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English Abstract 

This thesis describes preliminary research on the application of Markov Decision 

Processes (MDPs) to the optimisation of mine scheduling in an uncertain 

environ ment. The MDP framework is a novel approach to scheduling in a mining 

operation and option valuation. The task of scheduling in mining operations is 

dependent on the availability of models that permit the representation of some of 

the key stochastic properties of the environ ment, such as grade and priee 

uncertainty. The tools used to model these processes are respectively 

sequential Gaussian simulation and Geometrie Brownian motion. Three cases of 

increasing size are used to iIIustrate the results of the model and demonstrate its 

suitability to mine scheduling and option valuation. The computational 

efficiencies of solving an MDP formulation by Policy Iteration and Value Iteration 

are compared. The impact of the discount rate on the optimal policy is assessed. 

To determine the value of one or several options, an optimal policy without 

options is generated and valued. Then, the exercise is repeated with the 

relevant options to value (e.g., production rate, eut-off grade and time of mine 

closure). By comparing the values obtained in both cases, the financial benefit of 

having operational flexibility is determined, thus yielding the option value. A full 

size case study is conducted to validate the applicability of MDPs to real mining 

projects. 
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Sommaire 

La présente thèse fait état d'un projet de recherche préliminaire visant 

l'application du Processus de Décision de Markov (PDM) à l'optimisation du 

calendrier d'extraction d'une mine dans un environnement incertain. L'approche 

préconisée est innovatrice relative au problème d'optimalisation des opérations 

minières et au calcul de la valeur d'une option selon la théorie des options. 

L'application du PDM se base sur des modèles permettant de simuler les 

caractéristiques aléatoires de certaines variables environnementales d'un projet 

minier, soit la teneur du minerai et le cours des prix. Les moyens utilisés pour 

simuler ces variables sont respectivement, la simulation séquentielle de Gauss et 

le mouvement géométrique de Brown. Trois cas de taille croissante sont utilisés 

pour illustrer les résultats du modèle et démontrer sa convenance dans 

l'optimisation du calendrier d'extraction d'une mine et le calcul de la valeur d'une 

option. L'efficacité de deux méthodes de résolution d'un PDM, soit l'itération de 

la politique et l'itération sur la valeur, est comparée. On analyse l'impact du taux 

l'actualisation sur la politique optimale. Pour déterminer la valeur d'une ou 

plusieurs options, on obtient la politique optimale de production sans options. 

Ensuite, on répète l'exercice en prenant en compte les options à évaluer (e.g., 

taux de production, teneur de coupure et date de fermeture de la mine.) En 

comparant les valeurs obtenues dans les deux cas, on démontre le bénéfice 

IV 



financier engendré par la flexibilité opérationnelle dans une opération minière, ce 

qui fait ainsi ressortir la valeur de l'option. Une étude est faite sur un cas réel 

afin de valider la mis an application du PDM aux projets miniers. 
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Chapter 1 

Introduction 

Problem Definition and Overview 

Mining projects are characterized by high levels of uncertainty in ore grade 

estimation and by volatile fluctuations in commodity priees. Adjusting production 

parameters when working in such uncertain conditions is not a simple task. The 

aim of this thesis is to study the application of Markov Decision Processes 

(MDPs) to the task of mine production optimisation and Real Option Valuation 

(ROV). Using these tools, the value of having a robust mine design that can 

withstand estimation errors can be measured, thus providing a tool to justify the 

extra costs incurred in creating that robust design. It is believed that with 

simulations and MDPs, parameters such as production rate, eut-off grade and 

mine closure can be optimally adjusted in relation to commodity priee fluctuations 

and uncertainties in reserve grade. 

The development of ROV methods offers great insight on the potential value of 

operational flexibility and the benefits gained from generating robust mine 

designs. Yet, the mining industry is lagging on applying ROV concepts in project 
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valuation practices. Traditional best practices prescribe that in order to maximise 

the value of a project, it is important to delay costs as much as possible and use 

"just in time" planning. However, using this approach is not very flexible and 

does not allow mine operators to react to market changes by increasing 

production when commodity priees are high. Many mines are currently faced 

with this problem. Due to the recent rapid increase in commodity prices, mining 

operations are attempting to increase production to meet market demands. Yet, 

because of the "just in time" approach, there is insufficient accessible ore to 

effectively increase production. Monkhouse (2005) discusses this problem in an 

example of an open pit mine, but the issue of ore accessibility applies to 

underground mines as weil. Mine managers are starting to acknowledge the 

potential value gained by having accessible ore. This allows increased 

production wh en prices are high, thus resulting in selling a larger portion of the 

minerai products at a higher price. Clearly, pre-stripping to expose ore generates 

additional costs. Managers are thus faced with a non-trivial question: do the 

potential benefits gained from having exposed ore outweigh the additional cost? 

MPDs and ROV provide an effective tool to answer this question. 

MDPs are reinforcement learning algorithms and, in essence, reinforcement 

learning works as follows. A virtual probabilistic environment is generated in 
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which the learning agent, i.e. a modeled decision maker, is asked to make 

decisions. At the end of each iteration ("Iife"), the agent evaluates, in hindsight, 

the quality of its decisions. After a large number of iterations, the agent will have 

learned the decisions that will maximise his reward in ail possible situations. The 

set of decisions selected to maximise the reward is called an optimal policy. 

Using the MDP approach, we are accepting the fact that we cannot predict what 

our production parameters will be in the future. Instead, we provide an agent 

with a feasible range of production parameters and let it learn the optimal policy. 

Using this policy, the value of the project can easily be computed, thus providing 

a more representative distribution of project values. Furthermore, the optimal 

policy can serve as a guideline for managers once production has started. 

Incorporating option value du ring the valuation process could be misleading if 

there is insufficient information available for the planners to exploit the additional 

value during production. Therefore, an advantage of using MDPs to value real 

options is that not only does it provide the value of an option, but it also provides 

the policy that yields the maximum benefit from that option. This in turn provides 

the means of effectively exploiting the value of operating flexibility. 
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By incorporating the option to close down an operation, it is also possible to 

evaluate the financial risk associated with premature mine c\osure. This 

information is very valuable for long-term mine planning and leads to a 

substantial increase in project value. 

ln their book, Sutton and Barto demonstrate that an MDP is an implementation of 

Reinforcement Learning. 

We consider ail of the work in optimal control also to be, in a sense, work 

in reinforcement learning. We define reinforcement learning as any 

effective way of solving reinforcement learning problems, and it is now 

c\ear that these problems are closely related to optimal control problems, 

particularly those formulated as MDPs. Accordingly, we must consider 

the solution methods of optimal control such as dynamic programming, 

also to be reinforcement learning methods. Of course, almost ail of 

these methods require complete knowledge of the system to be 

controlled, and for this reason it feels a little unnatural to say that they 

are part of reinforcement /earning. On the other hand, many dynamic 

programming methods are incremental and iterative. Like learning 

methods, they gradually reach the correct answer through successive 

approximation. 

- Sutton and Barto (1998) 
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Thesis Organisation 

ln Chapter 2, previous attempts to incorporate the value of managerial flexibility 

in mine project valuation are reviewed. Furthermore, we survey cases of 

successful implementation of MPDs to optimisation problems. In Chapter 3 we 

iIIustrate the benefits of including managerial flexibility in project valuation and 

describe the real option approach. In Chapter 4, the Markov Decision Process is 

explained and the different algorithms available to solve MDPs are presented. 

Particularities associated with implementing MDPs in mining projects are 

mentioned as weil. In Chapter 5, case studies are conducted on projects of 

different sizes. A small case study is used to explain how to read a policy and 

demonstrate the impact of discounting on the optimal policy. A medium case 

study is used to compare the computational requirements of different solving 

algorithms, and a large-scale study is conducted to measure the applicability of 

the MDP approach to real size mine scheduling optimisation. In Chapter 6, 

limitations are discussed, rècommendations are offered and conclusions are 

drawn. 
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Chapter 2 

Literature Review 

Real Options 

Interest in real options stems from the Nobel Prize winning work of Black and 

Scholes (1973), in which they demonstrated an analytical solution to valuing 

stock options and corporate liabilities. Brennan and Schwartz (1985) were the 

first to apply a real-options approach to mining investments. Using complex 

partial differential equations, the authors find the value of a project in which the 

option of a temporary shut-down of mine production is included. The decision to 

shut down with later reopening of the mine is based on market conditions 

associated with the commodity produced. Unfortunately, in order to maintain 

tractability, a few very limiting assumptions must be made. To a financial expert, 

these assumptions may seem reasonable. However, it is clear to any mining 

practitioner that these assumptions greatly affect the validity of the modal. 

The most detrimental assumption made by the authors relates to the ore 

reserves. It is assumed that reserves are homogenous and quantities are 

exactly known. As reserve block models are generated based on incomplete 

6 



information, it follows that the uncertainty of the reserve estimate is quite high. In 

reality, the uncertainty associated with the reserves has an equal, if not greater, 

impact on the variability of the project's value than the volatility in commodity 

prices. The relevance of modeling fluctuations in commodity prices is 

questionable when larger sources of uncertainty such as grade variability are 

ignored. 

Furthermore, the options that are valued are difficult to apply in the mining 

industry because there are substantial overhead costs related to closing and 

reopening a mine. Also, environmental regulations make it very complicated for 

mining companies to stop and then resume operations due to reclamation 

requirements. Therefore, the pertinence of valuing such options is questionable. 

Armstrong and Galli (1997) discuss the issues of temporary mine closure and the 

complications of reopening. 

Although the techniques presented in this paper have important limitations, 

Brennan and Schwartz were the first to recognize the potential of option valuation 

in mining and their work lead the way to many other significant contributions in 

mine valuation. 
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Cortazar et al. (2000) attempt to resolve sorne of the shortcomings of the original 

work presented by Brennan Schwartz (1985) by incorporating the "volatility" of 

ore reserves in their valuation model. However, the reserve uncertainty is not 

modeled according to drill hole data and is not conditioned on the orebody 

variability. The authors arbitrarily select a Brownian motion to model the 

uncertainty, independently of measured geological uncertainty provided by drill 

hole data. Although their approach is a step forward, the fact that the geological 

particularities of the orebody are ignored leads to questionable results. 

Samis (2000) examines options that are more pertinent to a mining framework 

than that of previous authors. As such, Samis proposes to value the option to 

close or expand sections of a mine rather than the option of closing/reopening 

the complete operation. 

Samis (2000) improves on previous work by acknowledging the heterogeneous 

nature of the mining environment, thereby treating the reserves as zones of high 

grade and low grade. Also, an attempt to include geological uncertainty is made. 

Further reading in Samis (2000) provides more details concerning the modeling 

of geological uncertainty. The geological model used to consider the quality of 

the mineralization is a discrete probability distribution based on a geologist's 
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intuition. Although this is an improvement on previous work, it will be shown in 

later sections of this report that more appropriate geostatistical methods are 

available to represent the variability of the reserves (Farrelly, 2002). 

ln his Ph.D. thesis, Samis (2000) states that geological risk is unsystematic, and 

therefore, is diversifiable. Yet he includes geological risk in his model. This 

presents sorne theoretical inconsistencies with other works. Monkhouse and 

Yeates (2005) state: "... (diversifiable) risks are unpriced (investors are 

indifferent about bearing them, e.g. geological uncertainty)." Monkhouse and 

Yeats (2005) conclude that geological uncertainty does not affect the mine plan. 

However, in his case study, Samis (2000) states: 

"Geological uncertainty is treated as a diversifiable (unsystematic) risk since it 

is uncorrelated with market uncertainty. Its impact on value is determined by 

calculating the value expectation with respect to the joint grade probability 

distribution ... " 

Therefore, Samis does accept the fact that geological risk is unsystematic, yet 

contrary to Monkhouse and Yeats (2005) he includes geological risk in his mode!. 
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1 believe that geological risk is not entirely diversifiable and that it must be taken 

into consideration when valuing a mining venture. 

Monkhouse and Yeates (2005) rightfully criticise current best practices in the 

mining industry and demonstrate the value of generating robust mine designs as 

opposed to deterministically optimised designs. They mention that current best 

practices advance revenues forward in time and delay costs as much as possible 

to maximise the Net Present Value (NPV) of the project, thus creating a very rigid 

design that does not behave weil under conditions of uncertainty. In their 

Orebody Uncertainty section, the authors mention that taking into consideration 

orebody uncertainty in the mine design increases the NPV of the project. This is 

confirmed by Dimitrakopoulos, Farrelly and Godoy (2002), Godoy and 

Dimitrakopoulos (2004), and Ramazan and Dimitrakopoulos (2005). However, in 

their conclusion, Monkhouse and Yeates state: " ... counter-intuitively, it was 

argued that the risk of geological uncertainty did not affect the mine plan ... ", and 

therefore, they did not include orebody uncertainty in their model. 

This author believes that taking grade uncertainty into consideration is crucial to 

a successful robust mine design and thus, must be addressed in the design 

optimisation process for the following reasons: 
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• Monkhouse and Yeates (2005) introduce the financial concept of 

diversifiable and non-diversifiable risk in order to justify the disregard of 

geological risk. The distinction between diversifiable and non-diversifiable 

risk can be found in any introductory text to Corporate Finance (e.g. Ross 

et al., 1999). Diversifiable risk can be ignored during the valuation 

process if there are sufficient non-correlated assets to form a weil 

diversified portfolio. However, it is unlikely that a mining company could 

create a diversified portfolio by combining various operating mines. 

Furthermore, it is wrong to assume that a weil diversified portfolio of 

orebodies can be created using single deterministic kriging estimates, 

because it is impossible to measure the correlation between each 

orebody. Furthermore, If the correlation between orebody block models 

could be measured, sorne correlation would most likely be noticeable due 

to the fact that the same estimation method (kriging) is used, thus 

generating a systematic bias over ail the orebodies. 

• Kriging estimates are unbiased over the entire minerai deposit. Therefore, 

it is reasonable to assume that the estimation errors for ail blocks cancel 

each other out as stated by Monkhouse and Yeates (2005). However, an 
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orebody is selectively mined, i.e. the low grade blocks are left behind as 

waste, thus yielding a bias in the estimated average grade of the mined 

blocks. This bias is caused by the smoothing effect of kriging and the fact 

that only the low grade blocks are left behind. Furthermore, kriging does 

not yield a "truly central estimate" for cash revenue. The transformation 

from ore grade to cash revenue is non-linear, thus causing the average of 

the distribution of estimated values to differ from the theoretical mean 

value (Dimitrakopoulos et al., 2002). This systematic error amongst ail of 

the estimates renders the risk non-diversifiable. 

• Furthermore, Monkhouse and Yeates (2005) state: " ... (diversifiable) risks 

are unpriced (investors are indifferent about bearing them, e.g. geological 

uncertainty)." This statement is debatable because exploration/mining 

companies invest substantial amounts of money in exploration and drilling 

in order to reduce geological uncertainties. At the extreme, it would be 

ludicrous to assume that a mining company would start mining a minerai 

deposit at a random location without investing in exploration to first 

delineate the deposit. Goria (2004) and Bilodeau and Mackenzie (1989) 

discuss the value of further delineation. 
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• It can be argued that a mining company would reduce systematic ore 

grade risk by creating a diversified portfolio of assets outside of the mining 

industry, thus changing the systematic risk of ore estimation into non

systematic risk. However, this is not common practice within the industry 

and it is hard to envision mining companies investing in pork belies to 

reduce the risk inherent in ore reserve estimation. Furthermore, even if a 

company opted to have a diversified set of assets outside of mining 

investments, the risk could not be completely diversified when the concept 

of changing eut-off grades is included in the design/optimisation process. 

Varying the eut-off grade will result in reserve recalculation. Therefore, 

through the interim of eut-off grade variations, the error in reserve 

estimation will follow the market, rendering one component of geological 

risk systematic. 

It is now apparent that geological risk is systematic and should be incorporated in 

the optimisation process and in the calculation of the discount rate used to 

compute the NPV. Although there are some limitations to the techniques 

presented by Monkhouse and Yeates (2005), it is encouraging to see that some 

of the industry leaders are acknowledging the potential benefits of designing 

robust mine plans rather than using conventional optimisation techniques. 
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Goria (2004) presents the first real option valuation approach that uses 

conditional simulations to model geological risk. Although the main interest of 

Goria's work is the development of block model simulations using a bayesian 

approach to conditional simulations, an interesting contribution is to have 

introduced methods to value the option of conducting extra delineation prior to 

the start of site development. 

One drawback to the methodology presented by Goria (2004) is that out of a total 

of 100 simulated block models, only three are selected for the valuation, Le., the 

P90, P50 and P10, based on the distribution of average grades. It has been 

shown by Dimitrakopoulos et al. (2002) that a central grade estimate will not yield 

a central cash estimate, as the transformation from grade to cash is non-linear. 

Therefore, the block models selected will not necessarily generate the P90, P50 

and P10 of the NPV distribution curve. Therefore, a distribution based only three 

values is only margina"y better than a single point estimate, as it is impossible to 

determine where the three points are located within the distribution. 
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Markov Decision Processes 

History 

Sutton and Barto (1998) offer an overview of the history of Reinforcement 

Learning in their book entitled "Reinforcement Learning: An Introduction." 

Puterman (1994) also provides sorne historical background in his book "Markov 

Decision Processes, Discrete Stochastic Dynamic Programming." Much of the 

information presented in this section is based on these two publications. 

Reinforcement learning as we know it today was born when its three major 

components came together in the late 1980s. These three components consist 

of: optimal control using dynamic programming; learning by trial and error; and 

temporal-difference methods. A brief overview of these threads is presented 

below with the exception of temporal-difference methods, as it is not relevant to 

the issues addressed in this thesis. 

The Second World War delayed and complicated many of the publications of the 

1940s, a time during which much work was being done on stochastic sequential 

decision-making. Twisted timelines make it difficult to truly assign credit to whom 

it is due. Sutton and Barto (1998) mention that much of the groundwork for 
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"optimal control" was done by Bellman (1954). However, Lucien Le Cam (1990) 

mentions the ,following: 

"Massé had developed a lot of the mathematics about programming for 

the future. What had become known in the country (the United States) as 

dynamic programming invented by Richard Bellman, was very much alive 

in Massé's works, long before Bellman had a go at it." 

An accu rate timeline would be difficult to construct, as mentioned by Heyman 

and Sobel (1984): 

"The modern foundations were laid between 1949 and 1953 by the people 

who spent at least part of the period as staff members at the Rand 

Corporation in Santa Monica, California. Dates of actual publication are 

not reliable guides to the order in which ideas were discovered during this 

period." 

As this is not an exercise in "optimal control" chronology, an accu rate timeline is 

irrelevant. Rather, a list of major early contributors to the field, as presented by 

Puterman (1994), is as follows: 
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" ... Arrow, Bellman, Blackwell, Dvoretsky, Girschik, Isaacs, Karlin, Kiefer, 

LaSalle, Robbins, Shapley and Wolfwitz. Their work on games (Bellman 

and Blackwell, 1949; Bellman and LaSalle, 1949; Shapley, 1953), 

stochastic inventory models (Arrow, Harris, and Marschak, 1951; 

Dvoretsky, Kiefer and Wolfowtiz, 1952), pursuit problems (lsaacs, 1955, 

1965) and sequential statistical problems (Arrow, Blackwell, and Girshick, 

1949; Robbins, 1952; Kiefer, 1953) laid the groundwork for subsequent 

developments. " 

Trial and error learning was first developed in the field of psychology. Thorndike 

(1911) was the first to express that an action followed by a good outcome will 

tend to be reselected in the future. Thorndike ca lied this the "Iaw of effect". The 

essence of trial and error learning, in which there is an element of search and an 

element of memory, is thus captured. 

Minsky (1954) was the first to discuss the computational models of reinforcement 

learning. By the 1960s, the term reinforcement learning was widely used in 

engineering literature. In the mid-50s, Farely and Clark's interests shifted to 

supervised learning. However, the transition was not clear, and many still 

considered their more recent work to be reinforcement learning. In the 60s and 
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70s, actual reinforcement learning work became rare and supervised learning 

was more prominent, although the distinction between the two was not very 

clear. A system ca lied STellA was developed in New Zealand by Andrea 

(1963). In his work, the use of trial and error learning was always maintained. A 

simple trial and error system ca lied MENACE was developed by Michie (1963) 

for learning to play tic-tac-toe. With Chambers, Michie (1968) would go on to 

develop GlEE and BOXES. BOXES was applied to the famous pole-balancing 

problem. The pole-balancing problem was taken from Widrow and Smith's 

(1964) earlier work. This is one of the first reinforcement learning problems with 

incomplete information. Further work has been done in reinforcement learning 

with incomplete knowledge. However, the remainder of the development of trial 

and error learning is beyond the scope of this work as the Markov decision 

process (MDP) method implemented in this study is based on a complete model 

of the environment. 

Successful applications of Markov decision processes 

"Branching out from operations research roots in the 1950s, MDP models have 

gained recognition in such diverse fields as ecology, economics and 

communications engineering." (Puterman, 1994). In 1994, MDPs where already 

successfully used in a variety of fields. In his book, Puterman (1994) presents a 
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few examples of the application of MDPs: inventory management, bus engine 

replacement, highway pavement maintenance, communication models and mate 

desertion in Cooper's hawks. Sutton and Barto (1998) present applications for 

elevator dispatching, dynamic channel allocation and job shop scheduling. Also, 

a series of more recent applications which appeared in various technical papers 

are described below. 

Inventory Management (Puterman, 1994) 

MDPs have been successfully applied to inventory management problems in 

which an optimal reordering policy is required to maintain customer satisfaction 

while minimizing ordering and storage costs. The uncertainty in this model is 

inherent in the stochastic purchasing behaviour of the consumer. Puterman 

describes an inventory management problem using local Canadian Tire 

dealerships. A total of 21 dealerships are supplied by a main warehouse. There 

are fixed costs associated with placing an order and variable costs associated 

with storing merchandise at the dealerships. Management requires that at least 

97.5 % of the demand be satisfied from the supply on hand. Assuming that 

inventory is measured once a week, we can now describe the problem as an 

MDP. The current state is determined by the inventory lever at the time it is 

measured. The actions correspond to the ordering of new parts following the 
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inventory review. The transition probabilities are dependent on the number of 

parts ordered and the random consumer demand. 

Bus Engine Replacement (Puterman, 1994) 

A mechanic performing maintenance inspections on busses must decide whether 

their engines need to be replaced. The replacement cost of the engine is a large 

fixed cost that consists of the purchase price of the new engine and the labour 

associated with its installation. The probabilistic component is the possibility of 

engine failure, in which case significant costs would be incurred for towing, 

repairs and loss of goodwill. Changing the engine to soon results in unnecessary 

costs while engine failure is detrimental to the transporter's reputation. An 

optimal policy is required to minimise the long-run cost of maintaining a bus fleet. 

The current state is represented by bus mileage at the time of inspection, and 

inspections are conducted on a monthly basis. The optimal policy would indicate 

the mileage at which an engine needs to be replaced. A multitude of algorithms 

are suitable to solve the bus engine replacement problem. 

Highway Pavement Maintenance (Puterman, 1994) 

The Arizona Department of Transportation (ADOT), in collaboration with 

Woodward-Clyde Consultants from San Francisco, developed an MDP model for 
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its pavement management system to allocate limited funds to ensure that the 

quality of Arizona roadways was preserved. An estimated $101 million was 

saved by using the system, while no decline in road quality was observed. The 

Arizona roadway system was divided into 7400 one-mile sections, each having 

120 possible states based on roughness, cracking, the change in cracking 

conditions from the previous year, the time since the last maintenance and the 

nature of the maintenance operation. Extensive data was required for this model 

to accurately characterize the state of the roads, and statistical regressions were 

used to determine the transition probabilities. A total of 17 different maintenance 

actions were available, ranging in price from $0 to $6.30 per square yard. The 

model is a constrained average reward MDP and can be solved using different 

unichain algorithms as presented in Puterman (1994). 

Elevator Dispatching (Sutton and Barto, 1998) 

The elevator problem presented by Sutton and Barto addresses a ten floor 

building serviced by 4 elevators. The objective is to find a policy to reduce the 

average squared waiting time of passengers. A particularity of this problem is 

the number of possible states estimated at 1022. A problem with such a large 

number of states is intractable using standard dynamic programming techniques. 

The model was tested on a detailed elevator simulator, where the arrivai of 
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passengers is a discrete stochastic event. The authors applied a modified one

step Q-Iearning algorithm to solve the modal. 

MDP Model for Capacity Expansion and Allocation (Bhatnagar et al, 1999) 

The authors present a model to provide decision support for operational 

decisions concerning additional capacity and production type conversion. A 

finite-horizon model is used. The state is represented by the current production 

capacity and the type of units being produced. The actions available relate to 

increasing production or changing the type of units being produced. The 

stochastic components of the model are the operating costs and the probability of 

successful production increase. Dynamic programming software called 

SYSCODE is used to solve the modal. 

MDP Model for Airline Meal Catering (Goto, 2000) 

At first glance, the problem of meal catering seems relatively trivial: simply 

prepare the amount of meals for the number of passengers on the flight. 

However, the meals must be prepared weil before the final boarding. Therefore, 

the ultimate seating on the plane in unknown at the time the meals are prepared. 

As boarding time approaches, the caterer has more information concerning the 

final boarding and adjustments can be made to the order. In the case presented 
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by the author, the caterer has five opportunities ta modify the size of the arder. 

The caterer incurs lasses wh en food is over supplied, and losses in goodwill are 

incurred when passengers do not receive their meals. A policy is required to 

establish modifications to the order size as departure time approaches. The 

author reports that the application of the optimal policy resulted in a 17% 

reduction in average catering cost per flight and a 33% reduction in short-catered 

flights. 

Using MDPs to Solve a Portfolio Allocation Problem (Bookstaber, 2005) 

Portfolio allocation is a problem that can be formulated easily using an MDP. As 

the movement of stock prices is weil documented, transition probabilities can be 

computed. In the author's example, a fixed amount of funds is allocated to the 

portfolio. Therefore, the objective is to determine the weights of the portfolio 

assets in a way to maximise expected return. For small state-space problems, 

the author used Value Iteration to find the optimal policy. For larger state-space 

problems, off-policy Q-Iearning and Sarsa (ft) where used as approximation 

methods. 

This overview on the application of MDPs is in no way exhaustive. MDPs can be 

applied to a very wide range of problems. Many less relevant models have 
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intentionally been left out. The examples discussed above are sufficient to 

hypothesise that, based on past successful applications of MDPs and their 

similarities to mine scheduling problems, they can be applied successfully to real 

option valuation and mine schedule optimisation. 
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Chapter 3 

Managerial Flexibility and Real Option Value 

Deterministic Valuation versus Option Valuation 

An increasing body of work documents the shortcomings of standard 

deterministic Net Present Value (NPV) analysis as a tool for valuing investment 

projects. The main critique against this approach is its inability to incorporate 

managerial f1exibility in the valuation process, which ultimately undervalues the 

project. Therefore, an alternative method is desirable. In his book "Real 

Options", Trigeorgis (1996) states: 

"A cali option is an option [ ... ] that gives the right, with no obligation, to 

acquire the underlying asset by paying a pre-specified priee on or before a 

given maturity. Similarly, a put option gives the right to sell the underlying 

asset and receive the exercise priee. The asymmetry deriving from having 

the right but not the obligation to exercise the option lies at the heart of the 

option's value." 

From the definition above it can be argued that real assets are similar to options. 

Investing in a project provides the right to produce a certain product but with no 

obligation to do so. By considering projects as portfolios of real options, we are 
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incorporating the value of managerial flexibility, thereby attempting to minimise 

the downside risk and maximise the upside potential of a project. Mayers (1984) 

demonstrates the similarities between financial assets and real assets, and 

argues that if the traditional NPV approach fails for financial options, it should not 

be applied to real options, Le. those associated with real assets. Therefore, if we 

accept that projects can be considered as a portfolio of real options, option 

valuation techniques should be used to determine their value. In this chapter, we 

will demonstrate that managerial flexibility does in fact increase project value, 

using an example from Dixit and Pindick (1994). Once it is demonstrated that 

options add value to projects, we look at some of the options available in mining 

projects. Then, the real option valuation approach is introduced, followed by the 

methods available to solve the valuation problem. 

Value in Options 

Dixit and Pindyck (1994) present a simple example demonstrating how 

managerial flexibility adds value to a project. In their example, which has been 

modified for clarity, the option to postpone a risky investment is evaluated. 

Management is faced with an investment decision in which the revenue (that is a 

function of priee) is uncertain. 
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They assume an irreversible capital investment of $1600, with no operating 

costs. In the first year, the revenue is $200. In the following years, the revenue 

will either be $100 or $300 with probabilities of 0.5 each, and will remain constant 

thereafter. A graphical representation of the possible project cash flows is shown 

in Figure 1. 

t=O t=1 

-1600 --..... 200$ < 
Figure 1: Possible Project Cash Flows 

t=2 t= ... 

300 ---+~ 300 

100 ~ 100 

Management has the option to invest today or to wait until the uncertainty in 

revenue is resolved in one year's time and only invest if conditions are 

favourable. The objective of this exercise is to determine wh ether the option to 

postpone the investment actually has value. 

If management decides to invest today, the investment is do ne under uncertainty 

and the expected revenue is the weighted-average of the two possible scenarios, 

i.e. $200. However, if management decides to delay the investment, the 
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investment would only be made at the beginning of the second year if the 

revenue is favourable. The expected NPVs today of the two scenarios described 

above using a discount rate of 10% are: 

1 nvest today 

NPV = -1600 + f 200 t = -1600 + 2000 = $400 
/=1 (1.1) 

Delay investment 

NPV = (0.5) [-1600 + f 300 ] = 700 = $636 
1.1 t=2 (1.1) t 1.1 

(3.1) 

(3.2) 

A comparison of (3.1) and (3.2) shows that the option to delay the investment 

has a value of $636 minus $400, Le. $236. In this example, the issue of 

discounting and risk adjustment is ignored but will be treated later in the chapter. 

Figure 2 is a graphical representation of option value relative to commodity price 

uncertainty. The straight diagonalline represents the value of a hypothetical 

project without the option to delay the investment. The break-even commodity 

price is located where the project value line crosses the x-axis. The curved line, 
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above the project value line, represents the option value. The difference 

between the two lines is therefore the option premium. The option premium is at 

a maximum when the project NPV is equal to 0 (referred to as at the moneJ!). 

Option 

Option ]IUO 

/~-- NPV 

Commodity Priee 

Figure 2: Option Value 

As the price of the commodity increases and the project becomes more and 

more lucrative, the option to delay project start-up loses value because starting 

the project earlier generates earlier revenues. At the other end of the spectrum, 

when the value of the project is very negative (out of the moneJ!), the option of 

keeping the project has liUle value because the probability of it becoming 

lucrative is very low. 
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ln the example above, we have seen that the option to delay the start of 

production increased the value of the project. This example is a very simplified 

case in which only one decision must be made. In reality, there are many 

options that can increase project value. Trigeorgis (1996) lists a series of 

common real options and Armstrong and Gali (1997) provide a list of options 

specific to mining projects. These are shown in Table 1. 

Table 1: Common Project Options 

Trigoergis (1996) 

Option to defer investment 

Option to default during construction 

Option to expand 

Option to contract 

Option to stop/start 

Option to abandon 

Option to switch use 

Corporate growth options 

Real Options in Mining 

Armstrong and Gali (1997) 

Option to expand reserves 

Production rate options 

Cut-off grades options 

Contrary to Brennan and Schwartz's (1985) assumption, it is not generally 

accepted that a mining operation has the option to stop and start production 

based on price conditions. Due to labour relations and environmental regulation 
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requirements, there are substantial overhead costs related to mothballing a 

mining operation. The options that are generally available in mining projects are: 

the option to delay the start of production, exploration and delineation options, 

mining sequence options, resource allocation options, capacity utilization options, 

eut-off grade options, stockpiling options, pit expansion options and permanent 

closure options. A description of these options is provided below. 

• During periods of low commodity priees, marginal exploration projects are 

often temporarily shelved to be reconsidered when priees improve. The 

feasibility of these projects can be re-evaluated at that time. 

• Goria (2004) and Bilodeau and Mackenzie (1979) demonstrate the value 

gained from performing delineation. Delineation drilling is costly but will 

lead to more informed investment decisions and better mine design 

resulting in a more efficient operation. Also, exploration drilling can lead to 

the discovery of new mineralized zones and increased project value. 

• It is nearly impossible to establish a detailed mining sequence on a long

term basis. Modifications to the mining sequence are made on a weekly 
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and sometimes daily bases. Adjustments are required to optimise mill 

recovery through effective blending and feed control. 

• Mining operation flexibility is limited by the resources available on site. 

Managers must allocate these resources effectively. Trucking capacity 

must be matched to shovel capacities. Shovels must be assigned to 

production or development areas of the pit to ensure there is sufficient 

exposed ore to meet mill requirements. 

• When commodity priees are high, mining operations increase production 

to achieve higher profits. Higher production rates during periods of high 

priees will result in the sale of more minerai prbducts at a higher priee, 

thus increasing the overall value of the project. 

• Mine operators often adjust the eut-off grade according to commodity priee 

fluctuations. When priees decrease, the mine operator increases the cut

off grade. This practice is commonly known as high-grading. High

grading insures that the revenue generated from mining will remain above 

further processing costs. 
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• Stoekpiles are often used for blending purposes and for eut-off grade 

optimisation. When eommodity priees deerease, the low grade material is 

stoekpiled and saved. When eommodity priees inerease, the low grade 

stoekpiles ean be blended into the mill feed. Stockpiling therefore permits 

the processing of a higher proportion of the minerai deposit, thus 

extending the life of the mine. 

• In the event that ore reserves were initially underestimated and substantial 

mineralization would be left behind given the original mine design, the size 

of the ultimate pit ean be re-evaluated during the life of the mine, thereby 

increasing its life. 

• When it is no longer beneficial to continue production, the mine can be 

permanently closed. Early mine elosure could be exercised in the event of 

unantieipated lower ore reserves or if commodity priees decrease 

drastieally over an extended period of time. 

Option Prieing Theory 

ln order to evaluate an option, a risk free portfolio that replieates the payoff of the 

option must be created. This portfolio is constructed by purchasing N shares of 
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the underlying asset at a priee S, and by borrowing an amount B at the risk-free 

rate. The following example taken from Trigeorgis (1996) demonstrates a simple 

example of option valuation. 

Assume an option to purehase an asset with a eurrent (time t) market priee S of 

$100. In one time period from now (time t+1), the priee may inerease to $180 

(S+) with a probability of q, or deerease to $60 (S-) with a probability of (1-q) as 

depieted below. 

S+=180 

S=100 

S-=60 

Assume that the exereise priee E of the option is $112. The value C of the option 

at time t+1 eould either be $68 (C+) or $0 (C-), as shown below. 

C+= max(S+ - E, 0) = 68 

C-= max(S- - E, 0) = 0 
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An effective replicating portfolio should have the same value as the option, 

whether the price of the stock goes up or down. The value of the option can be 

expressed as C ::::: N.S - (1+r) B, in which r is the risk-free rate. Therefore, the 

value of the portfolio is: 

N.S+ - (1 +r) B 

N.S- B 

N.S- - (1 +r) B 

The value of the portfolio must be identical to the option value for each state. 

(3.3) 

and 

N. S-- (1+r) B= C- (3.4) 

Using the two equations above as weil as a risk-free rate of 8%, it is possible to 

find the values of N and B. 
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and 

N= C+ -C- = 68-0 =0.56 
s+ -s- 180-60 

(3.5) 

S - C + - S + C - N • S - - C - 0.56 x 60 - 0 
B=(S+-S-)(l+r)= l+r = 1.08 =$31 (3.6) 

ln order to compute the value of the option, the risk neutral transition probabilities 

are required. These can be obtained with the following equation: 

_ (1 + r) S - S - = 1.08 (100 ) - 60 = 0.4 
p - S + - S - 180 - 60 

(3.7) 

Therefore, the value of the option is: 

C = p.C+ +(I-p)C- = 0.4(68)+0.6(0) = $25 
1 + r 1.08 

(3.8) 

There are numerous ways of determining the value of real options. The simplest 

is to use the closed analytical solution to a set of differential equations as 

presented by Black and Scholes (1973). However, this method does not lend 

itself weil to real options. An alternative is the finite difference method. This 
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method is the discrete analog of the derivative and can be solved implicitly or 

explicitly. For more details on finite differences, refer to Duffy (2006). Options 

can also be valued using binomial trees as presented by Trigeorgis (1991). In 

recent years, Monte-Carlo simulations and the least-squares method has been 

gaining popularity. This method is presented by Longstaff and Schwartz (2001). 

They consider the trade-off between the immediate value of exercising the option 

and the expected value of continuation. The expected value of continuation is 

determined by regression on a constant, X and X2, in which X is the current 

simulated market value of the underlying asset. 

ln this dissertation, a novel method of optimisation in open pit mine scheduling is 

presented that permits a real option approach to mine valuation. The 

optimisation method implemented is ca lied a Markov Decision Process. 

Note on discounting 

The risk-neutral transition probabilities are an important component in option 

valuation. Samis et al. (2006) present a series of examples demonstrating the 

importance of risk adjustment at the source and how future priees can be used to 

calculate the risk neutral transition probabilities. 
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When options are included in project valuation, risk is greatly reduced and in 

some cases completely eliminated. In these cases, it is reasonable to use a risk

free discount rate. However, in the case of real options in the mining industry, 

the risk inherent in the project is often not completely eliminated by the inclusion 

of options and risk adjustment of priees at the source. Therefore, project 

valuation may still require a risk component in the discount rate. As this work is 

not an exercise in capital budgeting, the issues related to the use of an 

appropriate discount rate are not addressed. However, it is important to note that 

an MDP can easily be adapted for risk adjustment at the source or for a risk

adjusted discount rate. 

ln Error! Reference source not found., Laughton (2003) provides a graphical 

representation of the different valuation methods available, ranked according to 

the level of uncertainty/flexibility available in the model and the method used to 

account for risk. From top to boUom, there is an increase in modeling of 

uncertainty and accountability for risk. On the left, risk is accounted for by using 

a risk adjusted discount rate while on the right, risk adjustment is applied at the 

source. Depending on the risk adjustment method used, an MDP can be located 

on either side of the top area of Laughton's chart. 
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Figure 3: Valuing in the Natural Resource Industry 
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Chapter 4 

Markov Decision Process Framework 

General Framework 

When making sequential decisions, it is important to consider both the short-term 

and long-term rewards. An action that seems bad in the current state may 

generate many positive rewards in the future. A simple example is the decision 

to invest in a project. In the short term, this seems Iike a bad idea because the 

instantaneous reward is negative. However, because the project will generate 

benefits in the future, the ove rail reward associated with the investment decision 

could be positive. Markov Decision Processes (MDPs) offer a tool to assist in 

sequential decision-ma king under uncertainty (Puterman, 1994). The MDP 

framework can effectively manage the instantaneous and future rewards in a way 

that will maximise the overall reward. 

An MDP is a reinforcement learning type algorithm in which, through iterations, 

the performance of an agent is improved until it plateaus (Kaelbling et aL, 1996). 

An MDP is a representation of an agent interacting in a stochastic environment, 

described as a five-tuple (8, A, T, R, r), in which 8 is the state space, A is the 
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action set, T is the state-transition probability distribution set, R is the 

instantaneous reward set and r is the discount rate. 

The state space S is a set of ail the possible configurations of the environment in 

which the agent interacts. Therefore, s is simply the representation of the 

environment at time t. The action set is a list of ail the actions available to the 

agent. Actions permit the agent to modify its current state s in order to attain a 

new state s' at time t+1. When an action is performed, the agent receives an 

instantaneous reward r. The reward set can take the form R(s,a) or R(s,a,s'). In 

the first case, the reward is solely dependent on the action taken in the current 

state S(t). In the second case, the reward is also dependent on the new state 

S'(t+1) reached as a result of performing the action. 

Each action has its own state-transition function that can be expressed in the 

form of a transition probability matrix. The state-transition function is defined as 

follows, for ail i, j E S, and k E A: 

P~ = Prest = j 1 st-! = i,at = k) (4.1) 
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A policy 1t is a mapping trom states to actions. Thus, it determines which actions 

should be taken in each state. 

An infinite-horizon MDP is used in this study because as stated by Bellman 

(1957), it is established that for the infinite-horizon case, an optimal deterministic 

stationary policy exists. The optimal policy is denoted as 1t*. 

Several techniques are available to solve an MDP. In this work, we discuss three 

methods: Policy Iteration, Value Iteration and linear programming. 

Policy iteration 

Kealbling, Littman and Moore (1996) present a concise overview of infinite 

horizon policy iteration. They explain how the optimal value of astate is the 

expected infinite discounted sum of rewards that the agent will gain if it starts in 

that state and executes the optimal policy 

00 

V*(s) = maxE(Lytl() 
tr t=O 

(4.2) 
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This optimal value function is unique and can be defined as the solution to the 

simultaneous equations: 

V* (s) = maX(R(S,a) + r LT(s,a,s')V * (S')], Vs ES 
a s'eS 

(4.3) 

The above equation demonstrates that the value of astate s is the instantaneous 

reward plus the discounted value of the next state multiplied by the probability of 

reaching that state, using the best available action. Given the optimal value 

function, we can specify the optimal policy as: 

;r*(s) = argmaX(R(S, a) + r LT(s, a,s')V* (SI)] 
a s'eS 

(4.4) 

The policy iteration algorithm modifies the policy directly. The agent starts with a 

random policy. The value of each state is computed following the current policy 

as described above in equation (4.3) .. When the value of each state is 

determined, the agent makes modifications to the policy in order to improve the 

value of each state as prescribed in equation (4.4). The agent attempts to 

improve the value of the policy by ma king modifications to the first actions. In 

this fashion, strictly improvements will be brought to the policy. When 
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improvements can no longer be made to the value of the state space, the optimal 

policy has been found and the algorithm stops. The algorithm is presented below. 

Choose an arbitrary policy n' 

Loop 

n := n' 

Compute the value function of policy n; 

Solve the linear equations: 

V,..(s) =m~{R(S, Jr(S)) + r LT(s,Jr(s),s')V,.. *(S')) 
s'eS 

Improve the policy at each state: 

1Z"'(s) = argmax(R(S, a) + r :LT(s,a,s')VJT *(S'») 
a S'ES 

Untiln = n' 

Kealbling, Littman and Moore (1996) present a concise note on the complexity of 

policy iteration: 

Note: Since there are at most IAIIsl distinct policies, and the sequence of 

policies improves at each step, this algorithm terminates in at most an 

exponential number of iterations (Puterman, 1994). However, it is an 

important open question as to how many iterations policy iteration takes in 

the worst case. It is known that the running time is pseudo-polynomial and 

that for a fixed discount factor, there is a polynomial bound in the total size 

of the MDP (Littman et al., 1995) 
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Value iteration 

Value iteration is quite similar to policy iteration. The main difference between 

the two methods is in the way in which the policy evaluation is performed. policy 

evaluation is done iteratively and may require many iterations before converging 

to an exact value for VTT. As stated by Sutton and Barto (1998), value iteration 

truncates the policy evaluation iterations down to a single sweep of the state 

space, without losing the convergence guaranties of policy iteration. The value 

of each state can be expressed as follows: 

(4.5) 

~x L: p:s, [n:SI + l' Vk( S')] (4.6) 
i/ 

Value iteration will take less time than policy iteration to perform an iteration, but 

will require more iterations in order to converge on the optimal policy. The 

difference in computation time between the two methods will depend on the 

nature of the MDP being solved. An evaluation of the performance of the two 

algorithms in solving mining problems is presented in Chapter 5. 
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Linear programming 

An infinite-horizon MDP can be formulated as a linear program (D'Epenoux, 

1963). The primai linear program involves maximizing the value of the state 

space. This is achieved by maximizing the sum of the values of ail the states, 

(4.7) 

subject to the following constraints: 

(4.8) 

in which 

Vi = state value r/ = instantaneous reward 

p; = transition probabilities r = discount rate 

The dual of the above linear program can also be considered for minimisation: 

L LX;C; (4.9) 
iES kEA 
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subject to the following constraint: 

LxJ =l+rL LP;x; (4.10) 
keA ie8 keA 

in which 

xJ = policy flow p; = transition probabilities 

Ci
k = instantaneous cost / reward r = discount rate 

The MDP Applied to Mining 

This study focuses on the problem related to the optimisation of the mine 

extraction rate and eut-off grade of an open pit mine with respect to fluctuations 

in commodity priees, uncertainty in grades, and depleting ore reserves. During 

periods when commodity priees are high, it is advantageous to increase 

production in order to sell the most minerai product possible over these lucrative 

periods. When priees are low however, mine operators should reduce production 

in anticipation that priees will rise again in the future. In the case of eut-off grade, 

it should be raised when priees are low because the revenue generated will not 

be sufficient to justify further processing. Therefore, we must assess the benefits 

gained from having a robust mine plan that will permit an adjustment of 
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production rate and eut-off grade according to commodity priee and 

mineralisation grade. 

To simplify the problem, it is assumed that the sequence in which the blocks are 

mined is predetermined, thus avoiding complications related to slope constraints. 

This predetermined sequence also reduces the computational complexity of the 

problem by limiting the size of the action set and the state space. Without this 

constraint, the agent would have to determine which block to mine in each period 

as opposed to whether or not it should mine the next predetermined block. In the 

first case, the number of possible actions would be at the least equal to the 

number of blocks in the pit, while in the second case, the actions are limited to a 

discretisation of feasible production rates and eut-off grades. 

At each decision stage, the agent must determine the optimal production rate 

and eut-off grade. The option to terminate production is also available. 

However, when a decision is made to terminate production, operations cannot be 

resumed. Therefore, the action to terminate production leads to an absorbing 

end state. Figure 4 is a graphical representation of the agent's decision process. 

At each mining location, the agent must decide to either operate at a high 

production rate, low production rate or to terminate production and proceed to 
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mine rec/amation. If the agent elects to continue the extraction process, a 

decision must be made whether to send the extracted material to the mill or to a 

waste pile. The current model does not permit ore/waste selectivity within a 

decision step. Multi-agent MOPs show sorne potential to resolve this issue but is 

beyond the scope of the current work. 

Low Prodiuction Rate High Production Rate Reclamation 

-----+ -----+ -----+ -----+ -----+-----+ -----+ -----+ -----+ Low 
Mining seque!ce ~ ~ ~ High Rate 

Figure 4: MOP Flow Chart 
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A low production rate results in a slower progression through the mining 

sequence as the incremental jumps are smaller. This is depicted in Figure 4 by 

the horizontal arrows below the blocks. 

Optimisation Model 

ln this section we describe the models used to create the state space, transition 

probability matrices and the reward function required to impie ment an MDP. 

1 n order to generate the state space and the transition probability matrices, the 

two sources of uncertainty considered (Le. grade and commodity priee) are 

modeled individually and then combined. 

Modeling block grades 

To portray the uncertainty associated with the minerai content (grade) of the 

mining blocks, geological block models are generated using Sequential Gaussian 

Simulation (SGS). 

This method is based on the decomposition of the multivariate Gaussian 

distribution into the product of univariate conditional distributions. As stated by 

Isaaks (1990), these univariate distributions are normal with a conditional mean 
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equal to the simple kriging estimate and a conditional variance equal to the 

simple kriging variance. The simulation is done following (4.11). 

in which 

Z = Normal random number with mean of 0 and standard deviation of 1 

g = Simple kriging standard deviation 

Il = Simple kriging estimate of node value 

x = Simulated node value 

(4.11) 

The first step of SGS is to create a random path that contains ail of the nodes in 

the block model to be simulated. Once the path is established, the value of the 

first node is simulated by: 1) determining the conditional cumulative distribution 

function (ccdf) by performing simple kriging using ail sam pie data, and 2) 

generating a value at the node by sampling the ccdf. The new node value is then 

added into the data set and the algorithm moves on to the following node. 

Simulated block models where generated as described in Farrelly (2002). These 

block models are equally probable representations of the actual minerai deposit 

51 



(Isaaks, 1990). The block models are used to represent the geological 

uncertainty of the deposit. 

Modeling eommodity priees 

There are many time series models that may be used in priee simulation. The 

most eommonly used are the random walk model, the Ornfein-Uhlenbeck mean 

reverting model and the geometrie Brownian motion model. It is important to 

earefully select the diffusion proeess that best represents the variability of the 

underlying proeess being modeled. 

The simplest form of the mean reverting proeess is known as an Ornfein

Uhlenbeck proeess: 

Error! Objects cannot be created from editing field codes. (4.12) 

in whieh 

dx = Change in priee over one period 

o = Reversion speed, Le. force with whieh the priee is pulled baek towards the 

mean 
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x = Mean price (the historical mean is often used) 

x = Spot priee, Le. eurrent priee of the eommodity 

dt = Change in time 

CT = Volatility, Le. the priee standard deviation over one unit of time 

dz = Normal random number 

The use of the Orntein-Uh/enbeck model requires sorne caution as it may 

generate negative values. The solution to this problem is to use Geometrie 

Brownian motion (GBM) to model the eommodity priees. This generates a 

logarithmic random number following a Weiner proeess. A diffusion proeess is 

sa id to follow GBM if it satisfies the following stochastic differential equation 

(4.13) 

This equation has an analytieal solution: 

St = Soexp ((u - v2 /2)t + vlVt ) (4.14) 

ln order to model priees effieiently for an MDP, a diseretised version of the 

diffusion proeess is required to reduee the size of the transition probability matrix. 
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The discretisation is done following the bin method presented by Barraquand and 

Martineau (1995). 

Once the transition probability matrices for the block grades and priees are 

created individually, the general transition probability matrix is generated. This 

combination is simplified by the fact that the transition probabilities of the grades 

and priees are independent. Thus, the combined probabilities are simply the 

product of the probabilities of the two parameters. 

Reward function 

It is assumed that there is no delay between the time at which a block is mined 

and processed and the time at which the recovered minerai product is sold. This 

assumption simplifies the calculation of the reward generated from extracting a 

particular block. The reward is the revenue generated from selling the minerai 

product recovered from the block less the cost incurred. The reward function is: 

R = Grade • Priee - Cost (4.15) 
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This function can be expanded to include other parameters such as mine dilution, 

mill recovery, Net Smelter Return, depth dependant mining costs and variable 

processing costs. 

MDP requirements 

The MDP framework requires that the current state be fully observable. 

Accordingly, it is assumed that the sample cuttings from production drilling 

conducted prior to mining provide enough information to claim that the grade of 

the current block to be mined is fully observable. The commodity price is also 

fully observable in the current state as indicated by the current market price. The 

block to be mined in the current state is also known. Therefore, the current state 

is fully observable. Another requirement is that the environment must be 

Markovian, which means that ail the information from the past is contained in the 

current state. Path dependency complications are avoided by having a fixed 

mining sequence as input to the MDP. Otherwise, the Markov property would not 

be respected, and to do so would require an enormous state space. Also, due to 

the discrete nature of the decision steps, each action must require the sa me 

completion time. This requirement is respected because the production 

decisions involve different production rates. Thus, the amount of material 

extracted changes, but the time unit remains the same. 
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The MDP framework lends itself quite weil to the task of schedule optimisation 

and valuing options. The contribution of options to project value can be 

measured by modifying the options available to the agent. Once the best policy 

is found, Monte-Carlo simulations can be conducted on the project while 

implementing that policy, thus generating a probability distribution curve of the 

project value. By comparing the distribution curves of policies in which different 

options are included or excluded, it is possible to asses the effect of these 

options on project value. The most important advantage of using MDPs to value 

options is that the optimal policy, Le. that required to achieve the maximum value 

of the state space, is found concurrently. This policy can then be used as a 

guide in the optimisation of the production schedule. 
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Chapter 5 

Experimentation 

Introduction 

ln this section, we look at sorne examples of applying an MDP to mine 

scheduling optimisation. Actual size case studies take approximately 8 days to 

converge on an optimal policy, using a 64 bit inter(R) Xeon 3.6 GHz processor 

with 2 gigs of RAM operating on Linux SUSE V10. Consequently, for clarity and 

time considerations, most of the testing and demonstrations are performed on 

hypothetical examples. A small hypothetical case study is used to demonstrate 

how to read a policy and to assess the value of incorporating options in the 

valuation process. The policy's sensitivity to discount rates is also tested using 

the small case study. A medium-size case study, based on real geological data, 

is used to measure the computational time required by the two algorithms used 

to solve MDPs. A large-scale case study based on actual values of a 

mineralized deposit is used to assess the applicability of MDPs to real size 

projects. The description of the mineralized deposit is not disclosed due to a 

confidentiality agreement. The MPD is implemented using the Matlab MDP 
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toolbox V2.0 provided by the Institut National de la Recherche Agronomique 

(INRA). 

Reading the Policy 

The graphical representation of the policy is somewhat complicated by its three 

dimensional nature. To simplify policy interpretation, we tirst consider an 

example in which the grade dimension is omiUed. This results in a two

dimensional policy, as illustrated in Figure 5, strictly dependent on priees and 

remaining ore reserves. 

The commodity priees are given on the y axis while the mining locations (i.e. 

blocks to be mined) are given on the x axis. The colours indicate the actions 

prescribed by the policy. To determine which action should be taken when in a 

particular state, the decision maker must find the intersection of the parameters 

describing the current state. Consider that a decision must be made concerning 

block 3. If the current market priee of the commodity is $4/unit, the policy 

prescribes that the block should be mined. The X in the Mine rectangle 

indicates the current state in Figure 5. 
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Figure 5: Sam pie Policy 

Now, considering the same block (3) but a commodity price of $3/unit, the 

operation should be stopped, as indicated by the Stop rectangle on the policy 

chart. 

Adding a third dimension representing grade makes the graphical representation 

of the policy cumbersome and difficult to read. Therefore, policy charts are 

created for each grade possibility, as illustrated in Figure 6 below. In this 

example, there are only 3 possible discrete grade transitions. In a real case 

study however, more grade state transitions would be used to generate a better 

representation of the grade distribution. Consider again the decision concerning 

block 3. If the grade of the block is high, the policy prescribes to mine the block 
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regardless of the priee. However, if bloek 3 is low grade, the pOliey preseribes to 

mine it only if the priee is above $4/unit. 

low Grade 

Figure 6: Sample Poliey with Multiple Grades 
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Policy Interpretation 

The optimisation model is applied to a hypothetical small-scale mine. In this 

example, there are 10 blocks to be mined, each of which has six possible grade 

values. The number of possible priees is limited to 6. Therefore, the total size of 

the state space is 361, including the end absorbing state. 

Three cases are considered to demonstrate the financial benefits of 

implementing a robust mine plan. In the tirst case, the original mine plan is 

executed without any modification, Le. the entire pit is extracted regardless of 

changes in market conditions and geological variability. In the second case, the 

agent is allowed to react to information; the actions available to the agent are 

either to mine the next block or terminate mining. In the third case, a robust mine 

plan permits a second production rate and the option to make a waste pile. 

Thus, there are five actions to choose from at each decision step: mine the next 

block as ore, mine the next three blocks as ore, mine the next block as waste, 

mine the next three blocks as waste or terminate the process. Each action has 

the same execution time. It is assumed that the priee does not change during 

the execution of the action and is only updated at the next decision step. 
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The policy for case 1 shown in Figure 7 is not very interesting because the only 

action available to the agent is to mine at a low production rate. The policy to 

mine at a low rate is indicated by the Mine 1 covering the entire policy charts. 

fi 

5 

4 

3 

2 

Lowest Grade 

3 

y axis = Commodity Priee $/unit 

Figure 7: Policy without Options 

2 4 6 8 10 

Hümest Grade 

X axis = Bloek to be mined 

Case 2 however, is much more interesting. By including the option to terminate 

the mining process, it is now possible to get an appreciation of the pit design's 

exposure to early mine closure risk. In Figure 8, Mine 1 represents the action to 

mine at a low rate, while the Stop represent the action to close down the 

operation. The chart on the top left is the policy for the lowest grade and the 

chart on the bottom right is the policy for the highest grade. It can clearly be 
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seen that the lower grade cases have a higher probability of early mine closure 

than the higher grade cases. Also, as the mine matures, higher priees or grades 

are required to maintain the mine open. 

Lowest Grade 

y axis = Commodity Priee $/unit X axis = Bloek to be mined 

Figure 8: Policy with Option to Stop 

Case 3 demonstrates the policy obtained when ail five actions mentioned above 

are available to the agent. The policy is iIIustrated in Figure 9. Wasfe1 

represents the action to mine blocks as waste at a low rate, Wasfe 3, to mine 

blocks as waste at a high rate, the Mine 3, to mine blocks as ore at a high rate, 

63 



Mine 1, to mine blocks as ore at a low rate and Stop, to close down the 

operation. 

Lowest Grade 

2 4 6 a 10 
y axis = Commodity Priee $/unit 

Figure 9: Policy with ail Options Available 
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The agent's behaviour is in accordance to a manager's intuition. When priees 

are high, the production rate is increased. By doing so, a larger portion of the 

minerai product contained in the reserves is sold at high priees, thus increasing 

the overall revenue. When priees are low, the production rate is reduced with the 

anticipation they will rise in the future. Deterministic NPV optimisation prescribes 

that revenues should be generated as early as possible during the project life. 

This suggests using the highest feasible production rate during at least the early 
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years of project life. When using an MDP, the agent recognises the growth 

potential of commodity priees. By selecting a lower production rate at low priees, 

the agent demonstrates it can effectively measure the trade-off between a 

reduction in present value of a future cash flow (due to more discounting) and a 

potentially increased cash flow value due to a higher commodity priee. 

From Figure 9, we can also get an appreciation of the eut-off grade, or stated 

otherwise, the eut-off priee of a block. As the priee increases, sorne blocks make 

the transition from being mined as waste to being mined as ore. When the priee 

and metal content of a block is high enough to justify further processing, the 

block is considered ore and sent to the mil!. Otherwise, it is stockpiled as waste. 

The Effect of Options on Project Value 

Once the optimal policy is found, it is possible to determine the value of this 

policy using Monte-Carlo simulations. Using the same stochastic environment 

created for the learning process, the optimal policy is implemented on many 

project iterations. The present value of project cash flows is computed for each 

iteration, thus providing a distribution curve of project value under the optimal 

policy. Comparing the distribution of present values of the three cases 
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mentioned above yields the additional value of having a robust mine plan over a 

"just in time" approach. 

Figure 10 (CASE 1) iIIustrates the distribution associated with case 1. The 

distribution is symmetric and resembles a Gaussian distribution with a mean of O. 

As it would be difficult to justify an investment with an expected present value of 

benefits of zero and a probability of loss of about 50 percent, this project would 

likely be rejected. 

ln case 2, the option of early mine closure is added to the valuation. Early mine 

closure is only exercised when conditions are unfavourable. Therefore, it is an 

option that reduces the downside risk. The reduction in downside risk can be 

observed in 

Figure 10 (CASE 2) in which the probability of financial loss is reduced and the 

left side of the distribution is compressed towards O. Because we have not yet 

included any options that permit us to take advantage of the upside potential 

associated with the uncertain variables of the project, the right side of the 

distribution remains unaffected. 
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CASE 1 Blindly Mine Entire Pit CASE 2 Option to Stop or Delay Start CASE 3 Option to Stop or Delay 
and Variable Production Rates 

y axis = Frequency X axis = PV of Cash flows in million $ 

Figure 10: Distribution of Projects Values 

By adding the option of variable production rates and ore/waste selectivity, it 

becomes possible to not only reduce the downside risk, but to benefit from the 

upside potential as weil. 

Figure 10 (CASE 3) iIIustrates the value gained from including both options in the 

valuation process. As can be seen, the probability of financial loss remains 

about the same as in case 2, but the positive side of the distribution is stretched 

to the right, thus increasing the project's value by exploiting the upside potential 

resulting from grade and price uncertainties. 
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Effect of Discount Rate on the Policy 

To study the effect of discounting, optimal policies were obtained using different 

discount rates. Optimal policies were found for discount rates ranging from no 

discounting to 40%. Results are shown in Figure 11. As the discount rate 

increases, its impact on the optimal policy is threefold. The first effect is to force 

extraction at the higher production rate. The second is to increase the situations 

in which the option of early mine closure is exercised. The third results from the 

reduced selectivity at the higher production rate, thus causing the dilution of ore 

with waste. These three effects are explained below. 

As the discount rate increases, it is natural to think that the policy would favour 

higher production rates. When the time value of money is high, it is essential to 

produce faster to reduce losses due to discounting. This phenomenon can be 

observed in Figure 11. As the discount rate increases, the area Mine 6 

representing the higher production rate increases. 

The present value of future cash flows is inversely proportional to the discount 

rate. Therefore, higher discount rates result in reduced project value. This 

reduction in value may result in a project being delayed or abandoned due to the 

negative present value of remaining cash flows. The latter is confirmed by the 
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increased probability of early mine closure represented by the Stop areas in the 

policy chart. As the discount rate increases, the Stop area expands towards the 

lower left corner of the policy chart. When the time value of money is ignored, 

the optimal policy indicates that production should begin for the entire range of 

priees (leftmost column of the policy chart). However, at a discount rate of 40%, 

the project is delayed for commodity priees of 1 and 2 $/unit. 
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As explained above, higher discount rates force extraction at the higher 

production rate. This in turn reduces mine selectivity and causes dilution. Blocks 

that would be mined as waste at the low production rate are now extracted as ore 

at the higher production rate, along with higher grade blocks. This effect can be 

observed by the reduction in size of the Waste area in the policy grid as the 

discount rate increases. 

Policy Iteration versus Value Iteration 

ln a previous section, we discussed the distinction between Policy Iteration and 

Value Iteration. In this section we discuss the impact of these algorithms on the 

number of iterations and computing time required to solve the MDP. The test is 

conducted on a medium-size MDP. The block model is based on an actual 

deposit, but the support is quite large. The sma"est mining unit in this example is 

50 m x 50 m x 50 m. Therefore, the pit contains 406 blocks. The state space 

consists of 5 priees and 6 simulated block models, thus yielding 8120 states. 

Figure 12 i"ustrates the learning curves associated with the two algorithms. 

Computing times are also reported. 
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Figure 12: Evolution of State Space Value with Respect to Number of Iterations1 

The policy iteration algorithm found the optimal policy after 17 iterations while 

value iteration required 152 iterations. In terms of computation time, POlicy 

Iteration is much faster than Value Iteration, taking 71 seconds as opposed to 

Value Iteration which required 212 seconds. It can be observed in the figure 

above that the longer computation time associated with the value iteration 

algorithm results from the diminishing marginal improvements to the policy after 

50 iterations. Value Iteration can find a near optimal policy within a shorter 

number of iterations, but requires many more iterations to reach the optimal 

1 The value of the state space is the suru of the values of aB of the states. In absolute terms, it does not give 
much information on the actual project value but is an effective tool to monitor the learning process. 
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policy. If the exact optimal policy were not required, Value Iteration could be 

used as a good approximation method. The computation time required to reach 

the dot on the value iteration curve is only 33 seconds. Therefore, when an 

exact optimal policy is required in mine optimisation problems, Policy Iteration is 

faster than Value Iteration. However, for larger scale cases in which computation 

time is significant, Value Iteration can be used as a faster estimation alternative. 

Both Value Iteration and Policy Iteration generated the same policy. This policy 

can be seen in Figure 13. The first thing to notice in this policy is that the 

increased ore production rate is never used within the simulated priee range. 

However, the increased waste production rate is used. The second is that there 

is a clear eut-off priee at $2000, as ail the blocks are considered waste when the 

priee is below $3000. Finally, the delay option is never exercised but the early 

mine closure option has a high probability of being exercised. 
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Figure 13: Optimal Policy for Medium-size Case Study 

Note on input mining sequence 

The Whittle software was used to generate the mining sequence. Whittle is not 

generally used for short-term planning. The results obtained here test if y as to 

why the software is not an adequate tool for short-term scheduling. The reason 

is that Whittle does not distribute the input constraints uniformly within a time 

period. For example, if the mill limit is 10 000 tonnes per year, Whittle does not 

distinguish between milling these 10 000 tonnes within the first month or 

uniformly over the entire year. Therefore, during the first portion of the year, ore 

will be mined and sent to the mill until the maximum units are reached for the 
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year. Then, the milling will be stopped and waste will be mined for the remainder 

of the year. This phenomenon can be observed in the alternation between waste 

and ore in the policy chart. 

Case Study on Copper Deposit 

A large scale study is conducted on a copper deposit. In-situ reserves are 

estimated at 737 878 tonnes of copper contained in 106 millions tonnes of ore. 

Assuming a mining rate of 8 355 500 tonnes per year, the expected mine life is 

approximately 28 years. 

Whittle 

The Whittle Four-X software is used to determine the mining sequence that will 

be used as input to the MDP. The Whittle optimisation is performed on the 

kriged block modal. The parameters used to generate the mining sequence are 

given in Table 2. 

Table 2: Cost Parameters 

Mining Cost = 2 $/t of rock 

Selling Price = 5500 $/t of Cu 

Mining limit = 8 355 500 tlyear 

Milling Cost = 4.50 $/t of ore 

Selling Cost = 1500 $/t of concentrate 

Milling Hmit = 4000000 tlyear 
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Markov decision process 

Once the mining sequence is generated, it is overlapped with the simulated block 

models to generate the sequences of metal content that will be used as input to 

the MDP. 

ln this case study, two production rates are considered: the base production rate 

is 22 000 tonnes per day and the higher production rate is 26 400 tonnes per 

day, representing a 20% increase in production2• The base case mining cost 

and milling cost are the same as the ones used in Whittle, Le. $2 per tonne and 

$4.50 per tonne. There is a 10% premium on both the mining and milling costs 

to operate at the higher production rate. When a block is mined as waste, only 

the mining cost applies. Mill recovery is estimated at 80%. The mean selling 

priee is $5500 per tonne of copper and the selling cost is estimated at $1500 per 

tonne of concentrate. A mean reverting diffusion process is used to simulate 

copper priees and compute the priee transition probabilities. 

The block model contains 12 979 blocks. There are 6 simulated grades for each 

block and 5 simulated priees. The state space therefore contains 389 370 states. 

2 Neither of the selected production rates or combination of the two will produce the maximum present 
value of the project. In order to find the true maximum present value many production rates over then 
entire interval of technical possibilities should be studied. However, considering such a large number of 
options is not computationally feasible 
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It took approximately 50 hours to solve the MDP on a Xeon computer and 

required just over 2000 iterations. 

The block model used for the case study is associated with a very lucrative 

deposit and ore limits are weil defined. The size of the ultimate pit is not very 

sensitive to commodity priees. In these conditions, the Lerch-Grossam algorithm 

used by Whittle is quite effective in determining the size of the ultimate pit. 

Therefore, the option of early mine closure is very unlikely to be exercised as 

shown in Figure 14. Also, there aren't any simulated priee scenarios that warrant 

a delay in production start-up. Knowing that these two options are not exercised 

provides valuable information to the mine planners. In this case, since the early 

mine closure option has no value, managers have no incentive in keeping this 

option available. Therefore, selling contracts, such as futures, can be negotiated. 

From the policy chart shown in Figure 14, it can be seen that the variable 

production rate option is exercised when mining ore. During periods of high 

priees, the production rate is increased, while over periods of low priees, it is 

reduced. It is interesting to note that in periods during which waste is mined, the 

production rate is rarely changed. The higher rate is almost always selected to 

accelerate the revenue inflow by exposing ore at a faster rate. 
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For this case study, the policy demonstrates that the eut-off grade is not very 

sensitive ta priees. There are few blacks that change fram being considered as 

waste ta being considered as ore at higher priees. Most of the blacks that do 

make a transition fram waste ta ore do sa when the priee changes fram $2000 ta 

$3000. 
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Figure 14: Optimum Policy for Large-scale Case Study 
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Chapter 6 

Conclusions and Recommendations 

Conclusions 

A brief literature review was conducted on the use of real options in the mining 

industry. Sorne of the shortcomings of the techniques proposed were presented, 

demonstrating the need for improvement in real option valuation techniques for 

the mining industry. Successful application of Markov Decision Processes to 

various optimisation problems were presented and it was hypothesised that 

MDPs could be successfully applied to mine scheduling optimisation, th us 

providing an alternative method of valuing real options in the mining industry. 

It was demonstrated that managerial flexibility, expressed in the form of options, 

does in fact contribute to project value. A list of mining specifie options was 

presented. The real option approach was explained, followed bya comment on 

the issue of discounting. A series of option valuation algorithms were described. 

The MDP framework was presented along with three algorithms used to solve 

MDPs, namely Policy Iteration, Value Iteration and linear programming. The 
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particularities of applying MDPs to the mine scheduling optimisation problem 

were discussed, followed by a detailed expia nation of the information required as 

input to the MDP. It was established that the model developed respected the 

MDP requirements. 

Three case studies of increasing scale were conducted. A small hypothetical 

case was used to demonstrate how to interpret a policy and to assess the value 

of incorporating options in the valuation process. As weil, the sensitivity of a 

policy to discount rates was tested using the small hypothetical case. A medium

size case was used to compare the computational requirements of Value 

Iteration versus Policy Iteration. A large scale study was conducted on an actual 

deposit in order to measure the applicability of MDPs to real-size project 

valuation. 

It is shown that optimisation using MDPs generates substantial financial savings 

due to improved managerial decision-making. The application of MDPs to mining 

operations presents great potential and warrants further development. 
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Recommendations 

Using MDPs for project valuation and optimisation provides more information to 

the decision maker than the traditional NPV approach. However, this additional 

information cornes at a cost. The traditional NPV approach is simple and easy to 

apply. Generating a distribution of project values using an MDP is very time 

consuming and computationally expensive. Such an extensive analysis should 

only be conducted on projects where managerial flexibility is anticipated to 

contribute substantially to the value of the project. 

The application of MDPs to mining projects generates very large state spaces 

and requires large amounts of RAM. Due to the fact that the current version of 

Matlab is unable to use swap memory on a Windows operating system, large 

MDPs cannot be implemented on this platform. As a large proportion of mining 

companies use the Windows platform, new hardware would be required in order 

to implement MDPs. 

The options considered in the case studies where the change in production rate 

and eut-off grade, as weil as early mine closure. As mentioned previously, there 

are a number of other options inherent in mining projects that could contribute to 

increased project value, namely further exploration, mining sequence and 
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stockpiling. The inclusion of these options would require an enormous state 

space and would render the MDP virtually intractable. Particular interest should 

be given to the mining sequence option as MPDs could potentially outperform the 

Lerch-Grossman algorithm currently used by Whittle to generate a mining 

sequence. Further work on multi-agent MDPs could reduce the state space size 

and enable the inclusion of more options in the valuation process. 

The co st structure of the mining operation, Le. the relationship between fixed and 

variable costs on the one hand, and production rate and eut-off grade on the 

other, was ignored. Nevertheless, the potential benefit of additional flexibility was 

weil demonstrated. Given adequate information on the cost structure of the 

company, this aspect could easily be included in the MDP model. 

ln the case studies used in Chapter 5, a somewhat ad-hock conditional 

cumulative distribution function (ccdf) was used to calculate the grade transition 

probabilities. At this time, the software used to generate the Sequential 

Gaussian simulations does not provide the ccdf. Modifications to the source 

code would be required to do so. Given the availability of the ccdf, a more 

accurate transition probability matrix could be generated. 
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The selection of an action in a particular state is based on the expected value 

generated from choosing that action in that state. The expected future value is 

easy to compute but by using and expected value, much of the information from 

the distribution of possible future values is lost. Rather than making decisions 

based on expected value, it would be more realistic to base decisions on a utility 

function that would incorporate the complete distribution of possible outcomes. 

By doing so, the probabilities of financial loss and maximum potential gains 

would be included in the optimisation process. 

The model developed here does not allow selectivity within a decision period. 

Thus, when a decision is made to mine blocks as waste or ore during a particular 

period, ail of the relevant blocks are mined as such. Therefore, caution must be 

taken in that the number of blocks mined during a decision period must remain 

small to reduce the effect of dilution. However, as the production rate is 

determined by the number of blocks mined in a period, a large number of blocks 

per period are required to replicate small variations in the production rate. 

Therefore, a trade-off must be made between mine selectivity and the smallest 

production rate increment. Multi-agent learning could potentially eliminate this 

limitation. 
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As computational costs are reduced and larger amounts of memory become 

available, smaller increments could be used in the discretisation of the 

commodity price and more grade simulations could be used. Also, the number of 

actions made available to the agent is limited by the RAM capacity of the 

computer used to implement the algorithm. Oevelopments in computer 

technology will facilitate the implementation of MOPs in the mining sector. 
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