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ABSTRACT

A methodology is presented to calculate the response of a wing as weil as the aerody­

namic forces on the wing, due to forced aileron oscillations. The purpose of oscillating the

ailerons in Hight is to excite the vibration modes of the wing. From vibration recordings

and knowledge of the aerodynamic forces induced by the aileron oscillation, the vibration

modes of the wing can be identified. Identified modes may then be compared to wing

vibration modes which are ca/cu/ated through aeroelastic analyses of the wing. In partic­

ular, the Hutter characteristics of the wing, predicted through aeroelastic analyses, can

be verified.

The flutter and forced aileron oscillation analyses are performed on the aeroelastic equa­

tions built for a finite-element model of the wing. An existing finite-element model is

used. The aerodynamic forces induced by wing vibrations are calculated through the

doublet-Iattice method, using existing software. The Hutter and forced aileron oscillation

analyses are based on the modal form of the aeroelastic equations. The modal transfor­

mation and the resulting equations are rigourously outlined. A physical interpretation of

the mathematical formulae is given.

In particular, the effect of the nonlinear wing-fold hinge is addressed. In order to maintain

linear aeroelastic equations, the nonlinear hinge characteristic is linearized. This imposes

an iterative solution of the aeroelastic equations.

Sample Hutter calculations are performed for different values of the equivalent linear wing·

fold hinge stiffness. The P-k method is used. Extensive studies of the effect of structural

nonlinearities on wing Hutter behaviour are described in the literature.

The study of forced aileron oscillations was the main part of the thesis. The equations
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and the iterative algorithm are built. The wing response and aerodynamic forces are

calculated for different values of flight parameters, and the aileron oscil\ation amplitude

and frequency. The effect of the structural nonlinearity is addressed, as weil as the effect

of the wing flexibility and the number of modes retained in the equations.

Although sorne interesting conclusions could be drawn from the results, further work of

evaluating the accuracy of results is ..equired. Another suggested topic for future work is

the study of modal identification methods, and their integration with the work described

here.

The analysis in this thesis represents a generic analysis of an aircraft, and thus only

normalized numerical values are given.
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SOMMAIRE

.Une méthodologie est présentée pour calculer la réponse d'une aile, ainsi que les forces

aérodynamiques correspondantes, résultant d'une oscillation imposée des ailerons. L'oscillation

des ailerons a pour but d'exciter les modes propres de vibration de l'aile, afin d'identifier

ces modes. On peut ensuite comparer les modes identifiés aux modes correspondants

calculés par des calculs fluidélastiques de l'aile. En particulier, des prédictions de modes

instables de vibration peuvent être verifiées.

Dans le présent travail, les prédictions d'oscillations fluidélastiques instables, ainsi que

les calculs de la réponse de l'aile aux oscillations imposées des ailerons, sont basés sur

un modèle éléments-finis de l'aile. Un modèle existant est utilisé, ainsi qu'une méthode

existante ('doublet lattice method') pour calculer les forces aérodynamiques oscillatoires.

Tous les calculs sont basés sur la forme modale des équations fluidélastiques. La trans­

formation modale et les équations résultantes sont présentées de manière rigoureuse.

En particulier, l'effet d'une nonlinéarité dans le modèle structurel est adressé. Pour

maintenir des équations linéaires, la nonlinéarité est remplacée par un élément linéaire

correspondant. Ceci impose une solution itérative aux équations.

Des analyses de prédiction d'instabilités fluidélastiques sont décrites en détail dans la

litérature, pour l'aile étudiée dans le présent travail, et ont permis une comparaison avec

des résultats obtenus dans ce travail.

La plus grande partie du présent travail a consisté en l'étude des oscillations forcées des

ailerons. Les équations et la solution itérative sont décrits. La réponse de l'aile et les forces

aérodynamiques correspondantes sont calculées pour différentes valeurs des paramètres du

vol, et de l'amplitude et la fréquence d'oscillation des ailerons. Les effets de la nonlinéarité
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structurelle, de la flexibilité de l'aile, et du nombre de modes vibratoires sont quantifiés.

Si l'auteur a formulé certaines conclusions, il suggère û.ussi des voies futures de travail:

études de sensitivité pour quantifier l'erreur; une analyse des méthodes d'identification

de modes vibratoires, et de l'intégration avec le présent travai!.

La présente analyse représente une analyse générique d'une aile, et ne donne que des

résultats normalisés.
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USED DESIGNATIONS

Vector of forcing terms in the direct equations of motion.

Vector of modal generalised forces.

Vector of aerodynamic induced modal forces.

Vector of modal forces due to imposed aileron oscillation.

Vector of grid point displacement.s in the finite-element model of the wing.

Vector of modal amplitudes.

Mode shape vector in terms of direct coordinates.

Vector of complex modal amplitudes for oscillatory wing motion.

Amplitude of forced aileron oscillation.

i-th wing natural mode.

Modal matrix of the wing.

Direct mass matrix of the wing.

Direct stiffness matrix of the wing.

Modal mass matrix of the wing.

Modal stiffness matrix of the wing.

Modal damping matrix of the wing.

Imaginary part of the matrix of aerodynamic induced modal forces.

Real part of the matrix of aerodynamic induced modal forces.

Number of degrees of freedom in the finite-element model of the wing.
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Chapter 1

Introduction

This chapter gives a description of the purpose and subject of the thesis, inc1uding

• the aircraft wing structural analysisj

• the modal aeroelastic equations (wing-f1ow interaction equations) and the f1utter

instability analysisj

• forced aileron oscillations of the wing for in-fiight testing of the analytically obtained

wing oscillation modes;

• the effect of the nonlinear wing-fold hinge on above analyses.

This first chapter is mainly descriptive. Detailed analytical elaboration of each of

the subjects is given in the following chapters.

4
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1.1 Purpose of the Study

The purpose of the thesis is .

• to accurately describe a methodology to calculate the wing motion and aerodynamic

forces due to forced aileron oscillations;

• to implement the methodology, using hoth the flutter analysis software available

at the National Aeronautical Establishment (now Institute of Aerospace Research),

and programs written for this thesis at the McGiIl University;

• to perform example calculations for a limited set of wing configurations and flight

parameter values, to assess the feasibility of the method as weil as of the interpre­

tation of the resultsj

• to compare the methodology and results with reference [4J, where applicable.

5
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1.2 Subject of the Study

A structura! ana!ysis of the aircraft wing is performed using the finite-element method.

This analysis yields eigenfrequencies of the wing, with corresponding eigenmodes.

Any deflection of the wing can be written as a linear combination of eigenmodes.

The coefficients in this linear combination are referred to as the modal amplitudes.

Equations of motion of the wing are then constructed. One of the possible forms in

which these equations can be written is in terms of these modal amplitudes. This modal

form of the equations is convenient for two main reasons:

• a.erodynamic forcing terms in the equations will be conveniently calculated as modal

forces;

• the modal form allows a reduction of the order of the system of equations of mo­

tion. The order of the equations of motion as obtained from the finite-element

analysis is indeed too large (equal to the number of degrees of freedom in the finite­

element model, or approximately 150 for the wing model) to be corriputationally

cost-effective in an iterative solution process. A reduction of the order of the equa­

tions by considering only the most important contributing modes makes calculations

tractable, concentrates the effort on the most important contributions, and is likely

to provide acceptable results in a frequency range of interest.

Forcing terms are added to the structural equations of motion of the wing. These forcing

terms are added in two successive steps.

• When a vibrating wing, or structure in genera!, is placed in a fluid flow, forces of

the flow on the structure are altered by the oscillation of the structure. ln other

words, adynamie, oscillating force is induced on the structure by the oscillation of

this structure. The equations of motion of the wing which include these oscillatory

6
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forces due to the interaction between the structure and the f1ow, are the aeroe/astie

equations of motion. An analysis of the aeroelastic equations provides stability data

of the structure-f1ow system. The occurrence of dynamic instability is referred to as

wing flutter.

• ln a second step, external (other than the induced aerodynamic forces) forces are

added to the aeroelastic equations. For the study described here, external forces are

imposed on the wing for experimental verification of theoretical f1utter predictions

via f1ight tests. The external forces are induced on the wing by forced aileron

oscillations.

Flutter is a violent and dangerous instability. Under certain f1ight conditions, a slight

oscillation can induce aerodynamic forces which help the initial oscillation to grow ex­

ponentially. The airspeed is the most important parameter influencing the occurrence of

flutter. Flutter typically occurs above a given airspeed. The f1ight speed should be kept

lower than this critical airspeed, with sorne safety margin.

Theoretical flutter calculations are based on approximate models of the structure

and the aerodynamic forces, as weil as approximations in the calculations (e.g. reduction

of the order of the system of equations). Results must be verified via flight tests. ln

these f1ight tests, an excitation is applied to the aircraft wing in flight. From measured

responses, one can identify modes and their frequency and damping, and compare them

to theoretically predicted modes at the same f1ight conditions. ln sorne flight tests, the

external excitation is provided by oscillating the ailerons [2]. The aileron oscillation

induces aerodynamic forces on the wing. ln this thesis, we calculate the deflection of the

wing resulting from the aileron oscillation, and the exact aerodynamic forces induced by

it.

The f1utter analysis method we use is linear. This requires alinea.r structural model

and linear expressions for induced aerodynamic forces. Nevertheless, we want ta study the

7
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elfect of an important nonlinearity in the wing structure: the wing-fold hinge. The hinge

characteristic shows a freeplay zone around its zero-deflection position. A describing­

function technique is used to linearize the hinge, by introducing an equivalent linear hinge

stiffness. This equivalent stilfness is defined for an oscillatory deflection of the hinge,

and is a function of the oscillation amplitude. The structural nonlinearity has an elfect

on Butter analysis results. AIso, studying the elfect of the structural nonlinearity on

the response to forced aileron oscillation involves an iterative procedure of solving the

equations for successive values of the equivalent stilfness.

The following sections of this chapter help to understand the methods used. A

formai and detailed elaboration of formulas and methods, as weil as results of the study

are found in the following chapters.

8
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ln order to obtain the aeroe!astic equations of motion, we first construct the structural

equations of motion. The aeroe!astic equations, or wing-flow interaction equations, are

then obtained by introducing the aerodynamic forces induced by structura! vibrations.

ln' a finite-e!ement mode! of the wing, a motion of the continuous structure i's reduced to

disp!acements (both translations and rotations) of a discrete number of grid points. The

possible independent displacements of grid points are referred to as degrees-of-freedom.

Forces on the wing are expressed as forces and torques app!ied at the grid points. Any

oscillatory deformation mode of the wing induces oscillatory aerodynamic forces acting at

the grid points, with a certain amplitude and phase difference with respect to tbe initia!

oscillation.

1.3.1 Structural Equations

The structural equations of motion for the finite-e!ement mode! of the wing are of the

form

[M••]{ü.l + [K••]{u.} = {F.}. (1.1)

•

{u.} is the vector of independent disp!acements (translations or rotations) at grid points,

referred to as degrees-of-freedom. {F.l is the vector of externa! forces applied at grid

points. The number of components of both vectors is equa! to the number of degrees-of­

freedom in our finite-e!ement mode! of the wing. The wing mode! used in this thesis had

approximate!y 150 degrees-of-freedom.

Figure 1.2 shows a simple structure suspended in a fluid flow. The structure has

a very limi ted number of degrees-of-freedom. The rigid wing section, suspended from a

spring, can translate vertically and rotate in pitch. The aileron can rotate. The simplified

mode! is interesting for understanding phenomena. The occurrence of flutter, for examp!e,

9
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can be studied. Indeed, when the model is placed in an airf\ow and induced aerodynamic

forces are introduced in the equations, dynamic instability (f\utter) is predicted by the

equations. The number of parameters which define the model of the plate (mass, stiffness

of suspending springs, location of center of gravity and spring attachments) is small. The

effect of each of these parameters on the occurring phenomena can therefore be studied

and provides useful qualitative information.

The purpose of the study described in this thesis is different. We use a more com­

plete model of the wing, with a higher number of degrees-of-freedom (the real wing is

a continuous structure, and has an infinite number of degrees-of-freedom), in order to

obtain quantitative values which are more accurate predictions of wing oscillation param­

eters, aerodynamic forces, ... The wing is represented via a finite element mode\. The

structural part of this model is not the main topic of this thesis, and thus details are

not given here. The main elements are elastic beam elements, which together span the

2-dimensional surface of the wing. Other elements are rigid connections, hinges, .... Each

element imposes relationships between the degrees-of-freedom of the grid points which it

connects, and forces (both external and internai) applied at these grid points. The wing

inertia is modelled as concentrated masses attached to the grid points. Through matrix

manipulations, the equations of the individual elements are combined to form equations

(1.1) in the independent degrees-of-freedom, after elimination of constraints and internai

forces. The equations are linear, as they are based on a linear mode\. Matrices [M••] and

[K••], the mass and stiffness matrices respectively, are in general nondiagonal matrices.

1.3.2 Modal Aeroelastic Equations

ln flight, any deflection {u.} of the wing induces aerodynamic forces {F.} at grid points

on the wing.

ln order to build the aeroelastic equations, the induced aerodynamic forces must be

10
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expressed as functions of grid point displacements.

Let n be the number of degrees-of·freedom of the wing. A wing deflection is a vector

of dimension n. For the n-dimensional space, one can construct a set of independent

vectors spanning the n-space (basis vectors). Any deflection can then be written as a

linear combination of these vectors.

Linearity of induced aerodynamic forces assumes that the aerodynamic force induced

by a deflection is given by the same linear combination of the aerodynamic forces induced

by the basis vectors.

The set of vectors typically chosen for spanning the n-space of deflections is the set

of natural modes of vibration of the wing, or eigenvectors of the structural equations of

motion. This is a good choice for several reasons:

• eigenmodes satisfy the boundary conditions, as they are obtained from a set of

equations consisting of both the wing dynamics and its boundary constraints.

• a coordinate transformation to this set of basis vectors yields diagonal mass and

stilfness matrices.

• eigenmodes of the wing reflect the natural deflections of the wing. Even if an external

force (e.g. the induced aerodynamic forces) will not deflect the wing in one of its

natural modes but rather a linear combination of eigenmodes, a number of modes

in this Iinear combination will be dominant and others negligible. This will al10w a

reduction of the order of the system, saving computational costs.

• eigenmodes are 'smooth' natural modes. This makes the assumption that induced

aerodynamic forces can be obtained as a linear combination of contributions from

individual eigenmodes, acceptable.

It will be convenient to transform the direct equations of motion (1.1) to a new

coordinate system. The spanning vectors for the new system are the set of n eigenmodes

11
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of the wing. Vectors of grid point displacements are transformed to vectors of modal

amplitudes. Mathematical details of the transformation are given in Chapters 2 and 4.

After transformation, the equations of motion take the form

[M]{A} + [K]{A} = {F}.

The modal mass matrix [M] and the modal stiffness matrix [K] are now diagonal. The

right hand side of the equations is the vector of modal forces. External forces, e.g.

the induced aerodynamic forces, are expressed as modal forces. A deflection in any of

the natural modeshapes induces aerodynamic forces. As the wing motions which we

consider are sinusoidal, both for f1utter analysis and for the response of the wing to

forced aileron oscillation, expressions for the aerodynamic forces can be restricted to

periodic motion. The aerodynamic forces induced by a periodic oscillation of the wing

are calculated numerically.

1.3.3 Aerodynamic Forces

The aerodynamic forces are calculated as modal forces. The modal aerodynamic forces

represent how an oscillation of the wing in one mode induces forces on itse1f and each of

the other modes:

{F} = [Qr]{A} + [Qi]{À}.

The matrices [Qrl and [Qi] are nondiagonal matrices of components of modal aerodynamic

forces, respectively in phase and out of phase with the modal deflection.

It will be important to realise that the modal aerodynamic forces depend on the

frequency of the oscillation by which they are induced.

The modal aerodynamic forces are obtained through a numerical method referred

to as the 'doublet lattice method'. The method is described in [1].

Structural equations and aerodynamic forces taken together yield the modal aeroe-

12
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lastic equations

[M]{A} - [Qd{À} +([K] - [Qr]){A} = {D}.

13

(1.2)
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The aeroelastic equations (1.2) are a set of homogeneous linear differential equations. A

flutter analysis consists of a stability analysis of this set of equations.

1.4.1 Stability Analysis: Characteristic Equation Method

We assume solutions of the form

{A(t)} = {A}e>',' sin ~it. (1.3)

This represents a damped oscillation. ~; is the angular frequency. ~. is a measure of the

dampingi positive damping corresponds to a negative ~•. {A} represents the complex

shape of oscillation. By introducing the complex notation, this can be written as

{A}e>",

where ~ = ~. +j.À;. Substituting (1.4) in (1.2) yields

[À2[Ml- ~[Q;l + [K] +[Q.l] .{A} = {O}.

(1.4)

(1.5)

A nontrivial solution, {A} '" 0, to equations (1.5) can only exist for values of À for which

(1.6)

•

This equation in À is called the characteristic equation.

For each ~ = ~. +j.~i, solution of the characteristic equation, (1.5) becomes a set of

n algebraic equations in the components of {A}. n-1 equations are linearly independent.

One component of the vector can he chosen freely. The other n - 1 components can then

he calculated, determining the 'shape' corresponding to that particular À. When initial

conditions are added to the system of differential equations (1.2), these will uniquely

determine ail components of {A}. The initial-value-problem has a unique solution in

time, starting from the initial condition.

14
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The stability of any such solution can be studied from the set of homogeneous

equations (1.2), independently of initial conditions. The stabi/ity is determined by the

À values obtained by solving the characteristic equation. As the characteristic equation

has real coefficients, solutions are either real or complex conjugate pairs. The system is

stable if all À-s have negative real part Àr • Indeed, it can be seen from (1.3) that if Àr is

negative, the amplitude of the oscillation is damped exponentially.

If one À has positive real part, the system is unstable. The structure will start to

oscillate, as soon as the slightest disturbance occurs, with an exponentially increasing

amplitude. The 'shape' of the oscillation is given by the {A} which corresponds to the

unstable À.

1.4.2 Stability Analysis: Eigenvalue Method

Solving the characteristic equation is computational1y very expensive and becomes un­

tractable for a large order of the matrices. The eigenvalue method is a more efficient

way of calculating À-s and {A los. The eigenvalue problem occurs very often in applied

mathematics, and efficient algorithms to solve it have been developed.

In order to formulate the stability analysis as an eigenvalue problem, the set of

second order differential equations must be transformed into an extended set of first

order equations. We define astate vector as

A
{A,,} = { . }.

A

One can verify that

[
[ 1 J [0]) ( A ) + r [0] -[ Il ) ( A ) = {O}
[0) [M] A lCK]-&J -[Qil A

15
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[C]{A,,} + [D]{A,,} = {D}. (1.7)

•

Intoducing {A,t(t)} = {A,,}e.l' in the same way as we did for the characteristic equation

method, substitution into (1.7) yields

[À. [Cl + [Dl] {A,t} = {D}.

Finding À-values for which a nontrivial solution for {A,t} exists, is an eigenvalue prob­

lem. À·values are eigtnvalues, the corresponding {A,t} vectors are eigenvectors. Efficient

algorithms exist for solving the eigenvalue problem.

Eigenvalues are real or complex conjugate numbers. The eigenvalues deterrnine the

stability of the system. For stability, ail eigenvalues must have negative real part.

1.4.3 Flutter

The matrices of induced aerodynamic forces depend on a number of flight parameters,

such as Mach number and (equivalent) airspeed. Assuming for instance a constant Mach

number, the matrices depend on the equivalent airspeed, through the dynamic pressure

For each value of the equivalent airspeed, matrices of modal induced aerodynamic forces

can be calculated, and substituted in the aeroelastic equations. The eigenvalues of the

sytem can then be calculated. These eigenvalues determine the stability of the system.

Therefore, the stability depends on the equivalent airspeed.

Typical1y, a wing will be stable for sufficiently low airspeeds. For this stable case,

external excitations are damped due to the interaction between structure and flow. As
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the airspeed increases, the real part of sorne eigenvalues can become positive, and hence

the system becomes unstable. The interaction between the structure and the Bow has

become such that oscillations of the wing induce aerodynamic forces which help the initial

oscillation to grow.

As already mentioned, the work in this thesis assumes a model of the wing which

is sufficient!y complete to provide quantitative results. Nevertheless, a qualitative un­

derstanding of the occurrence of Butter can be obtained from simple models of a 'wing',

reduced to a rigid wing section Bexibly mounted, with two degrees of freedom: vertical

translation and rotation in pitch (Figure 1.2, without aileron rotation). For zero airspeed,

the aeroelastic equations are purely structural. For the two degree-of-freedom model,

two uncoupled modes of oscillation can be found at this zero airspeed: one represents a

vertical translation, the other a rotation in pitch about a given point. As the airspeed

increases, the aerodynamic forces can cause modes to become coupled. Each mode is a

combination of vertical motion and pitch. The most important coupling is the variation

in lift, acting in the vertical direction, due to the variation in angle of attack of the flow

on the wing, ca.used by its oscillation in pitch. Whether a mode, now a combination of

vertical motion and pitch, becomes unstable will depend on the phase difference between

pitch and vertical motion within that mode.

It can be demonstrated from the analysis of the above simple model that:

• Butter is a dynamic instability involving at least two structural modes (more general

forms of Butter which can occur with only one mode - especial1y when unsteady

effects are accounted for, are not addressed by the simplified linearized theory of

this thesis);

• interaction between two structural1y independent modes is due to induced aerody­

namic forces;

• a (combined) mode becomes unstable when the corresponding eigenvalue has posi-
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tive real part (Le. negative damping). This occurs above a critical airspeed. Flutter

is also called a 'frequency coalescence' instability, as frequencies of two modes tend

towards each other for airspeeds close to the critical value. This is another indication

that these two modes 'operate together' in causing the instability.

This same 'Butter behaviour' will be illustrated by the Butter analysis results of Chapter

3, based on the more complete wing model used in this thesis. Frequencies of two of the

structural modes will tend towards each other as the airspeed increases. These modes

are the contributing modes in the Butter mechanism. They correspond essentially to a

wing-pitch mode and a wing-bending mode.

1.4.4 P-k Method for Flutter Analysis

A Butter analysis consists of a stability analysis of the system of a.eroelastic equations,

for different values of the flight parameters.

For each set of the flight parameters which influence Butter, eigenvalues ~ are calcu­

lated. ln general, eigenvalues are complex numbers: ~ = ~. +j.~i. With ea.ch eigenvalue

corresponds an oscillation mode of the wing. ~i is the angular frequency of motion of that

mode.

A difficulty arises in flutter analysis. lnduced a.erodynamic forces depend on the

frequency of oscillation of the wing. More precisely, they depend on a 'reduced' (nondi­

mensional) frequency defined as
f*C

f.ed = 2 *V

with c a reference length (e.g. the mean chord of the wing) and V the airspeed. The

dependence becomes more important for large va.lues of reduced frequency.

The matrices of a.erodynamic forces (valid for sinusoidal motion) depend on the

frequency of oscillation, hence on ~i. However, the eigenvalues are precisely a result of
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the set of equations, hence the aerodynamic matrices. Exact eigenvalues À (or angular

frequencies of oscillation À;) therefore have to be obt~.ineà iteratively:

• guess a value for the reduced frequency of the r-th mode;

• calculate the r-th eigenvalue or angular frequency;

• recalculate the reduced frequency from the angular frequency, and restart the iter­

ation until the procedure converges;

• repeat this process for ail the eigenvalues (or ail modes).

This method is known as the P-k method. It is computationally expensive, as matrices of

aerodynamic forces must be recalculated for each new reduced frequency during the itera­

tion. In order to restrict the amount of calculation, aerodynamic forces are calculated for

a number of reduced frequencies, referred to as 'hard reduced frequencies'. Aerodynamic

matrices for any other reduced frequency are obtained by linear interpolation.

Flutter calculations in Chapter 3 were performed with the P-k method. Other

methods exist for flutter analysis, as there are the simplified P-method, and the U-g

method, for which we refer to the literature.
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1.5 Flight Testing

1.5.1 System Identification

Flight testing referred to in this thesis aims at verifying the results of theoretical calcula­

tions: oscillation modes (frequency and shape) of the wing under given lIight conditions

as wel1 as the potential of occurrence (or margin before occurrence) of flutter for varying

flight conditions (equivalent airspeed, Mach number, aircraft configuration, ... ).

An excitation is imposed on the wing and its response is recorded. From thesc

recordings, vibration modes must be reconstructed, and their frequency and damping

determined. The choice of the external excitation (excitation locations, frequency content,

... ) and wing motion monitoring (recording locations), and the subsequent identification

of modes (shape, frequency, damping) are the subject of extensive fields of study of

vibration testing and modal identification, which are not further developed in this thesis.

Refs. [2] and [3) are example publications on aircraft modal test programs and issues in

the field of modal identification.

1.5.2 Flight Testing External Excitation

In flight tests, a wing may be excitcd by oscillating the ailerons. The excitation of

the wing is due to aerodynamic forces which are induced by the aileron oscillation. In

Chapter 4, the equations and methodology are outlined which permit to introduce the

aileron oscillation forces into the equations of motion of the wing finite-element model

previously developed. Results of sampie calculations of induced forces on the wing are

presented.

The aerodynamic forces induced by the imposed aileron oscillation are an input to

the identification of wing vibration modes for given flight conditions, together with the

20
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recorded wing response.

The induced force may be calculated in any form, depending on the requirements of

different modal identification methods: either one total aerodynamic force on the wing,

or a force distribution over the wing, corresponding to the layout of multiple recording

points (e.g. acce!erometers) on the wing.

The amplitude and frequency of the aileron oscillation can be varied.
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1.6 Structural Nonlinearity

Sc far, linear structural equations have been assumed for a linear finite-element model of

the wing. Also, expressions for the induced aerodynamic forces are linear. However, a

main structural element in the wing, the wing-fold hinge, has an important nonlinearity.

The characteristic of this hinge shows a freeplay zone.

Previous studies have shown that this nonlinearity has a considerable effect on the

f1utter characteristics of the wing.

The nonlinearity is also introduced in the analysis of the wing response to imposed

aileron oscillations.

The wing-fold hinge characteristic is shown in Figure 1.1. KI is the nominal stiffness

of the hinge. Over a zone of 28, called the freeplay zone, the hinge stiffness K2 has a

much lower value. 8 is referred to as the freeplay radius. Due to preloading of the hinge

in f1ight, the freeplay zone is not located around the 'origin' of the characteristic. The

preloading is measured by the parameter P.

Due to the nonlinearity, the deflection of the hinge to an ass~med sinusoidal load

will be periodic but asymmetrie. The ratio between the hinge deflection amplitude and

the amplitude of the applied sinusoidal torque is not constant (as it should be for a linear

hinge). It depends on the location of the freeplay zone and varies with the amplitude of

the applied load.

In order to maintain a linear model for flutter analysis, the nonlinear hinge must be

linearized. The notion of equivalent linear stiffness is introduced.

1.6.1 Linearization: Describing Fonction Method

The describing function is a useful technique in treating structural nonlinearities by eval­

uating an equivalent stiffness. The dynamic system can be linearized and the usuallinear
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analysis methods ean be applied. The basic approaeh for the method is to assume that

the displaeement is sinusoidal. The load developed in the nonlinear spring is expanded

in a Fourier series. Only the first harmonie is retained, the higher harmonie terms are

negleeted.

Consider the harmonie defleetion

x =X sinwt,

of the hinge. The load (torque) whieh corresponds to this harmonie deflee-tion is in

general Dot sinusoidal, due to the nonlinearity. Nevertheless, it is periodie, and ean be

expanded in a Fourier series of the form

00

f = Fa +})Fn sin nwt + Gn eos nwt).
n=l

The deseribing funetion is then defined as

DF = (Fi +~)~ .ei';,
X

with
_} GI

ljJ = tan (FI)'

i.e. only the first harmonie in the Fourier series is retained. The equivalent linear stiffness

of the hinge is defined as the amplitude of the deseribing function.

Amplitudes of the first harmonie eomponents ean be ealculated from

wl':FI = - f(t) sinwtdt,
'Ir a

and

wl~GI = - f(t) eoswtdt,
'Ir a

using the eorrect expression for f(t).

For the partieular nonlinear spring eharaeteristie shown in Figure 1.1, this depends

on whether X ~ P, P < X ~ P +28 or P + 28 < X.
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Example expressions for the case P < X ~ P +2S are

J(t) = l\IXsinwt for x ~ P

f(t) = ([(1 -l\2)P + [(2Xsinwt for P < x,

knowing that P < x in a time interval Tl < t < T2 of the period [0, :;-J, satisfying

X sinwTl = P,

X sinwT2 = P,

Reference [4J gives the formulas in their final form. The formulas are repeated here·

after. They are used to calculate the equivalent stiffness corresponding to a given hinge

defiection, and for a given set of hinge parameters ([(l, K2 , P, S).

le. • K.. 10. As"

.; (K'•• •K,- K,)I,. 2{K, -KIlt ~~.) 'in"

•~.; K,) Iin2•.J. 10'" sAS" • 2S

.; (2IK' -K.lt ~,A.) lin',' 1", -",l',

+ 'MJf.. - K.t(" •~,-A.) lint, • •Ii, - ",l',
IC. - K, .•• . 2 1 K l'A l' 2S• -Z (lin.., - lin '.' ,.. or • • «JI

whcrt

,(1' • 2S - A.),•• cos·
• A,

A -Ao.A,

... ·0. AS"

.1-iJA'-~(I'-Ai. l'sA sl":S

-1-1 JA' -4S r·;,"") 1.4 - l' - SI

A .,.:S
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1.6.2 Effect of the Structural Nonlinearity

The nonlinear wing-fold hinge is replaced by an equivalent linear hinge with equivalent lin­

ear stiffness. The equivalent stiffness, defined for an oscillatory hinge deflection, depends

on the amplitude of oscillation.

In the finite-element model of the wing, the equivalent linear wing-fold hinge is used.

Modal mass and stiffness matrices, modal frequencies and mode shapes are based on the

model, and therefore depend on the equivalent stiffness.

Matrices of modal induced aerodynamic forces are constructed from the modeshapes.

They also depend on the equivalent stiffness.

The nonlinearity of the wing-fold hinge influences the wing flutter analysis and the

study of forced aileron oscillation.

• Flutter Analysis.

As aU matrices in the aeroelastic equations depend on the equivalent hinge stiffness,

so do flutter analysis results. Flutter analysis is performed for a range of equiva­

lent hinge stiffness values, lying between the low freeplay stiffness and the nominal

stiffness.

Detailed analyses of the influences of the equivalent hinge stiffness on wing flutter

have been performed and are described in the literature [4]. Sorne results, though

not the complete analysis, from [4] are reproduced in Chapter 3 of this thesis.

• Forced Aileron Oscillation

As the aileron is oscillated with a given frequency and amplitude, the complete wing

oscillates (with the same frequency) because of the induced aerodynamic forces.

In particular, the wing-fold hinge assumes an oscillatory deflection with a certain

amplitude. To this amplitude corresponds an equivalent hinge stiffness.
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The equivalent stiffness therefore is a result of the forced aileron oscillation calcu­

lations. On the other hand, the equations of motion depend on the value of the

equivalent stiffness. ln order to calculate the response of the wing with the correct

equivalent stiffness, the equations will have to be solved iteratively.

For given flight conditions (hence given preload on the wing-fold hinge), the equiv­

aient hinge stiffness is determined by the forced aileron oscillation. The wing is

then calculated to behave as if its wing-fold hinge were linear, with a stiffness equal

to the equivalent stiffness. Modes obtained experimentally in llight tests must be

compared to theoretical modes (obtained from flutter analysis) corresponding to

that particular equivalent stiffness.
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1.7 Computer Organisation

The computer programs for flutter analysis available at the National Aeronautical Estab·

Iishment were used, as weil as data manipulation and forced aileron oscillation analysis

programs locally developed and run at the McGill University:

• the NA5TRAN structural finite-element model was available.

• the above input file was adapted to include the wing-fold hinge stiffness, and perform

the NA5TRAN analyses.

• resulting wing modes and modal frequencies (masses, stiffnesses) were used in the

calculation of the induced aerodynamic forces as weil as the preformance of flutter

analyses.

• matrices of generalized forces were transferred to McGill University for performing

the forced aileron oscillation analyses.
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1.8 Thesis Outline

The structural equations of motion, the modal transformation and resulting modal equa­

tions of motion are derived in Chapter 2. In Chapter 3, flutter analysis is illustrated. In

particular, flutter analysis is performed for several values of the wing-fold hinge stiffness.

Flutter analysis results are compared to [4]. Chapter 4 covers the study of forced aileron

oscillation. The response of the wing to forced aileron oscillation is calculated, together

with the aerodynamic forces induced on the wing by the aileron oscillation and the result­

ing wing motion. Chapter 5 summarizes the results, conclusions and further applicability

of the work performed.
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Figure 1.1
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Moment-displacementfunctionfor CF-lB wing-fold hinge (source: Re/7)
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Figure 1.2

•
Example aeroelastic system with three degrees-of-freedom
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Chapter 2

Equations of Motion of the Wing

In this chapter, the aeroelastic equations of motion for the wing are derived. The direct

equations of motion are constructed from a finite-element description of the wing. These

direct equations of motion are expressed in terms of the grid point displacements (trans­

lations and rotations). The direct equations are then transformed into modal equations in

which modal amplitudes are used as (generalised) coordinates. The equations of motion

in modal form will he used in the following chapters.

This chapter rigourously outlines the transformation rules between the direct and

the modal form of the equations of motion, for further use in Chapters 3 and 4.
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2.1 Finite-Element Method

NA5TRAN was LI.,ed for the finite-element structural analysis of the wing.

In a finite-element model, a structure is modelled as being composed of elemen­

tary building blocks. Examples of blocks are beams, rods, shells, membranes, hinges

. . .. Building blocks are ink7'" lected at grid points. Every grid point initially has

six degrees-of-freedom of motion: three translational and three rotational. Relationships

exist between the degrees-of-freedom of different grid points connected by a structural

element, and force: -"nd moments applied to the grid points. These relationships depend

on the type of structural element. The relationships are algebraic equations for a static

analysis or time differential equations for a dynamic analysis. Different types of structural

elements connect different numbers of grid points. New types of building blocks can be

introduced or constructed from basic elements provided one knows the relationship which

the building block imposes on the degrees-of-freedom of the gridpoints it connects.

In addition, boundary conditions constrain the degrees-of-freedom at boundary grid

points. The finite-element method is, in general, a numerical method to solve differential

equations with given boundary conditions (Boundary Value Problem). By modelling a

flexible structure as a composition of elementary blocks, partial differential equations

of motion for a continuous structure are discretised and reduced to a set of ordinary

time differential equations. The infinite number of degrees-of-freedom of the continuous

structure is reduced to a fini te number of degrees-of-freedom for the grid points.

Reference [5] provides a comprehensible description of the finite-element method the

way it is implemented in NA5TRAN. It covers ail the structural elements, their use, and

the relationships which they impose on the degrees-of-freedom of the grid points they

connect. It also explains very clearly how matrices are organised and manipulated in

order to eliminate constraints and internai forces (due to the constraints), and build the

equations of motion for the degrees-of-freedom of the system.
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2.2 Finite-Element Model of the Wing

A finite-element model of the wing consists of a map of the grid points on the wing. Each

number corresponds to a grid point identification number. The main elements which

connect grid points are elastic beam elements, which together span the two-dimensional

surface of the wing. Other elements are rigid connections, hinges, .... The wing inertia

is modeled as concentrated masses attached to grid points. An existing structural finite­

element model of the wing was employed in this analysis.

The linear wing-fold hinge stiffness value may be modified by editing its value in

the above input file to NASTRAN.

One particular wing configuration was used for all calculations in this thesis, corre­

sponding to the antisymmetric modes of the aircraft.

Only one of the two wings is represented in the finite-element mode\. By selecting

the boundary conditions of the wing at the aircraft centerline, one can represent either

a symmetric motion or an antisymmetric motion of both wings, seen from the aircraft

centerline. The antisymmetric modes were sought in this analysis.

When the wing is not constrained from moving (translating or rotating) as a whole

(e.g. the antisymmetric model of the wing can not be constrained from rotating around

the aircraft centeriine), one or several rigid-body modes will be found. A rigid-body

mode represents a motion of the body as a whole, without structural deformation, and

has a zero eigenfrequency. For the analyses of oscillatory wing motion in the thesis, a

rigid-hody mode can be treated as any wing deformation mode, if the rigid-hody modal

stiffness is set equal to zero. When undamped, a rigid-body mode moves in opposition

with its oscillatory forcing function.

NASTRAN execution commands are provided to construct the modal equations of

motion of the wing. The modal equations are ohtained from the direct equations of motion
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through the transformation which is given in the fol1owing sections. For calcu.lations used

in Chapter 4, it was also important to explicitly obtain the mass and stilfness matrices in

the direct equations of motion. NASTRAN can be requested to provide the direct mass

and stilfness matrices.
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2.3 Modal Equations of Motion

ln this section, the transformation between the direct and the modal equations of motion

is explained, as it is the basis of ail further ca1culations in this thesis.

2.3.1 Modal Transformation

A finite-element analysis of the wing provides the equations of motion for the vector {u.}

of the degrees-of-freedom at the grid points

[M••].{ü.(t)} + [K••].{u.(t)} = {F.(t)}. (2.1 )

These equations are called the direct equations of motion. Matrices [M••] and [K••] are

both symmetric matrices.

We consider the homogeneous equations

[M••].{ü.} + [K••].{u.} = {O},

often written under the form

{ü.} + [W••].{u.} = {O}.

where [W••] = [M••tl.[K••]. Searching for oscillatory solutions

(2.2)

•

where {V.} now is a time independent (possibly complex) vector representing the shape

of oscillation, we must satisfy

-w2.{V.} + [W••].{V.} = {O},

or. setting w2 = À

(À.[I] - [W••J).{V.} = {O}.
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This is an algebraic eigenvalue problem. We can find the eigenvalues Àb À~, ... , Àn, and

the corresponding natural frequencies of oscillation are given by Wi = (Ài )!. Eigenvectors

{</J}i are found by solving equation

[W••J.{</J}i = Ài.{</J}i. (2.3)

We will further assume that ail the eigenvalues are distinct. Then, one can easily prove

the following orthogonality relations for the eigenvectors

{</J}f.[M••J.{</J}j = 0 for i # i,

{</J}f.[K••].{</J}j=O for i#i·

(2.4)

(2.5)

These above expressions are referred to as weighted orthogonality relations. It is important.

to realise that simple orthogonality, Le.

{</J}f.{</J}j = 0,

is not, in general, satisfied. The latter will only be guaranteed if [W••) is a symmetric

matrix.

We can now construct the modal matrix, having as its columns the n eigenvectors.

[cI» = [{</Jh 1{</Jh 1···1 {</J}n].

Equation (2.3) can now be written as

[W••].[cI>] = [cI>W),

hence

(2.6)

Based on the orthogonality relations, an elegant method exists for inverting the modal

matrix1• From equations (2.4) and (2.5) we find

•
[M) =[cI>f. [M••]. [cI»,

36
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The three matrices [MI, [KI, and [À] which we introduced are ail diagonal, with as their

diagonal e!ements modal masses, modal stiffnesses and eigenvalues respectively. The

following relation holds

•
[K] = [~f.[K••l.[~l.

K·
Ài =-'.

Mi

Matrix [~J can he seen as a coordinate transformation matrix where

{u.(t)} = [~l.{A(t)}.

(2.8)

(2.9)

The new coordinates Ah"" An are called normal or principal coordinates, or modal

amplitudes.

2.3.2 Modal Amplitudes

Equation (2.9) provides a meaning for the modal amplitudes. As we have assumed distinct

eigenvalues, eigenmodes are independent vectors that span the n-space. Any vector {u.}

of grid point disp!acements can therefore he written as a linear comhination of eigenmodes.

The coefficients in this linear comhination are precisely the principal coordinates or modal

amplitudes
n

{u.} = LAi.{.ph-
i=l

(2.10)

•

As .imple orthogonality of eigenvectors i. not guaranteed: [~]-1 l' [",]T. Still, a computationally inter­

esting way of calculating [~l-l exists, and is given by

[M) =[~jT.[M••J'["'J

[M)-I.[M] = (/) = [Mr'.[~jT.[M••J.["']

Hence

A. a diagonal matrix, [M] can easily be inverted.
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2.3.3 Modal Equations, Modal Forces

The equations of motion (2.1), rewritten in the new coordinate system, become~

[M••].[cl>J.{A(t)} + [K••].[cl>].{A(t)} = {F.}.

Premultiplying by [cl>jT yields the modal equations of motion

[M].{A(t)} + [K].{A(t)} = {F(t)},

where

{F(t)} = [cl>f.{F.(t)},

(2.11 )

•

is the vector of generalised modal forces. The meaning of the generalised forces is again

apparant. The i-th generalised force is obtained as the inner product of the two vectors

{<P}i and {F.}.

2.3.4 Damping

In the above modal equations, structural damping has not been introduced. Nevertheless,

damping is a!ways present. If the damping mechanism of each individual element in the

finite-element mode! is wel1 understood, a (direct or modal) damping matrix could be

constructed in much the same way as the stiffness and mass matrices.

Unfortunately, the various contributions to structura! damping are not wel1 un­

derstood. The damping matrix cannot be accurately constructed directly from a finite­

e!ement analysis. Instead, it is common to use measured values for the damping (obtained

from ground vibration tests) and to form the damping matrix from these experimental

data.

20f physical inleresl is only lhe mode shape, nol lhe norm of veclors {~}i' The equalions of molion in

principal coordinales do nol depend on lhe norm of lhe eigenveclors. allhough modal masses, sliffnesses

and forces individually do.
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lntroducing a modal damping matrix [DI, the modal equations with damping be-

• come

[MJ.{A(t)} + [DI·{Â(t)} + [KJ.{A(t)} = {F(t)}. (2.12)

Matrix [D] is assumed diagonal. Its diagonal elements represent modal damping values.

2.3.5 Lagrangian Approach

An alternative formulation of the wing dynamics is based on the energy approach. La­

grange's equations of motion are given by

where

d ôT ôT ôV
dt (-ô· )--ô +-ô =Qi i=I ... n,

qi qi qi
(2.13)

T is the kinetic energy of the system (in a motion which satisfies the system constraints),

V is the potential energy stored in the system in motion,

qi is a set of independent generalised coordinates, and

Qi is the set of corresponding non-conservative forces.

At each instant in time during motion, expressions for the kinetic and potential

energyare

T = ~.{U.f.[M••J.{u.},

V = ~.{u.}T.[K••].{u.}.

(2.14)

(2.15)

•

lntroducing the previously defined modal amplitudes as a new set of generalised co­

ordinates, and using weighted orthogonality of eigenmodes, the expression for the kinetic

energy becomes
1~. T ~. T

T = 2·{L,., AM}i }.[M••].{L,.,Aj{q,}j},
i=l j=1
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l "'''' ., T TT = 2' L,.. L." AiAj{,pj }.[M••].{,p}j'

i j

1..ç... '3
T = 2L,..MiAi .

i=l

Simi!ariy, one obtains for the potentia! energy

1..ç... '3
V = 2L,..KiAi .

i=l

(2.16)

(2.17)

•

Using the modal amplitudes as the set of generalised coordinates, and expressions (2.16)

and (2.17) for the kinetic and potential energy, Lagrange's equations yie!d the set of

decoup!ed equations of motion (2.11) obtained previous!y.
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2.4 Forcing Terms

[n the following chapters, the modal equations (2.12) are used. They will only differ in

the forcing terms. These forcing terms are introduced in two steps

• in Chapter 3, modal a.erodynamic forces are introduced. These are a.erodynamic

forces which are induced by structural vibrations. Introduction of a.erodynamic

forces yields the a.eroelastic equations of motion of the wing in interaction with the

f10w around the wing. Flutter analysis is performed by analysing the stability of

the a.eroe[astic equations of motion.

• in Chapter 4, additional forces due to aileron oscillations externally imposed during

f1ight testing, are considered.
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Chapter 3

Flutter Analysis

To iIlustrate flutter analysis results, several flutter analyses are performed. Different

values of the wing-fold hinge stiffness are assumed. A standard flutter analysis package

was used. Flutter analysis results are compared to [4].

Starting from the modal equations of motion, derived in the previous chapter, and by

introducing induced aerodynamic forces, the complete aeroelastic equations of motion are

obtained. The flutter analysis then consists of an eigenvalue analysis of the homogeneous

set of equations.
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3.1 Flutter Equations

The modal equations of motion of the wing were derived in Chapter 2:

[M].{A} + [D].{A} + [K].{A} = {F}.

Both the mass matrix [M] and the stiffness matrix [K] are diagonal, as the equations

are expressed in terms of modal amplitudes, also called principal coordinates. The damp­

ing matrix [D] was also introduced as a diagonal matrix. Vector {F} is the vector of

generalised modal forces.

For flutter analysis, induced aerodynamic forces due to wing vibrations are intro-

duced

{F} = {F. ero }.

In f1ight, wing vibrations modify the f10w over the wing, and therefore the aerody­

namic forces on the wing. For smal! oscillatory motion of the wing, linearized induced

aerodynamic forces can be expressed as

where the dependence on dynamic pressure is made explicit. Matrices [Qr] and [Qi] are

fully populated matrices. They express the aerodynamic forces induced by an oscillation

in each of the modeshapes on al! other modeshapes. The method by which above matrices

of induced aerodynamic forces are calculated is introduced in Appendix 1. It is described

in detail in [il. The aerodynamic forces essentially depend on the mode shapes, the modal

frequency, and flow parameters as the dynamic pressure and the Mach number.

The equations of motion then become

- 1 . 1
[M].{A} + (-2"PV 2.[Qi] + [DJ).{A} + (-2"pV2 .[Qr] + [KJ).{A} = {D}. (3.1)

43



•

•

3.2 Flutter Analysis Methodology

A f1utter analysis of the equations of motion (3.1) consists of a stability analysis of the

system of equations, for different values of f1ight parameters. An explanation of Butter

analysis methods was given in Chapter 1. The f1utter analysis method outlined in Chapter

1 can indeed be applied to equation (3.1) which is of the form of equation (1.2).

The matrices [Qr] and [Qi] of induced aerodynamic forces depend on the frequency

of oscillation of the wing. As explained in Chapter 1, f1utter analysis therefore requires

an iterative solution process. The iterative method used is known as the P-k method.

The order of the matrices in the aeroelastic equations is equal to the number of

degrees of freedom in the finite-element wing model, or approximately 150 for the model

used. This is also equal to the number of structural modes of vibration of the wing.

In order to reduce the computational expense of the iterative solution process to

practicallimits, the order of the equations is reduced by taking into account only a number

m (typically 25) of modes. The reduced system of equations of motion is obtained from

(3.1) by simply considering the first m modal amplitudes. The first modal amplitudes

correspond to the lowest-frequency modes. Because the matrices [Qil and [Qr] are fully

populated, it is an approximation to consider only the first m equations.

Nevertheless, a reduction of the order of the equations is considered to provide a good

approximation of the exact solution (of a set of equations which is itself an approximate

model of the wing structure), as

• modal equations of motion are usedi

• the lowest frequency modes are retained. They tend to have larger modal amplitudes

in a 'natural' vibration of the wing than higher frequency modes;

• any mode beyond the rn-th (with m reasonably large) has a 'complicated' mode-
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shape, and hence a 'less accurate' influence on the air f1ow. It will likely 'escape'

from coalescence with another mode.

Flutter Analysis Results

•

A standard f1utter analysis program was used, including

• calculation of matrices of induced aerodynamic forces. Mode shapes and modal

frequencies are input.

• f1utter analysis, from the aeroelastic equations of motion.

One particular wing was analysed, as explained in Chapter 2. 25 modes are retained

for the eigenvalue analysis. The P-k method is used. The f1utter analysis is repeated for

several values of the wing-fold hinge equivalent stiffness.

Figures 3.1 and 3.2 show the frequency and damping curves for the five lowest­

frequency modes, and a nominal wing-fold hinge stiffness. This analysis represents a

generic analysis of an aircraft, and thus no numerical values are presented. Flutter occurs

at the airspeed where damping of one of the modes becomes negative. A f1utter char­

a-deristic is also the near-coalescence of frequency for two modes. These two modes are

highlighted in Figure 3.1. These are the modes which contribute to the f1utter mecha­

nism. The structural modeshapes for these two modes are a bending mode of the wing

(ail vertical displacements around the wing-tip are in the same direction), and a torsion

of the wing outboard.

Varying the wing-fold hinge stiffness had no important influence on the low-frequency

modes (modal stiffness and mass, moùe shape), except for one mode. This mode is pre­

cisely the outer-wing bending mode that contributes to the f1utter mechanism. The wing­

fold hinge will therefore have an influence on f1utter velocity. Figures 3.3 and 3.4 show
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the frequency and damping curves for the f1uttering modes, for different values of the

(equivalent) wing·fold hinge stiffness.

The f1ight velocity at which f1utter occurs increases slightly as the equivalent wing·

fold hinge stiffness decreases. Figure 3.5 shows the influence of further reducing the wing­

fold hinge stiffness. The wing outboard bending mode frequency drops and coalescence

with the uninfluenced torsional mode is deferred to higher airspeeds. The plot of modal

damping (not available) showed no unstable mode for the lower wing·fold hinge stiffness.

3.4 Comparison with Lee and Tron

Lee and Tron [4] provide a detailed and extensive study of the influence of the wing-fold

hinge, among other nonlinearities, on the wing f1utter behaviour. The study in [4J goes

far beyond the extent and purpose of this chapter.

Nevertheless, the conclusions from section 3.3 do correspond to influences found in

[4]. [4] (fig.8) shows a similar increase in f1utter airspeed with reduced wing·fold hinge

stiffness. When the wing·fold hinge stiffness is sufficiently reduced, f1utter disappears.

It is shown in [4] that, at even lower wing-fold hinge stiffness values, f1utter then

reappears as a coalescence of a different set of modeshapes, in a limit cycle oscillation

typical of nonlinear systems.
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Normalized modalfrequency versus normalizedflight velocity,for twofluttering modes.
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Normalized modalfrequency versus normalizedflight velocity,for the outboard bending mode.
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Chapter 4

Forced Aileron Oscillation

Results obtained from theoretical flutter calculations must be verified via flight testing.

As part of this testing, it is necessary to provide a known force excitation to the aircraft

and then measure the aircraft's response to this excitation. The excitation is provided

through forced oscil1ation of the ailerons. The imposed aileron oscil1ation causes the

complete wing to oscillate due to induced aerodynamic forces. This wing response is

measured. Real wing oscillation modes (shape, frequency, damping) are identified by

relating the wing response to the imposed excitation. As flight parameters are varied, the

aeroelastic modes change. From identified modes, a margin to flutter can be calculated.

For a given aileron oscillation, the wing-fold hinge in particular assumes an oscilla­

tory rotation. An equivalent hinge stiffness corresponds to its oscil1ation amplitude. The

wing behaves as if the wing-fold hinge had a stiffness corresponding to the equivalent

linear hinge stiffness. Experimental flutter data should be compared to the theoretical

aeroelastic modes calculated for this equivalent stiffness.

In this chapter, we calculate the wing response, resulting equivalcnt wing-fold hinge

stiffness and induced aerodynamic forces for aileron oscillations with different frequencies,

amplitudes, and in different flight conditions.
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The methodology provided in this chapter is general enough to provide the aero­

dynamic force on the wing, induced by aileron oscillation, in any form which may be

required for the identification of the structural or the aeroelastic modes.

4.1 Equations of Forced Aileron Oscillation Motion

In the equations of motion previously obtained

•. 1 2 1 2 •
[M].{A} + [D].{A} + [K].{A} - ïPV .[Qr].{A} - ïPV .[Qi].{A} = {Foil }, (4.1)

we now consider {Foit}, the forcing terms due to forced aiieron oscillation.

As we force the linear system of the equation above with an oscillatory forcing

function, the complete system will respond with an oscillatory motion with a frequency

equal to the forced aileron oscillation frequency wJ. By introducing the complex notation

{A(t)} = {A}.é'lt ,

equation (4.1) transforms into

This system of algebraic equations can be solved for the complex modal amplitudes, if

the complex modal forces înduced by the aileron oscillation are known.

4.2 Aileron Oscillation Forcing Terms

The forcing terms {Foi'} can be both structural and aerodynamic.

The ailerons can be freely rotated on the wing. They can be set in any position

without statical1y exerting forces on, or causing deformations of the remaining wing.
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The only structural forces which are therefore caused on the wing by oscillating

the ailerons are dynamic inertia forces caused by the aileron accelerations. These inertia

forces, if important, would influence the shape of the wing oscillations, and hence the

patterns of induced aerodynamic forces. However, inertia forces are neglected in this

chapter. Aileron oscillation inertia forces have been calculated in in other analyses for

a range of frequencies of interest to us, and found to be considerably smaller than the

aerodynamic forces induced by the aileron oscillation.

The aerodynamic forcing terms express the complex modal forces, induced on each

of the natural modes of the wing, by the imposed aileron oscillation mode. They can be

calculated by the same method used to calculate the matrices of induced forces in Chapters

2 and 3 (aerodynamic forces of one modeshape on itself and any other modeshape).

In order to apply the computer programs used to calculate the matrices of induced

aerodynamic forces in Chapter 3, an artificial wing mode is introduced, representing a pure

aileron deflection: appropriate rotations and corresponding displacements are assigned to

the grid points on the aileron.

Equation (3.1), when including the added aileron deflection mode, is rewritten as

[Mil 0 ] ( AI) [DII 0] ( ÂI ) [Kil 0 ] ( AI )
{O} (M) {A} + {O} (D) {Â} + {O} (KJ {A}

... ] ( ÂI ) [QII. ...] ( AI ))
(Qô) {Â} + {QI.} [Q.J {A}

= ( ::;' )
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The first equation in this set provides the force required to deflect the aileron FI.."

but is of no interest to us. For example, it would represent the aileron hinge moment if

AI represented the hinge deflection amplitude. The remaining equations are the modal

wing equations for forced aileron oscillation.

After introduction of the complex notation for oscillatory motion with frequency wh

they can be rewritten as

where

(4.5)

•

is the vector of complex modal aerodynamic forces on each of the modes, induced by an

aileron oscillation of amplitude AI' The vectors {QI,} and {QI;} of aerodynamic forces

of the artificial aileron oscillation mode on the natural modes of the wing are obtained

by the same numerical method by which matrices of induced aerodynamic forces were

obtained (method described in [1]).

Equations (4.4) and (4.5) can be solved for the modal amplitudes {A}, given an

aileron deflection of amplitude AI'

The modal amplitudes determine the response of the wing to the forced aileron os­

cillation. The aerodynamic forces on the wing are induced both by the external aileron

oscillation and by the resulting wing deflection. Due to the assumed linearity of the

aerodynamic forces, forces induced by the aileron oscillation can be added to the forces

induced by the resulting wing dellections. (Referred to as the 'resulting' wing dellec­

tion is the wing deflection caused by the external aileron oscillation; the external aileron

oscillation is not part of it.)
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4.3 Order Reduction

4.3.1 Approximations

The modal equations of motion are equivalent to the direct equations of motion. A

solution of the modal equations, for given initial deflection or given forcing function,

provides an exact solution for the finite-element model of the wing. Nevertheless, as the

dimension of the system is high (the number of modes is equal to the number of degrees of

freedom considered in the finite-elements model; of the order of 150 for our application),

solving the system of equations is computationally expensive.

For practical calculations, only a limited number of modes, e.g. 25, is considered

in this thesis. The modal amplitudes corresponding to the lowest-frequency structural

modes are retained, and further modes are simply neglected in equations (4.1), or (4.4)

and (4.5). The solution of the reduced system obtained in this way is an approximation

for the correct solution.

Neglecting higher order modes is an approximation because

• the forced aileron oscillation induces aerodynamic forces on ail modes, high-order

modes as weil as low-order modes. It is certainly not the case that this induced

force is small for high-order modes.

• high-order modes induce aerodynamic forces on the lower-order modes, as the aero­

dynamic matrices are fully populated.

Nevertheless, when computation cost imposes an order reduction, retaining the

lowest-order modes is a sensible choice as

• the imposed aileron oscillation frequencies are of the order of magnitude of the

natural frequencies of the lowest-frequency modes. The modes with higher natural

frequency tend to have lower amplitudes in the oscillation of the wing;
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• the natural modes were chosen as a basis for the modal coordinate transformation,

for reasons given in Chapter 1.

The influence of the number of modes which are retained, is assessed in section 4.5.5.

4.3.2 Inverse Coordinate Transformation

For the purpose of modal identification through flight tests, direct forces (acting at grid

points instrumented for in·f1ight mode identification) will be required as a final result,

rather than the forces in a modal form.

The inverse coordinate transformation is needed in arder ta calculate the direct

forces, if modal forces are given. Indeed, the formula for transforming an external force

{F.} applied ta structural grid points, into its modal components {F} for the reduced

set of modes, is given by

(4.6)

•

The transformation between direct and modal forces requires particular attention

if not aU the modes are known. If not aU modes, but only a reduced set of the most

significant modes are considered in the analysis, we avoid ta ca1culate mode shapes for

the remaining modes which are considered not ta be significant. NASTRAN is asked ta

provide only the modeshapes for a number of modes which we consider significant for the

analysis. The full matrix [~l is therefore not available.

For the i·th modal component, equation (4.6) yields

Fi = {4>};'{F.}.

We see that only the i-th mode shape (and not the fuU [~l matrix) is required in arder ta

obtain the i-th modal force component.

Inversely, trying ta obtain the direct force vector {F.} which corresponds ta a single

modal force Fi is less straightforward. Nevertheless, this is what we need if we want ta
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ca1culate the direct force induced on the wing by the imposed aileron oscillation. It is not

sufficient to know the i-th mode shape only 1•

Nevertheless, a solution to the problem was found by considering the weighted or­

thogonality relations, e.g.

In Chapter 2, it was shown that the ahove weighted orthogonality relationship can be

transformed into

The modal mass matrix [M] is a diagonal matrix and therefore easily inverted.

Using

the equation ahove is written as

This can he rewritten as 2

'" '" Fi{F.} = L)F.}; = ~ M..[M••].{c/>};.
i i '

(4.7)

•

'The reason is that the modal matrix is not orthogonal, i.e. [41]-' '" [4JjT. A geometrica! interpretation

can be given. As tbe modal veetors do not form an orthogonal set of spanning vectors for the n-space

(where n is the number of degrees-of- freedom), ail the spanning vectors (or modeshapes) are required

in order to calculate the projection of a vector on a subspace (the subspace formed by the set of known

modeshapes retained in the analysis).
2lndeed, as [M] is a diagonal matrix, it is rewritten as

which can be interpreted as a sum of the columns of matrix [M••]T .[41], multiplied by the corresponding

terms of the vector {ît;l. As the matrix [M••] is symmetric, and by the definition of matrix [41], the i-th

column of matrix [M••lT .[41] is obtained as [M••l.{4>}; .
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This equation shows how each single modal force Fi contributes to the vector of direct

forces {F.}. This contribution is denoted as {F.}i. It also shows that only the modeshape

of a particular mode is required to calculate the contribution of that mode, provided that

the direct mass matrix is known 3.

Equation (4.7) is used to calculate the direct forces on the wing grid points (com­

ponents in-phase and out-of-pha~ew.r.t the aileron forced oscillation) due to aileron os­

cillation.

Depending on the requirements of the modal identification method, the force on a

number of selected grid points may be needed, or a summed force over a region of the

wing or the total wing. Further in this chapter, it is assumed that the total aerodYllamic

force perpendicular to the wing is needed. It is calculated as the sum of the components

in the direct force vector {F.} which physically represent a force in that direction.

4.4 Solution Method

Equation,; (4.4) and (4.5) are solved for the complex modal amplitudes, for a given aileron

oscillation amplitude Al and angular frequency, as well as given f1ight conditions (equiv­

aient airspeed, Mach number).

The wing-fold hinge rotation due to the imposed aileron oscillation, is obtained in

particular. To wing-fold hinge rotation amplitude corresponds an equivalent wing-fold

hinge stiffness. On the other hand, the matrices in equations (4.4) depend on this equiva-

3Because of the weighted orthogonality relations, the direct mass matrix can be used to invert the

modal matrix. It contains sufficient information to avoid calculating ail the modeshapes. It contains

information equivalent to ail of the modeshapes. Similar formulas could be constructed using the direct

stiffness matrix.

ln a modal analysis session, NASTRAN does not provide the direct m... or stifl'ness matrix by default.

NASTRAN can however be explicitly requested to provide these matrices
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lent hinge stiffness. Indeed, the wing-fold hinge is an important structural element in the

wing. It influences sorne of the mode shapes, modal masses and stiffnesses. Also, as the

mode shapes change, so do the matrices of induced aerodynamic forces. Therefore, solving

equations (4.4) will be an iterative process. Assuming an initial value for the equivalent

hinge stiffness, we ca1culate the wing deflection in response to the aileron oscillation. The

wing-fold hinge rotation is obtained from the oscillation of the complete wing. To this

hinge deflection corresponds an equivalent stiffness which is a better approximation than

the initial guess. This is used in the second iteration step.

In Chapter 1, we emphasised the fact that aerodynamic forces on a mode induced

by another mode, depend on the frequency of vibration of this latter mode. This raised

problems for f1utter analysis, and was the reason for a distinction between different meth­

ods for f1utter analysis (P vs. P-k). Fortunately, this problem does not occur here.

As the complete wing is forced to vibrate with a given angular frequency wh induced

aerodynamic forces should he ca1culated at this forcing frequency.

As structural and aerodynamic ca1culations depend on the wing-fold hinge stiffness

and the reduced frequency, they must be repeated for each new value of these parameter~.

To limit the expense of ca1culations, they are performed for several 'hard' values of the

parameters, and results for intermediate values are obtained by interpolation.

The steps implemented to solve equations (4.4) and (4.5) are as follows.

1. For different 'hard' wing-fold hinge stiffnesses, calculate the structural data (eigen­

frequencies, eigenmodes, modal masses and stiffness).

2. For each of the above sets of eigenmodes, and for each 'hard' value of reduced

frequency, ca1culate the matrices of aerodynamic forces.

3. Choose values for the aileron oscillation amplitude and frequency, and f1ight param­

eters. Assume an initial value for the equivalent hinge stiffness.
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4. For each of the hard equivalent sti!fnesses, interpolate aerodynamic forces to the

reduced frequency corresponding to the given aileron frequency.

5. Interpolate modal data to the actual equivalent stiffness. Also interpolate aerody­

namic data (those were already interpolated to the correct reduced frequency in

step 4) to this equivalent sti!fness.

6. Suild and solve the system of equations.

7. Extract the hinge oscillation from the resulting wing motion. Calculate the corre­

sponding hinge equivalent sti!fness. Take this as the new value for the equivalent

stiffness. If this sti!fness is equal to the assumed sti!fness, go to step 8, otherwise

go back to step 5.

8. End.

Once the complex modal amplitudes are obtained, the corresponding induced aero­

dynamic modal forces are calculated. They are added to the modal forces directly induced

by the aileron oscillation mode in order to obtain the total 4 aerodynamic modal forces

induced on the wing. Equation (4.7) is used to transform modal forces into direct forces

on the wing.

4.5 Results

Complex amplitudes are obtained for typical1y 25 modes. For each mode shape, the

corresponding (complex) grid point deflections can be calculated, and the vector-sum

4This total induced aerodynamic force on the wing is calculated in this thesis and shown in the figures

of section 4.5. Nevertheless, if the aeroelaslic modes need to he identified in the flight tests, only the

modal forces direcUy induced by the aileron oscillation should he considered (and not the total induced

aerodynamic force which also indudes the aerodynamic force induced hy the resulting wing defledion).

This is seen from Equation 4.2.

61



•

•

taken for ail the modes considered.

From the resulting modal amplitudes, the corresponding modal aerodynamic forces

can be determined. Using the inverse modal matrix, these can be transformed into direct

forces on the wing. This is done in order to calculate the total aerodynamic Corce (its

amplitude and phase) induced via the Corced aileron oscillation.

Ali results are obtained for a Mach number oC 0.95. The wing configuration was

given in Chapter 2. Different values of the equivalent airspeed and the aileron oscilla­

tion amplitude are taken. Ali results are obtained as functions of the aileron oscillation

frequency.

Because oC the generic nature of this work the aileron oscillation Crequency, as weil

as ail results shown on graphs, are normalized and no numerical values are presented.

4.5.1 Modal Amplitudes

Figure 4.1 shows a typical response of one degree-of-freedom of the wing in several different

modes. In particular, the modal contributions to the wing-fold hinge rotation are given,

resulting from the forced aileron oscillation. ln reality, the response in each oC the modes is

a complex number, with an amplitude and a phase difference w.r.t the aileron oscillation.

In Figure 4.1 only the amplitude of the modal responses is represented. The amplitudes

for five flexible modes are shown as functions of the forcing frequency, for one value of

the aileron oscillation amplitude, the equivalent airspeed and the Mach number.

ln particular, Figure 4.1 gives the modal contributions to the wing-Cold hinge rota­

tion for the two modes shown in Chapter 3 to potentially cause flutter. These modes are

an outer-wing bending mode, and a wing tip torsional mode.

lt is difficult to interpret exactly the shape of these curves, as they are a result oC

• the dependence of the generalised Corces, hence the system matrices, on the reduced
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frequency.

• the dependence of the natural modes, hence the modal matrices and a.erodynamic

matrices, on the wing-fold hinge stiffness. This hinge stiffness is itself dependent on

the total wing-fold hinge defleetion ohtained by solving the system of equations.

• the poor linear interpolation method used to interpolate between the 'hard' reduced

frequencies and the 'hard' equivalent hinge stiffnesses.

• the coupling between modes due to induced a.erodynamics. Indeed, the modal mass

and stiffness matrices are diagonal, but the matrices of induced a.erodynamic forces

are highly non-diagonal.

• the a.erodynamic modal forcing terms. The imposed aileron oscillation induces a.ero­

dynamic forces on each of the modes considered. The magnitude of these forces

depends on the modeshapes, and shows important variations from one mode to the

other.

The influence of the a.erodynamic forces induced by the imposed aileron oscillatio'l

is apparant from Figure 4.1:

• from the modeshape of the outer-wing bending mode (Figure 3.5), one understands

that the aileron oscillation will induce a high a.erodynamic force on this mode. This

is reflected in the high amplitude of this mode in Figure 4.1, for aU values of the

aileron oscillation frequency.

• for certain values of the aileron oscillation frequency, several modes show a clear

peak in their response amplitude. This is likely due to the fact that modes are

excited around their natural frequency, the modeshapes of which are likely to induce

important a.erodynamic forces on other modes.
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4.5.2 Equivalent Hinge Stiffness and Induced Aerodynamic

Force

If the complex sum is made of the modal wing·fold hinge deflections, the amplitude of

this sum is the resulting deflection of the wing-fold hinge. The equivalent stiffness is

calculated which corresponds to the hinge oscillation amplitude. This stiffness is a better

approximation for the exact hinge stiffness, than the initial guess on which the system

equations were based. The iterative procedure leading to the equivalent wing·fold hinge

stiffness was described in a section 4.4.

As long as the wing.fold hinge deflection is smaller than the hinge deflection due to

preloading, the hinge equivalent st.iffness is equal to the nomin~.l stiffness. If the hinge

oscillation amplitude becomes larger than the preloading deflection, the equivalent hinge

stiffness decreases. System equations must be recalculated using the new value of the

hinge stiffness.

The iterative procedure converges in most cases. Nevertheless, for sorne combina.·

tions of parameters, the iteration is caught in a limit cycle. Assume that a large initial

guess for the equivalent hinge stiffness results in a large hinge oscillation, for the given

parameter combination (this may seem contradictory, but it is perfectly possible). With

this large oscillation amplitude corresponds a lower equivalent stiffness. In the next iter·

ation step, this lower stiffness may very weil result ill a low hinge oscillation amplitude,

and hence the high equivalent stiffness of the very first guess. Choosing a new starting

value for the iteration is often no solution to the problem, as the iteration will diverge

to the same limit cycle. A simple way of solving the problem is to divide the interval of

equivalent stiffnesses, delimited by the limit cycle, into subintervals of the required accu­

racy on the stiffness. The system is solved for each of the subintevals. For each resulting

hinge rotation, the equivalent hinge stiffness is calculated. The correct initial stiffness is

the one which is closest to the equivalent stiffness of the hinge rotation obtained with
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this initial stiffness. Although this solution is computationally expensive, it is justified hy

the fact that few instances of divergence occurred. Choosing a more refined interpolation

algorithm between the hard equivalent hinge stiffnesses would improve the convergence

of the algorithm and the accuracy of the solution.

Figure 4.2 gives graphs of the wing-fold hinge rotation amplitude versus the aileron

oscillation frequency. The three graphs correspond to equivalent airspeeds of V, 1.43V and

1.86V respectively, and a 2 degree aileron oscillation amplitude. Figure 4.3 provides graphs

of the equivalent wing-fold hinge stiffness corresponding to the wing-fold hinge oscillation

amplitudes from Figure 4.2. Figure 4.4 provides graphs of the total aerodynamic force

(perpendicular to the wing) acting on the wing due to forced aileron oscillation and the

induced wing oscillatory motion. Only the amplitude of the aerodynamic force is given.

Graphs of the phase difference with respect to the inducing aileron oscillation are given

in section 4.5.3.

From Figures 4.2 to 4.4, one can conclude that

• to sufficiently high hinge rotations correspond significant dips in equivalent hinge

stiffness. If the ailerons are oscillated in f1.ight tests, with an amplitude and at

a frequency which give rise to a large hinge rotation amplitude and a decreased

wing-fold hinge equivalent stiffness, then the modes identified from these f1.ight test

recordings should he compared to the calculated (from the finite- element model)

modes at that reduced equivalent hinge stiffness.

• peaks in the total aerodynamic force induced on the wing roughly correspond to

peaks in the hinge rotation. They also show on Figure 4.1. As was already mentioned

for Figure 4.1, these peaks were likely due to the excitation, at particular aileron

oscillation frequencies, of particular modes which induce high aerodynamic forces

on other modes. This is confirmed by the peaks in the total wing aerodynamic force

on Figure 4.4.
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• For an equivalent airspeed of V (and for the given values of the aileron oscillation

amplitude, Mach number and wing-fold hinge preload), the equivalent wing-fold

hinge stiffness only decl'eases in one zone of aileron oscillation frequency. Even

then, this zone is relatively broad and a stiffness reduction of 20% is seen. The

broad basis of the peak can be explained by the fact that the mode which causes

the dip (outer-wing bending mode, Figure 4.1), is also the mode which is most

sensitive to variations of the equivalent stiffness (this was shown in Chapter 3).

For the higher airspeeds of 1.43V and 1.86V, the dips in wing-fold hinge equivalent

stiffness occur at a variety of aileron oscillation frequencies, and are more difficult

to isolate.

4.5.3 Phase Information of Induced Aerodynamic Force

If the total induced aerodynamic force on the wing is used in modal identification of

the wing vibration modes, the phase difference between the aileron oscillation and this

aerodynamic force is an important information.

Figure 4.5 shows the variation of the phase angle of the total aerodynamic force, as

a function of the aileron oscillation frequency, for a 2 degree aileron oscillation amplitude

and 1.43V. The phase angle represents a phase lead of the aerodynamic force with respect

to the aileron oscillation.

It is apparant that, for most frequencies, there· is a 50 to 100 degrees lag of the

aerodynamic force behind the aileron displacement.

Figure 4.5 shows considerable variations in the phase angle. It should however be

noted that the graph would appear smoother by appropriately adding or subtracting 360

degrees to/from phase angles.

Similar curves are obtained for other values of aileron oscillation amplitude and

equivalent airspeed.
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4.5.4 Effect of the Nonlinearity

Figures 4.6 through 4.8 show the wing-fold hinge rotation, the equivalent hinge stiffness

and the total induced aerodynamic force for aileron oscillation amplitudes of 1 and 2

degrees respective1y, and 1.43V. Nonlinear behaviour clearly appears when the wing­

fold hinge oscillates in its nonlinear zone. In Figure 4.6, the nonlinearity gives that the

response for 2 degrees aileron oscillation amplitude is not equal to twice the response for

an amplitude of 1 degree. The effeet is amplified in Figure 4.8.

Figure 4.9 compares the wing-fold hinge rotation curve obtained for the nonlinear

wing-fold hinge, with curves which would be obtained if a linear wing-fold hinge were

assumed (with a stiffness independent of the wing-fold hinge rotation amplitude). Linear

stiffnesses equal to the nominal wing-fold hinge stiffness and 75% of the nominal value were

assumed respeetively. The three curves of Figure 4.9 assume 2 degrees aileron deflection

amplitude and 1.43V.

Figure 4.10 gives the total wing aerodynamic force for the assumptions of Figure

4.9. On Figure 4.9, the response for the nonlinear hinge evolves between the curves

corresponding to the linear wing-fold hinge stiffnesses. This was expeeted, given the

variations of the equivalent linear wing-fold hinge stiffnesses for the nonlinear wing-fold

hinge, shown on Figure 4.7.

Figure 4.10 shows a peak in the aerodynamic force for the nonlinear hinge (around

a 0.4 normalised aileron oscillation frequency) which largely exeeds the corresponding

aerodynamic force for the 'enveloping' linear wing-fold hinges. This indicates that the

total induced aerodynamic force calculated on the wing is a very sensitive parameter. This

sensitivity may limit the usefulness of the total aerodynamic force for modal identification

purposes, especial1y in zones where it varies considerably. Note that the same peak

is found on Figure 4.8, where it is even amplified if the aileron oscillation amplitude

decreases.
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4.5.5 Etfect of the Number of Modes

Figure 4.11 through 4.13 show the influence of the number of modes retained in the

calculations. A 2 degrees aileron oscillation amplitude and 1.43V are assumed. A linear

wing-fold hinge is assumed, with a stiffness equal to the nominal hinge stiffness value.

Figure 4.11 gives curves of the wing-fold hinge deflection amplitude, when 18, 22

and 25 modes respeetively are retained in the calculations. Peaks progressively appear

in the solution, as an increasing number of modes is retained. The mode identifications

added to the peaks in Figure 4.11 indicate the smallest number of modes to retain, for

that peak to appear in the solution. Peaks which have an important effect on the results

discussed in this thesis, require a surprisingly high number of modes to be retained in the

calculations. This is most likely due to aerodynamic forces induced between modes.

Figure 4.12 shows the corresponding aerodynamic forces. No convergence at ail

seems to occur, even as the number of modes considered for the calculations exceeds

20. This certainly confirms that the totlll induced aerodynamic force is a very sensitive

variable. This is understandable as it is the sum of aerodynamic forces at ail grid points

on the wing. Each of the grid point forces is itself obtained as a sum of transformed modal

forces. lt is likely that induced aerodynamic forces at selected individual grid points are

vales which are less sensitive to the number of modes.

Figure 4.13 is more satisfying. The phase of the total aerodynamic force seems to

be a stabler variable than the corresponding amplitude.

4.5.6 Etfect of the Wing Flexibility

lt is interesting to evaluate the influence of the wing f1exibility on the results obtained

above. ln this section, a comparison is made with results which are obtained for purt"

aileron defleetion, assuming no deformation of the wing.
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Results for the rigid wing are first obtained by applying the methods of this chapter.

The amplitudes of ail flexible modes are set to zero. Only the amplitudes of the rigid

body modes are different from zero, due to aerodynamic forces induced by the aileron

oscillation. These results are then compared to similar results obtained through a more

straightforward method referred to as Method 2 in the summary hereafter.

Method 1: Using the Flexible-Wing Model

The method used to calculate the total aerodynamic force on the flexible wing can be

applied to a wing which is assumed to be rigid, if the amplitude of the wing deformation

modes is made zero.

As explained in section 4.3.2, the contribution from each mode to the direct force

vector, is obtained from the corresponding modal force by the following transformation

formula:

The vector of direct aerodynamic forces, for ail modal components, is obtained by sum­

ming the modal contributions 5

{Fa} = ~)Fa};.
i

As ail wing deformation amplitudes are set equal to zero (rigid wing), the modal aerody­

namic forces are induced only by the forced aileron oscillation mode, and the rigid-body

oscillation modes of the wing.

5This sum must be taken over ALL the modes of the wing model, rigid-body modes as weil as the

flexible modes. This assumption of a rigid wing will influence the values of the modal aerodynamic forces,

but not the number of terms in this sumo This follows from the strict mathematical derivations. It can

also be understood qualitatively. lndeed, the direct force contribution from any mode acts only on the

contributing mass of that particular mode. Contributions of ail modes are required to find the direct

force acting on the total mass of the wing. The influence of the modal masses is apparant from the

transformation formula between the modal and the direct forces.
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Although working with the flexible-wing model to calculate the response of a rigid

wing is not a recommended method for solving the simple rigid-wing problem, it was a

straightforward application of the general method of this chapter.

Method 2: Using the Rigid-Wing Model

A previous method and calculation results for the total aerodynamic force amplitude and

phase on the wing (assumed rigid), due to imposed aileron osci1lations, were available.

The method used in the previous analysis differs from 'method l' described above,

as it assumes a rigid wing to start with, whereas method 1 obtained the rigidity of the

wing by setting deformation amplitudes in a flexible wing model equal to zero.

Induced aerodynamic forces used in this previous analysis are ca1culated by the same

method as the aerodynamic forces used in this thesis, i.e. as modal aerodynamic forces.

If F.igid is the modal force induced by the aileron osci1lation on the rigid-body mode of

the wing, then the corresponding direct force vector {F.} is implicitly given by

If all components of the modeshape {.pi} are equal to 1 (i.e. the rigid-body modeshape

is a unit heave), then the left hand side of above equation is equal to the sum of the

components of the vector {F.}, whieh is precisely the total aerodynamic force induced on

the rigid wing due to the aileron osci1lation.

In order to obtain the total aerodynamic force (perpendicular to the wing, and

induced by the aileron osci1lation) by this method, it was necessary to assume the unit

heave wing mode.

However, due to the asymmetric configuration of the wing model used in this thesis, a

unit heave rigid-body mode of the wing does not occur (as it would assume the symmetric

configuration). Therefore, we believe that the previous method does not calculate the
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same 'total aerodynamic force' on the wing, as the one calculated by method l, as this

total force on the wing depends on the rigid-body mode which the wing can assume in

its proposed configuration (symmetric versus asymmetric).

If the previous method had assumed a rigid-body mode corresponding to the asym­

metrie wing configuration, the modal induced force of the aileron oscillation on the rigid­

body mode would not have been an exact representation of the total direct aerodynamic

force perpendicular to the wing.

Comparison of Results

Figure 4.14 gives the total aerodynamic force on the wing for the flexible wing, as well as

for the rigid wing. Rigid wing results are shown obtained using both methods described

above (although the values obtained with 'method 2' are not believed to exactly represent

the total aerodynamic force). A 2 degrees aileron oscillation amplitude and 1.43V are

assumed. The results for the flexible wing assume a linear wing-fold hinge stiffness with

the nominal hinge stiffness value. The results of the rigid wing, method 2, are taken from

the existing previous analysis (1.43V, M=O.95, values scaled to 2 deg. aileron oscillation,

forces on the wing and the aileron panels are added).

Figure 4.15 gives the phase angle (phase lead w.r.t. the aileron motion) of the total

aerodynamic force, corresponding to the graphs of Figure 4.14.

Figures 4.14 and 4.15 show discrepancies between the rigid wing results obtained

using 'method l'and 'method 2'. This may be due to the difference in the assumed

rigid-body mode. The result for the rigid wing, obtained through 'method l' should

be compared to the results for the flexible wing. From Figure 4.14, it is seen that, at

distinct values of the aileron oscillation frequency, significant differences occur between

the rigid and the flexible wing. Also, it is seen from Figure 4.15 that the wing f1exibility

systematically causes a shift of the phase angle of the total aerodynamic force with respect
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to the rigid wing assumption.
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Modal contributions to hinge rotation. versus aileron oscillationfrequency;for510west-frequency
modes;
B: outer-wing bending mode;
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aileron oscillationfrequency (normalized)

Figure 4.2

Wing-fold hinge rotation amplitude versus aileron oscillation frequency,for 2 degrees aileron
oscillation amplitude, at different airspeeds :
----:V
-t..-x.-: 1.43 V
--\-1- : 1.86 V
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Figure 4.3

aileron oscillationfrequency (normalized)

•
Wing-/old hinge equivalent stiffness versus aileron oscillationfrequency,for the aileron
oscillation amplitude and airspeeds corresponding to Figure 4.2.
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Total induced aerodynamicforce versus aileron oscillationfrequency,for aileron oscillation
amplitude and airspeeds corresponding 10 Figure 4.2
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Hinge rotation amplitude versus aileron oscillationfrequency,for 1.43 V, and aileron oscillation
amplitudes of1. resp. 2 degrees.
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Figure 4.7

Wing-fold hinge equivalent stilfness versus aileron oscillation frequency, for aileron
oscillation amplitudes and airspeed corresponding to Figure 46
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•
Total aerodynamicforce versus aileron oscillationfrequency.for aileron oscillation
amplitudes and airspeed corresponding to Figure 46
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Hinge rotation amplitude versus aileron oscillationfrequencY,for 2 degrees aileron oscillation
amplitude, 1.43 V, and
----- : nonlinear hinge
-'j.--j.- : linenr hinge. stiffness equal to the nominal hinge stiffness
-1-1- : linear hinge. stiffness equal to 75% ofthe nominal hinge stiffness
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Figure 4.10

Total aerodynamic force versus aileron oscillation frequency. for conditions ofFigure 4.9.
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Hinge rotation amplitude versus aileron oscillation frequency ,for the nonlinear hinge.
Calculations are performed progressively taking more modes into account :

:25 modes
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--(-1- : 18 modes
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Total aerodynamicforceversus aileron oscillationfrequency, for lB, 22 and 25 modes
retained (conditions ofFigure 4.11)
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Pha.ve lead ofaerodynamic force w.r.t. aileron motion, versus aileron oscillationfrequency.
for 18. 22 and 25 modes retained (conditions ofFigure 4.11)
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Figure 4.14

Total aerodynamicforce versus aileron oscillationfrequency,for aflexible and a rigid wing:
----- :flexible wing (linearwing{old hinge)
Q - Q -0 - : rigid wing •met!;od 1
• -.-. : rigid wing , method 2
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Phase lead ofthe aerodynamicforce w.r.t. aileron motion,for conditions ofFigure 4.14
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Chapter 5

Conclusion

A reasonably complex finite-element model of the wing was used for various analyses.

In particular, the effect of the nonlinear wing-fold hinge was taken into account in ail

analyses.

A limited number of flutter analyses was presented, showing the effect of the wing­

fold hinge equivalent stiffness, and compared to more extensive studies on the subject,

described in [4].

The main purpose of the thesis was to ca1culate the response of the wing, with its

nonlinear wing-fold hinge, to forced aileron oscillations. The aerodynamic force~ induced

on the wing due the forced aileron oscillation as weil as its own motion were also calculated.

The theory needed to perform these ca1culations was rigourously presented. It extensively

relies on transformations between direct equations of motion of the finite-element model of

the wing, and the equivalent modal form of the equations. The equations of motion as weB

as the aerodynamic forces were assumed to be linear. The nonlinear wing-fold hinge was

linearized. As the value of the wing-fold hinge equivalent linear stiffness depends on the

wing-fold hinge deflection amplitude, the linearization results in a process of iteratively

solving sets of linear equations.
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An important issue in the solution of the problem is the accuracy of the solution.

To limit the cost of the computations, a limited number of modes is considered, rather

than retaining ail the modes for the calculations. From a theoretical point of view, this

is a simplification. It appears that, for !lutter analysis, it is justified to assume a very

limited number of modes. Chapter 3 showed that modes 4 and 8 were the main !luttering

modes. For the problem of forced aileron oscillation however, it was shown that modes

beyond the 20-th mode still had considerable and relevant effect on the results.

From the other side, retaining too many modes may adversely affect the accuracy

of the solution. Indeed, higher order modes assume complicated mode shapes, and it is

reasonable to assume that the accuracy of the induced aerodynamic forces between higher

order modes degrades.

In particular, the total aerodynamic force on the wing, due to forced aileron os­

cillation, was shown to be a value which was very sensitive to the variation of !light

parameters, aileron oscillation amplitude and frequency, and the number of modes re­

tained in the equations. This can easily be understood, as the total aerodynamic force is

obtained as a sum forces at each of the individual grid points. However, this total aerody­

namic force on the wing may not be a very useful variable to calculate. This will depend

on the modal identification method used to identify modes from f1ight tests. It may weil

be that induced aerodynamic forces at individual grid points (or on regions of the wing)

are more relevant values for modal identification, and much less sensitive to parameters

of the analysis. The theory presented in the thesis permits to obtain the aerodynamic

forces in any of above forms.

Modal identification methods could be studied as an extension to this thesis, and in­

duced aerodynamic forces obtained in accordance with the selected identification method.

The graphs obtained in Chapter 4 may also guide the flight tests: choice of an aileron

oscillation amplitude, range of frequencies ... Sorne frequencies show sharp and poten­

tially unreliable peaks, whereas other frequency zones give smoother results. This again

89



•

•

depends on the modal identification method used.

An interesting comparison was made between the results obtained for the flexible

wing model, and corresponding results for a wing assumed to be rigid. Considerable

differences were shown to occur, very much depending on the wing-fold hinge oscillation

frequency.

Linear interpolation was used to interpolate between values of the hard equivalent

linear wing-fold hinge stiffnesses, as well as the hard reduced frequencies. l believe that

considerable improvement of the results could be obtained by choosing a more refined

interpolation method.
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