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ABSTRACT

The analysis of turbulence by way of higher-order spectral moments is uncommon,

despite the relatively frequent use of such statistical analyses in other fields of physics

and engineering. In this work, higher-order spectral moments are used to investigate

the internal intermittency of the turbulent velocity and passive scalar (tempera-

ture) fields. This research first introduces the theory behind higher-order spectral

moments as they pertain to the field of turbulence. Then, a short-time-Fourier-

transform-based method is developed to estimate the higher-order spectral moments

and provide a relative, scale-by-scale measure of intermittency. Experimental data

are subsequently analysed and consist of measurements of homogeneous, isotropic,

high-Reynolds-number, passive and active grid turbulence and wall-bounded tur-

bulence (fully developed turbulent channel flow) over the Reynolds number range

35 ≤ Rλ ≤ 731. Emphasis is placed on third- and fourth-order spectral moments

using the definitions formalised by Antoni (2006), as such statistics are sensitive

to transients and provide insight into deviations from Gaussian behaviour in grid

turbulence. The higher-order spectral moments are also used to investigate the

Reynolds and Péclet number dependence of the internal intermittency of velocity

and passive scalar fields, respectively. The results demonstrate that the evolution

of higher-order spectral moments with Reynolds number is strongly dependent on

wavenumber. Additionally, the relative levels of internal intermittency of velocity

and passive scalar fields are compared and a higher level of internal intermittency

in the inertial subrange of the scalar field is consistently observed whereas a similar

level of internal intermittency is observed for the velocity and passive scalar fields
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for the high-Reynolds-numbers-cases as the Kolmogorov length scale is approached.

Finally, higher-order spectral moments are shown to display increased levels in the

near-wall region of a wall-bounded (channel) flow. The increased intermittent activ-

ity is believed to be caused by the presence of coherent structures in wall-bounded

flows.
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RÉSUMÉ

L’analyse d’écoulements turbulents au moyen de moments spectraux d’ordre

supérieur est rare malgré l’utilisation relativement fréquente de ces statistiques dans

d’autres domaines de la physique et de l’ingénierie. Des moments spectraux d’ordre

supérieur sont utilisés dans cet ouvrage pour étudier l’intermittence interne des

champs de vitesse turbulente et de scalaire passif (température). Cette étude offre

d’abord une présentation de la théorie des moments spectraux d’ordre supérieur en

les reliant à l’étude de la turbulence. Ensuite, une méthode basée sur la transformée

de Fourier à court terme est développée pour estimer ces moments spectraux d’ordre

supérieur et fournir une mesure relative de l’intermittence des écoulements turbulents

échelle par échelle. Des données expérimentales sont ensuite analysées. Ces données

consistent en des mesures en écoulements de turbulence homogène et isotrope et à

nombres de Reynolds élevés. Ces écoulements sont créés à l’aide de grilles passives et

actives et d’un canal à rapport hauteur-largeur élevé permettant d’atteindre des nom-

bres de Reynolds dans l’intervalle 35 ≤ Rλ ≤ 731. L’accent est mis sur les moments

spectraux de troisième et quatrième ordres en utilisant les définitions présentées par

Antoni (2006) car ces statistiques sont sensibles aux comportements transitoires et

permettent de localiser les écarts au comportement gaussien des écoulements turbu-

lents. Les moments spectraux d’ordre supérieur sont également utilisés pour étudier

la dépendance qu’a l’intermittence interne des champs de vitesse et de scalaires pas-

sifs sur le nombre de Reynolds et de Péclet. Les résultats démontrent que le rythme

auquel les moments spectraux d’ordre supérieur progressent grâce à l’évolution du
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nombre de Reynolds dépend fortement du nombre d’onde. De plus, les niveaux relat-

ifs d’intermittence interne des champs de vitesse et de scalaires passifs sont comparés

et un niveau plus élevé d’intermittence interne est observé dans la zone inertielle des

champs scalaires alors qu’un niveau similaire d’intermittence interne est observé pour

les champs de vitesse et de scalaires passifs dans les cas où le nombre de Reynolds

est élevé et pour des échelles s’approchant de celle de Kolmogorov. Enfin, une aug-

mentation des valeurs des moments spectraux d’ordre supérieur est observée dans la

région près de la paroi d’un écoulement en canal. L’augmentation de l’activité inter-

mittente est expliquée par la présence de structures cohérentes dans les écoulements

délimités par des parois.

vii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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CHAPTER 1
Introduction

1.1 Background and motivation

Fluid flows arise both in nature and in engineering practice. Understanding and

predicting their behaviour is essential for many engineering applications, such as the

flow of air around an airfoil, industrial pollutant dispersion into the environment,

or fuel injection into a combustion chamber. Such flows are generally categorized

as either “laminar” or “turbulent,” with turbulent flows being the norm, whereas

laminar flows are the exception. Flows in the laminar regime are characterised by

parallel layers (or lamina) of fluid between which transfer of heat and momentum oc-

curs primarily via molecular diffusion. Conversely, turbulent flows are characterised

by chaotic and disordered motion.

Although no succinct definition of turbulence exists, turbulent flows share some

common characteristics (Tennekes & Lumley, 1972). First, as noted above, turbu-

lent flows have a chaotic, random and disordered behaviour, which arises from the

nonlinear nature of the Navier-Stokes equations that govern fluid flow. Averaging

each term in the Navier-Stokes equations yields (in tensor notation):

∂⟨Ui⟩
∂t

+ ⟨Uj⟩
∂⟨Ui⟩
∂xj

= −
1
ρ
∂⟨p⟩
∂xi

+ ν
∂

2⟨Ui⟩
∂xj∂xj

−
∂⟨uiuj⟩
∂xj

(1.1)

where Ui is the instantaneous velocity, ui is the velocity fluctuation, t is time, xj is the

position, ρ is the density of the fluid, ν is the kinematic viscosity, and p is pressure.

Equations 1.1 are often referred to as the Reynolds-Averaged Navier-Stokes (RANS)
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equations. The last term on the right-hand-side has no equivalent in the original

(non-averaged) Navier-Stokes equations and introduces new unknowns, although the

number of equations remains the same. This is called the closure problem, and it

makes the details of turbulence very difficult to predict, both analytically and numer-

ically. Given the random and chaotic nature of turbulence, engineers and scientists

rely on statistical methods to analyse turbulent flows. Moreover, turbulence has

a strong ability to efficiently mix (or diffuse) quantities such as mass, momentum,

and energy (e.g. heat). This yields increased mixing of substances, drag, and heat

transfer rates. Furthermore, turbulence is a dissipative phenomenon and it needs a

continuous energy supply to overcome the rapid viscous decay of turbulent energy.

Finally, turbulence contains rotational structures (or “eddies”) of varying scales that

coexist and are superimposed. These common properties of turbulent flows are dis-

cussed extensively in the literature, and interested readers are referred to the works

of Tennekes and Lumley (1972) and Pope (2000) for further details.

Turbulent flows arise from instabilities in laminar flows. The transition from

laminar to turbulent flows is found to occur at large Reynolds numbers:

R = U`/ν, (1.2)

where U is a characteristic velocity in the flow field, and ` is a characteristic length

scale. The Reynolds number can be interpreted as the ratio of inertial to viscous

forces. As the Reynolds number is increased, the inertial forces increase in impor-

tance, such that the viscous forces become unable to dampen the instabilities, thus

leading to the onset of turbulence. Moreover, turbulent flows may carry scalar con-

taminants (i.e. physical quantities such as temperature, humidity, chemical species
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concentration). The mixing of scalar contaminants is an important sub-field of tur-

bulence research, as it is relevant to many engineering applications such as pollutant

dispersion and combustion. Note that a scalar field is deemed “passive” if its presence

does not affect the turbulent velocity field.

As alluded to above, turbulence contains a wide range of scales. There is a

continuum of scales that evolve in a so-called turbulent cascade. This cascade begins

at the integral length scale (L), which is determined by the geometry of the flow and

constitutes the largest length scale in the flow. The large scales then repeatedly break

down into smaller eddies until the viscosity of the fluid eventually causes the kinetic

energy of the smallest scales to be converted to internal energy. The small scales in

turbulent flows are therefore bounded from below by the diffusive action of molecular

viscosity. Moreover, small eddies have time scales that are much shorter then those

of large eddies (Tennekes & Lumley, 1972). As a result, small scale structures should,

in theory, be independent of the slower, large scale structures. This is one of the main

ideas proposed by Kolmogorov (1941a, 1941b) in his pioneering theory of turbulence.

The continuum of length scales present in turbulent velocity and temperature

fields is readily visualised by examining hot-wire anemometry and cold-wire ther-

mometry signals, respectively shown in figures 1.1 (a) and (b). These time series

show low frequency patterns of velocity and temperature fluctuations that evolve

slowly over the entire length of time shown. These long fluctuations are created by

the larger eddies in the flow. Conversely, rapid variations (over very short periods of

time) are also observed in the velocity and temperatures signals. These are created

by the smaller structures in the flow.

Time series of the (temporal) derivatives of the velocity fluctuations depicted

in figure 1.1 (c) highlight another important characteristic of turbulence: turbulent

3



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-500

0

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-2000

0

2000

Figure 1.1: Time series of velocity and temperature fluctuations and their time
derivatives measured in a wind tunnel by Mydlarski and Warhaft (1998).

4



flows are intermittent. The phenomenon is referred to as “internal intermittency”

(for reasons that will become obvious shortly). Figure 1.1 (c) clearly shows periods

of strong turbulent activity, interspersed with periods of relative quiescence. For

reasons to be explained in §1.2, the velocity derivative relates to the small scales

of turbulent flows, and the intermittent activity observed in figure 1.1 (c) is a re-

flection of the behaviour of the small scales in the flow (hence the term “internal”

intermittency). Similar intermittent activity is observed in the passive scalar (tem-

perature) fluctuation derivative depicted in figure 1.1 (d). However, note that this

intermittent behaviour appears even more pronounced than that of the velocity field

(figure 1.1 (c)). This simple, qualitative observation has lead to important research

(Pumir, Shraiman, & Siggia, 1991; Holzer & Siggia, 1994; Warhaft, 2000), which

qualitatively showed the higher level of internal intermittency of passive scalar fields

and the independence of scalar-field intermittency from that of its advecting velocity

fields.

Intermittency gives rise to a series of anomalous and irregular events that affect

the statistics of turbulent flow fields. For example, figure 1.2 (a) shows the probability

density function (PDF) of a turbulent velocity signal, which closely approximates

that of a Gaussian distribution. However, one can observe that the PDF of the

velocity derivative depicted in figure 1.2 (b) is non-Gaussian due to rare, intermittent

events that populate the tails of this PDF. This implies that the PDF of the velocity

field is also non-Gaussian despite appearing Gaussian (at large scales). The non-

Gaussian behaviour of turbulence caused by the presence of internal intermittency

is one of the aspects that make turbulent flows difficult to predict.

Given the issues that arise from the presence of internal intermittency, it fol-

lows that internal intermittency is a key element, and its understanding may bring

5
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Figure 1.2: Probability density function of a velocity field and its time derivative.
The solid black curves represent the best-fit Gaussian functions.

researchers closer to achieving a complete theory of turbulence, allowing more accu-

rate predictions of the behaviour of turbulent flows. Advancing the understanding of

internal intermittency (and thus, turbulent flows) is the main motivation behind the

present work. This is done by way of higher-order spectral moments, which will be

shown to not only allow the the detection of deviations from Gaussian behaviour in

turbulent signals, but also to offer a better understanding of the evolution of these

deviations across all length scales present in turbulent flows. Additionally, higher-

order spectral moments are shown to have the ability to detect other intermittent

phenomena present in turbulent flows that are not caused by internal intermittency

(such as coherent structures in wall-bounded flows).
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1.2 Literature Review

This section begins with an overview of research pertaining to turbulent flows,

starting with the pioneering work of Kolmogorov. Then, a brief review of the liter-

ature pertaining to internal intermittency of turbulent flows is presented. Addition-

ally, work done in other fields of physics and engineering to develop tools capable

of detecting intermittent behaviour in signals is presented and their application to

turbulence is discussed. Finally, the theory behind wall-bounded turbulent flows and

their intermittent, coherent structures is summarised.

1.2.1 Kolmogorov theory of turbulence

The concept of a turbulent energy cascade originated from the work of Richard-

son (1922), who suggested that eddies of different sizes exist in turbulent flows. The

instability of the larger eddies causes them to break down into smaller ones, and

this process repeats until the smallest eddies in the flow lose their kinetic energy

by viscous dissipation. As discussed in §1.1, the large-scale structures in turbulent

flows depend on the geometry of the flow and thus depend on the type of flow. It

is therefore impossible to universally describe large scales using a universal theory.

However, the directional (and geometrical) biases of the large scales are lost as the

eddies evolve down the turbulent cascade and break down into smaller, short-lived

scales. Therefore, at sufficiently high Reynolds numbers, it has been argued that

the turbulent motions of small scales become statistically isotropic. This observa-

tion suggests that small-scales could be characterized by a universal theory. This

proposition, referred to as the postulate of local isotropy, was initially put forth by

Kolmogorov (1941a, 1941b) (referred to herein as K41).

Starting from the postulate of local isotropy, K41 observed that the two dominant

processes in the energy cascade were (i) the viscous dissipation of turbulent energy
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at the smallest scales of the turbulent cascade, and (ii) the transfer of energy from

large to small scales. K41 therefore suggested that small scales should only depend

on (i) the kinematic viscosity of the fluid (ν), and (ii) the rate at which small scales

in the flow are supplied with energy, which can be approximated by the rate at which

small scales dissipate turbulent kinetic energy:

⟨ε⟩ = 2ν⟨sijsij⟩, (1.3)

where sij =
1

2
( ∂ui
∂xj

+
∂uj

∂xi
) is the fluctuating strain rate. Given K41’s proposition that

the small scales only depend these two parameters, dimensional analysis yields:

η = f(⟨ε⟩, ν) = ( ν
3

⟨ε⟩)
1/4

(1.4)

as a representation of the size of the smallest scales in turbulent flows. This length

scale is referred to as the Kolmogorov length scale. This scaling applies to the small

scales of turbulent flows (i.e. `≪ L) and the corresponding range of scales is referred

to as the dissipation range (Pope, 2000).

Other length scales of turbulence have also been proposed. For example, in

his study of isotropic turbulence, Taylor (1935) expressed the dissipation rate of

turbulent kinetic energy as follows:

⟨ε⟩ = 15ν⟨u2⟩1/2

λ
. (1.5)

He suggested that the length scale, λ, which is now known as the Taylor microscale,

could be a representation of the dissipative scales of turbulence. However, this claim

is debated, given that ⟨u2⟩1/2
is not representative of the velocity scale of the eddies

performing the dissipation. Moreover, it can be shown that the Taylor microscale

is a length scales of intermediate size (i.e. η < λ < L). Despite not having a clear
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physical interpretation, the Taylor microscale is often used in the study of turbulence.

For example, it is regularly used as a length scale in the Taylor microscale Reynolds

number:

Rλ =
⟨u2⟩1/2

λ
ν , (1.6)

which is used to quantify the intensity of turbulent flows.

In addition to his work on the small scales of turbulence, Kolmogorov also pro-

posed the existence of an inertial subrange that separates the dissipative scales from

the energy-containing (large-scale) ones, in the limit of sufficiently high Reynolds

numbers (i.e. a range of scales, `, such that η≪ `≪ L). This range expands as the

Reynolds number is increased, resulting from the increased the separation of scales.

K41 suggests that at high Reynolds numbers, this range, which is referred to as

the inertial subrange, is large enough to not be influenced by viscosity nor the large

scales of the turbulence, and the statistics of its motion are therefore only dependent

on ε. Together, the dissipation range and the inertial subrange from the universal

equilibrium range.

The consequences of the Kolmogorov theory of turbulence are also commonly

noted when analysing the power spectral density of turbulent time series (referred

to as the “spectrum” from here on):

E(ω) = 1

2π
∫
∞

−∞
Rφ(τ)dτ, (1.7)

where Rφ(τ) is the autocovariance of any turbulent fluctuation. E(ω) is most often

expressed in terms of wavenumber κ instead of frequency ω (see Pope (2000) for

more details). If φ is the velocity fluctuation, E(κ) represents the contribution to

the turbulent kinetic energy from all wavenumbers. Appropriately normalising E(κ)
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in the universal equilibrium range using Kolmogorov’s theory, one obtains:

E(κ) = ⟨ε⟩2/3
κ
−5/3

F (κη), (1.8)

where F (κη) is a universal, non-dimensional function. It is therefore expected that

the normalised power spectrum of all turbulent velocity fields collapse in the universal

equilibrium range. This is supported by substantial experimental evidence (see, for

example, Pope (2000) figure 6.14). Similarly, normalising the spectrum in the inertial

subrange, one obtains:

E(κ) = C⟨ε⟩2/3
κ
−5/3

, (1.9)

where C is a constant. The wavenumber spectrum therefore follows a power law

E(κ) ∼ κ−5/3
in the inertial subrange, which appears as a straight line of slope −5/3

when plotted in a log-log fashion. This is known as Kolmogorov’s −5/3 law.

The pioneering work of Kolmogorov (1941a, 1941b), was later extended to pas-

sive scalar fields by Oboukhov (1949) and Corrsin (1951) (referred to herein as KOC

theory), who proposed analogous concepts to those in K41, such as local isotropy

of passive scalar fields and the existence of an inertial-convective subrange. Analo-

gous to the concepts established by K41, KOC theory proposed that an important

parameters of turbulent scalar fields is the rate of dissipation of the scalar variance,

defined as:

⟨εθ⟩ = γ ⟨ ∂θ
∂xi

∂θ

∂xi
⟩ , (1.10)

where θ is the passive-scalar fluctuation and γ is the scalar molecular diffusivity.

The concept of the energy cascade was also extended to passive scalar fields by

KOC, who analogously suggested the existence of a scalar field cascade. This cascade

begins at the scalar integral length scale (Lθ) and ends at the smallest scale of the
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scalar field (ηθ). As was the case with L, the size Lθ is dictated by the geometry of the

flow. However, the size of the smallest eddies of a scalar fields is not only dependent

on the kinematic viscosity of the fluid and the rate of dissipation of turbulent energy,

but also on the diffusivity of the scalar (γ). If the scalar diffusivity is less than

the kinematic viscosity (i.e. the Prandtl number (Pr = ν/γ) is greater than one),

the scalar field is exposed to the entire spectrum of strain rate fluctuations and the

smallest scalar eddies present in the flow scale as the “Batchelor scale”:

ηθ = (νγ
2

⟨ε⟩ )
1/4

= ηPr
−1/2

. (1.11)

Conversely, if the scalar diffusivity is greater than the kinematic viscosity (i.e. Pr< 1),

the smallest scalar eddies are reprensented by the Corrsin scale:

ηθ = ( γ
3

⟨ε⟩)
1/4

= ηPr
−3/4

. (1.12)

Moreover, note that as a Prandtl number of one is approached (Pr → 1), the def-

initions of both the Batchelor and Corrsin scales suggest that ηθ approaches the

Kolmogorov length scale (η).

1.2.2 Internal intermittency

As previously discussed, both the K41 and KOC theories make use of the mean

dissipation rates (⟨ε⟩ and ⟨εθ⟩). However, it is now known that their instantaneous

values (ε and εθ) exhibit strong variations in time and space (Landau, 1944; Sreeni-

vasan & Antonia, 1997; Warhaft, 2000) — a phenomenon known as internal intermit-

tency. Batchelor and Townsend (1949) were the first researchers to experimentally

demonstrate the intermittency of turbulence, especially present at small scales. They

differentiated a time series of velocity up to third order and demonstrated that the
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signal became increasingly intermittent as the order of differentiation increased, ob-

serving periods of activity followed by periods of relative quiescence. They used the

flatness factor of the velocity derivative:

Fn ≡
⟨(∂nu/∂xn)4⟩
⟨(∂nu/∂xn)2⟩2

(1.13)

to quantify the extent to which the probability density function (PDF) of the ve-

locity field deviated from that of a Gaussian distribution and observed a tendency

of the flatness factor to increase with the order of differentiation (n). Kennedy

and Corrsin (1961) subsequently demonstrated that the findings of Batchelor and

Townsend (1949) were particular to turbulence by (experimentally and analytically)

showing that this increase in flatness factor did not occur for all non-linear ran-

dom processes. A subsequent theoretical study by Kraichnan (1967) suggested that

the increased flatness factor (and intermittency) at the smallest scales of turbu-

lence is explained by the rapid falloff of the spectrum at those scales, which causes

slight fluctuations in the spectrum parameters to induce large changes in the veloc-

ity derivatives. Further work by Kuo and Corrsin (1971) attempted to locate the

intermittency in wavenumber space by band-pass filtering turbulent signals and cal-

culating the flatness factor within each band. They observed that the flatness (and

thus the intermittency) increased when increasing the centre frequency of the band.

They also found that the flatness tended to 3 at low wavenumbers, implying that

the large scales of turbulence exhibited little intermittency. Additionally, they rein-

forced the idea that the degree of intermittency is Reynolds-number dependent by

overlaying their results with those of Batchelor and Townsend (1949) and Wyngaard

(1967), showing that the flatness factor (measured over all scales of the turbulence)

increased with Reynolds number. Research in more recent years has suggested that
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the flatness factor of the first derivative of the (longitudinal) velocity fluctuation in-

creases monotonically with Reynolds number, possibly as F1 ∼ R
3/8
λ (see Sreenivasan

and Antonia (1997); Van Atta and Antonia (1980)), though more recent work by

Djenidi, Antonia, and Tang (2019) claims that the flatness factor reaches a plateau

at high Reynolds numbers. The intermittency of passive scalar fields has been sub-

jected to less scrutiny, although data compiled by Sreenivasan and Antonia (1997)

depict a stronger Reynolds-number dependence of the flatness factor of the scalar

derivative than that of the longitudinal velocity derivative. Additionally, Sreeni-

vasan and Antonia (1997) point out that the deviations from Gaussian behaviour

of passive scalar fields are typically more significant than those of velocity fields,

thus implying a stronger level of intermittency in scalar fields. It has moreover been

demonstrated that intermittency in scalar fields can even occur when advected by

(non-intermittent) Gaussian velocity fields (Holzer & Siggia, 1994; Kraichnan, 1994;

Pumir et al., 1991). Warhaft (2000) also confirmed that the intermittent behaviour

of passive scalar fields extends to scales larger than the dissipative ones, as is the case

for velocity fields. Lepore and Mydlarski (2012) used the kurtosis of passive scalar

increments (∆θ = [θ(x + r) − θ(x)]) to study the evolution of intermittency with

separation r and found that scalar fields exhibited significant departures from the

Gaussian predictions for small and intermediate separations. However, it is worth

noting that structure functions include contributions from all scales less than or

equal to the scale r over which the increments are calculated (Meyer, Mydlarski, &

Danaila, 2018).

1.2.3 Detection of intermittent behaviour

Although our understanding of internal intermittency has greatly improved with

time, questions remain. For example, the scale dependence of internal intermittency
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within velocity and/or passive scalar fields has not been extensively studied, even

though the spectral nature of turbulent fields has been the object of much research.

Spectral-based tools to detect bursts and transients have been used extensively in

other fields of physics and engineering, especially in fault detection of rolling ma-

chines and bearings (see Antoni and Randall (2006), Leite et al. (2016), and Hu,

Bao, Tu, Li, and Li (2019)). Another example is the use of higher- (i.e. third- and

fourth-) order spectral moments to analyse acoustic signals contaminated by under-

ice noise (Dwyer, 1983). Dwyer argued that conventional spectral analysis methods

(such as power spectral densities) are incapable of detecting highly impulsive and

non-Gaussian transients, and that higher-order spectral moments are more appro-

priate. He separately used the real and imaginary parts of the complex third- and

fourth-order normalised moments (i.e. the spectral skewness and kurtosis) to identify

transients of under-ice noise in the frequency domain. Pagnan and Ottonello (1994)

later refined the technique and favoured the use of the magnitude of the complex

fourth-order moment to obtain a more complete picture of the transients present in

the signal.
1

Antoni (2006) subsequently undertook a more rigorous derivation of the

properties of the spectral kurtosis, demonstrating that this higher-order moment is

particularly well-suited for the detection of transients in a signal. However, he also

demonstrated that care must be taken in constructing an appropriate estimation

method that favours the detection of short transients. With a few exceptions, such

approaches have generally not been applied to turbulent flows, which are nonetheless

both spectral and intermittent in nature. Successful attempts at isolating deviations

1
When using this method, however, one must be aware of the change of expected distributions

due to the squaring operations necessary to obtain the magnitude of the complex Fourier modes.
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Figure 1.3: Sketch of a high-aspect ratio channel.

from Gaussian behaviour in wavelet space have been presented by Meneveau (1991)

and Farge (1992), though these studies only considered the behaviour of velocity

fields (without passive scalars) and limited their analysis to wavelet decomposition,

as opposed to the more common Fourier analysis. The use of fourth-order moments

in the Fourier domain for the analysis of turbulence was investigated by Chevillard,

Mazellier, Poulain, Gagne, and Baudet (2005), who calculated the flatness factor of

experimental velocity data in the frequency domain to demonstrate the higher level

of intermittency of vorticity compared to longitudinal velocity.

1.2.4 Review of wall-bounded flows and their coherent strucutures

Wall-bounded shear flows (e.g. internals flows and boundary layers) are thor-

oughly discussed in Tennekes and Lumley (1972) and Pope (2000). This research

make use of the a high-aspect-ratio channel described in §3.2.1 to study the inter-

mittent behaviour of bounded turbulent flows.

A visual representation of the channel used for this research is shown in figure

1.3. For fully-developed, high-aspect-ratio flows, the velocity only varies in the y-
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direction, meaning that the continuity equation reduces to

∂⟨V ⟩
∂y

= 0, (1.14)

which implies that the average wall-normal velocity (⟨V ⟩) does not vary in the y-

direction. Since the no slip condition must be satisfied, the wall-normal velocity

at the wall must be zero, thus implying that ⟨V ⟩ = 0 everywhere in the flow. For

turbulent channel flow, the equation of conservation of y-momentum (equation 1.1

with i = 2) reduces to:

−1
ρ
∂⟨p⟩
∂y

−
d

dy
⟨V 2⟩ = 0, (1.15)

which, if integrated in y and differentiated in x, shows that the pressure gradient

along the x direction is constant (
∂⟨p⟩
∂x

=
dpwall
dx

). Similarly, the equation of conserva-

tion of x-momentum (equation 1.1 with i = 1) reduces to:

−1
ρ
∂⟨p⟩
∂x

−
d

dy
⟨uv⟩ + ν d

2⟨U⟩
dy2

= 0, (1.16)

which can be integrated in y (from y = 0 to y) to yield

−y
ρ
∂⟨p⟩
∂x

− ⟨uv⟩ + ν [d⟨U⟩
dy

]
y=y

y=0

= 0. (1.17)

Using the fact that
∂⟨p⟩
∂x

=
dpwall
dx

and rearranging, one obtains:

−⟨uv⟩ + ν d⟨U⟩
dy

= u
2
τ (1 −

y

h
) , (1.18)

where uτ = (−h
ρ

dpwall
dx

)1/2
is the friction velocity. Equation 1.18 can be solved by

appropriately non-dimensionalizing it for each region of the flow. The regions of the

flow are determined using the viscous length scale δν = ν/uτ and non-dimensional

parameter y
+
= y/δν .
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In the near wall region (y
+
< 50), the length scale is viscosity-dominated because

of the proximity with the wall where the no-slip condition must be satisfied. Non-

dimensionalizing equation 1.18 using viscous scaling and assuming a high Reynolds

number yields:

−
⟨uv⟩
u2
τ

+
du

+

dy+
= 1, (1.19)

where u
+
= ⟨U⟩/uτ . For a smooth wall, this suggests that u

+
= f(y+) and

⟨uv⟩
u2τ

=

g(y+), meaning that u
+

only depends on y
+
. This is often refered to as the Law of

the Wall. Very close to the wall, there exists a viscous sublayer, where the Reynolds

stress from equation 1.19 can be neglected. The viscous sublayer begins at the wall

and has (experimentally) been shown to end at y
+
= 5. In this region, the first term

of equation 1.19 disappears. Solving the simplified equation, one obtains:

⟨U⟩/uτ = y+, (1.20)

such that in the viscous sublayer, the mean velocity to varies linearly with distance

from the wall.

Flow visualisations in the near wall-region (e.g. Kline, Reynolds, Schraub, and

Runstadler (1967)) have revealed the existence of turbulent coherent structures in

wall-bounded flows. In the near-wall region, experiments have shown structures

called streaks, which are thin layers of slow-moving fluids enclosed between layers

of faster-moving fluid (Pope, 2000). These structures, which are observed in the

region y
+
< 40, have a characteristic behaviour called bursting. This phenomenon

occurs as the streaks migrate in the streamwise direction and slowly move away

from the wall. The streaks eventually undergo a process called streak lifting during

which the streaks are rapidly ejected from the wall, oscillate, and break down into
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smaller-scales (Pope, 2000). This process is distinct from the mechanisms that cause

internal intermittency, but it is nevertheless a cyclic and highly intermittent process

Robinson (1991). Detailed discussion of streaks are available in Pope (2000) and

Robinson (1991). The increased intermittent activity caused by streaks is further

investigated in chapter 4 by way of higher-order spectral moments.

In the outer layer (y
+
> 50) of wall bounded flows, viscous effects are negligible.

Thus, we non-dimensionalize equation 1.18 using outer scaling: y/h. Assuming a

high Reynolds number, equation 1.18 becomes:

−
⟨uv⟩
u2
τ

= 1 − y/h. (1.21)

This gives no information regarding the mean velocity. However, scaling of the kinetic

energy budget give rises to the Velocity Defect Law :

⟨U⟩ − U0

uτ
= F (y/h). (1.22)

In the inertial sublayer, the Law of the Wall and the Velocity Defect Law are

asymptotically matched by taking the limit as y
+
→ ∞ and y/h → 0. The Law of

the Wall can be written as:

d⟨U⟩
dy

=
u

2
τ

ν
df(y+)
dy+

, (1.23)

and the Velocity Defect Law can be written as:

d⟨U⟩
dy

=
uτ
h

dF (y/h)
d( y

h
) , (1.24)

such that both equations can be equated, yielding:

uτ
h

dF (y/h)
d( y

h
) =

u
2
τ

ν
df(y+)
dy+

. (1.25)
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Given that F is a function of y/h only and f is a function of y
+

only, all sides

of equation 1.25 must be equal to the same universal constant denoted by 1/κ.

Integrating equation 1.25 yields:

⟨U⟩ − U0

uτ
=

1
κ ln(y/h) +B (1.26)

and

⟨U⟩
uτ

=
1
κln(y

+) + A, (1.27)

where κ = 0.41 ± 5%, A = 5.2 ± 5%, and B is flow-dependent. Equation 1.27 is

refered to a the Log Law and describes the behaviour of the mean flow in the range

bounded by y
+
= 30 and y/h = 0.3.

1.3 Objectives

As previously discussed, the intermittent behaviour of turbulent flows is an im-

portant element that makes turbulence difficult to predict. Therefore, fully under-

standing internal intermittency and other forms of transient behaviour in turbulent

flows is a key element that may bring researchers closer to achieving a complete the-

ory of turbulence. Although researchers’ understanding of internal intermittency has

greatly improved as a result of the research work discussed in §1.2.2, questions remain.

For example, the evolution of the intermittency across the frequency/wavenumber

domain has not been extensively studied. However, tools that make use of the third-

and fourth-order moments in the frequency domain to detect and situate intermit-

tency have been developed in other fields of physics and engineering and these tools

can be used to study the scale-by-scale evolution of intermittency in turbulent flows.

Given the above, the objective of the present study is fourfold. The first objec-

tive is to investigate internal intermittency in turbulent flows by way of third- and
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fourth-order spectral moments. To do so, a short-time-Fourier-transform- (STFT-)

based method (similar to that of Antoni (2006)) that makes use of higher-order spec-

tral moments to quantify the internal intermittency in the frequency/wavenumber

domain is developed. The proposed tool (i) does not necessitate band-pass filter-

ing of time series of data, (ii) permits the investigation of internal intermittency

as a function of frequency/wavenumber, and (iii) allows the possibility of variable

window lengths (discussed in later sections), akin to the analysis of Antoni (2006).

The second objective is to make use of higher-order spectral moments to explore

the Reynolds-number dependence of the internal intermittency of both velocity and

scalar fields. The third is to compare the intermittency of both velocity and passive

scalar fields on a spectral basis. Finally, the fourth objective is to investigate the use

of higher-order spectral moments in wall-bounded flows by comparing the levels of

intermittent activity at different wall-normal locations in a turbulent channel flow.

1.4 Structure of thesis

The remainder of this thesis addresses the objectives outlined in §1.3, beginning

with an overview of the mathematical background of higher-order spectral moments

in chapter 2. This chapter also includes the development of a higher-order spectral

moments estimation method tailored to the study of turbulence, as well as some

test cases to validate the estimation method. This is followed in chapter 3 with

a discussion of the experimental apparatus and data acquisition procedures. The

results obtained in grid turbulence are given in the first part of chapter 4, where an

overview and comparison the evolution of the internal intermittency of velocity and

passive scalar fields is presented. Results obtained in a turbulent channel flow are

presented in the second part of chapter 4, to compare the intermittency observed
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in homogeneous, isotropic turbulence with that in a wall-bounded flow. Finally,

concluding remarks and suggestions for future work are given in chapter 5.

21



CHAPTER 2
Theory and implementation of higher-order spectral moments

As noted in chapter 1, higher-order spectral moments are seldom used in fluid me-

chanics, though they are encountered much more commonly in other fields of physics

and engineering. Similar tools are used herein to detect non-stationary behaviour in

turbulent signals caused by internal intermittency. This section begins with a presen-

tation of the mathematical background necessary to calculate higher-order spectral

moments. It is followed by a discussion of the method used to analyse time series of

turbulent velocity and passive scalar fields.

2.1 Mathematical background

The mathematical background behind higher-order spectral moments is given in

this section, beginning with the mathematical definitions adapted from the work

of Dwyer (1983) and Antoni (2006). This is followed by a discussion of certain

consequences of the mathematical operations carried out to calculate higher-order

spectral moments.

2.1.1 Definition of higher-order spectral moments

Let a continuous process x(t) be sampled at a frequency fs. The resulting discrete

time series can then be divided intoM segments of lengthN (via the use of windowing

functions, which will be discussed in depth in §2.2.1), such that the sampled time

series can be denoted as:

x(t) = x([n +N(m − 1)]/fs), (2.1)
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with n = 0, ... , N − 1 and m = 1, ... ,M . The discrete Fourier transform (DFT) of

each individual segment (denoted by m) is then calculated as follows:

X(ωn,m) =
N−1

∑
k=0

x(k,m)ejkn/N , (2.2)

where j =
√
−1 and ωn = 2πnfs/N . Note that this operation is normally performed

using the fast Fourier transform (FFT) algorithm. The power spectrum is calcu-

lated from the average of the square of the modulus of X(ωn,m), evaluated at each

frequency bin (centred at ωn), over each segment of length M :

E(ωn) =
1

fsM

M

∑
m=1

∣X(ωn,m)∣2
, (2.3)

where the factor 1/fs is necessary, such that:

⟨x2⟩ = ∫
∞

−∞
E(ωn)dωn. (2.4)

This segmenting and averaging method has multiple advantages, including a reduc-

tion in the number of computations required (since it is more efficient to take the FFT

of multiple short segments than taking the FFT of the equivalent longer segment)

and a lower noise level (Welch, 1967).

Though the power spectrum is used extensively in the study of turbulence to com-

pare the relative intensity of the fluctuations at the various scales of the turbulence,

it fails to capture the non-stationary behaviours induced by internal intermittency

because it is not very sensitive to the tails of the distribution of a signal (Dwyer,

1983; Kuo & Corrsin, 1971). The spectrum is therefore not well suited for situating

intermittency in wavenumber space. As previously noted, attempts to experimen-

tally filter velocity signals using narrow bands to locate intermittency in wavenumber
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space have been made (e.g. Kuo and Corrsin (1971)), but there exists a simple, flex-

ible (in terms of frequency bin resolution) and rigorous alternative that employs

the frequency-domain signal X(ωn,m) to locate and quantify intermittency in the

frequency/wavenumber domain. This method makes use of higher-order spectral

moments, which are able to capture deviations from Gaussian behaviour in the tails

of the PDFs. By viewing the N segments of data created from the signal x(t) as

independent observations, one can create a PDF of the spectral coefficients at each

frequency bin, and then define the spectral skewness, S̃:

S̃(ωn) =
1

M
∑M

m=1 ∣X(ωn,m)∣3

( 1

M
∑M

m=1 ∣X(ωn,m)∣2)3/2
, (2.5)

and the spectral kurtosis, K̃:

K̃(ωn) =
1

M
∑M

m=1 ∣X(ωn,m)∣4

( 1

M
∑M

m=1 ∣X(ωn,m)∣2)2
, (2.6)

as the normalised third- and fourth-order moments of the frequency-domain PDFs.

Note that tildes denote spectral moments in this work.

2.1.2 Distribution of Fourier modes

The definitions for the spectral skewness and kurtosis given in §2.1.1 differ slightly

from those of the spectral skewness and kurtosis presented by Dwyer (1983), which

separately employed the real and imaginary parts of the Fourier-transformed sig-

nal (X
r(ωn,m) and X

i(ωn,m), respectively), producing pairs of spectral moments

that must be analysed individually. For a stationary Gaussian process, a spectral

skewness of 0 and a spectral kurtosis of 3 are to be expected with Dwyer’s method.

However, the aforementioned revised definitions of S̃(ωn) and K̃(ωn), given by Pag-

nan and Ottonello (1994) and Antoni (2006), employ the modulus of the Fourier
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transform (equations (2.5) and (2.6)), to simplify each spectral moment to a sin-

gle parameter. Use of the magnitude of the complex, Fourier-transformed variables

changes the nature of their distribution such that Gaussian statistics would give rise

to a chi distribution, with the following probability density function (Forbes, Evans,

Hastings, & Peacock, 2011):

f(X, σ, L) = 2
1−L/2

X
L−1

Γ(L/2)σL e
−X2/2σ

2

, (2.7)

where L is the degree of freedom (L = 2 for the magnitude of complex numbers),

σ is the standard deviation of X
r(k, l) and X

i(k, l), and Γ is the gamma function.

(See Millioz, Huillery, and Martin (2006) for more details.) The raw moments of the

chi distribution can thus be calculated from:

µj = ⟨Xj⟩ = ∫
∞

−∞
X
j 2

1−L/2
X
L−1

Γ(L/2)σL e
−X2/2σ

2

dX, (2.8)

which reduces to (see Appendix A for the detailed derivation):

µj = σ
j
2
j/2

Γ(1

2
(L + j))

Γ(1

2
L)

. (2.9)

Therefore, if the signal x(t) is stationary and Gaussian, the definitions proposed in

equations (2.5) and (2.6) lead to a spectral skewness of (see Appendix A):

S̃ =
µ3

µ
3/2
2

= Γ(5/2) ≈ 1.33, (2.10)

and a spectral kurtosis of:

K̃ =
µ4

µ2
2

= 2. (2.11)

The present work employs the modulus in the definition of higher-order spectral

moments because of its simplicity. It should therefore be recalled that, at a given
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scale, and if the signal is Gaussian, the third- and fourth-order spectral moments of

a turbulent velocity or scalar field will take on the values of 1.33 and 2, respectively,

at that particular scale.

2.2 Estimation of higher-order spectral moments

This section focuses on the development and testing of a method to estimate the

higher-order spectral moments of discrete time series. It begins with an overview of

the chosen estimation algorithm, followed by a discussion of issues that arise with the

segmentation (or windowing) of discrete time series. Finally, it presents validation

test cases and their results.

2.2.1 Short-time-Fourier-transform-based algorithm

The higher-order spectral moment estimation method proposed herein makes use

of window functions to create multiple sets of data from a time series x(t). The

creation of segments proposed in equation (2.1) is equivalent to the application of a

square window and therefore results in considerable amounts of spectral leakage due

to the non-negligible sidelobes present in the Fourier transform of the square window.

The use of a symmetrical window function that gradually decreases to zero at either

end, such as the Hann window, is preferable as it reduces spectral leakage (Press

et al., 1986). In practice, we therefore multiply the signal under investigation by a

window function w(k) before the taking the Fourier transform, such that equation

(2.2) becomes:

X(ωn,m) =
N−1

∑
k=0

w(k)x(k,m)ejkn/N . (2.12)

This method, often referred to as the short-time Fourier transform (STFT), approx-

imates the spectral content of the signal around the time where the window function

is centred. Though the time at which a given spectral event occurs may not be of
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immediate interest in the analysis of internal intermittency, the repeated extraction

of spectral content done by taking the STFT at different times in the signal x(t)

creates a distribution in the frequency domain from which one can extract the third-

and fourth-order moments.

Though this method allows the extraction of higher-order statistical moments in

the frequency domain, the evolution of statistical moments in space is also of great

interest. Fortunately, there exists a technique to approximate spatial measurements

from single-point, temporal measurements (i.e. measurements taken using a single,

stationary probe). This method, known as Taylor’s Frozen Flow Hypothesis, uses

the fact that the turbulence does not appreciably change during the measurement

period when in the presence of a strong mean flow, such that one can estimate the

spatial power spectrum (F11(f)) from the frequency power spectrum (F11(ω)) via

the following approximations (Lumley, 1965):

F11(κ1) =
⟨U⟩
2π

F11(f) (2.13)

and

κ1 =
2π

⟨U⟩f. (2.14)

The accuracy of this method depends on the intensity of the turbulence. Research

has shown that the approximation generally yields valid results if ⟨u2⟩1/2/⟨U⟩ ≪ 1

(Pope, 2000). This is shown to be the case for the data used herein in Chapter 3.

2.2.2 Windowing issues

Despite its ability to extract the spectral content of a signal and identify fre-

quencies at various points in time, the STFT has certain limitations. The results

depend (to a certain extent) on the smoothness of the chosen windowing function,
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though this dependence was not observed to be strong enough to influence the conclu-

sions presented in later sections. A preliminary analysis (not shown) that compared

the Blackman, Chebyshev, Gaussian, Hann (used herein), and rectangular windows

demonstrated that similar results are obtained when any windowing function is used,

apart from the rectangular one. Substantial research (e.g. Press et al. (1986)) has

shown that the use of rectangular windows leads to significant spectral leakage, which

is the main reason it is not used herein. Of the four windowing functions that gave

similar results, the Hann window was favoured for the sake of consistency between

the present research and previous work done on higher-order spectral moments (e.g.

Antoni 2006).

The results of the STFT method are affected by the windowing process. To il-

lustrate this, consider the turbulent time series of velocity shown in figure 2.1(a).

The largest wavelength (lowest frequency) that the windowing function (dashed line

in figure 2.1) can resolve corresponds to the width of the window itself. There-

fore, any frequency lower than the frequency corresponding to the filtering window’s

length cannot be resolved. One solution to this issue is to increase the width of

the filtering window (figure 2.1(c)). However, as the width of the window increases,

issues related to the Central Limit Theorem arise. Specifically, Peligrad and Wu

(2010) have demonstrated that for ergodic processes and for large enough sample

sizes, the Central Limit Theorem holds for Fourier transforms. Thus, if a windowed

Fourier transform is performed, one should expect the length of the window (N) to

influence the distribution of the Fourier transformed data. This is readily demon-

strated by considering a hypothetical random variable x(t) and its sampled time

series x(n,m). The time series has a skewness of 0 and a kurtosis of 2.5, such that

its PDF is not Gaussian. A windowed STFT, with window lengths ranging from
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Figure 2.1: A turbulent velocity time series (−) with window functions (−−) applied.
(a) The original velocity signal, (b) the velocity signal with a short window applied,
and (c) the velocity signal with a long window applied.

N = 2
2

to N = 2
9
, was performed on this time series, giving rise to the complex

random variable X(ωn,m). The mean of the kurtosis of this random variable (taken

over all frequency bins) was then calculated, first considering only X
r(ωn,m) (i.e.

the real part of X(ωn,m)):

⟨K̃r(ωn)⟩ = ⟨
1

M
∑M

m=1X
r(ωn,m)4

( 1

M
∑M

m=1X
r(ωn,m)2)2

⟩ , (2.15)

29



then only X
i(ωn,m) (i.e. the imaginary part of X(ωn,m)):

⟨K̃i(ωn)⟩ = ⟨
1

M
∑M

m=1X
i(ωn,m)4

( 1

M
∑M

m=1X
i(ωn,m)2)2

⟩ , (2.16)

and finally ∣X(ωn,m)∣ (i.e. the magnitude of X(ωn,m)):

⟨K̃(ωn)⟩ = ⟨
1

M
∑M

m=1 ∣X(ωn,m)∣4

( 1

M
∑M

m=1 ∣X(ωn,m)∣2)2
⟩ , (2.17)

which is simply the mean of the spectral kurtosis defined in equation (2.6). The

evolution of these quantities as a function of window length is depicted in figure 2.2,

which depicts how the kurtosis is influenced by the window length. As the window

length tends to one (N → 1), the platykurtic character of the original time series

forces ⟨K̃r(ωn)⟩ and ⟨K̃i(ωn)⟩ to decrease towards the value of the kurtosis of the

original time series (2.5). Conversely, as the window length increases toward infinity

(N → ∞), ⟨K̃r(ωn)⟩ and ⟨K̃i(ωn)⟩ approach the Gaussian value of 3, even though

the original time series x(n,m) was non-Gaussian. This is a result of the Central

Limit Theorem which states that, for a large enough sample size, the distribution of

the sample mean (or sample Fourier Transform) becomes Gaussian regardless of the

original distribution. Note that the behaviour of ⟨K̃(ωn)⟩ is similar, though it does

not tend to the value of the kurtosis of the original time series (2.5) as N → 1 because

of the aforementioned change in distribution resulting from the squaring operation

inherent in the calculation of the magnitude. Moreover, as N →∞, ⟨K̃(ωn)⟩ tends

to the value of 2 instead of 3, for the reasons discussed in §2.1.

Having established that higher-order spectral moments estimated with large win-

dows cannot be used to detect intermittency due to the Central Limit Theorem,

one must also recognize that excessively short windows fail to capture low frequency
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Figure 2.2: The mean spectral kurtosis plotted as a function of the window length
(N) for (a) the real part of X(ωn,m), (b) the imaginary part of X(ωn,m), and (c)
the magnitude of X(ωn,m).
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transients. Therefore, the length of the window used to divide a time series must

be chosen such that it captures the transient frequencies of interest. If one can esti-

mate the length (or duration) of each transient within the signal, then the window

length to be used should correspond to the approximate length of the transient it-

self. This is attributed to the fact that windows of the same length as, or slightly

shorter than, the transients fully encompass these without much interference from

the stationary data, which results in strong Fourier modes within the transient fre-

quencies. These transient-induced Fourier modes significantly contribute to the tails

of the distributions in the corresponding frequency bins and are more easily captured

by higher-order spectral moments. Conversely, the higher-order spectral moments

decrease significantly as the window width is increased beyond the length of the

transients because the windows that contain the transients become dominated by

the stationary data. However, the length of each transient is rarely known a priori,

and thus the ideal window length to be used may be initially unknown in certain

applications, including the present one. One solution is therefore to compute the

windowed Fourier transform using different window lengths to determine the opti-

mum value (keeping in mind that relatively large windows will systematically result

in Gaussian higher-order spectral moments). However, if one knows the approximate

location of the transients in the frequency domain space beforehand, one can identify

a few window lengths a priori that may work well. In the case where the frequency

location of the transients is unknown, one may use the Kurtogram algorithm, pro-

posed by Antoni (2007). This algorithm efficiently conducts a preliminary analysis

and sweeps through the signal of interest using multiple window lengths to determine

the optimal window to be used for further analysis. The results of this method are

analogous to performing successive zooms in wavenumber space. A similar method
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in which window lengths were increased in successive steps to improve the frequency

resolution was initially used herein to find the approximate locations of the inter-

mittent activity. Then, the most relevant window length to be used for analysis was

determined by first establishing the wavenumber range to be studied using higher

order spectral moments (e.g. κ1low ≤ κ1 ≤ κ1high). The lower bound (κ1low), which

dictated the window size, was selected as a function of the range of scales of interest,

whereas κ1high was always equal to 1/η in the present work. κ1low was then converted

to a frequency (using Taylor’s hypothesis: flow = ⟨U⟩κ1low/(2π)), which resulted in

the lowest frequency needing to be spanned by the window. The minimum window

length (in terms of samples, Nmin) is given by Nmin = fsamp/flow, where fsamp is the

sampling frequency.

2.2.3 Algorithm testing and validation

Before situating and quantifying internal intermittency in turbulent velocity and

scalar fields using the approach outlined in §2.2.1, benchmarking of the algorithm

was undertaken to ensure that the algorithm can properly detect transients.

As a first test, a time series of Gaussian white noise was generated using MATLAB

and its spectral skewness and kurtosis were evaluated using the procedure described

in §2.2.1 to ensure that the algorithm did not falsely detect transients. The artificial

signal consisted of 244 blocks of 4096 data points sampled at a frequency of 10 kHz.

As recommended in §2.2.2, several window lengths were evaluated to ensure that

the results were consistent and not systematically forced to their Gaussian values

by the Central Limit Theorem. Figure 2.3 confirms that the algorithm returns the

values of Γ(5/2) (≈ 1.33) and 2 for the spectral skewness and kurtosis, respectively,

of a stationary, Gaussian signal. It is therefore clear that the algorithm does not

detect significant deviations from Gaussianity, regardless of the window length, such
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Figure 2.3: Spectral skewness (open symbols) and kurtosis (closed symbols) of Gaus-
sian white noise evaluated using window lengths of 16 (◦,•), 32 (□,■), 64 (△,▲)
samples. The lines represent the expected values of spectral skewness (dashed) and
spectral kurtosis (solid) for stationary, Gaussian signals.

that any future observed deviations from Gaussianity will have originated from the

intermittent behaviour of the turbulent signal.

To further test the algorithm’s ability to detect transients and intermittent be-

haviour, another synthetic signal was constructed. It consisted of Gaussian white

noise to which 11 short-lived transients of the form:

xtrans(t) = A cos(2πft)e(λ(t−τ)
2)

(2.18)

were superimposed, where f (the frequency of the transient) was varied from 990 Hz

to 1010 Hz and a unique temporal offset (τ) was randomly attributed to each tran-

sient. The discretised signal had a sampling frequency of 10 kHz and the magnitude
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Figure 2.4: Spectral skewness (open symbols) and kurtosis (closed symbols) of Gaus-
sian white noise with added transients evaluated using window lengths of 32 (◦,•),
64 (□,■), 128 (△,▲), 256 (◇,◆) samples.

of each transient was within 99.9% of its maximum amplitude (A) for 0.0074 sec-

onds. Note that the purpose of this synthetic signal was not to emulate turbulence,

as the physics underlying the internal intermittency of turbulent flows are much

more complicated. Rather, the synthetic signal is used to benchmark the ability

of the higher-order spectral moments tools to detect short, intermittent behaviour.

The higher-order spectral moments of this signal are depicted in figure 2.4, in which

one can observe a clear deviation from Gaussianity being detected by the algorithm

around 1.0 kHz, which corresponds to the frequency of the added transients. Note

that the skewness captures and locates the transients well, even though rare events

in a given process may occur symmetrically (i.e. evenly in both tails of the distri-

bution). The reason the spectral skewness is capable of detecting transients is that
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the tails of the distribution become combined when taking the magnitude of the

Fourier modes. This concentrates the rare events to a single tail, which skews the

distribution. Moreover, it is worth noting that the spectral kurtosis appears to be

more sensitive to transients than the spectral skewness. This results from the higher

statistical order of the spectral kurtosis. Figure 2.4 also clearly demonstrates that

the magnitudes of the deviations from Gaussian behaviour decrease with increasing

window length, further reinforcing the notion that higher order spectral moments

are dependent on the window length (N). In this particular example, the effects of

the window length are easily explained by comparing the length of the transients

(ntrans) to N . The number of sample points contained within each transient is equal

to ntrans = fs × ttrans, where fs is the sampling frequency and ttrans is the duration

of the transient. As previously mentioned, the transients in this example are ap-

proximately 0.0074 seconds long, yielding approximately 74 data points within each

transient. Therefore, given the discussion in §2.2.2, one could anticipate that a win-

dow length of N = 74, or slightly shorter, would maximize the higher-order spectral

moments. The results presented in figure 2.4 support this argument, as the peak

value of both spectral moments decrease as the length of the windows exceed the

length of the transients in the signal. Moreover, as the window length is shortened

significantly below the length of the transients, the peak values of the higher-order

spectral moments decrease as well. Nevertheless, the deviations from Gaussian be-

haviour are accurately situated and quantified in the frequency domain regardless of

the window length, thus showing that the algorithm constructed in §2.2.1 is capable

of capturing rare, intermittent events in an otherwise Gaussian time series.
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CHAPTER 3
Experimental data and apparatus

This chapter presents a detailed discussion of the experimental data analysed and

apparatus used to acquire turbulent velocity and passive scalar fields. Two different

types of flows are analysed herein: (i) grid-generated, wind tunnel turbulence and

(ii) turbulent channel flow. The first data set consists of velocity and passive scalar

field measurements obtained by L. Mydlarski at Cornell University in 1996 and pub-

lished in Mydlarski and Warhaft (1998). The second set of data consists of velocity

measurements acquired by the author in the turbulent channel of the Aerodynamics

Laboratory at McGill University.
1

This chapter begins with a brief overview of the

grid-turbulence data. Note that the wind-tunnel facility is only briefly described as

detailed discussions are provided in Mydlarski and Warhaft (1996) and Mydlarski

and Warhaft (1998). This is followed by a description of the channel apparatus and

flow conditions. Finally, the instrumentation used to makes the measurements is

described, including a discussion of the filtering and data acquisition apparatus.

3.1 Passive and active grid turbulence data

The wind-tunnel data analysed herein was first obtained as part of the work of

Mydlarski and Warhaft (1998) from experiments conducted in two different wind

tunnels in the Sibley School of Mechanical and Aerospace Engineering at Cornell

1
Due to the COVID-19 pandemic and the resulting closure of the University, the initial part of

this research was undertaken using data previously acquired by the author’s supervisor.
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University. The first tunnel was vertically oriented and had a test section that is

40.65 × 40.65 cm
2

in cross-section and 4.5 m long, and the test section of the second

one was horizontally oriented and had a 91.44 × 91.44 cm
2

cross-section and is 9.1

m in length. The flow parameters for the cases analysed herein are presented in

Table 3–1. For the Rλ = 35 and Rλ = 86 cases, the turbulence was generated by

means of passive grids with 2.54 cm and 10.19 cm mesh lengths, respectively. The

turbulent flow fields in all other cases were generated using active grids based on the

design of Makita (1991). The active grids contain bars driven by stepper motors that

independently actuate rows of agitator wings to create approximately homogeneous,

isotropic turbulence (Mydlarski & Warhaft, 1996; Mydlarski, 2017). Active grids

were used to achieve a maximum Taylor microscale Reynolds number of Rλ = 731. A

uniform, mean, cross-stream temperature gradient was generated using differentially

heated metallic ribbons at the entrance to the wind tunnels’ settling chambers. The

action of the turbulent velocity field on this mean temperature gradient resulted in

a turbulent passive scalar (temperature) field.

Simultaneous two-component (u,v) velocity and temperature measurements were

made in all but two cases. Only longitudinal velocity measurements were made for

the Rλ = 671 case, and separate longitudinal velocity and temperature measurements

were made at Rλ = 731. In these two (Rλ = 671 and Rλ = 731) cases, the velocity

measurements were obtained using a single-normal tungsten hot-wire sensor, whereas

an X-wire sensor was used for all the other cases. In all cases, hot-wire overheat ratios

of 1.8 were employed using Dantec 55M01 constant temperature anemometers. The

temperature measurements were made using a cold-wire thermometer sensor placed

in a plane parallel to, but 0.5 mm away from, the X-wire sensor. The data were low-

and high-pass filtered, and then digitized using an A/D card. Further information
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Figure 3.1: Picture of the channel flow facility located in the Aerodynamics Labora-
tory at McGill University.

on the equipment, as well as detailed descriptions of the wind tunnels and the active

grids, are given in Mydlarski and Warhaft (1996) and Mydlarski and Warhaft (1998).

3.2 Channel flow data

This section begins with an overview of the channel facility used to make wall-

bounded flow measurements. The flow parameters for the test cases presented herein

then follow. Finally, the instrumentation and data acquisition equipment is pre-

sented, along with the sources of error that are to be expected with the equipment.

3.2.1 Channel facility

The channel used to make wall-bounded flow measurements is shown in figure

3.1. The apparatus consists of a blower, a flow conditioning section, and a long test
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section in which the flow becomes fully developed.

The blower is a Hudson Buffalo ACL (size 330 CL2) model and is connected

to a 7.5 hp motor controlled by an ABB ACS 600 controller. The blower intake

contains a filter box capable of filtering particles greater than 3 µm. The assembly

is supported by soft rubber footpads to reduce vibrations and is connected to the

flow conditioning section via rubber coupling joints to avoid transmitting vibrations

to the rest of the apparatus.

The flow conditioner is composed of three sections: a diffuser, a settling chamber,

and a contraction. The diffuser’s purpose is to reduce the speed of the flow before it

enters the settling chamber. This causes the flows to remain in the settling chamber

for a longer period of time. The diffuser has a 45
◦

angle, which would normally cause

flow separation due to the adverse pressure gradient resulting from the expansion

(Mehta & Bradshaw, 1979). However, flow separation is prevented by the presence

of four screens that cause pressure drops to balance the pressure increase that arises

from the expansion. The settling chamber has the same height as the channel and

consists of a rectangular, constant-cross-sectional area section. Its main purpose is

to further homogenise the flow. This is achieved using a carefully positioned 76 mm

long honeycomb section with 6.35 mm wide hexagonal cells and screens with 1 mm

meshes. Given that the settling chamber has the same height as the channel, the

contraction that connects the settling chamber to the channel is two-dimensional. A

contraction ratio of 8:1 is used and the shape of the contraction is based on a fifth

order polynomial (see Lavertu and Mydlarski (2005) for more information on the

contraction design).

The flow exiting the contraction and entering the channel is uniform and has

a turbulence intensity of 0.25% (Lavertu & Mydlarski, 2005). The channel height
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(b) is 1.1 m and its width (2h) is 0.06 m (see Figure 1.3). Given the high-aspect-

ratio (b≫ h), the flow is statistically two-dimensional far enough from the top and

bottom walls. The total length of the channel test section is 8 m, and its walls are

made of plexiglass sheets. The region of the test section in which measurements

were made extends from 7.0 m to 7.67 m away from the test section inlet. A custom

machined port located 7.33 m away from the channel entrance and at the centre of

the vertical wall (i.e. at b/2) was used to make the measurements presented herein.

To ensure that the flow becomes fully developed before reaching the test section, 3.2

mm diameter rods that trip the boundary layer were placed 60 mm from the channel

entrance and 3 mm from each vertical wall.

3.2.2 Flow conditions

The turbulent channel flow results presented in chapter 4 were obtained by mak-

ing velocity at a downstream location of x/h = 244 and at blower rotational speed

of 692 rpm. The resulting friction velocity (uτ ) was found to be 0.43 m/s.

The (absolute and normalized) wall-normal measurement locations, as well as the

flow conditions are given for all cases in table 3–2. Longitudinal hot-wire anemome-

try (u) measurements were made in all cases, achieving Taylor microscale Reynolds

numbers in the range 86 ≤ Rλ ≤ 159.

3.3 Instrumentation

This section discusses the instrumentation, beginning with an overview of hot-

wire anemometry, followed by an presentation of the calibration procedure. The data

acquisition hardware and software is then presented. Note that the sources of error

and corresponding uncertainties that arise with hot wire-anemometry are discussed

in Appendix B.
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3.3.1 Hot-wire anemometry

Hot-wire anemometers are commonly used in fluid mechanics research to measure

fluid velocity and in turbulent flows. The technique relies upon on convective heat

transfer from a very fine, heated wire or film to the surrounding fluid. Hot-wire

anemometers can be operated in the constant-current or constant-temperature mode,

though the latter is much more common for velocity measurements. (See Bruun

(1995) for a comparison of these two operating modes.)

Proper operation of a hot-wire probe requires appropriately setting the over-

heat ratio, which is ratio of the wire when heated to its resistance at the ambient

temperature (Rw/Ra). An overheat ratio greater than one increases the operating

temperature of the wire, which makes it more sensitive to velocity changes. However,

if the operating temperature is too high, wire may oxidise. To avoid oxidization and

obtain a reasonable sensitivity, a value of Rw/Ra = 1.8 is recommended by Bruun

(1995) for velocity measurements in air.

For this work, a single-normal, TSI-1218 standard boundary layer probe was used

to measure the velocity of the flow of air in the high aspect-ratio channel. A 5 µm

tungsten wire was soldered to the probe, after which the newly-made hot-wire was

aged by operating it at an overheat ratio of 1.8 for 24 hours. The aging process is

required to allow the the properties of the hot-wire materials (and thus, its resistance)

to reach steady-state before it is used to make measurements.

A DISA 55M01 constant temperature anemometer was used in these repetitive

measurements. The probe support was mounted on a 0.02 inch/turn Velmex BiSlide

to which a single shaft stepper motor was attached. Accurate positioning and trans-

lation of the probe was possible via the use of a VXM stepping motor controller,

which enabled step-by-step rotation of the stepper motor.
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The TSI-1218 boundary layer probe is equipped with a protective pin that creates

a minimum separation of 0.13 mm between the wire and the wall, when the pin is in

contact with the wall. Accurate initial positioning of the probe was therefore achieved

by gradually moving the probe closer to the wall (using the traversing mechanism

discussed above), until the protective was seen to touch the wall. The position of the

probe was then known to be y = 0.13 mm and any subsequent position of the probe

could be calculated from the displacement commands sent via the VXM stepping

motor controller.

3.3.2 Calibration of hot-wire probes

The heat transfer from the heated wire to the fluid depends on the velocity of the

fluid. Therefore, it is possible to correlate the voltage output of the anemometer to

the velocity of the flow. For a single-normal wire, this correlation takes the following

form:

E
2
= A +BU

n
, (3.1)

which is often referred to as King’s Law. In this equation, E is the output voltage

of the anemometer, U is the velocity of the flow, and A, B, and n are calibration

constants.

The hot-wire probe is calibrated by placing it in a steady, laminar flow of known

velocity created using a TSI 1128 Air Velocity Calibrator. The calibrator consists of

a jet with a top-hat velocity profile at its exit. A pressure transducer is connected

upstream of the jet exit. By measuring the the difference between this pressure and

the ambient pressure (which is the pressure at the jet exit), it is possible to calculate

the velocity of the fluid of the jet. During the calibration, the velocity of the jet is
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Figure 3.2: Calibration data (◦) for a TSI-1218 standard boundary layer probe with
King’s Law fit (solid line).

changed progressively. The voltage output of the anemometer (E) is recorded for

each jet velocity to create a calibration curve.

A sample calibration curve obtained using the TSI-1218 standard boundary layer

probe connected to a DISA 55M01 anemometer is shown in figure 3.2. From the

data, the calibrations constants of equation 3.1 are determined to be A = 10.89,

B = 3.959, and n = 0.4348. Note that the various sources of error that arise from

the calibration of hot-wire probes and the resulting uncertainties are discussed in

Appendix B.

46



3.3.3 Data acquisition

The output voltage of the DISA 55M01 anemometer was low- and high-pass

filtered using a Krohn-Hite Model 3382 filter. A National Instruments model BNC-

2110 analogue-to-digital (A/D) board was used in these experiments to record the

data to a computer. This A/D board is a 16-bit instrument which separates the

range of operating voltages into 2
16

discrete steps. Low-pass filtering was necessary to

remove high frequency electronic noise. High-pass filtering at (0.01 Hz) was also used

to remove the mean component of the signal, and very low frequency, non-turbulent

velocity fluctuations. The filtered signal that remained therefore corresponded to

the deviations from the mean velocity. To amplify these fluctuations and maximize

the 16-bit resolution (±5 V range) of the A/D board, a gain of 5 dB was set at the

output of the low-pass filtered channel and a gain of 20 dB was set at the output of

the high-pass filtered channel.

At each probe location, the low-pass frequency was determined using a spectrum

analyzer, to estimate the frequency at which the signal becomes lower than the noise

floor. The low-pass frequency was set to this value using the Krohn-Hite Model 3382

filter. Note that the average of the low-pass filtered signal was measured at each

probe location to determine the average voltage output of the anemometer before

removing the mean by way of high-pass filtering. This mean voltage measurement

was then used to find the mean velocity of the flow.

The data recorded by the A/D board can be represented mathematically as:

Em = G(Eanem − Emean), (3.2)

where Em is the filtered and amplified voltage recorded by the A/D board, G is

the total gain, Emean is the mean voltage, and Eanem is the unamplified voltage put

47



out by the DISA 55M01 anemometer. To calculate the velocity from the voltages

recorded by the A/D board, amplification and filtering must be taken into account

before using equation 3.1. Rearranging equation 3.2 and substituting it into equation

3.1, the velocity corresponding to each data point can be calculated using (Bruun,

1995):

U = (
( 1

G
Em + Emean)2 − A

B
)

1/n

, (3.3)

where U is the instantaneous velocity. Note that, for this experiment, the total gain

(G) corresponds to the combination of the gain applied at the low-pass filter (5 dB)

output and the high-pass filter output (20 dB): G = 5 dB +20 dB = 25 dB.
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CHAPTER 4
Results and discussion

The higher-order spectral moments estimation method outlined and verified in

chapter 2 is used hereafter to quantify the evolution of intermittent behaviour in

turbulent flows across wavenumber space. This section begins with a presentation

of the quantification and comparison of the internal intermittency of velocity and

passive scalar fields obtained in grid-generated, wind-tunnel turbulence. This is

followed by an investigation of the detection of coherent structures in the near-wall

region of a turbulent channel flow by way of higher order spectral moments.

4.1 Quantification of internal intermittency by way of higher-order spec-
tral moments

This section presents an investigation of the internal intermittency of turbulent

velocity fields by way of higher-order spectral moments. Of particular interest is the

Reynolds number dependence of the higher-order spectral moments of turbulent ve-

locity and scalar fields, as well as a comparison of the higher-order spectral moments

of the same fields.

4.1.1 Higher-order spectral moments of turbulent velocity fields

Higher-order spectral moments of turbulent time series are presented in figures

4.1 and 4.2, which respectively plot the spectral skewness and spectral kurtosis of a

turbulent velocity field at Rλ = 582 as a function of normalised wavenumber (κ1η).

Normalised, one-dimensional power spectra (F11(κ1η)) are also plotted in these fig-

ures to better identify the various ranges of the flow (e.g. the inertial subrange).
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Figure 4.1: Longitudinal (u) velocity spectrum (solid black line) and spectral skew-
ness (dot-dashed blue line) at Rλ = 582. Results are obtained using a window length
625η.

Note that these results were obtained using STFT windows of length N = 625η. Al-

though shorter windows would have maximised the higher-order spectral moments,

longer windows include a larger range of frequencies, which is preferable at the initial

stages of the analysis, given that they allow low-frequency deviations from Gaussian-

ity to also be captured. Results obtained using shorter windows that highlight the

intermittency at higher frequencies are presented in subsequent sections.

It is worthwhile noting that some insight could have been gained from calculating

the higher-order moments of differences in turbulent quantities (e.g. the kurtosis of

velocity increments, K∆u, (∆u = [u(x + r) − u(x)])), as those are the real-space

analogues of the spectral moments of equivalent statistical order. However, as noted
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Figure 4.2: Longitudinal (u) velocity spectrum (solid black line) and spectral kurtosis
(dot-dashed blue line) at Rλ = 582. Results are obtained using a window length 625η.

in §1.2, an important reason for undertaking the present analysis in the spectral

domain is that structure functions (e.g. ∆u(r)) include contributions from all scales

less than or equal to the scale r (see, for example, Meyer et al. (2018)), whereas

spectra quantify the contribution only at a specific scale (κ1 ∼ 1/r).

The first important observation to be made regarding figures 4.1 and 4.2 is that

both higher-order spectral moments asymptotically tend to their Gaussian values

(S̃ = Γ(5/2) and K̃ = 2) at large scales (low wavenumbers), thus confirming that

little intermittency is present at the largest scales of the turbulence. Conversely,

at high wavenumbers, one observes a sharp increase in both the spectral skewness

and kurtosis, thus highlighting the highly intermittent behaviour of the turbulent
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velocity field at dissipative scales. Note that these observations are consistent with

figure 6 of Brun and Pumir (2001) and figure 1(a) of Chevillard et al. (2005), who ob-

served a plateau at large scales and increased intermittent activity in the dissipation

range using fourth-order spectral moments applied to time series of velocity fields

from numerical and experimental data, respectively. Chevillard et al. (2005) also

calculated the fourth-order spectral moment of an intermittent synthetic signal, as

a proxy for turbulence at high Reynolds number (with no dissipation range), which

yielded a similar plateau. They found that the magnitude of the plateau evolved as a

power-law of the width of the windowing function (arguing that longer windows were

associated with larger scales and therefore lower values of the fourth-order spectral

moments). However, the analysis presented in §2.2.1 demonstrated that longer win-

dow lengths are associated with lower values of the higher-order spectral moments

due to consequences of the Central Limit Theorem.

These preliminary observations clearly demonstrate that both higher-order spec-

tral moments studied herein are able to detect deviations from Gaussianity and thus

internal intermittency. Moreover, the insight provided by the higher-order spectral

moments compared to time-domain statistical moments is also readily demonstrated.

The calculation of higher-order moments in short spectral bands allows (i) deviations

from Gaussian behaviour to be located in wavenumber space, and (ii) an evaluation

of the relative magnitude of the deviations from Gaussianity at each scale. The devia-

tion from Gaussianity extends to the high-wavenumber end of the inertial subrange.

This will be further discussed when short-window results are introduced, as these

provide an even better depiction of inertial-subrange intermittency. These features

of higher-order spectral moments will be used to further study the internal intermit-

tency of turbulent velocity and passive scalar fields in the following sub-sections.
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4.1.2 Reynolds number dependence of higher-order spectral moments

Figure 4.3 depicts the evolution of the spectral skewness and kurtosis of the lon-

gitudinal velocity fluctuations (u), transverse velocity fluctuations (v), and scalar

fluctuation (θ) in grid generated turbulence at five different Reynolds numbers in

the range 35 ≤ Rλ ≤ 582. Note that these results were generated using a rela-

tively short window length of N = 150η, thereby highlighting transient behaviour

at the smaller-scale end of the inertial subrange and in the dissipation range. The

results depict a very clear dependence on Reynolds number, even at Rλ < 100 which

was previously observed to be the threshold for the hydrodynamic (inertial-range)

intermittency exponent (µ) to depart from zero (Mydlarski & Warhaft, 1996).
1

A

significant increase in non-Gaussian behaviour is exhibited by all spectral moments

as the Reynolds number is increased. Note that this increase in magnitude of the

spectral moments occurs at all scales covered by the chosen window length, and

applies to all turbulent fields under study (i.e. u, v, and θ). Moreover, note that

the scale at which a strong and rapid departure from Gaussianity is observed shifts

towards larger scales as the Reynolds number increased.

One can further explore the Reynolds number dependence of internal intermit-

tency by investigating the evolution of the magnitude of the higher-order spectral

moments evaluated at a particular length scale. A length scale of interest is the

wavenumber at which the dissipations of turbulent kinetic energy and turbulent

scalar variance spectra peak, which is observed to occur around κ1η = 0.2 for the

1
However, Mydlarski and Warhaft (1998) observed the scalar field intermittency exponent (µθ)

to be non-zero at even the lowest of Reynolds/Péclet numbers.

53



10-1 100
1

2

3

4

5

6

R = 582

R = 306

R = 140

R = 86

R = 35

10-1 100
1

2

3

4

5

6

R = 582

R = 306

R = 140

R = 86

R = 35

10-1 100
1

2

3

4

5

6

R = 582

R = 306

R = 140

R = 86

R = 35

10-1 100
100

101

R = 582

R = 306

R = 140

R = 86

R = 35

10-1 100
100

101

R = 582

R = 306

R = 140

R = 86

R = 35

10-1 100
100

101

R = 582

R = 306

R = 140

R = 86

R = 35

Figure 4.3: Spectral skewness (a, c, e) and kurtosis (b, d, f) of the longitudinal
velocity fluctuations u (a, b), the transverse velocity fluctuations v (c, d), and the
scalar (temperature) fluctuations θ (e, f) at Rλ = 35 (∗), Rλ = 86 (◇), Rλ = 140
(+), Rλ = 306 (◦), and Rλ = 582 (□). Results are obtained using a window length
N = 150η.
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velocity and scalar fields, though the exact location of this peak is Reynolds num-

ber dependent (Tennekes & Lumley, 1972; Mydlarski & Warhaft, 1996, 1998). The

value of the spectral skewness and kurtosis at a normalised wavenumber of κ1η = 0.2

is plotted in figure 4.4 as a function of Rλ over the range 35 ≤ Rλ ≤ 731. Note

that the higher-order spectral moments shown in figure 4.4 were obtained using the

same window length as that used in figure 4.3 (N = 150η). Though some scatter is

observed, the plots confirm the increase in both the spectral skewness and spectral

kurtosis (and therefore in internal intermittency) at a fixed normalised wavenum-

ber as Rλ is increased. Moreover, considering each higher-order spectral moment

individually, note that the power law fits are consistent for the longitudinal and

transverse velocity and passive scalar fields, with S̃(κ1η = 0.2) approximately in-

creasing as R
0.1
λ and K̃(κ1η = 0.2) approximately increasing as R

0.3
λ for the spectral

kurtosis. The evolution of the spectral skewness and kurtosis is further explored

in figure 4.5, in which the Reynolds number dependence of both spectral moments

evaluated at κ1η = 0.8 is investigated. Note that the chosen length scale of κ1η = 0.8

is believed to offer a good representation of the intermittent behaviour of the flow

as the Kolmogorov length scale is approached (κ1η → 1), while staying sufficiently

far away from the Kolmogorov length scale where errors due to lowpass filter roll-off

and probe frequency resolution (especially with cold-wire thermometers) may occur

(Kuo & Corrsin, 1971). As was the case at κ1η = 0.2, the Reynolds number depen-

dence of the spectral skewness and kurtosis at κ1η = 0.8 is consistent with a power

law increase, though a stronger dependence on Reynolds number is observed at this

smaller length scale. These changes in power law exponents with κ1η highlight the

wavenumber dependence of the evolution of the higher-order spectral moments with

Rλ.
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Figure 4.4: Reynolds number dependence of the spectral skewness (a, c, e) and
kurtosis (b, d, f) of the longitudinal velocity fluctuations u (a, b), the transverse
velocity fluctuations v (c, d), and the passive scalar (temperature) fluctuations θ (e,
f) evaluated at κ1η = 0.2. The solid black lines represent the best fit power laws.
Results are obtained using a window length N = 150η.
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Figure 4.5: Reynolds number dependence of the spectral skewness (a, c, e) and
kurtosis (b, d, f) of the longitudinal velocity fluctuations u (a, b), the transverse
velocity fluctuations v (c, d), and the passive scalar (temperature) fluctuations θ (e,
f) evaluated at κ1η = 0.8. The solid black lines represent the best fit power laws.
Results are obtained using a window length N = 150η.
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To place these results in the context of prior studies of internal intermittency, it is

of benefit to compare the present work with prior investigations of the dependence of

internal intermittency on Reynolds number, which was historically investigated using

the kurtosis of derivatives of turbulence quantities (e.g. K∂u/∂x, K∂θ/∂x) as measures

of the degree of intermittency in turbulent flows (see Van Atta and Antonia (1980),

Sreenivasan and Antonia (1997)). Studies have shown that K∂u/∂x and K∂θ/∂x are

strongly dependent on Reynolds number, with K∂u/∂x increasing as ∼ R
3/8
λ (Van Atta

& Antonia, 1980), which is consistent with the observations of the spectral kurtosis

evaluated at κ1η = 0.2 (figure 4.4). As previously noted, the Reynolds number

dependence of the spectral skewness and kurtosis was specifically evaluated at κ1η =

0.2 because this normalized wavenumber (κ1η = 0.2) approximately corresponds to

that of the peak of the dissipation spectrum (Tennekes & Lumley, 1972). Given that

dissipation spectra can also be interpreted as the spectra of the derivative, studying

the higher-order spectral moments at κ1η = 0.2 evaluates them at the wavenumber

at which the derivative has its maximum contribution, thus explaining the agreement

between the observed trends (∼ R
0.3
λ ) and those obtained by examining the Reynolds

number dependencies of K∂u/∂x and K∂θ/∂x (∼ R
3/8
λ ). However, it bears reiterating

that the present results have demonstrated that the Reynolds number dependence

of internal intermittency depends upon wavenumber, as demonstrated by the scale-

by-scale analysis achieved by way of higher-order spectral moments.

In addition to the above results, another approach was also employed in an at-

tempt to investigate any possible Reynolds number dependencies associated with

the use of a window length of fixed multiples of η as the Reynolds number changes.

To this end, the data was reanalysed using a window length (N) that evolved with

Reynolds number in such a way the window length was equal to the separation that
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corresponds to the mid-point of the inertial subrange for each flow. To determine

the required window length for this approach, the methodology employed in Myd-

larski and Warhaft (1996, 1998), who developed an approach for the calculation of

conditional statistics of inertial-range velocity and scalar increments (e.g. ∆u(r)) as

the Reynolds/Péclet number increased, was followed. This approach is depicted in

figure 23 of Mydlarski and Warhaft (1996). These authors chose a single value of r

(denoted as ra in Mydlarski and Warhaft (1996)) that corresponded to the wavenum-

ber κ1 (r = 2π/κ1) that lay halfway between the beginning and end of the scaling

range for each spectrum. Thus as the scaling range dilated with Reynolds number,

ra, remained in the same relative position within the inertial subrange. Using this

approach, the window lengths varied from one case to the next, but always remained

in the same relative position on the spectrum, independent of Reynolds number.

Figure 4.6 plots the spectral skewness and kurtosis of the u, v and θ fields using

this approach for different Reynolds numbers for window lengths N equal to ra.

Although there are differences in the results when this new methodology is employed

to specify the window lengths, the overall (quantitative and qualitative) results and

trends in figures 4.3 and 4.6 remain quite similar, thus justifying the robustness of

the analysis herein and confirming the relative insensitivity of the effect of window

length when the Reynolds number is varied.

4.1.3 Higher-order spectral moments of turbulent scalar fields

Given the different nature of scalar fields (Holzer & Siggia, 1994; Pumir et al.,

1991; Warhaft, 2000), it is of particular interest to study the relative levels of in-

termittency of both velocity and passive scalar fields. To this end, a preliminary

analysis (not shown) concluded that a window length of N = 220η captured the
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Figure 4.6: Spectral skewness (a, c, e) and kurtosis (b, d, f) of the longitudinal
velocity fluctuations u (a, b), the transverse velocity fluctuations v (c, d), and the
scalar (temperature) fluctuations θ (e, f) at Rλ = 35 (∗), Rλ = 86 (◇), Rλ = 140
(+), Rλ = 306 (◦), and Rλ = 582 (□). Results are obtained using window lengths
corresponding to the midpoint of the inertial subrange.
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Figure 4.7: Spectral skewness of the longitudinal velocity fluctuations u (◦), trans-
verse velocity fluctuations v (□), and scalar (temperature) fluctuations θ (△) at (a)
Rλ = 85, (b) Rλ = 140, (c) Rλ = 306, and (d) Rλ = 582. Results are obtained using
a window length N = 220η.

signal transients while also fully capturing frequencies in the dissipation range and

most of the inertial-convective subrange.

Plots of the spectral skewness and kurtosis of u, v, and θ are given in figures 4.7

and 4.8, respectively. The overall behaviour of all higher-order spectral moments is

similar for all three quantities. More specifically, the curves all show a significant de-

parture from Gaussian behaviour at small scales, and both the spectral skewness and

kurtosis exhibit a higher degree of internal intermittency in the inertial-convective
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Figure 4.8: Spectral kurtosis of the longitudinal velocity fluctuations u (◦), transverse
velocity fluctuations v (□), and scalar (temperature) fluctuations θ (△) at (a) Rλ =

85, (b) Rλ = 140, (c) Rλ = 306, and (d) Rλ = 582. Results are obtained using a
window length N = 220η.

subrange for passive scalar fields (compared to the longitudinal and transverse veloc-

ity fields, which are both very similar in magnitude in the inertial subrange). Note

that these results are consistent with those of Mydlarski and Warhaft (1998), who

used the velocity and scalar intermittency exponent to show that scalar fields were

more intermittent in the inertial subrange and that their level of intermittent activ-

ity increased with Reynolds number. Moreover, they also showed that the level of
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intermittency of passive scalar fields remains higher than that of velocity fields at all

Reynolds numbers.

The results presented in figures 4.7 and 4.8 show that the spectral skewness

and spectral kurtosis of the scalar fluctuations remain at a higher level at small

scales (high wavenumbers) when compared to the longitudinal and transverse veloc-

ity statistics for the two lower Rλ cases shown. However, the spectral skewness and

spectral kurtosis of the longitudinal and transverse velocity fluctuations undergo a

rapid increase in the dissipation range and reach levels similar to that of the pas-

sive scalar field as κ1η → 1 for the two higher Rλ cases. This suggests that passive

scalar fields are more intermittent in the inertial-convective subrange and in part of

the dissipation range, but the degree of intermittency of the streamwise and trans-

verse velocity fields becomes similar to that of the scalar field as the Kolmogorov

length scale is approached at high Reynolds numbers. This is consistent with the re-

marks made in §4.1.2 regarding the wavenumber dependence of the Reynolds number

evolution of higher-order spectral moments. The plots of figure 4.5 showed that de-

pendence of higher-order spectral moments on Reynolds number was stronger for the

velocity field than the passive scalar field at high wavenumbers. This is the reason

figures 4.7 and 4.8 show that the higher-order spectral moments of both components

of the velocity field reach levels similar to those of the passive scalar field at high

wavenumbers for the two highest Rλ cases.

4.2 Higher-order spectral moments in a wall-bounded flow

Previous sections of this thesis demonstrated the ability of higher-order spectral

moments to quantify and situate (in the frequency/wavenumber domain) internal

intermittency in homogeneous, isotropic, grid-generated turbulence. In this section,
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Figure 4.9: Spectral skewness of the longitudinal velocity fluctuations (u) measured
in a wall-bounded (channel) flow in the near-wall region (closed symbols) and in the
outer layer (open symbols). The measurements were made at wall-normal positions
of y

+
= 4.4 (◆), y

+
= 5.8 (■), y

+
= 8.7 (●), y

+
= 29.0 (×), y

+
= 145 (▽), y

+
= 436

(△), y
+
= 581 (◇), y

+
= 726 (□), and y

+
= 872 (○). Results are obtained using a

window length N = 75η. The friction Reynolds number is Rτ = 860 and the local
turbulent Reynolds numbers (Rλ) are given in the legend.

higher-order spectral moments are used to investigate intermittent behaviour in wall-

bounded flows, which can be approximately homogeneous and isotropic in the outer

layer, but inhomogeneous and anisotropic in the near-wall region (Danaila et al.,

2001). The results obtained in a wall-bounded flow presented herein were obtained

from data taken in the high-aspect-ratio channel of the Aerodynamics Laboratory at

McGill University.

The evolution of the spectral skewness and kurtosis in the wall-normal (y) direc-

tion of the channel are shown in figures 4.9 and 4.10, respectively. The higher-order
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Figure 4.10: Spectral kurtosis of the longitudinal velocity fluctuations (u) measured
in a wall bounded (channel) flow in the near wall region (closed symbols) and in the
outer layer (open symbols). The measurements were made at wall-normal positions
of y

+
= 4.4 (◆), y

+
= 5.8 (■), y

+
= 8.7 (●), y

+
= 29.0 (×), y

+
= 145 (▽), y
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= 436

(△), y
+
= 581 (◇), y

+
= 726 (□), and y

+
= 872 (○). Results are obtained using a

window length N = 75η. The friction Reynolds number is Rτ = 860 and the local
turbulent Reynolds numbers (Rλ) are given in the legend.

spectral moments are obtained using a window length of N = 75η, where η is calcu-

lated at each wall-normal location to eliminate any bias induced by varying window

lengths. Note that, in both figures, one observes two distinct clusters of intermittent

activity. The first, lower activity group (represented by the open symbols) corre-

sponds to measurements made in the outer layer. All spectral skewness and kurtosis

curves in this group have similar shapes and peak levels at high wavenumbers. An

increase in the spectral skewness and kurtosis is observed for wall-normal positions

y
+
≤ 29.0 and a distinct increase is clearly visible at higher wavenumbers for the
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measurements made even closer to the wall (closed symbols, y
+
< 9), even at loca-

tions where the (local) Reynolds number is similar to that farther away from the wall.

For example, the Reynolds number of the measurements at y
+
= 8.7 matches that

of those at y
+
= 145, even though the spectral skewness and kurtosis curves exhibit

significantly higher levels of intermittent activity at y
+
= 8.7. Given the similarity

in the Reynolds numbers and window length (in terms of η) at this location, the

observed differences provide insights into the inhomogeneous and anisotropic nature

of wall-bounded flows in the near-wall region, and cannot be solely attributed to

Reynolds number effects. Moreover, the differences in spectral skewness and kurto-

sis increase as the Kolmogorov length scale is approached (κ1η → 1). The results

therefore suggest that the differences in deviations from Gaussian behaviour between

the near-wall region and the outer layer become more significant as wavenumber is

increased.

The discrepancies between the higher-order spectral moments obtained using

measurements made in the near wall region of the channel and those made in ho-

mogeneous, isotropic turbulence (either in the outer layer of the channel or in grid-

generated turbulence) are likely caused by the presence of intermittent coherent

structures such as streaks (discussed in §1.2.4) in the near-wall region. The bursting

process that streaks undergo has been shown to be highly intermittent (Robinson,

1991). The results presented in figures 4.9 and 4.10 suggest that the increase in inter-

mittent activity caused by the presence of coherent structures in the near-wall region

becomes more significant as the Kolmogorov length scale is approached (κ1η → 1).

The higher-order spectral moments therefore are also capable of detecting coherent

structures that are not caused by internal intermittency and locate their intermit-

tent activity in wavenumber space. This is an interesting application of higher-order
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spectral moments as it provides a novel way to quantitatively analyse near-wall co-

herent structures, which were historically studied through other methods, including

qualitative methods (e.g. flow visualization), conditional sampling methods (e.g.

Wallace, Eckelmann, and Brodkey (1972) and Wallace (2016)) and direct numerical

simulations (e.g. Bae and Lee (2021)).
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CHAPTER 5
Conclusions

5.1 Review of the research and contributions

Chapter 1 of this thesis provided some background information about turbulent

flows and their intermittency in addition to reviewing the existing literature on in-

ternal intermittency and the detection of transient behaviour. Chapter 1 also set

four objectives for the present work:

1. To develop a short-time-Fourier-transform- (STFT-) based method that makes

use of higher-order spectral moments to quantify the internal intermittency in

the frequency/wavenumber domain,

2. To make use of higher-order spectral moments to explore the Reynolds-number

dependence of the internal intermittency of both velocity and passive scalar

fields,

3. To compare the intermittency of both velocity and passive scalar fields on a

spectral basis,

4. To investigate the use of higher-order spectral moments in wall-bounded flows

by comparing the levels of intermittent activity at different wall-normal loca-

tions in a turbulent channel flow.

Chapter 2 of this thesis addressed the first objective above by first presenting an

overview of the theory behind the third- and fourth-order spectral moments. Then,

a short-time-Fourier-transform-based estimator was used to develop an algorithm

capable of calculating higher-order spectral moments. The estimator was validated
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using Gaussian and non-Gaussian test signals, and the dependence of the estimator

on window length was investigated. It was demonstrated that higher-order spectral

moments can be used to situate intermittency in wavenumber space and compare

the relative levels of intermittency at different scales.

Chapter 3 presented the experimental apparatus used for this research, includ-

ing a discussion of hot-wire anemometry and the calibration procedure for hot-wire

probes. The flow parameters for the wind-tunnel and channel flow fields were tabu-

lated and a detailed discussion of the channel flow facility was given in this chapter.

Chapter 4 of this work addressed the remainder of the objectives given above.

The second objective was achieved by first analysing the higher-order spectral mo-

ments of turbulent velocity and passive scalar fields. These were shown to exhibit

repeatable behaviours, asymptotically approaching Gaussian values at large scales

and departing from Gaussian behaviour in the inertial subrange, reaching their max-

imum values at the smallest scales of the dissipation range. Additionally, it was

demonstrated that higher-order spectral moments are Reynolds number dependent.

The spectral kurtoses of the longitudinal and transverse velocity fields at κ1η = 0.2

were found to increase as K̃u(κ1η = 0.2) ∼ R
0.3
λ , which is consistent with the be-

haviour of the overall kurtosis of velocity derivatives observed by Van Atta and

Antonia (1980). Moreover, the Reynolds number dependence of the higher-order

spectral moments was shown to depend on wavenumber. The third objective was

addressed by comparing the magnitude and wavenumber dependence of the inter-

nal intermittency of passive scalar fields to that of velocity fields using the spectral

skewness and kurtosis. The results revealed that the level of intermittency of pas-

sive scalar fluctuations is higher in the inertial subrange and part of the dissipation
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range when compared to those of the longitudinal and transverse velocity fluctua-

tions. However for the higher Rλ cases and as κ1η → 1, the levels of intermittency

of the longitudinal and transverse velocity fluctuations were seen to increase rapidly

and eventually become similar to those of the passive scalar field. Finally, the fourth

objective was achieved by analysing the higher-order spectral moments of velocity

measurements made in the channel of the Aerodynamics Laboratory. The results

revealed increased intermittent activity in the near-wall region of the wall bounded

flow, attributed to the presence of coherent motions (e.g. streaks) that undergo an

intermittent process often referred to as “bursting.” The increase in intermittent

activity caused by the presence of coherent structures was seen to become more

significant as the Kolmogorov length scale was approached. Higher-order spectral

moments were thus shown to offer a way to quantify and locate the intermittent

activity of coherent structures in wavenumber space.

5.2 Future work

The results herein suggest that our knowledge of internal intermittency can be

expanded by way of higher-order spectral moments. Future work shall be primarily

aimed at comparing the wavenumber dependence and levels of intermittency between

different classes of flows. This research has shown that higher-order spectral moments

are well suited to the study intermittent phenomena, and it is therefore hoped that

they can be used to investigate additional turbulence phenomena, such as coherent

structures in free-shear flows such as turbulent wakes. Additional measurements of

transverse velocity and passive scalar fields in wall-bounded flows should also be

made to analyse the effects of coherent structures on these quantities by way of

higher-order spectral moments.
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A better understanding of the the way the higher-order spectral moments of ve-

locity and passive scalar fields compare may also be achieved by obtaining similar

measurements at higher Reynolds numbers. This research has shown that the higher-

order spectral moments of both velocity and passive scalar field tend to similar levels

in the dissipation range and as the Reynolds number is increased. However, addi-

tional measurements taken at even higher Reynolds numbers (e.g. in the atmospheric

boundary layer) may help confirm this trend.
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APPENDIX A
Derivation of Gaussian values of higher-order spectral moments

The raw moments of the chi distribution, which arises from the magnitude of

complex Fourier transforms, may be calculated from equation 2.7 by integrating the

following product:

µj = ⟨Xj⟩ = ∫
∞

−∞
X
j 2

1−L/2
X
L−1

Γ(L/2)σL e
−X2/2σ

2

dX. (A.1)

Given that X ≥ 0 (because of the squaring operation necessary to obtain the mag-

nitude of the complex number), the integration bounds may be changed to:

µj = ⟨Xj⟩ = ∫
∞

0

X
j 2

1−L/2
X
L−1

Γ(L/2)σL e
−X2/2σ

2

dX. (A.2)

This integral is of the form:

∫
∞

0

x
m

e
−ax2

dx, (A.3)

with a = 1/2σ
2

and m = j + L − 1. The general solution to this integral is (Spiegel,

Lipschutz, & Liu, 2018):

∫
∞

0

x
m

e
−ax2

dx =
Γ((m + 1)/2)

2a(m+1)/2
. (A.4)

Therefore, the raw moments of the chi distribution are obtained by solving equation

A.1 using equation A.4:

µj =
2

1−L/2

Γ(L/2)σL
Γ((m + 1)/2)

2a(m+1)/2
, (A.5)
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which simplifies to:

µj = σ
j
2
j/2

Γ(1

2
(L + j))

Γ(1

2
L)

. (A.6)

Therefore, for a Gaussian signal, the proposed definitions of higher-order spectral

moments lead to a spectral skewness of:

S̃ =
µ3

µ
3/2
2

=

σ
3
2

3/2 Γ( 1
2
(2+3))

Γ( 1
2

2)

[σ222/2 Γ( 1
2
(2+2))

Γ( 1
2

2) ]
3/2

=
Γ(5/2)

[Γ(2)]3/2
= Γ(5/2) = 1.3293, (A.7)

and a spectral kurtosis of:

K̃ =
µ4

µ2
2

=

σ
4
2

4/2 Γ( 1
2
(2+4))

Γ( 1
2

2)

[σ222/2 Γ( 1
2
(2+2))

Γ( 1
2

2) ]
2
=

Γ(3)
[Γ(2)]2

= Γ(3) = 2. (A.8)

The aforementioned results apply to a random variable created by taking the

square root of the sum of the square of two independent random variables. However,

for a Fourier transform calculated at any frequency ωn = 2πnfs/2, n = 0, 1, 2, ...,

the imaginary part vanishes and taking the magnitude is equivalent to simply taking

the absolute value of a single variable (X
r
). Therefore, in this case, the magnitude

of the Fourier transform of a Gaussian signal yields a half-normal distribution with

probability density function

f(X∣σ, L) =
√

2

σ
√
π

e
−X2/2σ

2

(A.9)

instead of a chi distribution. The raw moments of this distribution can be calculated

from:

µj = ⟨Xj⟩ = ∫
∞

−∞
X
j

√
2

σ
√
π

e
−X2/2σ

2

dX, (A.10)
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which may, again, be solving using a general solution of the form A.4, yielding:

µj =
(σ

√
2)j√
π

Γ(1

2
(j + 1)). (A.11)

Therefore, the spectral skewness of a Gaussian signal at ωn = 2πnfs/2, n = 0, 1, 2, ...

becomes:

S̃ =
µ3

µ
3/2
2

=

(σ
√

2)3√
π

Γ(1

2
(3 + 1))

( (σ
√

2)2√
π

Γ(1

2
(2 + 1)))

3/2
=

(σ
√

2)3√
π

( (σ
√

2)2√
π

1

2

√
π)

3/2
=

√
8
π = 1.5958, (A.12)

and the spectral kurtosis becomes

K̃ =
µ4

µ2
2

=

(σ
√

2)4√
π

Γ(1

2
(4 + 1))

( (σ
√

2)2√
π

Γ(1

2
(2 + 1)))

2
=

3(σ
√

2)4
4

( (σ
√

2)2√
π

1

2

√
π)

2
= 3. (A.13)

This change in distribution causes a jump in the spectral skewness and kurtosis values

at ωn = 2πnfs/2, n = 0, 1, 2, .... The periodic nature of the Fourier transform causes

this jump to occur cyclically, though for practical purposes it is only observed at a

frequency corresponding to half the sampling frequency (ωn = 2πfs/2) as the other

repeated Fourier coefficients are rarely plotted. Because of window leakage (Press et

al., 1986), this discontinuity spreads to neighbouring Fourier modes. Therefore, the

algorithm developed for this research includes a correction factor (based on that of

Antoni (2006)) that eliminates the effects of this discontinuity.
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APPENDIX B
Uncertainty and error analysis

The purpose of this appendix is to analyse the various sources of uncertainty

that arise from the measurement and calculation of turbulent velocity statistics that

were undertaken by the author in the turbulent channel flow facility in the McGill

University Aerodynamics Laboratory. According the guidelines given by Tavoularis

(2005), there are two distinct categories of of uncertainty: (i) bias error and (ii) pre-

cision error. Bias error (denoted by b) is systematic and representative the accuracy

of the measurements. For the present analysis, bias error is assumed to correspond

to the accuracy of the equipment as specified by the manufacturer. Precision error

(denoted by p) is associated with the repeatability of the measurements. Precision

errors may be estimated in one of two ways, depending on their type. The types of

precision errors and their respective estimation methods are as follows:

• Type 1 precision errors arise from time series of N measurements with mean µ

and standard deviation σ. For these types of errors, Tavoularis (2005) recom-

mend calculating the precision error (p) using:

p =
2σ√
N
. (B.1)

• Type 2 precision errors arise from single point measurements. Given an instru-

ment with a precision of σ, the error is assumed to be uniformly distributed,

yielding a precision error of:

p =
σ√
3
. (B.2)
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Using the precision and bias errors of each source of error, the total measurement

uncertainty (u) can be calculated as (Tavoularis, 2005):

u =

√
∑
i

b2
i +∑

i

p2
i . (B.3)

The following sections will present the uncertainties that arise from velocity mea-

surements and turbulent statistics. This is followed by an overview of the errors

related to the hot-wire probe’s temporal and spatial resolution.

B.1 Velocity measurement uncertainty

Errors associated with the velocity measurements presented herein generally arise

from (i) the calibration measurements, (ii) the DAQ board, and (iii) the curve fits

to the calibration data. This section begins with an analysis of the the uncertainty

that arises from the calibration. The total uncertainty on the instantaneous velocity

measurements are then calculated.

B.1.1 Calibration apparatus error

The calibration jet outputs the differential pressure between the settling chamber

and the ambient pressure (which is equal to the pressure of the jet of air flowing out

of the calibration apparatus). Knowledge of the differential pressure, the stagnation

temperature, and the ambient pressure allows one to establish the velocity at the

jet exit using isentropic relations. A summary of the errors that arise from the

differential pressure measurements, the ambient pressure measurements, and the

temperature measurements is presented in table B–1.

The differential pressure readings are recorded by the A/D DAQ board. The

error that arises from the A/D DAQ board (uE) is the combination of the bias and
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Error source Description Type σ bi or pi

A/D DAQ board
Accuracy of PCI-6143
A/D DAQ board

Bias N/A ±3.613 mV

Precision of PCI-6143
A/D DAQ board

Precision
type 2

0.153 mV ±0.0883 mV

Mercury barometer
Precision of pressure
reading

Precision
type 2

0.10 mmHg ±0.060 mmHg

Thermocouple
Accuracy of the
Type E thermocouple

Bias N/A ±1.7 K

Precision of the
thermocouple display

Precision
type 2

0.1 K ±0.06 K

Table B–1: Summary of the sources of error associated with the calibration of a
hot-wire probe.

precision errors (see table B–1 for the values):

uE =
√
(3.613 mV)2 + (0.0883 mV)2

= 3.614 mV. (B.4)

The differential pressure readings produced by the pressure transducer correspond

to voltages of 0 V to 10 V for pressure differences of 0 mmHg to 100 mmHg. Assum-

ing a linear relation between voltage and pressure, the uncertainty associated with

differential pressure measurements (u∆p) is estimated from:

u∆p =

√
(∂(∆p)

∂E
uE)

2

, (B.5)

which yields u∆p = 0.03614 mmHg. Moreover, the ambient pressure uncertainty

(up) arises from the mercury barometer readings, and thus, from table B–1, up =

0.060 mmHg. Finally, the error from the temperature measurements correspond to a

combination of the bias and precision error (see table B–1 for the values), such that:

uT =
√
(1.7 K)2 + (0.06 K)2

= 1.7 K. (B.6)
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Error source Description Type σ bi or pi

A/D DAQ board
Accuracy of PCI-6143
A/D DAQ board

Bias N/A ±3.613 mV

Precision of PCI-6143
A/D DAQ board

Precision
type 2

0.153 mV ±0.0883 mV

Calibration
measurements

Refer to §B.1.1
Precision
and bias

N/A ±0.29 m/s

Curve fit
Error in velocity
calibration curve fit

Bias N/A ±0.0135 m/s

Table B–2: Summary of the sources of error associated with instantaneous velocity
measurements.

Given measurements of differential pressure, ambient pressure, and temperature,

the velocity of the jet can be calculated from the isentropic relations for compress-

ible flow. The uncertainty on the calibration velocity data points can therefore be

calculated from:

ucalib =

√
( ∂U

∂(∆p)u∆p)
2

+ (∂U
∂p

up)
2

+ (∂U
∂T

uT)
2

, (B.7)

where the partial derivatives ∂U/∂(∆p), ∂U/∂p, and ∂U/∂T are estimated from the

isentropic relations. Equation B.7 therefore yields a calibration uncertainty of:

ucalib = 0.29 m/s (B.8)

B.1.2 Instantaneous velocity measurement uncertainty

As previously mentioned, the total error on the instantaneous velocity measure-

ments arises from three sources: (i) the calibration measurements, (ii) the DAQ

board, and (iii) the curve fits to the calibration data. The uncertainty values associ-

ated with the total error on the instantaneous velocity measurements are summarised

in table B–2.
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The uncertainty associated with the A/D DAQ board is the combination of the

bias and precision uncertainties. This value was already calculated in equation B.4,

which yielded: uE = 3.614 mV. Additionnally, for a single-normal hot-wire, the

partial derivative that enables one to translate this uncertainty in voltage to an

uncertainty in velocity is estimated from Kings’s Law to be ∂U

∂E
= 12.5 m/(sV).

Moreover, the uncertainty arising from the calibration curve-fit is estimated as follows

for a single-normal hot wire:

ufit =

√
√√√√√⎷

1

N − 3

N

∑
i−1

(Um − Ufit)2, (B.9)

where Um is the measured velocity and Ufit is the velocity obtained from the curve

fit. For the calibration used herein, the calibration curve-fit uncertainty is ufit =

0.0135 m/s.

Combining the three sources of error from table B–2, the total uncertainty on the

velocity measurements is:

uU =

√
(∂U
∂E

uE)
2

+ u2
calib + u

2
fit, (B.10)

which yields uU = 0.29 m/s, indicating the uncertainty in the calibration is the

dominant one.

B.2 Uncertainty of turbulent statistics

The previous section estimated errors in instantaneous velocity measurements,

though most of the turbulent statistics quoted herein are obtained from fluctuating

quantities (i.e. u = U − ⟨U⟩). Tavoularis (2005) states that, for quantities calculated

using differences measured using the same instruments, the bias error is cancelled

out by the subtraction operation. Therefore, to obtain the uncertainty pertaining
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to velocity statistics, the process outlined in §B.1 is repeated, setting to zero all

uncertainties related to bias errors. The resulting uncertainty associated with the

velocity statistics is therefore u∆U = 0.0012 m/s.

B.3 Hot-wire probe temporal and spatial resolution errors

The temporal resolution of hot-wire probes is determined by the frequency re-

sponse of the anemometer used with the hot wire probe. The DISA 55M01 constant

temperature anemometer used for the velocity measurements in the channel has a

maximum frequency response of 200 kHz (depending on the probe and probe cable

used). Given that the highest Kolmorogorov length scale frequency recorded herein

was close to 12 kHz, the maximum frequency response offered by the DISA 55M01 is

more than sufficient for the purposes of this research. The temporal resolution error

is therefore assumed to be negligible for the velocity measurements presented herein.

Another source of error is that associated with the spatial resolution of the hot-

wire probe, especially for measurements made in the near wall region of the channel.

In the viscous sublayer, the Kolmogorov length scale (η) becomes smaller because

of the increase in the turbulent kinetic energy dissipation rate (see table 3–2). To

adequately measure the velocity fluctuations in this region, the length of the hot-

wire should be small enough to resolve length scales on the order of η. In his study

on the measurements of small-scale turbulence with hot-wires, Wyngaard (1968)

suggested that a Kolmogorov-microscale-to-wire-length ratio (η/`) of 0.35 is sufficient

to resolve scales on the order of the Kolmogorov microscale to within 7%. This

was taken into consideration while building the hot-wire probe used for the velocity

measurements made for this research and the length of the sensing element used

herein was approximately three times the size of the smallest Kolmogorov microscale

encountered for this research, which closely follows the guideline of η/` = 0.35.
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