Clustering of Test Cubes:
a Procedure for the Efficient Encoding of
Complete Test Sets Based on the
Intelligent Reseeding of LFSRs

Ronald Alleyne

McGill University, Montreal

May 10, 1994

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillinent of the requirements for the degree of Master of Engineering.

© Ronald Alleyne, 1994

Name

re

Dissertation Absiracts International 1s arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided

Epngineering, Electronics and Electrical 0|54 1|4 U‘M-I
SUBJECT TERM SUSJECT CODE
Subject Categories
THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THE ARTS Psychology 0525 PHILOSOPHY, RELIGION AND Ancient 0579
Architecture 0729 Reading 0535 THEOLOGY Medieval 0581
éﬂ History 8%5 gghguouss 8;?2 Philosophy 0422 Ig/l\odern 0582
Banco 0378 condary 0533 Religon 0318 Afican ol
Fi?e Arts G357 gocm= Sc1en‘ces 8534 Biblical Studies 0321 Asig, Australia and Oceania 0332
Toomam, e 055 Specal® 029 Clorgy o319 Eoramaon 03
Library Science 0399 Teacher Trarming 0530 Hustory of 0320 Latin American 0336
Mass Communicahons 0708 Technolo 0710 The(t’llglosophy of gigg Middle Eastern 0333
Music 0413 Tests and Measurements 0288 9 United States 0337
? eo'r.h Communication 8222 Vocational 0747 SOCIAL SCIENCES History of Science 8%33
oater aw
EDUCATION LANGUAGE, LITERATURE AND Amercan Studies 0323 Palitcal Science
Genero osis LINGUITICS Archaeclogy o324 Parmatonal lawand >
H Language Cultural 0326 nternationai Law an
Adminisiration 0514 Relahons 0616
Adult and Conhinuin 0516 enerd Qo8 Physica 0327 Public Adl 0
A ncleuml g 0517 Ancrent 0289 Business Administration Recrox f ic Administration Og}i
g 0273 Linguishies 0290 General 0310 Secrefn\l«c;n "
Bilingual and Muliculturat 0282 Modern 0291 Accounting 0272 Socml ; 0432
Busu?oss 0638 Literalure Banking 0770 °°'8 ogy 0626
Commumty College G275 General 0401 Management 0424 Cenerol d Penol 0627
Curricufum and lr?s'ruchon Q77 Classical 0294 Marketing 0338 Dr«muno oq’); e renciogy 0938
Early Chidhood 0518 Comparative 0295 Canadian Studies 0385 Eim"gmg ‘(! Stud 3
coh & L R i Eemem Cin o el Sykes G
Fnaneo | 0277 Moder o208 General 001 "Shdies Y 0628
rican cuituro
Sg;lc'l'ﬂncu and Counseling 82%8 Amenican 0591 cg;‘me:’ce Business 0505 Intéu?tnol and Labor
Hiaher 0745 Asian 0305 finance 0508 P b? °"°rc'f Social Welf 0629
Higher s Canodian (English) 0352 History 0509 Public and Social Weltre 0630
Home Feonomics 0278 Canadan {French] 938 abor 9310 Sevetoprment " 0700
nglis! 20! 05
Il.'::l!‘us:lr(:uﬂ (lnd Literature gg;“? Geg"“anlc Oal l FOlklore ry 0358 T Theory ond Me'hOds 0344
M \cn?ahcs 0280 Latin American 0312 Geography 0366 J ?}"5p°"§"§ n [Pl 0309
e 0522 Middle Eastern 0315 Gerontology 0351 Worner'e Spimand! Hlonning 0999
Phiosophy of 0998 Romance o313 History omen's Stuctes 043
Pl\yslcorl’ Y 0523 Slavic ond East European 0314 General 0578
BIOLOGICAL SCIENCES Geodesy 0370 Speech Pathology 0460 Engineerin
Agricullure Geology 0372 Toxicology 0383 General 0537
g;?erolm 8%2 Segpl;ysms 8%:83 Home Economics 0386 ﬁcrospface | 8238
onomy rology ricultural
Ammal Culture and M); neralogy 0411 PHYSICAL SCIENCES Agt(lamo;':ve 0540
Nutrition 0475 Palecbotany 0345 . Biomedical 0541
Animal Patholog 0476 Palececol 0426 Pure Sciences Ch] 0542
Food lScui‘ncc and Pa eontolgg; 0418 Cheg:r:z-ql 0485 w?m'm 0543
S G0 8 i i oo eddearc 5
Plant Culture 0479 Physicol Geography 0368 Analyhcol 0486 Hydraohe Y 0545
F;;am slntholfgy 83?9 Physical Oceonogrcphy 0415 E\Ig?h:m’cs"y 838; Industrial 0546
ant Physiology My 0547
Ronge Honagenon 0777 HEALTH AND ENVIRONMENTAL Ruclear 0738 Malerials Science 0794
r
Bislo ‘;O echnolegy 46 SCIZNCES Pharmaceutical 0491 mg‘mm 8%%
Y era 0306 Environmental Sciences 0748 sica 0494 Minin 9 0557
Anctomy o287 Health Stiences Polymer 0495 Nuclea 0552
Biostahshes 0308 Genera 0366 Rachation 0754 P ucckecr 0549
Bolany 0309 Audrology 0300 Mathcmatcs 0405 Petrolaum. 0765
Col 0379 Chemolfierapy 0902 Physes Saniory ond Mumopal 0554
Ecolog 0329 Dentistry 0567 General 0605 sonl or)écm umcipa
Feclog g'l oo Education 0350 Acoustics 0986 Ge ystem Science 0790
Geneh “09)' 0389 Hosptal Management 0769 Asironomy an b otechnology h 0428
Eimoloy 0793 Huan Development 0738 Astrophysics 0606 BEecl Pachmoiony 0795
mmuno At
Mictobiology o410 Medicne ond Surgery 0564 fimosphenc Science Q908 Textle Technology 0994
Nauroscionce 0317 onlal Health i Elecironics and Elecincty 0607 PSYCHOLOGY
Oceanography 0416 s:::l"?gn 82% Eh'a"me}?tgry Particles an 0798 Genera 062)
igh Ener
S';ﬁ‘.';’.'.ﬁﬂ’ a3 Obstetrics and Gynecology 0380 Flvid and Plaamo 0759 g‘fh“"'?’"' 0384
Vetennary Science 0778 Og_ﬁ:poh;mo! Health an 0354 hhAloltlxulur 82?8 Delc:jgpmentcl 82%(2)
10
o 072 oplilmology o8l Oper o2 g 0ins
S\uolcﬁgl 8;28 Il;\«;:rmcfé'c.!h»gy 0419 §g|.é°g$;e ggf? gﬁrs‘?""’l")’ | 0625
Pharinocy 0572 Stahshcs 0463 pochobiin oee
EARTH SCIENCES Physral Therapy 0382 Applied Sci Peychometrics 0632
Biogeochensh 0425 Public Health 0573 PR s ol
ogepchemisiry 09% Racliclogy 0574 Applied Mechanics 0346 Social 0451
Geochemistry 6 Recteation 0575 Computer Science 0984

An cfficient encoding of test sets based on the reseeding of LF'SRs.

Abstract

An approach for input data compaction in the testing of circuits using scan and partial
scan has recently been developed based on the resceding of multi-polynomial Linear
Feedback Shilt Registers (LFSRs). This thesis explores further compression of test
data through the grouping of closely related vectors into clusters and extracting both
common information, in a form compatible with the reseeding method, and individual

information for the component vectors.

Two greedy algorithms for finding these clusters are described, the first trying to
form the largest groupings while the second trying to make the most advantageous
mergers at each step. In addition, several schemes of storing and decoding the infor-
mation needed for individual vectors are presented, some of which use memories in the
form ol stacks or caches to take advantage of the distribution of this data. Aside [rom
the LI'SR, some counters and the memory, little additional hardware is required. The
solutions offer a range of trade-offs between test length, hardware complexity and test

data storage.

Results are given for experiments carried out on ISCAS-89 benchmark circuits and
on a sct of industrial circuits contrasting the performances of the algorithms and the
memory requirements of the different methods of storage. Considerable improvements

over reseeding are demonstrated, more so for the industrial circuits which are inherently

hard to test.

Résumé

Récemment, une méthode axée sur la ré-initialisation des compteurs pseudo-aléatoires
a multiple polynémes a été introduite pour la compression des données a ’entrée des
chaines de balayage, ainsi que les chaines de balayage particlles. Cette these explore une
armdlioration a la méthode de ré-initialisation en prenant avantage du regroupement de
vecteurs tests qui sont reliés par leur similitude. Un groupe de vecteurs est formé en
partageant 'information qui relie ses vecteurs et celle qui les distingue. Le processus
de regroupement se fait de fagon a ce qu'il demeure compatible a la méthode de ré-

initialisation.

Deux algorithmes voraces sont présentés pour la formation des groupes. Le premier
tente de former des groupes a forte population tandis que le second tente de distribuer
les vecteurs a travers les groupes de fagon optimale. En outre, divers arrangements
pour le storage et le décodage de I'information qui distingue les vecteurs d’un groupe
sont présentés. Certains de ces arrangements utilisent une mémoire organisée en pile
ou en antémémoire dans le but de profiter de la distribution de cette information.
Sans cousidérer la chaine a balayage, quelques compteurs et la mémoire nécessaire,
notre méthode requiett peu de circuits de soutien. Les différentes solutions que nous
proposons varient selon la longueur du test, la complexité du circuit de soutien et la

quantit¢ de mémoire requise.

Des résultats expérimentaux ont été compilés pour les circuits étalons ISCAS-89 et

une sétic de circuits industriels. Les résultats démontrent la différence de performance

1

entre les deux algorithmes ct les variations en quantité de mémoire requise pour les
diverses configurations de mémoire. Des gains importants sont obtenus par rapport,
a la méthode de ré-initialisation sans regroupement, particuliérement, pour les circuits

industriels qui sont difficiles & vérificr.

—
—
—

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Prof. Janusz Rajski,
whose guidance, support and encouragement throughout the course of my graduate
studics has been invaluable. His infectious drive and enthusiasm cannot be understated.
[would also like to thank Dr. Leendert Huisman and Dr. Sandip Kundu of IBM Corp.

for supplying additional benchmark circuits.

[am extremely grateful to all staff and students at the MACS Lab for their friend-
ship, unhesitant assistance and sense of camaraderie, specifically Charles Arsenanlt,
Mark Kassab, Iiric Masson and Michael Toner. Special thanks to Eric for his help
with the Iench version of the abstract, and to Mark for his helpful hints through-
out. 1 am extremely indebted to all my friends, especially to Mary Ludovico, Tania
Boutilier and Lisa Ramsaran who were always there, and to the members of the McGill
badminton club> who were always hungering for a game. But most importantly, I wish

to thank my family for their support, and unconditional love and understanding,

Lastly, I am most appreciative to Mr. Watterson for his unique sense of humour.

iv

Glossary of Terms

ATPG Automatic Test Pattern Generation.

BIST Built-in Self-Test.

CA Cellular Automata.

CI Cube Implicit.

CUT Curcuit Under Test.

DFT Design lor Testability.

GURT Generator of Unequiprobable Random Patterns.

ISCAS circuits A set of benchmark circuits from the International Symposium on

Circuits and Systems.
LFSM Lincar Finite State Machine.
LFSR Lincar Feedback Shift Register.
MICA Multiple Input Cellular Automata.
MISR Multiple Input Shift Register.
TCK Test Clock.

TDI Test Data In.

TDO Test, Data Out..

TMS 'Test, Mode Select.

vi

Contents

Abstract

Résumé

Acknowledgements

Glossary of Terms

1 Introduction

2 The Testing of Digital Circuits

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Motivation.

Defects and Fault Modcling

Fault Sensitization and Propagation
Design for Testability and Built-In Sclf="Test
Test: Points and Scan Techniques .

Boundaty Scan

Random Pattern Generators and Response Compactors , . . .

2.7.1 Linear Fcedback Shift Register

vii

2.7.2 Cellular Automata

2.8 Test Response Analysis o e
2.9 Test Pattern Generation Techniques
2.9.1 Exhaustive Testing
2.9.2 Deterministic Testingo o000
2.9.3 (Pseudo)Random Pattern Testing
2.9.4 Hybrid Combinations
2.9.5 Weighted Random Pattern Testing
2.9.5.1 Obtaining Weighted Inputs

2.9.5.2 Weights Based on Path Tracing

2.9.5.3 Weights Based on Switching Characteristics

2.9.54 The ESPRIT Algorithm

2.9.5.5 A Single Weight Set Based on a Complete Test Set . .

2.9.6 Other Random Pattern Based Generators
2.9.6.1 Correlated Random Pattern Testing
2.9.6.2 Cube Contained Random Pattern Testing

Intelligent Reseeding of LFSRs

3.1 Resceding of Multiple-Polynomial LFSRs

Clustering Test Cubes

4.1 The Clustering Algorithms
4.1.1 The Single Cluster Algorithm
4.1.2 The Multiple Cluster Algorithm

viii

17

18

29

32

33

34

37

38

43

4,24 Additional Variations

5 Experimental Results

6 Conclusion

Bibliography

.......................

............

67

69

List of Figures

2.1 The Testingofa Circuito o o oo
2.2 Sensitizing and Propagating Faults

2.3 Adding control points: (a) the original circuit, (b) forcing 0 on the line,

(c) forcing 1 on the line, (d) forcingboth

2.4 (a) Model of a Sequential Circuit Under Test (b) Model of a Sequential

Circuit with Scan Under Testo v v v v v v e v h e

2.5 (a) A Simple Boundary Scan Cell. (b) A Printed Circuit Board under

Test, . o o e
2.6 T'wo LFSR implementations of C,X™ 4+ Cro | X™ 1+ ..+ C1 X +1 ...

2.7 (a)A simple 1-dimensijonal CA. (b) Null boundary conditions. (c) Cyclic

boundary conditions e e e
2.8 I'ypical cycles and paths to the cycles for cyclicrule 30 CAs
2.9 A Weight Generator e e
2,10 ASampleCircuit e e e
2.11 A Hardware Pattern Generator
2.12 Clock/Reset Activity i e L

2.13 Arca Cost Function

14

15

2.14 Expccted Effect of Two Weight Sets o oo v v v oo o000

2.15 Flow Chart of the Weight Estimation Mcthod

..............

2.16 A Random Pattern Resistant Circuit

...................

2.17 (a) A Complete Test Set for the Random Pattern Resistant Cirenit

above, (b) Test Set with an Imaginary Input Value Added to cach Input,
2.18 Generation of Correlated Random Patterns

2.19 Partitioning a Test Set to Reduce the Random Pattern Test Length ..

3.1 Scheme Based on Multiple-Polynomial LI'SRs

...........

3.2 Scheme Based on Fully Programmable Polynomials

3.3 Scheme Based on the Resceding of Single Polynomial LIFSRs

......

4.1 The Processof Clustering v v v v v v i oL
4.2 Conceptual Represcntation of Clustering e e e e
4,3 TheFunction, Ny .« v v v v v v v e e s e e e e e
4.4 Mergingof Two Testcubes oo oo
4.5 The Single Clustering Algorithm
4.6 The Restrict() Procedure oo oo
4.7 The Multiple Clustering Algorithm
4.8 The find_best() Procedureo oo
4.9 BIST Scheme Based on Clustering.o o000
4.10 Conlflict Profile before and after Reorderingo oo o0 oL

xi

30

3
o

35

39

10

11

16

18

19

List of Tables

2.1 listimated Board Failure Rate given a Defect Level 5
2.2 Rule 90 . . . L e e e e e e e 16
2.3 Backtrace Signal Probabilitics Update Formulae 23
24 Bit Flipping e e e e 31
2.5 Weight Relaxationo oo oo oo 31

5.1 Statistics comparing the performance of the two algorithms and showing

the effect of the Ex-spec parameter 64

5.2 Statistics comparing the performance of the two algorithms for ranges

>conflickcount L L e e 64
5.3 Statistics on the Original Test Sets of the Industrial Circuits 65
54 Clustering Statistics on the Industrial Circuits 65
5.5 Memory Requirements for the Different Configurations 65
5.6 Statistics on the Original Test Sets of the ISCAS 89 Circuits 66
5.7 Clustering Statistics on the ISCAS 89 Circuits 66
5.8 Memory Requirements for the Different Configurations 66

Xii

Chapter 1

Introduction

As the design of digital intergrated circuits make great inroads into everyday life,
emphasis on placing larger and more complex designs in smaller arcas using technologies
with more minute feature sizes is increasing. As a consequence of this trend, the need
for testing is becoming critical while the penalties for not considering testing features
at design time are becoming exorbitant. In addition to determining the integerity of
a newly fabricated die, a well designed testing strategy may be an invaluable tool in
later stages of product life, useful at hoard and system levels, and for field test and
diagnosis.

In spite of these benefits, testing does not come without an associated cost which

accrues {rom

o The guidelincs employed by designers to help ensure the testability of a design

which in many cases limit their flexibility.

e Silicon overhead due to modifications and additional structures to aid testability.

This also contributes to a reduction in yicld and a possible increase in packaging.

e Possibility of increase in the delay of the circuit resulting in a degradation in

performance. However, through careful redesign, this can often be eliminated.

CHAPTER 1. INTRODUCTION 2

e Significant computational overhead to generate, where necessary, vectors, weights

and coverage.

e The amount of data, whether it be weights or actual test vectors, that needs to

he stored or applied to the circuit.
e I'he time to apply the test data to the circuit.
o I'he use of expensive test equipment.
Chapter 2 consists of some motivation to the need and uses of circuit testing followed
by an introduction to various basic testing concepts and an overview of the areas of

activity. Chapter 3 introduces a novel method called reseeding which is instrumental

to the further work described in the chapters following.

Chapter 2

The Testing of Digitai Circuits

A digital circuit accepts a set of values at its inputs (the input vector) and, as a resnlt,
produces a sct of values on its outputs (the oulput vector) which depends on the input.
‘ vector and on the state of the circuit i it is a sequential circuit. The stale of a sequential

circuit is determined by the values of memory elements contained within the circuit.

Figure 2.1: The Testing of a Circuit

The objective of testing is twofold: insuring that the circuit does what it is supposed
to and that it is built correctly [Infoy0]. The first ohjective is assumed to be taken

. care of in the design and synthesis stages thus emphasis is placed on verifying that the

3

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 4

fabricated circuit matches the netlist. Generally this is done by analyzing the response
of a circuil based on an input vecltor. An incorrect response implies that the circuit
is faulty while a correct one, though not decisive on the correct working of the whole
circuit, indicates that certain defects cannot be present. Hence many tests may be

needed to obtain a required confidence to the proper operation of the circuit.

When testing a circuit, it must be driven by ® known set of inputs, and the values
observed on the outputs analyzed. However, many circuits contain memory elements
or have portions which are hard to test as is and may be modified to aid in the
testing process. IMigure 2.1 is a representation of a circuit under test (CUT) showing
two major aspects ol testing, the generation of test patterns and the analysis of the

circuit’s response.

2.1 Motivation

In view of the random processes which dictate present fabrication metheds, defects
and process variations which adversely affects the behavior of circuits is an expected
result. Further to this, the constant drive to denser packing with smaller feature
sizes continuously pushes these technologies to their limits and have precipitated the
implementation of new but still immature ones resulting in yet more defects. Also
contributing to failures are ‘handling errors’ caused by the presence of dust particles
(even microscopic ones) or a shifting of the masks. Hence faulty chips are a natural

consequence of the process.

Table 2.1 [Pen92} demonstrates that even a low probability of chip failure (1%)
translates to a high probability of failure at the board level. Assuming that the board
contains 40 (or 200) chips, the probability that the board would fail could reach as
high as 33.1% (or 86.6%). Furthermore, a well accepted metric in the test community

is the rule of tens which states that each level of testing (wafer, chip, board, system) a

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 5

defective element escapes increases the cost correction by a factor of ten [Dav82, Bar87).
It is therefore essential that a very high quality of test is obtained as early in the process

as possible.

Number of Chips | Defects per Million | Probability of failure
40 10,000 33.1%
1,000 4.0%
100 0.1%
200 10,000 86.6%
1000 18.0%
100 2.0%

Table 2.1: Estimated Board Failure Rate given a Defect Level

Demand has led to an explosive growth in the level of integration provided. How-
ever, if nothing is done to ease the problein, the cost of test increases faster than lincarly
for a linear increase in circuit complexity [Tur90]. So while the total product cost has
decreased, test cost has risen to more than 55% of this cost in some cases [PDea9l]. To
combat this trend, new and innovative techniques are continuously in demand even to

keep costs at their present level.

Defects are a natural, if undiserable outcome of the fabrication process, and through
packaging into chips/boards/systems and through gencral use, morc errors are expected
to develop. In general, it is felt that the current level of testing is barely, if at all ade-
quate, yet the greater complexity demanded of chips further complicates the problem.
Testing is an essential step to guarantee the quality of chips produced and can he used

as a valuable tool at later stages.

CHAPTER 2. THIEE TESTING OF DIGITAL CIRCUITS 6

2.2 Defects and Fault Modeling

Dealing with these physical defects is generally intractable, except for the smallest
of circuits, and is highly technology dependent. However, defects of interest can be
mapped to definable logic behavior with many fewer possibilities. These maps are

called faull models.

The stuck al fault model [Poa62, Sch72] is, by far, the most prevalent in the testing
industry and is in fact the defacto standard. This model assumes three possible modes
of hehavior for each line in the circuit, fault free behavior, the line with value always
logic ‘O’ (stuck-at-0) or always logic ‘1’ (stuck-at-1). As each line has 3 possible modes,
in a circuit with n lines there are 3" — 1 possible stuck-at fault combinations. This
becomes very large cven for moderately sized circuits. In view of this, multiple faults
arc not usually explicitly considered. Though this assumption does not reflect reality,
and the presence of multiple faults may mask each other, it has been shown that tests
found for single fault sets do well for multiple faults as well [Hug86, Jac87, Wai88].
An alternative to this is to find fault-free lines [Raj87] which implicitly considers all

possible modeled faults.

In addition to stuck-at faults, other fault models have been introduced and studied,
many of which arc technology dependent. Some of these non-classical faults result in
incorrecet non-stuck-at behavior and even in memory elements being introduced into the
circuit. Stuck-on and stuck-open faults [Wad78, Cha85, Jha86) are modeled from MOS
technology and correspond to transistors being permanently conducting or permanently
broken. These often result in memory being introduced into the circuit and thus require

two vectors, an initialization input followed by a test input.

Bridging faults [She85] involves two or more lines being shorted together resulting
in unpredictable logic values when the lines have conflicting assignments. Delay faults

[Smi85, Lin87] models failures which may cause unacceptable delays along paths from

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS

-1

inputs to outputs.

A large portion of these non-classical faults are covered by test sets determined for
single stuck-at behavior. This model is assumed throughout this thesis unless otherwise

indicated.

2.3 Fault Sensitization and Propagation

Y, X ~

L 1 o)—
Y, X4 > s-a-0

YE} X B

(b)

Figure 2.2: Sensitizing and Propagating lraults

To test for a fault on a line, the converse value must be asserted and then propagated
to at least one output. Figures 2.2(a) and (b) illustrate path sensitization and propa-
gation respectively. The input cube (x,x,x,x,1) excites the stuck-al-0 (s-a-0) fanlt site
by asscrting a 1’ on this line for fault-free behavior. The input cube (0,x,x,%,x) pro-
duces non-controlling valucs along a path from the fault site to an output allowing the
presence of this fault to be observed on the output. Any non-conflicting combination

of cubes which sensitize and propagate a fault is a valid test. (0,x,x,x,1) is such a

candidate,

CHAPTER 2. THIS TESTING OF DIGITAL CIRCUITS 8
i
|
|

2.4 Design for Testability and Built-In Self-Test

DIFT techniques are guidelines and methods, implemented at design time, which im-
prove the testability of a circuit or system. They accomplish this in two basic ways, by
augmenting some structures to make them more testable, and by completely avoiding
others which are known to be hard to test. Generally structures are argumented to
incicase the ability to control or observe the value of a line while structures which

introduce timing problems, such as asynchronous circuits, are avoided.

Some of these guidelines include [Bar87, Abr90, Tur90]:

Isolating clocks form logic.

Avoiding asynchronous logic.

Making scquential circuits initializable.

Avoiding redundancy.

Using test points. Includes scan and boundary scan.

Partitioning long counters and shift registers.

Partitioning large circuits.

The built-in seif-test (BIST) approach is an extension to DFT, to have a chip test
itself. Though this is a laudable goal, it is not expected to totally replace external
testers {Info90] as it cannot measure input and output characteristics to the required
accuracy. It does, however, reduce the cost of test and lends itself well, when coupled

with boundary scan, to the hierarchical solution of the testing problem [Agr93]. The

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 9

BIST strategy is to have all circuitry for the generation of patterns and the analysis of
the circuit’s response on-chip so, upon its initiation, the circuit sell-tests and returns

a single value indicating whether it passes or fails.

2.5 Test Points and Scan Techniques

——
T R .
MUX

D icp
(c) (d)

Figure 2.3: Adding control points: (a) the original circuit, (b) forcing 0 on the line, (¢)

forcing | on the line, (d) forcing both

Difficulties arise when a fault is hard to sensitize (controllability) or hard Lo propagate
(observability). The introduction of Lest poinls can be used to case this problem. Figure
2.3 shows an cxample where control points are added to a circuit in (a) to foree a ‘0

on the line in (b), to force a ‘1’ on the line in (¢) and to force both in (d).

One feature which makes a circuit hard to test is the presence of storage clements
such as {lip-flops and registers. lor a valid test, the values in these elements must be

determined, controlled and observed. Often, hefore a useful vector can be applied to

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 10

* []
Serial scan in I | Serial scan out
(b}

Figure 2.4: (a) Model of a Sequential Circuit Under Test (b) Model of a Sequential

Circuit, with Scan Under Test

the cireuit, a setup stage must be executed to set certain values in the circuit, and
after the veetor is submitted, several cycles may pass before the effects of a fault may
propagate to a primary output. Though several atlempts have been made to tackle
this problem [Ma88, Agr89, Pom91], an effective solution for large circuits has yet
to be developed. Thus it is common practice to transform sequential circuits during
test through the use of scan design. Both full scan [Wil73, Mcc85), in which all the
memory clements are modified and chained to form a shift-register, and partial scan
[1vi80, Agr87], where not all of the flip-flops form part of the scan chain, are examples
of this technique. The effect of this is to break the feedback during testing as depicted
in figure 2.4 and transform these flip-flops into test points which are fully controllable

and observable,

Full scan essentially reduces the test problem from a sequential circuit test to the
test of a combinational circuit plus a shift register. Though this is an NP-complete
problem [Iba75], many successful automatic test pattern generators exist based on
tractable heuristies [Raj87, Lis87, Sch88] giving the possibility for near-100% stuck-at

fault coverage.

However, often-cited penalties of using scan [Dea91] include

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS I

e Additional design cffort.
o Additional circuitry (4-20% overhead).

o Additional device pins, sometimes requiring the use of the next package size which

takes up more space and costs more.

¢ Possible increase in test application time. A significant amount of the test time
is spent shifting patterns in and out of scan chains which may be thousands of

bits long.

e Multiplexors used in scan cells to select between the regular and the scan chain
inputs may introduce delays in the circuit which may force the use of a slower

\ clock.

o Degradation in reliability and yield.

In spite of these, [Dea91] shows that the cost of test favours the use of scan even

when the benefits to other levels of testing are not taken into account.

2.6 Boundary Scan

Coupled with the increasing density and complexity of circuits on-chip is a similar
desire to pack as many chips in as close a proximity as possible. Associated with such
techniques as surface mount is a reduction in the ability to access pins and interconnect,

to verify the connections of the chips to the pins and the routing connecting the pins.

To help alleviate this problem, another typc of scan has been proposed which con-
centrates on the boundarics of the chips (inputs and outputs) converting them to scan
chains during test. This is called boundary scan and is based on the IEEE/ANSI std.
1149.1-1990 [Mcc85, Glo89, Has92, Zor92]. Figure 2.5 shows a block diagram of a sim-

ple boundary scan ccll and the configuration of a board under test. Two additional

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 12

Scan out

Mode

Signal in

Shift/l.oad =>——— Signal out

Scanin Clock A Clock B

(a)

Boundary-scan cell Serial test interconnect

L N\

{
/ Serial DFta in

Serial DLta out

e -

Systeni interconect

(b)

Figure 2.5: (a) A Simple Boundary Scan Cell. (b) A Printed Circuit Board under Test.

control pins, TMS (test mode sclect) and TCK (test clock), are needed along with two
scan pins, TDI (test data in) and TDO (test data out). Boundary scan should support

the following modes:

o [orternal lest: This mode tests the interconnects of the printed circuit board. For

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 13

each test, data is shifted in providing values at output pins. The values at input

pins are captured, shifted out and analyzcd.

o Internal test: This mode tests the internal logic of the design and the connections
to the pins. Data is applied from the input registers to the internal circuit. The

response is captured and shifted out.

o Sample test: This allows the test engineer to take a snapshot of the circuit in time,
Primary input, primary output and interior register values may he caplured and

shifted out.

o Bypass: During in-circuit testing, the engineer may want to test only a few chips.
To reduce the scan length in this case, chips arc supplied with multiplexors to

optionally bypass the chip’s boundary-scan path.

. ® Built-in self-test: This mode instructs the chip to carry out self test.

2.7 Random Pattern Generators and Response Com-

pactors

A pseudo-random pattern generator is at the core of many test pattern generators and
response compactors. They arc usually hased on onc of two designs, lincar feedback

shift registers (LFSR) or cellular automale (CA).

2.7.1 Linear Feedback Shift Register

An LTFSR is a finite state machine commonly used in BIST because it is simple and
has a fairly regular structure, its shift property integrates well with scan, and it can

. generate exhaustive and/or pseudorandom patterns with many random properties. It

CHAPTER 2. 'THE TESTING OF DIGITAL CIRCUITS 14

is made up of a chain of flip-flops and XOR (XNOR) gates and implements polynomial
division on the input sequence. There are two canonical structures, both equivalent,
which are shown on figure 2.6. Associated with each LFSR is a polynomial equation
which characterizes it and can be used to predict LFSR behavior. A brief summary of
LFSR theory can be found in [Agr93] while a more complete mathematical treatment

can be found in [Gol82].

=0

&

I Cu-2l

e

{a) External LFSR

LS]

(]
i

(b) Internal LFSR

IMigure 2.6: Two LIFFSR implementations of C, X™ + Cy X™ ' 4+ ...+ C1 X + 1

The value contained in a register can be expressed as a polynomial. For instance a
binary vector V' = v,,v,,—1 ... vp can be written as v, X™ + vyt X™ ' 4+ ... +v9. An
interesting observation is that for the internal LFSR, the value contained in the register,
when the input is null, is the remainder of the polynomial division of the previous value
times X while the output is the quotient. So, if the present value in a LFSR whose

characteristic polynomial is C(z) is Go(z), then the output after k cycles would be

X*Gy(x) div C(x) while the value in the register, G(z) would be X*Go(z) mod C(z).

A discrable property possessed by some LFSRs is its ability to generate mazimal

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 15

length sequences before repeating. Maximal length sequences are of length 27 — |
and represent all possible non-zero vectors. Such LIFSRs arc said to have a primitive
characteristic polynomial. They are better as gencrators when doing pseudorandom
testing for one does not need to worry about the length of sequence given a starting
value and no pattern can be cxcluded, and they have better aliasing properties when
used for signature analysis [Wil87]. A table of primitive polynomials up to length 300

can be found in [Bar87].

For signature analysis, an LFSR can be converted to accept inputs by adding
exclusive-or gates to the inputs of some or all of the inputs to the registers and con-

necting the inputs there. LFSRs with multiple inputs are known as a maulliple input

shift registers (MISRs).

2.7.2 Cellular Automata

(©

Figure 2.7: (a)A simple 1-dimensional CA. (b) Null boundary conditions. (¢) Cyclic

boundary conditions

The cellular automata (CA) is another sequential structure which can be used for

pseudo-random pattern generation. The value of each cell is calculated based on the

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 16

previous values of the cells in its neighbourhood. The extent of the neighbourhood
can vary, depending, among other factors, upon the dimensionally of the CA under
consideration. Only simple 1-dimensional CAs are considered here where the next
value depends on a cell’s present value and on those of its left and right neighbours.
The first and last cells may have fixed values or they can be cyclically connected. For
CAs of this type, the rule of cach cell is based on how the 3 neighbourhood triplet
(a word made up of {left value, own value, right value}) determines its next state.
This triplet can have 8 possible values each resulting in the cell taking one of two
stales making 256 possible rules. For instance, table 2.2 gives the mapping for rule 90

(formed by adding the bits in table 2.2 base 2).

111 110 101 100 011 010 001 000

Table 2.2: Rule 90

[n the simplest cases, CAs can be formed with cells of all the same rule. In general,
the propertics of these CAs are not optimal, and unlike LFSRs, paths connecting
subsequent states are not all cyclic but may have paths leading to cycles as shown in
figure 2.8. This results in a reduction in the effectiveness of test generation and in
increased aliasing [Hor89]. Luckily, not all CAs possess this trait. A family of CAs
based on rules 90 and 150 have been found with null boundary conditions and with
a cycle of length 2® — 1 where n is the length of the CA. These have ‘equivalent’
or ‘hetter’ random propertics when compared to LFSRs especially with respect to

corrclations over space and time between different outputs [Hor89, Hor90, Zha92).

The size of a CA cell in the 90/150 family is larger than that of an LFSR and
its structure is not regular, however all connections are to neighbours thus avoiding

the routing and driving problems presented by the long feedback loops of LFSRs.

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 17

Figure 2.8: Typical cycles and paths to the cycles for cyclic rule 30 CAs

Multiple input CAs (MICA) can be made in much the same way as MISRs based on

the exclusive-or of the input with the output of the cell.

2.8 Test Response Analysis

The analysis of the response of the CUT is vital in determining whether a circuit works,
or further it can indicate where the fault exists. I'inding the fault, may be important
in failure analysis and for the test of multi-chip modules, but it is of little use for
the routine testing of chips. Hence several compaction methods have been developed
which give a simple pass/fail result and which are very cconomical in storage and
hardware demands but which have a finite probability of overlooking an erroncous

response (aliasing).

One branch is called signature analysis which uses linear finite state machines

(LFSM) such as single-input LFSRs and CAs, and multiple-input MISRs and MI-

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 18

CAs. Judicial choice of feedback polynomials or CAs are essential. In the case of
LFSRs and MISRs, primitive polynomials have better aliasing characteristics in that
the aliasing probability reaches the asymptotic limit of 2= more quickly [Wil87]. For
CAs and MICAs, rules which result in non-cyclic paths connecting subsequent states

give aliasing probabilities above 2° [Hor89, Hor90].

When an LIFSMs is used for compaction, the register is started in a known state
and it is fed input from the circuit’s outputs. At the end of the test, the register ends

up in a final state called the signature. If it is as expected, the circuit passes the test.

Another branch uses a counter to keep track of some characteristic of a circuit’s

output. These methods are as follows:

e Ones Counling: The number of ones in the output stream is counted, usually
using a [loga(n)] bit ripple counter where n in the number of test patterns to be
applied. The aliasing probability depends on the number of ones in the output
strcam peaking as this number approaches the half the length of the output

strecam [Bar87, Abr90).

e Transition Counting: The number of 1-to-0 and 0-to-1 transitions in the output
stream is kept track of in much the same way as in the case of ones counting
except that a transition detection circuit is needed. The aliasing probability is

dependent on the number of transitions in the output stream.

2.9 Test Pattern Generation Techniques

2.9.1 Exhaustive Testing

Exhaustive testing is the process of testing the circuit under test (CUT) using every

possible input combination. This can be modified by splitting the CUT into different

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 19

sub-sections and then applying every possible input combination to the inputs involving

the subsection.

This method has very high coverage and lests every non-redundant fault a number
of times incrcasing the chance of detecting unmodecled faults. 1t uses minimal extra
circuitry, for example a counter, thus lends itsell well to BIST. However, it has one
major drawback which prohibits its use in all but the most simple of circuits. lven for
outputs depending on a modest number of inputs, the test length can be such that it
takes too long to test the circuit. For example, with thirty two inputs, the number of
vectors required is 22 ie. 4.3 10° vectors. Assuming a system working at 20MHz, and
a self test pattern applied every 3 cycles [Wun87], the test would take over 600 see. As
present circuits may have many hundreds of inputs (along scan paths), this method is

not adequate.

2.9.2 Deterministic Testing

Deterministic testing requires a preliminary step of test generation. This is done to get
a test set of vectors which give an acceptable coverage of the modeled fault types. This
test set is then stored and used during the testing phase. For larger more complex
circuits, on-board storage may be prohibitive thus external testing may have to be

done.

This form of testing gives a very high, pre-determined coverage of known faults in a
minimal of time. However, if the vectors have to be stored off chip, it cannot he used in
BIST and may nced expensive testers, and if they are to be stored on chip, the increase
in cost due to the extra ROM needed would have to be taken into account. Also, the
test vector generation can he quite costly, and the test set may have a lower coverage

of non-modeled faults [Wai88] when compared to random pattern type testing,

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 20
2.9.3 (Pseudo)Random Pattern Testing

This test method requires the application of vectors which randomly cover the input
space. Veclors are actually chosen pseudorandomly so that the test set is repeatable.
Generally, linear feedback shift registers (LFSRs) or cellular automata (CA) are used
for this purpose. Vectors produced using these constructs are not exactly random, but
if the number of vectors used are small compared to the total number of states of the

LIFSR, they require cssentially the same number of patterns as if they were random

[McC87, Wun8s].

In general, random patlern test generation require a minimal of extra circuitry
to calculate the patterns and hence, are ideal for BIST. Using a long enough test
length, coverage close to 100% can be attained. Unfortunately, an expected test length
of L givenby L = [Ii(f—;)l—__—lp'%-u is needed for coverage with escape probability e; for a
circuit which has & faults whose detection probabilities are comparable to the minimum
detection probability p [Sav84]. For example, to detect up to 50 hard faults, each having
a detection probability p, with a confidence of 99.9%, a test length of about 11/Pp.,

would be required. Considering the complexity of circuits, Pp;, can be excessively

small requiring the application of a prohibitively long sequence of vectors.

2.9.4 Hybrid Combinations

An obvious alternative is to apply a rcasonable length of random patterns followed by
a deterministic test 1o test the remaining faults. However, in many cases, it has been
found to require stored test sets of up to 70% of the original deterministic test set.
Hence, this method alone does not quite address the major disadvantage of determin-

istic testing, the storage required for the vectors.

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 21
2.9.5 Weighted Random Pattern Testing

These schemes use prior knowledge of the circuit in order make more intelligent, choices
when choosing patterns to apply to the CUT. It sacrifices some resources in order to
keep this circuit information, as weights, and in order to generate these inputs. This
is generally done by biasing the probabilities of a ‘1’ in the inputs away from the 0.5

value in random pattern testing.

This method can obtain coverage comparable to deterministic testing with most
the advantages of random pattern testing. The gain is that this coverage is obtained
in test lengths orders of magnitude less than random, but much more hardware has to

be devoted to this.

2.9.5.1 Obtaining Weighted Inputs

In order to get weighted outputs, a simple method relys on the propertics of AN and
OR gates, where the AND gate acts as the logical disjoint of the probabilitics of ils

inputs, and the OR as the logical union. A sample circuit to obtain weights is given in

figure 2.9.

In this circuit, weights of 0.5, 0.25, 0.125 and 0.0625 are gencrated and fed into a
multiplexer. Two of the threc bits which represent the weights are used to choose which
of the inputs to the multiplexer is chosen. This input is then fed into an XOR gate and
may be inverted depending on the third input from the weights, Hence weights of 0.5,
0.25, 0.125, 0.0625, 0.75, 0.875, 0.9375 can be obtained from this simple circuit. These
numbers assume that all the inputs from the random generator are independent. Care

has to be taken to ensure this.

Two possible ways of gencrating the weights are uscd, via local generators, and via
global generators. Using local generators, a circuit as in figure 2.9 is present at cach

of the inputs to the CUT. Four bits fromn a random patiern generator must be routed

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 22

—T R
——\ P=0125 L Output
./ ;.

Figure 2.9: A Weight Generator

to cach of the inputs. Using bits from neighbouring inputs may seem attractive, but
a lot of care has to be taken to avoid correlations between inputs. Also, just one shift
of the LI'SR. may not be suflicient to generate the next set of inputs, also because of
correlations [Wun87]. Generally many shifts are performed, even to the extent of the
length of the LI'SR. Another mecthod using GURT’s (Generators of Unequiprobable

Random Patterns) is presented in [Wun87].

Global generators generate all the weighted inputs in one spot and then shifted to
the required inputs. Schemes for this are given papers such as [Brg89]. Care about

correlations between inputs also have to be taken.

2.9.5.2 Weights Based on Path Tracing

[Bar87] proposes a method whereby the signal probabilities of a given input (its weight)
is calculated using a path tracing algorithim. This algorithm requires an initial assign-

ment of probabilitics of cach gate based on theorems 1 and 2 below, and for each

CHAPTER 2. TIE TESTING OF DIGITAL CIRCUITS 23

assignment, the probabilities are propagated back to the inputs according to the for-
mulae given in table 2.3. After this is done for cach gate in the circuit, the average of

the calculated input probabilities are used as the weights.

The theorems are as follows:

Theorem 1: The optimal signal probability assignments to the inpuls
of an AND or NAND gale with n inpuls is ;25 for t =
n+ 1 and ’—‘-1_71 for t large.

Theorem 2: The oplimal signal probability assignments to the mpuls
of an OR or NOR gale wilh n inpuls is 71le Jorti=n+1

1
and - for t large.

BLOCK P

AND P}

OR | = (L=po)*

INV L—P,

NAND (1 = Pt

NOR I

FANOUT | Average of stem probabilitics

Table 2.3: Backtrace Signal Probabilitics Update Formulae

The Algorithm:

Step 1: Assign to the inputs of the gate in question the associated prob-

abilitics for large t using Theoremns | and 2.

CHAPTER 2. THIE TESTING OF DIGITAL CIRCUITS 24

Step 2: Moving backwards from the lines that have been assigned, calcu-
late the input probabilities by recursively applying the formulae

in table 2.3.

Step 3: Record the signal probability assignments computed for the pri-

mary inputs.

Step 4: Repeat steps 1 - 3 for all gates.

Step 5: At each primary input, assign weights equal to the average of

all the recorded weights.

3

-

2

3

—
T

AR

Gt

63 633, 4 &6

Figure 2.10: A Sample Circuit

As an example. the input weights of the circuit in figure 2.10 will be calculated.

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS

|]
o §

Applying Step 1 to gate G1, the input probabilities to gate G1 become 0.5. This
value is propagated back to gates G2 and G3. Appling Step 2 to gate G2, its input
probabilities become 0.293. The same is done to Gate G3 giving its input probabilitics
as 0.206. The input to gate G4 is taken as the average of 0.293 and 0.206 as there is
a fanout. This value is then propagated back to the inputs of gate G4 giving an input,

probability of 0.63.

This is repeated for each of the other gates giving the values indicated in figure
2.10. Now Step 5 is applied, and the averages at each input is calculated and this is

used as the final weights.

This method is quite simple, but may not give the optimal probabilitics as the
relative ‘importance’ of cach branch, when the averages are found, arc not taken into

account.

2.9.5.3 Weights Based on Switching Characteristics

In contrast to Method 1 which gives weights referring to the probabilitics of a ‘17 af
the input, this method gives weights biased on the switching that occurs in the CUT

due to a transition to a given input [Sch75].

In the generator in figure 2.11, eight outputs from a LFSR are fed into a | of 256
line decoder. This causes one of the outputs of the decoder to go high in a random
manner. For Bit Changer 1, there is a 12 chance that one of the outputs affecting it
would cause a transition to Chip Input 1. Note that at most one input to the CUT

changes at a time.

The weights (probabilities of a transition in an input to the CUT) arc obtained

using the following algorithm:

Step 1: Assign weights according to the relative importance on the in-

puts, ie. ad hoc.

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 26

Chip
Input 1

Chip
Input 2

48-Bit-Position
Shift Register

Chip
Input 3

. 1 of 256 Lines
Decoder

Figure 2.11: A Hardware Pattern Generator

Step 2: Simulate the circuit as driven by the hardware pattern generator

remembering that only one input would be changing at a time.

Step 3: For each input, count the number of changes in previously un-

changed nodes.

Step 4: Repcat steps 1, 2, and 3 until no more significant activity is

observed.

Step 5: Weights are assigned based on the accumulated count in Step 3.

This system has one major failing. Such lines as the reset line has a high initial

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 27

activity as it causes a lot of blocks to go into an initial state. This would cause a high
initial count to be assigned this line, and hence a rather large weight. In a circuit such
as a counter, this would be counter-productive as each toggle on the resct line would
cause the counter to be reset thus resulting in an extremely low chance that the counter
ever reaches to a high number, and that the overflow be used. In order to overcome

this, a solution called Dynamic Adaptation [Sch73] is used.

Problem: High initial activity on some lines such as the Reset line

Final Weight with Dynamic Adaptation
..... Final weight without Dynamic Adaptation

A cr
Number of
Gates that LRI

Clock

)

]

|

Changed SEEEEEEED Y CEEEEEEEEE e LEREEE Rc,}_c ! %

State T
:R! :Cl

! |

e e | FU

~ Py

Number of Patterns (Log Scale)

Solution: Dynamic Adaptation

Figure 2.12: Clock/Reset Activity

Dynamic Adaptation is illustrated in figure 2.12 for the counter described above,
In the original algorithm, all counts are taken from the first input vector. This gives
the counts as R, for the reset linc and C; for the clock. Note that the reset line initially

shows the steeper increment in activity, and that the final count is significant when

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 28

compared to the final count of the clock.

The approach in Dynamic Adaptation is to start the count at a later stage, atier
the ’transient’ activity of the reset line has fallen below a predefined rate of increase,
as shown by line A in the figure. At this time, all counts are restarted. After this time,
the increase in the reset count would be small, given by R; while the count for the
clock would still be quite large, C;. This would therefore reduce the switching activity
of the reset line. This handling does not necessarily presuppose prior identification of

the functional characteristics of the inputs.

This technique was proposed in the mid-70’s. It, however, is not very applicable to
modern circuits due to the large number of circuit inputs resulting in the generation

scheme being infeasible.

Some modern weight generation schemes do however keep some of the characteris-
tics of this one, such as the measuring of the switching in the CUT due to a transition
in an input. From this, weights can be generated. One simple way may be that an
input which causcs a large amount of switching in the circuit be given a weight close to
0.5, while those with low switching values be given weights close to 0 or 1 depending

on whether it is preferable to have the input a ‘1’ or a ‘0’.

2.9.5.4 The ESPRIT Algorithm

This section will bricfly cover the ESPRIT (Enhanced Statistical PRoduction of Test
vectors) algorithm proposed by [Lis87]. In this approach, a function representing the
CPU time required to get a desired fault coverage and the simulated test length is
derived. This function U, shown in figure 2.13, is given in terms of the probabilities
of detecting a fault Pd;, and the number of undetected modeled faults M. The prob-
ability testability algorithm used was COP (Controllability/Observability Procedure)

to obtain a sct of input probabilities (weights).

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 29

100
Estimated
Fault

Coverage
(%)

n (Trials)

1M
U= M2 pd
i€F J

Figure 2.13: Area Cost Function

The main aim of this procedure is to use a steepest descent algorithm to minimize
the cost function, U, in attaining a predefined threshold fault coverage. Supplemen-
tal weight distributions can be obtained by repeating this process on the remaining

undetected faults.

2.9.5.5 A Single Weight Set Based on a Complete Test Set

In many of the above methods, several weights nced to be used to get a significant
reduction in test length. To accommodate these weights, a sizable amount of hardware
is needed. This procedure [Mur90] attempts to calculate a single set of weights, which
will be employed after a reasonable length of equiprobable random patterns have been

used, to detect the random pattern resistant faults.

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 30

10k . ./._._.}‘.{.fzzsbied_lieqdpm

Estimated L ’ Random

Fault !/
Coverage

(%) i

1 Treshold
n (Trials) -
- ~

Figure 2.14: Expected Effect of Two Weight Sets

This effect is shown in figure 2.14 where the equiprobable random patterns have
been used until the threshold indicated on the graph. If it were continued, note the
long tail before it reaches close to 100%. At the threshold, when the weighted patterns

arc used, the curve rises quickly to 100%.

The innovative parts of this method involves the calculation of the weights In
all the previous methods, the circuit itself was used to aid in the determination of
weights. Tt is conjectured here that a pre-determined test set contains sufficient circuit
information to calculate an cfficient set of weights. The test set can be calculated using
any available method, and hence obtaining weights can be a lot less CPU intensive than

existing methods.

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 31

Before presenting the algorithm employed to calculate the weights, a few necessary

concepts should be defined, bit flipping and weight relaration.

Bit flipping is used to get rid of unnccessary assignments in the vectors of the test
set. The number of faults required to be covered by each vector is reduced as much as
possible constrained to covering all the required faults. After this reduction, a number
of the bits in the vectors do not affect the coverage of that vector thus can be deemed
unneeded and ignored. Unnecessary bits are determined heuristically by flipping cach

bit one at a time. If all the required faults are still covered, that bit is inessential.

Vector Before Bit Flipping After Bit Flipping
" 1 1 1 0 0 1 X I 1 x x x
Vg 0 1 1 1 0 1 0 I x | x x
V3 1 1 0 0 0 O 1 1 x x x 0
Uy 0 1 0 0 0 1 0 1 0 x x x
Weight 1 0.5 1 05 025 0 0.75(033 1 05 t 05 0

Table 2.4: Bit Flipping

The effect of removing these unnceded assignments is demonstrated in table 2.4.
Weights are calculated by finding the fraction of ‘17 assignments 1o a given position.
Before bit flipping is performed, the unnccessary bit positions act as ‘noise’ corrupting
the weight estimates. This can be seen in table 2.4, in the sixth position for example,
before bit flipping, the weight was found to be .75. ‘Through this procedure, it is found

that a 0 weight is better as all the ‘1’ assignments are unnecessary.

After a snitable weight is found, some of the remaining faults may still be hard to
test with these weights. In such cases, a new set of weights are calculated using the
remaining vectors. These weights are compared as in table 2.5, and if bit positions differ

by a large amount, the weight is relaxed to, say, 0.5. This is a potentially dangerous

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 32

move, but if it is not done too frequently so that the number of positions is small, the

effect, can be minimized. This is referred to as weight relazation.

Original Weights |1 0 0.2 0.7 0.8 0.2 0.1
New Weights 1 0 04 08 01 09 03
Modified Weights [1 0 0.2 0.7 05 0.5 0.1

Tahle 2.5: Weight Relaxation

An algorithm for calculating the weights is given in figure 2.15.

2.9.6 Other Random Pattern Based Generators

Due to the large hardware overhead and the cost of generation of multiple weights,
classical weighted random pattern generation has been slow to catch on. This is already
evident in the system given in section 2.9.5.5 where attempts were made to limit the
number of weights to one. However, two new and interesting methods proposed in
[Pat91a, Pat91b] which attain similar coverage as weighted random patterns but with
less hardware will be described in this section. Both methods will be described with
respect to the random pattern resistant circuit given in figure 2.16. As with method
4 above, all generation is done on a test set, and not on the actual CUT for the same

rcasons given.

2.9.6.1 Correlated Random Pattern Testing

A complete test set for the circuit in figure 2.16 is given in figure 2.17(a). An imaginary
input value is added (figure 2.17(b) in bold) and the correlation of each bit value in the
vector and the corresponding value in the imaginary input is calculated. Here, each

bit is the same value as the extra input g— of the time. Thus it seems reasonable to

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 33

Partition to 1dentily
Difficult Vectors/Faults

]

| Determine Required Bits
(Bit-Flipping)

Relax Selecte
Bit Position

Take Better Weight Set]

| Quantize the Weight Set |
1

Relax Bit Positions if Required

Figure 2.15: Flow Chart of the Weight, Estimation Method

generate all inputs using this one common random source. We thus get the generating
circuit in figure 2.18. Here, Pl...P# arc uscd to invert the value of P via the XOR

gate. Hence these probabilities should be | — 2.

This method is not limited to one independent input, nor just to imaginary inputs

to which the others are correlated to. A real input can be used for this purpose.

Experimentally, the average random pattern test length needed for the circuit is

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 34

Figure 2.16: A Random Pattern Resistant Circuit

860. Using Corrclations, this average length is reduced to only 120, less than the

average number of 150 nceded with two weights.

00000000
10000000
01000000
00100000
00010000
00001000

Yy Y Ny TN R N—R—

00000000
10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001
11111111
0111
11
01
10
1
1
1
1

111
111
111
111
011
101
1
1

. h pd ok

1
1
1110
1111

=

(b)

(b) Test Set with an Imaginary Input Value Added to each Input

Figure 2.17: (a) A Complete Test Set for the Random Pattern Resistant Circuit above,

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 35

Correlated Random Pattern Testing

L]
P= o0t

ﬁ\? - L

P=0.5 l' 0.11 (I’ =011

Figure 2.18: Generation of Corrclated Random Patterns

2.9.6.2 Cube Contained Random Pattern Testing

Correlated random pattern testing described in the above section does not really ad-
dress the problem of the amount of extra hardware required as a correlation probability
for cach input must be generated, and thus it requires the same amount, of overhead

as a weighted random pattern test with a comparable number of weights.

Cube contained testing [Pat91b] tends to reduce the hardware overhead as cach bit
assignment is either a fixed value or is chosen with a 0.5 probability, totally climinating

the circuitry for weighting the probabilities.

The aim of this method is to partition the test set into scts where several bit
positions are identical for all vectors. In generating the test vectors, these positions

become fixed while those with differences are randomly chosen.

CHAPTER 2. THE TESTING OF DIGITAL CIRCUITS 36

Cube-Contained Random Pattern Testing
; xxxx0000
DXXXXXXX 00000000
XXXXXXXX
00000000 10000000
00000000 o1t 01000000
10000000 01000000 00100000
0100000 00100000 00010000
00100260 00010000
00010000 00001000 0000xxxX
00001000 00000100 00001000
00000100 00000010 00000100
00000010 00000001 00000010
00000001 00000001
T
10111111 IXXXXXXX T)}Kﬁ:l:l
1101111 11111111 ““M
11101111 10000000 (1)01
i1110111 10111111 1111
141111011 11011111 11011111
niey e e
1110
T o
T . 1
RPTL = 860 111110 11111011
@ 11111101
RPTL =670 11111110
® RPTL = 120
©

Figure 2.19: Partitioning a Test Set to Reduce the Random Pattern Test Length

"This is shown again for the circuit in figure 2.16. Once again the complete test set
is given, in figure 2.19(a). Tt is then split into two partitions in figure 2.19(b), based
on only the leading bit being identical. This reduces the test length from 860 to 670.

On partitioning the set into four with four inputs specified, this average length falls to

120, the same as in correlated testing,.

Chapter 3

Intelligent Reseeding of LFSRs

The test generation methods presented in section 2.9 are all stretched or fall short in one
or more of the many, sometimes conflicting parameters which gauge the eflfectiveness
and cost of test. Coverage of stuck-at faults is guaranteed through exhaustive testing
as all possible relevant input combinations for cach output are used [Bar87], but this
method quickly becomes infeasible for circuits with outputs dependent on many inputs.
Deterministic testing involves the application of a stored set of vectors resulting in a
high fault coverage in a short test application time. lHowever, storage and bandwidth
considerations can become costly. The advantages of random based methods lie in its
ability to attain fairly high coverage of a fault set with minimal stored information.
However, with the raised requirements demanded by new circuits, 95%, or even 99%
fault coverage obtained by these methods in reasonable test, times is no longer adequate.

In fact, close to 100% coverage of non-redundant faults is now required.

Weighted random pattern testing has been quite successful in this respect, but with
at least four stored bits per bit in the scan chain, this can lead to excessive memory
requirements for complete tests. In addition to this, the hardware overhead needed to

produce the probabilities for the weights can be substantial.

None of these methods take advantage of the fact that a large number of input

37

CHAPTIER 3. INTELLIGENT RESEEDING OF LFSRS 38

bits can be inverted without a loss of coverage and hence their values are unnecessary
and need not be explicitly stored. In 1991, [Kon91] introduced an innovative scheme
for deterministic testing with storage requirements comparable to that of weighted
random pattern testing for a 100% coverage but using only a fraction of the on-chip
pattern gencration hardware overhead. This method, termed intelligent LFSR re-
seeding, involves a mixed mode paradigm for testing with the initial application of a
nimber of pseudo random patterns, through an LSFR, to achieve an initial coverage
of 90% - 95% of the faults (generally the easy to detect ones). Following this, a set of
stored seeds would be loaded into the LFSR, each resulting in a pre-determined pattern
heing applied to the circuit. It was found that to encode a test cube with s specified
bits, at least s + 19 bits must be stored (as the seed) to keep the probability of not

finding an encoding helow 1076,

[11c192] followed by [Ven93] [urther refine the process resulting in just s stored bits
to encode test cubes with at most s specified bits while keeping the probability of
not, finding an encoding below 107%, They accomplish this through using multiple-

polynomial LI'SRs and through implicit assignment of test cubes to polynomials.

3.1 Reseeding of Multiple-Polynomial LFSRs

Figure 3.1 illustrates the architecture proposed in [Ven93] for decoding the stored
information into test vectors which will be applied to the circuit under test (CUT).
An m-bit test cube is encoded into an s-bit word which is used as a seed to an LFSR.
The position of the sced in the memory denotes which feedback polynomial is chosen.
Generation of a test vector involves the submission of the next available seed from the
memory and the reconfiguration of the feedback links of the LFSR according to the
modulo p counter and the decoding logic. Clocking the LFSR for m cycles produces

the required vector.

CHAPTER 3. INTELLIGENT RESEEDING OI' LFSRS 39

&1 - &| | & cuT
Decoding 1~ A
Logic :]
NN Ouro Dot
t Data
Lsl Lrsr | ain [Pt
. Scan Chain Evaluation
l l Seed 1 Poly 1
Modulo Seed 2 Poly 2
p :
Counter Secd n Poly(nmodp)
Seed n+1
Controlle . l
Sced ¢
- —>>

Figure 3.1: Scheme Based on Multiple-Polynomial LFSRs

A test cube C = (co,...,c;m—1) € {0, L,z}™ is consistent with an LI'SR output
sequence (a,);>o provided c, = «, for all specified bit positions {i = 1,...,m|c, # '}
Let S(C') be the number of specified bits in C'. For each polynomial, given a test cube,
C, aseed can be found through solving a set of S(C') lincar equations provided a solution
can be found. These cquations are found by recursively equating the appropriate
feedback equation to ¢; when ¢; # /. Though this set of cquations appear to he
always solvable because there are less than or the same number of equations ag there
are variables, this is not always the case through the dependencies imposed by the

feedback equation of the LFSR. The following example illustrates such a case:
Example 1: A test cube €' := (2,2,1,0,2,0,2) € 0,1,z7 is to be generated by a

3-stage LFSR. The output sequence depends on the sced a(0) = (ag,a;,a3) and the

feedback polynomial, H(X) = X2+ X+1. The following set of equations are obtained:

CHAPTER 3. INTELLIGENT RESEEDING OF LFSRS 40

i | = as
i 0=ao + o
i 0=ao +a + a;

In gencral, lincar independence of the equations is a sufficient but not a necessary
condition of a solution. For example, the above system of linear equations has a solution

for @z =1, az =1and a5 =0.

[I1el92] evaluates the probabilities of an encoding not being found of the two ex-
tremes; [ully programmable polynomials with fixed seeds, and a single polynomial with

arbitrary seeds.

‘1, 609 ‘O’ 60’

Figure 3.2: Scheme Based on Fully Programmable Polynomials

Figure 3.2 shows a scheme based on fully programmable polynomials with a fixed
sced. In this example, a constant sced, [1,0, 0, ..., 0], is used to generate the vector. The
feedback of the LSFR. is fully reconfligurable and is designated through the polynomials.

. The probability of not finding an encoding, Propoi(k.s), using a polynomial of degree

CHAPTER 3. INTELLIGENT RESEEDING OF LFSRS 41

k for a sequence of length m with s specified bits is given by

gm—s

gm _ 2k -
Pnoplo(k,s) = (T) (3.1)

~ (e'l)gk_' for sufficiently large m (3.2)
Thus, the probability of not finding an encoding is, for practical applications, indepen-
dent of the length of the sequence, m, and depends only on k —s. For Pyopar < 10~°,
k> s+ 4. This is the best possible encoding examined, but it is computationally costly

as it requires the solution of a system of non-lincar equations.

Figure 3.3: Scheme Based on the Resceding of Single Polynomial LFSRs

An implementation predicated on the other extreme, the reseeding of a single poly-
nomial LFSR, is given in figure 3.3. A fully programmahle vector is used to sced an
LFSR with a fixed feedback, denoted by H = X* + by X571 4+ oo + i X + ho. Here

too, an encoding is not assured. The probability of no sced being found, Pioset(k,3)
is approximated by

Pnoseed(ka -"') ~ 2’—k+l fors <k (3.3)

For Proseed(k,s) < 1078, this equation gives k = s + 21. In fact, calculating the exact
values for Proseed(k,s) gives k = s+ 19. Though the result is not as compact as in

CHAPTER 3. INTELLIGENT RESEEDING OF LFSRS 42

the case of full polynomial flexibility, the seed is found as a solution of a set of linear

equations thus is computationally tractable.

The authors then examined trade-offs to attempt to find a scheme which possesses
the benefits of both, compaction comparable to the former method with computation
nceds comparable to the latter. It was found that with 16 polynomials, k& = s + 4,
the probability that no encoding can be found is less than 10% achieving the encoding
efficiency of full programmability while maintaining the computational simplicity of

single reseeding.

[Ven93] proposes an implementation for test sets where the encoding of the feedback
polynomial is done implicitly by ordering the test cubes. Figure 3.1 shows the general
structure of such a scheme. With this implementation, maximum encoding efficiency
in attained only if the cubes are evenly distributed among the polynomials. In cases
where this is not possible, dummy cubes must be introduced to balance it resulting in

lost memory and increased test application time.

Chapter 4

Clustering Test Cubes

The approach adopted here to test a circuit is based on a mixed mode form of testing
where a number of random patterns would be gencrated followed by a set of determin-
istic vectors generated through clustering. The first stage effectively removes most of

the easy faults leaving the harder to test faults for the second.

Cluslering or grouping of related test cubes is the process whercby cubes that
have much in common are collected into sets each of which can be represented by a
single cube plus a small amount of individual information which is used to recrcate
the component vectors. Though similar to the method in [Ven93], this technique is
fundamentally different in that it allows a small number of inconsistencies between the
cubes in a cluster. It is based on an observation that test cubes for hard to detect
faults do not occur randomly but tend to form in clusters. This tendency may be as a

result of the following:
e In a test cube, all the specified bits are necessary assignments, thus the require-

ment of a similar condition for another fault would be satisfied by these same

specified bits.

43

CHAPTER 4. CLUSTERING TEST CUBES 44

e If a hard to detect fault has a very difficult setup or propagation condition, any
fault which requires a similar condition either as part of its setup or propagation
conditions would have many common bits. A common setup condition may occur
in casce of a fanout at the line while a comnon propagation condition due to a

fan-in to that line.

(111010000« | 4
[1 txtoo00x | B
c111cTxxxxxx I——-’-‘ Seed]
5 5
(01110100000 | ©
[roxoxi1rix] &
[1ox0x011 x| F
10x0xcel 1xxx |——= Seed
[oxoxioxion | & 6 C
7 7
[1oxox101:00 | 1
l
[ooxtxoxxtt1x] 4
00x1x0xxcc 1—|———-| Seedl
k 9 9
10 10
00x1x0xx1011 | L
L el 1) R
Original Clustering

Figure 4.1: The Process of Clustering

Figure 4.1 shows the aims of clustering while figure 4.2 gives a conceptual represen-
tation of the process consistent with these test cubes. The original test cubes (shaded
circles) fall in three main locations with {A, B, C, D} in the first, {E, F, G, H} in
the sccond and {I, J, K, L} in the last. One thrust of this work is to identify these

CHAPTER 4. CLUSTERING TEST CUBLES 45

J

x

L

Figure 4.2: Conceptual Representation of Clustering

groups and all the constituent cubes, and to find suitable compromise cubes (solid cir-
cles) which embodies the common information within the clusters. In addition to this,
adjustments (solid lines) must also be established which maps these constituent cubes
into each of the component cubes. A sccond arca of activity is in the coding of adjust-
ments that are needed, and in the determination of the type of structure and hardware

necessary to exploit the multiplicity, correlation and locality of the information.

For example, consider a case where the scan chain is 1000 bits long, and 3 hard to
detect faults, represented by test cubes with at most 80 specified bits, must be tested.
Furthermore, assume that these cubes are very similar but have 1 conflict when any two
are paired. Conventional methods of deterministic testing would require 3000 bits of
storage while the resceding method needs 240 bits. Clustering, however, only requires

about 100 bits, 80 for 1 sced, 10 for cach of 2 conflicts and a few bits for control.

Before continuing, the mathematics employed in this process will be summarized.
The input is made up of test cubes which are ordered sets of the elements {0, 1, x}
representing the two specified values and the don’t care. The output is another ordered

set of the elements {0, 1, x, ¢} where the first three are the same ag before while the ‘¢’

CHAPTER 4. CLUSTERING TEST CUBES 46

indicates a conflict or a position for which at least one of the component cubes specifies
the bit, set while at least one other specifies the converse. When cubes are combined,
Ne, into clusters, the result is a cube which represents the intersection of the spaces
once there are no conflicts. In cases where there are conflicts, a ‘c’ is introduced in

that position. This is illustrated in figure 4.3.

nclec
010 c O c
l1ilc 11 ¢
x 101 x ¢
clcccoc

Figure 4.3: The Function, N,

The effectiveness of clustering depends on the amount of memory required to create
a complete test compared to that of reseeding. In reseeding, each test cube is com-
pressed into a sced of length approximately that of the number of specified bits in the
cube, and on occasion, multiple cubes can be intersected resulting in fewer seeds and a
shorter test length. For clustering, cubes with many similarities are grouped together
with the common information represented by a single test cube and the differences by
conflict information. A sced is constructed, as in reseeding, for this cube. To contrast
the two cases, the hardware structure described in section 4.2.1 (Direct Implementa-
tion) is assumed. Thus, for compaction, the conflicts in the resultant test cubes (figure

4.1) can be viewed as 'x’s.

In this example, there ate 3 intersections which can be done for both methods
reducing the number of sceds and the test length from 12 to 9. To compare the
necessary memory, let m be the length of the scan chain, s the length of a seed, C'lst

the total number of clusters with Clst; being the number of clusters with ¢ conflicts,

CHAPTER 4. CLUSTERING TEST CUBES A7

and let T'L be the test length. For clustering, let the maximum number of conflicts

allowed (the conflict count) be Con fly;. For resceding, the memory required is given

by:

Memory = 9xsbils 4.1

Rewriting equation (4.6) obtained using the direct implementation scheme as equa-

tion (4.2), and then substituting for valucs:

mem = [Clstxs]+ [(TL— Clsly— 2% Clsty) x (Confla + 1)] + [Con flx [loga(m)]] (4.2)
3xs+6x[log(m)] + 9% (Conflp + 1) bils (4.39)

2xs > 2x[loga(m)]+3xConfly +3 (4

Equating (4.1) and (4.3) to get (4.4), clustering is preferred when the size of the

seed is large compared to the memory needed to store the conflicts.

Though this method does not concentrate on reducing the number of vectors which
must be applied to a circuit, often there is an overlap (like {A, B} and {G, H} in
figure 4.2) and a cube in this common area is sclected effectively reducing the number
of vectors in the test. In the above example, both methods resulted in a test of the

same length. Typically though, resceding results in shorter test lengths.

4.1 The Clustering Algorithms

These algorithms are based on greedy methods where, based on a weight function, the

most favorable decisions are made at cach step. Before going into a detailed description

CHAPTER 4. CLUSTERING TEST CUBES 48

of these processes, certain key clements should be presented. Those which give a
measure on the effect of a given merger are illustrated in figure 4.4. One is the conflict
count which indicates the number of conflicts that occur between the constituent cubes
making up the cluster. Another is the specified bit count which indicates the number
of specified bits (0,1) in the cluster. Note that this excludes the conflicts. A parameter
which aids in the choice of the next clusters to combine is the extra specified bit count
which denotes the increase in the specified bit count after the combination. It gives an

indication of the similarity between the cubes.

Contflict Specificd Extra Specified

Count Bit Count Bit Count
1001xx 1 xxc [5 -
100cx 100xx 1 6
100cx 1cOxc 3 5 -1

Figure 4.4: Merging of Two Test cubes

Another clement is the concept of partitions which has an effect on the choice of the
next combination by limiting the scope of possible combinations. By constraining the
effect of non-related cubes on the weighing functions, results are often better when the
partitions are well chosen. Also, it speeds up the process for the searching is confined
to smaller groups where the best choice is most likely to be. The input set of test cubes
is initially partitioned based on conflict and extra specified bit counts. Two cubes are
in different partitions provided that there are no pairs of cubes, one from each, whose
result when combined has conflict and extra specified bit counts both not greater than
those specified for the partition. Partitioning the test set does not preclude clustering
between cubes in different partitions. This is due to the extra specified bit count
limit which may prevent two cubes from being in the same partition, but it may be

advantagcous to cluster them. Hence, extra processing is required at the end to search

CHAPTER 4. CLUSTERING TEST CUBLS 49

for these mergings.

4.1.1 The Single Cluster Algorithm

This method is based on the greedy principle that the largest cluster in the set would
likely be a good choice in the result. Thus only a single cluster is being formed at any
given time, and once finished it is not affected umil the end. The pseudocode for the
algorithm is given in Fig. 4.5. The first step in this process is to divide the test set

into partitions.

SINGLE_CLUSTER()
/* Given P = {P}; F; = {C,;} of testcubes. */

begin
T:=0 /* Test cubes to be returned */
for each (P, € P) begin
R:=0 /* Used vectors */
while (R # P,) begin
Q= P\R /* Remaining vectors to be considered */
vi={&, .1} /* Test cube representing this cluster */
while (Q # 0) begin
{Q,v,R} := restrict(Q,v,R) /* Get next vector to add to the cluster */
end while
T:=TU/{v} /* Save test cube */
end while
end for
T := cleanup(T) /* Check for clustering hetween partitions */
return T
end

Figure 4.5: The Single Clustering Algorithm

The algorithm then sets the working set (@) to be the current partition. The
restrict() function (figure 4.6) then finds, in @, a cube whose result when merged

(N.) with v can he merged with most of the other cubes without exceeding the conflict

CHAPTER 4. CLUSTERING TEST CUBES 50

Restrict(Q, v, R)
begin
for each (e, € Q) begin /* Take each vector in Q one at a time */
o=, N, b /¥ Find its result, with v ¥/
for cach (C) € Q) begin
Q, =1 /* And use it to find how many other vectors */
i“f(.{_u(()i('r(j;n g’(") < conflict comt} & /* can be wmerged with it without exceeding*/
nospee bits(u) < maxspee bit) /* the constraints. */
Q.= Q.U{c}
end for
end for
find ¢ : |1,] is maximal /* Find the largest gronp */
return Q,, v, RU{e,}) [* and return it, */
end

Figure 4.6: The Restrict() Procedure

and the specified bit counts. This result becomes v while @ is restricted to the other
cubes which can be successfully merged with it. The newly chosen cube is then added
to I, the set of merged cubes. This iterates until @ is empty, and the new cluster
formed in v added to the sct of test cubes. @ is then set to the current partition less
the used cubes (Q := P\R in the algorithm where this means “let @) be the set of
vectors in P but nol in ?”), v is cleared, and the process repeats until all the cubes

have been processed. This is repeated for all partitions.

When there are no more partitions left, a clean-up() function is initiated whereby
any clusters which can be merged without introducing conflicts are grouped. This is

done by applying the process described above to the set of test cubes in one partition.

4.1.2 The Multiple Cluster Algorithm

[u this process, the pair of cubes deemed most favourable to merge in the set in question

is identified and merged. Thus, at any time, multiple clusters are in the process of being

CHAPTER 4. CLUSTERING TEST CUBES al

MULTIPLE_CLUSTER()
¥ Given P={R}; P,={C.,} of testcubes, */
begin
T:=0 J* Test cubes to be returned */
for each (P, € P’) begin
while[({C, 1, C.} := find best(B)) # NULL] begin /* Get best pair of cubes to cluster */
C:= C,,l N, C,'-g

P,:= P\{C,1,Cia} UC /* Remove used cubes and add new cluster */
end while
T:=TUuP, [* Save test cubes */

end for
while[({Cp1, Cra} = find_best(T)) # NULL) begin /¥ Check for clustering between partitions */
C = C’m Ne C'm
T:= T\{CT,], Cm} uc
\ end while
return T
end

Figure 4.7: The Multiple Clustering Algorithm

find_best(P)

begin
weight = () /* Initinlize weight */
for each (¢, € P) begin
for vack (C, € P;; > 1) begin
il (weight | weight_ol(e, 0, «,)) begin

/* For every pair of vectors */

weight, = weight-of(e, N, ¢;) J* It is a better choice */
I=10=y /* Save it */
end if
end for
end fo
return (¢, c¢y) /* Return best choice, */

end

Figure 4.8: The find-best() Procedure

formed. As previously, the first step is to partition the cubes.

CHAPTER 4. CLUSTERING TEST CUBES 52

'This algorithm is outlined in figure 4.7. The find_best() function (figure 4.8) goes
through all the relevant clusters and chooses the pair with the most favorable weight
and returns them (or NULL if there are none). This weight is determined primarily by
the conflict count, followed by the extra specified bit count and then by the specified
bit, count. These cubes are then removed from the partition and the result of their
clustering is added. This continues until there are no more beneficial merges remaining

at which point the next partition is considered.

The first while loop clusters all the cubes in each partition while the second is
needed in case combinations are possible on clusters between partitions but were not

possible before, analogous to the clean-up phase in the previous algorithm.

4.2 Encoding of Test vectors and Conflict Infor-

mation

This aspect of the work involves compressing and encoding conflict information in forms
which can be easily decoded and used when required. A number of alternatives will be
presented which reduce storage demands with a small penalty in hardware overhead
and the amount of vectors supplied. However, these extra vectors may be regarded as

additional random patterns.

In many of the following subscctions, equations indicating the amount of memory

are derived, all starting from the point:

memory(m bits) = [A] + [B] + [C] (4.5)

where [A] represents the component due to the storage of the seeds, [B] represents the

component due to indicating which conflicts are involved at this particular time and

CHAPTER 4. CLUSTERING TEST CUBES 53

[C] the component necessary for the conlicts themselves. Also, the amount of memory
to explicitly store a conflict would be [loga(scan length)] bits as it can occur anywhere

on the scan chain. Below definitions for the variables used are given.

s = Maximum number of specified bits in any test cube which is also the seed

length.
e Clst; = Number of clusters with i conflicts.
o Clst = Total number of clusters = Y Clst,.
o T'L = Test length.
e Confly = Maximum number of conflicts allowed in a single test cube.
e Confl = Total number of conflicts.
e m = Scan length.
o Mem_len = Cache or Stack depth.
e Loads = Total number of cache loads or stack pushes.

e of fset = Difference in position between a conflict and the one immediately lower

to it.

4.2.1 Direct Implementation

This method involves explicitly representing cach conflict as it occurs. The cubes are
grouped into sets each with the same number of conflicts, the first with none, the
second with one, and so on. The number in cach sct is stored and decremented as

vectors are created so that the number of conflicts for cach cube is implicitly known.

CHAPTER 4. CLUSTERING TEST CUBES 54

Associated with cach stored cube is the required number of conflicts, as indicated
by the set in which it is in. For clusters with 0 or 1 conflicts, all vectors suggested
by the conflicts must be applicd, thus no more information needs to be kept. Others
requirc another set of vectors, conflict vectors, to point out which of the conflict bits
need to be inverted to create the current vector. In addition to this, this set of vectors
should tell when the use of the current cube has come to an end. Thus, it must be one

bit longer than the maximum number of conflicts allowable.

To create the vectors which would be applied to test the circuit, first the seed is
loaded into the LFSR, the appropriate feedback configuration chosen, and a base vector
starts to be produced. At this time also, the conflicts associated with this cluster is
loaded as is the conflict vector (if applicable). When a bit is created which corresponds
to a position referred to by the conflict vector and the conflicts, it is inverted. At the
end of the test vector, the conflict vector is checked to see if the same or the next
sced should be loaded. I the next sced is to be loaded, its associated conflicts are also

loaded. Then the next conflict vector is loaded and the process continued.

mem = [Clstxs)+ [(TL - Clsto — 2% Clsty) x (Confly + 1)} + [Confl + [log(m)2]] (4.6)

4.2.2 Stack and Cache Based Implementations

These imple mentations attempt to reduce memory requirements by making use of the
fact that many conflicts are used on several occasions with different test cubes. Extra
meniory organized as a stack or a cache is nsed for this purpose. They must be at
least as deep as the maximum number of conflicts allowed, but may be deeper for more
flexibility. However, this would have a negative impact on the conflict vectors as their

length must correspond to this depth.

In these methods, the memories are loaded and as many cubes as are consistent

CHAPTER 4. CLUSTERING TEST CUBES

oy]
fad1 3

with these conflicts ate used. Conlflicts are then changed either by pushing and popping
in the case of the stack, or by a least recently uscd cache replacement strategy. Other
cache reload strategies could be used but most have the undesired effect of requiring
more memory. Also, by judiciously choosing the order and value of the conflict vectors,
great control on the reload is provided. In fact, through the adldition of extra conflict
vectors, {ull control of the rcloading is possible. For instance, it may be necessary to
keep one of the conflicts which has not been used for a long time and due to be replaced.
By including this conflict in the generation of a vector where it is an unspecified bit,

it can be kept without any penalty.

In addition to the extra cache/stack memory, a little additional overhead is nee-
essary for control. Conflict vectors as described in the previous section are used, but
here they indicate which cache/stack positions contain the relevant conflict. An extra
bit for cach seed and conflict, is necessary, in the sced to tell whether new conflicts need
be loaded, and in the conflict to show whether further conflicts are needed. Creating
the test vectors are analogous to the direct implementation with the exception of how

conflicts are loaded, if at all.

mem = [Clst*(s+ 1)]+[TL*(Memden + 1))+ [Loads * ([tog(m)] + 1)] (1.7)

4.2.3 A Scheme to realize these Implementations

An implementation of these methods is given in figure 4.9 where the hardware unique
to clustering is represented by the shaded portion. An XOR gale is used to invert
the bits indicated by the conflict positions stored in the memory/stack/cache labeled
‘relevant conflicts’ and the conflict vectors. Control is provided based on extra bits

stored with the conflict vectors, and conflicts and the seeds as described in the above

implementations.

CHAPTER 4. CLUSTERING TEST CUBES

56

.. +
e | | &
& & CUT
Decoding
Logic |-
I T T ----
M *
LFSR % Scan Chain
gy o
Seed 1 2 A
Modulo Seed2 iy
p H ? >
Counter Seedn 3
Seed n+1 ja
A . i
' L;’
E Seedc %
! y ! ot
: g
]
L Controller @gg
‘ LW oy
' /:\ /'\ 35":;*»%9
! ! P i s
Voo e N o
S 1A
i +Ha

Output Data
Evaluation

Figure 4.9: BIST Scheme Based on Clustering

The hardware overhead of this implementation in excess of that of random pattern

testing will now be determined to help evaluate its impact in BIST applications. Ran-

dom pattern testing was used as a base for it has been shown to be cost effective in

many BIST applications and uses some of the same structures such as output evalu-

ation, the scan chain and most of the LI'SR. The decoding logic, modulo p counter

(which can be efficiently implemented as an LFSR), controller and seed memory are

very similar to the hardware needed in pure reseeding. Depending on the area required

by the memory, this can be implemented on chip or on an adjacent chip. The move-

ment to clustering is to reduce the total meinory needed to generate the vectors by

CHAPTER 4. CLUSTERING TEST CUBES

b1]
-1

using a slightly more claborate compression scheme. This requires the addition of a
minimal amount of additional hardware which comprises of an XOR gate, a counter

(which can also be implemented as an LFSR), a few storage elements and some extra

control logic.

4.2.4 Additional Variations

Various techniques can be applicd in association with these methods in order to further
reduce the memory requirements for the storage of conflicts. Oune such technique I8
cube implication (CI) which involves making the assumption that many of the cubes
reachable by inversions made on the bits implicd by the conflicts would have to be
created. Thus rather than having to indicate them individually using conflict vectors,
all would be cycled through, whether needed or not, reducing the memory needed for
the [B] component in equation (4.6) to 0 and in equation (4.7) to [Clst x (Mem_len)].
This results in more vectors than arc actually needed being applied, but. if the maxinmum
number of conflicts is kept small, the memory savings may be worth the overhead. In
the case when the conflict count is k, a worse case scenario would sce 2¢=! times the

required number of vectors being applied, k is usually small.

Another interesting dircction with great potential for savings can be realized pro-
vided that the inputs may be ordered at will. This technique, reordering, orders the
inputs such that inputs representing conflicts in the same cluster occur as close together
as possible and as close to the beginning of the vector as possible. This has the ceffect.

of improving on the locality of conllicts.

Figure 4.10 shows the effect of reordering, based on a maximum of two conflicts, on
the circuit Nw0 which has 265 inputs. Each point on the graph indicates that there is
at least one cluster for which its conflicts occur on the bits denoted by its co-ordinates.
The line is the reference, y = . In figure 4.10(A), even though many of the points are

close to the reference line, there are many which are significantly distant, such as point

CHAPTER 4. CLUSTERING TEST CUBES 58

NwO Relational info with 2 confl

300, - - - e e
250! | /
¢ -
. &
200
£
3 150} “
]
100§
50 >
g
0 (] 1 i L I
0 50 100 150 200 250 300
Bit Number
NwO Ralationat info with 2 confl, reordered
300 T T T T ¥

250}

Bt Number
- n
13 (=3
(=] o

]
S
=

so}

L L L
°o 50 100 150
Bit Number

(B)

FFigure 4.10: Conlflict Profile before and after Reordering

L L
200 250 300

(9, 241). Also they may exist anywhere above the line (as the conflicts are ordered).
Figure 4.10(B) shows that all the conflicts occur on the first ninety or so inputs and
| that the difference between conflicts on the same cluster is small, less than five in this
case in spite of the fact that the program was written to try and minimize the average
distance between conflicts, not the maximum distance. Using this information, a very

compact realization can be formulated. For instance, a counter representing the base

CHAPTER 4. CLUSTLERING TEST CUBLS

conflict can be used, and the offsct of the next conflict (three bits) can be submitted
if different from the previous one. As the counter is incremented (in this case, say,
from 0 to 90), all test cubes with this as the lower conflict can be tested. When
both cube implication and reordering are assumed, memory use is given in equation
(4.8). Furthermore, a small stack/cache type memory may be used so as to reuse offset

information.

mem = [Clst*s]+[14+ [Clst + (D_((i = 1) * Clst,)) x [loga[of fset]]] (4.8)

122

Chapter 5

Experimental Results

Experiments based on the clustering algorithm were carried out on both a subset of
the 1ISCAS 89 benchmark circuits and a set of industrial circuits provided by IBM.
Using these results, memory requirements for many of the various implementations

were calculated and compared to that necded for reseeding.

"Test sets were found differently depending on which set the circuit was from. In the
case of the ISCAS circuits, a predetermined number of random patterns were applied to
the circuit in an attempt to remove the relatively easy to detect faults. After this, the
remaining faults were targeted and patterns found to detect each. Bit stripping [Mur90]
was then used to reduce the number of specified bits. For the industrial circuits, test
sets were found through ATPG and all vectors with fewer than 20 specified bits were

deemed as ‘casy to detect’ and removed.

Tables [5.1, 5.2, 5.3, 5.4, 5.5] apply to the IBM set while tables {5.6, 5.7, 5.8] refer
to the ISCAS circuits

Tables [5.1, 5.2] compare the cffectiveness of the two clustering methods with differ-
ent partition sizes, conflict counts and ranges. For both of these, the conflict count was

kept at 3. In order to help in the grouping of clusters for use with the cache method,

60

CHAPTER 5. EXPERIMENTAL RESULTS 61

where the cache depth is greater than the conflict count, the concept of a range was
introduced. The range represents the cache, so a group of clusters can be in the same
range provided that the union of their conflicts has a cardinality less than the cache
depth. From thesc results, it is evident that the multiple cluster algorithm consistently
outperforms the single cluster one in all cases unless the range is much larger than the
conflict count. However, in the cases where the number of test cubes is lower in the
single cluster algorithm, the total number of conflicts present is significantly larger.
Thus it was deemed that the multiple clusier algorithin was distinctly superior so the

rest of the experiments were carried out using only this algorithm.

Also evident in these tables is the fact that choosing a good partitioning for the
cubes can have an eflect in the resulting numbers of clusters and conflicts. It is generally
noted that for the multiple cluster algorithm, a single partition is not necessarily the

best choice.

Tables 5.3 and 5.6 give a bricl impression of the initial test sets, To work out an
estimate for the mmemory required using conventional methods, once again the multiple
cluster algorithm was used but here the conflict count was put to 0 while the maximum
number of specified bits allowed was set to the length of the vector. This has the effect
of packing as many of the cubes together as possible minimizing the consequent vectors,

and hence the memory needed to store them implicitly.

Tables 5.4 and 5.7 show the cffect of clustering on these sets. When no conflicts
were allowed and the maximum number of specified bits allowed was set to the number
of specified bits in the most specified cube in the set, the algorithm reduces to that
of resceding and these values were used in estimating the memory requirements for
this mcthod. In general, clustering does not, result in a test length much longer than

reseeding but the numnber of clusters resulting is significantly reduced.

Tables 5.5 and 5.8 give the memory requirements for some of the competing con-

figurations. The [memory bits, storage] for reseeding is compared to the conventional

CHAPTER 5. EXPERIMENTAL RESULTS 62

results and presented in brackets as a percentage. This is also done with the [memory
hits, storage] in the [stack], [cache] and [reorder and CI] results where the memory

required is compared to that of both resceding and conventional results.

For betier results with the direct, cache and stack methods, the cube implicit
(CI) assumption can be made, but is not given here. Also, in the cache and stack
estimates, it is assumed that the cache/stack depth is equal to the maximum conflict
count allowed, and that the reloading of the cache can be fully controlled using the
conflict vectors. However, this assumption would not hold if the cube implicit technique

is adopted.

To work oul the ‘Max. Offset’ when the number of conflicts was greater than 2, the
conflicts were split up into all possible combinations taken two at a time and submitted
to the reordering program. So, if the conflicts for a cluster were (2 56 109), this would
be split into the triplet (2 56), (2 109) and (56 109) for reordering. Thus reordering gives
the maximuin distance from the lowest position conflict to the highest. For instance, if
the number of conflicts in a cluster was 3, the minimum the maximum distance could
be is 2 when the three conflicts are in adjacent positions. In an attempt to compensate
for the fact that the average rather than the maximum distance is minimized in this
algorithm, 200 itcrations were done while increasing the weight of the link with the

maximum distance, and the minimum of these taken.

The memoty demanded by the direet method was less than or at worse equal to that
demanded using pure resceding, equality occurring when the results were identical. In
some cases with the ISCAS circuits, the penalty incurred using the stack /cache methods
was greater than its benefits but generally they proved superior, especially in the case
of the industrial circuits with up to about a 20% savings in the case of nw4. The use of
a greater conflict count had mixed savings, sometimes 2 conflicts and sometimes 3 were
better. For the ISCAS circuits, the savings in memory, without allowing for reordering

and cube implication (Cl), was typically less than that of the IBM circuits, ranging

CHAPTER 5. EXPERIMENTAL RESULTS 63

from 0% (in the case where no conflicts were found) to 42% compared to a low of 48%
up to 66% in the case of the industrial circuits. When reordering and cube implication

is considered, even less memory is required to a maximum of 76% savings.

CHAPTER 5. EXPERIMENTAL RESULTS 64

Single Cluster ATgo. || Multiple Cluster Algo.
IBM Extra No, of No. of No. of No. o
Citeuit | Range | Spee. Clusters | Conflicts || Clusters Conflicts
nwl 3 0 163 432 157 349
3 1 169 436 157 350
3 2 171 4134 158 347
4 3 17t 447 158 346
3 4 173 454 158 347
3 5 172 451 157 347
3 6 173 449 157 347
3 7 174 443 157 347
3 8 174 443 159 346
3 no 174 442 159 346
nwil 3 0 68 175 52 132
3 1 73 177 52 125
3 2 G9 169 52 123
3 3 71 180 51 124
3 4 71 174 50 124
3 5 70 172 49 122
3 6 73 179 49 122
3 7 69 170 49 122
3 8 G9 170 49 122
3 =] 73 178 49 122
hw8 3 0 i18 327 89 231
3 8 118 327 89 231
3 o0 103 283 113 195

Table 5.1: Statistics comparing the performance of the two algorithms and showing
the effect of the Ex-spec parameter

. Single Cluster Algo. Multiple Cluster Algo.
IBM No. of No. of No. of No. of
Chrenit | Range || Testcubes | Conflicts || Testcubes | Conflicts

nwl 8 192 909 196 522

nwl 8 113 4198 111 326

nw2 8 37 182 418 133

nwi 8 39 201 12 119

nw 8 147 800 154 528

nwo 8 96 430 89 439

nwv 8 88 397 83 396

nwl 8 58 323 54 228

Table 5.2: Statistics comparing the performance of the two algorithms for ranges >
conflict count

CHAPTER 5.

EXPERIMENTAL RIESULTS

065
Scan No. of T .Av. No of Conventional Results
Name | Length | Vectors | Spee, Bits |["Test Length | Mem. Bits Tor Stotage |
nwl 265 1465 45,26 620 164k
nwl 401 513 84,08 391 157k
nw2 407 210 67.62 146 59.4k
nw3 80 197 27.92 174 13,9k
nw4 163 1295 32.07 924 151k
nwG 443 1121 32,83 202 80.5k
nwv 486 971 27.60 140 GR.0k
nw8 317 372 40,32 i 18.6k
Table 5.3: Statistics on the Original Test Scts of the Industrial Circuits
Seerd Max. No. of No., of Clusters with “Total No. Test Av. No. of
Name | Length | Confl. | Clusters [0 Confl. [T Conll. T2 Conll. T 3 Confl.] of Conflicts | Length | Spee, Bits
nwO 87 0 627 627 0 0 Q0 0 627 A8.61
2 314 44 70 200 0 470 612 50.96
3 245 23 18 100 104 H30 i3] Hl.844
nwl 148 0 505 505 0 0 0 0 H0h 84,50
2 199 8 71 120 0 R1N Ha 8O.4U5
3 157 1 27 04 [350 606 87.26
nw2 84 0 210 210 0 0 0 0 210 67.82
2 8 0 24 54 0 132 210 67,44
3 ik] 0 4 32 22 131 210 (1.83
nw3 45 0 171 174 0 0 0 0 174 2810
2 71 6 20 45 0 HO E7d 27.61
3 49 0 4 17 28 122 i74 27,36
nw4 15 [V} 973 973 1] 0 0 0 973 Ha12
2 326 0 A7 279 0 GOH 1085 J2R2
3 2041 0 17 34 153 Hid4 1076 32.550
nw6 B g 319 319 [§] 0 0 0 319 61.89
2 188 86 30 72 0 174 320 4,30
3 155 6 3 25 58 227 321 63,74
nw7 0] 0 318 318 1] 0 0 0 318 42,14
2 183 80 30 73 0 176 326 44.18
3 158 [65:] 16 28 46 210 312 46.06
nw8 62 0 275 275 1] 0 0 0 276 hi.82
2 123 5 16 102 0 220 343 43.66
3 89 0 1 34 54 241 360 41401
Table 5.4: Clustering Statistics on the Industrial Circuits
Resceding Ditect Stack Cache Rearder 4 C1
Mem. Bit, | Max. Mem. Bit, No. of Mem, Bit, No. of Mem. Bit, Max Mem Bit,
Name Storage Conll. Stotage Pushes Stotage Loads Storage Olfsiet, Storage
nw0 54.5k (33) 2 32.9k (60) (20) 118 3.0k (57) (19) 130 308k (67) (19) f 282k (52) (17)
3 28,4k (52) (17) 191 | 26 0k {18) (16) 146 | 25,0k (47) (16) 40 23,4k (4:3) (14)
nwl | 74.7k (48) 2 33.3k (15) (21 155 | 32.0k 544 21 54 | 2.7k grm) 521) 16|30,k (A0 (10)
3 28.1k (38) (18 191 | 278k (37 17; 164 | 270k (36) (17) || 25 | 24.4k :m} gm)
nw2 17.6k (30) 2 8.23k (47) (14) 102 8.28k §47] 06 8,22k (47) (14)] a.68k (38) (11)
3 6.89k (39) (12) 112 | 689k (39) (12 95 | 6,72k M (11) 4 508k (29) (9)
nw3 | 7.83k (50) p) 15k (56) (31) B5 | 4.23Kk (54} (30) A2 | 402k 55.’;) 730) 7 TA0Kk (43) (24
3 3.72h (48) (27) 75 | 3.55k (45) (26) 55 | .30k (43) (24) 22 2.62k (33) (m;
hwa | 43.8Kk (29) 2 72.58 (1) (15) 127 | 1.4k (1) (13) 02 | 19.2k (44) (13) L] 6.1k (37) (11)
3 17.7h (10) (12) 153 1 150k (34) (10) || 108 | 14.7k (34) (10) 15 10,7k (24) (7)
nw6 | 25.2h (28)) 7.0k (68) (19) 124 | 173k (60) (19) 113 | 17.1k (6R) (19) ; T5.2k (60) (17)
3 153k (61) (17) 178 | 15k (62) (17) || 153 | 16.2k (60) (17) 19 180k (62) (15)
nw7 15.9k (23) 2 1.3k (71) (17) 130 L7k (74) (17) 130 11.6k (73) (17) H .06k (60) (14)
3 10.6k (67) (16) 164 11.0k (69) (16) 150 10.8k gssg {16) 6 8.42k (53) (12)
nw8 17.1k (14) 2 10.5k (61) (27) 186 10,6k (62) (28) 173 10.5k (61) (27)] 7.86k (46 20}
3 8 99k (53) (23) 199 0,00k (53) (23) 181 8.82k 552) (2:3) 3 5,80k (:54; 215)

Table 5.5: Memory Requirements for the Different Configurations

CHAPTER 5. EXPERIMENTAL RESULTS 66
Sean Ran. | No. of | Av. No. of Conventional Results
Name | Length | Pat. | Vectoirs | Spec. Bits || Test Length | Mem. Bits for Storage |
5208 17 32 25 9.44 19 323
81423 91 1k 36 13.78 8 728
$1488 114 1k 51 10.06 20 280
81494 14 Ik 53 9.92 22 308
5378 214 h 135 39.78 85 18.2k
9234 247 1h 313 34.82 132 32.6k
313207 00 1h 378 45.77 195 137k
435932 {763 32 49 121.22 49 86.4k
38417 1664 80k 359 19.86 62 103k
Table 5.6: Statistics on the Original Test Sets of the ISCAS 89 Circuits
Ran. | Seed | Mas. No, of No. of Clusters with Total No. | Test | Av. No. of
Name | Pat Len. | Condl. | Clusters [0 Conll. [T Confl. | 2 Confl. | 3 Confl. | of Confl. | Len. | Spec. Bits
4298 32 17 0 19 19 (0] 0 0 0 19 11.11
2 10 2 5 3 0 11 19 13.90
3 9 4 1 1 3 12 19 14.56
s1423 1k 21 0 12 12 0 0 0 0 12 15.75
2 8 4 | 3 0 7 12 16.88
g 1] 1 1 0 4 13 13 15.67
51488 Ik] 0 22 22 0 0 0 0 22 10.18
2 10 3 1 6 0 13 21 9.80
3 7 0 1 1 5 18 22 9.86
31494 th 11 0 22 22 0 0 0 [1] 22 10.05
2 10 1 4 5 0 14 22 9.40
3 7 0 2 1 4 16 22 9.57
sH37T8 ik 128 [§ 86 85] 0 0 0 85 61.88
2 062 25 5 32 0 69 100 77.10
3 66 44 0 4 18 62 88 74.24
§9231 Th 1206 0 141 141 0 0 0 0 141 66.88
2 97 AT 10 40 0 90 149 87.84
3 38 33 9 10 36 137 145 93.80
8113207 Tk 263 0 1956 195 0 0 0 0 195 85.41
2 "7 50 16 51 0 118 19% 131.02
3 106 36 16 11 43 167 197 140.58
«30h4)32 3L 263 ¥} v 49 4] 4] 0 4] 49 121.18
2 i 49 0 0 0 0 49 121.18
3 1 49 0] 0 0 49 121.18
EREE NI N 224 0 98 98 0 0 0 0 98 171.34
2 NO 59 8 i8 0 44 111 191.96
L 3 52 49 q 17 12 74 115 197.00
Table 5.7: Clustering Staiistics on the ISCAS 89 Circuits
Heseeding Direct Stack Cache Reorder 4 CI
Ran.] Mem. Bit, | Max. Mem, Bit, No. of Mem. Bit, No. ofy Mem. Bit, Max. Mem. Bit,
Name | Pat, Storage | Conil, Storage Pushes Storage Loads Storage Offset Storage
W08 | 82 | a2 (100) |2 TT0 (76) (76) 7 270 (36) (36) 7 279 (86) (86) 1 183 (57) (57)
3 265 (82) (82) 8 286 (89) (89) 7 280 (87) (87) 3 176 (54) (54)
STi2s | Th 52 (35) : T (01 (32) 7 268 (106) (37) 7| 268 (106) (37) T 179 (71) (25)
3 257 (102) (35) 13 | 288 (114) (40) 13 | 288 (114) (40) 2 140 (56; (19)
SAss T E (E6) T T () 9 228 (94) (81) 9 338 (94) (81) p) 126 (52) (45)
22 (03 (82) 12 232 (96) (83) 10 | 222 (92) (79) 5 117 (48) (42
YV TE I T N RN) 07 (53) (67) 9 731 (95) (75) 9 231 (95) (75 2 125 (52) (41
. 210 (S8) (69) 11 227 (94) (74) 10 | 222 §923 %723 3 102 242; 33
SRR TR TTOUR G0y T 3 TR GsER (R0 (48) T | S.70k (80) (48 37 | 8.63k (79) (47 6 | 8.09k (74) (44
S 9t . (3) (50) 42 | vk Essg 551} 37 | 9.20k 5843 ﬁsl{ 10 | 8.67k sog $4s
PR ¥ N S B N £33 N 13 21 (740) (40) G0 | 133k (75) (1) || 55 | 13.3k (75) (41) T | 12.4k (70) (38
3| 120k (71) (49) 94 | 12.6k (n; (39) | 80 | 12.5k (70) (38) || 22 | 11.6k (65) gse
I TSIV Y N Y IO N () I B Tk () (24) 37| 31.9k (62) (23) || 32 | 31.8k (62) (23) T | 31.0k (60) (23
3 3040k (61) (22) 67 20.5k (58) (22) 52 | 29.3k (57) (21) 11 | 28.4k (55) (21)
IHNa | a2 | 12k (T [2 || T2 ik (100) (11) 0 2.5k (101) (14 0 | 125k (101) (14 0 [12.4k (100) (14
4 flangooyanll o |i2sk (101{ (14; 0o |12.5k {101) ?14; 0 |12.4k ﬁmo} 14
SIREUT] ROK T 220k (21) 2 19 7h (90) (19) 40 20.0k (91) (19) 40 20.0k (91) (19 2 19.1k (87) (19
4 19 1k (s8) (19) 67 | 107k (90) (19) | 65 | 19.7k égo; {19; 3 | 18.5k §s4} 518;
Fable 5.8 Memory Requirements for the Different Configurations

Chapter 6

Conclusion

A new method of using reseeding of LFSRs to generate a deterministic test set capable
of 100% non-redundant fault detection of circuits has been presented. By allowing a
small number of conflicts or inconsistencies when merging cubes, the test set can be
reduced to a much greater degree than that of pure reseeding. However, to successfully
recreate the required veetors, further information reguarding the positions and the

necessary values of the conflicts also need to he stored.

Algorithms were developed to merge the cubes in a test set and several ways, using
little additional hardware, were proposed to minimize the memory penalty resulting
from the conflicts. It is possible to trade-off test time against test data throngh, hoth
by varying the length of the random pattern test stage or by using cube implication.
Furthermore, hardware complexity can also be traded-off through the use of the dif-
ferent methods suggested. Results based on a subset of the ISCAS benchmark cirenits
and on a set of industrial circuits show that a 35% reduction on average over pure
resecding can be achieved without significantly increasing the test length, Further re-
ductions are possible, up to an average of 18%, with an increase in test length provided
reordering on the inputs is po ible. When compared to conventional deterministic re-

quircments. these reductions are 69% and 77% respectively. The industrial cirenits

67

CHAPTER 6. CONCLUSION 68

were chosen based on their inherent resistance to random testing yet have performed
notably hetter than the ISCAS counterparts. This is encouraging for it appears that
some of the factors which make circuits hard to test are the very ones which benefit

this approach.

Though envisioned for BIST applications and though it uses memory comparable to
phat. of weighted random pattern testing without much of its hardware overhead, it is
conceivable that the memory requirement may be excessive. In such cases this method,
like resceding, can be applied to external testing cffectively reducing data bandwidth
by storing and downloading only the seeds and the conflict information. Only the on

chip decoding logic wonld be required to generate the vectors.

In addition to chip level testing, this scheme can also be used al hoard level and
with multiple chip modules. lixtensions to this method can be useful with delay testing
for this type of testing requires the application of two consecutive vectors which are
identical on all except for a few bits. By having two classes of ‘conflicts’, one for
the conflicts as defined in this thesis while the other for the differences between the
two consccutive vectors, delay faulls can be tested with significantly reduced memory

overhead.

Bibliography

[Abr90] M. Abramovici, M. Breuer, and A. Fricdman. Digital Systems Testing and

Testable Design. Computer Science Press, 1990,

[Agr89] V. D. Agrawal, K. Chen, D. Johnson, and 'T'. Lin. “A Directed Search Method
for Test Generation using a Concurrent Simulator”. TEEE Design and ‘Iest of

Compulers, vol. 5:8-15, April 1988.

[Agr87] V. D. Agrawal, K. Clieng, D. Johnson, and T. Lin. “A Gomplete Solution to

the Partial Scan Problem®. International Tes! Conference, pages 44 50, 1987.

[Agr93] V. D. Agrawal, C. Kime, and K. Saluja. “A Tutorial on Built-In Sel-"Test,
Partl: Principles™. 1EEE Design and Tesl of Compulers, pages 73 82, Mar. 1993,

[Bar87] P. Bardell, W. McAmney, and J. Savir. Buill-In Test for VLSI. Wiley-

Interscience, New York, 1987.

[Info90] B. Bennetts, B. Courtois, C. Maunder, J. Mucha, I, Pool, G. Robbinson,
BB. Schncider, and T. Williams, “The Challenges of Self=Test”. 1EEL Design and
Test of Compulers. pages 46 -54, 1990.

[Brgs9] I Brglez. C. Gloster, and G, Kedem. “Hardware-Based Weighted Random
Pattern Generation for Boundary Scan™. 1EEE International Test Conference,

pages 264-273. 19349,

69

BIBLIOGRAPIY 70

[Cha85] R. Chandramouli and II. Sucar. “Defect Analysis and Fault Modelling in MOS
Technology”. Internalional Test Conference, pages 313-321, 1985.

[Dav82] B. Davis. The lconomics of Automatic Testing. McGraw-Hill, New York,
1982.

[Dea9l] 1. Dear, C. Dislis, A. Ambler, and J. Dick. “Economic Effects on Design and
Test” . TEEE Design and Test of Computers, pages 64-77, 1991.

[Glo8Y] C. Closter and 1. Brglez. “Boundary Scan with Built-In Self-Test”. JEEE
Design and Test of Compulers, pages 36-44, 1989.

[Gols2] S. Golomb. Shifl Regisler Sequences. Acgean Park Press, Larguna Hills, Calif,

1982,

[las92] A. Hassan, V. K. Agarwal, B. Nadeau-Doste, and J. Rajski. “BIST of PCB
Interconects Using Boundary-Scan Architecture”. IEEE Transactions on CAD,

Vol. 11(No. 10):12758-1287, Oct. 1992.

[Hel92] S. Hellebrand, S. Tarnick, J. Rajski, and B. Courtois. “Generation of Vec-
tor Patterns Through Resceding of Multiple-Polynomial Linear Feedback Shift
Registers”. 1151 International Test Conference, pages 120-129, 1992.

[Hor90] P. Hortensius. R. McLeod, and B. Podaima. “Cellular Automata Circuits
for Built-In Self=Test”. [BM Journal on Research and Development, Vol. 34(No.
2/3):389-105, Mar/May 1990,

[Hor89] P. Hortensius. R. Mcleod, E. Pries, D. Miller, and H. Card. “Cellular
Automata-Based Pseudorandom Number Generators for Built-In Self-Test” . IPEE

Transactions on ("1, Vol. 8(No. 8):842-858, Aug. 1989.

[HugR6] J. Hhoghes and 10 MeCluskey. “Multiple Stuck-at Fault Coverage of Single
Stuck-at Fault Test Sets”. Inlernalional Test Conference, pages 368-374, 1986.

BIBLIOGRAPHY 71

[Iba75] H. Ibarra and S. Sahni. “Polynomially Complete Fault Detection Problems”.

IEEE Trans. Compuling, Vol. C-24:242-249, Mar. 1975.

[Jac87] J. Jacob and N. Biswas. “GTBD Faults and Lower Bounds on Multiple Fault
Coverage of Single Fault Test, Sets”. International Test Conference, pages 849- 855,

1987.

[Jha86] N. Jha. “Detecting Multiple Faults in CMOS Circuits”. Infernational “l'esl
Conference, pages 514-519, 1986.

[Kon91] B.Kénemann. “LISR-Coded Test Patterns for Scan Designs”. Proc. Iuropean

Test Conference, pages 237-242, 1991. Munich.

[Lin87] C. Lin and S. Reddy. “On Delay Fault Testing in Logic Circuits”. 1ok
Tranactions on CAD, pages 649-703, Scp 1937.

[LisS7] R. Lisanke, I. Brglez, A. Degeus, and D. Gregory. “lestability-Driven Random
Test-Pattern Generalion”. [ELE Transactions on CAD, Vol. CAD-6:1082 -1087,
Nov. 1987.

[Ma88] H. Ma, S. Devadas, A. Newton, and A. Sangiovanni-Vincentelli. “Test Gen-
cration for Scequential Cireuits”. [IWEE Tranctions on CAD, pages 212 220, Feb,

1990.

[Mce85] E. McCluskey. “Built-in-Sell-Test Structuves”. 1R Design and Tesl, pages
29-36, Apr. 1985.

[McC87] E. McCluskey, S. Makar, S. Mourand, and K. Wagner. “Probablity Models
for Pscudorandom Test Sequences”. 1Y International Test Conference, pages

471479, 1987.

[Mur90] F. Muradali, V. Agarwal, and B. Nadean-Dostic. “A New Procedure for
Weighted Random Built-In Self-Test”. [V International Test Conference, pages

660-669, 1990.

BIBLIOGRAPIY 72

[Pat91h] S. Pateras and J. Rajski. “Cube-Contained Random Patterns and their Ap-
plication to the Complete Testing of Synthesized Multi-level Circuits”. IEEE

International Test Conference, 1991.

[Pat9la] S. Pateras and J. Rajski. “Genceration of Correlated Random Patterns for the
Complete Testing of Synthesized Multi-level Circuits”. 28th ACM/IEEE Design

Aulomalion Conrerence, pages 347-352, 1991.

[Pen92] S. Peng. “Lest Methodology for a large ASIC Design”. Wescon Conference
Record, V36:64 -77, 1992,

[Poa62] J. Poage. “Derivation of Optimum Tests to Detect in Combinational Circuits”.

PProc Symp on Malhmelical Theory of Automata, pages 483-528, 1962.

[Pom9l] I. Pomeranz, L. Reddy, and S. Reddy. “On Achieving a Complete Fault
Cloverage for Sequential Machines using the Transition Fault Model”. International

Test Conference, Oct. 1991,

[Raj87] J. Rajski and 1. Cox. “A Mecthod of Test Generation and Fault Diagnosis in
Very Large Combinational Circuits”. International Test Conference, pages 932-

913, 1987.

[Sav&d] J. Savirand P. Bardel. “On Random Pattern Test Length”. IEEE Transactions
on Compulers, Vol. C-33(No. 6):467-474, June 1984,

[Seh72) D. Schertz and G. Metze. “A New Representation for Faults in Combinational

Digital Cirenits™, TEEE Transaclions on computing, C-21:858-866, Aug 1972.

[Seh73] 1L Schnurmann. “A Computer Program for Weighted Test Pattern Generation

in Monte Carlo Testing ol Integrated Circuits”. IBM Tech. Disclosure Bull, Vol.
L6417 423, July 1973.

BIBLIOGRAPHY 73

[Sch75] H. Schnurmann, E. Lindbloom, and R. Carpenter. “The Weighted Random

Test-Pattern Generator”. IEEE Transaclions on Computers, Vol. ¢-24(No. 7):695-

700, July 1975.

[Sch88] M. Schulz, E. Trischler, and T. Sarfert. “SOCRATES: A [Highly Efficient
Automatic Test Patiern Generation System”. [EFE Transactions on CA1, Vol.

7(No. 1):126-136, Jan. 1983.

[She85] J. Shen, W. Maly, and F. Ferguson. “Incuctive Fault Analysis of MOS Inte-
grated Circuits”. IEEE Design and Tesl of Compulers, pages 13-26, Dec 1985.

[Smi85] G. Smith. “Model for Delay Faults based upon Paths”. International Tes!

Conference, pages 342-349, 1985.

[1vi80] E. Trischler. “Incomplete Scan Path with an Automatic Test. Generation

Methodology”. International Tes! Conference, pages 153162, Nov. 1980,
[Tar90] J. Turino. Design to lesl. Van Nostrand Reinhold, New York, 2 edition, 1990.

Ven93] S. Venkataraman, J. Rajski, S. Tarnick, and S. Hellebrand. “An Efficient
3 Jski,)

BIST Scheme Based on Resceding of Multiple Polynomial Lincar Feedback Shift

Registers”. Inlernational Conference on Compuler-Aided Design, pages 572 577,

1993,

[Wad78] R. Wadsack. “Fault Modelling and Logic Simulators of CMOS and MOS
integrated circuits”. The Bell System Technical Journal, pages 1449 1473, 1978.

[Wai88] J. Waicukauski and 1. Lindbloom. “Fault Detection Iiffectiveness of Weighted

Random Patterns®. Internalional Tesl Conference, pages 245 25H, 1988.

[Wil73] M. Williams and J. Angel. “Enhancing Testability of Large Scale Integrated
(fivenits via Test Points and Additional Logie”. R Transactions on Compulers,

('-22(No. 1):46-60, Jan. 1973.

BIBLIOGRAPITY 74

[Wil87] T". Willfams and W. Dachn. “Aliasing Errors in Signatute Analysis Registers”.
121515 Design and Test, pages 39-45, Apr. 1987.

(Wiun87] H. Wunderlich. “Self Test Using Unequiprobable Random Patterns”. In-
lernational Symposium on Faull-Tolerant Computing, FTCS-17, pages 258-263,
1987.

[Wun83] 1. Wunderlich. “Multiple Distributions for Biased Random Test Patterns”.
ISR International Test Conference, pages 236—244, 1988.

[Zha92] S. Zhang, R. Byrne, and D. Miller. “BIST Generators for Sequential Faults”.

L5121 Internalional Conference on Compuler Design, 1992.

[Zor92] Y. Zorian. “A Universal Testability Strategy for Multi-Chip Modules Based

on BIST and Boundary Scan™. Intcrnational Conference on Computer Design:

VLST in Compulers and Processors, pages 59-66, 1992,

