JAMScript — A Programming
Framework for Cloud of Things

Jayanth Krishnamurthy

School of Computer Science
McGill University
Montreal, Canada

May 2016

A thesis submitted to McGill University in partial fulfillment of the requirements
for the degree of Master of Science.

(©) 2016 Jayanth Krishnamurthy

Acknowledgments

This thesis wouldn’t have been completed without the guidance and mentoring from
my thesis advisor, help from friends, and support from my family.

This thesis is a part of an ongoing project which is the brainchild of my advisor.
My deepest gratitude to Professor Muthucumaru Maheswaran. I have been very
fortunate to have a mentor and guide like Professor Maheswaran, who gave me
freedom in the assigned work to explore on my own, and at the same time the
guidance to correct whenever I faltered. I thank him for his time, patience, technical
insight, and for including me in this project. Further, I also thank my research group
at ANRL lab, McGill for their continuous support and motivation.

I take this opportunity to thank my employer back in India, for granting me study
leave to pursue my graduate studies. But for the support, sacrifice of my parents
and my younger brother, I wouldn’t have come so far. 'am deeply indebted to them.

Last but not the least, I thank the IoT-Cloud research community for their con-
tinuous pursuit in developing better programming frameworks to develop new age
applications.

Abstract

Cloud of Things (CoT) is a new computing paradigm that combines the widely popu-
lar Cloud computing with Internet of Things (IoT). Programming CoT brings many
interesting challenges as clouds and things have varying capabilities and responsi-
bilities. They are expected to play their predetermined roles even in the combined
programming model. In a typical deployment, the Cloud is responsible for heavy data
processing operations and long-term, huge data storage; while the things are respon-
sible for sensing data and actuating the control signals from the cloud. In this thesis,
we present the design and implementation of a new programming paradigm, “JAM-
Script”, that combines the hugely popular C and JavaScript in an unique distributed
computing model that can support both parallel and concurrent computations. The
objective of JAMScript is to allow the developers to exploit the heterogeneity of CoT
while providing support for fault tolerance and low overhead computing. JAMScript
simplifies the task of integrating legacy embedded C programs to the cloud with
minimal coding efforts. Also, in this thesis, we review many of the technologies,
programming models that can help CoT programming and present a detailed survey
of various IoT/CoT frameworks that have been developed recently.

Résumé

Cloud of Things (TCO) est un nouveau paradigme informatique qui combine le
Cloud computing trés populaire avec 'Internet des objets (IdO). CoT Programma-
tion apporte de nombreux défis intéressants que le programme Cloud of things ont
différentes capacités et les responsabilités. Ils sont appelés a jouer leurs roles prédé-
terminés méme dans le modéle de programmation combinée. Dans un déploiement
typique, le Cloud est responsable des opérations de traitement de données lourds et
a long terme, de stockage énorme de données ; tandis que les choses sont responsables
pour détecter les données et actionner les signaux de commande & partir du nuage.
Dans cette thése, nous présentons la conception et la mise en ceuvre d’une nouvelle
programmation paradigme, quot ;' JAMScript’, qui combine la C trés populaire et
JavaScript dans un modeéle unique de calcul distribué qui peut soutenir les deux
calculs paralléles et concurrentes. L’objectif de JAMScript est de permettre aux dé-
veloppeurs d’exploiter I’hétérogénéité des CoT tout en fournissant un soutien pour
la tolérance aux pannes et une faible surcharge informatique. JAMScript simplifie
I'intégration task of programmes hérités embarqué C vers le cloud avec les efforts de
codage minimal. Aussi, dans cette thése, nous passons en revue un grand nombre des
technologies, des modéles qui peuvent aider a la programmation de lit et présenter
une étude détaillée des différents cadres / COT IdO qui ont été récemment mis au
point la programmation.

Contents

List of Tables iii
List of Figures iv
1 Introduction 1
1.1 Motivation 2
1.2 Thesis Contribution 3
1.3 Thesis Organization 3
2 Background 4
2.1 Overview 4
2.2 Embedded Devices Programming Languages 5
221 mnesC 6

222 Kell C . o000 6

223 Dynamic C 7

224 B .o 9

2.3 Message Passing in Devices 10
231 RPC 10

232 REST 11

233 CoAP 13

2.4 Coordination Languages 16
241 Lindaandelinda 17

242 Orc. . .. 17

243 Jolie 19

2.5 Polyglot Programming 20
2.6 SUmMmMAary 22

CONTENTS il

3 JAMScript Design 23
3.1 Overview of the JAM machine 23
3.2 JAMScript Languageo 25
3.3 Support for fault tolerance 38
3.4 Programming patterns L 40

4 Implementation 43
4.1 JAMScript compiler 43
4.2 JAMScript runtime 49

5 Potential Application Scenarios 53
5.1 Smartroads 53
5.2 Smart classroomo 54
5.3 Health monitoring for elderly 95

6 Related Work 57
6.1 Overview o7
6.2 Essential features of CoT Programming Frameworks o7
6.3 Programming Approaches for Constrained Environments 59
6.4 Existing IoT-Cloud Frameworks 60

6.4.1 Mobile Fog o 60
6.4.2 ELIoT (Erlang Language for IoT) 61
6.4.3 Compose API 62
6.4.4 Distributed Data flow support for IoT 63
6.45 PyoT 63
6.4.6 Dripcast 64
6.4.7 Calvin 65
6.4.8 Simurgh 67
6.4.9 High-level Application Development for the Internet of Things 68
6.4.10 PatRICIA 70
6.5 Summary 72

7 Conclusions and Future Work 75

A BNF for JAMScript 77
A1 Cside . . . oo 7

Bibliography 80

List of Tables

3.1 Possible implementations for the activity blocks

6.1 Summary of programming frameworks

il

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5

4.1
4.2

5.1

CoAP layers and integration of constrained devices with the Internet. 15

Inverse pyramid for polyglot programming 21
A simple JAM machine Lo 24
Synchronous invocation from J and Csides 27
Asynchronous invocation from J and Csides 34
Complete JAM machine configuration 39
Fault tolerance support on Cloud 41
JAMScript program compilationo 0oL 45
JAMScript Compiler components 47
Deployment scenario Lo 56

v

Chapter 1
Introduction

The development of smart environments [1| is happening in at least three phases.
The first phase is the infusion of computing capabilities into everyday objects such as
doorknobs, lamps, and thermostats. The second phase is to interconnect the smart
objects using standardized protocols. Cisco! has estimated that at least 50 billion
devices will be Internet enabled by the year 2020. The technological challenges posed
by these two phases are tackled by various initiatives such as Internet of Things [2],
Web of Things [3], and IoTivity?, Cloud of Things (CoT) [4]. The third phase is
the development of novel operating systems [5, 6] and programming frameworks |7]
that will provide a single system image [8| over the disparate collection of things
that makes up a smart environment. The attributes of the smart environments
provide many opportunities and challenges for the development of a new computing
paradigm.

[oT devices are generally characterized as small things in real world with limited
storage and processing capacity, which may not be capable of processing a complete
computing activity by themselves. They may need the computational capabilities
of Cloud based back-ends to complete the processing tasks and web based front-
ends to interact with the user. The Cloud infrastructure complements the things [9],

by supporting device virtualization, availability, provisioning of resources, support-

Thttp://www.cisco.com /web /solutions/trends /iot /portfolio.html
2https:/ /www.iotivity.org/

Chapter 1. Introduction JAMScript

ing data storage and performing data analytics. The [oT by its nature will extend
the scope of Cloud computing to the real world in a more distributed and dynamic
way [10]. The integration of Cloud computing and things, can also be called as
Cloud of Things (CoT). IoT with Cloud — CoT, will create new avenues for comput-
ing: huge storage capacity for IoT data in cloud, massive computing capabilities to
collect, analyze, process, archive those data, and new platforms like SaaS (Sensing as
a Service), SAaaS (Sensing and Actuation as a Service), VSaaS (Video Surveillance
as a Service) will open up to users. Throughout the world, many governments and
organizations are investing a significant amount of their GDP and profits on projects
like smart cities, smart roads, smart buildings, smart health care, etc,. These multi-
billion dollar projects would require huge support by CoT [10] to have an effective
implementation. The biggest challenge for applications development in CoT ecosys-
tem is to have a single, unified programming framework for both Cloud and things
that can simplify the developers’ role and hide many of the low level issues like
communication, heterogeneity, and fault tolerance from the programmer. The C
language and JavaScript have been the most popular languages among the program-
ming community and also have their own advantages in embedded programming
and web application development. We merge these two under a novel programming

framework called JAMScript for CoT application development.

1.1 Motivation

The challenges of developing applications for [oT/CoT serves as the motivation for
our framework. Heterogeneity and the volume of data generated are two of the
biggest concerns. Heterogeneity spans through hardware, software and communica-
tion platforms. The data generated from these devices are generally in huge volume,
are in various forms and are generated at varying speeds. Since CoT applications
will be distributed over a wide and varying geographical area, support for corrective
and evolutionary maintenance of applications will determine the feasibility of appli-
cations deployment. Further, some of the CoT applications like traffic management

system, will be latency sensitive and this warrants edge-processing support by the

Chapter 1. Introduction JAMScript

programming framework. Another difficulty faced when programming CoT, is how
to cope with frequent periods of non-availability of devices caused due to mobilities
and limited energy supplies from batteries. There are already huge number of em-
bedded devices running standard applications written in languages like C/C++; If
these devices are empowered to connect via Internet, it opens up various applications
to a wider audience.

Developing a simplified programming model that can provide solutions for the
above set of challenges will remain a continuous pursuit for IoT/CoT community.
JAMScript helps in integrating embedded applications on to Cloud in a simple, fault
tolerant, and secure manner. We believe JAMScript will be more advantageous and

cost effective for the new age applications development.

1.2 Thesis Contribution

The contribution of this thesis is three fold — the main contribution, is a novel pro-
gramming framework for CoT, “JAMScript”. It mainly consists of a new coordination
language [11] and a runtime for supporting its execution [12]. Second — a detailed
survey on various [oT/CoT programming frameworks and approaches which have
been developed recently. Many of the features of the JAMScript design are inspired
by the evolving technologies and prevailing programming models; a detailed review

of those forms the third component of this thesis.

1.3 Thesis Organization

In Chapter 2, we discuss the background technologies and programming paradigms
that have inspired our framework design. The design of JAMScript framework is
explained in Chapter 3, Chapter 4 explains the implementation aspects and the
current status of the prototype. Chapter 5 discusses possible application scenarios.
Related work is discussed as a survey of various [oT/CoT programming frameworks
in Chapter 6, Chapter 7 concludes the thesis.

Chapter 2

Background

2.1 Overview

During the life-cycle of CoT applications, the footprint of an application and the
cost of its language runtime play a huge role on the sustainability of an application.
C has been used predominantly in embedded applications development due to its
performance and it can occupy the same position in CoT programming too. Fur-
ther, the choice of communication protocols also has a huge implication on the cost
of CoT applications on devices. Remote Procedure Calls (RPC), Representational
state transfer (REST), and Constrained Application Protocol (CoAP) are some of
the communication methods that are being currently incorporated into CoT commu-
nication stacks. A complete programming framework in a distributed environment
requires not only a stable computing language like C, but also a coordination lan-
guage that can manage communications between various components of an CoT
ecosystem. An explicit coordination language can tackle many of the challenges. It
can manage communication between heterogeneous devices, coordinate interaction
with the Cloud and devices, handle asynchronous data arrival and also can pro-
vide support for fault tolerance. The method of using more than one language in a
given application is known as polyglot programming. Polyglot programming is being

widely used in web applications development and it can provide the same advantages

Chapter 2. Background JAMScript

for CoT programming too.

In this chapter, we review some of the flavors of C language used in embed-
ded programming, check adoptability of messaging approaches such as RPC, REST,
and CoAP to CoT, explore some of the important features of various coordination
languages and in the last part of this section, we present the idea of polyglot pro-

gramming.

2.2 Embedded Devices Programming Languages

Though there are various programming languages in the embedded programming
domain, vast majority of projects, about 80%, are implemented in C and its flavors
or a combination of C and other languages like C++ [13]|. Some of the striking fea-
tures of C that aid in embedded development are performance, small memory foot
print, access to low level hardware, availability of large number of trained/experi-
enced C programmers, short learning curve, and compiler support for vast majority
of devices [14]. The ANSI C standard provides customized support for embedded
programming. Many embedded C compilers based on ANSI C usually:

—_

. Support low level coding to exploit the underlying hardware.
2. Support for in-line assembly code.

3. Flag dynamic memory allocation and recursion.

4. Provide exclusive access to I/O registers.

5. Support accessing registers through memory pointers.

6. Allow bit level access.

nesC, Keil C, Dynamic C and B# are some of the flavors of C used in embedded

programming.

Chapter 2. Background JAMScript

2.2.1 nesC

nesC [15] is a dialect of C that has been used predominantly in sensor nodes pro-
gramming. It was designed to implement TinyOS [16], an operating system for sensor
networks. It is also used to develop embedded applications and libraries. In nesC,
an application is a combination of scheduler and components wired together by spe-
cialized mapping constructs. nesC extends C through a set of new keywords. To
improve reliability and optimization nesC programs are subject to whole program
analysis and optimization at compile time. nesC prohibits many features that hinder
static analysis like function pointers and dynamic memory allocation. Since nesC
programs will not have indirections, call-graph is known fully at compile time, aiding

in optimized code generation.

2.2.2 Keil C

Keil C [17] is a widely used programming language for embedded devices. It has
added some key features to ANSI C to make it more suitable for embedded devices
programming. To optimize storage requirements, three types of memory models are
available for programmers: small, compact, and large. New keywords like alien,
interrupt, bit, data, xdata, reentrant, etc., are added to the traditional C key-

word set. Keil C supports two types of pointers:

e generic pointers: can access any variable regardless of its location.

e memory specific pointers: used to access variables stored in data memory.

The memory-specific pointers based code execute faster than the equivalent code
using generic pointers. This is due to the fact that the compilers can optimize the
memory access; since the memory area accessed by pointers is known at compile
time.

Functions in Keil C
The function declarations in Keil C is quite interesting and has many options,

the programmer can specify. The general format is as follows.

Chapter 2. Background JAMScript

[return type|Function name ([arguments|) [memory model| [reentrant ||

interrupt n||using n]{}

Listing 2.1 — function format in keil C

Re-entrant functions can be called recursively and simultaneously by two or more

processes; a re-entrant stack is associated with each of these functions.

2.2.3 Dynamic C

Some key features in Dynamic C [18], are function chaining and co-operative mul-
titasking. Segments of code can be distributed in one or more functions through
function chaining. Whenever a function chain executes, all the segments belonging
to that particular chain execute. Function chains can be used to perform data ini-
tialization, data recovery and other kinds of special tasks as desired by the program-
mer. The language provides two directives makechain, funcchain and a keyword
segchain to manage and define function chains.

#makechain chain_name: creates a function chain by the given name.

#funcchain chain_name func_name[chain_name]: Adds a function or another
function chain to a function chain.

segchain chain_name {statements}: This is used for function chain defini-
tions. The program segment enclosed under curly braces will be attached to the
named function chain.

The language stipulates segchain definitions to appear immediately after data
declarations and before executable statements as shown in the following code snippet.
int foo (){

' data declarations

segchain recover{

/ some statements which execute under function chain recover().

,} ,

; segchain chain x{

/ some statements which execute under function chain chain x().

' function body of foo.

Chapter 2. Background JAMScript

}
int fool (){

/ data declarations
segchain recover{

' some statements which execute under function chain recover ().

function body of fool.

Calling a function chain inside a program is similar to calling a void function that

has no parameters.

int foo2(){

recover () /* executes all the statements defined under
function chain recover x*/

}

The order of execution of statements inside a function chain is not guaranteed. Dy-
namic C’s costate, statement provides support for co-operative multitasking. It
provides multiple threads of control, through independent program counters that
can be switched in between explicitly. The following code snippet is an example.
for (53){

costate{

waitfor (tcp packet port 21());

yield; // force context switch.

}

costate{

waitfor (tcp packet port 23());

}

The yield statement immediately passes control to another costate segment.
If the control returns to the first costate segment, then the execution resumes from

the statement following the yield statement. Dynamic C also has keywords: shared

~

Chapter 2. Background JAMScript

and protected, which support data that are shared between different contexts and

are stored in battery-backed memory, respectively.

2.2.4 B#

B#! is a multi-threaded programming language designed for constrained systems.
Though C inspires it, its features are derived from a host of languages like Java, C++,
and C#. It supports object oriented programming. The idea of boxing/unboxing
conversions is from C#. For example, a float value can be converted to an object
and back to float as shown in the following code snippet.

class test{

static void main(){

float i = 123;
object obj = i; // boxing
float j = (float)obj; // Unboxing

}
The field property is also similar to C#. B# provides support for multi-threading

and synchronization through lock and start statements, which are similar to when
and cobegin, from Edison [19]. lock provides mutual exclusion and synchronization
support, while, start is used to initiate threads. Other important features are
device addressing registers and explicit support for interrupt handlers. These features
are directly supported by the underlying Embedded Virtual Machine (EVM) which
interprets and executes the binary code generated by the B# assembler on a stack
based machine. The B# EVM runs on a target architecture, thereby hiding the
hardware nuances from the programmer. Presence of EVM promotes reusability of
components. Also, since the EVM is based on the stack machine model, the code
size is much reduced. The EVM also has a small kernel for managing threads.

All the above languages have been optimized for resource constrained devices.
While designing embedded programs, a measured choice on the flavor of C, is quite

an important decision from the point of an CoT programmer. An CoT programmer

thttp:/ /www.bsharplanguage.org/

Chapter 2. Background JAMScript

may not restrict him /her to a C-flavored language. Many other languages like C-+-+,

Java, and JavaScript have been stripped down to run on embedded devices.

2.3 Message Passing in Devices

In this section, we review some of the communication paradigms and technologies

like RPC, REST, and CoAP that can be used in resource constrained environments.

2.3.1 RPC

RPC [20] is an abstraction for procedural calls across languages, platforms, and pro-
tection mechanisms. For CoT, RPC can support communication between devices,
as it implements the request/response communication pattern. Typical RPC calls
exhibit synchronous behavior. When RPC messages are transported over the net-
work, all the parameters are serialized into a sequence of bytes. Since serialization of
primitive data types is a simple concatenation of individual bytes, the serialization
of complex data structures and objects is often tightly coupled to platforms and pro-
gramming languages [21]. This strongly hinders the applicability of RPCs in CoT
due to interoperability concerns.

Lightweight Remote Procedure Call (LRPC) [22] was designed for optimized
communication between protection domains in the same machine, but not across
machines. Embedded RPC (ERPC) in Marionette [23], uses a fat-client like PC and
thin-servers like nodes architecture. This allows resource rich clients to directly call
functions on applications in embedded devices. It provides poke and peek commands
that can be used on any variables in a node’s heap. S-RPC [21], is another lightweight
remote procedure calls for heterogeneous WSN networks. S-RPC tries to minimize
the resource requirements for encoding/decoding and data buffering. A trade-off is
achieved based on the data types supported and their resource consumption. Also, a
new data representation scheme is defined which minimizes the overhead on packets.
A lightweight RPC has been incorporated into TinyOS, nesC [24] environment. This

approach promises ease of use, lightweight implementation, local call semantics, and

10

Chapter 2. Background JAMScript

adaptability.

2.3.2 REST

Roy Fielding in his PhD thesis [25] proposed the idea of RESTful interaction for the

web.

The main aim of the REST was to simplify the web application development

and interaction. It leverages on the tools available on Internet and stipulates the

following constraints on application development:

1.

Should be based on client-server architecture and the servers should be state-

less.

Support should be provided for caching at the client side.

. The interface to servers should be generic and standardized (URI).

Layering in the application architecture should be supported and each of the

layers shall be independent.

Optional code-on demand should be extended to clients having the capability.

These constraints combined with the following principles define the RESTful ap-

proach to application development.

1.

Everything on the Internet is a resource.
Unique identifiers are available to identify the resources.
Generic and simple interfaces are available to work with those resources.

Communication between client and servers can be through representation of

resources.

. Resource representation through sequence of bytes followed by some meta data

explaining the organization of the data.

Since transactions are stateless, all interactions should be context free.

11

Chapter 2. Background JAMScript

7. Layering is supported and hence intermediaries should be transparent.

The authors in [26] have highlighted that the above constraints and principles
bring in many advantages to the distributed applications: scalability, loose coupling,
better security, simple addressability, connectedness, and performance. Further, they
compare RPC with REST, for the same qualitative measures and argue that REST-
ful approaches are always better for each of the above measures. One more advantage
of RESTful components is that they can be composed to produce mashups, giving
raise to new components which are also RESTful. In [27]| the author identifies es-
sential characteristic features of a composing language that can compose RESTful

components together:

1. Support for dynamic and late binding;

2. Uniform interface support for composed resource manipulation;
3. Support for dynamic typing;

4. Support for content type negotiation;

5. Support for state inspection of compositions by the client.

Though the uniform interface constraint promotes scalability by shifting the variabil-
ity from interface to resource representation, it also narrows the focus of RESTful
approaches to data and its representations. Also, in the Internet, the exchanges
need not be limited to data and its representation; there can be more than, just the
pure data. For these cases, the optional code-on demand constraint for clients has
been found to be inadequate for exchanges other than content. Also, the RESTful
approach poses a challenge for those applications that require stateful interactions.

CREST (Computational REST) [28] tries to address these problems. Here, the
focus is on exchanges of computation rather than on data exchange. Instead of client-
server nomenclature, everyone is addressed as peers; some may be strong and some
may be weak based upon the available computing power. Functional languages like

Scheme, allow computations to be suspended at a point and encapsulated as a single

12

Chapter 2. Background JAMScript

entity to be resumed at a later point of time, through “continuation”. CREST’s focus
is on these sort of computations. It supports the model of “computations stopping
at a point in a node, exchanged with another node, resumed from the suspended
point at the new node”. As said earlier, both the nodes are peers. CREST has some

principles along the lines of REST:

1. All computations are resources and are uniquely identified.

2. Representation of resources through expressions and metadata.
3. All computations are context-free.

4. Support for layering and transparent intermediaries.

5. All the computations should be included inside HTTP.

6. Computations can produce different result at different time.

7. Between calls they can maintain states that may aid computations like aggre-

gation.
8. Between different calls, computations should support independency.

9. Parallel synchronous invocations should not corrupt data.

Computations on a peer or on different peers can be composed to create mashups.
Peers can share the load of computations to promote scaling and latency sensitive

applications.

2.3.3 CoAP

Since HTTP /TCP stack is known to be resource demanding on constrained devices,
protocols like Embedded Binary HTTP (EBHTTP), Compressed HTTP Over PAN
(CHoPAN) have been proposed. However, the issue of reliable communications still
remained a concern. The IETF work group: Constrained RESTful Environments

(CoRE) has developed a new web transfer protocol called Constrained Application

13

Chapter 2. Background JAMScript

Protocol (CoAP), which is optimized for constrained power and processing capabili-
ties of CoT. Although, the protocol is still under standardization, various implemen-
tations are in use. CoAP in simpler terms is a two-layered protocol. A messages
layer, interacting with the UDP and another layer for request/response interactions
using methods and response codes, as done in HT'TP. In contrast to HT'TP, CoAP
exchanges messages asynchronously and uses UDP.

The CoAP has four types of messages: Acknowledgement, Reset, Confirmable
(CON), and Non-Confirmable (NON). The Non-confirmable messages are used to
allow sending requests that may not require reliability. Reliability is provided by
the message layer and will be activated when Confirmable messages are used. The
Request methods are: GET, POST, PUT and DELETE of HTTP. CoAP has been
implemented on Contiki [29], which is an operating system for sensor networks and
in TinyOS as Tiny-CoAP [30].

Many approaches have been used to evaluate the performance of CoAP. Total
Cost of Ownership (TCO) model for applications on constrained environment has
been used to compare HTTP versus CoAP [31]. The major observations from the

comparison are as follows.

e CoAP is more efficient for applications on smart object, engaged in frequent

communication sessions.

e CoAP is cost-effective whenever the battery/power source replacements prove

costly.

e Whenever the charges for the data communication is volume based, CoAP is

found to be more cost effective.

e Also, CoAP has been found to be beneficial cost wise in push mode than in

pull mode.

Figure 2.1 illustrates the CoAP layers and the integration of constrained devices
using CoAP with the Internet through a proxy.

For CoT, the advantages of CoAP can be summarised as follows.

14

Chapter 2. Background JAMScript

A
Internet A

f——————————————————a

I 1

[} . a

! Application |

' I

(R i

s @hoaoosana0a00nasasaanasasaanass Looian,

it ! R

| | E
1 ReauestsResponses | gonp s
: : T
: [Messages | Y
B __—_____—]_ C A

S0 0000600000050000000006000000000 Dososos

i !

FTTTTTT T Tt T Tt T i

| i

i UDP I ,

I i Constrained

-1 Environment

\/
\

Figure 2.1 — CoAP layers and integration of constrained devices with the Internet.

e A compact binary header (10-20 bytes), along with UDP, reduces the com-
munication overhead; thereby reducing the delay and minimizing the power

consumption due to data transmission.

e Since asynchronous data push is supported, it enables things to send informa-
tion only when there is a change of observed state. This allows the things to

sleep most of the time and conserve power.

e The minimal subset of REST requests supported by CoAP, allows the protocol
implementations to be less complex when compared to HT'TP. This lowers the

hardware requirements for the smart things on which it executes.

e The M2M resource discovery is supported by CoAP to find matching resource
based on the CoRE link format.

e The draft CoAP proposal includes support for alternative non-IP messaging,
such as Short Message Services (SMS) and transportation of CoAP messages

over Bluetooth, ZigBee, 7Z wave, etc,.

15

Chapter 2. Background JAMScript

MQ Telemetry Transport (MQTT)? protocol is another communication protocol de-
signed for M2M communication, based on TCP/IP. Both CoAP and MQTT are

expected to be widely used in CoT communication infrastructure in the future.

2.4 Coordination Languages

Carriero and Gelernter argue in [12| that a complete programming model can be
built by combining two orthogonal models — a computation model and a coordina-
tion model. The computation model provides the computational infrastructure and
programmers can build computational activity using them, whereas the co-ordination
model provides the support for binding all those computational activities together.
They argue that a computational model supported by languages like C, by themselves
cannot provide genuine co-ordination support between various computing activities.
This observation is more relevant in CoT programming wherein there are numerous
distributed activities, which have to be coordinated in a reliable and fault tolerant
manner.

Coordination can be seen through two different perspectives i) based on cen-
tralised control named as Orchestration and ii) distributed transparent control named
as Choreography. The W3C’s Web services choreography working group defines
Choreography as “the definition of the sequences and conditions under which multi-
ple cooperating independent agents exchange messages in order to perform a task to
achieve a goal state”. Orchestration is seen as “the definition of sequence and condi-
tions in which one single agent invokes other agents in order to realize some useful
function”. There are many languages that provide Choreography and Orchestration
support. We briefly review some of the features in coordination languages like Linda,
eLinda, Orc and Jolie.

2http://mqtt.org/

16

Chapter 2. Background JAMScript

2.4.1 Linda and eLinda

Linda is a coordination-programming model for writing parallel and distributed ap-
plications. It takes the responsibility of enforcing communication and coordination,
while general purpose languages like C, C++, Java are used for computational re-
quirements of the application. The Linda model supports a shared memory store
called tuple space for communication between processes of the application. Tuple
spaces can be accessed by simple operations like “out” and “in”. These operations
can be blocking or non-blocking. CppLINDA is a C++ implementation of the Linda
coordination model.

The eLinda [32] model extends Linda. It adds a new output operation “wr” that
can be used with the “rd” input operation to support broadcast communication.
In Linda, if a minimum value of a data set stored in a tuple space is required, all
matching field values should be read, the reduction should be performed and then
the remaining data should be returned to the tuple space. While this procedure
is accessing the tuple space to extract the minimum value, the tuple space is not
accessible to other processes, which restricts the degree of parallelism by a great
amount. eLinda proposes the “Programmable Matching Engine” (PME) to solve
problems like the above. The PME allows the programmer to specify a custom
matcher that can be used internally to retrieve tuples from the shared store. The
PME has been found to be advantageous for parsing graphical languages and video-

on-demand systems.

2.4.2 Orc

Orc [33] is a coordination language for distributed and concurrent programming. It
is based on process calculus. It provides uniform access to computational services,
including distributed communication and data manipulation. A brief overview of the

language features is as follows:

e The basic unit of computation in Orc is called a site, similar to a function or

a procedure in other languages. The sites can be remote and unreliable.

17

Chapter 2. Background JAMScript

e Sites can be called in the form of C(p), C is a site name and p is the list of
parameters. The execution of a site call invokes the service associated with the

site. The call publishes the response, if the site responds.

e Orc has the following combinator-operators to support various compositions

and work-flow patterns [34].

7

— Parallel combinator “|” is used for parallel, independent invocation. For
example, in I | J, expressions I and J are initiated at the same time
independently. The sites called by I and J are the ones called by I | J
and any value published by either I or J is published by I | J. There is

no direct interaction or communication between these two computations.

— Sequential combinator “»” is used for invocations of sites in a sequential
manner. In I > y > J, expression I is evaluated. Each value published
by I initiates a separate and new execution of J. Now, the execution of I
continues in parallel with the executions of J. If T do not publish even a

single value, then there is no execution of J.

— Pruning combinator “«” is a special type of combinator which can be seen
as an asynchronous parallel combinator. For examplein I < y < J, both
I and J execute in parallel. Execution of parts of I which do not depend on
y can proceed, but site calls in I for which y is a parameter are suspended
until y has a value. If J publishes a value which can be assigned to y,
then J’s execution is terminated and the suspended parts of I can then
proceed.

o

The “»” combinator has the highest precedence, followed by “[” and “«”.

e Orc provides several fundamental sites like Rwait(t), Prompt(), etc to promote

writing efficient programs.

e Orc allows users to define local functions. Function calls act and look like site

calls, with a few exceptions:

18

Chapter 2. Background JAMScript

— A site call will block if some of its arguments are not available, but a

function call does not.

— A site call can publish at most one value, but a function call can publish

more than one value.
Orc also supports functions, sites as arguments to a function call.

e The recent Orc implementation is allowing Java classes to be used as sites.

2.4.3 Jolie

Jolie (Java Orchestration Language Interpreter Engine) [35] is an orchestration lan-
guage for services in Java based environment. The statement composers and dy-
namic fault handling are two important features in this language. In dynamic fault
handling [36], instead of statically programming fault handlers, they are installed
dynamically at the execution time. This facilitates fine tuning of fault handlers
and termination handlers depending upon which part of the code has already been
executed.

In Jolie there are basically three statement composers: sequence, parallel and
input choice. Statements can be composed sequentially using “;” operator. It means
that the statement to the left of the sequence operator is executed first and then the

statement to the right of it. The syntax of the sequence statement is as follows.
statementx ; statementy

statementx gets executed first and then the statementy. The “|” operator is used to
compose statements in parallel. The statements to the left and right of the parallel

operator are executed concurrently. The syntax is as follows.
statementx | statementy

statementx and statementy are executed concurrently. The third composer, is for
guarded input. Here, message receiving is supported for any of the input statements

that are listed. When a message for an input statement is received, all the other

19

Chapter 2. Background JAMScript

branches are deactivated and the corresponding branch behavior is executed. The

syntax is as shown in the listing.

[IS_1]{branch_code_1%}
[IS_2]{branch_code_2}
[IS_3]{branch_code_3%}

If the message is received on the input statement IS_2, then branch_code_1 and
branch_code_3 are disabled and execution continues through branch_code_2. Since
CoT is characterized by distributed execution, we believe explicit coordination lan-
guage support with at least minimal features for coordination and composition, for

different work flow patterns is a must for any CoT programming framework.

2.5 Polyglot Programming

Polyglot programming is also called multilingual programming. It is an art of de-
veloping simpler solutions by combining the best possible solutions using different
programming languages and paradigms. This is based on the observation that there
is no single programming paradigm or a programming language which can suit to
all the facets of modern day programming or software requirements. It is also called
as poly-paradigm programming (PPP)3, to appreciate the fact that many modern
day software combines a subset of imperative, functional, logical, object-oriented,
concurrent, parallel, and reactive programming paradigms.

One of the oldest example of polyglot programming is Emacs?, which is a com-
bination of parts written in C and elisp (dialect of Lisp). Web applications are
generally based on three-tier architecture to promote loose coupling and modularity,
it is also a representation of polyglot software systems. Polyglot programming [37]
has been observed to have increased programmer productivity and software main-

tainability in web development.

3http://deanwampler.github.io /polyglotprogramming /
4http:/ /www.gnu.org/software /emacs /emacs-paper.html

20

Chapter 2. Background JAMScript

Though the word “Polyglot” was used in software development since 2002, the def-
inition of Polyglot programming is not standardized yet. Many different definitions
by polyglot practitioners has been documented in Harmanen [38] and Fjeldberg [37].
One of the definition says, “programming in more than one language within the
same context”. Another one says, “using multiple programming languages on the
same managed run-time”. Fjeldberg extends the definition taking into account the
developers’ perspective as: “programming in more than one language within the
same context, where the context is either within one team, or several teams where
the integration between the resulting applications require knowledge of the languages
involved”.

In a Polyglot programming environment, the platform used for the integration
and the different programming languages supported by the given platform are the two
essential aspects. An inverse pyramid [39] can be used to categorize the programming
languages in a polyglot software system. The inverse pyramid has three layers:

Stable, dynamic and domain as shown in Figure 2.2

HTML, CSS, Web

templating, SQL Domain Layer

Groovy, Clojure, Jython,

Jruby, Javascript. Dynamic Layer

Stable Layer

Java, Scala, C

Figure 2.2 — Inverse pyramid for polyglot programming

Statically typed programming languages like Java and C that provide well tested

21

Chapter 2. Background JAMScript

and stable functionality settle towards the stable layer. The less powerful general-
purpose technologies like HTML, CSS which are tightly coupled to a specific part
of the application bubble up to the top layer, and the dynamic layer in the middle
consist of a variety of programming languages like Groovy, Clojure which are more
flexible and aid rapid functionality development. The inverse pyramid signifies the
fact that it is the single stable language, which supports all the above layers and
various languages in a bedrock fashion.

Since CoT is characterized by heterogeneity in various forms, a single program-
ming language or a single programming model may not be able to provide complete
support for the application development in CoT. As we have already argued, at
least a coordination language and a computational language is required in a unified

programming model for CoT which in a way is polyglot programming.

2.6 Summary

In this chapter we review some of the technologies and programming paradigms from
the CoT perspective that serves as a background for our project. Embedded lan-
guages review exposes us to the the many existing features for resource constrained
programming using C and its flavors. The section on message passing techniques
like RPC, REST, CREST and CoAP explains the possible approaches a program-
mer can take for communication (request/response, publish/subscribe, etc,.) in CoT
application development. The polyglot programming section advertises the philoso-
phy of multi-lingual programming and since it has been found advantageous in web
application development, we foresee polyglot becoming as a norm in new age applica-
tion development. Finally, coordination languages push forward the case of having a
pure co-ordination language in distributed and parallel programming models. JAM-
Script is designed as a hybrid coordination language providing Orchestration and

Choreography support to processes running JavaScript and C programs.

22

Chapter 3

JAMScript Design

In this chapter, we discuss the design of JAMScript components, the language and
its runtime. The concepts behind coordination languages and the present state of
practices in embedded software development have played a huge role in arriving at
the present design of JAMScript. JavaScript is the de-facto language in web browser.
With Node.js!, JavaScript brings several advantages like: event handling, scalability,
asynchronous, and non-blocking, to Server-side processing, which has catapulted
JavaScript to one of the favored language statuses in Server-side programming. The
popularity of JavaScript in the web browser, server side and the wide spread use of
C in embedded programming inspired us to design an hybrid coordination language,
which can combine both of them to provide a single programming framework for
CoT.

3.1 Overview of the JAM machine

The JAM machine is a mechanism for organizing the computation that takes across a
multitude of computing elements: things and Cloud VMs. The JAM machine uses a
tree based architecture. It has two types of nodes: C nodes and J nodes. C nodes are

computing devices that run C programs and J nodes run JavaScript programs. The

Thttps://nodejs.org/

23

Chapter 3. JAMScript Design JAMScript

C nodes are linked to the J nodes and the J nodes themselves could be connected by
root (S) nodes. The S nodes do not have any significance in terms of programability,
their purpose is to hold a JAM machine instance together as a connected entity.
These S nodes are also called as supervisor nodes.

Figure 3.1 shows a simple JAM machine where multiple C nodes are connected
to Cloud-based J node. The JAM machine uses a single program multiple device
model which is based on the well known Single Program Multiple Data (SPMD)
model for parallel computation. The JAMScript language that is described in the

next section, is designed to achieve this goal.

Figure 3.1 — A simple JAM machine

The functions implemented in the C nodes are exposed to the J nodes, so that
the J nodes can invoke them to perform the specified processing on them. Similarly,
certain functions in the J nodes are exposed to the C nodes as well. Because many
C nodes are connected to a J node, the J node has access to the APIs exposed by
many C nodes through which the J node could orchestrate the activities of the C

nodes.

24

Chapter 3. JAMScript Design JAMScript

3.2 JAMScript Language

C programs are a combination of functions. Devices can have many C functions
and one of them should be running at any given time with a single thread of exe-
cution. A subset of those functions can be exposed for external invocation through
the Cloud. Similarly, processing intensive computing can be off-loaded from the
things onto the Cloud to exploit the unbounded processing capacities available at
the Cloud for computations and data manipulations. Therefore, processing intensive
applications can be written in JavaScript and can be hosted on the Cloud, which can
be invoked for remote execution by the things. The performance of JavaScript, al-
though significantly poor for general routines, it can be within a factor of 2, of native
C implementations, if restricted to subset of the language (e.g., asm.js). JAMScript
acts as a glue between the C functions and programs running on the Cloud, provid-
ing coordination and control. The remote procedure calls and parameter marshaling
that are necessary to perform the distributed activity execution is implemented by
the JAMScript runtime. To facilitate coordination and control, JAMScript language
provides a new construct called “activity”, which defines a new type. An activity is
a sequence of blocks that are derived from C functions that are glued together by
the constructs introduced by JAMScript. JAMScript allows these activities to be
either synchronous or asynchronous. A simple synchronous activity definition using
JAMScript constructs is shown in Listing 3.1.

jamdef [sync] C_func declaration [in namespace]| [requires tag]

2 {

//code for the primary block

Listing 3.1 — Definition of an activity

jamdef is a keyword of the JAMScript language, which informs the JAMScript
compiler that it is an activity definition of a functionality that can be remotely in-
voked either from the Cloud or from the things. A synchronous activity signified
by the inclusion of the sync keyword in the jamdef declaration is very much like

a normal C function — activity (function) call returns on completion with a return

25

Chapter 3. JAMScript Design JAMScript

value. Conversely, an asynchronous activity returns immediately with an handle to
the executing activity. Using the handle, the state of the activity can be checked or
controlled — similar to the POSIX threads in C. Further, in the definition syntax,
we have the C function declaration which is similar to the practices in C language.
The pass-by-value mechanism in JAMScript is little different from the pass-by-value
mechanism in C. In C, with pointer arguments a function has the ability to manip-
ulate values in the calling scope. In JAMScript, however, even pointers cannot get
back to the values in the outer scope. As a way of design, the JAMScript runtime
makes a copy of the invocation parameters which is available to the block of exe-
cution. One of the advantages is that the same values will be available even in the
case of an activity getting restarted (support for recovery from fault). An optional
in clause and a name string is used to specify the namespace in which the activ-
ity should be posted, which provides scoping containers. The requires keyword along
with a tag will inform the runtime, the requirements to be meted out for that defined
activity to run. The predefined tag can be used to specify requirements like avail-
ability of a temperature sensor, a pressure monitor, or some other required sensors
and actuators.

The primary segment of an activity can be defined in two different ways: using
JavaScript statements for it entirety or C statements for its entirety. If the pri-
mary segment is defined using JavaScript, the JAMScript compiler compiles it to a
JavaScript component and a C stub. The C stub is generated so that it can be used
to invoke the newly created JavaScript function from the C side. On the JavaScript
side, this function is posted in a pre-specified namespace location (as specified us-
ing the optional in clause) and can be accessed by other JavaScript functions too.
When the primary segment is defined using C and when compiled through JAM-
Script compiler, a wrapper function is generated in JavaScript along with the .c file
of the function. The wrapper can be used to invoke this function and it is made
available under the namespace in the Cloud when loaded. The synchronous activity
invocation and execution is illustrated in Figure 3.2.

The entry into an activity can happen from both C nodes and J nodes depending
upon the type of primary block defined under activity definition. If the primary

26

Chapter 3. JAMScript Design JAMScript

Entry 1. Synchronous call on the
A . Y | JavaScript wrapperof the | (£ N | javascript_function()
C_function. /I execution
2. ...)

’ '_ v »!
C_function(){} ; @ Entry 1. Synchronous call on the C ,~'®
e i ‘ === ~ stub of javascript_function.
/lexecution 5

(a) (b)

Figure 3.2 — Synchronous invocation from J and C sides

block is in C, as required, it will run on a device and will be invoked from the J
node through a JavaScript wrapper. Since it is a synchronous activity, it will be a
blocking call on the caller. If the primary block is written in JavaScript, then it will
get executed on the J node and can be invoked remotely by C nodes. Exceptions are

handled by the support provided in the JavaScript language.

Example scenario

A simple example sequence in activity invocation is illustrated here. We want the C
function shown in Listing 3.2 to run on devices but called from the Cloud. For this,
we need to define it as an activity in the JAMScript environment as in Listing 3.3.

In this example, we are defining it as a synchronous activity.

1 float cal interest(float time, float principle)

: {
3 float rate= 10.0;

1+ return (timexprinciplexrate)/100;
5 }

Listing 3.2 — A sample C code running on devices

27

1

6

9

1

V]

Chapter 3. JAMScript Design

JAMScript

1 jamdef sync float cal interest(float time, float principle) in xyz
2 { float rate= 10.0;

3 return (timexprinciplesrate)/100;

4}

Listing 3.3 — Activity definition for the example C function

As shown in Listing 3.3, the primary block specification can have a set of argu-

ments that are passed-by-value to the block at its invocation. When compiled, we

will have a . c file of the function and a . js file for the JavaScript wrapper to invoke

this function from the Cloud. The activity in Listing 3.3 can be invoked by a simple

JavaScript code running on Cloud (J node) as in Listing 3.4.

function total_amount (time, principle)

{

var interest= xyz.cal_interest(time,principle);

//JavaScript wrapper function of cal_interest which is running on

devices. A synchronous call.

var amount= interest+principle;

console.log (amount) ;

3

total_amount (10,100) ;

Listing 3.4 — JavaScript code on J node invoking C function on a C node

Similarly, we invoke functions implemented in the Cloud in JavaScript from C

nodes. The following lists the JavaScript function that runs on Cloud that can be

remotely invoked from the C nodes on devices.

function cal_interest(time,principle)

{

var rate=10.0;

return (time*principle*rate)/100;

Listing 3.5 — JavaScript on J node in Cloud

The above code is defined as an activity using JAMScript constructs as shown in

Listing 3.6.

28

Chapter 3. JAMScript Design JAMScript

jamdef sync float cal interest(float time, float principle) in xyz
{ var rate=10.0;

return (timexprinciplesrate)/100;

Listing 3.6 — Activity definition of JavaScript function

After compilation, we will have the above function as a JavaScript. js file and the
C stub to invoke it from the devices as a .c file. Now, this activity can be invoked
by C nodes through the C stub as illustrated in Listing 3.7.

#include<stdio .h>

int main ()

{

float time=5.0;

float principle=6500;

float interest , sum;

interest = xyz cal interest(time, principle);

// a C stub which invokes JavaScript function cal interest () running
on a J node. Synchronous call.

sum= interest+principle;

printf("The total amount to be paid is: %f\n", sum);

}
Listing 3.7 — A C node invoking the C stub of a JavaScript function

Asynchronous activities

The above function invocations can be done asynchronously as well. For that, JAM-
Script provides a few more additions to the definition of an activity. An activity
can have several optional blocks associated with it besides the primary block in the
asynchronous mode. The oncomplete block is the one that is executed as a callback
on the successful execution of the primary block of an activity. If it is a failure,
then onerror block is executed as a callback. Listing 3.8 shows the format for the
oncomplete and onerror block definitons. If the primary block is executed on the

device, the callback: oncomplete and onerror blocks will execute on Cloud and will

29

Chapter 3. JAMScript Design JAMScript

be JavaScript blocks. Likewise, if the primary block is executed on the Cloud, then
the JAMScript design warrants, oncomplete and onerror blocks to run on things as
a callback. Though the parameters are detached from the ones in the outer scope of
the function, they are not immutable. The changes made to the formal parameters
during an activity remains available for other blocks until the activity completes.

1 jamdef C_func declaration [in namespace| [requires tag]

2 { // code for the primary block

3}
1 | oncomplete C_ func declaration ()

5 {// code for the complete block
o H

7 [onerror C_function declaration ()
s {// code for the error block

2}

Listing 3.8 — oncomplete and onerror definition

The interface supported in JAMScript for an activity under asynchronous mode
is similar to Promises API of JavaScript?. An activity call takes two handlers:
completion and error. The completion handler is run when the primary block of the
activity finishes its successfully. Similarly, the error handle will be utilised if at all
the primary block fails to complete its execution. We refer to the handle returned for

an activity call as promises — although JAMScript uses a slightly modified interface.

Example for Asynchronous call

Let Listing 3.9 be a C function available on some device, whose services may be
required on the Cloud.
1 float cal interest(float time, float principle)

> { float rate=10.0;

3 return (timexprinciplexrate)/100;
4 }

Listing 3.9 — A sample C part running on devices

https://developer.mozilla.org/en/docs/Web /JavaScript /Reference/Global _Objects/Promise

30

1

2

Chapter 3. JAMScript Design JAMScript

This code, can now be exposed to Cloud by defining it as an asynchronous activity

in the JAMScript. The JAMScript compiler will generate a JavaScript wrapper to
be invoked by the J node. Based on the outcome of primary block execution, either
oncomplete or onerror block can be the “callback” function executing on the J node
in Cloud. The activity definition with all the three blocks is shown in Listing 3.10.

jamdef sync float cal interest(float time, float principle) in xyz

code for primary block in C, runs on C node.
float rate=10.0;

return (timexprinciplexrate)/100;

oncomplete void comp block(float interest , float principle)

code for the complete block in JavaScript, runs on J node
var amount= interest+principle;

console.log (amount) ;

onerror void error block ()

code for the error block in JavaScript, runs on J node.

console.log("error in processing");

Listing 3.10 — Activity definition of C function

The return values from the C node is harmonized with the JavaScript program

by the oncomplete and onerror block implementations in JavaScript. This primary

block can be invoked by J node as in Listing 3.11

xyz.cal_interest (10,100) ;

/*JavaScript wrapper function for cal_interest which will run on a C

node. This call is an asynchronous call. This thread can proceed
further with other computations, while the events "oncomplete"
or "onerror" can trigger the JavaScript callback function on

another thread.*/

Listing 3.11 — JavaScript wrapper function invocation on J node

31

6

~

Chapter 3. JAMScript Design JAMScript

The same example can be transformed for the entry from C side. Listing 3.12 is

a JavaScript function which can run on the Cloud.

function cal_interest (time,principle)
{ var rate=10.0;

return (time*principlex*rate)/100;

Listing 3.12 — JavaScript on J node in Cloud

The Listing 3.13 does the activity definition with all the three blocks. As, ex-
plained earlier, since the primary block is in JavaScript, the call back functions are
mandated to be written in C, to facilitate on device execution. The JAMScript

compiler generates a C stub on the primary block to be invoked by the C node.

jamdef float cal interest(float time, float principle) in xyz {
//primary block code in JavaScript. Runs on a J node.
var rate=10.0;

return (timexprinciplexrate)/100;

}
oncomplete void comp block(float interest , float principle)
{
'/ code for the oncomplete block in C. Runs on a device for successful
callback .
float amount;
amount= interest+principle;
printf("The total amount to be paid is: %f\n", sum);
¥
onerror void error block ()
{
'/ code for the onerror block in C. Runs on a device for failed —error
callback .
printf("error in processing\n");
¥

Listing 3.13 — Activity definition of JavaScript function

The following Listing 3.14 shows the entry through a C node.

32

1

2

~

9

Chapter 3. JAMScript Design JAMScript

#include<stdio .h>

int main ()

{

float time=5.0;
float principle=6500;
float interest , sum;

xyz cal interest (time,principle);

/* a C stub which invokes cal interest running on a J node. This call

is in asynchronous mode. This thread can proceed further with other

computations, while the events °‘oncomplete’’ or ‘‘onerror’’ can

trigger the callback function in C on another thread. x/

Listing 3.14 — A simple Example-on C node

Extensions on Asynchronous Activities

An asynchronous activity can be cancelled by sending a CANCEL message to it while
it is still running the primary block. This is supported by the runtime. Further, if
an activity has already completed its execution, then it can be cancelled only if the
activity’s cancel block is defined by the programmer. The language runtime has no
role to play in this context. The cancel block codifies the sequence of steps to undo
the actions of the primary block, as stipulated by the programmer. Similarly, the
programmer can use the verify block to define a scheme to independently verify the
operation of an activity on the device. Listing 3.15 is the complete format for all

the definitions in asynchronous mode.

jamdef C_func declaration [in namespace| [requires tag]

{

// code for the primary block
}
[oncomplete C_func declaration ()
{

33

Chapter 3. JAMScript Design JAMScript

// code for the complete block. Can be in C or JavaScript.

/

H
[onerror C_function declaration ()
{
// code for the error block. Can be in C or JavaScript.
H
[oncancel C function declaration ()
{
// code for the cancel block(only in C)
H
[onverify C _function declaration ()
{
// code for the verify block(only in C)
H

Listing 3.15 — on__complete and on_error definition

Figure 3.3 illustrates the control transfer sequence in asynchronous activities,

with entry from both J and C nodes.

Entry

1. Asynchronous call on the
JavaScript wrapper of the
C_function.

@ [calls to cancel and verify]

2a. javascript_on_complete()
2b. javascript_on_error()

C_function(){} @

// execution

.| C_on_verify()

C_on_cancel()

(a)

.| javascript_function()
/I execution

1. Asynchronous call on the C stub

of the javascript_ function.

i

2a. C_on_complete()

" 2b. C_on_error()

(b)

Figure 3.3 — Asynchronous invocation from J and C sides

34

Chapter 3. JAMScript Design JAMScript

Table 3.1 summarizes the C and JavaScript combinations for implementing the

different blocks of an activity and the entry side.

Entry | Primary | Complete | Error | Cancel | Verify
JS C (async) JS JS [C] |C]
JS C (sync) - - - -

C JS (async) C C - -

C JS (sync) - - - -

Table 3.1 — Possible implementations for the activity blocks

Other JAMScript constructs

The activity APIs provided in the JavaScript side is sufficient to invoke the activities
and track their execution. However, we need additional support for orchestrating
the computing activities taking place within the IoT. These orchestration primitives
provided in JAMScript can be used only in the JavaScript side as the J nodes nodes
are responsible for controlling the computing activities on C nodes.

The orchestration primitives seq and par are inspired from the Orc programming
language [33| and Jolie [35]. The simplest of the two is the sequential composition
operator seq. Like the activity invocation providing a “promise”, regarding the future
execution of the activity, this composition operator also provides a promise. The
sequential composition operator (seq) shown below provides a single promise for the

whole sequence.

seq {activityy, activitys, ... activity,}

The “promise” for the whole sequential block will be based upon the promise for the
last activity in the sequence. All activities specified in the sequence in left to right
order must complete for the promise of a sequence to get fulfilled. When an activity
is invoked at a JavaScript node, several C nodes could be eligible to run it. The
JAMScript runtime picks a C node at random to run the activity. If it fails, another

node which has the capability is picked and so on. The activity fails if no C node

35

15

Chapter 3. JAMScript Design JAMScript

can successfully run it. While the promise of a sequence can get fulfilled in one way,
it can fail with n different errors given that there are n activities in a sequence.
Unlike the sequential composition operator that awaits for the completion of an
activity before launching the next, the parallel composition operator launches all
activities at the same time on capable C nodes. The parallel composition operator
(par) returns an array of promises — one promise for each activity specified in the

parallel composition.

par {activity;, activitys, ... activity,}

The sequence and parallel operators can compose in different ways. A parallel

composition can include one or more sequence compositions like the following:

par {seq {act,, acty}, act,, seq {act,, acty}}

In this case, the parallel composition returns three promises. Similarly, we can

have a sequential composition that include several parallel compositions.

seq {par {act,, acty}, act,, par {act,, acty}}

In this case, the sequential composition returns a single promise although it con-
tains parallel compositions inside it. The sequential composition proceeds with the
fulfillment of the promise when at least one promise of the parallel composition is
fulfilled. All promises of the contained parallel composition need to fail for the se-
quential composition to fail. In the above example, act, and act;, are started in
parallel and when one of them completes act, is started. If both the activities act,
and act, fail in all the eligible C nodes that are capable to run them, then the above
sequential composition fails and does not proceed further.

Using the seq{} and par{} constructs the programmer is able to do sequential
and parallel compositions of activities. However, these constructs do not offer mech-
anisms to place an activity on nodes with specific attributes. We provide operators
based on MapReduce programming model [40]. The runtime chooses the C nodes
that have capability in random to run the activities. A particular activity can be
mapped by the programmer onto all nodes with given attributes by using the map

construct.

16 map {activity,@predicate,}

36

19

20

Chapter 3. JAMScript Design JAMScript

At least one promise is returned by this construct. When the predicate specified
for the map{} does not match any C node, the promise fails with an error. Otherwise,
the construct returns a promise for each node onto which the activity is mapped.

The map operator can be composed as part of seq and par compositions.

par {acty, map {activity,@Qpredicate,}, seq {act,, actgy}}

As earlier, this composition will return an array of three promises, including for the

activity,@predicate,. Similarly under sequential compostion.

seq {map{act,@predicate,}, act,, par {act,, actqy}}

Here, if the map fails, then the whole sequence fails.
The final composition operator provided by JAMScript is the aggregator. It takes

an array of promises and applies a user-defined aggregation function.

red {promises,, func,}

A single promise is returned by this construct. The func, supplied by the program-
mer will determine when the promise will be fulfilled and under what conditions.
When the promise is fulfilled, all outstanding activities are cancelled by the red{}.
The activity construct provides comprehensive support for orchestrating computing
activities within CoT. For example, it allows the computing tasks to be sequenced
in arbitrary ways and placed on devices with given attributes or the Cloud.

We expect CoT to handle large volumes of data particularly in configurations
that involve sensors. Therefore, JAMScript proposes a data-driven coordination
mechanism to handle data flows from the devices to the Cloud. One of the unique
aspects of our data-driven coordination mechanism is its ability to pre-structure
the data injected by the devices according to the data definitions created by the
programimer.

To push data from the C node to the Cloud, we use the idea of live variables [7],
where 1ive is a new storage class introduced by JAMScript into C. Any updates to
a live variable immediately gets propagated to the Cloud. A C code fragment with

a live variable is shown below.

live double x;

21 ...

37

Chapter 3. JAMScript Design JAMScript

> while (...) {

23 x = func (..);

N
N

CoT can generate data that is time dependent (organized as time series) or event
dependent. Event dependent data could be standalone values that can have meta
data associated with them to explain the event that generated them. The purpose
of data pre-structuring is to improve the efficiency of data handling such that data
generated by the devices can be processed by the Cloud resident programs with
minimal latencies, minimal storage overheads, and minimal programming steps. An

example data definition in JAMScript is shown in Listing 3.16.

25 jamdata {

26 type, = jtypedef {attry, attro, ...};
27 type, = jtypedef {attr,, attry, ...};
28 X = timeseries (100) of types;

29 z = timeseries (200);

30 q = simple of typeg;

31 y = array of x;

32 p = olist of q by attrg;

Listing 3.16 — An example JAMScript data definition

All the live variables are mapped by JAMScript into a global scope. So no two
live variables can have the same name. Listing 3.16 shows that live variable x is a
time series with up to 100 elements. The data definition also shows variable y as an
array of x. Suppose several C nodes are generating values for x, these values can be
accessed through the array y. The cardinality of y indicates the maximum number

of C nodes pushing data into the Cloud.

3.3 Support for fault tolerance

JAMScript relies on a new computing model where all computing elements in the

CoT run portions of the same program. A JAMScript source can have C segments,

38

Chapter 3. JAMScript Design JAMScript

activity definitions, and JavaScript segments. Once the source is translated by the
JAMScript compiler we get C and JavaScript functions. Some activities can be
disabled on certain nodes if the nodes do not meet the requirements specified by the
programmer (see Listing 3.15) in the activity definition.

A single JAM machine is more like a computing cluster, with computing dis-
persed amongst J and C nodes. We propose to have centralized components like
management /supervisor nodes for node monitoring responsibilities with heartbeat
system [41] on cloud. In addition to the J and C nodes, the runtime introduces S
(supervisor) nodes for fault tolerance purposes. These supervisor nodes listen for
periodic messages (heartbeat) from all the J and C nodes of a single JAM machine.
The S nodes are part of the JAM machine model (as shown in Figure 3.4) but are

transparent to the programmers.

Figure 3.4 — Complete JAM machine configuration

39

Chapter 3. JAMScript Design JAMScript

Normally, devices run C nodes and Cloud runs the J nodes. And both nodes are
connected to the S nodes so that any failures of C or J nodes can be detected by the
S nodes. The configuration of a JAM machine can be reorganized by the S nodes
depending on the loading conditions. A device could run a J node in addition to a
C node, so that the device could have full JAMScript application running while it
is disconnected from the Cloud. Similarly, the Cloud could run C nodes to perform
compute intensive tasks in the Cloud. Also, to support applications which are latency
sensitive, the J nodes can be placed in the infrastructure nodes that are close to the
devices thereby minimizing the latencies while maintaining high reliability.

Due to their importance and small fraction they compose, we propose to extend
fault tolerance for S nodes. The most common means of providing fault tolerance
for centralised components is to provide software based “active replication” [42]. As
in active replication, at any given moment, there will be two Supervisor (S) nodes,
monitoring all the J and C nodes in an instance of a JAM machine. Also, these S
nodes keep track of each other, and whenever S1 or S2 fails, the supervisor node alive
instructs the runtime to immediately create and initialise another supervisor node

to replace and initialise the failed one.

3.4 Programming patterns

Using JAMScript, we believe, many programming patterns can be easily imple-

mented. Below, we provide a few example patterns.

1. Spawn a task on many computing elements. With many sensor-based IoT
applications it is necessary to spawn a task such as “take a sensor reading”
across many sensors. With JAMScript, we can use the map construct to run
a given activity over a defined collection of sensors. And we can use red to

obtain a reading based on a programmer defined function.

2. Chain of tasks across different computing elements. Using the seq construct

we can run activities such that one is dependent on the other. Failure of one

40

Chapter 3. JAMScript Design JAMScript

Figure 3.5 — Fault tolerance support on Cloud

activity will terminate the execution of the chain of tasks with the appropriate

error condition.

3. Chain of tasks with fault tolerance. Even the seq construct has fault tolerance
built into its execution because it tries the different C nodes that could run an

activity when it receives a failure.

4. Offloading computing from Cloud to native execution. By default the J nodes
execute in the Cloud. When we have time consuming computing tasks, it
is necessary to execute them natively. Using JAMScript we can place the
time consuming task in an activity running in a C node. However, instead of

mapping the C node to a device, we can place the C node in the Cloud itself.

41

Chapter 3. JAMScript Design JAMScript

5. Offloading computing to Cloud. Devices can conveniently offload computing to
the Cloud by calling an activity whose primary block will run on the Cloud.
The Cloud could in turn offload the specified computing task to yet another

location — for example, for native execution as per above pattern.

42

Chapter 4
Implementation

In the previous chapter, we discussed the design of JAMScript programming frame-
work. In this chapter we present the implementation details of the language compiler
and the run time. At this time, a prototype of the JAMScript compiler as described
here is working. However, work is still ongoing to improve the language and com-

piler!.

4.1 JAMScript compiler

The JAMScript compiler compiles valid JAMScript programs in files with . jm ex-
tensions to to C and JavaScript files. An activity definition in JAMScript is in C
like syntax, as follows.

1 jamdef [sync]| C_func declaration [in namespace| [requires tag]

: {

3 // code for the primary block in C or JavaScript
4}

5 | oncomplete C _func declaration ()

o

7 // code for the complete block in C or JavaScript.
s 1]

! This work is carried out in collaboration with Robert Wenger and Professor Maheswaran. My
role is in documenting and testing to facilitate wider participation in the project.

43

Chapter 4. Implementation JAMScript

[onerror C_ function declaration ()

{
' code for the error block in C or JavaScript.
}]
[oncancel C function declaration ()
{
/ code for the cancel block in C
}]
[onverify C function declaration ()
{
/ code for the verify block only in C
}]

Listing 4.1 — JAMScript activity definition

As we have already discussed, the primary block can be in either JavaScript or in
C. If the primary block is in C, when compiled, the JAMScript compiler will generate
a .c file containing the primary C function and a JavaScript wrapper in . js file for
that C function, which can be invoked by the J node in the cloud under the given
namespace. Similarly, if the primary block is in JavaScript, then the JAMScript
compiler will generate . js file with primary JavaScript function and the respective
C stub in .c file for invoking the primary block from the C nodes. Further, for
asynchronous activity definitions, the compiler will generate callback functions for
oncomplete, onerror, onverify and oncancel events. If the primary block is in C,
then the callback functions for oncomplete and onerror events will be generated
as JavaScript components. For onverify and oncancel events, if the programmer
has defined the blocks, then the compiler will generate equivalent C components.
Likewise, if the primary block is in JavaScript, then the compiler will generate the
callback functions in . c file to run on the C nodes for oncomplete and onerror events.
The output of JAMScript compiler is a bundle of . c and . js components. Figure 4.1
illustrates the complete compilation process of a typical JAMScript program. The C

files are then compiled for respective hardware using the native C language compilers.

44

Chapter 4. Implementation JAMScript

The .o files and . js files are stored in an archive file with a manifest in TOML?

format. The archive is considered the JAM executable with a . jxe extension.

Jm
Activity
definitions
JAMSgript .C native_ C
Compiler Compilers
Js .0
JAMScript executable

.jxe archive with TOML manifest

Figure 4.1 — JAMScript program compilation

JAMScript keywords

The JAMScript language extends the C language with new keywords as in Listing 4.1;
their individual responsibility has been explained in chapter 3.

1 jamdef, jamdata, sync, in, oncomplete, onerror, oncancel, onverify ,

> live , requires, seq, par, map, red.

To compile the new language constructs, JAMScript uses OMeta?, which is a
general purpose pattern matching language based on Parsing Expression Grammars
(PEG) [43]. Using OMeta, the parser and translator which extends C language is
built. The dependency between C language, OMeta and JAMScript is illustrated in
the following listings.

The general steps followed to build language translators using OMeta is to:

2https://github.com/toml-lang /toml
3http://tinlizzie.org/ometa/

45

6

Chapter 4. Implementation JAMScript

e represent the grammar of a language in OMeta language;
e compiling the grammar using OMeta compiler;
e using the output object to match and translate input streams.

The standard C grammar is represented in OMeta language (OMeta/JS) and
compiled through the OMeta compiler to generate a C language parser which can
parse and generate ASTs for a valid C construct.

ometa CParser {// C language grammar in OMeta language format

}

Because, JAMScript extends the C language, the C parser generated using OMeta
can be inherited by the JAMScript C parser to build a parser for the JAMScript
constructs.

// require ES5 parser.

ometa JAMCParser <: CParser {// JAMScript grammar in OMeta language
}

Also, since the JAMScript constructs can have JavaScript components in the pri-
mary and callback blocks, the JAMCParser utilises the service of a JavaScript parser:
ES5 parser, written in OMeta provided under ES5 package. Thus, the JAMScript
parser can parse and generate Abstract Syntax Trees (ASTs) which can be trans-
lated to respective C or JavaScript components. JsonML* is used to represent the
abstract syntax tree internally. The JsonML package provides the functionality that
is required to work with ASTs based on the JsonML data structure. The “factory”
method in the package is used to create the node-constructors for each node type that
can be used to build the AST. The translators for translating ASTs to their respective
code are also built using OMeta with the help of JsonML package. The package also
provides a walker implementation that is written in OMeta/JS to traverse through
the ASTs built in the parsing phase.

ometa CTranslator <: JsonMLWalker {// translation listings for C

language constructs

4http://www.jsonml.org/

46

10

Chapter 4. Implementation JAMScript

First, the C translator is built and then the JAMScript translator is built by

inheriting this C translator along with ES5 translator (for JavaScript components).

//require ES5 translator.
ometa JAMCTranslator <: CTranslator {// translation listings for

JAMScript constructs

Figure 4.2 illustrates organization of the JAMScript compiler.

.jm /JAMScript parse JAMScript translator \

e e

e . N
’ \ ’ N

\

)

JavaScript
parser
(ES5)

JavaScript
translator
(ES5)

Figure 4.2 — JAMScript Compiler components

JAMScript executable

The .c and .js files will be the output of the JAMScript compiler, for activity
definitions in JAMScript. Further, the C object files can be generated using native
C language compilers. The C object files and corresponding JavaScript compo-

nents representing activities for a particular application are packaged together into

47

Chapter 4. Implementation JAMScript

a single archive called JAMScript executable file. The organisation of a JAMScript
executable file . jxe is described in a TOML formatted manifest file included in the

archive.

Type = JXE

Description = "JAMScript Executable File"
Name = "xxxx" # Application name
Version = 1.0 # defines the version of executable format
List-of -Activities=[...] # name of all activities
[js]

Functions = [array of entry points]

Code = filename in archive.

[c]

[c.main] # main function
Release = X # a release number
[x86]

Code = filename in archive.

Checksum = "xx"

[arm64]

Code = filename in archive.

Checksum = "xx"

[c.act_namel] # activity 1
Release = X

Requirement = [array of attributes required]
[x86]

Code = filename in archive.

Checksum = "xx"

[arm64]

Code = filename in archive.

Checksum = "xx"

[c.act_name2] # activity 2
Release = X

48

-

Chapter 4. Implementation JAMScript

Requirement = []

[x86]

Code = filename in archive.
Checksum = "xx"

[arm64]

Code = filename in archive.
Checksum = "xx"

Listing 4.2 — Organisation of an example JAMScript executable

The release number in the executable file can be used by the loader to match,
while loading new components to avoid loading same versions of the software module
more than once. If the loader determines that a new version is available, then it is

loaded and the application can be restarted.

4.2 JAMScript runtime

The JAM library and loader are also part of the runtime of the language. To support
transactions between the cloud and the things a set of APIs are provided as part
of the JAM library. The TOML formatted manifest in the .jxe file will have all the

information about the application, such as the following:
e App name
o Activity list
e All the necessary files (.o, .js) to load
The JAMScript loader loads the executable to the C node. The syntax is as follows.

jamload myprog.jxe tag

To initiate interaction between things and devices, a connection should be initi-
ated to the server using jam_init() API at the C node. It takes two arguments:
name of the server and port number. If the server is not down, then it initialises
the connection between C node and the server in the cloud (J node). Also, the JAM
library APIs are initialised for the C node.

49

Chapter 4. Implementation JAMScript

1 int init_ jam (char xjam server, int port);

Now, the C node can request the J node (server) to open an application it intends

to work with, by giving the application name to open_application() API.

> Application xopen application (char xappname) ;

The server will query its internal table for the status of the application requested
by the C node. There are three possibilities: the application may be running; present

on cloud but not running; and third — it may not be available in the server.

1. If the application is already running, then the C node will get the list of all
activities in that application from the server. The C node can then delete those
activities for which it does not have capability. To facilitate this matching, we
stress the use of requires in activity definitions. The C node maintains this
supported activity list for the application in its local table and also forwards
it to the server. The server will maintain this capability list of the C nodes to
facilitate seq{} and par{} compositions. The server will connect the C node

to the servlet running the application.

2. If the application is not yet created or for the remaining possibility that it
may not be running (we will assume the server has a older version) then the C
node can get the server to register the application. The C node will send the
JavaScript components for callbacks to the server along with the list of capable
activities on the C node. The server will store the new application along with
meta information. Further, it creates a servlet for the application and connects
the C node to the servlet.

If the server realises that the thing has a newer version of the application during
the initial handshake of open_app (), then the newer version of the app gets registered
and the application will be restarted. The invocation of init_app() at the C node
will install the application from the .jxe file on the local node based upon the
capability table and starts a servlet for the application and gets the handle to the

C runtime. Also, callbacks are registered and the background event loop is started.

50

Chapter 4. Implementation JAMScript

One of the problem of incremental loading is, when a call back function is registered
but the function is yet to be loaded on the C node and there is a remote invocation on
that function. In these sort of scenarios, till the loader loads and updates the server
about the status, the registered call backs can be pointing to a dummy function
which returns an error status.

The events can be oncomplete, onerror, onverify, oncancel, and oncallback.
The API for registering callback has the following syntax.

void register callback (Application xapp, char xaname, EventType etype,
EventCallback cb, void xdata);

It takes in application name, activity name, event type and the supporting function
and data. An application can be closed by using the close_application() API,
which informs the server to close that particular application. The server will kill the

servlet for that particular application. The syntax is as shown.
1+ int close application (Application *app);
To un-install an application the remove_application() API can be used whose
syntax is as follows. This removes the application from the server’s internal list.

int remove application(Application *app);

wt

The API print_application(), will print the application details: Name, appid,

state, server, and port number. It can be used as follows.
¢ void print application (Application *app);
Remote execution of services can be requested by the C node, through the
execute_remote_func() API The syntax is as shown. The application name, the

function name (activity in JavaScript) and the input parameters for the function are
the input for this API.

7 int execute remote func(Application xapp, const char xfname, const char
«fmt, ...);

To raise an event exclusively, the following API may be used at the C node.

s int raise event(Application *xapp, char =xtag, EventType etype, char =x

cback, char *fmt, ...);

51

Chapter 4. Implementation JAMScript

As of now, the compiler for the C part of JAMScript, the above APIs, and a
TOML file parser to aid in loading has been implemented. In the next phase, the
JavaScript part of the JAMScript compiler including support for composing operators

and fault tolerance mechanism from runtime will be implemented.

52

Chapter 5

Potential Application Scenarios

5.1 Smart roads

One of the important aspect of smart cities are smart roads — within the city and
which connect the cities. Smart roads can make it easy for commuters, vehicular
traffic planners and managers. Features like traffic density alerts, CO, level moni-
toring at traffic junctions, interactive lighting, etc add on to the features of a smart

road.

Interactive Lighting

For smart roads, an important attribute is interactive lighting. By using motion-
sensor lights, interactive lights can save lot of energy and at the same time pro-
vide better services to highway commuters. When a vehicle approaches a particular
stretch of the highway, the motion sensors can actuate the light-on for that section of
the road. It will become brighter as the car moves closer to the pole and will slowly
dim away as it passes.

For those long stretching highways, which may be less travelled during late hours,
interactive lighting can provide optimal night visibility and at the same time can cut
costs. JAMScript can be used to develop software for these systems. The C nodes

located on the poles can run a program for sensing vehicle movements and actuate

53

Chapter 5. Potential Application Scenarios JAMScript

the light accordingly. The central J node can collate the data and can help to make

policy decisions for the highway spans and implement them.

5.2 Smart classroom

One of the attribute of a smart building is temperature monitoring. In a smart
classroom each instructor will be given services based upon individual requirements
like light settings, audio level, temperature level, etc,. Individual preferences can be
serviced by things without any manual intervention after the initial settings. Here,
we illustrate the scenario of room temperature monitoring using JAMScript. All
the things will house C nodes, while the J (server) node will be in the Cloud. For
temperature monitoring we assume three devices: a temperature sensor, an heater
and a cooler to be present with temperature sensing capability in a class room. Let

the application be called as “smart_temp”.

1. Let the temperature sensor abstracted as a C node, be the first to get connected
to the JAM server. As we saw in the previous chapter, through runtime APIs,
the C node can push all the JavaScript components to the server and start
the background event loop. The server will include only those activity which
is supported by this particular node in the application list. Let the callback
component on Cloud after sensing the temperature be js_action1() which
receives the temperature value from the sensors on C node. Based on the tem-
perature value, it can invoke a method to decrease or increase the temperature

on the cooler and the heater.

2. In the next step, the heater gets connected to the server and send its node infor-
mation to the server along with request for opening of the app “smart_temp”.
The server collects the information from this node and activates the activities
supported by this node. This node can increase the room temperature. The
callback function for this node shall be js_action2(), which can invoke a re-
quest on the temperature sensor to sense the temperature after increasing the

temperature.

o4

Chapter 5. Potential Application Scenarios JAMScript

3. Finally, the cooler gets connected to the server and send its node information
to the server along with request for opening of the app “smart temp”. The
server collects the information from this node and activates the activities sup-
ported by this node. This device can decrease the temperature. The callback
function js_action3() can invoke request on the temperature sensor to sense

the temperature after decreasing.

In Figure 5.1(a), there are three C nodes, getting connected to the J node and
exporting information about their capabilities. The first C node has functionality to
sense the temperature, the second C node can increase the temperature, while the
third C node can decrease the temperature. The respective callbacks for successful
completion and failure are exported to the J node. While, in Figure 5.1(b), a C node,

maintains information about the node’s capabilities.

5.3 Health monitoring for elderly

CoT can significantly improve the quality of life for the ever increasing number of
elderly people. As an example, a small, wearable device can detect a person’s vital
signs like heart rate, body temperature and send an alert to health-care professionals
whenever a certain threshold has been reached. Also sensors can detect if at all a
person has fallen down and send alerts to the emergency services.

In the above scenario, JAMScript can be used to implement the managing soft-
ware. The sensor devices can have C nodes pushing data through live variables to
the J node, which can be on a local server. Further, even when there is no Internet
connectivity, the J nodes can be on the devices itself and through other alerting
techniques like SMS messaging, can inform the emergency services (like 911). Once
the connectivity is established, the J node can heal itself to the Cloud.

95

Chapter 5. Potential Application Scenarios JAMScript

Cooler
temperature Heater
sensor

Application activity

smart_temp temp?(supported)

temp+ (not supported)

Cooler

temp- (supported)

(b)

Figure 5.1 — Deployment scenario

56

Chapter 6

Related Work

6.1 Overview

Programming frameworks typically promote design reuse, implementation reuse, and
validation reuse, thereby enhancing software extensibility, flexibility and portability.
The complexity of the domain and maturity of the problem are the biggest challenges
in developing frameworks [44]. Since CoT domain itself is in initial stages, many
frameworks too are in the development and experimental stages. In this chapter,
we present — the key support features a programming framework should provide for
CoT programming in section 6.2, development methodologies currently being used in
application development, for constrained environments in section 6.3, and section 6.4
is a brief description of different programming frameworks for IoT-Cloud that have

been recently developed.

6.2 Essential features of CoT Programming Frame-

works

We propose the following set of minimum features to be fulfilled by the programming

frameworks for CoT.

57

Chapter 6. Related Work JAMScript

1. Coordination: A CoT can have computing elements playing different roles: con-
trollers, storage managers and application processors. We need programming
language support for orchestrating their activities. The orchestration can be

explicit (control driven) or implicit (data driven).

2. Heterogeneity: Disparate computing devices are brought together by the CoT
for the purposes of running smart computing applications. The programming
framework should be capable of efficiently exploiting the system heterogeneity
by allowing the developer to provide guidance on how the computations must

be mapped to the computing elements.

3. Scalability: For CoT to be successful, it is not sufficient to just interconnect
massive number of devices. They should be programmed to run many creative
applications, such that large number of users would benefit from their deploy-
ment. Therefore, CoT needs programming frameworks that support variety
of programming patterns and also should be able to perform load balancing

dynamically.

4. Fault tolerance: In CoT, we can expect frequent system partitioning due to
mobility of computing elements. The programming framework should allow
developers to create applications that can gracefully go between online and

offline states as networks partition and heal their connections.

5. Lightweight footprint. The programming framework should be lightweight both
in terms of the runtime overheads and the programming effort needed by the

developers.

6. Support for latency sensitive applications: CoT will have many applications
which would be geographically distributed and may be latency sensitive. Push-
ing all the computations to Cloud will not help these sort of applications. The
programming framework including the runtime has to support this sort of re-

quirements dynamically..

98

Chapter 6. Related Work JAMScript

6.3 Programming Approaches for Constrained En-

vironments

The following four approaches are used predominantly in IoT-Cloud application de-

velopment [45].

1. Node Centric Programming. Here, every aspect of application development,
communication between nodes, collection and analysis of sensor data, issuing
of commands to actuator nodes has to be programmed by the application
developer. Though, there is better control on the way programs work, it is

too labor intensive and does not promote portability.

2. Database Approach. In this model, every node is considered as a part of a
virtual database. Queries as part of an application can be issued on sensor
nodes by the developer. This model does not support application logic at this

level, rendering it to be of little use in IoT application development.

3. Macro Programming. In this methodology, application logic can be specified
and also abstractions are provided to specify high-level communication, thereby
hiding low level details from developers aiding in modular and rapid develop-

ment of applications.

4. Model Driven Development. It takes note of both vertical and horizontal sep-
aration of concerns. Vertical separation increases level of abstraction, thereby
reducing application development complexity. Horizontal separation of con-
cern reduces development complexity by describing the system, using different

system views. Each perspective elaborates certain aspect of a system.

Many of the IoT/CoT development kits, which are available in the market support
one of the approaches listed above. This categorization is not exhaustive; as new

hybrid approaches may evolve as the [oT-Cloud domain itself matures.

99

Chapter 6. Related Work JAMScript

6.4 Existing IoT-Cloud Frameworks

The IoT/CoT research communities from many academic and research organizations
are constantly striving to simplify the efforts involved in application development by
developing new programming frameworks. We present a few of them and highlight

their key features.

6.4.1 Mobile Fog

Cisco has proposed a new computing model called Fog computing [46]. Here, generic
application logic is executed on resources throughout the network, including routers
and dedicated computing nodes. In contrast to the pure Cloud paradigm, fog com-
puting resources perform low latency processing near the edge while latency-tolerant,
large-scope aggregations are performed on powerful resources in the core of network
(Cloud).

Mobile fog [47], extends fog computing by providing Platform as a Service (PaaS)
programming model for IoT application development to simplify the task of appli-
cation development that runs on heterogeneous devices distributed over a wide area
and also to provide support for dynamic scaling based on their workload.

Here, an application will contain processes distributed throughout the fog com-
puting infrastructure, Cloud and on edge devices based on geographical proximity
and hierarchy. Each process can perform tasks with respect to its location and level
in the network hierarchy like sensing, actuation, and aggregation. A process running
on a device which is at the edge is a leaf node while a process in the Cloud is the
root node in a given hierarchy. Processes on nodes between devices and Cloud are
intermediate nodes (routers, servers, etc). Each process handles workload from a
certain geo-spatial region.

Mobile Fog provides API support through its runtime. Mobile Fog uses computing
instances requirement to provide dynamic scaling. It is based on user-provided policy
such as CPU utilization rate, bandwidth, etc.

60

Chapter 6. Related Work JAMScript

6.4.2 ELIoT (Erlang Language for IoT)

Though the language Erlang was originally designed for embedded platforms, over
a period of time it amassed a complex infrastructure, which is usually not required
in devices and is a burden on resources constrained things. ELIoT [48], Erlang
language for IoT, tries to address this for [oT application development.

ELIoT provides a small library for developing decentralized sensing/actuation
systems, an interpreter suited for resource constrained IoT devices and a simulator
for testing the implementations in a fully or partially simulated environment. The
ELIoT’s virtual machine is a stripped down, lightweight version of Erlang’s virtual
machine. Heavy libraries, which are not required for IoT are removed (like CORBA
middleware systems). It includes a custom-networking stack for improving efficiency
and for supporting new communication primitives. Instead of TCP, UDP is used for
both reliable and non-reliable communication. A customized reliability layer is built
on UDP.

Generally for IoT applications, strict layering of the networking stack may not
be fully advantageous; some form of cross layering is found to be helpful for IoT
applications [49]. Erlang’s network driver fills up the incoming message queue of the
receiver only with the payload of the message, hiding all the other details; whereas,
the network driver of the ELIoT exposes additional information like the IP address
of the source node and the Received Signal Strength Indicator (RSSI) coming from
the radio, which are treated as any other type of data.

The Erlang’s uni-cast interprocess communication operator ! is built on a com-
plete TCP/IP stack, ensuring reliable communication for both local and remote
communication. Since, TCP/IP stack comes with a cost and can be resource drain-
ing on devices, in ELIoT, the | operator is used only for communication between
local processes. Remote communications in ELIoT is handled by a set of specific
functions

from the ELIoT library, whose semantics is best effort and, is limited to single hop
in wireless networks. Further, the ELIoT library supports rich set of communication

patterns including the broadcast mode.

61

Chapter 6. Related Work JAMScript

ELIoT provides a simulator for supporting IoT application debugging and test-
ing. The simulator can model a complete system through virtual nodes running
unmodified ELIoT code. Also, it can run a mixed deployment where virtual nodes
seamlessly interact with physical devices. The ELIoT simulator allows debugging
a system in a fully simulated deployment environment, which, seamlessly can move
into actual deployment environment. The ELIoT framework provide wrappers on
nodes which are basically RESTful interfaces, through which nodes can be accessed
by users through the normal HTTP operations.

ELIoT brings in the advantages of Erlang to IoT in a light weight framework.

6.4.3 Compose API

Compose API [50] is an IoT service provider platform through RESTful APIs,
wherein things, users, and the Compose platform can interact with each other to
provide services based on [oT called Internet of Services (IoS). Compose platform is
based on Web of Things (WoT): all the physical objects connected to the platform
are web enabled and can interact among them using the web protocols. Along with
the APIs, the Compose platform consists of GUI, semantic registry, cloud runtime
and communication libraries.

Any object which implements the communication protocols of the Compose API
is web enabled and is called a Web Object (WO). Each WO holds a virtual identity
inside the Compose platform called the Service Object (SO). The SOs communicate
with the external WOs through APIs. SOs can act as data endpoints or they can
also act as

intermediaries, feeding processed data to other SOs. Every time a sensor attached
to WOs produces a new reading, it is forwarded as a Sensor Update (SU) on a stream
to the Compose platform to be collected by the corresponding SO for processing
based on some processing logic. The processing logic is a combination of logical,
string and arithmetic operations implemented in the form of a processing pipeline.
A SU goes through a number of stages in the pipeline in order to transform into a new

output or a new SU. Connections between SOs are built through subscriptions and

62

Chapter 6. Related Work JAMScript

communication between them are through events. A JSON document description
deploys each SO in the platform.

Compose API simplifies node centric programming and exposes nodes through
RESTful APIs which can be further composed. Such a programming methodology

is quite advantageous to IoT.

6.4.4 Distributed Data flow support for IoT

In this approach [51], existing IoT data-flow platforms like WOTkit! processor and
Node-RED? are extended to support distributed data flow, which is one of the im-
portant characteristic features of IoT. Data flow programs are generally called flows
consisting of nodes connected by “wires”. The data-flows are generated using JSON
documents. During execution, nodes get instantiated in the memory and the code is
executed as and when the node receives data on the incoming “wire”.

The nodes do not share states with each other and are inherently independent and
can execute code in parallel. This facilitates computation migration between heavy
processors and devices seamlessly. Based on user choices and trade-offs computations
can be split and distributed, so that a part of it can execute in the cloud while the
other parts can execute on edge devices. According to the authors, the present day
[oT data-

flow platforms needs to be extended to support distributed data flow for which
three things are necessary: flow ownership, naming of nodes, and classification of
connections (wires) as local or remote. This framework aims to incorporate the above
three attributes to WOTkit and Node-RED to aid in IoT application development

from the data flow perspective.

6.4.5 PyoT

PyoT [52], is a programming framework for WSNs, which have the capability to
communicate with each other through the Internet using 6LoWPAN and CoAP.

Thttps:/ /wotkit.sensetecnic.com /wotkit /
2http://nodered.org/

63

Chapter 6. Related Work JAMScript

PyoT abstracts WSNs as software objects, which can be manipulated and composed
to perform complex tasks. PyoT uses CoAP’s RESTful interface to interact with
nodes. Applications can consider sensing and actuating capabilities of nodes, shared
with the external world through URIs. The users can discover available resources,
monitor sensors and actuators, store data, define events and actions, and program
to interact with resources using Python. PyoT supports “in-network processing”, in
which a part of the application logic can be directly run on devices.

PyoT has five components: 1) Virtual Control Room, ii) Shell, iii) Storage
Element, iv) Message queue, and v) One or more PyoT Worker Nodes. The Web
user interface is the virtual control room that allows execution of basic operations
like listing of resources, sensor monitoring, data storage. The Shell allows macro
programming for defining complex operations through a set of Python APIs for
interacting with resources, which are abstracted as Python objects. The Storage
Element maintains the system status. Each PyoT Worker Node generally manages
an loT based WSN, by providing a set of processes that perform generic tasks and
support communication activities with other

nodes. The PyoT Worker Node also keeps track of nodes and their resources, pro-
vides update to Storage Element, performs sensor data collection and also supports
event detection. The macro programming support by this framework will lessen the

burden on IoT programmers.

6.4.6 Dripcast

Dripcast [53] is a Java based application development framework to integrate smart
devices into cloud computing infrastructure. Further, it is a server less framework
for storing and processing Java objects in a cloud environment. These Java objects
will be made available on smart things and users can manipulate those objects as if
they are local objects. It implements transparent Java remote procedure call and a
mechanism to read, store, and process Java objects in a distributed, scalable data
store. Under Dripcast, all Java objects have worldwide unique ID. The Dripcast

framework consists of four components: Client, Relay, Engine and Store.

64

Chapter 6. Related Work JAMScript

1. Client is a Java library, which works on devices such as smart phones and
tablet. It monitors the Java object on the client devices, and forwards remote

procedure calls, which are abstracted from the users to the Relay.

2. Relay is a stateless, distribution gateway. It forwards requests from clients to
corresponding engine servers. A relay server knows the association of object’s
unique ID and engine servers; a Distributed Hash Table (DHT) manages this

association.

3. Engine is a set of engine servers. Each engine server runs JavaVM and executes
Java methods of an object for a remote procedure call request forwarded by
the relay and returns the result back to the relay. If there is a state change of

the object, then the new state is stored back into the Store.

4. Storeis a scalable distributed data-store for storing Java objects with capability

for replication and automatic recovery.

The Dripcast framework enables Java based IoT application development.

6.4.7 Calvin

It is a framework [54]| that merges IoT and cloud in a unified programming model.
It is an IoT programming framework, which combines the ideas of actor model and
flow based computing. To simplify application development, it proposes four phases

to be followed in a sequential fashion: Describe, Connect, Deploy, and Manage.

e Describe: In this phase, the functional parts of the applications, which are
reusable components, are described. In Calvin, everything is treated as an
actor: devices, services, and even a piece of computation on cloud. These
actors can communicate with each other through ports. To create an actor,
a developer describes the actions, their input/output relations, the conditions
for a particular action to be triggered, and also the priority between actions.

Device manufacturers can supply actors that correspond to their devices as

65

Chapter 6. Related Work JAMScript

part of the support code shipped with their devices, enabling their devices to

easily integrate with a Calvin application.

e Connect: Once the actors have been described, the next step is to connect

those actors by directed graphs between the ports of a number of actors.

e Deploy: In this phase, an application is instantiated according to the graphs
provided with its description. The description/connect phase does not specify
where the various actors should execute, nor how the data should be trans-

ported between them. This is handled during deployment of the

e application. The distributed runtime present at the nodes where the applica-
tion gets deployed shoulder this responsibility. By forming a mesh network of
run time on nodes, actors in a running application can migrate from one run-
time to another. Once the runtime has been instantiated and connected the
actors locally, the distributed execution environment can move actors to any
accessible runtime based on resources, locality, connectivity, and performance

requirements.

e Manage: In this phase, the distributed execution environment monitors the
applications, handling migration of actors, updates, error recovery and scaling

along with book-keeping.

These phases are supported by the run time, APIs and communication protocols.
The platform dependent part of Calvin runtime manages communication between
runtimes, transport layer support, the inter-runtime communication, and abstrac-
tion for I/O, sensing mechanisms to the upper levels of the runtime. The platform
independent runtime provides interface for the actors. The scheduler of the Calvin
runtime resides in this layer. Calvin runtime supports multi-tenancy. Once an ap-

plication is deployed, actors may share runtime with actors from other applications.

66

Chapter 6. Related Work JAMScript

6.4.8 Simurgh

Simurgh [55] provides a high level-programming framework for IoT application de-
velopment. The framework supports exposing of IoT services as RESTful APIs and
also to compose those IoT services to create various flow patterns in a simplified
manner. The overall Simurgh architecture has two main layers: Things layer and
Platform layer. In the Thing layer there is a software component called Network
Discovery and

Registration Broker, which listens to the incoming connection requests from de-
vices and handles them. There is a rich set of libraries providing device specific in-
terfaces. An API mediator assists programmers to expose their applications through
RESTful APIs. Also, they provide RESTful wrappers for those low level device
interfaces which are not supported by native vendors, and finally an API manager
which monitors APIs access from the external world.

The platform layer has the following components:

1. Thing Description Repository: This stores information about things and ser-
vices offered by them; periodically updated by the Network Discovery and
Registration Broker and API Mediator component. Things are described using
TDD (Thing Description Document). A TDD file consists of mainly two parts:

e Entity Properties: Usually a user-chosen name, last modification date and

entity’s location is stored.

e Entity Services: For each of the entity described earlier, entity services
define APIs that are available on the entity. These API definition files can
be in RESTful API Modeling Language (RAML)? or in Swagger? format.

2. Two-Phase Discovery Engine: This is used to discover an entity and its corre-
sponding APIs in two phase. In the first phase, the engine will search in TDD

repository to find entities based on given criteria. If the goal is finding an API

3http://raml.org/
“http:/ /swagger.io/

67

Chapter 6. Related Work JAMScript

of an entity capable of doing a certain task, then, another search is performed

on their respective API Description Documents.

3. Flow Design: This component assists in designing flows, which are chains of

[oT services. Through this component, users can discover things, discover their

APIs,

and also can call the found APIs, thereby generating a flow.

4. Flow Composition: Two or more flows can be combined to build a new flow that

can deliver a new functionality. This component performs those compositions.

5. Flow Execution Engine: This engine provides all the required resources during
the execution of a flow. It configures them and executes all the necessary APIs

to fulfill a request.

6. Flow Template Management and Repository: Flows are managed and also to
promote flow reusability, the used patterns are stored and are exposed to users

when they are designing new flows.

7. Request Management: This component performs user request matching to flow
templates. If a match is not found, then the request will be forwarded to Flow
Composition module to match with composed flow patterns. Furthermore, if
a flow is not found, then users can build the required flow using a flow design

interface.

The Simurgh framework provides detailed support to IoT development. Assistance
to develop, manage and reuse flow patterns as provided in this framework is crucial

for IoT programmers.

6.4.9 High-level Application Development for the Internet of
Things

The authors [56] propose a detailed framework for developing [oT applications. They

propose a new developmental methodology and a framework to support it. To sim-

68

Chapter 6. Related Work JAMScript

plify the process of IoT application development, this framework stresses on identify-
ing stakeholders and demarcating their responsibilities. They can be domain experts,
software designers, application developers, device developers and network managers.

In this framework a conceptual model, which serves as a knowledge base about
a problem is built taking into account four different areas of concern in IoT applica-
tion development: domain specific concepts, functional specific concepts, deployment

specific concepts, and platform specific concepts.

e Domain Specific Concepts: The concepts in this category are unique to an
application domain. For example, building automation is reasoned in terms of
rooms and floors. There can be sensors, actuators, and storage devices too.
These concepts are identified under: Entity of Interest (Eol) which can be any
object (e.g., room, book, plant), Resources like sensors, actuators, and storage

devices; and the Region used to specify the location of a device.

e Functionality Specific Concepts: These concepts describe computational ele-
ments of an application and interactions among them. These computational
elements are software components that encapsulate and hide a subset of sys-
tem’s functionality and data. Interactions among software components happen

through request /response, publish /subscribe and command mode.

e Deployment Specific Concepts: These concepts describe information about de-
vices. A device is an entity that provides resources the ability to interact with
each other. Each device can host zero or more resources and is located in a

region.

e Platform Specific Concepts: These are computer programs that act as a trans-

lator between hardware devices and an application. They are

categorized as Sensor driver, Actuator driver, Storage Services, and End-user appli-
cation.
The developmental framework consists of modeling languages and automation

techniques to support stakeholders to implement the conceptual model.

69

Chapter 6. Related Work JAMScript

e Support for Domain Concerns: The developmental framework supports do-
main concerns in specifying the domain vocabulary using Srijan Vocabulary
Language and compiling those vocabulary specifications. This compiled out-

put supports the later phases.

e Functional Concerns: For this phase the developmental framework supports by
specifying application architecture using Srijan Architecture Language, then
compiling the architecture specification, and finally by implementing the ap-

plication logic

e Deployment Concerns: The framework specifies the target deployment of de-
vices using the Srijan Deployment Language, and maps a set of computational

services to a set of devices.

e Platform Concerns: Here, the device drivers are implemented, the linker gen-
erates packages that can be deployed on devices. It basically combines outputs
of all the preceding phases like application logic, and device drivers. Device

specific code is generated in this phase.

This framework takes the software engineering approach to IoT development and

supports model driven development.

6.4.10 PatRICIA

PatRICIA [9] is a programming framework for IoT application development on Cloud
platforms. The key feature of this framework is the “intent” based programming
model. The programmers can specify the intent and the scope of the intent. Intents
can be either a monitoring task on devices or a controlling task of devices. The
intent scope delimits the range of an intent. It is the responsibility of the framework
to execute the intent on the devices demarcated by the scope of the intent. This
programming model, hides many of the underlying complexities of IoT programming
from the end users. For example, if PatRICIA is being used in traffic management,

then the end user, can simply say “track all the vehicles exceeding the speed limit

70

Chapter 6. Related Work JAMScript

90”. Here, PatRICIA executes the intent: track the vehicles, on the scope of the
intent: all those vehicles, which exceed the speed limit 90 kmph.

The architecture of the framework is 4 tiered. The topmost layer is named as
Development Support Layer. It contains tools to aid in application development life
cycle. It has a module called Application Manager whose responsibility is to config-
ure, deploy, and license applications along with providing a testing environment for
[oT applications. The important part of this layer is that it exposes the program-
ming model based upon “intent” to developers. The Cloud System Runtime layer,
provides support for intent based programming by executing the intent on the “scope
of the intent”. Data and Device Integration layer is responsible for data Management,
[oT devices management and virtualization, The Device Communication layer im-
plements different connectors catering to heterogeneous devices. The physical layer
has all the things, which can communicate through the Internet.

Intent based programming model: This programming model provides tools
to work with monitoring and control tasks. Control tasks help developers to operate,
provision, and manage low-level components. They provide a high-level representa-
tion of underlying devices and their functionality. They are named “Controllntent”.
Likewise monitor tasks, named as “MonitorIntent” are used to subscribe for events
from the physical environment along with obtaining and provisioning devices’ con-
text. These tasks can be represented as “intents” by application developers, which
gets automatically instantiated for the supplied intent scope.

Intent is a data structure representing a specific task, which can be performed
in a physical environment. Based on the specified intent, a suitable task is selected
(control or monitor), instantiated and executed on the Cloud platform. The Intent,
thereby gets translated as a sequence of steps to process data or to perform some
actuation on the underlying things. To subscribe to an event in the underlying
physical environment or to perform some IoT control, developers can define and
configure intents. This shields the developers from the inherent complexity of the
[oT.

Intent scope is an abstraction of a group of physical entities which have some

common properties. The demarcation of the physical layer for an intent scope is

71

Chapter 6. Related Work JAMScript

determined on the Cloud. By specifying the properties that has to be satisfied by
physical entities to be in a scope, developers define Intent Scope. PatRICIA also
provides operators like send, notify, poll, delimit to work with intents.

The support for intent based programming in PatRICIA will hide many of the

underlying heterogeneity, which is advantageous in IoT programming.

6.5 Summary

Each of the programming frameworks discussed earlier have their own advantages in

application development. We summarize their key features in Table 6.1.

JAMScript in comparison with other programming frameworks

ELIoT basically extends the Erlang language to cloud-scale IoT programming. Sup-
port for broadcast communication, REST interfaces and simulator support are some
of the important extensions in ELIoT. JAMScript proposes to use lightweight com-
munication protocols like CoAP for communication, thereby reducing the burden on
resource constrained devices. Along with uni-cast messaging, JAMScript also has
mechanisms to support broadcast messaging through various composition operators.
Calvin combines the ideas of actor model and flow based computing to merge Cloud
and IoT programming. The runtime supports multi-tenancy; migration of actors to
different runtimes based on spatial locality and constraints. In JAMScript, a thing
can be supported for multi-tenancy even when cloud connectivity is not available.
Those things which are resource capable can have a local J node. This node can
coordinate secure transactions on the thing without any cloud support and once
the cloud is available the thing can get hooked onto a J node in the cloud. Mobile
Fog extends Cisco’s Fog computing model by supporting application development
on distributed heterogeneous devices and dynamic scaling through standard APIs.
Fog Computing model is advantageous for latency sensitive applications. JAMScript
supports latency sensitive applications by allowing J nodes to reside near the edges.

Also, the run time of JAMScript ensures load balancing by spawning new J nodes

72

Chapter 6. Related Work JAMScript

or merging superfluous J nodes. In the Compose API platform, things are exposed
as service objects accessible through RESTful APIs into the clouds. JAMScript also
exposes the C nodes to the J nodes. However, the interface is specific to each pro-
gram depending on what the programmer has implemented in the activities. PYOT
is a programming framework for integrating wireless sensor nodes (WSNs) with the
cloud. Applications can use sensing and actuating capabilities of motes, shared with
the external world through URIs. It enables “in-network processing”. JAMScript
not only supports edge processing but also provides wide-ranging coordination pat-
terns. In Patricia, a notion called “intent” based programming is supported to focus
on computations over a certain elements of the CoT. It provides mechanism for big
data management and analytics in the clouds. JAMScript also provides similar ca-
pabilities but with stronger coordination primitives. The “predicates” in JAMScript
can demarcate the scope of an activity invocation similar to their “intent scope.”
Dripcast is a server-less Java based application development framework to integrate
smart devices into clouds. The framework is used for processing and storing Java
objects in a cloud environment. Remote procedure calls on Java objects are im-
plemented in a transparent manner. This framework is quite advantageous to Java
based CoT application development. As of today huge number of embedded “things”
run C/C++ (for speed and lean footprint) based applications; JAMScript exposes
these applications to the cloud resident JavaScript programs, thereby combining the
two dominant languages. The data flow framework is as important as the others
which are generally based on control flow. IoT data is huge and varied. Data flow
approach is seen as one of the possible approaches to handle the complexity of ran-
dom and huge data. In JAMScript, “Live Variables” tend to handle the control based

on data flow.

73

Chapter 6. Related Work

JAMScript

Framework | Approach Key features Program’s Coordination
target support
Mobile Fog Macro- Edge processing, dynamic | Devices Coordination
programming | scaling, cloud support, Run- support
time API support. through spe-
cial APIs.
ELIoT Macro- Extends FErlang for IoT, | Devices Coordination
programming | Support for broadcast com- support
munication, RESTful API through Er-
support, simulator, EVM lang language.
support.
Compose API | Macro- RESTful APIs to access | Cloud and de- | Coordination
programming | things, cloud support, Com- | vices support on
posing of services through Cloud.
APIs.
Distributed Node centric | Data flow based IoT ap- | Devices Coordination
Dataflow with data | plication development, edge through chore-
support for | flow support | processing. ography.
ToT
PyoT Macro- Edge processing, Python | Devices and | Coordination
programming | support, URIs for nodes, | web support
RESTful APIs. through
macro-
programming.
Dripcast Model driven | Services in terms of Java | Devices No explicit
development | Objects, remote manage- coordination
(Java) ment of objects, Cloud sup- support.
port.
Calvin Model driven | Actor model and data | Devices Coordination
development | flow based development, through chore-
cloud support, runtime ography.
multi-tenancy support for
things.
Simurgh Macro- RESTful API support, flow | Devices Orchestration
programming | design and composition sup- support for
port with reusability. flow patterns.
High-level ap- | Model driven | Complete application de- | Devices Coordination
plication de- | develop- velopment life cycle sup- support spec-
velopment for | ment (own | port, division of responsibil- ified during
ToT languages) ities between stakeholders, identification
new languages for vocabu- of functional
lary, architecture and de- concerns.
ployment specification.
Patricia Macro- Intent based programming, | Devices and | Coordination
programming | cloud support for control | Cloud support on
and monitoring of tasks. cloud, speci-
fied through
scope of the
intent.

Table 6.1 — Summary of programming frameworks

74

Chapter 7
Conclusions and Future Work

It is estimated by Cisco that only 2% of the present devices are Internet enabled. As
more devices get connected, there arises a need for integrating the services provided
by these devices into a bigger realm. Programming frameworks should support de-
velopment of new applications by integrating these services in a simple manner. We
believe this can revolutionize the field of future Internet application development.
Also, these applications will be geographically distributed over a wide area spanning
some hostile conditions, warranting fault tolerance and edge processing for latency
sensitive applications. New development frameworks should lessen the impact of
application development challenges on programmers. Also, due to huge number of
devices, the volume of data available will be astronomical, which can bring in Cloud
computing as a required back-end for data management and analytics. Programming
frameworks that can unify [oT and Cloud as a single programming model will be
advantageous from the developers’ point of view.

JAMScript tries to satisfy most of the requirements that we have identified for
CoT programming frameworks. It provides coordination between Javascript and C
programs running on heterogeneous platforms. It supports fault tolerance through
a combination of J and S nodes. The language runtime of C is quite lightweight

and also, the advent of lightweight JavaScript engines, like JerryScript! guarantees

Thttp://samsung.github.io/jerryscript/

)

Chapter 7. Conclusions and Future Work JAMScript

a lighter footprint of JAMScript for applications running on constrained devices. J
nodes running near the edges takes care of latency sensitive applications. We believe
JAMScript opens up CoT in a simplified way to the already trained programmers of
C and JavaScript for development of new cloud scale applications.

As part of the future work, the JavaScript side of JAMScript including composi-
tion operators, should be implemented. The design decisions for healing J nodes to
Cloud (once Internet connectivity is available), scaling J nodes based on the available
load, and secure exchange of procedures between C and J nodes has to be finalised.
Applications need to be built on CoAP and lightweight RPCs, and evaluated for
performance. According to the World Economic Forum — 2015, report, Industrial
Internet of Things (IIoT), will bring in new opportunities in operational efficiency,
outcome economy fuelled by software-driven services, connected ecosystems, and col-
laboration between humans and machines. Softwares developed using JamScript can
be evaluated for adaptability in I[ToT domain.

In this thesis, we reviewed the challenges and some of the essential features for
[0T/CoT application development which acts as guidelines for the design of our JAM-
Script framework. Message passing models and embedded language features that are
necessary for CoT were explored. The relevance of coordination languages and poly-
glot programming in CoT was discussed. The section on programming frameworks
highlights the programming approaches and key features in some of the frameworks
that have been developed for IoT-Cloud application development. The JAMSCript
programming framework we presented tries to answer many of the challenges faced
by CoT application developers and also simplifies the programming effort required.
Since the CoT domain itself is new, the standardization of frameworks will require

continuous effort from the CoT community.

76

Appendix A

BNF for JAMScript

(program) = (c_program_ block)

| (js_program_ block)

A.1 C side

(c_program_block) ::= (function_ defs)

(function_ defs) = (actwity _def)
| (activity def) (function_ defs)

{activity def) = (sync_ activity)

| (async_ activity)

(sync_ activity) = (c_sync_ activity)

| (js_sync_activity)

(async_ activity) = (c_async_ activity)

| (js_async_ activity)
(c_sync_actwityy = (jamd_sync_decl) {(c_compound_ block)

(js_sync_activity) = (jamd_sync_decl) (js_compound_ block)

7

Appendix A. BNF for JAMScript JAMScript

(c_async_activity) =

<j5_ async__ (lCtiUity) =

(jamd_sync_ decl)

(jamd_async_decl) ::=
|

jamd_async_ decl)(c_ compound_ block)

oncomplete_js _compound_ block){onerror_js compound_ block)
jamd_async_decl)(c_ compound_ block)

oncomplete js compound_ block)(onerror js compound_ block)
oncancel ¢ compound_ block)

jamd_async_decl)(c_ compound_ block)

oncomplete_js_compound_ block)(onerror_js compound_ block)

{

(

(

(

(

(

(

(onverify ¢ compound_ block)
(jamd_ async_ decl)(c_ compound_block)

(oncomplete_js compound_ block){onerror_js compound_ block)
(oncancel ¢ compound_ block){onverify c¢_compound_block)
(jamd_ async_ decl)(c_ compound_block)

(oncomplete_js compound_ block){onerror js compound_ block)
(

onverify c¢_ compound_ block){oncancel ¢ compound_ block)

(jamd_async_ decl)(js_compound_ block)

(oncomplete_ ¢ compound_block){onerror ¢ compound_ block)

"jamdef" "sync" (c¢_func_decl)

"jamdef" "sync" (¢_func_decl) "in" (identifier)

"jamdef" "sync" (¢_func_decl) "requires" (identifier)
"jamdef" "sync" (¢_func_decl) "in" (identifier) "requires"
(identifier)

"jamdef" (¢_func_decl)

"jamdef" (c¢_func decl) "in" (identifier)

"jamdef" (c¢_func_decl) "requires" (identifier)

"jamdef" (¢_func decl) "in" (identifier) "requires" (identifier)

(c_compound_block) ::= "{" (c_ statements) "}"

(js_ compound_ block)

= "{" (js_statements) "}"

{oncomplete_js compound_ block) ::= (oncomplete decl)(js compound_ block)

78

Appendix A. BNF for JAMScript JAMScript

(oncomplete_ ¢ compound_ block) ::= (oncomplete_decl)(c_ compound_ block)
(onerror_js_compound_block) ::= (onerror_decl)(js_compound_ block)
(onerror_c_compound_ block) ::= (onerror_decl)(c_compound_ block)
(oncancel ¢ compound_ block) ::= (oncancel decl){c_compound_block)
(onverify c_compound_block) ::= (onverify decl){c_compound_ block)
(oncomplete_decl) ::= "oncomplete" (¢ func decl)

(onerror_decl) ::= "omnerror" (c_func decl)

(oncancel decl) ;= "oncancel" (c_func_decl)

(onverify decl) = "onverify" (¢ func decl)

(identifier) = /* inherited from ¢ grammar. */

(c_ statements) = /* inherited from ¢ grammar. */

(c_ func_decl) = /* inherited from ¢ grammar */

(js_ statements) = /* inherited from ES5 grammar */

79

Bibliography

1]

2l

3]

4]

[5]

(6]

Diane J Cook and Sajal K Das. How smart are our environments? An updated
look at the state of the art. Pervasive and Mobile Computing, 3(2):53-73, 2007.

Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of Things (IoT): A vision, architectural elements, and
future directions. Future Generation Computer Systems, 29(7):1645-1660,
September 2013.

Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde. From
the Internet of Things to the Web of Things: Resource-oriented Architecture
and Best Practices. Architecting the Internet of Things, pages 97-129, 2011.

Mohammad Aazam, Imran Khan, Aymen Abdullah Alsaffar, and Eui-Nam Hubh.
Cloud of things: Integrating internet of things and cloud computing and the
issues involved. In Proceedings of the 11th International Bhurban Conference on

Applied Sciences and Technology (IBCAST), pages 414-419. IEEE, 2014.

Colin Dixon, Ratul Mahajan, Sharad Agarwal, A J Bernheim Brush, Bongshin
Lee, Stefan Saroiu, and Paramvir Bahl. An Operating System for the Home.
NSDI, pages 337-352, 2012.

Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja, Sagar Karandikar,
Gabe Fierro, Nikita Kitaev, and David E Culler. BOSS: Building Operating
System Services. NSDI, pages 443-457, 2013.

80

17l

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

Debashish Ghosh, Muthucumaru Maheswaran, and Fan Jin. JADE: A Unified
Programming Framework for Things, Web, and Cloud. In Proceedings of the
International Conference on Internet of Things, pages 1-6, April 2014.

Rajkumar Buyya, Toni Cortes, and Hai Jin. Single System Image. [JHPCA,
15(2):124-135, 2001.

Stefan Nastic, Sanjin Sehic, Marko Vogler, Hong-Linh Truong, and Schahram
Dustdar. Patricia—a novel programming model for iot applications on cloud
platforms. In Proceedings of the IEEE 6th International Conference on Service-
Oriented Computing and Applications (SOCA), pages 53-60. IEEE, 2013.

Alessio Botta, Walter de Donato, Valerio Persico, and Antonio Pescapé. On the
integration of cloud computing and internet of things. In Proceedings of the In-
ternational Conference on Future Internet of Things and Cloud (FiCloud),2014,
pages 23-30. IEEE, 2014.

George A Papadopoulos and Farhad Arbab. Coordination Models and Lan-
guages. pages 329-400. Elsevier, 1998.

David Gelernter and Nicholas Carriero. Coordination languages and their sig-

nificance. Communications of the ACM, 35(2):96, 1992.

The top programming languages-ieee spectrum. http://spectrum.ieee.
org/static/interactive-the-top-programming-languages. Accessed: 3-
September 2015.

Michael Barr. Programming embedded systems in C and C++. O’Reilly Media,
Inc., 1999.

David Gay, Philip Levis, Robert Von Behren, Matt Welsh, Eric Brewer, and
David Culler. The nesc language: A holistic approach to networked embedded
systems. In Acm Sigplan Notices, volume 38, pages 1-11. ACM, 2003.

81

[16]

[17]

18]

[19]

20]

21

22]

23]

[24]

Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin White-
house, Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, et al. Tinyos:

An operating system for sensor networks. Ambient intelligence, 35, 2004.

Cx51 user’s guide: Language extensions. http://www.keil.com/support/man/
docs/cb51/c51_extensions.htm. Accessed: 3-September 2015.

Ahmed Amine Jerraya, Sungjoo Yoo, Diederik Verkest, and Norbert Wehn.
Embedded software for SoC. Springer, 2003.

Brinch Hansen. The design of edison. Software: Practice and Ezperience,
11(4):363-396, 1981.

Andrew D Birrell and Bruce Jay Nelson. Implementing remote procedure calls.
ACM Transactions on Computer Systems (TOCS), 2(1):39-59, 1984.

Andreas Reinhardt, Parag S Mogre, and Ralf Steinmetz. Lightweight remote
procedure calls for wireless sensor and actuator networks. In Proceedings of the
International Conference on Pervasive Computing and Communications Work-
shops (PERCOM Workshops), pages 172-177. IEEE, 2011.

Brian N Bershad, Thomas E Anderson, Edward D Lazowska, and Henry M Levy.
Lightweight remote procedure call. ACM Transactions on Computer Systems
(TOCS), 8(1):37-55, 1990.

Kamin Whitehouse, Gilman Tolle, Jay Taneja, Cory Sharp, Sukun Kim, Jaein
Jeong, Jonathan Hui, Prabal Dutta, and David Culler. Marionette: using rpc
for interactive development and debugging of wireless embedded networks. In
Proceedings of the 5th international conference on Information processing in
sensor networks, pages 416-423. ACM, 2006.

Terry D May, Shaun H Dunning, George A Dowding, and Jason O Hallstrom.
An rpc design for wireless sensor networks. International Journal of Pervasive
Computing and Communications, 2(4):384-397, 2007.

82

[25]

[26]

27]

28]

29]

130]

[31]

32]

33]

Roy Thomas Fielding. Architectural styles and the design of network-based soft-

ware architectures. PhD thesis, University of California, Irvine, 2000.

Xinyang Feng, Jianjing Shen, and Ying Fan. Rest: An alternative to rpc for
web services architecture. In Proceedings of the First International Conference
on Future Information Networks, 2009. ICFIN 2009., pages 7-10. IEEE, 2009.

Cesare Pautasso. Composing restful services with jopera. In Software Compo-

sition, pages 142-159. Springer, 2009.

Justin R Erenkrantz, Michael Gorlick, Girish Suryanarayana, and Richard N
Taylor. From representations to computations: the evolution of web architec-
tures. In Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering, pages 255-264. ACM, 2007.

Matthias Kovatsch, Simon Duquennoy, and Adam Dunkels. A low-power coap
for contiki. In Proceedings of the 8th International Conference on Mobile Adhoc
and Sensor Systems (MASS), pages 855-860. IEEE, 2011.

Alessandro Ludovici, Pol Moreno, and Anna Calveras. Tinycoap: a novel con-
strained application protocol (coap) implementation for embedding restful web
services in wireless sensor networks based on tinyos. Journal of Sensor and
Actuator Networks, 2(2):288-315, 2013.

Tapio Levé, Oleksiy Mazhelis, and Henna Suomi. Comparing the cost-efficiency
of coap and http in web of things applications. Decision Support Systems, 63:23—
38, 2014.

George Wells. Coordination languages: Back to the future with linda. In Pro-
ceedings of WCAT’05, pages 87-98, 2005.

David Kitchin, Adrian Quark, William R. Cook, and Jayadev Misra. The Orc
Programming Language, volume 5522 of Lecture Notes in Computer Science.
Springer, 2009.

83

[34]

[35]

36]

37]

38]

139]

[40]

[41]

42]

[43]

|44]

William R Cook, Sourabh Patwardhan, and Jayadev Misra. Workflow patterns
in orc. In Coordination Models and Languages, pages 82-96. Springer, 2006.

Fabrizio Montesi, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro.
Jolie: a java orchestration language interpreter engine. Flectronic Notes in
Theoretical Computer Science, 181:19-33, 2007.

Fabrizio Montesi, Claudio Guidi, Ivan Lanese, and Gianluigi Zavattaro. Dy-
namic fault handling mechanisms for service-oriented applications. In Proceed-
ings of the Sizth European Conference on Web Services, pages 225-234. IEEE,
2008.

H Fjeldberg. Polyglot Programming: A business perspective. Master’s thesis,
Norwegian University of Science and Technology, Trondheim, Norway, 2008.

Juhana Harmanen. Polyglot Programming in Web Development. Master’s the-

sis, Tampere University Of Technology, Finland, 2013.

Ola Bini. Fractal programming. https://olabini.com/blog/2008/06/
fractal-programming/. Accessed: 3-September 2015.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107-113, 2008.

Michael Treaster. A survey of fault-tolerance and fault-recovery techniques in
parallel systems. arXiv preprint c¢s/0501002, 2005.

Rachid Guerraoui and André Schiper. Software-based replication for fault tol-
erance. Computer, (4):68-74, 1997.

Bryan Ford. Parsing expression grammars: a recognition-based syntactic foun-

dation. In ACM SIGPLAN Notices, volume 39, pages 111-122. ACM, 2004.

Douglas C Schmidt, Aniruddha Gokhale, and Balachandran Natarajan. Frame-
works: Why they are important and how to apply them effectively. ACM Queue
magazine, 2(5), 2004.

84

[45]

|46]

147]

48]

[49]

[50]

[51]

[52]

Sunil Jardosh and Pankesh Patel. Application development approaches for the
internet of things: A survey. In Proceedings of the IEEE Conference- TEN-
SYMP, 2015.

Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog comput-
ing and its role in the internet of things. In Proceedings of the first edition of
the MCC workshop on Mobile cloud computing, pages 13-16. ACM, 2012.

Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Ottenwélder,
and Boris Koldehofe. Mobile fog: A programming model for large—scale appli-
cations on the internet of things. Network, 12(F13):F14, 2013.

Alessandro Sivieri, Luca Mottola, and Gianpaolo Cugola. Drop the phone and
talk to the physical world: Programming the internet of things with erlang. In
Proceedings of the Third International Workshop on Software Engineering for
Sensor Network Applications, pages 8-14. IEEE Press, 2012.

Alessandro Sivieri. FELIoT: A Programming Framework for the Internet of
Things. PhD thesis, Politecnico di Milano, Italy, 2014.

Juan Luis Pérez, Alvaro Villalba, David Carrera, Iker Larizgoitia, and Vlad
Trifa. The compose api for the internet of things. In Proceedings of the com-
panion publication of the 23rd international conference on World wide web com-
panion, pages 971-976. International World Wide Web Conferences Steering
Committee, 2014.

Michael Blackstock and Rodger Lea. Towards a distributed data flow platform
for the web of things. In Proceedings of the 5th International Workshop on Web
of Things. IEEE, 2014.

Andrea Azzara, Daniele Alessandrelli, Matteo Petracca, and Paolo Pagano.
Demonstration abstract: Pyot, a macroprogramming framework for the iot.
In Proceedings of the 13th international symposium on Information processing
in sensor networks, pages 315-316. IEEE Press, 2014.

85

[53]

[54]

[55]

[56]

I. Nakagawa, M. Hiji, and H. Esaki. Dripcast — server-less java programming
framework for billions of iot devices. In Proceedings of the 38th International
Computer Software and Applications Conference Workshops (COMPSACW),
pages 186-191, July 2014.

Per Persson and Ola Angelsmark. Calvin-merging cloud and iot. In Procedia

Computer Science. Elsevier, 2015.

Farzad Khodadadi, Amir Vahid Dastjerdi, and Rajkumar Buyya. Simurgh: A
framework for effective discovery, programming, and integration of services ex-

posed in iot. In Proceedings of the International Conference on Recent Advances
in Internet of Things (RIoT), pages 1-6. IEEE, 2015.

Pankesh Patel and Damien Cassou. Enabling high-level application development
for the internet of things. CoRR, abs/1501.05080, 2015.

86

