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Abstract.

We examine an 1880 theorem of Laguerre concerning polynomials with all real roots
and a 1968 inequality of Samuelson for the maximum and minimum deviation from
the mean, and establish their equivalence and present several proofs. We also study

related inequalities attributed to

e J. M. C. Scott (1936)
e Brunk (1959)

e Boyvd (1971) & Hawkins (1971).

Also examined is a 1918 inequality of Szokefalvi-Nagy and some 1935 extensions
of Popoviciu concerning the standard deviation and range of a set of real numbers
and cquivalent inequalities for the internally Studentized range due to K. R. Nair in
1947/1948 and G. W. Thomson in 1955. as well as related bounds on the standard

deviation attributed to

e Guterman (1962)
e Mairgaritescu-Voda (1933)

e Bhatia-Davis (1999).

Extensions and applications in statistics and matrix theory are provided. as well as

biographical information and an extensive bibliography.
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Résumeé.
Nous étudions un théoreme de Laguerre (1880) au sujet des polvnémes dont toutes
les racines sont réelles et une inégalité de Samuelson (19638) au sujet de l'écart

maximal et minimal de la movenne et établissons leur équivalence et présentons

plusiers preuves. Nous étudions également des inégalités connexes attribuées a

o .J. M. C. Scott (1936)
e Brunk (1959)

e Bovd (1971) et Hawkins (1971).

Sont ¢galement étudiées une inégalité de Szokefalvi-Nagy (1913) ainsi que des ex-
tensions de Popoviciu (1933) au sujet de ['écart-type et de |'étenduc de nombres
réels et des inégalités équivalentes pour I'étendue transformée de Student obtenues
par K. R. Nair (1947/1943) et G. \V. Thomson (1953). de méme que des bornes de

I'écart-tvpe s’y rapportant. attribuées a
¢ Guterman (1962)
e Mairgaritescu-Voda (1933)

e Bhatia-Davis (1999).

Des extensions et des applications aux statistiques et a la théorie des matrices
sont présentées. de méme que des informations biographiques et une bibliographie

detaillee.
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1. Introduction and Overview

The purpose of this thesis is to examine an inequality. most commonly attributed to
P. A. Samuelson (1968) in the statistical literature. for the maximum and minimum
deviation from the mean, given a set of n observations with known standard devi-
ation. As observed by Arnold and Balakrishnan (6] the publication by Samuelson.
“How deviant can vou be?” in the .Journal of the American Statistical Association
[216] -... spawned a torrent of generalizations. several of which referred to bounds
on order statistics. It also spawned a flurry of rediscoveries of earlier notes on these

topics. Ultimate priority seems hard to pin down ...~

We will establish the equivalence of Samuelson’s Inequality and an 1330 theorem
of E. N. Laguerre [109]. virtually unnoticed in the statistical literature. concerning
polvnomials with all real roots. The bounds provided by Laguerre’s Theorem involve
the first three coefficients of an n-th degree polynomial while Samuelson’s Inequality
is in terms of the standard deviation (and the mean) of a set of n real numbers
(observations). Scveral proofs of this Laguerre-Samuelson inequality will be given

and the associated literature surveved.

Related inequalities attributed to H. D. Brunk (1939) [43]. D. M. Hawkins (1971)
(36]. A. V. Boyd (1971) [39]. and J. M. C. Scott (1936) {222] will also be examined.
Of special note are inequalities due to J. von Szdkefalvi Nagy {234] in 1913 and T.
Popoviciu [203] in 1933 concerning bounds on the variance and range of a set of
real numbers. and equivalent inequalities for the internally Studentized range' due
to K. R. Nair (1947/1948) [168]. [171] and G. W. Thomson (1953) [244]. These
inequalities are also presented with proofs. Other bounds for the variance. due to
Bhatia and Davis (1993) [33]. Guterman (1962) [32]. and Margaritescu and Voda
(1933) [131] are also studied.

Separate sections are devoted to various extensions and applications of these inequal-
itics in statistics, polynomials. and matrix theory. Also included is some historical

and biographical information and an extensive bibliography with over 225 entries.

'For a discussion concerning internally Studentized and externally Studentized range. see [37].



2. The Laguerre-Samuelson and Related Inequalities.

2.1. The Laguerre-Samuelson Inequality.

Throughout this thesis zy.22.....2, will denote n real numbers with (arithmetic)
mean

1 n
(2.1) r=-)Y 1

n =1

and standard deviation (with divisor n):
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or equivalently

(2.1) (r, — &) <(n—-1)s" forall j =1.2..... n.

Equality holds in (2.4) if and only if all the r; other than r, are equal and so then
r, is either the largest or the smallest of the r,: equality holds on the left (right) of

(2.3) if and only if the n — 1 largest (smallest) r; are all equal.

\We sce. therefore. that given the mean and standard deviation of a set of real num-
bers. their minimum is bounded below and their maximum bounded above. These
bounds arc often referred to as “Samuelson’s Inequality™ in the statistical literature?
in view of the inequalities established in 1968 by the American economist and No-
bel laureate Paul Anthony Samuelson® (b. 1913) in the Journal of the American

Statistical Association [216].

*Cf. e.g.. Arnold [4]. Borwein. Styan and Wolkowicz [37]. Chaganty and Vaish [52]. Farnum
[68]. Kabe [97]. Margaritescu [128]. Mathew and Nordstrom [134]. Murty [166]. Patel. Kapadia
and Owen [194] (p. 263). Puntanen [212] (Example 6.16. pp. 275-276). and \Wolkowicz and Styan
[256}.

3For biographical information, see §7.5.
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The inequalities (2.3) were (almost certainly first) established in 1880 by the well-
known French mathematician Edmond Nicolas Laguerre® (1834-1886) in the Nou-
velles Annales de Mathématiques (Paris) [109]. Laguerre’s results were obtained in

a completely different notation and context>.

Laguerre’'s interest focused on n-th degree polynomials with all roots real. Let
Iy.I3,....T, denote the roots, all of which we will assume to be real. of the n-th

degree polynomial equation with n > 2:

(2.5) flzr) =aor™ + ayz™ ' + @™ * +--- 4+ ap_1r +a, = 0.

Since we will assume that this polynomial has degree n we will now suppose. without

loss of generality. that

(2.6) a = 1.
Let
n n
(2.7) th=)_r and ty =) r;
=1 =
Then
(.ZS) a, :*ZI,‘Z’—tl and a, = l"'l“,:%(tf—tg).
=1 1<

Laguerre [109] proved that

(2.9) —a—l—b\/rz—l S.rJS—ﬂ%-b\/n—l forall j =1.2..... n.
n

n
where
i (n—1)a? 2a; /nt2—18
(2.10) b= - — =

n? n n
using (2.8). [t follows at once that
(2.11) —11-=.i' and b =s.

n

1For biographical information. see §7.1.

®While several authors in the mathematical literature refer to Laguerre (cf. e.g.. Lupas [117],
Madhava Rao and Sastry [120]. Mitrinovi¢ [157]. pp. 210-211. Popoviciu [203]. Sz.-Nagy [234],
[235]. (236]. and Weber [252]. pp. 364-371). the only author who we could find in the statistical
literature to do so was Rodica-Cristina Voda [246] in 1983 (in Romanian). who also references
Mihaileanu [152].



respectively the mean and the standard deviation defined in (2.1) and (2.2) above.

and so the inequalities (2.9) coincide with (2.3).

Laguerre [109], however, did not observe that —a;/n and b were in fact the mean
and standard deviation® of the roots z;: his interest was in obtaining bounds for the
roots. whenever they are all real, of an n-th degree polynomial given the first three

cocfficients—in our formulation the first of these: ag = 1. cf. (2.6)

In this paper we will. therefore. refer to the inequalities (2.3) or (2.4) as the ~Laguerre-

Samuelson Inequality™.

While “Samuelson’s Inequality”™ is certainly the most popular name for (2.3). the
name “Extreme Deviations Inequality” is also used in the (relatively recent) statis-
tical literature®: in 1974 Arnold used “extreme deviance™ in the title of his paper
[4]. while "How deviant can you be?” is the title of the seminal paper by Samuelson
(1968) [216]: the 1992 survey paper by Olkin [187] is entitled “A matrix formulation
on how deviant an observation can be”™. Much earlier. however. the term “extreme
deviate™ appears in the title of the 1948 paper by Nair [170] and ~extreme observa-
tion” in the titles of the papers by Hartley and David (1934) [84] and McKay (19353)
[135]. In the hydrology journal Water Resources Research. Kirby (1974) [102] uses

“standardized maximum deviate”.

Wolkowicz and Stvan (1933) call (2.3) the ~Samuelson-Nair Inequality™ in their
Encyclopedia of Statistical Sciences entry [260]. while Arnold and Balakrishnan in
their 1939 monograph Relations. Bounds and Approximations for Order Statistics
[6] present many inequalities related to and including the Laguerre-Samuelson In-

cquality in their Section 3.2 entitled ~Variations on the Samuelson-Scott theme™®.

[n the naming of inequalities (2.3) or (2.4). it is difficult to give proper credit to
all discoverers (and rediscoverers) without the name becoming rather cumbersome.
Two additional researchers deserve special note for their work with the Laguerre-

Samuelson inequality. The Indian statistician Keshavan Raghavan Nair!® (b. 1910)

® The term “standard deviation™ was introduced in 1893 (by Karl Pearson (1857-1936) “in a
lecture to the Royal Society™. cf. Hart [83]. p. 626: Stigler [229]. p. 323. -although the idea was
by then nearly a century old™. cf. Abbott [I]. p. 105.

“Laguerre [109] did not assume that ag = | and so his results involve a;/ag and a2/aq instead
of our a; and a-.

®Cf. Dwass (1975} [66]. O Reilly (1976) [189]. and Quesenberry (1974) [213].

“Cf. [6]. Theorem 3.3. pp. 45-46. for six proofs of the Laguerre-Samuelson Inequality

"9For biographical information, see §7.4.



established the Laguerre-Samuelson Inequality (2.3) in his 1947 Ph.D. thesis [168].
publishing his proof a year later in 1948 in the Journal of the Indian Society of
Agricultural Statistics [171], cf. also Nair [176]. [177]. J. M. C. Scott!! established
several inequalities (see §2.4 below) on ordered absolute deviations |r; — | in the
Appendix to the 1936 paper [196] by Egon Sharpe Pearson (1895-1980). assisted by
C. Chandra Sekar in Biometrika (London). as noted by Arnold and Balakrishnan
(6] (Theorem 3.2, p. 41), the Laguerre-Samuelson Inequality is a special case of one

of Scott’s inequalities.

2.2 The Brunk Inequalities.

Now let us arrange the r;’s in nondecreasing order:

(2.12) I(1) = Tmax = L(a-1) 2 *** 2 I(2) = Tmin = L(n)

so that r(, is the j-th largest. Then

(2.13) I+ \/”:__151'n,axzr(1,§i+s\/l7—l

(2.1.4) Fo sV =1 < Zoin = 2'(n) < F — :_1.
The right-hand inequality in (2.13) and the left-hand inequality in (2.14) are the
Laguerre-Samuelson inequality (2.3). The left-hand inequality in (2.13) and the
right-hand inequality in (2.14) were established (possibly for the first time) in 1939
by Hugh Daniel Brunk (b. 1919). also in the Journal of the Indian Society of
Agricultural Statistics [43]. and so we will refer to them as the “Brunk Inequalities™.
Unaware of Brunk's results these inequalities were established again by Boyd (1971)
[39]. Hawkins (1971) [86] and Wolkowicz and Styvan (1979) [256]. as well as by Lupas
(1977) [L17]. who considered bounds for the roots of an n-th degree polynomial with

all real roots.

"'From four papers [223]. [224], [225]. and [226], we infer that J. M. C. Scott was at the Cavendish
Laboratory. Cambridge. in the mid-1950s. We have no further biographical information.

b1



Equality holds on the left of (2.13) if and only if equality holds on the left of (2.14)
if and only if

(2.15) I() =" = I(n-1)
and then

3

(216) I(l):"':'t(n—l):'i"*'\/m and .l'(n)z.i'—S n—1.

Equality holds on the right of (2.13) if and only if equality holds on the right of
(2.14) if and only if

(2.17) L2y = - = TI(q)

and then

(2.18) rq)y=I+svn—1 and T2) ="+ =T(q) =T — "

2.3 The Boyd-Hawkins Inequalities.

For the A-th largest observation or ~order statistic™ () we have the following in-

equalities

(2.19) I - s\/;—"_.%‘:j SrpySTt+s ";L’ for k =2..... n—1.

Equality holds on the left of (2.19) if and only if

(2.20) Ty =---=ruk-1 and Iy =---= I,
and then
1(,,=—v-=r(k_1)=i+s\/% and r(k,=---=r(,,,=i'—s,/-;%.
Equality holds on the right of (2.19) if and only if
(2.21) Iqy=--=1Ik) and Iy =" "= I(n)

and then

“

.l‘(l)_—_-..z.l'(k)z.f‘ﬁ-s‘/n%_k and I(k+l)="'=1'(n)=.i'—

E]

|
bad
.
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If we put £ =1 in (2.19) then we obtain the same upper bound for rn., = () as
in (2.13) but a weaker lower bound. Similarly, if we put & = r in (2.19) then we

obtain the same lower bound for ryjs = () as in (2.14) but a weaker upper bound.

The inequalities (2.19) were established (possibly for the first time'?) in 1971 by A.
V. Boyd [39] in the Publikacije Elektrotehnickog Fakulteta Univerziteta u Beogradu.
Serija Matematika i Fizika (Belgrade)'® (in English) and. also in 1971. by Douglas
M. Hawkins [86] in the Journal of the American Statistical Association: see also
Wolkowicz and Styan {2536]. [257]. [238]. As observed by Arnold and Balakrishnan
(6] (p. 49) and Wolkowicz and Styan [256]. the inequalities (2.19) are “implicit” in
the papers by Mallows and Richter (1969) [124] and Arnold and Groeneveld (1979)
[12]. while Scott (1936) [222] gives (without proof) the inequality

n—>2
2

(2.22) I(g) S .r + s

the special case of the upper bound in (2.19) for & = 2.

A. Lupag [117] considered an n-th degree polynomial with all real roots. and in 1977
established (2.19) as well as (2.3) for these roots. Arnold and Groeneveld (1979) [12]
give similar bounds to (2.19) for the cxpected value of the order statistic X, taken
from a sample of the random variable X. with the mean and standard deviation
in (2.19) being replaced by g = EX and ¢ = varX respectively. The sample
observations need not necessarilv be independently and identically distributed. but

they are assumed to have common expectation and variance.

We will call (2.19) the “Bovd-Hawkins Inequalities™.

2.4. The Scott Inequalities.

The first (explicit) proof of the Laguerre-Samuelson Inequality in the statistical
literature was almost certainly that given in 1936 by J. M. C. Scott [222] in the
Appendix to the paper by Pearson and Chandra Sekar [196]: the Laguerre-Samuelson
Inequality appears there as a special case of (1.19a). the first of three inequalities
below. cf. Arnold and Balakrishnan [6]. Theorem 3.2, p. 44. where it is observed

'2Rodica-Cristina Voda [246]. p. 547, comments (in Romanian) that (2.19) -este si el inclus
partial in rezultatul lui Laguerre™ (p. 347) or (in English) “can be partially derived from an old
inequality due to Laguerre™ (p. 548): no further details are given.

'3The masthead of this journal also carries the French subtitle: Publications de la Faculté
d Electrotechnique de I'Université a Belgrade. Série Mathématiques et Physique.

v



that “Scott’s ingenious constructive proof is apparently the only proof available in

the literature.”

Let us define the absolute deviations:

(2.23) b = |z, — x| t=1,....n.

and let §;) denote the i-th largest absolute deviation so that

(2'24) é‘(n) S 6(n—l) S st S 6(1)-

Of course the i-th largest absolute deviation &) will not. in general. be equal to

|.I'(,) - .i'l.
Then
(2.25) é < s M for j odd and j # n
U= NG =)+ 1 "
(2.26) qny < 5 not for n odd.
- \ nin+1)

l )
(2.27) o) < sy = for j even.

J
We note that j = 1 in (2.25) is the Laguerre-Samuelson Inequality (2.4). The

inequality (2.26) is. of course. quite different to the Brunk Inequality. cf. (2.14):

>

) -rminsi'_\/;_z_—'—_l'

(2.2

v

[ndeed. we obtain equality in (2.26) when (n — 1)/2 of the r; are equal to b and all

other r; are equal to —1/b. where

n+1
n—1

(2.29) b=

On the other hand equality holds in (2.28) if and only if the largest n — | of the x;

are equal.

on



2.5 The von Szokefalvi Nagy-Popoviciu and Nair-Thomson Inequalities.

We define the range as:

(230) ' = Tmax — Tmin = I(1) — T(n)-

Then the standard deviation and range satisfy the inequality string:

1

1
(2.31) —r?<st< 2,
2n 4
or equivalently the inequality string:
. 2 9 9
(2.32) 4s5° < r°- < 2ns-.

As pointed out in 1939 by Brauer and Mewborn [40]. the left-hand inequality in
(2.31) was established (almost certainly for the first time) in 1918 by Julius von
Szokefalvi Nagy [Gyula Szokefalvi-Nagy]'? (1337-1953) in [234] and the right-hand
incquality (probably for the first time) in 1935 by Tiberiu Popoviciu'® (1906-1975)
in [203].

When n = 2. the inequality strings (2.31) and (2.32) collapse to equality throughout.
For n > 3. the left-hand inequality in (2.31) and the right-hand inequality in (2.32)

are sharp: equality holds if and only if

(2.33) L(2) =+ = T(p-1) = %(1‘(1) + Imy) = %(Imax + I'min)-

The right-hand inequality in (2.31) and the left-hand inequality in (2.32) are sharp

only when n is even: equality then holds if and only if

(2.3-1) rqyy=---= .l'( and 1'( 1

Lngr) = 00 T Lin)-

in)
Popoviciu [205] showed that the right-hand inequality in (2.31) and the left-hand

inequality in (2.32) may be strengthened. respectively. to:

n®—1 in? .
r?  and 2 < 2. with n odd

2.35 2 <
(2.35) —  in? n?-—-1 =

77
@,

equality holds in (2.33) if and only if

(236) I“):"'zl‘(%(n_l)) and .1‘( © = I'(n)

Ln-1)41) T

For biographical information, see §7.2.
15For biographical information. see §7.3.



or
(2.37) )= S T4y A Ty = = ()

In statistics the ratio

)
I
w |3

or its multiple (1 — n~1)¥/2

q. is known as the ~internally Studentized range”. cf.
David [57): sce also. e.g.. Pearson and Hartley [197]'®. and we may rewrite the

inequality string (2.32) as

(2.33) 2<qg="1-<vn
S
and (2.33) as
(2.39) 2n < il itl 1d
Z.e ——————— = - withh n odd.
vnz—~17 K s

The right-hand inequality in (2.38) per se was established probably for the first time
by Keshavan Raghavan Nair (1910-1996) in his 1947 Ph.D. thesis [168] (see also his
1948 paper [171] in the Journal of the Indian Society of Agricultural Statistics).
while the left-hand inequality in (2.33) and the inequality (2.39) were established
by Hugh Daniel Brunk (b. 1919) in his 1939 paper [43] (also in the Journal of
the Indian Society of Agricultural Statistics following a correspondence with Nair.
cf. [175]). These inequalities were also ~given™ by George William Thomson!"
in his 1955 Biometrika paper [244]'®. which is frequently cited in the subsequent

literature!®,

'“On p. 89 in [197] it is observed that ~This idea of "Studentizing™ the range [dividing by the
sample standard deviation] seems to have occurred first to W. S. Gosset ['Student’] himself (see
letter of 29 January 1932 quoted by E. S. Pearson [193]. p. 245)."

'"We have no biographical information on George Wiiliam Thomson. except that in the mid-
1950s. c.f. [242]. [243]. and [244]. he was affiliated with the Ethy] Corporation. Detroit. Michigan.

'*Thomson remarks (on p. 268 of [244]) that “The bounded nature .. . of g has not been noted by
any of the authors who have investigated this statistic™. while in an ~Editorial Note™ it is observed
(in the accompanying footnote on p. 268) that “The existence of these limits has no doubt been
noticed by others ... in the correspondence leading to the joint paper by David. Hartley and
Pearson [60]. the first author [Herbert A. David] gave these limits in a letter of February 1934. but
they were omitted in the published paper. [signed] E. S. P[earson. Editor: Biometrika].

'*Cf. c.g.. Arnold and Balakrishnan [6]. §3.2: Chaganty and Vaish [52]; David [55]. p. 190: David
(36]. and Olkin [187].
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We will call (2.31). (2.32) and (2.35) the “von Szokefalvi Nagy-Popoviciu Inequali-
ties” and (2.38) and (2.39) the “Nair-Thomson Inequalities™.

2.6 Upper Bounds for the Variance.

The von Szokefalvi Nagv-Popoviciu Inequalities (2.31). (2.32) and (2.33) provide

these upper bounds for the (sample) variance s? of n real numbers:

(2.40) st < Ir': with n even
2
(2.141) st < n4 —r° with n odd.
n?

(2.42) c<ly oy

n =1
(-2 l;) *‘2 S (Imax - 1)(I _'-lmm)
(2.44) EP U

I
VO
ot
A
7]
I

%(I(l) + I(n)) = %(Imax + -rm.in)

and k is such that r, is the smallest r; greater than or equal to the mean 7 . i.e..

(2.16) Tmax = T(1) 2 " 2 T(k) 2T 2 Thg1) 2 - 2 T(n) = Trmin -



H. E. Guterman?’. in a 1962 note in Technometrics [82]. used (2.42) in the inequality

string:

1 2
(-rmax - Imin)z = -r

] —
=

(2.47) = lzn: (r; — 1)< — Z(r, -7 <
n i=1 n =1

to prove (2.31), and so we will refer to the right-hand side of (2.42) as the “Guterman
Upper Bound™ for the variance. Equality holds in (2.42) when ¥ = f.

We note that the right-hand inequality in (2.47) coincides with the inequality (2.43)

since

(218) %i(l‘,’—.i')z = = _E Imat j)(f_rnun)

i=1 =1

2l is in the (as

The only place where we have found the inequality (2.13) explicitly
vet unpublished) paper by Bhatia and Davis [33]. We will. therefore. refer to the

right-hand side of (2.43) as the “Bhatia-Davis Upper Bound™ for the variance.

Equality holds in the inequality (2.43) if and only if j of the r;’s are equal and the

other n — j are all equal. i.e..

(2.49) Tmax = I(1) = - =TI 2 T41) = = T(a) = Tmin-

for some j = 1.2..... n—1.

The inequality (2.44) was apparently first given explicitly in 1933 by Margaritescu??

and Voda [131]. though it is implicit in Theorem 2 in Brauer and Mewborn (1959)
[10]. We will. therefore. refer to the right-hand side of (2.44) as the ~Margaritescu-
Voda Upper Bound™ for the variance. Equality holds in (2.44) if and only if & of

the r;’s are equal and the other n — k& are all equal. i.e..

(2.50) Tmax = T(1) = " =T(k) 2T 2 T(k+1) = ** " = T(n) = Tmin -

Refer to §4.2 and §4.3 for additional information on these bounds.

2%We have no biographical information on H. E. Guterman, except that in 1962. cf. [82]. he was
affiliated with the U. S. Internal Revenue Service.

!t really is disguised in the right-hand inequality in (2.47) obtained by Guterman [82].

*2\We have been informed (on 26 April 1999) by Viorel Gh. Voda that “Dr. Margaritescu unfor-
tunately died in 1996—he was probably the best computing-skilled mathematician in Romania.”
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3. Proofs: The Laguerre-Samuelson and Related Inequali-

ties.

3.1. Proofs of the Laguerre-Samuelson Inequality.

From before. we have the “Laguerre-Samuelson Inequality™ (2.3):
IT—svn—-1<r,<r+svn—-1 forall j =1.2..... n

or cquivalently (2.4):

(r, —F)? < (n —1)s? forall j =1.2..... n.

We present nine different proofs of this “Laguerre-Samuelson Inequality™:

e 3.1.1. Laguerre (1880). Madhava Rao & Sastry (1940). Mitrinovic¢ (1970)

e 3.1.2. Thompson (1935)

e 3.1.3. Nair (1947. 1948), Kempthorne (1973). Arnold & Balakrishnan (1989)
e 3.1.4. Arnold (1974). Dwass {(1975). Arnold & Balakrishnan (1989)

e 3.1.5. Arnold (1974). O'Reilly (1975. 1976). Arnold & Balakrishnan (1989}. Murty (1990)
3.1.6. Wolkowicz and Styan (1979. 1980)

3.1.7. Smith(1980). Arnold & Balakrishnan (1989)

3.1.8. Mertkoski and \Wolkowicz (1983)

e 3.1.9. Olkin (1992).

Arnold and Balakrishnan [6]. pp. 145-46. present six proofs. all of which are men-
tioned below (§3.1.3-3.1.5. 3.1.7-3.1.9). A further proof of (2.3) using optimization
techniques is given in an unpublished research report by Wolkowicz (1983). while
Arnold and Balakrishnan [6] imply in their Exercise 7 (p. 62) that (2.3) can also
be proved using the arithmetic/geometric mean inequality. As Arnold and Balakr-
ishnan [6] point out (p. 13): It is instructive to ... consider several alternative
proofs. The alternative proofs often suggest different possible extensions ... The
Schwarz inequality?® may be perceived to be lurking in the background of many of

the proofs.”

*3Named after [Karl] Hermann Amandus Schwarz (1843-1921) for the inequality he established
in 1888 in [221], pp. 343-345: the inequality was established, however. already in 1821 by [Baron]
Augustin-Louis Cauchy (1789-18537) in [47]. pp. 373-374, and in 1859 by Viktor Yakovlevich
Bouniakowsky [Buniakovski. Bunyakovsky] (1804-1899) in [38]. pp. 3-4. In this thesis we will call
it the Cauchy-Schwarz Inequality. cf. (3.14) below.
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3.1.1 Laguerre (1880), Madhava Rao & Sastry (1940), Mitrinovié¢ (1970).

Our first proof is that given in 1880 by Edmond Nicolas Laguerre [109]. cf. also
Madhava Rao and Sastry [120] and Mitrinovi¢ [157]. pp. 210-211.

For any real scalar u. we have the sum of squares expansion:

(3.1) Z(u — ) =nu® —2tju+t, > (u —1;)%= u? — 2z ;u +r}2

=1

for any particular r;. since a sum of squared terms is always greater than or equal

to any one of its summands. Here {; and ¢; are as in (2.7).

Rearranging (3.1). we see that for any real u.

(3.2) (n = u? +2(x, = t1)u+ (t —r3) > 0.

Since this quadratic function in u is nonnegative. its discriminant must be non-

positive:
(3.3) Hz, —t,)? = 4(n - 1)t — 1) 0.
Rearranging and simplifving (3.3) as a quadratic in r, vields:

(3.4) nrl =260, +6;—(n—1)t; <0

and so r, must lie in the closed interval [a;. a»]. where a,. a; are the roots of

(3.5) nr?—2tr;+1t; —(n— 1)t =0.

These roots a;. a» are:

2 /43 — 4n(£] — (n — 1)ty) _—ay

2n n

+bvn—-1

(3.6)

using (2.10) and so (2.9) is established. a



We may arrive at the inequality (3.4) more easily. however. cf. Madhava Rao and

Sastry [120], since

—{nz? =241z, + ] — (n - 1)t} = (n——1)(t;z—.r§)—(t1—.z'_,-)2

= (n- I)Z:Jr?—(z:.r,-)2

i#) i

(n— 1) (i —£)* 2 0.

#)
cf. (2.2). where
. . 1
(3.7) I = Z I,
n—1 Y
is the “reduced”™ mean of the n — 1 roots r,.....r, excluding r,. a

3.1.2. Thompson (1935).

Almost certainly the first proof in a statistical context is the following proof which

is implicit in the 1935 paper of William R. Thompson [241].

Let & denote the “reduced™ mean of the n — 1 real numbers r,..... r, excluding r,.
cf. (3.7). and let & and s denote the mean and standard deviation. respectively. of

all n observations. cf. (2.1) and (2.2). Then

1
(3.8) F—t=—(r,—-I)=——(r,—7)
n n —
and so
ns? = Z(Ii—-f'+-i‘—f')2
=1
= Y (ri—F)?+(r; - 1) -n(s - 1)
1#y
= S (zi— &) +n(n - 1)(F - )
i)
(3.9) = ST(ri— 1)+ ——(z; - 7)?
py n—1
) n
(3.10) > —(a; - 3)



using (3.8). The inequality (2.4) follows at once.

This proof also shows that equality holds in (2.4) if and only if equality holds in
(3.10) and this is so if and only if z; = 7 for all i # j. Hence equality holds in (2.4)
if and only if all the z; other than r; are equal.

Thompson [241] obtains (3.9) explicitly—cf. his (6) on p. 215—but apparently does
not obtain the inequality (3.10). Thompson's interest focused on the distribution of
the “Studentized deviations™ (z; — r)/s when the —‘observations™ r,.....r, are in-
dependently and identically distributed as a normal random variable with unknown

mean and variance. a

3.1.3. Nair (1947/48), Kempthorne (1973), Arnold & Balakrishnan (1989).

We consider the n x n orthogonal matrix E =

1 1 L L 1
( 7 7 7 VA
7 Vel 0 0 0
1 1 1 . —{n-2) 0
Vie-1n=2)  \f(n=1i(n=2) /(n=1)(n=2) V(n-1}(n-2)
1 1 1 . 1 —{n-1)
\ v n(n—-1) \/n(n—l) V’T:(n—l) \/n(n-l) \/rT(n-I)
the so-called Helmert matrix?* and let x = {z;} and y = Ex = {y;}. Then
n . n 9 2 2
(3.11) Y ri=xx=xXEEx=yy=Y y?>yl +y..
r=1 =1
Since
(3.12) . Zn:.r- and = - (T —z,)
el yl"ﬁi:l [ Yn = n—1 n

it follows at once from (3.11) that

n n 2
(3.13) Soriz % (Zr,-) + = 1(.i'—rn)2.
=1

=1 n-—

**Named after Friedrich Robert Helmert (1843-1919) for the matrix he introduced in 1876 [88].
cf. also Harville [85], pp. 85-86. Lancaster [110]. Read [215)]. and Stuart and Ord [230]. Example
11.3.
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[f we rearrange the components of the vector x so that r; is in the n-th position
then. with z, replaced by r;, (3.13) becomes (2.4).

Equality holds in (3.13) if and only if equality holds in (3.11) and this is so if and
only if ¥y, = -+ = ypoy = 0, i.e.. all the r; are equal except for r, (which we now
choose to be z;).

This is the third proof given by Arnold and Balakrishnan [6]. p. 43. and follows that
given by K. R. Nair in “a small section of the third part™ of his 1947 Ph.D. thesis
(168] and published in 1948 [I71]. and by Oscar Kempthorne in a 1973 ~Personal

communication” [100] to Barry C. Arnold?. m]

3.1.4. Arnold (1974), Dwass (1975), Arnold & Balakrishnan (1989).

Barry C. Arnold [4] and Meyer Dwass [66] proved (2.4) using the Cauchy-Schwarz

incquality:

(3.14) (a’b)? < a’a-b’b

for any n x 1 real vectors a and b. This is the second proof given by Arnold and
Balakrishnan [6]. p.43. Since ¥, (x; — ) = 0. it follows that

(3.15) £, —F==3Y (r;—1F)

i#
and so
(0, =82 = (S, (xi =)’
< (n—-1) T =1)
i#]
= (n—=1) T (e;= ) —(n—1)(z; — I)
from (3.14) with the vectors a = {r; — .z"}i#j and b = (1.1..... 1) both (n —1) x 1.

Hence

n

d(xi—3)=(n—-1)s*

=1

‘ —1
(rj -7 < ”

n

*Cf. Arnold and Balakrishnan [6]. pp. 45 & 158. and Arnold [4] where. in an acknowledgement.
it is observed that: “Upon seeing an earlier draft of this note, Oscar Kempthorne supplied me with
three of several alternative proofs that he derived for Samuelson’s inequality™.
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from (3.14). and so (2.4) follows immediately. Equality holds if and only if the

vectors a and b are proportional, i.e., all the r; except for z, are equal. a

3.1.5. Arnold (1974), O’Reilly (1975,1976), Arnold & Balakrishnan (1989),
Murty (1990).

Barry C. Arnold (1974) gave a second proof in [4] which used the ~“hat™ matrix from

linear regression analysis: see also O'Reilly [188]. [189]. and Murty [166].

In the usual full-rank Gauss-Markov linear statistical model

(3.16) Ey = X8.

where E denotes (mathematical) expectation and the “model™ or ~design™ matrix

X is n x p with rank p < n. Then it is well known that the n x n ~hat matrix”™
(3.17) H=XXX)"'X

is symmetric and idempotent. and hence nonnegative definite. as is the residual
matrix M =1 - H.

We now let p =2 and X = (e : Cx) as in (centered) simple linear regression: here

the n x 1 sum vector

(3.18) e=(l.1..... 1)

while the n x n centering matrix

L,
(3.19) C=1I,—- —ee

is symmetric and idempotent. Hence

1 1 1

(3.20) = —ee' + ——Cxx'C = —ee’ + —Cxx'C
n x'Cx n s2

and so the j-th diagonal elementof M =1~ H:

- I (x;— 1)
(}.21) 771“=].—;7-——ns7—

since M is nonnegative definite: the Laguerre-Samuelson Inequality (2.4) follows at

ornce.



Equality holds in (2.4) if and only if equality holds throughout (3.21) and this is so
if and only if all the elements in the j-th row (and column) of M are zero. i.e.. all

the r; except for r; are equal.

The proof given by O’Reilly [188]. [189]. is similar but uses the model matrix X =
(e : x) as in uncentered simple linear regession. This O'Reilly proof is the fifth proof
of the Laguerre-Samuelson [nequality given by Arnold and Balakrishnan [6]. p. 46.
while the Arnold-Murty proof is their fourth. a

3.1.6. Wolkowicz & Styan (1979, 1980).
The proof given by Henry Wolkowicz and George P. H. Styan (1979. 1930) [256].

(238]. cf. also Bancroft [23]. Chaganty [30]. Chaganty and Vaish [51]. [52]. Neudecker
and Liu [178]. Puntanen [212] (Example 6.16. pp. 275-276). and Trenkler [243].

essentially uses the following result (Lemma 2.1 in [238]. p. 473):

Lemma 3.1.6 Let w and x be real nonnull n x 1 vectors and let T and s be dcfined
as in (2.1) and (2.2) above. so that t = xX'e/n and s* = x'Cx/n. where the centering

matrir C =1—ee'/n as in (3.19). with e the n x | vector of ones. Then

(3.22) —svVnwCw < wCx < svVnwCw.

Fquality holds on the left (right) of (3.22) if and only if
(3.23) X =cw + de

for some scalars ¢ and d with ¢ <0 (¢ > 0).

Proof. The inequality string (3.22) follows at once from the Cauchy-Schwarz In-
equality (3.14) with a = Cw and b = Cx. a
If in (3.22) we now substitute

(3.24) w=e; —e/n =h,.

say. where

(3.25) e, =(0.....0.1.0.....0)



with 1 in the j-th position. then (3.22) becomes (2.3). The equality condition
X = c¢w + de = ce; + de shows that equality holds in (2.4) if and only if all the z;

are equal except for r;. a

3.1.7. Smith (1980), Arnold & Balakrishnan (1989).

Arnold and Balakrishnan [6], p. 46. give the following proof credited to William P.
Smith [228], as their sixth (and last) proof of the Laguerre-Samuelson Inequality-.
This proof is based on the Cantelli Inequality?®. cf. e.g.. Patel. Kapadia and Owen
[194]). p. 31.

LLet X denote a random variable with mean 0 and variance 1. Then

\
3.2 AY < i <
(3.26) Prob(X < u) < T ifu<0
1
3.27 X > < i > 0.
(3.27) Prob(X > u) < T2 ifu>0

We now suppose that X is a discrete uniform random variable with

- 1
(3.28) Pmb(Y:J‘ I):-— foralli=1.....n

S n

Then X has expectation EX = 0 and variance var\' = .

[ we substitute v = (rgin — F)/s < 0in (3.26) then it becomes

1o 1/{1 + (—I"“'"_r)ﬁ}
n s
and so

. e PN 2
(3.29) (ﬂ‘—ﬂ) <n-—1.

Substituting u = (rmax — r)/s > 0 in (3.27) gives

l T'max — I\?
Loy flis (zmem)
n S

and so

—_ 7\ 2
(3.30) (M) <n-1

S

2*Named after Francesco Paolo Cantelli (1875-1966): for a biographical account see Benzi [31].

20



Combining (3.29) and (3.30) yields the Laguerre-Samuelson Inequality (2.4). o

3.1.8. Merikoski and Wolkowicz (1985).

J. K. Merikoski and H. Wolkowicz in [150] define a consistent perturbation as one
which preserves the first two moments and the ordering of the z;’s. and then state
that consistent perturbations must alternate. In other words. if z; > r; > r and
r; T.z; | denote a positive or negative perturbation respectively. then the only

consistent perturbations are r; T.r; |. rx Torxr; [.x; T. xi |.

Now. if we consider n numbers r; > --- > r, and suppose that r; > 1, > r,.
then apply a consistent perturbation r; T.zx; .z, T to r,. all ry = r, and all
ry = r,. This perturbation causes r; to increase. so r; > r; > I, cannot maximize
ry. However. ry does have a maximum. so we must have r, = --- = r,. Substituting

this scenario into (2.1) and (2.2) gives
(3.31) (r; —F)? =(n—1)s°

which is equivalent to (2.4) since ry — r is maximized.

The Brunk and Bovd-Hawkins inequalities. as well as (4.1) of §4.1. can be proved
in a similar fashion. This proof is similar to that given by Samuelson?” (1963) [216]
and Scott (1936) [222]: cf. Arnold and Balakrishnan (1939) [6]. o

3.1.9. Olkin (1992).

Ingram Olkin. in his 1992 survey paper [187]. used the following result:

(3.32)

[

c(r; — 1) SZ(r;—i’)zforalljzl ..... n <= 0<c<
=1

To prove (3.32} we express both sides of its right-hand side as quadratic forms. Let

X = (Fyeen-.. r,).e = (l..... 1)" and where. cf. (3.23). e; = (0.....0.1.0.....0)

with 1 in the j-th position—all n x 1. We may write

1
(3.33) T, —I= X’hj with hJ =e; — ;e.

*“Samuelson states that “Rigorous proof of the theorem ... is a problem in (non-smooth) concave
programming...” [216]

-)l

-~



cf. (3.24) above, and so the right-hand side of (3.32) becomes

(3.34) C(.’L‘j - .i‘)2 = cx'hjh,-’x < x'Cx = Z(I,‘ - .i’)z.

=1

where the centering matrix C is defined as in (3.19). Then (3.34) holds if and onlv
if

1
(3.35) C —ch;h;’=1, - ;ee' —chjh)’ =1, - AA’

is nonnegative definite: here A = (e/\/n : /ch;). Since the nonzero eigenvalues of
the matrices AA’ and A’A coincide. it follows at once that C—ch;h,’ is nonnegative

definite whenever

I,-A'A=1I, - (f}é‘}{j{) (e/vn : \/Ehi) = (8 1—c(no— 1)/")

is nonnegative definite. The result (3.32) follows at once.

Substituting ¢ = n/(n — 1) in the right-hand side of (3.32) gives the Laguerre-
Samuelson Inequality (2.4).

Some discussion of this proof is given in [23]. [30]. [31]. {178]. and [245]—see §5.3

below for additional commentary. a

3.2. Proofs of the Brunk Inequalities.
3.2.1. Brunk (1959).

To prove the ~"Brunk inequalities™ Brunk used the following result ([43]. Corollary

1). which we find to be interesting in its own right:

Lemma 3.2.1. Let the random variable Z be distributed over the closed interval

[0.1] and let p be a nonnegative constant so that p < Prob(Z = 1). Then
(3.36) pEZ? < (EZ)™.
with equality if and only if

(3.37) Prob(Z =0)=1—p and Prob(Z =1)=p.

o
o



Proof. Since 0 < Z < 1 we have Z? < Z with probability one and so EZ? < EZ and
Prob(Z = 1) < EZ. Combining these two inequalities vields

(3.38) pEZ? <Prob(Z =1)-EZ < (EZ)%.

and (3.36) is established. Equality holds in (3.36) if and only if equality holds
throughout (3.38) if and only if p = Prob(Z = 1) and Z = Z? with probability one.

and so the equality condition (3.37) follows at once. o

To prove the “Brunk inequalities™ we now let the random variable .X' assume each
of the n values in (2.12) with probability 1/n. Then the random variable Z =
(rmax — -X\)/r. where the range r = rmax — Tmin- is distributed over [0.1]. The
expectation EX = r and the variance varX\' = s%. Hence

bl
-

52+(Imax_f)

r2

(3.39) EZ? =varZ + (EZ)? =

and so from Lemma 3.2.1:

1 2 s? max r)* max — T :
(3.40) lpze o 4 Umae = 7P (Fmax = 1)
n nr? r2
which simplifies to
(3*11) 52 S(n— l)(rmax—f)z-

from whichk the left-hand inequality in (2.13) follows at once. Equality holds in

(3.10) if and only if (3.37) holds and here this becomes (2.13).

To establish the right-hand inequality in (2.14) we repeat the above argument with
Z=(X~rmn)/r. O

3.2.2. Wolkowicz & Styan (1979).

Wolkowicz and Styan [256] provided a completely algebraic (non-statistical) proof

of the Brunk inequalities. Since n(rpax — ) = 5 | (Tmax — i) it follows that

n 2
nz(.l‘ma,\; - -I')2 = {Z(Imax - 1‘,‘)}

=1



= Z(Imax - Ii)2 + Z(Imax - -ri)(-rmax - Ii')
i=1 i

Z(Imax - -ri)2

i=1

IV

= zn:(l‘mu - I+ - J.‘,‘)2 = n{(-rmax - -7-')2 + 52}'

=1
from which the left-hand inequality in (2.13) follows at once. with equality if and
only if T'max = ¢y = ... = I(n-1) or (2.15) holds.

If 11%(F — Tonin)? 1s expanded similarily. then the right-hand inequality in (2.14) follows

at once. with equality if and only if r2y = --- = r(,) = I'min or (2.17) holds. a

3.3. A Proof of the Boyd-Hawkins Inequalities.

3.3.1. Wolkowicz & Styan (1979).

Possibly the simplest proof of (2.19) is that presented in 1979 by Wolkowicz and
Styan [2536]. We use our Lemma 2.6.1 above. a version of the Cauchy-Schwarz

inequality given by \Wolkowicz and Styan (Lemma 2.1 in [258]. p. 475):
(3.42) —svVnwCw < wCx < sVnwCw.
where w and x are real nonnull 2 x | vectors and the centering matrix C = I —ee’/n

as in (3.19). with e the n < 1 vector of ones. Equality holds on the left (right) of

(3.22) if and only if
(3.43) X = cw + de

for some scalars ¢ and d with ¢ < 0 (¢ > 0).
Now let w = S} e;//({ — k + 1) and x = {r()}. where e; is defined as in (3.23)
above and

(3.41) Tmin = T(n) S Ta-1) < - S I(2) £ I(1) = Tmax-

Then w/Cx = rxyy — I. where the “subsample mean”
!
(313) .i‘(k‘l)=21'(,')/(l—l€+l) for 1 S k SlSn
i=k
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Moreover, w/Cw = (I — k +1)~!' — n~!. Hence (3.42) implies
(3.16) F— s\ < Femy < Ty < Py S T4 5y/2H

which. when { = k. reduces to

T-symr STw S I+s/oE

as in (2.19). From (3.43) we note that equality holds in (2.19) if and only if x =

cw + de for some scalars ¢ and d. The equality conditions for (2.19) follow at once.
a

3.4. Proofs of the von Szokefalvi Nagy-Popoviciu Inequalities.
3.4.1. Margéritescu & Voda (1983), (1992), Bhatia & Davis (1999)

The following short and simple proof of the left-hand side of (2.31) was given by
Margdritescu and Voda (1983) {131]. Gonzacenco. Margaritescu and \oda (1992)
[76]. and by Bhatia and Davis (1999) [33]:

Z(‘ri"j)z = (-rmax"j)o (-rmm I) +Zl(,)—1‘

1 s ., . . n—1
= ;(Imax -lrmn) +-(1—I)-+(n—2)(1 —r) +Z(I(.)_I )
where
. 1 = nr —2r
t= n—?2 ; ) n—2
Hence
2 1 2 . -\2
ns- = E(Imat Tmin) +n_,_)(l‘—1') +Z(I.‘—1‘)
1 2 no. 2
> S(Imax_rmin) + _,)(I_I) .
with equality if and only if ri3) = --- = r(n-y). Thus

1

n52 > ;(Imax - Imin)z .

(V]
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with equality if and only if 3y = --- = z(,_1) and ¥ = Z. i.e.. if and only if (2.33)
holds. a

3.4.2. Guterman (1962), Bhatia & Davis (1999)

To prove the right-hand inequality in (2.31). H. E. Guterman [82] used the inequality
string (2.47):

1 & 1 & 1 1,
(3.47) s? = ;;(Ii -1)? < ;;(Ii -1 < I(Imax — I'min)? = ik
where
(318) I = é(l'(l)'*'l‘(n)): %(-l'max+1'min)-

As Guterman [82] observed. the left-hand inequality in (3.47) follows at once since
it is well known that 3" ,(r; — @)® is a minimum for a = r.

As mentioned above. the right-hand inequality in (3.47) coincides with the recent
inequality due to Bhatia and Davis [33]:

2 L ¢

il
|
—~—
~
|
)
e
IN
—_—
]
3
&
x
|
N
S
—~~
[
|
7
=]
S

(3.49) s

since

I & R ., 1 & 2 =

- Z(Ii —I)" = ~(Imax — Tmin)” + — Z(I; — I)° = (Tmax — I)(T = Imin)-

n < 4 n <
Equality holds in the inequality (3.49). and equivalently in the right-hand inequality
in (3.47). if and only if j of the r;’s are equal and the other n — ; are all equal. i.e..

(3.50) LTmax = L(1) = " " = Iy > Li+1) = *°° = I(n) = Imin-

3.4.3. Margaritescu & Voda (1983)

A second proof of the right-hand inequality in (2.31) follows from defining & so
that the first k r;’s are greater than or equal to the mean T and the other n — &

obscrvations are less than or equal to 7, i.e..

(;31) LTmax = I(1) 22 T(k) > 2> T(k+1) 22 I(n) = Tmin-
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As mentioned in §2.6 above (and proved in §3.5 below). Margaritescu and Vodi
[131] showed in 1983 that

2 o k(n — k)rz‘

(3.52) ns
n

Equality holds in (3.52) if and only if k of the z;’s are equal and the other n — & are

all equal, i.e..

(3.53) Tmax = T(1) = " =T(k) 2 T 2 T(k41) = *** = I(n) = Trin-

The right-hand inequality in (2.31) and the left-hand inequality in (2.32) follows

from (3.32) by applying the arithmetic-mean / geometric-mean inequality.

If n =2h is even.

b k -k 3 l k —k 2 5 5
(},5-1) ns* S _(n—)r’ S —_ L rc = Er-.
n n 2 4
with equality in (3.52) if and only if r¢) = --- = ry) and r41) = -+ = 14y and

cquality in (3.54) if and only if & = n/2 = h. Together. these equality conditions

are identical to those given in (2.34).

[f n =2h+1 is odd.

(3.55) ns —r < -

since (n —2k)2 —1 = (n—=2k—-1)(n—=2k+1) > 0. with equality in (3.36) and (3.57)

if and only if x(1y = -+ = ryy and rgyr) = -+ = I(y) and equality in (3.55) if and
only if £ = h or k = h+1. Together. these equality conditions are identical to those
given in (2.36) and (2.37). a

In §3.5 below we present a proof of (3.52) which is slightly shorter than that given
by Margiritescu and Voda (19383) [131]: we also give four simple proofs of (3.49) in
§3.6.

(O]
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3.5. A Proof of the Margiritescu-Vod3 Bound.

A proof of (2.44) was given by Margiritescu and Voda (1983) [131] for centered
observations with # = 0. We give an equivalent proof for uncentered observations.
If we have order statistics as in (2.12). define & such that the first & order statistics
are greater than the mean. and the final n — k order statistics are less than the
mean. Then

k n
2 12 -
ns* = Z:(I(,')—l') + Z (.r(‘,)—.z')2
=1 J=k+1
n

k
(3.56) < Z(I(n — P Lmax — )+ D (T — )N Zmin — &)

1=k+1

k
= Zr(z)—l)(rma\ Tmin)

£ k ‘I'max — Tmin
= [(H—A Z.l'(,’)—.f')‘f‘kZ(.l‘(,')—J—') ( - )
=1 =1

n
(3.57) S (1 = KVl — F) — k(1 = k) (L — )] e = Lomin)
n
An — A
= (” )(lmat Imm)z
n
k(n — k) ,
= r
n
as required. a

3.6. Proofs and Extensions of the Bhatia-Davis Inequality.

The incquality (2.43) probably first appeared implicitly within the right-hand in-
equality in (2.47) obtained by Guterman [32] in 1962. The right-hand inequality in

(2.47). along with (2.48). provides a first proof of (2.43) as mentioned in §2.6 above.

A (second) short and simple (new) proof of (2.43) follows by observing that
(3~5S) (Imax - -i')(i' - Imm = - + = Z(‘rmax - (I: - -rmm) 2 3.

Equality holds on the right-hand side of (3.38) under the same conditions as equality
in (2.43). =

o
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A third (relatively short and simple new) proof of (2.43). follows from writing

=1

ns® = Z(l’, — 1)’ =) (i — Tmax + Tmax — 7)?
=1

n

= Z:(-rmax - Ii)z — n(TImax — -i')z

=1

n

< (Imax - Imin) Z(rmax - Ii) - n(rmax - f)z
=1
= n(Imax — -i‘)(-rmax — Tmin — Tmax + -i') - n(-rmax - i‘)(l-' - Imin)-
which directly leads to (2.43). O

Bhatia and Davis {33] established several more general versions of the inequality
(2.43). Let the random variable X be defined. with probability one. on the interval
[m. M]. and let the mean EX = y and variance var\' = 0. Then. cf. {33]. we have

the following inequality in parallel to the Bhatia-Davis Inequality (2.43):
(3.39) o' <o+ E(M = X)(X —m) =(M = p)(i —m).
Equality holds in (3.59) if and only if the random variable X either equals m or M/
with probability one. i.e..
PIN=m)+P(X =M)=1.
The Bhatia-Davis Inequality (2.43) was introduced in [33] as a special case of a more

general inequality. If @ is a positive and unital linear mapping of a ('* algebra A

into a ('~ algebra B and A. m < 4 < VM. is a self-adjoint element of A. then:

(3.60) G(A%) — (@A) < (M - A (DA —m).

[f we substitute mathematical expectation E for the positive and unital linear map-
ping @ in (3.60) then it becomes (3.59). The proof of (3.60) in [33] is similar to our
proof above of (3.39).

On the other hand. if we consider a discrete random variable X in (3.59) such that
(3.61) P(X =z1;) =ps i=1,...,n.
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then we obtain a more general inequality than (2.43) involving a weighted variance

of n observations r;.....z,.
n n 2 n n
(3.62) sg = Zp,-r? — (Z p,-x,-) < (.\! - Zp,-r,-) (Z piTi — m)
1 1 1 1
where 0 < p; <land 3>Tpi=1. Ifweset p=1/nfori=1..... n in (3.62) then

it becomes the Bhatia-Davis Inequality (2.43).

The Bhatia-Davis inequality (3.62) for the weighted variance may also be written in

matrix/vector notation:

(3.63) 2 =x'D,x — x'pp'x = x'(D, — pp’)x.

P

where D, is a diagonal matrix with diagonal entries p,. It is interesting to note that
D, — pp’ is well-known as the dispersion matrix associated with the multinomial

distribution. cf. e.g.. Example 15.3 in Stuart and Ord [230].
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4. Related Statistical Topics

4.1. An Extension to Differences of Order Statistics

An extension of the right-hand inequality in (2.32) was obtained in 1981 by Fahmy
and Proschan [67]. who obtained an upper bound for r(,, — r(,. the difference

between the p-th and ¢-th largest of the z;’s. where 1 < p < ¢ < n. as follows:

nin—-q+p+1)
pln—q+1) '

(+.1) I(p)—ImSJ\J

Equality holds in (4.1) if and only if the largest p observations are all equal. the

smallest ¢ observations are all equal. and the other n — p — ¢ observations are all

equal. i.e..

(41.2) TG) == I(p): T(pel) = c = Igget): and  Igy =--c = I(n.
and then

(1.3) ) = = gy = PR T =0 F U

n—qg+p+1

When p =1 and ¢ = 1 then (4.1) reduces to the right-hand inequality in (2.32) and.
equivalently. the left-hand inequality in (2.31).

A proof of this bound is given by Arnold and Balakrishnan (1939) [6]. who used the

fact that since the residual matrix of the full-rank Gauss-Markov linear statistical

model is nonnegative definite.

(1.4) all-X(X'X)"'Xla>0

Taking X = (e.Z). we have for any a.
n n 2 n
(4.5) (a'Z)S"'(a’'Z) <n)Y_ al-— (Za,-) =n) (a;,—a)
i=1 i=1 i=1
where ¥ is the population variance-covariance matrix. In the one-dimensional case.

this can be rewritten in terms in the ordered r(;)’s as

(1.6) |zn:ﬂi(l‘(i)—f)l SSJ"ZH:(‘“_‘T)Z
=1 =1
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Returning to r(,) — r(4) where 1 < p < ¢ < n. it is clear that

(4.7) I(p) = 2(q) = (T =) = (2(g) —T)
1 & 1 z
(4.8) < =2 (ep—-I)———= ) (zx— 1)
pg (W) n—q+l,§ (@)
Substituting @y = - = a, = 1/p. ap41 = --- =@,y = 0. and a; = +-- = a, =

—1/(n — ¢+ 1) into {(4.6) leads immediately to (4.1).

Substituting the case ¢ = n and p = 1 into (4.1) gives the right-hand side of (2.32).
As observed by both Fahmy and Proschan [67] and Arnold and Balakrishnan (1939)
[6]. it is not possible to generalize the left-hand side of (2.32) to provide non-trivial
lower bounds for the differences of order statistics. A related topic is the ratio of
order statistics r(p)/r(4). which was studied from a matrix perspective by Merikoski.
Styan and Wolkowicz [144].

As mentioned by Fahmy and Proschan [67]. Arnold and Groeneveld [12] in 1979 gave
similar bounds for the expected difference of order statistics taken from a sample

with common expectation E.X and variance o?. Then. for | < p < ¢ < n as above.

nn—q+p+1)
pln—q+1)

(4.9) E[Xtp — X)) < U\J

We are grateful to Herbert A. David for pointing out to us that the “unified approach

given in §2 of David [36] mayv be used to strengthen the inequality (4.9) to
S 7Y A S {

(n—1)(n—g+p+1)
pln—qg+1) '

(4.10) E[X¢p) — Xig)] < UJ

4.2. A Comparison of the Bhatia-Davis and Guterman Bounds.

Even though the inequality strings (2.42) and (2.43) are both bounded below by s?
and above by irz. the values for each upper bound for the variance are. in general.

different. For the Guterman inequality (2.42):

(4.11) s‘lng(z.-—f)'-’ = s+ (F-1)°
n

while for the Bhatia-Davis inequality (2.43):

(4.12) 5% < (Tmax = ENE = Tmin) =
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Thus, we can see that the relative tightness of the Guterman and Bhatia-Davis
inequalities as upper bounds for the variance (and correspondingly. lower bounds

for the range) is a function of the magnitude of the (¥ — 7) term.

The Guterman inequality as an upper bound for the variance is ~better” than the
Bhatia-Davis inequality, and correspondingly, the Bhatia-Davis inequality as a lower
bound for the range is “better” than the Guterman inequality whenever T is “close”

to r. In the case when z is not “close™ to . the opposite holds.

I is "close” to f. for example. when the n numbers are symmetrically distributed and
Imax and Irmin are virtually the same distance from the mean. r is not ~close™ to 1
when the n numbers have a skewed distribution and ryax and z4in have significantly
different distances from the mean. Equality between the Guterman and Bhatia-

Davis bounds obviously occurs when # = r.

4.3. A Comparison of the Margiritescu-Voda and Bhatia-Davis Bounds.

Similarly to §4.2 above. even though the inequality strings (2.42) and (2.43) are
both bounded below by s? and above by r?/4. the values for each upper bound for

the variance are. in general. different.

For the Margaritescu-Voda inequality (2.44):

o It' i k > a2 - 2k 2 2
(_1.13) s° S L{T—)I'- = _l_r" — (_r.z_qh)r-
n- 4 4n*

while for the Bhatia-Davis inequality (2.43):
(4.14) s° < (Tmax = I)(T — I'min) =

So we have for the Bhatia-Davis bound. denoted Jgp and the Margaritescu-\Voda

bound. denoted Jypv.

(n =2k )2 2

4n? — %)

-2k
(n '.Zn) ) ( + (- i))
(.i'

erax'{" (n - L -rmm) ((n _K)Imax +1‘Irrun —.i‘)

Ht

Jgp — v =

n
Now. if we set

k-rmax + (Tl - k)Imin (n - k)rmax + I\‘l’mjn
a= and b= .

n n

then
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(4.15) 88D — v = (f—a)(b—1T).

Regardless of whether a or b is greater, the Bhatia-Davis bound will be greater than
the Margaritescu-Voda bound whenever r lies in the open interval between a and 6.
so that (4.15) is positive. Thus, the Margaritescu-Voda inequality as an upper bound
for the variance is “better” than the Bhatia-Davis inequality. and correspondingly.
the Bhatia-Davis inequality as a lower bound for the range is “better” than the
Margaritescu-Voda inequality whenever I lies in the open interval between a and b.
In the case when I does not lie in this interval. the opposite holds. Equality between

the Bhatia-Davis and the Margaritescu-Voda bound occurs when either

(4.16) F = ¥ Lmax + (17 — k) Zmin o o (2= F)Zmax + ki
n n

~ -

One case in which this equality condition is met is when & = n/2 and £ = 7. In

fact. under this condition (2.42). (2.43) and (2.44) are all equal.

A comparison of the Bhatia-Davis and Margaritescu-Voda bounds was also per-
formed via simulation by generating random numbers from several different known
distributions and then calculating the Bhatia-Davis bound and the Margaritescu-
Voda bound for 1000 trials. each of 100 random numbers. The random number
generation was based on algorithms presented by L. Devrove [64] and P. L'Ecuyer
[L11]. The results are summarized in Table | below. in which Jgp signifies the
Bhatia-Davis bound and Jyyv signifies the Margaritescu-Voda bound. as before. The
most striking result is the complete dominance of the Margaritescu-Voda bound over
the Bhatia-Davis bound for observations from the exponential distribution. which is
most likely a consequence of the asymmetry of this distribution. These results are

still under investigation.
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Distribution Proportion of Trials Proportion of Trials
where 3\viv > 3gp where J\v < 3gp
Uniform [0,1] 0.498 0.502
Normal [0,1] 0.709 0.291
Exponential (yt = 1) 1.000 0.000

Table 1: Bound Comparison on Numbers from Known Distributions

4.4. A Discussion of the Mirgéritescu-Vodai #.

The integer k was introduced by Margaritescu and Voda in their 1933 paper [131]
as the number of observations greater than or equal to the mean in a sample of n
observations. so that 1 € & < n. Even earlier in 1977. A. Lupas [L17] introduced
an integer ko. defined similarily. in a non-statistical but related paper exploring
bounds for real roots of polvnomials. In this paper. kg is defined as the ordinal
number of real roots greater than or equal to the mean of the n real roots of an
n-th degree polynomial. and is involved with a proof of the Laguerre-Samuelson
inequality. Despite the fact that this ordinal number of observations above the
mean has attracted very little attention in the statistical literature. it is worthy of
consideration as an accompaniment to the classical mean. median. and mode of a

finite sample.

[n the simulation study mentioned in §4.3. in addition to comparisons between the
Margaritescu-Vodd and Bhatia-Davis bounds for 1000 trials each of 100 random
numbers generated from a known distribution. the integer & was also calculated
for cach of these 1000 trials. From this data. a frequency plot of £. 1 < &k < 100
is obtained for the 1000 trials from each randomly-generated distribution. and is
given in Figures 1-3 below. The most striking contrast is the horizontal shift in the
frequency plot of & for the exponentially-distributed numbers. which is most likely

a consequence of the asymmetry of this distribution.
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. Figure 1: Frequency of k in Trials from a Standard Uniform Sample.

140 -
120 -

Frequency

—t

N DO O
O O0OO0OOo o6
N

o

O v O n O O UV O N O N O w
- - Mm N T @« W N WO W

Value of k

o un O (=]
~ N @ )

100

(2] wn w
[3V] =) [=2]

Figure 2: Frequency of k in Trials from a Standard Normal Sample.
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Figure 3: Frequency of k in Trials from an Exponential (z = 1) Sample.
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5. Related Matrix and Polynomial Topics

5.1. Bounds for Real Eigenvalues.

When the real n x n matrix A has all its eigenvalues real. e.g.. when A is symmet-
ric, then the Laguerre-Samuelison. Brunk and Bovd-Hawkins inequalities provide
bounds for the eigenvalues of A as observed by Wolkowicz and Styan [2538]. [259]:
see also. e.g., Merikoski [142], Merikoski. Styan and Wolkowicz [144]. Merikoski and
Wolkowicz [150]. These bounds were rediscovered by Tarazaga [239].

As Mirsky [154] and Brauer and Mewborn [10] pointed out. the mean and variance

of the eigenvalues A, may be expressed in terms of the trace of A and the trace of

A?:
(5.1) m = —Z = —trA
and

LA 1 2
3.2 ==Y N _[=F ) =2trA2 - (= )
(3.2) SN ( Z\) —trA (ntrA)

Then from (2.13) and (2.14) we obtain:

Amax = M1 <m+svn—1

(5.3} m + \[_

and

(3.4) svn =A Sm— —=

while from (2.19):

(3.3) m—s\/n H_I<,\k<m+s % for hk=2..... n—1.
where Ay is the k-th largest eigenvalueof Ak =2..... n—1. The question of bounds

on eigenvalues when both trA and det A are known is discussed in Merikoski and
Virtanen [149].
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5.2. Bounds for the Spread of Real Eigenvalues.

When the r(;; = A;, the ordered eigenvalues of a matrix A, then the term ~spread

of a matrix” for A\; — A, was introduced®® in 1936 by Leonid Mirsky?® (1918-1983)

in [134]. in which it was also noted that the variance of the \; can be expressed as

in (3.2) for a symmetric matrix A.

The von Szokefalvi Nagy-Popoviciu Inequalities (2.32)and (2.31) respectively give

the following bounds for the spread in terms of the ~“variance™ of the eigenvalues.
4

9 2 2 ”
(5.6) “trA? - (%uA) < (M= A0)? < 20A% - (1rA ).

and for the “variance” of the eigenvalues in terms of the spread.

(5.7) (A — A2

1 1 ” 1 21
(A — AL)? < ~trA? — (-—trA) < -
2n n n 4

5.3. Matrix Inequalities Related to the Cauchy-Schwarz Inequality.

Two of our several proofs of the Laguerre-Samuelson inequality were based explicitly
on the Cauchy-Schwarz inequality which. as we noted in §3.1. "may be perceived to

“30 of the Laguerre-Samuelson

be lurking in the background of many of the proofs
inequality. cf. §3.1.4. §3.1.6. and Lemma 3.1.6. Moreover. the discussion in [23].
[50]. [51]. [178]. and [243] of the proof given in §3.1.8 is all centered around the

Cauchy-Schwarz inequality-.
In their 1996 paper Pecari¢. Puntanen and Styvan [201] presented the following

matrix-theoretic extension of the Cauchy-Schwarz inequality: here a g-inverse (gen-

eralized inverse) X~ is any matrix X~ such that XX~ X = X.

Theorem 5.3.1. Let A be an n xn symmetric and nonnegative definite matrir with
AP} defined as

AP: p=1.2.._.
APl = PAo=A(A’A)"A": p=0.
(A*)P: p=—-1.-2.....

where At is the (unique) Moore-Penrose inverse of A, and Pa denotes the orthog-

onal projector onto the column space C(A) of A. Let t and u be n x 1 vectors. and

**In their 1943 Biometrika paper [197]. p. 89. Pearson and Hartley use the term “spread” as an
alternate name for “range” at the beginning of their Introduction.

**For biographical accounts, see [46].[43], [227].

3%Arnold and Balakrishnan [6]. p. 45.
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let h and k be integers. Then

(5.8) (tALB+/2h))2 < ¢ ATRM . WA
forh.k=....,—1.0.1,2,..., with equality if and only if
(5.9) At x AUFG=RY2h,

Several extensions of the Theorem 5.3.1 and some statistical applications are also

given in Peéari¢. Puntanen and Styan [201].

When # =1 and & = —1. then the inequality (5.8) becomes
(5.10) (t'Pau)’ < t'At-u’Atu.

cf. Bancroft [23].

Equality holds in (5.10) if and only if

(5.11) At x Ppu.

When t = w. u = x and A = C. the centering matrix I, — n~'ee’ as in (3.19). then

At = Pa = C and (5.10) becomes

(5.12) (w'Cx)? < w'Cw - x'Cx.

which is equivalent to {3.22) in Lemma 3.1.6. and the equality condition (5.11)

becomes

(5.13) Cw x Cx.
which is equivalent to (3.23) in Lemma 3.1.6%!.
We may also express (3.10) as

(5.14) (t'u)) < t’'At-u’A"u  forall ueC(A)

and for any. and hence for every g-inverse A~. cf. Neudecker and Liu [178]. The

quadratic form u’A~u in (5.14) is invariant with respect to the choice of g-inverse

3Gince Cw = kCx is equivalent to x = (1/k)w + (k& — w)e, where & = w'e/n.
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A~ when u € C(A). since then u = Av for some v and so WA~u = VVAA“Av =
v/ Av = v/ AA"Av for any g-inverse A~. Equality holds in (5.14) if and only if

(3.13) At x u.

Chaganty [50] presents (5.14) with the Moore-Penrose inverse A* instead of a g-
inverse A~ and observes that equality holds in (5.14) when t = A*u which. since
u € C(A). implies At = u. cf. (5.13).

Trenkler [245] observes that Baksalarv and Kala [18] showed that

(5.16) (t'u)? < at’At for all ueC(A)

provided that then u’A~u < o for any. and hence for every g-inverse A~.

[f we now let u =1t € C(A). then (5.14) becomes

(5.17) (t't)) <t'At-t'A"t for all te€C(A)

for any. and hence for every g-inverse A~: when t # 0 then equality holds in (5.17)

if and only if t is an eigenvector of A. cf. Lemma 2.1 of Dey and Gupta [63].

5.4. Matrix Inequalities Related to the Sz. Nagy-Popoviciu Inequalities.

Let z be an n x 1 vector with 2’z = 1. and let A be an n x n symmetric matrix. not

necessarily nonnegative (or positive) definite. Then the inequality:
(5.13) z’A%z — (ZAz)* < (A — o)

was cstablished in 1983 by Styan [231]: here \; and A, are. respectively. the largest
and the smallest eigenvalues of the symmetric matrix A. Already in 1975. however,
Bloomfield and Watson [36] proved that

P
(3.19) tr[Z'A’Z — (Z'AZ)*) < =) (A — Aminr)e
=1

W= |

where Z is an n x p matrix with Z'Z = I, and n > 2p. and where A} 2 --- 2 A,
arc the ordered cigenvalues of the symmetric matrix A. When p = 1 then (5.19)
reduces to (5.18). In 1996 Jia [94] reestablished (5.19) and referred to (5.18) as
the ~Styan Inequality”™ (even in the title of [94]). \We note that the matrix A in

(5.18) and (5.19) need not be nonnegative (or positive) definite since both sides of
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these inequalities remain unchanged if we replace A by A + kL. where & is a scalar

(positive or negative).
The inequality (5.18) is a generalization of the right-hand inequality in (2.31):

(3.20) s? < %(Imax - xmin)z .

[f we put \{ = Tmax. An = I'min. and z = Pe/\/n. where e is the n x 1 vector with
each element equal to 1. and the n x n orthogonal matrix P diagonalizes A so that
the diagonal matrix A = diag{A;} = P’AP. in (5.18) then it becomes (3.20).

Now let A be an n x n symmetric positive definite matrix with necessarily positive
eigenvalues A\ > --- > A, > 0. and again let Z be an n x p matrix such that
Z'Z = 1,. Then Liu [112] posed the problem (solved by Bebiano. da Providencia
and Li [27] and by Liu [L13]): Show that provided n > 2p:

trZ' A*Z < PN+ A j)?

te(Z’AZ)? — AT M

(5.21)

When p = 1 then the inequality (5.21) reduces to the Krasnosel’skii-Krein [nequality:

x’'A%x - x'x < (AL + Aq)?

5.2
(5-22) (XAX)? = 4.

due to Krasnosel’skii-Krein [104]. cf. Watson. Alpargu and Styan [251].

Another extension of (3.18) was obtained by Liu and Neudecker [114]. who showed

that:

Al T AL (A T AT < M - )L

where = denotes the elementwise Hadamard (or Schur) product and < the Lowner
or nonncgative definite partial ordering. The matrices A, and A, are n x n and
positive definite with A\ and \,. respectively. the largest and smallest eigenvalues

of the Kronecker product A; I A,.

A similar extension was given by Pecari¢. Puntanen and Styan [201]. who proved

that
T'A’T — (T'AT) <p (A — A, )*T'AA'T.

where A is an n x n nonnegative definite matrix of rank r with r positive eigenvalues
A1 > ---> A, > 0. At is the Moore-Penrose inverse of A. and T is an n x k matrix

such that AA'T is a partial isometry, i.e.. T'AA!T is (symmetric) idempotent.
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For further closely related results see e.g.. Baksalary and Puntanen [19]. Liu and
Neudecker [114], and Mond and Pecarié¢ [163]. [165]. {164].

5.5. Bounds on Solutions of the Symmetric Equations.

D. S. Mitrinovié¢ [156] in 1965 considered bounds for a. b. and ¢ in the following

system of equations:

a+b+c = p
bc+ca+ab =

Bounds can easily be derived by considering p and g as the coefficients of a cubic
polyvnomial with real roots a. b. and ¢. So in Laguerre's formulation. p = —a,.
¢ = a2. and we have corresponding values for the mean and standard deviation of
a. b. and ¢:

. VV2(p?-3q)

s = 3

21
Il
W

So. based on the Laguerre-Samuelson. Bovd-Hawkins. and Brunk inequalities. we

have the following bounds:

£+ @ < max{a.b.c} < £ +2 p;-zq
g_@ < med{a.b.c} < E+ @
g_g@ < minf{a.b.c} < & - NGEE

3

These bounds correspond precisely to those given by D. S. Mitrinovi¢ [136] in 1963.
An example presented by Mitrinovic¢ in this paper was proposed by R. L. Goodstein
[77] in 1948. Two other special cases of this system were proposed as a problem by
C. lonescu-Tiu [90] in 1975. which was solved by A. Lupag [118] in 1984. C. Nicolau.
apparently unaware of the work of Laguerre {109]. derived [179] identical bounds for
the real roots of a cubic polynomial in 1933 and then extended [130] this result to
provide bounds. identical to (2.9). for the real roots of an n-th degree polynomial in
1939.



6. Biographical Information
6.1. Edmond Nicolas Laguerre.

Edmond Nicolas Laguerre was born on 9 April
1834 in Bar-le-Duc, France. His mathematical ed-
ucation was the product of several schools. most
notably the Ecole Polytechnique in Paris, where
he placed a mediocre 46th out of 94 students. This
placement was accompanied by the following com-

ments {41}

“Cet éléve tres intelligent aurait pu
rester classé dans les premiers de

sa promotion, mais n'a pas travaillé.

Extrément dissipé.”

In 1354, Laguerre abandoned his studies and accepted a commission in an artillery
regiment of the French army. He retired from the military ten vears later and
returned to the Ecole Polytechnique and was employed as an instructor. His work
ethic seems to have improved over the remaining 22 years of his life, as he published
140 papers in the areas of geometry and analysis. Over half of these papers were
in geometry. however, this portion of his work is not acknowledged nearly as much
as his work in analysis and differential equations. He is especially known for the
Laguerre polynomials, which are the solutions of the Laguerre equations. When
his health began to fail in 1886, he returned to Bar-le-Duc, where he died on 14
August, 1886. According to [32]: “Laguerre was pictured by his contemporaries as
a quiet, gentle man who was passionately devoted to his research, his teaching, and

the education of his two daughters.”

Copyright release for photograph requested from [185].
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6.2. Julius von Székefalvi Nagy.

The following obituary has been translated from [237]*? by Gabriel Holmes.
Hungarian mathematics has suffered a diffi-
cult loss: on October 14, 1953 Gyula (Julius)
Szokefalvi-Nagy passed away after lengthy suffer-
ing. Our journal will sorely miss him both as
a contributor and as one of our oldest and most
hard-working co-workers. He has been correspon-
dent [with us] since 1934. and has been a mem-
ber of the Hungarian Academy of Science since
1946. Gyula Szokefalvi-Nagy was born on April
11. 1887 in Erzsébetvaros in Siebenbiirgen. and

studied from 1905 to 1909 at Koloszvar University,

where he quickly received his doctorate in 1909.

In the academic year 1911-12 he continued his studies at Géttingen University, earn-
ing a stipend. His academic career came into its own in 1913, when he established

algebra and function theory departments at Koloszvar University.

At the same time, he was elected director at the “Marianum” trade-school for girls.
where he had worked as a teacher for several vears. He remained in this position
until 1919 when the Hungarian university left the city of Koloszvar and moved first
to Budapest and finally to Szeged. Ten years later, he could reassume his teaching
position at the University of Szeged, where his former colleagues still worked. At
the same time, he was called upon to succeed Béla Kerékjarté as chairman of the
geometry department. Shortly thereafter, however, he was transferred to the Uni-
versity of Koloszvar, which the Hungarian government had recently reopened. Here
he continued to work hard at his teaching and scientific work, which were also made

difficult by the war and social turmoil.

During this period he wrote a book (in Hungarian) on the theory of geometric con-
structions. In December 1943, perhaps brought on by the stress associated with this
and his administrative duties, he suffered a stroke from which he never spiritually

recovered. [t permanently crippled half of his body and threatened to return. In
' September 1943, severely ill but full of unfettered enthusiasm for his work, he re-

turned to Szeged to reassume his teaching position at the university, where his son

32Copyright release requested
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Bela currently works. There he worked until his very last moment. He lectured in
the nearest university building and later (due to his worsening condition) at home.
He also published 38 more works and prepared an expanded edition of his book on

geometric constructions, this time in German.

Gyula Szokefalvi-Nagy was an enthusiastic and remarkably productive researcher in
gcometry. In all, he published 148 works, all of which concerned either geometry
or gcometrically meaningful problems in analysis and classical algebra. His finest
research included: geometric and algebraic properties and relationships between
algebraic curves and surfaces: curves and surfaces (not necessarily algebraic) of
maximal index and maximal class index (one of his most fruitful pieces of researchj:
the geometry of convex regions and bodies: the theory of geometric constructions:
and many kinds of questions concerning the distribution of roots of rational and

transcendental functions.

We will always cherish the memory of Gyula Szokefalvi-Nagy and his amazing spirit.



6.3. Tiberiu Popoviciu.

The following obituary has been translated from [)08]33 by Alexandru Ghitza.
Professor Tiberiu Popoviciu passed away on Oc-
tober 29, 1975. He was a member of the Fac-
ulty of Mathematics of the Babes-Bolyai Univer-
sity in Cluj-Napoca, and a renowned representa-
tive of Romanian mathematics. Born on February
16. 1906 in Arad, his exceptional talent became ap-
parent while he was still in high school. He was an
active contributor to Gazeta Matematica as well
as an editor of Jurnal Matematic which became
a publication known abroad. After he obtained

his bachelor degree in Bucharest. he attended the

Ecole Normale Superieure in Paris between 1927

and 1930.

This is where he obtained his doctorate in mathematics in 1933 — in his thesis “Sur
quelques propriétés des fonctions d’une ou de deux variables réelles™. he introduced
the notion of a convex function of higher order. which has proved a fundamental

tool in the study of approximation of functions.

Back in his natal land. he dedicated all his efforts and talent to the development of
mathematical education in Romania and moved to the top of the academic hierarchy
in the universities of Cluj, Bucharest and lasi. [n 1946 he settled permanently in
Cluj. where he created a prestigious school of numerical analysis, well known and
appreciated by the entire mathematical community. At the same time he contributed
significantly to the organization of mathematical education, as dean of the Faculty
of Mathematics and Physics in Cluj between 1950 and 1953, and as head of the

analysis group until a few years before his death.

As a recognition of his extraordinary scientific merit, he was elected correspondent
member of the Romanian Academy in 1948, to become a full member in 1963. As
such he organized and chaired the Institute for Computing of the Academy in Cluj-
. Napoca, based on a close collaboration between mathematical research and industry,

an idea that Tiberiu Popoviciu supported with energy and competence during his

33Copyright release requested
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entire life.

As a man of science. he contributed to the international renown of Romanian mathe-
matics through his active participation in the international mathematics community

as well as the organization, in Cluj-Napoca. of several prestigious scientific activities.

Through his remarkable results. recorded in more than 300 studies and monographs.
he appears as a leading specialist in fields like analysis. numerical analysis. algebra.

number theory and functional analysis.

Founder of the Romanian school of numerical analysis. he greatly contributed to
the subject. He established calculus of divided differences as a pre-differential cal-
culus. proved a general average formula which allows the explicit formulation of
the remainder of linear approximation formulas in analysis. and began the study of
conservation of shape properties for operators that come up in the theory of best

approximation.

A teacher and a scientist. Tiberiu Popoviciu also helped a great deal in the pop-
ularization of mathematics. as president of the Cluj subsidiary of the Society for

Mathematical Sciences.

For his special contributions. he was awarded the prestigious title of “Emeritus

scientist” as well as several awards and medals of the Socialist Republic of Romania.

In Tiberiu Popoviciu. science and education in Romania loses one of its foremost

representatives.
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6.4. Keshavan Raghavan Nair.

Keshavan Raghavan Nair was born on 13 May

1910, the only son of seven children, in the vil-
lage of Parur near the southern tip of India. He
completed his B.A. (Honours) degree at the Ma-
haraja’s Science College in 1932 but had the mis-
fortune of graduating in the midst of the Great
Depression. Against the stiff competition of that
© period, K. R. Nair succeeded in procuring a schol-
arship for research from the University of Madras

that eventually lead to a Master of Science degree
in 1936.

The following years spent at the Indian Statistical [nstitute with colleagues such as
P. C. Mahalanobis, R. C. Bose, and C. R. Rao, were described by Nair [177] as “the

most fruitful in my research career™.

After a seven year term at the Indian Statistical Institure and several additional
years under the Government of India, K. R. Nair attended the University of London
and completed his Ph.D. degree under the supervision of E. S. Pearson and H. O.
Hartley in 1947. Following the completion of his doctorate, Nair returned to India

and continued statistical work for the Government of India and then eventually the
United Nations.

In 1992 Nair observed in his autobiographical essay “In statistics by design™ [L77]
that

“On the research side, after almost two decades of hibernation. I found
during 1979, to my amused amazement, that an inequality establish-
ing the upper limit of the extreme deviate from a sample mean which
[ had presented in a small section of the third part of my Ph.D. the-
sis [168] of 1947 and published in the Journal of the Indian Society of
Agricultural Statistics, Vol. I (1948) (see [171]) was rediscovered by the
world renowned American Economist. Professor Paul A. Samuelson, No-
bel Laureate, two decades later in a paper entitled: “How Deviant Can
You Be?” [216] in the Journal of the American Statistical Association,

Vol. 63 (1968). ... this paper escaped my attention until 1979 when
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[ chanced to see a reference to it in an article entitled “Extensions of
Samuelson’s Inequality” [236] in the “American Statistician™. Vol. 33
(August 1979 issue). That tempted me to proclaim. through a Letter to
the Editor of that Journal in 1980 my precedence over Professor Samuel-

son in the discovery of this inequality.”

Copyright release for photograph requested

19



6.5. Paul Anthony Samuelson.

Paul Anthony Samuelson was born on 15 May
1915, though he himself claims that [218] “truly,
he was born on the morning of January 2, 1932, at
the University of Chicago.” He graduated amidst
innumerable honours with a B.A. degree in 1935
from the University of Chicago, and then with
both a M.A. degree in 1936 and Ph.D. degree in
1941 from Harvard University. During his doctoral
work at Harvard, Samuelson wrote his celebrated
Foundations of Economic Analysis. Tempted away

to a position at the Massachusetts Institute of

Techonology in 1940, Samuelson was to remain

there for his entire career.

He also served as advisor to several government offices, including the U.S. Treasury
and the Federal Reserve Board. Among his most prominent accolades were the first
John Bates Clark Medal of the American Economic Association in 1947 and the

1970 Nobel Prize in economics.

According to Samuelson’s autobiographical essay “Economics in my time” [218]:

“When I began the study of economics back in 1932 on the University
of Chicago Midway, economics was literary economics. A few original
spirits—such as Harold Hotelling, Ragnar Frisch and R. G. D. Allen—
used mathematical symbols ... Such esoteric animals as matrices were
never seen in the social science zoos. At most a few chaste determinants
were admitted to our Augean stables. Do [ seem to be describing Eden,
a paradise to which many would like to return in revulsion against the
symbolic puss-pimples that disfigure not only the pages of Econometrica

but also the Economic Journal and the American Economic Review?”

Photograph © The Nobel Foundation



In our bibliography below references to Jahrbuch fiir die Fortschritte der Mathematik are denoted
by JEM (for reviews published in 1868-1930). Mathematical Reviews by MR (for reviews published
since 1940), Zentralblatt fur Mathematik [261] by Zbl (for reviews published since 1931). and to
Current Mathematical Publications by CMP.
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