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ABSTRACT

Bifurcations and complex oscillations in the human pupil light reflex (PLR) are
studied. Autonomous pupil area oscillations are produced by substituting electroni-
cally controllable nonlinear feedback for the normal negative feedback of this reflex.
A physiologically sound theoretical framework in which to study pupillary oscilla-
tions is developed. The model, framed as a delay-differential equation (DDE), agrees
quantitatively with the simpler periodic behaviors and qualitatively with the com-
plex behaviors. Much of the aperiodicity in the data can be ascribed toc noise and
transients rather than to chaos. The critical behavior of the PLR at oscillation onset
is different with piecewise constant rather than smooth negative feedback. In the
former, relative fluctuations in period are larger than those in amplitude, and wvice
versa in the latter. Properties of the time solutions and densities of a stochastic DDE
are used to explain this experimental result. The Hopf bifurcation in this system is
postponed by both additive and multiplicative colored noise. Theoretical insight into
the behavior of stationary densities of DDE’s and the origin of the postponement is
given, and implications for analyzing bifurcations in neural delayed feedback systems

are discussed.
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RESUME

Cette thése porte sur les bifurcations et oscillations complexes dans le réfiexe
pupillaire (photomoteur) humain (RPH). Les oscillations autonomes de la pupille
sont induites en substituant une rétroaction électronique a la rétroaction normale
(négative) de ce réflexe. Une théorie des oscillations pupillaires est proposée. Le
modeéle, basé sur des données physiologiques, consiste en une équation différentielle
a délai (EDD). Il reproduit quantitativement les comportements périodiques simples
de la pupille, et qualitativement les comportements complexes. L'origine des oscil-
lations apériodiques s’explique mieux dans I'hypothese d'influences stochastiques au
lieu de comportements chaotiques. Le comportement critique du RPH pres du seuil
d’instabilité s’avere différent pour les cas de rétroaction négative: 1) constante par
parties et 2) différentiable. Dans le premier, les fluctuations relatives de Ja période
dominent celles de ’amplitude, et vice verse dans le second. Les propriétés des so-
lutions et des densités d’une EDD stochastique permettent d’expliquer cette obser-
vation. Le bruit coloré paramétrique ou additif retarde la bifurcation de Hopf dans
le modele. Le comportement des densités stationnaires des EDD ainsi que 'origine
de ce retard sont étudiés afin d’élucider 'analyse des bifurcations dans les systemes

neuronaux a rétroaction retardce.
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CONTRIBUTIONS TO ORIGINAL KNOWLEDGE

. This thesis is the first extensive theoretical and experimental study of oscillations

and bifurcations in a human neurological control system.

. Pupillary oscillations are studied using nonlinear delay-differential equations

(DDE’s) and bifurcation theory (Section 2.2). A physiologically sound model
accounts for the nonlinear gain of this reflex (Section 2.2.5) and explains why
response asymmetry is enhanced by piecewise constant feedback (PCNF) but

not by smooth negative feedback (SNF) (Sections 2.2.9 and 2.3.9).

. For SNF, the model exhibits a supercritical Hopf bifurcation as gain or delay

is increased (Section 2.3.6). A double oscillation in SNF reported by Stark! is

shown not to correspond, as suggested, to a bifurcation to a 2-torus (Section

2.3.9).

. The connection between nonlinear dynamics and transfer function analysis is

established in the context of a specific neural delayed feedback system (Sec-
tion 2.3). The model is shown to be compatible with earlier transfer function

analyses.

. The model for PCNF-induced oscillations can be used to separately assess the

state of neural pathways for constriction and dilation (Section 3.2). Clinical
implementation of PCNF provides a strong diagnostic tool for demyelinative
optic neuropathy (a common symptom for multiple sclerosis) (Appendix B).
Insight into the theory and measurement of retinal integration and adaptation

is also given (Section 3.4.5).

. Bifurcations and complex aperiodic behavior are induced in a neural control sys-

tem clamped with external pieczwise constant mixed feedback (PCMF) (Sections
3.3 and 3.4).

. We analyze complex aperiodic ehavior in the pupil light reflex in terms of a

quantitative model (Sections 3.3 and 3.4). Noise is shown to limit observability

of complex deterministic dynamics in such a system.

. Multistability in a first order DDE with PCMF is demonstrated (Section 3.4).

. A new integration method for DDE’s is proposed. For equal integration time
g prop g

steps, the accuracy of the new method is close to that of a fourth order Runge-
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Kutta method (Section 4.8), and decreases computation time by a factor of four.
Solutions and bifurcations of DDE’s are studied from the density point of view
(Section 4.3).

Analysis of a Hopf bifurcation in a noisy neural system is performed using am-
plitude and period distributions rather than the stationary probability density
of mouel solutions (Section 5.3).

Critical behavior of the pupil light reflex at a Hopf bifurcation is studied using
SNF. Numerical simulation of a DDE with additive and multiplicative Gaussian
colored noise agrees with the observation that relative fluctuations in amplitude
are larger than those in period (Section 5.3).

Critical behavior of the pupil light reflex at oscillation onset using PCNF is
studied. The observation that relative fluctuations in period are larger than those
in amplitude is explained theoretically using an adiabatic elimination technique
in the model DDE (Section 5.3).

Noise-induced transitions at a Hopf bifurcation in a DDE with multiplicative
and additive noise are discovered. The effect of noise amplitude and correlation
time on the postponement of the bifurcation point are studied (Sections 5.3 and
5.4).

It is shown that hippus 15 not chaos in a negative feedback loop with delay
(Section 2.2.8). From a study of critical behavior, hipgus is found to behave
very much like noise (Section 5.3).

Approximations to DDE’s are studied via distributed delays. It is shown that
precise time-localization of memory destabilizes delayed feedback systems (Sec-
tion 4.4).

We verify numerically that the stationary density of the Fokker-Planck equation
(in either the Ito or Stratonovich case) for a supercritical (Landau equation) and
subcritical system converges to a Dirac deita function when it is not normalizable
(Appendix A).

A connection between the Hopf bifurcation in a DDE and the first pitchfork
(or “period doubling”) bifurcation of the map obtained in the singular limit is
derived (Section 4.6).
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1. INTRODUCTION

“For all men strive to grasp what they do not know, while
none strive to grasp what they already know; and all strive
to discredit what they do not excel in, while none strive
to discredit what they do excel in. This is why there is
chaos.”

Chuang-Tzu (369-286)

This thesis studies the periodic and aperiodic oscillations that arise in neural
delayed feedback systems. Oscillations and fluctuations are the subject of nonlincar
dynamics and statistical mechanics, while the study of ncural feedback systems draws
from the fields of neurophysiology, neurology, biomathematics and bioenginecring.
Hence this study brings together tools from many fields to achieve an understanding
of how neural systems generate oscillations in a noisy environment.

In this introductory chavter, the concepts of neural system and delayed feedback
are first defined and then examples of ncural delayed feedback systems are given. At-
tention is then focussed on nonlinear dynamics, and especially on its recent popularity
as a modelling tool for simple and complex oscillatory phenomena. Finally, nonlincar
dynamics and neural delayed feedback systems are brought together to explore the

properties of neural delayed feedback systems when their activity is oscillatory.

1.1 NEURAL SYSTEMS.

In a broad sense, the term neural system designates assemblies of neurons (nerve
cells) of varying numbers, ranging from small circuits comprising two interconnected
neurons to large scale neurological control systems or brain structures such as the
hippocampus, the thalamus or the visual cortex. We define a neural system as an
entity within the nervous system that accomplishes a specific function which can be
assessed by the measurement of appropriate quantities called “ncural correlates”. 1ix-
amples of neural correlates are the membrane potential of a neuron, which determines
the rate of generation of action potentials (i.c. the rapid membrane depolarization-
repolarization sequence which propagates as a wave of electro-chenucal activity rdown
the axon), or the mean firing rate of action potentials of a population of neurons

Depending on their precise configuration and function, neural systems can be
viewed as input-output systems and/or autonomous systems Input-output neural
systems generate an output response to an incoming stimulus, e.g the frequency at

which a neural oscillator gencrates action potentials can be viewed as the response
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(output) to the stimulus intensity (input). Autonomous neural systems generate a
pattern of activity or rhythm on their own (pacemaker cells belong to this class). If a
system is spontaneously active but modifies its activity in response to a change in its
environment (which is probably the case for almost all neural systems), then it can
also be viewed as a hybrid between an autonomous and an input-output system.

In all neural systems, the concept of feedback is essential. By “feedback system”
we mean a system whose output depends on both its input and output. The influence
of the input on the output or of the output on itsell is either instantaneous, or involves
certain delays associated with the propagation of signals. This is particularly true
in neural systems, in which the time required for action potential propagation and
synaptic events is not negligible; in fact, the delay can be an important component of
the dynamic behavior of the neural system. The simple case of two neurons interacting
through their mutual connections can be viewed as a feedback configuration between
two neural oscillators. For example, the first neuron can have an excitatory influence
on the second neuron which in turn has an inhibitory influence on the first. This
“recurrent inhibitory circuit” is ubiguitous in the nervous system and provides a
simple example of delayed neural feedback (the delay being the time for neural activity
to propagate around the loop). By cxtension, a single neuron that inkibits or excites
itself by the collateral branches of its axon constitutes a delayed nenral feedback
system.

We have distinguished between autonomous and non-autonomous oscillations,
where these terms are used 1n the same sense as in classical mechanics. Non-autono-
mous oscillations arise in a system which is forced by an externally imposed rhythm
; as a consequence its mathematical formulation explicitly contains the time variable.
Autonomous systems contain time only implicitly through the dependence of the state
variables on time. The existence of bounded autonomous oscillations in a system is
a sign of nonlincarity, since linear systems can sustain finite amplitude oscillations
only under periodic forcing or when their cigenvalues are purcly imaginary. Thus
the theory of bounded autonomous oscillations belongs to the realm of nonlinear

dynanucs.

1.2 NONLINEAR DYNAMICS.

There has been much focus in the last two decades on the ability of certain simple
nonlinear systems to gencrate very complicated dynamical behaviour. Further, these

systems undergo “bifurcations” as parameters in the equations governing their time

2
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evolution are altered. A bifurcation represents a change in the topology of the phase
space of such a system, i.e. the vector space spanned by the degrees of freedom of
the system in which the point in this space corresponding to the state of the system
evolves in time. A topological change can be viewed as a qualitative change i the
phase space trajectory. For example, the motion of a damped harmonic oscillator
is a spiral into the origin of the phase space spanned by its position and velocity
coordinates. This motion can be seen as the projection onto the phase space plane of
the motion of a marble settling to the bottom of a bowl. This bowl can be viewed as
a potential function which depends on the phase space coordinates. if the convexity
of this bowl is controlled by some parameter, and if at a given value of this parameter
the shape of the bowl goes from convex to concave (i.e. the topology has changed)
the motion will no longer be directed toward the origin. This qualitative change s
an example of a bifurcation Mathematically the motion in phase space is governed
by a set of nonlinear coupled differential equations, and the bifurcations cortespond
to certain changes in the cigenvalues of the differential operators at fixed points (also
called critical points), 1.e. points in phase space where all tume-derivatives are zero
Recently, simple mathematical models exhibiting bifurcations have enjoyed great
popularity in many fields of scicuce including physiology and mediane Their attrac
tiveness lies poth in their economy of representation, i.e. very few degrees of fieedom
and nonlinearities are needed to generate a variety of simple and complexs behavionrs,
and their phase space motions of perplexing beauty The most intnguing of all 15
chaos, a special brand of phase space motion which never repeats itself, despife being
governed by deterministic equations. This type of motion exhibits what 1s known as
sensitivity to initial conditions This means that two identical chaotic expenmental
systems, prepared in what secms to be the same way will nevertheless lollow different
trajectories in phase space after a certain time. This is because it is not possible,
due to finite experimental accuracy, to prepare two real physical systems in predisely
the same way, and chaotic systems amplify errors exponentially while remaining in a

bounded region of phase space.

The theory of nonlinear dynamics and chaos has been evolving since the time of
Poincaré?, who wrote about intrinsic randomness and sensitivity to initial conditions
in relation to the three body problem The recent interest in nonlinear dynamcs and
chaos and their infiltration into many areas of science is largely due to the advent and

availability of computational power since the 1960’s. [urther, since the pioneering
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work of Lotka®, Volterra? and Raschevsky® in population and mathematical biology,
and of van der Pol® in electrical engineering, the theory of dynamics has been actively
evolving through its applications to complex nonlinear systems ontside mainstream
physics. These fields fostered new ideas and provided problems in which novel tools
from the theory of dynamics could be tested, both theoretically and experimentally.

Probably what is most appealing aboul chaotic dynamics is the deterministic
alternative it proposes to stochastic processes. Like a stochastic process, a chaotic
system also generates “random” behav.our. Aperiodic behaviour once thought to be
due to noise could now be due to chaos, which gives a new order to the phenomenon
because chaos is deterministic. Many investigators in diverse fields have felt compelled
to reinterpret noisy data in the face of this new paradigm. Since chaotic motion is in
principle predictable, its intrinsic randomness has often been relegated to the rank of
“pseudo-randomness”. In fact chaotic systems are currently used as pseudo-random
number generators (sec e.g. Li and Yorke”).

For a given mathematical model, chaos is not “ubiquitous” ; when it occurs, it
does so over a range of parameters Further, there are “bifurcation routes” leading
to chaos (for a review see Schuster®, Devaney®). Simply stated, the route refers to
a precise sequence of bifurcations that occur as one or more parameters are varied,
until chaotic motion sets in at a specific parameter value For example, in the period-
doubling route to chaos (also known as the Feigenbaum scenario), the period of the
solution to the equations of motion undergoes sequential doublings as a parameter
varies, until the period is effectively infinite and the solution aperiodic. The route
depends on the system, and different routes can exist for the same system, depending
on the direction followed in parameter space. Further, different routes may lead to
different kinds of chaotic motion. The properties of these different chaotic motions
have been characterized using tools from various fields such as dynamical systems
theory (Guckenheimer and Holmes!®, Devaney”), measure theory and information
theory (Farmer'', Farmer et al.'?) and ergodic theory (Lasota and Mackey!?).

The study of how experimental systems bifurcate and sustain chaotic motion is
actively being pursued in many different fields (for a review, see Hao Bai-Lin'*, Cvi-
tanovi¢'® and Holden'®). The experi.nental demonstration that a system is chaotic
depends on how well the dynamics of the system are understood The strongest
demonstration involves showing that a sound theory quantitatively predicts the ob-

served route or routes to chaos. [t may be that the theory agrees only qualitatively
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with measurements, or that a phenomenological model shows agreement with the
data. If the theory is not well understood or simply nonexistent, the experimental
identification of a known route to chaos can be quite convincing.

In all these cases, the data analysis can be supplemented by one of several al-
gorithms measuring, c.g., the rate of divergence of nearby trajectories (Lyapunov
exponents), the fractal dimension of the attractors on which the systems are assumed
to evolve or the rate of loss of information (Kolmogorov entropy) (see Schuster® o1
Mayer-Kress!” for a review). Some algorithms are capable, at least i compnter ex
periments, of assessing the relative proportion of noise and chaos in a time series'®
Admittedly the weakest proof for the existence of chaos, it is often the only anal
ysis one can implement, as in the case of electro-encephalographic data'®. These
algorithms must be used with caution, for it is not well understood what thev are
revealing aboul the data. In fact, they are designed to characterize steady-state be-
haviour on attractors (see Section 4 2). Real data, and especially physiological data,
is subject to transients and nonstationarity, and often reflects phenomena occurring
on many different time scales (for a review see Milton et al 2%).

The identification of simple bifurcaiions is the gateway to understanding more
complex dynamical behaviour, since they are the clear signature of nonlinearity in
the system. It is important to realize however that, in the presence of noise, irregular
oscillations can appear in the vicimty of bifurcation points, even far from the chaotic
regime (see Chapter 5). In these cases, the noise is amplified at the bifurcation
because the rate of decay of perturbatious goes to zero, a phenomenon called “critical-
slowing down”. Further the parameter values at which bifurcations oceur can be
shifted by noise, and a bifurcation can appear where there was no bifurcation in the
deterministic case. These effects are known as “noise-induced transitions”?!  Noise

can also induce chaotic behaviour??

or enhance the emergence of coherent behaviour
out of chaos (a phenomenon known as noisc-induced order??)  Hence, the analysis
of nonlinear dynamical systems is complicated by noise. The influence of noise on

simple bifurcations in neural systems is a major focus in this thesis

1.3 NONLINEAR DYNAMICS AND NEURAL SYSTEMS.

Nonlinear dynamics and chaos have infiltrated the field of medicine, and of
physiology in particular, since the work of Mackey and Glass?h? more than ten years
ago. They associated qualitative changes in the dynamical behaviour of certain phys-

iological varables with bifurcations in model equations governing the physiological
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dynamics. Examples of these variables are circulating blood cell numbers, neural fir-
ing rates, and the partial pressure of carbon dioxide in the blood. These authors went
further to propose that these bifurcations could, in certain cases, be associated with
the onset of a pathological state, which led to the concept of “dynamical disease”.
Since, these ideas have permeated physiological dynamics (reviews can be found in
Glass and Mackey?® and in Degn et al.2”), and experimental evidence for biological
chaos in simple cell systems in vitro has been given?8:29:30,

In this thesis, concepts from the two preceding sections are brought together to
explore the deterministic and stochastic properties of neural delayed feedback systems
when their activity is oscillatory. Specifically the thesis theoretically and experimen-
tally addresses the following questions: 1) Can bifurcations and chaos realistically
occur in large ncural systems, and what are the difficulties involved in asserting such
results?; 2) How easy is it to identify a bifurcation in the presence of high noise levels?;
3) Is it possible to obtain quantitative agreement between experiment and theory?;
and 4) Can the analysis of bifurcations in the presence of noise shed light on system
nonlinearities and on the origin and properties of the noise sources?

To understand what neural delayed feedback systems do and how they do it,
one is faced with the problem of measurement. A system is needed whose physiology
is well characterized, which can be non-invasively monitored and controlled, and as
closely mimics the in vivo situation as possible in order for results to be relevant for
intact neural systems.

The thesis focusses on the human pupil light reflex, a delayed neural feedback
system which satisfies all the:se requirements and whose study has a hisvory of at least
2000 years This involuntary reflex, with a response delay of ~ 300 msec, has been
extensively studied in the bio-engineering literature as the paradigm of neurological
control systems. It also exhibits a variety of interesting dynamical phenomena (re-
viewed in Sections 2.1 and 2.2) ranging from simple oscillations to ongoing aperiodic
behaviour. In fact the pupil light reflex has all the properties required to address the

questions formulated above.

1.4 ORGANIZATION OF THE THESIS.

The organization of the thesis is as follows. We first develop, in Chapter 2, a
general theoretical framework in which to study pupillary oscillations. Our model,
based on physiological and anatomical data, is framed in terms of a nonlinear delay-

differential equation. From the large literature on this reflex, we choose only those
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aspects important for the generation of oscillations. One modelling criterion is to
produce a representation that can make predictions in terms of realistic observables
and allow for parameter estimation from experiment. This is in contrast to the wealth
of models in the neural dynamics literature which, although interesting from a theo-
retical point of view, will be “immune” to experimental varification for many decades
to come.

In Chapter 3, we investigate how complex dynamics can be sustained by the
pupil light reflex. The experiment involves setting up autonomous oscillations in this
reflex using external electronic feedback by modifying a technique developed by Stark
and Sherman?®!. This study clarifies how a specific neural system generates complex
deterministic motion in the presence of noise, and how a physiologically relevant model
quantitatively predicts this behavior. The major conclusion is that bifurcations may
be induced in this neural control system. However, the analysis of complex periodic
motion is severely limited by noise.

As a consequence, Chapters 4 and 5 concentrate on simple deterministic be-
haviour in the presence of noise. In particular, noise-induced transitions (which be-
long to the broader class of nonequilibrinum phase transitions) at the Hopf bifurcation
in a prototypical delay-diffcrential equation (DDE) are studied (see also Appendix
A).

Chapter 4 develops our understanding of the dynamics of DDE’s using theory
and numerical simulation. Further, DDE’s are studied from a new point of view, that
of stationary densities in one variable.

Chapter 5 looks at the stochastic Hopf{ bifurcation in a first order DD with :
1) smooth negative feedback; and 2) piecewise constant negative feedback (PONF)
These two types of feedback are experimentally important (see Section 3 2, and also
Appendix B for a precise application of PONF as a diagnostic tool for multiple sclero-
sis). A second set of experiments, done in collaboration with a group from the Medical
Physics Department of the Free University in Amsterdam, is presented They involve
inducing simple oscillations in the pupil light reflex using SNF and PCNI. The Am-
sterdam group provided the data for the SNF oscillations.

The deterministic and stochastic behaviour of the pupil area oscillation period
and amplitude at oscillation onset are analyzed. The proper characterization of the
noise is shown to he necessary to explain our observaticns. The interaction of the noise

with the deterministic components is used to elucidate the properties of this reflex
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and the origiuns of the noise. This type of study may yield useful tools to diagnose
neurolesical control systems since, for example, noise is thought to arise from the
activity of other centers in the brain impinging on the pathways of the pupil light
reflex. The activity in these centers is thus mirrored in some cryptic way in that of
the pupil, and it may be deciphered using the appropriate analysis.

The common theme of the chapters is understanding noisy nonlinear oscillations
in neural delayed feedback systems, and also in DDE’s because of the importance of
these in our models. However, each chapter relies on different tools to carry out differ-
ent parts of the program. It is hoped that the reader will appreciate the presentation
of the relevant introductory material at the beginning of each chapter, rather than
be overloaded at the outset in this introductory chapter. Since most of the thesis
is composed of manuscripts which are either accepted or submitted for publication,
there is inevitably some overlap between the introductory remarks of the chapters
and the introduction sections of the papers. Further, the introductory sections of the
papers overlap to some extent, as the papers all share common elements of the same

general research program.
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The Faculty of Graduate Studies and Research of McGill University requires that
the following text from the GUIDELINES CONCERNING THESIS PREPA-
RATION be cited in full in the introductory sections of any thesis to which it applies.
Appendix E details the contributions of the author to the manuscripts included in

this thesis.

MANUSCRIPTS AND AUTHORSHIP.

The candidate has the option, subject to the approval of the Department, of
including as part of the thesis the text, or duplicated published text (see below), of
an original paper, or papers. In this case the thesis must still conform to all other re-
quirements explained in Guidelines Concerning Thesis Preparation. Additional
material (procedural and design data as well as descriptions of equipment) must be
provided in sufficient detail (e.g. in appendices) to allow a clear and precise judgement,
to be made of the importance and originality of the research reported. The thesis
should be more than a mere collection of manuscripts published or to be published.

It must include a general abstract, a full introduction and literature review and a

final overall conclusion. Connecting text which provide logical bridges between dif-

ferent manuscripts are usually desirable in the interests of cohesion.

It is acceptable for theses to include as chapters authentic copies of papers
already published, provided these are duplicated clearly on regulation thesis stationery
and bound as an integral part of the thesis. Photographs or other materials which do
not duplicate wcil must be included in their original form In such instances, conpec-

ting texts are mandatory and supplementary explanatory material is almost always

necessary.

The inclusion of manuscripts co-authored by the candidate and others is accept-
able but the candidate is required to make an explicit statement on who contributed
tc such work and to what extent, and supervisors must attest to the accuracy of the
claims, e.g. before the Oral Committee. Since the task of the Examinersis madc more
difficuit in these cases, it is in the candidate’s interest to make the responsabilitics of
authors perfectly clear. Candidates following this option must inform the Department

before 1t submits the thesis for review.
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CHAPTER 2

MODELLING AUTONOMOUS OSCILLATIONS
IN THE HUMAN PUPIL LIGHT REFLEX.

STILL POOLS

[Cyprcss]

Cypress.
(Stagnant water.)

Poplar.
(Crystalline water.)

Willow.
(Deep water.)

Heart.
(Water of the pupil.)

Federico (Garcia Lorca
First Songs, 1921

This chapter starts with a brief introduction to neurons and pupillary physiol-
ogy. The core of the chapter comprises two papers. The first (Section 2.2), entitled
“Modelling autonomous oscillations in the human pupil light reflex using nonlinear
delay-differential equations”, has been published in the Bulletin of Mathematical B:-
ology. The title is self-explanatory. The second paper (Section 2.3), entitled “Insight
into the transfer function, gain and oscillation onset for the pupil light reflex using
nonlinear delay-differential equations”, was published in Biological Cybernetics. It
provides the connection between the approach of this thesis, based on nonlinear dy-
namics and bifurcation theory, and the conirol systems engineering approach which
has permeatec studies of pupillary dynamics for more than thirty years (see Stark3?
for a review). The conditions under which our model is compatible with previously
derived transfer function analyses are determined. Particular attention is given to
the onset of oscillation and to the asymmetry reflected in the speeds of constriction
and dilation. Further, we modify an explanation given by Stark! for the origin of a
double oscillation induced in the pupil light reflex using external electronic feedback.
In these papers, the Hopf bifurcation is used as a tool to understand the onset of

oscillation. The full Hopf bifurcation theorem is given in Section 5.1.

2.1 INTRODUCTION.
The pupil is the black hole in the middle of the colored part (iris) of the eyeball

formed by the iris muscles. Light enters through the pupil and falls on the retina.
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The autonomic (i.e. involuntary) nervous system uses the signal produced in the
optic nerve to control the activity of the iris muscle and, as a consequence, pupil size.
The major function of the pupil is to regulate the 1etinal light flux until the slower
adaptation processes involving the retinal neurons set in, and to control the depth of
field for visual acuity®?. It is part of a “synkinetic triad” which refers to the three
simultaneous events that occur when, for example, a subject changes his focussing
distance from far to near: 1) the lens increases its curvature, thereby decreasing
its focal length; 2) the eyes converge; and 3) the pupils constrict. This is why one
must specify pupil light reflex, since the pupil also reacts, through the action of the
autonomic nervous system, to non-visual stimuli and to focussing cues

The pupil light reflex has been studied for more than 2000 years (sce Loewen-
feld®*). Differences in pupil size attracted the attention of carly physiologists in the
Roman empire. Plinius (23-79) and Galen (135-201) used specific plant extracts to
dilate the pupil prior to cataract surgery. Centuries later, Rhazes (850-923) first
recognized that the normal pupil contracts in light and dilates in the dark. Shortly
thereafter, Ammar (c.a. 1000) assumed the iris to be a muscular organ. There has
been a sustained interest in the pupillary system since the 1600’s, as its role in the

regulation of light and in the accommodation (focussing) reflex were discovered.

2.1.1 Neurons.

Before discussing the basic neural circuitry of the pupil light reflex, a brief sum-
mary of the general properties of neurons is in order.

The neuron is an excitable cell®®. It requires a constant source of metabolic
energy to move ions against electrochemical gradients in order to maintain a potential

difference across its membrane (~ —60 mV, the inside being negative with respect to

the outside). When the membrane is depolarized above a certain threshold (~ 40
mV), there is a sequence of ionic events which cause the membrane potential to
rapidly depolarize to a positive value and then to repolarize to the original value.
This sequence generates a potential change known as the action potential  Although
these events occur in the cell body (at the soma), they trigger a depolarization-
repolarization wave that travels down a thin process extending out of the cell body
called the “axon” (bundles of axons are called nerves).

A neuron communicates with other neurons at special junctions called “synap-

ses”33. When the propagated action potential arrives at the end of the axon, 1t causes

molecules known as “neurotransmitiers” to be released from “synaptic boutons”. The
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transmitter rapidly diffuses across the synaptic cleft (200-300 A) from the presynaptic
neuron to the postsynantic neuron, where it binds to specific receptor molecules on
the cell membrane. These receptors are generally located on the dendrites of the post-
synaptic neuron, which are hairlike processes that channel information about external
stimuli to the cell body. The transmitter binding causes ion channels to open and/or
close in a variety of ways. These changes temporarily disrupt the ionic balance of the
postsynaptic cell, gencrating postsynaptic potentials or PSP’s. These potentials are
either excitatory (EPSP’s) or inhibitory (IPSP’s), depending on the neurotransmitter
and the receptor The PSP’s propagate decrementially (as in cable conduction) down
the dendritic tree to the cell body, in contrast to axonal wave propagation which is
a regenerative process that maintains the action potential amplitude constant. The
EPSP will depolarize the postsynaptic cell, while the IPSP hyperpolarizes it.

The balance of the excitatory and inhibitory influences at the soma at any given
time determines the rate at which the neuron fires action potentials. In general
the firing frequency is proportional to the amount of depolarizalion above the firing
threshold. 1n simple terms, stimulus strength is encoded in the firing frequency.
Action potential generation is an all-or-none process : if the stimulus is too small or
inhibitory, no action potentials will result.

Neurons connecting to muscle cells are called motoneurons. They reside in “
motor nuclei” or “motoneuron pools”. Muscle cells are also excitable cells. Acetyl-
choline is the neurotransmmitter at the neuromuscular junction, i.e. at the synapse
between a motoneuron and a muscle cell. The action potential in the muscle cell,
triggered by the diffusion of acetylcholine, causes a sequence of chemical reactions
and molecular movements leading to the contraction of the muscle cell. The strength

of the contraction is gencrally proportional to the firing frequency of the motoneuron.

2.1.2 Circuitry of the pupil light reflex.

Figure 2.1.1 shows a schematic of the neural pathways mediating the pupil light
reflex, while Figure 2.1.2 illustrates the pathways of the accommodation reflex which
enable the eye to focus on a target3®. These two reflexes have certain pathways in
common. Note the mirror symmetry of the structures involved in both reflexes.

At the retina, photons are absorbed by certain molecules, which initiates a com-
plex series of biochemical reactions leading to a change in membrane potential in the
rod or cone cell®”. 'This activity is relayed to other retinal neurons before reaching

the retinal ganglion cells. The axons of these neurons join together to form the optic
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nerve (the 1" nerve). Belore reaching the lateral geniculate body (L.GB), which
is the way station where most optic nerve axons synapse on the way to the visual
cortex, a small fraction of axons branch and these branches synapse in the pretectal
nucleus (PTN) in the midbrain. Other axons synapse in the pregeniculate body, from
which there is a projection to the pretectal arca. It is not known whether there are
retinal cells that are specific to the pupil light reflex. The connection between the
optic nerve and the PTN belongs to the parasympathetic pathway, which is involved
in constriction. Before discussing this pathway, we briefly describe the sympathetic
pathway, which is responsible for dilation.

The afferent portion of the sympathetic pathway also begins at the retina. A
fraction of the optic nerve axons synapse onto neurons in the pregeniculate body
which in turn synapsc in the midbrain reticular formation These neurons also receive
input from the hypothalamus. The pathway then runs from the reticular formation
to the spinal cord. It exits the spinal cord and goes up the cervical sympathetic
trunk to synapse in the superior cervical ganglion From there, the path continues
across the carotid plexus and finally reaches the radially arranged iris dilator muscle.
This description is, however, complicated by the finding®® that parasympathetic cells
in the Edinger-Westphal nucleus of the cat causc the iris to dilate m response to
focal electrical stimulation. Further, in response to an increase in retinal light flux,
parasympathetic neurons in the rabbit have been si  'n to either increase or decrease
their firing activity, i.e. these neurons are either ON umts or OFF units®®. The
precise role of the sympathetic system and the physiology of dilation in general are
still unclear.

The route of the parasympathetic pathway is known in more detail than the
sympathetic pathway37. Each pretectal nucleus receives mput from both retinas,
because of the crossing at the optic chiasm. There is evidence of decussation at
this level, meaning that the PTN’s from both hemispheres communicate across the
midline. There is stronger evidence that each PTN projects to the ipsilateral and
contralateral Edinger-Westphal nucleus (EWN). The EWN 1s the motor nucleus that
drives the circulatly arranged iris sphincter muscle whose activation results in pupil
constriction. Because cach EWN receives activity from cach retina, the pupil light
reflex is consensual : stimulation of one retina causes both pupils to constrict.

The EWN is also the motor nucleus for the ciliary muscle, the component of

the accommodation reflex that controls the curvature of the lens?? (sce Figure 2.1.2).
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The pathway for the accommodation reflex goes from the optic nerve to the anterior
occipital cortex, over to the superior colliculus and down to the EWN.

The axous of the EWN are part of the III'? nerve which synapses in the ciliary
ganglion (CG). The axons of tl.e ganglion cells innervate the sphincter muscle and
the ciliary muscle. Although the accommodation and light reflexes both synapse
in the EWN and in the CG, there is evidence that their pathways remain distinct
throughout. However, the activity of the accommodation reflex certainly influences
that of the pupil light reflex, because of the synkinetic triad. This most probably
occurs in the EWN.

The activity in other regions of the brain is known to influence that of the pupil
light reflex. Most of these influences are felt at the level of the EWN*". Spinoreticular
and brainstem (V'" and VII'" N.) afferents have an excitatory eflect on the EWN,
causing the pupils to constrict. The sensorimotor and frontal cortices, the reticular
activating systein, other brainstem afferents as well as corticothalamo-hypothalamic
and cortico-limbic pathways are known to inhibit the activity of the EWN (i.e. they
cause pupil dilation) One of the most important influences on the EWN is the
inhibitory effect of the reticular activating system (RAS) which controls alertness.
When a subject falls asleep, activity in the RAS decreases, which means that the EWN
is less inhibited. As a result, the pupil constricts In fact it has been observed*! *2 in
the cat and the rabbit that in the absence of any inputs, the EWN settles into a steady
state of high spontancous random activity The external inputs serve to depress and
modulate this activity. It has been suggested that the relaxation of the sphincter
in pupil dilation is caused by such inhibitory inputs rather than by an increase in
sympathetic outflow'?.

Other neuron populations in the pupil light reflex have been shown to exhibit
high firing activity. For example, retinal ganglion cells of cats fire randomly, and
a visual stimulus may temporarily increase or decrease the mean firing rate, but is
rarely able to suppress it for more than a few seconds®*. In rabbits, neurons in the
ciliary ganglion receive tomic synaptic input which is not decreased by darkness or by
acute section of the optic nerve*’. The majority of these neurons increase their mean

firing rate in response to retinal illumination; other cells, however, decrease their rate

during illumination.

2.1.3 Hippus.

The pupil area undergoes temporal fluctuations ranging in magnitude from 0 to
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20 %. This noisy pupil activity is normal and is called “hippus”?™. It can be scen
even under conditions of constant illumination. Hippus occurs in closed loop and
open-loop also (i.e. when the pupil can not control the retinal light flux)'®. Because
it occurs in open-loop, it does not reflect an instability in the feedback loop of the
light reflex (see Section 2.3.8). Since luppus is perfectly synchronized in both pupils,
its origin has to be at a point in the reflex arc common to both pupils The magmtude
of the fluctuations depends on the value of pupil arca, and is maximum at midrange
area values. It has been shown that this arca dependence of the magmtude of hippus
is the same regardless of whether the area is controlled by the accommodation reflex
(keeping the illumination constant) or by the light reflex (keeping the accommodation
level constant)!”. Based on these ohservations, it has been suggested that the inputs
to the EWN which are external to the pupil light reflex pathways, as well as the
intrinsic stochastic behaviour of the EWN itself, might be the source of hippus.

It has also been suggested that hippus simply mirrors the ongoing fluctuations
in lens curvature that characterize the accommodation reflex!™. This would not be
surprising given the existence of the synkinetic triad, and ihat 3% of the ahary nerve
goes to the iris sphincter, while 97% goes to the ciliary muscle, making crosstalk he
tween these two motor pathways not unlikely There has heen a preliminary reporting
of the synchronization of pupil and accommodation fluctuations in certain sabjects,

but not in others*®

Whether the pupil light reflex and the accomodation reflex are
synchronized or not is unclear, and the preuse origin of hippus is still unknown.
Apart from hippus, the pupil light reflex (PLR) exhibits a wide range of dy-
namical behaviours??*? (see Table 1 in Section 2 2) in response to different stimuh
One of the most interesting effects 1s seen in narcoleptic patients at sleep onset in
the dark®®. As they become more drowsy, their mean pupil area decreases until, at
midrange pupil arcas, the irregular hippus gives way to a regular osallation having a
period of ~ 5 scconds. This phenomenon has also been reported in normal subjects®.
The origin is not known Hence, despite centuries of investigation, much is left to he
understood about this reflex. The fundamental problem is that the anatomy and phys-
iology are not well known because the experiments are extremely diflicult, to carry
out. It is some-vhat surprising that many anatomically distinct mudbram structures
are contiguous, and that the EWN, which is only one of the nuclet in the so-called

“oculomotor complex”, is confined to a region the size of a pinhead.
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2.2 MODELLING AUTONOMOUS OSCILLATIONS IN THE HUMAN
PUPIL LIGHT REFLEX USING NONLINEAR DELAY-DIFFEREN-
TIAL EQUATIONS.

Abstract.

Neurophysiological and anatomical observations are used to derive a nonlinear delay-
differential equation for the pupil light reflex with negative feedback. As the gain
or the time delay in the reflex i, increased, a supercritical Hopf bifurcation occurs
from a stable fixed point to a stable limit cycle oscillation in pupil area. A Hopf
bifurcation analysis is used to determine the conditions for instability and the period
and amplitude of these oscillations. The more complex waveforms typical of the
occurrence of higher order bifurcations were not seen in numerical simulations of
the model. This model provides a general framework to study the different types of
dynamical behaviours which can be produced by the pupil light reflex, e.g. cdge-light

pupil cycling.

2.2.1 Introduction.

An intriging aspect of the nervous system in health and disease is the widespread
occurrence of complex dynamical behaviours, e.g. tremors and the electrical activity
of the cortex (see, for example, Mackey and Milton®*; Milton et al.2?). Recently there
has been a great deal of speculation concerning the role of nonlinear neural control
mechanisms 1in generating some of these dynamical behaviours®®®%57 These propos-
als have been based on mathematical studies of physiologically realistic equations in
which qualitative changes in dynamics (‘bifurcations’) occur as certain parameters
are varied. The changes in dynamics produced bv parameter variation range from
stable equilibria to simple and complex periodic oscillations to aperiodic (chaotic in

the current vernacular) fluctuations!126

. However, experimental verification of these
predictions has been hindered by the paucity of suitable models in which it is possible
to study the dynamices that arise by parameter variation.

A neural feedback control mechanism which is amenable to manipulation is
the pupil light reflex. As shown in Table 2 [, this reflex exhibits a wide range of
dynamical behaviours, which are typically monitored by changes in pupil area. For
example, irregular variations in pupil area (‘hippus’) occur sponiancously, whereas

regular oscillations (‘pupil cycling’) can be induced by focussing a small light beam

at the pupillary margin®®*?, The period®**! and regularity®?®® of pupil cycling are
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TABLE 2.1

Summary of Spontaneous Dynamical Behaviors Exhibited by the Pupil Light Reflex

Type of Dynamical Behavior

Descniption

Reference

Regular oscillations
Simple waveforms

Csmplex waveforms

Irregular oscillations

Noise-like fluctuations

Edge-light pupil cycle time

Pupil cycling with external electronic
feedback (“clamping™)

(i) Continuous negative feedback

(ii) Piecewise constant negative
feedback

Hippus in narcoleptic patients

Pupil cycling with external “mixed™ and
delayed feedback

Intermuttent irregular pupil cycling 1n
demyelinative optic neuropathy

Hippus

Campbell and Whiteside (1950)
Martyn and Ewing (1986)
Miller and Thompson (1978)
Stark and Cornsweet (1958)
Stern (1944)

Reulen g al. (1988)
Stark (1962)

Milton er al. (1988, 1989)

Yoss et al. (1970)
Longtin and Milton (1988)

Milton ez al. (1988)
Ukai et al. (1980)

Bouma and Baghuis (1971)
Stark et al. (1958)
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altered by pathology within the pupil light reflex pathways.

An important feature of this reflex is the ease by which it can be manipulated
and monitored noninvasively. In particular, it is possible to ‘clamp’ this reflex!82:64:65
Clamping refers to an experimental technique in which the feedback loop of the reflex
is first “opened” by focussing a small beam of light on the center of the pupil in order to
circumvent the shading effect of the iris on the retina (see Stark and Sherman®'). The
feedback loop is then reclosed with an electronically constructed ‘area comparator’
relating changes in pupil area to changes in light intensity. Thus a precisely specified
feedback can be inserted into the reflex. In this manner Stark! verified that pupil
area oscillations could occur once the gain became sufficiently large. The “linear”

properties of the reflex determined the frequency of these oscillations, whereas their
shape and amplitude depended on the “nonlinearities”.
Recent studies bave emphasized clamping the pupil light reflex with piecewise

constant types of fecdback?0:02:64

the light is either on or off depending on the
value of the pupil area relative to certain area thresholds. The main advantages of
the use of piecewise constant feedback over smooth feedback are 1) the pupil area
oscillations are much easier to control experimentally®?; and 2) the properties of the

oscillations are better understood analytically??04:66,

This approach has resulted in
a new technique for detectin ti thology®? and 11 tai
“hniq g optic nerve pathology®® and moreover allows certain
nonlinearities of the reflex to be isolated for detailed study (this paper). From the
general point of view of nonlinear dynamics, this cxperimental paradigm of ncural
control provides unique opportunities to verify theoretical nredictions, to draw at-
tention to unexplained phenomena, and to assess the role of superimposed random
variations (“noise”) 1n shaping the observed dynamics??:%4, It can be anticipated that

insights obtained from studies of the clamped pupil light reflex can be applied to other
neural control mechamsms as well.

Despite the altractiveness of the study of the pupil light reflex as a nenlinear
dynamical system, we know of no previous attempts to model it from this point of
view. Indeed previous investigators have focussed on the modelling of, for example,
the response of the pupil to transient and steady state oscillatory light inputs, and of
various nonlinearities in the reflex arc!32:16:4987 Here we use neuro-physiological and
anatomical considerations to derive a model for the pupil light reflex. A bifurcation
analysis of the resulting nonlinear delay-differential equation is used to characterize

its dynamical behaviours and to examine the influence of parameter variations on
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them. This model provides a general framework in which it is possible to study the

different types of behaviours produced by the pupil light reflex.

2.2.2 The pupil light reflex.

The pupil light reflex pathway is represented schematically in Fignre 2.2.1. Pupil
size reflects a balance between constricting and dilating mechamsms?7. Pupil constric-
tion is caused by contraction of the circularly arranged pupillary constrictor muscle
which is innervated by parasympathetic fibers The motor nucleus for this muscle
is the Edinger-Westphal nucleus located in the oculomotor complex in the midbram.
There are two main neural mechanisms for pupil dilation™ . 1} a mechanism which
involves contraction of the radially arranged pupillary dilator muscle innervated by
sympathetic fibers (traditionally referred to as “active” reflex dilation); and 2) a mech-
anism which operates by inhibition of the activity of the Edinger-Westphal nudleus
(traditionally referred to as “passive” reflex dilatio1) Pupil cycling occurs even when
the sympathetic supply to the iris is cut surgically®? or blocked pharmacologically®.
Thus during pupil cycling, dilation is primarily the result of 1) a decrease in the
afferent activity and 2) increased inhibition of the activity of the Edinger- Westphal
nucleus. The role of the sympathetic nervous system seems to be primarily one of
determining the average pupil size

This reflex functions as a time-delayed negative feedback system®21%, The time
delay, or pupil latency time, is ~ 200-500 msec®2:%®. This time delay 15 much longer
than would be anticipated simply on the basis of neural conduction times The part
of the reflex in which this delay originates is presently controversial : some authors
favour an origin in the midbrain®®, others svggest that it arises at the level of the iris
and its musculature®8:%9,

2.2.3 Model. The variable controlled by the pupil light reflex is the retinal light level
(Aux)*®, ¢ (lumens), which is equal to the illuminance, | (lumens/mm?), multiplied

by the pupil area, A (mm?)
é= 1.4 (2.2.1)

The retinal light flux ¢ is transformed, after a time delay 7., into neural action
potentials which travel along the optic nerve. We assume that it is the rate of these

action potentials, i.e. N(t) = number of action potentials per unit time, which is
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Figure 2.2.1 Simplified diagram of pupil light reflex. See text for explanation.
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Figure 2.2.2 Plot of a Hill function (2.2.7) relating pupil area, A, to iris activity, x
(solid line). Parameters are: A = 30 mm?, ' = 0 mm?, 8 = 10 mm?, n= 4.
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important for reflex dynamics and that N(t) is related to ¢ by

ﬂt:ﬂ]

N(t) =nln [ 3 (2.2.2)

where 7 is a rate constant, ¢ is the threshold retinal light level (i.e. the light level below
which there is no response), and the notation ¢(t — 7.) indicates that this quantity
depends on the retinal light flux at a time 7, in the past. The logarithmic compression
of light intensities a. ‘he retina has been discussed previously by Cornsweet” and is
referred to as the Weber-Fechner law (see e.g. Webster’?).

The afferent neural action potential rate, N(t), gives rise to an efferent neural
signal, E(t), which is produced by the Edinger-Westphal nucleus after a time delay,

1¢. This efferent neural activity, also measured as the number of action potentials per

unit time, exits the midbrain via parasympathetic fibers. We assume that

E(t) =+'In [‘W - (g +T‘))] (2.2.3)

where 7' is a rate constant and 7; is the midbrain time delay.

At the neuromuscular junction of the pupillary constrictor muscle, the neural
action potentials result in the release of a chemical neurotransmitter (acetylcholine)
which diffuses across the synaptic cleft, binds to specific receptors on the muscle
membrane thus leading to the generation of muscle action potentials and initiating
muscle contraction. These events require a time delay, 7,,. In this way the neural
activity, F(t), is transduced into tension in the constrictor muscle; this tension then
produces a resulting pupil area. We first define a relationship between E(t) and iris
muscle activity, #, and then between = and pupil area, A.

The iris muscle activity, =, is determined by a number of factors which may
include Catt concentration and diffusion, actin-myosin cross linking and the initial
length and tension in the constrictor muscle. Since we are ultimately interested in
pupil area, A, it is not necessary to exactly specify z. We take the relationship

between E(t) and & to be of the form”?

de d%a
E(t) - M(z, —, —-,--
0= M@ % 20

(e (2.2.4)
™~ dt [0 443

where a is a rate constant and k is a proportionality factor which depends on the

definition and units of = used in the model. The justification for the first order
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approximation to M(z, %’ %t—f,--- ) is the success that the subsequent model has in

predicting the experimentally observed oscillations in pupil area (see Longtin and

Milton®; Milton et al.2%).
By combining (2.2.3) and (2.2.4) we obtain the following nonlinear delay-differen-

tial equation

Et—+a:v:'yln

da [d’(t—“—f—)} (2.2.5)

where 7 = 7, + Ty + T, is the total time delay in the reflex arc and v = ~'/k.

Equation (2.2.5) is written in terms of muscle activity; however, experimentally
it is pupil area that is more typically measured. In order to re-write (2.2.5) in terms
of pupil area, 4, it is necessary to have a function, f(z), that relates muscle activity
and pupil area, i.e.

A= f(z). (2.2.6)

The function f(z) must 1) meet the requirement that pupil area is positive and
bounded by finite limits and 2) reflect the role played by elasto-mechanical prop-
erties of the iris in shaping pupil dynamics. In principle, f(z) can be measured
experimentally’®. Here we consider one possible choice of f(z) which satisfies the
above requirements, i.e. the Hill function (Figure 2.2.2)

Agm

A=f@)= G+ A’ (2.2.7)

where A + A’, A" are, respectively, the maximum and minimum pupil area (AL A >
A' > 0) and @ is the value of & for which pupil area is mid-range. A similar function,
i.e. “S-shaped curve”, has been proposed previously’® ™. We show in Section 2.2.5
that this choice of f(z) also reflects the nonlinear mechanical properties of the iris.

Using (2.2.7) we can re-write (2.2.5) in terms of pupil area, A, as

o o [ 2EZT)
;Hdt+ag(A)—7ln[ — } -
=~ln [ﬁt_?_l_)_‘fl_(ﬁjl )} 2.
14

where g(A) = f~1(A) = = (Figure 2.2.3), and we have made use of (2.2.1). Note that

to solve (2.2.8) it is necessary to specify the initial functions I(t) and A(t) on the
interval ¢t € (—T,0).
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Figure 2.2.3 Plot of the inverse of the Hill function, g(A), shown in Figure 2.2.2
(i.e. = f~1(A) = g(4)) as a function of pupil area, A. In a) we compare g(4) to
the gain, G, which for f(z) given by (2.2.7), can be written as

nvA [A A

where A' = 0 mm?2. In b) we show a graphical method for determining the fixed
points of (2.2.9) when a. > a4. The fixed point A* is given by the intersection of g( 4)
(solid line) and the right hand side of (2.2.9) which we have defined as h(A4) (dotted
line). Parameter values have been arbitrarily set to A = 30 mm?, A' = 0 mm?

n=4,y= 5sec!, I = 10 lumens/mm?, § = 1 lumen.

!
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2.2.4 Stability analysis.

We now investigate how spontaneous oscillations in pupil arca may develop un-
der conditions of constant light illumination. As will become clear, the method of
analyzing (2.2.8) depends on the relative values of the pupillary rate constant for

constriction (a.) and dilation (agq). In a few individuals, ac ~ ag4 (see Lowenstein

75)

and Friedman™®); however, in the majority a. > ag 875, We refer to these cases as,

respectively, a symmetric and an asymmetric pupil light reflex.
2.2.4.1 Symmetric pupil light reflex (a. = aq4).
The unique equilibrium pupil area, A', corresponding to an incident light illumi-

nance, I, is defined by dA/dt = 0, and from (2.2.8) it is the solution of the equation
(Figure 2.2.3 b)

VA’
ag(A’) =~v1n [—I—T—:—] . (2.2.9)
To determine the stability of this fixed point, it is necessary to linearize (2.2.8) about
A*. This is done in two steps. First, in (2.2.8), we expand g(A) to first order around
At e,
g(A) ~g(A")+6(A - 4") (2.2.10)

where 3 is given by dA/dt evaluated at A'. Substituting (2.2.10) into (2.2.8) we

obtain
a4 + A') + A—A") =~In{A(t - + 41 I 2.2.11
ﬂdt ag(4') + af( ) =y In{A(t - 1)} 'yn[f_.}. (2.2.11)

Next we define the displacement of A(t) from equilibrium as a(t) — A(1) A'.

For small amplitude oscillations, a/A << 1 and hence we can expand the first term

on the right hand side of (2.2.11)

yIn[A(t - 7)] = v1n {A' [9%7_1) ! 1]}

(2.2.11)
~yIlnAd" + %a(t - 7).
Combining (2.2.11) and (2.2.12) and using (2.2.9) we obtain
da + aa = J——a(t - 7), (2.2.13)
dt BA
which in terms of pupil area, A = a + A", yields
a'l%+A:G~[A(t —7)-A'] + A (2.2.14)
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where we have defined the dimensionless quantity, G, as

_ 7
G= g (2.2.15)

Since § < 0, it follows that G < 0 which corresponds to negative feedback.
To examine the response of the pupil to small deviations in pupil area, 4, from
the equilibrium area A' as described by (2.2.14), we make the usual ansatz that

A(t) o< exp(At). The characteristic equation is
At a+Bexp =0 (2.2.16)

where @ > 0 and B = —aG > 0. This quasi-polynomial has an infinite number of
roots. We denote by A\; = o, & ww; the root with the Jargest real part. The roots
come in complex conjugate pairs since (2.2.16) is invariant under sign reversal of w.
We will focus only on the roots with positive frequency. It can be shown that (2.2.14)

has a periodic solution when®:77

w T = cos"l(é) (2.2.17)

where |G| < 1, w? = a?(G? - 1) and the inverse cosine takes its value in the interval
[5,7]. This is an implicit relation among the parameters of (2.2.14) that defines the
condition Re(A) = oy = 0. The period, T, of this periodic solution is given by
27
T=—, 21 < T < 4r. (2.2.18)
Wi
Assume for now that the delay 7 is the bifurcation parameter. Then, for a and

B fixed, there will be a value of 7 = 7, for which (2.2.17) will hold. By implicit

differentiation of (2.2.16) with respect to 7, one obtains

dRe(}) - wi > 0 2.2.19
dr T=Te (1+a7'o)2+w121'3 (2.2.19)

/\:iwl

Hence Re(Ay) > 0 for 7 > 7, which ~orresponds to local instability of the fixed point
A = A" when the delay is increased past the critical value 7,. This also implies that

in (2.2.17) the right hand side is greater than the left hand side. Hence periodic
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solutions occur in (2.2.14) for 7 > 7,. Similarly, if B is the bifurcation parameter,

then keeping a and 7 fixed, we obtain

dRe(]) B a+a’r
dB |B=Bo = B,(l+ 2ar+ B%r?)
A= iwl

0 (2.2.20)

where B, is the value of B satisfying (2.2.17). Thus periodic solutions occurin (2.2.14)
for B > B,.

In general, a Hopf bifurcation from a stable equilibrium point to a stable limit cy-
cle may be either subcritical (“hard” excitation) or supercritical (“soft” excitation)!".
Classifying the Hopf bifurcation for (2.2.14) is important since it allows a prediction
of how the oscillation amplitude grows for values of 7 (or B) beyond the point of
os-illation onset, i.e. 7, (or B,).

The fate of the periodic solution that existed for the linearized system at v - 7,
(or B = B,) is determined by the nonlinear terms that have been neglected in going
from (2.2.8) to (2.2.13). A supercritical Hopf bifurcation will occur provided that
certain nondegeneracy conditions are fulfilled by these nonlinear terms™®. This means
that as a complex conjugate pair of roots migrates across the imaginary axis {from
left to right), the stable equilibrium becomes unstable and a stable limit cycle arises.

Verification of these nondegeneracy conditions is quite involved for functional
differential equations such as (2.2.8). Instead, we have numerically verified (data
not shown) that the bifurcation is supercritical by demonstrating that locally the
amplitude of the oscillation grows as the square root of the distance (in parameter

space) from the bifurcation point, i.e.

Amplitude x /B — B,  (or /T --7,). (2.2.21)

Further, the analytical computation of higher order corrections to the period (2.2.17)
and amplitude (2.2.21) using the Hopf analysis for functional differential equations

(of delay type here) is also quite involved and is not carried out here (sec Stech™;

Sirkus™).
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Other bifurcations may occur as ¥ and B are increased further leading to other
limit cycies, quasiperiodic motion and bounded aperiodic (chaotic) dynamics. This
depends on the functional form of g(A4) in (2.2.8). For general g(A4), numerical inte-
gration is necessary to determine which type(s) of solution will be observed for a given
choice of parameters and initial functions on (—7,0). For negative feedback, numerical

calculations indicate that no other bifurcations occur after the Hopf bifurcation.

2.2.4.2 Asymmetric pupil light reflex (o, > ay).

In the derivation of our model, we have used the same dynamical variable z
to describe constriction and dilation, even though each process involves different
mechanisms which depend on different parameters3®89-81.82.83 The ohservation that
a, > a, introduces an asymmetry into our model of the pupil light reflex. To account

for this we replace a in (2.2.8) by

o = % [a, +ag — (a0 — a,:)sgn{/i}] ; (2.2.22)

where sgn{A} equals +1 if A = dA/dt > 0 and —1 otherwise. The stability analysis
requires first solving (2.2.9) for A' with a = o'. Since a can have one of two values,
(2.2.9) will not yield a unique A" for a given g(A'). Indeed the graphical solution in
Figure 2.2.3b indicates two fixed points A" and A}, corresponding, respectively, to «,
and ay. The analytical methods for determining the stability of such an equation in
which the fixed point depends on the sign of the derivative of the state variable have
not, to our knowledge, been developed. We therefore explored the behaviour of such
an equation numerically.

Specifically, we simulated (2.2.8) with the asymmetry in « given by (2.2.22).
We found that the solution depends on the initial condition (data not shown). The
solution can go to one fixed point or the other, or oscillate around one fixed point, or
the other. In addition for certain parameter values, we have an ill-defined problem:
the initial value of a determines the fixed point and the sign of the derivative in
the fourth order Runge Kutta algorithm. However, based on this sign, o' takes on
the other value and the system attempts to converge to the other fixed point. The
solution thus oscillates between the two fixed points with the value of the derivative

changing at every integration time step.

30




2.2.5 Gain.

The parameter, G, can be formally identified to the gain, G, defined empiri-
cally from measurements of the response of the pupil to small amplitude sinusoidally
modulated illumination®*. Here we examine the dependence of G on the equilibrium
pupil size, A".

It has been observed that the gain, G, attains its highest values at intermediate
pupil sizes. This effect has been referred to as the “expansive range nonlinearity”
and has been interpreted as a reflection of the nonlinear mechanical properties of the
iris’>»™. Figure 2.2.3 plots G as a function of A'. In preparing this plot we have
kept the parameters a and 7y constant. Normally, A' will depend on the value of «
and v (2.2.9), but we assumed that 4" is in fact varying independently of them, e.g.
being set by the accommodation level of the lens®®. As can be seen, the gain G will
have its largest values for intermediate values of A'. Furthermore, these observations

indicate that the relevant nonlinear properties of the iris have been incorporated into

the choice of the function g(4) (see 2.2.7).

2.2.6 External piecewise constant negative feedback.

21y G4

In previous studies we found empirically that under conditions of imposed

piecewise constant negative feedback, the oscillations in pupil area could be described

by the equation
1 d4 { Aogs, f Ar < A,y

— 4+ A= 2.2.23
* - Arma if Ar > Auf ( )

di
where the rate constant o differs for constriction () and dilation (ay4). When pupil
area is greater than a threshold 4, s, pupil size decreases exponentially to lower
asymptotic area (4,,), whereas when 4 < A, y, pupil size increases exponentially to
a higher asymptotic area (A,f¢). This equation describes “high gain” oscillations in
pupil area since the gain is infinite when 4 = A, s (it is zero for all other values of
A). The forcings, A,, and A,sr, correspond physically to two different values of the
flux ().

In the case of external piecewise constant negative feedback, the illumination is

constructed electronically to be a Heaviside function of pupil area, H(A), and hence
¢(t) = ¢ H [A(t) — A, f] + dugy (2.2.24)
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where

1, ifA>Aref
H[A(t)—xl,,ef]:{o e

and where @4y is the retinal light flux due to background illumination when the light

(2.2.25)

heam is off and ¢, is the retinal light flux produced by the narrow light beam. Thus
the retinal light level changes because the illuminance is switched on or off, while the
arca is constant and equal to the sectional area of the narrow light beam. Under these

conditions it follows from (2.2.8) that the changes in pupil area are described by

dg d4 bofrf | Db

T Ty 44 = lx = i‘H AT e Are 2.2.2

aa 4 Tesl) =ain| = 7) (2.2.26)
It is important to note that the right hand side of (2.2.26) is known. The

a%%f")

(see 2.2.4) are confined to the left hand side of (2.2.26). Thus the advantage of

unknown properties of our model for the pupil light reflex,i.e. g(A4) and M(z

studying the dynamics produced by the pupil light reflex clamped with piecewise
constant negative feedback is that it directly permits evaluation of plausible choices

for g(4) and M(z, %% o S )-

Y dt de2o’
To illustrate the above procedure let A (z, ‘;—’:, %i—f,-- -) be given by (2.2.4) and

take g(A4) as a linear function of 4, i.e.

g(4) = g(A")+B(A - A"), (2.2.27)

where 8 = dg/dA

4 <0and A' € [A}, A)] (Figure 2.2.3). A reasonable choice for

A" would be a mid-range value. Then (2.2.26) becomes

_pd4 T |2 ¢
144 _ T off | ¥b -
a” —- A(t) = A, + Y In [ 3 + 3 H(A, A,.ef)] : (2.2.28)
This equation is of the same form as (2.2.23) where
g d’off]
Ao = Ao + _‘“1 = 2.2.29
I o " [ 3 (2.2.29)
Yy | (Boss + ¢b)]
Apn = Ao + ! [ = 2.2.30

and the pupil area, 4,, is the maximal pupil area corresponding to zero iris muscular

activity and is given by g(4,) = 0 in (2.2.27)

A, = A" -7 1g(A"). (2.2.31)
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Since B < 0, it follows that A,rf > Ares > Aon if
ac/ag <\n[(dors + H5)/8)/ In[doss/#]. This latter condition is satisficd for the sym-
metric case and for the asymmetric case holds provided that ¢ is large enough.

It should be noted that the behaviour of (2.2.23) cannot be determined using a
Hopf bifurcation analysis since the feedback function is not differentiable. The solu-
tion of (2.2.23) (and 2.2.28) can be determined analytically?:61%¢ Jixperimentally it
is found that the period and amplitude of the observed pupil area oscillations agree to
within 5-10 % of these predicted?®®*. However, the predicted oscillations clearly have
a slope discontinuity; this is not observed experimentally. We are presently evaluating
alternative choices and g(A) and M (z, 4, % ,+++) in order to improve the agreement
between theory and observation.

In principle, piecewise constant feedback can be used to evaluate Al without
the necessity of determining g(A4). The gain is proportional to the slope of the Ilill
function (2.2.7) and can be made infinitely steep by letting n — oo. Substituting
(2.2.7) into (2.2.5) and taking the limit we obtain

éf+ = 1 1 £{ A6 FA'}
g T AR d Lo +e(t—7)

= 4ln [L.AH(m(t —T) — Tpef) + ﬁ\g} , .
¢ ¢

where I = I(t—7), H(z(t — 7) — Trey) is a Heaviside function, and we have identified

Tref with the limit as n — oo of the inflection point of (2.2.7), i.e.

trep = lim [6%51] = 9. (2.2.33)

n—oo

Equation (2.2.32) takes the same form as (2.2.23) (i.c. the flux can take on two
values). However, given the difficulties in measuring (and for that matter defining)

z, this approach is presently not useful practically.

2.2.7 Illustrative example.

To illustrate the dynamical behaviours which can be produced by the class of

equations we studied the following example




where c is a constant. This equation can be regarded to be a generalization of (2.2.23)
for smooth negative feedback.

Figure 2.2.4 shows the solutions of (2.2.34) as the steepness of the Hill function
is increased by increasing the parameter n. For small n there is a damped oscillation
in pupil area (Figure 2.2.4a). For larger values of n, sustained regular oscillations
in pupil area are obtained (Figure 2.2.4b-d). A supercritical Hopf bifurcation occurs
between n equal to 3 and 10. Although the shape of these oscillations changes as n
increases beyond 10, the more complex waveforms typical of the occurrence of higher

order bifurcations are not seen.

2.2.8 Discussion.

We have used neuro-physiological and anatomical considerations to derive a
nonlinear delay-differential equation describing the pupil light reflex. The main mo-
tivation behind this model was to develop a general framework to study the different
types of dynamical behaviours produced by the pupil light reflex {Table 2.1) and,
in particular, to examine the oscillations that occur under conditions of “high gain”
negative feedback, e.g. edge-light or electronic pupil cycling!-39:62:67,

Three observations lend support to our model for the pupil light reflex. First,
the predicted period of the oscillations in pupil area from (2.2.18) (i.e. 600-1206 msec
for a measured delay of ~ 300 msec) agrees well with the observed period of edge-light
pupil cycling (900 msec)*®59:61.87 Second, for the special case of external piecewise
constant feedback, our model] reduces to the same form as an empirical model known
to have solutions which are in good agreemeni with experimental observations for

a variety of feedback choices??84,

Moreover we have shown that this experimental
design permits certain nonlinearities 1n the reflex to be isolated for more detailed
study. Third, the dependence of the gain in our model on pupil size is consistent
with the ‘expansive range nonlinearity’ studies by Usui and Stark’®™, Finally, in a
separate study we have shown that our model is compatible with descriplions of the
pupil light reflex based on experimentally measured transfer functions®®.

Oscillations in pupil area occur whenever the time delay and/or the gain become

sufficiently large (2.2.17). The gain is related to three paramcters: 1) the rate constant
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Figure 2.2.4 Solutions of (2.2.34) for increasing steepness of the feedback function.
Value of n in the Hill function (right hand side of 2.2.34) has been indicated on each
curve. In going from n = 3 to 10, the system has undergone a supercritical Hopf
bifurcation. Initial condition for each simulation was A(t) = 15 mm?, t € (-r,0).
Parameter values were: + = 300 msec; a = 3.21 sec™!; § = 50 mm?;c = 200 mm?2.
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for the neural firing frequency (7); 2) the steepness of the feedback function (3);
and 3) the rate constant for pupillary movements (a). Stark® has used empirical
observations to argue that constriction gain is decreased by retinal light adaptation
and is inversely proportional to the constriction rate constant. These {eatures come
out very naturally in our model. The conditions for the onset of an oscillation as well
as the period and amplitude of the oscillations should be sensitive to pathological
alterations in any one of these three parameters. A variety of abnormalities in pupil
area oscillations are indeed seen in patients with disease in the pupil light reflex

pathways80.61,62,

As the gain is increased beyond the point of oscillation onset the shape of the
oscillation changes with little subsequent changes in its frequency (Figure 2.2.4). Near
the bifurcation point, the oscillation amplitude is predicted to grow as the square
root of these parameters beyond the point of instability onset. The more complex
waveforms typically associated with the occurence of higher-order bifurcations, i.e
period doubling bifurcations, or bifurcation from a limit cycle to a 2-torus, are not
seen. This finding is consistent with previous studies of first order nonlinear delay-

differential equations with negative feedback®; in particular, thosc which arise in the

24,25 8

descriptions of the control of respiration 6 and the commodity

, erythropoiesis
price market®’. Thus noise-like fluctuations in pupil area (‘pupillary hippus ’) cannot
represent chaotic dynamics produced by a nonlinear negative feedback mechanism of
the type we have considered here. However, we cannot exclude the possibility that
hippus represents a chaotic process somewhere in the reflex arc or that it is simply

due to noise injected, for example, at the level of the Edinger-Westphal nucleus*?88,

One nonlinearity in the pupil light reflex that has received little attention in
previous modelling studies is the response asymmetry of the pupil to the onset and
offset of light. Although this asymmetry is most clearly manifested as a difference
in the rates of pupil constriction and dilation®?, it is likely that it also occurs at
the level of the output of the retina and midbrain as well. Neuro-physiological evi-
dence for the presence of distinct light-ON and light-OFF responses in the reflex arc

80,83

has been obtained for retinal ganglion cells and for neuronal populations in the
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midbrain3®8182 Ag the observations in Section 2.2.4.2 indicate the analysis of this
situation certainly presents problems, ¢xcept in the ease of external piccewise constant
feedback??4®%, Previous modellers have also been concerned with the problem of
reflex asymmetry*® . For example, Stark'® suggested that a steady state oscillation
occurs when the constriction and dilation gains are eynal. Thus, after a transient,
there is no net increase or decrease in area in each oscillation period. In our model
this would imply that v./ac. = ¥4/ @4, where y. and v4 are the neuial firing frequen-
cies (2.2.3) for, respectively, constriction and dilation. However, this assumption is
not sufficient by itself to uniquely determine the steady state pupil arca the system
tends to (it likely will be a value between 4. and A;). Determining whether vhe
stabilization of the limit cycle occurs through this precise compensation or through
another mechanism will require experimental investigations.

In our model we neglected the possibility that time-dependent processes occur
in the response of the retina, e.g. adaptation®!. It may be possible that by including
these influences in (2.2.8), e.g. by making ¥ a function of time, that we will be able
to obtain insights into pupil phenomena, such as pupillary escape®. In addition, it
may be possible to account for some of the complex dynamical behaviours shown
in Table 2.1, e.g. spontaneous periodic oscillations in sleepy narcoleptics®, as more
physiological information is incorporated into the choices of f(x) (lquation 2.2.7)
and ~.

We expect that models based on nonlinear dynamical systems approaches will
come to play a greater role in the study of the properties of nenral control mecha-
nisms2%5484 The advantage of these approaches is that the analysis is not. restricted
to the study of equilibria and their stability. By employing a combination of analytical
and numerical techniques it should be possible to obtain insights into nature of the

complex dynamical behaviours produced by the nervous system in health and disease.
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2.2.9 Comment on asymmetry.

Section 2.2.6 of the preceding article develops the theory for oscillations in
PCNF. This theory makes a number of interesting predictions, some of which will
be explored in the subsequent chapters. In this section, we make a few remarks on a
prediction of the model concerning response asymmetry.

Recall the condition for Ayfp > Aop

ln [¢nt_t+¢hj|
. ¢
2 (2.2.35)

e
which we briefly mentioned after (2.2.31). Thus 4,7y > A,n is equivalent to con-
striction being faster than dilation. We will see in Section 3.2 that the ratio on the
left hand side of (2.2.35) is experimentally between 5 and 12, so inequality (2.2.35)
will only be satisfied for sufficiently large values of ¢;, the light beam flux. At lower
intensities, the inequality can no longer hold, unless the rale constants a. and a4
change in a way that reduces their ratio.

This condition (2.2.35) is plausible when viewed from the perspective of Hen-
neman’s size principle’?. Muscles are composed of motor units that differ in size,
speed and tension threshold of operation (known as recruitment thresheld). The size
principle says that a small stimulus will recruit small motor units, which are slow
and weak, while a stronger siimulus will recruit larger motor units and the response
will be faster. Although the properties of smooth muscle (such as the iris muscles)
are not known in as much detail, they appear similar to those of skeletal muscle, and
the size principle probably holds for them as well®®. Thus a. will decrease at lower
intensities, and inequality (2.2.35) can still be satisfied.

Our analysis in Sections 2.2.3 and 2.2.6 did not take into account the fact that
the iris rate constants are functions of ¢, (probably because we use only one beam

intensity in our experiments: see Section 3.2). More generally, for the PCNF case

(2.2.28) should be replaced by

a—l[qsb, ‘4} %l} + A(t) = Ao + m ln{(ﬁ_o;;'_f; + %H[AT — Aref]} ) (2236)
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while (2.2.8) for the SNF case should be

dg dA o [ITA,. .
T qp T9(A)aldy, 4] = vin 3 ] (2.2.37)

i

In SNF, ¢, changes continnously: ¢(t) = ¢* + A¢(t), while in PCNF, ¢, changes
abruptly. The fact that the motor units are recruited in a continuous fashion in
SNF is probably responsible for the apparent symmetry of the waveforms, a point we

address in the discussion of the following article (Section 2.3.9).
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. 2.3 INSIGHT INTO THE TRANSFER FUNCTION. GAIN AND OS-
CILLATION ONSET USING NONLINEAR DELAY-DIFFERENTIAL
EQUATIONS.

2.3.0 Transfer functions in brief.
Although interest in the pupil light reflex is centuries old, it is only recently that
quantitative methods of investigation have been applied to its study. In fact, thirty

31

years ago Stark and Sherman®' were among the first to use Wiener’s newly emerg-

ing theory of control and communication or “cybernetics”??

in a specific biological
context, namely that of the pupil light reflex. Over the years, Stark and several of
his co-workers have demonstrated that concepts such as transfer functions, stability,

4 nonlinearity and noise filtering were powerful modelling tools for this reflex.
Along with this theory of control came a precise experimental protocol and data
analysis scheme®?. For example, experiments involving responses to small amplitude
| sinusoidal light stimulation, step responses and impulse responses produced data that
were analyzed using Bode plots, root locus plots and Nyquist diagrams. This “systems
analysis” approact is aimed at a phenomenological description of the input-output
F characteristics of the systern under study. It works only in parameter ranges where the
dynamics are governed by linear differential equations, or equivalently where linear

¥ response theory applies. In this context, the output y(t) of the system when the input
1 y app ) put 'y \ I

is x(t) is given by the convolution of the input with the system’s Green function or

“impulse response” h(t):

+

{
y(t) = /0 z(u)h(t — u)du (2.3.0-1)

F where causality requires that h(f) be nonzero only for strictly positive arguments.

The analysis is simplified by taking the Laplace transform of (2.3.0-1) :

H(s) = )T\((Z) (2.3.0-2)

S

where uppercase letters denote the Laplace transform of variables with the corre-
}' sponding lower case letters and s = ¢ + fw is the Laplace transform variable. The
simplification follows from the fact that differential operators are replaced by func-
tions of the Laplace variable s, hence converting differential equations into algebraic

| { equations.' For example, if y(0) = 0,3'(0) = 0,3®(0) = 0,... and z(0) = Xo,2'(0) =

* For linear differential-delay equations, H(s) also includes transcendental functions see Section 4.1.
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0,2(2)(0) = 0,..., the input-output relation
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becomes, in the Laplace domain,

bmsm + bm~18m—~1 + .04 bo

@nS™ + an_18"71 + ..+ ay

H(s) =

(2.3.0-4)

The function H(s) is called the transfer function of the system. [t contains all the
information on steady state and transient behaviour of the system. The precise time-
evolution of the system will however depend on the initial conditions.

We are dealing here not only with linear causal systems but also time-invariant
ones, i.e. the coefficients in (2.3.0-3) are constants. The main property of these
systems is that their steady-state response to an input sinusoid is also a sinuscid of
the same frequency. However the ratio of output to input amplitude and the phase
difference are given, respectively, by the modulus and the argument of the transfer

function (in polar form) when o = 0:
H(iw) = |H(iw)| er9tH G} (2.3.0-5)

This is a consequence of the fact that sinusoids, or more precisely the complex ex-

ponentials e**!

, are eigenfunctions of the time derivative operator with cigenvalue
w.

While systems analysis can lead to quite complicated transfer functions, pro-
viding almost perfect fit to the experimentally observed response to a step in light
intensity, one must remember that these functions represent black boxes. At best,
each transfer function describes a different part of the physical system, but the pre-
cise relationship between its parameters and those of the system is often not clear
Further, obtaining a transfer function that reproduces the observed responses is often
achieved by using many parameters, and depending on how nonlinear the system is,
a slight change in operating conditions might involve a whole new fit with completely
different parameter values. Under such circumstances, it is justified to question the
value of such models

The emphasis of linear systems analysis is on designing or producing a differential

equation that reproduces the linear behaviours of systems in which an input and
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an output can be identified. This approach is strongly related with the design of
stable control systems. However when phenomena like limit cycle oscillations, quasi-
periodic motion and chaos are of interest, this systems theory approach is profitably
supplemented by nonlinear dynamics.

Before continuing, it is important to draw attention to the tremendous body of
knowledge that the theory of nonlinear control systems represents. It includes, for ex-
ample, describing function theory®® (also known as harmonic analysis), Volterra and

Wiener kernel analysis or generalized transfer functions?*:9%

and generalized Nyquist
(Theodorchik) diagrams (see Minorsky®®). This last approach is closely related to
bifurcation theory since it deals with the basic problem of nonlincarity, i.e. the in-
terdependence of frequency and amplitude, by calculating an amplitude-dependent
transfer function

The realm of nonlinear phenomena that these theories address decls mostly with
engineering type nonlineartties such as thresholds, saturations and static nonlineari-
ties, and is thus somewhat different from that which we are interested in. Although
some of these nonlinearities occur in the pupil light reflex, we prefer to include them
in a theoretical framework more amenable to the phenomena we are interested in,
namely autonomous (self-sustained) oscillations and their response to external per-
turbations. Hence, a theory that encompasses both autonomous and non-autonomous
phenomena is needed, a condition satisfied by bifurcation theory.

Models in nonlinear dynamics can also be plagued by an overabundance of pa-
rameters, and modelers try to minimize their numbers. The emphasis is more on
qualitatively explaimng observed behaviour rather than on giving perfect fit, in the
hope of gaining insight into the dynamical properties of the system, and ultimately
into its nonlinearities It is from this knowledge of nonlinearities that one can proceed
to the analysis of more complicated phase space motions and the influence of noise.

It is interesting that both nonlhinear control systems theory and bifurcation the-
ory are extensions of linear theory This1s not always obvious because of the different
language they use For example, the poles of a transfer function at which the residues
are calculated (to invert the Laplace transform and obtain the time domain solution)
are simply the eigenvalues of the linear operators governing the flow (i.e. the vector
field) of the differential equation around fixed points

As a testimony to the thirty years of bio-engineering that have gone into the

study of the pupil, next we present a paper that bridges the gap between bifurcation
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theory and control systems analysis in the context of a simple nonlinear phenome-
non: pupillary oscillations. In particular, the model developed in the preceding article
is shown to be compatible with earlier transfer function studies. Each approach is
justified by its success in explaining a given body of experimental data. Oscillations
have features that can be explained by linear theory and others that require nonlinear
theory.

In this paper we define and make use of Nyquist’s stability criterion. The proof of
this theorem can be found in Nyquist’s original paper®’. The proof uses the argument
theorem from complex variable theory to obtain a condition for the boundedness of

the impulse response in the asymptotic time limit.
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2.3 Insight into the transfer function, gain, and oscillation onset for the
pupil light reflex using nonlinear delay-differential equations.

Abstract.

Analogies are drawn between a physiologically relevant nonlinear delay-differen-
tial equation (DDE) model for the pupil light reflex and servo control analytic ap-
proaches. This DDE is shown to be consistent with the measured open loop transfer
function and hence physiological insight can be obtained into the gain of the reflex
and its properties. A Hopf bifurcation analysis of the DDE shows that a limit cycle
oscillation in pupil arca occurs when the first mode of the characteristic equation
hecomes unstable Its period agrees well with experimental measurements. Beyond
the point of instability onset, more modes become unstable corresponding to multiple
encirclings of (- 1,0) on the Nyquist plot. These modes primarily influence the shape
of the oscillation Techniques from dynamical systems theory, e.g. bifurcation analy-
sis, can augment servo control analytic methods for the study of oscillations produced

by nonlinear neural feedback mechanisins.

2.3.1 Introduction.

One of the most important mechanisms for regulating neural activity is feedback.
An undeniable feature of human neural feedback mechanisms in health and disease
is their propensity to generate vscillations and other complex dynamical behaviours,

e.g. tremors and the electrical activity of the cortex®

. The pupil light reflex is a
human necural feedback mechanism in which it is possible to study the occurence
of oscillations and their properties non-mvasively®2. It is well known that regular
oscillations in pupil area occur under “high gain” conditions!16:39:62.57 551 that the
period of these oscillations can be estimated from the experimentally measured open-

7

loop transfer function for this reflex®” Moreover, it has been demonstrated that the

‘linear’ properties of this reflex determine the frequency of these oscillations, whereas
the shape and amphtude depend on the ‘nonlincarities’ !

luterpretation of the above findings in a biological context requires that parame-
ters such as the gain and open-loop transfer function be defined neuro-physiologically.
Previous studies have examined the effect of the nonlinear characteristics of the iris
musculature on the overall reflex gain and on pupillary phenomena such as hippus
432,71,98

and the pupil size effe . However, little attention has been given to identifying

the physiological parameters which determine the linear and nonlinear propertics of
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the high gain oscillations.

In a previous study we showed that the oscillations in pupil area which occur
under conditions of external piecewise constant feedback were well described by the
solutions of a nonlinear delay-differential equation®}. Here we draw analogies between
this delay-differential equation and servo control analytic theory. In this way we
are able to obtain insight into the neuro-physiological properties of this reflex which
determine the gain and open loop transfer function and which shape the high gain

oscillations.

2.3.2 Background.

The changes in pupil area, A, which occur under conditions of imposed piecewise

constant feedback can be described by®4:2°

dg dA

a7&~+ag(A):F(,4r), (2.3.1)

where a is the rate constant for pupillary movements, 7 is the neural time delay, and
F(A;) is a piecewise constant function of 4,. The function F(A;) takes on one of
two values depending on whether pupil area is greater than or less than a threshold.
The notation 4, denotes pupil area at a time 7 in the past, i.c. A, At 7).
The feedback function, g(A4), relates changes in iris muscle activity, =, to changes in
A and takes into account the inverse relationship between x arn-t A, In our previous
studies g(A) was taken to be a linear function. Note that in order to solve (2.3.1) it
is necessary to specify A, as an initial function on the interval ( 7,0).

The right hand side of (2.3.1) is a forcing term that represents the changes in
the retinal light flux, ¢ ( ¢ = I, where I is the retinal llumination ), due to changes

in pupil area. For smooth negative feedback, (2.3.1) becomes®?

dg d‘4 d)T ITAT

- — Ay=yln|={=+vIn|—=— 2.3.2

A a9 7"[¢ A (2:3.2)
where we have taken into account the logarithmic compression of light intensities at
the retina™, v is the rate constant for the ncural firing frequency and ¢, 1, A are
the values of ¢,1,.4 at threshold, i.e. the values below which there is no pupiliary

response.

Comparison of (2.3.2) to linear servo control theoretical descriptions of the pupil
1,32

light reflex'*? requires linearization of (2.3.2) about the equilibrium pupil area, A",
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corresponding to an incident illumination of I'. The value of A" is obtained from

(2.3.2) by setting dA/dt = 0 and is the solution of the equation

I*Af

A) =41 — 2.3.3
ag(A") = 7in | 22| (233

and linearization of (2.3.2) about A* leads to
a“lid‘g—-}—A:G-[A.,—A*]—l—A*, (2.3.4)

where

- _J

G = (2.3.5)

afA*
and B = dg/dA evaluated at A*. When 3 < 0, it follows that G < 0 which corresponds

to negative feedback.

2.3.3 Transfer function.
In this section we show that (2.3.4) can be derived from the experimentally

measured closed loop transfer function for the pupil light reflex, H(s)

li = —e———— 2. 0
where the open-loop transfer function is
Go exp(—T3)
P(s) = ——7—— 2.3.
(s) (1 + ks)? (2:3.7)

and where s is the Laplace variable and 7 = 0.18 sec. While the 18 db/octave roll-off
of the Bode amplitude plot suggested that the transfer function had three poles, they
could not be determined individually and were all set equal to 10 sec™! by choosing

the time constant k - 0 1 sec 6.

Go = 0.16 is the dimensionless open-loop gain. The open loop gain is normally
equal to the product of the forward gain and the feedback gain. The latter corresponds
to the coefficient of P(s) in the denominator of (2.3.7) and is unity here. We have
called (5, in (2.3.7) the open-loop gain since it is numerically equal to the forward
gain.

Based on small signal analysis, Stark®® lias argued that the open-loop gain should

be expressed as
_I'aa  apa/A

Co= ToAT = AI/T* -~

(2.3.8)

46




The numerator of (2.3.8) describes the change of flux due to pupil constriction in
response to the change of flux due to the light increment in the denominator.’ Since
I"AA < 0 when A'AI > 0, G, is negative. However, (i, has been defined to be
positive?® and the negative sign is taken into account in writing the closed-loop trans-
fer function for negative feedback H(s) (2.3.6).
In order to compare (2.3.4) to the formulation of (2.3.6), it is necessary to rewrite
(2.3.6) in the time domain to obtain
1c3d—3—d3 + 3k2£(é +3 d + ¢(t) = Go- [F(t —7) - p(t — 1)) (2.3.9)
dt® di? dt ’
where ¢ = I"AA is the retinal light flux change due to pupil area change, ' A'AJ
reflects the flux change due to the light change and A' is the equilibrium pupil area
in an ambient light level I'. The forcing variable F' and the state variable ¢ have the

same units.'’

The equilibrium retinal flux for a constant forcing F'is ¢ - G, I in
open-loop, and is a factor (1 + G,)"! smaller in closed-loop.

If we identify, to first order, ¢ with I' A and F' with A" AT, then (2.3.9) becomes

(A 4) d? (A A) d(AA)
37k 271+ . oA ! "
KL £ 3k 4+ BRI == 4 1 (A )
I’ Au4. f ' [
- A".('(Ai?; (4D, - I'(A4),] . (23.10)

Note that AI' and A4' are simply numbers that determine the numerical value of

G,. Dividing by I, keeping only first order derivatives and defining 3k o !, we

Y

obtain d(AA) AL
-1 £ ' [} | B
— = — I, -1 . -
a 7 + AA TAT (A" (AI), (AA),] (2.3.11)
Next, define AAd = A — 4", then
_;dA (AA™)I” AA" AA
1 — AY _ — I,
@l g HA=A = Ry A R (AD R (2.3.12)

In obtaining (2.3.4), we assumed that everything was lincarized about A' which 1s

the steady state response to I'. In the transfer function approach, this means that

* Another way of seeing this is to write the total differential for the flux Let I 1°+dl, A A* {dA,
then

do~¢(I, A) —¢(I",A") = I"dA + A™dIl { O(dIdA)
From (2.3 8) we see that the open-loop gain appears as the ratio of the two first order terms

**This can be made clearer by defining the gain as the relative arca change over relative sluminance

change and dividing {2 3 9) by the mean flux ¢* = I'* A* to make all quantities dimensionless relative
changes.
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the input is constant and equal to I*. Therefore (AI), = I — I' = 0. Thus if we
identify G, in eq. (8) with =G in (2.3.5), (2.3.12) becomes
dA ¥

_1__ - + L __Z_: . _ + A*
a dt+A A+aﬁ‘4‘A, B G-[A;, - A"+ (2.3.13)

which is exactly (2.3.4).

2.3.4 Gain.

The observations in Section 2.3.3 indicate that the gain, G, defined by (2.3.5)
and the gain, G,, defined by (2.3.8) are related. The identification G, — -G is
reasonable in view of the way we defined the signs of these two gains. Further, both
determine the magnitude of the influence of a delayed variable on the instantaneous
time evolution of this variable. It thus makes sense to identify the forward gain ( or
open loop gain as we have seen ) in control systems theory with the coeflicient of 4,
in the delay-differential equation describing feedback operation.

An alternate way in which the association between G and G, can be explored is
to use the fixed point condition given by (2.2.3). Equation (2.2.3) simply states that

I' can be considered an explicit function of A"

I' = j* explay'g(4")]. (2.3.14)
We can then compute
dr' I Voavnee -1
Ti = g T4 ey (2.3.15)
Adl' b Ay —1
Tdd = -1+ A"ag'(A")y™". (2.3.16)

Provided we identify g'(A") with 8 and the left hand side with —1/G, ( we put a
negative sign here because G, is defined positive ), we obtain
1 1 G,

. | —_ = .
c. +G or G G 1

(2.3.17)

This calculation is justified as long as we are not too far from equilibrium where
the fixed point condition holds. This means that A* should not vary too much, i.e.
dA'/dI' << 1, implying that (2.3.17) holds only for G, << 1. In this limit we do

indeed recover our earlier relation: G = -G, — G2 ~ -G,
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2.3.5 Pupil response to a step light input.

From the ope1. loop transfer [unction given by (2.3.7), the predicted response of

the pupil to a step light input, I/3(¢), is

t t
Us(t) =1 — -1+ 4+~ 2.3.
where we have neglected the time delay which would simply shift the response. On
the other hand, the observations in Section 3 suggest that under certain conditions it

is possible to approximate Us(t) by a first-order response, U, (t), i.e.

Us(t) ~ Ur(t) =1 - exp(—{s), (2.3.19)

where § is a time constant to be determined. We can compute § in a way that will
minimize the square deviation of these two positive definite functions, i.c.
d 0

= |UL(t) — Us(t))?dt = 0. (2.3.20)
ds /,

Thi: problem leads, after a lengthy, but straight forward algebraic computation, to
the problem of finding the roots of a fourth order polynomial in § which can be solved
numerically in terms of k. The physically meaningful root is § = 0.311 sec which is
roughly equal to 3k since k = 0.1 sec.

As shown in Figure 2.3.1 the first order impulse function using the above value
of § agrees with the third order step response. Interestingly the value of & == 0.311 see
is roughly equal 1o 3k, where k = 0.1 sec is the value determined by Stark®®. Thus
this value of § can be regarded as the value of a™' in (2.3.4). It should be ncted
that the slow onset of Us(t) may be at least partially incorported into Ui(t) as an

additional contribution to the pure lag.

2.3.6 Conditions for oscillation onset.

In linear control systems theory, the onset of vscillation is studied using tae
Nyquist criterion. When the polar plot of the open loop transfer function (Nyquist
plot: see Figure 2.3 2) encircles the (- 1,0) point in the complex planc, regeneralive
feedback occurs at a frequency for which P(s) = 1, corresponding to a pole in the
closed-loop transfer function ( see e.g. Pallu de la Barriere!®®). "This criterion is
also applicable when delays are present. Generally delays destabilize systems as do

increases in gain. The presence of a delay causes a pure rotation of the polar plot,
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Figure 2.3.1 Comparison of open loop step responses for iris activity for a third
order model (2.3.7) with k= 0.1 sec ( dotted line ) with a first order approximation
= 0.311 sec ( solid line ). We have neglected the time delay which would
simply shift the responses. Ordinate is pupil area computed by subtractingiris activity
30 - 25y(¢).

from the maximal pupil area*® and has been arbitrarily illustrated by plotting A(t) =
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Figure 2.3.2 Polar plots of open loop transfer function ( Nyquist plots ) for the
pupil light reflex. In a) we compare the third-order open-loop transfer function (
dotted line; equation 2.3.7 ) with & = 0.1 sec and * = 0.3 sec to a first-order
open-loop transfer function with the same delay and time constant § = 0.311 sec
( solid line; equation 2.3.19 ). The gain has been set to one in both cases. In b)-
d) we show the effect of increasing n on the Nyquist plots calculated by use of the
characteristic equation for (2.3.25) ( obtained by first linearizing (2.3.25) ) for the
same values of n shown in Figure 2.3.4. The gain in b)-d), which is proportional to
n, is respectively, 3.36, 8.75, 130.3. There are seven encirclings of the (-1,0) point
in d). The parameterization is only for positive frequencies ( in cps ).
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which may lead to an encircling of the (—1,0) point. That is why even a first order
delay-differential equation can be made unstable by increasing the gain or the delay.

The conditions for instability and the frequency of the oscillation at the onset
of instability can be directly determined from an analysis of (2.3.4). Define a small
deviation in pupil arca from A" as a(t), i.e. a(t) = A(t)— A'. Then the characteristic

equation can be obtained by substituting a(t) ~ exp(At) into (2.3.4) and is
A+ a+ Bexp(—=Ar)=0, (2.3.21)

where A is typically a complex eigenvalue and B = —aG. Equation (2.3.21) has an
infinite number of roots which we denote as A,, A,, where J, is the cc.nplex conjugate
of ),. A conjugate pair of roots, (o, + ww,, o, — w,), characterize a mode. In Figure
2.3.3 we show the values of o,w for the two modes of (2.3.21) with the largest real
parts as a function of B for @ = 3.21 sec™! and 7 = 300 msec. For simplicity only
the root with positive frequency has been shown.

The problem of looking for pure imaginary roots of the characteristic equation
is the same as that of determining the condition for regenerative feedback. At the
point of onset of instability, the frequency of the osciilaticn will be determined by
the mode with the largest real part, o; °®. Further, there is a supercritical Hopf

bifurcation between a locally stable equilibrium and a locally stable periodic solution

(limit cycle). The condition for the appearance of the limit cycle is

WHT > cos ™} (é.) , (2.3.22)

where wy is the values of w; when oy =0, |G| < 1 and w} = a?(G? — 1) and the
. . . . . il 76,86
inverse cosine takes its value in the interval {E,W] A

Equality holds in (2.3.22) at the bifurcation point, where the period, T, is given
exactly by

2
T=", 2r<T<4r. (2.3.23)
WH

Near the bifurcation point B, ( or 7, ) the period is given approximately by (2.3.23)
and the amplitude of the oscillation is proportional to the square root of the distance

( in parameter space ) from the bifurcation point, i.e.

Amplitude < /B - B, (or vT—1, ). (2.3.24)

52




¢

or 2 430
...‘.l..........‘.............‘...'..‘.......Q.....'........‘ T
200 |20
S i
: lo =
(-4 1 _é

P Y ....................'.....-..-..........'.
cseao noees
R aset 1

2

Figure 2.3.3 Plot of the real ( solid line ) and imaginary ( dotted lines ) parts of the
first two roots of the characteristic equation ( 2.3.21 ) as a function of B. Parameter
values were @ = 3.21 sec™! and 7 = 0.3 sec. Only the roots with positive frequency
have been plotted.
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For an average measured value of 7 ~ 300 msec 82, the period predicted by (2.3.23)
is in good agreement with that predicted from the Nyquist plot and that measured
experimentally

Jquations (2.3.9) and (2.3.13) are of the same form. Thus, in the same way
that (2.3.9) is associated with the third order open loop transfer function (2.3.7), it is
possible to associate a first order open loop transfer function with (2.3.13), and hence
to compute a Nyquist plot for (2.3.13). In Figure 2.3.2a we compare the Nyquist plot
calculated from our first order model (solid line) to the third order open loop transfer
function measured experimentally (dotted line; see (2.3.7)) but using the average time

delay we have mcasured for the pupil light reflex ( 0.3 scc ) 2

. This time delay is
longer that that estimated by Stark*® from the Bode phase plot (i.e. 7= 0.18 sec),
which is deduced from the phase of the transfer function at 4 Hz and the fact that
the third order pole should contribute 270° at this frequency. Diflerences in 7 of
this magnitude can arise, for example, because of differences in retinal illumination
used to measure the delay®®. It may also arise because the third order step response
(Figure 2.3.1) has a slow onset which may be included in our experimentally measured
value of 7 As can be seen the predicted high gain oscillation frequency for the first

and third order model are similar { respectively, 1.2 Hz and 0.8 Hz ). Both of these

frequencies are in good agreement with measurements of pupil cycling2:8%:87,

2.3.7 Gain dependence of oscillation frequency.

[t should be noted that the condition for the appearance of undamped oscilla-
tory solutions of (2.3 4), i.e. (2.3.22), will always be satisfied for sufficiently large =
and/or G. The effect of increasing G on the properties of the oscillations that occur
can be studied by analysing how the roots of (2.3.21) depend on the parameter B
(proportional to the gain G). In Figure 2.3.3, it is clear that when oy > 0, d\,/dB ~~
do;/dB  Hence the frequency varies only slightly with the gain This accounts for
the accuracy of the period of the oscillation predicted by linear theory. Interestingly,
the period of the first unstable mode in our first order approximation (Section 2.3.5)
is ~ 2m/6 which is in good agreement with Stark and Cornsweet®” and with our

measured lower limit ( 0.9 - 1.2 sec ).

2.3.8 Beyond the point of instability onset.

As (i increascs in value, more linear modes become unstable as more root pairs

cross the imaginary axis into the right hand complex plane. In order to determine
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the extent to which these additional modes contribute to the frequency and/or shape

of the oscillations, we considered the following specific example?*:®

i aae 2.3 25
PR T T (2:325)

where ¢ and 6 are constants. This equation, a generalization of (2.3.1), describes first
order dynamics for the pupil light reflex operating with smooth external negative
feedback?®. The “gain”, which is proportional to the slope of the Hill function evalu-
ated at A = 6, increases as n increases. As shown in Figure 2.3 1, regular oscillations
in pupil area occur for sufficiently large n. A supercritical Hopfl bifurcation occurs for
n between 3 and 10. Although the shape of these oscillations change as a function
of n, there is little change in the frequency (compare Figures 23 1b with 23 {). In
addition, the more complex waveforms characteristic of the occurrence of higher order
bifurcations are not seen.

Figure 2.3.2b-d show the Nyquist plots for (23 25) as n is increased  As n
increases in value, more linear modes become unstable, corresponding to multiple
encirclements of (- 1,0) on the Nyquist plot (for example, there are seven encirclings in
Figure 2.3.2d). Numerical calculations demonstrated that as either n or 7 is increased,
the real parts of the cigenvalues increase monotonically, 1 e. an unstable mode does
not become stable again. Also, in the limit of very large delay, many modes tend
to become unstable simultancously. The modes that hecome unstable contribute 1o
changing the shape of the osaillations (IFigure 2 3 1) The observation that increasing
the number of unstable modes in a system can affect mamly the shape, and not the
frequency of the oscillation has been reported previously'®!,

The ahove results on the migration of roots across the imaginary axis also hold
for a third order system ( data not shown ) Indeed, we have numerically computed the
loci of the first poles of H(s) (2.3.6) forT - 0.2 sec, k& 01 secand (7, between 0.16
and 10. The lowest frequency roots cross at wy -- 6.3 and w; 28 6 cortesponding,
respectively, to frequencies of 1.0 Hz and -1.55 Hz. These values are very dose to those

calculated from the characteristic equation of our first order approximation (Iigure
2.3.3).

2.3.9 Discussion.
We have shown that direct analogies can be drawn between a delay-differential
equation model for the pupil light reflex and previous servo control analytical studies.

Since this delay-differential equation can be derived on the basis of neuro-physiological
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Figure 2.3.4 Solutions of (2.3.25) for increasing values of n. Initial condition for
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and anatomical considerations®®, this approach allows us to obtain insight into the
properties of the reflex arc which determine, for example, its gain and transfer func-
tion. In particular, we are able to associate the gain, (/,, defined emprirically by
Stark*® with three parameters (2.3.5): 1) the rate constant for the neural firing fre-
quency (7y); 2) the steepness of the feedback function (), and 3) the rate constant for
pupillary movements (a). This association is further strengthened by the observation
that both G %9 and G, ™ attain their highest values at itermediate values of the
steady state pupil area. This effect has been studied extensively and has been ex-
plained in terms of an ‘expansive range nonlinearity’ operating at the nenromuscular
level and related to the nonlinear length-tension diagrams of the ins muscles

Oscillations in pupil area occur when the gain and/or delay become sufficiently
large (2.3.22). The frequency of this oscillation predicted by linear servo control
theory and a bifurcation analysis of (2 34} are both 1n good agreement with that
measured experimentally,i.e ~ 1 Hz The appearance of this osallation is associated
with the migration of a root of the charactenstic equation of (2 3 1), i.e. (2 3.21), with
the largest real part (A{) across the imaginary axis into the right hand complex plane,
As we have shown, the success of linear systems analysis in predicting this frequency
is related to the relative insensitivity of the imaginary part of A\; to changes in the
gain.

As the gain increases beyond the point of instabihty onset, more maodes become
unstable. In his ‘clamped’ pupil light reflex experiment, Stark! observed a double
oscillation. It was suggested that the second mode to cross the imagimary axis results
in a 0.2 Hz component superimposed on the basic | Hz rhvthm. In the language of
nonlinear dynamics, this suggests that a bifurcation from a linnt cyde o a 2-torus
has occurred. However, we have shown that for « first order delay equation this
root alters the shape of the osollation but has relatively httle effect on its period
Moreover, numerical simulatio=. of the third order system indicate that the second
mode would lie at a frequency of ~ 4.55 Hz and not at 0.2 Hz  This observation
indicates that the 0.2 Hz oscillation observed experimentally for the damped pupil
light reflex', in spontanecously recorded hippus®! and in narcoleptics at sleep onset™
cannot be attributed to simple nonlinear negative feedback mechanisms of the type

we have considered here,

An important nonlinearity in the pupil hight reflex is the response asymmetry of

the reflex to the onset and offset of ight*®"  Although this asymmetry is most clearly
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manifested as a difference in the rates of pupil constriction and dilation®*®% there
is neuro-physiological evidence that this asymmetry also occurs at the level of the
output of the retina and midbrain as well®?:8283 Because of this responsc asymmetry
it is not possible to derive an impulse responsc in the classical sense from the pupil’s
response to a single light pulse.

The role played by reflex asymmetry in shaping pupil dynamics 1s most clearly
shown in the case of external piecewise constant feedback since in this case the light
is either on or off®"9 The transient behaviours of the pupil light reflex highlight
the asymmetry. In Figure 2.3.3 we showed that w; i1s not strongly dependent on
the gain (through the related parameter B). We have found that this is also true
if @ in (2.3.21) is vaned instead of B in either of two ways: first, be keeping B
constant in the same range as ihat used in Figure 2.3 3 and second by recomputing
B for every value of a since o decermines A' and the parameter B contains g'(4").
Thus, if transients have died out, the waveforms should depend only on the imaginary
part of the eigenvalues which vary only slightly with a. Asymmetry. which requires
different values of «, would then be unnoticeable. This may explain the observation
that transfer functions obtained under steady state conditions using low amplitude
sinusoids predict so well the frequency of the high gain oscillations®”  Presumably
there has been some kind of averaging of the asymmetric responses We expect that
a transfer function based on transicuts ( e.g one obtained by Fourier transforming
the time derivative of the step response ) may yield different results for light onset
and offset.

Servo control analytical techniques, such as linear transfer functions, Volterra
or Wiener kernel nonlinear response-fitting techniques, have been extensively used
to provide descriptions of the response of the pupil to transient and steady state
oscillatory light inputs and to identify nonlinearities in the reflex arct®49 798 [1ow.
ever, the description of the complex oscillatory phenomena produced by nonlinear
neural control mechanisms ( sce. for example, Mackey and Milton®) requires that
these techmques be angmented with methods from dynamical systems theory such
as bifurcation analysis The analogies between the bifurcation analysis of a nonlinear

ordinaryv differential equation and servo control analytic techniques have been made

: 02,103 ) : .
previously % Here we have given a concrete example o illustrate that these

analogics can also be effectively made for nonlinear delay-differential equations.
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CHAPTER 3
INDUCING NONLINEAR OSCILLATIONS
IN THE HUMAN PUPIL LIGHT REFLEX

“Richtiges Auffassen einer Sache und Migverstehen der
gleichen Sache schliefen einander nicht vollstandig aus.”

Franz Kafka

3.1 INTRODUCTORY REMARKS.

The physiological systems that have been studied from the point of view of non
linear dynamics fall into two classes: externally forced oscillators and nonlinear feed
back systems?®:27. Experimental demonstration of bifurcations and chaos has heen
made in periodically forced neural oscillators such as mollusc neurons® | as well as in
embryonic chick heart cell aggregates 2® and Purkinge fibers?®. Simple mathemat-
cal models involving one-dimensional maps and periodically forced Hodgkin-Huxlev
equations are in qualitative agreement with the observed behavior of these prepara
tions. However, in these simple physiological systems (as in all physical systems),
only a few bifurcations can be seen before aperiodic behavior sets in Based on the
models, it has often been concluded that the aperiodic trime series represent a mixture
of chaos and noise Despite this, httle effort has gone into characterizing the noise
or determining whether an improvement in the models will yield better agreement
between their predictions and the data. Also, a further question not resolved by these
studies is whether the behavior of such isolated systems will be found in the intact
vvo systems.

While there exist experimental studies of forced oscillators from the nonlinear
dynamics viewpoint, feedback systems have been relatively neglected because of the
paucity of suitable experimental models. In this chapter, the following questions are
addressed: 1) Can a humnan neural feedback system exhibit ifurcations from simple
to complex deterministic motion? and if so, 2) How can these behaviors be analyzed
in terms of a gquantitative model? To answer these questions we have chosen to study
oscillations 1n the human pupil light reflex

The input to the pupil ight reflex is the variation of retinal light flux (or “llu
minance” ), normally due to a change in light intensity. The output is also a variation
in light flux, due to a change 1n pupil area following the neurological response. The
input and output variations are normally of opposite sign, that is, they cotv, eract

each other. This describes closed-loop negative feedback operation. When the svstem




is in open loop, the output response depends only on the input, rather than on the
input and the output (at the same time or at an earlier time). Opening the loop leads
to the interesting possibility of reclosing it using external feedback

This chapter describes experiments in which oscillations are induced in the pupil
light reflex using external electronic feedback. This type of experiment is possible
because the feedback loop can be easily and non-invasively opened using an optical
method first described by Stark and Sherman®'. It involves using a narrow (< 1.2mm
diam.) collimated light beam shone down the center of the pupil. Hence even under
maximal pupil constriction, theiris can not shade the ight beam The feedback loop is
effectively opened using this “Maxwellian view” illumination. External electronically
synthesized feedback!*%% then allows an analog signal proportional to pupil area
(as measured with a pupillometer) to control the intensity of the light source. The
behavior of the resulting “clamped™ neural control system can then be studied as the
feedback parameters are varied.

Experimentally, it 1s relatively simple to convert pupil area variations into light
intensity variations using a smooth (i e. differentiable) feedback function. It is very
difficult, however, to control the mean light intensity because of uncontrollable drifts
in the mean pupil area (e.g. due to hippus). Oscillations obtained under these con-
ditions tend to be very unstable. This problem is circumvented to a greal extent by
using piecewise constant feedback in which the light intensity can take on only two
values depending on the pupil area

In the following section we describe in detail the apparatus used to induce pupil-
lary oscillations using piecewise constant negative (PCNF) and mixed (PCMF) feed-

back. An outline of Chapter 3 then follows.

3.1.1 Experimnental methods.

Figure 3 2.1 1n Section 3.2 shows a simplified schematic diagram of the exper-
iment. Pupil arca s measured using a binocular infrared videopupillometer (Ilama-
matsu Iriscorder Model C-2515, Hamamatsu City, Japan). The video cameras are
infrared charge-coupled devices. The eyes are illuminated by an infrared light source
(800 nm peak wavelength LED arrays) of adjustable intensity. Infrared illumination
is used so as not to mterfere with the visible light used to elicit the reflex. The 60 Hz
sampling rate of the pupillometer is more than adequate given that the bandwidth of
the PLR is about 2 Hz (3dB cutoff of open loop transfer function : see Stark®®). The

images are analyzed i real-time by a frame grabber that counts the number of pixels
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above a certain gray level set by the experimenter to discriminate between pupil and
iris. The accuracy of area measurement is 0.0lmm? over a range of 0 to 150mm?
with a 1% linearity.

The output of the pupillometer is an analog voltage proportional to pupil area
This signal is fed to the area comparator (Figure 3.2.1) which synthesizes the feedback.
The schematic diagram of the area comparator and the driving circuit for the stimulus
light are shown in Figure 3.1.1. The arca comparator is simply composed of two
voltage comparators and a logic gate  The output of the arcmt goes ('T'TL) ngh when
the area signal 1s between the two adjustable thresholds Ty and Ty, this drives the
light on. Othkerwise, the subject sees the datk background illummnation of the room
The noisy fluctuations of the pupil area signal are band-limited by the sampling rate
of the pupillometer. Thus the noise does not cause multiple triggerings as the area
signal crosses the reference voltages of the comparators. For this reason we chose to
use simple comparators rather than Schmidt triggers.

The stimulus P'ght intensity provided by LED’s (605 nm pcak wavelength) was
fixed at a value corresponding to a retinal illuminance of ~ 375 trolands  The hght
is collimated into a narrow beam the 1.2 mm beam waist is located at the pupil
entrance (or “pupil plane”) when the pupil is properly focused by the camera (the
experimenter adjusts the focus using joysticks). Because of the divergence of the
beam after entering the pupil, the subject sees large field illumination rather than
a narrow spot. The subject focuses on a target (dim green asterisk) to keep the
accommodation level (controlled by the lens curvature) constant, since pupil area
varies with accommodation level (Section 2.1.2). The beam and target share the
same optical axis as the cameras through the ase of prisms.

In certain experiments, the digital signal from the area comparator was fed
into an analog delay line which1s a CMOS integrated arcuit (EG&G Reticon 5208
“bucket brigade device” or BBD). This device produces delays which can vary from
milliseconds to 4 seconds by changing the sampling frequency f, from 500 KHz to 500
Hz. The delay 7, is given by 74 2018/ f,. The output of the BBD is processed
by an 8-pole lowpass Bessel filter (Frequency Devices Model 902 LPF, Haverhnll, MA,
USA) to rid the signal of the sampling artifact.

The BBD can be mserted either between the pupillometer and the area com-
parator, or between the arca comparator and the LED driver. However, the gain of

the analog delay line is slightly dependent on the offset of the input signal. In view
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Figure 3.1.1 Circuitry for the external electronic feedback (or “area comparator”)
which was substituted to the normally occurring smooth negative feedback of the
pupil light reflex. The input to the circuit is V,..q (top left) which is the analog
output of a videopupillometer. This voltage is proportional to pupil area. The first
part of the circuit synthesizes the piecewise constant negative and mixed feedback
(PCNF or PCMF). In certain experiments, an analog delay line was used to increase
the delay. The output of this circuit is filtered by a Bessel 8-pole lowpass filter. The

last stage of the area comparator is used to drive the stimulus light source. See text
for details.
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of the drifts in mean pupil area occurring during the experiments, we chose to put the
BBD after the area comparator. By feeding the BBD a digital signal with constant
offset (TTL 0-5 volts) from the area comparator rather than the signal from the
pupillometer, the offset nonlinearity is effectively bypassed. This configuration has
a drawback, since the subsequent Bessel filtering acts as a lowpass filter which will
smooth out the abrupt transitions of the TTL signal. However, since the frequency
of the TTL pulses will be low (0.5 - 20 Hz) due to the relatively slow pupil motion. a
cutoff frequency of 200 Hz on the Bessel filter will produce a signal that still qualifies
as digital on the time scale of the pupil response.

The video and image processing and the subsequent signal processing add a 25
msec delay to the normal physiological delay of this reflex (~ 300 msec). In certain
experiments, an extra 75 msec delay was added when the T'T'L. signal was sent to the
light trigger input on the pupillometer rather than to the LID driver diredtly (sce
Figure 3.1.1). It is important that the fiming and duration of the stimulus light pulses
provided by the LED’s are determined by the state of the system (pupil area) through
the area comparator. This 1s very different from the case where non autonomous
oscillations are produced by repelitive stimulation at a given frequency.

The left and right pupil areas and the stimulus hight level were recorded on mag-
netic tape (Revox Model 110) and a polygraph chart recorder (Beckman Dynagraph
Model 10000 BC). In all our experiments, the eye heing stimulated is also the one
being measured. The experiments were conducted on healthy males and females (ages
20-45) who were free from both ocular disease and disorders known to affect anto-
nomic function. They were dark adapted for at least 15 minutes in a room it only
by a dim red light. During this dark adaptation, the retinal neurons increase their
sensitivity and the pupils dilate. A measurement session could last up to an hour
with many pauses of a few minutes, depending on the willingness and fatigue level of
the subject. Because of blinking, typical records are limited to about 15-20 seconds
for the mixed feedback experiments (Section 3.3 and 3.1) Blinking did not aflect the

negative fcedback experiments, and cycling records lasting up to 120 seconds have

been obtained.

3.1.2 Overview.

The outline of this chapter is as follows. Section 3.2 is an in-depth study of the
simple oscillations obtained with PCNF. The section comprises the manuscript of a

paper which has been accepted for publication in Vision Research. The modelling
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of visual physiology and the clinical implications of this paper make it suitable for
Vision Research. Hence the mathematics and the nonlinear dynamics are reduced to
iheir simplest expression.

We show that the physiologically sound model for PCNF oscillations (referred to
as “pupil ¢y ling”) developed in Section 2.2.6 agrees very well with the experimental
data. A key element in this analysis is an accurate method of estimating the model
parameters from the data. Further the experiment and the theory suggest a technique
to evaluate pupil constriction and dilation separately. Hence, it becomes possible to
diagnose the state of the (different) neural pathways responsible for constriction and
dilation. Also, by simplifying the feedback, it suggests ways to test for other specific
nonlinearities.

The next two sections, 3.3 and 3.4, deal with the PCMF case. Chronologically,
Section 3.3 was published first (in Mathematical Biosciences) as a preliminary study
of the pupil light reflex clamped with PCMF. The model is completely ad hoc, and
the parameter estimation scheme is based on responses to single pulses of light. Both
the model and the estimation scheme are natural first steps towards the analysis of
the results. The ad hoc model is shown to yield good quantitative agreement with
the data for simple oscillations, and only qualitative agreement for the more complex
behaviours. We ascribe the discrepancies to noise, and especially to multiplicative
noise in the form of asymptote fluctuations (Section 2.2.6).

Subscquently the model was given a firmer footing (see Section 2.2), and a better
parameter estimation scheme was devised (Section 3.2). Section 3.4 reinterprets the
results of Section 3 3 for the PCMF case using the physiologically realistic model and
the improved parameter estimation scheme. New results concerning multistability in
the model equation are presented. The effect of additive and parametric noise on ihe
observability of complex deterministic dynamics (and especially chaos) is discussed,
along with physiologically relevant improvements to the inodel.

A more elaborate exposition of the model properties is given in Section 4.5
using the mathematical tools presented in Section 4.2.1, and the interested reader is

encouraged to read these sections before proceeding to Sections 3.3 and 3.4.
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3.2 EVALUATION OF PUPIL CONSTRICTION AND DILATION
FROM CYCLING MEASUREMENTS.

Abstract.

Pupil cycling was produced using an electronic circuit so that the retina was illu-
minated in Maxwellian view only when pupil area exceeded an adjustable area thresh-
old, A,ef. The maximum (A4,,4;) and minimum (A4,,,,) amplitude of the oscillations
varied linearly with A,.y. These observations are described by a delay-differential
equation. The ... -dependent changes in A4, 4. were used, respectively, to
quantitate dilation and constriction. A comparison of the predicted aud observed
period of pupil cycling suggests that the pupil latency times for light onset and offset
are the same. Measurements of 4,4z Amn provide a method for determining the

average pupil light response.

3.2.1 Introduction.

Pupil constriction and dilation are typically evaluated from the changes in pupil
area following a single light pulse. The accuracy of this method is limited by the
effects of pupillary hippus and the intrinsic variability in the response of the pupil to
identical light pulses™. Consequently, quantitative characterization of the pupil light
response requires that a large number of pupil responses to individual light pulses be
averaged (see, for example, Semmlow and Chen'?; Sun et al.'®; Usui and Stark™).

An alternative method for evaluating pupil movements involves inducing regular
oscillations in pupil area (“pupil cycling”) by either using a sht lamp to focus a
narrow light beam at the pupillary margin®® ! or by combining an infrared video-
pupillometer with an electronic circuit which regulates retinal light flux as a function
of pupil arca! 26465  Mecasurements of pupil cycling are important as a clinical
test for detecting pathology within the pupil light reflex pathways. For example, a
prolongation ot the period of pupil cycling has been reported for a variety of afferent®!
and efferent®® pupillary defects, whereas an intermittent irregularity in pupil cycling
occurs in demyelinative optic ncuropathies82:6%,

Here we show that measurements of the amplitude of pupil arca oscillations re
flect properties of the efferent arc of the pupil light reflex. This observation permits
the development of a method for evaluating pupil movements from cycling measure-
ments which offers a number of advantages over methods based on the pupil’s response

to single light pulses.
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Figure 3.2.1 Schematic representation of the pupil light reflex with imposed external
feedback. The area comparator used for pupil cycling compared the pupil ares, A,
to an adjustable area threshold, A,s: when A > 4,.; the light was turned on and
illuminated the retina in Maxwellian view, otherwise it was off. This area comparator
corresponds to negative feedback since the pupil constricts when 4 > 4,.s (the light
is on). It is piecewise constant negative feedback since the illumination can take on
only one of two values, i.e. on or off.
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3.2.2 Methods.

Subjects were healthy males and females (n - 5; ages 20-45 years) who were
free from both ocvlar disease and disorders known to affect autonomic function. The
experimental conditions and design of our experiment are the same as described
previously$2:°*. A narrow light beam (diameter [.2 mm; retinal illumination was
375-750 trolands; peak wavelength 605 nm) was focussed on the center of the puml
(‘Maxwellian view’) to “open” the feedback loop present in the pupil hght reflea®!
When subjects were adapted for at least 15 minutes in a room lit only by a dim
red light, the smallest pupil diameter was ~ 4-5 mm. We used the measured pupil
area to control the timing and duration of the light pulses falling on the retina by
modifying the technique of environmental ‘clamping’ suggested by Stark!' (Figure
3.2.1). This was accomplished by comparing the analog output of an infrared video-
pupillometer (Hamamatsu Iriscorder C-2515) to an adjustable area threshold, A,, f,
by using an electronic circuit (area comparator in Figure 3.2.1)  The area com-
parator was constructed using standard voltage comparators (LM392H), operational
amplifiers (LM741) and logic gates (74LS00) and was designed to simulate precewise
constant negative feedback (see legend to Figure 3.2.1). The retinal hght inten<ity can
take on only one of two values depending on whether the pupil area is greater than
or less than A..s. This area comparator is an idealization of the method of edge-light
pupil cycling, where 4,.; corresponds to the pupil arca at which the positions of the
slit lamp beam and the pupiliary margin coincide. However, in our method the illu-
mination is not at the pupillary margin, but is in Maxwellhan view. The advantages
of the electronic method of pupil cycling over that of edge-light pupil cveling are®2,
1) the pupil area oscillations are easier to obtain and control experimentally; and 2)
the oscillations can be studied over a range of pupil areas by varying A,.; (Figure
3.2.2).

The pupil images were analyzed by a frame grabber that counts the number of
pixels above a gray level set by the experimenter to discriminate between pupil and
iris. The sampling rate of the pupillometer was 60 Hz and the linearity is better than
1 % from 0 to 150 mm? with an accuracy of 0.01 mm? The bandwidth of the pupil-
lometer is well beyond that of the pupil light reflex (about 5 Hz: sce Stark™). Hence,
for all practical purposes, the response time of the pupillometer can be negledied

on the time scale of the phenomena we are considering in this study However, the

following imiage and signal processing (~ 25 msec) and triggering of the light pulse

67




»

EXPERIMENT MODEL

i1 :

er-"';’..‘ - N n N

cucu'r; L nn_n - e n
:[ A A A Pal A ol --A-- . PR S

VWVVVY

dLGNI’

|
|

AREA
(mn?)
I & N
s & B
]
]
'
'
]
)
[]
1

;

x,:ﬂ&!
[+

AREA
(mm2)

%
%

AREA
(mem?) §

§
§

|
|

TIVEE (oee) TIME (asc.)

Figure 3.2.2 Pupil cycling with imposed piecewise constant negative feedback (Fig-
ure 3.2.1b) as a function of A,es for subject A (ML) in Table 3.2 (left hand side).
The value of A,.y is represented by the horizontal dotted line and was set at: a) 38.0
mm? , b) 30.1 mm?, ¢) 25.0 mm?, d) 22.5 mm?, e) 20.1 mm?, f) 16.2 m .a? and g) 14.0
mm? . The left hand side of this figure shows the solutions of ( 3.2.1) for the values
of the parameters given in Table 3.2.
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(~ 75 msec) add a 100 msec pure delay (“machine delay”) to the normal physiological
delay of this reflex ( ~ 300 msec for the retinal itluminance used in this studs ®2) The
pupil latency time (delay) following light onset was evaluated as the time between the
onset of the light stimulus and the onset of pupil constriction by using the compnter
supplied with the Hamamatsu Iriscorder (*-2515. The determination of the pupil

latency time following light offset is discussed in the RESULTS.

3.2.3 Results.

Pupil Area Oscillations

Figure 3.2.2 shows pupil area as a function of time for a normal subject (subject
A in Tables 3.1 and 3.2) when the area threshold, Ad,.¢, is set at various levels. When
Arey is larger than the initial pupil area, 4,, regular oscillations in pupil area do not
occur (Figure 3 2.2a). Repetitive constrictions and dilations in pupil area occar when
Arey < A,. The light is turned on ~ 100 msec after pupil area exceeds A,.p. This
delay represents the machine delay. The onset of constriction occurs ~ 300 msec after
the light is turned on. This delay is the pupil lateney time to light onset. Once pupil
area constricts to a value less than .,.y, the light is turned ofl after the machine
delay. The pupil continues to constrict for the duration of another latency (latency
time for light offset), after which it begins to dilate. The process repeats and gives
rise to cycling.

In the discussion which follows we use the notation 7., 74 to refer to the sum of
the machine delay and pupil latency time for, respectively, light onset and light offset

The period and amplitude of the pupil area oscillations shown in Figure 3 2 2
depend on the choicc of A,.s relative to A,. As .1,.5 is brought doser to A, the
amplitude and period of the pupil area oscillations increase. In addition, the fraction
of time that the light is on during each cycle in pupil arca decreases (~ 0.5 when

Arep == 14.2 mm?

versus ~ 0.1 for A..; - 30.1 mm?) As shown in Figure 3.2.3,
the maximum amplitude, A,,,, and minimum amplitude, A,,,,,, of the pupil arca
oscillations vary linearly as a function of A..;. In contrast, there is a nonlincar

relationship between the average perind of the pupil area oscillations and .1, . ¢ (Figure

3.2.4).
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TABLE 3.1
PARAMETERS FOR PUPIL CONSTRICTION AND OILATION FROM PUPIL CYCLING

MEASUREMENTS
. a
Subject T ClC Cld Aon AOff
(msec) (sec~1) (sec=!) (mm2) (mm?2)
A 380 4.46 0.42 11.8 34.0
B 385 3.11 0.74 15.7 34.5
C 411 3.88 0.27 15.5 34.2
D 400 4,69 0.36 26.3 52.4
E 305° 5.19 0.46 16.4 39.5
TABLE 3.2

PARAMETERS FOR PUPIL CONSTRICTION AND OTLATION MEASURED FROM SINGLE LIGHT
PULSE PUPILLARY RESPONSES

Subject 73 aq ay Aon Aoss
(msec) (sec~1) (sec?) (mm2) (mm?2)

A 380 2.50 0.48 10.0 34.4

8 385 2.5C 0.84 15.2 33.6

C 411 3.33 0.50 15.8 34.8

D 400 3.84 0.63 25.2 51.1

E 305P 4.87 0.55 14.0 35.5

a) Total time delay = neural time delay + machine time delay

b} Machine time delay was 100 msec for all subjects, except subject E for
whom it was 25 msec.
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Figure 3.2.3 Plots of A,y and Api, as a function of the area threshold, 4.y,

for subject A (Tables 3.1 and 3.2 and Figure 3.2.2). Data has been represented as
the mean + 1 SD and is for a range of 12-18 consecutive cycles. Solid lines were
determined from a linear regression analysis.
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Figure 3.2.4 Comparison of the observed period, T, of pupil cycling as a function
of Ares for subject A (Figures 3.2.2 and 3.2.3) to that predicted by (3.2.4). Data
has been represented as the mean + 1 SD and is for a range of 12-18 consecutive

cycles. The solid line is the value of T predicted from (3.2.4) when 7. = 4. In all
calculations, r, =380 msec.
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First-Order Model

Background

The pupil light reflex may be viewed as a delayed negative feedback neural
control mechanism which regulates the retinal light flux (equal to the light intensity
multiplied by the pupil area) by changing the pupil area. The delay arises because
of the pupil latency time(s). Pupil cycling occurs when, for example, the gain of the
feedback loop is increased®7:8499  Self-generated oscillations of this type are 1eferred
to as autonomous oscillations. It is important to distinguish autonomous pupil cydling
(Figure 3.2.2) from experiments in which oscillations in pupil arca occur in response to
an independent external light pulse generator (“forced™ oscillations) (see, for example,
Sun et al.19%).

The description of autonsmous oscillations in pupil area requires the use of a
nonlinear delay-differential equation®?8*%® The nonlinecaritics arise, for example, be-
cause of the logarithmic compression of light intensities at the 1etina (Weber-Fechner
law). For physiologically relevant choices of the feedback function these equations can-
not be solved analytically®®. However, under the experimental conditions described
in Figure 3.2.1 the feedback function (area comparator) is of a very simple type and

the oscillations in pupil area, A, can be described by??:61:99

dd Aon’ if “‘r > ‘17‘('
oty :{ ‘ s

- (3.2.1)

Aoff, if :1T < A".f
where 4, is the pupil area at a time 7 in the past,ie. A, = A(t - 7). Equations of
the form of (3.2.1) are of particular interest for the study of oscillations in feedback
mechanisms because it is possible to obtain a great deal of mathematical insight into

their properties®®

(see also Appendix I).

Equation (3.2.1) is a first-order model for pupil cychng since hoth constriction
and dilation are described by single exponential processes. However, the rate constant
for pupil movements differs for constriction (a,) and dilation (ag) Figure 3.2.5 shows
a typical solution of (3.2.1). When the light is on, pupil size decreases exponentially

to a lower asymptotic arca (A,, ), whereas when the light is off; pupil size inereases

exponentially towards a lugher asymptotic area (A,/;).

Parameter estimation
In order to compare the first order model for pupil cycling given by (3.2.1) to

the experimental observations in Figures 3.2.2-4 it is necessary to estimate seven para
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Figure 3.2.5 Detailed representation of a typical solution of (3.2.1) when 4, < A;.
See text for details.
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meters: ac, o4, don, doff, dref, Te and 74. The value of d,es is set by a potentiome-
ter. In our previous study®® we assumed that 7. 74 and estimated the values of
Qc,0d, Aon and Aqpy from the changes in pupil area that oceur following a 0.5 sec-
ond light pulse as shown in Figures 3.2.6a and 3.2.6b. The area asymptote, A pp. 18
taken as the initial pupil area and .1,, is the minimum pupil arca following a longer
(2 second) light pulse of the same iiluminance. The values of a, a4, A4, and A, gy
determined in this manner for five ;. rmal subjects are hsted in Table 3.1.

Here we show that the parameters a., aq, Ao, and 1,75 can be estimated directly
from pupil cycling measurements. This result follows from the fact that (3.2.1) can
be solved analytically (Appendix I). The solution indicates that a plot of .1,,,, versus
Ares will be linear (Figure 3.2.3) and specifically that

Amin = a +bd, (3.2.2)
where
a = Aon(1 —b) (3.2.3a)
and
b = exp(—a.7.) (3.2.3h)

Since the value of 7. can be determined experimentally (see Methods), the slope of
this plot yields a. and the intercept A,,. An expression equivalent to those given
by (3.2.2) and (3.2.3) is found for A,,.. except that a.7. and A,y are replaced,
respectively, by aq4,7¢ and 455 Thus the intercept of a plot of d,,,2 versus 4,
can be used to determine A, 5. However, since 74 is not known, the slope of this plot
does not permit the value of ay to be determined uniquely

Table 3.2 summarizes the values of a., a4, don and A5 determined from cycling
measurements for the same five subjects in Table 3.1 under the assumption that
Te = T4. In comparing the results in Tables 3.1 and 3.2 it is important to realize that
the results in Table 3.1 are determined from the response to a single light pulse at a
single initial pupil area, whereas for cycling these parameters represent, in some sense,
an averaging over 50-70 single pulse determinations covering a range of initial pupil
areas (i.e. 10 light pulses per area threshold, times H-7 arca thresholds) The values
of Aon and A,ss obtained by the two methods are 1in good agreement; however, the
values of a. and ay differ. The differences in ag cannot simply be attributed to the

uncertainty in 74 since an increase in 74 would decrease the value of a4 even further

(see (3.2.3b)).
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Figure 3.2.8 Pupil area as a function of time, A,, following a single 0.5 second light
pulse for subject A (dotted line). In a) the observed pupillary response is compared
to that predicted by (3.2.1) when the parameters are estimated by the single pulse
method (solid line, subject A in Table 3.1, see text for details). The semi-log plots
for the determination of a,,0q are shown in b) where A, is the normalized pupil
area, i.e. A, = |A: — Aonoffl/|Ai = Aon,orfl. For pupil constriction the initial value
of A; was taken as the onset of constriction and for dilation the initial value of 4,
was arbitrarily chosen as the point indicated by “ A ”. In c) the observed pupillary
response is compared to that predicted by (3.2.1) when the parameters are estimated
from cycling measurements (solid line, subject A in Table 3.2). In d) the observed
pupil response is compared to an empirical model in which constriction is described by
a single exponential process and dilation by two exponentials (i.e. equation (3.2.5)).

Details of the parameter estimation for the predicted solution in d) are given in
Appendix II.
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Figures 3.2.6a and 3.2.6c compare the changes in pupil area that occur following a 0.5
second light pulse to those predicted from (3.2.1) when the parameters ac, g, Aon
and A,s; have been estimated, respectively, from single pulse measurements (Iigures
3.2.6b, Table 3.1) and pupil cycling measurements (Figure 3.2.3, Table 32) Pupl
cycling measurements yield parameters which provide a better desenption of the
pupillary time course when 7. = 74. Similar results were obtamed for all subjects
studied. In the discussion which follows we consider only those solutions of (3.2 1) in

which th: parameters have been estimated from cycling measurements

Period of pupil area oscillations

The period of pupil cycling, T', predicted by (3.2.1) is (Appendix I)

Ama:c - Aon -
T:Tc+‘rd+ac'lln [——————————}

Am:n - Ao
+a;'n {—w—-———li] (3.2.1)

Aref — Aon 4Nef Aoff

In F.gure 3.2.4 we show the period (T) of pupil cycling (solid line) calculated from
(3.2.4) when 7. = 74. The discrepancy between the predicted and observed average
period of pupil cycling is typically less than 5-10 %.

It should be noted that (3.2.1) predicts that the period of pupil cycling is not
a monotone increasing function of A,.;, but passes through a minimumn. We were
unable to verify this experimentally. With decreases in A,.; below 11 mm?, pupil arca
would undergo 2-3 cycles with increasing dm.n until the cycling stopped with the light
on and A, > Ares. It is not clear whether this phenomenon arose because of a 4y pe

of pupillacy escape®®?8:1%% or represents changes in A,, due to retinal adaptation®

Light offset latency fime (13)

Equation (3.2.4) in combination with (3.2.2) and (3.2.3) can also be used to
calculate the period (T') of pupil cycling when the latency times for light onset and
offset are not the same (i.e. 7. # 7). In Figure 3.2.4 we show the period (1) of
pupil cycling calculated from (3.2.1) for two values of 74 > 7. (and hence of ag; see
(3.2.3b)) (dotted lines). As can be seen the best agreement between the predicted

and observed periods of pupil cycling occurs when 7. 74

Amplitude of pupil area oscillations

The fact that the values of ac,aq, Aon and A,;f are determined from the data
in Figure 3.2.3 guarantees that the solutions of (3.2.1) will have the same average

amplitude as observed for pupil cycling (Figure 3.2.2).
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Shape of pupil area oscillations

Onc way to compare the shape of the predicted and observed pupil area oscilla-
tions is to plot pupil area as a function of time (Figure 3.2.2). However, the limitations
of this method for comparing the shape of oscillations are immediately apparent. The
observed pupil area oscillations show small cycle to cycle variations in period and
amplitude due to noisy inputs into the pupil light reflex which have not been incor-
porated into (3.2.1). Thus one cannot easily compare theory with observation by, for
example, superimposing the predicted and observed time series.

A much better method for comparing the shape of predicted oscillatious to those
observed cxperimentally involves the construction of a “phase plane diagram”. A
phase plane diagram is a convenient way of graphing pupil arca changes as a function
of time since for an oscillation a closed loop trajectory will be obtained. For (3.2.1)
a phase plane diagram can be constructed by plotting A(t) versus A(¢ — 7). The
advantage of construcling a phase plane diagram is that the overall average shape of
the oscillation can be assessed and compared to theory even in the presence of noisy
perturbations.

Figure 3.2.7 compares the measured phase plane diagrams for different values
of Aycr to those predicted by (3.2.1). As plotted the trajectories are traversed in a
counter-clockwise direction and the orientation is as follows : the upper right-hand
corner corresponds to the change from dilation to constriction and the lower left-hand
corner to the change from constriction to dilation. As .. is changed, the predicted
shape of the closed trajectories changes from triangular (Figure 3.2.7a) to roughly
quadrlateral (igure 3.2.7d). Overall there 15 surprisingly  »d agreement between
the experumentally measured and predicted phase plane trajectories. However, on
closer inspeciion it can be seen that the best agreement between (3.2.1) and observa-

tion occurs for the latter stages of dilation and the earlier stages of constriction.

Alternative Models for Pupil Cycling

The preceding results denonstrate that the period and amplitude of pupil area
oscillations can be predicted from a model (3.2.1) in which both constriction and
dilation are described by single exponentials and in which the latency times for light
onset and offset are the same (Figures 3.2.2-4). However, the shape of the predicted
oscillations is not exactly the same as that observed (Figure 3.2.7).

We found that a much better fit to the changes in pupil area following a single

light pulse was obtained when dilation was represented by a sum of two exponentials
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Figure 3.2.7 Phase plane diagrams for pupil cycling as a function of A, for
subject A (Figures 3.2.2 to 3.2.4). The data was digitized at a frequency of 20 Hz.
Solid lines are those predicted by (3.2.1) for parameters estimated from the data in
Fig. 2 (subject A in Table 3.2). Ay was set at: a) 30.1 mm?, b) 25.0 mm?, c) 22.5
mm?, and d) 16.2 mm?®. The change of constriction to dilation is indicaied by the ‘#’
in a) and the change from dilation to constriction by the *»’.
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(compare Figure 3.2.6d with Figures 3.2.6a,b,c). This fit was obtained with . = 74

(Appendix II). In view of these observations, an alternative model for pupil area

oscillations becomes

d.
a—IEj—JrA:A,,n if 4, > Apes
LA dA (3.2.5)

where 6,w are constants to be determined. In contrast to the expressions derived
from (3.2.1), it is not possible to obtain simple mathematical expressions for 4,4,
and T'. Thus we cannot presently estimate the three pupillary rate constants and arca
asymptotes from cycling data in a way more practical than fitling the time course
of the pupil area changes following a single light pulse using a nonlinear regression
analysis.

Preliminary computer simulations of (3.2.5) indicate that the shape of the pupil
area oscillations closely resemble that of the observed oscillations (data not shown).
However, given the difficulties in estimating the required parameters, it is not yet

possible to assess the agreement between model and data with certainty.

3.2.4 Discussion.

Our observations emphasize the importance of measurements of the amplitude,
rather than the period, of pupil area oscillations for obtaining quantitative descrip-
tions of pupillary constriction and dilation. In particular, when pupil area oscillations
are produced under conditions of piecewise constant negative feedback (IFigure 3.2.1),
it is found that the minimum (A,,) and maximum (4,,..) amplitude vary linearly
with A,ef. The A,.s-dependent changes in A,,,, depend only on factors which in-
fluence pupil constriction (see, for example, (3.2.2)), whereas changes in A0, are
related only to changes in the factors which influence pupil dilation. This follows
from the response assymmetry of the pupil to light onset and offset®*?. Thus pupil
constriction and dilation can be quantitated in terms of the slopes and intercepts of
straight line plots. This technique should facilitate the evaluation of efferent pupillary
defects.

Quantitative evaluation of pupil responses from measurements of pupil area os-
cillations produced under conditions of piecewise constant negative feecdback offers a
number of advantages over measurements following single light pulses and edge-light

pupil cycling. By cycling the pupil, the effects of hippus are minimized since high
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frequency noise is reduced by the self-filtering action of the resonance peak of the
antonomous oscillations which acts as a narrow-bandpass filter!. Second, generating
a plot of A,,,, (or Amma,) versus A4, 5 is in some sense equivalent to averaging 50-70
single light pulses covering a range of initial pupil areas. These measurements are not
time consuming: the experiment in Figure 3.2.2 took less than 5 minutes to complete.
Obtaining an averaged pupil response is important in view of the intrinsic variability
of the pupil’s response to light pulses’*. Finally, measurements of amplitude show
less variability than those of period (compare standard deviations for A,,.,, Amar
in Figure 3.2.3 to those of period in Figure 3.2.4, especially at the higher values of
Ar).

The infrared pupillometer chosen for this type of study must meet two require-
ments. First, its response time must be sufficiently faster than the pupil responses
(20-60 Hz is adequate for most purposes). Second, since the differences between, for
example, A,,,- and A, can be quite small (Figure 3.2.3), it is important that the
pupillometer be able to measure pupil area accurately. The 0.01 mm? resolution of the
pupillometer used in this study appears to be adequate for most purposes. The neces-
sary area comparator (Figure 3.2.1) can be easily installed in both video-type®2-64:1"0

1.65

and reflectance-type pupillometers.

The observation that 4,,,, (or 4,,,,) varies linearly with A,, s can be explained
by a mathematical model for pupil cycling (3.2.1) in which both pupil constriction
and dilation occur as single exponential processes but with different rat: constants.
This model also correctly predicts the period of the pupil area oscillatior.s. However,
measurements of the period of the oscillations as a function of 4, are not sufficient
to identify the individual role of the constricting and dilating mechamsms of the
pupil light reflex (3.2.4). This observation emphasizes the importance of amplitude
over period measurements for evaluating the properties of the efferent pathways of
the pupil light reflex.

It is generally held that the pupil latency time for light offset (1) is either equal
to or longer than the latency time for light onset (7.) (see, for example, Léwenstein
and Friedman’®). However, direct measurement of 7; is difficult since the onset of
dilation following light offset cannot readily be determined by visual inspection. The
problem is that pupil area may initially continue to decrease after the onset of dilation
because of the effects of the mechanical properties of the iris and its musculature which

prevent sudden changes in the sign of the velocity. Thus determination of 74 from the
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pupil response to a light pulse requires reference to a mathematical model. On the
other hand, it is unlikely that 74 can be measured directly from the pupil response
to a dark pulse. The response of the pupil to either a light or dark pulse is in the
same direction (“unidirectional rate sensitivity”) (see Clynes®®). Thus it is unclear
whether measurement of a latency to a dark pulse would correspond to the 74 relevant
for pupil cycling measurements. From the standpoint of a first-order model for pupil
cycling (3.2.1), the best agreement between the predicted and observed period of the
pupil area oscillations occurs when 7. and 74 are approximately the same. When the
alternative, more complex model for the pupil response to light (3.2.5) was used, the
observed pupillary response could also be modelled with 7. = 74. These observations
do not prove conclusively that 7. = 74, but they are certainly highly suggestive.

The shape of the observed oscillations in pupil area is only approximately de-
scribed by (3.2.1). It is possible that by increasing the number of exponentials which
describe constriction and/or dilation a better description of the shape of the oscil-
lations can be obtained. In this way insights can be gained into the properties of
the efferent properties of the pupil light reflex. For example, we found that a hetter
agreement between the predicted and observed shape of the pupil response to a single
light pulse is obtained when dilation is modelled as the sum of two exponentials. The
main limitation of this type of apptoach are the difficulties assocrated with estimating
the required number of parameters {from the experimental data.

Our observations do not allow us to identify the neurophysiological mechanisins
responsible for pupil dilation during pupil cycling. The role of sympathetic efferents
is uncertain given the observations that pupil cycling can be elicited in human sub-
jects even when the sympathetic supply to the pupil is cut surgically®? or blocked
pharmacologically®’.

A parasympathetic mechanism producing pupil dilation involves active inhibi-
tion of the Edinger-Westphal nucleus®*. Experiments will be required to determine
the relative roles of the sympathetic and parasympathetic mechanisms for producing
pupil dilation during pupil cycling.

Studies of the pupil light reflex “clamped” with external electronic feedback have
been used previously to determine the influence of the ‘linear’ and ‘nonlinear’ prop-
erties of the reflex in determining the period and shape of the oscillations'. Here we
have shown that this technique can also be used as a practical method for evaluating

the average pupil constriction and dilation. From the more general point of view
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of the study of oscillations (i.e. nonlinear dynamics), this experimental paradigm of
neural control also provides unique opportunities to verify theoretical predictions, to
draw attention to unexplained phenomena, and to assess the role of superimposed
random variations (“noise”) in shaping the observed dynamics?®4% It can be an-
ticipated that by continuing to exploit this experimental model it will be possible to
gain insights into the properties of this reflex by, for example, clever design of the area
comparator. Some of these insights may also be applicable to other neural control

mechanisms as well.

Appendix I: Solution of Equation (3.2.1)
The oscillations in pupil area produced by (3.2.1) (Figure 3.2.5) are referred to
as limit cycles. Assume that the motion described by (3.2.1) has settled onto the limit

cycle oscillation. Then we can write the solution as

Aon + [A(t,) — Aon]lexp(—ac(t — 1,))], if A(s —7)> Apes

Alt) = { Aogs + [Ato) — Aogsllexp(—aa(t — 4,))],  if A(s —7) < Apey -

where s € (25,1). Let Apmqz (Amin) denote the maximal (minimal) area reached
by the oscillations (Figure 3.2.5). Then

Aref = Amaz CXP(—actl) + Aon[l - exp(—actl \] (1.28.)

Aref = Amtn exp(—adtz) + Aoff[]- - exp(——adtg)] (I.2b)

from which we can easily obtain

Amaz — A
S | maz on
ti=a; In [—————————Amf A ] (1.3a)
- Amzn - Aoff
t=a7'ln [——-———] 1.3b
d Aref _ Aoff ( )

The period, T', is equal to 7.+ 74+ t; +13. The values of Amin and Amaz ((3.2.2)
and (3.2.3) in text) can be determined from (I.1) by choosing A(f,) = Aye;.

It was found both analytically and numerically that these limit cycle solutions
of (3.2.1) are very stable. In fact, the transients leading to the limit cycle behaviour

decay very quickly.
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Appendix II: Parameter estimation for Equation (3.2.5)

In order to fit (3.2.5) to the response of the pupil to a single light pulse (Figure
3.2.6) we imposed four constraints (see program SPF120RD in Appendix C, with the
substitution ag — piq) : 1) the transition from constriction to dilation occurs at time
tc + T, where i, is the time of constriction onset (~ 300 msec after light pulse falls on
retina) and 7, is the light pulse duration (500 msec); 2) the pupil area is continuous
at time ¢ = Tp; 3) the area velocity is conlinuous at time ¢ = Tp; and 4) the initial
pupil area is fixed.

If we let t. = 0 and denote pupil area by A(t), we have:

A(t) = { Ac(t) = A(0) + Blexp(—a.t) — 1] 0<t< Ty (IL1)

Aq(t) = Cexp(—pa(t — Tp)] + Dexp[—LBa(t — Tp)| + E t>Tp

where 6 in (3.2.5) corresponds to —pq — B4 and w? to pgBy. The constraints 2) and
3) are used to express parameters D and E as a function of the parameter set to be
determined by nonlinear regression: {B,C, ae,itd,B¢}. For the data in Figure 3.2.6
our fit produces A = 21.81mm?2, C = 10.14mm?, a. = 3.44 sec™!, pg -- 2.83 sec™!
and B; = 0.58 sec™! with a x? value of 10.62 £ 0.54. Note that the values of 34 and
a. have not changed significantly from those of, respectively, g and a, determined

for the first order model (Tables 3.1 and 3.2).
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3.3 COMPLEX OSCILLATIONS IN THE HUMAN PUPIL LIGHT RE-
FLEX WITH “MIXED” AND DELAYED FEEDBACK.

Abstract.

Simple periodic as well as more complex behaviors are shown to occur in the
human pupil light reflex with piecewise constant mixed and delayed feedback. The
output of an infrared videopupillometer, an analog voltage proportional to pupil area,
is processed by an electronic comparator which synthesizes the piecewise constant
feedback. The system is described by a nonlinear delay differential equation which has
been previously shown analytically to exhibit periodic and aperiodic behavior. After
parameter estimation from the data, it is found that the observed simple periodic
behaviors correlate well with the model behaviors. Although more complex behavior
can he observed for parameter values which gave complicated dynamics in the model,
there is not a one-to-one correspondence between the observed and predicted results.
The effect of uncontrollable fluctuations in the parameters on the observability of

complex dynamics in this system 1s discussed.

3.3.1 Introduction.

The control of a physiological variable z 1s often given by an equation of the

form

dz . ] .
= production - destruction

d - (3.3.1)
= g(m(t — 'r)) - az,

where g(z(t — 7)) is a nonlinear function of z(t ~ 7) and a is a positive

124,25,54,57,107,108

constan . The time delay, 7, is an essential feature of these control

systems and arises, for example, as the time required for a cell to mature, or the time
required for a nerve impulse to travel along an axon and across a synapse, or the
time for hormonal signals to travel from their site of production o target organs by
diffusion and/or passage through the circulation.

For many physiological control systems, g(:n(t ~ 1)) is a “humped” function of
z(t — 1), i.c,, maximal production occurs at some intermediate value of z(t - 1),
and thus the control system displays both positive and negative feedback characteris-
tics®T 86107117 Apalytic and computer simulation studies have shown that for var-
ious choices of “humped” g(z(¢ - 7)), (3.3.1) can exhibit a rich variety of periodic

and aperiodic (“chaotic”) dynamics?425:66:197 Moreover, it has been shown that for
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biologically appropriate choices of g(t — ) including estimation of the relevant pa-
rameters from published data, there is qualitative agreement between the observed
and predicted dynamics?*:25,

We are not aware of a previous report of an experimental study of the dynamics
seen in a physiological control system with delayed mixed feedback The control
of pupil area by the light reflex has been extensively stucdied as an example of a
neurological control system!313246:,111 a0 from an experimental point of view, this
system offers the advantages thal it is readily accessible and can be monitored and
manipulated by noninvasive techniques. Here we study a hybrid experimental system
for the control of the human pupil light reflex which incorporates piccewise constant
delayed and mixed feedback (Figures 3.3.1 and 3.3.2). For Equation (33 1) with
this kind of feedback, it has been possible to analytically prove the existence of stable
equilibria, of stable and unstable limit cycles, and of infinitely many periodic solutions

and uncountably many aperiodic, mixing solutions for defined regions in parameter
space®®11. With the simple form of the delayed mixed feedback we have chosen, it
is possible to computr the solutions exactly and thus to compare the observed and
predicted dynamics for different parameter sets. Moreover we are able to quantify
the intrinsic variability of certain parameters and thercby address the issue of the

observability of complex dynamics in this system.

3.3.2 Methods.

Subjects were healthy males and females (n=10; ages 20-45 years) who were
free from both ocular disease and disorders known to affect autonomic function. All
measurements were performed in subjects who had been dark adapted for at least
15 minutes in a room lit only by a dim red light. During pupillary measurements,
the subjects were instructed to refrain from blinking as much as possible and to fix
their gaze on the target appearing on the viewing screen (a dim green asterisk); some
subjects performed mental tasks (e.g. multiplication tables) to minimize spontancous
fluctuations in pupil area (“hippus”)®’.

Measurements of pupil area were made with an infrared videopupillometer (Ha
mamatsu Binocular Iriscorder (:2515)!1°%. The video cameras (Figure 3.3 2) are of the
charge-coupled device (CCD) type, and their output 1s analyzed by a frame grabber
which counts the number of pixels above a slice level (“gray level”) adjusted by the
experimenter to discriminate between pupil and iris. The output of the frame grabber

is an analog voltage proportional to the pupil area (sampling rate 60 Hz). Light

86




£{AQ -))

Alt=<)

Figure 3.3.1 Piecewise constant delayed feedback nonlinearity used in this study.
The function is defined in (3.3.2). T} and T; are, respectively, the lower and higher

thresholds which are set by the investigator.

§ ——tfam, (o

Area
Comparator |
|
O Time Delay
Light
Emitting Diode

Figure 3.3.2 Schematic of the instrumentation used for investigating the pupil light
reflex with delayed mixed feedback. The area comparator described in “Methods”
utilizes operational-amplifier circuitry. Although the Hamamatsu Iriscorder C-2515
is a binocular apparatus, we used it only in the monocular mode, as this was more
convenient in that only one camera had to be focussed and aligned.

87



}

¢

sources were light emitting diodes (peak wavelength of 605 nm). All experiments
were done under “open-loop” conditions®! by focussing a 1.2mm beam of light on the
center of the pupil (initial diameter 5-7 mm). Under these conditions the iris does
not alter the beam of light falling on the retina.

The variable 2 in (3.3.1) can be identified with the area of the iris, which is
regulated by the autonomic nervous system (parasympathetic and sympathetic), and
the function f(z(t 7)) can be identified with the feedback of the ins on the hght
flux to the retina. Since the pupillometer measures pupil arca and not ins area,
(3.3.1) has to be rewritten to take account of the inverse relationship between s
size ¢ and pupil size A. Defining Ay to be the maximal size of iris plus pupil and

Bf(A(t—7)) = g(do — A(t— 7)), we can write A(t) = Aq  @(t), and (3.3.1) becomes
Atad=-f(A(t—7)) - T+ ado, (3.3.2)

where 3 is the intensity of the light pulse, and a is the reciprocal of the time constant
for pupillary movements and is different for constriction (a.) and dilation (ag). In
going from (3.3.1) to (3.3.2) we have added a forcing term I to represent the back-
ground illumination of the retina. It is important to note that with the choice of
f(A(t — 7)) shown in Figure 3.3.1, (3.3.2) can be solved exactly, without resorting
to numerical integration methods, the initial condition being specified by a function
defined on the interval (-7,0).

In our experiments the measured pupil! area is used to control the timing and
duration of light pulses falling on the retina by modifying a technique onginally de
veloped by Stark!. The control system for the pupil arca, given by (3.3.2), was
constructed by opening the feedback loop and inserting the piccewise constant feed
back function (Figure 3.3.1) in the following way. The analog output proportional to
the pupil area, A, was compared to the two adjustable thresholds T} and 75 using
operational-amplifier circuitry. The output logic level goes HIGH when Ty < A < T,
and LOW otherwise. The HIGII level drives the light on, and iluminates the retina
in open-loop. This circuitry is included in Figure 3.3.2 as the box labeled “Area
Comparator”. In our experiments, the pupil being stimulated was also the one being
measured.

The solution of (3.3.2) requires the specification of seven parameters : the time
delay; the time constants for constriction and dilation, . and t4; the asymptotic

values the pupil area tends to when the light is ON and OFF, A,,, and A,;y; and the
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lower and upper thresholds, 77 and T. The value of Ay does not aflect the qualitative
behavior of (3.3.2) and was taken to be 100mm?. Of the remaining parameters, T}
and T, are fixed by the investigator , and the others are estimated experimentally.
The neural time delay for the response of the pupil to light was determined as the
time between the onset of the light pulse and the onset of the pupillary constriction,
using a computer program incorporated in the Iriscorder C2515. This neural time
delay was assumed to be the same as the time between the cessation of the light pulse
and the onset of dilation. The time required for the signal from the video camera to
reach the light emitting diode contributed an additional 100 msec delay. The time
delay 7 in (3.3.2) is equal to the neural time delay plus the machine delay. The time
constants {. and {; were measured as the e™! times for a pupil receiving a single 0.5

sec light pulse (Figure 3.3.3). rhe values > the asymptotes are given by

c - [ -
4, = QoI5 (3.3.3)
xc
and 4 |
Aoss = a"%f— (3.3.4)
d

The asymptotes were measured as follows. Let 4, be the area at some time when the

pupil is constricting; then

Ag = A+ Aon, (3.3.5)

where 4 is a pupil area to be determined. At time {. = a_! later, the pupil area is

Ay and we can write

A = e A + Agn. (3.3.6)
By combining (3.3.5) and (3.3.6),

(3.3.7)

and Ay, can be calculated from (3.3.5). The value of A,sf can be evaluated in a

similar manner when the pupil is dilating.
3.3.3 Results.

Figure 3.3.3 (insert) shows the change in pupil diameter as a function of time
following a single 0.5 sec light pulse. After a delay of 292 4+ 10 msec (mean +SD for

10 subjects), the pupil undergoes a rapid constriction followed by a slower dilation.

The time courses for constriction and dilation are reasonably well fitted by a single
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Figure 3.3.3 Plot of the logarithm of the change in pupil area A, as a function of
time following a single 0.5 second light pulse. The changes in pupil area have been
normalized to the total change in pupil area that occurs for constriction and dilation
respectively. For pupillary constriction the initial value of A, was measured at the
onset of constriction ¢ = i, (see insert), and the asymptote, 4,,, was the minimum
aiea obtained with a 2 second light pulse. For pupillary dilation the initial value of 4,
was measured at the onset of dilation ¢ = i4. In principle, A,y is equal to the initial
pupil area (as is true for the example given in the insertion), but typically, following
a 0.5 second light pulse the pupil the pupil did not dilate back to its initial value,
suggesting that some adaptation had occurred. In these cases, A,;s was reestimated
from the time course of the dilation.
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exponential decay : t, = 0.4 + 0.1 seconds for 5 subjects. These observations suggest
that for the hybrid system incorporating the choice of f(A(t — 7)) shown in Figure
3.3.1, (3.3.2) will pro.ide a good description of the response of the pupil to light.

CASE 1| : Ay < Ty < Aoy < Ty.

Figure 3.3.4 shows the behavior of the pupil area when the lower threshold Tj is
chosen to he between the asymptotes and also the upper threshold T3 is greater than
the upper asymptote A,¢¢. Under these conditions, pupil area undergoes repetitive
constrictions and dilations, the light being turned on whenever the pupil area A is
greater than T|. The period of these oscillations is the time between successive pupil-
lary constrictions and is a function of the values of Aon, doff, the time constauts, and
the total time Jdelay 7 (the iatrinsic neural time plus that of the elecronic feedback).
The mean period of pupil cycling can be varied from | to 8 seconds by changing T}
and 7 (data not shewn). We have found that the observed mean period over this range

agrees with that predicted by (3.3.2) to within 20% (typically better than 10%)%°.

CASE 2 - App < Ty < Ty < Aojy.

Figure 3.3.5 gives a represcentative bifurcation diagram for the calculated solution
of (3.3.2) over the parameter space spanned by (7},73). Our computer simulations
indicate that for the delay present in the system (380-450 msec), most regions of this
subspace correspond to stable periodic behavior; however, in a narrow band (labeled C
in Figure 3.3 5) solutions of different periodicities are in close proximity and aperiodic
(“chaotic”) solutions occur. For simplicity we have represented the dynamics by the
number of light pulses per periodic cycle. Although the solutions within each region
have the same qualitative features, i.e. number of light pulses per period, ther do not
necessarily have the same period. The region labeled 0 corresponds to solutions where
the pupil areca dilates asymptotically to d,5s. The region labeled 1 corresponds to
results of the type shown in Figure 3.3.4, i.e. one light pulse per cycle.

Next to region 1 is a region labeled 2, corresponding to two light pulses per
cycle. Figure 3.3 6 compares the observed and predicted dynamics for a choice of T}
and T3 within this region. For solutions of this type a smaller pupillarv constriction-
dilation change occurs in the trough of the larger one. As for the dynamics observed
in region 1, there is good agrzement between theory and experiment. It should be
noted that the transition I — 2 corresponds to a bifurcation in (3.3.2), but that it is
not & period-doubling bifurcation, since little change in period occurs. There is also

another region in which there are two light pulses per cycle, labeled as 2. Solutions
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Figure 3.3.4 Example of pupil cycling in a one-threshold experiment (case 1).
Simple periodic behavior (referred to as type 1 in Figure 3.3.5) is juitiated at the left
by lowering T) to the level indicated. Above the data, we have shown the sequence of
light pulses seen by the retina. In the experiment (top graph) the light turns on (off)
100 msec after the pupil area crosses ‘he threshold area Ty, This time delay represents
the machine delay. The model aoluhon was obtained by using the followmg parameters
7 = 0.38bsec, ac = 2.50sec™!, ag = 1.25sec™!, Aon = 14.2mm?, Aoy = 28.Tmm?,
T, = 23.8mm3, Th = 70.0m'n2 The value cf A,,,.,Aaf ! represent the average of the

values obtained for each cycle (see Figure 3.3.8). Initial pupil area is 34mm?.
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Figure 3.3.5 Dynamic picture in a region of parameter space spanned by the thresh-
olds T} and T; (note that T} < T3). The numbers labeling the different regions cor-
respond to the number of light pulses per period in the exact solutions of (3.3.2).
Only the low-periodicity regions are indicated. All of the more complicated solutions
belong to the region marked C. Note that the solution in the narrow region marked 2
is qualitatively different from the one marked 2. Parameter values are r = 0.425sec,
a. = 4.00sec™?, aq = 1.429sec™?, 4on = 15.0mm?, Aopp = 22.0mm?.
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Figure 3.3.6 Example of a solution characteristic of region 2, in which the retina sees
a double pulse of light in each cycle. The model prediction is given in the lower half
of the figure. Parameter values are 7 = 0.425sec, @, = 4.00sec™}, ag = 1.429sec™?,
Ty = 18.2mm? T; = 19.2mm?, 4on = 13.8mm?, 4,4y = 21.3mm?2. The averaged
values of the asymptotes were determined as in Figure 3.3.4.
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in this region have the smaller pupillary constriction-dilation change occurring on the
peak of the larger one. We have not observed solutions of this type.

Close to region 2 there are smaller regions containing more complex dynamics,
i.e. regions 4,5 and C. The period varies continuously in each of these regions. The
boundary between regions 2 and 5 corresponds to a period-doubling bifurcation, but
the boundary between regions 4 and 5 does not. Additional period doublings have
been shown to occur in region C.

In Figure 3.3.7 we show the observed oscillations in pupil area in an experiment
in which the lower threshold 7Ty was held constant and the upper threshold T, was
adjusted to a value which produces a region 5 solution of (3.3.2). With this choice
of T} and T, more complex oscillations are obtained than were observed in region 2
(compare Figures 3.3.6 and 3 3.7b). Figure 3.3.7c shows the solution of (3.3.2) for
the parameters estimated from the data in Figure 3.3.7b. Although there is not a
one-to-one correspondence between the observed and predicted oscillations, there are
nonetheless some similarities. The region 5 solution shows a recurring pattern of a
large pupil dilation-constriction, followed by a smaller one, then another larger one
followed by two smaller ones. A similar pattern in the successive amplitudes is seen
during the first 7 seconds of the observed oscillation (Figure 3.3.7h). The period of
this recurrence in the successive amplitudes of the observed oscillations over the first
seven seconds 1s = 3.6sec, which is ~ 2.2 times the period of the corresponding region
1 oscillation shown in Figure 3.3.7a. This observation offers support for the possibility
that the observed oscillation is, at least transiently, in a region of parameter space
associated with a period doubling, i.e. region 5, or more complex.

We next explore the solutions of (3.3.2) in the neighborhood of the region 5
solution shown in Figure 3.3.7c to see if better agreement with the observed oscillation
could be obtained. Figure 3.3.7d shows a solution of (3.3.2) which is closer to the
observed oscillation over the first 7 seconds. This solution was obtained by increasing
the parameter 4,77 by only 5%. The period of this solution is =~ 2.1 times that
of the corresponding region 1 solution (i.e. the solution with the same T;). These
observations emphasize the sensitivity of the solutions of (3.3.2) to small fluctuations
in the control parameters.

Even more complicated oscillations are observed when the thresholds are chosen

to give solutinns in region C (data not shown).
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Figure 3.3.7 Experimentally observed pupil oscillations near a period-doubling
bifurcation. {a) shows the pupil oscillation obtained when T} = 18.5mm? and T} =
40mm3, and (b) shows the oscillation obtained when T} is lowered to 19.5mm? and
T, is held constant. (c) shows the solution of (3.3.2) for the parameters estimated
from (b): 7 = 0.425sec, a. = 4.0sec™!, ag = 1.429sec™!, A,n = 16.0mm?, 4,4, =
22.0mm?. (d) shows a solution of (3.3.2) using the same parameters as used for ()
except that A,s; was increased to 23.05mm?.
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3.3.4 “Noise” and observability.

It is possible that the lack of agreement between the solutions of (3.3.2) and

the observed complex oscillations (compare Figure 3.3.7b and c) may have arisen
because of uncontrollable fluctuations in certain of the control parameters describing
the pupil’s response to light (compare Figure 3.3.7c and d). Here we examine this
possibility.

We assumed that the only parameters that changed in our experiments were the
values of the asymptotes (see Methods and Discussion). Support for this assumption
is given in Figure 3.3.8. In Figure 3.3.8b we plot the values of the asymptotes as a
function of the ith cyce for the data shown in Figure 3.3.4, and in Figure 3.3.82 we
compare the measured period for each cycle with the period predicted from (3.3.2)
usiug the corresponding values of the asymptotes. In this manner, it can be seen that
the variations in period are largcly accounted for by the variations in the asymptotes.

Figure 3.3 9 shows a region of parameter space spanned by (don,do7¢) in which
T, and T3 are fixed at the values used to obtain the type 2 oscillations shown in Figure
3.3.6 and the oscillations in Figure 3.3.7. In this parameter space, we have plotted
the measured values | r ine asymptotes for each successive cyde for these oscillations
- respectively, area a and area b It is clear that our ability to observe oscillations
which ressemble the type 2 solutions of (3.3.2) is due to the fact that the variations
in the asymptotes are not large enough to go outside region 2 in parameter space.
On the other hand, it is not surprising that we were not able to obtain agreement
between our model and the observations in Figure 3.3.7b, since the fluctuations in the
values of the asymptotes overlap several regions in this parameter space. Presumably
the experimentally observed oscillations shown in Figure 3.3.7h represeat a mixture

of solutions from adjacent regions in parameter space and transients.

3.3.5 Discussion.

We have studied the dynamics of a hybrid system for the control of the human
pupil light reflex possessing mixed delayed feedback, and compared the observed with
the predicted dynamics. The piecewise constant delayed mixed feedback function
shown in Figure 3.3.1 was chosen because it has the advantage of being well charac-
terized analytically®®!! all the relevant parameters can be directly estimated from
the experimental data, and the corresponding solutions of the model can be computed
exactly. It must be emphasized that the solutions of this model (i.e. the solutions of

(3.3.2)) are solutions of an autonomous delay differential equation and not the
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Figure 3.3.8 (a) Comparison of the measured (o) and predicted (o) cycle times for
the data given in Figure 3.3.4. (b) The predicted cycle times have been calculated
from (3.3.2) using the appropriate values of the asymptotes and represent the steady-

state period. The estimated error in the asymptotes was 0.5mm?.
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Figure 3.3.89 Dynamical picture in a region of parameter space spanned by the
asymptotes A,, and A,zy. The laheling is the same as in Figure 3.3.5. Parameter
values are T = 0.425sec, a, = 4.00sec™!, ag = 1.429sec™?. The values of the asymp-
totes in the region labeled a (s) were measured for the oscillation shown in Figure
3.3.6, and those in the region labeled b (A) have been measured for the oscillations
shown in Figure 3.3.7b. The dynamic pictures for a and b were sufficiently close to
warrant the use of the same diagram to display the variability of the asymptotes. The

estimated error in measuring the asymplotes was 0.5mm?.
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response to external periodic forcing.

We observed a rich variety of dynamics, including no oscillation (region 0), sim-
ple limit-cycle oscillations (regions 1 and 2), and more complex oscillations (Figure
3.3.7h). There was quantitative agreement between the observed cacillations and
those predicted by (3.3.2) in region 1, md good qualitative agreement with the model
in region 2. The model also correctly predicted the parameter ranges over which more
complicated dynamics arc observed experimentally.

However, for the more complex oscillations there is not good agreement between
the observed pupillary dynamics and those predicted by (3.3.2). We suggest that these
discrepancies arise because of unmodeled fluctuations in certain of the parameters
which describe the pupil’s response to light. As the oscillations become more and
more complicated in the model, the corresponding regions in parameter space become
smaller and smaller (see Figures 3.3.5 and 3.3.9). Eventually the region in parameter
space occupied by the variability of these parameters becomes large relative to the
size of the region over which a particular type of oscillation occurs. This is reflected
experimentally by a solution which combines the dynamics observed in neighboring
regions of parameter space as well as transients (solutions of (3.3.2) often show long
transients before settling on a periodic cycle). Although in other physiological®® and
1110,112,113,116

physica systems it has been possible to observe more bifurcations than

we observe here, the inherent noise in the system eventually prevents the observation

of the predicted dynamics!?%115,

There are five parameters in (3.3.2) which can undergo changes in our experi-
ments: the time delay (7), the rate constants for constriction and dilation (a.,a4),
and the asymptotes (don, 4o7f). We assume that the only parameters which changed
in our experiments were the values of the asymptotes. The main rationale for this
assumption is the observation that it permitted good agreement between experiment
and theory for the region 1 and 2 solutions with all values of the parameters being
measured from the data (Figures 3.3.4 and 3.3.6). In contrast, when we assumed
that the only parameters which changed were the values of the rate constants, there
was no agreement between the model and any of the ohserved oscillations. Finally,
computations showed that the observed variations in the intrinsic neural delay (130
msec) were not large enough to significantly influence the predicted dynamics. Al-
though these observations do not eliminate the possibility that these latter parameters

have also changed during our experiments, they do suggest that the most significant
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changes in the parameters affecting the dynamical behavior of our system occur in

the asymptotes.

There are a number of factors which contribute to the changes in the values of
the asymptotes. A major influence is the adaptation of the retina to the average light
level (ambient light plus the repetitive light pulses during pupil cycling)'**%. As the
pupil cycle time is decreased from 7 vo 1 seconds, the fraction of time that the light is
on increases from 0 01 to 0.4 (data not shown). Thus under conditions of more rapid
cycling the pupil will tend to be smaller (since the average light level is greater). In
addition, there are other retinal factors such as photoreceptor bleaching, as well as
the influence of ncural systems on the pupil light reflex such as the ascending retic-
ular activating system (occurring in particular at the level of the Edinger-Westphal

nucleus), the accommodation reflex, and the resting activity of the optic nerve®?.

It is possible that by constructing a inodel incorporating all of the influences on
the values of the asymptotes, it might be possible to predict the observed dynamics
in more detail. In particular, extension of our model to at least a second-order delay
differential equation would be required to eliminate the slope discontinuities present in
(3.3.2). However, besides rendering the exact computation of orbits and estimation of
relevant parameters more difficult, we expect that as the predicted dynamics become
more complex, the region in parameter space over which they are observed will become
narrower until the remaining “unmodeled” noise becomes larger than these regions,
thus rendering the dynamics unobservable. Although it 1s clear that such an approach
would narrow the region in this extended parameter space over which unmodeled
parameter variability occurs, it remains to be seen whether this narrowing would be
great enough to allow observation of the more complex predicted dynamics.

“Noisy” variations are characteristically seen in physiological data. The fact
that (3.3.1) can admit very complicated dynamics suggests the possibility that some
of this noise may be of deterministic origin®*?5°%.8%  However, it is clear that in
any real physical or biological system there will also be some degree of stochasticity,
for example in the form of thermal noise, and thatl deterministic chaos, if present
at all, will be superposed on this background signal. In our system, complicated
“noisy” solutions are observed even for parameter choices which do not correspond to
chaotic solutions of (3.3.2). We feel that these noisy behaviors reflect a combination
of different types of solutions in adjacent regions of parameter space and transients

resulting from the perturbations introduced by the noisy parameters.
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3.4 REMARKS ON NOISE AND UNMODELLED PHENOMENA.

This section begins with a reinterpretation of the analysis of the PCME-induced
oscillations in the last section. The parameter estimation scheme developed in Section
3.2 is shown to yield model solutions that are in better agreement with the data than
those for which the parameters are obtained from the single pulse method (Section
3.3). Further, the reestimated asymptote fluctuations allow a better quantitative
assessment of the observability of the more complex model solutions. The limitations
of experimental accuracy are then discussed. Results on multistability in the model
equation follow, and the question of whether we have observed noise or chaos is
addressed. Finally, extensions of the model which include temporal integration at the

retina, adaptation and damping of the iris muscles are examined.

3.4.1 PCMF revisited.

In Section 3.3, the observed pupillary oscillations were compared to the solutions
of an ad hoc model, and the parameters were obtained from a single pulse response
measured just before thc PCMF experiments. Subsequently, the more physiologically
sound model of Sections 2.2 (2.2.6 in particular) and 3.2 (Appendix I) was developed,
along with a parameter estimation scheme that requires information from many pulse
responses (i.e. many cycles). The paramecters obtained using this scheme were shown
to provide a better fit of the single pulse response (Figure 3.2.6).

In view of this, the next logical step is to reinterpret our PCMIE data using
parameters estimated from the method in Section 3.2, to sec if better agreement
between experiment and theory can be obtained. The estimation scheme of Section
3.2 will now be referred to as the ("1 D] method (meaning that both Constriction and
Dilation obey a first order differential equation), while the method used in Section
3.3 will be referred to as the SPR method (i.c. based on the Single Pulse Response).

Figure 3.4.1 shows pupillary oscillations induced using PCNF (Figure 3.4.1a).
The data is obtained from a different subject than in Figure 3.2 2. The parameters are
estimated using the CID1 method, i.e. from the plots in Figure 3.1 1b. Notice again
the very good agreement between the waveforms, periods and light pulse durations
predicted by the model and those seen experimentally. In Figure 3.4.1g, the delay was
increased using the analog delay line (see Section 3.1.1). This was done to demonstrate
that the model, combined with the C1D1 parameter estimation scheme, provides good
agreement with the data even when one parameter (the delay) is well out of the normal

physiological range.
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Figure 3.4.1 Comparison of the changes in pupil area that occur as a function of
time with imposed negative feedback to those predicted by (3.4.1) (subject MC). The
piecewise constant negative feedback is shown in (a). The pupil latency time was
285msec. In (c-f), the machine delay was 100msec (for a total delay T = 385msec)
and in (g) the machine delay was increased to 579maec (= = 864msec). The area
threshold, 8y, was set at : (c) 32mm?, (d) 28.1mm3, (e) 23.8mm?, and 21.4mm? in
(f) and (g). The values of ac, Aon, a4 and A,y used to calculate the solutions of
(3.4.1) were calculated from plots of Amin, Amas V8. 9; shown in (b) (details can be
found in Section 3.2.3) and were a, = J.11sec™!, aq = 0.74sec™?, Aon = 15.7mm?
and 4,7y = 34.5mm?. In (b) the values of A,y a0d Apmes represent values averaged
over a minimum of ten consecutive cycles.
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Figure 3.4.2 shows pupillary oscillations over a range of threshold values for the
PCMF case (Figure 3.4.2b). To find the parameters for this PCMF case, a PCNFE
experiment as in Figure 3.4.1 is first carried out. The parameters are obtained from

the usual plot in Figure 3.4.2b. These parameters are then used directly in the model

_,dA Aon, 0, < A, <6,
o ' — + A=

dt («‘.'l.l)

Aorp, i A, <6y or Ap >0y,
where the asymptotes are expressed in terms of physiological parameters in (2.2.29)
and (2.2.30).

The model solutions obtained for these parameters are shown in Figure 3.4.2 to
the right of the observed oscillations. They are in agreement with the data, even in
Figure 3.4.2e. However, as in Section 3.3.3, the fine structure of the model solutions
is not seen in the data. Rather, the observed oscillations appear as lowpass filtered
versions of the model solutions

Figure 3.1.3 compares the performance of the C1D1l and SPR parameter esti-
mation schemes in modelling the PCMF data (we have already seen that the C'I1DI
method is superior for fitting the single pulse response). While both methods give
good agreement for the simpler behaviors, the CID1 gives better qualitative agree-
ment with the data in Figures 3.1.3¢ and d. This is particularly obvious 1n Figure
3.4.3d, where the SPR method predicts an equilibrium solution A(f)  A,pp while
the C1D1 method predicts a complex limit cycle with [4 pulses per period.

Our model of PCNF-induced oscillations in Section 2.2 6 shows that the asymp-
totes are functions of all the other physiological parameters, induding the rate con-
stants. Hence, if any of these parameters fluctuates (e g because of hippus), the
asymptotes will also fluctuate. The model thus provides justification for the ap-
proach in Section 3.3.4, in which the asymptotes were assumed to fluctuate. Also,
the assumption that the rate constants undergo the most important changes does not
yield satisfactory results (Section 3.3.5).

Figure 3.4.4 illustrates the bifurcation diagrams of (3.1.1) in the subspace of
parameter space spanned by A, and d,7¢ (all other parameters are kept constant)
The boxes represent asymptote variability. The size of the boxes was determined from
PCNF oscillations 1n the same way as for Figures 3 3 8 and 3.3.9, i.e by estimaling
the asymptote values at each cycle using the rate constants as in Fquation (3.3.7).
However, the rate constants were provided by the CI1D1 method rather than the SPR

method. This asymrtote variability was assumed to be independent of the threshold
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Figure 3.4.2 Comparison of the changes in pupil area that occur as a function of
time with imposed mixed feedback to those predicted by (3.4.1) (subject JM). The
piecewise constant mixed feedback is shown in (a). The parameters a. = 3.88sec™?,
aq = 0.265sec™}, Aon = 15.5mm? and 4, = 34.2mm? were measured from the plots
in (b) obtained in a preliminary experiment with piecewise constant negative feedback
(as in Figure 3.4.2). The delay was r = 411msec. The upper (62) and lower (6,) area
thresholds are indicated by the arrows at the right sides of the time series and were

respectively : (c) 21.5mm?,24.5mm3; (d) 21mm?,22mm?; (e) 18.9mm?,19.5mm?;
and (f) 17.95mm?,18.5mm?.
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Figure 3.4.3 Comparison of the changes that occur as a function of time with
imposed piecewise constant mixed feedback (Figure 3.4.1) to those predicted by (3.4.1)
when the parameters are estimated from either the response of the pupil to a single
light pulse (a’-d’) (Section 3.3.2) or from cycling measurements (a”-d”) (Section 3.2.3).
The upper (62) and lower (6,) area thresholds are indicated by the “ ” at the right
hand sides of the figure and are respectively : a,a’,a”) 21.5 mm2, 24.5 mm? ; b,b’,b”)
21.0 mm?, 22.0 mm? ; c,c’,c”) 18.9 mm?, 19.5 mn? ; and d,d’,d”) 17.95 mm?, 18.5
mm?. The cycling method is seen to give better agreement over the range of threshold
values investigated.
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Figure 3.4.4 The (Aon,Aos7)-parameter space for Equation (3.4.1) for the values
of the area thresholds 6,,8; in Figure (3.4.2) (a,b,c and d correspond, respectively,
to Figure 3.4.2 c,d,e and f). In constructing these parameter spaces the values of
@c,q and T have been fixed and we have classified the periodic solutions of (3.4.1)
by the number of light pulses per period as in Figures 3.3.5 and 3.3.9. The region “C”
contains very complex periodic solutions in close proximity, as well as unstable mixing
solutions. The parameter fluctuations were measured in the same way as for Figures
3.3.8 and 3.3.9, i.e. using the values of a. and ag and (3.3.7) on each successive cycle
of the negative feedback oscillations. The rectangular boxes enclose these measured
values of A,n and A,sy, and are assumed tc all be the same size (i.c. the size is
independent of the thresholds).
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settings, and thus all the boxes are the same size. The center of cach box is the same
in all panels of Figure 3.4.4, and corresponds to the values of .1, and .155 obtained
from the C1D1 method (Figure 3.4.2h).

Figure 3.4.4 shows that the asymptote fluctuations do not affect the observability
of the period 1 and 2 solutions. In fact, our analysis even predicts that the period
5 solutions (Figure 3.4.4c) should be observable, which is the case. Finally, from
Figure 3.4.4d, the asymptote fluctuatlions are shown to overlap regions of parameter
space corresponding to qualitatively different solutions. This implics again that the
observed behavior might be aperiodic. However, our model solution has features in
common with the data in Figure 3.4.2f. This might be a consequence of the long
correlation time of the noise (i.e. to its slow variation - see Section 5.2.2), which can
maintain the asymptotes in one of the regions of parameter space long enough for the
corresponding behavior to be observed.

Overall, the C1D1 parameter estimation method performs better than the SPR
method. It is based on a model which not only characterizes the pupil light reflex
by five parameters (the rate constants, the asymptotes and the delay), but also esti-
mates these from averages over many single pulse responses occurring under cycling
conditions. Our analysis of PCMF oscillations using (3.-1.1) and the CID1 estimation
scheme is probably optimal without resorting to higher order models. Experimentally,
the fine structure of the model solutions is generally not seen, which is an indication

that our model overestimates the bandwidth of the pupil light reflex.

3.4.2 Limitations of experimental accuracy.

The preceding analysis indicates that much of the irregularity in the oscillations
observed in mixed feedback can probably be ascribed to hippus and other noise sources
which influence the deterministic oscillations. However, there are other factors that
might contribute to discrepancies between experiment and theory, but to a lesser
extent. One factor concerns fluctuations in pupil area that arise due to fluctuations in
the accommodation reflex. In fact, 1t is very diflicult for a subject to fixate on a target
for long periods of time (i.e. for 20 seconds or more); further, these accommodation
fluctuations often occur unconsciously.

A second factor is that the measurement of pupil area itself has certain accu-
racy limitations. Although the 0.01mm?2 precision and 1% linearity are sufficient for
our purpose, eye movements will affect infrared illumination and hence the gray level

discrimination between iris and pupil. These movements, though minimized by fixing
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the gaze on the target, are unavoidable and the resulting area value will be slightly
inaccurate. Further, when the pupil is small, eye movements might perturb the il-
lumination in Maxwellian view. This results in a partially closed feedback loop and
the “clamping” is no longer perfect. We believe this effect to be minimal since pupil
diameter rarely goes below 4mm and the beam waist at the pupil is 1.2mm. Finally,
there is a 16masec uncertainty in the signal processing delay, due to the sampling time

of the pupillometer.

3.4.3 Multistability.

All the properties of the C1D1 model discussed to this point and in Section 4.5
have been obtained for initial functions which are either constant or have a single
crossing of the threshold 6, on the interval (-1,0). Multistability of equilibrium
solutions has been shown for the latter type of initial function (Section 4.5). In this
section it is shown that the limit cycle solutions of the C1D1 model are also not always
globally attracting when the initial conditions are of the latter type. Thus, with
different initial functions, solutions may evolve towards different eventual asymptotic
behaviors.

Solutions corresponding to two slightly different initial functions having a single
threshold crossing on the interval (—1,0) are plotted in Figure 3.4.5. The crossing
times differ by 0.001. The limit cycle solution in Figure 3.4.5a has 6 pulses of light
per period, while that in Figure 3.4.5b,c has 38 pulses per period. More precisely, the
interval (—1,0) was found to be partitioned into two sets I1 and 12 of subintervals.
The initial functions having their crossing time in the set I1 were attracted toward
the period 6 solution, while the others with crossing time in 12 converged toward
the period 38 solution. This type of multistability was found for many different
parameter sets corresponding to complicated limit cycles. However, for this class
of initial functions, multistability was not found for simpler limit cycles (e.g. with
1,2,4,5,7 pulses per period). It is possible that multistability of the type shown here
(i.e. bistability) or of a more complicated type is quite common in differential-delay

equations, especially when the initial functions are more complex.

3.4.4 Noise or Chaos?

The fact that certain parameters fluctuate randomly leads to a system in which
transients are more often observed than steady-state motion on an attractor. This is
particularly true if the parameters fluctuate over regions of parameter space where

qualitatively different motions are in ciose proximity, as is usually the case for complex
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Figure 3.4.5 Ilustration of multistability in Equation (3.4.1). The initial function
is between the two thresholds for t € (~1,~1+w) and less than the lower threshold 8,
for t € (-1 + w,0), and 2(0) = 8;. In (a) the threshold croseing occurs at w = 0.055
and the solution is attracted to a period-6 (3.65 sec) limit cycle (i.e. the solution enters
the region bounded by the two thresholds 6 times per period). In (b), w = 0.056 and
the solution is attracted to a different limit cycle of period 38 (20.14 sec).
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periodic and chaotic motion. In fact, for a given noise correlation time, the system
location in parameter space spends more time in the large regions corresponding to
simple periodic motion and hence these behaviors are easily identifiable in a time
series.

Our current level of understanding of our model DDE for PCMF (see Section
4.5 for more details) does not allow us to say with certainty whether or not we have
observed chaos in the pupil light reflex clamped with PCMF. The chaotic solutions
for which there exist proofs of existence (for certain parameters: see Section 4.5) are
not stable. Likewise, the mixing solutions known to exist in the case where the system
is asymptotically stable (Section 4.2.1 and 4.5) are unstable because the slope of the
map used in the proof is everywhere greater than one. In computer experiments
as in real physical systems, only stable behaviors can be observed. The presence
of the unstable solutions can nevertheless complicate phase space motion, especially
far from attractors (where transients occur). In fact, although all our simulations
of (3.4.1) converged to limit cycle solutions, the transients were extremely long for
certain parameter sets (sometimes up to 1000 delays).

Further, certain more complex limit cycles (and possibly all limit cycles) are not
globally asymptotically stable, according to the results of Section 3.4.4. Hence, if
different initial conditions converge to different solutions in the absence of noise, then
it is possible for additive noise to perturb the system from one basin of attraction to
another in phase space. Qur picture of a system being perturbed {from one behavior to
another by parametric fluctuations (because the phase space topology is fluctuating),
and undergoing transients associated with the different solutions (see Sections 3.3.5
and 3.4.1), will be further complicated by additive noise. The transients may also
be complicated by noise amplification at bifurcation points (at which no solution is
stable) (see Section 5.2). However, in Section 5.3 it is shown that this effect should
occur for smooth feedback and be negligible for piecewise constant feedback. In fact, a
detailed analysis of the simpler PCNF case in Section 5.3 reveals that noise causes the
period to fluctuate much more than the amplitude in the vicinity of the bifurcation
point corresponding to oscillation onset. These period fluctuations are also expected

to occur near bifurcations between more complex types of behaviors as seen in the

PCMF case.
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3.4.5 Noise, damping, temporal integration and retinal adaptation.

In this section, we investigate how to include damping, temporal integration and
retinal adaptation into the model developed in Section 2.2. The motivations for doing
this are: 1) to obtain a model equation that is at least second order in time to account
for the smooth waveforms scen experimentally in PCNFE and PCMF; and 2) to see
whether the model suggests ways of estimating new parameters characterizing these
phenomena. The modelling of noise is also discussed.

Modelling the iris muscles using second order differential equations.

The onset of constriction is always very rapid. Hence, despite the presence
of the dilator muscle and of visco-elastic forces, the constriction of the sphincter
predominates and is well approximated by a first order process On the other hand,
the dilation phase has a slower onset, and in many instances appears Lo involve two
or more exponentials (see e.g. Figure 3.2.2b). This reflects the fact that the dilation
phase is the result of many competing influences, such as dilator activation (after
a delay greater than 300msec), active inhibition of the Edinger-Westphal nucleus
and passive relaxation of the sphincter muscle. After-discharge, which describes the
ongoing neural activity after the stimulus has stopped, may also occur in the afferent

part of the parasympathetic pathway (e.g. at the retina). This would also delay the

onset of dilation?®3.

In Figure 3.2.6, the single pulse response was shown to be more accurately fit
by a model that accounts for the fact that the iris muscle cannot change its velocity
instantaneously. This model assumed that constriction involved one exponential,
while dilation involved two (i.e. it is a C1D2 fit), and that the function and slope
were everywhere continuous. On the cther hand, fits of the single pulse response using
a C2D2 model have been found to be very unreliable (see Appendix C). Thus, as a
first approach towards a higher order model for pupillary oscillations, we will look at
C1D2 type models.

To properly model the observed pupillary oscillations, and especially the PCMF-
induced oscillations, it is important to fil a segment of the data that is representative of
the oscillation. The isolated single pulse response is different from the pulse response
that occurs during pupil cycling. In fact, the asymptotes obtained for the isolated
pulse tend to be higher, because the average illumination is lower than during pupil
cycling. Thus, this isolated response was not considered representative of the cycling

data. Instead, we have chosen to directly fit a single pulse response in a pupil cycling
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Time t = 0 is chosen unambiguously as the time at which the area signal crosses
the threshold downwards. The value of the upper asymptote is chosen to be the
one obtained using the C1D1 method (i.e. from Figure 3.4.2b). Figure 3.4.6a shows
the C1D2 fit (SPFC1D2 in Appendix C) to the first pulse response in Figure 3.4.2c.
Comparison with similar fits for the other cycles in Figure 3.4.2c¢ shows that the
parameter ag from 1.68 to 17.0, while a. varies between 6.36 and 10.18, B4 between
0.36 and 0.93 and 4 between 3.96 and 5.13. The pnulses have different amplitudes
because the time spent above threshold varies, presumably because of hippus.

The parameter values from this C1D2 fit were then used to numerically integrate
the differential equations (3.2.5) corresponding to this C1D2 model in the PCNF
configuration. The result is shown in Figure 3.4.6b. The period of ~ 2 seconds agrees
with the mean period of pupil cycling in Figure 3.4.2c. As expected, the derivative
is continuous in the transition from constriction to dilation, and discontinuous for
the opposite transition. The overall shape of the waveform agrees with that observed
experimentally.

The obvious next step is to numerically integrate the same model but with
PCMF rather than PCNF. We have found (data not shown) that for equal threshold
values, the model solutions were significantly different from the data. For example,
the period 2 type solution was not seen for the same threshold values, although it
was seen for other threshold values. Further simulations also revealed that threshold
values which produced con.plex limit cycles were difficult to locate. The introduction
of a second dilatory component seems to have limited the bandwidth of the model.

The inclusion of higher order dynamics in our model yields simple solutions that
are in better agreement with the data, at the expense of losing agreement for the
more complex solutions. There is a lot of uncertainty and arbitrariness in the ways
to extend our model. It is not very clear what insights into pupillary dynamics will
be gained by p irsuing this type of fitting.

Additwve and Multiplicative noise.

As mentioned in Section 3.4.1, the asymptotes corresponding to the equilibrium
solutions of (3.4.1) are given by (2.2.29) and (2.2.30), and they are functions of all
the other physiological parameters. This suggests that fluctuations in any of these
parameters will also induce fluctuations in the asymptotes. Some parameters are more

likely to fluctuate than others. For example, a, A¢ and G are related to properties of
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Figure 3.4.8 a) Fit of the first pulse response in the cycling data shown in Figure
3.4.2c. The constriction is fitted by one exponential, and dilation by two exponen-
tials (program SPFC1D2 in Appendix C). Because the point of constriction onset is
slightly xmbiguous (although not as ambiguous as the point of dilation onset), t =0
was chosen to correspond to the downward crossing of the threshold 8,. The fitting
function assumes that constriction occurs from time t = 0 ¢o time ¢t = 0.411 (the de-
lay), after which dilation occurs. Because of the continuity constraint on the function
and its derivative at time ¢ = 0.411, the area still decreases for a hundred milliseconds
or more before the actual dilation is observed. A,zs was set to the value (34.2) de-
termined by the C1D1 method (Table 3.1, subject C). The fit yields the parameters
A =439, a, = 7.90, ag = 1.68 and A3 = 0.58. The x? is 6.92 £ 0.25. The fit was
repeated for many sets of initial guesses and was found to be very robust. In b), the
solution of the C1D2 model using the parameters from the fit in a) in the program
C1D2SOL (Appendix C and D) is shown. The first cycle corresponds to a).
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the iris muscles; their variations are minimal since pupillary fluctuations are synchro-
nized in both pupils (Section 2.1.3).

The root-mean-square amplitude of hippus has been shown to depend on pupil
area!’. This suggests a multiplicative neise model (see also Section 5.2). It has also
been shown that the amplitude of hippus closely parallels the deterministic gain of
the reflex™. Addilive Gaussian noise, injected at the level of the Edinger-Westphal
nucleus and filtered by he nonlinearities of the neuromuscular system, has been
shown to reproduce the multiplicative characteristic of hippus™. In our model, this
corresponds to multiplicative noise on v, i.e. v = 5 4+ c€(t) , where ¥ is the mean
value, o is the noise intensity and £(t) is a stochastic process.

The real situation is probably more complicated than this. The stochastic activ-
ity of neurons within the reflex arc itself, as opposed to the activity of other neurons
which modulates parameters such as y, may be viewed as additive noise when its
amplitude is independent of the state of the system. High spontaneous activity of
Edinger-Westphal neurons has been reported, even in the absence of any synaptic
input (see Section 2.1.2). Hence, it is reasonable that the neural output E of the

midbrain (Section 2.2.3) will look like :

H(t — 1 — 1) d(t — 7 — T¢)
A o)

E(t) = in + a1 &1(2t) ln[-——¢ + oaéy(t) (3.4.2)

The output consists of a term proportional to the logarithm of the light flux, a term
proportional to the product of the logarithm of light flux and the multiplicative noise
intensity ¢, and another term simply proportional to the additive noise intensity o5.
By substituting this expression for F(t) into (2.2.4) or (2.2.8), the model for pupillary
oscillations becomes a stochastic DDE with additive and multiplicative noise.
Temporal integration and adaptation at the retina.

In response to a light pulse, the activity in the optic nerve does not increase
instantaneously but rather builds up with a time constant on the order of 50-100

msec*®. This “temporal integration” at the retina will affect pupil area dynamics, so
Equation (2.2.2) should read:

AéI—Z—t(t—) +N(t) = nln[(b—(—t—%—zﬁ] (3.4.3)

The steady state output of the optic nerve will be proportional to the logarithm of

the light flux and inversely proportional to the time constant of neural activity decay

(A).
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Using the results of Section 2.2.3, the dynamics of the pupil are now described
by two coupled ODE’s, (3.4.3) and
dg(4)d4 '
k 1 T kag(A)=y'N(t -1, — ™) (3.4.4)
Equations (3.4.3) and (3.4.4) can be combined into a second order differential equation
for pupil area :

dg(A)  d?A

dA, k ' -
14 g Tt A‘l)—gt— + —fg(A) = %’ ln[ﬂt—zﬂl (3.1.5)

If g(A) is linearized, i.e. g(A) ~ g(A*) + B(A — A'), the model for PCNF-induced

oscillations becomes

dzA -1 d!’l [0
a Hat AT + AW
_ aAo ‘)" ¢off ¢_b_
=2 Tigaln s -q;’f(A(t——r)— Ares)| (3.4.6)

It appears from (3.4.6) that temporal integration at the retina does not change the
value of the asymptotes, since A disappears when all time derivatives are zero and
v'/k = v as in (2.2.29) and (2.2.30). Further, it is now possible to include second
order effects by simply including the proper retinal time constant into our model. All
the other parameters can be estimated as usual from the CIDI1 cycling model.

This model was investigated numerically for a range of values of A between
0.01 and 1 seconds (data not shown). It was found that smooth oscillations could be
obtained, and for the PCNF case the period agreed with the experimentally measured
value (Figure 3.4.2a) when A = 0.05 seconds. However, the transition from dilation
to constriction was more abrupt than that from constriction to dilation, which is
opposite to what is experimentally observed in PCNF. This behavior is probably due
to the response asymmetry, which modifies the damping and natural frequency. It
is possible that the value of A should also depend on whether the light is on or off
Further the value of A at time ¢ should depend on the light intensity at a time {7,
where 7, is the retinal delay.

In response to constant stimulation (e.g. provided by the average light level),
neural activity in the afferent pathway of sensory systems usually exhibits an abrupt
increase at stimulus onset, followed by a decrease in this activity®3*®. This means

that the activity is proportional to the time derivative of the stimulus intensity. The
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rate of activity decrease is called the adaptation rate. Different adaptation processes
operating on different time scales are known to exist in the visual system!'®. Some
processes occur at the retina, others higher up in the afferent arc. The model presented
in Section 2.2 neglects the high and low frequency characteristics of the pupil light
reflex associated with adaptation.

A more complete model for pupillary oscillations would include temporal inte-
gration and adaptation in the afferent arc, additive and multiplicative noise injected
at the midbrain, as well as a second order differential equation for the muscle iner-
tia and damping (we still neglect the sympathetic pathway as well as the intensity

dependence of the iris rate constants seen in Section 2.2.9):

WAL AN gy an
n@dtﬁ2 + E(t) = pdiv%t:f—‘) + [% + oli(t)]N(t — 1)+ oaba(t)  (3.4.8)
dN(t) B I(t — . )A(t — 7+)

Eq.(3.4.8) is a simple model for linear adaptation*®. Again the retina imperfectly
integrates the activity in the optic nerve. The output of the midbrain is proportional
to the steady state activity in the optic nerve N(¢) (tonic response) and to the time
derivative of this activity (phasic response). The bandwiuth of the pupil light reflex

will depend sensitively on this phasic response.

3.4.6 Summary of Chapter 3.

The results of this chapter show that simple oscillatory activity can be sustained
by the different neuronal populations comprising the pupil light reflex arc. This
behaviour can be modelled by a simple DDE for the pupil light reflex. However, the
analysis of complex deterministic oscillations in this ncural delayed system is severely
limited by the high nmsc levels. The question of whether or not we have observed chaos
is still open. Our approach has been to charactlerize the noise and improve our simple
model to obtain better agreement with data. Ience we have relied on the stringent
test of quantitative agreement between experiment and theory (see Section [.2) to
determine whether the origin of the observed aperiodic behaviour was deterministic
or stochastic As Noyes!? has pointed out, aperiodicity can be a consequence of many
phenomena other than chaos which deserve just as much consideration. It is often

hard to abandon such an elegant explanation for aperiodicity as chaos, especially when
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it is generated by a simple deterministic equation with a small number of measurable

parameters.

118




R e Lian

by

CHAPTER 4
INVARIANT DENSITIES FOR DELAY-DIFFERENTIAL EQUATIONS

“Nothing puzzles me more than time and space; and yet
nothing troubles me less, as I never think about them.”

Charles Lamb

4.1 INTRODUCTION.

This chapter continues the study of delay-differential equations (DDE’s) from
the point of view of densities constructed {from time series. This lays the groundwork
for Chapter 5 in which we study the onset of oscillatory motion in the pupil light
reflex. In these last two chapters (except for Section 4.5), the focus is no longer on
complex deterministic motion in a neural control system (obtained using PCMF') but
rather on simple periodic motion. The emphasisis on understanding the determinis.ic
and stochastic behaviour of neural delayed feedback systems (such as the pupil 1ight
reflex) at oscillation onset.

This shift in focus comes from the demonstration in Chapter 3 of the difficulty in
analyzing complex deterministic motion in the presence of noise. Irregular aperiodic
behaviour is observed in the pupil light reflex even though a deterministic model
predicts simple periodic limit cycle motion (Section 3.2). This observation is not
especially surprising, since it has been made in all experimental systems where routes
to chaos have been studied. It suggests that the effect of noise deserves more attention
than it has previously received, and that an analysis of the origin and properties of
noise might provide deeper insight into the dynamics of neural systems.

There are two reasons why we are interested in densities for delay-differential
equations. The first is related to the properties of dissipative dynamical systems, and
the second is related to noise.

The dynamical systems we are interested in, i.e. nonlinear DDE’s, are dissi-
pative, as opposed to conservative. An important property of dissipative dynamical
systems is that Liouville’s theorem does not hold, which means that phase space vol-
ume (or Lebesgue measure : see Section 4.2) is not prescrved as the system evolves
in time. In the asymptotic long time limit after transients have died out, phase space
trajectories of such systems approach an invariant set (Section 4.2), called the attrac-
tor (assuming a stable attractor exists), which can be characterized by a density. A

trivial example of an attracting invariant set for a dissipative dynamical system is the
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stable equilibrium point of a damped harmonic oscillator.

The existence of an attractor allows us to study dynamical properties of the
system using the attractor. For example, if the dynamical system has the property of
ergodicity, time averages can be written as phase space averages using the tnvariaut
density of the measure associated with the attractor (see Section 4.2). This invariant
density is of great importance. The value of the density at given point on the attractor
is a measure of the fraction of the time the system spends in a neighborhood of
this point. For example, in the microcanonical ensemble where the energy and the
number of particles is constant, the invariant density is the uniform density (the
density of the Lebesgue measure) on the invariani set (energy surface) Hence, for
the microcanonical ensemble, the uniform density implies that the system explores
the invariant set uniformly.’

The other reason for studying invariant densities is noise. The presence of noise
makes the statistical properties of individual trajectories characterized by probability
distributions impnrtant, and further motivates the study of the dynamics of DDI’s
from the evolution of densities. In fact, we will see in Chapter 5 that densities are
essential when studying bifurcations in the presence of noise since it is the extrema
of these densities (often different from those in the deterministic case) that undergo

bifurcations.

In this chapter, the concepts of attractor, density, ergodicity and chaos will be
formally presented. They will be applied to the study of deterministic and stochastic
DDE’s. Section 4.2 introduces the mathematical tools for the study of invariant den-
sities of discrete and continuous time dynamical systems with and without noise. In
Section 4.3, we calculate densities for the Mackey-Glass cquation and their behaviour
at bifurcation points. Section 4.4 looks at an approximation of DDE’s via coupled
ODE'’s when there is a distribution of delays rather than a single fixed delay. In Sec-
tion 4.5, we review the known properties (obtained using the tools of Section 4.2) of
the hrst order DDE with PCMF encountered in Chapter 3 Section 4.6 examines the
singutar perturbation limit in which the DDE becomes a discrete time map  Section
4.7 deals with this same limit but in continuous time. The resulting coutinuous time
difference equation provides insight into the dynamics of DDE’s. Finally, Section 4.8

presents a new numerical integration method for DDE’s based on observations made

*In this example from statistical mechanics, the phase space motion is however not attracting: it is
always confined to the energy surface
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in Sections 4.6 and 4.7.

4.2 INVARIANT DENSITIES FOR DISCRETE AND CONTINUOUS
TIME SYSTEMS.

4.2.1 Deterministic dynamical systems.
The evolution of a one-dimensional discrete time dynamical system is described
by a mapping:
Top1 = S(€,)- (4.2.1)

The domain and range of the mapping have to be specified along with the functional
form of S(z). A well-studied example is the logistic (also called quadratic) map
S :]0,1] — [0,1) defined by:

Tni1 = T2n(l —z4,). (4.2.2)

Starting with an initial condition ¢, a trajectory is obtained by iterating the map. In
the asymptotic long time li.nit the trajectory will trace out the attractor corresponding
to the particular value of the parameter r. By constructing a histogram of the iterates,
after allowing enough time for the transients to die out, an invariant density on this
attractor can be numerically constructed.

An alternate way of obtaining an invariant density is by starting with an initial
density fy(z) supported on some subset of the domain of the map. One can then
iterate this density under the action of § to obtain fi(z), f2(z),... in the same way
that single points are iterated. This corresponds to simultaneously iterating an in-
finite number of points and hence to following an infinite number of trajectories at
once. The initial density specifies the weight associated with each initial condition.
If the dynamical system (4.2.1) is ergodic (see 4.2.13), this density point of view is
completely equivalent to the time series point of view.

The mapping S(r) is said to be nonsingular if the measure' p on the phase space
X of the variable z satisfies u(S7!(4)) = 0 for all subsete 4 of phase space such that
p(A4) = 0. If S(z) is nonsingular, an expression for the operator P that transforms a

density f,(z) into a new density f,;(z) = Pf,(z) afier one iteration of the map can

* A real-valued function g defined on a phase space X is a measure if : a) u(#) = 0 where @ is the
null set; b) u(A) > 0 for all subsets A of X; and c) p{Ur 4x) = Zk i(Ag) if {Ag} is a finite or
infinite sequence of pairwise disjoint subsets of X, thatis, A, N A, = 0 for ¢ # 3.
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be obtained (see Lasota and Mackey!®). The fraction of the density Pf contained in
some set A is given by

/4P f(s)ds. (4.2.3)

The points in A contributing to Pf had their origin in the counterimage of the set A
under the action of the map S, given by S71(A4) = {y : S(y) € A4}. Since the fraction

of the density P f in A must equal the fraction of the original density in S7!(4), we
have'

APf(s)d.s =f f(s)ds. (4.2.4)

S=1(4)

The operator P, called the Frobenius-Perron operator, is unique by the Radon-

Nikodym theorem?3.

An explicit form for this operator, when A = [q, 2], is

d
n =Pf,(z) = — w(8)ds. 4.2.5
fn@=Ph@ =g [ 6 (4:25)
It can also be written as :
b
frs(®) = Pi(o) = [ 8(5() - )a(w) dy (1.26)

where 6 is the Dirac delta function and the integration extends over the domain of
the map [a, b].

The usual Lebesgue measure of a set of points A is denoted by p1;(A), and the
density of the Lebesgue measure is the uniform density, i.e. f(z) = 1 for all z. Hence
we write pp(dz) = de. To a general density f(z) is associated an f—measure which,

for an arbitrary subset A of the total phase space X, is defined by

urtd) = [ f(@)ds. (4.2.7)

The f-measure is said to be absolutely continuous with respect to the measure p,
which is the Lebesgue measure dz in the case of (4.2.7). A set A is said to he

invariant under S if $71(A) = A. Also, S(z) is measure preserving if

#(S7H(4)) = u(4) (4.2.8)

*The set of densities is defined by D = {f € L' : f > 0,|] f ||= 1}. The desired operator P is a
Markov operator, i.c. a linear operator sativfying a) Pf > 0 and b) || Pf ||= so that P iaps

I i tt !
densities into densities.
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for all subsets A. We will say alternately that the measure p is invariant under S if

S is measure preserving. It can be shown that a measure py is invariant under S if
and only if f is a fixed point of the Frobenius-Perron operator P, i.e. a density that

satisfies

Pf.(2) = f(z). (4.29)

We then call f, the invariant density for the map S.
For the logistic map (4.2.2) with » = 4, the Frobenius-Perron operator takes the

form

1
Pf(z) = 4-\/1_——:—_—:;{]‘(%—%\/1—-m)+f(%+%\/1—:n)}. (4.2.10)
It is easily verified that the nonuniform density

fil) = —mee (4.2.11)

my/z(1 — z)

satisfies Pf, = f.. Hence, the measure

1 de
ns.(4) = — /A N (4.2.12)
is invariant under S(z) = 4z(1 — z).

In general, given the Frobenius-Perron operator P, it is difficult to solve (4.2.9)
for f,. Although numerically it takes the same time to compute the invariant density
to a given resolution by iterating a single point than by iterating an initial density,
there is one striking feature of the latter method: densities converge very rapidly
(within a few iterations) to the invariant density. Further, complicated motion along
single trajectories in phase space may correspond to simple behaviour for the densities.
For example, when the trajectory is chaotic (i.e. when r = 4) in the logistic map
(4.2.2), the density converges rapidly and uniformly to the smooth density given by
(4.2.11).

The existence of an absolutely continuous invariant measure does not necessarily
imply any particularly interesting or erratic behavior. The behavior is more inter-
esting if the Frobenius-Perron operator has a unique fixed point f,, so there is a
unique absolutely continuous invariant measure. In this case the map S(z) is ergodic,

meaning that every set invariant under S is trivial, i.e.

§$71(A) = A implies p(A) = 0 or (X — 4) =0 (4.2.13)
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for all A in the total phase space X. Ergodic systems may not produce very irregular
solutions. In fact, two arbitrarily close initial conditions may yield arbitrarily close
trajectories for all time.

Nearby trajectories will diverge if the map has the added property of mixing,
which is a mild kind of chaotic behavior. If 4 and B are subsets of X with measure
p#(X) =1, then for all A, B a mixing transformation satisfies :

lim (A NS ™(B)) = p(A)p(B). (4.2.14)

n—o0

A stronger type of chaotic motion will occur if, besides ergodicity and mixing, the
system has the added property of exactness. A measure-preserving transformation

S(z) is said to be exact if
lim p(S™(4)) =1 (4.2.15)

n—00
for every subset A such that pu(A4) > 0. This means that a set of initial conditions of
nonzero measure will have spread and completely filled the phase space.

In general, it is very difficult to prove that a map is mixing or exact using these
definitions. Equivalent criteria have been derived!® for classifying various degrees of
irregular behavior. They concern the convergence properties of iterates P™f of the
Frobenius-Perron operator corresponding to these transformations, rather than the
behavior of sequences of sets. Simply stated, S(z) is ergodic, mixing or exact if and
only if the sequence {P™ f} is, respectively, Cesaro, weakly or strongly convergent to |,
i.e. the uniform density, for all initial (normalized) densities. The precise definitions
of these terms and the proofs of these results can be found in Lasota and Mackey'?
(p.63 et seq.).

It can be shown!® that a one-dimensional map S(z) is exact if its Frobenius-

Perron operator has the property of asymptotic stability, i.c. there is a unique density

f. € L such that Pf, = f, and

lim ||P"f — f.|| = 0 for every density f € D. (4.2.16)
n— oo

The map S(z) : I — I, where I = [ag,a,] is a compact interval of the real line, is
asymptotically stable if :
i) there is a partition ¢y < a; < @y < ... < a, of I such that for each integer 1,2,...r

the restriction of S to the interval [@,_1,@,) is twice continuously differentiable;

*In the hierarchy ergodicity —s mizing —s ezactness, each property implies those to its left, but
the reciprocal is not necessarily true (see Ref. 13, p.73).
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i) S(lai-1,0:)) = [au,ar), i.e. § is surjective (or onto) on each subinterval;

iti) there is a constant A > 1 such that Ii%g;x—l] > X whenever z # a; fori =1,2,...,7;
2 2

iv) there is a constant ¢ < oo such that I—‘!—E};ll < c[il—“?,-(fl] whenever ¢ # a; for

1=1,2,..,7r.

Condition (iii) on the slope of S is important because it implies that all solutions
will be unstable.' Hence if the Frobenius-Perron operator is asymptotically stable,
the behavior of the solutions is much more complicated than if it were simply ergodic.

The Frobenius-Perron operator associated with the map § is “asymptotically
periodic” rather than “asymptotically stable” if condition (ii) above is not satisfied.
In this case, an invariant measure always exists. However, the iterates of an arbitrary
initial density f, cycle periodically (after a transitory period) between a finite number
of densities. Further, each density comprises a certain number of functions supported
on disjoint intervals, and these functions permute cyclically among themselves. The
case where the period is 1 (i.e. no change from one iterate to the other) corresponds
to asymptotic stability. A detailed account of the properties of asymptotic periodicity

is given in Lasota and Mackey! 119,

CONTINUOUS TIME DYNAMICAL SYSTEMS
The evolution of an d-dimensional continuous time dynamical system =(t) is
governed by the d-dimensional vector field generated by
dz

= = B(&). (4.2.17)

Each component B, of B is a scalar function of the coordinates z;. The flow of

densities is governed by a continuous semigroup of Frobenius-Perron operators
f(z,t) = P f(z,0) = PI(z) = /d T'(z,y;t)I(y)dy (4.2.18)
R

where [(z) is the initial density and the kernel I'(z,y;t) is called the fundamental
solution or the Green’s function of the system. The density f(z,t) = P, f(z,0) satisfies
the partial differential equation (PDE)

of(z, .8
_L(gt_ﬂ _ ; 5o Bif (@, ) (4.2.19)

*The trajectory of a discrete thme dynamical system is stable (i.e. attracting) if the product of the
slopes of 8(r) evaluated at all the points on the trajectory is less than 1 in absolute value®.
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which is known as the generalized Liouville equation. The invariant density f, is
found by solving the PDE obtained by seiting gg;—’t—l = 0 in (4.2.19). Asin the

discrete time case, the Frobenius-Perron operator can be either ergodic, mixing or

exact!3.

4.2.2 Stochastically perturbed dynamical systems.

Noise can directly perturb the trajectories of a discrete time dynamical system.

In this case we say that the noise is “additive”:

Tnt+1 = S((I}n) + én . (4.220)

Noise can also perturb the dynamics by modifying one of the parameters of S(z), in

which case one has “multiplicative” or “parametric” noise:

Zngr = S(2n,En) . (4.2.21)

From the point of view of statistical mechanics, it is the average influence of the noise
on the deterministic system that is of interest. Hence in defining any function » one
should only consider an ensemble average, i.e. an average over the different sequences

of random numbers {§,},7 € N generated by the same probability density g(£):

=] rosed (12.22)

— o0

If we consider only one trajectory evolving from the initial condition ¢, then the
probability density of z at the nt" iterate, is fo(z) = 8(z — zn), where z, = §™(zo).
This result holds for a particular realization of the stochastic process. Since z,, is
a function of all the perturbations §,, 1 = 1,2,...,n, we can calculate the density of

T, as an average of §(z — ¢,,) over all possible realizations of the ¢,'s. Generalizing
(4.2.22), we write

) = [ Tl oteddes(e - 2n). (4.2.23)

This average probability for z, is a path integral for noise (see e.g. Feigenbaum and
Hasslacher'??). It can be shown!?12! that the iteration of densities under the action
of the map (4.2.20) satisfies

Farr(z) = /R Fa®)a(= - S(v) dy . (4.2.24)
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for the additive noise case. Note that the argument of g is simply ¢ from (4.2.20). For

multiplicative noise, the iteration of densities would also satisfy (1.2.21) but with the
proper expression for ¢ from (4.2.21). Comparison with (4.2.6) shows that the delta
function has been replaced by the density of the noise, and the domain of integration is
no longer that of the map but rather that of the noise. Further, the Frobenius-Perron
operator is replaced by the more general Markov operator!? (4.2.24).

In the stochastically perturbed continuous time case, the dynamics obey the

generalized Langevin equation!®?!

dz - "

E”t_’ = B(&) + Z(Z)&(t) (4.2.25)
where £ is a vector of stochastic variables and Z is a matrix whose components Z,;
are scalar functions of the z,'s. The flow of densities is governed by the Fokker-Planck

equation

af(:c ) _ Z [B f(z,1)] Z 5 a ———a;; f(z, )] (4.2.26)

i,j=1

where
d
aij(z) = E Zi(2)Z k(). (4.2.27)

Comparison with (4.2.19) shows that the diffusion term, i.e. the second term on

the right hand side of (4.2.26), is due to the stochastic perturbation.

4.3 SOLUTIONS AND BIFURCATIONS OF DDE’s FROM THE DEN-
SITY POINT OF VIEW.

In this section, our investigation of the properties of DDE’s begins with the study
of a solvable first order linear DDE. It is then shown how a density can in general be
calculated from the explicit time-dependent solution of a differential equation in the
asymptotic time limit. The problem of obtaining the explicit time-dependent solution
of a nonlinear DDE (especially in the presence of noise), as well as the problem of
interpreting the density obtained from the solution of an infinite dimensional DDE

are discussed. This leads us to our numerical approach to the study of densities for
DDE’s.

4.3.1 Linear delay-differential equations.
DDE’s are functional differential equations. They are infinite dimensional be-

cause their solution requires the specification of an initial function on [—7,0], which
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corresponds to an infinite number of initial conditions. The few techniques available
for their study are mathematically involved (see Hale'??; Muhammed'??), since they
describe flows in a functional space (such as a Banach space) rather than in the usual
phase space for ODE’s.

The situation is much simpler for linear DDE’s, which may arise from the lin-

earization of nonlinear DDE’s such as our model for pupillary oscillations in Section
2.23:

— = —az(t) + PBz(t — 7). (4.3.1)

A closed form solution can be found for this first order linear DDE. Its Laplace
transform can be written :
0
X(s) = {ﬂ e / e "r(u)du + 1:(0)} s +a—pPe 7|t (4.3.2)
.
(s+a—Be ") is a meromorphic function since it has an infinite number of conjugate
pairs of isolated poles. Using the Mittag-Lefler theorem (see e.g. Saaty!??), we can

form the expansion

o0 =

sba—ge) = 3 Sy : (433

W 8 Sk (s — s )(1+ T8k + aT)

k=—o0
where ¢y is the residue of the left hand side at s; and is obtained using I’'Hopital’s
rule. The inverse Laplace transform yields
1 c+100 oo
—_ st . st
o(t) = 5 / eX(S)ds = 3 pen (4.3.4)

~too k=00

where o

i = crz(0) + Bk e"”/ z(u)e™ " du.

—r
The solution involves an infinite number of integrals over the initial function. Further,
different initial functions will yield the same solution if all the integrals corresponding
to the different s;’s have the same value. The zero solution, neutrally stable oscilla-
tions (when there are pure imaginary eigenvalues) and unhounded solutions are the
only possible asymptotic solutions for this and every other linear differential delay
equation.

Given the difficulties involved in obtaining analytical solutions for nonlincar
DDE’s, linear stability analysis and eigenfunction expansions of the solution are

among the few tools available for their study.
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4.3.2 Calculating a density from the solution.

Given the explicit solution z(¢) of a differential equation, it is straightforward
to determine the density f(z) corresponding to the degree of freedom z. Let A be
a set of points in the domain of the time variable ¢, and assume that the uniform
(Lebesgue) measure is the invariant measure for this variable. The case where a
solution z(t) is obtained by numerical integration of a differential equation with a
fixed time step, or where a solution is uniformly sampled in time, are illustrations of
a uniform measure on time. The measure of the set A is then simply pr(A). Likewise,
assume the measure ps is associated with the variable z, where f(z) is a density to
be determined. The explicit time-dependent solution z(t) can be seen as a mapping

from the time domain to the z-domain. The set A4 is then transformed into the set

B = z(A). It follows that
/ f(z)dz = / dt. (4.3.5)
B A

Since the set A is arbitrary, the density f(z) is given by

1
f=z) = de/dt’

(4.3.6)

In the case where the solution is periodic, the density can be constructed from a
single period of the solution. From (4.3.6) it is obvious that f(z) is singular whenever
¢ = 0. Since (4.3.6) involves the vector field f(Z) (= ‘;—j, as in (4.2.17)), one might
think that the density can be obtained directly from the differential equation without
having to integrate it. However, the vector field gives the value of the derivative at
any point in the field, including those where transients occur, while we are interested
only by the support of the density, i.e. the attractor.

As an example of how a density is obtained from the solution, let

z(t) = Asin(wt) = a/k — ko sin(wt), (4.3.7)

which approximates the solution of a DDE close to the Hopf bifurcation point k = ky.

The normalized density on the x-axis is

fi(z) = - (4.3.8)

TA cos[arcsin(%)] ’

which is singular at z = +4. Also,

Vk—kq
lert’cl(, - fr(z)dz =1 (4.3.9)
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and thus
k]irrkl fe(z) = 8(z) (-1.3.10)

which is the density (or rather distribution since it is no longer L') of the equilibrium

solution (for k < ko).

4.3.3 Numerical computation of invariant densities.

While the theory of iavariant densities for ODE’s and maps is well developed,
to our knowledge it is nonexistent for DDE’s. In fact it is not clear what kind of
measure to use in the infinite-dimensional phase space in which the solutions of DDE’s
evolve. The bold approach which assumes that a generalized Liouville equation can
be defined for a DDE leads to the extremely difficult problem of solving a PDE with
retarded argument. It is possible that the application to DDE’s of measure-theoretical
techniques developed for the study of PDE’s!® may prove more {ruitful.

In this and the next chapter, we examine the densities constructed from the
trajectory of the state variable obtained by numerical integration of DDE’s. It is not
clear whether these densities represent “invariant densities” for DDE’s. However, it
is clear that for constant initial functions they numerically converge to an invariant
form with or without noise, and that they have features in common with invariant
densities for maps and ODE’s. We make the tacit assumption that invariant densities
for the DDE’s of interest exist and are globally stable (attracting) for the class of
constant initial functions. With this proviso, henceforth these numerically generated
densities will be referred to as “invariant densities”.

The densities shown in Figure (4.3.1) were obtained from the numerical integra-
tion of the Mackey-Glass equation?* :

dz A0"z(t — T
2 - el zE‘(t - )r)

(4.3.11)

after allowing sufficient time for the transients to decay. The interval (0.5,1.5) (cen-
tered about the fixed point ' = 1) was divided into 500 bins. A fourth order
Runge-Kutta algorithm (see Appendix D) was used, and the initial function was a
constant.

The densities appear to be continuous with very narrow peaks corresponding to
the zero-slope points of the solution. The amplitude of the very narrow peaks in the
density is irrelevant, as it is determined by the precise boundaries of the bins, and

would be infinite if the bins were infinitely narrow (see Section 4.3.2). The value of
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Figure 4.3.1 Numerically computed densities corresponding to solutions of the
Mackey-Glass equation (4.3.11). The densities are constructed by partitioning the
z-interval (0,1.5) into 500 bins. The parameter values are r = 2, A = 2,8 = 1
and a = 1. The integration time step for the fourth order Runge-Kutta method
with linear interpolation for the delay is 7/40. (4.3.11) is integrated starting from
a constant initial function for 1000 delays, which are discarded as transients. The
density is obtained from the solution for the next 2000 delays. The ordinate scale
goes from 0 to BINMAX, which is 1.i times the value of the highest peak in the
histogram. A period doubling bifurcation occurs as n goes from 7.3 to 7.4 (compare
a,b). Also, a periodic window emerges out of chaos as n goes from 9.6 to 9.7 (d,e).
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the bifurcation parameter n in (4.3.11) increases from Figure 4.3.1a to 4.3.1f. Figure
4.3.1a corresponds to a nearly sinusoidal solution for a parameter value between that
at which a Hopf bifurcation (n = 5.04) and the first period-doubling bifurcation
(n = 7.36) occur. As the Hopf bifurcation is approached, the small peak between
the two larger peaks disappears (data not shown) and the shape of the density is
approximated by (4.3.8). A period-doubling bifurcation has occurred between 4.3.1a
and 4.3.1b. As a consequence of chis period-doubling, the solution has two more zero-
slope points during one period, observed as a splitting in the narrow peak structure
of the density. figure 4.5.1c illustrates the invariant density of a complicated periodic
orbit.

The invariant density for a chaotic solution is seen in Figure 4.3.1d. In the
chaotic regime, the density looks like that for periodic motion with superimposed
noise. Further, narrow peaks are now broadened and there are no longer any sharp
cusps. In Figure 4.3.1e, it is seen that upon further increase of the parameter n in
(4.3.11), the chaotic type of solution gives way to a periodic solution. This “periodic

window” is once again replaced by chaotic motion as n is increased further.

4.4 DISTRIBUTED DELAYS: APPROXIMATING THE DDE WITH
COUPLED ODE’s.

In this section, the approximation of DDE’s by ODE’s is considered. Then,
the concept of “distributed delay system” is defined and an example is given. It is
shown how such systems can be equivalent to DDE’s, and the degree to which they

approximate the behavior of a DDE at a Hopf bifurcation.

4.4.1 Approximating the DDE by an ODE.

It is straightforward to rescale Equation (4.3.11) as

dz
i —z(t) + f(z:(t — a‘r)) , (4.4.1)

where f corresponds to the second term on the right hand side of (4.3.11). In the
limit ar < 1 where (4.4.1) (or (4.3.13)) behaves like an ODE, it is possible to expand

the nonlinear delayed feedback in powers of (a7). Thus

art)?
z(t — at) = &(t) — (at)z(t) + ( 2) E(t) — ... (4.4.2)

Further, f can be expanded around a solution xo which is, for example, a fixed point,

or the limit cycle solution z¢(t) = z* + A sin(wt):

f(a:(t—ar)) ~ f(zo) +{z(t—at)—=z0] df +%[m(t~a‘r)—m0]2 d*f

da ) b (4.4.3)
zy Ty
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Hence, the DDE (4.4.1) is approximated by

d:z: -1
7 +z(t) ~ a” f(xo)
o df 2(1) + (@7)
+ a Ia _ {z(t) — ©o — (aT)2(t) + 5 i(t)}
b S o) - w0 - (ema( + a0} + .
%z, (4.4.4)

The limit aT < 1 can be achieved by letting o and/or 7 go to zero. However, when a
goes to zero, the right hand side of (4.4.4) diverges due to the a™! terms. If at — 0
because the delay goes to zero, the expansion will converge (see Mallet-Paret and
Nussbaum!?%). Approximating the DDE by an ODE in the above manner will only
work when the delay is small. For the pupil, the value of ar is between 0.2 and 1,
and the delay is certainly not negligible. Thus this approximation is inappropriate

for our problem and will not be pursued any further.

4.4.2 Distributed delays.

Up to now, the focus has been on systems whose time evolution depends not only
on their present state but also on the value of some state variable at a precise time in
the past. More generally, one can consider systems whose memory exf:nds over the
whole past. The extent to which values in the past aflect their present evolution is
determined by a kernel K(¢) :

dr ¢

= = fe(t),2(t)  where  5(t) = /_w K(t - w)o(u) du (4.4.5)
The fixed delay case we have considered thus far corresponds to choosing a Dirac
delta function for the kernel.

As a specific example of a system with distributed delay, consider the transmis-
sion of electrical activity along the optic nerve. This nerve consists in a bundle of
axons emanating from the cell bodies of specific neurons in the retina (the ganglion
cells). These axons are not all identical, because their axon diameters are distributed
according to a certain probability density. Axon diameter determines the propagation
speed of the nerve impulse. For myelinated axons, the velocity is proportional to the
square root of the diameter of the axon, while it is proportional to the diameter for
demyeclinated axons. Thus, even if all ganglion cells fire simultaneously, the action po-
tentials will arrive at the postsynaptic neuron population after different propagation
delays, hence the origin of distributed delays in nerve conduction. Often the spread

in conduction times is small enough to warrant the use of a single fixed delay.
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4.4.3 Transforming a« DDE into coupled ODE’s.
Under certain conditions, a DDE is equivalent to an infinite set of ODE’s. This
can be shown using the following approach!26-128, Assume the kernel in (4.4.5) is

normalized and has the form of a gamma distribution
ﬂ'm —
Gig) = -Zpqme™,  am20 (4.4.6)

where m is an integer. This kernel has a maximum at ¢ = — so the average delay is
a

given by
* qG™(q)d
?zfowq e(e)dg _m+1 (447)
fo Gr(q)dq a
The important property of this kernel is
lim GF(q) = 6(g ~7) (4.4.8)
T const
so that in this limit
2(t)=2z(t-7). (4.4.9)
We now define
Yo(t) = (1)
t . 4.4.10
yi(t) = / 2(uw)GT Nt —u)de i=1,..,m+1 ( )

du:
The equations satisfied by the y,(t)’s are obtained by computing il (using Leibniz’s

rule) and using the recursive relation dt

Wall 2) _ afoz'(t-w) - G2t - w) (44.11)
The result is

%tg = f(yo,ym+1)

o (4.4.12)

dt a(Ys-1 — ¥i) 1=1,2,...,m+1

where the first equation follows from ym41(t) = 2(t). Hence (4.4.5) is strictly equiv-
alent to the system of equations (4.4.12), which is an (m + 2)-dimensional system of

ODE’s, all of which are linear except for the first one which contains f. If the limit
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in (4.4.8) is taken, the original system (4.4.5) becomes a DDE, and it is equivalent to

an infinite set of linear ODE’s plus one nonlinear ODE.

In the limit m — oo, the initial condition for both the integro-differential equa-
tion (4.4.5) (a function on (—00,0]) and the system (4.4.12) is infinite-dimensional.
However, for finite m, the initial condition for (4.4.5) is still infinite dimensional, while
that for (4.4.12) is a point in an (m + 2)-dimensional phase space. This “dimension
reduction” which occurs in the transformation from the distributed delay system to
the finite-dimensional set of ODE’s is, however, only apparent.

Let I(t), t € (—00,0] be the initial condition of (4.4.5). Then the initial condi-
tions y,(0) of (4.4.12) are constants given by

¥.(0) = /0 I(w)Gy Y (—u)du. (4.4.13)
~o0
Further, if I(u) equals a constant €, then %,(0) = C for all i because the kernels
are normalized. What this means is that although the initial condition is infinite
dimensional, the solution depends only on a finite number of constants given by the
integrals in (4.4 13). This becomes more apparent when the problem is formulated in
terms of the (m + 2) coupled ODE’s.

4.4.4 Approximating the behavior of a DDE at a Hopf bifurcation.

In Section 5.3, the Hopf bifurcationin DDE’s is studied in relation to experiments
on the onset of pupillary oscillations. In Section 5.2, it is shown that the Hopf
bifurcation analysis for DDE’s is mathematically involved. Hence, any approach that
can give analytical insight into this bifurcation is welcome. The approximation of a
DDE by ODE’s studied in this section can yield such insight. He.e, we address the
question of how many ODE’s are needed to obtain a reasonable approximation to the
behaviour of the DDE at a Hopf bifurcation.

If a small number suffices, we might improve our understanding of the dynamics
of DDE’s using the analytical tools to deal with ODE’s. In turn, these analytical
tools would open the door to the study of the influence of noise on DDE’s, a topic
about which very little is known.

We give the beginning of an answer to this question by investigating the Hopf
bifurcation in the set of ODE’s equivalent to the Mackey-Glass equation :

de A" z(t - 7)
= —az(t) + %+ (i = 1)

5 = F(z(t),z(t - 7)) (4.4.14)

135




¢ 9

In particular, we want to know how many ODE’s are needed for close agreement
between the values ny at which the bifurcation occurs in the DDE and in the system
of ODE’s. We first proceed to the Hopf analysis of the m + 2-dimensional system.
After linearizing the set of ODE’s (4.4.12) around its fixed point

A + } A 1/n
Yo =Yy = oon = ym+1 = 0[; e 1] / (4.4.'5)
we can compute the characteristic equation for the linearized flow
(a+ A)(a+ 2™+ = Ba™H! (4.4.16)
na? . .
where f = a —na + ul Setting A = iw, (4.4.16) becomes
m+1 )
(a+iw) Y CPHla™H=i(iw) = BamH! (4.4.17)
3=0
b!
where C! = 10 ; are the binomial coefficients. For given values of m,a,8, « and
al(b — a)!

A, we must find the values of w and 8 which satisfy the real and imaginary parts of
(4.4.17). From this value of 3, the value of n in (4.4.14) can be deduced.

We have computed the values of w and 8 which satisfy (4.4.17) for the parameter
values : 8 = 1; @ = 1; A = 2; 7 = 2 for which the fixed point of (1.4.11) satisfies
z* = 1. As m is increased, the ratio 7 =— %‘i—l is kept equal to 2, the value of the delay
in the Mackey-Glass equation. This implies that a in fact depends on the value of m,
so in (4.4.17) we have a = a(m). Figure (4.4.1) plots, as a function of m, the value of
n (corresponding to the values of w and A which satisfy (1.4.17)) at which the Hopf
bifurcation occurs. We find that as m - oo, the value of n converges to the value for
the DDE (ng = 5.04). Also, the fewer ODE’s one uses for the approximation of the
DDE, the steeper the feedback function (the steepness is proportional to n) has to be
in order to destabilize the fixed point.

A system that undergoes a Hopf bifurcation when the slope of its feedback
function is steep is considered to be more stable than one in which the bifurcation
occurs for a small slope. Our result implies that as the memory function G in (4.4.6)
becomes more localized in the past (as m --» 00), the system loses stability. This

suggests that the nervous system might use distributed delays to avoid regenerative

oscillations in negative feedback loops. On the other hand, it may use “localized
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Figure 4.4.1 Value of n at which a Hopf bifurcation occurs in the set of coupled
ODE’s (4.4.12) used to approximate (4.4.14) versus the number m of equations used
in the approximation. m corresponds to the order of the memory kernel (4.4.6). Asm
increases, the memory function becomes more localized, and the value of n converges
to that for which the delay-differential equation (4.4.14) undergoes a Hopf bifurcation

(5.04).
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memory functions” corresponding e.g. to the kernels (4.4.6) with a high m value to
maintain oscillatory behavior.

A simple calculation shows that the 2-dimensional system corresponding to
m = 0 does not have a Hopf bifurcation. At least a 3-dimensional system of ODE’s
modelling distributed delays is needed to produce oscillatory behavior (one dimension
more than the minimum of two required for the occurrence of a Hopf bifurcation in
ODE’s). A similar result has been reported by Marriott and Vallée!??) who have
approximated the DDE using a N-dimensional ODE modelling a system with N in-
dependent components with identical response times.

The study of DDE’s using distributed delays gives us insight into how a system
loses stability as memory is progressively shifted to a precise time in the past. It
would be interesting to see whether this result still holds when there is a nonzero
minimal delay, which is more relevant physiologically than distributed delays alone.
In fact, in the nonzero minimal delay case, it can be shown that the DDE reduces to
one nonlinear DDE and (m + 1) linear ODE’s. The approach of this section has also
shown that the space of initial functions for DDE’s, although infinite-dimensional, is
partitioned into subsets which yield the same solution. In fact, in the m --» oo case
corresponding to the DDE, the solution is shown to depend on an infinite number of
integrals of the initial function over the kernels, and many initial functions will yield

the same value for these integrals

4.5 MAPS AND INVARIJANT DENSITIES FOR A DDE WITH PCMF.

4.5.1 Introductory remarks.

We now give a specific application of the concepts of Section 4.2 to the analysis
of the dynamical properties of a delay-differential equation. The equation is the first

order DDE with piecewise constant mixed feedback (PCMF) encountered in Sections

3.3and 3.4 :

_ydz

7 + z(t) = f(z,) where f = {

c 0, <z, <8,

d z,<0,orz,>8,,

where the state variable is denoted by z instead of A. The structure of this equation
is identical to that used for pupil area dvnamics; its solutions are simply inverted and
shifted by a constant. This is because an increase in the forcing (light intensity) in

the pupil equation causes the area to decrease, due to the increase in the activity to

the iris sphincter muscle.
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When the feedback function f is a single-humped smooth (rather than piece-
wise constant) nonlinear function (4.5.1) becomes the paradigm of systems exhibiting
“mixed feedback”, i.e. a combination of positive and negative feedback (see an der
Heiden and Mackey®® and references therein). This equation has received much at-
tention in physiological dynamics, and especially in blood cell population dynamics,
where it is known as the Mackey-Glass equation (see (4.3.11)). It also arises in non-
linear optics, where it serves as a model for optical bistability and is known as the
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Ikeda equation!®". In this latter case, the function f can be multi-humped.

Piecewise linear and piecewise constant systems such as (4.5.1) have also received

considerable attention in the mathematics literature®®-114.131.132

. Besides being inter-
esting in their own right, they often serve as approximations to, or idealizations of,
systems with smooth nonlinearities. In fact, analytical insight into the dynamics of
smooth feedback systems becomes possible if f i1s assumed to be constant over major
sections of its domain. Under certain conditions this assumption allows us, as we will
show, to study an infinite-dimensional DDE in terms of a one-dimensional discrete

time map.

In this section, the most important properties of (4.5.1) are reviewed and new
findings from our own simulations are presented. Equaivion (4.5.1) is one of the few
continuous time dynamical systems for which there are analytical proofs of existence
of chaotic motion. The proofs for the analytical results in this section are very te-

dious and can be found in the references®® 114,

The properties presented here have
been proved for the more general case where the feedback function has three levels
{(in the context of PCMF-induced pupillary oscillations in Section 3.3, this would cor-
respond to different OFF-state illuminations on each side of the ON-state). Further,
these properties hold when certain smoothing conditions are applied to remove the

discontinuities in f (Walther'?!).

4.5.2 Analysis of PCMF using crossing time maps.

The analysis summarized in this section shows that successive differences in
threshold crossing times obey a one-dimensional map which, for different parameter
sets, either: 1) salisfies the Li and Yorke conditions**? for chaotic motion; or 2) has
an asymptotically stable Frobenius-Perron operator associated with it ; or 3) has an
asymptotically periodic Frobenius-Perron operator associated with it (definitions of

these terms are found in Section 4.2).
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The first step in the analysis is to scale time in units of the delay, as in (4.3.13):

% = —arz(t) + 7 flz(t — 1)]. (4.5.2)
where f now denotes the nonlinear function on the right hand side of (4.5.1). It is
also possible to rescale the amplitude of ¢ so that the lower threshold satisfies 8; - 1.

At any given time, the function f is equal to a constant. Hence, (4.3.13) is a first
order linear inhomogeneous differential equation. If z . is between the two thresholds,
8, < z, < 0,, then z(t) will consists of an exponential increasing towards an upper
asymptotic value = = S ¢, is outside the region between the two thresholds, i.e
z, >0y, or z. < (())1, th% solution will he an exponential decreasing towards a lower
asymptotic value —. The solution of (4.5.2) is thus given by a continuous function
made up of a sequgnce of increasing and decreasing exponentials, as shown in Figure
4.5.1. Further, since the derivative in (4.5.2) has a finite discontinuity (due to the
piecewise constant nature of f), the solution z(t) will be continuous (a consequence
of the smoothing action of the integration) However, 2(¢) will not be differentiable
at the connecting points hetween increasing and decreasing exponentials.

The complexity of the solution in the interval (¢,¢+ 1) depends on the number of
times the solution crossed the thresholds during the interval (t - 1,¢t), as the system
has no memory beyond one delay. Since at any given time the solution consisis of a
single exponential, it is possible to analytically determine the threshold crossing times.
Such would not be the case if the homogeneous part of (4.5.2) were second order or
higher. The key property of (4.5.2) lies in the fact that its solutions can be constructed
from a knowledge of the crossing times ¢, with the thresholds #; and 8. In fact, the
extrema or “turning points” of the solution occur at times ¢, + 1, i.e. the crossing
time plus one delay. We will show that the crossing times are uniquely determined
by the the thresholds crossings of the initial function, and give an example where a
map relating successive crossing time differences can be derived Before proceeding,
results concerning the simpler behaviors of (4.5.2) are presented®S.

Let #; = 0 and 8, = b, which corresponds to the negative feedback case. If
the upper asymptote vy = ° satisfies 7 < 83, then v i1s a globally asymptotically
stable stationary solution ofoz4.5.2). However, if ¥ > b, (4.5.2) has an asymptotically
orbitally stable periodic solution of period larger than 2 which attracts all orbits
corresponding to monotone initial conditions. This periodic solution is simply the

piecewise constant negative feedback solution encountered in Sections 2.2.6 and 3.2.
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Now let §; = 1 and @3 = b = oco. This corresponds to a positive feedback
configuration. If ¥ < 1, then the origin is a globally asymptotically stable stationary
solution of (4.5.2). But if ¥ > 1, then the constant solutions v and 0 are only
locally asymptotically stable. In fact, if the initial condition ¢(f),t € [~1,0] satisfies
0 < ¢(t) < 1, the solution will be atiracted towards the origin. Likewise, if ¢(t) > 1,
the solution will converge to y. The threshold 8, acts as a repellor.

What happens if the initial condition oscillates 2bout #; ? An der Heiden and
Mackey®® have shown that there exists an unstable periodic solution which separates
the domains of attraction of the two constant solutions v and 0. This solution has
exactly one minimum per period. The unstable periodic orbit is at the origin of the
more complicated dynamics exhibited by (4.5.2).

REDUCTION OF THE DYNAMICS TO A ONE-DIMENSIONAL MAP

Assume that the feedback is positive. Consider the set I of initial functions ¢
defined as follows (see Figure 4.5.1a,b): ¢ € I if there is some w € [0,1] such that
#(t) > L forall t € [-1,-1 + w), and ¢(t) < 1 for all t € (=1 + w,0) with ¢(0) = 1.
A map V : I —[0,1] is induced by V(¢) = w. It follows that

a(t) =y —(y—1)e forall te(0,w], (4.5.3)
2(t) = z(w)e - forall te€[w,1]. (4.5.4)

The solution on [0, 1] is uniquely determined by w. Hence, the solution for all time
depends only on w. Depending on the value of w, it is seen from Figure 4.5.1a,b
that z(1) can be either smaller or larger than 8; = 1. Figure 4.5.1a illustrates the
limiting case w = w; where the increasing solution starting at #(1) does not reach the
threshold; the solution simply decreases towards the locally stable origin. Likewise,
Figure 4.5.1b shows the other limiting case w = w, where (1) > 1, in which the
solution increases towards .

Between these two limiting cases, i.e. for w € [w;,ws], the dynamics of positive
feedback can be analyzed as follows. Let t; be the crossing time in the interval |w,1}
at which z(t;) = 1. Also, let ¢, € [1,1 +1;] be the next crossing time wh're z(t;) = 1
(in this case the solution is increasing when it crosses). The point of the analysis is to
find an interval in which the solution belongs to the same class I of initial functions.
This interval can then serve as an initial condition, and the process repeats. It is seen

in Figure 4.5.2a that (f; — 1,15) is such an interval, and this new initial condition is
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Figure 4.5.1 a) Time solution of (4.5.1) for an initial condition defined by the
crossing time (—1 + w;). The solution is repelled from the unstable limit cycle to
the origin. b) Time solution of (4.5.1) for an initial condition defined by the crossing
time (—1 + wy). The solution is repelled from the unstable limit cycle to the upper
locally stable fixed point v = 2. The parameters of (4.5.1) area=3,7=1, 6, =1,
02 =29,y = £ =2, w; =0.123 and w; =0.79.
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denoted 1,,. The crossing time for this initial condition is simply
V(%) =1 ~ (t2(w) — t1(w)) . (4.5.5)

A continuous map F : |wy,w;] — [0,1] can then be defined by F(w) = V(3y,).
Denoting by 0 < 7, < 72 < ... the times at which z(r;) = 1, the mapping can be

written more generally as

T2, — T21-1 = F(T2i—2 — T2,-3) (4.5.6)
By determining the expressions for ¢;(w) and t;(w), an analytical form for F(w) is
obtained®®. F(w) is plotted in Figure 4.5.2b for w € [w,,w2]. The slope of F(w) is
greater than one on this interval, which implies that the fixed point is unstable.

It is possible to analyze the more complex behavior that arises when the upper
threshold b is smaller than the upper asymptotic value vy. The resulting solution is
shown in Figure 4.5.2a. The solution oscillates a few times around to lower threshold
before drifting upward because of the presence of the unstable periodic orbit centered
on 6. The solution exits the hump (i.e. increases past b) and subsequently decreases
towards the origin. But then the same initial condition repeats, so the cycle repeats.
This behavior can again he analyzed in terms of a map F(w). In fact, in the interval
(wq,w2), the map is simply F'(w).

We now see thal any aperiodic behavior of F' will be reflected in the random
occurrence of crossing times. F'(w) is plotted in Figure 4.5.2b. While initial conditions
corresponding to w € [0, w,] still yield solutions that converge to zero, those for which
w C [wga, 1] now yield periodic solutions of spiral type as in Figure 4.5.2a. This is due
to the nonzero constant portion of F(w) on (wz,1] which reinjects the orbit near the
unstable fixed point.

The parameter b determines the (constant) value of the map on (w,,1]. For a
certain value of 4, the orbit is reinjected into the unstable fixed point w,. This case
corresponds to a homoclinic orbit!®, at which the stable and unstable manifolds of
the fixed point intersect. At this homoclinic point the solution oscillates an infinite
number of times around the lower threshold, so the period is infinite. At this point
we have spiral type chaos.

an der Heiden and Mackey®® have built more complicated maps from F(w) in
order to characterize more complicated motion. Further they have shown that, under

certain conditions, the Li and Yorke criteria!®® for chaotic motion in one-dimensional
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Figure 4.5.2 a) Spiral type solutions to (4.5.1). The solutions oscillates a certain
number of times around 4,, is slowly repelled upwards from the unstable limit cycle
about 8, increases past §; then decays back towards 6, and the cycle repeats. The
quantities ¢, and ¢, are defined i.\ the text. This behavior of (4.5.1) occurs for w €
(wy,ws) in Figure 4.5.1 and is governed by the map shown in 4.5.2b. For initial
conditions w < w;, the solution eventually goes to zero. For w > w,, the spiral type
limit cycle solutions are obtained. There is a value of the upper threshold 8; = b,
at which the constant part to the right of ws equals w,. At this point a homoclinic
orbit ensues and the solution has infinite period. Parameter values in a) are a = 1,
‘7=2,T=1,01 =1,03=1.9 and w = 0.55. Inb),a=3,7 =2,01 =1,02=5-8,
w; = 0.124, wy = 0.735 and w, = 0.406.
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maps are satisfied by one such map. This implies the existence of infinitely many

different periodic orbits and of infinitely many aperiodic orbits. However, as an der
Heiden''* pointed out, all of these solutions may turn out to be unstable (the result
stated above is about existence, not stability), and all solutions will be eventually
attracted to periodic orbits. This implies that the aperiodic solutions will not be
observable in physical or computer experiments. This behavior is indeed observed in
the numerical integration of (4.5.2) (see Appendix D). However, the transients of the
periodic solutions can be very long, even for constant initial conditions.

an der Heiden!!? extended the analysis to show that the behavior of solutions
corresponding to a very broad class of initial conditions can be studied from the
density point of view. This approach is based on the use of the Frobenius-Perron
operator for a map G derived from F 1n (4.5.6) (sec Section 4.2). For certain parameter
sets, an der Heiden (1985) has shown that the Frobemus-Perron operator associated
with G is asymptotically periodic!? (see Section 1.2.1). Although it has been shown
that a unique invariant measure is associated with G, which implies that G is at least
ergodic, the motion is more complicated than ergodic motion because the slope of G
is everywhere greater than one (in absolute value), which implies that all orbits are
unstable.

Finally an der Heiden'!* has shown that for certain parameters G is asymp-
totically stable, i.c. it is exact with respect to a measure which is itself absolutely
continuous with respect to Lehesgue measure (Section 4.1). This is our working def-
inition of “chaotic motion”. This result implies that the map for the differences in
successive crossing times 7, is mixing, and thus the times 7, occur randomly. But here,
as above, the trajectories are unstable and thus not observable numerically. They can
be responsible, however, for making transients very long and irregular (see Section
3.4).

It should be noted that the solutions of (4.5.2) obtained on the computer cor-
respond in fact to the exact analytical solutions. Qur computer algorithm (see Ap-
pendix 1)) keeps track of all the crossing times using their analytical forms. As a
consequence, a solution is considered to be periodic when it goes through the same
values with an accuracy of one part in 10'! (the llewlett Packard 9816 computer used

for these computations has 12 bit precision).

4.5.3 Other properties of PCMF revealed by simulation.

Many of the dynamical behaviors of (4.5.2) have yet to be explained using one-
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dimensional maps as in the preceding section. The mixed feedback case comprises
all the behaviors of the negative and positive feedback case, and shows a variety
of simple and complex limit cycles. The complexity arises becauses of the unstable
periodic orbit for positive feedback.

We have found that the solutions of (4.5.2) can undego period doubling sequences
as certain parameters are varied (not shown). These sequences are apparently always
truncated (i.e. a solution of unrelated period) when only one parameter is varied
at a time. Period triplings and period halving have also been observed. A wealth of
other dynamical behaviors is expected to occur for more complicated initial functions.
Examples of bifurcation diagrams for (1.5.2) were shown in Figures 3.3.5 and 3.3.9.
Finally, recall from Section 3.4.3 that (4.5.2) can, {or certain parameter sets, exhibit
multistability. In fact, for these parameters, the different limit cycle solutions are only
locally stable. The structure of the basin boundaries (in function space) of (1.5.2) is

not known and is currently being investigated (Losson et al., in prep.).

4.6 SINGULAR PERTURBATION LIMIT: DDE BECOMES A MAP.

In this section, we investigate the conditions under which the dynamics of first
order DDE’s are similar to those of a one-dimensional map. Such similarities would
enable us to analyze the dynamics of DDE’s using the powerful mathematical tools
that have been developed for maps (see Section 4.2).

The DDE of interest is again (4.3.13)

dz )
i —arz(t) + rf(z(t — 1)) . (1.3.13)

The limit where ar — oo is called the singular perturbation limit. In this limit, the

differential term acts as a perturbation on the difference equation that results when

this term is not present' :
z(t) = a” ' f(z(t - 1)) (4.6.1)
Denoting ¢, = z(n7), (4.6.1) can be written as a discrete time map:
Tpn4l = a"lf(mn) (462)

The dynamical behaviors of this map, such as period-doubling bifurcations and chaotic

motion, are also found in the DDE. In fact, the DDE exhibits a much broader range

*In the case where ar — oo because a — oo, the ratio ! must be kept constant 1n taking the

. . a
limit.
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of dynamical behaviors than the map obtained in the singular limit. In general, there

is no continuous transition between the dynamical structures of the map (periodic
orbits, their stability properties, bifurcation points) and those of the DDE, no matter
how large the parameter ar 12,

Examples of invariant densities for this map are shown in Figure 4.6.1. The
parameters are the same as those of the Mackey-Glass equation for which the densities
are shown in Figure4 3.1. It is seen that while the density for the DDE is characteristic
of a simple limit cycle, which undergoes a period doubling bifurcation between n = 7.3
and n = 7.4, the density for the map (4.6.2) shows a density with many peaks.

For discrete time systems, the density corresponding to a periodic solution is
supported on a set of measure zero containing the points of the periodic orbit. The
densities in Figure 4.6.1a,b,d are characteristic of chaotic motion, and the peaks cor-
respond to trajectories of values near the maximum of the map, which are very stable
(the orbit of the maximum itself is called the superstable orbit, because the product
of the slopes of the map along this trajectory equals zero)??. These peaks thus have
a different origin than those for the DDE, which correspond to zero-slope regions of
the solution. Such regions would correspond to peaks for the map if the map were
undergoing periodic rather than chaotic motion Thus, for equal parameter values,
the densities for the DDE and the map obtained in the singular limit of this DDE are
very different. This difference has been previously noted from he time series point
of view by Chow and Green!?t,

There is a striking connection between the Hopf bifurcation in a DDE and the
first period-doubling (pitchfork) bifurcation in the map obtained in the singular limit
of this DDE. Consider the DDE given by (4.3.13) and the corresponding map (4.6.2)
obtained in the singular limit. Both these equations have the same fixed point z'
which satisfies #* = a7 ! f(z'). As shown in Sections 2.2.4 and 5.2.1, the complex
conjugate pair of roots of the characteristic equation for the DDE (linearized around

z') lies in the right hand plane if

wr > cos ! (—%) (4.6.3)

where w = v/B2 — a? and B = —f'(z') > 0 (this last resfriction is not necessary, but
it corresponds to the negative and mixed feedback cases we have been most interested
in). Defining X = —§ < 0 (since a > 0}, (4.6.3) can be written as

cos~1(X)

aT > —W——l . (464)
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Figure 4.8.1 Densities obtained from numerically generated iterates of the map
(4.6.2) obtained in the limit ar » 1 in the Mackey-Giass equation (4.4.14). The
densities are computed for values of n similar to the ones used in Figure 4.3.1. The
other parameters are the same as in Figure 4.3.1. In c), a periodic solution is seen as
n is increased from a value at which the solution is chaotic (b). Chaos again appears
as n is increased on going from c) to d). The rounded form of the densities when
the map undergoes chaotic motion is similar to that of the densities corresponding to
periodic solutions of the Mackey-Glass equation (compare e.g. 4.3.1c and 4.6.1b).
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A plot of the stability of the fixed point as a function of ar and X is shown in Figure
. 46.2. f XY < -1 or X > 1, the fixed point is stable; these regions are labelled
“S”, Also, from Section 2.2.4 we know that (4.3.13) has stable limit cycle solutions
when inequality (1.6.4) is satisfied. These unstable solutions are found in the regions

labelled “U”.

The onset of oscillatory motion in the map (4.6.2) occurs at the first pitchfork (or

“period-doubling”) bifurcation, at which a™! f'(2') == -1 (corresponding to £ = 1).
The fixed point also loses stability when o' f'(z') = 1 (or g = —1), at which a

tangent bifurcation occurs. In fact, for —1 <« 5— < 1, the fixed point of the map is

stable. Since ‘l{ - 153, both the map and the DDE have a stable fixed point over the
same values of X, 1.e for .\ cutside the interval [—~1,1,. Thus, the stability diagram
for the map simply consists of the x-axis in Figure (4.6.2). The ccndition X' = —1
corresponds to the period-doubling bifurcation in the map, while X' = 1 corresponds
to the tangent bifurcation.

When the fixed point is unstable for the map, i.e. for —1 < X < 1, the fixed

point of the DDE can be either stable or unstable, depending on the value of ar. The
fact that the map is obtained formally by taking the limit ar — oo in the DDE
implies that only region “U” is relevant for the map. Ilence, when —1 < X < 1 for
the map, there is always a stable period 2 solution. The stability diagram for the
DDE is then seen as a simple prolongation in 2 dimensions (along the aT axis) of the

one-dimensional diagram for the map.

4.7 THE CONTINUOUS TIME DIFFERENCE EQUATION LIMIT OF
THE DDE.

In this section we consider the same singular limit as in the preceding section,

but time is taken to be continuous as in the original DDE, rather than discrete (in
units of the delay). This limit has also been studied by Zhang et al.!35,

The behavior of the continuous time difference equation (-1.6.1) can be ander-
stood from Figure 1.7.1, in which numerically computed solutions of this equation
are plotted for two different initial conditions. The integration time step equals one
two-hundreth of the delay. The value of n is such that the discrete time map (4.6.2)
has a period 2 orbit. The behavior of (4.6.1) depends on the initial condition. In
Figure 1.7.1a, the initial condition is a constant, and a symmetric square wave of

. period 27 ensues. The two values taken by the square wave are the same as those of

the period 2 orbit of (4.6.2). In fact, every point on the interval (- 7,0) follows the
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Figure 4.6.2 Stability diagram for Hopf bifurcation in the first order DDE (4.3.11).
The largest complex conjugate pair of roots of the characteristic equation of (4.3.11)
has negative real part in the regions labeled S, and positive real part in those labeled
U. The abscissa is z = 5* and is negative for smooth negative or mixed feedback.
For -1 < X < 1, the stability curve which separates the U and S regions and
corresponding to the right haud side of (4.6.4) is plotted as a function of X' For X
values in this interval, the singular limit ar > 1 of (4.3.11) implies that inequality
(4.6.4) is always satisfied, and hence the system lies in region U. In this limit, the
stability diagram of the DDE collapses down to the X axis, which is the stability
diagram for the map (4.6.2). This map undergoes a period-doubling bifurcation at
X = -1 and a tangent bifurcation at .\ = 1.
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Figure 4.7.1 Time solutions of the continuous time difference equation (4.6.1) for

two different initial conditions. The parameter values are A = 2,0 =1, a = 1,
7 T = 2 and n = 5, for which the discrete time map has a period 2 orbit. a) Constant

initial condition £ = 1.5 ; b) linear initial condition. ¢) stationary solution of b. The
integration time step is r/200.
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same trajectory, and the evolution of each point is independent of that of its neighbors.

In Figure 4.7.1b-c, a non-constant monotonic initial condition gives a different
asyraptotic solution. Comparison with 4 7.1a reveals that, although the period of the
oscillation has not changed, the shape has. Different parts of the imitial condition are
attracted to opposite values of the period 2 orbit, because they behave independently
Notice the spikes which are spaced a time delay apart. Tu fact they occur at times equal
to integer multiples of the delay, and are a consequence of the initial discontinmty at
time zero. This discontinuity is due to the fact that the first and last portions of the
initial function take on different values. Any discontinuity in the initial function will
be preserved with time, because this dynamical system does not smooth them out.
Our simulation of (4.6.1) behaves more like an N-dimensional map, where N is the
number of points at which the initial function is evaluated to perform the numerical

integration. In theory, (4.6.1) is simply an infinite dimensional map in which each

variable is independent of the other variables.

The effect of the differential term in the DDE is to make the behavior of a
point dependent on its neighborhood (see Section 4.8). The DDE can be scen as an
infinite dimensional map in which the variables are coupled. Numerical integration
of the DDE using, ¢ g., an Euler algorithm corresponds to the iteration of an N-
dimensional map in which the variables are coupled, as pointed out by Farmer!',
From this point of view, the continuous time difference equation and the DDE simply
transform a function on the interval (n7,(n 1 U)7] to another function on the interval
((n + Dr,(n + 2)7]. This behavior is clearly scen in Figure 4 7 1. The fact that
neighboring points are coupled by the differential term in the DDE changes the picture
drastically. In fact, numerical integration of the original DDE with the same two initial

conditions as in Figure 4.7.1 leads to the same asymptotic solution (not shown).

Comparison of Figures 4.3.1 and 4.6.1 shows that the value of n at which the
T — 2T bifurcation occurs for the discrete or continuous time difference equations is
smaller (n,=4) than the value at which the Hopf bifurcation ocenrs in the original
DDE (n,=5.04). But how does the period of the oscillatory solution of the DDE
compare with that of the continuous time difference equation? .F‘nr the difference

. vy 2
equation, the period is simply 27 = 4, while for the DDE it is - . i 5.49 (see

\/[32 ol

section 2.2.4). There is a significant difference in the periods.

Better agreement is obtained if the singular limit is taken differently. Rewrite
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(4.3.13) as

K%;—: +z(t) = a7 fz(t - 1)) (4.7.1)
where K = (at)~!. The left hand side of (4.7.1) can be approximated, if K < 1

(which is the singular limit we are interested in), by

K%—j— + 2(t) ~ B (1) (4.7.2)

Equation (4.7.2) can now be written
z(l) = a e K@ fz(t - 1)) =a ' f(=(t -1 - K)) (4.7.3)

since the exponential operator is a finite time-translation operator. In this case, the
period in units of delay is 2(1 + K}, i.e. 6 since K = 0.5. This gives closer agreement
with the real value of 5.49 . Although it is not clear how to generalize this procedure,
nor how to prove that it converges to the right period value, this limit seems to better

preserve the time scale of the original DDE.

4.8 NEW NUMERICAL INTEGRATION METHOD FOR DDE'’s.

The results of the last two sections suggest that the behavior of the first order
DDE may be understood as follows Assume that the system evolves in time steps
equal to some fraction of the delay (as for the numerical simulation of the continuous
time difference equation in Section 4.7). Suppose further that, at every time step t,
the system behaves like a map, and therefore generates a value of  at time (¢ + At)
according to (4.6.2). However, because the system has a nonzero response time, it can
not reach this value during the time step A{. Rather it tends exponentially towards
this value from its value at time t. Also, during this time step, the initial condition

at time ¢ decays exponentially. Thus we have :

et + At) = z(t)e > + M(l — e MY, (4.8.1)

«

We now have at our disposal a new integration method for DDE’s which is, in
fact, an integral version of the Euler algorithm. To see this, write (4.3.11) in integral

form:
z(t) = z(0)e "' + ‘/; e""('"”)f(m(s —71))ds, (4.8.2)

SO
t+ At

z(t + At) = z(0) e "+ 4 / f(z(s — 7)) emn{t+31=9) g4 (4.8.3)

-r
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t+At
= z(t) e >4 + / f(z(s— 7)) e~o(t+at-0) gg (4.8.4)
t

The integral in (4.8.4) can be approximated by

t+At
z(t + At) = f(z(t — 7)) e7(t+AY) / e ds (4.8.5)
¢
t —
= f—.—————(“’(a ) (1 - e-eat) (4.8.6)
so that the integral method becomes:
t —
o(t + At) = z(t)e At + -f—-(—w(—;—z-)—)-(l — e ™4, (1.8.7)

Expanding the exponential yields

2t + At) = M(a.&t oAy

- 5 ) (4.8.8)

This shows that the method is of higher order than the Euler method, to which it
reduces if only the first order term in At is kept.

We tested this algorithm (4.8.7) around the Hopf bifurcation of the Mackey-
Glass equation (4.4.14) which occurs at n = 1.0818 for the parameter values = 10,
A=2,a =1 and #§ = 1. This equation was integrated using for 5000 time delays
starting from a constant initial function. The density was then constructed from the
solution for the next 500 delays by dividing the interval (0.5,1.5) into 500 bins. An
integration time step of 7/200 was used. The distance between the two peaks of
the density corresponds to the limit cycle amplitude. The position of these peaks
is plotted versus the bifurcation parameter n in Figure 4.8.1. We have also plotted
the peak positions obtained with an Euler method and a fourth order Runge-Kutta
method. Notice that the interval of n values used corresponds to the immediate
vicinity of the Hopf bifurcation. In fact, for n > 4.15 (not shown), the three methods
yield similar results for this integration time step. Below this value of n, the three
curves become distinct.

Figure 4.8.1 shows that the Euler method predicts a nonzero limit cycle am-
plitude even though the theoretical value of this amplitude is zero. In fact all three
methods exhibit this problem to some extent, because of the extremely long transients
in the vicinity of the bifurcation point (see Section 5.1). However, Figure 4.8.1 shows

that the Runge-Kutta method converges more rapidly than the other methods
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Figure 4.8.1 Comparison of the performance of the numerical integration algorithm
described in Section 4.8 (solid line) with standard Euler and fourth order Runge-Kutta
algorithms. Limit cycle amplitude is plotted as a function of n at the Hopf bifurcation
occurring at n = 4.0818 in the Mackey-Glass equation (4.4.14). The parameter values
are 7= 10, A =2, ¢ =1and § =1 and the integration time step is /200. T!.c uew
method and the fourth order Runge-Kutta algorithm are in close agreement, and the
new method is four times faster than the Runge-Kutta method. Each method yields

a nonzero amplitude even when the theoretical value is zero, due to the lengthening
of the transients as the bifurcation point is approached.
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to the theoretical value for the limit cycle amplitude. Notice also that the accuracy of
this new method (4.8.7) is quite close to that of the Runge-Kutta method. Further,
its accuracy is superior to that of the Euler method. All three methods give similar
values for the period of the limit cycle, which is known (see Section 2.3.7) to vary
only slightly around the Hopf bifurcation.

However, the real difference is speed: the new algorithm is as fast as the Eu-
ler algorithm, which is four times faster than the Runge-Kutta algorithm. To our
knowledge, the integral method (4.8.7) presented here has never been proposed for
the numerical integration of DDE’s. Further investigation is warranted, since the
new method is almost as accurate as the fourth order Runge-Kutta algorithm and
much faster. A precise assessment of its overall accuracy and speed is still needed,
as we have only tested it against other methods for the specific problem of the Hopf
bifurcation. The method may also prove advantageous for the numerical integration
of stochastic DDE’s, since the simplicity of the algorithim should make the evalua-
tion of, e.g., correlation functions easier than for other higher order methods (such
as Runge-Kutta) when white or colored noise is present (see Section 5.2). In fact
a similar Euler integral method has been recently proposed by Fox et al.!*® which

allows the use of a larger time step for the integration of colored noise processes (sec

Section 5.2).
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CHAPTER 5
CRITICAL BEHAVIOR OF DELAYED FEEDBACK SYSTEMS
AT OSCILLATION ONSET

...How noiseless falls the foot of time...
W.R. Spencer

This chapter investigates the solution properties of deterministic and stochastic
delay-differential equations (DDE’s) at the onset of oscillatory behavior. These prop-
erties are used to explain results of experiments in which oscillations are induced in
the pupil light reflex using smooth (SNF) and piecewise constant (PCNF') negative
feedback.

This last chapter is motivated by the question of the origin of noise in the pupil
light reflex, as well as by the more general question of whether or not it is possible to
quantitatively analyze a bifurcation in a neural system in quantitative terms. Special
attention is given to the relationship between these two kinds of feedback, hecause
although SNF is closer to the normal feedback occurring in the pupil light reflex,
PCNF is much easier to implement experimentally and has been shown (Section 3.2)
to provide insight into the properties of this reflex. The transition from SNF to
PCNF is also a mathematically well-defined problem (Section 2.2.6). The results of
this chapter show that the mean and variance of the oscillation amplitude and period
behave differently as the bifurcation point is approached in SNF and PCNF.

The onset of oscillation in the SNF case occurs through a Hopf bifurcation
(Sections 2.2.4 and 2.3.6). Although extensive reference has been made to the Hopf
bifurcation, the full Hopf bifurcation theorem has not been given. A detailed descrip-
tion of this bifurcation in ordinary differential equations (ODE’s) is given in Section
5.1.1 and for DDE’s in Section 5.1.2. Further, Appendix A consists of a paper, pub-
lished in the Journal of Statistical Physics (in press, 1989), which looks at the effect
of additive and multiplicative necise on the Hopf bifurcation in a simple ODE. It is
an application of Fokker-Planck analysis (Section 4.2) to the study of the influence of
noise on a bifurcation.

In Section 5.2.1, an introduction to “noise-induced transitions”, which belong to
the more general class of nonequilibrium phase-transitions, is given. The theoretical
treatment of these transitions in terms of stochastic differential equations (SDE’s) is

discussed. Following this, the concepts of white noise (Section 5.2.2) and colored noise

157




(Section 5.2.3) are presented. Finally, a numerical algorithm to integrate a DDE with
additive and multiplicative noise is described in Section 5.2.4.

Section 5.3 comprises the manuscript of a paper to be submitted to Physical
Review A. The critical behavior of the pupil light reflex at oscillation onset is measured
experimentally and the results are explained theoretically and by numerical simulation
of a stochastic DDE.

Section 5.4 examines ways to understand the postponement of the Hopf bifur-
cation in a DDE by both additive and multiplicative noise, a phenomena discovered

in the analysis of Section 5.3.

5.1 DETERMINISTIC HOPF BIFURCATION IN ODE’s AND DDE’s.
In this chapter we consider the effect of additive and multiplicative noise on the
Hopf bifurcation exhibited by a simple first order delay- differential equation with

smooth negative feeiback,

dA cf™
@ - A eyt

(5.1.1)

as the parameter n is varied. We chose to study this DDE rather than the Mackey-
Glass equation?? with mixed feedback because 1t is of direct interest to the experitnen-
tal study of oscillation onset in the pupil light reflex studied in Section 5.3. Further,
we have found no qualitative difference between the critical behavior at osallation on-
set of a first order DDE with mixed feedback and one with negative feedback Locally,
the Hopf bifurcation is the same in both cases. However, after the first bifurcation
obtained by increasing either the slope of the feedback function at the fixed pomnt or
the delay, a sequence of period doubling bifurcations will occur in the mixed feedback
case??, while no further bifurcations are seen in the negative feedback case (Section
2.3.8).

We chose the parameters to be 7 = 0.3, ¢ = 200, a - 3.21, &k 20 and § 50
because they produce realistic simulated pupil area values. With these parameters,
a supercritical Hopf bifurcation occurs at n = 8.18. We have already studied (5.1.1)
with these parameters in Section 2.3. In this section, the determimstic Hopf bifurca-

tion is examined in more detail than in Sections 2.2 and 2.3.

5.1.1. Hopf Bifurcation in a deterministic ODE.
We start with the Hopf bifurcation for ordinary differential equations (ODIs)"%

following Guckenheimer and Holmes!?, and for delay-differential equations (DDI’s)
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following Stech”®. We state the following results for completeness, and to show why
the amplitnde and frequency calculations are rarely carried out unless there is a good
reason to do it analytically rather than numerically.

We have already given a flavor of the Hopf bifurcation analysis in sections 2.2.4
and 2.3.6. The Poincaré - Bendixon theorem!® requires that a system of OQDE’s be
of dimension 2 or greater for autonomous oscillations to occur. For simplicity, we
consider the Hopf bifurcation in the following two-dimensional system of ODE’s

L fEw (5.12)
having an equilibrium point &’ (ug) at the parameter value pg, at which the Jacobian
of the flow, Df, has a simple pair of pure imaginary eigenvalues, (A(go), M(ho)) =
(+1w, —iw), w > 0 and no other eigenvalues with zero real part.

The implicit function theoremn guarantees that for each g near pg there is an
equilibrium z'(u) near #'(po) which varies smoothly with u. However, there is a
change in the dimension of the stable and unstable manifolds' of *(u) at po, leading
to a qualitative change in the low near ='(p,).

Consider the following system of linear ODE’s

T =pr—wy

_ (5.1.3)
Y =we + py

whose solution, corresponding to the initial condition (zg,yp), is

a(t)\ _ e fcoswt —sinwt) [z
(y(t)) =€ \sinwt  coswt vo ) (5.1.4)
When g < 0, solutions spiral into the origin, and when g > 0 they spiral away
from the origin. All solutions are periodic when g = 0. The normal form theorem
(Guckenheimer and Holmes'?, Section 3.3) shows how the generic nonlinear problem

(5.1.2) differs from system (5.1.3). Smooth coordinate changes on (5.1.2) result in the

following form for the third order Taylor expansion of f:

2= (dp +a(z® +y))z — (w + cp + b(z? +92))y

(5.1.5)
j = (w+ cp+ b2’ +y°))z + (dp + o(2® + %))y,

* The stable (unstable) manifold 1s the set of phase space points which converge to the attractor
(here, the fixed point) in the hmit { — oo (t —» —00). The stable (unstable) manifold 1s spanned by
the eigenvectors of Df at ' (o) whose real part is negative (positive). The manifold spanned by
the eigenvectors corresponding to the purely imaginary eigenvalues is called the center manifold.
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which becomes
7 = (dp + ar?)r + O(r*)

= (w+cpu + br?) + O(r?).

in polar coordinates. Notice the radial equation is uncoupled from the phase equation.

(5.1.6)

The stationary solutions of the radial equation are the origin as well as solutions that
lie along the parabola
a , a

I_l, = -—Er == '_’d"(:l:z + y2), (5'1'7)

provided a and d are nonzero. This parabolais embedded in the product space B? x K,
where R? refers to the {x,y} plane and R corresponds to the bifurcation parameter p.
In the words of Guckenheimer and Holmes!? (p.151), “...this implies that the surface
of periodic orbits has a quadratic tangency with its tangent plane . 0in R? x R.

The content of the Hopf bifurcation theorem'®”

is that the qualitative properties
of (5.1.5) near the origin remain unchanged if higher-order terms are added to the
system.” This means (ibid, p.152) that “...there is a surface of periodic solutions in
the center manifold which has quadratic tangency with the eigenspace of A(jeo), A(se0)
agreeing to second order with the paraboloid p = —(a/d)(z? 4 y?). Il a < 0, then
these periodic solutions are stable limit cycles, while if @ > 0, the periodic solutions
are repelling.”

The parameters in (5.1.5) have been chosen so that the bifurcation occurs at
o = 0. From the radial equation we see that the fate of the periodic solution at the
bifurcation is determined by the sign of a, which is the coeflicient of the first nonlinear
term. If the two-dimensional nonlinear flow is obtained by adding the transpose of
the vector (f(z,y),g(z,y)) to (5.1.3) with f(0) = g(0) = 0 and D f(0) = Dg(0) = 0,

then it can be shown that :

1 1
a= E[fzzz'*’fzyy + 922y +9yyy|+ 16w[fzy(fzz+fyy)_gry(gﬂ +9yy) ~ freoz+ Jyyguy]
(5.1.8)

d
The condition d = E—(Re Ap)) # 0 is the transversality condition encoun-
m

m=Ha
tered in Section 2.2.4, which prevents the tangential intersection of the imaginary axis

by the complex conjugate pair of eigenvalues.

5.1.2 Hopf bifurcation in a deterministic DDE.
The Hopf bifurcation theorem for DDE’s is basically the same as for ODE’s,
except that its proof requires more sophisticated techniques from the theory of func-

tional differential equations (see Hale!??, Section 11). Further it has been shown that,
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the delay itself can serve as the bifurcation parameter’®. We will concentrate on the

first order DDE encountered in the previous chapters:

z = f(z(t),z(t ~ 1)) (5.1.9)

Linearization of (5.1.9) about its fixed point z*, defined by ¢ = 0, or f(z*,2") = 0,

yields the characteristic equation

A+ A+ Be 2 =0. (5.1.10)
) A A . .
Defining s = B Q= B and T = BT, we have the equivalent equation
s+Q+e T =0. (5.1.11)
Then Re(s) < 0 if'®
1) |Q>1or
2) Q£ 1land T < Teris (5.1.12)
where
cos1(-Q)

Terit = BTerit = (5-1-13)

(- Qi
and the inverse cosine takes its value in [g,w]. When |Q| <1 and T' = T,piz, there

exists a periodic solution of period

2T
= e——— 5.1.1
"= By (5149
A supercritical Hopf bifurcation occurs when T = T,,.,;, leading to a stable

periodic orbit (i.e. a limit cycle), when certain nondegeneracy conditions are satisfied
by the nonlinear terms in (5.1.9). A quite involved computation (see Stech’® ; Bélair
and Mackey'*®) leads to the following conditions for the supercritical Hopf bifurcation.
If @ < | and the parameters { A, B, 7} are such that T > T,,,;, there exists an orbitally
asymptotically stable periodic solution z(t) to (5.1.9) satisfying ||z(t) — ='|| < ¢, for
all € > 0 and sufficiently large t, provided that :

(5.1.15)

{3h3(¢1 d’a?’;) + 2h2($3 Q3 eZzw) + 2h2(¢) Qo )]
Ref [ - Te=5eT] f<o
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where

¢(s) = ¥, ag = ha(h,8)/ (2w + Q + e ¥T),

ap = 2hy(0,9)/ (@ +1),

ha(#,¢) = C(0)¢(0) + DH(-T)((-T) + §[¢(0)<(—T) +¢(~T)(0)], (5.1.16)

hs($,¢,) = FH(0)((0)n(0) + G(~T)C(~T)n(~T)
+ S (O-TIn(~T) + $(~T)(O)n(~T) + $(~T)(~TIn(0)]

and the Taylor expansion about z' is given, to third order, b
g y DY

flz(t),z(t — 7)) =A(x — ") + B(z, — z")
+C(z —2")? + D(zy —2") + E(z -- z*)(z, — 2*)
+F(z-2')P +G(zr —2") + H(z - 2" )z, — ' )2,
(5.1.17)

In practice this calculation is difficult, and one often verifies numerically whether the
bifurcation is supercritical or subcritical.

Finally, the exponential relaxation time v of transients onto the limit cycle near
the Hopf bifurcation in DDE’s is given by

tr o< (= po)”t, (5.1.18)

as shown by Sirkus’ using Floquet theory. This predicted divergence of the relaxation
time £, — oo as u — g, known as “critical slowing down” at a Hopf bifurcation in a
DDE, has been verified in laser experiments by Gao et al.!®®. The critical exponent
t, is the same as for the supercritical Hopf bifurcation in ODE’s and for second
order phase transitions in general?!. The critical slowing down for second order phase
transitions does not depend on the direction from which the bifurcation point is
approached. This means that the relaxation time onto the fixed point which looses
stability at the Hopf bifurcation is given by ¢, o (o — p)~! . This symmetry does
not hold for a subcritical Hopf bifurcation, which is analogous to a first order phase

transition.
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5.2 STOCHASTIC DIFFERENTIAL EQUATIONS AND NOISE-INDU-
CED TRANSITIONS.

5.2.1 Generalities.

There is a natural inclination to view noise as a disorganizing influence in nature.
In the past few decades, however, the discovery of three new classes of phenomena
has forced us to reappraise the importance of randomness in macroscopic physical
systems?!.

The first class comprises the mechanisms of “self-organization” which occur in
strongly dissipative systems. Dissipative systems are characterized by the property
that their evolution contracts phase s-..e volume. A set of points may thus evolve
towards an attractor whose dimen_.on is less than that of the total phase space.
Strongly dissipative systems are those in which the contribution of the nonlinear terms
to the evolution are large (for example, the coefticients of these terms are large). The
evolution of weakly dissipative systems is easily predictable as they possess a unique
stable attractor, known as the theimodynamic branch, which is in the vicinity of
the stable state of thermodynamic equilibrinm Far {from equilibrium, these systems
can undergo complex sequences of bifurcations to more complicated attractors, which
may no longer be globally stable. The influence of noise now becomes crucial since
it may determine which basins of attraction, or “dissipative structures” {Nicolis and
Prigogine!*?), the system will visit in the course of its evolution.

The second class refers to chaotic systems, i.e. systems that are intrinsically
noisy despite the fact that they are deterministic. Because of their sensitivity to
initial coaditions, which is a deterministic property, the evolution of chaotic systems
will be further complicated by noise.

The third class refers to nonequilibrium systems which are coupled to a fluc-
tuating environment. There is again a natural tendency to helieve, in the words of
Horsthemke and Lefever®' (p.5) that “... i) rapid noise is averaged out and thus a
macroscopic system essentially adjusts its state to the average environmental condi-
tions; ii) there will be a spreading or smearing out of the system’s state around that
average state due to the stochastic variability of the surroundings.” However, ... an
increase in environmental variability can lead to a structuring of nonlinear systems
which has no deterministic analog.” This structuring displays features similar to those
of equilibrium phase transitions, and also to those seen in nonequilibrium systems of

the first class mentioned above. In the same way that the latter have come to be
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known as “nonequilibrium phase transitions”, the phenomena described in this third
class have been labelled “noise-induced transitions”.

Biological systems are examples of dissipative systems that sell-organize in noisy
environments. Noise-induced transitions have been shown?! to occur in models of the
immune respounse, photlosynthesis, population biology, population geneties and nearon
membrane voltage (Hogdkin-Huxley equations) It is important, as these studies have
shown, to properly characterize the origin and properties of the nose, as different
kinds of noise can lead to different types of transitions as parameters are varied.

It is also important to distinguish between internal and external noise in physical
systems. The noise known as “internal fluctuations” derives from the many degrees
of freedom involved in the microscopic interactions in the system. Because of these
fluctuations , stationary states of the system are not constant and must be deseribed in
probabilistic terms. Further, near stable macroscopic states, fluctuations of intensive
variables scale as 1"7!, where V" is the volume of the system, and near a critical point

they scale as 1" ~1/2

Hence in the thermodynamic limit 17 » oo these fluctuations
become negligible. This is the main reason why internal fluctuations can be safely
neglected in the theoretical description of macroscepic systems.

The main focus of our attention in this chapter is external noise. In general, the
intensity of external noi. e does not depend on the size of the system as is the case for
internal fluctuations. Rather the effect of an external noise of a given intensity depends
on the state of the system; it is also called, for this reason, mulliplicative nose.
External noise can profoundly affect the local stability properties of a macroscopic
system For example, the position of bifurcation points can be shifted. This is the
weakest type of noise-induced transition, because it shifts the parameter values at
which occur behaviors that exist in the deterministic case. Noise can also cause
behaviors unforeseen in the deterministic case to suddenly appear as a parameter is
varied. These phenomena are known as pure noise-induced transitions.

In contrast to external multiplicative noise, the effect of additive noise on a
system does not depend on the state of this system. Additive noise can arise, for
example, as a result of phenomena evolving on a scale smaller than the one where the
phenomena being modeled by the dynamical equations occur It does not affect the
value of parameters; it is simply superimposed on the dynamics. In this sense additive
noise is diflerent from the internal fluctuations discussed earlier. It is also different

from observational noise, which occurs e.g. in the measuring process, and which is
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added to the solution rather than the dynamical equations of motion. For example,
the stochastic activity of a neuron in the absence of any input can be viewed as the
result of additive noise. A characteristic of additive noise is that it is more readily
observable when the system is quiescent, ie. when the time derivative of the state
variable is small Mathematically, this 1s a consequence of the balance between the
deterministic flow term and the stochastic term in a generalized Langevin equation
with additive noise (see Equation (4 2.25) with o(7) = o = constant).

The bifurcation diagrams of one-dimensional systems are not modified by ad-
ditive noise (see Appendix A). However, additive noise can drastically modify the
deterministic behavior of higher dimensional systems, as discussed in Section 5.3.
In the next sections, the problem of modelling additive and multiplicative noise is
addressed.

The macroscopic systems we are interested in can be modelled by ordinary or
delay-differential equations; there are no spatial derivatives. It is known?! that the
local stability properties of such spatially homogeneous systems are not modified by
the presence of internal fluctuations'. This means that the extrema of the probability
densities, which correspond to the macroscopic states of the system (or “order pa-
rameters” ), are in the vicinity of the stationary solutions of the deterministic system

(they coincide with these solutions in the thermodynamic limit).

5.2.2 White noise and colore noise.

The three main properties that characterize a given noise are 1) its intensity; 2)
the probability density of its distribution; and 3) its correlation time.

Internal or external noise is typically made up of contributions from many inde-
pendent sources. Hence, it is generally assumed that the central limit theorem holds
and that the noise values are distributed according to a Gaussian probability density.
Throughout this chapter we will only consider Gaussian noise.

The correlation time ¢,,, of a stationary stochastic process X; is defined by

1 /x
tepy = —— C(r)dr, 5.2.1
¢ ) ™ 5:2:1)
where C(r) is the autocorrelation function of the noise process. The rate at which

C(t) goes to zero as T — oo is a measure of the memory time of the stochastic

*The question of whether DDE's ate spatially homogeneous is certainly debatable, in view of the
fact that under certain conditions they are cquivalent to partial differential equations. The results of

this chapter are, to our knowledge, first steps towards the study of nonequilibritun phase transitions
in DDEs,
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process. A process for which C(7) decays rapidly is said to have short memory,
because values of the noise separated by more than one correlation time are almost
uncorrelated. This is reflect>d in (5.2.1) by the fact that the area beneath (1)
is small for short-correlated noise. Noise with a small t.,, is also said to fluctuate

rapidly. In general, whether a noise qualifies as rapid or slow depends on the ratio
cor

, where t,,, is the characteristic relaxation time of the system. For example, noise
ays

wiyth a correlation time of 1 millisecond will be considered fast for a system whose

characteristic relaxation time to a limit cycle is on the order of | second.

Noise with a finite {c,r is called colored noise. When t.,, < t,4,, it is natural
to consider the limit {cor, — 0. In this case the autocorrelation function C'(7) is a
Dirac delta function, and the noise is said to be é-correlated. The stochastic process
&; obtained in this limit is called a “white-noise” process because, as will be shown
below, the power spectrum for this process (given by the Fourier transform of C'(7))
is constant, as for white light. White noise is a generalized stochastic process, in the
same sense that the delta function is a generalized function. Since a constant power
spectrum implies infinite total power, white noise is not physically realistic. Further,
it is difficult to see how a memoryless noise such as Gaussian white noise, taking on
a different value at every instant of time, can have any effect on a system. However,
this becomes more plausible upon realizing that the variance of this stochastic process
is infinite (see below). In fact, white noise describes real noise rather well when
teor K tyys, and further facilitates the mathematical description of the noisy system
(see Section 5.2.3).

It is easier to understand white noise hy considering its relation to colored noise
and a Wiener process?! 1,. Wiener processes have heen proposed as models of the
perpetual irregular motion of small particles suspended in a fluid known as Brownian
motion. They are Gaussian processes with stationary independent increments. This
latter property means that the probability density of the increment (1, 17,) depends
only on the time difference ({ — s), and is thus invariant with respect to time shifts
This implies that the successive values of 1, are independent?’s however, it does not
imply that a Wiener process is stationary. In fact, although it has zero mean, its
variance increases linearly with time.

The sample paths of a Wiener process are continnous, but irregular. In fact,
the velocity is undefined and the sample paths are nowhere differentiable. Wicner

processes approximate the behavior of a Brownian particle very well, and their ssimple
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features compensate for the curious properties which arise because they are mathe-
matical idealizations. Further, it can be shown that there is a one to one relation
between white noise processes and processes with stationary independent increments
such as Wiener processes. This relation is simply the time derivative, and we will

write

div,

fo= (5.2.2)

It is possible to obtain differentiable sample paths by considering that the state
variable of the Wiener process is velocity rather than position. The resulting process
is called the Ornstein-Uhlenbeck process?!, and is denoted by (;. It satisfies the
stochastic differential equation

dgs

P =76t + &, (5.2.3)

where £, is a white noise process as in (5.2.2). It can be shown?! that the Ornstein-
Uhlenbeck process is stationary. Its autocorrelation function decreases exponential-
ly:

o2

C(t,s) = E{X,X,} = 5;e-vlt-*' . (5.2.4)

where o? is the intensity of the white noise process defined by the mathematical
expectation E{¢,£,} = 026(t —s). However, successive increments are now correlated,
and the sample paths are differentiable. From (5.2.1) and (5.2.4), it follows that the
correlation time of the O-U process is simply tcor = 77",

The limit v — oo of the O-U process does not correspond to the white noise

process, as can be seen by looking at the power spectrum of the Ornstein-Uhlenbeck

process :
sw) == [ c(r)d
T om ) o T
= ‘—’-3(:/2 +97%)7! (5.2.5)
2n U ) -
The white noise limit yields
JLH;O S(v)=0, (5.2.6)

for all frequencies v. This is called the noiseless limit. The proper white noise limit

involves increasing the strength of the fluctuations as v is increased, keeping the ratio
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o
g = & constant rather than variance. In fact this is the limit in which the integrated
Ornstein-Uhlenbeck process converges to the Wiener process?! and the flat spectrum
—2
o
S(v) = =- 5.2.
=7 (5.2.7

characteristic of white noise is recovered. Finally, the Ornstein-Uhlenbeck process
(; is distributed with a Gaussian density which is independent of the value of the

correlation time :

1 -5 ,

This means that (5.2.8) is also the density of the white noise process obtained in the

9(¢) =

limit of the Ornstein-Uhlenbeck process.

5.2.3 Modelling the effect of noise.

Once the noise characteristics have been specified, one is faced with the prob-
lem of coupling this noise to the deterministic dynamics of the system. Let X, and
X, denote the (one-dimensional) stochastic state variables under the influence of, re-
spectively, colored noise (given by the Ornstein-Uhlenbeck process (O-11)) and white

noise. Assume these variables satisfy the stochastic differential cquations
dXy = B(X))dt + Z(X))Cdt (O - U) (5.2.9)

dX, = B(X,)dt + Z(X,)é, dt  (whate) (5.2.10)

known as generalized Langevin equations (see Equation (4.2.25)). Their integral form

is

t t
X=X, +/ B(.\"’,)ds+/ C(X,)¢,ds (0O -U) (5.2.11)

to to

and . t
thA"’oJr/ B(.\“’,)ds+/ C(X,)E,ds.  (white) (5.2.12)

to tn

respectively. Because the Ornstein- Uhlenbeck process has continueus realizations (i.e.
continuous sample paths), both integrals on the right hand side of (5.2.11) can be
interpreted as ordinary Riemann integrals. The first integral on the right hand side of
(5.2.12) can also be interpreted as a Riemann integral. However, the sample paths of
the white noise process are nowhere differentiable, and the second integral in (5 2.12)

must be interpreted according to the stochastic calculus of cither Ito or Stratonovich?!
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(see also Appendix A). Although X, has continuous realizations these are, as for the

Wiener process, nowhere differentiable. On the other hand, since integration has a
smoothing effect, the realizations of X, are differentiable.

We have seen that for Gaussian white noise, a description in terms of a stochas-
tic state variable can be replaced by another in terms of a probability density whose
deterministic evolution is governed by the Fokker-Planck equation (4.2.26). However,
for nonlinear equations, it is generally impossible to analytically solve this equation,
even for its stationary solution, and one is obliged to resort to approximation tech-
niques (see c.g. Risken'*!).

A system subjected to colored noise case can be modelled as a pair process
(X, ¢:) given by (5.2.9) and (5.2.3). Since (5.2.3) involves Gaussian white noise, it
is straightforward to write the corresponding two-dimensional Fokker-Planck equa-
tion for this system of SDE’s (even though in this interpretation (5.2.9) is, strictly
speaking, an ODE coupled to a SDE). Again, it is in general impossible to obtain
an analytical expression for the stationary solution of this Fokker-Planck equation?!.
Approximations are available for the cases of very short-correlated noise and very
long-correlated noise. For short-correlated noise, it is possible, after appropriate scal-
ing, to expand the stationary density in powers of {c-. This is also known as an
expansion in the inverse bandwidth of the noise, since this noise bandwidth is in-
versely proportional to ¢.,,.

A system subjected to long-correlated noise is able to “equilibrate” to the fluc-
tuations of the noise. It is as if the spectrum of the noise were simmply a Dirac delta
function at the origin, i.e. the noise behaves like a constant. Thus the state variable

dX,

X, can be adiabatically eliminated, i.e.

can be considered to be zero. An ap-

1n21

proximation similar to this so-called “switching curve approximation”*® will be used

in Section 5.3.

5.2.4 Numerical integration algorithm for a stochastic DDE.

Although various approximation techniques are available to solve Fokker-Planck
equations, it is often desirable to obtain a numerical solution to the full problem. The
numerical solution of the Fokker-Planck partial differential equation in more than one
dimension is in general a formidable problem. Another alternative is to numerically
integrate the stochastic differential equation itself, which is the method we use.

As mentioned in Section 5.1, we are interested in the behavior of the delay-

differential equation (5.1.1) with additive and multiplicative colored noise at a Hopf
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bifurcation. We are not aware of any theoretical results concerning the numerical
integration of a stochastic DDE. Ilence we must procede with caution in developing
a numerical algorithm for its integration.

Since noise-induced shifts in the bifurcation point are anticipated (Appendix A),
it is important to use a method that converges rapidly and accurately to the limit
cycle in the absence of noise, especially in the vicinity of the bifurcation point where
transients are extremely long. We have shown in Section 4.8 that the fourth order
Runge-Kutta algorithm is accurate near the Hopf bifurcation for an integration time
step equal to 7/200. In fact, the accuracy is satisfactory even for a time step of 7/100.
Although the new method presented in Section 4.8 is, for a given time step, almost
as accurate as the Runge-Kutta algorithm and four times faster, we have opted for
the Runge-Kutta method, since the new method has not been sufficiently analyzed.
Furthermore, for the fourth order Runge-Kutta method, there are analytical results
concerning convergence for stochastic simulations. In fact, for additive white noise
problems, there are algorithms that are well tested for accuracy'*®'**. There are also
straightforward extensions for the additive colored noise case!**11,

More recently, numerical integration algorithms for problems involving multi-
plicative colored noise have been tested (see e.g. Fox and Roy'*®). These authors
suggest using a coupled equation algorithm irn which the ODE (c.g. Equation 5.1.1)
for the state variable is integrated using a standard algorithm (such as a Runge-Kuttia
method), while the O-U process (5.2.3) is integrated using the Box-Muller algorithm
for white noise (see below). They also suggest that the white noise limit be studied
using this algorithm with short-correlated noise.

In Section 5.3, the case where the parameters ¢ and k in

dA c™

ke < h
aA(t) + AT + k, (5.1.1)

dt

fluctuate under the action of separate Ornstein-Uhlenbeck processes will be of interest.

Fluctuations in ¢ around a mean value ¢,

c=C+ (e, (5.2.13)

correspond to multiplicative noise. However, fluctuations in k,

k=Fk4+¢, (5.2.14)
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correspond to additive noise because the intensity of this noise does not depend on
the state variable A (pupil area). Equation (5.1.1) together with (5.2.3), (5.2.13) and
(5.2.14) defines the pair process (A(t),(;) to be integrated using the coupled equation
algorithm. We describe first the Box-Muller algorithm (see Knuth!4¢).

The statistical features of Gaussian white noise §; are completely determined by

the requirements

(€) =10
(€c&,) = o?8(t ~ 3). (5.2.15)

At each integration time step, the Box-Muller algorithm generates a number N dis-
tributed with a Gaussian density of zero mean and unit variance using two numbers
vl and v2 from a uniform distribution on [0,1]. For our simulations, the uniformly
distributed random numbers were generated using the routine RAN1 (also due to
Knuth'*®) from Numerical Recipes'*’. A Gaussian number ¢ of zerc mean and stan-

dard deviation ¢ is then given by

€ = o/ —2In(vl) cos(2mv2). (5.2.16)

In this section we use a slightly different scalir g for the O-U process to conform

1136

with Fox et a and Sancho et al.?*, It consists in dividing the standard deviation

o of the noise by the correlation time ., so that (5.2.3) becomes

d¢,
—dgt— = =76+ 7. (5.2.17)

The autocorrelation function (5.2.4) is then given by

ol

C(t,s) =

et (5.2.18)

cor
The white noise limit now corresponds to the limit {,,, — 0 and the intensity of the

2
by

o

resulting white noise is ¢%; howeve_, the strength of the random term is
(5.2.18).

The standard way (see e.g. Sancho et al.**) to integrate the O-U process (5.2.17)

is to use an Euler differential algorithm:

cor

C(t + At) = ¢(t) — 7C()(AL) +1EVAL. (5.2.19)
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Notice that the stochastic term is multiplied by the square root of the integration
time step. This is a feature of the stochastic calculus used to give a meaning to the
second integral on the right hand side of (5.2.12)%!.

In the coupled algorithm, the size of the time step is limited by the Euler inte-
gration of the O-U process. In order to take advantage of the larger step sizes that
higher order techniques (such as Runge-Kutta) allow, a more efficient algorithm for

the O-U process should be used. Such an algorithm has been recently proposed by

Fox et al.!3%, It uses an integral Euler algorithm, which is very similar to the new

algorithm for DDE’s presented in Section 4.8 :

t+At
C(t+ Aty = eMAD¢() + 7/ e (A0t (s) ds
t
= e~ NANC(t) + h(t, At). (5.2.20)
Since a linear operator transforms a Gaussian process into a Gaussian process, h(¢, At)

is also Gaussian distributed with zero mean. Therefore, all its properties are deter-

mined by its second moment
2
(R3(t, At)) = 92—“’(1 _ e"2MADy (5.2.21)

The algorithm is thus given by (5.2.20) with the same Box-Muller algorithm, except
that o in (5.2.16) is replaced by the square root of (5.2.21). This algorithm, combined
with a fourth order Runge-kutta method, was used to integrate the stochastic DDE.

A time step of 7/100 was found to be satisfactory.
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5.3 NOISE AND CRITICAL BEHAVIOR OF THE PUPIL LIGHT RE-
FLEX AT OSCILLATION ONSET.

Abstract. We have induced oscillations in the human pupil light reflex using two
different kinds of external electronic feedback: smooth negative feedback (SNF) and
piecewise constant negative feedback (PCNF). The behaviour of the mean amplitude
and period at oscillation onset are shown to be in good agreement with a model of this
neural system incorporating the extern.I feedback. The critical behaviour displayed
through amplitude and period fluctuations is different in each case. The observation
that amplitude fluctuations are larger (smaller) than period fluctuations for SNF
(PCNF) is explained theoretically and by numerical integration of a stochastic delay-
differential equation with additive and multiplicative colored noise. We find that both
types of noise postpone the Hopf bifurcation in SNF by an amount proportional to the
noise intensity and inversely proportional to the correlation time. The implications

for analyzing bifurcations in neural systems are discussed.

5.3.1 Introduction.

Oscillations occur in a wide variety of neuro-physiological control systems under
normal and pathological conditions??2425:5¢ Experimental and theoretical investiga-
tion of the properties of these -cillations from the point of view of nonlinear dynamics
has been hindered by: 1) the scarcity of suitable systems in which parameters can
be manipulated; and 2) the presence of high amplitude noise. Thus it has been diffi-
cult to untangle the deterministic and stochastic processes which shape the observed
dynamics.

As a paradigm for neurological control systems, the human pupil light reflex
exhibits oscillatory phenomena of varying complexity®??°. For example, regular os-
cillations in pupil area occur when the gain of the feedback loop is sufficiently high®?
and aperiodic oscillations in pupil area occur spontaneously (a phenomenon known as

“hippus”16.88)

. There have been studies!”"™ of the behaviour of hippus as a function
of light level and of its interaction with pupil oscillations produced by sinusoidally
varying light stimuli. These have concluded that many properties of hippus can be
explained by assuming that it represents multiplicative gaussian white noise injected
into the reflex at the level of the brainstem nuclei. However, the precise origin and
nature of hippus is still not known, and new experimental paradigms, such as the one

presented in this paper, are needed to deepen our understanding of its properties.
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One advantage of studying the pupil light reflex is that it can be easily and non-
invasively monitored. A second advantage is the ease with which the feedback loop
can be opened®! (i.e. the effect of the output on the wmput can be removed). This has
led to extensive studies (see Stark®? for a review) of the lincar and nonlinear properties
of the reflex components and of the noise under open loop conditions. Finally, closed
loop oscillations can be studied using an experimental sctup in which the normal
feedback is replaced by controllable external electronic feedback!. This “clamping”
method produces a hybrid system in which autonomous oscillations and bifurcations
can be produced and studied as a function of the control parameters! 62,665,890

Recently, it has been shown®"®® that autonomous oscillations in the normal pupil
light reflex can be modelled using the nonlinear delay-differential equation (DDE)

d%fii;—gt—) +aglA(t)] = Flé, ¢(t - 7)) . (5.3.1)
Here A(t) is the pupil area, g(A) is a monotonically decreasing nonlinear function
relating iris muscle activity to pupil area, 7 is the tolal time delay in the system, « is
related to the rate constant for pupillary movements, ¢ is the retinal light flux (cqual
to the product of light intensity and pupil area) and ¢ is the light flux below which
no response occurs. The model also takes into account the logarithmic compression
of light intensities in the transduction process at the retina. For the intact pupil light

reflex with negative feedback,
F{¢,¢(t—7)] =7 In [ﬂt—g—ﬂ] : (5.3.2)

where v is a physiological parameter related to the transduction of light intensity into
neural firing frequency in the optic nerve and the midbrain.

In this paper we study the noisy behaviour of the period and the amplitude
of oscillations induced in the human pupil light reflex by replacing the function F
with two kinds of external feedback: 1) piecewise constant negative feedback (PCONF:
Figure 5.3.1a); and 2) smooth (i.e. differentiable) negative feedback (SNF: Figure
5.3.1b). Equations (5.3.1) and (5.3.2) contain many parameters which are diflicult to
estimate exprimentally. A simpler model for SNF oscillations which displays the same
qualitative behavior as (5.3.1) with F' given by (5.3.2) is obtained®® by replacing I
with a Hill type function (Figure 5.3.1b) and by making g(A4) a linear function of 4:

dA(t) cfm

S0 aA(t) = 4 k. 5.3.:
T + aA(t) g 3 An(L ~ 1) + k (5.3.3)
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Figure 5.3.1 Pupil area oscillations induced using external piecewise constant neg-
ative feedback (PCNF, a) and smooth negative feedback (SNF, b). The PCNF os-
cillations in (c), measured using an infrared videopupillometer, were obtained for
the following area threshold values (dotted iine): 30.1mm? (upper panel), 22.5mm?,
16.2mm? and 14.0mm?. Note that the tirae scale differs between the records. The
SNF oscillations in (d) are obtained for iricreasing values of the feedback gain (pro-
portional to the slope in (a)). Cscillation onset occurs at G ~ 1. The SNF oscillations
were measured using a reflectance technique which does not allow calibration in ab-
solute units of area. Correcting for baseline drift in SNF by linear trend subtraction
grofduced 12-15 second long data sets. The PCNF oscillations did not exhibit baseline
rift.

g
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This equation has been used as a paradigm for delayed smooth negative fecdback

systems?*?® (more complicated oscillations and chaos arise when the Hill's function

is non-monotonic, i.e. in the presence of “mixed feedback”: see Refl. 2:1). Equation
(5.3.3) exhibits a supercritical Hopf bifurcation as the parameter n or 7 is increased
past a certain value. In the PCNF case, we linearize g(4) and take /' (o be precewise
constant so that (5.3.1) is replaced by the piecewise linear DD138499
dA A, At 1)< 8
a A= { Ao:f Ait . T; >0

where Aofs and A, are constants. The oscillatory solutions to (5.3.4) have been

a—-l

(5.3.4)

shown to be in good agreement with experimental data??:82:%48%  Besides being im-
portant clinically, PCNF allows certain nonlinearities of the reflex to be isolated for
study®2/89:99

Specifically we examine the onset of oscillation with SNI and PCNFE and look
at how the period and amplitude vary as a function of gain (SNF) and threshold
(PCNF'). As the Hopf bifurcation is approached, critical slowing down occurs, i.c.
the decay time of perturbations increases which leads to noise amplification. We find
that the critical behaviour at oscillation onset, manifested in perind and amplitude
fluctuations, is interesting and different 1n each case. We show that theoretical and
numerical analysis of simple stochastic DDE’s can explain this behaviour. We are not
aware of any previous studies of the interaction of noise with autonomous oscillations
in either the pupil light reflex or any other neural reflex. Thus, our study provides
insight into the origins of noise in neural systems, as well as the cffect of noise on
solutions of DDE’s. These results are of interest since physiological systerns are in-
herently noisy and the transition from equilibrium to dynamic behavior is frequently
encountered?®:24:25:54,

The experimental method is described in Section 5.3.2. Jn Section 5.3.3 we
present the experimental results for both the SNF and PCNF case. Section 5.3.4 is
devoted to a theoretical and numerical analysis of the deterministic and stochastic
behaviors of amplitude and period for both cases. The transition from SNI to PONF

is the subject of Section 5.3.5. The paper concludes with a discussion in Section 5.3.6.
5.3.2 Experimental mecthods.
5.3.2.1 Background.

The pupil light refiex is a negative feedback neurological control system which

keeps the light flux falling on the retina (¢ in (5.3.1)) within a certain range. An
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increase in retinal light flux due to an increase in light intensity is compensated by
a decrease in flux due to pupil constriclion, and vice versa. This constriction results
from the increase in neural activity to the iris sphincter muscle, which is proportional
to the logarithm of the light flux. During pupil cycling, dilation is thought to be
primarily due to passive relaxation of the sphincter muscle and to inhibition of the
neural activity to this muscle®®. Thuis describes “closed-loop” operation under normal
smooth negative feedback conditions.

The feedback loop can be opened using illumination in Maxwellian view3!, i.e.
by focussing a narrow beam of light down the center of the pupil. The diameter of
this beam is so small that the iris can never shade the retina from the beam. Under
these conditions, the pupil response has no influence on retinal light Aux.

The idea behind “clamping” the pupil light reflex is to electronically control the
intensity of a light source (in Maxwellian view) using an analog signal proportional to
pupil area (provided by a pupillometer). For example, one can choose to synthesize
the naturally occurring negative feedback characteristic. This involves clamping the
pupil light reflex using a linear amplifier with controllable positive gain to convert
area variations into light intensity variations! °°, The retinal flux variations are then
given by the product of this varying light intensity and the fixed beam arca

When the electronic feedback mimics a negative gain linear amplifier, the pupil
exhibits limit cycle oscillations, which is possible only if nonlinearities in the reflex
constrain the amplitude of the oscillation. In the SNF case®?, the effective feedback
in the whole circuit can be modelled by a sigmoidal curve (Figure 5.3.1b). In other
words, the linear amplifier contributes to the steep slope in Figure 5.3.1b, while pupil
nonlinearities are responsible for the saturation at high and low area values. In the
PCNF case the effective feedback is as shown in Figure 5.3.1a. While the oscillations
obtained in the SNF case are often difficult to control due to drifts in mean pupil

1.65

area!'% by comparison those obtained in the PCNF case are more stahle®? 0489

Az infrared videopupillography technique® was used for the PCNF study while
a reflectance technique®® was used for the SNF study, as a result of the collaboration
between the authors. While each method has its advantages, they are both eflicient
recording techniques with high enough sampling rate and accuracy for the proper
assessment of the phenomena presented here. Hence our results are not a consequence

of the different pupil area measuring techniques for SNF and PCNF.
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5.3.2.2 Piecewise constant negative feedback.

The experimental method has been described previously®*. The 1.2mm diameter
light beam used for open-loop illumination was provided by a 605nm peak wavelength
LED. The retinal illumination provided by the light beam was fixed at a value of 750
trolands. Subjects were dark adapted for at least 15 minutes in a room lit by a
dim red light; this was the background illumination for the experiment. The analog
output of an infrared binocular videopupillometer (Hamamatsu Iriscorder Model C-
2515, sempling rate 60 Hz), which is proportional to pupil area, was electronically
compared to an adjustable area threshold, 8. Through this area comparator (Figure
5.3.1a), the state of the system, i.e. pupil area A(t), controls the timing and duration
of the light pulses. The light is turned on whenever 4 > 6. The linearity of area
measurement, is better than 1% from 0 to 150 mm? with an accuracy of 0.01 mm?2.
Pupil responses to light changes are not instantaneous. They follow a neural delay
of = 300msec (approximately the same for light onset and offset®®) plus a 100 msec
delay due to electronic processing. In all experiments the pupil being measured was

also the one being stimulated.

5.3.2.3 Smooth negative feedback.

The 1RIS pupillometer used for the SNF experiments is based on an infrared re-
flectance technique which has been described previously®®. It yields a relative measure
of pupil size which is hinearly related to pupil area. Infrared emitters and detectors
are mounted in units attached to a head band and are positioned approximately 3cm
in front of both eyes. The light stimulus for SNF was provided by a small yellow (583
nm peak wavelength) LED which illuminates the retina in Maxwecllian view by means
of two lenses. The retina is centrally illuminated with a circular field approximately
30 degiees wide. In between the two lenses, a fixation target is mounted. In order
to prevent the visible light of the stimulus LED from adding to the signal from the
infrared detectors, the stimulus LED current and the infrared detection are pulsed
out of phase at 1000 Hz. The retinal illuminance was typically adjusted to between
500 and 1000 trolands.

The SNF was synthesized using a linear amplifier relating the analog pupil area
signal to the stimulus LED current. No significant delay was introduced by the
external feedback. The offset ard the gain of the amplifier were adjusted by the
experimenter. Signals representing pupil area together with a calibrated signal related

to stimulus intensity were recorded digitally at a sampling rate of 50 Hz. Because
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of very slow noisy fluctuations in the pupillary system, the mean light intensity can
not control the mean pupil area, which leads to baseline drift. Correcting for bascline
drift by linear trend subtraction produced 12-15 second long data sets. The pupil

being measured was also the one being stimulated.
5.3.3 Experimental results.

5.3.3.1 Piecewise constant negative feedback (PCNF).

Figures 5.3.1c show typical time series of PCNF-induced pupiliary oscillations for
different area threshold values. We restricted our attention to values of § that produce
an oscillation. The oscillations have one maximum per period. The power spectra for
these oscillations are shown in Figure 5 3.2a-¢ The high threshold oscillations have
a richer harmonic content than the lower threshold ones which are nearly sinusoidal.
Also, the spectira show little power below the fundamental frequency. The oscillation
waveforms in PCNF have no particular symmetry that would be reflected in the
power specira (like for a square wave). In fact, the waveform is clearly asymmetric,
especially at high threshold. This is due to the fact that constriction is faster than
dilation. This asymmetry is highlighted by transient responses to light steps as occurs
in PCNF, and not by responses to the continuously varying light intensity as occurs
in SNF8%9,

In Figure 5.3.3a,b we have plotted A and P as a function of 8. Note that the
bifurcation point BP corresponding to oscillation onset is to the right of the figure.
When A,s; < 8 the pupil is in an equilibrium state characterized by less than 5%
fluctuations around the mean pupil area (low amplitude hippus occurring at large
pupil areas). When 4,55 > 6, a transition nccurs between this state and an oscillatory
state. P and A are monotonically increasing functions of 6.

In Figure 5.3.3c,d we plot the relative amplitude and period fluctuations AZA

apP
P —_—

6 values. Since A increases as the bifurcation point is approached (i.e. as 8 increase),

AA

= will decrease. Hlowever, AP increases as 6 increases. Further, AP increases faster

than P, yielding a value of %R that increases with 8. We would obtain the same result

and for the same range of thresholds. A4 does not vary much over the range of

if, instead of é}-;E, we plotted A—}i where f - }— is the oscillation frequency. In fact at,
higher thresholds the power spectra have a high background, especially in the 0.1 -
0.5 Hz range, and the peak of the fundamental mode has less power as the bifurcation

point is approached.
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Figure 5.3.2 a) Power spectra of pupil oscillations shown in Figure 5.3.1. For
PCNF (a-c) the spectra were obtained by running a FFT on Parzen-windowed data
resampled at 20 Hz. Note the shift in the dominant peak as the threshold changes.
For SNF (d-f), the spectra were obtained by performing a FFT on the data. As the

gain increases, low frequency power disappear as the power becomes concentrated in
the dominant peak.
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Figure 5.3.3 Means and fluctuations of oscillation amplitude and period as a func-
tion of threshold (PCNF') and gain (SNF). Oscillation onset occurs at the threshold
or gain value marked BP (bifurcation point). Oscillations occur to the left of BP for
PCNF and to its right for SNF. a) Mean amplitude A; b) mean period P; c) relative
amplitude -A-f fluctuations; d) relative period -A;-E fluctuations. The fluctuations A A

and AP are the standard deviations of the mezns A and P at corresponding gain
or threshold settings. The PCNF data was obtained from one subject (to minimize
variability) by measuring pupil area at for ~ 20 ~25sec at each threshold setting. The
SNF data was also obtained from a single (but different) subject. At each gain setting,
area was measured during 2-3 runs totalling = 40sec. Amplitudes were measured from
peak to trough, while periods were measured as the time between successive peaks.

Note that -A-f is larger for SNF than for PCNF and larger than QF-? in SNF. Also,
-A-PE is larger in PCNF than in SNF and larger than —A-f in PCNF.
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5.3.3.2 Smooth negative feedback (SNF).

Figures 5.3.1d and 5.3.2d-f respectively show time series of the oscillations in
pupil area that occur with SNF and the corresponding power spectra. The oscillations
have a nearly sinusoidal shape with a randomly fluctuating amplitude and period. In
fact, the spectra for the higher gains are dominated by the fundamental mode {1.1~1.3
Hz), and there is little harmonic content. At the lower gain setting (Figure 5.3.2d)
there is a more pronounced 0.1 — 0 2 Hz rhythm in addition to the fundamental mode.
The data set length is limited by saturation of the area signal which results in a clipped
oscillation (not shown). These saturations appear to be due to uncontrollable baseline
(mean area) drift which in turn s caused by pupillary noise. These oscillations, as well
as those for PCNF, were found to not be significantly affected by blinking. Further,
the waveforms are symmetric in contrast with those for the PCNF case.

The mean amplitude and mean period of the SNF oscillations are plotted as a
function of the feedback gain G in Figure 5.3.3a,b. The gain has been normalized
such that G ~ 1 when the pupil starts to oscillate In this case the bifurcation point
(BP) is at the left of the figure, and the oscillations become more prominent as the
gain is increased. A increases with G in a roughly sigmoidal fashion. Over the same
range of gain values, P is quite constant but there are relatively larger fluctuations

at small G values.

The relative fluctuations in amplitude and period are plotted in Figure 5.3.3¢c,d
for the range of gain values studied. Amplitudes are measured as peak to trough
differences while periods are measured as the time between successive peaks. é-f is
larger than :\Fﬂ over this whole range. However, both increase rapidly at lower gains,
reaching values of A-—-ii ~ 0.5 and A—FP ~ 0.2 . At higher gains, these values level off at
A—j‘- ~ 0.2 for amplitude and A?P ~ 0.05 for the period.

The spectra in Figure 5.3.2d-f show that there is considerable power below the
fundamental frequency. This reflects the baseline and amplitude fluctuations within
each data set. These fluctuations also make ambhiguous the determination of the
point of oscillation onset by extrapolation to zero amplitude. The spectra show that
the noise is more prominent around 0.5 Hz, and that its bandwidth does not seem to
excede 1 Hz. This implies that the correlation time of these fluctuations is on the order
of 1-2 seconds (reciprocal of the low frequency noise handwidth). This is in agreement

with previous studies which indicate that the spectrum of noise in open-loop is quasi-

white up to a cutoff frequency of ~ 0.5 Hz*®*"®  In fact, high frequency noise
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(observable up to ~ 25 Hz by Nyquist’s criterion) is very small, and inspection of the
oscillations reveals that they are smonth. Previous investigations' have shown that
autonomous oscillations exhibit less high frequency noise than those obtained using
e.g. external periodic forcing. This can be explained by the fact that the autonomouns
system behaves like a resonant lowpass filter when it oscillates!. However, the slower

extraneous oscillations are not suppressed and are clearly apparent in our data.
5.3.4 Theoretical analysis.

5.3.4.1 Deterministic analysis.
In this section we explain the deterministic results for the SNF and PCNF cases.

A. SNF. For the SNF case, Equation (5.3.1) has periodic solutions?*?*% when

wT = cos‘l(—g), (5.3.5)

s

where w = m is the angular frequency of the oscillation at the bifurcation and
the inverse cosine takes its value in the interval [I,7]. G is the slope of the feedback
function evaluated at the fixed point F'(A'). A supercritical Hopf bifurcation occurs
when F'(A') or 7 are made sufficiently large, in which case the left hand side of
(5.3.5) is greater than the right hand side. Thus the amplitude of the limit cycle
increases near the bifurcation as the square root of the distance from the bifurcation
point (like the order parameter in a second order phase transition?!). This amplitude
behaviour is roughly seen in our data (Figure 5.3.3a) at higher gain. The origin of
the behavior of the mean amplitude near oscillation onset will be explained in the
stochastic analysis section below.

Assuming that F is given by the Hill’s function in (5.3.3), it is straightforward
to show that Bn < 0 at the bifurcation point, where T = %:r is the oscillation
period. However, numerical integration of (5.3.3) reveals that the period remains
constant near the bifurcation point and increases monotonically thereafter until 1t
reaches the value of the period analytically predicted for PCNF (sec below). This
is true for different values of a; further the period increases very slowly as o is
decreased (a = 3.21 : T = 0.936;a = 0.1 : T = 1.185). This slow variation in
period is observed in Figure 5.3.3b except near oscillation onset where fluctuations
are large. The relative constancy of the period, when compared to the amplitude, can
be understood from the normal form for the Hopf bifurcation. In fact the frequency
is given by an expansion in even powers of the amplitude and hence the zeroth order

term (a constant) dominates near the bifurcation'?.
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B. PCNF. The dynamics of PCNF-induced oscillations are governed by (5.3.4).
The solutions of (5.3.4) are simple increasing or decreasing exponentials because at
any given time the forcing (i.e. the right hand side) is constant. The oscillation
is bounded from ahove by an upper asymptote A,;; towards which the Hupil dilates
whenthe light is off. Likewise, when the light is on, the area tends to a lower asymptote
A,n. Note that on crossing 8 the slope of the solution does not change instantly. This
is due to the finite (neural plus electronic) delay in the system. The exact shape of
the observed oscillations is not reproduced by this piecewise linear model, e.g. the
derivative is not continuous (at least a second order piecewise linear model would be
required). However, the model has the advantage that analytical expressions exist for

the period P and amplitude 489:99;

A - A A — A
_ -1 maz on -1 man of f
P =21+ o ln[——-—-————o A } + oy ln[ 0- 4., } (5.3.6)
A = Ama:: - Am1n7 (5-3'7)

where A2 and 4,,;, are the maximum and minimum areas reached by the oscillation

as it approaches, respectively, the asymptotes A,¢¢ and A, :
Amaz = 06717 + Agpp[l — 7] (5.3.8)

Amin = 077 + Aon[l - e_“"'] (539)

Note that A4,, < Amin < Amaz < Aoy

Further, all parameters can be estimated experimentally?°8?: a, is determined
from the slope and Aoss from the intercept of the plot of Az vs 6. In the same
manner, A,,,,, vs 8 yields 4,, and a.. The threshold 8 is set electronically, and
the delay 7 is measured independently from the pupil response to a single pulse of
light. We have taken the response asymmetry into account by making a dependent
on the area derivative, i.e. @ = a, when 4 < 0 (constriction), and a ~ a4 otherwise.
Asymmetry can be neglected in the SNF case where continuous variations in light
intensity (as opposed to the abrupt changes in PCNF) emphasize steady-state rather
than transient behaviour, leading to an averaging of the rate constants®?,

Equation (5.3.4) has been shown®!8% t¢ predict the period, amplitude and light
pulse widths in the PCNF case to an accuracy of 5-10% (not shown here). Equation

(5.3.7) predicts that the amplitude should be independent of 8 in the symmetric case
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a; = agq, and increase linearly with 6 when a. > ag4. Our data clearly supports the
asymmetric treatment. Further, as 8 is increased from low values, the period should
first decrease slightly, then increase over the major portion of its range. Apart from

the slight decrease in period, this is observed.

5.3.4.2 Stochastic analysis.

A. PCNF. The power spectra in the PCNF case have less power at low frequencies
than in the SNF case (compare Figures 5.3.2 a and d). These spectra are different
because the two types of feedback affect the expression of the same noise sources
differently. The noisc in our system has a correlation time on the order of 1-2 seconds
(Section 5.3.3.1). This compares well with the reports of the inverse bandwidth of
the power spectra of pupil fluctuations (“hippus”) under constant illumination*®:47,
The response time of the pupil light reflex, which varies from 0.25 sec (constriction)
to 1.5-2 secs (dilation), is of the same order. Further the transients in (5.3.1) are very
short (less than one oscillation period) due to the stability of these limit cycles. To
obtain a qualitative understanding of how period and amplitude fluctuations depend
on @, we assume that the expressions for amplitude and period, based on the steady
state solution of (5.3.4), always hold. In other words, the system equilibrates to
the fluctuations. We can then compute period and amplitude fluctuations by taking
partial derivatives with respect to fluctuating parameters.

Previous studies have shown that the asymptotes undergo cycle to cycle varia-
tions during PCNF oscillations®. The asymptotes are defined in terms of physiolog-
ical parameters by®:

Aogs = Ag + ;—Z—ﬁ ln[%’i] (5.3.10)

3 v (boss + db)
A,,,,_Ao+acﬂln[ ; } (5.3.11)

where J is the slope of the feedback function g(.4) (defined in (5.3.1)) at the fixed point
of (5.3.1) when F is given by (5.3.2), and 4, is the maximum pupil area (note that
Aofg > Aon since § < 0). These expressions imply that if any physiological parameter
fluctuates, this will affect the value of the asymptotes since they are functions of all
the parameters. Furthermore, the parameter estimation scheme of the preceding
section endows the asymptotes with the largest relative error since they are obtained

as intercepts of linear fits. Hence we assume that only the asymptotes fluctuate
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significantly, and that the asymptote, period and amplitude fluctuations are normally
distributed'"™.
Using a standard error propagation formula, the variances of the amplitude 0'%

and period ¢% are (remembering that A is the amplitude from (5.3.7)):

2 = 63:1”)263,",, ¥ (6211)203,”" (5.3.12)
=[1-e?0%, 41— 0h (5.3.13)
b= () s * (52) (5:3.14)

where
op _ Anaz ~ 8 y—me (5.3.15)

0Aon ac(Ama:: - Aon)(o - Aon) ad(Amin - Aoff)

aP 1 — C—-a"r 0 - Amin
= - 5.3.16
s, au(Amas = Aon) ~ (Ausr — 0)(Aoss — Amm) (5.3.16)

From this analysis we see that the amplitude variance does not depend on 4, while

the period variance does. Since the amplitude increases as the bifurcation point is
approached, the relative amplitude fluctuations will decrease, as shown in Figure
5.3.3c. Furthermore the critical behaviour of the period is seen in the divergence of

op at the bifurcation point § = A5y in (5.3.16). A simple calculation shows that as
0 - Aypp, P = In(Aops — 6) and thus

AP Aorr — Amns Y 7!
_— = {(Aoff—a)ln[——i't_— } . (5317)
Aosr — 0

Note that the argument of the logarithm is greater than one except when 8 = Apin =
Aon. Our analysis thus predicts that as the point of oscillation onset is approached,
the relative period fluctuations should increase rapidly, which is also in agreement

with the data of Figure 5.3.3d.

B. SNF. In this section we first discuss problems involved with the analysis of fluc-
tuations in the SNF case using standard theoretical approaches. We then justify our
choice of which parameters fluctuate, and show how numerical integration of a sim-
ple stochastic DDE explains the observed stochastic behavior of the amplitude and

period.
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Additive and multiplicative noise

The behavior of ODE’s near bifurcation points can be studicd by looking at the
extrema of the stationary probability density of the Fokker-Planck equation. These
extrema are the quantities that undergo bifurcations. This is true for the Hopf bifurca-
tion in ODE’s, where other quantities such as the power spectrum and the autocorre-
lation function do noi display this critical behavior'*®. For DDE’s, the Fokker-Planck
equation takes the form of a PDE with retarded argument. There are no analytical
techniques available to solve such an equation for its stationary density. Further, to
compute the density from an experimentally measured time series requires extensive
data sets so the fluctuations can be averaged over many osallation cycles'*®. Siuce
our time series are short, such an approach would yield inaccurate results, especially
in regard to the position of the extrema of densities.

It is known that the relaxation time ¢, of perturbations from the limit cycle (a
measure of stability) is, according to Floquet theory!® given by t,. o (n - ny) ! where
ng is the parameter value at which the bifurcation occurs. This critical slowing down
has been measured in the vicinity of the self-pulsing threshold of a bistable optical
system governed by a DDE (the lkeda equation)!'®®. The divergence of ¢, is, along
with 4 « Vv/n - ng, charactenistic of second order phase transitions?'. We cannot
measure the relaxation time to the limit cycle because of the limit on the length of
our data sets and the high noise levels. Even if we could measure this rate, it is not
clear how to relate it to the amplitude and period fluctuations we are interested in. In
view of this and of the problems involved with the density approach, we resort instead
to numerical simulation. We apply noise to (5.3.3) since this cquation is simpler than
(5.3.1) together with (5.3.2) and explains qualitatively the deterministic behavior seen
for SNF®9.

To identify which parameters in (5.3.3) are subject to noise, we equate the
asymptotes in the PCNF case (which we assumed are fluctuating) with the upper
and lower bounds of the SNF function as in Figure 5.3.3a. This identification yields
(setting a. = a4 for SNF):

c= ~% ln[%i:‘é”] (5.3.18)

k= ado + %tn[?ﬂfff’l’} (5.3.19)

and similar expressions if asymmetry (i.e. a. > aq) is kept. The physiological pa-

rameter that is probably fluctuating the most is 4 since it is related to hippus. This
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is in agreement with earlier work showing that the amplitude of the noise depends
on the state of the system, i.e. that the noise is multiplicative. In fact it has bheen
shown?”'7 that neural output of the midbrain (which drives the iris constrictor mus-
cle) is primarily the sum of two components: one proportional to light intensity and
one proportional to both intensity and noise level. $, related to the adaptation state
of the retina, is also likely to fluctuate because of variations in light intensity.

It is ohvious from (5.3.18) and (5.3.19) that if either 4y and/or ¢ vary, ¢ and
k will also vary Hence, the amplitude and period fluctuations in SNF should be
qualitatively explained using (5.3.3) with additive noise (on k) and multiplicative
noise (on ¢). When noisc is assumed to affect ¥ and ¢ in (5.3.2), it is considered
multiplicative. If instead we use (5 3.3) with noise on ¢ and k, we are assuming that
the notse is both additive and multiplicative. A prior:, this additive noise does not
seem justified. However, additive noise is also expected in the general case (i.e. it
could have been added to F in (5.3.2)), and could be due, for example, to random
neuron firings 1n the absence of perturbations originating outside the reflex arc.

We assume colored Gaussian noise with a correlation time t.,,. =~ 1 second (see
Section 5.3.3). Explicitely, we have ¢ = ¢+ ¢(t) (multiplicative noise) and k = k + ¢(t)

(additive noise) where £(t) obeys an Ornstein-Uhlenbeck process?!®?

d .

d—i = ~Te(t) + T¢(t) (5.3.20)
where I' = t7 ! and £(¢) is a Gaussian white noise of zero mean and variance o2, i.e.
(€(3)é(t)) = o?6(t — s). The correlation function of the Ornstein-Uhlenbeck process

(5.3.20) is

2
C(t,s) = ——eTlt=1l, (5.3.21)

cor

The white noise limit is obtained by letting t.o» — 0 in (5.3.21), and the sirength of
2

the Ornstein-Uhlenbeck noise ‘s

Numerical Algorithm T

Our stochastic simulations were done separately for additive and multiplicative

noisems’lM‘M‘r’.

The Ornstein-Uhlenbeck process (5.3.20) was integrated using an
integral Euler method recently proposed by Fox et al.!3®, which has been shown to be
more accurate than the usual differential method, while (5.3.3) was integiated using
a fourth order Runge-Kutta with linear interpolation for the delay. The time step of

7/100 was the same for both methods and was limited by the accuracy requirements
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for the integration of the Ornstein-Uhlenbeck process. The parameters were chosen
to be @ = 3.21, 7 = 0.3, ¢ = 200, k = 0 and § = "9 to yield reasonable pupil

G4.84

area values in mm?2. The gain G in the SNF experiments is proportional to the

parameter n, which controls the steepness of the Hill function at the fixed point. We
varied n from its value at the Hopf bifurcation, n, = 8.18. to a value above which
the amplitude grows very slowly (n = 12). n was varied in steps of 0.02 from 8.18 to
8.30, and then by steps of 0.2 from 8.40 to 12 0.

Equation (5.3.3) was integrated using an initial function A(t') = 40, ' «¢
[-7,0], which is close to the fixed point of (5.3.2) (4' = 44.6). For a given value
of n, the solution is first allowed to settle onto the limit cycle in the absence of noise
for an integration time equal to 2500 delays; then noise is applied, and another 2500
delays are discarded as transients. (5.3 3) is further integrated for another 20000 de-
lays during which the amplitude and period histograms are constructed. Periods ane!
amplitudes were determined from the zerc siope points of the solution as in the data
analysis (Section 5.3.3). We required two such points to be separated by at least 20
time steps (60 msec) in order to neglect very rapid changes in the derivative which
could not be measured from the data.

It is difficult to numerically obtain an accurate description of steady state be-
havior in the vicinity of a bifurcation point because of critical slowing down. Since
the amplitude of the limit cycle at a Hopf bifurcation grows as A o (n - ny)"/? and
the relaxation time of transients onto the limit cycle goes as t, o (n—n,)~ ', it follows
that ¢, oc A~2. This implies that if we allow sufficient time for the transients to decay
in the vicinity of the Hopf bifurcation poiut (i.e. for n & n,), then this time should
also be sufficient to obtain an accurate picture of the steady state behavior forn - n,.
Hence, for all values of n, the same time (5000 delays) was allowed for the transients
to decay. We have numerically verified that this transient period was suflicient by
comparing our results in the vicinity of the Hopf bifurcation with those of simulations
for 60000 delays where the first 30000 delays are discarded as transients

A histogram of the amplitude values from the numerical solution of the system
(5.3.3) with multiplicative noise (5.3.21) on ¢ was obtained by dividing the interval
(0,40) mm? into 200 bins. In Figure 5.3.4a, the mean amplitude calculated from
this histogram is plotted as a function of the bifurcation parameter n for different
intensities of the multiplicative noise (¢,,, = 1) as well as for the deterministic case.

The curves were obtained by smoothing the simulation results at the discrete values
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Figure 5.3.4 Predicted means and fluctuations in amplitude and period for the SNF
case, computed from the numerical integration of Equation (5.3.3) with multiplicative
Gaussian colored noise (5.3.20) on the parameter c. Parameter values are v = 0.3sec,
T = 200mm32sec™!, 0 = 50, a = 3.21sec™!, k = Omm?sec™! and the initial area was
constant (40mm?) on the interval (—,0). The bifurcaiion parameter is n (which is
proportional to the feedback gain), and a Hopf bifurcation occurs at n = 8.18. The
noise correlation time is one second. a) Mean limit cycle amplitude as a functicn of n
for the deterministic case (0 = 0) and for & = 7.0 and 15.0. b) Mean limit cycle period
as a function of n for the deterministic case and for ¢ = 3.5,7.0,15.0. c) Relative
amplitude fluctuations as a function of n for ¢ = 3.5,7.0,15.0. d) Relative period
fluctuations for the same values of ¢ as in (c). Note that the mean period in (b)
varies slowly with n, even though the expanded vertical scale suggests the opposite.
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Figure 5.3.5 Magnitude of the separation between the peaks (order parameter) in
the density of the solution of (5.3.3) as a function of n for multiplicative (a,b) and
additive (c,d) colored Gaussian noise (5.3.20). The parameters are the same as in
Figure 5.3.4. In all plots, the amplitude of the limit cycle in the deterministic case is
included for reference. a) Peak separation for multiplicative noise of correlation time
teor = lsec and for o = 3.5,7.0 and 15.0. b) Peak separation for multiplicative noise
with ¢ = 15.0 and for 3 different noise correlation times: ¢.,,. = 1.0,2.0,4.0. ¢) and
d) are the same as, respectively, a) and b), except that the noise is additive (on the
parameter k in (5.3.3)).
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of n. The mean amplitude in the presence of noise does not go to zero at the hifur-
calion as does the deterministic amplitude. This is in agreement with the ohserved
behavior of the mean amplitude in Figure 5.3.3a. Rather, it levels off at a finite value
proportional to the noise intensity. The sigmoidal shape of the curve for o = 15
is in good agrement with that of the experimental curve (Figure 5.3.3a). In this
calculation, the very small amplitude fluctuations (corresponding to the first three

bins of the amplitude histogram, equivalent to (0,0.6) mm?

were neglected {rom the
computation of the amplitude mean and standard deviation, to account for the fact
that these small fluctuations are not measurable experimentally. The value at which
the mean amplitude curve levels off at the bifurcation point is proportional to the
number of Jow amplitude bins neglected. Note that below the bifurcation point (i.e.
for G < Gy), the mean amplitude is still finite, and goes to zero as the equilibrium
point hecomes more attracting (not shown).

The mean period is computed (as is the mean amplitude) from a histogram of
the period values in the numerical solution of the stochastic DDE. The period value
interval (0.5,1.5) sec was divided into 200 bins. The mean period value for the same
range of noise intensities as in Figure 5.3.4a is plotted as a function of n, as well as the
period for the deterministic case. Figure 5 3.4b shows that the mean period is fairly
constant over the values of n investigated, as observed in the data (Figure 5.3.3b).
In all cases, the period increases slightly with n; however, for a given value of n, the
mean period decreases as the noise intensity increases.

For the PCNF case, it is possible to estimate the parameters of (5.3.4) from the
PCNF data®®. However, it is difficult to estimate the parameters of (5.3.3) from the
SNF data, which is the reason why we are looking for qualitative agreement with the
data in Figure 5.3.3. The noise intensity was chosen to reproduce the values of relative
amplitude and period fluctuations measured from the data (Figure 5.3.3c,d). Good
agreement between these values and between the shape of the time series (not shown)
was obtained when ¢? = 15 (Figure 5.3.4c,d). This implics that the dependence of
mean amplitude on n is given by the ¢ = 15 curve in Figure 5.3.4a. This curve is in
fact the one whose shape agrees the best with that of Figure 5.3.3a.

By repeating the simulations at a given value of n for the highest intensity used
(o = 15), it was found that the mean and standard deviation values fluctuate by ap-
proximately 2%. This accuracy could be reduced by averaging these values over many

realizations of the Ornstein-Uhlenbeck process. However, given the large variability
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exhibited by physiological systems, and given that we are looking for qualitative
agreement, this averaging procedure was not warranted.

The simulations were repeated for the case of additive noise on kin (5.3.3). Note
that ¢ and & in (5.3.3) both determine the height of the SNF function. The results
(not shown) are qualitatively the same as for the multiplicative case, except that for
equal noise intensities, the additive noise has a lesser effect on the dynamics.
Pinpointing the Hopf bifurcation

Theoretically it is important to pinpoint the occurrence of the Hopf bifurcation.
The fact that the mean limit cycle amplitude is still finite for G < G, might suggest
that the bifurcation has occurred at a smaller parameter value than in the absence
of noise. However, the onset of oscillation must be understcod from the statistical
behavior of the system. It has been shown that the stationary density of the Fokker-
Planck equation corresponding to a generalized Langevin equation exhibits critical
behavior, while other quantities such as the correlation function or the power spectrum
do not exhibit such behavior?!'1*®, A criterion for determining the Hopf bifurcation
point in the presence of noise consists in finding the parameter value at which the
stationary density goes from unimodal to bimodal. The separation of the peaks is
proportional to the mean limit cycle amplitude which is different from the mean
amplitude shown in Figure 5.3.4a. Tn distinguish between these two statistically
determined amplitudes, the peak separation will be referred to as the order paramcter.

The theory of invariant densities for delay-differential equations (DDE’s) in gen-
eral, and for stochastic DDE’s in particular, is non-existent. Although the first order
DDE (5.3.3) is infinite-dimensional (it evolves in a functional space), it might be
appropriate to look at the one-dimensional densily constructed from the values of
the state variable. Histograms of the numerically computed solution of (5.3.3) with
(5.3.20) for both the additive and multiplicative noise cases were constructed by di-
viding the interval (10,75) mm? of solution values into 500 bins. These histograms
were found to have an invariant form when enough time was allowed for the tran-
sients to decay. This is an indication that these histograms may qualify as “invariant
densities” for the DDE of interest. The peak separation was measured graphically
from the densities. Again, repeated simulations for a fixed value of n revealed that
peak separation values fluctuated by =~ 5% at the highest noise intensity used, and
that the accuracy increased (the peaks were better defined) as n increased.

Figure 5.3.5 plots the magnitude of the order parameter as a function of the bi-

195




poli

furcation parameter n for both multiplicative (5.3.5a,b) and additive (5.3.5¢,d) noise.
The computations were done on the same time series used for Figure 5.3.1. In Figure
5.3.5a and ¢, the correlation time is fixed and the intensity varies over the same values
as in Figure 5.3.4. The curves are obtained by smoothing the simulation results at
the discrete n values. Note that the deterministic curve is the sarne as that in Figure
(5.3.4a): the amplitude is proportional to /n — ngy (Section 5.3.4.1 A). The curves
corresponding to finite noise intensities have the same shape as the deterministic curve
but are shifted to its left (i.e. to higher values of n) by an amount proportional to the
noise intensity. This implies that the noise actually postpones the Hopf bifurcation
(from the statistical point of view) in both the additive and multiplicative noise case.

In Figure 5.3.5b and d, the magnitude of the order parameter is again plotted
as a function of n, but the noise intensity is fixed and the correlation time is varied
from 1 to 4 seconds. In both the additive and multiplicative case, the shift of the

bifurcation point increases as the correlation time decreases.

5.3.5 Transition from SNF to PCNF.
In this section the relation between the different deterministic properties of SNF

and PCNF are investigated. Equation (5.3.3) can be obtained from (5.3.1-2) by let-
c+k

ting n go to infinity and by equating Aq5f = and 4,, = a8 shown in Figure
5.3.6. In this case, the forcing function F in (5.3.1) becomes a Heaviside function
of the delayed pupil area. This limit produces a transition from the nearly sinu-
soidal oscillations in SNF to a switching type behaviour, characteristic of relaxation
oscillations, in PCNF.

The oscillation condition changes from (5.3.5) to the condition 8 > 2—, where
6 is the inflection point of the Hill’s function when n — oo. This is illustrated in
Figure 5.3.6 where numerical solutions of (5.3.3) are plotted for different values of a.
The PCNF waveform depends on the value of o at which the limit is taken. This
depends on the intersection of the curve ad with the piecewise constant function.
In the PONF limit the inflection point of the Hill function becomes equal to §. The
oscillation condition is now that {he intersection point be on the infinite slope portion
of the PCNF function. Hence, in Figure 5.3.6, when a = a; or as, the condition
6> 2— is not satisfied and there is no oscillation. When a = a, the limit produces a
high threshold oscillation, as in the case a = 4, and a = a4 produces a low threshold

oscillation, as in the case a = 0.7.

For SNF the Hopf bifurcation criterion corresponds to a condition on the pe-

196

e et TR b



Rt S e R o T

riod involving the slope of the feedback function at the fixed point. For PCNF, the
oscillation condition is a condition on the amplitude. In the SNF case at oscillation
onset, the frequency is fixed while the amplitude is zero (in the supercritical case??),
while in the PCNF case the amplitude is fixed while the frequency is zero. For SNI,
once n increases past its value at the Hopf{ bifurcation, the amplitude first grows as

v/n — ngy but rapidly reaches its maximum value, i.e. that for the PCNF case.

5.3.6 Discussion.

Oscillations in the human pupil light reflex were produced by two kinds of ex-
ternal electronic feedback which modify the normal functional dependence of retinal
light flux on light intensity and pupil area. The parameters of the external feedback
circuit were varied to induce a bifurcation from an equlibrium state to an oscillatory
state: the gain of the amplifier relating light intensity to pupil area was varied in the
SNF case, while the position of the threshold area 8 was varied in the PCNF case.

Experimentally, it is observed that the period fluctuates more than the ampli-
tude at oscillation onset in PCNF, while the opposite holds for the SNI* case. We
have related this to the different kind of critical behaviour displayed by a first order
DDE at osdillation onset in the SNF and PCNF case, under the assumption that the
correlation time of the noise is of the same order or larger than the response time of
the system. In fact, our simulations of (5.3.3) with multiplicative or additive noise
(Figure 5.3.4) indicate that this model of autonomous oscillations in pupil area qual-
itatively reproduces the observed behavior (Figure 5.3.3) in the vicinity of oscillation
onset.

Generally, relative amplitude fluctuations are greater than relative period fluctu-
ations in SNF for a broad range of noise correlation times. Although our simulations
account for the cycle to cycle fluctuations in period and amplitude in SNF, they do not
reproduce the experimentally observed baseline drift over 10-15 second periods (the
data shown in Figure 5.3.1d has been corrected for this drift). This drift is probably
due to an unmodelled deterministic phenomenon or to a noise source with a corre-
lation time longer than that for the noise used in our simulations in Section 5.3.4.2.
This long-correlated noise could affect either ¢ or k because a variation in either of
these would result in a proportional variation in the mean value of the oscillation.

We have observed both experimentally and in our simulations that the period of
SNF-induced pupillary oscillations remains constant despite variations in k, )X and n

in the SNF case. The constancy of {requency in negative feedback systems in biology
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Figure 5.3.8 Transition from SNF (solid line) to PCNF (dashed line) is achieved
by increasing the slope of the feedback function until it approaches co at  and zero
elsewhere (lim n — oo in the Hill’s function on the left hand side of (5.3.3)). In this
limit, the inflection point of the Hill’s function coincides with 8, the upper bound
93;-!‘- with the upper asymptote A,;; and the lower bound 7:- with Aopn. Limit cycles

bifurcate from the fixed point A* of (5.3.3) when wr > cos™'(~%) (5.3.5). In the

PCNF limit, oscillation onset occurs when @ < 4,¢¢. Depending on the value of a, the
PCNF limit will yield solutions of (5.3.3) that either do not oscillate (a,, as), or which
oscillate around a high (az = 4) or a low (a;s = 0.7) threshold. Response asymmetry
(i.e. ac > aq) observed in PCNF has been neglected for clarity. Parameters are:
IO= 0.3, n = 200, k = 20, c = 200, 8 = 50, a = 3.21 and the initial area was equal to

198




3

¢

-r

has been pcinted out previously®%1%!  However, in the PCNF case, the period
fluctuations are a consequence of the asymptotes fluctuations (principally Aqfp). The
thecretical result of Section 5.3.4.2 for the amplitude and period fluctuations in PCNF
corresponds to an adiabatic elimination?! in the sense that the system is considered
to always be in a quasi-stationary state with respect to the instantancous value of the

fluctuating parameters.

The influence of the correlated noise in the PCNF case can also be qualitatively
understood as follows. When pupil area approaches 8 on the way to Az, a slight
fluctuation in 4,;, will affect the crossing time. Fluctuationsin this crossing time are
inversely proportional to the area derivative in the vicinity of the threshold. Hence
near oscillation onset this derivative is nearly zero, making the period very sensitive
to fluctuations in 4,5 5. These conclusions hold under the hypothesis of colored multi-
plicative noise on the asymptotes. In the white noise limit both period and amplitude
are sensitive to the noise (data not shown). However, in PCNF, as f.,. decreases,
relative period and amplitude fluctuations are of the same order. In fact, whenever 6
is approached, noise will cause transitions in pupil area from one side of the threshold
to the other and back. Hence, the noise can shorten the time spent above 6, which
will decrease the period and the amplitude. The fact that the amplitude fluctuations
are not very large in PCNF is an indication that experimentally the noise is colored.

Oscillation onset in PCNF does not correspond to a supercritical Hopf bifirca-
tion as in the SNF case because the vuscillation appears with a finite amplitude. Nor
is it a subcritical Hopf bifurcation because the fixed point is globally asymptotically
stable when X < af ®¢. The difference lies in the exchange of stability that occurs at
the bifurcation. As a supercritical Hopf bifurcation is approached, the stability of the
fixed point decreases. Going through the bifurcation point, it becomes unstable and
the solution is attracted to the limit cycle that came into existence at the bifurcation.
In PCNF, the bifurcation is characterized by an abrupt exchange of stability leading
to the appearance of an oscillation of infinite period but fixed amplitude. Closer in-
spection of the SNF-PCNF transition shows that oscillation onset is determined by
a condition on the period in the SNF case (Hopf bifurcation criterion) and by one
on the amplitude in the PCNF case (A, > 8, where A, is the initial pupil arca; or
equivalently, A > a#). It is interesting that in each case the assumed noise has less
of an affect on the quantity which determines the oscillation condition (i.e. the noise

does not effect the period as much as the amplitude in SNF, and vice versain PCNF).
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To identifv whether a bifurcation has occurred or not in a physical system de-
pends on which theory one uses. One such theory holds that a supercritical Hopf
bifurcation occurs when the unigue maximum of the stationary solution of the Fokker-
Planck equation is replaced by two maxima which separate as the bifurcation parame-
ter is increased This does not mean that oscillations are not visible in the time series
prior to the Hopf bifurcation. In fact, well defined peaks in the power spectrum as well
as oscillations in the autocorrelation function appear, in the presence of noise, even
when the bifurcation parameter is well below the deterministic bifurcation value!*®.
But these quantities do not exhibit a qualitative change at some parameter value.
However, the probability density does display critical behaviour. For physiological
data, it is practically difficult to construct such a density due to the length of the
available time series. Instead, we have made certain hypotheses on the noise sources
and numerically simulated the stochastic dynamics of the system to see whether some
aspects of the data can be reproduced. We were thus able to account for the observed
hehavior of period and amplitude fluctuations at oscillation onset.

In Figure 5 3.5, it is shown that the bifurcation is shifted to higher values of the
bifurcation parameter when noise is present. This postponement of the deterministic
Hopf bifurcation in a DDE has not, to our knowledge, been reported previously, but is
known to occur in ODE’s when multiplicative noise is present2!:148:152,253 We found
the shift was proportional to the noise intensity o, and inversely proportional to t.,,,

as observed previously!?®,

A more surprising fact is that this shift also occurs for additive noise, with
the same qualitative dependence on o and t.o.. Noise-induced transitions due to
21

additive noise are not possible in one dimension They have been reported in a

2-dimensional Fokker-Planck equation?!®*

. However, DDE’s are infinite dimensional,
and thus the possibility exists for such transitions. Further, shifts of the first tran-
scritical bifurcation and of the first period-doubling bifurcation in the logistic map
have been predicted and observed in numerical experiments involving additive and
multiplicative noise!®®. In fact, for discrete time systems, there is an equivalence be-

tween additive and multiplicative noise?213%

. Since the DDE reduces to such a mapin
the singular perturbation limit, where the response time of the system is much smaller
than the delay!?:156:157 it is not surprising that shifts occur for both additive and

multiplicative noise.

The shift of the bifurcation point makes the application of the deterministic
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analysis to experimental data more difficult since a knowledge of the noise charac-
teristics is needed to determine the deterministic bifurcation diagram. In view of
the high noise levels in neural systems, it appears difficult to avoid this issue. More
work is needed to determine the precise conditions under which postponements occur

and whether advancements are possible!48152,133,158

In particular, other otder pa
rameters such as the root-mean-square amplitude may more appropnately describe
the Hopf-type of time translational symmetry-breaking bifurcation in the presence

of noise studied here!35:161

. Also of interest 1s whether a two-dimensional stationary
probability density is required to pinpoint the Hopf bifurcation, in the event where the
radial and angular variables describing the oscillation are sigmficantly coupled!48:162,
Natural coordinates in which to investigate this possibility are A(f) and A(f 1) in
(5.3.3). Note that the shifts observed here are different from those obtained when the

bifurcation parameter is swept at a finitc rate across the bifurcation!5:169,

The postponement of the Hopf bifurcation is expected to be qualitatively similar
in the event that the fluctuations are not Gaussian distributed. Although we have
not performed a precise assessment of noise statistics, the inclusion of Gaussian noise
in our deterministic model does reproduce the data when given an adequate intensity.

There have also been previous reportst’7*

which support the Gaussian nature of the
pupil noise for midrange pupil sizes under constant illumination. At large and small
pupil sizes, the probability density of the noise is slightly skewed toward midrange
values, presumably because the injected Gaussian noise is Lltered by the nonlinearities
in the motor pathway of this reflex. Our model would reproduce this behavior if the
distribution of area values were computed prior to the Hopf bifurcation at small and
large pupil sizes.

There have been previous studies of fluctuations in neuron membrane potential
at rest'®® and at oscillation onset!®%!87 and in a simple motor task'®®. llere we
have considered the onset of oscillation in a neural control system for which a simple,
physiologically sound, model exists, and shown how this model can explain observed
deterministic and stochastic behavior. We have further strived to identify the noise
sources and to understand their dynamical behavior. Although a partly deterministic
origin for the aperiodic behavior of the pupil (such as chaos) can not be excluded, our
results concerning the critical behavior of the pupil suggest that hippus is a reflection
of an underlying stochastic process. Further, there does not seem to be any interaction

between the dynamics of the noise source and the dynamics of the reflex, even though
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the pupil modifies the characteristics of the noise. This supports the hypothesis that
the noise is injected into the reflex pathways, as suggested previously*™ ™,

On the basis of our analysis, it is difficult to decide whether additive or mul-
tiplicative noise is responsible for the observed behaviour of period and amplitude
in SNF. Both mechanisms yield qualitatively similar results, and it is quite probable
that both contribute to the observed behaviour.

Noise is amplified in the SNF case near the Hopf bifurcation due to critical
slowing down (loss of linear stability), which is responsible for the large amplitude
fluctuations. In comparison, the PCNF case appears to be immune to this effect.
The critical behavior is displayed by the mean perind rather than the mean ampli-
tude. This is interesting because it means that no noise amplification occurs at the
bifurcations. Instead the multiplicative noise causes period fluctuations and kicks the
system between the limit cycle and fixed point behaviors.

The SNI-PCNF limit has not, to our knowledge, been studied in DDE’s. For
the Ikeda equation in optical bistability!3?, another well-studied first order DDE with
nonlinear feedback, attention has been focussed on the singular perturbation limit
in which the ratio of the delay to the system response time goes to infinity (i.e.
at > | in (5.3.3)). Studies!®!125.156,157 haye shown that certain properties of the
map obtained in this limit carry over to the continuous solutions of the DDE, while
others do not. This applies to the noisy DDE as well, since the noise is responsible

for the bifurcation gap in the subharmonic cascade!%?

. Also, a noisy one-dimensional
map has been used 1n the study of noise-induced transitions between coexisting states
of the Tkeda equation'’®. The PCNF limit of SNF yields a degenerate mnap with
no interesting behavior. However, we have found (data not shown) that the mode
frequencies obtained from a linear stability analysic converge to the odd harmonics
of the fundamental mode as seen in the singular limit of the lkeda equation??!. Of
course the mode amplitudes differ, since the singular limit produces a square wave
while the PCNF limit produces the waveforms in Figure 5.3.1c.

Different methods are available for the analytical treatment of colored noise,
depending on the ratio of system response time to noise correlation time?!, If this
ratio is large (the weakly colored noise case), the Fokker-Planch equation can be
approximated using expansious in the inverse bandwidth of the aoise. In the other
case where the system is always at equilibrium with respect to the slowly varying

noise, adiabatic elimination techniques (or switching-curve approximations®!) can be
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used, as in Section 5.3.4.2 for the PCNF case. In developing a quantitative analysis for
autonomous oscillations in the pupil light reflex, one is faced with the problem that the
noise correlation time (for the dominant noise components), the system response time
and the delay are all of the same order of magnitude. This implies that the effect
of noise on the dynamics may not be cffectively studied using the aforementioned
techniques. Further, it is not clear how to define the evolution of probability densities
for DDE’s. We expect that studies of other “untampered” or clamped neural control
systems will face the same problems of equal time scales for noise, delay and system
response. Noise is an important component of neural activity, and it is our hope that
this work will stimulate further studies to untangle the deterministic and stochastic
contributions to neural oscillations. Further, the results reported here may be useful
for the analysis of other experimental systems (e.g. in nonlinecar optics, biochemical
regulatory networks, Boolean kinetic networks, gene regulation and transcription)
where noise is thought to play an important role and feedback dynamics can be

modelled using smooth or piecewise constant nonlinearities.

5.4 REMARKS ON NOISE-INDUCED SHIFT OF HOPF BIFURCA-
TION IN A DDE.

In this section, we develop a qualitative understanding of the origin and prop-
erties of the noise-induced trausition encountered in the previous section. This is
required because there are no analytical tools available to study these transitions in
DDE’s.

Noise postpones the onset of oscillation at a Hopf hifurcation in a DDE (Section
5.3). However, oscillations are apparent in the solution even though the maxima of
the invariant density constructed from this solution have not become distinct; in other
words, the oscillation is apparent even though the bifurcation has not occurred. The
oscillations are precursors of the bifurcation (Wiesenfeld, 1985) and do not display any
critical behavior. Consequently, the shift in the bifurcation point has to be understood

from the statistical point of view of densities.

5.4.1 Dependence of shift on noise correlaticn time.

In the deterministic (noise free) case, the solution spends more time near the
extrema of the oscillation (i.e. where the time-derivative is zero) than anywhere clse
(see Section 4.5). As a consequence, peaks corresponding to these extrema appear in

the numerically computed densities. In the stochastic casc, thc invariant density will
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have two maxima if: 1) the solution spends enough time near the oscillation peaks;
and 2) if the deterministic amplitude is large enough. From the point of view of a
generalized Langevin equation, noise affects the value of the derivative of the state
variable. Near the bifurcation, noise traps the system around the mean value of the
oscillatory solution (i.e. around the fixed point) more often than near the peaks,
since the time derivative is constantly changing and the limit cycle is not strongly
attracting. Hence, more numerically generated iterates contribute to the mean than
to the extrema, and the density will appear single-peaked around the fixed point.
The shift of the Hopf bifurcation is more pronounced for short-correlated noise
(i.e. for wideband noise) than for long-correlated noise. This is a consequence of the
fact that the shift is proportional to the strength of the noise, and that the effeclive
strength of colored noise is proportional to 7z (Section 5.2.4). The influence of
noise correlation time on the shift can also he understood qualitatively as follows.
Short-correlated noise can trap the oscillation around its mean value because it sig-
nificantly changes the time-deri+ ative of the state variable over short periods of time.
For long-correlated noise, the time derivative does not charge a< abruptly as with
short-correlated noise. Conversely, long-correlated noise changes tne parameters and
the derivatives slowly, so the solution can still freely swing between maximum and
minimum values which are slowly modulated by the noise. Hence, the solution spends
more tirne near the peaks than if the noise were rapidly changing. This implies that,
for a given noise intensity, the shift will be smaller for long-correlated noise than for

short-correlated noise.

5.4.2 Understanding the shift from the “ODE” point of view.

Though no theory seems to exist for generalized Langevin-type equations with
delays, there are two limits in which a stochastic DDE can be studied (Sections 4.4
and 4.6), depending on the value of ar. If ar <« 1, the behavior of tle DDE may be
approximated by that of an ODE We have seen that this approximation is good only
when the delay is quite small, which is not the case for the pupil light reflex (Section
1.0.1).

A potentially more interesting avenue would be to look at the effect of noise on
the distributed delay system (section 4.8) which does provide a suitable approximation
to the behavior of the DDE at the Hopf bifurcation. Since at least three equations are
needed to study detecrministic oscillations in this approximation (only one of which is

nonlinear), the inclusion of Gaussian white noise would require numerically integrating
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at least a three-dimensional Fokker-Planck equation. This is a hideous task, and

probably one which gives little insight into the properties of the shift.

It is possibie to linearize the one nonlinear equation in the coupled system of
ODE’s. The corresponding Fokker-Planck equation would then have linear drift coef-
ficients and constant diffusion coefficients. The exact solution for the time-dependent
density of this equation has been given (see e.g. Haken, Advanced Synergetics, Sec-
tion 10.4.9). The density of the variable of interest, i.e. = in the original DDE, can
be obtained by integrating the multivariate probability distribution over all the other
degrees of freedom. However, this approach would be useful only for studying equilib-
ria, since the Langevin equation in this case is linear, implying that the deterministic
flow can not have limit cycle solutions. Linearization about the oscillatory solution at
the Hopf bifurcation may be more fruitful, although the analysis would then involve

ODE’s with time-dependent coeflicients, which considerably complicates the problem.

5.4.3 Understanding the shift from the “map’ point of view.

The study of the limit a7 > 1, in which the DDE has maplike behavior (Section
4.6), may also yield insight into the origin of the shift, because much is known on
the effect of additive and multiplicative noise in maps??'!55. The study of maps may
show how the shift depends on the parameters of the DDE, as well as on the choice

of the fluctuating parameter.

In principle, the invariant density for a stochastically perturbed map can be
calculated by iterating an initial density using a Markov operator as in (4.2.23) (as-
suming, as is usually the case, that the fixed point of this operator can not be readily

found analytically). Consider first the logistic map with additive noise of density g(&)
Top1 = S(z) + & = axi(l — z;) + &, (5.4.1)

Since the period 2 solution is of interest, @ should be slightly greater than 3, the valuc
at which the first period doubling occurs in the deterministic case. The invariant

density for the dynamical system (5.4.1) can be obtained by iterating the invariant

density corresponding to the deterministic case,

folw) = 3[8(c - 24) + 8(z — 2_)] (5.4.2)

N {eme
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where z.,. and z_ are the two points on the period 2 orbit. The first iteration produces

fi(2) = Pfo(a) = / ” 9(5(y) - o) foly) dy

= 39(S(z+) — =) + 39(S(z-) - =)
— %[g(m_ —_ :1:) + g(:c.,_ — :l:)] (543)

where we have used the fact that S(zy) = z_ and S(z_) = z; for the period 2 orbit.
Note that f,(z) is simply the convolution of the noise probability density with the
initial function (5.4.2).

The logistic map with multiplicative noise on a, i.e. a = a + §;, is written
Ty = S(mi,fi) = a:n,-(l — :l:i) + fimi(l — (B,;) (5.4.4)

Defining z; = y and z;,; = z, the stochastic variable becomes

gzy(l—y) -

This expression is then substituted for the argument of g(¢) in (4.2.23). In the mul-

a (5.4.5)

tiplicative case, one iteration of (5.4.2) using the resulting Markov operator (4.2.23)

yields
ar QT

filz) = %[9(32—+ ~@) +9(—— -3 (5.4.6)
For Gaussian noise, we have not found it possible to analytically compute the in-
variant density beyond fi(z) in either the additive or the multiplicative case. The use
of uniformly distributed noise rather than Gaussian noise circumvents the integration
problem, but at the expense of tedious bookkeeping for the successive convolutions.
However, this approach based on the Markov operator (4.2.23) sheds some light
on the origin of the shift. In fact, {rom (5.4.3), fi(z) is the sum ol two Gaussians
centered about #; and z_. The overlap of the two Gaussians causes the two extrema
to move from z; and « _ towards the origin. For a given noise variance, this deviation
is more pronounced as the amplitude of the deterministic limit cycle (z4 — z_) is
decreased, i.c. as the bifurcation point is approached. At a critical value of the
bifurcation parameter, the two extrema will merge. The shift is simply the difference
between this critical parameter value and the deterministic bifurcation parameter.
It has been shown numerically, and analytically using small-A perturbation ex-

pansions (A is the noise variance) around the first period-doubling bifurcation, that
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both additive and multiplicative noise induce shifts in the logistic map (see Linz and
Liicke'®%). In fact, for maps, there is an equivalence between the two types of noise.
In general, an additive noise of intensity A 44 has a greater effect than a multiplica-
tive noise of equal intensity A,;,1;. For the logistic map, the noise amplitudes have
been shown to be equivalent when Agy4y = (9;—1)45,"““ (Linz and Liicke!%). This
equivalence has been verified numerically for values of a below and above 3. The fact
that bifurcation shifts occur in DDE’s with either additive or multiplicative noise may
in fact be a consequence of the equivalence between these noises in maps.

The study of shifts at the first period-doubling threshold in maps, using either
small-A expansions or by looking at the action of a Markov operator on the determin-
istic invariant density, is based on the deterministic bifurcation diagram of the map.
It is interesting that the same type ot insight into the shift at the Hopf bifurcation in
the DDE (5.2.1) can be obtained by looking at the corresponding bifurcation diagram.

It is easier to see this by considering the supercritlical case with multiplicative
noise in the DDE and in the Landau equation (Appendix A). For both these systems,
the bifurcation diagram is the same and involves only one state variable (sce inset of
Figure 2, Appendix A). One can imagine that fluctuations in the control parameter
c (abscissa) are mapped by the bifurcation curve into fluctuations in the limit cycle
amplitude X' (ordinate). This mapping occurs for both the upper and the lower
branch of the parabola. 1t is not possible to calculate the density of ' given the
density of ¢, because the mapping (i.e. coordinate transformation) is singular to the
left of the bifurcation point (application of the Frobenius-Perron operator requires
that the mapping be nonsingular). Nevertheless, the two resulting densities on the y-
axis (each one corresponding to one branch of the parabola) will overlap significantly
as the bifurcation point is approached or the noise intensity increased. This situation
is analogous to that discussed above for the iteration of densities in maps. Hence, it
is possible to qualitatively understand the origin of the shift in the DDE by looking

at the bifurcation diagram.
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6. CONCLUSION

“J’ai cessé d’ignorer a 1’age de trois ou quatre ans et parfois
¢a me manque.”
Romain Gary

This thesis has shown that the macroscopic behavior of neural systems possessing
delayed feedback characteristics is amenable to quantitative analysis using tools from
nonlinear dynamics and stochastic processes. The motivation for most of the mod-
elling and theoretical work was derived from the analysis of experimentally induced
oscillations in a specific neural system, the human pupil light reflex. The study of
simple mathematical models in which all parameters can be experimentally measured
has provided much insight into neural delayed feedback which is ubiquitous through-
out the nervous system. The quantitative analysis of bifurcations in the pupil light
reflex has led to a treatment of deterministic and stochastic properties of nonlinear
delay-differential equations.

The major conclusions are summarized in the section “Contributions to original
knowledge” at the beginning of this thesis. This concluding section is an outlook to
investigations of interest for the future.

ORIGIN OF HIPPUS

A major concern in this thesis has been the origin and behavior of the irregular
fluctuations in pupil area known as hippus. The analysis in Chapter 3 and in Section
5.3 strongly suggests that hippus is due to noise injected into the pupil light reflex
pathways. Pupillary dynamics modify the characteristics of the noise, but do not
seem to affect the noise source itself.

However, the possibility that hippus is in part of deterministic origin can not
be excluded at this time. If a component of hippus were generated by a chaotic
process, it should be possible to induce bifurcations in its dynamics. It is not clear
which parameters to vary in order to induce these bifurcations, since hippus occurs
in open-loop. In our approach, the functional dependence of retinal light flux on
light intensity and pupil area was modified using imposed external feedback. Though
producing bifurcations in pupillary dynamics, it did not produce bifurcations in hippus
dynamics. Another approach would be to study the effect of drugs (e.g. anaesthetics)
on hippus, or to look at hippus in patients with well characterized midbrain lesions.

Two aspects of hippus are of particular interest: 1) the regular =~ 5sec-period
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pupillary oscillations in narcoleptics (and sometimes in normals) which replace the
irregular hippus at sleep onset (Section 2.1.3); and 2) the fact that a component of
hippus is correlated with respiration. In fact, small constrictions and dilations have
been shown to correlate with, respectively, inspiration and exhalation in cats'™! and

humans!7?

. The respiratory rhythm, whose period is = 4 — 5sec, may be the origin
of the regular oscillations. The proximity of the respiratory centers and pupillary
pathways further supports this hypothesis.

The appearance of the regular oscillations occurs when pupil area reaches mid-
range values, at which pupil gain (and thus hippus amplitude) is highest. It is possible
that the activity from the respiratory centers in the midbrain modulates that of
neurons in the pupillary pathways, and that the pupil is particularly sensitive to
this influence for midrange area values. The five-second rhythm may also be a noisy
precursor of a Hopf bifurcation!®® in a neural system whose activity modulates that of
the pupil. It may also reflect oscillations in the accommodation reflex at sleep onset.
The data on this qualitative change from hippus to periodicity is scarce, and the link
between theory and experiment will remain tenuous until more elaborate experiments

are carried out.

The study of pupillary oscillations would largely benefit from further experi-
mental investigations into the following problems: 1) the correlation of hippus and
accommodation fluctuations; 2) the behavior of the noisy cells and the dilator cells?®
present in the parasympathetic pathways of the pupil light reflex of the cat; 3) the role
of the sympathetic pathway and the dynamics of dilation; and 4) the phasic behavior
of the retinal cells.

NEURAL DYNAMICS, NOISE AND CHAOS

Noisy oscillations are cocmmonly seen in physiological dynamics?®. In Section
5.3, the observed aperiodicity of autonomous pupillary oscillations was explained by
studying the effect of noise on limit cycle oscillations. An alternate approach would
have been to construct a model that generates chaotic behavior in parameter ranges
corresponding to our experimental conditions, since this would also yield aperiodic
dynamics. However this approach did not seem justified, as previous investigations
suggest that noise plays an important role in this reflex. It is possible that noisy
oscillations in many physiological systems correspond, in fact, to simple deterministic
motion complicated by noise-induced transitions and noise amplification, leading to

large fluctuations in amplitude, period and phase.
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How long the current flurry of interest in chaotic dynamics will last will depend,
to a large extent, on what phenomena chaos can explain. Chaos tells us that the
centuries old assumption that a Newtonian world is predictable, stable and orderly
may be a mistake, and that a coinplete description of nature must include compli-
cated behavior as well'”3. As a means of probing irregular behavior, chaos is similar
to statistical mechanics which provided new mathematical tools to study systems ex-
hibiting statistical behavior. In my opinion, the study of chaos and of its interaction
with noise will continue to deepen our understanding of randomness and of irreversible
processes in nature (see e.g. Eckmann and Ruelle!™; Wolfram!"®; Mackey!"®).
POSTPONEMENT OF HOPF BIFURCATION IN DDE’s

For a system of stochastically perturbed ODE’s, a multivariate stationary prob-
ability density can be calculated from the Fokker-Planck equation (Section 4.2.2).
Considered in the center manifold, the Hopf bifurcation in an n-dimensional system
essentially reduces to a two-dimensional problem (Section 5.1). The symmetry of
the corresponding two-dimensional probability density will depend on the coupling
of the noise to the angular variable as well as to the radial variable!*®:!"7, Hence,
(one-dimensional) density profiles in planes cutting this density at different angles
may be different. This implies that determining the bifurcation point by looking
at one-dimensional densities (obtained either by approximating the solution of the
Fokker-Planck equation or for special cases as in Appendix A) may lead to erroneous
results.

Criteria have been defined to pinpoint the occurrence of a Hopf bifurcation by
looking at the two-dimensional probability density constructed from two time series.
In the presence of noise, this density will appear as a ring of mountains of varying
heights with a crater at its center. Fronzoni et al. have suggested that the Hopf
bifurcation occurs at the parameter value at which the floor of the crater reaches the
lowest mountain in the ring.

It is possible that the one-dimensional densities used to pinpoint the Hopf bi-
furcation in stochastic first order DDE’s (Section 5.3) correspond to projections of a
multivariate density which does not have rotational symmetry. It would be interesting
to study the Hopf bifurcation in these DDE’s by applying the criterion of Fronzoni
et al."*® to two-dimensional densities in which, z(¢) and (¢ — 7) are the independent

coordinates.

The magnitude of the shift of the bifurcation point should depend on the ratio
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at of the delay to the response time of the system. When this ratio is small, the
DDE behaves more like an ODL, while it behaves more like a map when the ratio is
large (Sections 4.4 and 4.6). Since additive noise can not induce shifts in the point of
oscillation onset in one-dimensional ODE’s (see Ref. 21 and Appendix A) but can in
one-dimensional maps, shifts due to additive noise should be more obvious at large
delays. This would imply that the maplike properties of the DDE are responsible
for the noise-induced transitions in the presence of additive noise. This conjecture
remains to be investigated.

BIFURCATIONS IN NEURAL SYSTEMS AND DYNAMICAL DISEASES

In numerical simulations, extremely long time series are needed to resolve the
extrema of the stationary density near a Hopf bifurcalion. Hence, the analysis of
even a simple bifurcation in a noisy neural system from the density point of view may
not be possible due to the limited length of the data sets. Rather, the analysis can
focus on the influence of the fluctuations on certain measurable quantities, such as
the mean and variance of the amplitude and period, as in Section 5.3. The theoretical
knowledge of the behavior of the densities can guide the analysis and indicate what
special features to look for.

The postponement of the Hopf bifurcation in first order DDE’s is proportional
to the noise intensity and inversely proportional to the noise correlation time (Sec-
tion 5.3). If the noise level decreases or the noise correlation time increases, all other
parameters remaining constant, then the oscillation will become more prominent, be-
cause the noise would no longer be strong enough to stabilize the equilibrium solution.
This suggests a mechanism whereby external and internal noise sources can control
an oscillation. Applied to physiology, this mechanism also extends the concept of
dynamical disease (see Refs. 20, 54 and the Introduction) by allowing noise charac-

teristics to be bifurcation parameters, a possibility already recognized in the field of

noise-induced transitions.
NEURAL OSCILLATORS AND MEMORY

The frequency of the limit cycle that appears at the Hopf bifurcation is a slowly
varying function of the bifurcation parameter (except when this parameter is the
delay) (see Sections 2.2.8 and 2.3.7). Further, the period of the limit cycle is less vul-
nerable than the amplitude to additive and multiplicative noise (Section 5.3). These
two facts suggest that a neural circuit modelled by a delayed fecdback equation of

the type considered in this thesis could be used as a time reference (like the clock in
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a computer) if maintained in the vicinity of its Hopf bifurcation point. One possible
circuit to perform this function could be the reverberatory circuits proposed in certain
theories of memory (see e.g. MacGregor and Lewis'"®).

Feedback systems with a distribution of delays (modelled by an integro-differen-
tial equation like (4.4.5)) are less prone to oscillate than systems with fixed delays
(Section 4.4). This fact may have interesting implications for the theory of memory.
For example, it may imply that “memories” that are localized in time destabilize
delayed feedback systems. It remains to be seen if the oscillation period of distributed
delay systeris is as robust with respect to additive and multiplicative noise as that
for fixed delay systems.

Finally, a correspondence may be drawn between the stabilization of the equilib-
rium by distributed delays and the postponement of the onset of oscillatory behavior
by noise. In a certain sense, it appears plausible to view the disorganizing influence
of noise as similar to the operation of a system with distributed delays. In other
words, it may be possible to establish an equivalence between additive or parametric
fluctuations and fluctuations in the delay. From this point of view, the postponement
of the Hopf bifurcation by noise is compatible with the stabilization of the equilibrium
by distributed delays.

EPILOGUE

Qur detailed theoretical and experimental study of oscillatory behavior in a spe-
cific neural system puts us in a position to extend our conclusions to broader classes of
physiological systems in particular, and more generzlly to nonlinear physical systems
in which delayed action is an essential part of thz dynamics. Although it may be
very difficult to experimentally verify modelling oredictions, especially in physiologi-
cal systems where noise levels are high, further studies based on the approach of this
thesis may provide clues of the phenomena to look for, and of how to perturb and
analyze these phenomena.

If a professor were to tell me that he is trying to get his physics graduate student
interested in pursuing some of the directions outlined in this concluding chapter, 1
would probably wish this professor “Good luck”. However, if this innocent graduate
student actually sees a six inch-wide pupil gently swaying to the vagaries of hippus
on a TV monitor, he just may, like I was, or like Alice peering through the looking

glass, be enthralled and plunge into the mirror of the soul.
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APPENDICES

Appendix A consists of the manuscript of a paper in press in the Journal of
Statistical Physics. It is shown that additive or multiplicative Gaussian noise induce
global asymptotic stability in two dynamical systems. The dynamical systems are
two-dimensional ODE’s in which the noise affects only the dynamics of the radial
variable (in polar coordinates). The resulting one-dimensional stochastic differential
equation is often referred to as “a reduced amplitude equation”. The first equation,
known as the Landau equation, exhibits a supercritical Hopf bifurcation, while the
second system exhibits a subcritical Hopf bifurcation. Global asymptotic stability
implies that the stationary solution of the corresponding Fokker-Planck equation is
globally attracting in the space of initial functions. In other words, the limiting
density is independent of the initial density. This study also discusses noise-induced
transitions (Sections 5.2 and 5.3) at the Hopf bifurcation due to multiplicative noise.

Appendix B presents a study (published in the American Journal of Ophthal-
mology) of pupillary oscillations induced by piecewise constant negative feedback (as
in Section 3.2) in patients affected by the demyelinative disease known as multi-
ple sclerosis. (A demyelinative disease causes the nerve axons to lose the insulating
myelin sheath which is responsible for the special type of wave propagation known as
saltatory conduction35.) One of the first signs of multiple sclerosis is optic neuritis,
in which the optic nerve undergoes partial demyelination. This causes intermittent
conduction block and an increase in propagation delay. One way to diagnose mul-
tiple sclerosis is to shine a narrow light beam on the pupillary margin and observe
whether the period of the resulting “high gain” oscillations (pupil cycling) differs from
an established norm. This test is difficult to carry out for reasons discussed in the
paper. Our new method for pupil cycling eliminates many of the artifacts of the usual
method, and provides a sensitive measure of demyelination. The method indicates
that more information is readily available from pupil cycling amplitude rather than
period measurements. It also allows one to discriminate between demyelination and

ischemia in the optic nerve. The theoretical basis for this method is found in Section

3.2

Appendix C describes the fitting techniques used in Sections 3.2, 3.3 and 3.4.

Appendix D contains the source code for the most important programs used in
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this thesis. We give the algorithm for the “exact” numerical integration of the first
order DDE with piecewise constant mixed feedback encountered in Sections 3.3 and
3.4. The program for the numerical integration of the stochastic delay-differential
equation 5.1.1 with additive and/or multiplicative colored noise is also given, along
with that for the numerical integration of the C1D2 model in Section 3.4.5.

The programs were run on either a Hewlett-Packard 9816, a NEC Powermate
Plus (AT) or a VAX 3200. The 3D graphics and densily normalization in Appendix
A as well as the FF'T’s in Section 5.3 were done on MATLAB. The thesis was typeset
using AmS-TelX.
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APPENDIX A

NOISE INDUCED GLOBAL ASYMPTOTIC STABILITY

Abstract. In this paper we prove analytically that additive and parametric (multi-
plicative) Gaussian distributed white noise, interpreted in either the Ito or Stratono-
vich formalism, induce global asymptotic stability in two prototypical dynamical sys-
tems designated as supercritical (the Landau equation) and subcritical respectively.
In both systems without noise, variation of a parameter leads to a switching between
a single globally stable steady state and multiple locally stable steady states. With
additive noise this switchiig is mirrored in the behaviour of the extrema of probabil-
ity densities at the same value of the parameter. However, parametric noise causes
a noise amplitude dependent shift (postponement) in the parameter value at which
the switching occurs. Tt is found both analytically and numerically that the density
converges to a Dirac delta function when the solution of the Fokker-Planck equation

is no longer normalizable.

A.1, Introduction.

The effects of additive and parametric (multiplicative) noise in nonlinear dynam-
ical systems has been the object of intense study?!. Systems that display bifurcations
in dynamics in the absence of noise have received the most attention, in part because
noise effects in these systems qualitatively mimic 1*' and 2" order phase transitions?'.

The presence of noise in combination with dynamics leads to a situation in
which one may describe the global behaviour of the svstem by the evolution of densi-
ties. That evolution is described by the Fokker-Planck (parabolic) partial differential
equation. The steady state solutions to the Fokker-Planck equation are known as
stationary densities.

Most studies!™® '8! jndicate that additive noise, a term usually taken to imply
that noise amplitude is independent of the state variable(s), leads to a bifurcation in
the qualitative form of the stationary lensity at precisely the same parameter value
at which the bifurcation occurred in the noise free system. However parametric noise,
in which the noise amplitude depends on the state variable(s), induces different bhe-
haviours in the stationary density Usually 177 182183 harametric noise induces a noise
amplitude dependent postponement in the parameter value at which these qualitative
changes in the stationary density take place relative to the noise free system, though

one study *°? indicates the possibility of an advancement in the bifurcation parameter
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depending on the relative values of the noise correlation time and the system response
time.

In spite of the intense interest in the changes that additive and parametric
noise give rise to in stationary densities, there has not-to our knowledge-been any
proof of the global convergence of the time dependent solutions of the Fokker-Planck
equation to the (generally unique) stationary density. In this paper we consider two
prototypical systems in the presence of additive and parametric noise, and use a recent
result to prove the global asymptotic stability of the solutions of the Fokker-Planck

equation.
A.2. Preliminaries.

A.2.1. The Model Systems.

In our investigation of the effects of additive and parametric noise, we will con-

sider two specific systems.

Supercritical Systermn. The two dimensional oscillator system

% = r(c —r?)
20 _, (A1)
dt ="

in (r,0) space is an example of a system with a supercritical Hopf bifurcation. For
¢ < 0 the origin r, = 0 is the globally stable steady state, while for ¢ > 0 all solutions
are attracted to the limit cycle defined by » = \/c.

Here we consider the effects of noise in the analogous one dimensional system

o = z(c — z?), (A2)
obtained by ignoring the angular coordinate 8 in equations (A1), and designate this
the supercritical system. This equation appears, for example, as the reduced ampli-
tude equation for systems undergoing a supercritical Hopf bifurcation!33:179-184  Fop
equation (A2), it is simple to show that when ¢ < 0 all solutions are attracted to the
single steady state z, = 0. Further, when ¢ > 0 the steady state z, = 0 is unstable
and z(t)—+/cif (0) = zo > 0, while z(t)——+/c for 2, < 0.

Subecritical System.
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A second simple oscillator system

dr _ r(c+ 2r2 — )
9 _ 2r
dt
has a subcritical Hopf bifurcation at ¢ = —1, as have other systems studied in the

presence of noise! %182,

In analogy with the previous case, we treat the effects of noise in the one dimen-

sional system

de 0 4
i z(c + 2z° — %), (A4)

which we call the subcritical system. The solutions of equation (A4) have the following
behaviour. For ¢ < -1 all solutions z(t)—0 regardless of the initial condition zq.

However, for —1 < ¢ < 0 there is a tristability in that

—v/14+4/1+¢, forzy< —zf and -zt <=zy < —a7

z(t)—1¢ 0, for —2, <3¢ < 27 (A5)

V1i+y1+¢, forzf <zy andz] <z <z/.
where 2} = V14 1+ candz] = /1 - /1 +ec. Forc >0, the steady state z, = 0

becomes unstable and this tristable behaviour gives way to a bistability such that

-1+ 1 N { 0
2(t)— + +e¢, lorazy < (A6)
V14++y14¢  forzy>0.

A.2.2 Densities and the Fokker-Planck Equation.
In considering the effects of noise in systems like (A2) or (A4), we may think of

the general one dimensional differential equation

dr
E - g(m)a

and the corresponding stochastic differential equation

L = o(z) + o2, (A7)

where £ is a (Gaussian distributed) white noise perturbation with zero mean and unit

variance, and o(z) is the amplitude of the perturbation.
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Under some standard regularity conditions, the process z(t), which is the solu-

tion of the stochastic differential equation (A7), has a density function u(t,2) defined
by

b
prob{a < z(t) < b} = f u(t,2)dz, a,be R.

It is well known that the density u(¢,z) satisfies the parabolic differential equation
(Fokker-Planck equation)

Ou  18%o%(z)u] O|G(z)u]
-3 6 (48)
where the function G is given by
G=g (A9a)
when the Ito calculus is used to interpret (A7), or
2

4 Oc

when the Stratonovich calculus is used?!. The Fokker-Planck equation can also be

written in the equivalent form

ou S

F T (A10)
where 1 8o (a)u]
glziu

i S e + Gu (A11)

is called the probability current.

As usual, we say that an L! function f is a density if f is nonnegative and its
integral over its domain is identically equal to 1, i.e., it is normalized. Given an initial
density f(z) = u(0,z) and the solution u(t,z) of (A8) we may write this solution
formally as

u(t,z) = Py f(z),

where P, is a Markov operator, i.e. Py is a linear operator and for every density f,
P,f is also a density. Thus the Fokker-Planck equation governs the evolution of the
flow of densities {P,f}.

When stationary solutions of (8), denoted by f,(z) and defined by P,f, = f,

for all ¢, exist they are given as the generally unique (up to a multiplicative constant)

solution of
180 f.] 0|Gf)]
2 822 0

=0. (A12)
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Integration of equation (A12) by parts with the assumption that the probability

current S vanishes at the integration limits, followed by a second integration yields
the solution "
K *2G(=z

fi(z) = () ezp [/ 7(2) dz] . (A13)

This stationary solution f, will be a density if and only if there exists a positive

constant K > 0 such that f, can be normalized.

A.3. Additive Noise.
For the supercritical system (A2) and the subcritical system (A4) in the presence

of additive noise, the corresponding stochastic differential equations are of the form

dz
2 (o) + ot (A14)
where o is a positive constant and
z(c — z?), supercritical
- A15
9( { z(c + 2z? — z*), subcritical. (A15)

Thus in the additive noise case, reference to equations (A14) and (A15) makes it
clear that there is always a positive probability that z(¢) may take on negative values
starting from a positive position and vice versa. Therefore it is natural to consider
this problem for —o00 < z < 0.

Furthermore, since the noise amplitude & is constant with additive noise, cqua-
tions (A9a) and (A9b) make it clear that the corresponding Fokker-Planck equations

are identical in the Ito and Stratonovich interpretations. Specifically, they take the

forms 5 5 5
Ou _ 1 200w O g2
5~ 2° 922 aa:[:l:(c z* )u| (Al6)
and
— =0t — ——;[a:(c+2m2~a:4)u] (ALT)
in the super- and subcritical cases respectively.

A.3.1 Stationary Solutions.

It is straightforward to show that the stationary solution (A13) to the Fokker-
Planck equation (A12) is given by

f*(:l:) - Kleﬂ:c’(zc—-z’)/*ic (AlS)
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for the supercritical system, where 8 = 2¢/c?, and by
(@) = KyeP® (3et3e?~z?)/6c (A19)

for the subcritical systemn. It is easy to show that the normalization constants K;
and K, always exist and thus the f,(z) defined by (A18) and (A19) are stationary
densities.

In Figure A.la we show the stationary density given in equation (A18) for the
supercritical system as a function of the parameter c. As might be expected on intu-
itive grounds, for ¢ < 0 the stationary density f,(z) has a single maximum centered at
z = 0, the location of the globally stable steady state of the unperturbed system (A2).
Once ¢ > 0, the stationary density f.(z) shows two maxima centered at z = £/c,
the locally stable steady states of (A2), and a local minimum at the unstable steady
state ¢ = 0.

Figure A.1b shows the stationary density for the subcritical sysiem, again as
a function of ¢, given in equation (A19). For ¢ < -1, the stationary density f,(z)
has a single maximum located at z = 0, the globally stable steady state of the
unperturbed system (A4). For —1 < ¢ < 0, where the tristable behaviour of (A4)
occurs, the stationary densities still have an absolute maximum at & = 0 but also
display maxima at = = :{:\/i_—{»\/—.—i—:%f—c that become progressively more prominent as

c increases. Finally, for ¢ > 0 the stationary densiiy has absolute maxima located at

¢ =+v1 + 1+ ¢ and a local minimum at z = 0.

A.3.2 Asymptotic Stability of the Stationary Solutions.
We now turn to a consideration of the stability of the stationary densities deter-
mined in the previous section.
We first define the property of stability by saying that equation (A8) is globally
asymptotically stable if
lim u(t,z) = tl_lf& P,f(z) = f.(z)

t—s00

for allinitial densities f(z), i.e. P,f converges to f, in L! norm!®, We will alternately
say that f, is globally asymptotically stable under this circumstance.

For parabolic equations whose solutions are given by an integral operator with
a sufficiently smooth kernel, it is possible to prove their global asymptotic stability

via a Liapunov function approach. Both Fokker-Planck equations (A16) and (A17)
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Figure A.1 Globally stable stationary densities in the presence of additive noise, as
functions of z and the parameter c, for (a) Lthe supercritical system (A2) and (b) the
subcritical system (A4). To aid in visualization, in each the insert shows the location
of the maxima in the stationary density as a solid line in the (¢, z) plane. The dashed
line in the insert of (b) corresponds to the minimum in the density.
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are quite regular from this point of view since they are uniformly parabolic (o? is
a positive constant) and zg(z) < 0 for sufficiently large . These propertics ensure
that the solutions of equations (A16) and (A17) will decay at least exponentially as
¢ — Foo.

We define a Liapunov function V : R — R as a C? function with the following
properties:

1) V(z) > 0 for all z;

2) lim;_, 1o V(z) = 00; and

3) V(z) < pe’l*l and |dV/de| < pefl®! for some positive constants p and 6.

It has been shown!? that the existence of a Liapunov function V satisfying

, 0tV v

0" 57 TI@) 5 < —aV(z) + 6, (A20)

where a and 8 are positive constants, implies that the Fokker-Planck equation (A8)
is globally asymptotically stable.
Let V(z) = 2% so V is a Liapunov function, and consider the supercritical system

with additive noise. Inequality (A20) becomes, in this case,
20% 4+ (2¢ + a)z? — 2z* < B. (A21)

This is clearly satisfied for arbitrary fixed @ > 0 and sufficiently large 8 > 0, thus
proving the global asymptotic stability of the Fokker-Planck equation (A16) for ad-
ditive noise applied to the supercritical system (A2).

Retain V(z) = z? for the subcritical system (A4) with additive noise. An
entirely analogous argument suffices to show that positive constants a and g can be
found such that inequality (A20) is satisfied, thus establishing the global asymptotic
stability of equation (A17).

Hence, the entrance of white noise perturbations to either the supercritical or
subcritical systems (A2) and (A4) in an additive fashion always leads to globally

asymptotically stable behaviour.

A.4. Parametric Noise.

Both the supercritical and subcritical systems contain a single parameter ¢, and

in this section we investigate the effects of noise in this parameter by replacing ¢ with

¢+ o,
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where ¢ > 0 is a constant. As a result of this assumption, the stochastic differential

equation (A7) takes the form

%;—: = g(z) + oz, (A22)

where g(z) is given by equation (A15). From equation (A22) in conjunction with
(A15) it is clear that z(¢) = 0 is always a solution. Therefore, for any z, > 0 the
solution z(t) will always be positive. For zg < 0 we will have z(t) < 0. Thus in
contrast to the situation with additive noise, in the presence of parametric noise we
need only consider —oo < <0 or 0 <z < oo. As the results are symmetric, we take
0<z<oo.

With parametric noise, it is no longer the case that the Fokker-Planck equation
corresponding to (A22) will be the same for the Ito and Stratonovich interpretations??.

Hence, assume first that we are using the Ito calculus, and replace ¢ by ¢; to denote

this distinction. Then, using (A8) and (A9a) the corresponding Fokker-Planck equa-
tions are 5 olat] B

Ou 1,070y 0, o it

5= 3% Ba? 6z[m(c1 z*)u), supercritical (A23)

and
o 1 ,0%c%u] 0 2 4 -
5 =37 aar —a—m-[:c(cf + 2z - z*)u), subcritical. (A24)

A.4.1 Stationary Solutions.

Supercritical System.

For parametric noise in the supercritical system it is a straightforward applica-
tion of equation (13) to show that the stationary solution f.(z) of the Fokker-Planck
equation (23) is given by

folz) = Keve /7", (A25)
where v = (2¢;/0?) - 2.
With parametric noise, a stationary density will not exist for some parameter

values. In order that f, is a density, it must be integrable on R*, and from (25) this

is only possibleif ¥ > —1, or
1
er > 502. (A26)
Thus, in sharp contrast to the results for additive noise, for parametric noise a sta-
tionary density f,(z) in the supercritical case exists for only a limited range of values

of the parameter c; as defined by inequality (A26).
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In Figure A.2 we show the graph of the stationary densities f,(z) given by
equation (A25) for the range of ¢ values for which it exists. For (¢?/2) < ¢; < o?
the density has a single maximum at z = 0. However, once ¢; > o2, the stationary
density f.(z) has a local minimum at = 0 and a maximum at z = v/c; - ¢2. Thus,
with parametric noise there is not only a shift in the value of the parameter ¢; at which
there is a transition between the stationary density having a maximum at @ = 0 and
a nonzero value of z, but there is also a shift in the nonzero location of the maximum
in the stationary density below that of the globally stable steady state in the absence
of noise (x = ,/cr) toward zero. It is only as c¢; becomes large that the location of
the density maximum starts to approximate /c;.

All of these calculations and conclusions are precisely the same if the Stratono-
vich interpretation is used in place of the Ito formulation. One must only replace ¢;

everywhere by cs = ¢y + (02/2) for the formulae and conclusions to be applicable to

the Stratonovich case.

Subcritical System.

As in the previous section it is an elementary consequence of equation (A13)

that the stationary solution of the (Ito) Fokker-Planck equation for the subcritical

case with parametric noise is given by

fu(z) = KzYe® (4-2")/20" (A27)
where v is as before. For the f,(z) defined in (A27) to be a stationary density, precisely
the same conditions must hold as for the supercritical system of the previous section.
Namely, f.{z) will be a stationary density of the Fokker-Planck equation if and only
if inequality (A26) is satisfied.

Figure A.3 graphically presents the stationary density given by (A27) for the
range of c; for which inequality (A26) is satisfied. The density for the subcritical
system in the presence of parametric noise has two qualitatively different behaviours
as the parameter cy is varied. The appearance of either of these behaviours depends
on the noise amplitude, o.

For noise amplitudes satisfying 0 < 02 < 2, a new feature unobserved in the
supercritical system appears as shown in Figure A.3a. Namely, for f, defined by
(A27) and this range of o, as ¢y is increased past 0?/2, f, may be normalized, and

the resulting stationary density has a maximum located at

:c:\/1+v1+c1~—02 (A28)
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Figure A.2 Globally stable stationary densities for the supercritical system (A2)
with parametric noise under the Ito interpretation. For clearer viewing, the density
for 0 < = is reflected as a mirror image to z < 0 and also displayed. The inset shows
the location of the maxima (solid line) and minima (dashed line) of the densities in
the (cr,z) plane, and the location of the globally stable steady states (dotted line) in
the absence of noise.
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Figure A.3 Globally stable stationary densities for the subcriticai system (A4) in
the presence of parametric noise (Ito interpretation), reflected across the z axis as in
Figure A.2. In (2) the qualitative situation for 8 < ¢ < 2 is depicted using o2 =1,
while (b), with ¢ = 3, illustrates the qualitative features found when 2 < o?. In
both (a) and (b), the line types in the inserts have the same meaning as in Figure
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and a singularity at # = 0 which only exists for (02/2) < ¢1 < ¢%. (The condition
0 < 0% < 2 may seem dimensionally incorrect at first glance. However, it is simply a
consequence of the choice of parameters in equations A3.)

However, as illustrated in Figure A.3Db, for higher noise amplitudes such that
o? > 2, for (02/2) < ¢ < 02 - 1 the density f, has a single maximum located at
¢ = 0. As ¢y is increased, once 02 — 1 < ¢y then f, has a relative maximum at z -- 0
and a second maximum located at the same location (see equation A28) as for a2 < 2.
For all values of 62, as ¢ is increased the location of this maximum tends toward the

value of the nonzero steady state z = /1 + /1 + ¢y of the unperturbed system (A4).

As before, one need only replace ¢; by cs to obtain the corresponding Stratono-

vich results.

A.4.2 Asymptotic Stability with Parametric Noise.

In trying to prove that tle stationary densities induced by parametric noise are
globally asymptotically stable, we no longer have immediately available the Liapunov
function technique that we were able to apply so easily in the case of additive noise.
This is because with parameiric noise, the coeflicient (¢?z?/2) vanishes at z - 0 and
the uniform parabolicity condition is violated at £ = 0. This facl is crucial.

However, by a straightforward change of variables, we may transform the Fokker-
Planck equations (A23) and (A24) to circumvent this problem, and then again apply
the Liapunov function argument.

Define a new variable y = Inz and a aew density @ by
a(t,y) = eu(t,e?). (A29)

With these changes, the Fokker-Planck equations (A23) and (A24) take the form

oi 1 ,8% 8 _,

where
1o, 2 "
cr- 50t —e v, supercritical
gly) = 1 (A31)
cr — 502 + 2e?¥ — 'Y, subcritical.
As in the case of additive noise, the uniform parabolicity condition is now sat-
isfied and further yj(y) < 0 for sufficiently large y whenever ¢; > ?/2, which is
the range of concern here. Thus if we are able to find a Liapunov function V which

satisfies (A20), the asymptotic stability of equation (A30) will be demonstrated.
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Set g = 2a/(cy — 0*/2), where a > 0 is the same as in inequality (A20). Clearly

cr > 0 /2 whenever a stationary density of (A30) exists, so take ¢ > 0. It is evident
that

V(y) = cosh(qy)

is a Liapunov function. It is easy to show by a straightforward calculation that there
are a > 0 and § > 0 such that (A20) is satisfied in the new variable y when g(z) is
replaced by g(y) as defined in equation (A31). Thus we know the stationary solution
of (A30) is globally asymptotically stable which, by the change of variables (A29), in
turn implies the global asymptotic stability of the stationary solutions of (A23) and

(A24). The same conclusions hold for the Stratonovich interpretation.

A.4.3 Behaviour in the Absence of Asymptotic Stability.
The results of the previous section give no insight into the effects of parametric

noise for values of the parameter ¢; when globally stable stationary densities do not

exist, i.e. when .

c; < 50’2. (A32)
It is the purpose of this section to explore this behaviour for values of the parameter
cr satisfying inequality (A32).

We start by defining a function

E,(t) = /0°° ePu(t,z)de (A33)

where p > 0 is a constant. It is clear that E,(¢) > 0. Observe from (A33) that

B,(t) > / 2ou(t,z)ds > ¢ / u(t,z) de.

If we can demonstrate that E,(t) — 0 as t — oo, then we will know that for arbitrarily
small € > 0 the density u(t,z) is concentrated on (0,¢€), i.e. u(t,z) approaches an
asymmetric Dirac delta function é(z) as t — 0.
Differentiation of E,(t) with respect to ¢, and using equation (A10) gives
dE oo
e :,,/ 2""15(t,5) do (A34)
0

after integration by parts under the assumption that z°S(t,2) — 0 for £ — 0 and
¢ — oo. If we now insert equation (A11) for the probability current S into (A34) and
again integrate by parts we have

dE a? *©
= = Plp-1)5E, + P/o 2~ g(z)u(t, ) do (A35)
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whenever ¢ty —» 0 as ¢ — 0 and ¢ — oco. Equation (A35) is the fundamental
relation we will use in examining the behaviour of the supercritical and subceritical
systems in the presence of parametric noise when globally asymptotically stable sta-

tionary densities do not exist, i.e. when inequality (A32) holds.

Supercritical system. In this case we have explicitly from (A15) and (A35) that

dE
5 = KPBe— pEpi2 (A30)
where
o?
K‘.z(p—l)? +er. (A37)

Since E, ;2 > 0and p > 0, equation (A36) immediately gives the differential inequality

dE ,
—df- < spE,. (A38)
From (A38) it is immediate that for & < 0 we have E,(t) — 0 for p > 0. The

conditions £ < 0 and p > 0 are equivalent to

o2 o

er<—(p- 1)—2' <50 (A39)

and since p may be chosen arbitrarily small, inequality (A39) may always be satisfied
by some p when (A32) holds.

Therefore E,(t) — 0 as { — 0o, which completes the demonstration that for the
supercritical system with parametric noise satisfying inequality (A32), the densities
u(t,z) converge to a Dirac delta function. The Stratonovich case is again covered hy

replacing ¢y in (A39) by cs.

Subcritical System. For the subcritical system with parametric noise, combining

equations (A15) and (A35) gives

dE
-—‘-ﬂ-’l = kpEp + pl2E,42 — Epi4). (A40)

Noting that 222 — 2* <1 for all z > 0 it is immediate that 2E,, 5 — E 44 < E,. As

a consequence we may use (A40) to give the differential inequality

dE
-d—tp < (k+ 1)pE,.
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Using the same method as in the previous case we may easily verify that, with

p>0,E,— 0ast— oo whenever k < ~1. This, in turn, is equivalent to

o? a?
CI<—1+(P_1)? < —1—|——2—
which is always satisfied for some p > 0 if
o?
C[<—1+ —2—' (A41)

A.5. Numerical Simulations.
The condition in inequality (A41) is disappointing in the sense that we do not
have a complete analytic picture of the behaviour of the subcritical system in the

presence of pararr. .tric noise, i.e. for values of ¢ satisfying

0.2 2

o
- < . 42
1+2_01<2 (A )

Using an Euler integration algorithm with an integration time step of A = 0.01,
we have carried out a variety of numerical studies extending our analytic results for

parametric noise when inequality (A42) is satisfied, or an analogous result for the

Stratonovich case. In the Ito case we used

z(t + A) = z(t) + otz(t)VA + g(z)A + O(A?) (A43)

while
ot + ) = 2(t) + ota(OVE + g(z)A + Ja(t)o?A (Ad4)

was used for the Stratonovich calculations!*415%, To test the veracity of our numerical
methods, we assurad ourselves that the numerical solution had reached an asymptotic
regime by discarding an initial transient and then construcied the numerical density
from the iterates x(?) for values of the parameter c¢; (or cg) satisfying inequality
(A26). For both the supercritical and subcritical systems, the numerically constructed
density coincided exactly with the analytically determined globally asymptotically
stable densities (given by equations A25 and A27 respectively) in both the Ito and
Stratonovich formulations.

Following this, extensive numerical simulations at a variety of noise amplitudes
o for values of the parameter c; satisfying inequality (A 12) indicates that for this

entire range the densities u(t,z) do converge to a Dirac delta function as t — oo in
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¢

the sense that for every € > 0 the ratio of the time spent by z(2) in the interval (¢, %)
to that spent in the interval [0, €] approaches 0 as t — oo. Thus we feel confident in

asserting that for the subcritical system in the presence of parametric noise, £, — 0

as t — oo whenever

02

cr << —.
="y

A.8. Summary and Conclusion.

In this paper we have shown analytically that additive and parametric (multi-
plicative) noise, interpreted in either the Ito or Stratonovich formalism, induce global
asymptotic stability in two systems, one of which has received attention as the Landau
equation.

In both systems without noise, variation of the parameter ¢ leads to a switching
between a single globally stable steady state and multiple locally stable steady states.
With additive noise this switching is mirrored in the behaviour of the extrema of
globally stable probability densities at the same value of ¢. However, parametric
noise causes a noise amplitude dependent shift (postponement) in the value of ¢ at
which the switching occurs.

Under suitable restrictions these results can be extended to more general poly-
nomial forms g(z) in which there are multiple bifurcations in the absence of noise.
Further, it will be interesting to examine the situation where colored noise is used, as

opposed to the white noise considered here.
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Irregular Pupil Cycling as a Characteristic Abnormality in

Patients With Demyelinative Optic Neuropathy

John G. Milton, M.D., Andre Longtin, M.Sc., Trevor H. Kirkham, M.D,,
and Gordon S. Francis, M.D.

We used an infrared videopupillometer com-
bined with an electronic circuit that regulated
the retinal light level as a function of pupil
area to assess the regularity of pupil cycling 1n
normal subjects and in patients with known
abnormalities in the pupil lLight reflex path-
ways. The light stimulus was turned on when-
ever pupil area exceeded a preset value Two
types of abnormalities were observed for pa-
tients with demyelinative optic neuropathy- a
failure of the pupi1l to cycle despite a preserved
pupillary response to a single hight pulse; and,
for those patients 1n whom cycling was possi-
ble, a characteristic intermittent trregularity
in the amplitude of pupil cycling. These ab-
normalities were not seen 1n normal subjects
or in patients with 1schemic optic neuropathy,
surgical lesions 1n- olving the optic chiasm,
Adie’s syndrome, or Horner’s syndrome.

OsciiLaTions 1n the diameter of the pupil
can be induced by focusing a small beam of
light at the pupillary margin '* The average
period of these oscillations has been referred to
as the pupil cycle time Measurement of the
pupil cycle time has been used as a clim~’
method to detect dysfunction in the pupil ight
reflex pathways '% Although the osailations in
pupil diameter are usually regular, in some
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patients 1t can be quite wrregular *2 It 1s uncer-
tain whether these irregularities are a result of
technical difficulties 1n maintaining the hght
beam correctly focused at the pupillary margin
or reflect intrinsic abnormahties in the pupil
light reflex pathways Consequently, little at-
tention has been given to the possibility that
irregularities in pupil cycling may be of diag-
nostic significance

We developed an automated method for ob-
taining puptl cyching’® by combining an infrared
videopupillometer’® with an electronic circunt
that regulates the retinal light level as a func-
tion of pupil area, the light s turned on when-
ever pupil area exceeds a preset area threshold
This approach makes 1t easy for the patient to
cooperate, 1s insensitive to small eye move-
ments and the shading effects on the retina of
the iris, since the light beam 1s focused down
the center of the pupil under open loop condi-
tions of the pupil hight reflex, 1s not affected by
segmental abnormalities in the movement of
the iris, as occur 1n Adie’s syndrome, and the
changes in pupil area can be recorded quantita-
tively as a tunction of time

We used this method to examine the regularn-
ty of pupil cycling in patients with a variety of
abnormalities in the pupil light reflex path-
ways

Subjects and Methods

We examined 21 healthy volunteers, aged 11
to 60 years, who were free of both ocular
disease and disorders known to affect auto-
nomic function We also examined 17 patients
with abnormalities in the pupil light reflex
pathways Of these 17 patients, 13 had an
afferent pupillary defect including ten with
climically definite multiple sclerosis according
to the criteria of Poser and associawes,” two
with ischemic optic neuropathy, and one with
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a surgical lesion of the optic chiasm after re-
section of an intracraral tumor The remain-
ing four patients had disorders affecting the
autonomic nerve supply of.the pupil three
patients had Adie’s syndrome and one patient
had uniateral Horner’s syndrome after surgt-
cal ablation of the ipsilateral superior cervical
ganghon

All measurements were performed 1n sub-
jects who had been dark adapted for at least 15
minutes in a room hit only by a dim red Light
During pupillary measurements, the subjects
were 1nstructed to refrain from blinking as
much as posuible and to fix their gaze on a
target (a dim green asterisk) that appeared on a
viewing screen inside the pupillometer

Measurements of pupil area were made with
an infrared videopupillometer ® The wvideo-
cameras were a charge coupled device and their
output was analyzed by a frame grabber that
counted the number of pixels above a slice level
(gray level) adjusted by the experimenter to
discriminate between pupil and iris The out-
put of the frame grabber was an analogue
voltage, which was proportional to the pupil
area (sampling rate, 60 Hz) Light-emutting di-
odes provided the hght source (peak wave-
length, 605 nm)

Pupil cycling measurements were performed
as follows * The stimulating Lhight beam of the
puptllometer (diameter, 12 mm) was focused
on the center of the pupil (diameter, 6 to 8 mm)
under open loop, that i1s, maxwellian view,
conditions. Under these conditions the ins
does not alter the beam of hght falling on the
retina, however, we used the measured pupil
area to control the timing and duration of the
light pulses falling on the retina * This was
accomplished by comparing the analogue out-
put of the pupillometer to an adjustable area
threshold by using operational amphfier cir-
cuitry " The output logic level goes high when
the pupil area 1s greater than the area threshold
and goes low otherwise The high level drives
the hight on and illuminates the retina in open
loop In all experiments the pupil being stimu-
lated was also the one being measured Pupil
area and the output of the photodiode were
recorded as a function of time on separate
channels of a chart recorder

All measurements were performed separate-
ly on both eyes of each subject and pupil
cycling was studied for at least four values of
the area threshold setting to cover a pupil
cycling period range of 15 to 5 seconds For
each threshold setting, a minimum of ten pupil
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cycles were obtained corresponding to 50 sec-
onds’ observation for the longest period mea-
sured The latency time for the pupil light
reflex was determined as the time between the
onset of the light pulse and the onset of the
pupillary constriction using a computer pro-
gram incorporated in the videopupillometer A
minimum of three measurements were made
for each eye

Results

When the area threshold was set at a value
larger than the initial pupil area, no regular
oscillations 1n pupil area were seen (Fig 1,
top) However, when the area threshold was
set at a value lower than the initial pupil area,
repetitive constrictions and dilations 1n pupil
area were observed (Fig 1, middle and bot-
tom) The light was turned on approximately
100 msec after the pupil area exceeded the area
threshold This delay represents the electrontc
delay tn our apparatus The onset of constric-
tion occurred 296 = 24 msec after the light was
turned on (mean = 1S D for 21 subjects) This
delay 1s the pupil latency time Once pupil area
constricted to a value less than the area thresh-
old, the light was turned off after the machine
delay The pupil continued to constnct for the
duration of the neural delay, after which it
began to dilate

The period and amplitude of the oscillations
in pupil area depend on the value of the area
threshold relative to the imtial pupil area (Fig
1, muddle and bottom) This distinguishes our
method from the pupil cycle time measure-
ment '® The changes in the period and amph-
tude of pupil cychng as a function of the area
threshold can be used to determine the rates of
constriction and dilation of the pupil {unpub-
lished data) In the present study we focused
on the regulanty of the amplitude of the pupil
cyclng

In normal subjects, and patients with 1sche-
mic and surgical optic neuropathy and with
autonomic nerve dysfunction, regular pupil
cycling was obtained (Table and Fig 2) Ineach
case, the area threshold was adjusted to give
similar values of the period of pupil cychng
There were small cycle-to-cycle vanations in
the amplitudes and intervals between succes-
sive constrictions, which were typically larger
for patients with Adie’s syndrome Converse-
ly, regular pupil cycling was not observed in
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Fig. 1 (Milton and assoctates) Pupil cyching 1n a
normal subject for three different values of the area
threshold (dotted hine) The sequence of hight pulses
1s shown above the changes in pupil area (sohd line)
The pupil area before cycling was the same in all
cases (approximately 3¢ mm®) The 1nmitial transient
changes in pupil area that occur immediately after
acijustment of the area threshold are not shown
(middle and bottom) They persist for the equivalent
of two to three cycles

’ patients with demyelinative optic neuropathy

There were two distinct types of abnormalities
seen only when the light was presented to the
affected eye Of 20 eyes (ten patients) with

neuritis (Fig 2) In nine of the 16 affected eyes,
puptl cycling was punctuated by short seg-
ments of wrregular amplitude (Patient 17, Fig
2) These trregular segments lasted for at least
the equivalent of two cycles and were charac-
terized by their abrupt onset and offset and a
marked decrease in amphitude

We were unable to obtain pupil cycling in the
remaining affected eyes In some cases, for
example, Patient 12, thus was clearly because of
the much reduced response of the pupil to
light In other patients, however, we were un-
able to maintain pupil cycling even though
there was a good constriction to a single light
pulse The pupil would undergo one to two
constrictions and then no further response
would be seen (Patient 10, Fig 2) A simular
phenromenon occurred 1n some normal subjects
when the area threshold was set too close to the
muumum pupil area obtained 1n response to
the hght stimulus In these cases regular cy-
cling was restored by ircreasing the area
threshold However, this maneuver did not
restore puptl cycling in patients with demye-
linative optic neuropathy

The latency of the pupil light reflex was
prolonged for patients with demyelinative
optic neuropathy (341 = 9 msec for eight pa-
tients) compared to normal subjects (296 = 24
msec for 17 subjects) (Student's t-test, P < 05)

Discussion

Our observations indicate that the time
course for pupil cyching in patients with demye-
linative optic neuropathy differs from that seen
in normal subjects, patients with 1ischemic optic
neuropathy, and patients with autonomic
nerve dysfunction There are two types of ab-
normalities that were observed only when hight
was presented to the affected eye failure of the
puptl to cycle despite a pupillary response to a
single light pulse, and, for those patients in
whom cycling was possible, a charactenstic
irregularity in the amplitude of the cycling

Increased difficulties in obtaining sustained
pupil cycling in patients with multiple sclerosis
have been repcrted previously by several in-
vestigators using the pupil cycle time measure-
ment *” However, it must be noted that with
the use of the slit lamp to obtain pupil cyching,
up to 7% of normal pupils do not cycle '* We
experienced no difficulty in obtaiming pupil

multiple sclerosis, 16 had evidence of optic \ » cychng in normal subjects In particular, we
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TABLE
PUPIL RESPONSES IN PATIENTS WITH LESIONS IN THE PUPIL LIGHT REFLEX PATHWAYS

SINGLE LIGHT PULSE"

(Mm?) PUPIL CYCLING'
PATIENT NO ,
AGE (vas) SEX RIGHT LEFT RIGHT LEFT CLINICAL HISTORY
Normal subjects 12 13 Regular Regular -—
Range (6-20) (6-20)
Ischemic optic
neuropathy
1,34 M 10 15 Regular Regular Right affarent pupiliary defect, fat embolism,
nght infenor attitudinal detect
2,55, M 7 12 Regquiar Regular Right afferent pupillary detect, temporal

artentis, nght infenor arcuate defect
Optic chiasm lesion
3,42, F 7 10 Regular Regular Aight atferent pupiliary defect, partial
resection ot suprasellar meningioma,
nght temporal hemianopia
Horner's syndrome

4,14, F 10 16 Regular Regutar Right Hormer's syndrome after surgical procedure
n neck
Adie’s syndrome
5,38, F | 8 Absent Regular Right Adie s pupil
6,29, F 2 12 Regular Regular Right Adie's pupit
7,36, F 8 10 Regular Regular Bilateral Adie s pupil, right worse than left
Demyelinative optic
neuropathy'*
8,31, M 10 10 Regular trregutar Lelt afferent pupriary defect
8,29, F 7 9 Irregular Irregular Right afferent pupiliary defect, bilateral
visual blurnng
10,33, F 4 7 Absent Absent Lelt affarent pupillary defect, bilateral
wisual blumng
11,64, M 4 3 lrregular frreguiar Left afferent pupillasy defect, nght visual
blurnng
12,35, F 1 6 Absent — Right afferent pupiliary defect
13,19, F L] Absent Absent Right afferent puptiliary defect, visual
evoked response showing brateral siowing
14,29, F 13 12 Regular irregular Left afterent pupiliary defect
15, %, F ] 1" Irrcgular Irreguiar Lett afferent pupdiary defect, bilateral
visual loss
16, 41, M 3 7 Absent Regular Right affarent puprliary defect
17,29, F 9 9 Irreguiar — Right affersnt puptilary defect, visual

svoked response showing bilateral slowing

*Change In pupil area in respanse 1o a single 0 5-second Iight pulsa The intensity of the light pulse was the same for all subjects

'Regular, pupil cyching as seen for normai eyes (see Fig 1), regular, irregular pupd cyching (ses Patient 17, Fig 2), absent, unable 1o
cycle (see Patent 10, Fig 2)

*The chnical hustory gives the sids of the afferent pupiliary defect that was tirst detacted clincally (ranga, ane month 1o 15 yaars before our
examination) In some patiants the afferent pupillary defect was no longer detectable and in others t had swiiched sides, thersby indicating
the presence of a new lasion

easily elicited normal pupil cycling in two nor- pu;:nl cychng of patients with multiple sclero-
mal subjects 1n whom cycling could not be sis'%; however, the possibility that this may be
irutiated by use of a slit lamp. Two previous specific for demyelinative lesions of the optic
studies have noted intermittent irregulanties in nerve was not recogruzed.
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17 Fig. 2 (Milton and associates) Companson of
pupil cycling in a normal subject to that in
patients with ischemic optic neuropathy, de-
10 | myelinative optic neuropathy, Adie’s syndrome,
Horner’s syndrome, and a patient with a surg-
cal lesion of the optic chiasm The numbers at
the nght-hand side of the figure identify the
3 | patient. The irregulanity observed in pupil cy-
chng for the patient with demyelinative optic
neuropathy 1s indicated by the arrow

The mechamism for the irregularities in pupil
cychng in patients with demyehnative optic
neuropathy 1s uncertain It 15 unhkely that
these irregulanities represent pupillary fatigue,
habituation, or escape,® since the progressive
diminution of the amplitude of the pupil light
reflex associated with these phenomena is not
present. Additionally, pupillary fatigue typi-
cally occurs after 60 seconds,*'>'* whereas the
irregulanity in pupil cycling observed in pa-
tients with demyelinative optic neuropathy oc-
curred within 20 seconds.

It is more likely that these irregulanties are
related to the prolonged latency of the pupil
reflex and time-dependent afferent pupillary
defects. During pupil cycling, the optic nerve
transmits a repetitive train of synchronous af-
ferent impulses as the ight pulse intermittently
reaches the retina. Partially demyelinated
nerve fibers have difficulties in transmitting
trains of impulses and undergo intermuttent
conduction block,™™ which 1s believed to be
related to the prolongation of the refractory
period for transmission. '* Partial demyelination

of even a small proportion of the optic nerve
fibers may be sufficient to desynchronize the
train of afferent nerve impulses'” to the point
that pupil cycling is interrupted Conversely,
in a partially infarcted optic nerve only the
intact nerve fibers can conduct impulses Since
the intact fibers appear to be normally mye-
linated®? 1n a partially infarcted nerve, this
desynchronization should not occur and cy-
cling should be regular Thus, our observation
that irregularities in pupil cycling are seen in
optic nerves with demyelinated lesions but not
in those with ischemic lesions 1s consistent
with known differences in nerve conduction of
repetitive impulses between myelinated and
unmyelinated nerve fibers

Quantitation of pupillary changes has typi-
cally been disappointing as a method for en-
hancing clinical acumen. Forexample, the dem-
onstration of an afferent pupillary defect at the
bedside 1s well known to be a more sensitive
indicator of optic nerve dysfunction than previ-
ously reported pupillographic methods.2 This
preliminary study suggests that precise mea-

Y
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surements of pupil cycling under well-defined
conditions may be useful for identifying the
origin of an optic neuropathy_ irregular cychng
favors demyelination, whereas regular cycling
favors 1schemic or surgical lesions This task 1s
not easily accomplished by other methods 2 ¥
Our method also a} pears to be useful for de-
tecting whether there 1s bilateral optic nerve
dysfunction in a patient with a relative afferent
puptllary defect Clearly, more studies involv-
ing larger numbers of patients in different stag-
es of evolution of their disease and with com-
parison to other diagnostic techniques of optic
nerve dysfunction, for example, visual evoked
potentials, will be necessary before 1t will be
known whether this method also has a role in
detecting the presence of subclinical dysfunc-
tion in an optic nerve
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APPENDIX C

FITTING THE SINGLE PULSE RESPONSE OF THE PUPIL

This appendix describes the functions used to fit the response of the pupil to a
light pulse of duration T seconds, as well as the algorithms used to perform the fit.
This pupillary response consists in a constriction followed by a dilation.

There are 4 different programs. Each program is a subroutine containing the
function to be fitted to the data, and the partial derivatives of this function with
respect to the parameters. The main program to which the subroutines are appended
is the Basic Statistics and Regression Analysis Program by Hewlett-Packard,
running on a Hewlett-Packard 9816 computer. It uses a Marquardt algorithm to
search for a local minimum of the x? function in parameter space starting from user
specified initial guesses. This method combines the best features of the gradient
search (which follows the steepest descent of the x? function) with the method of
linearization of the fitting function (see e.g. Bevington!8%).

1. The first subroutine is SPF120RD. The constriction phase is modelled by
one exponential process. The dilation process takes over from the constriction process
al time ¢t = T, and is modelled by two exponential processes. The fit is constrained
by the condition that the solution and its derivative be continuous at time 7. Time
t = 0 is chosen as the onset of Lonstriction. An extra constraint is the initial pupil
area at lime ¢ = 0.

Denoting pupil area during the constriction phase by z.(t) and during the dila-
tion phase by z4(t), this model takes the form

z.(l) = Ae ™'+ B 0<t<T (constriction) (C1)

zq(t) = Ce ™4 (t=T) 4 De=Pslt-T) 4 | t>T (dilation) (C2)

This model has 8 parameters : {A,B,C,D,E,«c,a4,84;T}, the parameter T being fixed

prior to the fit. Imposing continuity of the solution and its first derivative at £ = T

yields:
Ae *T 4 B=C+D+E (C3)
—acde T = —q,C - 8,D (C4)
The initial condition gives
z(0)==2,=A4+B. (C5)
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These constraints can be used to eliminate 3 parameters, leaving 5 free parameters for

the fit. When the parameters {B,D,E} are expressed as a function of {A,C,a¢,a4,04},
then B is obtained from (C5), and

Q4 Qe ~-a.T
D=—-——C+ —4e™% C6
Ba Ba " (C6)
E=gy+AleT —1) - C + 22C - 22 Ae =T, (C7)
Ba Ba

2. SPFC1D2 is a variation of SPF120RD. This program has 4 free parameters
because the final asymptotic value E = Agy; is imposed on the solution. The value
of A,j; used is the one obtained from the parameter estimation scheme for the first

order model (Section 3.2.3). Expressed in terms of the free parameters {A,a¢,aq4,04},

the fitting equations are :

ze(t) = 2o + Ale™ "t - 1) (C8)
and
palt) = Ce=oalt=T) _ M e=put-T) 4 %A campu- 4 ()
Ba Ba
where 5
—o Qc [
C = ﬁd_‘iad{Ae rTu--ﬂ—d ~ A4z, - Ay} (C10)

3. The subroutine CYCLFIT5 has five constraints. Besides the 4 constraints
of SPFC1D2, it fixes the lower asymptote, i.e. B = Aon. The value of Ay, used is
also obtained from the first order model (Section 3.2.3). There are 3 frec parameters

{ac,24,04} and the data are fitted to the functions :

mc(t) = (wo - Aon)e~art + Aon (Cl l)

and

z4(t) = Ce~o(t=T) _ %3—06""3"“"” + gi(xo ~ B)e~T-Balt=T) L A rp, (C12)

where

— ﬂd -a.T _ _ _(_1_5 _ "y
C = ﬂ—-—————d_ad{e (zo — B)(1 ﬂd)+B Aosr}. (C13)

4. Finally, the subroutine SPF20RD describes a model where both constriction

and dilation are described by the solutions of a second order differential equations :
z(t)= Ae™®t* + Be Pt L K, 0<t<T (C14)
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za(t) = Cem("T) L pe=Palt-T L g, 1>T (C15)

This model has been studied with three constraints : 1) continuity of the solution at
time T'; 2) continuity of the derivative at time T; and 3) (0) = z,. When the param-
eters {B,D,K 4} are expressed in terms of the 7 free parameters {A,K.,C,a.,8.,04,04},

D = [~a4C + acde™™ T + fe(zo — A — K)e P T)(Ba)7", (C16)

and

Ki=Ae T 4 (2o —A-K)e?T+ K. -C-D (C17)

result, and B is again obtained from (C5).

These routines were used to fit single pulse responses that are either isolated
(Sections 3.2 and 3.3) or which occur as part of pupil cycling (Section 3.4.5). These
two pulse responses are distinguished by the different conditions under which they
occur. In pupil cycling, the pulses occur in succession and their duration is observed
to fluctuate from one cycle to the next. For the isolated single pulse response, the con-
striction and dilation time courses can be fit separately (see Figures 3.2.6a and 3.2.6b
of Section 3.2). The solution has a slope discontinuity at the light offset, because
the single exponential process neglects higher order dynamics of the iris muscles. As
seen in Figure 3.2.6a the pupil continues on constricting before dilating, even though
the light is off. In Figure 3.2.6¢ the parameters estimated from pupil cycling (C1D1:
see Section 3.2.3) provide a better fit to the isolated single pulse response than the
method used in Figures 3.2.6a and 3.2.6h.

An excellent fit to the isolated pulse response is obtained when SPF120RD
(Figure 3.2.6d) or SPFC1D2 (Figure 3.4.6a) is used. The SPF20RD model (10 pa-
rameters, 3 constraints)was found to have many local minima when applied to the
isolated single pulse (data not shown). Thus, the fit obtained was not very robust
even though it minimized the x? very well. In fact, certain initial guesses led to
negative rate constants.

In Section 3.4.5, successive constriction-dilation cycles were fitted using SPIF-
CID2, 4,55 being fixed to the value obtained using the cycling parameter esti-
mation scheme (for C1D1). SPFC1D2 was found to give more consistent results
than SPF120RD and CYCLFIT5. The parameters were then used in the program
C1D2SOL (Appendix D) which numerically integrates the C1D2 model (see Section
3.4.5 for PCNF and Appendix II of Section 3.2 for single pulse response). The damp-

ing and frequency are related to the rate constants of the fit : § = a4 + B4 and
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w? = agfy. This equivalence simply follows from the relation between the coefki-

cients and the roots of the characteristic equation of a second order linear differential
equation. The forcing constants in the differential equations are oblained by equat-
ing the asymptotic values predicted by these equations with those from the fit :
D
LT — gy — A= A and “LZ = B = 4,45
Q¢ w
All our fits were repeated a number of times starting with different initial guesses

for the parameters. Reasonable parameter guesses for the more complicated 1112
fits could be obtained from the simpler C1D1 fits in Section 3.2. In all cases except
for SPF20RD, the fits were found to be robust, and thus there were no problems
caused by the presence of other local minima of the x? function in parameter space.
Further, the x? was slightly lower when values of the light pulse duration T used in
the fitting subroutines were made slightly larger than those used in the experiment
(e.g. 600 msec instead of 500 msec for the single pulse responses). This corresponds to
making the offset delay larger than the onset delay. However, in Section 3.2 the first
order model was shown to give better agreement between the predicted and observed
period of pupil area oscillations when the delays were equal (see Figure 3.2.1). Based
on this and the fact that our physiological model in Section 2.2 assumes that these

delays are equal (see Section 3.2), all the fits were finally done using the real duration

of the light pulse.
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program rkcnadl

rkenadl @ Runge Kutta Colored Noise Additive Noise
Language : Fortran 77
Computer : VAX 3200

This program integrates &« nonlinear delay-differential equation
which is a model for smooth negative feedback oscillations in
the pupil light reflex.

Either the deterministic or the stochastic version of this
equation can be numerically integrated with double precision
accuracy.

The program computes the density of the solution as well as the

period and amplitude distribution for additive or multiplicative
Gaussian colored noise.

The basic numerical integration algorithm is a fourth order
Runge-Kutta scheme with linear interpolation for the delay.

It appears in subroutine RK4.

The integration time step is given as a fraction (DELT) of the
delay (TAU).

The program uses a delay buffer XDEL(DELDIV+1), where
DELDIV=1/DELT, to continuously store the solution from
(REALT-TAU) to (REALT), REALT being the present integration
time (in seconds).

The initial condition (taken to be a constant = XTINIT in our
simulations) is stored in the delay buffer.

The program computes the solution X for (NTAUMAX) delays, and
for each delay the index K runs from 1 to DELDIV.

It furtter constructs the density from the time solution.

The binning of the iterates into the (BN=500) bins of the
solution histogram RHO(BN) occurs only for NTAU > NTAUNMIN,

in order to allow for transients to decay (this is important
for the determination of the invariant density).

The values of the sclution between XMIN and XMAX are linearly
mapped intc a bin number between 0 and BN.

Values of the solution at which the derivative changes sign

are stored in order to calculate the amplitude and period

at each cycle. The amplitude is computed as the difference
between two such successive values of the solution (i.e. from
peak to trough), while the period is computed from peak to peak.
The amplitude histogram is RHOA(BINS), and the period histogranm
RHOP(BIN3), and their bounds are fixed between AMPMIN and AMPMAX
and PERMIN and PERMAX.

If 2 successive cvnanges in the derivative sign occur too close in
time, they are neglected (the parameter FLUKE controls this).
This is because such rapid changes are not measurable in the
pupil data we have analyzed. Also, since very small amplitudes
escape detection, we neglect the contents of the first

JZERO bins of RIIOA (the total number of neglected values is
given by CORNITA).

The program calculates the solution, amplitude and periocd
densities for different values of the parameter U(2) ( n in
the Hill-type feecdback function) around the Hopf bifurcation.
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The noise can affect any parameter U(*) in the equation which
appears in the subroutine DERIVS. When the noise affects U(5),

it is additive. Close to the bifurcation, the rate of relaxation
onto the limit cycle is very slow. The solution is first allowed
to relax onto the limit cycle for NZMIN=2500 delays. When

NTAU > NZMIN, noise is applied, and we allow another NTAUMIN=2500
delays for a steady-state to be reached. The integration proceeds
until time NTAUMAX*TAU.

The intensity of the Gaussian noise is given by SIGHA, and its
correlation time by TCOR.

The integration time step for the noise is the same as that for
the deterministic component handled by the REK4 routine.

The noise satisfies an Ornstein-Uhlenbeck process which is

integrated using an integral Euler method as suggested by Fox
(see section 5.2 for more details). The uniformly distributed

random numbers are generated by the RAN1 subroutine taken from
Numerical Recipes.

realx8 xdel(101),gausx,ubbar,fluke,pi

real*8 x,dxdt,xh,delt, tau,xmin,xmax,xltau,u(5),xtinit
real*8 nksi,ksil,ksi2,sigma,realt,tnext,tcor,sig
real*8 ampmin,ampmax,permin,permax,ampl,per,anpli,peri
real*8 xlast,tlast,sgnlast,e,bige,difft

integer bn,bins,binnumb,deldiv,delpr,rho(500), idum
integer ntau,ntaumin,ntaumax,rhoa(200),rhop(200)
integer jmin,Jjmax,stepJ

integer aflag,flag,bnumba,bnumbp,cornita,jzero,nzmin
integer nit,nita,nitp,nitapr

real*4 robar,robara,robarp,varrho,varroa,varrop
realxd4 xsumsq,asumsq,psumnsq,xofi

real*4 sidro,sigrosa,sigrop

real*4d fnit,fnitsa,fnitp
common/eqparam/u,xdel,delt, tau

common/deloop/k

open(5,file="rk2ad7.01")

rewind 5

idumn=-8813

pi=3.141592653589793

bins=200

bn=500

u(1)=3.21d0

u(3)=50.0d0

u(4)=200.0d0

uSbar=0.0d0

tau=0.3d0

delt=0.01d0

deldiv=100

xtinit=40.0d0

nznin=2500

ntaumin=5000

ntaunax=25000

xmin=10.0d0

xmax=75,0d0

ampmnin=0.0d0

anpnax=40.0d0

e ™ et e w

e . g
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6.3

Adn

55

45

002

10

11

30

permin=0.5d0
permax=1.5d0
fluke=20.0d0xdelt*tau
jzero=3
nit=(ntaumax-ntaumin)*deldiv
tcor=1.0d0
sig=7.0d0
sigma=sigxtcor
bige=dexp(-~delt*tau/tcor)
jJmin=818
Jmax=830
stepj=2
goto 45
continue
jmin=84
jmax=120
stepj=2
continue
do 20 j=jmin,jmax,stepj

if(jmin.eq.818) then

u(2)=dbhle(j)/100.0d0
else
u(2)=dble(j)/10.0d0

end if

write(5,002) u(2),signa
format(® °, ‘u(2)= °,d19.14,3x, ‘signa= °,d19.14)
do 10 i=1,bn

rho(i)=0
continue
do 11 i=1,bins
rhoa(i)=0
rhop(i)=0
continue

delpr=deldiv+l
do 30 k=1,delpr
xdel(k)=xtinit
continue
cornita=0
nita=0
nitp=0
xlast=xtinit
tlast=0.0d0
sgnlast=1.0d0
ksil=ranl(idum)
ksi2=ranl(idum)
nksi=dsqrt(-2%dlog(ksil))*dcos(2*pixkksi2)
e=dsqrt(1/(2%tcor) )*sigma*nksi
eh=e
flag=0
aflag=0
do 100 ntau=1,ntaumax
=xdel(deldiv+1l)
do 101 k=1,deldiv
tnext=(ntau-1l+kxdelt)*tau
realt=tnext-delt*tau
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xltau=xdel(k)
if(ntau.gt.nzmin) then
u(5)=udSbar+e
ksil=ranl(idum)
kgi2=rani(idum)
nksizdsgrt(-2%dlog(ksil))*dcos(2%pi*ksi2)
gausx=nksiksigmakdsqrt((1-bige*x2)/(2%tcor))
eh=e*xbige+gausx
else
u(S)=ubbar
end if
call derivs(realt,x,dxdt,xltau)
if(ntau.gt.ntaumin) then

difft=realt-tlast
if((dsign(1.0d0,dxdt).ne.sgnlast) .and. (difft.gt.fluke

+)) then

ampl=-abs((x-xlast))
if(aflag.eq.0) then
aflag=1
goto 35
end if
bnumba=idint((ampl-ampmin)*dble(bins)/(ampmax-ampmin

if((bnumba.gt.0) .and. (bnumba.le.bins)) then
rhoa(bnumba)=rhoa(bnumba)+1
nita=nita+l

end if

continue

if(flag.eq.0) then
perzresalt-tlast
bnumbp=idint((per-permin)*dble(bins)/(permax-permin

if((bnumbp.gt.0) .and. (bnumbp.le.bins)) then
rhop(bnumbp )=rhop(bnumbp )+1
nitp=nitp+1
end if
tlast=realt
end if
flag=1-flag
xlast=x
gsgnlast=-sgnlast
end if
end if
call rk4(x,dxdt,realt,xh)
if(ntau.gt.ntaumin) then
binnumbzidint((xh-xmin)*dble(bn)/(xmax-xmin))+1
if((binnumb.gde.1) .and. (binnumb.le.bn)) then
rho(binnumb)=rho(binnumb)+1

end if
end if
xdel(k)=x
x=xh
e=eh
101 continue
xdel(deldiv+1)=xh
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100

continue

STATISTICS

€0

61

62

do 60 1=1,jzero
cornita=cornita+rhoa(l)
rhoa(l)=0

continue

robar=0.0

robara=0.0

robarp=0.0

xsumsq=0.0

asumsqg=0.0

psumsq=0.0

do 81 i=1,bn
xofi=ix(xmax-xmin)/float(bn)+xmin
robar=robar+rho(i)*xofi
xsumsq=xsumsq+rho(i)*(xofi%x%2)

continue

fnit=float(nit)

robar=robar/fnit

varrho=xsumsq/(fnit-1)-fnit/(fnit~-1)*(robar*x2)

if(varrho.gt.0.0) then
sigro=sqrt(varrho)

end if

do 82 i=1l,bins
ampli=i*(ampmax-ampmin)/float(bins)+ampmin
perizix(permax-permin)/float(bins)+permin
robara=zrobara+rhoa(i)*ampli
robarp=robarp+rhop(i)*peri
asumsqg=asumsq+rhoa(i)*(ampli¥*2)
psumsq=psunsqQ+rhop(i)*(perix*x2)

continue

nitapr=nita-cornita

fnita=float(nitapr)

if(nitapr.le.l) then
robara=0.
sigroa=0.

else
robara=robara/fnita
varroa=asumnsq/(fnita-1)-fnita/(fnita-1)x(robaraxx2)
if(varroa.le.0.0) then

sigroa=0.0
else
sigroazsqrt(varrosa)

end if

end if

fnitp=float(nitp)

if(nitp.le.1l) then
robarp=0.
sigrop=0.

else
robarp=robarp/fnitp
varrop=psunsq/(fnitp-1)-fnitp/(fnitp-1)*(robarpxx2)
if(varrop.le.0.0) then
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sigrop=0.0
else
sigrop=sqrt(varrop)
end if
end if
write(5,003) xsumsq,asumsq,psumsq
write(5,003) robar,robara,robarp
write(5,003) sigro,sigroa,sigrop
write(5,004) nita,nitp,cornita
003 format(’ °,3el5.4)
004 format(’  °,3il0)
write (5,001) (i,rho(i),i=1,bn)
001 format(  °,2i10)

20 continue
if(jmin.eq.818) then

goto 55
end if
close(b)
stop
end
subroutine derivs{realt,x,dxdt,x1ltau)
double precision u(5),xltau,x,dxdt,xdel(101),delt,tau,realt
common/eqparam/u,xdel,delt, tau
dxdt=-u(1)*x+u(4)/(1+(x1tau/u(3) )kxu(2))+u(s)
return
end
function ranl(idum)
realx8 r(97),rml,rm2
integer idum
parameter (m1=259200,ia1=7141,1c1=54773)
parameter (m2=134456,1ia2=8121,ic2=28411)
parameter (m3=243000,ia3=4561,ic3=51349)
rml=1./ml
rn2=1./m2
data iff /0/
if ((idum.1lt.0) .or. (iff.eq.0)) then
iff=1
ixl=mod(icl-idum,ml)
ixl1=mod(ialxixl+icl,ml)
ix2=mod(ix1,mn2)
ixl=mod(ialxixl+icl,ml)
ix3=mod(ix1l,m3)
do 11 j=1,97
ixl=mod(ialxixl+icl,ml)
ix2=mod(ia2%ix2+ic2,mn2)
r(j)=(dble(ix1l)+dble(ix2)*rm2)*rnl
11 continue
idum=1
endif
assign 12 to ilabel
12 continue
ixl=mod(ialxixl+icl,nl)
ix2=mod(ia2%ix2+ic2,n2)
ix3=mod(ia3*xix3+ic3,n3)
J=1+(97*%ix3)/m3
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if((j.gt.97) .or. (j.1lt.1)) then
goto ilabel
endif
ranli=r(j)
r(j)=(dble(ix1)+dble(ix2)*rm2)*rml
return
end
subroutine rkd4(x,dxdt,realt,xh)
double precision u(5),x,dxdt,xh,xdel(101),realt,delt,tau
double precision ksi,xt,dxt,dxm,hh,h8,th,tprine,x1tau
common/eqparam/u,xdel,delt, tau
common/deloop/k
hh=delt*tau/2

hg=hh/3
th=realt+hh

xt=x+hhxdxdt
x1ltau=(xdel(k)+xdel(k+1))/2
call derivs(th,xt,dxt,xltau)
xt=x+hh*xdxt

call derivs(th,xt,dxm,xltau)
xt=x+deltxtaukxdxm
dxm=dxt+dxm

xltau=xdel(k+1)
tprime=realt+deltktau

call derivs(tprime,xt,dxt,xltau)
xh=x+h6X(dxdt+dxt+2%dxm)
return

end
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410
NEO.
420
430
440
450
460
479
480
490
500
Sie
520
530

540
550
SE9

THIS IS PROGRAM HUMPFMAP

LANGUAGE : HEWLETT - PACKARD BASIC 3.0
COMPUTER : HEWLETT - PACKARD 9816 WITH MATHEMATICAL COPROCESSOR

THIS PROGRAM CALCULATES THE EXACT SOLUTION TO THE FIRST QRDER
DELAY-DIFFERENTIAL EQUATION WITH PIECEWISE CONSTANT MIXED FEEDBACK:
DX/DT = =-ALPHA & X(T) + F [X(T-TAU)] WHERE

F=D1i IF X{T-TAU) < THRI (REGION 1)
F=C IF THR1 < X(T-TAU) < THR2 (REGION 2)
F=03 IF X(T-TAU) > THR2Z (REGION 3)

THE PROGRAM EITHER CALCULATES AND PLOTS THE SOLUTION,

OR (LINES 4100-4160 & 4270-4330) COMPUTES AND DISPLAYS A POINCARE
MAP  X(N+1) VS X{N) (SAMPLING INTERVAL IS GIVEN BY "SAMSTEP"),

OR (LINES 3520-33@@) COMPUTES AND DISPLAYS A POINCARE MAP OF CROSSING
TIME INTERVALS (CROSSINGS WITH THRESHOLD ) OR THRESHOLD 2).

THE LATTER PLOT IS AT THE BASIS OF THE ANALYSIS OF THIS EQUATION

(BY UWE AN DER HEIDEN AND MICHAEL MACKEY): WE USED IT TGO TRY TO

GET MORE INSIGHT INTO THE OYNAMICS OF SIMPLE AND COMPLEX SOLUTIONS,
ESPECIALLY THOSE FOR WHICH NO THEORY EXISTS.

THE PROGRAM FINDS THE CROSSING TIMES WITH THE THRESHOLDS.

TAU-SECONDS AFTER A CROSSING, THERE WILL BE AN EXTREMA IN THE SOLUTION
SINCE AT THIS POINT THE ODERIVATIVE CHANGES ABRUPTLY.

THE PROGRAM SEWS THE EXTREMA TOGETHER USING INCREASING OR DECREASING
EXPONENTIALS.

THE RATE CONSTANT ALPHA CAN TAKE ON A DIFFERENT VALUE FOR DX/0T<@ QR
DX/DT>@. ALSO THE DELAY CAN TAKE ON TWQ DIFFERENT VALUES, DEPENDING
ON WHETHER THE CROSSING fCCURRED FROM NEGIONS 1 OR 3 INTO REGION 2

OR THE OPPQSITE.

THE PROGRAM ALLOWS FOR 2 OIFFERENT KINDS OF INITIAL CONDITIONS. THE
FIRST IS REFERRED TO AS “NORMAL" AND CORRESPONDS TO

THRI < X(T) <THRZ FOR T IN (-TAU,@) WITH X(Q)=THRZ.

THE SECOND ALLOWS FOR A THRESHOLO CROSSING IN THE INTERVAL (-TAU.@)
AT T = -TAU + W, WHERE W BELONGS TO (@,TAU). THE INITIAL CONDITION IS
THR! ¢ X(T) ¢ THRZ, T IN (-TAU ,-TAU+W) 1 X(T) C THRI, T IN (-TAU+W,0)
AND X(@)=THRI,

BY VARYING W, KEEPING ALL OTHER PARAMETERS FIXED, ONE CAN EXPLORE

A SUBSET OF THE INITIAL CONOITIONS.

THE CALCULATION PROCEEDS UNTIL N THRESHOLD CROSSINGS HAVE BEEN DETERMI

THE VECTOR T CONTAINS THE CROSSING TIMES.

THE VECTOR XPRIM CONTANS THE VALUES OF THE EXTREMA OF THE SOLUTION.
THE INDEX M (M2) COUNTS THE NUMBER OF CROSSINGS WITH THR! (THR2),
THE INDEX I COUNTS THE TOTAL NUMBER OQF CROSSINGS THAT HAVE OCCURRED.
TTHR1(M) CONTAINS THE VALUE OF THE INDEX I AT WHICH THE M'TH CROSSING
OCCURRED (LIKEWISE FOR TTHRZ2(M2)),

THE INDEX J COUNTS THE NUMBER OF THRESHOLD CRQOSSINGS UP TO WHICH THE
THE SOLUTION HAS BEEN PLOTTED.

AT EACH ITERATION OF THE J~-LOOP (LINE 1930@-327Q) THE SIGN OF THE
DERIVATIVE CHANGES. WHEN PAR=@, OX/DT < @, AND PAR=! WHEN DX/0T > Q.

FOR EACH J, THE PROGRAM FIRST DETERMINES WHETHER THE CROSSING TIME T(J
IS KNOWN (LINE ¢@12). IF IT IS, THE PROGRAM COMPUTES THE ASSOCIATED

EXTREMUM AND FINDS WHETHER ANY OTHER THRESHOLD CROSSINGS WILL OCCUR ON
THE WAY FROM XPRIM(J-1) TO XPRIM(J) (LINES 2050-226Q). IF THERE ARE NO
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570
580
590
6500

690
700
710
720
730
740
750
760

770
7680
790
800
810
820
830
840
850
860
879
880
890
300
910
920
930
940
950
962
970
980
990
1000
1010
1020
1030
10401
1050
1260
1970!
1280
1230
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190

[
!
1
1
1
!
!
|

MORE CROSSINGS, IT PLOTS THE INCREASING OR DECREASING EXPONENTIAL
BETWEEN XPRIM(J-1) AND XPRIM(J)., [IF THERE ARE MORE CROSSINGS.

THE PROGRAM DETERMINES THEM IN LINES 2470-2840 (PAR=0) OR IN LINES
2880-3230 (PAR=1).

THERE CAN ONLY BE ONE OR TWO MORE CROSSINGS ODEPENDING ON XPRIM(J-1)
AND XPRIM(J). THE PROGRAM SIMPLY EXPLORES THE DIFFERENT POSSIBILITIES

NOTE THAT THE CROSSING TIMES ARE OETERMINED EXACTLY, SINCE THEY ARE FQ

BY SOLVING FOR THE INTERSECTION OF AN EXPONENTIAL (+ CONSTANT) WITH
ONE OF THE THRESHOLDS. 1F WE WERE OEALING WITH A SECOND ORDER DOE,
WE WOULD HAVE TO SOLVE FOR THE CROSSING TIMES NUMERICALLY.

FINALLY, IN LINES 3310-3450 THE PROGRAM COMPUTES THE PERIOD OF THE
SOLUTION IN SECONDS AND THE NUMBER OF PULSES PER PERIOD (I.E. THE
NUMBER OF TIMES THE SOLUTION ENTERS REGION 2 PER PERIOD).

INTEGER Par ,Flag(6) .M, Tthri(1000) Tthr2(1000)
REAL T(2000),Xprim(2000)
COM /Params/ Alph! ,Alph2,C Amax ,Tmax ,Ymax D(0:10800),L .01 D3 Yesplot Yespe
map ,First ,Sampstep ,Counter
Alphi=3

Alph2=Alph!

Tau@=1

Otau=0

Taul=Tau@+Dtau

N=1000

Mcl=N/2-10
Accur=.000000000!1

Tmin=0

Tmax=2.5

Ymax=2

C=2+Alphl

Gamma=C/Alphl

D1=@

D3=0

W=,12

Thri=1

Thr2=2.9

Istart=20

Samper=|
Sampstep=INT(Samper/.@1)
Countar=9

Yespcmap=9

Yesplot=0

Yescross=9

6INIT

PLOTTER IS 3,"INTERNAL®
PLOTTER 1S 7@5,"HPGL"
GRAPHICS ON

GINIT

QUTPUT 705; "VUSS*®

DISP “IS A PLOT OF THE SOLUTION DESIRED? (YES:1 , NO:Q)*
WAIT 1

INPUT Yesplot

IF Yesplot=@ THEN 60TQ 1390
VIEWPORT @.130.,0,100
WINDOW -Tau@ ,Tmax ,0 ,Ymax
FRAME

AXES 1.9,1.0,0,0.5,1
MOVE ~Tau@ .Thr!

LINE TYPE S

ORAW Tmax ,Thrl

MOVE Tmax .Thr2
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1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
14029
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
151e
1520
1530
1548
1550
1569
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1660
1650
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1820
1840
1850

DRAW ~Tau®@ ,Thr2
LINE TYPE 4
MOVE Tau®,d
DRAW Tau® , Ymax

| LINE TYPE 4

! MOVE W,0

I DRAW W, Ymax

f MOVE 1 ,Ymax

| DRAW 1 .0

! MOVE 2.0

! DRAW 2 ,Ymax

I MOVE @,Thri
LINE TYPE 1

MOVE -Tau@ ,(Thri+Thr2)/2
DRAW ~Taud+u,!
DRAW -Tau@+.9,.5
DRAW 0,1

PENUP

60TO 1570

DISP "1S A POINCARE MAP OF THE SOLUTION DESIRED 7 (YES:1INO:0Q]"

WAIT 1
INPUT Yespcmap
IF Yespcmap=1 THEN
VIEWPORT 10,100,10,100
IF B>Gamma THEN
Xmax=B
ELSE
Xmax=Gamma
END IF
WINDOW @ ,Xmax ,0 Xmax
AXES .2,.2,0,0,5,5
FRAME
LINE TYPE 4
MOVE 0.0
DRAW Xmax ,Xmax
PENUP
END IF
LINE TYPE 1
L=Q
|
I INITIAL CONDITIONS
]
DISP *NORMAL I.C.: 1 ' I1.C. SPECIFIED BY W : o"
WAIT 1
INPUT Icnormal
IF Icnormal=| THEN
I NORMAL INITIAL CONDITION: 1<X(T)<B FOR T IN (-~TAU,Q)
First=Thr2
T(1)=Q
Torimi=Taul
Xprim( 1 )=(Thr2-C/Alph! Y*EXP(~Alph!lsTprim! )+C/Alpht
CALL Plotexp(Thr2,8,Tpriml 1)
K=
ELSE
! INITIAL CONDITION SPECIFIED BY W (W IS IN (0.,1))
FirsteThrt
T(1)=-Tau+
T(2)=0
Tpriml =y
Xprim¢ 1 )=(Thr1=C/Alphl YeEXP(~-AlphieTpriml )+C/Alphi
CALL Plotexp(Thr! .0 .Torimt 1)
K=2
IF Xprim(1)>Thr2 THEN
T(3)=1/Alphl «LOG({ (Gamma~-Thr1 )/{Eamma-Thr2))
K=3
END IF
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1860 END IF

1870  M=i

1888 M2=|

1899 D(9)=D3

1800 !

191 ! SOLUTION FOR T > @

1920 !

1930 FOR J=2 TO N STEP |

1940 Par=J) MOD 2

1950 Tau=Taul

1960@ IF Par=@ THEN

1970 L=(J~2)72

1380 Tau=Tau®d

1990 END IF

20090 Xpr=Xprim{J=1)

2019 IF T(J)>Q OR (J=2 AND Icnormal=0) THEN

2020 !

2030 ! CROSSING TIME T¢J) IS KNOWN

2040 |

2050 Flags=!

2060 Tprim2=T(J)+Tau

2070 IF Par=@ THEN

2080 Xprln(J)-(anxn(J-l)-D(L)/Alphz)'EXP(-ﬂlthO(Tprth-Tprtnl))#
D(L)/Alph2

2090 ELSE

2100 Xprin(J)-(Xortn(JFI)-C/Alnh\)OEXP(-hloh\O(Tarlnz-anxnl))*C/h
lphl

2119 END IF

2120 ¢

213@ | IF THE LAST 2 EXTREMA XPRIM(J~1) AND XPRIM(J) ARE IN THE SAME
2140 REGION, NU MORE CROSSING TIMES HAVE TO BE COMPUTED.

2150 ! SOLUTION 1S SIMPLY PLOTTED, AND PROGRAM GOES ON TO NEXT J.
2168 | IF NOT , FURTHER CROSSINGS TIMES HAVE TO BE DETERMINED,
2170 ¢ STARTING AT LINE 224@ IF PAR=Q, OR 2620 IF PAR=1,

2180 !

21909 FOR Mm=1 YO & STEP |

2200 Flag(Mm)=Q

2219 NEXT Mm

2220 IF Xprim{J)»>Thr2 AND Xprim{J=1)>Thr2 THEN Flagil)=}
2230 IF Xprim(J)<Thr2 AND Xprim(J-11<Thr2 THEN Flag(2)=1
2240 IF Xprin{J)>Threl AND Xorim(J-131>Thrl THEN Flag(3}=1
2250 IF Xprim(J)<Thr! AND Xprim{ J-1)<Thrl THEN Flag(4)=1
2260 Flag{S)=Flag(3) AND Flag(2)

2279 IF Flag(f) OR Flag(4) OR Flag(5) THEN

2280 CALL Plotexp(Xpr . Torimi Tprim2 Par)

2290 GOTO 3269

2300 ELSE

2310 I=K+1

2320 IF Par=@ THEN GOTO 2470

2330 IF Par=! THEN GOTO 2880

2340 END IF

2350 ELSE

2360 |

2370 | CROSSING TIME T(J) IS NOT KNOWN

23680 | FLAGS=! IF T(J) IS ALREADY KNOWN

2390 | FLAGS=8 IF T{(J) 1S NOT KNOUN

2400 |

24190 Flags=90

2420 I=J

2430 IF Par=1 THEN G0TO 2880

2440 !

2450 | DETERMINE CROSSINGS WHEN O0X/DT < @ (PAR=Q)

2460 |

2470 IF Xprim(J=1>Thr2 THEN

2480 T(I)-Tprxnl-l/hlphZoLOG((ThrZ-D(L)/Alth)/(antn(J-!)-D(L)/Al
oh2))
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2490
2500
2510
2520
2530
2540
2550
2560
2570
(L)/Alph2))

Tthr2(M2)=1

M2=M2+1

I¢ Flags=! THEN GOTO 2540

Tprim2=T(I)+Tau

Xprim(J)=(Thr2-0(L)/Alph2 )sEXP{ ~Alph2*Tau )+D{L)/Alph2

IF Xprim(J)<Thr2 AND Xprim(J)>Thri THEN
CALL Plotexp(Xpr Torimi ,Tprim2,0)

ELSE
T(I+1)=Toriml-1/Alph2¢L0G(( Thri-D(L )/Alph2)/¢{Xprim{J=1)=D

2580 D(1/2)=D1

2590 Tthr!(M)=I+1

2600 M=M+1

2610 KoK+t

2620 CALL Plotexp(Xor ,Tprim! Tprim2,0)

2630 END IF

2640 GOTO 3250

2650

2660 IF Xprim(J-1)<Thr1 THEN

2670 PRINT "EQUILIBRIUM REACHED: SOLUTION GOES TO ZERO®
2680 CALL Plotexp(Xpr ,Tprim! ,Tmax,0)

2690 GOT0 3370

2700 END IF

2710 IF Thri<(O(L)/Alph2) THEN

2720 Torim2=Tmax

2730 GOTO 2829

2740 END IF

2750 TCI)=Tprimi=1/Alph2L0G¢ (Thr1-D(L )/ALph2 )/ (Xprim{ J=1)=0(L)/Al
ph2 )

2760 DC(I-1)/2)=D%

2770 Tthri(M)=]

2780 M=M+1

2790 IF Flags=1 THEN GOTO 28290

2800 Teorim2=T(I)+Tau

2810 Xprim(J)=(Thri-0(L)/Alph2)eEXP( ~Alph2*Tau )+0(L )/Alph2
2820 CALL Plotexp(Xpr ,Tprim! ,Torim2 ,0)

2830 END IF

2840 GOTQ 3250

2850 |

2860 ! DETERMINE CROSSNGS WHEN DX/DT > @ (PAR=1)

2870 !

2880 IF Xprim(J-1)<Thr! THEN

2890 TCI)=Tpriml~1/AlphlsLOG({Thri~C/Alph! }/{Xprim(J=1 )=C/Alph! })
2900 Tthri(M)=]

2910 M=M+1

2920 IF Flags=! THEN GOTO 2950

2930 Tprim2=T(I)+Tau

2940 Xprim(J)=(Thri1-C/Alpht )*EXP(-Alphl*Tau)+C/Alph!

2950 IF Xprim(J)<Thr2 AND Xprim(J)>Thr! THEN

2960 CALL Plotexp(Xpr Tpriml ,Tprim2,1)

2970 ELSE

2980 T(I+1)=Tprimi~1/Alph1 eLOG(( Thr2~C/Alphl )/ (Xprim(J=1)=C/Al
pht ))

2990 Tthr2(M2)=1+1

3000 M2=M2+1

3010 BD(1/2)=D3

3020 K=K +1

3030 CALL Plotexp(Xpr ,Tprim! ,Tprim2,1)

3040 END IF

3050 60T0 3250

3060

3079 IF Xprim(J=1)>Thr2 THEN

3e80 PRINT “EQUILIBRIUM REACHED: SOLUTION GOES TO GAMMA®
3090 GOTO 3370

3100 END IF

30 IF The2>(C/Alphl) THEN
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3120
3130
3140
3150
3160
3179
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3s10
3529
3s30e
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3679
3680
3890
3700
3710
3729
3730
3740
3750
3760
3770

!
!
1

Tprim2=Tmax
GOTO 3220
END IF
T(I)=Tprimi~1/Alph! sLOG((Thr2-C/Alph! }/{Xprim{J=1)~C/Algh!))
Tthr2(M2)=]
M2uM2+!
D((I-1)/2)=D3
IF Flags=1 THEN GOTO 32290
Torim2=T([)+Tau
Xprim{J)=(Thr2-C/Alph1 )*EXP(~Alphi«Tau}+C/Alph}
CALL Plotexp(Xpr ,Torim! Torim2 ., 1)
END IF
END IF
K=K+1
Torimi=Tprim2
NEXT J

DETERMINE PERIOD AND NUMBER OF PULSES PER PERIOD

Mm=N=-1
FOR I=2 TO Mcl STEP 2
Deltal=T(N)=-T(N-1)
Delta2=T(N-I)-T(N-2+1)
Diff1=ABS(Deltaz-Deltai)
Dalta3=T(Mm)=T(Mm-I)
Deltad=T(Mm=-1)-T(Mn-2¢1)
Diff2=ABS(Delta3-Deltad)
IF D1ffi<Accur AND Diff2<{Accur THEN
PRINT "PERIOQD IS" ,Deltal
PRINT °"NUMBER OF PULSES PER PERIOD 1S5*,1/2
GOTO 3460
END IF
NEXT I
PRINT “PERIOD DOESN'T CONVERGE FOR N=" N,"AND MCL=" ,Mcl
IF Yespcmap=! THEN GOTO 3970

PLOTS OF CROSSING TIME INTERVALS

DISP "1S PLOT OF THE CROSSING TIMES DESIRED? [ YES: 1 1 NO:Q )
WAIT
INPUT Yescross
DISP *CROSSINGS WITH THRI (1) OR THR2 (2) 7 °
WAIT 2
DISP "ENTER @ FOR GRAPHICS DUMP, -1 FOR NEITHER, 60TO END"
WAIT 1
INPUT Crossi2
IF Crossi2=-1 THEN GOTO 3970
IF Crossi12=@ THEN 60TO 3920
IF Yescross=! THEN
PLOTTER IS 3,"INTERNAL"
GRAPHICS ON
GINIT
VIEWPORT 10,100,10,100
WINDOW @,1.5,0,1.5
AXES .1,.1,0,0,5.,5
FRAME
IF Crassi2=1 THEN
FOR I=Istart TO M/2-2 STEP |
DaltatpreT(Tthri(2I+2))=-T(Tthr1(2e1¢1))
Deltat=T(Tthri(2e1)=T(Tthri(2e¢I~1))
1 PENUP
PLOT Deltat , Deltatpr
1 PENUP
NEXT I
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3780 PENUP

3790 ELSE

3800 FOR I=Istart TO M2/2-2 STEP 1

3819 Deltatpr=T(Tthr2(2e1+2))=-T(Tthr2(2s1+1))
3820 Deltat=T(Tthr2(2+¢I))~T(Tthr2(2eI=1))
3830 ! PENUP

3840 PLOT Deltat ,Deltatpr

3850 t PENUP

3860 NEXT I

3879 PENUP

3880 END IF

2890 PENUP

3900 ENO IF

3918 60TO 3550

3929 PRINTER IS 701

3930 PRINT “ALPH=" ,Alph! ,"C=" ,C,"TAU=" Tau,“THRI=" Thri
3940 PRINT “THR2=" ,Thr2,"N=" N,"W=" W, "D3=* D3

3959 CALL Gdump

3960 GOTO 3550

3970 end

3980 sub Plotexp{Xprim,Tprim! ,Torim2 , INTEGER Par)
3990 COM /Params/ Alph! ,Alph2,C ,Amax ,Tmax ,Ymax ,0(0:1000),L,01,03,Yesplot .Y
espcmap ,First ,Sampstep,Counter

4000 IF Yesplot=0 AND Yespcmap=@ THEN GOTO 4370
4010 N=(Tprim2-Torimi) DIV 0!

4020 IF Par=0 THEN

4030 FOR M=0 TO N STEP 1

4040 Tpr=Me, 01

4950 Ys(Xprim~D(L)/Alph2)*EXP(-Alph2¢Tor )+D(L)/Alph2
4060 Amp L=Y

4070 IF Yesplot=1 THEN

4080 PLOT Tprimi+Tpr Ampl, -1

4090 ELSE

4100 Counter=Countar+!

4110 IF (Counter MOD Sampstap)=@ THEN
4120 PENUP

4130 PLOT Farst ,Ampl

4140 PENUP

4150 First=Ampl

4160 END IF

4170 END IF

4180 NEXT M

4190 ELSE

4200 FOR M=@ TO N STEP |

4210 Tor=M+.01

4220 Ya(Xprim-C/Alphl )*EXP(-Alphi*Tpr)+C/Alphl
4230 AmplsY

4240 IF Yesplot=! THEN

4250 PLOT Tprimi+Tpr Ampl -1

4260 ELSE

4270 Counter=Counter+!

4280 . IF (Counter MOD Sampstep)=0 THEN
4290 PENUP

4300 PLOT First ,Ampl

4310 PENUP

4320 First=Ampl

4330 END IF

4340 END IF

4350 NEXT M

4360 END IF

4370  SUBEND
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PROGRAM C10250L

THIS PROGRAM INTEGRATES THE PUPIL DELAY-DIFFERENTIAL EQUATION

WITH IS FIRST ORDER FOR CONSTRICTION AND SECOND ORDER FOR OILATION.
IT INTEGRATES THE EQUATION UNTIL EITHER THE MAXIMUM NUMBER OF
CROSSING TIMES HAS BEEN REACHED, OR FOR A MAXIMUM NUMBER OF

TIME DELAYS, WHICH EVER COMES FIRST.

THE PROGRAM THEN PROCEDES TO FIND THE PERIOD OF THE SOLUTION

(IN SECONDS) AS WELL AS THE NUMBER OF PULSES PER PERIQD.

THE SOLUTION IS DISPLAYED ON THE SCREEN OR ON THE PLOTTER.

X(1) IS THE STATE VARIABLE (PUPIL AREA)

DXOT(1) 1S THE TIME DERIVATIVE OF PUPIL AREA

XH{1) AND DXCTH(1) ARE THE VALUES OF X(1) AND DXDT(!) AT THE END
OF THE INTEGRATION TIME STEP.

X1TAU IS X(1) AT TIME (T-TAU) WHERE TAU IS THE DELAY.

THR1 (THR2) IS THE LOWER (UPPER) THRESHOLD.

THE UPPER (LOWER) ASYMPTOTE 1S Aoff (Aon).

THE FORCING SWITCHES BETWEEN °"DFOR* AND "CFOR" DEPENDING ON THE
POSITION OF X1TAU WITH PESPECT OT THE THRESHOLOS.

FOR CONSTRICTION PUPIL AREA OBEYS :
DXDT = -ALPHC#X+CFOR

FOR OILATION PUPIL AREA OBEYS :
D{OXDT)/DT=~DELTA+DXDT-(W"2)#X+0FOR

THESE DIFFERENTIAL EQUATIONS ARE NUMERICALLY INTEGRATED USING
AN EULER METHOD. THE INTEGRATION STEP IS DELTeTAU.

ACCUR IS THE ACCURACY OF PERIOD DETERMINATION.

THE PERIOD IS COMPUTED FROM THE SEQUENCE OF THRESHOLD CROSSINGS
TIMES STORED IN T(N) (CROSSINGS ARE DETECTED BY THE CHANGES IN
THE FLAGS WHICH LABEL THE 3 REGIONS OF THE FEEDBACK FUNCTION).

Delt=.01

Deldiv=1/Delt

ALLOCATE Xdel(Q:Deldiv)

COM /Vect/ Xitau,Sigma{!), Tau
COM /Param/ Thrt! Thr2,C

COM INTEGER K

DIM Dxdt(1),X01) Xh{1),0xdth(1)

N=100 | MAXIMUM NUMBER OF THRESHOLD CROSSINGS
ALLOCATE T(N)

Ntaumax=200 | INTEGRATE TILL TIME (NTAUMAXe*TAU)
Mm=N-1

Mc]l=N/2-1 I MAXIMUM CYCLE LENGTH

Accur=.0001

SYSTEM PARAMETERS

Tau=.411
Thri=21.5
Thr2=39

ENTER PARAMETERS FROM THE C1-02 FIT OF THE SINGLE PULSE RESPONSE

Aoff=34,2
Xnod=21.5
A=4,39
Aon=Xnod-A
Alphe=7.91
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600
610
620
630
640
650
660
570
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
869
870
880
890
900
910
920
930
940
950
969
970
980
990
1000
1e1e
1020
1030
1040
1050
1060
10708
1080
1090
1100
trie
1120
1139
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1249
1250

Alphd=1.568

Betad=.587
Cfor=AlphceAon
Delta=Alphd+Betad
W=Alphds+Betad
Dfor=Acffe(W"2)

|

| GRAPHICS

|
Xtini1t=(Thrt+Thr2)/2
Xtinit=22.5

Tmin=Q

Tmax=7

Xmin=16

Xmax=24

PLOTTER 1S 705, "HPGL"
PLOTTER IS 3, INTERNAL®
QUTPUT 7@5;"VsSS*
GRAPHICS ON

GINIT

VIEWPORT 10,100,10,70
WINDOW -Tau,Tmax ,Xmin, Xmax

FRAME
AXES 2,1 ,Tmin Xmin,5.,5
LINE TYPE 4

MOVE -Tau,Thri
DRAW Tmax ,Thri
MOVE Tmax ,Thr2
ORAW ~Tau,Thr2
LINE TYPE 1
MOVE -Tau,0
!
I INITIALIZE FUNCTION ON {~TAU,0]
|
FOR K=0 TO Deldiv STEP
Xdel(K)=sXtinit
PLOT (K~Delaiv)+DelteTau ,Xdel(K)
NEXT K
IF Xtinit<=Thr2 AND {tinitd>=Thr! THEN
Lastflag=2
ELSE
IF Xtinit<{Thrl THEN
Lastflag=t
ELSE
Lastflag=3
END IF
END IF
1
! NUMERICAL INTEGRATION BEGINS HEREy INTEGRATION STEP IS DELT,
| OELAY BUFFER IS USED.
1
I=1
FOR Ntau=! TO Ntaumax STEP 1

X(1)=Xdel(Deldiv)

FOR K=1 TO Deldiv STEP !
Tnext=(Ntau-{+KeDelt )eTau
Realt=Tnext-Delt*Tau
X1tau=Xdel(K-1)

IF X1tau<Thr! QR X1tau>Thr2 THEN
Xh(l1)=0elteTausDxdt(1)+X(1)
Oxdth(1)=(-(W"2)eX(!)-DeltasDxdt(1)+0for)eDelt*Tau+Dxdt(1)

ELSE
Xh(1)=(Ctor-AlphceX(1))sDalteTau+X(1)
Dxdth(1)=Cfor-AlphceX(1)

END IF

PLOT Tnext . Xh{1)
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1260
1270
1280
1290
1300
1310
1320
1330
1340
1359
1360
1370
1380
1390
1400
1410
1420
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1440
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1470
1480
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1500
1510
1520
1530
1549
1550
1560
1570
1580
1590
1600
1610
1620
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1660
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1680
1690
1700
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1720
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1740
1750
1760

3

¢

1F Xh(1){=Thr2 AND Xh(1)>sThr! THEN
Flag=2
ELSE
IF Xh(1)<Thri ‘THEN
Flag=1
ELSE
Flag=3
END IF
END IF
IF Lastflag<>Flag THEN
T(l)=Realt
I=I+1
Lastflag=Flag
IF IDN THEN 6070 1510
END IF
Xdel(K-1)=X(1)
X(t)y=Xh(1)
Dxdt(1)=Dxdth(1)
NEXT K
Xdel(Deldiv)=Xh{1)
NEXT Ntau
BEEP
|
[ DETERMINATION OF PERIOCD
1
FOR J=2 TO Mcl STEP 2
Deltal=T(N)-T(N-])
Dalta2=T(N-J)=T(N-2¢])
D1ff1=ABS(Delta2-Deltal)
Dealta3=T(Mm)=-T(Mm-J)}
Deltad=T(Mm~J)=-T(Mm-2¢J)
D1ff2=ABS(Deltad-0eltal)
IF Diff1<Accur AND Diff2<{Accur THEN
SRINT "PERIOD 1S ,Deltal
PHINT *NUMBER OF PULSES PER PERIOD IS " ,J/2
GOTO 16509
ENOD IF
NEXT J
PRINT *“PERIOD IS UNDETERMINED®
DISP "DUMP GRAPHICS ? [YES:1 , NO:Q1"
WAIT 2
INPUT Flag
IF Flag=! THEN
PRINTER IS 70!
PRINT °"INITIAL CONDITION ON (-TAU,0) IS X=" Xtintt
PRINT *XMIN=" ,Xmin,"XMAX=" Xmax,k"TMAX=" Tmax
PRINT °0ELT=" ,Dalt,"TAU=" Tau
DUMP GRAPHICS
PRINTER IS 1
END IF
and
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APPENDIX E

CONTRIBUTIONS OF THE AUTHOR TO THE MANUSCRIPTS

SECTION 2.2 : Modelling autonomous oscillations in the human pupil light reflex
using nonlinear delay-differential equations.

AUTHORS : André Longtin and John G. Milton. Bulletin of Mathematical Biology
51, 605-624 (1989).

1- Theory.
2- Numerical calculations and associated figures (2,3,4).
3- Titerature review for anatomy aad physiology of this reflex.

SECTION 2.3 : Insight into the transfer function, gain, and oscillation onset for the
pupil light reflex using nonlinear delay-differential equations.
AUTHORS : André Longtin and John G. Milton. Biological Cybernetics 61, 51-58
(1989).

1- Theory.

2- Numerical calculations and associated figures (1,2,3,4).

3- Literature review of control system’s approach applied to biological systems and
to pupil light reflex in particular.

SECTION 3.2 : Evaluation of pupil constriction and dilation from cycling measure-
ments.

AUTHORS : John G. Milton and André Longtin. Vision Research, in press.

1- Design and setup of experimental apparatus.

2- Experiments.

3- Model for pupil cycling.

4- Computer algorithm to integrate model equation (see Appendix D) and produce
phase plots.

5- Smooth fit to single pulse response (Figure 6d) (see Appendix C).

SECTION 3.3 : Complex oscillations in the human pupil light reflex with “mixed”
and delayed feedback.

AUTHORS : André Longtin and John G. Milton. Mathematical Biosciences 90, 183-
199 (1988).

1- Design and setup of experimental apparatus.

2- Experiments.

3- Phenomenological model.

4- Algorithm to integrate model equation and produce bifurcation diagrams.
5- Part of literature review and data analysis.

The data for the next manuscript was obtained from the same kind of piecewise
constant feedback experiments as in Sections 3.2 and 3.3.
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SECTION 5.3 : Noise and critical behavior of the pupil light reflex at oscillation
onset.

AUTHORS : André Longtin, John G. Milton, Jelte Bos and Michael C. Mackey.
Physical Review A, to be submitted (October 1989).

1- Literature review.
2- Theory.

3- Numerical integration of stochastic DDE (see Appendix D).
4- Fast Fourier Transforms for PCNF'.

APPENDIX A : Noise induced global asymptotic stability.
AUTHORS : Michael C. Mackey, André Longtin and Andrzej Lasota. Journal of
Statistical Physics, in press.

1- Literature review.

2- Numerical integration of stochastic ODE’s.

3- Numerical computations for and production of the figures.

APPENDIX B : Irregular pupil cycling as a characteristic abnormality in patients
with demyelinative optic neuropathy.

AUTHORS : John G. Milton, André Longtin, Trevor Kirkham and Gordon S. Francis.
American Journal of Ophthalmology 105, 402-407 (1988).

1- Design and setup of experimental apparatus.
2- Experiments on patients.
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