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ABSTRACT

This thesis analyzés and tests some néw solution techniques for the
optimal power flow problem. This new methodology exploits a parametric
technique, called the continuation method, which is applied to different tasks
in the solution procedure. 1In a first application, the con\tinuation method
solves the- quadratic subproblems generated sequentially by the optimal power
flow’s nonlinear program. ‘It first creates a simple subproblem, which is easy
to solve, and then links it to the subproblem we wish to solve. Starting at
the solution of the simple problem, it generates optimal s:)1ution trajectories
for the intermedlate problems, leading to the desired optimal solution.
Solution times are often advantageous, because this technique avoids the
lengthy combinatorilal search required In conventional methods to locate the
set of active constraints. Furthermore, the solution trajectories are often
very useful in themselves. In a second application, the algorithm tracks
optimal solutions trajectories of the nonlinear problem when the 1load is
slowly, varied. This constitutes an example of "incremental loading', a
technique already used for real power dispatch, but in this case a complete
network model 1is used. The flexibility of the algorithm at wvarilous 1levels
allows for some excellent computation times in thils load-tracking mode: we
have observeci reductions in computation times for new solutions of the order

B 1
of 70%, compared to the computation time of the initial load.

This thesis first presents an analysis of the various structures used in
optimal power flow algorithms. Then, having chosen and presented the
structure of our algorithm, we analyze the quadratic subproblems generated by
this algorithm for some of its more Important tasks: minimum cost, minimum
losses and load shedding. New rules are proposed to link the solutions of
successive subproblems to ensure the convergence of the nonlinear problem.
Then, as a final contribution to the theory, some extenslons are suggested for
the subproblems: among them are ramp constraints, bus Incremental costs, and

provisions for redispatching.

Numerical simulations of the proposed optimal power flow algorithm using

the minimum fuel cost task were performed on four test systems, with sizes
. ' ‘
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ranging from 6 to ’118'\ buses. The results are &ocumented in detail, and -

results for the 30 bus tast are compared to those reported by other authors.
-All in all, our results demonstrate quite well the potential of this
technique.
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' RESUME
Cette thése faif 1’analyse et l’essal de nouvelles techniques de solution
pour le probléme de 1'écoulement optimal de puissance. Cette nouvelle

méthodologie exploite wune technique paramétrique, appelée la méthode de

~“continuation, pour résoudre plusieurs des tdches du probléme. Dans un premier

temps, cette technique résoud 1les programmes quadratiques générés
sequentiellement par le programme nonlinéaire qu’est 1l’ecoulement optimal de
puissance. Elle crée dabord un probléme simple, ;;lus facile & réso'udre, et
ensuite elle le relie au probléme 4 résoudre. A partir de la solution du
probléme simple, elle «crée des trajectoires de solutions optimales
intermédiaires, se terminant a la solution désirée. Les temps de calcul
utilisant cette methode sont souvent avantageux, car elle évite les longues
recherches combinatoires; ces dernieéres sont requises dans les -méthodes
conventionnelles, pour trouver les contraintes actives. De plus, I les
trajectoires sont souvent trés utiles en soi. Dans un deuxiéme temps,
l’algorithme suit 1la trajectoire des solutions optimales du probléme
nonlinéaire lorsque 1la charge est variée lentement. Cela constitue
effectivement une application du "chargement iIincrémental", dont le principe
est déja wutilisé dans 1l’exploitation du réseau, mails ici on profite d’un
modele complet du réseau. La flexibilité de 1l'algorithme A tous les niveaux
.permet d’obtenir d’excellents temps- de calcul 4 cette étape: nous observons
des reductions des temps de calcul des mouvelles solutions de l'ordre des deux

tiers, par rapport au temps de calcul pour la premiére charge.

Cette thése présente dabord une analyse des structures des algorithmes de
solution/bour 1’ écoulement optimal de puissance. Ayant choisi et présenté la
structure de mnotre algorithme, - nous analysons ensulte les programmes
.quadratiques générés par cette methode pour quelques tdches importantes: le
coit minimum, les pertes minimum, et le délestage de charge. Nous proposon‘s
aussi de nouvelles régles pour relier les programmes quadratiques de fagon a
assurer la convergence du probléme nonlinéaire. Enfin, nous formulons
plusieurs extensions au programmes quadratiques: entre autres, on traite 1les
contraintes dynamiques sur les varilations de génération, les coits
incrémentaux des charges individuelles, et le dispatching rapide suite & un

changement dans le réseau.




%

iv

i F :
4 .

-

De mnombreux essais numériques ont étés eflﬁecﬁnés avec notre algorithme

d’écoulement optimal de puissancé ayant comme| tdche le coft minimum des

. k .
‘generations. Les donndes ont étdes tirées de quatre réseaux tests, allant de

6 4 118. barres. Les résultats sont documentés en détail, et ceux du systéme 3

30 barres sont comparés aux resultats publiés par d’autres auteurs. Dans
l’ensemble, nos resultats démontrent assez bien le potentiel de cette

o

technique. +
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3 \ INTRODUCTION

i .l General « \

“ Ever. siflce thelr inception, the electric power utilities have strived to
keep pace with the énergy needs of the population they serve. The demand for
increasing amounts of energy has spurred the construction of large, complex
power systems, comprising of many generating plants and intricate, widespread

networks for transmission and distribution.

Over the‘y’eak‘“ some notable changes have occurred in the general power
system structure. éianeration pla'nte have been moved away from the 1load
centers, for various reasons. In the province of Quebec, where hydroelectric
power 1.% abundant, the large energy sources being tapped are becoming more and
more remote from the major load centers. Elsewhere 1in North America,
conventional thermal and nuclear plants predominate. Their energy resources
can often be transported more easily to the load centers, but in the 1last
couple of decades plants have been built away from urban areas as a result of
concerns for pollution or radiation hazards. Intricate transmission networks
have been built to link these generation plants among themselves and to the
load cenvers, as well as to neighboring utilities. The overall combination is
advantageous, in that the construction and the operation of large generation
plants provides an economy of scale, and their interconnection to the entire

network of loads ensures a higher level of reliability of supply for each

load. As a result though, the complexity of power systems and of the controls

needed to operate them have increased.

Up until the oil crisis of the mid-1970’s, power utilities were expanding
mostly to meet the increasts in their own internal demands, which in North
America was doubling roughl} every ten years. Since then and until the mid-
80’s, the dramatic rise in fuel costs forced consumers to, make a more
efficient use of energy and to adopt conservation measures. The effects of

these measures on the power industry have been mixgd. On one hand, importers
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of energy came to view it as a limited and expensive resource, and many have
since implemented load management practices to reduce 1its use wherever
possible, rather than increase their production capacity [geelke 1982, Chan
1986]. On the other hand, the completion of projects planned before the oil
crisis left many utilities with excess generating capacity. That was the case
for Hydro-Quebec, even though 99% of its production is hydro. Efficient
energy practices considered essential elsewhere also proved attractive in
Quebec, so that the demand for electricity lagged behind expectations. This
general situation in the power system industry prevailed until recently.
Since the mid-80’s, fuel costs have plummeted, and in the United States the
electric power industry has become deregulated ([Fischetti 1986]. Already
there have emerged some large-scale importers of electric energy (for example,
the Northeastern U.S and southern California) and some large-scale exporters
(for example, the central Canadian provinces, British Columbia and the
American Northwest). To enhance the trade of electricity, much of the Hydro-
Quebec’s (and other utillities’) recent planning efforts have gone towsrds
strengthening the interties with their neighbors. Already in some american
power utilities, free market practices are taking over in the every day
operation of the system, with numerous energy transactions being proposed and
accepted as opportunities occur. These practices are no doubt making a more
efficient use of overall energy resources, but they increase once agéin the

complexity of the controls needed to ‘operate the system.

Since the early 1970's, many utilities have built computerized control
c;ntres to aid in the operation of their systems [Dy Liacco 1974, Dy Liacco
1977, Scheidt 1979]. Supervisory control and data acquisition functions
(SCADA) were the first to be implemented in these centers. Measurements from
the power system are continuously channeled to a central location ‘in real-time
and compared to estimat:d values from a state estimator program. The verified

quantities are then checked for system security, for the reliability of the

-network configuration to supply the load, and in some cases for stability

margins. Other on-line functions presently available on most systems are
economic dispatch and load-frequency control. The former computes the most

economical distribution of generations, given the 1list of available

generators. The latter supervises energy interchanges and controls the system

frequency in response to imbalances between the system’s generation and its



load. Due to their complexity, some other useful functions for power systems
operation have yet to be implemented on-line, but are used off-line as tools
for analysis. Three such functions are security evaluation and security

control [Debs & Benson 1975], and the-subject of thig thesis, optimal power
flow.

The general problem of energy management which faces the power utilities
- to satisfy customer demand in a safe, reliable and cost effective manner-
is a very complex onme. It requires much iIinsight into the workings of the
power system‘, for sure, but also a good working knowledge of mathematical
optimization theory. Many problems of power system management and control
have been forxm.xlated, covering the whole spectrum of mathematical programming
disciplines, ranging from very long term (ten to fifteen years for gemeration
and transmission planning) to very short term (a few minutes for dispatching).
Due to their com;].exities, each problem is usually treated separately.o They
are usually performed in a hierarchy, from long term to short term, with the

output of the long term tasks serving as targets for the short term tasks.

The short term functions are grouped under the category of power system
operatgon. Some of the more 1important tasks in this group are economic
dispatch, minimum loss dispatching, minimum load shedding and minimum
deviation from an operating point. These problems' and others, which are
subject to the load flow equations as constraints, share a common nonlinear
programming formulation called optimal load flow or optimal power £flow,

denoted OPF.

The full OPF serves two purposes. In operations, it periodically sets
optimal target values for the electrical variables of the power network, in
following the systc;.m’s varying load. Based on the OPF’'s optimal values, the
variables can then be dispatched every few minutes to follow small variations
in loads, using simpler algorithms. The OPF would be an ideal dispatching
tool If it could be made to compute much faster. A second application for OPF
is in system planning, where it is used to study the effects of parameter

variations (changes in equipment) on the system’s optimal operation.
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The OPF is a complex tool, but its subsets are often simple enough to be
used as dispatching tools. These subsets use approximations of the basic
problem, with a linearization replacing the nonlinear load flow equations, or
else they neglect some variables in the formulation, or neglect limits on some
variables. This thesis-will be concerned for the most part with the study of
the OPF and its subsets.

1.2 The Spectrum of Power System Control Functions

At this point it 1is worthwhile to look at the various contr&l functions
required in power system control and the place occupied by the optimal power
flow. Table 1.1 displays some of the major functions, starting with the'long
term functions at the top and moving downward towards the shorter term

functions.

The long term functions deal with planning. Their main purposes are (1)
to predict future electrical energy needs, (2) to assure adequate supplies/pf
energy in bulk over a fairly long time period, and (3) to provide an adequate
infrastrgcture to deliver that energy reliably and economically to the load
centers. They are generally formulated as optimization problems, to ensure

the most efficient use of the new resources.

Planning functions dealing with the power system [Fischl 1975, Sullivan
1977] are generally split into two groups, generation planning “and
transmission planning . Generation planning [Rutz et.al. 1983, Caramanis
et.ak:! 1984, Desrochers et.al. 1986] studles the various alternatives for the
addition of new generating capacity: the timing of the addition, the type,
size, location and cost of the new plants, their integration into the existing
network, and in recent years, their environmental impact. Transmission
planning [Kaltenbach et.al. 1970, Lee et.al. 1974] studies the alternatives
for the addition of equipment to the transmission network, using the same
criteria, to meet the requirements of added generation, or of a changing load
profile, or to improve the system’s reliability in supplying the load. The
time horizon for these functions is[ typically from 10 to 15 years.
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ABLE 1. A LIST OF POWER SYSTEM OPERATION

MARKET AND INVESTMENT ANALYSIS
- Long term demand forecasting
~ Load management policles
- Financing

' POWER SYSTEM PLANNING
- Generation planning
- Transmission planning

MANAGEMENT OF RESOURCES
- Reservoir management (hydro systems)

AN

- Fuel purchasing and allocation policies

9

MEDIUM TERM ENERGY MANAGEMENT
- Maintenance scheduling
- Fuel scheduling
- Hydro & hydro-thermal scheduling

SHORT TERM ENERGY MANAGEMENT
- Load forecasting
- Unit Commitment

% Hydro & hydro-thérmal coordination

OPERATIONS, OFF-LINE STUDIES
- Static coordination problems
- Contingency analysis
- OPF

SHORT TERM OPERATIONS
- Dispatching (optimal)
- Emergency redispatching (non-optimal)

AUTOMATIC GENERATION CONTROL
- Automatic load-frequency control
s- Automatic generation control

MONITORING
- SCADA
- Security monitoring
- State estimation

PROTECTION
- Various protection schemes

- Coordination between protection devices

RESTORATION

\

LONG
TERM

MEDIUM
TERM

SHORT
TERM

VERY
SHORT
TERM

INSTANT
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Planning functions dealing with the energy supply study, thé —efficient
procurement and management of the limited energy resources. In hydro

systems, reservoir management is concerned with the storage of water energy
for use at the most opportune times [El-Hawary & Christensen 1979, Thura &
Gross 1984}. For example, in Quebec most reservoirs are filled during the
spring and the summer to provide for the peak demand in the winter. The water
management Iis complicated by the presence of various reservoir types, with
storage cycles from zero (run of river plants) to one Yyear (large\storage .
plants). Typical planning horizons for reservoir management can be of the
order of five years. In thermal systems, the scheduling of thermal generating
plants is iInfluenced by the availability of certain fpel types, and by the
commitments of long term fuel-purchasing contracts [Kondragunta & Walker 1984,
Levin & Zahavi 1984]. In recent years, planning strategies for resource
management have Incorporated stochastic models, to take into account the
random nature of such things as yearly precipitation levels and fluctuating
fuel prices [Dodu & Merlin 1379].

_ The functions classified hers as medium term form a transition between
planning and operations functions. Given the typical load distribution and
energy production targets over a period of one year, these functions schedule’
the prolonged use/non-use of the various components _of the power system

s [Turgeon 1981, Vemuri 1984]. For example, in prolonged periods of weak
demand, the more expensive generation plants can be turned off. Also in these
periods, system components are scheduled to be shut off for maintenance
[Yamayee 1982]. Then. in periods of strong demand, most of the systenm
components would be made available.

&

The short term and very short term functions are operations functions,

They can be characterized by the presence of power requirements, as opposed to

energy requirements in the previous functions. The short term functions

provide the decisions typically needed to meet daily power requirements. Unit

commitment [Gruhl et.al. 1975, Pang et.al. 1981, Lauer & Bertsekas 1982],

hydro and hydro-thermal coordination [Calderon & Galiana 1987] determine the

g i‘ on/off timing sequence and the general production levels of generating units
e to satisfy most economically the varying power load, plus reserve and rar;lping

constraints. Present algorithms used for these functions only incorporate
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forecasted daily loads at intervals of one hour or so, and usually little or
no power network information is used. Hence as output from these functions
the commitment schedules are firm, but the production levels only serve as
guidelines.

Using these commitment schedules, optimal values of real power\
generations and other electrical variables can be computed, incorporating the
difficult network constraints and equipment limitations, using the optimal

power flow. Besides dispatching real , this program supplies targets for
reactive powers, voltages and passivey controls on the system, which can be
updated at various times in the day. scme OPF implementations, especially

the more recent ones, the so-called security constraints have also been
included to the formulation [Carpentier 1975, Stott et.al. 1987]. These
further restrict the operation of the system, such that following the removal
of any one of the system's components, all the system variables remain
feasible. The security constraints are fed to the OPF by the contingency
analysis function. This studies plausible contingencies in the present
operating conditions, and from them formulates a set of constraints in the
likely post-contingency states. Presently, because of their long computation
times, implementations of the OPF and of contingency analysis are computed
off-line. They would be of great use in dispatching if they could be updated
much faster.

The very short tetm operations functions  are split into optimal
dispatching and non-optimal redispatching. The dispatching finctions are
meant to quickly satisfy the power demand as it varies. As pointed out
earlier, dispatching algorithms optimize the values of the electrical
variables using a simplified network model. Such algorithms are presently
available for real-time control, with solutions being updated in the order of
minutes. The other operations function, also available in real-time, is
emergency redispatching [Krogh et.al 1983]. It is used when the system finds
itself operating with some quantities ocutside their limits, usually following
a contingency. The redispatching forsakes optimality to quickly find a
feasible operating point towards which the system can easily be moved.
Ideally, implementations of redispatching should be faster than those for
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The next group of functions, designated as instantaneous in Table 1.1,
are oﬁ a much smaller time scale than previous functions, and occupy a large
field on their own in power system studies. Hence they are not classified as

operations functions.

Automatic generation control [Wood & Wollenberg 1984] operates in the
order of seconds. It is a closed-loop control vhich monitors and maintains
(1) the prescribed tie-line power flows, and (2) the system’s nominal
frequency, to satisfy the intermal system 1load. The control action 1is
performed by constantly modifying the real power generations to minimize\ a
norm of the discrepancies between the scheduled frequency and tie-line flows
and their measured values. The changes in the Iindividual generations are _
given by their participation factors, which are computed from a perturbation

analysis of the last dispatching solution {[Wood & Wollenbérg 1984}.

Two more very fast functions are presently implemented in real-time.
They are (1) the SCADA monitoring functions, which measure and verify all the
system variables every few seconds [Miller 1983], and (2) protection, which
detects and isolates faulted network elements within hundredths of a second

after the occurrence of the fault [Warrington 1968 & 1974].

The remaining function, restoration, has not yet found its way into its
ideal time slot. This function deals with restoring full use of the power
system following a partial or a total shutdéwn [Peach 1984]. 1Ideally this
would be an operations function, with appropriate strategies being computed
for wvarious partial system shutdown situations. Unfortuﬁately, most
restoration plans presently available stem from simulation studies, which
require complex analysis and numerous runs of programs with wvery long
computation tin:s. As a result, only a few pre-computed restoration

strategles are ever availlable to a utility.

B

1.3 A First Look at the Optimal Power Flow Problem

3

»

A comprehensive description of the optimal power flow problem - its

formulation, its anistory and its solution methodologies - will be provided in
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the following chapters. In this section, we take a quick first look at the
OPF.

The OPF is an operations function whose role is to find the optimal
settings of all the electrical variables in the network, for a given load.
The optimization involves all the electrical variables which are available, as
decided by the scheduling and commitment functions placed higher up in the
control hilerarchy. Optimality is established according to some particular
criterion, expressed as an algebraic objective function. In most OPI:‘ studies
the objective is to minimize fuel costs, although other objectives are
availab]:e for wvarious tasks. Engineering and system limitations are e:;pressed
as algebraic equality and inequality constraints. These constraints include
the nonlinear equations which model the network, called the load flow
equations, and upper and lower bounds on most of the variables. This is the
basic description of the OPF problem.

-+

Additional constraints have been considered for the OPF problem. The
security constraints described earlier have been incorporated in simplified
form into some OPF packages, but according to Carpentier [Carpentier 1987],
few algorithms are presently efficient for security-constrained problems.
Spinning reserve and ramp constraints on real power generation have also been
mentioned as potential constraints for the OPF, but these are probably best
handled in the scheduling and wunit commitment functions. Present
implementations which incorporate these constraints are dispatching
algorithms, with simplified network models in place of the load flow
equations. Tie-line power flows to the neighboring utilities have often been
considered as separate constraints, but their modelling can be incorporated
into the load flow equations. Hence, the constraints desgi‘ibed in this
paragraph will not be considered in the QPF formulation and in the subsequent
solution methodology presented in this thesis.

Using the nomenclature developed for the variables in Chapter 3 and its
appendices, the optimal power f£low problem is expressed mathemfztically as the

following nonlinear program (see next page):

.
'




min f(bspdsobpnp)

by

s.t. g(ba,d‘,bp,p) -0 -

h(b,,d,,by,p) = 0

where
f,gand h are the objective function, the equality and the
inequality constraints, respectively.
is the vector of independent variables.
is the vector of dependent variables.
b, ] is the vector of loads. 1In most tasks, it is a fixed
parameter for which a new éolution is required.

] is the set of fixed system parameters.

This formulation of the OPF problem dates back to the late 19507s- early
1960’s. At that #ime, mathematical optimization theory had just formulated
the tools needed to solve the problem. Since then OFF research has looked for
better ways to solve this difficult problem. Power systems researchers have
been quick to apply the latest emerging numerical optimization techniques, and
in some cases have instigated the development of successful techniques [Abadie
& Carpentier 1969].

In this thesils, dispatching 1is referred to as a subset of the optimal
power £flow. Historically, dispatching algorithms. preceded the OQPF; the
arrival of the OPF marked the end of the "classical" period of economic
dispatch, which had devéloped over almost 30 years [Kirchmayer 1958]. The OPF
was a radical departure from the earlier dispatching, although now those
dispatch algorithms can be seen as crude simplifications o% the OPF.
B 12411; the two solve for the same minimum cost objective, but Iin the

lacsical dispatching algorithms, only real power gemerations were considered,

and the load flow equations were represented by a single equality constraint,

S~ called the power balance equation [Wood and Wollenberg 1984]. By the late
{xy% ) TI960's, more sophisticated dispatching algorithms were developed as an
) outgrowth of the OPF. Here the nonlinear load flow equations are replaced by

a linearized model, but all the variables and their bounds were kept, as in
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the OPF. Since the early 70’s, some implementations have gone one step
further, in separating the components of the weakly coupled real and reactive
power problems in the linearized model. The use of the real and the reactive

dispatch in tandem provides fairly good results, especlally for real power,

dispatch, and is much faster than the full OPF. Also since the early 70’s,
these recent dispatching algorithms have served as subproblems in the OPF
solution methodology. The subproblem is used as a block within an jterative
scheme in which the nonlinear information is updated. The nonlinear optimal
sqlution is reached when the subproblem solution coincides with the load flow
feasible expansion point from which it was generatéd. Thz;t 1s the approach
used in the popular sequential quadratic programming strategy, and it will be

used in the work described in this thesis.

1.4 The Use of the QPF and its Subsets in Higher Order Functions

H .

Pieces of the optimal power flow and of its dispatching subsets hawve been
used as tools in system expansion planning and in the time-related operations
functions. - Transmission planning has become more complex in recent years,
with the load flow constraints appearing in the formulation, along with the
more usual power capacity constraints. The usual objectives of planning
functions are also related to the obAectives in OPF. Many of these are formed
at least in part by the integral over time of the typical OPF objectives. The
most. common of these is the minimum costs objective. Particularly in ree;ctive

power planning, the standard formulations have Iintegrated the load flow

constraints, in implementations ranging 11;1 complexity from linear programming
[Kishore & Hill 1971, El1 Shibini & Dayeh 1975] to nonlinear programming
[Hughes et.al. 1981, Lee et.al. 1986] and integer programming [Kohli & Kohli
1975], Robust commercial OPF programs have been made available over the last
decade, and they are now being used as building blocks for the larger planning
problems. For example, researchers at General Electric have used their OPF
package to solve reactive power planning probllems [Fernandes et.al. 1983].
Typically, the PPF can be wused for long term planning functions, where

t computation times are mot a limiting factor.
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Few efforts have been made to Incorporate any model of the load flow
constraints into the time-related operations functions. Recently, El-Hawary
and Tsang [1986] formulated and solved a hydro-thermal coordination problem
with the nonlinear load flow constraints. Predictably, they reported very
long computation times for realistic sized problems. That being the general
case, usually much simpler and faster dispatching algorithms are wused in
scheduling and unit commitment. An example in generation scheduling is the
work by Waight and colleagues {Waight et.al. 198lal. There the simplest of
economic dispatch algorithms, using the power balance equation to represent
the network, is integrated to the larger scheduling algorithm, along with ramp
and reserve constraints on the generations. In unit commitment also, the
simple dispatching model is integrated into the larger algorithm. Examples
for three solution techniques of unit commitment are mentioned: in branch and
bound [Ohuchi & Kaji 1975} and in dynamic programming [Snyder et.al. 1987]
techniques, the values of the nodes being compared are the solutions f an
economic dispatch algorithm for the various combinations of generators; in the
recent Lagrangian relaxation methods [Zhuang & Galiéna 19871, the economic

&ispatch constitutes the primal subproblem.

1.5 The Continuation Method

This section describes a little-known mathematical technique which serves
as the basis for the work presented in this thesis. The continuation method
serves 1Iin solving (nonlinear) sets of equations, but 1is used in conjunction
with standard numerical techniques. It is also well-suited for optimization.
The literature in numerical mathematics .actually presents the continuation
method from two viewpoints. In earlier publications, it was seen as a metixod
for improving the convergence of the standard methods, by generating sequences
of more easily solved intermediate problems, leading to the desired problem.
In more recent implementations, the intermediate problems have taken omn some
physical significance, and as a result the solutions form some wuseful

trajectories.

The basic idea behind the continuation method is quite simple. Figure

1.1 illustrates this idea for the solution of nonlinear equations. A problem
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F;(x)=0 has a solution x,;, which can be computed using a standard iterative
technique as long as the initial guess is in the region R;. —Unfortunately
this region 1is usually unknown a priori, and in some cases can be very small.

In this example, with an initial guess of x, the standard technique would fail
to converge to the desired solution. In a first step of the continuation
approach, some simply resolved problem F,(x)=0 is built, for which the
solution is x,. F, and F, are linked through a parametric relationship Fy(x)

= F(x,8) = 0, where 6 is a scalar contained in the unit interval, called the
continuation parameter. Given F,, the most general conditions for the choice
of the relationship F(x,8) and for a suitable initial problem F, are covered
in the difficult homotopy theory [Hu 1959]. However, for most applications so
far and particularly for polynomial functions, simple methods exist to

validate these choices [Garcia & Zangwill 1981, Morgan 1987].

The second step of the continuation method consists in increasing the
value of © from zero to one. This can be done Iincrementally for systems which
allow analytical - solutions, or discretely for systems which only allow
numerical solutions. The solution of the desired problem 'F, in the former
case would be obtained by iIntegrating F(x,d0) over the Interval 9 ¢ [0,1].
This has been the basis for the theoretical explanations of this method
[Davidenko 1953], and has been used in some applications. Most applications
however apply numerical solution techniques, either in conjunction with
standard numerical nonlinear solution techniques, or in numerical integration
schemes. ' In these cases, the problem F is perturbed by small amounts starting
from F (x,)=0. If the perturbation is small eﬁough, the solution to the new
problem F(x,8,)=0 1is easily found using the previous solution x;, as an
initial guess. This is illustrated in figure 1.1, with the X;., situated in
the regions ‘of convergence R,, and usually x,;, 1s close to the x,. The
solutiofi to the desired problem £{s achieved when the continuation parameter

reaches one.

Some of the prominent references for the numerical solution of nonlinear
equations by the continuation method are now mentioned. Historically, the
first papers on continuation methods are attriguted to Schauder [Schauder
1934] and to Lahaye [Lahaye 1934, Lahaye 1948], although their work was very

limited in scope. The theoretical basis of the method was established in more
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general terms in the early 1950’s, particularly by Friedrichs [Friedrichs
1950] and by Ficken [Ficken 1951]. In 1953, Davidenko ([Davidenko -1953]
developed the first systematic numerical continuation algorithm for solving
nonlinear equations, based on the integration of the differential equation, as
mentioned above. Over the next fifteen years, advances in this approach were
reported most notably by [Freudenstein & Roth 1963, Deist & Sefor 1967, and
Meyer 1968]. More recently, computer implementations based on Davidenko’s
method were written by Kubicek [Kubicek 1976] and by Rheinboldt and Burkardt
[Rheinboldt & Burkardt 1983b], and made publicly available in the ACM software
library. In all of these applications of the Davidenko approach, there
remained a major unresolved problem: In some Instances, the Jacobian matrix
built at one stage of the process can become singular -for some value of the
parameter, and the process bogs down, Scarf [Scarf 1967] avoided the
Davidenko approach altogether in his solui:ion technique, which is based on the
more difficult simplicial techniques (see [Garcia & Zangwill 1981]). His work
was continued, amongst others in [Eaves 1972, Ea;vei 1976, Saigal 1977, Saigal
& Todd 1978, Saigal 1983]. This line was summarized in [Allgower & Georg

11980]. The singularity problem in Davidenko’s approach was resolved by Chow

and colleagues [Chow et.al. 1978] and by Keller [Keller 1978], in algorithms
which were specifically designed to eliminate the possibility of singular
points. Their ignprovements have made the continuation method a robust
numerical tool for .general use. Some recent computer implementations based on
these improvements fare reported by [Garcia & Zangwill 1979, Garcia & Zangwill
1981, Watson & Fenner 1980, and Morgan 1987]. The last three references are
of particular interest: two are excellent textbooks [Garcia & Zangwill 1981
and Morgan 1987], and Watson'’s program is available in the ACM software

library.

The continuation method has also been used._successfully for the solution
of optimization problems. Parametric linear and quadratic programming using
single parameter variations are in fact examples of the continuation method in
optimization [Boot 1964, Van de Panne 1975]. One application of parametric
quadratic programming to be given a mame of its own 1is Houthakker’s Capacity
Method [Houthakker 1960]. TIts separate treatment 1is justified in that this
method’s solution techniques are different from the simplex-type methods used

at the time. Implementations of parametric linear and quadratic programming
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have been relatively fast and reliable, because their solutions prt;cedures
avoid nonlinear equations and they easily identify changes in the active set
as the continuation parameter Increases. In this thesis, the application of
the continuation method in optimization 1s a form of parametric quadratic
programming. It 1is used as a subproblem for the more general nonlinear

progranm.

Flgure 1.2 illustrates the use- of the continuation method for a small
quadratic program. The axes of the graph represent the two variables x; and
x, and the continuation parameter 6. The feasible region of the problem we
wish to §olve is the poly@on on the front face 6=1 of the polytope in {x,6)
space. Because of ~ complexity, the resulting solution process might be
lengthy. Hence the ntinuation method is tried In the hope of simplifying
the process. The simple problem, at e=0, is chosen so that its feasible
region 1s the rectangular box at the back surface of the polytope in (x,8)
space.\\/The solution procedure easily finds the optimal solution x,* to the
simple problem. Then as © is increased, the feasible region is deformed back
towards its original shape. In the process, the optimal solution trajectory
leads from x," to the desired solution X,", when €=1. Little computational
effort was required, because the optimal solution trajectory changed direction
only once. This is an example of the "varying limits strategy", used in power

systems dispatching [Galiana et.al. 1983].

The solution to the more general and more difficult parametric nonlinear
programming problem has been tackled only in the last few years. In addition
to the usual problems in dealing with the convergence of nonlinear programs,
the major difficulties in these progfams arise in trying to accurately track
the mnonlinear solution trajectories, and in locating the "breakpoints", or
values of 8 for which the active set changes. The main contributions so far
in this fledgling field are possibly those of Guddat, Bank and colleagues at
Humboldt University in East Germany, and Gfrerer and Wacker at Johannes Kepler
University in Austria [Bank et.al. 1982, Gfrer\'er et.al. 1983, Guddat et.al.
19841. Other importgnt contributions have been presented in compilations and
proceedings of sracialized conferences, for example [Fiacco 1982 and Fiacco

1984].



Figure 1.1,

Figure 1.2.

<

16

An illustration for the solution of nonlinear equations
using the continuation method.
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An illustration for the solution of a quadratic program
using the continuation method. )



- 17

ll In power systems, Ponrajah recently t:ackled\~ the nonlinear OPF problem for
a single input load using continuation methods in a manner similar in scope to

Guddat’s [Ponrajah 1987); this application will be discussed a little further.

- From all these applications, there emerge four major advantages in using

the continuation method:

- TFor some problems, the construction of solution trajectories leads to the
solution of the desired solution faster or more reliably (or both) than

N

the standard techniques.

-~ The solution trajectories are useful in their own right, in cases where
the continuation parameter is actually some physical parameter which
varies in the system., One example in various engineering fields is the

so-called incremental loading technique.
- This method is not restricted in its choice of an initial guess.

- This ‘method can be made very robust. That allows to reduce the
occurrence of numerical instabilities. Presently with many numerical
techniques, when a computer program ends abnormally it is difficult to
establish whether the cause is numerical iastability or the infeasibility

- of the problem to be solved. In a recent power system application, the
continuation method has shown the ability to detect feasibility limits
[Famideh-Vojdani & Galiana 1983].

1.6 The Continuation Method in Power Systems

Parametric programming and continuation methods have been suggested for
power system dispatching by a few research groups over the last decade. The
mést common application so far has been the tracking the optimal solution in
dispatching problems, as a function of the varying system load. This is

C . called the "load tracking strategy" in this thesis. Other applications have

also been suggested for dispatching, and recently some researchers have turned




18

their attention to the optimal power flow. There are still many untried areas

in operations and in operations planning for using continuation techniques.

To illustrate the general idea of the continuation approach, we present
Figure 1.3, ‘which portrays in its simplest form the input-output structure of
a power system operation problem. In conventional optimization techniques,
the input is a single load; in the continuation approach using the varying
load strategy, the input is a load trajectory. The resulting output is an
optimal generation trajectory. Implementations of an optimization box for
real power dispatch have proven very attractive - the computations of solution
trajectories by the continuation method are as fast as the solution for omne
load .by most conventional methods. Note that the varying parameter need not
be limited to the load. One example is the varying limits strategy des@%‘{bed
earlier. That strategy solves for a given load, by varying the elect#ical
parameters "inside the big box" from some relaxed positions to their intended
pésitions. Other (as yet untried) parameter variations affecting the system
performance could be useful for plamners. Two of these are suggested inside
the big box in fig. 1.3: (1) for expansion planning, the electrical parameters
(devicéAcapacities, admittances, etc.) are varied and their effects on the
optimal operating costs are readily obtained; and (2) for ‘economic planning,
the effect of an external paraﬁeter (such as wvarying fuel costs) on the

optimal operating costs can be studied.

EXTERNAL PARAMETERS . '

INPUT: T OUTPUT:
LOAD TRAJECTORY DISPATCH TRAJECTORY
o OPTIMIZATION °

L

ELECTRICAL PARAMETERS

Figure 1.3. A schematic diagram of the different positions of parameter
variations for power system optimization.
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I The first mention of parametric programming for power system dispatching
was made by Dillon [1981]. His paper suggests with some detail the general
idea of parameter variations in the right-hand-side of the optimality

equations. (These are the only applications to have been tried so far.)

However, he did not pursue the 1issue any further.

Prof. Galiana and graduate students in the Power Systems Group at McGill
University have been studying continuation methods for the solution of power
systems operation problems since the beginning of the 1980's. TFor his Ph.D.
thesls, Vojdanl produced a computer program implementing economic dispatch
with the varying load strategy, using a DC load flow network model [Fahmideh-
Vojdani & Galiana 1983)]. He shrewdly noted that his work is an application of
the incremental loading concept, developed using a better network model than
in the standard formulation. About a year later, Juman'’s Master'’s thesis
reported on a potentially rapid solution technique for quadratic programming,
based on the wvarying 1limits strategy illustrated earlier {[Galiana et.al.
1983]. A summary of results from those two projects and of some new ideas for
parameter vwvariaticns in economic dispatch were published by this author and
his colleagues in 1985 {[Huneault et.al. 1985]. By then, a second wave of
applications suggested the use of the continuation method for other power
system problems. In his Master’s thesis, Ponrajah [Ponrajah & Galiana 1985]
used Vojdani's program to compute optimal incremental bus costs. Calderon, in
his Ph.D. thes}.s, produced a program for the time-dependent hydro-thermal
coordination problem [Calderon & Galiana 1987]. In that work, he suggested
time-dependent parameter variations which succeeded 1in identifying and
handling the difficult active dynamic constraints. More recently, Ponrajah’s
Ph.D~. thesis applied continuation methods to solve the OPF problem for a
single load [Ponrajah & Galiana 1988]. 1In a first step, he solves a
simplified nonlinear OQPF_ problem, with dependent variables neglected, using
parametric techniques, In a second step, he reintegrates the mneglected
nonlinear constraints into the problem. Violated constraints are handled by
the varying limits strategy, but here, as in Guddat’s Awork mentioned earlier,
the variables are tracked along nonlinear trajectorieé. This author is also,

c proposing an OPF solution methodology in this thesis, but with a much

different solution strategy.
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Starting also in the early 1980's, The French national power utility
Flectricité de France (EDF) has been developing 1its own real and reactive
power dispatch algorithms, based on parametric quadratic programming and the
varying load strategy. Carpentier first reported on their real power dispatch
in 1983 [Carpentier et.al. 1983] , and Blanchon followed shortly after for the
reactive [Blanchon et.al. 1983]. More recent papers report that the utility’s
results with these programs are very promising for wuse in real—timea

dispatching [Carpentier 1985, Carpentier 1986, Carpentier 1987].

A third group, from the Italian power utilities research institute ENEL,
has been exploring the use of parametric methods for real power dispatching
with a look-ahead capability. Franchi and colleagues [Franchi et.al 1980]
proposed an automatic generation control using parametric linear programming,
and then wupdated it to handle network constraints and ramp constraints
[Innorta & Marannino 1985]. They have recently reported on work in this

direction with parametric quadratic programming [Innorta et.al. 1987].

1.7 The Present Thesis

1.7.1 General Comments

B e R I G e

-

The work in this thesis is In part an extension of the McGill group’s
previous dispatching studies using continuation methods. It proposes a

solution methodology for the optimal power f£flow problem, Iincorporating

’continuation methods at different levels.

~

A first application of the continuation method 1s buille into the
optimization solver. We propose to solve the OPF using the well-known
sequential quadratic programming strategy. Here however, the quadratic
subproblem at the heart of the process explolts the varying limits strategy.
The solution process for the OPF subproblem, containing all the electrical
variables, 1s more complex than that for real generation dispatching. New
concepts have been introduced, such as transparent variables and fold lines in

the load flow manifold, in order to adapt the methodology to this problem.
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In a second application of the continuation principle, a sequence of
closely spaced loads is fed to the nonlinear OPF optimization, as portrayed
previously in fig. 1.3. This produces as output a discrete OPF solution
trajectory. Once this load-tracking procedure 1is initiated, the solution
times for the individual OPF solutions are greatly reduced. This 1s because
the proposed algo?ithm is designed to execute its tasks quickly at every level

when presented with a good initial guess from the previous optimal solution.

The merits of the OPF algorithm proposed above have been investigated in
a computer implementation for the economic dispatch task. The OPF algorithm
is modular, with the simpler components feeding the more complex ones. Some

of these modules can be used on their own for the simpler dispatching

functions. Two of these modules are the real power dispatch module and the
continuation method - quadratic subproblem itself, which 1is basically a
voltage - reactive power dispatch. Results from the program were closely

monitored throughout the computation, and provide much insight into the

internal workings of the algorithm.

3

1.7.2 Outline of the Thesis

The chapters of this thesis are organized as follows:
T

CHAPTER II - SURVEY AND ANALYSIS OF THE OPF LITERATURE

This chapter presents a ¢ mprehensive survey and analysis of the optimal
power flow literature. I\n a fiirst part, a compilation of some three hundred
publications on OPF and di‘{gayz'ching is organized chronologically and according
to the optimization techniques used to solve the problem. The more important
contributions are signaled out in the discussion, but all the publications are
listed in an appendix. The general trends Iin solution techniques for the OPF
over the last 15 years or so are also examined. In a second part, the basic

'

OPF solution methodology is broken down into its basic components, and options

for each component are enumerated. Example- from the literature of the uses

]
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of the wvarious components and solution structures are enumerated in what could

be used as a classification scheme for OPF.

CHAPTER III - DESCRIPTION OF A NEW OPTIMAL POWER FLOW ALGORITHM
*

This chapter presents our OPF algorithm, featuring applications of the
continuation method. It also presents many numerical techniques used to aid
in the solution. The algorithm 1s first presented in general, in a
descriptive manner, to give the reader a better feel for what is to follow.
The OPF and its quadratic subproblem are then formulated mathematically, and
all the system wvariables and parameters are introduced. Then the OPF
algorithm is presented in detail, covering each componént of ttcle program, and
in some cases, the alternatives which were discarded. Among the important
detalls are the subproblem solution procedure, the various homotopy strategies
for solving the subproblemn, the Newton-Raphson  solution procedure
incorporating a step size control, the explanation of the inherent numerical
difficulties which require an "anti-zigzagging" device, and the load-tracking
step.

CHAPTER IV - SOLUTION OF THE OPF SUBPROBLEM USING THE CONTINUATION METHOD

t In this chapter, the mathematical details off the subproblem solutions are
presented. The quadratic subproblems for three tasks are analyzed: economic
dispatch, minimum loss and minimum load shedding. The first two tasks are
solved in two ways, using either the varying limits strategy or:.the varying
load strategy. Details are available gor the solution of economic dispatch by
the varying limits strategy, so they are presented here. The minimum load
shedding subproblem is then formulated for the first time in this thesis, and
a solution procedure is suggested using the varying demand strategy. For each
task, we provide the subproblem formulation, the resulting optimality
conditions and the solution trajectories, and a suggested initial, simple

problem to start the continuation process.



CHAPTER V - OTHER APPLICATIONS OF THE CONTINUATION METHOD IN OPF

A few more applications of continuation methods In power Ssystem
operations are proposed in this chapter. They are: (1) a formulation and a
solution technique based on the continuation method, for the incorporation of
the time-dependent ramp constraints into the que:dratic_ subproblem of economic
dispatch; (2) a strategy to vary transmission and generation parameters by the
continuation approach, in solving for post-contingency redispatch; (3) a look
at possible additions to the real power dispatch using the DC load flow model;
and (4) the computation of optimal bus incremental costs, based on the

solution of economic dispatch by the varying load strategy.

CHAPTER VI - DETAILS OF THE NUMERICAL IMPLEMENTATION OF AN 'ECONOMIC DI%PATCH
- OPF ALGORITHM

This chapter docum._ents the main procedures of a computer program which
implements our OPF algorit;un for the economic dispatch task using the varying
limits strategy. First some general comments are made concerning the basic
building blocks of the program: data structures, linear equation solvers, and
matrix-vector products. Then the detalls of the subproblem solution are
presented’ Special attention is given td the real power dispatch solver,
which }could be used on its own. Other important sections of the subproblem
computa&ion are also described: the quick updating schemes for the optimality
conditions following changes in the active set, the computation of solution
trajectories, and determining the next breakpoint. Tests for resolving

certain cases of degeneracy were also implemented in the program.

CHAPTER VII - DESCRIPTION AND ANALYSIS OF THE NUMERICAL SIMULATIONS

This chapter documents and analyzes the numerical results obtained from
our OPF program. Tests were carried out on four test systems, ranging in size
from 6 to 118 buses. In a first section, the results for the 6 bus system are
presented. Here the series of graphs and tables are commented in detail.

Then for the remaining tests, the same set of results are presented in the

\
\
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graphs and tables, but only- 1;'he \hfg.hlights are displayed in the discussion.
The results, which cover the whole range of computations, are presented from
the most general to the most detailed. They include an analysis of the global
_ performance of the solution progedure, and the wvalues of the variables at
varlous stages of the computation. Following this presentation, a discussion
reviews and analyzes the main results. Our results for the 30-bus test are
then compared tc; those of other programs. The chapter closes with a
discussim} on numerical difficulties encountered in the program and possible

remedies.

I i PP I 1

This being a fairly large thesis, the author suggests a limited list of
important sections for a quick first reading. They should give the reader a
good overview of the work before delving into the detalils.

Chapter 1II, sections 2.1, 2.2, 2.3 and 2.5.1

Chapter III, sections 3.1, 3.2, and 3.4.4.5 )

Chapter IV, section 4.1 and the opening descriptive paragraphs of the

formulation sections 4.2.1, 4.3.1 and 4.4.1 e

4(/;ﬁfapter VII, sections 7.1 and 7.6 to 7.9 = T

1.8 Claim of Origjinality

To the best of the author’s judgement, the following are original

contributions to the study of the optimal power flow problem:

(1) A comprehensive classification scheme for the description of optimization

algorithms used in OPF and dispatching. [Huneault & Galiana 1988]

(2) An algorithm for solving the OPF problem based on the sequential
quadratic programming strategy and invelving continuation methods at
P

different stages. This includes:



25

(a) A new, more general formulation of the OPF quadratic subproblem:

(b

i1.

iii,

‘iv .

It is formulated in a space of real power injections and other

variables, so that it is useful on its own as a dispatching

tool.

The set of independent variables can be varied dynamically,

using simple rules, to simplify the solution process. <

The notion of transparent variables and their efficient
exploitation are iIntroduced for the first time in an OPF

algorithm.

Restrictions wusually placed on the slack injection in the
formulation are eliminated. ‘

g
The resulting optimality equations form a very simple and
attractive structure from a numerical point of view: a bordered

block with-a diagonal main submatrix and a small border.

A solution methodology for the quadratic subproblem based on the

continuation method.

i.

ii.

iii.

The varying limits strategy, used successfully in real power

dispatching, has been adapted for use in the OPF subproblem.

A more difficult “"initial simple problem", based on that in
real power dispatching, is completely analyzed and implemented.
Certain theoretical points concerning the dispatching of

compensation devices have emerged from the analysis.

An efficient algorithm has been implemented to track the
optimal solution o‘f the subproblem using the varying limits.

strategy.
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\
iv. Quick numerical updating schemes are developed for the

optimality conditions follbwing a change in the active set.

(¢) A set of rules for ensuring convergence ‘of the nonlinear OPF

optimization. This Includes:

i. The use of a step size as a means to control nonlinear
convergence of the OPF algorithm. This has been used in the
quasi-Newton Han-Powell method for OPF, but not in a Newton

method.

e - -

i1. The development of simple heuristics for this step size

control. -

i11. The use of a non-standard load flow solver to ensure descent of
the objective function (used, albeit, as a backup for a more

commonly used technique).

iv. The development of simple heuristics for step size control in
the Newton-Raphson solver.

v. In the context,of the OPF problem, a theoretical explanation of
a problem inherent to the linearization of nonlinear .equations,
which causes a numerical problem called zigzagging.

vi. The development of simple heuristics used to reduce zigzagging.
) \
(d) The addition of a load-tracking loop to the OPF algorithm, as a

means to produce quick OPF solutions for subsequent loads.

A theoretical analysis for applicatilons of the continuation method to the

subproblems of other operations tasks.

(a) An analysis of the OPF subproblem for economic dispatch based on the
varying load strategy. /
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(b) An analysis of the minimum loss subproblem.

i.

i1,

111.

iv.

The linear formulation of real power losdes P, = eT(Ps - P 1s
proposed for use as the objective function in minimum loss

opt imization problems. * )

The optimality conditions resulting from the use of the linear

objective are formulated for the minimum loss problem.

Theory is provided for the solution of this minimum loss
problem by the varying limits strategy. )
Theoxry is provided for the solution of this minimum loss

problem by the varying load strategy. (

(¢) An analysis of the load shedding problem.

i.

i1.

ii1.

iv.

A formulation of the load shedding problem in which the

objective 1is clearly a norm of the unsatisfied load.

Inclusion of the active dispatching constraints in the '

formulation of the load shedding constraints.

An analysis and a proposed algorithm which 1links the optimal
loads suggested by the 1load shedding to its corresponding

unique optimal dispatch of generations.

The optimality conditions are formulated for this minimum loss

problem.

Theory is provided for the solution of the load pshedding
problem using the "varying demand"” strategy. This strategy is

also new to this thesis.

{d) Theory for the inclusion of ramp constraints to the OPF subproblem

developed in this thesis and a suggested method of solution using

continuation methods. N




(e)

(£)

(g)

28

Strategies are suggested for parameter varlations of the
continuation method associated with contingencies in the jowver

system.

A solution methodology based on the continuation approach is
proposed for real power dispatch based on the DC load flow model
augmented with phase shifter variables.

Theory is provided to compute bus incremental costs for real and
reactive power loads, based on the solution of economic dispatch

using the varying load strategy. p

~

(4) A fast, hybrid, real power dispatch algorithm,, implemented in the OPF

&)}

.....

algorithm, but which can be used on its own. -

A computer program Iimplementing the OPF algorithm for the econonic

dispatch task, using the varying limits strategy in the subproblem and a

load-tracking loop.

(a)

()

(¢

(d)

A large set of numerical results from the“progrg.m, {1lustrating the

behaviour of the algorithm on four test systems, ranging in size

from 6 to 118 buses.

A- discussion which provides a fair amount of insight into the

mechanisms of the computation.

The confirmation of predicted advantages of the method: (1) in

tracking the subproblem sclutions with relatively few breakpoints,

(2) in obtaining descent of the objective function at each
iteration, and (3) in computing quick solutions in the load-tracking

mode.

A cescription and an analysis of future improvements to the present

program.

o~



CHAPTER IT

- SURVEY AND ANALYSIS OF THE OPTML POWER FLOW LITERATURE
2.1 Introduction

The history of optimal power flow research can be characterized as the
application of more and more p;:werful optimization tools to a problem which
basically has been well-defined since the 1950's. Modern optimization theory
dates back to about that time, and advances in numerxrical optimization has
followed the theory closely. Both have made great strides since their
infancy. Optimal power flow (OPF) has been quick to profit from these
advances and from speccacular advances in compﬁter technology. Steady
progress has manifested itself in the solutions of larger and more complex

problems In a suitable time frame.

The first part of thils chapter proposes an exhaustive survey of the OPF
literature, organized with a view on optimization techniques. Preparatory
material on basic optimization theory and on  numerical methods has been
relegated to Appendices 2.1 and 2.2, respectively. The chapter begins with a
general overview of tasks performed by OPF, and the evolution of solution
techniques. There follows a discussion on recent trends. A detailed survey
of the 1literature then 1lists the major contributions ix; each branch of
activity; these and other references have been compiled in an exhaustive list,

presented in Appendix 2.3. ,

The second part of this chapter proposes an analysis of numerical
optimization methods used in OPF and its subsets. This covers formulations
and solution procedures. Basic elements are described, along with the many
available options, and structures of numerical computation are identified. A
summary of the analysils, suitable for classificati'on of OPF algorithms, is

presented in Appendix 2.4,
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2.2 A General Overview

Figure 2.1 traces the evolution of the OPF literature, from the early
stages to the present. It shows many things: the arrival and the
disappearance of methods, the relationship between methods, and the interest
shown in each method.  The structure of the figure t‘j.s based on the
presentation of numerical optimization methods of Appendix 2.2. 1Its actual
filling-in is based on the compilation of some three hundred publications on
OPF and its subsets. The chronology of each method is clearly depicted, and
the interest shown in each method, as measured by the number of yearly
publicat.:ions, is represented by the height of the blocks. The literature
survey will consist more or less in filling in the details of fig. 2.1.

The main groupings z;re according to the performed tasks. By far the most
studied is minimum fuel costs, or economic dispatch. The first systematic:
efforts, dating back to the early 1930's, produced the "incremental loading"
methods (branch A in fig. 2.1). The addition of losses to the network model,
starting In 1943, resulted in the "classical" economic dispatch (branch B).
Optimality conditions for these methods constitute the equal incremental cost
criterion ,and thus lends its name to this first group of methods. Other
branches in this group consider additional problems, such as valve point
loading (branch E), dynamic constraints (branches T) and interties (branches C
and D).

Equal incremental cost methods constitute the most popular economic
dispatch tool. Loss models have been improved over the years, and in recent
proposals, classical economic dispatch has served as a bullding block for more
complete algorithms. These methods are simple and fast, because they limit

the network modelling to its simplesv expression.

A second group, dating from che early 1960’'s, occupies the other end of
the spectrum. The true OPF techniques consider all variables, nonlinearities,
and bounds. Their development was made possible by the appearance of powerful
optimality conditions in the 1950’s. The various applications have followed
the evolution in numerical optimization, from inefficient successive

approximation (early 60's), to gradient and penalty methods (60’'s and early

L 9
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70’s), to sequential linear and quadratic programming U(‘l‘:idf-'m's - present),
gnd parametric programming (80's - present). In figure 2.1, OPF methods have
been split into three groups. Gradient (branch I) and successive linear
programming (branch J) are placed in the group of linear methods. Newton
strategy (branch K) and Project;ad Lagrangian (branch L) are in the group of
quadratic methods. Penalty methods (branch N) are classified on their own for
their formulation; their solution, in fact, usually follows a quadratic

technique.

A third group bridges the gap between the equal incremental cost methods
and the full OPF techniques. First appearing in the late 1960’'s - early 70’s,
methods based on linear (branch 0) or quadratic (branch Q) programming offer
some of the advantages of both previous groups. While retaining a simpler
linearized model of the network, all variables and bounds can be represented.
Chronologically, in fig. 2.1, these methods are portrayed as spin-offs from
the more general nonlinear methods. More recent sub-branches explore the use
of mnetwork techniques for 1linear programming (branch P), parametric

programming (branches R), and dynamic constraints (branches T).

A remaining group for economic dispatch is based on the decomposition of
the OPF problem into two subproblems, for real and reactive powers (branch N).
Each subproblem holds constant variables of the other subproblem. The
subproblems are solved alternatively, with one feeding new values to the

other. Each subproblem can then fall into one of the previous categories.

Tasks other than economic dispatch have received relatively 1little
attention. In fig. 2.1, only the reactive power-voltage control task has
enough entries to warrant some kind of classification. It 1Is based on
objective functions though, and not on optimization methods. These other

tasks will be discussed later,
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. ecent Trends in OPF { .

Recent trends in OPF can be traced in its more important review papers,
Going back to 1974, Sasson and Merril [Sasson an Merrill -1974] discuss the
different uses of OPF, linking it to planning, medium-term operation problems
(unit commitment, reserves and scheduling), and special static problems
(reactive dispatch, environmental dispatch). Optimization methods considered
promising at the time were uncons:trained Newton and quasi-Newton techniques
associated with penalty methods, and gradient methods aimed at solving the

Kuhn-Tucker conditions.

A few years later, Happ’s review [Happ 1977] put the emphasis on equal
incremental cost methods for economic dispatch, with various improvements
(valve point 1loading, multi-.area dispatch, considerations for automatic
generation control (AGC), and envirommental dispatch). He also presents the
more general nonlinear problem and cites linear programming and gradient

so]/.qtion techniques.
// - \\\

In the two previous reviews, the authogs basically rep;orted on thelr
areas of expertise. ,Stott and his colleagues [Stott et.al. 1980] give a more
comprehensive picture of the state of the art at the beginning of the 1980's.
They look at the different elements (objectives, constraints, modelling) of
the problem, and qualities of a good numerical solver. Solution techniques
considered promising are primal and dual-based gradient methods, penalty
methods, and successive linear programming. The benefits of decoupling real
and reactive subproblems are also discussed. Finally, they describe the idea
of using the OPF as a simulation tool for contingency-cogstrained OPF.

J

Talukdar and Wu ([Talukdar & Wu 1981] cover many areas of power system
operation in their review. Methods reviewed for OPF are classical economic
dispatch, gradient methods, and for the first time in a review, a (non-

penalty) quadratic method, the Han-Powell quasi-Newton method.

Dillon [Dillon 1982] presented a study of penalty methods at about the
same time, and concluded that they present serious weaknesses for thermal

power dispatch. Interest has waned of late in these methods.

[l
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Much progress was achieved in quadratic methods by the time the review by
Carpentier was published [Carpentier 1985]. He first suggests an interesting
classification of methods, based on properties of the algorithmic structure.
Solution techniques using gradient methods and the new projected Lagrangian
methods are described and compared for reliability and computation time on
typical problems. He singles out one of the quadratlc methods as being very
promising [Sun et.al. 1984]. He also notes that despite recent advances in
software and hardware, none of these methods is suitable for on-line use. He
then discusses recent parametric quadratic methods applied to decoupled real
and reactive subproblems. These methods were developed amongst others by
Carpentier and his colleagues. In this and in a follow-up pape\r\ €arpentier
1987}, he considers the possibility of using these algorithms on—he\and in
contingency-constrained OPF.

The latest important review on OPF 1is that of Stott and colleagues [Stott
et.al. 1987]. As in their 1980 revfew, these authors present the state of the
art in the field, as well as their own insights into the different aspects of
the OPF problem, and the directions for future research. They classify the
latest OPF implementations in much the same way as in Carpentier’s 1985
review, and comment on the different structures, The emphasis 1s placed
however on the development of new security-constrained OPF algorithms, with

different levels of complexity for the security control strategies.

Present trends for OPF are geared towards dispatching in real-time. Most
recent implementations seem to be going towards the decoupling idea [Stott &
Alsac 1983, Sun et.al. 1984, Carpentier 1985, Innorta & Marannino 1985,
Contaxis et.al. 1986]. The real power problem having been extensively
studied, interest has shifted of late towards voltage - reactive power
dispatch, The nonlinearity of the latter problem makes it difficult to resolve
quickly [Stott & Alsac 1983], but reasonable computation times have been
reported for large systems [El-Kady et.al. 1986]. The real and reactive

subproblems are being solved mostly usiné quadratic methods.
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2.4 Detailed Review of the Literature

Full lists of publications for each branch of figure 2.1 can be found in
Appendix 2.3, giving author and year of publication. The complete information
can then be found in a bibliography, separate from the references. This

section points out only the main contributions in each branch of the OFF
literature.

2.4.1 Economic Dispatch

The early work on incremental loading (branch A) is summarized in the
book by Steinberg and Smith [Steinberg & Smith 1943}. Fuel cost curves are
accurately represented, including "bumps" due to valve points. The network is
represented by a lossless power balance equation. Using this model, equations
are derived to characterize optimal operating conditions; they are called
coordination equations. The ensuing natural solution strategy 1s called the
equal incremental cost criterion. The implementation at the time was by graph

or by" a dedicated slide-rule.

Yhe addition of a model for real power transmission losses to the
Incremental loading problem lead to classical economic dispatch. A first loss
model was proposed by George [George 1943]. Improvements from the late 1940's
- early 50’s produced the B coefficient model [Kirchmayer & Stagg 1951, Glimn
et.al. 1952, Hale 1952]. It is based on certain assumptions [Tudor & Lewis
1963] which allow real power losses to be expressed as a quardratic function of

real power generations. Despite being a rough appré;&.umation, it has remained

" popular {[for example, Aoki & Satoh 1984, Mansour et.al. 19B4, Wenyuan 1985]).

Coordination equations were developed [George et.al. 1949, Kirchmayer & Stagg
1952, Glimn et.al. 1954] to incorporate the losses. Since then, a quadratic
approximation of the objective function has wusually been chosen for
imple}lentations, on analogue computers [George et.al. 1949] and on digital
computers [most publications from the early 50’s]. Kirchmayexr's book

[Kirchmayer 1958] summarizes the work on classical economic dispatch.
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At about the same time, improved lossmodels were proposed [Brownlg.e
1954, Cahn 1955] based on network equatiofs. Linear models were built from
first order differential information [Tador|& Lewis 1963, Van Ness 1963], and
later quadratic models using second order ijformation [Hill & Stevenson 1968].
In these, all independent variables are; involved. The linear models have
remained more popular, since they are more easily apdated in iterative
algorithms. These iterative algorithms appeared in the 1970's [Happ 1974,
Wollenberg & Stadlin 1974, Shoults 1977]. Basically, they use the EICC method
as a subproblen, updating nonlinear information and handling dependent

constraints at each iteration.

Branches C and D 1look at interconnected systems. The coordination
equation approach (branch C) was first proposed with two or three interties
[Glimn et.al. 1958, Kirchmayer 1959, Kerr & Kirchmayer 1959]. Methods for
systems with any number of interties appeared some ten years later [Aldritch
et.al. 1971, Happ 1975]. In all these proposals, equality constraints are
added to the basic formulation to enforce intertie power flows., Some other
approaches (branch D) consider nonlinear programming [Peschon 1972] and linear

programming [Deo 1973].

Computer implementations of economic ‘dispatch incorporating the effects
of valve points on the cost function are rare. That is because the modelling
of nonlinearities and.the ensuing optimization problem are difficult, and the
benefits rather smalf. Reported benefits range from 0.1% [Ringlee & Williams
1963] to 1.8% [Decker & Brooks 1958] over dispatches which neglect valve
points. Network models in these implementations are limited to their simplest
expression to avoid complicated nonlinear programming. Another difficulty,
discussed by most authors and analyzed by Vojdani [Famideh-Vojdani 1982], is

the discontinuity of oprimal solution trajectories.

Concerns with the effect of emissions from fuel-burning power plants on
the environment (branch F) attracted attention over a perlod of some 7 years,
starting in 1970. Early proposals for minimum emission dispatch [Gent a&
Lamont 1971] or reduced area-wide emissions [Delson 1974] were usually rather
simple, adding a single equality constraint to the problem. The paper by
Cadogan and Eisenberg [Cadogan and Eisenberg 1977] collects many of the ideas
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in the field, proposing different formulations, with single-area or multiple-

location emission constraints. Note that the proposed constraints have always

been static, with no build-up or displacements of emissions being considered.
/

Solution of the classical economic dispatch by dynamic programming
(branch 8) wa-s proposed to avoid modélling valve point mnonlinearities
explicitly .[Ring.lee & Williams 1963]. " This branch has long since been
terminated.

In the remaining branch T, dynamic dispatching proposes the addition of
dynamic ramp constraints to the usual static economic dispatch. This is
different from the case with static ramp constraints [Isoda 1982], in that it
offers a lodk ahead capability , to avoid infeasible operation following large
jumps in system load. A disadvantage ,1s that many coupled static problems
must be solved in tandem, but proposal’; based on classical economic dispatch

[Bechert & Rwatny 1972, Ross & Kim 1980] are relatively easy to solve.

>

b) Linear Methods Group

This regroups the various dispatching and true OPF methods based on
linear approximations forming the search direction, plus two precursors.
Squires ([Squires 1961] used classical Lagrangian techniques to formulate the
optimality conditions for OPF (branch G). These incorporate the load flow

2 equations, but néglect bounds on +wvariables. A vyear 1later, Carpentier
[Carpentier 1962] presented the optimality conditions £for OPF, including
bounds, based on the Kuhn-Tucker conditions. This is generally considered the
first publication on OPF. The proposed solution technique of successive

. approximation was inefficient though, and it was mnever implemented ip a

production code. ’

The first efficient solution of OPF was accomplished using gradient
methods. Basically two varia#‘xts dominate the literature. The Carpentier
approach ([Carpentier 1968 & 1972] solves the OPF by the primal method. The
Dommel and Tinney approach [Dommel & Tinney 1968] solves the Kuhn-Tucker

equations wusing a combination of the gradient method for a fixed set of
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independent variables and penalty functions for violated dependent
constraints. The latter has the advantage of a fixed formulation, but is
hampered by the problems associated with penalty factors. It has been the
more popular of the two gradient methods, and indeed one of the more popular
in the entire literature. Important improvements were proposed to exploit
sparsity [Peschon 1971], or the fast decoupled load flow model [Alsac & Stott
1975]. Many features were included to the basic algorithm in an

implementation by researchers from General Electric [Burchett et.al. 19801].

Two other applications of gradient methods can be mentioned. Wu and
his colleagues [Wu et.al. 1979] solve the OPF in two stages, both by the
gradient method. The first stage ignores dependent constraints; after

adjustments to the solution, the second stage adds possibly violated voltages

to the objective via penalty functions. This program has the capability of
handling wvery large problems, but often infeasible wvalues remain upon
completion. In the other application, Burchett and colleagues [Burchett
et.al. 1981] applied the general purpose nonlinear programming package MINOS
[Murtaugh & Saunders 1980 & 1983] to solve the OPF problen. It builds

. internally a sequence of projected Lagrangian subproblems, which it solves by

any one of a family of gradient methods.

Successive linear programming (branch J) has been used in a few OPF
applications to date. Khan [Khan & Kuppusamy 1979] suggests the use of a
linear programming subproblem in a nonlinear iterative loop, with special
considerations to avoid oscillation of the iterates. Stott and Alsac [Stott &
! Alsac 1983] present the results of their experience with SLP, following
extensive work with 1linear programming. Researchers from Control Data
Corporation [Van Meeteren et.al. 1986] reported recently on their work with

uccessive linear programming, but detalls are lacking.

Linear programming applications (branch O0) abound in real power

ispatching. Early papers [Wells 1968, Shen & Laughton 1970] were already

quite complete, with pilecewise-lineaxr objectives and constraints on all

- variables. A first major production code based on LP was developed by EDF
«a; . [Merlin 1972] to handle most operating tasks. Many publications have been
presented since then in the 1970’4 - B80'’s, the best known being those of Stott

\'t
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and colleagues [Stott & Mdarinho 1979]. Many features, including piecewise--

linear objectives and the latest sparse methods are included in their program
for real power dispatch. Very fast network techniques (branch P) have been
broposed during the 1980’'s [Lee et.al 1980 &1981, Hobson 1984] to solve

network-structured linear programs.

Parametric linear programming (branch R) is the newest wvariant of the
group [Innorta & Marannino 1985]. It efficiently computes solution
trajectories for real power dispatch, given a load forecast. Look-ahead times
of as much as one half hour have been considered. This branch might -be short-
lived, since the authors have recently converted to parametric quadratic

programming.

e et e A e o . = = = =

Many of the tailor-made OPFF algorithms proposed in the late 1960's-
early 70's can be classified as Newton strategy methods (branch K) ([Peschon
et.al. 1968, El-Abiad & Jaimes 1969, Shen & Laughton 1969]. Typically ‘these
methods solve the Kuhn-Tucker equations using the Newton-Raphson solver for
nonlinear equations, with added contréls for active constraints. The standard
successive quadratic programming, which developed in the early 70’'s, offers a
more flexible solution ' algorithm, made up of reliable parts. The first
applications in power systems came ' béfore the popularization of the added
exact penalty functions. In 1973, two papers [Nabona & Freris 1973, Nicholson
& Sterling 1973] proposed quadratic subproblems to drive the optimization,
followed by a Newton-Raphson solver to maintain feasibility. In both cases

the subproblems were solved uging Beale’s method, a simplex-type technique.

Since the mid 70's, quadratic programming methods based on the Kuhn-
Tucker equations have taken over. Methods using this formulation and applying
the Newton search direction in the solution process are called Lagrange-Newton
methods. Dillon [1975 & 1981] has investigated these methods, and proposed
parametric programming extensions. This branch has evolved, with the advent

of exact penalty functions, into projected Lagrangian methods.

-
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The first projected Lagrangian programs for OPF (branch L) were proposed
in the iate 70's - early 80’'s [Biggs & Laughton 1977, Lipowski & Charalambous
1981]. They have been overshadowed by some well-publicized commercial OFF
packages. The General E‘lectric package has evolved along with MINOS from a
gradien't solver [Burchett et.al. 1981] to a quasi-Newton solver [Burchett
et.al. 1982] to a Newton solver [Burchett et.al. 1984, Maria & Findlay 1986].
The ESCA package [Sun et.al 1984] implements the Lagrange-Newton solver to
sparse decoupled subproblems, with penalty terms added to handle violated
dependent constraints. The PCA package [PCA 1985] also uses the Lagrange-
Newton solver and decoupling, but little else is known about 1it. Researchers
from Control Data Corporation [Van Meeteren et.al 1986] have reported recently
on their package, including both successive linear and successive quadratic
programming.

»

Quadratic programming applications for dispatching ~f7irst: appeared in a
flurry,in 1973 - 74 [Nabona & Freris 1973, Nicholson & Stexrling 1973, Reid &
Hasdorff 1973, Podmore 1974, Wollenberg & Stadlin 1974]. Some of these were
proposed as subproblems and some on their own, for real power dispatch and
reactive power dispatch. Podmore formulated a quadratic program, but
inappropriately solv;:d it by the gradient method. Another good paper on the
subject is that of Dayal [Dayal et.al 1976], which also includes discussions
on sparsity an}d degeneracy. All those R&pers used primal simplex-type solution
techniques. Since then few implementations have been reported. Applications
based on th.e Kuhn-Tucker conditions appeared -in 1982 [Bottero et.al. 1982,
Quintana & Lipowski 1982]. ’

The two remaining bWHranches in this group are related. Parametric

quadratic programming anch R) was proposed by Dillon [Dillon 1981}, but he
did not pursue the( issue. Since the early 1980’s three research groups have
been active in the \field. The McGill University group, of which this author
is a member, has ported good results for real power dispatch wusing the
continuation method, in two different applications [Famideh-Vojdani & Galiana
1983, Galiana et.al 1983]. A recent paper reported on various new parameter
variations for redispatching [Huneault et.al. 1985]. The EDF group in France
has solved decoupled real power [Carpentier & Cotto 1983] and reactive power

[Blanchon et. al. 1984] problems. They report that the very fast computation
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times make these methods promising for real-time dispatching: A third group,
from the TItalian power wutility ENEL, have applied parametric linear
programming [Innorta & Marannino 1985] and parametric quadratic programming
[Innorta et.al. 1987] to real power dispatch. In the second publication, they
also include dynamic costs and ramp constra.xints (thus constituting branch T);

the combination of parametric and dynamic techniques seems well-suited.

d) Penalty Methods Group -~ .

1 Ty M

03

This group is based mainly on the work of Sasson and colleagues during
the late 1960’s - early 70’s. They applied the newly developed SUMT method to
OPF. Their first implementations used quasi-Newton techniques [Sasson 1969a].
These were soon considered inadequate for large power system problems, and
were replaced by Newton methods [Sasson et.al 1971b & 1973]. They proposed
applicatior}s for economic dispatch, minimum loss [Sasson 1969b] and even load
flow [Sasson et.al. 1971lal. Since then, similar applications have appeared

sporadically.

TI"le. splitting of OPF into subproblems has been quite common. Today many
publications propose real or reactive dispatch algorithms which could be
inserted as subproblems into a decoupled OPF. Publications placed in this
group (branch M), however, consider the entire nonlinear optimization. Dopazo
was the first to solve a P-Q de;:omposition [bopazo et.al. 1967]. The proposed
solution process used classical economic dispatch for real power and a minimum
loss objective for reactive power. The latter was solved using a gradient
solver. Other objectives for reactive power subproblems are discussed a
little further. Later publications, grouped mostly in the early 1970’'s and
early 1980's, use tlie same solvers for both éubproblems. Solvers include
linear programming [Chamorel & Germond 1982], quadratic programming [Nicholson
& Stirling 1973, Contaxis et.al. 1983], gradient [Talukdar et.aal. 1983, Lee
et.al. 1984], and SUMT - Wewton [Housos & Irisarri 1983]. Recall that sex;eral

.
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of tﬁe projected Lagrangian methods reviewed earlier also wuse decoupled

formulations. ‘

.

2.4.2 Reaetive Power and Voltage Control

- = . A e = s G e T D e e e AR R T e m ew e e e -

Reactive power and voltage are often dispatched alone, after real power,
using the remaining degrees of freedom offered by the network. The benefits
are "reduced production costs, unloading of equipment, and an improved voltage
profile" [Fernandes et.al. 1978]: Typically some norm of reactive power
deviations [Kishore & Hill 1971, Stott & Alsac 1983], or a closely related
function such as real power losses [Peschon et.al. 1968, Billinton & Sachdeva
1972, Franchi et.al. 1983] or dependent "slack" generation [Adielson 1972,
Fernandes et.al. 1978, Contaxis et.al. 1983] is minimized, subject to voltage,
reactive power, -shunt, and tap constraint;. Three branches of fig. 2.1, U,V,
and W respectively, correspo/nd to the three objective functions. In some of
the earlier cases only volt%ges were comtrolled [Kumai & Ode 196f£, Hano et.al.
1969, Narita & Hamman 1971, Savulescu 1976}. In a recent paper [El-Kady
et.al. 1986], the objective is a combination of muimum loss ‘and minimum

deviations.

'Solution methods for this problem include linear programming [Kishore &
Hill‘ 1971, El-Shibini & Dayeh 1975, Zhang 1986a & b], paramet;ry:ic linear
programming [Blanchon et.al. 1984], and successive linear grogramming
[Elangovan 1983, Stott & Alsac 1983, Mota-Palomino & Quintana 1986]. Stott
and Alsac note tha}: due to the high nonlinearity of the problem, a single pass
of LP is inadequate; in fact, usually many iterations are required. Other
solution methods. are quadratic programming ([Nicholson & Sterling 1973},
gradient [Fernandes et.al. 1978}, and nonlinear quadratic methods [Horton &
Grigsby 1984, Padiyar 1986]. A sequence of papers on the subject by
researchers at General Electric [Fernandes et.al 1978 ,Happ & Wirgau 1978,
Wirgau 1979, Aldrich et.al 1980] and in collaboration with researchers at
Ontaric:-l{ydro [EL-Kady et.al 1986] closely parallel their work reported

earlier on economic dispatch.

r
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2.4.3 Other OPF Tasks

- e e . = W o

Minimum Lloss (branch X) solved as a function of all dispatchable
variables has received little attention.’ It is of some use only where
dispatchable power comes mostly from hydro-generation. Two early papers
[Calvert & Sze 1958, Sze et.al 1959] apply classical Lagrangian techniques to
obtain the optimality conditions of the problem. A later application [Sasson
1969b] solves the problem using SUMT. -

Post-contingency d.ispatching problems make up the next two branches. The
minimum deviations task (branch Y) is invoked following a contingency, to find
a feasible operating point as close as possible to the pre-contingency
operating point. The deviations can be considered for some variables [Hobson
1980, Zhang & Brameller 1984] or all of t:hé;l [Kaltenbach & Hajdu 1971]. Linear
programming is the most common solution method. \>

The minimum violations‘task (branch 2Z) 1is also 1invoked following a
contingency, and seeks only a feasible operating point. Two proposed solution
methods are least squares (quadratic 'objective) [Shoults & Chen 1976] and
SUMT, using a gradient solver [Sachdev & Ibrahim 1975]. Some algorithms

described in the previous pages include something similar, a "phase one" of

“linear programming [Murty 1983], to find a feasible opérating point when

needed [for example, Horton & Grigsby 1984].

Load shedding (branch A’) 1s performed only in the emergency state, when
the demand cannot be met without violating constraints. In this thesis, only
steady-state load shedding, also called load curtailment, will be considered.
Up to now, there has been no clear-cut methodology for load shedding. On the
one hand, researchers are still striving to formulate "the least
obj’ectionable" solution [Zaborsky et.al 1985]. On the other hand, it is felt
that certain numerical difficulties have impeded the development; they are

reported a little further.

The literature can be split into two groups: those algorithms which
minimize a norm of shed load, and those which control loads in trying to

achieve some other objective. The algorithms in the first group will express

K
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load as a function of generation and line flows [Palaniswamy et.al. 1981], or
inelude other independent -rariables in the objective [Subramanian 1971].
Those in the second group asually minimize a combination of load shedding and
some other function, svich as minimum deviation [Ejebe et.al. 1977, Ghoneim
at.al. 1977, Chan & Schweppe 1979] or minimum violation [Krogh 1983]. Others
have suggested 5imply minimum deviations, with some control on loads
[Medicherla et.al. 1979]. In most cases, priorities can be attributed to the

loads by using weighting coefficients.

The complications in the formulation of the objective were probably meant
to avoid the forementioned numerical problems. Chan and Yip [Chan & Yip 1979]
tackled this problem when they proposed a decoupled alggfitMm, with loads
forming the objective for one subproblem and generations for the other. They
note that in the first subproblem, the reallocation of generation is non-
unique. What’s more, dependent load flow constraints cannot be modelled in
this case. In the Chan and Yip paper, the first subproblem is solved
completely, and éhen dependent constraints are handled in the reallocation of
generation. The first important paper on load shedding,. by Hajdu and
colleagues [Hajdu et.al. 1968] also proposes a load-oﬁly objective, subject to
a full set of constraints, but they did not seem to notice the ﬁroblem of non-
uniqueness. ,

Solution methods for load shedding algorithms range from Newton strategy
[Hajdu et.al. 1968}, to quasi-Newton [Palaniswamy 1981], and quadratic
programminé [Subramanjal 1971], but mostly linear programming [Subramanial
1971, Ejebe et.al 1977, Ghoneim 1977, Krogh et.al. 1983]. Piecewise-linear
objective functions are used for linear programming in the two papers co-

authored by Chan [Chan & Schweppe 1979, Chan & Yip 1979].

The last branch is maximum loadability (branch B’). It finds the largest
sum of real power geﬁerations which can safely saé&sfy the demand, given a
load distribution jGarver et.al. 1979}. It is useful as a planning task, in
determining the influence of varying parameters in exbansion planning. The
analytical approach has also been proposed [Dersin & Levis 1982], in trying to
establish a description of the loadability regionf
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2.5 Analzsis of Numerical Optimization Algorithms Used in OPF

This section undertakes the analysis of numerical optimization methods in
general. Some basic building blocks and their ~various. modes of
interconnection are proposed. The role of each block is explained, along with
different available options in OPF. Then the algorithmi? cgtructures
identifi%d in the OPF literature are presented.

A purébse of this section is to show that numerical optimization
algorithms are basically an assembly of ®parts. _ The parts are often
interchangeable, and can be chosen to suit the problem. The assembly need not
fit exactly into any recognizable catego;&; parts can’ be added or deleted if

necessary. That, in fact, is the case of many proposed applications.

2.5.1 The Elements of a Nonlinear Progranm

o et e e e o e e e et o e e v e e M am e a4 e kS  we e A = Sa e

Despite the diversity of numerical optimization algorithms, it is felt
that they share relatively few, fairly simple, common elements. Conceptually,
the solution process of an iterative optimization algorithm can be broken down
into seven  parts: fermulation, initialization, projection, choice of
subproblem, solution of subproblem, test for convergence, and rules for
starting a new iteration. The formulation and theychoice of subproblem are
fixed at the outset; the other parts form, the numerical procedure per se.
Each part is now described, with references made to its use in OPF or its

subsets. .

Formulation: This is the choice of the problem to solve. The constraints can
be modelled with different degrees of accuracy, depending on the available
computation time. We consider three main levels of complexity, to which we

give the following names:
- The OPF level, which retains all the nonlinearities.

- The dispatch level, in which the network model is replaced by a linear

approximation, but not reduced in dimension. There are different linear
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models, varying in complexity. Three commonly used are the load fiow
Jacobian model [Carpentier 1962], the fast decoupled load flow model
[Alsac & Stott 1975], and for real power dispatch, the DC\ioaﬁ flow model
[Wood & Wollenberg 19847.

- The lumped network level, in whichN\all network considerations are reduced
to a single real power balance €quation. This model is used in equal
Incremental cost methods. Different models exist, varying in accuracy

and cdmplexity.

We will say that problems formulated at the latter two levels are dispatching
problems. Until now, only problems wich these simplified formulations can be
solved on large systems within the time limitations:of dispaéching (order of

minutes).

Completing the description of the load flow constraints, upper and lower
bounds are placed on most variables. Bounds are not placed on voltage phase
Ama;gles per se, but occasionally real power line flows are expressed as phase
angle differences, to which bounds are assigned [Merlin 1972]. Another load
flow constraint proposed in some lumped network formulations is a second
equality constraint for reactive power balance [Moskalev 1963, El-Hawary &

Feehan 1978], but that is rarely used.

Constraints other than the stiiic load flow constraints have appeared in
various formulations, mostly in dispatching problems. The most important are
environmental constraints [Cadogan & Eisenberg 1977], frequency constraints
[Somuah & Schweppe 1981, Palaniswagy et.al. 1985] and reserve [Waight et.al.
1981b, Farghal et.al. 1984] and ramp constraints on real power generations.
The lattér have been proposed as static [Isoda 1982] or dynamic [Ross & Kim
.1980] constraints. ’

Simplifications which can occur at any level are the omission of certain

variables or of certain constraints on some variables.

~—
B

Initialization: An initial estimate of the solution is propbsed, which serves

as an expansion point for numerical approximations. Usually a feasible value
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is required, although in some recent techniques, as mentioned in Appendix 2.1,

the problem is bypassed. The description of the initial estimate also

includes the corresponding active set and a choice of independent variables.

Projection: This step consists in choosing a subset of the system variables as
independent wariables. The choice can be fixed at the outset, as in many

applications, or can be allowed to vary with each iteration, as in reduced

gradient. Advantages of a proper choice are as follows:

- The formulation can be simplified or maintained in some naturally simple

form, when expressed as a function of certain variables.
4

- Functional constraints can be avoided by making active wvariables

independent,
Actions which exploit these two advantages often conflict. Hence, certain
rules are needed to manage the choice of independent variables. In the OPF

algorithm proposed in this thesis, some simple rules will be provided to

. strike a compromise between both objectives above.

Choice of subproblem: Nonlinear programs are solved, whether explicitly or
implicitly, by generating a sequence of simpler problems. These subproblems
are usually very reliable, and usually chosen to terminate. The subproblems

are constituted of the following:
- A linear or quadratic approximation of the objective function.
< Usually, a linear approximation of the constraints. . ;
- Usually, constraints on independent variables. These can be handled with
exact bounds or penalty terms. Dependent constraints are sometimes

omitted from the subproblem and treated elsewhere.

The operations needed to solve the optimization problem described above, for a

- given approximation (a given expansion point), delimit the subproblem.

'
L
1
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In problems with a single equality constraint, a quadratic approximation
is sometimes wused for the power balance equation, in lumped-network-level
methods [Aoki & Satoh 1982]. Using the above definition, each linearization
of the approximation constitutes a subproblem, even though the entire process
is quite fast.

)
Solution of the subproblem: Many solution techniques are available to solve
any given subproblem. They differ in their choice of search direction and step
size, and in the way they handle constraints. Different methods presently

used In OPF are as follows:

- For search direction:

-. Quadratic objective functions: Newton step, quasi-Newton step,
conjugate gradlent step, simplex-type step, solution
trajectories from the continuation method.

- Linear objective functions: gradient step, simplex step, and

solution trajectories from the continuation method.

- For active constraint management: ’

A - Exact constraint verification: primal approach (as in gradient
and simplex methods), Lagrange multiplier approach, active set
methods.

- Penalty function methods: exact penalty terms, interior and
exterior %enalty methods; on independent and/or depeﬁﬁent
constraints.

The subproblem can be single-staged or multi-staged. In the single
staged subproblem, a single search direction is computed for each
approximation. That is the case in gradient and penalty methods. In the
multi-staged subproblem, the optimization 1is carried out with Ma given
approximation wuntil it terminates; examples are 1linear and quadratic
programming. ‘

.

Test for convergence: If the difference between two quantities is smaller than

a certain tolerance, the latest iterate 1s retained as the optimal solution.

The monitored quantities can be: T
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- Values of the objective function

- Values of a norm of the vector of wvarilables

;/
The comparison of active sets should not be considered, because optimal
solutions are sometimes situated at a degenerate vertex (see Appendix 4.2).

The quantities can be evaluated in one of these combinations:

- At successive expansion points (usually, in primal methods).

- At an expansion point and the ensuin subproblem’s optimal solution
P P L 24 P pt

(usually, in dual methods)

Rules for starting a new iteration: If convergence has not been achieved, the

expansion point and possibly the set of independent variablg§ are updated, to

feed the next subproblem. In* future in this thesis, this step will be
referred to as the "Rules"”. This is probably the most complex and the most
obscure step of the process, since it deals with the nonlinearities. In

designing this step the following items must be considered:

-

- ITEM 1. The solution from the subproblem is always infeasible. Solution

values are retained for a subset of subproblem wvariables, and the remaining

l
variables are recomputed using the load flow equations. There are two
possibilities: l

- The state variables are retained. In that case a simple evaluation of

the load fléw equations suffices. R

- Injections, or a combination of injections and states are retained. An

iterative solver is needed. '

L3
The first choice is always made in projected Lagrangian methods. It 1is fast,
but since donditions are usually placed on ,injections, not states, these

methods satisfy functional constraints only at the final, optimal solution.

" The second choice requires much more computation, but allows some cobntrol
over the choice of injection wvalues. A possible disadvantage 1s that the
proposed Iinjections could be infeasible {Jarjis 1980]. In that case, for this

b ’ o



¢

50

step to be successful, ‘the process must be able to suggest an alternative.
Projected gradient techniques [Rosen 1961} and Newton-Raphson solvers with
step size control [Gross & Luini 1975, PCA 1985] offer such capabilities.

ITEM 2. The loadflow feasible point of ITEM 1 could be cut of bounde. For
methods which require a feasible expansion point, the following actions can be
taken:

— Violated values can be set to their bounds and the loadflow equations
recomputed. This method is unreliable when more than a few violations
occur, and the result may not be useful (see ITEM 3).

IS :

- A new value is found along the search segment, established between the
previous expansion point and the load flow feasible candidate of ITEM 1.

For methods with penalty terms, excursions from the feasible region are
restrained, but only in the next iteration, by updating peralty coeffiTients.
ITEM 3. The new candidate from ITEM 2 might not be an improvement, in that its
objective value might be higher than that of the previous expansion point. In
fact, in many methods no precaution is taken to aid descent. One way to
ensure descent is to design the search segment between the previous expansion
point and the ITEM 1 point to be a descent direction. Then by applying the
appropriate step size from the previous expansion point, a better ITEM 3 point
can be found [Han 1977]. Another way, for methods using trust regions or
exact quadratic penalty temms, is to adjust coefficients to reduce excursions
in the next subproblem. , {“

ITEM 4. The dependent/independent partition can be updated in the Rules for
the next subproblem, independently of the choice of independent variables made
in ITEMS 1, 2, and 3 of this iteration.

- The degree to which these items are satisfied and the precise implementation

vgry greatly from one method to another. That is because (1) there are many
choices available in the solution strategies, and (2) there are different
levels of simplification, relinquishing accuracy or completeness for shorter
computation times.
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2.5.2 The Interconnection of Elements

A em e e et T T e e e M M e e e W e e e e e s e

The mode of interconnection of the previously described elements
determines the structure of the s:)lut:ion algorithn, or solution strategy. The
possible structures difrfer in two respects: the position held by the
processing of dependent functional constraints and the position of the

nonlinear iteration loop.

The processing of functional constraints includes their formulation,
optimization, verification of feasibility, and remedial actions if necessary.
They have been handled in three ways:

- They are procesged inly within the subpro'blem, and then verified for
feasibility by t les.

- They are processed at the end of a subproblem, within the nonlinear
iteration loop.

- They are processed outside the nonlinear iteration loop. -

The first position is common in the OPF literature. It is possibly the most
reliable, since excursions of dependent wvariables are closely monitored in
different steps. The second position has been used as an extension to the
simpler subproblem with functional constraints neglected. It could be quite
fast in dealing with problems with few changes in the active set. The third
position is an extension for the case of a nonlin{ear programming packags: which
cannot handle functional constraints. This position might be awkward for OFF
level problems, because an entire nonlinear program must be repeated each time

a viol/':ted functional constraint occurs.

The nonlinear iteration loop, or major iteration loop, regroups all the
operations between the computation of two expansion points. As described

earlier, a new expansion point can be computed in one of two circumstances:

- After computing a single seaxch direétion’ and step size, in a single-

staged subproblem.

- After termination of a mult\l.—staged subproblem.

\
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The £irst position is used in gradien’t and penalty methods. It requires many
time-consuning updates of the function, and for gradient methods the Jacobian,
although in practice the latter need only be computed every few iteratioms.
The second position processes more information for a given approx{mation, so
it ' is wusually faster overall. The validity of the approximation can be

doubtful as the computation leads away from the expansion point, but with the

proper precautions that is rarely the case. The second approach has received
more attention in recent methods,

The relative pxasitions of the constraint processing and the nonlinear

iteration loop are l;i.llust:r:at:ed in a tree structure, in Figure 2.2. Five

il

combinations can t{e |found in the OPF literature, and two of these can be

simplified for dispatch level. Three of the ensuing algorithmic structures

are displayed \\in Figures 2.3 - 2.5.

i

I Multi-staged | Single-staged

subproblem

subproblem

N

Dependent constraints

inside nonlinear loop

Dependent constraints
outside nonlinear loop

- structure no 3 -

Dependsnt constraints
inside nonlinear loop

- structure no 4 -

Dependent constraints
outside nonlinear loop
- structurs no.5 -

4

Dependent constraints
inside subproblem
- structure no 1 -

Dependent constraints

outside subproblem

- structure no,2 -

M
" | Figure 2.2. Relationships between structures for OPF algorithms.
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Here are some examples of OPF program structures with references from the

literature.

Structure no. 1 handles functional constraints inside the wDulti-staged

subproblem. This structure is the most connon. It is wused in successive
linear [Stott & Alsac 1983] and quadratic programming [Burchett et.al. 1984],
including Newton strategy methods [Nicholsox{ & Stirling 1973], and in
gradient-based projected Lagrangian methods [Burchetr et. al. 1982a,b]. The
structure of the OPF algorithm developed in this thesis Is a based on this

structure.

Structure mno. 2 handles dependent constraints outside the oculti-staged

subproblem. Two examples are Algorithm I by Sun et.al. [Sun et. al 19847,
which handles dependent constraints by penalty functions, and the algorithm by
Contaxis et.al. [Contaxis ét.a 1986] which adds violated dependent

constraints in the formulation of the next. subproblem.

!
Structure no 3 handles the dependent constraints outside a standard nonlinear

programming package. It is used mostly in conjunction with lumped-network-
level methods. A proposed optimal solution is scrutinized for possible
wviolations on previously neglected wvariables. Violated variables would then
be processed in the next pass of the nonlinear programming package. A very
recent application by Ponrajah [Ponrajah 1987] wuses the sinple mnonlinear
programming package once, and then processes violated dependent variables by
the continuation method.

¢

-
Structure no. 4 is similar to structure \no. 1, except for its single-staged

subproblem (remove the loop in the subproblem of structure 1). An example is
Carpentier’s "Differential Injection Method" solved by the generalized reduced
gradient method [Carpentier 1972].

Structure mno. 5 is similar to structure no. 2, except for its single-staged
subproblem. An example is Dommel and Tinney’s method [Dommel & Tinney 19638],
solved by a combination of gradlent method for independent variables and
penalty method for dependent varlables. Penalty methods such as SUMT [Sasson

1969a,b] would also fall into this category.
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Dj.s;)atch level formulations drop the mnonlinear loop. Two possible

structures are described in the following.

Structure no. 6 1is extracted from structure no. 1. Upon exiting the
subproblem, the solution is reached. This is the most common structure Ifor
dispatch 1level problems. Examples of Llinear [Stott & Marinho 1979] and

quadratic [Bottero 1982] programming abound.

Structure mo. 7 is extracted from structure no. 2. Here the step of Rules
preparing the next iteration are removed. Upon exiting the conditions omn
dependent constraincs with a "no" reply, the solution is reached. This

structure 1is nore common in security dispatch or redispatch [Nicholson &

Sterling 1973, Hobson 1980]. . .

2.5.3 Formulations of the Tasks Performed by OPF . ° (:-
o~

The objective function Is the only part of the optimization process left
to describe. It defines the task to be performed. We have already identified
seven main tasks in section 2.3, and their purposes have already been
discussed. In this section their mathematical £formulations are briefly

described. p

Economic dispatch is usually expressed as a quadratic function of the real

power generations [for example, Huneault et.al. 1985], or as a piecewise-

linear function, for LP [Stott & Marinho 1979] or SLP [Romano et.al 1981].
More complicated expressions in terms of real pov}er geucrziion [Dillon et.al.
19757, or in terms of state wvariables [Dhar & Mukherjee 1973] have been
proposed, but have attracted little interest. More accurate modelS™of the
cost functions, including the effects of wvalve points [Decker & Brooks 19587,
are never expressed analytically; they are formed graphically ox, in computer

implementations, stored as discrete points.

Reactive power - voltage control is performed in different ways. The choice

of objectives has already been discussed. They are usually expressed as a

quadratic approximation of reactive powevr and voltage [Contaxis et.al. 1983],
. ‘ N
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»or as a piecevise-linear [Hobson 1980] function of ‘those variables, or in the
earlier studies, as a function of voltage alone [Hano et.al. 1969]. Taps and

shunts are also included in many implementations.

Minimum loss is usually expressed as a quadratic function of states [Calvert &

Sze 1958], or as a quadratic approximation of .a combination of injections and
v

states [Sasson 1969b, Horton & Grigsby 1984], or as a linear approximaticn of

injections and states [Stott & Alsac 1983]. It has been expressed in analgsis

as an exact linear function of real power injections [Alvarado 1978, Elangovan

19831, but so far that form has not been used as an objective function.

The ninimum deviations task is usually solved by linear programming.

The minimum violations task has been proposed using least squares and SUMT
€

(quadratic objectives).

Minizun Jload shedding is performed using linear or plecewise-linear [Chan &
Schweppe 1979, Krogh et.al 1983] and quadratic [Hajdu et.al. 1968, Palaniswany
et.al. 1981] functions, of the loads alomne [Chan & Yip 1979], or the loads and

the controllable wvdriables [Palaniswamy et.al. 1981},

Maximum loadability has been solved by linear programmiég.
& .
The term redispatch 1is often mentioned in conjunction with the normal
 operating tasks. It refers to the organization of the algorithm, aﬁd not to
the task as such. Redispatch algorithms are usually proposed following a
contingency, and profit from pre-contingency information. References made

directly to redispatching have been compiled and added to the list in Appendix
2.3. '
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2:3.4_ Enumeration of Problems and Solution Techmiques used in OFF and
its Subsets
<
A fipnal, detailed summary of the analysis is presented. It is a

compilation containing all formulations, subproblems, and solutZon teihniques
encountered in the OPF literature. 'This list is presented without comzent in
Appendix 2.4. Some added information, not yet covered, are the choice oxf
coordinates, available variables and specific subsets of allowable independent
variables, and exact details of the subproblem structure. The ordering system
forms a classification which can be used to accurately des&rl‘e any OFPF

algorithm.

~
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CHAPTER ITI

DESCRIPTION OF A NEW OPTIMAL POWER FLOW ALGORITIM

3.1 Introduction -- <\
\\

This chapter presents, the description of a mnew OPF algorithm. Its zmain
features are the use of continuation methods at different levels of the
optimization, and the implementation of strong rules to enhance robustmess.
These rules assure that from one iteration to another, the ocbjective function

always decreases and the proposed solution is always feasible.

The structure of the OPF algorithm is presented in general, in a first
section, and then in detail, following the formulation of the OPF problen.
The detailed description will be carried out following the framework of the
analysi,s of Chapter 2. For the most part, discussion in this chapter ‘is

limited to the choice of elements and to the logic of the algorithm.

The description is intended to be as general as possible, to be applied
to any }OPF task. However reference is made occasionally to numerical tests.
They ere carried out on an OPF package developed for the economic dispatch
task; |details of 1ts implementation will be presented later. In a final
sectiolh, the dictinction is made between modules in the algorithm which are

commord to all OPF tasks and modules specialized for particular tasks.
3
i

1
!
|

3.2 General Overview of the New OPL Algorithm

3.2.1] Introductory Remarks

The ‘highlights of the OPF algorithm developed 1In this thesis are
presented in this section. Its general structure is illustrated in figure
3.1, It is made up of two main elements: a mnonlinear program, in the

conventional sense, and an outer load-tracking loop. This loop, new to OFF,
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supplies a sequence of loads to the nonlinear program, which responds with a
sequence of optimal dispatches. With loads in the segquence chosen close
together, the OPF convergence is facilitated and accelerated for each
individual load. This 1idea, which has been used successZully in dispatch-
level problems ([Fahmideh-Vojdani & Galiana 1983, Carpenciexr 1983] for real
power dispatch, [Blanchon 1983 & 1984] for reactive power dispatch) will be

presented first.

The outer 1load-tracking loop exploits the continuacion principle, by
varying the load from some initial load to the desired value. At the initial
load, which can be arbitrary, the solution to the OPF problem is known. When
small discrete steps in load are input to the nonlinear program, the algoritha
generates the sequence of corresponding OPF solutiomns. This is done with
relatively little computational effort, because the solutfion to one problen
serves as the initial guess for the next problem. The sequence of input loads
leads to the desired load, at which point the nonlinear program generates the

desired optimal solution.

This differs from the usual approach, in which the nonlinear program is
used alone, in searching for the solution to a single load. The major
difficulties in the usual approach are to find the active set, and to solve
the corresponding nonlinear optimality equations <from arbitrary starting
points. Thanks to the proximity of adjacent solutions in the continuation
process, these difficulties are avoided. The continuation approach will be
advantageous if the computation of several relatively simple optimizations is

easier than the one difficult optimizatiorf it replaces. ‘

In this continuation approach, by making the step size in load small
/

)

enough, the following two advantages are observed:
- Few changes, 1f any, are needed in the active set, fron}’ the solution of
one input load to the next. Changes in the active set are then quickly

implemented. N




Initialization

v

62

Projection

Easy Problem

1

—y

Y

l

Continuation
Process
Subprioblem i '

solved >

?
y Subproblem °

|
" Rules

Nonlinear
program
converges?

Y

!

L]
Nonlinear program

)

A solution

New load ?

Stop

Figure 3.1. Structure of the new OPF algorithm.
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- The linear model of the network used fn the first subproblem of the
nonlinear program is accurate enough to produce a very good estimate of
the nonlinear solution. Then very few iterations are required in each

nonlinear program.

If the initial load is "close" to the desired ldoad, the entire solution
process is quite fast. Alternatively, If the desired load is far from the
initial load, the interval separating the two can be split up Into a sequence
of more closely spaced loads. A step size control can be implemented, before
each change of load, to improve overall speed. It would weigh the advantages
of smaller step sizes, described above, against the necessity to compute

solutions for a greater number of intermediate loads.

The OPF based on the load-tracking outer loop is robust and systematic.
The solution of each nonlinear program is simplified by the continuation
approach. The chain of solutions from the nonlinear program constitutes an
optimal solution trajectory (albeit discrete). If this solution strategy does
not lead to the desired solution, then the solution trajectory will clearly be

seen to move to a feasibility boundary.

This approach is of great iInterest in power systems operation, because
fairly good traj#ttories of forecasted loads are usually available. An
optimal solution can be found for a first load in the forecasted trajectory,
using the process outlined above, or by solving a nonlinear program directly
for that load. Then the optimal solution trajectory is initiated. If such a
scheme can produce solutlions fast enough to handle the incoming logds, then
the solution tracking process can continue indefinitely on-line. Dispatching-
level algorithms being proposed for real-time use by researchers at EDF

R
[Carpentier 1987] and ENEL {[Innorta et.al. 1987] are based on this idea.

The idea just described is typical of incremental‘loading. In power
systems, implementations of incremental loading have been limited to cases
with the simplest of network models. In other fields such as structural
mechanics, [Watson et.al. 1983, Rheinboldt & Burkardt 1983a], incremental

loading of much more sophisticated problerqé has been solved by continuation

i

|

5

’

-
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methods. The implementation proeposed here can be seen as an Incremental

loading process based on a complete network odel.

3.2.3 The Nonlinear Progran

The sequential quadratic programming strategy has been chosen Zoxr the
A

a

nonlinear proagram in this thesis. This =method iIs well-suited to aost OFF
tasks, with their quadratic objective Zunctions; also, see Appendix 2.2 Zor
aore general advantages of the method. The standard mnodules have been
replaced however, by some new proposals. These stand well on their own, to
form a nonlinear programming solver, but also take advantage of the presence
of the outer load-tracking loop for convergence control.

]

The structure of the nonlinear program proposed here is basically similar
to structure no.l of Chapter 2. The most izportant innovations are situared
in two areas, the subproblem and the Rules. These will be described brieily
in this section.

T

The subproblem handles all constraints, as in structure no.l, but in a
manner different from previous implementations. As shown in fig. 3.1, here
the subproblem is solved in two stages, using the continuation approach. In a
first stage, an initial simple subproblem, related to the defired subproblen,
is quickly solved using standard optimization techniques. Simple tests verify
whether this solution satisfies the optimality conditions of the desired
subproblem. If so, the subproblem is solved; iIf not the continuation process
is invoked.

In the continuation process, system parameters are initially relaxed so
that the solution to the simple problem is also the solutign to the relaxed
ptoblem. As shown later, the required values of the relaxed parameters are
quite easy to find. Then, the relaxed parameters are moved together along a
one-dimensional continuous trajectory back to their original wvalues. To each
intermediate value of the parameters there corresponds an intermediate optimal
solution. Orily ‘certain kinds of parametier perturbations are considered, that .

is the so-called "right-hand-side" perturbations. Hence, since the subproblem
- t

'_Q
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»
.

is a quadratic -program, the optimal solution trajectory can be tracked
analytically as a piecewise-linear function of the parameter perturbation.
The optimal solution of the subproblem is obtained when the relaxed parameters ™

have reintegrated their original values [Huneault et.gl. 1985].

/
q

This subproblem solution method is an extension of the zeal power
dispatch problems solved in earlier work by the McGill group [Fahmideh-Vojdani
1982, Juman 1983]. It can be used on its own as a dispatching-level
algorithm, with all network variables considered. The solution trajectories ~
are computed very efZiciently, and offer insight into the workings of the )

system. Nonlineadr information can be updated vhen deemed necessary.

[N

There are many advantages to this subproblem solution strategy:

- It is very fast when tHe solutions to the initial simple problem and to

the desired subproblem coincide; indeed, the simple pz:oblems have been

designed to exploit this property.

- When it has been invoked, the continuation process has usually shown
itself to be very fast.anyway. o
’
- The method is also very robust in quadratic programs, since the tracking \
process supplies analytic trajectories which lead either to' the desired

solution or to a recognizable feasibility limit.

Referring again to fig. 3.1, the subproblem solution 1is checked for
convergence and then sent to the block "Rules". They provide at their output _
a load flow and bounds feasible point which satisfies all the loads. If
convergence of the nonlinear program has not yet been achieved (the right-side
branch following the convergen;e check in Figure 3.1), they also provide a
point with a lower value of the objective, compared to the present expansion
point. That point serves as the expansion point for the next subproblem.

Hence, these rules satisfy all the criteria put forward in section 2.5.1. —
° \

\
// - ‘\/
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The actual rules which achieve this are described briefly. The
independent vai'iables’of the subproblem solu‘ion form a capdidate for the next
expansion point. They are fed to a Newton-Raphson solver, .which computes the
values of the remaining wvariables, thereby completing the load flow feasible
point. This point iIs then checked for bound feasibi'lity and., if convergence
has not been achieved, for lower cost. If the point 1s unsatisfactory Ifor
eithei criterion, a new candidate is sought on the line segment between the

subproblem solution and the present expansion point. The step size along *e

. segment is determined by a set of heuristics, to be described later. If the

n.ew candidate remains wunacceptable, the step size 1is reduced Iurther.
Eventually the candidate will either be acceptable or ft will move towards the
pres'ent expansion peint. The latter case is an indication that the present
expansion point is the optimum.

)
L

Theoretically, the present set of rules does not assure descent, although
in almost every iteration we have observed it did provide descent in the
o'bjective. function. The load flow solver conve'rge\s well to a feasible point
because it allows —the slack real power-generation to take on a value which is
;ot controlled by the algorithm. In some cases that computation dogs not
reduce the cost no matter how much the step size is reduced. An\alternat.ive
procedure which does assure descent has been included in the algorithm to Ue
used in such cases.  This is based on a slackless load flow., Contrary to the
standard procedure, it provides’po\in_'ts of lower cost but takes time in finding
a feasible p’oiﬁ? Convergence' for the non%standard load flow is generally
more difficult than for the standard load flow, but safegu;rds are provided by
Fhe use of a step size control in the Newton-Raphson sol\;er. ;rhe entire
procedure will be provided in detail in section 3.4.4.

)

These Rules are designed for robustness; they ensure descent at each
iteration. The computation can “be lengthy in difficult cases, where several
iterations of the Rules are applied, but it is felt that the extra effort in -

this steb is worthwhile. 1In algorithms where Rules do not assure descent,

“convergence 1s doubtful in difficult cases, and even when ‘convergence is

achieved, a larger number of subproblems is required. Again, due to the close
\ -
tracking of the outer load-tracking loop, this new approach seldom sges

convergence difficulties within the Rules step.
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3.3 Fo ations of the OPF Problem and its Subproblem. . wot .

) .

Formulations for the new OPF algorithm are presented in this saction.,

The formulations of the prohlem and of the subprobleﬁ’ are sum:?arized,u with
details relegated to the acnendices We then present a note we feel is

relevant, concerning some u‘screoanc-es between terminology used in this

thesis and that in current use in the OPF literature.

o - . \

3.3.1 Summarv of the 0PF Formulation
~

. vy °

The OPF formulation adopted in this thesis is basically similar to others
used in many recent implementations. An OPF task is optimized, subject to

operating constraints in the form of load flow-equations, and bounds on most

load flow wvariables.

The load flow equations are a set of nonlinear equations linking the
power-related variables, or injections, to the voltage-related variables and

passive network controls, called states. They are-written as:

1’; -P | - F, (V,5,b,,t,9) .
. y = - Q - Fq (V,6,b.,t,98) - F(x) -
A F, (V,6,b.,t,8) (3.1)

[}

where y 1s the vector of injections. Its components are:

Ps the real power generations i
~ Q, the reactive power generations W

P, the real power loads

Q, the reactive power loads

. Je the trgnsmission line current magnitudes squared

’

and x 1is the vector of states. Its components are:
V  the voltage magnitudes
the voltage phase angles
. the reactive admittances of shunt compensation devicas

6

b

t  voltage ratios of variable tap transformers
¢

phase shifter angles

o
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The exact formulation of eq. 3.1 is relegated to Appendix 3.l1. However it can

-

be noted that they are quadratic in V and t, trigonometric in § and 4, and
linear in b . They cannot be attributed "nice" propermies, such as

convexity, but they do have some useful properties for optimization; rhese are

also presented in Appemilx 3.1. -

.In practice the passive network controls (b,, t, ¢) can only take on

certain discrete values, but as 4in nost other fornmulations, they will be

N

considered as continuous wariables,

’

L)

-

The treatment of the loads P, and Q depends on the task to be

:pei:formed. In economic dispatch and minimum loss tasks, they are treated as
parameters, which are fixed in a given problem. In minimum load shedding, f_or

which only the subproblem will be analyzed in this thesis, the loads are the

- ' A,T variables of interest.

yd
. The line current mnagnitudes squared (J.) have been retain in this
et formulation, instead of the more usual real power line flows. The latter are
of 1limited use here, because generally both real and reactive componelltis of

line flows must be considered. We shall call J., the line current injecti%ns.

.Note that polar coordinates are used to describe the complex wvoltage. An
equivalent set of equati&ns could be written with rectangular coordinates, but

that formulation will not be considered in this thesis.
t ) 3 . . ;
Upper and lower bounds are placed on all load flow variables except

4

voltage phase angles. These wil:_l be written as

4 1

/ = o R 5 - M-—-
P, B, P <
s 1o
Qg Q Q%’
y.m -9_ < 'It.- < J. - -
va = v = v
b 2 b_- b M
- £® t. 1
‘ S _..¢m J L,¢ - ...'¢M — N €3.2) )
( wvhere supergcri:lits-m and M designate lower and upper bounds respectively, and

s
v

x designates all bounded states. y

' * -

-
. . Lo i

o + -

-
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In one 'application to be studied later, the minimum load shedding task,
bounds will also be added to the loads.

3

F 4

In the OPF applications studied #n this thesis, the objectives Jare'

functions of real power generations or of real power loads. They are modelled

as either quadratic pr linear functions. From now on, in order to simplify the

presentation, the linear Ffutiction will be considered as a particular case of

¥

the quadratic function, with Eﬁadrat:‘.c terns identically nil. Without yet

specifying generacions or loads, a general objective function is written as .

C(P) = &, + a"P + > PTBP (3.3)

—

where c
¢, 1s a scalar of fixed costs, <2
!
a is a vector of the linear terzs,

is a square, positive diagonal matrix of the quadratic

\ter:zs. } \
Specific objectives for ecomomic dispatch, minimum loss and. minimum load
shedding will be discussed later. )
A ' ’ - ; “ ’ )
\ Having defined all these quantities, the Optimal Power Flow problem can
now be formulated mathematically as an optimization problem:

¢

e

min

C(?)

B

e

y.x
s.t. .y = F(x) . (OPF)

HEHE

e
)

The optimization is carried out over all the variables of (y,x). As stated
| .
earlier, the loads P, and Q, are fixed to specified values in mormal
. 1Y
dispatching tasks, but they do"become variables in load shedding.
£

. Vg

-
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3.3.2 “The -Subproblem Forulation

{
!

-

Lo , :
The subproblem retains the original} objective function £from the OFPF

formulation. The load £flow eq‘* tions 3.1 are replaced by a linearization, the

. load flow Jacobian nodel, considering all injections and all states. - Its
o __derivation can be found in Appendix 3.2. 3ounds Irom the OPF formulation are

o

}

all retained In the subproblen.

S(tarting from the lcadflow 2odel descridbed above, the subproblem 1is
reorganized into what dCarpentier :efer$ to as the "compact model"” [Carpentier *
1987]. This takes advantage of: (i) the natural sparsity of the objective
function, and (ii) variables. kmown to be at a bound. The set of independent
variables, or algebraic bésié, is modified from the states, x, in the natural

'for:zmlation, ta a combination of injections and states. All but one real

power injection are i}.r;c_ d in the basis. The one remaining is expressed as

.+ 'a dependent variable, and jthé equatio:;.which links it to “the indepéndent
’  variables is \called a generdlized power ‘r‘;aiance equation. In this. scheme, the
objective function can 4be expressed in the jbptimization using its natural
spa.rse) form, as in real power qiispatc"h.& Voltage phase angles ar.e renoved from
the basis, because they axe unbounded. The remaining basis wvariables are
' chosen amongst those sus'pected of going to their bounds, to keep in their
simplest ‘form as nany oof the active const’rain‘ts as _possible. The ~
transforaation of thé load flow Jacobian model implepgpted here is described
in Appendix 3.3. l T ( . o

Nomenclature for the reorganized subproblem, including various partitions
for( coeffic:’.ents and variables, have been releg"ated“ to Appendfx 3.4, Two
 items in the notation are needed before the ';ubprot;;em formulation can be |
‘'presented. The vector of dependent variables is denoted  d, and a vector made
up of the independent variables and the- remdining dependem:‘ real power

- injection is ;enoted b. Without subscripts, " the notation .desigr'xa'te /
. ' 7excursions of the variables from 'the expansion point of the linearizatiz
e

. A The subscript g peg}:ains to ::/h/g ,@is@chable variables, on which bounds
! N R » '

(' imposed. ™ ‘ ‘ .
W ‘ . B

-
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mathematically: ‘ ' ’
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Y

‘The formulation of the subprc))olem, denoted S, can now expressed
: 3

-~

a
2]

IA 1A
Q.
oy

ni o
A

The three constraints are the generalized poweér balance equation, pon’straints

' ‘ on dependent variables expressed ‘versus independent varizbles, and bounds on

dispatchable indepehder'xt variables. -

This foraulation has the following advantages: -

» - R4
.

The Hessian of the Ob]éCt;V& function is a diagonal, positive matrix.’

This assures that the search process for an optimum leads to a minimum.

-

+

The paf:tit’ion of independent/&ependent variables can be chosen to Teduce
as much ,—as possible the 'number of active functional constraints.
However, the assignment of priorities to -real ‘power generations, as
described above, assures that the previous f:oint is always respected.

.
+

Many independent variables are absent from the objective function. These

variables, called trans{aare‘nt variables, are particularly easy to handle
ﬂ 9
in the solutim{’p?:ogsss to be developed.

«

P o
The nu.merical structure of the ensuing optimality conditions is a single

bordered block [George & Liu 19811, which is easy to handle.

v
’
., A diﬁad\gantage\is that functional constraints are nb longer sparse, as 1s the
0 case whers the independent variables are the states. The computatlion of the

sensitivity coefficients which make up the constraints is quite- efficient
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however, especially with the advent of sparse-vector techniques [Tinney et.al

&

1985]}.- ,
/ . . ‘;:; i)vr
- 4
It is felt that the advantages of this i“:mnlation far outweigh the
diswadvantage. If the independent/dependent partition is well chosen, then-few
dependent constraints wills be at their bounds. Then the predominant element

in the optimizmtion is the very sparse dessian of the objective function.

3 L
It 1is felt that some of the terminology in use in the OPF literature is
ingorrect or misleading. In this section these terms are pointed out, and a

"clean"” set of teras 1s proposed.

Thi.s author feels that the terms eguality and inequality constraints, as
used In| most papers in the OPF literature (f£fof example, in such important
papers as {feséhon et.al. 1971, Alsac & Stott 1974, Burchett et.al 1982b1]),
can be confusing. In all these presentations of the O0OPF <formulationm,
injections from. the standard load flow have come to be known as equality
constraints, and the other injections as 1Inequality constraints— .11‘1 This

partition actually refers to the independent/dependent variables, and not to

the equality/inequality ¢onstraints. The present practice has come about
because the standard load flow injections are usually £fixed /a.s independent
variables (equality), while the other injections are énly monitored to remain
between bounds (ifxaqugality). Even though this association is understood, it
shouid be poir;ged out that this usual temi;;ology is strictly incorrect. 1In

the more general case the wusual terminology is misleading, because other

_iImplementations do6 not necessarily paftition variables the same way. The true

equality constraints are all the load flow equations, y=F(x) of eq. 3.1, and

the inequality constraints are the upper and lower’bounds on the variables.

The terms control and state have taken on two meanings in OPF. From a
power systems point of view, the states have been defined 'in the" formulation
in section 3.3.1, while controllable wvariables are those on which actual

controls have been placed. The second meaning comes from numerical
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optimization, wt}ere control and state correspond to independent and dependent
variables, respectively. The "state - control formulation" of the optimality
conditions considers derivatives of the Lagrangian with res‘pect to all
variables, but then uses equality relations to elininate dependent variables.
In this thesis the power system definitions prevail, although the term state-
control <forzulation will also be retained. The terms independent and

dependent wvariables will be used in the study of numerical optimization.

. The tern "slack" real power Injection iIs used the sane way in OPF as in
load flow computations. In the latter, a single real power Jinjection, the
slack, ,is neglected in nonlinear solyers. It is computed after the solver has
arriveg at a solution, as a dependent wvarlable. That is done to avoid

difficult convergence or even infeasibility in the solver. ‘

\ This author feels that the role of a dependent real power injection is
somewhat different in OPF. In our algorithm, a real power Iinjection 1s made
dependent, but because it is cost-related, its value is directly controlled in
the computation. Schemes to provide this control are presented in wvarious
parts of this chapter. Because of the differences, it is felt that a new term
is desirable for this wvariable in OPF. In this thesis, the term "manifold"®
variable‘ﬁ,’will be used, because the expz;ession of the load flow manifold is
provided (implicitly) by the equation link:fng the depender’t real power

injection to the independent variables.

Based on these rectifications and on discussions in Appex;dix 3.4 and in
the previous section, Table 3.1 forms a summary of the recommended
terainology. It proposes partitions of th-e set of variables and of the set of
constraints based on some physical or mathematical aspects. The three columns
of the table contain the ﬁoilowing information:

r- -

a

1) The proposed' terminology, regrouped within some particular

- classification. For example, :all the variables can be classified iato

two basic groups, injections or states. Independently of this

classification,  the variables can also be placed into the other

classifications.

NS
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TABLE 3.1 - PROPCSED OPF TERMINOLOGY

Terminology

Context

Status
/,;«'

Teroinology Zor Variables .

injectzicn - state

cost variable or
transpareit var.

independent var. or
manifoid var. or
dependent var.

unbounded var. or
bounded var.

controllable
variable

basic load flow definitions of
the vaziables, given iIn this
chapter after eg. 3.1.

new partition for Independent
variazbles in optimizacion,
depending on whether they are
cost-related. This is defined
in Appendix 3.4,

part of the mathematical
nanipulations in optimization,

as defined in this chapter and -

in Appendices 2.3 and 3.4,

pertains to the absence or the
presence of constraints on a
given variable.

from a power systems point
of view, actual controls act
upon these quantities.

fixed clas-
sification
of the set of
all wvariables.

fixed clas-
sification of
the set of
independent
variables,
within a
subproblen.

in this study,

this classifica-’

tion of gll var-
iables can be

modified before
each subproblem.

in our
formulation,
only voltage
phase angles
are unbounded.

fixed set of
variables, not
related to OPF.

Terminology for

Constraints

equality constr. or
inequality consctr.

active constr. or
inactive constr.

ybasic definitions from
'optimization.

ghe status of inequality
constraints, determined during
computation, in the
optimization.

fixed classifi-
cation of the
set of
constraints.

classification
can be modified
in the subprob-
lem or in the
Rules.

Y]
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2) The context from which the chosen definitions are taken. For e’xample,
the definitions chosen for injections and states are those of section
3.3.1, following equation 3.1.

3) The status pertains to whether the classification of the variables or of

the comstraints is fixed at the outset or if it can be varied as the

/

computation progresses.

The =aizn advaatages of this temi:lLogy are that it covers all the important

-

notions, and that all the terms are uniquely defined.

3.4 A Detailed Description of the New OPF Algorithm L

In this section, the new OPF algorithm :is presented in detail, using the
analysis of Chapter 2 as a framework. In particular, we desoribe our
implementations of the elements which constitute the structure of fig. 3.1 ’
This will not include the initialization step, which has nothing new. The
subproble:n solution will be introduced here, but due to its complexity, it:s '

mathematics will be presented on its own in the next chaprter.

3.4.,1 Proiection

Motivations for thelprojection step (i.e., the choice of the set of
independent wvariables) were described briefly, while presenting the subproblen
in the previous section. In our algorithm, 1if the number of functional
constraints in a subproblem surpasses a small integer tolerance, the set of
independent variables is updafed in order to reduce the number of functional

“

constraints in the next subproblem.

The partition of independent/dependent variables for the k+l%P subproblenm
is prepared following the solution of the kP sub]\prbblem. To simplify the
presentation 1in fig, 3.1, the projection step was placed before the
\subproblem. However, in our algorithm, portions of this step are agtually

o N
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situated on either side of the Rules block. The sequence of fastructions is

basically as follows.

371

irs 1ist of active dependent variables from the subproblem solution

»

ot

'
is drawn up Zor swapping. In this liIst, states are placed before injections.
This Zs a heuriscic meant to keep as many useful states as possible in the
basis, to reduce the dizmension of the set of nonlinear equations in the Rules.
Other schezes could be tried, but it is doubtiul that any smart choice could
be Zound without some kind of lengthy combinatorial analysis. That would
defeat the purpose of the change In parcition, which is meant to speed up

computavions.

A second list is that of the inactive transparent variables. Some of
these variables can be suspected of being inactive in the next subproblem,
when their coefficients in the generalized power balance equation are very
close to zero. This result will be explained shortly. Hence, these variables

are given priority inm this lisc.

The independent/dependent status of variables in each lict are swapped
one Zor ome. The process is stopped when one of the lists is depleted. Once

these operations have been perZormed, the algorithm proceeds with the Rules.

When the slackless loadflow must be used in the Rules, this process has
an extra step. Before the load flow is solved, the preassigfled dependent real
power generation (the manifold variable) is made iIndependent by swapping its
s::a:us. with a transparent variable. Then when leaving the Rules, its status
is changed back to the dependent manifold varfable, and a dependent variable
is nade 1independent. IZ the first list described above (active dependent
variables) was not empty, the first entry has 1its status changed to
independent. If the list was empty, any dependent variable (preferably an
active state) can be used. The algorithm then proceeds with the next

subproblem.

A possible disadvantage of this adaptive partitioning scheme is that it
can unknowingly propose a basis' where the block of the load flow Jacobian

formed by the rows of the independent injections and the columns of the
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dependent stat'es is very 1ill-conditioned or even singular. Then computations
bog down. One change of basis lmqwn to exhibit this problem 1is that where all
the real power injections replace all tbe\ voltage phase angles, so it 1is
avoided. Phere exist other combinations which leave the Jacobian block
sizgula®, such as those with a zero row or columm. Combinations which leave
the Jaccbian block ill-conditioned are very difficult to devrect a priori.

- /

The probleém of sericus ill-conditioning has been observed in the testing

o the algorithn. The remedy Implemented iIn the program is to perfora one
anore independent/ dependent swap. This could look to break up possible

coonbinations in the basis, where the wvariables from one bus are either all
present or all absent. Another remedy would be to recall the previous

partirvion.
*

3.4.2 The Subproblem Solution
In the subproblem, the quadratic program is solved using the continuatioa
#
zethod. The solution technique has heen described iIn a general manner in

section 3.2; here, a more rigourous discussion on the method will be

presentéd. Details on the subproblem solutions for specific tasks are
deve}oped in Chapter 4.

The continuation =ethod is wused to create a continuous family of
quadratic programs. One menber, an easily-solved quadratic program, is linked
to the original, desired program S, defined in section 3.3.2. We define a
homotopy strategy is b;ing a choice of a simple problem coupled with a rule
for linking it with the desired problem. This rule allows some physical (or
system) paraﬁleters to vary over a one-dimensional trajectory. The rule is
called a perturbation function, and the mathematical parameter which defines

\ the position along the trajectory is the continuation parameter, denoted ©.

To each value of 6 there corresponds a quadratic program and its optimal

solution. The family of quadratic programs leading to S will be called the
; .

™

¢

perturbed model of S, and denoted (§,8). In its most general form, all the

parameters vary. The perturbed model is written as follows.



min c(P,8)
) .
. s.t. g(’(e)';b - o
d,(8)® = dy(8) + G, (&) b = ds<9)M (8,8
b,(8)" = b, < bsce)“

The optimality conditions for problem § form a set of linear equationms.

The corresponding perturbed optimality conditions Zor (S,%) are still linear

s coerfficients are

e

€in the variables ang the Lagrange mnultipliers, but
functions of 8. These optimality conditions will be developed in detail iIn the
next chapter. For now, the optimality conditions are simply stated in a

general form for the OPF subproblem: -

Br¢e) -Gg(aT b -a’(8)
EG(G) 0 _—_H:As] - [kg(_e) (3.4)

where )
B'(8) and a’'(®) are arrays of varying cost-related parameters,
‘ G(8) and k(8) are arrays related to varying necrwork parameters
and varying bounds,
b, and A are the unknown independent wvariables and o
Lagrahge multipliers.
. ’
N
Solutions of eq. 3.4 render all variables functions of 8. The optimal

solution as a function of © 1Is called the optimal solution homotopy, or
optimal solution trajectory. Problem (S,8) 1s formulated such that (S,6=0) is
the simple problem and (5,8=1) 1is the desired problen. By following the
solution trajectory to 6=1, the optimal solution of problem S is obtained.
When following this trajectory from 6=0 t;o 6=1, we say tfiat we are tracking

the 6ptimal solution trajectory.

+

Details of the various homotopy strategies and of the comp{tt ion

algorithm for 't:rackingj the solution trajectories are now presented.
’ - ~
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Twé different homotopy strategles have already been investigated. They
have been tested successfully in real power dispatch problems [Fahniden-
Vojdani & Galfana 1983, Galiana et.al. 1983;], and are now expanded for use in
the larger load flow model. A third homotopy strategy will be int:oégced Zor
load shedding applications. They affect only parameters of the xight-hand-
side wvector in eq. 3.4. That iIs important, since singuiarity of the left-
hand-si nacrix as a function of © need r{ot be envisaged. Also, comtinuous
variatiods of the right-hand-side vector result in continuous optimal solution

trajectories for the load flow variables.

a) The varying load strategy

The varying load strategy starts with a problem where the load is set to
2 ainimum., That value 1s determined by setting the real power generations to
their lower bounds, ags by sending transparent variables to the bounds which
minimize their effects. To that minimum (optimal) dispatch there correspends
the ainimum load which.can be computed from the generalized power balance
equation. Simple rules are available to resolwe an initial degenefacy, and
decide which real power injection comes off its bound first, to satisfy the
next increment of load. From its minizum value, the load is increased along
soze trajectory and the corresponding optimal dispatch is tracked. The load
could be sent to some desired value, but better still it could follow a load
prediction curve. For the latter, the perturbation would be unrestricted in

-~
range. The perturbation function is written as .

C

b,(8) = by, + b8 13.5)

The gerturbation trajectory b,(8) need not be 1limited to a straight Lline
- segment. A set of b, and Ab, vectors as in eq. 3.5 could be furnished, each
member being- used over an interval of €, to create a plecewise-linear

perturbation function. It is stxressed that this str_at:egvy efficiently’
.
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generates trajectories of optimal dispatches, given trajectories oif input

load. .

.

. \
In this strategy variables for which there are loads are best handled as

independent variables or the manifold wvariable. From previous arguments, the
real power generations are sure to be included in this group; the reactiwve
power loads should also be included. Otherwise the dependent demands of the
perturbation function will be expressed as funcrtions of the independent
varZables. The choice of the remaining independent wvariables, Zor the

remaining degrees of freedom, is unrestricted.

(S

b) The wvarying limits strategy ' .

The varying limits strategy starts with a simple problem which ignores
constraints on dependent wvariables. This 1s similar to the “subproblem of
structure no.2 in Chapter 2. The problen can easily -be~solved, for a given
load, by sending “transparent variables to the appropriate bounds, and
condu;:ting an optimization over <real power generation wusing standard
technigues. The generalized power balance equation stands as the only
functional constraint in the problem. Dependent variables are then computed
as a function of the newly-determined independent variables. Bound violatioms
for dependent variables are checked. If no violation occurs, the solution of,
the simple problem is also the desired solution. Hence a "good™ choice of the
:Lndependent/:iependent partition could greatly simplify the solution procedure,
by avoiding suspected violations of dependent variables. If such violations
are discovered, their bounds are axelaxed by the anmount oé the largest
violation., As a result, all violations are removed, except for one previously
violated constraint which is "just" active. The relaxed problem has the same
solution as the simple problem, with an added Lagrange multiplier, identically
zei'c;, for the newly activated constraint. The perturbation function moves the
values of the violated limits from their relaxed value¥ to their original
values, and the corresponding optimal dispatch is tracked. The perturbation
function for wviolated constraint i is written as follows:

t

- 4, 1P (8) = (d, MM + ad) - A48 (3.6)
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where * - ‘

du“"’(e) is the perturbation fur;ction, applied to limit

Jd linm
-
o Adsm’-i"‘ is the original limit on.4,,,
ad is the amount of the largest violation, among all

violated dependent comstraints, .

spans all wviolated constraints.

- -

.

The originmal proglem is solved vhen 6=1. This strategy is c'leemedk’useful"
for dispatching a single, given 1load. In tests on. real power &ispatch
problems, -it reached a solution quite efficiently, because the simple problenm
is often close to éhe given problem. Its efficiency has also been observed in

¢ N

this research, in solving the subproblem. . p

The phyéical significance of the perturbation function is that
intermédiate solutions on the solution homotopy, with 0 < 8 < 1, are the
optimal dispatches for problems with the intermediate bounds. That approach

can be useful in operations planning, when deciding on inc:eaging transmission

-

capacity. -

¢) The varying demand 'strategy (for load shedding)
I N -

e b *
A third homotopy strategy is introduced for load Shedding, somewbat
sinilar to the varying load strategy. When a dispatch algorithm based on a
' nornal ‘operating task reaches a loadability 1limit, load shedding is invoked.
The latter task minimizes a norm of the mismatch between the customer demand

and a load offered by the utility which maintains system feasibility. Its

constraints are the same as those used for dispatching, plus constraints on

the nloads .

a

At the loadability limit both the load shedding and the dispatch are

@ " feasible, so that the initial optimum for load shedding is furnished by the
’ -

final optimum £or the dispatch. At that point, the discrepancy between

customer demand and the supplied load is nil. From there, as the customer

)
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demand 1is modified, the load shedding objective value increases, indicating

that load shedding must take place. Lonfl shedding is enforced as long as the

value of its objective function 1s positive. " The perturbation function of

customer demand considered here contains both real and reactive power loads.

- It is written as ‘ .
bp(8) = by + AbS ' | (3.7)
‘l
where - B B
. N by is the demand. (This.is not to be confused with

dependent variables.)
by(8) 1is the perturbation function applied to b,
by, is the last demand for which a feasible dispatch
‘ exists, or for which a load shedding optimum is known.
Aby ' 1s the predicted demand variation. -

There are two important similarities between this and the varying load
- strategy “for dispagéhing. The demand can be made to follow a plecewise linear
’ trajectory of forecasted demand. Also, the variables for which there are

demands‘ are best handled as independent variables.

T W AR e e ML R er R M T G My M MG W TR AP R S e SR v R W WS M TR e WS ek M eR ER R A M e W W W U am SN ey S
’

With the strategies described above, the solution homotopies for the load
.flow variables are continuous piecewise-linear functions of 6. Specific
T - solution homotopies will be worked out in the analysis of Chapter 4, but ‘a

| . general form for these solutions is written as

A N -

7 b(8) = byt abe (3.8.a)

’

/,/." ACB). = A, + AA.B T N (3.8.b) -

z
4
-

- while mo"nitoring yalues of the inactive dependent variables

, ’
} - s ,

4,(8) = dy + Ad8 (3.8.¢)
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& Fof 6=0, the pril}lm has a known optimal solution. Then as © is
increased, the optimal-solution is continuously ]nonitored so as to verify the
Kuhn-Tucker optimality conditions. Occas o?)@’lly, at discrete values of @
called breakpoints, these conditions \M{; the vﬁge of being violated, 1..9‘.

one of tl}e two following situations occurs: . ' {;g.’
- A Lagrange m?ltiplier reduéfes, to zero.ﬁ As soon as that happens, the

"corresponding constraint must be released from the acéive set.
A : .

- The optimal solution trajectory meets a new active constraint. It must

\

be added to the active set and its Lagrange multiplier is activated.

‘ In both cases the active set is updated, and the new active set {s maintained
over an interval of 6 until optimality conditions are once again on the .verge
of being wviolated. To each Interval of 6 there corresponds a segment of Wthe
optimal solution trajectory, obtained analytically. Thege expressions need

- only be modffied,at each breakpoint. The solution segments placed end to end

.

form a global continuous optimal_ solution trajactory.’ .

An importan;: observ#tion concerns the search for the active set. The
determination of the active set is performed in the continuation process b;v
linking the-known active set of the simple probl‘ém to that of the desired
problen, l;ence no combinat:éa} search procedure need be implemented.

~

-

-

------------------- R T T R iyl i ilpupin s

N
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3.4.2.3 Ti:acking the optimal solution trajectories

&

e

All that is left to determine is a, procedure to update'the active set.
- The details of these updates will be presented in a later chapter. In this
section, we take a gquick look at the upc_iat:eé, but more importantly, we present

' a general algorithm fgj: updating and keeping the continuation process moving.

The "effect of an updaj:é s to , repartition the variables and the

corresponding sets of coefficients Rin eq. 3.4+ This causes a particular

G addition, removal, or displacement of rows and columns in the optimality

conditions. There are six different updates. Some of the wupdates are
/
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- STEP 4.

° - . . &7 * 8 4

referred - to in the 'uf»coming algorithm, so for 'easier feference they are
. :

£

numbered, as follows: -

1. An inactive dependent variable hits a bound. y
2; An act:ive dependent var:lable {s freed when its Lagrange . ) \
multiplier reduces to zero. - - . ,:
3. An inactive transparent: variable goes to a bound.
4. An active transparent variable is freed. ¢
5. An inactive real power goes to a bound. ¢
6. An fctiive real power is freed. ‘ )
| ,

Here then 1s the general algorithm for tracking -the optimality

conditions, {.e. computing the optimalit:y conditions over a range of the

cont inuat ion parameter.
/

STEP 1. Set breakpoint counter, i=0.
STEP 2. Solve the initial, simple problem. o < -
STEP 3. . -

d) For the varying ‘limits strategy;
' violated limits.

to enter the active set.

apply the perturbation to the
Designate the most vlioiated constraint as the next
Invoke upda't.e 1. .

b) For the varying load strategy or load -shedding, resolve the
p initial degeneracy. Designate. the freed real power as the

next to leave the active set. Invoke update 6.

Check for degeneracy. If none, or if resolved, go to STEP 5.- If
unresolved, notify the user or some control outside the -
. = subproblem. STOP. .
~STEP 5. Implement the fppropriate update. '
STEP 6. Compute new oi:timal solution trajectory coefficients, eq.
Y >
3.8,reffective in interval [6,,6,,]. -
! N <
« . _ °
, | }
- B Fg <




"STEP 10.
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STEP 7.  Set {i=i+l. 6on;pute the value of the next breakpoint, 8,, as
follows: ) - -

Cmnput:ne ;aluéé of & for which all variables hit a bound and -

for which all Lagrange multipliers reduce to zero. Pick the
Recall which

condition causes the new breakpoint and invoke its, particular

smalledt of .these values as next breakpoint.

update scheme.
If 6, is gieatér than one, go to STEP 10.
the variables and Lagrange multipliers at 8,.

STEP 8. If not, compute values of
Store them = they are
the endpoints of the linear segments‘ of- the solution trajectory..

Go to STEP 4.
Compute values of the solution trajectories at ©=1. The solution is

found. STOP. S

.

STEP 9.

The a'lg(orithmhterminates normally in STEP 10 or abnormally in STEP 4. The
intricate STEPS 2, 5 and 6 form the heart of the process; they will be
explained in detail in the next chapters. ™Causes and remedies for deg_enerécy
(éTEP'lo) areﬁ also discussed in Appetg.lix 4,2,
straightforward.

The remaining steps are quite

No provisions have yet bee;x implemented following an abnormal end to the

subproblem, due to infeasibility. One suggestion is to go to the load

shedding mode upon detection of infeasibility. A load shedding solution would
be sought for the set of desired parameters. Using the theory expounded in
Chapter &4, this idea can be implemented in a dispatching-level algorithm.
However, it 1is not clear in a nonlinear p;:ogramm:[.ng algorithni when to switch
from one task to the other, because the subproblem can be infé;sible even

though the nonlinear problem i1s feasible. This is an interesting subject for

future research.

’

3.4.3 The Convergence Test . o
P -z
- The description of the convergence test in Chapter 2 is sufficient. In

our program’ we monitor three quantities: the reduction in the objective
i s

}
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function fram one iteration to the next, and the difference in the abjective
function and in the independent variables between the expansion point and the
subproblem solution. An important cbservation im numerical testing is that a
very tight tolerance is preferable for the load tracking process to be
successful. It seems that if the optimal solution to the initial problem is
known with great precision, the subsequent problems move quickly to their
optimal solutions. ' The increased effort in solving the initial problem is
then worthwhile; this point is verified in the mumerical results described in
Chapter 7. '

&
-

3.4.4 The Rules

3.4.4.1 Introductory remarks

The purpose of the Rules, as stated in section 3.2, is to find a feasible
load flow point from the subproblem solution. When this point is to serve as
the expansion point for a new iteration, it is chosen also to be of lower cost
than the previous expansion point. In the OPF problem, this guarantees glcbal
convergence to a local optimum. '

The Rules will now be described in depth. First in an illustrative
section we present the rules inplemented in our algorithm as well as
altermatives which were tried and discarded. Then.a flow chart of the Rules
is drawn and each element is described. Finally, two of the more important
elements of the Rules, - the Newton Raphson solver and the anti-zigzagging
device ~ are described indetail on their own.

\\” 3.4.4.2 Illustration of the Rules strategies with different alternaéives

A nonlinear _optimization problem is illustrated in fig. 3.2. The
feasible region is the intersection of the hexagon and the region to the right
of the nonlinear boundary B. The point E is the present (feasible)r expansion
point and point S, is the new subproblem solution. They are seen in a space.

of states (x) and the set of independent injections (y,). The cost of S,
- \ %
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denoted cosg(so), is always'sihllerﬂthan or equal to cost(E), because the two
points 1lie within the same feasible region used in the subproblem
optimization, for which S, is the optimal solution. If the two points
coincide (to within a toleraqce), then E=S, is the optimum of the nonlinear
problem, If éhey do not coincide, then point S, is not load flow feasible,
but a load flow feasible candidate for the expansion point can be g;nerated
from S,. Graphically, the process associates to point S; a point to the right
of the nonlinear boundary B. ’

The independent variables of S, are fixed and the others are computed
using a standard Newton-Raphson solver. The resulting load flow feasible
point is denoted C,. In the process all the y, maintain the feasible wvalues
found in §,. The slack generation and the othef dependent variables take on
the required values to be load flow feasible. 1In fig;’3.z the point C, is
drawn out of bounds and its cost is higher than cost(E), so it is rejected as

a candidate for the next expansion point.

.. The candidate emanating from §, being rejected, a new candidate for the
expansion point is sought. A new point 5, is chosen on the straight 1line
segment linking E to Sy, from which a feasible point G, is generated. The
step size which determines the choice of S, will‘be described later. For now
the important point is that the cost of any S, along the interval [E-S,] is
lower than cost(E), because the value of the objective along segment E-S, is
monotonically decreasing from E to §,. Hence that ‘line segment 1is
particularly useful in the search for a cheaper expansion peint. Also, with
S, closer to the feasible region than S,,. the discrepancies between S, and C,
are smaller, so that cost(C,) is more likely to be acceptable. In this
i{llustration, point C, is both bounds feasible and of lo;er cost than cost(E),
so that it is accepted as the next expansion point.

We mnow describe three other approaches which were tested in our
ilgOtithm. One approach we studied befor:e adopting‘ﬁhe more standard approach
described above was that of a slackless load flow. 1In thi; strategy all the

real power generations at a point S, on the liﬁe segment [E-S;] afg made to be

scheduled injections in the solver, to take advantage of the known lower cost

at that point. Hence if the resulting G, is feasible, it is acceptable
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because it has the same cost as S;. In the 111ustra€ion, the vaiue Sy would °
be found to be infeasible by the Newton-Raphson solver. Our solver would
detect the infeasibility, and give the least‘-squares solution to the problem.
To obtain a feasible point whose generations lie on the E-§, line segment, the
step size would have to be reduced until\;the candidate point lies between E )

and S,.

In practice, there are two problems with this approach. The first is
that the step size leading from E to a feasible point denoted C, in fig. 3.2
is usually rathe‘r small. To reach C, the number of Rules iterations can be
high. The second problem 1s that the points generated by this approach -are
very close to the feasibility béundary. That usually allows very little
movement in the sequence of feasible points, and 1little reduction in the
objective. Hence this alternative is robust but very slow. .

‘ L}

The slackless approach has been kept as an alternative, to be used only

vhen the the main algorithm described previously cannot obtain a cheaper

feasible point.

Two other approaches were tried and discarded completely. In a first

case, when the scheduled injections from the slackless 1load flow were

infeasible, the solver’s least-squares solution was touted as the next

expansion point. Point C, , in figure 3.2 Is such a solution emanating from
Sy

In the second discarded altermative the states of the subpr}:blem solution
were fixed, and the injections wera evaluated using the load flow -equations.
This is by far the fastest way to compute a load flow feasible( point. In fig. ’
3.2 this corresponds to moving fromo S, to Cyp, in the feasible region. This
approach is used in most projected-Lagrangian OPF pfograms, with the important
exact penalty terms added to aid convergence.

*

In both alternatives the load flow feasible points C,. and C,,; do not
satisfy the loads; in these approaches the loads can only be satisfied at the
»optimum. In our tests, even though step size controls were used to aid

convergence, these alternatives provéd unreliable, because eonvergémce usually
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ocarred for a load slightly different fram the prescribed load. In some
cases the difference between the load at the computed optimm and the desired
load was of the order of a few percent.

This completes the discussion on the illustration of the Rules step. v

3.4.4.3 Flow chart of the Rules

AflowdlartoftheRuleSJ.sdrawnmflgum33. It shows a simple top
part wh1ch computes a load flow feasxble point, and a more complicated lower
part which checks for convergence, cost reduction al feasibility. Termination
of the Rules is shown on the left side of the figure, with either convergence
of the nonlinear program or a better expansion point for the next iteration.
The return path for a new iteration of the Rules is shown on the right, after
the appropriate step size controls are invoked. The lattex- path is used when
the convergence criteria have not been satisfied. Each element of the flow
chart is described briefly below, with the key words underlined.

Upon entry a flag is set indicating that the standard load flow is to be
solved by the Newton-Raphson solver.

The initialization step receives information fraom the previous stages:
the subproblem solution, the independent/dependent partition of variables, the
present expansion point and its objective value, and an initial step length.

The subproblem solution S, is used to compute the E-S, line segment of
fig. 3.2. It"has been’cbserved that 5, is not a good initial candidate.
is because it is usually infeasible to the extent that the cost or feasibility
tests of the (, it generates fail. Often the required step length in one
nonlinear programming iteration, denoted o, is about the same as the one in
the previous iteration. Hence the step le.ngt'h from the previous major
iteration serves as an initial step length when entermq the Rules. The first
time through the Rules, however, the initial step 1ength is set to one. This
practloe has been abserved to give good results.
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The new candidate (S,) is computed and stored. It is a weighted sum of
the present expansion point (E) and the rejected point on the E-S, segment

(84-1)¢ - "
S, = E+ a(S;,; - E) . (3.9)
Upon entering the Rules, S, , is the subproblem solution §,.

A Newton-Raphson solver generates a feasible load flow point C,. For the
standard load flow this almost always converges, but for the slackless load

flow the solver often detects Infeasibility. When that is the case, the
"first" step size is computed to move S,,, closer to the expansion point, and
8 new Rules {iteration is started.
P
If the point C, is feasible, it is checked for cost reduction. If the

point’s cost 1is not reduced, the "second" step size computation is Invoked.

The point is then checked for bounds feasibility. If it 1.‘°. infeasible,
the "third"™ step size is invoked. A final step size is chosen as the minimum
of the second and the third step sizes. .

If the point C, was either of increased cost or bounds infeasible, a new
iteration of the Rules is required. First though the new stepsize is compared
to a sn;all tolerance. qually the step size 1s larger than the tolerance, so
that the standard Rules are repeated with a new S;4;+ If the step size is too
small usually the Rulesﬂ have not generated a;xy improvement, so the initial
subproblem solution is teloaded in the initialization step and the slackless
load flow strategy is used. In the Rules subroutine of the program, calling
the slackless load flovw requires only a chanée in a special flag'’s status.

LY

If. C, is both cost-reduced and bounds feasible, it is checked for

convergeuce. If it satisfies the convergence requirements, it is declared the

optimum golutibg of the nonlinear programming problem. If not, at least it is
retained d4s the pext expansion point. In either case the algorithm exits the

A —
Rules. : - 1 -

RS
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We now describe the threq step size controls. The first step size

correction is applied when ‘the Newton-Raphson solver detects tha infeasibility
of the point S,. It is computed -as follows:

STEP 1. Compute a, - 1 - "si - c1'1"2 . (3.1,0")
Is; - E [,

where C,,, 1s the Newton-Raphson solver’s least squares solution,
and S; and E have already been defined. All these quantities are

- computed by the solver.

P -

The quotient is the relative size of the mismatch of the nonlinear
solver, compared to .the distance to the expansion point. It 1is
always smaller ‘than or equal to one, since S, is always at least as
close to G, , as to E.

* STEP 2. Compute step size a = the submultiple of 2 (i.e, 2%, n being a
natural number) nearest to aa,‘ but smaller than a,. An arbitrary

minimum of a = 0.2 is imposed to avoid very small step sizes.

v e

STEP 3. A cumulative step size a’ is-also computed, to serve as an initial
' step length for entry into the Rules, at the next iteration of the
nonlinear program. It is computed as:

v

A ey ™ g X @ (3.1

The idea to reduce the step length by a factpr of about a, is roughly
eEuiv_a}ent to moving along segment E-S from the present S, by an amount
. s, - Cuull,» By reducing that value of the step length a littls, in
implewenting a, the next value will be a little closer to the feasible region.

L

A second step size correction is applied when cost(C,}. is higher thar
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‘cost(QE). In this case the step size a and the cumlative step size o' are
simply reduced by half.

A third step sjze camputation is implemented when same camponents in the
point C, are aut of bounds. Iet S, be a point on the search segment E-5, and
on the boundary of an dependent constraint. S is the present candidate poird
on that segment. Then for each violated camponent j, campute

a = I8 = El, (3.12)
Is; = Ef, :

The smallest of these values is taken as the step length. As was the case for
the other step size computations, this would go into a cumulative step size,

The idea behind this computation is that the step size is reduced
proportionally to the largest excursion outside the feasible region. The
mmerator of eq. 3.12 is the distance from the expansion point to the bound
arnd the denominator is the distance from the expansion point to the value of
the variable.

Upon entering the Rules, the step length can also be increased, if it has
remained stable for a few major iterations. The larger steps would allow for
faster decreases in the cbjective values. Presently when it is increased, it
is doubled, with a maximm of one. ‘

-

Thare remains one last operation in the Rules, although .it is separated
from the Rules' main body. It is called after finishing the projection step
and after having camputed the generalized power balance equation, in the
subproblem. It consists in adjusting tight, auxiliary bounds on same
variables to avoid a certain kind of instability in optimization, often called

This completes the discussion on the elements of the flow chart.

We proceed now to describe in detail the two particular elements signaled_oﬁt
in the above, the Newton-Raphson solver and the anti-zigzagging step.
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3.4.4.4__The Newton-Raphson solver
f‘ - ’ -

A flow chart of this soiverispmem:edinfigum34. A step size
control has been msértedu:toanotherwlsestarﬂardNewton-Raphsmalgonthm
This idea has become cammon in the mumerical mathematics literature [Dernis &
Schnabel 1983], where the solution processes for nonlinear equations gnd
unconstrained optimization have been unified. However, this idea seems rarely
used in the power literature. Gross [Gross & Iuini 1975] has suggested
various step size controls for the Newton-Raphson load flow solver. Aoki and
Nishikori [Aoki. & Nishikori 1984] use optimization techniques, including step
size control to avoid bound violations, to solve the constrained load flow

problem. Stott and Alsac hint in a commerc1a1 prospec;tus {PCA 1985] that they
have mplanem:ed such a scheme in their load flow package, but details are

- lacking. B

Basically the Newton-Raphson solver computes a descent direction, to
redude the norm of a mismatch between some specified values of variables and
their present values. In the usual procedure, the correction vector is
dbtained at each iteration by moving'along the descent direction with a step
size of one. The unit step size is usually accepted without hesitation, even
though it might lead to values with greater mismatches. By applying an
appropriate step size, smaller than one, a reductiox}@ mismatch will be
obtained: .

When scheduled injections are feasible and convergence is good, the step
_ size control is never used. Then the mismatch converges to zero. The step
size control is usually put to usewwhen the scheduled injections are
infeasible. Then this solver convexgas to a positive mlsmatch in effect the
least-squazm solution of the load flow equations.

L4

" The step size control implemented in this work is a heuristic, but it is
sure to reach a favorable step size. It is also quite fast. First, at each
iteration, zero mismatch convergence of the load flow eguations is vex:ified;
If the norm of the mismatch reduces to below a small tolerance, then a
solution has been found: If not, thepresem:mlsmatchmmlscaxparedtothe
previous one. There are two possible responses:
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- If the present mismatch is smaller than the previous mismatch, their
difference 1s compared for convergence to some non-zero value. If
convergence is achieved, the positive mismatch solution has been found;
1f mnot, the algorithm proceeds to the stata-corréction stage, and r;o

reduction in step size 1s needed for this iteratiom. . -

- If the previous mismatch 1is smaller than the present mismatch, a step
size & 1s computed. Ig it is smaller than a certain tolerance, then
again the positive mismatch solution has beefx found; if“not. the step
size is implemented, a new state vector x =x +eix, is computed. and the

whole Newton-Raphson iteration is restarted.

—

In the second case, the process might loop in the upper half of the algorithm

more than otce before an acceptable step size is found.

" The idea behind the step size computation in the second option is simple.
Assuming that the mismatch is rouéhly a )lineax': function of step size, a step
size {s computed to obtain about the same mismat;:h as in the previous
iteration. It is cogputed as follows: ’

4

norm of previous mismatch

STEP 1. Compute a, =
. - norm of present mismatch

STEP 2. ’'Compute the step size a = the submultiple of 2 closest to a, but

less than a,. S

By reducing the step size a little, in implementing o« instead of a,, the new

‘mi‘smatc‘n about to be computed is more likely to be smaller than the previous

mismatch.

The étep size can .become very small when the load flow Jacobian, used in
the computation of the descent direction, approaches singularity. It
indicates that the closest feasible point to a solution, for the;“ glven
scheduled vezriables, 13‘ on the feasibility boundary. When the step size falls
below a tol}eraml:e, the last {terate is taken as a positive mismatch solution.
In fact, this is the 'usual cause for positive mismatch solutions.

’!
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_If a positive mismatch solution has not been found in the stép size
control-~block, the usual Newton-Raphson procedure resumes. The algorithm
terminates normally at a =zero-mismatch solution or at a positive mismatch

/
solution, or abnormally due to a high iteration count. ¢

. Ty
[y

‘ - - -

R L L T =, g - .- - - -
s

r

The difficulty described in t?"i& section is i{nherent to li:nearizations of
nén;inear equations. It iIs illustrated for an QOPF type problem in figure 3.5.
In this example, three wvariables are considered, two real power generations
and one transparent variable. The quadratic objective being a function of the
_ real powers only, the cost contours are cylinders, parallel to the transparent
variable axis. With this objective, the problem ca; easily be handled on the
real power pro;!ection (the bottom fac7"of the region). The projection of the
feasible region is shown as the nonlinear shaded region. The segments of the ~
boundary of tue projected feasible® region correspond, on the nonlinear
mani,fold, either to inequality constraint l;oundaries or to folds [Fink &
Rheinboldt 1986]. The latter occur along a fold 1line, where hyperplanes
tangent to /the ma‘nifold are parallel to the transparent’s axis. The notions
of fold and fold line are illustrated in three dimensions, but can be extended
to higher dimensions. A subset of the transparent variables can be situated
on & fold line. They are important because often in practice, 1f folds are
present on a manifold, components of the optimal solution occur along a fold
line.

-

A,Solutions can be compared for the nonlinear program and a quadratic
subproblem. The -expansion point E of the .subproblem is chosen close to "the
solution. The projection of ‘the linear manifold is redrawn in fig. 3.5 at a
lower level, to avoid confusion. Even in a quadratic subproblem, the solutic;n
P,*‘ can have a tendenéy to move to an inequality boundary, as shown in the
figure, even though the true solution }' is nowhere near that boundary. This -
will only happen to transparent variables, though.

o

This difficulty should occur in other quadratic subproblem formulations,

« —
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even if the notion of tfansgarents isn’t used. Often up to now, it hasn’'t
been recognized, and solution algorithms send variables to their bounds . For
"example, in an earLy‘ paper on OPF [Peschon et.al. 1968] the authors state:
"All nodes_capable of reactive production would be at maximum voltage V=M
except for those nodes vhere [...] QsQ"¥ would be violated." This belief is
still wideéﬁsead in the QPF field. A more recent example comes from the 1987
PICA conference, guxing the discussion at the panel session on OPF. A
complaint from an operations engineer at Florida Power and Light Co. is that
their OPF package dispatches all the voltages on the system to their iimits.
The behaviour of the transparent variable in a sequence: of quadratic
subproblems can be erratic, jumping fﬁfm upper to lower bound as the expansion
point moves across the fold line. It causes numerical difficulties, but there
is also a theoretical problem. When the subproblem finds the right expansion
.point on the fold line, the linear manifold is parallel to the cost cylinders.
In the subproblem all values within bounds of the transparent variable are
valid solutions, although in the nonlinear problem only the expansion point is

a solution.

L 4

The presence of solutions along the fold 1line has occurred rééﬁlarlyhin
our numerical testing of the OPF algorithm. Most often, reactive powers are
the variables involved. A possible remedy to this problem, in theory, is to
reform the independent/dependent partition of the variables. The effect of
this change is illustrated in £ig.3.5. The projection of the feasiblé'region

-in the present sp;ce of independent variables (the bottom surface of the three
dimensional region) is relatively "narrow". It-1s compared to the projection
of the feasible regibn in another subspace (on the left face), which fills
more of the inequalify-feasible region and whose boundagies are mostly due.tg‘

equality’ constraints Unfortunately, it is wvirtually impossible to know a
riori which variables should be involved in the swap.

-~

.

Standard remedies for this difficulty in successive linear programming
solutiony of OPF are the imposition of small step sizes or of a trust region
around the, expa int [Ramalyer et.al. 1983]. Various rules exist to

update the paraﬁeters of these restgégpions, but to this author’s knowledge
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none exploits cixe concept of folds. The problem has not been addressed in

Y

successive quadratic programming implementations.

A mechanism is implemented in our algorithm which takes the implicated
tr'ansparents off their bounds. The presence of the fold is de‘t/écted and
exploited. ﬂe proximity of a fold is monitored- by the wvalués of the
coefficients ofi_the generalizgd’ii’ower balance equation. Their values are of
the order of one for real powers, and usually smaller for transparents. If a
coefficient goes to zero, the corresponding wvariable is on a fold line. When
that happens, steps are taken to peg the variable at the. value of the
expansion point. Tight auxiliary bounds are placed on that variable, to
restrict excursicas. In the gqomputation, . the coe.fficient is sufficiet}tly
small but not exactly zero. If it is positive the auxiliary upper bound is
saet to the value of the expansion point; I1f it 1is negat,ive,#the auxiliary
lower bound Iis placed there. Subsequently the simple prob]:em of th
subproblem will maintain the variable at the expansion point. The auxiliary
bounds are not too tight, letting the variable move a8 bit in the continuation
process, if necessary. Usually in our tests, a varisble going to a fold line
stays on the fold line in sgbsequent s]ubproblems, but if its coefficient

departs from zero, the auxlliary bounds are released.

4.5 e Load Step Size Contro
B A ]
So far the load step size has be:an kept very s:i.mpler in our algorit:fun. A
constant percentage change applied to all loads has been tried. A change of
step size would be advantageous if convergence of the nonlinear programs is
too /s}.ow (decrease step size) or wvery fast (iIncrease step size). No
particular rule has yet been developed to implenfent the changes in step size.
Steps in the range of 1% - 5% have been quite successful in our numerical

tests.
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All but two of the modules of this OFF ilgorit:hm are common ‘to all the

" OPF tasks. The -two specialized modules "arek‘the computation of the objective

function and the computation of optimal solution trajectories, STEP 6 of the
subl:;roblem tracking algorithm iIin section 3.}2.3. In practice, both are
implemented in relatively short subroutines. A library of these subroutine
pairs could be written to constitute a complete OPF package. This 1s one of
the recommendations for future research. ’

The objective functions have already been presencted in Chapter 2; they
are trivial to compute. The optimal solution trajectories have yet to be
presented. - In the next chapter, these trajectories are worked out for three

OPF tasks: economic dispatch, minimum loss, and load shedding.




4.1 Introduction

In this chapter, the solution of the OPF subproblem is presented in
detail, based on the continuation method. Specifically, subproblems for three
tasks are analyzed: economic dispatch} minimum loss, and minimum load
shedding. They are chosen because they are basic power system tasks, but also
because they demonstrate the applicability of the continuation method to a

wide range of mathematical programming formulations.

Economic dispatch and minimum loss dispatch are used 4An the normal
operating state, for dispatching.of predominantly thermal or hydro systems.
Within the subproblem, economic dispatch is a quadratié program while ﬁinimnm
loss is a linear program. Minimum load shedding is usually called in the
emergency state, but we ohly consider the "steady -state” case where the
forecasted demand cannot be met by a feasible dispatch. The solution obtained
from this load shedding strategy, which is formulated as a4 quadratic program,
supplies a load which minimizes a norm of the load - demand mismatch and the
optimal normal-state dispatch for that load. Barring contingencies, the
dcombination of a normal operating state task and this minimum load shedding
makes it possible to form an optimal dispatch policy for any demand, feasible
or infeasible.

Two solution techniqueé are proposed for the normal-state tasks, based on
the two different homotopy strategies. These are the varying limits §trate§§

'

and the varying load strategy, already described in Chapter 3. - ¥

.
-

For each task, the formulation and the solution of the subproblem is .made
up of four steps: T »

i) For economic dispatch and -minimum loss, the formulation begun in the

’previous chapter (subproblem S of section 3.3.2) {s completed by

1



104

specifying the objective function. For minimum load shedding, the efitire

formulation 1s worked out from the beginning.

11) The Kuhn-Tucker first order optimality conditions are derived.
%
111) The perturbation function 1is 1inserted into the solutions of the

optimality conditions, resulting in optimal’ solution trajectories.

iv) Finally, somé initial, simple problems are proposed to start the

continuation process.

) This presentation begins with the economic dispatch task. Many details,
such as the active set strategy, the formulation of the Lagrangian function,
and the solution procedure for the opéimality conditions are included in this
first section. These techniques also went into the analysis of the other two

tasks, but they are not repeated in as much detail.

4.2 Solution of the Economic Dispatch Subproblem

4.2.1 Development of the Optimality Conditions

The first order optimality conditions for the quadratic subproblem of.
economic d’ispatch will be developed in this section. The mathematical process
resulting from the Kuhné#Tucker optimality conditions requires the solution of
sets of linear equations and the determination of the correct partition of
inactive/active constraints. The group of active variables is referred to as
the active sc;t. and the active set at the optimum is called the optimal active
set. The optimal active set 1s easily determined for the simple problem.
Then using the continuation process, the optimal active set is alw;ys known in
the subsequent intermediate problems and in the final problem. Hence the

determination of first order optimality conditions consists only in forming a

~ set of linear algebraic equations. A significant advantage of this  approach

is that the combinatorial search for the optimal active set normally required

in most techniques is unnecessary.

L]

o
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a—) The subproblem fomulaqion
Subproblem S of section 3.3.2 is the optimization problem to be sol.veg,

with one important addition. The objective function is specifically a

s

quadratic function of real power generations, C(P,). The new subproblem is

denoted (ED).

Y

- b) The active set stratésy

The organization of the calculation of the optimality conditions is based
on the active set method1 [Fletcher ’19811. Since“Lagrange multipliers of
inactive variables are known to be zero, they and the corrasponding constraint
functions can be removed from the Lagrangian function. For the mathematical
presefitation, a set of indices is created to distinguish between upper bound,
lowver bound, and inactive wariables. For the variable i, the index is defined

as, follows:

I N

1 if variable 1 is at a lower bound,
r, = 0 if ic is ingcg:ive, ) (4.1)
-1 if it is at an upper bound;

The +1 or -1 for different types of bounds assures that Lagrange multipliers

are non-negative. Then form the following diagonal matricgs:
*R; = diag(r)) . (4.2.2)

for 1 covering the set of dependent variables,and

5\ B, ——

R, = diag(r,) ' (4.2.9)

for j-covering the set of independent variables.

»
3
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These indices premultiply the inequality constraints, leaving a Lagrangian

function without constraint functions for inactive variables.

This notation is advantageous for two reasons: (i) the usual notation for
the Index sets of constraints (of the type "for all indices j belonging to the.
group with property J") is replaced by more compact notation, and (ii) it
clearly situates the active independent variables in the. structure of | the
optimality conditisns.

II;_the active set formuldtion, the inactive independent v%riables', the
active dependent variables and the non-zero Lagrange multipliers are. present
in the optimality conditions, but not inactive dependent variables. The latter
are computed from values of the independent variables, once these are found
from the solution of the optimality conditions. = IWe say that they are

"monitored" rather than "computed".

Since the inactive and active dependent variables appear alternatively in
different computations, their notation will be simplified. From here on, the

matrix notation for dependent constraints will mnot be suﬁplemented by

. superscripts I (inactive) and A (active) unless it is deemed necessary. The

kdistinction between the two ~groups will usually be clear from the context.

The superscript A will always be dropped for active dependent variables, and
whenever possible, the superscript I is dropped from the inactive independent

¢) The Lagrangian function

With the simplification in notation given above, the ’ Lagrangian for:
optimization problem (ED) is_

. L = C(P - Xy [gg'b] - 3Ry [6b + d - ’ds“,m]‘

Pl . .
- WTR, [b, - blim] - (4.3)
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N
Partitions are created for v;'ariables, choefﬂciem: matrices and vectors

depending on their inact:i.v_e/activé and P /transparent status. Notation and

dimensions for the above vatiables{_’ and their partitions, and the definition of
a new array-H needed below are presented in Appendix 4.1. .

~——
¢ t o

d) The optimality conditions

The first order optimality conditions are given, starting with their most
detailed form, and then with simplifications in notation. The different

formulations will be used at various stages of the presentation. Referring to
Appendix 4.1 for notation, the optimality conditions are:

«-_ , — r. — . 4
B* . E - gOpA - HPA T _% PQA - &A
B i -8gp - pr P, -a
i .
- [ g 'gor. -H AT _gt tsA ‘o -
o gopAT gop'r gOtAT 8951 s AO kolim .
HPA Hp ' HhA Hb t{§ : 4 )‘1 klllm
{ i
3 : R ! N Hp RPg "
L Rh ) E B __""t B} Efotslim_
‘ . ‘ o (&.4)
- s
with - B
, - y)
[
‘kolim - goT [_b]_ + b, 1 e (4.5)
kllim = H[b +b, ] +RA [41" - 4] L (4.6)

=

Together k,!!™ and k,}!™ form an (ndA + 1) dimensional vector, denoted klim, ‘

where ndA is the number of active dependent constraints.

" p—

£
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The solution of eq. 4.4 can be simplified by setting active independent

variables to their values and sending them to the right-hand-side. The

equations can be split into two parts for convenience.

RPA = RPI® (4.7.a)
Rt = Rt lti® (4.7.b)
Ryu, = (BAPA +ah) - g, ta, - HATA (4.7.¢)
i Rc"; - - 80:;‘)‘04' ;{t‘.ATAI (4.7.d)
and -
FB -8op - HPT— TP: [ -a
-8or - HT t, 0 ‘
- (4.8)
gopr Sor.T X kﬂl}m . 3o”bgA
;‘ — Hp 8, - ) LAL _k1“m - HAbsA_ )

The fir\st group (eq.4.7) handles active 1ndependen‘tl: variables and their

Lagrange multipliers. The second (eq.4.8) handles inactive independent

variables, active dependent variables and their Lagrange multipliers., The two
groups are not decoupled, " and the Lagrange multipliers A must be resolved

before comput irng .

a solution to-eq. 4.7 and 4.8, their notation will be

Before looking for;
further six_nplified.v Regrouping terms in the g, vector and the H matrix, the k
vector, and the Lagrange multipliers results in the following:

RPA = RpPILi® €4.9.8)
.\‘Rtt;A - Ret;“m N | (4.9.b)
Rp, = (BAPA + ah) - gAT) ) (4.9.c)
Ry, = T . gATA . ) (4.9.d)
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and -

T -
B -G, Pl | -a
e e | - 0 - ‘ (4.10)
| 6 s RN

In its simg}est expression, eq. 4.4 will be reduced to this form: -

eI -]

This notati?n will be useful later on. The definitions of the new parameters
in eq. 4.10 and 4.11 are understood.

\

4.2.2 Apalytical Solution of the Optimality Conditions

wa »

Analytical expressions for the optimal solutions of eq. 4.10 are obtaim;,d

by applying (;aussian elimination to the blocks of 1its left-hand-side matrix.

. This 1s possible as long as the inverse matrices called for in the Gaussian
elimi;mtion process exist. Causes for singularity of the matrices and
possible remedies will be covered further i;x Appendix 4.2, on degeneracy. P
Some structural requirements in our solution technique are that the G
matrix of eq. 4.10 be full rank and that Iinactive generations outnumber the
active dependent tonstraints, If the" latter condition 1is wviolated, the

dependent/independent -partition can be reordered.

¢ P

Taking eq. 4.10 as a three by three block matrix, the second ané’ third
block rows and columns-are permuted leading to a suitable form  for Gaussian

elimination. Then the following row operations are performed, in this order:

New row no.2 = old row no.2 - GPB'1 X row no.l €4.12)

New row no.3 = old row no.3 + G [ GpB‘lcpT "' x row no.2 (4.13)
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The resulting equation, mathematically equivalent to egq. 4.10 » 1s_1in block

~. -  upper triangular form:
o r— N I i — -
- T -
i B -Gp P, - a
K -G || x| = n o e (4.14)
* - —a
. FJ t, G,’K'! n )

—

Analytical expressions for the optimal values of the variables are easily

found from eq. 4.14 to be -

tg =~ L1 K n - ' ’ (4.15)
. A = K!'[I-M!]n - . (4.16)
~ . P, = B! (cﬁfx'l [I-MK]n-a)- \ (4.17)
Rl \ '
where - L
. - -1a T '

- - K GP.B Gp - (4.18)
N , L = GJK1G, - - (4.19)
) K = GL!gT ‘ ~ - C (4.20)
n = GBla+k ‘ \ . (4.21)

The solution for eq. 4.9 can now be re}vri:tten, incorporating the solution for

- ) Al - o ~"
| h . «
RyPgt o RyPH™ T (4.22)
R = Ryglim - (4.23)
B, = R, ((BAR2S + a*) - Gp“K'l [T - M2 ]’ n) (4.24)
p, = R, ( - GATK™ ! [T - MK'! ] n) ' (4.25)

v o —
3 - ? H .
s .

T = )
.To complete the solution, the optimal values of the inactive dependent

variables are monitored (next page):
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4l = dy+ G(b, - (b, + b)) ] (4.26)

‘The optimal b, vector used to compute eq. 4:26 is made up of the optimal
values of P, and t,, computed in the preceding equations.

g

- Equations 4.15 to 4.26 constitute the optimal solutions of the quadratic

program (ED) for a known active set. The opt:imal;value of the objective
function is the wvalue of the objective function evaluated with the optimal

real power generatioms.’

Note that in these équations, if all the transparent variables are at
their bounds, the terms I.. and M hisappear. Then transparent variables are all
sent to the right-hand-side and the structure of the optimality:conditions is
identical to that of real power dispatch. ’

-

Efffcient computational techniques are used in the numerical

- implementat}.on of eq. 4,15 - 4.26 and of the subsequent optimal solution

- "trajectories based on these equationms. These t%chniques reduce the

computational effort by taking advantage of quantities already computed, and
by avolding inefficlient computing practices, such as computing inverses of

matrices. The details of the implementation for the economic dispatch using

__ the vafying limits. strategy are presented in Chapter 6. The analytic .

expressions for the segments of the optimal solution trajectories for this

problem are no‘{ presented.

b

4.2.3 Solution of the Economic Dispatch Using the Varying Limits Strategy

The perturbation function of eq. 3.7 1is implemented in the right»-hand‘-
side wvector k of eq. 4.10. The k vector becomes a function of the

\

continuatlion parameter, 8: ) e e L

o

k(8) = k, +2k.0 (4.27)
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where y
’ = . P
by ATH A
g [ b +b, ] - g b
Kk = |- ’ 8 B (4.28)
and LT
3 o - s . -
Ak = ) . (4.29)
- Ad i .

) .
As a result of this, the right-hand<side term n of eq. 4.21 is split into.

two parts:

* n(8) = n, + Ak.8 7 (4.30.a)

) " mp = GBla+k © (4.30.D)

With this choice of petturbation function, optimal solution trajectories
can be built, by splitting the terms in eq. 4.15 - 4.26 to form relations of
‘the type of ed'. 3.9. ’ L

For inactive bs(e) :

|
|

P(8) = B, + OPS (4.31.2)
P = B 1 (TR [ I -MK! ]nm- a) i (4.31.b)
AP, = Bl GTK! [I - 1;112'1 1 Ak o (4.31.0)
£,(8) = t, + LS . (4.32.a)
teo = L16JK! ng - (4.32.9)
at, = LTiGTKR Ak / (4.32.c)

el <
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= For active b, :- ' =
RPPiA = Rrpsllm -

A o 1i
REA = R lie

For Légrange multipliers:
A(@) = A% +ar0
s A = K [I-MKY]n,

AV = K1 [T -MK!] Ak

Bo(8) = pyg + Op B
B = R, ((BARA + a%) - GATK'? [ I - MK ] ng)
Au

b ™ -%GPATK'l [I-M! ] Ak

"g(e) = kg + Lp, O -

By = -R, GATKI [ I - MKl I'n,

Ap, = R, GATR'1 [ I -MK! ] Ak

while monitoring inactive dependent variables:

’ 1 I
- 4,1¢8) = d, + Ad®

do = dy + G(by - (B] + b))

ad, = GAb, , _ e

L b) The initial, simple problem

P . L ok QUi SO Wy iuaty

o
In this homotopy strategy, the initial simple problem

113

(4.33)

.(4.34)

b
(4.35.8)

€4.35.b)
C4.35.¢)

(4.36.a)
(4.36.b)

(4.36.¢c)

7 (4.37.a)

(4.37.b)

(4.37.¢)

(4.38.a)
(4.38.0b)

"(4.38.¢)

ignores the

functional 1inequality constraints of program ED. The ensuing problen,

although mnot trivial, i1is solved quickly. Since this approach has been

implemented, many of the fine points can be discussed.

The solutions of the simple problem fall into two categories:

- ?,{ ¢
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- For very low loads: For loads nedy minimum generation, the real power
generations are set to their minima, and transf:arent variables are not
uniquely defined. In the normal operation of a power system, this case
is rare. '

- = For other loads: For loads greater than a certain "threshold", real power

“generations are dispatched using stand«fd optimization techniques. The
transparent variables with non-zero coefficients in the generalized power
balance equation go to their bound“s, while those with zero coefficients

are dispatched using rules extraneous to the quadratic program.

- The solution algorithms for these two categories are introduced in this

section, but first a graphical interpretation of the problem should be
helpful. This problem is in a form suitable for solution using the equal
incremental cost criterion, popular in real power dispatch [Wood & Wollenberg
1984]. The method is based on the result that all inactive dispatchable
variables P\ave the same incremental cost at the opcixmnn This incremental
cost is equal to ),, the Lagrange multiplier associated with the generalized
power ‘bale;nce equation. A variable 1is sent to 1its  upper bound 1f its
incremental cost cannot be raised to ),, or pegged to its lower bound if its

incremental cost cannot be lowered to A,. In the generalized procedure

‘Presented here, the graphs of A, versus all the independent variables are

drawn, for all values of the variables between bounds. (Refer to figure 4.1.)
For real ;ower generations, these are line segments with positive slopes and
Ag interceptéx. For transparent variables the slopes and A, intercepts are
identically =zero, because they' never cost anything. At the bounds, the
incremental cost curves are sent to %+ infinity, acting as barriers to avoid
infeasible operatior. For variables with positive coefficients in the
generalized power balance equation, the lower bounds are connected to _minus
infinicy and the upper bounds to plus infinity; the opposite applies to

varjables-with negative coefficients.

|

2

The term gOTbl 1s called the aggregate load. An aggregate lagad curve is

“drawn over all permissible values of ),, by isolating the load terms of the

power balance equation. (See eq. A3.4.3. from Appendix 3.4 for the
relationship between the terms making up the power balance equation.) The

aggregate load is obtained by adding terms 8oi1Pg; for the corresponding values

-
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of ‘b‘,_ (for a given ),), read off the incremental 'cost &ves. and subtracting
a constant term due to the expansion point, g,') Once this graph is buillt,
the optimal dispatch for a given aggregate load can easily be found, by

reading values of the variables "horizontally" off the graph. With
transparent variables added to the formulation, this procedure is called the

generalized equal incremental cost procedure. : -

In the example of fig. 4.1, the problem considers only four variables,
two real power generations and t;v?o transparents. Coefficients and bounds are
given in the figure or can be read off the graph. For an aggregate load of
15, the%ptimal values of the_independent variables are those which 1ntersect\
the dotted horizontal line. These values are

T~
P, = 3.5 ty = 2
P, = 5.5 t, = 3

The two categories of solutions noted at the/ beginning of this section
(low loads and other loads) can be identified iIn £ig. 4.1. Solutions in the
fist category occur on that portion of the aggrégate load curve where_xo is
equhl to zero. In this example, this occurs for loads between 9.1 and 11.3.
Generations are then set to thelr minima and transparent variables are
adjusted tlo satisfy the load. The transparent variables lie within their
bounds and are non-unique. 1In the example, the only added restriction on the

transparents is that = -
-0.2 ¢, + 0.9 t;; = Aggregate load - 9 (4.39)

Solutions falling into the second category: occupy all the rest of the
aggregate load curve, -
%

This completes the graphical interpretation. ‘

The optimality conditions for the simp17e problem are now analyzed, and

solution procedures are introduced. The new optimality conditions_ are
obtained by dropping the -H row and the )\, column from eq. 4.4. The two

categories of solutions are obtained in the analysis as a result of satisfying
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4 . the new optimality conditions with either a zero or a nonzero value of the
Iagrange multiplier A,. The two cases are treated separately.

P

’

i) For low loads

With A, = 0, there exist solutions to the simple problem with all real
power dgenerations at their lower bounds. The mathematical argument is as
follows. The optimality conditions for the simple problem with A, =0 tend to
send the inactive real power generations %o their unconstmmedmmma, given
by the expression .

Psi = "ai/B“. (4-40)

Since coefficients a and B, are positive, these values of P, are all
infeasible. However, optimization algorithms based on search direction
methods ue these values as end points of a search segment. These are the
only search directions generated by the algorithms at any iteration. Hence,
all P, are pushed to their lower bounds.

Mearwhile, no values are prescribed for the individual transparent
> variables. The only restriction on the transparents besides the individual
bournds is that ‘

- got.rtg = koum - gOpTPsm . (4.4]:)

The low loads vwhich can be satisfied m this case are situated between
the minimum aggregate load and the. threshold load, defined below. The minimum
aggregate load which can be satisfied by a feasible dispatch, dencted MAL, is

o

ML = min [ g’ ] = =-g'b, + g JB® + [ g,Tt 1® - (4.42)

‘ ~ The maximm load which can be satisfied at minimm generation will ke called
" the threshold load, and denoted TL. It is given by the expression
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Figure 4.1. The generalized equal incremental cost griterion.
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4

L = ‘80“’- + SOpTP‘m + [ Zogrt; ]? (4.43)

For aggregate loads between MAL and TL the optimal dispatch is obtained by
adjusting [ gm‘"t‘ ] within bounds. For this, many strategies are possible.
The strategy implemented in our algorithm keeps only one transparent variable
- inactive, since opti;nal solution equations 4.31 - 4.38 wused 1in the

continuation process do not allow for more. The details of the implementation
are given in Chapter 6.

i 1i) For the other loads

- - e e e e =

For the optimality conditions to be consistent when ), ¥ 0, all thé\
L‘:» transparent variables must go to their bounds, except fo;:} those whosp’

A
coefficients g, are zero. The bounds to which the transparents move _afe

T et e

such that they reduce as much as possible the right-hand-side term k jé the
optimality equation of the type eq. 4.10. Alternately, those variable
zexro coefficients have no effect on the problem.

with

Either way, eliminating the
transparent variables from the optimality equations reduces the structure of

the problém to that of a standard real power dispatch. With the active
transparents incorporated into the right-hand-side, and again for a given

active set, the optimality conditions for this problem are

' - " 4, -
] [QOpT Ao k (4.44)

. with solutions

- Ag = K [gy, B ta + k] (4.45)
& .

b Py = B [gohy - 2l C4.46)

. A ~
( and vhere k= k,!'*® - [g,Te]¥ - (4.47)

{
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The solution algorithm f;:r the simple problem must determine not only  the
optimal wvalues given above, but also the optimal active set. In the hybrid

method developéd i{n. this thesis, a binary search technique is used in the

optimization until the optimal active set is identifiedv, after which the

“solutions for A, and the inactive real power generations are computed exactly.

. The details of the implementation are found in Chapter 6.

Finally, the choice of bound for each tra{\sparem: variable is determined

-

from the Lagrange multipliers p,, which are non-negative: -
By = - Rggro . (4.48)

From the non-negativity of B, a, the scalar K1!, 831” and Pa, the Lagrange
multiplier A, of eq. 4.45 is also positive. Hence for the right-hand-side of
eq.4.48 to be positive, here are the only possible choices:

1) for gg,; <0, Ry, =1, i.e. t,, goes to a lower bound,

- (4.49)

11) for gg; > 0, Ry, = -1, i.e. t,, goes to an upper bound.
- . (4.50)

Retcall that for g, , = 0, the corresponding variable is dispatched using rules.

extraneous to the subproblen.

~ This completes the analysis of the optimality conditions of the simple
px:."obleni‘.
: ] .

A final observation is that the quantity [ 30::? t, ] can be thought of as
a quantitative measure of compensation. It is the amount by which real power
generations can be reduced when compensatioa devices (in a general sénse) are
activated. That doesn’t mean that real pover is generated by transparent
variables, to satisfy the loads. 1In effect, real power losses are reduce_é by -
the process, until they can ng-longer be reduced without violating the bounds.
Figure 4.2 {illustrates the idea in the region of minimum generation. The
range of compensation is the amount by which a load0 is increased by adjusting

compensation without modifying real powex generation. Note that the
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illustration is built around minimum load so that the the previously defined
threshold load can be illustraed, but we could slide it into any load region.
¥

4.2.4 Solution of the Ecom ic Dispatch Using the Varying Load Strategy

Note that the presentai:ion in this and subsequent sections parallels that
of section 4.2.3, and the same notation is used. That should not cause an

~ '

confusion, since'each_ section is self-contained.

-

D - i

Using the perturbation function of eq.3.5, the right-hand-side vector k
of eq. 4.10 can be written as a linear function of the load. Hence the load,

confined to a trajectory, becomes thé continuation parameter. The vector k

becomes: 2N
\ k(b)) = Kk, + AK.b; (4.51)
where . .
o Th, - g ATH A
r - ) -2 ‘
ko ) Kb.. - HAB} + RdA [dslim - dO]] C4~52)
and ~ -

-,

s T
\ AK = 8%] : (4.53)
— i»

and it is understood that b, = b,(8). .

As in the previous study, the term n of eq. 4.21 is split into two

parts: -

n(8) = n, + AK.b, ' (4.54.a)

with

n, = Gpn'la + ky ‘ (4.54.0b)

—
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0 Using the perturbation function of eq. 4.51, the optimal solution
;:rajectories are expressed as functions of the loads. These axe quite similar

in form to eq.-4.31 - 4.38 of the preﬂvious gection: - -

e

For inactive bs (®):

P, (b)) = P, + AP, : (4.55.a)

. P, = BM-' (GTKM [ I-MK!1In,-a) ‘ (4.55.b)
- AP, = B'1GTK™!([I-MK!]AK - : (4.55.c)
t, (b)) = t, +Atb - (4.56.a)
tp = LTk ! - (4.56.b)
at, = L716TK"1 Ak - - (4.56.c)

For active by 4 ) '._-b

A 1i P
B = BRT g 4.3
Rt = R lim \ . (4.58)
For Lagrange multipliers: . o

A(b) = A0 + Axb, . - (4.59.a)

. T
\ A = K![I-MK!]n /)fﬁ.ﬁ.b)
AA = K![I-MK!]AK // (4.59.¢)

Bp(by) "= pg + Bushy (4.60.2a)
Boo = RU(BPA +3a%) - GATR'I [T -MK'?! ] ny) (4.60.b)

Au, = -RGATK ! [ I - MK! ]\A}( (4.60.c)
(b)) = oy + Apby (4.61.a)
B = R, GATK'! [ I-MK!]nm, o (4.61.b)

& bpy, = -Ry GATK'! [ I- MK! ] AK (4.61.¢c) °

—w -
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while monitoring inactive dependent variables:

41 (b) = d + Adb, ‘ . (4.62.8)
do = dy + 6 [bgy - b,], (4.62.1)
-84, = G [ab, - I] - - " (4.62.c)

- e e i L ey -

B

’

The solution homotopy must start {:}f problem with a known optimal
solution. That could be obtained by applying the varying li.mi.t;s‘~ strategy to a
given load, b,, say. From a practical- point of view, a QP programing cdde

-
. could easily accommodate both homotopy strategies. One subroutine could be

used to find an optimal solution for an initial load In a load trajectory,
using the solution trajectories, of eq. 4.31 - 4.38 of the varying limité
strategy. This first subrout:ine—w'ould then be r_eplaced by one which tracks
the optimal dispatch for varying loads, using eq. 4.55 -~ 4.62 of the varying
load strategy. The remaining stepslof the QP economic dispatch are basically

. the same for both strategies, This 1s the preferred approach, since the

initial load can take on any value, and its optimél dispatch using the varying
limits strategy is quite fast.

Another approach which would stick only to the varyinga load strategy is
to find an initial load for which the solution is easy to find. In realnpower
dispatch, the optimal dispatch for tl'ie ninimum load is very easy to find, that
being the minimum ger;erai:ion. With the full 1linearized model, either the
minimum aggregate load or the threshold load would seem to be good choices.
However there is a complication due to the extra degrees of freedom, which 1is

discussed next.

In real power dispatch, the real power line flows are the depend‘ent

\

" variables. They are practically never at a bound for minimum load. In the

' general load flow model considered here, line flows, voltages, and/or reactive

powers are the dependent variables. For an arbitrarily chosen

-

independent/dependent partition, with all transparent variables sent to the

- _—
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appropriate bounds, it cannot be guaranf;:ed that the deI;endent variables are
all within bounds. The much sought partition with no violated constraint can
be found using a phase-one of linear programming. The procedure is usually
quite fast,  Basically, it finds a feasible point for a set of 1linear
equalities and inequalities. The constraints would be those of program ED ,
and also all real power generations set to their lower bounds. However, since
the full G matrix has not been computed explicitly, it is preferable to work
with the mathematically equivalent constraints of the Jacobian model, y = Jx.
The latter also has the advantage of being sparse. The solution provides a
set of non-basic (independent) variables at their bounds and feasible basic
-~(dependent) variables. This would form the optimal solution for some economic
dispatch problem, for a load between minimum aggregate load and threshold
load? That would be the Initial problem. ) /

There remains a degeneracy to be resolved when the 108,]0.;1 ;eaches the
threshold load. As was the case for real power dispatch, a ru‘.e is needed to
free a generation from its lower bound. 1In so doing its Lagr:’mge multiplier -
jumps to zero. The rule is the same as before, i.e. the 1incrementally

cfxeapest generator comes off its bound first. l

TR

4.3 Solution of the Mixjximum Loss Subproblem ) -

4.3.1 Formulation and Optimality Conditions

2

~The objective function in minimum loss is the real power loss in
transzpission. It can be expressed most simply as the _difference between

generated and consumed real power,

Ploes = € [ P, - P ] ' , (4.63)
_With a linear objective, the subproblem "reduces" to linear programming. Tte
constrain’s for minimum loss are identical to those in economic dispatch. The

minimum loss problem will be denoted (ML). -
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This section provides the theory for the solution of the minimum loss
problem by the continuation method. Although the upoomng ideas have not yet
been ifplemented, it is felt that the varying load strategy can be quite fast,
once an initial optimum is pmvided. As for the varying limits strategy,
which solves for a single loéd, it might not be any faster than the simplex
method, particulary since its initial, simple problem is more complicated than
for economic dispatch. The merits of the varying limits strategy are' best
determined by numerical testing. _ -

The parametric techniques déveloped for quadratic programming in econamic
dispatch are still valid for linear programming, but there are some noticeable
differences between parametric QP and LP. For one, there is no objective term

associated with the independefit variables in the left-hand-side matrix of the
optimality conditions. Hence in an initial simple problem similar to that for’

economic dispatch, all but one of these variables are sent to their bounds.
This is clearly an erroneous dispatching strategy, because almost all real
power generations would ‘surely be sent to their bounds. The continuation
process would then require many breakpoints to solve the desired problem.
Solution techniques for the simple problem will take this difficulty into
account. The real power generations are not transparent though, because they
are cost-related; the linear cbjective term is present in the right-hand-

side.

Optimality conditions for minimm loss incorporating transparent
variables are presented in eg. 4.64 below® 1Inspection of its structure
indicates that to be consistent, the mumber of active constraints must be

* equal to the number of independent variables; this agrees w_ith the fundamental

theorem of IP. Hence the toughest part in obtaining optip\ality here is the
|

search for the optimal active set.
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- The Km-ﬁcker optimality conditions, in a form similar to eq. 4.4, .
yield the following: _ ' ) -
. k . b B palilieny [~ -
il et B R 7! -e*
Ty “Bop - HPT - is‘ -8
e ':gOt.A - Ht.A_T -R, tsA | 0
' ‘ “8or - ﬁtr t, - o
gopugnprg%u "g;r 1 ; ' - A K Lim
HA H, HA B, | 11 A | ‘ k,tim
% » B |- BB HED
» TR JdLm] o Rt
- (4.64)

Manipulations of eq‘. 4.64 are best ﬁiﬁdied using the simplified notation:

0 -AT [} b, -e’ i . o
o - f T (4.65)
- LA o A k! “ -

—

x ~ o

Now the dispatchable variables and the Lagrange multipliers are decoupled,
leading to the familiar LP equationms:

L8
Ab = k' (4.66.a)

and

AT A= o'’ , E , (4.66.b)  _

[ Equation 4.66.a is the primal problem and eq. 4.66.b 1s the dual problem. The

matrix A is square.
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" For inactive b, (8):

The perturbation function of eq. 3.7 is implemented in the vector i;' of
eq. 4.66.a, yielding: 5 - :

k(8) = k,’ + Ak’.0 . (4.67)

The part of k' corresponding to the constraints on dependent variables is
identical to eq. 4.27, the perturbation function for economic dispatch using
the varying limits strategy. ° The- part -of k'’ corresponding to constrdints on

independent variables remains unaltered, and independent of 8.

The optimal solution trajec‘tories obtained by inserting k’(8) into eq.
4.65 are as follows:

-

be(8) = by + AbS , (4.68.a)
by = Alky - B _ (4.68.b)

8b, = A1k’ \ ‘ ¢« _(4.68.c)

The partition P ,/t, can be sorted out after computation.

4 ’ |

For active bB:

RPPBA = RPP&““‘ (4.69)

Rt A =i Ryt lim * (4.70)
{
For Lagrange multipliers:
- A - Azr e’ ‘ ' (4171)

The partition A\/u can be sorted out after computation. T
) .
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vhile mcnitor:i.ng inactive dependent variables:

1

dI(@) = dg + 4d0 (bis 4.38.a)
do = do + G(by - (b + b)) S . (bis 4.38.b)
ad, = GAb, (bis 4.38.c)

An importént observation 1s that Lagrange multipliers are plecewise
constant in 6. When.an inactive variable moves to its bound, it is added to
the active set and the optimality conditions are degenerate, but the primal
problem remains consistent at the breakpoint. The du;,l inherits a degree of
freedom, with which the degeneracy 1s resolved. The process will be explained
later in the Appendix on degeneracy.

- b) The initial, simple problem

vy - -y - s S0 e e e W am s s oo

Using this homotopy strategy for econo[ic dispatch, the limits on some
functional dependent constralnts are initially relaxed, and then retvrned to
their desired positions. ,\ However, In this initial, simple problem the
functional constraints cannot be neglected. These constraints are needed to
"fill out" the formulation of the Initial simple problem, as will be explained

below.

"As pointed out earlier, if thae initial, simple problem neglects the
functional constraints, the LP structure of the problem push;s all the
independent variables (with non-zero g, coefficients) except one to their
bounds . This can be seen in a graphical interpretation of the solution of
this simplified minimum loss, similar to that of figure 4.1 for the initial,
simple problem of economic dispatch. Following a simple transformation of
variables, b’ = b, /g, , this problem becomes "minimize gDpTPS’ subject to
eTbs' = k’ and bounds on the bg’ ". This transformation gives each new
variable its own individual 1incremental cost (dPloss/dei'), whereas -the
initial variables all had the same incremental costs. The new variables cant

now be used in a generalized equal incremental cost procedure.
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applied to the minimum loss problem.
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} ' Figure 4.3. The generalized incremental cost procedure
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~In figure 4.3, the plecewise constant incremental cost curves are drawn

for each independent variable and an aggregate load curve is built. This

fiéure shows immediately that the optimal solution of this sihpe problem
!

retains only one inactive variable at a time.

If a "bad" chc;ice of independent variables is made in the initial, simple
problem proposed immediately above, then the continuation process requires
many breakpoints to pass from the optimal active set of the initial, simple
problem to that of the desired problem.- Ideally, the two optimal active sets
should be close.

If a good initial guess of the 6ptimal active set, or even b’etter, of the
( optimal solution, 1is avéilable, then it can be incorporated into a better

initial, simple problem, This suggests the following improved procedure for
the initial simple problem.
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Note that in the following discussion, two sets of nomenclature are used

" in parallel. These are (1)ﬂﬁthe nomenclature we have been using so far, and

(i1) the notions of basic and nonbasic variables from thes simplex’ method of
linear progran;ming [Chvatal 1983].

The varlables for which there are good initial guesses are set to those
values. The active variables in this group are made non-basic, and the
~inactive ones are basic. Note that the number of fixed wvalues is-at most
equal to the dimension of the problem, denoted ndimy The remaining dependent
variables are computed ;s a function of the fixed variables. The dependent
variables can also be partitioned as basic or non-basic,_ as long. as there Is
space avallable in those partitions. For this vector of variables to be an
optimum, ndim constraints must be active. " To create that many constraints,
the limits on some of the non-basic dependent variables could be displaced to
coincide with the present values of the variables. The best candidates for
this oper_ation would be the dependent variables computed ‘out of bounds and
those which are suspected of being at a bound at the optimum. Once the choice
of variables for this operation has been made, there only remains to choose if
the upper or the lower bound is appropriate. That choice can easily be made
‘upon inspection of the simplex tableau bullt for this problem. We denote by
d,’ the variables - affected by the relaxing of tﬂei:r boundg and by d;io its
present wvalue. Then the perturbation function which moves the bounds of

dependent constraint dn' is written as -

4,,'(8) = d,," + Ad,.6 ‘ - (4.72.2)
with
Ady = d Mmoo g (4.72.b)

Here the Ad, are distinct.
o

This being an optimum for the primal problem, non-negative Lagrange
multipliers can be computed to satisfy the dual problem. Then a solution for
this initial, simple problem is complete.

Q :/
A disadvantage of this ‘approach is that possibly many rows of the G
-1 A
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matrix must ‘be computed. Hovrever, if a good initial oﬁtiml active set is
,cfxosen, few breakpoints should appear.

- ¥

Once again the load trajectory b;(68) 1is considered the continuation
parameter. It 1s inserted into the vector k’ of eq. 4.66.a, and written as

follows:

k'(0) = k' + AR’ .b; \ (4.73)
The part.of k'’ corresponding to the dependent constraints is identical-to eq.
4,51, the perturbation function for economic dispatch using the varying load
strategy. The part of k' corresponding to independent conatraints remains

unaltered, and independent of 9.

The optimal solution trajectories are obtained by inserting the k’(©)
vector into eq. 4.66. They are:

For inactive bs(e) : -

b,(8) = b, + ABb, (?.74.;1)
by = Alky (4.74.b)
Ab, = A"lAK’ (4.74.c)

8

The partition P ./t can be sorted out after computation.

For active bs:
RPA = RpPIm Ny (4.75)

~ RA = Ry lio (4.76)
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For Lagrange multipliers:
A = AT er (4.77)

The partition \/u can be sorted out after computation.

) ‘
while monitoring inactive dependent variables:
4,7(8) = d,, + AD.b, (bis 4.62.a)
dgo = dy + G [ by, -/b. ] (bis 4.62.b)
oD = G[ab -] (bis 4.62.c)
\ - v
el N

Here again the Lagrange multipliers are piecewise constant in 6. The
comments presented for the solution homotopies in the -varying limits strategy
also apply here.

------------------------
\ -
&

The remarks made for economic, dispatch using the varying load strategy-

’
also apply for minimum loss.-

4.4 _Solution the Min ed Su
evelopment of the Proble ulat
A fairly general objective function 1s proposed. It consists of a

quadratic function of the difference between the customer demand b, and the
feasible load b, supplied by the utility. ¢

B e -
-
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It is written
S(b)) = [b, - b 1T 8, [ by - by ] (4.78.a)4
=  b'by, - 2[ b,Ts, 1b; + b,TS;b, (4.78.b)
- s, - s,"b + ¥bTSb (4.78.¢c)

with S, symmetric.

The unknown variables are the supplied feasible loads b,, for a known demand
by The value of the objective function 1s zero in the normal state, when bJ_

and b, are identical. It takes on positive values in the load shedding state.

There really is no definite choice of objective function for the locad
&

shedding problem, so some discussion is warranted. The above function is a

weighted norm of the demand-load mismatch. The weights could be attributed

according to priority lists, or revenues,etc..

Off-diagonal weights might
also be considered,

placed symmetrically to retain the usual advantageous

quadratic form. If S; is the 1dentity ‘matrix, the objective is simply che

Euclidean norm of the mismatch. This thesis does not propose to study the

merits of the different objectives, but rather to furnish a mathematical

framework in which they can be incorporated.

As in many load shedding subproblem formulations, the 1load shedding

proposed in this section uses the full linearized load flow moael.
voltages,

Hence
reactive power sources and passive network controls can participate
in the control action.

Two formulations are regrouped, for load shedding based on: (i) economic

d&lspatch, or (ii) minimum loss. The dispatchable variables can be computed,
along with the optimal feasible load,

to satisfy either one of the normal-
state dispatches. )

The formulations contain the objective function above, plus the

constraints described in this paragraph. The loads are bounded between some
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predetermined lower bound and the varying demand. 1 In addition, the .
optimality equations, eq. 4.4 for economic dispatch or eq. 4.64 for minimum
loss, are added as equality constraints, to impose the optimal dispatch for
the given (as yet unknown) load. These constraints contain the usual
linearized load flow and the ‘bounds on the dispatchable variables. The two
formulations are denoted (LS,ED) for load shedding based on economic dispatch
and (LS,ML) for load shedding based on minimum loss.

An important role of the added equality constraints‘ in this load shedding
formulation is to define a unique set of dispatchable variables for a given
load. As pointed out by [Chan & Yip 1979], in a load shedding problem with
the usual load flow constraints and where the 1loads alone make up the
objective function, the optimal loads can be computed, but the corresponding
d.{spatchable variables are non-unique. The added equality constraints given
by the optimality equations define unique and optimal values of the
dispatchable variables for a given load. This addition "1s also necessary to
uniquely define the dependent ‘variables in our formulation, since they are
expressed as functfons of the loads and the dispatchable independent
variables. - ’

The formulation of the load shedding problem is now written. The compact
notation of eq. 4.11 1is used to expresy the equality constraints fo: either
one of the two var.:iants, with the dependence of the k' term on the load b,
written explicitly. Due to its excessive length, the .formulation, denoted

(LS), is presented on the next page.

O - | N
1 We note _that .the choice of very high lower bounds on the loads (to

satisfy priority loads, for example) could lead to infeasibility in the load
shedding problem.
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min Sg - S;0b, + 3 blT .S,.b,

bl'b

8 . )

“
B’  -AT b -a’
- (LS)
A A k, + Al.b]_ .

-

for A containing all the active constraints on

the dispatchable variables, while monitoring

the inactive dispatchable variables:
1 .1 1 Tog M
. '" < d5° + 6 [b, - b -b] < 4,

M
- b < b, < b, .

4.4, velopment of e Opt t onditions

The Lagrangian function for the m¥nimum load shedding pr;.)blem (LS) is-

a function of the loads and of the unknowns for the normal-state dispatch. It
-
is written as

gy 2
L= S(b) - AT [Uz - v] - uT [b - blim] (4.79)
\ ) \
\
where the new notation is defihed as follows:
U, z, and v are simplifying notation, used temporarily to express the-
( left-hand-side matrix, the wvector of unknown dispatchable

variables and normal-state Lagrange multipl:(ers, and the
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“ in greater detail tha’!l in eq. 4,81 above. These equations are: /
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right:-hand side véctor of the equality constraints of

problem (LS), B

AL is the vector of Lagrange multipliers assoclated with the
equality constraints of load shedding,

By is the vector of Lagrange multipliers associated with the
inequality constraints on the loads,
and \ .0 -
R, is the matrix of constraint status indices for loads.

The A, vector is broken\down into its two main components, Al—; and XL_A,/
corresponding to the ¢

main partitions in the equality constraints of
problem (1LS). .

Having introduced this notation, the first order optimality conditions

for problem (LS) can now bejgiven. They are:

[~ . : ; ‘1 ] . 7]
A : AT ;| T A
| S e 5
S, ; ‘ Alr ' b, 8, -
P a1
|-B’ -AT b, 0
i 5
LA i A - 0
------—-------------------..!-----—-—--.-_--»J
] B’ -AT;: Al -a’
AA A A : X1-a k,
o .--...r-..--- sussnmm i mennmmaned A ,
R A by Rlbllim
. N

These optimality conditions can be split into two groups, as for the
previous tasks, separating active loads and active dispatchable independent
variables from the remaining variables. These two groups of equations are

given below. In the second group, the partitions of the variables b the

Lagrange multipliers ),, and of the corresponding coefficient arrays are given

-

!
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thbl - Rlbllim _ ' (4.81.5).‘
A o lim . )
R P, Rpin _ ‘ (4.81.b)
- RttsA - Rttslim vn,“{‘?\~ /;:° - A_(4-81.c)
RTpy = (Syubt - 82) + ATA L, - (4.81.4)
= Rpryp - ‘(BAPB“ + at) - APATA (4.81.e)
RIp, = - AATA ) - (4.81.£)
and ‘
 — I '. Sy p— — pr—— —
( i -B -G, T P, 0 .
' |
_-) /: -Gtr tl A 0
: v - “CATH A
16, G A GATh,
- cemBacecmanma @ ---h}-—---- e caaeonm e B men J
E B “GPT§ : ALirg -a
........ .;. -Gf-r é A ~tg 0 \
5 § | ATH A _ ATy A
_A]_ ; Gp Gt. : ] L...A]/-A ] L_..ko + Al bl G bg ]
/ (4.82)

where A, and ),  are the partitions of Al-g corresponding to the
inactive real power generations and transparent variables respectively. The
terms of the ), vector corresponding to active dispatchable variables need not

be computed, because no restriction has been Imposed on their values and

" because they are not needed in the computation of other unknowns.

&

4.4, olution of Mini Load Shedding by the Va ng Demand Strate

DR I e e E R T T TS, T

/a) Optimal solution trajectories

The perturtation function of eq. 3.8 is implemented. It affects two

terms of the right-haﬂd-side vector of eq. 4.81. The linear objective term

L
2

becomes ”
$.(8) = 25T [by, + Ab,B] (4.83.a)-

4 -
- 5y + As,8 _ : (4.83.b)

o
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In the limits vector, the upper bounds in the load term become

R;bM(8) = R [by, + Abge] : (4.84)
The remaining terms k,, G**b* and a of the right-hand-side vector are
- Independent of 6.

Equations of the optimal solution trajectories for load shedding cannot
be broken down into groups for the individial variables, as was done -for the
previcu§ tasks, This is because the block in the optimality conditions
Acorresponding to the norﬁ#l-task dispatch is rank deficient. Hence terms like
K, Land M 6f\eq. 4.18 - 4.20. whichQresult from the partitioning of‘the left-
hand-side matrix of the optimality conditions cannot be formed here. The
addition of the A, row and column for load shedding restores full row rank to
the constraint block of the optimality conditions. In order to retain full
rank of the left- hand-side matrix of the optimality conditions, the number of
inactive loads (where load shedding takes place) is at least equal to the rank
deficiency of the normal-task dispatch block.

The solution trajectories are computed from the optimality equations in a -
more general form. The two éomppnents of the solutionrgrajectories [s(O)] =
[sly, + [As].6, for éq.4.33, are obtained from the solutions of those sets of
linear equations with the right-hand side [rhs] = [rhs], + [Arhs].6. Then
the solution trajectories for the remaining unknowns in eq. 4.82 are easily

computed.
L ]

An impért;nt observation is that the optimality equations of eq. 4.81
form a general set of optimality conditions, also valid for the normal-state
tasks. For the normal-state tasks, the Lagrange multipliers X, are
iﬁentically zero, because the normal-state block which multiplies X, is full
rank, and the corresponding right-hand-side term is zero. With ), identically
zero, no load can be inactive because the values of the unconstrained minima
b, = Sz‘lsl‘ are identically equal to the demand b,. Then all the'loads are
placed in the right-hand-side of the optimality conditions, and eq. 4.81
reduces to eithe? eq.4.11 for economic dispatch or eq. 4.65 for minimum loss.

Two important conclusions are that
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1) Equation 4.81 is a general optimality eguation for all three tasks
studied in this chapter, with the normal state tasks being particular
cases;

2) Ioad shedding is used only as a last resort in this dispatching strategy,

when the demand trajectory leaves the loadability region, and normal- -

state dispatch becomes infeasible. -

{

b) The initial, simple problem

~ ILoad shedding is invoked when the dispatch task used in the normal state
reaches a feasibility limit. The optimum on the boundary is a "final" optimal

" solution for the normal state task, but an "initial" optimal solution for load

shedding. The load shedding objective starts at a value of zero and increases
with a changing demand. The optimal active set and values of the variables
are transferred from the normal-state task to the load shedding.

A difficulty occurs when changing tasks, because of the degeneracy in the
optimality conditions of the normal-state task. The choice of load which will
leave its bourd to résolve the degeneracy is decided by techniques discussed
in Appendix 4.2 on degeneracy. It is felt that usually loads will be released.
one at a time, because the feasibility limit in the normal-state task is
usually reached when a single, final constraint is added to the optimality
conditions. 1If that is the case, the load to be freed is found quickly.

Once the degeneracy is resolved, this algorithm for tracking the optimal
loads and dispatch as a function of the varying demand is straightforward.
The return to the normal-state dispatch, when conditions for load shedding
have subsided and the value of the adbjective function returns to zero, s(hculd
occur in the reverse order of the description above. " ¢
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This short chapter presents four other applications of the continuation
method in OFF, Three new applications investigate certain changes or
additions to the set of constraints. They are: the addition of dynamic ramp
cdnstraints to the economic dispatch formulation, the perturbation of
cOt\istnaint: functions by continuation methods to redispatch following
contingencies, and the substitution of the load flow Jacobian model by the DC
load flow model. For those cases, the OPF subproblems are described and
solution procedures are only sketched. In a fourth application, following an
economic dispatch solved by the varying load strategy‘, expressions are derived

for bus and system incremental costs.

A P /
5. e Ra Constrained Economic Dispatch Problem
" So far, only static OPF problems have been studied. In this section,
~optimality conditions are given for the dynamic ramp-constrained problem,
. based on the subproblem model of OPF. Some ideas for their solution are
sketched, using the continuation method, but a full solution -procedure will
not be developed. The added time dimension makes the problem much larger,

although well-structured.
!

ey

In keeping with previous solution meti'lodologies, nonlinear programming is
used to solve the dynamic problem. A sequence of optimal dispatches is sought
over a period of time, for a sequence of different loads obtained by load

/ forecasting. In the absence of dynamic constraints, the varying load strategy

i

can be used in the solution of the static problem. When dynamic constraints
' ‘become active, some new technique must be used to allow optimality conditions
to look ahead over a certain time span. This time span would cover only the

period when dynamic constraints are active. It would be suggested a priori,

'
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i

based on rapid variations in the load forecast, although its exact knowledge

. 1is not mnecessary beforqg}ﬂd.

In this approach, time is discretized into NT segments over span T. All
load flow variables and their Lagrange multipliers are sought at instants

t=nAt, n=1,...,NT. An example of notation for variable v is

(n)
vy

where subscript i identifies the wvariable itself,

superscrip‘t n identifies the time instant.

The number of variables inéreases to NT times the number of variables in- t};ev
static problem. The usual static load flow constraipts hold at each instant.
Dynamic ramp constraints are added to the fomulg.tion; they place limits on
the variations of real power 'generat:ions over a single time interval At. They

are written

l Psi(n) - Psi(n—“ l < r, ) (5.1)

Regrouped in vector form and split along the active/inactive partition, the

set of ramp constraints at period n is written e

» b chn)[ Pg(n) - Pg“"“ -r ] =0 (5.2)
where R, 1s the active/inactive index matrix for the ramp constraints.

These are the simplest dynamic constraints for OPF, since no new variable
{s introduced, and eacH constraint introduces only two non-zero terms ,tl, in
the constraint matrix. However, the wupcoming methodology can easily be

eéxpanded to more complex dynamic constraints.
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To simplify the presentation, only the case of dynamic economic dispatch
is g:i.ven. " The network and cost parameters are considered to be time-

invariant, and bus loads are varied over time. Formulations for other OPF

tasks or with time-varying parameters can be built in similar fashion.

The objective of the dynamic problem is the fuel cost over the entire
time span. That is the summation of the fuel costs at each time period. It

e

is written

o

T ’ | - NT
C = % C{®)(P,) = NTc, + iafrsm +0.5 ) P (»)Tpp,(»)
n=1 n=]1 n=l (5.3) .

All the elements of the dynamic optimization having been stated, the

formulation of the ramp constrained economic dispatch, denoted SgD,R), can be

written:
- NT '
min C¢ = ) G(Ps‘“’) .. ) -
bs(n) n=1 '
_f't' gorb(n)“ - 0
d® =< dy + 6 b'™) < aM (ED,R)
- tn) M
e . bs‘“ =< LA b, . e
(n) _ p(n-1)
B o | B - p(® | s r
o for alln = 1,...,NT

Lagrange multipliers assoclated with ramp constraints are denoted p. The
active seé\ is assumed known, as in previous analyses, so matrices Rd“",
Rb(-n) , an’d

R.(") are known. The Lagrangian for (ED,R) is given by the
following equation: i )

" _ \
L - “-ﬁ:_( G(Pg(“)) - ATRd(")[Gbs(“) - klim] - ”TRb(n}/[bg(n) - blim]
. - pt Jgp (n) | p(n-1)
p ﬁn [Ps n Ps n r] ) ‘

8 \

The static constraints txan be regrouped, as before, using the notation A and

(5.4)

Pre. That regroups the second and third terms of the L:agrangian. The



C

142

constraints are split along  the real power/transparent partition. The

derivatives of the Lagrangian with respect to all the independeﬁf: variables -
and all the Lagrange multipliers for eich time period form the optimality

cond:ltions.h They are given by eq. 5.5. The basic blocks in these equations

are the static optimality conditions, placed side by side along the block

d;i'ggonal. The ramp constraints can be thought to link the individual static

problems. Constraint submatrices R, (or their transposes) usually appear four

times at each period, as"shov‘m in eq. 5.5, linking two adjacent problems. For -
the first and last periods though, they appear only twice.

i

-— - — —
ﬁ BRILE RO PRLILN N ALY .s
alne e (1) °
4 “ ¢ .
A.“’ “liﬁ ALY geld)
'Y 2 | MELY )
_ B -"“H _"(l)‘l‘ ,'(3) -a
NI : T £, 0
A"“ ‘l(l) . AL Keid) 3
. -
BN 'R pt3) P
" LS " "
w " w
* ” w
Iy a0t g ane HHyan -2
SWLLAL ALY -1 o
et ]
B LWL . ANE) e N
’ ERLLE R (D) L_,,un R "z
el ) - —nsed e —
- (5.5)

A chain’' of statlc problems‘ is formed when some ramp constraints are
active over a group of consecutive periodsa The effect of each ramp
constraint is felt by all the variables in the chain, \ That is why each ramp
constraint must be considered over a long time s;pan. - e

e

Ideally, the first block of the equation is not part of a previous chain,

If that is the case, the term R.‘!’ can be dropped from eq. 5.5. Also, the

last block should end a chain: if not, the time window over which ‘the

optimization 1is carried out can be shifted or expanded.
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The major difficulty in solving the opt:imaliti‘ conditions is in
identifying the active ramp constraints, given a load trajectory. A
successful technique for 1denc1£ying them was developed for hydrothermal
scheduling, and 1s based on the continuation method [Calderon 19835] » In this
mathod, all the k’(®) subvectors ‘in the right-hand-side of eq. 5.5,, which
contain the _ioad terms, are made identical initially. Then a perturbation

function resets them to their original values. The perturbation function is

kr(l) - 0
r(1) r(2) - (1)

k’(8) = k .+ k k ) _(5+6)
kr (1) kP CFT) (1)

At 6=0, the NT blocks yield identical solutions, so that discrepancies in the
ge;neratbions at different instants are nil. The solution of a single ‘block
suffices to start the problem. That would be handled using techniques
described iIn Chapter 4. Then as 9 1s increased, differences between the
blocks appear and “rauip constraints might be activated. As long as the blocks
are decouple;l, the change in k'’ 'cati be carried’out using the static varying
load method. Maybe some similar technique could be applied to chains of
problems. When © reaches 1, the optimal solution is found.

Numerically, such 'a solution techniqt,x‘e is quite taxing, mostly because of
the large amount of memory re;quired to carry the NT blocks. In terms of size
of computatién, this should ‘not be much" larger than the computation of NT
static problens’, but the time of computation could be much longer on small
computers due to the paging of information in and out of maxﬁory.

' i |
It is suggested that numerical techniques be sought which take advantage
of the decoupling and the weak coupling of ramp constraints. The matter will
not be investigated any further in this study. A final suggestion is that if
;me block of the optimality conditions is seen to be infe'asible, it could be
replaced by a load shedding block. The detection of infeasibility at a
particular period and the changeover to load shedc;ing are not developed in

this study.

14

rA“l
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7 5.3 Redispatching Following a Contingency

»

A contingency 1s a sudden, unexpected loss of some element of the system,
{.e. generation, load, or transmission. Immediately following a contingency,
emergency procedures are implemented. First, controls ’serve to protect any
vulnerable part of the system, and fend off instability. These are very fast
controls, usually  within less than a second after the inception of the
contingency, and are usually 9erformed automatically. Then if some load flow
quantities have moved beyond their bounds, a human operator tries to restore
quickly’ the secure operation. After some trials, the system is brought back to

a secure state, and then a new optimal dispatch is sought.

One step can be cut from the procedure if the operator 1is furnished an
optimal post-contingency dispatch right away. In this section, numerical
.techniques based on the continuation method are suggested and briefly sketched

ﬂ for computing the post-contingency optimal dispatch. It is thought that with_
the proper‘ adjustments, these methods are likely to be quite fast,

The dispatch results are target values towards which the operator should
move the system. The operator still has to guide the system, since the
optimal solution trajectories produced by these calculations bear no meaning

in the post-contingency dynamics.

The idea behind the use of the continuation method in post-contingency
redispatch is the following. The contingency removes some element from the
power system. Instantly the !Earresponding parameter jumps to & new value.
Computing the post-contingency optimum from scratch, or " even using ' pre-
contingency information as an initial guess, seems to be lengthy in most’
cases, especlally if the active set is significantly modified. Instead, in
this new approach a perturbation function is introduced to vary continuously’
the value of the affected parameter, from the pre-contingency value to the new

value:

p(8) = p;, + (P - P;)O (5.7
8 in the interval [0,1]

vhere p, and p, are initial and final values of parameter p.
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The pre- contfngency optimal dispatch 1is known, - so i.t: serves as the initial

simple problem. As the parameter is varied, optimal solution trajectories are

produced, ending at the post-contingency optigum. The :Lntermediat:e values

along the trajectory might be .useful in operations planning, since they

express the optimal dispatch ve:;sus system parameters. They are of no use in
. redispatching.

P R . L R e R R R X

/ Optimal solution trajectories can be furhished explicitly when the
’varying parameter affects only the right-hand-side. Then, as for all the.
' previous cases, the optimal solution trajectories are piecewise linear. Two
contingency cases involve only right-hand-side perturbations of the optimality
f conditions: any loss of bus load or the complete loss of a generation. Their
/': treatment is basigcally similar to that in real power dispatch. For the-loss
/" of plant i, both upper and lower bounds of generation 1 are sent to, zero,

\ using a perturbation function

P, Li%(8) = P, ,lt=(1-8) . (5.8)

/

where I:’gm“‘“ i{s the true value of the limit.

That has the effeét of shutting off plant 1. When adding a generator; the
procedure is implemented in reverse, The extra generation limits Pwﬂ"' -
: oPgrmM = 0 and the associlated Lagrange multipliers are ‘added to the
! formulation of the optimality conditions. With that particular choice of
limits, the addition’ does mnot cause a jump in the optimal dispat‘ch: The mnew
Lagrange multipliers are computed as a functioﬁ of e;j.sting ones and.the cost;

data. Then allow the generation limits to take on their true values:

V@ P, tim(8) = OP, lim ‘ . (5.9)

A loss of bus load, whether partial or complete, could be handled as a
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special case of the varying load strategy, in which a single load would be
varied.

%3 }
b) Left-hand-side perturbations -

-

In the real power redispatch problem using a DC load’ flow model, some
piecewise nonlinear solution trajectories were reported [Huneault et.al.l985]

for perturbations affect;né the left-hand side of the optimality conditions.

For partial loss of generation at a bus, the solution trajectories are of the
form ’ '

X(8) = A, + 8 WO

(5.10.2)
: D,(8)
P(0) = By +0 _ 0O (5.10.b)
D,(®)
> ] -
vhere o

Ao,Pw afe pre-contingency values.

N, (8),D,(8) are second degree vector and scalar
o pél&npmials in 8,respectively.
Np<e),np(e) are third degree vector and scalar

\\\ N polynomials in 6,respectively. .

& .

For the loss of a transmigsion line, it was reported that the polynomials are
of- much higher degree.’/In fact, they are of degrees 19 and 20 in 8. Because
the tarms of the 2}§§j;ch are mu;h more complicated with the full linearized
load flow model, the evaluation of nonlinear solution trajectories would lead

to some ungpééonably difficult expressions. Hence no attempt has been made to
A -
work them out.

{
k4
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For the contingency problems involving left-hand-side pigturbations, a
numerical technique is proposed. Instead of varying p(6) continuously, it can
be varied discretely,i.e.

p(8) = p, + (p, - p;)nA ] (5.11)
n=1,...,N and NAS =1

If variations in p(8) from problem (n) to problem (n+l) are small, then so
will the variations in their optimal solutions. To solve one problem, for a
given n, the varying limits strategy could be applied. The’ optimal active set
from the previous problem could be retained to form the basis of the new
initial simple problem. Often, the previous active set would be carried over
intact to the new problem, or little change would occur. That would avoid
lengthy searches of the active set, or lengthy applications "of the
continuation procedure. The discrete solution trajectory could advance
quickly 1if it consists mostly in solving a sequence of simple problems.

The number of steps N in which to divide the perturbation interval would
be a practical matter, to ,be determined experimentally. Also, a s?epsize
control could be explored, to allow larger steps when adjacent problems have

very close solutions.

One possible difficulty with left-hand-side perturbations 1s that their
solu‘tion trajectories,” whether analytical or discrete, can be volatile,
Without a constraint box to 1limit its excur;ions. an optimal solution can
break down when for some 6=8’ the left-hand-side matrix becomes singular. One
case of degeneracy of this type was !ilrlustrated in Appendix 4.2. The i)resence
of the constraint box avoids “he associated problem of sending dispatgh
variables to infinity, because when the probleml occurs the dependent
constraints which are forcing the problem get replaced by simple bounds on the
independent variables. These are usually isol.m:e.df numerical ?roblems; all in
all, a single perturbation of a large system should not be expected to result

ig such drastic redispatching. -

al
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4 tens the DC dflow Mode

Many examples of real power economic dispatch using a DC load flow model
served as starting points for studies with the full linearized load flow
madel. Now some applications to the DC load flow, inspired by the larger
model, can be suggested to replace the load flow Jacobian.

The DC load flow model expresses rea, power generations and real power

line flows as a function of voltage phase angles: -
\ ~

(5.12)
(5.13)

P
P,

- Y6
- T§

Y is the system susceptance matrix, and rows of the ‘T matrix contain terms y,,
snd -y,, in positions i and } respectively, for lige flow P,,. The model comes
as a result of fixing all voltage magnitudes to omne per unit, replacing
trigonometric functions siné by & and cosé by 1, and by neglecting resistance
and shunt admittance in the load flow equations. e

All generators except one can be retained as independent variables. The
remaining slack generation (the manifold variable) 1s expressed as a function
of the independent generations through the usual power balance equation. One
voltage phase angle is set to zero, as-a reference, and in the opcinlcizat;on
the others can be monitored outside the optimization. The line flows are
depandent 1injections, expressed, conceptuallyl at least, in terms of

“independent generations.

A natural extension to the DC load flow model would see the addition of

phase ghifters. These devices help control the real power £flows on
tz':ansqzis'sion lines. The system equations become -\
P,= A5+ Y4 7 (5.14)
P, = T6 + T,¢ , ‘ (5.15)
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where
é is the nf dimensional vector of phasé shifter
angles. ‘ N
Y, 1s an (ng x nf) matrix. Its columns contain

elements y,, and -y,, in positions 1 and jJ
respectively,for phase shifter ¢,,. Position i is
the near bus.

T, 1s an (nj x nf) matrix. Let ¢$;, be the m*" phase

o shifter in the list. For line flow Pu,the row of

T, contains element y,, in position m if the
phase shifter is connected at bus i,or Y14 if it -
is connected to bus j. The row 1is zero 1f no “

’Q\ phase shifter is connected to line 1j.

} !
i -
- H

The phase siifters would be independént states, and also transparent

variables. The methods expounded in Chapter 4 could then be applied to the
o

problem, with eq. 5.14 and 5.15 replacing the full linearized load flow model.

Based on analysis developed in section 4.2.3, for th\’e varying limits
strategy, optimality conditions. will 1likely push phase shifters to their
appropriate- bounds, starting at low loads. Some would come off their bounds
as a control measure only. when some line flow reaches a limit.
| The addition of varying voltages or taps to-the DC load flow model could
create ~t:rausparent states, which could be handled like the phase shifters.
However the additions result in a nonlinear model. Rather than linearizing
the new equa‘tions, it would‘be preferable‘to work with the full linearized
load flow x;odel. Hence these two additions will not be considered useful.

Minimum loss dispatch and aloaczl shedding with the DC load flow model are
straightforward. Methods developed earlier can be applied, replacing the full
linearized load flow model by the usual DC load flow of eq. 5.12 - 5.13, or by
the extended model of eq. 5.14 - 5.15. The former would be s[lightly differenc

" from previous models, in that no transparent variable is present. That would

be, in fact, a simpler case. ‘'These two applications will not be pursued any

further here,
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Expressions are derived for bus and system incremental costs in ecopomic
dispatch, based on solutions of the subproblem. They provide exact numerical
values in a nonlinear OPF algorithm, because differential information provided
by the suﬁprob and'the nonlinear problam are ident_:l.'cal'at the optimum;

4 , ' .

B R I S ]

.

From the optimal dispatchi trajectories for economic dispatch, it is a
simple matter to develop expressions for bus incremental costs. They are the
derivatives ¢f the- optimal cost with respect to the bu‘s loads. gsing the
chain rule in differentiation, they are seen to be formed as the product of
two easily obtainable quantities. They are denoted, taken together, as the

BIC vector:

' - - T
BIC ' gc_ . 2r, . .
] 3,7  ab, ; (5.16)

From eq. 3.3, the first term of the above product ’is

éc = a' + PTB _ - .(5.17)

8PBT . /o

Inserting the value of PBT from eq. 4.17 for free generations, and
simplifying, this becomes
9C__ = [GB 'a + k]T[I-MK']TK"1G, (5.18.a)
aPBT .

L

.= g, . (5.18.b)

5
I
-

with all notation referring to free generétions only.

To simplify the presentation,the dependence of A on the load will only be

shown at the end.
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[i’z:om eq. 4.59, the second term of the product of eq.5.16 is
gp, = B IGTKMI - MK!]ARK (5.19.a)
db,
for inactive generatiéns,
and g, = O - , ¢5.19.b)
ab, -

for active generations.

o
~
L4

Recall that AK is the coefficient matrix in the right-hand-side vector of the
optimality conditions assoclated with the load, as in eq. 4.5?1. The product
of the two terms of eq. 5.16 yields this expression for the BIC:

i
BIG = AT(GB G, K ![I - MK !]AK _ (5.20)

/

‘Terms due to bounded generations in the first term of jthe product are
/

multiplied by zero in the second term of the product, so,’ they disappear.
Recalling the definition of the term K in eq. 4.18, two miédle terms in eq.

5.20 cancel out. This simple formulation of bus incremental costs results:

BIC = AT[I - MK"!]ak (5.21)

Note that this expression 1s valid only when the load 1s greater than the
threshold load. For smaller load?, K and M are undefined. From previous
arguments, it % known’ that for loads between minimum load and threshold load,

no free generation is being used.

The incremental bus cost for any particular load i is easily obtained:

BIC, = 3C__ = BIC.3b, f¢5.22
db,, dby, .
The second term of the product of eq. 5.22 is simply e, = [0,...,1,0,...,0]

with the 1 in position 1. Then the individual bus incremental costs are

BIC, = AT(I - MK 1]aAK, (5.23)

@
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l . The term AK, is the ith column of matrix AK. This is the simplest expression

for bus incremental costs.

Finally, the dependence of A on the loads is highlighted. The bus

incremental costs are written
BIG(b,) = [X, + AA.bJ[T - MK 1]AK o . (5.24.a)

= BIC, + ABIC.b, (5.24.b)

”» 5

B R I R R S

/ In lossless real power dispatch, the system incremental cos/t ¢SIC) is the

\

e‘mivative of the optimal cost with respecf ;;o the total system real load.
With a lossy 1load /flow model, the concept remains wvalid only if a load

trajectory is specif.’ ied. -

Before undertaking the analysis, real power loads are separated from

reactive power loads. If the two are naturally partitioned in the ‘bl; vector,

eéxpressions for the system real power load P, and the reactive powesr load Q,
\
are given by ‘ -

P, = eTb / ’ I (5.25.a)
. Q@ = e’by - (5.25.b)
with .
ey’ = leuinzyy  Oasmiow! ) (5'25"3)
e’ = [Ogymie1y  Camean)] ' : ’ (5.25:4)

and e is the unit vector. / Q/

i
/

( System loads could be expressed for other [;artitions of real and reactive
loads by applying the appropriate e, and e,

v > | :
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ﬂ : A load trajectory of the type eq. 3.6 is proposed. 'Then the system loads
. become scalar functions of the scalar é, as shown below:

‘ By = eT[by, + Ab6] - / (5.26.a)

= Py + AR ‘ , " (5.26.b)

%
" - +
»* v

QG = e [by + Ab,8] - (5.27.2)

. = Qp + AQ8 (5.27.b)

i

4

-The real power SIC, denote& SIC(P), 1is the derivative of thé optimal cost with
respect to the system real power lqa&: ‘ ‘

o , . SIG(P) = 3C_= 3G . gb; .

(5.28)
3P, ab,* 8P,

The second term on the right-hand-side is a vector of participation factors

for the next increment of load. This is where the specified load trajectory

The values of the elements of P, are'expressed as a function of
the system load,;

iz required.

the participations for real power loads In eq. 5.28 are

}' positive and for reactive power loads are nil. The product of the two vectors

in eq. 5.28 only affect real power term§.~"w The formulation simplifies to the
. following: )

SIG(P) = 3C_= 3C_ . 3B, (5.29.a)

ap,  ap,"  oapy ' ]

- BICP,PFP (5.29.9)

I
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The subscript p pertains to terms in real power load, and PF 1s a vector of
participation factors, the second term of the product of eq. 5.28. For loads
below the threshold load, the real power system incrément;al cost, as seen

earlier, is identically zero.

hA similar expression can be formed £for the reactive powéer system

incremental cost, from reactive load derivatives and participation factors:

~ SIC(Q) = BIC,.PF, - - (5.30)

(8

We stress the importance of knowing the load trajectory to compute- the
SIC. If no load trajectory is specified, P, and Q, are scalar functions of

the vector b,, and derivatives

éhl and- .a_bl]_ .
3%, 8Qp D (/\'/

are undefined. That makes sense physically, since for a load flow model with
lossy transmission, the addition of an increment of load solicits different

responses, depending on the added load’s location.

If the power factor of a load can be modeled as be:{r-\g constant, the
reactive power ]_.oa& can be remov9d from the formulation, as a parameter. If
that is the case for all loads, then the formulation reduces to one in real
power loads only. That would reduce the dimension of the problem, but it

would make it less sparse.

\ c) Discussion

- - -

A prime use of incremental bus costs 1is in determining the economic
benefits in supplying load to a particular bus. They can be compared to the
bus incremental revenues. Whereas the incremental costs are linked to the
system load, the incremental revenues are linked by contract to the bus

loading. Trajectories of incremental bus costs and incremental ‘revenues can

e
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be compared, for a given load forecast, as in figure 5.1. From a utility’s
point of view, .it is advantageous to supply load as long as the Incremental
cost of supplying 1s smaller or equal to the incremental revenue gained
through the sale. The region to the left of point A on the graph is
advantageous to the utility. The amount of profit per increment of load is
the difference between the two curves. Regulations force the utility to supply
load to a bus bdeyond point A if required. In that region, the utility is
losing money on each increment of load supplied to that bus. That
constitutes, willingly or not, a subsidy to the consumer. The amount of the

subsidy per increment of load is again the difference between the two curves.

Recently much interest has been shown in adjusting the customer rates to
the bus incremental cost, possibly in real time [Pom:a‘gah & Galiana 1985,
Allan & Peddle 1986, Ghoudjehbaklou 1986, Lescoeur & Galland 1986, Luo
et.al.1986, Oyama 1986]. A major difficulty with such a scheme is that bus
incremental costs depend as much on system loading as on bus loading. The
customers at a t;us are not entirely responsible for their bus incremental

cost, so it could be unfalr to change their rates based on bus incremental

costs alone. The assessment of whether a bus rate should be changed would

have to be made over a larger set of information.

The recognition of significant disparities between bus incremental costs
and revenues over a wide range of loads would lead to a more equitable
collection of revenues by the utilitles. It is a complex economic 1issue,
influenced by many condi&ons, including the one presented in the previous
paragraph, the costs of alternate ‘energy, decisions of regulatory agencies
representing consumers, the mneed for some subsidies, and the consumer’s
willingness to pay more, if need be. Such a study is not undertaken in this
thesis; it simply suggests the wuse of optimalf bus incremental cost
trajectories as a new tool. It could be useful in justifying a review of
rates, or to find alternate revenues to compensate for subsidies, In
operations planning, it could suggest Lload management strategies, or in

transmission planning, the best locations for additional equipment.



Figure 5.1. Bus .incremental costs and revenues.
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AN 6.1 Introduction - @

]

L4

An optimal power flow algorithm® solving the economic dispatch task has
been implemented on the computer, using the algorithm described in Chapter 3
and one of the subproblem solutions of Chapter 4. This chapter provides the

€

details for many of the numerical solution procedures used in the program.

» Information of a general nature, presented in a first section, describes
~datd structures and solvers used throughout the program. Then a detailed
'» agcount of the computation for the economic dispatch subproblem is given. It

@

-n”n‘:v” 1s bésed 6n the continuation method using the varying limits strategy.

The real power dispatch algorithm presented in this chapter 1is of
particular Iinterest. It i3 a hybrid of the two most used techniques, one
iterative, the other direct. Advantages from both techniques are incorporated

* into our algorithm, along with some new ideas for ide}ltifying active
variables. Although it plays a pivotal role in the nonlinear 01’? algorithm,
this real power dispatch could be‘used on its own, in simpler dispatching
schemes using a lossy linear network model.
1

Other solution procedures presented here, such as the computation of
‘solution trajectories or the updates of optimalit:y" conditions, are specific to
our OPF algorithm. Although important, the remaining sections are highly
technical, and the reader might wish to skip them. These details are meant to

document the program for future research.

@ The computations involving nonlinear equations will not be covered in
this chapter. 1Igis felt that previous descriptions of the Rules step and of

the nonlinear solver in Chapter 3 are sufficient.
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A few considerations, important in the general organi‘zation of the
program, are presented In this section. Specifically, three topics are
covered. The data structure for the program {is described f£first. There i
follows a discussion on the linear equation solvers considered for various
uses In the program. A short note on matrix - vector computations completes

this section.

6.2.1 Synopsis of the Data Structures Used in the Program
- !
In large problems, a well-planned scheme for storing data is essential

for quick and easy retrieval. The data structure, as it is called, simplifies
the retrieval of data by adding arrays of auxiliary information to the arrays

of variables and parameters.

Basically two types of structures are used in the program: ordered lists

‘and linked lists. The ordered 1list is a collection of values placed{n a

sequence; it is the most common form in general. In linked lists [Aho et.al. -
1983), additional information vectors called pointers indicate where to locate
in the list the next element having some given property. Some advantages of
linked 1ist§ are that they avoid the reordering of 1lists with dynamic
partitiqns or new entries, they allow easy access to elements sharing a common
proper{:y, they avoid rep)eating common information, and they reduce the storage
requirements of sparse arrays. For these reasons, much of the program’s

information is stored in linked lists. (

A disadvantage of ulinked lists is the added memory requirements for the
pointers, but that is considered a reasonable price ‘to pay for the ease of
handling variables. Usually pointers can be stored in the !§mallest availlable
memory cells by assigning the proper variable type (for exan{ple, I;NTEGER*? in
FORTRAN). That makes the linking of data much more economical than repeating

data, even zeros.
i
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Three types of data are present in the program: system parameters,

variables, and coeffi.‘cients created by the computation.

The system parameters are stored in both ordered and linked 1lists. Bus
data and data for passive network controls are placed iIn ordered lists. The
line data is, kept in linked lists, mostly %o keep track of the adjacgncy
structure of the network. It also allows to access line data from either end
bug, without having to repeat the data.

The variables are storaa in various 1linked 1lists, for different
applications. A master linked 1list holds values of the variables, the
Lagrange multipliers, the solution trajectories, and some status information
in the subprobleif It communicates with two secondary linked 1lists with
expansion point information, one on the states, the other on the injections
and the load flow Jacobian. The nonzeros of the” Jacobian are stored in
compact form In a vector along with added information for 2asy raetrieval. The
two secondary lists are structured for easy use in the Newton-Raphson solver,
and in pir}:icular in the linear equation solver. Ordered lists for each state
variable are formed when needed, from the expansion point information, for use
in compthi_ng the load flow equatfions and the Jacobian.

The third group of data <consists of Sggﬁ_ficients which go into the malje-
up of the Optimalit:yﬂ equations of the suBﬁi"Jblem, eq. 4.9 - 4.10, Rows of
sensitivity coefficients G, are stored as co)lumns for easy access in FORTRAN,
in a dense matrix. Pointers in the master 1ist link the independent wvariables
to their column pésitions and the active dependent varigbles td their row
positions. Only .the pointers are rearrangeq, thereby avoiding the shui;'fling
of rows or columns of values following the removal of constraints from the
active set. This also allows to keep the sensitivié’y coefficlents for the
deactivated deppendent variables. They are set aside simply by changing the
status of their pointers, and can just as éasily be reactivated. Right-hand—

side coefficients are stored in another ordered list. All the moving limits

creatad: by the continuation process are placed in an ordered list and accessed

i ;

from the master list when needed.

1
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6.2. Linear Equation Solvers Considered and Used the an
The linear equation solvers are the basic building blocks of the program.
Both sparse and dense matrix solvers have been implemented for wuse in
different computations:
- Computations Involving the load flow Jacoblan require the sparse
matrix solver. It is found in the Newton-Raphson solver, and in the
computation of sensitivity coefficients and dependent variables,

before and during the continuation process.

- The optimality equations of the subproblem are sparse, but because
of their structure, their solution 1is organized to use the dense

matrix solver.

Options available for sparse matrix computations £all 1into two
categorlies. The Indirect (or iterative) methods such as conjugéte gradient
[{Evans 1985] or Lanczos [Golub & wvan Loan 1983] methods are most useful for
very large, wvery sparse systems of equations. Theoretically, they require N
jterations to solve an N-dimensional system of equations, but 1ll-conditioned
systems can take many more iterations. Direct methods [Duff 1984] reorder the
equations and variables to reduce the extra computational burden due to £ill-
in, followed by the LU decomposition of the reordered matrix, and the solution
by forward and backward substitution. Direct methods are more useful in
applications with a single matrix and many right-hand-side vectors, because
the reordering and the factorization remain unchanged from one problem to
another. The remaining operations in the solution procéss represent a small

portion of the computation.

Ordering schemes for direct methods also fall into two broad categories.
Sparse-matrix methods, popular since the 1950’s, act only on the matrix-
structure, neglecting the structure of the right-haud-side wvector in the
ordering strategy. Some of the more important ordering schemes in this group
can be found in the following references [Markowitz 1957, Tinney & Walker
1967, Hellerman & Rarick 1971, Dnff 1977, George & Liu 1981, Pissanetsky
1984]. Recently developed sparse-vector methods [Tinney et.al. 1985, Gomez &
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Franquelo 1988] show that great advantage can be taken of very sparse right-

hand-side vectors.

Five sparse matrix solvers were available to us. Because of the general
nature of our matrices however, three of them had to be rejected. These were
the solvers SPARSPAK [George and Liu 1981} and the Yale University package,
which use direct methods, and the conjugate gradient package PGGSOL. The
first two, designed to exploit symmetry, cannot handle zero-valued diagéhal
elements. The third only handles symmetric positive-definite matrices. The
other two solvers were tried 1in our program. The Lanczos-type iterative
solver LSQR {Paige & Saundexrs 1982] was tried first. It was very rellable and
user-friendly, but for the problems we tested it turned out to be wvery slow,
Our choice for the sparse matrix solver settled on the well-known Harwell
library subroutine package MA28 [Hopper 1977]. It was much faster than LSQR,
even as much as an order of magnitude faster in the larger tests.
Furthermore, its use of a direct method made the OPF algorithm faster overall,
because of the repeated wuse of the fixed Jacobian matrix in the linear

equation solutions of the subproblem.

Sparse-vector solvers are mnot readily available, but 1f one could be
found or written, {1t 1is the ©best suited for computing sensitivity
coefficients. In those computations, a sparse row of the Jacobian is used as
the right-hand-side of the required linear equations. In particular, this
technique simplifies the computation of the coefficients of the generalized
power balance equation. To achieve the greatest simplification in this case,
the manifold variable should be chosen as the real power generation at the
most isolated bus. It has the least number of elements in its row of the
Jacobian.

-

Dense matrix solvers are used in computing optimal solutions in the
subproblem, eq. 4.27-4.37 for economic dispatch. The optimality equation from
which they were derived however, eq. 4.6, is large and sparse. It has a
single })ordered block structure, with a diagonal main submatrix B; that
already makes it optimally ordered. Its reduction to a set of small dense

matrix equations, as 1In our solution, 1is a standard procedure in this case
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[ch.6 of George & Liu 198l]. As seen in eq. 4.12 - 4.14, this procedure is

aquivalent to sparse Gaussian elimination without partial pivoting.
&
A

Options avallé:glg for dense matrix computations are numerous. The reader
d}s referred to [Stewart 1973, Golub & Van Loan 1984} for descriptions ,Qf\’the.
upcoming matrix properties and solution techniques. A Gaugsian elimination
algorithm is used in one instance for the solution of a general matrix
equation. However, most applications in the program involve symmetric
positive definite (SPD) matrices., In particular, the reduced Hessian terms K
and L of eq. 4.18-4.19 are SPD and are often involved. Algorithms solving
for this type of matrix need only store the diagonal elements and half of the
nondiagonal elements, avoiding their repetition. The Cholesky factorization,
used on SPD matrices, produces symmetric factors, so that again, about half
the computaticn’ and half the storage space are saved. Following changes in
the active set, tech;liques are avallable to update some factorizations, rat\her
than to restart them. The updates are preferred because they are much faster.
The Cholesky factorization and its updates are used for most of the dense

linear equation solutions.

The reduced Hessian terms K and L are inherently prone to 11l1-
conditioning, occasionally rendering the Cholesky factorization useless. A
back-up factorization, more robust than the Cholesky factoriz'ation but
requiring more computation, 1s available for those cases. It is based on the

QR decomposition, and is described later in this chapter.

An added precaution against 1ll-conditioning was added in the form of an
iterative refinement algorithm. It iIs called after a solution of an ill-
conditioned system, when the residual of the system of equations 1s larger

than a certain tolerance. In practice it should rarely be called.

The Gaussian elimination, the Cholesky factorization, and the QR
decomposition are taken from LINPACK, a general package of 1linear equation
solvers [Dongara et.al. 1979]. Some of the wupdates are based on LINPACK
subroutines, while others are built from scratch. Detalls of the updates of
the optimality conditions and some of the other computations described in this

section are presented in section 6.3.

!



6.2.3 Matrix-Vector Piodug;s

)

Chains of matrices and vectors are multiplied in warious parts of the
computation. The operations implicating products of a matrix by a vector are
always computed first. The result being a vector, that greatly reduces the

dimensions and the computational burden of subsequent products.

6.3 TImplementation of the Solution Algorithm for the Economic Dispatch

Subproblem using the Varving Limits Strategy

<)

The remainder of the chapter presents the specific solution procedures
used in the progrsm. The algorithm of section 3.4.2.3 can serve as a general
guide to the procadure. First the Initial, simple problem is solved here in
three steps: an initialization step, a real power dispatch, and the
computation of dependent variables. Then the continuation process, steps 3.a

to 10 of the forementioned algorithm, is explained in detail.

6.3.1. Starting the subproblem: computing sensitivity coefficients,

checking for feasibility, and setting transparent wvariables

Data required for the initial simple problem are the cost data and the
coefficients of the generalized power balance equation. The latter are
computed using equations eq. A3.4.3 and A3.4.4 b. and e., given in Appendix

3.3. Referring to that Appendix for nomenclature, the computational procedure

is as follows:

¢

Solve for a: Jya = J T . (6.1)
Compute §: B = JuT - a'd, (6.2)
Combine: g = [ g7] : (6.3)

Here, and in subsequent computations, a and g are auxiliary vectors, used as

workspace arrays.

\M)The injections are placed before the states in the vector of independent
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variables, so that g, need not be reordered. All. sensitivity coefficients
a'ré computed in this manner, with the appropriate row of J, replacing J_.

The first stép of the optimization is to check for the feasibility of the
initial simple problem over the set of independent variables b,. To do this,

compute [g,"b]® and [g,"b]" as follows:

8o;b," results from setting b,, to its lower bound if g, > 0, or
results from setting b, to its upper bound if g, < 0.

gmbiM results from setting b,, to its upper bound if g, > q, or
results from setting b, to its lower"bound if g, < 0.

-

Then [g,"b]™ = Zl 8oy 0" ) (6.4)

and [g,"b]" = Zigmbi“ (6.5)

- Y.
If the former is non-positive and the latter 1is non-negative, then the
generalized power balance equation 1is sure to contain at least one feasible
point Inside the constraint box.

If the feasibility check fails, a new subproblem must be submitted. This
procedure is necessary if the subproblem is to be used on its own, or for a
first pass in the nonlinear OPF problem. With Rules assuring that subsequent
expansion points are feasible in the nonlinear problem, this procedure need
not be repeated in subsequent iterations.

Having passed the feasibility check, the next step is to send transparent
variables to the appropriate values. Assume for now that the aggregate load
is greater than the threshold load. Then the transparent variables are sent
to the appropriate bounds, according to conditions 4.53 and 4.54 of
Chapter 4. At  the same time, the right-hand-side coefficient l: is
computed from eq. 4.48 (and 4.5). Transparent variables having zero
sensitivity coefficients are left at the wvalues of the expansion point and
auxiliary bounds are set (see section 3.4.4.5) to ensure convergence of the

nonlinear problem.
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The next step 1s to compare the aggregate load to the threshold ldad. If
the aggrgate load is larger than the threshold load, the algorithm can proceed
fo the cdomputation of the real power dispatch. If the aggregate load is
smaller tﬁan the threshold load,- all real power generations are set to their
minima and the following simple procedure 1s applied to find one optimal

solution (amongst many):

- TFree one transparefit variable at a time. If an adjustment of that
variable can satisfy the generalized power balance equation, then an

optimal solution {s found. Stop.

- If not the variable goes to the opposite bound. With this thange in the
A
active set the right-hand term k and the active/inactive partition

are adjusted.

- Repeat with the next transparent varilable. Continue wuntil the
generaiized power balance equation 1s satisfied or until all transparent

A}

variasbles have switched bounds.

If the power balance equation can be satisfied, the algorithm proceeds to the
i

continuation process. If not, the aggregate load is too small to be satisfied

'by a feasible operating point. Then a control or an error message would be

called from outside the simple problem.

The next step, the real power dispatch, is more complex and will be

treated on its own in the upcoming section.

6.3.2. Algorithm for the real power dispatch

An algorithm is presented for the solution of the real power economic
dispatch problem (ed,P), first described in Chapter 4. It comes about after
the imposition of values on the transparent variables in the initial, simple

problem. It is In the form of a standard real power dispatch.
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The solutions of the optimality conditions for this problem are given by
eq. 4.50 for the Lagrange multiplier X,, and eq. 4.51 foxr real power
generations, but they are only optimal once the proper active set is found.
Finding the optimal active set is the most time-consuming part of the

optimization. Two solutilon procedures are commonly used:

- In the direct approach, it 1is assumed at the outset that all
generations are free. Both eq. 4.50 - 4.51 are solved. If in the
solution some generations violate thelr bounds, usually the £irst to
be violated 1s set to its bound and its Lagrange multiplier is
activated. The process 1s repeated with the new active set. This

. continues until solutions for free generations from eq. 4.51 are

completely feasible. That 1is the optimal solution.

- In the iterative approach, often called lambda dispatch [Wood &
. Wollenberg 1984], upper and lower bounds are computed for the
| Lagrange multiplier ),. A feasible value of A, is proposed, instead

i of belng computed In eq. 4.50, and inserted into eq. 4.51. TIf some
v of the resulting generations wviolate their bounds‘, they are set
' temporarily to their bounds. Then the desired system load 1is
compared to the computed system generation:
i) If the load is larger than the generation, then )\, must be
increased.
i) If the load is smaller than the generation, then A, must
be decreased.
ii1) If the two are equal (within a tolerance), then the
computed generations are optimal, )
12
Changes in )\, are made by binary search within 1ts -feasible region.
The prdcess is repeated until it converges in option 1ii). ‘
- ]
The algorithm proposed here uses the 1térative approach only until the
: pr‘oper active set is identified. Since each iteration 1s relatively simple,

it is felt that the iterative approach arrives at the active set more quickly

than the direct approach. Then with the proper active set, a single
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application of the direct method yields an optimal -solution. That avoids .

I
1y

having to home in on the solution.

The proper active set is easily ideé‘xtified in applications with
monotonically increasing cost functions. If in two consecutive iterations A
and B, the search direction for the Lagrange multiplier )\, changes but the
proposed active set remains the same, then the active set remains constant
everywhere within the interval [X,,, A,l. In.-particular, it 1s the active
set for the optimal ),, which must be situated In that interval.

The notions of system load and system generation are respet‘:tively
replaced in this application by aggregat.e load, | gOTbl, and . aggregate
generation, gOT(‘bs + b,). The only variables left to/ determine, then, are the

real power generations.

Another refinement implemented in the 1iterative 1part of the algorithm,
and not found' in standard lambda dispatc‘h 3\ gorithms, 1s the identifica;’;iq;_}) of
active generations as the algorithm progresses. This information reduces the
dimension of the search. Generations on thelr lower bounds when A, decreases
are sure to remain there, as is the case for upper bound generations when ),
Increases. ’

Assuming that the transpafent variables have been determined, and that
the aggregate load is greater than the threshold load, Tiere then 1s the

algorithm for the solution of the real power economic dispatch problem (ed,P):

STEP 1. Place all generations in the free partition.

STEP 2. Compute the right-hand-side term k of eq. 4.48.

»
A ’

k= gT(by +b) - [gy t, 1M | (bis 4.48)

\ 1 -
i

STEP 3. Determine lower and upper bounds on >\0’ from cost data.

i) For all generations, é:ompute

Agy" = a, + Biinim (6.6)

and

- Moot = &, + B,P M (6.7




STEP 4.

N STEP 5.

STEP 6.

STEP 7.

STEP 8.

STEP 9.
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11) Then pick out the extreme values as bounds on A,.
A" = min (X,,"} (6.8)
i N
and i
Ad = max (M T LT (6.9
i

Set the initial A, to the median value in the interval [A,®, AM].

If the active set has mnot ‘changed over two consecutive iterations
and the search direction for )\; has changed, then Jthe optimal active
set has been found. Go to STEP 11. eE
Compute generations for the given A,.
From eq. 4.51,
P, = (8pro - 8,)/B;; for free generations only.

gi
(6.10)

If P,, violates a bound, set it to that bound and place the
index i In a corresponding list of temporary upper or lower
bound generations.

Compute the weighted sum of generatioms.

S = gopTPs ' ‘ . (6.11)~—

A
Compare S to k.

i) If S is less than k, then go to STEP 9.
11) If S is greater than k, then go to STEP 10. -

]

iii) If S equals k (within a tolerance), then go to STEP 12.

A

Update )j, k and active/inactive partitions on generations.
i)' Update lower bound on A;: A" = A,;
update A, = (3" + AM)/2. '
“11) Update the active/inactive partition on generations by
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including indices from the temporary upper bound list in

- the permanent-upper bound list.

A A

111) Update k: k = k - gmfsi for all newly activated Psi.
- " 14v) If control comes from STEP 12, go to STEP 10 ii). If not,
go to STEP 5.

A

STEP 10. Update )y, k and active/inactive partitions on generations.

L Update upper bound on A;: Ao” = A3
update A, = (A + A M)/2.

i{) Update the active/inaccive. partition on generatigns by
including indices from the temporary lower bound list in

the permanent lower bound list.

A A

T 1i1) Update k: k = k - g,P,, for all newly activated P,.
iv) 'If control comes from STEP 12, STOP. If not, go to STEP
i 5.

STEP 11. The optimal active set being known, Eompute solutions from eq. 4.50
-4.51. STOP.

STEP 12. The optimum has been reéched iteratively. Update thg active set and
the right-hand-term one last time. Go to STEP 9 ii).

The algorithm terminates in STEP 11 or converges after STEP 12.

A possible improvement would be the implementation of a secant search

technique [Dahlquist & Bjérck 1974] instead of a binary search, in updating

A as described in [Wood & Wollenberg 1984]. This is suggested for future

Q
4
implementation.

6.3.3 Computing the dependent variables

\

The' free dependent variables are computed from the newly determined
values of the indep%ndeht'variables. That is done using eq. A3.4.3 and A3.4.4

c. and £., from Appendix 3.4. The dependent variables are computed at various

Da ot g

N
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s:tages: before the continuation procedure with all dependent variables
considered 1Inactive, and in the continuation procedure 1in computing
coefficients of the solution trajectories. Depending on the particular
classification of each variable, there are different computation procedures.

This can be seen in the com;;utational procedure presented a little further.

The computation for' the components of the solution trajectories, of the

form s(8) = s, + As.® (eq. 4.38), is performed in two parts. The prc;cedure
to compute s, serves also to compute the values of the dependent varilables
preceding the continuation process. The two parts jof the computation are
glven below, side by side. Those steps which are common to both components are

-

written only once.

Operation As_component ~ S,_.component oo
Form a:
- If % 1is inactive a = Ax. @ = Xy - Xy, ] (6.12)
- If %, 1s on a fixed '

bound, xbsb a =0 a = xbsb - x, (6.13)

+~ If x, is on a moving

bound d, + ad a = Ad a= d, - x, (6.14)
Compute f8: B = Jya. ) (6.15)
Form a: a= Y - (¥ + yl?.) - B (6.16)
Solve for Ax;: Jo4d%, = « ‘ (6.17)
For inactive states
only, compute: Xgy =, 0%y . Xgy = Ky + ARy, (6.18)
(For ‘active states X3 = 0 Xgy ™ xmb ) B "

For each inactive
,iependent injection y,:
Compute o : a; * Jygi)Xd ’ (6.19)
L
Compute y,, ! Yacy = @ + Jgny®y Yacsy = @+ Ja)y% + Xge

[

(6.20)
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This format for presenting the computation is adopted for all the upcoming

computations involving two components. .

6.3.4. The continuation procedure

2

The details of the computation of the continuation procedure are
presented in this section. The procéss 1s made up of five steps: shifting ,'
violated constraints, updating the optimality conditions, computing solution
trajectoriesy; determining the next breakpoint, and computing the solution at
the breakpoint. The updates to the optimality conditions are considered an
important featuré of the algorithm, so they will be presented in detail.
Another feature in this implementation is a test for resolving certain forms

of degeneracy; it is also presented, in a final subsection.

a) Computing violations on dependent variables

L - Ly

) The values of dependent variables computed from the optimal solution

of the initial, simple problem are compared to their bounds. If violations

are found, the continuation process is invoked.

A violation counter ig initilalized to zero. Then, for each dependent
variable d;:

- If 4, > di“, then place index 1 in the set of upper violated constraints.
Compute the violation (d, - 4,").

- If d, < 4,", then place index i in the set of lower violated constraints.
Compute the violation (d," - d,).

- For either violation, increment the wviolation counter. If the violation

;o is the largestdseen so faz:, record the index i1 and the wvalue of the

violation.

Once all the dependent variables are processed, 1if the violation counter

indicates zero, then the solution to the initial, simple problem is also the
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optimal solution to the economic dispatch subproblem. Then the-continuation
process and the subproblem are complete. If the violation counter indicates a
positive wvalue, then create perturbation functigns for all wviolated
constraints, by shifting all the violated constraint bounds by the amount of.
the largest violation Ad:

- For upper bound violations,» d,"(8) = (4" + Ad) - Ad.6 (6.21)

- For lower bound violations, d,"(8) = (4 - Ad) + Ad.8 (6.22)

All the dependent variables are then inactive, except one which is "just

active". Its Lagrange multiplier 1iIs activated, and its value is zero.

Before proceeding with the updating step, the Cholesky factorization of
the K matrix of eq. 4.18 is computed. That Is very easy because at this point
K is a scalar, whose factorization is simply its sipare rcot. The notation U,

is used to denote the upper triangular factor of matrix K:
Uy = [SQTB-Igo]l/Z (6.23)

The index of the newly activated constraint is retained and update no.l
is invoked.

- e e e e e

These wupdates reform the components of the calculation - Cholesky
factorizations, right-hand side wvectors, partitions of:.vectors and their
dimensions - following the wupdating of the “optimality conditions at a
breakpoint.

An advantage of the computational scheme‘in general, and the updating
scheme in particular, 1is that at the beginning of the continuation process
left-hand-side matrices K and L are actually scalars. Then at each update of
the optimality conditions, the dimensions of K or L either remain unchanged or
are modified by one. Quick updates of the Cholesky factorizations of K are
available for all uédate conditioqs. Quick wupdates for the Cholesky

>
factorization of L are available only in cases Iinvolving transparent
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variables. Normally the dimensions of these matrices should remain small,

making the computation relatively fast.

Here then are the detailed computational procedures for the six update

conditions and their factorizations.

L.

L Update no.l

“This updates the optimality conditions when a functional constraint
d, becomes active. An extra row and column of sensitivity coefficients are
] .
added to the optimality equation, eq. 4.4 . The computational procedure is as

follC}ws:

- Update the active/inactive partition on dependent variables.

- Update dimensions of these partitions.

- Check for structural degeneracy (active dependent constraints outnumber
inactive real power generations). This will be explained further.

- Compute (or retrieve, if available) the sensitivity coefficient vector g,
for the active constrailnt as described in section 6.3.1.

- Compute the corresponding right-hand-side term:

<
k= g,T(b + b} - g, Tb,p (6.24)

The second term of the right-hand-side is computed wusing the present
active/inactive partition of independent variables’

- Check for numerical degeneracy.

- Update Cholesky factorizations Uy and U; of matrices K and L respectively
(eq. 4.18 and 4.19). )

For Uy, a new column u and then a new row are concatenated along the
right/bottom edges of the existing U,. The new bottom row has a single
nonzero element v in the last column, so that the new Uy remains upper

triangular. The procedure for computing u'and v is as follows:

3
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- For all inactive generations
J, compute ay,: ay = 8;,/By, (6.25)
- Compute f: B = Gpa (6.26)
- Solve for u: Uu = B (6.27)
- Compute v: v = gpiTa - ulu ' § (6.27)
If v > 0, then ’ v= /v (6.28)
< 0, then resort to the back-up G

decomposition.

- Update the G matrix to includf the g, vector.

The matrix U; is recomputed from scratch.

ii) Update no.2

This updates the optimality conditions when a functional constraint

d, becomes inactive. An existing row and column of the optimality equation is

deleted. The computational procedure is as follows: )

- Update the actiire/inactiv;a partition for dependent variables.

- Find the position of the sensitivity coefficient vector g, to be remm:ed.
Remove 1its position index from the ordered list of sensitivity vector
posit;ions (but keep g, and information to access it).

- Remove the corresponding right-hand-side element.

- Update-the Cholesky factorizations of Uy and U;:

For UK,, use LINPACK subroutine DCHEX. It updates the Cholesky
‘ factorization of matrix K with the row and column corresponding to the
déactivated constraint permuted to the bottom/right edge of the matrix.
Then update the dimensions of the active/inactive partition on dependent

variubles. The last row and column of Uy are then discarded.

The matrix U, 1is recomputed from scratch.
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111) gpdate no.3

5

This updates the optimality conditions when a transparent variable t,
becomes active. A row and a column of the optimality equation are transferred
from the left-hand-side to the right-hand-side. The computational procedure

is as follows:

- Update the active/inactive partition for transparent variables.

- Extract the column vector g; from G, corresponding to transparent
variable ty.

- . Update the right-hand-side term:

k= k- g blo ) (6.29)

- Update the Cholesky factorizations of Uy and U;:

Yo
U remains unchanged! —
For U, if there remain <free transparent variables, the LINPACK
subroutine DCHEX 1s used as above, to remove the row/columm corresponding

to t, from matrix L. The dimensions of the active/inactive partitions

M
for transparent variables are then updated, and again the last row/column

of U, are discarded.

iv) Update no.4 _

This updates the optimality conditions when a transparent variable t,
becomes Inactive. A row and a column of the optimality equation are
transferred from the right-hand-side to the left-hand-side. The computational

procedure is as follows: :

- Update the active/inactive partition of the transparent variables.
- Update the dimensions of the partitions.
- Extract the column vector g, from G, corresponding to transparent‘

variable t;.
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becomes active.

Update the right-hand-side term:
k= k+ gt bte
Update the Cholesky factorizations of Uy and U;: .

U, remains unchanged.

176

(6.30)

For U, the update procedure is similar to that in Update mno.l, in that a

new row and a new column are added to the existing U,.

\

- Compute v:
Solve for a: Ko = 8;
Compute v: ve= gla

- If the number of free trans-

parents is greater than 1,

Compute f: B= Gl
Solve for u: U,'u= g
Compute v: - ve v - gfu
- Check v:
If v > 0, then v = Jv
< 0, then resort to the back-up
decomposition.

v) Update no.5

- .-

(6.31)
(6.32)

(6.33)
(6.34)
(6.35)

(6.36)

This updates the optimality conditions when a real power generation P,

A row and a column of the optimality equation are transferred

from the right-hand-side to the left-hand-side. The computational procedure is

as follows:

Update active/inactive partitions for real power generations.

Update the dimensions of the partitio

ns
Check for structural degeneracy. /
oty \

{
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- Extract the column vector g; from G, corresponding to real power

generation P,,.

- Update the right-hand-side term:

k= k- gP,le (6.37)

- Update the Cholesky factorizations of Uy and U :

For U., first the down-dated row/column a = B-1/2 is computedy
K -9
. f
‘For all elements of column g;»

Compute a,: o, = 8,,//By, (6.38)

2
Then LINPACK subroutine DCHDD down-dates the existing factorization to

obtain the new one:
U,"" = factorization of [U; - aa']. (6.39)

The matrix U, 1s recomputed from scratch.

--------- ‘ M —

/4

This updates the optimality conditions when a real power generation P,

becgmes inactive. A row and a column of the optimality equation are

“ transferred from the left-hand-side to the right-hand-side. The procedure is

as follows:

- Update active/inactive partitions for real power generations.
- Update the dimensions of the partitioms.
- Extract the column <vector g; from Gp corresponding to real power

generation Psd .

- Update the right-hand-side term:

k= k+ gJstlim (6.40) .

A

- Update the Cholesky factorizations of U, and U :
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For Uy, first create the updated row/column a as in Update no.5  Then
LINPACK subroutine DCHUD updates the existing factorization to obtain the

new one:

U™ = factorization of [Ug + aa’]. (6.41)

- . The matrix U, is'recomputed from scratch.

viil) Factorization of L from scratch

- . - = e L e R A e e e o

Updates of Uy are only possible vhen the change in the optimality
conditions leaves K unchanged, since L requires the Inverse of matrix K. Most
often it is necessary to recompute the factorization U, of the matrix L from
scratch. Once the matrix L has been recomputed, its factorization is
performed using the LINPACK subroutine DCHDC.

N
Yy ‘ 4

P T

The usual Cholesky factorization can break down due to 1ll-conditioning.
It manifests itself In a negative wvalue of the square of the new diagonal
element v, when a row and a column are added to matrix K or L. Either Kor L

can be written in the form of the normal equations i.e., in the form ATA:
-1/2 - T
K= [GB 2] [BH2GT] = ATA - (6.42)
L= [GU 1] [U26,T] = ATA . (6.43)

The QR decomposition applied to matrix A expresses A as a product of matrices:

A = QR. It can be shown [George & Ng 1986] that the upper triangular portiom

of the R matrix {2 the CHolesky factorization of ATA. Hence in our problem
the Cholesky factqgrizations of K and L can be bullt from the matrices A, and

A without forming the normal equationms. The LINPACK subroutine DQRDC is

l'
used to produce this R matrix.
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The QR technique is more robust than the usual Cholesky factoriiatian
algorithm. It is best left as a backup, though, since it requires twice as
much computation as the wusual Cholesky technique and since the Cholesky

technique should rarely bog dowm.

¢) Computation of solution trajectories

-y e S > e - o = " W e e e D W e e o o

The computation of solution trajectorlies for economic dispatch 1is
presented. The computation differs from the analytical expressions, eq. 4.31
- 4.38, in that values already computed for some variables serve to compute
values for the next variables. That saves much computational effort. The two
components of the solutlon trajectories are given, in the format first used in

presenting the computation of dependent constraints. The computational

procedure is as follows.

Eq. 4.32. If dim(t!) = ntf > 0, then compute free transparent variables.

o Operation " As component S,_component
Solve for §: U,’8 = An U8 = n, (6.44)
Solve for a: U = 8 . (6.45)
Solve for 8: ’ U8 = a (6.46)
Solve for tg: Ut, =8 (6.47)

Eq. 4.35. Compute Lagrange multipliers of active functional constraints.

| Operation As_component S,._component
Set a: a = An a = n, \ (6.48)
If ntf > 0, compute a: a=a+ Gt (6.49)
‘ Solve for B: A U8 = a (6.50)
o Solve for X: U= 8 (6.51)
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Eq. 4.31. Compute real power generations.
Opexation As_component Sp-component

Compute a: a = GpT/\ a = Gpr)« - a (6.52)
For all inactive real power

generations, compute L PKi - a, /B, (6.53)
Eq. 4.36 - 4.37. Compute Lagrange multipliers for active real power

generations and active transparent variables.
Operation As_component S,_component
. - -G PT w« BPP b b _gbT

Compute h ] Mg Gy A . p? B°P.° + a® -G ™) . (6.54)
Compute u,: By = -GPTA (6.55)

Eq. 4.38 for dependent variables has already been treated in section 6.3.3.
The remaining eq. 4.33 - 4.34 describe variables fixed at their bounds, which

need not be computed.

. 'I'heks0 compopents for the upcoming segment of the solution trajectory are
computed explicitly, wusing the procedure above, only when starting the
continuation process (8 = 0) or in restarting it after resolving a degeneracy.
In most cases, it can be computed very simply from the newly computed As
vector and the vector of known values of the variables, s;, at the latest

breakpoint 8,.

Since s; + A8.8; = s | : (6.56)
at the'initial breakpoint of the next

14
3

segment of the solution trajectory,

then S, = s8; - As.6;. (6.57)

Hence a simple vector subtraction suffices to obtain s,;.
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The precision of this quick computation of s, was compared to that of the.
drawn-out computation. It was feared that the quick computation might drift,
due to the accumulation of numerical errors, as in some simple-schemes for the
computatioix of numerical integration ['Dahlquist & Bjérk 1974). However, tests
indicate that the precision of the quick computation is wvery good. ‘

'd) Determining the next breakpoint

- . . e s e m T e vm e e e o o e ey m e e

The optimality conditions remain valid until the next breakpoint, where
either an inactive variable becomes active or Lagrange multiplier reduces to
zero. The values of 6 at which these things occur for each variable are

computed as follows:

- For an inactive variable s, going to a fixed bound:

If As > 0, compute O, needed to reach the upper bound s,

8, = (s;" - s,))/8s. (6.58)
If As < 0, compute 8, needed to reach the lower bound s.”, '
8, = (s,;, - S;0)/8s. . (6.59)

If As = 0, set ©, greater than'1l. ¢

- For an inactive variable s, going to a moving bound dH®(8) = d, + Ade
(possible for dependent and sometimes transparent vz;riables):
If As > 0, compute 8, ne’eded\ to reach the moving upper bound,
- 8, = (d, - s,4)/(As - Ad). (6.60)
If As < 0, compute 8, needed to reach the moving lower bound,u&
8, = (d; - s,4)/(As - Ad). ‘ (?.61)

If As = 0, set O, greater than 1.

- For Lagrange multipliers A(8) = A; + AA.§:

If AA < 0, compute the 6, needed to reach zero,
8, = -Ay/AA. (6.62)
If AA +: 0, set 91 greater than 1.
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\ .“
Compare all 6,, and pick th?“'smellest as the text breakpoint 8,. 'If that
value is larger than one, then set it to one. If it is less ‘than one, record
the condition which causes 8; and invoke its update condition. Then go on to

compute the values of the variables s(8;).

4
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The values of the inactive variables and Lagrange multipliers for active
variables at the newly determined breakpoint 6, are computed using eq. 6.56.
If in the previous step, the breakpoint was set to one, then the values just
computed are the solutions of the subproblem. If .not, the 'continuation

e

process returns to the updates.

T T e U

Provisions have been implemented fn the program to avold certain cases of
degeneracy. A first case 1is that of structural degeneéracy, when in the
continuation process, the active functional constraints come to outnumber the
inactive generations. When that happens, the reduced Hessian term K of eq. .
4.18 1s a singular matrix, and subsequent calculations bog down. The problem
is numerical, in that the forming of K imposes a certain block ordering of the
left-hand-side matrix of the optimality equation, as shown in eq. 4.14. That
matrix is nonsingular, but the imposed ordering makes the préposed solution
equations, eq. 4.15 - 4.26, impossible to compute. This problem has been
obserw;ed in numerical testing, but it rarely occurs once the appropriate basis

is chosen.

A remedy to this problem 1s to reform the basis. It requires the
application of the projection step of section 3.4.1, to reduce the number of
active depi:ndent wvariables, and the reordering of the Jacobian. Coefficients
for a new generalized power balance equation and for the few remaih:l.ng active
dependent variables must be computed. This i1s just a restructuring of the

computation, and does not invalidate the portions of the solutilon trajectories
h g

‘
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already found. The computalt:l.on with the new basis picks up where the previous
one left off.

The other two cases implemented in the program were described in Appendix
4.2. When the constraints outnumber the inactive variables, the reordering
described above 1s insufficient. Constrained variables must be found to come
off their bounds, while satlsfying the optimality conditionms. If né such
varir;ble can be found, a feasibility boundary has been reached. The simplest
test is to check if there remain real power generations at their lower bounds.
If so, the incrementally cheapest generation is taken off its bound and its
Lagrange multiplier 1s set to =zero. Then this solution 1is verified for
optimality.
) The other case resolves the degeneracy due to one constraint too many.

It was described at length in Appendix 4.2, so it will not be repeated here.
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CHAPTER VII

7.1 Introduction

3

An optimal power flow program has been written implementing the ideas of
the pre%rious chapters for the economic dispatch task, and has been tested on
systems of 6, 10, 30 and 118 buses. This chapter documents and analyzes the
results, taken not only from the output, but also from the various important

stages of the calculation. o

The results are prezented for each test system separately. The formats
and the contents of the wvarious tables and graphs will be discussed In detail
only for the first test, on the 6 bus gsystem. By then the reader should be
well-acquainted with the format. Hence the results for the three subsequent
tests are presented using the same format, but only the points \deemed

important are highlighted in the discussion.

The format for presenting the results in thils chapter is as follows,
First the global performance of the algorithm in solving for the initial load
is given in detail. Then, in the first three simulations, the OPF is solved
for a sequence of loads in arload—tracking scheme, and solution results for
the subsequent loads are provided. Although less detailed than. for the
initial solution, the latter results provide for a good comparison of t‘he
computational effort and the computation time of the algoriithm for the
sequence of loads. Following this global description, the details of the
system variables and costs through the various stages of the computation are

presented graphically.

For the six bus system only, two other topics are added to this study.
These verify a couple of fine points in the theory of the previous chapters.
First we analyze the numerical stability of the subproblem solutions for the
transparent variz;bles. and their relation to the sensitivity coefficients in

the power balance equation. Secondly, we look at the case where the

1
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computation of the first load continues until no breakpoint occurs in a long
sequence of subproblems, and where the system is solved to extremely tight
tolerances. The computational effort for the solution of the subsequent loads

is then monitored to see 1f the initial effort was worthwhile.

Following the descriptive sections mentioned above, some general results
and observations are regrouped. Here we summarize our numerical experience
with our OPF program, and discuss 1its general behaviour. Those readers who

wish to skip the details can move ahead to this section 7.6.

Results for the 30 bus system are then compared to those documentad in a
recent publication [Ponrajah 1987] and to those in a well-known paper in the
OPF literature [Alsac & Stott 1974]. This comparison confirms some of the
conclusions from our results, especially those concerning the roles of the
different types of wariables in the optimizatio;x and the relative difficulty

in computing them.

The chapter closes with a discussion on the numerical difficulties
observed in the computation, partficularly as the test systems increase in

size. “

7.2 SimuL'ations on a 6 Bus Systenm

The six bus system is taken from the book by Dhar [Dhar 1985]. No cost
data was given in that reference, so some values were created more or less
arbitrarily. Also, to increase the size ‘and complexity of the problem,
generations were placed at every bus. The data and the schematic diagram for

this system can be found in Appendix 7.1.
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The number of variables in this system is as follows:

Number of buses:

Number of generations:

6
6
Number of loads: 4
Number of transmission lines: 7

2

Number of variable transformer taps:

»

Totai number of load flow variables: 32

The program solved this system for an initial load, and then in three
different runs for sets of 10 subsequent loads, increased in intervals of 1, 2

and 4 percent respectively.

7.2. Glob Charact stics 1

-/
-

The solution process for the six bus system is summarized in four tables:
Table 7.1 °for the solution to the initial load, and tables 7.2 to 7.4 for the

three cases of the load-tracking soiutions. .

7.2.1.1 The optimal solution for the initial load 3
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Table 7.1 gives a deéailed account of the computational effort required
for the solution of the initial load, for all the major steps of the
algorithm. Horizontally, the columns tabulate the values for each major
iteration until convergence 1is achieved. Vertically, the information is
broken up into two main categories: information from the subprobleg and from

the load flow feasibility search. o '

For the subproblem, the table indicates first how many of tpe neglectad
dependent constraints are violated in the' simple problem solution. It then
shows how many breakpoints are required to obtain a completely feasible

subproblem optimum using the continuation method.
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In the search for the load flow fe?sible point, the table provides three
important groups of information: the number of Newton-Raphson iterations
needed in the load flow solver, the variables used to gauge convergence, and
the step size described in section 3.4.4 to curtail unduly large movements

from an expansion point.

The three convergence criteria considered here are (1) the relative
reduction in the load flow feasible point’s fuel costs from one iteration to
the next, (2) the relative gap between the load flow feasible point’s cost and
that of the subproblem’s optimal cost, and (3) the relative distance between
‘the load flow feasible point and the subproblem solution. The term relative
is used because the three difference terms which. make up these convergence
criteria were divided by the corresponding variables, to giv'e a better idea of

. their relative size. Fairly tight tolerances have been placed on these

convergence criteria in the program, allowing to sttfa/y the rate of convergence

over a larger number of iterations.

The table ends with the cost of the initial guess, the cost of the
optimal solution, and the computation time. The latter is taken from an AT
compatible personal computer equipped with a coprocessor. These timings are
about two to three ordexrs of magnitude slower than those which could be
expected using fast mainframe computers [Dongarra 1987}, but they are useful

in comparing our results amongst themselves.

Our description of the results of Table 7.1 will start with a detailed
look at- the first column, followed by zl:he general progression across the table
for each entry. 1In all, 9 major iterations were required to solve the first

load of this system to the chosen tolerances.

At the top of the first column, we have the results of the first
subproblem of the optimization. The solution to the simple problem of the
subproblem violated 4 of the 19 dependent constraints, the largest violation
being 1.695 p.u. on the reactive power generation Q6. In the continuation

t process, 12 breakpoints were encountered before reaching the optimum of the
suhproblem\. This process is documented in Table 7.6 and in figures 7.2, and
will be described later.
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M TABLE 7.1 ~ TEST ON THE 6 BUS SYSTEM .
‘ SUMMARY OF THE ALGORITHM’S PERFORMANCE 4
rF -
ks SOLUTION FOR THE FIRST LOAD
Mdjor iteration no. 1 2 3 4 5 ] 7 8 9
SUBPROELEM NN
3 - -
Violations in the subproblem 4 3 5 5 4 3 1 4 4
at the simple optimum , - s
Breakpoints in the 12 6 20 14 10 4 2 8 | 8
continuation process
B

SEARCH FOR LOAD FLOW FEASIBLE POINT

v
Newton-Raphson iterations in 3 4 2 2 4 2 4 3 1
. finding load flow feasible pt.

Relative reduction in cost of - .0138 782e-2|.138e-2].1440~2] 628¢-3|.3730-3|.528e-3|.173e-4
load flow feasible pt.

Relative gap between costs of . 0852 .0323 .118e-1{.104a-2|.462e-2 .677a-2| .606e-2] 235e-2{.1810-2
load flow feasible pt. and
subproblem solution

Relativa norm of the difference{.1158 |[.1084 |.0758 |,0592 .0362 .0228 1.0186 |.0181 |.0155
between the variables at the
load flow feasible point [
and the subproblem solution

Step size in searching 9 .45 .45 45 A4S .45 .225 1.1125 .1
feasible load flow pt

° - é

Initial cost. 1.6431 Optimal cost 1.6008 Computation time: 18.72 sec.

A

v
s
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Upon completion of the first subproblem, the three convergence criteria
are computed. Convergence cannot be declared after Jjust one iteration, but
this information is still useful In showing how much progress 1s achileved
towards reaching the optimum. It can be noted, in comparison with the
subsequent dolunmsc of the table, that the first iteration results in the

largest changes in the candidate solution.

The computation of the load flow feasible point in the first major
iteration required 3 Newton-Raphson iterations. The first load flow feasible
point computed,K by this paxrt of the program was also bounds-feasible and of
lower cost than the previous expansion point, so it was kept as the expansion
point for the next major iteration and the step sizé remained unchanged from

its previou§ value.

The sequence of subproblem solutions over the 9 major iterations, as will
be seen with the other simulations, 1is somewhat typical, The first few
subproblenms requiz‘:ed a relatively large numbers of breakpoints, in resolving
casas with relatlively large violations. , For example, the first three
subproblems required 12, 6 and 20 breakpoints, while the last three required
onl'y 2, 6 and 8 respectively. The‘largest violations in the first three
subproblems were 1.70, 0.48 and 1.58 p.u., while in the last three they were
0.01, 0.55 and ‘Q.l9 p.u. It is worth noting however that even for the longest
subproblem, in major iteration no.3} .the number of breakpoints compares
favorably with the typical number tof linear or quadratic programming
iterations. Recent works place an empirical upper limit on the usual number
of LP iterations around 1.5 times the number of constraints [Chvatal 1983].

For this system, that number would be about 80,

The sequence of Newton-Raphson load flow solvers required relatively
little computation, averaging less than 3 ilterations in each major iteration.
For the 6 bus system, as well as for the other 3 systems used for these tests,
load flow convergence was rarely a problem. In three cases, major lterations
nos. 2, 7 and 8, the Newton-Raphson solver was used twice, since the first
computed candidate was unacceptable. That explains the reduction in step
size. However the most iterations in any major iteration was only four, in

iterations 2 and 7.
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The two cost-related convergence criteria started off with relatively
small values, thanks to the good initial guess, and then reduced apparently
with a linear rate of convergence. This rate could be -expected, because of
the use of the step size in the procedure [Dennis & Schnabel 1983]. The-
change in cost, from its initial wvalue to 1its optimal walue, 1s only ‘2.5%,

from 1.6431 to 1.6009 units. The change 1in the real power generations is
correspondingly small.

Figure 7.1 shows the progression of the costs of the load flow feasible
points and of the subproblem solutions versus the number of major iteratioms.
It illustrates that the subprolblem solution can effectively serve as a lower
bound on the optimal solution. It also shows that the upper curve, that of
. the feasible load flow points, reaches its bottom rather quickly. Hence, the
idea of wusing the gap between the two curves as a measure of convergence 15
sound, but it might unduly prolong the computation. In our case, the tolerance
on the gap between the two curves was chosen 5.times larger than the tolerance

on the cost reduction to avoid prolonged computation, but even then the cost

reduction bottomed out before gap value reached its tolerance.

1.64

°

1.62

LOAD FLOW FEASIBLE POINTS

SUBPROBLEM SOLUTIONS

A
COSTS
—
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Figure 7.1. Costs of the load flow feasible points and the
subproblem solutions at each major iteration, solution
to the 6 bus system.
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The third convergence criterion, 1n.volving the load flow wvariables,
decreased from a fairl}_ large initial value of 11.6% to a much smaller 1.5%.
Most of this change i{s in the reactive power generations, and to a lesser
extent in the voltages and the wvariable transformer tap positions. This
improvement is possibly the most significant in the optimization process, in
that 1t assigns optimal wvalues to the many variables which have no direct

cost.

i

The step size used in the search for the load flow feasible point reduced
automatically as the optimization proceeded. This, as we shall see, is the
typical behaviour. Recalling the argument of section 3.4.4.5 for the solution
of sy-stems of nonlinear equations withlfold lines, this behaviour seems
reasonable. As the expansion point approaches the optimum, the correction
step suggested by the subproblem will not reduce to zero; hence the step size
must do so. The final value of the step size in this case is 0.1. In a case
where this test was allowed to run for 30 major iterations, the step size

reduced to 0.025; that seems to confirm the theory given above.

The computation time to solve for the first load of this system was 19.72
sec with computations in double precision. This will be compared to the

solution times of the subsequent loads.

e e ay we w w  wm s e T e e %o MS T N e v L e A W K e e e e e Y e G R e e e e e TY e m wm wm e

The next three tables provide an account of the solutions for the
subsequent loads in the load-tracking mode. The loads are increased by 1
percent after each solution in the first case, and by 2 and 4 percent in the

second and third cases. These cases are documented in Tables 7.2, 7.3 and 7.4

respectively.

In each case the load-tracking is tested on sequences of 10 loads. The
tight convergence tolerances for the initial load solution are maintained on
every fifth load, but are relaxed a bit for thev other loads. In comparing
costs from the different load tracking tests, the accuracy obtained with the

relaxed tolerances seems quite good.
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The information contained in these tables is as basically the same as
that in Table 7.1, except that it i{s not broken down into major iterationms.
For each load, the corresponding column provides the number of major
iterations required in the solution, the total number of breakpéints in- the
subproblems, the total number of Newton-Raphson iterations, the optimal cost,

and the computation time.

1) The loads are increased by 1 percent

In Table 7.2, results for 1 percent changes in load are seen to be very
encouraging. Six of the ten loads required only oneymajor iteration to reach
the optimal solution; the other four required only a second major iteraéion.
For most loads the number of subproblem breakpoints is very small. In fact,
for four of the loads, the continuation process of the subproblem was not
required, resulting In quick subproblem solutions. Only for loads nos. 2 and
3, the total number of suEproblem breakpoints seemed large (22 and 18),
although these are relatively few compared tp the 82 breakpoints in the
solution for the initial load. The solutions for the fifth and the tenth
loads, with thelr tighter convergence tolerances, were just as fast as the

other solutions with the looser tolerances.

)

TABLE 7 2 - TEST ON THE 6 BUS SYSTEM

.

* SUMMARY OF THE ALGORITHM'S PERFORMANCE

SOLUTIONS FCR THE SUBSEQUENT LOADS - 1% VARIATIONS IN LOAD

Load no. 1 2 3 4 5 6 7 8 g9 10
No. of major iterations 1 2 2 1 1 1 2 1 1 2
Total aumber of breakpoints in 2 22 18 2 0 8 12 s Q 0

the s bproblems

Total numser of Newton-Raphson 3 4 6 3 4 3 5 3 g 3
iterations

Optimal cost 1.6223 |1.6440 |1 6661 |1.6886 |1,7114 [1.7347 |1 7583 |1.,7823 {1,8068 |1.8316

Comput.ation time (sec.) 1.64 4 67 4,89 1 58 1.93 181 3.13 1.15 2.15 3.46

m«-«;..,wrwt >



’ 193

The total number of Newton-Raphson iterations for the 10 loads was 40.
This includes the iterations of a load flow solution immediately following the
load increase, before the optimization. The average is then 4 iterations for

each load, with two usually coming in the initial step mentioned above.

Costs are seen to increase by a little more than one percent from one
load to a(nother. These values will be compared to the costs of Tables 7.3 and
7.4 a little further. “

Solution times for the loads in Table 7.2 range from 1.15 sec. to 4.89
sec. with an average of 2.64 sec.. This is only 13% of the 19.72 sec. required
for the initial solution.

i1) The loads are increased by 2 percent

- wm e e e e e e vm e . e e e v At e em e e e e e e

Soluticgns in Table 7.3, with the varying loads incremented by 2 percent,
are also vei’y encouraging. With larger changes in the 1load, the iInitial
guess, taken from the previous optimal solution, is farther from the optimum
of the new problem. That increases the difficulty in solving the new problem
only slightly however, because the load wvariations are still gquite small.

’ ' |

All but two of the load-tracking solutions in this case required a single
major iteration; the remaining solutions required two major iterations. The
total number of subproblem breakpoints increased from 64 In the previous case
to 96 in this case, and the number of Newton-Raphson iterations remained the
same as in the previous case. It 1is interesting to note that iterations 2 and
3 in fhis case require more breakpoints than average, as for the previous
case. This 1s because the sets of iIndependent variables upon entering these
subproblems are similar for the two cases. That demonstrates that the
complexity of the subproblem solution is related to the chosen set of
independent wvariables. The solution times for this case are somewhat similar
to those of the previous case. Hence, despite the added computation, the 2

percent change in loads performs very well in load-tracking.
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TABLE 7.3 - TEST ON THE 6 BUS SYSTEM

SUMMARY OF THE ALGORITEM’S PERFORMANCE

SOLUTIONS FOR THE SUBSEQUENT LOADS - 2% VARIATIONS IN LOAD
h]

Load no. 1

2 3 4 5 § 7 8 9 10
No. of major iterations - 1 2 2 1 1 1 1 1 1 1
1

Total numbex of breakpoints in 0 14 18 12 4 10 8 2 12 16
the subproblems

Total number of Newton-Raphson 3 4 5 3 3 5 3 10 2 2

iterations -
Optimal cost 1.6439 }11.6882 )1.7341 }1.7814 |1.8305 |1.8781 {1.9336 |1 9878 2.02038 2.1018
Computation time (sec.) 1.64 4.67 4.89 1.58 1.87 1.87 3.13 1.10 i.lh 3.41

i R T L L I T

The results of Table

7.4,

with the wvarying loads

incremented by &

percem:u, show that slightly more computation 1s required for each solution

than in the previous cases.

The total counts for subproblem breakpoints

Newton-Raphson iterations over the 10 loads in this case are 112 and

respectively. All the loads except two require a single major iteration

their solution; one requires two major iterations and one requires five.

average computation time per solution was 3.26 sec. (17% of the time for

initial solution), with individual timings ranging from 1.48 sec.

computing with 1% load changes 4 times or with 2% load changes twice.

the 4% load changes performed very well in load tracking.

)

and
44,
for
The
the

to 8.13
sec.. Load tracking in thils case with 4% load changes {s clearly faster than

Hence
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\ TABLE 7.4 - TEST ON THE 6 BUS SYSTEM

\SUX“MARY OF THE ALGORITEM’S PERFORMANCE R

1
SOLUTIONS |FOR THE SUBSEQUENT LOADS - 4X VARIATIONS IN LOAD
[

Load no. 1 2 3 &4 5 6 7 8 \ ) 10
No. of major iterations 1 2 1 1 1 1 1 1 1 5
Total numbexr of breakpoints in ) 20 18 10 8 10 10 6 2 26

the subproblems

Total numbar of HNewton-Raphson 4 5 4. 3 5 3 4 6 3 7
iterations !

Optimal cost 1.6874 {1.7797 |1.8783 {1.9837 {2.0864 {2.2169 [2.3460 }2.4842 [2.6322 )2.7884%

Computation time (sec.) 2.20 4,61 3.13 2.20 2.88 2.18 2.75 3.02 1.48 8.13

- e e e e e e e em am e Em v e e e T TR e AP We M e e em e v em b e e G Y e M M A e em e e o D oae e e o

It is interesting to compare optimal costs 'computed in the different load
tracking tests. These are regrouped to form Table 7.3 below. The load
increases are compounded differently (i.e. Load(k+l) = (1l+e).Load(k) with
different wvalues of e), but their differences are very small; the largest
discrepancy in loads is by a factor of 0.0019, on the final load of' the table.
Hence an accurate comparison can be made. These costs compare very well, with
discrepancies never occurring before the third significant digit and usually
not before the fourth. The largest discrepancy, very small, occurs for the
final load, with a difference in costs of 0.26 percent of their average cost.
The average discrepancy in optimal costs over all the loads is a very small
0.089 percent, which is about the same as the average discrepancy in loads.
The remarkable concordance in the costs indicates that the computed optimal

cost trajectories stray very little from the exact optimal cost trajectories.
)

e
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TABLE 7.5 - TEST ON THE 6 BUS SYSTEM
! SUMMARY OF THE ALGORITHM’S PERFCRMARCE
COMPARISON OF OPTIMAL COSTS OBTAINED FROM THE LOAD TRACKING MODES (TAKEN FROM TABLES 7.2 - 7.4) /
X change in load 2 4 6 8 10 12 16 20
Optimal Costs for load tracking
with
1X load changes 1.6440 1.6886 1.7347 1,7823 1.8318 /
2% load changes ‘ 1.6438 1.6882 | 1.7341 | 1.7814 1.8305 1.8781 1.9878 2.1019
4% load changes 1.6874 1.7797 1.8783 1,9837 2.0864

This completes our description of the overall solution of the 6 bus system.

7.2.2 A study of the subproblem solutions

This section describes in detail the solution of the first subproblem in
the solution of the initial load of the 6 bus \system, and includes some

results from two other subproblems which can serve for comparison.

7.2.2.1 The first subproblem

The solution to the simple problem of the first subproblem violates four

constraints. These are:
- (6 violated its lower bound by 1.695 p.

u
- Q4 violated its upper bound by 1.032 p.u. -
- V2 violated its upper bound by 0.296 p.u

u

- V4 violated its upper bound by 0.113 p.
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It will be interesting to follow the solution trajectories of these
constraints in the continuation process.
pe

The continuation process starts by adding the most violated constraint Qb
to the active set, after having shifted the bounds of the violated constraints
by 1.695 p.u.. From there the continuation process encounters 11 more
breakpoints as the shifted bounds réintegrate-their original positions. These
breakpoints are chronicled in Table 7.6.

* TABLE 7.6 - TEST ON THE 6 BUS SYSTEM
A SUMMARY OF BREAKPOINTS ENCOUNTERED IN THE FIRST SUBPROBLEM  — —
e Varilable Cause of breakpoint
name and type
0.0000 Q6 ° dependent most violated dependent constraint set to
its moving lower bound.
.1390 e-5 Q5 transparent released from its upper bound.
0.2097 Q5 transparent set to its lower bound. .
0.2097 Ql transparent released from its lower bound. .
0.5007 Ql transparent set to its upper bound.
0.5013 V6  transparent released from its lower bound.
0.8270 V2 dependent set to its moving upper bound.
0.8270 V5 transparent released from its upper bound.
0.9139 v5 transparent saet to its lower bound.
0.9139 V3  transparent released from its upper bound.
0.9619 V3  transparent set to its lower bound.
0.9619 Q2  transparent released from its upper bound.

When the process starts, the transparent variables are for the most part

+on their bounds, and the dependent Q6 1is active on its moving lower bound.

Then the continuation parameter 6 is increased. The typical scenario for the
continuation process, which can be seen in Table 7.6 and In subsequent tests,
1s as follows., At some point a variable reaches a bound. Almost immediately,
a transparent variable is forced qff its bound as a form of compensation, when
the trajectory of its Lagrange multiplier plummets to zero. The continuation
process moves ahead until again another wvariable reaches a bound and the
process 1s repeated. Hence, breakpoilnts occur in pairs. For example, in

Table 7.6, we see that the response to the addition of the dependent Q6 to the
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active set at 6=0 is the removal of the transparent Q5 from the active set at
0.1590 e-5. The next palrs of breakpoiAts are fairly well spaced, around 6 =
0.21, 0.50, 0.83, 0.91 and 0.96. The largest difference';n 8 between the two
members of the pair is A8 = 0.0006 for © around 0.50, andiih the. other cases
the differences are smaller than 0.0001. ‘

Inspection of Table 7.6 shows that the words "set to" and "released from"
a bound always alternate. This will always be the case in our tests. The
variable which goes to a bound can be dependent, as seen here twice, to a
fixed or to a moving bound. It can also be transparent, as seen here four

times, when this variable is released from one bound but moves to the other.

The optimal solution trajectories for all the variables of the subproblem
are furnished in fig. 7.2, a. to f£.. The values on the left edge of the
graphs are the simple problem solutions. The solution trajectories provide
the optimal solutions to the Intermediate problems where the relaxed
constraints are reintegrating their bounds, and lead to the subproblem

solutions on the right edge of the graphs.

The graphs indicate, in brief, that the simple solution allows for large
Imbalances In reactive power generation and unreasonably high bus wvoltages.
The continuation process redistributes reactive power through the system so as
to avoid a very high Q4 and a very low Q6, and reduces bus voltage magnitudes
v2 andwbﬁﬁwithin their bounds. The.intermediate steps resemble something of a
balancing act, with variables reacting to each other, sometimes in tandem and
other times offsetting each other. It can be noted also that for such a small

system, all the variables interact fairly closely to each other.

V

i

Flgure 7.2.a shows the trajectories of the real power generations. We
see that the reallocation of real powers, to accommodate the tighter bounds on

Q and V in the continuation process, is very small. TFrom common dispatching

practices, that result was expected.

i

Figure 7.2.b. 1illustrates the trajectories of the reactive power
generations. The outer trajectories Q4 and Q6 are typical of the dependent

variables with relaxed bounds. The envelope which they form on the graph
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narrows from left to right, as the constraints are tightened. In this
example, Q6 follows its moving lower bound from the outset to its £final,
original position. Q&, originally Tess violated, 1s reduced to acceptable
values in the continuation process but remains inactive throughout. The other
reactive powers are transparent variables in this case. Q5 is released from
its upper bound in response to Q6 being set to 1ts lower bound, and Ql is
released from its lower bound after Q5 reaches its lower bound. Both Q5 and
Ql are forced to change bounds in the proecess. Q2 is released from its upper
bound towards the end of the process, after V3 is set to {its lower bound. The
remaining Q3 remains at 1its lower bound throughout.

Figure 7.2.c shows the trajectories of the bus voltage magnitudes. V2
and V4 are dependent variables having violated theilr upper bound of 1.10 p.u..
The former meets up with its moving upper bound at 8«=0.827, and from there
follows it to 1.1 p.u.. The latter remafns inactive but succeeds in
reintegrating its feasible region. The other voltages are transparent
wvariables. V3 and V5 switch bounds rather quickly; we observe in this and
other tests that the slopes of transparent voltages can be quite steep. V6

leaves its lower bound, and V1 remains on its upper bound of 1.05 p.u.

Figure 7.2.d shows the trajectories of the bus voltage phase angles.
These are unbounded,” so they are of less Iinterest. We see however the
progression of the values towards the subproblem optimum. In this exhample,
the only outstanding feature is d2 increasing sharply after V2 hits its

moving upper bound.

F:I.gur\é 7.2.e shows the trajectories of the varlable transformer tap
positions. Both are dependent variables in this case. They remain within
bounds but move over a wide range. T2 reacts strongly when the voltage V5 at
an adjacent bus 1s released from its upper bound. It then strongly reacts in
the opposite direction when V5 reaches its lower bound. T1 also reacts to V5
reaching its bound, although in the opposite direction. This reaction 1is
"reasonable", since TL 1s acting to maintain reactive powers in another part

1}

of the system.
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Finally, figure 7.2.f shows the line flows (or more precisely, the linear
approximations of the line currents squared). Negative values are possible in
the subproblem, since the linear equations for ghese v\ariables do not impose
non-negativity. Their wvalues are all relatively small compared to their
baunds. We note near the end of the process, as V5 is released from Iits
bound, that the line flow L4 (between buses 5 & 2) increases sharply, and as
V3 1s released the line flows L5 (buses 4 & 3) ;md L7 (buses 3 & 2) incr‘éase
sharply. Z
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The more interesting graphs of some variables from two other subproblems

are presented, to give a better 3idea of the possible behaviour of the
continuation algorithm and to compare with the first subproblem. The chosen
subproblems are the third, with 20 breakpoints, and the seventh, with only 2

breakpoints,

For the third subprouvlem, fig. 7.3 a. to d. present the reactive power
generations, the bus <voltage magnitudes, the wvarilable transformer tap
positions and the line flows. The set of independent wvariables has been
changed slightly from the first subproblem. We notice in fig. 7.3.a the same
reactive power violations as in the first subproblem, and in fig. 7.3.b, an
additional voltage violation on V1. Most mnoticeable in the trajectories are
the increased number of breakpoints (marked by asterisks on the curves) and in
some instances the sharper variations and the reversals in the values of some
‘variables. For example in fig. 7.3.a, reactive powers Q6 and Q3 wvary sharply
and In alternating directions towards the end of the process. In fig. 7.3.b
the bus voltage magnitudes all dip rapidly in that same final interval of ©
between 0.86 and 1.0. The two taps, illustrated in fig. 7.3.c, reacted
differently: Tl left its lower bound briefly but then returned to it, while T2
YMecreased until reaching ©=0.86 and then rapidly increased. The effect of
these rapid changes on line flow L5 was to quickly send it to its lower bound
and then just as quickly return it to values in its initial range. These

quirks in the intermediate solutions might be due to the high sensitivities of

-




AT,
n%ﬁ
]

-

204

-
5 2.00 -
E:’ -
7] - !
2 4
s] i ‘
s l
| ) Q2 \ . r\*
é _:n Qs \ - A P A

0.00 ~ ey
e < 7 N M =
u_l - 7 )
z 1 .
]
a- -
Ll -
>
|.—
% o
CZ""'2.00 [ll'llllll||l!lll'rl|1llllllll|lllllllll]fllllllll]"

0.00 0.20 0.40 0.60 0.80  1.00

CONTINUATION PARAMETER

Figure 7.3.a. Reactive poéer generations vs. the continuation
parameter, third subproblem in the solution of the 6
bus system. ’ .

1.40
:
3 .
£1.20 3
(92] 7
LLJ -
. 22 iy
= i
Q :
1.00
0 ]
> :
(an] .
] \
0180 VTITI"II[III1|||TI|IlllrlT—lT[llllllllr[ﬁlllllfl‘
0.00 0.20 0.40 0.60 0.80 1.00

- CONTINUATION PARAMETER

- Figure 7.3.b. Bus voltage magnitudes vs. the continuation
parameter, third subproblem in the solution of the 6
bus system.



205
T2
-1
. -
1.15 A
3 i :
& T
7] N
Z .
9 B - «
5095': |
Q
a - i ‘
n- -4
= ]
:: A ) n
0.75 !'lllllrl’fllﬁljrl_l'lllllr1leTTrlll[l'llll'llllllllll|
0.00 0.20 0.40 0.60 0.80 1.00

CONTINUATION PARAMETER

Figure 7.3.c. Variable transformer tap positions vs. the
continuation parameter, first subproblem in the
solution of the 6 bus system.

O.»TS"' L7
] . L4
7 L3
7 L2
- 7 L1
- j L8
& 1 L5
g -t
0—0.25:
—
o .
W .
z R
_J -~
—0'65 lllTIIIIT][IIII[JII[jIIIllllllllllllllll"llTTfl"lll‘
0.00 0.20 0.40 0.60 0.80 1.00

CONTINUATION PARAMETER

Figure 7.3.d. Line flows vs. the continuation parameter, third
subproblem in the solution of the 6 bus system.




. 206

*

N
= ] N Q4
o K -
N -1

’]
»n 030 -
g :
E :" . 03
lef ] . Q2
5 0.10 -+
O -4

N
[0t - 06
L‘J -
(% ; Q5
a —-0.10 o .
1;1 .
= ]
—
‘% 7 Q1
m_ocso-illl]ll]l]Tllllll]T[lll]lllll'ﬁllelIl]ll1ll]lll|

0.0

0 0.20 0.40 0.60 0.80 1.00
‘ CONTINUATION PARAMETER

Figure 7.4.a. Reactive power generations vs. the continuation

1.15

—
o
o

0.95

BUS VOLTAGES (P.U.)

0.85
0

parameter, seventh subproblem in the solution of the
6 bus system.

-
] ,
- ) va
. V2, V3
X LEAVA
R — V6
7] , V5
Illlllffl]fﬁl!?llTl[lllllllll|lllI“IlllI[FIIIIIIII}
.00 0.20 0.40 0.60 0.80 1.00

CONTINUATION PARAMETER

Figure 7.4.b. Bus voltage n'lagnitudes vs. the continuation

parameter, seventh subproblem in the solution of the
6 bus system.




207

the dependent wvariables in the subproblem. These variables would not be so

sensitive over such a wide range in the full nonlinear problem.

The seventh subproblem is the most easily solved, so in a sense it is the
most successful. Upon entering this subproblem, the set of independent
variables contains all the active constraints except one. The single violated
constraint in the simple problem is V4. After having added it to the active
set and having released V1, no other breakpoint is encountered. Fig. 7.4 a.
and b. illustrate the almost stationary reactive power generations and bus
voltage magnitudes. Only the initially wviolated wvoltage V4 shows any

noticeable change during the continuation process. -

7.2.3 Description of the System Variables in the Nonlinear Optimization .

Process

This section describes the progression of the more important load flow
variables through the major iterations of‘ the nonlinear optimization process.
More specif'ically, the sequences of solutions at two points iIn the algorithm
are studied: the subproblem solutions and the load flow feasible points.
Basically the results show how the quantities vary with the change in the

expansion point, as it moves towards the optimum.

7.2.3.1 The sequence of subproblem solutions

o

Figures 7.5. a. to d. show the selected load flow variables at the end of
the subproblems wversus the major iteration number. They i1llustrate the varied

behaviours of the different types of variables in the optimization.

Figure 7.5.a shows the slight wvariation in the allocation of real power
generations. Referring back to Fig. 7.1, we saw that the subproblems produced
optimistic costs which eventually merged with the nonlinear load flow costs.
The rise in subproblem costs vs. the major iterations is reflected here also,

as the real power generations increase slightly from left to right on the
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graph. These increases are in the range of 2 to 4 percent, and take different

values for each P.

The next three figures in this group show that the cost 1is highly
insensitive to the other variables, which are mnot directly cost-related. They
can oscillate over a wide range, in some cases jumping from one bound to
another, from one major iteration to the next. Figure 7.5.b. shows 3 reactive
powers and fig.7.5.c. shows 3 bus voltage magnitudes, exhibiting oscillations
of various magnitudes. The remaining Q’s and V's follow the same patterms,
but were removed f£rom the graphs to avoid clutter. The same erratic behaviour

is apparent in fig. 7.5.d. for the variable transformer taps.

The reasoning behind the large swings in these wvariables was sketched
briefly in Chapter III, and had to do with the sensitivities of the wvariables
in the subproblem. This aspect is verified on‘its own in section 7.2.5 a
little further.

- s > e A e e ek v e - . e . e kw m — m  Se o am e

]

The subproblem solution serves as an end point of the search segment in
finding the next load flow feasible point. Despite some large oscillations in
the subproblem solutions, the sequence of the load flow feasible points
settles down after a few major iterations. The oscillations are effectively
damped out in this part of the computation b}; applying smaller step sizes in
the search. This is illustrated in fig. 7.6. a. to d.

Figure 7.6.a. shdws the progression of the real power generations in the
optimization. The initial guess was quite good for all the P’s except Pl. As
the optimization proceeded Pl reduced noticeably, from 0.334 to 0.264. As for

the others, P2 was a fixed quantity and the remaining P’s increased slightly.

Figures 7.6. b. to d., for the reactive power generations, the bus
voltage magnitudes and the taps, show that these variables eventually

converge, after a few lterations of oscillatory behaviour.
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7.2.4 Description of the System Variables in t ad Tracking Mode

Figures 7.7 a. to e. follow the changes in the computed optimal values of
the system variables in the load tracking mode, with 4% percent changes in the
loads. It 1s important in load tracking that the computed trajectories be
relatively smooth, to avoid abrupt swings in the dispatch. The results in

these figures are quite satisfactory in that respect.

The real power generations in fig 7.7.a form a very smooth dispatch
schedule. The correspending optimal cost trajectory is drawn in fig. 7.7.b.
The variations in the computed optima of the remaining variables are shown in
fig. 7.7 c. to e. They are not as smooth as for the real power generations,
but for the most part they are smooth enough. No general trend emerges for
groups of variables as the load increases, since they remain more or less
constant. Although the changes are slight, the direction of change usually
appears quite clearly for each variable, without random swings. For example,
in fig. 7.7.c. the trends for Q3, Q4 and for Q6 are clearly Increasing. 1In
fig. 7,7.d, three of the bus voltage magnitudes, V3, V4 and V5 exhibit a
slightly oscillatory behaviour but their general trends ecre apparent. Figure
7.7.e¢ shows that the tap positions move little throughout the load-tracking
process. The taps are probably of little use until some quantity at an

adjacent bus hits a bound.

The oscillations in these curves are small, but if need be, the curves
of the iIndependent variables could be smoothed before being used for

dispatching.
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7.2.5. Analysis of the Sensitivity Coefficients

It was stated in section 3.4.4.5 that when an optimum is situated on a
fold 1line, some optimal transparent variable settings, although unique, are
very difficult to locate: One indication of the presence of the fold line is
the very small values of some of the sensitivity coefficients in the power
balance equation. We surmised that numerical problems would occur if from one
major iteration to the ﬁg;zwz\very small coefficient changes its sign; then in
the simple problem solutions of the subproblem, the corresponding transparent
variabloe can oscillate between its upper and lower bounds. To avoid this
problem in our program, the transparent variables were set to their expansion

point values when the magnitude of its sensitivity coefficient was below 1073,
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Even though other factors enter into play in the computation of the
subproblem optimum, we will try to detect the influence of these sensitivity
coefficients on the sequence of subproblem solutions.

»

Table variables

7.7 provides the coefficients of the

7.5.b,

construction the real power generation Pl has a sensitivity of one, and the

sensitivity
portrayed in fig. to d. when they were transparent varlables. By
sensitivities for the other inactive generations range from 1.015 and 1.035.
The sensitivities of the transparent variables listed below can be seen to be
much smaller, ranging from 0.88%e-4 to 0.192, with many of them in the 1073 to

10" 2 range.

1

TABLE 7 7 ~ TEST ON THE 6 BUS SYSTEM

SENSITIVITY COEFFICIENTS OF THE VARIABLES IN FIG. 7.5

Major iteration no.
1 2 3 4 5 3] 7 8 g9
Variable Sensitivity coefficients

- Q1 ~ 1548-2 ~.202e-1 -.137e-2 162e-1 - - 672e-2 .39%e-2 -
Q5 3420-4 722¢-2 889e—~4 .180e-~1 .336e0-2 ~ 263e-2 595e-2 - 5B8le-2
Q6 - S4le-2 - .1588-1 .560e-3 | - 259e-2 .637e-2 | -.560e-2

Vi .113e O 139e~1 - - .536e-1 \.6509-1 608e-2 - -
v2 - -,150e O - .103e 0 .185e-1 107e 0 .711le~-1 746e~1 628e-1
v3 .192e 0 107e O .107e _0 .4458-1 - - 334e-1 316e~1 4410~2 - 468a-2

T1 - - - 785e~1 -.134e-3 .11le-1 - - - -

T2 - - - - -.519e-3 - - - -

s
AN r i

From the information in this table, the behaviour of most of the

variables confirms the ideas of the previous paragraphs. The coefficients for

Q5 afe sc small in the first few major iterations that Q5 is maintained close

to its expansion point; in the last few iterations the coefficients are a bit

1
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larger andﬁ their signs oscillate. In fig. 7.5.b, Q5 exhibits the prescribed
behaviour. The same can be said for the osciliatory behaviour In the last
four iterations of Q6 and of V3. Little information is given in the table on
the variable tap settings, but the very small coefficient for Tl in _the fourth
major iteration can explain the large jump from a bound to a value in the
middle of its range. The stable solutions to V1 and V2 in fig. 7.5.b are also
reflected in a sequence of large positive coefficients in Table 7.7. Only Ql
does not f£ill the prescribed behaviour.

This I1llustrates, at least qualitatively, the desired relationship,
between the behaviour of the sensitivity coefficients and the numerical
stability of the subproblem solutions. As for Iimprowvements to our OPF
algorithm to reduce the occurrence of numerical instability, more numerical
studies are needed, but it might now be worthwhile and justifiable to try
increasing the threshold level for which variables are set to the expansion’

points.

71.2.6 Solving the Initial lLoad to Very Tight Tolerances

To 1llustrate the Iimportance of an accurate <£first solution. for load
tracking, the optimal solution to the initial load for the 6 bus éystem was
solved with wvery tight tolerances. More importantly, this allowed the program
to solve for a long sequence of subproblems without any violation in the
simple problenm. ’

Upon solution for the f£irst load, the program had runyfor 80 major
iterations, the last 48 of which had not seen a violation in the subproblem.
In the final iteration the reductiox} in cost was 0.279e-7, the gap between the
costs of the load flow feasible point and the subproblem was 0.242e-6, and the
distance between the load flow feasible solution and the subproblem solution
was 0.254e-4. The optimal cost reduced only marginally from the value of
1.6009 given in Table 7.1 to l.60065. °

It is interesting to note that the computation of the solution to the

first load was finally terminated when the linear equation solver declared the
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load flow Jacobian singular, in the Newton-Raphson solver. This strengthens
the arguments made in this thesis about the OPF optimum lying on fold lines of
the load flow manifold.

The Improvement in the load-tracking solutions for a sequence of ten
loads following this lengthened first solutlion is spectacular. All the
solutions excepé one required a single major iteration, with the remaining one
requiring two. The improvement came in the fact that for the first nine
loads, no breakpoint was encountered in the subproblems. Only in the tenth
load, three violations requiring 14 breakpoints were required to solve the
subproblen.

This illustrates the wvalue of an accurate Initial solution ‘for 1load
tracking. In this case the expénse in solving the first load was exaggerated;
about 30 major iterations would have sufficed to settle on an active set, the
last 15 requiring almost no breakpoints. Hence we can state that solving an

initial solution to fairly tight bounds is recommendable for load tracking.

7.3 Simulations on a 10 Bus System

The ten bus system is taken from [Adielson 1972]. In that paper several
generations could be accounted for at a sipgfé\bus. This feature is not
available in our program however; instead, at eﬁph generation bus a single
incremental cost segment was built to cover the Same power and incremental
cost ranges as the combined generation. The data and the schematic diagram

x

for this system can be found in Appendix 7.2.
The number of variables in thié system is as follows:

Number of buses: 10

Number of generations: 7
Number of loads: 7

Number of transmission lines: 13

Number of wvariable transformer taps: 5

»
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" Total number of load flow quantities: 57
Total number of load flow variables: 51
The program solved this system for an tritial load, and then Iin two
different runs, for 8 loads increased by 1 percent and 5 loads increased by 2

percent.

7.3.1 Highlights of the Solution to the 10 Bus System

In this section we present the main observations concerning the solutions
of the 10 bus system. The complete set of results is presented in condensed

form in section 7.3.2.

i) The overall solution

All in all, the 10 bus system showed slower convergence than the 6 bus
‘system, although no major numerical difficulty was encountered. The results
from the solution to the first load are presented in Table 7.8. 1In brief,

here are the major points:

8 major iterations were required to converge to the prescribed

tolerances.

- Many breakpoints were required to solve for the first four subproblems.
After that,~the subproblem’s active set -settled down, and the next three
subproblems produced no breakpoint. The final subproblem produces only a
few breakpoints. This is a "nice" behaviour.

- The values of the convergence criteria started quite small, and their
reduction was slow. That 1s because of the application of a very small
step,/cize, as of the third major iterationm.

- Théalérge step size reduction warrants some explanation. Even though the

step size was repeatedly reduced in the third major iteration, the costs

of the feasible points produced by the Newton-Raphson solver were always
higher than that of thsxprevious expansion point. Then the alteénate,
slackless load flow wa; used tc find a sequence of cheaper but usually

infeasible points. The slackless load flow finally found a cheaper

\

|
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feasible point with a step size of 0.176e-2. All this indicates that the
optimum was not far away from the suggested expansion points.

Many Newton-Raphson 1iterations (32) were computed in the search for the
appropriate step size in the third major iteration. Other than that,
very few lterations were required.

The cost of the initlal guess was very close to the optimal cost. This
can be seen in fig. 7.8, along with the curve of the subproblem costs.
In this case the gap between the two curves hardly decreased.

The computation time of 55.59 sec. 1s almost 2.5 times the time required
by the 6 bus system. The four long subproblems and especially the many
Newton-Raphson iterations in the third major iteration contribute the

most to this computation time.

The load-tracking solutions for the 10 bus system also required

considerably more computational effort than for the 6 bus system. This is

illustrated Iin Table 7.9 for 1% load variations and in Table 7.10 for 2% load

variations.

Most loads were solved in 2 or 3 major iterations (on average one more
iteration than for the 6 bus case), but in both load tracking runs the
second load required many iterations (8 and 9).

The number of breakpoints 1s quite large for most loads.

Many Newton-Raphson iterations were computed for some loads, usually when
step sizes had to be reduced. ‘

Despite the relatively large computational effort for the load-tracking
solutions, the computation times were all better than for the"initial
load. The timings range from 3.57 sec. to 43.45 sec., 'with an auverage of
16.70 sec. This average 1is 30% of the time required to solve for the
first load. The average solution times per load for the two load-
tracking runs are almost similar, at 16.15 and 17.61 sec.

The optimal solutions from the 2 1oad7t£racking runs compare very well.

0f the four cost values’ which can be compared, the largest discrepancy

was 0.1% and the average discrepancy was 0.04%.




222

| ; The 22 breakpoints required to solve the first subproblem are given in
Table‘ 7.11. The pattern of breakpoints occuring in pairs is evident here.
Also noticeable is the clustering of most of the breakpoints towards the end
of the continuation process, This is also the case for other tests with many

breakpoints.

Optimal solution trajectories for\ the variables are presented in
fig. 7.9 a. to £.. The behaviour of the different types of variables is as
described in the results of the 6 bus system. Most noticeable, as was the
case for the third subproblem of thf; 6 bus system, are the many breakpoints
towards the end of the continuation process and the sharp changes in certain
transparent voltages and taps, as seen In fig. 7.8.c. and e.. The sharp
changes might be due to the magnitude of the largest violationm in this
continuation process, which was 24.7 p.u.. The variable with the largest
violation, Q4, can be seen In fig. 7.8.b. to be following Iits moving lower
bound. Some line flows in this test, particularly L11 and L10, varied

substantially.

- w e e e vm ot e e R e M e e e e SR M mh e v e eR e e e e e e e M e e eh s M tm e e e Y e Mmoo e e

Large changes occur in the set of independent wvarilables over the first
four subproblems. As a result, other than for real power generations, there
are many changes in the subproblem solutions from one iteration to the next.

This 1is illustrated in fig. 7.10 a. to d. The clutter on the left sides of

- the graphs of fig. 7.10 b, to d., for the Q's, V’s and T's, was left

intentionally, to show the large swings in all the variables.. The next three
subproblems, where no breakpoint was encountered, resulted in very small
changes. Finally, the last subproblem with a few breakpoints resulted in some
fairly 1large changes. This 1indicates that even though the problem is
considered solved for this load, the subproblems have not settled on an active
set. That 1is verified in Tables 7.9 a;’ld 7.10, with the subsequent loads
plcking up many breakpoints.
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The sequence ~of load flow feasible points mimicked the ™ subproblem

solutions til the step size dropped to 0.176e-2. After that, as expected

the load floy feasible wvalues moved very little. This is illustrated in fig,

W e e e e e e e} e vm wm s e A e e e e e D A e e o b S e e e T W W T M A M B M wm e % em e M e ey e e T e m we e e

Figures 7.12 a. to e. follow the changes in the computed optimal wvalues
of the system variables in the load tracking mode, with 1% percent changes in
the loads. Despite the small load variati;ns, trends in the dispatching are
clear. For example, In fig. 7.12.a. the real power generation P5 picks up a
larger proportion of the load as it in‘creases, while most of‘the other P’s
vary little. Once again, the real power dispatch curves wvs. load are very
smooth. The resulting optimal cost vs. load curve is shown in fig. 7.12.b.
The other variables seem to follow a general trend more closely in this test.
In £fig. 7.12.c., except for the single jump in Q4 after the second load, the
reactive power generatlons are just about constant or show a slight lowering

trend. In fig. 7.12.d, the bus voltages show a general increasing trend.

Again, in fig. 7.12.e., the variable transformer taps vary little.

’ e

r’ ‘'7.3.2 Tables and Graphs of the Results of the 10 Bus System

Tables 7.8 to 7.1l1 and Figures 7.8 to 7.12 on the following pages contain

the results of the 10 bus system.
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TABLE 7.8 ~ TEST ON THE 10 BUS SYSTEM
E SUMMARY CF THE ALGORITHM’'S PERFORMANCE
%
: SOLUTION FOR THE FIRST LOAD
ii \ [
: Major iteratiom no. 1 3 3 4 5 8 7 8
1 o~
! o
X | SUBPROBLEM
Violations in the subproblem 7 9 11 9 0 1] 0 2
at the easy optimum
Breakpoints in the 22 28 26 22 0 s} 0 A
continuation process
SEARCH FOR LOAD FLOW FEASIBLE POINT
Newton-Raphson iterations in 4 2 32 0 1 1 1 1
) finding load flow feasible pt.
Relative reduction in cost of - .541e~-3 .194e-3 .367e~7 .1020-4 .102e0-4 ,201e-3 f .194e~3
load flow feasible pt.
Relative gap between costs of . 76401 .733e"1 .213e~2 578e-2 57762 .570e~2 S562e~2 -553e-2
load flow feasible pt and
subproblem solution
Relative norm of the difference| .494 .267 . 197 .198 .193 193 .182 .194
between the variables at the
load flow feasible point :
and the subproblem soluticn :
Step size in searching .45 .45 .176e-2 .176e-2 176e-2 176e-2 176e-2 | .176e-2
feasible load flow pt
.Initial cost- 13 085 Optimal cost 13 074 Computation tima: 55.59 sec,
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TABLE 7.9 - TEST ON THE 10 BUS SYSTEM .
SUMMARY OF THE ALGORITEM’S PERFORMANCE '
N SOLUTIONS FOR THE SUBSEQUENT LOADS - 1X VARIATIONS IN LOAD
Load no. 1 2 3 4 5 6 7 8
No. of major itergtions 2 8 2 2 2 2 2 2
Total number of breakpoints in 4 50 42 36 40 " 58 49 12
the subproblems ‘
Total number of Newton-Raphson 4 10 4 4 4 s 63 T
iterations N
Optimal cost 13.215 13.346 13.481 13.840 13.790 13.9#3‘ 14.100 14,258
Computation time (sec.) 3.84 22.47 13.07 10,89 11.20 17.85 43,45 6.26
TABLE 7.10 - TEST ON THE 10 BUS SYSTEM
SUMMARY OF THE ALGORITHM’S PERFORMANCE
SOLUTIONS FOR THE SUBSEQUENT LOADS - 2Z VARIATIONS IN LOAD
Load no. 1 2 3 4 - -
No. of major iterations 2 g 3 3 2
Total number of breakpoints in 4 20 52 38 50
the subproblemsl
Total number of Newton-Raphson 4 12 5 38 4
iterations -~
Optimal cost . . 13.360 13.639 13.940 14.253 14.581’
Computation time {sec.) 3.57 30,49 15 76 26.91 11.32
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A SUMMARY OF BREAKPOINTS ENCOUNTERED IN THE FIRST SUBPROBLEM

TABLE 7.11 - TEST ON THE 10 BUS SYSTEM

0 Variable Cause of breakpoint
name and type
0.0000 Q4  dependent most violated dependent constraint set to
its moving lower bound.

.8810 e-4 T4 transparent released from its lower bound.
0.0999 T4 transparent set to 1ts upper bound.
0.1000 V4 transparent released from its lowexr bound.
0.3697 V3 dependent set to its upper bound.
0.3697 T3 transparent released from its lower bound.
0.5324 V2 dependent set to its upper bound.
0.5324 T2 transparent released from its lower bound.
0.8562 Q5  dependent set to its lower bound.
0.8563 T4 transparent released from its upper bound.
0.9313 Q9 dependent set to its moving lower bound,
0.9313 V6 transparent released from its upper bound.
0.9458 T4 transparent set to 1ts upper bound.
0.9458 Q5 dependent released from its lower bound.
0.9584 Q6 dependent set to its lower bound.
0.9585 V3 dependent released from 1its upper bound.
0.9619 Q5 dependent set to its lower bound.
0.9619 T1 transparent released from its upper bound.
0.9720 v3 dependent set to its upper bound.
0.9720 V2 dependent released from its upper bound.
0.9850 T2 transparent ser to its upper bound.
0.9851 T4 transparent released from its upper bound.

-
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.4 Simulation on a 30 Bus System

The 30 bus system is an adaptation of the IEEE 30 bus standard load flow
test system taken from [Alsac & Stott 1974]. In addition to the data found in
that paper, 9 controllable shunt admittances were added to the network. The

data and the schematic diagram for this system can be found in Appendix 7.3.
The number of variables In this system 1s as follows:

Number of buses: 30 ’

Number of generations: 6

Number of loads: 27

Number of transmission lines: 41

Number of controllable shunt elements:
Number of variable transformer taps: 4
8

Total number of load flow quantities: 173

Total number of load flow variables: 125 ¢

The program solved this system for an initlal load, and then in three
different runs, for 10 loads increased by l‘percént, 6 loads increased by 2

percent, and 3 loads increased by 4 percent.

7.4.1 &Highlights of the Solution to the 36 Bus_System

Again we present our observations, followed by the complete set of

1

\

i) The overall solution

Of the four systems tested in this thesls, this one presented the best
nonlinear convergence characteristics. The rate of convergence of the
solution still seems to be linear, but with quicker reductions in the
convergence criteria. This can be seen in Table 7.12, which illustrates the

detailed solution for the first load. The convergence criteria and the step
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size in the search for the load flow feasible point all reduced noticeably

from one iteration to the next.
Some other important observations follow.

- Only 6 major iterations were required Ato converge to the prescribed
tolerances.

- Many breakpoints were requirei to solve for all but the last subproblem.
We note however that even though this test system is substantially larger
than the previous two, the typical number of breakpoints remains the
same. This indicates once again that the number of breakpoints depends
more on the closeness to the final active set In a combinatorial sense.

- The values of the convergence criteria and the step size started quite
large, and their reduc‘tion was fast.

- Relatively few Newton-Raphson iterations were required.

- The optimization produced a sizeable improvement in the cost. This can
be seen in fig. 7.13, along with the curve of the subproblem costs.

- The computation time of 96.50 sec. is about 5 times the amount required
by the 6 bus system and less t:hanQ twice the time required by the 10 bus

system.

Concerning the steady number of breakpoints in the subproblem solutions,
there were probably too few major iterations in this solution to feed the.
right active set to the subproblem. More iterations probably would would have
allowed the subproblems to settle on the rig’ntv~ active set and avoid

breakpoints.

The load-tracking solutions for the 30 bus system also presented some
very attractive characteristics. This 1is 1illustrated in Table 7.13 for 1%
load variations, in Table 7.14 for 2% 1load wvariations, and Table 7.15 for 4%

load wvariations.

- Most loads were solved in 1 or 2 major iterations in the first two runs,
with a maximum of 6 major iterations. The third run averaged 3 major

iterations per load.
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- The number of breakpoints 1is quif:e small for all loads except one in the
first run. The average number of breakpoints increased in the second
run. In the third run, one very long solution found its way between two

quick solutloms.

Few Newton-Raphson iterations were computed.

- The computation times for the load-tracking solutions were very good,
ranging from 12.03 sec. to 53.82 sec., with an average of 21.54 sec.
This average 1is 22% of the time required to solve for the first load.
‘The average solution times per load for the three load-tracking runs are
18.70, 24.45 and 25.11 sec.

The optimal solutions from the 3 load-tracking runs compare very well.
Six cost':s' can be compared between the flrst two runs, 2 costs between the
three runls, and one cost between the last two runs. The largest
discrepancy between the first two runs was 0.05% and the average
) discrepancy was 0.03%. The third run with 4% load variations provided
solut::!.ons;l with slightly lower costs, but with a maximum discrepéncy of

only 0.15? compared to the optima of the other two runs.

l

e e e . e e s e ke e e = ey e e =

\ .

|
1
The first: subproblem in this test required 18 breakpoints. These are

given in Table 7.16. Again, there is a clustering of most of the breakpoints
towards the end of the continuation process. In this test, most of the

variables except those on their moving bounds showed little wvariation.

This system being larger and sparser than the pre'x'rious test systems, the
palirs of breakpoints now feature more closely related variables. For example,
when Q27 hit its bound V27 was released at ©6=0,8484, and when Q28 met its
bound V28 was released at ©=0.9650.

Optimal solution trajectories for the variables are presented in fig.
7.14 a. to h.. To facilitate the presentation, the bus voltage magnitudes
were separated into two groups, the transparent V's and a selection of
dependent V’s. The behaviour of the different typed of variables is once

again as described in the results of the 6 bus system. For the most part, the
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voltage magnitudes and the tap positions iIn this test do not exhibit the sharp

variations seen in the 10 bus test, possiBly because the largest violation in

the continuation process was only 2.45 p.u. In fig. 7.14.b. we see the
variable with the largest wviolation, Q25, follow its moving lower bound back
to the feasible region. One of the faster moving variables, V1 in fig.

7.14.d., 1is following its moving upper bound at the very end o0f the

continuation process. Among the transparent variables, only two of the shunt

controllers move sharply from one bound to another.

o e e o e e e e e e e A ke e em e e e T s Re e s R e M Ms e ik we W e W L e S MR e e e M s m ke - M e M e e e e e A e

Despite the good nonlinear convergence characteristics of this test
system, many of the wvarlables which are not directly cost-related oscillate
between their bounds at the output of the subproblem. This is illustrated in -
fig.7.15 a. to e. As before, the reduction in step size limited the
excursions of the load flow feasible wvariables, so thgt convergence of most

variables 1is quite good over the last few major iterationms. This 1is

illustrated in fig. 7.16 a. to e.

e e e W e e m e e e e v e e e e i e Mm M ke e 4 Em e R e e e WS E e eS¢ M e e e em W e mm e v e ar b e e o

The results of the load tracking with 1% load variations are portrayed in
fig. 7.17 a. to f. These are similar to previous results, with clear trends
in the directions of movement of the wvariables. Most noticeable are the

voltages and especially the shunt admittances, which increase very smoothly:

7.4.2 Tables and Graphs of the Results of the 30 Bus System

N

Tables 7.12 to 7.16 and Figures 7.13 to 7.17 on the following pages

contain the results of the 30 bus system.

14
L3
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TABLE 7.12 - TEST ON THE 30 BUS SYSTEM

3 SUMMARY OF THE ALGORITHM'S PERFORMANCE

SQLUTION FOR THE FIRST LOAD

Major iteration no.

SUBFROBLEM

Violations in the subproblem

at the easy optimum

Breakpoints in the
continuation process

.

18

24

27

20

14

12

21

26

SEARCH FOR LOAD FLOW FEASIBLE POINT

Newton-Raphson iterations in
finding load flow feasible pt.

Relative reduction in cost of
load flow feasible pt

Relative gap between costs of
load flow feasible pt. and
subproblem solution

Relative norm of tha difference
between the variables at the
load flow feasible point

and the subproblem solution

Step size in searching
feasible load flow pt.

.1132

.1108

.6559

.0870

.0201

.0355

.45

41le-2

.309e-2

.0198

.45

.419¢-3

.348e-2

.Q105

225

.271e-3

.108e-2

.787e-2

.225

.470e~4

.483e~3

.749e-2

Initial cost 884 440

Optimal coat:

802.310

Computation time:

96 50 sec.

v
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e TABLE 7.13 - TEST ON THE 30 BUS SYSTEM
: SUMMARY OF THE ALGORITEM’S PERFORMANCE
SOLUTIONS FOR THE SUBSEQUENT LOADS - 1Z VARIATIONS IN LOAD
=
Load no. 1 2 3 4 5 6 8 g 10
No. of major iterations | 1 1 1 1 1 1 2 2 6
Total number of breakpoints in 8 4 12 4, 6 . 8 12 12 42
the subproblems
Total number of Newton-Raphson 3 3 3 3 3 3 i 4 4 6
iterations
Optimal(cost. 812.67] 823.18] 833,86] Ba44.69| 855.66) 866.79| 878.08! 889 48| 901.06] 812.69
Computation time (sec ) 13.57 12.08 14.34 12 03 13.63 | 13,13 12.63 20 75 | 20 93 | 53 82 )
L] e
TABLE 7 14 - TEST ON THE 30 BUS SYSTEM
SUMMARY OF THE ALGORITHM'S PERFORMANCE 4
SOLUTIONS FOR THE SUBSEQUENT LOADS - 2@ VARIATIONS IN LOAD "
Load no. 1 2 3 4 5 6 N
No of major iterations 1 2 2 2 2 3
Total number of breakpoints in 10 4 34 24 18 *36
the subproblems
Total nfmber of Newton-Raphson 3 4 4 4 4 5
iterations
Opat.imal cost ] 823.11 Bi4 497 866. 485 889.079 912 300 936,141
Computation time (sec.) 14,086 21 04 28.67 27 08 21 58 34,44
L
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TABLE 7.15 - TEST ON THE 30 BUS SYSTEM

SUMMARY OF THE ALGORITHM’S PERFORMANCE

SOLUTIONS FOR THE SUBSEQUENT LOADS - 4% VARIATIONS IN LOAD

Load no. 1 2 3 »
No. of major iterations 2 3 4
Total number of breakpoints in 4 42 8 ”

the subproblems

Total number of Newton-Raphson 4 5 8
iterations

Optimal cost 844,090 888.232 934.784
Computation time (sec ) 18.08 35.84 21.42

Y

TABLE 7.16 - TEST ON THE 30 BUS SYSTEM

A SUMMARY OF BREAKPOINTS ENCOUNTERED IN THE FIRST SUBPROBLEM

'y

e Variable Cause of breakpoint
name and type
0.0000 " Q25 dependent most violated dependent constraint set to
its moving lower bound.

.9479 e-4 V25 transparent released from its lower bound.
0.5883 V4 dependent set to its upper bound. ‘
0.5883 B9 transparent released from its upper bound
0.8482 Q27 dependent set to its moving lower bound.
0.8484 V27 transparent released from its lower bound.
0.8801 V25 transparent set to its upper bound.

0.8804 V26 transparent released from its upper bound.
0.96% Q28 dependent set to its moving upper bound.
0.9650 V28 transparent released from its upper bound.
0.9825 B9 transparent set to 1ts upper bound,

0.9826 V4  dependent released from its upper bound.
0.9850 Vi dependent set to its moving upper bound.
0.9850 B9 transparent released from Its upper bound.
0.9562 E9 transparent set to its lower bound.

0.9862 B6 transparent released from its upper bound.
0.9874 B6 ' transparent set to 1ts lower bound.

0.9874 Tl  transparent released from its upper bound.
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- problems are discusttd in the upcoming section 7.8.
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7.5 Sim.lation on a 118 Bus §1§tgggi

The 118 bus system is an adaptati?ﬁ of the IEEE 118 bus standard load
flow test system, taken from a report of the Engineering Foundation Conference
[Podmore et.al. 1977], and with additional material taken from [Ponrajah
19873. The data and the schematic diagram for this system can be found in

Appendix 7.3.
The number of wvariables in this system is as follows:

Number of buses: 118
Number of generations: 49
] Number of loads:, 98 .
Number of transmission lines: 173 l
Number of controllable shunt elements:
Number of varilable transformer taps:

Number of phase shifting transformers:

Total number of load flow quantities: 669
Total nungner of load flow wvariables: 531

cDue to the large size of this systerl, a constraint-feasible and load
flow-feasible initial guess could not be arrived at by trial and error, as was
the case for the previous tests. Hence an initial guess was manufactured from

the optimal solution in [Ponrajah 1987].

.

The program could solve this system for an initial load only, due to
i

problems with the program’s present load changing algorithm. This and other

Another difficulty encountered with this large test system was due to
numerical problems in modelling the subproblem’s dependent reactive powerﬁ
generations; this also will be discussed later. Hence, in a first test, the
limits on these variables were removed. The results of the OPF were quite

good, with performances similar to those in the previous tests® Then in a
\

]
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second test as many reactive powers as possible were returned to the
formulation, and a subproblem was solved. This test required much more
computation, and the results exhibited a more errat:ui behaviour. Results in
this section are taken mostly from the simpler first test, but the graphs and
the discussion for the solution trajectories of the subproblem solution are

taken from the more interesting second test.

\

7.5.1 Highlights of the Solution to the 118 Bus System

Again we present our observations, followed by the complete set of

results for the 118 bus system.

i) The overall solution

> - - s e e o

The overall solution results for the tests on the 10 bus. and 118 bus
systems offer somewhat similar performances. As was the case for the test on
the 10 bus system, the init{al guess for the 118 bus test was taken very close
to the actual optimal splution. It s felt that because, of this, the
algorithm performs sluggishly, with L improvements being slow from one major
itoeration to the next. The overall solution' is presented in Table 7.17.

4

Some important observations on these results follow.
-~

- Eight major iterations were required, although very little progress was

achieved in the process. 7\

-~ Three of the first four subproblems required of the order of 20

breakpoints. Again, the maximum number of breakpoints does not seem to
be related to system size per se. <
- The next four subproblems required few breakpoints.

subproblem solutions were almost load flow-feasibl

- Very few Newton-Raphson iterations were needed, because most of the
Z (to within

tolerances).
- The cost and the \other convergence _frit&ria improved ver()ittle.’ The

costs vs. major iteration curves are drawn in fig. 7.18 a. and b.
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- The computation time of 253.81 sec. is very good - this 1is only 2.65
times more than for the computation of the 30 bus system. Aside from the
few Ngw}:on-Rahson iterations, one reason is that part of the computation
for tl&s,‘test was converted to single precision, to avoid memory size
problems. Even without this simplification, the increase in the timing

would probably still be proportional to the increase iIn system size.

11) The first subproblem solution \

- . e e - e  wn ar W wm Se e  R e e e e o

Table 7.18 gives the 1list of 22 breakpoints encountered Iin the first
subproblem of the solution reported above. This pattern of breakpoints is
similar to the those observed in the previous tests, with all breakpoints
occuring in pairs and most occuring nedr the end of the continuation process.
The pairs of breakpoints usually aontain variables which are close to each

other in the network topology, although not necessarilly at the same bus.

Table 7.19 gives the 1list of 129 breakpoints encountéred in the
subproblem solution where many of the limits on the reactlve power generations
were maintained. Even though this is a much larger number of breakpoints than
what was encountered in previous tests, it still remains comparable to the

number of iterations which could be expected in“LP or QP.

More than a dozen variables, among them reactive powers Q46, Q49, Q54,
Q55, Q56 and voltage magnitudes V40, V41, V55, V56 and V64, have an erratic
behaviour, moving onto and off of their given limits regularly. Their actual
movements are very small, but the algorithm forces them in and out of the
agtive set atfigreat computational expense. The problem, to be discussed

later, 1s due to ill-conditioning in the o'ptimality conditions.

%

We note in Table 7.19 that most control actions are performed By a
variable very close the newly activated constraint. Furthexrmore, long
sequences of breakpoints often involve neighboring variables, all interacting
to each other but having little affect on other parts of the network. This
behaviour seems to be characteristic of large systems, but mainly because of

their sparseness.
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-

. \
Optimal solution trajectori#s for the more important variables of the

subproblem described in Table 7.19 are pi-esented in fig. 7.18 a. to vd. ‘The
different types of variables behave as in the previous tests, but with sharp
variations occuring Von more of the transparent variables. TFigure 7.18.b shows
a large set of trajectories for the dependent Q’s. There are basically three
types of wvariables portrayed here: (1) some dependent Q’s with large
violations follow their moving bounds much of the way; (2) other Q’s start on
their bounds but then move freely, on irregular trajectories; and (3) Q’'s
which remain on their bounds throughout the process. Many transparent V’s in
fig. 7.18.c. move very shérply off theilr bounds: Some wander irregularly as
seen mostly between ©=0.5 and 6=0.95 while others jump from one bound to the
other near 6=]. The same behaviour is seen in fig. 7.18.d with the variable

o

transformer tap positions.

0 v o o e e e R e e ah ke e M am o T T Ve e SR SR e e ey R R b hm e s W A e TS B W M e e Em e e em G M G e M W e e e v S e e

Figure 7.20 a. to c¢. gilve the real power generations, the bus voléa"ge
magnitudes and the variable transformer tap positions at the end of each
subproblem. As usual, the real power gendrations show liqttle change from one
subproblem to 'the next. The other variables oscillate for the first 4 ma jor
iterations, but move little after that as the active set has settled down.

Figure 7.21. a. to ¢. shows the same variables at the end of each search
for a feasible load flow point. The step size reduced substantially in the
first major iteration. Consequently, 1little change occured in most of the

variables. 8

7.4.2 Tables and Graphs of the Results of the 118 Bus System
~

Tables 7.17 to 7.19 and Figures 7.18 to ,7.21 on the following pages
contain the results of the 118 bus systemn.

\
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TABLE 7.17 - TEST ON THE 118 BUS SYSTEM

SUMMARY OF THE ALGORITHM'S PERFORMANCE
Major iteration no. 1 2 3 4 5 <] 7 8
SUBPROBLEM ’
Violations in the subproblem 15 12 4 18 4 1 1 L
at the easy optimum
Breakpoints in the 22 22 4 20 B 2 2 2
continuation process
SEARCH FOR LOAD FLOW FEASIBLE POINT
Newton-Raphson iterations in 1 0 1 0 0 0 0 1
finding load flow feasible pt .
Relative raduction in cost of .185e~3 627e~4 .672e-4 .5758-4 .121e-3 .118e-3 236e~3 231e-3
load flow feasible pt.
Relative gap between costs of .0317 L0284 . 0301 0304 .0302 .0301 .0298 . 0296
load flow feasible pt. and
subproblem solution
Rofativa norm of the difference| 0.2644 0 2624 0.2624 0 2633 0.2825 0.2619 0.2606 0 2592
betwaen the variables at the
load flow feasible point
and the subproblem solution ,
Step size in searching .00125 .00125 .00125 .00125 .00125 .00125 .00125 01
feasible load flow pt A

\

Initial cost 5409.10 Optimal cost 5402 02 Computation time 253 81 sec
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TABLE 7.18 - TEST ON THE 118 BUS SYSTEM

&
-

T

A SUMMARY OF BREAKPOINTS ENCOUNTERED IN THE FIRST SUBPROBLEM

CASE WITH NO REACTIVE GENERATION

.
N

8 Variable Cause of breakpoint
name and type
0.0000 J59 dependent most violated dependent constraint set to
its moving lower bound.’
.9516 -3 T2 transparent released from its lower bound.
0.2995 J61 dependent set to its moving lower bound.
0.3042 V77 tramsparent released from its upper bound.
W 0.4934 V75 dependent set to 1its moving upper bound.
'0.4935 V34 transparent released from its lower bound.
0.9429 V63 dependent set to 1ts moving upper bound.
0.9429 V59 transparent released from its upper bound,
0.9685 V64 dependent set to its moving upper bound.
0.9685 V63 dependent released from 1its moving upper bound.
0.9708 V30 dependent set to its moving upper bound.
0.9709 V8 transparent released from its upper bound.
0.9877 V112 dependent set to Its moving lower bound.
0.9877 V105 transparent released from its lower bound.
0.9932 V86 dependent set to its moving lower bound.
0.9932 Tl transparent released from its upper bound.
0.9969 J172 dependent set to its upper bound.
0.9969 V18 transparent released from its upper bound.
0.9979 V63 dependent set to its lower bound.
0.9979 T4 transparent released from its lower bound.
0.9980 V23 transparent set to its moving upper bound.
0.9980 V32 transparent released from its upper bound.
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TABLE 7.19 - TEST ON THE 118 BUS sYSTEM ~

. L
A SUMMARY OF BREAKPOINTS ENCOUNTERED IN THE FIRST SUBPROBLEM

CASE WITH REACTIVE GENERATIONS CONSIDERED

e Variable Cause of breakpoint
name and type ,
0.0000 Q56 dependent most violated dependent constraint set to
its moving upper bound.
6424 e-6 V36 transparent released from its upper bound.
0.4236 Q65 dependent set to its moving lower bound.
0.4236 T3  transparent released from its lower bound.
0.5064 Q8 dependent set to its moving lower bound.
0.5064 T8  transparent released from its lower bound.
+0.5103 T3  transparent set to its lower bound.
0.5103 V65 transparent released from its lower bound.
0.5400 Q34 dependent set to 1its moving lower bound.
0.5400 V34 transparent released from its, lower bound.
0.6266 Q77 dependent set to its moving upper bound.
0.6266 V76 transparent released from its lower bound.
0.6719 Q76 dependent set to 1ts upper bound.
0.6719 V77 transparent released from its lower bound.
0.6882 V38 dependent set to its upper bound.
0.6883 T2 transparent released from its lower bound.
0.7625 V81 dependent set to its lower bound.
0.7628 V40 transparent released from its upper bound.
0.8203 V41 dependent set to its lower bound.
0.8204 V36 transparent released from its upper bound.
0.8614 Q61 dependent set to 1ts moving upper bound.
0.8614 V62 transparent released from its upper bound.
0.8855 Q26 dependent set to its moving lower bound.
0.8855 T7 transparent released from its lower bound.
0.8863 V60 dependent set to its upper bound.
0.8863 V6l transparent released from its upper bound.
0.8871 Q59 dependent set to 1ts moving upper bound.
0.8871 V55 transparent released from its lower bound.
0.8963 V67 dependent set to 1ts upper bound.
0.8963 V66 transparent released from its upper bound.
0.9024 Q55 dependent set to its upper bound.
0.9024 V54 transparent released from its lower bound.
0.9030 Q62 dependent set to its upper bound.
0.9030 V60 transparent released from its upper bound.
0.9109 V66 transparent set to its upper bound.
0.9109 V81l dependent released from its lower bound.
0.9214 Q74 dependent set to its moving upper bound.
0.9214 V74 transparent released from its upper bound.
0.9496 Q89 dependent set to its moving lower bound.
0.9496 V92 transparent released from its upper bound.
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TABLE 7.19 (cont.) - TEST ON THE 118 BUS SYSTEM
4 ) A SUMMARY OF BREAKPOINTS ENCOUNTERED IN THE FIRST SUBPROBLEM
- CASE WITH REACTIVE GENEgﬁfIONS CONSIDERED
0 Variable -~ Cause of breakpoint

e name and type
gi‘ " 0.9520 J59 dependent set to its upper bound.

L 0.9520 V67 dependent released from its upper bound.
& 0.9565 V79 dependent set to its lower bound. —
fg 0.9565 V80 trampsparent reléased from its lower bound.
gg 0.9567 Q85 dependent set to 1its moving upper bound.
| i 0.9567 TL transparent released from its upper bound.

% 0.9698 Q105 dependent set to its moving lower bound.
i 0.9698 V105 transparent released from its lower bound.

v 0.9745 Ql2 dependent .set to its moving upper bound.

- 0.9745 V12 transparent released from its lower bound.
i § 0.9749 V55 transparent set to its upper bound.

: 0.9749 Q55 dependent released from its upper bound.

L 0.9784 V56 , transparent set to its upper bound.

. 0.9784 V59 transparent released from its upper bound.

v ~ 0.9800 V62 transparent set tb its upper bound.

L 0.9800 T3 transparent released from its lower bound.

; 0.9851 V36 transparent set to its lower bound.

¢ 0.9852 Q56 dependent released from its moving upper bound.

L 0.9854 V54 transparent set to its upper bound.

0.9854 T4 transparent released from its lower bound.

: 0.9880 Q72 dependent set to its moving lower bound.

ﬂ 0.9880 V72 transparent released from its lower bound.

0.9890 Q54 dependent set to its upper bound. A
0.9890 V54 transparent released from its upper bound.
0.9915 V63 transparent set to 1ts moving upper bound.

s 0.9915 Q54 dependent released from its upper bound.

; 0.9915 Q56 dependent set to 1its moving upper bound.

i 0.9915 V36 transparent released from its lower bound.

: 0.9920 T3 traﬁﬁ@?rent set to its lower bound.

0.9920 T5 transparent released from its lower bound. -
0.9933 V59 transparent set to its upper bound.
0.9933 V56 transparent released from its upper bound.
0.9939 Q55 dependent set to its upper bound.
6.9939 J59 dependent released from its upper bound.
0.9951 QLO7 dependent set to 1its_lower bound.
; 0.9951 V107 transparent released from its lower bound.
: 0.9958 V30 dependent set to its moving upper bound.
i 0.9958 V18 transparent released from its upper bound.
- 0.9958 Ql8 transparent set to its lower bound.
.. 0.9958 V26 transparent released from its upper bound.
0.9962 Q99 dependent set to its moving upper bound.
0.9962 V99 transparent released from its upper bound. ‘
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TABLE 7.19 (cont.) - TEST ON THE 118 BUS SYSTEM

A SUMMARY OF BREAKPOINTS ENCOUNTERED IN THE FIRST SUBPROBLEM

b el

CASE WITH REACTIVE GENERATIONS CONSIDERED

Variabie

2] Cause of breakpoint
name and type '

0.9970 V26 dependent set to its lower bound.
0.9970 V19 transparent released from its upper bound.
0.9971 Ql9 dependent set to its lower bound.
0.9971 v8 transparent released from its upper bound.
0.9973 V43 dependent set to its upper bound.
0.9973 V55 transparent released from its upper bound.
0.9974 J143 dependent set to its lower bound
0.9974 'V32 transparent released from its upper bound.
0.9974 Q31 dependent set to its upper bound.
0.9974 . V15 transparent released fr9m its upper bound.
0.9974 V32 trasnsparent| set to its upper bound.
0.9974 V31 transparent released from its upper bound.
0.9974 Q49 dependent set to its moving upper bound.
0.9974 V49 transparent released from its upper bound.
0.9979 Q15 dependent set to 1ts lower bound.
0.9979 T6 transparent released from its lower bound.
0.9982 V64 dependent set to its moving upper bound.
0.9982 Q49 dependent released from its moving upper bound.
0.9983 Q46 dependent sat to its upper bound.
0.9983 V46 transparent released from 1its upper bound.
0.9983 V36 dependent ~set to its upper bound.
0.9983 V41 transparent released from its lower bound.
0.9987 V112 dependent set to its lower bound.
0.9987 Q105 transparent released from its moving lower bound.
0.9988 Q49 dependent set to its lower bound.
0.9988 Q46 dependent released from its upper bound.
0.9990 V40 dependent set to its upper bound.
0.9990 V38 transparent released from its upper ggund.
0.9994 Q105 transparent set to its upper bound. -
0.9994 Q107 transparent released from its lower bound.
0.9995 \L: transparent set to its lower bound.
0.9995 V40 dependent 'released from its upper bound.
0.9996 Q46 dependent set to its upper bound.
0.9996 V43 dependent released from its upper bound.
0.9998 V41 transparent set to its. Lower bound.
0.9998 V64 dependent released from its moving upper bound.
0.9998 V81 dependent set to its lower bound.
0.9998 V36 dependent released from its upper bound.
0.9998 V23 dependent set to its moving upper bound.
0.9998 V32 transparent released from its upper bound.
0.9999 V64 dependent set to its moving upper bound.
0.9999 V59 transparent released from its upper bound.
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TABLE 7.19 (cont.) - TEST ON THE 118 BUS SYSTEM
A SUMMARY OF BREAKPOINTS ENCOUNTERED IN THE FIRST SUBPROBLEM

- CASE WITH REACTIVE GENERATIONS CONSIDERED

) Variable v Cause of breakpoint
name and type
0.9999 J159 dependent set to its upper bound.
0.9999 V24 transparent released from its upper bound..
0.9999 V107 dependent set to 1its upper bound.

0.9999 V104 transparent released from its lower bound.
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1.6 Summa of the General Behaviour of the OPF Algorit

This section regroups the general results and comments made in the
previous descriptive sections 7.2 to 7.5. It discusses the general behaviour
of our OPF algorithm as observed in the results, in some cases confirming
ideas presented in the previous chapters, and in others describing-unforeseen

difficul;ias .

>
’

In our tests the real power generations and the costs of the initial
guesses were often close to those of the optimal solution. The resulting
small improvements iIn the convergence criteria made it difficult to assessﬂ the
rate of /convergence, but it was most probably linear in all cases. However,
some tests systems ghowed better convergence than others. Most of the
progress Iin solving the optimizatlon was made in the first major iteration or
two; that 1is best 1llustrated in the 30 bus test, where the initial guess is
farthest from the optimal solution. With the chosen tolerances though, 6 to 9

major iterations were required to reach solutions deemed accurate enough.

In studying the results, it is felt that the closeness of the initial
guess to the optimal solution causes the algorithm to act sluggishly, and did
not help the optimization process. That 1s explained by the small step sizes
which are imposed on the optimization right from the start, and possibly by
the 1ill-conditioning which, as we have often conjectured, accompanies the
optimum.

Typically, the first four to six subproblems in the initial nonlinear
program started with different sets of independent variables, and produced
different violatlons which caused relatively many breakpoints (i.e.,usually 20
to 30 breakpoints)‘. After that the active set settled down, although a few
breakpoints were often required in subsequent Vsubproblems. Even 1if the
initial active set 1is chosen close to the optimal active set, it seems that
the algorithm needs a few major iterations to settle down. Looking at the
other end of the solution process, our tests indicate that -had more major
{terations been allowed in the solutions to the initial loads, the

subproblem’s active sets would have settled to some definitive active set;
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this was seen when the 6 bus test was extended. In some of our tests, the

active set finally settled in the load-tracking mode.

Judging from our results and from empirical results in linear and
quadrgtic programming, the number of breakpoints in a tyi)ical subproblem
compared favorably to the number of iterations of a linear or quadratic
program. The results indicate that the number of breakpoints 1s independent
of ' the system size, but is linked to the closeness of the subproblem’s active

set and its final active set.

The subproblem solutions encountered' few problems on the smaller systems,
but ran into serious ill-conditioning problems in the 118 system. The problem
is 1linked to the effect of the system ‘sparsity on the computation of
sensitivity coefficients. That 1idea 1s developed in section 7.8.(1) oand in

Append;x 7.5.

The subproblem solutions exhibit some noticeable characteristics. First,
the I;reakpoints always occur in pafrs. The first 1s caused by a variable
reaching 1ts 1limit and the second occurs .almost Iimmedlately after, when
another variable comes off its bound as a form of compensation. Second, the
majority of the breakpoints occur near the end of the continuation process, as
the variables are being "squeezed" back into the feasible region. The typica{
solution trajectories for the wvariables are described in the following. The
trajectories of the real power generations were mostly flat, as could be
expected fo;\ the Q-V redispatching problem which this turns out to be. The
most violate;d dependent wvariables followed their moving bounds, and some of
the others, less wviolated, retuimed to the feasible reéipn on their own. The
first transparent variables to be released from their imposed bounds moved
slowly, but those leaving towards the end of the continuation process often

moved sharply. Many of° those released from one bound ended up on the other

bound.

Although the 118 bus test was plagued with ill-conditioning, the solution
trajectories of its subproblem, described in fig. 7.18, were similar to those
in the previous tests. The difficulties manifested themselves In the larger

number -of breakpoints. A breakpoint Involving a variable often caused large
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in the previous tests. The difficulties manifested themselves’ in the larger
number of breakpoints. A breakpoint involving a variable often caused large
sudden changes in the mneighboring variables or their Lagrange multipliers; as
a result many more variable;s than wusual were involved In the active set.
Another observed problem was that some variables were forced on and off their
bounds a few times, even though the movements of the variables from, the bounds
were small. Despite these difficulties the continuation algorithm found its
optimhl solution within a reasonable number of breakpoints for a problem of
this size.

The computation of feasible load flow points using a Newton-Raphson
algorithm with the standard "slack bus" formulation was- very efficient and
reliable throughout the tests. The subprobiem solutions were usually close to
the load flow manifold, so that the Newton-'Raphson solver rarely required more
than 4 iterations to converge. The slackless load flow was called upon a few
times when the standard load flow could not provide a cheaper feasible point.
It also performed well.

v .

The reduction of the convergence criteria and of the step size were
described as being linear, but with some tests showing faster convergence than
others. Two types of behaviour are observed. The 10 bus and 118 bus tests
started very close to the optimum. As a result, the step size decreased
abruptly and subsequent improvements were very slow. The 6 and 30 bus tests
started far enough <from the optimum for the step size to decrease
progresslvely. Consequently the improveinentsp in the convergence criteria were
\1ess restricted. The number of required major iterations was somewhat similar
in the 4 tests, despite the convergence characteristics, but the latter
behaviour would be preferable‘to achleve convergence to tighter tolerances.

The progression of the wvariables and the objective function from one
major iteration to the next is summarized in the following. We noted that the
real power generations reached their optimal values quickly. The
corresponcing costs of the load flow feasible points always decreased (by
design), aund the ’subproblem solution costs were usually seen to form
progressively improving lower bounds on the optimz;l cost. The other

variables, which have 1little effect on the cost, are more difficult to
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evaluate. Their values from the subproblems can oscilldte from one major
iteration to the next. The step size a'cts to damp out those large swings in
the sequence of 1load flow <feasible points, allowing the algorithm to

eventually declare convergence.

The coordinatior between the subproblem solutions and the load flow
feasible points, and thair eventual convergencé to a single optimum are not
necessarily guaranteed. Two aspects of the problem are (1) the‘convef:gence of
the numerical wvalues and (2) the convergence of the active sets. These

aspects are discussed below.

The con\‘rergence of the 1load flow feasible wvariables to an optimal
solution 1s achieved by moving in the directions designated by the subproblem
solutions, but only as far as allowed by a step size. When the step size is

reduced quickly, very little improvement is achieved from one major iteration

. to the next. Then the computed values cannot be declared optimum without

leaving a relatively large gap between the subproblem solution and the
corresponding load flow feasible peint. This can be seen in the results of
the 10 and 118 bus systems. To avoid such small step sizes, our algorithm
allows for increases in the step size during the proces;, but few increases
were ever Iimplemented. A new study of the step size computation procedure

could be worthwhile to improve upon the present situation.

The problem of the coordination between the active sets of the
subproblem and of the load flow feasible point is more complex. As was
discussed previously, some variables of the subproblem solutions are likely to
go to a bound even though their optimal values in the nonlinear problem are
nowhere near the bound. The provisions for transparent wvariables with small
sensitivity coefficients iIn the subproblem :iid not alleviate the problem,
probably because the heuristics designed to handle the problem are incomplete
or inefficient. In our results we often observed large differences in the
active sets between the computed load flow optimum and the last subproblem
solution.

If the optimization c;nverges well (as In the 6 bus and 30 bus cases) and

the subproblems cease to produce breakpoints, the sequence of subproblem




)

283

solutions should eventually coincide with the sequence of load flow feasible
points. However in most cases the optimization would not iterate that long,

so that in practice their active sets rarely coincide.

To confirm the convergence properties claimed in the previous paragraph,
an extended 6 bus test was allowed to run for 80 major iterations. In that
test a long series of subproblems was generated u}tﬁout breakpoints. The
movement of the load flow feasible points towards the stable sequence of
subproblem solutions was slow due to the small step size. At the end of the
series, the two groups of variables and their active sets coincided. Then
later, in the load-tracking mode, the subproblem modified its active set, with
two variables switching bounds. The active set of the load flow feasible
solutions did not follow suit, and the active sets of the two groups never had

a chance to coincide again.

Finally, the load-tracking scheme produced some very fast solutioms to
sequences of increasing 1oads.* Average solution times for the 4 tests in the
load-tracking mode were from 15% to 30% of fhe timings for the initial
solutions, a substantial gain in speed. The real power generation schedules
produced by the load tracking were wvery smooth. ‘Schedulds for the other
variables, although less smooth, were quite good. This shows that the
continuation principle can be very useful in quickly and accurately solving a
sequence of nonlinear optimization problems. The present implementation® has
been unreliable in certain tests, but {its problemsAare not linked to the

continuation principlef This will be discussed in section 7.8.
i l’
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on of Results from Various Programs for the 30 Bus Syste

Our results for the 30 bus system are compared to those published by
Ponrajah in his Ph.D. thesis [Ponrajah 1987] and to those of [Alsac and Stott
1974]. Ponrajah’'s work also includes the optimal solution for this system
obtained using the general optimization program MINOS [Murtagh & Saunders
1983}; part of this solution 1s also repeated here.

‘No one solution is considered as a reference in our comparison., Its main
purpose 1s of course to validate our redults, but we are also looking for
general difficulties of the optimization process, which we feel might have

occurred in the other programs also. ~

The optimal wvalues of the more Iimportant variables from the four
different sources are given in Table 7.20. In brief, here are the major

points:

- The optimal costs are very close to each other, with a maximum
discrepancy of 0.047%. Hence the four results can be considered equally
accurate. The best results might have been obtained with more
iterations.

- Despite the similar optimal costs, there are some non-negligeable
differences in the walues of the real power generations. Our results
stand slightly apart from the others, For example, the maximum
discrepancies between our results and the others ‘for units 3 and 4 are
almost 2%. q

- For the other wvariables, there are some large differences on some
quantities and very little on others. Based on the discussions of the

4
previous section and considering that different strategies were used to
e

compute the quantities, these differences had to be expecéed.

- Differences in voltages are rather small, and no one solution stands
apart from the rest. Voltages V29 and V30 in the last column are marked
with asterisks; their wvalues are much higher than the values to which

they are compared, but only because their upper limits were set higher.

[y

€
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TABLE 7.20 - COMPARISON OF RESULTS FOR THE 30 BUS SYSTEM

Variable Status | This program Ponrajah MINOS | Alsac & Stott

Real Power Generations (MW)

Unit(l) Free 175.96 176.05 176.11 176.26
Unit(2) Free 49.10 48,84 48 .84 48.84
Unit(3) Free 21.91 21.52 21.52 21.51
Unit(4) Free 21.76 22.16 22.20 22,15
Unit(5) Free 12.10 12.25 12.26 12.14
. Unit(6) Lwr bnd 12.00 ‘ 12.00 12.00 12,00

Optimal Fuel Costs ($/hr)

802.31 802.22 802.60 802.40

N Reactive Power Generations (MVar)

Unit(l) Free -15.20 -13.94 -14.68 n.a
Unitc(2) Free 19.37 30.32 29.92 n.a
Unit(3) Free 29.56 29.89 30.15 n.a
Unit(4) Free 32.75 36.48 36.66 n.a
Unit(5) Free 9.78 14,43 14.74 n.a
Unit(6) Free 15.76 8.44 8.97 n.a

Bus Voltages at Generation Buses (P.U.)

V(25) Upp bnd 1.050 1.050 1.050 1.050
V(26) Free 1.036 1.038 1.038 1.038
. v(27) Free 1.011 1.010 1.011 |  1.011
‘ v(28) Free 1.017 1.019 1.019 1.019
v(29) Free 1.037 1.050 1.050 1.091"
; v(30) Free 1.044 1.050 1.050 1.091%
Tap positions (P.U.)
T(1) Free 1.019 1.005 1.002 15003
T(2) Free 0.978 0.956 0.954 0.960
T(3) Free 1.028 1:100 1.100 1.047
T(4) Free 0.987 1.037 1.035 0.942
Shunt Controller Admittances (S)
B(1) Free 0.028 0.050 0.050 _
B(2) Free 0.049 0.050 0.050 -
B(3) Free 0.034 0.050 | 0.050 -
r“% B(4) Upp bnd 0-.050 0.050 0.050 -
= B(5) Free 0.042 . 0.050 0.050 -
B(6) Free 0.042 0.050 0.050 -
B(7) Upp bnd 0.050 0.037 0.037 -
B(8) Upp bnd 0.050 0.050 0.050 -
B(9) Free 0.032 0.029 0.029 -
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g - The values of the reactive powers, shunt admittances and taps""t}:}sgﬂ ‘show
some large discrepancies on about half of the variables. Only-the tap
positions are given by all four sources and again, no one result stands

apart from the rest.

The four programs are basically driven by the same criterion, to find
the minimum cost. . Hence it 1s only normal that they found the same optimal
costs. A bit surprisingly, the of)timal real power generations show some small
but non-negligeable discrepancies. That indicates that the objective function
is rather flat near the optimum, even as a function of the real power
generations.

The remainder of the comparison tends to confirm the idea that the
optimal wvalyes of variables which are not directly cost-related are difficult
to compute. It also shows that their values are not critical in minimizing

, fuel costs. In view of the difficulties in their computation, the comparison
tends to justify the recent prevailing strategy in OPF, which is simply to

locate feasible Q’s, V’s and passive control settings.

1.8 Numerical and Algorithmic Difficulties Encountered in the Program

s

This section presents some of the unforeseen difficultiies encountered in
the program’s operation. Basically, two important problems are the most often
responsible for ©program failure: (1) for large sparse systems, 111-
conditioning of the subproblem; and (2) inappropriate modifications to the set
of independer{t variables, which can occur in various stages of the program.

' In the following, both problems are analyzec} and remedies for the problems are

sketched.

i) I11l-conditioning of the subproblem

- e e e AR o m e wm e e S e Ar e e e e e e e e

( The ill-conditioning of the optimality equations Ax=b in the subproblem
stems numerically from two problems. For one, the sensitivity coefficients

used to model the dependent constraints are too often 4 to 6 orders of

AN
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magnitude smaller thin the coefficlents of the power balance equatioxi.
Appendix 7.5 traces the root causes of this problem. Another problem is that
neighboring dependent ‘variables are often expressed as almost similar
functions. Physically, this corresponds to the fact that the effécts of
reactive powers and voltages are very localized in the network. Hence their

sensitivities with respect to Independent variables situated far away in the

'network are naturally very small. This ill-conditioning seems to be a normal

occurrence, and is an inherent problem of sparse systems when wusing the

"compact" load flow model.

An illustration from the 118 bus system is given in Table 7.21, with 8
’functional constraints present. The columns in the table are the rows of the
G matrix of eq. 4.10. The values Iin each column of the table are mostly of
the same order of magnif;ude, but the orders of magnitude of each column range
from 10‘1 to 1079 for dependenat constraints, compared to values of about one
for real power generations in the power balance equation. The right-hand
sides of the constraints are all of the same order of magnitude however, so
that scaling 1is inappropriate. As a result, the computed slopes of the
solution trajectories have very large wvalues. The wvariables then move wvery
quickly onto or off of theilr bounds. The problem is that the ill-conditioning
oftep causes moves in the wrong direction. As witnessed earlier, some
dependent variables follow their moving bounds closely in the continuation
érocgss, but the algorithm often moves thenm in and out of the active set at
great computational expensé. Also, the changes in the transparent variables
are exaggerated. Another problem is that the continuation process virtually
stalls at a value of the continuation parameter. For example;, in the 118 bus
test documented in Table 7.19, 54 breakpoints were required to increase the
continuation parameter from 0.995 to 1.000. .

A post-mortem analysis was carried out on two- run; of the 118 bus test to
monitor the ill-conditioning in the optimization process, by computing the
condition number of the A matrix at each breakpoint. It was computed as the
quotient of the largest to the smallest singular values of the A matrix; these
values were computed using the LINPACK subroutine DSVDC [Dongarra et.al.
1979]. The results are shown in fig. 7.22 a. and b. The first is the easily
solved case described in Table 7.18, and the second is a run that failed. We
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note that in both cases the condition numb;r jumped at least an orxder of
magnitude when a constraint was added to the active set, and similarly it
dropped when a constraint was released, However at some- point the release of
a constraint hardly lowered the condition number. This could serve as a sign
to give special treatment to the last activated constraint. Our program did
no such thing, and from there the continuation process encountered many

breakpoints and slowed considerably.

In the case which was easily solved, illustrated In fig. 7.22.a. the
process eventually found an active set with a low condition number, and soon
after it reached its solution. Still,’ 11 breakpoints were required to move
the continuation parameter from 6=0.9708 to 6=1.00. ‘

In the case that eventually faile;'l, illustrated in fig. 7.22.b., the
condition numbers remained high. After 54 iterations, the release of a
constraint brought no relief to an incredibly high condition number of more
th&n 1020. At that point the program could not proceed normally so it
rearranged the partiut)ion _of‘ independent/ &ependent variables. It then
proceeded with another 29 iterations, of which only the first few are shown in
the figure. The condition numbers after the change were similar to those

)

observed before the change. " The program then failed.

Remedies to the 1ill-conditioning problem in the subproblem are more
algorithmic than mathematical in nature. The suggestions made'in Appendix 4.2
on degeneracy would have to be implemented, to monitor the near-singularity of
the optimality equations and to manage the "offending"” dependent constraints
separately from the others. Computing condition pumbers on-line to detect
offending const;:'aints would be prohibitively time—consuming.‘ Instead, simpler
techniques are available, for exampie based on the study of the diagonal
element entering the Cholesky factorization. If this value is too small, the
new constraint could be set asﬂide, and would not enter the constraint
submatrix. Presently all the needéd elements for this study are in place in
our program, so it would not be difficult to implement. Some study would be
required though tc; determine the appropriate heuristics. A seemingly similar
scheme is implemented in the nonlinear programming subroutine VEO5 of the
Harwell Libraries [Hopper 1977].

o
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TABLE 7.21 - COEFFICIENTS OF THE FUNCTIONAL CONSTRAINTS IN THE 118 BUS TEST

Y

INDEP. } ; FUNCTIONAL CONSTRAINTS .
VAR. Power J58 V64 V3o viiz V86 . Ji72 V63
Balance Egq

P 107 0 8987E+00 - .3699E+00 0.4258E-04 0.3500E-04 - 3311E-04 - 8775E-03 0.4338E-09 - 5999E-07
P 103 | 0.8751E+00 | -.3B602E+00 | 0 4146E-04 | 0.3408E-04 | -.3224E-04 '[| 0.3458E-03 | 0 4224E~09 { -.5842E-07
P 100 { 0.9062E+00 | -.3730E+0Q | 0 4293E-04 | 0,3529E-04 | -.3338E-04 ]| -~ 2796E~-08 | 0.4374E-09 | -,6049E-07
P 90 0 8975E+20 - 35B82E+00 0 4120E-0Q4 0.33B7E-04 -.2893E-D4 ~,2133E-08 0 8618E-09 -.5873E-07
P 89 0.9002E+00 - 3585E+00 0.4124E-04 0.3390E-04 -.2875E~04 ~,2115E-08 0 8848BE-08 -.5884E-07
P 87 | 0 B979E+00 | -.3496E+00 | 0.4019E-04 | 0.3304E-04 [ - 2573E-04 | ~-.1B46E~08 | 0 1251E-01 | - S5785E-07
P B85 | 0.8120E+00 | -.3551E+00 | 0.4082E-04 | 0.3356E-04 | ~ 2613E-04 | ~ 1875E-08 | 0 9264E-09 | - 5875E-07
P 80 | 0 9853E+00 | -,4292E+00 | O 4947E~04 { 0,4066E-04 | -.4503E-06 | ~.1106E-08 | 0.2470E-09 | -,.682BE-07
P 78 0.1019E+01 - 2079E+00 0 2272E-04 0 1868E-04 0 1163E-03 - 6305E-09 0.1566E-09 - 6145E-07
P 74 | 0 1010E+01 | - 1068E+00 | 0 9885E-05 | 0.8126E-05 | 0,.2602E-03 | ~.3618E-09 | 0.8938E-10 | -.7279E-07
P 69 | 0 1000E+01 | 0 0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.b000£+00 0 O0OGOE+00 | O 0000E+00 | O 0000E+00
P 66 | 0 9943E+00 { 0 1050E+00 | - 2452E-03 | -.2653E-03 | - 2032E-03 | - 3377E-09 | 0.7570E-10 | -.1470E-06
P 65 0 9948E+00 0«41813+00 0.1183E-03 0.9808E-04 - 2159E-03 - 3753E-0° 0.8407E-10 ~ 1411E-06
P 62 | 0.1015E+01 | 0.1117E+00 | -.7575E-03 | - 1028E-02 | -.2118E-03 | -.3577E-09 | 0 go16E-20 | -.1480E-0s6
P 61 | 0.1014E+01 | O 1127E+00 | -.8406E-03 | -.1192E-02 | - 2127E~03 | - 3605E-09 | 0,8079E-10 | ~.1l474E-06
P 59 { 0.1037E+01 | O 1116E+00 ;| - 1809E-02 | - 1289E-02 | - 2139E-03 | -.3581E-09 | 0 8027E-10 | - 1524E-06
P 58 0.1063E+01 0 1053E+00 ~.1254E-02 - 9180E-03 - 2105E-03 =~ 3411E-09 0.7648E~10 - 1604E-06
P 55 Q0 1062E+0? G 1Q56E+00 ~ 1282E-02 - 9369E-03 -.2106E-03 ~ 3419E-08 0 7666E-10 -.1B00E-06
P 54 | 0 1063E+01 | O 1049E+00 | - 1232E-02 | - S028E-03 | - 2102E-03 | -.3402E-08 | 0 7628E-10 { - 1606E-06
P 49 | 0,1016E+01 | 0.8962E-01 | - 4781E-03 | - 3830E-03 | - 1905E-03 | - 2945E-09 | 0.6609E-10 | - 1583E-06
P 46 0.1019E+01 0.8279E-01 - 4130E-03 - 3395E-03 ~.1804E-03 - 2760E-09 0.6198E-10 -.1664E~06
P 42 0.1031E+01 0 897BE-01 -.2936E-03 -~ 2414E-03 - 2769E-03 -~ 3194E-09 0.7196E-10 - 2859E-06
P 36 | 0 9477E+00 | O 8093E-01 - 7161E-04 | -, 58B6E-04 | -.25889E-03 | - 3144E-09 | 0 7110E-10 | -.3946E-06
P 26 | 0,8829E+00 | O 5447E-01 | -.2533E-04 | ~ 2084E-04 | 0.3043E-02 | -.2846E-08 | 0,.6508E-10 | ~ 4784E-06
P 25 | 0 8775E+00 | 0 4849E-01 | ~ 2438E-04 | - 2005E-04 | 0.2618E~02 | - 2793E-09 | 0.6406E-10 | - 4536E-06
P 12 0 8965E+00 0 B623E-01 -.3081E-04 -~ 2532E-04 0.2882E-02 - 2954E-09 0.6717E-10 - B479E-08
P 10 | 0 8592E+00 | 0 6399E-01 | - 2781E-04 | - 2286E-04 | 0 3431E-02 | -.2836E-09 | 0 6449E-10 | - 4296E+01
P 8 | 0.8816E+00 | 0 6567E-01 | - 2853E-04 | - 2346E;04 | 0 3521E-02 | -.2910E-09 | 0 6617E-10 | - 7097E-06
P 6 | 0.8850E+00 [ 0.6552E-01 | - 2894E-Q4 | - 2461E-04 | G 3031E-02 | - 2917E-09 | 0 6634E-10 | - 6593E-06
P 4 0 8735E+00 0 6480E-01 - 2918E-04 - 2399E-04 0 3J143E-02 - 2881E-09 0 B5550E-10 - 6668E-06
P 1 0 8839E+00 0.6540E-01 ~ J004E-04 - 2&695—04 0 2976E-02 - 2913E-09 0 6625E-10 -.6531E-06
Vv 32} 0.1471E-01 } 0 S909E-03 | - 1656E-0S | - 13B1E-05 | ~ 2441E-01 | - 4453E-11 | 0 1024E-11 | 0,3253E-07
T 4 - 1098E+00 - 1021E-01 0.2972E+00 0 4587E+QQ 0 2108E-04 0.3332E-10 ~.7473E-11 0 1687E-07
vV 18 0 1508E-01 0 2342E~02 - 4245E-05 - 3490E-05 ~-.1102E4100 - 5306E~11 0 1163E-11 0 1723E-~06
T 1| 02527E-02 | - 9839E~03 | 0 1131E-0b | 0 9298E-07 | - 7240E-07 | - 5198E-11 | -.3856E+00 | -,L1628E-089
V 105 | - 1588E-02 | 0O 6532E-03 { - 7521E-07 | - 6179E-07 | 0 5846E~07 | 0 5930E+00 | - 7664E-12 | 0 1059E-09
v 8 0 4124E-01 0 3068E-01 0 2694E-04 0.2215E-04 - 343BE+00 - 3488E-10 0.7070E-11 0 7285E+02
vV 59 0 3208L-01 - 3965E~01 - 4B28E+00Q ~ 1863E+00 0 350S5E-04 0 1121E-09 - 2496E-10 ~.2457E-07
V 34 | - 5177E-01 | 0 1648E-01 | - 5552E-03 | - 4564E-03 | - 1074E+00 | 0 7375E-10 | - 1802E-10 | 0 7280E-06
V 77 | 0 4382E+00 | 0 1196E+00 | -,1447E~04 | - 1189E-04 | O 8839E-04 | 0 5848E-08 | -~,1782E-09 | 0 3433E-08
T 21! - 1240E-01 { O 1433E+02 | - 8767E-04 | - 7206E-04 | 0,1833E-03 | ~ 2519E-09 | 0 S595E-10 | 0 9822E-07
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There are four circumstances in our OPF algorithm which calf;.for a change
to the set of independent wvariables. Presently, two of these are not
foolproof, and can lead to cycling in the program. . In a filrst case, the
change is summoned in the subproblem when the con.inuation method stalls. A
change in the set of independent variables often results in better-conditioned
functional constrai}lts, and the continuation process continues. In a second
case, the change 1s sometimes needed in the load flow Eomputation when varying
the load. As in most #load flow solvers, when a dependent variables wviolates
its bound it is made independent and set to that bound, in order to maintain
bound feasibility. 1In the process a previously independent variable is made
dependent, and the load flow computation is repeated; Both cases have been
observed to work well most of the time. Unfortunately in its present form,
the program allows variables to cycle endles3Ty in and out of the set of
independent varfﬁ%}.\es when no adequate set can be formed.

<

This 1is :an' combinatorial problem. It could best be solved by developing
a betterﬁJ‘Set of rules for the swapping variables, which would possibly keep a
better reco;‘d of past transactions. These are mostly heuristics, and a

>
careful study would be needed to develop then.

7.9 Conclusion: A General Assessment

In many aspects, our OPF I;ngor’ithm has shown much promise: Its
performance was quite fast and accurate in the tests presented in this
chapter, Also, taking into account the discussion concerning differences
between the subproblem and thg OPF solutions, it is felt that the subproblem
could be put “to good use as a fast dispatching tool. The most impressive
results were those of the load-tracking 'step, which solved the OPF for a

sequence of loads in quick succession.

More work is needed to make the program more reliable. We have advanced
some ideas to explain the difficulties observed in the tests. Changes In the

program we can now suggest are those discussed in the previous section. One
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more change is éug’gested: that the program solve the optimality equations in
their most gene/ral fofm (eq.ywlult) instead of the partftioned form presently
being used (eq. 4.15-4.17). That would avoid the occasional repartitioning of
the independent/dependent \variables, allow for pivoting to improve numerical
properties, and allow to, simplify present data structure problems. The
present quick updating schemes used in the subproblem could easily be adapted
for use here, The behaviour of this Version 2.0 should then be much improv7d.

S
T e ‘ 3 Y

~f.,




CHAPTER VIIT

CONCLUSTIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

L

8.1 Conclusions -

This thesis has prese;ited a mew solution methodology for the optimal
pover flow problem based on continuation methods. It has produced a large
collection of analytical results for various tasks of the optimal power flow

problem, and a detailed numerical study for the minimum fuel costs task.

A large part of the analysis has been devoted to studying the use of the
continuation method as a tool for solving the OPF subproblem. The subproblenm,
in tuxfh, is inserted into the larger successive quadratic programming strategy
for the nonlinear problem. The subproblems for three tasks, minimum fuel
cost, minimum loss and load shedding, were analyzed in detail.  New
formulations were proposed for the latter two tasks, and various continuation
strategies ;vere explored for the solutions of all three tasks. Additions to
the subprob}em analysis, such as the inclusion of r.p constraints, post-
contingency ‘redispatching, and bus incremental costs, were also proposed, but
in less detail. Some concepts new to power systems optimization were
introduced and exploited; most notable are the transparent variables and the
search for fold lines in the load flow manifold. This subproblem structure
was originally ‘conceived as an extension to the real power dispatching

problem, and it could be used on its own as a real-reactive dispatching tool.

The analysis also proposed a new set of rules to ald convergence of the ~
nonlinear OPF problem. The algorithm presented in the thesis ensures descent
of the objectivesFfunction from one iteration to the next. This particular set
of- numerical tactics includes step size calculations in various positioms,

\
including in a Newton-Raphson solver.

A second application of the continuation principle in the algorithm
suggested that closely spaced loads be fed to the nonlinear program, to
produce _solution trajectories of the dispatchable variables. This was

N
motivated by the idea that the computation of a solution trajectory, either
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leading to a desired load or following a forecasted load trajectory, could be

very fast.

One variant of the general OPF proposed in the analysls was put to the
test in a series of numerical simulations. A comﬁﬁéer program was written for
the economic dispatch task, based on the varying limits strategy to solve the
subproblem. This program implements sparsity and efficient data structure
techniques to incréase speed and to reduce memory requirements. Also, various

> ‘ numerical tactics were introduced to enhance*the robustness of the algorithm.
Detailed results from four test systems, ranging in size from 6 to 118 buses
(32 to 531 electrical variables), give akclgar plcture of the behaviour of the

L ) algorithm. Among the impértant observations, we note the following:

(1) the number of breakpoints in a subproblem solutioﬂ is relatively small
and independent of its size.

(2) the rules for convergence ensure descent, are robust, and usually require
little computation. )

(3) the algorithm becomes very fast after a few iterations, because it can
avoid the continuation procedure in the subproblem, and because iterative
processes are fgd excellent initial guesses.

(4) execution speeds 1in solving for a single load: for these. four test
systems, increased linearly with size. '

(5) the load-tracking scheme produces optimal solutions very quickly, because
it profits from the information of the previous solution. Results show
that the increases in load hardly effect the optimal settings of the

reactive powers, voltages and passive cotitrols.

1

These and other observations indicate that the algorithm shows much promise

for the quick solution of OPF problems.

The program encountered a serious numerical problem in some runs of the
( 118 bus test, due to ill-conditioning and degeneracy in the’ optimality
conditions. This stems from an inherent problem with the compact load flow

model adopted for this study, and not the continuation process per se. The
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program was not equipped to handle this problem; it is felt, however, that the

problem can be remedied, as it has been in other well-known optimization
packages. !

\
8.2 Recommendations for Future Research

The following recommendations cover four large areas of researct;. These
- are: (1) ways of improving the present OPF program, (2) the development of
software packages for other OPF tasks, (3) the use of the latest ideas in
continuation method theory, and (4) a fundamental study of the properties of ‘

the load flow equations.

- 8.2.1 Improvements to the Present Program
Many of these improvements were suggested in the main body of the thesis.

To improve the robustness of the sﬁbproblem, three points were made at the end

of Chapter 7:

- To add a mechanism isolating the functional constraints which cause

degeneracy from the other active functional-constraints.

) , ' r
- To study a mechanism which avoids the creation of 1ll-suited sets of

independent variables.

{

- To solve the optimality eciuaticms of the subproblem in the form of eq.
+ 4.4 Iinstead of eq. 4.14-4.17, to allow for pivoting of the wvariables,

/
thereby avoiding the occasional reorganizations of the partitions of the

variablgs . b .

To improve the execution speed of the real power dispatch algorithm, found in

,
55
Tt

the initial, simple problem of the subproblem, it was suggested to convert

B
%r :
.

from a binary search to a secant search algorithm. The i‘mprovement in overall



4

296

speed of the OPF algorithm would be small, but probably 1little effort is

required to make this change.

To improve the speed of the computation of sensitivity coefficients, a sparse

vector solver should be added to the program.
/

With the experience gained in observing the program, some adjustments could be

made, with the hope of avoiding lengthy computations. For example:

Rules for the imposition of auxiliary bounds tried for the anti-
zigzagging scheme could be improved. If variables near fol:i lines can be
identified and their behaviour better undeérstood, they could be removed
from the standard optimization procedure. It is the oscillation of these
varfables in standard procedures which slows down the optimization the

most. ‘%

Convergence criteria and convergence tolerances should be studied in
greater detall, to determine when it is worthwhile to stop iterating. In
some of our tests the values of the objective function converged much
faster than the other convergence criteria. Because of the slow
convergence of those other criteria, the optimization proceeded with more

iterations.

The convergence characteristics of the algorithm as a function of the
initial guess should be studied ih greater detail. The impression gained
from our present numerical experience is that it is disadvantageous to

start the algorithm very close to the solution.

Wich the knowledge that the variables other than the P’'s vary little in
the load-tracking loop, it might be advantageous to process dependent
constraints outside the subproblem, in the nonlinear loop. That could
save time, because the monitored dependent constraints would likely
remain feasible from one load-tracking iteration to the next. If so, no

additional processing would be required.
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'he Development o oftw. c es for Other O ks

Chapters 4 and 5 provide the analysis for many new applications of the

continuation method in solving OPF subproblems. These include:

The solution of the economic dispatch ‘subproblem by the varying load
strategy. This is potentially a faster solution technique than the one
tested in this thesis, once it is initialized with an optimal soluti;m
for some load. The best coordination between the subproblem solution
trajectories and the nonlinear solution trajectories remains to- be
determined. One reasonable strategy would be to use the solutionsg of the
subproblem as the optimal dispatches as long as-their mismatches with the
corresponding load flow points are small. When this mismatch becomes too
large, the nonlinear information would be updated and the subproblem
would be restarted. Numerical problems remain to be seen, but 1l1l1-
conditioning observed in the "varying limits strategy, due to cthe

insensitivity of reactive powers and voltages, should again be present in
- )

this problem.
Bus incremental costs, which can easily be formed from the solutions of
the economic dispatch subproblem when using the varying load strategy.

The solution of the minimum loss problem, formulated as a parametric
linear progran. For this subproblem strategy to be effectlve in
nonlinear optimization, it is Important to detect transparent variables
on their fold lines; otherwise, the linear program will send too many
variables to their bounds. The preferred solution strategy 1s the

varying load strategy.

The solution of the load shedding problem, using the new varying load
strategy. This formulation minimizes a norm of the différence between
the varying unsatisfied (forecasted) demand and the feasible satisfiable
(unknown) load. The solution pfocess proposes to compute the best load

and at the same time the optimal generation dispatch for that load.

]
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- The coordination of normal dispatching tasks and the load shedding task,
to create an optimsl operating schedule for "any demand, feasible or
infeasible.

- The inclusion of dynamic ramp constraints in the economic dispat:ch/
subproblem. This would provide a look-ahead capability for the algorithm

in cases where the loads increase rapidly.

- Suggestions for the study of wvariations in the system parametexrs, for
post-contingency redispatching. Often, the computation of a post-
contingency optimal dispatch is not helped by the knowledge of the pre-
contingency situation. The continuation method could take advantage of
this information. Changes handled via the bounds on the variables are
easily processed. Others which involve "left-hand-side" wvariations are
more difficult. Discrete variations of these parameters are suggested,
to see 1if tracking the optimal solution from the pre-contingency to the

post-contingency state is worthwhile.

The parameter variations of the previous point would also be useful in

jexpansion planning.

»

8.2.3 Better Use of Continuation Techniques in the Nonlinear Problem
¢
First, we suggest that state of the art techniques in continuation
methods be incorporated into implementation of the OPF. These techniques,
which were developed in the last decade and referred to in the introduction,
can bypass. some problems of singularity in the syvstem equations. In
particular, these techniques could be useful in handling the left-hand-side

perturbatians.

Secondly, we suggest a systematic study of homotopy'strategies in the
nonlinear loop of the solution procedure. The outer load-tracking loop, as
initially presented in Chapter 3, is an example where the known solution to
one nonlinear problem is linked to that of ‘the desired nonlinear problem.

However, the solution to the initial, simple problem might be Qdifficult to
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obtain in most cases. ’To simplify the solution of the initial‘problem, many - .
parameters could be relaxed. For example, a load flow feasible point co_uld be
made the exact optimum for some artificial OPF problem, with bounds and loads
relaxed. Then the parameters would be wvaried, continuously or discretely,
until they reintegrate their original values, and the desired OPF problem
would be solved. As 1In other applications of €he varying limits strategy,
this technique could be very advantageous if a good 1Initial guess |is
furnished. A possible advantage over the solution strategy developed in this
thesis 1is that the nonlinear solution trajectories would probably be smooth,

without any of the oscillations which hamper the present strategy.

8.2.4 A Study of the load Flow Equations

The analysis of some more fundamental properties of the load flow
manifold is a difficult task, but it could provide valuable information for

use In optimization. We can suggest the following topilcs:

v

o]

- The determination of connected regions of local convexity in the load
flow manifold. This could explain convergence properties, or aid in

identifying good initial guesses.

- The determination of convexity properties of the load flow feasible
regions, as seen from different projection spaces. In particular,
properties of the fold 1lines, whose projections form the load flow .
boundaries, would be useful in setting the heuristic rules referred to
earl’ier for setting transparent wvariables.

- A comparison of the numerical properties of the OPF solutions in the two
~ main formulations, the compact formulation used in this thesis and the
sparse formulation with independent state wariables. These could be
compared for the simplicity of their numerical stxi'uctures, the
conditioning of the load flow Jacobians used in the subproblems, the
beilaviour of transparent wvariables, the convergence of the nonlinear

algorithm, and the effectiveness of the tactics used to aid convergence

-
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of the nonlinear algorithm. Of course, to make such a comparison,

experience vit;h both types of programs would be necessary.

Finding all solutions(to the load flow equations or to an OPF problen,
for a small system. This could show the disposition and the closeness of
the multiple solutions. The solution trajectories could be computed,

given a load trajectory. A perturbation analysis of the eigenfunctions

could be useful In determining convexity properxties of the load élov
manifold. -
9

The analysis of various models of second order information for the load
flow equ;ations. Convergence problems in the Newton-Raphson solver are
due to the iInadequacy of the 1linear model, which cannot represent
curvature. Some second order information, albeit simplified, could
approx:i:mate the curvature of the load flow equations. This procedure‘
would improve the <robustness of the algorithm for solutions near a
feasibility boundary, or in determining the least-squares solutions of

infeasible scheduled injectioms. D

IRt
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APPENDIX 2.1 i

SOME BASIC RESULTS FROM NONLINEAR PROGRAMMING

Nonlinear programming theory investigates general procecdures for
optimising a nonlinear algebraic objective function, subject to restrictions
on the values of the variables, expressed as nonlinear algebraic functions.
Most work 1in this field falls into one of two categories: the study of
optimality conditions and that of convergence properties. The former has to
do with the characterization of solutions of nonlinear programming problems,
in the form of mnecessary and sufficient conditions for a solution. These
cannot provide solutions as such, but they do serve two purposes: to make
recognizable an optimal solution, and to provide a goal for numerical
techniques. Various sets of optimality conditions have been proposed [Ben’
Israel et.al. 198l], with some superceding others, and ranging in their
generality. The best known, the Kuhn-Tucker conditions [Kuhn & Tucker 1951,
Mangasarian 1969], will be stated here, with, a quick view towards numerical

techniques.

Convergence theory studies the ability of a solution process, or
algoritum, to attain an optimal solution. The algorithms are usually
iterative processes, due to the presence of nonlinearities in the functions of
interest, and due to the necessity to search for the active constraints.
Proper convergence rules ensure that as the process advances, the Iiterates
tend towards an optimal solution. They produce new iterates which are better
than their predecessors trom which they are generated, in the sense defined by

the objective function.

Usually in the optimization literature, convergence analysis is provided
with new algorithms. There are however some general rules. The construction

of the OPF algorithm presented in this thesis is hased on such rules.

This appendix 1s divided into three parts. A first part quickly presents
the nonlinear programming problem, using a compact notation, and gives two
important remarks on limitations in the theory. In a second part, the

optimality conditions are stated in two forms, the primal and the dual. A



369

third part reviews briefly the notion of iterative algorithm and conditions

for convergence.

A2.1.1 A nonlinear programming problem

.

A scalar objective function £(x) is minimized, subject to restrictions on
the choice of wvalues of x. A general form for a nonlinear minimization
problem, denoted NLP, is written symbolically as

min f(x) &
X (NLP)

s.t. gx) =<0
where b is the vector of variables
f(x) 1s a scalar objective function
g(x) 1s a vector of equality and inequality constraints

A restriction usually placed on functions f and g in practice is that
they be smooth [Avriel 1976]. That 1s due to differentiability requirements
in many methods. 1In some methods, this requirement has been relaxed, allowing
for continuous functions [Lemarechal & Mifflin 1979]. In those methods
subgradients {Rockafellar 1970] replace gradients at points of
nondifferentiability.

A restriction on the claim to optimality, for techniques based on the
upcoming optimality conditions, 1s that solutions are only local optima. That
is because these conditions are based on local information. Then global

convergence eluded to in a later section is only tovards a local optimum.

A2.1.2 Optimality Conditions in Nonlinear Programming

The necessary and sufficient conditions are presented, for minimization
only, in nonlinear programming. The two well-known formulations of the
optimality conditions, the primal and the dual, are considered. These are
non-constructive conditions as such, bdbut they suggest dffferent solution

strategies, which are introduced in Appendix 2.2.
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This is a general statement about the regions defined by functions £ and

g. Its formulation is as follows.

Let
x" be a feasible point, i.e. g(x*) =< 0.
F be a region of descent, constructed from x":
Fe (x'+ ad]| £(x" +ad) s £(x"), for oQ T
sufficiently small )}
d 1is called a direction of descent \
a 1s a step size
G be the feasible region, constructed from x":
C G= (x'+ ad | g(x" + ad) =0, for a
sufficiently small ) _
- d 1s called a feasible direction

Then the primal optimality condition states that a feasible point x* is
an optimal solution of problem NLP if and only if the Intersection of sets F

and G is empty [Ben Israel et.al. 1981}. This 1s.a necessary and sufficient
condition.

Stated in words, x' is an optimal solution if and only if there exists no
direction d emanating from x* which 1is both a direction of descent and a

feasible dig:ection .

.

"b. The dual formulation of the optimality conditions

- e e e e e e e s s e e S m ay e e e e oY e M e e v e S e e e hm v e e e e o e v o o =

The dual formalation can be generated from the primal, through the use of
any one of the theorems of the alternative [Zlobec 1984, Bazaraa & Shetty
1979] and differential information . They impose conditions which are
mathematically equivalent to the primal conditions, but in terms of an

augmented set of variables (x,A). The vector of X, called Lagrange
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multipliers, is of the same dimension as g(x). The dual formulation 1is as
follows [Mangasarian 1969]:

A necessary condition for the point x* to be an optimal solution of

problem NLP is that there exist Lagrange multipliers )" satisfying these
conditions: ~

1. The optimality condition.
X Define the Lagrangian function £ =  £(x) + ATg(x). Then the
gradient of Z with respect to x,evaluated at x", vanishes:
vV I(x") =0
2. The feasibility conditions.
gx"y =0 (primal feasibility)
A= 0 (dual feasibility)
3. The complementary slackness condition.
A" g (x") =0

Stated in words, a necessary condition for x* to be an optimal solution
of problem NLP is that, at that point, the negative of the gradient of the

objective function lies within the cone formed by the convex combination of

actlve constraint gradients.

These are generally referred to as the first order Kuhn-Tucker optimality
conditions. They are necessary but not sufficient conditions for a minimum. A)
sufficient condition for minimization is provided by second order information.
It states that for .the point x" obtained from the first order conditions to be

a minimum, the Hessian of the Lagrangian with respect to x evaluated at
(x*,\") must be positive definite:

For all nonzero vectors u, of dimension dim(x), belonging to

the null space of the active constraint Jacobian, ng(x"), we
have

T w o w
ulf V_z(x",A") u >0

This 1is the second order Kuhn-Tucker sufficiency condition.
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Limitations on problem NLP which exclude the use of the dual formulation
of the Kuhn-Tucker conditions are called constraint qualifications. Several
. have been formulated, but possibly the most general and the simplest to verify
is Slater’s condition {Slater 1950, Zlobec 1984]. To validate the use of the
Kuhn-Tucker conditions it requires that there exist a feasible point where all

inequality constraints are strictly satisfied.

“These are more ~“restrictive optimality conditions than the primal
conditions, since they require differentlability of the functions £ and g.
The advantage of these conditions is that the lagrange multipliers provide a
better assurance of optimality, compared to the converging sequence of the

objective function in the primal formulation.

A2.1.3 Convergence of Nonlinear Programming Algorithms

Methods for solving nonlinear programming problems basic‘ally search out a
solution described by the optimality conditions. They start with an estimate
of the solution, or initial guelss. Then, ideally as the process advances, new
estimates get closer to the solution. A solution is reached when a sequence
of estimates converges. In primal-based methods, values of the objective
func\;tion usually form the sequence; In dual-based methods, it can be the

jelb?ive or the solution estimates of the optimality equations.

The process described above 1s an iterative descent algorithm [Bazaraa &
hetty 1979, Luenberger 1984]. It 1is iterative, In that it generates a
sgaquence of points, each new point being computed from its predecessor.
F;I.gure A2.1.1 illustrates the general structure of the iterative algorithm.
The driving process A which links x, to x,,, can be_quite general: a simple
relationship, an equation, a set of, equations, or even an algorithm in itself.
It is a descent method in that values of the objective function associated

with the points of the sequence are diminishing as the process advances.

If tha algorithm can converge to the solution regardless of the initial
guess, then it 1is said to be globally convergent. This 1is an essential

property of any successful solution algorithm. An Iimportant feature of a
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globally convergent algorithm 1s that at each iteration, it narrows down t};e
search for future iterates. That 1s 1llustrated in figure A2.1l.2. The
shrinking region retains the desirable property which drives the process; in
this case, it delimits the region of lower values of the objective. Note that
the shrinking region in the illustration need not only represent the system
variables; it could represent also, for example, a <choice of possible
combinations of active sets, or other Iimportant -considerations. Convergence
of a process corresponds to narrowing down the search until only the solution
remains. That might occur in a finite number of iterations, in which case the

algorithm is said to terminate, or it might approach a solution at the limit.

General rules for global convergence have been proposed to guide il"l the
construction of algorithms [Zoutendijk 1960, Wolfe 1969, Zangwill 1969, Polak
1971, Huard 1975, Meyer 1976] . Maybe the best known in optimization are
those of Zangwill. His Convergence Theorem A sexrves as a basis for the

convergence of the OPF algorithm developed in thils thesis,
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[ Initialization |
X
Process A X1 = £(7y)
. ’ k  k+l
Yx
i
n

{ solution I

Figure A2.1.1. An iterative process. '

‘x % = SOLUTION

Figure A2.1.2. Search process of a globally
convergent algorithm.
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APPENDIX 2.2

A SURVEY OF STANDARD NONLINEAR PROGRAMMING METHODS USED IN OPF

The development of numerical algorithms for nonlinear programming has
seen a steady flow of proposals, since its inception 1in the 1940’s. There
have emerged, however, a fev well-delimited categories, based on the overall

strategies of the methods. These are briefly presented in this section.

Although the basic ideas wvhich define these categories differ, often the
details in the implementation overlap. Hence, no classification structure can
be suggested to separate all the methods. The only major partition for
classification 1s based on the choice of formulation of the optimality
conditions. As seen In Appendix 2.1, two formulations of the optimality
conditions are prevalent, called ihe primal and the dual [Luenberger 1973, Ben
Israel et.al 1981]. Nuunerical methods based on the primal approach act
directly on the optimization; those of the dual act 'indirectly, by introducing

the Lagrange multipliers.

Aside from general conslderations, precise techniques which make up the

algorithms can often be partitioned into two groups. For example:

- Search directions can be established using first order or second order
approximations. ) .

- Subproblems can be single-staged cr multi-staged.

- Constraints are handled using exact or penalty techniques.

- The partition of independent variables car; be fixed «t the outset or

updated to fit the problem.

s
1

These techniques are independent of each other, so that different combinations
are possible. Numerical optimization methods can be characterized by the

combination of these and other criteria.
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A2.2.1 Primal-Based methods /

B . I i N I e

/Qrithms .based directly on the primal formulation were developed, for
the geneéral nonlinear problem, mostly in the 1950’s-60's. They are called
feasible direction methods [Zoutendijk 1960, Zangwill 1969].

A basic algorithm for these methods 1s as follows. A direction d
emanating from a feasible peint x; is computed from approximations of the
objective function £(x) and the active constraints g(x). Then a step size o"
is computed to minimize an approximation of f£(x) along direccion d. If in
the process of increasing o from O to a” a constraint becomes active, at a=a’
say, then x, + a’d replaces x; as an estimate of the solutlon; if not, a full
step with a=o" 1is taken. That completes one iteratiom. The process 1is

repeated until the sequence of points thus generated converges.

The hest known feasible direction methods for nonlinear prolgramming are
gradient methods [Rosen 1961, Wolfe 1967], and in particular, the reduced
gradient method (GRG) [Abadie & Carpentier 1969, Lasdon & Warren 1978]. 1In
all gradient methods, linear approximations of the objective and the
constraints are wused. In GRG, the constraints are handled exactly, by
updating the independent/dependent pargition of wvariables after each
iteration. Variables at a 1limit are always made independent, so that they are

expressed as simple bounds.

Special cases of feasible direction methods, developed in the late 1940's
- 1950's, are 1linear programming (LP), for problems with functions £ and g
linear [Dantzig 1963], and early simple‘x—type techniques for quadratic
programming (QP), with functions f quadratic and g linear [Boot 1264]. Both of
these special cases avoid nonlinear equations in their solution process, so
that tl.ey terminate when the right active set is found. This property makes
them ideal as subproblems, used repeatedly to approximate nonlinear problemsu,

in methods to be described later.
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In linear programming, the edges of the feasible region serve as descent

directions, leading from one vertex to-another, always with a lower value of
the objective function. This procedure, called the simplex method, reaches an
optimum because for linear programs, the optimum is known to be at a vertex.
This method is very fast; because of the linearities in all the functions and

the very simple search direction, each iteration of the process requires

" little computation.

Primal and dual formulations of linear programming have been developed
[Murty 1983]. The primal, as in other feasible direction methods, acts only
on the actual problem variables. Because of the lincarities, the dual is
formulated exclusively in terms of the Lagrange multipliers. Numerical
algorithms to solve either formulation are basically similar. In practice,
the number of iterations to solve the problem is linked to the number of
constraints. Hence, the dual Is advantageous when the constraints in the

primal ocutnumber the variables. In the dual, the rolés are reversed.

The first methods of quadratic programming follow the same simplex-type
approach [Beale 1959, Wolfe 1959]. These have been superceded, in recent

works, by dual-based methods.

/
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Successive linear programming (SLP) solves nonlinear programs by
generating a sequence of linear programs. Initial conditions for a given
linear program are provided by the solution of the previous linear program,
according to some rules. The sequence of solutions to the linear programs

should converge to the solution of the nonlinear problem.

This method was first proposed iIn the early 1960’s [Griffith & Stuart

19611, but then attracted limited interest until the late seventies [Palacios-

Gomez et.al. 1982]. Results from production codes during this period often
suffered from unreliable performances. Developed by practitioners, the
methods lacked the necessary theory for anforcing\ convergence. A major

disadvantage is that solutions of the subproblems are situated at vertices of
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the feasible region, even though the optimum of the nonlinear problem need not

5 be. ' More recent implementations suggest rules to enhance convergence by

manipulating bounds of the subproblems {Lasdon 1985].

, ¢) Penalty Function Methods

In these methods, no explicit search for active constraints 1is carried
out. Instead, search directions are coml;utad with penalty terms. added to the
objective function, taking into account the violated constraints. That
reduces excursions outside the feasible region. Solution techniques for
‘unconstrained optimization [Dennis & Schnabel 1983] can then be applied.
After each solution of an unconstrained problem, coefficients of the penalty
terms are wupdated, to Dbetter restrict the "illegal" excursions. That
constitutes one iteration. An optimal solution is found when a sequence of
valuwes of the augmented objective fur‘lction converges, and the constraint
violations are deemed small enough. These are the easiest t.echniques to'
Implement, but also the least reliable, because of constraint violations and
because of unavoidable ill-conditioning [Gill et.al 1981].

The best known work on penalty n\ethods is the Sequential Unconstrained
Minimization Technique (SUMT) [Fiacco & McCormick 196§]. It proposes some
interior (barrier) and exterior penalty functions. In OPF implementations,
the most common is the quadratic exterior penalty function [Sasson 1969a,
Housos & Irisarri 1982]. Solution of the ensuing unconst:rained‘ quadratic

problem can be carried out in one of three ways:

- In Newton methods, the required gradient and Hessian are computed exactly
[Avriel 1976]. ‘

- In Quasi-Newton methods (variable metric methods), the Hessian is first
approximated, and then updated using incoming information [Avriel 1976].
x This is useful for small problems with a dense Hessian.

- In conjugate gradient methods, the optimality equations are solved by

\/,
( J
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this 1iterative solver. This is advantageous for very large problems,

because the equations are handled one by one.

Pure penalty methods, such as SUMT, have been proposed sporadically for
OPF. However, many proposed methods apply penalty functions to some
constraints. In many cases, the independent wvariables are handled witg’exact
bounds, while dependent constraint violations are added to the objective

function via penalty functions.

A

S~ -

A2.2.2 Dual-Based Methods

The development of numerical optimization techniques over the past twenty

years or so has concentrated, for the most part, on solving the dual

formulation. The optimal solution is characterized by a set of mnonlinear
equations in (x,)). Solution techniques can be placed roughly into two
groups: |

- Those which apply primal methods directly to solve the Kuhn-Tucker
optimality conditions.

- Those which exploit the properties of the optimality conditions, and
especially the Lagrange multipliers. L.

In OPF implementations, gradient or mixed gradient-penalty methods make wup
most of the first group. In the second group, dual-based quadratic

programming and successive quadratic prngramminé will be considered.

a) Quadratic Programming Based on the Kuhn-Tucker Conditions

____________________________________________________________

Recent methods efficiently solve the Kuhn-Tucker conditions for a
quadratic program. Using the active set defined by the estimate of the
optimum, the first order optimality conditions are generated. They form a set

of linear equations in the variables and the Lagrange multipliers. Different
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strategies exist [Van de Panne 1975, Gill et.al 1981] to compute the solution.
If the solution is completely feasible, it is the optimal solution; if not the
active set 1s updated and the process is repeated. The process terminates

with the true active set and the optimum.

Quadratic programming offers some of the simplicity of linear programming
in manipulating linear constraints, and a greater precision in pinpointing the
optimum. TFor this reason, successive quadratic programming has become more
popular than successive linear programming as a method for solving nonlingar

programs.

o . e o = M e e e S e e S

These are also known as recursive quadratic programming or Lagrange-
Newton methods. Nonlinear programs can be solved by generating a ,sequence of
quadratic programming approximations, the solutions of which converge to that
of the nonlinear problem. Much theoretical work was produced from the late
1960’s to the mid 70’'s [Biggs 1972 & 1975, Fletcher 1973 & 1975, Han 1977,
Powell 1978]. They seek the best choice of subproblem and rules for enforcing
convergence, .

At the optimum, the subproblem and the original problem share the same
optimality conditions. In all the proposed subproblems, linearized
constraints replace the nonlinear constraints and all the bounds are retained.

Different quadratic objective functilons are suggested:

- A quadratic approximation of the objective function. This case is called

. the "Newton strategy" by Murtaugh and Saunders [Murtaugh & Saunders
1980]. It is seldom mentioned in the theory, due to problems with limlted
convergence. This clasgification is convenient though, <ince many OPF

implementations prior to the popularization of SQP are of ,this type.

- A quadratic approximation of the Lagrangian or of a modifled Lagrangian
[Murtaugh & Saunders 19807. The oxtra terms, linear in the Lagrange

multipliers and in the active constraints, are called exact penalty



{381

functions because their effect disappears at the optimum. They monitor
the curvature of the constraints to ensure descent (for minimization).

This {s the usual formulation in these methods.

~ An augmented quadratic approximation of the Lagrangian or modified
Lagrangian [Murtaugh & Saunders 1982]. An added exact penalty term with
adjustable coefficients, quadratic in the active constraints, discourages

excursions from the nonlinear feasible regionm.

:Bhe methods corresponding to the last two objectives are called projected
Lagrangian methods. These methods are not restricted to SQP, although that
now seems to be the trend. Earlier projected Lagrangian methods [Murtaugh &
Saunders 1978] solved subproblems with general objectives and linearized

constraints using reduced gradient methods.

Convergence properties have been verified, as in Newton methods, /when the
Initial guess 1is close “enough" to the solution. Techniques y:{) enhance

convergence are:
/

- The use of a step size along a search vector linking the subpro‘pl’em's

expansion point and its solution [Han 1977]. This approach is used in

the algorithm proposed in this thesis.

- The adjustfient of penalty coefficients, in the augmented Lagrangian

objective [Murtaugh & Saunders 1982].

Note that reference to augmented Lagrangian objectives here should not be
confused with the augmented Lagrangian method ([Pierre & Lowe 1975]. The
latter is much 1like the penalty methods, but in which only exact penalty
functions are deployed. The method was developed more or less in parallel
with projected Lagrangian methods. So far it has not been used in OPF.

\
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A2.2.3 Parametric Programming

@

Parametric linear programming [Murty 1983, Gal 1984] and parametric
quadratic programming [Houtthaker 1960, Van de Panne 1975] have been available
almost as long as LP and QP, although they have only recently been applied in
pover systems. Applications of the continuation method in optimization falls
into these categories. Given an optimal solution, these methods efficiently
track the optimal solution trajectories, following changes In some system
parameters. Early works [Gass & Saaty 1955] limited themselves to a single
"region of stability"”, where the active set remains constant. Methods were
soon developed, for LP and QP, to update the active set and pursue solutions

over a wide range of active sets,

Algorithms have been proposed for general nonlinear programs [Hackl 1978,
Gfrerer et. al. 1983, Guddat 1984]. This 1s an active area for research,
since many different algorithmic structures have yet to be trie‘:i. ;I'he major
difficulties are the efficient handling of nonlinearity and the detection of
changes in the active set. In this thesis, the solution of a nonlinear
program 1s proposed by SQP, using, amongst other things, the continuation

method to solve the subproblems,.

\
A2.2.4 Present Trends in Optimization

Here we present the opinions stated in some recent review papers and
textbooks on nonlinear programming methods [Fletcher 1982, Bartholomew-Biggs
1982, Lasdon 1982, Gal 1984, Lasdon 1985, Scales 1985].

R .

Successive quadratic programming - projected Lagrangian methods now seem
to be the most popular. Their advantages are that they are numerically
efficient, convérge quickly near the optimum, require fewer function’and
gradient evaluations, and they need not satlsfy equality constraints at each
iteration. A major disadvantage is that glcbal convergence is uncertain when

weak restrictions are placed on constraint violations.
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Successive linear programming is ad*‘rantageous for problems with linear or
near linear constraints, and with solutions at a vertex. However, convergence
can be slow due to inherently inefficient convergence control mechanisms.
This method is very popular in the petrochemical industry, but has not caught

on so much in power systems,

Reduced gradient methods are efficient for linear or mnear 1linear
constraints, are generally very reliable for any problem, and are generally
slow. Two reasons for the slowness are that at each iteration the nonlinear
information is updated and feasibility of the operating point 1is maintained.

That requires much computation.

Penalty methods are simple to implement, but are plagued with numerical
difficulties, and do not assure a feasible solution. For these reasons, these
methods have attracted little interest of late.

Parametric programming is still relatively wunknown to practitioners,
although it| has received in recent years much attention in the apl;lied
optimization 1literature [Flacco 1982, Eaves 1983, Flacco 1984]. Recent
developments in OPF using parametric programming look promising; they are

discribed in Chapter 2.

5

-

New numerical techniques have been suggested to enhance reliability or to
increase speed. They could be added to most of the previous algorithms. Some

of these are:

- Scaling the wvariables to reduce ill-conditioning of linear computations
[G111l et.al. 1981].

- The use of trust regions [Sorenson 1982, Dennis & Schnabel 1983]. These
are simple constraints (a box or hypersphere) added to discourage large
excursions from the nonlinear feasible region. The size of the region

can be adjusted at each iteration.

- The rélaxing of constraints to solve subproblems which would otherwise be

infeasible,
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- The use of truncatied computations, to speed up computation [Dembo &
Tulowitzki 1984, Nash 1984].

The first three techniques have made their way into some QPF algorithms.




APPENDIX 2.

LISTING OF PUBLICATIONS IN THE OPF LITERATURE

Publications are 1listed for each branch of the OPFF literature, as
depicted iIn fig. 2.1. Superscripts 1Indicate cross-referencing to other
branches; this practice has been kept to a minimum. An added listing, not

given its own branch in Chapter 2, i1s redispatching.

A - ECONOMIC DISPATCH BY INCREMENTAL LOADING

Estrada(1930)
Steinberg(1934)

B - ECONOMIC DISPATCH - CLASSICAL EICC/LOSS FORMUILAE

Hahn(1931)
Steinberg(1943)

Steinberg(1933)

George(1943) George (1949) Ward (1950 a,b)
Kirchmayer(1951) Glimn(1952)™A Hale(1952)
Kirchmayer(1952) Ward(1953) Brownlee(1954)
Glimn(1954) Harder(1954) Travers(1954)
Cahn(l955) Early(1955) Shipley(1956)
Kirchmayer(1958) Lubisich(1958) George (1959)
Watson(l959)l Fischer(1960) Schmidt(1960)
Blodgett(1962) Moskalev(1963) Tudor (1963)
Van Ness(1963) Walker(1963) Anstine(1964)
Hepp(1964b) Happ(1967) Long(1967)
Roth(1967) Hill(1968a,b) Akhtar(1969)
Ariatti(1969) Happ(l969a,b) Meyer (1969)
Mikami(1970) Olesnicky(1970) Gungor(1971)
Meyer (1971) Dension(1973) Podmore(l9735
Happ(1974) Jain(1975) Wahda(1976)
Adler (1977) Shoults(1977)*¥ Alvarado(1978)
El-Hawary(1978) Galiana(1978) Malik(1978)
Mamandur(1978) Selmyen(1978) Galiana(1979)
Nanda(1979) Shoults(1979) Vojdani(1979)
Vojdani(1981) Isoda(1982) Glavitsch(1983)
Krogh(1983a) Aoki(1984) Lin(l984)(




Hlansour(1984)
Boming (1986)

Wenyuan(1985)™Q

C - CLASSICAL EICC/INTERCONNECTED SYSTEMS

Glimn(1952)™?
Kichmavyer(1959)
Gladys(1971a,b)
Happ(1975b)

G1imn(1958)

Millexr(1959)

Happ(1971)

Jamshidian(1983)

D - OTHER TECHNIQUES/INTERCONNECTED SYSTEMS

Peschon(1972a)
Spare(1975)

E - VALVE POINT LOADING

Decker(1958)
Happ(1963)
Vojdani(1982)

F - ENVIRONMENTAL DISPATCH

Friedlander (1970)
Friedman(1973)
Ferrer(1974)
Dejax(1975)
Ruane(1975)
Zahavi(1975)

Deo(1973)
Romano(1981)

Hayward(1961) -
Ringlee(1963)*T

Gentzl97l)
Lamont(1973)
Finnégan(l974)
Eisenberg(1975)
Schweltzer(1975)
Kothari(1976)

G - ECONOMIC DISPATCH BY LAGRANGIAN TEGHNIQUES

Squires(1961)

H - KT CONDITIONS - SUCCESSIVE APPROXIMATION SOLVER

Carpentier(1962)

I - GRADIENT METHODS

Fukada (1964)
Carpentier(1968)
Peschon(1971)

Carpentier(1963)

Krumm(1965)
Dommel (1968)
Carpentier(1972)
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Xu(1985)

Kerr(1959)
Aldrich(1971la,b)
Cameron(1974)

Rwatny(1973)

Light(1962)
Fink(1969)

Sullivan(1972a)
Delson(1974)
Cadogan(1975)
Lamont(1975)
Sullivan(1975)
Cadogan(1977)

Gamn(1967)
Dhar(1971)
Velghe(1972)™



Carpentier(1973a)
Alsac(1974)
Podmore (1974)™
Sachdev(1975)™
T11c(1979)
Burchett(1980)
Landquist(1984)

Dhar(1973)
Dayal(1974)
Rashed(1974)
Barcelo(1977)
Prada(l1979)
Burchett(1981)
Backlund(1986)

\

J - SUCCESSIVE LINEAR PROGRAMMING

Farrara(1969)
Megahed(1977)
Stott(1983)

Van Meeteren(1986)*L

Abou Taleb(1974)
Khan(1979b)
Peralta(1984)
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Ramamoorty(1973)
Mukherjee(1974)
Alsac(1975)
Bala(1978)
wu(1979)
Roy(1983)
Cernic(1986)

Pai(1975)
Mamandur (1982)
PCA(1985)™

K - SUCCESSIVE QUADRATIC PROGRAMMING - NEWTON STRATEGY

Peschon(1968a)™T
Jaimes (1970)
Suhakar(1974)
Shoults(1977)"8
Talukdar(1982)

El1-Ablad(1969)
Nabona (1973)™Q
Diilon(1975)

Dillon(1981)*R

Contaxis(1986)*0.Q

Shen(1969)
Nicholson(1973)*%T
Wadhwa(1975a,b)
Talukdar(1981)
Maria(1986)*0.Q

L - SUCCESSIVE QUADRATIC PROGRAMMING - PROJECTED LAGRANGIAN

Biggs(1977)
Burchett(1982a,b)
PCA(1985)™

M - PQ DECOMPOSITION

Dopazo(1967)
Billinton(1972)"T
Billinton(1973)
Chamcrel(1982)
Housos(1983)™
Lee(1985)

N - SUMT
Sasson(l1969a,b,c)

Lipowski(1981)
Burchett(1984)

Van Meeteren(1986)™

Norimatsu(l967)
_Jolissaint(1972)
Sjelvgren(l975)

Shoults(1982)
Talukdar(1983)
Carpentier(1986)

Dillon(1970)

Aok1(1982)
Sun(1984)

Adielson(1972)"Y
Velghe(1972)"}
Shoults(1981)
Cont:axi.s(1983{)*‘3'U
K.Lee(1984)

Ramamoorty(1970)

~
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Sasson(1971) Dillon(1972)
Rohl1(1975) Fischl1(1978)
Housos (1982) Housos(1983)™

O - ECONOMIC DISPATCH BY LINEAR PROGRAMMING

Benthall(1968) Wells (1968)
Dodu(1970) . Shen(1970)

Brewer (1972) Merlin(1972)
Nanda(1973) Nanda(1974)
Dodu(1975) Khan(1975)
Hobson(1977) Pai(1977)"
Grigsby (1979) Stott(1979a)
Fox(1982)™' Irving(1983)
Mota-Palomino(1984) Zhang (1984)*Y
Broussole(1986) Contaxis(1986)"%.Q

P - ECONOMIC DISPATCH BY NETWOni. TECHNIQUES
Lee(1980) Lee(1981)
Luo(1984) Hon(1986)

Q - ECONOMIC DISPATCH BY QUADRATIC PROGRAMMING

Nabona (1973)"¥ Nicholson(1973)"%V
Podmore (1974)™T .Wollenberg(1974)"C
Lugtu(1979) Bottero(1982)
Contaxis(1983)*%.U

Wenyuan (1985)™P
Maria(1986)"K.0 L

.

R - ECONOMIGC DISPATCH USING PARAMETRIC PROGRAMMING

Dillon(1981)"¥ Blanchon(1983)"
Galiana (1983) Blanchon(1984)"Y
Huneault (1984) Huneault(1985)
Innorta (1987)"T

' S - ECONOMIC DISPATCH BY DYNAMIC PROGRAMMING

Fukao(1959) Ringlee(1963)™
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Sasson(1973)
D1ivi(1982)

Taylor{1969)
Thanikachalam(1971)
Duran(1973)
Wollenberg(1974)™Q
Saeed(1976)
Stott(1978)
Elaqua(1982)
Farghal(1984)
‘Van den Bosch(1985a)
Maria(1986)™%Q

Hobson(1984)

Reid(1973)

Dayal(l976)
Quintana (1982)

Contaxis(1986)™.0

Vojdani(1983)
Carpentier (1984)
Innorta(1985)



‘T - DYNAMIC DISPATCH
Cuenod(1966)
‘Ross(;9so>
Innorta(1987)'}

¢

Bechert(1972)
Lim(1985a,b)

U - REACTIVE-VOL’I\AGE DISPATCHING,OTHER THAN V,W

Sullivan(1969) \
Graf(1974)
Wirgau(l979b)
Elfstrom(1983)
Bright(1986)
Padiyar(1986)

|

V - REACTIVE-VOLTAGE DISPATCHING THROUGH MIN. LOSS

Smith(1963)
Peschon(1968)™
Narita(l971)
Savulesc;a(l976)
Franchi(1983)"
El-Kady(1986)"?

Kishore(1971)
E1-Shibini(1975)
Blanchon(1983)"R
Blanchon(1984)™R
Granviile (1986)
Zhang(1986a,b)

Hano(1968)
Hano(1969)
Billinton(1972)™
Mamandur (1981)
Doi(1984)
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{

Patton(l973)
Van den Bosch(1985b)

Sullivan(1972b)
Pai(1977)™
Franchi(1983)
Chamorel(1984)
Mota- Palomino(1986)

Kumai (1968)
Bokay(1970)
Nicholson(1973)".Q

Elangovan(1983)
Horton(1984)

°

W - REAGTIVE-VOLTAGE DISPATCHING THROUGH MIN. SLACK GENERATION

Adielson(1972)™
Aldrich(1980)
Ramalyer(1983)

X - MINIMUM LOSS
Calvert(l958)

Y - MINIMUM DEVIATIONS
Kaltenbach(1971)
Khan(1979a)

Zhang (1984)™°

Z - MINIMUM OVERLOADS
Sekine (1972)

.Fernandes (1978a,b,¢)
Happ(1l981)

Sze (1959)

Daniels(1972)

Hobson(1980)

Sachdev(1975)":¥

Wirgau(1979a)
Contaxis(1983)™.2

Sasson(1969b,c)™

Shoults (1977)

Krogh (1983b) ™A’

Shoults (1976)




A’ - MINIMUM LOAD SHEDDING

Hajdu(1968)
Ejebe(1977)
Chan(1979a,b)
Medicherla(1981)
Krogh(1983b)™
Fox(1986)

Subramanial(1971)
Ghoneim(1977)
Medicherla(1979)
Palaniswamy(1981)
Finlay(1985)

B’ - MAXIMUM LOAD,LOADABILITY REGION

Garver(1979)

RESCHEDULING
Peschon(1968b)
Cory(1972)
Shoults(1976)*%
Medicherla(1979)™4’
Medicherla(1981)*A’
Bui(1982)
Meliopoulos(1983)
Hon(1986)"F

A

Dersin(1§82)

Kaltenbach(1971)*Y
_Glavitsch(1973)
Pai(1977)*%:V.
Stott(1979b)
Palaniswamy(1981)*4’

Elfstrom(1983)*V

Chandrashekar(1985)
Monticelli(1986)

~

-
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Song(1975)
Khan(1978)
Rashed(1979)
Fox(1982)™
Palaniswamy(1985)

Thanikachalam(1971)
Sachdev(1975)*1.N.2
Mammxdw.u:(].978)"”:3
Dillon(1981)"%-R
Somuah(1981)
Xrogh(1983b)*¥.A’
Zabovsky (1985)
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APPEND 2.4 -

ENUMERATION OF PROBLEMS AND SQLUTION TECHNIQUES FOR OPF

This is an exhaustive list of the elements which make up the problems of

OPF and its subsets, as well the elements of the solution techmniques.

L4

A - TASK

1. Economic Dispatch
. Minimum Loss
Minimum Reactive Power
Minimum Violations
Minimum Deviation

Minimum Load Shedding

N oy WwN

. Maximum Load .

B - PROBLEM FORMULATION STRUCTURE
1. Full OFF + Tracking of Input Parameters

N

Full OPF + Dymnamic Constraints

3. Full OPF .

4. Nonlinear OPF, No Dependent Injection
. Security Dispatch + Tracking of Input Parameters
. Security Dispatch + Dynamic Constraints

7

5

6

7. Full Objective, Linear Constraints .

8. Full Objective, Linear Constraints, No Dependent Injection
9. Linear Objective, Linear Constraints

16. Linear Objective, Linear Constraints, No Dependenﬁ Injection

11. Full Objective, DC Load Flow + Tracking of Input Parameters

12. Full Objective, DC Load Flow + Dynamic Constraints

13. Full Objective, DC Loadflow

14. Full Objective, DC Loadflow, No Dependent Injection’
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15. Equal Incremental Cost Criterion + Tracking Input Parameters
16. EICC + Dynamic Constraints ) )
17. .EICC With Static Loss Model

a. Quadratic in Independent Variables

b. Quadratic in P and Q

¢. Quadratic in P

d. Linear in Independent Variables

e. Linear in P and Q

f. Linear in P
18. EICC With Dynamic Loss Model
- a. Linear in Independent Variables

b. Linear in P and Q

¢. Linear in P

19. Logsless Power Balance (Incremental Loading)

C - COORDINATES
1. Polar Coordinates

2. Rectangular Coordinates

D - CHOICE OF VARIABLES \ :

1. Complete set

2. Injections
a. Real and Reactive Power Generations, Line Flows
b. Real and Reactive Power Generations
c. Real Power Generations, Line Flows
d. Real Power Generations
e. Reactivé Power Generations, Line Flows
f. Reactive Power Generations

3. States
a. Voltage Magnitude and Phase Angles (or rectangular coord.) +

i, - vi.

b. Voltage Magnitudes + 1. - vi.
c¢. Voltage Phase Angles + 1., - wvi.

The items i. to vi. refer to the types of equipment listed on the next

page. .
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1. Taps, Shifters, Shunts
1i Taps, Shunts

i1i. sShifters '
iv. Taps
v. Shunts

vi. Other Combination

E - SET OF INDEPENDENT VARIABLES

1. Fixed Partition
a.*sStates
b. Injections
¢. Bus Voltages, Line Currents
d. P-V at geqeration busses, P-Q at load buses, V at slack bus
e. Other

2. Dynamic Partition

F - OUTPUT OF SUBPROBLEM
1. Solution to an LP or QP, All Variables of Interest Included
2. Solution to an LP or QP, Not All Variables of Interest Included
3. Search Direction and Step Size
4, Search Direction

G - CHOICE OF SUBPROBLEM STRUCTURE
1. Linear
a, Gradient Methods
b. Linear Programming --
c. Projected Lagrangian using gradient method
2. Quadratic
a., Quadratic Programming
b. Successive Quadratic Programming
i. Newton strategy
ii. Projected Lagrangian
3. SUMT, followed by particular techniques for solution
4. Real - Reactive Decomposition, followed by particular structures for

the subproblems




a.
b.

2. Load

[ -

1.

. All Injections vs. States,

. Reactive Power Generatlons vs.

. Real Power Generations vs.

. Real Power Generations vs.

H - DETAILS OF SUBPROBLEM STRUCTURE
1. Objective

Nonlinear in Injections
Full Quadratic in Injections

Full Linear In Injections

. Quadratic Approximation in States

. Augmented Quadratic Approximation in States

i. SUNMT
ii. Augnented or Projected Lagrangian
Linear Approximation in States

Flow Constraint Linearization

a. All Injections vs, States, Jacobilan Matrix.

Approximate Jacobian
Independent Injections vs. States, Jacobian Matrix
Independent Injections vs. States, Approximate Jacobian

Shifters), Jacobian Matrix
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. Real Power Generations and Line Flows vs. Phase Angles (and

Real Power Generations and Line Flows vs. Phase Angles (and

Shifters), DC Load Flow
Shunts), Jacobian

Phase Angles, Jacobian
Phase Angles, DC Load Flow

. Lossy Power Balance

Lossless Power Balance

3. Bounds on States

a.

b..

c.

Contain Phase Angles
Do Not Contsin Phase Anéles

No Bound on States

4, Reserve Constraints

a.

B b.

Present
i. Static
ii. Dynamic
Absent

Voltagae Magnitudes (,Taps,and

Ty



5. Ramp Constraints

a. Preasent

1. Statie
i11. Dynanmic
- b. Absent

6. Frequency Constraints

a. Present

’ i. Expressed as a function of real power

i{. Expressed as such in a contrel loop

b. Absent

7. Environmental constraints

a. Present

' b. Absent .

7

+" I - SOLUTION TECHNIQUES FOR SUBPROBLEM

1. Newton Method
2. Quasil - Newton
a. BFGS Update
b. Fletcher-Powell

¢.” Davidon-Fletcher-Powell

d. Han-Powell

Gradient, Reduced Gradient

4, Conjugate Gradient
Linear Programming
1. Simplex
! ii. Dual - Simplex
iii. Dantzig - Wolfe

iv. Parametric LP, Continuation Method (see 8)

6. Quadratic Programming
i. Beale

Wolfe

iii. Dantzig - Wolfe

2

iv. Thiel Van-de-Panne

( v. Gill-Murray-Wright

7. Network Techniques
2

- ' vi. Parametric QP,Continuation Method (see 8)
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8. Continuation Method
a. Varying Load
b. Varying Limit

9. ?nteger Programming

10. Dynamic Programming

J - EQUALITY CONSTRAINT STRUCTURE *
1. Equality Constraints Present, Including Load Flow Equations
2. Active Set Method With (Generalized) Power Balance Equation

K - HANDLING OF CONSTRAINTS
1. Independent Constralnts
a. Lagrange Multipliers
b. Penalty Functions .
2. Dependent Variables
a. Lagrange Multipliers
B b. Penalty Functions
3. Primal Tableau-Type Method
. ) ]
L - POSITION OF DEPENDENT CONSTRAINTS
1.. Inside Subproblem

. 2. Qutside Subproblenm

M -hCONVERGENCE CRITERION
1. For Subproblems
' a. Termination
b. Convergence of Sequence
2. For Nonlinear Problem -
a. Closeness to Solution of Optimality Conditions
b. Convergence of Sequence

¢c. All Constraints Satisfied

N - ITERATION RULES FOR NONLINEAR PROBLEM
1. Choice of Variables to Keep

a. States ,i. or ii.
b. Independent Variables ,i. or ii. ~



1. Steplength used
*, Adequate decrease
*x, Optignal Decrease
T 11. Steplength Not Used '
.~ 2., Feagibility maintained at each iteration?
a. yes
b. no
3. Position of Nonlinear Iteration
—._ . a. After a Single-Stage Subproblem
b. After a Multistaged Subproblem
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APPENDIX 3.1 '

THE LOAD FIOW FQUATIONS: FORMULATION AND USEFUL PROPERTIES

A3.1.1 TFormulation of the Load Flow Equations

Consider a bus i of a power system connected to adjacent buses j through
transmission lines. £Each line is modelled in steady-state asa pi circuit.
Shunt branches have identical imaginary admittances of ¥;; = Jb;; and the
series branch has an admittance of y,,. A shunt compensation device with
*imaginary admittance Veu = jb,; can be connected to bus 1i. Tap and phase
shifting transformers can be seen in analysis as particular cases of a
transformer with a complex tap ratio, ’ denoted 8- The tap changing
transformer exhibits a variable modulus t and fixed zero phase angle, while
the phase shifting transformer maintains a fixed unit modulus and has a

variable phase angle ¢.

The load flow equations needed in this work express real and reactive
power and line current injections (P,Q,J,) versus the complex bus voltage
components (V,§) and passive network controls (b_,t,$). Expressions for the
first two types of injections can be found in most textbooks on power systems,
but they are rarely given for the line current injection. Expressions for the

three types of injections are given below.

The real and reactive power Injections are components of the complex

apparent power S. This injection is the sum of the apparent powers sent to
the transmission lines, plus the reactive compensation. For bus 1, it is
written

€

Cuw *
S, *V, pus [Ii comp.] + )) jd:? tine [ Tiy tine * Iij shunt]

(A3.1.1)
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<

wvhere v, "1s the complex bus voltage
I, comp is the shunt compensation current
. I, 1ine 809 yune 8T the line series and shunt branch
currents
% indicates the complex conjugate.

The set A, contains the indices of buses adjacent to 1. Replacing line

voltages by bus voltages, the appropriate expression for S,.1is developed:

S; = v, [vy, 1"+ Ej‘uaidvi [(agyvy - a; vy, + Vilun*
€

(A35.1.2.a)

- -V, + Z“é lauvilz(yLj + 30" - a“a“*vivj*yu*)
3

(A3.1.2.0b)

In gqq. A3.1.2.a, the term between brackets in the summation is the 1line
current I ;. The line current injection is taken to be J, 1, = 113(113)*'
The three required injections can then be written:

\

P, = Re(S,) = § ( |a,V,|%|y, |eos(q;) - K, cos(2,,)]) (A3.1.3)
JeAl

~p

Q = Im(S,) = -V,%b, - ¥ ( [anvilz(lyidlsin(nij) +b,,) + K sin(®,;)) |
JeAdl

(A3.1.4)
) 1
Jpg = lauvil2|Y+1Jl2 + lanVJIzlyulz - ZK“‘y‘“ijIcos(i’iJ + n+ij) )
' (A3.1.5)
]
w!'x’ere Ry = lag,| lagl lyyl vV, (A3.1.6.a)
By = (8, -6 + (9 - 93) - 013 ’ (A3.1.6.b)
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and

Q, is the phase angle of the series admittance y,;.

ly"l ana ot are the modulus and phase angle of the sum of
the 1ine series and shunt admittances.

6, and 5J are voltage phase angles at buses 1 and j.

$;; and o, are phase shifter angles on line 1j placed at
buses 1 and j respectively.
If passive network contrbls are absent from a bus or from a line, then default
values are inserted in the load flow equations. The taps take om, values of
one in the. scaled per unit system, and shifters and shunt compensation

admittance take on values of zero.

~

A3.1.2 Useful Propertlies of the lLoad Flow Equations

Topological properties of the load flow equations useful for optimization
will be stated in this section. These are basic.qualities of the equations,
and are invariant under coordinate transformations. Definitions of terms used

here can be found in [Chillingsworth 1976] or [Bazaraa & Shetty 1979].

Properties of the function

- The load flow equations define a continuous manifold.

- The feasible region of the optimization is the intersection of the load
flow manifold and the inequality-feasible hyperbox. It forms a closed
and bounded (hence compact) set. That 1is d{important in convergence
theorems.

- The feasible region is assumed connected. Then the optimal solution need

“not be computed on many different (as yet undetected) segments of the

manifold.
- The feasible region 1is not convex in general, Locally convex regions
would be of great interest though. Each one of these regions is a

connected set where the Hessian of the load flow equations is positive
definite. It 1is known that the flat voltage profile 1s situated in a
locally convex reglon [Galiana & Banakar 1982].

)
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Properties of the derivative

- The derivative of the load flow equations is continuous. The load flow
Jacobian is the derivative of the Injections expressed in terms of the
states.

- The load flow equations are differentiable "almost everywhere", in the
sense ;)f Sard’s theorem [Milnor 1965]. That means that regions where the
Jacobian loses full rank are of lower dimension than the load flow
manifold. That makes those regions wvery "small".

- Differentiability is 1in doubt when the Jaccoian 1loses £full ,rank.

However, singular points of the Jacobian are non-degenerate, in the sense

of the Morse theorem [Chillingsworth 197V6] . Thalt means that the singular

points are differentiable, in a topological sense, and derivatives can be
computed in a different coordinate system. \ Along with the continuity
property, that makes the load flow manifold smooth everywhere.

- Derivatives are computed in coordinate systems other than the states

using the implicit function theorem and the chain rule [Spivak 1965].

n
-n

The dimension of the load flow manifold

The dimension of the load flow manifold, denoted dim(m), 1is one less
than the number of states. The load flow equations admit a null space of
dimension one. That 1is easily seen in polar coordinates, where all the
injections are functions of voltage phase angle differences, but not of any
angle alone. To avoid carrying the null space solutions, one phase angle is

designated reference angle and set to zero.

The dimension of the manifold is of practical importance because it
is also the dimension of the basis in the subproblem. Most but not all
combinations of dim(m) i:ndependem: varlables form a basis. More on infeasible

bases is given in section 3.4.1.




VY

APPENDIX 3.2

FORMULATION OF THE LOAD FLOW _JACOBTAN
l .

- f
The load flow Jacobian, denoted J, 1s the derivative of the wvector of
injections with respect to the vector of states. It is a matrix with as many
rows as there are injections and as many columns as there are states. Element

J,. is the derivative of the i'" injection versus the j*P state. Here are the

ij
expressions of the components of the Jacobian:

-~ w.r.t. the near bus (i) and far bus (j) voltage magnitudes:

____aPi = .r}.. + V1l313‘2‘}'1j|°°s Gy,  (a); a_?i = - _.___.__Kijcos(q,i"’) (b)
Lav, v, | av, Vs
9Q, = ‘2}_ 2 Vilaijlzlyijlsin Qy (e); al?L - - .________.___Ki-’sm@“) (d)
v, v, ) av, v,
EN 2 ' :
i - —_— [JLJ - Iajilzvdzlyijl] (e)
avi Vi Sy - \\
| .
a7 2 . ’
- Iy, - |813|2v12|Y13“ (£) -
aVJ V.j
e €Aa3.2.1)

- w.r.t. the near bus (1) and far bus (j) voltage phase angles: -

K]

3P ap ‘ )

i = K, sin(éij) (a); ol = K, Sin(<1>u) (b
asé, 3 LY
a :
U . g, cok(a,)) (e); 2% o g, cos(a,)) (& -
35, 36,
8Ty w Ry ysing@,, + 0%  (e); e L Yy )
I 36j a6,

(A3.2.2)
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(' - w.r.t. the near (ij) and far (ji) variable taps:
)
) | 4 oP K ®
i - i 4 laijilyijlvizcos QiJ (a); i - - LJCOS( “) (b)
aa,_‘j ay, da,, ay;
9, - Q—-—i - Jagllyylvisin 9y (e); . . __._______K“Sin(@“) (d
da; a, da;, ay;
T8I, = 2
55 [0y -. ajizvjzl}'i.jl] (e)
da,, - a,, : . .
33, = 2 . ‘
1 [y - aijzv12|Yi3| ] £)
day,; a,,
. (A3.2.3)
- w.r.t. the ﬁear (1j) and far (ji) phase shift phase angles:
- . p, _ 3P (a) ; ép, 8P, )
! 3¢y, L d¢yy aé,
0 . .0 @ %% .- (@
aqSid L 84y, as,
- aJ,y o 0dyy ] (e) - 9y,  _0Jy, £)
6:,151‘j a6, 34, as,
(A3.2.4)
- w.r.t. the near shunt compensation admittance:
% L Lyp (43.2.5)
ab,,
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APPENDIX 3.3

TRANSFORMATION OF THE LOAD FLOW JACOBIAN FOR USE IN THE OPF SUBPROBLEM

The modifications implemented in the subproblem formulation will now be
described mathematically. They amount to making (1) the pyoper cholce of

partition of varilables and (2) a transformation of the load flow Jacobian.

The rows and columns of the load flow Jacobian are partitioned along the
lines of the independent/dependent injections and states. The number of
iIndependent injectlons is made equal to the number of dépendent states.
Besides that, one dependent injection is labelled the manifold injection. The

reader is referred to Appendix 3.4 for the details of the nomenclature for

these partitions. The load flow Jacobianm then takes on the more detailed
form &
{
b4 Iba Jpp X4
b4 - de me x, (A3-4-1)
Ta Jag Jab

Hence the Jacobian Is partitioned into six parts depending on the status of
the (y,x) palrs. The first subscript pertains to the injection, the second to
the state.

The change of algebraic basis is performed by having the y, and the x;
subvectors swap places. Then the right hand side vector of variables would be
made up of the desired basis. Simple algebraic manipulations lead to the new
formulation

d’ = G'b’ (A3.4.2)

or more explicitly,

Xy ny Gxx Yo
Y = G,,Iy Gy - Xy (A3.4.3)
Y4 ‘ Gyy Gyx
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The components of the G’ matrix are expressed in terms of the components of J.

G,y = Jpgt (a) Gy = - Jog e ()
Gy = Joadoat (b) G ™ Jop = JoaTpg Ty (e)
Gy = Jgadpa * (e) Gy = Jgp - JoiTpa Tpp (D)
(A3.4.4)

The elements of G’ are the sensitivity coefficients, used in many linear

models. It should be noted that eq. A3.4.1 and A3.4.3 are mathematically

equivalent.

The equation linking y to the independent variables is retained as the
linear model of the load flow manifold. It is the generilized power balance

equation. This equation will be presented from here on as

g'b =0 (A3.4.5)

with
gl = [_Gwr 1 'GmxT] (A3.4.6)

-

The remaining rows of G’ form the functional representation of the
dependent variables, and together form a matrix denoted G,’. Hence d = G,;’b’.
A final modification brings the formulation to its definite form. A#¢ zero
column vector is cor;catenated to G,', at least conceptually, in order to
express d as a function of b. The augmented matrix is the G, matrix referred
to in the subproblem formulation. Since bounds are placed on dispatchable
quantities d,, the final expression is written in terms of that vector. It {is

written

d, = d, + G;b (A3.4.7)

dg = d, + d, " (A3.4.8)

- G, = [cy 0 Gx:] | (A3.4.9)




APPENDIX 3.4

) (¢ FO OPF_AND SUBP

Some basic nomenclature has already been defined, when 'presenting the
OPF. Some new nomenclature and notatlon are needed in formulating and solving
the subproblems, to keep track of the various partitions placed on the
variables and on the corresponding sets of coefficients. Special attention
should be paid to this Appendix, since it will be assumed in the subsequent

text that the new nomenclature and notation are understood.

Recall that the load flow variables are mnaturally partitioned into
injections (y) and states (x); their components were enumerated in section
3.3.1. Independently, variables are partitioned mathematically as Independent
(denoted b, for basis) or dependent (d). One injection 1is labelled the
- - manlfold variable, and one state is the reference state. The crossing of the

two partitions results in the following sets of wvariables:

- seen as in injections/states :

Yo X4
y = Ya (a), X = X, (b) (A3.4.1)
Ya Xy

with subscripts b,d denoting independent, dependent variables,
m denoting the manifold injection,

r denoting the reference state.

The reference state being set identically to zero, it will be

ignored from here on. It will be chosen a voltage phase angle.

- seen as iIindependent/dependent :

4N -
x\ b= v, (a), d = X, (b) , (A3.4.2)
VTA Xy Ja
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The inclusion of manifold injection y, in vector b is retained because it
will simplify notation, even though it 1isn’t independent. Independent

variables are denoted with subscript b, and together form vector b'.

The three ;:ypes of load flow wvariables listed below are regrouped under a
common notation, but distinguished by subscripts g, 1, and e. Subscript g is
used In a general sense to designate generation, for all variables. This 1is
proposed to unify notation; all dispatchable variables have %een affixed that
sabscript. Subscript 1 denotes the bus load wvariables. Jubscript e is
needed in the subproblem to denote the expansion point for all load flow
quantities. The notation without subscript is reserved for excursions from
the expansion point, used iIn the formulation of the linearized load flow

equations. The relations between the variables are given by the expressions

Yy =5, - (yp +7,) (A3.4.3.a)
X =x, - X, ) (A3.4.3.b)
or . .
b=1b, - (b +b) (A3.4.4.a)
d=4d, - (d +4d) (A3.4.4.D)

Similar notation can be applied to subsets of y/x or b/d.

A partition separates inactive variables from those at a bound.

Superscripts I and A are assigned for this purpose.

A partition separates those independent variables which appear in the
objective function from those which do not. The latter are called transparent
and are denoted t . For example, in economic dispatch, Independent variables
other than real power generations are transparent. The partitions would be

designated by subscripts p and t.

Lagrange multipliers In the subproblem solution are considered in two

groups. Those associated with independent variables are denoted pu , and those

with functional constraints X . In particular, the generalized power balance
equation is an equality constraint, and is always active, Its Lagrange
multiplier is denoted Ay The remaining Lagrange multipliers of )\ are
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denoted by the ), vector. Together, all Lagrange multipliers for the static
OPF are denoted A.

All the coefficients of the functional constraints, obtained through
manipulations on the full 1load £low Jacobian matrix, are denoted g
Elements g;, form row vectors giT which in turn make up the G matrix. The row
vector of coefficients for the gemneralized power balance equation is denoted
goT and the remaining part of G is denoted G,. The partition of rows of G
according to the active/inactive status of the dependent variables will not
require additional notation, since the context will always distinguish between
the two.

Aside from superscript M and m for upper and lower bounds, superscript
1im will be used to designate the group of variables at their known limits,
without specifying which limit.

Other notation will be defined as it appears. As a final note, we will
try to keep notation as simple as possible, even though many partitions have
been defined, by avoiding multiple superscripts and subscripts whenever
possible. This will be done by dropping superscripts or subscripts where the
context allows. Prior notice will be given before the simplification is

implemented.



PARTITIONS AND DIMENSIONS OF VARIABLES, COEFFICIENT MATRICES AND
VECTORS IN THE OPTIMALITY CONDITIONS

~

Here are the partitions of the wvariables, coefficient matrices and
vectors needed for the optimality conditions of economic dispatch, minimum
loss and minimum load shedding. They are split along the active/inactive and
the P /transparent partitions. The notation has already been defined In
Appendix 3.4, except the-term H which is defined in this Appendix.

"
- Partitions for the independent variables?
4 - A
- +
- = 8 1 Q o
b A tgA -t LQ)A ‘ (A4.1.1)
t t, - () + t)

|
!
) APPENDIX 4.1
|
|
\
|

-

The subscripts b assigned to the loads and expansion points in eq. A4.1.1 are
ot meant to indicate that they are at a bound; rather they show that the

assoclated dispatchable variables are at a bound.

, - Partition of the arrays of the objective function parameters:
a = B a? (A4.1.2.a)
. o a
and i -
- N
B = BA ] (A4.1.2.b)
B

- Partition of the dependent constraints:’

v

80T gopAT 8op

A t
(‘ ' G, Glp Glp Glt.A‘ G,

e e

T

(A4.1.3)
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- Partition of the indexing matrices R,, R, and R;: -

_ =
% -
O (A4.1.4)
, R, = R, .1.
B %
r-RdA -
R, = o (A4.1.5)
L d — -
and
L‘
R 4.1.6
R, = 0, (A4.1.6)

The submatrices R,, R, R and R,* contain diagonal elements 11, and
submatrices 0, 0, 0, and 0, are zero matrices, all of the appropriate

-

dimensions.

The term H 1s defined here, 1in order to simplify notation in the
optimality conditions of Chapter 4:

Arn A
H = RfG,

This H matrix is made up from the rows of coefficients of the active dependent
constraints, premultiplied by the appropriate 1 index. The partitions of H

are identical to those for G,.

Nomenclature is introduced for the dimensions of all these wvectors and
matrices, and others about to be defined. The dimensions are then given in
Table A4.1.1.

- Nomenclature:
fxg,ngI,ngA number of generations, inactive generations a;nd
active generations,respectively;
nt,ntI,ntA number of transparent variables, inactive
transparents, and active transparents,

respectively;



nl,nlI,nlA number of loads,

respectively.

~ Dimensions:

and active transparents,respsctively;

inactive loads and active loads

TABLE A4.1.1

DIMENSIONS OF PRINCIPAL VECTORS AND MATRICES

Varilables Dimension
P P8y ng x1
tg,tslim nt x 1
P“‘,PSA,Pl“,PeA,gopA,pp.,a“ ngA x 1
PI,PgI,PII,PeI,gop,aI ngl x 1
the et et gt ntA x 1
th ettt e g ntI x 1
k,l:m ndA x 1
BAR, ngA x ngA
BI,Op ngl x ngl
Rt ntA X ntA
\ 0, " ntI x ntI
GlpA,HpA ndA X ngA
) G,,,H, ndA x ngl
‘ G, A HA " ndA x ntA
’ G,y H, pdA x ntl
RA ndA x ndA
. 0, ndI x ndI
( R,A nlA x nlA
nll x nll
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‘ APPENDIX 4.2

DEGENERACY

2

Degeneracy occurs x\rhen the active constraints outnumber the inactive
independent variables. It can mean one of two things: that the optimal
solution trajectory has met with a feasibility limit, or it has moved to a
vertex of the feasible region. For the latter, the number of faces joined at
that vertex 1is greater than the number of independent wvariables. It 1§

important to have techniques to distinguish between the two, and for the

latter, to reorganize the active set and push forward the optimal solution

trajectory. This sectlon proposes .some techniques to deal with the
» degeneracies, for the different situations encountered in the study.
Example

First, a simple 1llustration of degeneracy is presented. Consider the
quadratic program

min 9.25 - [l 6] + ! xl xz] 2 xl i
xlpxz 2 Xz

s.t.

< X, + X, s 1+ 108

0 < x, < 2 (EX1)
0 < X, < 2

- The cost contours and the feasible region are drawn at 6=0 in figure A4.2.1.a.
The optimal solution can be seen tO be x,=0, x,=1 and the functional
constraint is at its upper bound. As 6 increases, an optimal solution

trajectory climbs the x,=0 constraint. The optimal solution trajectory is

‘ _ X, =0 o= 3 - 208

x, = 1 + 108 By = 0
x1+x2=-l+109 A1=4-208
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The situation at €=0.1 i$ drawn in figure A4.2.1.b. The optimal solution
trajectory has reached the corner of the box, and now three constraints are
active in two-dimensional space. This is an example of degeneracy. . The

values of the varilables at €=0.1 are x,=0, x, = x,+x, = 2, py=1, p,=0, Ap=2.

Pad
A successful elimination of degeneracy would take x, off its lower bound.
In the process, varlables x move continuously, but the Lagrange multipliers

jump. The new optimal solution trajectory is

x, =108 - 1 u}/wo ;
x, = 2 TH, = 208 - 1
X, +x, =1+ 108 Ay =3 - 208

~

and the values of the variables at 6=0.1 are x,;=0, x, = x, + x, = 2, p,=0,
dy=l, A;=1. )
4 !

For 6 between 0.1 and 0.15 the optimal solution trajectory follows the
x,=2 bound, to x;=0.5. For O between 0.15 and 0.25, 1illustrated in figure
A4.2.1.c, the optimal solution is fixed at x,=0.5, x,=2, and the functional
constraint is inactive. At 6=0.25, the functional constraint hits its lower
bound.v For 6 between 0.25 and 0.4, the optimal solution trajec‘tory follows
the x,=2 bound to x,=2. At 8=0.4, the active set is a single point, the top
right-hand corner of the box. This is 1illustrated in figure A4.2.1.d.
Degeneracy cannot be vesolved here, because a further increase in 8 results in
an empty feasible region. The value 8=0.4 represents the feasibility 1limit

for problem EX1. This completes the example.

-

Four cases of degeneracy and their remedies are considered, A first
group of cases, deemed "pathological"”, could occur when the G constraint
matrix for active constraints loses fuill rank. A second case, used in real
power dispatch, frees expensive real power generations from their lower boundsé
when the solution trajectory would otherwise be blocked. In the third case, a
technique for resolving degeneracy 1s presented for when there 1is one
constraint too many. This problem always accompanies a breakpoint in
parametric linear programming (minimum loss). It is also likely to be the most
common degeneracy in all the optimization procedures being studied here.

Ll
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Finally a method is suggested for diffusing degeneracies with too many

constraints being added simultaneously to the active set.

All but one of the applications in this section are based on perturbation
techniques., They modify the problem slightly, to create artificial facets in
the feasible reglon, in place of the degenerate vertex. The optimal solution
trajectory passes over the edges or possibly the vertices of these facets,
which are not degenerate. The remaining application, the third, is based on
pivoting techniques. This method, prevalent iIn linear programming, -is a
combinatorial technique which tries to find an alternative active set. Rules
exist to avoid repetition of candidates, or cycling. The case presegied here

is a simple application of pivoting techniques.

Case 1. Pathological degeneracies

We call pathological the following degeneracy: the particular arrangement
of system parameters and system topology are such that for a newly activated

constraint, say 4 the vector of sensitivity coefficients g, is numericaily

L
linearly depende:t on the rows already forming the G matrix for active
constraints. In the following, a rank deficlency of one will be considered.
The case where two or more simultaneOﬂsly activated constraints are linearly
dependent on the previous constratnt; is wvirtually impossible, but
perturbation techniques suggested further;&oulo allow to treat them one at a

time.

Figure A4.2.2.a illustrates a pathological degéneracy which occurs when
the perturbation function éffects only the right-hand-side of the optimality
conditions. Some constraints, say C;, and C,, are active. In the three
dimensional space, up to three active constraints are permitted. As 6 is
increased ¢, 1is é%ised and G, is lowered. The active segment [ab].and the
indctive segmefit [cd] are parallel. At some ©=68', all three constraints aée
active and meet alorg segments [ab] = [cd]. Once that value of ® has passed,
constraint G, is freed. The diffic;lty 1s in choosing which constraint must

be dropped.
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The easiest way to resolve this type of degeneracy is to perturb g, by a
small amount, to destroy the parallelism of the intersections of the
constraints. The perturbation should be negligeable compared to system
quantities but large compared to machine precision. A single element of g,
say g,;, could be perturbed by te. The sign of ¢ is chosen so that at the
degenerate breakpoint, the new copstraint remains inactive. At a slightly
higher wvalue of ©, a new breakpoint 1s encountered when the perturbed
constraint is activated. All the constraints would likely be active over some
small interval of 6. Then a Lagrange multiplier will reduce to zero and the
corresponding constraint is dropped. The degenerate breakpoint is replaced by

two breakpoints; that is a typlcal consequence of the perturbation technique.

This case also resolves any problem of parallel constraints. Only one

can be active, except for some 6=6',

Figure A4.2.2.b illustrates a pathological degeneracy which occurs when
the perturbation affects the left-hand-side of the optimality conditions.
This could occur in contingency analysis, when transmission line parameters or
the quadratic cost parameters are varied. Constraints G, and C, are active,
and share segment [ab]. As © is increased, constraint C; 1s rotated. At some
©=8', the three constraint planes meet along [ab]. Once this value of © has
passed, constraint C, is freed. Again the difficulty is to determine which

constraint is dropped.

Again the case of a single rank deficiency will be resolved. The easiest
solution technique would be to perturb the right-hand-side limit of the new

constraint by e. The sign of ¢ would be chosen so that at the degenerate

- breakpoint the mnew constraint remains inactive, When the constraint 1is

activated, at a slightly higher value of 8, the intersections of the
constraints taken all together no 1longer coincide. Again the leaving
constraint is decided by the regular process. The case of suddenly parallel

and coinciding constraints can be handled by this technique.

A most pathological case 1is portrayed in figure A44.2.2.c. The
constraints share as intersection the 1line segments [ab]. As B increases

constraints C, and G, move together in such a way that their intersection
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always lies on G,. The active constraint matrix G 1is rank deficient
independently of 8. This has occured occasionally in our numerical tests. In
this case the dependent constraints which cause rank deficiency need not be
placed Iin the cptimality conditions, since the feasible region 1s accurately
represented by the other active constraints. This speclal constraint is
monitored separately until one of the constraints in the optimality conditions
is released from the active set, Only then 1s 1t resubmitted to the

optimality conditions.

Perturbation ctechniques, such as those presented above, proceed by
solving slightly perturbed problems, ’i‘racking of the optimal solutions c;l"lf the
true problem can be resumed once the solution trajectory is pushed far enough
beyond the degenerate breakpoint. With the a'ssprance that the proper optimal
active set 1is kmown, the optimality conditions are recomputed without the
perturbations, Since the perturbations are small, the solutions to the

unperturbed problem should be very close to those of the perturbed problem.

Case 2. Degeneracy; occuring with real power generations at their

lower bounds

The second case is an idea suggested for real power dispatch [Fahmideh-
Vojdani 1982]. When degeneracy occurs and some real power generations are at
a lower bound, as many as needed are released from theilr bounds. If there is a
choice, those with the incrementally cheapest lower bounds are taken first.
This 1s a simple rule, easy to implement, so it can be proposed tentatively
when applicable. It can be proven valid on the simple problem (ed) of
economic dispatch, with functional dependent constraints omitted. In general
though, it can only by considered a heuristic. A simple counterexample
illustrates the point. If constraint =x, + 3/4x, = 2-300 1is added to problem
EX1, at ©=1/30 three constraints are active; x;=0, x, + x, = 4/3, and x, +
3/4x, = 1. Variable x,=4/3 is inactive. As © 1is increased, constraint x, +
x, = 148 1is dropped from the active set, and x, remains at a lower bound.
That shows that functional constraints can be dropped from the active set

before lower bound generations.
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Case 3. Degeneracy due to one constraint too many

When the constralits outnumber the " independent variables by one, a
pivoting technique can be implemented quite easily. To resolve degeneracy,
the load flow variables are held constant, but a new set of Lagrange

multipliers is sought which can solve the optimality conditions.

N

?Then the new constraint is added to the active set, the constraint matrix
A, asi in eq.4.11l, becomes "long", with one more row than column. Its transpose
is "wide". Holding load flow variables constant, 1t is clear that the set of
equatic;ns for the Lagrange multipliers allows a manifold of solutions, with

one degree of freedom. At 8,
ATA = Bb(8,) +a . : (A4.2.1)

In the following, subscripts o and n pertain to old and new constraints,
respectively. Let the Lagrange multiplier of the newly activated constraint
serve as the parameter, with which other Lagrange multipliers are expressed.

The expression is

;

A, = A [Bb(B,) +a - AAL] (A6.2.2.3)
= A, + AAA, (A4.2.2.b)
where A, ,A, are the square constraint matrix and the Lagrange

multipliers before the addition of the new active
constraint.
AL LA, are the new vector of constraint coefficients and

the new Lagrange multiplier.

The new combination of Lagrange multipliers which satisfies eq. A4.2.2
contains all non-negative values, but at least one value is nil. The newly
added constraint remains in the active set and the variable whose ,Lagrange

multiplier vanishes 1s dropped from the active set.

See figures A4.2.3.a and .b for an illustration of thg search for a new

set of Lagrange multipliers. A unique trajectory of Lagrange multipliers
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leads to a bounded hyperplane of values,at 6=68,. In fig. a, one Lagrange
multiplier is chosen along some opposite edge of the hyperplane, where another
Lagrange multiplier 1s chosen as zero. From there the regular process
continues. In fig. b, no other Lagrange multiplier for an inequality
constraint can be reached, so the feasibility limit has been reached.

The procedure to find the new Lagrange multiplier is as follows. Allow A
in eq. A4.2.2 to increase, and compute values of A for which values of

elements of A, can drop to zero. The steps are

STEP 1. Set i=)l and i"=0. This procedure is not applied to the
generalized power balance equation, an equality constraint.

STEP 2. Set i=i+l. If {>n, the dimension of A , go to STEP 6.

STEP 3. If AA = 0, then A, cannot drop to zero. Return to STEP 2.
If not, go to STEP &, ’

STEP 4. Compute the value of A for which A =0.

A
==
Any —-—“mMi (A4.2.3)

STEP 5. Keep track of the smallest value of A ,.
A" = min ( Ay, ) ’ (A4 .2.4)
i

Recall for which { the A" has been obtained, call it i*.

STEP 6. If 1"=0, then no member of A, can go to zero. Notify the

user or a control outside the subproblem. STOP. If not, go

to STEP 7.
STEP 7. Compute values of the Lagrange multipliers.
Bg = Ay + AN.AT (A4.2.5.a)
A, = A (A4.2.5.b)

and in particular

A =0 (A4.2.5.¢)
The new Lagrange multipliers have been found. STOP. \

Values of A, versus A are drawn in figure A4.2.4. In this example, A,
i the first to reach zero. New values of all Lagrange multipliers are found

on the dotted line.
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If no member of A, drops to zero, a feasibility limit has been reached.

Degeneracy can be resolved if at least one member of A, drops to zero.

Ao A
'

,6=©, EVERYWHERE /
/ ON THE PLANE

/

===
\

=

——

///1//////////”/////////////// o

(b

A

Figure 4.2.3 The trajectory of Lagrange multipliers.

(a) feasible case; (b) infeasible case.

1
“\NEW VALUES OF A N,

Figure A4.2.4 The new values of the Lagrange
multipliers.
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Case 4. Degeneracy with more than one constrdint too many

The last technique proposed here 1s used when the constraints outnumber
the independent wvariables by more than one. Such a situation occurs at the
beginning of the load shedding problem. The method consists of adding small
perturbations to some of the newly added activated constraints, to avoid
having them all becoming active together. Let the dimension of the basis be
denoted nb. For some 6=8,, many constraints are activated, so that the number
of constraints is greater than nb, say nb+m. Then m-1 of the newly activated
constraints are perturbed on thelr right-hand-sides by different small amounts

.
€

gin = d,, T¢ (A4.2.6.3)
for dependent variable constraints

and

by, = b t™ e, (A4.2.6.b)
for independent variable constraints,

s I

Again, the sign of the perturbation is chosen to keep the constraints inactive
at the degenerate breakpoint. Not all constraints are perturbed, as in the
classical technique, because then the optimal solution trajectory would no

longer be optimal. It would have to jump to a new trajectory.

The remaining problem has one constraint too many. Its degeneracy can be
tested using the previous pivoting technique. If degeneracy is resolved, then
the solution trajectory will proceed, but it 1is likely to meet one of the
perturbed constraints very soon. Some, but not mnecessarily all of the
perturbed constraints will be processed this way. Hence a polnt with an m
dimensional degeneracy 1s replaced by at most m points with single dimensional
degeneracies. If all the degeneracies are resolved, the solution trajectory
proceeds. If any one degeneracy 1s wunresolvable, the problem has hit a
feasibility 1limit. If all degeneracles are resolved the perturbations can be
dropped and the optimal solution trajectory proceeds. A  simplified
illustration 1is presented in figures A4.2.5.a and b. Fig. a shows the
initial feasible reéion with a degenerate vertex. In fig. b the vertex has

been "lopped off", thanks to the perturbations, resulting in non-degenerate
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vertices. The method proposed above is slightly different,

in that one-
dimensional degeneracies are kept.

The solution trajectory moves through the
area of degeneracy, and if resolved, moves beyond.

(a) (®)

Figure A4.2.5 B}:eak—up of a degenerate vertex,

(a) before ; (b) ant:er.




PPENDIX 7
ATA FOR THE 6 BUS SYS

Line Data
Line from to G B"
no.
1 6 5 0.0000e0 -0.3333el
2 6 4 0.5540eQ0 -0.2325el
3 6 1 0.4340e0 -0.1827el
4 5 2 0.5770e0 -0.1308el
5 4 3 (0.0000e0 -0.7518el
6 4 1 0.5880e0 -0.2582el
7 3 2 0.4550e0 -0.6460e0
Tap Data
Tap on near Toin Toex
no. 1line bus
1 5 4 0.800 1.200
2 1 6 0.800 1.200
Bus Data
Bus ymin ymax Initial Load
no. - P ° Q
1 0.950 1.050 .0000 .0000
w2 °0.900 1.100 .0000 .0000
3 0.900 1.100 .5000 .1300
4 0.900 1.100 .6000 .0000
5 0.900 1.100 .7500 .1800
%6 0.900 1.100 .5000 .0500
N \ N
Generation Data
Bus Pmin Pmax Qmin Qmax
no.
1 0.100 0.920 -4.,250 0.250
2 0.500 0.500 -0.300 0.350
- 3 0.220 1.105 -0.340 0.340
T 4 0.150 0.990 -0.500 0.600
i 5. 0:330 1.200 -0,100 0.200
6 0.190 1.190 0.000 0.750

Bsh

.0000e-1
.1500e-1
.2100e-1
.0000e-1
.0000e-1
.1500e-1
.0000e-1

-

c

.050
.020
.010
.020
.010
.020

C O OO0 O

Jmax

.2000el
.3000el
.2000el
.3000el
.2000el
.3000el
.2000el

OCO0OQOOOOo

Cost coefficients

a

0.250
0.500
0.500
0.150
0.300
0.300

b

2.500
0.500
1.000.
2.000
1.750
1.200



~

Figure A7.1.

One-line diagram of the 6 bus system.

i

425




Line Data
Line from to G-
no. -
1 10 4 .9737el
Vo2 9 1 .1902l
7 -3 8 5 .2600el
4 8 2 3759l
5 7 5 4048el
‘ 6 7 4 .4048el
7 6 4 .3030el
8 6 1 4367el
9 5 4 .1902el
10 5 3 ~3563el
11 4 3 .1248el
12 4 2 .3609el
13 3 1 .1248el
Tap Data
Tap on near Toin
no. line bus
1 2 9 0.900
2 4 8 0.300
3 10 5 0.900
4 9 5 0.900
5 6 7 0.900
Bus Dqta

PPENDIX 7.2

DATA FOR_THE 10 BUS SYSTEM

.4868e2
.1252e2
.7140el
.1471e2
.1983e2
.1983e2
.1999e2
.1l461le2
.1252e2
.1734e2
.490lel
.1443e2
.4901el

Tmax

1.10p
1.100

1
1
1

.100
.100
.100

Bus yoin ymax Initial Load

no. P
1 0.950 1.050 .0000
1 0.900 1.100 1.500
2 0.900 1.100 1.000
3 0.900 1.100 2.500
4 0.900 1.100 10.000
5 0.900 1.100 0.000
- 6 0.900 1.100 1.000
7 0.900 1.100 0.000
. 8 0.900 1.100 2,500
9 0.900 1.100 1.000
10 0.900 1.100 0.000

Q

.0000
450
.330
.500
.300
.000
.350
.000
.700
.300
.000

OO O OO OMNOOO

Bsh

.2025e0
.3037e0
.2025e0
.3037e0

.2025e0
.1012e0
.1012e0
.2025e0
.3037e0
.2025e0
.2025e0
.3037e0
.2025e0

Jmnx

.1000e2
.5530el
.6550el
. 8000el
.5082e2
.1000e2
.8500el
.8145el
. 8500el
.7570el
. 7000el.
.8500el
.5000el
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Q Generation Data
Bus pmin  poax Qrin  Quex  Cost coefficients
no. c a b »
4 2.400 6.550 -0.780 3.900 0.025 0.502 0.0346
5 0.800 2.170 -0.660 1.200 0.050 0.648 0.0591
6 0.800 2.160 -0.5060 1.500 0.100 0.617 0.0903 -
7 1.600 4.340 -18200 2.400 0.020 0.563 0.0334 -
8 1.200 3.250 -0.790 1.950 0.075 0.589 0.039%
9 0.700 1.800 -0.680 1.550 0.060 0.591 0.1220
.10 0.800 3.250 -0.750 2.200 0.090 0.627 0.0406
? S
- i N )
13
o . 3 1 g9 '
e T T
C ol
13 . tr
ro
10 6

Figure A7.2. One-line diagram of the 10 bus system.




Line
no.

Ve~ WM

Line Data

from to

6
30
29
28
28
27

al
)4

206
26
26
25
24

24

P b b s e S e e R N NN NN
PROMWLWIA:NAL®OOO®EYOMMMRNW

'—l
NMWWwdhUuOIOOWOWO

- e el e el el el el e ) O N N N N N N N N
FORNMNOTLPULNOENOOVOFORHWORUNORMWVNDWV

NSO 0 0w

(=ReleieRe o NeNo oo NaleNeNeNc oo No e NoNoNoNoNeNoNolloNeNoNoNeNoNoNoloNeoNo RoNo le e Rl

G

.0000e0
.0000e0
.0000e0
.l444el
.6289%el
.1136el
.2954el
.5225el
.1686el
.1706el
.1244el
.4363el
.0000e0
.8195el
.3590el
.6413el
.0000e0
.0000e0
.0090e0
.0000e0
.4116el
.5102el
.2619%el
.1785el
.1868el
.1952el
.1677e2
.2540e1
.5880el
.1520e:

.3095el
.3076el
.1808el
.2491el
.1968el
.1461lel
.1310el
.1216el
.1969el
.9120e0
.9955e0
.6875e0

APPENDIX 7.3

DATA FOR THE 30 BUS SYSTEM

-0.

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

se

3333el

.7143el
-0,
-0,
-0,

4808el
4541el
220le2

.4772el
-0.

7449el

.1565e2
-0.

5116el

.5197el
-0.
-0.

5096el
1546e2

.2525el
-0.
-0.
-0,

2353e2
1103e2
2231e2

.4808el
-0.
-0.

1799el
3906el

.9091el
.1017e2
.1098e2
-0.
-0.

5401el
3985el

.4379el
-0.
-0,

4104el
3413e2

.3954el
-0.
-0.
-0.
-0.

1176e2
3173el
6097el
6219%el

.3691el
-0.
-0.
-0.
-0.

2251el
3976el
2989el
2288el

.1817el
-0,
-0.
-0.
-0.

3760el
1723el
1881lel
1294el

Bsh

b

.0000e-1

(=l jels " R-R-RoRoleoNoNeNeoleNoNeNeNoNoNoNoNoNoNoNoNeNolNoNoNeNeNoloNe o oo Reolol e

.0000e0
.0000e0
.0214e0
.0045e0
.0209e0
.0102e0
.0264e0
.0187e0
.0184e0
.0204e0 |

.0065e0
.0000e0
.0042e0
.0085e0
.0045e0
.0000e0
.0000e0
.0000e0
.0000e0
.0000e0
.0000e0
.0000e0
.0000e0
.0000e0
.0000e0
.0000e0

.0000e0

.0000e0
.0000e0

.0000e0
.0000e0
.0000e0
.0000e0
.0000e0
.0000e0
.0000e0
.0000e0
.0000e0
.0000e0
.0000e0
.0000e0

COO0O0COO00OOOOOOO0O0O0OO000RODOOOOHHODOHODOHOHOODOO

Jmu

.2000el
.6500e0
.6500e0
.3200e0
.3200e0
.3000e0
.7000e0
.6500e0
,6500e0
.6500e0
.3000e0
.3200e0
.6500e0
.3000e0
.3000e0
.9000e0
.6500e0
.3200e0
.6500e0
.6500e0
.3200e0
.3200e0
.3200e0
.3200e0
.1600e0
.3200e0
.3200e0
.1600e0
.3200e0
.3200e0
.3200e0
.1600e0
.1600e0
.1600e0
.1600e0
.1600e0
,1600e0
.1600e0
.1600e0
.1600e0
.1600e0
.1600e0




Shunt Data

Shunt bus Brin Brmax
no. E
1 3 0.000 0.050
2 6 0.000 0.050
3 7 0.000 0.050
4 8 0.000 0.050
5 12 0.000 0.050
6 13, 0.000 0.050
7 15 0.000 0.050
8 17 0.000 0.050
9 18 0.000 0.050
Tap Data
Tap on near Tmin Teax
no. line bus
1 12 24 0.900 1.100
2 18 20 0.900, 1.100
3 17 21 0.900 1.100
4 l6 21 0.900 1.100
Bus Data

Bus yman ymax

.950
.950

no.
1 0.950 1
1 0.950 1
2 0.900 1
3 0.900 1
4 0.950 1
5 0.950 1
6 0.950 1
7 0.950 1
8 0.950 1
9 0.950 1
10 0.950 1
11 0.950 1
12 0.950 1
13 0.950 1
14 0.950 1
15 0.950 1
16 0.950 1
17 0.950 1
18 0.950 1
‘19 0.950 1
20 0.950 1
0 1
0 1

.050
.050
.050
.050
.050
. 050
.050
.050
.050
.050
.050
. 050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050

Initial Load

P

.0000
.0000
.1060
.0240
.0000
.0350
.0870
.0320
.0820
.0620
.0320
.0950
.1120
.0220
.0000
.1750
.0350
.0900
.0580
.0000
.0760
.0000
.2280

Q

.0000
.0000
.0190
.0090
. 0000
.0230
.0670
.0160
.0250
.0160
.0090
. 0340
.0750
.0070
.0000
.1120
.0180
.0580
.0200
.0000
.0160
.0000
.1090
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Bus Data (cont.)
Bus yoin ymax Initial Load
no, ° P Q
23 0.950 1.05¢
24 0.950 1.050
£5 0.950 1.050
26 0.950 1.050 2
27 0.950 1.050
28 0.950 1.050
29 0.950 1.050
30 0.950 1.050

Generation Data

\ i )

Bus pmin  pmax QUir Q"X Gost coefficients
no. c a b
25 0.500 2,000 -0.200 1.500 0.000 200.0 75
26 0.200 0.800 -0.200 0.600 0.000 175.0 350
27 0.150 0.500 -0.150 0.625 0.000 100.0 1250
28 0.100 0.350 -0.150 0.487 0.000 325.0 167
29 G.100 0.300 -0.100 0.400 0.000 300.0 500
30 0.120 0.400 -0.150 0.847 0.000 300.0 500

430
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APPENDIX 7.4
DATA FOR THE 118 BUS SYSTEM

Line Data
Line from to R X B Juax
no.

1 118 076 0.01640D0 0.05440D0 0.01356D0 1.370D0

2 118 075 0.01450D0 0.04810D0 0.01198D0 1.370D0

3 117 012 0.03290D0 0.14000D0 0.03580D0 1.370D0

4 116 068 0.00034D0 0.00405D0 0.16400D0  4.055D0

5 115 114 0.00230D0 0.01040D0 0.00276D0 1.370DO

6 115 027 0.01640D0 0.07410D0 0.01972D0 . 1.370D0O

7 114 032 0.01350D0 0,06120D0 0.01628D0 1.370DQ

8 113 032 0.06150D0 0.20300D0 0.05180D0 1.370D0

9 113 017 0.00913D0 0.03010D0 0.00768D0 1.370D0
10 112 110 0.02470D0 0.06400D0 0.06200D0 1.370D0
11 111 110 0.02200D0 0.07550D0 0.02000D0 1.370D0
12 110 109 0.02780D0 0.07620D0 0.02020D0 1.370D0
13 110 103 0.03906D0 0.18130D0 0.04610D0 1.370D0
14 109 108 0.01050D0 0.02880D0 0.00760D0 1.370D0
15 108 105 0.02610D0 0.07030DO 0.01844D0 1.370D0
16 107 106 0.05300D0 0.18300DC 0.04720D0 1.370D0
17 107 105 0.05300D0 0.18300D0 0.04720D0 1.370D0
18 106 105 0.01400D0 0.05470D0 0.01434D0 1.370D0
19 106 100 0.06050D0 0.22900D0 0.06200D0 1.370D0
20 105 104 0.00994D0 0.03780D0 0,00986D0 1.370D0
21 105 103 0.05350D0 0.16250D0 0.04080D0 1.370D0
22 104 103 0.04660D0 0.15840D0 0.04070D0 1.370D0
23 104 100 0.04510D0 0.20400D0 0.05410D0 1.370D0
24 103 100 0.01600D0 0.05250D0 0.05360D0 2.055D0
25 102 101 0.02460D0 0.11200D0 0.02940D0 1.370D0
26 102 092 0.01230D0 0.05590D0 0.01464D0 1.370D0
27 101 100 0.02770D0 0.12620D0 0.03280D0 1.370D0
28 100 099 0.01800D0 0.08130D0 0.02160D9 1.370D0
29 100 098 0.03970D0 0.17900D0 0.04760D0 1.370D0
30 100 094 0.01780D0 0.,05800D0 0.06040D0 2.055D0
31 100 092 0.06480D0 0,29500D0 0.07720D0 1.370D0
32 099 080 0.04540D0 0.20600D0 0.05460D0 1.370D0
33 098 080 0.02380D0 0.10800D0 0.02860D0 1.370D0
34 097 096 0.01730D0 0.08850D0 0.02400D0 1.370D0
35 097 080 0.01830D0 0.09340D0 0.02540D0 1.370D0
36 096 095 0.01710D0 0,05470D0 ©0,01474D0 1.370D0
37 096 094 0.02690D0 0.08690D0 0.02300D0 4 .055D0
38 096 082 0.01620D0 0.05300D0 0.05440D0 1.370D0
39 096 080 0.03560D0 0.18200D0 0.04940D0 1.370D0
40 095 094 0.01320D0 0.04340D0 0.01110D0 1.370D0
41 094 093 0.02230D0 ©0.,07320D0 0.01876D0 1.370D0
42 094 092 0.04810D0 0.15800D0 0.04060D0 1.370DO
43 093 092 0.02580D0 0.08480Dp0 0.02180D0 1.370D0



Line
no.

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
€9
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Line Data (cont.)

from to

092
092
091
090
089
089
088
087
086
085
085
084
083
082
081
081
080
080
079
078
077
077
077
075
075
075
074
073
072
072
071
070
070
069
069
069
068
067
067
066
066
066
065
065
064
064
063
062
062

091
089
090
089
088
085
085
086
085
084
083
083
082
077
080
068
079
077
078
077
076
075
069
074
070
069
070
071
071
024
070
069
024
068
049
047
065
066
062
065
062
049
064
038
063
061
059
061
060

COCOO0O0OO0O0O0O0OOOO0OOOOOOOOOO0OOCOCLDOODOOODDLDOCODOLODOOODOODODOODOOOO0OO

R

.03870D0
.00799D0
.02540D0
.01638D0
.01390D0
.02390D0
.02000D0
.00000D0
.03500D0
.03020D0
.04300D0
.06250D0
.01120D0
.02980D0
.00000D0
.00175D0
.01560D0
.01088D0
.00546D0
.00376D0
.04440D0
.06010D0
.03090D0
.01230D0
.04280D0
.04050D0
.04010D0
.00866D0
.04460D0
.04880D0
.00882D0
.03000D0
.10221D0
.00000D0
.09850D0
.08440D0
.00138D0
.02240D0
.02580D0
.00000DO0
,04820D0
,00900D0
.00269D0
.00901D0
.00172D0
.00000D0
.00000D0
.00824D0
.01230D0

SRR N ARl NelielelleBoBolc No A -R-NeNoleNeNeNeNeNeNoNeNoNoReNeNoNo e Ne i« Nole oo oo N Neo ol o)

.12720D0
.03829D0
.08360D0
.06517D0
.07120D0
.17300D0
.10200D0
.20740D0
.12300D0
.06410D0
.14800D0
.13200D0
.03665D0
.08530D0
.03700D0
.02020D0
.07040D0
.03321D0
.02440D0
.01240D0
.14800D0
.19990D0
.10100D0
.04060D0Q
.14100D0
.12200D0
.13230D0
.04540D0
.18000D0
.19600DO
.03550D0
.12700D0
.41150D0
.03700D0
.32400D0
.27780D0
.01600D0
.10150D0
.11700D0
.03700D0
.21800D0
.04595D0
.03020D0
.09860D0
.02000D0
.02680D0
.03860D0
.03760D0
.05610D0

CO0OO0OO0OrHROOODOO0OO0OOOCOOO0OODOROOOOOODOALODOODODOO0O0DO0OO0OOCOO0DO0O0O0OOO0O0

Bsh

.03268D0
.09620D0
.02140D0
.15880D0
.01934D0
.04700D0
.02760D0
.00000D0
.02760D0
.01234D0
.03480D0
.02580D0
.03796D0
.08174D0
.00000D0
.80800D0
.01870D0
.07000D0
.00648D0
.01264D0
.03680D0
.04978D0
.10380D0
.01034D0
.03600D0
.12400D00
.03368D0
.01178D0
.04444D0
.04880D0
.00878D0
.12200D0
.10198D0
.00000D0
.08280D0
.07092D0
.63800D0
.02682D0
.03100D0
.00000D0
.05780D0
.04960D0
.38000D0
.04600D0
.21600D0
.00000D0
.00000D0
.00980D0
.01468D0

HFNROPRNOANFOHRHMEARHEORPRRIE R RN RN R PR RPN R

.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.150D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.225D0
.015D0
.370D0
.055D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.225D0
.370D0
.370D0
.150D0
.370D0
.370D0
.225D0
,370D0
.055D0
.225D0
.055D0
.150D0
.225D0
.055D0
.055D0
.370D0
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Line Data (cont.)

Line from to R X,. B, Jmax
no.
93 061 06C 0.00264D0 0.01350D0 0.01456D0 1.370D0
94 061 059 0.03280D0O 0.15000D0 0.03880D0O 1.370DO
;95 060 059 0.03170DO 0.14500D0 0.03760D0  1.370D0
96 059 056 0.04070D0 0.12243D0 0.11050D0 1.370D0
97 059 055 0.04739D0 0.21580D0 0.05646D0 1.370D0 -
98 059 054 0.05030D0 0.22930D0 0.05980D0 1.370D0
99 058 056 0.03430D0 0.09660D0 0.02420D0 1.370D0
100 058 051 0.02550D0 0.07190D0 0.01788D0 1.370D0
101 057 056 0.03430D0 0.09660D0 0.02420D0 1.370D0
102 057 050 0.04740D0 0.13400D0 0.03320D0 1.370D0
103 056 055 0.00488D0 0.01510D0 0.00374D0 1.370D0
104 056 054 0.00275D0 0.00955D0 0.00732D0 2.055D0
105 055 054 0.01690D0 0.07070D0 0.02020D0 1.370D0
106 054 053 0.02630D0 0.12200D0 0.03100D0 1.370D9
107 054 049 0.03993D0 0.14507D0 0.14680D0 2.055D0
108 053 052 0.04050D0 0.16350D0 0.04058D0 1.370D0
f69 052 051 0.02030D0O 0.05880D0 0.01396D0 1.370D0
110 051 049 0.04860D0 0.13700D0 0.03420D0 1.370D0
111 050 049 0.02670D0 0.07520D0 0.01874D0 1.370D0
112 049 048 0.01790D0O 0.05050D0 0.01258D0 1.370D0
113 049 047 0.01910D0 0.06250D0 0.01604D0 1.370D0
114 049 045 0.06840D0 0.18600D0 0.04440D0 1.370DO
115 049 042 0.03575DC 0.16150D0 0.17200D0 1.370D0
116 048 046 0.06010DO 0.18900D0 0.04720D0 1.370D0
117 047 046 0.03800D0 0.12700D0 0.03160D0 1.370D0
118 046 045 0.04000D0 0.13560DC 0.03320D0 1.370D0
119 045 044 0.02240D0 0.09010D0 0.02240D0 1.370DO
120 044 043 0.06080D0 0.24540D0 0.06068D0 1.370D0
121+ 043 034 0.04130D0 0.16810D0 0.04226D0 '2.055D0
122 042 041 0.04100D0 0.13500D0 ©0.03440D0 1.370D0
123 042 040 0.05550D0 0.18300D0 0.04660D0 1.370D0
124 041 040 0.01450D0 0.04870D0 0.01222D0 2.055D0
125 040 039 0.01840D0 0.06050D0 0.01552D0 2.055D0
126 040 037 0.05930D0 0.16800D0 0.04200D0 1.370DO0
127 039 037 0.03210D0 0.10600D0 0.02700D0 1.370D0
128 038 037 0.00000D0 0.03750D0 0.00000D0  4.150D0
129 038 030 0.00464D0 0.05400D0 0.42200D0 6.225D0
130 037 035 0.01100D0 0.04970D0 0.01318DO 1.370D0
131 037 034 0.00256D0 0.00940D0. 0.00984D0  2.055D0
132 037 033 0.04150D0 0.14200D0 0.03660D0 1.370D0
133 036 035 0.00224D0 0.01020D0 0.00268D0 1.370D0
134 036 034 0.00871DO 0.02680D0 0.00568D0 1.370D0
135 034 019 0.07520D0 0.24700D0 0.06320D0 1.370DO
136 033 015 0.03800D0 0.12440D0 0.03194D0  1.370DO
137 032 031 0.02980D0 0.09850D0 0.02510D0 1.370D0
138 032 027 0.02290D0 0.07550D0 0.01926D0 1.370D0 .
139 032 023 0.03170DO 0.11530D0 0.11730D0 1.370D0
140 031 029 0.01080D0 0.021:10D0 0.00830D0 1.370D0
141 031 017 0.04740D0 0.15630D0 0.03990D0 1.370D0



Line
no.

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

- 162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

from to

030
030
030
029
028
027
026
025
024
023
022
021
020
019
019
018
017
017
0lse
015
015
014
013
012
012
012
012
011
011
010
009
008
007
006
005
005
003
002

026
017
008
028
027
025
025
023
023
022
021
020
019
018
015
017
016
015
012
014
013
012
011
011
007
003
002
005
004
009
008
005
006
005
004
003
001 -
001

COO0O0OO0O0ODD0OOCOODDOOCO0OO0OO0QLCOO0OO0ODO0ODODOOO0ODODDOOOOODO

Line Data (cont.)

R

.00799D0
.00000D0
.00431D0
.02370D0
.01913D0
.03180D0
. 00000D0
.01560D0
.01350D0
.03420D0
.02090D0
.01830D0
.02520D0
.01119D0
.012060D0
.01230D0
.04540D0
.01320D0
.02120D0
.05950D0
.07440D0
.02150D0
.02225D0
.00595D0
.00862D0
.04840D0
.01870D0
.02030D0
.02090D0
.00258D0
.00244D0
.00000D0
.00459D0
.01190D0
.00176D0
.02410D0
.01290D0
.03030D0

COO00O0O0C00O0OQO0OO0O0D0DO0OODOCDOOLDODODODODODLOOOOODSOOODOO

.08600D0
.03880D0
.05040D0
.09%430D0
.08550D0
.16300D0
.03820D0
.08000D0
.04920D0
.15900D0
.09700D0
.08490D0
.11700D0
.04930D0
.03940D0
.05050D0
.18010D0
.04370D0
.08340D0
.19500D0
.24440D0
.07070D0
.07310D0
.01960D0
.03400D0
.16000D0
.06160D0
.06820D0
.06880D0
.03220D0
.03050D0
.02670D0
.02080D0
.05400D0
.00798D0
.10800D0
.04240D0
.09990D0

COO0OO0CO0OO0OOHHMFHFOOO0ODODODOOODODOCOO0OO0DOD0DO0COOLOLOODODODOOOOOOOO

Bsh

.90800D0
.96000D0
.51400D0
.02380D0
.02160D0
.17640D0
.00000D0
.08640D0
.04980D0
.04040D0
.02460D0
.02160D0
.02980D0
.01142D0
.01010D0
.01298D0
.04660D0
.04440D0
.02140D0
.05020D0
.06268D0
.01816D0
.01876D0
.00502D0
.00874D0
.04060D0
.01572D0
.01738D0
.01748D0
.23000D0
.16200D0
.00000D0O
.00550D0
.01426D0
.00210D0
.02840D0
.01082p0
.02540D0

T L o - - - R O e e e e e e S e e R S Il T Sy S WA A G

.225D0
.225D0
.225D0
.370D0
.370D0
.370D0
.000D0
.055p0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.055D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.370D0
.225D0
.225D0
.225D0
.370D0
.370D0
.055D0
.370D0
.370D0
.370D0
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S Dat

Shunt bus prin pmax
no.

1l 005 0.000 "~ 0.050

2 037 0.000 0,050

3 044 0.000 0.050

4 045 0.000 0.050

5 048 0.000 0.050

6 079 0.000 0.050

7 082 0.000 0.050

8 083 0.000 0.050

9 110 0.000 0.050

Tap Data

Tap on mnear  Tun aax

no. line bus
1 51 86 0.800 1.200
2 58 81 0.800 1.200
3 83 65 0.800 1.200
4 89 64 0.800 1.200
5 90 63 0.800 1.200
6 143 30 0.800 1.200
7 148 26 0.800 1.200
8 173 8 0.800 1.200

Phase Shifter Data

Sh. on near guin gmax
no. line bus

1 77 68  -0.524  0.524
2 128 38  -0.524 0.524



Il

Bus
no.

WAL P WP

OOOOOOOOQOOOOOOOOOOQOOCOOOOOOOOOOOOOOOOOOOOOOOO

Bus Data

vmin

.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
. 950
. 950
.950
.950
. 950
.950
. 950
.950
.950
.950
.950
.950
.950
.950°
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
. 950
.950
.950
.950
.950
.950
. 950
.950
.950
.950
.950
.950

B i e e e bR R R R R R R R e b b b e e e e e o e e e b e e o

vmax

.050
.050
.050
.050
.100
.050
.050
.050
.100
.050
.050
.050
.050
.050
.050
.050
.100
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.100
.050
.050
.050
.050
.050
.050
.100
.100

050
.050

050
.050
.050
.050
.050
.050
.050

Initfal lLoad

OOOOOC}OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

P

.5100
.2000
.3900
.3900
.0000
.5200
.1900
.2800
.0000
.0000
.7000
L4700
.3400
.1400
.9000
.2500
.1100
.6000
L4500
.1800
.1400
.1000
.0700
.1300
0000
.0000
.7100
.1700
.2400
.0000
.3600
.5900
.2300
.5900
.3300
.3100
.0000
.0000
.2700
L6600
.1700
. 9600
. 1800
. 1600
.5300
. 0900
.3400

~

OCOO0O0OCCOO0COOOOCOCO0OO0O0O0DO00DO0ODOTCOOODOTODDOOOCOOOODOO0DOODO0OD00

Q

.2700
.0900
-1000
.1200
.0000
.2200
.0200
.0000
.0000
.0000
.2300
.1000
.1600
.0100
.3000
.1000
.0300
.3400
.2500
.0300
.0800
.0500
.0300
.0000
.0000
.0000
.1300
.0700
.0400
.0000
.2700
.2300
.0900
.2600
.0900
.1700
.0000
.0000
.1100
.2300
.1000
.2300
.0700
.0800
.2200
.1000
.0000
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Bus
no.

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68

69
70
71
72
73
74
75
76
77
78
79
80
81

83
84
85
86
87
88
89
90
91
92
93
94

Bug Data (cont.}

—_

[~ eellaNeBe N E-R=Nele el N Be oo Ne R Neo N Ne No N Ne N NeNeNeNe No e NolleNe NeNell - Ne No e Mol el

.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.950
.900
.950
.950
.950

Vmax

PR R R R R R R R R R R RNRRRRRPHRRRRERRERBPRRRRRHRRRRRRRP

.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
050
+100
.050
.050
.100
.050
.050
.050
.050
.050
.050
.0Z0
.050
.050
.050
.050
.050
.100
.050
.050
.050
.050
.100
.050
.050
.050
.100
.050
.050
.050
.050

Initial Load

QOO OCH OOOOCOCOOOFHFOODOLDOODOOODODOODOOODOOOONODOOHOOOOCOO

P

.2000
.8700
.1700
.1700
.1800
.2300
.1300
.6300
.8400
.1200
.1200
.7700
.7800
.0000
.7700
.0000
.0000
.0000
.3900
.2°00
.0000
.0000
.6600
.0000
.1200
.0600
.6800
.4700
.6800
.6100
.7100
.3900
.3000
.0000
.5400
.2000
.1100
L2400
2200
.0000
.4800
.0000
.6300
.1000
.6500
.1200
.3000

>N NoRoRBe oo N N> R-NeReNoNoNeNolleNoleNeNeNe o NoRoNe R NoloNeNeNoll _NelloNelNeNeNe oo Nelo e

Q

.1100
.3000
. 0400
. 0800
.0500
.1100
.3200
.2200
.1800
.0300
.0300
.1300
.0300
. 0000
.1400
. 0000
. 0000
.0000
.1800
.0700
. 0000
.0000
.2000
.0000
.0000
. 0000
.2700
.1100
.3600
.2800
.2600
.3200
.2600
.0000
.2700
.1000
.0700
.1500
.1000
. 0000
.1000,
.0000
L4200
.0000
.1000
.0700
.1600
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Bus
no.

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
i1l
112
113
114
115
116
117
118

Bus
no.

Bus Data (cont.)
Vmin

=l =EeRejoNooNoNoNeNoNeNoleNoNeNoNoNeNoNeoNoNo o)

.950
. 950
.950
.950
.950
.950
. 950
.950
.950
.950
. 950
.950
. 950
. 950
. 950
.950
.950
. 950
.950
.950
.950
.950
. 950
.950

vmax

.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050

050
.050
.050
.050
.100
.050
.050
.100
.050
.050

PR REERRPRRPRRRERRP R R e

Genexration Data

COO0COCODDOHOOOOOO+HOOQOO

Pmin

.700
.800
400
.200
.600
. 400
.300
.300
. 400
.300
.800
.200
.300
.300
.300
. 400
. 400
.300

Pmax

O P OO0 WLWNOMRROCOFRP™NRINEPE

.800
.170
.080
.170
.340
.080
.720
.720
.080
.720
.170
.240
L7120
.720
.720
.080
.080
.720

Initial Load

4

.4200
.3800
.1500
.3400
.4200
.3700
.2200
.0500
.2300
.3800
. 3100
.4300
.5000
.0200
.0800
.3900
.0000
. 6800
.0600
.0800
.2200
.8400
. 2000
.3300

COHOOOO0OODOCOODDO0OOODODODODODOOOOCOC

Q

.3100
.1500
.0900
.0800
.0000
.1800
.1500
.0300
.1600
.2500
.2600
.1600
.1200
.0100
.0300
.3000
.0000
.1300
.0000
.0300
.0700
.0000
.0800
.1000

DO OO O0OO0O OO0 OOOCOOOOOOOCOCO O

Qmin Qmax Cost

-0.230
-0.400
-999.9
-3.500
~9.999
-0.150
-0.800
-0.600
-Q.150
-0.400
-2.240
-6.000
-0.080
-0.150
-0.200
-0.400
-999.9
-999.,9

.150
.200
. 750
.200
. 999
.750
. 400
. 400
.750
. 400
.000
.250
. 400
. 400
. 400
. 750
999.9
999.9

CQCOOONNVOMOOUVONOI
el eRolofieNoNeoNeNoNoNoNeoNoNoNololeoNe)

coefficients

c

.000
.000
.000
.000
.000
..000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

60.
48,
69,
77.
50.
80.

73
90
60
30
19
30

151.3
151.3
136.7
151.3

39.
63.

40
85

151.3
151.3
151.3
136.7

67.

50

151.3

b

127.7
78.60
195.6
68.00
45,97
193.2
120.4
120.4
124.6
120.4
78.40
69.99
120.4
120,
120.
124,
206.
120.4

(=23 =2 W=~ s
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. Generation Data (cont.)

Bus pmin  pmax Qein QU Cost coefficients
no. - c a b
- 0.400 1.080 -999.9 999.9 0.000 136.7 1124.6
46 0.300 0.720 -0.080 0.400 0.000 151.3 120.4
) 49 0.800 2.170 -0.240 1.200 0.000 77.30 68.00
¢ ' 54 0.300 0.720 -08.00 0.400 0.000 151.3 120.4
55 0.400 1,080 -0.150 0.750 0.000 80.30 193.2
56 0.300 0.720 -0.080 0.400 0.000 151.3 120.4
59 0.400 1.080 -0.850 2.000 0.000 67.80 154.6
61 0.400 1.080 -1.650 0.750 0.000 67.80 154.6 R
! 62 0.400 1.080 -0.150 0.750 0.000 63.60 201.6
L 65 0.800 2.160 -8.000 1.500 0.000 45.33 104.1
. ’ 66 1.200 3.240 -0.450 6.000 0.000 42.13 72.93
69 1.600 4.340 -9.999 9,999 0.000 59.97 39,85
70 0.300 0.720 -999.9 999.9 0.000 151.3 120.4
72 0.300 0.720 -0.080 0.490 0.000 151.3 120.4
73 0.300 0.720 -9.999 9.?99 0.000 151.3 120.4
74 0.400 1.080 -0.150 0.750 0.000 80.30 193.2
76 0.400 1.080 -0.150 0.750 0.000 80.30 193.2
77 0.300 0.720 -0.400 0.400 0.000 151.3 120.4
80 1.200 3.250 -999.9 999.9 0.000 31.49 76.87 K
85 0.400 1.080 -0.150 0.750 0.000 67.80 154.6
87 0.400 1.080 -999.9 999.9 0.000 80.30 193.2
89 1.200 2.250 -0.450 2.200 0.000 58.13 71.76
90 0.800 2.170 -99.99 99,99 0.000 48.90 78.60 5
91 0.300 0.720 -999.9 999.9 0.000 151.3 120.4
92 0.400 1.080 -9.999 9,999 0.000 136.7 124.6
99 0.300 0.720 ~0.080 0.400 0.000 151.3 120.4
100 1.600 4,340 -0.480 2.400 0.000 28.20 45.20
103 1.600 4.340 -0.480 2.400 0.000 36.82 45,98
104 0.400 1.080 -999.,9 999.9 0.000 136.7 124.6
105 0.400 1.080 -0.150 0.750 0.000 136.7 124.6
107 0.400 1.080 -0.150 0.750 0.000 67.80 154.6



Figure A7.4. One-line diagram of the 118 bus system.
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APPENDIX 7.5

THE LINK BETWEEN SYSTEM SPARSITY AND THE SUBPROBLEM ILL-CONDITIONING
b

We studied the mechanism of computation of- the sensitivity coefficilents,
to show that sparsity and the decoupled nature of the load flow equations
result in the very small sensitivity coefficients, and not system size per se.
Their computation from elements of the load flow Jacobian, given in Appendix
3.2, requires the solution of a sparse matrix - sparse vector system of linear
equations Ax=b. Fig. A7.5. a. to c. show’nn example of the nonzero pattern of
the- sparse 186 dimensional matrix in the 118 bus test, and the nonzero

gcpatterns of its upper and lower triangular factors computed using subroutine
MA28 of the Harwell Ilibraries. The reordered L and U factors regroup
variables which have some degree of Interaction into many smaller trilangular
factors. As can be seen, there are many small bué relatively decoupled groups
of variables. Various right-hand-sides are solved for, corresponding to the

different constraints. These hold anywhere from 2 to 12 nonzero wvalues.

In the forward substitution step Ly=b, the few nonzeros in b, denoted
b,, are sure to create nonzero y, in y. Then they propagate to subsequent
variables (i.e. y.,, is nonzero:if the nonzero y, is part of its computation).
However, due to the fine segmentation of L, few new nonzeros are actually
created.

Beacause of the sparsity patterns of L and U, the x vector £ills up with
nonzeros in the backward substitution Ux=y. In the forward substitution, the
larger number of nonzeros at the bottom of L attracts nonzeros in the last
y's. They In turn create nonzeros in the bottom x’s. The larger number of
nonzeros along the right border of U allow those nonzeros of the bottom x’'s to

propagate almost everywhere.

Qur key observation is the following: it seems that by construction, most
often the y,  (corresponding to the nonzero b, ) are very small. The derived
nonzero vy,,, are also very small, because they are computed as the sum of a

small number of previously computed small values. Only:a few large ¥y, are
¥
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computed, corresponding to independent variables in the neiéhborhood of the
dependent variable being modelled. ' Thelr influence 1is usually limited however
because they do mnot propagate far. Then the small nonzero wvalues are

transfered to the computation of x in much the same way as described for the

y . above.

In summary, when the few y, in the intermediate solution vector y
corresponding to the nonzeros in the right-hand-side b vector are very small,
these small values propagate to the solution wvector x. This iIs due to the

sparse structures of the A matrix and of the b wvector.
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Nonzero structure of the A matrix.
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