode="connect("+aNode[OJ .Parent.Name+"."+aNode[O] .Name+"," 

+aNode[l] .Parent.Name+"."+aNode[lJ .Name+");" 

Code=Code+"\t"+connectCode+"\n" 
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Rule 33: PC _ OL 2_ C (Rule inherited by mC) 

LHS -- RHS 
,-------------, .-------------, Precondition: 

return LHS.nodeWithLabel(l).Causality == 0 1 3 2 
1 et '.-.-C 

1 2 

1~C 
OneJunctlonl Bondi CI OneJunc!ionl eBondl CI 

Rule 34 : PC _ OJ) -' (Rule inherited by ml) 

LHS -- RHS 
.-------------, Precondition: 

1 2 
1 et 3 '.-.-1 

return LHS.nodeWithLabel(l).Causality == 0 1 2 

1~1 
Bondi 

OneJunctlonl 
Oneunclionl fBondl 

Rule 35 : le _ ZL 2 _ R (Rule inherited by mR) 

LHS 

1 

o tt 

2 
3 '.-.-R 

Bondi 
ZeroJunc!lonl RI 

-- RHS 
.-------------, Precondition: 

1 2 

O~R 
return LHS.nodeWithLabel(l).Causality == 0 

ZeroJunctlonl eBondl RI 

Rule 36 : IC _ OL 2 _ R (Rule inherited by mR) 

LHS 

1 2 
1 et 3 '.-.-R 

OneJunctlonl Bondi RI 

-- RHS 
,-----------, Precondition: 

1 2 

1~R 
return LHS.nodeWithLabel(1).Causality == 0 

OneJunclionl eBondl RI 

Figure 3.19: Model Transformation HABG to HCBG: Rules 33-36 
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return Code 

#Routine to obtain Modelica code for a physical component 

def getModelicaObject(aNode): 

nodeType=Type(aNode) 

if nodeType=="SE": 

return "BondLib.Sources.Se "+aNode.Name+ 

"(eO="+str(aNode.Value)+");" 

elif nodeType=="SF": 

return "BondLib.Sources.Sf "+aNode.Name+ 

"(fO="+str(aNode.Value)+")j" 

elif nodeType=="mSE": 

return "BondLib.Sources.mSe "+aNode.Name+";" 

elif nodeType=="mSF": 

return "BondLib.Sources.mSf "+aNode.Name+";" 

elif nodeType=="sinSE": 

return "BondLib.Sources.sinSe "+aNode.Name+ 

"(eO="+str(aNode.Value)+",phase="+ 

str(aNode.PhaseAngle)+",freqHz="+str(aNode.Frequency)+ 

",offset="+str(aNode.Offset)+" 

,startTime="+str(aNode.startTime)+");" 

elif nodeType=="sinSF": 

return "BondLib.Sources.sinSf "+aNode.Name+ 

"(eO="+str(aNode.Value)+",phase="+ 

str(aNode.PhaseAngle)+",freqHz="+str(aNode.Frequency)+ 

",offset="+str(aNode.Offset)+ 

",startTime="+str(aNode.startTime)+");" 

elif nodeType=="tableSE": 

return "BondLib.Sources.tableSe "+aNode.Name+ 

"(eO="+str(aNode.Value)+", 

offset="+str(aNode ["Offset"] . getValue ()+ 

",startTime="+str(aNode.startTime)+")" 
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elif nodeType=="tableSF": 

return "BondLib.Sources.tableSf "+aNode.Name+ 

"(fO="+str(aNode.Value)+",offset="+ 

str (aNode ["0ffset "] . getValue () )+" ,startTime="+str (aNode. startTime) +") Il 

#Bond Graph Junctions 

elif nodeType=="OJ": 

numberOfBondsConnected=getOutDegree(aNode)+aNode.getlnDegree(aNode) 

return IBondLib.Junctions.Jlpl+numberOfBondsConnected+" "+aNode.Name 

elif nodeType=="ZJ": 

numberOfBondsConnected=getOutDegree(aNode)+getlnDegree(aNode) 

return "BondLib.Junctions.JOp"+numberOfBondsConnected+" "+aNode.Name 

elif nodeType== Il fBond" : 

return IBondLib.Bonds.fBond"+" "+aNode.Name 

elif nodeType=="eBond": 

return "BondLib.Bonds.eBondl +" "+aNode.Name 

elif nodeType==II": 

return "BondLib.Passive.I"+" "+aNode.Name+"(I="+str(aNode.Value)+")" 

elif nodeType=="C": 

return "BondLib.Passive.C"+" "+aNode.Name+"(C="+str(aNode.Value)+")" 

el if nodeType=="R": 

return "BondLib.Passive.R"+" "+aNode.Name+"(R="+strCaNode.Value)+")" 

elif nodeType=="TF": 

return "BondLib.Passive.TF"+" "+aNode.Name+"Cm="+str(aNode.Value)+")" 

el if nodeType=="GY": 

return "BondLib.Passive.GY"+" "+aNode.Name+"(r="+str(aNode.Value)+")" 

el if nodeType=="mI": 

return "BondLib.Passive.mI"+" "+aNode.Name 
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elif nodeType=="mC" : 

return "BondLib.Passive.mC"+" "+aNode.Name 

elif nodeType=="mR": 

return "BondLib.Passive.mR"+" "+aNode.Name 

elif nodeType=="mTF" : 

return "BondLib.Passive.mTF"+" "+aNode.Name 

elif nodeType=="mGY": 

return "BondLib.Passive.mGY"+" "+aNode.Name 

elif nodeType=="De": 

return "BondLib.Sensors.De"+" "+aNode.Name 

elif nodeType=="Df": 

return "BondLib.Sensors.Df"+" "+aNode.Name 

el if nodeType=="Dp": 

return "BondLib.Sensors.Dp"+" "+aNode.Name 

elif nodeType=="Dq": 

return "BondLib.Sensors.Dq"+" "+aNode.Name 

#CBD Declarations 

el if nodeType=="Constant": 

return "Modelica.Blocks.Sources.Constant"+" "+ 

aNode. Name+" (k="+str(aNode.Value)+") " 

elif nodeType=="Delay" : 

return "Modelica.Blocks.Discrete.UnitDelay"+" "+ 

aNode. Name+" (y_start="+str(aNode.Value)+") " 

elif nodeType=="Integrator": 

return "Modelica.Blocks.Continuous.lntegrator"+ 

" "+aNode.Name+"(k="+str(aNode.Value)+ 

",y_start="+str(aNode.y_start)+")" 
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elif nodeType=="Derivative": 

return "Modelica.Blocks.Continuous.Derivative"+ 

" "+aNode.Name+"Ck="+aNode.Value+ 

",y_start="+strCaNode.T)+")" 

elif nodeType=="Sum": 

return "Modelica.Blocks.Math.Sum"+" "+aNode.Name 

el if nodeType=="Product": 

return "Modelica.Blocks.Math.Product"+" "+aNode.Name 

elif nodeType=="Feedback": 

return "Modelica.Blocks.Math.Feedback"+" "+aNode.Name 

elif nodeType=="PID": 

return "Modelica.Blocks.Continuous.PID"+ 

" "+aNode.Name+"Ck="+strCaNode.Value)+",Ti="+ 

strCaNode.Ti)+",Td="+strCaNode.Td)+",Nd="+strCaNode.Nd)+")" 

elif nodeType=="TimeTable": 

return "Modelica.Blocks.Sources.TimeTable"+" "+aNode.Name+"(table="+ 

stdaNode ["Table"] . getValue 0 )+" ,offset="+ 

strCaNode.Offset)+",startTime="+str(aNode.startTime)+")" 

elif nodeType=="Generic": 

return "Modelica.Blocks.Sources."+strCnodeType)+strCaNode.Parameters) 

else: 

return None 

3.6 Modelica to Trajectory 
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The Mode/ica code is now compiled to generate C code consisting of a DAE solver. We use 

DASSL [AP9S] to solve DAEs generated from the Modelica code as C code. DASSL uses 

backward differentiation formula (BDF) methods [Gea71] to solve a system of DAEs or ODEs. 

The methods are variable step-size variable order. The system of equations in DASSL is written 

in an implicit ODE form like 

F(t, y, y') = 0, 

where y' denotes the time derivatives of y. The BDF methods used in DASSL require the 
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solution of a large system of nonlinear equations 

on each time step. Here, Œn and f3n are scalars which depend on the method and stepsize. In 

DASSL, this system is solved by a modified Newton iteration. Each iteration of the Newton 

method requires the solution of a linear system 

Ayn(k + 1) = bn(k), 

where the matrix A is given by 

The one-dimensional PDEs generates a matrix which is block tridiagonal. In DASSL, this linear 

system is solved via a banded direct solver. Because the CPU cost to solve this linear syi:item 

is proportional to the bandwidth of the matrix, this solver is quite efficient if the bandwidth of 

the matrix is relatively small. Different moving mesh strategies result in different bandwidths, 

which is a very important factor in considering the efficiency of the method. The reader can 

refer to [Pet83] for details. 

The results of solving the system of DAE is a Trajectory model consisting of the time varying 

behavior of aH the state variables in the physical system model. 



Design Space Exploration 

4.1 Introduction 

Design space exploration is the search through the space of possible solutions to a problem. 

In M DE a problem is a set of requirements that a model should meet. The requirements are 

specified in the form of constraints that a model must satisfy and an objectivejfitness function 

that a model must optimize. The solution to a problem is a valid model which is a point in the 

model design space of a modelling language. The valid model must conform to its modelling 

language. The design space of models or the domain of models is defined by the meta-model 

of the modelling language, constraints on the classes and properties of the meta-model, and an 

initial model configuration. 

Using knowledge to guide search in the design space of models is faster [GSS98] than random 

search or search guided by general purpose heuristics. Knowledge can be used in many forms. 

We have seen that MDE allows us to incorporate knowledge by incorporating domain informa­

tion in the graph structure of a meta-mode!. Further, the constraints or propositions specify 

a constrained space of models. More knowledge can be incorporated in the pro cess of design 

space search via formulating heuristics as production rules. Instead of arbitarily changing the 

value of a property in a model we gain in efficiency by applying design heuristics in a produc­

tion system that modifies a model in a structured way such that the result is a valid model 

(it conforms to the meta-model and constraints specification). Heuristics often emerge from 

engineering experience. In this thesis we present heuristics that help evolve physical system 

models by adding or replacing objects from a prespecified inventory of standard (off-the-shelf) 

physical components. The sequenece of heuristics that need to be applied are composed in a 

plan. The execution of a plan on an initial or embryo model of a physical system results in a 

new mode!. We subject the new model to tests of conformance to its modelling language. If 

the model passes the tests and is physically meaningful then we evalute the objective function 

on the model and feedback the value for directing the evolution process. 

Specifically, we perform design space exploration in the space of HABG models. An overview of 

the procedure is shown in Figure 4.1. The embryo model presents an initial set of objects and 

relationships. A set of plans is executed on the embryo model to give a population of HABG 
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models. A plan consists of a sequence of HABG rules that add or replace bond graph elements 

from an inventory to the model. 

We present heuristics in the form of parameterized Graph Grammar (GG) rules or mutation 

operators in Section 4.2 to evolve the model of a physical system. The rules only modify the 

physical part of the HABG. Evolution of controllers described as (BD and other formalism 

in the signal domain are well established and a survey of techniques is available in [MC95]. 

Our focus is on the evolution of the physical system. Evolution of the plant or the physical 

system models based on genetic programming [BWN+97], [HGS03] is described in [WFTG05]. 

Matching an evolving BG to a mathematical function such as a filter is discussed in [PDTK05]. 

In our implementation the evolution pro cess is guided by a simplified genetic algorithm. The 

simplified genetic algorithm evolves a plan of a certain length. The plan is a sequence of 

mutation operators. We present the simplified genetic algorithm in Section 4.3. We first 

develop an experimental setup for the evolution in Section 4.4. Finally, we briefly discuss the 

results of the evolution pro cess for the experimental setup in Section 4.5. 

4.2 Heuristics for Evolving Physical System Models 

The heuristic rules or mutation operators for a physical system are defined for evolving Hybrid 

Acausal Bond Graph (HABG) models in Figures 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7. The rules not 

required to be executed in any particular order. The order of rule execution are based on a 

plan. A plan will be discussed in the next section. A description of the heuristic rules are given 

in Table 4.1. Ali the rules are parameterized and take as input a BG element. 

4.3 Simplified genetic algorithm 

We now describe a simplified genetic algorithm [HoI92] that evolves physical system models in 

the HABG modelling language. Before a simplified genetic algorithm can be put to work on 

any problem, a method is needed to encode potential solutions to that problem in a form that 

a computer can process. The input ta our simplified genetic algorithm is an embryo model. 

We define a plan that is a sequence of parameterized heurisitic rules that are applied on the 

input model to mutate it. The plan is a potential solution to an evolution task. 

The structure of plan is illustrated in Figure 4.8. The plan is comprised of an unit which 

consists of two parts. The first part of the unit contains the opCode or the rule number of the 

heuristic to be applied. The second part of the unit contains a floating point number betwecn 

o and 1. This number is used to choose an element from an Inventory. Before the evolution 

starts wc initializc an invcntory containing potcntial building blacks that can be uscd ta cvolvc 

the model. In an industrial setting these building elements can be considered as off the shelf 

resistors, capacitors, gears etc. that are available as resources. A rule removes the parametcr 

element from the inventory and puts it into the model according to a rule. 

Now that we know what a plan is and the notion of an inventory is clear we present the 
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Figure 4.1: Design Space Exploration of Physical System Models 
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for bond in LHS.nodeWithLabel(2).getlnCO: 
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for bond in LHS.nodeWithLabel(2).getinCO: 
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return True 

Pre-condition 

for bond in LHS.nodeWithLabel(2).getlnCO: 
for node in bond.getOutCO: 

if node.getLabeIO=="C": 
return False 

return True 

Figure 4.2: Model Evolution Heuristics: Rules 1-4 
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Figure 4.3: Model Evolution Heuristics: Rules 5-8 
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Figure 4.4: Model Evolution Heuristics: Rules 9-12 
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Figure 4.5: Model Evolution Heuristics: Rules 13-16 
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Figure 4.6: Model Evolution Heuristics: Rules 17-20 
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Figure 4.7: Model Evolution Heuristics: Rules 21-22 
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Table 4.1: Graph Grammar rules for preferred and indifferent causality in MT_HABG_2_HCBG 
Order Rule Narne Description 

1 
2 
3 
4 
5 
6 
7 

8 

9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

22 

add_R_ZJ (RI) 
add_R_OJ (RI) 
add_C_ZJ(C1) 
add_C_OJ(C1) 
add_LZJ (Il) 
add_LOJ (Il) 
replace_R_ZJ (R2) 

replace_R_OJ (R2) 

replace_C_ZJ(C2) 

replace_C_OJ(C2) 

insert_ZJ (ZeroJunctionl) 
inserLOJ(OneJunction1) 
insert_ZJ _GY _ZJ (GYl) 
insert_OJ _GY _OJ (GY1) 
inserLZJ _GY _OJ (GY1) 
inserLOJ_GY _ZJ(GY1) 
inserLZJ_TF _ZJ(TF1) 
inserLOJ_TF_OJ(TF1) 
inserLZJ_TF _OJ(TFl) 
inserLOJ _TF _ZJ (TF1) 
replace_LZJ (12) 

replace_LOJ (12) 

Add a R element to a O-junction without an R element 
Add a R element to a I-junction without an R element 
Add a C element to O-junction without an C clement 
Add a C element to 1-junction without an C element 
Add a 1 element to O-junction without an 1 element 
Add a 1 element to I-junction without an 1 element 
Replace an R element connected to a O-junction RI with an­
other R element R2 
Replace an R element connected to a I-junction RI with an­
other R element R2 
Replace an C element connected to a O-junction RI with an­
other C element C2 
Replace an C element connected to a 1-junction RI with an­
other C element C2 
1nsert a O-junction between a Bond element 
1nsert a I-junction between a Bond element 
1nsert a GY element between two O-junctions 
1nsert a GY element between two I-junctions 
1nsert a GY element between a O-junction and a I-junction 
1nsert a GY element between a O-junction and a I-junction 
1nsert a TF element between a O-junction and a O-junction 
1nsert a TF element between a 1-junction and a 1-junction 
1nsert a TF element between a O-junction and a I-junction 
1nsert a TF element between a I-junction and a O-junction 
Replace an 1 element connected to a O-junction RI with another 
1 element 12 
Replace an 1 element connected to a I-junction RI with another 
1 element 12 
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pseudo code for the simplified genetic algorithm. 

1. Initialize the Embryo Model 

2. Initialize the Inventory with Objects of Different Elements 

3. Initialize PopulationSize, MutationProbability (Probability of applying the randomized 

mutation operator), ChildCull (Number of children to remove in each generation) 

4. Initialize Population of Plans P 

5. Intialize NumberOfGenerations 

6. While True: 

7. P.generateO IIGenerate or mutate a population of plans 

8. P.applyPlansToEmbryo() Il Apply the plans to the embryo model 

9. P.assignCausalityO Il Assign causality to all models 

10. P.getModelica() IIGenerate Modelica Code 

11. P.simulateO Il Simulate models in the population 

12. P.computeFitnessO IICompute the fitnesses 

13. best=P.bestO IIObtain the fittest individual 

14. currentfitness = best.fitness() IIObtain the fitness of the fittest individual 

15. NumberOfGenerations=NumberOfGenerations + 1 IIIncrement number of Gneer­

ations 

16. if currentfitness >= maxFitness or NumberOfGenerations 1.=100: IIIf the fittess 

condition is satisfied the algorithm has reached its goal or number of generations 

exceeds a maximum of 100 

17. print 'End of Evolution' 

18. breakO 

A fitness/objective function is defined to evaluate the optimality of a plan and in turn a model 

which helps in guiding the search. In the next section we describe an experimental setup to 

evolve a hoisting device model using the above algorithm. 

4.4 Experiment Setup 

We first construct an embryo model for a hoisting device. The model is capable of lifting 500 

kg of load without breaking down. The parameters for the embryo model are given in Table 

4.2. The embryo model is represented in the HABG modelling language and is shown in Figure 

4.9. 

The maximum input voltage to the hoisting device is 110V as supplied by tableSe1. The mass 

is initially on the ground therefore the downward force is compensated by the reactive force. 
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Figure 4.9: ACausal Bond Graph of the Embryo Model 

Table 4.2: Embryo Hoisting Deviee Parameters 

Component Parame ter Value Unit 
Name 

tableSe1 table [0,0; 50, 0; 50, 110; 100, 110] Volts 

tableSe1 startTime 0 Seconds 

tableSel offset 0 Volts 

tableSe2 table [0, 0; 50, 0; 50, -4900; 100; -4900] Newton 

R1 R 0.5 0 

Il 1 0.05 Henry 

GY1 r 3 NA 

12 1 667 Nm/rad 

R2 R 1 Nlll::;! l' ad 

TF1 m 0.11 NA 

13 1 500 kg 
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At 50 secs the hoisting device attempts to lift a mass of 500 kg. At this instant the downward 

force cornes into play as described in tableSe2. The current model is able to lift the 500 kg 

mass without any problem. This is shown in Figure 4.10 (a). 

We now increase the load to 1000 kg. At this point the physical system cannot handle the load 

anymore and it breaks down. The effect is shown in Figure 4.10 (b). The question is, keeping 

the input voltage fixed can we modify the model of the physical system to lift a load of 1000 

kg? 

The fitness function is very simple. We simply retum the height h or Dql.OutPortl which is 

the sensor value for the height of the load. The fitness improves if h go es from the negative to 

the positive domain. The height h is measured at 60 seconds from start time. The length of the 

program or the number of heuristic rules applied to the model is limited to 3. The inventory 

comprised of 1 transformer with ratio 0.11 and a 1-junction. This limited inventory size is used 

to observe if the simplified genetic algorithm can automatically detect the use of gears. 

We run our simplified genetic algorithm to see if something use fuI tums out. The results are 

presented in the next section. 

4.5 Results 

The simplified genetic algorithm is run with a maximum of 10 models in the population as 

performing a simulation is computationally expensive. The simulation is run for 2 generations. 

Plans are applied to each model and the resulting fitness is computed. 

After 2 generations the fittest individual is able to lift the load of 1000 kg with the same 

input voltage of 110 V. The plan inserts a 1-junction in the mechanical domain by executing 

the inserLOJ rule. Following this the algorithm inserts a transformer TF element between the 

1-junctions, by applying the heuristic rule OJ_TF _OJ. 

The simplified genetic algorithm is able to discover the role of gears in the new physical model. 

The inclusion of the transformer allows the hoisting device to lift the load of 1000 kg. The 

structural variation on the embryo model is shown in Figure 4.1l. 

The graph showing the height vs. time behaviour of the new model is shown in Figure 4.12. 
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Figure 4.10: (a) Height attained by hoisting device for 500 kg mass (b) Hoisting device breaks 
down due to heavy mass 



4.5 Results 89 

.!i1. .'L 

.-'-.--,.j------..~,~~i_-, __ m. , ........... ". t . t ... J 
T, l "- ~"'~r~-"~'-!~--

insert_OJ_TF _OJ 

Final Evolved Model 

Figure 4.11: The Application of Optimal Heuristics to the Embryo Model 
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Conclusion 

In this thesis we presented a methodology for developing models of a physical system at dif­

ferent abstraction levels. We illustrated the importance of dividing the modelling pro cess into 

different levels. Using MDE based ideas it is now very easy to synthesize a complete mod­

elling environment or a modelling language from a meta-model specification. This empowel's 

modellers of one system at different levels to cast their ideas into completely executable code. 

The transformations between visual languages have been specified using GG rules. The vi­

suaI specification of models and also their transformations makes the pro cess of development 

much faster that traditional techniques. The visual specification of rules is far less error prone 

than specifying rules textually. The rules are compact and give a clearer understanding of a 

transformation. The GG rules by themselves are usually self-explanatory. 

Finally, we see with the help of a simple hoisting device example that meta-models provide 

a consistent way to describe a model design space. The model design space of a physical 

system is an ideal candidate for exploration by many existing and newly developed artificial 

intelligence (AI) techniques. We specify heuristic rules as GG rules. Again, we notice the 

power of a visu al l'ule. The first ideas in the mind of an engineer is usually visual and also 

domain specifie. Encoding such a heuristic as a visual rule is faster, error-free and closer to 

the modeller's experiencial knowledge. The rules are executed in a sequence prescribed by the 

genetic algorithm. 

As future work it would be interesting to build two-way transformations between modelling 

languages. The transformation from a low-Ievel modelling language to a high-level modelling 

language will usually open up many possibilities. For instance when a BG model is transformed 

to an IPM model a BG element can be assigned to many different domains. Coming to the 

general notion of the model design space of a modelling language. It would be use fui to come 

up with a method that can do efficient constrain satisfication and design space search for any 

given meta-model and constraints specification. 
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