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ABSTRACT 

Bifurcations and complex oscillations in the human pupillight reflex (PLR) are 

studied. A utonomous pupll area oscillations are produced by substituting electroni­

cally controllable nonlinear feedback for the normal negative feedback of this reflex. 

A physiologically c;ound theoret.ical framework in which to study pupillary oscilla­

tions is developed. The model, framed as a delay-differential equation (DDE), agrees 

quantitatively with the simpler periodic behaviors and qualitatively .vith the com­

plex behaviors. Much of the aperiodicity in the data can be ascribed to noise and 

transients rather than to chaos. The critical behavior of the PLR at oscillation ons{'t 

is different with piecewise <:"onstaill rather than dmooth negative feedback. In the 

former, relative fluctuations in period are larger than those in amplitude, and v&ce 

ver"a in the latter. Properties of the time solutions and densities of a stochastic ODE 

are used to explain this experimental result. The Hopf bifurcation in this system i8 

postponed by both additive and multiplicative colored noise. Theoretical insight into 

the behavior of stationary densities of ODE's and the origin of the postponement i8 

given, and implications for analyzing bifurcations in neural delayed feedback systems 

are discussed. 
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RÉSUMÉ 

Cette thèse porte sur les bifurcations et oscillations complexes dans le réfiexe 

pupillp'.ire (photomoteur) humain (RPH). Les oscillations autollOmes de la pupille 

sont induites en substituant une rét.roaction électronique à la rétroaction normale 

(négative) de ce réflexe. Une théorie des oscillations pupillaires est proposée. Le 

modèle, Lasé sur des données physiologiques, consiste en une équation différentielle 

à délai (EDO). Il reproduit ~uantitativement les comportements périodiques simples 

de la pupille, et qualitativement les comportements complexes. L'origine des oscil­

lations apériodiques s'explique mieux dans l'hypothèse d'influences stochastiques ail 

lieu de comportements chaotiques. Le comportement critique du RPH près du seuil 

d'instabilité s'avère différent pour les caa de rétroaction négative: 1) constante par 

parties et 2) différentiable. Dans le prtmier, les fluctuat.ions relatives de la période 

dominent celles de l'amplitude, et vIce versa dans le second. Les propriétés des so­

lutions et des densités cl 'une EDD stochastique permettent d'expliquer cette obser­

vation. Le bruit coloré paramétrique ou additif retarde la bifurcation de Hopf dans 

le modèle. Le comportement des densités stationnaires des EDD ainsi que l'origine 

de ce retard sont étudiés afin d'élucider l'analyse des bifurcations dans les systèmes 

neuronaux à rétroaction retardée. 
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CONTRIBUTIONS TO ORIGINAL KNO\VLEDGE 

1. This thesis is the first extensive theoretical and experimental study of oscillations 

and bifurcations in a human neurological control system. 

2. Pupillary oscillations are studied using nonlinear delay-differential equations 

(DDE's) and bifurcation theory (Section 2.2). A physiologically sound modd 

accounts for the nonlinear gain of this reflex (Section 2.2.5) and explains why 

response asymmetry is enhanced by piecewise constant feedback (PCNF) but 

not by smooth negative feedhack (SNF) (Sections 2.2.9 and 2.3.9). 

3. For SNF, the model exhibits a supercritical Hopf bifurcation as gain or delay 

is increased (Section 2.3.6). A double oscillation in SNF reported by Stark 1 is 

shown not to correspond, as suggested, to a bifurcation to a 2-torus (Section 

2.3.9). 

4. The connection between nonlinear dynamics and transfer function analysis is 

established in the context of a specifie neural delayed feedback system (Sec­

tion 2.3). The model is shown to he compatible with earlier transfer function 

analyses. 

5. The model for PCNF-induced oscillations can be used to separately assess the 

state of neural pathways for constriction and dilation (Section 3.2). Clinical 

implementation of PC NF provides a strong diagnostic tool for demyelinative 

optic neuropathy (a common symptom for multiple sclerosis) (Appendix il). 

Insight into the theory and measurement of retinal integration and adaptation 

is also given (Section 3.4.5). 

6. Bifurcations and complex aperiodic hehavior are induced in a neural control sys­

tem clamped with external piec/!wise constant mixed feedback (PCMF) (Sections 

3.3 and 3.4). 

7. We analyze complex aperiodic Lehavior in the pupil light reflex in terms of a 

quantitative model (Sections 3.3 and 3.4). Noise is shown to limit observability 

of complex deterministic dynamics in such a system. 

8. Multistability in a first order DDE with PCMF is demonstrated (Section 3.4). 

9. A new integration method for DDE's is proposed. For equal integration time 

steps, the accuracy of the new method is close to that of a fourth order Runge-
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Kutta method (Section 4.8), and decreases computation time by a factor of four. 

10. Solutions and bifurcations of DDE's are studied from the dE'nsity point of view 

(Section 4.3). 

Il. Analysis of a Hopf bifurcation in a noisy neural system is performed using am­

plitude and period distributions rather than the stationary probability density 

of m"û\~l solutions (Section 5.3). 

12. C ritical behavior of the pupillight reflex at a Hopf bifurcation is studied using 

SNI? Numerical simulation of a DDE with additive and multiplicative Gaussian 

colored noise agrees with the observation that relative fluctuations in amplitude 

are larger than those in period (Section 5.3). 

13. Critical behavior of the pupil light reflex at oscillation onset using PCNF Îs 

studied. The observation that relative fluctuations in period are larger than those 

in amplitude is explained theoretically using an adiabatic elimination technique 

in the model ODE (Section 5.3). 

14. Noise-induced transitions at a Hopf bifurcation in a DDE with multiplicative 

and additive noise are discovered. The effect of noise amplitude and correlation 

time on the postponement of the bifurcation point are studied (Sections 5.3 and 

5.4). 

15. It is shown that hippus 15 not chaos in a negative feedback loop with delay 

(Section 2.2.8). From a study of critical hehavior, hipças is found to behave 

very much like noise (Section 5.3). 

16. Approximations to DDE's are studied via distributed de!ays. It is shown that 

precise time-Ioca!ization of rnemory destabilizes delayed feedback systems (Sec­

tion 4.4). 

17. We verify numerically that the stationary density of the Fokker-Planck equation 

(in either the Ito or Stratonovich case) for a supercritical (Landau equation) and 

subcritical system converges to a Dirac delta function when it is not norrnalizable 

(Appendix A). 

18. A connection between the Hopf bifurcation in a DDE and the first pitchfork 

(or "period doubling") bifurcation of the map obtained in the singular lirnit is 

derived (Section 4.6). 
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-,*. 1. INTRODUCTION 

"For an men strive to grasp what they do not know, while 
none strive to grasp what. they already know; and ail strive 
to discredit what they do not exC'e! in, whil(' none strivf' 
to cliscredit what they do exccl in. This is why tllt're is 

chaos." 
Chuang-TZll (369-286) 

This thesis studies the periodic and atJerioclic oscillations that anse \Il ne\lfill 

delayed feedback systems. Oscillations and fluctuations are the subject, of nOlllint'ar 

dynamics and statistical mechanics, while the stndy of neural feedba<k <;yst.CtTlS clraw!'! 

from the fields of neurophysiology, ncurology, biomathematics and hioengillt'(,flllg. 

Hence this study brings together tools from many fh'lds to achit've an undt'fstancling 

of how neural syst~ms generate oscillations in a noisy ellvironmenL 

In this iniroductory cha!>ter, the concepts of neural system and c!elayec! ft't'dIHlck 

are first defined and then examples of neural delayed feedback systems afe gi\'ell. At­

tention is then focussed on nonlineaf dynamiC's, and cspt'cially on Its r('('enl pOJ>lIlaril.v 

as a moc\elling tool for simple and C'omplex oscillatofy phenoll1ena. Finally, nonlint'af 

dynamics and neural delayed feedhack systems are hrullght togt'tlwr to explore the 

properties of neural delayed fecdback systems when their adivity is os('illatory. 

1.1 NEURAL SYSTEMS. 

In a broad sense, the term neural system designates asst'mblies of lI('lIrollS (Ill'rvt' 

ceUs) of varying numbers, ranging from sman circuits cOlIlprising two interconnecl.e<! 

neurons to large scale nt'urological control systems or brain strudurl's flll('h as 1 he 

hippocampus, the thalamus or the visnal cortex. We ddine a TH'ural !'!VS\'t'lll <t!'! ail 

entity within the nervous systPlTl that accompli sites a ~pecifi( fUllrtioll wlli( h ('lU! 1)(' 

assessed by the measuremcnt of appropriate quantities (aller! "neural \ofrelates". Ex­

amples of neural correlates art' the membrane potelltial of a l1eUfOIl, wll\( h <!('\.('flllill(''> 

the rate of generatio!l of a( tion potentials (i.e. the rapid nH'mhran(' dcpolarÎzatioll­

repolarization sequcnce \vhich propagates as a wave of de( 1 ro-chell\l< ,Il (l( tlvlty r!OWIl 

the axon), or the mean firing rate of action potcn1 ial~ of a populatioll of lleUfoll!'! 

Depending on their precise configurat.ion ane! fUII( tlOl1, neural ~y!'!tcm~ ('ail 1)(' 

viewed as input-output systems and/or autoIlOH\OUS !'!ystelIl'> Input-ol\tp1\t neural 

systems generatt' an output rcsponse to an incoming stimulus, ('.g t.h!' freq\l('nC,V ,LI, 

which a neural oscillator generates action potentials (an \)(' viewer! a~ the r{'~pOIl~(' 

.c 



l' 
r 

l 

(output) to the stimulus intensity (input). Autonomous neural systems generate a 

pattern of activity or rhythm on their own (pacemaker cells belong to this class). If a 

system Îs spontaneously active but modifies its activity in response ta a change in its 

environ ment (which is probably tht' case for almost a1l neural systt'ms), then it can 

also be viewed as a hybrid bt:'tween an autonomous and an input-output system. 

In ail neural systems, the concept of feedback is essential. By "fet:'dback system" 

we mean a system whose output depends on both ifs input and output. The influence 

of the input on the output or of the output on itsclf is either instantaneous, or involves 

certain delays assocmted with the propagation of signaIs. This is particularly true 

in neural systems, in which the time rt:'quired for action potential propagation and 

synaptic events is not negligiblej in faet, the dclay can be an important component of 

the dynamic behavior of the neural system. The simplt:' case of two neurons interacting 

through their mlltual connections can be viewed as a ff'edback configuration between 

two neural oscillators. For f'xample, the first nf'uron can have an excitatory influence 

on the second netIron VvhlCh in turn has an inhibitory influence on the first. This 

"recurrent inhibitory ('irnut" is llbiquitolls in the nervous system and provides a 

simple cxample of delayed neural feedback (the dclay bf'ing the timf' for neural activity 

1,0 propagate around the )oop). By extension, a singlf' neuron that inhibits or excites 

itsclf by the collatf'ral branches of its axon constitutes a delayed nellral feedback 

system. 

We havf' distinguished between autonomous and non-autonomous oscillations, 

where thesf' terms are used III the samt:' sense as in classical mechanics. Non-autono­

mous oscillations arise in a systeITl which is forced by an externally imposed rhythm 

; as a consequence its mathematical formulation t:'xplicitly contains the time variablf'. 

Autonomous syf,terns contain tlITIe only implicitly through the dependence of the state 

variablt:'s on time. Th(' existence of bOllnded autonomOllS oscillations in a system is 

a sign of nonlinearit.y, since lil1f'ar systeITls can sllstain finite amplitude oscillations 

only under periodic f(h'<-ing or when their cigenvalues are purcly imaginary. Thus 

the theory of bounded autonomous oscillations belongs to the realm of nonlinear 

dynanncs. 

1.2 NONLINEAR DYN AMIeS. 

TIll're has been murh focus in 01(' last. two decadcs on the ability of certain simple 

nonlinear systems to generatf' very complicated dynamical behaviour. Further, thl'se 

systems undt:'rgo "bifurcations" as parameters in the t:'quations governing their time 
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evolution are altered. A bifurcation represents a change in the topnlngy of thl' phase.' 

space of such a system, i.e. the vedor space spanned hy the c!egrees of fret'c!olll of 

the system in which the point in this space corresponding to the state of the systeTll 

evolves in time. A t.opological change can he vie'\\'('d ab a qualitative change III t h(' 

phase space trajedory. For example, the motion of a darnpec! harmonie osrillal(lr 

is a spiral into the origin of th(' phas(' spt:ce bpanned by il,s position and v('lonty 

coordinates. This motion can he se('n as the projection onto the phabe bpan' plallt' (If 

the motion of il marble set.tling tn the boUoIn of a howl. ThIs bowl cali be \'Il'wec! a'> 

a potential fundion which depends 011 the phase spacc coordinat.t'b. If t.he ("ollv{'xil V 

of this bowl is controlled by sorne paramder, ann. if at a givt'II valu(' of tills parcllll('Il'r 

the shape of the bowl goes from convcx to concavc (i.c. t ht' topology ha~ (hallgt'd) 

the motion will no longer lw direr:t.ecl t.oward the nrigm. This qualital.lv(' (ltallgl' I~ 

an example of a hifurcation l'vlathematica1\y the motion in phabl' spa( (' i~ govel nec! 

by a set of nonlin('ar couplee! d,fferential equaI.Jons, and the bifufléltiollb cO! It'fl!>ond 

to certain changes ill the eigcnvalu('s of the differential opcratorfl (d fixl'd point.s (,lIbo 

caUed critical points), I.e. points in phast' spacc wher(' all tIlT1c-dt'rivatlvefl are Z('ro 

Recently, simple mathcmatical models ('xhibiting bifurcat.lOn<; have ('Il joyed great 

popularity in many fields of science 1I1rluding physlOlogv and !IlCdH IIH' Theil altI (I( 

tiveness lier 110th in tl1('ir e('onnmy of rt'pres('ntation, i.e. very kw dt'f.!;Il'''<' of r\(·(·dOlll 

and nonlinearities are necded to g('nt'rat.(, a v(lriet.y of SImple éllld ("ornpk;., h{'h,lv'ol1r~, 

and their phase spart' motIOns of pcrplexing lH'autv 'l'hl' Tl\OSt. intIlglliIlJ!; of ail lb 

chaos, a spccial brand of phase spare motion wllIch IIl'\'('r n'j)(',l1~ I!f,elf, d('<;pIl(' IH'inJ!; 

governed by dderministic cqlIal.Ions. ThIS typc of motion nhlbit.b \\ b,lI. IS k\lPwiI a:, 

sensitivity 1,0 initial condition:, This llWélns that two \(lcntiral chaot\( t'XjH·I\II1('nt.al 

systems, prepared in wha! secms 1,0 he the same way wIll neverthl'\":'s follm\' dirr('f('nt 

trajedories in phasp spacc aHer Cl certain time. Thifl is bc(",U!<;(' iL i:, Ilot l)(l<'flihle, 

due to fini te experimt>ntal arclIrclCy, to preparc two real physiral flyStl'IIlS ln pr('(if,('ly 

the same way, and rhaotic systems amplify ('rrors cxpol\cTlt.ially ",hile rt'mainlIl!; ln ,1 

bounded rcgion of phase space. 

The theory of nonlinear dynamirs and chaqs hafl \)cl'n evolving biru'(' t1w tinw of 

Poinearé2 , who wrote a.bout. intrimic randomnC'ss and sensitivity 1,0 initial CO!lditiOTlb 

in relation 1,0 th{' t.hrt'(, hody prohlem The rerent int.('f(><;t. 111 !IonliTlpar dynalJl\('<; and 

chaos and their infiltration into many areas of scienc(' is largely duc 1,0 th(' aclve!ll. and 

availability of comput.ational power sinee the 1960's. Fl1rther, siIln' t.he pioTJ('ering 
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work of Lotka3 , Vo\terra4 and Raschevsky 5 in population and mathematieal biology, 

and of van drr Pol6 in electrical engineering, the theory of dynamics has been actively 

evolving through its applications to complex nonlint'ar systems ontsid", mainstream 

physies. TIH'se fields fostered new id,~as and provided prohlems in whieh nove! tools 

from the theory of dynamtcs muId bl:' tested, both theoretieally and experimentally. 

Probctbly what. is most appealing about chaotic d)'n:=tmics is the dcterministic 

alternative il. proposes to stochastic processes. Like a stochastic process, a chaotic 

system also generates "random" hehal.dur. Aperiodic behaviour once thought 1.0 be 

due to noise could now be due to chaos, which gives a new ordH to the phenomenon 

because chaos is deterministic. l\Jany investigators in diver~e fields have feH compelled 

to reinterprct noisy dat.a in the face of this new paradigm. Sinet' chaotic motion is in 

principle prrdicta hk, its intrinsic randomness has o[ten been rclegated ta the rank of 

"pseudo-randomness". J n fart chaotic systems are currently used as pseudo-random 

number gellerators (~ec t'.g. Li and Yorke 7
). 

For a given mathematiud model, chaos is not "ubiquitous" ; when it occurs, it 

does so ovrr a range of parametefs Further, there are "bifurcation f0utes" leading 

to chaos (for a rl'vie', sel' Scll1lstcrB
, Devaney9). Sirnply stated, the rout.e refers ta 

a precise sequence of btfllrcationf> that occur as one or more parameters are varied, 

until chaotic motion sets in at a sp('cific parameter value For example, in the period­

dOllbling route to chaos (al~o known as the FeigenbauTIl scenario), the period of the 

solution to the eqllatiol1S of motion IInr!ergoes seqllential doublings as a parameter 

varies, \lntil the pniod is effedlvely Infinite anJ the solution afH'riodic. The routt' 

de!l('nds on the system, and (hfferent. routes can exis1, for t.he samc ;;;ystem, dt'pending 

on t he di rection fn1Jowed i Tl pa rarncter space. Furt}lC'r, di fferent routes may lead to 

differeTlt kinds of dwotic motion. Tht' proper1,ies of 1,hese different chaotic motions 

hav(' bet'n chal aderized llsing tools from variOllS fields slleh as dynamical systems 

theory (GuckenhcHner and Holmes 10 , Devaney!)), meaSllr(' theory and information 

t.henry (FarnH'r ll
, F,lflTler et a1. 12

) and crgodic theory (Lasot.a and Mackey I3). 

The fltudy of ho\\' experimental svstt'ms bifurcate and ~llf>tain chaotic motion is 

actively bcing pursued in many different fields (for a revie\", see Hao Bai-Lin 14, Cvi­

tannvié l5 and lInlden I6
). The expcn.nental demonstrai.ton that cl system is chaotic 

depends on ho\\" weil the' dynamics of the system arc und('rstood The strongest 

detl1onstration in\'oh't's showing that a sound theory quant.itatively predicts the ob­

st'rv(·d route or routes 10 chaos. It may he that the theory agrecs only qualitatively 
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with measurements, or that a phenomcnological model shows agreellH'nt with the 

data. If the theory is not weil understoocl nr simply nonexistent, the eXIH'rinlt'ntal 

identification of a known route t.o chaos can be qllite ronvinring. 

In all thcse cases, the data analysi& ran be slIpplemenkd by one of sevt'fal a1-

gorithms measuri ng, e.g., the ra te of di vergenre of I1ea rby t raject oril's (Lya pllIlO\' 

exponents), the fractal dimension of the attractors on which the sy~terns an' aS~llmt'd 

to evolve or the rate of 10ss of information (Kolmogorov cntropy) (set' S( h\l~t('fA 01 

M:ayer-Kress17 for a review). Sorne algorit.hms art' capable, al. le'H.,t III computer t'x 

periments, of assessing the relative proportion of noise and chaos in a lime St'fI('SIR 

Admitteclly the wealtest proof for the existenn' of rhaos, it is oftell t ht' ollly anal 

ysis one can implement, as in the case of electrn-encephalographir data lO
• These 

algorithms must be mcd with cautioIl, for it is not weil IInderstood what thev rift' 

revealing about the data. In fad, they are designed 1,0 rharaderi,w steadv-st.at.e be­

haviour on attradors (see Section <1 2). Real data, and esp('rially phyqiologiral dat.a, 

is subject 1,0 transients and nonstationarity, and often refleds phenoll1t'na o('cllfring 

on many different time scales (for cl revi('w sel' Miltoll et al 2U). 

The identification of simple bifurcations is the gatc'way to understancling lI10re 

complex dynarnical behaviour, sincp they are the dear signature of l\ol\lil\earity in 

the system. It is important to rcalizc however that, in d\(' presellce of J\oi~e, irrep;ular 

oscillations can arpear in the vicilllty of bifurcatlOn j)(Hllb, (,\'(,11 far frolll the (haot.i( 

regime (sec Chaptcr 5). In thesp enses, the noise ih amplified <lt. the hifllfcatioll 

because t.he rate of decay of perturbat.iolls got'S t,n zero, a phenOrneI1011 c,lll"d "nitlcal­

slowing clown". f'urther the paramcter values al. which bifur(',\ti()J\~ O(('ur «UI \)(' 

shifted by noise, and a bifurcation can appear where there \Vas no \)\f1\[( <ltioll in the 

cleterministic case. These effecb are known as "noihc-Înd1lced trcl!lsitionh"21 Noih(' 

can also inducc chaotic hehaviour22 or enhance the e!Ilcrgellce of coherent lH'havlO1\r 

out of chaos (a pheoolTH'non kIlown <lS Iloise-inr!ucec! ord{'r 2'l) !lellce, the allalYhi.., 

of nonlinear dynamical systelJls is cornplicaled hy I10ihC'. The ill fi Il C'II ( e of nOIse OII 

simple bifurcations in ncural sysl<'ms iq a maJor [O('\lh in Un.., thehlf> 

1.3 NONLINEAR DYN AMIeS AND NEURAIJ SYSTEMS. 

Nonlinear dynamics and ('hans have infiltraf,ed the field of TTH'dICinp, and of 

physiology in particular, sincc the work of Mach'y and C:las!-,;l·j,25 lT\ore than ten year<, 

ago. They associated qualitative changef> in the dYllamic,t! bl'haviollr of ('ertain phYh­

iologichl vanabl('s \Vith bifurrations in model equattorlh ~()v('rning Uw phy~i()logical 
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dynamics. Examples of these variables are circulating blood cell numbers, nt'ural fir­

ing rates, and the partial pressure of carbon dioxide in the blood. These authors went 

further to p;,opos(' that these bifurcations could, in certain cases, be associated with 

the onRd of a pathological state, which led to the concept of "dynamical disease". 

Sin('e, thesc ideas have permeated physiological dynamics (rf'views can he found in 

Glass and Mackey26 and in Degn et a1. 21
), and experimental evidenCt' for biological 

chaos in simple cell systems zn mtro has been given28 ,29,30. 

In this t!wsis, conn'pts from the two preceding sections are brought together to 

explore th(' deterministic and stochastic properties of neural delayed feedback systems 

when their activity is oscillatory. Specifically the thesis theoretically and experimen­

tally addresses th(' following quest.ions: 1) Can bifurcations and chaos realistically 

OCClU in larg(' neural systems, and what are the difficulties involved irr asserting such 

rl'sults?; 2) tlow easy is il. 1.0 identify a bifurcation in the presence of high noise levels?; 

3) ls it possible 1.0 obtain quantitative agreement bet.ween experiment and theory?; 

and 4) Can the analysis of bifurcations in the presence of noise shed light (ln syst.em 

nonlinearities and on the origin and properties of the noise sources? 

To und<'fstand \Vhal. neural delayed feedback systems do and how they do it, 

on(' is faCt,cl with the probl('m of measurement. A system is needed whose physiology 

is weil charactenzed, which can be non-invasivcly monitored and controlled, and as 

c\osely mimicf, the zn vzvo situation a<. possible in or der for results to be relevant for 

intact neural systems. 

The thesis f()('usses on the human pupil light reflex, a delayed neural feedback 

system which sntisfies aIl these requirements and whose study has a hiswry of at Ieast 

2000 yean, This involuntary reflex, with a response delay of "-' 300 msec, has been 

ext('nsively studi('d in the bio-engineering literature as the paradigm of neurological 

('ontrol systems. It also t'xhibits a variety of interesting dynamical phenomena (rt'­

viewed in Sections 2.1 and 2.2) ranging from simple oscillations 1.0 ongoing aperiodic 

brhaviour. In faet tht' pupil light reflex has al! the propertics requircd 1.0 addr\-ss the 

questions formltla!{'d above. 

1.4 ORGANIZATION OF THE THESIS. 

The organization of the thesis is as follows. We first develop, in Chapter 2, a 

gl'neral theoret.ical framework in which to study pupillary oscil~at.ions. Our mode1, 

based on physiological and anatomical data, is framed in terms of a nonlinear delay­

differ('ntial equation. From the large literature on this reflex, we choose only those 
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aspects important for the generation of oscillations. One modelling criterion is 1.0 

produce a representation that can make predictions in tt'rtm of ff.·alistic observables 

and allow for paramt'kr estimation from t'xpt'rinwnt. ThIs is in ("ont.rast {n the wt'alth 

of modds in the neural dinamics literclture which, althollgh interesting [rom fi t Iwo­

retical point of view, will he "immune" 1.0 experimental V( lification for many ch'cade~ 

to come. 

In Chapter 3, we investigate how complex clynamics can bl' sllstainl'c! hy t hl' 

pupillight reflex. The experiment involves setting tlp alltonomous oscillat.ions in lhi~ 

reflex using external electronic feedback by modifying a technique dev('\opec! hy Stark 

and Sherman31 . This stlldy clarifies how a specific ne\lral syst.t'm !!;enera!t·<.j C olllpkx 

dcterministic motion in the presenCC:' of noise, and how a physiologically relevant rnockl 

quantitatively predicts this behavior. The major conclusion is t.hat hifurcations lIlay 

be induced in this neural control system. I1owever, the analysis of COTTlpl('x p('rtodic 

motion is severel) limited by noise. 

As a consequence, Chapters 4 and 5 contentrat,t' on simpl(' clderministic 1)('­

haviour in the presence of noise. In particular, noise-indllcl'd transitions (which 1)('­

long to the broader dass of non ('qui li hrium phase transi tlOns) a t t.h(' fi opf hi fil rca !,jOli 

In a prototyplcal delay-diffcrentid.l t'qllation (DDE) an' !.tlldit'd (5('(' alf,o A ppendlx 

A). 

Chapter 4 develops our understanding of the dynamics of DO E's \Ising th('ory 

and numerical simulation. Further, DDE's art' studied from a nt'w point of view, that 

of stationary densities in one variable. 

Chapter 5 looks at th(' stochastic Hopf hifurcation in a first orcler /)/)l'; with : 

1) smoot.h nt'gativf' feedback; and 2) piecewib(, constant llegativ(' [e('elbock (peNF) 

These two types of feedhack are eXJH'rimentally il'lportaT\t (~('t' Section :l2, and ,Ibn 

Appendix B for a precise application (lf PCNF as a diagnostic tO\): for llIultiple!'>( I('fO­

sis). A second set of ('xperiments, done in collaboration with a group fro!l1 tht' MediraI 

Physics Department of the Frt'e University i~l Amsterdam, i.., pr(,"('nted They involv(' 

inducing simple oscillations in the Pllpillight reflex Ilsing SNI" ancl peNF. 'l'hl' Am­

sterdam group provlded the data for the SN F oscillations. 

The deterministic and stochastic behaviour of the pllpil area o!'>cillatioll peri"c! 

and amplitude al. oscillation onset art' analyzed. 'l'hl' proper (har,t( t.eri,mt.loll of t.h!' 

noist' is shown to he nt'cessary to explain our observati('nfl. The inleradion of tl\f' Iloi~(' 

with the deterministic compont'nb Îs uscd to elucidate the propcrti('!'> of this reflex 
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al1d the origias of th~ noise. This type of study may yield useful tools to diagnose 

neurolo~ical control systems sinee, for example, noise is thought to arise from the 

ad:vity of other centers in the brain impinging on the pathways of the pupil light 

reflex. The activity in these cent ers is thus mirrored in sorne cryptic way in that of 

the pupil, and it may be deciphered using the appropriate analysis. 

The common theme of the chapters is understanding noisy nonlinear oscillations 

in neural delayed feedback systems, and also in DDE's because of the importance of 

these in our models. However, each chapter relies on different tools Lo carry out differ­

ent parts of the program. It is hoped that the reader wiU appreciate the presentation 

of the relevant introductory material at the beginning of each chapter, rather than 

be overloaded at the outset in this introductory chapter. Since most of the thesis 

is composed of manuscripts which are either accepted or subrnitted for publication, 

there is inevitably sorne overlap between the introductory remarks of the chapters 

and the introduction sections of the papers. Further, the introductory sections of the 

papers overlap to sorne extent, as the papers aU share cornmon elements of the same 

general research program. 
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The Faculty of Graduate Studies and Research of McGill University rcquircs that 

the following text from the GUIDELINES CONCERNING THESIS PREPA­

RATION be cited in full in the introductory sections of any tl1l'sis tu which it applit'~. 

Appendix E details the contributions of the aut.hor to the manuscripts incll\(kcl in 

this thesis. 

MANUSCRIPTS AND AUTHORSHIP. 

The candidate has the option, subject to the approval of tht' Dt'part.rnt'lIt, of 

including as part of the thesis the text, or duplicated published t.ext (st'(, bt'Iow), of 

an original paper, or papers. In this caRe tht' thesis mURt still ronform 1,0 ail otlH'r rt'­

quirements explained in Guidelines Concerning Thesis Preparation. Adc!ttional 

material (procedural and design data ~s weIl as descriptions of equipnH'llt) nlIIS!. \)(' 

provided in sufficient detail (e.g. in appendices) tü allow a clear and pn'risc .illd~errlt'nt 

to be made of the importance and originality of the research reportt'd. Th(' thesis 

should be more than a mere collection of manuscripts published or 1.0 \H:' Plll>li:·;\I(,(1. 

1t must include a general abstract, a full iniroduction and 1iJ,f.r:.at!lI!-~ revi(~\V and a 

final overall concJusion. Connecting iext which provide logiral bridges hetw(,{,1! dif­

ferent manuscri pts are usually desirahle in the i nterests of cohe~lnn. 

It is acceptable for theses to include as chaptt'rs allt.hcntic copit's of papl'r~ 

already publishcd, provided ihes(' are duplicated clearly on reglllat.ion ih('sls siaiiOlll'ry 

and bound as an integral part of the thesis. Photographs or otlH'r materiab whi( h cl" 

not duplicate wdI must be included in their original form ùL§!!.dLjrLs!,'!D5·<',hJ COllm'('­

ting texts are mandatory and supplementary explanaiory material is alrnost alway~ 

necessary. 

The inclusion of manuscripts co-authored by the cancbdate and oihers ih ac('('pl.­

able but the candidate is required to makc an explicii staternent on who ('ontribut('c! 

to such work and ta what extent, and supervisors Illll~t. attet-.t iu the a( (,lIracy of the 

claims, e.g. before the Oral Committ('e. Sincc the task of the ExalTliJJ('r~ ih mar\( mOf(' 

difficult in these cases, it is in the candidate's interest io rnake the r('sp()nsabiliti('~ of 

authors perfectly clear. Candidates follüwing this option mllst inforrn t!te l)epartrrH'nt 

before it submits the thesis for rcview. 
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CHAPTER 2 

MODELLING AUTONOMOUS OSCILLATIONS 
IN THE HUMAN PUPIL LIGHT REFLEX. 

STILL POOLS 

[ Cyprcs., J 

Cypress. 
(Stagnant water.) 

Poplar. 
(Crystalline water.) 

Willow. 
(Deep w ater. ) 

Heart. 
(Water of the pupil.) 

Federico Garcia Lorca 
First Songs, 1921 

This chapter starts with a brief introduction to neurons and pupillary physioI­

ogy. The core of the chapter comprises two papers. The first (Section 2.2), entitled 

"Modelling autonomous oscillations in the human pupil light reflex using nonlinear 

delay-diff'.'rential equations", has been published in the Bulletm of Mathematical Bt­

ology. The title if> self-explanatory. The second paper (Section 2.3), entitled "Insight 

into the transfer function, gain and oscillation onset for the pupillight reflex using 

nonlinear delay-different.ial equations", was published in Bzological Cybernetics. It 

provides the conncctioll betwppn the approach of this thesis, based on nonlinear dy­

namics and bifurcation theory, and the control systems engineering approach which 

has permeate(1 studies of pupillary dynamics for more than thirty years (see Stark32 

for a review). The conditions under which our model is compatible with previously 

derived transfer function analyses are determined. Particular attention is given ta 

the onsd of oscillation and to the asymmetry reflected in the speeds of constriction 

and dilatioll. Further, we modify an explanation given hy Stark 1 for the origin of a 

double oscillation induced in the pupil light reflex using external electronic feedback. 

In these papers, the Hopf bifurcation i8 used as a tool tu understand the onset of 

oscillation. The full Hopf bifurcation theorem is given in Section 5.1. 

2.1 INTRODUCTION. 

The pupil is the black hole in the middle of the colored part (iris) of the eyeball 

formed by the iris muscles. Light enters through the pupil and falls on the retina. 
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The autonomie (i.e. involuntary) nervous system uses the signal produced in the 

optic nerve to control the activit.y of the iris muscle and, as a consC'qut'nce, pupil si?:!,. 

The major function of the pupil is to regulate the letinal light flux 1I11til tht' Hlowt'I" 

adaptation pro cesses involving the retinal nl'nrons set in, and 1.0 cont roI tht' cIept li of 

field for visual acuit.y33. It is part of a "sYllkinetic triad" whi< h rt'rt'r~ to tht' t hrt't' 

simultaneous events that OCClU when, for t'xample, a sllbjt'ct challg('~ his fOlIlf,~il1g 

distance from far to near: ]) tht' h'lls II1cn'asC's its cnrvatlIrt', tht'rt'by d(-crt-a~illg 

its focal lengtt; 2) the eyes converge; and 3) the PlIpils constrict. This is why 011t' 

must specify pupil llght reflex, since tht" pupil also [eaets, t.hrollgh the action of the 

autonomic nervous system, to non-visual stimu~i and 1,0 focussing ClICS 

The pupil light reflex has been st udied for more than 2000 years (sel' L()('W('ll­

feld:!'.!). Differences in pupil size attracted the attention of carly physiologists in tht' 

Roman empire. Plinius (23-79) and Calen (135-201) ust'd specifie plant extrarts j,o 

dilate the pupil prior to cataract surgery. Ct'ntllrit's later, Rhazcs (850-92:l) first 

recognized that the normal pupil contracts in light and dilates lTl the (\;11 k. Short Iy 

thereafter, Ammar (c.a. 1000) assumed the iris 1,0 1)(' a mllselliar organ. TI!t'r!' ha~ 

been a sustained interest in the pupillary system since the 1600's, a~ ib role in t.ht' 

regulation of light and in the accommodation (focussing) reflex wert' disrov('red. 

2.1.1 Neuron5. 

Before discussing the basic neural circuitry of the Pllpillight reflt'x, a br:ef surn­

mary of the general properties of neurons is in order. 

The neuron is an excitable ce1l35
• It requires a constant source of nH'taholic 

energy to move ions against eledrochemical gradients in order 1,0 maint ain a pot.ential 

difference across its membrane (::: -60 mV, the inside being negative with respect 1,0 

the outside). ·When the membrane is depolarized ab ove a certain threshold (,,-, t10 

mV), there is a sequence of ionie l'vents which causf' the memhrane potelltial t.o 

rapidly depolari;r,e to a positive value and then 1.0 repolari;r,(' 1.0 t.he original value. 

This sequence generates a potcntial change known as the action pol,ential Alth(lll~h 

these events occur in the cell body (at the soma), t.hey trigger a depola,ri;r,atioll­

repolarization waVe that travels duwn a thin pro<e~~ extellding oul of tht' ('(·11 body 

caBet!. the "axon" (bundles of axons are called IleI ves). 

A neuron commllnicates \Vith other neurons al. special junct.ioJH, calh-c1 "synap­

ses,,33. When the propagated action potential arrives al. the end of the axon, 11, cau!'.es 

molecules known as "neurotransmitters" to be released from "synaptic houtoll!'.". 'l'Il!' 
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transmitter rapidly diffuses across the synaptic cleft (200-300 Â) from the presynaptic 

neuron to the postsyna~tic neuron, where it binds to specific receptor molecules on 

the cell membrane. These receptors are generalIy 10cated on the dendrites of tht' post­

synaptir neuron, which are hairlike pro cesses that channel information about external 

stimuli to the cell body. The transmiUer binding causes ion channels to open and/or 

close in a varidy of ways. These changes temporarily dis:,upt the ionic balance of the 

postsynaptic ccII, gencrating postsynaptic potentials or PSP's. These potentials are 

either excitatory (EPSP's) or inhibitory (IPSP's), depending on the neurotransmitter 

and the rt'ceptor The PSP's propagate decrementially (as in cable conduction) down 

the dendritic tree to the celI hody, in contra st to axonal wave propagatio:l which is 

a regenerative process that maintains the action potential amplitude constant. The 

EPSP will dcpolarize the postsynaptic cell, while the IPSP hyperpolarizes it. 

The balance of the' excitatory and inhibitory influences at the soma at any given 

time determines the rate at which the neuron fires action potentials. In general 

the firing freCjllcncy is proportional to the amount of depol:uization above the firing 

threshold. ln simple terms, stimulus strength is encoded in the firing frequency. 

Action {>oteIltial generation is an ail-or-none proccss : if the stimulus is too small or 

inhibitory, no action potential3 will result. 

Nt'lIrons connecting to muscle ccIls are called motoneurons. They reside in " 

motor nllclt'i" or "motoncuron pOOlb". Muscle ce11s arc also excitable cells. Acetyl­

choline is the nellrotransmmitter at the neuromuscLllar junction, i.e. at the synapse 

between a motoneuron and a muscle celi. The action potential in the muscle cclI, 

triggercd by the diffusion of acetylcholine, canSeS a sequence of chemical reactions 

and mO\t'cular movements \eading to the contraction of the muscle ccli. The strength 

of the contradion is gencrally proportional to the firing frequency of the motoneuron. 

2.1.2 CirruÏtry of the pupil light reflex. 

Figllre 2.1.1 shows a schematic of tht' neural pathways mediating the pupillight 

reflex, while Figure 2.1.2 illustrates the pathways of the accommodation reflex which 

enable the C'yC to focus on a target. 36
. These two reflexes have certain pathways in 

common. Note the mirror symmt'try of the structures involved in bot.h rt'flexes. 

At the ret.ina, photons are absorbed by certain molecuIes, which initiates a com­

plex st'ries of biochemica\ reactions leading to a change in membrane potential in the 

wd or cOlle cd137
. This activity is rclayed to other rdinal neurons before reaching 

the ret.inal ganglion cdIs. The axons of these neurons join together to form the optie 
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PUPILLARY LIGHT 

REFLEX 

Pupdbry~ 

t 

Pup!U:ary COftIInCIIOII 

Figure 2.1.1 Schematic diagram of the neural pathways for the pupillight reflex. AlI 
structures are symmetric with respect to the midline, but {or clarity, the parasym­
pathetic pathway is drawn on the leit and the sympathetic pathway on the right. 
AU \!onnectioDs shown are excitatory. Sec text {or explanation. (From Pansky and 
Allen38 , p.399) 
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Figure 2.1.2 Schematic diagram of the neural pathways for the accommodation 
reflex. In contrast to the pupillight reflex, which is a brainstem reflex (Figure 2.1.1), 
the accommodation reflex involves the visual areas oC the cortex. The final motor 
pathway of this reflex is the same as for the pupillight reflex. See text Cor explanation . 
(From Pansky and Allen38 , p.397) 
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" nerve (the und nerve). Before reaching the lateral geniclliatt' hody (LGB), which 

is the way station where most optic nerve axons synapse on the \Vay to the visu al 

cortex, a small fractton of axons branch and the<;l' branchl's synapse in t IH' pretl'rt.al 

nucleus (PTN) in the midbrain. Otht'r axons synapse in tht' prt'gt'Iliculak hod~·, [rolll 

which there is a projection ta the prdedal area. It is not knowll whether tlll're an' 

retinal cells that are specifie to the pupil light reflex. The COIllH'rtio,l !H'l,W<,('H the 

optic nerve and the PTN bdongs to the parasympathetic pathway, whirh is ill\'olved 

in constriction. Before discussing this pathway, Wl' hrieny describe the ~yl\lpatl\('t.i(" 

pathway, which is responsible for dilat.ion. 

The afferent portion of thl' sympathetic pathway also b('gin~ al t.he ret.\Ila. A 

fraction of the optic nerve axons synapse onto tH'llrons in the prt'gt'llicl1latt' body 

which in turn synapse III the midbrain reticlllar formation These nellrnt1s also re( l'ive 

input from the hypothalamus. The path",ay then mns from the rdlrulal fOlll1atioll 

to the spinal cord. It exits the spinal cord and goes up the ct'rviral ~ympathdic 

trunk to synapse in the superior cervical ganglion From thcre, the pat h (Ollt illlJ('~' 

across the carotid plexus and finally reaches t!w radial\y artanged iri~ dilator Il1l1h<le. 

This description is, howevcr, complicated by the finding 38 that parasyll1pHt.hdH (ells 

in the Edinger-vVestphal nucleus of t.he cal. cause t.he irih t.o dilate ln re~pollh(, t.o 

focal electricdl st.imnlation. Further, in rc~ponse to ail illcn'ast' i11 Idi!lal Ii~ht. f1I1X, 

parasympathE:'tic ueurnns in the rabbit have be('u SI ·n 1.0 ('itlter ilH rt'ah(' or de( lea~e 

their firing activity, i.e. t.hese neurons are ('ither ON IlllltS or OFF IIl1its
39

. The 

precise role of t.he sympathetic system and the physiology of dilatioll in g('IIt'ral art' 

still unclear. 

The route of the parasympathetic pathway is known in more detail t.hall t.he 

sympathetic pathway37. Each prelectal nucleus r('ccives mput from \)Oth rdilHlh, 

because of the crossing at the optic chiasm. There Îs evideTlce of de("lJs~ation al. 

this level, meaning that the PTN's from both hemisph('re~ commllllirate arrm,f> t111' 

midline. TIH're is st ronger cvideT\ce that earh PTN proj('rb 1.0 the ip~ilat.eral and 

contralateral Edin;er- \Vestphal nucleus (EWN). Tht' EWN 15 the IllOtor TIlH lell'> t.ltaf 

drives the circularly arranged iris sphincter muscle who~e adi vatioll !('f>ldb in pllptl 

constriction. Because ('arh EWN r('ceives clctivity from each rdina, the pllpil li~ht. 

reflex is cOT\seT\~ual : stimlllatioT\ of one rdina callses both PUptlh to (orthtnd. 

The EWN is also the motor nucleus for the ciliary musclt', the compol1t'llt of 

the accommodation reflex that controls the curvaturE:' of the lens37 (~('(' Figure 2.1.2). 
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The pathway for the accommodation reflex goes from the optic nerve to the anterior 

occipital cortex, over to the superior colliculus and down t.o the EWN. 

The axons of the EWN are part of the III"/ nerve which synapses in the ciliary 

ganglion (CG). The axons of ti,e ganglion ceUs innervate the sphincter muscle and 

the ciliary muscle. Although the accommodation and light reflexes both synapse 

in the EWN and in the CG, there is evidence that their pathways remain distinct 

throughout. However, the activIty of the accommodation reflex certainly influences 

that of the pupil light reflex, because of the synkinetic triad. This most probably 

occurs in the EWN. 

The activity in other regions of the brain is kno\Vn to influence that of the pupil 

Iight reflex. Most of these influences are felt at the level of the EWN411
• Spinoreticular 

and braipstem (Vtll and VIIi" N.) afferents have an excitatory effcct on the EWN, 

causing the pupils to constrict. The sensorimotor and frontal cortices, the reticular 

activating system, other brainstem afferents as weIl as corticot~alamo-hypothalamic 

and corticn-limbic pathway& art' known Ln inhihit the activity of the EWN (i.e. they 

cause pupil dilation) Olle nf the 1110st important influences on the EWN is the 

inhibit.ory effect of the reticular activating system (RAS) which controls alertncss. 

When a subject falls asleep, activity in the RAS decr~ases, which means that the EWN 

is less inhihited. As Cl resuIt, the pupil constrict.s In fad it has been obsefvedH 42 in 

t.ht' cat and the rabbit t.hat in the absence of any inputs, the EWN settles into a steady 

state of high spontaneot~s random acbvity The external inputs s('rve to depress and 

modulate this activity. Tt h(\s heen suggested that the relaxation of tht' sphincter 

in pupil dilation is rauseJ hy such mhihltory inputs ralher than by an increase in 

sympathetic outflow 13. 

ütht'r neuron populations lI1 the pupii light reflex have been shown t.o exhibit 

high Hring activity. For example, ret.inai ganglion cells of cats fire randomly, and 

a visual stimulus may temporarily increase or decrease the mean firing rate, but is 

rarely ablp to suppress it for more than a few st'conJsH . In rabhits, neurons in the 

ciliary ganglion r('('eive tom(' synaptic lIlput which is not decreased by darkness or by 

acnte section of the optic IH'rVe4
:ï. The rnajority of these neurons increase their mean 

firing rate in response to rdinal illumination; other celIs, however, decrease their rate 

during illumination. 

2.1.3 Hippus. 

The pupil are a undergoes temporal fluctuations ranging in magnitude from 0 to 
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20 %. This nOisy pupil adivity is normal and is called "hippul',,:17, It can hl' l't'en 

even ulleler conditions of constant illumination, Hippns occurf, in c\ol'ed 1(0)) and ln 

open-Ioop also (i,e. when t.ht:' pupil can not control the retlIlallight fllIX)lfl, Bt'((\IIS(' 

it occurs in open-Ioop, it does not ref!ect an instability III t.he feedhd( k 100" of tilt' 

light reflex (s('t:' Section 2.:l,8). Sinn:' lupj>lIl' is j>erfedly synchronizer! in hoth pl\pil~, 

its origin has to be al. a point in the reflex an common to both pllpib The Illagnltl\de 

of the fluctuations depends (Ill the value of pupil arca, and is TlldXlllll\11l at l1lidrange 

are a values, II. has hecn sho",n that thif, arca dqwndenc(' of the Illdgllltlldt, of hlllp1l.., 

is the same rcgardless of whdlH'r the area is cuntroJ\l'd by the ,\('( 0111 lI\od ,11,101\ 1 ('f1ex 

(keeping the illumination constant) or by the light rd\ex (keeping the ,\('COllllllodatiol\ 

level constant)47, Based on thest:' ohservations, il. has l)('en s\lgge~t('d thal. th!' inpl\t., 

to the EWN which are extt:'rnal 1.0 tht:' pupil light reflex pathways, af, weil af, tht' 

intrinsic stochastic behaviour of the EWN itself, might IH' the f,OI\[( e of hipPI\f" 

It has also been suggestecl that hipplls f,imply llIirrors the ongoing f1l\ctl\ations 

in lens curvaturt:' that charach'rizc the accommodatlOlI le!lex 17, Thif, WOllid Ilot lH' 

surprising giVt:'Il the {'xistenC(' of the synkinetic triad, and lhél!, :l% of the (""" V IH'Ive 

goes 1.0 the irib sphincter, while 97% go{'s tu the cilJaly IIIUS( le, makillg (1O~f,t.cllk 1)(' 

twet:'n thes(' !'wo mutor pathways not un"kely Th('l(' haf, IWCB" piclilllillary repOlt.inp; 

of the synchronization of pupil and accommodation fluctuatlOlls in ('ertalll slIhj('ct,f" 

but not in others-18 VVhetlH'r the pupiJ light rcflex ancl the arcolllOcIatioJ\ reflex arc 

synchronized or not is unclear, and the l'l'l'lise oflgin of hippm is still IIllkllOWII, 

Apart from hlJ)j>us, the pllpil light reflex (PLH) exhihi(,f, a wide rallge of dy­

namiea! hehaviours32 ,10 (st:'c Tablc 1 in Sedion 22) in rpspOIlf,e (,0 differellt. f,t.illll1ll 

One of the most intt:'rt:'sting effcds is f,e(:'n in narcoleptic patientf, at f,le(,P Ollf,d in 

the dark 50
• As they becomf' more drow~y, their ITlt'all pllpil <lH'a cIe( J't',lf,('f, IInLil, aL 

midrange pllpil an'as, the iflegular hippll~ give"j way 1,0 a rcglllar OS( dl,d,lOrt havlng fi 

period of;:::;: 5 seconds, Thib phenomenoll haf, abo !)('en reportl'd in norlllc11 slIbj!'c(,f"I, 

The origin is not known Hencl', despite centuries of Inve"tigal.lorl, III Il ch if, \en fo IH' 

understood about this reflex. The fundamental l'rohklll if, that Hl<' anato!lly and phyf,­

iu!ogy are not well knowIl becanse the experill1l'l1ts arc t'xtrt'I1JC'ly diHi( 1111, t,,, (arry 

out. It is somp',rhat surprisll1g thaL mally anatornically dif,Lind TlIIdhralll strlldllf('~ 

are contigllolls, and that the EWN, which if, nnly one of the Il Il ('I<'i in tlH' so-called 

"oculomotor complex", is confined tu a region the size of a pinhead. 
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2.2 MODELLING AUTONOMOUS OSCILLATIONS IN THE HUMAN 

PUPIL LIGHT REFLEX USING NONLINEAR DELAY-DIFFEREN­

TIAL EQUATIONS. 

Abstrart. 

NeurophYf>iological and anatomical observations are used 1,0 derive a nonlinear delay­

differential equation for the pupil light reflex with negative feedback. As the gain 

or the time rlday in the reflex i" increased, a supercritical lIopf bifurcation occurs 

from a stable fixed point to a stable limit cycle oscillation in pupil area. A Hopf 

hifurcation analysis is used 1,0 deterrnine the conditions for instability and the period 

and amplitude of th('se oscillations. The more complex waveforms typical of the 

occurrence of higher ordt'r bifurcations were not seen in nurnerical simulations of 

the model. This model provides a general framework to study the different types of 

dynamical behaviours which can be produced by the pupil light reflex, e.g. edge-light 

pupil cyding. 

2.2.1 Introdurtion. 

An intriging aspect of the nervous system in health and disease is the widespread 

occurrence of complex dynarnical behaviours, e.g. trernors and the elrdrical activity 

of t.he rortex (s('e, for example, Mach'y and Milton54
; Milton et aI. 20 ). Recently there 

has been a gn'at deal of speculation concerning the role of nonlinpar neural control 

medHlnisrnf> ln ~('nerating sorne of thehe dynamical hehaviours55 ,56,57 Thene propos­

aIs have heen ha~('d on mathernatical htudies of physio1ogically realistic equations in 

which qualitative changeh in dynamics ('bifurcations·) occur as certain parameters 

art· varied. Th(' changes ln dynamics produced b" parameter variation range from 

stable t'quilibria to ~irnplt' and complex periodic oscillations to aperiodic (chaotic in 

the current vt'macular) fluduations 14
,26. HowevPl", eXlwrimental verification of these 

prt'di( tions has \w('n hindt'rt'd by the pallcity of buitable modds in which it Îs possible 

1,0 st udy the dynrlIl1\(·f> that ari~e by paramder variation. 

A neural feedback (ontrol m('chanism which i" amenable 1,0 manipulation is 

the' pllpil light. rdkx. A!'> s11O\\ n in Table 2 l, this reflex exhibits a wide range of 

dynamical hehayio1ll"s, ",hich a;,t' typically monitored by rh anges in pllpil area. For 

('xample, irregular variationf> in pllpi\ area ('hipPllS') OCClU spon1an('ously, whereas 

rt'glliar oscillations ('pnpil cyding') can be induced by focussing a small light beam 

at th,· Pllpillary rnargin 5R ,59. The period60 ,61 and regularity62,63 of pupil cycling are 
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TABLE 2.1 
Summary of Spontaneùus Dynamical 8ehaviors Exhibited by the Pupil light Reftex 

Type of Dynamlcal Behavlor 

Regular oscillations 

Simple wavefonns 

Complex waverorms 

Inegular oscillations 

Noise-lib fluctuations 

Descrlpllon 

Edge-light puptl c:ycle tlme 

Pupil cycling with extemal elec:tronic 
Ceedback ("clamplOg") 

(i) Conllnuous negative fecdbaclc 

(ii) Pieccwisc constant negallve 
feedbacit 

Hippus ln narcoleptic patients 

Pupd cycling wuh extc:mal "mlled" and 
delayed Ceedback 

Intermittent inegular pupil c:ycling ln 
demyclinallve OpliC ncuropalhy 

Hippus 
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altered by pathology within the pupillight reflex pathways. 

An important feature of this reflex is the ease by which it can he manipulated 

and mnnitorl'd rJoninvasively. In particular, it is possible to 'clamp' this reflex1,62,64,65. 

Clamping rders to an expt'rirnental technique in which tht' feedback loop of the reflex 

is first "opened" by forussing a small beam of light on the center of the pupil in order to 

circllrnvent tJ\(' shading t'fred of the iris on the retina (see Stark and Sherman31
). The 

feedback loop is then rec!osed with an eledronically construded 'area comparator' 

relating rhanges in ptlpd area to changes in light intensity. Thus a precisely specified 

feedback can lH' lfisertecl into the reflex. ln this manner Stark 1 verifiecl that pupil 

are a oscillatioI\s collid occur once the gain became sufficif'ntly large. The "linear" 

properties of the n'Bex cld,ermined the frequenry of these oscillations, whereas their 

shape and amplitlldt' dt'pencled on thf' "nonlinearitles". 

Recent stlldit's bave t'rnphasizecl c!amping the pupil light reflex with plecewlse 

constant types of fe('dback 20 ,62,64 . the light IS eithcr on or off depending on the 

value of the pupil drea relative to certain area thresholds. The main advantages of 

the use of piect'\vise constant feedback over smooth feedback are 1) the pllpil area 

oscillations arc IllllCh casier to control experimentally62; and 2) the properties of the 

oscillations are bd ter IInderstond analytlcally2o,64,66. This approach has resulted in 

a new technique for detecting optic nerve pathologyG2 and moreover allows certain 

nonlinearities of th(' reflex 1.0 he isolated for dctailed study (this paper). From the 

general point of view of nonlined,r dynarnic~, this C'xperimpntal paradigm of neural 

control provic\et-> unique opportunities to verify theordical 'HedictioIlS, 1,0 rIraw at­

tention 1.0 unexplained phenomena, and to assess the role of superimposed random 

variations ("w}ise") \0 shaping the observed dynamics 20 ,64. ft can be anticipated that 

insights obtaincd from studies of the c!amped pupillight reflex can be applied to other 

neural control mcchanlsTJls n.S weIl. 

Dl'spitc the attractivene;,s of the stuùy of the pupil light reflex as a n(lnlinear 

dynamical system, we know of no previous attempts to modcl it from this point of 

vie\\'. Indeed prcvious invpstigators have focussed on the modelling of, for example, 

the respOfH,e of the pupil tn transient and steady state oscillator.i light inputs, and of 

various nonliIlcaritics in the reflex arc 1,32,-l6,49,67. Rere we use neuro-physiological and 

anatomical consideration;, tn d('ri ve a modd for the Pllpillight reflex. A bifurcation 

analysis of the rl'sulting nonlinear delay-differential equation is used 1,0 characterize 

its dynamical hehaviollrs and to examine the influence of parameter variations on 

20 

1 

1 
1 
1 



them. This model provides a general framework in which it is possihlt' to study the 

different types of hehaviours produced by the pupil light rt'Rex. 

2.2.2 The pupil light reflex. 

The pupillight reflt'x pathway is rt'presentpd schl'rnatically in Figure 2.~.1. Pllpil 

size reflects a balance between constricting and dilatiap; lllt'chall1sms37
. Pupil rOllht ric­

tion is caused by contraction of the circularly arrélllged pupillary nlllhtri< tot IlIllsde 

which is innervated by parasympathetic fihers The JT)ol,or nllclells for tllIs !lI1l!--( 1" 

is the Eding<>r-"Vestphal !1ucleus located in the on!lomnt()r cOTTlplC'x 111 the 1l1lelbralll. 

Then al'e two main neural mechanisms for pupil dilat.io!1:l·l . 1) CI !lU'( hanih!11 ",hi< h 

involves contraction of the radi~lly arrangt'd pupillary dilaLor muscle il1!\('rvat('d hy 

sympathetic fi bt'rs (tradi t iona l1y rdt'rrt'd tn as "acti v(''' rpfl{'x di lat ion); il nel 2) il l1\e( h­

anism which operat.es by inhibition of th!:' activit.y of the Edingrr- Wehtphal 1\1\( kil" 

(traditionally referrt'd to as "passive" f!:'flex dilatio 1) Pnpil rycling O('Ctlrh (,\'(,11 Wlh'lI 

the sympathetie sllpply to the iris is eut surgically62 or hlorkpd pharmacologicaIly(\lI. 

Thus during pupil cycling, dilation ih primarily the rl'slIlt of 1) a dp( reahe in 01<' 

afferent activity and 2) incrt'ased inhibition of the adivity of t,lw Edinger- W('htphal 

nucleus. The role of the sympat.ht>tic nervous system SC'f'!T1S t.o IH' primarily olle of 

determining the average pupil size 

This rt'flex functions as a tim!:'-delayed ncgativ<, f('edbark system32 ,1f1. Tl:e t.in\{' 

delay, or pupil lat!:'ncy time, is ......, 200-500 msec62
,68. This tmw dt>lay I~ rnllch longer 

than would he anticipated simply on the hasis of neural conduction times 'l'hl' part. 

of the reflex in which this delay originates is presently controversial : S()!I1e autllOrs 

favour an origin in the midhrain 3R
, others sl'ggest t.h .. t it arises at the level of t.hl' iris 

and its musculature68 ,69. 

2.2.3 Model. The variable controlled hy the pupillight. reflex is tht' retinallight level 

(fluX)46, 4J (lumens), which is equal to the illuminancc, 1 (lurncns/rnm2
), rnultiplied 

by the pupil area, A (mm2 ) 

4J = lA. (2.2.1 ) 

The retinal light flux ~ is transfmmed, aCter a time d<>lay Ir, into neural action 

potentials which travel along the optic nerve. We assume that it is the rah' of thps(' 

action potentials, i.e. N(t) = number of action potentials per unit time, which is 
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important for reflex dynamics and that N(t) is related t.o cP by 

(2.2.2) 

where Tf is a rate constant, ~ is the threshold retinallight level (i.e. the light level below 

which there is no response), and the notation cfJ( t - T r ) indicates that this quantity 

depends on the rptinallight flux at a time T r in the past. The logarithmic compression 

of light intensities (~~ ~~'" retina has been discussed previously by Cornsweet 70 and is 

referred to as tht' Weber-Fechner law (sel' t'.g. \Vebster71
). 

Tht' affere'1t neural action potential rate, N(t), gives rise to an efferent neural 

signal, E(t), which is produced by the Edinger-Westphal nucleus after a time delay, 

Tt. This t'fferent neural activity, also measured as the number of action potentials per 

unit time, exits the midbrain via parasympathetic fîbers. We assume that 

(2.2.3) 

where " is a rate constant and Tt is the midbrain time delay. 

At the neuromuscular junction of the puplllary constrictor muscle, the neural 

action potentials result in the release of a chemical neurotransmitter (acetylcholine) 

which diffuses across the synaptic clef t, binds to specific receptors on the muscle 

membraI1t' t.hus kading to the gencration of muscle action potcntials and initiating 

muscle contradion. These events rt'quire a time delay, Tm' In this way the neural 

activity, E( t), i~ transduced into tension in the constrictor muscle; this tension tht'n 

product's a resulting pupil area. \\Te first define a relationship between E(t) and iris 

muscle artivity, ;1', and thel1 between x and pupil area, A. 

The iris muscle activity, x, is determined by a number of factors which may 

include Ca H concentration and riiffusion, actin-myosin cross linking and the initial 

length and tension in the constrictor muscle. Since we are ultimately interested in 

pupil area, A, it is not nt'cessary to exactly specify x. We take the relationship 

bdween E(i) and x to he of the form72 

dx d2
J' 

E(t) =- Jl/(x - -- ... ) 
, dt ' dt 2 ' 

~ k (~~ + ax) 
(2.2.4) 

where a is a rate constant and k is a proportionalit.y factor which depends on the 

definition and nnits of x used in the mode!. The justification for the first or der 
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approximation to l\;f(x, ~~, ~:~ ," . ) is the success that the subsequt'Ilt moùcl has in 

predicting the experimentally ohserver! oscillations in pupil area (se(' Longt in and 

Milton64 j Milton et a1.20
). 

By combining (2.2.3) and (2.2.4) we obtain the following nonlin('ar dday-difft'rt'II-

tial equation 
dx [cP(t - T)] 
dt + ax = ,ln -r (2.2.5) 

where T = T r + Tt + Tm is the total time delay in the reflex arc and, _~_ ,'/Ir. 
Equation (2.2.5) is written in terms of muscle activity; hOWl'VN, l'xpl'rinwntally 

it is pupil are a that is more typically measured. In orùer to re-writc (2.2.5) in tenns 

of pupil area, A, it is necessary to have a fundion, J(x), that relates muscle adivity 

and pupil area, i.e. 

A=J(x). (2.2.6) 

The function J(x) must 1) meet the requirement that pupil area is positive and 

bounded by finite limits and 2) reOect the role played by dasto-mechanical prop­

erties of the iris in shaping pupil dynamics. ln principle, J( x) can 1)(' m(,é1surt'd 

experimentally73. Here we consider one possible choice of J(x) which satisfies the 

ab ove requirements, i.e. the Hill fundion (Figure 2.2.2) 

A = J( x) = Aon + A' 
(}n + xn 

(2.2.7) 

where A + A', A' are, respectively, the maximum and minimum pupil area (A 1 A' ~> 

A' > 0) and () is the value of x for which pupil area is mid-range. A similar f\lndion, 

i.e. "S-shaped curve", has been proposed previolls1y53,74. We show in St,ction 2.:U,) 

that this choice of J(x) also reflects the nonlinear mechaniral properties of the iris. 

Using (2.2.7) we can re-write (2.2.5) in terms of pupil arca, A, as 

dg dA a (A) = ln [cP(t - T)] 
dA dt + 9 , 1 A 

[
1(t - T)A(t - T)] 

= ,ln ---r:4----
(2.2.8) 

where g(A) == J-1 (A) = x (Figure 2.2.3), and we have made use of (2.2.1). Note that 

to solve (2.2.8) it is necessary to specify the initial functiolls let) and A(t) on the 

interval t E (-T, 0). 
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Figure 2.2.3 Plot of the inverse of the Hill function, g(A), shown in Figure 2.2.2 
(i.e. :z: = f-l (A) == g(A)) as a function of pupil area, A. In a) we compare g(A) to 
the gain, G, which for f(:z:) given by (2.2.7), can be written as 

n"'( A [A j": l G(A)=-- --1 
aA8 A 

where A' = 0 mm2 • In b) we show a graphicaI method for determining the fixed 
points of (2.2.9) when Qc > ad. The futed point A'" is given by the intersection of g(A) 
(solid line) and the right hand side of (2.2.9) which we have defined as h(A) (dotted 
line). Parameter values have been arbitrarily set to A == 30 mm2 , A' == 0 mm2

, 

n = 4, "'( = 5 "ec- 1 , I = 10 lumen,,/mm2 , ""j, = 1 lumen. 
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2.2.4 Stability analysis. 

We now investigate how spontaneous oscillations in pupil arel\ may devt'!o!> Ul\­

der conditions of constant light illumination. As will become clear, the md,hod of 

analyzing (2.2.8) depends on the relative values of the pllpillary rate ronstant for 

constriction (ae ) and dilation (ad)' In a few individuals, O'e ~ ad (s('(' Lowellstein 

and Friedman 75); however, in the majority a e > ad 61,75. We refer 1.0 t!\('se ("as('~ (H" 

respectively, a symmetric and an asymmdric pupil light reflex. 

2.2.4.1 Symmetric pupillight reflex (ae = ad). 

The unique equilibrium pupil area, A' , corresponding to an incident light. illumi­

nance, l', is defined by dA/dt = 0, and from (2.2.8) it is the solution of the equatiol\ 

(Figure 2.2.3 b) 

ag(A') = ,ln -=-=- . [
l'A' ] 
lA 

(2.2.!l) 

To determine the stability of this fixed point, it is necessary to linf'arize (2.2.8) about. 

Ai'. This is done in two steps. First, in (2.2.8), we expand g(A) tu first order around 

A ~, Le. 

g(A) ~ g(A» + ,B(A - A') (2.2.10) 

where {3 is given by dA/dt evaluated at A'. Substituting (2.2.10) into (2.2.8) Wl' 

obtain 

{3-+ag(A')+a,B(A-A')=,ln{A(t-r)}+,ln =--=- . dA [l' ] 
& lA 

(2.2.11 ) 

Next we define the displacement of A(t) from equilihrium as a(t) --.: A(t) A'. 

For small amplitude oscillations, a/A < < 1 and hence we can expand the first terrn 

on the right hand side of (2.2.11) 

,ln[A(t - r)] = ,ln {A' [a(tA~ r) + 1]} 
~ , ln A> + 1. a( t - r) . 

Combining (2.2.11) and (2.2.12) and using (2.2.9) we obtain 

da , 
dt + na = (3 A'> a( t - r) , 

which in terms of pupil area, A = a + A>, yields 

n -1 dA + A = G . [A( t -- r) -- A Il t A ~ 
dt 
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where we have defined the dimensionless quantity, G, as 

(2.2.15) 

Since (3 < 0, it follows that G < 0 which corresponds to negative feedback. 

To examine the response of the pupil to smaU deviations in pupil area, A, from 

the equilibriulll are a A 1 as described by (2.2.14), we make the usual ansatz that 

A( t) ex: exp( >.t). The characteristic equation ls 

>. + a + Bexp->.T = 0 (2.2.16) 

where a > 0 and B == -aG > O. This quasi-polynomial has an infinite number of 

roots. We denote by ).1 = 0"1 ± lW1 the root with the largest real part. The roots 

come in complex conjugate pairs since (2.2.16) is invariant under sign reversaI of w. 

We will focus only on the roots with positive frequency. It can be shown that (2.2.14) 

has a periodic solution when 76,77 

(2.2.17) 

where IGI < 1, w~ = a 2 (G 2 -1) and the inverse cosine takes its value in the interval 

li,7I']. This is an implicit relation among the parameters of (2.2.14) that defines the 

condition Re().t) = (Tl = O. The period, T, of this periodic solution is given by 

T 
_ 271' 
- , 

W1 
2T < T < 4T. (2.2.18) 

Assume for now that the delay T is the bifurcation parameter. Then, for a and 

B fixed, there will be a value of T = To for which (2.2.17) will hold. By implicit 

differentiation of (2.2.16) with respect to T, one obtains 

d~;)') 1 T = T
o 

> 0 (2.2.19) 

>. = iWl 

Hl'ncl' Re().l) > 0 for T > T o which "orresponds to local instability of the fixed point 

11 = 11 i when the dl'lay is increased past the critical value Ta' This also implies that 

in (2.2.17) the right hand side is greater than the left hand side. Rence periodic 
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solutions occur in (2.2.14) for T 2:: Ta. Similarly, if B is the bifurcation paranlC'tt-r, 

then keeping a and T fixed, we obtain 

dRe(À) 1 
dB B = Ba > 0 (2.2.20) 

.\ = iWl 

where Ba is the value of B satisfying (2.2.17). Thus periodic solutions occur in (2.2.1 ,1) 

for B ~ Ba. 

In general, a Hopf bifurcation from a stable equilibrium point 1,0 a st.able limit cy­

cle may be either subcritical ("hard" excitation) or supercritical ("soft" t'xdt.ation)lU. 

Classifying the Hopf bifurcation for (2.2.14) is important sinet' it allows a prt'didion 

of how the oscillation amplitude grows for valut's of T (or B) beyond the point. of 

os,.mation onset, i.e. Ta (or Ba). 

The fate of the periodic solution that existed for the linearized syst('m al. T -. Ta 

(or B = Ba) is dl'termined by the nonlinear terms that have been negleded in going 

from (2.2.8) to (2.2.13). A supercritical Hopf bifurcation will orcur provided that 

certain nondegeneracy conditions are fulfilled by thest' nonlincar tt'fIIlS 7A
• 'l'his means 

that as a complex conjugate pair of foots migrates across tht' imaginary axis (froll1 

left to right), the stable equilibrium becomes unstable and a stable limit cyde arise!>. 

Verification of these nondegeneracy conditions is qui te invulverl for fllndional 

differential equations such as (2.2.8). Instead, Wl' have numerically verified (data 

not shown) that the bifurcation is supercritical by demonstrating that lo("ally tl1<' 

amplitude of the oscillation grows as the square root of the distance (in paranH'ter 

space) from the bifurcation point, i.e. 

Amplitude ex J B - Ba (or ../7------ T~) . (2.2.21 ) 

Further, the analytical computation of higher order corr(>ctions to the period (2.2.17) 

and amplitude (2.2.21) using the Hopf analysis for functional differential equations 

(of delay type here) is also quite involved and is not carried out h('f(' (8('(' St('('h 7f1
j 
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Other bifurcations may occur as T and B are increased further leading to other 

limit cyc~es: quasiperiodic motion and bounded aperiodic (chaotic) dynamics. This 

depends on the functional form of g(A) in (2.2.8). For general g(A), numerical inte­

gration is neressary 1,0 determine which type(s) of solution will be observed for a given 

choice of parameters and initial functions on (-T, 0). For negative feedback, numerical 

calculatio[ls indirate that no other bifurcations occur after the Hopf bifu[(:ation. 

2.2.4.2 Asymmetric pupil light reflex (a,. > arl). 

In the derivation of our model, we have used the same dynamical variable x 

to clescribe constriction and dilation, even though each process illvolves different 

mechanisms which depend on different parameters38.811.81.82.83. The observation that 

a, > arl introduces an asymmetry into our model of the pupillight reflex. To account 

for this we replace 0: in (2.2.8) by 

a' = ~ [a, + arl - (al' - a,dsgn{ À}] , (2.2.22) 

where sgn{Â} equais +1 if Ji == dA/dt> 0 and -1 otherwise. The stability analysis 

requires first solving (2.2.9) for A' with a = a'. Since a can have one of two values, 

(2.2.9) will not yield a unique A r for a given g(A'). Indeed the graphical solution in 

Figure 2.2.3b indicates two fixed points A; and A,i corresponding, respectively, to a, 

and arl. The analytiral methods for determining the sta bility of such an equation in 

w hirh the fixed point dep<,nds on the sign of the derivative of the state variable have 

not, to our knowledge, been developed. We therefore explored the behaviour of such 

an equation numerically. 

Specifirally, wc simulated (2.2.8) with the asymmetry in a given by (2.2.22). 

We rOl1nd thal, the solution depends on the initial condition (data not shown). The 

solution ran go to one fixed point or tllf' other, or oscillatt' around one fixed point, or 

the oUlPi'. In addition for c('rtain parameter values, we have an ill-defined problem: 

t.he initial value of a determines the fixed point and the sign of the derivative in 

t.he fourtll oroer Runge I{utta algorithm. However, b,ased on this sign, a' takes on 

the other value and the system attempts to converge to the other fixed point. The 

solution thus oscillates bet ween the two fixed points with the value of the derivative 

changillg at every integration time step. 
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2.2.5 Gain. 

The parameter, G, can be formaUy identified to the gain, Go, defined empil'i­

caUy from measurements of the response of the pupil to small amplitude sinusoidally 

modulated illuminationG-!. Hel'e we examine the dependence of G on the t'quilihriullI 

pupil size, A ~. 

lt has heen observed that the gain, G", attains its highest values al. intermt'cliatt' 

pupil sizes. This effect has been referred 1.0 as the "expansive range nonlinearity" 

and has been interpreted as a reflection of the nonlinear meçhanical propert.ies of the 

iris53 ,H. Figure 2.2.3 plots G as a fundi<;>n of Ji'. In preparing t.his plot, we hav(' 

kept the parameters 0: :\nd , constant. Normally, A 1 will depend on the valllt' of 0' 

and, (2.2.9), but we assumed thal. A' is in faet varying ind!:'pendently of t lH'flI, ('.g. 

being set by the accommodation level of the lens85 . As can he se!:'n, the gain (,' will 

have its largest values for intermediate values of il '. Furthermore, these observations 

indicate that the relevant nonlinear properties of th!:' iris have been incorporated into 

the choic!:' of the function g(A) (see 2.2.7). 

2.2.6 External piecewise constant negative feedback. 

In previotls studies2i1 
G-l we found !:'mpirically that under conditions of imposed 

piecewise constant negative feedback, the oscillations in pupil area could he descrihed 

by the equation 

-1 dA A {.4"ff, 
0: - + = 

dt A,,/I, 

ifAr<.A"f 

ifAr>A"f 
(2.2.23) 

where the rate constant a differs for constriction (al) and dilation (o,t). When pllpil 

area is greater than a threshold A" f, pupil size decreases expoll!:'lltially to low("'r 

asymptotic area (A"/I), whereas when A < A"j, pupil size increases exponentially 1.0 

a higher asymptotic area lA,,!!). This equatioll ùescrihes "high gain" osrillations in 

pupil area since the gain is infinite when A = A" f (il. is z('ro for ail other values of 

A). The forcings, A"n and A"ff' correspond physically to two different values of the 

flux (<p). 

In the case of external piecewise constant ncgative feedback, tht' illumination 15 

constructed electronically to be a Heaviside fuuction of pupiI art'a, H(A), and h!:'nc(' 

(2.2.21 ) 
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where 

H[A(t)-,lref J= ,l > ref 
{ 

1 'f A A 

0, lf A ::; Aref 
(2.2.25) 

and where CPof f is the retinallight flux due to background illumination when the light 

beam is off and CPb is the retirtallight flux produœd by the narrow light beam. Thus 

the retinallight level changes because the illuminance is switched on or off, while the 

arca is constant and equal to the sectional are a of the narrow light beam. Under these 

conditions it follows from (2.2.8) that the changes in pupil are a are described by 

dg d.cl [ CPof f CPb ] 
dA dt + ag(.1) = ,ln ";jJ + ";jJ-H(.1r -- Aref) (2.2.26) 

It is important to note that the right hand side of (2.2.26) is known. The 

unknown properties of our mode1 for the pupillight reflex, i.e. g(A) and M(x, ~~" .. ) 

(see 2.2.4) are confined to the left hand side of (2.2.26). Thus the advantage of 

studying the dynamics produœd by the pupil light reflex clamped with piecewise 

<"Onstant negative feedback is that it directly pcrmits evaluation of plausible choices 

for g(A) and l\l(x, ~~, ~~" .. ). 

To illustrate the above procedure let l\I(x, :~, ~:~" .. ) be given by (2.2.4) and 

take g(A) as a linear function of A, i.e. 

g( A) = g( AT) + ,B( A - AI) , (2.2.27) 

where ,B --=:: dg/dA lA- < 0 and AI E [A~, Adj (Figure 2.2.3). A reasonable choice for 

A' would be a mid-range value. Then (2.2.26) becomes 

(2.2.28) 

This equation is of the same form as (2.2.23) where 

(2.2.29) 

(2.2.30) 

and the pupil area, Ao, is the maximal pupil are a corresponding to zero iris muscular 

activity and is given by g(Ao) = 0 in (2.2.27) 

(2.2.31 ) 
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Since (3 < 0, it follows that Ao!! > Aref > Aon if 

ac/ad < In[(<Paff + <Pb)/~ljln[<Pa!!/-;jJl· This latter condition is satisfil'd for thl' s)'m­

metric case and for the asymmetric case holds provided that <Pb is large ello\lgh. 

It should be noted that the behaviour of (2.2.23) cannot be drt(,l'mined \Ising a 

Hopf bifurcation analysis since the feedback fllnction 1S not differentiahlt'. 'l'Il(' 80111-

tion of (2.2.23) (and 2.2.28) can be ddermined analytically2o,61,66. ExperiI1l<'nt.ally il. 

is found that the period and amplitude of the ohs('rv('d pupil ar('a (H,cillation8 agree to 

within 5-10 % of these predicted2o ,64. However, the predicted oscillat.ions dearly havI.' 

a slope discontinuitYi this is not observed experim('ntally. ""'le art' presl'ntly (·valllat.ing 

alternative choices and g(A) and lI/(x, ~~, ~:~" .. ) in order to improv(' the agreement 

between theory and ohs('rvation. 

In principle, piecewist' constant feedback can he used to evaillate !II withollt. 

the necessity of determining g(.4). The gain is proportional to the 810pe of thl' lIill 

function (2.2.7) and can he made infinitely steep by letting n --1 00. SlIhstitllting 

(2.2.7) into (2.2.5) and taking the limit we obtain 

dx . [1 {Aon ,}] - + ux = hm ,ln == - + A 
dt n-+oo <P On + x( t -- r)n 

[
lA NI] 

=,ln ~H(x(t-r)-J:re!)+ ~-' 

(2.2.a2) 

where 1 = I(t - r), H(x(t - r) - X re!) is a Heaviside function, and w(' have id('ntifit'd 

x re ! with the limit as n ---t 00 of the inflect.ion point of (2.2.7), i.e. 

[

JI - 1 ] xre! == lim O~ï = O. 
n-+oo 

(2.2.:J:J) 

Equation (2.2.32) takes the same form as (2.2.23) (i.e. the flux can take on two 

values). However, given the difficlllties in measuring (and for that matl<'r d('fining) 

x, this approach is presently not lls('ful practically. 

2.2.7 Illustrative example. 

Ta illustratt' the dynamical hehaviours which can be produced hy the class of 

equations we studied the following example 

dA con - + nA == -----­
dt (Jn+A(t~r)n 
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where c is a constant. This equation can he regarded to he a generalization of (2.2.23) 

for smooth negative feedhack. 

Figur(' 2.2.4 shows the solutions of (2.2.34) as the steepness of the Hill function 

is increascd hy increasing the parameter n. For small n there is a damped oscillation 

ln pupil art"a (Figure 2.2.4a). For larger values of n, sustained regular oscillations 

ln pupil area are obtained (Figure 2.2.4b-d). A supercritical Hopf bifurcation occurs 

between n equal to 3 and 10. Althollgh the shape of these oscillations changes as n 

increases beyond 10, the mort" complex waycforms typical oi the occurrence of higher 

order bifurcations are not seen. 

2.2.8 Discussion. 

We have used neuro-physiological and anatomical considerations to derive a 

nonlinear delay-differential equation describing the pupil light reflex. The main mo­

tivation behind this modd was to develop a gencral framework to stndy the differcnt 

types of dynamical IH'haviours produced by the pupil light reflex (Table 2.1) and, 

in particular, to examine tht' oscillations that occur under conditions of "high gain" 

negative f('('dback, e.g. cdge-light or electronic pupil cycling l ,59,62,67. 

Thr('e observations knd support to our model for th(' pupil light reflex. First, 

the predictcd period of the oscillations in pupil area from (2.2.18) (i.e. 600-1200 msec 

for a measured delay of"" 300 msec) agrees weil with the ohserved period of edge-light 

pllpil cycling (900 msec)58,59,61,67. Second, for the special cast" of external piecewise 

constant feNlback, our model reduces ta the same form as an ~mpirical model known 

to have solutions which are in good agreemenL with expcrimental observations for 

a varidy of f('('dback choices 20 ,64. Moreover we have shown that this expt'rimental 

design p('rmits c('rtain nonlineariti('s ln the r:::flex to b(' isolated for more detailed 

study. Third, th(' dependence of the gain in our modcl on pllpil siz(' is consistent 

with the 'expansive range nonlinearitr' studies by Usui and Stark53 ,71. Finally, in a 

separat.e st.lldy we have shown that our model i~ compatible with descriptions of the 

pupillight reflex ba~ed on t'xperimertt<illy measured transfcr functions 84 . 

Oscillations in pupil area occur whenever the time delay and/or the gain become 

sufficiently large (2.2.17). The gain is rdatt'd to three paramcters: 1) the rate constant 
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Figure 2.2.4 Solutions of (2.2.34) Cor increasing steepness of the Ceedback Cunction. 
Value of n in the Hill function (right hand side of 2.2.34) has been indicated on el\ch 
curve. In going trom n = 3 to 10, the system has undergone a supercritical HopC 
bifurcation. Initial condition for each simulation wu A(t) = 15 mm2, t E (-T, 0). 
Parameter values were: T = 300 m .. eCj a = 3.21 .. ec-1 j 9 = 50 mm2 j C = 200 mm2 • 
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for the neural firi ng frequency Cr); 2) the steepness of the feedback function (,8); 

and 3) the rate constant for pupillary movements (0:). Stark46 has used empirical 

observations to argue that constriction gain is decreased by retinal light adaptation 

and is invcrsely proportional to the constriction rate constant. These [eatures come 

out very naturally in om model. The conditions for the onset of an oscillation as weIl 

as the Jwriod and amplitude of the oscillations should be sensitive to pathological 

""Iterations in any one of these three parameters. A variety of ahnormalities in pupil 

are a oscillations are indeed seen in patients with disease in the puril light reflex 

pathways6o,61 ,62 . 

As the gain is increased beyond the point of oscillation onset the shape of the 

oscillation changes with little subsequent changes in its frequency (Figure 2.2.4). Near 

the bifurcation point, the oscillation amplitude is predicted to grow as the square 

foot of these parameters beyond the point of instability onset. The more complex 

waveforms typically associated with the occurence of higher-order bifurcations, i.e 

period doubling bifurcations, or bifurcation from a limit cycle to a 2-torus, are not 

seen. This finding is consistent with previous studies of first order nonlinear delay­

difft'rential l'quations with negative feedback 60 j in particular, those which arise in the 

descriptions of the control of respiration24 ,25, erythropoiesis86 and the commodity 

price marketR7
• Thus noise-like fluctuations in pupil area ('pupillary hippus ') cannot 

represent chaotic dynamics produced by a nonlinear negative feedback mechanism of 

the type we have considered here. However, we cannot exclude the possibility that 

hippus J"epresents a chaotic process somewherc in the rcfl"x ar<. or that it is simply 

due to nois(' injed('d, for ('xample, at the level of the Edinger-Westphal nucleus47 ,88. 

One nonlin('arity in the pllpil light reflex that has rt'ccived little attention in 

previous modt'lling studies is the rt'sponse asymmetry of the pupil to the onset ami 

offsd of light. Although this asymmetry is most ch-ady manifested as a difference 

in the rates of pupil con striction and dilation64 , it is likcly that it also occurs at 

the J.evel of the output of the rdÎna and midbrain as weil. Nl'uro-physiological evi­

denct' for th(' prt'senct' of distinct light-O N and light-O FF rt'sponses in the reflex arc 

has been obtained for rdinal ganglion cells80 ,83 and for neuronal populations in the 
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midbrain38 ,81,82. As the observations in Section 2.2.4.2 indicat(' tht' ana!ysis of t.his 

situation certainly presents problerns, l'xcept in the Cp.St' of l'xterna! pi('('('\\'is(' ('onstant. 

feedback 20 ,64,89. Previous modellers héi,ve a150 b~en wncertlt'd \Vit.h tht' prohklll of 

reflex asymrnetry46,90. For exarnplt', Stark 16 5uggest.cd that. a sl('ady slal,(' ()~('illat ion 

occurs when the constriction and dilation gains are t'quaI. Thus, aftt'r a transit'nt, 

there is no net increase or decrease in area in cach oscillation pl'riod. In O\lr model 

this would imply that Ic/ac = Id/ad, where "Yc and "Yd art' the nellial firing fr('<lI\('II­

cies (2.2.3) for, respectively, constriction and dilation. However, this aSSllll1pl,ÎOI1 i1' 

not sufficient by itself to uniquely deterrnine the steady st.ate pllpi! an'a the f>yf>telll 

tends to (it likely will be a value betw('en A~ and Ad)' Determining whe! !H'r tht' 

stabilization of the lirnit cycle occurs t.hrough this precise compensation or lhrough 

another rnechanisrn will reqllire experimental inv('stigations. 

In our model we neglected the possihility that time-dq)('ndent proc('ss('S on'ur 

in the response of the retina, e.g. adaptatinn91
• It may be possibk that. by inrluding 

these influences in (2.2.8), e.g. by rnaking "Y a funrtion of t.illH', t.hat we will 1)(' ahle 

to obtain insights into pupil phenomena, such as pupillary ('f,capeR!i. In addit.ioll, it. 

rnay be possible to account for sorne of the comp!ex dynamica! I)('haviollls shown 

in Table 2.1, e.~. spontaneous periodic oscillations in s!t'epy narw!t'pt.irs!i(J, a~ lJlon' 

physiological information is incorporated into tht' choices of f(;r) (Eq11at.ion 2.2.7) 

and l' 

We expect that rnodels based on nonlinear dynamical syst.ems approadlt's will 

come to play a greatcr roll' in the &tudy of the pro!>('rtit's of T1('I:ral control lT\{'dld­

nisrns20 ,54,84. The advé:ntage of these approaches is th'ü the élna!ysis is not r('~lTid('d 

to the study of equilibria fl.nd tht:'ir stability. By ernploying él cornbinatioTl of analyt ieal 

and nurnerical techniques it should be possible to ohtain imights into nat.III'l' of t.he 

cornplex dynamical beha.viours produced by the nervolls system in health and diseélS('. 

37 



( 

J 

2.2.9 Comment on asymmetry. 

Section 2.2.6 of the preceding article develops the theory for oscillations in 

peN F. This theory makes a number of interesting predictions, sorne of which will 

be explored in the subsequent. chapters. In this section, we make a few remarks on a 

prediction of the model concerning response asymmetry. 

}tecall the condition for AoJ! > Aon 

ln [ rjJ"/~+rjJl.] 

ln[ rjJ.~f] 
(2.2.35) 

which we briefIy mentioned after (2.2.31). Thus Ao!! > Aon is equivalent ta con­

striction being faster than dilation. We will see in Section 3.2 that the ratio on the 

left hand side of (2.2.35) is experimentally between 5 and 12, so inequality (2.2.35) 

will only be satisfied for sufficiently large values of 1>b, the light beam flux. At lower 

intensities, the inequalit} can no longer hold, unless the rate constants a e and ad 

change in a way that reduces their ratio. 

This condition (2.2.35) is plausihle when viewed from the perspective of Hen­

neman 's size principle52
. Muscles are composed of mot or nnits that differ in size, 

speed and tension threshold of operation (known as recrnitment threshold). The size 

principle says that a small stimulus will recrnit small mot.or nnits, which are slow 

and weak, whik a st ronger si,;mulns will recrnit larger motor units and the response 

will })(' faster. Although the properties of smooth muscle (such as the iris muscles) 

are not known in as much detail, they appear similar t.o thosc of skeletal muscle, and 

the size principle probably holds for them as wel1 53 • Thus O:c will decrease at lower 

intensitit's, and int'qllality (2.2.35) can still be satisfied. 

Our analysis in Sed ions 2.2.3 and 2.2.6 did not take into account the fact that 

the iris rate constants are functiolls of 1>b (probably because we use only one beam 

intellsity in OUf t'xperiments: see Section 3.2). More generally, for the PCNF case 

(2.2.28) shonld he replaced by 

-l[ 'j dA "Y {4>oJ! <Pb [ J} 0: 4>b, A -d- + A(t) = Ao + . ln -=-- + -=-H AT - Are! , 
t a [</>b, Al.B 4> 4> 

(2.2.36) 
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while (2.2.8) for the SNF case should be 

dg dA . r [T AT ] 
dA dt + g(A) a[<pb, Al = l' ln ~ ~ . (2.2.:n) 

In SNF, CPb changes continllously: cp(t) = cp~ + 6.cp(t), while in PCNF, <Pb chang<'s 

abruptly. The fact that the motor units are recruitf'd in a ('ontinllOIlS fm,hion in 

SNF is probably responsible for the apparent. symmetry of the waveforms, a point W(' 

address in the discussion of the {ollowing article (Section 2.3.9). 
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2.3 INSIGHT INTO THE TRANSFER FUNCTION .. GAIN AND OS­

CILLATION ONSET USING NONLINEAR DELAY-DIFFERENTIAL 

EQUATIONS. 

2.3.0 Transfer functions in brief. 

Although interest in the pupillight reflex is centuries old, it is only recentIy that 

quantitative methods of investigation have been applied to its study. In fad, thirty 

y('ars ago Stark and Sherman31 were among the first to use Wiener's newly emerg­

ing theory of control and communication or "cybernetics"92 in a specific biological 

context, namely that of the pupil light reflex. Over the years, Stark and several of 

his co-workers have demonstrated that concepts such as transfer functions, stability, 

nonlinearity and noise filtering \Vere powerful modelling tools for this reflex. 

Along with this theory of control came a precise experimental protocol and data 

analysis scheme93 . For example, experiments involving rcsponses to small amplitude 

sinusoidallight stimulation, ste}> responses and impulse rcsponseh produced data that 

were analyzed 1l5ing Bode pluts, root locus plots and N yquist diagrams. This "systems 

analysis" approaà is aimed at a phenomenological description of the input-output 

charaderistics of the system under study. It works only in parameter ranges where the 

dynamics are governed hy linear differential equations, or equivalently ,vhere linear 

response theory applies. In this context, the output y( t) of the system \Vhen the input 

is x(t) is given by the convolution of the input with the system's Green fundion or 

"impulse response" h(t): 
t 

y(t) = 1 x(u)h(t - u) du 
0+ 

(2.3.0-1 ) 

where causétlity reqUlres that h(t) be nonzero only for strictly positive arguments. 

The analysis is simplified by taking the Laplace transform of (2.3.0-1) : 

Y(s) 
H(s) = x"Ts) (2.3.0-2) 

where uppercase letters denote the Laplace transform of variables with the corre­

sponding lower case letters and s = a + iw is the Laplace transform variable. The 

simplificat.ion follows from the fad that dif[erential uperators are replaced hy func­

tions of the Laplace variable 8, hence converting differential equations into algebraic 

equations.' For example, if y(O) = 0, y'(O) = 0, y(2)(0) = 0, ... and x(O) = Xo, x'(O) = 

• For hnt>1H differ('nhal-delay t>quations, H(s) also mcludes transcendental functions see Section 4.1. 
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0, X(2)(0) == 0, ... , the input-output rdation 

dn dn - l d 
[an dtn + an-l ~Itn-l + ... + al dt + ao ]y(t) 

dm dm- 1 d 
= [bm dtm + bm - 1 dtm - 1 + ... + bl dt j- bo]x(t) (2.:1.0-:1) 

becomes, in the Laplace domain, 

(2.:1.0-<1 ) 

The function H( 8) is called the transfer funetion of the system. rI, rontains ail t.he 

information on steady state and transient behaviour of the system. The prerise tillW­

evolution of the system will however depend on the initial conditions. 

We are dealing here not only with linear causal systfc'nJ1> bUL also tilllC'-illvariant 

ones, i.e. the coefficients in (2.3.0-3) are ronstants. The main prnperty of thef>(' 

systems is t.hat their steady-state response to an input sinuwid is al1io il sinus(lid of 

the same frequency. Howevcr the ratio of output 1.0 input amplitude and t.he phas(' 

difference are given, respectively, by the moclulus ami the argulIlent of t.he t ransf('r 

function (in polar form) when (J' = 0: 

H(iw) = IH(iw)1 earg{H(tw)} (2.:J.O-f> ) 

This is a consequence of the faet that sinusoids, or more prt"cisdy Olt" ('ompkx ex­

ponentials e
twt

, are eigenfunctions oî the time derivative operator with ('igcnvalu(' 

ZW. 

While systems analysis ran lead 1.0 quite cornplira Led I.ransfer fUl1rtioll'i, pro­

vi ding almost perfect fit 1,0 the experimentally ohserved respo!l1i(, Ln a st{·p in light. 

intensity, one must remernher that these functio!1s f('pn's('nt blark boxef>. At Iws!., 

each transfer function desrribcs a differcnt part of the physical ~y~telTl, bill, the pre­

cise relationship betwecn its parê:lIlleters and those of t.he f>ystern if> oftt'Il lIot rI('ar 

Further, obtaining a transfer fllnctiotl that rcproduref> tll(' oh1iervec! r(,"pOI1f,('~ if> onell 

achieved by t1sing many paramdl'r1i, and depl'!Hling on how tlonli!\('ar the f>Yf>f('1!l if>, 

a slight change in opcrating ronditions might Illvolve a wholc ne\\' fit with coHlph-t.cly 

different pararneter values. U nd('r such CirCllmfltanct's, il, is .ill~tifi('d to qll{,f>l.ion I.IH' 

value of stlch rnodels 

The emphasis of linear systems anaJysis is on desÎgning or prodllcing a diff('r(,lltial 

equation that reproduces the linear behavioufs of syf>t('ms in which an input and 
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an output can be identified. This approach is strongly related with the design of 

stahlt' control systems. IIowev('r ",Iwn pht'nomena like limit cycle oscillat.ions, quasi­

periodic motion and chaos are of interest, this systems theory approach is profitably 

suppleTIl('nkd by nonlinear dynamies. 

Bcfort' continuing, it is important to draw attention to the tremendous body uf 

knowlt:'dge that tht' tht:'ory of nonlint'ar control systems represents. It includes, for ex­

ample, desrribing f1lnctlOn theory'l3 (also known as harmonic analysis), Volterra and 

Wiener l<ernel analysis or generalized transfer fllnctions 94 ,95 and generalized Nyquist 

(Theodorchik) diagrarns (see t\1inorsky96). This last approach is closely related to 

hifurcation theory sinn' iL cleals with the basic problcm of nonlincarity, i.e. the in­

terdt'pendl'nce of frequeney and amplitude, by calculating an amplitude-dependent 

transfer function 

The [('airn of Tlonlinear phenomcna that these thcories address deds mostly with 

engineering typt' nonlineanties sueh as thresholds, saturations and static nonlineari­

ties, and is thus somewhat different irom that whieh we ar(' interested in. Although 

some of tht'se nonlinearities occur in the pupillight r('flt'x, wc prefer ta include them 

in a theordical framework mort' amenable ta the phenol1lena we are interested in, 

namely autonomous (self-sllst.ained) oscillations and tlwir response tn external pt'r­

turbations. I1(,l1ce, a t h('ory that <:'Ilcompass('s Iwth autonomous and non-autonomous 

phCnOTIlC'lla is Il('edc'rl, a condition satisfied by bifurcation theory. 

Mo(lt·l~ in Jlonlincar d:vnamie~ can also be plagtH'd Il)' an overabundance of pa­

ramders, and !nodelers iry tn minirnize tht'ir numbers. The eIT'phasis is mort' on 

qualitativel\' explailllng obbervpd behaviour rather than on giving perfect fit, in t.he 

hopt' of gaining insight into tht' dynamlcal propcrties of the system, and ultimately 

into its nonlinearities Il is from this knowledge of nonlinearitIes that ont' can proC('ed 

to the analysi" of more cO!nplicatE'd phase space motions and the influt'Ilce of noise. 

lt. is interebtIng that hoth nonllllear control systems thcory and bifurcation the­

ory are extenslOIl~ of linear theory This IS Ilot always obvious hecaus(' of the diŒerent 

lar'6uagc tbe)" Ube For example, the poles of a t.ransfer function at which the residues 

aH' calculated (to invert the Laplace transform and obtain the tirne domain solution) 

are simply the eigenvalues of 1he linear operators governing the flnw (i.l'. the vect.or 

fidd) of the differt'nt.ial c<l1ldtion around fixed points 

As a testltI10ny tn the thirty years of bio-engineering that have gone into the 

study of the pupil, lIl'xt wC' present a paper that bridges the gap between bifurcation 
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theory and control systems analysis in the context of a simple nonlinear phenol11e­

non: pupillaryoscillations. In particular, the model dcvelopcd in tilt· pre('eding artirl{· 

is shown to be compatible with earlier transfer function studies. Each approadl is 

justified by its success in explaining a given body of experimental data. OSt illat.iol1s 

have features that can be explained by linear thenry and ot.lH'rs thai requin' nOl1lilll'ar 

theory. 

In this paper we define and make use of Nyquist's st.ability crit,erioll. 'l'hl' pro(lf of 

this theorem can be found in Nyquist's original paper97
. The proof uses the argument 

theorem from complex variable theory 1.0 obtain a condition for the bounclt-dness of 

the impulse response in the asymptotic time limit. 

43 



r 

, 

l 

2.3 Insight into the transfer function, gain, and oscillation onset for the 
pupil Iight reflex using nonlinear delay-differential cquations. 

Abstract. 

Analogies are drawn between a physiologically relevant nonlinear delay-differen­

tial equation (ODE) mode! for the pupil light reflex and servo control analytic ap­

proache~. Thi~ D D E is shown to be consistent \Vith the l11e-asured open loop transfer 

fllnction and hence physiological insight can be obtained into the gain of the reflex 

and its propertieb. A Hopf bifurcation analysis of the ODE shows that a limit cycle 

oscillation in pllpIl arC'él ocrurs whC'n the first mode of the charaderistic equation 

becomes uIlstahle Its period agrees weil with experinH'ntal measurements. Beyond 

the point of instabdity onsd, marc modes become unstabl<, corresponding 1.0 multiple 

encirclings of l-- 1,0) on the Nyquist plot. These modes primarily influence the shape 

of t.he oscillation Techniques from dynamical systems theory, ('.g. bifurcation analy­

sis, can augment servo control analytic methods for the study of oscillations produced 

hy nonlinear neural feedback mechamsms. 

2.3.1 Illtrodudioll. 

One of the rnost important mechanisms for regulating neural activity is feedback. 

An undeniabk feature of hllman neural feedback m<,chanisms in health and disease 

is tlH'ir propensity to generate üscillations and other compl<,x dynamical hehaviollrs, 

e.g. tremors and th<, dedrical adivity of the cortex51
. The pupil light reflex is a 

human neural ft'edback merhanism in which il. is possible to study Ul<' occurence 

of oscillatIOns and thcir properties non-tnvasiw·ly32. If. is weil known that regular 

oscillations in pllpli area oeUlr under "high gain" conditions l ,16,59,62,û7 and that the 

period of t hef,e oscillations <"an be estimated from the experimentally measured open­

loop tran~fl'r fllllction for this reflex 67 J\Ioreover, il. has b('cn demonstrated that the 

'linear' pro!>erties of this reflex ddermiTle the frequency of these oscillations, whereas 

the shape and amplltllde dqwnd on the 'nonlinearit!es' 1 

Interpretation of tbe above findings in a biolngiraJ cont<,xt reqnires that parame­

ters sueh as the gain and open-loop transf('r fllndion he dcfined ne-uro-phy~iologically. 

Previolls ~tucli('~ have examined the dTcct of the nonlinear charaderistics of the iris 

musrula t Il re on the o\,('ra I! reflex gai n and on pu pi llary plwTlomena such as hi ppus 

and the pl!iJil size effert 32
,7'1,98. Ho\\'ever, little att,f'ntion has bcen given 1.0 identifying 

th<, physiological parameters which determine the linear and nonlinear properties of 
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the high gain oscillations. 

In a previous study we showed that the oscillations in pupil art'a whirh ocr \If 

under conditions of external piecewise ronstant fecdback werl' wd! descrilwc! by tlte 

solutions of a nonlinear dday-differential equation61 . Berl' wl' clraw analogies bctw{'{'n 

this delay-differential equation and servo control analytir th('ory. In t.ltis Wély W(' 

are able to obtélin insight into the neuro-physiologieal properties of t.his reflex whirh 

determine the gain and open Ioop transfer function and which shapt.' tlll' high gain 

oscillations. 

2.3.2 Background. 

The changes in pupil area, A, which oeeur under conditions of imposec) pi('rewis(' 

constant feedback can he descrihed hy64,99 

dg dA 
drl dt + o:g(A) = F(.4 T ) , (2.3.1) 

where a is the rate constant for pupillary movements, T is the neuréll lime dt'lay, ilnd 

F( AT) is a piecewise constant function of AT' The [unction F( AT) takl'~ on 01\(' of 

two values depending on whether pupil are a is greater than or \(:'55 than a t.hn'sho\cl. 

The notation A,.. dcnotes pupi! area at a time T in the past, i.e. fl T A(t Tl. 

The feedbaek fundiun, g(.4), relates changes in iris musde activity, x, to changeh in 

A and takes into account the inverse relationship IJctwel'n :r ar.·1 A. In o1lr previolls 

studies g(A) was taken to be a lincar function. Note thai in orcIer t.u ~o\ve (2.:L 1) il. 

is n('cessary to speeify AT as an initial f\lndion on the interval ( T,O). 

The right hand sidf' of (2.3. J) Îs a forcing !,('rm that fepfes('l1/'s the (hanges in 

the retinallight flux, <p ( 4> = 1 A, where 1 is the retinal :lluJDination ), dut' to rhangeR 

in pupil area. For smooth negative feedback, (2.3.1) heromes99 

dg dA [<PT] [/TAT] -- + o:g(A) = ,In -, = ,ln ~-;--
dA dt <P 1 A ' 

(2.3.2 ) 

where we have taken into account the logarithmic compression of Iight int('nsities al. 

the retina 70, , is the rate constant for the neural firing frequeTlcy and J, j, li art' 

the values of <P, 1,.4 at threshold, i.e. the values below whirh ther(' is no Pllpillary 

response. 

Comparison of (2.3.2) to linear servo control theorctical descriptions of the pllpil 

light reflex1
,32 requires linearization of (2.3.2) ahout the equilihrillm pupil ar('a, A', 
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corresponding to an incident illumination of Il. The value of AI is obtained from 

(2.3.2) hy setting dA/dt = 0 and is the solution of the equation 

[
1* A t 1 ag(A*) = -yIn ÎÂ (2.3.3) 

and linearization of (2.3.2) about Ai- Ieads to 

dA 
Q -1 _ + A = G . [A - A.t J + A * dt T , 

(2.3.4) 

where 
_ -y 

G = af3A' (2.3.5) 

and f3 == dg/dA evaluated at A ~. When.B < 0, it follows that G < 0 which corresponds 

to negative feedback. 

2.3.3 Transfer function. 

In thib 5ection we show that (2.3.4) can be derived Crorn the experirnentally 

meastlft'd closed loop transfer function for the pupii Iight reflex, H(s) 

P(s) 
H(s)= l+P(s)' 

where the open-Ioop transfer function i5 

P(s) = Go exp( -TS) 
(1 + ks)3 

(2.3.6) 

(2.3.7) 

and where s 15 the Laplact' variable and T = 0.18 sec. While the 18 db/octave roll-off 

of the Bode arnplitudt' plot suggested that the transfer function had three poles, they 

('ould not be dt'termint'd individually and were aIl set equal to 10 sec-- 1 by choosing 

the time constant Ir -= 0 1 sec 46. 

Go =- 0.16 is tht' dimt'nsionless opt'n-Ioop gain. The open Ioop gain is normally 

l'quaI to the product of the forward gain and the feedback gain. The latter corresponds 

to the coefficient of P(s) in tht' denominator of (2.3.7) and is unit y here. We have 

called Go in (2.:1.7) the open-Ioop gain sinee it is numerically equai to the forward 

gain. 

Based on small signal analysis, Stark46 has argued that the open-Ioop gain should 

he exprt'ssed a3 
G = I·~A _ ~A/AI 

a - Ai-~I - ~I/[* 
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The numerator of (2.3.8) describes the change of flux dut' tn pupil collslrirtioll in 

response to the change of flux due to the light increment in the c!('Tlolllinalor.' Sinre 

r ~A < 0 when A t ~[ > 0, Go is negative. However, Go has b('eTl definec\ 10 1)(' 

positive46 and the negativ(' sign is Laken into account in writing the c!osec!-loop tralls­

fer function for negative feedback 1l(8) (2.3.6). 

In order to compare (2.3.4) to the formulation of (2.3.6), it is !1('('('ssary to rewril(' 

(2.3.6) in the time domain to obtain 

where cp = r ~A is the retinallight flux change due to pupil area change, F A'~, 

reflects the flux change due to the light change and A' is the equilibriuTll pllpil area 

in an ambient light level ]'. The forcing variable F and the state variahh' cP hav(' the 

same units." The equilibrium retinal flux for a ('onstant. forcing Ji' is (p - GoF in 

open-Ioop, and is il factor (1 + Go)-l smaller in c1osed-loop. 

If we identify, to first order, cp with l' ~j1 and F wlth A' ~I, then (2.:UJ) Iw(,o!TWS 

k3[. d3(~A) k2 [' d2(~A) _ kI' d(~A) ]' (,\ 1) 
d 3 + 3 d 2 -t 3 d + <...li1. t t t 

1'(~A') [4'(Al) '( ) 1 
= A' (~[')' U T - [ ~A T • 

(2.3.10) 

Note that ~[' and ~A' are simply numbers that determine the numeri('al value of 

Go. Dividing by [t, keeping only first arder derivatives and defining 3k 

ohtain 

0- 1 d(~A) ~A = ~A:"- [A' (~I) - [' (~A) 1 
dt + At 6,Jt T T 

Next, define ~A = A - A', then 

nI, w(' 

(2.:t Il) 

(2.:U2 ) 

In obtaining (2.3.4), we assumed that everything was lineari,wd abolit il' whirh I~ 

the steady state response to ['. In the transfer function approach, Ihi~ nH'an!> thaf 

• Another way of seeing this is to wnte the total dlfferential for th(' flux LPl 1 l' 1 dl, A ;\' 1 dA, 
then 

d,p:::: ,p(I, A) - ,p(r, ;\') ~ l'dA + A'dl IO(dld/\) 

From (2.3 8) we s~e that the open-Joop gain appears as the rah.) of thl' tW() fir'lt ordf'r tf'rrn'l 
"This can be made clearer by defining the gain as the relative area change ()V{°r rrlativ(' IIlufllIIlIUI! (' 
change and dividing (239) by the mean flux 1/1+ = [+ A' to make ail quantitie'l r!trnpn'llonlr!lq TI'lallVf' 
changes. 
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the input is constant and equal to r. Therefore (~I)r = Ir - Ji = O. Thus if we 

identify Go in eq. (R) with -G in (2.3.5), (2.3.12) becomes 

(2.3.13) 

which is exactly (2.3.4). 

2.3.4 Gain. 

The observations in Section 2.3.3 indicate that the gain, G, defined by (2.3.5'/ 

and the gain, Go, defined by (2.3.8) are related. The identification Go -+ -G is 

reasonable in view of the way we defined the signs of these two gains. Further, both 

determine the magnitude of the influence of a delayed variable on the instantaneous 

time evolution of this variable. It thus makes sense to identify the forward gain ( or 

open )oop gain as we have seen ) in cont.rol systems theory with the coefficient of Ar 

in the delay-differential equation describing feedback operation. 

An alternate way in which the association between G and Go can be explored is 

to use the fixed point condition given by (2.2.3). Equation (2.2.3) simply states that 

lt can he considered an explicit function of A' 

(2.3.14) 

We can then compute 

dl ' 1 • , ( r). 1 - = - - + gAI Cl",,-
dA i A* , (2.3.15) 

(2.3.16) 

Provided we identify g'(A') with (3 and the left hand side with -l/Go ( we put a 

negative sign here because Go is defined positive ), we obtain 

1 1 
Go = -1 + G or (2.3.17) 

This calculation is justified as long as we are not too far from equilibrium where 

the fixed point condition holds. This means that A'I should not vary too much, i.e. 

dAi/dI' «l, implying that (2.3.17) holds only for Go « 1. In this limit we do 

indeed r('coyer our earlier relation: G :::::: -Go - G~ :::::: -Go. 
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2.3.5 Pupil response to a step light input. 

From the opel. loop transfer f1lndion given by (2.3.7), the prt'(lidt'd rt'SIHHl!H' of 

the pupil to a step li~ht input, 1J3 ( t), is 

(2.:l.18) 

where we ha.ve neglected the time delay which would simply shi ft the responSl'. On 

the other hand, the observations in Section 3 suggest that un der certain conditions il. 

is possible ta approximate U3 (t) by a first-order response, Ul(t), i.e. 

(2.3.1n) 

where 6 is a time constant to be determined. We can compute 6 in a way that will 

minimize the square deviation of these two positive definite functiuns, i.e. 

(2.3.20) 

Thi~ problem leads, after a lengthy, but straight forward algehrair computation, to 

the problem of finding the roots of a fourth arder polynomial in 6 which ("an be solved 

numerically in terms of k. The physically meaningful root is 6 -= 0.311 M'(" which is 

roug,hly equal to 3k since k = 0.1 sec. 

As shawn in Figure 2.3.1 the first order impulse function using the ahove val Ill' 

of 0 agrees with the third or der step response. Interestingly the value of h .. O.:J 11 MC 

is roughly equal ta 3k, where k = 0.1 sec is the value ddermined by St.ark'HI. T111S 

this value of 6 can be r!'garded as the value of 0:-
1 in (2.3.1). lt. should he II< tccl 

that the slow onset of lh(t) may be at least partially incorported into U1(t) as an 

addition al contribution to the pure lag. 

2.3.6 Conditions for oscillation onset. 

In linear control systems theory, the onsd of u&dllatioll is stlldiecl \Ising UH' 

Nyquist criterion. When the polar plot of the open loup transfer [\llldion (Nyqlli!>t 

plot: see Figure 2.32) encircks the ( - l, 0) point in thl' <"CHnplcx plane, rl'gerwrativ(' 

feedback occurs at a frequency for which P(s) .:: l, corr('~pundlllg 10 fi pole in tlw 

closed-Ioop transfer function ( S(,t' e.g. Pallu de la Barrier('loo). Thi~ l riterioll i., 

also applicable when delays are pn'&ent. Generally dclays de~tahiliz(' !>y!>tt'lTls as dt) 

increases in gain. The presence of a delay causes a pure rotation of thl' polar plot, 
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Figure 2.3.1 Comparison of open loop step responses for iris activity for a third 
arder model (2.3.7) with k= 0.1 sec ( dotted Une) with a first arder approximation 
with 6 = 0.311 sec ( solid line). We have neglected the time delay which would 
simply shift the responses. Ordinate is pupil area computed by subtracting iris activity 
(rom the maximal pupil area48 and has been arbitrarily illustrated by plotting A(t) = 
30 - 25y(t). 
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Figure 2.3.2 Polar plots of open loop transfer function ( N yquist plots ) for the 
pupil light reflex. In a) we compare the third-order open-Ioop transfer function ( 
dotted Hne; equation 2.3.7 ) with le = 0.1 "ec and T = 0.3 "ec to a first-order 
open-Ioop transfer function with the same delay and time constant D = 0.311 "ec 
( solid line; equation 2.3.19 ). The gain has been set to one in both cases. In b)­
d) we show the effect of increasing n on the N yquist plots calculated by use of the 
characteristic equation for (2.3.25) ( obtained by first linearizing (2.3.25) ) for the 
same values of n shown in Figure 2.3.4. The gain in hl-dl, which is proportional to 
n, is respectively, 3.36, 8.75, 130.3. There are seven encirclings of the (-1,0) point 
in d). The parameterization is only for positive frequencie:. ( in cps ). 
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which may lead to an cncircling of the (-1,0) point. That is why even a first order 

dclay-differcntial equatinn can he made unstable hy increasing the gain or the delay. 

The conditions for instability and the frequency of the oscillation al. the onset 

of instahility can be directly dekrmined from an analysis of (2.3.4). Define a small 

deviation in pupil area from A' as a(t), i.e. a(t) = A(t) - A'. Then the charaderistic 

equaf.ion can b{' obtained by 5uhstituting a(t) '" exp(Àt) into (2.3.4) and is 

À + Q + Bexp(-Àr) = 0, (2.3.21 ) 

where À is typically a complex eigenvalue and B == -QG. Equat.i,:m (2.3.21) has an 

infinite number of roots which we denote as À" À" where Àt is the Cf "nplex conjugate 

of Àt. A conjugate pair of roots, ((Tt + tW t , (Tt - tW t ), characterize a mode. In Figure 

2.3.3 we show the values of (T,W for the two modes of (2.3.21) with the largest real 

parts as a functioIl of B for Q = 3.21 sec- 1 and T = 300 msee. For simplicity only 

the root with positive frcquency has been shown. 

The problem of looking for pure imaginary roots of the charaderistic equation 

15 the same as that of defermining the condition for regenerative feedback. At the 

point of onset of Illstabihty, the frequency of the oscillation will Le determined by 

the mode with HH' :argest real part, t'Tl 99. Further, there is a supercritical Hopf 

bifurcation bctween a locally stable equilibrium and a locally stable periodic solution 

(limit cycle). The condition for the appearance of the liTYIit cycle is 

(2.3.22) 

where WH is the values of Wl when 0"1 = 0, IGI < 1 and w~ = Q2(G2 - 1) and the 

inverse cosine takes its value in the interval [~, 71"] 76,86. 
2 

Eqllality holds in (2.3.22) at the bifurcation point, where the periocl, T, is given 

exactly by 
T _ 271" 

- , 
WH 

2r < T < 4r. (2.3.23) 

Near the bifurcation point Bo ( or ro ) the period is given approximately by (2.3.23) 

and the amplitude of the oscillation is proportional to the square root of the distance 

in paramekr spac{' ) frorn the bifurcation point, i.e. 

Amplttude ex lB - B~ ( or .;:r=- T o ). (2.3.24) 
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Figure 2.3.3 Plot of the real ( solid Une) and imaginary ( dotted lines ) parts of the 
first two roots oC the characteristic equation ( 2.3.21 ) as a Cunction oC B. Parameter 
values were Ct = 3.21 .sec-1 and.,. = 0.3 .sec. Qnly the rootl!l with positive frequency 
have been plotted. 
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For an average measl1red value of T '" 300 msec 62, the period predicted by (2.3.23) 

is in good agreement \Vith that preclicted from the Nyquist rlot Clnd thnt mensurer} 

experimentally 

Equations (2.:l.9) and (2.3.13) are of the same form. Thus, in the same way 

that (2.3.9) is associat.ed with the third arder open loop transfer function (2.3.7), it is 

possiblr to as~ociat(' a first order op('n loop transfer funetion with (2.3.13), and hence 

ta compute a Nyquist plot for (2.3.13). In Figure 2.3.2a we compare tl)(' Nyquist plot 

calcllia ted f rom ou r fi rst ordf'r model (snlid li ne) to the thi ni ord('r open loop transfer 

[u nction ll1easu red experimen tally (dot ted line; 1>l'e (2.3.7)) 011 t using the average ti me 

delay we have m('a~llred for the pupil light reflex ( 0.3 sec) 62. This time delay is 

longer t.hat that ('stimated by Stark46 Îrom the Bod(' phase plot (i.e. T = 0.18 sec), 

which is dedllced [rom thf' phasf' of th(' transfer funct.ion at 4 Hz and the faet that 

th(' thil d orckr pok shollid contrihute 2700 at this frequency. Differf'nccs in T of 

this magnit.ude can aris(', for examplc, becaus(' of diff('r('nces in retinal illumination 

used t.O TTwasure the del ay 6R. It may aiso arise becallse the third order step respOTlSC 

(Figure 2.:L 1) has a slow ons('t whi,h may b(' included in our eXlwrim('ntally measurecl 

value of T As can 1)(' seen the predicted high gain oscillation frequency for the first 

and third order mode) ('Ire sirnilar ( r('spectively, 1.2 Hz and 0.8 li z ). Both uf these 

frequenci('s ar(' in good agref'rnent with measurements of pupil cycling62 ,64,67. 

2.3.7 Gain dependcnce of oscillation frequency. 

lt should he noted that the condition for thC' appearance of undamped oscilla­

tory solutions of ('~.3 <1), i.e. (2.3.22), ",,'ill always be satisfi('d for suffici('ntly large T 

and/or G. The eff('d of incr('asing G on the properti('s of the uscillations that occur 

,an he studied by analysing how the roots of (2.3.21) dep('nd on the parameter B 

(proportiona) to tll<' gain G). In FIgure 2.3.3, it is c1ear that when CTI > 0, d>'I!dB 

dCT) / dB Bence th(' frcqlJ('llcy varies only slightly with the gain This accounts for 

the affuréH y of the period of the oscillation predicted by lil1ear theory. Inf,erestingly, 

the !>erÎod (If the fir~t unstabk mode in our first order approximatIOn (Section 2.3.5) 

is "-' 2rr /6 which i1> in good agre('ment with Stark and Cornsweet 67 and with our 

ITIeasured )ower limit ( 0.9 ~~ 1.2 sec ). 

2.3.8 Deyond t,he point of illstability onset. 

As Ci Înrreases in yalue, more linear modes be,orne Ilnstable as more root pairs 

cross 01(' imaginary axis into the right hand complex plane. In order to deterrnine 

54 



.' 

the extent to which these additional modl's contrihutt' to t ht' frt'qut'O('Y and/or shapl' 

of the oscillations, we considered the following specifie exampk24
•
R6 

dA con - + a . .t -c_ --- ---- (2.:\ 2G) 
dt On + A~ , 

where c and 0 are constants. This eqllation, a geI\eralization of (2.a.I), desrrilws first 

order dynamics for the pupil light. reflex operating with ST!looth external nl'gatl\'l' 

feedback99. The "gain", whieh is proportional tn the ~lopl' of the Hill fllnrt ion l'valll­

ated at A:::::; 0, incrt'asl's as n increases. As sho\\n in Figllfe 2.3 l, reglll'H ()~cillati()n~ 

in pupil area oecur for suffieiently large n. A su»ercriticaillopf hifurcation (H'CIIf!> for 

n between 3 and 10. Although the shape of these oscillatIOn!> l'hange a!> a fllnctioll 

of n, there is little change in the frequeney (compare Figllfes 2 :l·lh with 2 :l 1<). In 

addition, the more eomplex waveforms chararleristic of the ,)CCllfft'nCe of high('f order 

bifurcations are not seen. 

Figure 2.3.2b-d 1>how the Nyquist plots for (2 :l2.e;) a~ 11 is increa!>t'd A!> 11 

increases in value, mort:' litlt:'ar modt:'s become lln~tahle, l'orrespolldillg to ITIult.iplc 

encirclements of ( -- 1,0) on the N yq uist plot (for t'xam pie, t!Jer(' art' ~('v('n l'1I( i [(,1 i IIg!> i 1\ 

Figure 2.3.2d). Numerical calculations ùemonstrakd th"t as eithn 11 or T i~ III< 1 <'a!>l'd , 

the rt'al parts of the eigen\'ailles Increase rnonotonically, i ('. an Illlstahle IlIndl' d()l'~ 

not become stable again. Also, in the lirnit of very large (\play, 1Il"11)' Illodl'!> t(,lld 

to beeoml' unstabk slmuItaneously. The mode.:; that \H'l'olTll' IlIl~tHhle «mtrrhult· 10 

changing thl' shap<' of the OSCIllations (FIgure 2 :~ ·f) Tht' (lh~('l vatioll t hat illcn·a.,illJ.?; 

the number of unstable modl's in a sy1>tt'm ean affect llJalnly the shape, and not tht' 

frequency of the oscillation has heen reportt.'d prevlo\l~lylnl. 

The ab ove results on the migration of roots ano~~ lhe ilJlaglllarv axis al~o hold 

for a third order system ( data not shO\\n) Ind('ed, we h<lv(' nllTTlt'nl'ally < o III pli tt'd the 

loci orthe first noIes of H(s) (2.:3.6) for T - 0.2 .~rc, k () 1 M'r and no \H'tween !l.lf) 

and 10. The lowest frequeney roots cross at Wj -- 6.:3 and W2 2H fi l'orrt'.,polldillJ.?;, 

respectively, 1,0 frequetlcies of 1.0 Hz and ·L55 Hz. Tht.'s(' \'al\l(,~ an' very do,>{' 1" th,,~(· 

calculated from the eharacteristic t.'quation of our fir~t order approxlIll.tlioll (FI~UI(' 

2.3.3). 

2.3.9 Discussion. 

Wt:' have shown that direct analogies can he drawll \wtw(,(,11 a delay-differellt.ial 

equation model for the pupillight reflex and previolls servo control analyl i,al ~t Ildit'~. 

Sinct' this delay-differential equation can be derivt'd on the ba~i'i of fH'1lro.physiologi(·al 
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Figure 2.3.4 Solutions of (2.3.25) for increasing values of n. Initial condition for 
solution is: A(t) = 15 mm2 , t E (-r,O). Parameter values were: T = 0.3 "eCj 

a = 3.21 mm2 j (J = 50 mm2 j C = 200 mm2 • 
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and anatomieal considerations99
, this a pproaeh allows Ill' t (l obtain insight in! Il tht' 

properties of the reflex arc vl"hich ddermine, for examplt.', its gain and tran~f('r fUII('­

tion. In particular, we ôre able to associatt' the gain, Go, delint'd t'1I1plri('al\~· hy 

Stark46 with three parameters (2.:L5): 1) the rate constant fOl tht' lIl'ur'll firin~ rH'­

queuey (1); 2) t.he steepn('~s of the fet'dback fundioll un, clllel:q Iht' l,lit' \'OII:-.lant for 

pupillary movements (Clé). Thi~ a~sociati()tl is further !'ltrl'llgtlH'lll'd Ily the Ob!'ll'r\'at iOIl 

that both G 99 and Go 74 attain their highest values at 11I1ernH'diate v(llll(,~ of thl' 

steady state pllpil area. This e[ect has h('eTl studied extt'nslvely and has hel'Il t'X­

plained in terms of an 'expansive range T1onlinearit.y' operatlllg é11 Ihl' Ilt'1Trolllll~C1llar 

level and relatcd to the nonlinear kngth-ft'nSIOJl diagrams of the in~ 11l1\~( k~ 

Oscillations in pupil aH'a OCCIIr \\ hen the gain and/or delay !Jt'( DIlII' ~111li('il'l\t Iv 

large (2.3.22). The frequcney of lhif> oscillation prcdicter! by lilleôr ~('n'() cOlltrol 

theory and a bifurcation analysls of (2 :3 ,1) are !Joth 1tl gO(Hl agret'ment ",ith that 

measllred <.>xperimentally, i.e 'V l Ill, The appearance of tJm OS{ IlIatlOn if, él%ociatec! 

with the migration of il root of tht' c11aradl'rtstle ('<Jutli iOll of (2 :J ·1), i.e. (2 :J.21 ), with 

the largest real part ('\1) across the imaginary <lxis into the right hond rOlllplex pla III'. 

As we have shown, the huccess of lin<.>ar systems aJlalyhi~ in prt'diding t hi~ [reqllen< V 

is related tn the relative in5ensitivity of the nnaginary part of '\1 to rhange5 III thl' 

gatn. 

As the gain incf<.>ases beyond the point of instabiltty ()11~d, 1I1ore 11I0c!l'f- "1'( 0111(' 

unstable. ln his 'clamped' pupil ltght l'cOex eXIH'TIment, Stark' Ob5('rv{·d ,\ double 

oscillation. It \Vas suggested that the s<.>rond mode to crO% the imaglllarv axi5 re'>IlIt,<, 

in a 0.2 Hz component supenmposed on the has!{ J Jlz rh"thm. In !lu' lallgllage of 

nonlinear dynamics, this ~llgge~t5 tha t a bifllrcaf ion [rolll " li Il li 1, < y( le t 0 ,1 2-tllrll'> 

has oecurred. However, we han' ShO\\'Il that for ;, fir5t orcier delav ('qllalll1n thi~ 

root alters the shape of the oscdlatioll but ha~ relatively huit· effet 1 IITl ib pt'rtod 

Moreover, numerical simulati()~" of the thin! order f,y.,t('11I indiratc litaI, the ~('c()nd 

mode would lif' al. a [r{,((lIeDey of '" cl.!)!) Hz alld Ilot at 0.2 Ill, Thi~ ()1)~t'TVatloll 

indicates that the 0.2 Hz oscillation obser\'cd eXIH'rirnenl,t1ly for tIlt' (lamper! PIlJlil 

light reOex l , in spontaneously rerorded hippus:il and in JIlin ()lepti< ~ al, .,ho!'p {)J1~dr,1I 

eannot he attribllted to simplf' nOTllillear l1l'gati\'c f('('dhéHk me('halli5111~ of the type 

we havf' cotlsidf'red here. 

An important nonlinearity in the pupt! IJght reflex i5 the f('!'lponse asyrnnH'try of 

the reflex 1.0 the onset and offs(>t ofltght 46
,90 Although tbis asyrnrndry is rrIO!'lt cJ('arlv 
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manifestcd as a differencf:> in the rates of pupil constriction and dilation64 ,89, thcrc 

is neuro-physiological evidence that this asymmetry also occurs at the level uf the 

output of the rdina and midhrain as we1l 8o ,82,83. Decause of this responsc asymmctry 

it is not pm,sible tn c\erive an impulse response in the dassical st'nsc from tht' pllpil's 

respOllse to a bingle light pube. 

The role played hy reflex asymmetry in shaping pllpil dynamics IS most clcarly 

shown in t.he case of external piece\vise constant feedback sinet' in thls case the light 

is either on or off61,89. The transient bt'haviours of the pupillight reflex highlight 

the asymmetry. In Figure 2.:L3 we showed that Wl is Ilot strongly de pende nt on 

the gain (throllgh the related parametl"r B). We have round that tbis is also true 

if n in (2.3.21) is varled instcad of B in cither of t",o ways: first, \)(' keeping B 

constant in the sanu' rangl" a~ i !!at IIset! in Figurl" 2.3 :3 and second by recomputing 

li for every value of oc ~ince (} de~ermines A' and the pararndn 13 wntains 9'(A '). 

Thus, if transil"nts have died out, tht wélvefurms should depend only OI! the irnaginary 

part of the l'Igenvalueb which vary only slightly wlth oc. Asymmetry. which reqUIres 

different vailles of n, w(Jllld tlH'n bl' IIIHlOtl(,l'élble. Thib may explain the observation 

that transfer fllndiollb obtained Ilnder steacly state condItions uSlng low amplitude 

sinllsoids predid "iO weil the fre<!lwney of the high gdln ot,eill.üio!l.,G7 Presllmably 

thefe has bceTl sorne kind of él\'efagmg of t Il{' élsymmetnc resj>OI1sef> vVe expert. that 

a tranhfer fUllet ion hased on tranSH'llts (e.g one ohtained hy Fourier transforming 

the time derivative of the step respons(' ) may yield diffl'fent fesults for light onset 

and offset. 

Sefvo cont roi analyticéll kchniques, sueh as llTll'ar trallsfef fllnctions, Volterra 

Of Wielll'l' kernel nOI1lir}('ar fesponse-fitting techniques, have I)('l'n extensively used 

to providc dt'hcript\Oll~ of the r('spon~e of tht' pllpil to transient and steady stat.e 

oscillatory li~ht. Inp11ts and to HlentJfy llonlllH'anties in the feflex arc16 ,19,71,9R. lIow­

('vef, the deflcflptlOTl of the cornpkx o'icillntofY phellOT1lena prodllced by nnnlinear 

neural ('ont roi lllC( hanism!-. ( scc, for l'xarnple, I\lnckey and I\lilton"1) requires that 

tllt'ht' tC( hn](l\lt'~ \)(' élugmeIJtl'cl \\ ith mdhodfl [l'pm dynélmical systellls theory sueil 

as bif1Ilcation clllalybib The analogies bd\\een the bifurcat.ion élnalybls of Cl nonlinear 

ordinal\' ddft'rt'lItlal cqnatioll .1llO S('r\'O contfol analytic techniqlles have !w('n maJf' 

prt·\'i()1I~lyln2,I01 Il Cf(' wc h<1\,(, given a conude eXclmplc t() illllbtratc that these 

analogics ean also !H' {'ffedl\'ely made for nunlinear dclay-diffl'Icntial l'quatiolls. 
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CHAPTER 3 
INDUCING NONLINEAR OSCILLATIONS 
IN THE HUI\,lAN PUPIL LIGHT REFLEX 

"Richtiges A uffassen e!ner Sclche ulld I\li!,versteht'n der 

gleichen Sache schlie,Ben einander nicht vollstiindig aus." 
Franz Kafka 

3.1 INTRODUCTORY REMARKS. 

The physiological systems that have !H'en studit'd from the point of view of non 

linear dynamics fall into two rlasse~: externally fOf(ed oscillators and Tlotlhl1ear ft,t'd 

back systems 26 ,27. Experimental demonstratioI1 of bifurcatIOns and <hau'" hil~ \)('('11 

made in periodically forced neural oscilla tors sllch as mollllsl t1euronf,·III, as \\t,1\ cl~ 111 

embryonic chick heart cell aggregates 2R and Purkinge fi!wrs 2
'l. Simple mathelllatl­

cal models involving olH'-dirm'nsioTldlmaps and pcriodi<allv forn'd lIodl!;kill-lIl1xlev 

equations are in qualitative éll!;f('eII1ellt with the ob~ervl'd behavior of t1J('~(' prepara 

tions. Howe\'er, in these simplf' phy~iological systelJl~ (as !n ail phy·,l(al f,v~ftolm), 

only a few bifurcations can he ~e('n berme cIJl('f1odic \)('ha\"101 ~t't" 111 Ba~t'd 011 1 lit' 

models, it has often becn (onrllldl'd thell t.he dIH'rI()(11( Il1l1t' ~t'nl'~ ft'J>lt'''CIII " IIIIXI IIlt' 

of chaos and noise Dl'Spltc this, httle effort has gOIlC into l h,traclerizillg 1 hl' 1I01~(' 

or deterrninrng \\'hether an impro\'eml'nt III t he rnod('l~ wIll ylcld bt'It,t'r :lgrt·t'IIH'1l1 

between their preriidItms and the data. AIso, a furt.her ql\t'~t.i()n not. resolved hy Iht,,,t' 

studies is whether the behavior of such isolatcd systt'lIlf, will be fOllJld in the IIrtact lit 

VlVO systems. 

\VhIle therc exist t'xperirnental studi('~ of forced o<;cillators froll\ the lIolllirH'ar 

dynarnics viewpoint, feedback system~ have heen relcltlvely lIeglected ht·( al\~e of t 1\1' 

paucity of suitable eXlwrimental models. ln this (hapler, the followilll!; <1'1t'~ti()lI" ,lit· 

addressed: 1) Can a human neural fet'dhack system t'xhibit \J1flJrc"t.ion~ frllll\.,impl(' 

to cornplex deterministic motion? and if so, 2) Ho\\' l'ail t h('~e ht'havior~ he analyzI'd 

in tt:>rrns of a qnanlit.atiy(' ITlodel'! To "n~\\'er th('~(' qll('~t.lllns \Vt' hav(' (ho"t'n 10 ~t 11 el Y 

oscillations ln t.he human pllpil light leflex 

The input 1.0 the pupil hght reflex i~ the \-ariation of rdinal light flllx (pr "dlll 

minance"), normally dlle to a change in light inteTlf,ity. '1'11(, Ol\tput i" al~() il variatloll 

in light flux, due to a changl' ln plIpil area following the ne1!fologi<al rt'SIHIT1~('. TIIf' 

input. and output variations are lIormally of opp()~ite ~ign, that i~, they co, 1 l"r;l( t 

each other. This describes c\osed-Ioop negative fcedback 0pt'ration. When tllf' f,Vf,tPf!l 
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IS Hl op{'n loop, the output rt'sponst' depends only on the input, rather than on the 

input and !.lI{' output (at the sam{' time or at an t'arlicr time). Opening the loop It'ads 

to the intef('bting pObsibdity "f reclosing it llsillg external feedhaek 

This chapter descrihc5 eXjH'rlmcnb ln whleh oscillatIOns arc Induct'd in the pupil 

light rt'flex Ilsing external e!cdronic fecdback. This typt' of experiment is possihle 

bt'causc the fcedback loop can \)(' t'clsily anù non-invasivdy opened using an optieal 

rIlt'thod first de~( rilJl'd hy SLuk and Sherman 31
. It Involvcs llsing a narrow « 1.2mm 

diam.) coIlJJI1,dec! light I)t'am ~h()ne clown the centel of the pllpil. fIenet' t'vcn under 

maximal pupd ron~tri( tlOll, 1 he Iris can not shade the Itghl \)('am The fcedhark lonp is 

df('dive\y opened uSlllg thls "r-,lax\H'lIidn view" illumiIld1iol1. Externcll electrollically 

5yntht'bizec! fcedback 1,46,65 then allo\Yb an analog SIgnal proporlional to pupil area 

(as mea511rer! \\'11 h a pupillometer) to control the intensity of the Itght source. The 

behavior of the resll\tlng "clamped" neural control system can tht'11 be stuùieù as the 

fcedback paranH'ters are varied. 

Expl'rllllelltallv, it IS relatively simplt' to con vert pupt! area variatioIlb intn light 

intcnslty variatIOns lISing a smooth (i e. ùiffereIltiable) f('cdback fllnction. ft is very 

difficlllt, ho\\'e\'('f, to control the mean light mtC'l1slty becall~(, of uncontrollahle drifts 

in the llH'an pupi! arcéI (e.g. due to lUPPlls). O~cillati()l1s obtain('ù llnder these con­

ùitions tend to }H' very tlllst a blr. This prohlem i~ circumvented lo a grt'at extC'nt by 

using pi('c('wi~e constan1 feedbaek in whlch the !tght intensity can takt' on only two 

values depencling on the pupil area 

ln the follm\ ing b('dlon \\'(' c!cscnbc in ùetail the apparatus useù to inùuce pupil­

lary os('illatiolJ~ Ilsing piecewis(' const.ant ncgativc (PCNF) and mixed (PCMF) ft'ed­

bark. An outlin(' of Chapler 3 then follows. 

3.1.1 Exp('rimcntnl mcthods. 

Figure :1 2.1 1TI Scc!tOTl 3.2 shows a simplified schematic diagram of the exp er­

illleni. Pupil élICél IS l1lea'iurer1 \Ising a binocular infrared videopupillomt'1.C'r (Hama­

matsu lris('order l\lodel C-2515, Hamamatsu City, Japan). The video cameras are 

infrared charge-collPlcd devÎccb. The eyes are illuminated hy an infrared light source 

(800 nlll pt'clk wa\'elength LED arrays) uf aùjustable intensity. Infrareù illumination 

is IIset! 50 ab nol to Interfere \\'11 h the VIsible Iight usee! tn elicit the reflcx. The 60 Hz 

sampllllg rate of the pupil10mcteI i::. more th an aùcqllate givl'Il that the bandwiùth of 

the PLH is about 2 Hz pdE cutoff of open Ioop transfer f\lndion : Sec Stark46 ). The 

il1lage~ are ancllyzed 111 real-tinH' by a frame grdbber that count.s the Illlrn\wr of pixels 
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above a certain gray leve\ set by the experimenter to discriminélk het\v('l'II pupil illld 

iris. The accuracy of are a m<>aSUfement is O.Olmm 2 O\'er a range of 0 10 \!i()111",2 

with a 1 % linearity. 

Tht' output of the pupillometer is an analog vo!t.age proport.ional 10 pllpil area 

This signal is fecl 1.0 the area comparator (Figure 3.2.\) whirh hyntht'hlzes t hl' fet'c1hark. 

The schema tic diagrarn of the area comparator and the dn\'ing {if( lIil for 1 I\l' hl illlllill" 

light are shown in Figure 3.1.1. Tht' area cornpar,üor ih simply c(llllpohed (If t \\0 

voltage comparators and a logic gate The OIlt.p1lt (If the {\f('lllt g(ll'f, ('l'TL) Il1gh ",heu 

the area ~Ignalls between the t.wo adjustab\e thref,holdf, TI and '/2, tlm dn\'l'h the 

light on. Otherwise, the subjecl, sees the clark background dlulIIlI1atlllll of thl' 1'<11'111 

The noisy fhrduations of the pupil area signal are hancl-limited hy the halllphng rait' 

of the pllpillometer. 'l'hUf> th<> noise dors Ilot callse m1lltiple Iriggt'ringh ah the art'a 

signal cross<>s the referenre voltages of tht' (,olllparators. For t.hih rt'ahO!l we rhoh(' 10 

use simple comparlliors rather than Schmidt trrggerh. 

Tht' stimulus J:ght intensity pro\'lcled by LE\)'s (fi0.111111 peak wav('length) wah 

fixed at a value corr<>sponding to a r<>tlllai illurninanCt' of "-' :J7.1 trolandh The hght 

is collimatcd into ft narro\\' beam the 1.2 mmlwam waiht ih lo(,!lec! al, the pupil 

entrance (or "pupil plane") Wht'Il the pupil is properl \' f()( Ilsed br the < cllIltTcI (the 

experiment.er adjnst.s the focns Ilsmg jOYhticks), Ik('al\~(' of the divelg<'Il«' of Ihe 

beam artel' cntering the pupil, the sllbject s('e~ large field dl IIll1i 1Ic1 1 ion rat her t hall 

a narrow spot. The ~llbJect focllses on a targe!. (c1im green aslt'nsk) to ket'p the 

accommodation !evel (lont.rolled by the len~ curvature) cOJ\stanl, sin«' pllpil ar("l 

varies with accommodatIOn \evcl (Section 2.1.2). Th(' bearn alld targd ~hart' tht' 

same optical aÀ!s as the cameras throllgh the ll~~' of ,>rI~fJlh. 

In certain experimenb" the digital ~igncll from the areél cOlllparator wah fed 

into an analog dday line which IS a CMOS integratt'd Clr('l\it (E(i&G Itdi<on .120H 

"buckct brigade dt'vict''' or HBD). This devJ\e pr()c!uce<; flelays whirh (ail vélry from ·1 

milliseconds to·1 seconds hy changing tht' sarnphng frt'qllt'tH y f. frolll .1()() Kl\z 10 :)()() 

Hz. The delay THIl!l ih given by T/l Il11 2018/ fn' The Ol\tput of th(' BBI) i~ prO«'hc,ec! 

by an 8-pole lowpa~s Bef,s('1 filter (Freqll(,ll(,y De\'i<t,,, l'.,)odl'I !)02 LPF, I\,l\'t'Ihdl, 1\1/\, 

USA) to l'id the signal of the sarnpling artlfact. 

The BBD can he Illserted ('!lher betwe('n tht' j>llpilloTTll'tt'r and lht' an'a ('otl1-

parator, or bctwcen th(' arC(l cornparator and the LED driver. lIowewr, the gain of 

the analog delay linc is slightly de pende nt on the offset of the input signal. In vipw 
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Figure 3.1.1 Circuitry for the external electronic feedback (or "area comparator") 
which wu substituted to the normally occurring smooth negative feedback of the 
pupil light reflex. The :nput to the circuit is Vcs 7'eG (top left) which is the analog 
output of a videopupillometer. This voltage is proportional to pupil area. The first 
part of the circuit synthesizes the piecewise constant negative and mixed feedback 
(PCNF or PCMF). In certain experiments, an analog delay line was used to increase 
the delay. The output of this circuit is filtered by a Bessel 8-pole lowpass filter. The 
Iast stal$e oC the area comparator is used to drive the stimulus light source. See text 
for details. 
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of the drifts in me an pupil area occurring dnring the expt'rinwnts, \\'(' chose III pllt t Il(' 

BBD aCter the al'ea comparator. By fe('ding the nnD a digital sigllal \"itll (,Ollstilnt 

offset (TTL 0-5 volts) from the area comparator rather than the sigll,d fWIlI the 

pupillomeler, the offset nonlinearity is effectively hypa~~ed. This cOllfigl1l'attoll ha:" 

a drawback, sinee the subsequent Bessel filtering arts cl~ a l()wpas~ filft'r wlll('h \\'111 

smooth out the abrupt transitlOn~ of the TTL signal. l!O\\('ver, sinn' tht' fn'ctlH'II('Y 

of the TTL pulses will be low (0.5 - 20 Hz) due to the rl'Iativdy ~low pupillllotioll. ,1 

cutoff frequeney of 200 Hz on the Bessel filter \\',ll produce a SIgnal that ~till qllali{il'~ 

as digital on the time scale of the pupil re~ponse. 

The video and image pron'ssing and the subsequent signal pwcessing add a 2!i 

msec delay to the normal physiolngical delay of this reflex ('"'-' :WO llISl'c). ln (l'rtain 

experiments, an pxtra 75 msec delay was aJded ",hen tht' TTL signal Wi\~ sent 1,0 the 

light trigger input on the pupillomder rather than to the LED c!riv{'f dil(,( tly (M'(' 

Figure 3.1.1). It is important that the !tming and dllrcltiol1 of the ~t illllll\ls light pllh,t's 

proviclcd hy the LED's are det('rmined by the state of thl' ~y~!(,lll (pllpd art'a) thro\lgh 

the area comparator. Tll1s IS very different from the ca:"c ",hel(' non alltOl\olllOll, 

oscillations are produced by repetitive stimulation at a 51\'CI1 freqIH·IH·Y. 

The left and right pupIl areas aIH~ the ~timll\u:" ltght \ ('\'('\ \V('rc r('('()rd('d on mag­

netic tape (Revox Model 110) and a polygraph chart r('(order (B('ckmal1 Dyna~raph 

Model JOOOO BC). Tn ail our experiIl1l'nts, th(' l'ye b{'ing "t llnul,lIcc! i:-. r11:-.o the Ollt' 

being mea&ured. The experiment" were ('ondl1ded on heal! hl' lT1a\c~ and f(,!IIales (ag('~ 

20-45) who \Vere free from both oCl1lar disea~e and di~<Jl'(I('r~ knowl1 \'0 afrl'd allto· 

nomic function. They were clark adapted for at lca~t 15 rnil1l1tt,~ ill a roO!I1 1;1, only 

by a dim red light. Ouring this dark adaptation, tht' rdinal fleuroll., il\( f('<I~l' thcir 

sensitivity and the pupils dilate. A meaS\lfl'ment f,('~si()lI could last IIp to an hour 

with many pallsPs of a few minutcs, dt'pencling on the wdlingnes!-> and f,ttig\l(' Iev(·1 of 

the sllbject. Becausc of blinkmg, typi( al rccord., ar(' limJl,('d to abOli\' 1 ;'-20 "P( und., 

for the mixed fepdhack expcriments (Section :i.3 and :L,I) BlinkHig dld !l1l1, arr<,! 1, t1w 

negative fccdback experiments, and cycling r('cord~ la~tlIlg IIi> 1,0 120 !->('condf> have 

been ohtained. 

3.1.2 Overview. 

The outline of this chapter is as fnllows. Section 3.2 i~ an in-depth sturly of th!' 

simple oscillation:; obtained with PCNF. The sectIOn cnmprif,(,s the manus( ript of il 

paper which has been accepted for publication in rZ.Hon RC.H'arch. The rno(!<·lIing 
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of visual physiology and the clinical implications of this paper make it suitable for 

Fision Research. Hence the mathematics and the nonlinear dynamics are reùuced to 

ineir simplcst expression. 

We show that the physiologically c;ound model for PCNF oscillations (referred to 

as "pllpil c) ling") developed in Section 2.2.6 agrees very weIl with the experimental 

data. A k{'y dernent in this analysis is an accurate method of estimating the model 

parameters from the data. Fllrther the experiment and the theory suggest a technique 

to evaluate pupil constrietion and dilation separately. Renee, it heeomes possible to 

diagnose the state of the (different) neural pathways responsible for eonstriction and 

dilation. Also, by simplifying the feedbaek, it suggests ways to test for other specifie 

nonlinearities. 

The next t,wo sections, 3.3 and 3.4, deal \Vith the PCMF case. Chronologically, 

Section 3.3 was published first (in Alathematzcal Biosclenccs) as a preliminary study 

of the pupil light reflex clamped with PCMF. The model is comp}etely ad hoc, and 

the param{'t{'r estimation seheme is based on responses to single pulses of light. Both 

the model and the estimation scheme are natural first steps towards the analysis of 

the results. The ad hoc mode} is shown to yield good quantitative agret'ment with 

the data for simple oscillations, and only qualitativt' agreement for the mort' complex 

behaviours. VVe ascribe the discrepaneies to noise, and especially to multiplicative 

noise in tht' fonn of asymptote fluctuations (Section 2.2.6). 

Subscqul'ntly the rnodcl was given a firmer footing (see Section 2.2), and a better 

paramet.er t'stimation scheme was devised (Section 3.2). St'ction 3.4 reinterprets the 

resllits of Section 3 3 for the peM F case using the physiologically realistic model and 

the improved parameter estimation scheme. New results concerning multistability in 

the modd t'qllation arc presented. The effect of additive and parametric noise on the 

observability of complex deterrninistic dynamics (and especially chaos) is discussed, 

along with ph,Vf>iologically r~kvant improvements to the mode\. 

A more elaborat~ exposition of the model properties is given Jn Section 4.5 

using the mathematical tools presentcd in Section '1.2.l, and the interested reader is 

encouraged tl) read these sections before proceeding to Sections 3.3 and 3.4. 
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3.2 EVALUATION OF PUPIL CONSTRICTION AND DILATION 
FROM CYCLING MEASUREMENTS. 

Abstract. 

Pupil cycling was produced using an eledronic circuit. so that. t.ht' rctina \Va.h illu­

minated in Maxwellian vit'w only when pupil art'a t'xcet'ded an adjust.ahle art'a t.IHt'sh­

old, Aref. The maximum (Amax) and minimum (Amm) amplitude of t.he oscillations 

varied linearly with Aref. These observations are desrribed by a de1ay-difft.'rent.ial 

equation. The Arerdependent. changes in Amax, Amm \Vere IIsed, rehlwrtiv{'ly, 1.0 

quantitate diJation and constriction. A comparison of t.he predider! and ohhc'rved 

period of pupil rycling suggests that tht' pupillatt'ncy times for light. Ollhet. and ()frM't 

are the saIlle. Meôsurements of Amax. Arnm providt' a method for det.ermi ni ng t1H' 

average pupillight response. 

3.2.1 Introduction. 

Pupil constridion anrl dilation are typically evaluatcd from the changes in pllpil 

are a following a single light pulse. The accuracy of this rncthod is lirnit.ed by t.h(' 

effects of pupillary hi pp us and the intrinsic variability in the responM' of the pllpil 1.0 

identicallight pulses 74. Consequently, quantitat.ive charaderizat.ion of t.he pupillight. 

response requires tha.t a large number of pupil resp0n!-,{'f- to ill(!Ivlllllal lighl plllf-('s IH' 

averaged (see, for example, Semmlo\V and Chen49
; SUII et. al. IO

:
I

; lfsui and Stark71
). 

An alternative method for evaluating pupil movenwnts involvt's illdll( ing r('glliar 

oscillations in pupil art'a ("pupil cycling") by eitlH'r llsing Cl f-Ilt lamp t,o fo('uf- ,\ 

narrow light beam at the pupillary margin 59 ,61 or by ('ombining an infrar\'d video­

pupillometer with an dectronic circuit \\< hich regulates rdinallight. flux as a flll\diol\ 

of pupil area l ,62,61,65. Mcasurcments of pupil cycling are important. a~ a. c1i!linti 

test for detecting pathology within the pupil light rdlex pat.hways. For eX<lrnplc-, a 

prolongation oi tht:' peri où of pupi! rycling has been reporlecl for a va riety of a rfefellt,fi 1 

and efferent GO Pllpillary defects, whereé\s an int.ermittent irrcgularit.y in pllpi\ cyrlill)!; 

occurs in demyelinative optic ncuropathies62 ,63. 

Here we show that measurenwnts of the amplitude of (>upil area Of-rillatlOllfl r(' 

flect properties of the dferent arc of the pupil light. reflex. Thif- oh"l'f'vatioJl permit.!'> 

the development of a nwthod for t'valuating pllpil moveIllcnts from cycling fJ\('ablll'l'­

ments which offers a number of advantagcs over mdhods baseù on the pllpil's respoJ\!ow 

tü single light pulses. 
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( (a) Negative Feedback 
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LIGHT 
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Figure 3.2.1 Schematic representation of the; pupillight reflex with imposed externat 
feedback. The area comparator used for pupil cycling compared the pupil area, A, 
to an adjustable area threshold, A,..,: when A > A"t!/ the light was turned on and 
illuminated the retina in Maxwellian vie~, otherwise it was off. This area comparator 
corresponds to negative feedback since the pupil constricts when A > A"t!/ (the light 
is on). It is piecewise constant negative feedback sinee the illumination can take on 
"nly one of two values, i.e. on or off. 
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'. 3.2.2 Methods. 

Subjects were healthy males and f('males (n - 5; ag('s 20-·15 Fars) who "'t'ft' 

free from hoth oClllar disease and disorders known to aff('cot auto!lomie f\lndion. 'l'hl' 

experimental conci;tions and design of our experiment are 1 hl' hanH' as dt'hcrilH'd 

previously62,64. A narrow light beam (diameter \.2 mm; rdinal illuminaI ion "'a!'> 

375-750 trola!ld~; JH'ak wav('length 605 Tlln) was fonlhset! Oll t.hl' ("('nt(,1 (If t.he pllpd 

('Maxwellian vlew') to "open" the feedhcl.Ck loop pn>ht'lll lt1 thl' pupil hght reflex:l ! 

vVhen subjeds ,vere adaptee! for at Iea~t \5 minut"s III cl mont lit ollly hy a dilll 

red light, the smallest pupil diameter \\as '" ·1-5 mm. \\Je IIht'd tht' 1llt'é1hllr('d pllpd 

are a to control the timing and duratio!l of the light pulh(,s falling Oll t!tl' !('tin" Il\' 

modifying the technique of enviruIlIllcntal 'damping' sllggehÜ·d bv St,lrk 1 (Fl!J;lIl l' 

3.2.1). This was accomplished by comparing t.he analog output of aIl inf! ar('d vidl'o­

pupillometer (Hamamatsu lriscorder C-2.SI5) t.o ail adjllstable art'a thres!t()ld, JI"f' 

hy using an electronic circuit (area comparalor in Figure :L2.\) The drca COIl1-

parator was constructed using standard \'oltagt' (ollJpar,d,orh (LI\I:J!l21l), ope! ,d,ional 

ampli fiers (LJ\I7.11) and logic gates (7·ILSOO) and "as d('..,igllcc! to sillllll,d,e p(('(ewi,,(' 

constant n~'gati\'c fee0back (set' legend to Figllle :l.2.\). The rt'tinalilght inlt'lI..,lly (all 

take on only one' of two values delH:'IHling Oll wlwther the pllpd clIl'cl i:-. gre(lt,(·! thall 

or less than .-iref . Thi~ area compar,ttor if-> an Idea!Jzatioll of the IIldhod of t'dgt'-light 

pupil cycling, where Arcf corresponds 1,0 the pllpil arl'a al, whuh the !l0!-JJtioll!:> of tilt' 

slit lamp beam and the pupd!ary margill coincide. Ho\\"e\'('r, ln ollr rndhocf the illu­

mination is not al, the pupdlary margin, huI, is in I\laxwd!Jan vww. The advantag('s 

of the eledronic mdhod of pupil cvclmg ovn that of edgt'-light pllpil cvding élJ't,62. 

1) the pupil area oscillations are easier 1,0 obtain and control (';,perim,'lltal1y; alld 2) 

the oscillations can he studwd o\'e[ a range of pupil ar('a~ by varylllg llrr'f (Figuf(' 

3.2.2). 

The pupil images were analyzed by a frame grablwr that (,()\Jnts the TIl Il Tl 1)('[ of 

pixels above a gray IE've} set hy the eXlwrimenter to di!:>( riminale l>etw!'(,11 pllpil alld 

iris. The sampling rate (,f the pUIJllIometer \Vas 60 Hz and the linearity is lH'tter thall 

1 % from 0 1,0 150 rnrn 2 wllh an ac('uracy of n.ul Illm
2 The handwidth of tht' pllpil-

10IDetcr is weIl beyond that of the' Pllpillight rdlex (abolit!) IIz: S('t' Stal k1fl). 111'11( (', 

for aIl practical l)t1rpo~e~, the responsl' time of the pllpil1oITH'ter (ail 1)(' Ilt'/~k( ted 

on the time scale of the plH'l1omena W(' are (onsHlering in thi!-J ~tlldy lIow('v('[, tll!' 

following inlage and signal plocl'h!:>ing ('" 25 msec) and triggnillg of th!' light plll~(· 
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Figure 3.2.2 Pupil cycling with impoaed piecewise constant negative Ceedhack (Fig­
ure; 3.2.1b) as a function of Are! for subject A (ML) in Table 3.2 (left hand side). 
The value oC Are! is represented by the horizontal dotted line and was set at: a) 38.0 
mm

2
, b) 30.1 mm2

, c) 25.0 rnm2
, d) 22.5 mm2 , e) 20.1 mm2 , f) 16.2 m.a2 and g) 14.0 

mm
2 

• The left hand side of tma figure ,hows the solutions of (3.2.1) Cor the values 
oC the parameters given in Table 3.2. 
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('" 75 rnsec) add a 100 msec pure dday ("machine dday") to the normal physiologi!'al 

delay of this reflex ( ...... 300 m<;ec for the rdinal illulllillflllce usce! in tills sI1Id.\ (12) 'l'hl' 

pupillatency time (delay) following light onsd was ('valnated as the tilllt' lwtWt'('1I the 

onset of the light stimulus and the ouse!, of pllpil «)II~t rictlOn by U~\IlP; the COIll\l1ltt'\ 

supplied with the Hamamats1l lri~cOIder ('-2515. The dejellJlinatioll of the pllpil 

latency time following light offset is discussed in the RES li LTS. 

3.2.3 Results. 

Pupil Area Oscillations 

Figure 3.2.2 shows pupil area as a functiou of time for a normal sllbj(·ct. (sllhj('c!. 

A in Tables 3.1 and 3.2) when the area threshold, Are!, 15 set at vario1ls I('v(+,. Wht'Il 

Are! is larger than the initial pupil area, Al, regular oscillations in pllpi1 area do not 

occur (Figure 3 2.2a). Repetitive constrirtions and (lilat iOllh in pllpil area OCCIII' wlJ('J1 

Ar~f < At. The light is tl1rn('d on "- 100 rns('c afiN pllpd are" exce{'dh .. trl'f. This 

delay rt'presents the machme dt'lay. The onset of cOllstri{,t ion 0('( Ilrh --..., :WO Ill~('(' aHer 

the light is turtH"d on. This dday is the pupil latel1!')' t irnt' to h!.!;ht. OIlM't. 01\('(' pupil 

area constricts 1,0 a value less than ,·l,ef' the light is tUflled ofr after the machint' 

delay, The pupil cont.inues to ronstrict for the duration of itllot!H'r late!lcy (Iatt'II!'\' 

time for light offset), after which it begins to dilate, Thc procehs repeab and giv('s 

Tise to cycling. 

In the discussion whieh follows \'le use the notation Tc, Td 1,0 rder to the hllm of 

the machine delay and pupiI latcHey time for, respect.in'Iy, light ol\sei, and light. o{r~l't 

The period and amplitude of the pupil area oscillations shown in Figure :~ 2 2 

depend on the choicL of Arp! relative to At. As .ire! i~ brollght doser 1.0 ..1" the 

amplitude and period of th(' pupil area oscillations increasc. ln addition, the fnu tioll 

of time that the light. is on dming each cyde in pllpil area dl'('r('a!.e~ (~, (J,!) wll('lJ 

Are! = 1,1.2 mm2 versus "'-' (Ll for Arr! - 30.1 mm 2 ) A~ showlI in F1!.!;un' :L2.:~, 

the maximum amplitude, Aman and minimum amplit IIde, ..1'"111' "r t Il(' pupil arCH 

oscillations vary linearly as a ftl[1ction of .. lref. ln cont ra ... t) thcr(' i~ il rlOrrlfl)('ar 

relatiollship between the aVt>rage peri'HI of the pupil art'a ()~!'illatiol\h alld .lu'! (Flglllt· 

3.2.4). 
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( TABLE 3.1 

PARAMETERS FOR PUPIL CONSTRICTION AND OILATION FROM PUPIL CYCLING 
MEASUREMENTS 

Subject 'ta CI
C CId Aon Aoff 

(msec) (sec- 1 ) ( sec-l) (rmt2 ) (11111 2 ) 

A 380 4.46 0.42 ll.8 34.0 

B 385 3.11 0.74 15.7 34.5 

C 411 3.88 0.27 15.5 34.2 

0 400 4.69 0~36 26.3 52.4 

E 305b 5.19 0.46 16.4 39.5 

TABLE 3.2 

PARAMETERS FOR PUP IL CONSTRICTrON AND OILATrON MEASURED FROM SINGLE UGHT 
PULSE PUPILLARY RESPONSES 

Subject 'ta CI
C CId Aon Aoff 

(msec) (sec-1 ) (sec" l ) (rrm2 ) (rrm 2 ) 

A 380 2.50 0.48 10.0 34.4 

B 385 2.50 0.84 15.2 33.6 

C 411 3.33 0.50 15.8 34.8 

D 400 3.84 0.63 25.2 51.1 

E 30Sb 4.87 0.55 14.0 35.5 

a) Total time delay Il neural time delay + ntachfne time delay 

b) Machine time delay was 100 msec for all subjects, except subject E for 
whom it was 25 msec. 
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Figure 3.2.3 Plots of Am._ and Ami" as a function of the are a threshold, Ar." 
for subject A (Tables 3.1 and 3.2 and Figure 3.2.2). Data hu been represented as 
the mean ± 1 SD and ie for a range of 12-18 consecutive cycles. Solid lines were 
determined from a linear regresaion analysis. 
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Figure 3.2.4 Comparison oC the observe<! period, T, of pupil cycling as a function 
oC Af'C/ Cor subject A (Figures 3.2.2 and 3.2.3) to that predicted by (3.2.4). Data 
has been represented 8ft the Mean ± 1 SD and is for a range of 12-18 consecutive 
cycles. The salid line is the value oC T predicted from (3.2.4) when Tc = T

d
• In aU 

calculations, Tc =380 msec. 

72 



• 

First-Order Model 

Background 

The pupIl light reflex may be viewed as a ddayl'd negativ(' fet'dhack Il t'1Ir a 1 

control mechanisrn which regulates the retinal light flux (l'quai to the light int('nsily 

multiplied by the pllpil area) by changlllg the pupi\ areél. The de\ay ari!->e!-> h(·( au~(' 

of the pu pil latency time( s). Pu pil cycli n~ occurs w h('II, [or exa ln pit', t he ~a i Il of the 

feedback loop is incfeased 67
,81,99 Self-gl'llerated oscillcll.ions of thi!-> type are lefern,d 

to as autonoffiOllS oscillations. Il ill importa lit to distinr.;uish autollolllOUh pupil cy( lill~ 

(Figure 3.2.2) [rom experirnents in \\ hich oscillations in pupil arC'a O( (ur in respollM' III 

an indepf'n den t f'xterna 1 1 ight, pulse gellerator ("forn'd " m,ci lia t. ions) (set', for ('''(il III pit', 

Sun et. aI. 101
). 

The descri ption of ail tonOnlOUS oscillations in pl1 pi 1 a rl'a reCI ui res the IIS(' of " 

nonlinear delay-differential equat,ion 64 ,84,99. The nonlint'arit.il's arise, for exalllp1t-, \'('­

cause of the logarithmic compression o[ light intenllitie~ at. the Il·tina (W('!>('I-F('chl\('T 

law). For physiologically relevant choices of the feedhack [l1nction l.I]('se eqllatiolls call­

not be solved analytically99. However, under the eXJH'rirnental condit.ions desrrihecl 

in Figure 3.2.1 the feedback function (ar('a comparator) is of a very simple Iype and 

the oscillations in pupi! area, A, can be described l>y20,64,9<) 

i [ ..t T > . \ rf' f 
p.2,1) 

where .4r is the pupil area at a time T in the past, i.e. Ar cc A(t -- T). J<:qlla!'ioll~ of 

the form of (3.2.1) are of particuJar interest. for t.he study of osrillatioJlh in f('('dha('k 

mechanisms because it is possible to obtain a great. deal of mathernat.iral iJl~ight in!'o 

their properties66 (see also A ppl"ndix 1). 

Equation (3.2.1) is Cl first-nrder mode! for PIlJ>il rycltng ~ill( (' hol il (011,,1 rie 1 1011 

and dilation are describcd by single exponcntial prO("('~h(,S. !Iow,'ver, tht' r,tI.l' ('oll~ta1l1 

for pupi! movemf'nts differs for constriction (D, ) and dilation (H,,) Fii!;lIrt' :1.2.:l ~ho\\''' 

a typical solution of (3.2.1). When th(' hght is on, pllpil sizt' d('cr('a~{'~ (,xpoll<'111 lall V 

to a lower asymptotic ar('(\ (ADn)' w}H'reaS when titI' Iight ill off, pllpil "17.(' illerl'a"",, 

exponentially tO\\'(lf(h (\ 11Igher asymptotic are a (:luf f)' 

Paramclcr e!lilmafwn 

In order 1.0 compare the first order modeJ for pllpi! cyc!ing giv"T1 hy (:1.2.\) fo 

the experimental observations in Figures 3.2.2--1 il. is nctl'ssary to estimatt' M'vell pal il 
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Figure 3.2.5 Detailed representation of a typical solution of (3.2.1) when A"e/ < Ai. 
See text for details. 
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meters: oc,od,,4on,AoJf,flreJ,Tc and Td. The value of Arel is set b)' a !>ott,tlliolllt,­

ter. In our previous study 64 wc assumed that Tc Td and l':"timatt-d t he \'allll'~ of 

Oc, Cid, Aon and ADJ J from the changes in pupil area that on'ur fol\o\\'illg a Il.!) M'(­

ond light pulse as shown in Figures :J.2.6a and :J.2.6b. 'l'hl' area asymptote, .t"f!' '" 

taken as the initial pupil area and .i on is the minimum pllpil an'a fo\lo",illg a longef 

(2 second) light pul~e of the same ;i\uminance. The value~ of n(,lOd,·t on allcl :\"11 

determincd in this manner for {ive:, rmal sub.JCcts are hsterllll TaLle :l.l. 

Herc wc show that the paramet,ers ne, ad, Aon and ..loi 1 l'ail hl' estimatec\ dir('( t 1" 

from pupil cycling rneasuremcnts. This rcsuIt follo\vs from tht' fad that (:L2.\) ('ail 

he solved analytically (App('ndix 1). The solution indicatl'~ that a plot of . \mm \'(,f~lI~ 

AreJ will be linear (Figure 3.2.3) and specifically that 

(:l.2.2) 

where 

a. = Aon{1 - b) (:L2.:la) 

and 

(:l.2.:lh) 

Since the value of Tc can he dctermined experimt'ntally (sec l'vlethods), U1(' slopt, of 

this plot yields a c and the intercept Aon. An expression t'qui valent 1,0 t.hos{' givell 

hy (3.2.2) and (3.2.3) is found for Amax exccpt that O(',T(' and Aon are replaC'ed, 

respectively, by ad, Td and AoJ J Thus t.he intt'rcept of a plot of Amnl' verslls A"'I 

can be used 1,0 ddermine AOJJ. However, sincc Td is Ilot known, the ~Iopt' of this plot 

does not permit the value of Cid to he determined uniqul'ly 

Table 3.2 summarizes the vaInes of Oc, 0d, Aon and A"f! dt'termined frolll cyclin~ 

measurements for t.he same five subjccts in Table 3.1 IInder the asslltnption thal. 

Tc = Td. In comparing the results in Tables 3.1 and 3.2 il. is important 1,0 realiz(' thHt. 

the results in Table 3.1 are deterImned from the respome 1,0 a 1>ingk light pulse al. .) 

single initial ptlpil area, whereas for cycling the~c paramet.ns rl'pre"enl., in ~OIl1t' ~('I\~t', 

an averaging over 50-70 single pulse determinatiol1s ('O\'ering a range pf init ial pupil 

areas (i.e. 10 light pulses per are a thr('shold, tim('~ ;,- ï c1H'a t hr('sl}()ld~) The valul'" 

of Aon and AOJ J obtained by the two mt'thods are 111 gond agrecmenl.; hIlW{'V('f, t lI!' 

values of Oc and ad dlff('r. The differ('nces in ad canno!. ~ilTlply he att.ribllt('d III f lit' 

uncertainty in Td since an increase in Td w0uld decrease the vallll' of arl ('vell furtlll'f 

(see (3.2.3b)). 
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Figure 3.2.6 Pupil area as a function of time, Ah following a single 0.5 second light 
pulse for subject A (dotted line). In a) the observed pupillary response is compared 
to that predicted by (3.2.1) when the pluameters are estimated by the single pulse 
method (solid line, subject A in Table ;.';.1, see text for details). The semi-Iog plots 
for the determination of a el ad are shown in b) where An is the normalized pupil 
area, i.e. An = lAt - Aon,olll/IAi - Aon,olfl. For pupil constriction the initial value 
of At was taken as the onset of conlltriction and for dilatioll the initial value of At 
was arbitrarily chosen as the point indi.cated by U Â ". In c) the observed pupillary 
response i!l compared to that predicted by (3.2.1) when the parameters are estimated 
from cycling measurements (solid line., subject A in Table 3.2). In d) the observed 
pupil response is compared to an empirical mode! in which constriction is described by 
a single exponential proceSB and dilation by two exponentials (i.e. equation (3.2.5)). 
Details oC the parameter estimation for the predicted solution in d) are given in 
Appendix II. 
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Figures 3.2.6a and 3.2.6c compare the changes in pllpil area that occur fo11owing Il 0.;1 

second light pulse to those predicted from (3.2.1) whell the jHlrIl1ll('\('rs ne,Od,:\()fl 

and AOff have been estimated, respectivdy, from hingle pulse lllellSUft'llll'nb (Figures 

3.2.6b, Table 3.1) and pupll cycling measurements (Figure :L2.:~, Table :~ 2) P\lptl 

cycling measurements yield paramders which j)fO"H!e a lH'tter c1l'scnptioll of t.ht' 

pupillary time cour&e when Tc = Td' Similar f('&Ultfo Wl'Il' ohtallH'd fOI a11 &uhjt'( t<; 

studied. In the discussion which follu\Vs we cOllsider only those ~o!\lti()n~ of (:\.2 1) ill 

which the paramcters have heen ('st.imatrd from rycling mellS\lrenwnt s 

Period (If puptl area o.'Jctllatwn.'J 

T'le period of pupil cycling, T, predicted by (3.2.1) is (Appcndix 1) 

(3.2.·1) 

In F,gure 3.2.4 we show the period (T) of pupil cycling (solid lillt') calrulated from 

(3.2..1) when Tc = Td. The discrepancy bctween the predicted Ilnd observecl Ilv('rllge 

period of pupil cycling is typically less th an 5-10 %. 
H should he noted that (3.2.4) predids that the periml of pupil rycling is Ilot 

a mon\)tone inrrellsing function of A rcj , but passeh 1.hrollgh Il minimum. Wl' wt'rt' 

unable to verify this experimentally. \Vith decreases in Ar,.J helow 1·1 Tl11l1
2

, pupil art'a 

would undergo 2-3 cycles \Vith increasing ATTttn \lntil the cycling stoPFec! with the light 

on and Amtn > AreJ. It if> not clear whetlH'r t.hih phel\OllletlO!l arose h('r(\usl' of a 1.\ 1'(' 

of pupillary escapc85 ,98,I05 or represents changes in AOTl duc 1.0 retinal adapt.atioll
G1

. 

Light off~ et latency ftme (Td) 

Equation (3.2.4) in combination with (3.2.2) and (3.2.:3) can als!J !w 1\Sl'cl tn 

calculatl! the period (T) of pupil cycling when the latency timl's for light onst't. and 

offset are not the same (i.e. Tc 1 Td)' In Figure 3.2..t Wl' show the period ('/') (Jf 

pupil cycling calrulated from (3.2.'1) for two Vlllt\(·~ of Td > T,. (alld henrl' of Hdj h('(' 

(3.2.3h)) (dottcd lines). As ran he s('en the bt'st agrl'ement betw('C'n thl' predided 

and observed \>,'rio<1s of pupil cyding occurs when Tc Td· 

A mplitude of l'Uptl arca osclilatlOn.~ 

The fact that the values of nC) ad, Aon and AoJ f are dctermined from dw data 

III Figure 3.?3 guarantees that the solutions of (3.2.\) will have the !lame aVNage 

amplitude as observed for pupil cycling (Figure 3.2.2). 

77 



... 

1 
, ' 

Shape of pupil area o.,cillations 

One way to compare- the shape of the predicted and observed pupil are a oscilla­

tions is to plot pupil area as a function oftime (Figure 3.2.2). However, the limitations 

of this me-thod for comparing the shape of oscillations are immediatdy apparent. The 

ohserved l'upil area oscillations show small cycle 1,0 cyrlc variations in period and 

amplitude dut' 1,0 noisy inputs into the pupil light reflex which have Ilot been incor­

poratt'd into (:l.2.1). Thus ont' cannnt easily compare- theory with observation by, for 

example, supenrnposing the preùicted and observed time series. 

A rnllch beUn rnethod for comparing the shape of predicteù oscillations to thost' 

observed expe-rimentally invo!H's the constructIOn of a "phase plane diagram". A 

phase plane diagram is a convenient way of graphing pllpil arca changes as a function 

of timt' since for an oscillation a closeù loop trajt'ctory will be obtained. Fol' (3.2.1) 

a phase plalH' diagram can 1)(' constructed by plotting A(t) versus A(t - r). The 

advant.ag(' of constructing a phase plane diagram is that the overall average shape of 

the oscillation can be assessed and compared to theory even in the presence of noisy 

pert llrba t.ions. 

Figure 3.2.7 compares the measured phase plane diagrams for different values 

of Arr f tn thost' predicted by (3.2.1). As plotteL! the trajectories are traversed in a 

counter-c1ockwise direction and the orientation is as follows : the upper right-hand 

cornt'r corrt'sponds to the change from dilation tn constriction and tht' lower IeCt-hand 

corner to the change from constriction t,o dilalion. As Are! is changcd, the predicted 

shapt' of t.he c1o~('d tl'a.i('d()rie~ changes From triangular (Figure 3.2.7a) Ln roughly 

quadnlateral (FIgure :L2.7d). Ovcrall there 15 surprisingl y )d agl"eement. lJt'tween 

t.he expenmentallv mecuilIred and predirted phast' plane tréljectorics. llowcver, on 

doser inspet tion Il can \)(' ~e('n that the best agreement lH'tw('en (3.2.1) and observa­

tion orcurs for t Ill' latt.!'f stages of dilation and the earlier stages of constriction. 

Alt.erllativ(! Mo(lels for Pupil Cyclillg 

'l'hl' IHl'Ccdinp; I('~tllts de.llOlls!.rnte that the J>eriod and amplituue of pupil are a 

oscillatioll:-' C(1,n 1ll' predlctl'd [rom a lTIodel (3.2.1) in which both constriction and 

dilation an' des( n!H'd by single t':-"pol1cntials and in which the latenr::y times for light 

onset and offset are tht' ~alTle (Figures :L2.2-1). However, the shape of the predirt.ed 

osci\1ations is Ilot exactly the sam{' as that observed (Figlll't' 3.2.7). 

"'p round lhat a mllch better fit. to the changes in pupil are a following a single 

light pulse was obtainl'd ",he!l dilatlOn was represented by a sum of two exponentials 
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Figure 3.2.1 Phase plane diagrams for pupil cycling as a fUDction of Are! (or 
subject A (Figures 3.2.2 to 3.2.4.). The data wu digitized at a frequency of 20 Hz. 
Solid lines are those predicted by (3.2.1) for paramete:rs estiml\ted from the data in 
Fig. 2 (subject A in Table 3.2). A"1!/ wu set at: a) 30.1 mm2

, h) 25.0 mm2
, c) 22.5 

m.m2 , and d) 16.2 mm2• The change of constriction to dilation is indica~td by the '#' 
in a) and the change from dilation to constriction by the '.'. 
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(compare Figure 3.2.6d with Figures 3.2.6a,b,c). This fit was obtain<,d with T(' .:;~ Td 

(Appendix II). In view of these observations, an alternativ<, modl'l for pupil ar<,a 

oscillations becomes 

_IdA 
0: di + A = Aon 

d2 A dA 2 
dt 2 + b di + w A = Aoff 

(~1.2.5 ) 

where 6, w are constants to be determined. In contrast to the expressions deri v('d 

from (3.2.1), it is not possible to obtain simple mathematical expressions for Amo:r 

and T. Thus we cannot presently estimate the three pupillary rate constants and areé) 

asymptotes from cycling data in a way more practical than fitting t.he t.inH' course 

of the pupil are a changes following a single light pulse using a nonlillear regressioll 

analysis. 

Preliminary computer simulations of (3.2.5) indicate that the shape' of the pupil 

area oscillations closely resemble that of the observed oscillations (data nnt. shown). 

However, given the difficulties in estimating the required parametcrs, il. is not yd 

possible to assess the agreement between model and data with certaint.y. 

3.2.4 Discussion. 

Our observations emphasize the importance of measurcments of t.he arnplitud(', 

rather than the period, of pupil area oscillations for obtaining quantitat.ive descrip­

tions of pupillary constriction and dilation. In particular, when pupil ar('a osrillat.ions 

are produced under conditions of piecewise constant ncgative feedhack (Figure :1.2.1), 

it is found that the minimum (Amm) and maximum (Ama:r) amplitude vary liuearly 

with Are!. The A"erdependent changes in Amm depend only on fadors which in­

fluence pupil constriction (see, for example, (3.2.2)), wlH'feéls rhanges ln Am,,:r afe 

related only to changes in the factors which infhlt'Ilc(, pupil dilatiol1. This foJlows 

from the response assymmetry of the pupil to light onsd and offsetR1 ,99. Thus pllpil 

constriction and dilation can be qucwtitated in terrns of the slop('s and intercq>t.fl of 

straight line plots. This technique should facilitate the evalllation of effefent Pllpillary 

defects. 

Quantitative evaluation of pupil r('sponses from meaSUreTTlellts of pupil are(l Ofl­

dilations produced under conditions of piecewise cOllstant negative f(,t'dhack offcrs a 

number of advantages over measurcments following single light puls('s and cdge-light 

pupil cycling. By cycling the pupil, the cffeds of hippus are minirni:;wd sinn' high 
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frequency noise is reduced by the self-flltering action of the resonance peak of the 

autonomous oscillations which acts as a narrow-bandpass flIter l . Second, generating 

a plot of AI/"" (or Am'I.I·) versus A,l! is in sorne sense equivalent to averaging 50-70 

single light pulses covering a range of initial pupi! areas. These measurements a.re not 

time consuming: the experiment in Figure 3.2.2 took less than 5 minutes to complete. 

Obtaining an averaged pupil response is important in view of the intrinsic variability 

of the Pllpil's response to light pulses H. Finally, measurements of amplitude show 

less variability than those of period (compare standard deviations for AIIII/Il Ar/III.r 

in Figure 3.2.3 to those of period in Figure 3.2.4, especially at the higher values of 

Ali f)· 

The infrared pupillomcter chosen for this type of study must meet two require­

ments. First, its response time must be sufficiently faster than the pupil responses 

(20-60 Hz is adequate for most purpûses). Second, sinee the differences between, for 

example, AIII(/J" and Ali f can be quite small (Figure 3.2.3), it is important that the 

pupillometer be able to measure pupil are a accurately. The 0.01 mm2 resolution of the 

pupillometer used in this study appears to be adequate for mûst purposes. The neces­

sary are a comparator (Figure 3.2.1) can be easily installed in both video_typé2 ,o-!,1IlG 

and reflectance-typel.Oj pupillometers. 

The observation that A.", "' (or Am,,:r) varies linearly with Air f can be explained 

by a mathematical mode! for pupil cycling (3.2.1) in which both pupil constriction 

and dilation accur as single exponential processes but with different rak constants. 

This model also correctly predicts the period of the pupil area oscillatior.s. However, 

measurements of the period of the oscillations as a function of A'l f are not sufficient 

to identify the individual l'ole of the constricting and dilating mechamsTTIs of the 

pupil Iight reflex (3.2.4). This observation emphasizes the importance of amplitude 

over period measurements for evaluating the properties of the efferent pathways of 

the pnpil light reflex. 

It is generally hdd that the pupi! latency time for light offset (Td) is either equal 

tn or longer than the latency time for light onset (TI') (see, for example, Lowenstein 

and Frieùman 7;;). However, direct measurement of Td is difficult sinee the onset of 

dilation fallowing light. offset cannot readily be determined by visual inspection. The 

prohlem is that pupil area may initially continue to decrease after the onset of diIation 

berause of tht> effects of the mechanical properties of the iris and its musculature which 

prevent suùùen changes in the sign of the velocity. Thus determination of Td from the 
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pupil response to a light pulse requires reference to a mathematical mood. On thl' 

oUler hand, it is unlikely that Td can be measured directly from tilt' pupil rt'SpOI\Sl' 

to a dark pulse. The response of the pupil to either a light or clark pulhe is in the 

same direction ("unidirectional rate sensitivity") (s('(' Clyncs90 ). Thus i1 i8 llnclt'ar 

whether measurement of a latency to a clark pulse wonlel correspond t.n t.hl· Td rl'ievan1 

for pupil cycling measurements. From the standpoint of a first-order model for pupil 

cycling (3.2.1), the best agrt'ement l)('tween the predicted and ohwrved pl'I'iod of tht' 

pupil area oscillations OCClUS when Tc and Td are approximatdy the 'lalIIe. VVhell t.hl' 

alternative, more complex model for the pupil rcspOllse to light. (:\.2.0) was lISl'd, the 

observed pupillary response cou Id also be modelled with Tc c= Td. Thehl' Obhl'I'vation<; 

do not prove conclusively that Tc = Td, but they are certainly highly s\l~gl'st.ivl'. 

The shape of the observed oscillations in pupil area is only approximat.c1y de­

scribed by (3.2.1). It is possible that by increasing the number of expOIH'ntial8 which 

describe constriction and/or dilation a better description of the shapl' of tht' oscil­

lations can be obtained. In this way insights can he gained int.o the prupl'rties of 

the efferent properties of the pupil light reflex. For l'xamp1t', we fO\lnd that il hetl,('! 

agreement between the predicted and observed shape of the pupil respollse t.o a binglt' 

light pulse is obtained wh en dilation is modelled as the sum of t.WO l'xponent.ials. The 

main limitation of this type of approach are the diflicl1ltlt'h élsso(')(üed wit.h l'st.Îmat,ing 

the required number of parameters from the experimental data. 

Our observations do not allow us to identify the n(,uJ'ophysiological Il1('rhanisms 

responsible for pupil dilation during pupil cycling. The roll' of sympathetir l'ffl'rt'nl.s 

is uncertain given the observations that pupil cycling can ht' elicitec! in human suh­

jects even when the sympathetic suppl y 1.0 the pupil is cut surgicallyfl2 or hlorkec! 

pharmacologically60. 

A parasympathetic mechanism producing pupil dilation involv('s adive inhibi­

tion of the Edinger-Westphal nucleus34 . Experiments will 1)(' rt'clIlired 1,(\ dcterminl' 

the relative l'oIes of the sympathetic and parasympathctir mt'chanisms fOI' pl'odl1cing 

pupil dilation during pupil cycling. 

Studies of the pupillight reflex "clamped" with l'xtl'Inal e!edronir fC'l'clbark have 

been used previously to determine the influ('nce of Uu' 'Iinear' and 'nonline(ll" prop­

erties cf the reflex in determining the period and shape of the o~('illatiollsl. Ih'rl' we 

have shown that this technique can also he used as a practical m<>thod for evalllat.ing 

the average pupil constriction and dilation. From the more gt'lll'rai point of vif'W 
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( of the st udy of oBcillations (i.e. nonlinear dynamics), this experimental paradigm of 

neural control also provides unique opportunities to verify theoretical predictions, to 

draw attention to unexplained phenomena, and to assess the role of superimposed 

random variations ("noise") in shaping the observed dynamics2o ,64,99. It can be an­

ticipated that by continuing to exploit this experimental model it will be possible to 

gain insights into the properties of this reflex by, for example, clever design of the area 

comparator. Sorne of these insights may also be applicable to other neural control 

mechanisms as weIl. 

Appendix 1: Solution of Equation (3.2.1) 

The oscillations in pupil are a produced by (3.2.1) (Figure 3.2.5) are referred to 

as limit cycles. Assume that the motion described by (3.2.1) has settled onto the limit 

cycle oscillation. Then we can write the solution as 

A(t) = { Aon + [A(to) - Aon][exp( -ac(t - to))], 
Ao/f + [A(to) - AoffJ[exp( -ad(t - to»], 

if A(s - T) > Are! 

if A(s - T) ~ Are! 
(1.1 ) 

where s E (to, t). Let Ama:r: (Amtn) denote the maximal (minimal) area reached 

by the oscillations (Figure 3.2.5). Then 

from which we can easily obtain 

t - -Il [Amtn - Ao!!] 2 - ad n 
Are! - Ao!! 

(I.2a) 

(I.2b) 

(I.3a) 

(I.3b) 

The period, T, is equal to Tc + Td + t 1 + t 2 • The values of Amin and Ama:r: ((3.2.2) 

and (3.2.3) in text) can be determined from (1.1) by choosing A(to) = Are!. 

It was found both analytically and numerically that these limit cycle solutions 

of (3.2.1) are very stable. In fad, the transients leading to the limit cycle behaviour 

decay very quickly. 
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Appendix Il: Parameter estimation for Equation (3.2.5) 

In order to fit (3.2.5) to the response of the pupil in a singh' light pulse (Fignrl' 

3.2.6) we imposed four constraints (see program SPF 120RD in Appt'udix C, with the 

substitution ad - Ild) : 1) the transition from constrict.ion tn clilation oecurs at tirm-' 

te + Tp where te is the time of constriction onset (,,-, 300 Insee aft('r light puls(' falls on 

retina) and Tp is the light pulse duration (500 msec); 2) the pupil ar('a is continuolls 

at l:me t = Tp ; 3) the area velocity is continuous at iime t = 7~j and 4) iht' initial 

pupil are a is fixed. 

If we let te = 0 and denote pupil area by A(t), we have: 

(11.1 ) 

where fJ in (3.2.5) corresponds to -ILd - f3d and w 2 to JLdf3d. The constraints 2) and 

3) are used to express parameters D and E as a function of tht' paramelf'r set. in hl' 

determined by nonlinear regression: {B, C, a e , JLd, .BÛ. For the daia in Figure 3.2.6 

our fit produces A = 21.81 mm2, C = 10.14mm2, a e = 3A4 sec-l, JLd -- 2.83 st'e- 1 

and .Bd = 0.58 sec- 1 with a X2 value of 10.62 ± 0.54. Note ihai the va!u('s of t1d and 

Oc have not changed significantly from those of, respectively, O'd and O'c dctermiuecl 

for the first order model (Tables 3.1 and 3.2). 
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3.3 COMPLEX OSCILLATIONS IN THE HUMAN PUPIL LIGHT RE­

FLEX WITH "MIXED" AND DELAYED FEEDDACK. 

Abstract. 

Simple periodic as weIl as more complex behaviors are shown to occur in the 

human pupil light reflex with piecewise constant mixed and delayed feedback. The 

output of an infrared yidt'opupillometer, an analog voltage proportional to pupil area, 

is processcd by an electronic comparator which synthesizes the piecewise constant 

feedhack. The system is desCTilwd by a nonlinear delay differential equation which has 

been previously shown analytically to exhibit periodic and aperiodic behavior. After 

parameter estimation from the data, it is found that the observcd simple periodic 

behavinrs correlate well with the model behaviors. Although more complcx behavior 

can be observed for parameter values which gave complicated dynamics in the model, 

there is not. a one-to-one correspondence betwcen the observed and predicted results. 

The effcct of uncontrollable fluctuations in the paramcters on the observability of 

complex dynamics in this system IS discussed, 

3.3.1 Introduction. 

The control of a physiological variable :v lS often given by an equation of the 

form 

dx. d' d . dt == x = pro uchon - estructlOn 
(3.3.1 ) 

= g(x(t - T)) - ax, 

where g(x(t - T)) is a nonlinear function of x(t - T) and Q is a positive 

constant 24 ,25,54,57,107,lOB. The time delay, T, is an essential feature of these control 

systems and arises, for example, as the time required for a cclI to mature, or the time 

required for a nerve impulse to travel along an axon and across a synapse, or the 

time for hormonal signaIs tn travel from their site of production to target organs by 

diffusion and/or passage through the circulation. 

For many physiologiral control systems, 9 (x( t - T)) is a "humped" function of 

x(t -- T), i,e" maximal production occurs at sorne intermediate value of x(t - T), 

and thus the control system displays both positive and negative feedback characteris­

tics57 ,66,IOï,117, Analytic and computer simulation studies haye shown t.hat for var­

ious choices of "hllmped" g(x(t .. T)), (3.3.1) can exhibit a rich variety of periodic 

and aperiodic ("chaotic") dynamics24 ,25,66,107, Moreover, it has bcen shown that for 

85 



-'T,_ biologically appropr:ate choices of g(t - T) including estimation of tht' rt'lt'vant pa­

rameters from published data, there is qualitative agreemt'nt hd \Vt't'n 1 ht' ohst'rvt'd 

and predicted dynamics24 •25 • 

We ar{' nat aware of a previous report of an experimt'ntal study of the dynamirs 

seen in a physiologica! control system with de!ayec! Illixed ft'edbark 'l'hl' font roi 

of pupil area by the light reflex has bt'en extensively st.lldJed as an t'x!\mplt' of fi 

neurological control systeml.31.32.~6.111 and from an ex 1H'f1ll1t'ntal point. of vi!'w, this 

system offers t.ht' advantages thëtL it is rt'adily accessible and can Iw B!ol1itort'd and 

manipulated by noninvasive techniq\les. Berc we study a hybrid eXIH'rinH'lltal ~y~t(,lll 

for the control of the human pupil light reflex which incorporat.eh pJ('('('Wihl' <·(ln~tant 

delayed and mixcd feedback (Figures 3.3.1 and 3.3.2). For Equation (:l:l 1) \Vit.h 

this kind of feedback, it has been possible to analytically prov(' t.ht' existence of st.able 

equilibria, of stable and unstablc limit cycles, and of infinitel? many periodic solut.ions 

and uncountably many aperiodic, mixing solutions for defined r('gioT\s in parallleter 

space66 .111 • With the himplc form of tht' delayed rni)(ed f{'cdback we have ch()~t'Il, it. 

is possible ta comput( the solutions exactly and thu!i to compare tht' obht'rved and 

predicted dynami cs for di fferent parameter sets. 1\1 orcover w(' a re a hie to ct Hall t i f.v 

the intrinsic variability of certain paramdcrs and therehy address the iS~lle of the 

observability of complex dynamics in this system. 

3.3.2 Methods. 

Subjects were healthy males and females (n=10; ages 20-;15 years) wh" \V('n' 

free from both ocular disease and disorders known to affect autonomic funrtion. Ali 

measurements were performed in sllhjects who had bC(,11 oark adaptee! for al It'ast. 

15 minutes in a room lit only by a dirn r('d light. Dllring Pllpillary tr)('(\hUr('IJ)t'lIts, 

the subj(~cts were instructeo to refrain from blinking a~ 1Illlch as 1)O~~ihl(' and to fix 

their gaze on the target appearing on the vicwing SCfeen (a dirn grcen aht('ri~k); ~OITl(' 

suhjects pcrformed mental tasks (e.g. multiplicatIOn tahles) j,o minirniz(' spontarwo\ls 

fluctuatiuns in pupil area ("hippus")51. 

Measurements of pupil area were made with an infrared videopupilloflwt('r (I/a 

mamatsu Binocl1lar Iri~coroer C2515)106. The video (·ameras (Figure 3.:J 2) art' of 1.111" 

charge-couplcd devicc (CCD) type, and their output 18 analyzed hy a frmIH' grablH'r 

which counts the numlwr of pixels abovc a slict' level ("gray level") adj\l8ted hy the 

experimenter to discrirninate betwcen pupil and iris. The output of the frame grahlH'r 

is an analog voltage proportional ta the pupil area (sampli ng rate 60 111,). Light 
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Figure 3.3.1 Piecewise constant delayed feedback nonlinearity used in this study. 
The function is defined in (3.3.2). Tl and T2 are, respectively, the lower and higher 
thresholds which are set by the investigator. 

Ught 

Emitting Oiode 

IR Video 
Pupillometer 

Area 
Comparator 

1 

Figure 3.3.2 Schematic of the instrumentation used {or investigating the pupillight 
reflex with delayed mixed feedback. The area comparator described in "Methods" 
utilizes operational-amplifier circuitry. Although the Hamamatsu Iriscorder 0-2515 
is a binocular apparatus, we used it only in the :nonocular mode, as this wu more 
convenient in that only one camera had to be focussed and aligned. 
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sources were light emitting diodes (peak wavelength of 605 mn). Ali ('xperinwnts 

were done under "open-Ioop" conditions31 by focussing a 1.2mm b('arn of light 011 tht, 

center of the pllpil (initial diamet('r 5-7 mm). t 1nder tlH'se wnclitiolls tht' iril-> dot'~ 

not alter th(' bl:'am of light falling on th", rl:'tina. 

The variable :r in (:l.a.l) rail IH' iclentifit'd with th(' area of t IH' iris. ",hich il-> 

regulated by tll(' autonomir nl:'rVOIIS syst('m (parasympatllt'tir and sYlllpatlH'tic), and 

the fllnction f(:r(t T)) can be i(kntified with the fel'clback of thl' ifl~ on the "~ht 

flux to thl:' rdina. Since the Pllpillometer measllrt'~ pupil are(l and not inl-> an'a, 

(3.3.1) has to he rewritten tn take arconllt of the inn'rh(, relationship h('t\\,('ell II'I~ 

size x and pupil ~ize A. Defining Ao to he the maximal sizt' of Iris pll\l-> pllpil and 

(3f(A(t - T)) == g(Ao - A(t ~ T)), WI:' can writl:' A(t) :::::: :10 J'(t), and (a.a.l) 1H'(ol1lt'~ 

À + o:A = -(3f(A(t - T)) ~ J + 0:.4 0 , 

where (3 is the intt'nsity of the light pulse, and 0: is the reciprncal of t.he t.illle ronstant 

for pupillary movements and is different for constriction (0(') and dilation (nd)' 111 

going from (3.3.1) to (3.3.2) we have added a forcing term 1 1.0 reprl'sent th(' back­

ground illumination of the retina. It is important tn notl' that with th(' choict' of 

f(A(t - T)) shown in Figure 3.3.1, (3.3.2) ran he solved ('xadly, withollt r('sorting 

to nUIDl:'rical integration ml:'thods, the initial condition being sp('rifiec! hv a fllndion 

defined on the interval ( -T, 0). 

In our experiments the meastul:'d pupi! arca is uf,('d to control the timing artc! 

duration of light pulses falling on the retina by modifying a t('chnique "rtginally cie 

veloped by Stark!. The control system fnr the pupil area, givell hy (~l.:t2), wa~ 

constructed by opening the fl:'edback loor and imerllllg the Pll'('('wiM' (on~tallt [('('cl 

back function (Figl\fc 3.3.1 ) in the following way. The a Il alog 011 t pli t proportioll a.1 tu 

the pupil area, A, was LPmparcc! 1,0 the two adjllstahle thre~ltold~ '1'1 and 'Ii lIhillg 

operational-arnplifier circuitry. Thl:' output logic Ieve] glll'h HIGII when '/'1 <: il < '/1 
and LOW otherwise. The HIGII \cve\ c1ri"t'h the light on, and illulI1inateh the rdilla 

in open-loop. This circuitry is included in Figure 3.a.2 as the hox ]alH']ed "An'a 

Comparator". In our expt'riments, the pupil being stimnlated was also the onl' being 

measured. 

The solution of (3.3.2) requires the specification of St'ven pararnet.l'rs : the tiuw 

delay; the time constants for constriction and dilation, te and td; thf' asyrnptotir 

values the pupil are a tends to when the light is ON and OFF, Aon and Aolf; and t,lll' 
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lowt'r and upper thrt'sholds, Tl and T2 • The value of Ao does not affect the qualitative 

behavior of (3.3.2) and was takt'n to bt' 100mm2
• Of the remaining paramders, Tl 

and '12 art' fix('d by the investigator , and the others are estimated experimentally. 

The m'ulal time (h'lay for the rt'sponse of the pupil to light was determined as the 

time hctween the onsct of the light pulst' and the onset of the pupillary constriction, 

t1sing a computer program incorporatecl in the IriscordeT C25l5. This ncural time 

delay was assllmt'd tn 1)(' the samt' as the time betwt'cn the cessation of the light pulse 

and the onsd of dilatioll. Thp timt' requin'cl for the signal from the video ('amera to 

rea('h the light ernitting diode ('ontributed an additional 100 msec delay. The time 

delay T in (3.3.2) is equal to the nt'ural time delay plus the machine delay. Tht' time 

constants te and id wert' measured as the e- 1 times for a pupil receiving a single 0.5 

sec light pulse (Figure 3.3.3). l'he values Jf the asymptotes are given by 

and 

D'cAo - [ - (3 
Aon = -----

4 
adAo - l 

• off = 
ad 

(3.3.3) 

(3.3.4) 

The asymptotes were measured as follows. Let Aa be the are a at sorne time when the 

pupil is constrictingj then 

Aa = A + Aon, (3.3.5) 

where A is a pupil area to be determined. At time te = ft;l later, the pupil are a is 

Ab and we can write 

By ('omhining (3.3.5) and (3.3.6), 

Aa - Ab 
A = 0.632 ' 

(3.3.6) 

(3.3.7) 

and Aon can he calculated from (3.3.5). The value of Ao/f can be evaluated in a 

similar manner when the pupil is dilating. 

3.3.3 Results. 

Figl1Tt' 3.3.3 (insert) shows the change in pupil diameter as a fundion of time 

following a single 0.5 sec light pulse. After a delay of 292 ± 10 msec (mt'an ±SD for 

10 subjects), the pupil undergoes a rapid constriction followed by a slower dilation. 

The time courses for constriction and dilation are reasonahly weil fitted by a single 
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Figure 3.3.3 Plot of the logarithm of the change in pupil area At as a (unction oC 
time Collowing a single 0.5 second light pulse. The changes in pupil area have been 
normalized to the total change in pupil area that occun Cor constriction and dilation 
respectively. For pupillary constriction the initial value of At wu meuured at the 
onset oC conatriction t = ic (see insert), and the asymptote, Aon, wu the minimum 
ô,ca obtained with a 2 second light pulse. For pupillary dilation the initial value oC At 
wu measured at the onset of dilation t = id' In principle, Aoll is equal to the initial 
pupU area (as is true for the example given in the insertion), but typicallYt Collowing 
a 0.5 second light pulse the pupil the pupil did not dilate buk to ita initial value, 
suggesting that some adaptation had occurred. In these cases, A"" wu reestimated 
from the Ume course of the dilation. 
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exponential defay : te = 0.4 ± 0.1 seconds for 5 subjects. These observations suggest 

that for the hybrid system incorporating the choice of f(.4(t - T)) shown in Figure 

3.3.1, (3.3.2) will pro.ide a good description of the response of the pupil to light. 

CASB 1: Aon < 'I\ < AofJ < T2 • 

Figure 3.3.1 shows the behavior of the pupil are a when the lower threshold Tl is 

chosen to }lP bdween the asymptotes and also the upper threshold T2 is greater than 

the upper asymptote AoJ!. Undcr thesf> conditions, pupil area undergoes repetitive 

constrirtions and dilations, the light being turned on whenever the pupil area A is 

greater than Tl' The period of these oscillations is the time between succeJsivt.: pupil­

lary constrictions and is a function of the values of Aon' AoJ J, the lime constaht<;, and 

the total time Jelay T (the intrinsif neural lime plus that of the elecronic feedhack). 

The mean periot! ,)f pnpil cycling fan be varied from 1 10 8 seconds by changing Tl 

and T (data Ilot sh,:,vn). We have found that the observed mean period nver this range 

agre{'s with that predictec! by (3.3.2) to within 20% (typically better than 10%)89. 

CASB 2 . Aon < Tl < 1'2 < AOJJ' 

Figure 3.3.5 gives a represcntative hifurcation diagram for the calculated solution 

of (3.3.2) over the para11'etf'r space spanned hy (Tl, T2 ). Our computer simulations 

indicate that for the delay present in the system (380-4.10 msee), most regions of this 

subspaf<' forrespond to stable pcriodic behaviorj however, in Cl narrow hand (labeled C 

in Figure :J.:J ,1)) solutiorls of different periodicities are in dose proximity and aperiodie 

("chaotic") solutions DCfur. For simpliClty we have represpnted the dynamics by the 

number of light pulses per periodk cycle. Although the solutions within eaà region 

have the saine qualitative features, i.e. number of light pulses per period, the:' do not 

necessarily have the same period. The region labeled 0 corresponds to f.Olution~ where 

the pupil area dilates asymptotic:ally to AOJJ. The region labeled ] corresponds to 

results of the type shown in Figur~ 3.3.4, i.e. one light pulse per cycle. 

Next 10 reglOn 1 is a reginn labcled 2, corresponding to two light pulses per 

cycle. Figure :1.:1 6 compares the ohserved and predicted dynamics for a choice of Tl 

and 12 within thi~ rcgion. For sol lItions of this type a smaller pupillary constriction­

dilation fhange Offl1rS in the trongh of the largl'r one. As for the dynamics obsl'rved 

in region l, there is good ag("r~ement between theory and experimf'nt. It should he 

noted that the transition 1 -> 2 forresponds to a bifurcation in (3.3.2), but that it is 

not a 1H.'riod-doubling bifurcation, since little change in period oceurs. There is also 

anotlH'r r('gion in which there are two light pulses per cycle, labeled as 2. Solutions 
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Figure 3.3.4 Example of pupil cycling in a one-threshold experiment (eue 1). 
Simple periodic behavior (referred to 88 type 1 in Figure 3.3.5) is t.1itiated at the left 
by lowering Tl to the level indicated. Above the data, we have shown the sequence of 
light pulses seen by the retina. In the experiment (top graph) the light huns on (off) 
100 msec arter the pupil area crosses the threshold area Tl. This tim~ delay represents 
the machine delay. The model soluHon wu obtained by using the following parameters 
: ., = 0.38bli!'C, Qe = 2.50"ec-1 : Q~ = 1.25"ec-l , Aon = 14.2mm2, AGil = 28.7mm2, 

'!l = 23.8mm2, ~ = 70.0m"'n2 • The value ci Aon' AG/I represent the average of the 
values obtained for elicl! cycle (see Figure 3.3.8). Initial pupil area is 34mm2 • 
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Figure 3.3.5 Dynamic picture in a region of parameter space spanned by the thresh­
olda Tl and T2 (note that Tl < T2 ). The numbers labeling the different regions cor­
respond to the number of light pulses per period in the ~xact solutions of (3.3.2). 
Only the low-periodicity regiona are indicated. AlI of the more complicated solutions 
belong to the region marked C. Note that the solution in the narrow region marked 2 
is qualitatively different !rom the one marked 2. Parameter values are r = O.425"ec, 
Qc = 4.00"ec-1

, Qd = 1.429"ec-1
, Ao" = 15.0mm2

, Aoll = 22.0mm2
• 
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Figure 3.3.6 Example of a solution characteristic of region 2, in which the retina sees 
a double pulse oC light in each cycle. The model prediction ie given in the lower hale 
of the figure. Parameter values are 'r = 0.425 .. ec, Qc = 4.00.gec-1 , Qd = 1.429"ec-1 , 

Tl = 18.2mm\ T2 = 19.2mm2
, Aon = 13.8mm2

, Aoll = 21.3mm2
• The averaged 

values of the asymptotes were determined as in Figure 3.3.4. 
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in this region have t.he smaller pupillary constriction-dilation change occurring on the 

peak of the larger one. We have not obst'rved solutions of this type. 

Close to region 2 there are smaller regions containing more complex dynamics, 

Le. regions 4,5 and C. The period varies continuously in t'ach of these regions. The 

boundary bptween regions 2 and 5 corresponds to a period-doubling bifurcation, but 

the boundary betwt't'n regions 4 and 5 dot's not. Additional period doublings have 

been shown to OCCltr in region C. 

In Figure 3.3.7 we show the observed oscillations in pupil area in an experiment 

In which the lowcr threshold Tl was held constant and the upper threshold T2 was 

adjusted to a value which produces a region 5 solution of (3.3.2). With this choice 

of Tl and T2 more complex oscillations are obtained than were observed in region 2 

(compare Figures 3.3.6 and 33.7b). Figure 3.3.7c shows the solution of (3.3.2) for 

the parameters estimated from the data in Figure 3.3. 7b. Although there is not a 

one-to-one correspondence between the observed and predicted oscillations, there are 

nonetheless sonw similarities. The region 5 solution i'lhows a recurring pattern of a 

large pupil dilation-constriction, followed by a smaller one, then another larger one 

followed by two smaller ones. A similar pattern in the successive amplitudes is seen 

during the first 7 seconds of the observed OSCillation (Figure 3.3.7b). The period of 

this recu rr{'nce in the succ{'ssi v{' ampli t udt's of the obsf:'rved oscillations over the first 

seven seconds IS :::::: 3.6.gec, which is :::::: 2.2 times the period of the corresponding region 

1 oscillation shown in Figure 3.3.780. This observation offers support for the possibility 

that the observed oscillation is, at least transiently, in a region of parameter space 

associated with a period doubling, i.e. region 5, or more complex. 

We next explore tht' solutions of (3.3.2) in the ut'ighborhood of the region 5 

solution shawn in Figure 3.3. 7c io st'c if beHer agreement with thf:' observed oscillatjon 

("ould be' ohtained. Figure 3.3.7d shows a solution of (3.3.2) which is closer to the 

observed oscillation over the first 7 seconds. This solution was obtained by incrt'asing 

the parameter AoJ! by only 5%. The period of this solut.ion is :::::: 2.1 times that 

of the corresponding region 1 solution (i.e. the solution \Vith the same Tl). These 

observations t'mphasize the sensitivity of the solutions of (3.3.2) to smaU fluctuations 

in the control paramett'rs. 

Even more ("ornplicated oscillations are observed when the thresholds are chosen 

to give solutirms in region C (data not shown). 
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Figure 3.3. T Experimentally observed pupil oscillations near & period-doubling 
bifurcation. (a) shows the pupil oscillation obtained when Tl = 18.5mm2 and T2 = 
40mm2 , and (b) shows the oscillation obtained when T2 ielowered to 19.5mm2 and 
Tl ie held constant. (c) shows the solution of (3.3.2) for the parameters ",timated 
from (b): .,. = O.425,ec, ac: = 4.0,ec- l , a~ = 1.429,ec-1 , Ao" = 16.0mm2 , AOIl = 
22.0mm2 • (d) shows a solution of (3.3.2) using the same parametera as ulled for (c) 
except that Aoll wu increased to 23.05mm2• 
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3.3.4 "Noise" and observability. 

lt is possible that the lack of agreement between the solutions of (3.3.2) and 

the ohserved romplex oscillations (compare Figure 3.3.7b and c) may have arisen 

because of unconirollable fluctuations in certain of the control parameters describing 

the pupil's response to light (compare Figure 3.3.7e and d). Here we examine this 

possibility. 

We assllmed that the only parameters that ehanged in our experiments were the 

values of the asymptotes (see Methods and Discussion). Support for this assumption 

is given in Figure 3.3.8. In Figure 3.3.Sb we plot the values of the asymptotes as a 

f\lndion of the !th cycle for the data shown in Figure 3.3.4, and in Figure 3.3.8a we 

compare the measured period for each cycle with the period predicted from (3.3.2) 

using the corresponding values of the asymptotes. In thi!' manner, it can be seen that 

the variations in l'erioc! are largdy accounted for by the variations in the a.symptotes. 

Figure 3.39 shows a region of parameter space spanned by (Aon,.4of f) in which 

TI and T2 arc fixed at t}w values used to obtain the type 2 oscillations shown in Figure 

3.3.6 and the oscilla t ions in Figurt' 3.3.7. In this l'arameter space, we have ploited 

the measurec! valut's ! r t.lle asymptotes for each successive cyde for these oscillations 

- respectively, area a and area b It is clear that our ability to obsf'rve oscillations 

which ressemble the type 2 solutions of (3.3.2) is due to t.he fad that the variations 

in the asymptotes are not large enough t.o go outside region 2 in parameter space. 

On the other hand, it is not surprising that. we were not able 1.0 obtain agreement 

between our moùel and the observations in Figure 3.3.7b, since the fluctuations in the 

values of t he asymptotes overlap severa! regions in this parameter space. Presumably 

the experimelltally obst'f\'ed oscillations shawn in Figure 3.3.7b represe:1t. a mixture 

of solutions [rom adjac('nt regions in paramet.cr spl!ce and transients. 

3.3.5 Discussion. 

We have stndied the dynamics of a hybrid system for the control of the human 

Pllpillight reflex possessing mixed ddayed feedback, and compared the observed with 

the predict('d dynamics. The piecewise constant delayed mixec! feedback function 

shown in Figure 3.3.1 \Vas chosen because it has the advantage of being well charac­

terized analytically66,"4, aIl t h(' l'devant parameters can \H' directly estimated from 

the cxperim(,l1tal data, and the corresponding solution~ of the modcl Coll he computed 

exactly. It must be emphasized that the solutions of t.his model (i.e. the solutions of 

(3.3.2)) are solutions of an autonomUlis delay difIerential equation and not the 
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response to external periodic forcing. 

We observed a rieh variety of dynamics, including no osdllation (r('gion 0), silll~ 

pIe limit-cycle oscillations (regions 1 and 2), and more complex oscillat.ions (Figllf(' 

3.3.7b). TheH' \Vas quantitative agf('enH'nt betwc('tl the ohserYl'd (,~("illati(lllh and 

those pr('dicted hy (3.3.2) in region 1, ""Incl good q1lalitative agreement with the l1lorlel 

in region 2. The mode! also correctly predicted the pararnetcr ranges OVN whieh Illon' 

complicated dynamics arc ohserved experimentally. 

However, for the more complex OSCIllations there is not good agn'elllent Iwtw('en 

the observed pupillary dynamics and those predicted by (3.3.2). We suggest that t.Iw<;{' 

discrepancies arise because of Ilnmodeled fluctuations in certain of tht:' pararneters 

which descrihe the pupil's response ta light. As the oscillations b('('ollw OlOf(' and 

more complicatcd in the rnodel, the corresponding regions in paranwter span' b('("ollll' 

smaller and srnaJ1('r (s('c Figures 3.3.5 and 3.:L9). EventuaIly the region in paramder 

space oc('upied by t.he variabIli1.y of the5(, paramd('f!, Iw('onw5 large relative 1.0 the 

size of the region over which a particular type of oscillation ()("C\lfh. This is r('f1('( !.t·cI 

experimentally by a solution which combines the dynamics ohserved in lIeighlwring 

regions of parameter space as well as transients (solutions of (3.:1.2) orien show lon~ 

transients before settling on a periodic cycle). Although in other physiological 2R and 

physicaI llO ,112,113,116 systems il. has heen possible to observe mort' hifurcat.ions t.han 

we observe here, the inherent noise in the system eventually pn'vents the ohservat.ioll 

of the predided dynamics109 ,115. 

There are five parameters in (3.3.2) which can undergo changl's in our (·xpt'ri· 

ments: the time delay (T), the rate constants for constriction and dilation (0", n,d, 
and the asymptotes (ADn, ADJ J). We assume that the only paramt'ters which rhang('c1 

in our experiments were the values of the asymptotes. Tht' main rational(' for t.hih 

assumption is the observation that it permitted good agreement hetwt'('J1 cXIH'rilllf'nt. 

and theory for the region 1 and 2 solution!:> with aIl vallll'!' of the pararnders lH'in~ 

measured from the data (Figures :J.3.4 and :~.:1.6). In cont.raht., when w(' élhhlIlII('c! 

that the only parameters which changed \Vere the vall1l'~ of the rat.e conht.anb, 1.Il<'fl' 

was no agrt'ement hetween the model and any of t,he ob!'erved oscillat.iolls. Finally, 

computations showed that the observed variations in the intrinsic neural dday ( j :W 

msec) were not large cnough to significantly influence the predirted dynamies. AI~ 

though these observations do not elirninate the possihility that t.hese latter paranH'ter~ 

have also changed during our experiments, they do suggest that the most signifieant 
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changes in the parameters affecting the dynamical behavior of our system occur in 

the asymptotes. 

There are a number of factors which contribute to the changes in the values of 

the asymptott's. A major influence is tht' adaptation of j ht' retina to the average light 

level (arnbient light plus the rt'pt'titive light pulses durmg pupil cycling)1 ,46. As the 

pupil cycle tirne is dccreased [rom 7 \,() 1 seconds, the fraction of time that the light is 

on increases froHl 001 tn 0.'1 (data not shown). Thus under conditions of mort' rapid 

cycling the pupil will tend to he smaller (sinct' the av('rage light levt'! is great('r). In 

addition, thrre ar(' other retinal factors snch as photoreceptor bIt'aching, as weIl as 

the influenc(' of n('lIral syst('ms on the pupillight refl('x sl1ch as the ascending retic­

ular activating system (occurring in particular at th(' It've! of the Edingt'r- Westphal 

nucleus), th(' accommodatIon reflex, and the restmg dctivity of the optic nervé 7 • 

ft is possihle that by constfllcting a modd incofporating ail of the influences on 

the values of the as}' mptotes, it might he possible to predict the observed dynamics 

in more ddail. In particular, extension of our modd tn at least a s('cond-order delay 

differcmial equation would he required to elimmate the slope discontinuiti('s present in 

(3.3.2). 1I0we\'cr, besidcs rcndering the exact computation of orbits and estimation of 

relevant paramders morc difficult, \VC expert that as th(' predictcd dynamics b('come 

more complex, the r('gion in paraIIH't('r spact' over whi( h they are obs('rvl'd will become 

narrower until the femaining "ullmodcled" noise \)('comes larg('r than t.h('se regions, 

thus rend('ring the dynamlcs unobsef\'ahle. AIthough it is c1ear that su ch an approach 

would narrow the rt'gioI1 in this extended pararnd('r spart' ov(>r which unmodeled 

paramder variabiltty occnrs, il. rl'mains to be s('en whether this narrowing would be 

great enough to allow observation of the more cornpl('x predicted dynamics. 

"Noisy" variations are characteristically seen in physiological data. The fad 

that (3.3.1) can admit very romplicated dynarnics suggests th(' possibility that sorne 

of t.his noise rnay 1)(' of det('rministic origin 21 ,25,51,66 However, it is r1ear that in 

any rt'al physical or biological syst('m there will also he some degr('e of stochasticity, 

for t'xample in the form of thermal noise, and that dcterministic chaos, if present 

at ail, will be superposed on this background signal. In our system, complicated 

"noisy" solutions arc observed eveTl for parameter ('hoices which do not correspond ta 

chaotic solutions of (3.3.2). We fcd that these noisy behaviors reReet a combination 

of difft'rent types of solutions in adjacent regions of parameter space and transients 

resulting from th(' perturbations introduced by the noisy parameters. 
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3.4 REMARKS ON NOISE AND UNMODELLED PHENOMENA. 

This section begins with a rl:'interprl:'tation of th(' analysis of the PCl\lF-indllce<l 

oscillations in thl:' la!>t st'dion. Th(' parameter t'stimatio!l s('hemt' d('\'('loped in St'r! iOIl 

3.2 is shown 1,0 yield mode! solutions that are in IJetter clgr{'('I1lt'lIl witl! II\(' dal a tha" 

those for which thl:' paranwtt:'rs arc obtaillt'c\ from the single pulse I1\pthoc! (Sectio" 

3.3). Further, the reestimatrd asymptote fluctuations allow il bt'tter qllé\llI.Jtalive 

assessment of the observahility of the more complex mode! sollltion~. The li mitatiollh 

of experimental accuracy are then discussed. Resllits on tlJlllti~tabilit,y ill tht, modd 

equation follow, and the question of whethrr we have observed nOIse or cham, is 

addressed. Finally, t:'xtensions of the model which include t('mporal int,egration al. t.ht' 

retina, adaptation and damping of the iris muscles art:' t:'xarnint'd. 

3.4.1 PCMF revisitcd. 

In Section 3.3, the observed pupillary oscillations wt'r(' compared to th(' solutions 

of an ad hoc modl:'l, and t.he paraml:'ters werc obtainl:'d from a single I>lIls(' r('sl'0lls(' 

measured just before tht PCMF experiments. Subseqllt:'lltly, the mort· physiologi('ally 

sound model of Sections 2.2 (2.2.6 in l'articular) and 3.2 (Appcndix 1) \Vas d{'v{'lop('d, 

along with a paramt:'tcr estimation schem(' that r('quircs informatioll frolI\ many l'ulse 

responses (i.e. many cycles). The paramders obtaÎned using thi~ ~ch{,lIH' Wt're S\tOWII 

to provide a beUer fit uf the !>ingk pulse r('sponse (Figure :J.2.6). 

In view of this, th(' next logical stq> ib to reÎntt'rpret our PCMF dat.a ustrlg 

parameters estimatt:'d from tilt' mctbod in Section 3.2, to seC' if hetl('r agrel'rn('rtt 

between experiment and tht:'ory can be obtained. The estimation schelJle of Section 

3.2 will now be referrt:'d to:-ts the CIOI IIwthod (meaning thal boUI COI1f,I"ict.ioll and 

Dilation obl:'y a first order di ffe renl.t al equation), while t.he IIH'thod u~ed in St'cLion 

3.3 will be refern·d to as the SPR method (i.e. ba~ed 011 Ul(' Single Pulf,e H('f,IHHlse). 

Figure 3.4.1 shows pllpillary oscillatIOns induced uSlflg peN F' (Figure :lA.1 a). 

The data Îs obt.ained [rom a different subject than in Figure a.2 2. The par<lfnd('r~ art' 

estimated using tht:' Cl Dl mcthod, i.e. from the plots in Figure :L,I 1 h. Notice again 

the very good agreem0nt betw('en the waveforms, periods and light plllse durat.ions 

predicted by the modd and those set:'n t:'xI)('rirnl'ntally. In Figure :L4.1 g, tlH' <J<'lay Wal> 

increased using the analog clelay li ne (s('e St:'ction 3.1.1). This was dUII(' to dt'rnonstratl' 

that the model, combinecl with the C1Dl pararneter estimation scheuH', provides good 

agreement with the data even when one paramder (the dclay) is well out of the· normal 

physiologieal range. 
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Figure 3.4.1 Comparison oC the changes in pupil area that occur &8 a Cunction oC 
Ume with imposed negative Ceedback to those predicted by (3.4.1) (subject MC). The 
piecewise constant negative feedback is shown in (a). The pupillaten~y time wu 
285m.sec. In (c-f), the machine delay wu lOOm.sec (Cor a total delay r :: 385m.sec) 
ud in (g) the machine delay wu increased to 579m.tec (r = 864m.,ec). The area 
threshold, 8., wu set at : (c) 32mm2 , (d) 28.1mm2 , (e) 23.8mma, and 21.4mm2 in 
(C) and (g). The values of oc:, Ao,,, act and Aol! uaed to calculate the solutions oC 
(3.4.1) were calculated from plots oC Amin, Am .. va. 91 shown in (b) (details can be 
round in Section 3.2.3) and were Oc: = 3.Usee-I , a4 = O.74.tee- I , Aon == 15.7mm2 

and AOll = 34.5mm2• In (b) the values of Amin and Am .. represent values averaged 
over a minimum oC ten consecutive cycles. 
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Figure 3.4.2 shows pupillary oscillations over a range of threshold valll«.>s for tht' 

PC.MF case (Figure 3.4.2b). To find the parameter~ for this PCI\I F caSt', a PCNF 

experiment as in Figure 3.4.1 is first carried Ollt. Th(' paramett'rs art· ohtairlt'd frolll 

the usual plot in Figure 3.4.2b. Thesc paramders art" tlH'n mwd directly in the mode\ 

-} d.4 1 {Aon, 
Q - +1 = 

dt A oJJ , 

if 8) < Ar < 82 

if Ar < 81 or llT > 82 , 
(:L·I.\ ) 

where the asymptotes are expressed in terms of physiological parauwters in (2.2.2H) 

and (2.2.30). 

The model solutions obtained for these paramt'ter~ are shown in Figllr(' :1.·1.2 1.0 

the right of the ohs('rved oscillations. They arc in agr('crTl('nt with the data, ('V('II in 

Figure 3.4.2e. However, as in S('rtion 3.3.3, the fine structllre of the model solution!'> 

is not seen in the data. Rath('r, the observed oscillations app(>ar as lowpass filt.(·f(·c1 

versions of th(' model sollltions 

Figure 3A.3 compares the performance of the CID 1 and SPH paranw!.t·r esti­

mation schemes in mor\elling the PCI\IF data (Wl' have alr<.'ady b(,('11 t.hat the ('IDI 

method is supenor for fitting the single pulse respons('). \Vhik bot h "H'thO(I~ giv(' 

good agreement for the simpler hdHlviors. the CIDI g)v('~ beUer ql1alitat.ive agl'e('­

ment with the data in Figures 3..l.:k and d. This is particularly oln')ol1!'> III Figure 

3.4.3d, where tht' SPR method preolcts an equilihril1Hl sollltioll A( f) :loJ J wlllie 

the CID1 method predltts a complex bmit cycle v\'ith 1,1 pulse!'> pt'r perim!. 

Our mode! of PCNF-induced oscillations in Section 2.2 fi shows t.hat the H!'>ymp­

totes are functinns of ail tht' oth('r physiological paramders, m<llldlllg t.h!' rate con­

stants. Rence, if any of thes(' paramders fllldllatt's (e g 1>('(,<111S(' of hippll~), tlH' 

asymptotes will also f1uctuat/:'. Tht' mode! thll!'> provid('s jll ... tdicatlOrl for t.he ap­

proach in Section 3.3..1, in \\hich the asyrnptott'h \Vert' ilbSUrTH'd to flu< tllélte. Ah,o, 

the assumption that t!w rat(' constants undergo the most important changes dot's !lot 

yield satisfadory rt'suIts (SectIOn 3.3.5). 

Figure 3.4.4 illustrates tht' bifurcation diagrarns of (:l.1.I) in the suhspa('e of 

parameter space spann{'d by Aon and ..lof f (ail other pararnl'ters are kept constallt) 

The boxes represent asymptot.p. variability. The si7,(' of the h()xe~ was dt'lerrllined (rolll 

PCNF oscillations III tht' same' way ae; for Figure's :J:J 8 and :J.:U), i.e by ('~tiIllating 

the asymptot,t' values at eaeh cycle uSlllg Ill(' rate ('()n~tant~ a ... in Eqllrltion (:J.:L7). 

However, the rate constants were provided by the CIDI mdhod rather thall the SPH 

method. This asym~tote variability was assumcd to 1)(' indep('!)(!('nt of the thresho!rl 
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Figure 3.4.2 Comparison of the changes in pupil area that occur as a function oC 
Ume with imposed mixed {eedback to thoae predicted by (3.4.1) (subject lM). The 
piecewise constant mixed feedback is shawn in (a). The parameten Oc: = 3.SS.gec-1 , 

a" = 0.265.gec-1, Ao" = 15.5mm2 and AOII = 34.2mm2 were m~asured from the plots 
in (b) obtained in a preliminary experiment with piecewise constant negative Ceedback 
(as in Figure 3.4.2). The delay was r = 41lm.tec. The upper (92 ) and lower (Bd are&. 
thresholds are indicated by the arrows at the rignt aides of the time series and were 
respectively: (c) 21.5mm2,24.5mm2 j (d) 21mm2,22mm2 j (e) 18.9mm2,19.5mm2 j 

and (f) 17.95mm2, 18.5mm2• 
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Figure 3.4.3 Comparison of the changes that occur as a function of lime with 
imposed piecewise constant mixed feedback (Figure 3.4.1) to those predicted by (3.4.1) 
when the parameters are estimated from either the response of the pupil to a single 
light pulse (a'-d') (Section 3.3.2) or from cycling measurements (a"-d") (Section 3.2.3). 
The upper «(J2) and lower «(J,) area thresholdr; are indicated by the " " at the right 
hand sides of the figure and are respectively : a,a',a") 21.5 mm2 , 24.5 mm2 i b,b',b") 
21.0 mm2

, 22.0 mm2 ; c,c',c") 18.9 mm2 , 19.5 mm2 ; and d,d',d") 17.95 mm2
, 18.5 

mm2 • The cycling method is seen to give beUer agreement over the range of threshold 
values investigated. 
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Fi'lure 3.4.4 The (Ao,,, AOIl )-parameter space Cor Equation (3.4.1) Cor the values 
oC the area thresholds 91 ,92 in Figure (3.4.2) (a,b,c and d correspond, respectively, 
to Figure 3.4.2 c,d,e and C). In constructing these parameter spaces the values oC 
a e, ad and l' have been fixed and we have classified the periodic solutions of (3.4.1) 
by the number of light pulses per period as in Figures 3.3.5 and 3.3.9. The region CCC" 
contains Vt!ry compler. periodic solutions in close proximity, as well as unstable mixing 
solutions. The parameter fluctuations were measured in the same way as for Figures 
3.3.8 and 3.3.9, i.e. using the values of Qc: and ad and (3.3.7) on ear.h successive cycle 
oC the negative feedback oscillations. The rectangular boxes enclose these measured 
values of Ao" and AolI, and are usumed ta all be the same size (i.e. the size is 
independent of the thresholds). 
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settings, and thus aU the boxes are the same size. The center of {'ach box Îs t.he satl\e 

in aH panels of Figure 3.4.4, and corresponds ta the values of .1on and .lof! ohlained 

from the CID1 method (Figure 3.4.2b). 

Figure 3.4.4 shows that the' asymptote' fluctuations do nol, affect. t.JH' obsel'vahilif.v 

of the period land 2 solutions. In fad, our analysib l'ven predids t.hat t hl' pl'riml 

5 solutions (Figure 3.4.4c) should he observable, which is the ("é\b('. FITHllly, frolll 

Figure 3.4.4d, the asymptote fluctuations arc shown 1.0 ov('r1ap regiollb of parnllH'tl'r 

space corresponding to qualitatively different solutions. This implil'!o. agaill that tht' 

observed behavior might. be aperiodic. However, our mode! solution has fl'at1lfes in 

common with the data in Figure 3.4.2f. This might be a ('OT\Se'C)\IC'Il(,(' of f.he loll~ 

correlation timc of the noise (i.e. 1.0 its slow variation - s('(' Section .!).2.2), whi('h ('an 

maintain the asymptotes in one of the regions of parameter spacl' long enough for t.he 

corresponding behavior 1.0 be observed. 

Overall, the CIDI parameter estimation method performs hetl,N t.héln the SPH 

method. It is based on a model which not only characterizes t.he pupil light reflex 

by five parameters (the rate ronstanb, the asymptot.es and Hl(> delay), bul alsu ('st.i­

mates these from avC'rages ovC'r many singk pulse responses occurring Ilndt'r ryding 

conditions. Our analysis of PCMF oscillations Ilsing (:3..1.1) (tnd the CI [) 1 estimat.ion 

scheme is prohably optimal without resorting 1.0 higher order mode)s. ExpnÎIIll'lItally, 

the fine structure of the modcl solutions is geJlerally IlOt. S(,(;,I1, whid\ is an indÏ<'ation 

that our modcl overestimal.E's the banùwidth of the pupil light reflex. 

3.4.2 Limitations of experimental accuracy. 

The preeeding analysis indicatcs that much of the irregularity in the> oscillations 

observed in mixed feedback can probably be ascrihed to hippus and other nois(' source>s 

which influence the dderministic oscillations. !lowever, there are other fadors thal. 

might contribute 1.0 discrepancies bctween expcriment and thcnry, but to a Il'ssl'r 

extent. One factor eonccrns fluctuations in pupil arca that arise duc tn fluctuations in 

the accommodation reflex. ln faet, 1t is very difficlllt for a sllbjert, to fixate on a t.argel, 

for long periods of timE' (i.l'. for 20 seconds or more); fl1rth('r, thl'se an;ommodation 

fluctuations orten occur unconsciously. 

A second factor is that the measurement uf pupil area itself has certain (1('(;11-

raey limitations. Although thl' 0.01mm2 preciSIOn and 1 % linearity al'(' sllfficic'nt for 

our purpose, eye movements will affect infrared illumination and h('I1('l' the gray \('v<'l 

discrimination between iris and pupil. These movements, though minirniZ<'cl by fixing 
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the gaze on the target'l are unavoidahle and the resulting area value will he slightly 

inaccurate. Further l when the pupil is smaU, eye movements might pcrturb the il­

lumination in Maxwellian view. This results in a partially c10sed feedback loop and 

the "clarnping" lS no longer perfecto We believe this dfcct to be minimal sinee pupil 

diameter rarely go es below 4mm and the bearn waist. at the pupil is 1.2mm. Finally, 

there is a 16msec uncertainty in the signal processing delay, dut' to the sampling time 

of the pupillomcter. 

3.4.3 Multistability. 

AIl the propertics of tht' CIDI model disfUssed to this point and in Section 4.5 

have been obtained for initial functions which are either constant or have a single 

crossing of the threshold (JI on the interval (- 1,0). Multistability of equilibrium 

solutions has been shown for the latter type of initial [unction (Section 4.5). In this 

hection it is shown that the limit cycle solutiom of the ClD1 model are also not always 

globally attracting when the initial conditions are of the latter type. Thus, with 

different initial functions, solutions may evolve towards differcnt eventual asymptotic 

hehaviors. 

Solutions corresponding to two slightly difIerent initial functions having a single 

threshold cfOssing on the interval (-1,0) are plottf'd in Figure 3.1.5. The crossing 

times difIer by 0.001. Thc limit cycle solution in Figure 3..-\'5a has 6 pulses of light 

per periml, while that ln Figure 3.4.5b,c has 38 pulses per period. More precisely, the 

interval (--1,0) was found to be partitioned into two sets Il and 12 of suointervals. 

The initial functions having thcir crossing time in the set Il were attraded tùward 

the period 6 solution, whilf' the others with crossing time in 12 convcrged toward 

the period a8 solution. This type of multistability was found for many different 

pararnder sets corresponding tu complicated limit cycles. IIowever, for this class 

of initial functions, multistability was not found for simpler limit cycles (e.g. with 

1,2,4,5,7 pulses per periO(l). H is possible that multistability of the type shown here 

(i.e. hista hility) or of a more cnmpl1catl"d typl" is quite common in diITerential-delay 

equat.ions, especially wh en the initial functions are more complex. 

3.4.4 Noise or Chaos? 

The faet that c{'rtain parameters fluduate randomly leads to a system in which 

transients are Illore often ooserved than steady-state motioll on an attrador. This is 

particularly truc if the parameters fluctuate over regions of parameter space where 

qualitatively different motions are in dose proximity, as i8 usually t.he case for complex 
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Figure 3.4.5 Dlustration of multistability in Equation (3.4.1). The initial function 
ia between the two thresholds for t E (-1, -1 + w) and less tha.n the lower threshold 91 
for t E ( -1 + w, 0), and z( 0) = 91 , In ( a) the threshold cro8sing occura a.t w ~": 0.055 
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periodic and chaotic motion. In faet, for a given noise correlation time, the system 

location in parameter space spends more time in the large regions corresponding to 

simple periodic motion and hence these behaviors are easily identifiable in a time 

serIes. 

Our current level of understanding of our model DDE for PCMF (see Seetion 

4.5 for more details) does not allow 115 ta say with certainty whether or not we have 

observed chaos in the pupil light refl~x clamped with PCMF. The chaotic solutions 

for which there exist proofs of existence (for certain parameters: see Section 4.5) are 

not stable. Likewisc, the mixing solutions known to exist in the case where the system 

is asymptotically stable (Section 4.2.1 and 4.5) are unstable because the slope of the 

map used in the proof is everywhere greater than one. In computer experiments 

as in real physical systems, only stable behaviors can be observed. The presence 

of the unstablf' solutions can nevertheless complicate phase space motion, especially 

far from attractors (where transients occur). In fad, although aIl our simulations 

of (3.4.1) converged to limit cycle solutions, the transients were extremely long for 

certain parameter sets (sometimes up to 1000 delays). 

Further, certain more complex limit cycles (and possibly alllimit cycles) are not 

globally asymptntically stable, according to the results of Section 3.4.4. Hence, if 

different init.ial condit.ions converge to different solutions in the absence of noise, then 

it is possible for additive noise 1.0 perturb the system from one basin of attraction to 

another in phase space. Our pictllfe of a system being perturbed from one behavior 1,0 

another by paramdric fluduations (becallse the phase space topology is fluduating), 

and undergoing transients associated with the different solutions (see Sections 3.3.5 

and 3.4.1), will he furt.her complicated by additive noise. The transients may also 

be complicated by noise amplification at bifurcation points (at which no solution is 

stable) (see St'ction 5.2). However, in Section 5.3 it is shown that this effed should 

occur for smooth feedback and be negligible for piecewise constant [eedback. In faet, a 

detailt'd analysis of t.he slTnplt'r PCNF case in Section 5.3 reveals that noise causes the 

pt'riod ta fluctuatt' much mort' than the amplitude in the vicinity of the bifurcation 

point corrt'sponding tü oscillation onset. These period fluctuations are a1so expeded 

to occur nt'ar bifurcations betwt'en more complex types of behaviors as seen in the 

PCMF case. 
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3.4.5 Noise, damping, temporal integration and rctinal ndnptntioll. 

In this section, we investigate how to indude damping, temporal intq;ratio" and 

retinal adaptation into the model developed in Section 2.2. The Illoti vat ions for doing 

this are: 1) to obtain a model equation that. is at least second order in tilIll' tu (t('nmnt 

for the smooth waveforms sC'cn experimentally in PCNF and PCi\1Fj and 2) t.o SC'(' 

whether the mode! suggests ways of estimating new paramdl'rs charaderizing thesC' 

phenomena. The moclelling of noise is also clisctlssed. 

Modelling the l7'/.~ muscles using second arder differential equations. 

The onset. of constriction is always very rapid. Hence, despite the Pft'St'IH'(' 

of the dilator muscle and of visco-elastic forces, the constrictiun of Ult' sphinct('r 

predominates and is weIl approximated by a first order process On t,he oUter hand, 

the dilation phase has a slower onset, and in many instances appears t.o involvl' t.wo 

or more exponentials (see e.g. Figure 3.2.2b). This reflects the fad t.hat the clilatio!1 

phase is the result of many competing influences, such as dilator activation (aft('r 

a delay greater than 300msec), active inhibition of th(' Edinger-Westphal tlll('\<'t1S 

and passive relaxation of thE" sphincter muscle. After-discharge, which dl'scrihes t.he 

ongoing neural aetivity after the stimulus has stopped, may also occur in th(, affen'nt 

part of the parasympathetic pathway (e.g. at the retina). This wnuld é1lso dday tht' 

ons et of dilation33 . 

In Figure 3.2.6, the single pulse response was shown to be more accurat.ely fH 

by a model that accounts for the faet that the iris muscle cannot change its vr!ocity 

instantaneously. This model assumed that constriction invalved one expotH'ntial, 

while dilation involved two (i.e. it is a CID2 fit), and that the fundioTl anel 5101'(' 

were everywhere continuous. On the other hand, fits of the single pulse response using 

a C2D2 madel have been found to be very unreliable (see App<,ndix C). Thus, as Il 

first approach towards a higher order model for Pllpillary oscillations, wc will look al. 

CID2 type mndels. 

To prapE"rly model the observed pupillary oscillations, and especÏally the PCMF­

induced oscillations, it is important to fit a segment of tht' daf.a that is rcprl'sentativ(' I)f 

the oscillation. The isolated single pulse response is different from thl.' pulsl' r('spons{' 

that occurs during pupil cycling. In faet, the asymptotes ohtained for the isolaf.pd 

pulse tend to be higher, because the average illumination Î5 lowcr f.han during (>1I[>il 

cycling. Thus, this isolated response was not considered rcprcsentativ(~ of th<, ('ycling 

data. Instead, we have chosen 1.0 directly fit a single pulse response in a pupil cycling 
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record. 

Tirnc t = 0 is chosen unamhiguously as the time at which the area signal crosses 

the threshold downwards. The value of the upper asymptote is chosen to be the 

one obtained using the CIDl method (i.e. from Figure 3.4.2b). Figure 3.4.6a shows 

the ClD2 fit (SPFCID2 in Appendix C) to the first pulse response in Figure 3.4.2c. 

Comparison with similar fits for the other cycles in Figure 3.4.2c shows that the 

pararneter ad frorn 1.68 to 17.0, while a" varies between 6.36 and 10.18, (3d between 

0.36 and 0.93 and A betwcen 3.96 and 5.t:J. The p,dses have different amplitudes 

because the time spent above thrcshold varies, presuma Lly because of hippus. 

The parameter values from this C1D2 fit were then used to numerically integrate 

the differential equations (3.2.5) corresponding 1,0 this Cl D2 model in the PCNF 

configuration. The result is shown in Figure 3.4.6b. The period of ~ 2 seconds agrees 

with the mean period of pupil cyding in Figure 3.4.2c. As expected, the derivative 

is continuons in the transition from constriction to dilation, and discontinuons for 

the opposite transition. The overall shape of the waveform agrees with that observed 

experimentally. 

The obvious next step is 1,0 numerically integrate the same model but with 

rCMF rather than rCNF. We have found (data not shown) that for equal threshold 

values, thE:' model solutions were significantly differcnt from the data. For examplc, 

the period 2 type solution was not seen for the same threshold values, although it 

was seen for other threshold values. Further simulations also revealed that threshold 

values which produfE:'d con.plex limit cycles \Vere difftcult to 10cate. The introduction 

of a second dilatory component seems 1,0 have limited the bandwidth of the model. 

The inclusion of higher order dynamics in our model yields simple solutions that 

are in better agreement with the data, at the expcnsc of losing agrE:'crncnt for the 

more complex solutions. There is a lot of uncertainty and arhitrariness in the ways 

to extend our mode!. It is not very dear what insights into pupillary dynamics will 

be gained by l' Irsuing this type of fitting. 

Additwe and Multtpltcative noise. 

As mentioned in Section 3.4.1, the asymptotes corresponding to the equilibrium 

solutions of (3.4.1) are given by (2.2.29) and (2.2.30), and they are functions of aIl 

the other physiological parameters. This suggests that fluctuations in any of these 

parameters will also induce fluctuations in the asymptotes. Sorne parameters are more 

likely to fluctuate than others. For example, a, Ao and (3 are related to properties of 
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Figure 3.4.6 a) Fit of the first pulse response in the cycling data. shown in Figure 
3.4.2c. The constriction is fiUed by one ~xponential, and dilation by two exponen­
tials (program SPFCID2 in Appendix C). Because the point of constriction onset ie 
süghtly 'lIIlbiguoulS (although not as ambiguou8 as the point of dilation onset), t = 0 
wu chosen to corre'lpond to the downward cr05sing of the threshald 91 , The fitting 
Cundion assumes that constriction occurs from time t = 0 ~o time t = 0.411 (the de­
lay), after which dilation accurs. Because oC the continuity conatraint on the function 
and its derivative at time t ::: 0.411, the a"ea still decreases for a hundred milliseconds 
or more before the actual dilation is observed. Aofl wu set to the value (34.2) de­
termined by the CID1 method (Table 3.1, subject C). The fit yielda the parameters 
A = 4.39, a c = 7.90, ad = 1.68 and /1d = 0.58. The Xl is 6.92 ± 0.25. The fit waa 
repeated for many sets of initial gues ses and was found to be very robuat. In b), the 
solution of the CID2 mode! using the parameters from the fit in a) in the program 
CID2S0L (Appendix C and D) is shown. The first cycle corresponds to a). 

114 



r 

the iris muscles; their variations are minimal sinee pupillary fluctuations are synchro­

nized in both pupils (Section 2.1.3). 

The root-mean-square amplitude of hippus has been shown to depend on pupiI 

area47 . This suggests a multiplicative neise model (see aiso Section 5.2). It has also 

been shown that the amplitude of hippus closely paraUels the deterministic gain of 

the reflex 71
. Additive Gallssian noise, injected at the level of the Edinger-Westphal 

nucleus and filtered by Lhe nonlinearities of the neuromuscular system, has been 

shown to reproduce the multiplicative charaderisiic of hippus 74. In our model, this 

corresponds to multiplicative noise on " i.e. , = ;;y + O'e(t) , where "1 is the me an 

value, 0' is the noise intensity and eu) is a stochastic process. 

The real situation is probably more complicated than this. The stochastie adiv­

ity of neurons within the reflex arc itself, as opposed tü the adivity of otller neurons 

which modulates parameters snch as " may be viewed as additive noise when its 

amplitude is inclependent of the state of the system. High spontaneous activity of 

Edinger- West phal neurons has been reported, even in the absence of any synaptic 

input (see Section 2.1.2). Hence, it is reasonable that the neural output E of the 

midbrain (Section 2.2.3) will look like : 

E(t) = "1ln [tP(t - TT - rd] + !Tlç)(t)ln[tP(t - Tr - Td] + lT26(t) 
~ ~ 

(3.4.2) 

The output consists of a term proportion al to the logarithm of the light flux, a term 

proportional to the product of the logarithm of light flux and the multiplicative noise 

intensity 0'), and another term simply proporti' mal to the additive noise iniensity 0'2' 

By substituting this expression for E(t) into (2.2.4) or (2.2.8), the model for pupillary 

oscillations becomes a storhastir DDE with additive and multiplicative noise. 

Temporal mtegratzon and adaptatzon al the retina. 

In response to a light plllse, the activity in the optic nerve does not inerease 

in5tantaneously but rather builds up with a time constant on the order of 50-100 

mseé6
• This "temporal integration" at the retina will affect pupil are a dynamies, 50 

Equation (2.2.2) should read: 

(3.4.3) 

The steady statc output of the optie nerve will be proportional to the logarithm of 

the light flux and inversely proportional to the time constant of neural activity decay 

(A). 
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U sing the results of Section 2.2.3, the dynamics of the pupil arf> now df>scribt'd 

by two coupled ODE's, (3.4.3) and 

dg(A) dA ()' 
k dA dt + ko:g A = 'Y N(t - Tt - Tm) (3.4.'\ ) 

Equations (3.4.3) and (3.4.4) can be combined into a second order differential ('CJuatioTl 

for pupil are a : 

(3..t.5) 

If g(A) is linearized, i.e. 9(A) ~ g(A*) + ,B(A - At), the model for PCNF-induc('d 

oscillations becomes 

(3.4.6) 

It appears from (3.4.6) that temporal integration at the retina does not change t.he 

value of the asymptotes, sinee ~ disappears when a1l time ùerivatives are zero and 

'Y' / k == 'Y as in (2.2.29) and (2.2.30). Further, il. is now possihl<' 1.0 include second 

or der effects by simply including the proper retinal time constant. into our 1110d(')' Ail 

the other parameters can be estimated ab usual from UH' Cl Dl cycling mode!. 

This moùel was investigated numerically for a range of values of ~ bct w('('n 

0.01 and 1 seconds (data not shown). It was found that smooth oscillations ('ould he 

obtained, and for the PCNF case the period agreed with the experimentally measlIred 

value (Figure 3.4.2a) when ~ = (Ul5 seconds. However, the transition frol11 dilation 

to constriction was more abrupt than that from constrictioll to dilatioll, which is 

opposite to what is experimentally observed in PCNF. This hehavior is prohahly dut' 

to the response asymmetry, which modifies the damping and natural frequPTlcy. It 

is possible that the value of ~ should a1so depend on whetht'r the light ib on or off 

Further the value of ~ at time t should depend on the light intensity at, a tinH' t T r 

where T r is the retinal delay. 

In response to constant stimulation (e.g. provided by tht' average light Icvel), 

neural activity in the afferent pathway of sensory systems usually exhihits an ahrupt 

increase at stimulus onset, followed by a decrease in this activi ty33,46. This meaTls 

that the activity is proportional 1.0 the time dt'rivative of the stimulus intcTlsity. The 

116 



( 

rate of aetivity deerease is ealled the adaptation rate. Different adaptation proeesse::. 

operating on different time seales are known to exist in the visual system 118. Sorne 

pro cesses oeeur at the retina, others higher up in the afferent are. The model presented 

in Section 2.2 neglects the high and low frequency characteristics of the pupil light 

reflex associated with adaptation. 

A more complete' modd for Pllpillary oscillations would include temporal inte­

gration and adaptation in the afferent arc, additive and multiplicative noise injected 

at the midbrain, as weil as a second order differential equation for the muscle iner­

tia and damping (we still neglect the sympathetic pathway as weIl as the intensity 

dependence of the iris rate constants seen in Section 2.2.9): 

dg(A)d
2
A ôdg(A)dA 2 (A)=KE(t-T ) 

dA dt 2 + dA dt + w 9 m 
(3.4.7) 

nd~~t) +E(t)=pdN(~;Td + [~ + 0"1~(t)]N(t-Tt)+0"26(t) (3.4.8) 

A dN(t) N() 1 [I(t - Tr)A(t - Tr)] LJ.di+ t =T}n cp (3.4.9) 

Eq.(3.4.8) is a simple mode! for linear adaptation46
. Again the retina imperfectly 

integrates the activity in the optic nerve. The output of the midhrain is proportional 

to the steady state activity in the optic nerve N(t) (tonie response) and to the time 

derivative of tllIs adivity (phasic rcsponse). The bandwiuth of the pupillight reflex 

will depend sensitivt'"ly on this phasir response. 

3.4.6 Summary of Chapter 3. 

The results of this chaptcr show that simple oscillatory activity can be sustained 

by the diffefent fH'uronal populations comprising the pupil light reflex arc. This 

behaviollf ran he moddled by a simple DDE for the pupil light reflex. I1owever, the 

analysis of romplex dcterministic oscillations in this neural delayed system is severely 

limited by the high nOIse Il'Ycls. The question of whethef Of not we have ohserved chaos 

is still open. Our approach has been to charaderize the noise and improve our simple 

modd to obtain hdter agreement with data. Hence w(' have relied on the stringent 

test of quantitativt' agn'pment betwe('n experiment and theory (8('(' Sl'ction 1.2) to 

determine whdhn the origin of the observed aperiodic lH'haviour was dderministic 

or stochastic A~ Noyes 109 has pomted out, aperiodicity can be a consequence of many 

phenom('na other than chaos which deserve just as much consideratIOn. It is often 

hard to abandon such an elegant explanation for aperiodicity as chaos, especially when 

117 

ft 

1 
j 

j 
II 

~I 
1 



... 

it is generated by a simple deterministic equation with a small number of measurable 

parameters . 
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CHAPTER 4 

INVARIANT DENSITIES FOR DELAY-DIFFERENTIAL EQUATIONS 

"Nothing puzzles me more than time and spacej and yet 
nothing troubles me less, as 1 ne ver think about them." 

Charles Lamb 

4.1 INTRODUCTION. 

This chapter continues the study of delay-differential equations (DDE's) from 

the point of view of densities constructed from time series. This lays the groundwork 

for Chapter 5 in which we study the onset of oscillatory motion in the pupil light 

reflex. In thes(' last. two chapters (except for Section 4.5), the focus is no longer on 

complcx deterministic motion in a neural control system (obtained using PCMF) but 

rather on simplt' PNiodic motion. The emphasis is on understanding the determini!' .ic 

and stochastic b('haviour of neural delayed feedback systems (such as the pupi1tight 

reflex) at oscillation onst't. 

This shift in fonts cornes from the demonstration in Chapter 3 of the difficuIty in 

analyzing complex deterministic motion in the presence of noise. Vregular aperiodic 

behaviour is observed in the pupil light reflex even though a deterministic model 

predicts simple periodic limit cycle motion (Section 3.2). This observation is not 

especially surprising, since it has been made in aIl experimental systems where routes 

to chaos have been studied. Ji suggests that the effect of noist' deserves more attention 

than it has previously rect'ived, and that an analysis of the Jrigin and properties of 

noise might provide deept'r insight into the dynamics of neural systems. 

ThNe are two reasons why we ure interested in densities for delay-differential 

equations. The Rrst is related to the properties of dissipative dynamical systems, and 

the second is relat('d to noise. 

The dynamical systems we are interested in, i.e. nonIinear DDE's, are dissi­

pative, as oppospd to conservative. An important property of dissipative dynamical 

systems lS that Liouville's theorem does not hold, which means that phase space vol­

ume (or Lebesgl1e measurt' : see Section 4.2) is not prescrved as tht' system evol ves 

in time. [n t.he asymptotic long t.ime limit after transients have died out, phase space 

trajectories of htlch systems approach an invariant set (Section 4.2), called the attrac­

tor (assuming a stable attractor exists), which can be charaderized by a density. A 

trivial example of an attracting invariant set for a dissipative dynamicai system is the 
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stable equilibrium point of a damped harmonic oscillator. 

The existence of an attractor allows liS to study dynamical prnperti('s o[ th(' 

system using the attractor. For example, if the dynamical system has t.he property (If 

ergodicity, time averages can be written as phast' spacc averagcs IIsiIl!!; t he invariant 

density of the measure associated with tht' attractor (sct' Sedion '1.2). ThIS in"'llÎant. 

density is of great importance. The valut' of t.ht' density at given point on the at.trartor 

is a measure of the fraction of the time the system hpt'nds in éI I1ei!!;hbor!tood of 

this point. For example, in the microcanonical ens('rnble where tht' cner!!;)' <Incl tlw 

number of particles is constant, t.h(' invariant densit.y is the uniform deJlsity (Hw 

density of t.he Lebesgue measure) on the invariant St't (energy surface) Henr{', for 

the microcanonical ensemble, the uniform density implies that the syst{'m explores 

the invariant set uniformly.' 

The other reason for studying invariant densities is noise. The pres{'nce of noise 

makes the statistical properties of individual trajectorit's charactcrized by prohabilit.,V 

distributions important, and further motivates the study of the dynami('s of DDE's 

from the evolution of densities. In fad, we will sec in Chapter 5 that densÎtÎps an' 

essential when studying bifurcations in the presence of noise since it is t.he cxtrema 

of these densities (often different from those in the deterministic case) that und('rgo 

bifurca ti on s. 

In this chapter, the concepts of attractor, density, ('rgodicity and chaos will he 

formally presented. They will be applied to the study of dderministir and hl,orhast,ie 

DDE's. Section 4.2 introduces the matht'rnatical tools for the stndy of invariant dl'n­

sities of discrete and continuous time dynamical sYbtems \Vith and witho\lt noise. In 

Section 4.3, we calculate densities for the Markey-Glass {'fllIat.ion (lncl t.Jwir lwhaviollf 

at bifurcation points. Section 4.4 looks at an approximation of DDE\ via (,ollpled 

ODE's when there is a didribution of delays rather than ri hingle fixer! c!t'Jay. In Se(­

tion 4.5, we review the known properties (ohtailwcI \Ihing the tools ()f SedÎ()l1 11.2) of 

the brst order DDE with PCMF encollntered in Chapter a Section ,1.6 exami/les UH' 

singulttr perturbation limit in which tht' DDg heroTf]cs Cl disn('\,e time map S(,ct,io/l 

4.7 dea.ls with this same limit but in rontinuons tim{'. The result.ing (oltlinll'lI\s lime 

difference equation provides insight into the dynamics of DDE's. Finally, Section -1.8 

presents a new numcrical mtcgration method for DDE's based on ohservations macle 

• In this example from statistIcal mechanics, the phase space motion is however not attrading: it iR 
always confined to the energy o;urfact' 
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in Sections 4.6 and 4.7. 

4.2 INVARIANT DENSITIES FOR DIS CRETE AND CONTINUOUS 

TIME SYSTEMS. 

4.2.1 Deterministic dynamical systems. 

The evolution of a one-dimensionai discrete time dynamical system is descrihed 

by a mapping: 

(4.2.1) 

The domain and range of the mapping have to he specified along with the functional 

form of S(x). A well-studied example is the logistic (aiso called quadratic) map 

S : [0,11 -) [0,11 defined by: 

( 4.2.2) 

Starting with an initial condition Xo, a trajectory is obtained by iterating the map. In 

the asymptotic long time li.nit the trajedory will trace out the attractor corresponding 

to the particular value of the parameter r. By constructing a histogram of the iterates, 

after allowirrg enough time for the transients to die out, an invariant density on this 

attractor ran hr ntlrnerically conslructed. 

An aIternate way of obtaining an invariant density is by starting with an initial 

density 10 (;r) supported on sorne subset of the domain of the map. One can then 

iterate this density under the action of S to obtain fl(x),!2(x),,,. in the same way 

that single points are iterated. This corresponds to simultaneously iterating an in­

fini te number of points and hence to following an infinite number of trajectories aL 

once. The initial density specifies the weight associated with each initial condition. 

If thl' dynamicnl system (4.2.1) is ergodic (see 4.2.13), this density point of view is 

complete1y eqllivalent to the time series point of view. 

Tht' mapping S( J') is said to be nonsingular if the measure 1 11 on the phase space 

X of the variable x &atisfies I1(S-l(A)) = 0 for aH subsds A of phase space su ch that 

p(.4) =--= O. If S(:r) is non~ingular, an expression for the operator P that transforms a 

density lit ( x) into a new den'iity f n + 1 (x) = P fn( x) aCter one iteration of the map can 

• A real-valued function p. defincd on a phase space X is a measure if: a) p.(0) = 0 where 0 is the 
null setj b) 1-'(11) 2: 0 for ail subscts A of Xj and c) P.(Uk Ak) = Lk p.(Ad if {Ad is a finite or 
infinite sequence of pairwise d\sJomt subsets of X, that is, A, nA] = 0 for 1 t ]. 
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be obtained (see Lasota and Mackey13). The fraction of the density P f contained in 

sorne set. A is given by 

f-l P f(s) ds. ( 4.2.3) 

The points in A contributing to P f had their origin in the rounterimage of the set. 1\ 

under the action of the map S, given by S-l(A) = {y : S(y) E A}. Since the fradion 

of the density P f in A must equal the fraction of the original density in S -1 (,4), we 

have' 

f P f(s)ds = f f(s)ds. 
1.4 J 5- 1 (.-1.) 

(4.2.4) 

The operator P, called the Frobenius-Perron operator, is unique by the Radon-

Nikodym theorem13
• 

An explicit form for this operator, when A = [a, :z:], is 

fn+! (:c) == P f" (:c) = dd f f" (s) ds • 
X JS-I([f/,T]) 

( 4.2.5) 

It can aiso be written as : 

fn+l(:C) == Pf,,(x) = lb 6(S(y) - :z:)f,,(y)dy ( 4.2.6) 

where é is the Dirac delta function and the integration extends over the domain of 

the map [a, bl. 
The usuai Lebesgue rneasure of a set of points A is denoted by p,dA), and the 

density of the Lebesgue measure is the uniform density, i.e. f(x) = 1 for ail x. Hence 

we write p,ddx) = dx. To a general density f(x) is associated an f-measure which, 

for an arbitrary subset A of the total phase space X, is def1ned by 

(4.2.7) 

The f-measure is said to be absolutely continuous with respect to the measure IL, 

which is the Lebesgue measure dx in the case of (4.2.7). A set A is said to be 

invariant under S if S-l(A) = A. AIso, S(x) is measure preserving if 

( 4.2.8) 

• Tlll' set. of (lPusit.if's is defiu<:d hy D = {f E LI: f 2:: Il,11 f Il = 1}. Tlu! dl'sin'd "pl'rILl.flr r iH IL 

Markov 01 l<'ra t. or , L('. 1\ lilH'l\r op<:mtor Hl\ti\lfyillg a) P f 2:: fi and h) Il P f 11=11 f Il HO I.hal. P III1lJlH 
dllllsities illto cknsitil's. 
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.. for aIl subsets A. We will say aIternately that the measure /-L is invariant under S if 

S is measure preserving. It can be shown that a measure J.L f is invariant under S if 

and only if f is a fixed point of the Frobenius-Perron operator P, i.e. a density that 

satisfies 

P/,(X) = /,,(x). (4.2.9) 

We then calI f~ the invariant density for the map S. 

For the logistic map (4.2.2) with r = 4, the Frobenius-Perron operator takes the 

form 

Pf(x) = ~{/(! - !~) + 10 + tvr=x-)}· 
4 1- x 

( 4.2.10) 

It is easily verified that the nonuniform density 

(4.2.11) 

satisfies P f~ = f .... Hence, the measure 

(A) - ! 1 d~ 
PI. - 71' A v'x(l-:V) 

( 4.2.12) 

is invariant under S(x) = 4x(1 - x). 

In general, given the Frobenius-Perron operator P, it is difficuIt to solve (4.2.9) 

for J" Although numerically it takes the same time to compute the invariant density 

to a given resolution by iterating a single point than by iterating an initial density, 

there i5 one striking feature of the latter methad: densities converge very rapidly 

(within a few iterations) to the invariant density. Further, complicated motian alang 

single trajedories in phase space may correspond to simple behaviaur far the densities. 

For example, when the trajectory is chaatic (i.e. when r = 4) in the logistic map 

(4.2.2), the density converges rapidly and uniformly to the smooth density given by 

(4.2.11). 

The existt'nce of an absolutely continuous invariant measure does not necessarily 

imply any particularly interesting or erratie hehavior. The behavior is more inter­

esting if tht' Frobenius-Perron operator has a unique fixed point J" so there is a 

unique absolutely continuous invariant measure. In this case the map S(x) is ergodic, 

ml"aning that every set invariant under S is trivial, i.e. 

S-l(A) = A implies J.L(A) = 0 or p(X -- A) = 0 ( 4.2.13) 
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for aIl A in the total phase space X. Ergodic systems may not produce very irregular 

solutions. ln fact, two arbitrarily close initial conditions may yidd arbitrarily dost· 

trajedories for aH time. 

Nearby trajedariE's will diverge if the map has the added propt'rt.y of mixing, 

which is a mild kind of chaotic behavior. If A and B are subsl'ts of .\ with nll'aSllt'l' 

Il'(X) = 1, then for aU A, B a mixing transformation satisfies : 

lim t-t(A n s-n(B}) = JL(A}/L(B}. 
n--+CXl 

(4.2.14) 

A st ronger type of chaotic motion will occur if, besides ergodicity ancl mixing, the 

system has the added property of exactness.~ A measure-preserving transformation 

S(:c) is said to be exact if 

(4.2.15) 

for every subset A such that t-t(A) > O. This means that a set of initial condit.ions of 

non zero measure will have spread and completely filled the phase space. 

In general, it is very difficult ta prove t.hat a map is mixing or C'xact using tht'se 

definitions. Equivalent criteria have been derived 13 for dassifying various d('gr('('s of 

irregular behavior. They conrern the convergence propl'rties of iterat.C's pn 1 of t.h(, 

Frobenius-Perron operator corresponding io th('se t.ransformations, rather than tht, 

behavior of sequences of sets. Simply stated, S(x) is ergodic, mixing or exact. if and 

only if the sequence {pn f} is, respectively, Cesaro, weakly or strongly convergent tn l, 

i.e. the uniform density, for aU initial (normalized) densities. The pr('risC' d('finit.ions 

of these terms and the proofs of these results can be found in Lasota and Markl'Y 13 

(p.63 et seq.). 

It can be shownl3 that a one-dimensional map 8(:c) is exact if its Frobenius­

Perron operator has the property of asymptotic stability, i.l'. there is a unique densit.y 

J1' E LI such that P f. = 11' and 

Hm IIpn 1 - J" Il = 0 for every density 1 E D. 
n--+oo 

(iJ.2.\6) 

The map 8(:c) : l ---+ I, where l = [ao,ar l is a compact interval of the real Iin(', is 

asymptotically stable if : 

i) there is a partition ao < al < a2 < ... < ar of 1 such that for each intcger 1,2, ... r 

the restriction of S to the interval [a'-l, a,) is twice continuously di fferentiahlt'; 

+ In the hierarchy ergodlclty --+ mlœmg --> eœactne66, each property implics thosc to its Ipft, but 
the reciprocal is not necessarily true (see Ref. 13, p.73). 
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ii) S([a,-l,ni)) = [ao,a,.), i.e. Sis surjective (or onto) on each EUbintervalj 

iii) there is a constant ,\ > 1 such that 1 rl~~;r;) 1 ~ ,\ whenever x =F ai for i = 1,2, ... , rj 

iv) there is a constant c < 00 such that 1 rl
2

d:\:l') 1 < c [d~~;r; 1] 2 whenever x =1= ai for 

i := 1,2, ... ,r. 
Condition (iii) on the slope of S is important because it implies that aIl solutions 

will be unstable.· Hence if the Frobenius-Perron operator is asymptotically stable, 

the behavior of the solutions is much more complicated than if it were simply ergodie. 

The Frobenius-Perron operator associated with the map S is "asymptotically 

periodic" rather than "asymptotically stable" if condition (ii) above is not satisfied. 

ln this rase, an invariant measure always exists. However, the iterates of an arbitrary 

initial density fo cycle periodically (after a transitory period) between a finite number 

of densities. Further, each density comprises a certain number of functions supported 

on disjoint intervals, and these functions permute cyclically among themselves. The 

case where the period is 1 (i.e. no change from one iterate to the other) corresponds 

to asyrnptotic stability. A detailed account of the properties of asymptotic periodicity 

is given in Lasnta and Mackey13 11D. 

CONTINUOUS TI1IJE D}'NAMICAL SrSTEMS 

The evolution of an d-dimensional continuous time dynamieal system x( t) 15 

governed by the d-dimensional vector field generated by 

di :::: B(x). 
dt 

(4.2.17) 

Each component B, of B is a scalar funetion of the coordinates Xi. The flow of 

densities is governed by a continuous semigroup of Frobenius-Perron operators 

!(x,t):::: Pd(x,O) == PtI(x) = r r(x,Yjt)I(y)dy 
JRd 

( 4.2.18) 

where I(x) is the initial density and the kernel r(x, Yi t) is called the fundamental 

solution or the Green 's function of the system. The density !(x, t) = Pt/(x,O) satisfies 

the partial differential equation (PDE) 

Bf(x, t) 
Bt 

ri Ô 

2: ÔXi [Bd(x, t)] 
1=1 

( 4.2.19) 

• TIll' t.rnje·( t.ory of a diHCl'et.f' t.il1lf! ùyl1allli('al syst"'1l1 is stahle (i.e. at.t.rading) if t.he prodlld of tJw 
HI"p"H or S(;r) ,·valuut. .. d nt ail th .. points OII the trnjectory is less thall 1 in ahsolllte valueR

• 
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which is known as the generalized Liouville equation. The invariant density J, is 

found by solving the PDE obtained by setting 8f~~, t) = 0 in (4.2.19). As in the 

discrete time case, the Frobenius-Perron operator can be either ergodic, mixing or 

exact 13 • 

4.2.2 Stochasticnlly perturbed dynamical systems. 

Noise can directly perturb the trajectories of a discrete time dynamicai system. 

In this case we say that the noise is "additive": 

(4.2.20) 

Noise can also perturb the dynamics by modifying one of the parameters of 8(x), in 

which case one has "multiplicative" or "parametric" noise: 

(4.2.21 ) 

From the point of view of statistical mechanics, it is the average influence of the noise 

on the deterministic system that is of interest. Hence in defining any funct.ion r one 

should only consider an ensemble average, i.e. an average over the diffcrent sequenc('s 

of random numbers {el}, i E N generated by the same probabili ty densi ty g( e): 

( 4.2.22) 

If we consider only one trajectory evolving from the initial condition Xo, then the 

probability density of x at the nth iterate, is /n(x) = 6(x - X n ), where Xn -= sn(xo). 

This result holds for a particular realization of the stochastic process. Sinct' X n is 

a function of aIl the perturbations et, i = 1,2, ... , n, we can calculate the density of 

X n as an average of 6( x - xn ) over a11 possible realizations of the et 's. Generalizing 

(4.2.22), we write 

(4.2.23) 

This average probability for X n is a path integral for noise (see e.g. FeigenhauTn and 

Hasslacher120 ). It can be shown13 ,121 that the iteration of dcnsities undcr the action 

of the map (4.2.20) satisfies 

in+t{x) = ln in{y)g(X - S(y)) dy. (4.2.24 ) 
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for the additive noise case. Note that the argument of gis simply e from (4.2.20). For 

multiplicative noise, the iteration of df'nsities would also satisfy (-1.2.21) hut with the 

proper expression for ç frorn (4.2.21). Comparison with (4.2.6) shows that the delta 

function has been replaced by the density of the noise, and the domain of integration is 

no longer that of the map but rather that of the noise. Further, the Frobenius-Perron 

operator is replaced by the more general Markov operator13 (4.2.24). 

In the stochastically perturbed continuous time case, the dynamics obey the 

generalized Langevin equation 13.21 

~~ = B(:i) + Z(:i)e{t) (4.2.25) 

where e is a vector of stochastic variables and Z is a matrix whose components Z,j 

are scalar functions of the XI 's. The flow of densities is governed by the Fokker-Planck 

equation 

af(x,t) ri a 1 ri a2 

at = - L: ax [Bd(x, t)] + 2 L a .a . [aijf(:c, t)] 
. 1 1 •• 1 X, X] ,= 1,]= 

(4.2.26) 

where 
d 

aij(X) = L Zu:{x )Zjdx). (4.2.27) 
k=1 

Comparison with (4.2.19) shows that the diffusion term, i.e. the second term on 

the right hand si de of (4.2.26), is due to the stochastic perturbation. 

4.3 SOLUTIONS AND BIFURCATIONS OF DDE's FROM THE DEN­

Srry POINT OF VIEW. 

In this section, our investigation of the properties of DDE's begins with the study 

of a solvable first order lim-ar ODE. It is then shown how a density can in general be 

ca\culated from the explicit time-dependent solution of a differential equation in the 

asymptotic time limit. The problem of obtaining the explicit time-dependent solution 

of a non linear D D E (especially in the presence of noise), as weIl as the problem of 

interpreting the density obtained from the solution of an infinite dimensional ODE 

are discussed. This leads us to our numerical approach to the study of densities for 

DDE's. 

4.3.1 Linear delay-differential equations. 

DDE's are functional differential equations. They are infinite dimensional be­

cause their solution requires the specification of an initial function on [-T, O}, which 
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corresponds to an infinite number of initial conditions. The few techniqucs nvnilablt' 

for their study are mathematically involved (see Halcl22 ; Mllhammed 123), sinet' t,ht'y 

describe flows in a functional space (such as a Banach spa ce) rather than in tilt' usual 

phase space for ODE's. 

The situation is much simpler for linear DDE's, which may arist' from the lin­

earization of nonlinear DDE's such as our model for pupillary oscillations in Section 

2.2.3 : 

d:v 
dt = -a:v(t) + ,8:v(t - 'T). (4.3.1) 

A closed form solution can he found for this first order linear ODE. Hs Laplact' 

transform can he written : 

X(s) = {,B e- 5T lOT e-'!Uœ(u) du + œ(o)} . [s + a - ,Be- 8T l- 1 
• ( 4.3.2) 

(8 + a - (3e- n ) is a meromorphic function sinee it has an infinite number of conjtlgak 

pairs of isolated poles. Using the Mittag-Leffler theorem (see e.g. Saaty124), we can 

form the expansion 

( 4.3.3) 

where CIc is the residue of the left hand side at Sic and is obtained using l'Hopital's 

rule. The inverse Laplace transform yields 

(4.3.4) 

where 

"(Ic == CIc:v(O) + (3 Cie e-6kr [OT x(u)e-"k U du. 

The solution involves an infini te number ofintegrals over the initial fundion. FurtlH'r, 

different initial functions will yield the same solution if aIl the inte'grals rorresponding 

to the different Sk 's have the same value. The zero solution, neutrally stable' oscilla­

tions (when there are pure imaginary eigenvalues) and unhounded solutions arc the 

only possible asymptotic solutions for this and every other linear differ('ntial dt'lay 

equation. 

Given the difficulties involved in obtaining analytical solutions for nonlin('ar 

DDE's, linear stahility analysis and eigenfunction expansions of the solution art' 

among the few tools available for their study. 
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4.3.2 Calculating a density from the solution. 

Given t.he explicit solution x(t) of a differential eqllat.ion, it is strnightforward 

to determine the density f( x) corresponding to the degree of freedom x. Let A be 

a set of points in the domain of the time variable i, and assume that the uniform 

(Lebesgue) measure is the invariant mensure for t.his variable. The case where a 

solution x( t) is obtained by numerical Integration of a differential equation with a 

fixed tirne step, or where a solution is uniformly sampled in time, are illustrations of 

a uniforrn measure on time. The rncasurc of the set Ais then simply IldA). Likcwise, 

assume the measure Il f is associated with the variable x, where f( x) is a density to 

be deterrnined. The explicit time-dependent solution x(t) can be seen as a mapping 

from the time domain to the x-domain. The set A is then transformed into the set 

B = x(A). It follows that 

l J( x) dx = l dt. 

Since the set A is arbitrary, the density f( x) is given by 

1 
f(x) = dx/dt' 

( 4.3.5) 

( 4.3.6) 

In the case where the solution is periodic, the density can be constructed from a 

single period of the solution. Fr0rn (4.3.6) it is obvions that f( x) is singular whenever 

:V = 0 . Since (4.3.6) involves the vector field f( i) (= ~:' dS in (4.2.17)), one might 

think that the density can be obtained directly from the differential equation without 

having to integrate it. I1owever, the vector field gives the value of the derivative at 

any point in the field, including those where transients occur, while we are interested 

only by the support of the density, i.e. the attractor. 

As an exarnple of how a density is obtained from the solution, let 

x(t) = A sin(wt) = aJk - ko sin(wt) , ( 4.3.7) 

which approximates the solution of a DDE close to the Hopf bifurcation point k = ko. 

The norrnalized density on the x-axis is 

1 
/A:(x) = x' 

'Ir A cos[arcsin( A)] 
( 4.3.8) 

which is singular at x = ±A. Also, 

jVk-kn 

lim fk(X)dx = 1 
k-+kn -Vk-ko 

( 4.3.9) 
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and thus 

(·1.3.10) 

which is the density (or rather distribution since it is no longer LI) of the equilihrÎulll 

solution (for k < ko). 

4.3.3 Numerical computation of invariant densities. 

While the theory of i,lVariant densities for ODE'!' and maps is wt'\1 develoIwd, 

to our knowledge it is nonexistent for DDE's. ln faet il is not rlt'ar what kind of 

measure to use in the infinite-dimensional phase sparc in which tilt' solutions of DDI~'s 

evolve. The bold approach which assumt's that a generalized Liouville eC/lJation ca.n 

be dcfined for a DDE leads to the extremely difficult prohlem of solving il Pin: with 

retarded argument. It is possible that the application to DDE's of measufe-tlwort'tÎcal 

techniques devcloped for the study of PDE's13 may prove more fruit.fnl. 

In this and the next chapter, we examint' the densities constrncted from the 

trajectory of the sta te' variable obtained by numerical integration of [) [) E's. IL Îs nnt 

clear whether these densities rt'present "invariant densities" for DDg's. Howcvt'r, it 

is clear that for constant inîtial f\lndions they numericaHy conv<,rge to an invilriant 

form with or without noise, and that they have fcatures in common with invariant 

densities for maps and ODE's. We make the tacit assumption t.hat invariant densitit,S 

for the DDE's of interest exist and are globally stable (altrarting) for the df1SS of 

constant initial functions. Wi th this proviso, henceforth these numcrically gt'nt'ratt'c1 

densities will be referred to as 'Iinval'iant densities". 

The densities shown in Figure (4.3.1) were obtained from the numl'rical intt'gra­

tion of the Mackey-Glass equation24 : 

(4.3.11) 

after allowing sufficient time for the transients to decay. The interval (0.5,1.5) (cell­

tered about the fixed point x' :=: 1) was divided into 500 hins. A fourth ord('r 

Runge-Kutta algorithm (see Appendix D) was used, and the initia.I function was il 

constant. 

The densities appear to be continuous with very narrow pcaks corresponding 1,0 

the zero-slope points of the solution. The amplitude of the very narrow peaks in tht' 

density is irrelevant, as it is determined by the precise bounclaries of the bins, and 

would be infini te if the bins were infinitely narrow (see Section 4.3.2). The val\1(' of 
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Figure 4.3.1 Numerically computed densities corresponding ta solutions of the 
Mackey-Glass equation (4.3.11). The densities are construded by partitioning the 
z-interval (0,1.5) into 500 bina. The parameter values are ï = 2, ..\ ::; 2, 9 = 1 
and Q = 1. The integration time step for the Courth order Runge-Kutta method 
with linear interpolation for the delay is T / 40. (4.3.11) is integrated starting from 
a constant initial {unction for 1000 delays, which are discarded as transients. The 
density is obtained from the solution for the next 2000 delays. The ordinate scale 
goes from 0 to BINMAX, which is Li times the value of the highest peak in the 
histogram. A period doubling bifurcation occurs as n goes {rom 7.3 to 1.4 (compare 
a,b). Also, a penodie window emerges out of chaos as n goes from 9.6 to 9.7 (d,e). 
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- the bifurcation parameter n in (4.3.11) increases from Figure 4.3.13 tu 4.:U f. FigUfl' 

4.3.1a corresponds to a m'arly sinusoidal solution for a parameter value lH'twe(,1l t.hat 

at which a Hopf bifurcation (n = 5.0 cl) and the tirst period-dollbling bifurcatioll 

(n = 7.36) occur. As the Hopf bifurcation is approarlwd, thl' small p('ak bdWt't'll 

the two larger peaks disappears (data not shown) and the shape of the dl'lIsit.y is 

approximated by (4.3.8). A period-donbling bifurcation has occurrt'd bd.wt'e!l ·1.3.1a 

and 4.3.1 b. As a consequence' of this period-donbling, the solution has I.wo mort' ?;ero­

slope points during one period, observed as a splitting in the narrow !wak st.rudurt, 

of the density. Figure 4.3 .lc illustrates the invariant dt'nsity of a cOIl1plicatt'o periodir 

orbit. 

The invariant density for a chaotic solution is seen in Figure '\.3.1 d. In the 

chaotic resime, the density looks like that for periodic motion with supnirnposecl 

l'lOise. Further, narrow peaks are now broadened and there are no longer any sharp 

cusps. In Figure tl.3.le, it is seen that upon further increasc of the paramt'ter n in 

(4.3.11), the chaotic type of solution gives way to a periodir solution. This "periodir 

window" is once again replaced by chaotic motion as n is in('t'easec! fmther. 

4.4 DISTRIBUTED DELAYS: APPROXIMATING THE DDE WITH 

COUPLED ODE 's. 

In this section, the approximation of DDE's hy ODE's is considered. Theil, 

the concept of "distributed delay system" is defined and an ex ample is givcn. It is 

shown how such systems can be equivalent to DDE's, and the degree to which tht,y 

approximate the behavior of a DDE at a Hopf bifurcation. 

4.4.1 Approximating the DDE by an ODE. 

It is straightforward to resc;lle Equation (4.3.11) as 

dx 
dt =- -x(t) -1- f(x(t - nT)), (4.4.1) 

where f corresponds ta the second term on the right hand side of (4.3.11). In the 

limit OT ~ 1 where (4.4.1) (or (4.3.13)) behaves like an ODE, it is possihle tn ('xpancl 

the nonlinear delayed feedback in powers of (aT). Thus 

x(t - OT) ~ x(t) _ (aT)x(t) -1- (a;)2 x(t) - .... (4.1.2) 

Further, Jean be expanded around a solution Xo which is, for example, a fixed point., 

or the limit cycle solution xo(t) = x' + Asin(wt): 

f(X(t-OT)) ~ f(xo)+[x(t-aT)-xo] ~~I +![x(t-aT)-xo]2 ~:~I 1 ... (4.4.3) 
Zo :1:0 
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Hence, the DDE (4.4.1) is approximated by 

d:v 1 
dt + x(t) ~ 0- f(xo) 

+ 0-1 ~~ Izn {x(t) - :vo - (or):ë(t) + (0;)2 :E(t)} 

1 d
2f

l {() ()'() (or)2 .. ( )}2 + 20 dx 2 Zn X t - Xo - or X t + -2- X t + ... 
(4.4.4) 

The limit or « 1 can be achieved by letting 0 and/or r go to zero. However, when 0 

goes to zero, the right hand side of (4.4.4) diverges due to the 0-
1 terms. If OT ----t 0 

because the delay goes to zero, the expansion will converge (see Mallet-Paret and 

Nussbaum 125 ). Approximating the DDE by an ODE in the ab ove manner will only 

work when the delay is small. For the pupil, the value of or is between 0.2 and 1, 

and the dday is certainly not negligible. Thus this approximation is inappropriate 

for our problern and will not be pursued any further. 

4.4.2 Distributed delays. 

Up to now, the focus has been on systems whose time evolution depends not only 

on their present state but also on the value of sorne state variable at a precise tirne in 

th(' past. More generally, one can consider systems whose memory exl ~nds over the 

whole pasto The extent to which values in the past affect their present evolution is 

deterrninecl by a kerneI K(t) : 

dx 
dt = f(x(t),z(t)) where 

t 
z(t) = 100 K(t - u)x(u)du ( 4.4.5) 

The fixed clelav case we have considered thus far corresponds to choosing a Dirac 

delta function for the kernel. 

As a specifie example of a system with distributed de!ay, consider the transmis­

sion of electrical activity along the optic nerve. This nerve cOllsists in a bundle of 

axons emanating from the cell bodies of specifie neurons in the retina (the ganglion 

cells). These axons are not ail identical, because their axon diameters are distributed 

according to a certain probability density. Axon diameter determines the propagation 

slwed of the nerve impub€'. For rnydinated axons, the v€'locity is proportion al to t.he 

square root of the diarneter of the axon, while it is proportional to the diameter for 

demyelinated axons. Thus, even if all ganglion cells Rre simultaneously, the action po­

tentials will arrive at the postsynaptic neuron population after different propagation 

delays, hence the origin of distribnted cleIays in nerve ,::oncluction. Orten the spread 

in conduction times is small enough to warrant the use of a single fixed delay. 
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4.4.3 Transforming a DDE into coupled ODE's. 

Under certain conditions, a DDE is equivalent to an infinite set of ODE's. This 

can be shown using the following approach 126 -128. Assume the kernel in (4.4.5) is 

normalized and has the form of a gamma distribution 

a,m ~ 0 (4.4.6) 

where m is an integer. This kernel has a maximum at q = m so the average delay is 
a 

given by 
_ JoOO 

qG;:"(q) dq m + 1 
T= 00 =--. Jo G~(q) dq a 

(4.4.7) 

The important property of this kernel is 

lim G:(q) = 8(q - T) m,a-.(X) ( 1.4.8) 
T const 

50 that in this limit 

z(t)=œ(t-T). (4.4.9) 

We now define 

Yo(t) == œ(t) 

Yi(t) == {t
oo 

œ(u)G~-l(t - u)du i = 1, .... ,m + 1 
(4.4.10) 

The equations satisfied by the Yl(t)'S are obtained by computing dIti (using Leibniz's 

rule) and using the recursi ve relation 

(4.4.11) 

The result is 

(4.4.12) 

i = 1,2, .... ,m + 1 

where the first equation follows from Ym+l(t) = z(t). Renee (4.4.5) is strietly equiv­

aient to the system of equations (4.4.12), which is an (m + 2)-dimensional system of 

ODE's, aIl of which are linear exeept for the first one which contains f. If the Iimit 
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in (4.4.8) is taken, the original system (4.4.5) becomes a DDE, and it is equivalent to 

an inn.nlte set of linear ODE's plus one nonlinear ODE. 

ln the limit m - 00, the initial condition for both the integro-diIferential equa­

tion (4.4.5) (a f\lnction on (-00,0]) and the system (4.4.12) is infinite-dimensional. 

However, for finite m, the initial condition for (4.4.5) is still infinite dimcnsional, while 

that for (4 .4.l2) is a point in an (m + 2)-dimensionéll phase space. This "dimension 

reduction" which occurs in the transformation from the distributed delay system to 

the finite-dimensional set of OD E's is, however, only apparent. 

Let I(t), t E (-00,0] be the initial condition of (4.4.5). Then the initial condi­

tions Yt(O) of (4.4.12) are constants givcn by 

(4.4.13) 

Further, if I( u) equals a constant C, then Yt (0) = C for aU i because the kernels 

are normalized. What this means is that although the initial condition is infinite 

dimensional, the solutipn depends only on a fini te number of constants given by the 

integrals in (4.'1 13). This becomes more apparent when the problem is formulated in 

terms of the (m + 2) coupled ODE's. 

4.4.4 Approximat.ing the behavi(lr of a DDE at a Hopf bifurcation. 

ln Section 5.~~, the Hopf bifurcation in DDE's is studied in relation to experiments 

on the unset of pupillary oscillations. In Section 5.2, it is sho\\-n that the Hopf 

bifurcation analysis for DDE's is mathematically involved. Bence, any approach that 

can give analytical insight. into this hifurcat.ion is wekome. The approximation of a 

DDE hy ODE's studied in this section can yield such insight. He.'e, we address the 

question of how many ODE's are needed t.o obtain a reasonable approximation to the 

behaviour of the ODE at a Hopf bifurcation. 

If a small number suffices, wc might improve our understanding of the dynamics 

of DDE's using the analytical tools ta deal with ODE's. In turn, these analytical 

tools would open the door to the study of the influence of noise on DDE's, a topic 

about which very liUle is known. 

We giv(" the beginning of an answer to this question by investigating the Hopf 

bifurcation in the set of ODE's equivalent to the Machy-Glass equation : 

dx .\onx(t - T) 
dt = -ax(t) + 0 ( ) = F(x(t),x(t -T)) 

n + xn t - T 
(4.4.14) 
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In particular, we want to know how many ODE's are needed for clost' agrt't'Illt'IÜ 

between the values no at which the bifurcation occurs in the DDE and in th(' syst.elll 

of ODE's. We Rrst proceed to the Hopf analysis of the m + 2-dimensional systt'l11. 

After linearizing the set of ODE's (4.4.12) around its fixed point 

i.. 1 O[À ]I/n Yo = YI = .... = Ym+I = - -- 1 
a 

we can compute the characteristic equation for the linearized flow 

2 

where (3 = 0 - na + n~ . Setting À = iw, (4.4.16) becomes 

m+I 

(0 + iw) L Cj+lam +1
- i (iw)i = {3am+ 1 

3=0 

( 4.4.15) 

(4.4.16) 

(4.4.17) 

where C; = '(b b~ )' are the binomial coefficients. For given values of m, a, (J, a and 
a. a. 

À, we must Rnd the values of w and f3 which satisfy the real and imaginary parts of 

(4.4.17). From this value of (3, the value of n in (4.4.14) can be dedu('('d. 

We have computed the values of w and (3 which satisfy (4A.17) for the IHlfél.mt't('r 

values: () = 1; Q -=- 1; À = 2; T = 2 for which the fixed point. of (·1.'1.1.1) satisfies 

x" = 1. As m. is increased, the ratio T -=- m: 1 is kept ('quai to 2, the Vetille of the dday 

in the Mackey-Glass equation. This implies that a in fad dep(,lId~ Oll the valut' of 11/, 

50 in (4.4.17) we have a = a(m). Figure (4.4.1) plots, ah a fl1ndiol1 of m, the valllt' of 

n (corresponding to the values of w and f3 which satisfy CI.4.1ï)) at wlllch th(' Hopf 

bifurcation occurs. We find that as m --) 00, the value of n converges to the val11e for 

the DDE (no = 5.04). Also, tht." ft."wer ODE's one uses for the approximation of the 

DDE, the steeper the feedback function (the stet."pness is proportional to n) has to 1)(' 

in order 1,0 destabilize th(" fixed point. 

A system that undergoes a Hopf bifurcation when the slop(' of ils fet'dhack 

function is steep is considereG to b(" more stablt." than one in whidl the bifurcation 

occurs for a small siope. Our result implies that as the memory function Gin (1.4.6) 

becomes more localized in the past (as m --> 00), the systl'TT1 loses stahility. ,/,hi<; 

suggests that the nervous system might use distributed delays tn avoid n·generaliv(· 

oscillations in negative feedback loops. On tht." other hand, it may use "Io('aliz(·d 
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Figure 4.4.1 Value of n at which a Hopf bifurcation occurs in the set of coupled 
ODE's (4.4.12) used to approximate (4.4.14) versus the number m of equations used 
in the approximation. m corresponds to the order of the memory kernel (4.4.6). As m 
increases, the memory function becomes more localh:ed, and the value of n converges 
to that for which the delay-differential equation (4.4.14) undergoes a Hopf bifurcation 
(5.04). 
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memory functions" corresponding e.g. to the kernels (4.4.6) with a high nt valut' to 

maintain oscillatory behavior. 

A simple calculation shows that the 2-dimensional system correspondi ng to 

m = 0 does not have a Hopf bifurcation. At least a 3-dimensional systelll of ODE's 

modelling distributed delays is needed to produce oscillatory lH'havior (olle dimension 

more than the minimum of two required for the occurrence of a 1I0pf hifurcatioll in 

ODE's). A similar r('sult has Iwen reported by l\'1arriott and Vallp('129, who hav(' 

approximated the DDF, l1sing a N-dimensional ODE modelling a systt'llI \Vith N in­

dependent components with identical response times. 

The study of DDE's using distributed delays gives us insight into how a systel1l 

loses stability as memory i~ progressivcly shiftcd to éI precise time in the past. It 

would be interesting to sel' ,vhc-ther this r('sult still holds when therc IS il nomwro 

minimal delay, which is more relevant physiologlcally than dist.rihnt.ed clelays "Iont'. 

In fact, in the nonzero minimal delay cas(', it can be showll that the ()))E r('cltH ('s to 

one nonlinear ODE and (m + 1) linear ODE's. The approach of t.his sect;on has also 

shown that the space of initial functions for DUE's, althollgh infinite-dimensional, is 

partitionl:'d into Sllbsets which yield the same solution. In faet, in the nt --. 00 cas(' 

corresponding 1.0 the ODE, the solution is shown to depend on an infinite numher of 

integrals of the initial function Oycr thc kernds, and rnany initial functiolls will yidd 

the same value for these integrals 

4.5 MAPS AND INVARIANT DENSITIES FOR A DDE WITH PCMF. 

4.5.1 Introductory remarks. 

We now give a specific application of tht' concepts of Section 4.2 io the analYhih 

of the dynamical propt'rties of a delay-differt'ntial equation. The equation Îs th(' firht 

order DDE with piecewise constant mixcd feedback (PCMF) cnmuntered in Sectiollh 

3.3 and 3.4 : 

where f = { ~ BI < X r < (}2 

X r < BI or X r > B2' 
(4.5.1 ) 

where the state variable is denoted by x instead of A. The structure of this <'CJuatioll 

is identical to that used for pupil area dynamics; its solutions art' sirnply inverted /Lnd 

shifted by a constant. This is hecause an increase in the forcing (light intensity) in 

the pupil equation causes the area to decrease, due tn th<, incrt'as(' in the act.ivity 1.0 

the iris sphincter muscle. 
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When the feedback function f is a single-humped smooth (rather than piece­

wise constant) nonlinear function (4.5.1) becomes the paradigm of ,;ystt'ms t'xhihiting 

"mixed feedback", i.e. a combination of positive and negative feedback (see an der 

Heiden and MackeyGG and references therein). This equation has received much at­

tent.ion in physiological dynamics, and especially in blood ceH population dynamics, 

where it is known as the Mackey-Glél5s equation (see (4.3.11 )). H éllso arises in non­

linear orties, where it serves as a mode! for optical bistability and is known as the 

Ikt'da equation 1311
. In this latter case, the function f can be multi-humped. 

Piecewise linear and piecewise constant systems such as ( 4.5.1) have aiso received 

considerable attention III the mathematics literaturéG. 11-l.131.132. Besides being inter­

esting in their m'in right, they often serve as approximation'3 to, or ideaIizations of, 

systems with smooth nonlinearities. In fad, analytical insight into the dynamics of 

smooth feedback systems becomt's possible if f is assumed to bt' constant. over major 

sections of its domain. Under certain conditions this assumption allows us, as we will 

show, to study an infinite-dimension al ODE in terms of a one-dimensional discrete 

time map. 

In this st'ction, the most important properties of (4.5.1) are reviewed and new 

findings from our own simulations are presented. Equation (4.5.1) is one of the few 

continuons time dynamical systems for which there are analytical proofs of existence 

of chaotic motion. The prnofs for the analytical results in this section are very te­

dious and can be found in the references GG 
1 H. The properties presented here have 

IweH prnved fnr th!." more general cas(' where th(' feedback function has thr('e levels 

(in the cont.t'xt of PC},lF -induced pupillary oscillations in Section 3.3, this would cor­

respond tn difft>rent OFF-state illumination:, on each side of the ON-state). Further, 

tht>se properties hold when œrtain smoothing conditions are applied 1,0 remove the 

discontinuities in f (Walther 131
). 

4.5.2 Analysis of PCMF using crossing time maps. 

The analysis summarized in this section shows that successIve differences in 

thrt'shold erossing tirnt's obey a one-dimensional map which, for different parameter 

st'ts, either: 1) satisfies th€' Li and Yorke conditions133 for chaotic motion; or 2) has 

an asymptotirally stable Frobenills-P€'rron operator associated with it ; or 3) has an 

asymptotically periodic Frobenius-Perron operator associated with it (definitions of 

tht>se terms are found in Section 4.2). 
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The first step in the analysis is to seale time in units of the delay, as in (4.3.13): 

dx 
dt = -aT:l:(t) + Tf[X(t - 1)1· (4.5.2) 

where f now denotes the nonlinear function on the right hand side of (4.5.1). ft is 

a]so possible to rescale the amplitude of x 50 that the lower threshold satisfies 01 1. 

At any given time, the function fis equal to a constanL Hence, (4.3.13) is a first 

or der linear inhomogeneous differential equation. If X r is bdween the two thresholds, 

(JI < X r < (}2, then x(t) will consi~ts of an exponent,ial increasing towards Rn upper 

asymptotic value L = ~. If X r is outside the region between the two thresholds, i.e 
a a 

X r > (J2 or X r < 811 the solution will be an exponentwl decreasing towards a \ow('r 
d 

asymptotic value -. The solution of (4.5.2) is thus given by a continuolls fUI1ction 
a 

made up of a sequence of increas1I1g and decreasing expoIleIltials, as shown in Figure 

4.5.1. Further, sinee the derivalive in (4.5.2) has a finitt' discontinuity (dlle tn the 

pieeewise constant nature of n, the solution x(t) will be continuous (a COl\se<I'.!('IH·(' 

of the smoothing action of the integration) However, :/:(t) will not })(' different.iahlf' 

at the connecting points hetwecn increasmg and decreasing exponentials. 

The complexity of the SOll1 tion in the interval (t, t + 1) depends on the n li rn her of 

times the solution crossed the thresholds du ring the interval (t - l, t), as the systt'JIl 

has no memory beyond one clelay. Since at any given time the solution ('onsista of a 

single exponential, it is lJossibk to analytically dctermine tht' threshold crossing times. 

Such would not be the case if the D.oITlogeneous part of (4,5.2) \Vere second order or 

higher. The key property of (4.5.2) lies in the fad that its solut.ions ran \H' rnJlst.rllrted 

from a knowledge of the crossing times t , with the thresholds BI and (}2. ln faet, the 

extrema or "turning points" of the solution occur at times t , t- l, i.p. the rrossing 

time plus one delay. We will show that the crossing limes are uniquely determinec! 

by the the thresholds crossings of th" initial function, and give an exampl(' where a 

map relating successive crossing time diffpren('es can he dprived Befnre pro('('('ding, 

results concerning the simpler behaviors of (4.5,2) are presentt>dGG
• 

Let 01 = 0 and O2 -= b, which corresponds to the negative feedback ('aSt'. If 
c 

the upper asymptote 1 = - satisfies 1 < (}2' then 1 is a globally asyrnplotically 
a 

stable stationary solution of (4.5.2). However, if 1 > b, (4.5.2) has an asyrnptoti('ally 

orbitally stable periodic solution of period larger than 2 which attrads ail orhits 

corresponding to monotone initial conditions. This periodic solution is simply tilt' 

piecewise constant negative feedback solution encountered in Sections 2.2.6 and :J.2. 
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Now let 81 = 1 {I,nd 8'1. == b = 00. This corresponds to a positive feedback 

configuration. If, < 1, then the origin is a globally asymptotically st nhlt' s1.ationary 

solution of (4.5.2). But if "Y > 1, then the constant solutions "Y and 0 are only 

locally asymptotically stable. In fact, if the initial condition cfJ( t), t E [-1,0] satisfies 

° ::; </J(t) < 1, the solution will he attracted towards the origin. Likewist', if 4>(t) > 1, 

the solution will converge to "y. The threshold (JI aets as a repellor. 

What happens if the initial condition oscillates "bout (JI ? An der Heiden and 

MackeyGG have shown that there exists an unstable periodic solution which separates 

the domains of attraction of the t\'110 constant solutions 1 and O. This solution has 

exactly one minimum per period. The unstable periodie orbit is al. the origin of the 

more complicated dynamies exhibited by (4.5.2). 

REDUCTION OF THE DYNAMICS TO A ONE-DIMENSIONAL l~IAP 

Assume that the feedback is positive. Consider the set l of initial functions 4> 

defined as follows (see Figure 4.5.1a,b): 4> E I if there is sorne w E [O,IJ such that 

4>(t) > 1 for aIl t E [-1, -1 + w), and 4>(t) < 1 for aIl tE (-1 + w,O) with 4>(0) = 1. 

A map V : I -4 [0, 1J is induced by V(4)) = w. It {ollows that 

:c(t) =, - (, - l)e-nt 

:c(t) = :c(w)e- Il {t-U'} 

{or all t E [0, w] , 

{or all tE [w, IJ. 

( 4.5.3) 

( 4.5.4) 

The solution on [0,1] is uniquely determined by w. Renee, the solution for aIl time 

depends only on w. Depending on the value of w, it is seen from Figure 4.5.1a,b 

that :c(l) can be either smaller or larger than BI = 1. Figure 4.5.1a illustrates the 

limiting case UI = WI where the increasing solution starting at a:( 1) does not reach the 

threshold; the solution sim ply decreases towards the locally stable origin. Likewise, 

Figure 4.5.1b shows the other limiting case w = W2 where :r.(1) > 1, in which the 

solution increases towards "y. 

Between these two limiting cases, i.e. for w E [WI, W2], the dynamics of positive 

feedback ran be analyzed as follows. Let tl be the crossing tirne in the interval [w,IJ 

at. which :c(tl) = l. Also, let t 2 E [1,1 +ttl be the next crossing time wh, re x(t2 ) = 1 

(in this cast> the solution is increasing when it crosses). The point of the analysis is to 

find an interval in which the solution belongs to the same class I of initial functions. 

This interval can then serve as an initial condition, and the process repeats. It is seen 

in Figur(" 4.5.2a that (t 2 - 1, t 2 ) is such an interval, and this new initial condition is 
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Figure 4.5.1 a) 'Time solution of (4.5.1) for an initial condition defined by the 
crossing time (-1 + Wl)' The solution is repelled from the unstable limit cycle to 
the origin. b) Time solution of (4.5.1) for an initial condition defined by the crossing 
time (-1 + W2)' The solution is repelled from the unstable limit cycle to the upper 
locally stable fixed point.., = 2. The parameters of (4.5.1) are a = 3, T = l, 81 = 1, 
92 = 2.9,.., = ! = 2, Wl = 0.123 and w, = 0.79. 
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denoted "pw. The crossing time for this initial condition is simply 

(4.5.5) 

A continuous map F : [Wl,W2] --. [0,1] can then be defined by F(w) = V("pw). 

Denoting by 0 < Tl < 7"2 < ... the tirnes at which :c( Ti) :::::: 1, the mapping can be 

written more generally as 

( 4.5.6) 

By determining the expressions for tt{w) and t 2(w), an analytical form for F(w) is 

obtained66 . F( w) is plotted in Figure 4.5.2b for w E [W1, W2J. The slope of F( w) is 

greatef than ont' on this interval, which implies that the fixcd point is unstable. 

Tt is possible tn analyze the more complex behavior that arises when the upper 

threshold b ib smaller than the upper asymptotic value /. The resulting solution is 

shown in Figure 4.5.2a. The solution oscillates a few limes around to lower threshold 

before drifting upward because of the presence of the unstable periodic orbit centered 

on 61 • The solution exits the hump (i.e. increases past b) and subsequently decreases 

towards the origin. But then the same initial condition repeats, so the cycle repeats. 

This behavior can again be analyzed in terms of a map F(w). In faet, in the interval 

(Wl, W2), tht' map is simply F( w). 

We now see tha1. any apt'riodic behavior of F will be reflected in the random 

ocnurence of rrossing times. F( w) is plotted in Figure 4.5.2b. While initial conditions 

corresponding to w E [0, wIl still yield solutions that converge to zero, those for which 

W C [W2, 1] now yield periodic solutions of spiral t.ype as in Figure 4.5.2a. This is due 

1,0 the nonzero constant portion of F( w) on (W2, 1] which reinjects the orbit near the 

unstable fixed point. 

The parameter b determines the (constant) value of the map on (w2,1J. For a 

certain value of b, the orbit is reinjected into the unstable fixed point w p ' This case 

corresponds to a homoclinic orbit 10, at which the stable and unstable manifolds of 

the fixed point intersect. At this homoclinic point the solution oscillates an infini te 

number of timt's around the lower threshold, so the period is infinite. At this point 

we have spiral type chaos. 

an der Heiden and Mackey66 have built more complicated maps from F{w) in 

order to characterize more complicated motion. Further they have shown that, under 

certain conditions, the Li and Yorke criteria133 for chaotic motion in one-dimensional 
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Figure 4.5.2 a) Spiral type solutions to (4.5.1). The solutions oscillates a certain 
number of times around 91, is slowly repelled upwarde from the unstabl.e limit cycle 
about 91 , increases paat 92 then decays back towards 91 and the cycle repeats. The 
quantities t 1 and t 2 are defined i., the text. This behavior of (4.5.1) occurs for 1U E 
(Wl,W2) in Figure 4.5.1 and is governed by the map shown in 4.5.2b. For initial 
conditions tU < W1, the solution eventually goes to zero. For W > tU" the !spiral type 
limit cycle solutions are obtained. There is a value of the upper threshold 92 = h, 
at which the constant part to the right of W2 equals wp ' At this point a homodinic 
orbit ensues and the solution hu infini te period. Parameter values in a) are a = 1, 
., = 2, T = 1, 91 = 1, 92 = 1.9 and tU = 0.55. In b), a = 3, '1 = 2, 91 = 1, 92 = 5.8, 
Wl = 0.124, W2 = 0.735 and wp = 0.406. 
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maps are satisfied by one such map. This implies the existence of infinitely many 

diITerent. periodic orbits and of infinitely many aperiodic orbit.s. However, as an der 

Heiden 114 pointed out, aIl of these solutions may turn out ta be unstable (the result 

stated abov(' is about existence, not stability), and aIl solutions will be eventually 

attracted to periodic nrbits. This imp]ies that th(' apcriodic solutions will not be 

observabl\.' in physical or comput.er expl'riments. This behavior is indeed observed in 

the numerical integration of (4.5.2) (st"e Appendix 0). However, the transit"nts of the 

periodic solutions can be very long, even for constant initial conditions. 

an der Ht"ldt"I! 111 extendcd the analysis to show that the behavior of solutions 

corresponding io a very broad rlass of initial conditions can 1)(" studied from the 

density point. of view. This approach is based on the use of the Frobenius-Perron 

operator for a map G derived [rom F' ID (4.5.6) (<;t"l' S('ct,ion 4.2). For certain parameter 

sets, an der Ht'idcn (198.~) has shown t.hat tht" FrolH'l1Ius-Perron operator associated 

with C is asymptotically l)("riodic 13 (sel' Section ,1.2.1). Although it héls been shown 

that a unique invariant measure is associated with C, which implies that Gis at least 

ergodic, the motion is more complicated than ergodic motion because the slope of G 

is everywhere greater than one (in absolnte value), whi~h implies that aIl orbits are 

unstable. 

Fi nally an der H('iden 114 has shawn that for certain pararneters G is asymp­

totically stable, i.e. if. is exact with rt"spect to a measure which is itself absolutely 

continuous with rt'spect ta Lebesgue measure (Section 4.1). This is our working def­

inition of "('haotic motion". This result implies that the map for the differences in 

successivf:' crossing tirrws It is rnixing, and thus the times Tt occur ranclomly. But here, 

as above, the trajedories are unstable and thus not ubservable numerically. They can 

be responsibh', how\.'vcr, for making transients very long and irregular (see Section 

3.4). 

ft should he noted that the solutions of (4.5.2) obtained on the computer cor­

respond in fad to the exact analytical solutions. Our computer algorithm (see Ap­

pendix D) k{'eps track of aIl the crossing times using their analytical forms. As a 

consequenc(', a solution is mnsider('d to b(' periodic whcn Jt, goes through the same 

values with an accuracy of one part in 1011 (the I1ewlctt Packard 9816 computer used 

for these computations has 12 bit precision). 

4.5.3 Other pl'opcrties of PCMF revealcd by simulation. 

l\lany of the dynamical behaviurs of (4.5.2) have yd tu be explained using one-
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dimensional maps as in the prececling section. The mixed feedhack case C'omprISt'S 

aU the behaviors of the negative and positive feedback case, and shows n varit't.y 

of simple and complex limit cycles. The complexity arises bccanses of t.hc 1Il1st.ablc 

periodic orbit for positivc fccdhack. 

We have found that the solutions of (4.5.2) can undego pcriod dOllhlil\g se(I'It'lIn's 

as certain parameters are varied (not shown). Thes(' seC)llenn's are appart'ntly always 

truncated (i.e. a solution of unrelated period) when only one paramdt'r is varit'd 

at a time. Period triplings and period halving have also becn ohscrved. A wealth of 

other dynamical behaviors is expect.ed to occur for more cornplirat,ed initial fnndiol\!>. 

Examples of bifurcation diagrams for (-1.5.2) \Verc shown in Figur('~ :3.:U' and :J.:Ln. 

Finally, recall from Section 3.4.3 that (4.5.2) can, for ('('rtain paramel,er s{'f!" exhibit 

multistability. In fact, for these parameters, the different limit cycle solutiol\s are only 

locally stable. The structure of the basin boundaries (in function spact') of (-1.5.2) is 

p.-:>t known and is currently being investigated (Losson et al., in pr<'J>.). 

4.6 SINGULAR PERTURBATION LIMIT: DDE BECOMES A MAP. 

In this section, we investigate the conditions un der whirh the dynarnics of flrst 

order DDE's are similar tn those of a one-dimcllsioual map. Snch similarities would 

enahle us to analyze the dynamics of DDE's using the !>owerfnl rnathematical tools 

that have heen developed for maps (see Section 4.2). 

The DDE of interest is again (4.3.13) 

dx 
dt = -aTx(t) + rf(x(t - 1)). ( 1.3.13) 

The limit where ur --t 00 is called the singular perturbation limit. In this limit, thc 

differential terrn aets as a perturbation on the difference equation that results when 

this term is not present' : 

x(t) = Q-l !(x(t - 1)) (4.6.1 ) 

Denoting Xn == x(nr), (4.6.1) can he written as a discrete time map: 

( tl.6.2) 

The dynamical behaviors of this map, such as period-doubling bifurcations and chaoti(' 

motion, are also round in the DDE. In faet, the DDE cxhibits a rnuch broad<'f fang(' 

• In the case where ctT --> 00 because ct -> 00, the ratio l must be kept constant III taking t11f' 
ct 

limit. 
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of dynamical behaviors t,han the map obtained in the singnlar limit. In general, there 

is no continuons transition between the dynamicai stf\lctures of the map (periodic 

orbits, their stahility properties, bifurcation points) and those of the DDE, no matter 

how large t.he parameter nT 125. 

Examples of invariant densities for this map are shown in Figure 4.6.1. The 

parameters are the same as t,hose of the Mackey-Glass eqnation for which the densities 

are shown in Figure 1\ 3.1. It is seen that while the density for the DDE is characteristic 

of a simple limit cycle, which undergoes a period donbling bifurcation between n = 7.3 

and n = 7.4, the density for the map (4.6.2) shows a density with many peaks. 

For discfete time systems, the density corresponding to a periodic solution is 

supported on a set of measure zero containing t.he points of the periodic orbiC The 

densities in Figure '1.6.1a,b,d are characteristic of chaotic motion, and the peaks cor­

respond ta trajedories of values near the maximum of t.he map, which are very stable 

(the orbit of the maximum itself is called the superstable orbit, berause the prodnct 

of the slopes of the map along this trajectory equals zero )22. These peaks thus have 

a different origin than those for the DDE, which correspond to zero-slope regions of 

the solution. Such regions would correspond to peaks for the map if the map were 

undergoing periodic rather than chaotic motion Thus, for equal paramcter values, 

the densities for the DDE and the Tllap obtained in the singular limit of this DDE are 

very different. This difference has been previously noted from che time series point 

of view hy Chow and Green 134. 

There is a striking connection between the Hopf bifurca.tion in a DDE and the 

first period-doubling (pltchfork) bifurcation in the map obtained in the singular limit 

of this ODE. Consid('r the DDE given by (4.3.13) and the corresponding map (4.6.2) 

obtained in the singular limit. Both these equations haVI:' the same fixed point x' 

which satisfies;r' = n-1flx'). As shown in Sections 2.2.4 and 5.2.1, the complex 

conjugate pair of roots of the characteristic equatiun for the DDE (linearized around 

x') lies in the right hand plane if 

( 4.6.3) 

wht>re w == -/B2 - 0: 2 and B == - j'(x') > 0 (this last restriction is not necessary, but 

it corresponds to the ncgative and mixed feedback cases we have been most interested 

in). Defining X == - ~ < 0 (since n > 0), (4.6.3) can be written as 

cos-1 (.X) 
nT > .)(1/ X)2 _ 1 . (4.6.4) 
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Figure 4.6.1 Densities obtained trom numerically generated iterates of the map 
(4.6.2) obtained in the limit aT > 1 in the Mackey-Giass equation (4.4.14). The 
densities are computed for values of n similar to the ones used in Figure 4.3.1. The 
other parameters are the same as in Figure 4.3.1. In c), a periodic solution is seen as 
n is increased from a value al which the solution is chao tic (b). Chaos again appearll 
as n is increased on going from c) to d). The rounded Corm of the densities when 
the map undergoes chaotic motion is similar to that of the densities corresponding to 
periodic solutions of the Mackey-Glass equation (compare e.g. 4.3.1c and 4.6.1b). 
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A plot of the stability of the fixed point as a function of UT and X is shown in Figure 

4.6.2. If X < -1 or X > 1, the fixed point is stable; these regions are lahelled 

"S". Also, from Section 2.2.4 we know that (4.3.13) has stable limit cycle solutions 

when inequality (1.6.4) is satisfied. These unstable solutions are fOU11d in the regions 

labdled "U". 

The onset ofoscillatory motion in the map (4.6.2) occurs at the first pitchfork (or 

"period-doubling") bifurcation, at which a- 1 f'(x') =-= -1 (corresponding to ~ = 1). 

The fixed point also loses stability when a- 1 f'(x') = 1 (or ~ = -1), at which a 

tangent bifurcatIOn oec'urs. In fad, for -1 < ~ < 1, the fixed point of the map is 

stable. Since ~ --- ~, both the map and the DDE have a stable fixed point. ovpr the 

same values of X, I.e for X ùutside the interval [-1, IJ' Thus, th~ stability diagram 

for th(' map simply consists of the x-axis in F:gure (4.6.2). The Cf ndition .Y = -1 

corresponds to the perjod-doubling bifurcation in the map, while X = 1 corresponds 

to the tangent hifurcation. 

When the fixed point is unstable for the map, i.e, fc.r -1 < X < 1, the fixed 

point of the DJ)E can \)(' either stable or unstable, depending on the value of QT. The 

fad that the map is obtaint>d formally by taking the limit UT ~ 00 in the DDE 

implies that only region "u" is relevant for tht> map. IIence, when -1 < X < 1 for 

the map, there is always a stable period 2 solution, The stability diagram for the 

DDE is then set>I! as a simple prolongation in 2 dimensiom (along the aT axis) of the 

on{'-dimensional dlagram for the map. 

4.7 THE CONTINUO US TIl\IE DIFFERENCE EQUATION LIMIT OF 

THE DDE. 

In this section we consider the same singular limit as in the preceding section, 

but time is taken to be continuous as in the original DDE, rather than discrete (in 

units of the delay). This limit has also been studied by Zhang et a1. 135 • 

Tht> behavior of the continuous time difference equation (-1.6.1) can be lInder­

stood from Figurt' l.i.1. in which numNically cornputed solutions of titis equation 

art' plotl.ed for h\() dlfferent initial conditions. The integration time step equals one 

two-hundrd h of t.he delay. The value of n is such that the discrete time map (4.6.2) 

has a }Jerind 2 orblt. The behaviof of (4.6.1) depends on the initial condition. ln 

Figure ·Li.la, the initial condition is a constant, and a symmetric square wave of 

periotl 2T t'usues. The two valucs taken by the square wave are the same as those of 

the pl'rÎod 2 orbit of (4.6.2). ln fact, every point on the interval ( - T, 0) follows the 
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Figure 4.6.2 Stability diagram for Hopf bifurcation in the first order DDE (4.3.11). 
The largest complex conjugate pair of roots of the characteristic equation of (4.3.11) 
has negative real part in the regions labeled 5, and positive real part in thosr' labdt>d 
U. The abscissa is x == -~t and is negative for smooth negative or mixcd fl'cdbark. 
For -1 < X < 1, the stability cucve which separates the U and 5 regions and 
corresponding to the right hmlcl sicle of (4.6..1) is plotted as a fllnction of X For X 
values in this interval, the singular limit D:T :.> 1 of (,1.3.11) irnplie~ that inequalit.y 
(4.6..1) is always satisfied, and hence the system lies in region U. ln this lirnit, tilt' 
stability diagram of the ODE collapses clown to the X axis, whirh is the stahility 
diagram for the map (4.6.2). This map undergoes a period-doubling bifurcation at 
X = -1 and a tangent bifurcation at X := 1. 
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Figure 4.1.1 Time solutions of the continuous time difference equation (4.6.1) for 
two different initial conditions. The parameter values are ,\ = 2, (J = 1, Q = 1, 
T = 2 and n = 5, for which the discrete time map has a period 2 orbit. a) Constant 
initial condition z = 1.5 j b) linear initial condition. c) stationary solution oC b. The 
integration time step is T /200. 
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same trajectory, and the evolution of each point is independt.'nt of tlmt of its t\('i~hh\lrl'. 

In Figure -l.i.lb-c, a non-('onstônt monotonie init.ial condition gin's (1 dirrt'f('nt 

asyrnptotic solution. Comparison with 4 7.la rt'vpals that, altho1lgh tht' peri ml of tIlt' 

oscillation ha~ not changed, the shape has. Differt'Iü parts of tilt' il\ltial (ondltioll art' 

attraded to opposite values of the perioc! 2 orult, ht'causc 1 hey ),t'havt' IIId('pt'lIdt'lIlly 

Notice the spikes which are spact'd a tinw delay ôpart. In fart they 0('('111' al tiIlH'l' (''1l1a1 

to integer multiples of the delay, and are a ('OllseqtH'n('t' of tht' initial di~«(lIltllllltty al 

time zero. This discontinuity is dut' 1.0 the fad that the first and la sI portiol\l' of the 

initial function take on different values. Any discontinuity in the initial fUlldion will 

be preserved with time, bccause this dynamical system d()t'~ not. ~llIooth tht'lll ouI. 

Our simulation of (4..6.1) uehaves more like an N-dime!\sional map, wlll'rt' N is tlH' 

number of points at which the initial function is evaluat('d to pcrform the nunlt'rical 

integration. In theory, (4..6.1) is simply an infinite dimensional map in whÏ<'h ('aell 

variable is indcpendent of the utller variables. 

The effect of tht' difft'rential tt'rm in the ODE is tn makt' the bt'havior of a 

point dependt'nt on its neighborhood (set' Section ·l.8). The DOE can I}(' Sl'pn as an 

infini te dimension al map in which the variables are coupled. N urnerical integratioll 

of the ODE using, e g., an Euler algorithm corresponds 10 the iteration of élll N­

dimensional map in which the variables art' coupled, as pointed out hy Farnlt'r". 

From this point of view, the contintloll~ tlmf' differenct' eqllatiol1 and tilt' \)1)1-; ~ilTlply 

transform a [unction on the intenal (nT,(n 1 l)Tl to anoth{'r functioll 011 tl\(' ill\,('rval 

((n + l)T,(n \- 2)Tl. This behavior is rlearly s('en in Figure ,17 l. 'l'hl' fad t.haf 

neighboring points are coupled by the differential tt'rm in 1 ht' DI)/<; ('hang('~ the pidllfl' 

drastically. In fad, numerical integratlOll of the original DUE \Vit h the ~aIl\l' two initial 

condit.ions as in Figure ..t.i.\ lea(l!; tn the sanie asymptotic <;Ollltioll (not ~hown). 

Comparison of Figures ,1.3.1 and 4.6.1 shows thnt tht' valut' of Tl al, whieh titi' 

T ---4 2T bifurcation occurs for the discrctt' or continuot\!. time differt'Il('(' ('(Illatioll!' i.., 

smaller (no-::.:4) than the value at which the Hopf bifllrcat.ion ()('(ïlr~ ill t.he onglllai 

DDE (n o =5.04). But how clocs the period of the osciJlatory ~()luti(1II of the /)DE 

compare with that of the continuous time differenc(' (''1u<ltion? For tll(' differf'IH f' 
27T' 

equation, the period Îs simply 2'T = 4, while for the DD~ it is 5A!) (sPI' 
)112 0 2 

section 2.2.4). There is a significant difference in the periods. 

Better agreement is obtained if the singular limit i~ tak('1J difft'r('ntl.Y. H.('writt, 
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(4.3.13) as 

(4.7.1) 

where K == (OT)-l. The left hand si de of (4.7.1) can be approximated, if K ~ 1 

(whieh is the singular limit we are interested in), by 

dx [1" d) K- + x(t) ~ e \dï :z:(t) 
dt 

Equation (4.7.2) can now he written 

(4.7.2) 

(4.7.3) 

sinee the expont'ntial operator is a finite time-translation operator. In this case, tht' 

period in units of delay is 2(1 + K), i.e. 6 sinee K = 0.5. This gives c1ost'r agreement 

with the real value of 5.49 . Although it is not clear how to generalize this procedure, 

nor how to prove that it converges to the right period value, this limit seems to ht'tter 

preservt' the time sC<J!e of the original DDE. 

4.8 NEW NUMERICAL INTEGRATION METHOD FOR DDE's. 

The results of the last t\'\'o sections suggest that the behavior of the first order 

DDE may be understood as follows Assume that the system evolves in time steps 

equal tn sorne fraction of the delay (as for the numerical slmttlation of the continuous 

time difference (>quation in Section cl.7). Suppos{' furiher that, at every time step t, 

the system behaves !ike a map, and ther{'fore generates a value of x at time (t + ~t) 
according tn (4.6.2). However, because the system has a nonzero response time, it can 

not rt'aeh this value during the time step ilt. Rather it tends exponentially towards 

this value from its value at time t. Also, during: this time step, the initial condition 

at timt' t decays exponentially. Thus we have: 

(4.8.1) 

We now have at our disposaI a new integration method for DDE's which is, in 

faet, an integral version of the Euler algorithm. To see this, write (4.3.11) in integral 

form: 

(4.8.2) 

50 

J
t+~t 

x(t + ~t) = :z:(0) e-Il(t+~t) + -T f(x(s - T)) e-"(t+~t- .. ) ds (4.8.3) 
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l
t+At 

= :c(t) e-oAt + t f(:c(s - 1')) e-o(HÂt-.) d.If. (4.8.4 ) 

The integral in (4.8.4) can be approximated by 

l
t+At 

:c(t + ~t) ~ f(:c(t ~ 1')) e-o(HÂt) t e O
• ds (4.8.5) 

= f(:c(t - 1')) (1 _ e-oAt) 

a 
(4.8.6) 

so that the integral method becomes: 

(-1.8.7) 

Expanding the exponential yields 

(4.8.8) 

This shows that the rnethod is of higher or der than the Euler methocl, tn which il 

reduces if only the first order term in ~t is kept. 

We tested this algorithm (4.8.7) around the Hopf bifurcation of tht' Ma('kt'y­

Glass equation (4.4.14) which occurs at n = ·l.0818 for tht' pararnder values T 10, 

,\ = 2, Cl = 1 and () = 1. This equation was integrated using for 5000 tirnt' delays 

starting from a constant initial function. The density was then constructl'd from thl' 

solution for the next 500 delays by dividing the interval (0.5,1.5) into 500 hins. A Il 

integration time step of 1'/200 \Vas used. The distance betweeI1 the two peaks of 

the density corresponds to the lirnit cycle amplitude. The position of the&<, I)('ah 

is plotted versus the bifurcation parameter n in Figure '1.8.1. W(· have al&o pIOtt.l'd 

the peak positions nbtained with an Euler rndhod and a fourtll ordt'r Bung<,-f{utta 

method. Notice that the interv~l of n values used corresponds t,o the immediate 

vicinity of the Hopf bifurcation. In faet, for n > 4.15 (not shown), tht, thrc'l' rnethods 

yield similar results for this integration time st('p. Rdow this value' of n, the thrf'l' 

curves become distinct. 

Figure 4.8.1 sho\vs that the Euler method predicts a nonzcro lirnit cycl(' am­

plitude even though the theoretical value of this amplitude is Zt'ro. In faet ail thff'l' 

met.hods exhibit. this problem to sorne extent, because of the cxtrem('ly long transicJlts 

in the vicinity of the bifurcation point (see Section 5.1). Howev('r, Figure 4.8.1 show!. 

that the Runge-Kutta method converges more rapidly than th(' oth('r mdhods 
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Figure 4.8.1 Comparison of the performance of the numerical integration algorithm 
described in Section 4.8 (solid line) with standard Euler and fourth order Runge-Kutta 
algorithms. Limit cycle amplitude is plotted as a function of n at the Hopf bifurcation 
occurring at n = 4.0818 in the Mackey-Glass equation (4.4.14). The parameter values 
are Î =: 10 . .\ = 2, Ct = 1 and () =: 1 and the integration time step is -r /200. TLc ilew 
methotl and the fourth order Runge-Kutta algorithm are in close agreement, and the 
new method is four times faster than the Runge-Kutta mdhod. Each method yields 
a nonzf'ro amplitude even when the theoretical value is zero, due to the lengthening 
of the transients as the bifurcation point is approached. 
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to the theoretical value for the limit cycle amplitude. Notice also that tlH' a('('ttra('y of 

this new method (4.8.7) is quite close to that of the Rungl'-Kutta mdhod. Further, 

its accuracy is su peri or to that of the Euler method. Ail three methnds givt' similar 

values for the period of the limit cycle, which is known (see Section 2.:J.7) t,o vary 

only slightly arollnd the Hopf bifurcation. 

However, the real difference is speed: the new algoritlul1 is as fast as the Ell­

Ier algorithm, which is four times faster than the Runge-Klltta algorithm. '1'0 our 

knowledge, the integral method (4.8.7) presented her<> has never b(,l'Tl proposec\ for 

the numerical integration of DDE's. Further investigation is warrant,ed, 8111<'(' the 

new methud is almost as accurate as the fourth order Runge-Kulta algolithm and 

much faster. A precise assessment of its ove raIl aCCllra('y and sp('('d is still 1H'('ded, 

as we have only tested il. against other methods for the specifie problem of the Hopf 

bifurcation. The method may also prove advantageous for the numeriral intt'gration 

of stochastic DDE's, sinee the simplicity of the algorithrn should make the ('valua­

tion of, e.g., correlation functions easier than for uther hight"r order mdhoc!s (slI("h 

as Runge-Kutta) when white or colored noise is present (8t"(, Section 5.2). In fad 

a similar Euler integral method has been recently proposed by Fox et a1. 136 , whÏ<'h 

allows the use of a larger time step for the integration of colored noise processes (sel' 

Section 5.2). 
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CHAPTER 5 
CRITICAL BEHAVIOR OF DELAYED FEEDBACK SYSTEMS 

AT OSCILLATION ONSET 

... How noiseless falls the foot of time ... 
W.R. Spencer 

This chapter investigates the solution properties of dderministic and stochastic 

delay-differential equations (DDE's) at the onset of oscillatory behavior. These prop­

erties are used to explain results of experiments in which oscillations are induced in 

the pupi! light rt'flex using smooth (SNF) and piecewise constant (PCNF) negutive 

ft'edback. 

This last chapter is mol!vated hy the (!uestion of the origill of noise in the pupil 

light reflex, as weIl as by the more general question of whether or not it is possible to 

quantitatively analy?'e a bifurcation in a neural system in quantitative terms. Special 

attention is given to the relationship between thesc t,wo kinds of feedhack, hecause 

although SNF is doser to the normal feeclback orcurring in the pupil light reflex, 

PCNF is much casier to implement experimentally and has been shown (Section 3.2) 

to provide insight into the propertles of this rt'Rex. The transition [rom SNF to 

PCNF is also a mathematically wdl-defined problt'm (Section 2.2.6). The results of 

this chapter show that tht' mean and variance of lht' osci\1ation amplit.ude and perim} 

behave differently as the bifurcation point is élPproached in SNF and PCNF. 

Tht' onset of oscillation in the SNF case occurs through a Hopf bifurcation 

(Sections 2.2..1 and 2.3.6). Altho\lgh extensive reference has hecn macle ta the Hopf 

bifurcation, the full Hopf hifurcation theorem ha~ not been given. A ddailed descrip­

tion of this bifurcation in ordin:lfy differential equations (ODE's) is given in Section 

5.1.1 and for DDE's in Section 5.1.2. Further, Appcndix A consists of a paper, pub­

lished in the Journal of Stail.~ttcal Phy3ic.~ (in press, 1989), which looks at the effect 

of additive and multiplicative llf'Îse on the Hopf bifurcation in a simple ODE. It is 

an appliration of Fokker-Planck analysis (Section 4.2) to the study of tht' inAuence oC 

noise on a bifurcation. 

ln Section 5.2.1, an introduction to \\noise-induced transitions", which helong ta 

the more general c1ass of nonequilibrium phase-transitions, Îs given. The theoretical 

treatment of these transitions in terms of stochastic differential equations (SDE's) is 

discussed. Following this, the concepts of white noise (Section 5.2.2) and colored noise 
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(Section 5.2.3) are presented. Finally, a numerical algorithm to integrate a DDg \Vith 

additive and multiplicative noise is descrihed in Section 5.2.4 . 

Section 5.3 comprises the manuscript of a paper to he submit.ted to Ph y.H('Cl ! 

Review A. The critical bt?havior of the pupillight reflex at oscillation onsd is IlIt'asllft'd 

experimentally and the results are explained theordirally and by numt'rical sillllllat.ion 

of a stochastic DDE. 

Section 5,4 examines ways to Ilnderstand the postponement of the Hopf bifur­

cation in a DDE by both additive and multiplicative noise, a pht'!Iolllena c1isco\'eft·d 

in the analysis of Section 5.3. 

5.1 DETERMINISTIC HOPF BIFURCATION IN ODE's AND DDE's. 

In this chapter we consider the effect of additive and multiplicative noise on t.he 

Hopf bifurcation exhibited by a simple first order delay- differential eCjllation with 

smooth negative feellback, 

dA con 

dt 
- -aA(t) t -------- t k on + An (t -- T) , (5.1.\) 

as the parameter n is varied. We chose 1.0 study this DDE rather than the Ma('key­

Glass equation21 with mixed feedback because It is of direct interest. to the experinH'II­

tal :study of oscillation onsd in the Pllpillight reflex stlIdied in Section ;).:J. Furtht'r, 

we have found no qualitative difference betw('en the critical behavior al. ohnllat.ion 011-

set of a fin.t order DDE with mixed fcedback and olle with negat.ive f('('c1bcl('k Lo( <Ill v, 

the Hopf bifurcation is the same in both cas('s. lIowe\'cr, aft('r the first hifllrcat.ioll 

obtained by increasing either tilt' slope of the ft'cclback fundion al. tht' fixec1 pOIIlt. o[ 

the delay, a sequence of period doubling bifurcations will occur in the rnixed feedhark 

case24 , while no further bifurcations are set'n in the negativl' fet'dhack ('as(' (Sectioll 

2.3.8). 

We chose the parameters to be T = 0.3, c = 200, a -- a.21, k 20 and (J 1)0 

because they produce realistic simlliated pupil art'a valu('s. "Vit h tht'h(' parilllH'terh, 

a supercritical Hopf bifurcation OCCiJrs at n =- 8.18. We have aln'ady studied (1).1.1) 

with these parameters in Section 2.3. In this M,ctioT1, the dd('rmiJIIstic Hopf hifurca­

tion is examined in more detail than in Sections 2.2 and 2.:L 

5.1.1. Hopf Bifurcation in a deterministir ODE. 

We start with the Hopf bifurcation for ordinary differential cquations (OJ)E'~) 131 

following Guckenheimer and Holmes 1ù
, and for dclay-differential e<jllatioT1s (DBE's) 
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following Stech 18. We state the following results for completeness, and to show why 

thl' amplitlldl' and frt'qul'ncy calclllations are rarely earried out unleRs th('re is CI good 

reason to do it analytically rather than numerically. 

We havl' already given a flavor of the Hopf bifurcation analysis in sections 2.2.4 

and 2.3.6. The Poincaré - Bendixon theorem10 requîres that a system of ODE's be 

of dimension 2 or grt'ater for autonomous oscillations to occur. For simplicil.y, we 

consider the Hopf bifurcation in the following two-dimensional system of ODE's 

di J( - ) dt = X,JL (5.1.2) 

having an l'quilibrium point x'(po) at the parameter value JLo, at which the Jacobian 

of the flow, DJ, has a simple pair of pure imaginary eigenvalues, (.\(J.Lo),À(J-Lo)) 

(+tW, -iw), w > 0 and no other l'Îgl'nvalues with zero real part. 

The irnplicit function theorl'Ill guarantees that for eaeh JL near JLo there is an 

equilibrium x' (p,) near ;r' (JLo) v.hieh varies smoothly with JL. However, there Îs a 

change in the dimension of the stable and unstable manifolds 1 of x" (J-L) at JLo, leading 

to a qualitative change in the flow nl'ar x 1 (Po). 

Consider the following system of linear ODE's 

x = J-LX - wy 

il = wx + JLY 

whose solution, corresponding to the initial condition (XO,Yo), is 

(
x(t)) == ellt (coswt 
y(t) sinwt 

-sin wt) (xo) . 
cos wt Yo 

(5.1.3 ) 

(5.1.4) 

When J1 < 0, solutions spiral into the origin, and when JL > 0 they spiral away 

from the origin. AlI solutions are periodic when p = O. The normal form theorem 

(Guekl'nheimt'r and Holmcs 10
, Section 3.3) shows how the generic nonlinear problem 

(5.1.2) differR from system (5.1.3). Smooth coordin~te changes on (5.1.2) result in the 

fol1owing fonn for the third order Taylor expansion of f: 

X :::: (dJ-L + a(x2 + y2))x - (w + CJ.L + b(X2 + y2))y 

il = (w + CJ-L + b(x2 + y2))x + (dJ.L + a(x2 + y2))y, 
(5.1.5) 

• The stablt' (unstable) mamfold lS the set of phase space points which converge to the attractor 
(here, the fixed point) in the hmit t --> 00 (t ---+ -00). The stable (unstable) manifold lS spanned by 
the eigenvectors of Df at ;r+(lLo) whose real part is negatIve (positive). The manifold spanned by 
the eigenvectors corresponding to the purely imaginary eigenvalues is called the center manifold. 
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w hich becomes 
r = (dJL + ar2 )r + O( r S 

) 

il = (w + cJL + br2
) + O(r4

). 

(5.1.6) 

in polar coordinates. Notice the radial equation lS uncoupled from the phase.' t'qua!.ion. 

The stationary solutions of the radial equation are the origin as weil as solutions th,,!. 

lie along the parabola 

(5.1.7) 

provided a and d are nonzero. This parabola is embedded in the produd spart' U2 x li, 

where R2 refers to the {x,y} plane and R corresponds 1.0 the bifurcation paranH'tt'r JI. 

In the words of Guckenheimer and Holmes lO (p.15I), " ... this implies that the ~urfare 

of periodic orbits has a quadratic tangency with its tangent plane Il () in U2 x N. 

The content of the Hopf bifurcation theorem l37 is that the qualitat.ive pr0!lertit·s 

of (5.1.5) near the origin remain unchanged jf highcr-ord('f tenns are added tll the 

system." This means (ibid, p.152) thal. " ... there is a surface of pl'riodic sOl'ltiolls in 

the centpr manifold which has quadratic t.angency with the eigelHil><I(,(' of À(,lo), À(Jl.o) 

agreeing 1.0 second order with the paraboloid Il =- -(a/d)(x2 i y2). If lL < 0, tht'f1 

these periodic solutions are stable limit cycles, while if a > 0, the JH'riodir solutions 

are repelling." 

The parameters in (5.1.5) have been chosen so that the bifurcation O(TUrS at 

JLo = O. From the radiai equation we sel" that the fate of the pcrÎodir solution al. t.ll<' 

bifurcation is determined by the sign of a, which is the coeffirient of tht' first rlOnlinl'ar 

term. If the two-dimensional nonlinear flow is obtained by adding the transpose of 

the vector (f(x,y),g(x,y)) to (5.1.3) with f(O) = g(O) == 0 and Df(O) -: Dg(O) --: 0, 

then it can be shown that : 

1 1 
a = 16 [/n:.:+ !:.:yy+gny+gyyy]+ 16w [/:r:y(fn+ !yy)-g:r:p(gu -t-gyy )- fu9u+ f yy .9yy] 

(5.1.8) 

The condition d '" d~ (Re .\(1'))1 pop" fo 0 is the transversalily condition encolIl!­

tered in Section 2.2.4, which prevents tht:' tangt:'ntial interst,ction of tht' imaginary axis 

by the complex conjugate pair of eig<,nvalues. 

5.1.2 Hopf bifurcation in a dcterministir DDE. 

The Hopf bifurcation thl'orem for DDE's is basically the same as for ODE'f., 

except that its proof requires mort:' suphisticated techniques from t.he tht:'ory of fum­

tional differential equations (see Ha!e l22 , Section 11). Further il. has b('('n shown that, 
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the delay itself can serve as the bifurcation parameter79
• We will concentrate on the 

first order DDE encountered in the previous chapters: 

x = f(x(t),x(t - T)). (5.1.9) 

Linearization of (5.1.9) about its fixed point x"', defined by :i: = 0, or !(x>t ,x"') = 0, 

yields the characteristic equation 

À + A + Be->.r = O. 

Defining s == ~, Q == ~ and T = BT, we have the equivalent equation 

Then Re( s) < 0 if6 

where 

1) IQI> 1 or 

2) IQI < 1 and T < Tcrit 

cos-1 ( -Q) 
T crit = BTcrit = (1 _ Q2)1/2 

(5.1.10) 

(5.1.11) 

(5.1.12) 

(5.1.13) 

and the inverse cosine takes its value in [~, 7f-]. When IQI ~ 1 and T = Tcrit, there 

exists a periodic solution of period 

211' 
P = B(1 - Q2)1/2 . (5.1.14) 

A supercritical Hopf bifurcation occurs when T = Tcrd , leading to a stable 

periodic orbit (i.e. a limit cycle), when certain nondegeneracy conditions are satisfied 

by the nonlinear terms in (5.1.9). A quite involved computation (sec Stech78 j Bélair 

and Mackey13R) leads 1.0 the following conditions for the supercritical Hopf bifurcation. 

If Q < l and the parameters {A, B, T} are such that T > Tcrtt , there exists an orbitally 

asymptotically stable perindic solution x(t) to (5.1.9) satisfying IIx(t) - xtll < ê, for 

all ê > 0 and sufficit'ntly large t , provided that : 

(5.1.15) 
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where 

ao = 2h2(!/J,~)/ (Q + 1), 

h2(4J, 0 = C4>(O)((O) + D!/J( -T)(( -T) + ~ [4>(0)(( -T) + 4>( -T)((O)], (5.1.16) 

h3 (4), (, 1]) = F4J(O)((O)1](O) + G!/J( -T)(( -T)l1( -T) 
H + "3" [!/J(O)(( -T)l1( -T) + rfJ( -T)«(O)l1( -T) +!/J( -T)«( -T)l1(O)] 

and the Taylor expansion about x t is given, to third order, by 

f[x(t), x(t - T)] =A(x - x~) + B(xr - :vi) 

+ C(x - x~)2 + D(xr - X
t

) + E(x -- :v~')(Xr - x"') 

+ F(x - x*)3 + G(Xr - x t )3 + H(x - Xi )(xr _ x1)2 • 

(5.1.17) 

In practice this calculation is difficult, and one oCt en verifies numerically whether the 

bifurcation is supercritical or subcritical. 

Finally, the exponential relaxation time 'Y of transients onto the limit cycle near 

the Hopf bifurcation in DDE's is given by 

(5.1.18) 

as shown by Sirkus79 using Floquet theory. This predicted divergence of t.he rdaxation 

time tr -4 00 as J-l -4 J-lo, known as "eritieal slowing down" al, a Hopf bifurcation in a 

DDE, has been verified in laser experiments by Gao et 11.1. 139
. Th(' criti('al ('xponent 

tr is the same as for the supercritical Hopf bifurcation in 0 D E's and for st'cond 

order phase transitions in general21 • The critical slowmg down for S('('OTHI orcll'r phase 

transitions does not depend on t.he direction from whi('h th(' hifurC'i'lt.ion point. is 

approached. This means that the relaxation time onto the fixed point which looses 

stability at the Hopf bifurcation is gi ven by tr oc (J-lo - Il,) -1 . This symmdry cines 

not hold for a subcritical Hopf bifurcation, which is analogons to a first order phas(' 

transition. 
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5.2 STOCHASTIC DIFFERENTIAL EQUATIONS AND NOISE-INDU­

CED TRANSITIONS. 

5.2.1 Gcneralities. 

Th('fe is <1 natmal inclination to view noise as a disorganizing influence in nature. 

In the past few {h'cacles, however, the discovery of three new classes of phenomena 

has forced ilS to reappraise the importance of randomness in macroscopic physical 

systems 21
• 

The first class c.omprises the mechanisms of "self-organization" which occur in 

strongly dissipative systems. Dissipative systems are charaderized by the property 

that thcir evolution contracts phase f'- _~t' volume. A set of points may thus evolve 

towards an attractor whose dimen~.on is less than that of the total phase space. 

Strnngly dissipative systems are those in which the contribution of the nonlinear terms 

to the evolut,ion are large (for example, the coefficiellts of these terms are large). The 

evolutioT! of weakly dissipatIve systems is easily predictable as they possess a unique 

stable attractor, known as the thelmodynamic branch, which is in the vieinity of 

the stable state of lhermodynamic eqmlibrillnt Far from equilibrium, these systems 

can 1I11dergo complex sequences of bifurcationb ta more complicated attradors, which 

may no longer be globally stable, The influence of noise now hecomes crucial since 

it may determine which basins of attraction, or "dissipative strudures" (Nicolis and 

Prigogine I40 ), the system will visit in t.he course of ils evolut.ion. 

The second dass refers to chaotic systems, i,e. systems that are intrinsically 

Iloisy d('spite the [ad that they are deterministic. Because of their sensitivity to 

initial co'lditiol1s, which is a dderministic property, the evolution of chaotic systems 

will be further complicated by noise. 

The thif(] class refers to nonequilibrium systems which are coupled to a fluc­

tuating environrnent. There is again a naturaI tendency to helieve, in the words of 

IIorsthemkt' and Lefever21 (p.5) that " ... i) rapid noise is averaged out and thus a 

macroscopic system essentially adjusts its st~te to the average cnvironmental condi­

tions; ii) there will be a spreading or smearing out of the system 's state around that 

averag(· state dut' tn th(' stochastic variahility of the sllrrnundings." How('ver, " ... an 

incrt'ëlse in environmental variability can lead ta a structllring of nonlint'ar systems 

which has no deterministir analog," This structuring displays features similar to those 

of equilibrillm phase transitions, and also to those seen in nonequilibrium systems of 

the first c1asF- mentioned above. In the same way that the latter have come to be 
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known as "nonequilibrium phast' transitions", the phenomena descrilll'cl in this thirl! 

class have been labelled "nois('-induct'd transitions". 

Biological systt'ms are t'xamples of dissipative systems that self-orgalliz(' in noi!.y 

t'nvironments. Noisc-incluced translti()n~ I]a\'e h('en sho",n 21 tn o('('ur in modt'I!. of t h(' 

immune respO!lse, photosynthesis, population biology, poplllation gellt'Iu·!. alld IIt'Uroll 

membrane voltag,~ (Hogdkin-Huxky eqnations) ft is important, cH; tht'f-t' !.tlldil'!. ha\'(' 

shown, to propt'rly charaderize the origlIl and propert i('f- o[ !.la' nOISt', a~ dirft'rt'nl 

kinds of noise ean lec1(l to different typt's o[ tran~itionf- as paramdl'Is art' vari('(l. 

It is also important to distinguish betwct'n intt~rnal alld ex!crnalllois(' in phYf-ical 

systems. The noise known a~ "intt'rnal fluctuations" deri\'l's from t.ht' llIany dt'grt·t,!. 

of freedom involved in the microscopie interactions in the sy!.telll. Be('élUf>e of thes(' 

fluctuations, stationary states of the system are not const ant and Illllst Ill' c\esrriht'd in 

probabilistie terms. Furt.her, near stable macroscopic states, fluctuations of intensive 

variables seale as \---1, whert' V is the volume nf the f>ystem, and IH'ar a rritical point 

they seale as 1"-1/2 Ht'nce in the thermodynamic lill1lt \' • 00 thl'~(, f1udllat.i()lI!. 

beeome negligiblt'. This is the mam reason why internai fluet lIat iOllS ('(111 !Jl' safdy 

neglected in the theort'tical description of macroSCf'tJIC systems. 

The main focus nf our attention il~ this chélptt'r is pxtertlal noise. In gt'I1t'ral, t.ht' 

intensity of external noi. e does not dept'nd on the sizp of the system as is the ('aM' for 

intt'rt1 al fl uet uations. Rat ht'r the effect nf an t'xternal noise of a gi Vt'I1 i n!.('nhi ty d('pelld~ 

on the statp of the system; it is also callt'd, for this reason, mllitiplicative I1OI~(,. 

External noise can profoundly affect the local stability pro(>erties of a JTl(\(·ro!.('opl< 

system For examplt', the position of bifurcation points can hl' shift('d. Thi~ i~ !.lit' 

weakest type of noise-indueed transition, because il. shifts the parélmett'r valut'~ al, 

which occur bt'haviors that exist in the dt'termini~tic case. Noise ('aIl also (allf>e 

behaviors Ilnforeseen in tIlt' del,ermiIllstic case to suddenly appt'ar as a parallH'tn is 

varied. Tht'se pht'nnmena are known as pure nqise-indu{'ed transition .... 

In contrast tn external multiplicative 1101 St', the ('ffect of additive 1101M' on CI 

system does not depend on the state of this s'yf>!.eIll. Additiv(' noi:-,e ('an aris(', for 

example, as a rt'stilt of phenomena evolving on a ~('are ~TIlall('r than the 011(' wlH'r{' t Ilf' 

phenomena being modeled hy the dynamical eqllation!. 0('('111' It do('s not afrt'c! t hl' 

value of paramders; il, is simply superimposed on the dynami('~. 1 Il thi~ ~eJl5(' additi VI' 

noise is different from the internai fluctuations discussed carliN. It i~ also dlff('J'('nt 

from observational noise, which occurs e.g. in the rneasuring prO( (,b~, and which i~ 
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added to the solution rather than the dynamical equations of motion. For example, 

the stochastic adivity of a neuron in the absence of any input can be viewed as the 

result of additive noise. A charaderistic of additive noise is that it is more readily 

observable when the system is quiesrent, i e. when the time derivative of the state 

variable is small Mathemati{'ally, this IS a consequence of the balance between the 

deterministic now term and tht' stochastic term in a generalized Langevin equation 

with additive noise (see EquatIOn (cl 2.2.5) ",it.h O"(i) -= 0" = constant). 

The bifurcation diagrams of one-dimension al systems are not modified by ad­

diti ve noise (see A ppendi]: A). However, additive noise can drastically ,nodify the 

deterministic behavior of higher dimension al systems, as discussed in Section 5.3. 

In the next sections, the prohlem of modelling additive and multiplicative noise is 

addressed. 

The macroscopic systems we are interested In can be modelled by ordinary or 

delay-differential equations; there are no spatial derivatives. It is known21 that the 

local stability properties of such spatially homogeneous systems are not modified by 

the presence of internaI fluctuations 1. This means that the extrema of the probability 

densit.ies, whirh forrespond to th(' macrosfopic states of the system (or "order pa­

rameters"), are in the vicinity of the stationary solutions of the deterministic system 

(th('y coincide with these solutions in the thermodynamic limit). 

5.2.2 White noise and colore~ noise. 

The three main properties that characterize a given noise are 1) its intensitYi 2) 

the probability density of its distribution; and 3) its correlation time. 

Int('rnal or external noise is typically made up of contributions from many inde­

pendent sources. Hence, it is generally assumed that the centrallimit theorem holds 

and that the noise values are distributed according to a Gaussian probability density. 

l'hroughout this chapter we will only con si der Gaussian noise. 

The correlation time t, 01 of a stationary stochastic process X t is defined by 

(5.2.1 ) 

where C( T) is the autocorrelation function of the noise process. The rate at which 

C( T) got'S to zero as T ---4 00 is a measure of the memory time of the stochastic 

"l'II(' 'IlIf".;I\O\1 ot wllf'lltf'1 DDE· ... ml' "'JMt.inIly h(llJlo~f'Jl('flll'" i ... (f'rtaillly (lPlmt.abh'. iu vif'W of Ul<' 
fat Ilhat \\JI<1f'\ (f'l taill (ollditiollH till'y an' (''IlIivah'lIt. t.o part,ial difft-rellt.ial ('(Plat.iOIlH. TIll' l'I'HIlIt.H of 
tlti~ c\mp(('l ail'. 1. .. 111\1 kllowlf'd~('. fir~t HI.l'pH towardH the st.udy of UOIl('!Iuilil>lil\lll phaHI' t.Jallsil.iolJ"l 
ill DDE·H. 
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process. A process for which C(T) decays rapidly is said to havl' short llH'1ll0ry, 

because values of the noise sepafated by more than om' corfelation tinl(' art' alrnost 

uncorrelated. This is reflect ~d in (5.2.1) by the fad that the afea lWlleath C( T) 

is smaH for short-correlated noise. Noise with a smaH tcor is also said 1.0 Hllt t lIal.t' 

rapidly. ln general, whet.ht'r a nnisl' qllalifies as rapid 'lï ~l()w dt'pellds 011 tht' ratio 
t 
cor, where t!y. is the cilaraderistic relaxation tirne of tht' systel11. For exarnplt', Hoise 

t 3Y3 
with a correlatiun tirne of 1 millisecond will 1)(' conl>iderl'c! fast for a systt'l1I wl\Ost' 

characteristir relaxation tirne 1.0 a limit cyde is on the ordt'r of \ Sl'COIICI. 

Noise with a finite tcor is called colored nois('. Wht'n tcor « f 8y8 , il. IS nattlral 

to consider the limit lcor - O. In this cast' the autocorrelation fnndion C(T) is a 

Dirac delta function, and the noist' is said 1.0 hl' o-correlated. The stochastir pro("t'S~ 

et obtained in this limit is called a "white-noise" pro,ess bl'causl', as will I){' showlI 

below, the power spectrum for this pro cess (given by the Fourier tramforlll of C( T)) 

is constant, as for white light. "Vhite noise is a generalized stochastir proct'ss, in t.ht' 

same sense that the delta fundion is a generalizt'd funct.ion. Sinn' a constant powt'r 

spectrum implies infinite total power, white noise is nul. physically realistit'. Further, 

it is difficult to see how a memoryless noise such as Gaussian white noise, taking 011 

a different value at every instant of time, can have any effl'd Oll a ~y!>telll. lImv('\,t'r, 

this becomes more plausible upon realizing that the variance of this stoChél~tic prO("l'!>s 

is infinite (see below). In fact, white noise describes real noisl' rather weil wllt'II 

teor « t sy3 , and further facilitates the mathematical description of tht' lIoiby !>y!>tt'lIl 

(see Section 5.2.3). 

H is easier 1.0 understand white noise by considering its relation to wloree! noise 

and a Wiener process21 liTt. \Viener processes have heen propost'd as llJocJels of tlw 

perpetuai irregular motion of smaH l'articles suspt'nded in a fluid known as Brownian 

motion. They are Gaussian processes with stationary indepenclt'nt in( f('IIH'lIt!'.. 'l'hl!> 

latter property mt'ans that the probability density of tht' incre!Ilellt (Il't W.) dt'\H'IICI" 

only on the time differenct' (1 - .5), and is thlls invariant with f('!>IH'cf fo t.ilTH' !>llIft." 

This implies that the successive values of IF, art' indept'ndt'lll 2I
j hO\\'t'vt'r, il. dm'" ilOt. 

imply that a Wiener process is stationary. In faet, although il. haf> 7,ero H1eilll, ib 

variance increascs linearly with time. 

The sample paths of a Wiener process are continIl011s, h1lt irregllla.r. III fad, 

the velocity is undefined and the sample paths are nowhere differmliable. Wiener 

processes approximate the behavior of a Brownian particle very weil, and their f>lTnplt' 
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featur('s compensate for the curious properties which arise beeause they are mathe­

matieal id(·alizations. Further, it ean be shown that there is a one to one relation 

between white noise proeesses and processes with stationary independent increments 

sueh as Wiener processes. This relation is simply the time derivative, and we will 

write 
t __ dH't 
I"t - • 

dt 
(5.2.2) 

It is possible to obtain differentiable sample paths by considering that the state 

variable of the Wiener process is velocity rather than position. The resulting process 

is ealled the Ornstein- Uhlenbeck process21
, and is denoted by (t. It satisfies the 

sloehastic differential equation 

( 5.2.3) 

where et is a white noise proeess as in (5.2.2). It can be shown21 that the Ornstein­

Uhlenbeck process is stationary. Hs autocorrelation function decreases exponential­

Iy: 

(5.2.4) 

where (1'2 is the intensity of tht" white noise process defined by the mathernatieal 

expedation E{et(,} = (J'26(t - s). However, successive increments are now correlated, 

and the sample paths are difft"rentiable. From (5.2.1) and (5.2.4), it follows that the 

correlation time of tht" 0- U process is simply tcor = l' -1. 

The limit l' -) 00 of tht" 0- U process do es not correspond to the white noise 

process, as can bt" st"en by looking at the power speetrum of the Ornstein-Uhlenbeck 

process : 

(5.2.5) 

The white noise limit yields 

lim S(v) = 0, (5.2.6) 
-y->oo 

for ail frequencies v. This is ealled the noiseless limit. The proper white noise limit 

involves inereasing the strength of the fluctuations as l' is increased, keeping the ratio 
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(1' 2 = 0=2 constant rather than variance. In fact this is the limit in which tht' int('gratt'd 
'Y 
Ornstein- Uhlenbeck process converges to the Wiener proct'ss 21 and t!\(' fiat Spl,(·trullI 

0'2 
S(V) = --

27r 
(5.2.7) 

characteristic of white noise is recovered. Finally, the Ornstt'in- Uhlenbt'ck proCl'SS 

Ct is distributed with a Gaussian density which is independent of tht' value of tiH' 

correlation time : 
(2 

( ~) 1 - 2-2 

g.., = (2rru2 )1/2 e (1' • 
(5.2.8) 

This means that (5.2.8) is also the density of the white noise process ohtaitled in t.!1t' 

limit of the Ornstein- Uhlenbeck process. 

5.2.3 Modelling the effect of noise. 

Once the noise characteristics have been specified, one is fa('ed with tht' pro\)­

lem of coupling this noist' to the deterministic dynamics of the system. Let.\", and 

,,"tt den ote the (one-dimensional) stochastic state variables under tht' infl\l('t\Ct, of, rt'­

spectively, colored noise (given by the Ornstt'in-lThlt'nb('('k pro('('ss (O-U» élnd whitt' 

noise. Assume these variables satisfy the stochastic differential ('qllations 

(0 - lf) (fi.2.B) 

(whtte) (5.2.10) 

known as generalized Langevin equations (st'e Equation (/1.2.25». Thcir intt'gral form 

is 

(0 .- U) (5.2.11 ) 

and 

(whif.f' ) (5.2.12) 

respectively. Because the Ornstein- Uhlenbeck process has continuons realizations (i.('. 

continuous sample paths), both integrals on the right hand side' of (5.2.11) ('an lH' 

interpreted as ol'dinary Riemann integrals. The nrst integral on the' right band f-lide or 
(5.2.12) can also be interpreted as a Riemann integral. IIowcvt>f, the f-lalllpJ(' paths or 
the white noise process are nowhere differentiable, and the st'cond in t('gral in (!) 2.12) 

must be interpreted according to the stochastic calcul us of cithcr Ito or Strat.onovÎrh' 1 
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(see also A ppendix A). Although ..t t has continuous realizatioD". these are, as for the 

Wit'nt'r IHOCt'SS, nowhert' differt'ntiahle. On the otht'r haml, since int.t'gration has a 

smoothing effed, the realizations of St are difft'rentiablt'. 

We have seen that for Gaussian white noise, a dt:'scription in terms of a stochas­

tir state variahle can \)(:' replaced by another in tenns of a probability density whose 

deterministir t'volution is governed by the Fokker-Planck t'quation (4.2.26). However, 

for nonlinear equations, il. is gent'rally impossible to analytically sol ve this equation, 

even for its stationary solution, and one is obliged to resort to approximation tech­

niques (see c.g. Risken I41 ). 

A system suhjected to colored nOIse case can be modelled as a pair process 

(.Yt, (t) given by (5.2.9) and (5.2.3). Since (5.2.3) involves Gaussian white noise, it 

is straightforward to write the corresponding two-dimensional Fokker-Planck equa­

tion for this system of SDE's (even though in this interpretation (5.2.9) is, strictly 

speaking, an ODE cou pied to a SDE). Again, it is in general impossible to obtain 

an analyt.ical expression for the stat.ionary solution of this Fokker-Planck equation21 . 

Approximations arc <lvailablc for the cases of very short-correlated noise and very 

long-correlated noise. For short-correlated noise, it is possible, aCter appropriate scal­

ing, to expand the stationary density in powers of tcor. This is also known as an 

expansion in the inwrsl' bandwidth of the noise, since this noise bandwidth is in­

versely proportion al to f cor' 

A syst.em subjerted to long-correlated noise is able to "equilibrate" to the fluc­

tuations of the noisl'. lt is as if the spt'ctrum of the no!st' were sirnply a Dirac delta 

function at the origin, i.e. the noise behave~ like a constant. Thus the "tate variable 

.Y t can be arliabat.irally eliminated, i.e. d~~t can be considered to be zero. An ap­

proximatioll similar to this so-called "switching curve approximation,,21 will be used 

in Section ,rl.3. 

5.2.4 Numcrical integration algorithm for a stochastic DDE. 

Alt.hough variolls approximation techniques are available tu solve Fokker-Planck 

l'quations, it is often desirable to obtain " numerical solution to the full problem. The 

numericul solution of the' Fokker-Planck partial differential equation in more than one 

dimension is in general a formidable problem. Another alternative is to numerically 

integrate the stochastic differential equation itself, which is the method we use. 

As !lwntioll<·d in Section 5.1, we are intcrested in the behavior of the delay­

diffen'ntial eqllation (5.1.1) with additive and multiplicative colored noise at a Hopf 
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bifurcation. We are not. aware of any theoretical results concerning til(' nUll1erifal 

integration of a stochastic ODE. Hence We must procede with caution in dt'"eloping 

a numerical algorithm fOf its integration. 

Since noise-induced shifts in the bifurcation point are anticipated (Appt'nelix A), 

it is important to use a method that converges rapidly and acclIratdy to the limit 

cycle in the absence of noise, espC'cially in the vieinit)' of the hifufcation point wlwre 

transients are extremely long. We have shown in Section ·l.8 thai, the fourth orcier 

Runge-Kutta algorithm is accurate near the Hopf bifurcation for an intt'gratlOll tinlt' 

step equal to r /200. In fact, the accuracy is satisfactory eV('1I for a time &tep of r / [00. 

Although the new method presented in Section ·L8 is, for a given time &I.ep, allllo&1. 

as accurate as the Runge-Kutta algorithm and four times faster, Wl' have opt(,c1 for 

the Runge-Kutta method, since the new method has not been sufficiently anaJyz('c1. 

Furthermore, for the fourth order Runge-Kutta method, th('fe arc analytiral fesults 

concerning convergence for stochastic simulations. In faet, for additive white noise 

problems, there are algorithms that are weil tested for accuracyI12,143. Tlu're are ais" 

straightforward extensions for the additive colorcd noise cas('114,141. 

More recently, numerical integration algorithms for prohkms involving multi­

plicative colored noise have been tested (see e.g. Fox and Roy 145). Thes(' authors 

suggest using a coupled equation algorithm in which the ODE (e.g. Equat.ion 5.1.1) 

for the state variable is integrated using a standard algorithm (sll("h as a Rllngt·-I(IIt.tta 

method), while the O-U process (5.2.3) is integrated IIsing the Box-Muller algorithlll 

for white noise (see below). They also suggest that the white noise li mit. Ill' stuclit'c1 

using this algorithm with short-correlated noise. 

In Section 5.3, the case where the parameters c and k in 

d.4 cfr 
-- = -aA(t) + --- + k 
dt (Jn+An(t-r) ' 

(5.1.1) 

fluduate under the action of separate Ornstein- Uhlenbeck prOfesses will he of interest .. 

Fluctuations in c around a mean value ë, 

c = ë + (t, (5.2.1:1) 

correspond to multiplicative noise. However, fluctuations in k, 

k = k + Ct, (5.2.14) 
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correspond tn additive noise because the intensity of this noise does not depend on 

the state variable A (pupil area). Equation (5.1.1) together with (5.2.3), (5.2.13) and 

(5.2.14) defines the pair process (A(t),(d to be integrated using the coupled equation 

algorithm. Wc describe first the Box-Muller algorithm (see Knuth 146
). 

The statistical features of Gaussian white noise et are completely determined by 

the requirements 

(et) = 0 

(etes) = (1'2 6( t - s) . (5.2.15) 

At each integration time step, the Box-Muller algorithm generates a number N dis­

tributed with a Gaussian density of zero mean and unit variance using two numbers 

vI and v2 from a uniform distribution on [O,lJ. For our simulations, the uniformly 

distributed random numbers were generated using the routine RANI (also due to 

Knuth 146 ) from Numerical Recipes 147 • A Gaussian number e of zero mt'an and stan­

dard deviation cr is then given by 

e = crV -2ln(v1) cos(271'v2). (5.2.16) 

In this section we use a slightly different scahr g for the 0-U process to conform 

with Fox et al. 136 and Sancho et al. 144 • It consists in dividing the standard deviation 

(1' of the noise by the correlation time tcor 50 that (5.2.3) becomes 

The autocorrelation function (5.2.4) is then given by 

2 
C(t,s) = ~e--ylt-sl. 

2tcor 

(5.2.17) 

( 5.2.18) 

The white noise limit now corresponds to the limit tcor - 0 and the intensity of the 
(]"2 

resulting white noise is cr 2 j howeve_, the strength of the random term is -- by 
2tcor 

(5.2.18). 

The standard way (set' e.g. Sancho et a1. 144
) to integrate the 0- U process (5.2.17) 

is to use an Euler differential algorithm: 

«(t + ~t) = ((t) -1'((t)(~t) + 'Ye..fKi. (5.2.19) 
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Notice that the stochastic term is multiplied hy the square ront of the integratinn 

time step. This is a feat.ure of the stochastic ca1culus used to give a !neaning tn tl!t' 

second integral on the right hand side of (5.2.12)21. 

In the coupled algorithm, the size of the time step is limited by the Ellier inlr­

gration of the 0-0 process. In order to take advantage of the larger st.ep siZt's thal 

higher order techniques (such as Runge- Kutta) allow, Il more effi('ient algorithm for 

the O-U process should he used. Such an algorithm has heen recent.ly propO!wd by 

Fox et al. 136 • It uses an integral Euler algorithm, which IS very similar to the n('w 

algorithm for DDE's presented in Section 4.8 : 

l
t+~t 

((t + Àt) = e-'Y(at)((t) + "Y t e-'Y(t+at-a)O'e(s) ds 

= e-'Y(at)(t) + h(t,Àt). (5.2.20) 

Since a linear operator transforms a Gaussian process into a Gaussian proc:ess, "(t, Àt) 

is also Gaussian distrihuted with zero mean. Therefore, ail its prop('rties are dett'r­

mined by its second moment 

(5.2.21 ) 

The algorithm is thus given hy (5.2.20) with the same Box-Muller algorithm, except 

that (J'in (5.2.16) is replaced hy the square root of (5.2.21). This algorithrn, rombincd 

with a fourth order Runge-kutta rnethod, was used to integrate the stochastic DDE. 

A time step of T /100 was found to he satisfactory. 
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5.3 NOISE AND CRITICAL BEHAVIOR OF THE PUPIL LIGHT RE­

FLEX AT OSCILLATION ONSET. 

Abstract. We have induced oscillations in the human pupil light reflex using two 

different kinds of <>xternal electronic feedback: smooth negative feedback (SNF) and 

pi(>cewis(' const.ant negat.ive feedback (PCNF). The behaviour of the menn amplitude 

and period at oscillation onsct are shawn 1.0 be in good agreement with a !l1odcl of this 

neural system incorporating tht' e'xtern, t feedback. The' critical behoviour displayed 

through amplitude and period fluctuations is different in each case. Tht' obst'rvation 

that amplitude fluctuations are larger (smaller) than period fluctuations for SNF 

(PCNF) is explained tht'oretically and by numerical integration of a stochastic delay­

differt'ntial equation with additive and multiplicative colored noise. Wc find that both 

types of noise postpone the Hopf bifurcation in SNF by an amount proportion al to the 

noise intensity and inversely proportional to the correlation time. The implications 

for analy:dng bifurcations in neural systems are discussed. 

5.3.1 Introduction. 

Oscillations occur in a wide variety of neuro-physiological control systems under 

normal and pathological conditions2o ,24,25,54. Experimental and theoretical investiga­

tion of the properties of these -cillations from the point of view of nonlinear dynarnics 

has been hindered by: 1) the ,carcity of suitable systems in which parameters can 

bl" manipulatedj and 2) the presence of high amplitude noise. Thus it has been diffi­

cult 1,0 untangle the deterministic and stochastic processes which shape the observed 

dynamics. 

As a paradigm for neurological control systems, the human pupil light reflex 

exhibits oscillatory phenomena of varying complexity32,99. For exarnple, regular os­

cillations in pupil area occur when the gain of the feedback loop is sufficiently high67 

and aperiodic oscillations in pupil are a occur spontaneously (a phenomenon known as 

"hippus"46,RI!). 1'he1'e have been studies47 ,74 of the Iwhaviour of hippus as a function 

of light levt'! élnd of its interaction with pupil oscilla.tions produced by sinusoidally 

varying light stimuli. These have concluded that many properties of hippus can be 

eXplained hy assuming that it represeTlts multiplicative ga.ussian white noise injected 

intn the reflex at the level of t.he brainstern nuclei. Howcver, the precise origin and 

nature of hippus is still not known, and new experimental paradigms, such aS the one 

presented in this paper, arl" needed to deepen our understanding of its properties. 
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One advantage of studying the pupillight reflex is that it can hl' easily and non­

invasively monitored. A second advantage is the t'ase with which the fl't'clhu('k loop 

can be opened31 (i..e. the t'ffect of the output on tlH' ITIput ("ail he r(,l1loved). This ha~ 

led to extensi. ve st udies (see Sta rk32 for a rcview) of t hl' li neé\ r é\ nd non li !1ea r propert.it's 

of the refkx components and of the noise under ope11 loop c()lIdition~. Fillally, (Iosl'd 

loop oscillations can be studied using an experimellt.al ~dup in which the lIorlllal 

feedback is replaced by controllahle external e!edronic fl'edba("k 1. This "r1amping" 

method produces a hybrid system in whi('h autonOtnO\lS os(:illatioJH, and hifl1fcatiot1s 

can be produced and studied as a f\ludion of the control paranH'l.efs 1 ,1l2,IH,Il!i,RIl. 

Recently, it has been shownR1 ,99 that autonotnous oscillations in t.he normal pupil 

light reflex can he modelled using the nonlinear delay-diffl'rcntialequatioll (DDE) 

dg dA(t) -
- -- + Qg [A( t) 1 = F [cf> cf> ( t - T) 1 . 
dA & ' (5.3.1 ) 

Here A(t) is the pupil area, g(A) is a monotonically decreasing nonlinear fund.ion 

relating iris muscle activity to pupil area, T is the tutal time delay in the syst.l'm, n is 

related to the rate constant for pupillary movements, cf> is the rdinallight flux (l'quaI 

to the product of light intensity and pupil area) and ~ is the light flux hdow whi('h 

no response occurs. The model also takes into account the logarithmic compression 

of light intensities in the transduction prucess at the retina. For the intact pupil light. 

reflex with negative feedback, 

(.5.3.2) 

where "Y is a physiologieal parameter related to the transduction of light intensity into 

neur~l firing frequency in the optie nerve and t.he midbrain. 

In this paper we study the noisy behaviour of the period and the arnplitud(' 

of oscillations induced in the human pupil light reflex by replacing the fllnction F 

with two kinds of external feedback: 1) piecewise \Onstant negative feedha('k (peNF: 

Figure 5.3.1a); and 2) smooth (i.e. differentiahle) negative f('('dhark (SNI": Figure 

5.3.lb). Equations (5.3.1) and (5.3.2) contain many parametefs which are difficlllt t.u 

estimate exprimentally. A simpler model for SNF oscillations which displays the f>aIJl(' 

qualitative behavior as (5.3.1) with F given by (.5.~J.2) is ohtained lJo by r('pla('ing F 

with a Hm type function (Figure 5.3.1b) and by making g(A) a linl'ar fllnctioJ\ of A: 

dA(t) cfr 
dt + aA(t) = On + An(t ---T) + k. 
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Figure 5.3.1 Pupil area oscillations induceci using external piecewise constant neg­
ative Ceedback (PCNF, a) and smooth negat,ive Ceedback (SNF, b). The PCNF os­
cillations in (c), measured using an infrared videopupillometer, were obtained for 
the following area threshold values (dotted Une): 30.1mm2 (upper panel), 22.5mm2, 

16.2mm2 and 14.0mm2• Note that the time scale differs between the records. The 
SNF oscillations in (d) are obtained for irj,creasing values of the feedback gain (pro­
portional to the slope in (a». Oscillation onset occurs at G ~ 1. The SNF oscillations 
were measured using a reftectance technique which does not allow calibration in ab­
solute units oC area. Correcting for baseLine drift in SNF by linear trend subtraction 
produced 12-15 second long data sets. The PCNF oscillations did not exhibit baseline 
drift. 
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This equation has b<:>en used as a paradigm for delayed smooth nrgativ(' ft,t'dhark 

systems21
,25 (more complicated oscillations and chaos arise wht'n tht' lIill's fllllnioll 

is non-monotonie, i.e. in the pres!:'nce of "mixed feedback": sel' Hd. 2·1). Eq1\at.ioll 

(5.3.3) exhibits a sup!:'rcritical Hopf bifurcation as 1.lw pararnder 11 or r Îs in<'rl'asl'd 

past a certain valu!:'. ln the PCNF cast', we lineari7.l' g(..1) and takl' F tn 1)(' PH'('('wise 

constant so that (5.3.1) is replaced by the piecewisc linear Dln:1l1 ,99 

Q -+At= _IdA () {Aoff .. l(t - r)<(} 
dt A 011 A(t--r»(} 

(5.:1..1) 

where AOff and Aon are constants. The oscillatory solutions to (5.~i..t) have lwell 

shown to be in good agreement with experimental data20 ,62,64,89. Besides h{'ing itll­

portant clinically, PCNF allows certain nonlinearities of t.he reflex to he Îsolatt'C) for 

study62 ,89,99. 

Specifically we examine the onset of oscillation with SNI" and PCNF and look 

at how the period and amplitude vary as a function of gain (SNI") and thr('shold 

(PCNF). As the Hopf bifurcation is approached, critical slowing down o("rllrs, i.e. 

the decay time of perturbations increases which leads to noise amplification. Wl' find 

that the critica) behaviour at oscillat.ion onset, manifested in peri'H] and arnplitucll' 

fluctuations, is interesting and different In each case. We hllOW that t.!wordical and 

numerical analysis of simple stochastic DDE's can explain this h('haviol1r. W(· a.re Ilot 

aware of any previous studit's of the interaction of noise with antonomnlls oscillations 

in either the pupil light reflex or any other neural reflex. Thus, our study provides 

insight into the origins of noise in m'ural systems, as weIl as the ef[ect of floise Oll 

solutions of DDE's. These results are of interest since physiological systerns an' in­

herently noisy and the transition from equilibrium 1.0 dynamir bchavior is freqllpntly 

encountered20 ,24,25,5'1. 

The experimental method is descri bed in Section 5.3.2. J Il Section 5.a.a we 

present the expcrimental results for both the SNI<" and PCNF cast'. Section 1).:1..1 is 

devoted to a theoretical and numerical analysis of the dderminist.i(' CIne! st,o('hast.i(' 

behaviors of amplitude and period for both cases. The transition From SN F to p('N F 

is the subject of Section 5.3.5. The paper concludes with a discussion in Sertion ,1.:UL 

5.3.2 Experimental mcthods. 

5.3.2.1 Background. 

The pupil light reflex is a. negative feedback neurologiral control systpm whi('IJ 

keeps the light flux falling on the retina (cP in (5.3.1)) within a cert.ain range. An 
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increase in retinal light flux due to an increase in light intensity is compellsated hy 

a dt'crt'ase in flux due to pupil const.riction, and Vlce ver.9a. This constrirt ion [t'suit fi 

from the increase in neural activity ta the iris sphincter muscle, whid\ is P[0!l0[tioI\al 

ta the logarithm of the light flux. During pupil cycling, dilation is thought to IH' 

primarily due to passive relaxation of the sphincter muscle and to inhihition of the 

neural activity to this muscle!)!). T~tis descrihes "closed-Ioop" operation under normal 

smooth negative feedback conditions. 

The feedback loop can be opened using illumination m Maxwellian view31 , i.t'. 

by focussing a narrow beam of light clown the cent.er of the pupil. The diam<"tt'f of 

this beam is so small that the iris can never shade the rdîna from tht' bearn. lIndt'r 

these conditions, the pupil response has no influence on retinal light flux. 

The idea behind "clamping" the pupil light reflex is to electronically cont.rol t.he 

intensity of a light source (in Maxwellian view) using an analog signal pruportional 1.0 

pupil are a (provided by a pupillometer). For example, one can choose to synthesize 

the naturally occurring negative feedback characteristic. This involves clamping the 

pupil light reflex using a linear amplifier with LC'lltrollable positivl" gain 1,0 con vert 

area variations into light intensity variations! G;;. The retinal flux variations af(' then 

given by the product of this varying light intensity and the fixed Iwam ar('a 

When the electronic feedbaek mimics a negative gain linear amplifier, the pupil 

exhibits limit eycle oscillations, which is possibk only if nonlinearities in the reflex 

constrain the amplitude of the oscillation. In the SNF case!)!), the efft'dive f('edIHH'k 

in the whole circuit can be modeUed by a sigmoidal curve (Figure 5.3.1 b). 1 n nth('r 

words, the lim'ar amplifier contrihutes to the steep slope in Figure 5.3.1 b, whil(" pupil 

nonlinearities are responsible for the saturation at high and low art:'a values. III the 

PCNF case the effective feedback is as shown in Figure 5.3.1 a. While t ht:' oscillations 

obtained in the SNF ,ase are often difficult to control due tn drifts in rn<>an pupil 

a.rea1.GG, by cnmparison those obtained in the PCNF case are mort' stahlf,G2 GI,Il!) 

Aa mfrared videopupillography techniqué-! was used for t1l<' PCNF study whil(' 

a reflectanct' techniqué;; was used for the SNF study, as a r('sult of the collahoratioll 

between the authors. While eaeh method has its advantages, they are \'oth efficient 

recording techniques with high enough sampling rate and accuracy for the pro!>('r 

assessment of the phcnomena presented here. Henee our resnlts are Tlot a const'quertct' 

of the different pupil area measuring techniques for SNF and PCNF. 
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5.3.2.2 Pieccwisc constant negative feedback. 

The experimental method has been described previously64. The 1.2mm diamt't.cr 

Iight heam tiser! for opt'n-Ioop illumination was provided by a 605nm peak wavelength 

LED. The ret.inal illumination providt'd by tht' light beam was fixed at a value of 750 

trolands. Suhjeds were dark adapted for at lcast ]5 minutes in a room lit by a 

dim rcd lightj this was the background illumination for the experiment. The analog 

output of an infrarcd binocular yideopupillometer (Hamamatsu Iriscorder Madel C-

2515, sc,mpling rate 60 Hz), which is proportion al tn pupil art'a, was electronically 

comparcd tn an adjustablc arca threshold, O. Throllgh this arc a comparator (Figure 

5.3.la), the state of the system, i.e. pllpil area .4(/), controls tht' timing and duration 

of the light pulses. The light is turned on whenever A > O. The Iinearity of area 

measurernt'nt is bettcr than 1 % [rom 0 to 150 mm,2 with an accuracy of 0.01 mm2. 

Pupil responses to light changes are not instantaneous. They follow a neural delay 

of ~ 300m.~ec (approximat.dy the same for light om,et and offset89
) plus a 100 msec 

delay due to cledronic processing. In ail experiments the pupil being measured was 

also the one being stim1\lated. 

5.3.2.3 Smooth negative feedback. 

The l RIS p1\pillomelcr used for the SNF experiments jf) based on an infrared re­

fledancc techniqlH' whirh has becn described previnus)y65. It yields a relative measure 

of pupil size whlch is Ilt1early related to pupiI area. Infrared emitters and detectors 

are mounted in units attéH h('d to a head band and are positioned approximately 3cm 

in front of hoth ('yes. Th!:' light stimulus for SNF was prnvided by a small yellow (583 

nm peak wayclength) LED which illuminates the rdina in Maxwcllian view by mt>ans 

of two It'nses. The rdlna is c('ntrally illuminated wit.h a circular field approximately 

30 degl ('es ",ide. In hetw{'en the two lenses, a fixation target is mounted. In arder 

to prrvrnt the visibl(' light of the stimulus LED [rOlTI adding to the signal from the 

infrared deteclors, the stimulus LED current and the infrared det.ection are pulsed 

out of phase at ,1000 IIz. The retinal illuminanœ was typically adjusted ta between 

500 and 1000 t.rolands. 

The Sl'J F \Vas synthesized u~ing a linear amplifier rclating the anaJog pupiI are a 

signal to t.he stimulus L"~D eurrent. No significant delay was introduced by the 

external feedbaek. The offset ar,d the gain of the amplifier were adjusted by the 

expt'rimenter. Signais representing pupi! are a together with a c:alibrated signal related 

tu stimulus intensity were recorded digitally at a sampling rate of 50 Hz. Because 
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of very slow noisy fluctuations in the pupillary system, t,he tnt'an light intellstt.y ran 

not control the mean pupil area, which leads 1.0 baseline drift. Corrt'ding for hasl'Iine 

drift by linear trend subtractinIl produced 12-15 second long data sds. 'l'1lt' pupil 

being measured was also the one being stimulatcd. 

5.3.3 Experimental results. 

5.3.3.1 Piecewise constant ncgativc fcedhark (PCNF). 

Figures 5.3.1 c show typical time series of peN F -induced pupil\ary oscillations for 

different are a threshold values. Wc restricted our attention 1.0 valucs of fi that produrt· 

an oscillation. The oscillations have one maximum pn perim\. TIH' power spt'dra for 

these oscillations are shown in Figure 5 ~.2a-c Tht' high threshold o!-.rillat.ions have 

a richer harmonic content than the lowcr threshold one8 which are ncarly !-.itllt'ioidal. 

Also, the speetra show little power belo\\" the fundamental fr{'<{uenry. The oscillat.ion 

waveforms in PCNF have no particular symmetry that would \)(' r('f1ed,('d in the 

power spedra (like for Cl square wave). In faet, the waveform is r\early asyml1H't.ric, 

especially at high thrcshold. This is due to the fad that constriction is faster t.han 

dilation. This asymmetry is highlighted by transient rcsponses to light steps as ()(TUrS 

in PCNF, and not by responses 1.0 the cont,inuously varying light. intensit.y as OCTtln; 

in SNF84 ,99. 

In Figure 5.3.3a,b we havI" plotted A and r as a function of O. Note t.hat tIlt' 

bifurcation point BP corresponding 1.0 oscillation onset is 1.0 the right of the figure. 

When Ao!! < 0 the pupil if, in an equilibrium state charaeteri7.ed by I(·ss than 5% 

fluctuations around the mean pupil are a (Iow amplitude hippus occurring al. large 

pupil areas). When Ao!! > (J, a transition 0CCurS betwl'pn titis state and an oscillatory 

state. P and fI are monotonically increasing functions of (J. 

In Figure 5.3.3c,d we plot the relative amplitude and period fluctuations ~_A 
A 

and ~f for the same range of thresholds. ~A do("s not vary much over the range of 

() values. Sinee A increases as the bifurcation point is approached (i.e. as (J in('rcélse), 

Ai will decrease. IIowever, ~p increascs as (J increél!-.('!-.. Further, ~ P inCf(·fl!-.(·!-. fa!-.ter 

than P, yielding a valu(' of ô-; that increases with O. Wc would ohtain the same ft'hult. 

if, instead of 7' w(' ploUed T where f.:: j, is the o!-.cillation frt><jut'l1cy. In fart. at. 

higher thrcsholds the power spectra have a high background, <'1>I><'cially in the 0.1 -

0.5 Hz range, and the peak of the fundamental mode has less power as the bifurcation 

point is approached. 
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Figure 5.3.2 a) Power spectra of pupil oscillations shown in Figure 5.3.1. For 
PC NF (a-c) the spectra were obtained by running a FFT on Parzen-windowed data 
resampled at 20 Hz. Note the shiIt in the dominant peak as the threshold changes. 
For SNF (d.f), the spectra were obtained by performing a FFT on the data. As the 
gain increases, low frequency power disappear as the power becomes concentrated in 
the dominant peak. 
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Figure 5.3.3 Mean! and fluctuations of oscillation amplitude and period as a Cunc­
tion of threshold (PCNF) and gain (SNF). Oscillation onset occurs at the threshold 
or gain value marked BP (bifurcation point). Oscillations occur to the left of BP Cor 
PCNF and to its right Cor SNF. a) Mean amplitude Aj b) mean period Pj c) relative 
amplitude ~ fluctuationsj d) relative period Pf- fluctuations. The fluctuations 6.A 

and AP are the standard deviations oC the merms A and P at corresponding gain 
or threshold settings. The PCNF data was obtained Crom one subject (to minimize 
variability) by measuring pupil area at for:::::: 20 - 25"ec at each threshold setting. The 
SNF data WD.8 aiso obtained from a single (but different) subject. At each gain setting, 
area was measured during 2-3 rons totalling:::::: 40"ec. Amplitudes were measured !rom 
peak to trough, while periods were measured as the time between successive peaks. 
Note that ~ is larger Cor SNF than for PCNF and larger than 4f in SNF. Also, 

'f is larger in PCNF than in SNF and larger than ~ in PCNF. 

181 



( 

( 

5.3.3.2 Smooth negative feedback (SNF). 

Figures 5.3.ld and 5.3.2d-f respectively show time series of the oscillations in 

pupil ared that occur with SNF and the corresponding power speetra. The oscillations 

have a nearly sinusoidal shape with a randomly fluctuating amplitude and period. In 

fact, the spectra for the hight'r gains are dominated by the fundamental mode (1.1-1.3 

Hz), and tht're is little harmonie content. At the lower gain setting (Figure S.3.2d) 

there is a more pronounct"'d 0.1 - 0 2 Hz rhythm in addition to the fundamental mode. 

The data st't length is limited by saturation of the area signal which results in a clipped 

oscillation (not shown). These saturations appear to be due to uncontrollable baseline 

(mean area) drift which In turn IS caust'd b) Pllpillary noise. Thest' utlcillatiuns, as weIl 

as those for PCNF, were found to not he significantly affeded by blinking. Further, 

the waveforms are symmetric in contrast with those for the PCNF case. 

Tht' menn amplitude and mean period of the SNF oscillations are plotted as a 

funetion of the feedback gain G in Figure 5.3.3a,b. Tht"' gain has been normalized 

such that G ~ 1 when the pupil starts t.o oscillate In this case the bifurcation puint 

(BP) is at the left of the figure, and the oscillations become more prominent as the 

gain is increased. ~1 increascs ,vith G in a roughly sigmoidal fashion. Over the same 

range of gain values, P is quite constant but there are relatively lar~er fluctuations 

at small G vaIlles. 

The relative fluctuations in amplitude and period are ploUed in Figure 5.3.3c,d 

for t.he range of gain values studied. Amplitudes are measured as peak io trough 

differenct's while pt'riods are measurt'd as the time between successive peaks. ~ -l is 
-l 

larger than ~! over this whole range. However, both increase rapidly at lower gains, 

reaching values of ~1 "'-' 0.5 and :li "-' 0.2 . At higher gains, these values level off at 

:l4~ "v 0.2 for amplitude and :li "-- 0.05 for the pcriod. 

The spectra in Figure 5.3.2d-f show that there is considerable power below the 

fundamt'ntal frequt'ncy. This reflects the baseline and amplitude fluctuations within 

t'ach data set. These fluctuations also make amhiguous the determination of the 

point of oscillation onset by extrapolation to zero amplitude. The spedra show that 

the noist> is more prominent around 0.5 Hz, and that its band wid th dues not seem to 

excede 1 Hz. This implies that the correlation time of these fluctuations is on the order 

of 1-2 seconds (reciprocal of the low frequency noise bandwidth). This is in agreement 

with previous studies which indicate that the spectrum of noise in open-Ioop is quasi­

white up to a cntoIT frequency of ::: 0.5 Hz'!(L47 1\8. In faet, high frequency noise 
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(observable up to '" 25 Hz by Nyquist's criterion) is very small, and inspection of tlH' 

oscillations reveals that they a fe smonth. Previolls i n Vl~St igatiol\s 1 ha v(' shown t ha t 

autonomous oscillations exhibit less high fr{'quency noise than thosl' ohtailll'cl IIsill~ 

e.g. external pefiodic forcing. This can ht' t'xplained hy tilt' fad t.hal. the autollolllom 

system behaves like a fesonant lowpass fiIter when il oscillat.es'. Howevef, thl' SIOWl'f 

extraneous oscillations are not sUPPfessed and are clearly apparent in our data. 

5.3.4 Theoretical analysis. 

5.3.4.1 Deterministic analysis. 

In this section we explain the deterministic fesults fOf the SNF and PCNF casrs. 

A. SNF. For the SNF case, Equation (5.3.1) has periodic solutions24 ,25,oo whell 

1( 0 
WT = COS- - fi)' (5.:1.5) 

where w = ViP - 0 2 is the angular frequency of the oscillation at tht' hifurcation and 

the inverse cosine takes its value in the interval [~,7I'1. (3 is tht' slopt' of tlH' fe('dha('k 

function evaluated at the fixed point F'( A'). A superrrit,icai Hopf hifurcatioll o('('lIrs 

wh en F'(A') or T are made sufficiently large, in which case tll(' Idt hand side of 

(5.3.5) is greater than the right hand side. Thus the amplitude of t.he lirnit, C,Vell' 

increases near the bifurcation as the square root of t.he distance ff,)fll the bifufcation 

point (like the order parameter in a second order phase transitior/'). This arnplit.udl' 

behaviour is roughly seen in our data (Figure 5.3.3a) at higher gain. Th(· ofigin of 

the behavior of the mean amplitude near oscillation onset will he explainec\ in the 

stochastic analysis section below. 

Assuming that F is given by the HilI's function in (5.3.3), il is straightforwarel 

h h aT h l'f . . h 7' 271'. h '11' to s ow t at -a < 0 at t e JI llrcatlOn pomt, w ere -= -- IS t. e OSCI atlon 
n W 

period. However, numerical integration of (5.3.3) reveals that the periO() r('mains 

constant near the bifurcation point and i'1creases monotonically thereaft.er unt.il JI. 

reaches tht> value of the period analytically predided for PCNF (!we 1H'low). 'l'hi!. 

is true for different values of Qj further the period in('f('ases very !.Iowly d~ 0' i!. 

decreased (0 == 3.21 : T == 0.936;0 == 0.1 : T =-.: 1.185). This slow variation in 

period is observed in Figure 5.3.3b except near oscillation onset wher(' fluct1la.tion., 

are large. The relative constancy of the period, when compared to the amplitude, can 

be understood from the normal form for the Hopf bifurcation. In faet UI(' fn'qU('T1( y 

is given by an expansion in even pONers of the amplitude and hencc the z('roth orel('r 

term (a constant) dominates near the bifurcation 1o
• 
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B. PCNF. The dynamics of PCNF-induced oscillations are governed by (5.3.4). 

The solutions of (5.3.4) are simple increasing or deueasing exponentials because at 

aoy given time the forcing (i.e. the right hand side) is constant. The oscillation 

is bounded from above hy an upper asymptote ...loll towards whirh the ,)upilliilates 

whenthe light is off. Likewise, when the light is on, the are a tends in a Inwer 'lsympl,ot,t' 

Aon. Note that on crossing () the slopC' of the solution does not change instantly. This 

is due to the finite (neural plus elect.ronic) delay in the system. The exact shape of 

the observt'd oscillations is not reprodllced by this piercwise lint'ar model, e.g. t.he 

derivative is not. continuous (at least a second mder piecewise linear modcl would be 

required). However, the model has the advantage that analytical expressions exist for 

the period P and amplitudt' .489 ,99: 

P =2 + -11 [Amaz-Aon] + -11 [Amm-Aoff] 
T Oc n (J _ A ad n (J _ A 

on 011 
(5.3.6) 

À = Amaz - Amtn , (5.3.7) 

where Amaz and Amin are the maximum and minimum are as reached by the oscillation 

as it approaches, respectively, the asymptotes AOII and Aon : 

A (J -OdT A [1 -Od T ] maz = e + 011 - e (5.3.8) 

A (J -OrT + A [1 -OrT] min = e on - e (5.3.9) 

Note that Aon < Amm < Amaz < Aolf' 

Further, aIl parameters can be estimated experimentally2o,89: ad is determined 

from the slope and AOf f from the intercept of the plot of Am.a:r. vs (J. In the same 

manner, Amm vs () yields Aon and a c. The t.hreshold (J is set elect.ronically, and 

the delay T is measnred independently from t.he pupil response to a single pulse of 

light. We have taken t.he response asymmetry mt.o account by making a dependent 

on the area derivative, i.e. ct = Oc when ii < 0 (constrict.ion), and ct -:- 0d otherwisc. 

Asymmetry can he neglected ~n the SNF r~se where cont.inuous variations in light 

intensity (as opposed to the abrupt. changes in PCNF) emphasize steady-state rather 

than transient }whaviour, leading to an averaging of the rat.e constant!,81. 

Equation (5.3.-1) has bet'n shown64
,89 to predict the period, amplitude and light 

pulse widths in the PCNF case to an accuracy of 5-10% (not shown here). Equation 

(5.3.7) predicts that the amplitude shoulà be independent of (J in the symmetric case 
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a c = ad, and inerease linearly with 8 wht'n a c > 0d. Our data dt'arly supports t.he 

asymmdric treatment. Further, as 8 is incrcased from low vahll's, thl' lH'riod should 

first dt'crease slightly, then increase over the major portion of its range. Apart from 

the slight clecreasc in periocl, this is ohservt'd. 

5.3.4.2 Stochastic analysis. 

A. PCNF. The pOWt'{" spectra in the PCNF cast' hav(' lt'ss pow('r at low frt'qu(,llcit's 

than in the SNF cast' (comparl' Figl1fes 5.3.2 a and cl). Tht'se spt'rtra are difft'ft'nt 

becausl' the t\\'o types of fel'dhark affed tht' expression of tilt' sallH' noi!.e SOIlf('('S 

differently. l'hl' noisl' in our system has a correlatioll time on the orc!<'r of 1-2 seconds 

(Section 5.3.3.1). This compares weil \Vith the reports of the inv('r!.t' handwidt.h of 

the power spectra of pupil fluduations ("hipPllS") undt'r ronstant illumination 16,47. 

The response time of the pupillight reflex, which varies from 0.25 Sl'(, (wl1striction) 

to 1.5-2 secs (dilation), is of the same orcler. Further the- transit'nb in (G.:1.1) are very 

short (less than one oscillation penod) due to the stahilit.y of t.hes{' lilllit ryr!t's. '1'0 

obtain a qualitative understancling of how period and amplit \Ide fltl( t uatiom. cle(>t'Iul 

on 8, we assume that the expressions for amplitude al1<\ period, ha!.{'d on th{, steady 

state solution nf (5.3A), always hold. In other words, the -'y!.tl'III <'<Juilihraf.<'s to 

the fluctuaticJlls. W(' ran then compute period and amplit ude fluctuations by t.aking 

partial derivatives with respect to ftuctuating paralllt'tt'rs. 

Previous studies have shown that the asymptotes undt'rgo cycle to cyril' varia­

tions during PCNF oscillations64 • The asympt.ote!' are ddint'd in tt'rms of physiolog. 

ical parameters by99: 

'Y [rPoff ] Aoff = 040 + C'l.d{3 ln ~- (!J.3.IO) 

(!J.3.11) 

where.B is the slop" of the f('t'd back function g(..t) (ddi ned in (!J.3.1 )) at the fixerl poi nt 

of (5.3.1) when Fis given by (5.3.2), and .4 0 is tht' maximllm pllpil art'a (nol,(' thal 

04 0 / / > Aon sinee (3 < 0). These expressions imply that if any physiologi('al paran)('ter 

fluctuates, this will affect the vaIlle of the asymptotes sinn' th('y are f\Jndions of ail 

the parameters. Furtherrnore, the parameter estimation sch('me of the pr('n'd"l~ 

section endows the asymptotes with the largest relative t'rror sinn' they art' oht.airH'd 

as intercepts of linear fits. Hence we assume that only the asymptotes fluctuai!' 
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significantly, and that the asymptote, period and amplitude fluctuations are normally 

distribl1ted17 ,14 • 

Using a standard error propagation formula, the variances of the amplitude u~ 

and period O'~ are (remembering that À is the amplitude from (5.3.7)): 

where 

ap 
aAon 

ap 
aAol1 

2 _ 
Up -

( aÀ )2 2 (BÀ )2 2 
BA 0' Ali" + a-A uA"" 

ofl on 

[1- e-oc,fT]2 (1'2 + [1 _ e-ClrT ]
2 

(1'2 
A vJ / Ali" 

( ap )2 2 ( BP )2 2 
BA U An" + a-A U A"n 

ofl on 

(J - Amin 

(5.3.12) 

(5.3.13) 

(5.3.14) 

(5.3.15) 

(5.3.16) 

From this analysis we see that the amplitude variance does not depend on (J, while 

the period variance does. Since the amplitude increases as the bifurcation point is 

approached, the relative amplitude fluctuatiolls will decrease, as shown in Figure 

5.3.3e. Furthermore the ("ritieal behaviour of the period is seen in the divergence of 

Up at the hifurcation point 0 = AOJ! in (.5.3.16). A simple calculation shows thal as 

(J ---) Ao", r ~ ln(Aoff - 0) and thus 

DoP ~{(A -0)1 [AOII-Am1f!.]}-1 
p off n AOII - 0 (5.3.17) 

Note that the argument of the logarithm is greater than one except when (J = Amin = 
Aon. Our analysis thus predicts that as the point of oscillation onset is approached, 

the relative period fluctuations should increase rapidly, which is also in agreement 

with tht' data of Figure S.3.3d. 

B. SNF. In t.ltis section we first discuss prohlems involved \Vith the analysis of fluc­

tuations in the S NF case using standard theoretical approaches. We then justify our 

choice of which parameters fluctuate, and show how numt'rical integration of a sim­

ple sto("hastie ODE ('xplains the observed stochastic behavior of tht:! amplitude and 

period. 
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Additive and multiplicative nOl.,e 

The behavior of ODE's near bifurcation points can be stlldi('d by looking nt tilt' 

extrema of the st.ationary probahility density of tht' Fokker-Planck eqllation. 'l'hell«' 

extrema are the quantities that undergo hifurcation~. This is t.rue fol' the Hopf hifurca­

tion in ODE's, wht're other quantities such as tht' power spertrum and the allto('orn'­

lation function cio n()~ display this rritical hehavio/ 14R
• For DDE's, the Fokker-Planck 

equation takes the fonn of a PDE wilh retarder! arguTTlent. 'l'hcn' <ln' no analytical 

techniques available to sol\'l' such an e!Juation fOI ils stationary dellsity. Furl her, 10 

compute the dcnsity from an experimentally Illeé\.sured tlllll' series requirl's extellsin' 

data sets so the fluctuations can be averaged oVt'r many osnllation ryrles 14R • Sitl<'(' 

our time series are short, such an approach would yield inaccurate rt'sulb, especÎally 

in regard to the position of the ('xtrema of densities. 

It is known that the relaxation time tr of I>t'rl urbations fl'om Hw limit cycle (a 

measure of ~ta bility) is, aecording to Floquet theory 149 , gi ven by f r ex (TI - nu) - t wlwre 

no is the parameter value at which the bifurcation ocnus. This critical slowing clown 

has been measured in the vieillit y of tht' st>lf-pulsing thresllOld of H histahlt, optiCHI 

system governed by a DDE (the Ikeda equation)139. The divergellce (If tr i~, along 

with ,4 ex vn-----n~, charactertstic of second ord('r pha~(' transitiollS21 • VVe canrlOt 

moeasure the relaxation timt' to tht' limit cycle bt'('ause of the limit 011 tilt· It'ngth of 

our data sets and the high noise le"els. Even If Wt' cOl1ld measur(' this rate, it is nol. 

clear how to relate it to the amplitude and peri()(l fluctuatiolls we are intert'sh·d in. III 

view of this and of the prohlems involvcd with the density approach, W(' n':,ort inst('acl 

to numerical simulation. VVe apply noise to (5.3.3) since this equatioT1 is sirnpl('r titan 

(5.3.1) together with (.5.3.2) and explains qualitatively the ddt'rrninistic ht'l!avÎors('ell 

for SNF99
• 

To identify which parameters in (5.3.3) are subjcd to nOIse, we (·quatt· 1 lit' 

asymptotes in the PCNF case (which we assumed are f1uduating) with tht' IIpp('r 

and lower bounds of the SNF functioll as in Figure 5.:J.3a. This identification yidds 

(setting Ge = D:d for SNF): 

(.5.:U R) 

(!>.:J.l !)) 

and similar expressions if asymmetry (Le. Ge ~ Gd) is kept. The physiological pa­

rameter that is probably fluctuating the most is l' since it is relatt'd to hippus. This 
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is in agret'ment with t'arlier work showing that the amplitude of the noise depends 

on the state of the system, i.e. that the noise is multiplicativt'. In faet it has he("n 

shown 47 ,74 that nt'lIral output of the midhrain (which drives the iris constrictor mus­

cie) is pIimarily the surn of two cnrnponents: one proportional to light intensity and 

00(" proport.ional to hoth intensity and noise level. cP, related to the adaptation state 

of thf.' rctina, is also lik<"ly to fluduate because of variations in light intensity. 

ft is obviolls from (.1.:U8) and (5.3.19) that if either 'Y and/or cP vary, c and 

k will also vary Bence, tllf' amplitude é\nd period fluctuations in SNF should he 

qualitativdy explained \ISing (5.'3.3) with additive noise (on k) -:Lnd multiplicative 

noise (on c). When noise is assumed to affect 'Y and?> in (5.3.2), il. is considered 

multiplicative. If II1stead WE' use (53.3) with noise on c and k, wc are assuming that 

the noise is both additivE' and multiplicative. :1 prwrz, this additive noisE' does not 

seem justified. However, additive noise is also expeded in t.he general case (i.e. it 

could have heen added 1.0 F in (5.3.2)), and could be due, for example, to random 

neuron firings lI1 the ",bsence of perturb •• tions originating outside the reflex arc. 

Wc assume colored Gaussian noise with a correlation time t ctJr ;::::; l second (see 

Section 5.:t3). Explicitely, we have c = C+E(t) (multiplicative noise) and k = k+E(t) 

(additive noi~e) where E(t) obeys an Ornstein-Uhlenbeck process150 

~: = -fê(t) + re(t) (5.3.20) 

where r == t;o~ and e(t) is a Gaussian white noise of zero me an and variance u 2 , i.e. 

(e(s)e(t)) = u 2b(t - s). The correlation function of the Ornstein-Uhlenbeck process 

(~J.3.20) is 

(5.3.21) 

The white noise Iimit is obtained by letting tcor ~ 0 in (5.3.21), and th'! sLrength of 
cr2 

tht' Ornstein- Uhlenbeck noise ;s 
2tcor 

Numerlcal Algort/hm 

Our stochastic simulations w("re done separately for additive and multiplicative 

noise I36
,t41,145. The Ornstein-Uhlenbeck process (5.3.20) was integrated using an 

integral Euler mdhoc\ recently proposed by Fox et a1. 136
, which has been shown to be 

more accu rate than the usual differential method, while (5.3.3) wa.s integlated u:-ing 

a fourth order Rung("- K utta \Vi th linear interpolation for the delay. The time step of 

ï /100 was the same for both met huds and was limited by the accuracy requirements 
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for the integra.tion of the Ornstein- Uhlenbeck process. The paramett'rs wt're ChoSt'1l 

to be ct = 3.21, r = 0.3, ë = 200, k = 0 and () = .t) to yidd Tt'Ilsonahle pllpil 

are a values6 -l. 8 -l in mm2 • The gain G in the SNF experiments is proportion al tn the 

parameter n, which con trois the steepness of the Hill functioll at the fixt'd point. Wt' 

varied n from its value at the Hopf bifurcation, nll = 8.18. t,n a valut' al)()\'e whi('h 

the amplitude grows very slowly (n = 12). n was varied in stq>s of 0.02 from 8.18 1.0 

8.30, and then by steps of ü.2 from 8.40 to 12 O. 

Equation (5.3.3) was integrated using an init;al function A( t ' ) ~- 40, f' ( 

[-r,O], whieh is close to the fixed point of (5.3.2) (A' = 44.6). For fi given valUt> 

of n, the solutio~ is first allowed to settle onto the limit cycle in the absf'nce of Boise 

for an integration time equal to 2500 delays; th~n noise is applied, and another 2.t)()() 

delays are disearded as transients. (5.3 3) is further integratf'cl for another 20000 de­

lays during which the amplitude and periocl histo~ra,ms are constructed. Pt.·riods anr; 

amplitudes were d~terminecl fr'Jm the zero ~iope points of the solut.ioll as in tht' data 

analysis (Section 5.3.3). vVe requin'cl two sueh points to be separated by at least 20 

time steps (60 msec) in oroer to neglect very rapid changes in the derivativ{' whirh 

could not bf' measmed from the data. 

It is diffirult t.o ilumerically obtain an accurate de:.;cription of steady statt' bt'­

havior in the vicinity of a bifurcation point because of critical slowing down. Sinn> 

the amplitude of the limit cycle at a Hopf bifurcation grows as JI 0< (n - nll)1/2 and 

the relaxation time of transients onto the limit ~ycle goes as i, ex (n - no) - l , it follows 

that t" <X Ji -2. This implies tbat if we allow sufficif'nt time for thf' transiellt.s to dl'célY 

in t'lf' vjcinity of the Hopf bifurcation poirtt (i.e. for n ~ nll), then this timf' shollld 

also be sufficient ta obtain an accu rate picture of the steady state hehav]or for Tt > 11'1' 

Henee, for aU values of n, the same time (5000 delays) was allowt'd for tht' transi(·nl.s 

to decay. We have numerically verified that this transient period was suffi('if'nt. hy 

comparing our results in the vicinity of the Hopf bifurcation with th()~t' of simulations 

for 60000 delays where the first aoooo delays are discardf'd as transient.s 

A histogram of the amplitude values from the nllmerical solllt.ion of t.he syst.f'rn 

(5.3.3) with multiplicative noise (5.3.21) on c was ohtained by dividillg t.1H' int,erval 

(0,40) mm2 into 200 bins. In Figure S.3Aa, t.he mean amplitude caklllatf'd frorn 

this histogram is plotted as a fundion of the bifurcation parameter n for differ('nt. 

intennities of the multiplicative noise (t, or' = 1) as weIl as for the detf'rminist.ic cast'. 

The f:urves were obtained by smoothing the simulation results at the discrete valll(,s 
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Figure 5.3.4 Predicted means and fluctuations in amplitude and period for the SNF 
case, computed from the numerical integration of Equation (5.3.3) with multiplicative 
Gaussian colored noise (5.3.20) on the parameter c. Pal'ameter values are T = 0.3 .. ec, 
ë = 200mm2 "ec-1 , (J = 50, a = 3.21.tec-1 , le = Omm2 "ec-1 and the initial area was 
constant (40mm2 ) on the interval (-T, 0). Tb.~ bifurc8~ion parameter is n (which is 
proportional to the Ceedback gain), and a Hopf btîurcation occura at n = 8.18. The 
noise correlation time is one second. a) Mean limit cycle amplitude as a function of n 
for the deterministic case (<7' = 0) and for <7' = 7.0 and 15.0. b) Mean limit cycle period 
as a function of n for the deterministic case and for tr = 3.5,7.0,15.0. c) Relative 
M1lplitude fluctuations &II a function of n for tr = 3.5,7.0,15.0. d) Relative period 
fluctuations for the same values of tr as in (c). Note that the mean period in (b) 
varies slowly with n, even though the expanded vertical scale suggests the opposite. 
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Figure 5.3.5 Magnitude of the separation between the peaks (order parameter) in 
the density of the solution of (5.3.3) as a function of n for multiplicative (a,b) and 
additive (c,d) colored Gaussian noise (5.3.20). The parameters are the same as in 
Figure 5.3.4. In aU plots, the amplitude of the limit cycle in the deterministic case il 
included for reference. a) Peak separation for multiplicative noise of correlation time 
tco," = l"ec and for (T = 3.5,7.0 and 15.0. b) Peak separation Cor multiplicative noise 
with (T = 15.0 and {or 3 difFerent noise correlation times: te"" = 1.0,2.0,4.0. c) and 
d) are the same lUS, respectivell", a) and b), except that the noise il additive (on the 
parameter le in (5.3.3)). 
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of n. The me an amplitude in the presence of noise does not go to zero at the hifur­

c:ation as cloes the deterministic amplitude. This is in agreement wit h f hl" ol'served 

behavior of the mean amplitude in Figure 5.3.3a. Rather, it levels off at a finite value 

proportion al to the noise intensity. The sigmoidal shape of the curve for cr = 15 

is in goud agrement with that of the experimental ('urve (Figure 5.3.3a). In this 

calculation, the v'?ry small amplitude fluctuations (corresponding to the first three 

bins of the amplitude histogram, equivalent ta (0,0.6) mm2 were neglected from the 

computation of the amplitude mean and standard deviatlOn, ta account for the fact 

that these small Au('tllations are not measurable eXlwriment.ally. The value at which 

the mean amplitude curve levcls off at the bifurcation point is proportional ta the 

number of low amplitude bins neglected. Note titat below the bifurcation point (i.e. 

for G < Go), the mean amplitude is still fini te, and gocs to zero as the equilibrium 

point becomes more attracting (not shawn). 

The mean period is lomputed (as is the me an amplitude) from a histogram of 

the period values in the nllmerical solution of the stochastic ODE. The peri8d value 

interval (0.5,] .5) sec was divided into 200 bim. The mean period value for the same 

range of noise intenslties as in Figure 5.3.4a is plotted as a fundion of n, as well as the 

period for th(' deterministic case. Figure 5 :1.'!b shows that the mean period is fairly 

constant over the values of 11 investigated, as observed in the data (Figure 5.3.3b). 

In aIl cases, lht peri(){l increases slightly with n; however, for a given value of n, the 

mean period deneas{'s as the noise intensity inneases. 

For the PCNF case, it is possible to estimate the parameters of (5.3.4) from the 

PCNF data 89
. I1owcver, il, is difficult ta estimate th€' parameters of t 5.3.3) from the 

SNF data, which is the reason why we are looking for qualitative agreement with the 

data in Figure 5.3.3. The noise intensity was choseH to reproduce the values of relative 

amplitud€' and p€'riod fluctuations measured from the data (Figure 5.3.3c,d). Good 

agreement between these values and between the shape of th€' time series (not shown) 

was ohtained wheB 0-
2 

:::: 15 (Figure 5.3Ac,d). This implil's thal the dependence of 

mean amplitude on n is given by the 0- -= 15 cmye in Figllr€' 5.3An. This curve is in 

ract the one ",hose shape agrees the best \Vith that nf Figure 5.3.3a. 

By repeating the simulations nt a given value of n for the highest intensity used 

(cr := 15), it. \Vas found that the mean and standard deviation values fluduate hy ap­

proximately 2%. This accuracy could be redllced by averaging these values over many 

realizat.ions of the Ornstein- Uhlenbeck process. IIowev€'r, giv€'n the large variability 
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exhibited by physiological systems, and glven that we art' looking for (IUalitat.ivt' 

agreement, this averaging proct'dure was not warranh'd. 

The simulations were repeated for the case of additivt' noise on k in (5.3.3). Not<, 

that c and k in (5.3.3) both dett'rmine the ht'ight of the SNF fundinn. Tht' rt'slIHs 

(not shown) are qualitatively tht' samt' as for the multiplicativt' cast', l'XCl'pt that. fOl' 

equal noise intensities, the additive noise has a lesser effect on the dynamics. 

Pinpomting the Hopf btfurcatwn 

Theordically it. is important to pinpoint the occurrence of the Hopf hifurcat.ion. 

The faet that the mean limit cycle amplitude is still fini te for G < Go might suggest. 

that the bifurcation has occurred at a smaller parameter value than in the absence 

of noise. However, the onset of oscillation must. be understood from the stat.istical 

behavior of the system. It has bt'en shown that. t.h(' stationary density of the Fokker­

Planck equation corresponding to a generaiIzed Langevin equation l'xhihits critical 

behavior, while other quantities such as the correlation fundio!1 or the l)Ow('r sp('ctrulll 

do not exhibit such behavior21 
,148. A criterion for ddermining the Hopf hifurcation 

point in the presence of noise consists in finding the pararnf.'tl'r value at. which the 

stationary density goes [rom unimodal to bimodal. The separation of tht' J>t'aks is 

proportional to the mean limit cycle amplitude which is different from the m('an 

amplitude shown in Figure 5.3.4a. Tf) distinguish between thest' two statistically 

determined amplitudes, the peak separation will he referred to as the order' pammrt(T. 

The theory of invariant densiti('s for delay-differential equations (DDE'fl) in g('n­

eral, and for stochastic DDE's in particular, is non-C'xistent. Although the firflt. orcier 

DDE (5.3.3) is infinite-dimensional (it. ('volves in a functional spare), it ntight hl' 

appropriate to look al. the one-dim('nsional density COI1&tructed froH! t.he values of 

the state variable. Histograms of the nurnerically compu LC'd solution of (.1.:1.3) with 

(5.3.20) for both the additive and mult.iplicati ve noise cases were ('onstrud('d hy c1i­

viding the interval (10,75) mm2 of solut.ion values into 500 hin&. These hifltograrm 

were found to have an invariant form when enough time wa~ allowccl for th{' t.ran­

sients to decay. This is an indication that these histogramfl rnay qualify as "invariHnt. 

densities" for the DDE of interest. The peak separation was measllred graphically 

from the densities. Again, repeated simulations for a fixed valuc of n r('v('al{'d thal. 

peak separation values fluctuated by ~ 5% at the highest nois<, int<,nsity Ilspd, and 

that the accuracy increased (th~ peaks were bel. ter clefi ned) as n i ncr<,ased. 

Figure 5.3.5 plots the magnitude of th<, or der paramet.er as a function of til(' hi-
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furcation parameter n for both multiplicative (5.3.5a,b) and additive (5.3.5c,d) noise. 

The computations were done on the same time series used for Figure 5.3.1. In Figure 

5.3.5a and c, the correlation time is fixed and the intensity varies over the same values 

as in Figure 5.3.4. The ettrves are obtained by smoothing the simulation results at 

the discrete n values. Note that the deterministic curve is the saIlle as that in Figure 

(5.3.4a): the amplitude is proportional to ~ no (Section 5.3.4.1 A). The curves 

corresponding to finite noise intensities have the same shape as the delerministic curve 

but are shifted to its left (i.e. to higher values of n) by an amount proportional to the 

noise intensity. This implies that t.he noise actually postpones the Hopf bifurcation 

(from the stat.istical point of view) in both the additive and multiplicative noise case. 

In Figure 5.3.5b and d, the magnitude of the order parameter is again plotted 

as a fundion of n, but t.he noise intensity is fixed and the correlation time is varied 

from 1 to 4 seconds. In both the additive and multiplicative case, the shift of the 

bifurcation point increases as the correlation time decreases. 

5.3.5 Transition from SNF to PCNF. 

In this section the relation between the different deterministic properties of SNF 

and PCNF are investigated. Equation (5.3.3) can be obtained from (5.3.1-2) by let-

. . fi' db' 1 c + k d A k h . F' tmg n go to m mtyan y equatmg ~ off = -- an on = -, as s own ln 19ure 
o 0 

5.3.6. In this case, the forcing function F in (5.3.1) becomes a Heaviside fundion 

of the delayed pupil area. This limit produces a transition from the nearly sinu­

soidal oscillations in SNF to a switching type behaviour, characteristic of relaxation 

oscillations, in PCNF. 

The oscillation condition changes from (5.3.5) to the condition (J ~ ~, where 
o 

(J is the inflection point of the Rill's function when n -+ 00. This is illustrated in 

Figure 5.3.6 whe're numerical solutions of (5.3.3) are plotted for different values of o. 

The PCNF waveform depends on the value of 0 at which the limit is taken. This 

de'pends on the' intersection of the curve oA with the piecewise constant fundion. 

In the PCNF limit the inftection point of the Hill fundion becomes equal tu (J. The 

oscillation condition is now that the intersection point be on the infinite slope portion 

of the PCNF fundion. Renee, in Figure 5.3.6, when 0 = al or a5, the condition 
À 

(J ~ - is not satisfied and there is no oscillation. When a = 02 the limit produces a 
a 

high threshold oscillation, as in the case 0 = 4, and 0 = 04 produces a low threshold 

oscillation, as in the case 0 = 0.7. 

For SNF the Hopf bifurcation criterion corresponds to a condition on the pe-
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riod involving the slope of the feedback function al. the fixed point. For peNF, t.he 

oscillation condition is a condition on the amplitude. In the SNF case at. oscillation 

onset, the freq uency is fixed while the ampli t uele is zero (in the S\l pereri t kal ('ase!l!l), 

while in the PCNF case the amplitudt' is fix('d whik t.he frequency is Z('fO. For SN F, 

once n increases pa st its value at t.he Hopf bifurcation, the amplitude first. grows as 

.jn - no but rapidly reaches its maximum value, i.e. that for the peNF ca&t'. 

5.3.6 Discussion. 

Oscillations in the human pupil light reflex were produccd by two kinds of ex­

ternal electronic feedback which modify the normal functional dt'pendence of retinal 

light flux on light intensity and pupil area. The parameters of the external feeclba('k 

circuit were varied 1.0 induce a bifurcation frorn an eq1l1librium state 1.0 an ()s('il1at()r~' 

state: the gain of the amplifier relating light intensity 1.0 pl1pil area \Vas varied in t.he 

SNF case, while the position of the threshold area B \Vas varit'd in the peN Jo' (·ast'. 

Experimentally, it is obser'.'ed that the period fluctl1ates more t.han the ampli­

tude at oscillation onsd in PCNF, while the opposite holds for t.he SN ft' (ase. We 

have related this to the different kind of criti{'al hehaviour displayed hy a finit. orc!n 

DDE at oSLillation onset in the SNF and PCNF case, under the assumpt.ion t.hat t.he 

correlation time of the noist' is of the same order or larger than the respof\s(' tim(' of 

the s'ystem. In Cact, our simulations of (5.3.3) with multiplicativt' or additive noise 

(Figure 5.3.4) indicate that this model of autonomous oscillations in pupi) area CJlIéll­

itatively reproduces the observed behavior (Figure 5.3.3) in the vicinity of oscillation 

onset. 

Generally, relative amplitude fluctuations are greater than relat.ive p('ri()(! fluctu­

ations in SNF for a broad range of noise correlation tin1('s. Although our sirnulat.iom. 

account for the cycle to cycle fluctuations in period and amplitude in SNF, they cio not 

reproduce the experimclltally observed baseline drift over 10-15 second periods (t.h(' 

data shown in Figure 5.3.ld has been corrected for this drift). This drift is probahly 

due to an unmodelled deterministic phenomenon or to a noise source with a corn'­

lation time longer than that for the noise IIsed in our simulations in S('rtion 5.:J.'l.:l. 

This long-correlated noise conld affect either c or k because a variation in {'it!ter of 

these would result in a proportional variation in the nwan val ue of th(' os('illation. 

We have observed both t'xpcrimentally and in our simulations that tilt' periocl of 

SNF-induced pupillary oscillations remains constant despitt· variations in k,>.. and n 

in the SNF case. The constancy of frequency in negati ve f('('dback systems in biology 
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Figure 5.3.8 Transition from SNF (solid Une) to PCNF (dashed li ne ) is achieved 
by increasing the slope of the feedback function until it approaches 00 at 9 and zero 
elsewhere (lim n - 00 in the Hill's function on the left hand side of (5.3.3». In this 
limit, the inflection point of the Hill's function coincides with 8, the upper bound 
C!" with the upper asymptote AO/l and the lower bound ! with Aon. Limit cycles 
bifurcate from the fixed point A"' of (5.3.3) when WT 2: CO,,-l(_~) (5.3.5). In the 
PCNF limit, oscillation onset occura when 8 < Ao/f. Depending on the value oC a, the 
PCNF limit will yield solutions of (5.3.3) that either do not oscilIate (al' as), or which 
oscillate around a high (a2 = 4) or a low (a" = 0.7) threshold. Response asymmetry 
(i.e. as > ad) observed in peNF has been neglected for clarity. Parameters are: 
T = 0.3, n = 200, le = 20, c = 200, 8 = 50, a = 3.21 and the initial area Wall equal to 
40. 
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- has been pcinted out previously84,99,151 However, in the PCNF ('ase, tht' peri()(! 

fluctuations are a consequence of the asymptotes fluctuations (prillripally Aoff )' The 

theoretical result of Section 5.3.4.2 for the amplitude and !>eriod fluctllations in peN Jo' 

corresponds ta an adiabatic elimination21 in the sense that the system i5 ('onsid{'f{'d 

to always be in a quasi-stationary state with respect to the imt.antan('ous vaIlle of t.1lt' 

fluctuating parameters. 

The influence of the correlated noise in the PCNF case can also 1)(' qualitativdy 

understood as follows. When pupil area approaches () on the way to AoJ J, a slight 

fluctuation in AOff will affect the crossing time. Fluduations in this rr()~sillg timt' an' 

inversely proportional to the area derivative in t.he vicinity of the tllr{,bllO!d. Hell('t' 

near oscillation onset this derivative Îs neariy zero, making the periot! v{'ry sensitive 

to fluctuations in AoJ!. These conclusions hold under the hypoUlesis of coloft'd multi­

plicative noise on the asymptotes. In the white noise li mit boUI perioc! and élmplitude 

are sensitive to the noise (data not shown). IIowever, in PCNF, as f cor c!ecn>ast's, 

relative period and amplitude fluctuations arc of the same order. In fad, whml'ver (J 

is approached, noise will cause transitions in pupil area from one side of the thrt'shold 

to the other and back. Hence, the noise can shorten the t.ime spent above (J, which 

will decrease the period and the amplitude. The fact that the amplit.ude f1l1dllations 

are not very large in PCNF is an indication that experimentally the noise is rolored. 

Oscillation onset in PCNF docs not correspond to a supercritical Hopf hif,;rra­

tion as in the SNF cas<=, because the uscillation appears with a fillitf:' ampli tilde. Nor 

is it a subcritical Hopf bifurcation because the fixed point is globally aSYlTlptotically 

stable when ,\ < cd) 66. The difference lif:'s in the t'xchange of stability that on:llrs at 

the bifurcation. As a supcrcrit~cal Hopf hifllfration is appro(lcht>d, the btahilit.y of the 

fixed point dccreases. Going through the bifurcation point, it bccolTles uTlstahl(' and 

the solution is attracted 1.0 the limit cyrIl" that came into ('xistenct' al. th{' hifurcation. 

In PCNF, the bifurcation is characterized by an abrupt exrhange of st.ability leading 

to the appearance of an oscillation of infinite period but fixt'd amplitude. Clob('r in­

spection of the SNF-PCNF transition shows that oscillation onset is dderrnined by 

a condition on th<=, period in the SNF case (Hopf bifurcation criterion) and by Onl' 

on the amplitude in the PCNF case ( .. 4. > B, wherc A. i5 the initial pllpil are,,; or 

equivalently, ,\ > Q()). It is interesting that in each case t.ht' aSSIlTTlt'C\ !I0iii(, has h's!> 

of an affect on the quantity which determines the oscillation condition (i.l'. the nois(' 

does not effect the period as much as the amplitude in SNF, and VIC(' vcr.ia in PCNF). 
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To identify whether a bifurcation has occurred or not in a physical system de­

pends on which theory one uses. One such theory holds that a supercritical Hopf 

bifurcation occurs when the unique maximum of the stationary solution of the Fokker­

Planck eqllation is replaced by two maxima which separate as the bifurcation parame­

ter is increased This does nnt m('an that oscillations are not visible in the time series 

prior to tl)(' Hopf bifurcation. In fad, well ùefined pl"aks In the power spedrum as weIl 

as oscillations in the dlltocorrclat.ion function app('ar, in the presence of noise, even 

when the bifurcatioTl paranH'l,er is weil below the detertTlinistic bifurcation valuel48 . 

But these qllantitie~ do not exhihit a qualit.ative change at sorne parameter value. 

Howpvpr, the probahility dpnsity does display critical behaviour. For physiological 

data, it is practically difficult to construct such a density due to the length of Hw 

available time series. Instead, we have made certain hypotheses on the noise sources 

and numerically simulated t.he stochastic dynamics of the system to see whether sorne 

aspects of the data can he reproduced. Vve \Vere t.hus able tn account for the observed 

behavior of p('r!od and amplitud(' fluctuations at oscillation onset. 

In Figure fi :3.5, il. is showlI thal. the hifurcation is shifted to higher values of the 

bifurcation parameter \Vhen nuise is present. This postponement of the deterministic 

Hopf bifurcation in a DDE has nnt, to our knowledge, \wen reported previollsly, but is 

known to ocnlf in ODE\ \vhen rnultiplicativ(' nnis(' is prest'nt 21 ,148,152,253. We found 

th(' shift was proportion al to t.he noise intensity (T, and inversely proportional to t cor , 

as observed previollslyl48. 

A more surprising [act IS that this shift also occurs for additive nOIse, with 

the same qualitative dependence on (j and tcor. Noise-induced transitions due tn 

additive lIoise art' not. possible in one dimension21 . They have been reported in a 

2-dimemtlOnal Fokker-Planck equation 154 . However, DDE's are infinite dimensional, 

and thu~ the p()~~ibilit.y exists for such transitions. Further, shifts of the first t.ran­

scritical hifurcatlon and of the first period-doubling bifurcatioll in the logistic map 

have \'(,(,11 pr('cl!decl ancl observed in numerical experiments involving additive and 

multiplicat.ive noise l55 . In fad, for discrete time systems, there is an eqllivalence be­

tw('ell additive and multiplicative nois('22,155. Since the DD8 redllces to suell a map in 

the singular perturbation limit, \"'here the response time of the system is much smaller 

than the del ay 125,156,157, it is not surprising that shifts OCClU for both additive and 

multiplicative nois('. 

The shift nf the bifurcation point makes the application of the deterministic 
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analysis to experimental data more difficult sinct' a knowledgt' of the IwiSt' charaç­

teristics is needed to cldermine the ddnministic bifurcation diagréll1l. III \'iew of 

the high noise levds in neural systems, it appears difticult to avoid t Ills iSSlll'. l'dort' 

work is needed to determine the precise conditions under whi< h post POfl('llIl'llt s occllr 

and whcther advancf'ments are possihleI 48 ,1!:i2,153,t58. In particl1lar, oilter Oldl'r pa 

rameters such as the root-mean-square amplitude may mort' appropnatt'ly dt'scrilH' 

the Hopf-type of time translational symrnetry-breaking hifltrcation in t hl' pn'Sl'nu' 

of noise studied h('re I55 ,161. Also of interest IS whethC'r a t\\'o-dillll'\I'olo\lal r.;tationary 

probability density is required to pinpoint the Hopf hi fmea t ion, in t h{' {'vent wht'f(' th!' 

radial and angular variables describing the oscillation are siglllf1cantly ("ollplt'd I4R ,lfl2. 

Natural coordinates in which to invC'htigate this possibtlity art' ,.1(/) and j\(t T) in 

(5.3.3). Note that the shifts observed here are differC'IÜ frorIl t hose ohtaillt'd \\'11('n tht' 

bifurcation parametC'r is swept at a flnik rate a("fOSS t.he hifllrcation l59 ,16lJ. 

The postponement of the Hopf bifurcation is expected f,o he qualitatively simitar 

ln the event that thC' fluctllations arc not. Gaussian dist.ribl1tt'd. Although wC' hav(' 

not performed a precise assessment of noise statistics, the inclusion of Gaushian noisl' 

in our deterministic model dof's reproduce the data when given an adl'qllal.t' intl'nsity. 

There have also been previous reports H
,14 which support thC' Gaussian nalurC' of tht' 

pupil noise for midrange pupil sizes undt'r constant illllminat.ion. At. large and snlilll 

pupil sizes, the probahility density of t he noise is slightly skewed t.oward llIidrrmgl' 

values, presumably because the injeded Gaussian noise is IHtt'red by t.he nonlllll'arit.iC'!ol 

in the motor pathway of this reflex. Our modt'l wOllld r('produ("(' this lH'havior if t.h(' 

distribution of area values were computed prior t.o the Hopf bifurcation al !ollllall and 

large pupil siz('s. 

There have been previous studies of fluctuations in l1ellron membrane pot.ent.inl 

at rest 165 and at oscillation onset 166 ,167, and in a simple molor task 1fl8 . fi ('f(' w(' 

have considered the onsct of oscillation in a neural control syst('m for whirh ft flimplt·, 

physiologically sound, mode! exihts, and shuwn how thih mode! can C'xplain obs('rved 

deterministic and stochastic lwhavior. vVe have furlh('r !oltrivl'd lo ich'nt.ify t}](' lIoiM' 

sources and to underst.and their dynamical behavior. Although a partly c1eterrninist.ir 

origin for the aperiodic bC'havior of the pupil (such as chaos) can not he cxrllldC'd, oltr 

results concerning the critical behavior of the pupil suggest that hipPlls is a renedion 

of an underlying stochastic IJfOCt'ss. Further, thcre does not seem lo he any intt'radioTl 

between the dynamics of the noise source and the dynamjrs of the reflex, C'ven though 
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the pllpil modifies the charactHistics of the noise. This supports the hypothesis that 

the noise is injectt'd into thl'" fefll"'x pathways, as suggl"'sted previously47,74. 

On the basis of our analysis, it is difficult ta decidt' wlll"'tht'r additive or mul­

tiplicative nais!;' is responsible for the obsefved behaviour of period and amplitude 

in SNF. Roth mechanisms yield qualitatively similar reslllts, ônd it is quite probable 

that huth rontrihut.e to tht' observed behaviour. 

Noise is amplified in the SNF case nt'ar the Hopf bifurcation due to critical 

slowing clown (loss of lillear stability), \,,'hich is responsible for the large amplitude 

fluctuations. In comparison, tht' PCNF cast' appears to be immune to this effect. 

The critical behavinr is displayed hy the mean perind rath!;'r than the mean ampli­

tude. This is interesting berause it means that no nOIse il.mplification occurs at the 

bifurcations. Instead t.he multiplirative noise causes pt'riod fluctuations and kicks the 

syst!;'m bdween the limit cycle and fixecl point bchaviors. 

Tht' SNF-PCNF limit. has not, to our knowledge, \)('en studied in ODE's. For 

the Ikeda equation in optiral bistabili ty l30, anothcr well-studied first order DDE with 

nonlinear feedback, attention has been focussed on the singular perturbation limit 

in which t.he ratio of the delay to the system response time goc>s to infinity (i.e. 

or » 1 in (.1.~t3)). Studies 101 ,125.156,1I'ï have shown that certain properties of the 

mal' obtained in this lilmt carry over to the continuous solutions of the ODE, white 

others do not. This applies to the noisy ODE as weil, since the noise is responsible 

for th(· bifllrca1!oll gap in the sllbharrnoJlic cascade l63 . Also, a noisy one-dimensional 

mal' has lwen IIsed III the study of noise-induced transitions between coexisting states 

of the Ikeda equat.ion IG4. The PCNF limit of SNF yields a degenerate m"p with 

no inter!;'sting h!;'havior. lIowever, we have round (data not shown) that the mode 

freque/lri('s obtained from a linear stability analysi< converg!;' to the odd harmonies 

(Jf the fundarnental '"'l,Ide as seen in the singular Iimit of the Ikeda cquation10I . Of 

('0 ur St' the modt' amplitudes difft'f, sinee the singular limit produces a square wave 

while the PCNF limit prodllces the waveforms in Figure 5.3.1r. 

Diffefl'nf. mdhods art' availabl!;' for th!;' analytiral treatment of colored nOIse, 

(h'pellding Oll the ratio of system response time tu noise correlation time21 . If this 

ratio is large t t he \H'akly rolort'd noise cas!;'), the Fokk!;'r- Planck equation can he 

approximatt'd IIsing expansions in th!;' inverse bandwidth of t.he ,10ise. In the other 

cas!;' ",her!;' the system is always at equilibrium with rC'sp"ct ta the slowly varying 

nois(', adiabatir elimination techniques (or switching-eurvt' approximations21 ) ean be 
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used~ as in Section 5.3.4.2 for the PCNF case. In developing a quantitative analysis for 

autonomous oscillations in the pupillight reflex, one is fan-cl wit h t hl' prnhll'lll t h"t t hl' 

noise correlation time (for the dominant noise compollent.s), the syst.em reSpO!lSl' timt' 

and the delay arl' aH of the same orcIer of magnitude. This impliC's that the ('ffl'rI. 

of noise on the dynamics may not he cff(,ctively studil'd using t.he afol('llIl'lltiont'd 

techniques. Further, it is not clenr how to define thl' evollltioT\ of prohabilit.y c1l'llsit.i('s 

for DDE's. vVe expect that stlldies of other "untampt'r('d" or damped n('ural control 

systems will face the same problems of equal time sca!l's for noise, dl'Iay and !>y1>tl'rn 

response. Noise is an important component of neural acth,jty, and it ib our hop(' t.hat 

this work will stimulate further studich to untangle the dderministic and st.ochastic 

contributions to neural oscillations. Further, the results reported here may he IIs('ful 

for the analysis of other experimental systems (e.g. in nonlinear optirs, hiochell1iral 

regulatory networks, Boolean kinetic networks, gene regulation and transcript.ion) 

where noise is thought to play an important role and feedback dynamics can hl' 

modelled using smooth or piecewise constant nonlincaritit's. 

5.4 REMARKS ON NOISE-INDUCED SHIFT OF HOPF BIFURCA­

TION IN A DDE. 

In this section) we develop a qualitative understanding of the origin a.nd prop­

erties of the noise-induced transition encountered in the previous sect.inn. This is 

reql';red becausc there are no analytical tools available to study thesl' transitions in 

DDE's. 

Noise postpones the onset of oscillation at a Hopf hifurcation in a ()I)(~ (SedioJl 

5.3). However, oscillations are apparent in the solution even though UH' maxima of 

the invariant density cnnstructed from this solution hélve Ilot become difltinrtj in other 

words, the oscillation is apparent even though the bifurcation has not o('('urr('(\' Th(' 

oscillations arc prccursors of the bifurcation (Wiesenfcld, 1985) and do not display any 

critieal behavior. Consequently, the shift in the bifurcat.ion point has to 1)(' 1lnders!.ood 

from the statistical point of view of densities. 

5.4.1 Depelldence of shift on noise correlation timc. 

In the deterministic (rlOi<j~ free) case, the solution spends mort> timt> near th<, 

extrema of the oscillation (i.e. where the time-derivative is zero) than anywhcfl' els(' 

(see Section 4.5). As a consequence, peaks corresponding to thcse cxtrt'ma appcar in 

the numerically computed densities. In the stochastic casc, th(' invariant density will 
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have two maxima if: 1) the solution spends enough time near the oscillation peaksj 

and 2) if the deterministic amplitude is large enough. From the point of view of a 

generalized Langevin equation, noise affects the value of the derivative of the statc 

variable. Near the bifurcation, noise traps the system around the m('an value of the 

oscillatory solution (i.e. around the fixed point) more oCten than near the peaks, 

since the time derivative is ('onstantly changing and the limit cycle is not strongly 

aHracting. Bence, more numerically generateci iterates contribute to th", mean than 

to the extrema, and the density will appear single-peaked around the fixed point. 

The shift of t.he' Hopf hifllr('ation is more pronollI1ced for short-correlated noise 

(i.e. for wideband noise) than for long-correlated noise. This is a consequence of the 

ract that the shift is proportional to the strength of the noise, and that the effective 
0"2 

strength of colofed '1oise is proportional to -- (Section 5.2.4). The influence of 
tror 

noise correlation time on the shift can also he underst,ood qualitatively as follows. 

Short-correlated noise can trap the oscillation around its me an value because it sig­

nificantly changes the time-derÏ\ ative nf the state variabh- over short periods of time. 

For long-correlated noise, the time derivativf' doe& not chapge He;: ~hruptly as with 

short-cnrrelated noise. Cnnversely, long-correlatcd noise changt>s tHe parameters and 

the derivatives slowly, so the solution can still freely swing hetween maximum and 

minimum values which are slowly modulated by the noise. 1Ience, the solution spends 

more time near the peaks than if the noise were rapidly changing. This impIies that, 

for a given noise intensity, the shift will be smaller for long-correlated noise than for 

short-corrdated noise. 

5.4.2 Understanding the shift from the "ODE" point of view. 

Though no thenry seems to exist for generalized Langevin-type equations with 

dt'lays, th('fe are two limits in which a stochastic DDE can be studied (Sections 4.4 

and 4.6), dcpending on thE' value of or. If nr « l, the behavior of Hie DDE may he 

approximatcd hy that of an ODE We have seen that this approximation is good only 

wheTl the clelay is 'luite small, which is not the case for the pupillight reflex (Section 

-1..1.1 ). 

A potentially more interesting avenue would be to look at the effect of noise on 

the distribllted delay system (section 4.8) which do es provide a sllitable approximation 

to the bdlavior of the ODE at the Hopf bifurcation. Since at least three equations are 

n('edet! to study dett'îministic oscillations in this approximation (only one of which is 

nonlinear), the inclusion of Gaussian white noise wOllld f(>quire nllmerically integrating 
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.~, at least a three-dimensional Fokker-Planck equation. This is a hideous task, and 

probably one which gives little insight into the properties of the shirt.. 

It is possibi~ to linearize the one nonlinear equation in the ('()upled system of 

ODE's. The corresponding Fokker-Planck equation would thcn have lilll'étr drift ('()d­

ficients and constant diffusion coefficients. The exact solution for the time-dqwnclenl 

density of this equation has been given (see e.g. Haken, Advanced Sym'rget.ics, Sec­

tion 10.4.9). The density of the variable of interest, i.e. x in the original DDE, can 

be obtained by integrating the multivariate probability distribution ovef ail the oth('f 

degrees of freedom. However, this approach wuuld bp useful only for st.udying t'C\uilih­

ria, since the Langevin equation in this case is linear, implying that tht' dderminist.ic 

flow can not have li mit cycle solutions. Linearization about t.he oscillatory solution at 

the Hopf bifurcation may be more fruitful, although the analysis would tlwlI involvl' 

ODE's with time-dependent coefficients, which considerably compliratt's the problelIl. 

5.4.3 Understanding the shift from the "map" point. of view. 

The study of the limit or ~ 1, in which the DDE has maplik(' hehavior (Section 

4.6), may also yield insight into the origin of the shift, beC'ause much is knowll on 

the effect of additive and multiplicative noise in maps22,155. The study or maps may 

show how the shift depends on the parameters of the DDE, as weil as on the choice 

of the fluctuating parameter. 

In principle, the invariant density for a stochastically perturbed map can he 

calculated by iterating an initial density using a Markov operator as in (·1.2.2:J) (as­

suming, as is usually the case, that the fixed point of this operator can not b(' r<'adily 

found analytically). Consider first the logistic map with additive noise of density g(e) 

(5.4.1) 

Since the period 2 solution is of interest, cr should be slightly greater than 3, the value 

at which the first period doubling occurs in the deterministic case. The invariant. 

density for the dynamicai system (5.4.1) can be obtained by itcrating the invariant 

density corresponding to the deterministic case, 

(5.4.2) 
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where :c+ and :v_ are the two points on the period 2 orbit. The first iteration produces 

h(:v) = Plo(:v) = i: g(S(y) - :c)/o(y)dy 

= 19(5(:c+) -:v) + 19(5(:c-) -:c) 

= l[g(:c- - x) + g(x+ - :c)] (5.4.3) 

where we have used the fact that S(:v+) =:c_ and S(x_) =:c+ for the period 2 orbit. 

Note that Il (:c) is simply the convolution of the noise probability density with the 

initial function (5.4.2). 

The logistic map with multiplicative noise on a, i.e. a = Q + ei, is written 

(5.4.4) 

Defining :Ci = Y and Xi+l == x, the stochastic variable becomes 

:c _ e= -a y(l - y) 
(5.4.5) 

This expression is then substituted for the argument of g(e) in (4.2.23). In the mul­

tiplicative case, one iteration of (5.4.2) using the resulting Markov operator (4.2.23) 

yields 

11(X) = Hg( QX -- Ci) + g( ax - Ci)] 
x+ x_ 

(5.4.6) 

For Gaussian no]se, we have not found it possible to analytically compute the in­

variant dt'nsity beyond ft(x) in either the additive or the multiplicative case. The use 

of uniformly distributed noise rather than Gaussian noise circumvents the integration 

problem, but at the expt'nse of tedious bookkeeping for the successive convolutions. 

However, this approach based on tht' Markov operator (4.2.23) sheds sorne Iight 

on the origin of the shift. ln fact, [rom (5.4.3), h(x) is t.he sum o[ two Gaussians 

centered abont x+ and x_. The overlap of the two Gaussians causes the two extrema 

to move from x t and x _ towards the origin. For a given noise varianœ, this deviation 

is more pronounced as the amplitude of the deterministic limit cycle (x+ - x_) is 

decreased, i.e. as t.he bifurcation point is approached. At a critical value of the 

bifurcation paramcter, the two extrema will merge. The shift is simply the difference 

betwt'en this critical parameter value and the dt'terministic bifurcation parameter. 

It has been shown numerically, and analytically using small-6. perturbation ex­

pansions (~ is the noise variance) around the Rrst period-doubling bifurcation, that 
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both additive and multiplicative noise induce shifts in the logistic map (sel' Linz and 

Lücke155
). In faet, for maps, there is an equivalcnce between the t.wn t.ypes of noise. 

In general, an additive noise of intensity 6. add has a greatcr effer{, than a multiplica­

tive noise of equal intensity 6. mu lt . For the logistic map, tht' noise amplit\ldes havt' 

been shown to he equivalent wh en 6. add = (~~l )~mult (Linz and Liick(155 ). This 

equivalence has beell verified numerically for values of 0: below and ab ove 3. The faet, 

that bifurcation shifts OCClU in DDE's wit,h either additive or multiplicat.ivt' noise may 

in faet be a conseqU('IlC(' of the equivalence hetwet'n thes(> noises in maps. 

The study of shifts at the tirst period-doubling threshold in maps, \Ising eit.lH'r 

small-6. expansions or by looking at the action of a Markov operator on tlll> ddermin­

istic invariant density, is based on the deterministic bifurcation diagram of lhl' map. 

It is interesting that the same type ot insight into the shift at the Hopf bifurcation in 

the DDE (5.2.1) can be obtained by looking at the corresponding bifurcation diagram. 

It is easier to see this by considering the supercritical case with multiplicative 

noise in the DDE and in the Landau equation (Appendix A). For both these systeITls, 

the bifurcation diagram is the same and involves only olle state variable (see insel of 

Figure 2, Appendix A). One can imagine that fluctuations in tht' control parameh'r 

c (abscissél) are rnapped by the bifurcation curve into fluctuations in the lirnit cycle 

amplitude X' (ordinate). This mapping occurs for both the upper and the lower 

branch of the parabola. lt is not possi ble to calculate the density of x' gi ven t.he 

density of c, because the mapping (i.e. coordinate transformation) is singlliar to tht, 

left of the bifurcation point (application of the Frobenius-Perron op('rat.or r('(l'lir('s 

that the mapping be nonsingular). Nevcrtheless, the two resulting dt'nsiti(,s on t.he y­

axis (each one corresponding to one branch of the parahola) will overlap signifi('antly 

as the bifurcation point is approached or the noise intensity incrt'ased. This sit.1Iation 

is analogous to that discussed above for the iteration of densities in maps. lien ce, il. 

is possible to qualitatively understand the origin of the shift in the DDE by \ooking 

at the bifurcation diagram. 
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6. CONCLUSION 

"J'ai cessé d'ignorer à l'âge de trois ou quatre ans et parfois 
ça me manque." 

Romain Gary 

--------

This thesis has shown that the macroscopic behavior of neural systems possessing 

delayed feedback characteristics ïs amenable to quantitative analysis using tools from 

nonlinear dynamics and stochastic processes. The motivation for most of the mod­

elling and theoretical work was derived from the analysis of experimentally induced 

oscillations in a specifie neural system, the human pupil light reflex. The study of 

simple mathematical models in which aIl parameters can be experimentally measured 

has provided much insight into neural delayed feedback which is ubiquitous through­

out the nervous system. The quantitative analysis of bifurcations in the pupi! light 

reflex has I('d to a treatment of deterministic and stochastic properties of nonlinear 

delay-differential equations. 

The major conclusions are summarized in the section "Contributions to original 

knowledge" at the beginning of this thesis. This concluding section is an outlook to 

investigations of interest for the future. 

OR/GIN OF HIPPUS 

A major con cern in this thesis has been the origin and behavior of the irregular 

fluctuations in pupil are a known as hippus. The analysis in Chapter 3 and in Section 

5.3 strongly suggest.s that hippus is due to noise injected into the pupil light reflex 

pathways. Pupillary dynamics modify the characteristics of the noise, but do not 

seem to affect the noise source itself. 

However, the possibility that hippus is in part of deterministic origin can not 

be excluded at this time. If a component of hippus were generated by a chaotlc 

process, it should be possible to induce bifurcations in its dynamics. It is not clear 

which parameters to vary in order to induce these bifurcations, sinee hippus occurs 

in open-loop. In our approach, the functional dependence of retinal light flux on 

light intensity and pupil area was modified using imposed external feedback. Though 

producing bifurcations in pupillary dynamics, it did not produce bifurcations in hippus 

dynamics. Another approach would be to study the effect of drugs (e.g. anaesthetics) 

on hippus, or t.o look at hippus in patients with weIl characterized midbrain lesions. 

Two aspects of hippus are of particular interest: 1) the regular ~ 5sec-period 
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pupillary oscillations in narcoleptics (and sometimes in normals) which replace tilt' 

irregular hippus at sleep onset (Section 2.1.3); and 2) the fad t hat. a compnnrnt of 

hippus is correlated with respiration. In faet, small constridinns and dilations hav{' 

been shown to correlate with, respectively, inspiration and exhalation in cats\7\ and 

humans172
• The respiratory rhythm, whose period is ::::: 4 - 5M'C, may lH' the origin 

of the regular oscillations. The proximity of the r{'spiratory ct'utcrs and Pllpillary 

pathways further supports this hypothesis. 

The appearance of the regular oscillations occurs when pupil area rearlws rnid­

range values, at which pupil gain (and thus hippus amplitude) is highest. It is possibl(' 

that the activity from the respiratory centers in the midbrain modulates that of 

neurons in the Pllpillary pathways, and that the pupil is particularly sensit,iv{' to 

this influence for midrangc area values. The five-second rhythm may alsn he Cl nois,Y 

precursor of a Hopf bifurcation 169 in a neural system whose adivity modulates that of 

the pupil. It may also refleet oscillations in the accommodation rt>flex at slt't'!> onseL 

The data on this qualitative change from hippus to periodicity is scarre, and the Iink 

between theory and experiment will remain tenuous until more elaborate expl'riments 

are carried out. 

The study of pupillary oscillations would largely benefit from further eXI>t'ri­

mental investigations into the following problems: 1) tht> correlation of hippus and 

accommodation fluctuations; 2) the behavior of the noisy ceUs and the dilator ct'1l!>3R 

present in the parasympathetic pathways of the pupillight reflex of the cati 3) tilt' rolt' 

of the sympathetic pathway and the dynamics of dilatioI1; and t1) the phasic hdlavior 

of the retinal cells. 

NEURAL DYNAMICS, NOISE AND CHAOS 

Noisy oscillations are commonly seen in physiological dynamics20
• In Sedion 

5.3, the observed aperiodirity of autonomous pupillary oscillations was cxplaincd hy 

studying the effect of noise on limit cycle oscillations. An altcrnate approarh woulcl 

have been to construct a model that generates chaotic behavior in paramcter ranges 

corresponding to our experimental conditions, since this would also yiC'!d apt'T'iodir 

dynamics. However this approach did not seem justifit'd, as previous investigations 

suggest that noise plays an important role in this reflex. It is possi bIt' that noisy 

oscillations in many physiological systems correspond, in faet, to simple dd<'rministic 

motion complicated by noise-induced transitions and noise amplification, leading lo 

large fluctuations in amplitude, period and phase. 
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How long the current flurry of interest in chaotic dynamics williast will depend, 

t.o a large extent, on what phenomena chaos can explain. Chaos tdls us t.llat the 

centuries old assumption that a Newtonian world is predictable, stable and orderly 

may be a mistake, and that a complete description of nature must include compli­

cated behavior as well173
• As a means of probing irregular behavior, chaos is similar 

to statistical mechanics which provided new mathematical tools to study systems ex­

hibiting statistical behavior. In m}' opinion, the study of chaos and of its interaction 

with noise will continue to deepen our understanding of randomness and of irreversible 

processes in nature (see e.g. Eckmann and Rllelle174 ; Wolfram175 j Mackey176). 

POSTPONEMENT OF HOPF BIFURCATION IN DDE's 

For a system of stochastically perturbed ODE's, a multivariate stationary proh­

ability density can be calculated from the Fokker-Planck equation (Section 4.2.2). 

Considered in the center manifold, the Hopf bifurcation in an n-dimensional system 

essentially reduces to a two-dimensional problem (Section 5.1). The symmetry of 

the corresponding two-dimensional probnhility density will depend on the coupling 

of the noise to the angular variable as weIl as to the radial variable148 ,177. Hence, 

(one-dimensional) density profiles in planes cutting this density at different angles 

may be different. This implies that determining the bifurcation point by looking 

at one-dimensional densities (obtained either by approximating the solution of the 

Fokker-Planck equation or for special cases as in Appendix A) may lead to erroneous 

results. 

Criteria have been defined to pinpoint the occurrence of a Hopf bifurcation by 

looking at the two-dimensional probability density constructed from two time series. 

In the presence of noise, this density will appear as a ring of mountains of varying 

heights with a crater at its center. Fronzoni et al. have suggested that the Hopf 

bifurcation occurs at the para!l1eter value at which the floor of the crater reaches the 

lowest mountain in the ring. 

It is possible that the one-dimension al densities used to pinpoint the Hopf bi­

furcation in stochastic first order DDE's (Section 5.3) correspond to projections of a 

multivariate density which does not have rotational symmetry. It would be interesting 

to study the Hopf bifurcation in these DDE's by applying the criterion of Fronzoni 

et aJ.148 to two-dimensional densities in which, œ( t) and œ( t - T) are the independent 

coordinates. 

The magnitude of the shift of the bifurcation point should depend on the ratio 
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QT of the delay to the response time of the system. When t.his ratio is small, tht> 

DDE behaves more like an ODE, ",hile it behaves more like a map \\"lll'n t.he' ratio Îs 

large (Sections 4.4 and 4.6). Since additive noise can Ilot induct' shifts in the point of 

oscillation onset in one-dimensional ODE's (see ReL 21 and Appendix A) but ran in 

one-dimensional maps, shifts due to additive noise should lw mort' ohvions al. large 

delays. Thi~ would imply that the maplike properl.ies of the D D E are rt'spollsiblt, 

for the noise-induced transitions in the presence of additive noist'. This conje'dnr<, 

remains to be investigated. 

BIFURCATIONS IN NEURAL S}'STEAIS AND D}'NAAIICAL DISEASES 

In numerical simulations, extremely long time series are nt'eded to resolv(' th<, 

extrema of the stationary density near a Hopf bifurcation. H('nct', th(' amllysis of 

even a simple bifurcation in a noisy neural system from the density point of vi('w may 

not be possible due to the limited length of the data sets. Rather, the analysis ran 

focus on the influence of the fluctuations on certain measurahle quantitit's, surit as 

the mean and variance of the amplitude and period, as in Section 5.:J. The I.h(·oretical 

knowledge of the behavior of the densities can guide the analysis and indicate wha 1. 

special feat ures to look for. 

The postponement of the Hopf bifurcation in first order DDE's is proportional 

to the noise intensity and inversely proportional to the noise correlation time (Sec­

tion 5.3). If the noise level decreases or the noise correlation time inrreases, ail oth('r 

parameters remaining constant, then the oscillation will become more prornin('nl., bt'­

cause the noise would no longer be strong enough to stabilize the eq uili bri Il m sol u tiOT\. 

This suggoo;'sts a mechanism whereby external and internaI noise sourn's can rontrol 

an oscillation. Applied to physiology, this mechanism also extends the conrept of 

dynamical disease (see Refs. 20, 54 and the Introduction) by allowing noise charac­

teristics to be bifurcation parameters, a possibility already recogniz('d in the field of 

noise-induced transitions. 

NEURAL OSCILLA TORS AND AfEllIORY 

The frequency of the limit cycle that appears at the Hopf hifurcation is a slowly 

varying function (lf the bifurcation parameter (except when this paramett'r is th(' 

delay) (see Sections 2.2.8 and 2.3.7). Further, the period of the limit cycle is less vul­

nerable than the amplitude to additive and multiplicative noise (St'ction 5.3). Thes(' 

two faets suggest that a neural circuit modelled by a ddayed feedhack cquation of 

the type considered in this thesis could be used as a time reference (Iike th(' do('k in 
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a computer) if maintained in the vicinity of its Hopf bifurcation point. One possible 

cÎrruit to prrform this fundion l'ou1d br the reverberatory rircuits proposN1 in ft'rt.ain 

theories of memory (see e.g. MacGregor and Lewis1ï8
). 

Feedback systems with a distribution of ddays (modelled by an integro-differen­

tial eqllation like (4.4.5)) are less prone to oscillate than systems with fixed delays 

(Sedion 4.4). This faet may have interesting implications for the theory of memory. 

For example, it may imply that "memories" that are localized in time destabilize 

delayed feedhack systems. It remains to he seen if the oscillation period of distributed 

delay syster'ls is as robust with respect to additive and multiplicative noise as that 

for fixed delay systems. 

Finally, a correspondence may he drawn between the stabilization of the equilib­

riuIn by distributed delays and the postponement of the onset of oscillatory hehavior 

by noise. In a certain sense, it appears plausible to view the disorganizing influence 

of noise as similar to the operation of a system with distrihuted delays. In other 

words, it may he possible to estahlish an equivalence between additive or parametric 

fluet uations and fi uetuations in the delay. From this point of view, the post ponement 

of the Hopf bifurcation by noise is compatible with the stabilization of the equilibrium 

by distribllted delays. 

EPILOGUE 

Our detailed theoretical and experimental study of oscillatory behavior in a spe­

cifie neural system puts us in a position to extend our conclusions to hroader classes of 

physiological systems in pa rticular, and more generdly to nonlinear physical systems 

in which delayed aetion is an essential part of th..'! dynamics. Although it may be 

very difficult to experimentally verify modelling predictions, especially in physiologi­

cal systems where noise levels are high, further studies based on the approach of this 

thesis may provide dues of the phenomena to look for, and Qf how to perturb and 

analyze these phenomena. 

If a professor were to tell me that he is trying to get his physics graduate student 

int.t'Tested in pursuing sorne of the directions outlined in this conclllding chapter, l 

would probably wish this professor "Good luck". However, if this innocent graduate 

student actually sees a six inch-wide pupil gently swaying to the vagaries of hippus 

on a TV monitor, he just may, like l was, or like Alice peering through the looking 

glass, be enthralled and plunge into the mirror of the soui. 
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APPENDICES 

Appendix A consists of the manuscript of a paper in prt"ss in tht' .Journal of 

Stati~tical Physics. It is shown that additive or multiplicative Gaussian noise induC!' 

global asymptotic stability in two dynamicai systems. Tht' dynamic:al syst.ems art' 

two-dimensional ODE's in which the noise affects only tht' dynami("s of the radial 

variable (in polar coordinates). The resulting one-dimension al stochastic diffNl'ntial 

equation is often referred to as "a redllced amplitudt' t"qllation". Tht' first t'quat.ion, 

known as the Landau equation, exhibits a sllpercritical Hopf bifurnltion, whilt' tht' 

second system exhibits a subcriticai Hopf bifurcation. Global asympt.otir ~t.ahility 

implies that th~ stationary solution of tht' corresponding Fokkt'r-Planck eqllat.ion is 

globally attracting in the spaœ of initial functions. In ot.ht'r words, the limiting 

density is independent of tht' initial density. This study also dis('usst's noise-induc{'d 

transitions (Sections 5.2 and 5.3) at the Hopf bifurcation due tn multiplirativl' rlOisl'. 

Appendix B presents a study (published in the A merican JOlLrnal of Ophthal­

mology) of pupillary oscillations induced by piecewise constant negati ve fl,t'dlm("k (as 

in Section 3.2) in patients affected by the demyelinativc dist'asl' known as multi­

ple sclerosis. (A demyelinative disease causes tht' nerve axons tu lose tht' inslliating 

myelin sheath which is responsible for the special type of wave propagation known as 

saltatory conduction 35 .) One of the first. signs of multi pic sclt'rosis is optie n('uritis, 

in which tllt' optic nerve undergoes partial dcmYt'lination. This causes intt'rrnittl'nl. 

conduction block and an increase in propagation dt'lay. Ont' way lo diagnose mul­

tiple sclerosis is to shine a narrow light beam on tht" Pllpillary rnargin and observe 

whether the period of the resulting "high gain" oscillations (pupil cycling) diff('rh from 

an established norm. This test is difficult to carry out for rcasons disClISbt'd in the 

paper. Our new method for pupil cycling eliminates many of tht" artifads of the IIsual 

method, and provides a sensitive measure of demyelination. Tht' method indicatcs 

that more information is readily available from pupil cycling amplitude rathcr than 

period measurements. It also allows one to discriminate bdwt>en demyelination anel 

ischemia in the optic nerve. The theoretical basis fur this mdhod is found in Section 

3.2. 

Appendix C describes the fitting techniques used in Sections 3.2, 3.3 and 3.'1. 

Appendix D contains the source code for the most important prograrns used in 
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this thesis. We give the algorithm for the "exact" nurnerical integration of the first 

order DDE with piecewise constant mixed feedback encountered in Sections 3.3 aud 

3.4. The program for the nurnerical integration of the stoehastic delay-differential 

equation 5.1.] with additive and/or multiplicative eolored noise is also given, along 

with that for the nurnerical integration of t.he C1D2 model in Section 3.4.5. 

The programs were run on either a Hewlett-Packard 9816, a NEC Powermate 

Plus (AT) or a VAX 3200. The 3D graphies and density normalization in Appendix 

A as weil as the FFT's in Section 5.3 were done on MATLAB. The thesis was typeset 

using A mS- TeX. 
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APPENDIX A 

NOISE INDUCED GLOBAL ASYMPTOTIC STADILITY 

Abstract. In this paper we prove analytically that additive and parametric (multi­

plicative) Gaussian distributed white noise, interprt>ted in either tlH' Ho or StratoT\o­

vich formalism, indure global asymptotic stability in two prototypiral dynfllnical sys­

tems designated as supercritical (the Landau pqnation) and slIbrrifical ft'spect.ivdy, 

In both systems without noise, varIation of a parameter \eads to a switrhing IH'f,wepn 

Cl. single globally stable steady state and multiple locally stable st.eady st al.e5, Wit.h 

additive noise this switchmg is mirrored in the behaviour of the extrema of probahil­

ity densities at the same value of the parameter. However, parametrir noise ('(\I\ses 

a noise amplitude dependent shift (postponement) in the parametcr value at whirh 

the switching ocrurs, Tt is found both analytically and numerically that the deTlsity 

converges to a Dirac dt>lta fllnction when the solution of the Fokker- Planck equat.ion 

is no longer normalizable, 

A.1. Introduction. 

The effeds of additive and parametric (multiplicative) noise in nonlinear dynam­

ical systems has been the object of intense study21, Systems thai display hifurcations 

in dynamics in the absence of noise have received the must attention, in part henllls{' 

noise cffects in thest' systems qualitatively mimic 1 -1 and 2",f arder phasf' transitions21 , 

The presencc of noise in rombination wi t h dynarnics leads to a situation in 

which one may descrilw the global behaviour of the svstem by the evolution of densi­

ties. That ("/Olulion i8 described by the Fokkt'f-Planck (paraholic) partial differential 

equation. The steady state solutions to the Fokker-Planck equaiion are known as 

stationary densit.ies, 

Most studie!>lTD -181 indicate that additive noise, Ct term llsllally Laken to imply 

that noise amplitude is iTldependent of the state variable(s), leads to a bifurC'ation in 

the qualitative form of the 8tationary density at prerisely the same parameter value 

at which the bifurcation occurred in the noise free system, IIowever pararnetrÎc noisf', 

in which t.he noise amplitude depends on the state variahle( s), indures different h('­

haviours in the !>tationary density Usually Iii 182183 parametric noise indu«('s a noisf' 

amplitude dependent postponement in the pa,rametef value at which these qualitative 

changes in t.he stationary density take place relative ta the noise free system, though 

one study 1;;2 indicates the possibility of an advancement in the bifurcation parameter 
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depending on the relative values of the noise correlation time and the system response 

time. 

In spïte of the intense interest in the changes that additive and parametric 

noise give rise to in stationary densities, there has not-to our knowledge-been any 

l'roof of the global convergence of the time dependent solutions of the Fokker-Planck 

equation to the (generally unique) stationary density. In this paper we consider two 

prototypical systems in the presence of additive and parametric noise, and use a recent 

result to prove the global asymptotic stability of the solutions of the Fokker-Planck 

equation. 

A.2. Preliminaries. 

A.2.1. The Model Systems. 

ln OUf investigation of the effects of additive and parametric noise, we will con­

sidef two specific systems. 

Supercritical System. The two dimensional oscillator system 

dr 2) - = r(c - r 
dt 
dB - = 27T' 
dt 

(Al) 

in (r, 8) space is an example of a system with a supercritical Hopf bifurcation. For 

c < 0 the origin r, = 0 is the globally stable steady state, white for c > 0 all solutions 

are attrartt'd to the limit cycle dC'flned by r = .jë. 

Here we consider the effects of noise in the analogous one dimensional system 

dx 2) 
dt = x(c - x , (A2) 

obtained by ignoring the angular coordinate 8 in equations (Al), and designate this 

tht' supercritical ,.Y.9tem. This equation appears, for example, as the reduced ampli­

tude t'qllation for systems undergoing a supercri tical Hopf bifurcation 153,179-184. For 

eql1ation (A2), it is simple to show that when c < 0 al! solutions are attracted to the 

single steady state x,* = O. Further, wh en c > 0 the steady state x, = 0 is unstable 

and x(t)-~yfë if x(O) == xo > 0, while x(t)--Jë for Xo < O. 

Subcritical System. 
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A second simple oscillator system 

(A3) 

has a subcritical Hopf bifurcation at c = -1, as have other systems studied in thl' 

presence of noise179 ,182. 

In analogy with the previous case, we treat the effecf.s of noise in the one dimt't1-

sion al system 

(At!) 

which we calI the subcritical sy"tem. The solutions of equation (A4) have the following 

behaviour. For c < -1 aIl solutions :c( t)-O regardless oC the initial condition :I!o. 

However, for -1 < c < 0 there is a tristability in that 

{ 
-.J1 + yT+ë, for Xo < -xt and -:c; < :Co < -:v-;-

x(t)- 0, for -:v:- < Xo < :c t 

\.h + J[+C, for xt < Xo andx-;- < Xo < xt. 
(A5) 

where :c; = \.h + 0+c and :c; = .J1 - Vf+C. For c > 0, the steady state :c 1 :-:: 0 

becomes unstable and this tristable behaviour gives way to a bistahility sueh that 

( { 
- V1 + Vf+C, for:co < 0 

x t)- .J1 + Vf+C, for Xo > o. 

A.2.2 Densities and the Fokker-Planck Equation. 

(A6) 

In considering the effeds of noise in systems like (A2) or (A4), we may think oC 

the general one dimensional differential equation 

dx 
dt = 9(X), 

and the corresponding stochastic differential equation 

dx 
dt = g(x) + O'(x )e, (A 7) 

where e is a (Gaussian distributed) white noise perturbation with zero me an and unit 

variance, and 0'( x) is the amplitude of the perturbation. 
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( Under sorne standard regularity conditions, the process :z:(t), which is the solu­

tion of the stochastic differential eqnation (A 7), ha,s a density function u( t, ID) dcfim~d 

by 
b 

prob{a < :z:(t) < b} = 1 u(t,z)dz, a,b E R. 

It is wdl known that the density u( t,:z:) satisfies the parabolic differential equation 

(Fokker-Planck equation) 

8u _ ! 82 [u2(:z:)u] 8[G(:z:)u] 
8t - 2 8:z:2 8:z: 

(A8) 

where the function G is given by 

G == 9 (A9a) 

when the Ho calculus is used to interpret (A 7), or 

(A9h) 

when the Stratonovich calculus is used21 • The Fokker-Planck equation can also he 

written in the equivalent forrn 

(AIO) 

where 

(All) 

is called the probability current. 

As usual, we say that an LI function f is a density if 1 is nonnegative and its 

intt'gral over i ts domain is identically equal to 1, i.e., it is normalized. Given an initial 

density f(:z:) u(O,x) and the solution u(t,x) of (A8) we rnay write this solution 

formallyas 

u(t,:z:) = Pd(x), 

where Pt is a Markov operator, i.e. Pt is a linear operator and for every density J, 
Pd is also a density. Thus the Fokker-Planck equation governs the evolution of the 

flow of densities {Pd}. 

When stat\onary solutions of (8), denoted hy ft (x) and defined by Pd ... = ft 
for a11 t, exist they are given as the generally unique (up to a multiplicative constant) 

solution of 
~ 82

[0"2 li] _ 8[G It) = O. 
2 8x 2 8'~ 

(A12) 
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Integration of equation (A12) by parts with the assumption that the prohability 

current S vanishes at the integration limits, followed by a second int,('gralion yidds 

the solution 
K [Jx 2G(z) ] 

ft(œ) = cr2 (x) eœp cr2 (z) dz . (A 13) 

This stationary solution fi will be a density if and only if there l'xists a po .. itive 

constant K > 0 such that f.t can be normalized. 

A.a. Additive Noise. 

For the supercritical system (A2) and the subcritical system (A4) in the presence 

of additive noise, the corresponding stochastic differential equations are of the form 

dx 
dt = g(x) + O'e 

where cr is a positive constant and 

supercritical 

subcritical. 

(A14) 

(A 15) 

Thus in the additive noise case, reference to equations (A14) and (A15) makes it 

clear that there is always a positive probability that x(t) may take on negative values 

starting from a positive position and vice ver8a. Therefor(' it is natural to consid('r 

this problem for -00 < x < 00. 

Furthermore, since the noise amplitude cr is constant with additive noise, ('qua­

tions (A9a) and (A9b) make it clear that the corresponding Fokker-Planck equations 

are identical in the Ito and Stratonovich interpretations. Specifically, they take the 

forms 

and 
8u 1 2 82 

U 8 [ 2 4 J 
8t = 2cr 8x2 - 8x œ(c+2œ -œ)u 

in the super- and subcritical cases respectively. 

A.a.l Stationary Solutions. 

(A 16) 

(A 17) 

It is straightforward to show that the stationary solution (A13) to the Fokker­

Planck equation (A12) is given by 

(A 18) 
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( for the supercritical ~ystem, where (3 == 2c/u2
, and by 

(A19) 

for the subcritical system. It is easy to show that the normalization constants Kt 

and K 2 always exist and thus the f, (x) defined by (A18) and (A19) are stationary 

densities. 

In Figure A.la we show the stationary density given in equation (A18) for the 

supercritical system as a fundion of the parameter c. As might be expected on intu­

itive grounds, for c < 0 the stationary density J~ (x) has a single maximum centered at 

x = 0, the location of the globally stable steady state of the unperturbed system (A2). 

Once c > 0, the stationary density J,(x) shows two maxima centered nt x = ±y'C, 

the locally stable steady states of (A2), and a local minimum at the unstable steady 

state x == O. 

Figure A.1 b shows the stationary density for the subcritical "ystem, again as 

a fundion of c, given in equation (A19). For c < -1, the stationary clensity J, (x) 

has a single maximum located at x = 0, the globally stable steady state of the 

unperturbed system (A4). For -1 < c < 0, where the tristable hehaviour of (A4) 

occurs, the stationary densities still have an absolute maximum at x = ° but also 

display maxima. a.t x == ± V1 + .Jf+C that become progressive1y more- prominent as 

c increase-s. Finally, for c > 0 the stationary densiiy has abso1ute maxima Jocated at 

x == :t::Vl + Jf + c and a local minimum at x = o. 

A.3.2 Asymptotic Stability of the Stationary Solutions. 

We now turn to a consideration of the stabi1ity of the stationary densities deter­

mined in the previous section. 

We first define the property of stability by saying that equation (A8) is globally 

a.!ymptohcally stable if 

Hm u(i,x) == Hm Pd(x) = JT(X) 
t->oo t--+oo 

for ail initial densities J(x), i.e. Pd converges ta J, in LI norml3 . We will alternately 

say tha.t J, is globally asymptotically stable un der this cÎrcumstance. 

For parabolic equations whose solutions are given by an integral operator with 

a sufficiently smooth kernel, it is possible to prove the;r global asymptotic stability 

via a Liapunov function approach. Both Fokker-Planck e-quations (A16) and (A17) 
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Figure A.t Globally stable stationary densities in the presence of additive noise, as 
functions of x and the parameter c, for (a) the supercritical system (A2) and (h) the 
subcritical system (A4). To aid in visualization, in each the insert shows the location 
of the maxima in the stationary density as a solid line in the (c, x) plane. The dashed 
line in the insert of (b) corresponds to the minimum in the density. 
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are quite regular from this poi nt of view since they are uniformly parabolk (cr 2 is 

a positi ve constant) and :cg(:c) < 0 for sufficiently large :c. These prop('rti('s ('tlSIIr(' 

that the solutions of equations (A16) and (A17) will decay at least exponentially as 

:c --. ±oo. 
We define a Liapunov function V: R --. R as a 0 2 function with the following 

properties: 

1) V ( :c) > 0 for aH :c; 

2) lirn:ll-->±oo V(:c) = 00; and 

3) V(:c) ~ pe61
:1l 1 and IdV/d:c1 ~ pe61

:1l 1 for sorne positive constants p and 6. 

It has been shown 13 that the existence of a Liapunov function V satisfying 

(A20) 

where 0: and f3 are positive constants, implies that the Fokker-Planck equatiun (A8) 

is globally asymptotically stable. 

Let V(:c) = x 2 50 V is a Liapunov function, and consider the supercritical syst(,1Tl 

with additive noise. Inequality (A20) becomes, in this case, 

(A21) 

This is clearly satisfied for arbitrary fixed 0: > 0 and sufficiently large fJ > 0, thus 

proving the global asymptotic stability of the Fokker-Planck equation (A16) for ael­

ditive noise applied to the supercritical system (A2). 

Retain V(:c) = :c2 for the subcritical system (A4) with additive nOIse. An 

entirely analogous argument suffices to show that positive constants a and (3 can b(' 

found such that inequality (A20) is satisfied, thus establishing the global asymptotic 

stability of equation (A17). 

Renee, the entrance of white noise perturbations to cithcr the supercritical or 

subcritical systems (A2) and (A4) in an additive fashion always leads tn glohally 

asymptotically stable behaviour. 

A.4. Parametric Noise. 

Both the supercritical and subcritical systems contain a single parameter c, and 

in this section we investigate the effects of noise in this pararncter by replacing c with 
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where 0" > 0 is a constant. As a result of this assumption, the stochastic differential 

equation (A 7) takes the {orm 

dx 
dt =g(x)+O"xe, (A22) 

where g(œ) is given by equation (Al5). From equation (A22) in conjunction with 

(Al5) it is clear that x(t) == 0 is always a solution. Therefore, for any Xo > 0 the 

solution x(t) will always be positive. For œo < 0 we will have œ(t) < O. Thus in 

contrast to the situation with additive noise, in the presence of parametric noise we 

neecl only consider -00 < x ~ 0 or 0 ~ x < 00. As the results are symmetric, we take 

o ~ x < 00. 

With parametric noise, it is no longer the case that the Fokker-Planck equation 

corresponding to (A22) will be the same for the Ho and Stratonovich interpretations21 . 

Hence, assume first that we are using the Ho calculus, and replace C by CI to clenote 

this distinction. Then, using (A8) ancl (Aga) the corresponding Fokker-Planck equa­

tions are 

supercritical (A23) 

and 
au l 2 a2 [x 2 u] B 2 4 at = 20" 8x 2 - Bx [x( CI + 2x - œ lu], subcritical. (A24) 

A.4ft Stationary Solutions. 

Supercritical System. 

For parametric noise in the supercritical system it is a straightforward applica­

tion of equation (13) to show that the stationary solution f*(x) of the Fokker-Planck 

equation (23) is given by 

(A25) 

where 1 = (2cJ/0"2) - 2. 

With parametric noise, a stationary density will not exist for sorne pararneter 

values. In or der that f+ is a density, it must be integrable on R+, and from (25) this 

is only possible if 1 > -1, or 

(A26) 

Thus, in sharp contrast to the results for additive noise, for parametric noise a sta­

tionary den si ty f. (œ) in the supercritical case exists for only a limited range of values 

of the parameter CI as defined by inequality (A26). 
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In Figure A.2 we show the graph of the stationary densities f+(x) given by 

equation (A25) for the range of CI values for which it exists. For (u 2 /2) < Cl < (T2 

the density has a single maximum at x = O. However, once Cl > u 2
, the st.at.iot1nry 

density f~(x) has a local minimum at x = 0 and a maximum at x = ,je; ~- ~2. Thus, 

with parametric noise there is not only a shift in the value of the parameter CI at. which 

there is a transition between the stationary density having a maximum nt a: = 0 and 

a nonzero value of x, but there is also a shift in the nonzero location of the maximum 

in the stationary density below that of the globally stable steady state in the absen("{' 

of noise (x = ,jCï) toward zero. It is only as Cf becomes large that the location of 

the density maximum starts to approximate .jCi. 

AH of these calculations and conclusions are preciscly the sa me if the Stratot10-

vich interpretation is used in place of the Ho formulation. One must only replace Cl 

everywhere by Cs = CI + ((7'2/2) for the formulae and conclusions to be applicable t,o 

the Stratonovich case. 

Subcritical System. 

As in the previous section it is an elementary consequence of equation (A13) 

that the stationary solution of the (Ito) Fokker-Planck equation for the su bnitical 

case with parametric noise is given by 

J,(x) = Kx'Ye-z;2(4--z;2)/2u
2

, (A27) 

where l' is as before. For the ft (x) defined in (A27) to be a stationary densi ty, prccisely 

the same conditions must hold as for the supercritical system of the previotls s(,ction. 

N amely, f .. (x) will be a stationary density of the Fokker-Planck equation if and only 

if inequality (A26) is satisfied. 

Figure A.3 graphically presents the stationary density given by (A27) for tll(' 

range of CI for which inequality (A26) is satisfied. The density for the subcritical 

system in the presence of parametric noise has two qualitatively different bchaviours 

as the parameter CI is varied. The appearance of either of these })('haviours dt'pends 

on the noise amplitude, u. 

For noise amplitudes satisfying 0 < u 2 < 2, a new feature unobserv('d in the 

supercritical system appears as shown in Figure A.3a. Naml'ly, for J, dt'finecl hy 

(A27) and this range of u, as CI is increased past u 2 /2, ft may he normalizecl, and 

the resulting stationary density has a maximum located nt 

x = JI + "h + CI -- u2 (A28) 
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Figure A.2 Globally stable stationary densities for the supercritical system (A2) 
with parametric noise under the Ho interpretation. For dearer viewing, the density 
for 0 ~ z is refleded as a mirror image to z < 0 and aJso displayed. The inset shows 
the location of the maxima (solid line) and minima (dashed li ne ) of the densities in 
the (cr, z) plane, and the location of the globally stable steady states (doUed li ne) in 
the absence of noise. 
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and a singularity at :z: = 0 which only exists for (cr 2 /2) < CI < (12. (The condition 

o < (12 < 2 may seem dimensionally incorrect. at first glance. However, it is simply a 

consequence of the choice of parameters in equatiuns A3.) 

However, as illustrated in Figure A.3b, for higher noise amplitudes such that 

(1'2 > 2, for ((12/2) < CI < cr 2 -- l the density J, has a single maximum locatt'ù at, 

:v = O. As CI is increased, once (12 - 1 < CI t.hen J, has a relative maximum at :z: -- 0 

and a second maximum located at the same location (se{' equation A28) as for (T2 < 2. 

For aIl values of 0
2

, as CI is increased the location of thÎs maximum tends toward the' 

value of the nonzero steady state x = JI + y'1TCï of tht' unperturhecl system (A.t). 

As before, one need only replace CI by Cs to obtain the corresponding Stratono­

vich results. 

A.4.2 Asymptotic Stabilit:y with Parametric Noise. 

In trying to prove that tLe stationary densities induced by parametric noist' are 

globally asymptotically stable, we no longf'f have imrnediately available the Liapunov 

function technique t.hat we were able to apply su easily in the case of additive noise. 

This is because with parametric noise, the coefficient ((12x 2 /2) vanishes at. x - 0 and 

the uniform parabolicity condition is violated at x = o. This facf. is crucial. 

However, by a straightforward change of variables, we may transform the Fokker­

Planck equations (A23) and (A24) tu circumvent this problem, and then again apply 

the Liapunov function argument. 

Define a new variable y = ln œ and a ;Iew densi ty iL by 

(A29) 

With these changes, the Fokker-Planck equations (A23) and (A24) take the form 

where 

g(y) = { 

aiL 

at 
1 2 82 

iL a [_ ( _j - cr - - - 9 y)u , 
2 ay2 ay 

1 2 2 
Cl - -cr - e y 

2 ' 
supercritical 

1 
CI - -cr2 + 2e2y - é y 

2 ' 
subcritical. 

(A30) 

(A:n) 

As in the case of additive noise, the uniform parabolicity condition is now sat­

isfied and further yg(y) < 0 for 3ufficiently large y whenever CI > cr2 /2, whi<:h is 

the range of con cern here. Thus if we are able to find a Liapunov function V which 

satisfies (A20), the asymptotic stability of equation (A30) will be demonstrated. 
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Set q == 2a/( cI - 0'2/2), where cr > 0 is the same as in inequality (A20). Clearly 

Cl > (1'2/2 whenever a st.ationary dcnsity of (A30) exists, 50 take q> O. It is ('vid('nt 

that 

V(y) == c08h(qy) 

is a Liapunov function. It is easy to show by a straightforward calculation that there 

are a > 0 and {3 > 0 such that (A20) is satisfied in the new variable y when 9(X) is 

replaced by g(y) as defined in equation (A31). Thus we know the stationary solution 

of (A30) is globally asymptotically stable which, by the change of variables (A29), in 

turn implies the global asymptotic stability of the stationary solutions of (A23) and 

(A24). The same conclusions hold for the Stratonovich interpretation. 

A.4.3 Behaviour in the Absence of Asymptotic Stability. 

The results of tht' previous section give no insight into the effects of parametric 

noise for values of the parameter CI wht'n globally stable stationary densities do not 

exist, i.e. when 

(A32) 

It is the purpose of this section to explore this behaviour for values of the parameter 

CI satisfying int'quality (A32). 

We start by defining a function 

where p > 0 is a constant. It is clear that Ep(t) ~ O. Observe from (A33) that 

Ep(t) ~ 100 

xPu(t,x)dx ~ ë 100 

u(t,:v)dx. 

(A33) 

If we can demonstrate that Ep( t) -) 0 as t -) 00, then we will know that for arbitrarily 

small f > 0 the density u(t,x) is concentrated on (O,e), i.e. u(t,:v) approaches an 

asymmetric Dirac delta function 6(x) as t -) O. 

Differt'ntiation of Ep(t) with respect to t , and using equation (AlO) gives 

dE 100 

-p = p :vP-1S(t,:v)dx 
dt 0 

(A34) 

aftt'r integration by parts undt'r the assumption that x P S( t, x) ~ 0 for x -) 0 and 

x -) 00. If we now insert equation (A 11) for the probability current S into (A34) and 

again integrate by parts we have 

dE 0'2 100 

d/ = p(p - l)2'Ep + p 0 xP-
1g(x)u(t,:c)dx (A35) 
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whenever :v p+1U -+ 0 as :v - 0 and x - 00. Equation (A35) is the fundamenlal 

relation we will use in examining the behaviour of the supercritical and sllhcrilical 

systems in the presence of paramdric noise when globally asymptotically stablt' 8ta­

tionary densities do not exist, i.e. when inequality (A32) holds. 

Supercritical system. In this case we have explicitly from (A15) and (A35) thal 

(A:lO) 

where 

(A37) 

Since E p+2 ~ 0 and p > 0, equation (A36) immediately gives the differential inequality 

From (A38) it is immediate that for K < 0 we have Ep(t) - 0 for p > O. The 

conditions K < 0 and p > 0 are equivalent ta 

(A39) 

and since p may he chosen arbitrarily small, inequality (A39) may always he satisfird 

hy sorne p when (A32) holds. 

Therefore EpU) - 0 as f - 00, which completes the demonstration that for t!w 

supercritical system with parametric noise satisfying inequality (A32), the densities 

u( t, x) converge to a Dirac delta function. The Stratonovich case is again covered by 

replacing CI in (A39) by CS. 

Subcritical System. For the suhcritical system with parametric noise, combining 

equations (A 15) and (A35) gives 

(A40) 

Noting that 2:v2 - :v4 ::; 1 for aU :v ~ 0 it is immcdia,te that 2Ep+2 - EpH ::; Ep. As 

a consequence we may use (A40) to give the differential inequality 
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Using ~he same method as in the previous case we may easily verify that, with 

p > 0, Ep ~ 0 as t ~ 00 whenever K, < -1. This, in tllrn, is equivalent to 

0"2 0"2 

CI < -1 + (p -1)- < -1 + -
2 2 

which is always satisfied for sorne p > 0 if 

(A41) 

A.5. Numerical Simulations. 

The condition in inequality (A41) is disappointing in the sense that we do not 

have a complett" analytic picture of the behaviour of the subcritical system in the 

presence of pararr_~tric noise, i.e. for values of CI satisfying 

(A42) 

Using an Euler integration algorithm with an integration time step of Il = 0.01, 

we have carried out a variety of numerical studies extending our analytic results for 

paramt"tric noise when inequality (A42) is satisficd, or an analogous result for the 

Stratonovich case. In the Ito case we used 

x(t + ~) = x(t) + O"ex(t)VLi + g(x)~ + O(~ ~) (A43) 

while 

(A44) 

was used for the Stratonovich calculations144 ,lS0. To test the veracity of our numerical 

methods, we assured ourselves that the numerical solution had reached an asymptotic 

regimt" by discarding an initial transient and then constructed the numerical density 

from the itt"ratt"s :r(/) for vaInes of the parameter CI (or CS) satisfying inequality 

(A26). For both the supcrcritical and subcritical systems, the numerically constructed 

density cuincided exactly wit h the analytically determined globally asymptotically 

stable densities (given by cquations A25 and A27 respectively) in both the Ito and 

Stratonovich formulations. 

Following this, extensive numerical simulations at a variety of noise amplitudes 

(J' for values of the parameter CI satisfying inequality (." 12) indicates that for this 

entirt" range the densities u( t, x) do converge to a Dirac delta function as t ~ 00 in 
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the sense that for every E > 0 the ratio of the time spent by x(t) in the iutf'rval (E,~) 

to that spent in the interval [0, El approaches 0 as t -- 00. Thus wc {t'el ronfidt'nt in 

asserting that for the subcritical system in the presence of parameiri(' noisl>, Ep -1 () 

as t -- 00 w henever 

A.6. Summary and Conclusion. 

In this paper we have shown analytically that additive and parametric (multi­

plicative) noise, Interpreted in either the Ho or Stratonovich formalism, Incltl('l> glohal 

asymptotic stability in two systems, one of which has received attention as the Landa\1 

equation. 

In both systems without noise, varia.tion of the parame ter c \eads to a swilching 

between a single globally stable steady state and multiple lorally stable steady states. 

With additive noise this switching is mirrored in the behaviour of the extrema of 

globally stable probaLility densities at the same value of c. However, parametric 

noise causes a noise amplitude dependent shift (postponement) in the value of c at 

which the switching occurs. 

Vnder suitable restrictions these results can be extended to more gencral poly­

nomial forms g( x) in which there are multiple bifurcations in the absence of noise. 

Further, it will be interesting to examine the situation where colored noise is used, as 

opposed to the white noise considered here . 
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Irregular Pupil Cycling as a Characteristic Abnormality in 

Patients With Demyelinative Optic Neuropathy 

John G. Milton, M.D., Andre Longtin, M.Sc., Trevor H. Kirkham, M.D., 
and Gordon S. Francis, M. D. 

We used an infrared videopupillometer com­
bined with an electronic circuit that regulated 
the retinal light level as a funchon of pu pli 
area to assess the regularity of pupil cychng 10 

normal subjects and in patients wlth known 
abnormalities in the pupi! hght reflex p'lth­
ways. The light stimulus was turned on when­
ever pupil area exceeded a preset value Two 
types of abnormalltles were observed for pa­
tients with demyellOalive optle neuropathy' a 
failure of the pupll to cycle desplte a preserved 
pupillary response to a slOgle hght pulse; and, 
for those patients In whom eycllng was POSSI­
ble, a charactertslIe intermittent Irregularity 
in the amplitude of pupll eycllOg. These ab­
normalltles were not seen ln normal subJects 
or in patients wlth Ischemie optlc neuropathy, 
surgleal les IOns ln' olving the optie chlasm, 
Adle's syndrome, or Horner's syndrome. 

OSCILlATIO:'<lS ln the dlameter of the pUpl) 
can be tnduced by foeusmg a small beam of 
hght at the puptllary margln 1: The average 
penod of these oscillatIOns has been referred to 
as the pupll cycle tlme Measurement of the 
puptl cycle tlme has been used as a ehn,~ J 

method to detect dysfunetlOn 10 the puplllight 
reflex pathways 16 Although the oSCillatIOns tn 
pupll dlameter are usually regular, tn some 
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From the Departments of Neurology (Ors Milton and 
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patients It can be qUlte Irregular;8 lt IS uncer­
tatn whether these Irregulantles are a result of 
technlcal dlffteultles 10 mamtatntng the hght 
beam correctly focused at the pupillary margtn 
or reflect Intnnslc abnormahtles tn the puptl 
hght reflex pathways Consequently, !tttle at­
tentIOn has been glven ta the posslbtllty that 
Irregulantles tn puptl cvelmg may be of diag­
nostic slgmflcance 

We developed an automated method for ob­
tatntng puptl cycltng9 by comblntng an tnfrared 
vldeopuplllometer lO wlth an electronlC CircUit 
that regulates the retlnal !tght le\'el as a func­
Iton of pupt! area, the Itght IS turned on when­
ever pupt! area exceeds a preset area threshold 
ThiS approaeh makes It easy for the patient to 
coopera te, IS Insensltlve to smdll eye move­
ments and the shadmg effects on the retma of 
the triS, slnee the !tght beam IS focused down 
the center of the pupt! under open loop condl­
lions of the pupt! llght reflex, IS not affected by 
segmental abnoTmalttles tn the movement of 
the triS, as OCCUT ln Adle's syndrome ll , and the 
changes 10 pupt! area can be recorded quantlta­
ttvely as a ~unctlon of tlme 

We used thls method ta ex .. :ntne the regulan­
ty of pu pt! cychng tn patients wlth a vanety of 
abnormaltttes tn the pupil hght reflex path­
ways 

Subjects and Methods 

We exammed 21 healthy volunteers, aged 11 
to 60 years, who were free of bath ocular 
dlsease and dlsorders known to affect auto­
nomie functlOn We also exammed 17 patients 
wlth abnormahttes 10 the pupt! !tght reflex 
pathways Of these 17 pallents, 13 had an 
afferent pu pillary defect mcludtng ten wlth 
c1iOlcally defintte multiple sclerosls accordmg 
to the criteria of Poser and assoclales,lz two 
wlth Ischemlc opttc neuropathy, and one wlth 
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a surgleal lesion of the optle chlasm after re­
sectIOn of an mtracramal tumor The remam­
mg four patients had dlsorders affeetlOg the 
autonomie nerve supply of. the pu pli three 
patients had Adle's syndrome and one patient 
had unilateral Horner's syndrome after surgl­
cal ablatIOn of the Ipsdateral supenor cervical 
ganglIOn 

Ali measurements were performed 10 sub­
jeets who had been dark adapted for at least 15 
mmutes 10 a room ht only by a dlm red hght 
Dunng pupdlary measurements, the subJects 
were mstructed to refrain from blmklOg as 
much as pos~dble and to fix thelr gaze on a 
target (a dlm green astemk) that appeared on a 
vlewmg screen mSlde the pupdlometer 

Measurements of pu pIl area were made wlth 
an mfrared vldeopupIllometer 10 The vldeo­
cameras were a charge coupled devlce and thelr 
output was analyzcd by a frame grabber that 
counted the number of pixels above a ~hce level 
(gray level) adJusted by the expenmenter to 
dlscnmlOate between pu pd and ms The out­
put of the frame grabber was an analogue 
voltage, whlch was proportlonal to the pu pd 
area (sampl1ng rate, 60 Hz) llght-emlttlOg di­
odes provlded the I1ght source (peak wave­
length, 605 nm) 

Pupd cycl1ng measurements were performed 
as foHows 9 The stlmulatmg I1ght beam of the 
pupdlometer (dlameter, 12 mm) was foeused 
on the center of the pu pd (dlameter, 6 to 8 mm) 
under open loop, that IS, maxwelhan Vlew, 
conditions. U nder these conditIOns the ms 
does not alter the beam of I1ght falllng on the 
retma, however, we used the measured pupd 
area to control thl' timing and duratlOn of the 
hght pulses falllOg on the retma 913 ThiS was 
aecomphshed by companng the analogue out­
put of the pupdlometer to an adjustable area 
threshold by usmg operatlOnal amphfier Clr­
cUltry Il The output logle level goes hlgh when 
the pupd area 15 greater than the area threshold 
and goes low otherwise The hlgh level dnves 
the IIght on and dlummates the retma m open 
loop In ail expenments the pu pd bemg stlmu­
lated was also the one bemg measured Pupd 
area and the output of the photodIOde were 
recorded as a functlOn of hme on separate 
channels of a chart recorder 

Ali measurements were performed separa te­
Iy on both eyes of each subJect and pupd 
cycllng was studled for at least four values of 
the area threshold settmg ta caver a pupd 
cycllng penod range of 1 5 ta 5 seconds For 
each threshold settmg. a minimum of ten pu pd 
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cycles \.,ere abtamed correspondmg to 50 Sec­
onds' observatIOn for the longest perlOd mea­
sured The latency hme for the pupll hght 
reflex was determIned as the tlme between the 
onset of the hght pube and the onset of the 
puplllary constnctlon uSlng a computer pro­
gram Incorporated In the vldeopupdlometer A 
minimum of three measurements were made 
for each eye 

Results 

When the area threshold WolS set at a value 
larger than the 100tiai pupll area, no regular 
oscillatIOns 10 pu pd area were seen (Fig 1, 
top) However, when the area threshold WolS 
set at a value lower than the Initiai pupll area, 
repellllve constrlctlons and dilatIOns m pupil 
area were observed (Fig l, mlddle and bot­
tom) The hght was turned on approxlmately 
100 msec after the pupd area exceeded the area 
threshold ThiS deldY represents the electron.c 
delay ln our apparatus The onset of eonstnc­
tlOn oecurred 296 :: 2-t msec after thr hght was 
turned on (mean :: 15 D for 21 subJeets) ThiS 
delay IS the pu pd lateney tlme Once pU pd area 
constneted to a value less than the area thresh­
old, the hght WolS turned off after the machine 
delay The pupd contmued ta constnet for the 
duratlOn of the neural delay, after whlch Il 
began to ddate 

The peCiod and amphtude of the oscIllatIOns 
ln pupll area depend on the value of the area 
threshold relative to the millai pu pli area (Fig 
1, mlddle and bottom) ThiS dlstmgulshes our 
m~thod from the pu pd cycle lime measure­
ment 1 e The changes 10 the penod and amph­
tude of pupd cycllng as a functlOn of the area 
threshold can be used to determlne the rates of 
const:lctlOn and ddatlOn of the pu pd (unpub­
hshed data) ln the present study l'le focused 
on the regulanty of the amplitude of the pupd 
cyellllg 

In normal subJects, and patients wlth Ische­
mie and surgleal optlC neuropathy and wlth 
autonomlC nerve dysfunctlOn, rcgular pupd 
cychng was abtalned (Table and Fig 2) ln each 
case, the area threshold was adJusted to glve 
slmdar values of the penod of pu pd cycllng 
There were small cycle-ta-cycle variatIOns ln 
the amplitudes and mtervals between succes­
sive constClctlOns, whleh were typlcally larger 
for patlents wlth Adle's syndrome Converse­
Iy, regular pupil cycllng was not observed 10 
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Fig. 1 (Milton and associa tes) Pupll cychng ln a 
normal subJect for three dlfferent values of the area 
threshold (dotted hne) The sequence of hgJ-t pulses 
IS shown above the changes ln pupll area (sohd hne) 
Th!! pupll area before eyellng was the same ln ail 
cases (approxlmately 34 mm') The initiaI translent 
ch'lnges ln pupll area that oceur Immedlately after 
adJustment of the area threshold are not shown 
(mlddle and boltom) They perslst for the equlvalent 
of two 10 three cycles 

patients wlth demyelinatlve optle neuropathy 
There were two dIstinct types of abnormahhes 
seen only when the hght wa~ presented to the 
affeeted eye Of 20 eyes (ten p,atients) wlth 
mulllple sclerosis, 16 had evidence of optle ,~ 

236 

. 

neuritls (Fig 2) In n1ne of the 16 affeeted eyes, 
pu plI eyellng was punetuated by short seg­
ments of Irregular amplitude (Patient 17, Fig 
2) These Irregular segments lasted for at least 
the equlvalent of two cycles and were charae­
tenzed by theu abrupt onset and offset and a 
marked decrease m amplitude 

We were unable to obtam pupll cyclmg m the 
remalnlng affected eyes ln some cases, for 
example, Patient 12, thls was c1early because of 
the much reduced response of the pupll to 
hght In other patients, however, we were un­
able to mamtam pu pd cychng even though 
there was a good constnctlOn to a smgle hght 
pulse The pupll would undergo one to two 
constnctlOns and then no further response 
would be seen (PatIent 10, Fig 2) A slmllar 
phenomenon occurred ln some normal subJeets 
when the area threshold was set tao close to the 
minimum pupl! area obtamed ln response to 
the hght stimulus In these cases regula r cy­
cllng was restored by Iccreaslng the area 
threshold However, thls maneuver dld not 
restore pupl! cychng ln patients wlth demye­
hnatlve optlc neuropathy 

The latency of the pu pd hght reflex was 
prolonged for patients wlth demye!matlve 
optle neuropa thy (341 :: 9 msec for elght pa­
tients) compared to normal ~ubJects (296 :: 24 
msec for 17 subJects) (Student's I-test, P < 05) 

Discussion 

Our observatIOns Indlcate that the lime 
course for pupl! cyclIng ln patients wlth demye­
hnatlve optlc neuropathy dlffers from that seen 
ln normal subJects, patients wlth Ischemie optle 
neuropathy, and patIents wlth autonomlC 
nerve dysfunctlOn There are two types of ab­
normahtles that were observed only when hght 
was presented to the affeeted eye fallure of the 
pupll to eycle desplte a puptllary response 10 a 
Single hght pulse, and, for Ihose patients ln 
whom cyellng was pOSSible, a eharactenstle 
irregulanty ln the amplitude of the cyellng 

Inereased dlffieulttes tn obtalfllng sustallled 
pupll cyellng m pallents wlth multiple scie roSIS 
have been repcrted prevlOusly by several tn­
vestlgators us mg the pupll eycle tlme measure­
ment J 1 Howpver, It must be noted that wlth 
the use of the sht lamp to obtaln pupll cyellng, 
up to 7% of normal puplls do not eycle Il We 
expenenced no dlfficulty ln obtalfllng pu plI 
eychng ln normal subJeets In partleular, we 
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TABLE 
PUPIL RESPONSES IN PATIENTS WITH LESIONS IN THE PUPIL LIGHT REFLEX PATHWAYS 

SINGLE LIGHT PULSE" 
( .... ') PUPIL CYCLING' 

PATIENT NO, 
AGE (YOSI SEX RIGHT LEFT RIGHT LEFT CLINICAL HISTORV 

Normal subJects 12 13 Regular Regular 

Range (6-20) (6-20) 

Ischemie optlC 
neuropathy 

1,34, M 10 15 Regular Regular Rlght allerent pupillary deleet, fat embohsm, 
nght Jnlenor atlltudlnat delect 

2,55, M 7 12 Regular Regular Rlght allerent pupillary delect, temporal 
.rtentls, nght mlenor areuate delect 

OptlC chlasm le510n 
3,42, F 7 10 Regular Regular Rlght allerent pupillary deleet, par liai 

resecllon 01 suprasallar menlngloma, 
nght temporal hemlanopla 

Horner's syndrome 
4, 14, F 10 16 Regular Regular Rlght Homer's syndrome alter surglcal prOCedure 

ln neek 

Adle's syndrome 
5,38, F 8 Absent Regular Rlght Adle s pupd 

6,29, F 2 12 Regular Regular Right Adle's pupol 

7,36, F 6 10 Regular Regular Bllater al Adle S pUpll, right worse than left 

Demyehnallve optlC 
neuropathy 1 

8,31, M 10 10 Regular Irregular Lelt afferent pupdlary dafec1 

9,29, F 7 9 Irregular Irregular Rlght afferent pupillary defeet, bllateral 
vlsual blurnng 

10,33, F 4 7 Absent Absent Lelt afferent pupillary defec1, bllateral 
Vlsual blurnng 

Il,64, M 4 3 Irregular trregular Lelt afferent pupillary defect, nght vlsual 
blurnng 

12,35, F 1 6 Absent Rlght affarent pupillary defect 

13,19, F 3 5 Absent Absent Rlght afferent pupillary delect, Vlsual 
Ivoked response shoW1ng bllateral slOWlng 

14,29, F 13 12 Regular Irregular Lelt afferent pupdlary defect 

15,33, F 9 11 Irrcgular Irr"9ular Lelt aff.rent pupollary defect, bllat.ral 
VlSUaJ Ioss 

16, "l, M 3 7 Absent Regular Right affarent puplilary delect 

17,29, F 9 9 IlT89ular Rlljht afferent pupollary delect, Vlsual 

evoked '"ponse showlng bllateral slow1ng 

'Change ln pupol area ln response to a Single 0 S-second loght pulse The Inten5lty 01 the Il\jht pulse wu the sam. for ail subJ8CIS 
'Regular, pupd cychng u seen lor normal eyes (see 1"'9 1), Irregular, irragular pupd cychng (sse Pat~nt 17, Fog 2). ;lbsent, unable 10 

cycle (see Pahent 10, F'og 2) 
'The chnleal hlstory glVes the sICle 01 the allerent pupollary defecl that was hm detected cHnteally (,ange, one month 10 t 5 yaars befor. our 

examlnabon) ln sorne patllnts the allarant pupdlary delee! wu no longer dettctablt and ln others rt had SW1tched slCl .. , thereby Indlcallng 

the presence 01 a new IeslOn 

easlly ehclted normal puptl eychng ln Iwo nor­
mal subJects ln whom cyeHng cou Id not be 
imtiated by use of a sHt lamp. Two prevlous 
studies have noted intermittent uregulanhes in 

pU~ll eyehng of patients wlth multiple sclero" 
SIS 1; however, the posslbJllty that thls may be 
specifie for demyehnatlve leslons of the optie 
nerve was not reeogmzed. 
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Normal 

Ischemie Optoc Neuropalhy 

2 

D.myellNll'vtI OpIIC Neuropethy 

~~'7 FiS. 2 (Milton and associa tes) Companson of 
puptl cycling in a normal subJect to that ln 

pattents wlth Ischemlc Optlc neuropathy, de­
myelinattve OptlC neuropathy, Adle's syndrome. 
Horner's syndrome. and a patient w.th a surgl­
cal leslOn of the optle ehlasm The numbers at 
the nght-hand slde of the figure Identlfy the 
pattent. The Irregulanty observed ln pu pli cy­
chng for the patient wlth demïehnahve optae 
neuropathy 15 IndICated by the arrow 

~------------------------------
10 

Luoon of Opllc Ch, .. m 

Horn.'. Syndl'OlM 

Aclo.. Syndrome 

2Omm'L 
2 MC. 

The mechamsm for the irregulanttes in pupll 
cychng 10 patients wlth demyehnative OptlC 
neuropathy IS uncertam It IS unhkely that 
these Irregulantles represent pupillary fatigue, 
habituation, or escape,I5 smcc the progressive 
diminutIOn of the amplitude of the pupillight 
reflex assoclated wlth these phenomena is not 
present. AddltlOnally, pupillary fatigue typi­
cally occurs after 60 seconds,us.l ' whereas the 
Irregulanty ln pupll cychng observed ln pa­
tients wlth demyeltnatlve optle neuropathy oc­
curred wlthm 20 seconds. 

It is more IIkely that these Irregulantles are 
related to the prolonged latency of the pupll 
reflex and tlme-dependent affcrent pupillary 
defects. Durmg pupll cychng, the optlc nerve 
transmlts a repet.hve tram of synchronous af­
Eerent Impulses as the hght pulse mtermlttently 
reaches the retma. Parttally de'l'lyelinated 
nerve fibers have dlfficulhes m transmlthng 
trains of impulses and undergo mtermlttent 
conduction block,l7.l1 whlch IS believed to be 
related to the prolongation of the refractory 
period for transmisSIOn. 1. Partial demyelinahon 

. 

3 

7 
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of Even a small proportion of the opttc nerve 
fibers may be sufficlent to desynchromze the 
train of afferent nerve impulses 17 ta the palOt 
that pupll cycling is mterrupted Conversely, 
ln a partlally Infarcted optlc nerve only the 
intact nerve fibers can conduct Impulses Smce 
the mtact fibers appear to be normally mye­
Iinated20 ·%1 ln a parhally mfarcted nerve, thls 
dcsynchromzatlon should not oceur and cy­
c1ing should be regular Thus, our observation 
that Irregulanhes ln pupillyclmg are seen In 

optie nerves wlth demyehnated leslons but not 
ln those wlth Ischemie leslOns IS consistent 
wlth known differences m nerve conductIOn of 
repetltlve Impulses between myehnated and 
unmyelmated nerve fibers 

Quanhtahon of puplllary changes has tYPI­
caUy been dlsappomtmg as a method for en­
hancmg chmcal acumen. For example, the dem­
onstratton of an afferent pupillary defect at the 
bedslde IS weil known to be a more sensItive 
mdlcator of ophc nerve dysfunctIon than prevl­
ously reported pupillographic methods. Z2 This 
preliminary study suggests that precise mea· 

j 
i 
j 

l 

1 
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surements of pupd eychng under well-deftned 
condlttons may be useful for Identtfytng the 
ongtn of an optIc neuropathy. Irregular eyehng 
favors demyehnatlon. whereas regular cychng 
favors Ischemlc or surglcalleslOns This task IS 
not eastly accomphshed by other methods !Z II 

Our method al50 al- pears to be u5eful for de­
tecttng whether there 15 bllateral optiC nerve 
dysfunctlon 10 a pattent wlth a relattve afferent 
pupillary defect Clearly, more studles tnvolv­
lOg larger numbers of patIents tn dlfferent stag­
es of evolutlon of thelr dlsease and wlth com­
parison to other diagnostIc techntques of optlc 
nerve dysfunctlOn. for example, vlsual e\'oked 
potentlals, WIll be necessary before It will be 
known whether thls method also has a role 10 

detectmg the presence of subchnlcal dysfunc­
tlon 10 an OptlC nerve 
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APPENDIX ° 
FITTING THE SINGLE PULSE RESPONSE OF THE PUPIL 

This appendix describes the functions used to fit the response of the pupil to a 

Iight pulse of duration T seconds, as weil as the algorithms used to perform the fit. 

This pupillary response consists in a constriction followed by a dilation. 

There are 4 different programs. Each pro gram is a subroutine containing the 

function t.o be fitted to the data, and the partial derivat.ives of this function with 

respect to the parameters. The main program to which the subrout.ines are appended 

is the Basic Statistics and Regression Analysis Program by lIewlett-Packard, 

running on a Hewlett-Packard 9816 computer. 1t uses a Marquardt algorithm to 

search for a local minimum of the X2 function in parameter space starting from user 

specified initial gues ses. This method combines the best features of the gradient 

search (which follows the steepest descent of the X2 function) with the method of 

linearization of the fi tting function (see e.g. Bevington185 ). 

1. The first subroutine is SPFI20RD. The constriction phase is modelled by 

one exponential process. The dilation process takes over from the constriction process 

at time t = T, and is modelled by two exponential processes. The fit is constrained 

by the condition that the solution and its derivative be continuous at time T. Time 

t = 0 is chosen as the onset of \..onstriction. An extra constraint is the initial pupiI 

area at time t = O. 

Denoting pupil are a during the constriction phase by :l:c(t) and during the dila­

tion phase by :l:d(t), this model takes the form 

( constriction ) (01) 

(dilation) (C2) 

This model has 8 pararneters: {A,B,O,D,E,uc,od,.Bd;T}, the pararneter T being fixed 

prior to the fit. Imposing continuity of the solution and its first derivative at t = T 

yields: 

The initial condition gives 

:z:c(O) =:Z:o = A +B. 
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These constraints can be used to eliminate 3 parameters, leaving 5 free parameters for 

the fit. When the parameters {D,D,E} are ('xpressed as a fundion of {A,C,ac,ad,,Bd}, 

then B is obtained from (C5), and 

D = _ o.d e + a e Ae-arT 

f3d {3d 
(06) 

E = X o + A(e-arT -1) - e + ;:C - ;: Ae-arT
• (C7) 

2. SPFCID2 is a variation of SPFI20RD. This program has 4 free paramt'ters 

because the final asymptotic value E = Ao!! is imposed on the solution. The valllt' 

of Ao!! used is the one obtained from the parameter estimation sch('mt' for the first 

order model (Section 3.2.3). Expressed in terms of the fret' parameters {A,ae,ad,,BÛ, 

the fitting equations are: 

(C8) 

and 

where 

(C10) 

3. The subroutine CYCLFIT5 has five constraints. Besides tht' 4 constraints 

of SPFCID2, it fixes the lower asymptote, i.e. B = Aon. The value of Aon uscd is 

aiso obtained from the first order model (Section 3.2.3). There are 3 free parameters 

{ae,ad,,Bd} and the data are fitted to the functions : 

(CIl) 

and 

where 

4. Finally, the subroutine SPF20RD describes a mOdel where both constrictioJ1 

and dilation are described by the solutions of a second orcier differential equations : 

o ~ t ~ T (C14) 
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(015) 

This model has been studied with three constraints: 1) continuity of the solution at 

time Tj 2) continuity of the derivative at time Tj and 3) :c(O) = :co' When the param­

eters {B,D,KÛ are expressed in terms of the 7 free parameters {A,Kc,C,ac,,8c,ad,,8d}' 

(016) 

and 

(017) 

result, and B is again obtained from (05). 

These routines were used to fit single pulse responses that are either isolated 

(Sections 3.2 and 3.3) or which occur as part of pupil cycling (Section 3.4.5). These 

two pulse responses are distinguished by the different conditions under which they 

occur. In pupil cycling, the pulses occm in succession and their duration is observed 

to fluctuate from one cycle to the next. For the isolated single pulse responsE', the con­

striction and dilation time courses can be fit separately (set' Figures 3.2.6a and ~l.2.()b 

of Section 3.2). Tht' solution has a slopt' di5continuity aL the light offset, bccause 

the single expoIlt'ntial pro('('~s neglccts higher arder dynamics of the iris muscles. As 

seen in Figure 3.2.6a the pupil continues on constricting beforc dilating, cvcn though 

the light is off. ln Figure 3.2.6c the paramett"fs estimated from pupil cycling (C1Dl: 

see Seetion 3.2.3) prnvide a bctter fit to the isolated single pulse response than the 

method uscd in Figures 3.2.6a and 3.2.6b. 

An t'xcdlent fit to the isol«ted pulsE' response is obtained when SPF120RD 

(Figurt' 3.2.6d) or SPFCl D2 (Figure 3.4.6a) is used. The SPF20RD model (10 pa­

rameters, 3 eonstraints )was found to have many local minima when applied ta the 

isolated single pulse (data not shawn). Thus, the fit obtained was not very robust 

even though it minimized the )(2 very well. In faet, certain initial guesses led to 

negativl" ratt" constants. 

In Section 3.4.5, successive eonstriction-dilation cycles were fitted using SPF-

0102, ..loi! heing fixed to the value obtained using the cycling parameter esti­

mation seheme (for ClD1). SPFC1D2 was found to give more consistent rt'sults 

than SPF120RD and CYCLFIT5. The parameters were then used in the program 

CID2S0L (Appt'n<lix 0) which numerically integrates the CID2 model (see Section 

3.4.5 for PCNF and Appendix II of Section 3.2 for single pulse response). The damp­

ing and frequt'ncy are related to the rate constants of the fit : 6 = ad + f3d and 
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w2 = O!d{3d. This equivalence sirnply follows from the relation betwt't'n th(' COt'nt­

dents and the roots of the characteristic equation of a second orcIer linl'ar diff('rent.ial 

equation. The forcing constants in the differcntial equations are obtained hy t'quat­

ing the asymptotic values predicted by these equations with those from tht' fH : 
Clor _ Dlor_ 
-- = :Vo - A = ,4on and -2- = E = Aojl' 

a c w 
AlI our fits were repeated a nurnher of times starting with difft'rt'nt initial guesses 

for the parameters. Reasonahle parameter gues ses for the more compliratt'Cl Cl 1)2 

fits could be obtained from the simpler Cl Dl fits in St'ction 3.2. In ail cases t'Hep!. 

for SPF20RD, the fits were found 1.0 be robust, dnd thus tht're wert' no prohlt'B1s 

caused by the presence of other local minima of the .\2 fllnction in parauH't.t'r spart'. 

Further, the X2 was slightly lower when valut's of the light pulse duratioll T Ilst'd in 

the fitting subroutines wue made slightly larger than those Bsed in tht, exp(>riment 

(e.g. 600 rnsec instead of 500 msec for the single pulse responst's). This corresponds tu 

making the offset delay larger than the onset delay. However, in Section :J.2 the first 

order model was shown 1.0 give better agreement between the predicted and obst'rv('cl 

period of pupil area oscillations when the delays were equal (see Figurt' a.2..t). Basecl 

on this and the fact that our physiological mode! in Section 2.2 assumes that t)H'se 

delays are equal (see Section 3.2), aU the fits were final1y done using the reill duration 

of the light pulse. 
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APPENDIX D 

PROGRAMS 
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program rkcnad 1 

rkcnadl : Runge Kutta Colored Noise Additive Noise 
Language Fortran 77 
Computer : VAX 3200 

This program integrates ~ nonlinear delay-differential equation 
which is a model for smooth negative feedback oscillations in 
the pupil light reflex. 
Either the deterministic or the stochastic version of this 
equation can be nu~erically integrated with double precision 
accuracy. 
The program computes the density of the solution as weIl as the 
period and amplitude distribution for additive or multiplicative 
Gaussian colored noise. 

The basic numerical integration algorithm ie a fourth order 
Runge-Kutta scheme with linear interpolation for the delay. 
It appears in subroutine RK4. 
The integration time step is given as a fraction (DELT) of the 
delay (TAU). 
The program uses a delay buffer XDEL(DELDIV+l). where 
DELDIV=l/DELT, to continuously store the solution from 
(REALT-TAU) ta (REALT), REALT being the present integration 
time (in seconds). 
The initial condition (taken ta be a constant = XTINIT in our 
simulations) is stored in the delay buffer. 
The program computes the solution X for (NTAUHAX) delays, a~d 
for each delay the index K runs from 1 to DELDIV. 
It furt~er constructs the density from the time solution. 
The binning of the iterates into the (BN=500) bins of the 
solution histogram RHO(BN) oceurs only for NTAU > NTAUHIN, 
in order ta allow for transients to decay (this is important 
for the determination of the invariant density). 
The values of the solution between XHIN and XHAX are linearly 
mapped into a bin number between 0 and BN. 
Values of the solution at which the derivative changes Bign 
are stored in order to calculate the amplitude and period 
at each cycle. The amplitud~ 15 computed as the difference 
bet~een two such successive values of the solution (i.e. tram 
peak to trough), while the period is computed trom peak to peak. 
The amplitude histogram ;s RHOA(BINS), and the period histosram 
RHOP(BINS), and their bounds are fixed between AHPHIN and AHPHAX 
and PERMI~ and PERHAX. 
If 2 succes~ive ~nanges in the derivative sign oceur tao close in 
tlme, they are neglected (the parameter FLUKE controls this). 
This iB because such rapid changes are not measurable in the 
pupil data we have analyzed. Also, since very small amplitudes 
escape detection, wo neglect the contents of the first 
JZERO bins of RIIDA (the total number of neglected values is 
Siven by CORNITA). 

The progran calculates the solution, amplitude and period 
densities for ùifferent values of the paramater U(2) (n in 
the Hill-type feeèback function) around the Hopf bifurcation. 
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The noise oan affeot any parameter U(*) in the eguation which 
appears in the subroutine DERIVS. When the noise affects U(5), 
it ia additive. Close to the bifurcation, the rate of relaxation 
onto the limit cycle is very slow. The solution is first allowed 
to relax onto the limit cycle for NZHIN=2500 delays. When 
NTAU > HZM!N, noise is applied, and we allow another NTAUMIN=2500 
delays for a ateady-state to be reached. The integration proceeds 
until time NTAUMAX*TAU. 
The intensity of the Gaussian noise is given by SIGHA, and its 
correlation time by TCOR. 
The integration time step for the noise is the same as that for 
the deterministic component handled by the RK4 routine. 
The noise Bat~sfies an Ornstein-Uhlenbeck process which is 
integrated using an integral Euler method as suggested by Fox 
(see section 5.2 for more details). The uniformly distributed 
random numbers are generated by the RANI subroutine taken from 
Numerical Recipes. 

real*8 xdel(IOI),gausx,u5bar,fluke,pi 
real*8 x,dxdt,xh,delt,tau,xmin,xmax,xltau,u(5),xtinit 
real*8 nksi,ksil,ksi2,sigma,realt,tnext,tcor,sig 
real*8 ampmin,ampmax,permin,permax,ampl,per,anpli,peri 
real*8 xlast,tlast,sgnlast,e,bige,dirft 
integer bn,bins,binnumb,deldiv,delpr,rho(500),idum 
integer ntau,ntaumin,ntaumax,rhoa(200),rhop(200) 
integer jmin,jmax,stepj 
integer aflag,flag,bnumba,bnumbp,cornita,jzero,nzmin 
integer nit,nita,nitp,nitapr 
real*4 robar,robara,robarp.varrho,varroa,varrop 
real*4 xsumsq,asumsq,psumsq,xofi 
real*4 sigro,sigroa,sigrop 
real*4 fnit,fnita,fnitp 
common/eqparam/u,xdel,delt.tau 
common/deloop/k 
open(5,file='rk2ad7.01') 
rewind 5 
idum=-5813 
pi=3.141592653589793 
bins=200 
bn=500 
u(1)=3.21dO 
u(3)=50.0dO 
u(4)=200.0dO 
uSbar=O.OdO 
tau=O.3dO 
delt=O.OldO 
deldiv=100 
xtinit=40.0dO 
nzmin=2500 
ntaumin=5000 
ntaumax=25000 
xmin=10.0dO 
xmax=75.0dO 
ampmin=O.OdO 
ampmax=40.0dO 
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perllin=0.5dO 
permax=1.5dO 
fluke=20.0dO*delt*tau 
jzero=3 
nit=(ntaumax-ntaumin)*deldiv 
tcor=1.0dO 
sig=7.0dO 
sigma=sig*tcor 
bige=dexp(-delt*tau/tcor) 
jmin=818 
jmax=830 
stepj=2 
goto 45 

55 continue 
jmin=84 
jmax=120 
stepj=2 

45 continue 
do 20 j=jmin,jmax,stepj 

if(jmin.eq.818) then 
u(2)=dble(j)/100.OdO 

else 
u(2)=dble(j)/10.0dO 

end if 
write(5.002) u(2).sigma 

002 formate' ','u(2)= '.d19.14.3x,·sigllla= ·,d19.14) 
do 10 i=l.bn 

rho(i)=O 
10 continue 

do 11 i=1.bins 
rhoa(i)=O 
rhop(i)=O 

11 continue 
delpr=deldiv+1 
do 30 k=l.delpr 

xdel( k)=xtinit 
30 continue 

cornita=O 
nita=O 
nitp=O 
xlast=xtinit 
tlast=O.OdO 
sgnlast=1.0dO 
ksi1=ran1( idull) 
ksi2=ranl( idull) 
nksi=dsqrt(-2*dlog(ksil»*dcos(2*pi*ksi2) 
e=dsqrt(1/(2*tcor»*siglla*nksi 
eh=e 
flag=O 
aflag=O 
do 100 ntau=l,ntaullax 

x=xdel(deldiv+l ) 
do 101 k=l,deldiv 

tnext=(ntau-l+k*delt)*tau 
realt=tnext-delt*tau 
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x1tau=xdel(k) 
if(ntau.gt.nzmin) then 

u(5)=u5bar+e 
ksi1=ran1( idum) 
ksi2=ranl(idulI) 
nks i :.dsq·rt( -2*d loge ksil) )*dcos( 2*pi*ksi2) 
gaus~=nksi*sigma*dsqft«1-bige**2)/(2*tcor» 
eh=e*bige+gausx 

else 
u(5)=u5bar 

end if 
calI derivs(realt,x,dxdt,x1tau) 
if(ntau.gt.ntaumin) then 

difft=realt-tlast 
if«dsign(1.0dO,dxdt).ne.sgnlast) .and. (difft.gt.fluke 

+» then 

+) )+1 

+»+1 

ampl=abs«x-xlast» 
if(aflag.eq.O) then 

atlag=1 
goto 35 

end if 
bnumba=idint«ampl-ampmin)*dble(bins)/(ampmax-ampmin 

if«bnumba.gt.O) .and. (bnumba.le.bins» then 
rhoa(bnumba)=rhoa(bnumba)+1 
n ita=n i ta+ 1 

end if 
continue 
if(flag.eq.O) then 

per=realt-t1ast 
bnumbp=idint«per-permin)*dble(bins)/(permax-permin 

if«bnullbp.gt.O) .and. (bnumbp.le.bins» then 
rhop(bnumbp):rhop(bnumbp)+1 
ni tp=n itp+ 1 

end if 
tla~t=realt 

end if 
f1ag=1-f1ag 
xlast=x 
sgnlast:-sgnlast 

end if 
end if 
call rk4(x,dxdt,realt.xh) 
if(ntau.gt.ntaumin) then 

binnumb=idint«xh-xmin)*dble(bn)/(xmax-xmin»+1 
if«binnumb.ge.1) .and. (binnumb.le.bn» then 

rho(binnumb)=rho(binnumb)+l 
end if 

end if 
xdel{k)=x 
x=xh 
e=eh 

101 continue 
xdel(deldiv+l):xh 

248 

ft 

, 
• 
~ 
i 
1 
; 

l 
~ 

-', 

, 

i 

l 



.... - o 
c 
c 

100 oontinue 

STATISTICS 

do 60 l=l,jzero 
cornita=cornita+rhoa(l) 
rhoa{l )=0 

60 oontinue 
robar=O.O 
robara=O.O 
I:obarp=O.O 
xsullsq=O.O 
asullsq=O.O 
psuIIlSq=O.O 
do 61 i=l,bn 

xOfi=i*(xmax-xmin)/float(bn)+xmin 
robar=robar+rho(i)*xofi 
xsullsq=xsumsq+rho(i)*(xofi**2) 

61 oontinue 
fnit=float(nit) 
robar=robar/fnit 
varrho=xsullsqj(fnit-l)-fnitj(fnit-l)*(robar**2) 
if(varrho.st.O.O) then 

sigro=sqrt(varrho) 
end if 
do 62 i=l,bins 

ampli=i*(ampmax-ampmin)/float(bins)+allpilin 
peri=i*(permax-permin)/float(bins)+perllin 
robara=robara+rhoa(i)*allpli 
robarp=robarp+rhop(i)*peri 
asumsq=asumsq+rhoa{i)*{ampli**2) 
psumsq=psumsq+rhop(i)*(peri**2) 

62 continue 
nitapr=nita-cornita 
fnita=float(nitapr) 
if(nitapr.Ie.l) then 

robara=O. 
sigroa=O. 

else 
robara=rooara/fnita 
varroa=asullsq/(fnita-l)-fnita/(fnita-l)*(robara**2) 
it(varroa.le.O.O) then 

sigroa=O.O 
eise 

sigroa=sqrt(varroa) 
end if 

end if 
fnitp=float(nitp) 
if(nitp.le.l) then 

robarp=O. 
sigrop=O. 

eise 
robarp=robarp/fnitp 
varrop=psuDsq/(fnitp-l)-fnitp/(fnitp-l)*(robarp**2) 
if(varrop.le.O.O) then 
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sigrop=O.O 
else 

sigrop~sqrt(varrop) 

end if 
end if' 
write(5,003) xsuII~q,asumsq,psumsq 
write(5,003) robar,robara,robarp 
write(5,003) sigro,sigroa,sigrop 
write(5,004) nita,nitp,cornita 

003 formate' . ,3e15.4) 
004 formate' ',3ilO) 

write (5,001) (i,rho(i),i=l,bn) 
001 format(' " 2i10) 

20 continue 
if(jmin.eq.818) then 

goto 55 
end if 
c10se(5) 
stop 
end 
subroutine derivs(rea1t,x,dxdt,x1tau) 
double precision u(5),xltau,x,dxdt,xdel(101),delt,tau,realt 
common/eqparam/u,xde1,delt,tau 
dxdt=-u(1)*x+u(4)/(1+(x1tau/u(3»**u(2»+u(5) 
return 
end 
function ran1(idum) 
real*8 r(97),rml,rm2 
integer idum 
parameter (m1=259200,ia1=7141,i01=54773) 
parameter (m2=134456,ia2=8121,i02=28411) 
parameter (113=243000,ia3=4561,103=51349) 
rm1=1./m1 
r1l2= 1. /112 
data iff /0/ 
if «idum.lt.O) .or. (iff.eg.O» then 
Hf=1 
ix1=mod(i01-idulI,m1) 
ix1=mod(ia1*ix1+i01,1I1) 
ix2=llod(ix1,1I2) 
ix1=mod(ia1*ix1+ic1,m1) 
ix3=mod(ixl,m3) 
do 11 j=1,97 

ix1=lIod(ia1*ixl+ic1,ml) 
ix2=lIod(ia2*ix2+ic2,1I2) 
r(j)=(dble(ixl)+dble(ix2)*rm2)*rlll 

11 continue 
idum=1 
endif 
assign 12 to i1abel 

12 continue 
ixl=lIod(ia1*ix1+i01,1I1) 
ix2=mod(ia2*ix2+ic2,1I2) 
ix3=mod(ia3*ix3+i03,1I3) 
j=1+(97*ix3)/1I3 
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if({j.gt.97) .or. (j.lt.l» then 
goto ilabel 

endi! 
ranl=r(j) 
r(j)=(dble{ixl)+dble(ix2)*rm2)*rml 
return 
end 
subroutine rk4(x,dxdt,realt,xh) 
double precision u(5).x,dxdt,xh,xdel(lOl),realt,delt.tau 
double precision ksi,xt,dxt,dxm.hh.h6.th.tpriD8,xltau 
common/eqparam/u,xdel,delt,tau 
common/deloop/k 
hh=delt*tau/2 
h6=hh/3 
th=real t+hh 
xt=x+hh*dxdt 
xltau=(xdel(k)+xdel(k+l»/2 
calI derivs(th,xt.dxt,xltau) 
xt=x+hh*dxt 
ca11 derivs(th,xt,dxm.xltau) 
xt=x+delt*tau*dxm 
dxm=dxt+dxm 
xltau=xdel(k+l) 
tprime=realt+delt*tau 
calI derivs(tprime,xt,dxt,xltau) 
xh=x+h6*(dxdt+dxt+2*dxm) 
return 
end 
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THIS 1S PROaRAM HUMPFMAP 

LANGUAGE : HEWLETT - PACKARD BASIC 3.0 
COMPUTER : HEWLETT - PACKARD 9BI6 W1TH MATHEMATICAL COPROCESSOR 

THIS PROGRAM CALCULATES THE EXACT SOLUTION TO THE FIRST OROER 
DELAY-DIFFERENTlAL EQUATION WITH PIECEWISE CONSTANT MIXED FEEDBACK: 
DX/DT • -ALPHA • X(T) + F eX(T-TAU)] WHERE 
F-DI IF X<T-TAU) < THR 1 (REGION 1) 
FaC IF THRI < X<T-TAU) < THR2 (REGION 2) 
F-D3 IF X(T-TAU) > THR2 <REGION 3) 

THE PROGRAM EITHER CALCULATES AND PLOTS THE SOLUTION. 
OR (LINES 4100-4160 ~ 4270-4330) COMPUTES AND OISPLAYS A POINCARE 
MAP X(N+I) VS X(N) (SAMPLING INTERVAL IS GIVEN BY ·SAMSTEP·). 
OR (LINES 3520-3900) COMPUTES AND OISPLAYS A POINCARE MAP OF CROSSIN6 
TIME INTERVALS (CROSSINGS WITH THRESHOLO 1 OR THRESHOLD 2). 
THE LATTER PLOT IS AT THE BASIS OF THE ANALYSIS OF THIS EQUATION 
(BY UWE AN DER HEIoEN AND MICHAEL MACKEY). WE USED IT TO TRY TO 
GET MORE INSIGHT INTO THE OYNAMICS OF SIMPLE AND COMPLEX SOLUTIONS, 
ESPECIALLY THOSE FOR WHICH NO THEORY EXISTS. 
THE PROGRAM FINOS THE CROSSING TIMES WITH THE THRESHOLOS. 
TAU-SECONDS AFTER A CROSSING. THERE WILL BE AN EXTREMA IN THE SOLUTION 
SINCE AT THIS POINT THE DERIVATIVE CHANGES ABRUPTLY. 
THE PROGRAM SEWS THE EXTREMA TOGETHER USING INCREASING OR OECREASING 
EXPONENT l ALS. 
THE RATE CONSTANT ALPHA CAN TAKE ON A OIFFERENT VALUE FOR DX/DT<0 OR 
DX/DT>0. ALSO THE DELAY CAN TAKE ON TWO DIFFERENT VALUES. DEPENDING 
ON WHETHER THE CROSSING GCCURRED FROM nEGIONS 1 OR 3 INTO REGION 2 
OR THE OPPOSITE. 
THE PROGRAM ALLOWS FOR 2 OIFFERENT KINDS OF INITIAL CONOITIONS. THE 
FIRST 15 RE FER RED TO AS "NORMAL' AND CORRESPONOS TO 
THRI < X(TI <THR2 FOR T IN (-TAU,0) WITH X(0)-THRZ. 
THE SECONO ALLOWS FOR A THRESHOLD CROSSIN6 IN THE INTERUAL (-TAU.Il) 
AT T - -TAU + W. WHERE W BELONGS TO (0.TAU). THE INITIAL CONDITION 15 
THRI < X(T) < THR2. T IN (-TAU.-TAU+W). X<T) < THRI. T IN (-TAU+W.0) 
AND X(0 )·THRI. 
SY VARYING W. KEEPING ALL OTHER PARAMETERS FIXED. ONE CAN EXPLORE 
A SUBSET OF THE INITIAL CONOITIDNS. 

THE CALCULATION PROCEEDS UNTIL N THRESHOLD CROSSINGS HAVE BE EN DETERMI 

THE VECTOR T CONTAINS THE CROSSING TIMES. 
THE VECTOR XPRIM CDNTANS THE VALUES OF THf EXTREMA OF THE SOLurION. 
THE INDEX M (MZ) COUNTS THE NUMBER OF CROSSINGS WITH THRI (THRZ). 
THE INDEX 1 COUNTS THE TOTAL NUMBER OF CROSSINGS THAT HAVE OCCURRED. 
TTHRI(M) CONTAINS THE VALUE OF THE INDEX l AT WHICH THE M'TH CROSSIN6 
OCCURRED (LIKEWISE FOR TTHR2(MZ». 
THE INDEX J COUNTS THE NUMBER OF THRESHOLD CROSSINGS UP TO WHICH THE 
THE SOLUTION HAS BEEN PLOTTED. 
AT EACH ITERATION OF THE J-LOOP (LINE 1930-3Z70) THE SIGN OF THE 
DERIVATIVE CHANGES. WHEN PAR-0. DXIDT < 0. AND PAR-I WHEN DX/DT > 0. 

FOR EACH J. THE PROGRAM FIRST DETERMINES WHETHER THE CROSSING TIME T(J 

IS KNOWN (LlNE .:010). IF IT IS, THE PROGRAM COMPUTES THE ASSOCIATED 
EXTREMUM AND FINDS WHETHER ANY OTHER THRESHOLO CROSSINGS ~ILL OCCUR ON 
THE ~AY FROM XPRIM(J-I) TO XPRIM(J) (LINES 2050-2260). IF THERE ARE NO 
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570 
580 
590 
600 
610 
620 

630 
640 
UND 
650 
660 
670 
680 
690 
700 
710 

MORE CROSSINGS, IT PLOTS THE INCREASING OR OECREASING EXPONENTIAL 
BETWEEN XPRIM(J-l) AND XPRIM(J), IF THERE ARE MORE CROSSINGS, 
THE PROGRAM DETERMINES THEM IN LINES 2470-2840 (PAR-0) OR IN LINES 
2880-3230 (PAR-I), 
THERE CAN ONLY BE ONE OR TWO MORE CROSSINGS oEPENDING ON XPRIM(J-I) 
AND XPRIM(J), THE PROGRAM SIMPLY EXPLORES THE DIFFERENT POSSIBILITIES 

NOTE THAT THE CROSSING TIMES ARE OETERMINED EXACTLY, SINCE THEY ARE Fa 

SY SOLVING FOR THt INTERSECTION OF AN EXPONENTIAL (+ CONSTANT) WlTH 
ONE OF THE THRESHOLOS, lF WE WERE OEALlNG WITH A SECOND OROER ODE, 
WE WOULD HAVE TO SOLVE FOR THE CROSSING TIMES NUMERICALLY, 

FINALLY, IN LINES 3310-3450 THE PROGRAM COMPUTES THE PERlOO OF THE 
SOLUTION IN SECONDS AND THE NUM8ER OF PULSES PER PERIOo (I,E, THE 
NUMBER OF TIMES THE SOLUTION ENTERS REGION 2 PER PERIOo), 

720 1 

730 1 
740 INTEGE~ Par,Flac(6I,M,Tthrl( 10001,Tthr2( 1000) 
750 REAL T( 2000 l ,Xpr iPl( 2000 ) 
760 COM IPardPl!l1 Alph l ,Alph2 ,C ,APlax ,TPlax ,YPlax ,D( 0: 1000 ) ,L ,0 l ,03, Yesp lot, Yespe 
l'Iap,Flrst ,Sal'lpstep,Counter 
770 Alphl-3 
780 Alph2-Alphl 
790 Tau0-1 
800 Otau-0 

Tau l-Tau0+ot au 
N-1000 
Me1-N/2-10 
Aceur-,0000000001 
TI'Il n-0 
TPlax-Z,5 
Y",ax-2 
C-2·Alphl 
Ga",,,,a-C/Alph1 
01-0 
03-0 
1.1-,1 Z 
Thrl-l 
Thr2-Z,9 
I!ltart-IZ0 
SaPlper-1 
Sa",pstep-INT( SlIl'Ipe,./,01 ) 
Counter-0 
YesPcPlIIP-e 
Yesplot-0 
Yescross-e 
GINIT 
PLOTTER IS 3,oINTERNALo 
PLOTTER IS 70s,oHPGLo 
GRAPHICS ON 
GINIT 
OUTPUT 7051°VSSo 

810 
820 
B30 
840 
850 
860 
870 
880 
890 
900 
910 
920 
930 
940 
950 
960 
970 
980 
990 
1000 
1010 
1020 
1030 
10401 
1050 
1060 
10701 
1080 
1090 
1100 
1110 
1120 
1130 
\140 
1150 
1160 
1170 
1180 
1190 

DISP OIS A PLOT OF THE SOLUTION DESIREo? 
WAIT 1 
INPUT Yesplot 
IF Yesplot-e THEN 60TO 1390 
VIEWPORT 0,130,0,100 
WINoO~ -Taue,Tl'lax,0,Y"'lIx 
FRAI'IE 
AXES 1.0.1.0.0.0,5,\ 
l'lOVE ·'Tau0,Th,., 
LINE lYPE 5 
ORAW Tl'lax, Th,. \ 
l'lOVE TI'IIIX, Th,.2 
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1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 
1440 
1450 
1460 
1470 
1480 
1490 
1500 
1510 
1520 
1530 
1540 
1550 
1560 
1570 
1580 
1590 
1600 
1610 
1620 
1630 
1640 
1650 
1660 
1670 
1680 
1690 
1700 
1710 
1720 
1730 
1740 
1750 
1760 
1770 
1780 
1790 
1800 
1810 
1820 
1830 
1840 
1850 

DRAW - T èlu0 , Thr2 
UNE TYPE 4 
MOVE Tau0,0 
DRAW hu0. Y 1'1 4)( 
1 UNE TYPE 4 
1 MOVE 101.0 

DRAW W.YI'I,s)( 
MOVE I.YI'I/l)( 
DRAW 1 .0 
MOUE 2.0 
DRAW 2. YI'I,s)( 
MOVE 0. Thrl 

UNE TYPE 1 
MOVE -T4u0,(Thrl+ThrZ)/2 
DRAW -TlSu0+W,1 
DRAW -Tau0+.9,,5 
DRAW 0,1 
PENUP 
60TO 1570 
DISP ·15 A POINCARE MAP OF THE SOLUTION DESIREO ? 
WAIT 1 
INPUT YesPCl'lèlP 
IF Yespcl'lap-I TH EN 

VIEWPORT 10,100,10,100 
IF B>641'11'14 THEN 

XMa)(-B 
ELSE 

XMèlx-GèlI'Il'IèI 
END IF 
WINDOW 0,XM4X,0,X1'I4)( 
AXES ,2,,2,0,0,5,5 
FRAME 
UNE TYPE 4 
MOVE 0,0 
DRAW XI'I,sx ,XM,s)( 
PENUP 

END IF 
LlNE TYPE 1 
L-0 
1 
1 INITIAL CONDITIONS 
1 
DISP ·NORMAL I.C,: 
WAIT 1 
INPUT Icnorl'l,sl 
IF Icnorl'lèll-I THEN 

I.C. SPECIFIEO 8V 101 0" 

CVES: ,.NO:0]· 

1 NORMAL INITIAL CONDITION: I<X(T)(B FOR T IN (-TAU.0) 
Flrst-ThrZ 

ELSE 

T< 1 )-0 
TprlMl-T,sul 
Xprll'1( 1 )-( Thr2-C/Alphl ).EXP( -Alphl-TprlI'11 )+C/Alphl 
CALL Plotexp(Thr2.0,TprlMI.l) 
1(-1 

1 INITIAL CONDITION SPECIFIED SV 101 (101 IS IN (0.1» 
Flrst-Thrl 
T( 1 )--T4U+W 
T< Z )-0 
Tprll'11-W 
Xpr11'1( 1 )-( Thrl-C/Alphl ).EXP( -Alph I.Tpr1"" >+C/Alphl 
CALL Ploh)(p(Thrl .0,Tp"11'11,1) 
1(-2 
IF XP"lJ11( 1 »Th,,2 THEN 

T(3)~I/Alphl.L06«64Ml'le-Th,,' )/(64MI'I.-Th,.2» 
K-3 

END IF 
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1860 END IF 
1870 
1880 
1890 
1900 
1910 
1920 
1930 
1940 
1950 
1960 
1970 
1980 
1990 
2000 
2010 
2020 1 

2030 1 

2040 1 

2050 
2060 
2070 

1 

1 
SOLUTION FOR T > 0 

FOR J-2 Ta N STEP 
ParaJ MaD Z 
Tau-Taul 
IF Par-0 THEN 

L-(J-Z)/2 
Tau-Tau0 

END IF 
Xpr-Xpr1M( J-I ) 
IF T(J»0 OR (J-Z AND IcnorMal-0) THEN 

CROSSING TIME T(J) IS KNOWN 

Flags-I 
TprlM2-n J I+Tau 
IF Para 0 THEN 

2080 
D(L)/Alph2 
2090 ELSE 

Xprll'l( J )a( Xpr11'1( J-I )-D(L )/1I1phZ )'EXP( -l'Ilph2'( Tpr1I'1Z-Tpr1,,1 »+ 

Xpr11'1(J )a( Xpr11'1( J"I )-C/Alph 1 )'EXpe -A lphl te Tpr11'12-Tpr1,,1 »+C/A 2100 
lphl 
2110 
2120 
2130 
2140 1 

2150 1 

2160 
2170 1 

2180 
2190 
2200 
2210 
2220 
2230 
2240 
2250 
2260 
2270 
2280 
2290 
2300 
2310 
2320 
2330 
2340 
2350 
2360 
2370 
2380 
2390 
2400 
2410 
2420 
2430 
2440 1 

2450 
2460 
2470 
2480 
phZ) ) 

END IF 

IF THE LA5T Z EXTREMA XPRIM(J-l) AND XPRIMeJ) ARE IN THE SAME 
REGION, NU MORE CROSSING TIMES HAVE Ta BE COMPUTED. 
SOLUTION 15 5IMPLY PLOTTED, liNO PROGRAM GOES ON TO NEXT J. 
IF NOT. FURTHER CR05SINGS TIMES HAVE TO BE DETERMINED. 
STARTING AT LINE 2240 IF PAR-a. OR 2620 IF PIIR-I. 

FOR MM-I Ta 6 STEP 1 

FlageM",I-e 
NEXT MI'I 
IF XprlM( J »Thr2 AND XprlM( J-I J>ThrZ THEN Flag( 1 )-1 
IF XprlM( J I(Thr2 AND XprlM( J-I )(Thr2 THEN FleQ(2 )-1 
IF XprlMeJl>Thrl liNO XprlM(J-1 )>Thrl THEN FlaQ(3)-1 
IF XpriM(J)(Thrl liNO Xprll'I(J-I )<Thrl THEN FlaQ(4)-1 
Flag(5)-Flag(3) AND FlaQeZ) 
IF Fleg(1 1 OR Flag(41 OR F1eg(51 THEN 

CALL PlotexpIXpr,Tpr11'1I,TprlMZ.Par) 
GOTO 3260 

EL5E 
I-K+I 
IF Par-0 THEN GOTO 2470 
IF Par-I THEN GOTO 2880 

END IF 
ELSE 

CROSSING TIME TIJ) IS NOT KNOWN 
FLAGS-I IF TeJ) 15 ALREIIDY KNOWN 
FLA6S-0 IF TI J) IS NOT KNOWN 

FlaQs-0 
t-J 
IF Par-I THEN GOT a 2980 

DETERMINE CROSSING5 WHEN DX/DT < 0 (P~R·0) 

IF Xpr1l'1eJ-1 »Thr2 THEN 
TeI)_Tprl~I-I/Alph2'L06e(Thr2-D(L)/AlPh2)/(Xpr1~CJ-1 )-OCL)/Al 
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57 

2490 
2500 
2510 
2520 
2530 
2540 
2550 
2560 
2570 
(L )/lIlph2 1) 

2580 
2590 
2600 
2610 
2620 
2630 
2640 
2650 
2660 
2670 
2680 
2690 
2700 
2710 
2720 
2730 
2740 
2750 
ph2) ) 
2760 
2770 
2780 
2790 
2800 
2810 
2820 
2830 
2840 
2850 

ELSE 

Tthr2(M2 )-1 
MZ-M2+1 
I~ Flag~-I THEN GOTO 2540 
Tpr1l'1Z-n 1 )+Tau 
Xprll'1(Jl-(Thr2-D(Ll/Alph2)"EXP(-Alph2 oTau)+D(Ll/Alph2 
IF Xprll'1(J)(Thr2 liNO Xprll'1(J»Thrl THEN 

CALL Plotexp(Xpr.TprlMI.Tprll'12.01 
ELSE 

TC 1 + 1 )-Tpr 11'l1-I/Alph2"LOG( ( Thrl-O( L I/AlphZ l/( Xprl/11( J-I 1-0 

0(1/2)-01 
Tthrl (/1 )-1+1 

I(-K+I 
CALL Pl otcxp( Xpr. Tpr 1/111 • Tpr 1/112,0) 

END IF 
GOTO 3Z50 

IF XpnM( J-I )(Thrl THEN 
PRINT "EOUILIBRIUI1 REACHEO: SOLUTION GOES TO ZERO· 
CALL Plotcxp(Xpr.TprlMI ,T/IIex,0) 
GOTO 3970 

END IF 
IF Thrl«D(L)/lIlphZl THEN 

TprlI'l2-TMIIX 
GOTO 2820 

END IF 
T(I)-TprlMI-I/Alph2 oLDG«Thrl-D(Ll/Alph2)/(Xprl/11(J-1 l-O(LI/AI 

D( (1-1 1/21-01 
Tthrl (M )-1 
M-/1+1 
IF Flags-I THEN GOTO 2820 
TprlMZ-T( 1 )+TIIU 
XprlM(Jl-(Thrl-D(L)/Alphl)oEXP(-Alph2.Teu)+0(Ll/Alph2 
CALL Plotexp(Xpr.Tpr1MI,TprlM2,0) 

END IF 
GOTO 3250 

2860 1 

2870 1 

2880 

DETERMINE CROSSNGS WHEN DX/OT > 0 (PAR-I) 

2890 
2900 
2910 
2920 
2930 
2940 
2950 
2960 
2970 
2980 
phi) ) 
2990 
3000 
3010 
3020 
3030 
3040 
3050 
3060 
3070 
3080 
3090 
3100 
3110 

IF XprlM( J-I )(Thrl THEN 

ELSE 

T( 1 )-TprlMI-I/Alphr-LOGC<Thrl-C/Alphl )/(Xprll1\(J-l )-C/Alphl» 
Tthrl (M )-1 
11-/1+1 
IF Flags-t THEN GOTO 2950 
TprlM2-T( 1 )+Tau 
Xpr 11'l( J )-<Thr t-C/Alphl )oEXP( -A Iphl-Tau >+C/Alph 1 
IF XprlM(J)(Thr2 AND Xpr1M(J»Thrl THEN 

CALL Plotcxp(Xpr.Tprll'll.TprlM2.1 1 
ELSE 

T( 1+1 l-TprlMI-I/Alphl-LOG( (Thr2-C/Alphl 1/(Xprll'1(J-1 )-C/Al 

Tthr2( M2 )-1+1 
M2-M2+1 
D( 112 )-03 
1(-1(+1 
CALL Plotexp(Xpr.Tprl1'1I,TprlI'12,1 1 

END IF 
SOTO 3250 

IF Xprl1'1(J-1 »Thr2 THEN 
PRINT "EQUILIBRIUM REACHEO: SOLUTION GOES TO GAI1I1A" 
GOTO 3970 

END IF 
IF Thr2)(C/Alphl) THEN 
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3120 
3130 
3140 
3150 
3160 
3170 
3180 
3190 
3200 
3210 
3220 
3230 
3240 
3250 
3260 
3270 
3280 
3290 1 

3300 1 

3310 
3320 
3330 
3340 
3350 
3360 
3370 
3380 
3390 
3400 
3410 
3420 
3430 
3440 
3450 
3460 
3470 
3480 
3490 
3500 
3510 
3520 
3530 
3540 
3550 
3560 
3570 
3580 
3590 
3600 
3610 
3620 
3630 
3640 
3650 
3660 
3670 
3680 
3690 
3700 
3710 
3720 
3730 
3740 
3750 
3760 
3770 

Tpr"lM2-TMax 
GOTO 3220 

END IF 
T( 1 )-Tpr"iMl-I/Alphl-LOG( (Thr"2-C/Alphl )/( Xpr"1"'( J-I )-C/Alphl » 
Tthr"2(M2)-I 
M2-M2+1 
D( (1-1 )/2 )-03 
IF FlaQ!!-1 THEN GOTO 3220 
TPr"lM2-T( 1 I+Tau 
XPr" lM( J )-( Thr"2-C/Alph 1 )-EXP( -Alph 1 -Tau )+C/Alllh 1 
CALL Plo'texlI(Xcr",TIlr"lMI,Tr,r"lM2,1) 

END IF 
END IF 

TIlr"1",1-Tprl",2 
NEXT J 

DETERMINE PERIOD AND NUMBER OF PULSES PER PERIOO 

MM-N-I 
FOR 1-2 Ta Mcl STEP 2 

D~ltal-T(N)-T(N-I) 

Delta2~T(N-I )-T<N-2*I) 
Dlffl-A8S(Delta2-Deltal ) 
Delta3-T(MM)-T(MM-I) 
Delta4-T{MM-I)-T{MM-2*1) 
Dlff2-ABS(Delta3-Delta4) 
IF Dlffl<Accur" AND Dlff2<Accur" THEN 

PRINT 'PERIOD IS· ,Deltal 
PRINT "NUMBER OF PULSES PER PERIOe IS" ,1/2 
GOTO 3460 

END IF 
NEXT 1 
PRINT "PERIOD DOESN'T CONVERGE FOR N-" ,N,·AND MCL-- ,Mcl 
IF YesPcMap-1 THEN GOTO 3970 

PLOTS OF CROSSING TIME INTERVALS 

DISP ·IS PLOT OF THE CROSSING TIMES DESIREO? 
WAIl 1 
INPUT Yescr"oss 
DISP ·CROSSINGS WlTH THRI (1) OR THR2 (2) ? 
WAlT 2 

[ YES: 1 

OISP "ENTER 0 FOR GRAPHICS OUMP, -1 FOR NEITHER, 60TO ENO· 
WAlT 1 
INPUT Cr"o!lsl2 
IF Cr"o!l!l12--1 THEN GOTO 3970 
IF Cro!lsl2-0 THEN GOTO 3920 
IF Ye!!cr"os!I-1 THEN 

PLOTTER 15 3,·INTERNAl" 
GRAPHICS ON 
GINlT 
VIEWPORT 10,100,10,100 
WINDOW 0,1,5,0,1.5 
AXES .1,.1,0,0,5.5 
FRAME 
IF Cr"o5!!12-1 THEN 

FOR I-I!ltar"t Ta "/2-2 STEP 
De lt atllr" .. T( Tt hr" 1( 2- 1+2) ,-T( Tthr" 1 (2-1+1 ) ) 
Del tet-TI Tthr" 1 (2-1) )-T( Tthr"J( 2- 1-1 Il 

PENUP 
PLOT Oeltat,Oeltltllr" 
1 PENUP 

NEXT 1 
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3780 PENUP 
3790 ELSE 
3800 FOR I-Istart TO MZ/Z-Z STEP 1 
3810 Deltatpr-T<Tthr2(Z·I+Z»-T<TthrZ(2·I+l II 
3820 Deltat-T<Tt hr2 (z. 1 ) )-T( Tt hr2( 2' 1-1 ) ) 
3830 1 PENUP 
3840 PLOT Deltat ,Deltatpr 
3850 1 PENUP 
3860 NEXT 1 
3870 PENUP 
3880 END IF 
3890 PENUP 
3900 END IF 
3910 GOTO 3550 
3920 PRINTER IS 701 
3930 PRINT "ALPH-" ,Alphl ,'C·" ,C,"TAU·" ,Tau,"THRI-" ,Thr-l 
3940 PRINT "THRZ-",ThrZ,"N-" ,N,'W·" ,W,"D3-" ,03 
3950 CALL GduMp 
3960 GOTO 3550 
3970 end 
3980 sub Plotexp( XprLI'I,TpriMI ,TprLMZ ,INTEGER Par-) 
3990 COM IParaMsl Alphl,AlphZ,C,AMax,TMax,YMax,D(0:1000>,L,Dl,D3,Yesplot ,Y 
eSPcMap,Flrst,SaMpstep,Counter 
4000 IF Yesplot-0 AND YesPcl'lap-0 THEN GOTO 4370 
4010 N-(TprlM2-TprlMI) OIV ,01 
4020 IF Par-0 THEN 
4030 FOR M-0 TO N STEP 
4040 Tpr-M*,01 
4050 Y-(XprlM-O(L)/AlphZ)'EXP(-Alph2'Tpr)+D(Ll/AlphZ 
4060 AMPl-Y 
4070 IF Yesplot-l THEN 
4080 PLOT TpriMl+Tpr,AMP1,-1 
4090 ELSE 
4100 
4110 
4120 
4130 
4140 
4150 
4160 
4170 
4180 
4190 
4200 
4210 
4220 
4230 
4240 
4250 
4260 
4270 
4280 
4290 
4300 
4310 
4320 
4330 
4340 
4350 
4360 
4370 

Counter-Counter+I 
IF (Counter MOD SaMpstep)-0 THEN 

PENUP 

END 
END IF 

NEXT 11 

PLOT Flrst,Al'lpl 
PENUP 
Flrst-Al'lpl 
IF 

ELSE 
FOR 11-0 TO N STEP 1 

Tpr-M',01 
Y-( Xpr11'1-C/Alphi ).EXP( -Alphl'Tpr l+C/Alphl 
Al'lpl-Y 
IF Yesplot-1 THEN 

PLOT Tprll'll+Tpr,Al'lpl,-1 
ELSE 

Counter-Counter+1 
IF (Counter MOD SaMPstep)-0 

PENUP 
PLOT Flr-,t.A",p! 
PENUP 
Flrst-AMpl 

END IF 
END IF 

TH EN 

NEXT t1 
ENO IF 

SUBEND 
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....... 10 
20 

-.; 30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
311 
320 
330 
340 
350 
360 
370 

f 380 r 390 t, 400 

1 

410 
420 
430 
440 
450 

& 460 
470 
480 
490 
500 
510 
520 
530 
540 
550 
560 
570 
580 
590 

-

PROGRflM CI D2S0L 

THIS PROGRAM INTEGRATES THE PUPIL OELAY-OIFFERENTIAL EQUATION 
WITH IS FIRST OROER FOR CONSTRICTION AND SECOND OROER FOR OILATION. 
IT INTEGRATES THE EQUATION UNTIL EITHER THE MAXIMUM NUM8ER OF 
CROSSING TIMES HAS BE EN REACHEO. OR FOR A MAXIMUM NUMBER OF 
TIME DELAYS. WHICH EVER COMES FIRST. 
THE PRDGRAM THEN PROCEDES TO FIND THE PERIOD OF THE SOLUTION 
(IN SECONDS) AS WELL AS THE NUMBER OF PULSES PER PERIOD. 
THE SOLUTION IS DISPLAYED ON THE SCREEN OR ON THE PLOTTER. 

X( 1) IS THE STATE VARIABLE (PUPIL AREA) 
DXDr< 1) IS THE TIME DERIVATIVE OF PUPIL AREA 
XH( 1) AND OXDTH( 1 ) ARE THE VALUES OF X( 1) AND DXDT( 1 ) AT THE END 
OF THE INTEGRATION TIME STEP. 
X1TAU IS X(l) AT TIME (T-TAU) WHERE TAU IS THE DELAY. 
THRI (THR2) IS THE LOWER (UPPER) THRESHOLD. 
THE UPPER (LOWER) ASYMPTOTE IS Aoff (Aon). 
THE FORCING SWITCHES BETWEEN 'DFOR" AND ·CFOR" OEPENOING ON THE 
POSITION OF XITAU WITH PESP~CT OT THE THRESHOLOS. 

FOR CONSTRICTION PUPIL AREA OBEYS : 
DXDT - -ALPHC-X+CFOR 

FOR OILATION PUPIL AREA OBEYS : 
O(OXOT)/DT--OELTA-OXOT-(W"2 )-X+DFOR 

THESE DIFFERENTIAL EQUATIONS ARE NUMERICALLY INTEGRATEO USING 
AN EULER METHOD. THE INTEGRATION STEP 15 DELT-TAU. 
ACCUR 15 THE ACCURACY OF PERIOD DETERMiNATiON. 
THE PERIOD IS COMPUTED FROM THE SEQUENCE OF THRESHOLD CROSSINGS 
TIMES STORED IN T(N) (CROSSINGS ARE DETECTED SY THE CHANGES IN 

1 THE FLAGS WHICH LASEt THE 3 REGIONS OF THE FEEDBACK FUNCTION). 
1 
Delt-.01 
Deldlv-lIDelt 
ALLOCATE Xde1<0:Deld1v) 
COM IVectl Xlt4u,S1Q~4(1 l,Tau 
COM IP4r4~1 Thrl ,Thr2 ,C 
COM INTEGER K 
DIM Dxdtc 1 ) ,X( 1) ,Xh( 1 l ,Dxdth( 1 l 
N-100 1 MAXIMUM NUMBER OF THRESHOLD CROSSINGS 
ALLOCflTE T< N ) 
Ntau~ax-200 

M~-N-I 
McI-N/2-1 
Accur-.0001 
1 

INTEGRATE TILL TIME (NTAUMAX-TflU) 

MAXIMUM CYCLE LENGTH 

1 SYSTEM PARflMETERS 
1 
Tau-,411 
Thrl-21.5 
Thr2-30 
1 
1 ENTER PARAMETERS FROM THE CI-02 FIT OF THE SINGLE PULSE RESPONSE 
1 
Aoff-34.2 
Xnod-21.5 
A-4.39 
Aon-Xnod-A 
Alphc-7.91 
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600 Alphd-l.68 
610 Betad-.587 
620 Cfor-AlphcoAon 
630 Oelta-Alphd+Betad 
640 W-AlphdoBetad 
650 Ofor-Aoffo(W·Z) 
660 1 
670 GRAPHICS 
680 
690 Xtlnlt-(Thrl+Thr2)/2 
700 Xtlnlt-22.5 
710 TMln-0 
720 TMax-7 
730 XMln-16 
740 XMc!x-24 
750 PLOTTER IS 70S,·HPGL· 
760 PLOTTER IS 3,"INTERNAL· 
770 1 OUTPUT 705;"VSS· 
780 GRAPHIes ON 
790 GINIT 
800 VIEWPORT 10,100,10,70 
810 WINOOW -Tau,TMax,XMln,XMax 
820 FRAM~ 

830 AXES 2,1,TMln,XMln,S,5 
840 UNE TYPE 4 
850 MOVE -Tau,Thrl 
860 ORAW TMax,Thrl 
870 MOVE TMax,Thr2 
880 ORAW -Tau,Thr2 
890 LINE TYPE 1 
900 MOVE -Tau,0 
910 1 
920 INITIALIZE FUNCTION ON [-TAU,0) 
930 
940 
9S0 
960 
970 
980 
990 
1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1 Zle 
1220 
1230 
1240 
1250 

FOR K-0 TO Deldiv STEP 1 
Xdel(K )-Xtlmt 
PLOT (K-Delolv)OOelttTau,Xdel(K) 

NEXT K 
IF Xtlnlt<-Thr2 AND ~tlnit>-Thr1 TH EN 

La:s tflao-2 
EL SE 

IF Xtlnlt<Thri THEN 
L4:stfl4C-l 

ELSE 
La:stflaQ"3 

END IF 
END IF 
1 

1 NUMERICAL INTEGRATION BEGINS HEREI INTEGRATION STEP IS OELT, 
1 DELAY BUFFER IS U~EO. 
1 

1-1 
FOR Ntau-l TO NtauMax STEP 

X( 1 )-Xdel<Deldlv) 
FOR K-l TO Deldiv STEP 1 

Tnext-(Ntau-I+KoDeltltTau 
Realt-Tnext-DelttTau 
Xltau-Xdel<K-I) 
IF Xltau<Thrl OR Xltau>Thr2 THEN 

Xh( 1 )-Or.l t 0 TauoOxdt' 1 )+X( 1 ) 
Dxdth( 1 )-, -( W·2 ItX ( 1 )-OeltatDxdt ( 1 )+O'or ).Oelt.Teu+Oxdt< 1 ) 

EL SE 
Xh( 11-' Cror-AlphctX( 1) )tDelt.Teu+X( 1 ) 
Oxdth( 1 )-Cfor-AlphcoX( 1 ) 

END IF 
PLOT Tnext .Xh< 1 ) 
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1260 IF Xh( Il<-Th,.2 AND Xh( \ »-Thr\ THEN 
1270 Flag-2 
1280 ELSE 
1290 IF Xh( 1 )(Thrl 'THEN 
1300 Flag-l 
1310 ELSE 
1320 Flag-3 
1330 END IF 
1340 END IF 
1350 IF Lastflag<>Flag THEN 
1360 T( l )-Real t 
1370 1-1+1 
1380 Lastflag-Fleg 
1390 IF I>N THEN GOTO 1510 
1400 END IF 
1410 Xdel<K-l)-X(I) 
1420 X( 1 )-Xh( 1 ) 
1430 Dxdt< 1 )-Oxdth( 1 1 
1440 NEXT K 
1450 Xdel<Deldlv)-Xh(l) 
1460 NEXT Ntau 
1470 BEEP 
14B0 1 
1490 OETERMINATION OF PERIOD 
1500 
1510 FOR J-2 TO Mel STEP 2 
1520 Oeltal-T(N)-T(N-J) 
1530 Delte2-T<N-J )-T<N-2"J) 
1540 Ddfl-ABS(Delta2-Deltal1 
1550 Oelta3-T(M~)-T(M~-J) 

1560 Delta4-T(M~-J)-T(M~-2·JI 
1570 Olff2-ABS(Oelta4-Delta31 
1580 IF Dlffl<Accur AND Di'f2<Accur THEN 
1590 "RINT 'PERIOD IS' ,Delhi 
1600 P~INT 'NUMBER OF PULSES PER PERIOD 15 ",J/2 
1610 GOTO 1650 
1620 END IF 
1630 NEXT J 
1640 PRINT "PERIOD IS UNDETERMINED" 
1650 DISP "OUMP GRAPHIeS? [YES:I, NO:0]" 
1660 WAIT 2 
1670 INPUT Fleg 
1680 IF Flag-I THEN 
1690 PRINTER IS 701 
1700 PRINT "INITIAL CONDITION ON (-TAU,0) 15 X-",Xt1n1t 
1710 PRINT 'XMIN-' ,X~in,"XMAX-",X~4X,"TMAX·" .T~4x 
1720 PRINT "OELT-" ,Delt,"TAU." ,Tau 
1730 DUMP GRAPHIeS 
1740 PRINTER IS 1 
1750 END IF 
1760 end 
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APPENDIX E 

CONTRIBUTIONS OF THE A UTHOR TO THE MANUSCRIPTS 

SECTIO N 2.2 : l\'lodelling autonomous oscillations in the human pupil light reflex 
Ilsing nonlinear delay-differential equations. 
AUTHORS : André Longtin and Juhn G. Milton. Bulletin of Mathemaltcal Biology 
51, 605-624 (1989). 

1- Theory. 
2- Numerical calculations and associated figures (2,3,4). 
3- T i terat lire rcv jew for anatomy atld physiology of this reflex. 

SECTION 2.3 : Insight into the transfer fundion, gain, and oscillat.ion onset for the 
pupil Iight reflex using nonlinear delay-differential equations. 
AUTHORS : André Longtin and John G. Milton. Biological Cybernetics 61, 51-58 
(1989). 

1- Theory. 
2- Numerical calculations and associated figures (1,2,3,4). 
3- Literature review of control system's approach applied to biological systems and 

to pupillight reflex in particular. 

SECTION 3.2 : Evaluation of pupil constriction and dilation from cycling measure­
ments. 
A UTHORS : John G. Milton and André Longtin. Vision Research, in press. 

1- Design and setup of experimental apparat us. 
2- Experirncnts. 
3- Madel for pupil cycling. 
4- Computer algorithm to integrate model equation (see Appendix D) and produce 

phase plots. 
5- Smooth fit to single pulse response (Figure 6d) (see Appendix C). 

SECTION :J.3 : Complex oscillations in the human pupil light reflex with "mixed" 
and delayed f('edhack. 
AUTHORS : André Lnngtin and John G. Milton. Alathematical Biosciences 90, 183-
199 (1988). 

1- Dt'sign and setup of experimental apparatus. 
2- Experiments. 
3- Phenomenological mode!. 
4- Algorithm to integrate modf:'l equation and produce bifurcation diagrams. 
5- Part of literature review and data analysis. 

The data for the next manuscript was obtained from the same kind of piecewise 
constant feedback experiments as in Sections 3.2 and 3.3. 
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SECTION 5.3 : Noise and critical behavior of the pupil light reflex at oscillation 
onset. 
AUTHORS : André Longtin, John G. Milton, Jelte Bos and Michael C. Mackt')'. 
Physical Review A, to be submitt.ed (Octobef 1989). 

1- Literature review. 
2- Theory. 
3- Numerical integration of stochastic DDE (see Appendix D). 
4- Fast Fourier Transforms for PCNF. 

APPENDIX A : Noise induced global asymptotic stability. 
AUTHORS : Michael C. Mackey, André Longtin and Andrzej Lasota, Jo1t7'nal of 
Statistical Phy.'Jzc.'J, in press. 

1- Litf'rature review. 
2- Numerical integration of stochastic ODE's. 
3- Numerical computations for and production of the figures. 

APPENDIX 13 : Irregular pupil cycling as a characteristic abnormality in patients 
with demyelinative optic neuropathy. 
AUTHORS : John G. Milton, André Longtin, Trevor Kirkham and Gordon S. Francis. 
American Journal of Ophthalmology 105, 402-407 (1988). 

1- Design and setup of experimental apparatus. 
2- Experiments on patients. 
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