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Abstract

The Epoch of Reionization (EoR) is the period of our Universe’s history where the neutral hydrogen

in the Inter Galactic Medium (IGM) is ionized. Despite its importance to our understanding of

the Universe, it remains observationally unconstrained and poorly understood. One method to

directly observe the EoR is to measure the 21cm photons emitted by the hyperfine transition of

neutral hydrogen when the electron flips its spin relative to the atomic nucleus. Mapping the 21cm

line in the IGM as a function of redshift can directly probe the EoR. In this thesis we consider

two methods to measure the 21cm line. One method is to measure the spatial fluctuations of the

21cm brightness in the IGM using interferometric instruments while another method is to spatially

average over the 21cm fluctuations using a global signal experiment. Both of these methods are

hindered by systematics such as galactic synchrotron emission “foregrounds”. In this thesis we

examine a variety of topics concerning both types of experiments, ranging from the systematic

mitigation to theoretical interpretation. First, we study how the amplitude and structure of the

errors in our radio foreground models affect forward modeled global signal experiments. We find

that if unaccounted for, these errors can make unbiased recovery of the 21cm signal impossible.

To remedy this, we introduce a Bayesian framework that can account for errors in the foreground

models of global 21cm signal experiments. In this thesis we also consider the systematics that radio

frequency interference (RFI) can introduce into 21cm interferometric measurements. We introduce

a convolutional neural network that is capable of restoring or “inpainting” RFI corrupted data into

the visibilities of 21cm interferometric data. Along with existing RFI inpainting techniques, we

characterize the errors that inpainting introduces into the data analysis pipeline and then establish a

relationship between each inpainting technique and their corresponding errors in the 21cm power
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spectrum. These types of systematics (including but not limited to) have made the 21cm line

difficult to measure and has therefore spurred an interest in probing the EoR using indirect means.

Thus we also explore using Lyman Alpha Emitters (LAEs), as well as class of bright radio transients

Fast Radio Bursts (FRBs) as an method to probe the astrophysics and morphological properties of

the EoR. To quantify the morphological properties of the EoR we introduce a parameter 𝛽 which

can track the density-ionization correlation - a crucial descriptor of the EoR morphology. We then

forecast the types of constraints that we can place on parametrizations commonly used to describe

first-generation galaxies, as well as 𝛽 by independently using FRBs and LAEs as probes. We find

that with measurement of 100 high-redshift FRBs we can rule out scenarios where the Universe is

entirely neutral at z = 10 with 68% credibility. We also find that measurements of LAE statistics

alone cannot distinguish between different density-ionization models at 68% credibility. However

when the combining statistical measurements of LAEs with measurements of the 21cm power

spectrum at the midpoint of ionization we can rule out classes of density-ionization correlation at

99% credibility.
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Abrégé

L’Epoque de Réionisation (EoR) est la période de l’histoire de notre Univers où l’hydrogène

neutre dans le Milieu Inter Galactique (IGM) est ionisé. Malgré son importance pour notre

compréhension de l’Univers, il reste sans contrainte d’observation et mal compris. Une méthode

pour observer directement l’EoR consiste à mesurer les photons de 21 cm émis par la transition

hyperfine de l’hydrogène neutre lorsque l’électron inverse son spin par rapport au noyau atomique.

La cartographie de la ligne de 21 cm dans l’IGM en fonction du décalage vers le rouge peut sonder

directement l’EoR. Dans cette thèse, nous considérons deux méthodes pour mesurer la ligne de

21 cm. Une méthode consiste à mesurer les fluctuations spatiales de la luminosité de 21 cm dans

l’IGM à l’aide d’instruments interférométriques, tandis qu’une autre méthode consiste à faire une

moyenne spatiale sur les fluctuations de 21 cm à l’aide d’une expérience de signal global. Ces deux

méthodes sont entravées par des systématiques telles que les "foregrounds" d’émission synchrotron

galactique.

Dans cette thèse, nous examinons une variété de sujets concernant les deux types d’expériences,

allant de l’atténuation systématique à l’interprétation théorique. Tout d’abord, nous étudions

comment l’amplitude et la structure des erreurs dans nos modèles de premier plan radio affectent

les expériences de signal global modélisées en avant. Nous constatons que si elles ne sont pas

prises en compte, ces erreurs peuvent rendre impossible une récupération impartiale du signal de

21 cm. Pour remédier à cela, nous introduisons un cadre bayésien qui peut tenir compte des erreurs

dans les modèles de premier plan des expériences globales de signal de 21 cm. Dans cette thèse,

nous considérons également la systématique que les interférences radiofréquence (RFI) peuvent

introduire dans les mesures interférométriques à 21 cm. Nous introduisons un réseau de neurones
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convolutifs capable de restaurer ou de “ peindre ” des données RFI corrompues dans les visibilités

de données interférométriques de 21 cm. Parallèlement aux techniques d’inpainting RFI existantes,

nous caractérisons les erreurs que l’inpainting introduit dans le pipeline d’analyse de données, puis

établissons une relation entre chaque technique d’inpainting et leurs erreurs correspondantes dans

le spectre de puissance de 21 cm. Ces types de systématique (y compris, mais sans s’y limiter)

ont rendu la ligne de 21 cm difficile à mesurer et ont donc suscité un intérêt pour sonder l’EoR en

utilisant des moyens indirects. Ainsi, nous explorons également l’utilisation des émetteurs Lyman

Alpha (LAE), ainsi que la classe des transitoires radio brillants Fast Radio Bursts (FRB) comme

méthode pour sonder les propriétés astrophysiques et morphologiques de l’EoR.

Pour quantifier les propriétés morphologiques de l’EoR, nous introduisons un paramètre 𝛽 qui

peut suivre la corrélation densité-ionisation - un descripteur crucial de la morphologie de l’EoR.

Nous prévoyons ensuite les types de contraintes que nous pouvons imposer aux paramétrisations

couramment utilisées pour décrire les galaxies de première génération, ainsi qu’aux 𝛽 en utilisant

indépendamment les FRB et les LAE comme sondes. Nous constatons qu’avec la mesure de

100 FRB à décalage vers le rouge élevé, nous pouvons exclure les scénarios où l’Univers est

entièrement neutre à z = 10 avec une crédibilité de 68%. Nous constatons également que les

mesures des statistiques LAE seules ne peuvent pas faire la distinction entre différents modèles

de densité-ionisation à une crédibilité de 68%. Cependant, en combinant les mesures statistiques

des LAE avec les mesures du spectre de puissance de 21 cm au point médian de l’ionisation, nous

pouvons exclure des classes de corrélation densité-ionisation avec une crédibilité de 99

iv



Acknowledgements

An unbelievable journey. I would like to start by thanking my super-supervisor, Adrian Liu. Thank

you to him for supporting me, guiding me and believing in me throughout these four years. His

passion for cosmology has definitely transferred over to me. There is too much to say, so I’ll just

say that if given the ability I could not design a better supervisor1. Adrian’s first year as a professor

was my first year as a doctoral student and I have been so lucky to learn under him; I could not be

prouder to be his first doctorate student.

Thank you to my academic siblings Hannah Fronenberg & Lisa McBride whom have made the

term “academic family” less academic and more family. Just like family, they will be in my life

forever. Thank you to Jordan Mirocha, who was almost like a second supervisor to me and carried

me throughout my first year. A big shout out to Peter Sims for being a great mentor, Adélie Gorce

for always looking out for me, and Bobby Pascua and Kai-Feng Chen (whom I wished had entered

our group earlier!) for the warm support. To Andrei Mesinger, whom has made this last year fun

and exciting, thank you for making me look towards the future.

This thesis is devoted to all that made it possible:

My grandfather, Amadio D’Antonio, who is responsible for my being a cosmologist and lived

to me see start my doctorate degree. My family, who supported me, encouraged me, and most of

all made it possible for me to focus on cosmology. It is not an exaggeration to say that this thesis

would never exist without the support given to me by my parents, Silvia & Ralph Pagano, and my

brother and sister, Chris & Sandra. Of course, my life partner in crime, Kelly Foran, who has loved

1Somehow along the way, I’ve been transformed from a theory minded person to a statistics minded person - wow!

v



me, supported me and made it possible for me to devote myself to this work (thanks as well to the

Foran family for putting up with my work schedule!)

Above all else, this thesis is devoted to my daughter, Nova, whom came into my life somewhere

between Chapter 3 and Chapter 4. Her love of exploration and pure faith in me have been my

primary motivators throughout the last two years. I look forward to the day when I can explain this

all to her and I hope it makes her proud2.

2And who knows, by the time you read this, maybe we will have detected reionization!

vi



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abrégé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 21cm Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Direct Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Global Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.4 Systematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.5 Indirect Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.6 Sources of Ly𝛼 Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.7 Ly𝛼 Emission As a Probe of The EoR . . . . . . . . . . . . . . . . . . . . 15

1.1.8 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Quantifying Density-Ionization Correlations with the 21cm Power Spectrum 36

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 Inside-out Reionization Simulations Using 21cmFAST . . . . . . . . . . . 41

vii



2.2.2 Outside-in Reionzation Simulations using 21cmFAST . . . . . . . . . . . . 43

2.2.3 Simulating Arbitrary Correlations using 21cmFAST . . . . . . . . . . . . . 46

2.3 Temperature Field Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.1 Variation of Δ2
21 as a Function of 𝛽 . . . . . . . . . . . . . . . . . . . . . . 50

2.3.2 Redshift Evolution of the Signal . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 HERA Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.1 Fiducial Instrument and Sensitivity . . . . . . . . . . . . . . . . . . . . . 54

2.4.2 Markov Chain Monte Carlo Setup . . . . . . . . . . . . . . . . . . . . . . 56

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5.1 Scenario (i): Measurement of Δ2
21 Over Redshifts 𝑧 = 6 to 𝑧 = 10 . . . . . . 58

2.5.2 Scenarios (ii) to (iv): Measurements at Specific Redshifts and Scales . . . 59

2.5.3 Scenario (v): Fiducial Outside-in Reionization . . . . . . . . . . . . . . . 62

2.5.4 Early Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Constraining the Epoch of Reionization With Highly Dispersed Fast Radio Bursts 77

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2.1 EoR Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2.2 Morphological Parametrization of the EoR . . . . . . . . . . . . . . . . . 84

3.2.3 Dispersion Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.1 DM Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3.2 Astrophysical Signature on DM . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.3 Morphological Signature on DM . . . . . . . . . . . . . . . . . . . . . . . 93

3.4 Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.1 Intrinsic FRB Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.4.2 Mock Catalogue of FRBs . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

viii



3.4.3 MCMC setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.5.1 Larger Sample Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5.2 Smaller Sample Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Lyman Alpha Emitters and the 21cm Power Spectrum as Probes of Density-Ionization

Correlation in the Epoch of Reionization 116

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2 EoR Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2.1 Extending 21cmFAST to outside-in . . . . . . . . . . . . . . . . . . . . . 122

4.2.2 𝛽 Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.2.3 Variation of Δ2
21(𝑧) as a Function of 𝛽 . . . . . . . . . . . . . . . . . . . . 125

4.3 LAE Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3.1 Ly𝛼 Optical Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3.2 LAE Intrinsic Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4 Dependence of LAE Statistics on 𝛽 . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.4.1 Dependence of the Observed LAE Luminosity Function on 𝛽 . . . . . . . 133

4.4.2 Dependence of the Mean Number Density of LAEs on 𝛽 . . . . . . . . . . 135

4.4.3 Dependence of the ACF on 𝛽 . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.5 Forecasts and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.5.1 Subaru Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.5.2 HERA instrument and Sensitivities . . . . . . . . . . . . . . . . . . . . . 143

4.5.3 Markov Chain Monte Carlo Setup for Subaru Constraints . . . . . . . . . . 145

4.5.4 Markov Chain Monte Carlo Setup for Joint Subaru & 21cm Forecasts . . . 146

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.6.1 Subaru Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.6.2 Joint Subaru & HERA Forecasts . . . . . . . . . . . . . . . . . . . . . . . 151

ix



4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5 Characterization Of Inpaint Residuals In Interferometric Measurements of the Epoch

Of Reionization 167

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.2 HERA Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.2.1 RFI Flagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.2.2 Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.2.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.3 Inpainting Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.3.1 CLEAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.3.2 Least Squares Spectral Analysis (LSSA) . . . . . . . . . . . . . . . . . . . 181

5.3.3 Covariance-Based Inpainting (GPR) . . . . . . . . . . . . . . . . . . . . . 183

5.3.4 DPSS Least Squares (DPSS-LS) . . . . . . . . . . . . . . . . . . . . . . . 185

5.3.5 U-Paint Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.4 Inpaint Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.5 Statistical Analysis Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.6 Inpaint Error Quantification in the Visibilities of Simulated Data . . . . . . . . . . 193

5.6.1 Error Characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.6.2 Thermal Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.7 Power Spectrum Error Characterization . . . . . . . . . . . . . . . . . . . . . . . 199

5.7.1 P1V Spectral Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.7.2 Relationship Between Visibility and Power Spectrum Errors . . . . . . . . 205

5.8 Application to Phase 1 HERA Data . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5.8.1 Flagged Regions & Analysis Configuration . . . . . . . . . . . . . . . . . 209

5.8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.8.3 Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

x



Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6 A General Bayesian Framework to Account for Foreground Map Errors in Global

21-cm Experiments 228

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6.2 Fiducial Instrument and Analysis Pipeline . . . . . . . . . . . . . . . . . . . . . . 233

6.2.1 Bayesian Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

6.2.2 Data Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

6.2.3 Spectral Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

6.3 Foreground Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

6.3.1 Methodology For Assessing Foreground Errors in the Analysis . . . . . . . 239

6.3.2 Error Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

6.3.3 Fiducial Error Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

6.4 Modeling Amplitude Perturbations in Our Foreground Model . . . . . . . . . . . . 247

6.4.1 Amplitude Scale Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

6.4.2 Prior Maps & Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 249

6.4.3 Map Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

6.5 Isolated Amplitude Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

6.5.1 Spectrally Uniform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6.5.2 Effect of the Amplitude of Fluctuations Δ and Correlation Length 𝜃FWHM

of the Errors on the Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 256

6.5.3 Limiting Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

6.6 Spatially Varying Spectral Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

6.6.1 Error Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

6.6.2 Correlations Between 𝑁𝑎 and 𝑁𝛽 . . . . . . . . . . . . . . . . . . . . . . . 262

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

7 Conclusion 278

xi



List of Figures

1.1 Timeline of the Universe’s history from the time of recombination at 𝑧 = 1100

(left) to today 𝑧 = 0 (right). After recombination, the cosmic dark ages mark a

time before the first stars. The black/grey contrast demarcates the neutral/ionized

regions in the IGM. Notice how the IGM transitions from mostly neutral to mostly

ionized by redshifts 6. Finally on the right we see the formation of collapsed

structures. Image credit: Alexander Kaurov . . . . . . . . . . . . . . . . . . . . . 2

1.2 The top panel shows the global signal for different values of X-ray emissivity. In

the bottom panel the global signal is shown for different values of Ly𝛼 emissivity.

The black arrows indicate how the absorption trough changes as these parameters

are increased. Image credit: Jonathan Pritchard. . . . . . . . . . . . . . . . . . . . 7

1.3 The temperature of the radio sky at 408MHz. . . . . . . . . . . . . . . . . . . . . 9

1.4 The expected foreground bias in the estimated power spectrum due to the fore-

grounds as a function of 𝑘⊥ and 𝑘 ∥ . Bright red regions indicate the modes most

affected by the foregrounds. Note that the foregrounds occupy a triangular wedge

shape region of Fourier space. Image credit: [44]. . . . . . . . . . . . . . . . . . 10

1.5 The UV luminosity function at redshifts 𝑧 = 4, 6, 8, 10. Note that the UV luminosity

decreases rapidly after 𝑧 > 6. The red dots correspond to measurements of galaxies

at 𝑧 ∼ 10 while the red solid lines correspond to best fitting Schechter function.

Image credit: [52] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Ly𝛼 forest for 19 high redshifts quasars from [22]. Note that quasars above 𝑧 > 6

show no transmission in the Gunn-Peterson trough. Image credit: [22] . . . . . . . 16
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2.1 Example ionization 𝑥HII, density 𝛿, and brightness temperature 𝛿𝑇𝑏 fields at 𝑧 = 9

with fiducial parameters of 𝜁0 = 25 , 𝑀turn,0 = 5 × 108𝑀⊙, and 𝑅mfp,0 = 30 Mpc.

The ionized regions from the ionization field are superimposed as contours on

the density field to emphasize the correlation between the two fields. Inside-out

scenarios (with 𝛽 > 0) have positively correlated density and ionization fields.

Conversely, outside-in scenarios (with 𝛽 < 0) have negatively correlated fields.

The case 𝛽 = 0 refers to the scenario where the ionization field and density field

are entirely uncorrelated. The 21 cm brightness temperature field is sensitive to

the type of correlation between matter and ionization fields. For example, the

outside-in model shown here has the highest brightness temperature, since regions

of high density are also regions of highest neutral fraction. . . . . . . . . . . . . . 44

2.2 Power Spectra for varying 𝛽 at different redshifts, with the other EoR parameters

fixed to fiducial values of 𝜁0 = 25 , 𝑀turn,0 = 5 × 108𝑀⊙, and 𝑅mrp,0 = 30 Mpc.

The mean ionized fractions 𝑥HII at redshifts, 𝑧 = 10.5, 𝑧 = 8.5 are 0.09, 0.2 and 0.4

respectively. The amplitude of Δ2
21 increases as 𝛽 is decreased from its maximal

value 𝛽 = 1, corresponding to inside-out models of reionization. The amplitude

of the power is maximum at 𝛽 = −1, corresponding to outside-in models. The

contrast between these models is largest at the scale corresponding to the size of

the ionized regions. The dotted line represents a model without any correlation

between density and ionization fields. . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Power spectra as a function of 𝑧 and 𝛽 at two chosen 𝑘 values. The contrast between

outside-in and inside-out models is largest at the midpoint of reionization. For the

fiducial parameters of 𝜁0 = 25 , 𝑀turn,0 = 5 × 108𝑀⊙, and 𝑅mfp,0 = 30 Mpc, this

occurs at 𝑧 ≈ 8. The dotted curve represents a model without any correlations

between 𝛿 and 𝑥𝐻II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
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2.4 Density boxes (left) alongside their resulting temperature fields (right), with con-

tours showing the locations of ionized bubbles overlaid. Fourier modes with

𝑘 < 2 Mpc−1 have been filtered out from 𝛿Tb to elucidate the high 𝑘 behavior seen

in Figure 2.2. In this high-𝑘 regime, large amplitude brightness fluctuations are

seen throughout the neutral regions . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Posterior distributions for Scenario (i) of Section 4.6, covering the redshift range

of our forecasts, 6 ≤ 𝑧 ≤ 10. The 68% credibility contours are entirely con-

tained within the inside-out region of parameter space, suggesting that with such a

measurement we can firmly rule out outside-in or uncorrelated models. . . . . . . . 59

2.6 Same as Figure 2.5, but for a restricted redshift range of 7.5 ≤ 𝑧 ≤ 8.5. Mea-

surement over these redshifts can strongly rule out correlations that are inconsistent

with inside-out models. The 68% credibility contours clearly distinguish inside-out

and outside in regions of parameter space. . . . . . . . . . . . . . . . . . . . . . 60

2.7 Same as Figure 2.5, but for a restricted redshift range of 9.5 ≤ 𝑧 ≤ 11.5. Although

many parameters are poorly constrained, an uncorrelated scenario of 𝛽 = 0 can still

be easily ruled out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.8 Same as Figure 2.5, but using only three 𝑘 bins centred on 𝑘 = 0.2 Mpc−1, 𝑘 =

0.25 Mpc−1, and 𝑘 = 0.3 Mpc−1 at 𝑧 = 8.0. Because these bins contain the most

information on 𝛽, using them alone is sufficient for excellent constraints. . . . . . . 61

2.9 Same as Figure 2.6, but using an outside-in model with 𝛽 = −0.936 as our fiducial

reionization morphology. Displayed are the 68% CR contours. The 68% CR are

entirely contained within 𝛽 < 0 suggesting that if reionization proceeds as outside-

in, measurement of Δ2
21 in this scenario can rule out uncorrelated and inside-out

reionization with 68% credibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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2.10 Marginalized posterior distributions on 𝛽 obtained through the measurement of Δ2
21

in Scenario (ii) of Section 4.6, but assuming 10 times larger error bars than the

design HERA sensitivities to mimic potential upper limits. As the upper limits

come down to 10 times the fiducial errors on Δ2
21 from Section 2.8, we will be able

to rule out 𝛽 < 0 with 99% credibility in our fiducial model. The dotted vertical

lines demarcate 𝛽 = 0 to guide the eye. . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1 From the center of the Figure , outward: Lightcones of the density field 𝛿, ionization

fraction 𝑥HII and free electron field 𝑛𝑒 for the case of inside-out reionization (left

three boxes) and outside-in reionization (right three boxes). Inside-out reionization

(left) leads to a higher free electron number density 𝑛𝑒 in the ionized bubbles since

the density field (center) couples to the ionized regions in 𝑥HII compared to outside-

in models (right) where the underdense regions in 𝛿 couple to the ionized regions

in 𝑥HII. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2 Redshift evolution of the DM probability distributions for our fiducial reionization

scenario 𝛽 = 1, 𝜁 = 25, 𝑀turn = 5 × 108M⊙ and 𝑅mfp = 30Mpc. At higher redshift

the relative probability of high DM sightlines increases. . . . . . . . . . . . . . . . 89

3.3 Evolution of the individual sightline DM probability distributions for a variety of

reionization scenarios encapsulated by the density-ionization parameter 𝛽, ionizing

efficiency 𝜁 and mass scale of the ionizing sources 𝑀turn. Notice how the different

reionization scenarios begin to distinguish themselves at higher redshifts. In each

panel, the gold distribution corresponds to the fiducial reionization scenario of

𝛽 = 1, 𝜁 = 25, 𝑀turn = 5 × 108M⊙ and 𝑅mfp = 30Mpc. . . . . . . . . . . . . . . . 91
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3.4 DM for a variety of density-ionization correlations 𝛽 (upper left), mass scale of

the ionizing sources 𝑀turn (upper right), ionizing efficiency 𝜁 (lower left), and

mean free path 𝑅mfp of the ionizing photons. Notice how high ionizing efficiency

of the sources and smaller masses of the ionizing sources lead to an early onset

reionization, and so an increase in DM at that redshift. Inside-out reionization

models 𝛽 > 0, lead to an increase in DM, since the free electron number density

in ionized regions is greater than the corresponding ionized region in outside-in

models 𝛽 < 0. In each panel the dotted curve corresponds to same reionization

scenario 𝛽 = 1, 𝜁 = 25, 𝑀turn = 5×108M⊙ and 𝑅mfp = 30Mpc. We use this fiducial

reionization scenario in our forecasts in Section 4.5. . . . . . . . . . . . . . . . . 92

3.5 Posterior distributions for measurement of DM for 104 FRBs distributed between

redshifts 8 ≤ 𝑧 ≤ 10 according to the source count distribution in Section 3.4.1. The

68% credibility regions are shown. Such a measurement can rule out uncorrelated

𝛽 = 0 and outside-in reionization 𝛽 < 0 at 68%CR. . . . . . . . . . . . . . . . . . 100

3.6 Posterior distributions for measurement of DM for 105 FRBs distributed between

redshifts 8 ≤ 𝑧 ≤ 10 according to the source count distribution in Section 3.4.1.

Using such a measurement, we can rule out uncorrelated and outside-in reionization

scenarios at 68%CR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.7 Posterior distributions for measurement of DM for 100 FRBs distributed between

8 ≤ 𝑧 ≤ 10 according to the source count distribution in Section 3.4.1. The 68%

credibility regions of our measurements are shown. This measurement can rule out

extreme EoR models, for example, scenarios where the Universe is ionized by 𝑧 = 8. 103
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4.1 Example fields demonstrating the effect that different 𝛽 correlations have on the

observed LAEs. The intrinsic LAEs (left) roughly traces the underlying density

field. When computing the Ly𝛼 optical depth using the ionization field 𝑥HII (mid-

dle), we arrive at the observed LAEs (right). Neutral regions supress Ly𝛼 radiation

from the observer. The ionized regions from the ionization field are superimposed

as contours on the observed LAEs to emphasize the correlation between the two

fields. Inside-out scenarios (with 𝛽 > 0) have positively correlated density and

ionization fields. Conversely, outside-in scenarios (with 𝛽 < 0) have negatively

correlated fields. The case 𝛽 = 0 refers to the scenario where the ionization field

and density field are entirely uncorrelated. These boxes are at redshift 𝑧 = 7.6 with

fiducial astrophysical parameters 𝜁0 = 25, Mturn,0 = 5 × 108M⊙, 𝑅mfp,0 = 30Mpc. . 124

4.2 The Ly𝛼 luminosity function of LAEs as a function of 𝛽, at three different stages of

reionization. In each panel, the dotted curve corresponds to the luminosity function

of the intrinsic field (i.e. with xHII = 0). Notice that extreme outside-in reionization

scenarios (𝛽 ∼ −1), lead to concealing the intrinsically brightest LAEs. At high

redshift, where there are fewer intrinsically bright LAEs, this leads to a sharp drop-

off of the Ly𝛼 luminosity function. In each of these curves, the detection threshold

Lymin
𝛼 corresponds to mass Mmin

𝛼 ∼ 1010M⊙ with 𝑓duty = 1. . . . . . . . . . . . . . 129

4.3 Evolution in the number of observed LAEs for positively correlated models (𝛽 > 1),

uncorrelated models (𝛽 = 0), and negatively correlated models (𝛽 = −1) at different

mean ionized fractions. The mean number density of LAEs 𝑛, for the extreme 𝛽 = 1

and 𝛽 = −1 models are noted. Notice the rapid change in the number of LAEs for

𝛽 = −1 models. As the ionized regions grow large enough to encompass the high

density regions, the number of LAEs increases rapidly. The uncorrelated model

has ionized regions which are random with respect to the underlying density field.

Positively correlated models have the ionized regions that always correspond to the

high density regions, where the intrinsic number density of LAEs is greatest. . . . 130
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4.4 Evolution of the number density of LAEs for different reionization morphologies.

Inside-out driven models (𝛽 > 0) initially have more observable LAEs since the

intrinsically densest regions of the IGM are ionized first. As the ionized regions

grow to encapsulate the underdense regions in 𝛿, the mean number density grows

slowly as compared to outside-in driven models (𝛽 < 0), where the underdense

regions are first to be ionized. In this scenario, the number density of LAEs

increases rapidly as the intrinsically densest regions are ionized. We use the same

fiducial model as in Figure 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.5 ACF of various 𝛽 scenarios at different stages of reionization. Outside-in driven

reionization scenarios (𝛽 < 0) produce the largest clustering of LAEs. The contrast

between the different 𝛽 models is greatest at high redshifts where the ionization of

the IGM has the largest imprint on LAE observability. As reionization proceeds

it becomes more difficult to distinguish between these scenarios. We use fiducial

parameters 𝜁0 = 25, 𝑀turn,0 = 5 × 108𝑀⊙, 𝑅mfp,0 = 30 Mpc, and 𝛽0 = 0.936,

𝑓duty = 1 and Mmin
𝛼 = 1010M⊙. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.6 The number density of observed LAEs for different 𝛽 models and at different

redshifts. For inside-out models at high redshifts (top two rows), LAEs are spread

across the entire ionized regions, while outside-in models produce fewer LAEs

which are spread across a limited volume. This serves to increase the clustering of

LAEs for 𝛽 = −1 models. The scale is binary to accentuate the difference in the

spatial distributions of LAEs between the two models. Later in reionization (bottom

two rows), the LAEs of both inside-out and outside-in models are spread over

similar ionized volumes. However the number density of LAEs within these ionized

volumes is larger for inside-out models which serves to increase the clustering of

LAEs for 𝛽 = −1 models compared to 𝛽 = +1. See Section 4.5.3 for the simulation

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
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4.7 Angular correlation function as a function of 𝑧 for various 𝛽 models at separations

of 10Mpc. Note the non-monotonic behaviour of 𝛽. Early in reionization, the LAEs

of inside-out models are spread over larger volumes within the ionized regions as

compared to outside-in models, where the LAEs tend to be more localized. This

produces a stronger clustering signal for outside-in driven models. This behaviour

is inverted later in reionization where there are enough intrinsic LAEs to fill the

entire volume of ionized regions for outside-in models. . . . . . . . . . . . . . . . 141

4.8 Posterior distribution for the EoR and LAE parameters using the Subaru data

described in Section 4.5.3. Displayed are the 68% CR contours. Since the 68%

CR contours include both the 𝛽 > 0, and 𝛽 < 0 regions of parameter space,

measurement of 𝑛 and 𝜉 at 𝑧 = 6.6 cannot constrain the sign of 𝛽 to within 68%

credibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.9 Posterior distribution for the EoR and LAE parameters using the Subaru data at

𝑧 = 6.6 and the 21cm power spectrum from 7.5 ≤ 𝑧 ≤ 8.5. The 68% CR are

entirely contained within 𝛽 > 0 suggesting that if reionization proceeds as inside-

out, measurement of 𝑛 and 𝜉 of LAE as well as Δ2
21 can rule out uncorrelated and

outside-in reionization with 68% credibility. . . . . . . . . . . . . . . . . . . . . . 151

5.1 Sample HERA flags split from 100MHz-200MHz. Frequency channels below

110MHz are reserved for FM radio. The ORBCOMM satellite is responsible for

RFI at 𝜈 = 136MHz. Frequency channels above 𝜈 = 174MHz are flagged due to

broadcast television. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
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5.2 The results of our parameter optimization procedure for CLEAN and LSSA in-

painting methods. In the left image fractional increase in 𝜒2 is plotted as a function

of tolerance parameter values (see Section 5.3.1). The coloured curves represent

different noise levels. As the thermal noise level in the dataset increases the optimal

tolerance decreases. The inset provides a closer examination of of 𝜒2/𝑐ℎ𝑖2min for

fiducial noise level 𝛼 = 1. Similarly on the right image, the fractional increase in

𝜒2 is plotted as a function of 𝑛max, the number of Fourier components to include in

LSSA models. As we increase the thermal noise of the dataset, the optimal number

of Fourier components to include in the model decreases. . . . . . . . . . . . . . . 179

5.3 Block diagram showing the U-Paint architecture. . . . . . . . . . . . . . . . . . . 183

5.4 First row: The amplitude and phase components of the RFI flagged visibilities

are shown in the first and third column. In the second and fourth column are

the amplitude and phase component of the true visibilities. The visibilities are

simulated (see Section 5.2.3). Second through fifth rows: in each row we show

the amplitude and phase components of the RFI flagged visibilities but with the

inpaint models filled into the RFI gaps. Each subsequent row correspond to U-

Paint, CLEAN, LSSA, GPR, and DPSS inpainting methods. In the second and

fourth column of each row we show the fractional error of the model amplitude and

the residuals of the model phase (see Section 5.5). . . . . . . . . . . . . . . . . . 187
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5.5 Top: LST averaged inpaint model visibilities. The true visibilities are shown with

the dotted black curve. The vertical shaded regions correspond to the RFI flagged

channels. The amount of shade is proportional to the frequency in which those

channels are flagged. Thus the Wideband ORBCOMM feature is darkest since it

is always flagged. Note that the inpaint models are only filled into RFI gaps, and

so the inpaint models only deviate from the true visibilities in shaded regions. The

orange curve corresponds to U-Paint, the yellow curve to LSSA, purple curve to

CLEAN and blue curve to GPR. DPSS models are not shown since we feature the

wideband feature in this image (see Section 5.3). Bottom: The residuals between

inpaint models and the true visibilities. . . . . . . . . . . . . . . . . . . . . . . . 194

5.6 Top row: probability distribution of the fractional errors 𝑝(𝜖V
frac) in the amplitude

of the inpainted model visibilities. Second row: residuals in the inpainted model

amplitudes 𝑝(𝜖V
r ). Third row: residuals of the phase component of the inpaint

models 𝑝(𝜖phi). The blue curves corresponds to when only wideband RFI is used

to construct the samples while the teal curve corresponds to samples constructed

using only narrowband RFI. All inpaint methods are applied to the simulated

visabilities discussed in Section 5.2.3. . . . . . . . . . . . . . . . . . . . . . . . . 195

5.7 The standard deviation of the fractional error in the visibilities 𝜖V
frac as a function

of the thermal noise level in the visibilities. The parameter 𝛼 is used as a proxy for

the thermal noise level (see Equation 5.9). . . . . . . . . . . . . . . . . . . . . . . 198

5.8 The fractional errors in the wedge modes (left) and non-wedge modes (right) of

inpaint model power spectra 𝜖P
frac as a function of the number of flagged channels

within the spectral window. The P1V spectral window is used to estimate the power

spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
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5.9 Each inpainting technique is applied to the simulated data discussed in Section

5.2.3. The P1V spectral window is used to estimate the inpaint model power

spectra. Left column: blue curves correspond to inpaint model power spectra.

The black curves correspond to the true power spectra and the red dotted curves

correspond to the residuals. Each row corresponds to a different inpaint technique

used to inpaint RFI flagged simulated visibilities. Second column (see Section

5.8.3): Same as first column but with real P1V data. Purple curves correspond to

inpaint model power spectra and black curves the true power spectra. Red curves

are the residuals. The third column corresponds to the fractional errors 𝜖P
frac in

inpaint model power spectra from simulated data (blue) and the P1V data (purple).

The dotted teal line corresponds to the power spectrum of the thermal noise floor

of P1V data [14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5.10 Blue curves correspond to simulated data and purple curves correspond to P1V

data. Distribution of residuals (first row) and fractional errors (second through

fourth rows) in the inpaint model power spectra. Residuals are shown for wedge

modes while the fractional errors are separated according to 𝜏 modes lying inside

the wedge (second row) and outside the wedge (third and fourth rows). Third row

corresponds to simulated data while the fourth row corresponds to P1V data. . . . 202

5.11 Relationship between the mean fractional errors in the inpaint model visibilities

𝜖V
frac and the mean fractional errors in their corresponding power spectra 𝜖P

frac. We

compute the mean fractional error of the inpaint models in RFI flagged frequency

channels within the P1V spectral window. This process is repeated at each LST.

Their corresponding power spectra are estimated using the same P1V spectral

window. The mean of the fractional errors in the model power spectra are computed

using 𝜏 modes inside the wedge. Each LST is plotted as a scatter point. The LSTs

are colour coded according to the number of flagged frequency channels at that

LST. In the top row this procedure is applied to simulated data while in the bottom

row this procedure is applied to P1V data. . . . . . . . . . . . . . . . . . . . . . . 203
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5.12 Same as Figure 5.4 but with the P1V visibilities from Section 5.2.3. The true

visibilities in the first row (second and fourth column) have been initially inpainted

with the CLEAN algorithm to generate placeholder data for the RFI flagged regions.

The inpaint techniques are then applied to a set of flags which are shifted 40 channels

to the left. This is done in order to avoid inpainting over the already CLEANed data.

See Section 5.8 for more details regarding our procedure. Note that as compared

to Figure 5.4 the fractional errors in the model visibilities increase. . . . . . . . . 208

5.13 First row: distribution of fractional errors in the amplitude of P1V visibilities.

Second row: distribution of residuals in P1V visibilities. Third row: distributions

of phase errors 𝜖𝜙 in the phase of P1V visibilities. In each case the blue curves

correspond to distributions constructed using wideband RFI samples only. Teal

curves correspond to distributions constructed using narrowband RFI samples only 211

6.1 The spatial variation of the spectral index 𝛽 as a function of position (𝜃, 𝜙) on

the sky. Bright yellow regions correspond to larger spectral indices while darker

regions correspond to small spectral indices. The morphology of 𝛽(𝜃, 𝜙) roughly

follows the galactic morphology. . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

6.2 In each panel we show the division of the regions on the sky. The left column

corresponds to splitting the spectral map shown in Figure 6.1 into 4 regions (top)

and 8 regions (bottom). On the right column we split the Haslam map from [50]

into 4 regions (top) and 8 regions (bottom). . . . . . . . . . . . . . . . . . . . . . 236
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6.3 Summary of the null test results described in Section 6.3.1 for the error scenarios

described in Section 6.3.2. The horizontal axis corresponds to the FWHM of the

error correlation length while the vertical axis corresponds to the amplitude of the

fluctuations. A red panel indicates that the error scenario does leads to a systematic

in the analysis large enough such that the null test fails. A blue panel indicates

that the error scenario does not lead to a systematic large enough such that the null

test fails. The left panel are error scenarios where the standard deviation of the

errors are uniform across the sky while the right panel are error scenario that have

standard deviation which is spatially dependent. . . . . . . . . . . . . . . . . . . . 241

6.4 Signal recovery plot for the heteroscedastic error realisation with Δ = 5% and

𝜃FWHM = 1◦. The systematic produced by the errors in the basemap prevent the

model from passing the null test described in Section 6.3.1 . . . . . . . . . . . . . 242

6.5 Absolute errors in the temperature of the sky at 408MHz. Note that the errors

roughly trace the galactic morphology. Also apparent are that many low frequency

survey data are missing the southern pole which influences the eGSM model in this

region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

6.6 In this figure we show our fiducial error scenarios at 408MHz. In the top left

we show the a heteroskedatic error realization generated by drawing values from

a Gaussian distribution of zero mean and standard deviation proportional to the

absolute errors at 408MHz. Moving clockwise from the top left panel, the resulting

error realisation is smoothed by a Gaussian beam of FWHM equal to 1◦ (top right),

5◦ (bottom left), and 10◦ (bottom right). . . . . . . . . . . . . . . . . . . . . . . . 244
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6.7 The Bayesian evidence, ln(Z), as a function of the number of amplitude scale factor

regions 𝑁a. The black curve indicates a scenario where no 21-cm signal is included

into the sky model while the red curves indicates sky models when a 21-cm signal is

included. Left panel: 21-cm signal is included into the dataset. We see that a 21-cm

signal model component is preferred since the maximum value of ln(Z) originated

from the red curve. Right panel: no 21-cm signal is included in the dataset, in

which case a sky model without a 21-cm signal component is preferred since the

maximum value of ln(Z) occurs in the black curve. The blue curves corresponds

to a model where the fractional error map (see Equation 5.17) is used to define

the regions. Note that the observation times in this simulation correspond to a one

hour duration occurring at a time where the statistical anisotropies in Figure 6.6 in

are mostly below the horizon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6.8 Each plot shows the results of fitting our foreground model to the simulated data

discussed in Section 6.5.1. The upper left panel corresponds to 𝑁a = 1. Moving

clockwise, we have models 𝑁a = 3, 16, 32. The blue curves corresponds to the

fitted 21-cm signal while the red curves correspond to the residuals of the dataset

after the fitted foregrounds are removed. . . . . . . . . . . . . . . . . . . . . . . . 254

6.9 The Bayesian evidence, ln(Z), as a function of the number of amplitude scale

factor regions 𝑁a for each error scenario described in Section 6.3.3. The black

curve indicates a scenario where a 21-cm signal is included into the sky model
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Chapter 1

Introduction

1.1 Overview

Measurements of the angular anisotropies in the temperature of Cosmic Microwave Background

(CMB) photons have provided us with a window into the conditions of the Universe at redshifts

𝑧 ∼ 1100. Conversely, galaxy surveys provide a window into the Universe at much later times.

Specifically, galaxy surveys have given us measurements of spatial inhomogeneities in the matter

distribution at 𝑧 < 2. Combining measurements from CMB angular anisotropes and matter power

spectrum measurements from galaxy surveys have allowed us form a standard picture of our

cosmological reality, the Lambda cold dark matter (𝚲CDM) framework [33, 59, 62, 66, 76].

In Figure 1.1 we show a cartoon of the Universe’s history from the time of recombination (left)

to today (right). Notice that the Universe at low redshifts is vastly different picture than the Universe

at the time of recombination. At lower redshifts the hydrogen in the intergalactic medium (IGM) is

ionized and most neutral hydrogen is locked inside galaxies and stars. However a substantial portion

of our Universe’s history lay in between these times and thus the bulk of our universe’s history

is unconstrained. This still unconstrained period is mark by several milestones. First is cosmic

dawn (CD) the time in which the first stars are formed. After CD, the first generation galaxies

produce enough UV photons to begin ionizing the neutral hydrogen in the IGM. This gives rise to

the Epoch of Reionization (EoR), the period in which the neutral hydrogen (which was formed at
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Figure 1.1: Timeline of the Universe’s history from the time of recombination at 𝑧 = 1100 (left)

to today 𝑧 = 0 (right). After recombination, the cosmic dark ages mark a time before the first stars.

The black/grey contrast demarcates the neutral/ionized regions in the IGM. Notice how the IGM

transitions from mostly neutral to mostly ionized by redshifts 6. Finally on the right we see the

formation of collapsed structures. Image credit: Alexander Kaurov
.

the time of the CMB) is ionized. These events give rise to the local Universe uncovered by galaxy

surveys [25, 26]. Measurements of high redshifts quasars, the optical depth 𝜏 from CMB studies,

and high-z galaxies have given us a lot of information about these epochs (see Sections 1.1.5 ,1.1.6

, and 1.1.7 for more details) however we do not have a complete picture of CD, or the timing and

details of reionziation [3, 62, 65].

1.1.1 21cm Cosmology

Hydrogen cosmology promises to bridge the gap between these measurements, unveiling the details

of cosmic dawn and reionization. To do this one uses the hyperfine transition of hydrogen, the

21cm line. As an electron flips its spin relative to the proton in the nucleus, a 21cm photon is

emitted. Since the emitted photon redshifts as the universe expands, one can track the distribution

of redshifted photons to make three dimensional maps of the neutral hydrogen as a function of

redshift. The 21cm photons are typically measured in contrast to the CMB temperature 𝑇𝛾. Thus

one measures an emission signature if there is an overabundance of 21cm photons relative to CMB

predictions. Similarly, a net absorption of the CMB leads to a deficit of 21cm photons as compared

to CMB blackbody predictions. To quantify this, we can define the brightness of 21cm photons
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relative to the CMB, (see [25, 26]):

𝛿𝑇𝑏 (r, 𝑧) ≈ (27 mK)
(
𝑇𝑠 (r, 𝑧) − 𝑇𝛾 (𝑧)

𝑇𝑠 (r, 𝑧)

)
[1 − 𝑥HII(r, 𝑧)] [1 + 𝛿(r, 𝑧)]

×
[
𝐻 (𝑧)/(1 + 𝑧)
𝑑𝑣𝑟/𝑑𝑟

] (
1 + 𝑧
10

0.15
Ω𝑚ℎ

2

)1/2 (
Ω𝑏ℎ

2

0.023

)
, (1.1)

where 𝑧 is the redshift, r is the position vector, Ω𝑚 is the normalized matter density, Ω𝑏 is the

normalized baryon density, 𝑑𝑣𝑟/𝑑𝑟 is the line of sight velocity gradient, 𝐻 (𝑧) is the Hubble

parameter and ℎ is its dimensionless equivalent. The terms 𝑥HII and 𝛿 are the ionized fraction of

hydrogen, and the overdensity. The term 𝑇𝑠 is the spin temperature of the neutral hydrogen gas,

which quantifies the number density 𝑛1 of neutral hydrogen atoms in the excited hyperfine states

relative to the ground state 𝑛0. The spin temperature can be written 𝑇s as

𝑛1

𝑛0
=
𝑔1

𝑔0
𝑒𝐸∗/𝑘𝐵𝑇𝑠 (1.2)

where 𝑘𝐵 is the Boltzmann constant, 𝐸∗ = 5.9 × 10−6eV is the hyperfine splitting energy and the

factors 𝑔1 and 𝑔0 are statistical weights that indicate the number of ways the hydrogen atoms can end

up in the excited state 𝑔1 and ground state 𝑔0, i.e 3 and 1. One cannot detect the spin temperature

directly, one instead measures the differential brightness temperature in Equation 1.1. Measurement

of Equation 1.1 also allows us to trace primordial hydrogen as a function of redshift and position

and can in principle probe CD and the EoR. In this thesis we consider two methods to measure

the 21cm photons emitted by the neutral hydrogen. The first method is to measure the spatial

fluctuations of the brightness temperature in Equation 1.1. The second method is measurement of

the global signal. This is the spatially averaged 21cm signal described in Equation 1.1, i.e. the

mean 21cm brightness temperature 𝑇𝑏 ≡ 𝛿𝑇𝑏. In the following sections we discuss both of these

methods.
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1.1.2 Direct Probes

Notice that in Equation 1.1 we see that the distribution of baryons in the density field 𝛿 is spatially

dependent. Similarly the spin temperature 𝑇𝑠 and the distribution of ionized hydrogen atoms in the

the ionization field 𝑥HII are spatially dependent. Even if it were possible to measure the precise

location of every hydrogen atom in the density field 𝛿 (or ionized hydrogen in 𝑥HII), one would still

need to connect such an observation to theory through comparison of statistical quantities derived

from these fields. Thus to learn about the evolution of the Universe from CD through to the EoR,

we are interested in the spatial fluctuations 𝛿𝑇𝑏 sourced by 𝛿, 𝑥HII and 𝑇𝑠. One method to connect

the spatial fluctuations of 𝛿𝑇b to theory is by computing the power spectrum 𝑃(𝑘) defined by

⟨𝛿𝑇 𝑏 (k)∗𝛿𝑇 𝑏 (k′)⟩ = (2𝜋)3𝛿𝐷 (k − k′)𝑃(𝑘) (1.3)

where k is the three dimensional Fourier wavenumber, 𝑘 = |k| is the spherically averaged wavenum-

ber, 𝛿𝑇 𝑏 (k) is the Fourier transformed differential brightness temperature from Equation 1.1 and

𝛿𝐷 (k − k′) is the Dirac delta function. Through Equation 1.3 we can define the dimensionless

power spectrum

Δ2
21(𝑘) =

𝑘3

2𝜋2𝑃(𝑘). (1.4)

During CD, reionization has yet to have an impact on the neutral hydrogen in the IGM, i.e. in

Equation 1.1, the term 𝑥HII is trivially equal to zero. Thus during CD, the shape of Δ2
21 is driven by

fluctuations in 𝛿 and 𝑇𝑠. Once the EoR is underway, the ionized bubbles grow around UV sources,

eventually coalescing when reionization is complete. The shape of the power spectrum is driven by

the morphology of the ionized regions. Most models of the IGM predict that Δ2
21 has characteristic

“knee” in Δ2
21 corresponding to the size and arrangement of the ionized regions [50]. On small

scales, fluctuations in the density field 𝛿 still drive the shape of the power spectrum. It is clear that

Δ2
21 is rich with information regarding the physics of the IGM during CD and the EoR.

There are several ground based interferometric instruments that are capable at measuring Δ2
21

(i.e. fluctuations of the 21cm line). These instruments include the Hydrogen Epoch of Reionization

array (HERA) [14], Low Frequency Array (LOFAR) [77], Murchison Widefield Array (MWA) [48],
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Precision Array for Probing the Epoch of Re-ionization (PAPER) [58], and the Square Kilometer

Array (SKA) [15]. Although in principle most of the 21cm physics discussed in this thesis is

applicable to any of the above experiments, I will focus on the efforts using the HERA array.

HERA, and the aforementioned experiments, do not organically measure Δ2
21 using spherically

averaged wavenumbers |k|. Instead, antennas separated by a baseline vector b measure Fourier

modes on the sky with a wavevector k⊥ oriented perpendicular to the line of sight and wavevector

𝑘 ∥ oriented parallel to the line of sight. The wavenumber k⊥ is given by k⊥ ≈ 2𝜋b/𝜆𝑋 , where 𝜆

is the observation wavelength and 𝑋 is a conversion factor from angular separation 𝜃 to transverse

comoving distance 𝑟⊥, and is given by

𝑋 ≡ 𝑟⊥
𝜃

=
𝑐

𝐻0

∫ 𝑧

0

𝑑𝑧′

𝐸 (𝑧′) (1.5)

where 𝐻0 the Hubble parameter, 𝐸 (𝑧) ≡
√︁
Ω𝑚 (1 + 𝑧)3 +ΩΛ and ΩΛ the normalized dark energy

densities. The wavenumber along the line of sight 𝑘 ∥ , is given by 𝑘 ∥ =
2𝜋𝜂
𝑌

where 𝜂 is the Fourier

dual to the frequency axis 𝜈 with dimensions of 1/𝜈, 𝑌 is a conversion factor converting between

frequency interval Δ𝜈 and increments in radial comoving distances Δ𝑟∥:

𝑌 ≡
Δ𝑟∥
Δ𝜈

=
𝑐

𝐻0𝜈21

(1 + 𝑧)2

𝐸 (𝑧) , (1.6)

where 𝜈21 ≈ 1420 MHz is the rest frequency of the 21 cm line. Different observation frequencies

correspond to different distances along the line of sight, which when Fourier transformed correspond

to 𝑘 ∥ . Thus modes along the line of sight, 𝑘 ∥ are probed using the observation frequencies of the

instrument. The wavenumbers 𝑘 ∥ and k⊥ are cylindrical equivalents of the spherical averaged

Fourier components in Equation 1.4. To compute Equation 1.4 given a cylindrically measured

power spectrum, we need to rebin the power spectrum along rings of constant |k| =
√︃
𝑘2
∥ + k2

⊥.

Currently there have not been any experiments to claim a detection of the 21cm power spectrum,

however many of these experiments have placed upper limits on Equation 1.4. Since most of

these instruments place limits at different scales and redshift, there is no universal upper limit.
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Rather, the upper limits on Δ2
21 are dependent on 𝑘 and 𝑧. For example, recently HERA found that

Δ2
21 < (30.76)2mK2 at 𝑧 = 7.9 and 𝑘 = 0.15Mpc−1 at 95% confidence [30].

1.1.3 Global Signal

Measurement of the global 21cm signal is complementary to interferometric measurements. First,

they are mathematically complementary since the the global signal is an example of a one point

statistic, i.e. the mean, whereas the power spectrum is a two point statistic. Secondly, these probes

are most sensitive to different features of reionization. For example, the 21cm power spectrum is

more sensitive to morphological properties of the EoR, such as the bubble size distribution and the

density-ionization correlation (the correlation between the 𝛿 and 𝑥HII in Equation 1.1). In contrast,

since a global signal is averaged over the entire sky, it allows for a more direct measurement on

the start and duration of the EoR, as well as the global properties of the first luminous sources.

One of the technical advantages of performing a global signal experiment is that it is achievable

instrumentally using a single antenna (which suffices to measure the mean signal). Conversely

an adequate measurement of the power spectrum requires an interferometer, comprised on many

dishes which besides being more expensive than a global signal analysis also potentially introduces

more complications in the data analysis pipelines.

In Figure 1.2 we show representative sample global signal curves from one particular theoretical

model. The shapes shown in Figure 1.2 are not specific to one set of EoR parameters, however the

general evolution of 𝑇b follows a general qualitative trend. We first focus on the red curve in the

top panel. After the time of recombination, 𝑇𝑠 and 𝑇𝑘 are coupled due to collisional excitations.

The remaining free electrons from recombination scatter off CMB photons keeping 𝑇𝛾 coupled

with 𝑇𝑠 leading to no 21cm signal [64]. At 𝑧 ∼ 150 , when the scatterings between electrons and

photons become rare, 𝑇𝑠 and 𝑇𝑘 decouple from 𝑇𝛾. As the Universe is expands the temperature of

the neutral hydrogen gas 𝑇𝑘 cools adiabatically. Thus due to collisional coupling and cooling gas

temperature, the spin temperature 𝑇𝑠 drops along with the gas temperature 𝑇𝑘 . As the Universe

expands, collisions become more infrequent and eventually 𝑇𝑘 decouples with 𝑇𝑠 which once again

falls into thermal equilibrium with 𝑇𝛾 leading to 𝑇 𝑏 = 0. However at the onset of CD, stars begin
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Figure 1.2: The top panel shows the global signal for different values of X-ray emissivity. In

the bottom panel the global signal is shown for different values of Ly𝛼 emissivity. The black

arrows indicate how the absorption trough changes as these parameters are increased. Image credit:

Jonathan Pritchard.

7



emitting Ly𝛼 photons which again couple 𝑇𝑠 to 𝑇𝑘 through the Wouthuysen-Field effect [24, 81].

The spin temperature is again in equilibrium with the gas temperature𝑇𝑘 creating a large absorption

signature relative to 𝑇𝛾. With sustained star formation X-ray production heats the gas temperature,

raising 𝑇𝑠 significantly, resulting in an emission spectrum relative to 𝑇𝛾. The astrophysical details

of CD directly determine the central redshift, duration, and amplitude of the absorption trough (as

well as the potential emission signal at the end of reionization). For example, in the top panel

of Figure 1.2 we show example global signal curves where the emissivity of the X-rays, 𝑓𝑥 is

increased from 𝑓𝑥 = 0.01 to 𝑓𝑥 = 100. Notice increasing the X-ray emissivity from 𝑓𝑥 = 0.01

to 𝑓𝑥 = 100 results in decreasing the depth of the absorption trough and quickly transitioning

into an emission signal. Similarly in the bottom panel we increase the Ly𝛼 emissivity 𝑓𝛼 from

0.01 to 100. This results in the production of more Ly𝛼 photons by the first galaxies. Notice

that as 𝑓𝛼 is increased from 𝑓𝛼 = 0.01 to 𝑓𝛼 = 100 the depth of the absorption trough increases.

From this example we can see that the global 21cm signal is also rich with information about the

astrophysics of the IGM. There are multiple experiments aiming to detect the global 21cm signal.

These experiments include the Broadband Instrument for Global HydrOgen ReioNisation Signal

(BIGHORNS) [74], Experiment to Detect the Global EoR Signature (EDGES) [7], Large aperture

Experiment to detect the Dark Ages (LEDA) [63], Probing Radio Intensity at high-Z from Marion

(PRIZM), [61], and the Radio Experiment for the Analysis of Cosmic Hydrogen (REACH), [12],

and Shaped Antennas to measure the background RAdio Spectrum (SARAS), [72]. Currently, only

EDGES has claimed to detected the global signal [8], specifically the absorption trough due to

Ly𝛼 coupling. However, the unexpectedly large amplitude and flattened profile was considerably

larger than was predicted by cosmological models [67]. This has spurred theoretical interest in

explaining the profile with excess radio background models, millicharged dark matter models and

non-ΛCDM cosmology [1, 21, 23, 31]. Other works have shown that the profile may be the result

of an unaccounted for systematic [5, 9, 32, 69–71].
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Figure 1.3: The temperature of the radio sky at 408MHz.
.

1.1.4 Systematics

In order for us to turn measurements of the radio sky into a 21cm detection we need to precisely

understand all non-21cm sources of radio emission as well as the details of the instruments used

to take them. The reason this precision is required is because at the observational frequencies

of interest, the radio sky is dominated by galactic and extra galactic synchrotron radiation which

we show in Figure 1.3 at 408MHz. We can see in Figure 1.3 that in some parts of the sky the

temperature of the foregrounds is more than 104K [13, 43, 68]. We can see in Figure 1.2 that the

mean amplitude of the expected 21cm signal is on the order of 10−1K, making the foregrounds up

to five orders of magnitude larger than 𝛿𝑇𝑏. The foregrounds are mostly due to synchrotron, and

therefore they are spectrally smooth. They can be well modeled as a power in frequency:

𝑇FG(𝜃, 𝜙, 𝜈) = 𝑇0(𝜃, 𝜙, 𝜈0) (𝜈/𝜈0)−𝛽 (1.7)
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Figure 1.4: The expected foreground bias in the estimated power spectrum due to the foregrounds

as a function of 𝑘⊥ and 𝑘 ∥ . Bright red regions indicate the modes most affected by the foregrounds.

Note that the foregrounds occupy a triangular wedge shape region of Fourier space. Image credit:

[44].

where 𝜈 is the frequency of observation, 𝑇0(𝜃, 𝜙, 𝜈) is the temperature of the sky at location 𝜃,

𝜙 at reference frequency 𝜈0 and 𝛽 is the spectral index that has typical range 2 ≤ 𝛽 ≤ 3.5. As

a consequence of Equation 1.7, the foregrounds get even brighter at low frequencies, i.e. higher

redshifts making these redshifts more difficult to access. The foregrounds affect both global 21cm

signal experiments and interferometric measurements. Because interferometers probe angular and

spectral fluctuations in different ways, their power spectrum measurements are most appropriately

interpreted on the 𝑘⊥-𝑘 ∥ plane. Since the foregrounds are spectrally smooth, they occupy the

smallest values of 𝑘 ∥ in two-dimensional Fourier space. However the coupling between the

foregrounds and instruments gives rise to a triangular region in Fourier space known as the wedge
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that is given by

𝑘 ∥ ≤
(
𝑋

𝜈𝑌

)
|k⊥ |, (1.8)

where 𝜈 is the observation frequency [46] and 𝑋 , 𝑌 are given by Equations 1.5 and 1.6 [44,45]. In

Figure 1.4 we show the expected bias in the estimated power spectrum due to the foregrounds. Notice

that the brightest regions correspond to the lowest 𝑘 ∥ modes. Also notice how the foregrounds at

larger k⊥ proliferate into higher 𝑘 ∥ .

For global signal experiments, one needs to account for the mean of Equation 1.7. In this case

the foregrounds are often fitted for with a combination of power laws of the form

log(𝑇FG(𝜈)) =
4∑︁
𝑖=0

𝑎𝑖log
(
𝜈

𝜈𝑖

) 𝑖
. (1.9)

where 𝑎𝑖 is the related to the logarithm of the mean sky temperature in Equation 1.7 and the additional

spectral components relative to Equation 1.7 account for possible spatial variations in the spectral

index 𝛽 as well as instrumentation issues that can cause additional spectral structure. This was

the approach for the EDGES detection [8]. Other experiments such as the REACH experiment

base their approach on empirically tuned sky models rather than generic parametrizations of the

foregrounds beyond generic statements about spectral smoothness. This approach can potentially

provide stronger constrains on the 21cm signal.

Besides the radio foregrounds, there are other sources of radio emission which affect the data-

analysis portion of 21cm experiments. These sources of contamination are called Radio Frequency

Interference (RFI) and can be several orders of magnitude brighter than emission from astrophysical

sources. RFI originates from artificial (i.e. human) processes. Leaving these artificial sources

of radio emission in the data cause obvious problems in the analysis pipeline [39, 40, 42, 83].

Conversely, excising the RFI introduces gaps into the data. In the context of a global signal

experiment, excising the RFI leads to reducing the signal to noise of the measurement. RFI

excision is even more problematic for interferometric instruments which intend to measure the

power spectrum. If these gaps are not accounted for, they can produce artifacts into the data analysis

pipeline ultimately contaminating the power spectrum which can potentially make detection of Δ2
21
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difficult. Note that there are many other systematic challenges for REACH and HERA. Since

my work is focused on RFI contamination (HERA) and foregrounds (REACH), this thesis is

concentrated on these two types of systematics. Therefore this list is only a partial representation

of the current work being done in resolving systematic issues in 21cm instruments.

Since other probes of the EoR are not limited by the same systematics that limit 21cm cosmology,

there has been interest in exploring other indirect means to study reionization. In the following

sections we discuss a few of these indirect probes: CMB optical depth 𝜏, FRBs, and UV luminosity

functions as well as Ly𝛼 emission from high 𝑧 galaxies.

1.1.5 Indirect Probes

The EoR transforms the ionization state of the IGM and thus imprints a unique signature on

astrophysical (and cosmological) probes which are sensitive to the number of free electrons 𝑛𝑒 in

the IGM. As an example, consider the optical depth 𝜏 from CMB anisotropy studies. In this case,

CMB photons are Thomson scattered by the free electrons produced by the EoR. This reduces

the amplitude of the observed primordial CMB anisotropies. Thus by measuring 𝜏 one can place

constraints on the EoR history. In this way the Planck experiment was able to constrain the

midpoint (when the IGM is 50% ionized) of reionization to 𝑧 = 7.68 ± 0.79 [62]. Similarly large-

scale polarization of the CMB radiation is induced when CMB photons scatter of the free electrons

in the IGM.

Another indirect probe of the EoR are FRBs. FRBs are a class of bright, millisecond duration,

radio transients that have been detected at frequencies ranging from 110 MHz to 1.5 GHz [60,78].

Although one FRB source has been localized within the Milky Way [11], most of the catalogued

FRBs remain extragalactic sources and can thus probe out to cosmological distances [18, 37]. The

key observable of an FRB is the Dispersion Measure (DM) which relates to the the broadening of

the radio pulse as the photons move from source of the FRB to the observer. The DM of an FRB

is proportional to the integrated column density of ionized electron gas 𝑛𝑒 along the line of sight.

Since 𝑛𝑒 implicitly depends on the underlying density field 𝛿, low 𝑧 FRBs have already been used

as a cosmological probe [80]. If high redshift FRBs (𝑧 > 6) are shown to exist, the EoR will also
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impact their observed DM. Thus by measuring the DM of high 𝑧 FRBs one can infer the mean

number density of free electrons of along the line of sight to probe the timeline of reionization. At

this stage there has been little work done in this regard, and thus the type of constraints that FRBs

can place on the EoR are relatively unexplored.

Since UV photons are thought to be responsible for reionization, one can also directly search

for these ionizing sources to form the UV luminosity function 𝜙. This is the number density of

galaxies as a function of their luminosity in the UV regime. A number of high redshift galaxies, i.e.

by [4, 6, 10, 47, 53, 54] have placed constraints on 𝜙. Since the UV luminosity function tracks the

most massive stars which have the shortest life span, 𝜙 is a good indicator of the star formation rate

(SFR). In the context of EoR models, the SFR influences how many ionizing photons are produced.

Thus one can translate empirical constraints on 𝜙 to a constraint on the number of ionizing photons

produced, leading to a constraint on reionization. In Figure 1.5 we show the UV luminosity function

for a variety of redshifts. Qualitatively we can see that 𝜙 drops for 𝑧 > 6 indicating the presence

of neutral hydrogen absorbing UV photons [52, 53]1. Recently, the James Webb Space Telescope

(JWST) has observed ultra high-z galaxies as well as candidates up to 𝑧 ∼ 17 [19, 51]. These

observations have shown unexpected abundance of early massive galaxies 𝑀 ∼ 109𝑀⊙ at high

redshifts (𝑧 > 10). Should these candidates be confirmed, this can have possible ramifications for

the EoR since these are the typical galaxies that are thought to drive reionization.

1.1.6 Sources of Ly𝛼 Emission

One of the most widely studied indirect probes of the EoR is detection of Ly𝛼 emission from

high redshift galaxies. Ly𝛼 emission is powered by two mechanisms which frequently occur

during the EoR making Ly𝛼 radiation abundant during this epoch. The first such mechanism

is through the recombination of ionized hydrogen. This is known as “recombination radiation”.

Recombination radiation is driven by the ionizing radiation emitted by hot young stars which have

ionized the surrounding interstellar gas. Since the gas in the vicinity of these stars is very dense,

the recombination timescale of the ionized hydrogen is very short. It was shown in [34] that the

1Note that it is still unclear whether this is due to reionization or the evolution in galaxy properties
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Figure 1.5: The UV luminosity function at redshifts 𝑧 = 4, 6, 8, 10. Note that the UV luminosity

decreases rapidly after 𝑧 > 6. The red dots correspond to measurements of galaxies at 𝑧 ∼ 10 while

the red solid lines correspond to best fitting Schechter function. Image credit: [52]

recombination time is

𝑡rec =
1

𝛼(𝑇)𝑛𝑒
(1.10)

where 𝑛𝑒 is the number density of free electrons and 𝛼(𝑇) encodes the temperature dependent

recombination coefficient of hydrogen. Equation 1.10 shows that recombinations are more frequent

in regions with higher number densities of free electrons. Consequently, recombinations in the

inter stellar medium (ISM), i.e. where 𝑛𝑒 is much larger, are significantly more frequent than in the

IGM. To see this, we can compute the recombination rate of ionized hydrogen in ionized bubbles

by replacing 𝑛𝑒 with the mean number density of free electrons (𝛿 = 0) in the IGM. This has

been shown to be 𝑛𝑒 = 2 × 10−7(1 + 𝑧)3cm−3 by [16, 17] 2. In this case Equation 1.10 becomes

𝑡rec = 9.3 × 109
(

1+𝑧
4

)−3
(𝑇/104K)0.7yr for ionized regions in the IGM. This is significantly larger

2Assuming cosmological parameters consistent with Planck [62]
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than a Hubble time, i.e. 𝑡Hubble =∼ 24(1+𝑧)3/2Gyr. Thus we can neglect recombinations originating

in the IGM and focus strictly in the ISM. When this hydrogen recombines, it often does so into

an excited state, and then quickly cascades down to the ground state. This process gives rise to

Ly𝛼 radiation. The Ly𝛼 energy emitted per unit time and volume due to recombination radiation

is given by

𝑗rec = 𝑝(Ly𝛼)𝑛𝑒𝑛𝑝
𝛼(𝑇)𝜙(𝜈)𝐸𝛼√

𝜋Δ𝑣𝐷
(1.11)

where 𝑛𝑝 is the number densities of the free protons, 𝐸𝛼 is the difference between the 𝑛 = 2

and 𝑛 = 1 states of hydrogen 10.2eV, 𝜙(𝜈) is the Ly𝛼 absorption profile called the Voigt profile,

Δ𝑣𝐷 = 1.1 × 1011(𝑇/104)1/2Hz is the thermal broadening of the line and 𝑝(Ly𝛼) is the refers to

the fraction of recombinations that ultimately lead to Ly𝛼 radiation, 0.68 [16, 17, 29, 75].

The second source of Ly𝛼 radiation is through collisionally excited hydrogen. In collisionally

excited hydrogen, a free electron interacts with a neutral hydrogen atom via collision. The collision

leads to a scenario where the electron of the neutral hydrogen atom is excited. Since the lifetime

of the electron in the excited state is short (10−9s), a Ly𝛼 photon is emitted shortly after. It

has been shown in [16, 17] that this leads to a Ly𝛼 energy emitted per unit time and volume

identical to Equation 1.11 but with the probability of obtaining a Ly𝛼 photon 𝑝(Ly𝛼) = nHI8.63 ×

10−6T−1/2⟨Ωtr⟩exp (−E𝛼/kBT) where ⟨Ωtr⟩ is the velocity averaged collision strength and 𝑛HI is

the number density of neutral hydrogen. The EoR creates perfect conditions for the production of

Ly𝛼 photons via recombination radiation and collisionally excitement since at high redshift the gas

surrounding stars is dense and battered with ionizing radiation.

1.1.7 Ly𝛼 Emission As a Probe of The EoR

A galaxy that emits Ly𝛼 radiation is known as a Ly𝛼 emitter (LAE). One can use the clustering,

number density and UV luminosity of LAEs to set constraints on reionziation (see Chapter 4 for

a more details regarding how these can be used to set constraints on reionization). In order to

constrain the timeline of reionization using Ly𝛼 flux from LAEs, one must know the intrinsic Ly𝛼

flux leaving the ISM of the emitting galaxy. Thus making connections between observed Ly𝛼 flux
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Figure 1.6: Ly𝛼 forest for 19 high redshifts quasars from [22]. Note that quasars above 𝑧 > 6 show

no transmission in the Gunn-Peterson trough. Image credit: [22]

and the neutral properties of the IGM are prone to the complex radiative transfer physics which

determine how much Ly𝛼 flux is transmitted through the ISM [17,27,28]. For example, the spectral

line profile of Ly𝛼 emission, the distribution of dust, as well as the escape fraction of Ly𝛼 photons

all determine how much Ly𝛼 emission leaves the ISM [28, 35, 79, 82]. This intrinsic Ly𝛼 flux is

therefore degenerate with a reduction in transmission in the IGM due to neutral hydrogen. Thus

this is a systematic issue preventing LAEs from setting tighter constraints on reionization. In the

future JWST may provide detailed characterization of ISM physics which can potentially break

some of these degeneracies. This has led other works to instead focus on the statistics of LAEs

which are less dependent on the intrinsic flux emitted from the ISM. For example, [49, 73] have

used the clustering of LAEs to set constraints on the EoR model parameters.
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Some of the strongest EoR constraints using the Ly𝛼 line come from the spectra of high redshift

quasars. Photons emitted from the quasar are progressively redshifted as they move through the

IGM. Eventually their redshifted energy will match the energy of the Ly𝛼 line. Since Ly𝛼 is

resonant with neutral hydrogen, any Ly𝛼 photon is readily absorbed by the neutral hydrogen in the

IGM. Thus the redshifted photon can be absorbed if it is in the presence of neutral hydrogen. By

identifying Ly𝛼 absorption lines in the spectra of high redshift quasars, we can infer the ionization

properties of the IGM. This is known as the Ly𝛼 forest. In Figure 1.6 we show example spectra of

various high 𝑧 quasars from [22]. Notice that below 𝑧 = 6, Ly𝛼 transmission is frequently observed.

Conversely that at 𝑧 ≥ 6 many spectra show complete absorption of the Ly𝛼 forest. This is known

as the Gunn-Peterson trough [3]. It has been shown in [3] that if the IGM is ionized to better than

1 part in 104 then Ly𝛼 emission will be saturated by the residual neutral hydrogen in the IGM.

Thus the saturation of Ly𝛼 flux above redshifts 𝑧 = 6 have been used as evidence of the end of

reionization. Recently, however, it has been shown that the Ly𝛼 forest of some quasars between

redshifts 5.9 − 6.0 still have appreciable suppression of Ly𝛼 flux below 𝑧 < 6 [2, 20, 36, 79]. This

has been used as evidence of neutral islands of hydrogen still remaining at redshifts below 𝑧 < 6.

Recent work has shown that late-ending reionization models, e.g. [38, 41] are in good agreement

with the observations.

1.1.8 Roadmap

There are two main objectives of this thesis. First, to forecast the types of constraints that we can

place on CD and the EoR using both direct and indirect probes. This is the subject of the first three

chapters:

• Chapter 2, titled ‘Quantifying Density-Ionization Correlations with the 21cm Power Spec-

trum‘. Here we develop a method to parametrize the density-ionization correlations during

the EoR. This parametrization is used as a tool to rule out classes of EoR models. This work

is based on a published paper [56]. The paper was written by me, with feedback given by my

supervisor Adrian Liu. I performed all the calculations with the guidance and advice from

Adrian Liu. I am the primary author of this paper.
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• Chapter 3, titled ‘Constraining the Epoch of Reionization With Highly Dispersed Fast Radio

Bursts‘. This work explores whether the DM of high redshift FRBs are sensitive to the details

of reionization. We also examine the types of constraints that measurement of high redshift

DMs can place on the timeline of reionization. This work is based on published work [55]

done in collaboration with my colleague Hannah Fronenberg. We collaborated on the big

picture of the project. I produced the mock dataset, computations, model fitting and result

interpretations. Hannah produced the intrinsic number count of FRBs (Section 4.2). I wrote

Sections 2,3,4,5,6 (with the exception of Section 4.2 which was entirely written by Hannah).

We collaborated on Sections 1 and 6. I am primary author of the paper.

• Chapter 4, titled ‘Lyman Alpha Emitters and the 21cm Power Spectrum as Probes of Density-

Ionization Correlation in the Epoch of Reionization‘. This work examines the effect that

density-ionization correlation has on the statistics of LAEs. We forecast the types of con-

straints that can be placed on the EoR using measurement of the 21cm power spectrum

and observations of LAEs. This is the result of published work [57]. I performed all the

calculations with the guidance and advice from Adrian Liu. I wrote the paper with feedback

give by Adrian Liu. I am primary author of this paper.

The second objective of this thesis is devoted to overcoming systematics that are present in the data

analysis pipeline of 21cm interferometric measures and global signal measurements. Specifically

I focus on RFI contamination in 21cm interferometric measurements using HERA as the fiducial

instrument for this analysis. I also examine foreground systematics in global signal experiments,

using REACH as a testbed for the study. This work is the subject of the following chapters:

• Chapter 5, titled ‘Error Characterization Of Inpaint Methods In Interfermoetric Measure-

ments of the Epoch Of Reionization‘. This work characterizes the types of errors that

inpainting RFI corrupted data has on the data analysis pipeline of interferometric measure-

ments of the 21cm signal. We also introduce a convolutional neural network (CNN) capable

of inpainting RFI corrupted data. This work is based on a yet to be published paper written

in collaboration with Jing Liu, an undergraduate student at McGill University, my super-
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visor Adrian Liu, Siamak Ravanbakhsh from the Computer Science department at McGill

University as well as members of the HERA collaboration: Nick Kern, Aaron-Ewall Wice,

Phil Bull, Bobby Pascua. The paper is completed and is waiting for the HERA collaboration

mandate of 2 weeks before it can be officially submitted. I built the CNN which is based

on the barebones structure created by Jing Liu and Siamak Ravanbakhsh. My modifications

were of the hyperparameters, loss function, input shapes. I added additional layers to the

network. I performed all the error characterization of the project. The HERA collaborators

provided technical support for implementation of the inpainting techniques. The entire work

was supervised by Adrian Liu. I wrote all paper with comments and feedback provided by

Adrian Liu. Members of the HERA collaboration (Nick Kern, Phil Bull, Bryna Hazelton,

Steven Murray, James Aguirre, Josh Dillon) provided additional comments. I am primary

author of the paper.

• Chapter 6, titled ‘A General Bayesian Framework to Account for Foreground Map Errors

in Global 21-cm Experiments‘. This work explores the effect that errors in the foreground

models have on the REACH data analysis pipeline as well as develop a framework that can

account for them. This is the result of yet to be published work. The paper is completed

and is waiting for the REACH collaboration mandate of 2 weeks before it can be officially

submitted. This work was done in collaboration with Peter Sims, a postdoctoral scholar from

McGill University as well as Adrian Liu. I performed all the computations, analysis and

writing. Peter Sims and Adrian Liu provided comments to the writing. Peter Sims provided

guidance throughout the project as well as aided with the interpretation of the results. Adrian

Liu supervised the project and provided critical feedback and advice. I am primary author

of the paper.

In the context of systematics, I work on RFI contamination (HERA) and foregrounds systematics

(REACH). I therefore focus on these two types of systematics in this thesis. However it should be

noted that this is only a partial list of all systematics that are pervasive in 21cm instruments and so

there are many other systematic challenges faced by HERA and REACH.
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Chapter 2

Quantifying Density-Ionization Correlations

with the 21cm Power Spectrum

Addendum for thesis

Density-ionization correlation describes the way that ionized regions correlate with the underlying

density field 𝛿 during reionization. Previous works have considered three classes of density-

ionization correlations: inside-out reionization (where the ionized regions are sourced to overdense

regions in 𝛿), outside-in reionization (where the ionized regions are linked to underdense regions in

𝛿) and uncorrelated reionization (where the ionized bubbles are random with respect to 𝛿). Although

inside-out reionization is preferred by most models, outside-in and uncorrelated reionization have

not been ruled out.

In this work, Adrian Liu and I designed a procedure capable of producing a continuous range of

density-ionization correlation scenarios. This means that inside-out, outside-in and uncorrelated

are just special cases of this spectrum of correlations. We developed a parametrization 𝛽 to track the

density-ionization correlation, so placing constraints on 𝛽 is tantamount to ruling out reionization

models.

To find these constraints, we studied how the 21cm power spectrum depends on our parametrization

of the density-ionization correlation. We also used a mock HERA observation to forecast the types
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of constraints that a HERA measurement of the power spectrum can place on 𝛽. Since upper limits

of the 21cm power spectrum are dropping, we will soon be at the stage where we can use this

parametrization as a tool to rule out density-ionization correlation models.

Abstract

The Epoch of Reionization (EoR)—when neutral hydrogen in the intergalactic medium was system-

atically ionized—is a period in our Universe’s history that is currently poorly understood. However,

a key prediction of most models is a correlation between the density and ionization field during the

EoR. This has consequences for the 21cm power spectrum. Here, we propose a parametrization for

the density-ionization correlation and study the dependence of the 21cm power spectrum on this

parameterization. We use this formalism to forecast the ability of current and future observations to

constrain these correlations. We find that upper limits on the dimensionless power spectrum at red-

shifts 7.5 < 𝑧 < 8.5 using 𝑘 bins between 0.1 Mpc−1 < 𝑘 < 0.75 Mpc−1 with error bars at the level

of ∼20 mK2 about our fiducial model would rule out uncorrelated reionization at 99% credibility.

Beyond upper limits, we find that at its full sensitivity, the Hydrogen Epoch of Reionization Array

(HERA) will be able to place strong constraints on the sign and magnitude of density-ionization

correlations.

2.1 Introduction

A key event in our Universe’s history is the Epoch of Reionization (EoR) where the neutral

hydrogen (HI) making up the intergalactic medium (IGM) is ionized by the first generation of stars

and galaxies. The broad timeline of this landmark process is bound by two important measurements:

the Cosmic Microwave Background (CMB) and measurements of high redshift quasars at 𝑧 < 7.

The CMB suggests that the Universe is neutral by redshift 𝑧 ≃ 1100 [44] while measurement of

the Gunn-Peterson trough at 𝑧 ≃ 6 tells us that the universe must have undergone a transition

from neutral to ionized by this time [4, 16, 25, 36], although recent studies have hinted at a more
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complicated picture than previously thought [2,3,6,8,11,12,14,28,31,41]. Beyond just its timeline,

the astrophysical details of the EoR remain relatively unconstrained observationally. Without direct

observational evidence deep into EoR redshifts, the period remains a crucial missing piece in our

understanding of galaxy formation.

One of the most promising ways to explore this epoch is to use the hyperfine transition of

hydrogen, where 21cm-wavelength photons are absorbed or emitted as electrons in hydrogen atoms

flip their spins relative to their protons. (For reviews, see [22, 33, 34, 40, 49]). The 21cm signal

allows us to trace primordial hydrogen as a function of redshift and position and can in principle

be an incisive probe of first-generation stars and galaxies. The photon lies in the radio part of the

electromagnetic spectrum and its absorption or emission is measured relative to the CMB. One

therefore measures a differential differential brightness temperature 𝛿𝑇𝑏, which is given by

𝛿𝑇𝑏 (r, 𝑧) ≈ (27 mK)
(
𝑇𝑠 (r, 𝑧) − 𝑇𝛾 (𝑧)

𝑇𝑠 (r, 𝑧)

)
[1 − 𝑥HII(r, 𝑧)] [1 + 𝛿(r, 𝑧)]

×
[
𝐻 (𝑧)/(1 + 𝑧)
𝑑𝑣𝑟/𝑑𝑟

] (
1 + 𝑧
10

0.15
Ω𝑚ℎ

2

)1/2 (
Ω𝑏ℎ

2

0.023

)
, (2.1)

where r is a position vector, 𝑧 is the redshift, 𝑥HII is the ionized fraction of hydrogen, 𝛿 is the

overdensity, 𝐻 (𝑧) is the Hubble parameter (with ℎ as its dimensionless counterpart), 𝑇𝛾 (𝑧) is the

CMB temperature, Ω𝑚 is the normalized matter density, Ω𝑏 is the normalized baryon density, and

𝑑𝑣𝑟/𝑑𝑟 is the line of sight velocity gradient. The differential brightness temperature depends on

the spin temperature 𝑇𝑠 (r, 𝑧) of the neutral hydrogen gas, which measures the relative number of

HI atoms that are in the excited versus ground hyperfine states. Throughout this paper we consider

redshift ranges where the spin temperature is heated above that of the CMB, i.e. 𝑇𝑠 ≫ 𝑇𝛾 so that the

𝑇𝑠 drops out of Equation (2.1), thus allowing us to neglect the spin temperature in our simulations.

In this work we set the ΛCDM parameters to 𝜎8 = 0.81, Ω𝑚 = 0.31, Ω𝑏 = 0.048, ℎ = 0.68,

𝑛𝑠 = 0.9603 consistent with Planck 2015 results [44].

Reionization does not occur instantaneously throughout our Universe. Instead, ionized bubbles

begin to grow in certain parts of our Universe, eventually coalescing as the process completes [21].

Most models predict that these ionized bubbles are not random; they are tightly correlated with
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their corresponding density field. There are two extremes in how the ionization field couples to

the density field. The ionized bubbles can be positively correlated with the corresponding density

field so that the highest density regions correspond to regions of high fractions of ionized hydrogen

𝑥HII [10,39]. This is the “inside-out" model of reionization, where reionization happens first in the

most overdense regions before the ionizing photons escape the high density regions and ionize the

lower density regions of the IGM. Conversely, the ionization field can be negatively correlated with

the density field. Here regions of the highest density correspond to the lowest fractions of ionized

hydrogen and low density regions map to high fractions of ionized hydrogen. This is the “outside-

in" model of reionization. Outside-in models generally require hydrogen recombination rates to

dominate the ionizing effects of UV sources so that the most overdense regions have the strongest

recombination rates which keep them mostly neutral. In this scenario, reionization happens first

in lower density regions where recombination effects are diminished. Outside-in models can also

occur if x-rays - which more easily escape high dense regions - play a significant role in ionizing the

IGM. In either of these scenarios the highest density regions are last to be ionized. It is also possible

for reionization to unfold as a combination of both inside-out and outside-in models [20, 35]. This

scenario entails statistical combinations of the individual inside-out and outside-in statistics between

density and ionization fields.

In this paper we build on the work of [54] and [5], where the task of distinguishing between

inside-out and outside-in scenarios was treated as a discrete model selection problem. Here we take

the complementary approach of parametrizing the density-ionization correlation in a continuous

manner. This enables us to quantify this correlation, converting the model selection exercise

into one of parameter fitting. We can therefore quantitatively constrain outside-in or inside-out

morphologies as well as rule out models that predict random uncorrelated bubbles. To this end,

we parametrize the correlation between ionization and density field using a single parameter and

explore how variation of this parameter affects the 21cm power spectrum. We examine the range

of constraints that can be placed on the amount of correlation between these fields using upcoming

Hydrogen Epoch of Reionization Experiment (HERA; [13]). In our forecasts, we also include other

model parameters that have traditionally been used to capture EoR physics, exploring any new
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degeneracies that arise from the inclusion of arbitrary density-ionization correlations. This paper

therefore serves as a generalization of forecasts such as those of [45] and [26]. We do not include

as many astrophysical and cosmological parameters as [32], [15], [27], [29], or [42] do, but this is

simply to avoid obscuring the discussion of density-ionization correlation, and our formalism can

be easily adapted to include any extra parameters that are considered relevant.

The rest of this paper is organized as follows. In Section 2.2, we introduce our new correlation

parameter and describe how it is incorporated into our simulations. We show how this parameter

affects the 21 cm power spectra in Section 2.3. In Section 2.4 we describe the HERA instrument

and its sensitivity, as well as our forecasting methodology. In Section 4.6 we present the results of

our forecasts, emphasizing what one might learn about the morphology of reionization from early

observational limits. We summarize our conclusions in Section 6.7.

2.2 Simulations

In inside-out models, ionizing photons are produced in the highest density regions and these photons

ionize the surrounding hydrogen before escaping into the lower density regions of the IGM. The

correlation between 𝛿 and 𝑥HII in inside-out models has consequences for the 21cm brightness

temperature because the product 𝑥HII𝛿 appears in Equation 2.1. A correlation between density and

ionization fields suggests that whenever the overdensity 𝛿 is large, the ionized fraction 𝑥HII is large.

Therefore the product 𝑥HII𝛿 is typically much larger than the equivalent cross term for outside-in

models, leading to lower 𝛿𝑇𝑏 in general.

In contrast, if recombination rates dominate the reionization process, one ends up with an

outside-in scenario. Here, ionizing photons created in high density regions escape and ionize the

lower density regions, where recombination rates are lower. As a result, the low density regions

remain neutral while the high density regions are kept overall neutral. As reionization proceeds,

these high density regions ionize last, and 𝛿 and 𝑥HII are negatively correlated. This boosts the

brightness temperature contrast, leading to higher 𝛿𝑇𝑏.
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In general, one expects that reionization involves both inside-out and outside-in processes, with

the former being important on large scales during early reionization and the latter being important

on small scales during late reionization [20]. However, this separation will not necessarily be

perfect, and it is possible (for instance) to construct theoretical models where strong, biased sources

can result in outside-in effects being important on large scales [19, 23]. Constraining the sign of

the 𝛿-𝑥HII correlation is therefore not just an interesting problem in its own right, but one that

may be important in shedding light on the nature of ionizing sources during the EoR [17]. In the

subsections that follow, we walk through how one can begin with a semi-numerical simulation

of inside-out, map it onto a “mirror" outside-in simulation, and then finally to generalize to a

continuum of simulations with arbitrary density-ionization correlations.

2.2.1 Inside-out Reionization Simulations Using 21cmFAST

In order to generate density and ionization fields indicative of a variety of reionization scenarios, we

use the publicly available 21cmFAST package [37]. This semi-numerical code produces an initial

density box at high redshift before smoothing the density field to a coarser box corresponding to

the same comoving side length. The density field is then evolved through redshift using first order

pertubation theory. The cosmological parameters used in our simulations are described in Section

2.1. Throughout our simulations, we use high resolutions boxes of 4503 voxels corresponding

to a comoving side length of 225 Mpc and coarser boxes of 1503 voxels corresponding to the

same comoving side length. The code then implements the excursion set formalism of [24]

for reionization, and predominantly assumes inside-out reionization. This approach evolves the

overdensity field 𝛿 as a function of position and smoothing scale and then declares a region ionized

if there are enough photons to ionize each baryon within that region of mass 𝑚ion. These regions

must have produced at least enough photons to ionize each of the baryons, satisfying

𝑚ion = 𝜁𝑚gal (2.2)
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where 𝑚gal is the mass in collapsed objects, and 𝜁 is the ionizing efficiency of the sources. This

condition is continually checked as the density field is smoothed from large scales to small scales.

A particular location is flagged as ionized at the first scale in which this condition is satisfied.

The 21cmFAST package contains a number of adjustable parameters whose goal is to capture

variations in the detailed astrophysics of reionization. We choose three such parameters to vary in

this paper:

1. The mean free path of ionizing photons, 𝑅mfp. This is the mean distance an ionizing photon

travels before being absorbed by a dense region of hydrogen. This sets the effective horizon

for an ionizing photon. We consider values of 𝑅mfp between 3 Mpc and 50 Mpc.

2. The ionizing efficiency, 𝜁 . The effectiveness of the ionizing sources is summarized by a

single parameter

𝜁 =
𝑓esc 𝑓∗𝑁𝛾
(1 + 𝑛rec)

, (2.3)

which takes into account the amount of ionizing photons produced per stellar baryon 𝑁𝛾, the

rate of stellar production 𝑓∗, and the fraction of these ionizing photons that escape into the

IGM, 𝑓esc. The recombination rate, 𝑛rec, acts to lower the ionizing efficiency. The ionizing

efficiency, 𝜁 , is sometimes taken to vary according to halo mass; however, throughout this

work, we treat 𝜁 to be constant during reionization. We consider values of 𝜁 between 25 and

50.

3. The turnover mass, 𝑀turn. This describes the mass of a halo below which there is an

exponential suppression in star formation efficiency. A turnover mass of 108𝑀⊙ corresponds

roughly to ∼ 104 K virial temperature, at which point gas in a halo can start to cool via Ly𝛼

emission. We consider values of 𝑀turn between 107𝑀⊙ and 109𝑀⊙.

Variation of these parameters modify the onset and duration of reionizaton, and for fixed redshift

can also change the size of the ionized bubbles. Models with large values of 𝜁 imply that emitters

are very effective at ionizing the IGM and increasing this parameter shifts the onset of reionization

to higher redshifts. The size and scale of the bubbles are also dependent on the turnover mass.
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Smaller values of 𝑀turn allow for smaller sources to contribute to the EoR. As a result, ionized

bubbles tend to be smaller and more numerous. Reionization is complete when these bubbles merge

together to form a complete ionized IGM. Modification of 𝑅mfp also sets the maximum size of the

ionized bubbles which can have consequences for large scales as the ionized bubbles grow large

enough to approach the maximum size 𝑅mfp. Variation of these parameters have consequences for

the structure of the temperature field 𝛿𝑇𝑏. However, these variations are still within the context of

a predominantly inside-out formalism, with the ionized fraction field 𝑥HII generally correlated with

the overdensity field 𝛿. We therefore now need to modify the prescription by which the ionized

fraction field (or equivalently, the ionization field) is generated from an overdensity field.

2.2.2 Outside-in Reionzation Simulations using 21cmFAST

In order to make outside-in temperature maps using 21cmFAST we require that the temperature

maps be produced from density and ionized fraction fields that are negatively correlated. To do

so starting from an inside-out simulation package, we adapt methods from the structure formation

literature and use the idea of sign-flipped initial conditions [48,53]. In particular, we can produce 𝛿

and 𝑥HII fields that are negatively correlated with one another by pairing a sign-flipped overdensity

field with its original ionization field. A sign flip will invert 𝛿 while preserving the rest of its

structure. Importantly, this sign flip must be applied to the initial (i.e., high-redshift) density

field while 𝛿 is still in the linear regime. This ensures that the sign flipped density and velocity

fields have undergone the correct non-linear evolution, resulting in physically plausible probability

distribution functions for both quantities. The evolved sign flipped density field will contain the

same statistics as the original density field except overdense regions become underdense regions

and vice versa. When 𝛿flip is paired with its original ionization field 𝑥HII, the regions of lowest

baryonic overdensities now correspond to regions of high ionized fractions of hydrogen in the

ionization field. Similarly, regions of high baryonic overdensites in 𝛿flip correspond to neutral

regions of hydrogen in 𝑥HII. The fields 𝑥HII and 𝛿flip
𝑏

are therefore anti-correlated. Temperature

maps computed using Equation (2.1) with fields 𝛿flip
𝑏

and 𝑥HII will have statistics representative of

outside-in reionization.
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Figure 2.1: Example ionization 𝑥HII, density 𝛿, and brightness temperature 𝛿𝑇𝑏 fields at 𝑧 = 9

with fiducial parameters of 𝜁0 = 25 , 𝑀turn,0 = 5 × 108𝑀⊙, and 𝑅mfp,0 = 30 Mpc. The ionized

regions from the ionization field are superimposed as contours on the density field to emphasize

the correlation between the two fields. Inside-out scenarios (with 𝛽 > 0) have positively correlated

density and ionization fields. Conversely, outside-in scenarios (with 𝛽 < 0) have negatively

correlated fields. The case 𝛽 = 0 refers to the scenario where the ionization field and density

field are entirely uncorrelated. The 21 cm brightness temperature field is sensitive to the type of

correlation between matter and ionization fields. For example, the outside-in model shown here

has the highest brightness temperature, since regions of high density are also regions of highest

neutral fraction.
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In Figure 2.1, we provide some visual intuition for our inside-out and outside-in models. The

leftmost picture is of an ionization field that can be paired with density fields (middle column)

that are either anticorrelated (bottom row), uncorrelated (middle row), or correlated (top row).

Contours around ionized bubbles from the ionization field are superimposed on each density field.

The positively correlated density field is the original density field from which 21cmFAST produced

the ionization field; it therefore represents an inside-out scenario, and one sees that regions of high

density correspond to regions of high ionization. The negatively correlated density field comes

from the sign-flipped method, where high density regions correspond to regions of high neutral

fraction; this represents an outside-in scenario. The 𝑥HII𝛿 term of Equation 2.1 then predicts a lower

brightness temperature for inside-out models than for outside-in models, as is visually confirmed

in maps of 𝛿𝑇𝑏 (right column).

The morphologies for our outside-in maps differ from outside-in maps that model the sub-grid

physics. For example, [10] produce outside-in maps by modeling the inhomogenous recombinations

that occur near overdense regions and then parametrize the degree to which recombinations affect

reionization by tuning the recombination timescale. This approach produces outside-in maps which

are driven by self shielded ovedense regions. In this scenario, reionization begins as inside-out but

the morphology changes after the midpoint of reionization when the shielded high-density neutral

regions ionize the IGM. These overdense neutral regions are found inside the ionized bubbles

and increase the small scale structure while also limiting the size of coherently ionized regions.

This decreases the variance on large scales (i.e., the power spectrum at low 𝑘; see Section 2.3)

as compared to our model. We find that the variance on all scales between these two approaches

diverge as reionization progresses. Thus, unlike the very physically motivated model such as that

of [10], our outside-in model should be viewed more as a phenomenological parametrization to

bracket the possibilities. Our approach is similar to that of [54] which produces an outside-in model

by implementing an inversion operation on a fiducial inside-out model. Should early data favour

outside-in reionization, our framework is general enough that one could adopt a physically motivated

outside-in model and to decorrelate the density field from there. We are mostly interested in the
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correlation statistics indicative of these reionization morphologies in order to rule out uncorrelated

reionization scenarios.

Note that our procedure for creating outside-in maps from inside-out maps changes the mass-

weighted ionization history. This occurs because the sign flip acts on the density field and not

the ionization field. By keeping the ionization field the same, the total volume of the ionized

regions remains constant, but these regions are now paired with different density values thereby

changing the mass weighted global ionized fraction. The largest difference between the mass-

weighted ionization histories of these extreme models is about ±0.1, occurring near the midpoint

of reionization. This does not constitute a significant difference in our results.

2.2.3 Simulating Arbitrary Correlations using 21cmFAST

It is also possible to generate temperature fields from 𝑥HII and 𝛿 where 𝛿 and 𝑥HII are correlated by

some arbitrary amount. To do this, we draw a random phase 𝜙 from a Gaussian of standard deviation

𝜎 and apply this phase constant to each point of the Fourier transformed density field �̃� in 𝑘 space,

such that �̃�(𝑘) → �̃�(𝑘)𝑒𝑖𝜙. This shifts the phase of each Fourier mode while leaving the overall

variance of the field for each Fourier mode unchanged. Just as with the sign-flipped overdensity box,

this ensures that the statistics of the density field (in particular, the power spectrum—see Section

2.3) remain unchanged. However, upon returning the overdensity box to configuration space, high-

and low-density regions will have shifted from their original positions, somewhat decorrelating

the field from its corresponding neutral fraction box. This procedure is carried out on the fine

resolution boxes of 4503 voxels. This allows for the smallest Fourier modes to be decorrelated

before they are smoothed over to the coarser resolution box. Our results in Section 2.3 do not

depend on the resolution of the fine resolution box—so long as they fall within the acceptable range

of resolutions set by 21cmFAST.

The degree of correlation between the ionization field and the density field is governed by

𝜎. If 𝜎 is small, then the randomly chosen values 𝜙 are also typically small and so the Fourier

modes are not significantly shifted. Once the field is transformed back to configuration space,

the resulting density field only be slightly perturbed. As 𝜎 is increased, 𝜙 are chosen from an
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increasingly broad range, and so can produce large deviations from their original configurations.

Upon transformation to configuration space, the density field becomes increasingly decorrelated

from its original ionization field. As 𝜎 approaches 𝜋, the multiplicative factor 𝑒𝑖𝜙 essentially

randomizes the phases, and the resulting density field is completely uncorrelated. The quantity

𝜎 therefore quantifies the amount that the density field has been decorrelated from the 𝑥HII field:

for the special case of 𝜎 = 0 we recover the original density field while for 𝜎 ∼ 𝜋 the density

field is entirely decoupled from 𝑥HII. Identical applications of a given value of 𝜎 with different

random seeds lead to slight different realizations of the density field. However the fluctuations in

the resulting statistics (defined in Section 2.3) are insignificant (a fractional shift of 10−4 in the

variance of the field) and do not impact our results in Section 4.6.

If the above decorrelation method is combined with the sign flip from Section 2.2.2, we can also

introduce arbitrary levels of anticorrelation between 𝛿 and 𝑥HII for outside-in models of reionization.

The sign flip and decorrelation can then be folded into a single parameter 𝛽, which is defined as

𝛽 ≡


sgn(𝜎)

(
1 − |𝜎 |

𝜋

)
𝜎 ≠ 0

±1 𝜎 = 0
(2.4)

where as shorthand, we use the sign sgn(𝜎) of 𝜎 to record whether we are decorrelating from an

inside-out model (sgn(𝜎) = +1) or an outside-in model (sgn(𝜎) = −1). The special case 𝜎 = 0 is

multivalued in 𝛽, but since those correspond to the original inside-out and outside-in models, we

simply assign those to 𝛽 = +1 and 𝛽 = −1 respectively. With our definition of 𝛽, we therefore have

a parameter that can be continuously dialled from +1 to −1 to go from a fully inside-out scenario to

a fully outside-in scenario: a positive value of 𝛽 indicates a scenario where an initially correlated

matter and ionization field are decorrelated by 𝜎 while a negative 𝛽 indicates a scenario where

a negatively correlated matter and ionization field are decorrelated by 𝜎. Table 4.1 summarizes

the terminology used to describe the type of correlation as well as the model it pertains to. In the

sections that follow, we will consider 𝛽 to be another one of our EoR parameters (joining 𝜁 , 𝑅mfp

or 𝑀turn) that can be potentially constrained by 21 cm observations.
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Table 2.1: Lexicon for physical models and their respective correlations

𝛽 Moniker for Field correlations Physical Model
𝑥HII 𝛿

1 Correlated Inside-out
1 < 𝛽 < 0 Increasingly correlated Mostly inside-out

0 Uncorrelated Uncorrelated
0 < 𝛽 < −1 Increasingly anti-correlated Mostly outside-in

−1 Anti-correlated Outside-in

2.3 Temperature Field Statistics

In Section 2 we gained intuition for how correlations between ionization and density fields can affect

the 21cm temperature maps. In this section we compute the statistical properties of these maps that

can be measured by upcoming 21cm instruments. In particular, we compute the “dimensionless"

21cm power spectrum Δ2
21 which is defined through the brightness temperature field as

Δ2
21(𝑘) ≡

𝑘3

2𝜋2
⟨|𝛿𝑇𝑏 (k) |2⟩

𝑉
(2.5)

where 𝑉 is the survey volume, 𝛿𝑇𝑏 is the Fourier transform of the brightness temperature field

(into a space defined by spatial wavevector k), and the angular brackets indicate an average over

shells of constant 𝑘 ≡ |k|. Physically, Δ2
21 measures the contribution to the brightness temperature

variance per logarithmic interval in 𝑘 . The brightness temperature is sensitive to the inside-out

versus outside-in morphology via the 𝑥HII𝛿 cross term in Equation (2.1). Importantly, notice that the

power spectrum does not depend on the phases of the complex Fourier field. Defining the analogous

quantity for the density field (i.e., defining the matter power spectrum) then immediately reveals that

our decorrelation procedure from Section 2.2.3—which only involved altering the Fourier phases

of our density field—preserves the statistics of the matter distribution. Each decorrelated field is

therefore a perfectly legitimate realization of 𝛿.
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Figure 2.2: Power Spectra for varying 𝛽 at different redshifts, with the other EoR parameters fixed

to fiducial values of 𝜁0 = 25 , 𝑀turn,0 = 5 × 108𝑀⊙, and 𝑅mrp,0 = 30 Mpc. The mean ionized

fractions 𝑥HII at redshifts, 𝑧 = 10.5, 𝑧 = 8.5 are 0.09, 0.2 and 0.4 respectively. The amplitude of

Δ2
21 increases as 𝛽 is decreased from its maximal value 𝛽 = 1, corresponding to inside-out models

of reionization. The amplitude of the power is maximum at 𝛽 = −1, corresponding to outside-in

models. The contrast between these models is largest at the scale corresponding to the size of the

ionized regions. The dotted line represents a model without any correlation between density and

ionization fields.

49



Figure 2.3: Power spectra as a function of 𝑧 and 𝛽 at two chosen 𝑘 values. The contrast between

outside-in and inside-out models is largest at the midpoint of reionization. For the fiducial param-

eters of 𝜁0 = 25 , 𝑀turn,0 = 5× 108𝑀⊙, and 𝑅mfp,0 = 30 Mpc, this occurs at 𝑧 ≈ 8. The dotted curve

represents a model without any correlations between 𝛿 and 𝑥𝐻II.

2.3.1 Variation of Δ2
21 as a Function of 𝛽

Figure 2.2 illustrates the effect of varying 𝛽 on the power spectrum at three different redshifts.

Beginning from an inside-out (𝛽 = 1) model, decreasing 𝛽 reduces the density field’s original

correlation with 𝑥HII, and increases the chances that neutral regions overlap with overdense regions

in 𝛿. As a result, we find increasing power on large scales as we decrease 𝛽 from +1 to −1.

The intermediate scenario with 𝛽 = 0 is one where the density field and the ionization field are

uncorrelated, and as expected, we find that the predictions for Δ2
21 in this case are the same whether

we decorrelate from an initially inside-out model or an outside-in model (i.e., whether we approach

𝛽 = 0 from below or above). We also find that the qualitative behaviour of Figure 2.2 is insensitive

to the exact form of our 𝛽 parametrization, Equation (2.4). Modifying the parameterization changes

the precise rate with which Δ2
21 changes as a function of 𝛽, but the extreme scenarios remain the

same and are given by the 𝛽 = ±1 curves of Figure 2.2.

One curious feature seen in Figure 2.2 is the fact that the behaviour inΔ2
21 is non-monotonic with

𝛽 at high 𝑘 . That is, at high 𝑘 we see that it is in fact the uncorrelated case with 𝛽 = 0 that has the
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highest power, with the extreme cases of 𝛽 = ±1 having lower power at 𝑘 > 1.5 Mpc−1. To get some

intuition for why this is the case, consider Figure 2.4, where we show high-pass filtered versions of

the brightness temperature field for 𝛽 = +1, 0, and −1 at 𝑧 = 9. These filtered temperature fields

contain only power at 𝑘 > 1.5 Mpc−1, and for clarity (to bring out the fluctuations) we plot their

absolute values. Also plotted are the density fields for comparison, and overlaid on both fields

are contours demarcating the ionized bubbles. What one sees is that as expected, for the extreme

inside-out (𝛽 = +1) or outside-in (𝛽 = −1) cases, the locations of high density regions are dictated

by the ionized bubbles. As before, the inside-out case places its highest density peaks inside

the ionized bubbles, “squandering" the opportunity to achieve high brightness temperatures. The

outside-in case places its highest density peaks in neutral regions. But the fact that it preferentially

places its peaks away from bubbles means that there is less volume available in this scenario to

produce high brightness temperature spots. In contrast, the uncorrelated scenario indiscriminately

places bright spots throughout the volume, thus utilizing more of it to give a large integrated signal.

Our interpretation of this high-𝑘 behaviour is bolstered by the redshift dependence seen in Figure

2.2. The non-monotonic behaviour with 𝛽 is strongest during the earliest phases of reionization,

where most of the universe is neutral. In such a regime, not utilizing the full volume results in

a greater reduction in the fluctuation power. As reionization proceeds, a random indiscriminate

distribution of density peaks (as is the case with 𝛽 = 0) becomes more and more disadvantageous as

these peaks become more and more likely to fall into an ionized bubble. The outside-in model thus

begins to get brighter relative to the uncorrelated model. Indeed, we find that after the midpoint of

reionization (𝑧 ∼ 8 for our fiducial simulations), when there is less neutral volume remaining, the

trends in the power spectra are once again monotonic in 𝛽.

Although the behaviour at high 𝑘 is interesting, it has essentially no impact on the forecasts

that we will present in Section 4.6, given that instrument sensitivities tend to be low in those

regimes. However, for future-generation instruments, the high-𝑘 trend may be a signature that is

worth pursuing, as it may break some of the parameter degeneracies that we will find in Section

4.6.
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Figure 2.4: Density boxes (left) alongside their resulting temperature fields (right), with contours

showing the locations of ionized bubbles overlaid. Fourier modes with 𝑘 < 2 Mpc−1 have been

filtered out from 𝛿Tb to elucidate the high 𝑘 behavior seen in Figure 2.2. In this high-𝑘 regime,

large amplitude brightness fluctuations are seen throughout the neutral regions

2.3.2 Redshift Evolution of the Signal

Focusing now on the low-𝑘 regime that drives our forecasts, Figure 2.3 shows how Δ2
21 evolves as a

function of 𝑧 and 𝛽. During the first half of reionization, the ionized bubbles are still small and so

reionization has yet to make a significant imprint on the brightness temperature field. Altering the

density-ionization correlation via 𝛽 thus has little effect on the power spectrum and all the curves

converge at high 𝑧. As one approaches a global ionization fraction of ∼ 0.5, the ionized bubble

morphology has its largest influence on the power spectrum, and thus it is there that one sees the
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greatest sensitivity to 𝛽. As one approaches the end of reionization, the 21cm signal vanishes and

Δ2
21 once again loses its sensitivity to 𝛽.

The redshift space distortions contained in the temperature maps also affect Δ2
21. Redshift space

distortions induce an angular structure to 𝑃(k), but also boost the power evenly in the angularly

averaged 𝑃(𝑘) by a geometric factor of 1.87 [1]. We find that they primarily affect outside-in maps

and not their inside-out counterparts. The effect of redshift space distortions on 𝛿𝑇𝑏 are greatest

near high density regions, which are first to be ionized in an inside-out scenario. Therefore, the

effect of redshift space distortions on Δ2
21 is small for redshifts 𝑧 < 12 [37] in the inside-out

scenario. Conversely, the high density regions are ionized last in outside-in maps allowing for a

more impactful effect on Δ2
21 throughout reionization. We find a maximum boost of 15 mK2 in

Δ2
21 due to redshift space distortions occurring in the extreme outside-in scenarios of 𝛽 = −1 near

the midpoint of reionization. The effects on the corresponding inside-out case is negligible within

the same regime. In producing Δ2
21, we take a more conservative approach and average over the

angular dependence for all 𝛽 realisations.The results presented in Figure 2.2 include these effects.

We take this conservative approach in producing our forecasts in Section 4.6. This approach is

more appropriate for early limits, where experiments are not expected to have a high enough signal-

to-noise per Fourier mode for characterizing the angular patterns in k needed to easily measure

redshift space distortions. In the future, however, one could imagine using redshift space distortions

as another avenue for constraining density-ionization correlations in a more extended analysis.

In addition to the sensitivity of Δ2
21 on 𝛽, the other EoR parameters described in Section 1 will

also affect the power spectrum. We want to explore the extent to which one can uniquely constrain

𝛽 from measurements of Δ2
21. We perform these numerical forecasts in the following sections.

2.4 HERA Forecasts

We now bring together the parametrization and intuition of Section 2.2 and the power spectrum

predictions of Section 2.3 to provide forecasts on potential observational constraints on our corre-
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lation parameter 𝛽. In this section we lay out our forecasting methodology, reserving a discussion

of our results for Section 4.6.

2.4.1 Fiducial Instrument and Sensitivity

We use HERA as the fiducial instrument for our forecasts, although similar results can be easily

obtained for other current and upcoming instruments such as the Low Frequency Array [52], the

Murchison Widefield Array [7,51], and the Square Kilometre Array [30]. When completed, HERA

will consist of 350 parabolic dishes, each 14 m in diameter observing from 50 MHz to 250 MHz.

Its forecasted sensitivity is such that > 20𝜎 detections of the 21 cm power spectrum from the EoR

should be possible [13, 45].

To model HERA’s expected error bars on a power spectrum measurement, we make use of the

publicly available code 21cmSense [45,47]. At a given instant, a particular pair of antennas of the

interferometer separated by a baseline vector b approximately samples a Fourier mode of the sky

with a wavevector k⊥ oriented perpendicular to the line-of-sight. The sampled wavevector is given

by k⊥ ≈ 2𝜋b/𝜆𝑋 , where 𝜆 is the observation wavelength and 𝑋 is a conversion factor from angular

separation 𝜃 to transverse comoving distance 𝑟⊥, and is given by

𝑋 ≡ 𝑟⊥
𝜃

=
𝑐

𝐻0

∫ 𝑧

0

𝑑𝑧′

𝐸 (𝑧′) (2.6)

with 𝑐 the speed of light, 𝐻0 the Hubble parameter today, 𝐸 (𝑧) ≡
√︁
Ω𝑚 (1 + 𝑧)3 +ΩΛ and ΩΛ

the normalized dark energy density. Fourier modes along the line of sight are probed using the

frequency spectrum, since different observed frequencies correspond to different redshifts, with a

conversion factor 𝑌 converting between frequency interval Δ𝜈 and increments in radial comoving

distances Δ𝑟∥:

𝑌 ≡
Δ𝑟∥
Δ𝜈

=
𝑐

𝐻0𝜈21

(1 + 𝑧)2

𝐸 (𝑧) , (2.7)

where 𝜈21 ≈ 1420 MHz is the rest frequency of the 21 cm line. The 21cmSense package computes

the amount of time 𝑡int that an interferometer spends observing a particular mode in 𝑘⊥-𝑘 ∥ space
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and assigns an error bar 𝜀 to a hypothetical power spectrum measurement, where

𝜀(𝑘) = 𝑋2𝑌
𝑘3Ωeff

2𝜋2

𝑇2
sys

2𝑡int
(2.8)

where 𝑇sys is the system temperature of the telescope (generally dominated by the brightness

temperature of the sky at these frequencies), and Ωeff is the effective solid angle of the primary

beam of each dish [43].

Beyond signal-to-noise considerations, a realistic forecast must account for foreground contam-

inants. Astrophysical—but non-cosmological—sources of emission are bright in the low-frequency

radio spectrum, and these foregrounds are expected to be brighter than the cosmological 21 cm

signal by many orders of magnitude in brightness temperature. Fortunately, these foregrounds

are expected to be spectrally smooth, and thus they predominantly contaminate a select triangular

region in Fourier space known as “the wedge" that is given by

𝑘 ∥ ≤
(
𝑋

𝜈𝑌

)
𝑘⊥, (2.9)

where 𝜈 is the observation frequency. (For a derivation and a discussion of various subtleties

associated with this equation, see [33] and references therein). In our forecasts, we employ the

“moderate" foreground setting in 21cmSense, which simply states that modes satisfying Equation

(2.9), plus those that are up to 0.1 ℎMpc−1 higher in 𝑘 ∥ , are considered irretrievably contaminated

by foregrounds and are discarded in one’s analysis. The extra buffer of 0.1 ℎMpc−1 accounts for the

possibility that low levels of spectral unsmoothness in one’s foregrounds may cause a bleed to higher

𝑘 ∥ than one might theoretically expect [46].In generating the full error bars for our forecasts, we

add sample variance to the telescope sensitivities computed in Equation 2.8. The sample variance

is generated using a fiducial EoR inside-out model. Using a fiducial outside-in or uncorrelated EoR

model to generate the sample variance does not qualitatively change the results in Section 4.6.
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2.4.2 Markov Chain Monte Carlo Setup

With a model for power spectrum sensitivities, performing a forecast is tantamount to evaluating the

posterior probability distribution for the parameters of interest. In particular, suppose we measure

a power spectrum Δ2
21(𝑘, 𝑧) from HERA and group all the measurements from different 𝑘 and 𝑧

bins into a data vector d. Grouping our model parameters 𝛽, 𝑀turn, 𝑅mfp, and 𝜁 into another vector

𝜽 , our goal is to use Bayes’ theorem to find the posterior 𝑝(𝜽 |d), i.e.,

𝑝(𝜽 |d) ∝ 𝑝(d|𝜽)𝑝(𝜽), (2.10)

where 𝑝(d|𝜽) is the likelihood function and 𝑝(𝜽) is our prior.

In our forecasts, we impose uniform priors on all parameters. For 𝜁 we pick 10 < 𝜁 < 100

which is broadly consistent with CMB and Ly𝛼 constraints on reionization [38]. For 𝑅mfp we say

that 3 Mpc < 𝑅mfp < 80 Mpc to span a reasonable range in uncertainty on the parameter [50]. For

𝑀turn we use 107𝑀⊙ < 𝑀turn < 9 × 109𝑀⊙. This is motivated by the atomic cooling threshold and

by current constraints on the faint end of UV luminosity functions [42]. Finally, for 𝛽 we adopt

a uniform prior with −1 ≤ 𝛽 ≤ 1, which spans the full range of density-ionization correlations

discussed in Section 2.2.

The likelihood 𝑝(d|𝜽) is non-analytic in the EoR parameters. To compute it, we generate model

predictions for the density and ionization fields from 21cmFAST simulations, given a combination

of 𝜁 , 𝑅mfp, and 𝑀turn. We then regenerate the density field as appropriate for the desired level

of decorrelation from the ionization field as specified by the 𝛽 parameter. This updated density

field is then used in conjunction with the original ionization field to form a brightness temperature

field using Equation (2.1). The power spectrum of the resulting maps Δ2
model are then computed

and compared to the “measured" power spectrum Δ2
21(𝑘, 𝑧) via a Gaussian likelihood of the form

through the chi squared 𝜒2 statistic given by

𝑝(d|𝜽) ∝ exp

−
1
2

∑︁
𝑧,𝑘

(
Δ2

model − Δ2
21

)2

𝜀2

 , (2.11)
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where we have assumed that all the 𝑘 and 𝑧 bins are statistically independent. Our forecasts consider

different combinations (see Section 4.6) of redshifts 𝑧 = 6 to 𝑧 = 10 in steps of Δ𝑧 = 0.5, with an

observational bandwidth Δ𝜈 ≡ 𝜈21Δ𝑧/(1 + 𝑧)2Δ𝑧 for each redshift bin.

We exclude bins 𝑘 > 0.75 Mpc−1 for computational simplicity as the HERA error bars are large

in that regime and including those 𝑘 bins do not add alter our forecasts significantly.

To sample our posterior distribution, we use a Markov Chain Monte Carlo (MCMC) approach,

as implemented by the affine invariant MCMC package emcee [18]. Of course, since we do not have

a real HERA observation of the power spectrum, we must pick a fiducial set of parameter values

for our mock observation. In this paper, we adopt fiducial values 𝜁0 = 25, 𝑀turn,0 = 5 × 108𝑀⊙,

𝑅mfp,0 = 30 Mpc, and 𝛽0 = 0.936 unless otherwise indicated.

2.5 Results

In this section we present the results of our MCMCs and discuss their implications. We perform

our computations for four different scenarios:

1. A HERA measurement of the 21cm power spectrum over an extended period of the EoR

history, from 𝑧 = 6 to 𝑧 = 10.

2. Radio frequency interference (RFI) makes measurements impossible in certain frequency

bands. Based on preliminary observations using HERA, we assume that a measurement can

be made in a relatively clean way from 𝑧 = 7.5 to 𝑧 = 8.5 (using the discrete bands described

in Section 2.4.2.

3. A similar RFI-free window from 𝑧 = 9.5 to 𝑧 = 11.5.

4. A measurement of a 𝑧 = 8.0 power spectrum at three separate bins centred on 𝑘 = 0.2 Mpc−1,

𝑘 = 0.25 Mpc−1, and 𝑘 = 0.3 Mpc−1 of widths Δ𝑘 = 0.05 Mpc−1. These were selected by

numerical experimentation to determine a minimal set of measurements required to constrain

𝛽.
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5. The same measurement as scenario (ii), but assuming outside-in reionization as our fiducial

model. We use the same fiducial parameters for 𝜁0 , 𝑀turn,0 and 𝑅mfp,0 as described in

Section 2.4.2, but pair it with new fiducial correlation parameter of the opposite sign, i.e.,

𝛽0 = −0.936.

2.5.1 Scenario (i): Measurement of Δ2
21 Over Redshifts 𝑧 = 6 to 𝑧 = 10

In Figure 2.5 we show our forecasts for a full HERA measurement in the range 6 < 𝑧 < 10.

Immediately clear are degeneracies between certain parameters in our model. For example, since

both 𝜁 and 𝑀turn control the timing of reionization as well as the size of the ionized bubbles at a

fixed redshift, we find a considerable degeneracy between these parameters. This result is consistent

with previous parameter studies such as [45], [26], and [32].

Our new correlation parameter 𝛽 also exhibits slight degeneracies with 𝑀turn and 𝜁 . The origin

of this degeneracy can be deduced by studying how 𝛽 and 𝜁 affect Δ2
21 at 𝑘 bins and redshifts where

HERA is the most sensitive to changes in the model. Most of the information comes from 𝑧 ∼ 8

and 0.2 Mpc−1 < 𝑘 < 0.5 Mpc−1. This redshift is slightly lower than the redshift at which the

power spectrum peaks because the error bars on the power spectrum are lower at lower redshifts.

The 𝑘 range is a balance between where the power spectrum is the most sensitive to changes in

𝛽 (see Figure 2.2), foreground contamination at low 𝑘 , and instrumental noise limitations at high

𝑘 . In this context, consider the left panel of Figure 2.3. One sees that decreasing 𝛽 increases the

amplitude of Δ2
21. Since 𝑧 = 8 comes after the midpoint of reionization in our fiducial model, the

power spectrum is declining as one moves to lower redshifts. A decrease in 𝛽 can therefore be

mimicked by a delay in reionization that shifts all the curves in Figure 2.3 to the left, bringing the

power up to closer to its peak value. This can be accomplished by a decrease in 𝜁 , and indeed, one

sees a positive degeneracy between 𝛽 and 𝜁 in Figure 2.5.

Our timing argument does not translate directly to the degeneracy between 𝛽 and 𝑀turn. Indeed,

if one only considered the fact that lowering 𝑀turn results in earlier reionzation, one would predict

an opposite trend to what is seen in Figure 2.5. However, whereas 𝜁 mainly affects the timing

of reionization, 𝑀turn also somewhat affects the shape of the power spectrum [45]. Moreover,
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Figure 2.5: Posterior distributions for Scenario (i) of Section 4.6, covering the redshift range of

our forecasts, 6 ≤ 𝑧 ≤ 10. The 68% credibility contours are entirely contained within the inside-

out region of parameter space, suggesting that with such a measurement we can firmly rule out

outside-in or uncorrelated models.

the aforementioned degeneracy between 𝑀turn and 𝜁 works in the opposite direction as the timing

argument. It is therefore not obvious a priori how 𝛽 and 𝑀turn should be correlated, and Figure 2.5

reveals that the net effect is a positive degeneracy.

In any case, one sees that despite the degeneracies between 𝛽 and the other parameters, it is

still possible to obtain strong constraints on the former. Examining the marginalized distributions,

for instance, one sees that the 68% credibility regions (CR) strongly rule out both outside-in and

uncorrelated scenarios. We find that the 95% CR is also entirely contained within the inside-out

portion of the posterior. This allows us to rule out other reionization scenarios at 95% credibility.

2.5.2 Scenarios (ii) to (iv): Measurements at Specific Redshifts and Scales

Early HERA measurements will likely come at particular redshifts and 𝑘 bins, and in Figures 2.6

and 2.7, we show our forecasts for the clean 7.5 ≤ 𝑧 ≤ 8.5 and 9.5 ≤ 𝑧 ≤ 11.5 spectral windows.
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Figure 2.6: Same as Figure 2.5, but for a restricted redshift range of 7.5 ≤ 𝑧 ≤ 8.5. Measurement

over these redshifts can strongly rule out correlations that are inconsistent with inside-out models.

The 68% credibility contours clearly distinguish inside-out and outside in regions of parameter

space.

What we find is that measurements of the power spectrum at specific key redshifts can be enough

to constrain the sign of 𝛽.

Consider first the 7.5 ≤ 𝑧 ≤ 8.5 window (Figure 2.6). The conclusions drawn for this

redshift window are comparable with the results over the expanded history of the EoR (i.e., the

previous scenario with measurements from 𝑧 = 6 to 10). This is unsurprising since the bulk of

the information of 𝛽 comes from precisely these redshifts: recall from Figure 2.3 that this range

coincides to redshifts where the power spectrum peaks, as well as where the differences between

different 𝛽 are the greatest. Indeed, to take this to an extreme, Figure 2.8 shows the constraints

from measuring just three 𝑘 bins (centred on 0.2 Mpc−1, 0.25 Mpc−1, and 0.3 Mpc−1) at redshift

𝑧 = 8.0. These are the 𝑘 and 𝑧 bins that contain the most information about 𝛽. The results are again

similar. Of course, the constraints are slightly worse than one obtains over the full redshift range.

However, the differences are quantitative rather than qualitative, and one can easily distinguish

between inside-out and outside-in models of reionization as the 𝛽 contours are entirely contained
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Figure 2.7: Same as Figure 2.5, but for a restricted redshift range of 9.5 ≤ 𝑧 ≤ 11.5. Although

many parameters are poorly constrained, an uncorrelated scenario of 𝛽 = 0 can still be easily ruled

out.

Figure 2.8: Same as Figure 2.5, but using only three 𝑘 bins centred on 𝑘 = 0.2 Mpc−1, 𝑘 =

0.25 Mpc−1, and 𝑘 = 0.3 Mpc−1 at 𝑧 = 8.0. Because these bins contain the most information on 𝛽,

using them alone is sufficient for excellent constraints.
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within the inside-out region of parameter space. We find that our ability to distinguish between

these models is also valid at 95% CR.

With the 9.5 ≤ 𝑧 ≤ 11.5 window,1 we probing the early stages of reionization, where the

process has yet to make a significant imprint on the temperature field. The power spectrum is

therefore less sensitive to 𝛽. Correspondingly, these redshifts are not as effective at numerically

constraining the value of 𝛽; however, we can still confidently determine the sign of 𝛽. Outside-in

morphologies, for example, are inconsistent with our mock observation of a fiducial inside-out

model. Importantly, we note that this is true even though the limited redshift range is unable to

provide strong constraints on other parameters, although it is important to acknowledge that for this

scenario the constraint on 𝜁 is mostly driven by our prior.

In principle, the value of 𝛽 need not be constant in time, and could vary throughout the

EoR history. In this scenario 𝛽 would obtain a redshift dependence. Given this reality, one

can then confine measurements of 𝛽 to epochs where the correlations between 𝛿 and 𝑥HII remain

constant. For example, our forecast for 𝛽 between 7.5 < 𝑧 < 8.5 is entirely contained within the

“Ionized Fibre" stage of reionization in [9]. Since forecast scenarios (ii) through (iv) are small

enough redshift windows, they each fall within a particular “stage" of reionization morphology.

Making the correspondence between each of these scenarios and a particular stage of reionization

morphology becomes more difficult for scenario (i) which takes place over 6 < 𝑧 < 10.

2.5.3 Scenario (v): Fiducial Outside-in Reionization

In figure 2.9, we show the MCMC posterior for measurement of Δ2
21 with parameters identical to

scenario (ii), but using a fiducial outside-in morphology (𝛽0 = −0.936). In an outside-in scenario,

Δ2
21 varies slowly as a function of 𝛽 in the regime 𝛽 ≃ −1 (see Figure 2.2). As a result, it is difficult

to numerically distinguish the particular value of 𝛽 for extreme outside-in models. However this

does not prevent us from being able to distinguish outside-in models from uncorrelated or inside-

out reionization. The 1D posterior for 𝛽 is non-Gaussian around 𝛽 = −1 and the posterior drops

1For this scenario only, we exclude 𝑘 > 0.75 Mpc−1 for computational simplicity. There is little sensitivity to the
power spectrum here anyway, and thus there is a negligible change to our results.
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Figure 2.9: Same as Figure 2.6, but using an outside-in model with 𝛽 = −0.936 as our fiducial

reionization morphology. Displayed are the 68% CR contours. The 68% CR are entirely contained

within 𝛽 < 0 suggesting that if reionization proceeds as outside-in, measurement of Δ2
21 in this

scenario can rule out uncorrelated and inside-out reionization with 68% credibility.

dramatically around 𝛽 ≃ −0.7, which is whereΔ2
21 becomes very sensitive to changes in correlation.

This allows us to properly distinguish between the signs of 𝛽. The 68% CR contours of such a

measurement are entirely contained within 𝛽 < 0. Therefore for this fiducial reionization scenario,

measurements of Δ2
21 across the midpoint of reionization can fully distinguish between signs of

𝛽. This conclusion is also valid at a 95% CR level. That is, the 95% credibility region is entirely

contained within the outside-in regime of the posterior.

2.5.4 Early Limits

In closing, we note an interesting trend that will likely manifest as upper limits from early data

slowly come down. From Figure 2.3, note that the brightest power spectra come from outside-in

scenarios. Thus, early upper limits will first rule out (or detect!) these morphologies. As we

alluded to in Section 4.2.1, however, the curves for 𝛽 < 0 (outside-in) are typically closer together

than those for 𝛽 > 0. Therefore, although the outside-in scenarios are the easiest to rule out or
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Figure 2.10: Marginalized posterior distributions on 𝛽 obtained through the measurement of Δ2
21

in Scenario (ii) of Section 4.6, but assuming 10 times larger error bars than the design HERA

sensitivities to mimic potential upper limits. As the upper limits come down to 10 times the fiducial

errors on Δ2
21 from Section 2.8, we will be able to rule out 𝛽 < 0 with 99% credibility in our fiducial

model. The dotted vertical lines demarcate 𝛽 = 0 to guide the eye.

detect, a generic quantification of the density-ionization correlation is easier (i.e., the error bars on

𝛽 will be smaller) if our Universe ends up being one where reionization proceeded in an inside-out

fashion.

We expect that as upper limits descend to roughly 10 times the design sensitivity of HERA

(i.e., error bars approach ∼ 10𝜀 on a measurement of Δ2
21), we will be able to rule out uncorrelated

reionization (𝛽 = 0) at ∼ 99% credibility, assuming the same 𝑧 and 𝑘 bins as Scenario (ii) in Section

4.6. This is illustrated in Figure 2.10 which shows the posterior on 𝛽 from upper limits where the

power spectrum is constrained with errors on the order of 𝜀 ∼20 mK2 (corresponding to 10 times

the HERA design errors), for bands described in Section 2.4.2.

2.6 Conclusion

The first measurements of the 21cm power spectrum are upcoming and a key prediction of many EoR

models is the correlation between ionization and density fields. The way these two fields correlate

is an indicator of the morphology of reionization. A number of discrete cases of correlations have
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been studied in previous works pertaining to inside-out or outside-in models. We build upon these

works by proposing a continuous parameter 𝛽 that encompasses all possible correlation scenarios

to provide an alternative method for model selection.

A key effect of changing 𝛽 in 21cm temperature maps is to alter the contrast between ionized

bubbles and neutral regions. The temperature contrast between these regions is larger for values of

𝛽 < 0, corresponding to outside-in models of reionization. Inside-out models, with 𝛽 > 0, have

decreased contrast. Similarly, we find that outside-in models of reionization produce an increase

in the amplitude in the 21cm power spectrum compared to their inside-out counterparts. The

distinction between these models is greatest at the midpoint of reionization.

Upcoming limits on the 21cm power spectrum will allow us to place constraints on 𝛽, potentially

ruling out or favouring various models. As a test case, we carry out a numerical forecast using

the HERA experiment, which has the sensitivity to place > 20𝜎 limits on Δ2
21. We perform an

MCMC over the entire history of reionization and find that the fiducial inside-out model used

produces a unique imprint on the 21cm power spectrum. Measurement of Δ2
21 over this redshift

range can fully distinguish between the two classes of correlations. Because measurements of Δ2
21

over a wide range of 𝑧 and 𝑘 bins are unlikely in early observations, we select a smaller range

of redshifts to measure Δ2
21. Motivated by the high sensitivity of Δ2

21 on 𝛽 at the midpoint of

reionization, we identify redshift 𝑧 ∼ 8 as the most effective regime to distinguish between types of

correlations. Measurements in just a few select 𝑘 bins at these redshifts are sufficient for learning

about the broad morphology of reionization. Along the way, such measurements will test a key

measure of reionization—the degree of correlation between the density and ionization fields—

laying the groundwork for increasingly detailed 21 cm constraints that will considerably enhance

our knowledge of the EoR.
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Chapter 3

Constraining the Epoch of Reionization

With Highly Dispersed Fast Radio Bursts

Addendum for thesis

This chapter explores Fast Radio Bursts (FRBs) as an indirect probe to reionization. This work was

inspired by a talk given by Dr. Wenbin Lu in October 2020 at McGill University on the possible

progenitors of FRBs. My colleague, Hannah Fronenberg, and I were inspired to explore how we

could use the dispersion measure (DM) of FRBs to place constraints on EoR model parameters.

At the time of this work, there was minimal investigation into the use of FRBs to probe the EoR.

One of the assumptions we made, which has been a main point of feedback from the community

after publication, is that all FRBs are localized in redshift.

This chapter examines how the DM of FRBs might be affected by reionization. Since the DM

of an FRB is proportional to the integrated column of free electrons in the IGM, we established a

relationship between the mean DM and the morphology of reionization. One fascinating aspect of

this approach is that measurement of the DMs have relatively few systematics when compared to

21cm cosmology. This makes FRBs an interesting probe of the EoR.
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Although we do not currently have the ability to localize high 𝑧 FRBs, this work should be

interpreted as proof of concept. We plan on addressing the lack of redshift localization in future

work.

Abstract

The period in which hydrogen in the intergalactic medium (IGM) is ionized, known as the Epoch

of Reionization (EoR), is still poorly understood. The timing and duration of the EoR is expected

to be governed by the underlying astrophysics. Furthermore, most models of reionization predict a

correlation between the density and ionization field. Here we consider using the mean dispersion

measure (DM) of high redshift Fast Radio Bursts (FRBs) as a probe of the underlying astrophysics

and morphology of the EoR. To do this, we forecast observational scenarios by building mock

data sets of non-repeating FRBs between redshifts 8 ≤ 𝑧 ≤ 10. In our forecasts we assume a

fiducial inside-out reionization scenario with midpoint of reionziation 𝑧 = 7.8, and duration (i.e.

the duration between mean ionized fraction of 0.25 to 0.75) Δ𝑧 = 2.0. It is assumed that all

FRBs have accompanying spectroscopic redshift measurements. We find that samples of 100 high

redshift FRBs, in the above mentioned narrow redshift range, can rule out uncorrelated reionization

at 68% credibility, while larger samples, ≥ 104 FRBs, can rule out uncorrelated reionization at

95% credibility. We also find 100 high redshift FRBs can rule out scenarios where the Universe

is entirely neutral at 𝑧 = 10 with 68% credibility. Further, with ≥ 105 FRBs, we can constrain the

duration Δ𝑧 of reionization to Δ𝑧 = 2.0+0.5
−0.4 and the midpoint of reionization to 𝑧 = 7.8+0.4

−0.2 at 95%

credibility.

3.1 Introduction

The Epoch of Reionization (EoR) is a transitional period in our Universe’s history when the neutral

Hydrogen (HI) making up the intergalactic medium (IGM) was ionized by the first generation of

stars and galaxies. The Cosmic Microwave Background (CMB) has given us a peek into the early
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universe and measurements of quasars at 𝑧 < 7 teach us about early galaxy evolution. Cosmic

dawn and the EoR remain the missing piece of our understanding at 𝑧CMB > 𝑧 > 7. Understanding

this period not only provides insight into the very early universe, but also teaches us about the

first generation of stars and galaxies. A number of observational probes have begun making

measurements of the EoR through the 21cm line [4, 5, 10, 22, 49]. The advantage of using this line

as a direct probe IGM during the EoR is that neutral hydrogen is abundant in the early Universe

and that, by measuring the redshifting of this photon, we can trace primordial hydrogen along

the line of sight. For a comprehensive review of 21cm cosmology, the reader is encouraged to

read [43], [17], [55], [31] and [29].

21cm cosmology, however, does not come without its challenges. Making a detection of the 21

cm line during the EoR is exceptionally difficult since the frequency of the line is redshifted into

the 50-300 MHz range [29]. Systematics, radio frequency interference (RFI), galactic synchrotron

emission, and radio bright sources have made the 21 cm signal difficult to measure, and thus limit

our ability to constrain the astrophysics during this epoch [30]. As a result, many look to other

probes of the EoR.

Fast Radio Bursts (FRBs) are a class of bright, millisecond duration, radio transients that have

been detected at frequencies ranging from 110 MHz to 1.5 GHz and whose dispersion measures

(DMs) lie between 110 and 2600 pc cm−3 [50, 53]. Thanks to current and upcoming broad-band

wide-field-of-view instruments, such as the Canadian hydrogen Intensity Mapping Experiment

(CHIME; [1]), the hydrogen Intensity and Real-time Analysis eXperiment (HIRAX; [45]), Five-

hundred metre Aperture Spherical Telescope (FAST; [44]), Australian Square Kilometer Array

Pathfinder (ASKAP; [21]) and the Square Kilometer Array (SKA; [11]), we have seen a large

increase in the number of FRBs detected. It is estimated that when SKA is online, its event

detection rate may be as high as ∼1000 FRBs sky−1 day−1 [14].

Since their discovery by [32], the number of FRBs detected has increased tremendously. CHIME

alone has detected over 1000 bursts since 2018. While one source has now been localized within

the Milky Way [7], the vast majority of FRBs remain extragalactic sources and can thus probe out
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to cosmological distances [12, 23]. Many questions remain about the astrophysical origin of these

bursts as well as their intrinsic distribution out to high DM [26,33, 52].

While the progenitor of FRBs remains unknown, the DMs of these bursts are, on the contrary,

well understood and could thus prove yet another direct probe of the IGM during the EoR. The DM

of an FRB is defined as the integrated column density of free electrons along the line of sight from

source to observer. As the FRB travels through the IGM, it experiences a frequency dependent

time delay, Δ𝑡 = 𝑒2/(2𝜋𝑚𝑒𝑐) (𝜈2
0𝜈

2
1)DM, where 𝜈1 and 𝜈2 represent the high and low frequency

boundaries of the pulse and DM is given by

DM(x, 𝑧) =
∫

𝑛𝑒 (x, 𝑧)
1 + 𝑧 𝑑𝑙, (3.1)

where 𝑑𝑙 is the line element along the light of sight, 𝑛𝑒 (x, 𝑧) is the free electron density at

comoving position x and redshift 𝑧. Measuring the DM of an FRB at redshift 𝑧 can therefore probe

the integrated number density of free electrons along the line of sight in the IGM. To evaluate 3.1

for each reionization scenario, we express the line element 𝑑𝑙 in terms of the Hubble parameter

𝑑𝑙 = 𝑐𝑑𝑡 =
−𝑐𝑑𝑧

𝐻 (𝑧) (1 + 𝑧) (3.2)

where 𝐻 (𝑧) is given in terms of the ΛCDM parameters through

𝐻 (𝑧) = 𝐻0
√︁
Ω𝑚 (1 + 𝑧)3 +ΩΛ ≡ 𝐻0𝐸 (𝑧). (3.3)

The free electron number density in the IGM can be written as a function of the ionization and

density field,

𝑛𝑒 =
fHfIGMΩ𝑚𝜌0(𝑧)

𝑚H
(1 + 𝑧)3(1 + 𝛿(x, 𝑧))𝑥HII(x, 𝑧), (3.4)

where fH is the fraction of baryonic matter that is hydrogen, fIGM is the fraction of hydrogen that is

found in the IGM, mH is the mass of hydrogen and 𝜌0 is the mean density of the IGM at redshift 𝑧.

The dispersion measure of FRBs detected after the EoR can be approximated to be 𝑥HII(x) = 1,

i.e. the IGM is entirely ionized. Note that helium reionization does increase the number density
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of free electrons at low redshift (𝑧 ∼ 2), however this is independent of the reionization model.

Therefore, we do not take this into account in our models for Equation 3.1. For interested readers,

there is a growing body of literature on constraining helium reionization using the DMs of FRBs

[3, 6, 27, 64]. Unlike at low redshift, the ionization field 𝑥HII during the Epoch of Reionization

is patchy, composed of regions of ionized bubbles and neutral regions, whose placements and

evolution depend highly on the astrophysics governing reionization. In this case, the number

density of electrons 𝑛𝑒 will dependent on the state of the ionization field. High redshift FRBs

detected during the Epoch of Reionization will therefore be sensitive to the astrophysics that have

imprinted itself onto 𝑥HII.

Furthermore, referring to Equation 3.4, the number density of free electrons is dependent on

the product of the density and ionization field 𝑥HII𝛿. The method in which the ionization field

𝑥HII maps to the underlying density field 𝛿 is known as the density-ionization correlation, which

affects the morphology of the EoR. The cross term in Equation 3.4 contains information of the

density-ionisation correlation, which affects the observed DM of an FRB. Most EoR models predict

morphologies where the ionized regions are not random with respect to the underlying density field.

Instead, there are two extreme ways in which the ionization field couples to the density field. The

density field can be positively correlated to the ionization field. In this scenario, overdense regions

correspond to high ionization fraction. In this model, ionizing sources ionize their immediate

surroundings before ionizing the lower density regions of the IGM. We say that reionization

happens ‘inside-out’. The second extreme model is the scenario where the underlying density field

𝛿 is negatively correlated with the ionization field 𝑥HII. In this scenario, the ionizing sources first

ionize the low density regions before ionizing the high density regions. We say that reionization

happens ‘outside-in’. In this model, the high density regions in 𝛿 correspond to regions of low

ionization fraction in 𝑥HII. This model usually requires the recombination of hydrogen atoms in

high density regions to dominate the effects of UV ionization [8,42,61]. Outside-in morphologies

can also be achieved by having reionization driven by x-ray photons, which can more easily “leak"

into the underdense regions of the IGM [38, 41]. It is also possible for reionization to unfold as a
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combination of both inside-out and outside-in, in which case, the correlations between 𝛿 and 𝑥HII

are statistical combination of the inside-out and outside-in models [16, 36].

The way in which the mean DM depends on the broad timeline of the reionization history

has been previously studied [2, 19, 34, 63]. Most recently, [19] show that one year’s worth of

observing with SKA phase 2 can reveal our cosmic reionization history, and [2] show that both DM

and the differential FRB source count distribution prove useful probes of reionization even with

limited redshift information. In this paper we build on the techniques outlined by these authors by

performing a study of how the morphology, astrophysics and evolution of the EoR affect the mean

DM of high redshift FRBs. We use a set of astrophysical and morphological parameters to bracket

the physical range of EoR scenarios and study how DM–z probability distributions and the mean

DM of FRBs at each redshift depend on these parameters. We then forecast the types of constraints

that we can place on the EoR using measurements of the DMs of high redshift FRBs. Since FRBs

at high redshift have yet to be observed, we create a mock sample of highly dispersed FRBs under

a fiducial reionization model and forecast the type of constraints one can place on the astrophysics

and morphology of the EoR given such a measurement. We perform this forecast with 102, 104,

and 105 high DM samples.

This paper is structured as follows. In Section 4.2 we describe the astrophysical and mor-

phological parameters used in our simulation to bracket the physical range of EoR scenarios. In

Section 3.3 we discuss how the mean DM and the DM probability distributions of high redshift

FRBs depend on these parameters. In Section 4.5, we describe our fiducial reionization model,

the mock FRB measurements made for this reionization scenario. We forecast the constraints that

can be placed on the EoR parameters using such a measurement and in Section 3.5 we present the

results. We summarize our conclusions in Section 6.7. Throughout this work we set the ΛCDM

parameters to 𝜎8 = 0.81, Ω𝑚 = 0.31, Ω𝑏 = 0.048, ℎ = 0.68, 𝑛𝑠 = 0.9603 [51].
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Table 3.1: Summary of Reionization Parameters and FRB Observables

Symbol Parameter Name Description/Definition
𝑧EoR Reionization Redshift The redshift indicating the onset of reionization.
𝛽 Morphological Parameter Determines the correlation between 𝛿 and 𝑥HII

𝑀turn The turnover mass Halo mass scale in which star formation is efficient
𝜁 Ionizing Efficiency Number of ionizing photons released per stellar baryon
𝑅mfp Radius of The Mean Free Path Maximize size of the ionized regions

DM(x, z) Dispersion Measure DM of individual FRB at redshift z along a single line of sight.
DM(𝑧) Mean Dispersion Measure Mean DM of a collection of FRBs observed at redshift 𝑧

3.2 Simulation

To generate density and ionization boxes representative of different EoR models we use 21cmFAST

package [39]. Density fields are obtained through the Zeldovich approximation while ionization

and halo boxes implement the excursion set formalism of [18]. For further details about how

21cmFAST generates reionization models see [39]. Throughout this paper we use high resolution

boxes of 8003 voxels corresponding to a comoving side length of 300 Mpc and coarser boxes of

2003 voxels corresponding to the same comoving side length. A voxel thus represents the smallest

volume unit of our pixelized simulation cube. Throughout our simulations we use the cosmological

parameters described in Section 3.1.

3.2.1 EoR Parameters

We use 21cmFAST to generate different EoR scenarios by varying a number of adjustable parameters

which encapsulate variations in the detailed astrophysics of reionization. We bracket the physical

range of EoR scenarios by adjusting the parameters𝑀turn, 𝑅mfp, and 𝜁 . Physically, the turnover mass,

𝑀turn, determines the mass of a halo in which star formation is efficient. Values of𝑀turn ≃ 5×108𝑀⊙

correspond to a virial temperature of𝑇v𝑖𝑟 ≃ 104. Values below𝑀turn have exponential suppression in

star formation. Roughly, this sets the mass scale for the ionizing sources. The unitless astrophysical

parameter 𝜁 , determines the ionizing efficiency of the sources. This parameter is an amalgamation

of other parameters which describe the small scale astrophysics of the UV sources. A large value
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of 𝜁 will imply more ionizing photons per stellar baryon, while a smaller ionizing efficiency will

entail less ionizing photons are emitted for each ionizing source. The cutoff-radius 𝑅mfp sets the

maximum size of the ionized bubbles [57]. Variation of these parameters effect the timing and

duration of reionization, and have been studied in previous works [13,25,28,48,54]. For this work,

we use these parameters to generate a wide variety of EoR models that bracket physical scenarios.

These parameters operate under an inside-out reionization formalism in which the density field 𝛿 is

correlated with the ionization field 𝑥HII and therefore do not capture the different 𝛿 𝑥HII correlations

indicative of different EoR morphologies. In the next Section we introduce a parametrization that

extends the physical scenarios bracketed by the astrophysical parameters to EoR morphologies of

arbitrary ionization-density correlations.

3.2.2 Morphological Parametrization of the EoR

To simulate EoR scenarios where the density field and ionization field are correlated by some

arbitrary amount, we use the 𝛽 parametrization introduced in [47]. This parameter continuously

tracks the correlation between 𝑥HII𝛿. We briefly describe this parametrization here. The 𝛽 parameter

has bounds −1 ≤ 𝛽 ≤ 1 and controls the amount of correlation between 𝑥HII and 𝛿. The sign of

𝛽 indicates the overall sign of the correlation between 𝑥HII and 𝛿. Positive values of 𝛽, indicate

a positive correlation between density and ionization fields, and so overdense regions in 𝛿 couple

to regions of high ionization fraction in 𝑥HII. This sign of correlation is indicative of inside-out

reionization scenarios, where the overdense regions of the IGM are first to be ionized. Conversely,

negative signs of 𝛽 indicate an overall negative correlation between ionization field and density

field so that overdense regions in 𝛿 correspond to regions of low ionized fraction of hydrogen.

This is indicative of outside-in reionization, where overdense regions of the IGM are last to be

ionized. The magnitude, |𝛽 |, indicates how strong that correlation sign is between ionization and

density fields. A value of 𝛽 = 0 indicates a random placement of the ionized regions, in which

case there is no correlation between ionization and density fields. As we increase 𝛽 from 0 to

1, the relative likelihood of finding overdense regions of 𝛿 corresponding to ionized regions in

𝑥HII increases, until finally at 𝛽 of 1, all overdense regions in 𝛿 always correspond to regions of
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Table 3.2: Lexicon for physical models and their respective correlations

𝛽 Correlations between Physical Model
𝑥HII 𝛿

1 Correlated Inside-out
1 < 𝛽 < 0 Increasingly correlated Mostly inside-out

0 Uncorrelated Random
0 > 𝛽 > −1 Increasingly anti-correlated Mostly outside-in

−1 Anti-correlated Outside-in

ionized hydrogen. Similarly, as we decrease 𝛽 from 0 to −1, the relative likelihood of finding

overdense regions of 𝛿 corresponding to ionized regions in 𝑥HII increases until at 𝛽 = −1, all

overdense regions in 𝛿 correspond to regions of low 𝑥HII. The intermediate, non-extreme values of

𝛽, i.e. −1 < 𝛽 < 1 indicate reionization scenarios that contain the statistics of both inside-out and

outside-in. Figure 3.1 demonstrates the affect of inside-out, or outside-in reionization, on the free

electron number density 𝑛𝑒 in the IGM. For a more detailed discussion on this parametrization,

the reader is encouraged to read [47]. Table 4.1 summarizes the terminology used to describe

the type of correlation as well as the model to which it pertains. The 𝛽 parameter encodes only

the correlation statistics between density and ionization fields and is treated as independent from

the other EoR parameters in our models. This makes 𝛽 phenomenological compared to the other

parameters. Although 𝛽 is a not a physically derived quantity, it correctly predicts the statistics for

different density-ionization correlations. In the following Section we shall see that our models only

use the statistics of DMs, and so our results do not depend on the nature of 𝛽.

3.2.3 Dispersion Measure

The observed dispersion in Equation 3.1 is sensitive to all sources of free electrons encountered by

the radio burst as the electromagnetic wave travels from source to observer. This includes the free

electrons found within the host galaxy as the FRB leaves the source, as well as the free electrons

encountered in the Milky Way (MW) as the FRB arrives to the observer. The FRB also has exposure
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Figure 3.1: From the center of the Figure , outward: Lightcones of the density field 𝛿, ionization

fraction 𝑥HII and free electron field 𝑛𝑒 for the case of inside-out reionization (left three boxes)

and outside-in reionization (right three boxes). Inside-out reionization (left) leads to a higher free

electron number density 𝑛𝑒 in the ionized bubbles since the density field (center) couples to the

ionized regions in 𝑥HII compared to outside-in models (right) where the underdense regions in 𝛿

couple to the ionized regions in 𝑥HII.

to the free electrons found in the circumgalactic medium (CGM) and IGM. We split Equation 3.1

into its respective components

DMobs(x, 𝑧) = DMhost + DMMW + DMCGM(x, 𝑧) + DMIGM(x, 𝑧). (3.5)

The dispersion DMIGM(x, 𝑧) is due to the free electrons found in the IGM between the FRB source

and the observer. This is the DM attributed to cosmic reionization and is the DM of interest in order

study the evolution of 𝑥HII. The DM attributed to the host galaxy, MW and CGM are subject to
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uncertainties surrounding the gas dynamics within these regimes, and as a result make them difficult

to model. We treat them as contaminants in our measurement of the contributions of DMIGM to

DMobs. The DM contribution due to the interstellar medium (ISM) of intervening galaxies have

also been shown to be negligible [56]. The inhomogeneity of 𝑥HII, 𝛿 and the gas dynamics as a

function of position x make it unreasonable to draw conclusions on the state of the IGM through

a single line of sight. We instead compute the mean value of DMobs due to all sightlines. This

removes single line of sight fluctuations in 𝛿 and 𝑥HII as well as averages over the contributions due

to the CGM,

DMobs = DMhost + DMMW + DMCGM + DMIGM. (3.6)

Studies such as [24] model the DM contribution of the Milky Way, which is something which may

be possible to accurately account for in the future. Other studies have found that the photon incurs

an average DM of DMMW ∼ 200pc cm−2 when leaving the MW and host galaxy [58,59]. We treat

the average contribution of the MW and host galaxy to DMobs as an offset ∼ 200pc cm−2.

DMobs − (DMhost + DMMW) = DMCGM + DMIGM. (3.7)

We assume high redshift FRBs have DMobs dominated by the IGM, we neglect the contribution due

to the CGM. The remaining fluctuations in DM are attributed to cosmic reionization. Henceforth

we refer to DMIGM as DMobs. This model isn’t meant to be overly realistic, we intend to capture

first order effects due to DMIGM. In order for precise measurements to be made of the impact that

the EoR has DMobs, a method to subtract out the effects due to the CGM needs to be studied. We

leave such a study to future work. The mean DM of a high redshift FRB observed at redshift 𝑧 due

to free electrons in the IGM is then evaluated using Equation 3.1 as

DMobs(𝑧) = −
∫

𝑐𝑑𝑧
fHfIGMΩ𝑚𝜌0(1 + 𝑧)

𝑚H𝐻0𝐸 (𝑧)

(
𝑥HII(𝑧) + 𝛿𝑥HII(𝑧)

)
. (3.8)

The DMobs of high redshift FRBs will be proportional to the mean ionization fraction 𝑥HII of

the IGM as well as to the mean product 𝑥HII𝛿. This cross term captures the density-ionization
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correlation of the EoR which describes how the underlying density field 𝛿 couples to the ionization

field 𝑥HII. The 𝛽 parameter quantifies the different possibilities of this correlation. The astrophysics

of the EoR, affect both of these terms. Since the astrophysics set the size and morphological features

of the ionization field 𝑥HII, they too have consequences for DM . In addition, the astrophysics of

the EoR determine the onset and duration of the EoR, i.e. they determine the mean ionization

fraction 𝑥HII at each redshift 𝑧. Previous studies have looked at how broad modeling the mean

ionization fraction 𝑥HII𝛿 to redshift affects the observed DM of high redshift FRBs, i.e. the 𝑥HII𝛿

term in Equation 3.8 [63]. Here we build on that by including both terms and studying how the

detailed astrophysics as well as density-ionization correlation affect both terms. For readers who

are less familiar with the parameters that have been discussed, they are summarized in Table 3.1

for easy reference. In the following Sections, we study how the astrophysical parameters, and the

𝛽 parameter, which parameterizes the density ionization correlation, affect DMobs.

In the following section, we evaluate Equation 3.8 by simulating 105 sightlines, computing the

individual DM of each sightline, and by averaging the DMs. This is done for each reionization

model.

3.3 Models

Equation 3.8, states that DMIGM of an FRB depends on the cumulative of both the mean ionization

fraction, 𝑥HII, and the density-ionization correlation, 𝑥HII𝛿, along the line of sight. If 𝑧EoR is the

redshift in which the IGM becomes increasingly neutral, then 𝑥HII = 1 for all 𝑧 < 𝑧EoR and so

the relationship between DMIGM and 𝑧 is linear up until the onset of reionization [9]. The linear

relationship breaks down at 𝑧EoR since 𝑥HII decreases rapidly due to the increasingly neutral IGM.

As a result, the EoR produces a flattening of DM for high redshift FRBs. The shape and positioning

of this flattening is highly dependent on the onset, duration and morphology of reionization. In this

Section we use the astrophysical and correlation parameters to study how EoR models affect the

DM of FRBs observed in the EoR. We consider the distribution of DM at each 𝑧 of the individual

DM sightlines as a function of the astrophysics and morphology of the EoR. In Section 3.5, we
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Figure 3.2: Redshift evolution of the DM probability distributions for our fiducial reionization

scenario 𝛽 = 1, 𝜁 = 25, 𝑀turn = 5 × 108M⊙ and 𝑅mfp = 30Mpc. At higher redshift the relative

probability of high DM sightlines increases.

forecast that the constraints that can be placed on these parameters through measurement of high

redshift FRBs.

3.3.1 DM Distributions

We consider the distribution of the individual DM sightlines as a function of the astrophysics and

morphology of the EoR. FRBs observed at low 𝑧 are more likely to have low DM sightlines due

to less chance of interactions with free electrons in the IGM. From Figure 3.2 we see that the

resulting DM probability distribution is highly non-Gaussian and skewed to low DM. Note that

the contaminants DMCGM and DMISM can produce high DM fluctuations, even at low redshift.

Removal of these contaminated sightlines are required in order to make precise deductions about

the state of the IGM using FRB DM statistics. This might be especially difficult to do for high

redshift FRBs since FRBs observed at high redshift are more likely to interact with free electrons

from the IGM and so large DM sightlines become more likely (see Figure 3.2). At higher redshifts,

the skewness of the distribution functions are noticeably reduced. Previous studies such as [62],
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use the variance, 𝜎2 = ⟨(DM − DM)2⟩, of the DM distributions to estimate the maximum size

of the ionized regions at each 𝑧. Since the maximum size of the ionized regions depends on

the astrophysical parameters, our approach is complimentary. The astrophysics driving the EoR

will determine the evolution of the DM(z) probability distributions. For example, scenarios with

larger 𝜁 or smaller 𝑀turn tend to have DM distributions skewed to higher DM since reionization

begins early, which increases the relative likelihood of finding high DM sightlines by increasing

the likelihood of interaction with free electrons. Meanwhile, scenarios where the EoR unfolds as

inside-out, tend to have high density regions in 𝛿 couple to regions of high fraction of ionized

hydrogen, i.e. the product 𝑥HII𝛿 ∼ 𝑛𝑒 is larger than the corresponding outside-in scenario where

the high density regions couple to low fraction of ionized hydrogen. In this scenario, the free

electron regions tend to be denser in inside-out models than the corresponding outside-in models.

As a result, scenarios where reionization unfolds with 𝛽 > 0 increases the likelihood of high DM

sightlines. This is reflected in the DM(𝑧) distributions in Figure 3.3 where there is a larger portion

of distribution in the high DM portion of the distribution compared to outside-in maps where the

distribution is skewed to lower DMs.

These parameters influence the shape of the DM distribution as well as their evolution in

redshift. Since DM is derived from these DM distributions, then the underlying astrophysics and

morphology of the EoR can be detected directly from DM. In the following Sections, we build our

intuition on how the astrophysics and morphology of the EoR affect DM.

3.3.2 Astrophysical Signature on DM

Local fluctuations in 𝑛𝑒 make it difficult to deduce the astrophysics from individual sightlines.

Instead we average over all sightlines to remove these fluctuations. In doing so, we can predict the

signature of the astrophysical parameters on DM in Equation 3.8. Since the presence of neutral

hydrogen in the IGM causes a flattening of the DM curve at the onset of neutral hydrogen, then

the astrophysical parameters, which determine the timing of this flattening, can be deduced from

DM. For example, the ionizing efficiency 𝜁 increases the output of UV photons from the ionizing

sources, which for larger values of 𝜁 , results in shifting the onset of reionization to higher redshifts.
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Figure 3.3: Evolution of the individual sightline DM probability distributions for a variety of

reionization scenarios encapsulated by the density-ionization parameter 𝛽, ionizing efficiency 𝜁

and mass scale of the ionizing sources 𝑀turn. Notice how the different reionization scenarios begin

to distinguish themselves at higher redshifts. In each panel, the gold distribution corresponds to

the fiducial reionization scenario of 𝛽 = 1, 𝜁 = 25, 𝑀turn = 5 × 108M⊙ and 𝑅mfp = 30Mpc.

In this scenario, the IGM is ionized earlier and the flattening of the DM curve occurs at larger 𝑧.

Conversely, decreasing the ionizing efficiency of the sources shifts the flattening of the DM curve

to lower redshifts. Therefore, if we study the dependence of DM on 𝜁 at fixed 𝑧 (within the EoR),

increasing the ionizing efficiency will increase the mean DM of the FRBs at that redshift. We find

a similar dependence for DM on 𝑀turn. This is the mass scale for a source to begin efficiently

producing UV photons which similarly alters the onset of reionization. Lower values of 𝑀turn allow

the EoR to start early, which shifts the flattening of DM to higher redshifts, while larger values of

𝑀⊙, delays reionization, pushing the flattening of DM to lower redshifts. We find that DM is less

91



Figure 3.4: DM for a variety of density-ionization correlations 𝛽 (upper left), mass scale of the

ionizing sources 𝑀turn (upper right), ionizing efficiency 𝜁 (lower left), and mean free path 𝑅mfp of

the ionizing photons. Notice how high ionizing efficiency of the sources and smaller masses of

the ionizing sources lead to an early onset reionization, and so an increase in DM at that redshift.

Inside-out reionization models 𝛽 > 0, lead to an increase in DM, since the free electron number

density in ionized regions is greater than the corresponding ionized region in outside-in models

𝛽 < 0. In each panel the dotted curve corresponds to same reionization scenario 𝛽 = 1, 𝜁 = 25,

𝑀turn = 5 × 108M⊙ and 𝑅mfp = 30Mpc. We use this fiducial reionization scenario in our forecasts

in Section 4.5.
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sensitive to 𝑅mfp as compared to the other EoR parameters. Once 𝑅mfp is increased beyond the size

that is physically possible at given 𝑧, DM loses all sensitivity to the parameter.

In general, these astrophysical parameters determine the mean ionization fraction 𝑥HII at each

redshift 𝑧, which DM depends on. One could approach the study of DM on 𝑥HII by adopting a

model for the evolution of 𝑥HII on 𝑧 without invoking the dependence of astrophysical parameters.

However, these parameters can also have a secondary effect on DM through the cross term in

Equation 3.8. For example, if the Universe reionizes with turnover masses 𝑀turn ≃ 1010M⊙,

then the size of the ionized regions are larger compared to a scenario with smaller turnover which

increases the cross term in Equation 3.8. Physically this means that there are more free electrons for

the FRBs to interact with. Increasing the maximum size of the ionized regions 𝑅mfp will maximize

the interaction between FRBs and free electrons for given EoR model with fixed 𝜁 and 𝑀⊙. This

maximises DM.

The sensitivity of DM to 𝜁 , 𝑀turn and 𝑅mfp increases as we observe to FRBs at higher redshifts.

This is due to the FRBs having interacted with the ionization history of the universe for longer and

so Equation 3.8 carries more information about the EoR. Conversely, DM loses all sensitivity to

the astrophysics of the EoR as the entire Universe is reionized, referring to Figures 3.4, all models

converge at 𝑧 = 6 which in our models correspond to an entirely ionized IGM.

3.3.3 Morphological Signature on DM

From Equation 3.8, the mean DM of high redshift FRBs is sensitive to the density-ionization

product 𝛿𝑥HII. The method in which 𝑥HII couples to the underlying density field 𝛿, will have

consequences for the DM. Inside-out scenarios, i.e. scenarios where 𝛽 > 0 (positive correlation

between 𝛿 and 𝑥HII), high density regions couple to high ionized fractions in 𝑥HII. This results in

the ionized regions being denser in free electrons, leading to an increase in DM compared to other

morphologies. For example, the outside-in scenario, where 𝛿 and 𝑥HII are negatively correlated

(𝛽 < 0), the underdense regions in 𝛿 correspond to high fractions of ionized hydrogen. As a

result, the free electron density within the ionized regions are comparatively smaller. Referring

to Figure 3.4, we see that inside-out morphologies lead to an increase in the mean DM of high
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redshift FRBs as compared to outside-in models. Intermediate values of 𝛽 can be interpreted as

follows; as 𝛽 is increased from the uncorrelated scenario, 𝛽 = 0, (where the ionized regions are

random with respect to 𝛿 ) to 𝛽 = 1, the high density regions in 𝛿 becoming increasingly likely to

couple to ionized regions in 𝑥HII. The mean 𝑛𝑒 within bubbles monotonically increases until 𝛽 = 1

where all high density regions correspond to ionized bubbles and DM is maximized with respect

to 𝛽. Conversely, as we decrease 𝛽 from 𝛽 = 0 to 𝛽 = −1, the high density regions increasingly

couple to regions of low ionized fraction in 𝑥HII which monotonically decreases the mean 𝑛𝑒 of the

ionized regions. As a result, the product 𝑛𝑒 ∼ 𝛿𝑥HII is decreased, which leads to a decrease in the

mean DM of these models. As a result, inside-out scenarios receive a boost in average DM due

to the increase of 𝑛𝑒 compared to outside-in driven models. The morphological signature on DM

is different than the astrophysical parameters since the morphology directly influences the mean

density of free electrons, 𝑛𝑒 within the ionized bubbles without changing the timing of reionization.

The contrast in DM between the extreme morphologies is greatest for FRBs observed at highest

redshift. The longer the exposure of the FRB to the ionization history, the more sensitive DM will

be to the morphology. Conversely, as we observe FRBs at lower redshifts, there hasn’t been enough

exposure to the EoR morphology to distinguish between different 𝛽 models. Therefore DM loses

all sensitivity to 𝛽 as 𝑥HII → 1. In Section 3.5, we determine the number of FRBs required to

make a measurement of DM precise enough to place constraints on 𝛽 as well as the astrophysical

parameters.

In the following Section, we use generate mock data by sampling the fiducial DM distributions

at each redshift given our choice of fiducial EoR and morphological parameters. In Section 3.4.3,

we forecast the type of constraints that can be placed on 𝛽 as well as the remaining EoR parameters

through measurement of DM.

3.4 Forecasts

In this Section we use the formalism of Section 3.3 to forecast the constraints that can be placed on the

EoR through measurement of high redshift FRB DMs. Since high redshift FRBs have not yet been
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detected, we simulate a mock observation of high DM FRBs under a fiducial reionization scenario.

It should be noted that it is assumed that all generated FRBs are observed with accompanied redshift

localization where we take the uncertainty on the redshift, 𝜎𝑧 = 0. This may seem an ambitious

assumption, but [60] notes that with a mid- to large-size optical survey, it should be feasible to

obtain about 10 redshifts for host galaxies per night. In this Section, we outline our model for

generating this mock observation as well as discuss our fiducial reionization scenario. In Section

3.5, we present the results of these forecasts.

3.4.1 Intrinsic FRB Statistics

Since FRBs observed after the EoR do not contain any information about the ionization history of

the Universe, only high redshift FRBs observed during the EoR contribute to our forecasts. FRBs

at these redshifts have not yet been observed and may be rare. To get a more realistic sense of

how many intrinsic FRBs that can potentially be observed given a capable high DM experiment,

we use an existing theoretical model of source count distributions of FRBs at each DM. From this

theoretically motivated count of FRBs within 𝑧 > 𝑧EoR, we can populate our mock catalogue. We

first define an intrinsic source count distribution of FRBs. It will be from this distribution that we

populate the redshift bins of our fiducial sample for our forecasts. For this, we choose a source count

distribution that traces the star formation rate (SFR) [9]. While other source count distributions

have been proposed, [46] shows that the the density of FRBs (𝜌FRB) increases with redshift, closely

resembling cosmic star formation history. We follow this prescription and use the following simple

top-heavy distribution for the number of FRBs per DM,

𝑑𝑛

𝑑DM
=
𝜌FRB(𝑧)
(1 + 𝑧)

𝑑𝑉

𝑑𝑧

𝑑𝑧

𝑑DM
(3.9)

where, 𝑑𝑉
𝑑𝑧

is the comoving volume element.

Tracing the cosmic star formation history, we take the density to proportional to the SFR

density [35, 37],
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𝜌FRB(𝑧) ∝ 𝜌SFR(𝑧) = 0.015
(1 + 𝑧)2.7

1 + ((1 + 𝑧)/2.9)5.6 M⊙ yr−1 Mpc−3 (3.10)

What relies on the model in this source count distribution is the 𝑑𝑧
𝑑DM factor. As mentioned in

Sections 3.3.2 and 3.3.3, the DM–z relation is sensitive to reionization parameters. Currently, the

widely used DM–z relation is linear

DM(z) = C × z pc cm3 (3.11)

where C is often taken to be 1000 [46] or 1200 [20]. These linear relations approximate

the redshift to an accuracy of about 2% for 𝑧 < 2 [50]. As shown in Figure 3.4, the model

of reionization affects the shape of the DM–z relation, especially at high redshift. In order to

place constraints on reionization, high redshift samples are paramount. Therefore, in order to

compute the source count distribution for the fiducial model, we calculate 𝑑𝑧
𝑑DM by taking numerical

derivatives of the corresponding fiducial DM–z curve. Measurements of the EoR parameters

have not yet been made, so in order to produce a mock sample of observed high redshift FRBs,

we must assume a fiducial reionization scenario. Our fiducial EoR model is produced by fixing

the astrophysical and morphological parameter 𝛽 from Section 3.3. We choose EoR parameters

𝜁0 = 25 , Mturn,0 = 5× 108M⊙, and Rmfp,0 = 30Mpc as well as 𝛽 = 1. The astrophysical parameters

are consistent with previous studies such as [40], while the morphological parameter, 𝛽 = 1,

corresponds to an inside-out reionization scenario.

The fiducial DM–z curve is the light blue dashed line (𝛽 = 1) shown in the top left panel of

Figure 3.4. Now that the CDF is defined, we can build our mock data set.

3.4.2 Mock Catalogue of FRBs

We build our sample of FRBs using inverse transform sampling whereby a given number of random

samples is drawn from a probability distribution given its CDF. This populates each redshift bin, of

bin width 𝛿𝑧 = 1, with FRBs according to the CDF. The method is the following, where our random

variable 𝑋 is the FRB source count:
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1. Define a random variable, 𝑋 , whose distribution is described by the CDF, 𝐹𝑋 .

2. Generate a random number 𝑢 from a uniform distribution in the interval [0, 1]. This number

will be interpreted as a probability.

3. Compute the inverse of of the CDF, that is 𝐹−1
𝑋
(𝑢).

4. Compute 𝑋 = 𝐹−1
𝑋
(𝑢). Now the random variable 𝑋 with distribution 𝐹𝑋 has been generated.

Using this method, we in fact draw a distribution of DM counts per DM bin. Then, using our fiducial

DM-𝑧 relation, convert this to counts per redshift bin. We simply proceed to use the probability

distribution in 3.2 to draw the given number of DMs per redshift bin. This method guarantees that

our sample has line of sight fluctuations, ensuring that every FRB has a unique DM, even when in

the same redshift bin.

It may be noted that we only account for fluctuations in the DM distribution of FRBs. The

spatial distribution of FRBs is not accounted for here, that is, the sources are taken to have random

positions. In actuality, the spacial distribution of FRBs will be positively correlated with the

underlying matter distribution and so one my posit that FRBs emitted inside an ionized region

would acquire considerable DM from the host bubble. We find that the contribution of the host

bubble, or lack there of, to the total DM from the line of sight during reionization is negligible

and we proceed without populating halos with sources. At this point, we are ready to move on to

performing the MCMC on the sample.

3.4.3 MCMC setup

We place the mean of the individual sightline DMs of our mock FRB catalogue into a vector DMS

corresponding to the mean of the sample FRBs for each redshift 𝑧. For such a measurement, the

uncertainties on DMS are the sum of the instrumental systematic errors in measuring the individual

sightline DMs and the uncertainties in DM𝑆 due to sample variance. The instrument errors on the

individual DM are assumed to be small and so we do not model the instrumental errors and only

include the errors due to sample variance. The uncertainties due to sample variances on DM𝑆 are
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𝜎𝑠 =
𝑠𝑁−1√
𝑁

(3.12)

where 𝑁 are the number of FRBs comprising the sample and 𝑠𝑁−1 is the measured sample variance

given by

𝑠2
𝑁−1 =

1
𝑁 − 1

𝑁∑︁
𝑖=0

(DMi − DMS)2 (3.13)

where DMi are the individual sightline DMs sampled from the probability density functions gener-

ated by our fiducial model, and DM is the mean of such a sample. Our forecasts consider different

cases of 𝜎𝑆 by considering different total number 𝑁 of FRBs observed. To place constraints on the

on the EoR parameters 𝜽 = 𝛽, 𝜁 , 𝑀turn, 𝑅mfp, we evaluate the probability of 𝜃 given measurement

of the mean DM from the samples from our fiducial EoR model defined in Section 3.4.2. This is

the posterior 𝑝(𝜽 |DM𝑆). We can evaluate the posterior 𝑝(𝜽 |𝐷𝑀S) through Bayes theorem:

𝑝(𝜽 |DM𝑆) ∝ 𝑝(DM𝑆 |𝜽)𝑝(𝜽), (3.14)

where 𝑝(DM𝑆 |𝜽) is the likelihood function and 𝑝(𝜽) is the prior on the EoR parameters 𝜽 . Since

the likelihood function is non-analytic in the EoR parameters 𝜽 , we use 21cmFAST to generate a

model density and ionization field representative of the IGM with parameters 𝛽, 𝜁 , 𝑀turn, 𝑅mfp. To

generate the density and ionization field with the morphology indicative of the model 𝛽, we use the

same procedure described in [47]. From this model reionization and density field, we generate a

lightcone for each line of sight, and evaluate DM for each of these lines of sight. We then average

all sightlines together to evaluate DM for this reionization model. The mean DM of all sightlines

for this model is compared to the fiducial mean DM of the mock FRBs through the 𝜒2 statistic.

The likelihood 𝑝(𝜽 |𝐷𝑀S) is then computed as:

𝑝(DMS |𝜽) ∝ exp

−
1
2

∑︁
𝑧

(
DMmodel − DMS

)2

𝜎2
𝑆

 , (3.15)
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where we have assumed the errors on DMS to be Gaussian and independent. The Gaussianity

of the likelihood is a valid assumption since for larger samples of DM, the mean DM, of these

samples tend to be Gaussian distributed according to the central limit theorem. However since

there are indeed correlations between redshift bins, the independence of the likelihood in terms

of 𝑧 serves as an approximation. We consider the mean DM of FRBs measured from redshifts

𝑧 = 8 to 𝑧 = 10 in steps of Δ𝑧 = 1 corresponding to the redshifts that contain the largest sensitivity

to the EoR parameters. Inclusion of more redshifts do not significantly alter our conclusions and

so for computational simplicity we exclude them from our forecasts. We place uniform priors

on each of the EoR parameters 𝜽 within 𝑝(𝜽). Since 𝛽 is only defined from −1 ≤ 𝛽 ≤ 1, we

place the prior −1 ≤ 𝛽 ≤ 1 which covers the entire possible physical range of EoR morphologies.

For 𝑅mfp we use 5 Mpc < 𝑅mfp < 160 Mpc which spans the all possible sizes consistent with the

length of our simulation boxes. For 𝜁 , we place the range 5 < 𝜁 < 100 which encapsulates the

entire physically allowed duration of reionization histories [40]. Finally for 𝑀turn, we use values

of 107𝑀⊙ < 𝑀turn < 1010𝑀⊙, which are physically motivated by the atomic cooling threshold and

by constraints on the faint end of UV luminosity functions [48]. Using the sampling discussed in

Section 3.4.1, we generate mock data and fit to them via the likelihood

𝑝(DMSz |𝜽) ∝ exp

−
1
2

∑︁
𝑧

(
DMmodel − DMSz

)2

𝜎2
𝑆𝑧

 . (3.16)

where here we are summing over redshift bins, 𝑧 = {8, 9, 10}. To sample our posterior distribution,

we use a Markov Chain Monte Carlo (MCMC) approach, as implemented by the affine invariant

MCMC package emcee [15].

3.5 Results

Here we present the MCMC results of our forecast discussed in Section 3.4.3 corresponding to

measurement of 𝑁 high redshift FRBs observed between 𝑧 = 8 to 𝑧 = 10, and distributed in

𝑧 according to the CDF described in Section 3.4.1. We repeat this mock observation for three
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Figure 3.5: Posterior distributions for measurement of DM for 104 FRBs distributed between

redshifts 8 ≤ 𝑧 ≤ 10 according to the source count distribution in Section 3.4.1. The 68%

credibility regions are shown. Such a measurement can rule out uncorrelated 𝛽 = 0 and outside-in

reionization 𝛽 < 0 at 68%CR.

different total number of measured FRBs. We use 𝑁 = 102, 104, 105, where these observed FRB

counts span a reasonable range of sample variances. In each case we assume that the DM of these

FRBs is dominated by the contribution of the IGM. As discussed in Section 3.2.3, we neglect the

contributions due to the CGM and ISM and leave their inclusion for future work. The fiducial

reionization scenario has parameters 𝛽 = 1, 𝜁 = 25 , Mturn = 5 × 108M⊙ and 𝑅mfp = 30Mpc.

3.5.1 Larger Sample Sizes

In this scenario we detect 𝑁 FRBs, distributed across the redshift bins 𝑧 = 8 − 10 according to

the theoretically motivated source count distribution discussed in Section 3.4.1. Figure 3.5 and

3.6 show the results of this forecast for cases corresponding to 𝑁 = 104 and 𝑁 = 105 respectively.

From the posterior of both Figures, we see that there are clear degeneracies between 𝜁 and 𝑀turn.

This is due to both parameters establishing the redshift in which the flattening of DM occurs.

This degeneracy is pronounced in Figure 3.3 where changing the values of 𝜁 and 𝑀turn result in
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Figure 3.6: Posterior distributions for measurement of DM for 105 FRBs distributed between

redshifts 8 ≤ 𝑧 ≤ 10 according to the source count distribution in Section 3.4.1. Using such a

measurement, we can rule out uncorrelated and outside-in reionization scenarios at 68%CR.

translating the distribution along the horizontal axis. By examining the 68% credibility regions

(CR) in Figure 3.5, we can see that measurement of 𝑁 = 104 FRBs within these redshift bins can

constrain 𝜁 to 𝜁 = 25.5+11.5
−10.5 and log(Mturn) = 8.65+0.29

−0.49. By placing constraints on these parameters

(the ionizing efficiency and the halo mass scale of the UV sources), one can place constraints

on the timing and duration of reionization. We find that with 𝑁 = 104 FRBs in these redshift

ranges, we can constrain the duration, Δ𝑧, of reionization (duration between 0.25 ≤ xHII ≤ 0.75)

to Δ𝑧 = 2.1+0.50
−0.30, and the midpoint 𝑧mid = 7.8+0.20

−0.20, at 68% credibility. Referring to the posterior

in Figure 3.6, the constraints on 𝜁 and 𝑀turn are tighter for the extreme case of 𝑁 = 105 FRBs

where we can constrain 𝜁 to within 𝜁 = 25+7
−9 at 95%CR and log(Mturn) = 8.76+0.14

−0.46 at 95%CR.

With constraints on these parameters we can place constraints on the duration of reionization,

Δ𝑧 = 2.0+0.5
−0.4, at %95CR and the midpoint of reionization, 𝑧 = 7.8+0.4

−0.2 at 95%CR.

The correlation parameter 𝛽 does not share degeneracies with these parameters since it does

not affect the timing of reionization, rather it affects the mean density, 𝑛𝑒, of free electrons in the

ionized region. We find from the posterior that measurement of 104 FRBs can distinguish between
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the sign of 𝛽. Since the sign of 𝛽 corresponds to the type of correlation between 𝛿 and 𝑥HII, we

find that measurement of DM using 104 FRBs can rule out 𝛽 < 0 (outside-in) scenarios and 𝛽 = 0

(uncorrelated scenarios) at 95% CR. In the more extreme case of 𝑁 = 105 FRBs, we can further

rule out uncorrelated and outside-in scenarios at 99% CR. Measurement of 104 FRBs between

8 < 𝑧 < 10 is sufficient to constrain the order of magnitude of 𝑅mfp at 68%CR. For the case of

𝑁 = 105 FRBs, our models can constrain the order of magnitude of 𝑅mfp at 95%CR.

3.5.2 Smaller Sample Sizes

In this scenario we measure 100 FRBs distributed across redshift bins between 8 ≤ 𝑧 ≤ 10,

again using the source count distribution outlined in section 3.4.1. We show the posterior of such

a measurement in Figure 3.7. Our interpretation of the degeneracy between the parameters is

identical to 3.5.1. We see from the posterior of Figure 3.7 that smaller samples of FRBs lead to

biased fits due to cosmic variance. However even with such small sample sizes, 68% of the contours

lie within 𝛽 > 0 suggesting that we can still rule out both uncorrelated and outside-in reionization

scenarios at 68%CR. We see from the posterior that we can rule out models with 𝜁 and Mturn

outside the range 23 ≤ 𝜁 ≤ 55 and 4 × 109M⊙ ≤ 𝑀turn ≤ 3 × 109M⊙ at 68%CR. Ruling out this

region of parameter space is tantamount to setting broad constraints on the timeline of reionization.

For example, this region excludes scenarios where the Universe is still neutral at redshift 𝑧 = 10,

which would severely flatten DM(𝑧) between 8 ≤ 𝑧 ≤ 10. We can rule these models out at 68%CR.

Similarly this region excludes models where the Universe is more than 60% ionized by redshift

𝑧 = 8, which would reduce the flattening of DM between 8 ≤ 𝑧 ≤ 10. We can rule out these

scenarios at 68%CR.

3.6 Conclusion

The DM of FRBs depends on the free electrons along the line of sight, and so the DM of high

redshift FRBs will naturally contain information about the ionization state of the IGM. This makes

detection of high redshift FRBs a potentially useful probe to study cosmic reionization. Here we

102



Figure 3.7: Posterior distributions for measurement of DM for 100 FRBs distributed between

8 ≤ 𝑧 ≤ 10 according to the source count distribution in Section 3.4.1. The 68% credibility regions

of our measurements are shown. This measurement can rule out extreme EoR models, for example,

scenarios where the Universe is ionized by 𝑧 = 8.

study how the astrophysics and morphology of the EoR affects the mean DM of high redshift

FRBs. We use a parametrization, 𝛽, that tracks the density-ionization correlation in the EoR and

common astrophysical parameters to bracket the range of physical EoR scenarios. We find that

DM is sensitive to the astrophysics and morphology of reionization and can influence fluctuations

in DM up to 1000pc cm−2. In particular, the ionizing efficiency and mass scale of the ionizing

sources cause the greatest fluctuations in DM, which we physically attribute to being caused by

the modified timing of reionization. The EoR morphology impacts DM by changing the density

of free electrons within the ionized regions. We find that inside-out reionization scenarios produce

the greatest density of free electrons within the ionized bubbles which increases the mean DM of

high redshift FRBs with respect to outside-in reionization scenarios. To gauge the viability of such

a probe, we perform numerical forecasts to study the types of constraints that can be placed on

the astrophysical and correlation parameters using measurements of highly dispersed FRBs. Using

a fiducial inside-out reionization scenario with midpoint of reionziation, 𝑧 = 2.0 and duration
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Δ𝑧 = 7.8, we find that samples of 100 FRBs can rule out uncorrelated reionization at 68%CR.

Using samples of 104 FRBs in the same redshift range can rule out uncorrelated and outside-in

reionization at 95%CR. We also find that samples of 100 FRBs between 8 ≤ 𝑧 ≤ 10 can rule out

scenarios where the Universe is entirely neutral at 𝑧 = 10 with 68%CR. Further, this measurement

can also rule out EoR scenarios where the IGM is more than 60% ionized at 𝑧 = 8. Larger

sample sizes (≥ 104), of high redshift FRBs, distributed in redshift from 8 ≤ 𝑧 ≤ 10 according

to the theoretically motivated source count distributions, can constrain the duration of reionization

(duration between mean ionized fractions 0.25 to 0.75) to Δ𝑧 = 2.1+0.50
−0.30 and midpoint 𝑧 = 7.8+0.20

−0.20

at 68%CR. Finally, we find that samples of ≥ 105 high redshift FRBs can constrain the duration of

reionization (duration between mean ionized fractions 0.25 to 0.75) to Δ𝑧 = 2.0+0.5
−0.4 and midpoint

𝑧 = 7.8+0.4
−0.2 at 95%CR.

For future work, we would like to further this proof of concept by using the full distribution

of DMs at each 𝑧 in our forecasts, and by making use of observational constraints as well as the

intrinsic constraints outlined in this paper. There are, most obviously, observational constraints

that play a role in the feasibility of such parameter fitting with real data. While high-DM (DM

> 4000) events have not yet been observed, [9] notes that one can design an experiment that has

a higher detection rate of highly dispersed events by trading time resolution for higher frequency

resolution. [63] note that FAST and SKA will have the capability of making such detections and

most recently [19] show that observations from SKA phase 2 will indeed reveal our reionization

history. It must be noted, however, that the FRB progenitor will ultimately dictate whether there

exists an FRB population during the EoR. In addition, a more sophisticated simulation would allow

one to explore correlations between Mturn, 𝜁 , and the FRB source count distribution since these three

parameters ultimately depend on the stellar population. Folding everything into one framework

would allow one to study such correlations as well as take clustering of FRBs into account.

Cosmic Dawn did not occur as a single bright event, but rather individual stars, one by one,

lit our dark universe. Similarly, we will likely not understand Cosmic Dawn and the Epoch of

Reionization from one observation alone, but rather we will need to make use of many tools which,

one by one, will illuminate our understanding of this mysterious time in our universe’s history. We
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propose here that the careful study of highly dispersed FRB observables can serve as such a tool

which will, along with many others, help us understand the Epoch of Reionization.
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Chapter 4

Lyman Alpha Emitters and the 21cm Power

Spectrum as Probes of Density-Ionization

Correlation in the Epoch of Reionization

Addendum for thesis

This chapter directly builds on the work presented in Chapter 2. Prof. James Rhoads visited

McGill in Spetember 2019 and he gave a talk regarding how Lyman Alpha Emitters (LAEs) can

probe inhomogenous reionization. Following the talk, Adrian and I had a discussion about how

the observed clustering of LAEs would be affected by the density-ionization correlation during the

EoR. We thought that we could use our 𝛽 parametrization (see Chapter 2) to study the signature of

density-ionization correlation on LAE statistics.

We placed constraints on 𝛽 using existing LAE surveys at 𝑧 = 6.6. Our results ultimately

showed that the clustering of LAEs at 𝑧 = 6.6 alone cannot be used to rule out uncorrelated and

outside-in reionization at 68%. This means that we need observations of LAEs at higher redshifts

in order to place stronger constraints on 𝛽.
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To this end, and building on our previous work, we combined measurements of the 21cm

power spectrum through HERA (see Chapter 2 for details) with LAE observations to show that by

combining these probes we can place the strongest constraints on 𝛽.

Abstract

Due to the large cross section of Ly𝛼 photons with hydrogen, Lyman Alpha Emitters (LAEs) are

sensitive to the presence of neutral hydrogen in the intergalactic medium (IGM) during the Epoch

of Reionization (EoR): the period in the Universe’s history where neutral hydrogen in the IGM

is ionized. The type of correlation between the ionized regions of the IGM with respect to the

underlying intrinsic LAEs has a pronounced effect on the number of observed LAEs and their

apparent clustering. As a result, observations of LAEs during the EoR can be used as a probe of the

EoR morphology. Here we build on previous works where we parametrize the density-ionisation

correlation during the EoR, and study how the observed number density and angular correlation

function (ACF) of LAEs depends on this parametrization. Using Subaru measurements of the

number density of LAEs and their ACF at z = 6.6, we place constraints on the EoR morphology.

We find that measurements of LAEs at z = 6.6 alone cannot distinguish between different density-

ionization models at 68% credibility. However, adding information regarding the number density,

and ACF, of LAEs at 𝑧 = 6.6 to 21cm power spectrum measurements using the hydrogen Epoch of

Reionization Array (HERA) at the midpoint of reionization can rule out uncorrelated and outside-in

reionization at 99% credibility.

4.1 Introduction

The Epoch of Reionization (EoR) is the period in our Universe’s history where the neutral hydrogen

making up the intergalactic medium (IGM) is systematically ionized. The timing, duration and

morphology of the EoR is still poorly understood. In order to place constraints on these quantities,

a number of observational probes have been proposed. One such probe uses the hyperfine transition
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of hydrogen, where a 21cm wavelength photon is absorbed or emitted as electrons flip their spin

relative to their nucleus [16, 37, 38, 51, 62]. The advantage of using this line as a probe of the EoR

is that primordial hydrogen is abundant in the early Universe and measuring the redshifting of this

photon enables a three dimensional mapping of the neutral hydrogen. The photon is part of the

radio spectrum and is measured in contrast to the Cosmic Microwave Background (CMB). The

contrasting temperature between the photon and the CMB is referred to as a differential brightness

temperature and is given by

𝛿𝑇𝑏 (r, 𝑧) ≈ (27 mK)
(
𝑇𝑠 (r, 𝑧) − 𝑇𝛾 (𝑧)

𝑇𝑠 (r, 𝑧)

)
[1 − 𝑥HII(r, 𝑧)] [1 + 𝛿(r, 𝑧)]

×
[
𝐻 (𝑧)/(1 + 𝑧)
𝑑𝑣𝑟/𝑑𝑟

] (
1 + 𝑧
10

0.15
Ω𝑚ℎ

2

)1/2 (
Ω𝑏ℎ

2

0.023

)
, (4.1)

where r is the position vector and 𝑧 is the redshift. The local ionization fraction and overdensities

are given by 𝑥HII(r, 𝑧) and 𝛿(r, 𝑧) while 𝐻 (𝑧) is the Hubble parameter and 𝑑𝑣𝑟/𝑑𝑟 is the line

of sight velocity gradient, Ω𝑏 and Ω𝑚 are the normalized baryon and matter densities and ℎ is

the normalized Hubble parameter [16]. The temperature 𝑇𝑠 (r, 𝑧) is the spin temperature of the

hydrogen atoms which describes the relative number hydrogen atoms in their excited Hyperfine

states versus ground states. The CMB temperature is given by 𝑇𝛾. The product of 𝑥HII(r, 𝑧) and

𝛿(r, 𝑧) depends on the morphology of reionization. The way these fields couple to one another

in configuration space is referred to as the density-ionization correlation. In general, there are

two extreme ways in which these two fields can correlate. The first is having overdense regions

in 𝛿 correspond to ionized regions of 𝑥HII, conversely, underdense regions in 𝛿 match neutral

regions in the ionization field. This is the inside-out reionization morphology. In this model,

ionization bubbles grow around overdense regions of 𝛿 until adjacent bubbles coalesce and the

IGM is fully ionized [15]. Other works based on radiative transfer simulations have found that

reionization proceeds rapidly starting from overdense regions, with filamentary structures being

ionized last. This leads to an inside-outside-middle (IOM) scenario. This morphology occurs

because filaments do not have the necessary star forming efficiency to self ionize [12]. The second

extreme morphology is outside-in reionization. In this model, overdense regions in 𝛿 correspond
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with neutral regions of hydrogen. Conversely, underdense regions in 𝛿 correspond to ionized

regions in 𝑥HII. In this scenario, the underdense regions are ionized first and the overdense regions

ionized last [4, 49]. We refer to inside-out reionization as having positively correlated statistics

between 𝛿 and 𝑥HII in contrast to outside-in reionization scenarios which has negatively correlated

statistics between the ionization and density fields. The type of correlation between these fields is

indicative of a particular reionization morphology. Previous works have studied how these different

models affect the brightness temperature 𝛿𝑇𝑏 as well as statistical quantities that depend on it [1,75].

The correlation between these fields can vary in position and as a function of redshift resulting in

correlations between 𝛿 and 𝑥HII with statistical combinations of inside-out and outside-in [14, 39].

A method to parametrize the correlation between these fields has previously been proposed by [53].

The way these two fields correlate also has consequences for other probes of the EoR. Another

such probe is the measurement of Lyman alpha flux from emitting sources during the EoR. Due to

the large cross-section of Lyman alpha photons with hydrogen, even traces of neutral hydrogen left

in the IGM during reionization can significantly reduce the observed Lyman alpha flux. As a result,

the number of observed LAEs is expected to significantly decrease as we observe higher redshifts,

making observation of LAEs a useful probe of reionization [7,9,23,25,40,43,45,46,63,72,76]. Due

to the sensitivity of intervening hydrogen along the line of sight, the observed number density as well

as the clustering of the LAEs is influenced by the morphology of the ionization field [2,26,29]. As

a result, we can make deductions about the ionization state of the IGM through measurement of the

statistics of LAEs during the EoR. However in order to study how the morphology of the EoR affects

the flux, number count and positions of visible LAEs, we must model the intrinsic luminosity of the

LAEs as they leave their host halos. Assessing the intrinsic luminosity of LAEs has been difficult

because the line profile of Ly𝛼 flux depends on the highly uncertain dynamics of the interstellar

medium (ISM). Since galaxies are not homogeneous (rather they are clumpy) and may have complex

inflows and outflows, the Ly𝛼 line profile emerging from the galaxy is potentially complex, requiring

radiative transfer analysis for the outflowing/inflowing material [19,20,22,72,73]. As a result, the

intrinsic luminosity of LAEs are subject to many uncertainties, which has led previous studies to

adopt models that capture the physical range of intrinsic scenarios [5, 10].
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In this paper we build on our previous work, where we parametrized the density-ionization

correlations in the EoR, and study the dependence of LAE statistics on this parametrization. In

order to study how the EoR morphology affects the intrinsic statistics of LAEs, we adopt a model

for the intrinsic luminosity of LAEs as they leave their host haloes, which was introduced in [67,74].

This model allows for flexibility in the physical range of intrinsic luminosities of LAEs. Using

existing measurements of LAE statistics at redshift 𝑧 = 6.6 from the Subaru Survey, we place

constraints on this parametrization and therefore the EoR morphology. We then forecast the type of

constraints that can be placed on the EoR morphology by combining the HSC Subaru experiment at

𝑧 = 6.6 and a measurement of the 21cm power spectrum using the hydrogen Epoch of Reionization

Array (HERA). Since such a hypothetical 21cm measurement does not yet exist, we simulate

such a measurement assuming the HERA instrument is running at its forecasted sensitivities. In

these forecasts, we also include the astrophysical parameters that have been used to model EoR

physics, exploring any new degeneracies that arise from the inclusion of arbitrary density-ionization

correlations.

This paper is structured as follows. In Section 4.2 we describe the parameters used in our

simulation as well as introduce our parametrization of the ionization-density correlation. At the

end of Section 4.2 we describe how the 21cm power spectrum depends on this parametrization. In

Section 4.3 we describe our model for the intrinsic luminosity of the LAEs as well as their optical

depth through the IGM. In Section 4.4 we describe the statistical properties of LAEs and study

how they vary as a function of the density-ionization correlation. In Section 4.5 we describe the

Subaru Survey of LAEs at 𝑧 = 6.6 which we use to place constraints on our parametrization. Since

measurements of the 21cm power spectrum do not yet exist, we also introduce our fiducial 21cm

instrument (HERA) in order to forecast the constraints that can be placed on our parametrization

using hypothetical measurements of the 21cm power spectrum and LAEs. Finally in Section 4.6 we

present our results and conclude in Section 6.7. Throughout this work we set theΛCDM parameters

to 𝜎8 = 0.81, Ω𝑚 = 0.31, Ω𝑏 = 0.048, ℎ = 0.68, consistent with Planck 2015 results [57]
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4.2 EoR Simulation

To generate temperature fields, halo fields, density and ionization boxes representative of different

EoR models we use the 21cmFAST package [47]. Density fields are obtained through the Zeldovich

approximation while the excursion set formalism of [17] is employed to generate the ionization

and halo boxes. Using the evolved density fields, halo boxes are generated by computing the

collapsed fraction of matter, larger than a threshold halo mass. The halo boxes are generated on

high resolutions grids of 8003 voxels corresponding to a comoving side length of 200 Mpc while the

density and ionization fields use coarser boxes of 2003 voxels corresponding to the same comoving

side length. For further details about how 21cmFAST generates reionization models see [47, 66].

We generate different EoR scenarios by varying a number of adjustable parameters whose goal

is to capture variations in the detailed astrophysics of reionization. We maximize the physical range

of EoR scenarios by adjusting the parameters 𝑀turn, 𝑅mfp and 𝜁 . Physically, the turnover mass

𝑀turn determines the mass of a halo at which star formation is efficient. Values of 𝑀turn ≃ 108𝑀⊙

correspond to a virial temperature of 𝑇v𝑖𝑟 ≃ 2 × 104K at 𝑧 = 9. Halo masses below 𝑀turn have

exponential suppression in star formation. The smallest halos have suppressed star formation due

to supernova feedback. Roughly, this sets the mass scale for the ionizing sources. The unitless

astrophysical parameter 𝜁 determines the ionizing efficiency of the sources. The ionizing efficiency

depends on other astrophysical parameters such as the escape fraction of ionizing photons (the

fractions of UV photons which escape their host halos). A large value of 𝜁 will imply more

ionizing photons per stellar baryon while a smaller ionizing efficiency will entail less ionizing

photons are emitted for each ionizing source. Previous studies using radiative hydrodynamical

simulations have found that the ionizing efficiency depends on halos mass [18, 32, 35, 77]. In

this paper we approximate 𝜁 to be constant. The cutoff-radius 𝑅mfp sets the maximum size of

the ionized bubbles. Recently, [6] have developed a more realistic implementation of a cutoff-

radius, which better suppresses large scale structure as compared to the standard treatment of

𝑅mfp. This implementation involves modifying the excursion set conditions of [17] to account

for the excess photons required to ionize a region. We leave this for future work. Variation of
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these parameters affect the timing and duration of reionization and have been studied in previous

studies [11,31,36,54,58]. We use these parameters to generate a wide variety of EoR models that

bracket physical scenarios. However these parameters operate under a predominately inside-out

formalism in which the density field 𝛿 is positively correlated with the ionization field 𝑥HII and

therefore do not capture the different density-ionization correlations indicative of different EoR

morphologies. In order to extend the physical scenarios bracketed by the astrophysical parameters

to outside-in morphologies, we need to modify the simulation. This procedure was the focus of

previous work in [75] and [53]. We briefly reproduce it here.

4.2.1 Extending 21cmFAST to outside-in

In order to produce outside-in reionization morphologies we require that the temperature field

𝛿𝑇𝑏 be made from density field and ionization fields which are negatively-correlated. To do

this, we flip the sign of the density field at its high-redshift initial conditions [61]. Once the

resulting overdensity field has evolved and undergone non-linear evolution, overdense regions will

be inverted to underdense regions while underdense regions will be inverted to overdense regions.

The resulting ionization field will be inverted with respect to the original, non-sign flipped field. If

the inverted ionization field is paired with its original, non-sign flipped, density field in Equation

(4.1), then the resulting temperature field will contain the negatively correlated density-ionization

statistics. The underdense regions in the temperature field are now coupled to ionized bubbles

while overdense regions are coupled to neutral regions, i.e. the temperature field will contain the

statistics of outside-in reionization.

4.2.2 𝛽 Parametrization

We can produce EoR scenarios where the density and ionization field are correlated by arbitrary

amounts. To do this we draw a random phase 𝜙 from a Gaussian of standard deviation 𝜎, and

phase shift each Fourier mode of the Fourier transformed density field �̃�, by 𝜙. When returning the

overdensity box to configuration space, overdense and underdense regions in 𝛿 will have shifted
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Table 4.1: Lexicon for physical models and their respective correlations

𝛽 Moniker for Field correlations Physical Model
𝑥HII 𝛿

1 Correlated Inside-out
1 > 𝛽 > 0 Partially correlated Mostly inside-out

0 Uncorrelated Random
0 < 𝛽 < −1 Partially anti-correlated Mostly outside-in

−1 Anti-correlated Outside-in

from their original positions, decorrelating the density field from its original corresponding ionized

fraction box. We apply this procedure to the density field at high redshift, i.e. at the initial

conditions, before the density field undergoes non-linear evolution.

The decorrelation 𝜎, and sign flip are folded into a single parameter which controls the corre-

lation between the ionization field and density field. This parameter is denoted by 𝛽 and is defined

as

𝛽 ≡


sgn(𝜎)

(
1 − |𝜎 |

𝜋

)
𝜎 ≠ 0

±1 𝜎 = 0
(4.2)

where sgn(𝜎) is the sign of 𝜎 which indicates whether we are decorrelating from an outside-in

model (sgn(𝜎) = −1) or an inside-out model (sgn(𝜎) = +1). The case 𝜎 = 0 leads to two values

of 𝛽, corresponding to the original inside-out and outside-in models. We assign these cases the

values 𝛽 = +1 and 𝛽 = −1 respectively. The resulting parameterization can be continuously dialled

from +1 to −1 to go from a fully inside-out scenario to a fully outside-in scenario. Positive values

of 𝛽 indicate scenarios where an initially correlated density and ionization field are decorrelated by

𝜎 while a negative 𝛽 indicates a scenario where a negatively correlated density and ionization field

are decorrelated by 𝜎. We summarize the terminology of this parametization in Table 4.1. We can

see from Figure 4.1 that the statistics of observed LAEs is sensitive to 𝛽. In Section 4.4 we explore

this dependence.
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Figure 4.1: Example fields demonstrating the effect that different 𝛽 correlations have on the

observed LAEs. The intrinsic LAEs (left) roughly traces the underlying density field. When

computing the Ly𝛼 optical depth using the ionization field 𝑥HII (middle), we arrive at the observed

LAEs (right). Neutral regions supress Ly𝛼 radiation from the observer. The ionized regions from

the ionization field are superimposed as contours on the observed LAEs to emphasize the correlation

between the two fields. Inside-out scenarios (with 𝛽 > 0) have positively correlated density and

ionization fields. Conversely, outside-in scenarios (with 𝛽 < 0) have negatively correlated fields.

The case 𝛽 = 0 refers to the scenario where the ionization field and density field are entirely

uncorrelated. These boxes are at redshift 𝑧 = 7.6 with fiducial astrophysical parameters 𝜁0 = 25,

Mturn,0 = 5 × 108M⊙, 𝑅mfp,0 = 30Mpc.
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4.2.3 Variation of Δ2
21(𝑧) as a Function of 𝛽

Our forecasts presented in Section 4.5 make use of both LAE observations and measurement of

the 21cm power spectrum. To gain intuition on how 𝛽 affects the 21cm power spectrum Δ2
21, we

briefly summarize previous work (see [53] for more detail). The correlation parameter 𝛽 affects

Δ2
21, which is defined through the brightness temperature field as

Δ2
21(𝑘) ≡

𝑘3

2𝜋2
⟨|𝛿𝑇𝑏 (k) |2⟩

𝑉
(4.3)

where𝑉 is the survey volume, 𝛿𝑇𝑏 is the Fourier transform of the brightness temperature field (into

a space defined by spatial wavevector k), and the angular brackets indicate an average over shells

of constant 𝑘 ≡ |k|. The brightness temperature is sensitive to the inside-out versus outside-in

morphology through the cross term 𝑥HII𝛿 in Equation (4.1). Consider an inside-out (𝛽 = 1) model.

Decreasing 𝛽 decreases the density field’s original correlation with 𝑥HII, and increases the chances

that neutral regions overlap with overdense regions in 𝛿. As a result, we find increasing power

on large scales as we decrease 𝛽 from +1 to −1. During the first half of reionization, the ionized

bubbles are still small and so reionization has yet to make a significant imprint on the brightness

temperature field. Altering the density-ionization correlation via 𝛽 thus has little effect on the

power spectrum and all the 𝛽 models converge at high 𝑧. As one approaches a global ionization

fraction of ∼ 0.5, the ionized bubble morphology has its largest influence on the power spectrum,

and thus it is there that one sees the greatest sensitivity to 𝛽. At the late stages of reionization, the

IGM is increasingly ionized and Δ2
21 loses its sensitivity to 𝛽.

4.3 LAE Models

In order to infer the morphology of the EoR using Ly𝛼 radiation arriving at an observer, we need to

model the absorption of the Ly𝛼 photons by the neutral hydrogen in the IGM, as well as model the

intrinsic properties of the source. Our model entails two steps, assigning an intrinsic luminosity

to the LAEs before the photons enter the IGM, and then computing the Lyman alpha optical depth
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along the line of sight, taking into account the reionization of the Universe. We first discuss the

optical depth of the Lyman alpha photons and then discuss how we model the intrinsic luminosity

of the LAEs.

4.3.1 Ly𝛼 Optical Depth

Following the approach of [28,41,69,76], we model the optical depth 𝜏𝛼 for Lyman alpha photons

moving through a neutral hydrogen gas cloud of number density 𝑛HI(𝑧) from emitted redshift 𝑧e to

observed redshift 𝑧obs by

𝜏𝛼 =

∫ z𝑒

zobs

𝑑𝑧
𝑐𝑑𝑡

𝑑𝑧
𝑥HI(𝑧)𝑛HI(𝑧)𝜎𝛼 (𝜈, 𝑇𝑘 ), (4.4)

where 𝑥HI(𝑧) is the fraction of neutral hydrogen and 𝜎𝛼 (𝜈, 𝑇𝑘 ) is cross section for Lyman alpha

photons at frequency 𝜈 within a hydrogen gas cloud at temperature 𝑇𝑘 . The frequency dependence

of 𝜎𝛼 accounts for the redshifting of the Ly𝛼 photons as they move through the IGM. As the photon

moves away from line center, it becomes less likely to be scattered by the intervening hydrogen.

Typically the frequency dependence of 𝜎𝛼 is parametrized in terms of the dimensionless frequency

𝑥 = (𝜈− 𝜈𝛼)/Δ𝜈𝛼 where 𝜈 is the frequency of the Ly𝛼 photons as they encounter a clump of neutral

hydrogen gas and 𝜈𝛼 = 2.47 × 1015Hz is the emitted frequency of a Ly𝛼 photon in the rest frame.

The quantity Δ𝜈𝛼 is the thermal width of the line Δ𝜈𝛼 =

√︃
2𝑘𝐵𝑇𝜈2

𝛼/𝑚𝑝𝑐
2, where 𝑚𝑝 is the mass of

the proton and 𝑘𝐵 is the Boltzmann constant. The integration variable in Equation 4.4 occurs over

the redshift 𝑧 which is related to the frequency 𝜈 of the Ly𝛼 photons using 1 + 𝑧 = 𝜈𝛼/𝜈. Typically

𝑥 can be thought of as the ratio of frequency distance from line center to the thermal width of the

line. The Ly𝛼 cross section can be written as the product

𝜎𝛼 (𝜈, 𝑇𝑘 ) = 𝜎𝛼0𝜙(𝑥) (4.5)

where 𝜎𝛼0 is the cross section at line center and 𝜙(𝑥) is a function which takes into account how

𝜎𝛼 varies as a function of this dimensionless frequency (as it moves along its line of sight). The
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cross section 𝜎𝛼0 at line center is given by

𝜎𝛼0 =
1

√
𝜋Δ𝜈𝛼

𝑓𝛼𝜋𝑒
2

𝑚𝑒𝑐
≃ 5.9 × 10−14

√︂
𝑇𝑘

104𝐾
(4.6)

where 𝑓𝛼 = 0.416 is the Ly𝛼 oscillator strength, 𝑒 is the charge of the electron, 𝑚𝑒 is the mass

of the electron and 𝑐 is the speed of light. Typically how 𝜎𝛼 varies along the line of sight can be

broken into two regimes: (1) frequencies close to line center which we refer to as the core of the

line (Gaussian line shape) and (2) frequencies further away from line center which we refer to as

the wing (Lorentzian line shape). Both these regimes can folded into the Voigt function defined by:

𝜙(𝑥) = 𝑎𝜈

𝜋

∫ ∞

−∞
𝑑𝑦

𝑒−𝑦
2

(𝑦 − 𝑥)2 + 𝑎2
𝜈

(4.7)

where 𝑎𝜈 = 4.7 × 10−4
√︃

𝑇𝑘
104𝐾

is the Voigt parameter. To evaluate Equation (4.7), we use the

approximation made in [69]. The cross section 𝜎𝛼 (𝜈, 𝑇𝑘 ) is tightly peaked close to line center

𝜈𝛼0 and then drops rapidly as a function of 𝑥. The cross-over from core to wing occurs at 𝑥 ≃ 3,

which occurs on sub-grid scales in our simulation. In order to properly model the absorption of

Ly𝛼 photons by neutral hydrogen within the core of the line, one must have sufficient resolutions

of 𝑛HI and 𝑥HII to track the propagation of photons for 𝑥 < 3 which correspond to physical scales

of ≪ 1Mpc. Since our density and ionization boxes described in Section 4.2 have resolution of

1.5Mpc per pixel we use a weighted average of 𝜎(𝑥) for values of 𝑥 ≪ 3 and then switch to wing

absorption through the wing for 𝑥 > 3 through Equation (4.7). This cross-over point from core

to wing has a weak dependence on the temperature 𝑇𝑘 of the gas. The LAEs are assumed to lie

within ionized bubbles, and so we set 𝑇 = 104K which is consistent with a photoionised gas at

the mean density [24]. This yields the cross-over point 𝑥 ≃ 3. Beyond the cross-over point, the

absorption of Ly𝛼 photons in the IGM also depends on the temperature of the neutral hydrogen in

the IGM. Depending on the particular reionization model chosen, the temperature 𝑇𝑘 of the gas has

a physically motivated range of 1K< 𝑇𝑘 < 103K. There are physically motivated arguments for both

extreme temperature scenarios; the 103K scenario is due to x-ray heating of the neutral IGM, for
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example. In the neutral IGM, we set the temperatures of the gas to be 𝑇𝑘 = 1K, which is consistent

with an adiabatically cooled gas [41]. This is not expected to be valid for models where x-rays

have heated the IGM. This negligibly affects our transmission profile. Our conclusions presented

in Section 4.6 do not depend on how one chooses to model the temperature of the gas.

4.3.2 LAE Intrinsic Luminosity

We assume that the intrinsic Ly𝛼 luminosity of the emitters is proportional the mass of the halo in

which it resides. This model is similar to one used in [67, 74]. The intrinsic luminosity is spread

out over the line profile of the Ly𝛼 photons emerging from the ISM. We test two different emerging

profiles: a Gaussian profile at line center, i.e. centered at 𝑣 = 0 km/s, with standard deviation

Δ𝑣 = 200 km/s where 𝑣 is the velocity offset from systemic, and a Dirac delta function at line center

𝑣 = 0 km/s. We ensure that the Ly𝛼 flux underneath both line profiles is identical. Due to the large

scales of our simulations, we average over the intrinsic line profile of the Ly𝛼 photons as they leave

the ISM by computing an effective cross section for subgrid scales. This approximation, which

is discussed in Section 4.3.1, leads to both line profiles giving similar results. For computational

simplicity, we use the delta function line profile in our analysis. In reality, the line profile of the Ly𝛼

photons is much more complex, requiring radiative transfer analysis for the outflowing/inflowing

material. Our simple model does not intend to capture the small scale radiative transfer physics in

the ISM which are required to realistically model the intrinsic luminosities of LAEs. These models

have been studied in other works such as [7, 27, 28, 76]. Rather, we use this framework to bracket

the physical range of intrinsic clustering by providing flexibility to the high degree of uncertainty

regarding the intrinsic properties of the source. We then study how the EoR morphology, imprinted

through the opacity in Equation (4.4), affects the luminosity, clustering and number densities of

the intrinsic LAEs. To this objective, we have also studied offsetting our line profiles to ±200 km/s

with no affect to our conclusions and results. The intrinsic luminosity of a Ly𝛼 emitter residing in

a halo of mass 𝑀ℎ, before the Ly𝛼 flux is altered by the IGM, is given by,

Lint
𝛼 = 𝐿min

𝛼

(
𝑀ℎ

𝑀min
𝛼

)𝛾
𝜒 (4.8)
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Figure 4.2: The Ly𝛼 luminosity function of LAEs as a function of 𝛽, at three different stages of

reionization. In each panel, the dotted curve corresponds to the luminosity function of the intrinsic

field (i.e. with xHII = 0). Notice that extreme outside-in reionization scenarios (𝛽 ∼ −1), lead to

concealing the intrinsically brightest LAEs. At high redshift, where there are fewer intrinsically

bright LAEs, this leads to a sharp drop-off of the Ly𝛼 luminosity function. In each of these curves,

the detection threshold Lymin
𝛼 corresponds to mass Mmin

𝛼 ∼ 1010M⊙ with 𝑓duty = 1.
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Figure 4.3: Evolution in the number of observed LAEs for positively correlated models (𝛽 > 1),

uncorrelated models (𝛽 = 0), and negatively correlated models (𝛽 = −1) at different mean ionized

fractions. The mean number density of LAEs 𝑛, for the extreme 𝛽 = 1 and 𝛽 = −1 models are noted.

Notice the rapid change in the number of LAEs for 𝛽 = −1 models. As the ionized regions grow

large enough to encompass the high density regions, the number of LAEs increases rapidly. The

uncorrelated model has ionized regions which are random with respect to the underlying density

field. Positively correlated models have the ionized regions that always correspond to the high

density regions, where the intrinsic number density of LAEs is greatest.

where 𝜒 = 0 or 1 is a random variable that encodes the uncertainty whether a given halo hosts

an LAE. The probability that a halo hosts an LAE, i.e. the probability that 𝜒 = 1, is equal to

the duty cycle 𝑓duty. We assume 𝑓duty to be independent of its mass. The luminosity 𝐿min
𝛼 is

the instrumental threshold for detection of an LAE, which we set to be 𝐿min
𝛼 = 2.5 × 1042 ergs/s,

corresponding to the detection limit of the HSC Ultra Deep Field at redshift 𝑧 = 6.6. The mass

𝑀min
𝛼 is the halo mass corresponding to the detection threshold of 𝐿min

𝛼 . Haloes with masses

less than 𝑀min
𝛼 lead to intrinsic LAE luminosities that are below the detection threshold and so

unobservable. The factor of 𝛾 is the power law index which controls the inclination of the intrinsic

LAE luminosity function. These parameters provide the necessary flexibility in the intrinsic Ly𝛼

luminosity function to bracket the physical range of the clustering signal [67]. Take for example

the normalization constant 𝑀min
𝛼 , which shifts the intrinsic luminosity function of the LAEs left

and right. Values of 𝑀min
𝛼 ≃ 1011M⊙ allow only the largest LAEs to be observable (i.e. above

the detection threshold 𝐿min
𝛼 ). This leads to a scenario where only the largest haloes contribute
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to the survey. In contrast, a lower 𝑀min
𝛼 means that the smaller LAEs will also be observable by

our instruments, which allow us to measure LAEs in the underdense regions of the Universe. The

normalization mass 𝑀min
𝛼 will therefore affect the statistics of the intrinsic LAEs The duty cycle

𝑓duty, adjusts the number of halos in the survey which shifts the intrinsic luminosity function up

and down. The parameter 𝑓duty affects the number densities of intrinsic LAEs but doesn’t affect

the clustering of the intrinsic LAEs. Finally 𝛾 tilts the LAE luminosity function. For example,

reducing 𝛾 from 1 to 𝛾 = 2/3 decreases the number of intrinsically bright LAEs and increases the

number of faint LAEs. Varying 𝛾 within the range 1/2 ≤ 𝛾 ≤ 1 does not significantly affect the

clustering signal of the LAEs or the observed number density of LAEs (see Sections 4.4.2, 4.4.3).

For the remainder of the analysis we set 𝛾 = 1 without loss of generality. A possible shortcoming

of this model is that the brightest LAEs are assumed to reside in the overdense regions of 𝛿, the

location of the largest halos. This might not be the case if one takes into account the UV reddening

of dusty galaxies in the vicinity of larger halos. Such a scenario would cause an apparent dimming

of bright LAEs hosted in large dusty halos [50]. We leave these broader range of scenarios for

future work.

Simulations have also suggested that the escape fraction of ionization photons from their host

halos may decrease within increasing halo mass [32,35,77]. Since the recombination of hydrogen

atoms in the ISM are the primary producer of Ly𝛼 photons, scenarios where 𝑓esc decreases with

𝑀ℎ yield a halo mass dependent intrinsic luminosity that scales as 1 − 𝑓esc. As a result, a halo

mass dependent 𝑓esc simultaneously affects both Ly𝛼 transmission through the IGM, as well as

the intrinsic luminosity of the LAEs. For example, if 𝑓esc decreases with Mℎ then the intrinsically

brightest LAEs are hosted by the largest halos which may have suppressed ionizing efficiency 𝜁

compared to smaller mass halos. Although an intrinsically brighter LAE would make it easier

to observe, it would correspond to a region where IGM transmission is made more difficult by

decreased 𝜁 . Similarly, the intrinsically dimmest LAEs (small 𝑀ℎ) may have enhanced Ly𝛼

transmission through the IGM due to larger 𝜁 . This scenario is in contrast with our model where we

assume a constant ionizing efficiency 𝜁 . Adoption of a halo mass dependent 𝑓esc that decreases with

𝑀ℎ into our models would require modification of Equation 4.8 while simultaneously modifying
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the bubble sizes around the LAEs, which affects IGM transmission. However in our models,

adjusting the bubble sizes doesn’t have a dominant effect on the observability of an LAE. To

see this, recall that in Section 4.3.1 we perform a weighted average of the Ly𝛼 cross-section for

subgrid scales. This makes the ionization state of the first few pixels important in determining the

observational properties of the LAE. Therefore perturbing the existing bubble size around an LAE

will not significantly affect IGM transmission as compared to the intrinsic properties of the source.

However, a halo mass dependent 𝜁 can alter the timeline of reionization, which might affect whether

a region is ionized at all or not. Our assumption of a constant 𝜁 would potentially underestimate

the contribution of UV photons by small mass halos and overestimate the contribution of UV

photons from large halos. However our fiducial model (introduced in Section 4.5.4) is one where

the halos size are in the middle of these two extremes, where the assumption of a constant 𝜁 is most

appropriate.

We assign an intrinsic Ly𝛼 luminosity to each halo in our simulation box according to Equation

(4.8). The observed luminosity of the LAE after the Ly𝛼 photons pass through the IGM is given by

𝐿𝛼 = Lint
𝛼 𝑒

−𝜏𝛼 , (4.9)

where 𝑒−𝜏𝛼 is computed by integrating Equation (4.4) along the line of sight for a given reionization

scenario. LAEs with apparent luminosity 𝐿𝛼 satisfying 𝐿𝛼 < 𝐿min
𝛼 are removed from our mock

survey since they have Ly𝛼 luminosity below the detection threshold. To mimic the LAEs observed

by the Subaru Survey, which has redshift thicknessΔ𝑧 = 0.1 (corresponding to∼ 37Mpc at 𝑧 = 6.6),

we slice our observed LAEs corresponding to the same redshift thickness, Δ𝑧 = 0.1 (see Section

4.5.1). In the following Section we study how the morphology of the EoR affects the observability

of these LAEs.

4.4 Dependence of LAE Statistics on 𝛽

The observed Ly𝛼 flux from a LAE is very sensitive to any neutral hydrogen that lies along its

line of sight. Consequently, the Ly𝛼 flux from LAEs which reside near neutral regions is severely
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attenuated. These LAEs are less likely to be observed over the detection threshold 𝐿min
𝛼 . Conversely,

LAEs coupled to regions of high 𝑥HII (ionized bubbles) are more likely to be observed. Since the

underlying intrinsic LAEs roughly trace the density field 𝛿, we can control how the intrinsic LAEs

couple to 𝑥HII by varying 𝛽, which controls the coupling between 𝛿 and 𝑥HII. In this Section,

we study the effect that different EoR morphologies have on our measurements of the LAEs. In

Section 4.4.1 and 4.4.2 we study how 𝛽 affects the LAE luminosity function and mean number

density of LAEs, while in Section 4.4.3 we study how the clustering of LAEs depends on the EoR

morphology.

4.4.1 Dependence of the Observed LAE Luminosity Function on 𝛽

Let us consider the underlying intrinsic LAEs at redshift 𝑧. Recall that the value of 𝛽 changes how

the ionization field couples to the intrinsic LAEs. Values of 𝛽 ≃ 1 imply an inside-out reionization

scenario where the ionization field is correlated with the underlying density field. In this scenario,

LAEs found in overdense regions will correspond to regions of high 𝑥HII which reduces the effect

of the attenuation factor in Equation (4.4) and makes these LAEs more likely to be observed.

Conversely, LAEs which reside in underdense regions of 𝛿 will correspond to regions of low 𝑥HII,

where the presence of neutral hydrogen will obscure them. Since the overdense regions are more

likely to host the intrinsically brightest LAEs, 𝛽 = 1 will tend to allow the brightest LAEs to be

observed. This maximizes the amount of intrinsically bright LAEs which are observable. We can

see the effect that an inside-out reionization scenario has on the observability of the LAEs in Figure

4.1.

Figure 4.2 illustrates the effect of decreasing 𝛽 on the LAE luminosity function. As we decrease

𝛽 from 𝛽 = 1, ionized bubbles in 𝑥HII become increasingly decorrelated from the underlying density

field 𝛿, and so the placement of the ionized regions are increasingly randomized in relation to the

intrinsic LAEs. This means that some overdense regions in 𝛿 will now couple to regions of low

𝑥HII, obscuring the LAEs which reside in that region. This leads to a decrease in the bright end

of the LAE luminosity function from the purely inside-out (𝛽 = 1) scenario. As we continue

to decrease 𝛽 to 𝛽 ≃ −1, corresponding to an outside-in reionization scenario, ionized bubbles
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Figure 4.4: Evolution of the number density of LAEs for different reionization morphologies.

Inside-out driven models (𝛽 > 0) initially have more observable LAEs since the intrinsically

densest regions of the IGM are ionized first. As the ionized regions grow to encapsulate the

underdense regions in 𝛿, the mean number density grows slowly as compared to outside-in driven

models (𝛽 < 0), where the underdense regions are first to be ionized. In this scenario, the number

density of LAEs increases rapidly as the intrinsically densest regions are ionized. We use the same

fiducial model as in Figure 4.1
.

will be increasingly coupled to underdense regions in 𝛿. LAEs which reside in the underdense

regions become more likely to be observed by experiment, while the flux from LAEs which reside

in overdense regions in 𝛿 will be coupled to regions of low 𝑥HII, and therefore severely attenuated.

Since the brightest LAEs reside in the overdense regions, we notice a sharp decrease in the bright

end of the LAE luminosity function. We can see the sharp dropoff of bright LAEs for outside-in

driven models in Figure 4.2. This sharp dropoff of bright LAEs for outside-in driven models

becomes even more pronounced at higher redshift where there are fewer intrinsically bright LAEs.

As outside-in reionization proceeds, the ionized regions grow and expose the overdense regions

where the brightest LAEs reside. By the end of outside-in reionization, only the intrinsically

brightest LAEs are still unobservable. Referring again to Figure 4.2, this tilts the Ly𝛼 luminosity

function compared to extreme inside-out models.
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4.4.2 Dependence of the Mean Number Density of LAEs on 𝛽

From the LAE luminosity function we can extract another useful quantity, the mean number density

𝑛, of the observed LAEs. This quantity represents the number of observable LAEs per unit volume

and can be derived by summing over the luminosity function:

𝑛 =

∫ ∞

𝑀min
𝛼

𝑛(𝑀ℎ)𝑑𝑀ℎ, (4.10)

where 𝑀min
𝛼 corresponds to the detection threshold 𝐿min

𝛼 . The number density of LAEs has already

been constrained to be 𝑛 = 4.1+0.9
−0.8 × 10−4Mpc−3 at 𝑧 = 6.6 corresponding to a minimum threshold

luminosity of 𝐿min
𝛼 = 2.5 × 1042ergs/s [52]. The EoR morphology will influence which LAEs in

the intrinsic field are observable, and so will influence the measured number density of LAEs, 𝑛obs.

To see how 𝛽 influences 𝑛obs, note that the intrinsic LAEs trace the underlying halo field

(Equation (4.8)). Therefore overdense regions of 𝛿 contain many more LAEs than the underdense

regions of 𝛿. For inside-out reionization scenarios (𝛽 = 1), overdense regions in 𝛿 correspond to

regions of high 𝑥HII in the ionization field. The intrinsically densest regions of LAEs are most likely

to be observed first. As the ionized bubbles grow, the underdense regions in 𝛿 become observable

which contain statistically fewer LAEs. The measured number density of LAEs, 𝑛obs, increases

slowly as reionization progresses. In Figure 4.3 we show the LAE number field. We can see the

evolution in the number of LAEs for 𝛽 = 1 in the top row of Figure 4.3. Notice that since the densest

regions are ionized first, LAEs are observable at low mean ionized fraction. Consider now the

outside-in model of reionization (𝛽 = −1), where the underdense regions are ionized first. Since the

underdense regions are less likely to host LAEs, then only the intrinsically sparest regions of LAEs

are observable early in reionization. This may make high redshift LAEs difficult to find for outside-

in models [42]. However, as reionization progresses, the ionized regions grow and overdense

regions are increasingly coupled to low 𝑥HII which allows the regions with the intrinsically densest

regions of LAEs to be observed. From the bottom row of Figure 4.3 we can see that there are fewer

LAEs observable at low mean ionized fraction compared to 𝛽 = 1 models. In Figure 4.4 we can

see how this translates to the redshift evolution of 𝑛obs for various 𝛽 values. Outside-in models
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produce scenarios where 𝑛obs increases rapidly as reionization progresses. As we increase 𝛽 from

its extremum, 𝛽 = −1, the number density, 𝑛obs, increases monotonically until it is maximized with

respect to 𝛽 for inside-out reionization scenarios (𝛽 = 1). As reionization progresses, the IGM

becomes increasingly ionized and the number density of LAEs become insensitive to 𝛽. All models

converge to the intrinsic number density of LAEs (see Figure 4.4). In Section 4.5, we use existing

constraints on 𝑛obs at 𝑧 = 6.6 to place constraints on 𝛽. In the following Section, we introduce the

angular correlation function (ACF) as another statistical tool to study LAEs, which along with 𝑛obs,

has already been constrained at 𝑧 = 6.6.

4.4.3 Dependence of the ACF on 𝛽

The probability of finding a pair of LAEs at a distance 𝑅 from one another is

𝑑𝑃12 = 𝑛2 [1 + 𝜉 (𝑅)] 𝑑𝑉1𝑑𝑉2 (4.11)

where 𝑛 is the mean number density of LAEs, 𝑑𝑉1, and 𝑑𝑉2, are volume elements of the survey in

the vicinity of each LAE, and 𝜉 (𝑅) is the two point correlation function. The two point angular

correlation function is the excess probability as compared to a random Poisson distribution, that two

LAEs be located a distance 𝑅 from one another. To compute 𝜉 (𝑅), we first form the overdensity

𝛿𝑛 :

𝛿𝑛 (x, 𝑧) =
𝑛LAE(x, 𝑧)

𝑛
− 1, (4.12)

where 𝑛 is the mean number of LAEs at redshift 𝑧 and 𝑛LAE(x, 𝑧) is the number density field which

describes the fluctuations in the number of LAEs about the mean (according to position x and

redshift 𝑧). We can compute 𝜉 (𝑅) directly from the Fourier transformed overdensity field 𝛿𝑛,

𝜉 (𝑅) =
〈∫

𝑑3k𝑒𝑖k·x |𝛿𝑛 (k) |2
〉

x∈𝑅
. (4.13)

where the angular brackets indicate a spatial average. Physically, we interpret the correlation

function as the clustering of the LAEs at separation 𝑅. Larger values of 𝜉 imply more clustering
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Figure 4.5: ACF of various 𝛽 scenarios at different stages of reionization. Outside-in driven

reionization scenarios (𝛽 < 0) produce the largest clustering of LAEs. The contrast between the

different 𝛽models is greatest at high redshifts where the ionization of the IGM has the largest imprint

on LAE observability. As reionization proceeds it becomes more difficult to distinguish between

these scenarios. We use fiducial parameters 𝜁0 = 25, 𝑀turn,0 = 5 × 108𝑀⊙, 𝑅mfp,0 = 30 Mpc, and

𝛽0 = 0.936, 𝑓duty = 1 and Mmin
𝛼 = 1010M⊙.

of LAEs. The two point correlation function 𝜉 of LAEs can be expressed as a function of angular

separation 𝜃 on the sky. This is the angular correlation function (ACF), denoted by 𝜉 (𝜃). Note

that in a LAE survey, one actually measures 𝜉 (𝜃). However, to build intuition in our theory

interpretation, we use 𝜉 (𝑅) to study the clustering of LAEs. For small angular separations and thin

layers in Δ𝑧, we can simply convert 𝜉 (𝑅) to 𝜉 (𝜃) using 𝐷𝑐 which is a conversion factor from 𝜃 to

transverse comoving distance 𝑅, and is given by

𝐷𝑐 ≡
𝑅

𝜃
=
𝑐

𝐻0

∫ 𝑧

0

𝑑𝑧′

𝐸 (𝑧′) (4.14)
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Figure 4.6: The number density of observed LAEs for different 𝛽models and at different redshifts.

For inside-out models at high redshifts (top two rows), LAEs are spread across the entire ionized

regions, while outside-in models produce fewer LAEs which are spread across a limited volume.

This serves to increase the clustering of LAEs for 𝛽 = −1 models. The scale is binary to accentuate

the difference in the spatial distributions of LAEs between the two models. Later in reionization

(bottom two rows), the LAEs of both inside-out and outside-in models are spread over similar

ionized volumes. However the number density of LAEs within these ionized volumes is larger for

inside-out models which serves to increase the clustering of LAEs for 𝛽 = −1 models compared to

𝛽 = +1. See Section 4.5.3 for the simulation parameters.
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with 𝑐 the speed of light, 𝐻0 the Hubble parameter today, 𝐸 (𝑧) ≡
√︁
Ω𝑚 (1 + 𝑧)3 +ΩΛ and ΩΛ

the normalized dark energy density [65]. For the remainder of this paper we work with 𝜉 (𝑅),

recognizing that one can easily convert 𝜉 (𝑅) to 𝜉 (𝜃) using Equation (4.14) under the Limber

approximation [65].

The ACFs of the intrinsic LAEs under different density-ionisation correlation scenarios are

shown in Figure 4.5. We split our discussion of the 𝛽 dependent ACF into two different redshift

regimes: higher redshifts (Figure 4.5 top two rows), and lower redshifts (Figure 4.5 bottom two

rows). Consider first the higher redshift regime, outside-in scenarios (𝛽 = −1), lead to more

clustering as compared to inside-out models (𝛽 = 1). To see why this is, consider LAEs in

the ionized regions of an outside-in (𝛽 = −1) scenario, where the ionized regions correspond to

underdense regions in 𝛿. We can see from the top two rows in Figure 4.6, the LAEs are rare and

occupy an only fairly limited portion of the ionized volume. Due to the limited volume that they

occupy, any LAEs observed in 𝛽 = −1 models tend to be clustered together. This produces a strong

clustering signal for 𝛽 = −1 models. Now let us consider LAEs in the ionized regions of inside-out

models. There is a significant increase in the number of LAEs compared to outside-in models.

Referring again to the top two rows in Figure 4.6, the excess LAEs in 𝛽 = 1 models are spread

over the entire volume of the ionized region. This reduces the excess probability 𝜉 (𝑅) in Equation

(4.11) of finding LAEs separated by distances smaller than the bubble size, leading to a decrease

in clustering compared to outside-in driven models. As we decrease 𝛽 from 𝛽 = 1 to 𝛽 = −1, we

find that there is an increase in the clustering signal. This conclusion is also true when the extreme

𝛽 models are constrained to have a fixed number density of LAEs. We can study this scenario by

tuning the duty cycle 𝑓duty of both models, so that they have the same number density of LAEs.

This entails decreasing fduty for 𝛽 = 1 models, such that the number of LAEs within the ionized

regions are the same as for 𝛽 = −1 models. In this scenario the LAEs for the inside-out scenario are

still spread over a larger volume as compared to the LAEs within the ionized regions of outside-in

models, leading to the same conclusions as above.

Our above conclusions are essentially due to LAEs being spread over a larger ionized volume

for inside-out models, while outside-in models produce localized fluctuations of LAEs within the
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ionized regions. Let us now focus on the behavior of 𝜉 at lower redshifts where this is no longer

true. At the end of reionization, more structures have collapsed to form haloes, and so the number

of LAEs in the underdense regions of the intrinsic field dramatically increases. Referring to the

bottom two rows in Figure 4.6, the ionized regions of outside-in reionization maps now contain

LAEs that are spread over the entire ionized volume. Consider LAEs separated by 𝑅 within these

ionized volumes, where 𝑅 is much smaller than the typical ionized bubble. Since there are more

LAEs within the ionized volumes of inside-out driven models compared to 𝛽 = −1 models, there

are a larger fraction of LAEs separated within 𝑅 increasing the clustering compared to outside-in

driven models. Equivalently, the ionized volumes of inside-out regions allow us to observe the

highest mass halos, which tend to be the most biased traces tracers of the density field, i.e. the

most clustered. In Figure 4.7, we can see the non-monotonic behaviour of 𝛽 in 𝜉 at separations

of 𝑅 = 10Mpc, a length scale entirely contained within the ionized regions at these redshifts. At

low redshifts, the outside-in driven models (𝛽 < 0), produce the smallest clustering of LAEs.

As reionization continues to proceed, the ionized regions grow, exposing both overdense and

underdense regions, which narrows the contrast of 𝜉 (𝑅) between the extreme models, 𝛽 = 1 and

𝛽 = 1. Finally as the IGM is entirely ionized, the clustering signatures of the extreme models

become indistinguishable and 𝜉 (𝑅) is no longer sensitive to 𝛽. We also find that the dependence

of the ACF on 𝛽 is robust to different values of 𝑀min
𝛼 . The increase in clustering signature when

decreasing 𝛽 from 1 to −1 still holds at different values of 𝑀min
𝛼 . For example, decreasing 𝑀min

𝛼

allows the LAEs hosted by smaller haloes to be detected by surveys. Because low mass halos are

abundant in both overdense and underdense regions, both the underdense regions and overdense

regions receive an increase in the number of observed LAEs, resulting in the same conclusions as

above.

In Section 4.6, we shall see that at redshift 𝑧 = 6.6, the differences in 𝜉 (𝑅) between extreme

models are not significant enough to distinguish between them using existing data. Since the

astrophysical parameters 𝑀turn, 𝑅mfp and 𝜁 , affect the size of the ionized regions at each 𝑧, they will

also influence the observed clustering of and number density of LAEs. In the next section we use

existing measurements of 𝜉 (𝑅) and 𝑛 to place constraints on these parameters as well as 𝛽.
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Figure 4.7: Angular correlation function as a function of 𝑧 for various 𝛽 models at separations of

10Mpc. Note the non-monotonic behaviour of 𝛽. Early in reionization, the LAEs of inside-out

models are spread over larger volumes within the ionized regions as compared to outside-in models,

where the LAEs tend to be more localized. This produces a stronger clustering signal for outside-in

driven models. This behaviour is inverted later in reionization where there are enough intrinsic

LAEs to fill the entire volume of ionized regions for outside-in models.
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4.5 Forecasts and Constraints

In Section 4.2.2 we developed a framework where we can track the density-ionization correlations

during the EoR. In Section 4.4, we developed an intuition on how the observed clustering, number

density and luminosity function of the LAEs depend on this correlation. In this section, we use

measurements of the number density and clustering of LAEs at 𝑧 = 6.6 made by the Subaru survey

to place constraints on the correlation parameter 𝛽, as well as the other EoR parameters. Further,

we forecast the type of constraints that can be placed on 𝛽 using a joint measurement of LAE and

the 21cm power spectrum using HERA. We discuss the HERA instrument as well as its fiducial

instrument parameters. We present the results of these forecasts in Section 4.6.

4.5.1 Subaru Survey

To place constraints on our EoR parameters including 𝛽, we use measurements of 𝑛 and 𝜉 (𝜃) at

redshift 6.6 from the Subaru/XMM-Newton Deep Survey (SXDS) survey [52]. Here we summarize

the analysis done by [52] in computing 𝑛 and 𝜉 (𝜃). Measurement of 𝑛 is made indirectly by first

measuring the 𝐿𝑦𝛼 luminosity function using the 𝐿𝑦𝛼 line profiles based on 207 𝐿𝑦𝛼 emitters at z

= 6.6 on the 1-deg2 sky, which have redshift uncertainty Δ𝑧 ≃ 0.1. Using these measurements, the

constraints are placed on the 𝐿𝑦𝛼 luminosity function which is modeled as a Schechter function,

defined as

𝜙(𝐿)𝑑𝐿 = 𝜙∗(𝐿/𝐿∗)𝛼𝑒−𝐿/𝐿
∗
𝑑 (𝐿/𝐿∗) (4.15)

where 𝐿 is the luminosity of the LAEs and 𝐿∗ is the characteristic LAE luminosity beyond which

the power-law form of the function drops off rapidly. Using the 207 LAEs sampled from the Subaru

survey and 58 additional LAE measurements made from [30], the best fit Schechter parameters are

found to be 𝜙∗ = 8.5+3.0
−2.2 × 10−4Mpc−3 and 𝐿∗Ly𝛼 = 4.4+0.6

−0.6 × 1042ergs s−1 with fixed 𝛼 = −1.5.

The number densities and 𝐿𝑦𝛼 luminosity functions are calculated by integrating equation (4.15)

down to the observed limit of 𝐿min
𝛼 = 2.5 × 1042 ergs/s using the best fit Schechter parameters.

The number density is computed to be 𝑛 = 4.1+0.9
−0.8 × 10−4Mpc−3 at 𝑧 = 6.6. The constraints on
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these quantities include cosmic variance estimates. To mitigate such errors in the future, one can

alternatively consider Ly𝛼 intensity mapping, which can take advantage of a larger field [64].

The angular correlation function, 𝜉 (𝜃), of the 207 measured LAEs are computed using the

Landy & Szalay (LS) estimator. To evaluate the LS estimator, one first creates a pure random

catalogue of sources and computes

𝜉 (𝜃) = [𝐷𝐷 (𝜃) − 2𝐷𝑅(𝜃) + 𝑅𝑅(𝜃)]/𝑅𝑅(𝜃), (4.16)

where 𝐷𝐷 (𝜃), 𝑅𝑅(𝜃) and 𝐷𝑅(𝜃) are the number of data-data, random-random and data-random

pairs normalized by the number of random-random pairs in each angular bin [34]. Observational

offsets included in 𝜉 (𝜃) due to limited survey area are evaluated by first assuming the true underlying

ACF follows a power law of the form 𝜉 (𝜃) = 𝐴𝜉𝜃
−𝛾, where the values of 𝐴𝜉 are fit for using the

results on 𝜉 (𝜃). The observational offset in 𝜉 (𝜃) can then be computed using the integral constraint

(see [52], [21]). The angular dependence of 𝜉 (𝜃) is converted to a dependence on comoving

distance 𝑅 using the Limber approximation [56]. The resulting constraints on 𝜉 (𝑅) are quoted in

Figure 12 of [52]. We only use the constraints placed on 𝜉 (𝑅) for comoving scales larger than

> 1.5Mpc, corresponding to the resolution of our simulation boxes described in Section 4.2, which

corresponding to comoving angular scales larger than 𝜃 ≃ 35 arcsec.

4.5.2 HERA instrument and Sensitivities

To forecast the constraints that can be placed on 𝛽 using both the Subaru data and a measurement

of the 21cm power spectrum, we use HERA as our fiducial 21cm instrument. When completed,

HERA will consist of 350 parabolic dishes, each 14 m in diameter with observing frequencies from

50 MHz to 250 MHz. Based on its forecasted sensitivities, > 20𝜎 detections of the 21 cm power

spectrum from the EoR will likely be possible [8, 58]. Although we use HERA as our fiducial

instrument, the qualitative conclusions presented in Section 4.6 are also valid for other instruments

such as the Murchison Widefield Array [3, 70], the Square Kilometre Array [33], and the Low

Frequency Array [71].
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We model HERA’s sensitivities on measurements of Δ2
21 using the publicly available code

21cmSense [58, 60]. The code computes the sensitivities on Δ2
21 by modeling the instrumental

thermal noise using HERA’s interferometeric design and survey parameters. Beyond instrumental

effects, the code then adds sample variance to the sensitivities. The resulting errors on Δ2
21 are

computed as

𝜀(𝑘) = 𝐷2
𝑐𝑌
𝑘3𝜉eff

2𝜋2

𝑇2
sys

2𝑡int
+ 𝜀sample (4.17)

where the first term is the thermal noise specific to HERA and the second term adds sample

variance. In the first term, 𝑇sys is the antenna temperature of HERA and Ωeff is the effective solid

angle of the primary beam of each dish [55]. Meanwhile 𝐷𝑐 converts angular separations on the

sky to comoving distances (see Equation (4.14)) and 𝑌 converts radial comoving distances Δ𝑟∥ to

frequency intervals Δ𝜈 defined through

𝑌 ≡
Δ𝑟∥
Δ𝜈

=
𝑐

𝐻0𝜈21

(1 + 𝑧)2

𝐸 (𝑧) . (4.18)

where 𝜈21 ≈ 1420 MHz is the rest frequency of the 21 cm line. The sample variance is generated

using a fiducial EoR inside-out model. Using different fiducial EoR scenarios does not qualitatively

change the results in Section 4.6.

The 21cm signal is expected to be several orders of magnitude dimmer than the “foreground"

contaminants. The foregrounds are astrophysical in nature and dominate the low-frequency radio

spectrum. Fortunately, the foregrounds are spectrally smooth and are expected to lie in the

characteristic “wedge" of cylindrically decomposed Fourier space. The “wedge" is defined as

𝑘 ∥ ≤
(
𝐷𝑐

𝜈𝑌

)
𝑘⊥, (4.19)

where 𝜈 is the observing frequency, 𝑘⊥ and 𝑘 ∥ are the wavenumbers perpindicular and parallel to the

line of sight in cylindrical Fourier space. In generating Equation (4.17), we adopt the “moderate"

foreground setting in 21cmSensewhich states that modes satisfying Equation (4.19), and additional

modes up to 0.1 ℎMpc−1 higher in 𝑘 ∥ , are contaminated by the foregrounds and so omitted in our
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analysis (i.e. foreground avoidance rather than foreground subtraction). This additional “buffer"

accounts for the degree of spectral unsmoothness in the foregrounds which may cause a leakage to

higher 𝑘 ∥ [59].

4.5.3 Markov Chain Monte Carlo Setup for Subaru Constraints

In this Section we discuss our Markov Chain Monte Carlo (MCMC) setup which we use to place

constraints on the EoR parameters. In our MCMC we use only the measurements from the

Subaru survey discussion in the previous Section. We place the correlation parameter 𝛽, the EoR

parameters, 𝜁 , 𝑀turn, and 𝑅mfp, as well as 𝑓duty and 𝑀min
𝛼 into a single vector 𝜽 . In order to place

constraints on 𝜽 , we need to infer the probability of obtaining a particular instance of 𝜽 given the

Subaru dataset dS. This probability distribution, 𝑝(𝜽 |dS), is the posterior in Bayes’ theorem

𝑝(𝜽 |dS) ∝ 𝑝(dS |𝜽)𝑝(𝜽), (4.20)

where 𝑝(dS |𝜽) is the likelihood function and 𝑝(𝜽) is our prior. We place uniform priors on all

parameters. For the correlation parameter 𝛽, and duty parameter 𝑓duty, we use a uniform prior

of −1 ≤ 𝛽 ≤ 1 and 0 ≤ 𝑓duty ≤ 1 respectively. These ranges encapsulate the entire allowable

regions of both their parameter spaces. Values of 𝛽 between −1 ≤ 𝛽 ≤ 1 span the entire range

of correlations, while by construction, 𝑓duty can only have values 0 ≤ 𝑓duty ≤ 1. For 𝜁 , we place

the range 10 < 𝜁 < 100 which is spans the range of values which are consistent with previous

studies such as [48]. For 𝑀turn, we adopt values of 107𝑀⊙ < 𝑀turn < 1010𝑀⊙, which are motivated

by the atomic cooling threshold and by current constraints on the faint end of UV luminosity

functions [54]. For 𝑅mfp we use 3 Mpc < 𝑅mfp < 80 Mpc which spans the expected range [68].

Finally, for 𝑀min
𝛼 , we adopt a uniform prior with 109𝑀⊙ ≤ 𝑀min

𝛼 ≤ 1011𝑀⊙. These bounds are

motivated by [67] which find values outside this range to be inconsistent with constraints placed

on the 𝐿𝑦𝛼 luminosity function by [44] and [52].

We use 21cmFAST to generate a box of intrinsic LAEs at the redshift of interest 𝑧. To do this we

generate the underlying halo field and then assign an intrinsic LAE luminosity to each virialized
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halo using Equation (4.8). We resolve all haloes above the virialized mass scale 𝑀 = 5 × 108M⊙.

The resulting halos are assigned an intrinsic luminosity according to equation (4.8) using model

parameters 𝑓duty and the normalization 𝑀min
𝛼 . The resulting box of intrinsic LAEs extends 300Mpc

along the line of sight (see Section 4.2 for simulation details). To mimic the the intrinsic LAEs

observed by the Subaru Survey which has redshift thickness Δ𝑧 = 0.1 (corresponding to ∼ 37Mpc

at 𝑧 = 6.6), we slice our box of intrinsic LAEs into slabs corresponding to a redshift thickness of

Δ𝑧 = 0.1, in accordance with the redshift uncertainty of the Subaru HSC data. To compute the

likelihood 𝑝(dS |𝜽), we use 21cmFAST to generate the density and ionization fields for a given set

of model parameters 𝜁 , 𝑅mfp, and 𝑀turn. The ionization field is computed from a density field

which has been decorrelated with the desired level of 𝛽. For each set of model parameters, we

pair the new ionization field to the original box of intrinsic LAEs. We perform separate forecasts

using different randomly generated density realizations to account for the cosmic variance. Our

conclusions are unchanged for each of these different realizations. The number density 𝑛 and ACF

𝜉 of the model LAEs are computed and compared to the corresponding Subaru measurements of

the number densities 𝑛𝑆, and ACF 𝜉𝑆, through the likelihood given by

𝑝LAE(d|𝜽) ∝ exp

[
−1

2

∑︁
𝑅

(𝜉model − 𝜉𝑆)2

𝜀2
𝜉

]
exp

[
−1

2
(𝑛model − 𝑛𝑆)2

𝜀2
𝑛

]
, (4.21)

where 𝜀𝑛 are the Subaru errorbars on the mean LAE number density and 𝜀𝜉 are the errors on the

Subaru measurements of the ACF given in [52]. We symmetrize the errorbars on 𝑛 and 𝜉𝜉 . In

each case we take a conservative approach and symmetrize using the larger error limit. We take

measurements of 𝑛 and 𝜉 (𝑅) to be statistically independent which is a reasonable assumption since

𝑛 depends on the mean number of LAEs while 𝜉 depends only on the overdensity 𝛿𝑛, which is mean

zero. We approximate the 𝑅 bins in 𝜉 (𝑅) as being statistically independent.

4.5.4 Markov Chain Monte Carlo Setup for Joint Subaru & 21cm Forecasts

In this Section we build on the setup from the previous Section and explore the constraints that

can be placed on 𝛽 using measurement of the 21cm power spectrum Δ2
21 in addition to the Subaru
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measurements described in Section 4.6.1. If we assume these probes are independent from one

another, the posterior for joint measurements between LAE and 21cm probes can be written using

Bayes theorem as,

𝑝(𝜽 |dS,𝚫
2
21) ∝ 𝑝21(𝚫2

21 |𝜽)𝑝LAE(dS |𝜽)𝑝(𝜽), (4.22)

where 𝑝LAE(d|𝜽) is the likelihood function for the Subaru measurements (discussed in the previous

Section), 𝑝21(d|𝜽) is the likelihood for measurements of the 21cm power spectrum and 𝑝(𝜃) is the

prior on our parameters. Our priors are identical to those in Section 4.5.3.

To evaluate the likelihood 𝑝21(d|𝜽), we generate model predictions for the density, ionization

fields and temperature fields from 21cmFAST simulations for a given set of model parameters 𝜃. To

account for the decorrelation between the ionization and density fields, we regenerate the ionization

field for this set of EoR parameters, but with the desired level of decorrelation from the original

ionization field as specified by the 𝛽 parameter. This updated ionization field is then used with

the original density field to form a brightness temperature field using Equation (4.1). The power

spectrum Δ2
model of 𝛿𝑇𝑏 is computed using Equation (4.3). We compare the power spectrum Δ2

model

of the model temperature field to the fiducial power spectrum Δ2
21(𝑘, 𝑧) using the likelihood,

𝑝21(d|𝜽) ∝ exp

−
1
2

∑︁
𝑧,𝑘

(
Δ2

model − Δ2
21

)2

𝜀2

 , (4.23)

where we have assumed that all the 𝑘 and 𝑧 bins are statistically independent. We consider redshifts

7.5 ≤ 𝑧 ≤ 8.5 in steps of Δ𝑧 = 0.5, corresponding to observational bandwidth Δ𝜈 ≡ 𝜈21Δ𝑧/(1 +

𝑧)2 of each redshift bin. We choose these redshift ranges because they correspond to one of

HERA’s relatively clean observation windows. We exclude bins 𝑘 > 0.75 Mpc−1 for computational

simplicity as the HERA error bars are large in that regime and inclusion of larger 𝑘 bins do not add

alter our forecasts significantly. In this forecast, we use a mock HERA observation of the power

spectrum generated using a fiducial set of EoR parameter values, 𝜁0 = 25, 𝑀turn,0 = 5 × 108𝑀⊙,

𝑅mfp,0 = 30 Mpc, and 𝛽0 = 0.936 unless otherwise indicated. To sample our posterior distribution,

we use the affine invariant MCMC package emcee [13].
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4.6 Results

In this section we present the results of our MCMCs and discuss their implications. We separate

the results into two sections. In Section 4.6.1, we place constraints on the EoR parameters using

existing measurements of the number density, and ACF, of LAEs at redshift 𝑧 = 6.6 from the Subaru

experiment, discussed in Section 4.5.1. In Section 4.6.2, we forecast the types on constraints that we

can place on the EoR parameters (including 𝛽), using measurements of the 21cm power spectrum

and 𝑛, 𝜉, of LAEs. For this multiple probe forecast we use Subaru measurements of the number

density and ACF of LAEs at redshift 𝑧 = 6.6 and a HERA measurement of the 21cm power

spectrum between redshifts 𝑧 = 7.5 to 𝑧 = 8.5.

4.6.1 Subaru Constraints

In Figure 4.8 we show the posterior of our MCMC analysis using the Subaru measurements of 𝑛,

and 𝜉, at 𝑧 = 6.6. We find an evident degeneracy between 𝑀min
𝛼 and 𝑓duty. To see why, consider an

intrinsic LAE field with LAE detection threshold 𝑀min
𝛼 corresponding to the minimum luminosity

detectable by our experiment, 𝐿min
𝛼 . Physically, 𝑀min

𝛼 is the halo mass that corresponds to the

minimum luminosity 𝐿min
𝛼 (the faintest luminosity detectable by our instruments). Larger values

of 𝑀min
𝛼 decrease the number of intrinsic LAEs that would be detectable by our instruments. This

in turn decreases the measured number density of LAEs. In order to fit to the number density

𝑛 = 4.1+0.9
−0.8 × 10−4 by Subaru, this scenario requires increasing 𝑓duty which leads to the observed

degeneracy. Values of 𝑀min
𝛼 larger than 𝑀min

𝛼 > 1011𝑀⊙ require 𝑓duty > 1 in order to be consistent

with the already constrained value of 𝑛. This is not possible and so models which require values

𝑀min
𝛼 > 1011𝑀⊙, have already been ruled out [67]. We do not find an explicit degeneracy between

𝛽 and the other EoR parameters. Ruling out an outside-in driven reionization is tantamount to

placing constraints on the sign of 𝛽. However we see from the 1D 𝛽 posterior in Figure 4.8 that

the 68% credibility region (CR) of 𝛽 is not entirely contained within the 𝛽 > 0 region, suggesting

that measurements of 𝑛 and 𝜉 at 𝑧 = 6.6 alone is insufficient to rule out uncorrelated, or outside-in

scenarios. In Figure 4.8 we see that all 𝛽 models are broadly consistent with measurements of 𝜉
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Figure 4.8: Posterior distribution for the EoR and LAE parameters using the Subaru data described

in Section 4.5.3. Displayed are the 68% CR contours. Since the 68% CR contours include both the

𝛽 > 0, and 𝛽 < 0 regions of parameter space, measurement of 𝑛 and 𝜉 at 𝑧 = 6.6 cannot constrain

the sign of 𝛽 to within 68% credibility.
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from Subaru. We see that our models can’t distinguish between the extreme inside-out models.

The Universe is significantly ionized at redshift 𝑧 = 6.6, and so the number density and ACF of

LAEs is not very sensitive to changes in 𝛽. As a result, the Subaru data is unable to concretely

rule out uncorrelated and outside-in reionization scenarios at 68%CR. At higher redshift, there is

increased sensitivity of 𝑛 and 𝜉 to 𝛽. Measurements of 𝑛 and 𝜉 at higher redshifts are required in

order to place tighter constraints on the EoR morphology using only LAE data.

From the posterior, we see that 68% of the 1D marginalized posterior of 𝑀turn lie within the

range log𝑀turn = 8.67+0.17
−0.26. Therefore we find that using the Subaru data, we can place constraints

on the order of magnitude of 𝑀turn at 68% CR, while 𝜁 is constrained within 𝜁 = 27.41+9.47
−6.57 at 68%

CR.

Recent studies have shown that the escape fraction of ionizing photons can depend on the halo

mass 𝑀ℎ [32,35,77]. This would make 𝜁 halo mass dependent. In such a scenario it is worth noting

the limitations of our model (which assumes a constant ionizing efficiency). For example, consider

a scenario where the escape fraction of ionizing photons decreases with 𝑀ℎ. The largest virialized

halos have decreased capacity to contribute UV photons to the reionization process. Our approach

of a constant 𝜁 with halo mass, would potentially underestimate the contribution of UV photons

by small mass halos. Conversely, models where the escape fraction increases with halo mass, our

assumption of a constant 𝜁 would overestimate the contribution of small mass halos. Therefore our

approach is most appropriate for models where reionization is driven by moderately sized halos. We

find this to be the case in our parameter constraints in Figure 4.8. Further, as discussed in Section

4.3.2, a halo mass dependent escape fraction simultaneously affects the intrinsic luminosity of the

LAEs as well as the transmission of Ly𝛼 photons through the IGM. Both of these mechanisms

affect the observed LAE luminosity function of the LAEs. A halo mass dependent 𝑓esc can also tilt

the observed LAE luminosity function by favoring a particular size of halo mass. In our intrinsic

LAE model, this has an effect similar to varying the power law index in Equation 4.8. As discussed

in Section 4.3.2, our results in this section are not affected by small variations in the power law

index.
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Figure 4.9: Posterior distribution for the EoR and LAE parameters using the Subaru data at 𝑧 = 6.6

and the 21cm power spectrum from 7.5 ≤ 𝑧 ≤ 8.5. The 68% CR are entirely contained within

𝛽 > 0 suggesting that if reionization proceeds as inside-out, measurement of 𝑛 and 𝜉 of LAE as

well as Δ2
21 can rule out uncorrelated and outside-in reionization with 68% credibility.

4.6.2 Joint Subaru & HERA Forecasts

In this scenario we forecast the type of constraints that can be placed on the EoR morphology using

joint measurements of the LAE number density and ACF, along with a HERA measurement of the

21cm power spectrum between redshifts 𝑧 = 7.5 to 𝑧 = 8.5. These redshifts are chosen to maximize

the greatest signal to noise ratio for 𝛽 in Δ2
21 after taking the instrument sensitivities of Δ2

21 into

account. Since these 21cm observations do not yet exist, we use a fiducial inside-out reionization
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model with fiducial parameters 𝜁0 = 25 , 𝑀turn,0 = 5 × 108M⊙, 𝑅mfp,0 = 30Mpc and 𝛽0 = 0.936.

This fiducial reionization scenario is consistent with the constraints placed on these parameters

using the Subaru measurements of 𝑛 and 𝜉 in Section 4.8.

The results of this forecast are shown in Figure 4.9. Our interpretation of the degeneracies

between 𝑓duty and 𝑀𝛼 are identical to Section 4.6.1. We see that adding information from Δ2
21

significantly improves our ability to discern between EoR models. From the posterior of this

measurement in Figure 4.9, we see that the 99% credibility region of 𝛽 lie entirely within 𝛽 > 0.

This is the predominantly inside-out region of 𝛽 parameter space. Therefore measurements of 𝑛 and

𝜉 of LAEs at 𝑧 = 6.6, and a HERA measurement of Δ2
21 at 7.5 ≤ 𝑧 ≤ 8.5 can rule out uncorrelated

and outside-in reionization scenarios with 99% credibility. An identical forecast performed in [53]

using the same 𝑘 bins, redshift range, and fiducial reionization model, but without the LAE data,

was previously studied. In this forecast it was found that 𝛽 models in the range 0.9 ≤ 𝛽 ≤ 1, i.e.

extreme inside-out scenarios, were equally likely. This suggests that measurement of the 21cm

power from Section 4.5.4 alone is not able to distinguish between extreme inside-out 𝛽 models.

From the 𝛽 contours in Figure 4.9, we see that the inclusion of Subaru data allows us to distinguish

between these extreme inside-out scenarios.

4.7 Conclusion

The correlation between density and ionization fields is crucial to our understanding of reionization.

Many probes of the EoR are sensitive to this underlying correlation. LAEs are one such probe

because Ly𝛼 photons are sensitive to the coupling of the ionized regions with respect to the

underlying intrinsic LAEs. In this paper we explore how the statistics of LAEs are affected by the

morphology of the EoR. To do this we introduce a parameter 𝛽, which parameterizes the correlation

between density and ionization fields. Under this parametrization we study how the correlation

between density and ionziation fields affects the number density and clustering of LAEs. We find

that changing 𝛽 results in altering the number density of LAEs. Outside-in driven reionization

scenarios (𝛽 < 0), decrease the mean number density of LAEs compared to inside-out driven
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scenarios (𝛽 > 0). We also find that varying 𝛽 affects the apparent clustering of LAEs. At higher

redshifts, outside-in driven reionization scenarios produce an increase in the clustering signal of

LAEs compared to that of inside-out. We find these conclusions are robust to different values of

𝑀min
𝛼 and also hold for models where the escape fraction of ionizing photons depends on halo mass.

Using Subaru measurements of the clustering and number density of LAEs at 𝑧 = 6.6, we place

constraints on 𝛽. We find that measurements of these quantities alone cannot rule out uncorrelated

scenarios at 68% credibility. The ACF and mean number density of LAEs have reduced sensitivity

to 𝛽 late in reionization where most of the IGM is ionized. Upcoming HERA limits of the 21cm

power spectrum will also allow us to place constraints on 𝛽. We forecast the type of constraints

that we can place on 𝛽 using both HERA measurements of Δ2
21 at the midpoint of reionization,

and Subaru measurements of the LAE number density and ACF at 𝑧 = 6.6. We find that including

Subaru measurements of 𝑛 and 𝜉 at 𝑧 = 6.6 can improve the constraints placed on 𝛽 using only

HERA measurements ofΔ2
21. The LAE information at 𝑧 = 6.6 can help distinguish between extreme

inside-out scenario and further rule out uncorrelated scenarios to levels over 99% credibility. These

results show that LAE information at 𝑧 = 6.6, i.e. when reionization is expected to be nearing

its end, are already enough to help distinguish between models with different density ionization

correlations. As we observe LAEs at higher redshifts, combining these probes will have even

greater potential, and will help shed light on one of the most crucial properties of reionization.
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Chapter 5

Characterization Of Inpaint Residuals In

Interferometric Measurements of the Epoch

Of Reionization

Addendum for thesis

This chapter addresses one of the dominant systematics encountered by 21cm instruments: Radio

Frequency Interference (RFI). Interference is prevalent in instruments that operate in the radio band,

so 21cm measurements are plagued by RFI. This has led some experiments to place instruments in

radio quiet zones like the Karoo desert. However, this still does not totally eliminate RFI. RFI is

an even larger problem for interferometers measuring the 21cm power spectrum (such as HERA).

Inpainting techniques have been developed to mitigate some of the issues caused by RFI and there

are existing inpainting methods that are commonly used in astronomy to do this task. Adrian

Liu and I sought to build a convolutional neural network (CNN) that is capable of inpainting RFI

corrupted data. In this work, I demonstrate the effectiveness of our CNN by comparison with

existing techniques.

There has not yet been a detection of the 21cm power spectrum; however, we are making

progress. Since inpainting is frequently done as part of the data analysis pipeline of interferometric

167



instruments looking to measure the 21cm power spectrum, it is important to understand the types of

errors caused by inpainting. This work quantifies the errors due to inpainting techniques in the data

analysis pipeline. Along with existing inpainting methods that are commonly used in astronomy,

we use Monte Carlo realizations to study the errors due to inpainting in the 21cm power spectrum.

Abstract

Radio Frequency Interference (RFI) is one of the systematic challenges preventing 21cm interfero-

metric instruments from detecting the Epoch of Reionization (EoR). To mitigate the effects of RFI

on data analysis pipelines, numerous inpaint techniques have been developed to crudely restore RFI

corrupted data. In this paper we examine the qualitative and quantitative errors introduced into the

visibilities and power spectrum due to inpainting. We perform our analysis on simulated data as

well as real data from the Hydrogen Epoch of Reionization Array (HERA) Phase 1 upper limits.

We also introduce a convolutional neural network that is capable of inpainting RFI corrupted data.

We train our network on simulated data and show that our network is capable at inpainting real data

without requiring to be retrained. We find that techniques that incorporate high wavenumbers in

delay space in their modeling are best suited for inpainting over narrowband RFI. We also show that

with our fiducial parameters Discrete Prolate Spheroidal Sequences (DPSS) and CLEAN provide

the best performance for intermittent RFI while Gaussian Progress Regression (GPR) and Least

Squares Spectral Analysis (LSSA) provide the best performance for larger RFI gaps. However we

caution that these qualitative conclusions are sensitive to the chosen hyperparameters of each in-

painting technique. We find these results to be consistent in both simulated and real visibilities. We

show that all inpainting techniques reliably reproduce foreground dominated modes in the power

spectrum. Since the inpainting techniques should not be capable of reproducing noise realizations,

we find that the largest errors occur in the noise dominated delay modes. We show that in the future,

as the noise level of the data comes down, CLEAN and DPSS are most capable of reproducing the

fine frequency structure in the visibilities of HERA data.
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5.1 Introduction

The Epoch of Reionization (EoR) plays a crucial role in the evolution of the Universe since it is the

period in which the intergalactic medium (IGM) transitions from neutral to ionized. The precise

details of how the EoR unfold are currently observationally unconstrained. In most models of the

EoR, the onset of the first generation galaxies give rise to ionizing photons which gradually disperse

across the IGM and ionize the neutral hydrogen marking the beginning of the EoR [8, 25, 32, 37].

One method to directly measure the neutral hydrogen in the IGM during the EoR is to use the

21cm hyperfine transition of hydrogen in which a 21cm wavelength photon is released when the

electron flips its spin relative to the proton [7,9,28]. Thus the 21cm line directly probes the neutral

hydrogen in the IGM during the EoR. The emitted 21cm-wavelength photon is then redshifted

into radio wavelengths and is potentially observable in contrast to the CMB, enabling tomographic

measurements of neutral hydrogen. Ground based interferometric instruments such as the Hydrogen

Epoch of Reionization array (HERA) [4], Square Kilometer Array (SKA) [5], Precision Array for

Probing the Epoch of Re-ionization (PAPER) [35] , Murchison Widefield Array (MWA) [27], Low

Frequency Array (LOFAR) [47] have the ability to measure the spatial fluctuations of the 21cm

line.

One of the challenges in measuring radio photons using ground based instruments is the frequent

data flagging due to radio frequency interference (RFI). Most RFI sources are due to terrestrial

transmitters and satellites which lead to narrowband flagging in the data analysis. Other wideband

sources of RFI, such as communication satellites, require flagging more substantive portions of

the raw data. The excision of RFI in the data analysis introduces gaps in the data which cause

artifacts in the 21cm power spectrum. Data analysis pipelines which try to separate the foregrounds

from the cosmological signal in the Fourier domain will be directly affected by the RFI gaps in the

data. This impedes measurement of the EoR (for example see [49]). A conservative approach to

mitigate the effect of RFI on the power spectrum is to avoid all frequency bands where RFI has

corrupted data which ensures that there aren’t artifacts in the power spectrum. Doing so severely

restricts the available frequency channels to use as part of our analysis thereby preventing us from
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accessing all redshifts. Further, this approach is not ideal since it decreases the signal to noise of

the measurement.

Data analysis pipelines which are affected by RFI use “inpainting” techniques to partially restore

the RFI corrupted data. A number of algorithms have been developed to perform inpainting, most

notably the CLEAN algorithm which was originally introduced in [15]. Although bearing the same

name, we use a modified version of CLEAN to fit the inpainting needs in the HERA data analysis

pipeline [34]. Besides CLEAN, other inpainting techniques have been explored as well such as least

square spectral analysis (LSSA), Gaussian process regression (GPR) [11, 19] and discrete prolate

spheroidal sequence (DPSS) [6, 42]. These inpainting methods use the uncorrupted data to form

a crude model for the corrupted data which is then replaced into the RFI flagged regions, thereby

reducing the effect that RFI has on the 21cm power spectrum. However, the crudely restored

data are imperfect and thus they too introduce errors in the analysis. In this paper we critically

evaluate the performance of existing inpainting techniques CLEAN, LSSA, GPR, and DPSS in

reconstructing corrupted visibility data. In this paper we study the HERA implementations of

these inpainting techniques however similar variations of these techniques have been implemented

in other instruments such as [33] in the LOFAR experiment and [2] in the MWA. Outside of 21cm

cosmology, inpainting has been frequently done in CMB studies [12,43,46] and gravitational waves

analyses [51].

We also introduce a Convolutional Neural Network (CNN) dubbed as “U-Paint” as an alternative

to inpainting RFI corrupted data. CNNs have been previously explored as an inpainting technique

by [26,30,40,44,50,53] but not in the context of radio astronomy experiments. U-Paint marks the

introduction of CNNs as an inpainting technique in the data analysis pipelines of radio astronomy.

By assessing its effectiveness as compared to existing techniques we show that convolutional neural

networks show great promise as an inpainting technique. Using a series of Monte Carlo realizations,

we propagate the errors of the inpainted visibilities through to the 21cm power spectrum. We

quantify the performance of each inpainting technique and parametrize their errors in the power

spectrum. We perform our analysis using the HERA instrument; however, our approach is general

enough to apply to any interferometer. This paper is structured as follows. In Section 5.2 we
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introduce our fiducial instrument HERA as well as sources of RFI which affect the data analysis

pipeline. In Section 5.3 we discuss existing inpainting techniques CLEAN, LSSA, GPR, and DPSS

as well as quantifying their performance in inpainting corrupted visibilities. In Section 5.3.5 we

introduce U-Paint which we use to inpaint corrupted data. In Section 5.6 we assess its performance

relative to existing inpainting methods. In Section 5.7 we propagate the inpainting errors through

the analysis and characterize their effect on the power spectrum. In Section 5.8 we apply our

analysis on real HERA data. We conclude in Section 6.7.

5.2 HERA Observations

In this section we introduce the HERA instrument, an interferometer located in the Karoo desert

designed to measure the 21cm power spectrum during Cosmic Dawn and the EoR. Though we use

the HERA instrument as the test-bed for analysis, our results and procedures are not strictly limited

to HERA and are thus applicable to any interferometer. When completed, HERA will be comprised

of 350 14m dishes capable of observing at frequencies 50MHz to 225MHz. In this paper however,

we consider the instrumental parameters taken from Phase 1 data used to set the recent HERA

upper limits [14] which span frequencies 100MHz to 200MHz in 1024 channels using 39 dishes.

In this Section we review the data analysis pipeline established in HERA’s Phase 1 upper limits,

which we use in this paper for consistency. In doing so, we establish notation for the remainder of

this paper. We begin in Section 5.2.2 where we discuss the Phase 1 data analysis pipeline from [14]

while in Section 5.2.1 we discuss RFI scenarios which affect interferometric measurements at low

frequencies. In Section 5.2.3 we discuss the simulated datasets that we use as part of our analysis

as well as real data from the Phase 1 data release.

5.2.1 RFI Flagging

Though we discuss the effect of RFI on our fiducial instrument HERA, the systematics caused by RFI

are equally applicable to other instruments. Radio experiments located on the ground ubiquitously

experience RFI. The origin of the RFI are either terrestrial in nature or due to satellites. Terrestrial
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sources can range from cell-phones, WiFi as well any other radio producing mechanism sourced

on the ground. This includes FM radio and broadcast television. The amount of terrestrial RFI can

be minimized by operating the instrument in radio quiet zone, such as the Karoo desert in HERA’s

case. This minimizes terrestrial RFI but does not totally eliminate it [14, 21–23, 55] . For brevity,

we find it useful to organize RFI by the number of frequency channels they occupy. We shall denote

RFI which occupies relatively few channels (∼ 1 − 3) as narrowband RFI. We assign the RFI to

be wideband if it occupies a more significant fraction of the frequency band. Note that we are not

setting a strict definition of narrowband or wideband RFI, rather we find it convenient to use this

notation in our analysis. In Figure 5.1 we show example HERA flags. The most frequent type of

RFI are narrowband emitters which can occur irregularly in 𝜈 and 𝑡 creating a scattered assortment

of flags in the visibilities. However other wideband types of RFI can occur more predictably in

the dataset. For example, ORBCOMM satellite communication at 𝜈 = 136 − 138MHz, broadcast

television at 𝜈 > 174MHz. While a FM radio broadcast occupies a single frequency channel,

frequencies 𝜈 < 111MHz are reserved for FM broadcast.

HERA searches for RFI in the visibilities by scanning the data for localized irregularities.

Adjacent data in 𝜈 and local sidereal time (LST) are used to differentiate between RFI and thermal

noise fluctuations. This procedure is applied after the absolute calibration step of the visibilities so

that any issues with the instrument can also be flagged (see Figure 3 in [14] for a detailed description

of the HERA data analysis pipeline). For example, in this flagging scheme, intermittent correlator

integration failures (a source of wideband flags) can also be flagged. The LST binned visibilites are

also manually scanned for narrowband RFI that was undetected by the automated flagging process.

5.2.2 Power Spectrum

HERA Phase 1 observed the radio sky at frequencies 100MHz to 200MHz over 1024 channels

corresponding to a channel width of Δ𝜈 ≃ 0.1MHz. These frequencies are measured at time

cadence of Δ𝑡 = 10.7s. The raw data taken from correlated antennas in the interferometer are

termed the visibilities𝑉 , which depend on the observation frequency 𝜈, and the time of observation

“LST”. The visibilities are complex valued and thus can be expressed either in terms of their real
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and imaginary components or amplitude and phase. We denote the amplitude of the visibilities as

|𝑉 | and the phase of the visibilities as 𝜙. Since the visibilities are the product of correlated antennas,

the visibilities are simultaneously measured on all antenna combinations within the HERA antenna

array. The visibilities measured by the HERA interferometer using the 𝑖th antenna at position x𝑖

and 𝑗 th antenna at position x 𝑗 form a baseline b = x𝑖 − x 𝑗 . It was shown by [34,36] that for a single

baseline b at observation frequency 𝜈, the visibilities can be written as

𝑉 (𝑢, 𝑣) =
∫

𝑑𝑙𝑑𝑚𝐴(𝑙, 𝑚, 𝜈)𝑇 (𝑙, 𝑚, 𝜈, 𝑡)𝑒−2𝜋𝑖𝜈𝜏𝑔 (5.1)

where 𝐴(𝑙, 𝑚) is the primary beam of the instrument and 𝑇 (𝑙, 𝑚) is the temperature of the sky. The

time dependence arises because the sky rotates above the instrument. The terms 𝑙 ≡ 𝑠𝑖𝑛(𝜃𝑥) and

𝑚 ≡ 𝑠𝑖𝑛(𝜃𝑦) encode the angular components of the sky and 𝜏𝑔 is given by

𝜏𝑔 ≡
b · ŝ
𝑐

=
1
𝑐

(
𝑏𝑥𝑙 + 𝑏𝑦𝑚 + 𝑏𝑧

√︁
1 − 𝑙2 − 𝑚2

)
(5.2)

where 𝜏𝑔 is the geometric delay corresponding to the projection of the baseline b = (𝑏𝑥 , 𝑏𝑦, 𝑏𝑧) in

the direction 𝑠 = (𝑙, 𝑚,
√

1 − 𝑙2 − 𝑚2) and where 𝑐 is the speed of light. Although the baseline b

in Equation 5.2 can represent any antenna pairing in the HERA array, in this paper we focus our

analysis to only the shortest baselines, i.e. adjacent antenna pairs. The Fourier transform of the

visibilities in Equation 5.1 along the frequency direction is defined as

𝑉 (𝜏, 𝑡) =
∫

𝑑𝜈𝑑𝑙𝑑𝑚𝐴(𝑙, 𝑚, 𝜈)𝑇 (𝑙, 𝑚, 𝜈, 𝑡)𝜙(𝜈)𝑒2𝜋𝑖𝜈(𝜏−𝜏𝑔) (5.3)

where 𝜏 is the Fourier dual to frequency in the Fourier transform called the delay. The term

𝜙(𝜈) denotes a tapering function that defines our spectral window of observation. For consistency

with analysis from the Phase 1 upper limits, we use the Blackman-Harris window function as our

tapering function 𝜙(𝜈). The delay power spectrum can be estimated by the square of 𝑉 (b, 𝜏):

𝑃(𝑘⊥, 𝑘 ∥) =
𝑋2𝑌

Ωpp𝐵

���𝑉 (u, 𝜏)���2 (5.4)
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where 𝑘⊥ is the wavenumber corresponding to the plane of the sky and 𝑘 ∥ parallel to the line of

sight. The visibility coordinates 𝒖 are related to the frequency 𝜈 through 𝒖 = 𝜈b/c. The term

Ωpp gives the angular area by integrating the square of the primary beam, while 𝐵 is an effective

bandwidth given by
∫
𝑑𝜈 |𝜙|2. The term 𝑘⊥ can be related to the baseline b using 𝑘⊥ = 2𝜋𝜈b

𝑐𝑋
.

The term 𝑘 ∥ can be written as 𝑘 ∥ = 2𝜋𝜏
𝑌

where 𝜏 is the Fourier dual to the frequency axis 𝜈 with

dimensions of 1/𝜈. The factor 𝑋 converts comoving distance 𝑟⊥ to angular separation 𝜃, while 𝑌

converts radial comoving distances 𝑟∥ to frequency intervals Δ𝜈:

𝑋 ≡𝑟⊥
𝜃

=
𝑐

𝐻0

∫ 𝑧

0

𝑑𝑧′

𝐸 (𝑧′) (5.5)

𝑌 ≡
Δ𝑟∥
Δ𝜈

=
𝑐

𝐻0𝜈21

(1 + 𝑧)2

𝐸 (𝑧) (5.6)

and where 𝐻0 is the Hubble parameter, 𝐸 (𝑧) ≡
√︁
Ω𝑚 (1 + 𝑧)3 +ΩΛ and ΩΛ the normalized dark

energy density and 𝜈21 ≈ 1420MHz, the rest frequency of the 21cm line. For a drift scan telescope

like HERA, one typically first averages 𝑉 (u, 𝜏) at identical LSTs across different sidereal days.

This process is referred to as coherent averaging. Once the power spectrum of the coherently

averaged visibilities is computed, one then averages 𝑃(𝑘⊥, 𝑘 ∥) across different LSTs, a process

known as incoherent averaging. In an observationally realistic data analysis pipeline (i.e. that aims

to measure cosmological signal), instead of directly computing 𝑃(𝑘⊥, 𝑘 ∥) using Equation 5.4, one

instead forms the cross spectra using different times or baselines in order to avoid a noise bias.

In this scenario one forms the product of the visibilities at different times or baselines within the

context of Equation 5.4. Since the objective of this paper is to characterize the statistical properties

of inpaint models, and not to measure cosmological signal, we do not form the cross-spectra as

described above. Thus, the noise bias will be present in our estimates of power spectra. To evaluate

the power spectrum in Equation 5.4, we use the publicly available code hera pspec1.

The delay power spectrum in Equation 5.4 is dominated by galactic and extra-galactic sources of

radio emission referred to as the “foregrounds”. The foregrounds are orders of magnitude brighter

than the anticipated 21cm signal. The foregrounds are spectrally smooth, and thus can be crudely

1https://github.com/HERA-Team/hera_pspec
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approximated by a flat spectum. Under this assumption the temperature of the sky in Equation 5.1

loses its dependence on frequency, 𝑇 (𝑙, 𝑚, 𝜈, 𝑡) ≃ 𝑇 (𝑙, 𝑚, 𝑡). If the beam and spectral window are

also frequency independent, with a infinitely large bandpass then the delay 𝜏 in Equation 5.4 is

geometrically limited by the baseline length b and the speed of light to values:

𝜏g ≤ |𝒃 |
𝑐
. (5.7)

Under these idealistic assumptions the foregrounds are confined to within 𝜏𝑔; however, since the

foregrounds are only approximately smooth as a function of frequency and both the primary beam

and 𝜙 are also not frequency independent. Thus the foregrounds spread outside the confines of

𝜏g [24]. Though in this paper we separate our analysis for 𝜏modes inside and outside of 𝜏𝑔, it should

be noted that our analysis is not stringent on the true value of 𝜏𝑔, rather 𝜏𝑔 serves as a convenient

marker for modes which are mostly dominated by the foregrounds and modes which are relatively

foreground free. Also note that in computing the power spectrum (Equation 5.4) we apply the

Blackman-Harris tapering function. Since this operation is a convolution, this spreads power from

each bin to neighbouring bins. Thus 𝜏g modes which are dominated by the foregrounds are spread

into adjacent bins. The objective of this work is to establish the errors in the data analysis pipeline

due to inpainting. The errors do not strictly depend on which 𝜏 modes are part of the wedge. Thus

we conservatively include 𝜏 modes satisfying |𝜏 | < 500ns to capture the spillover of foreground

power into neighbouring 𝜏 bins and for brevity we refer to all of these modes as the “wedge”.

The presence of flagged channels in the dataset complicates the above power spectrum analysis.

Equation 5.4 is a Fourier transform of the visibilities along the frequency direction. Performing a

Fourier transform of a dataset which contains masked regions will cause artifacts in the resulting

Fourier spectrum. This effect is similar to carrying out a Fourier analysis of a top-hat function

which creates a “ringing” at high delay modes. We thus expect excess power in the large 𝜏 domain.

Thus analyses which sample the visibilites in the EoR window at high delay will be especially

affected the by the artifacts due to flags in the data. One conservative approach to circumvent

this issue is to avoid frequency channels which have been flagged and select cleaner windows in
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Figure 5.1: Sample HERA flags split from 100MHz-200MHz. Frequency channels below 110MHz

are reserved for FM radio. The ORBCOMM satellite is responsible for RFI at 𝜈 = 136MHz.

Frequency channels above 𝜈 = 174MHz are flagged due to broadcast television.

the visibilites which are unaffected by RFI. This strategy reduces the amount of data in the analysis

and thus decreases the signal to noise.

5.2.3 Datasets

In this Section we introduce the datasets (i.e. visibilities) which we use as part of our analysis. We

consider two separate sets of visibilities, real HERA data and simulations of HERA observations.

For the simulated visibilities we also consider different noise scenarios.

For the real data we use HERA’s phase 1 visibilities (hereafter denoted as P1V) in [14], we

use data from the IDR2 dataset which spans a range of right ascensions from 0 to 12 hours. The

instrument parameters match those from Section 5.2.3. Since raw HERA data is propagated through

a data analysis pipeline there are a number of places along the pipeline where we might choose to

apply our analysis. We choose to use the visibilities after they have been absolutely calibrated. Our

primary motivation for this is because the LST binning process results in averaging the visibilities

by the number of observation nights resulting in lower noise. This makes it slightly easier for

the inpainting algorithms due to the lower noise and also since there is intermittent RFI that isn’t

present every day. In future work we can take advantage of the symmetries between visibility data
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on different days by implementing network changes such as in [29] which are optimized to take

advantage of symmetries in datasets.

For simulated data, we use the simulations from the HERA validation pipeline in [1]. The

simulated visibilities in [1] are designed to be a realistic representation of the sky as seen through

the HERA instrument and thus the instrumental parameters match those of the true visibilities. We

briefly review the simulated data here though the reader is encouraged to see [1] for further details.

To create a model of the sky composed of a foreground, and EoR component are put through a mock

HERA observation simulater, RIMEz, an internally developed software which correctly simulates

HERA’s drift scan capabilities, and is capable of sampling the sky at the cadence of HERA time

sampling over HERA’s full frequency resolution and bandwidth. Though RIMEz simulation also

take into account instrumental effects such as cross-coupling and reflection systematics, we do not

include them in our simulations. The sky model is generated by adding an EoR component to the

foregrounds. The EoR component is modeled as a Gaussian random temperature field with power

spectrum 𝑃EoR = 𝐴0𝑘
−2 where this relationship approximates those which are obtained by

simulations and where 𝐴0 is the amplitude of the power spectrum. The EoR component is added

to foreground model which is composed of GLEAM sources and diffuse emission. Only GLEAM

sources with an associated spectral model are considered. The GLEAM sources are composed

of approximately 2.4 × 105 sources in the catalog which [16], each with a power law emission

spectrum given by

𝐼𝑝 (𝜈, 𝒔) =
240×103∑︁

𝑛

𝐹𝑛

(
𝜈

𝜈0

) 𝛽
𝛿(1 − 𝒔 · 𝒔𝑛) (5.8)

where 𝐹𝑛 is the flux of the 𝑛th point source, 𝛽 the spectral index which characterizes the power

law and 𝒔 is its position. Note that since the GLEAM catalog has coverage gaps in regions within

HERA’s spatial observation window, the observing times of the simulations are chosen as to avoid

times where these gaps coincide with HERA’s primary beam. The diffuse emission component of

the foregrounds is simulated based on the Global Sky Model in [54] and [3]. Thermal noise is

generated and added to the simulations by drawing samples from a Gaussian distribution with zero

mean and standard deviation �̂�0 that depends on the time and frequency of observation as well as
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the amplitude of the auto-correlation of each baseline through the radiometer equation

�̂�0(𝜈, 𝑡) = 𝛼
𝜅(𝜈)Ω(𝜈) (𝑇auto(𝜈, 𝑡) + 𝑇rx)√

Δ𝜈Δ𝑡
(5.9)

whereΔ𝑡 is the time integration of 10.7s for HERA,Δ𝜈 is HERA’s channel width, i.e. Δ𝜈 ≃ 0.1MHz

and 𝑇rx is the receiver temperature (assumed to be uniform in 𝜈 and independent of antenna, see [1]

for precise values) in units of K/str. The term 𝜅(𝜈)Ω(𝜈) is a conversion factor from K/str to

Jy through 𝜅(𝜈) = (2𝑘𝐵 × 1026)/(𝐴(𝜈)Ω(𝜈)) where 𝑘𝐵 is the Boltzmann constant, and 𝐴(𝜈) is

the effective area and Ω(𝜈) is the solid angle of the beam. The parameter 𝛼 is a dimensionless

parameter which we use to simulate scenarios with higher levels of thermal noise. We consider

values of 𝛼 = [1, 2, 3, 4, 7]. In our fiducial noise level 𝛼 = 1. The total simulated visibilities spans

roughly 13 hour observations corresponding to over ≳ 4000 time integrations of 10.7 seconds

each. The simulation data is composed of 39 operational antennas with north and east pointing

polarisations. We consider only the shortest baselines (i.e. antennas separated by 14.7m) in this

work. We find that our results do not depend on the specific antennas used to form the 14.7m

baseline. Thus without loss of generality we perform our analysis using the antenna pair (84, 85),

including multiple linear polarisations ( EE and NN ). We have repeated our subsequent analyses

for redundant baselines using other antenna pairs and have found no significant differences in our

qualitative or quantitative results. Since this is a simulated dataset, there are not any RFI corrupted

regions. To imitate a scenario where RFI has corrupted regions of our simulated visibilities, we

apply the HERA flags discussed in the previous section to our dataset.

5.3 Inpainting Techniques

In this section we describe the inpainting methods that we use as part of our analysis. We begin by

introducing CLEAN and LSSA in Sections 5.3.1 and 5.3.2. In these sections we also compute the

optimal value of CLEAN and LSSA hyperparameters to optimize their respective performances.

In Section 5.3.3 we introduce the covariance-Based Inpainting methods, GPR & DPSS. Finally in

Section 5.3.5 we introduce the neural network architecture of U-Paint.
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Figure 5.2: The results of our parameter optimization procedure for CLEAN and LSSA inpainting

methods. In the left image fractional increase in 𝜒2 is plotted as a function of tolerance parameter

values (see Section 5.3.1). The coloured curves represent different noise levels. As the thermal

noise level in the dataset increases the optimal tolerance decreases. The inset provides a closer

examination of of 𝜒2/𝑐ℎ𝑖2min for fiducial noise level 𝛼 = 1. Similarly on the right image, the

fractional increase in 𝜒2 is plotted as a function of 𝑛max, the number of Fourier components to

include in LSSA models. As we increase the thermal noise of the dataset, the optimal number of

Fourier components to include in the model decreases.

5.3.1 CLEAN

The implementation of the CLEAN inpainting algorithm in HERA is similar in concept to the

algorithm originally introduced in [15]. The original algorithm is essentially a deconvolution

algorithm for 2D images. The procedure has been slightly modified to fit the needs of inpainting

flagged data in the HERA analysis [14, 20, 34]. For example, the original CLEAN algorithm

operates in the image plane whereas the HERA implementation operates in the 𝜏 and 𝜈 domain.

More broadly, the original algorithm operates on 2D images whereas the HERA implementation

acts independently at each LST taking only the 1D frequency spectrum as input. Since CLEAN

operates at each LST independently, LSTs where the entire frequency band are flagged remain

flagged. The algorithm works by computing the Fourier transform of the visibilities𝑉 (b, 𝜏, 𝑡) along

the frequency axis in accordance with Equation 5.4. In doing so, the algorithm has an adjustable
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parameter called the “zeropad” parameter, which is the number of bins to zeropad on both sides

of the frequency axis. The additional padding around the frequency axis increases the delay space

resolution which provides the algorithm with a finer set of discretized 𝜏 modes. The algorithm

then iteratively searches and selects the mode 𝜏𝑖 that has the largest amplitude 𝑉max(b, 𝜏i, t), which

is then subtracted from the original quantity, i.e. 𝑉1(b, 𝜏i, t) = Ṽ(b, 𝜏, t) − Ṽmax. This process

is repeated 𝑛 times until the largest remaining delay modes 𝑉𝑛 (b, 𝜏i, t) are consistent with the

desired tolerance threshold. The tolerance threshold is an adjustable parameter which sets the

level at which the algorithm converges. Decreasing this parameter improves performance but is

computationally expensive. Another adjustable parameter which determines minimum delay 𝜏dc is

used in estimating the noise, i.e. only delays 𝜏 > 𝜏0 are used in estimating the noise. This sets a

hard cutoff to which modes will be included in the inpainted image. The subtracted delay modes

are then used to reconstruct the visibilities in the flagged regions. The CLEAN predictions are

referred to the CLEAN model component, whereas the remaining modes are used to construct the

CLEAN residual component.

The accuracy of the CLEAN predictions depend on the input values of the zeropad and tolerance

parameters. Thus we need to optimize these parameters. Since the optimal values of the zeropad

and tolerance depend on the properties of the dataset, this procedure is repeated for each noise

scenario in the simulated data discussed in Section 5.2.3. We find that 𝜏dc parameter does not

dominantly affect the performance and keep the parameter fixed to 𝜏dc = 2000ns unless otherwise

noted. To determine the set of optimal parameters of the tolerance and zeropad parameters we

compute the sum of the square of the residuals 𝜖𝑟 of Equation 5.16 between the model visibilities

and the true visibilities:

𝜒2 =
∑︁

LSTi,𝜈j

[
𝑉model(LSTi, 𝜈j) − Vtrue(LSTi, 𝜈j)

]2 (5.10)

where we have explicitly made mention to that this sum occurs over all LSTs and frequency channels

in the visibilities. Note that it is not necessary to select only the flagged pixels in this sum (i.e. by

applying the inverse mask of Equation 5.15 and 5.16), since non-flagged pixels do not contribute
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to the sum in Equation 5.10. The optimal values of these parameters are such that 𝜒2 in Equation

5.10 between inpainted predictions relative to the true visibilities are minimized. In Figure 5.2 we

show the 𝜒2 for various values of the the tolerance parameter at different thermal noise levels of the

dataset. As we increase the noise level, the optimal values the tolerance increase. We find that the

behaviour of the zeropad parameter is similar for different thermal noise levels, i.e. increasing the

thermal noise of the dataset results necessitates decreasing the value of the zeropad parameter. For

the remainder of this paper use CLEAN parameters tol = 10−10, zp = 256 for the fiducial thermal

noise scenario in Section 5.2.3 (i.e. 𝛼 = 1). For 𝛼 = 2 , 3, 4 and 7 we use tol = 10−9, 10−5, 10−5 ,

10−4. For the zeropad parameter we use zp = 256, 256, 128, 128, 64 respectively.

5.3.2 Least Squares Spectral Analysis (LSSA)

The HERA implementation of LSSA follows a generalized least squares estimator. It finds a best-fit

smooth model derived from the Fourier components of the dataset and uses that model to fill in the

flagged regions. This approach is similar in approach to what CLEAN does (see Section 5.3.1),

except this uses a linear fit rather than the non-linear algorithm of CLEAN. As a result LSSA

is computationally less expensive than CLEAN and in principle the error properties are easier

to compute. Like the CLEAN algorithm, the code operates at each LST independently, i.e. the

best fitting model is derived using the frequency information at each LST. Thus LSSA does not

provide a model for LSTs where all frequency channels are flagged. Consider flagged visibilites at

𝑉 (b, 𝜈, t) at time 𝑡, the model for the flagged regions in the visibilities is constructed by expressing

𝑉model(b, 𝜈, 𝑡) as a linear combination of the Fourier basis, i.e

𝑉model(b, 𝜈, 𝑡) =
𝑛=𝑛max∑︁
𝑛=−𝑛max

𝑐𝑛𝑒
𝑖𝜈𝑛𝑡/BW (5.11)

where BW is the bandwidth of the instrument, 𝑛max are the number of user-specified Fourier modes

used to model the dataset and 𝑐𝑛 are the undetermined coefficients for each Fourier mode. To solve

for the coefficients the code uses a linear least squares optimizer, which minimizes the 𝜒2residual

from Equation 5.10. The solution to Equation 5.10 is the well known least squares solution.
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The best fitting 𝑐𝑛 from Equation 5.10 are then used to construct the model for the visibilities

𝑉model(b, 𝜈, 𝑡) in Equation 5.11. The inpainted data are then obtained by replacing 𝑉model(b, 𝜈, 𝑡)

into the RFI flagged regions of 𝑉data(b, 𝜈, 𝑡).

Since the performance of the LSSA algorithm depends on the number of Fourier components

𝑛max to include in the model, we need to select 𝑛max such that the performance is optimized. We

repeat our procedure for each noise scenario in the simulated data discussed in Section 5.2.3. Fewer

𝑛max results in a smoother inpainted model while larger values of 𝑛max result in producing inpaint

models with fine frequency features. For datasets with a greater fraction of flags or larger amplitude

of thermal noise, increasing 𝑛max too far can hinder the performance due to numerical instabilities.

In the case of high percentage of flags, this occurs because there is not enough data to distinguish

between the values of the largest Fourier modes. Similarly increasing the thermal noise will expand

the error bars of the dataset making it difficult to break the degeneracies between the largest Fourier

modes of the LSSA model. In such scenarios performance will be improved with a limited number

of modes. We chose 𝑛max to strike a balance between goodness of fit and numerical instabilities.

To find the optimal value of 𝑛max, we use the LSSA method to generate models for the RFI flagged

regions in the visibilities discussed in Section 5.2.3. We repeat this procedure for multiple values

of 𝑛max ranging from 𝑛max from 2 to 60. At each instance we compute the sum of the square of the

residuals 𝜖𝑟 of Equation 5.16 between the model visibilities and the true visibilities, i.e. Equation

5.10. As discussed earlier, note that it is not necessary to select only the flagged pixels in this

sum, since non-flagged pixels do not contribute to the sum in Equation 5.10. Note that the optimal

value of 𝑛max depends on which flagged channels we include in our computation of Equation 5.10.

For example including only the wideband RFI gaps would lead to solutions where fewer modes

(smoother functions) are preferred. Conversely applying our optimization to narrowband RFI gaps

(for example, the 120MHz - 130MHz in Figure 5.1) would favour a larger number of Fourier modes.

Thus by using all flagged channels in our computation of Equation 5.10 we strike a balance between

models which are best suited for wideband RFI and narrowband RFI. In Figure 5.2 we show the

𝜒2 as a function of 𝑛max for various thermal noise levels. From this we can see that fewer Fourier

components lead to better results. We also see that the number of Fourier components to include
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Figure 5.3: Block diagram showing the U-Paint architecture.

in the LSSA model decreases with increasing thermal noise. For the remainder of this paper use

𝑛max = 10 for the fiducial noise scenario, i.e. 𝛼 = 1 in Equation 5.9. For the 𝛼 = 2, 3, 4, 7 thermal

noise scenarios we use 𝑛max = 9, 7, 7 ,6 respectively.

5.3.3 Covariance-Based Inpainting (GPR)

A powerful technique for the reconstruction or interpolation of a noisy signal is the Wiener filter [48],

which has a long history in cosmology [45,52]. A generalization of the Wiener filter is the Gaussian

process regression (GPR) formalism [38, 41]. Both are, in essence, techniques that down-weight

the observed data by its covariance, and then up-weight by the signal covariance. Recently, GPR

has been used in 21 cm cosmology as a tool for signal separation [11, 31] and for simultaneous

filtering and inpainting [19]. Following [19], the expectation value of the conditioned signal model
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in a Gaussian process model can be computed as

E[𝑠] = 𝐶𝑠 (𝐶𝑠 + 𝐶𝑛 + 𝐶other)−1𝑑, (5.12)

where 𝑑 is our data vector, E[𝑠] is the expectation value of our statistical model for the signal, and

𝐶𝑠, 𝐶𝑛, and 𝐶other are the covariance matrices for the signal, noise and extraneous components of

our data model. This “best-fit” also has a covariance given by

Cov[𝑠] = 𝐶𝑠 − 𝐶𝑠 (𝐶𝑠 + 𝐶𝑛 + 𝐶other)−1𝐶𝑠 . (5.13)

Ignoring the 𝐶other term in Equation 5.12, we see that this indeed simplifies to the standard

Wiener filter. Note that [19] showed that the GPR foreground subtraction formalism used in

21 cm cosmology is closely related to the widely studied inverse covariance weighting found in the

quadratic estimator literature, in the sense that one first weights the data by its inverse covariance,

and the up-weights the residual by a normalization factor. More generally, typical applications

of GPR involve fitting for the hyperparameters of analytic covariance functions, but at the end of

the day, GPR is simply an inverse covariance weighting, as shown above. Further note that any

covariance function can be implemented within the GPR framework discussed above [11].

In this work, we adopt a simple squared-exponential covariance function for modeling the

21 cm foregrounds, and a diagonal matrix for modeling the (uncorrelated) thermal noise. The

hyperparameters of these covariances (e.g. the squared-exponential length scale and the noise

variance) were set manually via inspection of the data: although one could choose to regress for

these automatically on the data, given our understanding of the datasets at-hand we found that

manual selection yielded similar results.

Another recent example of covariance-based modeling for 21 cm is the DAYENU formalism

of [6]. Fundamentally, DAYENU is an inverse-covariance technique that explicitly assumes a Sinc

model for the frequency-frequency covariance of the visibilities. Note that DAYENU was designed

as a filter to remove foregrounds, however, the construction of the filter to remove this signal is

similar to that of Equation 5.12. In fact, although not explicitly shown in [6], one can see that
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DAYENU is exactly the same as Equation 5.12 in the case of a signal covariance that is the identity

matrix, and a noise covariance that is a sinc function. The set of vectors that diagonalize this

sinc covariance are the discrete prolate spheroidal sequences (DPSS), which have a long history in

signal processing as the solution to the spectral concentration problem [42].

5.3.4 DPSS Least Squares (DPSS-LS)

The LSSA technique discussed in the previous section can be generalized to model functions

(instead of just fourier components). In general, we can model the visibility data at a single time as

𝑉model(LST𝑖, 𝜈 𝑗 ) =
∑︁
𝛼

𝐴𝛼 (LST𝑖)𝑢𝛼 (LST𝑖, 𝜈 𝑗 ) (5.14)

where 𝑢𝛼 are a set of vectors that ideally span all possible foreground shapes while having minimal

overlap with modes outside the wedge. Since foregrounds within the wedge are heavily “band-

limited” – are ideally only contained within a compact range of delays, sets of functions whose

Fourier transforms maximize power within a band-limited region are are ideal for describing

these foregrounds. The Discrete Prolate Spheroidal Sequences (DPSS) [42] maximize the ratio

of power within some bandlimited region 𝐵𝜏 to the total power of the sequence and are thus an

ideal basis for per-baseline modeling of the wedge. [6] applied these sequences to modeling and

filtering foregrounds with the DAYENU technique in which the covariance matrix of foregrounds

is approximated as a Sinc matrix which is diagonalized by DPSS modes or DAYENUREST which

performs linear least-squares inpainting.

Although the DAYENU (i.e. DPSS) formalism presented in [6] and discussed above is presented

as a covariance-based technique similar to the Wiener filter and GPR, there are other ways to use

the DPSS vectors for data modeling and inpainting. The DAYENUREST variant presented in [6]

does just this, and instead of inpainting via Equation 5.12, it uses the DPSS vectors as a basis-set for

performing least-squares fitting in the visibility. In this sense, the DAYENUREST (or DPSS least

squares) is more akin to the LSSA formalism discussed above, except with a DPSS basis set instead

of discrete Fourier modes. Hereafter, when we refer to “DPSS” in the paper we refer specifically
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to the DPSS least squares technique, which is distinctly separate from the pure covariance-based

inpainting techniques like GPR. Similar to LSSA we must specify how many modes to include in

our DPSS basis-set. To do this, one specifies the parameter 𝜏dc which determines the the finest

spectral scale that DPSS inpaints over, i.e. 1/𝜏dc. Increasing 𝜏dc results in capturing finer frequency

structures while decreasing 𝜏dc results in modeling only the smoothest frequency structures. Thus

the maximum RFI gap that is inpainted is proportional to 1/𝜏dc. Similar to selecting 𝑛max in Section

5.3.2, our selection of 𝜏dc has consequences for the performance of the model in narrowband

relative to wideband RFI. For example, increasing 𝜏dc results in inpaint models which can account

for fine frequency structure, which optimizes the performance for narrowband RFI. Conversely,

this means that there is a maximum RFI gap size 1/𝜏dc for which we can inpaint over which reduces

performance in wideband RFI gaps. In this paper we use 𝜏dc = 1000ns. This makes our DPSS

technique optimized at inpainting intermittent (i.e. narrowband) RFI and introducing a maximum

gap size of 1/𝜏𝑑𝑐 = 0.5MHz. Since this technique is similar to that of LSSA, and because our

parameter choices for DPSS and LSSA optimize performance for different RFI properties, our

analysis essentially brackets the range of performance for DPSS and LSSA techniques.

5.3.5 U-Paint Architecture

Our desired network configuration is one which is capable at making precise predictions of the

data in flagged regions using the unflagged features in the visibilities. To do this we use a U-net

architecture, introduced by [39] which have been shown to be robust for these type problems [17].

Our U-Net construction closely follows the architecture of [39] and [10]. We show the schematic

of our network in Figure 5.3. Starting from the input of Figure 5.3, we input images of size

512×512. As discussed in Section 5.2.3, we use data from antennas (84, 85) and (0, 1) to perform

our analysis. Thus all data from these antennas are removed before training. As discussed in

Section 5.2.3 the HERA visibilities are measures of 1024 frequency channels over 4000 time

integrations (i.e ×𝑁LSTs). Thus we divide the total HERA visibilities into input visibilities of size

512 × 512 corresponding to 90min of data and a band width of 50MHz. Thus the frequency band

is split into two sections 100MHz-150MHz and 150MHz-200MHz at 90min observation intervals.
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Figure 5.4: First row: The amplitude and phase components of the RFI flagged visibilities are

shown in the first and third column. In the second and fourth column are the amplitude and

phase component of the true visibilities. The visibilities are simulated (see Section 5.2.3). Second

through fifth rows: in each row we show the amplitude and phase components of the RFI flagged

visibilities but with the inpaint models filled into the RFI gaps. Each subsequent row correspond to

U-Paint, CLEAN, LSSA, GPR, and DPSS inpainting methods. In the second and fourth column of

each row we show the fractional error of the model amplitude and the residuals of the model phase

(see Section 5.5).
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Our motivation for selecting visibility sizes of 512×512 is to establish a balance between two

considerations: we need to divide the visibilites enough times to generate a large enough dataset for

training and while simultaneously allowing a large enough image to allow the network to recognize

typical features in HERA visibilities. Segmenting the data into too small a size will obscure the

larger features in the visibilities. Conversely, making the image size too large will reduce the

amount of images in our training set. Note that we find that the performance of the network is

similar when using image sizes of 256x256; however, we find that the performance of the network

is decreased below this threshold. Each visibility image is then split into 5 input channels2 for the

initial convolutional layer. Thus the input has shape 512×512×5. Our input channels are as follows:

in channels 1 & 2 we input the real and imaginary component of the visibilities, respectively, defined

in Equation 5.1 where the flagged regions of the real and imaginary component of the visibilities

have been set to 0. In channel 3 we input the flags, which are a binarized 512 × 512 map where

a 0 pixel represents an unflagged region in the visibilities and 1 represents a flagged region in the

visibilities. In order to ensure continuity at the boundary between flagged regions and the unflagged

regions, i.e. between our inpainted predictions and the existing visibilities, we extend the flagged

regions by two adjacent pixels along both axes (i.e. in LST and 𝜈). This encourages the network’s

model of the visibilities to be consistent with the existing information in the unflagged regions.

In channels 4 & 5 we input the real and imaginary component of 𝑉 (b, 𝜏, 𝑡), i.e. Equation 5.4 is

applied to the visibilities 𝑉 (b, 𝜏, 𝑡) within channels 1 & 2 respectively. This is done to encourage

the network to take advantage of the delay information. The reason this is effective is because our

data is structured in the delay domain: high power at low delays due to the foregrounds and then

lower power at high delays due to noise.

Referring again to architecture of the network in Figure 5.3, the objective of left branch of

the U-net is to capture context of the images and propagate them downward through each level.

We choose convolutional kernels of size (2 × 2) which gives us a reasonable balance between the

spatial resolutions and context for the features comprising the image. At each level we use a “ReLU”

activation function. As the input data is propagated through each level, the network increasingly

2In this subsection, “channels” refers to the inputs to convolutional layers and not frequency channels. Outside of
this subsection, channels refers to frequency channels.
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forms an abstraction of the elements in the image. The bottom of the U-net can be interpreted as

a classification type step, i.e., at this stage the network has understood the various elements in the

image and has formed an abstract classification of these items. The objective of the right side of

the U-net is to use the abstract classification of the items in the image to make predictions of the

data in flagged regions of the input dataset. To do this the network uses a convolutional layer which

upscales the size of each image. Throughout this process the network has lost all context about the

superficial placement of these features. To re-introduce the necessary superficial context to each

level on the right side of the U-net, skip connections between the levels on the left branch of the

U-net and right branch of the U-net are formed. The image on the left hand side of the U-net is

combined with the corresponding level on the right hand side through concatenation. The output

at the right of Figure 5.3 has shape 512 × 512 and contains the network’s model for the flagged

regions. We extract the network predictions for the flagged regions of the visibilities and insert

them into the corresponding flagged regions of the original flagged data set. In other words, we

discard the network’s predictions for the data in unflagged regions.

To compare the training set to the labels, we define difference between the model visibilities

𝑉model(𝜈, 𝑡) and labels 𝑉true(𝜈, 𝑡) as Δ = 𝑉model(𝜈, 𝑡) −𝑉true(𝜈, 𝑡). We use a loss function

𝜒2 =
∑︁
𝑛

[(1 − 𝑀 (𝜈, 𝑡)) Δ]† · [(1 − 𝑀 (𝜈, 𝑡)) Δ] (5.15)

where the sum is over 𝑛, the number of images in the batch. The † refers to complex conjugation

and a transpose. The term 1 − 𝑀 (𝜈, 𝑡) essentially inverts the flags, i.e. the unflagged regions are

0 and the flagged regions are 1. The inverse flags prevent non-flagged regions from contributing

to the loss. This is done to encourage the network to focus on learning the features of the flagged

regions, which speeds up our training process.

We use ∼ 350 images from the the simulated visibilities discussed in Section 5.2.3 as part of

our training set, and a test set of 35, with a batch size of 12. The network is trained for 80 epochs

and a learning rate of 𝑙𝑟 = 10−4 using an Adam optimizer.
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5.4 Inpaint Models

In this section we use the inpainting methods to make predictions for the RFI corrupted simulated

visibilities from Section 5.2.3. We also provide a high level qualitative overview of the inpainted

models in their amplitude and phase components. In Figure 5.4 we show sample inpaint predictions

for the amplitude and phase of the RFI corrupted visibilities. The upper left panel of Figure 5.4

corresponds to the flagged visibilities while the top of the second column corresponds to the

true visibilities. The first column in each subsequent row corresponds to visibilities where the

inpaint models have been replaced in the RFI flagged regions. The first row corresponds to U-Paint

models, the second row corresponds to CLEAN models, the third row corresponds to LSSA models

and the final two rows correspond to GPR and DPSS models respectively. The attributes of the

predictions shown in this image are characteristic of the models for each inpainting method. By

visual inspection we can see that the U-Paint network has learned to assimilate the features in the

amplitude and phase into the RFI corrupted regions, and thus it is apparent that the network is

capable of reproducing the features of the true visibilities in the RFI corrupted regions. Another

distinguishing feature of the network predictions are that the network organically inpaints over LSTs

that do not contain any frequency information. In contrast to the other inpaint algorithms which do

not naturally provide predictions for these LSTs, U-Paint can take advantage of all the information

of the visibilities. This highlights U-Paint’s ability to extrapolate data to LSTs in which there are

none. Currently LSTs without any frequency information are not used as part of HERA’s data

analysis pipeline; however, in the future one may be able to take advantage of these LSTs either

from the analysis perspective or simply to avoid discontinuities in the data. We can also see that all

inpainting methods do a reasonable job at filling in the narrowband RFI portion of the visibilities

making it difficult to discern between the true visibilities and the inpaint models. In contrast,

regions where wideband RFI has been replaced with inpaint models are still obvious. Referring to

the 2MHz RFI gap at 136MHz, we can see that wideband RFI is still easily identifiable in the model

visibilities of each inpainting technique. There appear to be remaining artifacts in the wideband

RFI regions which make the characteristics of the inpaint models are apparent. Referring to the top
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row, can see that U-Paint produces models with a speckled structure in frequency while CLEAN,

LSSA and GPR models tend to be smoother in the frequency domain. DPSS models don’t entirely

fill in the wideband RFI gap at 136MHz. As discussed in Section 5.3, this is due to our choice of

delay cut parameter 𝜏dc. The maximum RFI gap that is inpainted is proportional to 1/𝜏dc. Since

we are using 𝜏dc = 1000ns, then we are limited to RFI gaps larger than 1/𝜏𝑑𝑐 = 0.5MHz. Unless

otherwise stated we do not include DPSS in our error characterisation for wideband RFI. In the third

column of Figure 5.4 we show the phase component of the inpaint predictions. The second through

fifth rows again correspond to U-Paint, CLEAN, LSSA, GPR, and DPSS models respectively. We

can see that the inpaint models capture the structure of the phase component. As was the case with

the amplitude component, regions of inpainted narrowband RFI appear to be seamlessly integrated

with the rest of the visibilities while inpainted wideband regions appear to have artifacts.

In the following sections we build a quantitative perspective on the performance of each

inpainting technique. In the next section we discuss our methodology in quantifying the error

characteristics of the inpaint models.

5.5 Statistical Analysis Methodology

We quantify the errors in inpainted predictions relative to the true visibilities by computing the

residuals, fractional errors and a modified version of the fractional errors. We use the same metrics

to quantify the errors in the model power spectra relative to the true power spectra. The residuals

between the inpainted visibilites and the true visibilities are computed as

𝜖V
r = [1 − 𝑀 (𝜈, 𝑡)] · (𝑉model −𝑉true) , (5.16)

where 𝑀 (𝜈, 𝑡) are the flags, 𝑉model are the flagged visibilities where the inpainted models have

been placed into the flagged regions and 𝑉true are the true visibilities (i.e. without any flags). The

term 1 − 𝑀 (𝜈, 𝑡) essentially inverts the flags i.e. 1 is a flagged region and 0 signifies unflagged.

This is done so that only flagged regions enter the analysis. As discussed in Sections 5.3.1, 5.3.2,

and 5.3.3, CLEAN, LSSA, GPR, and DPSS operate at each LST independently and thus do not
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inpaint on LSTs where the entire frequency band are flagged. These LSTs are not used in our error

characterization analysis even for inpainting methods which do inpaint on these LSTs, i.e. U-Paint.

Note that the residuals defined by Equations 5.16 constitute individual error realisations. In Section

5.5 we model the distribution of error realisations to compute the actual error. Using 𝜖V
r we can

define the fractional error 𝜖frac:

𝜖V
frac =

𝜖V
r

𝑉true
. (5.17)

Since the visibilities are complex, they can be split into real and imaginary components, or

amplitude and phase. Within the context of error quantification, Equations 5.16 and 5.17 can

be applied to the real, imaginary, and amplitude components of the visibilities. However since

the phase of the visibilities are periodic, quantifying the errors using the fractional errors defined

in Equation 5.17 becomes meaningless. To quantify the errors for the phase component of the

visibilities we use a modified version of the residuals of Equation 5.16. The phase values of the

inpainted models 𝜙model and ground truth 𝜙true are mapped from their native range [−𝜋, 𝜋] to

[0, 2𝜋]. The residuals Δ𝜙 = 𝜙model − 𝜙true are then computed. Since the sign of the phase error

does not directly indicate the severity of the error, i.e, a phase error of +Δ𝜙 is the same “angular

distance” from the true value as phase error −Δ𝜙, we define the absolute residual phase error 𝜖𝜙 as

𝜖𝜙 = min ( |2𝜋 − (𝜙model − 𝜙true) | , |𝜙model − 𝜙true |) . (5.18)

Therefore we can interpret 𝜖𝜙 to be the smallest angle from 𝜙true. In Sections 5.6 and 5.7 we use

these metrics as tools to describe the errors in the model visibilities and power spectra.

To perform our analysis we construct a sample set of RFI flagged channels using all flagged

channels between 𝜈 = 110MHz and 𝜈 = 174MHz (see Section 5.2.1 for details). We exclude LSTs

in which all frequency channels are flagged from our analysis. As discussed in Section 5.2.3 we

consider only the shortest baselines (i.e. antennas separated by 14.7m) in this work. We find that our

results do not depend on the specific antennas used to form the 14.7m baseline. Thus without loss

of generality we perform our analysis using the antennas (0, 1) and (84, 85) for strictly east-west

baselines, including multiple linear polarisations ( EE and NN ). We have repeated our subsequent
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Table 5.1: Summary of key error metrics for the amplitude component of simulated visibilities.

Error 𝜎𝜖frac 𝜎𝜖frac 𝜇𝜖frac
𝜇𝜖frac

RFI Narrowband All Narrowband All
U-Paint 5.5% 5.97% -0.025% 0.05%
CLEAN 3% 9.7% 0.07% 0.265%
LSSA 1.69% 2.82% 0.05% -0.16%
GPR 3.09% 3.5% -0.08% -0.044%
DPSS 1.52% - 0.013%

analyses for redundant baselines using other antenna pairs and have found no significant differences

in our qualitative or quantitative results. With the restrictions above, this leads to a sample set of 104

flagged channels. Using this sample set, we construct the empirical error distribution. We model

the empirical error distribution with seven main classes of model probability density functions,

which along with their sub-classes, encompass a flexible range of probability profiles. They include

the gamma, log normal, skew Cauchy (see [13]), t, skew normal, generalized normal, skew Laplace

distributions. These distribution functions comprise a family of distributions in which we find more

familiar probability profiles as special cases. We then compare the empirical distribution to 𝑝best

using the Kolmogorov-Smirnov (KS) test introduced in [18]. In the following Sections we apply

these metrics to the inpainted predictions of U-Paint, CLEAN, LSSA, GPR, and DPSS.

5.6 Inpaint Error Quantification in the Visibilities of Simulated

Data

In Section 5.4 we discussed the qualitative features of the inpaint models. We now examine the

quantitative aspects of their errors using the metrics from Section 5.5. Since the visibilities are

complex valued, they can be expressed in terms of amplitude and phase components. In Section

5.6.1 we apply our analysis to both components of the visibilities. In Section 5.6.2 we discuss the

impact that increased thermal noise have on the inpaint models.
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Figure 5.5: Top: LST averaged inpaint model visibilities. The true visibilities are shown with

the dotted black curve. The vertical shaded regions correspond to the RFI flagged channels. The

amount of shade is proportional to the frequency in which those channels are flagged. Thus the

Wideband ORBCOMM feature is darkest since it is always flagged. Note that the inpaint models

are only filled into RFI gaps, and so the inpaint models only deviate from the true visibilities in

shaded regions. The orange curve corresponds to U-Paint, the yellow curve to LSSA, purple curve

to CLEAN and blue curve to GPR. DPSS models are not shown since we feature the wideband

feature in this image (see Section 5.3). Bottom: The residuals between inpaint models and the true

visibilities.
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Figure 5.6: Top row: probability distribution of the fractional errors 𝑝(𝜖V
frac) in the amplitude of the

inpainted model visibilities. Second row: residuals in the inpainted model amplitudes 𝑝(𝜖V
r ). Third

row: residuals of the phase component of the inpaint models 𝑝(𝜖phi). The blue curves corresponds

to when only wideband RFI is used to construct the samples while the teal curve corresponds to

samples constructed using only narrowband RFI. All inpaint methods are applied to the simulated

visabilities discussed in Section 5.2.3.
.

5.6.1 Error Characterisation

In the second column of Figure 5.4 we show example fractional errors of the amplitude of the

inpaint models. With this metric the errors are normalized by the amplitude of the true visibilities

allowing us to ascertain the performance independent of the brightness of the visibilities. Referring

to the second row of the second column in Figure 5.4, we find that the mean fractional error

in the amplitude of U-Paint models is 𝜇𝜖frac = 0.058% and standard deviation 𝜎𝜖frac = 5.5% 3.

Thus the fluctuation in performance is 5.5%. We also find that 𝜎𝜖frac is consistent throughout

the various types of RFI, i.e in wideband and narrowband RFI. We also find that U-Paint has

similar performance in LSTs which are entirely flagged. In rows three through six of Figure 5.4

3Note that in this assessment we are not including the model predictions at 𝜈 < 110MHz.
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we show the fractional error in the amplitude of the inpainted models for CLEAN, LSSA, GPR,

and DPSS algorithms. Immediately clear from the fractional errors of the visibility amplitudes are

that CLEAN, LSSA, GPR, and DPSS models are more accurate in the narrowband RFI regions

as compared to the wideband RFI. The standard deviation of the fractional errors of the inpainted

models in narrowband RFI are 𝜎𝜖frac are smallest for DPSS at 1.52% and LSSA at 1.69% followed

by CLEAN and GPR at 3.0% and 3.09% respectively. When we include flagged channels above

110MHz, the error fluctuations 𝜎𝜖frac increase. This is due to the inclusion of wideband RFI gaps

where the fractional errors are larger. When including all flagged channels above 110MHz we find

that LSSA produces the smallest fluctuations at 2.8% followed by GPR at 3.5%, U-Paint at 5.95%,

CLEAN at 9.7% and DPSS at 10.3% Recall that for DPSS our choice of parameters leads to model

limitations on large RFI gaps and thus we do not include DPSS in our error characterisation for

wideband RFI. In Table 5.1 we provide a summary of these quantitative results.

Another distinctive characteristic of the amplitude in U-Paint models are that they contain fine

frequency structure. In the top panel of Figure 5.5 we show the amplitude of the visibilities as a

function of 𝜈 averaged over 512 time integrations. The dotted black line corresponds to the true

visibilities, while the solid colored curves corresponds to the inpaint models. The amount of grey

shading represents the average flag occupancy of each frequency bin. In the wideband RFI gap we

can closely examine the features of each inpaint model. In the lower panel of Figure 5.5 we can

see the spectral structure in the residuals between the inpaint model and true visibilities. Note the

rapid fluctuating components in the U-Paint predictions as compared to the smoother true

visibilities.

In Figure 5.6 we show the probability distributions of the fractional errors 𝑝(𝜖frac) in the

inpainted models. Since the performance and errors depend on the nature of the RFI, we separate

our analysis into frequency channels which are dominated by narrowband RFI and frequency

channels which are dominated by wideband RFI. For the narrowband RFI we construct a sample set

using all flagged pixels from frequency channels 110MHz to 136MHz, where these bounds exclude

the wideband features found below 110MHz and above 136MHz. This leads to a sample size of

∼ 52000 pixels. For the wideband regions, we isolate the 20 frequency channels corresponding
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to the the ORBCOMM RFI feature at 136MHz. This leads to a similar sample size of 54000

pixels. In the top row Figure 5.6 we show the probability density functions of the fractional error

𝑝(𝜖V
frac) (Equation 5.17) for the amplitude of the inpainted models in narrowband and wideband

RFI regions. The blue curves correspond to the probability distribution constructed using only the

wideband RFI samples, while the teal curve corresponds to the probability distribution constructed

using only the narrowband RFI samples. For the sake of visualization, we display up to the 99.9

percentile of errors along the horizontal axis. By qualitatively comparing the maximum range of

the teal curve to the blue curve in all five panels of the first row in Figure 5.6 we can see that the

U-Paint, LSSA, and GPR performances are more consistent across wideband and narrowband RFI

regions as compared to CLEAN and DPSS which perform significantly better with narrowband

RFI. Note that DPSS does not inpaint over a 2MHz gap given our parameter choices in Section 5.3.

We can also see that the maximum range of fractional errors for narrowband RFI is smallest for

DPSS inpainting methods and largest for U-Paint. Conversely, for wideband RFI, LSSA and GPR

produce the smallest range of fractional errors. Another feature of the distribution of fractional

errors 𝜖V
frac for wideband RFI using CLEAN is the positive skew, i.e. a disproportionate amount

of probability mass is contained in 𝑝(𝜖V
frac) > 0. With this exception of this distribution, we find

that generalized normal distributions is an optimal probability distribution profile to model the

empirical distributions 𝑝(𝜖V
frac) for each RFI scenario in Figure 5.6.

To establish the range of absolute temperature errors introduced into the analysis, we now

examine the distribution of residuals 𝑝(𝜖V
r ) in |𝑉 |. The distribution of residuals are shown in the

second row of Figure 5.6. Many of the qualitative features in 𝑝(𝜖V
r ) are similar to the distributions

of fractional errors from above. For example, the distribution of residuals in U-Paint, GPR, and

LSSA inpainting methods are less sensitive to the type of RFI, i.e. narrowband and wideband. By

comparing the maximum range of residuals for narrowband RFI for each inpainting technique we

again come to the same conclusion as above: DPSS produces the smallest residuals, followed by

CLEAN. Similarly, when for wideband RFI, LSSA and GPR produce the smallest residuals.

We now discuss the distribution of errors in the phase components of the visibilities. Referring

to the fourth column of Figure 5.4 we show the residuals between the model phase and true phase.
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Figure 5.7: The standard deviation of the fractional error in the visibilities 𝜖V
frac as a function of

the thermal noise level in the visibilities. The parameter 𝛼 is used as a proxy for the thermal noise

level (see Equation 5.9).

We see that with the exception of the wideband models for DPSS inpaint methods, all of the residuals

fall between |𝜖𝜙r | < 0.1rads. The largest residuals are sourced from wideband RFI regions. In the

bottom row of Figure 5.6 we show the corresponding distributions of the residual phase errors 𝜖𝜙

as defined in Equation 5.18. Recall that the errors 𝜖𝜙 are bounded between 𝜖𝜋 = 0 and 𝜖𝜙 = 𝜋.

We find that the errors in the phase component 𝜖𝜙 of the inpainted models are all characterized

by the same type of probability distribution profile, the lognormal probability function. Similar

to our descriptions of 𝑝(𝜖V
r ) and 𝑝(𝜖V

frac), we find that CLEAN and DPSS models provide the

most accurate description of the phase in narrowband RFI regions and LSSA providing the best

description of the phase in wideband RFI. Relative to DPSS and CLEAN inpainting methods, we

again find U-Paint, GPR and LSSA have consistent performance in the phase component for the

narrowband and wideband RFI.

5.6.2 Thermal Noise

Since the inpainting techniques can not predict exact noise realisations in the dataset, we expect

an increase in the amplitude of the fractional errors. In Figure 5.7 we show the evolution of the

standard deviation of the fractional error (in percentage of the true visibilities) in the wideband and
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narrowband regions of the visibilities as a function of thermal noise level in the visibilities. We use

the dimensionless parameter 𝛼 as a proxy for the thermal noise level in the dataset (see Equation

5.9). Notice the linear evolution of 𝜎𝜖V
frac

with 𝛼. This shows that the standard deviation of the

fractional error is linearly proportional to the standard deviation of the noise level in the dataset.

Thus as one averages down 𝛼 through LST binning (or equivalently, other types of averaging), the

performance of the inpainting techniques improves linearly. Therefore performing the inpainting

before the LST binning in a data analysis pipeline will result in the same performance. In contrast,

a non-linear evolution of 𝜎𝜖V
frac

with 𝛼 would describe a scenario where the 𝜎𝜖V
frac

depends on the

standard deviation of the noise beyond just simple sample variance of the noise, i.e. there may be

advantages to applying the inpainting technique at a specific noise level before or after LST binning

(depending on whether the relationship between 𝜎𝜖V
frac

and 𝛼 is more or less steeper than linear).

Thus Figure 5.7 reinforces our assertion that each inpainting technique captures only the underlying

sky signal of the dataset.

Building on the intuition of the error properties in the visibilities, we now examine errors in the

power spectrum derived from the inpainted visibilities and form connections between the errors of

both components.

5.7 Power Spectrum Error Characterization

In this section we characterize the type of errors in 𝑃(𝜏) due to the inpainting as well as establish the

relationship between the errors in the model visibilities and their corresponding delay power spectra.

We propagate two versions of the visibilities through the power spectrum. The true visibilities

(which do not have any corrupted regions), and the corrupt visibilities (where inpainted models

have been replaced in the RFI corrupt regions). Thus we have the power spectrum derived from the

model visibilities 𝑃model, and the true power spectrum 𝑃true derived from the true visibilities. We

can define the residuals analogously to Equations 5.17 , i.e 𝜖P
r = 𝑃model − 𝑃true. Similarly for the

fractional errors 𝜖P
frac = (𝑃model −𝑃true)/𝑃true. We separate our analysis in terms of delay modes (𝜏)

inside and outside the wedge. This section is structured as follows. In Section 5.7.1 we discuss the
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Figure 5.8: The fractional errors in the wedge modes (left) and non-wedge modes (right) of inpaint

model power spectra 𝜖P
frac as a function of the number of flagged channels within the spectral

window. The P1V spectral window is used to estimate the power spectra.

properties of the power spectra derived from the model visibilities. In Section 5.7.2 we establish

a relationship between the errors in the model visibilities from Section 5.6 and the model power

spectra from Section 5.7.1.

5.7.1 P1V Spectral Window

We compute the power spectra using the spectral window from 119MHz to 129MHz which is one

of the spectral windows used to set upper limits on the power spectrum in HERA Phase 1 Upper

Limits. This window contains both flagged and non-flagged regions of the visibilities. Recall

that in our example HERA flags in Figure 5.1, this frequency range spans over 100 channels and

corresponds to a region of the visibilities with only narrowband RFI. In this spectral range, the

number of flagged channels at each LST range from 0-31 frequency channels which corresponds

to up to 31% of the spectral window used to compute the power spectra. Recall that the power

spectrum is computed independently at each LST and thus there are LSTs where one third of the

band is flagged and LSTs without any flags at all. We restrict our analysis to LSTs with at least

one flagged channel. This reduces the number of sample power spectra with which we can form

our analysis. We find that the key indicator of performance are the number of flagged pixels within

the band. Denote the number of flagged channels at each LST by 𝑁flagged. When 𝑁flagged = 0

we have no errors in 𝑃(𝜏). As we increase 𝑁flagged a larger fraction of the spectral window are
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Figure 5.9: Each inpainting technique is applied to the simulated data discussed in Section 5.2.3.

The P1V spectral window is used to estimate the inpaint model power spectra. Left column: blue

curves correspond to inpaint model power spectra. The black curves correspond to the true power

spectra and the red dotted curves correspond to the residuals. Each row corresponds to a different

inpaint technique used to inpaint RFI flagged simulated visibilities. Second column (see Section

5.8.3): Same as first column but with real P1V data. Purple curves correspond to inpaint model

power spectra and black curves the true power spectra. Red curves are the residuals. The third

column corresponds to the fractional errors 𝜖P
frac in inpaint model power spectra from simulated

data (blue) and the P1V data (purple). The dotted teal line corresponds to the power spectrum of

the thermal noise floor of P1V data [14]. 201
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Figure 5.10: Blue curves correspond to simulated data and purple curves correspond to P1V

data. Distribution of residuals (first row) and fractional errors (second through fourth rows) in the

inpaint model power spectra. Residuals are shown for wedge modes while the fractional errors are

separated according to 𝜏 modes lying inside the wedge (second row) and outside the wedge (third

and fourth rows). Third row corresponds to simulated data while the fourth row corresponds to

P1V data.
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Figure 5.11: Relationship between the mean fractional errors in the inpaint model visibilities 𝜖V
frac

and the mean fractional errors in their corresponding power spectra 𝜖P
frac. We compute the mean

fractional error of the inpaint models in RFI flagged frequency channels within the P1V spectral

window. This process is repeated at each LST. Their corresponding power spectra are estimated

using the same P1V spectral window. The mean of the fractional errors in the model power spectra

are computed using 𝜏 modes inside the wedge. Each LST is plotted as a scatter point. The LSTs

are colour coded according to the number of flagged frequency channels at that LST. In the top

row this procedure is applied to simulated data while in the bottom row this procedure is applied to

P1V data.

flagged. For fixed 𝑁flagged, the arrangement of the RFI also affects the performance. For example,

scenarios with four consecutively flagged channels does not yield similar errors as when the four

flagged channels are dispersed. Denote 𝑁maxc as the number of consecutively flagged channels.

When 𝑁maxc increases we eventually have a wideband feature which have greater fractional errors

relative to narrowband RFI. Thus power spectrum estimates derived from wideband RFI features

in the visibilities have drastically increased errors relative power spectrum estimates derived from

regions of the visibilities with intermittent (i.e narrowband) RFI.

Thus both 𝑁flagged and their arrangement within the spectral window will affect the errors in the

model power spectra. For this analysis we examine the effect of 𝑁flagged on the model power spectra,

i.e. we treat 𝑁flagged as the dominant effect and 𝑁maxc as a secondary effect which we leave to future

work. In Figure 5.8 we show the mean fractional errors of the model power spectrum 𝜖P
frac as a
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function of 𝑁flagged separated by modes outside and inside the wedge. Note that the smallest mean

fractional error 𝜖P
r occurs when only one pixel is flagged. In our flags, 25% of all LSTs have only

one flagged channel. The mean fractional errors in both wedge and non-wedge modes of the model

power spectra increase rapidly as a function of the number of flagged regions for 𝑁flagged < 5. By

𝑁flagged = 5 the fractional errors for modes outside and inside the wedge are an order of magnitude

greater than when only one channel is flagged. On average, 90% of the LSTs in HERA flags have

5 flagged channels or less. Thus most LSTs fall within this error range.

We now look at the model power spectra after averaging over LST. This implicitly averages over

𝑁flagged. We ignore LSTs that have don’t have any flagged channels. In the first column of Figure

5.9 we LST average the model power spectrum (blue curve) and compare it to the LST averaged

true power spectrum (black curve). The dotted red curve corresponds on the mean residuals 𝜖P
r

between the model power spectra and the true power spectra. Referring to the fractional errors in

the blue curves of the third column, we can see that CLEAN and DPSS produce power spectra

models with the smallest fractional errors in the wedge, followed by GPR, LSSA and U-Paint. By

examining the larger errors in 𝑃model for the largest delay modes, it is clear that none of inpainting

methods inpaint noise. We can see that the inpainting techniques only capture the sky signal. This

leads to larger errors in the largest 𝜏 modes which are noise dominated. CLEAN and DPSS models

have fractional errors on the order ∼ 100, while GPR and LSSA are on the order 10 and U-Paint

on the order 104. This is the due to the fine frequency structure imprinted into the visibilities by

U-Paint (see Section 5.6). Note that analysis of the errors the largest 𝜏 modes of 𝑃model are only

possible since we are using simulated data, which is systematic free, and less noisy than real data.

In the future we will continue to make progress on reducing systematics in our data, thus increasing

the importance of understanding the behaviour of inpaint models in the largest 𝜏 modes. In that

scenario, spectral structure imprinted into model power spectra by inpaint methods such as U-Paint

must be accounted for.

In the top row of Figure 5.10 we show the distribution of residuals errors 𝑝(𝜖P
r ) for modes

inside the wedge (blue solid curves). The residuals are smallest for DPSS and CLEAN inpainting

techniques. In the second row of Figure 5.10 we show the distribution of fractional errors 𝑝(𝜖P
frac)
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for wedge modes (solid blue curves) where we again see that DPSS and CLEAN have the smallest

range of fractional errors. We find that the profile of 𝑝(𝜖P
frac) for modes inside the wedge are best

described by a generalized normal distribution. For modes outside the wedge (third row in Figure

5.10), LSSA, U-Paint and GPR are characterized by a log normal distribution. Recall that for the 𝜏

modes outside the wedge, 𝑃model ≫ 𝑃true for U-Paint, LSSA and GPR. Thus their fractional error

distributions are composed of samples with 𝜖P
frac ≫ 0. This gives the distribution long positive

tails. 4. Since CLEAN and DPSS have much smaller errors outside the wedge, their distributions

𝑝(𝜖P
frac) are confined to 𝑝(𝜖P

frac) < 10.

5.7.2 Relationship Between Visibility and Power Spectrum Errors

In Sections 5.6.1 and 5.7.1 we discussed the error characteristics of the model visibilites and model

power spectra. Since the model power spectra are derived from the model visibilities, we expect

a relationship to exist between their errors. Since the errors in 𝑃model(𝜏) are different for modes

inside and outside the wedge, we expect the relationship between model visibilities and model

power spectra to also depend on 𝜏. In this Section we explore these relationships.

Consider the 100 frequency channels spanning the frequencies 119MHz-129MHz correspond-

ing to our spectral window. A direct relationship between the errors in each pixel of the model

visibilities and the corresponding model power spectra is impractical since the power spectrum is

derived from all frequency channels within this spectral window. We therefore find it convenient

to establish a relationship between the mean power spectrum errors and the mean amplitude errors

of the visibilities. Since the inpaint models do not inpaint noise, and since the large 𝜏 modes are

noise dominated, we establish a relationship between the mean fractional errors of the visibilities

𝜖V
frac, and the mean fractional errors in the wedge modes of their corresponding power spectra 𝜖P

frac.

The mean fractional error in the visibilities are given by

𝜖V
r (LST) = 1

Nflagged

i=129∑︁
i=119

[
Vmodel(LST, 𝜈i) − Vtrue(LST, 𝜈i)

Vtrue(LST, 𝜈i)

]
. (5.19)

4Lognormal distributions are only defined for positive values and have long tails making this profile ideal to describe
the non-wedge modes of these inpainting techniques
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The averaging in Equation 5.19 occurs along the frequency domain which leaves us with 𝑁LST

samples. This translates to ∼ 5000 samples in our simulation data. The mean fractional error for

the model power spectrum are similarly computed:

𝜖P
r (LST) = 1

7

i=𝜏g∑︁
i=−𝜏g

[
Pmodel(LST, 𝜏i) − Ptrue(LST, 𝜏i)

Ptrue(LST, 𝜏i)

]
(5.20)

where the index 𝑖 tracks the 𝜏 bins in the wedge modes of the power spectrum and 7 corresponds

to the number of 𝜏 modes inside the wedge. The averaging in Equation 5.20 occurs along the 𝜏

domain which leaves us with 𝑁LST samples. For intuition we can explore an analytical relationship

between 𝜖V
frac and 𝜖P

frac. If we approximate the wedge modes of Equation 5.20 as being uniform and

equal to the error in 𝑃(𝜏 = 0) then we can approximate Equation 5.20 as

𝜖P
frac =

(
𝑃model − 𝑃true

𝑃true

)
𝜏=0

=
𝑉

2
model −𝑉

2
true

𝑉
2
true

. (5.21)

where the last step is due to 𝑃(𝜏 = 0) corresponding to the square mean of the visibilities. Therefore

we can rewrite the right side of Equation 5.21 as

𝜖P
frac = 𝜖

V
frac

(
𝑉model +𝑉 true

𝑉 true

)
. (5.22)

In scenarios where the mean of the model visibilities 𝑉model is consistently related to the mean of

the true visibilities𝑉 true by a constant 𝛿, we can write𝑉model = 𝛿𝑉 true. This is not a bad assumption

for LSTs where the amplitude of the visibilities are relatively constant. For example in Figure 5.4

we can see that the fractional error remains reasonably uniform in LSTs in the vicinity of 119MHz

to 129MHz. In this situation Equation 5.23 can be recast as

𝜖P
frac = (1 + 𝛿)𝜖V

frac, (5.23)

which suggests the mean fractional error in the power spectrum 𝜖P
frac scale linearly with the mean

fractional error in the amplitude of the visibilities. Note that we expect this approximation to no
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longer be valid as the largest 𝜏 modes are included into the mean fractional errors of Equation

5.20. In the top row of Figure 5.11 we show the relationship between 𝜖P
frac and 𝜖V

frac where each

scatter point corresponds to an individual LST. From the previous section, we also expect that the

relationship between 𝜖V
frac and 𝜖P

frac will depend on the number of flagged channels at each LST. We

colour code the scatter points according to the number of flagged channels at that LST. Note that

LSTs with 𝑁flagged = 1 (the brightest green, and smallest points in Figure 5.11) are located at the

smallest values of 𝜖P
frac indicating that these LSTs produce the smallest mean errors in 𝑃(𝜏). It is

also clear that LSTs with 𝑁flagged = 1 don’t appear to strongly cluster together, or follow the same

cohesive relationship as when 𝑁flagged > 1 . This is likely due to sample variance, since the mean

fractional errors in the visibility and power spectrum are computed using a single channel making

𝜖P
frac and 𝜖V

frac prone to scatter. Conversely, LSTs with 𝑁flagged ≫ 1 appear to follow a clearer linear

trend. We can also see that LSTs with 𝑁flagged > 20 tend to produce the largest values of 𝜖P
frac.

5.8 Application to Phase 1 HERA Data

In Sections 5.6 & 5.7 we discussed the performance of each inpainting technique as well as the

types of errors they introduce as part of computation of the power spectrum. However the analysis

was performed on simulated data. While our simulated data from Section 5.2.3 does take into

account the instrument, it doesn’t fully capture all the instrumental effects such as systematics

that come along with a real observation. In this section we characterize the errors introduced

in an actual HERA analysis pipeline. To do this we apply U-Paint, CLEAN, LSSA, GPR, and

DPSS to the P1V HERA data discussed in Section 5.2.3 and repeat our analysis from Sections

5.6 and 5.7. To keep our analysis as similar as possible to the true HERA analysis pipeline, we

use the 119MHz-129MHz spectral window to compute the power spectra. In order to quantify the

errors in 𝑉model and 𝑃model using the same methods in the previous sections, the true (i.e. known)

visibilities and power spectrum are required. One hurdle in realizing this goal is that since the

true solution to the RFI flagged regions of real P1V data do not exist, therefore we need to modify

our analysis procedure. In Section 5.8.1 we discuss our modifications to the procedure outlined in
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Figure 5.12: Same as Figure 5.4 but with the P1V visibilities from Section 5.2.3. The true

visibilities in the first row (second and fourth column) have been initially inpainted with the

CLEAN algorithm to generate placeholder data for the RFI flagged regions. The inpaint techniques

are then applied to a set of flags which are shifted 40 channels to the left. This is done in order

to avoid inpainting over the already CLEANed data. See Section 5.8 for more details regarding

our procedure. Note that as compared to Figure 5.4 the fractional errors in the model visibilities

increase.

Section 5.6. In Sections 5.8.2 and 5.8.3 we discuss our results showing that our intuition and error

characterization carries over from the previous sections and thus we can infer the error properties

in the true analysis from simulation.
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5.8.1 Flagged Regions & Analysis Configuration

Denote the flagged regions of the P1V visibilities as 𝑀P1V. To apply the error metrics discussed in

Section 5.6.1, the “true” visibilities in 𝑀P1V are required to be known. This is not the case for 𝑀P1V

regions of P1V data. This causes several difficulties and prevents us from directly repeating our

analysis procedure from Sections 5.6 and 5.7. Furthermore, the presence of RFI flags can introduce

artifacts into the power spectrum due to the Fourier transforming the sharp discontinuities between

flagged and unflagged regions. To avoid introducing these artifacts into the inpaint models of U-

Paint, CLEAN, LSSR, GPR and DPSS we inpaint over the flagged regions of the P1V data using the

CLEAN algorithm. We use the CLEAN parameter values that were used in [14]. After this step the

flagged regions have been replaced with CLEAN inpaint models. Repeating our error analysis on

the 𝑀P1V flagged regions of P1V data now means that we would be using the CLEAN models as the

true visibilities (which we wish to avoid). We therefore create a new set of flags by taking 𝑀P1V and

shifting them over in frequency space by 40 channels. We refer to the shifted flags which are applied

to the visibilities as 𝑀shift. Applying our analysis on using 𝑀shift rather than 𝑀P1V allows us to use

regions of the visibilities where the true values are known as well as to keep the structure of the real

P1V flags. This procedure is not perfect in that there is an overlap of some of the narrowband RFI

in the 𝑀shift and 𝑀P1V. However < 5% of the narrowband RFI in 𝑀shift overlaps with narrowband

RFI in 𝑀P1V. This estimate does not include the wideband features below 110MHz and above

174MHz. In such overlapping channels, the true solution is therefore CLEAN inpaint model. Since

the overlap percentage is small, we don’t expect this overlap to significantly influence our results.

Note that by applying this shifting procedure, certain characteristic broadband RFI features of 𝑀shift

no longer align with their corresponding frequency bins. For example the ORBCOMM feature is

characteristically found at 136MHz. Conversely, narrowband RFI is intermittent, and thus 𝑀shift

flags provides us with a statistically representative set of narrowband RFI samples.

To generate the inpainted models for the flagged regions, i.e 𝑀shift using U-Paint, we consider

two network configurations. Each scenario produces comparable results. In the first case we use

the weights of the network which has been trained on the simulated data described in Section 5.2.3

(at the fiducial noise level). This is the network which was used in the analysis throughout Sections
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Table 5.2: Summary of key error metrics for the amplitude component of P1V visibilities.

Error 𝜎𝜖frac 𝜎𝜖frac 𝜇𝜖frac
𝜇𝜖frac

RFI Narrowband All Narrowband All
U-Paint 24.5% 98.7% 2.1% 4.9%
CLEAN 19.1% 58.2% 0.81% 5.4%
LSSA 44% 81.2% 1.9% 3.6%
GPR 19.2% 41.3% 0.65% 2.1%
DPSS 15% - 0.5% -

5.6 and 5.7. For completeness, and to examine the range performance that can be obtained by our

network, we try a second scenario. In the second scenario we retrain the network on P1V data after

having performed the CLEAN procedure described above. Thus in this scenario an initial CLEAN

is still performed and 𝑀shift are used as our flagged regions. We find that both scenarios produce

comparable results on the P1V data. We thus use the network from scenario 1 (i.e. the network

which was used in the analysis throughout Sections 5.6 and 5.7 ) to generate inpaint models. To

generate inpaint models for CLEAN, LSSA, GPR, and DPSS we use the same parameters described

in Section 5.3 for the simulated data at the fiducial noise level.

5.8.2 Results

In Figure 5.12 we show an example image of RFI flagged P1V data which has been inpainted.

The first panel in the first row corresponds to the P1V visibilities with 𝑀shift applied. The first

panel in the second row corresponds to the P1V visibilities after an initial CLEAN inpaint, from

here onward we refer to this as the “true” visibilities. Note that the LSTs where all frequency

channels are flagged have unknown true visibilities and haven’t been inpainted over since CLEAN

avoids these LSTs. Therefore the “true” visibilities in the upper left panel of Figure 5.12 still

appear to have flagged regions. The visibilities where RFI flags have been reapplied are on the

upper right. Each subsequent row corresponds to the indicated inpainted model (left) and their

fractional errors (right). Note that U-Paint still inpaints over LSTs with no data, however since a

fractional error cannot be computed (true visibilities are unknown), we do not display a fractional
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Figure 5.13: First row: distribution of fractional errors in the amplitude of P1V visibilities. Second

row: distribution of residuals in P1V visibilities. Third row: distributions of phase errors 𝜖𝜙 in the

phase of P1V visibilities. In each case the blue curves correspond to distributions constructed using

wideband RFI samples only. Teal curves correspond to distributions constructed using narrowband

RFI samples only
.

error. In the two last columns of Figure 5.12 we show the corresponding phase component of the

visibilities. Referring to the fractional errors of the amplitude components and residuals in the

phase component of Figure 5.12 we can see that the inpainting methods again perform better in the

narrowband regions as compared to the wideband regions. Notice that the residuals in the phase

component are much larger than their simulated counterparts in Figure 5.4. Similarly comparing

the fractional errors in second column of Figure 5.12 to the fractional errors of the inpainted model

of the simulated data in 5.4, we see that there are larger fluctuations in fractional error in the P1V

inpainted models relative to the simulated data. This is the case for each inpaint method. The

standard deviations and the mean of the fractional errors are summarized in Table 5.2.
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In Figure 5.13 we show the probability density function of the fractional errors 𝑝(𝜖V
frac) (top

row), residuals 𝑝(𝜖V
r ) (middle row) and the distribution of errors 𝑝(𝜖𝜙) for the phase component

of the visibilities (bottom row) as a function of the type of flags, i.e. narrowband and wideband.

Focusing on the top row, we can see that the profile of the probability distributions functions 𝑝(𝜖V
frac)

share many qualitative characteristics with their corresponding distributions from Section 5.6.1.

For example, we can again see that DPSS still produces the most accurate results for narrowband

RFI followed by CLEAN, GPR, LSSA and U-Paint. However by comparing the extent of the

distributions for narrowband RFI, we can see the performances are less discrepant. By examining

the range of errors we can see that GPR and LSSA produce the smallest range of fractional errors

for narrowband RFI.

In the second row of Figure 5.13 we show the distribution of residuals 𝑝(𝜖V
r ) for each inpainting

technique. Through comparison with the middle row in Figure 5.6 we can see that the residuals using

the P1V data are larger than those using the simulated data. As was the case with the distribution of

fractional errors 𝑝(𝜖V
frac) from above, we can see that the maximum range of residuals in narrowband

RFI are similar among the inpainting techniques. For each inpainting technique, we find that the

profile of 𝑝(𝜖V
r ) and 𝑝(𝜖V

frac) are best characterized by a generalized normal distribution.

In the bottom row of Figure 5.13 we show the distribution of errors 𝜖𝜙 in the phase component

of the P1V inpaint models. We can see that relative to the distributions 𝑝(𝜖𝜙) in Figure 5.6 which

were generated with simulated data there is an apparent performance decrease when applying the

inpainting techniques to P1V data. For narrowband RFI, we find that the tails extend into the range

𝜖𝜙 ∼ 0.75rads while the tails of 𝑝(𝜖𝜙) in wideband RFI regions extend into the range 𝜖 > 𝜋/3 which

reflects a more significant deviation in phase relative to the true values. Unlike the distributions in

Figure 5.6 which were generated with simulated data, U-Paint does show consistent performance

in the phase component. Similar to Section 5.6.1, we find that all distributions functions are best

described by a log normal distribution.
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5.8.3 Power Spectrum

In this section we compute the power spectrum of the inpaint models. To do so we use the P1V

spectral window. In the middle column of Figure 5.9 we show the mean model power spectra

(purple curve), the mean true power spectra (black curve) and their corresponding residuals (red

dotted curve). We show their corresponding mean fractional errors in purple in the third column. As

discussed in Section 5.8.1 the P1V visibilities are noisier than the simulated visibilities and contain

instrument systematics not present in simulations. This manifests in the true power spectrum as

increased amplitude for large 𝜏 modes, as well as the systematic feature at 𝜏 ± 1.2𝜇s. Referring

to the model power spectra in the middle column of Figure 5.9, we can see that the inpainting

techniques reproduce this systematic feature. Referring to the first row of the second column in

Figure 5.9 it appears that 𝑃model for U-Paint have a similar amplitude as 𝑃true for large 𝜏 modes.

However referencing 𝑃model for U-Paint with simulated data (upper left panel) shows that U-Paint

models automatically produce this amplitude for large 𝜏.

By referring to the mean fractional errors on the right column of Figure 5.9 we can see that

the mean fractional errors of each inpainting technique lie within the range 10−3 < 𝜖P
frac < 10,

where the largest fractional errors occur outside the wedge. The smallest fractional errors are again

found for modes inside the wedge. In the wedge modes, the fractional errors are within a fraction

of a percent of their true value. Quantitatively, we find that the inpainting techniques are within

1.24%, 0.32%, 1.24%, 1.0%, 0.25% for U-Paint, CLEAN, LSSA, GPR and DPSS respectively.

To generate the probability density function of the errors in the model power spectra, we

construct two samples sets. One set using 𝜏 modes outside the wedge and another set comprised

of 𝜏 modes inside the wedge. In each case we use model power spectra from LSTs with at least

one flagged pixel. In the purple curves of Figure 5.10 we show the errors in the model power

spectra. In the top row of Figure 5.10 (purple curve) we show the probability density functions

of the residuals. We find that U-Paint produces the largest range of errors 𝜖P
r , followed by DPSS,

LSSA, GPR and CLEAN. In the second row in Figure 5.10 (purple curve) we show the probability

density functions of the fractional errors 𝜖P
frac constructed using only wedge modes. Comparing the

mean of the fractional error distributions in the wedge modes of model power derived from P1V
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data to the mean fractional errors of model power spectra derived from simulated visibilities (blue

curve), we find that there is an increase in 𝜖P
frac using all inpainting techniques. The largest increase

in mean fractional errors occurs in DPSS and CLEAN inpainting techniques. With the smallest

increase in fractional errors using U-Paint. Conversely, if we construct 𝑝(𝜖P
frac) using only modes

outside the wedge (bottom row in Figure 5.10) we find that the range of fractional errors decreases

as compared to its equivalent distribution derived from simulated data (third row). This is due to

there being lesser amounts of noise in the simulated data as compared to the P1V data, thereby

exposing the spectral errors in the inpaint models.

Using the fractional errors 𝜖P
frac we can establish a relationship between the mean fractional

errors in the inpainted simulated visibilities and their corresponding power spectra. We proceed

similarly as in Section 5.7.1. In the bottom row of Figure 5.11 we show the relationship between the

mean fractional errors in the visibilities 𝜖V
frac and the mean fractional errors in the power spectrum

𝜖P
frac. Comparing this to the top row of Figure 5.11 we demonstrate that the relationship between

the mean fractional errors in the inpainted P1V data and their corresponding power spectra follow

the same relationship as with the simulated data. This is important since it suggests that intuition

and error characterisation drawn from the simulated visibilities in Section 5.7.2 translates to P1V

data. This result is perhaps not so surprising given that the fractional errors of the visibilities and

power spectrum are described by the same probability profile for the P1V data visibilities and power

spectra. Recall above the mean of the fractional error distributions for the power spectra of P1V

data are larger (except for U-Paint) that the corresponding mean fractional errors using simulated

data. Similarly in Section 5.8.2 we found that there was an increase in 𝜖V
frac in the P1V data as

compared to the simulated data. These increases essentially shift the center of the scatter plots in

the bottom row of Figure 5.11 as compared to the top row (simulated data). In the future we would

like to be able to predict the errors in P1V based on the error characterization in the simulated data.

However, although the relationship between these quantities remains the same between simulated

and P1V, the centering of the distributions still need to be accounted for.
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5.9 Conclusion

As 21cm instruments continue to push towards a detection of the 21cm power spectrum, quantifi-

cation of the errors introduced into the data analysis due to inpainting RFI corrupted data can no

longer be ignored. In this paper we assessed the performance of existing inpainting techniques

at restoring RFI flagged data. Our results are indicative of general trends, but not an exhaustive

comparison. We also introduced our convolutional neural network U-Paint which we show to be

capable of inpainting RFI corrupted data. Along with existing methods, we quantified the errors

introduced in the data analysis pipeline due to RFI. We perform our error quantification analysis

on simulated data as well as real data used in HERA’s Phase 1 limits. We find that inpainting

techniques which incorporate high wavenumbers in delay space in their modeling are best suited

for inpainting over narrowband RFI. Our parameter choices for DPSS make DPSS best suited for

inpainting over narrowband RFI while our parameter choices for LSSA make LSSA more flexible to

wide RFI gaps and narrow RFI gaps. We find that with our fiducial parameters, DPSS and CLEAN

provide the best performance for narrowband RFI while GPR provides the best performance for

wideband RFI. We also find that the error distributions in the phase component of the visibilites

are log normally distributed. We find that these results hold in real data as well as simulated data.

Further, we find that the standard deviation of the errors increases monotonically with increasing

thermal noise of the simulated dataset.

To characterize the errors that inpainting cause in the 21cm delay power spectrum, we propagate

the inpainted visibilities to the 21cm power spectrum. We find that all inpainting techniques can

reproduce the wedge modes of the delay power spectrum to within 10% of the true values. Since

the inpainting techniques are not capable of inpainting noise, the errors are greatest for the largest

delay modes. Currently, systematics and noise prevent instruments from accurately measuring

the amplitude of the power spectrum at the largest delay modes. However we show that in the

future, as these effects are reduced, CLEAN and DPSS can most accurately reproduce the true

power spectra at high delay. Quantitatively the errors reach the same order of magnitude

as the noise. Conversely we find that U-Paint imparts artificial fine frequency structure into the

215



visibilities which manifests as an increase in power at the highest delay modes. We also established

a relationship between the mean fractional error in the model visibilities and the mean fractional

errors in the model power spectrum. We find that this relationship is linear if we restrict the errors

in the model power spectrum to only wedge modes. We also show that this is the case for both real

and simulated data. Moving forward we have a better understanding of how the inpainting portion

of the data analysis pipeline affect the 21cm power spectrum. This is another important step we

must undertake on our continued path to make a detection of the 21cm power spectrum.
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Chapter 6

A General Bayesian Framework to Account

for Foreground Map Errors in Global

21-cm Experiments

Addendum for thesis

This chapter addresses another type of systematic that is present in 21cm instruments: the fore-

grounds. Since the foregrounds are significantly brighter than the 21cm signal, mitigation of the

foregrounds is not an optional exercise, so experiments must develop ways to deal with them.

Broadly, they are either avoided or modeled and subtracted. REACH, a global 21cm signal ex-

periment, models and subtracts the foregrounds. The models are built on sky maps which do

not have detailed spatial error maps. Although spatial modeling of the foreground is not in itself

crucial in general for a global 21cm signal experiment, it is however crucial to the REACH analysis

because of the approach we have taken to detection the global 21cm signal. This means that the

foregrounds models are at risk of causing other systematics. Peter Sims, Adrian Liu and I studied

the types of systematics than are produced in the REACH data-analysis pipeline due to imperfect

foreground models. We constructed a framework that is able to account for the spatial errors in the
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REACH foreground model. This type of framework is a tool that can be used to mitigate foreground

systematics. Going forward this will be an important piece of the REACH data-analysis pipeline.

Abstract

Measurement of the global 21-cm signal during the Epoch of Reionization (EoR) is made difficult

by bright foreground emission which is orders of magnitude larger than the expected signal. Fitting

for a physics-motivated parametric forward model of the data within a Bayesian framework provides

a robust means to separate the signal from the foregrounds, given sufficient information about the

instrument and sky. It has previously been demonstrated that, within such a modelling framework,

a foreground model of sufficient fidelity can be generated by dividing the sky into N regions and

scaling a base map assuming a distinct uniform spectral index in each region. Here, we show that,

if unaccounted-for, amplitude errors in low-frequency radio maps used for our base map model

will prevent recovery of the 21 cm signal within this framework, and that the level of bias in the

recovered 21-cm signal is proportional to the amplitude and the correlation length of the base-map

errors in the region. We introduce an updated foreground model that is capable of accounting

for these measurement errors by fitting for a monopole offset and a set of spatially-dependent

scale factors describing the ratio of the true and model sky temperatures, with the size of the set

determined by Bayesian evidence-based model comparison. We show that our model is flexible

enough to account for multiple foreground error scenarios allowing the 21-cm signal to be detected

without bias from simulated observations with a smooth conical log spiral antenna.

6.1 Introduction

One of the remaining unmeasured periods in the history of our Universe is Cosmic Dawn (CD),

the period in which the first stars are formed. These first generation stars give rise to the Epoch

of Reionization (EoR), the stage in which the neutral hydrogen in the intergalactic medium (IGM)

is ionized by the first galaxies. CD and EoR take place after formation of the Cosmic Microwave
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Background (CMB), but precede observations of the modern universe. The EoR and CD therefore

represent the missing link between the early universe and the structure we see today. Despite its

importance, a direct measurement of the EoR has been difficult due to a lack of direct probes. Thus

far we have only indirect detection of its existence based on Ly𝛼 absorption and CMB optical depth

measurements [45].

One of the most promising methods to make direct detection of CD and the EoR is to use the

21-cm hyperfine transition of Hydrogen in which a 21-cm wavelength photon is emitted when the

electron flips its spin relative to the Hydrogen nucleus. Thus the 21-cm line directly probes the

neutral hydrogen in the IGM during CD and the EoR. The emitted 21-cm wavelength photon is

then redshifted according to cosmic expansion, which also allows for tomographic measurements

of the neutral hydrogen along the line of sight. The 21-cm radiation falls in the radio portion of

the electromagnetic spectrum and is measured in contrast to the CMB. The temperature difference

between 21-cm photons and the CMB is referred to as the differential brightness temperature

𝛿𝑇𝑏 [23, 35].

There have been two main approaches employed by experiments to measure 𝛿𝑇𝑏 during the

EoR. One approach uses interferometers. Interferometric approaches are sensitive to the spatial

fluctuations of 𝛿𝑇𝑏. This has been the approach of collaborations such as Hydrogen Epoch of

Reionization Array (HERA, [16]), The Low-Frequency Array (LOFAR, [64]), The Murchison

Widefield Array (MWA , [38]), Precision Array to Probe the Epoch of Reionization (PAPER, [43]),

and the Square Kilometre Array (SKA, [17]). An alternative approach to measuring 𝛿𝑇𝑏 are

21-cm global signal measurements where the evolution of the spatially averaged 𝛿𝑏 as a function

of frequency. This has been the approach of experiments such as Broadband Instrument for

Global HydrOgen ReioNisation Signal (BIGHORNS, [60]), Experiment to Detect the Global EoR

Signature (EDGES, [10]), Large aperture Experiment to detect the Dark Ages (LEDA , [46]),

Probing Radio Intensity at high-Z from Marion (PRIZM, [44]), The Giant Metrewave Radio

Telescope Epoch of Reionization (GMRT, [42]), Radio Experiment for the Analysis of Cosmic

Hydrogen (REACH, [14]), and Shaped Antennas to measure the background RAdio Spectrum
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(SARAS, [59]). In this case, global signal experiments measure the mean of the differential

brightness temperature, i.e, 𝑇𝑏 ≡ 𝛿𝑇 𝑏 given by:

𝑇𝑏 (𝑧)≈23 [1 − 𝑥HII]
(
𝑇𝑠 (𝑧) − 𝑇𝛾 (𝑧)

𝑇𝑠 (𝑧)

) (
Ω𝑏ℎ

2

0.023

)
×

[(
0.15
Ω𝑚ℎ

2

) (
1 + 𝑧
10

)]1/2
mK (6.1)

where 𝑥HII is the mean ionized fraction of hydrogen, 𝐻 (𝑧) is the Hubble parameter (with ℎ as its

dimensionless counterpart), 𝑇𝛾 (𝑧) is the CMB temperature, Ω𝑚 is the normalized matter density,

Ω𝑏 is the normalized baryon density, and where 𝑧 is the redshift related to the frequency 𝜈 of the

redshifted 21-cm photons by 1 + 𝑧 = 𝜈/𝜈0 where 𝑛0 is the rest frequency of a 21-cm photon. The

mean differential brightness temperature (hereafter referred to as the global signal) depends on

the spin temperature 𝑇𝑠 (𝑧) of the neutral hydrogen gas, which measures the relative number of HI

atoms that are in the excited versus ground hyperfine states.

The global 21-cm signal and is an important probe of CD and the EoR. After the time of

recombination, 𝑇𝑠 and 𝑇𝑘 are coupled due to collisional excitations. The remaining free electrons

from recombination scatter off CMB photons keeping 𝑇𝛾 coupled with 𝑇𝑠 leading to no 21-cm

signal. After redshifts of 𝑧 ∼ 150 𝑇𝑠 and 𝑇𝑘 decouple from 𝑇𝛾. As the Universe expands the

temperature of the neutral hydrogen gas 𝑇𝑘 cools adiabatically. Thus due to collsional coupling

and cooling gas temperature, the spin temperature 𝑇𝑠 drops along with the gas temperature 𝑇𝑘 .

As the Universe expands collisions become more infrequent and eventually 𝑇𝑘 decouples with 𝑇𝑠

which once again falls into thermal equilibrium with 𝑇𝛾. Once CD is underway, the first generation

stars begin emitting Ly𝛼 photons which again couple 𝑇𝑠 to 𝑇𝑘 through the Wouthuysen-Field

effect [21, 65]. The spin temperature is again driven to the gas temperature 𝑇𝑘 which creates an

absorption signature relative to 𝑇𝛾. The redshift, duration and amplitude of the absorption trough

due to the Ly𝛼 coupling directly depends on the details of reionization. Detection of this absorption

trough was first reported by EDGES [11]. However, the unexpectedly large amplitude and flattened

profile was considerably larger than was predicted by cosmological models [49]. This has spurred

theoretical interest in explaining the profile with excess radio background models, millicharged

dark matter models and non-ΛCDM cosmology [3, 18, 19, 30]. Other works have shown that this

profile may be the result of a systematic which was unaccounted for [8,12,31,53,57,58]. Finally as
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the first generation stars begin emitting x-rays, the gas temperature is heated, causing 𝑇𝑠 to create

an emission spectrum relative to 𝑇𝛾 [7,13,20,22,29,33,34,39,40,47]. Clearly, much of the physics

of CD and EoR is encoded in precision measurements of the global signal.

One of the difficulties in detecting the global 21-cm signal are the radio foregrounds (hereafter

referred to as just foregrounds) which are orders of magnitude brighter than the expected 21-cm

signal within the expected redshift range of CD and the EoR. The effect of the foregrounds on global

signal experiments has been well characterized in previous works [5, 6, 37, 51]. The foregrounds

are mostly due to synchrotron radiation which cause them to be smooth as a function of frequency

which have allowed other studies to take advantage of their spectral smoothness to extract the

21-cm signal [36]. Most techniques employ a model and subtract strategy where the global signal

is extracted by removing the the foregrounds [24]. In general there are a diverse set of foreground

mitigation techniques that have been well developed. [9, 28, 48, 61–63].

Other experiments such as the Radio Experiment for the Analysis of Cosmic Hydrogen

(REACH) have embraced a forward modelling approach to mitigate the foregrounds in order

to detect the global 21-cm signal. A forward model approach requires modeling the instrument, the

atmospheric environment, as well as the individual components of the radio sky, i.e, the galactic and

extragalactic radio foregrounds and the cosmic 21-cm signal [1, 2, 52]. These radio components

and all relevant errors are propagated though the analysis. Forward modelling the foregrounds

requires modeling the spatial distribution of the foregrounds as well as their spectral distribution.

This was previously explored in [2]. To model the spatial distribution of the foregrounds, [2] used

radio sky models such as [15, 32, 50, 66]. These radio sky maps were measured without detailed

error maps, rather only with quoted uncertainties on the offset and scale errors in the map (for

example at 150MHz it has been shown by [11,59] that the uniform scale errors are at the ∼5%-11%

level). Thus, forward modelled foregrounds relying on these maps will contain spatial temperature

perturbations (or spatial “amplitude” perturbations) in the forward model relative to the dataset that

observer with the instrument. In this paper we extend the foreground model in [2] to account for

the spatial errors in the foregrounds.
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In this paper we build on the work of [2] and show that perturbations in the amplitude of

these radio maps can cause systematics in the analysis of global 21-cm signal experiments which

if unaccounted for will bias or make recovery of the true signal impossible. As of yet there is no

accepted error model for these radio sky maps. In this work we bracket the range of systematic

scenarios by studying a bracketing range of error scenarios and morphologies. We also study

the effect that temperature offsets in radio sky maps have on our analysis. We then introduce a

framework by which we can account for the amplitude and offset errors within the analysis. We

show that our framework can recover the 21-cm signal without bias. We perform the analysis of

this framework using the REACH experiment as our fiducial instrument; however, this framework

is applicable to any global 21-cm experiment.

This paper is structured as follows. In Section 6.2 we introduce our fiducial global 21-cm

experiment REACH and discuss our forward model of the foregrounds as well as our procedure to

create simulated datasets. In Section 6.3 we discuss the range of possible error scenarios in radio

sky maps and the systematics that they cause in global 21-cm analysis. We also introduce our most

realistic foreground map error scenario and use it as our fiducial foreground error realization in our

dataset. In Section 6.4 we introduce the amplitude scale factor framework that we use to account for

foreground amplitude systematics. In Section 6.5.2 we apply this framework to simulated datasets

containing our fiducial foreground errors but assuming perfect knowledge of the spectral structure of

the foregrounds. In Section 6.6 we again apply this framework to our simulated datasets containing

our fiducial foreground errors but now also assume imperfect a priori knowledge of their spectral

structure and jointly fit for this, in the manner described in [2]. We then conclude in Section 6.7.

6.2 Fiducial Instrument and Analysis Pipeline

The Radio Experiment for the Analysis of Cosmic Hydrogen (REACH) [14] is a global 21-cm signal

experiment located in the South African Karoo Desert. REACH will have observation windows

corresponding to frequencies 50MHz to 200MHz corresponding to redshifts 𝑧 ≃ 30 − 6. This is

the expected redshift range for CD and EoR signals. REACH forward models the 21-cm signal,
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antenna beam and the galactic foregrounds as a function of 𝜈. The observation data taken over a set

of LSTs is time averaged and the forward modelled sky is then fit to the time averaged data plus an

additional signal model component. In this section we describe our simulated datasets, foreground

model and Bayesian analysis of the simulated datasets.

6.2.1 Bayesian Evidence

Given a model 𝑀 of the sky which is parameterized by a set of cosmological parameters 𝜽 , we

can infer the probability distribution of 𝜽 given the measured dataset d for our particular model i.e.

𝑝(𝜽 |d, 𝑀). This is the posterior distribution in Bayes theorem:

𝑝(𝜽 |d, 𝑀) = 𝑝(d|𝜽 , 𝑀)𝑝(𝜽 , 𝑀)
𝑝(d|𝑀) (6.2)

where 𝑝(d|𝜃, 𝑀) is the likelihood, 𝑝(𝜽 |𝑀) is the prior on the parameter set 𝜃 and 𝑝(d|𝑀) is

the Bayesian Evidence. Throughout this paper we denote the Bayesian evidence as 𝑍 . The

Bayesian Evidence is the normalization factor which ensures that the posterior of Bayes’ theorem

is a properly normalized probability distribution function. To numerically estimate the posterior

probability distributions 𝑝(𝜽 |d, 𝑀) of the parameters, one draws samples from the prior distribution

𝑝(𝜽). Bayes’ theorem can also be used for model selection, where one can determine the relative

probabilities of models for the data via calculation of the Bayesian evidence,

𝑝(d|𝑀) =
∫

𝑑𝜽𝑝(d|𝜽 , 𝑀)𝑝(𝜽 , 𝑀) (6.3)

Computing the Bayesian Evidence using Equation 6.3 for each model is computationally expensive

since every element of the n-dimensional prior volume must be sampled. This makes traditional

Markov Chain Monte Carlo (MCMC) methods non-ideal to compute the Bayesian Evidence since

MCMC algorithms only calculate the ratio of likelihood factors from point to point thereby avoiding

computation of 𝑝(𝑑 |𝑀).

In order to compute the Bayesian evidence for each model we used the nested sampler Poly-

chord [26, 27] which greatly decreases the computational cost required to compute the Bayesian
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Figure 6.1: The spatial variation of the spectral index 𝛽 as a function of position (𝜃, 𝜙) on the

sky. Bright yellow regions correspond to larger spectral indices while darker regions correspond

to small spectral indices. The morphology of 𝛽(𝜃, 𝜙) roughly follows the galactic morphology.

Evidence. Polychord operates by placing 𝑛live points within the prior volume and then slice

sampling the prior generating new live points at each iteration. The sampling occurs from regions

of low likelihood to high likelihood. The Bayesian evidence is implicitly computed as the sampler

gradually makes its way to the region of high likelihood. This sampling technique is also more

effective at sampling multi-modal posteriors. The relevant Polychord parameters for our analysis

are nprior, the number of samples drawn from the prior, nfail the number of consecutive failed

sample draws at which the algorithm should terminate, the precision criterion which , and numrepeats

which toggles the number of repeats of the slice sampling procedure. Throughout our analysis we

use 𝑛live = 25𝑛dim , 𝑛prior = 25𝑛dim , 𝑛fail = 25𝑛dim and 𝑛repeats = 5𝑛dim where 𝑛dim are the number

of parameters in the inference.

6.2.2 Data Simulations

In this section we describe our simulated dataset. The temperature of the sky within our obser-

vation band is modeled as the sum of the radio foregrounds, CMB and the cosmological signal

𝑇sky(𝜃, 𝜙, 𝜈) = 𝑇21(𝜈) + 𝑇FG(𝜃, 𝜙, 𝜈) + 𝑇CMB . The temperature of the radio foregrounds are dom-

inated by synchrotron and free-free radiation emission which are individually well described by
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N = 4 Na = 4

N = 8 Na = 8

Figure 6.2: In each panel we show the division of the regions on the sky. The left column

corresponds to splitting the spectral map shown in Figure 6.1 into 4 regions (top) and 8 regions

(bottom). On the right column we split the Haslam map from [50] into 4 regions (top) and 8 regions

(bottom).

spatially-dependent spectral power laws. Following [2], we form a model for these foregrounds as,

𝑇FG(𝜃, 𝜙, 𝜈) = (𝑇base(𝜃, 𝜙, 𝜈0) − 𝑇𝛾) (𝜈/𝜈0)−𝛽(𝜃,𝜙) (6.4)

where 𝛽(𝜃, 𝜙) is the spatially varying spectral index and 𝜈0 is the reference frequency of the

foreground model which we set to 408MHz. A map of spectral index variation across the sky was

previously derived in [2]. This was derived by calculating the spectral index required to map each

pixel of the Global Sky Model (GSM, [15]) to the corresponding pixel of the Haslman map at

408MHz, i.e.

𝛽(𝜃, 𝜙) =
ln

(
𝑇230 (𝜃,𝜙)−𝑇𝛾
𝑇408 (𝜃,𝜙)−𝑇𝛾

)
ln(230/408) (6.5)

The resulting spectral index map is shown in Figure 6.1. 𝑇base is the temperature of the sky

measured at a reference frequency 𝜈0. This map, which we refer to as the foreground “basemap” is

then extrapolated in frequency according to 𝛽(𝜃, 𝜙). Since REACH is a drift scan experiment, the
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resulting temperature of the sky is then rotated for time and observation location of the instrument.

The resulting dataset as seen through the beam is then

𝑇sky =
1

4𝜋

∫ 4𝜋

0
𝐷 (𝜃, 𝜙, 𝜈)

∫ LST

LST0

𝑇FG(𝜃, 𝜙, 𝜈, 𝑡)𝑑𝑡𝑑Ω (6.6)

where 𝐷 (𝜃, 𝜙, 𝜈) is the antenna’s directivity pattern at frequency 𝜈 and LST0, LST refer to the

beginning and end of the observation times. We model the 21-cm signal as a simple Gaussian of

amplitude A21 , width 𝜎21 centered at frequency 𝜈21:

𝑇21 = 𝐴21𝑒
− (𝜈−𝜈21 )2

2𝜎2
21 (6.7)

This model of the 21-cm signal is not meant to be overly realistic, but rather provide enough

flexibility to characterize the range of realistic scenarios in our signal recovery analysis. The

cosmological signal 𝑇21 and the CMB 𝑇𝛾 are taken to be spatially uniform. The temperature of the

sky is then computed as

𝑇data(𝜈) = 𝑇sky(𝜈) + 𝑇21(𝜈) + 𝑇𝛾 + 𝜎noise (6.8)

where 𝜎noise is random uncorrelated Gaussian noise with standard deviation 0.025K.

6.2.3 Spectral Model

In the previous section we introduced our fiducial map for the spatially varying spectral index

which was used to create the dataset. Since the true spatial variation of the spectral index is not

known, the spectral indices must be fit for within our foreground model. This spectral model was

the main focus of [2]. We briefly describe it here. Since fitting for the spectral index at each pixel

on the sky is computational infeasible, in order to model the spatial variation of the spectral index

in a computational feasible manner, the spectral map is split into 𝑁𝛽 regions of uniform 𝛽. The

regions are selected such that the spectral indices are similar within the region. This framework

becomes a closer approximation to the true spectral sky as the number of regions 𝑁𝛽 is increased.

Our foreground model can then be written as
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𝑇FG(𝜃, 𝜙, 𝜈) =

𝑁𝛽∑︁
𝑖

𝑀𝛽,𝑖 (𝜃, 𝜙) (𝑇base(𝜃, 𝜙, 𝜈0) − 𝑇𝛾) (𝜈/𝜈0)−𝛽𝑖
 (6.9)

where 𝑖 are the indicies corresponding to 𝑖th spectral region. The values 𝑀𝑖 (𝜃, 𝜙) are masks that

take on the value of 0 or 1 thereby determining whether a pixel is part of the 𝑖th spectral region

which contains a spectral index 𝛽𝑖. On the left column of Figure 6.2 we show example regions where

the spectral map from Figure 6.1 has been split into 4 regions (top) and 8 regions (bottom). The

foregrounds are then rotated onto the coordinates of the beam at the specified LSTs (corresponding

to the observational times). The sky as measured by the instrument are then computed as

𝑇 𝑖sky(𝜈) =
1

4𝜋

∫ 4𝜋

0
𝐷 (𝜃, 𝜙, 𝜈)

∫ LST

LST0

𝑇 𝑖FG(𝜃, 𝜙, 𝜈, 𝑁𝛽, 𝑡)𝑑𝑡𝑑Ω. (6.10)

where 𝑇 𝑖sky is the contribution from the 𝑖th region of the sky to the measured spectrum. The mean

temperature of the sky is then computed as

𝑇model(𝜈) =
𝑁𝛽∑︁
𝑖

𝑇 𝑖sky(𝜈) + 𝑇21(𝐴21, 𝜈, 𝜎21) + 𝑇𝛾 (6.11)

where 𝑇21(𝐴21, 𝜈, 𝜎21) refers to the model 21-cm described by Equation 6.7 with amplitude, central

frequency and width (𝐴21, 𝜈21, 𝜎21). We compare the sky model 𝑇sky to the simulated dataset 𝑇data

through the Gaussian likelihood

ln𝐿 = −1
2

∑︁
𝑗

ln
(
2𝜋𝜎2

𝑛

)
− 1

2

(
𝑇 data(𝜈 𝑗 ) − (𝑇model(𝜈 𝑗 ) + 𝑇21(𝜈 𝑗 ))

𝜎2
𝑛

)2
(6.12)

where the index 𝑗 refers to the frequency bin. We assume statistical independence between each

frequency bin. Throughout this paper we place a uniform prior on the spectral indices 𝛽 between

[2.45, 3.15] which encompasses the entire range of spectral indices in the spectral index map

in Figure 6.1. Further we place uniform priors on the 21-cm signal parameters (𝐴21, 𝜈21, 𝜎21) :

[0, 0.25], [50MHz, 150MHz], [10MHz, 20MHz]. In principle, we could jointly estimate the sky

model and noise in the data as demonstrated in [2]; however, for computational simplicity, here we
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fix the noise estimate at 𝜎 = 0.025K and add a corresponding zero-mean Gaussian noise realisation

to the signal when simulating the data. Unless otherwise stated, we use a 1hour observation time

starting at 18 : 00 : 00 on 2021 − 01 − 01 with a conical log spiral as our fiducial instrument.

6.3 Foreground Errors

Observations of the radio sky at 408MHz [50], at 150MHz [32], 45MHz [25] or the GSM com-

posite model at 230MHz [15] do not have detailed error maps. Therefore any foreground model

constructed using these maps will contain uncharacterized errors relative to the true sky 𝑇 true
base(𝜃, 𝜙).

Consequently, our foreground models, which use these errorbar-less radio maps as the basemap

𝑇base(𝜃, 𝜙) are vulnerable to systematic errors in the form of temperature perturbations 𝑇error(𝜃, 𝜙)

relative to the sky seen by the antenna. Since these maps are not accompanied by detailed error

maps, the exact form and morphology of the temperature errors are also unknown. It is possible

that the errorbars follow a variety of different morphologies. As a result, in this work we consider

multiple error scenarios, bracketing the possible systematic errors caused by amplitude perturba-

tions in the foreground maps, and and study the systematics created in the analysis due to each

of these cases. In Section 6.3.1 we describe our method to assess whether the foreground error

realisations produces significant systematics in our analysis. In Section 6.3.2 we build intuition on

different foreground error scenarios, while in Section 6.3.3 we introduce our method for generating

more realistic foreground amplitude errors.

6.3.1 Methodology For Assessing Foreground Errors in the Analysis

To assess whether a particular foreground error scenario produces significant systematics in our

analysis, we create a simulated dataset using the procedure described in Section 6.2.2 but with our

noise realization added to the basemap in Equation 6.4, i.e. 𝑇 true
base(𝜃, 𝜙) = 𝑇base(𝜃, 𝜙) + 𝑇error(𝜃, 𝜙)

where 𝑇error(𝜃, 𝜙) is the temperature map of the noise realization. To isolate the effect that the

temperature perturbation errors have on the data analysis pipeline, we do not add 21-cm signal

in the dataset. Note that for brevity we will refer to the spatial temperature perturbations in the
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basemap as amplitude errors). This condition essentially makes our assessment of the foreground

errors a null test, i.e. there is no 21-cm signal inside the dataset, and so any recovered 21-cm signal

is thus due to a systematic caused by the foreground amplitude errors. Thus the null test is passed

if the amplitude of the recovered 21-cm signal is consistent with zero at 1𝜎. Our dataset can be

therefore be written as

𝑇FG(𝜃, 𝜙, 𝜈) = (𝑇 true
base(𝜃, 𝜙) − 𝑇𝛾) (𝜈/𝜈0)−𝛽. (6.13)

The remainder of the simulated dataset procedure remains the same as discussed in Section 6.2.2.

The dataset created using the noisy foreground map is then fit using a version of the foregrounds

that do not contain the noise realization, i.e. using the “noiseless" 𝑇base to construct the foreground

model. In our foreground model we fix the number of spectral regions to 𝑁𝛽 = 10 which has been

shown in [2] to lead to unbiased recovery of the 21-cm signal. Thus 𝑁𝛽 provides sufficient flexibility

to account for the spatial variation of the spectral index in the sky. By fixing 𝑁𝛽 = 10, we avoid

adding additional spectral components in the foreground model to fit for amplitude perturbations

in the foreground basemap 1. This assumption allows us to better isolate the effect of the amplitude

errors in the analysis. 2. In the following section we consider a range of scenarios for 𝑇error(𝜃, 𝜙)

and using this methodology study their affect on the analysis.

6.3.2 Error Scenarios

Since we do not precisely know the nature or morphological structure of the errors present in the

foreground map, we consider a range of error scenarios and amplitudes with the aim of bracketing

the possibilities for the systematics. Roughly, the errors we have considered fall into two categories

:

1. Noise Scenario 1: Homoscedastic errors

2. Noise Scenario 2: Heteroscedastic errors
1Note that in Section 6.6 we show that spectral components cannot compensate for systematics that are caused by

amplitude perturbations in the basemap.
2Note that we only fix 𝑁𝛽 = 10 in this section. In Section 6.6 we consider models where this is not the case
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Figure 6.3: Summary of the null test results described in Section 6.3.1 for the error scenarios

described in Section 6.3.2. The horizontal axis corresponds to the FWHM of the error correlation

length while the vertical axis corresponds to the amplitude of the fluctuations. A red panel indicates

that the error scenario does leads to a systematic in the analysis large enough such that the null test

fails. A blue panel indicates that the error scenario does not lead to a systematic large enough such

that the null test fails. The left panel are error scenarios where the standard deviation of the errors

are uniform across the sky while the right panel are error scenario that have standard deviation

which is spatially dependent.

Scenario 1 corresponds to error realisations where the standard deviation of the errors is uniform

over the sky. In Scenario 2 we consider the case where the standard deviation of the errors are

proportional to the temperature in each pixel of the basemap. In each scenario, we assess the

systematics produced by the presence of these errors in the analysis through the methodology and

observation settings discussed in Section 6.3.1. To produce the errors in Scenario 1, we add random

Gaussian noise with mean 𝜇 = 0 and of standard deviation𝜎noise = Δ ·𝛿𝑇 sky where 𝛿𝑇 sky is the mean

temperature of the map and the Δ is a dimensionless parameter which we vary [0.01, 0.05, 0.1]

corresponding to random Gaussian error fluctuations from 1% to 10% of the mean temperature in

the map. To imprint correlation structures into our error realisation we smooth over the map by

convolving the error realisation with a Gaussian symmetric beam. By modifying the FWHM of the

Gaussian beam we can produce error realisations which are correlated on a physical length scale

measured in radians on the sky 𝜃FWHM. We consider noise correlation scales corresponding to the

full width half max (FWHM) of 𝜃FWHM = [0, 1◦, 5◦, 10◦,∞]. The extreme correlation scenarios

𝜃FWHM → ∞ and 𝜃FWHM → 0 corresponds to a uniform offset in the map and uncorrelated random

Gaussian noise respectively.
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Figure 6.4: Signal recovery plot for the heteroscedastic error realisation with Δ = 5% and

𝜃FWHM = 1◦. The systematic produced by the errors in the basemap prevent the model from

passing the null test described in Section 6.3.1

In the left panel of Figure 6.3 we summarize the results for error Scenario 1. In each noise

scenario we indicate whether the error scenario has passed or failed the null test according to our

criteria above. We find that uncorrelated Gaussian errors with fluctuations up to 5% the mean

temperature of the map do not produce significant enough systematics for our analysis to fail the

null test described in Section 6.3.1. As we progressively increase the smoothing scale of the errors

from 𝜃 = 0 to 𝜃 = 10◦, we find that the amplitude of systematics introduced into the data increases.

In the limit that the errors are smoothed with 𝜃FWHM → ∞ (i.e. a uniform offset) then even errors

at 1% produce a sufficiently large systematic for the null test to fail for the 25mK noise level in the

data considered here.

In Scenario 2 we consider the heteroscedastic version of Scenario 1 in which the random

Gaussian noise have spatially dependent fluctuations, i.e. 𝜎noise acquires a spatial dependence. We

again produce a range of error scenarios with temperature fluctuations𝜎noise = Δ ·𝛿𝑇sky(𝜃, 𝜙) where

𝑇sky(𝜃, 𝜙) is the temperature of the Haslam at location 𝜃, 𝜙 on the sky and Δ is a unitless parameter

which obtains the same values as Scenario 1. For each value of 𝜎noise we progressively smooth the
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map by convolving the errors with a Gaussian beam with FWHM 𝜃FWHM = [0, 1◦, 5◦, 10◦,∞]. On

the right panel of Figure 6.3 we summarize the results of these tests. Qualitatively, we find that

increasing the amplitude of the error fluctuations Δ or the correlation length 𝜃FWHM of the errors

produce larger systematics in the analysis. Quantitatively, we find that the systematic created by

the heteroskedatstic noise realization with amplitude Δ > 5% and correlation length 𝜃FWHM ≥ 1◦

is large enough prevent recovery of the 21-cm signal. In Figure 6.4 we show an example systematic

created by the scenario Δ = 5%, 𝜃FWHM = 1◦. For fixed Δ, increasing 𝜃FWHM increases the

likelihood that the null test fails. When 𝜃FWHM ≥ 1◦, all error scenarios lead to systematics such

that the null test outlined in Section 6.3.1 are not passed. The largest systematics are caused

by scenarios with 𝜃FWHM = ∞ and Δ = 10%. We further test this error scenario with longer

observation settings (6hr integration time) as well as observation times where the galactic plane is

predominantly below the horizon. The systematics caused by this type of error scenario are present

in all observation configurations but are lower for longer integration times and when the galaxy is

below the horizon.

We consider the errors generated in scenario 2 to be most realistic, i.e. we make the assumption

that the fluctuations of the errors depend on the local temperature. We also assume that the errors

have structure with some unknown correlation length 𝜃FWHM. In the following section we build

on the intuition developed in this section and introduce our fiducial error scenarios used in our

analysis.

6.3.3 Fiducial Error Models

In the absence of an error structure for the radio foreground basemap, we need to construct our

estimate for a realistic error scenario. Our construction of the errormap is motivated by the

expectation that the errors likely have spatial structure, i.e. they are not entirely uncorrelated, and

that the magnitude of the errors is proportional to the absolute temperature of the basemap. Thus

our expectation is that the error fluctuations are largest in the galactic plane, where the temperature

is the largest. We also expect the map to have an offset of 3 K [50]. We do not expect our error
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Figure 6.5: Absolute errors in the temperature of the sky at 408MHz. Note that the errors roughly

trace the galactic morphology. Also apparent are that many low frequency survey data are missing

the southern pole which influences the eGSM model in this region.

No Smoothing 1  FWHM

5  FWHM 10  FWHM

0.7 0.8 0.9 1.0 1.1 1.2 1.3
Fractional Errors

Figure 6.6: In this figure we show our fiducial error scenarios at 408MHz. In the top left we show

the a heteroskedatic error realization generated by drawing values from a Gaussian distribution of

zero mean and standard deviation proportional to the absolute errors at 408MHz. Moving clockwise

from the top left panel, the resulting error realisation is smoothed by a Gaussian beam of FWHM

equal to 1◦ (top right), 5◦ (bottom left), and 10◦ (bottom right).
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realization to exactly match reality, however we use it as our fiducial error realisation to study the

effect that such noise scenarios have on our data analysis pipeline.

We now discuss our procedure to generate our error realization. This is a two step process, the

first step is to construct the spatial error fluctuations while the second step is to adjust the mean of

the map to 3 K. To construct the spatial error fluctuations via a Gaussian generated heteroskedastic

errormap with amplitude proportional to the temperature at each location in the sky, we use the

extended Global Sky Model (eGSM). Specifically we use the eGSM absolute errors of the 408MHz

Haslam map derived from Kim et al. (in prep) which we show in Figure 6.5. The eGSM is a

data-driven model similar in spirit to previous global sky models published by [15] and [66], in

that it takes empirical data from multiple surveys and interpolates over gaps in frequency and sky

coverage using dimensional reduction methods such as principal component analyses. Importantly,

the eGSM includes the Monte Carlo propagation of measurement errors in the input surveys through

the interpolation process. Admittedly, the final error bars are only rough estimates given that many

of the input surveys do not come with published uncertainties, thus making it necessary to simply

assume ∼ 10% errors in some input maps. Nonetheless, Figure 6.5 likely captures some of the

spatial patterns in the errors of typical sky models and is therefore sufficient for substantiating at

least the qualitative lessons of this paper.

To go from the map of error bars in Figure 6.5 to an error realization, we first draw a noise

realization from the absolute error map at 408MHz. To do this, at each pixel in the basemap we

draw a random value from a Gaussian distribution with mean 𝜇 = 0 and standard deviation 𝜎pixel

proportional to the value of the absolute error in that pixel. This produces a heteroscedastic noise

realisation of zero mean and with error fluctuations proportional to the absolute errors at 408MHz.

The fractional error fluctuations in our noise realization are largest in the galactic plane and smaller

away from the galactic center. In the upper left of Figure 6.6 we show the resulting errormap.

Note the statistical anisotropies in the southern pole (lower right portion of the basemap). Many

low frequency survey data are missing the southern pole which influences the eGSM model in this

region. In practice, with particularly poor empirical constraints in those parts of the sky, it would

be sensible for experiments to avoid those regions. We select our observation time such that these
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regions are below the horizon at the time of observation. We chose to set our observation starting

at 6pm on 2021-01-01. Unless otherwise stated, we use this observation time for the remainder of

our analysis.

To implement correlations into our noise realization we smooth the map by convolving our

noise realization with a Gaussian beam of FWHM of 𝜃FWHM. Since we do not know the true

correlation structure of the errors, we consider multiple smoothing scales chosen to encompass a

range of physical scenarios. We use 𝜃FWHM = [1◦, 5◦, 10◦]. These correlation scales are chosen

to roughly correspond to the resolutions in the 150MHz and 408MHz empirical foregrounds maps

from [32, 50] which are approximately 1◦ and 5◦ FWHM respectively. We make the assumption

that the correlation lengths of the error features roughly match the resolutions of these maps.

Convolving our error realisation with a Gaussian beam reduces the total spatial power in the map.

We wish to preserve the total power in the map. To quantify how the total power in the map is

affected we first express the original (pre-smoothed) error map in spherical harmonics

𝑌𝑙𝑚 =

√︄
2𝑙 + 1

4𝜋
(𝑙 − 𝑚)!
(𝑙 + 𝑚)!𝑃

𝑚
𝑙 (cos(𝜃))𝑒𝑖𝑚𝜙 (6.14)

where the indicies 𝑙 = 0, ...,∞ are referred to the multipole which represent the angular scale on

the sky, and −𝑙 ≤ 𝑚 ≤ +𝑙. The 𝑃𝑚
𝑙

are the associated Legendre Polynomials. We can expand the

map using

Θ(�̂�) =
𝑙=∞∑︁
𝑙=0

𝑚=+𝑙∑︁
𝑚=−𝑙

𝑎𝑙𝑚𝑌𝑙𝑚 (�̂�) (6.15)

where

𝑎𝑙𝑚 =

∫ ∫
Θ(�̂�)𝑌 ∗

𝑙𝑚 (�̂�)𝑑Ω. (6.16)

We can define the power spectrum 𝐶ℓ of the temperature fluctuations in the map which is the

variance of the harmonic coefficients:

〈
𝑎𝑙𝑚𝑎

∗
𝑙′𝑚′

〉
= 𝛿𝑙𝑙′𝛿𝑚𝑚′𝐶𝑙 (6.17)
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where the angular brackets represent an ensemble average taken over many independent realizations

in the map. If we perform the average over different 𝑚 modes we can write the angular power

spectrum 𝐶𝑙 as

𝐶𝑙 =
1

2𝑙 + 1

𝑚=+𝑙∑︁
𝑚=−𝑙

〈
|𝑎𝑙𝑚 |2

〉
. (6.18)

The total power
∑𝑙max
𝑙

𝐶𝑙 (where the 𝐶𝑙 are given by Equation 6.18) of the smoothed error map will

have decreased power relative to the original (before the convolution). This decrease in total power

will result in dampening the error fluctuations, thereby reducing the amplitude of the errors relative

to our original noise realization. To correct for the decrease in total angular power of the map and

conserve the power of the error fluctuations, we scale the coefficients by
√︁∑

𝑙 𝐶𝑙0/
∑
𝑙 𝐶𝑙smooth where∑

𝑙 𝐶𝑙0 is the total power of the error realisation before the smoothing process and
∑
𝑙 𝐶𝑙smooth is the

total power of the map after smoothing. We then compute the inverse transform of Equation 6.16 to

return to configuration space. We then re-adjust the mean by adding a uniform offset of 3 K chosen

to match the zero level offset in [50]. We do not expect this error realization to exactly match

reality, however we use it as our fiducial error realisation to study its effect on our data analysis

pipeline. Note that our framework is applicable to any error scenario. Thus the effectiveness of our

framework to precisely recover the 21-cm signal as shown in Section 6.6 are not motivated by our

specific choice for the noise realization.

6.4 Modeling Amplitude Perturbations in Our Foreground Model

Our foreground model described in Section 6.6 relies on radio sky maps to construct our basemap.

Since these radio sky maps are derived from measurements with no detailed error maps, the

true amplitude of the radio sky will deviate from that of our foreground basemap by an amount

that, given current uncertainties on low frequency sky maps, will (almost) certainly preclude

unbiased recovery of the 21 cm signal within a forward modelling analysis of the type described

in Section 6.2.2. To account for these temperature fluctuations relative to our model, as well as

any global temperature offsets in our map, we introduce a new foreground model, with amplitude
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correction factors (amplitude scale factors). Along with a linear offset term, we show that our

model can account for these observational uncertainties. In this section we introduce our amplitude

scale factor model and discuss our optimization procedure, as well as possible limitations of our

framework.

6.4.1 Amplitude Scale Factors

In this section we introduce our amplitude scale factor model. Our approach is analogous to the

framework discussed in Section 6.2.2, but now applied to fitting for the true base-map in place of

the spectral structure on the sky. To implement amplitude correction factors scale factors into our

foreground model, we split the foreground basemap into 𝑁𝑎 subregions, with each region having an

associated multiplicative scale factor 𝑎𝑖 that adjusts the temperature in the foreground basemap for

that subregion. Our updated foreground model, including these amplitude scale factors, is given by,

TFG(𝜃, 𝜙, 𝜈) =
∑𝑁𝑎

𝑖

∑𝑁𝛽

𝑗

[
𝑎𝑖𝑀𝑎,𝑖 (𝜃, 𝜙)𝑀𝛽, 𝑗 (𝜃, 𝜙) (𝑇base(𝜃, 𝜙, 𝜈0) − 𝑇𝛾) + 𝛾offset

]
(𝜈/𝜈0)−𝛽 𝑗 where

𝑀𝑎,𝑖 (𝜃, 𝜙) are masks applied to the foreground basemap which take on the value of 1 or 0 de-

pending on whether a pixel is part of the 𝑖th scale factor region or not. All pixels in the map

comprising a scale factor region are then multiplied by 𝑎𝑖. Thus any amplitude perturbations in the

data relative to the foreground basemap can be adjusted for by scaling the model in that region by

𝑎𝑖. Similarly 𝑁𝛽 are the number of spectral regions and 𝑀𝛽, 𝑗 (𝜃, 𝜙) are the associated masks for the

spectral regions (as discussed in Section 6.2.2), where 𝛽 𝑗 are the associated spectral values for that

spectral subregion. The term 𝛾offset is a constant term added to the foreground model to adjust for

any temperature offsets in the basemap relative to the data 3. Note that an error scenario consisting

only of a uniform offset corresponds to the errors in the rightmost columns in the left and right

panels of Figure 6.3.

The value of the amplitude scale factor 𝑎𝑖, in each subregion is adjusted along with the offset

𝛾, 𝑁𝛽 parameters and 21-cm signal parameters using the Bayesian inference framework described

in Section 6.2.1 using the likelihood in Equation 6.12, with 𝑇model now referring to our modified

3In principle, an temperature offset in the model basemap relative to the data can also be fit for using only the
amplitude scale factors. However it is computationally simpler and conceptually more intuitive to separate these effects
with the inclusion of a linear offset term 𝛾offset
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foreground model (i.e. Equation 6.4.1). To determine the optimal number of regions 𝑁𝑎 required to

fit the data, we perform the inference analysis described in Section 6.2.1 for a range of models with

different 𝑁𝑎. For each model we compute the Bayesian Evidence described in Section 6.2.1. The

suitable number of regions to split the prior map into is then determined post analysis by selecting

the value of 𝑁𝑎 and 𝑁𝛽 that maximizes the Bayesian Evidence. The Bayesian Evidence is penalized

when additional complexity is added without substantially improving the fit. Determining 𝑁𝑎 and

𝑁𝛽 using his method also allows us to avoid using more amplitude scale factors than are required

to fit the data and thus prevents an overfitting scenario. For other applications of this methodology

in the field of 21-cm cosmology the reader is encouraged to see e.g. [41, 54–56].

6.4.2 Prior Maps & Limitations

In the previous section we introduced a foreground model which has the flexibility to account

for multiplicative errors in the true temperature of the foregrounds relative to our model. In this

section we discuss the importance of an appropriate error prior map to define the number of regions.

To define the regions on the sky we require a map which describes the spatial arrangement and

amplitude of the errors. This map essentially acts a prior on the amplitude scale factors and thus

we refer to the map used to define the regions as the “error prior map”. To construct the regions we

bin the pixels of the error prior map into 𝑁𝑎 segments, where 𝑁𝑎 are the number of amplitude scale

factors. The boundaries of the 𝑖th bin is determined by computing the temperature corresponding

to the 100i/𝑁𝑎 percentile in error, where the width of each bin is 100/𝑁𝑎. Therefore the 𝑖th bin

corresponds to pixels in the map lying between the 100(𝑖−1)/𝑁𝑎 and 100𝑖/𝑁𝑎 percentile. The pixels

in each bin are then mapped to their corresponding locations on the sky. Note that this procedure can

be applied using any map and thus in principle any map can be used to define the 𝑁𝑎 sub-regions.

However since the scale factors are temperature multiplicative factors, grouping regions of the sky

with similar temperature perturbations increases the effectiveness of the amplitude scale factors

within this framework. In Section 6.5.2 we show that having 𝑁𝑎 sub-regions to coincide with the

true fractional errors in the foreground map optimizes this approach by both reducing the number

of regions and improving the fits. Thus using our best estimate of the foreground errors as our
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error prior is an important step in our procedure. We then proceed in our analysis by presenting

two scenarios which act as limiting cases. In a conservative approach we use the 408MHz Haslam

basemap to define the regions. In the right column off Figure 6.2 we show example regions using

the Haslam basemap. The upper right panel corresponds to 𝑁𝑎 = 4 while the lower right column

corresponds to 𝑁𝑎 = 8. Using this map as our prior map is conservative since the morphology of

the absolute error map roughly follows the galactic structure and so represents a scenario where we

haven’t included any additional information in our framework regarding the errors. In our second

scenario, we consider the limiting case of having perfect knowledge of the spatial structure (but not

necessarily amplitude) of the errors in the sky model. For this, we use the true fractional error map

to define the region defined as

𝑓 (𝜃, 𝜙) = 𝑇base(𝜃, 𝜙) + 𝜀(𝜃, 𝜙)
𝑇base(𝜃, 𝜙)

(6.19)

where 𝑇base refers to the unperturbed basemap and 𝜀 refers to error realisation contained in the

basemap. Information on the per-pixel covariances in the eGSM map may be available in the future

and thus would inform our models regarding the correlation structure of the errors. For now, we

use this perfect prior map to illustrate the best-case scenario for the performance of this approach.

Unless otherwise mentioned we define the 𝑁a scale factor regions using Haslam basemap from [50].

In the previous section we discussed how the Bayesian Evidence can be used to determine the

optimal number of regions. One limitation in using this framework to define the regions is that

adjacent 𝑁𝑎 models are not subsets of another another, i.e. a model with 𝑁𝑎 regions is not a subset

of a foreground model with 𝑁𝑎 +1 regions. As a result increasing the complexity of the foregrounds

models by increasing 𝑁𝑎 do not build on top of another one; instead, each model is an entirely new

reconfiguration of regions4. This impacts how the Bayesian Evidence of each model depends on

𝑁𝑎. In general one would expect that as a more parameters are added to the model, the fit of the

model to data should improve, thereby increasing the Bayesian up until the additional complexity

is no longer required to describe the data, at which point the Bayesian Evidence decreases with

4Due the percentile splitting, the 𝑛2𝑚th, (where 𝑚 = 0, 1, 2..) regions are all subsets of one another.
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𝑁𝑎. Since, for most values of 𝑁𝑎 the amplitude scale factor regions are not nested, we no longer

expect a strict monotonic increase of the Bayesian Evidence as a function of 𝑁𝑎. This effect will

be more pronounced when the error prior map used to define the regions do not coincide with the

true temperature perturbations errors in the data. In this scenarios the placement of the regions

with respect to the true fractional errors are suboptimal and so there will be certain models with

the scale factor regions that are, by chance, better aligned with the true errors. In contrast, in the

perfect error structure information scenario the region placement is already aligned with the errors

in the map and so the variation in ln(Z) from model to model is smaller. Moving forward we denote

the scenario as having an ideal prior map.

6.4.3 Map Reconstruction

Outside of the context of a global 21-cm signal experiment, one may use this approach to recover

a model map of the radio sky without the error perturbations, i.e. performing foreground map

reconstruction. To do this one uses the mean posterior model map as the best-fitting model of the

sky as seen by the instrument. However using this framework for map construction should be used

with discretion. As discussed in Section 6.4, the mean temperature on the sky is the key metric

of our model which is being compared to the dataset within our Bayesian inference framework.

As a result our inference framework finds the optimally fitting values of 𝑎𝑖 in each sub-region

of our foreground model such that the mean temperature of the sky in our model fits the mean

temperature of the simulated dataset. Therefore one finds that the optimal value of 𝑎𝑖 in the 𝑖th

sub-region is spatially averaged value of all the amplitude perturbations within the 𝑖th sub-region.

However because each sub region will contain a distribution of temperature perturbations, and only

the mean of 𝑎𝑖 is chosen, the boundaries between adjacent sub-regions will be disjointed. Our

framework thus only adjusts the mean in each region, which does not prioritize the smoothing

between boundaries of regions. Additional operations would be required to smooth out the map.

However increasing the number of scale factor regions 𝑁𝑎 will create a smoother interface at the

boundaries improving, the model reconstruction.
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The performance of map reconstruction is also dependent on the error prior map used to define

the scale factor sub-regions. Using the true fractional error map will decrease the disjointedness

at the boundary between regions and increase the performance of the map reconstruction. This is

because any region defined using the true fractional errors contained in the data will have a smaller

range of amplitude perturbations contained in that region and therefore create a more seamless

transition across the boundary. Note that disjointed boundaries between regions do not impact the

performance of our framework or cause any systematics in our analysis because the temperature

of each sub-region in the sky are summed according to Equation 6.4.1 without any data analysis

procedure operating on the boundaries.

6.5 Isolated Amplitude Errors

In this section we use our foreground model to fit a dataset which was constructed using a basemap

containing the error realizations derived in Section 6.3.3. A 21-cm signal is included in the dataset

using Equation 6.7 with amplitude, standard deviation and centering frequency 𝐴21 = 0.155K,

𝜎21 = 15MHz, and 𝜈21 = 85MHz respectively. We make the simplifying assumption that there

is no spatial dependence to the spectral index. We fix 𝛽 = 2.7 in the simulated dataset as well

as in the foreground model used to fit the dataset. We therefore isolate the effect that amplitude

perturbations have on the analysis without the effect of spectral errors. We consider the case of

spatially varying spectral index in the following sections. In Section 6.5.1 we apply our amplitude

scale factor framework to a single error scenario from Section 6.3.3 to highlight the general trends

between the number of amplitude scale factor regions and the Bayesian Evidence. We compute

optimal number of regions to describe the simulated dataset and show the recovered 21-cm signal

for that model. In Section 6.5.1 we then show how the optimal number of amplitude scale factors

changes with the error properties in Section 6.3.3. In Section 6.5.3 we discuss the effect that using

the true fractional error map discussed in Section 6.4.2 as a prior map to define the 𝑁𝑎 regions has

on the analysis.
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Figure 6.7: The Bayesian evidence, ln(Z), as a function of the number of amplitude scale factor

regions 𝑁a. The black curve indicates a scenario where no 21-cm signal is included into the sky

model while the red curves indicates sky models when a 21-cm signal is included. Left panel:

21-cm signal is included into the dataset. We see that a 21-cm signal model component is preferred

since the maximum value of ln(Z) originated from the red curve. Right panel: no 21-cm signal is

included in the dataset, in which case a sky model without a 21-cm signal component is preferred

since the maximum value of ln(Z) occurs in the black curve. The blue curves corresponds to a

model where the fractional error map (see Equation 5.17) is used to define the regions. Note that

the observation times in this simulation correspond to a one hour duration occurring at a time where

the statistical anisotropies in Figure 6.6 in are mostly below the horizon.

6.5.1 Spectrally Uniform

In the previous section we introduced our amplitude scale factor framework. In this section we

select one error scenario from Section 6.3.3 to highlight our model and illustrate the general trends

of the number of scale factors 𝑁a and the Bayesian evidence. In the following section we apply our

framework to all error scenarios introduced in Section 6.3.3. In Figure 6.7 we show the Bayesian

evidence as a function of 𝑁a for Δ = 6% and 𝜃FWHM = 1◦. On the left panel 21-cm signal is

included in the dataset while on the right panel no 21-cm signal is included in the dataset. For

each case, the dataset is fit with a foreground model that has 𝑁a amplitude scale factors, one offset
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Figure 6.8: Each plot shows the results of fitting our foreground model to the simulated data

discussed in Section 6.5.1. The upper left panel corresponds to 𝑁a = 1. Moving clockwise, we

have models 𝑁a = 3, 16, 32. The blue curves corresponds to the fitted 21-cm signal while the red

curves correspond to the residuals of the dataset after the fitted foregrounds are removed.

parameter 𝛾 and either a signal model (red curves) or no signal model (black curve). Starting from

𝑁𝑎 = 1 in the left panel, we can see that as more degrees of freedom are added to the model,

ln(𝑍) increases rapidly until where we see that 𝑁𝑎 = 16 maximizes the Bayesian Evidence. The

residuals for 𝑁𝑎 = 1 and 𝑁𝑎 = 16 are shown in the first column of Figure 6.8. From this figure, we

can see that the systematic created by the amplitude perturbations are substantially reduced as we

increase the number of scale factors. Since one scale factor is equivalent to adjusting the mean of

the foreground map, this result implies that the presence of the spatial fluctuations of the foreground

errors about the mean of the error map also contribute to the bias in the signal recovery within the

analysis. Our amplitude scale factor framework can accommodate these fluctuations with more

precision by adding more regions to the foreground model. Thus the size of the regions shrink and

can begin to accommodate smaller features in the error map. In Figure 6.8 we show the residuals
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Figure 6.9: The Bayesian evidence, ln(Z), as a function of the number of amplitude scale factor

regions 𝑁a for each error scenario described in Section 6.3.3. The black curve indicates a scenario

where a 21-cm signal is included into the sky model while the red curves indicates sky models

where no 21-cm signal is included. Note that 21-cm signal is included into the dataset leading to

black curves having larger ln(Z) than the blue curves. Also clear are the the number of amplitude

scale factor regions required to maximize ln(Z) increases with error fluctuation amplitude Δ and

correlation length 𝜃FWHM.
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for the 𝑁𝑎 = 3 model (first row, second column) and see that the bias in the signal recovery has

shrunk relative to the 𝑁𝑎 = 1 model (first row, first column). In the lower left of Figure 6.8 we show

the residuals for the model which maximizes the Bayesian evidence (𝑁a = 16). In this case the

amplitude, central frequency and standard deviation of the reconstructed signal are consistent with

the true values at 1𝜎. Referring back to Figure 6.9 we see that as we continue increase the regions

beyond 𝑁𝑎 = 16 the Bayesian Evidence slowly decreases. In the lower right panel of Figure 6.8 we

show the residuals for the 𝑁𝑎 = 32. The amplitude and standard deviation of the systematics have

decreased further; however, the additional flexibility added to the system beyond 𝑁𝑎 = 16 is not

required to fit the data, and as a result there is a statistical cost to adding more parameters. This is

due to to Equation 6.3, whereby we can see that adding additional parameters increases the prior

volume which penalizes the Bayesian evidence.

6.5.2 Effect of the Amplitude of Fluctuations Δ and Correlation Length

𝜃FWHM of the Errors on the Analysis

In Section 6.3.3 we introduced our fiducial foreground error model, which was parametrized in

terms of the amplitude of the fluctuations Δ, and the FWHM of correlated features 𝜃FWHM. In this

Section we apply our amplitude scale factor foreground model described in section 6.4.1 to a dataset

constructed using a foreground map which contains these fiducial error scenarios. In Figure 6.9 we

show the Bayesian Evidence for each scenario. We see that the number of amplitude scale factor

regions required to maximize the Bayesian Evidence depends on the level of the fluctuations Δ and

𝜃FWHM of the error realisation in the datasets. From Figure 6.9 it is evident that for fixed 𝜃FWHM,

increasing Δ of the errors in the dataset increases the optimal number of amplitude scale factors

required to fit the data. This is an expected result. Consider a foreground model with 𝑁𝑎 scale

factors regions. Any systematics remaining in the analysis are due to small fractional differences in

temperature of the foreground dataset relative to the foreground model. Thus uniformly increasing

the mean fractional differences of the entire foreground map used to construct the dataset relative

to the basemap will scale any systematics remaining in the analysis. Thus scaling the temperature
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fluctuations will require more precision in the foreground model to reduce the systematic. This

trend is independent of how the scale factor regions are defined. This behaviour is independent of

the prior map used to define the regions.

It is also clear from Figure 6.9 that increasing the FWHM of the error structures results in

requiring more scale factors to maximize the Bayesian evidence. To understand this, consider a

region of the sky containing many small correlation structures such as in Figure 6.6. This leads to

a scenario where many independent error realisations can be contained within a region and thus

tend to average out, i.e. the noise is driven to Gaussian random noise. However as the FWHM of

the correlation structures increases, a single error feature may overlap into multiple regions, thus

requiring more regions to isolate and localize independent error realisation features.

Note that we do not consider multiple values of global temperature offsets in the foreground

errors since the linear offset term 𝛾 in Equation 6.4.1 allows our model to be robust these scenarios.

Thus our model allows the analysis of an error scenario with offset 3K to be equivalent to one with

0K offset.

6.5.3 Limiting Cases

In the previous sections, we used the 408MHz Haslam basemap to define the scale factor regions.

The regions thus followed the Galactic morphology, which do not have a similar structure to true

fractional errors in the basemap. In this section we illustrate the effect that using a suitable prior map

to define the 𝑁𝑎 regions has on the performance on our framework. We compute the fractional error

map as defined by Equation 6.19 to define the 𝑁a regions. These two scenarios effectively bracket

extreme scenarios, i.e. a scenario where we know precisely the morphology of the amplitude

perturbations and a scenario where we simply assume the errors follow the Galactic morphology.

In the future information on the per-pixel covariances in the eGSM map may be available. For

now, we use this perfect prior map to illustrate the best-case scenario for the performance of this

approach.

In Figure 6.7 (blue curve), we show the the evolution of the Bayesian evidence as a function

of 𝑁𝑎 using regions derived from the absolute error maps and the ideal prior map for the error
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scenario Δ = 6% and 𝜃FWHM = 1◦. The behavior of the Bayesian evidence as a function of 𝑁𝑎

using the ideal prior, or absolute errors to define the regions produce similar qualitative trends with

two quantitative differences:

1. The Bayesian Evidence for the maximum evidence model is larger when using the fractional

error map to define the regions

2. fewer regions are required for models using the fractional errors

These quantitative differences are due to the morphological differences between the absolute error

map and the actual amplitude perturbations in the dataset. Since the fractional errors are better

aligned with the true multiplicative errors in the map, the number of regions required to optimize

the Bayesian Evidence is reduced from 𝑁𝑎 = 16 using the absolute error map to define the regions

to 𝑁𝑎 = 7 using the fractional errors to define the regions. The maximum Bayesian Evidence is

also larger using the fractional errors to define the regions. The blue curve on the right panel of

Figure 6.7 shows the Bayesian evidence for a sky model without a model component and using the

fractional errors to define the regions. Here we can see that this also results in reducing the number

of scale factor regions required to maximize the Bayesian evidence from 𝑁a = 28 (black curve) to

𝑁a = 6 (blue curve).

We also find that the residuals are smaller and more “noise-like” when using the fractional

error map to define the regions (as compared to using the Haslam map). When using the Haslam

map as the prior, this is due to the amplitude scale factor regions not lining up properly with the

true fractional errors in the map. As the result, each region defined using the Haslam basemap

encompasses a larger distribution of fractional errors. As a result each region cannot capture the

finer error features in the foreground error map. This also results in more regions being required

to describe the error structure present. Therefore we continue to see a more substantive increase

in the residuals between the reconstructed 21-cm signal and the true signal as we go to large 𝑁𝑎

compared to what we saw for large 𝑁𝑎 models in the factional error prior (where the benefit to the

fits were smaller).
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Figure 6.10: The Bayesian evidence as a function of the number of spectral parameters 𝑁𝛽. The

black curve indicates a scenario where a 21-cm signal is included into the sky model while the

red curves indicates sky models where no 21-cm signal is included. Left panel: no 21-cm signal

is included into the dataset. We see that a 21-cm signal model component is preferred since the

maximum value of ln(Z) originated from the red curve. Right panel: a 21-cm signal is included

in the dataset, in which case a sky model without a 21-cm signal component is preferred since the

maximum value of ln(Z) occurs in the black curve.

6.6 Spatially Varying Spectral Index

In this section we discuss our more realistic observation scenario, where the foregrounds in the

simulated dataset have a spatially varying spectral index and foreground basemap errors. To

simulate a realistic data analysis where we do not have access to the true fractional error, we use the

408MHz Haslam basemap to fit our simulated data. Thus we add the formalism introduced in [2]

which was described in Section to our analysis. That is, we split the spectral map in Figure 6.1 into

𝑁𝛽 sub regions each with uniform 𝛽 in accordance with Equation 6.4.1. Since the spectral regions

do not need to coincide the 𝑁𝑎 amplitude scale factor regions, there are 𝑁𝛽 × 𝑁𝑎 + 1 parameters

required to be optimized in the foreground model. We again use Polychord to compute the Bayesian

Evidence for each model. In the interest of reducing computational cost, we use only one error
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Figure 6.11: The logarithm of the Bayes’ Factor as a function of the number of spectral parameters

𝑁𝛽 and amplitude scale factors 𝑁a. The color in each square indicates the value of Bayes’ factor,

i.e. ln(Z)max) − ln(Z) where the ln(Z)max = 265 is the model 𝑁a = 8 and 𝑁𝛽 = 7 which maximises

the Bayesian evidence. All models with Bayes’ factor < 240 or negative Bayesian evidence are

saturated at 240. Notice that models with 𝑁a = 0 are disfavoured even with large values of 𝑁beta.
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scenario from Section 6.5.2. In Section 6.6.1 we select our error realisation and in Section 6.6.2

we show our results.

6.6.1 Error Selection

In this section we select the most realistic error scenario from Section 6.3.3. To do so, note that

we expect that the correlation length of the errors in the basemap will be inversely proportional to

its resolution. Since in this work we use the Haslam map to construct our foreground model, we

select the correlation length of our fiducial error scenario to match the 1◦ FWHM resolution of the

Haslam map. We therefore use the Δ = 6%, 𝜃max = 5◦ scenario from Section 6.5.2.

Furthermore, since the resolution of the basemap is related to its base frequency, maps at lower

frequency, will have lower spatial resolution. For example the 150MHz empirically derived map

introduced in [32] has a 5◦ FWHM resolution compared to 1◦ for Haslam at 408MHz. Under this

assumption, we would expect more correlated errors in the Landecker map. For a fixed level of

power of errors in the map, we would expect this increased correlation to introduce more significant

foreground systematics and, correspondingly, larger biases in the recovered 21-cm signal, in the

absence of error modelling. In the context of the sky map error fitting formalism we present in this

paper, we would expect a more complex error model to be required to explain the data when using

the Landecker map as our base-map in an analysis of instrumental data.5. Recall from Section 6.3.2

that increasing the FWHM of the errors results in requiring more amplitude scale factor regions

to maximize the Bayesian Evidence. Provided there is a negligible change to the morphology of

foregrounds as a function of frequency, one can strategically use higher frequency basemaps in the

foreground model to reduce the systematic impact of foreground amplitude errors in the analysis.

However, increasing the base frequency of the foreground basemap might also increase the number

of spectral regions 𝑁𝛽 required to model the spatial variation of the spectral index. To see why

this is recall that the REACH observational frequencies range from 50MHz to 200MHz. Using a

basemap at higher frequencies, i.e. Haslman at 408MHz requires more spectral precision in the

5This assumes that the error structure follows the Gaussian generated errors discussed in Section 6.3.2
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foreground model since the spectral model is extrapolated over a larger frequency range. Thus

more spectral regions 𝑁𝛽 are required relative to using a basemap set at lower frequencies.

6.6.2 Correlations Between 𝑁𝑎 and 𝑁𝛽

The datasets we consider in this section contains spectral complexity as well as errors in the

amplitude component of the basemap. Thus to select the model which maximizes the Bayesian

evidence, we must optimize 𝑁a and 𝑁𝛽 in a two dimensional grid of models. From Section 6.5.1

we know that without spectral errors, 𝑁a = 16 maximizes the Bayesian evidence. To gain intuition

regarding how many spectral parameters might be required to sufficiently describe the spectral

component of the dataset without the presence of amplitude scale factors in the basemap, we can

perform the same analysis shown in Figure 10 of [2]. Note that the analysis procedures in our work

has two modifications as compared to the analysis done in [2]. The primary difference is that we

use the percentile splitting methodology discussed in Section 6.4.1 to define the spectral regions.

Secondly we construct our foreground model using the Haslam basemap (at 408MHz) rather than

GSM (at 230MHz). For completeness we perform the analysis for datasets which contain, and do

not contain, a 21-cm signal. In Figure 6.10 we show the the Bayesian evidence as as a function

of the number of spectral parameters 𝑁𝛽 when the sky signal (i.e. the simulated dataset) does not

contain a 21-cm signal (left) or contains a 21-cm signal (right). The blue curves correspond to a

sky model that contains a 21-cm signal component while a black curve does not. Note that in the

left panel, the highest evidence models occur in the black curve while on the right panel the blue

curves corresponds to models with higher Bayesian evidence. In the left panel (without 21-cm

signal in the dataset) we see that the model 𝑁𝛽 = 10 maximizes the Bayesian evidence while on the

right panel (with 21-cm signal in the dataset) we see that model 𝑁𝛽 = 12 maximizes the Bayesian

evidence.

The simulation we consider in this section has spectral errors in addition to basemap errors. To

get a sense as to where the Bayesian Evidence maximizing model might reside on a two dimensional

grid of 𝑁𝛽 and 𝑁a models, recall that in Figure 6.7 we found that 𝑁a = 16 regions was such that

the maximized the Bayesian evidence without the presence of spectral complexity in the dataset.
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Similarly in Figure 6.10 we see that the model 𝑁𝛽 = 12 maximizes the Bayesian evidence when the

dataset does not contain amplitude errors. Thus we would expect that 𝑁a ≤ 16 and 𝑁𝛽 ≤ 12 might

maximize the Bayesian evidence. The “≤” is used instead of “=” since we allow for the possibility

that 𝑁a and 𝑁𝛽 might have some correlation.

In Figure 6.11 we show the Bayesian evidence as a function of the number of amplitude scale

factor regions, 𝑁𝑎, and spectral regions 𝑁𝛽 used to construct the foreground model The brightest

regions of the grid correspond to models with the largest Bayesian Evidence. In each square we

denote the difference in ln(Z) between that particular model and the model which maximizes the

Bayesian evidence. Qualitatively we see that the Bayesian evidence is highest along a diagonal

strip of models affirming that there is a degree of correlation between models with 𝑁a and 𝑁beta.

Model 𝑁𝑎 = 8, 𝑁𝛽 = 7 maximizes the Bayesian evidence, and is indicated with a 0 on its grid-point

square. If multiple models have comparable Bayesian evidences, then a model averaging technique,

where a weighted average is formed using their evidences should be employed. In terms of Figure

6.11, the model with the next highest evidence is model 𝑁𝑎 = 7, 𝑁𝛽 = 12 which is ln(Z) = 9 below

the highest evidence. This corresponds to a 9𝜎 difference from 𝑁𝑎 = 8, 𝑁𝛽 = 7 making any model

averaging technique simply reduce to outright selecting 𝑁𝑎 = 8, 𝑁𝛽 = 7. In Figure 6.11, models

with ln(Z) < 0 are labeled with 0. Models with this level of Bayesian evidence have systematics

multiple orders of magnitude larger than the signal, making recovery of the 21-cm impossible. Note

that models with 𝑁𝑎 = 0 correspond to foreground models without any amplitude scale factors.

Referring to the models with 𝑁𝑎 = 0, i.e. first column in Figure 6.11, it is evident that increasing

the number of spectral regions, even to 𝑁𝛽 = 18 cannot compensate for the systematics caused by

the foreground amplitude errors. Thus amplitude errors in the foreground basemap cannot account

for using a foreground model with spectral and linear offset parameters. Similarly by examining

the bottom row in Figure 6.12 (i.e, 𝑁𝛽 = 1) we can see that increasing 𝑁𝑎 to 32 regions does not

account for the spectral errors in the dataset. Qualitatively, we find that above a threshold value of

𝑁𝑎 and 𝑁𝛽 that there is a trade-off between the number of spectral regions and number of amplitude

scale factor regions.
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Figure 6.12: Signal recovery plot for the Bayesian evidence maximizing model (𝑁a = 7, 𝑁𝛽 = 8)

of Figure 6.11. The blue curve indicates the temperature of the fitted 21-cm model while the red

curve represents the dataset with the fitted foreground removed. The green curve indicates the

simulated 21-cm signal that was inside the dataset.

In Figure 6.12 we show the recovered 21-cm signal for 𝑁𝑎 = 8, 𝑁𝛽 = 7 which maximizes

the Bayesian evidence. Recall from Section 6.6 that our fiducial signal model has amplitude

𝐴21 = 0.155𝐾 , standard deviation 𝜎21 = 15MHz and centering frequency 𝜈21 = 85. Note that

the mean amplitude, standard deviation and centering frequency of the recovered 21-cm signal is

0.136K, 16.1MHz, and 85.6MHz. Thus we find that all of the signal parameters are within 1𝜎 of

the true values.
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6.7 Conclusion

Detection of the global 21-cm signal is key to our understanding of CD and the EoR. Unfortunately,

foreground contaminants are orders of magnitude brighter than all theoretical models of the cosmo-

logical signal. While there do exist scientifically interesting constraints that can be made even in the

face of imperfect foreground removal (especially when combined with other probes; [4]), realizing

the full potential of global 21-cm signal measurements requires a robust foreground mitigation

program. Global 21-cm signal experiments which forward model the instrument, the systematics

and radio contaminants have the potential to provide us the strongest constraints on the global 21-cm

signal. However forward models of the foregrounds rely on observations of the radio sky which

lack detailed uncertainty characterisation. Thus approaches that forward model the foregrounds

are potentially limited by our empirical knowledge of the temperature of the radio sky. In this

paper we have introduced a framework which is able to account for temperature deviations in the

radio sky relative to our model foreground map in global 21-cm experiments. We have constructed

a foreground model where the sky is segmented into different regions, each with an associated

multiplicative scale factor which can adjust the amplitude of the foregrounds for that sub-region

of the sky. By fitting for the these amplitude scale factors within our Bayesian framework, we

can account for temperature perturbations in the true radio sky relative to our foreground model.

We select the number of sub-regions in our model by computing the Bayesian Evidence for a

large range of 𝑁𝑎 and select the model which maximizes the Bayesian evidence. Though we use

the REACH experiment as our fiducial 21-cm experiment, our method is applicable to any global

21-cm experiment.

Since there are no definitive models that describe the amplitude and morphology of the errors

in radio sky maps, we parametrically produce a range of simulated foreground errors by drawing a

Gaussian noise realisation from the 408MHz absolute error map and then parametrically smoothing

the map with a Gaussian beam with various FWHM. We perform our analysis with and without

spectral complexity in the sky. We find in either scenario that our framework is effective at reducing

the systematics in the analysis due to the presence of the foreground map errors allowing us to
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recover the 21-cm signal without bias. We find that our approach is limited by our knowledge

of the nature of the errors in the radio sky. Thus our work shows that more work on modelling

the foreground errors is needed in order to maximize the effectiveness of our approach. Going

forward we might have access to full error covariance in which case we can improve on this

approach. With information regarding the correlation structure of the foreground errors we can

more effectively construct the regions to match the error structure in the dataset. Since the scale

factors are essentially multiplicative factors in the map, defining the regions using a map which

informs the model about the location of the amplitude perturbations is an ideal scenario. Without

any existing work on foreground error maps, we use the morphology of the Galaxy to define our

regions. This conservative approach demonstrates how well our model can do without detailed

knowledge of the true error structure. We show that even when using a conservative error map

to define these regions, our method is able to construct a sufficiently high fidelity model for the

foregrounds for unbiased recovery of the global 21-cm signal. Thus, we have shown that the

base-map error fitting framework presented here, in combination with the spectral structure fitting

methodology presented in [2], represents a powerful tool for detecting the 21cm global signal.
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Chapter 7

Conclusion

In this thesis we explored solutions to some of the systematic challenges facing 21cm instruments.

We also developed new theoretical tools that can be used to place constraints on the EoR.

In Chapter 2 we developed a procedure capable of producing a continuous range of density-

ionization correlation scenarios. This is significant since density-ionization scenarios needed to be

considered discretely prior to this work. Furthermore, we developed a parametrization (𝛽) capable

of tracking these correlations and studied its dependence in the 21cm power spectrum. We then

performed a forecast on the types of constraints that one can place on 𝛽 using HERA measurements

of the power spectrum. We showed that as upper limits on the 21cm power spectrum continue to

decrease, and with errorbars at the level of 20mK, we can rule out uncorrelated reionization at 99%

credibility.

In Chapters 3 and 4 we explored using indirect probes of the EoR. In Chapter 3 we explored

using the DMs of high redshift FRBs as a probe of the EoR. Our work shows that the mean DM of

high redshifts FRBs are sensitive to the details of reionization. We show that there is a flattening

of the DM-z relation at high redshift corresponding to an increasingly neutral IGM. The timing

and duration of the EoR will shift the properties of this flattening. Ultimately, we show that with

measurement of 104 high redshift FRBs we can rule out uncorrelated reionization scenarios at 95%

credibility.

278



In Chapter 4 we study how density-ionization correlation affects the observed statistics from

LAE observations. In particular, we study how the clustering, number density and luminosity

functions of the LAEs are affected by changing the density-ionization correlations. We use the 𝛽

parametrization introduced in Chapter 2 to perform this study. We find that the clustering, number

density and LAE luminosity function are sensitive to 𝛽. Using existing LAE observations at 𝑧 = 6.6

(Subaru survey), we place constraints on 𝛽. We find that the LAEs at 𝑧 = 6.6 alone cannot rule

out uncorrelated or outside-in reionization scenarios. This is due to the weakening EoR signature

at 𝑧 = 6.6. However, by combining LAEs observations and power spectrum measurements from

HERA one can rule out uncorrelated reionization scenarios at 99% credibility.

In Chapters 5 and 6 we turn to some of the systematics present in 21cm experiments. In

Chapter 5 we study the errors introduced into the data analysis pipelines of 21cm instruments due

to inpainting RFI corrupted data. We introduce a convolutional neural network (“U-Paint”) capable

of inpainting RFI corrupted data in 21cm interferometric instruments. We perform our analysis on

the visibilities as well as the power spectrum. We find that the inpainting techniques perform better

when used on narrowband RFI as compared to wideband RFI. We also find that the inpainting

techniques reliably capture the foreground dominated modes in the power spectrum.

In Chapter 6 we examine the systematics introduced into 21cm global signal experiments due

to errors in radio sky maps. We show that the presence of errors in the foreground map can lead to

biased recovery of the 21cm signal. Furthermore, we show this bias is proportional to amplitude and

correlation length of the foreground map errors. We introduce a framework capable of accounting

for these errors and show that, with our framework, one can recover unbiased estimates of the global

21cm signal.

The body of work presented in this thesis encompasses some of the theoretical tools that we are

building to measure the EoR and the instrumental limitations that stand in the way. In Chapters 5

and 6 we show that we are making progress towards this goal. Our measurements are at the level

of precision where the detailed error characterization of inpainting errors matters. In Chapter 6 we

demonstrate that there are solutions to foreground mitigation. We are making progress. While

there is still work to be done, this thesis shows that we are approaching a successful detection of
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the EoR; this ultimate achievement will reveal one of the most interesting periods in our Universe’s

history.
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