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Abstract

We study the expansion of the universe on a deSitter 3-brane in a warped codimension-

two brane model. We use analytical and numerical methods to solve the jump condi-

tions and quantify the deviations of the Friedmann equation from its standard form.

The radion must be stabilized in this model, and it is shown that the magnitude of

the deviations is controlled by the radion mass, though in a quantitatively different

way from codimension-one brane models. We also examine the effect of the modified

expansion rate on inflation driven by fields on the brane.
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Résumé

Nous étudions l’expansion de l’univers sur un desitter 3-brane dans un modèle déformé

de brane de dimension 2. Nous employons des méthodes analytiques et numériques

pour résoudre les conditions de saut et pour mesurer les déviations de l’équation de

Friedmann a partir de son format standard. Le radion doit être stabilisé dans ce

modèle, et on démontre que l’importance des déviations est commandée par la masse

de radion, cependant de faéon quantitativement différente a partir de modèles de

brane de dimension 1. Nous examinons également l’effet du taux modifié d’expansion

sur l’inflation conduite par des champs sur le brane.
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Chapter 1

Introduction

Recently braneworld models have been widely studied because it is possible that

our universe is confined on a 3-brane. In this thesis we consider a codimension-two

braneworld model with a 3-brane representing our universe and a 4-brane truncating

the extra dimensions. The Friedmann equation on the 3-brane and the stability of

the model are studied.

The thesis is organized as follows: in chapter one we present some basic ideas

related to our model such as extra dimensions, braneworld and inflation; in chapter

two the model is set up and Friedmann equations on the 3-brane are found with and

without a Goldberger-Wise scalar field; in chapter three we study the stability of the

model in tensor, vector and scalar modes respectively; in chapter four we apply the

Friedmann equation to study the inflation on the 3-brane; chapter five is the summary

and outlook for future work.

1.1 Why six dimensions or codimension-two

There is no evidence for extra dimensions yet, so why are we interested in such

“fictitious” dimensions? First, because if they are finite they can help to explain

some quantized fundamental parameters like electric charge [1], [2]. Second, extra

dimensions help to resolve the hierarchy problem [3], [4], [5], cosmological constant

problem and the mystery of dark energy [6]. Third, string theory and M-theory select

1



2 Chapter 1 Introduction

a certain number of the space-time dimensions greater than four.

If extra dimensions really exist they must be invisible due to some mechanism.

There are only three possibilities to do this. One is that the extra dimensions are very

small, i.e. compactified, and cannot be detected by current accelerators. The second

is that all the standard model particles are confined in some low dimensional space-

time and cannot “see” those flat extra dimensions except the gravity. The third is

that in addition to the assumption of the confinement of standard model particles we

can also have non-flat extra dimensions, i.e. warped bulk. The sensitivity of gravity

to the extra dimensions in second and third possibilities constrains the scale of the

extra dimensions.

Below we first discuss the general ideas of extra dimensions in KK type and string

theory respectively and next discuss why six-dimensional or codimension-two models

deserve special attention.

1.1.1 Extra dimensions

The first attempt to study extra dimensions can be traced back to almost one century

ago to Nordström [7] and Kaluza [8]. The basic idea was to realize Einstein’s dream

of finding a geometrical origin for all the interactions. Since at that time the only

known interactions were gravitation and electromagnetism, Kaluza introduced a fifth

spatial dimension to incorporate the electromagnetic U(1) gauge group into the five-

dimensional general coordinate transformations. The metric was assumed to be

gMN =





gµν Aµφ

Aνφ φ



 .

All of the metric components are independent of the fifth dimension which Kaluza

called “cylinder condition”. By choosing φ to be a constant Kaluza found exactly

the four-dimensional Einstein-Maxwell action from the pure five-dimensional Einstein

action. Some years later, Klein [1], [2] considered a similar theory but with the extra

dimension compactified as a small circle. He thus explained why the fifth dimension is

invisible. Klein also expanded all the fields as the Fourier modes of the fifth dimension
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and found Kaluza’s results with the zero mode. In addition, he found that the electric

charge is quantized when non-zero modes are considered.

After the standard model of particle physics was constructed people tried to gen-

eralize the Kaluza-Klein (KK) theory to higher dimensions to include the larger gauge

group SU(3)× SU(2)× U(1). Witten [9] found the smallest number of extra dimen-

sions to embed such a group is seven after Nahm [10] proved eleven is the largest

number of dimensions to have a consistent supergravity theory. Thus combining

higher dimensional KK theory with supergravity uniquely determines the dimension

of the theory. Freund et al. [11] further showed that there are only two ways to com-

pactify the d = 11 supergravity theory which naturally introduces an antisymmetric

tensor field with rank 4: flat four dimensions and compactified seven dimensions or

flat seven dimensions and compactified four dimensions depending on which manifold

the time dimension is in. Moreover, Cremmer et al. [12] showed that there is only

one choice of extra matter fields that can make the eleven-dimensional supergravity

theory consistent. Thus it seems possible to find a unique theory in this framework

which describes the real universe.

However, there are several things to be noticed. First, if we insist that the extra

dimensions are spontaneously compactified then additional matter fields, at least

those corresponding to fermion fields in the standard model, are needed. Second,

however, it is impossible to get chiral fermions, as argued by Witten [9]. Third,

though the theory seems have unified all the interactions, it does not provide a way

to quantize gravity. Last, the compactification scale is generally taken to be the

Planck scale which makes it impossible to probe the extra dimensions.

The first of the above problems violates the original idea of unifying all the matter

fields in a purely geometrical scenario. One way to naturally add matter fields is

through supergravity; see [13], [14], [15]. There are alternatives which can keep the

purely geometrical idea but the price to pay is to alter the higher dimensional Einstein

equation [16]. To solve the second problem of chirality, people reduced the theory to

ten dimensions. However, in ten dimensions the beauty of the KK theory is totally

ruined because the standard model gauge group can no longer be interpreted as the
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symmetry group of the extra dimensions. Meanwhile, the uniqueness of the theory is

destroyed: there are two self-consistent ten-dimensional supergravity theories, one is

based on SO(32) and the other is based on E8 × E8 respectively.

As supergravity was developing string theory was also advancing; for reviews see

[17]. It turns out that supergravity and string theory are deeply related. There

are five different superstring theories in ten dimensions based on groups SO(32) and

E8 × E8 respectively. During the 90’s, Witten et al. [18]-[23] proved that the five

superstring theories are related by dualities and are different perturbation expansions

of a single theory living in eleven dimensions, called M-theory. The low energy limit

of M-theory is just eleven-dimensional supergravity. Furthermore, Salam et al. [24]

proved the two ten-dimensional supergravity theories are low energy limits of the

corresponding superstring theories of the same group.

Much literature is devoted to compactifying the extra dimensions of M-theory

or string theory but these papers seldom explain why four of them remain infinite

and how the extra dimensions are stabilized. In fact compactification is not the

only possibility. One can also imagine that all the dimensions are compactified at

first due to the high energy density of the early universe and later four of them

unfold through some mechanism during the decrease of energy density. This idea

is realized in the [25], [26], [27]). Besides, there exist non-compactified approaches

which relax the cylindrical condition and no longer interpret the extra dimensions as

space-like. In such ways pure higher dimensional geometrical effects can produce rich

enough matter content without adding extra matter fields [28],[29]. Extra time-like

dimensions are also studied [30], [31]. However, these cannot be interpreted as real

dimensions because time is a measurement of relative movement and one measurement

cannot generate two results. Moreover, extra time-like dimensions generally lead

to tachyons and violate causality. Most importantly recent progress in braneworld

models shows that compactification is not always necessary and we will discuss this

in the next section.
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1.1.2 Why six dimensions or codimension-two

Six-dimensional models and codimension-two braneworld models received a lot of at-

tention because researchers thought they could help to solve the cosmological constant

problem (CC problem). For reviews of the CC problem see [32], [33]; for reviews of

attempts to solve it in these models see [34]-[40].

The basic idea of solving the CC problem in six-dimensional models with codimension-

two braneworlds is to separate the observed expansion rate from the vacuum energy

predicted by the fundamental particle models. In the early work [34], the authors

showed that in a warped six-dimensional model the expansion rate is a constant

independent of the vacuum energy. Later, it was found that in codimension-two

braneworld models the only effect of the 3-brane with tension T is to introduce a

deficit angle δθ = T
M4

6
. This makes it possible that the vacuum energy only curves

the extra dimensions but leaves the 3-brane flat. Codimension-two braneworld mod-

els are special mainly because only in such models the compactification scale can be

comparable to the observed vacuum energy scale. Above the compactification scale

supersymmetry ensures a vanishing cosmological constant. Below it, although super-

symmetry is totally broken on the 3-brane, it can be broken only by a small amount

in the bulk and this results in a small cosmological constant [41], [42], [43], [44]. So

if the compactification scale is comparable to the observed vacuum energy scale the

CC problem can be solved. However, those works all considered a thin 3-brane with

only pure tension; when matter is added the singularity becomes nonconical. There

are two ways to regularize it: one is to add a Gauss-Bonnet term [45], [46] in the

original Lagrangian; the other is to assume a thick brane [38]. It was proved [38]

that in non-supersymmetric scenarios, changes in the brane tension lead to deSitter

or anti-deSitter braneworlds; thus the cosmological constant cannot be relaxed dy-

namically. Also in supersymmetric scenarios with thick 3-branes [40] no-self-tuning

mechanism was found.

In fact, even in the thin brane limit the apparent solution to the CC problem is

model dependent. Only in models where orbifold conditions or fine-tuning between

two 3-brane tensions are imposed the effect of the curved extra dimensions will cancel
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the effect of the brane tension. Without these requirements, the change of the brane

tension will lead to the standard Friedmann equation at least at low energy; for

example see [55] and our work herein. However, static solutions with arbitrary 3-

brane tensions always exist and any deviation from the static value of the tension

leads to an expanding universe.

1.2 Braneworlds

Braneworlds are now a fruitful subject which suggests new approaches to old problems

such as the hierarchy problem [3], [4], [5] and CC problem, and provides new insights

into black holes [47]-[50], and holography [51], [52] and gives new perspectives on

cosmology [53], [54], [56].

In braneworlds the standard matter fields and gauge fields are all confined on a

brane while gravity can propagate freely in the bulk. It changes the concept of extra

dimensions relative to KK type theories where the extra dimensions are responsible

for the gauge group. There are three different ways to deal with the extra dimensions

in the braneworld scenario. First, the space-time is a product of M4 × Rn [3], [59]

where n ≥ 1, and M4 is the usual four-dimensional space-time and Rn is the extra n-

dimensional compact manifold with volume Vn. In this framework the 4-dimensional

Planck scale Mp is related to the fundamental (4+n)-dimensional Planck scale Mn by

M2
p = M2n

n ×Vn. For example if there are only two extra dimensions the fundamental

compactification scale is ∼mm, thus the only fundamental energy scale in this theory

is Mew. In this way the strength of gravity becomes comparable with that of the

gauge interactions at the scale Mew and quantum gravity can therefore be probed at

this scale. Second, the space-time is warped while the extra dimensions are infinite,

though with finite volume [5], [57]. In this framework gravity is localized in the

extra dimensions not because they are compactified but because of the curved bulk.

Third, the whole space-time is uncompact and flat [58]. This is achieved by adding

an additional four-dimensional Ricci scalar term coming from the one loop quantum

corrections of the interactions between matter on the brane and gravity. Intuitively
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the additional term can be understood as follows: since Rµν − 1
2
gµνR does not vanish

identically on manifolds with dimension greater than two, matter on the brane should

also affect the intrinsic curvature of the brane as well as that of the whole space-time.

The braneworld scenario has its seeds in string theory. In string theory open

strings describe non-gravitational fields and must attach their ends onto surfaces

called D-branes, while closed strings can describe gravitational fields and move freely

in the bulk. Thus it is possible that matter fields are confined on a d-dimensional D-

brane while gravitational fields propagate freely in the bulk [59], [60]. Also this might

be the realistic way that strings can describe our universe [61] since it is easier in this

way to get unification of different couplings as well as supersymmetry breaking.

1.3 Inflation

The standard model of cosmology is based on general relativity and the cosmological

principle that the universe is homogeneous and isotropic at large scales. Despite

its great success in explaining the abundance of light elements and cosmic microwave

background (CMB) radiation, the standard model of cosmology also generates several

problems, including the horizon problem, flatness problem and monopole problem.

Inflation [62]-[67] was proposed to solve these three problems.

It is assumed that the universe was in a causally connected region before inflation;

while during inflation since the universe was increasing exponentially different regions

had no time to change to different states before they became causally unconnected. So

distant but similar regions which appear to be causally unconnected now were much

closer in the past. This explains the isotropy of the CMB. Also from the Friedmann

equation

H2 =
8πG

3
ρ − K

c2

a2
(1.1)

where H is the Hubble rate, ρ is the energy density and K is the curvature of the

space, we know that the expansion rate was eventually determined by the energy

density as the scale factor increased, because the energy density was almost constant

during inflation. In other words, the curvature of space was driven to zero during
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inflation and thus the flatness problem is solved. In fact, here inflation only says that

there is no need to fine tune the curvature of the space; it does not give a definite

sign of the curvature let alone its exact value in the early universe. The monopoles

which were possible after grand unified theory symmetry breaking were diluted during

inflation, explaining why they are not observed.

However, inflation is widely accepted not only because it resolved the above prob-

lems but because it successfully explained the origin of the density inhomogeneities by

quantum perturbations and is able to make predictions about temperature anisotropy

in the CMB.

To have inflation, it is assumed that the early universe was dominated by vacuum

energy whose equation of state is ρ = −P . This is realized by a scalar slowly rolling

down a flat potential satisfying the slow roll conditions: |MpV
′| � |V | and |M2

p V ′′| �
|V |. Inflation ends when the slow roll conditions are violated and the scalar field starts

to oscillate around the minimum of the potential and transform its energy to create

ordinary matter fields. There are many scalar fields in fundamental particle physics

theories which may act as the inflaton.

However, inflation itself has some problems. First, tracing back inflation in time

we still encounter the singularity appearing in the standard model of cosmology [68].

Second, since during inflation there was a large vacuum energy from the scalar po-

tential, how does it evolve to the cosmological constant today? Third, why does the

inflaton start away from the minimum of its potential?

To address these problems and to describe the very early universe a fundamental

particle theory is needed which includes quantum gravity. Only then can we un-

derstand the meaning of the vacuum, the property of singularity, the origin of the

quantum fluctuation and space and time.



Chapter 2

Friedmann equation in

codimension-two braneworld

Modified Friedmann equations have been found in many extra dimensional models.

Some of them are 5D models and included a Gauss-Bonnet term in the action so that

matters can be put in consistently [46], [69], [70], [71], [72], [73], [78] while some are

6D models and used flux compactification [55]. Modified Friedmann equations have

applied to study dark energy [58], [74] and inflation [75]. In this chapter we study

how the Friedmann equation is modified in a codimension-two (6D) braneworld model

with only pure tension on the 3-brane and a negative cosmological constant in the

bulk. The extra dimensions are truncated by a 4-brane.

2.1 The codimension-two braneworld model

We will consider a codimension-two braneworld with a negative cosmological constant

in the six-dimensional bulk space-time. The geometry describes a warped conical

throat, which is bounded at large r (specifically at r = P ) by a 4-brane around

which orbifold boundary conditions are imposed, analogous to the Planck brane of

the Randall-Sundrum (RS) model. In addition there is a 3-brane at the infrared end

of the throat, denoted by r = ρ, which can be thought of as the Standard Model

9
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brane. The action is

S =
1

2k2
6

∫

d 6x
√
−G [R− 2Λ6 ] −

∫

d 6x
√
−G

[

1

2
(∇φ)2 + V (φ)

]

+

∫

d 5x
√

−g̃L4−brane −
∫

d 4x
√−g τ3 , (2.1)

where

k2
6 =

1

M4
6

(2.2)

is the 6-dimensional gravitational constant and GAB is the 6-dimensional bulk met-

ric. We denote the induced metrics on the 3-brane and the 4-brane by gµν and g̃ab,

respectively. τ3 is the 3-brane tension. Here, L4−brane is the Lagrangian density of

the matter on the 4-brane that includes the 4-brane tension T4, as well as some addi-

tional component which is necessary for satisfying the extra jump (Israel matching)

condition which exists in 6D relative to 5D models.

The 6-dimensional Einstein equation derived by varying the above action with

respect to GAB takes the form

√
−G

[

GAB + Λ6GAB − k2
6TAB

]

= k2
6

√

−g̃ Sab δa
A δb

B δ(r − P ) − k2
6τ3

√
−g gµν δµ

A δν
B δ(2)(r − ρ) , (2.3)

where δ(2) denotes the 2-dimensional delta function with support at the position of

the 3-brane, and Sab is the stress-energy tensor defined below in eq. (2.12) and the

bulk stress tensor is given by

TAB = ∂Aφ∂Bφ − 1

2
GAB∂Dφ∂Dφ − V (φ)GAB . (2.4)

The variation with respect to φ gives

� φ − dV

dφ
= 0 . (2.5)

For simplicity we impose azimuthal symmetry on the extra two dimensions and

therefore require that the metric depends only on the radial coordinate. The line

element has the form

ds2 = a(r) [−dt2 + e2H̃tδijdxidxj ] + f(r)K2 dθ2 +
1

f(r)
dr2, (2.6)
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where H̃ is the Hubble parameter describing de Sitter expansion of the brane, and

K is a parameter which determines the deficit angle at the 3-brane, where there is

generically a conical singularity. To insure that the position r = ρ of the 3-brane

represents a single point in the extra dimensions, we require that f(ρ) = 0. The 4-

brane at r = P is needed in order to have a compact bulk and localized gravity. The

6D cosmological constant is negative, Λ6 = −10/`2, and gives rise to an approximately

AdS6 bulk geometry with curvature length scale `. The pure gravity model has a

modulus, the radion, which must be stabilized to make a realistic model. For this

reason we have included a bulk scalar field, which can give the radion a mass by the

Goldberger-Wise mechanism [114], provided that φ couples to the 4-brane in L4−brane.

The Einstein equations for this model are

µµ :
6H̃2 − 3a′f ′ − 3a′′f − f ′′a

2
= aΛ6 + ak2

6

(

f

2
(∂rφ)2 + V (φ)

)

θθ :
K2f(12aH̃2 − 2a′f ′a − fa′2 − 4a′′af)

2a2
= K2fΛ6 + K2k2

6

(

f 2

2
(∂rφ)2 + V (φ)f

)

rr :
12aH̃2 − 3fa′2 − 2a′f ′a

2a2f
=

1

f
Λ6 − k2

6

(

1

2
(∂rφ)2 − 1

f
V (φ)

)

(2.7)

where ′ denotes the derivative with respect to r.

2.1.1 The jump conditions

To completely specify the geometry, we must consider the jump conditions which

relate the metric and bulk scalar to the sources of stress-energy at the boundaries.

First, let us consider the jump condition for the 3-brane. Recalling that the

position of the 3-brane satisfies

f(ρ) = 0 , (2.8)

the deficit angle is given by

∆θ = 2π

[

1 − K

2
f ′(r)

]

∣

∣

∣

∣

∣

r=ρ

(2.9)

A non-vanishing deficit angle indicates the presence of a conical singularity at the

position of the 3-brane, related to the brane tension τ3 by ∆θ = k2
6τ3. The jump
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condition at r = ρ can thus be written as

K =
2

f ′(ρ)

(

1 − k2
6

τ3

2π

)

. (2.10)

In what follows, it will not be necessary to include any coupling of the scalar field to

the 3-brane, so the boundary condition of φ at r = ρ is simply

φ′(ρ) = 0 (2.11)

Next, for the 4-brane, we define the stress-energy tensor of the 4-brane Sab as:

Sµν = −
(

T4 +
c0

Lα
θ

)

g̃µν , L2
θ = fK2

Sθθ = −
(

T4 + (1 − α)
c0

Lα
θ

)

g̃θθ . (2.12)

The parameter α, which allows for a difference between the 4D and the θθ components

of the 4-brane stress tensor, must be nonzero to accommodate a static solution with

P < ∞. The physics which could account for the c0 contribution to the stress tensor

can arise in several ways [117, 101]. Conservation of Sab implies that the energy density

of the source c0 must scale like 1/Lα(P ) [104, 118] where L is the circumference of

the 4-brane. If c0 is due to the Casimir effect of massless fields living on the 4-brane,

then α = 5, whereas if it is due to smearing a 3-brane around the 4-brane then α = 1.

Thus the jump conditions for the 4-brane at r = P are given by

f

[

3

2

(

a′

a

)′

+
1

2

(

f ′

f

)′ ]

g̃µν = k2
6

√

f Sµν δ(r − P ) , (2.13)

2 f 2K2

(

a′

a

)′

= k2
6

√

f Sθθ δ(r − P ) , (2.14)

where the term
√

f in the r.h.s. of each equation comes from the ratio of the deter-

minant of the 4-brane induced metric to the bulk metric,
√−g̃/

√
−G.

By integrating the above equations across r = P , assuming Z2 orbifold symmetry,

we get

√

f

(

3
a′

a
+

f ′

f

)

= k2
6

(

T4 +
c0

Lα

)

,

4
√

f
a′

a
= k2

6

(

T4 + (1 − α)
c0

Lα

)

, (2.15)
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To stabilize the model with the bulk scalar field, we will allow for the possibility

that φ couples to the 4-brane through a potential VP (φ) contained in L4−brane. This

leads to the boundary condition

φ′ = − 1

2f(P )

dVP

dφ
(2.16)

at r = P , using the assumed Z2 orbifold symmetry.

2.1.2 Background solution

The general solution to Einstein’s equations for the metric (2.6) is

a(r) =
r2

r2
0

, f(r) =

(

r2

r2
0

− r3
1

r3
+ H̃2`2

)

r2
0

l2
(2.17)

The constants of integration r0, r1 can be set to convenient values by rescaling coor-

dinates,

xµ → Axµ, r → Br (2.18)

Under this transformation, the metric functions change as

a → aA2B2, H̃ → H̃/A, f → f/B2, K → BK (2.19)

By choosing A = ( r0

r1
)3/5 and B = (r2

0r
3
1)

1/5, we can thus set r0 = r1 = 1, for

convenience.

Notice that in the limit of H̃ → 0, eq. (2.6) reduces to the AdS soliton solution.

Since we have chosen to normalize a(ρ) = ρ2 at the 3-brane instead of the usual

value, a = 1 the observed Hubble rate on the 3-brane is given by H = H̃/ρ, and the

position of the 3-brane, defined by eq. (2.8), satisfies

1 + H2`2 =
1

ρ5
, (2.20)

The jump condition for the 3-brane, eq. (2.10), is then

K =
1

ρ + 3
2ρ4

(

1 − k2
6

τ3

2π

)

, (2.21)
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and the jump conditions for the 4-brane, eqs. (2.15), can be expressed as

F ≡ P + 3
2
P−4

√

P 2 − P−3 + H2ρ2`2
+

3α + 1

α − 1

√

P 2 − P−3 + H2ρ2`2

P

=
k2

6α

2(α − 1)
`T4 (2.22)

G ≡ P + 3
2
P−4

√

P 2 − P−3 + H2ρ2`2
−
√

P 2 − P−3 + H2ρ2`2

P

=
k2

6αc0

2Kα`α−1(P 2 − P−3 + H2ρ2`2)α/2
(2.23)

These conditions cannot be solved analytically; in the next section we will use ap-

proximate and numerical methods to solve them and thereby deduce the form of the

Friedmann equation in the 6D model.

Before solving the jump conditions (2.23, 2.23) it is important to understand

which quantities should be considered as inputs and which are derived. Obviously

we can freely specify all sources of stress energy, including Λ6, T4, τ3, c0 and α; these

determine the Hubble parameter H. However our de Sitter brane solutions only

exist for special values of P , the position of the 4-brane, which in the absence of the

bulk scalar field is an unstabilized modulus, except in the case where α > 5 [118].

Therefore eqs. (2.23, 2.23) should be seen as determining H and P given arbitrary

sources of stress-energy.

2.2 Friedmann equation without Goldberger-Wise

scalar field

In this section we study the Friedmann equation on the 3-brane without the Goldberger-

Wise scalar field in the bulk. We first do analytical calculations and find the first

several terms of the Friedmann equation and then we calculate the time variation

of Newton’s constant and finally we do numerical calculations and compare them to

analytical results.
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2.2.1 Analytical results

By solving eq. (2.23), we can obtain the position of the 4-brane in terms of the physical

Hubble rate P = P (H). Substituting P into eq. (2.23), we then find the relation

between H and τ3 since the deficit parameter in eq. (2.23) is given by K = K(H, τ3)

from eq. (2.21). In this subsection we will carry out this procedure treating the excess

3-brane tension δτ3, or equivalently the Hubble rate H, as a perturbation. Thus we

start by finding P as a Taylor series in H using eq. (2.23); then we will eliminate P

from eq. (2.23) to obtain H as a Taylor series in δτ3.

The first step in the perturbative approach still requires a numerical procedure

to find the value of the 4-brane position P and the critical 3-brane tension τ̄3 which

satisfy the jump conditions for a static geometry, with H = 0:

P + 3
2
P

−4

√

P
2 − P

−3
+

3α + 1

α − 1

√

P
2 − P

−3

P
=

k2
6α

2(α − 1)
`T4 , (2.24)

P + 3
2
P

−4

√

P
2 − P

−3
−

√

P
2 − P

−3

P
=

k2
6αc0

2Kα
0 (τ)`α−1(P

2 − P
−3

)α/2
. (2.25)

P can then be thought of as a function of α, c0 and T4, which is especially sensitive

to T4. In fig. 2.1 we plot the typical dependence of P on T4, showing that it diverges

for a critical value T4,0 by power of ∼ −0.25, and approaches 1 for large values of

T4 by power of ∼ −2. Recall that the position of the 3-brane is ρ = 1 when H = 0

(eq. (2.20)), so the latter behavior corresponds to the shrinking of the radial length

to zero, while the former is needed to have a strongly warped solution with a large

hierarchy between the 4-brane and the 3-brane.

To perturb around the above Minkowski space background, we will let τ3 = τ̄3+δτ3,

which gives rise to a small Hubble parameter H, and also changes the position of the

4-brane. We make the expansion

P = P +
dP

dHH +
1

2

d2P

dH2
H2 + ... (2.26)

where we have defined the dimensionless quantity

H ≡ H2`2 . (2.27)
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Figure 2.1: log(P − 1) as a function of log(T4l − T4,0l), where T4,0 is the value for

which P → ∞

The coefficient dP
dH

in this expansion can be found by differentiating eq. (2.23) to get

dP

dH =
4 (α + 1)P

5 − 9 α + 1

10 (α − 5)P
5
+ 5 (3 α + 5)

P
4

(2.28)

To relate H to the 3-brane tension, we use (2.21) and (2.23) to find that

1 − k2
6

τ3

2π
=

(

ρ +
3

2ρ4

)(

k2
6αc0

2G(P ) `α−1 fα/2(P )

)1/α

(2.29)

where we recall that ρ depends on H via eq. (2.21). Recall that τ̄3 is defined to be

the value of τ3 corresponding to H = 0 and P = P . To find the Friedmann equation

at leading order in δτ3, we take τ3 = τ̄3 + δτ3 and substitute P = P + dP
dH

H into the

r.h.s. of (2.29).

This gives

− k2
6

2π
δτ3 = −2

5
H(P

3 − 1)

(

1 − k2
6

2π
τ̄3

)

+ O(H2). (2.30)

which after solving for H2 becomes

H2 =
5

2
(P

3 − 1)−1

(

1 − k2
6

2π
τ3

)−1
k2

6

2π`2
δτ3 + O(δτ 2) (2.31)
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Ignoring the terms O(δτ 2), eq. (2.31) has the form of the standard Friedmann

equation, H2 = (8πG/3)ρ, since δτ3 is the excess energy density driving the cos-

mological expansion. However we need to check that the coefficient of δτ3 in eq.

(2.31) is indeed 8πG/3. We can compute Newton’s constant, or equivalently the 4D

Planck mass M 2
4 = (8πG)−1, by dimensionally reducing the 6D Einstein-Hilbert ac-

tion. Ignoring Kaluza-Klein excitations, the 6D and 4D Ricci scalars are related by

R6 = R4/a; thus

M2
4 = (8πG)−1 = M4

6

∫ √
−g6 a−1dr dθ = M4

6

∫

aK`
√

f
`√
f

dr dθ

= 2πM4
6 K`2

∫ P

ρ

r2 dr =
2π

3
M4

6 `2 P 3 − ρ3

ρ + 3
2ρ4

(

1 − k2
6

τ3

2π

)

(2.32)

Notice that in the above expression, the 4D Planck mass depends upon H through the

integration limits ρ and P ; thus Newton’s constant becomes time-dependent when the

rate of expansion of the universe is not constant. We will need to check whether this

effect can be small enough to be consistent with experimental constraints on the time

variation of G (see next subsection). But for the immediate purpose of comparing

our obtained Friedmann equation with the standard one, we define a static Planck

mass which corresponds to its value when H = 0:

M
2

4 = (8πG)−1 = 2πM4
6 K`2

∫ P

1

r2 dr =
4π

15
`2M4

6 (P
3 − 1)

(

1 − k2
6

2π
τ3

)

(2.33)

Since M4
6 = κ−2

6 , we see that indeed eq. (2.31) is consistent with the 4D Friedmann

equation, H2 = (8πḠ/3)δτ3. This is in contrast to ref. [104], which mistakenly found

deviations from the normal Friedmann equation at this order. The mistake made

there was that corrections to the expansion rate due to changes in the 3-brane and

4-brane positions were argued to be negligible. However, we have just shown that it

is essential to take account of the changes in ρ and P in order to obtain the correct

result.

Having established the Friedmann equation is recovered at leading order in δτ3,

we now turn to the corrections at higher order. We need to determine the higher

order terms in the expansion of P in powers of H. Again differentiating eq. (2.23),

d2P

dH2
=
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2P
4
[

(

−160 + 32 α3 − 288 α − 96 α2
)

P
18

+
(

−800 + 288 α2 − 480 α − 32 α3
)

P
15

+
(

1224 α + 48 α2 + 264 α3
)

P
13

+
(

−504 α2 − 24 α3 + 600 + 3000 α
)

P
10

+
(

−633 α2 − 549 α3 − 159 α − 195
)

P
8
+
(

−2160 α − 1056 α2 + 144 α3
)

P
5

+
(

−402 α + 230 + 306 α2 + 378 α3
)

P
3 − 50 + 522 α2 + 162 α3 + 390 α

]

/[

25
(

5 + 2 P
5
α − 10 P

5
+ 3 α

)3
]

(2.34)

and substituting P = P + dP
dH

H+ 1
2

d2P
dH2H2 into the r.h.s. of (2.29) we get the surprising

result

H2 =
8πG

3
δτ3 + O(δτ 3

3 ) (2.35)

so the second order correction vanishes. To find the leading correction, we need to

go one order higher. Continuing the procedure, computing d3P/dH3 in (2.26), using

eq. (2.23), we find an unwieldy result which is given in the appendix, eq. (A.1).

Substituting P = P + dP
dH

H + 1
2

d2P
dH2H2 + 1

6
d3P
dH3H3 into the r.h.s. of (2.29) we get

k2
6

2π
δτ3 =

2

5

(

1 − k2
6

2π
τ̄3

)

(P
3 − 1)

(

H−H3J(α,H) + O(H4)
)

(2.36)

where

J(α,H) =
[

(−1120 − 1056 α + 96 α2 + 32 α3)P
24

+ (5088 α + 600 + 144 α3 + 312α2)P
19

+(3000 − 24 α3 + 360 α2 − 1800 α)P
18

+ (−8 α3 + 120 α2 − 600 α + 1000)P
15

+(−459 α3 − 165 − 3087 α2 − 2433 α)P
14

+ (−108 α3 − 4500 + 900 α2 − 900 α)P
13

+(−36 α3 − 1500 + 300 α2 − 300 α)P
10

+ (185 + 1179 α2 + 783 α3 − 99 α)P
9

+(2250 α − 162 α3 + 270 α2 + 2250)P
8
+ (90 α2 + 750 − 54 α3 + 750 α)P

5

+(−405 α2 − 81 α3 − 375 − 675 α)P
3 − 225 α − 125 − 27 α3 − 135 α2

]

/[

25
(

(2 α − 10)P
5
+ 5 + 3 α

)3

(P
3 − 1)

]

(2.37)

Using eq. (2.33) and solving for H2, we obtain

H2 =
8πG

3
δτ3

(

1 +

(

8πG

3

)2

J`4δτ 2
3

)

+ O(δτ 4
3 ) (2.38)
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At large P the function J increases like P
6

for generic values of α and like P
21

for

α = 5 due to the behavior of the denominator in eq. (2.37).

The dependence of J on P is illustrated in figure 2.2 for several values of α. For

intermediate values of P , and 1 < α < 5, J can become negative, as seen between

the cusps of ln |J | in the figure.

0 0.5 1
lnP

-10

0

10

20

30

ln|J|

4

3

2

α=5

α=1

Figure 2.2: log |J | versus log P for several values of α. J is positive except for the

regions between cusps.

2.2.2 Time variation of Newton’s constant

From eq. (2.32) we see that the 4D Planck mass depends on H and τ3, the 3-brane

tension. We can therefore anticipate that it will depend on time in a situation where

the pure tension τ3 is replaced by matter or radiation which gets diluted by the

expansion of the universe. To quantify this dependence, we will consider the variation

of M2
p (or equivalently Newton’s constant G) with δτ3. We do this both analytically,

in the region of small δτ3, and numerically for larger values of δτ3.

For small δτ3 we can differentiate eq. (2.32) with respect to τ3, keeping in mind

that P and ρ depend on H, which in turns depends on τ3. At leading order, we find
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that

d lnG

dδτ3
= − k

(

P
3 − 1

)2

(1 − kτ̄3)





3

2

P
6
(

4 (α + 1)P
5 − 9 α + 1

)

2 (α − 5)P
5
+ 3 α + 5

+
3

2
− P

3
(P

3 − 1)





(2.39)

at δτ3 = 0, where k = k2
6/(2π). Since the deficit angle should lie in a certain range,

i.e. [0, 2π), kτ̄3 must be in [0, 1) which means the energy scale determining the 3-

brane tension must be approximately equal to or below that of the 6D Plank mass.

In the limit of large warping, P � 1, this simplifies to

d lnG

dδτ3

∼= 2
4 + α

5 − α

k

(1 − kτ̄3)
(2.40)

assuming that α 6= 5.

Let us compare this to experimental constraints on the time-variation of G, [125]

|d lnG/dt| < 10−12/y. (2.41)

Since dρ/dt = −2ρ0t
2
0/t

3, we take ρ0 and t0 to be the present values and t ∼= t0 ∼= 1010y,

we see that the constraint implies that

d lnG

dδτ3

<∼ 1.2 × 1044/ GeV4 (2.42)

for α ∼ 1. Substituting into (2.40) we see that this constraint is very loose, requiring

only that M6 ≥ 10−11 GeV.

we can put another constraint. Since there is no observational changes in G around

a dense object like a neutron star, if we treat the 3-brane as a dense object then G

should not change very much spatially. From this we find M6 ≥ 1Gev which is a

much stronger constraint.

For the special case α = 5, the above approximations are not valid, and the time

variation of G is relatively large if the radial size of the extra dimension P is much

greater than unity. We get

d lnG

dδτ3

∼= −9

5
P

5 k

(1 − kτ̄3)
(2.43)

The constraint on τ̄3 becomes more stringent in that case, by a factor of P
5
. For

the interesting value of P ∼ 1016 which is required to tackle the hierarchy problem,
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k
(1−kτ̄3)

<∼ 10−36/ (GeV4) gives M6 ≥ 109 GeV. From the spatial constraint we get

M6 ≥ Mp. Alternatively one can have P ∼ 1 and keep the constraint (2.42). In no

case is there any constraint on τ̄3, except that it cannot be too close to 1/k6.

2.2.3 Numerical results

Now we proceed to check and extend the above analytical results with numerical ones.

For clarity of presentation we transform the units from M6 = 1 to M 4 = 1 given by

(2.33).

We first check the Friedmann equations for the special case α = 5, which dis-

played the largest derivation from the studied case in the perturbative treatment.

Numerically we solve P from eq. (2.23) for each H and then substitute it into (2.23)

to find τ3, thus obtaining the relation of H and δτ3 = τ3 − τ 3. The parameters we

choose are T4 = 1.12 × 10−8, c0 = 8.17 × 10−7 and Λ = −1.56 × 10−9. These are not

special choices as well as other parameters below though they may seem strange, this

is because they have been transformed from k6 = 1 unit to k4 = 1 unit. The main

concern is that they should be below the 4D Planck scale. Figure 2.3 shows ln H 2

vs ln δτ3 at small δτ3 from numerical and analytical calculations. The discrepancy is

small for lnδτ3 < −26.5 which means (2.38) is a good approximation at low energy.

We also present results from numerical calculations for α = 5 and α = 1 (choosing

the parameters Λ = −3.34 × 10−11, c0 = 6.01 × 10−14 and T4 = 2.39 × 10−10 because

in units of M6 = 1, M 4 is different for different values of α so it is difficult to get the

same parameters in M 4 = 1 units for all values of α) since α = 1 is a special case

which has totally different features from others; see fig. 2.4 and fig. 2.5 respectively.

Fig. 2.3 has many different features compared to the Friedmann equation in 5D

models. First, the Hubble rate is double valued. This means that there are two

sets of points (H2
1 , P1) and (H2

2 , P2) corresponding to the same 3-brane tension τ3;

in other words, the 4-brane also affects the Hubble rate on the 3-brane. Second,

figure 2.4 shows that there is a pole in H and the 3-brane tension is not continuous

but has a gap–δτ3 cannot have values between ∼ 7 × 10−12 and ∼ 13 × 10−11. The

pole occures when the left hand side of (2.23) vanishes. However, above the pole the
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Figure 2.3: Friedmann relation from numerical and analytical methods
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Figure 2.5: Friedmann equation for α = 1

deficit angle exceeds 2π which makes the high-H branch unphysical. Also in the low-

branch δτ3 cannot be too negative, in order that the 3-brane tension and the deficit

angle remaining positive, thus the conical angle remains < 2π. These are common

features shared by all odd values of α > 1 cases. For even values of α greater than

two two, all the features are the same except that there are no high-energy branches.

This is because when the right hand of (2.23) is negative, which corresponds to the

high-energy branch, we cannot extract a negative root of it by 1/α. For α = 2, the

situation is more complicated. The features of the Friedmann equation for α = 2

depends on the parameters since the derivative of dh
dP

where h = (Hρ`)2 can be zero

for some values of parameters; see fig. 2.6. For those values of parameters the position

of the 4-brane P is double valued and the Friedmann equation is like fig 2.7; for other

values of parameters the Friedmann equation is like that of α = 5. In any case in

this model for α > 1 the Hubble rate as well as the 3-brane tension has a maximum

value. High energy corrections from the matter on the 3-brane are needed if large H

regions are to be probed. Hereafter we are only interested in the low-energy branch.

For α = 1, fig. 2.5 shows that the Hubble rate blows up at finite δτ3 which is

very different from α > 1 cases. This is because for α = 1 there always exists a real
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value of P which decreases as H increases and the physical distance between the two

branes gets increasingly smaller. For α > 1, whether P gets smaller or larger depends

on P , but the physical distance between the two branes always gets larger until the

solution leaves the physical region. Fig. 2.8 shows the dependence of the physical

distance on H for several values of α where for clarity we choose to start at the same

P̄ for all values of α.
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Figure 2.8: The physical distance in k6 = 1 unit between two branes for different

values of α

To make sure that the normal Friedmann equation is recovered at low energy

which is essential for successful Big Bang Nucleosynthesis (BBN), we also calculate

the ratio
H2− 8πG(1)

3
δτ3

H2 , which is the fractional deviation of H2 in this model from the

standard one. Fig. 2.9 shows that the deviation is 8% around δτ3 ∼ 3 × 10−12 which

corresponds to the energy of (3.2 × 1017MeV )4, and the deviation is much smaller

at lower energies. For BBN to be successful it is required that the deviation of the

Hubble rate is small (< 10%) at scales ∼ MeV. Thus we confirm that BBN is not

spoiled.

At high energy the deviation of H2 from the standard Friedmann equation becomes

large. Fig. 2.10 shows that phenomenon.

We also calculate the deviation for different values of α, see fig. 2.11. The devia-
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tion is larger for smaller α and negative for α = 1. The radion is stable for the dotted

part of α = 6 case while unstable for the solid part and other values of α which will

be explained in section 3.3.
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Figure 2.11: Deviation from normal FE for different values of α

Next, we check the variation of G with time. For each value of H we can calculate

P , ρ and τ3 as we did before. Using (2.32) we can find ln G, and then the relation of

ln G to τ3. Numerically we find dlnG
dδτ3

< 1013/(GeV4) at δτ3 = 0. In fact, for our set

of parameters the experimental constraint (2.41) is satisfied for all δτ3 except those

very close to the turning point; see fig. 2.12.

To summarize, the analytical results agree with the numerical results at low energy,

so the analytical ones are good approximations; the Friedmann equation does not

deviate from the standard one very much at low energy, so is consistent with BBN;

the time variation of Newton’s constant is also consistent with the constraint from

lunar laser ranging experiments.
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Figure 2.12: Variation of Newton’s constant

2.3 Friedmann equation with Goldberger-Wise scalar

field

Goldberger and Wise (GW) introduced a bulk scalar field [126], [133], [134] in 5D

models to stabilize the bulk; this is important for getting the standard Friedmann

equation in those models and for yielding the desired size of the extra dimension to

solve the hierarchy problem.

We first briefly review the GW mechanism. In Randall and Sundrum model I

(RS I) [5], the fifth dimension has a S1/Z2 orbifold symmetry, and two 3-branes with

opposite tensions sit at the orbifold fixed points. There is also a fine-tuned bulk

cosmological constant serving as a source for 5D gravity. The line element is

ds2 = e−2krc|φ|ηµνdxµdxν − r2
cdφ2 (2.44)

where φ is the fifth dimension −π ≤ φ ≤ π. The two 3-branes are located at φ = 0

and φ = π respectively. Randall and Sundrum showed [5] that the 4-dimensional

Planck mass Mpl is related to a fundamental scale M5 like:

M2
4 =

M3
5

k

[

1 − e−2krcπ
]

(2.45)
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Because of the exponential factor in the metric, a field on the 3-brane at φ = π with

mass m will have a physical mass me−krcπ on the 3-brane at φ = 0, thus if krc has a

value of 12 the weak scale can be generated from a fundamental scale M5 which is the

same order as Mpl, thus solving the hierarchy problem. However, rc which determines

the size of the extra dimension has zero potential and is not fixed. Goldberger and

Wise introduced a bulk scalar with interactions on the two 3-branes to generate a

potential stabilizing the value of rc. The bulk action is

Sb =
1

2

∫

dx4

∫ π

−π

dφ
√

G(GAB∂AΦ∂BΦ − m2Φ2) (2.46)

and the interaction terms on the hidden (φ = 0) and visible branes (φ = π) are

Sh = −
∫

dx4√−ghλh(Φ
2 − v2

h)
2

Sv = −
∫

dx4
√
−gvλv(Φ

2 − v2
v)

2 (2.47)

respectively. After solving the equation of motion for Φ and substituting it into

the action and then integrating out the extra dimension, an effective 4-dimensional

potential for rc is found:

VΦ = kεv2
h + 4ke−4krcπ(vv − vhe

−εkrcπ)2
(

1 +
ε

4

)

− kεvhe
−(4+ε)krcπ(2vv − vhe

−εkrcπ)

(2.48)

where ε ' m2/4k2 is a small quantity. Ignoring terms proportional to ε, the potential

has a minimum at

krc =

(

4

π

)

k2

m2
ln

[

vh

vv

]

(2.49)

Thus rc is stabilized and there is no need to fine tune anything to get krc ∼ 12.

Now we include the GW scalar field to see how it stabilizes the bulk in our model

and changes the Friedmann equation. In this section we adopt a different coordinate

system, whose line element is:

ds2 = M2(r̃)[−dt2 + e2Htdx2] + dr̃2 + L2(r̃) dθ̃2, (2.50)

In this coordinate, the 3-brane always sits at the origin and we can rescale the coordi-

nate so that M(0) = 1. This is more convenient for numerical calculations. Defining
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u = M ′/M , v = L′/L [135], the Einstein and scalar field equations are

µµ : v′ + 3u′ + v2 + 6u2 + 3lu =
Λ4

M2
− k2

6

(

1

2
φ′ + V

)

θθ : 4u′ + 10u2 =
Λ4

M2
− k2

6

(

1

2
φ′ + V

)

ρρ : 4uv + 6u2 =
Λ4

M2
+ k2

6

(

1

2
φ′ − V

)

φ : φ′′ + (4u + v)φ′ =
dV

dφ
(2.51)

Here V = ( b2

2
+ 5b

2l
)φ2− 5

32
b2φ4− 10

l2
, thus Λ6 = −10

l2
is absorbed into V . This potential

is special because when u = v, i.e. in the limit of α = 0 or Sµν = Sθθ, there exists

an analytical solution for the Einstein equation. The boundary conditions at the two

branes are respectively

L′(0) = 1 − τ3

2π

VP + T4 =

(

6 +
2

α

)

u(P ) +

(

2 − 2

α

)

v(P )

αc0

2Lα
θ

= v(P ) − u(P )

φ′(P ) = −1

2

dVP

dφ
(2.52)

where VP is the scalar potential at the 4-brane, which prevents φ′(P ) from vanishing,

and for simplicity we take VP = −λφ.

To solve these equations, we randomly choose b = 1 and λ = 4.212. Note that

only v = L′

L
is involved in the equations so we can assume L′(0) = 1 and then from

the first and the third of eq. (2.52) we find

(

1 − k6τ3

2π

)α

=
αc0

2(v(P ) − u(P ))Lα
θ

. (2.53)

Given a value of λ, for each H we first randomly choose φ(0) and integrate the equation

system from zero to find a P where the second boundary conditions of eq. (2.52) is

satisfied, and then use the fourth boundary condition to adjust φ(0) and iterate until

both the second and the fourth conditions are satisfied. In this way we find δτ3 for

each H.



2.3 Friedmann equation with Goldberger-Wise scalar field 31

With the same parameters as those in the previous subsection we found a similar

unconventional Friedmann Equation for α = 5; see fig. 2.13. The features of the

Friedmann equation for each α do not change much from those without GW scalar

field. However, the deviation at a given energy is much smaller than that in unstabi-

-3.8 -3.7 -3.6 -3.5 -3.4 -3.3
τ3/2π

0

200

400

600

800
(H

 l)
2

Figure 2.13: Friedmann equation with GW scalar field for α = 5

lized cases; see fig. 2.14 for α = 5. This suggests that the model is more stable with

the scalar field.

This can be understood as follows: using the same procedure as GW mechanism

an effective 4D potential of the 4-brane position P would be found, which is a function

of λ, b and H2. The bulk is stabilized if this potential has a minimum, otherwise it

is unstable. For given λ and b, the potential only has a minimum for H < Hc, notice

that λ = b = 0 represents the special case without the GW scalar field. We will

discuss Hc and the stability in greater detail in the next chapter.
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Stability

Based on experience with 5D models, one may suspect that the unusual Friedmann

equation is due to the instability of the model. In the following we study the stability

of the model with and without the GW scalar field.

Our stratagy is to perturb around the background solutions. The perturbation

can be written as hAB, where

ds2 = (GAB + hAB ) dxAdxB (3.1)

Without GW scalar field we have already found the background metric:

Gtt = r2gtt = −r2 = −a(r)

Gij = r2gij = r2δije
2H̃t

Gθθ =
K2

`2

(

r2 − 1

r3
+ H̃2l2

)

= K2f(r)

Grr =
`2

r2 − 1
r3 + H̃2`2

(3.2)

Since with the scalar field there is no exact solution, we assume it to be small

and treat it as a perturbation. Hence we use the same background to solve the field

equation for the GW scalar field.

The general perturbation equation is [119]:

1

2
∇A∇BhD

D +
1

2
∇2hAB −∇D∇(AhB)D − 5

`2
hAB = 0. (3.3)

33
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If tachyons are found in any modes, it means that the background is unstable,

otherwise it is stable.

The stability is also studied in with the Hubble rate H = 0, here we study a

general case for each Hubble rate H 6= 0. Notice that stable or unstable only apply

to a certain value of H not to two different values of H, i.e. for different values of

H the position of the 4-brane is different but this does not imply instability. In the

following, for simplicity, we assume that there is no dependence of hAB on the extra

angular dimension θ, i.e. we assume azimuthal symmetry.

3.1 Tensor modes

For tensor modes, hµν satisfies the transverse-traceless condition,

hµ
µ = hµν

;ν = 0 , (3.4)

where ; denotes the covariant derivatives with respect to gµν . Then eq. (3.3) becomes

h′′
µν +

f ′

f
h′

µν +
`2

af

(

�
(4)hµν − hµα;ν

;α − hνα;µ
;α
)

+

[

(

a′

a

)2

− 10

f

]

hµν = 0 . (3.5)

Using the condition (3.4), we can rewrite parenthesis in the third term of (3.5) as:

�
(4)hµν − h;α

µα;ν − h;α
να;µ =

(

�
(4) − 8H̃2

)

hµν . (3.6)

Also rewriting hµν(r, x
µ) as a(r)h̃µν(r, x

µ), we have

h̃′′
µν +

(

2
a′

a
+

f ′

f

)

h̃′
µν +

`2

af

(

�
(4) − 8H̃2

)

h̃µν

+

[

a′′

a
+

(

a′

a

)2

+
a′f ′

af
− 10

f

]

h̃µν = 0 . (3.7)

Now using the background Einstein equation,

a′′

a
+

(

a′

a

)2

+
a′f ′

af
=

10

f
+

6H̃2`2

af
, (3.8)

eq. (3.7) can be rewritten as

h̃′′
µν +

(

2
a′

a
+

f ′

f

)

h̃′
µν +

`2

af

(

�
(4) − 2H̃2

)

h̃µν = 0 . (3.9)



3.1 Tensor modes 35

We can decompose hµν as product of εµν and Z(r) depending on xµ and r respectively,

h̃µν(r, x
µ) = εµν(x

µ)Z(r) (3.10)

where εµν satisfies the transverse-traceless condition: εµ
µ = εµν

;µ = 0 . We finally

obtain the perturbation equation in the bulk:

Z ′′ +

(

2
a′

a
+

f ′

f

)

Z ′ +
`2M2

af
Z = 0. (3.11)

(

�
(4) − 2H̃2 − M2

)

εµν = 0 (3.12)

where M2 is a separation constant.

To find the equation at the 4-brane notice that the jump condition for the back-

ground Einstein equation is

f

[

3

2

(

a′

a

)′

+
1

2

(

f ′

f

)′ ]

g̃µν = k2
6

√

f Sµν δ(r − P ) , (3.13)

where Sµν is defined by eq. (2.12). Thus the contribution from the fluctuation of the

metric is:

− af

2`2

[

Z ′′ +

(

2
a′

a
+

f ′

f

)

Z ′ +
`2M2

af
Z

]

εµν − k2
6

√

f Sµν δ(r − P ) . (3.14)

And the contribution from the fluctuation of matter on the 4-brane is:

−k2
6

√

f Sµν δ(r − P ) . (3.15)

Thus the effect of the 4-brane matter gets cancelled out by the last term in (3.14)

and we obtain the same equations as eq. (3.11).

Next we consider the boundary conditions for eq. (3.11). At r = ρ, where f(ρ) =

0, for Z(r) to be regular at this point we impose the regularity condition:

Z ′(ρ) = − M2`2ρ2

5 − 2H̃2`2ρ3
Z(ρ) . (3.16)

At r = P , since there is no delta-functional matter the junction condition becomes

Z ′(P ) = 0 . (3.17)

Note that the physical Hubble rate is related to H̃ by H̃ = H2

(1+H2`2)2/5 .



36 Chapter 3 Stability

Table 3.1: Graviton masses for different values of Hubble rate

Mode Number H = 0.0497 H = 0.0995

0 0 0

1 0.2056 0.3067

2 0.5301 0.7238

3 1.0250 1.3699

4 1.6933 2.2463

We use the shooting method to solve this differential equation and find the mass

spectrum as in Table 3.1. We still work in the units M 4 = 1 and choose Λ6 = −0.0995

which is also used in the vector modes.

Zero modes which have solution Z(r) = 1 correspond to the usual 4D gravitational

fluctuations. We see that there is no tachyonic excitation in the spectrum of tensor

modes.

3.2 Vector modes

For the vector modes, hθµ satisfies the transversality condition:

hθµ
;µ = 0 . (3.18)

Then eq. (3.3) becomes

h′′
θµ +

a′

a
h′

θµ +
`2

af

(

�
(4)hθµ − hθα;µ

;α
)

+

(

a′f ′

af
− 10

f

)

hµν = 0 . (3.19)

Replacing hθµ = a(r)h̃θµ, the above equation becomes

h̃′′
θµ + 3

a′

a
h̃′

θµ +
`2

af

(

�
(4)h̃θµ − h̃θα;µ

;α
)

+

[

a′′

a
+

(

a′

a

)2

+
a′f ′

af
− 10

f

]

h̃µν = 0 .(3.20)

Using the background Einstein eq. (3.8), we get

h̃′′
θµ + 3

a′

a
h̃′

θµ +
`2

af

(

�
(4) + 3H̃2

)

h̃θµ = 0 (3.21)
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Table 3.2: Vector masses for different values of Hubble rate

Mode Number H = 0.0497 H = 0.09950

0 0.1458 0.3533

1 0.3583 0.5894

2 0.7674 1.1145

3 1.3483 1.8732

4 2.1040 2.8642

where we have used the relation: h̃θα;µ
;α = 3H̃2h̃θµ under the condition eq. (3.18).

Thus, introducing the separation constant M 2 and decomposing h̃θµ as

h̃θµ = Y (r) vµ(x) , (3.22)

where vµ
;µ = 0, we finally obtain

Y ′′ + 3
a′

a
Y ′ +

M2`2

af
Y = −2

(

f ′

f
− a′

a

)

Y δ(r − P ) , (3.23)

[

�
(4) + 3H̃2 − M2

]

vµ = 0 . (3.24)

Notice that we have included the contribution from the 4-brane:

[

f

`2

(

f ′

f
− a′

a

)

hθµ

]

δ(r − P ) . (3.25)

The boundary condition at r = ρ is:

Y (ρ) = 0 , (3.26)

and at r = P is:

Y ′(P ) =

(

f ′

f
− a′

a

) ∣

∣

∣

∣

r=P

Y (P ) =
5 − 2H̃2`2P 3

P 6 − P + H̃2`2P 4
Y (P ) . (3.27)

Using the same shooting method as before we find the first several excitations shown

in Table 3.2. There are no zero modes here for H 6= 0, because they do not satisfy

the boundary conditions.
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3.3 Scalar modes

The metric we use which contains all possible scalar perturbations, is

ds2 = a(r, t)
[

−dt2 + e2H̃tδijdxidxj
]

+ b(r, t) dθ2 + c(r, t) dr2 , (3.28)

We first write down the Einstein equations. The (tt) + (ii), (rr), (θθ) and (tr)

components are

2
ä

a
+

b̈

b
+

c̈

c
− 3

(

ȧ

a

)2

− 1

2

(

ḃ

b

)2

− 1

2

(

ċ

c

)2

− ȧ

a

(

ḃ

b
+

ċ

c

)

− H̃

(

2
ȧ

a
+

ḃ

b
+

ċ

c

)

= 0

c

2a





b̈

b
+ 3

ä

a
− 1

2

(

ḃ

b

)2

− 3

2

(

ȧ

a

)2

+
ȧ

a

ḃ

b
+ 9

ȧ

a
H̃ + 3

ḃ

b
H̃ + 12H̃2



− 3

2

(

a′

a

)2

− a′

a

b′

b

−k2
6c Λ6 = 0

c

2a

[

c̈

c
+ 3

ä

a
− 1

2

(

ċ

c

)2

− 3

2

(

ȧ

a

)2

+
ȧ

a

ċ

c
+ 9

ȧ

a
H̃ + 3

ċ

a
H̃ + 12H̃2

]

− 2
a′′

a
− 1

2

(

a′

a

)2

+
a′

a

c′

c
− k2

6c Λ6 + Vθ

√
cδ (r̃ − P ) = 0

6
ȧ′

a
− 6

ȧ

a

a′

a
− ḃ

b

a′

a
− 3

ċ

c

a′

a
+ 2

ḃ′

b
− ḃ

b

b′

b
− ċ

c

b′

b
= 0 (3.29)

where for simplicity we denoted Sµν ≡ −V0 g̃µν and Sθθ ≡ −Vθ g̃θθ in eq. (2.12). The

small perturbation around the static background corresponds to

a(r, t) = a0(r)(1 − a1(r, t)) , a0 = r2

b(r, t) = b0(r)(1 − b1(r, t)) , b0 = f(r)K2 , f(r) =

(

r2 − 1

r3
+ H̃2`2

)

/`2

c(r, t) = c0(r)(1 + c1(r, t)) , c0 = f−1(r) (3.30)

Now use the ansatz ä1 + 3H̃ȧ1 = −m2
ra1 and similarly for b1 and c1 to expand the

Einstein equations (tt) + (ii), (rr) and (tr) to first order:

2a1 + b1 − c1 = 0 (3.31)
(

3
a′

0

a0
+

b′0
b0

)

a′
1 −

a′
0

a0
b′1 +

a′
0

a0

[

3

2

a′
0

a0
+

b′0
b0

]

c1 +
c0 m2

r

2a0
(3a1 + b1) + 6H̃2 c0

a0
a1 = 0(3.32)

b′1 + 3 a′
1 +

1

2

(

b′0
b0

− a′
0

a0

)

b1 +
1

2

(

b′0
b0

+ 3
a′

0

a0

)

c1 = 0 (3.33)
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Imposing Z2 symmetry across the 4-brane for the (tt) and (θθ) components of the

Einstein equations, we find
[

1√
c0

(

3
a′

a
+

b′

b

)] ∣

∣

∣

∣

r=P

= k2
6V0

√
c
∣

∣

r=P
, (3.34)

4 a′

√
c0 a

∣

∣

∣

∣

r=P

= k2
6Vθ

√
c
∣

∣

r=P
. (3.35)

The first order perturbations of these junction conditions are
[

3a′
1 + b′1√

c0

] ∣

∣

∣

∣

r=P

=

[

−k2
6

2
V0c1 − k2

6δV0

] ∣

∣

∣

∣

r=P

, (3.36)

4a′
1√
c0

∣

∣

∣

∣

r=P

=

[

−k2
6

2
Vθ c1 − k2

6δVθ

] ∣

∣

∣

∣

r=P

(3.37)

where we have used the background Einstein equations. Furthermore, since Lθ =
∫

θ
√

b = 2π
√

b we can expand V0, Vθ (assuming T4 is constant) as follows:

V0 = T4 + c0L
α
θ , δV0 = α c0 L−α−1

θ πb1

√

b0 , (3.38)

Vθ = T4 + (1 − α)L−α
θ , δVθ = −α(α − 1) c0 L−α−1

θ πb1

√

b0 (3.39)

Also using the background equations, we find

L−α−1
θ =

1

k2
62πα

√

b0 c3
0

(

−a′
0

a0

+
b′0
b0

)

(3.40)

Thus Eqs. (3.36) and (3.37) lead to

[ 3a′
1 + b′1 ]

∣

∣

r=P
=

[

−
(

3a′
0

2a0
+

b0′
2b0

)

c1 −
1

2

(

−a′
0

a0
+

b′0
b0

)

b1

] ∣

∣

∣

∣

r=P

, (3.41)

a′
1

∣

∣

r=P
=

[

− a′
0

2a0

c1 +
α − 1

8

(

−a′
0

a0

+
b′0
b0

)

b1

] ∣

∣

∣

∣

r=P

(3.42)

Combining Eqs. (3.41) and (3.42), we finally obtain the junction condition at the

4-brane as

[ b′1 − a′
1 ]r=P = −1

2

(

b′0
b0

− a′
0

a0

)

(c1 + αb1)
∣

∣

r=P
(3.43)

Note that there are not really two boundary conditions at the 4-brane. This is because

by imposing the momentum constraint eq. (3.33) which implies the conservation of

fluctuational momentum on the junction condition eq. (3.42) we will recover eq. (3.43)

exactly.
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At the 3-brane, since we do not perturb the 3-brane tension τ3 we assume that the

deficit angle is unchanged by perturbations around the static solution. Considering

a circle with radius r = ρ+ ε from the 3-brane, the circumference L over the physical

radius D should be invariant in the limit ε → 0:

lim
ε→0

δ

(

L

D

)

= lim
ε→0

δ

(

∫

dθ
√

b
∫ ρ+ε

ρ
dr
√

c

)

= − L0

2D0
(b1 + c1)

∣

∣

∣

∣

r=ρ

= 0 (3.44)

where

L0 =

∫

dθ
√

b0 , D0 =

∫

dr
√

c0 (3.45)

In this way, we find the boundary condition at 3-brane to be

[ b1 + c1]
∣

∣

r=ρ
= 0 . (3.46)

Now define the variable X as

X = 3a1 + b1 . (3.47)

By using the linear combinations (t, t) + e2H̃t(i, i) and (t, r) of the components of the

Einstein equation, the variables a1, b1 and c1 can be expressed in terms of X as

a1 =
1

2B′
0

[(B′
0 + A′

0)X − X ′]

b1 =
3

2B′
0

[(

−B′
0

3
− A′

0

)

X + X ′

]

c1 =
1

2B′
0

[X ′ + (B′
0 − A′

0)X] (3.48)

where ′ denotes the derivative with respect to r and A′
0 = −a′

0

a0
and similarly for B′

0

and C ′
0.

3.3.1 Radion Mass Analysis

In this subsection we study the radion mass without GW scalar field stabilization.

Combining Eqs. (3.31) , (3.32) and (3.33), we get an

X ′′ +

[

4

r
+ 2

f ′

f
− f ′′

f ′
− 6f

r2f ′
+

6H̃2`2

r2f ′

]

X ′
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+

[

m2`2

r2f
− 2f ′′

rf ′
+

4f ′

rf
− 12f

r3f ′
+

6H̃2`2

r2f
+

12H̃2`2

r3f ′

]

X = 0 (3.49)

The boundary conditions Eqs. (3.43) and (3.46) become

[

X ′ +
2

r
X

] ∣

∣

∣

∣

r=ρ

= 0 (3.50)

[

X ′′ +

{

3α + 13

8

f ′

f
− f ′′

f ′
− 3α − 7

4r

}

X ′

+

{

α + 5

2r

f ′

f
+

α − 1

8

(

f ′

f

)2

− 3α + 5

2r2
− 2f ′′

rf ′

}

X

] ∣

∣

∣

∣

∣

r=P

= 0 (3.51)

Eliminating X ′′ from eq. (3.51) using eq. (3.49), we find

[

{

3(α − 1)

8

f ′

f
− 3(α + 3)

4r
+

6f

r2f ′
− 6H̃2`2

r2f ′

}

X ′ +

{

− m2`2

r2f
+

α − 3

2r

f ′

f

+
α − 1

8

(

f ′

f

)2

−3α + 5

2r2
+

12f

r3f ′
− 6H̃2`2

r2f
− 12H̃2`2

r3f ′

}

X

] ∣

∣

∣

∣

∣

r=P

= 0 (3.52)

Thus if we solve eq. (3.49) under the boundary condition (3.50) and (3.52), we can

obtain the radion mass spectrum. In the asymptotic region r → ∞ we have

X ′

(

15(5 − α)

2r6
− 3H̃2l2

r3
(1 − α)

)

+X

(

−20(α − 5)

r7
+

4m2l2

r4
+

8H̃2l2

r4
(α + 1)

)

∣

∣

∣

∣

r=P

= 0 (3.53)

Thus the radion mass can be expressed as:

m2 =
5(α − 5)

l2r3
− 2(α + 1)H̃2 +

15(α − 5)

8l2r2

X ′

X
− 3

4
(α − 1)H̃2

(

rX ′

X

) ∣

∣

∣

∣

r=P

(3.54)

which is consistent with the result in [118] when H̃ = H2

(1+H2`2)2/5 = 0. For α = 5 the

radion mass is almost zero.

In the region r → ∞ the order of X ′/X is r−4, so we ignore the last two terms

and get

m2 =
5(α − 5)

l2P 3
− 2(α + 1)H̃2 (3.55)

This expression is accurate as long as the 4-brane is far from the 3-brane, i.e. P � 1.
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The radion mass is always negative for α < 5, but can be positive, below a critical

Hubble rate, for α > 5, which has been shown for α = 6 in figure. 2.11 as an

example. As for α = 5, where the anisotropy of the 4-brane stress tensor is provided

by the Casimir effect [136], it is still possible to have a positive squared mass which

is proportional to H
2

when the two branes are close enough.

3.3.2 Stability with Goldberger-Wise field

In this section we use the GW mechanism to stabilize the model.

We assume that the bulk scalar is small enough that it does not change the

background metric. The perturbed equations become

X
′′

+

(

3A
′2
0 − 4A

′

0B0
′ − 2B

′2
0 − 2B

′′

0 − k2φ
′2

2B
′

0

− 6c0H̃

a0B
′

0

)

X
′

+

(

2A
′

0B
′′

0 − 2A
′′

0B
′

0

2B
′

0

+
(A

′

0 − B
′

0)(k
2φ

′2
0 − 3A

′2
0 − 2A

′

0B
′

0)

2B
′

0

+
c0

a0
m2 +

6c0

a0

H̃2

B
′

0

(A
′

0 + B
′

0)

)

X

+

(

2B
′′

0 − 2B
′

0φ
′′

0 − (3A
′2
0 + 2A

′

0B
′

0) + k2φ
′3
0

2B
′

0

φ
′

0 +
6c0

a0

H̃2

B
′

0

φ
′

0 − c0
dV

dφ

)

2k2φ1 = 0

φ
′′ − 1

2
(4A

′

0 + B
′

0 + C
′

0)φ
′

1 +

(

−c0
d2V

dφ2
0

+
c0

B0

dV

dφ0
k2φ

′

0 +
c0

a0
m2

)

φ1 −
(

φ
′

0 +
c0

2B
′

0

dV

dφ

)

X
′

+
c0

2B
′

0

(A
′

0 − B
′

0)
dV

dφ0

X = 0

(3.56)

and the boundary conditions are

X
′ − A

′

0X = 0|ρ
(

3(α + 3)A
′

0 − 3(α − 1)B
′

0 − 12A
′2
0 + 4k2φ

′2
0

8B
′

0

+
6c0

a0

H̃2

B
′

0

)

X
′

+

[

− c0

a0
m2

− 6c0

a0

H̃2

B
′

0

(A
′

0 + B
′

0) +
(B

′

0 − A
′

0)((−7 + 3α)A
′

0B
′

0 + (α − 1)B
′2
0 ) − 12A

′2
0 + 4k2φ

′2
0

8B
′

0

]

X

+

(

φ
′

0(1 + 3α)B
′2
0 + (7 − 3α)A

′

0B
′

0 + 12A
′2
0 − 4k2φ

′2
0

8B
′

0

− 6c0

a0

H̃2

B
′

0

φ
′

0 + c0
dV

dφ

)

2k2φ1

−2k2φ
′

0φ
′

1 = 0|P (3.57)
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In the region r → ∞, the mass spectrum is

m2 =
5(α − 5)

l2r3
− 2(α + 1)H̃2 +

15(α − 5)

8l2r2

(

X ′

X

)

− 3

4
(α − 1)H̃2

(

rX ′

X

)

−k2φ′2
0

4l2

(

rX ′

X

)

− k2φ
′2
0 H̃2

4r

(

X ′

X

) ∣

∣

∣

∣

r=P

. (3.58)

Notice that X ′/X is negative, see fig. 3.1, so the radion mass is indeed larger when

including the GW scalar field. However, from fig. 3.1 we see that e
R

x′

x → C when

r → ∞ where C is a constant, so the order of X ′/X is always smaller than r−1, thus

the second term in (3.58) dominates when H̃ or H grows large and eventually the

radion mass squared becomes negative.

0 1 2 3 4
r

0

0.2

0.4

0.6

0.8

1

X

Figure 3.1: Radion wave function X

In conclusion, in the absence of the scalar field the stability of the compactification

depends on the value of α and H; in particular, for α < 5 the model is unstable for

all H, while for α ≥ 5 it is stable for H < Hc but unstable for H > Hc, where Hc is

a critical value such that

H2
c

(1 + H2
c `2)2/5

=
5(α − 5)

2(α + 1)`2P 3
. (3.59)

When the scalar field is included, we can stabilize all cases up to some H ′
c, where
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H ′
c > Hc for each α ≥ 5. H ′

c can be obtained by setting the radion mass to be zero

in eq. (3.58). In all cases the model becomes unstable above the critical Hubble rate.



Chapter 4

Application of the Friedmann

equation to inflation

Inflation in braneworld models has been investigated extensively [75], [128]-[132]. In

this chapter we use the Friedmann equation obtained in section (2.2.1) to study a

simple model of chaotic inflation on the 3-brane and find that inflation can occur at

the inflaton field values below the 4D Planck scale. We assume that the inflaton field

on the 3-brane is varying slowly and thus its relation to H can be approximated as

that of 3-brane tension and H. We focus on the low energy part of the results of

section 2.2.1 and the special case of α = 5.

The Friedmann equation is approximated by

H2 =
δτ3

3M̄2
4

+
J`4δτ 3

3

27M̄6
4

(4.1)

For α = 5, J = 162P
19
−459P

14
+397P

9
−75P

3
−25

625(P
3
−1)

.

The slow-roll conditions are

V � 1

2
ϕ̇2, 3H|ϕ̇| � |ϕ̈| (4.2)

which expressed in terms of V are

ε =
M̄2

4

6

V ′2

V 2

1

1 + J`4V 2

9M̄4
4

� 1, η =
M̄2

4

3

V ′′

V

1

1 + J`4V 2

9M̄4
4

� 1 (4.3)
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where we have already used the slow roll approximation:

3Hϕ̇ ' −V ′(ϕ), ρ ' V (ϕ) (4.4)

In the limit J → 0 the usual relation is obtained.

The condition for inflation is [75], [124]

ä

a
= Ḣ + H2 > 0 (4.5)

This is obviously satisfied if Ḣ is positive, ingeneral we need

Ḣ

H2
> −1 (4.6)

Then the condition for inflation expressed in terms of V becomes

ζ ≡ M̄2
4

6

V ′2

V 2

1 + 3J`4V 2

9M̄4
4

(1 + J`4V 2

9M̄4
4

)2
= ε + 2ε

J`4V 2

9M̄4
4

1 + J`4V 2

9M̄4
4

< 3ε � 1 (4.7)

So this condition is always satisfied if slow roll condition is satisfied.

The number of e-foldings is given by:

N =

∫ tf

ti

Hdt '
∫ ϕi

ϕf

V
M̄2

4
+ J`4V 3

9M̄6
4

V ′
dϕ

=
1

M̄2
4

[(

1

4
ϕ2

i −
1

4
ϕ2

f

)

+

(

J`4m4ϕ6
i

432M̄4
4

−
J`4m4ϕ6

f

432M̄4
4

)]

(4.8)

Here we used a simple potential V = 1
2
m2ϕ2.

The key test of an inflation model is the spectrum of perturbations produced due to

quantum fluctuations. The curvature perturbation on uniform density hyper-surfaces

is related to the inflation perturbation by

R = −H

ϕ̇
δϕ (4.9)

If the inflaton mass is negligible, the field fluctuations at Hubble crossing (k = aH)

in the slow-roll limit are given by 〈δϕ2〉 ' (H/2π)2. For a single inflaton field, the

curvature perturbation R is related to the density perturbation by P = 4〈R2〉/25.

Using the slow-roll equations we find

P ' 1

600π2

m2ϕ4

M̄6
4

(

1 +
J`4m4ϕ4

36M̄4
4

)3

(4.10)
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The scale-independence of the perturbation is described by the spectral index as

n − 1 ≡ d lnP

d ln k
= −8M̄2

4

ϕ2

1 + J`4m4ϕ4

9M̄4
4

(

1 + J`4m4ϕ4

36M̄4
4

)2 (4.11)

Assuming that inflation ends at ζ = 1, then

2M̄2
4

ϕ2
f

1 +
J`4m4ϕ4

f

12M̄4
4

(

1 +
J`4m4ϕ4

f

36M̄4
4

)2 = 1 (4.12)

and impose the constraint of cobe normalization on the density perturbation of equa-

tion (4.10) P = 4 × 10−10 [124], which gives

m2ϕ4
c

M̄6
4

(

1 +
J`4m4ϕ4

c

36M̄4
4

)3

' 2.4 × 10−6 (4.13)

we find that if J is very small, i.e. P is close to 1, then all the terms in N, n, ζ, P

containing J can be ignored and the third order correction does not give a different

result from ordinary chaotic inflation. However, if J is so large that those terms

containing J dominate then we find

n − 1 = −8M̄2
4

ϕ2

144M̄4
4

J`4m4ϕ4

J`4m4ϕ6
c

432M̄6
4

−
J`4m4ϕ6

f

432M̄6
4

= 60

J`4m4ϕ6
f

216M̄6
4

= 1

J3`12m14ϕ16
c

46656M̄18
4

' 2.4 × 10−6 (4.14)

assuming that N = 60. From the above equations we find

J`4ϕ10
c ' 2.11 × 106M̄6

4

J`4m10 ' 36.1M̄6
4 (4.15)

Thus as long as J`4 is large enough, for example 2.11 × 106 times of 1/M̄4
4 or more,

chaotic inflation can occur when the field is below 4D Planck mass. This is possible

if P is large enough, in other words, if the warp factor is large enough. For our

parameters ` =
√

80 and M̄4 = 94.6 in k6 = 1 unit, to satisfy the above condition for
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J , P only need to be larger than 4.1× 10−6 while actually P = 5.1. However large P

is the perturbative approach is still valid because notice that when perturbing around

the static solution we do not impose any constraint on the value of P .



Chapter 5

Conclusions and future work

In this thesis we studied a codimension-two braneworld model with a 3-brane sitting

at the origin and a 4-brane sitting at some distance away, truncating the extra di-

mensions. The 3-brane tension is used to model the effects of matter on the brane,

and we find that the Hubble rate on the 3-brane changes according to the standard

Friedmann equation at low energy but deviates from it at high energy. When the GW

scalar field is absent the stability of the model depends on the parameter α which

quantifies different mechanisms for generating the difference between the µν and θθ

components of the energy-momentum tensor of the 4-brane. For α < 5 the model is

unstable whatever value the Hubble rate takes; for any α ≥ 5 the model is stable for

H below a critical value of the Hubble rate Hc but unstable for H above Hc. When

the GW scalar field is included the model becomes stable at small Hubble rate for

α < 4 and the critical values Hc for α ≥ 5 increase respectively. Using a larger GW

scalar field results in larger Hc. We also applied the unusual Friedmann equation

to study the inflation on the 3-brane. It shows that if the two branes are far away

enough then the chaotic inflation can occur at the value of the inflaton smaller than

the 4D Planck mass.

It would be interesting to study in more detail the physics of the stability. As

shown by Mukohyama et al. [87] the stability may have profound relation with the

entropy of the model. To study this we first have to define the entropy. Though the

whole space-time is anti-deSitter, it can be considered that there is a deSitter 3-brane

49
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at each point in the extra dimensions and thus it is possible to extend the entropy

definition of the four dimensional deSitter space-time to this model, i.e. define the

entropy as one quarter of the surface area of the boundary.

In addition, the unusual Friedmann equation itself might be interesting for studies

of dark energy and inflation on the brane. There are other ways to drive inflation on

the 3-brane, such as changing the 4-brane tension and the six dimensional cosmolog-

ical constant. However, if we want to have a more realistic model we should study

more complicated cases with matter fields on the brane instead of the pure tension

and see what happens for the Friedmann equation and its consequences.



Appendix A

Result of d3P
dH3

We give the result of d3P
dH3 used in section 2.2.1 to find the Friedmann equation.

d3P

dH3
= −6P

4
[

(

512 α5 − 6656 α4 + 23552 α3 − 89600 α + 5120 α2 − 64000
)

P
28

+
(

−58240 α3 + 156800 α2 − 280000 + 8512 α4 − 56000 α − 448 α5
)

P
25

+
(

−99840 α2 + 106240 α3 + 5760 α5 + 630400 α + 64000 − 51200 α4
)

P
23

+
(

54000 α + 43200 α4 + 64800 α3 − 32400 α5 − 129600 α2
)

P
21

+
(

12880 α4 − 655200 α2 + 54880 α3 + 490000 − 1680 α5 + 1246000 α
)

P
20

+
(

−194080 α3 + 38160 α4 − 94000 + 5040 α5 − 570000 α − 495840 α2
)

P
18

+
(

−82350 α4 − 47250 α − 180900 α3 − 33750 + 76950 α5 + 267300 α2
)

P
16

+
(

−47040 α4 + 385280 α3 − 280000− 2016000 α − 336000 α2
)

P
15

+
(

35280 α4 + 170000 + 611360 α2 + 19600 α − 10800 α5 + 485280 α3
)

P
13

+
(

−145800 α2 + 35100 α4 − 67500 α + 67500 + 167400 α3 − 56700 α5
)

P
11

+
(

1225000 α + 7560 α5 + 35000 + 35280 α3 + 1089200 α2 − 98280 α4
)

P
10

+
(

84700 α − 1620 α5 − 111500 − 134460 α4 − 136440 α2 − 356040 α3
)

P
8

+
(

4050 α4 − 33750 + 60750 α + 8100 α2 + 12150 α5 − 51300 α3
)

P
6

+
(

−18900 α4 − 318500 α − 279720 α3 + 17500 + 11340 α5 − 558600 α2
)

P
5

+
(

−9360 α2 + 60048 α3 + 13608 α5 + 23000 + 56376 α4P
3 − 12600 α

)

P
3
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+33453 α4 + 5103 α5 + 28875 α + 81270 α3 + 85050 α2 − 4375

]

/[

125(−10P
5
+ 2 αP

5
+ 5 + 3 α)5

]

(A.1)
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