
MPLS based State-Dependent Optimal Routing

in IP Networks

Zhibing Wang

Department of Electrical and Computer Engineering
McGill University
Montreal, Canada

July 2003

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Engineering.

© 2003 Zhibing Wang

ABSTRACT

A new QoS routing mechanism is proposed for MPLS capable networks to

achieve global optimal route selection. The functional capabilities, which are

necessary for optimizing bandwidth allocation and route selection, are identified

and modeled. We focus on the design of an appropriate algorithm to combine

label-switching technologies with State-Dependent routing. The algorithm, which

takes into account resource utilization cost (RUC) and all available routes, is

believed to be able to accomplish superior network utilization and quality of

service. We devise both a centralized and a decentralized routing mechanism.

The performances of both routing mechanisms are simulated and the results are

analyzed. In addition, the expressions of RUC for packet-switched networks are

proposed and validated.

SOMMAIRE

Un nouveau mecanisme de routage pour atteindre une selection de chemin

globale optimale avec qualite de service pour reseau de commutation multi

protocole par etiquette est presente. Les capacites fonctionnelles qui permettent

une optimisation de l'allocation de la largeur de bande et de la selection du

chemin sont identifies et modelisees. Nous orientons le travail sur un algorithme

qui combine la commutation par etiquette et le routage dependant de I'etat. Nous

croyons que I'algorithme, qui prend en compte le coOt d'utilisation des ressources

(CUR) et tous les chemins disponibles, est capable d'accomplir une meilleure

utilisation du reseau et de qualite de service. Nous developpons un mecanisme

de routage centralise et decentralise. Les caracteristiques des deux mecanismes

sont evaluees par simulations. Les resultats obtenus sont presentes et analyses.

De plus, les expressions du CUR pour les reseaux a commutation par paquets

sont proposees et validees.

11

Acknowledgments

This thesis would not be possible without the guidance and help of my supervisor,

Professor Jean Regnier. I would like to thank him for his support throughout my

graduate study at McGill University.

Grateful acknowledgment is expressed to Nortel Networks for sponsoring our

research and particularly to Dr. James Yan from Advanced Network Performance,

Nortel Networks, for his supervision and helpful suggestions.

I also want to thank my friends, Peng He, Xiaojian Lu, Benoit Pelletier, Marc-

Antoine Parent and all of the people in the TSP Lab for their friendship and timely

help.

in

Contents

CHAPTER 1 1

INTRODUCTION 1

1.1 SCOPE AND OBJECTIVES 2

1.2 CHAPTER CONTENTS 3

CHAPTER 2 5

SDR AND RELATED WORK 5

2.1 A QoS FRAMEWORK: DIFFSERV ON MPLS 5
2.1.1 DiffServ Model 5
2.1.2 MPLS Framework 7

2.2 EFFECTIVE BANDWIDTH 9

2.2.1 The Definition 9
2.2.2 Estimating the Effective Bandwidth 11

2.3 MARKOV DECISION PROCESS FOR STATE-DEPENDENT ROUTING 12

2.3.1 Background 12
2.3.2 SDR Overview 13
2.3.3 Formulating the Routing Problem as a MDP 15
2.3.4 Relative Costs for Direct Routing 18

2.4 RESOURCE UTILIZATION COST (RUC) 20

2.4.1 First Passage Times 20
2.4.2 Average Cost 22
2.4.3 Understanding the RUC Function and the Erlang-B Blocking Formula 24

2.5 DETECTING THE TRAFFIC INTENSITY 28

2.5.1 SDR-ADAPT 28
2.5.2 Trunk Reservation (TR) 30

2.6 DETECTING THE NETWORK STATE 33

2.6.1 Update (Sampling) Frequency 34

CHAPTER 3 36

SYSTEM MODEL 36

3.1 TRAFFIC MODEL 36

3.2 ROUTING MODEL 38

3.2.1 Route Selection 38
3.2.2 Access Admission 39
3.2.3 Service Classes 40

3.3 TRAFFIC DISTRIBUTION MODEL 40

3.4 TOPOLOGY MODEL 42

CHAPTER 4 45

IMPLEMENTATION 45

IV -

4.1 OVERVIEW 45

4.2 TRAFFIC AGENTS 52

4.3 LABEL-SWITCHING 53

4.4 STATE-DEPENDENT OPTIMAL ROUTING 56

4.4.1 Centralized Routing Control (CRC) overview 56
4.4.2 Decentralized Routing Control (DRC) overview 58
4.4.3 The Route Set Table 59
4.4.4 The Resource Table 60
4.4.5 The Timer 61

4.5 TRAFFIC DISTRIBUTION AND TOPOLOGY 62

4.5.1 Topology Generating Process 63
4.5.2 The Generated Topology Matrix and Traffic Matrix 64

CHAPTER 5 67

RESULTS AND ANALYSIS 67

5.7 SIMULATED NETWORK ENVIRONMENT 67

5.2 THE PERFORMANCE OFSDR-ADAPT 68
5.2.1 Determining the h and A 68
5.2.2 Determining the Initial Traffic Intensity 70
5.2.3 Traffic Intensity Converging Process 71
5.2.4 The Performance under Fixed Traffic Pattern 75
5.2.5 The Performance under Changing Traffic Pattern 79

5.3 CENTRALIZED ROUTING CONTROLS (CRC) 80

5.4 DECENTRALIZED ROUTING CONTROL (DRC) 83

CHAPTER 6 86

CONCLUSIONS AND FURTHER STUDIES 86

6.1 CONCLUSIONS 86

6.2 FURTHER STUDIES 88

APPENDIX A 90

TRAFFIC DISTRIBUTION AND TOPOLOGY 90

REFERENCES 98

v -

List of Figures

FIGURE 2.4.1.1: STATE DIAGRAM 20
FIGURE 2.4.2.1: SCENARIO 1, REQUEST R INDUCES NO COST 22
FIGURE 2.4.2.2: SCENARIO 2, REQUEST R INDUCES THE BLOCKING OF A SUBSEQUENT

REQUEST AT TIME tb 23

FIGURE 2.4.3.1: THE BLOCKING RATE CURVES WHEN N=96, N=80 AND N=60 25
FIGURE 2.4.3.2: THE BLOCKING RATE CURVE WHEN "A=N" 25
FIGURE 2.4.3.3: TRAFFIC INTENSITY VS. LINK CAPACITY CURVE WITH 1% BLOCKING RATE26

FIGURE 2.4.3.4: CA,N(P) AS A FUNCTION OF p FOR A TRUNK GROUP 27
FIGURE 2.4.3.5: RUC COST UNDER DIFFERENT TRAFFIC INTENSITIES 27
FIGURE 2.5.1.1: THE FIRST UPDATE OF THE OFFERED LOAD FOR SDR-AD APT 29

FIGURE 2.5.2.1: THE TRUNK RESERVATION APPROXIMATION TO CA,N(P) 31

FIGURE 2.5.2.2: THRESHOLD VALUES UNDER DIFFERENT TRAFFIC INTENSITIES 31

FIGURE 2.5.2.3: THE TRUNK RESERVATION APPROXIMATION TO CA,N {p) 33
FIGURE 2.6.1.1: CAPTURED ENERGY AND ESTIMATED UPDATE FREQUENCY 35
FIGURE 4.1.1: THE EXTENDED TCL INTERPRETER OF NS2 45
FIGURE 4.1.2: OTCL AND C++: THE DUALITY 46
FIGURE 4.1.3: CONCEPT MODEL OF A NETWORK SIMULATION IN NS2 47
FIGURE 4.1.4: STRUCTURE OF A UNICAST NODE 48
FIGURE 4.1.5: STRUCTURE OF A UNIDIRECTIONAL LINK 48
FIGURE 4.1.6: UNIDIRECTIONAL CONNECTION SAMPLE 49
FIGURE 4.1.7: DUPLEX CONNECTION SAMPLE 49
FIGURE 4.1.8: ADDING TRANSPORT AGENTS 50
FIGURE 4.1.9: ADDING A TRAFFIC GENERATOR 50
FIGURE 4.1.10: PACKET FLOW 51
FIGURE 4.2.1: EXAMPLE OF APPLICATION COMPOSITION 52
FIGURE 4.3.1: SAMPLE SYSTEM STRUCTURE OF SDOR NODES 54
FIGURE 4.3.2: HASH OPERATION OF AN SDO CLASSIFIER WITH FIVE NEIGHBOR NODES 55
FIGURE 4.4.1.1: CENTRALIZED ROUTING COMPUTATION 56
FIGURE 4.4.1.2: LABEL DISTRIBUTION AND RESOURCE MONITORING PROCESSES OF CRC.. 57
FIGURE 4.4.2.1 DECENTRALIZED ROUTING CONTROL FOR DIRECT TRAFFIC 59
FIGURE 4.4.3.1: THE STRUCTURE OF THE ROUTE SET TABLE 60
FIGURE 4.4.4.1: THE STRUCTURE OF THE RESOURCE TABLE 61
FIGURE 5.2.1.1: THE BLOCKING RATE CURVE WITH A FIXED INTENSITY MATRIX 69
FIGURE 5.2.3.1: THE AVERAGED CONVERGING PROCESS ON LINK 2-16 71
FIGURE 5.2.3.2: THE AVERAGED CONVERGING PROCESS ON LINK 0-2 72
FIGURE 5.2.3.3: EXAMPLES OF UNWISE SELECTION OF 2-HOP ROUTE UNDER MC 72
FIGURE 5.2.4.1: AVERAGED BLOCKING RATE OF SDR-AD APT 76
FIGURE 5.2.5.1: BLOCKING RATE UNDER TRAFFIC PATTERN SHIFTING 79
FIGURE 5.3.1: AVERAGE BLOCKING RATE CURVE UNDER DIFFERENT 8 s 80
FIGURE 5.4.1: BLOCKING RATE CURVE UNDER DIFFERENT CAPTURED ENERGY LEVELS 84
FIGURE 5.4.2: BLOCKING RATE CURVE UNDER DIFFERENT UPDATE FREQUENCIES 84

vi -

FIGURE A. 1: ORIGINATING AND TERMINATING TRAFFIC 90
FIGURE A.2: CAPACITY VS. DESTINATION NODE-ID 97

- Vll

List of Tables

TABLE 4.5.1.1: NODE SIZE AND DISTRIBUTION 63
TABLE 4.5.1.2: TRAFFIC LEVELS 63
TABLE 4.5.1.3: PEAK HOURS 63
TABLE 4.5.1.4: NUMBER OF GENERATORS 64
TABLE 4.5.2.1: SAMPLE TOPOLOGY MATRIX 65
TABLE 4.5.2.2: TRAFFIC MATRIX IN THE AM PATTERN 66
TABLE 5.1.1: OFFERED LOAD 68
TABLE 5.2.4.1: PERFORMANCE OF SDR-ADAPT UNDER SMOOTHED MC 76
TABLE 5.2.4.2: PERFORMANCE OF SDR-ADAPT UNDER DF 77
TABLE 5.3.1: AVERAGE BLOCKING RATES UNDER DIFFERENT <5 s 81
TABLE 5.4.1: BLOCKING RATE WITH CORRESPONDING UPDATE FREQUENCY AND ENERGY

LEVEL 85

TABLE A. 1: NODE SIZE AND DISTRIBUTION 91

TABLE A.2: TRAFFIC LEVELS 91
TABLE A.3: PEAK HOURS 92

- vin -

Abbreviations and Acronyms

ATM
BB
CRC
CRDN
DCR
DF
DiffServ
DRC
DS
FEC
IETF
IP
LDP
LLP
LLR
LSP
LSR
DNHR
MC
MDP
MPLS
NS2
OS I
QoS
RSVP
RUC
SDO CLASSIFIER
SDOR
SLS
SPF
TCP
VCC

Asynchronous Transfer Mode
Bandwidth Broker
Centralized Routing Control
Centralized Routing Decision Node
Dynamically Controlled Routing
Direct First Policy
Differentiated Service
Decentralized Routing Control
Differentiated Services
Forwarding Equivalence Class
Internet Engineering Task Force
Internet Protocol
Label Distribution Protocol
Least Loaded Path
Least Load Routing
Label Switched Path
Label Switching Router
Dynamic Non-Hierarchical Routing
Minimum Cost Policy
Markov Decision Process
Multiprotocol Label Switching
Network Simulator II
Open System Interconnect Reference Model
Quality of Service
Reservation Protocol
Resource Utilization Cost
State-Dependent Optimal Classifier
State-Dependent Optimal Routing
Service Level Specification
Shortest Path First
Transmission Control Protocol
Virtual Channel Connection

- IX -

Chapter 1

Introduction

The Internet has grown from a research network to a world-wide network, which

consists of thousands of heterogeneous networks and is used daily by millions of

people. The increasing popularity is accompanied by increasing demands on

consumer-oriented services such as telephony and video streams, known from

circuit-switched networks. This type of applications can experience quality

degradation in the traditional Internet, which was originally designed as a data

packet network with best-effort packet forwarding capabilities. At that time the

focus was on connectivity. If no special provisions are taken, no guarantees can

be made on the delay that a packet will experience on its way to its destination,

and thus no Quality of Service (QoS) can be assured.

In order to guarantee a customer's QoS requirements, a network should be able

to shape and control network traffic and to reserve network resources. Several

frameworks have been proposed to provide QoS on the Internet. In particular, the

Differentiated Service (DiffServ) framework [2, 12], which supports aggregate

traffic classes rather than individual flows, is seen as the key technology to

achieve QoS. In addition, DiffServ must work concurrently with a forwarding

technology that supports the aggregation scheme. MPLS [3] offers the means to

accomplish such a task, as already proposed in [26, 27]. Obviously, existing

routing protocols need to be enhanced or replaced by QoS-aware routing

algorithms if the potentials of DiffServ and MPLS are to be realized. Unfortunately,

no specific QoS routing system is provided in the DiffServ and MPLS frameworks.

This thesis identifies QoS routing and traffic engineering problems faced by

modern IP networks, investigates the existing routing algorithms, and with the

objective of global optimized resource utilization in mind, proposes to use State-

Dependent Routing (SDR) Q5, 16] as the QoS routing algorithm in MPLS

capable IP networks and examines its performance with several implementations.

1.1 Scope and Objectives

In this thesis, we seek a routing algorithm that provides QoS-guaranteed services

and, at the same time, can achieve traffic engineering objectives. From a service

provider's perspective, the goal is to maximize resource utilization and hence,

maximize the revenue. We call such a routing algorithm "the optimal routing".

Routing issues have been studied extensively for all kinds of networks, Circuit-

Switched networks, Packet-Switched networks, and even public transportation

networks. Many different kinds of solutions have been proposed and used for IP

networks, from static to dynamic, from distance-vector to link-state, from single

path to multipath, from best-effort delivery to QoS constrained and from pre-

computed to adaptive. Previous studies (which will be discussed in next chapter)

have demonstrated the pros and cons of those solutions, which are used as

guidelines of this research and can provide us rich references.

Note:

1. Without further notice, in this thesis, "traffic" is referring to IP packet flows.

2. The words "connection" and "calf will be used interchangeably in this

thesis.

3. The words "route" and "path" will be used interchangeably in this thesis.

The optimal routing should be able to take global resource utilization into account,

automatically balance load among feasible routes, and control the admission of a

call as a function of available resources. In addition, it should be able to reserve

resources for connections requiring QoS, and monitor and measure resource

utilization. With the feedback provided by the monitoring and measuring

2-

processes, the routing algorithm should be able to adjust itself to give its optimal

performance in different load conditions. The traditional independent hop-by-hop

IP routing decision paradigm can not guarantee unified treatment for packets of a

connection, since the packets that belong to the same connection may be

forwarded through different links. In that case, it is impossible to guarantee QoS

requirements such as delay and delay jitter. Therefore, a path has to be set up

from the ingress node to the egress node (or using an existing one); and

resources have to be reserved along the path (either explicitly or implicitly),

before a QoS connection is admitted to the network. To fulfill those processes,

some signaling functions [4] provided by the MPLS framework will be necessary.

In summary, we are building a dynamic, multipath, QoS constrained, adaptive

and load balancing routing algorithm. With the advent of the DiffServ and MPLS

framework, the optimal routing becomes possible.

Given the complexity of QoS routing and traffic engineering, this thesis doesn't try

to accomplish a total solution that takes care of all the situations, but focuses on

a solution for a single service class that can be classified with the same effective

bandwidth [8] and mean holding time. We call it homogenous IP traffic. This study

will establish a well-grounded basis for expanding the research to the multi­

service class case.

1.2 Chapter Contents

The rest of this thesis is divided into 5 chapters. The second chapter, SDR and

Related Work, introduces some important frameworks and definitions, and then

discusses State-Dependent Routing and concerned issues in detail. The third

chapter, System Model, describes how we model important network elements

such as IP traffic, routing functions, traffic load distribution and network topology.

The fourth chapter, Implementation, presents how we implement the routing

algorithm in a simulation environment to generate more realistic results. The fifth

chapter, Results and Analysis, tests the routing algorithm against our design

objectives, and presents the simulation results and the experience gained. The

sixth chapter, Conclusions and Further Studies, recapitulates the major results

and findings, and enumerates some interesting directions that could be further

explored.

Chapter 2

SDR and Related Work

This chapter discusses existing IP networking technologies, and related IP

routing and QoS routing algorithms. Those existing frameworks and previous

studies establish the platform, on which we base our work. They provide us with

necessary networking functionalities and guidance on weaknesses and strengths

of different approaches. SDR is introduced later in this chapter and argued to be

a promising candidate for QoS routing. Its background theory and some

implementation considerations are also presented.

2.1 A QoS Framework: DiffServ on MPLS

With the prospect of becoming the ubiquitous all-service network of the future,

the Internet needs to evolve to support services with guaranteed QoS

characteristics. The Internet Engineering Task Force (IETF) has proposed the

DiffServ Model, which has been conceived to provide QoS in a scalable fashion.

2.1.1 DiffServ Model

DiffServ advocates a model based on different granularities at network edges and

within the network. Instead of maintaining per-flow soft state at each router,

packets are classified, marked and policed at the edge of a DiffServ domain.

Core routers are only required to act on a few traffic aggregates that are meant to

offer a pre-defined set of service levels. A limited set of Per Hop Behaviors

(PHBs) differentiate the treatment of aggregate flows in the core of the network,

in terms of scheduling priority, forwarding capacity and buffering. Currently, there

have been at least two types of treatments standardized: the assured forwarding

(AF) group of PHBs [28], and the Expedited Forwarding (EF) PHB [29]. Service

Level Specifications (SLSs) are used to describe the appropriate QoS

parameters that the DiffServ-aware routers will have to take into account, when

enforcing a given PHB. Thus micro-flow-based treatment is restricted at the

DiffServ domain border while the core routers deal only with aggregate flows,

according to the DiffServ Code-Point (DSCP) field of the IP header. This

aggregate model of DiffServ is, therefore, highly scalable.

In DiffServ, Bandwidth Brokers (BBs) are responsible for collecting network

information within one DiffServ domain, and distributing such information to edge

routers for further processing. For example, BBs collect link state information

including available bandwidth, link delay, etc. Edge routers use this information to

compute routes for connection requests, and make admission control decisions.

In order to support DiffServ, we need to be able to differentiate traffic with respect

to bandwidth, delay, delay jitter and packet loss. In this thesis, a network

component Centralized Routing Decision Node (CRDN) that has similar functions

as a BB is used to facilitate the routing mechanisms.

Several studies have involved traffic control algorithms for aggregate service

levels, packet marking and policing and preferential treatment of marked packets

in the network core. Reference [30] investigates the impact of aggregation on the

performance of traffic-aware routing. It is found in [30] that most of the QoS

routing benefits can be achieved using a small number of paths and relatively

coarse traffic splitting. Furthermore, finer optimization gain may turn out to be

detrimental to the short-term performance. In addition, while DiffServ solves the

scalability problem, it also unavoidably introduces the problem of service

performance deviation or performance loss. This is because it assumes that all

flows, which belong to the same service level in one DiffServ domain, can only be

guaranteed in the form of an aggregate level. References [31-331 discuss the

issue of performance loss in DiffServ networks in detail.

This performance loss can be adjusted by properly implemented call admission

control and link utilization monitoring (with Bandwidth Brokers). The idea is

simple: accept a connection only if at least one path that can satisfy its QoS

requirement is available; otherwise, the connection is blocked immediately. In the

proposed routing algorithms, the problem is addressed by combining a Call

Admission Control (CAC) algorithm (originally developed for circuit-switching

network) with the CRDN.

In DiffServ networks, traffic is classified into three service classes: premium,

assured and best-effort. This research studies premium class homogenous IP

traffic, which can be characterized by a single set of QoS requirement and flow

parameters. This research can be seen as an effort to solve the QoS routing

problem for one type of applications, e.g. voice over IP calls.

2.1.2 MPLS Framework

MPLS arises as a natural stage in the evolution of the label-swapping paradigm,

offering improved performance in the organization and management of data

streams. In MPLS, a short fixed length value called label is assigned to a packet,

as the packet enters an MPLS domain. The packet is forwarded to its next hop

together with this label. Labels are used to identify the forwarding equivalence

classes (FEC) of data packets. A group of packets that are forwarded in the same

manner are said to belong to the same FEC. FEC can be seen as an organized

way of assigning and managing labels, to efficiently achieve the desired

aggregation scheme. The value of a label depends on the FEC, to which the

respective packet stream belongs, which is commonly inferred from its IP

destination address. At each node the packet's label is used to perform an

indexed search in a table that identifies the output port for the next hop and the

new label to be used to replace the old one for forwarding the packet over the

next hop. In addition, the packet's class of service information can also be

7

determined from its label (mapped to FEC). Packets are thus forwarded over the

MPLS network based on labels attached to them in each hop, and no further

analysis of the network layer headers is necessary.

Moreover, MPLS does not define a new layer in the classical open systems

interconnection (OSI) communications model; instead, it can be seen as a bond

between protocols operating at the network and the data link control (DLC) layers.

These and other features give MPLS its superiority, and distinguish it as a

promising new technology for supporting enhanced networking tasks, such as the

design of virtual private networks (VPNs), traffic engineering, and explicit routing.

A DiffServ and MPLS capable network is assumed in this thesis.

The fact that a packet is assigned a label as it enters the network allows the use

of advanced forwarding techniques. A packet entering the network at a particular

router can be labeled differently than the same packet entering the network at a

different router. As a result, some kind of policy routing can be easily made.

Since MPLS decouples forwarding from routing, it is able to support a large

variety of routing policies that are difficult or impossible to implement with just

conventional network layer forwarding. Explicit routing and multipath routing are

the most interesting features offered by MPLS for QoS routing and traffic

engineering.

An explicit route is specified as a sequence of hops rather than being determined

by conventional layer 3 routing algorithms on a hop by hop basis. Thus, MPLS

distinguishes from conventional IP routing by evolving a routing technique called

explicit routing [5, JJJ. An explicit route needs to be specified at the time that

labels are assigned and does not have to be specified with each IP packet.

Explicit routes can be used to support policy routing and traffic engineering. The

ability to setup explicit routes allows network administrators to control how traffic

flows through their networks. In MPLS an explicitly routed LSP (Label Switched

Path) is considered as a tunnel. When a packet enters the network, its path, QoS,

and forwarding class are already fully determined.

Multipath routing can also be supported in MPLS. Specifically, Label Switched

Routers (LSR) may support multiple routes for a particular FEC. MPLS assigns

multiple labels to the FEC, one for each route. There are a number of obvious

reasons why it may be desirable to use explicit and multipath routing instead of

conventional IP routing. For example, this allows selection of routes based on

administrative policies and careful route design to allow traffic engineering. As we

show here, multipath and explicit routing features can also be used to facilitate

QoS support for multiple classes of services in MPLS capable networks. The end

result will be a load balanced network optimized to maximize operators' revenue

and customers' satisfaction.

2.2 Effective Bandwidth

In a packet network, sources do not require dedicated bandwidth (e.g., circuits)

for the entire duration of a connection. The actual bandwidth (bit rate) needed by

each connection is uncertain and fluctuates over time. The actual required

bandwidth fluctuates between some minimal level, perhaps 0, and a peak rate,

which is typically determined by the speed of the access line. With packet

multiplexing, the bandwidth of a link could be segmented into many different

sized shares. The flexibility of packet networks also makes it more difficult to

effectively control the admission of connections seeking to enter an existing

network, and to plan the capacity of future networks when they are designed.

2.2.1 The Definition

The problems of admission control and capacity planning in a packet network

may be addressed by a concept known as the effective bandwidth of a

connection. The following is the definition of effective bandwidth given by Frank

Kelly in [8]. "Let X[0,t] be the amount of work that arrives from a source in the

interval [0,t]. Assuming that X[0,t] has stationary increments.

a{s,t)=-\ogE[esX[0',]] 0<s,t«x>"
st

9-

When employing this concept, an appropriate effective bandwidth is assigned to

each connection; and each connection is treated as if it required this effective

bandwidth throughout the active period of the connection. The feasibility of

admitting a given set of connections may then be determined by ensuring that the

sum of the effective bandwidths is less than or equal to the total available

bandwidth (i.e., the capacity). Kelly presents this additive property [8] as follows.

"If X[0,t] = ^.Xi[0,t] , where (*,.[(),/]). are independent, then

a(s,t) = ^a,(s,t)."
i

By using effective bandwidth in this manner, the problems of admission control

and capacity planning are addressed in a fashion similar to that employed in

circuit-switched networks. Moreover, with MPLS LSP tunnel, before a connection

is admitted to a network, its forwarding path and FEC treatments have been fully

determined. These characteristics inspire us to adopt those well-studied and well-

tested call admission control and routing algorithms developed for Circuit-

Switched networks to solve QoS routing problems. SDR, which is discussed later

in this chapter, is one of those algorithms that are deemed to be ideal to support

QoS routing.

In addition, this concept simplifies the QoS constraints to only one parameter

when considering constructing a QoS routing algorithm [IfJ, 14]. In emerging

multi-service telecommunication networks (e.g. Based on ATM technology) QoS

is defined in terms of delay, jitter, throughput, service availability, or any other

service specific measurements that are applicable. With this definition, a QoS

routing decision is a multiple-objective problem that does not have a uniform

measure standard and perhaps even contradict each other. The concept of

effective bandwidth can be seen as a generalization of the QoS definition, which

leaves us with only one objective to focus on, the bandwidth. In another word,

QoS is assumed to be guaranteed, if a connection is allocated with its effective

bandwidth. This assumption is easy to verify. Considering a MPLS capable

network (which is assumed in this thesis), a connection is assigned its effective

bandwidth and forwarded along a LSP tunnel according to a FEC. Every packet

10-

in this connection will follow the same route; propagation delay is supposed to be

negligible; and the queuing priority is fine-tuned for its FEC. Hence, the delay,

jitter, throughput and service availability are all fixed in the network; the QoS is

then fixed.

2.2.2 Estimating the Effective Bandwidth

Different approaches [19, 20] have been proposed to estimate the effective

bandwidth of sources. Often, the amount of traffic, produced by a source, as a

function of time is characterized. The ultimate goal of this kind of traffic

characterization is to determine the resources required to carry the source

through the network, which directly depends on the queuing priority of the source.

However, for this research, the concept of effective bandwidth is only used as a

unit measurement for homogenous IP traffic. It is evident that the effective

bandwidth of a connection should be some value between its average rate and its

peak rate. Any particular value that is used is necessarily an approximation, but

potentially a very useful approximation. We picked a value, by observations,

between the average rate and the peak rate of traffic generators as the effective

bandwidth. For homogenous IP traffic, there is only one kind of traffic generator

(discussed in Chapter 4) used in the simulations.

Traffic shaping and conditioning are not the focus of this thesis. However, we

assume that traffic sources will obey their predetermined traffic level, won't flood

the network; and the network can enforce its Service Level Agreements (SLAs)

with its customers, and won't allow misbehaving traffic to enter.

11

2.3 Markov Decision Process for State-

Dependent Routing

2.3.1 Background

The introduction of electronic switching with stored-program control has made it

possible to consider sophisticated call-routing algorithms [34 - 44] for

implementation. Among those are routing schemes that use real-time or near

real-time network state information at the time of a call arrival to select a route for

that call (e.g., DNHR [35, 45], DCR [46, 47], SDR Q5, 37], FLR [41J); we refer to

them as State-Dependent Routing (SDR) schemes.

AT&T Bell Laboratories developed the scheme of Dynamic Non-Hierarchical

Routing (DNHR) [45]. In DNHR, the sequence in which a call hunts for an

available route within its permitted set of routes is made a function of the hour of

day. The intention is to make use of spare capacity that exists in portions of the

network because of non-coincidence in the occurrence of peak traffic demands in

the different time zones of the country. In addition, there are features designed to

make the routing adaptive, in real time, to actual network conditions. This was

followed by studies at Bell Northern Research [34] and AT&T Bell Laboratories

[35] on real-time routing schemes responsive to the actual state of the network,

monitored at each call arrival (in the ideal case) or at intervals of a few seconds.

Studies on SDR began at Bellcore right from its inception in 1984. These

investigations were directed at using the insights of Markov decision theory to

develop a theory of SDR and formulate SDR schemes [37, 41] that offer

impressive performance.

In [48] and [37], Markov decision theory was employed to compute a state

dependent routing policy off-line by executing a single policy iteration step. The

Markov Decision Process (MDP) approach has been tested favorably against a

sequential routing rule similar to a basic version of DNHR [45], and against a

"Least-Load Rule" similar to that proposed for the Trunk Status Map [35], a

12

precursor to the Real-Time Network Routing (RTNR) scheme that is now used in

AT&T's long distance network [1J. The policies derived from the MDP approach

require the evaluation of different cost functions, at least one of which can be

estimated efficiently [15]. More recently, Dziong et al. Q8] introduced the

maximum revenue criterion and link shadow prices (first introduced by Kelly [211)

into this approach and demonstrated even further improvements. Such SDR

schemes go beyond adjusting to predictable traffic variations and seek to exploit

even the statistical fluctuations exhibited by traffic streams, i.e., they seek to

make the most of even the random fluctuations of spare capacity that might be

observed in the network.

A state-dependent scheme seeks to route each call so as to minimize the risk of

blocking future calls, and thus responds to the current state of the network on the

basis of certain assumptions about future traffic demands. Thus, it is an

application of feedback control in the network. Since feedback control, in general,

offers the possibility for automatic adjustment to actual conditions, SDR has the

potential for a degree of robustness in network response to varying load patterns

and failure configurations. This flexibility is one of the main benefits of SDR, and

is of increasing importance in modern networks that plan to offer a variety of new

services, for which reliable demand forecasts are not yet available.

2.3.2 SDR Overview

Let us reduce the network to its essential structural features—a set of nodes

(switches), N , interconnected by a set of links, L , and a set of possible

origination-destination (O-D) pairs, W. Assume that at O-D pair w, a call will

require one unit of bandwidth (as effective bandwidth) on each link t of the path

at the time of call origination. The selected route <pw consisting of one unit of

bandwidth on each link of the path, is then occupied for the duration of the call. At

the end of the call, the occupied bandwidth on each link becomes available for

the connection of other calls. Thus, calls arrive at random and are routed on

13

suitable paths whenever possible; rendering those paths unavailable to other

calls for the duration of the routed calls. Thus, the traffic produces random

variations in the link occupancies in the network. The aim of a routing scheme is

to influence, to the extent possible, these random variations in the pattern of link

occupancies so as to minimize network blocking (the probability of an arriving call

finding no suitable idle path for its connection).

The routing of a call arriving in a given configuration of link occupancies can thus

be viewed as a choice of state transition from the given state of the network. It

thus becomes evident that the routing problem can be characterized as a MDP

[49, 50], i.e., as the probabilistic control of a system whose working can be

modeled by the evolution of a Markov chain. This is a well-established branch of

study in stochastic control; and there exist (in principle) well-defined methods for

finding an optimum solution. V.E. Benes [51J presented a formal treatment of the

traffic routing problem as a MDP with an average-reward criterion in 1966.

The basic assumptions regarding the stochastic nature of the network are as

follows:

1. The incoming calls are Poisson distributed with rate A;

2. The holding times of all calls are exponentially distributed with unit mean

time, /T1;

3. Blocked calls do not retry;

4. Call set-up times are negligible;

5. All routes have at most two links;

6. When a call is routed on a j-link path, it becomes j independent calls, each

with an independent holding time.

Assumptions 1-4 are fundamental for most teletraffic modeling. Assumption 5

pertains to networks with dynamic routing, since it has been established that

more than two hops is the point of diminishing returns for the benefits of

sophisticated routing and an invitation for instability. Assumption 5 & 6 relate to

the treatment of the traffic routing problem as a MDP and will be discussed in the

next section.

14

2.3.3 Formulating the Routing Problem as a MDP

In treating traffic routing as a Markov decision process, the exact characterization

of the network state would require the specification of the number of calls in

progress on each possible route in the network. Such a detailed specification of

state is computationally infeasible for any realistic network due to the huge state

space of the Markov decision process.

Numerous studies, e.g., Q8, 1_5], have proposed the link independence

assumption and a consequent decomposition of the path cost into a set of

separable link costs, referred to as the path cost separability assumption. In the

following, we first introduce these two assumptions. We then describe the

decomposed Markov decision process that results form these two assumptions.

• The link independence assumption:

This assumption assumes that ([1_8, 53, 54, and 151):

1. Calls arrive to any link t according to independent Poisson process

with rate X1.

2. A call carried on a path consisting of n links behaves like n

independent calls, i.e., the link holding times for the call on each of

the n single links are statistically independent.

• The path cost separability assumption:

This assumption was first introduced in [15J. The idea is to assume that the cost

functions associated with adding a call on path QJ to the network are separable,

i.e., C (x) = £ C (y ,) , where <j)J is the j t h route of O-D pair w, C0„(x) is the
' ee<t>J

cost of accepting a call under the network state x, c, (y,) is the cost of using link

£ when there are already y calls on the link.

By assuming statistical independence of the links in the network, we arrive at a

simpler definition of network state as the set of bandwidth occupancies (with the

effective bandwidth as unit), i.e., the vector of link states. This amounts to

regarding a multiple-link call in progress as several independent calls on those

links, with independent departures. This is a reasonable approximation whenever

15

the number of calls common to two links is a small fraction of the total number of

calls in progress on either link — a condition that should hold if most calls are

direct-routed or if each link is used by calls of many different node pairs. Now

suppose that we want to route a call on a path with more than one link, while still

restricting all other calls to direct routes. The path cost for adding this call is thus

simply the sum of the individual link costs. The link independence assumption

and the path cost separability assumption are satisfied if direct routing (discussed

in the next section) is used and each O-D pair has its own direct link.

If n is the number of links, and x, is the occupancy of link /, then the network

state is given by the vector x = (xi,x2,---,xn). The state transitions are rather

simple: the departure of a call in progress on link / changes the state to

(jtpx,,-",*,.-I,--,*,,). The arrival of a call either produces a new state if the call

is carried, with the occupancies of each link on the chosen route increased by 1,

or leaves the state unchanged if the call is blocked.

The routing rule or policy can be described by a function R(x,w), which specifies

the network state attained as a result of the routing decision when a call of node

pair w arrives in state x . We define an optimum routing rule as one that

minimizes the expected steady-state blocking rate in the network. The blocking

rate and the routing policy R are connected by an equation for each network

state [49, 50]. Appearing in these equations are the so-called Howard relative

cost functions [49, 50], { ^ (JC) } , which allow us to attach a cost to each state

such that _VR(y)-VR{x)'] is the difference in the expected total number of calls

lost in the network under policy R, starting from the initial state y and starting

from the initial state x. The cost {V, (x)} under optimum routing, it is clear, must

be consistent with the following routing rule:

When a call arrives in state x, we should choose, from the possible actions, the

one that leads to the state with the smallest cost.

16

Noting that an outright rejection of a call leaves the state unchanged but incurs

an immediate loss of one call. We can now describe the optimum SDR rule as

follows, in terms of {V, (x)}, the corresponding relative costs:

When a call arrives in state x, let y be the state, among those that can be

reached by feasible routing choices, with the smallest cost. Then,

(a) If \v. (y) - V. (x)| < 1, chose the route corresponding to y.

(b) If \K (y) - V, (x)\ > 1, reject the call. (2.3.3.1)

The criterion of the second part of equation 2.3.3.1 is an important, built-in

congestion control feature of SDR. It weighs the risk that the current call (if

carried on a multiple-link route) might cause more than one future call to be

blocked during its lifetime. It is a natural form of trunk reservation [45] that acts to

limit the extent of multiple-link routing during overloads, thus preventing

congestion from spreading in the network.

The exact determination of the relative costs {^(x)} for optimum routing is a

hopeless task for practical networks, since the number of equations that must be

solved equals the size of the state space [49]. However, if the cost [VR (x)) for

some routing scheme R are used in equation 2.3.3.1 to derive a new routing

scheme R, then it is known [49] that R is superior to R (unless, of course, R is

optimum, in which case R = R). This procedure of improving upon an initial

policy is known as "policy improvement" [49, 50]; and it offers us a ray of hope. If

we could derive the relative costs from some reasonable initial routing scheme

without having to solve a system of equations the size of the state space, then

we can use equation 2.3.3.1 to improve upon it. We now show how the relative

costs can be determined from the case of direct routing.

17-

2.3.4 Relative Costs for Direct Routing

Consider that a Poisson stream of intensity A, which is normalized for the choice

of the mean holding time as the unit of time, is offered to a single link with

capacity of 5 units of (effective) bandwidth. The state of the link is defined by the

number, p , of occupied bandwidth units.

We define, for p = 0,\,---(s-\), Dp =V(p + \)-V(p) as the expected number of

additional calls blocked (in the long run) when we start with (p + l) busy

bandwidth units rather than with p busy bandwidth units.

Consider a start from the initial state p. Sooner or later, the link occupancy

makes its first passage to the state {p + \); the subsequent course of events for

this case corresponds to the case of a delayed start from the initial state (p + 1),

the delay being the first-passage time from state p to state (p + l). Considering

the effect of the delayed start on the expected asymptotic difference in blocked

calls in the two cases, we obtain the formula

Dp=MpEb(s,X) (2.3.4.1)

where Mp is the expected number of call arrivals in an interval of length equal to

the mean first-passage time from state p to state (p + l), and Eb (s,X) is Erlang-

B blocking of the link.

By examining the possible state transitions from state p, it is easy to see that

M satisfies the first-order difference equation

^ P
p X + p X + p

Mn,+M„
p-> p

(2.3.4.2)

with the initial conditions Mn = \. 0

The solution of equation 2.3.4.2 is given by M = — and using this in

Eb (p,X)

equation 2.3.4.1, we obtain the following simple formula for the relative cost of

adjacent states (p + l) and p:

-18

~ £
b(s,X)

Dp can also be seen as the possibility of blocking one future call when the link

moves from state p to state (p + l).

In a direct-routing network, the links are, in fact, independent; and, as a result,

the relative cost of a network state x = (xx,x2,---,xn) is separable and additive in

the component states of the individual links. Equation 2.3.3.1 is used as the call

admission control criterion for direct routing. Suppose that a call arrives in state x

and has to choose from the following three available routes:

Route 1: direct route consisting of link 1

Route 2: two-link route consisting of links 2 and 3

Route 3: two-link route consisting of links 4 and 5

The cost [Cj\ associated with the corresponding state transitions are obtained by

using equation 2.3.4.3, using link subscripts on the variables:

Route 1:C, = ^ J " A ' \
Eb(xv\)

Route2:C2 =
 E ^ \ + E ^ \

Eb(X2>K) Eb(Xl>^)

Eb(x4,X4) Eb(x5,X5)

Let C = min(C,,C2,C3). Then, one of the routing rules can be:

If C< 1, route the call on the minimum-cost route;

If C>1, reject the call.

Let's call this rule the minimum-cost (MC) policy. We note that, since C, < 1,

whenever xx <sl, a call that can be carried on a direct link will never be rejected;

however, the call may not be necessarily carried on the direct link, e.g. when

1 < C, < C2. In this thesis, we will also examine a slightly different policy. Still using

the above example:

19

If (C, < 1), then {route the call on link 1;}

else if (min(C2,Ci) < l), then {route the call on the minimum-cost route;}

else {reject the call;}

Let's call it direct-first (DF) policy. The first line of the policy gives the direct link

priority over two-link routes. This modification leads to more efficient network

utilization and the same time, saves some cost computation, especially when the

number of admissible paths is large. In addition, with the cost still less or equal to

1, the blocking rate will not be compromised. In fact, we found that DF gives

better performances, because of its "direct first" policy. We will compare the two

routing policies in chapter 5. The discussion in the rest of this thesis will be based

on the DF policy.

2.4 Resource Utilization Cost (RUC)

Based on the independence assumptions introduced in section 2.3.3, we are

going to examine the cost of admitting a call to a network from a different

perspective: define the cost as the probability of blocking future calls, and then

formulate the average cost function by averaging the probability over its (the

call's) mean holding time.

2.4.1 First Passage Times

Consider the utilization of a link with resource r = 0,---,N as a birth and death

Markov process with transition rate Xr and [ir.

Figure 2.4.1.1: State diagram

20

At state p,(p = 0,---,N-l) with call arrival rate Xp and call departure rate \xp, the

total rate of leaving state p is vp =Xp +[ip. With probability Xp/vp , p + l is the

next state; with probability (*p/vp, p-l is the next state. In the later case, the

process still has possibility to reach state p + l after it comes back to state

p again. Let tp be the time taken by the process to reach state p + l from state

p. Let s+
p(x) be the P.D.F. of t\. Then we have [521

sl W = — vPe~VpX +^vpe~VpX*s;_](x)*s+
p(x) (2.4.1.1)

p p

where * devotes convolution.

Let S+
p (s) be the Laplace transform of s+

p (x): i.e.,

S+
p(S) = j ~s+

p(x)e~sxdx. From (2.4.1.1), we have

s;(s),J^ + J^s;i(s)s;(s) = t _ _ (, = i,.,*-i)

For p = 0, the time to reach state 1 is simply that of the next arrival, and is

X
exponentially distributed with parameter X0. Thus: SUs) = —9—.

s + v0

Now, let t be the time taken by the process to reach state q > p, starting from

state p . We can write tpq as: tpq =t+p+t+p+l + - + /,+_, , where fp,...,Cq_x are

independent.

Let spq(x) be the P.D.F of tpq, and Spq(s) be the Laplace transform of spq(x).

Hence,

s+
0(s)s;(s)-sq

+_l(s)
Si;(s)S;(s)-S;_l(s) (2.4.1.2)

This is an important result that is used to formulate the average cost function.

21

2.4.2 Average Cost

We consider still the link with resource, n = 0,-~,N, and the same assumptions

about the traffic as in section 2.3.4, i.e.,

1. Each call requires one resource for the duration of its holding time.

2. The call arrival process is Poisson with intensity X .

3. Each call has an independent and exponentially distributed holding time

with mean value /T1.

Suppose that a new request R arrives at time 0 and requires one resource for its

holding time h, when p<N resource is busy, or the link is in state p. The

acceptation of R can lead to two scenarios.

In the first scenario, Figure 2.4.2.1, while the call R is holding a resource, no

later calls are blocked. Hence, the request R induces no cost.

Number of busy
resources

N

R

k

0 Time

Figure 2.4.2.1: Scenario 1, request R induces no cost

In the above figure, the dotted line depicts the total number of busy resources

while request R is being served.

In the second scenario, depicted in Figure 2.4.2.2, while the call R is holding one

resource, a subsequent request arrives and finds all resource busy. Thus, the

subsequent request is blocked. The subsequent call would have been served if

R hadn't taken a resource. Therefore, the request R induces a cost of blocking

one request. It is deserved to point out that request R only causes one blocking,

22

since after the first blocking, the link occupancy is the same as what the blocked

request would have otherwise caused.

Number of busy
resources

N
t

Time

Figure 2.4.2.2: Scenario 2, request R induces the blocking of a subsequent
request at time tb

In the above figure, the dotted line depicts the total number of busy resources

while request R is being served.

Let CP be the average cost of assigning resources to a connection request R

while p resources are busy. Specifically, CP can be defined as the probability of

blocking a subsequent request, while R holds its resources. In other words, Cp

is the probability that the process transits from p to N during the holding time h

of request R.

Averaging the possibility over the holding time h, we thus have:

cp = r?r[tpN < t^e-^dt=rrSpN(x)dx^dt=smm*so (2A21)

Combine equation 2.4.2.1 and 2.4.1.2, we can express CP as:

- _Eb(A,N)
P Eb(A,p)

(2.4.2.1)

A is the traffic intensity, A = Xjp., p is the number of currently busy resources,

N is the total number of resources and Eb(x,y) is the Erlang-B blocking formula.

Since, CP depends on p, A and JV, we will refer to equation 2.4.2.1 as CA,N(P) .

23

Now, comparing equation 2.3.4.3 and 2.4.2.1, it is interesting to see that we have

reached the same cost function. (Note that the equation 2.3.4.3 is using X

instead of A, because it is assuming each call has unit mean holding time, i.e.

iu"1 = 1.) This result proves that this cost function has solid theoretical basis. It

can be verified from both the MDP approach and the probability approach. With

this cost function, it is obvious that we can use the same routing policy as that

introduced in section 2.3.4.

2.4.3 Understanding the RUC Function and the Erlang-B Blocking
Formula

• Erlang-B blocking formula

The Erlang-B blocking formula is very important in routing studies and capacity

planning. To get a better understanding of the formula, let's see some figures.

Consider a typical trunk group in a well-engineered circuit-switched

telecommunication network. Supposing a trunk group is offered a traffic of

A = 8QErl., and is designed for 1% of blocking rate with N=96. For this trunk

group, the number of circuits (capacity) is determined most importantly from the

expected traffic load. The figure 2.4.3.1 depicts the situation. Before the blocking

rate reaches 1% (e.g. A = S0Erl. when N=96), the curves are rather flat, which

means that the blocking rate is not sensitive to traffic load fluctuations. However,

the blocking rates begin to rise quickly after 1%. Therefore, 1% is a good

threshold point for capacity planning to accommodate high traffic load and, the

same time, keep the blocking rate low.

Figure 2.4.3.1 shows that after 1%, the blocking rates rise at different speed. The

curve for N=96 is not as steep as the one for N=60, i.e. blocking rate for N=96 is

increasing at slower speed than that for N=60. This can be explained as bigger

trunk groups are more adaptable to overflow conditions.

24

Blocking Rate Curves

36 46 56 66 76 86

Traffic Intensity (Erlang)

N=96 N=80 N=60

96

Figure 2.4.3.1: The blocking rate curves when N=96, N=80 and N=60

Blocking Rate Curve When A=N

1 6 11 16 21 26 31 36

Traffic Intensity and Capacity Pair

Figure 2.4.3.2: The blocking rate curve when "A=N"

Figure 2.4.3.2 delivers the same information from a different perspective. It

shows the blocking rate curve for AT = l,---,40 under offered traffic A = N , (i.e.

when the number of circuits is N=21, the offered load is A = 21£W). As the traffic

intensity and capacity pair grows, the blocking rate goes down monotonously, i.e.

-25

as the trunk group becomes bigger, blocking becomes smaller, even in an

overflow condition. Hence, in capacity planning, one big trunk group may have

advantages over several small ones. However, Figure 2.4.3.3 shows that as link

capacity grows, the 1% threshold point grows at a lower speed. The curve "x=y"

is used to compare with the " 1 % Blocking Rate Curve" to show the trend.

A vs. N Curve with 1% Blocking Rate

20 40 60 80

Number of Circuits

100 120

1% Blocking Rate Curve —•— x=y

Figure 2.4.3.3: Traffic intensity vs. link capacity curve with 1% blocking rate

This result is consistent with Figure 2.4.3.1. As traffic intensity grows, the

blocking rate of a high capacity link will start to move up earlier than a low

capacity link, but with a lower initial slope. We will discuss more about capacity

planning issues and present how we address them in our simulated network

environment in chapter 4.

• RUC function

Figure 2.4.3.4 presents CA,N(P), defined in equation (2.4.2.1), as a function of p

when A = SOErl. and N=96.

26

46 56 66 76 86

Number of busy circuits (p)

96

Figure 2.4.3.4: CA.N(P) as a function of p for a trunk group

Figure 2.4.3.4 shows that CA,N(P) monotonically increases in p, and is always

less than or equal to 1. Hence, it is always profitable to assign a trunk to a call, if

it only requires one trunk. Blocking a call will instantly cost 1 unit, while accepting

it may at most entail 1 unit of cost. However, as the number of busy circuits rises,

assigning a trunk to a call becomes increasingly costly. When the number of busy

circuits approaches N, the cost increases sharply.

Now, still using above example, consider how the traffic intensity parameter X

affects the cost curves.

46 56 66 76 86

Number of busy c i rcu i ts (p)

96

•A=90 Erlang -«—A=80 Erlang —A— A=60 Erlang

Figure 2.4.3.5: RUC cost under different traffic intensities

27

Comparing the three curves corresponding to A = 90Erl. , A = S0Erl. and

A = 60Erl., we can see that when p = 96, they all reach 1. However, the cost

curve of A = 90Erl. is always higher than the other two curves (except when

p = 96). Moreover, the higher the traffic intensity is, the smother the curve is.

This will make the trunk reservation approximation less accurate (to be further

discussed in section 2.5.2).

2.5 Detecting the Traffic Intensity

With equation 2.4.2.1, the RUC can be accurately calculated. However, CA.N(P)

requires the knowledge of both the real-time traffic intensity A and the network

utilization p, which are difficult or even impossible to acquire. In this section, we

introduce two approaches to either get the traffic intensity parameter A or

remove the dependence on A with an approximation. And then, in the section

2.6, we will focus on solving the dependence on real-time network utilization p.

2.5.1 SDR-ADAPT

In general, determining the correct value of X for each link requires solving a

large non-linear program off-line [37]. It is therefore highly desirable to do away

with the need for prior load information. Krishnan introduced adaptive SDR, SDR-

ADAPT, in [54]. Algorithm SDR-ADAPT has no prior knowledge of the call arrival

rates for each node-pair (and hence no knowledge of the offered load on each

link). Instead, it collects data in the course of normal traffic measurement and

adjusts routing to the traffic pattern. In SDR-ADAPT, the offered load on a link is

initialized to its link capacity. For a network designed with 1% blocking rate, this

initial traffic intensity is normally higher than the real intensity on the link. During

the execution of the algorithm the carried loads (occupied capacities) are

scanned every <5 time units and the offered loads are updated every A scans.

-28

Figure 2.5.1.1 shows the first update of X. Other updates are similar.

nf : Carried load on link t\ Xf : Offered load on link £;

Bf : Blocking on link £; h : Mean call holding time;

for / = 1 to A

n, (i) <— Carried lad on I at time id

0 n,(i)*C,

1 nt (/) = C,
l(i) * -

A> <_ sr/' (/)-

A,. < -

i / A

=1

/(*0-*<))
In our implementation: h = 5 seconds; A = 81 seconds; <5 = 1 second;

Figure 2.5.1.1: The first update of the offered load for SDR-ADAPT

To be compatible with the RUC function (equation 2.4.2.1), we will use A = ^/

instead of X to describe the carried load. The traffic intensity of the whole

network can be then described as a traffic intensity matrix, [A,XJ\. With [AixJ\ being

updated repeatedly, it will get closer and closer to the value that reflects the

actual traffic pattern. This is in fact an "initial policy (direct routing) + policy

improvement" process, which is an effective way to apply MDP to the routing

problem.

An over estimated initial offered load won't have much impact on direct traffic,

since direct routes always cost less than 1; however, it will reduce 2-hop traffic.

When most (e.g. 90%) of the traffic can use direct routes, after the first update

cycle, SDR-ADAPT can capture most (e.g. more than 90%, since there still will

be some 2-hop traffic) of the actual offered load. During the second cycle, SDR-

ADAPT may adapt to an intensity value smaller than the actual load, but very

close. Hence, the blocking rate will decrease considerably, and the 2-hop rate will

29

increase, which leads to a higher traffic intensity. After two updates, SDR-ADAPT

will have a very good estimation of the current load.

SDR-ADAPT doesn't require traffic demand knowledge in advance or in real-time.

In stead, it calculates the traffic intensity matrix [AIXJ] once in every update cycle,

A . This modification may lead to sub-optimal routing decisions, but it makes

SDR-ADAPT a much more realistic algorithm. Moreover, after [Aixj\ converges to

its target value, the routing decisions will also reach the optimal.

However, SDR-ADAPT still has to calculate the rather complicated RUC equation

(equation 2.4.2.1) for every call admission. This could be a huge problem for a

modern telecom network, which may have to respond to hundreds of newly

arriving calls simultaneously. Hence, further simplification is necessary to cut

down the computation.

2.5.2 Trunk Reservation (TR)

Since the cost function CA,N(P) requires knowledge of the traffic demand A it is

impractical to compute it in real-time. Trunk reservation [45], which eliminates the

requirement for real-time traffic demand knowledge, is an effective way to

approximate CA.N(P).

Trunk reservation [23-251 was first developed in circuit-switched networks, in

which a threshold is defined for each trunk group. If the number of idle circuits is

greater than the threshold, the cost of accepting a call is considered zero. If the

number of idle circuit is less than the threshold, the cost of using this trunk group

is considered 1. When the cost of using a circuit for a call is less than or equal to

1, the circuit is assigned to the call. With the trunk reservation approximation, the

total cost of a route is always a non-negative integer. Still using the example from

section 2.4.3 (A = 96Erl and N=96), Figure 2.5.2.1 illustrates the trunk

reservation approximation with a threshold of five idle trunks.

-30

Trunk Reservation

46 56 66 76 86
Number of Busy Circuits

96

Figure 2.5.2.1: The trunk reservation approximation to CA,N(P)

From the discussion in section 2.4.3, we know that traffic intensities can greatly

change the cost curves. Hence, under different traffic intensities, the threshold

values should be different.

46 56 66 76
Number of Busy Circuits

86 96

- * — A=90 Erl -A=80 Erl -A— A=60 Erl

- *— TR for A=90 Erl - * — TR for A=80 Erl —•—TR for A=60 Erl

Figure 2.5.2.2: Threshold values under different traffic intensities

From Figure 2.5.2.2, we can see that the lower the traffic intensity is (in this

example A = 60Erlang), the more accurate the trunk reservation approximation

-31

can be. It also shows that .4 = 80 Erlang (corresponding to 1% blocking rate) is a

good threshold point for trunk reservation. When the blocking rate is higher than

1%, the TR will be less efficient. Hence, one of the network design objectives

should be to limit the blocking rate on each link to 1% or less.

As an approximation to the RUC cost function, the TR reduces the cost on some

link states, which are smaller than the threshold, to 0, and increases the cost of

all others to 1. For a specific traffic intensity, the threshold on a link should be the

link utilization state that has a cost around 0.5. Hence, when a 2-hop route costs

more than 0.5 on both its links, its total cost becomes 2; when it has one link that

costs less than 0.5, the total cost is 1, and the route is admissible. Since under

TR, the exact cost of a given route can't be determined, i.e. the minimum cost

route can't be found, and MC is devised to test SDR with exact cost, TR isn't

implemented under MC. Under DF, this modification doesn't impact direct traffic

directly, since direct traffic always has a less than or equal to 1 cost. However, it

may cause some less optimal decisions when routing 2-hop traffic, since all 2-

hop routes have costs 0, 1 or 2. Therefore, under TR, DF can only find a 2-hop

route, whose links are below their thresholds. The route is not necessarily the

optimal one.

The TR threshold does not need to correspond to an integer number of idle

trunks. For packet-switched networks, the threshold should be some quantity of

bandwidth, for example, 1 percent of total bandwidth, or several units of the

effective bandwidth of a service class. In thesis, we define the threshold as follow,

x = Round x B

I B)
Where x is the threshold; 8 is a small number, e.g. 0.05 ; B denotes the

effective bandwidth of the connections; C is the capacity of the concerned link;

and Round (s) is the function to round the variable s to the nearest integer.
— fO, Available Bandwidth > x
C=\

[1, Available Bandwidth < x

x is affected by the total capacity of the link C, the effective bandwidth B and

the traffic intensity on this link, where C is known and B is fixed. Used to reflect

32

traffic intensity, 5 is the parameters that need to be investigated in this research.

The following figure shows the relationship between the cost, C and <5 .

Cost

1

0

Figure 2.5.2.3: The trunk reservation approximation to CA,N(P)

Trunk reservation replaces the RUC equation with a simple threshold, hence,

dramatically reduces the computations for SDR-ADAPT. Both SDR-ADAPT and

trunk reservation are implemented in this research. The simulation results are

presented and discussed in chapter 5.

2.6 Detecting the Network State

We have shown that with SDR-ADAPT, real-time traffic intensity A can be

replaced by an averaged value over an update cycle; and after a few updates,

the averaged value converges to its real value. With trunk reservation, the RUC

function is replaced with a threshold, and no traffic intensity knowledge is

required. However, there is another real-time information required in RUC, the

link state, p. The discussion of SDR so far has assumed that instantaneous

state information is available at each call arrival.

In practice, routing decisions can only be made based on near real-time state

information, which is updated periodically. It is easy to see that a higher update

frequency will lead to better routing decisions; nevertheless it also induces cost,

e.g. bandwidth consumption. Clearly, there is a trade off between update

frequency and the induced cost. In this section, we will introduce a method to find

33

out the optimal update frequency that can give the best balance. The

performance of SDR under different update frequencies is studied in chapter 5.

2.6.1 Update (Sampling) Frequency

Considering the utilization of a link as a stochastic process, we can estimate a

frequency range [- /0 , /0] , which contains most of the energy of the process. For

connection-oriented Poisson traffic with homogenous exponentially distributed

holding time (with mean jiT1), some related research [52] on telephone networks

can be used. The following equation can help us to determine the frequency

range that contains x percent of the power of the process.

/<,= — t a n
0 In

x x | , (2.6.1.1)

Then, applying the Nyquist sampling criteria, we can well sample the process at

two times the maximum frequency. The estimated update interval should be

around V v From formula 2.6.1.1, we can see that the update frequency
/ (2 X / 0)

(interval) depends on the mean holding time of the offered connections. The

longer the mean holding time is, the lower the update frequency is required.

In our simulations, the mean holding time is V =5 seconds, we can have the
/ A*

following figure.

34

10

Update Frequency (HZ)

Figure 2.6.1.1: Captured energy and estimated update frequency

As shown in Figure 2.6.1.1, the captured energy is growing with the update

frequency, but not linearly. After we have obtained 99% of the energy, it becomes

increasingly costly to capture more. For example, to gain another 0.3% of the

energy from 99.5%, the update frequency has to be more than doubled.

Depending on specific traffic engineering goals, the sampling interval can be

designed to capture around 99% of spectral energy.

35

Chapter 3

System Model

In this chapter, we identify the essential network functionalities and describe how

they are modeled in the simulation.

3.1 Traffic Model

Traffic sources claim their service requirements at the ingress nodes of a network.

The network then makes the decisions about admissions and resource

allocations according to some SLAs. If a connection spans multiple networks, the

negotiation needs to be carried in every network.

Some traffic sources contain a single packet, or very few packets. We call the

traffic generated by these sources "datagram" traffic. Other traffic sources

generate long series of packets over some time intervals. We call the traffic

generated by these sources "connection" traffic. Datagram traffic can be viewed

as connection traffic with very short holding time.

Connection traffic can be modeled with several characteristics:

• Bandwidth requirement

This can be either a static parameter negotiated in advance as part of an SLA, or

negotiated upon admission. The bandwidth requirement of each traffic class is

predefined with a specific effective bandwidth.

-36 -

• Origin in network

This is fixed normally, and can be used as one of the parameters for assigning a

label to the connection traffic.

• Destination in network

This can also be a fixed node, or can be determined by the network upon

admission. This is also used for assigning a label to the connection traffic.

• Holding time

This may be a parameter provided by the traffic source (e.g., a 2-hour

videoconference) or it can be inferred from other information associated with the

traffic source (e.g., a TCP port).

• Arrival rate

This normally cannot be determined in advance. However, it can be estimated

from traffic observations in similar conditions. Arrival rate and holding time

together form the traffic intensity parameter in RUC.

For different connections, there can be lots of variations in the bandwidth and

holding time. For instance, the holding time may last for days (e.g., VPN), hours

(videoconference), minutes (VoIP call), or seconds (HTTP).

We use the notion of effective bandwidth [8] to define the bandwidth required by

a connection. As described in chapter 2, the effective bandwidth of a connection

provides a convenient measurement of its QoS requirement. The definition of

effective bandwidth processes some desirable features that facilitate its utilization.

We assume that, for a specified traffic type, e.g., VoIP, the value of the holding

time and the arrival rate can be modeled as exponentially distributed random

variables.

We assume that, in the network, the capacity of each link is large compared with

the traffic generated by a single traffic source. In other words, each link may be

37

shared by a large number of concurrent traffic sources. This is a typical situation

in telecom networks.

The traffic load may vary widely in different parts of the network and at different

times during a day. This issue is discussed in section 3.3 in detail.

3.2 Routing Model

3.2.1 Route Selection

For datagram traffic, routing decisions apply on an individual packet basis.

For connection traffic, routing decisions apply on a connection basis. In this way,

the packets of a connection are delivered along the same path in the network.

Hence, packets arrive at their destination in the same order as they are sent. The

label switching technique helps to satisfy this requirement. We assume MPLS is

supported in the network.

The network that we study is a well connected and well engineered network.

Many paths may exist between each pair of source and destination. Furthermore,

the placements and the capacities of the links are closely associated with the

direct traffic that they need to handle. In addition, there are several 2-link paths

between each node pair in the network.

When a connection arrives at an edge node of the network, there are always

several possible paths from the edge node to route it to its destination. Route

selection is the process used by the node to make the decision.

The route selection process is state dependent. The result of this process may

depend on the offered traffic and the load condition of the related links in the

network. The central question that we want to investigate is the gain in

performance that state-dependent route selection can provide, and the form that

the underlying route selection algorithm should take.

38

Although each connection is tied to a particular path during its entire holding time,

state dependent route selection can balance the load throughout the network.

During its holding time, a connection won't be partitioned over multiple paths nor

be rerouted. By considering resource allocation as a function of the resources

currently available, unbalanced link utilization can be avoided.

3.2.2 Access Admission

For datagram traffic, admission decisions are made on an individual packet basis.

These decisions depend on the origin and the destination of the packet, on its

QoS requirements and on the state of the network.

For connection traffic, admission decisions are made on a connection basis.

These decisions are made under an agreed traffic profile and QoS objectives.

These decisions can be summarized as an effective bandwidth and service class

required along some series of links. Once accepted, the network commits to

respect the terms of agreement.

The cost of a traffic connection is evaluated at its ingress node or at some

centralized routing control unit (e.g. bandwidth broker) in a network. If the cost of

acceptance of this connection is greater than 1, the connection must be blocked.

We assume that the traffic connection source conforms to the traffic profile upon

which it is accepted. This can be achieved through mechanisms such as traffic

shaping and policing. If sources are allowed to increase their traffic beyond the

level that the network agrees to support, the network cannot guarantee their QoS

objectives.

If the network does not have enough resources to satisfy the QoS requirements

of a connection, the connection must be refused.

39

3.2.3 Service Classes

QoS is provided by allocating a connection to a service class that is able to

satisfy it. We are assuming that multiple service classes are supported by the

network, for instance using DiffServ.

The different service classes can be viewed as independent of each other. Each

class is engineered for a certain bandwidth. We assume that the bandwidth

assigned to each service class is fixed. When we calculate the cost of a

connection, we have to consider its effects on connections of all service classes,

which may arrive later and request resources on the same link.

3.3 Traffic Distribution Model

To describe the traffic distribution model, let's use a typical continental U.S. IP

network as an example. The traffic distribution model can be characterized by the

following features:

• Big nodes and small nodes

The nodes in the network are normally located in different cities around the

country. It is obvious that the bigger the city is, the more traffic it can generate,

and the bigger the corresponding node is. The distribution of node sizes is just

like that of city sizes. Huge nodes take up very a small percentage. The number

of very small nodes is also relatively small. Most nodes are in the middle size

class.

• Same amount of in-out traffic

We assume that the amount of traffic that is generated by a node and that is

terminated at the node are in proportion. This is easy to justify. Assuming a

person is sending out Christmas cards. The typical situation is that the more

Christmas cards he sends out, the more he will receive.

40-

• Constantly changing traffic pattern

The traffic pattern in telecom networks is strongly influenced by people's working

timetable. During the weekend, the traffic volume is normally significantly lower

than that in weekdays. In each weekday, the traffic volume usually increases

dramatically in morning when people starts to work, and then drops down after

working hours. At a given time, a node may be generating traffic with its peak rate,

or with some percentage of its peak rate.

• Non-coincidence of peak hours

A network may span several different time zones, three for a continental U.S.

network. Therefore, at a given time, some parts of the network may be generating

traffic at their peak rates, while others not. For example, at 10 am Eastern Time

on a weekday, New York will be at its peak rate, while Los Angeles will probably

not be. The nodes in the network are allocated into different time zones; and they

will be generating traffic according their local time.

• Distance insensitivity

Distance insensitivity is one of the properties of IP networks. Connections may be

randomly distributed among the nodes in the network, although there may be a

little more traffic aimed to local destinations than average.

• Inter-network traffic

We assume that there is no special limitation for connections to remain in one

network. We consider several continental U.S. networks, and suppose that the

data traffic has the same interest in going to each of these networks. Based on

this assumption, the border nodes between the local network and other networks

are going to handle large amount of incoming and outgoing traffic and become

very big nodes.

41

3.4 Topology Model

The network topology should be built according to the traffic distribution, and

satisfy the predefined design requirements. The networks that we study are well

connected and well engineered, and can be described by three main

characteristics:

• Reasonable Size

The size of a network is defined by its number of nodes. A too big network may

take very long time to simulate; a too small network cannot generate useful result

to help to analyze the performance of the routing algorithms. Considering that the

backbone of a continental U.S. network typically consists of several dozens of

nodes, a 30-node network is deemed sufficiently large to constitute a good

topology for this research.

• About Fifty Percent of Connectivity

The connectivity of a network is defined as the ratio of its actual number of links

related to the number of links that it would have if it was fully meshed. A fully

meshed network is not necessary a good network. A well engineered network

should provide committed quality of service and good scalability, and at the same

time, minimize the building and maintenance cost. With the experience obtained

from previous research, we believe that a network with about 50% connectivity

should be a good starting point for our research.

• About Ninety Percent of Traffic on Direct Links

The network is built to carry as much traffic as possible on direct links. This is to

avoid extremely unbalanced link utilization and lower resource utilization and

maintenance cost.

42

• One or Two Hop Path

A small number of the connections in the network cannot reach their destinations

through direct links. However, there are many two-link paths available for these

connections. We assume that an optimal route can only be a one-hop path or a

two-hop path. This assumption significantly reduces the complexity of the

implementation of SDR mechanism.

A network with the features described above can be built according to the

following principles.

• There must be enough outgoing capacity from each node

This means that the total outgoing capacity of a node has to be sufficient to carry

the total outgoing traffic from this node determined in the traffic distribution model.

The total outgoing capacity of a node is normally partitioned into several links that

spread out from the node. The other ends of these links are also determined by

the traffic distribution model. The bandwidth allocated to each of these links is, to

a large extent, proportional to the volume of direct traffic on these links. The

bigger the direct traffic is, the bigger the link capacity is.

• There must be enough incoming capacity at each node

This means that the total incoming capacity of each node has to be sufficient to

support the total incoming traffic of this node determined in the traffic distribution

model. The total incoming capacity of a node is normally partitioned into several

links that terminate at the node. The other ends of these links are also

determined by the traffic distribution model. The capacity allocated to each of

these links is proportional to the volume of direct traffic on these links. The bigger

the direct traffic is, the bigger the link capacity is.

Following the above procedures, we can build a well connected network, in which

the placement and sizing of the links are highly correlated with the direct traffic

that they need to support. With these procedures, we can satisfy two of the three

-43

characteristics. However at this stage, we probably have a fully meshed network;

all of the connections have direct paths to their destinations.

• Connectivity Control

We have to reduce the number of links to satisfy the fifty percent of connectivity.

However, the links cannot be simply removed, because the total incoming or

outgoing capacity of a node has to remain unchanged.

A simple way to solve the problem is:

1. Find out the number of incoming or outgoing links that a node can have;

2. Merge the surplus links into the remaining ones.

We must also guarantee that all origination - destination pairs have at least one

2-link path, if there is no direct link between them.

44

Chapter 4

Implementation

4.1 Overview

Based on NS2 [9], a simulator is built specially for this research. The operating

system that we use for the simulation is FreeBSD 4.2, and the version of NS2 is

2.1 b7a, which was the latest version available at the time.

• Introduction to Network Simulator 2

Network
Components

TclCL

OTcl

Tel

E
vent

S
cheduler

C/C+ +

Figure 4.1.1: The Extended Tel Interpreter of NS2

NS2 is an object-oriented simulator, written in C++, with an OTcl interpreter as

the front-end.

45-

^L
Pure C++

objects

C++

.^£k

C++/OTcl split objects

ns

^

Pure OTcl
objects

OTcl

Figure 4.1.2: OTcl and C++: The Duality

The simulator supports a class hierarchy in C++ (also called the compiled

hierarchy), and a similar class hierarchy within the OTcl interpreter (also called

the interpreted hierarchy). The two hierarchies are closely related to each other;

from the user's perspective, there is a one-to-one correspondence between a

class in the interpreted hierarchy and one in the compiled hierarchy. The root of

this hierarchy is the class TclObject. Users create new simulator objects through

the interpreter; these objects are instantiated within the interpreter, and are

closely mirrored by a corresponding object in the compiled hierarchy. The

interpreted class hierarchy is automatically established through methods defined

in the class TclClass. User instantiated objects are mirrored through methods

defined in the class TclObject. There are other hierarchies in the C++ code and

OTcl scripts; these other hierarchies are not mirrored in the manner of TclObject.

• Concept Model

In general, a network simulation can be divided into two parts: the applications

and the network topology.

46

Traffic

Topology

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

T
r
a
ffi
c

A
9
e
n
t

1

1

i
i

i

...

T
r
a
ffi
c

A
9
e
n
t

T
r
a
ffi
c

Node Link

• • •

T
r
a
ffi
c

A
9
e
n
t

Node

Figure 4.1.3: Concept model of a network simulation in NS2

• Node

A node is essentially a collection of classifiers and agents. In our case, a node

contains one Sdo classifier and one port classifier. A Sdo classifier is a special

classifier that is designed to simulate the explicit routing function of an LSR in this

research.

Note that the words that are followed by under scores in the following figures are

variables. These variables can be used as handles to access the corresponding

fields in an object.

47

Node entry

^ L i n k ^ f Link

Figure 4.1.4: Structure of a Unicast Node

An Address Classifier reads IP addresses from packet headers and forwards the

packets to next nodes or a local Port Classifier. A port Classifier forwards packets

according to the destination port numbers in the packet headers.

• Link

A link is used to connect two nodes. A unidirectional link is called a simplex link in

NS2. A simplex link connects a slot of a classifier to a corresponding node entry.

head_
*S

Li

? •

nk

enqT_ — » • queue_

X

* deqT_ Iink„

a r h " _

— » tt i„ — » rcvT__

i
i
!
i
i

1 — -

Figure 4.1.5: Structure of a unidirectional link

48

Topology

head
?—• enqT_ ->queue_-*' deqT_ -+ link_

u
drophead_-* drpT_

-> ttl_ -

nl
entry

Figure 4.1.6: Unidirectional connection sample

Routing

entry.

1 s

1 /

/ ' p o r t
Classifier^]

'Classifier^

0
1

dmux-

zlassifier

Link nO-nl
entry.

Link nl-nO

Figure 4.1.7: Duplex connection sample

49

0
dst_=1.0

agents_

Figure 4.1.8: Adding transport agents

Transport agents act as the transport layer in the OSI 7-layer model. Both TCP

and UDP agents are available. When a transport agent sends out a packet to its

neighbor, the packet will go directly to the node entry (the variable "entry_" in the

node object), as shown by the arrow; then the Address Classifier will forward it to

the corresponding Link Head (the variable "head_" in the link object).

Figure 4.1.9: Adding a traffic generator

-50

Traffic generators are applications at layer 5 and above in the OSI 7-layer model.

Traffic generators must be attached to transport agents in order to send out

packets. In figure 4.1.9, an application (FTP) is attached to a TCP agent. Node 0

is ready to send packet to the TCP Sink in node 1. A Sink is a null agent, which is

responsible for destroying accepted packets.

EZ3

I

I
•

C4gplk^ation/^>

I I

• I d
I

en

I I I I I I I I 9 I I I I

Figure 4.1.10: Packet flow

This figure shows how packets flow between two nodes. The gray packets are

generated by the FTP application in node 0 (nO); and the black packets are

returned from node 1 (n1) to node 0 (nO). The packets generated by FTP are

passed to its TCP agent and then delivered to the entry of node 0. The address

classifier forwards packets to corresponding slots according to the destination

addresses in the packet headers. The packets generated by FTP are forwarded

to slot 1 that points to node 1. When the packets arrive at the entry of node 1, the

address classifier of node 1 again will check the destination addresses in the

packet headers, and forward the packets to slot 1 that points to the port classifier

of node 1. Finally, the packets are forwarded to the TCP Sink in node 1. The

packets returned from the TCP Sink of node 1 experience the same procedure to

reach the TCP agent of the node 0.

51

4.2 Traffic Agents

Agents represent endpoints where network layer packets are constructed or

consumed and are used in the implementations of protocols at various layers.

The class Agent has an implementation partly in OTcl and partly in C++.

Applications sit on top of transport agents, such as UDP agents and TCP agents,

in NS2, as shown in Figure 4.2.1. There are two basic types of applications:

traffic generators and simulated applications. The one on the left is used to

generate UDP traffic. The Exponential On/Off generator is one of the applications

in the UDP class. The other one is used to simulate TCP application traffic, such

as FTP and HTTP.

Traffic generators
Simulated

applications

Application/
Traffic/

Exponential

API

Agent/UDP

Figure 4.2.1: Example of Application Composition

To obtain valid simulation results, the generators should be capable of generating

traffic with exponentially distributed burst time, holding time and bandwidth.

The Exponential On/Off generator is used as the traffic generator in this

simulation. The output bandwidth of a traffic generator is specified by an

exponential random number generator with a given mean value. Packets are sent

at predefined rate during on periods, and no packets are sent during off periods.

52

The lengths of both burst time and holding time are drawn from exponential

random distributions.

With the effective bandwidth model, it is not necessary to simulate packets.

However, with the packet structure, we can easily store routing information, such

as flow label, into packet header, which facilitates our simulations. All data flows

in our simulations consist of packets.

4.3 Label-Switching

The Address Classifier shown in section 4.1 can only forward packets based on

IP addresses. Hence, a node with only Address Classifiers acts like a

conventional IP router that makes routing decisions on a hop-by-hop basis and

provides best-effort delivery service. To support the label-switching technique, we

need to devise a new classifier that can make routing decisions based on flow or

label information. The Sdo Classifier is designed to perform label-switching

functions. Before introducing the Sdo Classifier, let's take a closer look at

Classifiers in general.

• Classifiers

The function of a node when it receives a packet is to examine the packet's

header fields, usually its destination address and on some occasions, its source

address. It should then map the value(s) to an outgoing interface object that is

the downstream recipient of this packet.

In NS, a simple classifier object performs this task. Multiple classifier objects,

each looking at a specific portion of the packet header, forward the packet

through the node. A node uses many different types of classifiers for different

purposes.

A classifier provides a way to match a packet against some logical criteria and to

retrieve a reference to another simulation object based on the match result. Each

-53

classifier contains a table of simulation objects indexed by slot numbers. The job

of a classifier is to determine the slot number associated with a received packet

and to forward that packet to the object referenced by that particular slot.

• Hash Classifier

One of the classifiers is particularly interesting, the Hash Classifier. A Hash

Classifier can classify a packet as a member of a particular flow. As indicated by

its name, a Hash Classifier uses a hash table internally to assign packets to flows.

This object is used where flow-level information is required (e.g. in flow-specific

queuing disciplines and statistics collection). Several "flow granularities" are

available. In particular, a packet may be assigned to a flow based on its flow ID,

its destination address, its source and destination addresses, or the combination

of its source and destination addresses plus its flow ID.

The functions of the Hash Classifier make the label distribution and label

switching processes much easier.

• Sdo Classifier

CjYaffic/Expoo

entry_j

^rCAgent/UDP^

agents_

Link nO-nl
entry.

Link nl-nO

Figure 4.3.1: Sample system structure of SDOR nodes

54

Each of the classifiers that are original from NS2 maintains a slot table, which

contains pointers to all of the node objects in the network. If the number of nodes

in a simulation grows n times, the memory used for slot tables will grow

proportionally to n2. While in an SDO Classifier, the slot table contains only

references to the node objects that are directly connected to the node, in which

the SDO Classifier resides. The example shown in Figure 4.3.2 is an Sdo

Classifier with five neighbor nodes. The Hash table maintains all of the flows that

go through this node. The slot table contains five pointers to its five neighbors

and the other one is to itself.

H a s h O p e r a t i o n
H a s h T a b l e S l o t T a b l e

s r c _

s r c _

s r c _

s r c _

s r c _

s r c _

s r c _

, d s t_

d s t_

d s t_

d s t_

d s t_

d s t_

d s t_

, f i d _

f i d _

f id _

f id _

f id _

•
•
•

f id _

f id _

* N o d e 1

, * N o d e 4

, * N o d e 4

, * N o d e 3

, * N o d e 5

, * N o d e 2

, * N o d e 2

N o d e 1

N o d e 2

N o d e 3

N o d e 4

N o d e 5

N o d e 6

Figure 4.3.2: Hash Operation of an Sdo Classifier with five neighbor nodes

At the beginning of a simulation, each Sdo Classifier will look for directly

connected nodes and install the corresponding entries in its slot table.

• Establishing and Removing Label Paths

With all of the above functions ready, the label path manipulation becomes a

simple procedure.

Once a route is selected for a connection, the nodes along the route just add a

new entry for this flow to their hash tables. A label path is built for this connection.

Then, all the packets from this connection will be marked with a specific flow ID

55-

and forwarded along the predefined label path. Similarly, when a connection

terminates, the nodes on the path remove the hash entry from their hash tables.

The label path is removed.

4.4 State-Dependent Optimal Routing

The State-Dependent Optimal Routing is implemented in two mechanisms:

centralized and decentralized. MPLS also supports static multipath routing to

avoid computing and setting routes up in real time. However, this implementation

is left for further studies.

4.4.1 Centralized Routing Control (CRC) overview

Centralized Routing
decision node Check for

feasible route
i ~

Compute the optimal route
by comparing the cost of

all possible routes

£
Z \

New
Connection

Routing
decision
request

Check for available
resources for each

possible route

Resource Table

Figure 4.4.1.1: Centralized routing computation

56-

Centralized routing
decision node

Sending out routing
decisions

Associate a timer with
the new connection

Update
resource usage

New
Connection

Routing
decision

Setting up label path
along the route

Resource Table

Setting up label path
along the route

Figure 4.4.1.2: Label distribution and resource monitoring processes of

CRC

CRC employs the DF routing policy and uses TR to calculate the cost of a

connection. Whenever a new connection arrives, the ingress node contacts the

centralized routing decision node (CRDN). The CRDN finds out all of the feasible

routes for this connection from a route set table, then checks a resource table to

determine the utilization of the concerned links, and computes the costs

associated with these routes, and finally, selects the minimum cost route. The

CRDN then provides the ingress node with the optimal route. The resource table

is updated accordingly; a label path is established along the route; and a timer is

associated with the connection. We are going to study the timer in detail later this

section.

If there is no route that has enough resources, the connection will be blocked.

57

4.4.2 Decentralized Routing Control (DRC) overview

DRC is an extension of CRC with no assumption of real time link utilization

information. It also employs DF and TR. In the decentralized implementation,

each node holds a local resource table that is updated periodically by the CRDN.

An ingress node makes routing decisions according to its local resource table

without contacting the CRDN. Those routing decisions may not be globally

optimal since the local resource tables do not contain real time link utilization

information. The longer the resource table update interval is, the lower the

possibility that an ingress node can make optimal routing decisions is. However,

the blocking rate of a network is not a linear function of the update frequency. If

we consider the utilization of the links of the network as stochastic processes, the

periodic update is a sampling process. If our sampling is frequent enough, we

should be able to capture most of the spectral energy of the process, and have

an accurate tracking (as discussed in section 2.6). After that, increasing the

frequency further will not improve much the performance, because we already

capture most of the energy of the process (Figure 2.6.1.1). DRC implements its

update procedure according the sampling analysis introduced in section 2.6.

With DRC, CRDN is not responsible for route computations; it only sends out link

utilization updates. The DRC does not depend on real time information. This

reduces significantly the computation load and signaling traffic of CRDN, and

hence, makes the SDOR more practical.

58-

Centralized routing
decision node Update

resource usage

The optimal route
found or the

connection blocked

Resource
Table

link utilization/^
update

New
Connectior

Associating a
timer with the

new conn

L

Check for available
resource^

Local Resource
Table

Figure 4.4.2.1: Decentralized routing control for direct traffic

4.4.3 The Route Set Table

A route set is a set of routes that contain all of the eligible routes between a pair

of source and destination nodes.

This table is a three-dimensional matrix that contains the detailed topology

information. Considering a 30-node network, the matrix can be [30x30x30].

Recall that all the links in this network are unidirectional, which means that the

link from node i to node j is different from the one from node j to node i. The

first dimension is used to contain the source node-IDs, the second one is for

destination node-IDs, and the third one holds the intermediate node-IDs of all

possible 2-hop routes. If the source and the destination are directly connected,

the third dimension of the matrix will be filled with the destination node-ID as one

of the routes.

59

The route set table is different from a traditional routing table that only records

one feasible route for each pair of source and destination.

30 (destination node - ID)

30

30 (source node - IDs) 30

30

Figure 4.4.3.1: The structure of the route set table

4.4.4 The Resource Table

The resource table is used to keep the link utilization information of the network.

For a 30-node network, the resource table will be a 30 by 30 matrix. In this

implementation, each item in the matrix contains two numbers, the total link

capacity (units of effective bandwidth) and the used capacity (units of effective

bandwidth).

To make sure that the routing decisions are always optimal, the resource table

has to be updated timely. In another word, whenever a label path is set up or

removed, the resource table has to be modified. This is done by the cooperation

of the Sdo Classifiers, the CRDN and the Timer objects.

60

30 (source node - IDs)<

30 (destination node - ID)

(to

[to

uc_] [tc_ uc_j *'• [tc_ uc_]
uc_| [tc_ uc_| ••• [tc_ uc_|

[tc_ uc_ [tc_ UC_j ••• [tc_ uc_|

Figure 4.4.4.1: The structure of the resource table

4.4.5 The Timer

A timer is a tool to schedule an event, which will happen after a specified delay.

In fact, when a user schedules an event with a timer, the timer inserts the event

into the schedule list of the simulator. In addition, a timer object supports "cancel",

and "reschedule" operations.

A Timer helps to monitor the status of a connection and to maintain the label path

for it.

The duration of a connection cannot be predicted accurately. In this event-driven

simulator, objects can only respond to events that have already happened or

been triggered. For instance, a traffic generator starts to send out packets. Upon

this event, all of the objects which have noticed this event can respond with some

actions. However, a traffic generator stopping sending packets is not an event but

the termination of an event. Hence, the simulator has no way to capture this

exact moment. A timer object is used to capture this moment with limited error.

An IP data flow consists of a series of packets. When the first packet of this flow

arrives, a Timer is attached to it and is started. Whenever a new packet of this

flow arrives, the attached Timer is rescheduled for a predefined interval. If the

Timer expires, the connection is considered over.

Therefore, a Timer is necessary for each IP flow. Every new packet is going to

trigger a restarting of the Timer attached with its flow. To reduce the transactions

61

associated with rescheduling Timers, a Timer can be restarted for every three or

more packets. The drawback is that the number of arrived packets since the last

rescheduling has to be kept for every IP flow.

Although the interval between two consecutive packets in a flow is not constant

(depending on the traffic rate and the packet size), the packet interval is always

much smaller than the expiring interval of its timer. Hence, the Timer will never

expire if the flow is still on.

However, this method does induce error. The biggest error between a timer

expiring and a flow ending is the expiring interval of the timer. It is easy to keep

the error in an acceptable range.

{Error < IE Timer is rescheduled every packet

[Error <IE-dxIp Timer is rescheduled every x packets

xxI «IF
p c

IE : the expiring interval of timers

IP : the packet interval

d : Number of packets since the last reschedule

Due to the limitation of the simulator, a timer has to be used to catch the

termination moment of a flow. This could be a scalability problem since the

number of timers is linear in the number of flows. If the edge nodes could detect

the event, the implementation would be more scalable.

4.5 Traffic Distribution and Topology

The objective of this section is to create a reasonable network for the purpose of

assessing the performance of the routing mechanisms.

The following is a summary of the simulated continental U.S. network. Detailed

descriptions of the reasoning and algorithms that are behind the results are

presented in Appendix A.

62

4.5.1 Topology Generating Process

• Node

There are 30 nodes in the network. According to their abilities in originating traffic,

the nodes can be divided into 4 scales or sizes (small, medium, large and very

large). A node is assigned to a specific scale according to the following table.

Nodes size Originating capability Prob. of occurrence

Small 0.5 0.3

Medium 1 0.4

Large 1.5 0.2

Very large 2 0.1

Table 4.5.1.1: Node size and distribution

The network spans 3 time zones (Eastern, Central, and Western). There are 10

nodes in each time zone. For a given time, a node in the Eastern Time zone may

be in its peak rate; a node in Western Time zone may be in its off peak rate. We

use the following table to describe the traffic levels that a node may originate.

Traffic level Fraction of peak traffic

Peak hour 1.0

Side peak hour 0.85

Off peak hour 0.70

Table 4.5.1.2: Traffic levels

This table presents the traffic levels of the nodes as a function of their time zone

and of the time of the day, expressed in Eastern Standard Time (EST).

Hour Region of the US where the node is located

East Central West

10 AM EST Peak hour Side peak hour Off peak hour

12 PM EST Side peak hour Peak hour Side peak hour

1 PM EST Side peak hour Side peak hour Peak hour

Table 4.5.1.3: Peak hours

- 6 3 -

• Border node

The network is connected to three foreign networks. We assume that the three

foreign networks have the same scale and throughput as our network. To each of

the foreign networks, our network has two connections through two border nodes.

Network traffic is assumed evenly distributed among the four networks. All of the

inter-network traffic, which takes up 75% of the total volume, transmits through

the six border nodes.

• Traffic generator

Traffic generators are distributed according to node sizes and peak hours. The

bigger a node's originating traffic is; the more traffic generators are assigned to it.

For example, a node may have 100 traffic generators at its peak hour and only

have 85 traffic generators at its side peak hour. The following lists the total

number of generators in the network in different traffic patterns.

Traffic Pattern Number of Generators

AM (10 AM EST) 4856

Noon (12 PM EST) 5023

PM(IPMEST) 5242

Table 4.5.1.4: Number of generators

• Link

The network has a connectivity of 49.2% and comprises 428 simplex links. Links

are allocated according to traffic demand. About 90% of traffic can reach its

destination in one hop; every pair of nodes in the network has several two hop

routes available.

4.5.2 The Generated Topology Matrix and Traffic Matrix

The following is a topology matrix that is generated with the above process. The

first column lists the originations and the first row lists the destinations.

-64

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

0
0
58
83
10
11
7
7
11
11
19
11
11
14
7
7
11
11
7
11
7
93
94
91
22
16
12
7
12
12
16

1
69
0
80
12
12
7
7
12
12
22
12
12
16
7
7
12
12
7
12
7
84
83
80
23
17
13
7
13
13
17

2
81
83
0
14
14
7
7
15
15
28
15
15
21
7
7
15
15
7
15
7
91
90
86
28
21
15
7
15
15
21

3
14
15
19
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
17
16
16
0
0
0
0
0
0
0

4
14
15
19
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
16
16
16
0
0
0
0
0
0
0

5
7
7
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
8
8
0
0
0
0
0
0
0

6
7
7
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
8
8
0
0
0
0
0
0
0

7
14
14
18
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
16
16
15
0
0
0
0
0
0
0

8
14
14
18
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
16
15
15
0
0
0
0
0
0
0

9
29
29
36
0
0
0
0
0
0
0
0
0
12
0
0
0
0
0
0
0
31
31
30
14
12
5
0
0
0
12

10
14
14
17
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
15
15
14
8
0
0
0
0
0
0

11
14
14
17
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
0
0
15
15
14
8
0
0
0
0
0
0

12
21
21
25
0
0
0
0
0
0
11
0
0
0
0
0
0
0
0
0
0
22
22
21
11
10
5
0
0
0
10

13
7
7
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
7
7
0
0
0
0
0
0
0

14
7
7
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
7
7
0
0
0
0
0
0
0

15
13
14
16
0
0
0
0
0
0
9
0
0
0
0
0
0
0
0
0
0
14
14
14
8
0
0
0
0
0
0

16
13
13
16
0
0
0
0
0
0
9
0
0
0
0
0
0
0
0
0
0
14
14
13
9
0
0
0
0
0
0

17
7
7
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
7
7
0
0
0
0
0
0
0

18
13
13
16
0
0
0
0
0
0
9
0
0
0
0
0
0
0
0
0
0
14
14
13
9
0
0
0
0
0
0

19
6
7
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
7
6
0
0
0
0
0
0
0

20
78
78
91
22
22
15
15
22
22
36
22
22
29
15
15
22
22
15
22
15
0
76
73
35
28
22
15
22
22
28

21
75
74
86
24
24
16
16
24
24
37
24
24
31
16
16
24
24
16
24
16
79
0
70
36
30
23
16
23
23
30

22
69
69
78
26
26
18
18
25
25
37
25
25
31
18
18
25
25
18
25
18
72
71
0
36
30
25
18
25
25
30

23
22
21
24
13
13
11
11
13
13
14
13
13
13
11
11
13
13
12
13
12
23
23
22
0
13
12
12
12
12
13

24
16
16
18
11
11
0
0
11
11
11
11
11
11
0
0
11
11
0
11
0
17
17
16
11
0
11
0
11
11
11

25
10
10
12
0
0
0
0
0
0
8
0
0
9
0
0
0
0
0
0
0
11
11
11
8
9
0
0
0
0
9

26
5
5
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
5
5
0
0
0
0
0
0
0

27
10
10
11
0
0
0
0
0
0
8
0
0
9
0
0
0
0
0
0
0
11
11
10
8
9
0
0
0
0
9

28 29
10 15
10 15
11 17
0 11
0 11
0 11
0 11
0 11
0 11
8 11
0 11
0 11
9 11
0 11
0 11
0 11
0 11
0 11
0 11
0 11
11 16
11 16
10 15
0 11
9 11
0 11
0 11
0 11
0 11
9 0

Table 4.5.2.1: Sample Topology Matrix

The unit of the numbers in table 4.5.2.1 is the effective bandwidth. The effective

bandwidth of connections in our simulation is 20K.

65

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

0

14
28
13
13
7
7
13
13
26
13
13
20
7
7
13
13
7
13
7
1
52
56
26
20
13
7
13
13
20

1
13

28
13
13
7
7
13
13
26
13
13
20
7
7
13
13
7
13
7
47
1
56
26
20
13
7
13
13
20

2
26
27

14
14
7
7
14
14
28
14
14
21
7
7
14
14
7
14
7
61
66
2
28
21
14
7
14
14
21

3
13
13
14

14
14
14
2
2
1
1
1
1
2

4
13
13
14
1

14
14
14
2
2
1
1
1
1
2

5
7
7
7

7
7
7
1
1
1
1
1
1
1

6
7
7
7

7
7
7

7
13
13
14

14
14
14
2
2
1
1
1
1
2

8
13
13
14
1
1
1
1
1

2
1
1
2
1
1
1
1
1
1
1
14
14
14
2
2
1
1
1
1
2

9
26
26
28
2
2
1
1
2
2

2
2
3
1
1
2
2
1
2
1
27
27
27
4
3
2
1
2
2
3

10
11
11
12
1
1
1
1
1
1
2

1
2
1
1
1
1
1
1
1
12
12
12
2
2
1
1
1
1
2

11
11
11
12
1
1
1
1
1
1
2
1

2
1
1
1
1
1
1
1
12
12
12
2
2
1
1
1
1
2

12
17
17
18
2
2
1
1
2
2
3
2
2

1
1
2
2
1
2
1
18
18
18
3
2
2
1
2
2
2

13
6
6
6
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
6
6
6
1
1
1
1
1
1
1

14
6
6
6

6
6
6
1
1
1
1
1
1
1

15
11
11
12

12
12
12
2
2
1
1
1
1
2

16
11
11
12

12
12
12
2
2
1
1
1
1
2

17
6
6
6

6
6
6
1
1
1
1
1
1
1

18
11
11
12
1
1
1
1
1
1
2
1
1
2
1
1
1
1
1

1
12
12
12
2
2
1
1
1
1
2

19
6
6
6

6
6
6
1
1
1
1
1
1
1

20
1
14
24
10
10
5
5
10
10
19
10
10
15
5
5
10
10
5
10
5

41
44
19
15
10
5
10
10
15

21
14
1
24
10
10
5
5
10
10
19
10
10
15
5
5
10
10
5
10
5
38

44
19
15
10
5
10
10
15

22
14
14
1
10
10
5
5
10
10
19
10
10
15
5
5
10
10
5
10
5
38
41

19
15
10
5
10
10
15

23
19
19
20
2
2
1
1
2
2
3
2
2
2
1
1
2
2
1
2
1
19
19
19

2
2
1
2
2
2

24 25
14
14
15

2

2

15
15
15
2

1
1
1
1
2

10
10
10

2

10
10
10
2
1

1
1
1
1

26
5
5
5

5
5
5
1
1
1

1
1
1

27
10
10
10

2

10
10
10
2
1
1
1

1
1

28
10
10
10

2

10
10
10
2
1
1
1
1

1

29
14
14
15

2

2

15
15
15
2
2
1
1
1
1

Table 4.5.2.2: Traffic Matrix in the AM Pattern

Table 4.5.2.2 shows the traffic generators distribution for the AM pattern in the

network.

66

Chapter 5

Results and Analysis

In this chapter, we are going to demonstrate the proposed routing mechanisms

through presenting and analyzing the simulation results. Let us still use the

continental U.S. network as an example to explain our findings.

5.1 Simulated Network Environment

We simulate a 30-node network and assume that another three equivalent

networks coexist with it. The network has 3 pairs of gateway nodes that are

linked to its 3 neighboring networks.

In this research, we focus on homogenous IP traffic, which can be characterized

by a single set of traffic intensity and bandwidth parameters. These parameters

are implemented in traffic generators that inject packets from nodes to the

network. Each generator will produce traffic flows with exponentially distributed

arrivals and holding times, with mean value j Z HZ, and 5 seconds respectively.

Thus, on each link, the call arrivals can be seen as independent Poisson process.

If we consider the effective bandwidth of connections as unit, each traffic

generator corresponds to 5/7 = 0.714 Erlang.

Three different traffic patterns, the AM, noon and PM patterns, which are

introduced in section 4.5.1, are simulated in the network. These three patterns

offer similar traffic loads to the network. The AM pattern is the least loaded one

among them; the PM pattern produces slightly more traffic than the other two. In

67

each traffic pattern, a specific number of traffic generators are installed in the

network. The column "No. of Flows" in Table 5.1.1 lists the total number of

connection requests that are offered to the network.

Traffic Pattern No. of Generators No. of Flows Tot. Load (Erlang)

AM 4856 26321 3467

Noon 5024 27272 3587

PM 5242 28433 3743

Table 5.1.1: Offered load

It shows that only 7% more traffic is offered in the PM pattern than in the AM

pattern. However, as presented in Table 4.5.1.3, these three traffic patterns have

different traffic distributions. This provides us a chance to test our routing

mechanisms under different load conditions.

Using effective bandwidth as unit, the total network capacity is 7755 units. The

average outgoing capacity of gateway nodes is 720 units, and is 143 units for

interior nodes. Gateway nodes are normally much more heavily loaded than

interior nodes, since inter-network traffic make up % of the total traffic. Therefore,

more links and bandwidth are allocated to gateway nodes (see figure 4.5.2.1).

5.2 The Performance of SDR-ADAPT

This section presents the simulation results of SDR-ADAPT. SDR-ADAPT does

not assume prior knowledge of the offered traffic; instead, it collects the load

information during its operation and updates its measured traffic intensity

periodically.

5.2.1 Determining the h and A

68-

The update procedure is presented in Figure 2.5.1.1 with 8 = 1 second

A = 81 seconds and h- 5 seconds . The parameters h and 8 are selected

according to the simulated network scale and available hardware resources. A is

picked by observing the behavior of the network under fixed traffic intensity

matrices.

Figure 5.2.1.1 shows an example of the blocking curve under a randomly picked

traffic intensity matrix. The blocking rate is calculated every second from the

number of blocked connection requests and total requests in that second. From

the 60th second to the 100th second, the blocking rate remains in between 2.30%

and 2.50%. We can say that the curve is already in its steady state before the

80th second. Normally, a blocking curve should enter its steady state after ten

times the mean holding time of connections, which is 50 seconds in this

simulation. In addition, we also want to collect some data during the steady state

period. Hence, we set the traffic intensity update period, A , to 81 seconds.
Blocking Rate (%)

4 . 0 -

3 .5 -

3.0-

2 . 5 -

2 .0-

1.5-

1.0-

0.5 -

0 -

20 40 60 SO 100
Timc(s)

Figure 5.2.1.1: The blocking rate curve with a fixed intensity matrix

From the above example, we can see that the selection of A is affected by the

mean holding time, h. When h goes up, it will be more costly to simulate every

flow; and the update cycle, A, will also be longer. To make the simulations less

time consuming, we pick a rather short mean holding time, which leads to a

reasonable A.

-69 -

5.2.2 Determining the Initial Traffic Intensity

With a good initial traffic intensity, SDR-ADAPT will take less update cycles to

reach the actual traffic load. There are several alternatives to choose from. We

study the issue based on the direct-first policy. However, both policies (minimum-

cost and direct-first, see section 2.3.4 for their definitions) have similar responses

to the initial traffic intensity. Hence, we don't discuss them separately.

• Initializing SDR-ADAPT with full link capacities.

For a network designed with 1% blocking rate, the actual offered load is much

less than the full link capacities. The 2-hop rate will be reduced considerably

because of the too high recorded traffic intensity (more detailed discussion in

section 5.2.3). However, the direct traffic will always have a cost less than 1,

hence, won't be affected. Note that the direct traffic is taking up 90% of the total

traffic. Therefore, in this case, more than 90% (direct traffic + some 2-hop traffic)

of the traffic will be properly routed in the first cycle. At the second cycle, the

measured traffic intensity will be a bit lower than, but very close to, the actual

value. In our simulations, SDR-ADAPT converges within 4 cycles under all traffic

patterns (see Figure 5.2.3.1 and 5.2.3.2).

• Initializing SDR-ADAPT with the traffic intensity matrix [0] ox .

In this case, there will be much more 2-hop traffic than what should be justifiable

in the first cycle, which will use additional link resources, and turn some direct

traffic further into 2-hop traffic. The network resource usage will then be inefficient.

At the second cycle, the measured traffic intensity will be much higher than its

real value. Then, a converging process similar to the one that is initialized with full

link capacities will begin.

• Initializing SDR-ADAPT with an arbitrary traffic intensity matrix [A]

Under different traffic patterns, it may lead to unpredictable performance. Hence,

this can't be the best choice.

70

We can see that initializing SDR-ADAPT with a zero matrix needs at least one

more update cycle than with full link capacities. In general, we recommend

initializing SDR-ADAPT with full link capacities.

5.2.3 Traffic Intensity Converging Process

The simulation begins with the initial offered load of full link capacities. Under the

minimum-cost and the direct-first policies, SDR-ADAPT shows different

converging processes and blocking rates.

As an example, Figure 5.2.3.1 shows the traffic intensity converging processes

on link 2-16. Link 2-16, with 16 units of effective bandwidth, is the link between

the gateway node 2 and the interior node 16. The node 16 has only 8 incoming

links, which means all other 21 nodes need 2-hop routes to get to the node 16.

The node 2 is a gateway node that can be reached directly from every node.

Therefore, link 2-16 will be used as a candidate for second hops for many nodes

to reach node 16.

c
~
HI

c
4)

O

E

4 5

Update Cycles

-DF -MC —A—Smoothed MC

Figure 5.2.3.1: The averaged converging process on link 2-16

In Figure 5.2.3.1 and 5.2.3.2, "DF" stands for "Direct-First"; "MC" stands for

"Minimum-Cost"; "Smoothed MC" stands for "Smoothed Minimum-Cost".

- 7 1 -

Update Cycles

DF MC • Smoothed MC

Figure 5.2.3.2: The averaged converging process on link 0-2

1) Minimum-cost (MC) policy

A brief discussion of the MC policy will be helpful to understand the traffic

intensity converging process on individual links. Under the MC policy, the costs of

all possible routes are calculated upon a connection's arrival. The connection will

be assigned to the route with the minimum total cost. Hence, a call could be

routed through a 2-hop path, even there is still enough capacity available on the

direct link. Since, for every direct route, there are many 2-hop alternatives

available (e.g. for the link 2-16, there are 7 alternatives), it is quite often found

that a 2-hop route has lower cost than that of the direct route. The following

example depicts the situation.

N=96 ^
P=63
A=80

C=0.04

N=
P.
A

C=C

16
10
=9
.09

?l

/ 3
/ N=7

P=3
A=2

C=0.03

^ S "

2 \
N=8 \
P=3

A=2.5
C=0.02

N=81
P=62

A=65.4
C=0.07

/ 3
/ N=14

P=7
A=6.8
C=0.04

B B

Figure 5.2.3.3: Examples of unwise selection of 2-hop route under MC

72-

In Figure 5.2.3.3, three nodes A, B and C are connected by links 1, 2 and 3,

whose status are shown beside the links. "N" is link capacity; "P" is the number of

busy bandwidth units; "A" is traffic intensity; "C" stands for cost. For traffic from

node A to node C, there are a direct link and a 2-hop path. Under MC, the traffic

will be routed through 2-hop routes. Although the cost of 2-hop traffic is the sum

of the costs on two links, the MC policy can't effectively control 2-hop traffic.

Through simulations, we found that, in most of the cases, 2-hop traffic is the

reason for unstable traffic distributions, which makes the blocking rate hard to

control. For example, too much 2-hop traffic can take up the resources planed for

direct traffic, and force it to go through 2-hop path, which will further aggravate

the problem. The results are higher traffic intensity and higher blocking rate.

During the simulation, within the first cycle, 2-hop traffic is depressed by the high

initial traffic intensity. From Figure 5.2.3.1, we can see that the measured traffic

intensity on the link 2-16 is around 7 after the first cycle. Then, in the second

cycle, the 2-hop traffic grows significantly, which leads to a much higher

measured traffic intensity. The 2-hop rate jumps up and down according to the

measured traffic intensity, which, in turn, leads to the traffic intensity value

oscillating around its target value. For example, if a link is assigned a bigger

traffic intensity value than it should have, then the link will be discharged of 2-hop

traffic and even direct traffic may put on 2-hop alternatives. Therefore, the

recorded traffic intensity of this link will become too small at the end of this cycle

and vice versa.

These oscillations lead to unstable traffic distributions and a long converging time.

To solve the oscillation problem, we use the following smoothing formula to

update the traffic intensity values. The number of updating cycles needed to

reach the steady states is cut down almost a half. Within five updates, the traffic

intensity values converge to their real values.

I': newly recorded traffic intensity value

/ ' : traffic intensity value used in the last period

73

Figure 5.2.3.1 shows that, under MC, the traffic intensity on the link 2-16 get

stable at a higher level than that under DF. We will discuss this observation later.

2) Direct-first (DF) policy

As simulations start, SDR-ADAPT assigns 16 Erlang to the link 2-16 as the initial

load, which is much higher than the actual value (around 8.1 Erlang). The direct

traffic from the node 2 to the node 16, which takes up 85% of the traffic on the

link 2-16, won't be effected by the over estimated traffic intensity value. However,

it makes the link much more costly to be used in a 2-hop route. The 2-hop rate is

then much less than it should be. After the first update cycle, the measured traffic

intensity is 6.8 Erlang (averaged over 3 traffic patterns), which is mostly direct

traffic. In the course of the second cycle, the 2-hop traffic arrives at a higher rate

than it should, due to the low measured traffic intensity. Some direct traffic may

be blocked because the 2-hop traffic is taking more resources than planed. In the

third cycle, the measured intensity is a bit higher than the target value, because

of the excess of 2-hop traffic in the second cycle. In later cycles, the measured

traffic intensity converges to its real value quickly; and the blocking rate reaches

and stays at its lowest level. Within 4 updates, the measured intensity matrix

converges to the real offered load.

The converging process on the link 0-2 (Figure 5.2.3.2) is slightly different from

that on the link 2-16. The link 0-2 is a link between two gateway nodes, which

have links to and from every node in the network. Thus, it is seldom used in a 2-

hop route. Therefore, it doesn't show clear oscillations in its 2nd and 3rd cycles.

These two examples demonstrate the 2 typical traffic intensity converging

processes among the links. In both situations, links are shared by many

concurrent connections and most of the traffic is direct traffic, which complies with

the assumptions (made in section 2.3.3 to define SDR), i.e. each link is

considered statistically independent and a n-hop connection can be seen as n

independent connections.

74

Comparing DF with MC and smoothed MC in Figure 5.2.3.1 and 5.2.3.2, we can

see that DF performs better than both MC and smoothed MC. Due to DF's ability

to encourage direct traffic and at the same time control 2-hop traffic, DF curves

reach their steady states faster and at a lower level than their MC counterparts.

Overall, SDR-ADAPT fits in our network environment very well. Under DF, the

monitored traffic intensity values converge to their real values within 4 updates.

5.2.4 The Performance under Fixed Traffic Pattern

During the first two or three updates, the measured traffic intensity values are far

from the actual steady state values. Hence, at the beginning of these cycles, the

blocking rate curves are quite unstable. Figure 5.2.1.1 is an example. The data

collected during those unstable periods doesn't present the performance of SDR-

ADAPT. Thus, it has to be removed from our study. For this reason, the blocking

rates are calculated with the data collected during the last 40 seconds within

each cycle, i.e. from the 41st to the 81st second. Hence, we can filter out the

unstable period.

SDR-ADAPT is tested under three different traffic patterns, "AM", "Noon" and

"PM". All the data in the following tables is in percentage with 95% of confidence

interval. With confidence intervals, the curves look rather flat since most of the

small fluctuations are filtered out.

Figure 5.2.4.1 presents the average blocking curves. The small bars that spread

out from the blocking curves show the confidence intervals of the blocking rate

values. We can see that, under DF, SDR-ADAPT converges very fast (within 4

updates), and shows a very stable performance after. The blocking rates are

getting lower as the traffic intensity matrices converge to their real values.

Smoothed MC, on the other hand, takes more updates to get stable and

generates considerably higher blocking rates.

75

a.
01
C

o
o

-DF —•—Smoothed MC

Figure 5.2.4.1: Averaged blocking rate of SDR-ADAPT

Table 5.2.4.1 and 5.2.4.2 presents the more detailed simulation results.

Direct R. The percentage of the number of connections on direct paths

Note: 2-Hop R. The percentage of the number of connections on two-hop paths

B. Rate The percentage of the number of connections that were blocked

o
0>

Q.

o
I

eg

CO

(%)

A M

Noon

P M

A M

Noon

P M

A M

Noon

P M

^nd Bth

80.2 ±0.5 77.9 ±0.5 76.3 ±0.5 75.7 ± 0.5 74.8 ±0.5 75.3 ±0.5 74.6 ± 0.5 75.1 ±0.5

80.6 ±0.5 78.0 ±0.5 76.9 ± 0.5 75.8 ± 0.5 75.3 ± 0.5 76.0 ± 0.5 75.4 ± 0.5 75.9 ±0.5

81.4 + 0.5 78.7 ± 0.5 77.3 ± 0.5 76.5 ± 0.5 75.9 ± 0.5 76.3 ± 0.5 75.8 ± 0.5 76.1 ± 0.5

17.6 ±0.5 20.3 ±0.5 22.2 ±0.5 22.9 ± 0.5 23.9 + 0.5 23.4 ±0.5 24.1 ±0.5 23.6 + 0.5

17.4 ±0.4 20.3 ±0.5 21.7 ±0.5 22.9 ± 0.5 23.4 ± 0.5 22.7 ± 0.5 23.3 ± 0.5 22.8 ± 0.5

15.8 ±0.4 19.3 ±0.5 21.0 ±0.5 22.0 + 0.5 22.7 + 0.5 22.3 ±0.5 22.8 ±0.5 22.5 ± 0.5

2.2 ±0.2 1.8 ±0.2 1.5 ±0.1 1.4 ±0.1 1.3 ±0.1 1.3 ±0.1 1.3 + 0.1 1.3 ±0.1

2.0 ±0.2 1.7 ±0.2 1.4 ±0.1 1.3 ±0.1 1.3 ±0.1 1.3 ±0.1 1.3 ±0.1 1.3 ±0.1

2.8 ±0.2 2.0 ±0.2 1.7 ±0.2 1.5 ±0.1 1.4 ±0.1 1.4 ±0.1 1.4 ±0.1 1.4 ±0.1

Table 5.2.4.1: Performance of SDR-ADAPT under smoothed MC

Since, under MC/smoothed MC, the 2-hop traffic has the same priority in using

resources, the direct rate can never be as high as under DF. In addition, as the

recorded traffic intensity, [At .] , goes down to the actual load, the 2-hop rate

76

continues to grow. The more than 20% of the 2-hop rate adds a considerable

amount of load to the network, resulting in a higher blocking rate. Figure 2.4.3.1

shows how traffic intensity can affect the blocking rates.

(%) 1 s t 2nd 3rd 4 t h 5 th 6 th 7m 8 th

^ A M 90.8 ±0.3 89.1 ±0.4 90.5 ±0.4 90.1 ±0.4 90.0 ±0.4 90.3 ±0.4 90.4 ± 0.4 90.2 ±0.4

o Noon 90.8 ±0.3 89.2 ± 0.4 90.6 ± 0.3 90.2 ± 0.4 90.4 ±0.3 90.1 ±0.4 90.0 ± 0.4 90.3 ± 0.4
(D

5 P M 90.9 ±0.3 88.9 ±0.4 90.4 ± 0.3 90.0 ±0.3 90.1 ±0.3 89.8 ± 0.4 90.2 ±0.3 90.0 ± 0.3

. A M 7.5 ±0.3 9.6 ±0.4 8.4 ±0.3 8.9 ±0.3 9.0 ± 0.3 8.7 ± 0.3 8.6 ± 0.3 8.8 + 0.3

§• Noon 7.6 ±0.2 9.6 ±0.3 8.3 ±0.3 8.8 ±0.3 8.6 ± 0.3 8.9 ± 0.3 9.0 ± 0.3 8.7 + 0.3

S P M 6.6 ±0.2 9.4 ±0.3 8.3 ±0.3 8.9 ± 0.3 8.8 ± 0.3 9.1 ±0.3 8.7 ± 0.3 8.9 ± 0.3

^ A M 1.7 ±0.2 1.3 ± 0.1 1.1 ±0.1 1.0±0.1 1.0 ±0.1 1.0 ±0.1 1.0±0.1 1.0±0.1

J§ Noon 1.6 ± 0.1 1.2 ± 0.1 1.1 ±0.1 1.0 ±0.1 1.0 ±0.1 1.0 ± 0.1 1.0 ±0.1 1.0 ±0.1

ri P M 2.5±0.2 1.7 ±0.2 1.3 ± 0.1 1.1 ±0.1 1.1 ±0.1 1.1 ±0.1 1.1 ±0.1 1.1 ±0.1

Table 5.2.4.2: Performance of SDR-ADAPT under DF

Since the traffic intensity, [AixJ\, is initialized with full link capacities, which is

much higher than the actual offered load, the two-hop rate of the first cycle is

much lower than for the other cycles. Many of the two-hop connections are

blocked because of over priced two-hop routes, which leads to the highest

blocking rate in all cycles and the low measured traffic intensity, [AixJ\. However

the direct traffic is not impacted by the over estimated [Aixj\. Since many two-hop

connections are blocked, more resources are available for direct traffic.

In the second cycle, [Aixj\ gets a lower than actual value (see Figures and

explanations in section 5.2.1), which means that links are cheaper to be used in

2-hop routes. 2-hop rates, hence, reach their peak values. The direct traffic is cut

off a bit because two-hop traffic is taking too much resource. Although the

blocking rate decreases dramatically due to the admission of more two-hop

connections, the overall link utilization is not so efficient.

77

In the third cycle, [Aixj\ gets very close to its destination, just a bit higher. The

direct traffic gains a bit of share, while two-hop traffic gives back some resources.

The blocking rate continues to go down.

In later cycles, the blocking rate stays at its lowest level, around 1%. The direct

traffic and two-hop traffic are stable at around 90% and 8% respectively.

During the whole simulations, DF gives very stable direct rates, since [Aixj\ is

never significantly lower than its actual value.

Comparing the two tables, we can find that the reason for which DF outperforms

smoothed MC is that DF leads to a more preferable traffic distribution. With

smoothed MC, the direct traffic is always less than 80% and stabilizes around

75%. The 2-hop traffic stabilizes around 22%, which is about 13% more than that

in DF. The extra amount of 2-hop traffic causes the higher traffic intensity in

Figure 5.2.3.1 and 5.2.3.2, and a higher blocking rate in Figure 5.2.4.1. From the

above comparison, we can draw the following conclusions:

1. Traffic should be routed on its direct link whenever possible, even when

some 2-hop routes have lower costs;

2. The more accurate the estimated traffic intensity, [Aixj\, is, the lower the

blocking rate is;

3. Under estimated \Aixj\ leads to high 2-hop rate;

4. DF shows low a blocking rate even when the estimated _Aixj\ is far from

the actual load. DF is more adaptive to a bad estimation of the traffic

intensity;

5. MC/smoothed MC are more vulnerable than DF to under estimated [Aixj\;

6. In general, SDR-ADAPT performs better under the DF policy than under

the MC/smoothed MC policy.

78

5.2.5 The Performance under Changing Traffic Pattern

SDR-ADAPT performs very well under the DF policy with a fixed traffic pattern. In

a telecom network, the traffic pattern may vary from time to time. It would be

useful for SDR-ADAPT to adapt to an ever-changing traffic intensity matrix

automatically.

In the following, still using the DF policy, we expand the update period to 200

seconds to give SDR-ADAPT a more practical update interval; and simulate the 3

traffic patterns consecutively (from the AM pattern to the noon pattern, then to the

PM pattern), to examine the performance of SDR-ADAPT under a shifting pattern.

The simulation starts with full link capacities and stays for 6 cycles in each

pattern.

Figure 5.2.5.1 shows the simulation result. With a shifting traffic pattern, SDR-

ADAPT shows a very similar performance to that with a fixed traffic pattern. The

blocking rates when the traffic pattern changes, at the 7th and 13th cycle, are

rather low, since DF can handle a wrongly estimated traffic intensity quite well. In

addition, the blocking curve gets stable very fast after each change of pattern.

This simulation proves that SDR-ADAPT can also track a changing traffic pattern

with 200-seconds update cycles.

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18

Update Cycles

Figure 5.2.5.1: Blocking rate under traffic pattern shifting

79

5.3 Centralized Routing Controls (CRC)

With CRC, the real time link usage information is supposed to be available; the

simulations are to find the best threshold value for the TR. As defined in section

2.5.2, a threshold value, x, is decided by 3 parameters, C B and 8 , in which C

and B are fixed values for a specific link. To use TR, one needs to specify a x

for every link in the network. Clearly, this isn't necessary and could be a

scalability problem. Since 8 reflects the traffic intensity on a link, if several links

have similar loads (blocking rates), the same 8 can be used on all of the links.

When we assume that, in a well-engineered network, the traffic will be evenly

distributed among the links, we can actually use the same 8 for the whole

network. This assumption simplifies the threshold values determination process.

We can get different threshold values for the network by changing 8 . To be clear,

we use 8 directly to identify the simulation results, instead of the actual threshold

value x.

1.6

~ 1.5

0 1.4
n
| 1.3

1 1.2
o

1.1

1

~\ I
\ „ ,/ ' _ : _.

0.04 0.08 0.12
Threshold

0.16 0.2

Figure 5.3.1: Average blocking rate curve under different 8 s

80-

Blocking Rate (%) Direct Rate (%) 2-hop Rate (%)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.09

0.11

0.13

0.15

0.20

1.4 ±0.1

1.3 ±0.1

1.3 ±0.1

1.2 ±0.1

1.2 ±0.1

1.2 ± 0.1

1.3 ±0.1

1.3 ±0.1

I.3 ± 0.1

.3 ±0.1

.3 ±0.1

.3 ±0.1

88.5 ± 0.4

89.3 ± 0.4

89.9 ± 0.4

90.1 ±0.4

90.3 ± 0.4

90.4 ± 0.3

90.5 ± 0.3

90.6 ± 0.3

90.6 ± 0.3

90.7 ± 0.3

90.7 ±0.3

90.9 ± 0.3

10.1 ±0.4

9.4 ±0.3

8.8 ±0.3

8.7 ±0.3

8.5 ±0.3

8.4 ± 0.3

8.2 ±0.3

8.1 ±0.3

8.1 ±0.3

8.0 ± 0.3

8.0 ±0.3

7.7 ±0.3

Table 5.3.1: Average blocking rates under different 8 s

The discussion in section 2.5.2 has shown that the threshold should be set at the

link utilization state that has a RUC cost around 0.5; let's call it 0.5-cost-state.

From Figure 2.5.2.2, we can see that this threshold should be rather close to the

link capacity, which means a very small <5. Therefore, we start the test from

5 = 0.01.

Figure 5.3.1 shows the blocking rate curve under different 5 s. The vertical bars

on the curve are the 95% confidence intervals of the blocking rates. The blocking

curve reaches its lowest level when <5 is around 0.05. When 8 moves from 0.01

to 0.05, blocking rates get lower. The curve moves up again when 8 > 0.06.

Since CRC employs the DF policy, the changing of 8 won't have a direct impact

on direct traffic. The different blocking rates are actually caused by different costs

for 2-hop traffic. Figure 2.5.2.2 shows us the reason behind the curve.

Now, let's move the threshold from the right side to the left. At the beginning,

when 8 < 0.04, the threshold value is too low; links have 0 cost even when very

little free capacity is available, which leads to high 2-hop rates (see Table 5.3.1).

For example, a 2-hop route has a RUC cost C = CAiN(p\ +CAN(p) =0.7 +1 = 1.7,

and should be blocked. However, if the threshold is at the 0.8-cost-state, the cost

81-

will be 1, and the 2-hop route is admissible. The cost curve is very steep at this

stage. Every step to the left can cause rather big changes on simulation results,

including blocking rate, direct rate and 2-hop rate. In addition, it shows that the

closer the threshold is to the 0.5-cost-state, the lower the blocking rate is. Then,

continuing to move the threshold to the left, 0.04 < 8 < 0.06, the simulations show

the best performance.

After, when 8 > 0.06, the cost curve is getting increasingly flat. Hence, as the

threshold moves further left, the changes in the simulation results are becoming

negligible. The blocking rate gets higher and 2-hop rate gets lower.

Overall, it shows the trend that the bigger the 8 is, the lower the 2-hop rate is.

The reason is that 8 specifies the amount of bandwidth that is reserved for direct

traffic.

In addition, we can also see from figure 2.5.2.2 that if the traffic intensity offered

to the network is higher than that is planed (causing 1% blocking rate), the lowest

blocking rate 8 should be higher than 0.05. For example, comparing the curves

A = 90Erl. and A = S0Erl., and their threshold curves, we can see that the 0.5-

cost-state for the A = 90£W. curve is less than that for the A = SOErl. curve. For

the same reason, when the offered load is lower than planed, 8 should be lower

than 0.05; and the threshold should be moved right. This finding could be used as

a guide to find the correct threshold quickly, as the offered load in a network

changes.

The CRC, with 5 = 0.05, shows a bit higher blocking rate than that in SDR-

ADAPT. There could be 3 reasons:

1) The TR can not compare the costs of two 2-hop routes; hence, it can only

find an admissible 2-hop path, not the optimal one.

2) It can often be found that, for some links, there is no link utilization state

that has a 0.5 cost. Therefore, the TR can not always be accurate in

admission control.

3) To use a single 5 for the whole network, we assume that the traffic is

evenly distributed (i.e. 1% blockings) on every link. If in some traffic

82-

pattern, the traffic demands are not balanced on the network, TR can't

make optimal routing decisions.

5.4 Decentralized Routing Control (DRC)

Based on the best threshold (when 5 = 0.05) obtained from CRC, DRC study the

performance of TR utilizing near real time link utilization information. Since 5

won't change, the traffic distribution (direct rate and 2-hop rate) is almost fixed.

Therefore, the direct rate and the 2-hop rate are not presented in the simulation

results.

As discussed in section 2.6.1, the captured energy is growing as the update

frequency increases, but not linearly (Figure 2.6.1.1). One of our objectives is to

find the optimal balance between the update frequency and the blocking rate.

Figure 2.6.1.1 shows that once 99% of energy has been captured; increasing the

update frequency to seize more energy becomes more and more inefficient. 99%

of captured energy is also proven to be a good balancing point by simulation

results.

Figure 5.4.1 shows the blocking rate under different captured energy levels. It is

clear that between 90% and 99%, the blocking rate decreases almost linearly as

the captured energy grows. However, when the captured energy reaches 99%,

the blocking rate has a major drop down. Then, as the captured energy is

approaching 100%, the blocking rate stays almost the same. From this figure, we

can also reach the conclusion that 99% of captured energy is the threshold point

that we've been looking for.

83

OS
n
c
o
o

90 92 94 96 98 100

Captured Energy (%)

Figure 5.4.1: Blocking rate curve under different captured energy levels

ra
as

c
X
o
o

^ i
10

Update Frequency (HZ)

Figure 5.4.2: Blocking rate curve under different update frequencies

According to above discussion, we can estimate that the optimal update

frequency should be the one that can capture 99% of energy. Figure 5.4.2 proves

this estimation. It shows that after the update frequency increases to 4 HZ, the

blocking rate remains almost unchanged. Therefore 4 HZ is the optimal update

frequency. The table 5.4.1 shows that with 4HZ, we can capture 99% of energy.

84

Update Frequency (HZ)

0.4

1.0

1.3

1.6

2.0

2.5

4.1

5.0

10.0

Captured Energy (%)

90.0

96.0

96.6

97.4

98.0

98.4

99.0

99.2

99.6

Blocking Rate (%)

3.0 ±0.2

2.1 ±0.2

2.0 ±0.2

1.9 ±0.2

1.8 ±0.2

1.7 ±0.2

1.3 ±0.1

1.3 ±0.1

1.3 ±0.1

Table 5.4.1: Blocking rate with corresponding update frequency and energy
level

The update frequency is decided by the mean holding time of the routed

connections, which is 5 seconds in our simulations. Although 4 HZ (0.25 second)

is not a realistic update frequency for a telecom network, it is valid as a proof of

the estimation theory.

With 99% of the energy captured, DRC shows only slightly higher blocking rate

than that of CRC. Hence, we can have the conclusion that:

1. Without any requirement for real time information (traffic intensity or link

utilization) and complex routing cost computation, DRC can achieve

comparable performance to SDR-ADAPT and CRC.

2. Based on CRC, DRC also has the limitations (discussed in section 5.3)

induced by TR.

3. DRC is a practical (implementable) routing scheme for IP QoS routing.

85

Chapter 6

Conclusions and Further Studies

6.1 Conclusions

This thesis studies the admission control and routing problems of single class IP

QoS service. Based on SDR-ADAPT and TR, the CRC and DRC routing

schemes are proposed and examined.

SDR-ADAPT is simulated under both the MC and the DF policies as an analytical

model of SDR. We found that: (1) the full link capacities matrix is an adequate

initial value for SDR-ADAPT; (2) in most of the cases, the 2-hop traffic is the

reason for unstable traffic distributions, which makes blocking rate hard to control;

(3) the reason for which DF outperforms smoothed MC is that DF encourages

direct traffic and at the same time controls 2-hop traffic; (4) traffic should be

routed on direct link whenever possible, even when some 2-hop routes have

lower costs; (5) the more accurate the estimated traffic intensity, [Ajxj\, is, the

lower the blocking rate is; (6) under estimated [Aixj\ leads to high 2-hop rate; (7)

DF is more adaptive to a bad estimation of the traffic intensity; (8) under DF, the

blocking rate curve reaches its steady state faster and at a lower level than that

under MC/smoothed MC.

TR is used to replace the RUC function under CRC; hence, only DF can be

implemented. The simulations show that: (1) 5 can be used to reflect the traffic

intensity on a link and has a similar impact on traffic distribution as [Aixj\ in SDR-

ADAPT; (2) the bigger the 5 is, the lower the 2-hop rate is; (3) 5 should be set

to match the 0.5-cost-state; e.g. when a network is designed to carry its offered

load with 1% of blocking rate, 5 should be around 0.05; (4) when the blocking

-86

rate is higher than 1%, 5 should also be higher than 0.05, and vice versa; (5) the

closer the threshold is to the 0.5-cost-state, the lower the blocking rate is; (6)

when the blocking rate is higher than 1%, the TR will be less efficient; (7) hence,

one of the network design objectives should be to limit the blocking rate on each

link to 1% or less; (8) when the blocking rates on some links are similar, a single

5 can be used to control the threshold values on all of them.

CRC shows slightly higher blocking rates than SDR-ADAPT. The reasons are: (1)

TR can only find an admissible 2-hop path, not the optimal one, since it can not

compare the costs of 2-hop routes; (2) for some links, the exact 0.5-cost-state

may not exist, therefore, TR can not always be very accurate in admission control;

(3) for some traffic patterns, the traffic rates on some links may not comply with

their planned values; hence, using a single 5 for the whole network may lead to

some non-optimal routing decisions.

The study of DRC is based on the simulation results of CRC. Under DRC, the last

unrealistic assumption, the real time link utilization information, is removed. It is

found from the simulations that: (1) 99% of captured energy is proved to be a

good balancing point, i.e. the optimal update frequency should be the one that

can capture 99% of the energy; (2) the update frequency is decided by the mean

holding time of the routed connections; (3) the captured energy grows as the

update frequency increases, but not linearly; (4) the blocking rate decreases as

the update frequency increases, but not linearly; (5) DRC can achieve a

comparable performance to SDR-ADAPT and CRC; (6) DRC gives slightly higher

blocking rates than those in SDR-ADAPT and CRC, since it has the same

limitations from CRC and it doesn't have access to any real time information; (7)

without any requirement for real time information (traffic intensity or link utilization)

and complex routing cost computation, DRC is a practical (implementable)

routing scheme for IP QoS routing.

87

6.2 Further Studies

Further studies could be conducted to investigate the following areas:

1) improve the performance of SDR routing schemes;

2) implement routing schemes for multi-service class case;

3) investigate routing schemes for networks, in which traffic is not distributed

evenly;

4) compare the performance of SDOR with other advanced routing schemes.

Here are some sample ideas:

• To further improve the performance of CRC and DRC. We can customize

the threshold values for each link in a network, i.e. specify a 5 for every

link. In this way, we do not need to assume that the offered load is evenly

distributed. We can monitor the traffic intensity on each link, just like we

did in SDR-ADAPT, then, find the 0.5-cost-state for each link according to

the recorded traffic intensity and apply a proper 5 for each link based on

its load. This will lead to a 5 matrix. In addition, to simplify the process, we

can divide the network into different parts that have similar load, and use

one 5 for each of them. With this approach, no matter how the traffic

pattern is going to change, we will always be using the best threshold

values. However, depending on the offered traffic pattern, the

improvement offered by this modification may be quite limited.

• Based on this research, one can step forward to study premium class non-

homogenous IP traffic and multi-service class non-homogenous IP traffic,

e.g. connections with different mean holding times. For premium class

non-homogenous IP traffic, the same PHB may be used to describe the

treatment of the aggregated flows. However the CAC process becomes

much more complicated (assuming that different types of connections do

not generate the same amount of revenue), since the resources

competition among different types of premium connections has to be taken

into account. For multi-service class non-homogenous IP traffic, non-

88

premium classes can be treated as degraded premium classes. They can

be forwarded in a similar manner as the premium class but with lower

priority and less resources, such as bandwidth. In this way, the same CAC

and routing algorithm can be used in a multi-service class DiffServ network.

The performance of MPLS based static multipath routing could be

simulated and compared with SDOR. All traffic is sent through pre-

established routes, with no real time route computation. Traffic between

the same pair of source and destination can be balanced among all

available routes. However, without considering the global link utilization,

static multipath routing cannot be the optimal routing. For example, when

multiple routes share the same link, static routing does not differentiate

them. Some routes may be the last path available; some others may have

several alternatives. Assigning administrative weights to some routes may

help to ease the problem, but it will be hard to adapt to the changes of

traffic pattern.

-89

Appendix A

Traffic Distribution and Topology

In this section, we will present the algorithms that we used to build the network.

Originating traffic

Traffic originated in
the local network

and terminated in a
foreign network

Traffic
originated from
PCs and LANs

Traffic originated in
a foreign network
and terminated in
fre local network

Traffic
terminated in
bcal network

PCs

Local Network1

Figure A.1: Originating and terminating traffic

The originating traffic of a node is the traffic that enters a network through the

node. It is generated by customers (or networks).

Some nodes are originating more traffic than others, because they serve more

customers. In this implementation, we use the following scale:

90

Nodes size

Small

Medium

Large

Very large

Originat ing capability

0.5

1

1.5

2

Prob. of occurrence

0.3

0.4

0.2

0.1

Table A.1: Node size and distribution

The size of each node is determined by drawing randomly according to the

probability of occurrence in Table A.1. For instance, node 1 is drawn to be a

small node. Let TO be the total originating traffic corresponding to the normalized

peak traffic of a medium node. The total originating traffic of node 1 would be

r<9, =0.5TO. Following this process, the peak originating traffic and the size of

each node can be determined.

• Non-coincidence of peak hours

A node may not keep generating traffic at its peak rate. In general, we consider

that the originating traffic of a node can be in one of several levels defined in the

table below.

Traffic level

Peak hour

Side peak hour

Off peak hour

Fraction of peak traffic

1.0

0.85

0.70

Table A.2: Traffic levels

A traffic level can be associated with a node based on its time zone. As an

example, for a continental U.S. network, the different traffic levels can be

associated with the nodes in the eastern, the central and the western regions in

three particular hours.

91

Hour Region of the US where the node is located

East Central West

10:00 EST Peak hour Side peak hour Off peak hour

12:00 EST Side peak hour Peak hour Side peak hour

13:00 EST Side peak hour Side peak hour Peak hour

Table A.3: Peak hours

For example, if node 1 is in its side peak hour, its originating traffic becomes

TOx <= 0.85 TOx. Repeating this process, we can generate the originating traffic

demands for all nodes for a certain hour.

• Allocating the traffic demand

Traffic may be destined to a node within the same network or to a node in a

foreign network. In the former case, we call the traffic the intra-network traffic. In

the later case, the traffic is delivered through 3 gateway nodes, and we call it the

inter-network traffic.

We assume that there is no special limitation for traffic to remain in one network.

Thus, we assume that the destinations for originating traffic are evenly distributed

across the networks. Considering that there are X such networks; we are

studying one of the networks; and the remaining X-l are the foreign networks.

Let the probability that the originating traffic belongs to the intra-network traffic be

P. The proportion of inter-network traffic is l-P.

We assume that the amount of traffic that is generated by a node and that is

terminated at the node are in proportion. Thus, let TOi be the total originating

demand of node /. The demand allocated to node j from node /' in the network

is:

TO,
TO,, = TO,

'lTOk

92

Let the foreign networks be FX,...,FX_X. The originating demand from node i to

each of these networks is:

TOiF=TO,^, j = l,...,X-l

A set of gateway nodes can be used to reach a foreign network F}. Let the

gateway nodes be GFj ={gFj,i,gFj<NF}, where gF. k identifies the k'h node in the

set and NF denotes the number of nodes in the set.

Assuming that the originating traffic from node / to the foreign network F} is

uniformly distributed among its gateway nodes; for each gF k in GF the

originating demand from node / to gF k is:

TO, e = TOlF —

To determine the incoming traffic from a foreign network Fj and terminating in

the network, we assume that the incoming traffic is equal to the total traffic

originating in the network and terminating in the foreign network F}. Let TOF be

the total traffic originating in the network and terminating in the foreign network

Fr

TOFj=^TOiFj
all r

Let TTF be the total traffic incoming from the foreign network Fj and terminating

in the network. We have:

TOF =TTF

The terminating traffic incoming from foreign network F; is uniformly distributed

among its gateway nodes. We can express the terminating traffic of foreign

network F, incoming from gateway node gF k as:

-93

TTF e =TTF —

In addition, we consider that the terminating traffic incoming from gF k is

distributed to each node in the network proportionately to its originating traffic.

TO
T"T _ rrrr J
11F,^^-'

 ii/v*>< Ywk
k

• Building The Capacity Matrix

The network topology is built according to the traffic distribution. We use the

node-to-node traffic demands as the input of our sizing algorithm. This algorithm

is designed to achieve our network modeling objectives:

• About 50% Connectivity

• About 90% Traffic on Direct Link

• One or Two Hop Paths

First, there must be enough outgoing capacity from each node. For this purpose,

we fist determine the total originating traffic from each node for each of the traffic

periods. Then, we determine, TOimax , the maximum total originating traffic

demand from node i over all of the traffic periods. We assume that the peak

efficiency of the link is 77. The total outgoing capacity from node / can then be set

as ro„max/r/(r/=0.7).

Second, there must be enough incoming capacity at each node. For this purpose,

we determine the total terminating traffic at each node for each of the traffic

periods. Then, we determine, TTimax , the maximum total terminating traffic

demand at node / over all of the traffic periods. For the same reason as above,

the total incoming capacity from node i is set as TTimax It].

Third, we have to ensure the consistency of the total originating and terminating

traffic capacity. The total originating capacity in the network rOmax can be

expressed as:

-94

TO = y TO
all/

The total terminating capacity in the network TT^ can be expressed as:

TT =YTT
max / i i.max

all I

ro,,max is tn© sum of the elements in row / of the capacity matrix; TO^ is the

sum of every row sum of the capacity matrix; and the 77^ is the sum of every

column sum of the capacity matrix. Hence, we should have:
TO =TT

max max

To ensure this condition, we adjust this TO ma and TT as below.
J (,max i,max

If r O m a x > r 7 m a x , s c a l e u p r r , i.e.:

TO
TT / T"T max

i.max i.max TT max

if ronm<rrmax, scale up ro , i.e.

TT
TO <= TO — ^

(,max i.max max

Fourth, we find a capacity matrix that matches all of the TO and TT . This
i ,niuX / ,m<ix

can be achieved by estimating a set of initial values for the capacity matrix and by

updating the rows and columns of the capacity matrix repeatedly until the

procedure converges. Let C = [c,.iy.] be the capacity matrix, initialized with the

average traffic demand (i.e. for a 30-node network, the total originating traffic

demands of node i are evenly distributed among the other 29 nodes,

[cltj]= 'm/2Q)- We use the following iteration procedure to update [c,, .] , based

on a method originally proposed by Fruithof.

Row iteration: for all i , set

TO,.
CIJ*=CU v ' ' m a X ' a11-7'

2j Ci,k

Column iteration: for all j, set

95

TT
„ , ;,max . . .
C n < = C y - ^ , all I

Lck,j

"'.j

The row and column updates continue until the capacity matrix C = [c (J]

stabilizes. In this implementation, the row and column iterations are stopped

when the modification of C = [c,.iy] between two iterations becomes less than a

threshold (e.g. 10~4).

• Building The Topology

Although the capacity matrix normally cannot be used directly to build the

topology, it provides two pieces of important information: where and how much

the traffic volume is. There are still 3 questions that need to be figured out. First,

how many links spread out from every single node to satisfy the fifty percent

connectivity? Second, which nodes are on the other ends of the links? Third, how

much capacity is on each link?

To solve the first question, we use the following equation:

ro,,max *,-

TOmm n*(n-l)*0.5

where n is the number of the nodes in the network, xt is the number of links

spreading out from node i . «*(«-l)*0.5 gives the total number of links that

complies with 50% connectivity.

For the second question, we first have to check the ith row of the capacity matrix

C = [c (y] to find out the nodes that have direct connections from node /. Then,

pick the biggest xi items. For example, when x, = 6, the biggest 6 items in row i

will be selected. After sorting by size, the capacity vs. destination node-ID graph

has a shape like in Figure A.2.

The 6 trunks have to be able to carry all of the traffic originating from node i, not

only the traffic that goes directly to these 6 destination nodes, but also that

toward the other nodes. To answer the third question, one of the simplest ways is

-96

to add all of the other 23 elements in row i of C = [c u] together and divide

evenly into 6 parts, then add each part to one of the 6 links.

After running above process for each node, the topology matrix is ready.

15

o
CO
Q .
CO
O
<D

•mm\ The six nodes on the left side are selected
as the trunk destinations.

10 15 20 25
The trunks, from big to small

Figure A.2: Capacity vs. Destination Node-ID

97-

References

[1]. G. R. Ash, J. S. Chen, A. E. Frey, and B. D. Huang, "Real-time Network

Routing in a Dynamic Class-of-Service Network", Proa, 13th Int'l Teletraffic Cong.,

Copenhagen, June 1991

[2]. S. Blake et. al., "An Architecture for differentiated Services", draft-ietf-diffserv-

arch-02.txt.

[3]. E. Rosen et al., "Multiprotocol Label Switching Architecture", draft-ietf-mpls-

arch-02.txt.

[4]. L. Andersson et. al., "LDP Specification", draft-ietf-mpls-ldp-02.txt., November

1998.

[5]. B. Davie et. Al., "Use of Label Switching With RSVR", draft-ietf-mpls-rsvp-

OO.txt. AND "Explicit Route Support in MPLS", draft-daive-mpls-explicite-routes-

OO.txt

[6]. R. Kawahara, "Traffic Control for Weighted Bandwidth Allocation per Flow in

Diffserv Architecture", Networks 2000 Conference, Toronto, Canada, September

10-15,2000.

[7]. S. Bosch, "Multi-Objective Traffic Engineering of IP Networks Using Label

Switched Paths", Networks 2000 Conference, Toronto, Canada, September 10-

15,2000.

[8]. F. Kelly, "Notes on Effective Bandwidth", 1997.

[9]. UC Berkeley, LBL, USC/ISI and Xerox PARC, "The NS ManuaT, December 9,

2000.

[10]. Dziong Z., Liao K-Q., and Mason L. G. 1993. "Effective Bandwidth Allocation

and Buffer Dimensioning in ATM Based Networks With Priorities". Computer

Networks and ISDN-Systems, 25:1065-1078.

[11]. M. Chatzaki, and S. Sartzetakis. "QoS-Policy based Routing in Public

Heterogeneous Broadband Networks". In Proceedings of lnterneting'98

Conference, Ottawa, Canada, 6-10 July 1998.

98

[12]. K. Nichols, V. Jacobson, L. Zhang. "draft-nichols-diff-svc-arch-OO.txt'. IETF

INTERNET-DRAFT, Nov. 1997.

[13]. McDysan, D.E. and D. L. Spohn. "ATM: Theory and Application", McGraw-

Hill, New York, 1995.

[14]. H. Tode, Y. Sakai, M. Yamamoto, H. Okada, "A Study on the Support of

Multicast Traffic in ATM Networks", June 1993.

[15]. T. J. Ott and K. R. Krishnan. "State-dependent routing of telephone traffic

and the use of separable routing schemes", Proc. 11th International Teletraffic

Congress, Kyoto, September 1985.

[16]. Krishnan, K. R. and Hibner-Szabo de Buts, F., "Admission Control and

State-Dependent Routing for Multirate Circuit-Switched Traffic", Proceedings of

the 15th International T&traffic Congress, Washington D.C., USA, 1997.

[17]. A. Girard, "Routing and Dimensioning in Circuit-switched Networks",

Addision-Wesley, 1990.

[18]. Z. Dziong et al., "On Adaptive Call Routing Strategy for Circuit Switched

Networks - Maximum Reward Approach", in Twelfth International Teletraffic

Congress, Torino, June 1988.

[19]. Z. Dziong, B. Shukhman and L. G. Mason, "Estimation of Aggregate

Effective Bandwidth for Traffic Admission in ATM Networks", INRS-

Telecommunications, IEEE 1995

[20]. G. Kesidis, "Modeling to Obtain the effective Bandwidth of a Traffic Source

in an ATM Network", E&CE Dept., Davis Centre, U. Waterloo, IEEE 1994

[21]. F. P. Kelly, "Routing in Circuit Switched Networks: Optimization, Shadow

Prices and Decentralization", Advanced Applied Probability, vol. 20, pp. 112-144,

1988

[22]. Ren-Hung Hwang, James F. Kurose and Don Towsley, "MDP Routing for

Multirate Loss Networks", 2000

[23]. A. F. Atlasis, E. D. Baltatzis, G. I. Stassinopoulos, I. Venieris, "A Linear-

Based Trunk Reservation Routing Algorithm for ATM Networks", LCN '98.

Proceedings, 23rd Annual Conference on 11-14 Oct. 1998

99

[24]. V. Anantharam, M. Benchekroun, "Trunk Reservation Based Control of

Circuit Switched Networks with Dynamic Routing", Proceedings of the 29th

Conference on Decision and Control, Dec. 1990

[25]. A. A. Puhalskii, M. I. Reiman, "A Critically Loaded multirate link with trunk

reservation", Queueing System 28, 1998, 157-190

[26]. I. Andrikopoulos and G. Pavlou, "Supporting Differentiated Services in

MPLS Networks", Proc. 7th Int'l. Wksp. QoS, London, U.K., May 1999.

[27]. F. Le Faucheur et al., "MPLS Support of Differentiated Services", Internet

draft, draft-ieft-mpls-diff-ext-07.txt, IETF. Aug. 2000, work in progess.

[28]. J. Heinanen, F. baker, W. Weiss, and J. Wroclawski, "Assured Forwarding

PHB Group", IETF RFC 2597, June 1999.

[29]. V. Jacobson, K. Nichols, and K. Poduri, "An Expedited forwarding PHB",

IEFT RFC 2598, June 1999.

[30]. A. Sridharan, S. Bhattacharyya, C.Diot, R. Guerin, J. Jetcheva, and N. Taft,

"On the Impact of Aggregation on the Performance of Traffic Aware Routing",

Technical Report, Department of Electrical Engineering, University of

Pennsylvania, June 2000.

[31]. R. Guerin, and V. Pla, "Aggregation and Conformance in Differentiated

Services Networks: A Case Stud/, ACM Computer Communications Review, vol.

31, no.1, January 2001, pp.21-32.

[32]. Y. Xu, and R. Guerin, "Individual QoS versus Aggregaed QoS: A Loss

Performance Stud/, Technical Report, Department of Electrical Engineering,

University of Pennsylvania, July 2001.

[33]. H. Fu and E. Knightly, "Aggregation and Scalable QoS: A Performance

Study", Technical Report, Department of Electrical Engineering, University of

Pennsylvania, February 2001.

[34]. W. H. Cameron, J. Regnier, P. Galloy, and A.M. Savoie, "Dynamic Routing

for intercity Telephone Networks", Proc. 10th Inte'l Teletraffic Cong. Montreal,

Canada, June 1983

[35]. G. R. Ash, "Use of a Trunk Status Map for Real-Time DNHR', Proc. 11th

Inte'l Teletraffic Cong., Kyoto, Japan, Sept. 1985

-100-

[36]. P. Chemouil, J. Filipiak, and P. Gauthier, "Analysis and Control of Traffic

Routing in Circuit-Switched Networks", Comp. Networks and ISDN Syst., vol. 11,

no. 3, Mar. 1986

[37]. K. R. Krishnan and T. J. Ott, "State-Dependent Routing for Telephone

Traffic: Theory and Results", Proc. 25th IEEE Control and Decision Conf., Athens,

Greece, Dec. 1986

[38]. P. Gauthier, P. Chemouil, and M. Klein, "STAR: A System to Test Adaptive

Routing in France", Proc, Globecom '87, Tokyo, Japan, 1987

[39]. A. Weinrib and G. Gopal, "Decentralized Resource Allocation for Distributed

Systems", Proc. IEEE Infocom, San Francisco, CA, 1987

[40]. R. J. Gibbens, F. P. Kelly, and P. B. Key, "Dynamic Alternative Routing-

Modeling and Behavior, Proc. 12th Int'l Teletraffic Cong., Torino, Italy, Jne 1988

[41]. K. R. Krishnan and T. J. Ott, "Forward-Looking Routing: A New State-

Dependent Routing Scheme", Proc. 12th Int'l Teletraffic Cong., Torino, Italy, June

1988

[42]. K. Mase and H. Uose, "Consideration on Advanced Routing Schemes for

Telecommunication Networks", Proc. 12th Int'l Teletraffic Cong., Torino, Italy,

June 1988

[43]. G. Gopal and A. Weinrib, "Limited Waiting for Valuable Resources: An

Adaptive Control Strategy for Circuit-Swithced Networks", Proc. 26th Allerton Conf.

on Commun. Control and Comp., Monticello, IL, Sept. 1998

[44]. R. J. Gibbens and F. P. Kelly, "Dynamic Routing in Fully Connected

Networks", IMA J. of Math. Control and Info., vol. 7, 1990

[45]. G. R. Ash, R. H. Cardwell, and R. Murray, "Design and Optimization of

Networks with Dynamic Routing", Bell System Technical Journal, vol. 60, pp.

1787-1820, 1981

[46]. J. Regnier, P. Blondeau, and W. H. Cameron, "Grade of Service of a

Dynamic Call Routing System", in Tenth International Teletraffic Cong., June

1983

[47]. Y. Watanabe and T. Oda, "Dynamic Routing Schemes for International

Networks", IEEE Communications Magazine, vol. 28, pp. 66-69, Oct. 1990

-101

[48]. W. G. Lazarev and S. M. Starobinets, "The use of dynamic programming for

optimization of control in networks of communications of channels", Engineering

Cybernetics (Academy of Sciences, USSR), No.3, 1977

[49]. R. A. Howard, "Dynamic Programming and Markov Processes", Cambridge,

MA. M.I.T. Press, 1960

[50]. D. P. Heyman and M. J. Sobel, "Stochastic Models in Operations Research",

Volume II (Stochastic Optimization), New York: McGraw-Hill, 1984

[51]. V. E. Benes, "Programming and Control Problems Arising from Optimal

Routing in Telephone Networks", Bell System Tech. J., vol. 45, No. 9, pp 1373-

1438, Nov. 1966

[52]. J. Regnier, Notes on "Resource Utilization Costs and State-Dependent

Optimal Routing", 2000

[53]. Z. Dziong and L. Mason, "Control of MultiService Loss Networks", in Proc.

Of the 28th Conference on Decision and Control, Tampa, FL. Dec. 1989

[54]. K. R. Krishnan, "Adaptive State-Dependent Traffic Routing Using On-Line

Trunk-Group Measurements", in 13th International Teleraffic Cong. Denmark,

June 1991.

[55]. K. R. Krishnan, "Network Control with State-Dependent Routing," Proc. Int'l

Teletraffic Cong. Specialists' Sem., Adelaide, Australia, Sept. 1989

102-

