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Abstract

Epidemiologie studies indicate that excessive use of short acting beta­

2 agonists is associated with increased risk ofasthma mortality. We used data

from a cohort of 12,301 asthmatics to fit a change-point Poisson regression model

to estimate the maximum safe dose ofthese beta-2 agonists and ilS confidence

limit. Using the profile likelihood method, the maximum likelihood estimate of

the change-point is 1.8 canisters/month, and excessive rate of fatal or near fatal

astluna attack is 3.7 (2.7-4.7) and 7.0 (3.5-10.4) per 1,000 asthmatics per year

before and after the change-point. Its bootstrap 95-percentile intervals are (2, 64)

and (2, 71) canisterslyear respectively for non-parametric and parametric

approaches. Simulation studies found the profile likelihood and bootstrap methods

usefuI for inference of the change-point in providing safe dose infonnation for

these drugs. Future studies are needed to obtain more precise bootstrap intervals

and to assess the confounding effects of covariates.
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Résumé

Des études épidémiologiques révèlent que l'utilisation excessive d'agonistes du

récepteur bêta-2 est associé à un risque accru de mortalité par asthme. Nous avons

exploité les données tir~es d'une cohorte de 12301 asthmatiques dans le cadre d'un

modèle de régression de Poisson avec point de rupture (change-point) pour évaluer la

dose maximale d'agoniste du récepteur bêta-2 qu'il est possible d'administrer en toute

innocuité, de même que son intervalle de confiance. Au moyen de la méthode des profils

de vraisemblance, l'évaluation de la vraisemblance maximale du point de rupture est de

1,8 cartouches/mois et le taux excessif de crise d'asthme fatale ou quasi-fatale est de 3,7

(2,7-4,7) et de 7,0 (3,5-10,4) pour 1 000 asthmatiques par an avant et après le point de

rupture. Les intervalles trbootstrap" (95e percentile) sont de 2 à 64 et 2 à 71 cartouches/an

respectivement pour les analyses non paramétrique et paramétrique. Les études de

simulation révèlent que le profil de vraisemblance et les méthodes "bootstrap" sont utiles

pour l'estimation du point de rupture et pour fournir des données sur les doses sûres de

médicaments. D'autres études s'imposent pour obtenir des intervalles f1bootstrap" plus

précis et pour évaluer l'effets confoundants des autres covariables .
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1. Introduction

1.1 Question
One of the major challenges in drug development is to detennine the

recommended dose for a medication. This dose must he sufficiently high to be

effective, but low enough not to be harmful. This deterrnination is usually the

result of extensive research in pre-marketing drug development. However, such a

safe dose limit can not be fully established in pre-marketing clinical trials due to

lirnitations in sample size, time and ethies.

The application ofphannaeoepidemiology through post-marketing studies

has several advantages. Not only can it prove the effectiveness of the drug in real

praetice but it can also identify certain adverse outcomes, rare and/or severe,

which were undetectable in the pre-marketing phase. Post-marketing studies can

adequately evaluate the adverse drug effects using post-marketing drug

surveillance databases. They are collected for medical research on an on-going

basis, including useful infonnation on drug utilisation in a broad spectrum of

patients, and large enough to identify rare outcomes and high dosing events. This

allov;s us to evaluate the dose-response curve in a wider dose range 50 that the

maximum effective dose, free ofsevere toxicity, can he established.

One situation where post-marketing studies could be beneficial is in the

treatment of asthma with the short-acting beta-2 agonists (fenoterol and

salbutamol) delivered by metered dose inhaler (MDI). Asthma is a common
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disease in developed countries and its prevalence has been increasing since the

turn of the century. Its treatment with these two shon-acting MDI beta-2 agonists

provides fast symptom relief. They are relatively safe and effective when used in

lower doses. However, epidemiologic evidence suggested that excessive use of

such medications may cause sudden death or near death from asthma and the

dose-response curve indicated that the excessive rate of severe asthma attack

dramatically increases beyond certain dose level. Thus, while the treatment of

asthma with the short-acting MDI beta-2 agonists is highly effective, there is a

high risk of asthma mortality associated with an excessive dose. Even though it is

possible that excessive use ofthese medications can be a marker for asthma

severity, the confounding effect ofwhich further is discussed in Chapter 5, it is

still clinically important to identify the maximum safe dose for these medications.

Since clinical trials are not feasible to identify such dose limit, a large-scale post­

marketing cohort study is necessary.

1.2 Solution
There are several ways of modelling an increasing dose-response curve.

First, in the case of a binary outcome, the probit link or the logit link is often used

to model the relationship between the probability ofoutcome and dose, which

assumes the dose-response curve has the shape ofcumulative normal or logistic

distribution function, respectively. Secondly in the case ofcount data, Poisson

regression with log link is usually used to model the rate, assuming an exponential

relationship between the rate and dose. However, aIl of these approaches assume a

5
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smooth increasing dose-response relationship, whereas a change-point dose­

response model assumes a change-point connecting two lines with the slope after

the change-point higher than the one before. With respect to the drug safety

question mentioned above, such a change-point can be regarded as the maximum

safe dose limit beyond which asthma mortality rate increases much faster. This

can be very useful clinical infonnation in order to treat asthmatic patients safe1y

and effectively. Therefore, to identify such maximum safe dose, a change-point

dose-response curve can be constructed from a cohort analysis to directly model

the rate of fatal or near fatal asthma attacks as a function ofexposure level of the

short-acting MDI beta-2 agonists. The change-point problem in statistics has been

studied since the 1950's, and has been found useful in various fields from

operational control in industry to birth defects in paediatric epidemiology. One of

the applications of the change-point problem is in multiphase linear regression,

where the coefficient of X, Plt' changes at unknown point, ~. Most of the

thearetical work for the inference ofchange-point focuses on linear regression

with normal error and their application to reallife situations has been hindered by

its mathematical complexity. However, Stasinopoulos97 wrote a macro in GLIM

ta calculate the maximum likelihood estimate of the change-point using the

profile likelihood method, and its confidence interval was estimated by Ulm 101

using the bootstrap method. Their methods have been successfully applied to

epidemiological data with binomial and Poisson error and have performed weil in

simulations. This thesis applies their numerical methods to give point and

6
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confidence interval estimate of the change-point in the dose-response curve of

short-acting MDI beta-agonists and fatal or near fatal asthma attacks.

1.3 Outline of the thesis
In Chapter 2, a general review ofdosing studies in drug development is

first given, showing the advantages ofpost marketing phannacoepidemiologÏc

studies in the evaluation of safe drug doses. This is followed by a review ofbeta-2

agonists in the treatment ofasthma and their association with asthma mortality,

which presents a typical situation in which a large scale post-marketing cohon

study is necessary to investigate the safe dose limit. Finally, a critical review of

the change-point problem in statistics with focus on multiphase regression is

given for the inference of the change-point based on the maximum likelihood

theory and alternative numerical methods.

Chapter 3 describes the data and the methods used in this thesis. First a

general description of the asthmatic cohort from the Saskatchewan Asthma

Epidemiology Project (SAEP) is given, and then the outcome of interest and main

drug exposure are defined. Secondly, the statistical models used to fit the dose-

response curve are described, which include change-point models with either

identity link or log link and the generallog linear model. The profile likelihood

method to obtain the point estimate of the change-point is presented followed by

the bootstrap methcd for its interval estimation. Finally, a simulation study to

evaluate the perfonnance ofthese numerical methods is presented.

Chapter 4 presents the results of the analysis. Parameter estimates from

7
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various models are given and their goodness of fit are compared. 95% percentile

intervals using both parametric and non-parametric bootstrap techniques are

presented. As a comparison, confidence intervals based on normal theory and

likelihood ratio test are also given. Finally, results from the simulation study to

evaluate the goodness ofpoint and interval estimation of the change-point are

given.

In the final chapter, the advantages ofmodelling the dose-response curve

\Vith a change-point in post-marketing drug dosing studies are discussed. The

estimated safe dose limit for the short-acting MDI beta-2 agonists is compared to

the corresponding maximum recommended dose level and its implications are

discussed. Finally, limitations in numerical estimation of the change-point and ils

confidence intervals are also evaluated.

8
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2. Literature Review

2.1 Limitations in pre-marketing dosing studies
Pre-marketing drug development can be broadly divided into two periods,

namely preclinical animal studies and clinical trials.

In order ta ensure that a drug is both safe and effective when taken by

humans, it goes through many testing steps in animaIs before being given to

humans. Many drugs are abandoned at this stage for lack of effectiveness or

serious toxie effeet. Infonnation concerning starting doses in humans can be

obtained from these studies. However, the proper and complete integration of pre-

clinical data from various test models and animal species into a single

comprehensive toxicity statement of the drug, which is then extrapolated to

humans, is a challenging process. 1 In general, extrapolating from animaIs to

humans is risky. Animal studies are able to predict acute and short term adverse

events in human with sorne degree ofsuccess,Z.3 but the predictive value of

chronic toxicity such as cancer is poor.4

Early stage clinieal trials (phase 1and phase II trials) are usually clinieal

pharmacology studies designed to detennine the pharmaeokinetic and

pharmacodynamie profile ofdrugs in human. One of the objectives of these trials

is to establish safe effective drug doses to be used in the later stages ofclinical

testing. The studies are usually conducted in healthy individuals (phase 1) to avoid

severe toxicity or patients who have the target disease with fair conditions (not the

mast or the least sick) to be able to demonstrate initial drug effieaey (phase Il)

9
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with minimum risk of having adverse effects. The design used in these early stage

trials is usually a sequential escalating dose study, which attempts to establish the

dose-response relationship. The maximum tolerable dose (MTD) of the drug, with

which the numbers ofpatients experiencing a given degree of toxicity meets sorne

set criteria, is also obtained. The sample size ofthese trials are usually small (10­

20 subjects). Due to the srnall sample size, stochastic nature of design and

heterogeneity of the study subjects, statistical properties of the dose-response

curve, and MTD estimation are unpredictable.5
.
6

•
7

Phase III trials provide conclusive information on the efficacy of the drug

for specified indications and continue to evaluate other safety profiles such as

long tenn adverse effects. These trials usually employ multicenter, paralleI,

double-blinded, controlled, randomised, and complete block designs with centres

as blocks. The number ofpatients involved may range from several hundreds to

more than a thousand, and the duration of such trials are relatively longer. For

example, phase III of a drug trial for a chronic disease may last from 3 to 12

months or more. Phase III trials are generally less restrictive in the choice of

patient selection than phase II trials because they rnay need to ensure

representation of several distinct populations in order to establish claims in each

group. However, because of ethical reasons, the inclusion-exclusion criteria in a

Phase III protocol usually does not or cao not include representation ofaIl

portions of the targeted population (ex. children, pregnant wornen etc.). AIso, to

increase statistical efficiency in detecting to differences bet\\'een study groups,

10
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patients with concomitant diseases or patients receiving other drugs are often

excluded.

In summary, pre-marketing drug trials are necessarily limited in size, time

and by etmcs. As a result, sorne drug effects that are severe, unpredictable, rare

and have longer latent periods can not be identified in these trials. Furthermore,

patients in clinical trials are closely monitored, and very few have high doses of

drugs, which makes it difficult to study drug overdose effects. AlI these make it

difficult to determine the maximum effective dose, free oftoxicity, in pre-

marketing dosing studies. This can only be assessed after marketing when

pharmacoepidemiology studies are perfonned using large drug surveillance data

collected as part of ongoing medical care.

2.2 Post-marketing drug safety evaluation
After a drug is marketed, its safety profiles are continuously evaluated in

pharmacoepidemiologic studies. The following section is a brief summary of the

first part of a monograph edited by Strom.8

Phannacoepidemiology is the study of use and effects of drugs in a large

number of people. It is a relatively new field resulting from the union ofclinical

phannacology and epidemiology. Instead of aiming at the individuallevel as in

clinicat pharmacology, phannacoepidemiology applies epidemiologic methods to

provide riskibenefit assessment of the drug at the population level. The primary

focus ofpharmacoepidemiology is to study adverse drug effects (ADEs), trying to

identi fy risk factors for ADEs across the target population. The need for

Il
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phannacoepidemiologic research has arisen from drug regulation aimed at

protecting public interests.

A briefhistory ofdrug regulation in the V.S., similar to most developed

countries, can serve as an example ofthe evolution ofphannacoepidemiology in

the past several decades. Federal regulation on drug supplies began as early as

1848 with the Import Drug Act. However, it was not until 1938 that the tirst

regulation, The Food, Drug, and Cosmetic (FD&C) Act, passed. Following the

result of 100 deaths due to a sulfanilamide preparation containing diethylene

glycol,9 the Act required safety approval prior to marketing, with adequate labels

and wamings. The issue ofpost-marketing drug safety was tirst addressed in the

1939 Annual Report to the FD&C Act. Following the discovery that

chloramiphenicol aplastic causes anaemia, 10 adverse drug reactions received more

and more attention in the 1950s. During the follo\ving decade (1960s), the new

field ofphannacoepidemiology began to develop. Several in-hospital drug

monitor programs were established in V.S. which explored the short tenu effects

of drugs used in hospitals. 1
\,l2 After the "thalidomide disasterul3 in 1968, the

Kefauver-Harris Amendments were passed in the VS requiring more \'igorous

evaluation of drug safety and efficacy. It led to many previously approved drugs

being removed from the market and also dramatically prolonged the drug

approval process. S~veral serious and uncommon ADEs in the late 60514 had

stimulated rapid development ofthis new field. In fact, since the early 19705 the

12
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FDA has required post-marketing studies at the time ofapproval for about one­

third of drugS. 15

As mentioned above, phannacoepidemiology applies epidemiologic

methods to study the content area ofclinical phannacology. Epidemiologie study

designs can be broadly divided into two categories, namely descriptive studies

and analytic studies. Both of them can be used in the field of

phannacoepidemiology. Descriptive studies include case reports, case series and

analysis of secular trend. These studies are usually inexpensive and fast, and are

used for generating hypotheses. For example, the question of whether oral

contraceptives (Oes) cause venous thromboembolism was first suggested by case

reports and case series. It was explored in greater detail in secular trend analysis. 16

However, the lack ofcontrols and difficulties in controlling confounding effects

mean that these studies can not be used in hypothesis testing, which can only be

assessed using analytic designs such as the case-control study, cohort study and

clinical trials. For the same example, because of the safety concems about oes, a

series of case-control studies 17 were carried out to investigate its causal relation

\vith the adverse outcome. Furthermore, because of the importance ofthis drug

and the number ofwomen using it (most ofthem are healthy), a large-scale long­

term cohort studyl8 was conducted to further continn the previous findings. One

of the advantages ofcohort analysis is the ability to investigate dose-response

relationship whether an increased drug exposure (either in time or dose) causes an

excessive risk of ADEs. Not only does this allow us to confinn their causal

13
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re1ationship, but it also provides useful infonnation with respect to the safe dose

limit in reallife. For oral contraceptives, it is neither feasible nor ethical to answer

these questions in randomised clinical trials.

2.3 Asthma and its treatment with beta agonists

2.3.1 About asthma
The National Asthma Education Program Expert Panel Report defines

asthma as: "Asthma is a lung disease with the following characteristics: (1) airway

obstruction that is reversible (but not completely so in sorne patients) either

spontaneously or with treatment; (2) airway inflammation; and (3) increased

ainvay responsiveness to a variety ofstimuli".19 One of the main features of

asthma is bronchial hyperactivity. Usually asthma patients tend to have a

't\vitchy' airway. The major symptom ofasthma abnormality is airway

obstruction caused by contraction ofbronehial muscles eontained within the walls

of the airway. An allergie inflammation ean lead to swelling of the airway

epithelium, accumulating inflammation products and increasing the number of

mucus glands, aU of which can narro\v the bronchial airway causing an asthma

attack.

Objective asthma diagnosis can be made using lung function tests such as

peak expiratory flow rate (PEFR), or forced expiratory volume in one second

(FEVt). They are simple, safe and reproducible.2o Usually a reduction ofmore

than 15% in PEFR or FEV1, after being challenged by a standard exercise

challenge, histamine or methacholine, is nonnally regarded as a positive

14
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diagnosis.21 Skin tests and blood tests are also used for diagnosis ofasthma

caused by allergy. Subjectively, any two of the five symptoms, cough, tightness of

chest, nocturnal misery, chest pain and wheezing, are strong indicators of

asthma.22 However since there is controversy in defining asthma and its \Vide

rapid variation in airway obstruction, misclassification can be a potential source of

bias in asthma survey study. Chronic bronchitis, lung infections as weil as certain

heart diseases are sometimes mislabelled as asthmatics.

There are several important risk factors for asthma at the Izost level as weIl

as at the ellvirollmentalleve/. Allergy23 is increasingly being recognised as

playing an important role in asthma. Allergens land within the lungs on the airway

making contact with mast cells. The mast ceUs then lock onto the allergens and

produce inflammation products such as histamine causing asthma attack. Genetic

factors: asthma is weIl known to cluster in families24 and a number of genetic

mechanisms have been proposed.25 Birth factors such as lower birth weight, pre-

matunty, neonatal lung disease are also associated with an increased level of

. b . d b h" 1 ". 262728 Ah' / 1 1alrway 0 structlon an rone la reactlvlty. " t t e enVlronmenta eve.

smoking is a weil reeognised respiratory irritant. Several studies have reported

that adolescent asthmatics smoke at a level equal to or higher than the general

population.29 Tobacco smoke also increases the severity of asthma.30 Another

environmental factor is air pollution; incidence ofasthma has been reported to

increase in polluted area as compared to non-polluted areas31 and in urban areas

15
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vs. rural areas.32 Studies of migrants and ethnie groups show sorne mild race

differences, but living environment is mueh more important; the ehildren of

migrants have been reported to acquire the prevalence of asthma in the area

where their parents moved.33 SocioecoDomic status is a possible factor to explain

that in the US, blacks ofany age group have more asthma and asthma

hospitalisation eompared to \vhites.34 Seasonal variations in asthma mortality

and morbidity have been reported; in general, early summer and faIl demonstrate

the highest rate of asthrna attaeks35
. Finally, infections are weB recognised to be a

factor precipitating asthma attacks36
; Viral infections could enhance the release of

inflammatory mediators from mast cells and basophiles in the lungs.37 Other

respiratory tract infections, such as bronchitis and pneumonia, have been shown

to be associated with later onset of asthma.38

2.3.2 Beta-receptor agonists for the treatment of asthma
Available treatment for asthrna can be broadly divided into hvO categories:

1) bronchodilatars ta relieve the symptoms (i.e. bronchoconstrictian) during acute

asthma attacks, and 2) prophylactic therapy to prevent the onset of asthma attacks

and to achieve lang-term control. The most widely used bronchodilators are beta-

receptor agonists, also called sympathomimetic agents. These drugs exert their

actions through stimulating beta-receptors, which in tum activate a cascade of

events to control the tone ofbronchial smooth muscle. For prophylactic therapy, a

very important group ofdrugs are corticosteroids. Their actions are achieved by
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blocking the synthesis and release ofvarious mediators, and reducing airway

inflammation. They can be administered either orally (oral corticosteroid) or by

inhalation (inhaled corticosteroid). These drogs have proven to be very effective

in long-tenn suppressive therapy for astluna.39

Beta-agonists belong to a group of asthrna Medications with a basic amine

structure. Because the pharmacological effects of these Medications are similar to

those observed when sYITlpathetic autonomic nerves are stimulated, they are called

sympathomimetic bronchodilators. Sympathomimetic agents have been important

drugs in the treatment of asthma for the most part of the 20th century. In 1900,

Solis-Cohen discovered a bronchodilating 4 adrenal substance' ,40 which \Vas then

purified as adrenaline and given subcutaneously to asthmatics.4
\ Later, adrenaline

\Vas applied directly to the branchial mucosa as an inhaled solution. The

concentration in the inhalation solution was subsequently increased to improve its

effectiveness, and it had been widely used for the treatment ofasthma till the

1950s with side effects such as palpitations and tremor.42

From the structure-activity studies carried out during the 19405,

Boehringer-Ingelheim in Gerrnany synthesised a derivative ofadrenaline.43 This

drug effectively relieved bronchial-spasm in asthma and \Vas more or less free of

the troublesome side effects of adrenaline. The drug was later introduced under

the narne isoprenaline. For over 20 years isoprenaline was considered to he the

drug ofchoice for the reliefof acute asthmatic attacks with mainly cardiac side

effects and tremor.

17



•

•

The introduction of isoprenaline pIayed a key roIe in the discovery of

alpha-beta receptors, tirst reported by Ahlquist in 1948.~ From a summary of

observations with a number of sympathomimetic agents (including the new drug

isoprenaline), he proposed that these compounds could act on t\vo kinds of

receptors, which he named alpha and beta receptors. Alpha-receptors were

associated with responses such as vasoconstriction and uterine contraction

whereas beta-receptors were associated with certain responses such as cardiac

stimulation and vasodiIation. The inhibition ofbronchial smooth muscle (i.e.

bronchodilation) \vas classified by Ahlquist as a beta receptor response. It was

considered at that time that future sympathomimetic bronchodilators should be

specific beta-receptor agonists. Many new bronchodilators described as beta­

receptor agonists were developed during the 50s and early 60s. As a result, at the

beginning of the 19705, the main beta-agonist aerosoIs avaiIabIe in the United

States \vere adrenaIine, isoprenaline, isoetharine and orciprenaline.45

Subsequent structure-activity studie5 on these four drugs \Vere carried out

to seek new beta-receptor agonists \vith reduced cardiac stimulating effect. In

Britain, researchers at Allen and Hanburys (now part of the Glaxo group) obtained

a compound called salbutamol. A structural modification of isoprenaline, this

compound had increased bronchodilating potency with fewer cardiac side

effects.46.47.48 Independently, chemists al Draco (now part of the Astra group) in

Sweden found a derivative oforciprenaline named terbutaline. Not only did it

have oral activity and longer duration, but also, as with salbutamol, fewer cardiac
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stimulating effects.49 Jn Germany, Boehringer-Ingelheim also produced a series of

relatives oforciprenaline. Among these was the compound named fenoterol,

which again \vas a potent beta-agonist with less cardiac potency and longer

duration shown in many clinical studies.50,s 1

The discovery ofthese 3 new anti-asthmatic drugs helped confirm the

betaI-beta2 receptor subtype hypothesis first proposed by Lands et al.52 in 1967. It

is now clear that cardiac stimulating side-effects belong to the beta-l receptor

responses whereas bronchodilation, as weil as vasodilation and muscle tremor

side effects, faUs into the responses ofbeta-2 receptor. Therefore, aH these new

drugs were classified as beta-2 selective agonist bronchodilators and were widely

used for treatment of asthma.

The beta receptor subtype hypothesis promoted the search for compounds

with better separation between bronchodilating (beta-2 response) and cardiac

stimulating (beta-1 response) potency. Many were studied and were shown to

have good beta-2 selectivity in animal studies. However, none were able to

replace the original three beta-2 agonists in practice because oftheir toxicity in

human. In the Mean time, other research was carried on to look for beta-2

selective drugs \Vith fewer side effects caused by vasodilation. It is a troublesome

beta-2 response producing tachycardia through a reflex response to the drop in

blood pressure (an indirect effeet on the heart), and fine skeleton muscle.

However, improvements were difficult to achieve. For unlike before, no evidenee
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from animal tissues suggested a difference between beta-2 receptor in respiratary

tissue and that in vascular smooth muscle or skeleton muscle.

Only in recent years have several alternative beta-2 selective

bronchodilators been introduced with improved pharmacokinetic profiles. Among

them are salmeterol and fannoterol for inhaled use, and bambuteral for oral use.

These drugs have longer duration of action, increased chemicaI stability and

increased bioavailability.

Sympathomimetic bronchodilators have been used for the treatment of

asthma for mast ofthis century. The discoveries oftirst beta-specific agonists in

the 1950s and then beta-2 agonists in the 1970s were milestones in the history of

anti-asthma drug therapy. Throughout the 70's and 80's, considerable effort in

both basic and elinical research has continued ta search for better specifie beta-2

agonists with ideal pharmacokinetic profiles and no unwanted side effects. Yet 20

years after the development of salbutamoI, terbutaline and fenoteroI, these drugs

were still the main bronchodilators used for acute asthma attaeks. Inhaled beta-2

agonists allow a small but effective dose ofdrug to be delivered directIy to the

airways and produce a fairly quick bronchodilating response. \Vhen taken

properly, these agents are relatively safe \vith few cardiae and muscular side

effects. However, concems53arose from epidemiologic evidence that increased

asthma morbidity and mortality was associated with excessive use of these short

acting inhaled beta-2 agonists.
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2.3.3 Asthma mortality and its association with beta-agonist
bronchodilators

Most recent epidemiological reviews of asthma mortality have restricted

their periods of observation to approximately the last 30 years. A number of

methodological issues may arise when longer-terro trends are examined. Changes

in the past three decades in asthma mortality appear to show t\vo patterns: 1)

sudden epidemic increases associated both in lime and place with the widespread

introduction of high-dose preparations of two beta-agonists, isoprenaline and

fenoterol. 2) graduai increases in asthma rnortality in several countries including

the US, Canada, Australia, and the OK.54 Although studies ofasthma mortality

over long periods of time are likely to be influenced by many factors, there is a

strong belief that these trends can't be wholly explained by changes in

classification or health care factors and that a real and unexplained increase has

indeed occurred.54 It is interesting to note that there was a large increase in

prescription ofbeta-agonists aerosols between 1977 and 1985,55 during which

astluna mortality increased significantly.56 This parallel has been recently

discussed as the 'asthma paradox,57, that is, steady increases in asthma mortality

at a time of introduction and increasing sales of low-dose beta selective asthma

medications.

And there \vas also a steady increase in asthma mortality at a time of

introduction and increasing sales oflow-dose beta selective asthma medications.57
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There have heen two well-documented epidernics in asthma mortality, one

during the rnid 1960s in six countries,5S and one during the rnid 1970s in New

Zealand.S9 During these epidemics, the introduction and widespread use of two

beta-agonists, isoprenaline and fenoterol respectively, paralleled in time \vith

increase in asthma mortality. Both drugs, which are effective bronchodilators,

were marketed in high-dose fonnulations.

The most striking aspect of the 1960s' epidemic was its abrupt onset, but

only in certain countries. A striking increase in asthma mortality \Vas tirst noticed

in England and Wales in the rnid 1960s when asthma mortality showed a

sevenfold increase in younger people.60 Several other countries such as Ireland,

Scotland, Australia, New Zealand and Norway also experienced a sudden asthma

mortality increase during the period of 1965-1967. In contrast, other countries

(Germany, US, Canada and Belgium) showed no changes in mortality during the

same periode Speizer and DoU6oexamined the asthma mortality patterns in the UK

and pointed out that the abrupt increase in mortality coincided \vith the

introduction of a nev" therapy, the hand-held pressurised nebulizer containing a

potent non-selective beta-agonist, isoprenaline. Plotting sales of these nebulizers

against deaths over time by Ioman and Adelsteit61 (Figure 1) showed excellent

correspondence in England and \Vales. This nebulizer hypothesis was further

studied by Stolley62 who examined the difference in constituents ofthese

nebulizers marketed in different countries. Results indicated that aIl the epidemic

countnes had licensed and used an extremely potent fonn of the isoprenaline
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nebulizer. The dosage form (O.4mglpuft), called "forten by the manufacturers, was

5 times the strength of the usual dosage fonn (O.08/puff) licensed in non-epidemic

countries. The high-dose nebulizer hypothesis, also called the "forte hypothesis",

\Vas quickly supported by the British Medical Journal with a lead editorial.63

A second epidemic increase in asthma mortality began in 1976. This time

solely in New Zealand, the epidemic reached its highest peak in 1979 and

subsided rapidly. A 2-year national survey of asthma mortality was undertaken

between 1981 and 1983 by an asthma task force to investigate aIl deaths from

asthma in New Zealand since 1976. The study confinned the high mortality rate

and suggested that rather than changes in death coding, inadequate assessment of

asthma severity and/or inadequate use of oral corticosteroids may have played an

important role. From the study of a cluster ofasthma deaths in Auckland, Wilson

et al.64suggested that fatal asthma attacks were a result of the increasing use of a

combination of inhaled beta-agonists and slow-released theophyllines. Such

treatment was more common in New Zealand than in many other countnes. The

association with bronchodilators was also raised by Grant et al.,65 who suggested

that the increase in mortality may have been related to widespread use ofbeta­

agonists delivered by home nebulizers in New Zealand. Secular trend studies66

demonstrated a dramatic increase in the sale of total beta-agonists as weIl as aIl

asthma medications in New Zealand during the same period. In particularly,

fenoterol, which was tirst marketed in 1976, had a rapid increase in market share

strikingly parallel to the increase in asthma mortality (Figure 2).
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In addition to such strong parallel secular trends, excessive repeated use of

fenoteroi was found in patients who died ofasthma. Furthermore, this drug was

marketed in high dose formula. They aIl suggested a specifie hypothesis that the

use of fenoteroi might be associated with an increase risk of fatal asthma attack.

The hypothesis \Vas examined by three case-control studies carried out

subsequently between 1989 and 1991

In the first study,67 cases were obtained from the New Zealand Asthma

Mortality Survey, including ail asthma deaths in 1981-83 with age ranging from

5-45. Asthrnatic contrais were selected and matched on the time when the case

patient died. Infonnation on prescribed drug therapy for self-administration at the

time of the last attack \Vas documented for cases and contraIs. The only anti­

asthma drug that was associated with a significant increased risk of asthma death

\Vas fenoteroi. In the subgroup analysis defined by astluna severity markers, the

odds ratio associated \Vith fenoterol was markedly increased ranging fram 2.2 ta

13.3 in the mast severe group indicating effect modification rather than

confounding by severity. Similar findings were obtained by a second case control

study which examined fatal asthma attacks during the period of 1977-1981.68 To

overcome the potential problem of information bias encountered in the first study,

more accurate information on prescribed drug therapy \\'as collected from the

hospital records for both cases and contraIs.

A third national case-control study was done using aIl cases between

1981 and 1987.69 It used two control groups to explore the methodological issues
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ofcontrol selection. Group A controls were chosen in the same manner as

previous studies. Group B controls were selected randomly from ail patients with

an admission and a discharge diagnosis ofasthma in the hospitals surveyed during

the study period and matched for age and hospital. The purpose of control group

B \Vas to be representative of ail subjects who had been admitted to the chosen

hospitals irrespective oftheir later outcome. It was an ideal control group as a

sample of the original incidence cohort. For both control groups, an increased risk

was associated with the prescription of fenoterol. The subgroup analysis

repeatedly showed an increased relative risk for the most severe subgroup,

suggesting that the findings were not confounded by asthma severity.

The epidemiologic findings in New Zealand were confirmed in Canada by

a series of studies from the Saskatchewan Asthma Epidemiology Project (SAEP).

First a nested case-control study70 was carried out where each control \Vas

required to be at risk at the case index date. In addition, cases and controls were

matched on several social demographic factors as well as asthma severity. From

this study, the use ofbeta-2 agonists in general was found to be associated with

increased risk of combined death or near-death from asthma. For asthma death

only, the use of fenoterol gave an G.R. of 5.4 per canister compared with 2.4 per

canister for salbutamol. After taking into account the dose difference between the

t\\'o drugs (i.e. one canister of fenoterol equals to two canisters of salbutamol),

their increased risks were similar on an equivalent weight basis .
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Following this study, a cohort analysis71 was carried out using the entire

cohort. Using an additive model, a linear dose-response curve between MDI beta-

2 agonists use and the rate of fatal or near fatal asthma attack was fitted. The

background event rate in this cohort was estimated, and there were significant

increased risks associated with the excessive use of fenoterol and salbutamol. The

severity of asthma marked by the use oforal corticosteroid and previous asthma

hospitalisation in the last 2 years was well controlled and evaluated in the

analysis. It is also very interesting to note that the observed dose-response curve

showed a sudden increase in the excessive risk around the recommended limit of

these Medications.

2.3.4 Summary
Asthma is a common airway disorder which affects up to 10% of the

population in the United States,72 and beta agonists are widely used for its

treatment. However, ever since their introduction into clinical use, beta-receptor

agonist drugs have been the subject ofcontroversy \Vith respect to their safety in

asthmatics. Especially when used excessively, these drugs may cause a fatal

asthma attack. The causal relation with such severe yet rare adverse outcome can

not be assessed feasibly and ethically in pre-marketing clinical trials. However,

until the primary defects underlying asthma are fully understood, there \vill be a

need for bronchodilator drug therapy. The need for such therapy at the present

time is not in doubt; but the \Vay in which they are prescribed and used in

asthmatics needs to be continually reassessed as our knowledge increases.
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Therefore, a pharmacoepidemiologic study is needed to evaluate the safe dose

limit from a large cohort.

2.4 General review orthe change-point problem

2.4.1 Introduction
The change-point problem in statistics has a long history. It was tirst

proposed by Page in 195473
• 75. 76 in a situation where a series ofobservations were

taken in order and the whole set ofobservations could be divided into subsets.

Each of the subsets could be regarded as a random sample from a common

distribution, which was different between the subsets. For example, here is the

simplest type ofchange-point problem: consider an ordered (by time or by

exposure level) sequence ofindependent observations XI' x2, ... , Xn with

distribution funetions FI' Fz, ••.. , Fn• If FI = Fz= ...= Fn, then the data is

homogenous, that is XI' xz, ••• , xn constitute a random sample from a fixed

distribution. However, suppose that for sorne integer 't (1<'t<n), XI' Xl' ... , ~ have

a common cumulative distribution function (c.d.f), F, while X t + l , ~-2' ... , Xu have

a c.d.f, G, then a change in distribution has taken place and 't is called the change

point. Statistical inference for the change-point problem usually inc1udes 1)

testing the null hypothesis Ho: F=G against Ha: F:;t:G or 2) testing Ho: t=to vs. Ha:

t:;t:'to and 3) point and interval estimators for 'ta

The change-point problem arises in various practical fields sueh as

epidemiology and toxicology. For example, Worsley74 has considered the

incidence of the birth defect Talipes in a region ofnorthem New Zealand for the

27



•

•

years of 1960 through 1976. He assumed that the number ofTalipes births each

year was binomial distributed with parameter Ilj(total number ofbirths for i-th

year) and Pi (the unknown probability of a Talipes birth). In 1965 the herbicide

245-T was tirst used in the region and he was interested to see whether this

coincided with an apparent increase in the incidence of such birth defect.

2.4.2 Inference for the change-point problem \vithout covariates
Suppose we have a sequence ofindependent continuous observations, XI'

X 2, ••• , Xn , obtained in order, and the hypothesis is:

Ho: there is no change-point of the mean response among them

Ha: there is a change-point

A test statistic as a function of cumulative SUffi, detined as

le _

Cie =L(xj -xn )

j:l

where k = the number of observations before the possible change-point, was

proposed. Basically, if there is no change-point, this cumulative sum should he

small, and the null hypothesis is rejected for large value of the test statistic

Hawkins77 developed a recursion formula to calculate percentage points for the

exact null distribution of the likelihood ratio test. His method was extended by

\Vorsley7S to yield percentage points in case ofunknown variance using the

Bonferroni inequalities. A highly accurate and easily computable approximation
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to its tail probabilities was also given by Worsley.79 To eliminate the nuisance

parameter, Worsley74,80 developed a conditional distribution for the cumsum test

and the likelihood ratio test and implemented bis techniques in both binomial and

Poisson cases. Siegmund81 also discussed tests to detect a change-point in the drift

of Brownian motion.

\Vhen the null hypothesis (Ho: no change-point) is rejected, one wishes to

estimate the change-point with ils confidence interval. An asymptotic distribution

of the ma.ximum likelihood estimator (MLE) for the change-point (L) was gjven

by Hinkley82.83 for the nonnal and binomial cases using the random walk

properties of the likelihood function. He pointed out that the MLE was not a

sufficient statistic for 't, even asymptotically. Therefore, he suggested estimating

its confidence interval based on the likelihood ratio (LR) test. Hinkley also

remarked that the MLE was not consistent because increasing the sample size n

gave 'negligible' infonnation except in the immediate neighbourhood of the true

't. More recently, Siegmund84 extended the method ofC.I. estimation based on LR

to the general exponential family.

One of the extensions of the simple change-point problem is regression

with a change-point or more commonly called multiphase linear regression. The

British coal mining dataS5 can be used to illustrate the importance of such an

extension. Assuming a single change-point in Poisson process without covariates,

the data has been analysed by Worsley80 using sampling theory and by
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Raftery&Akman86 and Carlins7 using Bayesian theory. The time ofsudden change

in the rate ofmining accident was estimated along with a tentative explanation in

tenns ofchanges in safety practices implemented around that time. Such

approaches, however, may suggest an abrupt change with exaggerated magnitude.

On the other hand, regression of the accident rate on time with a change-point

might lead one to attribute long run changes ofaccident rates to graduaI changes

in the coal mining industry.

2.4.3 Multiphase regression
To illustrate the multiphase regression modeI, consider the simple

regression of y against x in which the regression function, E[Ylx] = f(x;e), takes

di fferent fonns over intervaIs, i.e.

f(x;8) = i (2.1)

•

Here the D-l change-points and the D phase-models or regimes are unknown and

needed to be estimated. Here are sorne examples:

1. Esterbyand EI-shaarawi88 studied the relationship between pollen

concentration and the depth of a lake sediment core (Figure 3). A two-phase

polynomial \vith one unknown change-point model \Vas fitted ta the data. Since

there is an apparent discontinuity between the tirst 12 points and the remaining
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points, they did not impose the continuity assumption that the two curves meet at

the change-point. This discontinuity represented a fairly abrupt change in pollen

concentration.

2. Smith and Cook89 examined the rejection time ofkidneys following

renai transplants. They plotted the reciprocal ofserum-creatinine versus time

following surgery for one patient (Figure 4), and the change of the sIope from

positive to negative indicates rejection. Unlike the previous example, the graph

are rather continuous, reflecting a graduai rejection process, ,vhich is more

common in a biological system. To represent this, the continuity constraint at the

change-point 't, i.e. f('r;8.) = f('t;82) for sorne 't satisfying Xd~"t~Xd_.' is introduced

into the mode!. Furthermore, the assumption ofhigh-order derivative continuity at

the change-point 't, more commonly employed in spline regression,90 cao be

imposed representing a more smooth change. The same situation arose from the

field oftoxicology to fit a dose-response curve where the rate ofresponse varies

with dose. Usually it is reasonable to assume that there is a change-point (or

threshold) beyond which the rate of toxic response increases dramatically. Again

continuity constraints are made to account for the graduaI biologicaI responses. In

fact, this continuous multiphase regression method is used in this thesis to fit a

dose-response curve, which is doses of the short-acting MDI beta-2 agonists

(fenoteroi and saibutamoI) vs. the rate of fatal or near fatal asthma attacks.
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Consider again model 2.1, where ad is a vector with dimension Pd for the

d-th regime (d=I,2~ ...0). A continuity constraint is imposed al the change-point~

'td , so that

Moreover, to allow for a greater smoothness of the transition md-th order

derivative continuity at the change-point ('tJ cao also be imposed~which means

irf lê/x is continuous at 'td for s = 1, ... md but discontinuous for s = m\!+1. Now

\ve have p regression parameters, D-l change-point parameters, D-l continuity

constrains and mTsmoothing constrains. Thus the total number of 'free

parameters to be estimated' is p-mT, where

D D-l

P = ~ Pd and mT = ~ md

An important special case of this model is the 50 called 'two-line segment

problem', where

(2.2)

•
/

with continuity constraint ~IO+~I1't=~20+~21'tbut no smoothing (i.e. first derivative

discontinuity rnd=I=O). Here we have two phases (0=2) and one change-point \vith

a total of 4 'free parameters' ta be estimated (P=4 and mT=O).

Madel 2.2 was first studied by Sprenë l under the assumption ofidentical

independent nonnal error with var(s)=O. He derived the likelihood ratio statistics

for testing Ho: 't='to vs. Ha: 't#toand discussed its application in biometry. Ta
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estimate the unknown change-point 't, Hudson92 gave a concise method of

calculating the }east square estirnate 'ttsc, which is also the maximum likeIihood

estimate in the nonnai case. The distribution ofparameter estimates was first

studied by Hinkley.93.94 He round that asymptotic nonnal distributions for ~'s are

good approximations for moderate sample size, whereas the usuai nonnal

approximation for't tended to be poor. In fact he derived an alternative asymptotic

distribution of the MLE which gave better small sample properties. Feder95
•
96

gave a rigorous treatment for the more generai case (model 2.1). In his paper, in

addition to the nonnal error assumption, further conditions were also required:

• E[lef-s]<oo for sorne ô>O.

• The number of phases 0 must be known or in bis words the two adjacent regimes

must be 'identifiable' at the true S, "t.

• As n~oo, the number of observations falling into in each interval must aIse tend to

be infinity.

Under these conditions, Feder proved the consistency of the MLE for a and 't, and

aise derived their asymptotic distributions if aIl m/s are odd or O. In fact, the

MLE for ad' the regression parameters for d-th segment, has a multivariate normal

distribution \vith

where the design matrix Xo cao be obtained from aIl the data points within the d-

th interval. cr2 cao be estimated by 52(Smle' 'tm1e)/(n-p), where 52 is the residual SUffi
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ofsquares and p is the number ofufree parameters". For the special case (model

2.2) where D =2 and md= 0, using Feder's theorems95
, we can get, for d = 1,2

I3dl. mie - N(l3dl' ~/[l:j(XdrxJ2])

I3do. mie - N(PdO' ~l:jXi/[~l:j(XdrXd.)2])

COV(PdO. mJe , Pdl. mlJ = - nd.2/[l:j(xdr Xd.)2]

for j = 1 2 ... nd

"t' = (PlO. mle-f320. mle)/(P21. mie-Pli. mJe)

"t'mJc - N('r, cr2T)

var("t'mle) = a2T = (f321. mie-Pli. mler2{(var[Plo. m1e)+var[P20. mie])

+2Lmle(cOV[plO. mJe' 1311. mle]+COV[P20. mie' PZI. mie])

+tml/(var[Pll. mle]+var[1321. mIe])}

For confidence intervals for "t', both Hinkley94 and Feder96 recommended

the use of LR statistics. Suppose we have a null hypothesis, Ho: "t' = "t'a and e = 8 0,

It has q independent restrictions reducing parameter space to P-q, where P = p-mT

is the parameter space for model 2.2, then the likelihood ratio statistic is defined

as

LR = -2log {L(Go, Lo)/L(SmJc' "t'mIJ},

where (Smic' "t'mJJ are the MLE of (8, 't) and (So' LO) are the MLE of (S, L) subject to

restrictions imposed under the Ho. Feder proved that, asymptotically under the

null hypothesis, that

LR- X:q
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Several conditions are required 1) aIl m/s must be odd or 0, 2) E[IEJ:!-O]<oo for

sorne 8>0 but need not ta be nonnal, and 3) the parameters of the model must

remain 'identifiable' under Ho. These restrictions role out one very important

hypothesis: no change-point under the null. Under such a hypothesis, the

intersection between two phases becomes unidentifiahle. So far theoretical

inferences for 9, 't in model 2.1 or even model 2.2 for non-nonnal error term, say

binomial or Poisson have not been worked out, although Bayesian solutions are

availables7.

Statistical inference for the change-point can be made numerically.

Stasinopoulos97
•
98 wrote a macro in GLIM99 to calculate the MLE's for 9 and't for

piecewise polynomials with one change-point by maximizing the profile log

likelihood function. Suppose for a given 'ta, the corresponding log likelihood

function is /(to), which could subsequently be maximized over B. The MLE for

the change-point 't is the value which gives the maximum ofthese l's (or the so­

called 'profile log likelihood function ') and the corresponding 9 m1r is the MLE for

8. For a continuous change-point parameter, the macro tirst locates the interval

where the maximum of the profile likelihood function lies through a rough search

and then use a Golden Section Search100 to get the maximum point. The Golden

Section Search is efficient in one dimension, which is the case for one change­

point situation. The method has been applied by UlmI01 and Stasinopoulos102 ta

Poisson and binomial data from several epidemiologic studies. To estimate the
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confidence interval for Tt Ulm lOI applied the Bootstrap resampling technique l03 to

the change-point data and showed its percentile interval perfonned weIl in the

simulation.

2.4.4 Other approaches
The method of deriving Bayesian type change-point test statistics to detect

the location change at an unknown point was fmt introduced by Chemoff &

Zacks IO-J and subsequently studied by Garder, lOS MacNeill,106 Sen &

Srivastava,107 and Jandhyala & McaNeill. 108 Bayesian analysis in multiphase

regression was studied by Bacon & Watts, 109 Ferreira, 110 Chin Choy &

Broemeling, III Smith & Cook89 Moen112 and Jandhyala & MacNeill. 113 In

general, using bath non-informative and infonnative priors for parameters 't and e,

the marginal posterior probabilities of the change point at various possible points,

1~"t~n, were derived. However, such an approach usually involves considerable

analytical effort. Carlin et al87 investigated the hierarchical Bayesian analysis

llsing a Gibbs samplerll-J avoiding sophisticated high dimensional integration of

the posterior joint distribution. The procedure was then applied to regressions,

Poisson processes and Markov chains with change-points at unknown points.

Bayesian analysis is also proved to be useful in the 'unidentifiable situation',

where the null hypothesis is 'no change-point' .87

Non-parametric inference for the change-point problem was generally

based on the rank statistics. It was first studied by Pettitt l16 who suggested a
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version of Mann-Whitney statistics with its application to binary as weIl as

continuous observations. More general cases were studied by Lambard 117 and

Sen. 118 Wolfe & Schechtman119 made a small-sample power comparisons

between various statistics based on the rank tes~ which were reviewed by

Lambard. 120 In the context of regression, non-parametric response curve or

surface can be fitted using smoothing spline techniques l21 such as kemel

smoothers \Vith the point connecting the t\vo segments referred as a knot.
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3. Methods

3.1 Asthmatic cohort from Saskatche\van Asthma
Epidemiology Project (SAEP)

3.1.1 General description
The computerized files of the Saskatchewan Prescription Drug hold over

20 million prescriptions for drugs listed in the Saskatchewan formulary that had

been dispensed to its eligible residents bet\Veen ages of 5-54. This large database

includes 68,813 sllbjects who had at least one prescription ofcommonly llsed

asthma medication from 1980 to 1987. These drugs are fenoterol, salbutamol,

metaprotetrenoI, terbutaline, any compound oftheophylline, ipratropium bromide,

cromolyn, and inhaled bec1omethasone. From this geographically defined cohort,

a subset of 12,301 patients \vho had at least 10 prescriptions over the 10 years

from 1978 to 1987 were selected. The entry date for this cohort was defined as the

date of the sllbject's 1ath dispensed prescription, the subjects 5th birthday, or Jan. 1,

1980, which ever \Vas the latest. The exit date from the cohort \Vas the sllbject's

55th birthday, the date of the outcome (asthma death or near death) or April 30

1987, whichever \Vas the earliest. As a reslllt, the total follo\v-up time for the

entire cohort is 574,103 person-months (or 47,849 person-years). Foreach month

of every patient's foIIow-up time, infonnation on the use of the two beta-agonists,

fenoterol and salbutamoI, in the previous one year (our main exposure of interest

defined in section 3.1.3) is recorded. In addition, in the same month, hislher main

outcome status (defined in the next section) is aIso available in this cohort
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3.1.2 The main outcome
The primary outcome we are interested in is the combined outcome of

asthma death and near-fatal attacks during the 10-year study period. If a subject

who died ofasthma had a' previous near-fatal asthma attack, then death was

chosen as the outcome. If a patient experienced several near-fatal asthma attacks,

then the very tirst episode was cOUDted as the outcome. This detinition of the end-

point in case ofrepeated episodes is inconsistent, and is one of the problems in

this cohort data set. Ideally, the very first near-fatal asthma attack should be

defined as the end-point for patients with multiple episodes. From this cohort,

there are 180 deaths identified through death certificates, coroner's reports,

autopsy results and hospital discharge summaries. Three physicians with special

expertise in asthma reviewed aIl the information for 165 deaths and no documents

could be found for the remaining 15 deaths. 44 deaths were categorized as

probably due to asthma, among which 40 deaths received complete agreement

independently in their classification. The remaining 4 were c1assified by

consensus. The criteria for near-fatal asthma attack are either hypercarbia, or non-

elective intubation during an acute asthma attack. To identify such near-fatal

asthma, cohort infonnation on procedures and billings corresponding to

cardiopulmonary resuscitation, airway intubation, or assisted ventilation in the

hospitalized patients, whose discharged diagnosis suggested airway disease, were

searched from the database. Based on this information, the three consultants

reached complete agreements independently on 80 cases ofnear-fatal asthma and
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5 cases by consensus. Therefore, the entire asthmatic cohort contains a total of

129 cases of asthma death or near death from 1980 to 1987.

3.1.3 The main drug exposure
The main drug exposure we are interested in is chronic use of inhaled

fenoterol and salbutamol delivered by a metered-dose inhaler (MDI). To evaluate

such drug exposur~ for a given patient the total number of canisters of fenoterol or

salbutamol dispensed in the previous one year was computed for each of his/her

follow-up months. The one-year exposure window also controlled for the seasonal

variation in the use ofthese anti-asthmatic drugs. Such a definition of drug

exposure provides an average dose profile dispensed monthly in one year. This

definition is limited, however, in that it assumes the same outcome risk for the

patients with the same average drug exposure leveI. This may not, however, be

truc, since they May have different drug use patterns in the one-year exposure

window and their risk of fatal or near fatal asthma attack may not be the same l15
•

Under this definition ofdrug exposure, wc redistributed the total number of

person-months and outcome cases in the entire cohort into each observed dose

level and use it as the working data set for our cohort analysis.

3.2 Statistical inference

3.2.1 Model
First, the simple two-line regression model (modeI2.2) is chosen to fit the

dose response curve. The response is the rate of fatal or near fatal asthma attack,

and the dose level is measured by the total number of MDI canisters ofboth
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feooteroi and saibutamoi dispensed in the previous year. One change-point among

the observed dose levels is assumed to reflect the hypothesis that excessive use of

these medications is associated with a marked increase in fatal or near fatal

asthma attack rate. Moreover, the continuity constraint (Le. the two regression

lines meet at the change point) is imposed to reflect a graduai continuous rate

increase at the change-point. Since we modei the rate here, Poisson regression is

used. From model 2.2, we have

g(E[rateïldoseJ) = ~ (3.1)

•

with continuity constraint PIO+PII"P1320+P21 't and no smoothing (i.e. first derivative

discontinuity at the change-point), where ratei is the rate of fatal or near fatal

asthma attack at i-th dose level, 't is the change-point, and g is the link function

equal ta identity or log link. Cambining the two equations afmodel 3.1 into one,

we get

where

1= {
ootherwise

from this model, we have

and

g(E[rateJdoseiJ} = (P,o+(P,,-P21)t)+P2,dose j
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before and after the change-point respectively. The two lines meet at the change­

point with total of 4 ~free unknown parameters' to be estimated, 1310' Pli' 1321 and 'te

For a given change-point 't', model 3.2 is fitted with identity link in the following

way: from model 3.2, we have

therefore

E[rateal = E[events/p-~]

= PlO+J311{dosej-{dosej-'t')n+P21(dosei-'t')I (3.3)

E[eventsJ = Plo{P-MJ+Pll(dosej-(dosej-'t')D(P-MJ

+1321(dosej-'t')I(P-MJ (3.4)

where eventsiis the total number of fatal or near fatal asthma attack at i-th dose

level, and P-Mj is the total person-months of follow-up at that level. Assuming

events j - Poisson distribution with

À. = Plo(P-MJ+Pll{dosei-(dosej-'t')I)(P-MJ+P21(dosei-'t')n(P-MJ,

model 3.4 is fitted by using SAS 6.12 PRoe GENMOD procedure with identity

Iink, Poisson error and no intercepte

Secondly, to model a dose-response curve assuming an exponential

structure, ordinary Poisson regression \vith ils canonicallog link is aiso fitted to

the data. To do 50, we have

•

log(E[events/P-MJ) = 1310+1311(dose j)

and therefore

log(E[eventsJ = Pla+1311 (doseJ+log(p-Mj)

similarly assuming eventsj- Poisson distribution with

(3.5)

(3.6)
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• model 3.6 is fitted by Poisson regression with log link and log(P-MJ being an

offset variable.

Both the change-point model with identity link (model 3.4) and the log-

linear model (modeI3.6) are used to model the dose-response curve where the

absolute outcome risk increases rapidly at high dose levels. However, the two can

not be used together to model such a dose-response structure. In other words, the

change-point model with log link can be used in a situation \vhere there is a rapid

increase in relative risk (as opposed ta absolute risk) beyond a certain dose level.

This is not the case in our study and ta demonstrate this, such a model is also

fitted. Again from model 3.2, we have

(3.7)

which equals ta

(3.8)

•
,/

3.2.2 lVlaximum Iikelihood estimation for Land f3's
Ta fit a change-point dose-response model, the maximum likelihood

estimate for the change-point is obtained by maximizing the profile likelihood in

L. For each fixed value of the change-point 1:, the pparamelers in model 3.2 and

model3.4 are estimated by the maximum likelihood method. They are then

substituted into the likelihood. The resulting function of 1: is called the profile
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likelihood for "t, which can be plotted. Because of the chronic one-year exposure

window and one canister increment bet\veen aImost aIl the observed doses,

especially at the range where the change-point is more likely to occur, it is

reasonable to assume the change-point could only occur at one observed dose

level. Therefore, the Golden Section Linear Search, which is usefuI to search for a

change-point lying somewhere between the two adjacent observed dose levels, is

not used here. Furthennore, the range ofpossible change-points is restricted

bet\veen 2 to 72 canisters per year in which the change-point is believed to occur.

The MLE for the change-point ("t) is the dose level among this range which gives

the highest value of log likelihood. And at this dose level, the corresponding fitted

change-point model Cmodel 3.4 or model 3.8) gives the MLEs for ps.

3.2.3 Confidence interval estimation for the change-point in
model3.4

Consider the null hypothesis: Ho "t=-to, for the change-point parameter. The

corresponding likelihood ratio test is:

where L(.) is the likelihood function. Using the theorem given by Feder96

~ .,
Â obs - X-I

and the rejection region is À-obs>X\a , which is equivalent to

where IC.) is the log likelihood function. Thus the null hypothesis is not rejected if

the log likelihood value under the null is not more than O.5X2
1.a units less than the

maximum log likelihood value at "tMLE• Therefore, the values of 'to that satisfy this
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requirement are a (l-a)% likelihood ratio test-based confidence interval for 'to
122 It

ean be easily obtained from the corresponding profile log likelihood plot.

The bootstrap resampling technique was also used to construet confidence

intervals for the change-point. Usually for the non-parametric bootstrap, one

bootstrap sample is obtained by sampling with replacement from the original

observed data. From this bootstrap sample, we would need to redistribute the total

number ofperson-months and outcome cases into each dose level, and both of

them are assumed random at each dose level. However, such resampling is very

slow, sinee we have to resample 574,103 person-months from the original entire

cohort to get one bootstrap replicate.

To overcome this problem, an alternative sampling approach is taken

assuming that the person-months at each observed dose level are fixed rather than

random. It is a reasonable assumption in the sense that the higher the dose level is,

the fewer person-months are at that level. Under such an assumption, a bootstrap

sample is obtained by sampling with replacement from the person-months at eaeh

observed dose level rather from the entire cohort. Since the only random quantity

we need to knO\V is the number ofoutcome cases at each observed dose level, this

tums out to be a very simple process, which is equivalent to generating a binomial

randorn variable Xi' satisfying

x j - Bin( Iltobs' Pi,ObJ i=I,2, .. " D

where ni,obs and Pi,obs are the observed number ofperson-months and outcome risk

respectively at the i-th dose level, and D is the maximum observed dose level.
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Therefore, to get one non-parametric bootstrap sample, D observations

\Vere generated. Each observation has Dt. obs and Xi' where l1t obs is the number 0 f

observed person-months at i-th dose level and Xi is the number of outcome cases

generated at that dose level by the binomial distribution described above. This

bootstrap replication is then fitted by model3.4 to get one bootstrap estimate of

the change-point.

In addition, a parametric bootstrap is also done. By fitting model3.4 to the

observed data with the change-point equal to its MLE, the predicted outcome risk

at each observed dose level, Pi. pred' is obtained. Instead of using Pi.obs' Pi. pred is used

as PI to generate the binomial variable Xi to give a parametric bootstrap sampie.

For each type ofbootstrap sampling, 1500 samples are generated from which the

95-percentile confidence interval is obtained.

Finally, as a comparison, confidence intervals based on nonnai

approximation of the bootstrap estimates are also given.

3.2.4 Simulation
To assess the performance ofpoint and interval estimation for the change-

point in model 3.4 using profile likelihood and bootstrap methods respectively, a

simulation study is done. To get one simulated change-point data set, D binomial

observations are generated each representing the number ofcases, XI' at i-th dose

level, i.e.

Xi - Bin (rlt.simu, Pi.sim.J, i=I,2, ... , D

where D is the maximum observed dose IeveI in the cohort.
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First, the binomial parameter Pi. simu at i-th dose level is detennined by the

following the change-point model:

we assume:

Pi.Simu={ (3.9)

•
/

1) before the change point, a constant rate of4 fatal or near fatal asthma attacks per

10,000 astlunatics per year with a rate difference equal ta aor an odds ratio equal

to 1 (i.e. PlO=O.0004 and ~II=O) for any excessive use of the drugs,

2) after the change-point, a sudden increase ofrate difference to 8 per IOtOOO

asthmatics per year for every additional canister expensed per month, which gives

an odds ratio of3 for the very first monthly additional canister immediately after

the change-point (i.e. ~21=O.0008),

3) and the change-point is assumed ta be at the IvlLE of the change-point estimated

from model3.4 using the profile likelihood method (the best guess for the change­

point),

Thus we have PIl=O, ~21=8XIO~, 131O=4XIO~ and 1320can be calculated

using the continuity constraint, which is

PIO+PII 'tm1c = P20+P21 'tmle

Secondly, the binomial parameter ~. simu is large enough in order to get at

least 5 cases at each dose level so that the simulated sample size is optimal for our
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methods used for inference of the change-point. The way to do it is ta let I\. simu

equals to round (5/Pi. simJ.

Therefore, one simulated change-point data set has D observations (or 0

dose levels) each with ~. simu' Xi. simu representing the total number of person­

months and cases at i-th dose level.

100 such simulated change-point data sets are generated and subsequently

fitted by model 3.4. The bias and variance of the MLE for the change-point (t'mIe)

obtained by the profile likelihood method is assessed from the distribution 0 f the

100 t'mIes

Usually in practice, the non-parametric bootstrap method is used because

it only relies on the empirical distribution of observed data. Therefore, to evaluate

ilS 95-percentile interval estimation for the change-point in model 3.4 in ideal

sample size situation, a simulated data set is randomly generated by the structure

described above with seed=10 in SAS. 1500 non-parametric bootstrap samples

were obtained from the simulated data set ta construct the 95-percentile interval

for the change-point.
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4. Results

4.1 General description:
From this asthmatic cohort, there is a total of47,842 person-years of

follow-up for the 12,301 patients, in which 44 asthma deaths and 85 near asthma

occurred. The overall crude rate of fatal or near fatal asthma attacks (the main

outcome of interest) for tbis cohort is 2.70 per 1,000 asthmatics per year.

Table 1 shows the frequency distribution ofmain outcome and follow-up

lime by ordinal classification of the short-acting MDI beta-2 agonists. The

corresponding observed outcome rates at each grouped dose level are aiso given.

The observed dose-response plot (Figure 5) shows a clearly increasing trend,

graduaI at Iower dose levels and more dramatic Iater on, particularly starting from

20 canisters per year. This dose-response pattern is supported by previous review

of asthma medications. It was believed that the short-acting MDI beta-2 agonists,

in this case fenoteroi and saibutamol, are relatively safe with potentiai beneficial

effects for asthma \vhen used at recommended dose levels but the risk ofasthma

mortality increases when used excessively.

4.2 Point estimation of the change-point:
The asthmatic cohort was fitted by three modeIs, the change-point modei

\Vith identity Iink (model 3.4), the log-linear model (model 3.6), and the change-

point modei \Vith log link (modei 3.8). Table 2 gives the parameter estimates for

each of these 3 models.
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First, for modeI3.4, the profile log likelihood plot for the change-point

obtained is shown in Figure 6. Between 2 canisters/year and 72 canisters/year, the

searching limits where the change-point is believed to exist, the model \vith the

change-point at 21 canisters/year has the highest value of the log likelihood.

Additional restriction was imposed by assuming a constant rate of fatal asthma

attack CP ••=0) before the change-point. This model resulted in no change-point

arnong the searching range shown in Figure 7, where the maximum profile log­

likelihood is obtained at the lower limit.

Aiso from model 3.4, the maximum likelihood estimates of the excessive

rates before (PlI) and after (Pl.) the change-point \Vere obtained with the change­

point being at 21 canisters per year (the MLE for the change-point). From this

model, the predicted dose-response curve, i.e. the predicted rate of fatal or near

fatal asthma attack at each drug exposure level, is shown in Figure 8. Here the

base-line rate is 2.4 (0.21-4.7) per 10,000 asthmatics per year. Before the change­

point, there is a significant excessive rate (1311) of3.7 (2.7-4.7) per 1,000

asthmatics per year for each additional canister of the drug dispensed monthly.

After the change-point, the excessive rate (1311) increases to 7.0 (3.5-10.4) per

1,000 asthmatics per year, nearly double that before the change-point.

Secondly, instead ofusing a change-point structure to model a dose­

response structure in which the response rate increases slowly at lower doses

followed by a drarnatic jump at higher dose levels, the ordinary log-linear Poisson

regression model (modeI3.6) without change-point was also used. However, the
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two have difTerent assumptions. The change-point model assumes outcome rates

increase linearly with two different slopes, whereas the log-linear model assumes

an exponentially increasing rate structure. As a rough method ofcomparing the

fitness of the two models, the scaled deviance of the two models is compared. The

scaled deviance is defined as

deviance/~

where <1> is the scale parameter, which is fixed at 1 in both models because of the

assumption of Poisson error, and the deviance is tlze value ofthe likelihood ratio

test statistics for the fitted model compared la the satllrated model. That is

deviance = -2Iog{L(fitted model)!L(saturated model)}

The scaled deviance is helpful in assessing the goodness of fit of a given model.

In our case, the log-linear model has larger a scaled deviance compared to that

from the change-point modei sho\vn in Table 2. This suggests that the change­

point model explains the data better, aithough with one extra parameter for the

change-point. AIso, the log-linear model can not provide infonnation on the

maximum safe dose limit because it assumes a smooth increasing dose-response

structure.

ThirdIy, from model 3.8, the change-point model with log link, the profile

log likelihood plot for the change-point is given in Figure 9, where the maximum

peak is at 13 canisters/year. However, at tbis dose level the model shows that the

relative risk (exp(J3l1» is 4.9 (3.7-6.6) before the change-point and reduces to 1.3

(1.1-1.5) after. The reason for such a model to pick up quite a different change-
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point, after which the RR is decreasing, is because it assumes a change-point in

relative risks (by using the log transfonnation) rather than excessive risks. From

the seatter plot of log transfonned observed outeome rate vs. dose level (Figure

10), we ean see that the relative risk (Le. the slope of the smoothing line)

decreases slightly rather than increases after the change-point. In fact, natural

logarithm transfonns a gradual-then-rapid inereasing response rate pattern ta a

straight linear one. Thus, model 3.8 with the log link masks the possible change­

point on the real scaIe, which results in picking up a different change-point, which

is not the one we are interested in.

Since only model 3.4, the change-point model with identity link, can

provide the maximum safe dose limit we are looking for, we focused our analysis

mainly on this mode!.

The bias and variance of the MLE for the change-point in model 3.4

obtained by the profile likeIihood method were evaluated in the simulation study.

Simulated change-point data were generated according to the dose-response

structure described in the simulation section 3.2.4 asswning the true change-point

being at 21 canisters/year (i.e. the MLE for 't from the observed data). The scatter

plot of one randomly simulated data set is shawn in FigureIl.

As an example, the change-point model \Vith identity link (model 3.4) was

fitted ta one simulated data set using seed=lO in SAS. The resulting profile

likelihood plot is shawn in Figure 12, which gives the MLE for change-point at

23 canisterslyear. Again as a comparison, the same data was also fitted by model
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3.8, the change-point model with log link. The corresponding profile likelihood

plot (Figure 12) has the peak at 71 canisterslyear, taken as the MLE for the

change-point, much larger than the true change-point, 21 canisters/year. T0 see

the effect of the transformation, Figure 13 shows the scatter plot of log

transformed rate vs. dose level. Again it shows that after such transformation the

true underlying change-point rate structure on the real scale is masked, resulting

in a change-point quite different from the true one.

100 such change-point data were simulated. Each ofthem \Vas then fitted

by model 3.4 ta give the distribution of the 100 MLEs for the change-point. The

profile log likelihood plot is based on 71 data points, each corresponding to one

likelihood value at one possible change-point from the range of2 to 72

canisters/year (our searching range). However, since the identity link was used, at

sorne possible change-points, model 3.4 could not be fitted due to the expected

number of events being negative. ln fact, for sorne simulated data, model 3.4

could not he fitted at more than 14 possible change-points. The corresponding

profile likelihood plot had an irregular shape with many discontinuities due ta

more than 20% missing data points (14/71). Since the resulting MLE for the

change-point was unreliable, such simulated data was then discarded. Therefore a

selection criterion was made 50 that a profile likelihood plot obtained from a

simulated data has ta be based on at least 57 (71-14) data-points, i.e. it should not

have more than 20% ofdata points missing. Among the 100 simulated data, 93

met the selection criteria when fitted by modeI3.4. The distribution ofthese 93

rvtLEs for the change-point is shawn in Figure 14, which has a range of 16-33
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canisterslyear with unsymmetrical shape slightly skewed to the left. It has a small

standard deviation (STD=2.2) and both its mode and Mean are at 21

canisters/year, equal to the true value of the change-point. This suggests that bath

bias and variance of the estimated change-point by the profile likelihood method

are low.

4.3 Confidence interval estimation for the cbange-point
in model 3.4:

Table 3 gives the distribution ofboth parametric and non-parametric

bootstrap estimates of the change-point in model3.4 and the corresponding 95-

percentile intervals.

Arnong the 1500 non-parametric bootstrap samples, 1492 of them were

used according to the selection criterion when fitted by model 3.4. The

distribution of the MLEs for the change-point from these bootstrap samples is

shawn in Figure 15 \Vith mean and median 25.3 and 22 respectively. It has a wide

standard deviation (s.d. = 17.5) and is skewed ta the left with nearly 25% falling

belo\v 10 canisterslyear. The 95% percentile confidence interval based on this

distribution is (2, 64). As a comparison, the confidence interval based on the

nonnaI approximation for the bootstrap estimates is (-9, 60). However, due to the

fact that the change-point must he positive, the normal-theory based confidence

interval has to be truncated to (0, 60).

Using the parametric bootstrap approach, 1485 bootstrap samples, when

fitted to modeI3.4, met the selection criterion. The distribution of the MLEs for

the change-point from these bootstrap sampIes is shown in Figure 16, which is
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less skewed to the left compared to that from the non-parametric approach. It also

has a large standard deviation (s.d. = 17.7), which gives a wider bootstrap 95­

percentile interval, (2, 71). And the corresponding truncated confidence interval

based on normal approximation is (0, 60).

From the profile log likelihood plot (Figure 7), the difference between

l("t~ILJ and l(Li)' i.e. l('tMLJ-I('tJ = log(L(t~fLJ!L(LJ), is smaller than O.5Z:! L 0.05 =

1.92, for ail i= 2, 3, ... , 72. This indicates that the likelihood ratio test-based

confidence interval contains the restricted interval (2, 72), the searching range.

Therefore, the truncated confidence interval based on likelihood ratio test is (2,

72).

Finally, the non-parametric bootstrap 95-percentile interval estimation of

the change-point in model 3.4 \Vas evaluated. 1500 non-parametric bootstrap

samples \Vere generated from one simulated data \Vith 21 canisters/year being the

true change-point (seed=10 in SAS). Only 1371 ofthem \\'ere selected according

ta the missing value criterion, and the distribution ofthese bootstrap estimates of

the change-point is shawn in Figures 17. The 95-percentile confidence interval is

(17, 26). The parameter estimates of the change point and the ps for this simulated

data are given Table 4.
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s. Conclusion

5.1 Discussion
Beta-2 agonists are by far the most usefui bronchodilators for treating

asthma, and are most effective when inhaled. 123 During the 70's and 80's, MDI-

generated salbutamol and fenoteroi had been the t\vo most commonly used short­

acting beta-2 agonists for rapid symptomatic relief. When inhaled at

recommended dosages, these agents have very fe\v side effects.

However, since the New ZeaIand asthma epidemic in mid 19705, concerns

\Vere raised about the use ofexcessive doses ofthese short acting inhaled beta-2

agonists, especially fenoteroi. Three case control studies found that high doses of

fenoteroi \Vere associated with increased risks of death from asthma. Similar

results \Vere aiso found in Canada70.71 from SAEP when in\'estigating the

association ofexcessive use of inhaied beta-2 agonists and increased rate of fatal

or near fatal asthma attack. The dose-response curve using the combined doses of

MDI fenoteroI and salbutamoI clearly demonstrated that the excessive rate of fatal

asthma attack increased dramatically at high Ievels, especially when more than

one canister was used per month.

In this thesis, we used the Saskatchewan asthmatic cohort to fit a change­

point dose-response modeI using identity Iink. The ~ILE for the change-point

parameter is al 21 canister/year (on average approximately equais to 1.8 canisters

per month), beyond which the excessive rate of fatal astluna attack is almost

doubled. However the maximum recommended dose for fenoteroi in MDI is two
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puffs (400ug) for up to 4 times a day.124 For a MDI canister containing 200 puffs,

this recommended dose limit is equivalent to 1.2 canisters of fenoterol

(200ug/puff) per month. The estimated change-point is 50% larger. There are

several possible explanations for this:

1) In our analysis, fenoteroi and salbutamol were combined without taking into

account the dose difference between the t\VO MDI-generated beta-2 agonists. It

has been shawn on an equai weight basis, fenoteroi could be considered to be

equivalent ta saibutamoi in both its bronchodilator effect and cardiac side effects.

Most patients are advised to take two puffs oftheir MDI-generated beta-2 agonists

at a time for asthma control or symptom relief. However, one puff of fenoterol

contains 200ug active substance whereas one puffofsaibutamoi delivers only

100ug. This dose difference is the most plausible explanation for why, gi\"en in

the same number of puffs, fenoterol in general has more prolonged

bronchodilating effects as weil as more profound cardiac side effects compared to

salbutamo1.125 However, in the analysis, canisters of fenoteroi and salbutamoi

combined were considered to represent 2 canisters of MDI-generated beta-2

agonists, rather than 1.5 canisters of fenoteroi (in other \vords, one canister of

combined beta-2 agonists should equal to 0.75 canister in fenoteroI). Thus after

such unit change, 1.8 canisters ofcombined beta-2 agonists is equivaient to 1.35

(1.8xO.75) canisters of fenoteroI, slightIy but stilliarger than the recommended

dose level for fenoterol.

57



•

•

2) The maximum recommended dose fOf fenoterol was obtained under well­

controlled experimental conditions where the adverse outcome ofinterest could

not he life threatening and drug overdose was unlikely to occur. However, in this

retrospective cohort analysis, the outcome of interest is a fatal or near fatal asthma

attack. Such severe rare events can be investigated with the large observational

data where drug-overdosing events are likely to OCCUf. Since the adverse

outcomes are different, one being more severe than the other, the estimated

change-point where the rate of fatal or near fatal asthrna attack increases

dramatically should and must he larger than the maximum recommended dose

Ievel.

3) Due to the limitations ofour cohort data, other risk factors, markers for asthma

severity in particular, were not controlled in our change-point model. Excessive

use ofthese medications is very likely to be associated with patient's asthma

severity. Their confounding effects may change the estimated location of the

change-point. However, in fulure studies, it would be interesting to examine

whether their confounding effects only affect the magnitudes ofrate differences

before and after the change-point or the location ofchange-point itself.

The relationship between the rate of fatal or near fatal asthma attack and

excessive use ofMDI-generated beta-2 agonists Can be modelIed in h\'o ways:

either by a change-point structure (model 3.4), Of by an exponential structure

without a change-point (modeI3.6). Both structures can represent a dose-response

relationship with slow increase at lower doses followed by a dramatic increase at

higher dose levels. The simple log-linear model (modeI3.6) can only provide the
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single relative risk estimation. On the other hand, the change-point parameter and

the excessive rates before and after the change-point estimated from model 3.4

even without controlling possible confounders still provide clinical useful

infonnation with respect to the safe use of MDI-generated beta-2 agonists. A

model \Vith a quadratic or higher tenns could also be used ta model such a dose­

response curve. However such a model can not provide information on the safe

dose limit for these medications.

From the change-point model (modeI3.4), the excessive risk of fatal

asthma attack increases almost two-fold if the monthly use ofbeta-2 agonists is

over 1.8 canisters. Even though the parameter estimates can be confounded by

other risk factors, the assumption ofa change-point existing for the excessive rate

of fatal asthrna attacks seems to be reasonable based on the follo\ving account.

Due to direct stimulation ofcardiac beta-2 receptors, tachycardia was observed

with higher doses of fenoterol and salbutamol. 126 Furthermore, an increased

incidence ofcardiac dysrhythmias had occurred at higher doses ofbeta-2 agonists

administered by nebulizer. 127 Furthennore, excessive use ofthese medications is

an indication ofchronic use. It could lead to receptor desensitization,128.129 \vhich

in tum, could develop tolerance to the bronchodilating effect in asthmatic

subjects.130.131 Finally, chronic use ofbeta-2 agonists could cause deterioration in

asthma by allowing more allergen to he deposited in the airway and by inhibiting

the mast cells' anti-inflammatory effects.57
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One interesting thing to notice from the previous section is that to model

such a dose-response structure with a change-point, the identity link should be

used instead of the canonical log link for Poisson distribution. Otherwise, the

underlying dose-response relationship is completely transfonned on the log scale

and the resulting change-point is not the one we are interested. Thus, such two­

phase regression model can only be applied in cohort study where the absolute

risk or rate can be directly modelled by Poisson regression with identity link

whereas in case control study logit is the only link available ta model the odds.

The maximum likelihood estimate for the change-point in model 3.4 was

obtained by maximizing the profile likelihood. The simulation study shows that

for 93 simulated change-point data, the corresponding maximum profile

likelihood estimates are distributed with relatively small variation around its

mode, equal to the value of the true underlying change-point. This suggests that

the profile likelihood method is reliable in providing the point estimate of the

change-point. !ts slightly unsymmetrical shape, skewed to the left, may be likely

due ta the small sample size (n=93). However, our ability ta use larger samples

was limited by the time-consuming nature of the simulation. Further simulation

studies can be performed to investigate the confounding effects ofother risk

factors, especially the severity ofasthma and the use ofother asthma Medications.

Ta do so, data can be simulated according ta a structure where there are constant

excessive rates (i.e. the constant slopes) for these factors, and a change-point for

the excessive rate associated with the drug exposure. Such simulated data cao
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then be fitted model3.4 with and without these covariates to evaluate their

confounding effects.

One major drawback of the change-point model using the identity link

(model 3.4) is that at certain possible change-points, model 3.4 can not be fitted.

For a given change-point, using the identity link may give negative predicted

numbers of events from the linear predictor during one iteration of the re­

weighted least square procedure. Since positive predicted mean values are

required for Poisson error, the iteration process stopped at that cycle and the

model could not be fitted at this change-point. As a result, it led to a non-smooth

discontinuous profile likelihood plot. In fact, for sorne simulated data, the model

could not be fitted at more than 20% of aIl possible change-points, resulting in a

profile likelihood plot \Vith many ofdiscontinuities, which could not be used.

Thus it may give a biased result, since not a11 the simulated data were used. To

overcome such problem, a SAS macro can be wriuen to prevent a negative

predicted mean value within each iteration.

The 95-percentile intervals for the change-point in model3.4 based on

bootstrap method are consistent with those based on nonnal approximation and

likelihood ratio (LR) test. Ali of the intervals have a wide range, which is very

close to the searching limits (2-72 canisters/year) where the change-point is

believed to lie. However, both the normal approximation and the LR test based

methods require asymptotic nonnality, and theyare not subjected to the searching

limits, resulting in truncated intervals. Furthennore, more precise bootstrap

intervals such as Bea and ABC methods could be tried in future studies.
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In general, when the bootstrap samples are generated according to a

specified parametric structure rather than the empirical distribution, the

distribution of the bootstrap estimates is more symmetric and less skewed. This is

the case shown in our results (see Figure 15 and 16). However, the percentile

interval based on parametric bootstrap samples is wider. There are more

parametric bootstrap samples that could not be fitted properly than the non­

parametric ones. This may be either due to chance or due to a greater possibility

of having negative predicted Mean values when fitting a more structured

parametric model. According to our selection criterion, these samples were not

used in constructing the corresponding percentile intervals.

Even though the bootstrap method gives a better confidence interval, it

still has a \Vide range very close to the searching limits. This is most likely due to

the smaII number ofcases especially al the higher dose levels. In fact based on

one simulated data, it has shown that if the number of cases al each dose level is at

least 5, for the change-point in model 3.4 the non-pararnetric bootstrap method

gave a pretty narrower percentile interval (17-25 canisters/year) containing the

true change-point (21 canisterslyear). In future studies, the same simulation can be

done for a large number ofsimulated data, say 100, to see the proportion ofthese

percentile intervals, each obtained based on 1000 bootstrap replications,

containing the true change-point. Such a computing intensive simulation study

will evaluate the coverage property of the percentile interval for the change-point,

and require a more efficient program \vritten in a more flexible language such as

S-plus or C. Finally, other methods based on the Bayesian approach on a
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modification of the ~inverted likelihood ratio' confidence intervals suggested by

Worsley80 eould be tried, and might give useful results.

5.2 Conclusion
The change-point problem in statistics has existed for more than 40 years,

and has been found in various areas ofstatistics. One of the interesting

applications of the change-point problem is in linear regression \\'here a change in

p parameter for a given covariate occurs at an unknown point. The problem has

been studied extensively since the 19505. Unfortunately, because of the

discontinuity and stochastic nature of the likelihood function, inference on the

change-point parameter is complicated and hinders its application in reallife.

However, numerical methods using the profile likelihood and the bootstrap make

such a new modelling approach readily applicable to interesting problems

encountered in epidemiologic studies.

Premarketing dosing studies have limitations in size, time, money and

more importantly, ethics. Therefore, information on effective drug dose with

minimum adverse risk can not be adequately addressed in clinical trials. Post­

marketing pharmacoepidemiologic studies, relatively free ofthese limitations, can

provide this additional infonnation which is crucial to the public health. Asthma

is a common disease in developed countries and the most widely used

medications for fast symptom relief are short-acting MDI beta-2 agonists.

However, epidemiologic evidence suggested that excessive use of such

medications might cause a severe adverse effeet, i.e. asthma death or near death.
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This provides a typical situation where a post-marketing epidemiologic study

using a large-scale cohort is required to establish the safe dose limite

Using the Saskatchewan asthmatic cohort database, a dose-response curve

for short-acting MDI beta-2 agonists (fenoterol and salbutamol) was fitted

assuming a change-point beyond which the excessive rate of fatal or near fatal

asthma attack increases much faster. Compared to the log-linear model, the t\\'o­

phase regression model with identity link gives a better fit to the data with a

srnaller deviance. More irnportantly, it directly models the absolute rate of the

outcome under a more plausible assumption with respect ta such asthma

medications, and provides infonnation on the change-point parameter that is

clinical relevant.

The maximum likelihood estimate of the change-point in such model was

obtained by maximizing the profile likelihood, which gave a relatively unbiased

estimate shown in the simulation study. The estimated change-point is at 1.8

canisters/month, after which the excessive risk is two limes higher than before.

The point estimate is slightly higher than the maximum recommended dose,

which is expected because of the dose difference of the t\vo drugs being combined

and the more severe outcome (fatal or near fatal asthma attacks) being looked at.

The fact that our estimated change-point, which can be regarded as the maximum

safe dose limit, is larger than the maximum recommended dose for these

medications indicates that the maximum recommended dose provides an extra

safet margin and should he follo\ved in real medical practice.
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There are severaI risk factors, which are considered to be markers for

asthma severity. Due to the limitations in our cohort data, however, their effects as

confounders and/or effect modifiers on the parameter estimates of the change­

point modeI were not addressed here, and should be investigated in the future.

Despite not controlling these factors, the estimated maximum safe dose limit (the

change-point) still provides usefuI information for these beta-2 agonists as a

waming sign to require more medical attention or to seek alternative treatment.

The confidence intervals for the change-point given by the both parametric

and non-parametric bootstraps are consistent with the ones based on normal

theory or likelihood ratio test and require few assumptions. AlI the confidence

intervals are wide, which is very likely due to the small number ofcases in the

entire cohort (129 cases). From one simulation study \Vith ideaI sarnple size, the

95-percentile interval obtained by the non-pararnetric bootstrap is quite narrow

and contains the true change-point. Ho\vever, its real coverage probability needs

ta be evaluated in future studies.

In conclusion, the profile likelihood and the bootstrap methods are useful

in making inference on the change-point in two-phase regression mode!. For post­

marketing drug safety study, using cohort analysis with identity link, the change­

point in such model can be regarded as the maximum safe dose limit. This dose

information cao not only he used to confirm the recommended dose level

established in clinical trials but also provide a drug safety guideline in real

practice. When the outcome of interest is not so rare, inference for the change­

point based on the two methods is reliable.
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Table 1.

Rate of fatal or near fatal asthma attack by ordinal classification of exposure dose

Combined MDI-delivcred bcta-2 agonists Numbcr of fatal Rate of fatal or near fatal
(Canistcrslyear) or near fatal Person-months asthma atlack

asthma attack (per10,000 asthmatics per year)

° 4 189,064 2.54

1-6 18 189,719 Il.39

7-12 20 82,341 29.15

13-18 23 48,158 57.32

19-24 14 26,900 62.45

25-30 16 15,552 123.46

31-36 6 9,144 78.74

37-42 7 5,298 158.55

43-48 10 3,173 378,59

49-60 3 3,020 119.21

61·72 5 931 644.47

73-100 2 630 380.95

>100 1 178 674.16
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Table 2.

Parameter estimates: analysis of the asthmatic cohort data

Model Link Scalc Parameters
runction deviancc

Estimates

Change-point 21 canistcrslycar

Excessive Defore the 3.7 (2.7, 4.7)

Change-point Identity 97.51 ratcs for change-point pcr 1,000 asthrnatics pre year

mode1 one Pli
(Modcl3.4) additional

canister Aller the 7.0 (3.5, 10.4)

/month change-point per 1,000 asthmatics pre year

P21

Change-point 13 canisterslyear

Relative Defore the 4.9 (3.7, 6.6)

Change-point Log 111.64 risks for change-point
mode1 one Exp(PII)

(Madel 3.8) additional
canisler Aner the 1.3(1.1.1.5)

/month change-point
EXP(P21)

Log-Iinear Log 176.16 Relative risks for one
model (Madel 3.6)

1.6(1.5,1.7)

additional canister /month

•



•

Table 3.

Bootstrap confidence intervals (unit: canisters/year)

Non-parametric bootstrap Parametric boolstrap
Applying missing value criteria

(i.e. the numbcrs of missing likelihood less t1lan 14) No Yes No Yes

The number ofbootstrap replications 1500 1492 1500 1485

Mean 25.2 25.3 24.9 25.0
Standard deviation 17.5 17.5 17.7 17.7

Minimum 2 2 2 2

Distributions of 2.5% 2 2 2 2

the bootstrap 25% (QI) 9 9 13 14

estimates Quantiles Median 22 22 21 21

75% (Q3) 35 35 32 32

97.5% 64 64 71 71
Maximum 71 71 71 71

95% percentile intervals (2.5%, 97.5%) (2,64) (2,64) (2, 71) (2, 71)

Normal bascd intervals (mean±I.96·std.) (-9,60) (-9.60) (-10,60) (-10,60)
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Table 4

Parameter estimates: simulated data*

Model Parameters True Estimated values
values (95% confidence intervals)

Change-point 21 ··23 (17,26)
(canisters Iyear)

Change-point Base-line rate
model with PlO 4 4.86 (3.18,6.52)
identity link (per 1,000 asthmatics per year)
(model3.4)

Defore the
Excessive rates by change-point 0 0.08 (-1.31,1.47)

one additional Pli
canister Imonth

(per 1,000 asthmatics After the
per year) change-point 8 9.76 (8.85,10.66)

P21

• The data is simulated according to model3.9 with seed=IO in SAS.
··95- percentile interval based on 1311 reliable non-parametric bootstrap samples
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• FIGURE 1

A8THMA DEATHS OF PERSONS AGED 5-34
COMPARED WITH SALES AND PRESCRIPTIONS
Of ASTHMA PREPARATIONS IN ENGLAND AND

WALES fOR 1959-1968.
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• FIGURE 2

A5THMA MORTALITY (5-34YEAR OLOS) AND
FENOTEROL MARKET SHARE (%) IN New Zealand

1974·1990
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• FIGURE 3

PLOT OF POLLEN CONCENTRATION VS.DEPTH OF A'
LAKE SEDIMENT CORE
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FIGURE 4

PLOT OF (SERUM-CREATININEr1 VS. TIME FOR ONE
PATIENT
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FIGURE 5.
PER 10,000 ASTHMATICS PER YEAR

OBSERVED DOSE·RESPONSE PLOT
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FIGURE &.
PROFILE LOG LIKELIHOOD PLOT OF CHANGE-POINT MODEl WITH IDENTITY llNK (MODEl 3.4)
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FIGURE 7.
PROFilE lOG llKEllHOOD OF CHANGE-POINT MODEl WITH IDENTITY llNK (MODEL 3.4)

WITH CONSTANT RATE BEFORE THE CHANGE-PONIT
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FIGURE 8.
OBSERVED AND PREDICTED OOSE-RESPONSE CURVES

PER 10,000 ASTHMATICS PER YEAR
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FIGURE 9.
PROFILE lOG llKEllHOOD Of CHANGE-POINT MODEl WITH lOG llNK (MODEl 3.8)
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FIGURE 10.- OBSERVED DOSE-RESPONSE PLOT ON LOG SCALEwi PER 10,000 ASTHMATICS PER YEAR
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FIGURE 11.
DOSE-RESPON8E CURVE FROM ONE SIMULATED DATA

PER 10,000 ASTHMATICS PER YEAR
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FIGURE12.
PROFILE LOG LIKELIHOOO PLOTS FOR THE CHANGE-POINT- ONE SIMULATED DATA

NOTE:THE DATA IS StMULATEO ACCOROING TO MOOEl3.9 WlTH CHANGE·POINT AT 21 CANISTERSIYEAR (SEED=10 IN SAS)
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FIGURE 13.
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FIGURE 14.
HISTOGRAM OF MLE'S FOR THE CHANGE-POINT ESTIMATED FROM SIMULATED DATA

NOTE:THE DATA IS SIMULATEO ACCORDING TO MODEl3.9 WlTH CHANGE·POINT AT 21 CANISTERSIYEAR (SEED=10 IN SAS)
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FIGURE 15.
HISTOGRAM Of NON-PARAMETRIC BOOTSTRAP ESTIMATES fOR THE CHANGE-POINT
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FIGURE 16.
HISTOGRAM Of PARAMETRIC BOOTSTRAP ESTIMATES fOR THE CHANGE-POINT
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FIGURE 17.
HISTOGRAM Of NON-PARAMETRIC BOOT5TRAP E5TIMATES Of THE CHANGE-POINT IN ONE SIMULATED DATA

NOTE:THE DATA IS SIMULATED ACCORDING TO MODEL 3.9 WITH CHANGE·POINT AT 21 CANISTERS/YEAR (SEED=10 IN SAS)
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