
On Symbol Grounding in Machine Learning

Sever Topan

School of Computer Science, McGill University, Montreal

February 2022

A thesis submitted to McGill University in partial fulfillment of the requirements of the

degree of Master of Science, under the supervision of Professor Xujie Si

© Sever Topan 2022

Abstract (English)

Symbol grounding is an abstract phenomenon commonly referenced in cognitive science

that concerns how symbols – such as letters, words, or mathematical formulae – obtain their

meanings. This phenomenon has recently become of interest in the context of Neurosymbolic

Machine Learning: an area of research that aims to integrate symbolic logical reasoning

into deep learning architectures. While subtle, symbol grounding can dramatically affect

the difficulty of learning problems and proposed solutions. This became apparent in a

recently proposed differentiable MAXSAT Solver, SATNet. SATNet was a breakthrough

in its capacity to integrate with a traditional neural network and solve visual reasoning

problems. For instance, it can learn the rules of Sudoku purely from image examples. Despite

its success, SATNet was found to be unable to map visual inputs to symbolic variables

without intermediary supervision (referred to as “label leakage” in criticizing papers), thus

failing to overcome the particularly difficult instance of symbol grounding for Visual Sudoku.

In this thesis, we propose a novel formalization of the Symbol Grounding Problem in

the context of machine learning applications. This enables theoretical insights into the phe-

nomenon, allowing us to describe a taxonomy of factors that make it difficult and relevant for

different model architectures. A self-supervised pre-training pipeline is then presented that

enables SATNet to overcome its prior limitation in solving the Symbol Grounding Problem

for Visual MAXSAT tasks such as Visual Sudoku. This broadens the class of problems that

SATNet architectures can solve to include datasets where no explicit intermediary supervi-

sion is possible. We demonstrate that our method allows SATNet to attain a new State-of-

the-Art accuracy on Visual Sudoku with a harder problem setup that prevents label leakage.

Thus, this thesis is an exploration of Symbol Grounding as it applies to machine learning,

with an applied focus on solving Visual MAXSAT problems using SATNet architectures.

i

Abstract (French)

L’ancrage des symboles est un phénomène abstrait communément étudié en sciences cog-

nitives, et qui concerne la manière dont les symboles – tels que les lettres, les mots ou

les formules mathématiques – obtiennent leur signification. Ce phénomène s’est récemment

manifesté dans le contexte de l’apprentissage automatique neuro-symbolique : un domaine de

recherche qui intègre le raisonnement logique symbolique dans les architectures d’apprentissage

profond. Bien que subtile, l’ancrage des symboles peut considérablement affecter la difficulté

d’apprentissage de problèmes et de leurs solutions. Cela est devenu apparent dans le cas

d’un solveur MAXSAT différentiable récemment proposé, nommé SATNet. SATNet a été

une percée significative pour sa capacité d’intégration à un réseau neuronal traditionnel et

de résolution de problèmes de raisonnement visuel. Par exemple, il peut apprendre les règles

du jeu de Sudoku uniquement à partir d’exemples imagés. Malgré son succès, SATNet s’est

avéré incapable d’associer des données visuelles à des variables symboliques sans supervi-

sion intermédiaire (un problème nommé ≪ label leakage ≫ dans les articles critiques). Par

conséquent, il ne peut pas surmonter ce cas particulièrement difficile d’ancrage des symboles

pour le Sudoku visuel.

Dans cette thèse, nous proposons une nouvelle formalisation du problème d’ancrage des

symboles dans le contexte des applications de l’apprentissage automatique. Cela rend pos-

sible l’analyse théorique du phénomène, permettant de décrire une taxonomie de facteurs

rendant le problème difficile et pertinent pour différentes architectures de modélisation. Un

pipeline de pré-entrâınement auto-supervisé est ensuite présenté pour permettre à SATNet

de surmonter ses limitations antérieures dans la résolution du problème d’ancrage sym-

bolique pour les tâches de Visual MAXSAT telles que le Sudoku visuel. Cela élargit la

classe des problèmes que les architectures SATNet peuvent résoudre pour inclure des en-

sembles de données où aucune supervision intermédiaire explicite n’est possible. Nous

démontrons que notre méthode permet à SATNet d’atteindre une nouvelle précision de

ii

pointe pour le Sudoku visuel avec une configuration de problème plus difficile qui empêche

la fuite d’étiquettes. Ainsi, cette thèse est une exploration de l’ancrage symbolique tel qu’il

s’applique à l’apprentissage automatique, en portant une attention particulière à la résolution

des problèmes Visual MAXSAT à l’aide des architectures SATNet.

iii

Acknowledgements

I was very lucky to be supported by many kind individuals over the course of the past

two years. I’d firstly like to thank my family, particularly my parents Sorina and Mihai

for their constant support day in and day out. Additionally, I am thankful to Prof. Xujie

Si for providing a welcoming and thought-provoking research environment throughout the

program. I learned a lot during this time, and will have many fond memories of our work

together. I’d like to also mention Michael Cox and Jonas Nilsson for helping me balance my

career and academic goals. Working in a primarily online setting during a pandemic can be

quite isolating; as such, I want to say how grateful I am for all the friends and colleagues

who helped foster a sense of community during my study.

Finally, I’d like to thank collaborators for their contributions and guidance in putting

this thesis together: Prof. David Rolnick for our joint work on Symbol Grounding with

SATNet, Prof. Brigitte Pientka for her early guidance when I first started the masters,

Prof. Robert Robere and Gabriel Arpino for their suggestions on complexity bounds. Marc-

Antoine Ouimet and Marie-Estelle Cousein for help with French translation.

iv

Contents

1 Introduction 1

1.1 Neural and Symbolic Machine Learning . 3

1.2 Symbol Grounding, and Why it is Difficult 4

1.3 Contributions . 6

2 Proposed Symbol Grounding Formalism 8

2.1 Background . 8

2.1.1 Connectionist vs. Symbolic Systems 8

2.1.2 Symbol Grounding Prior Work . 9

2.1.3 Formalism Scope . 10

2.2 Formalization . 11

2.2.1 General Form . 11

2.2.2 The Composite Function fS ◦ fR Must be Learnable 12

2.2.3 The Nature of Compute in fR is Non-Symbolic 14

2.2.4 Presence of zΣ is Optional . 14

2.3 Implications of our Formalism . 14

2.3.1 Symbol Grounding Model Architecture Taxonomy 15

2.3.2 Learning Complexity Bounds . 17

2.4 Discussion . 18

2.4.1 On The Symbol Grounding Problem Being Solved 18

2.4.2 Relevance of Social Symbol Grounding 19

3 Symbol Grounding for Visual MAXSAT Problems Using SATNet 20

3.1 Background . 23

3.1.1 The Problem . 23

3.1.2 Logical Constraint Solvers & SATNet 24

v

3.1.3 Self-Supervised Pre-Training . 25

3.1.4 Clustering Algorithms & InfoGAN 25

3.1.5 Knowledge Distillation . 26

3.2 Method . 26

3.2.1 Clustering . 27

3.2.2 Self-Grounded Training . 28

3.2.3 Proofreading . 31

3.3 Results . 31

3.3.1 Effect of Clustering Accuracy . 33

3.3.2 Effect of Distillation . 34

3.3.3 Effect of Proofreading . 34

3.4 Discussion . 36

3.4.1 Sensitivity of SATNet to Random Seeds 36

3.4.2 Incorrect Upper Performance Bound 36

4 Limitations & Future Work 37

4.1 Learning Complexity Bound Strength . 37

4.2 Clustering Limitations . 37

5 Conclusion 38

References 39

A Random Seed Sensitivity Fix 45

B Effect of Error Injection for Visual Sudoku 46

C Codebases used for Experimentation 47

vi

1 Introduction

Imagine that you are sitting at a table, looking out in front of you at a Sudoku Puzzle

inscribed on a piece of paper. You see a grid, partially filled with numbers. You understand

this is a puzzle, and that there are certain strict rules that must be followed to solve it

correctly. In the case of Sudoku, the rules act upon the shape of the digits – of which

there are 9 categories – as well as their positions within the grid. The font, slant, and

thickness of the digits carry no relevant information. Thus, in order to learn how to solve

Sudoku, you must both (a) learn how to identify the starting board states, and (b) learn

how to solve the subsequent logical puzzle. This thesis is about these two sub-problems, and

how we can design algorithms that learn to solve them. We will discuss how they require

fundamentally different modalities of reasoning – one is example-driven, while the other is

rule-based. We will show that the dichotomy between these two modalities exists broadly

in machine learning, and that different model architectures can change how difficult it is

to bridge the gap between them. We will begin, however, by spending some more time

motivating our work by describing these two types of reasoning as they apply to Sudoku.

Digits are not what your brain is directly seeing when you look at the Sudoku puzzle.

The understanding of the puzzle in front of you is constructed from a collection of electrical

impulses originating from the cells within your retina – the biological analogy for pixels.

These impulses are processed into the higher-level construct of digits within a grid. The way

in which we as humans learn how to see digits is interesting. There are rules which govern how

digits should look, but they are all fundamentally approximate. When seen visually, digits are

images that can be represented in a variety of fonts, colors, or backgrounds. There are many

corner cases where a digit is ambiguous – we all have seen cases where 4’s look like 9’s. Thus,

the way in which we learn to see digits is inherently example-driven. There are many similar

tasks which we as humans perform, from understanding writing, to hearing words, to riding

a bicycle. Our brain seems to have a specialized modality of learning for these types of tasks.

1

We use this example-driven type of learning to solve many basic problems in our day-to-day

life, often without expending much mental effort or attention. This modality of thought has

been called “bottom-up,” “statistical”, “heuristic” or “connectionist” in literature, and is

related to what Daniel Kahneman calls “System 1” thinking [1, 2, 3].

Now contrast the above with learning the actual rules of Sudoku. We are now no longer

in an example-driven setting. Starting from the concept of digits and their positions, the

rules of Sudoku can be precisely stated in a formal manner. You would never need to have

seen a Sudoku puzzle before, but reading a description of the rules would allow you to solve

any instance of it. This is an example of a second, more formal modality of thought that

we seem to be able to operate in. Much of the higher-level function in our brain appears

to work at this level, and operating in this modality requires explicit effort and attention.

Kahneman terms this, “System 2” thinking, and it is also called “symbolic”, “analytic” or

“Bottom-up” reasoning [1, 3, 2]. Solving math problems, designing an engine and filling out

our taxes are examples of this form of thinking.

Despite the differences between our statistical approach to identifying board state and our

symbolic method of navigating Sudoku rules, we seem to be able to transparently combine

both of them to solve Sudoku in a straightforward manner. Every day, we reason in ways

that combine statistical and symbolic approaches to solve complex and impressive tasks.

This applies far beyond Sudoku. Traffic rules are well-defined, but obstacles can be diffi-

cult to identify. Scientific experiments are often conducted by following specific protocols,

but qualitative results can be very nuanced. There exists a confluence between statistical,

bottom-up reasoning and symbolic, top-down reasoning in human thought, and we often

cycle between them without realizing. Indeed, it can be argued that much of our intellectual

success as a species stems from the ability to find a balance between these two modalities of

thinking.

2

1.1 Neural and Symbolic Machine Learning

Interestingly, this tension between the statistical and the symbolic also exists in the current

state of the art in machine learning. Recent years have seen significant advancements in

statistical methods – most notably deep learning – providing breakthroughs in image, video,

and audio processing [4]. Despite its success, deep learning has many known limitations

which are common among statistical approaches, such as low interpretability, vulnerability

to adversarial attacks, and difficulty in solving problems that require hard logical constraints

[5, 6, 7, 8]. As machine learning systems are deployed across an increasing array of domains,

it is becoming clear that purely optimizing for performance is not sufficient to make good

products. This is particularly true in applications where safety is of concern.

To overcome these limitations, experts have described the need to migrate from purely

statistical, deep learning-based systems to neurosymbolic artificial intelligence systems that

more closely resembles the way humans approach complex reasoning [9]. Neurosymbolic

systems merge statistical methods with symbolic approaches which were more typical in the

older,“first wave of AI” [10]. As discussed, symbolic approaches can encode logical reasoning

more formally, alleviating some of the drawbacks of pure statistical approaches.

Figure 1: Symbol Grounding occurs at the confluence between statistical (neural) and sym-

bolic systems. A mapping must be established between the artifacts which the symbolic

system uses, and those which the neural component learns.

Whenever statistical and symbolic systems are composed, an interesting phenomenon

occurs at their interface. The meanings of the symbols which the symbolic component uses

3

must be established in the context of the statistical model. In other words, a mapping

must be learned between the artifacts which the symbolic system uses, and those which

the neural component learns. This phenomenon is called Symbol Grounding, and it is the

confluence between statistical and symbolic reasoning that is considered by some to be one

of the fundamental prerequisites for artificial intelligence [11, 1]. Symbol Grounding is a

fairly abstract phenomenon, and it may not be immediately obvious why it is difficult. We

will describe it in more detail in the next section.

1.2 Symbol Grounding, and Why it is Difficult

Symbol Grounding was first proposed by Stevan Harnad in 1990 [1]. It deals with the question

of how abstract symbols used in logical rule systems obtain their meanings. Harnad originally

expressed the Symbol Grounding Problem in the context of coming across a dictionary for

a language you are unfamiliar with. If one wanted to learn the meanings of the definitions

in the dictionary, one would have to somehow establish a mapping between the words in the

dictionary and external phenomena – such as colors, shapes, actions and sounds – which the

words represent. Looking purely at the dictionary only maps definitions to other, unknown

definitions [1]. These external phenomena which must be grounded to symbols are often

called referents, and generally exist in an unstructured, high-dimensional representations

such as images, audio, or other sensory modalities.

We can return to our Sudoku example to investigate what symbol grounding can look like

in a practical setting. We can represent a visual version of Sudoku with a dataset containing

input board states as images of digits, and the completed board state as a one-hot digit

encoding of the resulting board. In order to solve this learning problem, a model must 1)

learn the mappings from input images to symbolic digits representing board state, and 2)

learn to derive output board state from input board state. This is a prototypical example

in which a Neurosymbolic system would be a reasonable choice, since 1) can be modeled to

4

high fidelity with neural systems, while 2) can be approached via SAT solving – a symbolic

method.

Symbol grounding for Visual Sudoku is the process in which we identify that it is the

shape, not the font or orientation of input digits that matters for the downstream puzzle.

Once this is learned, the digit categories can be mapped to symbolic variables, which can

in turn be used within a rule-based system to solve the overall problem. The difficulty

of this may not be immediately apparent, because as humans, we are equipped with prior

knowledge about digits heading into the learning problem. We can illustrate what it would

be like to approach this problem from a blank slate by making a small change to the problem

setup to remove this bias. Imagine that we replace the numbers with images of animals and,

crucially, we are not told how to group the images into the 9 categories relevant for Sudoku.

The color of the animal could be one grouping, but so could the species, or the direction

that the animal is facing. This version of Sudoku is conceptually the same problem, but we

now have to learn what to actually look for in the images purely from our training dataset.

Another illustrative example of difficult symbol grounding occurs with Raven’s Matrix

puzzles, which are visual reasoning problems where a collection of panels are shown that

contain some pattern. The player must then choose the final pattern that completes the

puzzle. The difficulty, like with our Sudoku example, lies in finding what to look for, and

what the pattern is. Figure 2 shows examples of Raven’s Matrix Problems which illustrate

the difficulty of symbol grounding. The two instances on the left introduce the problem,

while the right-most is a difficult puzzle which we invite the reader to attempt.

In summary, Symbol Grounding involves identifying a mapping between some precept

within a high-dimensional input signal, and a symbol system. It can range in difficulty

significantly based on the amount of prior or contextual information present.

5

Figure 2: Examples of Raven’s Matrix problems. The pattern in (a) is a simple arithmetic

progression along the columns, while (b) is a XOR operation along the rows. (a) and (b)

are both taken from [12]. (c) is a challenging instance of the problem taken from [11]. It

illustrates the difficulty of symbol grounding, since both the rules and the symbols themselves

need to be identified. We invite the reader to attempt to solve the puzzle, and check their

answer against the solution provided in the original publication.

1.3 Contributions

This work is an exploration of Symbol Grounding from a Machine Learning perspective. In

short, we provide the following two main contributions:

1. We formalize the definition of Symbol Grounding in the context of Machine Learning.

Symbol Grounding historically is a fairly philosophical and abstract notion. We propose

a more rigorous definition in the context of Neurosymbolic systems, accompanied by

a taxonomy of factors which affect its difficulty. We survey the field and show how

existing models solve different versions of the Symbol Grounding Problem.

6

2. We demonstrate a method of overcoming the symbol grounding problem for Visual

MAXSAT problems using an architecture called SATNet [13]. We use this method to

achieve a new state-of-the-art on the Ungrounded Visual Sudoku problem, which was

previously unsolved.

Both sections can be read in isolation from one another, though the prior establishes

context for the latter.

Unless otherwise noted, all experiments and writing were performed by Sever Topan, with

guidance and edits by Prof. Xujie Si. The complexity bounds presented in section 2 benefited

from helpful conversations with Prof. Robert Robere and Gabriel Arpino. Section 3 was

written in collaboration with Prof. David Rolnick, who provided significant contributions,

especially surrounding the concept of “Symbol Grounding Loss.” Section 3 was accepted as a

spotlight paper to NeurIPS 2021 [14]. Additionally, Marc-Antoine Ouimet and Marie-Estelle

Cousein helped correct the French translation of the Abstract.

7

2 Proposed Symbol Grounding Formalism

In this section, we propose a novel formalization of Symbol Grounding from a Machine

Learning perspective. We begin by introducing preliminaries and scoping our contribution

relative to prior work. We then proceed to define our formalism, discuss its implications,

and survey the field to find how existing algorithms fit within our definition.

2.1 Background

2.1.1 Connectionist vs. Symbolic Systems

A fundamental preliminary to our formalism will be to establish the definition of what a

symbolic system in fact is. Here we will invoke Harnad’s 1990 definition, which in itself is

based on a survey of prior work [1]:

A symbol system is: (1) a set of arbitrary “physical tokens” scratches on paper,

holes on a tape, events in a digital computer, etc. that are (2) manipulated on

the basis of “explicit rules” that are (3) likewise physical tokens and strings of

tokens. The rule-governed symbol-token manipulation is based (4) purely on the

shape of the symbol tokens (not their “meaning”), i.e., it is purely syntactic,

and consists of (5) “rulefully combining” and recombining symbol tokens. There

are (6) primitive atomic symbol tokens and (7) composite symbol-token strings.

The entire system and all its parts – the atomic tokens, the composite tokens,

the syntactic manipulations both actual and possible and the rules – are all

(8) “semantically interpretable:” The syntax can be systematically assigned a

meaning, e.g., as standing for objects, as describing states of affairs.

Harnad then proceeds to contrast these with connectionist systems such as neural net-

works, which he claims fail properties (7) and (8) above.

8

The patterns of interconnections do not decompose, combine and recombine ac-

cording to a formal syntax that can be given a systematic semantic interpretation.

Though much of the success and prominence of connectionist approaches is much more

recent than Harnad’s publication, the claim still holds [4]. In the author’s words, a way

to summarize the distinction between connectionist and symbolic systems is that symbolic

systems bake the information that they carry into the atoms and rules which their algorithms

directly manipulate. The information present in connectionist systems is instead an emergent

phenomenon that manifests at a higher level than the atoms that are being manipulated.

For instance, contrast the weights within a (connectionist) neural network with a (sym-

bolic) C++ program. Information flows through a C++ program at the level of the functions

and operators present within it. Thus, reading the program local structure reveals the logic

that it encodes. This is not the case for neural networks; Reading local weight relationships

generally will not reveal the relevant logic encoded within the system, which instead results

from large complexes of weight relationships that lack a higher-level interpretation. Symbolic

systems thus lend themselves well to manual crafting, since the rules and atoms themselves

are meaningful to humans. Connectionist systems on the other hand generally need to be

constructed using data-driven approaches.

2.1.2 Symbol Grounding Prior Work

The most concise recent definition that the author has found is the one proposed by Cangelosi

in 2011 [15]:

To summarize, we can say that there are three sub-problems in the development

of a grounded symbol system:

1. how can a cognitive agent autonomously link symbols to referents in the

world such as objects, events and internal and external states;

9

2. how can an agent autonomously create a set of symbol-symbol relationships

and the associated transition from an indexical system to a proper symbol

system;

3. how can a society of agents autonomously develop a shared set of symbols

It is worthwhile to mention that the topic of Symbol Grounding, and more precisely

whether it has been “solved,” is contested [16, 17, 18, 19, 20]. This is likely due to the

fact it is an interdisciplinary phenomenon that lies at the intersection between philosophy,

computer science, and psychology. The original formulation of Symbol Grounding was pri-

marily philosophical one which dealt with human language, and discussed implications such

as how human brains use symbolic reasoning [1]. This somewhat railroaded the conversation

on symbol grounding into a discussion about the limits and properties of human-like arti-

ficial intelligence. Researchers have since argued that this angle has entangled a somewhat

emotional, anthropomorphic theme into the more abstract debate about systems learning

to ground symbols [16]. A second issue is that much symbol grounding literature appears

to fixate on grounding human language as opposed to more general symbolic systems which

would be desirable of a definition that applies more abstractly [19].

2.1.3 Formalism Scope

Items 1 and 2 will be the primary focus of this work. We consider item 3 to be an extension

of the core symbol grounding problem, which will be discussed in section 2.4.2.

To the author’s best knowledge, no existing comprehensive formalization of symbol

grounding exists. The closest work found was proposed in [21], introducing a formalism for

Cangelosi’s item 1 (which is referred to as “Perceptual Anchoring” in their work). However,

the existing formalism does not capture item 2. Furthermore, it is somewhat prescriptive,

limiting the symbols present to predicate logic – essentially simple attributes associated to

precepts. We would instead prefer to allow for more complex relations to be captured by the

10

connectionist system, such that it can be coupled with any rule-based system, even higher-

order-logic. Thus we view our proposed formalism as a revision and generalization of their

framework.

2.2 Formalization

Our goal is to provide a formalization of Symbol Grounding from a machine learning perspec-

tive, particularly in the context of Neurosymbolic architectures. This formalization will serve

as a model to discuss the aspects that make symbol grounding difficult and relevant to ma-

chine learning applications, and will explicitly not attempt to address the aspects of symbol

grounding that lie in the domain of philosophy or neuroscience. We will address the first two

sub-problems in Cangelosi’s formulation, but from an abstract perspective which generalizes

past human language. To our knowledge, this is the first such proposed formalization.

2.2.1 General Form

Let Σ represent some symbolic alphabet, and Ξ represent some non-symbolic input data

type. We define fS : Σ → Σ as a purely symbolic function as defined by Harnad in [1], and

fR : Ξ → Σ to be a mapping function from a non-symbolic input to the symbol system. We

say fR(xΞ) = ẑΣ and fS(ẑΣ) = ŷΣ. We then introduce the following definitions:

Definition 1. Training the composite system fS ◦ fR end-to-end on a dataset {xΞ : Ξ, zΣ :

Σ, yΣ : Σ} entails solving items 1 and 2 in Cangelosi’s symbol grounding problem defini-

tion [15] for the learning problem defined by {xΞ, zΣ, yΣ}.

Definition 2. Symbol grounding is also possible in lieu of zΣ. We call a dataset “grounded”

if zΣ is present, and “ungrounded” if it is not.

A constructive reasoning for this definition follows. By definition, symbol grounding

presupposes the existence of a formal symbolic system (fS), so we use this as our starting

11

point. We make no assumptions on the data formats of ŷΣ, yΣ, ẑΣ or zΣ. We do not impose

limitations on the form or syntax of Σ, or the complexity of the symbol. For example, differ-

ent fS implementations may take Σ to be first-order predicates, while others may leverage

higher-order ones. Furthermore, zΣ can be omitted entirely from the training dataset. In

this case the correct ẑΣ must be inferred indirectly from yΣ.

In order to establish a link between referents external to the symbolic system described

in Cangelosi’s item 1, we need to define the additional function fR, which derives symbols

ẑΣ from some arbitrary data xΞ containing relevant referents. We will discuss in section

2.2.3 why it is necessary for fR to be a separate non-symbolic system from fS . We place

no constraints on xΞ, as we wish to be able to capture any possible data format. Finally, in

order to resolve item 2, the composite fS ◦ fR must be learnable. We have thus constructed

a system that encompasses both of Cangelosi’s sub-problems.

The following list enumerates the fundamental properties of our formulation.

1. The composite function fS ◦ fR must be learnable.

2. The nature of compute present in fS is symbolic.

3. The nature of compute present in fR is non-symbolic.

4. The presence of zΣ in the training dataset is optional.

We will spend some time further discussing the implications of each of these properties

in our formalism.

2.2.2 The Composite Function fS ◦ fR Must be Learnable

It is well understood that Symbol Grounding involves learning a mapping from some precept

to a symbol system, hence a reader might expect our definition to require that fR is learnable.

We actually make a different assertion, instead requiring that at least one of fR and fS be

12

learnable. That is to say, it is possible for both fR and fS , or simply only fS to be learnable

and for symbol grounding to still occur.

This might appear unexpected since traditionally, symbol grounding seems to imply that

the symbol system in question is static. In Harnad’s original formulation, for example, the

problem involved mapping dictionary definitions to external referents, where the difficulty

lied in establishing this symbol-referent mapping [1]. The contents of the dictionary are

assumed to be unchanging. Indeed, In many cases where symbol grounding is approached

from the anthropomorphic angle focusing on language, the fact that the symbol system

itself can change is ignored. It is important to avoid this assumption, as is made evident

by Cangelosi in point 1. Some works do explicitly discuss the fact that symbol systems

themselves can be learned [16] 1, but we would like to develop this idea further.

We claim that any learnable symbol system undergoes a form of symbol grounding when

it is trained. The intuition here is if symbol grounding entails mapping some external precept

to a symbol system, this can be achieved by both developing a mapping from precepts to

symbols, or by changing the symbols themselves to more directly support the precept. We

call this dual symbol grounding ; The primary form being the traditional precept-symbol

learning (fR), whereas the secondary form involves training the symbol system (fS).

An implication of this is that for certain learning problems, symbol grounding can be

achieved exclusively though the secondary form. We propose that, given a fixed precept-

symbol mapping, training the symbolic component of the system in isolation is still a form of

symbol grounding. Since we have not imposed any constraints on x or ẑΣ, strictly speaking it

is possible to devise a symbol system that operates directly with the precept x as its symbols

for certain learning problems (i.e. fR is identity).

We underline that our claims surrounding dual symbol grounding are in line with points

1 and 2 from Cangelosi’s definition [15]. In fact, it forms the synthesis between these points:

1Social symbol grounding (Cangelosi’s point 3) is another instance of symbol systems undergoing change,

though in this case it is primarily for the purpose of coordination.

13

By allowing the system to generate its own symbol-symbol relationships, the system can

better establish a link between referents and symbols. This is made explicit within our

formalism.

2.2.3 The Nature of Compute in fR is Non-Symbolic

The function fR is defined to be non-symbolic in our formulation. This done simply because

if fR were symbolic, we could model the same system by absorbing it into fS , and find

ourselves lacking a non-symbolic component in the loop. This is equivalent to having fR fixed

to an identity function, and thus only the secondary form of symbol grounding introduced

in section 2.2.2 applies. The non-symbolic constraint allows us to capture both primary and

secondary forms of symbol grounding.

2.2.4 Presence of zΣ is Optional

The final facet of the formalism which we introduce is a way in which we differentiate between

two types of datasets: grounded (zΣ is present) and ungrounded (zΣ is missing). The presence

of zΣ in a dataset in principle doesn’t change the fact that symbol grounding is occurring,

however it changes the nature of the learning problem. Training fR on a grounded dataset

can be cleanly split into separate learning tasks for fR and fS . This learning dataset is

thus already grounded in the primary form, requiring grounding only for the secondary case.

The grounded/ungrounded dataset distinction is important because it makes a significant

difference in the difficulty of certain problem settings, as evidenced in [11]. Our work in

Section 3 heavily focuses on this aspect.

2.3 Implications of our Formalism

Now that we have introduced the formalism surrounding symbol grounding, we will take some

time to discuss implications of this formalism on the categorization of different neurosymbolic

14

machine learning architectures, as well as implications on their learning complexity.

2.3.1 Symbol Grounding Model Architecture Taxonomy

We consider our formalism to be a taxonomy for Neurosymbolic architectures. This section

is not meant to be a literature review of symbol grounding (for which we direct the reader

to [22]), but instead shows how different architectures can be grouped into families.

Table 1 displays the general taxonomy that we will propose. The taxonomy is centered

around three indicator variables: (a) whether fR is learnable, (b) whether fS is learnable,

and (c) whether the dataset supported by the architecture is grounded or not. We note that

the presence of a grounded dataset is only relevant in the context of a learnable fR. We will

walk through the different relevant combinations next.

fR fS Presence

Learnable? Learnable? of zΣ Example Model

(i) no no N/A N/A - not learnable

(ii) no yes N/A Knowldege Graph Methods [23]

(iii) yes no grounded N/A - directly supervised

(iv) yes yes grounded SATNet [13], CLEVR models [24, 25]

(v) yes no ungrounded DeepProbLog [26]

(vi) yes yes ungrounded Our method in Section 3

Table 1: A taxonomy of symbol grounding models, with associated example architectures.

Note that grounded datasets are only relevant when fR is learnable.

(i) Fixed fR, Fixed fS – No learning occurs within the problem setup, therefore it is not

relevant for symbol grounding.

15

(ii) Fixed fR, Learnable fS – This problem setup captures cases where only the sec-

ondary form of symbol grounding applies. Models such as the Knowledge graph building

system introduced in [23], the Integer Linear Programming constraint miner from [27], or

SATNet in the pure-symbolic setting [13] are examples of this category.

(iii) Learnable fR, Fixed fS, Grounded Dataset – In this problem setting there is

direct supervision fR while it is the only learnable component within the system. This

implies that we are in a standard supervised learning setup in which fS can be bypassed

during training. Thus, no symbol grounding occurs.

(iv) Learnable fR, Learnable fS, Grounded Dataset – In this category of symbol

grounding architectures, both the connectionist and symbolic components are learnable, but

the dataset used to train them is grounded, meaning that intermediary labels are present

which aid the training of fR. The original SATNet implementation [13] was show to fall into

this category in [11]. Another example of models in this category are systems which train

on the CLEVR dataset using signals such as scene graph information such as [24, 25].

(v) Learnable fR, Fixed fS, Ungrounded Dataset – This class of architectures con-

tains models where a connectionist model must be mapped to a fixed symbolic system. This

is the classical primary case of symbol grounding (Cangelosi point 1). The interesting aspect

of these types of models is that generally the symbolic systems need to be differentiable and

easily craftable or interpretable by humans, since they are fixed a priori. DeepProbLog is an

example of such an architecture [26].

(vi) Learnable fR, Learnable fS, Ungrounded Dataset – This taxonomic category

allows for the most degrees of freedom. Both symbol grounding components are learnable,

and no intermediary labels are present in the training dataset. We postulate that this is the

most difficult symbol grounding setting, since fR must be trained through a learning signal

16

passed through fS , which must in turn also be trained. We discuss learning complexity

further in Section 2.3.2. Our extension to the SATNet architecture which we introduce

in Section 3 is an example of this problem setting where Ungrounded Visual MAXSAT

problems are covered. [11] also introduces the “MNIST Mapping Problem,” which falls into

this taxonomic category.

2.3.2 Learning Complexity Bounds

Our formalism allows us to reason about model architecture choices that make symbol

grounding more or less difficult. We are able to show a collection of simple bounds on

the learning complexity of two of these design choices below.

Proposition 2.1. Learning complexity for the ungrounded version of a learning problem is

greater than or equal to that of the grounded version.

Proof. The above can be shown by reduction. Given a system that is capable of solving

some Ungrounded learning problem, we can allow it to solve the grounded version of the

same dataset by simply removing the intermediary labels zΣ
2.

Proposition 2.2. For a given model, the learning complexity of training both fR and fS

greater than or equal to that of simply training one of them while the other is fixed to the

correct solution.

Proof. This follows by a reduction in the starting conditions of the learning problem. Let

there exist a model architecture in which both fR and fS are initialized to some known

starting state. Assume this model is capable of solving some learning problem. We can

reduce any model in which either fR or fS are fixed on the correct solution to our original

model by re-initializing that component to the known starting state, and unfreezing it during

training.

2Note that in this problem setup we don’t consider the intermediary labels to be constraints on the

system, only hints

17

The above statements allow us to sketch a hierarchy of difficulty within the symbol

grounding taxonomy introduced in Section 2.3.1. Our propositions imply that the taxonomic

category where both fR and fS are learnable, and the training dataset is ungrounded is the

most difficult symbol grounding problem setting.

While propositions 2.1 and 2.2 are relatively weak, we believe that stronger bounds can

be shown, however we leave this to future work. Our empirical results in Section 3 appear

support this claim for the SATNet architecture setting which we explore.

2.4 Discussion

2.4.1 On The Symbol Grounding Problem Being Solved

If one accepts our Machine Learning-centric definition of the Symbol Grounding Problem,

it becomes clear that claiming that the Symbol Grounding Problem is “Solved” full stop, is

nonsensical. It is similar to claiming that Dynamic Programming is solved. The claim of

solvability only makes sense in the context of the problem that is being addressed, in the

same way that we can say that we have a Dynamic Programming solution to Rod Cutting

[28]. In this way we can say that, for example, symbol grounding has already been solved

for certain logical reasoning datasets such as with DeepProbLog [26].

We do make this claim while understanding that Harnad’s original Symbol Grounding

Problem was tailored towards solving human cognition relating to language, and in that

respect there might be a clear decision of whether there is a solution or not [1]. What is

important, is that authors contextualize their use of the term “Symbol Grounding” with

respect to the problem actually being targeted. As such, in Harnad’s examples it should be

clear that he discusses Symbol Grounding specifically for human language.

18

2.4.2 Relevance of Social Symbol Grounding

Social symbol grounding (item 3 from Cangelosi’s definition), is generally considered to not

be part of the base symbol grounding question [22]. It is an extension of symbol grounding

that mainly stems from the anthropomorphic human language angle that we attempt to

generalize past in this work. Harnad’s original definition in fact does not imply that shared

understanding is necessarily part of the question, his formulation primarily deals with a

single actor interacting with symbolic systems (in his case these systems are dictionaries).

We thus avoid the topic of developing shared symbols in this work.

Nonetheless, we believe that social symbol grounding can be modeled as an alternate

learning objective within the framework which we have proposed. Social symbol grounding

is primarily about consensus, so once could consider embedding this as a learning objective

within the training dataset.

19

3 Symbol Grounding for Visual MAXSAT Problems

Using SATNet

We will now turn our attention to a class problems in which symbol grounding is particularly

difficult, known as Ungrounded Visual MAXSAT. To tackle these learning tasks, we focus

on improving a promising development in the field of Neurosymbolic Machine Learning: the

award-winning architecture known as SATNet [13]. SATNet is a differentiable MAXSAT

solver based on a low-rank semidefinite relaxation approach. It can be integrated into tra-

ditional Deep Neural Networks (DNNs) to solve composite learning problems that require

both logical reasoning and visual understanding. One such problem is Visual Sudoku, which

was introduced in section 1. Here, the model must learn the rules of a Sudoku puzzle purely

from visual examples. When trained end-to-end, SATNet is able to achieve 63.2% total

board accuracy in this task while traditional DNN architectures are unable to exceed 0%

[13]. This was regarded as a significant breakthrough for neurosymbolic architectures. How-

ever, it was recently noted that SATNet training relies upon “leakage” of labels through the

logical constraint layer to the DNN used to classify digits [11].

This leakage essentially means that SATNet is learning in two supervised stages, where it

first trains its digit classification component under direct supervision, and only then trains its

SAT layer to learn the logical constraints delineating Sudoku. When the leakage is removed,

SATNet’s ability to solve Visual Sudoku drops to 0% [11]. This is significant, because

taken independently, these two sub-problems are significantly easier. Digit classification is

considered a solved problem, and while SAT constraint mining is more difficult, it could be

argued that the differentiable aspect is no longer beneficial if the system needs supervision

on its inputs to learn regardless. For instance, there exist other SAT constraint miners that

are not differentiable but outperform SATNet [27]. Overall, the issue of being unable to learn

to solve composite visual reasoning problems end-to-end is in fact the Symbol Grounding

20

Problem which we have discussed previously.

Figure 3: The SATNet architecture used to solve Visual Sudoku. The red line shows the

label leakage issue, which when removed, results in the Symbol Grounding Problem.

We observe a key challenge of symbol grounding is the large gap between the com-

positional nature of logical reasoning and the end-to-end gradient-based nature of neural

networks. The former helps to reduce a sophisticated reasoning system into simple, indepen-

dent modules, each of which can be designed manually or learned, while the latter encourages

fusing all components together and using gradients as a universal means for learning. Many

recent approaches aim to bridge this gap by relaxing logical constraint solving through nu-

merical optimisations [29, 30, 31, 32]. Although such end-to-end gradient-based optimisation

is appealing, it can fail to address seemingly simple tasks like Visual Sudoku. The success

of SATNet is in fact due to inadvertent supervision of intermediate modules. We argue

that compositionality does not have to be the opposite of the end-to-end learning design.

The latter is particularly preferable because it eliminates the need for supervision of inter-

mediate modules, which is often required by a compositional design. If compositionality

can be trained using self-supervision (i.e. without manual effort), compositionality would

then be at least equally preferable. This is the approach that we take in the present work,

synergistically combining compositionality with end-to-end learning without any explicit in-

termediate supervision. We envision our methodology forming a new paradigm for tackling

21

neurosymbolic learning.

We describe a self-supervised pre-training method that can be used to bootstrap SATNet

in order to overcome the Symbol Grounding Problem. Our methodology enables us to tackle

a class of what we call Ungrounded MAXSAT problems, where label data are available

only for the output variables of the MAXSAT problem. In the Visual Sudoku case, this

formulation manifests itself as a dataset where, as before, inputs consist of images of digits

describing the input cells of a Sudoku board. The labels of the dataset, however, consist of

numerical representations only for the board cells that were not given as inputs. This means

that there is no way of identifying what digit each input image refers to except by learning

the rules of the Sudoku puzzle in parallel to predict the non-input values. We refer to this

problem as Ungrounded Visual Sudoku. We show that our method improves the state of the

art on this problem from 0% to 64.8%, achieving similar performance on Ungrounded Visual

Sudoku as SATNet with label leakage does in the grounded version of the same problem. In

short, our main contributions are the following:

1. We describe a self-supervised clustering and distillation process for training a visual

classifier within a SATNet architecture.

2. We introduce a Symbol Grounding Loss that makes it possible to train logical constraint

layers on an ungrounded symbol representation.

3. We show empirically that our methodology allows SATNet to achieve full performance

on ungrounded Visual Sudoku (where label leakage is impossible), a task where previous

state-of-the-art was 0%.

4. We introduce a Proofreader that improves the performance of any SATNet system

(grounded or ungrounded), achieving state-of-the-art performance on Visual Sudoku.

22

3.1 Background

Our contribution draws from several areas. We begin with preliminaries describing the

problem, before discussing related work.

3.1.1 The Problem

MAXSAT, the optimisation analog of SAT, represents a rich set of problems to which many

program complexity classes can be reduced. A MAXSAT Solver S aims to maximally satisfy

a set of n boolean clauses over m variables by modulating the values of the variables. These

clauses are typically written in Conjunctive Normal Form, and represented numerically as a

matrix M ∈ Rn×m. We can further enrich this system by partitioning our variables a1,...,m

into a subset of fixed inputs ain1,...,k, and variable outputs aoutk+1,...,m. The system can then be

framed functionally:

aoutk+1,...,m = S(ain1,...,k,M), for 1 ≤ k ≤ m. (1)

This formulation can be used to capture Sudoku, an example used extensively in this work,

where ain represents the input cells of a given Sudoku board, aout represents the cells that

we aim to solve for, and M encodes the rules of Sudoku.

MAXSAT Solvers can be leveraged to solve a broader class of problems that we refer

to here as Visual MAXSAT Problems. These entail a MAXSAT problem where the inputs

ain must first be derived from some other representation ainvisual. This essentially results in a

two-step training problem for which neurosymbolic architectures are optimised3.

We have now established the preliminaries necessary to describe the Symbol Grounding

Problem in the context of Visual MAXSAT solvers. It is the problem of identifying ain given

only ainvisual and aout. This motivates the distinction between two types of Visual MAXSAT

3While it is also possible to train a system end-to-end to derive aout directly from ainvisual, we argue that

internally the system would need to have some form of representation of this two-step approach regardless.

23

Datasets: grounded and ungrounded. An ungrounded dataset contains ainvisual as data and

aout as labels, while a grounded dataset additionally contains ain in its labels (See Figure 4.

Figure 4: Examples of Grounded and Ungrounded Visual MAXSAT Datasets, focusing on a

3× 3 portion of a larger Sudoku board. Blue entries represent input cells. In previous work,

SATNet is able to solve only the grounded version of the problem.

We note that it is significantly more difficult to solve the ungrounded version of a Visual

MAXSAT problem, as training cannot be trivially broken up into two stages. It is this the

class of problems that we tackle in this work.

3.1.2 Logical Constraint Solvers & SATNet

There has been significant recent interest in architectures that can integrate symbolic reason-

ing layers within neural networks. Many approaches, however, are only capable of integrating

pre-existing logical constraints into these models [33, 26, 34, 35, 36]. In the context of our

formalism, this is analogous to having a fixed set of clauses M for a particular problem.

Conversely, there exists a family of approaches that are not differentiable, but are able to

learn logical constraints by example [27, 37, 38]. SATNet, however, sits somewhere in be-

tween these approaches, as it is both differentiable and able to learn a matrix M in order to

fit some input data [13]. There are a few other algorithms in this class, such as OptNet and

∂-Explainer [29, 30, 39].

24

3.1.3 Self-Supervised Pre-Training

Self-supervised pre-training has a long history in machine learning, notably being used to

navigate highly non-convex loss landscapes in Deep Belief Networks (DBNs) [40, 41]. More

recently, better methods for end-to-end training have emerged and self-supervision has now

been used to pre-train image tasks on large, cheap unlabeled datasets to obtain slightly

better performance on supervised tasks [42, 43].

In our work we return to the insight that motivated the original use of self-supervision

for DBNs. The Symbol Grounding Problem essentially represents significant non-convexity

in the problem space – both symbol meanings and the way in which symbols interact with

one another must be learned in parallel, with local optima existing for many combinations

of prospective groundings. Self-supervised pre-training enables us to start training from a

favorable position on this loss landscape.

3.1.4 Clustering Algorithms & InfoGAN

Data clustering is a long-standing and rich field of computer science [44]. We leverage clus-

tering in our method in order to conduct self-supervised pre-training. While many clustering

algorithms exist, for our purposes we choose to use InfoGAN, as it is able to cluster across

the semantic dimension which we are interested in for MNIST with very high accuracy [45].

InfoGAN is a Generative Adversarial Network architecture which boasts disentangled,

interpretable latent encodings [46]. It maximizes the mutual information between a subset of

the noise fed into its generator, and the observation which the discriminator makes. It is thus

able to cluster data according to several interpretable variables. In the case of MNIST, these

include handwritten digit thickness, slant, and most useful to us, the actual digit shape.

This latter property is what we aim to leverage in this work. Specifically, InfoGAN can

cluster MNIST digits according to their numerical value with 95% accuracy in a completely

unsupervised fashion [45].

25

3.1.5 Knowledge Distillation

Knowledge Distillation is a technique for training machine learning models to reach compa-

rable performance at inference time to a larger reference model, or an ensemble of models

[47, 48, 49, 50]. While more complex distillation techniques exist, our work leverages the

concept in one of its most basic forms – simply training a smaller model from a dataset

generated by a larger one in order to drastically improve inference time.

3.2 Method

Our main contribution is a pre-training pipeline used to bootstrap the learning process such

that SATNet can bypass the Symbol Grounding Problem. Overall our method entails the

following steps.

1. Clustering: We first perform unsupervised clustering of the input data, and distill

the knowledge of the clusters into a digit classifier.

2. Self-Grounded Training: We then employ a custom Symbol Grounding Loss to iden-

tify how clusters map to the labels we have in our training data. Once the grounding

is learned, we freeze it and train the rest of the system.

3. Proofreading: We conclude with an optional proofreading step which trains an addi-

tional layer in the SATNet architecture while the rest remain frozen. This was found

to slightly improve performance in all SATNet architectures tested.

Before diving in to each of these steps, we will formalize the composite visual understand-

ing/logical reasoning problem. Assume we look at a single instance of a MAXSAT problem

with N variables which can fall into one of K classes, where each of the N variables is rep-

resented by an image of size C ×H ×W . Our input data is then a tensor x ∈ RN×C×H×W ,

and our desired one-hot encoded output y ∈ RN×K . Our digit classifier D takes input x and

26

Figure 5: The architecture proposed in this work. It leverages self-supervised pre-training to

solve Grounded Visual Sudoku, thereby overcoming the Symbol Grounding Problem affecting

the original SATNet method.

returns output D(x) = ŷin ∈ RN×K . We feed this result into our SATNet layer S such that

S(ŷin) = ŷout ∈ RN×K . For Ungrounded Visual Sudoku using MNIST, we have N = 81 (one

MAXSAT variable for each cell of the 9× 9 Sudoku board), K = 9 (digits 1 through 9), and

C ×H ×W = 1× 28× 28 (MNIST images).

3.2.1 Clustering

Our first step in solving an Ungrounded MAXSAT problem is identifying the patterns that

exist in the input data. Intuitively, we do not have to start training a digit classifier from

scratch when training composite visual reasoning architectures. There exists some semantic

aspect of the input image which is of relevance to the MAXSAT problem at hand, and it

can often be at least partially identified in a self-supervised setting. In the Visual Sudoku

case, this entails clustering our images into 9 groups (corresponding values 1 through 9).

In our experiments, we use InfoGAN to perform the clustering, as it is capable of clus-

tering MNIST digits with 95% accuracy [45]. Any clustering algorithm may be used here

however, even ones that are not differentiable. Once the clustering is complete, we can distill

the clustering knowledge back into a differentiable digit classifier. In our case, we generate

a dataset using the clustering algorithm, and train LeNet on the cluster allocations of the

27

training data [51]. By doing this we implicitly map each cluster onto some one-hot represen-

tation within ŷin. However, this one-hot encoding of the MAXSAT variables may not match

with the encoding present in the labels y. We deal with this next.

3.2.2 Self-Grounded Training

While our clustering algorithm might be able to achieve high accuracy, it doesn’t have any

information about which numerical digit each cluster is actually associated with, since we

don’t have access to input cell labels. This is the crux of the Symbol Grounding Problem. In

an Ungrounded MAXSAT setting, the only way to learn the association between digits and

numerical clusters involves jointly learning the MAXSAT problem. In the case of Sudoku,

this means that we must solve for the rules of puzzle and learn what each digit means

simultaneously.

To reason about this, we consider two sets of encodings for digits: the pre-trained en-

coding (PTE) and the (correct) label encoding (LE), which we notate using superscripts.

The digit classifier from the previous step outputs PTE-encoded predictions ŷPTE
in . There

exists some unknown permutation matrix P ∈ RK×K that translates between encodings via

ŷPTE
in P = ŷLEin . Our goal is to align the PTE encoding with the LE encoding, so that we can

make use of the training labels. The question of performing this translation before or after

the SATNet layer is irrelevant, however. This is because the MAXSAT CNF clauses which

SATNet implements are permutation-invariant [52]. This means that as long as supervision

is provided correctly, we can train the SATNet layer S on either ŷPTE
in or ŷLEin . 4 In our

approach we pass the prior through SATNet, and are left with ŷPTE
out predictions.

We learn the correct permutation (without access to any of the input labels) simulta-

neously with training the SATNet layer, by introducing a Symbol Grounding Loss, which is

4While this is expected, this was not explicitly stated in the original SATNet paper. We were able to

verify this empirically by applying any permutation on the one-hot encodings of the digits in the nonvisual

Sudoku setting and SATNet’s performance is identical even without re-training.

28

intended to be a smooth function that is minimized when ŷPTE
out P ≈ yLE for some permuta-

tion matrix P .

Note that ŷPTE
out and yLE are N ×K matrices, and let ŷPTE

out (i) and yLE(i) denote the ith

columns of these matrices. Then, yLE(i) is a 1-hot vector capturing the entries of the output

that are labeled i (in the correct label encoding), while ŷPTE
out (i) is a vector of predicted

probabilities that the output is labeled i (in the pre-trained label encoding). We define the

following loss L:

L(ŷPTE
out , yLE) := 1−meani(max

j
(exp[−BCE(yLE(j), ŷPTE

out (i))])), (2)

where BCE(·, ·) denotes the binary cross-entropy loss between two vectors:

BCE(v, w) = − 1

n

(
n∑

k=1

vk log(wk) +
n∑

k=1

(1− vk) log(1− wk)

)
.

Proposition 3.1. Suppose L is defined as in (2). Then:

1. L(ŷPTE
out , yLE) is minimized if and only if ŷPTE

out P = yLE for a permutation matrix P .

2. In this case, the matrix P is given by Pij := exp[−BCE(yLE(j), ŷPTE
out (i))].

Proof. We first consider part (1), recalling that:

L(ŷPTE
out , yLE) := 1−meani(max

j
(exp[−BCE(yLE(j), ŷPTE

out (i))])).

Since the BCE loss is minimized at 0, we have:

L(ŷPTE
out , yLE) = 1−meani(max

j
(exp[−BCE(yLE(j), ŷPTE

out (i))]))

≥ 1−meani(max
j

(exp[0]))

= 0.

and equality holds if and only if maxj(exp[−BCE(yLE(j), ŷPTE
out (i))]) = 1 for every i. This

statement is true if and only if for every i there exists a j such that exp[−BCE(yLE(j), ŷPTE
out (i))] =

1, or equivalently such that BCE(yLE(j), ŷPTE
out (i)) = 0.

29

Therefore, L reaches its minimum at 0 if and only if for every i there exists a j such that

yLE(j) = ŷPTE
out (i), proving part (1).

We now prove part (2). Suppose that ŷPTE
out P = yLE, and suppose that σ is the permu-

tation defined by P , so that σ(iPTE) = jLE. Then, for each i, j, we have:

BCE(yLE(j), ŷPTE
out (i)) =

0 if σ(i) = j

+∞ otherwise,

and therefore

exp[−BCE(yLE(j), ŷPTE
out (i))] =

1 if σ(i) = j

0 otherwise.

This proves part (2).

This proposition shows that by minimizing L, we learn an approximate permutation

matrix P̂ ≈ P , given by:

P̂ij := exp[−BCE(yLE(j), ŷPTE
out (i))]. (3)

In practice, we do not minimize L, since the max function presents an obstacle to effective

training. Therefore, we relax the max operation to a function approxmax. This finally gives

us our Symbol Grounding Loss LSG:

LSG(ŷ
PTE
out , yLE) := 1−meani(approxmaxj(exp[−BCE(yLE(j), ŷPTE

out (i))])). (4)

In our experiments, we set approxmax equal to the 2-norm; however, we did not find that

performance was sensitive to the exact choice of approxmax, and other choices are also

reasonable.

Having defined LSG, we incorporate it into our training pipeline as follows: First, we

freeze the digit classifier D, and train S under LSG. This begins to train S while also

learning a permutation matrix P̂ ≈ P (defined by (3)). Note that since we are working with

30

the Ungrounded Visual Sudoku task, the permutation matrix is learned by means of SATNet

itself, and it is impossible for labels to be leaked, since the training process does not even

have access to labels for the input entries.

Second, once P̂ has converged to a clear permutation matrix, we freeze this permutation

and use it to align the PTE labels with the correct LE labels by multiplying the final

outputs ŷPTE
out by the learned P̂ . Now that the Symbol Grounding Loss is no longer needed,

we switch to the traditional BCE loss and complete the training of S, also unfreezing D to

allow additional training.

3.2.3 Proofreading

The performance of a SATNet architecture can be improved by the addition of a Proofreader

layer. This consists of a linear layer added just before the SATNet layer S, initialized to

a slightly noisy identity transform RN×K → RN×K . (In the Sudoku case, N = 81 and

K = 9.) We freeze the layers in the original model, and train only the proofreader layer.

This is an optional final step resulting in a slight performance improvement. We find that the

Proofreader layer also improves the performance of the original SATNet (with label leakage),

in both the visual and nonvisual Sudoku settings.

3.3 Results

The above procedure allows us to achieve comparable results on an Ungrounded Visual

Sudoku Dataset as the original SATNet architecture has in the grounded setting5, with

results being presented in Table 2. We may thus claim to solve the Symbol Grounding

Problem in the case of Visual Sudoku.

All experiments were carried out on a Nvidia GTX1070 across 100 epochs, with each

epoch taking roughly 2 minutes. The Adam optimiser was used with learning rate of 2 ×
5Note that training under a grounded dataset is equivalent to the label leakage problem described in [11]

31

10−3 for the SATNet layer, and 10−5 for the digit classifier [53]. Standard deviations were

calculated across 5 runs. We used the Sudoku Dataset made available under an MIT License

from the original SATNet work [13].

Model Grounded vs. Total Board Per-Cell Visual

Configuration Ungrounded Data Accuracy (%) Accuracy (%) Accuracy (%)

Original SATNet grounded 66.5±1.0 98.8±0.1 99.0±0.0

Original SATNet ungrounded 0±0.0 11.2±0.1 11.6±0.0

Our Method ungrounded 64.8±3.0 98.4±0.2 98.9±0.1

Table 2: Performance of our method compared to the original SATNet architecture between

grounded and ungrounded versions of the Visual Sudoku problem. Note that we distinguish

the total board accuracy (how many 81-cell boards are completely correct) from per-cell

accuracy (how many board cells are correct) and visual accuracy (how many input board

cells are correct). Our method achieves comparable performance on a significantly more

difficult version of the problem, thus solving the Symbol Grounding Problem.

Figure 6: Permutation matrices extracted from the Symbol Grounding Loss function. On

the left is a matrix extracted given a clustering with high accuracy, and the right matrix

shows the results in a case where the clustering accuracy was below the necessary threshold

(see Section 3.3.1).

During our pre-training pipeline, the clustering step achieves 95.6 ± 0.4% clustering ac-

32

curacy. Under the Symbol Grounding Loss, our self-grounded training achieves 22.3± 1.0%

per-cell accuracy. One thing to note is that the self-grounded training step is susceptible to

overfitting, and one needs to employ early stopping on the basis of per-cell error in order to

learn the permutation matrix P̂ . See Figure 6 for an example of a learned P̂ matrix.

Note that it is expected that the ungrounded version of the dataset will produce slightly

worse results since it carries less information in its labels than its grounded counterpart. An-

other relevant aspect is that InfoGAN itself is sensitive to random seed. 4/10 runs converge

to a clustering below the threshold necessary to ground symbols. We discuss this limitation

further in Section 3.3.1.

3.3.1 Effect of Clustering Accuracy

An important ablation test to define some limitations of our approach is a study on the

effect of clustering accuracy on our pre-training performance. It is difficult to measure this,

as performance could vary based on the distribution of predictions across clusters, not only

raw clustering accuracy. In this study we run our pipeline against InfoGAN at different

stages of its training. In this way the cluster assignments start out uniform (based on noisy

initialization) and gradually anneal to a 89.6±7.7% accurate clustering. We find that our

system requires roughly at least 88% clustering accuracy in order for the rest of the pipeline

to progress. This is shown in Figure 7. While this is a notable limitation to our approach,

solving Ungrounded Visual Sudoku was not at all possible with SATNet prior to this work.

Furthermore, a threshold of 88% accuracy is not nearly as high as one might naively expect.

Given that our input dataset contains on average 36.2 input cells per board, 88% digit

classification accuracy gives less than a 0.1% chance of identifying an input board state

perfectly with the initial clustering.

33

Figure 7: The effect of InfoGAN’s clustering accuracy on our method’s total board accuracy

(blue) and per-cell accuracy during the Symbol Grounding Loss training phase (orange).

Each pair of points connected by a dashed line indicates a different experiment. We note

the sharp performance drop at roughly 88% clustering accuracy.

3.3.2 Effect of Distillation

In the case that the clustering algorithm used in our first pre-training phase is differentiable,

the distillation step becomes optional. Despite this, it is desirable to distill our clustering

model if there exists some smaller architecture that can achieve similar performance in the

supervised setting. This is the case with InfoGAN, which in its standard form uses an ar-

chitecture with 7,307,997 parameters. We distill this into a LeNet-derived architecture [51],

with only 1,049,080 parameters and comparable performance, as shown in Table 3. Train-

ing speed changes from 602 ± 5 seconds/epoch to 255 ± 3 seconds/epoch between the two

architectures.

3.3.3 Effect of Proofreading

Proofreading improves the performance of both visual and non-visual Sudoku, as seen in

Table 4. We achieve the following results by training the proofreader with ungrounded

34

Digit Classifier Digit Clustering Accuracy (%)

InfoGAN 89.6±7.7

Distilled LeNet 86.2±13.5

Table 3: The effect of distilling InfoGAN into a smaller LeNet-based convolutional architec-

ture. InfoGAN performance has a tendency to plateau at different levels based on seed. Here

we show performance across all runs, whereas successful ones are used in the downstream

pipeline. A “successful” InfoGAN run will plateau at roughly 95% accuracy.

Datasets even if the original model which it augments was trained with the grounded version.

Model Proofreader Total Board Per-Cell Visual

Configuration Present? Accuracy (%) Accuracy (%) Accuracy (%)

Original Non-visual no 96.6±0.3 99.9±0.0 N/A

Original Non-visual yes 97.1±0.3 99.9±0.0 N/A

Original Visual no 66.5±1.0 98.8±0.1 99.0±0.0

Original Visual yes 67.6±1.2 98.6±0.1 99.0±0.0

Our Method no 62.8±3.2 98.6±0.1 98.9±0.1

Our Method yes 64.8±3.0 98.4±0.2 98.9±0.1

Table 4: The effect of adding a proofreading layer to the original versions of SATNet for

both visual and non-visual Sudoku datasets, as well as the pre-training method proposed in

this paper. We show that a proofreader uniformly improves the Total Board Accuracy of

SATNet.

We note that the numbers above from the original architectures reflect our reproduction

of the results in the original paper. Please see Appendix A for further details.

35

3.4 Discussion

3.4.1 Sensitivity of SATNet to Random Seeds

It was described in [11] that SATNet exhibits a high sensitivity to the choice of random

seed. For instance, 8 out of 10 random seeds would fail even with label leakage. While

we initially reproduced this behavior, such sensitivity can in fact be circumvented with a

minor correction to the PyTorch implementation, detailed further in Appendix A. We use

the corrected, stable model for comparison in all our results.

3.4.2 Incorrect Upper Performance Bound

In the original SATNet paper, it is argued that the performance of the visual Sudoku model

is bound by the probability of identifying all the input cells on a particular board correctly.

Thus when using LeNet, which has a classification accuracy of 99.2%, the best performance

we can expect on our dataset with 36.2 input cells on average is 0.99236.2 = 74.8% [51, 13].

This is not exactly accurate.

It is not necessarily true that the SATNet layer cannot solve a board correctly if some

number of input cells are wrong. Intuitively, if one finds two of the same numbers as inputs

in a row of a Sudoku puzzle, one can infer that one of those inputs might have been classified

incorrectly. This can then be used to make an educated guess about the correct final board

state. We are able to show that the SATNet layer is actually able to reason about incorrect

input cells to a certain extent. Interestingly, SATNet’s ability to reason is affected by whether

an incorrectly labeled digit results in an unsolvable board or not. It is also affected by the

presence of a Proofreader layer. Details on these experiments can be found in Appendix B.

While the upper bound posed originally may not be strictly correct, it is still a good

guideline. Deriving a strict upper performance bound is likely quite difficult as the mathe-

matics of logical problems such as Sudoku are not fully understood.

36

4 Limitations & Future Work

4.1 Learning Complexity Bound Strength

In section 2.3.2 we discussed a pair of complexity bounds which show that learning un-

grounded datasets is at least as hard as learning grounded ones, and that training both

neural and connectionist models is at least as difficult as training both in isolation.

We do however believe that stronger bounds could be derived for these problems. Our

empirical results, as well as the findings in [11] seem to indicate that symbol grounding for

visual sudoku is strictly harder in the ungrounded case. Further investigation is required in

order to prove this, however.

4.2 Clustering Limitations

While our method is able to address a new class of Visual MAXSAT problems with SATNet,

it is limited by the need to prime the digit classifier with correct data clusters (see Section

3.3.1). This imposes a constraint on which datasets can be used as visual inputs to this

pipeline. One facet of this limitation is the fact that the current Symbol Grounding Loss

function only supports inferring a permutation between the pre-trained encoding and the

label encoding. This means that if there are K label classes, the clustering algorithm must

cluster the input data accurately in K clusters. One might imagine allowing the Symbol

Grounding Loss to support a more general surjective mapping between encoding domains,

allowing for a higher number of clusters (and consequently a higher accuracy).

A second limitation is the tendency of the Symbol Grounding Loss to overfit somewhat

quickly. While we experimented with several loss function formulations, further experimen-

tation may prove useful, potentially with the inclusion of regularizers.

We believe neither of these limitations are fundamental; future investigation may help to

alleviate them.

37

5 Conclusion

Our work lays out a foundation for understanding symbol grounding in the context of ma-

chine learning applications. We formalize the phenomenon, and discuss how different aspects

of symbol grounding affect learning difficulty; Such as the distinction between grounded and

ungrounded datasets, as well as the difference between fully and partially learnable architec-

tures. We then demonstrate a self-supervised pre-training method for solving Ungrounded

Visual Sudoku. The ability to solve the more difficult Ungrounded Visual MAXSAT prob-

lems contrasts markedly with the previous state of the art, which was unable to surpass 0%

accuracy on these tasks. This work extends the current state of the art for logical constraint-

learning neurosymbolic methods, a promising area of research which boasts the potential to

dramatically broaden the range of problems which machine learning can address.

38

References

[1] Stevan Harnad. The symbol grounding problem. Physica D Nonlinear Phenomena,

42(1-3):335–346, June 1990.

[2] Jonathan St B. T. Evans. Heuristic and analytic processes in reasoning*. British Journal

of Psychology, 75(4):451–468, 1984.

[3] Daniel Kahneman. Thinking Fast and Slow. Anchor Canada, 2013.

[4] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436–444, May 2015.

[5] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber,

Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On Evalu-

ating Adversarial Robustness. Preprint arXiv:1902.06705, 2019.

[6] Samuel Henrique Silva and Peyman Najafirad. Opportunities and Challenges in Deep

Learning Adversarial Robustness: A Survey. Preprint arXiv:2007.00753, 2020.

[7] Erico Tjoa and Cuntai Guan. A Survey on Explainable Artificial Intelligence (XAI):

Towards Medical XAI. Preprint arXiv:1907.07374, 2019.

[8] Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of Gradient-Based

Deep Learning. In International Conference on Machine Learning (ICML), 2017.

[9] Artur d’Avila Garcez and Luis C. Lamb. Neurosymbolic AI: The 3rd Wave. Preprint

arXiv:2012.05876, 2020.

[10] John Haugeland. Artificial Intelligence: the Very Idea. MIT Press, 1985.

[11] Oscar Chang, Lampros Flokas, Hod Lipson, and Michael Spranger. Assessing SATNet's

ability to solve the symbol grounding problem. In H. Larochelle, M. Ranzato, R. Hadsell,

39

M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems

(NeurIPS), 2020.

[12] David Barrett, Felix Hill, Adam Santoro, Ari Morcos, and Timothy Lillicrap. Measuring

abstract reasoning in neural networks. In Jennifer Dy and Andreas Krause, editors,

Proceedings of the 35th International Conference on Machine Learning, volume 80 of

Proceedings of Machine Learning Research, pages 511–520. PMLR, 10–15 Jul 2018.

[13] Po-Wei Wang, Priya L. Donti, Bryan Wilder, and Zico Kolter. SATNet: Bridging deep

learning and logical reasoning using a differentiable satisfiability solver. In International

Conference on Machine Learning (ICML), 2019.

[14] Sever Topan, David Rolnick, and Xujie Si. Techniques for Symbol Grounding with

SATNet. Neural Information Processing Systems 2021, 2021.

[15] Angelo Cangelosi. Solutions and open challenges for the symbol grounding problem.

Int. J. Signs Semiot. Syst., 1:49–54, 2011.

[16] Luc Steels. The symbol grounding problem has been solved. so what’s next? Symbols,

Embodiment and Meaning. Oxford University Press, Oxford, UK, 01 2007.

[17] Mariarosaria Taddeo and Luciano Floridi. A praxical solution of the symbol grounding

problem. Minds and Machines, 17(4):369–389, Dec 2007.

[18] Mariarosaria Taddeo and Luciano Floridi. Solving the symbol grounding problem: a

critical review of fifteen years of research. Journal of Experimental & Theoretical Arti-

ficial Intelligence, 17(4):419–445, 2005.

[19] Selmer Bringsjord. The symbol grounding problem . . . remains unsolved. Journal of

Experimental & Theoretical Artificial Intelligence, 27(1):63–72, 2015.

40

[20] Krystyna Bielecka. Why taddeo and floridi did not solve the symbol grounding problem.

Journal of Experimental & Theoretical Artificial Intelligence, 27(1):79–93, 2015.

[21] Silvia Coradeschi and Alessandro Saffiotti. An introduction to the anchoring problem.

Robotics and autonomous systems, 43(2-3):85–96, 2003.

[22] Silvia Coradeschi, Amy Loutfi, and Britta Wrede. A short review of symbol grounding

in robotic and intelligent systems. KI - KunstlicheIntelligenz, 27 : 129−−136, 052013.

[23] Moritz Tenorth, Daniel Nyga, and Michael Beetz. Understanding and executing in-

structions for everyday manipulation tasks from the world wide web. In 2010 IEEE

International Conference on Robotics and Automation, pages 1486–1491, 2010.

[24] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenen-

baum. Neural-symbolic vqa: Disentangling reasoning from vision and language under-

standing. Advances in neural information processing systems, 31, 2018.

[25] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun Wu.

The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from

natural supervision. International Conference on Learning Representations 2019, 2019.

[26] Robin Manhaeve, Sebastijan Dumančić, Angelika Kimmig, Thomas Demeester, and

Luc De Raedt. DeepProbLog: Neural Probabilistic Logic Programming. In Advances

in Neural Information Processing Systems (NeurIPS), 2018.

[27] Tao Meng and Kai-Wei Chang. An Integer Linear Programming Framework for Mining

Constraints from Data. Preprint arXiv:2006.10836, 2020.

[28] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-

duction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

41

[29] James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-

End Constrained Optimization Learning: A Survey. Preprint arXiv:2103.16378, 2021.

[30] Brandon Amos and J. Zico Kolter. OptNet: Differentiable Optimization as a Layer in

Neural Networks. In International Conference on Machine Learning (ICML), 2017.

[31] Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differen-

tiable sorting and ranking. In International Conference on Machine Learning (ICML),

2020.

[32] Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Ro-

linek. Differentiation of blackbox combinatorial solvers. In International Conference on

Learning Representations (ICLR), 2020.

[33] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and

David L. Dill. Learning a SAT Solver from Single-Bit Supervision. In International

Conference on Learning Representations (ICLR), 2019.

[34] Wang-Zhou Dai, Qiu-Ling Xu, Yang Yu, and Zhi-Hua Zhou. Tunneling Neural Per-

ception and Logic Reasoning through Abductive Learning. Preprint arXiv:1802.01173,

2018.

[35] Rasmus Berg Palm, Ulrich Paquet, and Ole Winther. Recurrent Relational Networks.

In Advances in Neural Information Processing Systems (NeurIPS), 2018.

[36] Richard Evans and Edward Grefenstette. Learning Explanatory Rules from Noisy Data.

Journal of Artificial Intelligence Research, 2017.

[37] Sebastian Nowozin and Christoph Lampert. Structured learning and prediction in com-

puter vision. Foundations and Trends in Computer Graphics and Vision, 6:185–365, 01

2011.

42

[38] Christian Bessière, Abderrazak Daoudi, Emmanuel Hébrard, George Katsirelos, Nadjib

Lazaar, Younes Mechqrane, Nina Narodytska, Claude-Guy Quimper, and Toby Walsh.

New Approaches to Constraint Acquisition. In Data Mining and Constraint Program-

ming, volume 10101 of Lecture Notes in Computer Science, pages 51–76. Springer In-

ternational Publishing AG, 2016.

[39] Mokanarangan Thayaparan, Marco Valentino, Deborah Ferreira, Julia Rozanova, and

André Freitas. ∂-Explainer: Abductive Natural Language Inference via Differentiable

Convex Optimization. Preprint arXiv:2105.03417, 2021.

[40] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief

nets. Neural Comput, 18(7):1527–1554, Jul 2006.

[41] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-

wise training of deep networks. In Advances in Neural Information Processing Systems

(NeurIPS), 2007.

[42] Huanru Henry Mao. A Survey on Self-supervised Pre-training for Sequential Transfer

Learning in Neural Networks. Preprint arXiv:2007.00800, 2020.

[43] Mathilde Caron, Piotr Bojanowski, Julien Mairal, and Armand Joulin. Unsupervised

Pre-Training of Image Features on Non-Curated Data. In International Conference on

Computer Vision (ICCV), 2019.

[44] Dongkuan Xu and Yingjie Tian. A comprehensive survey of clustering algorithms.

Annals of Data Science, 2(2):165–193, Jun 2015.

[45] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter

Abbeel. InfoGAN: Interpretable Representation Learning by Information Maximizing

Generative Adversarial Nets. In Advances in Neural Information Processing Systems

(NeurIPS), 2016.

43

[46] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks.

In Advances in Neural Information Processing Systems (NeurIPS), 2014.

[47] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural

Network. Preprint arXiv:1503.02531, 2015.

[48] Lei Jimmy Ba and Rich Caruana. Do Deep Nets Really Need to be Deep? In Advances

in Neural Information Processing Systems (NeurIPS), 2014.

[49] Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins,

James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia

Hadsell. Policy Distillation. In International Conference on Learning Representations

(ICLR), 2016.

[50] Gregor Urban, Krzysztof J. Geras, Samira Ebrahimi Kahou, Ozlem Aslan, Shengjie

Wang, Rich Caruana, Abdelrahman Mohamed, Matthai Philipose, and Matt Richard-

son. Do Deep Convolutional Nets Really Need to be Deep and Convolutional? In

International Conference on Learning Representations (ICLR), 2016.

[51] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[52] Luis C. Lamb, Artur Garcez, Marco Gori, Marcelo Prates, Pedro Avelar, and Moshe

Vardi. Graph Neural Networks Meet Neural-Symbolic Computing: A Survey and Per-

spective. In International Joint Conference on Artificial Intelligence (IJCAI), 2020.

[53] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In

International Conference on Learning Representations (ICLR), 2015.

44

A Random Seed Sensitivity Fix

There are two aspects of the implementation which alleviate the sensitivity of SATNet on

random seed. Please note that for this section we discuss the SATNet architecture from the

original paper trained on an Grounded Visual Sudoku dataset [13]. The first was a minor

bug in the CUDA implementation of SATNet’s backprop calculation. The second relates to

how supervision is provided on the digit classifier D during training.

Recall in section 3.1.1 that we can partition any Grounded Visual MAXSAT labels into

input and output variable labels. Let us also reference our notation from section 3.2, where we

have our digit classifier D(x) = ŷPTE
in and our SATNet layer S(ŷPTE

in) = ŷPTE
out . We essentially

have two options for returning the architecture’s predictions for the input variables, as they

are present in both ŷPTE
in and ŷPTE

out . The choice of which of these to return results in a

significant performance difference. The original SATNet model returned the input variable

predictions from ŷPTE
out , whereas we return the ones in ŷPTE

in . Note that since the input

variables are held constant in the SATNet layer S, the nominal value of the input variables

is the same between these two returns. The only difference is the implication of how gradients

are computed.

45

B Effect of Error Injection for Visual Sudoku

We construct an experiment by running the nonvisual Sudoku model, and perturbing input

cell labels in the test datasets. Under no change to the original architecture, a SATNet

layer trained on correct inputs is able to solve some small percentage of the boards with

erroneous inputs. Interestingly, SATNet’s ability to solve these puzzles depends on whether

the error injection resulted in an unsolvable board or not. While adding a proofreader

improves performance under normal circumstances, in the presence of injected errors it

worsens performance.

Number of Injected Input Total Board Accuracy (%)

Cell Errors per Board Solvable Unsolvable

0 96.6 ± 0.3 96.6 ± 0.3

1 3.2 ± 2.0 0.0 ± 0.0

2 0.1 ± 0.0 0.0 ± 0.0

3 0.0 ± 0.0 0.0 ± 0.0

Table 5: Solvable/Unsolvable split under error injection for traditional nonvisual Sudoku

solver. Some boards are still solved by SATNet even when not all input cells are correct.

46

Number of Injected Input Total Board Accuracy (%)

Cell Errors per Board Solvable Unsolvable

0 97.1 ± 0.3 97.1 ± 0.3

1 1.9 ± 0.0 0.0 ± 0.0

2 0.0 ± 0.0 0.0 ± 0.0

3 0.0 ± 0.0 0.0 ± 0.0

Table 6: Solvable/Unsolvable split under error injection for nonvisual Sudoku solver with

proofreader.

C Codebases used for Experimentation

Our experiments are built on top of two codebases. We leverage the SATNet implementation

provided by the original authors at https://github.com/locuslab/SATNet, in addition to

an InfoGAN implementation available at https://github.com/Natsu6767/InfoGAN-PyTorch.

We have made our implementation public at https://github.com/SeverTopan/SATNet.

47

	Introduction
	Neural and Symbolic Machine Learning
	Symbol Grounding, and Why it is Difficult
	Contributions

	Proposed Symbol Grounding Formalism
	Background
	Connectionist vs. Symbolic Systems
	Symbol Grounding Prior Work
	Formalism Scope

	Formalization
	General Form
	The Composite Function fSfR Must be Learnable
	The Nature of Compute in fR is Non-Symbolic
	Presence of z is Optional

	Implications of our Formalism
	Symbol Grounding Model Architecture Taxonomy
	Learning Complexity Bounds

	Discussion
	On The Symbol Grounding Problem Being Solved
	Relevance of Social Symbol Grounding

	Symbol Grounding for Visual MAXSAT Problems Using SATNet
	Background
	The Problem
	Logical Constraint Solvers & SATNet
	Self-Supervised Pre-Training
	Clustering Algorithms & InfoGAN
	Knowledge Distillation

	Method
	Clustering
	Self-Grounded Training
	Proofreading

	Results
	Effect of Clustering Accuracy
	Effect of Distillation
	Effect of Proofreading

	Discussion
	Sensitivity of SATNet to Random Seeds
	Incorrect Upper Performance Bound

	Limitations & Future Work
	Learning Complexity Bound Strength
	Clustering Limitations

	Conclusion
	References
	Random Seed Sensitivity Fix
	Effect of Error Injection for Visual Sudoku
	Codebases used for Experimentation

