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Abstract

The constant growth in complexity of engineered physical (electrical,mechanical etc.) systems
has led to the development of software tools to store and reuse design knowledge to simplify
the creation of such systems. Models that encode structure and behaviour of components
in the system are currently being developed based on the techniques prescribed by Model
Driven Engineering (MDE). We use MDE concepts to develop appropriate modelling formalisms
to allow creation of models of a target Engineered Physical System (EPS) at different levels
of abstraction. FEach level of abstraction presents a certain view of the EPS to a domain
expert in the development team. For instance, a high-level view is suitable for a person in a
managerial role. An engineer who deals with the same system at a lower level of abstraction
develops a model using idealized physical components. A physicist’s concern is the physical
meaningfulness of the model. The physicist’s model verifies if the model prescribed by the
manager via the engineer adheres to the laws of conservation of energy and momentum. Finally,
a mathematician or a computer scientist obtains a solution to the constrained equations imposed
by the dynamical system by solving it analytically or numerically. This model usually takes
the form of a set of Differential Algebraic Equations provided by the physicist.

We design model transformations to transform models from a high-level modelling language to
lower-level language. We present visual Graph Grammar rules to perform these transformations.
We start with a high-level representation of the physical system which is a model in the High-
level Physical System Model modelling language. This model is transformed in subsequent steps
to a set of trajectories that describe the state of the physical system over time. We show
that this hierarchy of transformations to encode knowledge about physical systems drastically
reduces design space size at the high-level of abstraction. We search the space of an example
EPS using a design heuristic based randomized algorithm to determine the speedup in search

due to reduction in the number of design variables.



Résumé

La croissance constante de la complexité des systémes d’ingénierie (électrique, mécanique,
etc. ) a mené au développement d’outils logiciel basés sur la réutilisation de connaissances
en conceptions qui ont pour but de simplifier la création de tels systémes. Les modéles qui
représentent la structure et le comportement des composants d’un systéme qui sont actuelle-
ment développés sont basés sur les techniques recommandées par la “Model Driven Engi-
neering” (MDE). La MDE est utilisée pour développer des formalismes appropriés permet-
tant la création de modéles des “Engineered Physical Systems” (EPS) 4 différents niveaux
d’abstraction. Chaque niveau d’abstraction présente une certaine vue de 'EPS aux différent
experts d’une équipe de développement. Par exemple, une vue 4 niveau élevé convient 4 une
personne qui a un rle de gestionnaire. Un ingénieur qui traite le mme systéme 4 un niveau
d’abstraction plus bas, utilise un modéle ou les composants physiques sont modélises. Le souci
d'un physicien est la réalité physique du modéle. Le modelé du physicien vérifie si le modéle
proposé par le directeur et I'ingénieur adhére aux lois de la conservation de énergie et de 1’élan.
En conclusion, un mathématicien ou un informaticien obtient une solution aux équations con-
traintes imposées par le systéme dynamique en le résolvant analytiquement ou numériquement.
Ce modéle prend habituellement la forme d’un ensemble d’équations algébriques différentielles
fournies par le physicien. Nous concevons des solutions pour passer d'un modelé de descrip-
tion de haut niveau a un langage de plus bas niveau. Ces solutions sont en fait une gram-
maire d’outils graphiques. Nous commengons par une représentation 4 niveau élevé du systéme
physique qui est un exemple de langage de représentation de systéme a haut niveau. Ce modéle
est transformé dans les étapes suivantes 4 un ensemble de trajectoires qui décrivent ’état du
systéme physique en fonction du temps. Nous prouvons que cette hiérarchie des transformations
pour modéliser les systémes physiques réduit la taille de I'espace de conception 4 un niveau
élevé de 'abstraction. Nous recherchons I’espace d’un exemple EPS en utilisant un algorithme
heuristique de conception pour déterminer le gain de temps de recherche grace 4 la réduction

du nombre de variables de conception.
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Introduction

Science and engineering have evolved hand in hand, one complementing the other’s develop-
ment. Everyday there is new knowledge and new technology. With the growth in technology
there is also a steady growth in complexity of engineered systems. A desktop computer and the
Internet are examples of very complex real-world systems. The need to reuse and store the art
and the science of developing complex devices of today has led to the development of software

that manipulate stored engineering principles and scientific laws.

Modelling languages are used to represent software models or simply models of real-world
systems. Practical examples of modelling tools include high-level programming languages and
visual languages to model domain-specific systems. Modelling Engineered Physical Systems
(EPS) especially for their application to the construction of embedded systems has led to
the development of several modelling tools. Notably, MATLAB Simulink [Mat] and Modelica
[MS97] are widely used for modelling and simulation of plant-controller systems. Simulink now
is packaged with several libraries with visual modelling elements to build very sophisticated
models. Simulink libraries to model the signal domain for electrical circuits and controllers have
been extensively used in both industry and academia. Modelling libraries such as SimMechanics
[WKO03] and SimHydraulics [Sim] are new domain-specific additions to Simulink’s repertoire
for modelling mechanical and hydraulic systems.

Modelica is an object-oriented language for modelling physical systems. A Modelica model is
represented as a set of state variables and equations (or laws). This allows the modeller to
declare the system behavior as physical law equations and constraints instead of functions or
operations in imperative modelling languages such as MATLAB. Therefore, the modeller does
not have to specify the causality of operation. The causality is automatically assigned via
computer algebra. The non-causal nature of Modelica is the key feature that distinguishes it
from MATLAB/Simulink. The specification of a Modelica model is concise and very close to an
original mathematical formulation. Modelica is rapidly gaining popularity for its application to
modelling EPSs and embedded systems.

Some existing modelling languages claim to allow the construction of domain-specific libraries.
They are however written in a Turing complete high-level programming language so the mod-

eller is unconstrained. This makes it easy for an ezperienced modeller to encode knowledge in
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his/her domains in the same language, such as MATLAB. The same is the case with Model-
ica. The modeller will have to minimize the number of errors he commits for writing a tool
for a specific domain. He/she can achieve this by writing several test cases and by using an
implicit style of programming to write modelling elements. This implicit style or pattern is
nothing but a mix of the modeller’s experience with the domain and his prior experience with
writing equivalent libraries. This approach leaves the domain knowledge in subjective form
either in the modeller’s mind, in text, or as a high-level program. The only requirement for
the program is to execute logically. These are the problems plaguing most existing modelling
and simulation tools. A domain expert with such a tool at his disposal will have the freedom
to build anything without any conceptual feedback (apart from low-level type errors) about
the correctness of his/her model. Therefore we ask, can the modeller be implicitly constrained
using the structural and behavioral knowledge we have about a specific domain?

To answer this question we use Model Driven Engineering (MDE) based techniques [Ken02] to
develop domain-specific modelling languages for EPSs. These languages constrain a modeller
using known restrictions for the domain allowing the creation of only syntactically correct
models. A meta-model with textually expressed constraints is first constructed to specify the set
of valid models. A domain-specific modelling environment is then synthesized from the meta-
model plus constraints specification. We use meta-modelling to synthesize visual modelling
environments [CLOPO02] that allow the creation of models at a visual abstraction level. A
meta-model is analogous to a grammar used to specify the syntax for textual programming

languages.

In the first phase we develop a modelling language at each level of abstraction. We specify
modelling languages, to constrain modellers, using visually expressed meta-models and textu-
ally expressed constraints. The high-level description of an EPS is specified using the High-level
Physical System Model (HLPSM) modelling language. The ideal physical components in the EPS
and their interconnection is modelled using the ldealized Physical Model (IPM) modelling lan-
guage. We specify the Hybrid Bond Graph (HBG) modelling language for developing a physical
domain-independent modelling language for encoding the energy flow structure in the EPS. We
then use the Modelica physical modelling language to represent the set of equations obtained
from a HBG model. Finally, a model in the Trajectory modelling language represents the be-
haviour of the high-level EPS model. The abstract syntaz of models in all the visual modelling
languages, namely, HLPSM, IPM, and HBG are represented using hierarchical labelled graphs.

A model specified in one visual language is transformed to a model specified in another vi-
sual language via graph rewriting [EEKR99]. This process in general can also be called model
transformation. In the second phase we specify model transformations to automatically trans-
form models from high to low abstraction levels. The transformations are performed via graph
rewriting on the abstract syntax graph representation of models. Graph Grammar (GG) rules with

pre-actions, post-actions, and pre-conditions are used to define the transformations between
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models. Most of the formalisms used have a visual concrete syntax. The final transformations
involve code generation and simulation/execution of low-level models to obtain the behavior of
the model. The model transformation MT_HLPSM_2_IPM maps a model conforming to HLPSM
to one that conforms to IPM. The transformation MT_IPM_2_HBG maps IPM models to those
that conform to HBG. An internal transformation MT_HABG_2 HCBG assigns causality to an
acausal HBG (HABG) model which results in a computationally causal HBG (HCBG). This trans-
formation gives us some insight into the physical meaningfulness of the initial model. Modelica
code is generated from the HCBG via the transformation MT_HABG_.2.HCBG. The Modelica
code is an object-oriented representation of a system of Differential Algebraic Equations (DAE).
The DAEs are solved via the transformation MT_Modelica_2_Trajectory which is nothing but the
simulation of the model. The result is a set of plots in the Trajectory language that describes

the behavior of the system.

Using this framework of meta-models, modelling languages, and graph rewriting we separate
the process of engineering a physical system into several steps. The automatic synthesis of a
modelling language from a meta-model specification and the graphical nature of model trans-
formations presents a key difference with respect to existing modelling tools such as Simulink
and Modelica. Further, the constrained nature of a modelling language makes it very easy for

a domain expert to master the language and minimize development errors.

Many times the complexity of a target model is so high that it is difficult for a team of modellers
to come up with an optimal model for a specific task. Under such circumstances the need for
automatically modifying an existing basic model to obtain optimal models becomes useful.
We extend this study to explore the model design space created by the meta-models for each
modelling language. A point in a model design space is a model represented as the abstract
syntax graph. Therefore, a model design space is a space of graphs. A modification to an
embryonic model in the graph form is done via the application of mutation operators to the
model. If a mutation operator results in a graph that does not conform to the meta-model or
does not satisfy its constraints then the model is outside the model design space. We present a
set of mutation operators MT_Heuristics.HBG described as GG rules to transform HBG models
for exploration of their design space. We execute a randomized algorithm to construct optimal
plans that comprise of these mutation operators. This is an attempt to investigate the long-
standing question “ Can a computer replace or augment human invention 7”. The constrained
space of models specified by a meta-model is the search space for exploration by various artificial
intelligence planning techniques. Qur preliminary attempts to search the space of EPS models
is presented in this thesis.

In Chapter 2 we present the development of modelling languages used to develop EPS models
at different abstraction levels. This is followed by Chapter 3 that presents the model trans-
formations to transform models between visual languages. In Chapter 4 we present a set of
GG rules for exploring the design space of EPS models. In the same chapter we present a
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genetic algorithm and preliminary results for design space exploration for a simple example.
We conclude in Chapter 5.



Modelling Languages
for Engineered Physical Systems

2.1 Introduction

Today, modelling is the first step taken toward realizing a complex real-world system. A model
is usually expressed in a modelling language which specifies the syntaz that models must respect.
The syntax of a modelling language is specified by a meta-model or grammar in Backus-Naur
Form (for textual languages) [JWvW160].

We digress for a moment to ask the curios question, how do we express the syntax of the meta-
model itself? Obviously, we need to express a meta-model in an other modelling language.
Such a language is specified using a meta-meta-model. But, does this hierarchy of languages
that express models of other languages not stop? The answer is, yes it does. A modelling
language specified by a meta-meta-model is usually expressive enough to express itself. As we
can see there are three levels of models: model, meta-model, and meta-meta-model. A model
is an instance of a modelling language specified by a meta-model. A meta-model is an instance
of a modelling language specified by a meta-meta model. The meta-model for a meta~-meta-~
model can be expressed using the modelling language specified by the meta-meta-model. This
is called bootstrapping. This digression leads us to the roots of meta-modelling and MDE.

It is important that we understand the role of a meta-meta-model in the MDE framework. The
industry standard for the meta-meta-model is the Meta-object Facility (MOF) [MOF05|. The
MOF is developed by the Object Management Group (OMG). The architecture for MOF is shown
in Figure 2.1. The essential part of MOF called Essential Meta-object Facility (EMOF) is the
conceptual basis for specifying meta-models. It is enclosed in a rectangle in Figure 2.1. We use
concepts in EMOF to describe meta-models and hence it is our focus. Other parts of the MOF

are implementation details that are not of conceptual concern and are not used to describe our
meta-models.

The EMOF specifies that a meta-model comprises of classes and these classes are associated
with properties. A property can be an attribute or a reference. An attribute is of primitive

type and can either be a Float, Integer, Boolean, or a String. Although the official EMOF does
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not contain a definition for Float, we have introduced it in our meta-models to express real
variables. A reference is a relationship end between two classes. The reference in one object
is associated with a reference to another object of a related called. We use this to express
user-defined types in a class. A reference is associated with a multiplicity that constrains the

number of objects that could be referred to.

An inheritance relationship between classes can exist where the properties of a super-class
are inherited by its sub-classes. An inheritance between the super class and a sub class is
represented using a arrow with a white triangular head at the super-class end of the inheritance
relationship.

The meta-model, which is a model of EMOF, is not expressive enough to incorporate arbitrary
constraints that are invariants, pre-conditions, and post-conditions during model generation or
transformation. These constraints that restrict the properties of a model are expressed using
a constraint language such as the Object Constraint Language (OCL) [OMG] or a high-level
programming language such as Python. We express constraints as Python code.

We present the meta-models of three visual languages, used to model the same Engineered
Physical System (EPS), as instances of EMOF: High-level Physical System Model (HLPSM) in
Section 2.2, ldealized Physical Model (IPM) in Section 2.3, and Hybrid Bond Graph (HBG) in
Section 2.4. Visual modelling languages are synthesized from these meta-models. A model
specified using a visual language is expressed in two ways. The model has a concrete visual
syntaz and an abstract syntaz graph representation. The concrete visual syntax of a modelling
language is a domain-specific visual notation used to describe the entities in the model. The
abstract syntax graph is a hierarchical labelled graph as implemented in the Himesis sub-graph
matching kernel [Pro05].

A Himesis graph comprises of nodes and connections. There are two types of nodes, either just
a node or a primitive node. Each node is associated with a label and a unique name. Primitive
nodes have an extra property called the value. The value in a primitive node stores the value of
a primitive data type such as String, Float, Boolean, and Integer. Everything in a valid graph is
a graph in its own right as a single node is a graph too. There are two kinds of connections. A
parent-child edge between nodes is used for representing hierarchy. A connection edge between
nodes is used to represent a link between graph nodes. An object that is an instance of a class
can be constructed using a graph node representing an empty object (referred to as object
node) and its attributes and references created as nodes that are linked to the object node
using a parent-child edge where the object node is the parent and the attributes and references
are its children. A relationship between related objects is created by a connection edge between
the associated references in two classes. The meta-model for Himesis itself is modelled in EMOF
as shown in Figure 2.2. When we create a meta-model or model that utilizes Himesis objects

we use the following naming scheme:

e An object of type Graph is referred to as objectName:Graph.



2.1 Introduction

*

| I

GraphJ'

Graph(name:string,label:string, [parent:Node])

out|

+get(path:string): Node

in out
4

<<Abstract>>
Node

+getName(): string
+getParent(): Node
+getRoot(}): Node
+getGlobalName(): string
+getlLabel(}: string
+getInDegree(): int
+getOutDegree(): int
+isRoot(): bool

+rename (name:string)
+relabel(label:string)
+inC{): Iterator
+getInCAt(pos:int}: Node
+outC(): Iterator
+getOutCAt(pos:int): Node
+getConnTuples()
+hasInC{path:string): bool
+hasOutC(path:string): bool
+getInOrd(path:string}: int
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Float
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+getVatue(}
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Bool
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+getvalue()

String
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+String(name:string,label:string,parent:Node

Figure 2.2: EMOF Meta-model for Himesis
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Hoisting Device Domain-specifc Model of Hoisting Device

AC Mains

odeller

Figure 2.3: The First Model of a Hoisting Device
e A primitive object such as Float Graph is referred to as objectName:Float:Graph.

The representation of an EPS model as code that describes the Differential Algebraic Equations
for the system is expressed in a Modelica program. We briefly discuss the grammar for Modelica
in Section 2.5 which gives the meta-model for Modelica. The behaviour of a model is expressed
as an instance of the Trajectory language. The Trajectory language is a visual language consisting
of traces that show the time-dependent behaviour of the state variables in the model. A meta-

model for Trajectory is described in Section 2.6.

The running example of a Hoisting Device [Bro] is used to illustrate the models of the same

system in all the modelling languages mentioned.

2.2 High-Level Physical System Model (HLPSM) Modelling Lan-
guage

A modeller begins the modelling process by visualizing the system at a high-level of abstraction
where he/she sketches the top-level components of the system. This form of modelling is
typically done by someone in a managerial role. In Figure 2.3 we show an actual hoisting
device and a possible high-level physical model as imagined by a modeller. The high-level
model comprises of visual syntax to represent the electrical mains, the motor, the pulley and
the load. The high-level visual notation is domain-specific in the sense that it does not allow
the modeller an arbitrary repetoire of modelling elements.

Our goal is to provide the modeller with domain-specific modelling tools to realize his imagi-

nation in the form of a model with syntax and semantics. A meta-model is first developed to
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specify the properties of the objects we see in a high-level view of the physical system. An ex-
tension to the meta-model are special constraints one may observe in the system. For example
a power outlet can be only connected to a compatible power inlet, a mechanical device cannot
be connected to an electrical device without an intermediate transducer. An EMOF based
meta-model for the HLPSM modelling language is shown in Figure 2.5. Note that the HLPSM
meta-model is given only to consist of components of a hoisting device. It can be extended to

other domains simply by changing the classes in the diagram according to the system.

The top-level container class in the meta-model is the HLPSM class. There always exists one
HLPSM object in any model as indicated by the multiplicity in the meta-model. A HLPSM object
can contain 0 or 1 Plant objects and is associated with a name. A Plant object consists of 0
to any number (represented by a * in the EMOF model) of PlantEntity objects. The classes
that inherit from PlantEntity are the domain-specific components in the system. According to
the meta-model the Mains class is connected via a Wire to Motor. The Motor class is connected
to a CableDrum class via a Shaft class. The CableDrum class subtends a Load class using a Rope
class. Due to the multiplicities, the modeller is highly restricted and can only build structurally

valid hoisting devices.

A visual modelling environment is automatically synthesized from the meta-model and con-
straint specification of the modelling language. We use the tool AToM® [VdLO04] to achieve
this transformation where a visual editor is synthesized from the meta-model. In Figure 2.4 we
see the visual editor for HLPSM models. The visual editor performs syntax directed checking
implying that it checks if the modeller, as he/she is constructing the model, is violating a
constraint such as going outside the multiplicity bounds.

The underlying Abstract Syntax Graph of a HLPSM model is expressed as a hierarchical labelled
graph. Any transformation to the model is performed on the abstract syntax graph. The
meaning or the semantics of the HLPSM language is given by transformation to the Idealized

Physical Model modelling language as discussed in Chapter 3.

In Figure 2.6 we show an example model in the HLPSM formalism. It describes an electro-

mechanical hoisting device.

The HLPSM model is given to an engineer who constructs an Idealized Physical Model (IPM)
from it. The IPM modelling language is described next.

2.3 ldealized Physical Model (IPM) Modelling Language

Following the development of a high-level physical system model, the modeller associates mean-
ing with the components of the domain-specific physical model by dissecting it into components
with idealized physical behavior. A domain expert for creating such a model would be an en-
gineer or a group of engineers (mechanical, electrical, chemical). An Idealized Physical Model
(IPM) is constructed such that the model consists of only ideal elements with well defined

physics. In our case we restrict our systems to lumped-parameter models where aggregate phe-
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Figure 2.4: Screenshot of a HLPSM Visual Modelling Environment
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HLPSM
Meta-model as an EMOF model (Abstract Syntax) Concrete Visual Syntax
Inport1
Outport1
<Voltage>
Mains
inport1 E————] Outport1
Wire
+Name: String:Graph Inport1 Outport
8..* Motor
PlantEntity B a
+Name: String.Graph Inportt Shaft Outporti
A & s
| ] Inport1 Rope Outport1
Wains Votor Cabledrum Load
+VollageTable: ListGraphi [+ Ratio: Float:Graph 11 Shaft[; 11 #Rato: Float Graph +Value: loat Graph Inportt
+Rosistance: Float:Graphl  J+R_bearing: Float:Graph 1 1 P
#Inductancs: FloatGraph| 1 Tertane: Foal:Graph 1
*svzgin;e: Fl%al:Graph = : Outportt
+offset: Float:
oo s Goph ! 1 Cabledrum
1 Rope Inport
Qutportt
Load

Figure 2.5: EMOF Meta-model and Concrete Visual Syntax for HLPSM to Model Hoisting
Devices

Ratio: 0.11

[0,0;0,50;50,110;100,110] V

500 kg

Figure 2.6: Hoisting device model in the HLPSM formalism
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nomena are described using classical physics [Mac03]. We specify the EMOF meta-model for
the Idealized Physical Model modelling language. The IPM modelling language in general con-
tains entities from different engineering domains: electrical, mechanical, hydraulic, chemical,
and thermodynamic. We present the IPM meta-model to model electro-mechanical systems
comprising of electrical, translational mechanical, and rotational mechanical components. An
extension to the hydraulic, chemical, and thermodynamic domains is straightforward if a similar

meta-modelling pattern is followed.

2.3.1 The Electrical Domain

The electrical domain in the idealized physical modelling language contains two-pin electrical
components such as resistors, capacitors, inductors, voltage, and current sources. Every elec-
trical component consists of a positive pin and a negative pin. A positive pin can be connected
using a wire to a negative pin only and vice versa. An electrical circuit is a combination of
electrical components connected by wires. Voltage and current are conjugate variables that
carry energy in an electrical circuit.

There are many different sources (voltage or current) of electrical energy. They are distin-
guished based on input wave forms and functions. For instance, we can have a constant energy
source, a table with a set of energy values that are interpolated over time, or a sinusoidal wave-
form commonly observed in alternating supplies. Resistors are energy dissipators that convert
part of the input electrical energy to heat energy. Energy is lost only from a resistor since all
other elements are ideal. Energy storage components are capacitors and inductors. Capacitors
store current and inductors store voltage.

Electrical energy is transformed to rotational mechanical energy using a motor. Therefore, a
motor has a positive pin, a negative pin and a mechanical output pin. An electrical transformer
steps up or steps down input electrical energy and the output is electrical energy as well. An
electrical transformer has two pairs of positive and negative pins. A generator converts rota-
tional mechanical energy to electrical energy and has a mechanical input pin. To represent the
physical concepts in the electrical domain, we construct, a meta-model for the electrical part
of the IPM modelling language. The electrical domain meta-model is shown in Figure 2.7.
Looking at the meta-model we see that the IPMElement class is the super-class for all IPM com-
ponents. The IPMElement class consists of two properties, Element and Type. In the electrical
domain the value of Type is “Electrical”. ElectricalElement inherits from IPMElement and con-
tains the property Value. The content of Value depends on the nature of the classes inheriting
ElectricalElement. For instance, a resistor will store the resistance in Value and a capacitor will
storc the capacitance.

There are two types of components in the electrical domain. The first is a TwoPin class of
objects that inherits from the ElectricalElement class. The second is the ElectroMechEnergy-
Transform class which acts as an interface between electrical and mechanical devices and is a
super-class for devices that act as transducers.
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{+MechOutPint: Graphy PosiivePinZ. Graph +MechinPin1: Graph}
+NegativPin2; Graph

Figure 2.7: IPM Modelling Language Meta-model for the Electrical Domain

Every object of type TwoPin contains the properties PositivePinl and NegativePinl which are
graph nodes used for connecting two objects in the electrical domain. In the model they repre-
sent ports of connection. T'wo sub-classes of TwoPin are Resistor and Earth. The TwoPin class is
further categorized as TwoPinStorage and TwoPinSource. The sub-classes of TwoPinStorage in-
clude the electrical Capacitor and Inductor. The InitialValue property for TwoPinStorage elements
contain the initial amount of energy stored in the device. The sub-classes of TwoPinSource in-
clude voltage sources and current sources. The voltage sources are Voltage, tableVoltage, and
sinVoltage. The current sources are Current, tableCurrent, and sinCurrent. The class tableVoltage
contains three attributes which have a graph representation. The properties are table, offset,
and startTime. Similarly, other TwoPinSource classes have their own attributes as shown in the
meta-model.

The ElectroMechEnergyTransform class is inherited by three kinds of energy transformers namely,
Motor, Transformer, and Generator. The ElectroMechEnergyTransform class has the properties
PositivePinl and NegativePinl as ports. The Motor class has MechOutPinl for electrical to
mechanical energy conversion. The Generator class has a MechInPinl node for mechanical
to electrical energy conversion. The Transformer class represents an electrical transformer that
steps up or steps down the voltage and has additional port nodes PositivePin2 and NegativePin2.

The concrete visual syntax for the concrete classes presented in the electrical domain part of
the IPM meta-model is shown in Figure 2.8. The concrete visual syntax for the concrete classes

in the electrical to mechanical energy transformation meta-model is shown in Figure 2.9.
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{ Electrical Domain Concrete Visual Syntax |

Sources
i,
t|v
PositivePin1E }NegativePim PositivePin1EI;NegativePim PositivePin1 C : :NegativePim
<Value> <Unit> <Value> <Unit> <Value> <Unit>
Voltage tableVoltage sinCurrent
PositivePin1 : : NegativePin1  PositivePin1 i : NegativePin1 PositivePim:@ : NegativePin1
<Vaiue> <Unit> <Value> <Unit> <Value> <Unit>
sinVoltage Current tableCurrent
Two Pin Two Pin Storage
'\ \V\/\ 1 m I-I
PositivePin1 NegativePini  FositivePint 1 1 NegativePin1
<Value> <Unit> <Value> <Unit>
PositivePin1 —' NegativePin1
— m /(0.
‘ PositivePin1 ivePi
Earth ositivePin Value> <Unit> NegativePin1
Inductor

Figure 2.8: Concrete Visual Syntax for Electrical Elements in IPM

| Electrical To Mechanical Elements Concrete Visual Syntax |-

PositivePin1 ] PositivePin2

PositivePin1 PositivePin1 } |
- @ MechOutPin1 MechInPin1
NegativePin1 NegativePin1 NegativePin1 NegativePin2

Motor Generator <Value>
Transformer

Figure 2.9: Concrete Visual Syntax for Electrical to Mechanical Elements in IPM
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2.3.2 The Translational Mechanical Domain

The translational mechanical domain consists of mechanical devices that operate on the basis of
linear/translational force and velocity applied to it. Each mechanical device has a mechanical
input port and a mechanical output port. A translational mechanical damper provides resis-
tance against an input force or a velocity. Force is stored in a translational mechanical spring
while momentum is stored in a translational mechanical inertance such as mass. Sources of
translational mechanical forces and velocities have a mechanical output port. These concepts
are modelled in the translational mechanical part of the IPM meta-model as shown in Figure
2.10.

Like the electrical domain element a translational mechanical element TranMechElement in-
herits from the super-class IPMElement. The TranMechElement class has properties Value and
Unit. The contents of Value and Unit depend on the sub-classes of TranMechElement. The Tran-
MechTwoPin class inherits the properties of TranMechElement. The TranMechTwoPin class and
its sub-classes share the common properties MechinPinl and MechOutPinl. The TranDamper
class directly inherits from the TranMechTwoPin class.

The TranMechStorage class contains the property InitialValue. It is inherited by TranSpring and
Tranlnertance. The TranMechSource class has sub-classes for force and velocity sources as shown
in the meta-model. The properties of the sub-classes of TranMechSource sources are equivalent

to those of the classes in the electrical domain and rotational mechanical domain.

The concrete visual syntax for the concrete classes in the translational mechanical domain part

of IPM is shown in Figure 2.11.
2.3.3 The Rotational Mechanical Domain

The rotational mechanical domain consists of mechanical devices that operate on the basis of
the torque and angular velocity applied to it. Each mechanical device has a mechanical input
port and a mechanical output port. A rotational mechanical damper provides resistance against
an input torque or an angular velocity. Torque is stored in a rotational mechanical spring while
momentum is stored in a rotational mechanical inertance such as rotational inertia. Sources
of rotational mechanical torques and angular velocities have a mechanical output port. These
concepts are modelled in the rotational mechanical part of the IPM meta-model as shown in
Figure 2.12.

The RotMechElement inherits from the IPMElement class. The RotMechElement class has prop-
erties Value and Unit. The contents of Value and Unit depends on the sub-classes of RotMechEle-
ment. For instance, a RotDamper object will have the units of Nm/s. The RotMechTwoPin
class inherits the properties of RotMechElement. The RotMechTwoPin class and its sub-classes
have share the common properties MechinPinl and MechOutPinl. The RotDamper class directly
inherits from the RotMechTwoPin class.
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Figure 2.10: IPM Modelling Language Translational Mechanical Domain Meta-model
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| Translational Mechanical Domain Concrete Visual Syntax }

Sources

<Value> <Unit>

<Value> <Unit>

sinForce

MechInPin1

TN
V|
MechinPin1 E ;MechOutPim MechinPin1 :\—4/: MechOutPin1

<Value> <Unit>

Force tableForce
Q—®4
MechInPin1 MechOutPin1 MechinPin1

MechOutPin1

<Value> <Unit>

Velocity
Two Pin Two Pin Storage
—— —_—
H —$ €— Mass
MechinPin1 MechOutPin1 MechinPin1 MechOutPin1
<Value> <Unit> <Value> <Unit>
Damper Inertance
_—
MechQutPin1

<Value> <Unit>

Spring

—
MechinPin1 :: MechOutPin1

<Value> <Unit>

sinVelocity

MechinPin1 MechOutPin1

<Value> <Unit>

tabieVelocity

Figure 2.11: Concrete visual syntax for translational mechanical elements in IPM
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Figure 2.12: ldealized Physical Modelling formalism Rotational Mechanical Domain Meta-model

The RotMechStorage class contains the property InitialValue. It is inherited by RotSpring and
Rotlnertance. The RotMechSource class has sub-classes for torque and angular velocity sources
as shown in the meta-model. The properties of the sub-classes of the RotMechSource are
equivalent to those of the classes in the electrical domain and translational mechanical domain.

The concrete visual syntax for the concrete classes in the rotational mechanical domain part
of IPM is shown in Figure 2.13.

Transducers for transforming mechanical energy to mechanical energy are inherited from the
MechEnergyTransform class. Unlike the electromechanical transducers the mechanical to me-
chanical transducers have an input port MechinPinl and an output port MechOutPinl. The
Cantilever scales up or down translational mechanical energy. The MechGear scales up or down
rotational mechanical energy. The Pulley transforms rotational mechanical energy to transla-
tional mechanical energy. The Pump transforms rotational mechanical energy to pneumatic
energy. The Turbine is responsible for transforming pneumatic energy to rotational mechanical
energy. The concrete visual syntax for the concrete classes for the mechanical to mechanical
transducers is given in Figure 2.14.

A visual modelling environment is synthesized from the meta-model using our tool AToM3. A
screenshot is shown in Figure 2.16. The model of the hoisting device in IPM is shown in Figure
2.15.

2.4 Hybrid Bond Graph Modelling Language

Models in the IPM modelling language can directly be given concrete mathematical meaning in
the form of Differential-algebraic Equations (DAE) or Ordinary Differential Equations (ODE). An
alternative we take is to transform the IPM first to the Bond Graph (BG) modelling language.
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| Rotational Mechanical Domain Concrete Visual Syntax [
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Figure 2.13: Concrete visual syntax for rotational mechanical elements in IPM
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Mechanical To Mechanical Elements Concrete Visual Syntax [

Transformers _T -
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Figure 2.14: Concrete Visual Syntax for Mechanical to Mechanical Elements in {PM
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Figure 2.15: IPM Model of Hoisting Device
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Figure 2.17: Acausal Hybrid Bond Graph

The BG modelling language can be used to verify the model’s physical meaningfulness. This is

done by verifying the laws of conservation of energy and momentum via causality assignment.

The Hybrid Bond Graph (HBG) modelling language comprises of the Bond Graph (BG) mod-
elling language for plant modelling and the Causal Block Diagram{CBD) modelling language for
controller modelling. Therefore, in general a HBG model can comprise of a BG sub-model and
a CBD sub-model or just either one of them. The hybrid in HBG is due to the combination
of CBD and BG elements in one language. The interface between the CBD sub-model and the
BG sub-model is due to two possibilities. Certain components of the BG plant model are either
sensed (diagnostic BG elements) and processed by the CBD model or controlled (modulated
BG elements) by it. A HBG without causality assignment is called the Hybrid Acausal Bond
Graph (HABG). The hoisting device example in HABG is shown in Figure 2.17. After causality
assignment it is called the Hybrid Causal Bond Graph (HCBG). The hoisting device in HCBG is
shown in Figure 2.20.

The EMOF based meta-model for the BG part of the HBG modelling language is shown in
Figure 2.18. The CBD part of the meta-model is shown in Figure 2.23. A visual modelling

environment is synthesized from the meta-model specification. A screenshot is shown in Figure

2.21. The visual syntax for HBG is shown in Figurc 2.19. We start our discussion on the
HBG modelling language by explaining the BG modelling language. This is followed by an
explanation of the CBD modelling language.
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2.4.1 The Bond Graph Modelling Language

The Bond Graph modelling language is a domain-independent graphical representation of energy
flow structure in a physical system. The domain independence means that physical systems
from different domains such as electrical, mechanical, hydraulic, chemical, and thermodynamics
are all modelled using the same notation and give rise to equivalent dynamical equations. The
BG formalism was first developed by Paynter [H.M61]. The idea was further popularized by
Karnopp and Rosenberg [KMRO00]. Today, it has evolved into a systems theory under the
name of Port Hamiltonian Systems [Mac03] which uses Generalized Hamiltonian Formulation

to model plant and controller systems.

The BG modeller is given the Idealized Physical Model of a physical system. The modeller first
identifies the elementary physical concepts from the IPM. This process is called reticulation.
A concept or BG element manipulates energy. Energy, is an aggregate phenomena [Zun94],
which can be calculated in many domains: electrical, mechanical, chemical, hydraulic, and
thermodynamic. A BG element can be an energy source, energy store, energy transformer, or
an energy dissipator irrespective of the domain. Also, the mathematical equations describing
the energetic behaviour of the BG elements are identical for equivalent physical concepts across
domains. Energy is exchanged between the BG elements via bonds connected to a junction
structure.

The BG modelling language is now explained with the help of an example. The example,
shown in Figure 2.22 is designed to show how idealized physical models from different domains
(electrical and mechanical in this case) become domain-independent when transformed to the
BG modelling language. Two systems are considered in the example of Figure 2.22. First, we
have a purely electrical serial LCR (Inductor, Capacitor, Resistor) circuit as shown in Figure
2.22(a). The second system is a purely mechanical damped mass-spring system as shown in
Figure 2.22(b).

We transform the LCR circuit to an electrical domain BG in the following steps:

1. Draw the electrical domain elements, separating them by their positive and negative pins.
These elements appear in rectangular boxes as shown in Figure 2.22(c).

2. We now attach a port called a power port with each of these rectangular boxes containing
electrical elements.

3. To this port we connect a bond or a power bond that denotes the exchange of energy
between elements. The bond is drawn like an edge with a half arrow tip. The direction
of energy flow is determined by the direction of the half arrow.

4. We now add a 1—junction to the electrical BG model. The 1—junction indicates that the
current ¢ in the serial LCR circuit is constant but the voltage across each electric element

varies.

5. The voltage source is the source of energy hence it is connected to the 1—junction with
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the half arrow toward the 1—junction. The inductor and capacitor elements store energy
hence the half arrow is in the direction of the respective electric elements. The resistor
dissipates consumed energy bringing the half arrow direction from the 1—junction toward
itself.

Similarly, the damped mass-spring idealized physical model from the translational mechani-
cal domain is transformed to a mechanical domain BG. The transformation process yields an
equivalent mechanical domain BG as shown in Figure 2.22 (d).

These examples serve as a good trailer to understand the modelling elements of a BG. We
can see that the product of two variables voltage and current play the role of transferring
power between elements in the electrical domain. The product of these two variables is power.
Similarly, the product of force and velocity is power in the translational mechanical domain
and the product of torque and angular velocity is power in the rotational mechanical domain.
This common trend implies that quantities like voltage, force, and torque on the one hand and
current, velocity, and angular velocity on the other are analogous quantities. Variables such
as voltage, force, and torque are called effort variables. Similarly, variables such as current,
velocity, and angular velocity are called flow variables. The energy flow between elements has
the physical dimension of power which is the product of effort and flow. Therefore effort and
flow are known as power-conjugated variables.

The analogy between domains is not just between effort and flow variables but it also exists
between the basic elements of the different domains (electrical and mechanical in our example).
Here is a list of analogies observed in the elements of the electrical and mechanical elements in

our example:

e The damper is analogous to the resistor

e The spring is analogous to the capacitor

e The mass is analogous to the inductor

e The force source is analogous to the voltage source

e The common velocity is analogous to the loop current

The analogies in the basic elements enables us to finally specify the standard BG model. This
is shown in Figure 2.22 (e). The voltage or force source are effort sources hence the standard
bond graph notation Se is used to represent an effort source. The R symbol represents an
energy dissipator, I is the flow store, C is the effort store. The equations that describe the
dynamics of the electrical elements are given below:

ugp = iR

uc = %; f idt

uL=L§§ oriL:%fudt
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Figure 2.22: (a) ldealized Physical Model of LCR Circuit (b) Idealized Physical Model of Damped
Mass-Spring System (c) Bond Graph model of LCR Circuit using Electrical Domain Notation
(d) Bond Graph model of Damped Mass-Spring System using Mechanical Domain Notation (e)
Bond Graph model of LCR Circuit and Damped Mass Spring System using Standard Notation.
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where up is the voltage across the resistor, uc is the voltage across the capacitor, uy, is the
voltage across the inductor, ¢ is the current flowing in the circuit, R is the resistance , C is the
capacitance, and L is the inductance of the LCR circuit. The quantity iy, is accurnulated in
the inductor. The inductor is a flow store, in the electrical domain it stores the current.

The equations that describe the dynamics of the mechanical elements are given below:
F;=av

FS:stvdtzal—S-fvdt

szm%t’- orv:%medt

F, = force

where, « is the damping coefficient, Kg is the spring constant, m is the mass of the object, F,
is the force applied, v is the velocity. The force variable is an effort source while the velocity
variable represents the flow source. In the rotational mechanical domain torque is mapped to
effort and angular velcoty to a flow variable.

Instances of the BG modelling language comprising of an interconnection of elementary com-
ponents itself is a component. This component has an interface that can be used (reused) as a
module in a parent bond graph. Further, the non-causal nature of BG components make it a
hierarchically composed formalism.

The dynamical behaviour of a BG can be obtained by mapping it onto a Causal Block Diagram
and simulating the CBD or by writing out Differential Algebraic Equations and solving the set

of equations.

First, we describe the BG elements of the HBG modelling language. The meta-model, shown
in Figure 2.18, is used to specify the properties of BG elements.

Bonds

A bond represents the flow of power, P, from one point of a physical system to another. It
is represented by a harpoon. There are two physical variables associated with each bond, an

effort, e, and a flow, f. The product of these two variables represents the power: P =e X f.

When causality is assigned to a bond it gets a computational order. The fBond class implies
that the Bond has received an effort-out causality. The eBond class implies that the Bond has
received a flow-out causality. The equations for the bonds is given in Table 2.1. The ports for
the non-causal Bond class are BondConl and BondCon2. The ports for fBond, eBond classes are
eBondConl and fBondConl. Each BG element with one or more ports have names BondConl,
BondCon2,...and so on. The Bond class and its sub-classes fBond and eBond connect to other

BG elements via these ports.



2.4 Hybrid Bond Graph Modelling Language 32

Table 2.1: Equations for Bond Graph Bonds

BG Element Equation

Bond BondCon2.e(t) = BondConl.e(t), BondCon2.f(t) = BondConl.f(t)
BondConl.d = -1, BondCon2.d = +1 (d is the power direction)

fBond fBondConl.e(t) = eBondConl.e(t),eBondConl.f(t) = fBondConl.f(t)
eBondConl.d = —1, fBondConl.d = +1

eBond fBondConl.e(t) = eBondConl.e(t),eBondConl.f(t) = fBondConl.f(t)
fBondConl.d = —1,eBondConl.d = +1

Table 2.2: Equations for Bond Graph Energy Sources

BGElement Equation

Se e(t) = el

tableSe e(t) = TimeT able(table, startTime, of f set)

sinSe e(t)=sin(e0, freq, of f set, phase, startTime)

st £(t) = £0

sinSf f(t) = sin(f0, freq, of f set, phase, startTime)

tableSf f(t) = TimeT able(table, startTime, of fset)

mSe el = s,e(t) = s, s is the input signal

mSf f0 =s, f(t) = s, s is the input signal

Energy Sources

Energy sources are interfaces of the BG with its environment. In the real world, examples
of energy sources are: voltage and current in the electrical domain, force and velocity in the
mechanical domain. In the bond graph modelling language sources of voltages, force, and
torque are called effort sources and sources of current, velocity, and angular velocity are called
flow sources.

In Table 2.2 we present the equations that represent the semantics of the energy sources in the
meta-model for HBG. The basic effort source is Se and a basic flow source is Sf. The tableSe
and tableSf are tabular sources. The table contains two element tuples. A linear interpolation
is performed from one tuple to the next to obtain a continuous function. The sinSe and sinSf
source are sources as sinusoidal wave forms. The amplitude, frequency, start time, and offset
are parameters for the sinusoidal sources. The sources mSe and mSf are modulated sources.
The modulated sources are controlled by the signal domain, hence they have an input s which

represents the value of a signal from a controller or another external signal source.
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Table 2.3: Equations for Bond Graph Energy Dissipators

BG Element Equation
R e(t) = Rx* f(t)
mR R=s,e(t)=Rx* f(t)

Table 2.4: Equations for Bond Graph Storage

BG Element Equation
de(t
C £(t) =C x %8
df(t
I e(t) = I x 40
de(t
mC e(t) = s, f(t) = C x i)

mI [(t) = s,e(t) = I x L

Energy Dissipators

Energy dissipators are responsible for consuming energy from the system model. They are
called resitors in the HBG modelling language and are associated with a resistance. In the
electrical domain an electrical resistor, in the translational mechanical domain a damper and
in the rotational mechanical domain a rotational damper are all modelled as a BG resistor R.

The semantics of an R element is given in Table 2.3.

A modulated resistor, mR, is controlled by the signal domain. The semantics of a modulated
resistor is presented is presented in Table 2.3. The s signal gives variable resistance to the R

element. The s variable is controlled by an external controller or an other signal source.

Energy Storage

Energy storage in the BG mo.delling language is of two kinds. The storage of flow takes place
in the capacitor element C. The storage of effort takes place in the inductor element |. The
equations are presented in Table 2.4. Effort is stored in the electrical inductor of the electrical
domain and flow is stored in the electrical capacitor. In the translational mechanical domain
effort is stored in the inertance and flow is stored in the spring. Finally, in the rotational
mechanical domain effort is stored in the rotational inertance and flow in the rotational spring

elements.

Energy Transformers

Enecrgy transformation can be formed by two kinds of clements, a transformer and a gyrator.
If the input to the transformer TF is an effort the output is also an effort scaled up or down
by a certain factor. A gyrator GY transforms effort to flow and flow to effort each scaled up
or down by a certain factor. A transformer usually transforms energy within the same do-

main. Examples of transformers are the electrical transformer (electrical domain), cantilever
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Table 2.5: Equations for Bond Graph Transformers

BG Element Equation

TF el(t) = m x e2(t), f2(t) = m x f1(t)

GY el(t) =r x f2(t),e2(t) = r x f1(t)

mTF m = s,el(t) =m x e2(t), f2(t) = m x f1(t)
mGY r=s,el(t) =7 x f2(t),e2(t) = r x f1(t)

(translational mechanical domain), and the mechanical gear (rotational mechanical domain).
A gyrator transforms energy between two domains. Examples of gyrators include the motor
(electrical to rotational mechanical), generator (rotational mechanical to electrical), pump (ro-
tational mechanical to pneumatic), pulley (rotational mechanical to translational mechanical),
and turbine (pneumatic to rotational mechanical). The equations that describe the semantics
of TF and GY elements in given in Table 2.5. The scaling factors are m for transformers and r

for gyrators.
Junctions

Junctions couple two or more BG elements in a power continuous way. There is no encrgy
storage or dissipation in a junction. Examples are a series connection or a parallel connection
in an electrical network, a fixed coupling between parts of a mechanical system. Junctions
are portsymmetric, the ports can be exchanged in the constitutive equations. Following these
properties, it can be proven that there exist only two pairs of junctions: the 1-junction and

the O—junction.

The O-junction represents a node at which all efforts of the connecting bonds are equal. An
example is a parallel connection in an electrical circuit. Due to the power continuity, the sum
of the flows of the connecting bonds is zero, considering the sign. The power direction (i.e.
direction of the half arrow) determines the sign of the flows: all inward pointing bonds get a
plus and all outward expansion pointing bonds get a minus. This summation is the Kirchhoff
current law in electrical networks: all currents connecting to one node sum to zero, considering
their signs: all inward currents are positive and all outward currents are negative. We can
depict the O-junction as the representation of an effort variable, and often the O—junction
will be interpreted as such. The 0-junction is more than the (generalised) Kirchhoff current
law, namely also the equality of the efforts (like electrical voltages being equal at a parallel
connection).

The 1-junction is the dual form of the 0-junction (roles of effort and flow are exchanged). The
1—junction represents a node at which all flows of the connecting bonds are equal. An example
is a series connection in an electrical circuit. The efforts sum to zero, as a consequence of the
power continuity. Again, the power direction (i.e. direction of the half arrow) determines the
sign of the efforts: all inward pointing bonds get a plus and all outward pointing bonds get a
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Table 2.6: Equations for Bond Graph Junctions

BG Element Equation
0—Junction e[2: 6](¢) = e[1: 5](¢),>. f(t) =0,

all efforts are equal(number in square brackets indicate the indices)
1—Junction fl2:6] = f[1:5],> e(t) =0,

all flows are equal

Table 2.7: Equations for Bond Graph Diagnostic Elements

BG Element Equation

De Outport]l = e(t), f(t) =0

Description This component is used to sense the value of effort in a junction

Df Outportl = f(t),e(t) =0

Description This component is used to sense the value of flow in a junction

Dp Outportl = [ e(t)dt

Description This component is used to sense the value of generalized momentum in a
junction

Dq Outportl = [ f(t)dt

Description This component is used to sense the value of generalized position in a junction

minus. This summation is the Kirchhoff voltage law in electrical networks: the sum of all voltage
differences along one closed loop (a mesh) is zero. In the mechanical domain, the 1junction
represents a force balance (also called the principle of dAlembert), and is a generalisation of
Newtons third law, action = reaction). Just as with the Ojunction, the 1junction is more than
these summations, namely the equality of the flows. Therefore, we can depict the 1junction as

the representation of a flow variable, and often the 1—junction will be interpreted as such.

The equations for BG junctions is given in Table 2.6.
Diagnostic Elements

A BG contains many diagnostic elements that can be used to read an effort, flow, the generalized
position and momentum from a junction. All diagnostic elements in the BG language inherit
from DiagnosticOnePort. The description for the diagnostic elements in a BG is given in Table
2.7.

2.4.2 The Causal Block Diagram Modelling Language

A causal block diagram processes signals. A causal block diagram consists of input/output
control blocks. These control blocks are either continuous, discrete, logical, or table blocks.

Each block can have zero, single or multiple inputs or outputs depending on the operation
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performed. Input signals are processed by a control block and the output is a signal. We present
a meta-model for the Causal Block Diagram modelling langauge with a subset of operation blocks
in Figure 2.23

Each block has a certain number of inputs and outputs and a output signal value based on the
operation it performs. In the meta-model the class Block contains the properties BlockGraph and
Value. The BlockGraph property is the root node of the abstract syntax graph that represents a
CBD model. The Value property contains the signal value. The class XIXO inherits from Block
and has properties that depict the number of inputs, nin, and outputs nout.

The concrete classes inherit from XIXO and represent the operation blocks that are used in a

CBD. The various operation blocks and their description is given in Table 2.8.

2.5 Modelica Language

In this section we present the modelling of an EPS in the object-oriented physical system mod-
elling language called Modelica. Modelica is based on an object-oriented textual representation
of a common mathematical framework of Differential Algebraic Equations (DAE). DAE systems
possess both discrete and continuous behaviour. This allows for the representation of HBG
models which can contain both continuous Ordinary Differential Equations for the BG dynamics
and discrete transitions due to algebraic equations obtained from the controller expressed as a
CBD.

The Modelica language describes a model using the construct model. A model is a class that
contains state objects and equations. State objects are instances of models of the components
in the system. Equations either describe the DAE governing the evolution of the state objects
or specify a connection between objects. The connection implies that there is flow of a physical
quantity or information between objects. A Modelica model is flattened to obtain the algebraic
assignment equations that are used to connect objects. For more information on Modelica refer
to the citation [Fri03] [MS97]. The BNF grammar for Modelica in essence specifies the meta-
model for the Modelica langauge. For information on the Modelica language specification see
[Mod05].

The Modelica language comes with a standard library which contains model elements for causal
blocks. A BG modeling library written by Prof. Francois Cellier is also available [CN05]. We

use these libraries to represent HBG models in Modelica.

The concrete textual syntax for the main module for the hoisting device model in textual

Modelica form is given below:

model HoistingDeviceHABG
"Hoisting Device Model in Modelica using Bond Graph Library"
BondLib.Junctions.Jip4 Jip4_1;
BondLib.Bonds.fBond fBondl;
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Table 2.8: Equations for Causal Block DiagramElements

CBD Element

Equation

Constant y =k, k=0, where k is a Real Number

Description A constant signal value is given as output. There is no input.

Sum y = Yu, where u is the input vector

Description The sum of the input signals is given as a single/multiple output(s). The
number of input signals is two or more.

Integrator y = fot udu, where u is the input vector

Description The integrator is a continuos block that integrates the incoming signal upto
the current simulation time.

Derivative y = ‘fj—‘t‘, where u is the input vector

Description This block outputs the derivative of a input signal with respect to the current
and previous time steps

Delay y = pre(u), where u is the input vector

Description This block outputs the value of the signal at the previous time steps

PID y = Nge(t) + % fot e(t)dt + NgTy dfi(tt) + ug , where e is the error signal
N, is the gain, T; is the time constant of the integrator, and Ty is the time
constant of derivative

Description This block outputs the proportional, integral, derivative control signal based
on error feedback

TimeTable y = table, table = [0, 0; 0, 10; 0, 100], where table is a collection of tuples

Description This block outputs the a value at a given time from the interpolated function
of the values in the table

Generic y = f(u,t), where f is a generic function

Description This block processes the input signal using an arbitrary generic function

Feedback y = u; — ug , where uy and us are input vectors

Description

This block outputs the difference in two input signals
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BondLib

BondLib

BondLib

equation

.Passive.I I1(I=0.05);
BondLib.
BondLib.
BondLib.
BondLib.
BondLib.
.Passive.I I2(I=667);
BondLib.
BondLib.
BondLib.
BondLib.
BondLib.
BondLib.
.Bonds.fBond fBond3;
BondLib.
BondLib,
BondLib,
BondLib.
BondLib.
BondLib.
BondLib.
BondLib.
BondLib.

Passive.R R1(R=0.5);
Bonds.eBond eBond2;
Passive.GY GY1(r=3);
Junctions.Jip4 Jipd_2;
Bonds.eBond eBond5;

Passive.R R2(R=1);
Passive.TF TF1(m=0.11);
Bonds.eBond eBond6;
Bonds.eBond eBond7;
Bonds.eBond eBondS8;
Passive.I I3(I=500);

Sensors.Dq Dqi;
Junctions.J1p4 Jip4_3;
Bonds.Bond Bond1;
Bonds.eBond eBond3;
Bonds.fBond fBond4;
Bonds.eBond eBondl;
Bonds.eBond eBond4;

Sources.tableSe tableSel(table=[0,0; 50,0;
Sources.tableSe tableSe2(table=[0,0; 50,0;

connect (fBondl.fBondConl, Jip4_1.BondConl);
connect (J1p4_1.BondCon3, eBond2.fBondConl);
connect (eBond2.eBondCont, R1.BondConl);
connect (J1p4_2.BondCon3, eBond5.fBondConl);
connect {eBond5.eBondConl, R2.BondConi);
connect (J1p4_2.BondCon2, eBond6.fBondConl);
connect (eBond6.eBondConi, TF1.BondConl);
connect (TF1.BondCon2, eBond7.fBondConl);
connect (eBond8.eBondConl, I13.BondConl);
connect (fBond3.fBondConl, Jip4_3.BondCon2);
connect (eBond7.eBondConl, Jip4_3.BondCon4);
connect (J1p4_3.BondCon3, eBond8.fBondConl);
connect (Jip4_3.BondConl, Bondl.BondConl);
connect (Bondl.BondCon2, Dql.BondConl);
connect (J1p4_1.BondCon4, eBond3.fBondConl);

50,110; 100,110]);
50,-4900; 100,-4900]);
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+Value: Float]

MNo..1

Figure 2.24: Meta-model for the Trajectory Language

connect (eBond3.eBondConl, I1.BondConl);
connect(J1p4_1.BondCon2, fBond4.eBondConl);
connect (fBond4 . fBondConl, GY1.BondConl);
connect (GY1.BondCon2, eBondl.fBondConl);
connect (eBondl.eBondConl, Jip4_2.BondConl);
connect (J1p4_2.BondCon4, eBond4.fBondConl);
connect (eBond4.eBondCont, I2.BondConil);
connect (tableSel.BondConl, fBondl.eBondConl);
connect (tableSe?2.BondConl, fBond3.eBondConl);
end HoistingDeviceHABG;

2.6  Trajectory Language

We see the behavior of an Engineered Physical System as a model of it. The Trajectory modelling
language is specified to represent the evolution of the state of a model. A Trajectory model is
obtained by solving a set of DAE or ODE that mathematically represent the model of the EPS.
The system of DAE is solved using a solver such as DASSL [AP98]. The result of solving the

system is the trajectory of the state variables in the model with respect to time.

A Trajectory model consists of several trajectories. Each trajectory consists of several state
points or just points. A point is associated with a time stamp and a value. We present the
meta-model for the Trajectory modelling language (Figure 2.24) to represent the syntax of Tra-
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Figure 2.25: Trajectory Model of the Hoisting Device
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Table 2.9: Hoisting Device Parameters

Component Parameter Value Unit
Name

tableSel table [0, 0; 50, 0; 50, 110; 100, 110] Volts
tableSel startTime 0 Seconds
‘tableSel offset 0 Volts
tableSe2 table [0,0; 50, 0; 50, —4900; 100; —4900] Newton
R1 R 0.5 Q

I1 I 0.05 Henry
GY1 r 3 NA

I2 I 667 Nm/rad
R2 R 1 Nms/rad
TF1 m 0.11 NA

I3 I 500 kg

jectory models. The ModelTrajectory class has a Name attribute which is of type String. It is the
container class for 0..* Trajectory objects. Each Trajectory object has a Name attribute which
is the name of a state variable in the system model. The range of values a state variable or
a Trajectory object takes is a collection of 0..* Point objects. Each Point object consists of a

Value attribute which is of type Float and its Time of occurence.

The concrete syntax for a Trajectory model is a set of plots. Two important plots for hoisting
device example are shown in Figure 2.25. The voltage applied to the hoisting device is shown
in Figure 2.25 (b). The voltage is zero until 50 seconds and then it is brought up to 110 V
for the next 50 seconds. A mass of 500 kg is being lifted by the hoisting device. It is assumed
to be laying on the ground. The reactive force from the ground stops the mass from plunging
into the earth. Therefore, a downward force comes into play as soon as the hoisting device
attempts to lift the mass off the ground. This occurs at 50 seconds. At the end of 100 seconds
the hoisting device lifts the mass to a height of around 15 meters as shown in Figure 2.25 (a).

The parameters for all the components in the hoisting device are given in Table 2.9.

The Trajectory model is the final model a modeller can observe for a system. It is the behavior
of the EPS. Therefore, this model can also be regarded as the semantics of the models described

in all the modelling langnages in the previous sections.



Model Transformations

3.1 Introduction

In the previous chapter we introduced several modelling languages that specify the syntax for
representing an EPS at different abstraction levels. In this chapter we specify the semantics
for each of the modelling languages. The specification of the semantics along with the syntax

of a modelling language makes it a modelling formalism.

Most of the modelling languages described earlier are visual modelling languages. Models that
are an instance of a visual language have a concrete visual syntax and an abstract syntax graph
representation as we have seen for the hoisting device example. The graph data structure for
the abstract syntax of a visual model makes it viable to the application of graph rewriting
[Aga03] [EEKR99] for model transformation. We use the Himesis sub-graph matching kernel
[Pro05] to facilitate graph rewriting.

Graph rewriting on a model is performed by an ordered set of Graph Grammar (GG) rules. A
GG rule consists of an LHS graph and an RHS graph. The rule is applied on a host graph which
is the abstract syntax graph of the current model. Sub-graph matching between the LHS graph
and the host graph is performed. The result of matching is a set of matching nodes in the host
graph that correspond the nodes of the LHS graph. These matching nodes have the same label
(or type) as that of the LHS graph pattern. The matched nodes can be further checked for
some properties before application of the rule. A pre-condition is a truth statement about some
properties in the match. If it is true then the rule is applied. As a result of the application the
nodes in the RHS effect the change in the model. Some properties of graph node values can
also be set as specifications or they may simply be copied from the LHS. The execution of the
set of rules can either be programmed or be executed in a sequence.

The denotational semantics of the visual modelling language HLPSM is given by transforming
an HLPSM model to the IPM modelling language. The GG rule set MT_HLPSM_2_IPM for
this transformation is given in Section 3.2. The denotational semantics for the IPM modelling
language is obtained by a transformation to the HBG modelling language. Therefore, the
transformation MT_IPM_2_HABG (presented in Section 3.3) transforms the IPM to an acausal
HBG or HABG. The computational direction for evaluating the efforts and flows in the HABG is
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obtained by applying the transformation MT_HABG_2 HCBG (in Section 3.4) which performs
causality assignment on a HABG model. The set of rules mentioned so far are based on graph
rewriting.

The next transformation from HCBG to Modelica is a graph traversal algorithm. This trans-
formation MT_HCBG_2_Modelica is presented in Section 3.5. The conversion of Modelica code
to efficient C code that implements a DAE solver and its execution/simulation is discussed in

the transformation MT_Modelica_2_Trajectory given in Section 3.6.

During formalism transformation we have a model in a source formalism that is transformed
to a model in a target formalism. The model elements in the source formalism could be related
to each other. The application of a GG rule may introduce the counterpart model element
from the target formalism for a model element in the source formalism. Removing the source
formalism model elements at this stage will destroy all its relationships and hence we have
no way to find out what it connects to. Moreover, the rule may be applied to several source
formalism model elements. To precisely identify which source formalism element was connected
to which target formalism element we introduce a special model element called a GenericLink.
In most transformations this link is described by a dotted purple line.

The GenericLink connects model elements in the source and target formalism. Suppose that a
source model element A is connected to another model element B in the source formalism. Let
X be the model element in the target formalism that ultimately replaces A and is connected to A
via a GenericLink. The replacement for B in the target formalism is Y and Y needs to be related
to X. A pattern that associates A to X has already been created using a GenericLink, hence
we can easily formulate a rule that finds the X that corresponds to A and can be associated
with Y that is the counterpart for B. Therefore, a GenericLink is a special model element that
is used during formalism transformation and does not exist otherwise when a model conforms

to its modelling language.

As a note, in the rules all the elements have an unique label but labels are shown only for
the nodes relevant to the transformation. The sub-graph matching operation may result in
several matches. The application of a rule on the matches are ordered based on the results of
a bread-first search algorithm. Once, a rule is applied to a match a flag is set that prevents
the application of the rule on the match a second time. In the next iteration the matching
rule is applied to the next unprocessed match. Sometimes the application of a rule to multiple
matches at a time does not effect the correctness of the model. In such a circumstance the rule

is applied in parallel for all matches on the model.

3.2 High-level Physical System Model to Idealized Physical Model

We now present the GG rules used to transform a HLPSM model to an IPM model. The rules
are presented in concrete visual syntax with textually expressed parts where necessary. Each

rule is executed according to an execution order. If one rule is executed the next rule to be
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Table 3.1: Graph Grammar rules in execution order for MT_HLPSM_2_IPM

Order Rule Name Description

1 Mains.2.IPM HLPSM of electrical mains is transformed to IPM
electrical circuit with resistance, capacitance, voltage
source, and motor

2 Motor 2_1PM HLPSM of a motor is transformed to IPM components
of the rotational mechanical domain with rotational
inertance and damping and connected to the motor.

3 CableDrum_2_IPM HLPSM of the cable drum is transformed to an IPM
pulley and connected to the rotational inertance

4 Load_2_IPM HLPSM load is transformed to IPM mass which is con-
nected to the pulley

5 delete HLPSM _Load HLPSM load is deleted from the graph

6 delete_ HLPSM_Cabledrum HLPSM cabledrum is deleted from the graph

7 delete_ HLPSM_Motor HLPSM motor is deleted from the graph

8 delete_ HLPSM _Mains HLPSM mains is deleted from the graph

9 delete _GenericLink GenericLinks are deleted from the graph

checked is the first rule in the order. Hence, after executing every matching rule the execution
starts from the first rule. The order prescribed is one of the many possible orders of execution.

Some rules can be executed in parallel.

The rules are shown in Figures 3.1 and 3.2. The list of rules, their execution order and short

descriptions are given in Table 3.1.

3.3 ldealized Physical Model to Hybrid Acausal Bond Graph

The Idealized Physical Model (IPM) is obtained by applying the transformation MT_HLPSM_2_IPM
to the abstract syntax graph of the HLPSM model. The next step is to obtain the Hybrid Bond
Graph model for the IPM. A step by step process to perform this transformation is textually
described in [Bro99]. We present the GG rules to perform the transformation in Figures 3.3,
3.4, 3.5, 3.6, 3.7, 3.8. The rules for simplifying the structure of the obtained BG are given in
Figures 3.9, 3.10.

The rules for transforming IPM to HABG are executed in the order described in Table 3.2.
The rules for simplifying the structure of a HABG are described in Table 3.3. The order is not
unique. Depending on the independence of one rule with respect to another the rules can either

be executed in a different order or even in parallel.

3.4 Hybrid Acausal Bond Graph to Hybrid Causal Bond Graph

We now discuss the transformation MT_HABG_2_HCBG to perform causality assignment on an
acausal BG. We perform causality assignment to given computational direction the bonds in

the bond graph. Each bond is either given an effort-out or a flow-out causality.
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Rulel: Mains_2_IPM

Precondition:
LHS — RHS node = LHS.nodeWithLabel(1)

return node.isTransformed(}
Post Action:
1 node = self.LHS.nodeWithLabel{1)
node.setTransformed{True}
1
ot . Specify Value : Float in Resistorl #3
- : return (HS.nodeWithLabel(1).Resistance.getvalue()
,,:'" Maing! Speclfy Value : Float in Inductorl #4
return (HS.nodeWithLabel(1).inductance.getValue{)
Malrat Specify table: List In tableVoltagel #2
return LHS.nodeWithLabel{1).VoltageTable.getVatue()
Specify startTime : Float in tableVoltagel #2
return LHS.nodeWithLabel(1).startTime.getValue(}
Specify offset: Float in tableVoltagel #2
return LHS.nodeWithLabel(1).offset.getValue()
Rule 2 : Motor 2_IPM
LHS — RHS
Precondition:
node = LHS.nodeWithLabel(2}
return node.isTransformed{)
1 Pogt A‘:ﬂﬁ‘nL:l'tS deWithLabel(2)
P node = seif.LHS.nodeWithLabe!
- 2 um; SPEGED: Mrud SPECIRED: st node.setTransformed(True)
P
- ot Specify Value : Float in RotDamperl #4
st return LHS.nodeWithLabel(2).R_bearing.getValue()
Metort Speclf{ Value : Float in Rotinertancel #5
return [HS.nodeWithLabel(2).3_Inertance.getVaiue()
Specify Value : Float in Motorl #3
return LHS.nodeWithLabel{2).Ratio.getValue()

Precondition:
node = LHS.nodeWithLabel(3)
return node.isTransformed()

Post Action:
Rotinertancet .* Rotinertancel Risad’ node = self.LHS.nodeWithiabel(3)
o T puleyt node.setTransformed{True)

Specify Value : Float in Pnllak'.l #4
I

: 1
M ! ﬁ return [HS.nodeWithLabel(3).Ratio.getValue()
had et
ower

et
Notort CableDrum? Notort CableDrum1

Rule 4: Load 2 IPM
LHS
PrecondItion:
node = LHS,nodeWithLabel(1)
return node.isTransformed()
2 MachioPin
a Post Action:
et node = self LHS.nodeWithLabel(1)
v node.setTransformed(True)
(CabieDrum1|

Spoclfl Value : Float In Inertancel #4
return LHS.nodewIthLabel(1).Value.getvalue(}

[
Loadt

Figure 3.1: Model Transformation HLPSM to IPM: Rules 1-4
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Rule 5 : delete_HLPSM_Load

LHS — RHS

Inport1

Load1

Rule 6 : delete_HLPSM_CableDrum

LHS P — RHS

a1

-] Empty

Rule 7 : delete_HLPSM_Motor

LHS — RHS
Empty
Rule 8 : delete_HLPSM_Mains
LHS — RHS
Empty
Rule 9 : delete_Genericlinks
LHS B RHS
1
Empty

Figure 3.2: Model Transformation HLPSM to IPM: Rules 5-9
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Table 3.2: Graph Grammar rules in execution order for MT_IPM_2_HABG

Order Rule Name Description

1 identify_efforts_E_2_E IPM electrical link is converted to a 0-junction

2 identify _efforts_M_2_M IPM mechanical link is converted to a 1-junction

3 effort_differences_Resistor An R element is inserted between junctions at the ends
of an IPM resistor

4 effort_differences_Capacitor A C element is inserted between junctions at the ends
of an IPM capacitor

5 effort_differences_Inductor An | element is inserted between junctions at the ends
of an IPM inductor

6 effort_differences_tableVoltage A tableSe element is inserted between junctions at the
ends of an IPM table voltage

7 flow_differences_RotDamper  An R element is inserted between junctions at the ends
of an IPM rotational damper

8 flow_differences_RotInertance An | element is inserted between junctions at the ends
of an IPM rotational inertance

9 flow_differences_Inertance An | element is inserted between junctions at the ends
of an IPM translational inertance

10 motor_ 2_GY A GY element is inserted between junctions at the ends
of an IPM motor

11 pulley 2_TF A TF element is inserted between junctions at the ends
of an IPM pulley

12 delete E.2.E All IPM E_2_E links are deleted (for all matches)

13 delete M_2. M All IPM M_2_M links are deleted (for all matches)

14 delete_Resistor All IPM Resistor elements are deleted (for all matches)

15 delete_Capacitor All IPM Capacitor eclements are deleted (for all
matches)

16 delete_Inductor All IPM Inductor elements are deleted (for all
matches)

17 delete_Voltage All IPM Voltage elements are deleted (for all matches)

18 delete_RotInertance All IPM Rotlnertance elements are deleted (for all
matches)

19 delete_RotDamper All IPM RotDamper elements are deleted (for all
matches)

20 delete_Motor All IPM Motor elements are deleted (for all matches)

21 delete_Pulley All IPM Pulley elements are deleted (for all matches)

22 delete_Inertance All IPM Inertance elements are deleted (for all
matches)

23 deleteEarth All IPM Earth elements are deleted (for all matches)

24

delete_Genericlink

All GenericLinks are deleted
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Rule 1 : identify_efforts E 2 E

LHS — RHS
Precondition:
node = LHS.nodeWithLabel{1)
1 1 return node.sTransformed("E_2_E"}
E2.B1 Post Action:
E2E - 2 BondCont Bondont node = LHS.nodeWithLabel{1)
.\ /. node.setTransformed(*E_2_E", True)
o-0-o
BondCon2  BondCond
ZeroJunction
Rule 2 : identify_efforts M_2 M
LHS —_— RHS
Precondition:
node = LHS.nodeWithLabel{1)
return node.isTransformed("M_2_M")
1
! Post Actlon:
—_— M2 M 2 node = LHS.nodeWithLabel(1)
M2 it /. node.setTransformed(*M_2_M", True]
1o
BondCin2  BondCon3
OnsJunctiont
Rule 3 : effort_differences_Resistor
LHS — RHS
3 6 node = LHS.nodewithLabel(3) § .
’\/\/\/\/' R return node.isTransformed{ “effort_differences_Resistor")
E2E - Y]
B g - 5 Post Action:
Rt 0 Bondd i node = LHS.nodeWithLabel(3)
node.setTransformed(®effort_differences_Resistor",True)
Specify Value : Float in R1 #6
1 2 return LHS.) nodeWIthLahel(B) Value.getValue()
Zsrodunctiont Zerodunction2
1 2
0 0
Zorodunctiont Bondt Onsdunctiont Bond2 Zarodunction?
Rule 4 : effort_differences_Capacitor
LHS — RHS
6 ncde = LHS.nodeWithLabel(3)
.q ’_- C return node.isTransformed( "effort_differences_Capacitor”)
E2€ E2E2
= == 5 « " Post Actlon:
<ANY> Coloumbs Om rg node = LHS.nodeWithtabel(3)
Capacltor1 node.setTransformed("effort_differences_Capacitor",True}
B Spl:lfz Value : Float In C1
. retun LHS.nodeWithLabel(3). Value getvalue{)
1 2 167
0 0 <COPIED> Coloumbs -
ZeroJunction!  ZaroJunction? Capacitort
1 4 . 2
—o-1 0
Zerodunctiont Bandt Onedunctiont Bond? Zaroduncion?

Figure 3.3: Model Transformation IPM to HABG: Rules 1-4
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Rule 5 : effort_differences_Inductor

LHS

—

RHS

P s ey

E2E . wamoret . E_2_E2

1 2
0 0

Zarodunctionl ZerodunctionZ

1

0§—~0———\0—+1—0ﬁ.——4+0

node = LHS.nodeWithLabel(3)
return node.isTransformed{ *effort_differences_Inductor"}

Post Action;
node = LHS.nodeWithLabel(3)
node.setTransformed("effort_differences_inductor”, True)

Value : Float in I1 #
HS.nodeWithLabel(3). Value getValue()

Specll
retum

Zarodunctiont Bondt Onedunctiont Bond2 ZaroJunction?
Rule 6 : effort_differences_tableVoltage
LHS — RHS
3 6 node = LS nodewthLabeli3)
return node.isTransformed( “flow_differences_Voitage")
E2E E182 s Se Post A
§ AN Vol 0 Bondd e hods = LHamodeWithiabelc3)
tabIeVoItage1 node.setTransformed(*flow_differences_Voltage”,True)
Specity Valua : Float in Sel #6
1 9 return LHS.1 nodeWIthLabel(a) Value.getValue()
0 0 <SPECIFIED> Voiis
Zsrounctiont  Zsrodunction2 tableVoltage1
1
1—0——0———\o—
- 0
Zerodunctiont Bondt Onedunctiont Zerodunction?
Rule 7 ; flow differences RotDamper
— RHS
° node = LHS. nodeWithLabel(3)
5 _'/._¥,# R retum node.| lsTransfovmed( "flow differences_RotDamper”}
1 Bondd R Post Actlon:
D onoNmmd G node = LHS.nodeWithLabel(3}
© RotDamper! ' node.setTransformed{*flow_differences_RotDamper*,True}
". Specify Value :
1 1 1 return LHS. deWIthLabeI(J) Value getValue()
OneJunctions OneJunction2 N -
1-e
OnsJunctiont Bondt Zarodunclion? OneJunction2
Rule 8 ; flow differences Rotinertance
LHS — RHS
° node = LHS.nadeWithLabel(3)
s _/____3.,,07 ] return node.isTransformed( “effort_differences_Rotinertance”)
-
1 Bond4 " Post Actlon:
! node = LHS nodeWithLabel(3)
© <ANY> Nmered ‘effort_differences_ e",True)
! Rotinertance
: Specify Value : Float in (3
1 <SPECIFIED> Newred return LHS.nodeWithLabel(3). Value getValue()
1 Rotinertance1
OnsJunctiont Onedunction2
1 ; X 4 2
o 0 —_
OneJunctiont Bondt Zarodunctiant Bondz o,:,—u,,l”,‘,

Figure 3.4: Model Transformation IPM to HABG: Rules 5-8
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Rule 9 : flow differences Inertance

LHS — RHS
2 Precondition:
mam — am node = LHS.nodeWithLabel(2) .
- Mass e - return node.isTransformed( "fiow_differences_Inertance")
z <COPIED> kg : Po:t Athlon: deWithLabel(2)
; node = LHS.nodeWithLabe
o .t . Inertance o node.setTransformed(*flow_differences _Inertance” True)
R wmm 8°"¢’ W“m"' Specify Value : Float In Sel #4
1 ANV 19 ¥ Downward force on mass*/
onedunction! Inertance? omesunstion? g=9.8
return -g*LHS.nodeWithLabel(2).VaIue<getVaIue()
Specify Value : Float in |
return LHS. noderthLabel(Z) Value getValue()
<!FECIF|EB> ']
<SPECKIED> Newio
Set
Rule 10 : motor 2 GY
LHS —
2 Precondition:
node = LHS.nodeWithLabel(1)
0 2 Bond2 . return node.isTransformed( "motor_2_GY")
Earodunctiont 0 Post Action:
Zoradunctiont node = LHS.nodeWithLabel(1)
node.setTransformed{"motor_2_GY",True}
Speclf{ Value : Float In GY1 #5
return LHS.nodeWithLabel(1).Value.getValue()
3
0 3
Zoroduncion? 0
Motor1 b
Rule 11 : pulley 2 TF
LHS — RHS
@ Precondition:
2y 3 2 2 node = LHS.nodeWithLabel(1)
Gnedunatont Gneynetiont 1 o ‘“\—o—TF - m:l*u return node.isTransformed( "pulley_2_GY")
: 1 _:: ™ ,:: Post Action:
wam H 2 ; node = LHS.nodeWithLabel(1)
"—‘%.[”]]IH:] i i : node.setTransformed(*pulley_2_GY*,True}
e H Specify Value : Float in TF1 #4
\d H <COPIEDY]  § return HS.nodeWithLabel(1).Value.getValue()
ulley1 | $
Pulley i Pulley1 |;
H s
Rule 12 : delete E 2 E
LHS — RHS
1 2 E

Empty

Figure 3.5: Model Transformation IPM to HABG: Rules 9-12
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Rule 13 : delete M 2 M

LHS — RHS

M_2_M1

Empty

Rule 14 : delete_Resistor

LHS —> RHS

1

= Empty
Resistor1

Rule 15 : delete_Capacitor

LHS — RHS
el Empty
<ANY> Coloumbs
Capacitori

Rule 16 : delete_Inductor

LHS — RHS

1

CENRRTAE
PositivePin1 ivePi
ositivePin’ L ANY> Herry NegativePin1

Inductor1

Figure 3.6: Model Transformation IPM to HABG: Rules 13-16
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Rule 17 : delete_Voltage

LHS

RHS

- TD -

<ANY> > Volts

tableVoltage

Empty

Rule 18 : delete_Rotlnertance

LHS

—_—

RHS

<ANY> Nms/rad
Rotlnertance1

Empty

Rule 19 : delete_RotDamper

LHS — RHS
1
<Value> <Unit> p y
RotDamper1
Rule 20 : delete_Motor
LHS — RHS

Empty

Figure 3.7: Model Transformation IPM to HABG: Rules 17-20
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Rule 21 : delete_Pulley

LHS

RHS

1

>

<ANY>

Pulley1

Empty

Rule 22 : delete_Inertance

LHS — RHS
—_—
‘—— Mass ——Q
1 Empty
<ANY> kg
Inertance

Rule 23: deleteEarth

LHS —

RHS

1

PositivePin1 NegativePin1

Earth1

Empty

Precondition:
node = LHS.nodeWithLabel(1)
return node.exists()

Rule 24 : delete_GenericLink

—_—

RHS

Empty

Figure 3.8: Model Transformation IPM to HABG: Rules 21-24
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Rule 25: optimize_ZJ

LHS

RHS

1
0o
Bond1 ZeroJunctiont Bond2

Bond}

Precondition:
siz_in=len(LHS.nodeWithLabel{1)}.in_connectlions)
slz_out=len{LHS.nodeWithLabel(1)).out_connections}
if siz_in==1 and siz_outm=1:

node = LHS.nodeWithLabel(1)

return node.isTransformed(*optimize_ZJ*)
else:!

return False

Actlon:

Bond1l=LHS.nodeWithLabel(2)
Bond2=LHS.nodeWithLabel(3)
Bond3.in_connections=Bond1.in_connections
Bond3.out_connections=Bond2.out_connections

Post Action:
node = LHS.nodeWIthLabel(1}
node.setTransformed(*aptimize_ZJ, True)

Rule 26: optimize_0)

LHS

RHS

Precondition:
slz_in=len{LHS.nodeWithLabel(1)).in_connections}
siz_ len(LHS.nodeWithLabel(1)).out_connections)

2 1 3
1 —e0———e

Bond1 Onedunctiont  Bona2

Bond3

if siz_Inm=1 and siz_out=w=1:

node = LHS.nodeWithLabel(1)

return node.isTransformed("optimize_2}")
else:

return False

Action:

Bond1=LHS nodeWithLabel(2}

Bond2=LHS nodeWithLabel(3)
Bond3.In_connections=Bond1.In_connections
Bond3.out_connections=Bond2.out_connections

Post Action:
node = LHS.nodeWithLabel(1}
node.setTransformed(“optimize_Z), True)

Rule 27: optimize_2Z)_2Z)

LHS

RHS

1 2 3 4
e Deo- () —e0——"ee- 0

Bond? Zarodunctiont Bondz Zerodunction2

§7

Bond3

1

Bond{

;

6

2!

0 —eo——e

ZeroJunctiont

§7

5

Bondd

Pr
siz_in=len{LHS.nodeWithLabel(4)).in_connections)
slz_out=len{LHS.nodeWithLabel(4)).out_connections)
if siz_th==1 and siz_out==2:

node = LHS.nodeWithLabel{4}

return node.isTransformed("optimize_2)_z)")
else:

return False

Post Action:
node = LHS.nodeWithLabel(1)
node.setTransformed{“optimize_2}_ZJ, True)

Rule 28: optimize_0)_0}

LHS

RHS
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Bondt Onadunctiont Bond2 OneJunction2
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Preconditlon:
siz_in=len(LHS.nodeWithLabel(4}}.in_connections)
siz_out=len(LHS.nodeWithLabei(4)).out_connections}
if siz_in==1 and siz_out==2;

node = LHS.nodeWithLabel(4)

return node.isTransformed{*optimize_0J_0J")

else:
return Faise
Post Actlon:

node = LHS.nodeWithLabel(1)
node.setTransformed("optimize_0)_OJ, True)

Figure 3.9: Model Transformation IPM to HABG: Rules 22-28
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Rule 29: optimize ZJ.0) Z)
LHS RHS
Precondition:
3 node = LHS.nodeWithLabel(2)
*' Bondt ' 13 return node.isTransformed{"optimize_2)_0)_2J"}
4 5 0 11 else:
1 Bondt return False
Onedunction2 Bondg ZeroJunction3
Post Action:
6 node = LHS.nodeWithLabel(2)
node setTransformed(“optimize Zj 0J_Z), True}
3 f 3 2
4‘.’» 14 5
]
7
1 2 0 8 1 8
oo Bon? oo | o0
Bondt ZoroJunction] ZeroJunction2 Bond! Oneunctiond
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1
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0"’% ¢
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1 11
Onedunctiont Bondd
Rule 30: optimize 0] Z) 0)
LHS RHS
Precondition:
5 fode = LHS.nodeWithLabel(2)
f' Bonds . 13 return node.isTransformed{"optimize_0j_Z)_0J")
4 5 1 11 else:
0 ) - return Faise
Tarodunction? Bond§ OneJunctiond
Post Action:
6 node = LHS.nodeWithLabel(2)
node.setTransformed(*optimize_0_Z)_0), True)
3 Qﬁ \ a
% 14 3
7
1 2 | —eo— o 1 8
1 ] Bond? — oo —.-QWTAQ
Bond!  onaunctiond OneJunction2 Bondt  geodunctiond
12
/ 1
W\
10
0 11
Zarodunctiont Bondd

Figure 3.10: Model Transformation IPM to HABG: Rules 29-30
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Table 3.3: Graph Grammar rules in execution order for optimizing BG

Order Rule Name Description

25 optimize_ZJ Transform redundant LHS 0-junction pattern to a single 0-
junction

26 optimize_OJ Transform redundant LHS l-junction pattern to a single 1-
junction

27 optimize ZJ_ZJ Transform redundant structure on LHS to simplified RHS

28 optimize_OJ_.OJ  Transform redundant structure on LHS to simplified RHS

29 optimize_ZJ_OJ_Z] Transform redundant structure on LHS to simplified RHS

30 optimize_0J_ZJ_OJ Transform redundant structure on LHS to simplified RHS

The Se type effort source elements always have an effort-out causality. The Sf element always
has a flow-out causality. The fixed causalities assigned by the sources are propagated by
constrained causalities to other bonds. Fixed causalities are shown in Figure 3.11.

The causality assigned by fixed causalities are propagated to the connected junction. The
Causality of a junction is set to +1 if the assigned causality is an effort-out causality from an
effort source to a O-junction. The Causality is set to -1 if the assigned causality is a flow-out

causality from a flow source to a 1-junction. The fixed causalities are described in Table 3.4.

This causality is further propagated to connected bonds via constrained causalities. Con-
strained causalities are shown in Figures 3.12, 3.13,3.14,3.15,3.16,3.17, and 3.18. The rule

execution order and a short description for each rule is given in Table 3.5.



3.4 Hybrid Acausal Bond Graph to Hybrid Causal Bond Graph

58

Rule 1: FC SE 2 Z) (Rule inherited by tableSe,sinSe,mSe)

LHS —RHS
Specify Causality:Integer in ZeroJunctionl #2
1 3 2 1 4 2 return 1
Se—e0——00-( Se-oe——0e-0
avar O 2o nctont one e fBond! Zyrunctont
8¢l Sel
Rule 2: FC SE 2 0] (Rule inherited by tableSe,sinSe,mSe)
LHS — RHS
1 3 2 1 4 2
So-0e—oe-1 Se-40——p-1
anap,  Sondt Onedunctiont <coneD> <copep>  fBondH OneJunctiont
Sel Sel

Rule 3 : FC SF 2 0) (Rule inherited by tableSf,sinSf,mSf)

LHS — RHS
1 5 Specify Causality:Integer in Onejunctionl #2
1 3 2 4 return -1
§f -o0——00-1 §f -+o—0e-1
away,  oondt Oneduncliont <cop|ssfn1> COPED> gBondi Onedunction
St

Rule 4 : FC SF 2 ZJ (Rule inherited by tableSf,sinSf,mSf)

LHS — RHS

1 3 2 1 4 2

Sf s0——00-( 5 so—ee-(

s e ondt Zerodunctiont COPED> COPE> gBond ZeroJunctiont
st f

Figure 3.11: Model Transformation HABG to HCBG: Rules 1-4
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Table 3.4: Graph Grammar rules for fixed causality in transformation MT_HABG_2_HCBG

Order Rule Name Description

1 FCSE_2.7J Transform redundant 0-junction — O-junction to a single 0-
junction

2 FCSE. 2.0J Transform redundant 1-junction — 1-junction to a single 1-
junction

3 FCSF.2.0J Transform redundant structure on LHS to simplified RHS

4 FC.SF.2.7J Transform redundant structure on LHS to simplified RHS

If none of the constrained causalities match the BG model then a preferred causality is assigned
to storage elements. The C element gets an effort-out fixed causality while the | element gets
a flow-out fixed causality. The rules to assign the causality to the bonds are shown in Figures
3.18 and 3.19. The execution order of the rule in the graph grammar and a short description

for each rule is given in Table 3.6.

The bond to an R element gets indifferent causality (if not constrained causality) which means
that it does not matter if flow or effort comes in. The indifferent causalities are shown in Figure
3.19. The execution order for indifferent causality rules and a description are given in Table
3.6.

The execution resumes from the first rule of the GG and continues until no rule is matched.
At this point the HABG has been completely assigned causality and is a HCBG. If any of the
storage elements that is C or | have got a non-preferred causality due to propagation of causality
constraints then we can say that there is a problem with the physical meaningfulness of the
model. In other words a capacitor or an inductor element does not store energy in the sense of
integration of the incoming flow or effort. At this point the modeller has to change the physical

model to make it causally correct and physically meaningful.
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Table 3.5: Graph Grammar rules for constrained causality propagation in MT_HABG_2_HCBG

Order Rule Name Description

5 CCZI2R Effort-out causality assigned if LHS 0-junction causality is 1
6 CC.ZJ2.C Effort-out causality assigned if LHS O—junction causality is 1
7 CCZJ21 Effort-out causality assigned if LHS 0—-junction causality is 1
8 CC.ZJ.2.72] Effort-out causality assigned if LHS O0—junction causality is 1
9 CC.Z2J.2.0J Effort-out causality assigned if LHS 0-junction causality is 1
10 CC.ZJ2_TF Effort-out causality assigned if LHS 0-junction causality is 1
11 CC.ZJ2.GY Effort-out causality assigned if LHS O-junction causality is 1
12 CC.OJ2R Flow-out causality assigned if LHS 1-junction causality is -1
13 CC.0J.2.C Flow-out causality assigned if LHS 1-junction causality is -1
14 CC.0J.21 Flow-out causality assigned if LHS 1-junction causality is -1
15 CC.0J2.0] Flow-out causality assigned if LHS 1-junction causality is -1
16 CC.0J2.7] Flow-out causality assigned if LHS 1-junction causality is -1
17 CC.0J2_TF Flow-out causality assigned if LHS 1—junction causality is -1
18 CC.0J2.GY Flow-out causality assigned if LHS 1-junction causality is -1
19 CC_I_GY_J_fBond Flow-out causality assigned from GY input effort-out causality
20 CC_J.GY_J_eBond Effort-out causality assigned from GY input flow-out causality
21 CC_I_TF_J_fBond Effort-out causality assigned from TF input effort-out causality
22 CC_J.TF.J eBond Flow-out causality assigned from TF input Flow-out causality
23 CC.Z2J 2 De Effort-out causality assigned if LHS 0—junction causality is 1
24 CC.ZJ2.Df Effort-out causality assigned if LHS 0—junction causality is 1
25 CC.Z2J2Dp Effort-out causality assigned if LHS 0—junction causality is 1
26 CC_ZJ 2 Dq Effort-out causality assigned if LHS 0-junction causality is 1
27 CC.0J2De Flow-out causality assigned if LHS 1-junction causality is -1
28 CC_.0J2.Df Flow-out causality assigned if LHS 1-junction causality is -1
29 CC.0J2.Dp Flow-out causality assigned if LHS 1-junction causality is -1
30 CC.0J.2.Dq Flow-out causality assigned if LHS 1-junction causality is -1
Table 3.6: Graph Grammar rules for preferred and indifferent causality in MT_HABG_2_ HCBG
Order Rule Name Description

31 PC.Z2J2C Preferred effort-out causality assigned to O-junction to C bond
32 PC.ZJ.21 Preferred flow-out causality assigned to O—junction to | bond
33 PC.OJ2.C Preferred effort-out causality assigned to 1-junction to C bond
34 PC.0J21 Preferred flow-out causality assigned to 1-junction to | bond
35 ICZJ2.R Indifferent flow-out causality assigned to O—junction to R bond
36 IC.0J2 R Indifferent flow-out causality assigned to 1-junction to R bond
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Rule 5: CC Z) 2R (Rule inherited by mR)

LHS — RHS
Precondition:
1 ] 2 1 4 2 return LHS.nodeWithtabel(1).Causality ==
) -so——00-R 0 +0—0e-R
solnctant O R Toncion!  Bontt RI
Rule 6: CC Z) 2 C (Rule inherited by mC)
LHS — RHS
Precondition:
1 3 2 1 4 2 return LHS.nodeWithLabel{1).Causality == 1
) -o—oa( ) -se—Ype-C
Zerodunctiont Bond! o Zorodunctiont  fRondf ¥]
Rule 7: CC Z) 2 I (Rule inherited by mi)
LHS — RHS
Precondition:
1 3 2 1 4 2 return LHS.nodeWithLabel(1).Causality ==
0 -eo——00-] 0 +0—j0e|
Zarodunctont Bondt i Zoodunction!  fBond i
Rule 8:CC2) 2 Z]
LHS — RHS
Precondition:
1 ] 2 1 4 2 return LHS.nodeWithtabel(1).Causality ==
) so———ee-0 0 -s6—Pe-0
ZeroJunctiont Bondt ZeroJuntion? Zorolunctiont  fBond!  Zerodunction?

Figure 3.12: Model Transformation HABG to HCBG: Rules 5-8
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Rule 9:€C_Z) 2 0)
LHS > RHS Precondition: _
1 3 2 1 4 2 return LHS.nodeWithLabel(1).Causality ==
0 -o0——00-1 0 -s—pe
Terodunclon Bondt Oneduntiont Zoounction!  fBondf  OneJunctiont
Rule 10 CC Z) 2 TF (Rule inherited by mTF)
LHS — RS Precondition: _
1 ] 2 1 ’ 2 return LHS.nodeWithLabel(1).Causality == 1
oot T Teohncton!  Bongt ™
Rule 11: CC ZJ 2 GY (Rule inherited by mGY)
RHS
LHS - Precondition: ,
1 ] 2 1 4 2 return LHS.nodeWithLabel(1).Causality == 1
0 s0—00-0Y 0 +0—pe-CY
Zerodunctiond Bond oYt Zerolunctiont  Bondl oY
Rule 12 : CC 0] 2 R (Rule inherited by mR)
— RH
LHS > Precondition:
1 3 2 1 4 2 return LHS.nodeWithLabel(1).Causality == -
-s0—ee-R I so—ee-R
onelciont. ! R Onadunclond  oBondt R

Figure 3.13: Model Transformation HABG to HCBG: Rules 9-12
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Rule 13: CC 0).2 C (Rule inherited by mC)

LHS — RHS
1 3 2 1 4 2
—+0——ee-( | +0—0e(
OneJunctiont Bondf 4] OneJunctiont eBondt ¢

Precondition:
return LHS.nodeWithLabel(1).Causality == -1

Rule 14: CC 0) 2 I {Rule inherited by mi)

Precondition:
1 3 2 1 4 2 return LHS.nodeWithLabel(1).Causality == -
| | -00—0|
OneJunctiont ] Oneunctiont eBond! ]
Rule 15: €C 0] 2 0]
Precondition:
1 3 2 1 4 2 return LHS.nodeWithLabel(1).Causality == -1
1 | -00—00¢
OneJunction! Bondt OneJuntion2 OneJunctiont eBond! Onedunctiond
Rule 16: € 0/ 2.2)
Precondition:
1 3 2 1 4 2 return LHS.nodeWithLabel(1).Causality == -1
| -s0——¢¢- | s0—001
OneJunctiont Bond ZeroJuntiont Onedunction! eBondi OneJunclion

Figure 3.14: Model Transformation HABG to HCBG: Rules 13-16
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Rule 17: CC 0] 2 TF (Rule inherited by mTF)

LHS — RHS
1 3 2 1 s 2
| —o——ee-TF | -s0—0-[F
OneJunction{ Bonct TF OneJunctiont ~ eBond1 T

Precondition;
return LHS.nodeWithLabel{1).Causality == -1

Rule 18: CC_0) 2 GY (Rule inherited by mGY)

LHS —» RHS
1 3 2 1 1 2
OneJunctiond Bond (64l OneJunctiont eBond1 o

Precondition:
return LHS.nodeWithLabel(1).Causality == -1

Rule 19: CC ) GY_J fBond (Rule inherited by mGY)

LHS — RHS
1 2 1
1)( Méy LIV lx X HPGY—ﬂI{—S—NH—X
oot P o Bt Xunctont BNt Al dond!  yjunciond
X=0o0r1
Rule 20: CCJ GY_J eBond (Rule inherited by mGY)
LHS — RHS
1 2 1
¥ —OOIA%(ZSYﬂ—\H—“ ¥ K 40000l -s0—"pe-X
Cnctony #5001 o Bt Xuctont 800 oM B yhncton?
X=0or1

Figure 3.15: Model Transformation HABG to HCBG: Rules 17-20
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Rule 21: CC ) TF_J fBond (Rule inherited by mTF)

LHS — RHS
1 2 1 3 2 1
X -+6——You TF 4,_4_;,*1)( X 40——Yoo-TF -06——p-0-X
fBondt fBondt o fBond2 .
Yiunctiont 4] Bondt Narcion? Xunctiont XJunction?
X=0or1
Rule 22: CC ) TF_) eBond (Rule inherited by mTF)
LHS — RHS
1 2 1 1 3 2 5 1
X 00— TF go—" oo ) X 40—00-TF 44| —oe-X
Yincions 001 " BN o Nunciont  #00ne! TH Bond2  Yjunctiond
X=0o0r1
Rule 23:CC Z) 2 De
LHS — RHS
Precondition:
1 3 2 1 4 2 return LHS.nodeWithLabel(1).Causality ==
0 so——00-De> 0 +0—po-De>
Tondnctont 2! Det Zoohnctior!  Bondt et
Rule 24 €€ 2 2 Df
LHS — RHS
Precondition:
1 3 2 1 s 2 return LHS.nodeWithLabel(1).Causality ==
0 -s0——ee-Df > 0 40—p-0f >
Zerodunctiont Bondt DH ZeroJunctiond fBond{ ot

Figure 3.16: Model Transformation HABG to HCBG: Rules 21-24
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Rule 25: €C_Z) 2 Dp
LHS RHS
Precondition:
1 3 2 1 4 2 return LHS.nodeWithLabel{1).Causality ==
0 -s0——00-0p-> 0 s0—foo-Dp>
trolucont O™ opt Zoolunction!  fBondt opt
Rule 26 : CC ZJ 2 Dy
LHS RHS
Precondition:
1 3 2 1 4 2 retum LHS.nodeWithLabel(1).Causality == 1
0 eo——ee-Dg> 0 s0—po-0g->
ZeroJunctiont Bondt Oat Zorodunction!  fBond Ot

Rule 27: CC_0).2 De

LHS RHS
Precondition:

1 3 2 1 4 2 return LHS.nodeWithLabel{1).Causality == -

| -o0—00-0-> | og—ee-Dp->

OneJunctiont Bond et Onelunction! ~ gBondt Det

Rule 28:: CC 0} 2 Df

LHS RHS
Precondition:

1 3 2 1 ' 2 return LHS.nodeWithLabel(1).Causality == -

| so—ee-0f > | -sd—ge-0f >

OneJunctiont Bone ot OneJunctiont eBondt 0

Figure 3.17: Model Transformation HABG to HCBG: Rules 25-28
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Rule 29:: CC_0J.2 Dp
LHS — RHS
Precondition:
1 3 2 1 4 2 return LHS.nodeWithLabel(1).Causality == -
| -s—ee-0p> I —so—ee-Dp->
OneJunctiont Bond Opt Onedunction! ~ ¢Bond Opt
Rule 30 : CC 0] 2 Dq
Precondition:
1 3 2 1 4 2 return LHS.nodeWithLabel(1).Causality == -
{ -so—0e-00> I —oo—oe-Dg->

Bond{
OneJunctiond . O

Onelunction! ~ ¢Bond D

Rule 31 PC Z) 2 C (Rule inherited by mC)

LHS — RHS
! 3 2 : g 2
0 -s0———00-( 0 000
ZeroJunctiont Bondt 4 Zerodunctiont eBondt (3]

Precondition:

return LHS.nodeWithtabel(1).Causality ==

Rule 32: PC Z) 2 | (Rule inherited by ml)

LHS — RHS

1 3 2 1 4 2
0 -00——00-| 0 s0—je-|
Trolunciont o1 i Zorolncion! ~ fBondt I

Precondition:

return LHS.nodeWithLabel(1).Causality ==

Figure 3.18: Model Transformation HABG to HCBG: Rules 29-32



3.5 Hybrid Causal Bond Graph to Modelica 68

3.5 Hybrid Causal Bond Graph to Modelica

The HCBG model obtained from the transformation MT_HABG_2_ HCBG is now ready to be
converted to a set of Differential Algebraic Equations (DAE). Instead of directly transforming a
model in the differential equation form we generate Modelica code. Modelica code is an object-
oriented textual representation of DAEs. We represent bond graph objects in Modelica using
the bond graph library, BondLib, developed by Francois Cellier [CNO5].

The main routine, HCBG_2_Modelica, and its helper routines to transform the abstract syntax

graph of a HCBG model to Modelica are given below:

#Main Routine to transform HCBG to Modelica

def HCBG_2_Modelica(HCBGGraph):
ModelicaCode="model " + HCBGGraph.getName() + "\n"
# Define and Initialize the Physical 0Objects
ModelicaCode+=getHABGObjects (HCBGGraph) + "\n"
# Define the Equations of the Physical Model
ModelicaCode+="equation"
ModeliaCode+=getConnects (HCBGGraph) + "\n"
ModelicaCode+="end "+HCBGGraph.getName()+";\n"

return ModelicaCode

#Routine to obtain physical object declarations

def getHABGObjects(HCBGGraph):
Code=" "
for aNode in HCBGGraph.iterateAll():
if self.getModelicaObject(aNode) {=None:
Code+="\t"+getModelicalObject (aNode)+";\n"

return Code
#Routine to obtain physical object connections

def getConnects(HCBGGraph) :
Code=" "
for aNode in HCBGGraph.getAllConnTuples():
connectCode="connect ("+aNode [0] .Parent.Name+"."+aNode [0] . Name+","
+aNode[1] .Parent.Name+"."+aNode[1] .Name+") ;"
Code=Code+"\t"+connectCode+"\n"
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Rule 33:PC_0) 2 C (Rule inherited by mC)

LHS — RHS

1 3 2 1 4 2
1 s0—ee-( | v0—00-(

onednctont. 2™ ¢ Onedunctor! ~ eBondi Cf

Precondition:
return LHS.nodeWithLabel(1).Causality == 0

Rule 34 : PC 0] 2 | (Rule inherited by mi)

1 2 1 2
3 4

| | -06—P|

OnaJunctiont L Oneunciont  TBond! H

Precondition:
return LHS.nodeWithLabel(1).Causality == 0

Rule 35:IC Z) 2 R (Rule inherited by mR)

LHS — RHS

1 3 2 1 4 2
0 -eo——0e-R 0 -e0——0e-R

Zorohnctont ! R oot gt N

Precondition:
return LHS.nodeWithLabel(1).Causality ==

Rule 36 IC 0) 2 R (Rule inherited by mR)

LHS — RHS
! 3 2 ! 4 2

R 1 -s0—20e-R
OneJdunctiont Bondt R OneJunctiond eBondf M

Precondition:
return LHS.nodeWithLabel(1).Causality == 0

Figure 3.19: Model Transformation HABG to HCBG: Rules 33-36
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return Code

#Routine to obtain Modelica code for a physical component

def getModelicaObject(aNode):

nodeType=Type (aNode)

if nodeType=="SE":
return "BondLib.Sources.Se "+aNode.Name+
"(g0="+str(aNode.Value)+") ;"

elif nodeType=="8SF":
return "BondLib.Sources.Sf "+aNode.Name+
" (£0="+str(aNode.Value)+");"

elif nodeType=="mSE":
return "BondLib.Sources.mSe "+aNode.Name+";"

elif nodeType=="mSF":

return "BondLib.Sources.mSf "+aNode.Name+";"

elif nodeType=="sinSE":
return "BondLib.Sources.sinSe "+aNode.Name+
"(e0="+str (aNode.Value)+" ,phase="+
str(aNode.PhaseAngle)+",freqHz="+str(aNode.Frequency)+
",offset="+str(aNode.O0ffset)+"

,startTime="+str(aNode.startTime)+") ;"

elif nodeType=="sinSF":
return "BondLib.Sources.sinSf "+aNode.Name+
"(e0="+str (aNode.Value)+" ,phase="+
str(aNode.PhaseAngle)+",freqHz="+str (alode.Frequency)+
", offset="+str(aNode.0ffset)+

",startTime="+str(aNode.startTime)+") ;"

elif nodeType=="tableSE":
return "BondLib.Sources.tableSe "+aNode.Name+
" (e0="+str(aNode.Value)+",
offset="+str(aNode["Offset"].getValue())+
",startTime="+str (aNode.startTime)+")"
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elif nodeType=="tableSF":
return "BondLib.Sources.tableSf "+alNode.Name+
"(fO="+str(aNode.Value)+",offset="+

str(aNode["0ffset"] .getValue())+",startTime="+str(aNode.startTime)+")"

#Bond Graph Junctions

elif nodeType=="0J":
number0fBondsConnected=getOutDegree (aNode) +aNode.getInDegree (aNode)

return "BondLib.Junctions.J1p"+numberO0fBondsConnected+" "+aNode.Name

elif nodeType=="ZJ".
numberOfBondsConnected=getOutDegree (aNode)+getInDegree (aNode)

return "BondLib.Junctions.JOp"+numberOfBondsConnected+" "+aNode.Name

elif nodeType=="fBond":
return "BondLib.Bonds.fBond"+" "+aNode.Name

elif mnodeType=="eBond":
return "BondLib.Bonds.eBond"+" "+aNode.Name

elif nodeType=="I":

return "BondLib.Passive.I"+" "+aNode.Name+" (I="+str(aNode.Value)+")"

elif nodeType=="C":
return "BondLib.Passive.C"+" "+aNode.Name+" (C="+str(aNode.Value)+")"

elif nodeType=="R":
return "BondLib.Passive.R"+" "+aNode.Name+"(R="+str(aNode.Value)+")"

elif nodeType=="TF":
return "BondLib.Passive.TF"+" "+aNode.Name+"(m="+str(aNode.Value)+")"

elif nodeType=="GY":

return "BondLib.Passive.GY"+" "+aNode.Name+" (r="+str(aNode.Value)+")"

elif nodeType=="mI":

return "BondLib.Passive.mI"+" "+aNode.Name
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elif nodeType=="mC":

return "BondLib.Passive.mC"+" "+aNode.Name

elif nodeType=="mR":

return "BondLib.Passive.mR"+" "+aNode.Name

elif nodeType=="mTF":

return "BondLib.Passive.mTF"+" "+aNode.Name

elif nodeType=="mGY":
return "BondLib.Passive.mGY"+" "+aNode.Name

elif nodeType=="De":

return "BondLib.Sensors.De"+" "+aNode.Name

elif nodeType=="Df":
return "BondLib.Sensors.Df"+" "+aNode.Name

elif nodeType=="Dp":

return "BondLib.Sensors.Dp"+" "+aNode.Name

elif nodeType=="Dq":
return "BondLib.Sensors.Dq"+" "+aNode.Name

#CBD Declarations

elif nodeType=="Constant":
return "Modelica.Blocks.Sources.Constant"+" "+
aNode . Name+" (k="+str(aNode.Value)+")"

elif nodeType=="Delay":
return "Modelica.Blocks.Discrete.UnitDelay"+" "+

aNode.Name+" (y_start="+str (aNode.Value)+")"

elif nodeType=="Integrator":
return "Modelica.Blocks.Continuous.Integrator"+
" "+aNode.Name+" (k="+str(aNode.Value)+

",y_start="+str(aNode.y_start)+")"
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elif nodeType=="Derivative":
return "Modelica.Blocks.Continuous.Derivative"+
" "+aNode.Name+" (k="+aNode.Value+

", y_start:"+s1;r (aNode.T)+")"

elif nodeType=="Sum":

return "Modelica.Blocks.Math.Sum"+" "+aNode.Name

elif nodeType=="Product":
return "Modelica.Blocks.Math.Product"+" "+aNode.Name

elif nodeType=="Feedback":
return "Modelica.Blocks.Math.Feedback"+" "+aNode.Name

elif nodeType=="PID":
return "Modelica.Blocks.Continuous.PID"+
" "taNode.Name+" (k="+str(aNode.Value)+",Ti="+

str(aNode.Ti)+",Td="+str(aNode.Td)+",Nd="+str(aNode.Nd)+")"

elif nodeType=="TimeTable":

return "Modelica.Blocks.Sources.TimeTable"+" "+aNode.Name+"(table="+
str(aNode["Table"] .getValue())+",offset="+
str(aNode.Offset)+",startTime="+str(aNode.startTime)+")"

elif nodeType=="Generic":
return "Modelica.Blocks.Sources."+str(nodeType)+str(aNode.Parameters)
else:

return None

3.6 Modelica to Trajectory

The Modelica code is now compiled to generate C code consisting of a DAE solver. We use
DASSL [AP98] to solve DAEs generated from the Modelica code as C code. DASSL uses
backward differentiation formula (BDF) methods [Gea71] to solve a system of DAEs or ODEs.
The methods are variable step-size variable order. The system of equations in DASSL is written
in an implicit ODE form like

F(t,y,y') =0,

where 3’ denotes the time derivatives of y. The BDF methods used in DASSL require the
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solution of a large system of nonlinear equations

F(tnyyn,an'yn + ﬁn) =0

on each time step. Here, i, and 3, are scalars which depend on the method and stepsize. In
DASSL, this system is solved by a modified Newton iteration. Each iteration of the Newton

method requires the solution of a linear system
Ayn(k + 1) = bn(k),

where the matrix A is given by

A= ozn-a—F + 6—F

oy = Oy

The one-dimensional PDEs generates a matrix which is block tridiagonal. In DASSL, this linear
system is solved via a banded direct solver. Because the CPU cost to solve this linear system
is proportional to the bandwidth of the matrix, this solver is quite efficient if the bandwidth of
the matrix is relatively small. Different moving mesh strategies result in different bandwidths,
which is a very important factor in considering the efficiency of the method. The reader can

refer to [Pet83] for details.

The results of solving the system of DAE is a Trajectory model consisting of the time varying

behavior of all the state variables in the physical system model.



Design Space Exploration

4.1 Introduction

Design space exploration is the search through the space of possible solutions to a problem.
In MDE a problem is a set of requirements that a model should meet. The requirements are
specified in the form of constraints that a model must satisfy and an objective/fitness function
that a model must optimize. The solution to a problem is a valid model which is a point in the
model design space of a modelling language. The valid model must conform to its modelling
language. The design space of models or the domain of models is defined by the meta-model
of the modelling language, constraints on the classes and properties of the meta-model, and an

initial model configuration.

Using knowledge to guide search in the design space of models is faster [GSS98] than random
search or search guided by general purpose heuristics. Knowledge can be used in many forms.
We have seen that MDE allows us to incorporate knowledge by incorporating domain informa-
tion in the graph structure of a meta-model. Further, the constraints or propositions specify
a constrained space of models. More knowledge can be incorporated in the process of design
space search via formulating heuristics as production rules. Instead of arbitarily changing the
value of a property in a model we gain in efficiency by applying design heuristics in a produc-
tion system that modifies a model in a structured way such that the result is a valid model
(it conforms to the meta-model and constraints specification). Heuristics often emerge from
engineering experience. In this thesis we present heuristics that help evolve physical system
models by adding or replacing objects from a prespecified inventory of standard (off-the-shelf)
physical components. The sequenece of heuristics that need to be applied are composed in a
plan. The execution of a plan on an initial or embryo model of a physical system results in a
new model. We subject the new model to tests of conformance to its modelling language. If
the model passes the tests and is physically meaningful then we evalute the objective function
on the model and feedback the value for directing the evolution process.

Specifically, we perform design space exploration in the space of HABG models. An overview of
the procedure is shown in Figure 4.1. The embryo model presents an initial set of objects and

relationships. A set of plans is executed on the embryo model to give a population of HABG
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models. A plan consists of a sequence of HABG rules that add or replace bond graph elements

from an inventory to the model.

We present heuristics in the form of parameterized Graph Grammar (GG) rules or mutation
operators in Section 4.2 to evolve the model of a physical system. The rules only modify the
physical part of the HABG. Evolution of controllers described as CBD and other formalism
in the signal domain are well established and a survey of techniques is available in [MC95].
Our focus is on the evolution of the physical system. Evolution of the plant or the physical
system models based on genetic programming [BWN*97], [HGS03] is described in [WFTGO5].
Matching an evolving BG to a mathematical function such as a filter is discussed in [PDTKO05].

In our implementation the evolution process is guided by a simplified genetic algorithm. The
simplified genetic algorithm evolves a plan of a certain length. The plan is a sequence of
mutation operators. We present the simplified genetic algorithm in Section 4.3. We first
develop an experimental setup for the evolution in Section 4.4. Finally, we briefly discuss the

results of the evolution process for the experimental setup in Section 4.5.

4.2 Heuristics for Evolving Physical System Models

The heuristic rules or mutation operators for a physical system are defined for evolving Hybrid
Acausal Bond Graph (HABG) models in Figures 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7. The rules not
required to be executed in any particular order. The order of rule execution are based on a
plan. A plan will be discussed in the next section. A description of the heuristic rules are given

in Table 4.1. All the rules are parameterized and take as input a BG element.

4.3 Simplified genetic algorithm

We now describe a simplified genetic algorithm [Hol92] that evolves physical system models in
the HABG modelling language. Before a simplified genetic algorithm can be put to work on
any problem, a method is needed to encode potential solutions to that problem in a form that
a computer can process. The input to our simplified genetic algorithm is an embryo model.
We define a plan that is a sequence of parameterized heurisitic rules that are applied on the

input model to mutate it. The plan is a potential solution to an evolution task.

The structure of plan is illustrated in Figure 4.8. The plan is comprised of an unit which
consists of two parts. The first part of the unit contains the opCode or the rule number of the
heuristic to be applied. The second part of the unit contains a floating point number between
0 and 1. This number is used to choose an element from an Inventory. Before the evolution
starts we initialize an inventory containing potential building blocks that can be used to cvolve
the model. In an industrial setting these building elements can be considered as off the shelf
resistors, capacitors, gears etc. that are available as resources. A rule removes the parameter

element from the inventory and puts it into the model according to a rule.

Now that we know what a plan is and the notion of an inventory is clear we present the
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Figure 4.1: Design Space Exploration of Physical System Models



4.3 Simplified genetic algorithm

78

Rule 1: add_R ZJ (R1)

LHS RHS

ZeroJunctiont ZeroJunctiont

56 7

?
100 bMR

R1

Pre-condition

for bond in LHS.nodeWithLabel(2).getinC():

for node in bond.getOutCy():
if node.getLabel()=="R":
return False
return True

Rule 2: add_R_0J (R1)

LHS RHS

Onedunctiont OneJunctiont

56 7

o || 1R

R1

Pre-condition

for bond in LHS.nodeWithLabel(2).getinC():

for node in bond.getOutC():
if node.getLabel()=="R":
return False
return True

Rule 3: add_C_2ZJ (C1)

LHS RHS

Zerodunctiont ZeroJunctiont

56 7

00 || Df—d0t

1

Pre-condition

for bond in LHS.nodeWithLabel(2).getinC():
for node in bond.getOutC():
if node.getLabel()=="C":
return False
return True

Rule 4: add_C_0J (C1)

LHS RHS

OneJunctiont OneJunctiont

56 7

e || NG

C1

Pre-condition

for bond in LHS.nodeWithLabel(2).getIinC():

for node in bond.getOutC():
if node.getLabel()=="C":
return False
return True

Figure 4.2: Model Evolution Heuristics: Rules 1-4
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Rule 5: add_|_ZJ (1)

LHS RHS

1 2 1.23 4 567
Qe Dee——00-|

ZeroJunctiont ZeroJunctiont H

Pre-condition

for bond in LHS.nodeWithLabel(2).getinC():
for node in bond.getOutC():
if node.getLabel()=="1":
return False
return True

Rule 6: add_|_0J (1)

LHS RHS

OneJunctiont OneJunctiont 1

1,2 1023 4 5617
1‘ 1H—-|

Pre-condition

for bond in LHS.nodeWithLabel(2).getIinC():

for node in bond.getOutC():
if node.getLabel()=="I":
return False
return True

Rule 7: replace_R_ZJ (R2)

LHS RHS
5 § 7 1 g
23 4 58
O 000————500—
ZeroJunctiont R1 ZeroJunctiond R2
Rule 8: replace_R_0J (R2)
LHS RHS
4 5 6 1 9
23 4 58
1 1ee——ee-R
OneJunctiont R1 OneJunctiont R2

Figure 4.3: Model Evolution Heuristics: Rules 5-8
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Rule 9: replace_C_2ZJ (C2)

LHS RHS
1 7
0 23 4 56 C 10 23 4 _58 (9:
oo———e0-— oo————00—
ZeroJunction1 C1 Zerodunction1 C2

Rule 10: replace C OJ (C2)

LHS RHS
1,23 4 561 1 9
23 4 58
OneJunctiont C1 OneJunctiont C2

Rule 11: insert_ZJ (ZeroJunction1)

LHS RHS
eZ 3 \4S 8 B 910
MQOM
ZeroJunctioni
Rule 12: insert_0OJ (OneJunction1)
LHS RHS
12 3 45 13
o9 AP 8 910
“——5001 &o—-——%O
OnedJunction1

Figure 4.4: Model Evolution Heuristics: Rules 9-12
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Rule 13: insert_ZJ_GY_ZJ (GY1)

LHS RHS
910 910
O.. oo 0 ..OM.GYH’ O
ZeroJunctioni ZeroJunction2 ZeroJunctiont GY1 ZeroJunction?
Rule 14: insert_0J_GY_0J (GY1)
LHS RHS
910
7 910
001 PR 1 “1 H‘GY" oo 1
Onedunctiont OnedJunction2 OneJunctiont 61 OneJunction?
Rule 15: insert_ZJ_GY_0J (GY1)
LHS RHS
OOOM 1 oo “OM‘GY" oo 1
ZeroJunctiont OneJunctiont ZeroJunctiont (4] One unctiont
Rule 16: insert_OJ_GY_ZJ (GY1)
LHS RHS
001 do—ee O ”1 M‘GY“ .
OneJunction ZeroJunction1 OneJunctiont GY1 ZeroJunctiont

Figure 4.5: Model Evolution Heuristics: Rules 13-16
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Rule 17: insert_ZJ_TF_ZJ (TF1)

LHS RHS
910 . ot 0 g 10
uO do et O O ”A‘T F
Zerodunction ZeroJunction2 ZeroJunctiont T ZeroJunction2
Rule 18: insert_OJ_TF_OJ (TF1)
LHS RHS
12 7 8 910 78 910
Ty [y ¥ ¥ “1"—\“TF oo oo | oo
Onedunction OneJunction? OneJunction? i3] OneJunction2
Rule 19: insert_ZJ_TF_OJ (TF1)
LHS RHS
910
7 910
ooO&o—————Bn 1 O”__\"TF oo oo 1
ZeroJunctiont OneJunctiont ZeroJunction? TF OneJunctiont
Rule 20: insert_OJ_TF_ZJ (TF1)
LHS RHS
910 O 910
001 MO 1 “—‘A'TF oo oo
OneJunctiont ZeroJunction] OneJunctiont TH Zerodunction

Figure 4.6: Model Evolution Heuristics: Rules 17-20
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Rule 21: replace_|_ZJ (12)

LHS

RHS

1,23 4 _56 7

1,23 4 _58 9
OHl

ZeroJunction1 " ZeroJunction1 12
Rule 22: replace_| _OJ (I12)
LHS RHS

1,23 4 _56 7
1”————————500—|

OneJunctiont 1

1,23 4 _58 9
10—0————————>oo—|

OnedJunction1 |2

Figure 4.7: Model Evolution Heuristics: Rules 21-22

opCodeGene | parameterGene

Eg:

opCodeGene = 1

Rule Executed=add R ZJ

parameterGene=0.1

R element from inventory
=Inventory['R"][floor(parameterGene*len(Inventory["R"))]

Plan
|opCodeGenet ] arameterGenef [ pCodeGene2] paramelerGeneX pCodgGened] paramelerGene3

. ..

Figure 4.8: The Structure of a Plan
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Table 4.1: Graph Grammar rules for preferred and indifferent causality in MT_HABG_.2_HCBG

Order Rule Name Description

1 add_-R_ZJ(R1) Add a R element to a 0-junction without an R element

2 add_-R_.OJ(R1) Add a R element to a 1-junction without an R element

3 add_C_ZJ(C1) Add a C element to 0-junction without an C element

4 add.C_0OJ(C1) Add a C element to 1-junction without an C element

5 add 1.ZJ(I1) Add a | element to 0-junction without an | element

6 add_I.0J(I1) Add a | element to 1-junction without an | element

7 replace_R_ZJ(R2) Replace an R element connected to a O-junction R1 with an-
other R element R2

8 replace_ R_OJ(R2) Replace an R element connected to a 1-junction R1 with an-
other R element R2

9 replace_C_ZJ(C2) Replace an C element connected to a O-junction R1 with an-
other C element C2

10 replace_C_0J(C2) Replace an C element connected to a l-junction R1 with an-
other C element C2

11 insert_ZJ(ZeroJunctionl) Insert a 0-junction between a Bond element

12 insert_OJ(OneJunctionl) Insert a 1-junction between a Bond element

13 insert_-ZJ_GY_ZJ(GY1) Insert a GY element between two 0-junctions

14 insert_OJ_.GY_OJ(GY1) Insert a GY element between two 1-junctions

15 insert_-ZJ_GY.OJ(GY1) Insert a GY element between a 0-junction and a 1-junction

16 insert OJ_.GY_ZJ(GY1) Insert a GY element between a 0-junction and a 1-junction

17 insert ZJ_TF_ZJ(TF1)  Insert a TF element between a 0-junction and a O-junction

18 insert OJ_.TF_OJ(TF1) Insert a TF element between a 1-junction and a 1-junction

19 insert ZJ_.TF_OJ(TF1) Insert a TF element between a 0-junction and a 1-junction

20 insert OJ.TF_ZJ(TF1) Insert a TF element between a 1-junction and a O-junction

21 replace 1_ZJ(12) Replace an | element connected to a 0-junction R1 with another
| element 12

22 replace 1.0J(12) Replace an | element connected to a 1-junction R1 with another

| element 12
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pseudocode for the simplified genetic algorithm.

1. Initialize the Embryo Model
2. Initialize the Inventory with Objects of Different Elements

3. Initialize PopulationSize, MutationProbability (Probability of applying the randomized
mutation operator), ChildCull (Number of children to remove in each generation)

4. Initialize Population of Plans P
5. Intialize NumberOfGenerations
6. While True:

7. P.generate() //Generate or mutate a population of plans

8. P.applyPlansToEmbryo() //Apply the plans to the embryo model

9. P.assignCausality() //Assign causality to all models
10. P.getModelica() //Generate Modelica Code
11. Pssimulate() // Simulate models in the population
12. P.computeFitness() //Compute the fitnesses
13. best=P.best() //Obtain the fittest individual
14. currentfitness = best.fitness() //Obtain the fitness of the fittest individual

15. NumberOfGenerations=NumberOfGenerations + 1 //Increment number of Gneer-
ations

16. if currentfitness >= maxFitness or NumberOfGenerations ;=100: //If the fittess
condition is satisfied the algorithm has reached its goal or number of generations

exceeds a maximum of 100
17. print "End of Evolution’
18. break()

A fitness/objective function is defined to evaluate the optimality of a plan and in turn a model
which helps in guiding the search. In the next section we describe an experimental setup to

evolve a hoisting device model using the above algorithm.

4.4 Experiment Setup

We first construct an embryo model for a hoisting device. The model is capable of lifting 500
kg of load without breaking down. The parameters for the embryo model are given in Table
4.2. The embryo model is represented in the HABG modelling language and is shown in Figure
4.9.

The maximum input voltage to the hoisting device is 110V as supplied by tableSel. The mass
is initially on the ground therefore the downward force is compensated by the reactive force.
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Figure 4.9: ACausal Bond Graph of the Embryo Model

Table 4.2: Embryo Hoisting Device Parameters

Component Parameter Value Unit
Name

tableSel table [0,0; 50, 0;50,110; 100, 110] Volts
tableSel startTime 0 Seconds
tableSel offset 0 Volts
tableSe2 table [0, 0; 50, 0; 50, —4900; 100; —4900] Newton
R1 R 0.5 Q

I1 I 0.05 Henry
GY1 r 3 NA

12 I 667 Nm/rad
2 R 1 Nms/rad
TF1 m 0.11 NA

I3 I 500 kg
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At 50 secs the hoisting device attempts to lift a mass of 500 kg. At this instant the downward
force comes into play as described in tableSe2. The current model is able to lift the 500 kg
mass without any problem. This is shown in Figure 4.10 (a).

We now increase the load to 1000 kg. At this point the physical system cannot handle the load
anymore and it breaks down. The effect is shown in Figure 4.10 (b). The question is, keeping
the input voltage fixed can we modify the model of the physical system to lift a load of 1000
kg ?

The fitness function is very simple. We simply return the height A or Dql.OutPort1 which is
the sensor value for the height of the load. The fitness improves if kA goes from the negative to
the positive domain. The height h is measured at 60 seconds from start time. The length of the
program or the number of heuristic rules applied to the model is limited to 3. The inventory
comprised of 1 transformer with ratio 0.11 and a 1-junction. This limited inventory size is used

to observe if the simplified genetic algorithm can automatically detect the use of gears.

We run our simplified genetic algorithm to see if something useful turns out. The results are

presented in the next section.

4.5 Results

The simplified genetic algorithm is run with a maximum of 10 models in the population as
performing a simulation is computationally expensive. The simulation is run for 2 generations.
Plans are applied to each model and the resulting fitness is computed.

After 2 generations the fittest individual is able to lift the load of 1000 kg with the same
input voltage of 110 V. The plan inserts a 1-junction in the mechanical domain by executing
the insert_OJ rule. Following this the algorithm inserts a transformer TF element between the
1-junctions, by applying the heuristic rule OJ_TF_OJ.

The simplified genetic algorithm is able to discover the role of gears in the new physical model.
The inclusion of the transformer allows the hoisting device to lift the load of 1000 kg. The

structural variation on the embryo model is shown in Figure 4.11.

The graph showing the height vs. time behaviour of the new model is shown in Figure 4.12.
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Figure 4.10: (a) Height attained by hoisting device for 500 kg mass (b) Hoisting device breaks
down due to heavy mass
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Conclusion

In this thesis we presented a methodology for developing models of a physical system at dif-
ferent abstraction levels. We illustrated the importance of dividing the modelling process into
different levels. Using MDE based ideas it is now very easy to synthesize a complete mod-
elling environment or a modelling language from a meta-model specification. This empowers
modellers of one system at different levels to cast their ideas into completely executable code.

The transformations between visual languages have been specified using GG rules. The vi-
sual specification of models and also their transformations makes the process of development
much faster that traditional techniques. The visual specification of rules is far less error prone
than specifying rules textually. The rules are compact and give a clearer understanding of a

transformation. The GG rules by themselves are usually self-explanatory.

Finally, we see with the help of a simple hoisting device example that meta-models provide
a consistent way to describe a model design space. The model design space of a physical
system is an ideal candidate for exploration by many existing and newly developed artificial
intelligence (AlI) techniques. We specify heuristic rules as GG rules. Again, we notice the
power of a visual rule. The first ideas in the mind of an engineer is usually visual and also
domain specific. Encoding such a heuristic as a visual rule is faster, error-free and closer to
the modeller’s experiencial knowledge. The rules are executed in a sequence prescribed by the

genetic algorithm.

As future work it would be interesting to build two-way transformations between modelling
languages. The transformation from a low-level modelling language to a high-level modelling
language will usually open up many possibilities. For instance when a BG model is transformed
to an [PM model a BG element can be assigned to many different domains. Coming to the
general notion of the model design space of a modelling language. It would be useful to come

up with a method that can do efficient constrain satisfication and design space search for any
given meta-model and constraints specification.
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