
 

Evaluation of forecast models for Sclerotinia stem rot (Sclerotinia sclerotiorum) of soybean in 

Québec 

 

 

 

 

Césarée Morier-Gxoyiya 

 

 

 

 

Department of Plant Science 

Faculty of Agricultural and Environmental Sciences 

Macdonald Campus of McGill University, Montréal 

21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3V9 

 

 

 

 

December 2021 

 

 

 

 

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree 

of  Master of Science 

 

 

 

 

ã Césarée Morier-Gxoyiya, 2021 



 
 

2 

Table of Contents 

Table of Contents .......................................................................................................................... 2 

Acknowledgements ....................................................................................................................... 4 
Abstract .......................................................................................................................................... 5 

Résumé ........................................................................................................................................... 6 
Contribution of authors ................................................................................................................ 7 

List of Tables ................................................................................................................................. 8 
List of Figures ................................................................................................................................ 9 

Chapter 1: Introduction ............................................................................................................. 11 
1.1 Objectives ......................................................................................................................................... 13 
1.2 Hypotheses ....................................................................................................................................... 13 

Chapter 2: Literature Review .................................................................................................... 14 
2.1 Québec soybean industry ............................................................................................................... 14 
2.2 Soybean development ..................................................................................................................... 14 
2.3 Diseases of soybean ......................................................................................................................... 15 
2.4 Sclerotinia stem rot (SSR) .............................................................................................................. 16 

2.4.1 Life cycle and dispersal ............................................................................................................................. 16 
2.4.2 Management strategies .............................................................................................................................. 25 

2.5 SSR prediction modelling ............................................................................................................... 30 
2.6 Model validation ............................................................................................................................. 34 

Connecting text between Chapter 2 and Chapter 3 ................................................................. 37 

Chapter 3: Effect of agro-environmental variables on Sclerotinia sclerotiorum carpogenic 
germination and evaluation of SSR bioclimatic prediction models in soybean (Glycine max) 
in Québec ..................................................................................................................................... 38 
3.1 Introduction ........................................................................................................................... 38 

3.2 Materials and Methods ......................................................................................................... 39 
3.3 Results .................................................................................................................................... 51 

3.3.1 Association between apothecia at selected soybean growth stages and DSI ........................... 51 
3.3.2 Association between apothecia and selected weather variables .............................................. 54 
3.3.3 Association between SSR severity and selected weather variables ......................................... 56 
3.3.4 Effect row spacing and location on timing and abundance of apothecia formation ............. 57 
3.3.5 Disease severity index at the research centres from 2019 to 2021   ......................................... 62 
3.3.6 Validation of Sclerotinia-related prediction models ................................................................. 63 

3.4 Discussion .............................................................................................................................. 69 



 
 

3 

3.5 Conclusion ............................................................................................................................. 75 
Connecting text between Chapter 3 and Chapter 4 ................................................................. 77 

Chapter 4: Validation and modification of Sclerotinia sclerotiorum carpogenic germination 
prediction models in soybean (Glycine max) in Québec .......................................................... 78 

4.1 Introduction ........................................................................................................................... 78 
4.2 Materials and methods ......................................................................................................... 80 

4.2.1 Experimental sites and data collection ....................................................................................... 80 
4.2.1.1 Original model validation and model modifications .............................................................................. 80 
4.2.1.2 External validation of modified models ................................................................................................. 80 

4.2.2 Statistical Analysis ....................................................................................................................... 81 
4.2.2.1 Validation of original Willbur apothecia formation models ................................................................... 81 
4.2.2.2 Comparison of model performance at two thresholds ............................................................................ 82 
4.2.2.3 Calibration performance ......................................................................................................................... 82 

4.2.3 Modification of Willbur models for Québec conditions ........................................................... 82 
4.2.4 Validation of modified Willbur models ..................................................................................... 85 

4.3 Results .................................................................................................................................... 88 
4.3.1 Proportion of cases and controls ................................................................................................ 88 
4.3.2 Validation of original Willbur apothecia formation models .................................................... 89 

4.3.2.1 AUC pairwise comparisons from 2019 to 2021 ..................................................................................... 89 
4.3.2.2 Youden index from 2019 to 2021  .......................................................................................................... 90 
4.3.2.3 AUC pairwise comparisons by year ....................................................................................................... 91 
4.3.2.4 AUC pairwise comparisons during the flowering period ....................................................................... 91 

4.3.3 Calibration plots of original Willbur models ............................................................................ 93 
4.3.4 Modified model fit (70% 2019-2021) .......................................................................................... 94 

4.3.4.1 Calibration plots of modified Willbur apothecia formation models ..................................................... 100 
4.3.5 Modified apothecia formation models ..................................................................................... 103 

4.3.5.1 Internal validation (30% 2019-2021) .................................................................................................... 103 
4.3.5.2 Youden index for internal validation (30% 2019-2021) ....................................................................... 103 
4.3.5.3 External validation 2017-2018 ............................................................................................................. 107 
4.3.5.4 Youden index for external validation in 2017-2018 ............................................................................. 107 

4.3.6 Dominance analysis for modified apothecia formation models ............................................. 110 
4.4 Discussion ............................................................................................................................ 111 

4.5 Conclusion ........................................................................................................................... 115 
Chapter 5: General discussion ................................................................................................. 116 

Chapter 6: General conclusion ................................................................................................ 120 
References .................................................................................................................................. 121 

Appendix 1 - Tables .................................................................................................................. 130 
Appendix 2 - Figures ................................................................................................................. 147 
 

 



 
 

4 

Acknowledgements 
This project was a collaborative effort, and I am very thankful to all who were involved for their 

contributions, help, guidance, and support along the way. To my supervisors Dr. Tanya Copley, 

CÉROM, and Dr. Valérie Gravel, McGill University, I cannot thank you enough for sharing your 

expertise with me. I have learned so much from your insights. I am also immensely grateful for 

the quality of your mentorship, thoughtful advice, and wealth of support and encouragements 

throughout my studies. I would like to thank my committee members Dr. Gaétan Bourgeois, 

AAFC, and Dr. Philippe Séguin, McGill University, for so generously taking the time to provide 

suggestions and feedback that were crucial in improving my work. I am also grateful for the 

project’s partners including Yves Dion, MAPAQ, Yvan Faucher, MAPAQ, Francis Allard, IRDA, 

Dr. Anne Vanasse, Laval University, and Dr. Mamadou Fall, AAFC. Your perspectives and ideas 

during our discussions have greatly enriched my experience. 

 

Marc Samoisette, Parghat Gopal and Anais Pierre-Estimé, I thank you for your time and assistance 

in the field at McGill. It was a joy to work with you during what have been incredibly hot and dry 

summers. Also, I would like to acknowledge the help from the team at CÉROM including Maxime 

Carrier and Naila Hafid for coordinating field and laboratory visits, and to Dominique Plouffe, 

AAFC, for helping with CIPRA. I am also very grateful to producers involved in the project and 

to the MAPAQ agronomists for the data collection in commercial sites.  

 

I would also like to extend my thanks to the Gravel lab members and the community in the Plant 

Science department, despite seeing less of you, I felt your continuous support. I am also grateful 

to have received financial support from the Schulich Graduate Fellowship, the Natural Sciences 

and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec 

(FRQNT) to undertake this project. I would like to thank the MAPAQ for funding this project 

under the sub-component 3.2 of the 2013-2018 Prime-Vert program. 

 

To my family and friends, thank you for listening to my rambles and always hyping me up.  

 



 
 

5 

Abstract 

In Québec’s soybean (Glycine max (L.) Merr.) farms, Sclerotinia stem rot (SSR), a disease caused 

by the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary, is commonly controlled by 

chemical fungicides sprayed during the crop’s flowering growth stages. However, fungicide use 

efficiency varies largely based on the risk of disease outbreak, which is strongly influenced by 

agro-environmental conditions. Unnecessary or improperly timed fungicide applications are costly 

not only economically, but also environmentally. Prediction models can guide disease 

management decisions by informing of the necessity and timing of fungicide applications. In this 

project, S. sclerotiorum sclerotia were placed in commercial and research fields across soybean-

producing regions of Québec. The goal was to assess the relationship between environmental and 

agronomic conditions and carpogenic germination of S. sclerotiorum. The predictive ability of 

Sclerotinia-related logistic regression models was evaluated under Québec’s climatic conditions 

using data collected over three growing seasons. Based on the nature of the models selected, the 

predictive performance was assessed for two disease indicators: disease severity and apothecia 

presence. Upon validation and improvement, the models with the highest accuracy and predictive 

ability could be implemented in an integrated decision-support system for soybean producers in 

Québec. 
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Résumé 

La sclérotiniose (Sclerotinia sclerotiorum (Lib.) de Bary) est une maladie qui s’attaque à plusieurs 

cultures, y compris le soya (Glycine max (L.) Merr.). Au Québec, la sclérotiniose est généralement 

contrôlée par l’application de fongicides chimiques pendant les stades de floraison de la culture. 

Cependant, l'efficacité des fongicides varie en fonction du risque d'épidémie, qui est largement 

influencé par les conditions agro-environnementales. Les applications de fongicides de façon 

préventive sont donc parfois superflues, ce qui engendre des coûts non seulement sur le plan 

économique, mais aussi sur le plan environnemental. Les modèles de prévision peuvent guider les 

décisions des producteurs quant à la gestion de la sclérotiniose en les informant de la nécessité et 

du moment le plus propice aux applications de fongicides. Dans ce projet, des sclérotes pré-

conditionnés de S. sclerotiorum ont été enfouis dans des sites expérimentaux établis dans des 

champs commerciaux et de recherche situés dans des régions productrices de soya au Québec. Le 

but du projet était d'évaluer la relation entre les conditions agronomiques et environnementales sur 

la germination carpogène des sclérotes. En utilisant des données recueillies de 2019 à 2021 au 

Québec, la performance de différents modèles prédisant le risque de sévérité de la sclérotiniose et 

la formation d’apothécies dans le soya a été évaluée. Une fois validés et modifiés sous le climat 

du Québec, les modèles les plus précis pourraient être utilisés dans un système intégré d'aide à la 

décision pour les producteurs de soya du Québec. 
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Chapter 1: Introduction 

The pathogenic fungus Sclerotinia sclerotiorum (Lib.) de Bary causes diseases on a wide range of 

plant hosts comprising all dicotyledonous and some monocotyledonous plants (Boland and Hall, 

1994). Several of these hosts are economically important oilseed and pulse crops grown throughout 

the world. In Canada, Sclerotinia stem rot (SSR) is a major disease of soybean (Glycine max (L.) 

Merr.), canola (Brassica napus L.), potato (Solanum tuberosum L.), and sunflower (Helianthus 

annuus L.). The fungus produces abundant white mycelium on infected plant tissues. 

Subsequently, sclerotia are produced on plant tissues and are deposited on the soil after harvest. In 

the following years, carpogenic germination of soilborne sclerotia produces apothecia. Ascospores 

are then expulsed from the asci of the apothecia and represent the most critical source of pathogenic 

inoculum for soybean (Boland and Hall, 1994). The long-term survival of sclerotia in soils, some 

report soilborne sclerotium viability of 10 years, makes the control of Sclerotinia diseases 

challenging (Rothman and McLaren, 2018).  

 

In Québec, among the top three soybean-producing provinces in Canada, SSR sporadically occurs 

in soybean fields. Prevailing temperature and humidity during the soybean growing season can 

cause variations in how SSR reduces yields, which has been reported to reach 20% in Québec. 

However, environmental conditions suitable for soybean infections by S. sclerotiorum inoculum 

can exacerbate the problem and affect production even more severely (Breault et al., 2017). Crop 

losses due to SSR result in reductions in soybean grain quantity and quality. In turn, the 

repercussions from the incidence and severity of SSR on the producers’ revenues and the economy 

are substantially affected (Bailey et al., 2004). 

 

To date, there is no silver bullet when it comes to dealing with SSR. Instead, disease control relies 

on the use of multiple management strategies. These include modifying cultural and agronomic 

practices by incorporating non-host crops in rotations, using appropriate tillage and planting 

density, and selecting partially resistant soybean cultivars. Current SSR management in Québec 

also relies on preventative chemical fungicides sprayed according to the crop’s growth stage. In 

soybean, programs generally include fungicide applications at the R1, R3, or both R1 and R3 

growth stages depending on the chemistry used and the historical disease pressure in the field 

(Table A. 1) (Tremblay et al., 2016). Such practice may lead to superfluous applications when the 
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risk of SSR infection is low or inexistent. This prophylactic measure represents a health risk for 

the environment and humans, an unnecessary financial cost to producers, and may lead to 

resistance in the pathogenic fungus (Duan et al., 2013). 

 

Forecasting the presence of S. sclerotiorum inoculum or potential SSR disease severity is a 

management strategy gaining popularity among farmers. Recent advances in modelling 

technologies, and the resolution and availability of weather data allow the development of precise 

and efficient tools to inform producers of whether fungicide use is justified. Moreover, if the risk 

of disease development is high, models can provide indications for adequate timing of applications. 

Forecasting models for SSR of soybean and canola have been developed in Canada (Turkington, 

1993) and in the United States (Willbur et al., 2018b). However, no model has been developed or 

validated for soybean SSR under Québec’s weather conditions. Evaluating and comparing the 

effectiveness of models developed outside of Québec under the province’s growing conditions and 

agronomic practices is the first step in developing a tool that producers can use to effectively 

manage SSR in soybean. 
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1.1 Objectives 
The general objective of this project is to evaluate environmental and agronomic conditions that 

affect S. sclerotiorum apothecia formation and SSR disease severity in research and commercial 

fields. This project also aims to test, compare, and improve SSR risk and apothecia development 

forecast models in soybean under Québec growing conditions. More specifically, the objectives 

are the following: 

 

1. Describe the association between in-season S. sclerotiorum apothecia development, end-

of-season disease severity level and agro-environmental factors in soybean fields at research 

centres and commercial farms in Québec. 

2. Evaluate the performance of SSR severity and apothecial formation forecast models under 

Québec weather and agronomic conditions in commercial and research soybean fields. 

a. Test models for 17.8-, 38.1-, and 76.2-cm row spacing of soybean in Québec. 

b. Identify the most promising model for use in Québec soybean production. 

c. Evaluate action thresholds to use with selected reliable models in Québec to further 

integrate them into a decision-support system for soybean producers. 

3. Adapt previously developed SSR severity and apothecial development forecast models to 

improve their performance under Québec conditions. 

 

1.2 Hypotheses 
1. Environmental variables most strongly associated with S. sclerotiorum apothecia presence 

are relative humidity and temperature.  

2. Narrow row spacing width results in earlier apothecia development by S. sclerotiorum. 

3. Presence of S. sclerotiorum apothecia during the soybean flowering stage explains end-of-

season SSR disease severity levels and soybean yield losses. 

4. End-of-season SSR severity level is best predicted by apothecia formation, or inoculum-

based, models rather than non-inoculum-based prediction models in both commercial and research 

soybean fields in Québec. 

5.  Apothecia formation prediction models updated using data collected in soybean-producing 

regions of Québec from 2019 to 2021 have a higher predictive ability compared to the original 

model equations developed outside of Québec. 
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Chapter 2: Literature Review 
2.1 Québec soybean industry 

Soybeans were introduced in Canada in 1893 as part of forage crop experiments at the Ontario 

Agricultural College. However, soybeans did not gain economic importance until the 1940s. At 

that time, the World Wars increased the oil demand, partly met by a rise in soybean production 

and processing. Even then, soybeans were grown only in Southern Ontario (Hartman et al., 2015). 

In the mid-1970s, the development of new high-yielding soybean cultivars suited for short growing 

seasons and cool weather allowed the expansion of soybean production in Québec and Manitoba. 

Currently, the soybean industry in Canada is mainly concentrated in Ontario, Québec, and 

Manitoba. Ontario is the leading producing province with a share of the national production 

estimated at 64.55% in 2021. Manitoba and Québec are the next highest producing regions 

accounting for 18.34% and 15.37% of Canadian soybean production, respectively (Statistics 

Canada, 2021). 

 

2.2 Soybean development 

The development of the soybean plant is divided into two growth phases; organs responsible for 

photosynthesis and nutrient absorption develop during the vegetative phase, and flowers, pods, 

and seeds form during the reproductive phase. In 1977, Fehr and Caviness designed a convention 

to describe soybean development still in use today (Table A. 1). The vegetative development stages 

(V) start with the emergence of the cotyledons above ground (VE). It continues with developing 

the primary unifoliate leaves until there is no longer contact between the leaf edges (VC). Both the 

cotyledons and primary leaves are arranged oppositely on the main stem. The secondary leaves are 

trifoliate, meaning three leaflets form one leaf, and are positioned alternately on the main stem. 

The subsequent vegetative stages are named after the number of unrolled trifoliate leaves (V1, V2, 

V3, …, Vn). The reproductive development stage (R) begins with the flowering stage (R1-R2), 

continues with the pod growth (R3-R4), seed development (R5-R6), and finally, the plant 

maturation and senescence (R7-R8) (Fehr and Caviness, 1977).  

 

Temperature and photoperiod are key factors that vary with geographical latitude and influence 

the soybean plant development (Singh, 2010). Soybean cultivars are classified in 13 maturity 

groups (MG) based on their time to reach maturity, from earliest (MG 000) to latest (MG X). There 
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are differences in the plant’s response to changes in environmental conditions based on the 

soybean maturity group. In early-maturing soybean varieties, temperature plays a more prominent 

role in plant development compared to day length, whereas the opposite is true for varieties that 

mature later in the growing season (OMAFRA, 2017).  

 

There are also genetic variations in soybean development. Therefore, it is helpful to categorize 

plants based on their growth habits, also referred to as stem types. Determinate soybeans are 

characterized by the interruption of the main stem growth once the plant enters the reproductive 

stage. The terminal bud halts vegetative growth and stem elongation at flowering. Most late-

maturing soybean cultivars (maturity groups of MG V and higher) are determinates and used in 

southern regions of the United States (Singh, 2010).  

 

In indeterminate soybean varieties, the main stem elongation continues after the plant enters the 

flowering stage. Cultivars with maturity groups from MG 000 to MG IV are typically 

indeterminates and primarily grown in northern areas of the United States and Canada (Singh, 

2010).  

 

The third stem type is the semi-determinate, in which flowering does not stop the main stem 

elongation. However, at maturity, the main stem of the semi-determinate plant has fewer nodes 

and is shorter than the indeterminate plant. Currently, only one semi-determinate cultivar is 

commonly produced in the United States. However, identifying the Dt2 gene that specifies semi-

determinacy in soybean is promising for the breeding of semi-determinate commercial varieties 

(Ping et al., 2014). 

 

2.3 Diseases of soybean 

Soybean yields can be reduced by abiotic factors such as unfavorable temperature and rainfall, and 

biotic factors such as pests and diseases. In Canada, the latter is generally the most economically 

damaging (AAFC, 2006); however, the Soybean cyst nematode (Heterodera glycines Ichinohe) 

has been particularly damaging recently in Ontario (Bradley et al., 2021b).  Soybeans are affected 

by over 200 known pathogens worldwide, and close to 40 of them occur in Canada (Hartman et 

al., 2015). These pathogens, even those of minor importance, are for the most part well 
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characterized. Diseases can be classified as bacterial (i.e. bacterial blight), viral (i.e. soybean 

mosaic virus), and fungal or oomycotic (i.e. Sclerotinia stem rot, stem canker, and Phytophthora 

rot) (Bailey et al., 2004). Not all diseases suppress yields in the same way or to the same extent. 

Diseases can be categorized by the plant part damaged: seedling, root, stem, and foliar diseases. 

They can also impact the grain or seed quantity and quality. The importance of yield loss ultimately 

varies based on the pathogen involved, the health status of the plant and its growth stage at the 

time of infection, the extent to which individual plants are infected and colonized by the pathogen, 

the level of plant resistance, and the total area of the field attained. Some pathogens, such as 

Sclerotinia sclerotiorum (Lib.) de Bary causing Sclerotinia stem rot (SSR) in soybean, have a 

known history of causing major yield reductions by affecting pod size and quality. From 2010 to 

2014, an estimated 101 million bushels were lost in the United States and Ontario due to SSR and 

the estimate jumped to 201.6 million bushels for the period of 2015 to 2019 (Allen et al., 2017, 

Bradley et al., 2021a). 

 

2.4 Sclerotinia stem rot (SSR) 

2.4.1 Life cycle and dispersal  

In soybean, SSR is caused by the plant pathogenic fungus Sclerotinia sclerotiorum (Lib.) de Bary. 

The fungus inhabits all continents apart from Arctica and Antarctica. It is described as a 

plurivorous fungus because of its extensive host range, including many herbaceous plants from the 

subclass Dicotyledonae. The non-specificity of the pathogen makes it particularly important in 

agriculture, as many crops are susceptible to infections, including canola, sunflower, soybean, dry 

bean, peanut, potato, and lettuce (Boland and Hall, 1994). An overview of the fungus life cycle 

through carpogenic germination is presented in Figure 2. 1. 

 

Sclerotia constitute a significant component of the life cycle of S. sclerotiorum. They are the 

structures responsible for the long-term survival of the fungus in the soil and the production of 

inoculum. General sclerotia formation in Sclerotinia spp. has been described in detail and was 

initially divided into three phases of development, namely initiation, growth (or development), and 

maturation. Through the initiation phase, hyphal tissue aggregates to form sclerotial initials. In the 

growth phase, the hyphal tissue produces a large white mass and reaches its final size.  During the 

maturation phase, the hyphal tissue consolidates and is surrounded by a dark-pigmented outer rind 
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composed of several layers of peripheral cells (Le Tourneau, 1979). Melanin is responsible for 

sclerotium pigmentation and is an essential protective element of the outer layer as it makes it 

resistant to microbial and environmental degradation (Henson et al., 1999). A fourth development 

phase of S. sclerotiorum sclerotium formation was added by recognizing rind rupture by the 

primordia as the final formation stage (Saharan and Mehta, 2008). Furthermore, Li and Rollins 

(2009) have described sclerotium formation as a six-step process comprising initiation, 

condensation, enlargement, consolidation, pigmentation, and maturation (Li and Rollins, 2009). 

 

Sclerotium formation was studied under laboratory and field conditions and is influenced by 

numerous environmental factors, including temperature, light, pH, soil water potential, and 

nutrient availability (Abawi and Grogan, 1975, Bedi, 1962, Humpherson-Jones and Cooke, 1977, 

Marukawa et al., 2014, Le Tourneau, 1979, Vega and Le Tourneau, 1974, Wang and Le Tourneau, 

1972) (Table 2. 1). 

 

 
Figure 2. 1. Carpogenic germination and infection cycle of S. sclerotiorum (Harvey, 1999). 
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Table 2. 1. Environmental conditions for the formation of S. sclerotiorum sclerotia. 

Environmental Factor Formation of Sclerotia References 

Temperature effect 5°C to 30°C Bedi, 1962 

Le Tourneau, 1979 Numerous, small sclerotia in high 

temperatures 

Fewer, large sclerotia in low 

temperatures 

Light effect Numerous, small sclerotia in light Humperson-Jones and Cooke, 

1977; Marukawa et al., 1975 Fewer, large sclerotia in darkness 

Optimal pH Between 4.0 and 6.0 Marakuwa et al., 1975 

Optimal water potential Between -1 and -56 bars Abawi and Grogan, 1975 

Important nutrients  K, Mg, P, S and Zn Le Tourneau, 1979; 

Vega and Le Tourneau 1974; 

Wang and Le Tourneau, 1972 

 

Sclerotia survival  

Long-term survival of sclerotia in soils is a critical challenge for the control of diseases caused by 

Sclerotinia spp.. Reports of S. sclerotiorum sclerotia longevity in various locations indicate 

different survival times in soil: some observed sclerotia survival of at least two years in Great 

Britain, while others detected three-year-old viable sclerotia in Nebraska (Cook, 1975, Williams 

and Western, 1965). Other studies on different Sclerotinia spp. report sclerotia surviving up to 10 

years in the soil (Rothman and McLaren, 2018). Such variability suggests that environmental and 

biological soil factors and their interaction influence the viability of sclerotia.  

 

Higher rates of sclerotia survival were observed under dry field conditions compared to wet soils 

(Coley-Smith and Cooke, 1971, Imolehin, 1980, Wu and Subbarao, 2008). Field flooding over 26 

to 31 days was found to destroy S. sclerotiorum sclerotia and was proposed as a potential disease 

eradication strategy (Moore, 1949). More recently, soil aeration has been suggested as an 

important factor in sclerotia longevity, partially explaining the rapid rates of degradation under 

flood conditions. S. sclerotiorum sclerotia viability was lower under high soil moisture and 
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temperature coupled with ultralow oxygen concentrations (0.1% O2) compared to normal oxygen 

levels (21% O2) (Wu and Subbarao, 2008). 

 

Burial depth also influences the longevity of sclerotia in the soil. It was observed that sclerotia 

survived better at greater burial depths compared to shallow depths (Adams, 1979). However, 

many others reported fewer sclerotia surviving when buried deeper in the soil profile (Duncan et 

al., 2006, Imolehin, 1980, Matheron and Porchas, 2005, Wu and Subbarao, 2008). 

 

Sclerotia carpogenic germination 

Despite multiple studies on the topic, the importance of a conditioning phase for S. sclerotiorum 

sclerotia carpogenic germination remains a point of contention. The conditioning phase refers to 

the period between sclerotia production and germination during which sclerotia are exposed to a 

cool and moist environment, similar to exposure during winter and spring conditions in temperate 

regions. Based on work on temperature and moisture, some suggested that such a phase was 

necessary for carpogenic germination to take place (Abawi, 1979, Phillips, 1986, Saharan and 

Mehta, 2008). The highest germination rates were obtained with sclerotia conditioned in hydrated 

environments, whereas limited germination rates occurred following dry conditioning (Dillard, 

1995, Foley et al., 2016). Such work suggests that the role of moisture during conditioning of 

sclerotia is critical for carpogenic germination. 

 

The effect of temperature was also studied, and a wide range of conditioning temperatures was 

found to promote sclerotia carpogenic germination. Many studies report successful sclerotia 

conditioning in temperatures below 10°C (Dillard, 1995, Mila et al., 2004, Phillips, 1986, Sun and 

Yang, 2000), while carpogenic germination also occurred following conditioning temperatures 

above 10°C and up to 30°C (Dillard, 1995, Foley et al., 2016, Huang et al., 1998). Dillard (1995) 

studied conditioning temperatures between 4°C and 24°C on the carpogenic germination of 24 

isolates of S. sclerotiorum. Not one conditioning temperature was optimal for sclerotia carpogenic 

germination across isolates. Generally, conditioning temperatures between 8°C and 16°C were 

found to promote carpogenic germination. Foley et al. (2016) observed sclerotia carpogenic 

germination following conditioning under temperatures between -20°C and 30°C, with the highest 

germination rates at conditioning temperatures between 0.5°C and 10°C (Foley et al., 2016).  
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The duration of the conditioning period was also found to affect subsequent carpogenic 

germination rates of two S. sclerotiorum isolates in the United Kingdom. Longer conditioning 

periods at 4°C resulted in faster carpogenic germination once the isolates were exposed to 

temperatures between 10°C and 18°C. However, differences were observed among temperature 

and duration requirements for complete conditioning to be achieved among isolates. In addition, 

carpogenic germination of conditioned (28 days at 4°C) sclerotia buried in the field starting the 

previous December until August of the current year showed that apothecia development was 

reduced for burials made in May and beyond, again with differences among isolates. These results 

were explained by sclerotia being incompletely conditioned prior to burial. Hence, the sclerotia 

buried in winter and early spring completed their conditioning by being exposed to cold 

temperatures and produced apothecia rapidly, while those buried in late spring and summer did 

not complete conditioning which delayed or prevented their carpogenic germination (Clarkson et 

al., 2007). 

 

Some studies challenged the necessity of a conditioning phase for sclerotia germination due to 

disparities in isolates from different geographical origins (Huang et al., 1998, Wu and Subbarao, 

2008). For example, Wu and Subbarao (2008) showed that S. sclerotiorum isolates from California 

germinated after being incubated at 18°C in a moist environment. There was no chilling period 

between sclerotia production and germination. The need for conditioning prior to sclerotia 

germination might be dependent on many factors, including the S. sclerotiorum isolate, sclerotia 

geographical area of origin, the temperature under which they were produced, and the host from 

which they were formed (Foley et al., 2016, Huang et al., 1998). 

 

Sclerotia myceliogenic germination 

Sclerotia germination can take two forms: myceliogenic or carpogenic. Following either type of 

germination, sclerotia are no longer viable. Myceliogenic germination produces vegetative hyphae, 

or mycelium, and is affected by numerous factors. Close contact must be established between the 

germinating S. sclerotiorum sclerotia and the host for an infection to occur successfully. As such, 

myceliogenic germination is of minimal importance for SSR in soybeans as it rarely occurs under 

field conditions (Abawi and Grogan, 1975). Myceliogenic germination is influenced by the 
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integrity of the melanized outer rind, moisture level, and temperature (Huang et al., 1998, Lane et 

al., 2019). Some investigated the ability of temperature treatments to induce myceliogenic 

germination over carpogenic germination with conflicting results suggesting that a more detailed 

examination of the role of temperature in the type of sclerotial germination is required (Lane et al., 

2019, Foley et al., 2016, Huang et al., 1998). 

 

Sclerotia carpogenic germination 

Carpogenic germination, unlike myceliogenic germination, plays a major role in SSR development 

on soybean (Abawi and Grogan, 1975). Through this type of germination, the sclerotium initiates 

stipes which produce ascospores within apothecia in approximately 3 to 4 weeks (Twengström et 

al., 1998). The initial formation of stipes, also called carpophores, starts on soilborne sclerotia, 

occurs below the soil surface and does not require light (Bedi, 1962, Coley-Smith and Cooke, 

1971, Willetts and Wong, 1980). Dry conditions can hinder carpogenic germination since the 

stipes cannot pierce through crusted soil (Saharan and Mehta, 2008). The emerging stipes are 

phototrophic and require 8 to 12 hours of daylight for differentiation to occur.  In a process above 

ground, the stipes differentiate, growing into ascocarps and forming apothecia. Carpogenic 

germination is unsuccessful when sclerotia are buried at depths below 5 cm from the soil surface; 

it was found that sclerotia burial depths over 3 cm result in an environment without light exposure, 

and prevented apothecia formation from stipes (Bedi, 1962). Sclerotia germination where stipes 

are initiated but fail to produce complete apothecia containing asci and ascospores is referred to as 

non-functional sclerotial germination (Pethybridge et al., 2020). 

 

The formation of apothecia is affected by atmospheric temperature, relative humidity, and, most 

importantly, the interaction of these environmental conditions. Apothecia develop in 

approximately 10 days under high relative humidity and air temperature ranging from 5°C to 25°C 

(Abawi, 1979, Saharan and Mehta, 2008). Carpogenic germination is reduced under air 

temperatures below 5°C or exceeding 30°C, even when relative humidity is optimal for apothecia 

development (Dillard, 1995). 
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Ascospore dispersal 

Each apothecium can produce millions of ascospores, making carpogenic germination the primary 

mode of infection of soybeans by S. sclerotiorum (Abawi and Grogan, 1975, Hartman et al., 2015, 

Peltier et al., 2012, Saharan and Mehta, 2008, Willbur et al., 2018a). The presence of apothecia in 

the field signals the beginning of S. sclerotiorum activity before detecting disease symptoms on 

plants. Ascospore discharge from asci of an apothecium was quantified demonstrating that 

ascospores were released at a maximum rate of 1600 spores/hour. Hence, a total of 7.6x105 

ascospores could be produced in optimal conditions by a single apothecium over a lifetime of 20 

days (Clarkson et al., 2003). In contrast, Abawi and Grogan (1975) estimated that S. sclerotiorum 

apothecia could produce up to 3x107 ascospores. 

 

The forceful dispersal of ascospores from the apothecium is readily observable in the laboratory 

upon changes in relative humidity (Newton and Sequeira, 1972). Such a ‘puffing’ pattern of 

dispersal was assumed to be the principal mode of ascospore dispersion under field conditions. 

However, such rapid fluctuations in environmental conditions are less likely to occur in natural 

environments. Thus, whether S. sclerotiorum ascospores are released continuously or in bursts was 

investigated over various environmental conditions (Clarkson et al., 2003). Ascospores were 

continuously released when apothecia were placed in non-saturated (60-65% RH) and almost 

saturated (90-95% RH) environments. Additionally, rising temperature from 15°C to 20°C or 25°C 

resulted in an increased discharge of ascospores in both S. sclerotiorum and Sclerotinia trifoliorum 

Erikss (Clarkson et al., 2003, Raynal, 1990). Continuous sporulation was observed whether 

apothecia were exposed to light or dark conditions, establishing that ascospore release is not 

restricted to dark or light periods. In contrast, work on S. trifoliorum showed that ascospore 

discharge was promoted by light rather than dark (Raynal, 1990). 

 

Previous work on S. sclerotiorum survival has shown similarities in the response of ascospores to 

environmental conditions. High temperature and humidity reduced ascospore viability in a 

Clarkson et al. study (2003), similar to observations by Caesar and Pearson (1983). However, they 

noted that ascospores remained viable in the laboratory for much longer (i.e. several weeks) than 

that reported by Caesar and Pearson (1983) (i.e. a few days) under similar environmental 

conditions (Caesar and Pearson, 1983). 
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Transported by wind or water, ascospores may be dispersed over long distances (Li and Kendrick, 

1994). The introduction of SSR from contaminated fields to neighbouring ones has been recorded. 

The high number of ascospores released, their ease of dispersal, and their highly infectious nature 

make them key agents in S. sclerotiorum disease transmission within and across fields. However, 

most ascospores are deposited near the apothecium from which they were produced (Wegulo et 

al., 2000). Since carpogenic germination takes place at the ground level, canopy interception of 

ascospores can limit their wind dispersal to a certain extent (Saharan and Mehta, 2008).  

 

Ascospore dispersal via wind is one of the ways SSR can be disseminated from infected fields to 

healthy ones. The presence of sclerotia or mycelia on seedlings, infected seeds, various farm 

equipment, animals, and humans may also cause SSR dispersal. Moreover, the use of plant 

residues from infected fields as livestock bedding and the subsequent application of manure 

collected from the same bedding can introduce sclerotia to healthy fields (Saharan and Mehta, 

2008). 

 

Ascospore germination and host infection 

Environmental conditions influence pathogen infection by affecting ascospore germination and 

colonization of host tissues. Ascospores can germinate in temperatures ranging from 10°C to 30°C, 

with optimal germination observed between 20°C and 25°C in bean (Abawi, 1979) and 15°C to 

25°C in lettuce (Young et al., 2004). Ascospores can produce hyphae in non-saturated conditions; 

however, hyphal tissue cannot colonize plants without free water (Abawi and Grogan, 1975). An 

exogenous source of energy is also required for such colonization to take place, primarily via 

senescent tissue. In SSR of soybean, nutrients are mainly supplied to S. sclerotiorum ascospores 

by senescent flower tissue. Hence, the flowering period is a crucial development stage influencing 

the incidence of SSR. S. sclerotiorum can also derive the energy necessary to penetrate the host 

from dead or damaged vegetative plant tissue (Abawi, 1979, Saharan and Mehta, 2008, Willetts 

and Wong, 1980). Host penetration occurs directly through stomatal openings or by the mechanical 

action of fungal appressoria on plant tissue surfaces (Davar et al., 2012). During disease initiation, 

S. sclerotiorum induces host cell death by producing oxalic acid, a virulence factor that alters the 

plant redox environment. Plant wilting is also enhanced by the action of oxalic acid; stomatal 
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opening is triggered by oxalates and results in increased transpiration rates (Guimaraes and Stotz, 

2004). Following the host invasion, hyphae develop into sclerotial initials. The initials further 

develop into mature sclerotia inside the pith or on the surface of the soybean stem, or on the soil 

surface, completing the S. sclerotiorum growth cycle (Saharan and Mehta, 2008). 

 

Favourable conditions for S. sclerotiorum infection of soybean generally occur when the plants 

are flowering. However, SSR symptoms only become apparent at later growth stages due to a brief 

latent period. The first visible sign of SSR infection on soybean is wilting, withering and chlorosis 

of leaves, usually occurring during the early stages of pod development (R3 to R4). Then, various 

shades of purple to brown lesions form on the stem, nodes, pods, and occasionally on leaves. Upon 

infection progression, the distinctive S. sclerotiorum white and soft rot appear on the lesions. The 

disease causes the plant to weaken, the foliage to wilt and fall. The disease also disturbs the size 

of seeds from infected plants, which are smaller than those of healthy plants (Peltier et al., 2012). 

 

Three disease assessment scales were developed to characterize the severity of SSR infections in 

soybean and to evaluate soybean cultivar resistance (Grau, 1984, Chun, 1987, Cline, 1983). Both 

Grau (1984) and Chun (1987) designed 0-3 point scales, whereas Cline (1983) rated disease 

severity over 5 points. A disease severity index (DSI) is derived from the scores obtained by using 

the assessment scale developed by Grau et al. (1984) and comprises values ranging between 0% 

and 100% (1984) (Table 2. 2 and Formula 2. 1). The DSI is still widely used by scientists to 

evaluate cultivar resistance to soybean white mould and to evaluate disease severity and 

progression. 

 

Table 2. 2. Sclerotinia stem rot disease severity class and associated symptoms on soybean (Grau, 

1984). 

Severity Class Disease Symptom 

0 No SSR symptom 

1 SSR symptoms only on lateral branches 

2 SSR symptoms on main stem, without damage on pods 

3 Dead plant or showing SSR symptoms on main stem and pods 
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Formula 2. 1. Disease severity index (%) (Grau, 1984) 

DSI =  
[S(#$%$&'()	+,-##	×	/012$&	34	5,-/(#	'/	+,-##)]´	899

[((3(-,	/012$&	34	5,-/(#	×	/012$&	34	+,-##$#	:'(;	#)15(31#)] 

 

2.4.2 Management strategies 

No single solution has been effective at controlling SSR in soybean. Rather, an integrated disease 

management approach can minimize yield losses. Integrated management of Sclerotinia disease 

employs various control strategies that target the three factors influencing disease incidence: the 

pathogen (S. sclerotiorum), the host crop (G. max), and the environment. Targeting the pathogen 

aims at reducing inoculum pressure by destroying existing soilborne sclerotia and preventing their 

formation and germination. Host management strategies focus on decreasing the crop’s 

vulnerability to infections. Additionally, modifications to the environment aim at preventing cool 

and moist temperatures that favour disease development (Peltier et al., 2012, Saharan and Mehta, 

2008, Willbur et al., 2018a). 

 

Agronomic practices 

Consistent record-keeping from one growing season to the next is an integral aspect of disease 

management. It involves monitoring the susceptibility of soybean cultivars to SSR, yield 

performance and scouting areas for sclerotia and apothecia presence, disease incidence, and 

severity. The data generated can be used to inform disease mitigation strategies (Peltier et al., 

2012).  

 

Tillage operations affect the pathogen component of SSR disease in soybean in various ways. 

Sclerotia germination can be reduced either by burying them through deep tillage or preventing 

them from being brought to the soil surface through no-till. However, buried sclerotia may remain 

viable. Thus, subsequent tillage operations may bring sclerotia to zones where germination and 

emergence of apothecia are possible, leading to sporulation. The effect of tillage systems on 

various aspects of Sclerotinia stem rot was studied with results found to be inconsistent at times  

(Mueller et al., 2002, Mila et al., 2004, Kurle et al., 2001, Garza et al., 2002, Workneh and Yang, 

2000) (Table 2. 3). 
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Table 2. 3. Effect of tillage practices on Sclerotinia stem rot. 
 

 

The use of crop rotations is an additional strategy that targets the pathogen element of disease 

control. Crop rotations were found to decrease the inoculum density of an infected field (Peltier et 

al., 2012). Non-host crops do not prevent the emergence of apothecia, but rather promote the 

carpogenic germination of sclerotia and subsequent degradation of the sclerotia, while hindering 

the formation of new sclerotia and their subsequent return to the soil. Factors influencing the 

success of crop rotations as SSR control strategies include the choice of non-host crops such as 

maize, barley, and wheat and a period of three (Garza et al., 2002, Rousseau et al., 2007) to five 

(Zimmer, 1978) years between soybean plantings. Similarly, non-host cover crops such as small 

grains were effective at lowering the level of viable field sclerotia. The sporulation of apothecia 

was promoted, but sclerotial production was prevented due to the absence of crop infection 

(Willbur et al., 2018a). Recently, rolled-crimped cereal rye was found to successfully reduce weed 

and SSR pressure in no-till soybean since it either prevented carpogenic germination or resulted 

in non-functional sclerotia germination, where stipe initiation does not lead to complete apothecia 

formation, preventing the production of inoculum (Pethybridge et al., 2020). 

 

Location Effect of no till system on SSR 

compared to conventional 

tillage 

Reference 

IL, United States Increases sclerotia quantity 

Increase disease incidence 

Reduces soybean yields 

Mueller et al., 2002 

IL, IA, MN, MO, OH, United 

States 

No significant difference Mila et al., 2004 

WI, United States Reduces SSR incidence 

Reduces apothecia quantity 

Kurle and Grau, 2001 

ON, Canada Reduces apothecia quantity Gracia-Garza, 2002 

IL, IA, MN, MO, OH, United 

States 

Decreases disease prevalence Workneh and Yang, 2000 
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Weed management is a crucial control strategy partly because many weeds are Sclerotinia spp. 

hosts and have the potential to increase the sclerotial load of a field. As such, the pathogen can 

infect weeds, increasing the soilborne sclerotia reservoir (Boland and Hall, 1994). Non-host weed 

control is also essential because they increase the density of the foliage, and in turn, result in less 

airflow and sun exposure at the soil level, which creates microclimate conditions favourable to the 

germination of sclerotia leading to infections if the main crop is a host species (Peltier et al., 2012).  

 

Similarly to weed pressure, the plant population affects the rapidity at which the canopy closes, 

creating environmental conditions suitable for SSR development during vulnerable soybean 

growth stages in fields with a disease history. For example, there is a reduction in airflow, increase 

in shade and relative humidity, as well as cooler temperatures under the crop foliage (Peltier et al., 

2012). Some studies observed reductions in disease incidence with wider row spacing and lower 

plant populations (Grau et al., 1982, Lee et al., 2005). Before altering their seeding rates, farmers 

should consider their field disease history since lower plant populations may reduce yields (Peltier 

et al., 2012). 

 

Cultivar choice is a crucial disease-management strategy for SSR in soybean. There is no complete 

resistance to S. sclerotiorum in soybean yet. However, some commercially available partially 

resistant cultivars are less susceptible to infection (Kim and Diers, 2000). Seed companies may 

provide cultivar information, including SSR resistance level. In Québec, the Réseaux des grandes 

cultures du Québec (RGCQ) attributes an SSR susceptibility rating to soybean cultivars evaluated 

in an SSR disease nursery for a minimum of two years. The susceptibility scale ranges from 0 to 

10, where 10 is comparable to the highly susceptible cultivar Nattosan (Oleo Quebec, 2019). 

Recommended cultivars suitable for planting in fields with disease history are associated with a 

susceptibility rating below 2, whereas cultivars with susceptibility ratings over 4 are not 

recommended (Faucher et al., 2017). 

 

One persistent challenge to developing entirely resistant cultivars is that multiple genes control 

SSR disease resistance in soybean (McCaghey et al., 2017). Studies of genetic resistance have 

identified quantitative trait loci (QTLs) that contribute to SSR resistance in cultivars (Arahana et 

al., 2001, Guo et al., 2008, Kim and Diers, 2000, Vuong et al., 2008). However, further work is 
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needed to elucidate the mechanisms of inheritance of SSR partial resistance in soybean. Yearly 

variations in SSR incidence and field conditions also compromise the screening of cultivars for 

disease resistance (McCaghey et al., 2017). 

 

In addition to the level of disease resistance, the soybean maturity group of a cultivar can play a 

role in disease management. Choosing an early-maturing cultivar is associated with lower yield 

losses compared to those that flower later when climatic conditions are more suitable for disease 

development due to canopy closure. Those conditions can also be avoided by selecting a cultivar 

with a low foliage density to slow down canopy closure and promote airflow (Kim and Diers, 

2000, Peltier et al., 2012). 

 

Chemical Control 

In Québec, the information tool SAgE pesticides provides information related to pesticide 

toxicological, ecotoxicological characteristics and their persistence in the environment, including 

pesticides registered for SSR in Québec (Table A. 2). Such pesticides are used either as pre-seeding 

or foliar treatments, with only the latter being registered as chemical controls for SSR in soybean. 

Chemical applications aim to protect the soybean flowers against colonization by S. 

sclerotiorum ascospores (SAgE Pesticides, 2020). Depending on their class, pesticides have 

different modes of action (Table A. 3). SSR control using fungicides is partial under field 

conditions and inconsistent among products; they were found to reduce disease incidence by 0-

60% (Mueller et al., 2002, Peltier et al., 2012). The main factors influencing fungicide efficacy are 

the type of product used, the coverage, and the timing of applications. Differences in canopy 

closure and soil temperatures on the production of apothecia were suggested as factors contributing 

to the inconsistency of fungicide efficacy when recommendations are based on soybean growth 

stages (Fall et al., 2018b). Other considerations include the machinery used, the mixing ratio, and 

the application rate (Willbur et al., 2018a). A study on fungicide timing showed that a preventive 

fungicide application during flowering (R1) before inoculation was more effective in controlling 

SSR than an application at R3 after host infection. Once symptoms of disease infection were 

observable, the efficacy of the chemicals was greatly reduced (Mueller et al., 2004). Inadequate 

canopy dispersion and incomplete coverage of soybean flowers by chemicals reduce disease 

control by fungicides. Using flat-fan spray nozzles that produce high-fine to mid-medium droplets 
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was the most effective sprayer (Mueller et al., 2002, Peltier et al., 2012). Aside from suboptimal 

coverage or timing of applications, another factor explaining their inconsistency is their 

systemicity; the chemicals have a low translocation potential and are limited to the point of contact 

on the plant (Peltier et al., 2012). Chemical herbicides containing lactofen can be used in the 

management of SSR. Lactofen can indirectly control S. sclerotiorum by inducing the production 

of phytoalexins, antimicrobial chemicals, in soybean, simultaneously conferring them with 

acquired systemic resistance. In addition, lactofen may modify the canopy development of soybean 

in a way that delays the flowering window (Nelson et al., 2002). 

 

Biological Control 

Aside from chemical means, biological controls of S. sclerotiorum are also commercially 

available. Biological factors influence sclerotia survival as soil microbial populations include 

antagonists of Sclerotinia spp. that colonize and degrade sclerotia. Among others, infection by 

Coniothyrium minitans W. A. Campb. and Trichoderma hamatum (Bonord.) Bainier decrease 

sclerotia viability under field conditions by producing antifungal metabolites and releasing 

enzymes with cell wall degrading properties (Adams, 1979, Coley-Smith and Cooke, 1971, 

Baazeem et al., 2021). The most widely studied and used biological control is C. minitans Strain 

CON/M/91-08, a pathogenic fungus of S. sclerotiorum, commercially accessible as Contans WG 

(Bayer CropScience) in Québec. Upon its incorporation in the soil, it parasitizes sclerotia, thus 

preventing the formation of apothecia from those decayed sclerotia (Del Rio et al., 2002, Zeng et 

al., 2012). In Michigan, C. minitans reduced the number of S. sclerotiorum sclerotia by 95.3%. 

Moreover, this biological control agent effectively decreased the disease severity index of soybean 

by 68.5% in the same study. Other biological controls used against S. 

sclerotiorum included Trichoderma harzianum Rifai strain T-39 and Streptomyces lydicus De 

Boer et al. strain WYEC 108. These were associated with lower DSI reductions than C. minitans, 

with 35% for T. harzianum, and 43% for S. lydicus (Zeng et al., 2012). Studies within Québec on 

the efficacy of biological agents namely C. minitans (Contans WG, Bayer Cropscience), 

Reynoutria sachalinensis (F. Schmidt) Nakai (Regalia Maxx, Marrone Bio Innovations), Bacillus 

subtilis (Ehrenberg) Cohn (Serenade OPTI, Bayer Cropscience), and Bacillus amyloliquefaciens 

(ex Fukumoto) Priest (Double Nickel 55, Certis) against Sclerotinia stem rot of soybean were 

inconclusive in years of low disease severity (Bipfubusa et al., 2020). Despite some promising 
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results obtained with biocontrols, there is a lack of published results on their use and profitability 

in cases of severe SSR epidemics in soybean production. 

 

2.5 SSR prediction modelling 

The three primary factors influencing  Sclerotinia stem rot disease onset are the S. sclerotiorum life 

cycle, prevailing weather conditions, and the soybean growth stage. Infections occur under cool 

and humid conditions when S. sclerotiorum ascospores, produced by germinating soilborne 

apothecia, colonize soybean flowers. The complex interaction of these components makes their 

continuous and accurate monitoring challenging. In turn, the capacity of farmers to determine the 

infection risk level in a specific field during the crop’s susceptibility period is limited. The risk of 

SSR can be predicted through disease forecast models with the capacity to filter information 

related to several host crop, and environmental parameters. Model risk assessments are based on 

known conditions suitable for disease onset and can therefore corroborate the need for and the 

timing of disease management strategies (Peltier et al., 2012). 

 

Format of forecast models 

Many different formats of comprehensive disease forecast models have been suggested as tools to 

combat Sclerotinia spp. diseases in various crops across locations (Table 2. 4). The complexity of 

models for plant disease management ranges from simple empirical models to intricate 

mechanistic models. Empirical models are based on statistical relationships between SSR 

incidence and environmental conditions. Developing such models is relatively rapid and simple. 

Empirically derived models are easy to use and reliable in the growing area where they were 

developed. Upon adaptations, they can also be used in various locations. Mechanistic models are 

reliable across locations since they extensively depict the pathogen’s response to environmental 

conditions. However, their complexity lengthens their development (Madden, 2006). Examples of 

forecast models for diseases caused by S. sclerotiorum include risk point tables (Foster et al., 2011, 

Twengström et al., 1998), carpogenic germination (Clarkson et al., 2007), petal infestation (Bom 

and Boland, 2000, Turkington, 1993), crop loss (Koch et al., 2007) and logistic regression-based 

models (Harikrishnan and del Río, 2008, Mila et al., 2004). Regardless of the format, models work 

to predict inoculum presence or disease incidence and inform the sustainable use of properly timed 

fungicides. 
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Table 2. 4. Forecast models developed for Sclerotinia spp. diseases internationally. 

Forecast model 

format 

Host crop Location Variables used in predictions Reference 

Risk point 

system 

Carrot 

(Daucus 

carota L.) 

Canada Canopy Growth (%) Foster et al., 

2011 Soil Matric Potential (kPa) 

Soil Temperature (◦C) 

Oilseed 

rape 

(Brassica 

napus) 

Sweden Number of years since last 

oilseed rape crop 

Twengström et 

al., 1998 

 Disease incidence in last host 

crop 

Crop density 

Rain in the last 2 weeks 

Weather forecast 

Regional risk for apothecium 

development (per 100 

sclerotia) 

Petal infestation-

based model 
 

Oilseed 

rape 

(Brassica 

napus) 

Canada Petal infestation (%) Turkington, 

Morall and 

Gugel, 1991 

Oilseed 

rape 

(Brassica 

napus) 

Canada Petal infestation (%) 

Soil moisture (centibars) 

Bom and 

Boland, 2000 
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Table 2. 4 Forecast models developed for Sclerotinia spp. diseases internationally (cont’d). 

Forecast model 

format 
Host crop Location Variables used in predictions Reference 

Carpogenic 

germination-

based model 

Lettuce 

(Lactuca 

sativa L.) 

United 

Kingdom 

Rate of sclerotia conditioning 

per day  

Clarkson et al., 

2007 

Rate of sclerotia germination 

per day 

Temperature (◦C) 

Crop loss-based 

model 

Oilseed 

rape 

(Brassica 

napus) 

Germany Air temperature (◦C) Koch et al., 

2007 Relative humidity (%) 

Rainfall (mm) 

Sunshine duration (h) 

Crop growth stage 

Microclimate in the canopy 

Logistic 

regression model 

Bean 

(Phaseolus 

vulgaris) 

United 

States 

Total rainfall (mm) 

Average minimum temperature 

in June, July and August (◦C) 

Number of rainy days in the 

first half of June, July and 

August 

Harikrishnan 

and del Rio, 

2008 

Soybean 

(Glycine 

max)  

United 

States 

Average temperature in July 

(◦C) 

Total rainfall in July (mm) 

Interaction between average 

temperature in July (◦C) and 

total rainfall in July (mm) 

Fall et al., 2018a 
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Table 2. 4 Forecast models developed for Sclerotinia spp. diseases internationally (cont’d). 

Forecast model 

format 
Host crop Location Variables used in predictions Reference 

Logistic 

regression model 

(cont’d) 

Soybean 

(Glycine 

max) 

United 

States 

April precipitation (cm) 

April air temperature (◦C) 

Indicator variable of tillage 

system 

Indicator variable of regional 

effect 

July precipitation (cm) 

Average air temperature of 

July and August (◦C) 

Interaction between average 

temperature in July and August 

Indicator variable of tillage 

system 

Indicator variable of regional 

effect 

Mila et al., 2004 

Soybean 

(Glycine 

max) 

United 

States 

Row width 

30-day moving averages daily 

maximum air temperature (◦C) 

30-day moving averages daily 

maximum relative humidity 

(%) 

Wind speed/1.609 (km/h) 

Willbur et al., 

2018 
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Recently, SSR forecast models in soybean were developed in the United States of America (Table 

2. 4). The models predict the risk of S. sclerotiorum apothecial presence at the field level during 

the crop’s most vulnerable growth stages. The models explained the levels of SSR disease 

incidence observed by using the highest apothecial presence probability during the soybean 

flowering period. The accuracy of the models ranged from 63.3% to 83.3% depending on the 

disease incidence threshold used, either 5% or 10% (Willbur et al., 2018c). Overall, management 

prescriptions from the weather-based apothecia formation models reduced fungicide applications 

compared to calendar-based programs (Willbur et al., 2018b). The validation results support the 

theory advanced by Foster et al. (2011) in white mould of carrot that forecasted inoculum presence 

can be used to predict end-of-season disease levels  (Willbur et al., 2018b). The disease threshold 

selected for a model affects its accuracy and can be modified based on the specificity and 

sensitivity of the model. For example, Hariskrishnan and del Rio (2008) modeled SSR in dry bean 

using a disease incidence threshold of 20%, and Fall et al. (2018a) predicted DSI levels above 22 

in soybeans. Models that tend to underpredict the occurrence of epidemics can be adjusted by 

decreasing the disease threshold (Madden, 2006). 

 

2.6 Model validation 

Following their development, models are validated to ensure their reliability before farmers adopt 

them. Efficient forecast models should aim to be both sensitive (correctly predicting the occurrence 

of epidemics), and specific (correctly predicting the occurrence of non-epidemics). Sensitivity 

refers to the proportion of true positives; the number of correctly predicted presence of events over 

the total number of events observed. Specificity is defined as the proportion of true negatives; the 

number of correctly predicted absence of events over the total number of events observed. Models 

that are not sensitive would fail to recommend treatments. Models that are not specific would 

advise unnecessary treatments, hence additional costs for farmers and unwarranted consequences 

for the environment. Measures of sensitivity and specificity are commonly reported as percentages; 

the highest percentages suggesting that the model’s predictions are accurate. Another measure of 

model accuracy is the coefficient of determination (R2), for which values can range between 0 and 

1. Accurate models would have R2 values approaching 1 (Yuen and Hughes, 2002). Receiver 

operating characteristic (ROC) curve is an additional statistical method used to evaluate and 

compare model performance (Metz, 1978). It has long been used to evaluate medical imaging 
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techniques and has now been adopted in other fields, including in plant pathology (Hughes et al., 

1999, Swets, 1979). The performance of two SSR risk point tables for oilseed rape was evaluated 

by comparing their respective area under the ROC curve (AUC). The table using six parameters 

predicted the need for fungicide applications better than the one based on eight factors 

(Twengström et al., 1998). An additional feature of ROC analysis used in model evaluation is the 

possibility to determine an optimal decision threshold for a model when both sensitivity and 

specificity are equally valued. Such cut-off point (J) is identified as being closest to the coordinate 

(0, 1) on the ROC graph and can be determined from the Youden index (J= sensitivity + specificity 

-1) (Youden, 1950). 

 

Different methodologies are employed to validate forecast models based on the availability of 

datasets. In the cross-validation strategy, one arbitrarily sets aside a portion of the data collected 

for development purposes while the remaining portion is used as a validation set. In such cases, 

datasets used for development were collected in the same period and location as those for 

validation (Harikrishnan and del Río, 2008). Another strategy is external validation, where one 

establishes plots in different locations and collects data for model validation purposes. In cases 

where external validation is conducted in following years, it is referred to as external and temporal 

validation (Foster et al., 2011, Willbur et al., 2018b). External validation is also applied to 

investigate the reliability of models operated in regions outside where the models were initially 

developed. Within a growing region, various weather conditions and farming practices prevail. 

Ensuring that the data collected for validation purposes represents such variability is important to 

accurately assess model reliability in those regions (Giroux et al., 2016). 

 

Often, model validation shows that model performance in different environments is lower than in 

the setting in which the models were first developed (Bouchard, 2008). This leads to the 

development of multiple models to predict the same disease, most of which never get directly 

applied during producers’ decision-making processes. Doing so is an inefficient use of data as the 

valuable knowledge derived from the observations used to develop previous models are not 

accounted for in the development of new ones (Moons et al., 2012). Instead of re-developing 

disease prediction models, poor predictive ability in new contexts can be addressed by customizing 

an original model equation to the new environment in which it will be used. This strategy has the 
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benefit of integrating findings from previous studies while ensuring that the modified model 

predictions are adapted to the setting in which the model is applied (Janssen et al., 2008, 

Steyerberg, 2019). 

 

Disease prediction model customization is common practice in clinical epidemiology where 

physicians use models developed from patient data from a specific set of hospitals to generate 

patient prognosis in a different clinical setting (Curtin et al., 2019, Steyerberg and Vergouwe, 

2014). In botanical epidemiology, model customization has been done for different pathosystems, 

including potato late blight (Phytophthora infestans (Mont.) de Bary), early blight 

(Alternaria spp.), and tomato grey leaf spot (Ascochyta lycopersici Brun.) (Hjelkrem et al., 2021, 

Meno et al., 2020, Wang et al., 2020). The statistical methodology used to update prediction 

models comprises multiple strategies. A simple recalibration method consists of a modification of 

the model intercept, re-estimation involves adjusting all regression coefficients associated with 

model variables, and the more complex extension approaches result in new variables being added 

to the model (Steyerberg, 2019, Steyerberg and Vergouwe, 2014, Janssen et al., 2008). 
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Connecting text between Chapter 2 and Chapter 3 
The next chapter’s emphasis is on the association between S. sclerotiorum carpogenic germination 

and agro-environmental variables. The influence of weather conditions on the apparition and 

abundance of apothecia has been documented previously in the literature, but it has not been 

investigated across soybean production regions of Québec.  In addition, weather-based Sclerotinia-

related prediction models were previously developed in the United States for legume crops, but no 

model has been developed or tested in Québec. The aim of Chapter 3 is to first study the correlation 

between environmental variables and carpogenic germination of sclerotia in soybean fields, and 

then to validate selected Sclerotinia-related prediction models for agro-environmental conditions 

of Québec. 
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Chapter 3: Effect of agro-environmental variables on Sclerotinia sclerotiorum carpogenic 

germination and evaluation of SSR bioclimatic prediction models in soybean (Glycine max) in 

Québec 

3.1 Introduction 

Sclerotinia stem rot (SSR), caused by the pathogenic fungus Sclerotinia sclerotiorum (Lib.) de 

Bary, affects a wide range of hosts comprising mostly dicotyledonous and some 

monocotyledonous plants. Across the world, several hosts are economically important oilseed and 

pulse crops (Boland & Hall, 1994). In Canada, SSR is a major disease of soybean (Glycine max 

(L.) Merr.), canola (Brassica napus L.), potato (Solanum tuberosum L.), and sunflower 

(Helianthus annuus L.). In Québec, among the top three soybean-producing provinces in Canada, 

SSR frequently occurs in soybean fields. Prevailing temperature and humidity during the soybean 

growing season can cause variations in how SSR reduces yields. In Québec, the disease generally 

causes yield losses ranging from 0-20% (Breault et al., 2017, Rousseau et al., 2004); however, 

environmental conditions suitable for soybean infections by S. sclerotiorum inoculum can 

exacerbate the problem and affect production even more severely (Breault et al., 2017). SSR 

epidemics result in reductions in soybean density, and pod and seed quality. In turn, the 

repercussions of SSR incidence on the producers’ revenues and the economy is substantial (Bailey 

et al., 2004). 

 

Sclerotia are the survival structure of S. sclerotiorum, which can germinate myceliogenically, 

producing mycelium, or carpogenically, producing apothecia. The latter is epidemiologically more 

important than myceliogenic germination for Sclerotinia stem rot of soybean as the ascospores 

produced from apothecia are the main source of inoculum (Abawi and Grogan, 1975). Soil-borne 

sclerotia carpogenic germination, and subsequent apothecia formation, is influenced by agronomic 

and environmental factors. Conditions conducive to apothecia emergence include a cool and moist 

climate fostered by a closed canopy (Fall et al., 2018a, Abawi, 1979). In addition, SSR occurs 

when ascospores colonize senescing host tissues, suggesting that apothecia development and 

inoculum density during soybean flowering stages and SSR severity may be tightly correlated 
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(Huzar-Novakowiski and Dorrance, 2018). In soybean, in which no SSR-resistant cultivar yet 

exists, flower petals are the nutrient source of choice for ascospores. Previous reports indicate that 

soybeans are particularly susceptible to infection during the flowering period (Abawi and Grogan, 

1975, Cook, 1975). 

 

Sclerotinia disease epidemiology has been previously studied and reviewed in various crops, 

including soybean (Abawi and Grogan, 1975, Saharan and Mehta, 2008, Peltier et al., 2012, 

Willbur et al., 2018a); however, the effect of environmental and agronomic variables on S. 

sclerotiorum carpogenic germination of sclerotia and disease severity has not been investigated in 

Québec. In addition, the association between the timing of apothecia presence and DSI levels has 

not been examined in Québec. This study is separated into distinct yet complementary objectives. 

The first goal was to use data from soybean-producing regions in Québec to confirm the 

importance of SSR risk factors among previously studied environmental and agronomic variables. 

The second goal was to identify additional environmental predictors of the risk of sclerotia 

germination and apothecia formation among previously unstudied factors and establish their 

relevance to disease management challenges. The final goal was to assess whether previously 

published inoculum and SSR disease prediction models could adequately predict SSR disease 

severity under Québec soybean growing conditions. 

3.2 Materials and Methods 

3.2.1 Experimental sites and data collection  

Commercial soybean fields were identified as study sites in partnership with the Québec Ministry 

of Agriculture, Fisheries and Food (MAPAQ) based on three main criteria; field history of SSR, 

producer’s willingness to abstain from using fungicides, and proximity to an Agrometeo weather 

station. To include agro-environmental conditions representative of the Québec soybean industry, 

the number of field sites for each region was prorated based on the regional share of the soybean 

provincial production. Additional fields were also established at research centres within the 

province.  The research sites were located at the Emile A. Lods Agronomy Research Centre of 

McGill University in Sainte-Anne-de-Bellevue, the Agronomy Research Station of Laval 

University in Saint-Augustin-de-Desmaures, the Centre de recherche sur les grains, inc. (CÉROM) 

in Saint-Mathieu-de-Beloeil, and the Institut de recherche et développement en agroenvironnement  
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(IRDA) in Saint-Lambert-de-Lauzon. The soybean cultivar chosen for each site was selected based 

on the agro-environmental zone in which the fields were located. Soybeans were seeded from mid-

May to mid-June and harvest was done in late September, with some variation from one site to 

another attributable mainly to local environmental conditions. Table A. 4 shows the number and 

type of fields scouted from 2019 to 2021. 

 

3.2.2 Experimental design  

Experimental sites were artificially inoculated with sclerotia deposits. Sclerotia were pre-

conditioned by being exposed to a cool (4°C) and moist environment for 12 weeks following their 

production under laboratory conditions at CÉROM. The sclerotia deposits consisted of 2.0 ´ 12.7 

´ 25.4 cm wooden frames, bottom-lined with mosquito netting, in which 14 S. sclerotiorum isolate 

NB-5 (provided by Sylvie Rioux, CÉROM) sclerotia were placed and covered by 1.5 cm of soil.  

 

At the commercial sites, the row spacing in experimental plots was either 17.8-, 38.1-,  76.2-cm 

or twin rows (17.8- and 55.9-cm) based on the standard seeding equipment used by the producer 

at that site. Soybean rows were planted in the east-west direction to promote wind dispersal of S. 

sclerotiorum ascospores. Soybean seeding rates at each experimental site were determined based 

on cultivar and regional recommendations.  

 

In each commercial field surveyed, four sclerotia deposits were artificially buried in experimental 

plots following plant emergence (beginning to mid-June) to observe carpogenic germination under 

field conditions. Deposits were placed on the north side of a soybean row representative of the 

plot, where the shade and humidity would promote carpogenic germination of sclerotia. Each 

deposit represented one field repetition for a total of four repetitions in each commercial field 

scouted. From one repetition to another, soybean deposits were separated by a minimum width of 

3 rows and a minimum length of 50 m in regions representative of the field (Figure A.  1).  

 

At the research centres, the experiment used a randomized complete block design with four blocks. 

In each block, experimental validation plots of approximately 6 m ´ 8 m were established using 

three row spacings (17.8-, 38.1- and 76.2-cm), representing the experimental factor under study. 
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In total, there were 12 plots per site (three row spacings ´ four blocks). Zones of 76.2 cm between 

each experimental plot and 12 m spacing in between each block acted as buffer zones. Borders 

were planted around each block and the field to simulate standard environmental field conditions 

in the experimental plots, including wind and moisture conditions. Row orientation and buffer 

zones were as specified for the commercial fields. In research fields, one deposit containing 14 

pre-conditioned S. sclerotiorum isolate NB-5 sclerotia was artificially buried in a single row at the 

centre of each plot at plant emergence (beginning to mid- June) for a total of 12 deposits per 

research centre site. Each deposit was placed on the north side of a soybean row representative of 

the plot (Figure A.  2).  

 

3.2.3 Data collection  

3.2.3.1 Weather data 

Weather data was obtained for each of the growing seasons from 2019 to 2021 through the 

Agrometeo weather station network (Solutions Mesonet, 2021). Each experimental site was 

matched with the closest network weather station based on its GPS coordinates. Meteorological 

data recorded included air temperature (AT (◦C)), relative humidity (RH (%)), wind speed (WS 

(km/h)) and rainfall (mm). An additional variable, the Abundant and Well-Distributed Rainfall 

index (AWDR) was created from the raw rainfall data (Tremblay et al., 2012). Weather data was 

also obtained from on-site Vantage Vue weather stations (Davis Instruments Corporation, United 

States, cat. #6351) in commercial sites located far from the local Agrometeo weather stations.  

 

3.2.3.2 Apothecia scouting data 

From 2019 to 2021, in commercial and research sites, scouting for apothecia formation in the 

deposits was performed twice a week from the end of June until the apparition of the first 

apothecium, and once a week subsequently until the R5 soybean developmental stage (variable 

date depending on the growing region). The number of germinated sclerotia, and the number and 

level of maturity (immature or mature) of apothecia was recorded for each scouting visit at each 

commercial and experimental site. The number of scouting visits varied from 4 to 16  for each site 

for a total of 789 visits over the three years of data collection (Table 3. 1).  
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Table 3. 1. Number and type of site for data collection in Québec from 2019 to 2021. 

Region Year 
Number of sites Number of 

apothecia scouting visits Commercial Research 

Capitale-Nationale 2019 1 1 22 
 2020 2 1 28 
 2021 2 1 34 

Centre-du-Québec 2019 1 0 10 

 2020 2 0 27 
 2021 2 0 18 

Chaudière-Appalaches 2019 2 1 45 
 2020 2 1 32 

 2021 1 1 26 

Estrie 2019 1 0 7 
 2020 2 0 20 
 2021 2 0 16 

Lanaudière 2019 2 0 8 
 2020 2 0 32 
 2021 2 0 22 

Laurentides 2019 1 0 10 

 2020 1 0 9 
 2021 1 0 11 

Mauricie 2019 1 0 10 
 2020 1 0 8 

 2021 1 0 15 

Montérégie-Est 2019 6 1 86 
 2020 5 1 83 
 2021 3 1 48 

Montérégie-Ouest 2019 2 0 18 

2020 3 0 45 

2021 3 0 47 
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Table 3. 1 Number and type of site for data collection in Québec from 2019 to 2021 (cont’d). 
 

Region Year 
Number of sites Number of 

apothecia scouting visits Commercial Research 

Montréal 2019 0 1 14 

 2020 0 1 16 
 2021 0 1 14 

Outaouais 2019 1 0 8 

Total  55 12 789 

 

For each scouting visit, the developmental stage of soybean plants was noted (Fehr and Caviness, 

1977), along with plant height (cm) (mean of two plants per row, up to the apex). Other data 

collected included plant population and the level of canopy closure (cm), measured as the distance 

between two rows where the soil was visible. 

 

At R5 and R8 soybean growth stages, a disease severity index (DSI) was recorded by taking the 

percentage of plants displaying symptoms of SSR and the severity of the symptoms displayed out 

of 30 plants in each experimental plot (two rows of 15 plants) at the commercial and research sites 

(Table 3. 2, Formula 3. 1). Control plots in both commercial and research fields were identified at 

the R5 soybean growth stage and consisted of 30 soybean plants (two rows of 15 plants) located 

in proximity of a sclerotia deposit, but not in the same row, in which the DSI was recorded at R5 

and R8. The location of the control plot was chosen based on the area most representative of the 

crop conditions in the entire plot. 

 

Table 3. 2. Sclerotinia stem rot disease severity class and associated symptoms on soybeans (Grau, 

1984). 

Severity Class Disease Symptom 

0 No SSR symptom 

1 SSR symptoms only on lateral branches 

2 SSR symptoms on main stem, without damage on pods 

3 Dead plant or showing SSR symptoms on main stem and pods 
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The DSI for the plot was calculated using the following formula: 

 

Formula 3. 1. Disease severity index (%) (Grau, 1984). 

DSI =  
[S(#$%$&'()	+,-##	×	/012$&	34	5,-/(#	'/	+,-##)]	´	899

[((3(-,	/012$&	34	5,-/(#	×	/012$&	34	+,-##$#	:'(;	#)15(31#)]	 

 

3.2.4 Data analysis  

3.2.4.1 Associations between apothecia, SSR severity and selected weather variables 

Statistical analyses were conducted in R statistics v.1.4.1717 (R Foundation for Statistical 

Computing, Austria) at the ! = 0.05 significance level (‘stats’ package) (R Core Team, 2021). The 

relationship between apothecia observed at distinct soybean growth stages and end-of-season SSR 

severity was evaluated through Pearson correlation analyses. The association between apothecia 

and weather variables was assessed using Kendall’s correlation matrix. The selected weather 

variables were maximum, mean, and minimum values of temperature and relative humidity, 

maximum and mean values of wind speed and the AWDR parameter. Those weather variables 

were selected based on pre-established relationships between carpogenic germination and 

temperature and humidity parameters such as rainfall and relative humidity (Willbur et al., 2018b). 

Kendall’s correlation analyses were conducted using a binary apothecia variable and moving 

averages of weather variables with durations ranging from 10- to 40-days. The binary apothecia 

variable was created from the mean number of apothecia counted in each deposit in each 

experimental site. When the mean apothecia per site was above 0.25 (an average of 1 apothecium/4 

deposits at one site), the binary variable was equal to 1, otherwise it was equal to 0.  

 

The relationship between end-of-season disease severity index and weather variables were 

analysed through Pearson correlation analyses. The selected weather variables were maximum, 

mean and minimum temperature and relative humidity, maximum and mean wind speed, and the 

total rainfall for the months of June, July, and August.  Those variables were chosen because they 

have been reported as influencing SSR disease development (Harikrishnan and del Río, 2008, Fall 

et al., 2018a). 
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3.2.4.2 Effect of the growing season, location and row spacing on timing of apothecia formation  

A time-to-event approach was used to characterize the duration of time between installing the 

sclerotia deposits in the field and the first carpogenic germination occurrence at the research sites 

from 2019 to 2021. This statistical methodology, borrowing from the survival analyses in 

biomedical epidemiology, allows for the analysis of censored data (Scherm and Ojiambo, 2004). 

The apothecia data are censored in two ways. They are interval-censored since the deposits were 

not continuously monitored. Instead, data were collected twice weekly. There is thus an interval 

of time, the period in between two subsequent scouting visits, as opposed to a single day, 

associated with each germination observation. In some cases, where no apothecia were produced 

in a deposit by the end of the growing season, the data is right-censored. Despite the time-to-event 

duration not established for those deposits, this information is valuable and can contribute to the 

understanding of carpogenic germination under Québec’s climate. The time-to-event analysis was 

conducted by year and by research centre to describe the effect of row spacing on the speed of 

carpogenic germination. The estimated values for the number of days until the presence of one 

apothecium was observed in half of the sclerotia deposits (50% carpogenic germination, T50) were 

compared among the 17.8-, 38.1-, and 76.2-cm spaced plots in R (‘drc’ package) (Onofri et al., 

2019, Ritz et al., 2015). 

 

3.2.4.3 Effect of the growing season, location and row spacing on abundance of apothecia  

3.2.4.3.1 Inoculum progress curve approach 

The effect of year, location and row spacing on apothecia formation at the four research centres 

from 2019 to 2021 was evaluated using an analysis of variance of the area under the inoculum 

progress curve (AUIPC) calculated using the ‘epifitter’ package in R (Alves and Del Ponte, 2021). 

The ANOVA was performed in SAS v.9. 4 (SAS Institute, United States) using PROC GLM. As 

the pattern of apothecia formation was expected to vary from one research centre to another and 

from one year to the next, we anticipated differences in the number of scouting visits during which 

apothecia would be observed and in the maximum number of apothecia observed in each scouting 

visit. For each research centre and row spacing from 2019 to 2021, the area under the IPC (AUIPC) 

was calculated to simultaneously compare those two components (Carisse et al., 2014). 
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3.2.4.3.2 GLMM approach 

In addition to the IPC approach, the effect of the row spacing on the production of apothecia was 

analysed using a generalized linear mixed-model (GLMM) approach using the data collected at 

the research centres under the RCBD design.  This analysis was performed in SAS v.9. 4 (SAS 

Institute, United States of America) using PROC GLIMMIX (Gbur et al., 2012). The row spacing 

experiment was conducted at four research centres (IRDA, CÉROM, Laval University, and McGill 

University) from 2019 to 2021. However, CÉROM, Laval University and McGill University had 

low levels of carpogenic germination with many zero apothecia counts and low numbers of 

apothecia observed in all years of data collection. Since these sites did not provide enough data 

points, only observations from IRDA were used in the GLMM analysis. The statistical model for 

the analysis of apothecia data observed in the research centre from 2019 to 2021 was a repeated 

measures model of count data. The row spacing, the scouting visit and their interaction were treated 

as fixed effects, while the deposit and the replicate were treated as random effects. The GLMM 

approach was chosen to test the data using the analysis of variance framework despite not 

following the basic assumptions of normality, independence of data and homogeneity of variances. 

The response variable in the study was the number of apothecia observed in each deposit, which 

are non-negative integers. In GLMM, the basis for model parameters estimation is maximum 

likelihood. While both pseudo-likelihood and integral approximation methods can be used to 

estimate conditional GLMMs models, the integral approximation technique Laplace was chosen 

here to obtain a true log-likelihood function (Gbur et al., 2012). By default, PROC GLIMMIX 

estimation method is the restricted pseudo-likelihood (RSPL). The estimation method was changed 

using the “method=Laplace” option to override the default setting. This allowed for the fit statistics 

to be calculated and the goodness-of-fit of different models to be compared through the ratio of 

the Pearson chi-square to its degrees of freedom (Pearson Chi-Square/DF). The final model 

parameter estimates were those found to minimize the negative log-likelihood function. 

  

Both the Poisson and the negative binomial distributions were considered as potentially 

appropriate to estimate model parameters. The Poisson distribution assumes that the data is evenly 

and randomly distributed within the experimental units (Pearson Chi-Square/DF = 1). If this was 

not the case, the negative binomial distribution was considered more appropriate since the scale 

parameter allows the variance to be different than the mean.  



 
 

47 

 

The apothecia observations were counted over time in the three years of data collection, thus 

showing dependency. The correlation in the responses was addressed by using a repeated measures 

analysis. The use of the Laplace estimation technique prevents the modelling of the R-side effects. 

The dependency of the responses was thus modeled by specifying a G-side covariance structure 

using the “random” statement. Both Compound Symmetry (cs) and First-Order Autoregressive 

(ar1) covariance matrix structures were investigated.  

 

3.2.4.4 Effect of row spacing on disease severity index 

The effect of row spacing on end-of-season disease severity index (DSI) was evaluated using an 

analysis of variance with the row spacing as a fixed effect. The fields at CÉROM, Laval University 

and McGill University showed no disease symptoms for most experimental plots in all years of 

data collection. The IRDA fields showed disease symptoms only in 2021. Since all sites in 2019 

and 2020, and three of the sites in 2021 did not provide enough DSI data points, only DSI 

observations from IRDA in 2021 were used in this analysis. The ANOVA was performed in SAS 

v.9. 4 (SAS Institute, United States of America) using PROC GLM. 

 

3.2.4.5 Validation of Sclerotinia-related prediction models 

The performance of five Sclerotinia prediction models initially developed in the United States to 

predict Sclerotinia-related indicators such as S. sclerotiorum apothecia presence, SSR incidence 

and SSR severity was validated through receiver operator characteristic curve (ROC) analyses for 

their predictive ability regarding SSR severity. While many SSR disease forecasters exist, models 

tested here were selected based on the crop and location in which they were developed and the 

accessibility of predictor variables to Québec soybean farmers. Models developed for legume 

crops and in climates similar to Québec’s continental conditions were retained. The first three 

models were developed using soybean from data collected in Iowa, Michigan, and Wisconsin in 

the United States (Willbur et al., 2018b). They are apothecia formation models that can help predict 

end-of-season SSR incidence based on carpogenic germination of sclerotia during the soybean 

flowering stages (Willbur et al., 2018c). Weather variables used as predictors are 30-day moving 

averages of maximum temperature (Willbur 1, Formula 3. 2), and maximum wind speed (Willbur 

2, Formula 3. 3) and maximum relative humidity (Willbur 3, Formula 3. 4). The fourth model was 
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developed using data collected in soybean fields in the Midwest of the United States (Fall et al., 

2018a). This model predicts the probability of DSI above 22 using the average temperature in July, 

the total precipitation in July and the interaction between those two variables (Fall, Formula 3. 5). 

The fifth model was developed on common bean (Phaseolus vulgaris L.)  in North Dakota in the 

United States (Harikrishnan and del Río, 2008). It was hypothesized that the similarities between 

soybean and bean crops, including indeterminate growth habits and mid-May to early June 

planting periods, would potentially make the Harikrishnan model applicable to soybean in Québec. 

It predicts the risk of SSR incidence using the total precipitation in the first half of June, the average 

minimum temperature in the first half of July and the number of days with precipitations in the 

first half of August (Harikrishnan, Formula 3. 6). All five models were developed from logistic 

regression analyses and probabilities were obtained using the logit equation (Formula 3. 7).  

 

All models were evaluated for their predictive ability regarding SSR disease severity even if, 

among the five models of interest, only the Fall model was originally derived to predict a DSI 

outcome.  This choice was based on the associations between apothecia presence during the 

soybean flowering period, in-season weather variables and end-of-season DSI observations. This 

raised the question whether the Willbur model series and the Harikrishnan models could also be 

used to predict SSR disease severity in Québec. Additionally, disease severity and its impact on 

yield losses is perhaps more of concern than apothecia presence and disease incidence to soybean 

producers looking for disease management guidelines. Model performance was evaluated through 

receiver operating characteristic (ROC) curve analyses at the ! = 0.05 significance level in R 

(‘verification’ and ‘pROC’ packages) (Manubens et al., 2018, Robin et al., 2011). 

 

Formula 3. 2. Willbur 1 model equation. 

Logit(µ) = -0.68(MaxT30MA) + 17.19 

Where MaxT30MA is the 30-day moving average of the maximum value of air temperature (℃). 

 

Formula 3. 3. Willbur 2 model equation. 

Logit(µ) = -0.47(MaxT30MA) – 1.01(MaxWS30MA/1.609) + 16.65 

Where MaxT30MA is the 30-day moving average of the maximum value of air temperature (℃), 

and MaxWS30MA is the 30-day moving average of the maximum of wind speed (km/h). 
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Formula 3. 4. Willbur 3 model equation. 

Logit(µ) = -0.56(MaxT30MA) + 0.10(MaxRH30MA) – 0.75(MaxWS30MA/1.609) + 8.20 

Where MaxT30MA is the 30-day moving average of the maximum value of air temperature (℃), 

MaxWS30MA is the 30-day moving average of the maximum of wind speed (km/h), 

And MaxRH30MA is the 30-day moving average of the maximum of relative humidity (%). 

 

Formula3.  5. Fall model equation. 

Logit(µ) = -9.77(Tp.J) -1.76(PP.J) + 0.09(Tp.J*PP.J) + 197.33 

Where Tp.J is the average temperature in July (℃), 

PP.J is the total rainfall in July (mm), 

and Tp.J*PP.J is the interaction between the average temperature and rainfall in July. 

The coefficient for the PP.J was modified from 176 to 1.76 following an error in the original 

manuscript (M. L. Fall, personal communication, October 2021). 

 

Formula 3. 6. Harikrishnan model equation. 

Logit(µ) = 1.70(TRFJ1) + 1.50(MinTJu1) – 0.05(RDAug1) -26.00 

Where TRFJ1 is the total rainfall during the first half of June (mm), 

MinTJu1 is the average minimum temperature in the first half of July (℃), 

and RDAug1 is the number of rainy days in the first half of August. 

 

Formula 3. 7. Logit equation to calculate the probability disease severity. 

 

Probability = e!"#$%(')
(1 + e!"#$%(')) 

 

A new binary SSR severity variable was created from the DSI ratings in each experimental site in 

each year of data collection in Québec. When the DSI in the experimental plot was above 10, the 

binary variable was equal to 1, otherwise it was equal to 0. The DSI value of 10 was chosen as a 

disease indicator based on the SSR severity rates observed in Québec from 2019 to 2021 and 

severity values reported to be of concern for soybean producers (Willbur et al., 2018c). 
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In the first phase of analysis, the accuracy of each model was evaluated through a z statistic testing 

the null hypothesis that the area under the receiver operator characteristic curve (AUC) of the 

model under evaluation was not significantly different from 0.500, which represents the AUC of 

the line of no-discrimination on a ROC graph. This procedure was used to test whether the models 

forecasted SSR severity significantly better than chance (! = 0.05). Models with an AUC not 

significantly different than 0.500 were considered poor predictors of SSR severity (Hughes et al., 

1999). 

 

In the second phase of analysis, comparisons of the models were performed through pairwise χ2 

statistic tests at a family-wise error rate of 0.05, with degrees of freedom of N-1 where N is the 

number of AUCs derived from the covariance matrices of the Mann-Whitney U-statistic (Bamber, 

1975, DeLong et al., 1988, Hanley and McNeil, 1982). Using the Delong (1988) method, the 

covariance matrices accounted for the correlated nature of the ROC curves generated from the 

same data sets. This analysis was used to test whether a model forecasted SSR severity 

significantly better than the other models (DeLong et al., 1988). 

 

3.2.4.5.1 Threshold selection 

3.2.4.5.1.1 Youden index 

In the third phase of analysis, the accuracy, sensitivity and specificity of models were assessed at 

their respective optimal threshold derived from the Youden index (J) and from a published 

probability action threshold of 40% from the development and validation phases of the Willbur 

models (Formula 3. 8) (Youden, 1950, Willbur et al., 2018b, Willbur et al., 2018c). The Youden 

index is identified as being closest to the coordinate (0, 1) on the ROC graph and equally values 

sensitivity and specificity. An action threshold appropriate to the agro-environmental context of 

Québec must be identified for the model equations to be used in an integrated decision support 

system for producers. The action threshold is a model probability value above which a fungicide 

application would be indicated to prevent the colonization of soybean tissues by ascospores and 

yield-reducing end-of-season disease severity. Such an action threshold value must strike a balance 

between over and under-spraying. The action threshold should be high enough that fungicides are 

not sprayed unnecessarily, for example when the risk of disease development is low. However, the 
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action threshold should be low enough that fungicides applications are not delayed, for example 

when the risk of SSR severity is high.  

 

Formula 3. 8. Equation to calculate the Youden index of the models (Youden, 1950). 

J= sensitivity + specificity -1 

 

The percentage of correct predictions obtained for each model was used as a measure of model 

accuracy. The percentage of correct predictions was calculated by dividing the number of model 

successes by the total number of observations and multiplying by 100. Sensitivity and specificity 

were used to assess a model’s tendency to over-predict or under-predict SSR severity. Sensitivity 

was measured by the proportion of true positives; the number of correctly predicted instances of 

disease presence over the total number of instances of disease presence. Specificity was measured 

by the proportion of true negatives; the number of correctly predicted instances of absence of 

disease over the total number of instances of disease absence observations. 

 

3.2.4.5.1.2 Published threshold 

The selection of an appropriate threshold to use with each model under study was based on the 

likelihood ratios from the Youden index and the published 40% threshold derived from each 

model’s ROC curve (Willbur et al., 2018b). The likelihood ratio of a positive prediction (LR+) 

corresponds to sensitivity/(1-specificity), while the likelihood ratio of a negative prediction (LR-) 

corresponds to (1-sensitivity)/specificity. The predictive ability of a model increases either as LR+ 

increases or LR- decreases. As the LR+ of a model increases, the model accuracy in apothecia 

presence situations increases. As the LR- of a model decreases, the model accuracy in the absence 

of apothecia increases. At an appropriate action threshold, a model with good predictive power 

would be associated with an LR+>1 and an LR- <1 (Biggerstaff, 2000). 

3.3 Results 

3.3.1 Association between apothecia at selected soybean growth stages and DSI 

Figure 3. 1 shows the experimental sites where S. sclerotiorum apothecia were observed in the 

deposits placed in the experimental plots during each soybean growth stage in 2019, 2020 and 
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2021. Random noise was added through a jittering effect to avoid overplotting the data represented 

in Figures 3. 1 and 3. 2.  In the three years of scouting, no apothecia were observed in the deposits 

during the vegetative growth stages. The first apothecia were observed at the R3 growth stage in 

one experimental site in the Laurentides in 2019, at the R2 growth stage in one experimental site 

in Montérégie-Est in 2020, while they were observed earlier, starting at the R1 growth stage in 

five experimental sites in Montérégie-Est and Montérégie-Ouest in 2021. There were no apothecia 

at the experimental site in the Outaouais region which was surveyed in 2019 only (Figure 3. 1). 

 

SSR symptoms were observed only at a few experimental sites over the three years of data 

collection, as shown in Figure 3. 2. In 2019, SSR severity was greater than the 10% DSI threshold 

in four experimental sites in the Montérégie-Est, Laurentides, and Chaudière-Appalaches regions. 

The highest DSI observed in a plot in 2019 was 94.4% in Chaudière-Appalaches, where apothecia 

were first observed in the deposit at the R4 growth stage. In 2020, SSR severity was above the 

10% DSI threshold in three experimental sites in the Centre-du-Québec and Estrie regions. The 

highest DSI observed for a plot in 2020 was 43.3% in Centre-du-Québec, where apothecia 

production in the deposit started at the R4 growth stage. In 2021, SSR severity was above the 10% 

DSI threshold in three experimental sites in the Centre-du-Québec, Estrie, and Chaudière-

Appalaches regions. The highest DSI observed in 2021 was 63.3% in a plot in Estrie, where 

apothecia were first observed in the deposit at the R2 growth stage, and the peak apothecia 

formation occurred between the R4 and R5 growth stages (Figure 3. 2). 
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Figure 3. 1. Apothecia observations in the deposits at each experimental site in relation to soybean 
growth stages in Québec from 2019 to 2021. Each dot represents one experimental site where at 
least one apothecium was present, and the dot colour identifies the experimental site’s region. 

 
Figure 3. 2. Disease severity index (%) of inoculated soybean plots at experimental sites from 
2019 to 2021 in Québec. Each dot represents one experimental site, and the dot colour identifies 
the experimental site’s region. 
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Sclerotinia stem rot severity was positively associated with apothecia observed in the deposits 

between the R2 and R5 growth stages. The DSI was very weakly negatively correlated with 

apothecia produced during the R1 growth stage and beyond the R5 growth stage. The apothecia 

produced during the R2, R3, and R4 growth stages had a significant relationship with DSI 

(r >0.27, P <0.05), with R3 apothecia having the largest correlation coefficient (r = 0.34, P <0.05) 

between 2019 and 2021 (Figure 3. 3). 

 

 
Figure 3. 3. Correlation matrix showing the Pearson correlations between apothecia observed 
during the soybean growth stages R1 to R5 and beyond (R5+) and the disease severity index 
(DSI)(%) from 2019 to 2021 in experimental sites in Québec. The blue colour indicates a positive 
correlation and the red color shows a negative correlation. 

 

3.3.2 Association between apothecia and selected weather variables 

The relationship between apothecia formation and weather variables was assessed through a 

correlation analysis. A value of 0.25 mean apothecia/deposit was initially used as a threshold to 

construct the apothecia binary variable used in correlation analyses as it corresponds to the 

presence of a single apothecium observed in only one of the four deposits placed in each 

experimental site. The optimal moving average durations were identified based on the number of 

variables correlated with the resulting binary variable and the strength of the relationship (Table 
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A. 5). The moving average duration with the most weather variables strongly correlated with the 

binary apothecia variable were 10-day, 20-day and 30-day periods. In addition to 0.25 mean 

apothecia/deposit, values of 0.50, 0.75 and 1.00 mean apothecia/deposit were analysed as potential 

thresholds to construct the binary apothecia variable to identify optimal moving average durations 

(Table A. 6). There were no differences in the strength or the number of correlated variables based 

on the value of the threshold, and as such, a value of 0.25 mean apothecia/deposit was used for the 

remainder of the analyses. 

 

Figure 3. 4 shows that the associations between weather variables and apothecia presence were 

similar in strength and direction for 10-day, 20-day and 30-day moving averages and different for 

some variables for the 40-day moving average duration over the three years of data collection. The 

presence of apothecia was positively associated with maximum, mean, and minimum values of 

relative humidity and the rainfall AWDR parameter. There was a negative correlation between 

apothecial presence and maximum, mean, and minimum values of temperature and maximum and 

mean values of wind speed. From 2019 to 2021, the variables most strongly associated with the 

presence of apothecia were mean relative humidity (r > 0.39, P < 0.05) and maximum daily 

temperature (r >-0.30, P < 0.05) for 10-day, 20-day and 30-day moving average durations. The 

relative humidity associations were strongest at the 40-day and 30-day moving average durations, 

while the temperature coefficients were greater for the 10-day and 20-day periods (Figure 3. 4). 

 

There were some differences in the strength of the association between apothecia formation and 

weather variables from one year to the next. The association between apothecia formation and 

relative humidity, especially mean values, was the most consistent. However, the association 

between carpogenic germination and other weather variables such as temperature and wind speed 

fluctuated from 2019 to 2021. Maximum temperature was most strongly associated with apothecia 

formation in 2019 (r = -0.60, P<0.05), and less in 2020 (r =-0.22, P<0.05) and 2021 (r = -0.03, 

P>0.05). It was the opposite for maximum wind speed as the correlation with apothecia was 

strongest in 2021 (r = -0.36, P<0.05) (Figure A.  3). 
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Figure 3. 4. Correlation matrices showing the correlation coefficients for Kendall correlations 
between A) 10-day, B) 20-day C) 30-day and D) 40-day moving averages of weather variables and 
the apothecia binary variable created based on a threshold of 0.25 mean apothecia/deposit in 
Québec from 2019 to 2021. The blue colour indicates a positive correlation and the red colour 
shows a negative correlation. 

 
3.3.3 Association between SSR severity and selected weather variables 

The relationship between SSR severity and weather variables during selected periods of the 

growing season was assessed through correlation analyses. June was the month with the most 

weather variables strongly and significantly correlated with SSR severity (Figure 3. 5; Table A. 

A B

C D
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7). Relationships between selected weather variables in August and SSR severity were weak and 

not statistically significant. SSR severity was most strongly associated negatively with mean (r = 

-0.26, P < 0.05) and maximum (r = -0.34, P < 0.05) temperature in June, mean (r = -0.25, P < 

0.05) and minimum temperature in July (r = -0.33, P < 0.05), mean temperature in September (r 

= -0.26, P < 0.05) and with total rain in July (r = -0.23, P > 0.05).  Among the positive relationships, 

SSR severity was most strongly associated with moisture parameters such as total rainfall, mean 

relative humidity, and all AWDR values in June and mean relative humidity in September  (Figure 

3. 5). Precipitations after July were weakly associated with SSR severity as the correlation 

coefficients for rain and DSI were low in August and September.  Despite the significant 

relationship between disease severity and mean wind speed in June, the coefficient was low (r = 

0.16, P = 1.027E-08) (Figure 3. 5). 

 

3.3.4 Effect row spacing and location on timing and abundance of apothecia formation 

Figure 3. 6 shows the number of S. sclerotiorum apothecia observed at each research centre for the 

17.8-, 38.1- and 76.2-cm row spacing plots from 2019 to 2021. In each year of data collection, 

apothecia were observed at all research centres in at least one plot. However, apothecia were not 

observed in each of the three row spacing plots. No apothecia were observed in the 17.8- and 76.2-

cm spaced plots at CÉROM in 2019, in the 17.8-cm spaced plots at McGill University and 

CÉROM, the 76.2-cm spaced plots at McGill University in 2020 and in the 17.8-cm spaced plots 

at McGill University in 2021. Apothecia formation occurred when the canopy was on average 

94.4% closed across all commercial and research sites scouted. In addition, no apothecia were 

observed prior to the canopy being at least 46.3% closed, which occurred in a 55.9-cm row spacing 

experimental site in Centre-du-Québec on July 12th, 2021. 

 

From 2019 to 2021, at the research centres, the maximum number of apothecia observed was 

highest at IRDA (Figure 3.6D) with a mean peak value of 17.4 apothecia/deposit, compared to 3.9 

apothecia/deposit at Laval University (Figure 3.6A), 1.6 apothecia/deposit at CÉROM (Figure 

3.6C) and 2.4 apothecia/deposit at McGill University (Figure 3.6B). At IRDA, apothecia were 

observed in all the deposits in each year of data collection (Figure 3.6D).  
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Figure 3. 5. Pearson correlations between A) June, B) July, C) August, and D) September weather 
variables and the DSI (%) for soybean fields from 2019 to 2021.  The blue colour indicates a 
positive correlation and the red colour shows a negative correlation. 

 

 

A B

C D
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Figure 3. 6. Total apothecia observations in deposits in 17.8-, 38.1-, and 76.2-cm row spacing 
plots at A) Saint-Augustin-de-Desmaures (Laval University), B) Sainte-Anne-de-Bellevue (McGill 
University), C) Saint-Mathieu-de-Beloeil (CÉROM), and D) Saint-Lambert-de-Lauzon (IRDA) 
from 2019 to 2021. Each dot is a mean of apothecia counts from each of the four deposits for each 
row spacing and the vertical lines represent the standard error. 
 

A
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Figure 3. 6. Total apothecia observations in deposits in 17.8-, 38.1-, and 76.2-cm row spacing 
plots at A) Saint-Augustin-de-Desmaures (Laval University), B) Sainte-Anne-de-Bellevue (McGill 
University), C) Saint-Mathieu-de-Beloeil (CÉROM), and D) Saint-Lambert-de-Lauzon (IRDA) 
from 2019 to 2021 (cont’d). Each dot is a mean of apothecia counts from each of the four deposits 
for each row spacing and the vertical lines represent the standard error. 
 

C

D
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Within each research centre, apothecia first appeared at similar times during the growing season 

despite the three different row spacings used at planting. In the plots where apothecia were 

observed in at least one deposit, the survival analysis results showed that the difference in the 

length of time before the apparition of the first apothecia was not statistically significant based on 

row spacing in each year of data collection (Table A. 8). 

 

The area under the inoculum progress curve (AUIPC) was calculated for the apothecia formation 

at each experimental plot at the four research centres from 2019 to 2021. The 3-term interaction 

between the row spacing, research centre and year was not significant and was removed from the 

statistical model. The 2-term interactions between row spacing and research centre, and row 

spacing, and year were not statistically significant. However, the 2-term interaction between the 

research centre and the year was statistically significant (Table 3. 3). The largest AUIPCs were 

observed at IRDA in 2021 and at IRDA in 2019 (Table A. 9).  

 

Table 3. 3. Type III tests of fixed effects for the effect of row spacing on the area under the 

inoculum progress curve at research centres in Québec from 2019 to 2021. 

Main effects and interactions F value Pr > F1 

Row spacing 0.59 0.5550 

Research centre 46.74 <0.0001 

Year 11.32 <0.0001 

Row spacing * Research centre 0.80 0.5688 

Row spacing * Year 0.85 0.4991 

Research centre * Year 10.51 <0.0001 
1The p-value for the F statistic (a = 0.05). 

 

The effect of row spacing on apothecia formation was further evaluated at IRDA, where 

carpogenic germination was observed in all experimental plots in 2019, 2020 and 2021. A GLMM 

analysis with temporal repeated measures (scouting visits) was performed with Poisson and 

negative binomial distributions, and with compound symmetry and first order autoregressive 

covariance structures. Based on the optimal AIC and Pearson chi-square/DF values, the model 

using Negative binomial distribution and a first-order autoregressive covariance structure was 
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retained for the analysis (Table A. 10). The results showed no significant difference in the 

abundance of apothecia in the plots with different row spacing at IRDA in 2019, 2020 and 2021 

(Table 3. 4). 

 

Table 3. 4. Type III tests of fixed effects for the effect of row spacing on apothecia formation at 

IRDA from 2019 to 2021. 

Main effects and interactions F Value Pr > F1 

Row spacing 0.09 0.9105 

Visit 7.27 <0.0001 

Year 1.31 0.2725 

Row spacing*Visit 0.55 0.9879 

Row spacing * Year 0.20 0.9377 
1The p-value for the F statistic (a = 0.05). 

 

3.3.5 Disease severity index at the research centres from 2019 to 2021   

Disease severity indices were calculated for each experimental plot at the four research centres 

from 2019 to 2021. In 2019, out of the four research sites surveyed, disease symptoms were only 

observed at the Laval University site located in the Capitale-Nationale region. At that site, only 

one experimental plot, planted with 76.2-cm row spacing, showed disease symptoms with a DSI 

value of 5.6%. The other 11 experimental plots at the Laval University research site had DSI values 

of 0.0% in 2019. In 2020, among research centres, disease symptoms were only observed at the 

CÉROM location in the Montérégie-Est region. Out of the 12 experimental plots at CÉROM, only 

one 17.8-cm spaced plot showed very minimal disease symptoms with a DSI value of 1.1%. In 

2021, disease symptoms were observed at IRDA, in the Chaudière-Appalaches region, while the 

three other research centres had no sign of disease (Figure 3. 2 and Figure 3. 7). DSI was the 

highest in the 38.1-cm spaced plots with a mean value of 19.2%, while the mean DSI was 7.5% 

and 5.0% in the 17.8- cm and 76.2-cm spaced plots respectively at IRDA in 2021.  The difference 

in DSI between the three row spacings was not significantly different (Table A. 11).  
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Figure 3. 7 Disease severity index (%) at R8 for 17.8-, 38.1-, and 76.2-cm spaced experimental 
plots at the IRDA research centre in 2021. 

 

3.3.6 Validation of Sclerotinia-related prediction models 

Over the three years of data collection, SSR severity in Québec varied between DSI values of 0.0 

and 94.4% at the field level. The sites surveyed were artificially inoculated with sclerotia and had 

an established history of Sclerotinia stem rot. However, 85.1% of fields showed little to no disease 

symptoms (DSI < 10%) and were considered controls in the model validation dataset. The 

proportion of cases, fields with a DSI of 10% and above, was highest in 2019 (18.2%) and lowest 

in 2020 (12.5%) as seen in Table 3. 5. 
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Table 3. 5. Proportion of cases and controls in Québec from 2019 to 2021 based on a DSI threshold 

of 10%. 

Year 
Sites 

Scouted 

Disease 

Presence 

Disease 

Absence 
Cases (%)1 Controls (%)2 

2019 22 4 18 18.2 81.8 

2020 24 3 21 12.5 87.5 

2021 21 3 18 14.3 85.7 

Total 67 10 57 14.9 85.1 
1Cases are fields with a disease severity index of 10% and above. 
2Controls are fields with a disease severity index below 10%. 
 

3.3.6.1 AUC pairwise comparisons  

Selected SSR models were evaluated for their capacity to predict disease severity at the 10% DSI 

level through AUC analyses as shown in Figure 3. 8. The models’ ability to determine whether an 

occurrence of a disease severity index of 10% or above varied throughout the three years of data 

collection. The models’ performances were generally better in 2020 and 2021 compared to 2019. 

In 2019, none of the models’ AUC was significantly greater than the AUC of the no-discrimination 

line (0.500) with values ranging from 0.403 to 0.639 (Figure 3. 8A). In 2020, Willbur 1, Willbur 

2, Willbur 3 and Harikrishnan models had AUCs significantly larger than the no-discrimination 

line with values ranging between 0.810 and 0.921 (Figure 3. 8B; Table 3. 6). The Fall model 

erroneously predicted high probability of disease incidence for most fields and had an AUC of 

0.444 in 2020 (Figure 3. 8B; Table 3. 6); however, its AUC was not significantly lower than the 

four other models. In 2021, Willbur 1 and Fall were the only models with a predictive ability 

significantly better than chance with an AUC of 0.898 and 0.935, respectively (Figure 3. 8C; Table 

3. 6). The other model AUCs ranged between 0.482 and 0.648. That year, the Fall model was 

significantly better than the Harikrishnan model (Table 3. 6).  

 

Model performance was also tested over the data collected at all sites scouted in Québec from 2019 

to 2021, inclusively. The Willbur 1 model had an AUC significantly greater than the no-

discrimination line, a value of 0.715, indicating a classification ability significantly superior to that 

of chance. The Willbur 2, Willbur 3, Harikrishnan and Fall models had AUCs of 0.626, 0.653, 
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0.602, and 0.506, respectively, which were not significantly larger than the no-discrimination line 

over the three years of data collection (Table 3. 6). The models’ performances over data from the 

three years were not superior to the classification ability analyzed with data from each year 

individually (Table 3. 6). 

 

The AUCs of the Willbur models were compared for probabilities obtained during the soybean 

growth stages from beginning bloom to beginning pod formation (R1-R3) and those obtained from 

beginning bloom to full pod formation (R1-R4) with no significant differences in model 

classification ability (Table A. 12). 

 

 

 
Figure 3. 8. Receiver operating characteristic curve for various Sclerotinia models to predict 10% 
disease severity in Québec in A) 2019, B) 2020, C) 2021 and D) 2019-2021. 
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Table 3. 6. Comparisons between the AUCs and the line of no-discrimination of Sclerotinia-related 

prediction models using 10% DSI as a disease indicator in Québec from 2019 to 2021. 

Year Model AUC1 SE2 Z-Statistic P-value3 

2019 

Willbur 1 0.639 a 0.014 0.78 0.217 

Willbur 2 0.542 a 0.014 0.21 0.416 

Willbur 3 0.514 a 0.014 0.04 0.483 

Harikrishnan 0.500 a 0.000 -141.42 1.000 

Fall 0.403 a 0.024 -0.64 0.739 

2020 

Willbur 1 0.921 a 0.004 2.27 0.012 

Willbur 2 0.810 a 0.023 1.66 0.048 

Willbur 3 0.841 a 0.015 1.84 0.033 

Harikrishnan 0.810 a 0.009 1.68 0.046 

Fall 0.444 a 0.043 -0.35 0.637 

2021 

Willbur 1 0.898 ab 0.005 2.11 0.017 

Willbur 2 0.630 ab 0.033 0.65 0.257 

Willbur 3 0.648 ab 0.028 0.75 0.225 

Harikrishnan 0.482 b 0.021 -0.20 0.580 

Fall 0.935 a 0.003 2.32 0.010 

2019-2021 

Willbur 1 0.715 a 0.008 2.15 0.016 

Willbur 2 0.626 a 0.007 1.26 0.104 

Willbur 3 0.653 a 0.008 1.52 0.064 

Harikrishnan 0.602 a 0.004 1.21 0.113 

Fall 0.506 a 0.013 0.05 0.479 
1AUC: Area under the Receiver Operating Characteristic curve. For each year individually and the 
2019-2021 pooled year analyses, the AUC followed by the same letter are not statistically different  
(a=0.05). 
2Standard Error of the model AUC. 
3Probability associated with the Z-statistic given a null hypothesis of no difference between the 
model AUC and an AUC of 0.5 being true (a = 0.05). 
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3.3.6.1.1 Performance parameters at selected thresholds for pooled years and regions 

For each model, the accuracy, sensitivity, specificity, and likelihood ratios of positive (LR+) and 

negative (LR-) predictions at the published probability threshold of 40% and the Youden index, 

are presented in Table 3. 7. The models with the highest Youden indices were the Harikrishnan 

and Fall models with indices of 1.00 and the Willbur 1 model with an index of 0.749. The Youden 

index of the Willbur 2 and 3 models were very low at 0.006 and 0.019, respectively. These indices 

reflect that the Fall and Harikrishnan models mostly gave very high probabilities of disease, while 

Willbur 2 and Willbur 3 probabilities were mainly very low for all sites (Figure 3. 9).  

 

At the Youden index, the most accurate model was Willbur 1, which accurately predicted 88.1% 

of the disease severity observations in all regions from 2019 to 2021 (Table 3. 7). The accuracy of 

the other models varied between 37.3% and 65.7%, with the Harikrishnan model being on the 

lower end and the Fall model on the higher end of the range. The Willbur 2, Willbur 3 and 

Harikrishnan models were generally better at correctly predicting the fields with disease than 

identifying healthy fields since model sensitivity was 100.0% while the specificity was between 

26.3% and 40.4% (Table 3. 7). In comparison, the Willbur 1 and Fall models both had a sensitivity 

of 50.0% and specificities of 94.7% and 68.4%, respectively. This is also seen by the positive and 

negative likelihood ratios of the models. Models with high predictive abilities are associated with 

LR+>1, the value representing correctly predicted disease severity, and LR-<1, the value denoting 

erroneously predicted disease severity. At the Youden index, Willbur 1 model had the highest LR+ 

(9.5) (Table 3. 7).  

 

The probability action threshold of 40% was not close to any of the models’ Youden indices. As 

such, the performance parameters of the models at the 40% threshold differed largely from their 

performance at their Youden index. At 40%, the most accurate models were Willbur 2 and Willbur 

3, which accurately predicted 82.1% and 80.6% of the disease severity observations in all sites 

from 2019 to 2021, respectively (Table 3. 7). The accuracy of the other models varied between 

14.9% and 56.7%, with the Harikrishnan model being on the lower end and the Willbur 1 model 

on the higher end of the range. Willbur 2 and 3 were highly specific since they generated 

probabilities of disease presence below 40% for most experimental sites scouted (Figure 3. 9). As 

such, they correctly identified situations where disease development did not occur, which was the 
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case for most of the observations in the dataset. However, at the 0.40 threshold, they failed to 

identify all situations where the DSI was equal to or greater than 10% which resulted in their 

sensitivity being 0.0%. Since disease situations were the minority in the dataset, it created the 

illusion that the Willbur 2 and 3 models were accurate overall. However, their LR+ of 0.000 and 

LR- of 1.036 and 1.056 reflect their flaws. On the contrary, at a threshold of 40%, lower than their 

Youden Index, the Willbur 1, Fall, and Harikrishnan models had high sensitivity (>70.0%) and 

low specificity (<54.4%) (Table 3. 7).  

 

Table 3. 7. Model performance indicators at their Youden index and at a probability threshold of 

40% in Québec from 2019 to 2021 for different Sclerotinia models. 

Model Threshold Accuracy Sensitivity Specificity LR+2 LR-3 

 Youden Index      

Willbur 1 0.7491 0.881 0.500 0.947 9.500 0.528 

Willbur 2 0.0061 0.463 1.000 0.368 1.583 0.000 

Willbur 3 0.0191 0.493 1.000 0.404 1.676 0.000 

Harikrishnan 1.0001 0.373 1.000 0.263 1.357 0.000 

Fall 1.0001 0.657 0.500 0.684 1.583 0.731 

 
Published 

threshold 

     

Willbur 1 0.400 0.567 0.700 0.544 1.535 0.552 

Willbur 2 0.400 0.821 0.000 0.965 0.000 1.036 

Willbur 3 0.400 0.806 0.000 0.947 0.000 1.056 

Harikrishnan 0.400 0.149 1.000 0.000 1.000 NaN 

Fall 0.400 0.224 0.700 0.140 0.814 2.138 
1Youden index. 
2Likelihood Ratio of a positive prediction (diseased field). 
3Likelihood Ratio of a negative prediction (healthy field). 
NaN: Not a Number, the likelihood ratio is invalid due to a division by 0. 
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Figure 3. 9. Observed frequencies and predicted probabilities (shown above the respective model 

bars) of disease severity for a probability threshold of 40% and disease severity index above 10% 

in A) 2019, B) 2020, C) 2021 and D) 2019 to 2021 in Québec soybean fields. 

3.4 Discussion 

Understanding the intricate associations between the environmental conditions, the soybean 

susceptibility period, and S. sclerotiorum inoculum production in Québec is essential in moving 

away from managing the sporadic disease through preventative, calendar-based fungicide spray 

programs and towards risk-based integrated SSR management strategies. In this study, the 

production of apothecia was first observed and linked to prevailing environmental conditions and 

disease severity. Then, the predictive ability of selected bioclimatic Sclerotinia-related predictions 

models developed in the United States was tested to evaluate their ability to predict SSR severity. 

While apothecia were present in most experimental sites surveyed, only a few fields showed 

disease symptoms above a DSI of 10% in Québec from 2019 to 2021.  

 

One reason for the low disease severity observed in Québec in the past few years is the presence 

of apothecia occurring late in the growing season. While apothecia were observed during the 
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flowering period in some regions, when dying flower petals make soybean vulnerable to SSR 

infections, apothecia were mostly observed during the later soybean growth stages. This suggests 

that the peak of ascospore pressure was not aligned with the soybean susceptibility window in 

most fields surveyed. The correlation results from 2019 to 2021 showed that the apothecia 

produced at the R5 growth stage and beyond were not associated with disease observations.  

Rather, the apothecia produced during the R2, R3, and R4 growth stages were most strongly 

associated with SSR severity in Québec. This observed association led us to further investigate 

whether apothecia presence during the blooming period had a predictive role regarding end-of-

season disease severity rates observed in Québec.  

 

The association between the apothecia observed early during the flowering period (i.e. at the R1 

growth stage) although reported as influential for disease development  (Peltier et al., 2012), was 

not strongly correlated with disease symptoms in Québec. Correlation analyses were not meant to 

infer causal relationships, nor should the results be interpreted as such. Instead, these results 

highlight the late timing of carpogenic germination in Québec in relation to the host vulnerability 

window, especially in 2019 and 2020. During these two summers, there was no apothecia 

formation in the R1 soybean growth stages, which could explain the lack of a strong association 

with disease severity. Earlier research had identified the R3 growth stage as the end of the 

vulnerable soybean period for infection by S. sclerotiorum (Peltier et al., 2012). In this study, 

apothecia produced during the full pod period (R4) also seemed associated with disease 

development later in the growing season. The presence of senescing tissues on the crop during that 

period perhaps allowed ascospores released by apothecia to colonize the plants, thus explaining 

the association observed. Inoculum pressure at the R4 soybean growth stage had also been 

previously linked to SSR disease development in the United States (Willbur et al., 2018c).    

 

The environment is a crucial aspect in inoculum production, initial plant infection and disease 

progression. As many have noted before, apothecia formation is positively associated with high 

relative humidity and negatively correlated with temperature (Workneh and Yang, 2000, Young 

et al., 2004). The correlation analysis results between weather variables and apothecia formation 

in Québec mainly echoed previous findings; however, some differences were noticed. For 

example, while a negative association between maximum wind speed and carpogenic germination 
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had been observed in the United States in non-irrigated fields (Willbur et al., 2018b), it was the 

case only in 2021 in Québec. The fluctuations in environmental conditions across years may 

explain some of the differences in associations between apothecia formation and weather variables. 

Given the distance between weather stations from which data were recorded and experimental 

field locations in Québec, the accuracy of the environmental measurements may also have affected 

the relationships obtained. The distance between experimental sites and weather stations in Québec 

was on average 8.28 km but was not uniform from one site to another.  In the United States, the 

Willbur models utilized weather-gridded data at a 5-km resolution, increasing the precision of 

model predictions at the field level (Willbur et al., 2018b). Among weather variables recorded 

using the Québec Agrometeo network, wind speed, especially maximum values, is perhaps the 

variable most likely to be affected by microclimate variations at the soil level where the apothecia 

were located. 

 

The limited disease observations in Québec from 2019 to 2021 restricted the analysis of the 

relationship between environmental conditions and disease severity. Among the weather variables 

selected, temperature in Québec was the factor most consistently correlated to disease severity 

throughout the growing season, in agreement with findings from historical data in the United States 

(Fall et al. 2018a). The association between rainfall in June and July and disease severity at the 

end of the growing season varied in strength and direction from 2019 to 2021 and no consistent 

trend was observed. This research was a short-term study and epidemiological studies often 

include years of historical data (Fall et al., 2018a). Additional observations should be collected to 

shed more light on the influence of specific environmental conditions on SSR disease severity in 

soybean-producing regions of Québec 

 

While environmental conditions may favour carpogenic germination and disease development, 

these processes are also influenced by interactions with other factors. For example, row spacing 

has been shown to influence disease development (Lee et al., 2005, Rousseau et al., 2007). The 

effect of row spacing on apothecia formation was analyzed as an agronomic aspect at the Québec 

research centres from 2019 to 2021. The hypothesis was that a narrower row spacing would create 

a favourable shaded, cool and humid microclimate earlier in the growing season and thus promote 

rapid and abundant apothecia formation (Sun and Yang, 2000). It had previously been observed 
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that less carpogenic germination was observed at further distances from the soybean row (Fall et 

al., 2018b). In Québec, the sclerotia deposits were purposefully placed near the soybean row, as 

opposed to the centre of the row, to create conditions promoting carpogenic germination early in 

the growing season. While the rate of canopy closure was, on average, faster for narrower row 

spacings, total canopy closure is not required for sclerotia to produce apothecia, especially given 

the positioning of the sclerotia close to the plants in experimental sites in Québec.  Fall et al. 

(2018b) observed the highest number of apothecia produced following 50% canopy closure in 

soybean in Michigan, USA. In Québec, most of the apothecia were observed late in the growing 

season when the canopy was near or at complete closure. In the three years of data collection, the 

initial row spacing of the plots did not result in significant differences in either the timing of 

carpogenic germination or the number of apothecia observed in the deposits.  

 

As for the impact of row spacing on disease development and severity, the row spacings of 17.8-

cm and 76.2-cm were associated with the lowest DSI values, while the 38.1-cm plots had the most 

disease symptoms at IRDA in 2021. Despite not being statistically significant, this effect had been 

previously observed in trials conducted in Québec (Bipfubusa et al., 2020). These observations 

suggest that wider row spacing could reduce disease severity. Also, narrow rows could limit the 

spread of airborne inoculum in the field due to canopy interception in years when the environment 

is favourable to carpogenic germination and inoculum is present in the field (T. Copley, personal 

communication, October 2021). 

 

Bioclimatic modelling is a strategy that can enhance disease control since environmental 

conditions influence SSR development and severity. The correlation analyses presented here 

suggest that weather variables are similarly associated with inoculum production and disease 

severity in Québec and in the north-east of the United States (Willbur et al., 2018b). Weather-

based algorithms predicting the risk of apothecia development and SSR development have been 

developed and integrated into disease management tools used by agronomists and farmers. Among 

others, logistic regression S. sclerotiorum forecasting models have been developed in the United 

States to predict the risk of apothecia presence, SSR incidence and severity in soybeans and dry 

beans (Harikrishnan and del Río, 2008, Fall et al., 2018a, Willbur et al., 2018b). For those models 

to successfully inform producers’ decision-making process, the equations need to be studied and 
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validated under Québec agro-environmental conditions first, and appropriate action thresholds 

must be identified. To date, such work had not been carried out in Québec. This report evaluated 

the performance of five S. sclerotiorum models to predict end-of-season SSR severity under 

Québec soybean growing conditions from 2019 to 2021. Various DSI values have been reported 

as disease indicators in the literature (Fall et al., 2018a, Willbur et al., 2019). Among others, DSI 

values of 22% and above were linked to significant yield losses in soybean in the United States 

(Fall et al., 2018a). However, given that only eight fields in the sites surveyed in Québec reached 

this value over the three years of data collection, a lower value of 10% DSI was used to categorize 

experimental sites between cases and controls. SSR disease development on specific plant 

structures influences the extent to which soybean yield is reduced (Willbur et al., 2019). For 

example, infection of the stem is expected to cause more yield losses than lateral branch 

colonization (Fall et al., 2018a). By ranking the importance of disease symptoms based on their 

location on the crop tissues, the DSI (Grau, 1984), as opposed to disease incidence, is of particular 

interest for SSR disease management purposes. Also, producers may want to manage the disease 

for reasons other than preventing yield losses. Particularly in the case of SSR, infected plants 

become reservoirs for new sclerotia production, increasing the field load, thus perpetuating, and 

exacerbating the disease pressure within a specific location. 

 

Model performance was assessed through ROC curve analysis, which evaluates a model’s ability 

to discriminate between cases and controls for all possible probability threshold values (Metz, 

1978). Model ROC curves can be used to compare the accuracy of various models at potential 

action thresholds. Probability threshold selection considers the balance between model specificity 

and sensitivity that is most appropriate to the context in which the model is used (Biggerstaff, 

2000). At a disease indicator of 10% DSI, Willbur 1 had the highest AUC over the three years of 

data collection. This model was the most parsimonious, being based only on maximum 

temperature during the soybean flowering period. In comparison, models that also included 

moisture-related parameters, such as Willbur 2 and Willbur 3 with maximum wind speed and 

relative humidity, Fall with rainfall in July, and Harikrishnan with rainfall in June and August 

generally had lower AUCs. Given the relationship between moisture variables, apothecia 

formation, and disease development, it was expected that moisture-related predictors would 

improve model predictive ability. However, this was not the case in Québec from 2019 to 2021. 
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This result can be explained by the impact of local model development conditions on the choice 

of selected final variables, the period considered, and the weight given to each model input. Rain 

patterns, used in the Fall and Harikrishnan models, and wind speed, included in the Willbur 2 and 

3 models, are perhaps more likely to vary across regions and within growing seasons compared to 

temperature. Thus, using models based on such predictors outside of their local contexts is 

suboptimal without proper calibration. 

 

The predictive abilities of the models were evaluated based on their error types at specific 

probability threshold values. The threshold values obtained using the optimal Youden index 

calculated individually for each model had large variations. Models like Willbur 2 and 3, which 

generally showed a low probability of disease development, had minimal Youden index values, 

while models like Fall and Harikrishnan, with generally high probabilities of disease development, 

had larger Youden index values. Model end-users ultimately make decisions based on the 

probability action threshold value, and, as such, it should be readily interpretable, which was not 

the case with the Youden index values obtained for most models tested here. A probability 

threshold value of 0.40 has a more practical use since any probability above it can be interpreted 

as a high risk of disease development and thus indicates a potential need for disease management 

measures. While Willbur 2 and 3 showed high accuracy at a probability threshold of 0.40, their 

sensitivity of 0% should not be overlooked. It indicates that they failed to identify environmental 

conditions conducive to disease development. While such conditions were rare in Québec sites 

scouted from 2019 to 2021, producers need models that can signal both situations where disease 

development is likely and unlikely with high reliability. The Willbur 2 model equation was 

validated in the United States and while the model displayed high accuracy, most model errors 

were also underprediction mistakes (Willbur et al., 2018c). 

 

On the contrary, the Fall and Harikrishnan generally overestimated the risk of disease severity.  

While they perfectly identified all the fields that had a DSI greater than or equal to 10%, they also 

misidentified a large proportion of healthy fields. If producers used these models to decide whether 

to chemically manage the disease, they would over-apply fungicides when conditions are 

unfavorable to disease development. At the 40% probability action threshold, this type of error 

was very costly given that there were more healthy than diseased fields in Québec in this study. In 
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comparison, Willbur 1 model had the best disease development discerning capacity. Despite 

making some errors, its sensitivity and specificity were never below 50.0% at the Youden index 

and the 0.40 probability threshold. 

 

Based on the ROC curve and threshold analyses, some models appeared superior for use in 

Québec. The Willbur models, especially Willbur 1, had the highest AUC from 2019 to 2021 and 

had a high AUC in each of the three years of data collection. The other models did not display the 

same consistency in performance. For example, the Harikrishnan model performed well only in 

2020, and the Fall model successfully classified diseased and healthy fields only in 2021. 

Additionally, the Fall model uses July data, and the Harikrishnan model requires data until mid-

August to generate predictions. However, the soybean flowering period in Québec generally 

occurs in July, and timely action, generally at R1, R3 or both, is essential for adequate control of 

SSR. This delay in obtaining model predictions could have tremendous implications for disease 

development in high-risk years. The Willbur models were developed to use weather variables 

prevailing during the flowering period to calculate the risk of inoculum presence during which 

soybean is susceptible to infections (Willbur et al., 2018b). Compared to the Fall and Harikrishnan 

models, it seems that the Willbur models, by predicting apothecia formation instead of disease 

development and by using crop-based cues rather than calendar timing, seized more dependably 

the conditions leading to SSR development at the field level in Québec from 2019 to 2021. The 

models mostly captured weather-based aspects; however, additional elements such as differences 

in field isolate aggressiveness and load, plant population, cultivar SSR disease tolerance, nitrogen 

at planting, soil texture, tillage, and residue density may be factors that also impact disease 

development in Québec (Peltier et al., 2012). 

3.5 Conclusion 

 

Environmental and agronomic conditions for apothecia formation, disease development, and 

severity were assessed in Québec from 2019 to 2021. Previously published models that used 

weather variables during the vulnerable period of soybean to predict apothecial presence showed 

some potential to be used in Québec as decision-making tools to manage Sclerotinia stem rot. 

However, before producers adopt these models, the equations should be modified to improve 
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accuracy and provide more reliable apothecia formation and disease severity predictions. For 

example, the logistic regression coefficients associated with the weather variables could be revised 

using data collected in Québec. In addition, the use of weather variables with weak associations to 

inoculum production and disease severity should be re-evaluated. 
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Connecting text between Chapter 3 and Chapter 4 
The previous chapter identified the potential of the Willbur apothecia formation model series for 

use under Québec conditions to predict end-of-season disease severity. S. sclerotiorum is the causal 

agent of Sclerotinia stem rot and is one of the most concerning pathogens for soybean producers 

in the region. The first aim of Chapter 4 is to validate the Willbur weather-based models for their 

capacity to identify apothecia presence during the soybean growing season. The second objective 

is to adapt the Willbur models to improve their performance in the Quebec soybean production 

context. 
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Chapter 4: Validation and modification of Sclerotinia sclerotiorum carpogenic germination 

prediction models in soybean (Glycine max) in Québec  

4.1 Introduction 

Protecting crops against diseases is a complex process. It requires monitoring multiple aspects 

related to the environment, the crop, and the pathogen to evaluate the prospect that disease will 

occur. Managing plant diseases is especially challenging when an intervention needs to be 

performed before disease symptoms appear on the crop. Farmers and their advisors will weigh the 

cost of treatment, such as applying a pesticide, against the potential loss of yield to devise a 

management strategy. For example, in some cases, farmers will choose to spray pesticides 

preventatively to avoid potential crops losses due to disease epidemics that may or may not arise 

(Gent et al., 2011). Many plant disease prediction models assist farmers in evaluating the 

likelihood of disease development. These models are mathematical equations, often based on 

environmental variables, sometimes including crop or pathogen-related factors that predict disease 

incidence (Bourgeois et al., 2005). For example, forecasting Sclerotinia stem rot (SSR) disease 

incidence by predicting the presence of Sclerotinia sclerotiorum (Lib.) de Bary inoculum is a 

management strategy gaining popularity among soybean growers (Willbur et al., 2018b, Willbur 

et al., 2018c). Soybean (Glycine max (L.) Merr.) is a crop for which yield losses to SSR are 

frequent in Québec (Breault et al., 2017). Recent advances in modelling technologies allow the 

development of precise and efficient tools to inform the use and timing of fungicide applications. 

Among others, forecasting models for SSR of common bean (Phaseolus vulgaris L.) and soybean 

have been developed in the United States (Harikrishnan & del Rio 2008; Fall et al., 2018a; Willbur 

et al., 2018b).  However, no SSR model has been developed or validated for SSR of soybean under 

the weather conditions of Québec. 

 

Models range in scale from predicting disease risk regionally to the field level (Twengström et al., 

1998, Mila et al., 2004, Willbur et al., 2018b). Since models can be used to identify situations 

where disease incidence is unlikely, they can help farmers economically and environmentally by 

reducing unnecessary pesticide use (Willbur et al., 2018c, Small et al., 2015). Despite the many 

prediction models developed, some challenges remain regarding their adoption by producers and 

agronomists. One issue is the availability of model equations or prediction rules outside of the 



 
 

79 

network that initially developed the forecasters (Carisse and Fall, 2021). Also, before producers 

can rely on prediction models as part of their disease management plan, the predictive ability of 

those models needs to be validated in the local context. When these models are not widely 

accessible, it directly limits their uptake in new environments. Another concern is that model 

performance in different environments is often lower than in the setting in which the models were 

initially derived (Bouchard, 2008). This leads to the development of multiple models to predict the 

same disease, most of which never get directly applied during producers’ decision-making process. 

Doing so is an inefficient use of data, as the valuable knowledge derived from the observations 

used to develop previous models are not accounted for in the development of new ones (Moons et 

al., 2012). Instead of re-developing disease prediction models, poor predictive ability in new 

contexts can be addressed by customizing an original model equation to the new environment in 

which it will be used. This strategy benefits from integrating findings from previous studies while 

ensuring that the modified model predictions are adapted to the setting in which the model is 

applied (Janssen et al., 2008, Steyerberg, 2019). 

 

Disease prediction model customization is common practice in clinical epidemiology, where 

physicians use models developed from patient data from a specific set of hospitals to generate 

patient prognosis in a different clinical setting (Curtin et al., 2019, Steyerberg and Vergouwe, 

2014). The statistical methodology used to update prediction models comprises multiple strategies. 

A simple recalibration method consists of a modification of the model intercept, re-estimation 

involves adjusting all regression coefficients associated with model variables, and the more 

complex extension approaches result in new variables being added to the model (Steyerberg and 

Vergouwe, 2014, Steyerberg, 2019, Janssen et al., 2008). 

 

The first objective of this study is to evaluate and compare the effectiveness of three S. 

sclerotiorum apothecia formation models, initially developed in the United States, under Québec 

growing conditions and agronomic practices.  Then, the second objective is to provide a 

phytopathological assessment of the application of the prediction model updating methodology 

using data collected from 2019 to 2021 in Québec soybean-producing regions. Finally, the third 

objective is to identify the most promising apothecia formation models for Québec soybean 
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growers by validating the modified models and comparing their apothecia prediction capacity to 

the original models using data collected in Québec in 2017 and 2018. 

4.2 Materials and methods 

4.2.1 Experimental sites and data collection  

4.2.1.1 Original model validation and model modifications 

Data were collected from 55 commercial location-years and 12 research location-years in Québec 

from 2019 to 2021. Throughout the growing season, data collected included weather conditions, 

apothecia observations (789 scouting visits), soybean growth stages (Fehr and Caviness, 1977), 

soybean plant height (cm) (mean of two plants per row, up to the apex), and the level of canopy 

closure (cm).  Disease incidence, severity of symptoms, and yield at harvest were collected in plots 

where disease development had been observed during the growing season. Weather variables used 

in model validation and modification were maximum temperature (Tmax, (°C)), maximum wind 

speed (Wsmax, (km/h)), maximum relative humidity (Rhmax, (%)), mean relative humidity 

(Rhmean, (%)) and the Abundant and Well-Distributed Rainfall index (AWDR) (Tremblay et al., 

2012). Experimental design at the commercial and research sites and data collection methods were 

described in Chapter 3 (Morier-Gxoyiya et al., in preparation). 

 

4.2.1.2 External validation of modified models 

Data were collected during the R1, R2 and R3 soybean growth stages from 23 commercial 

location-years in Québec in 2017 and 2018 (Table 4. 1). The sites were artificially inoculated with 

sclerotia deposits as outlined in Chapter 3 (Morier-Gxoyiya et al., in preparation). Data collected 

included weather conditions, apothecia observations (117 scouting visits), and soybean growth 

indicators as mentioned above. Experimental design and data collection methods at the commercial 

sites were described in Chapter 3 (Morier-Gxoyiya et al., in preparation). 
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Table 4. 1. Regions and number of sites for data collection in Québec in 2017 and 2018. 

Region Year Number of sites Apothecia scouting visits 

Centre-du-Québec 2017 2 10 

2018 2 6 

Chaudière-Appalaches 2017 2 7 

2018 1 3 

Estrie 2017 2 12 

2018 1 3 

Lanaudière 2017 2 11 

2018 2 12 

Montérégie-Est 2017 2 12 

2018 3 15 

Montérégie-Ouest 
 

2017 2 7 

2018 2 19 

Total  23 117 

 

4.2.2 Statistical Analysis 

4.2.2.1 Validation of original Willbur apothecia formation models 

Statistical analyses were conducted in R v.1.4.1717 (R Foundation for Statistical Computing, 

Austria). The performance of three weather-based apothecia formation logistic regression models, 

Willbur 1, Willbur 2 and Willbur 3 (Formulae 3.2, 3.3 and 3.4, Morier-Gxoyiya et al., in 

preparation) originally developed in soybean in the United States of America (Willbur et al., 

2018b), in predicting apothecia presence in Québec was validated through receiver operator 

characteristic curve (ROC) analysis. In this case, the classification capacity of the three models 

was evaluated specifically with regards to observations of apothecia presence and absence during 

each scouting visit from 2019 to 2021 (n = 789) rather than for DSI observations at the end of the 

growing season as in Chapter 3 (Morier-Gxoyiya et al., in preparation).  The ROC analyses were 

conducted according to the statistical methods described in Chapter 3 (Morier-Gxoyiya et al., in 

preparation). Models with an area under the ROC curve (AUC) not significantly different than 

0.500, representing the area under the line of no-discrimination on a ROC graph, were considered 

poor predictors of apothecial presence (Hughes et al., 1999). Pairwise comparisons of the models 
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were performed to test whether a model forecasted apothecial presence significantly better than 

another model  (DeLong et al., 1988). The ROC analyses of apothecia formation models were 

completed with pooled data from the three years (2019-2021) and by individual year. 

 

4.2.2.2 Comparison of model performance at two thresholds 

The accuracy, sensitivity and specificity of models were assessed at their respective optimal 

thresholds derived from the Youden index (J) (Formula 3. 1, Chapter 3 Morier-Gxoyiya et al., in 

preparation). For each model, the likelihood ratios obtained from the Youden index and from the 

published threshold of 40% were compared as described in Chapter 3 (Morier-Gxoyiya et al., in 

preparation) (Willbur et al. 2018b). 

 

4.2.2.3 Calibration performance 

The calibration of the three Willbur models was evaluated graphically on the data collected in 

Québec from 2019 to 2021. The goal of the calibration analysis was to verify the reliability of 

predicted probabilities in reference to observed frequencies of apothecia presence in Québec. Poor 

model calibration can occur either when models consistently overestimate or underestimate the 

risk of the event of interest, in this case, carpogenic germination of sclerotia. In other words, 

adequately calibrated models should provide higher probabilities for scouting visits during which 

apothecia were observed than for visits when there was no apothecia formation. In addition, poor 

calibration can prevent the model’s useful application in decision-making, even if the model has a 

high AUC, especially when a probability action threshold must be identified. As the models were 

initially developed in the United States, the frequency of apothecia presence there may vary from 

what is observed in Québec. Thus, the original models may systematically distort the predicted 

risk of apothecia presence when used in a new setting. A perfectly calibrated model should have 

an intercept of 0 and a slope of 1 on a graph of the predicted probability against the observed 

proportion of apothecia presence events (Van Calster et al., 2019).  

 

4.2.3 Modification of Willbur models for Québec conditions 

Willbur models were modified to increase their predictive performance under Québec agro-

environmental conditions. Modification methods are summarised in Table 4. 2 and the workflow 

of model modification, fit evaluation and validation is shown in Figure 4. 1. Model modifications 
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were conducted using a training dataset containing a random sample of 70% of the data collected 

in Québec from 2019 to 2021. The proportion of apothecia presence observations in the training 

dataset was 33.9%, a distribution similar to that of the full sample (34.6%) (Figure 4. 2).  

 

Modifications ranged from simple to more elaborate methods and were adapted from the clinical 

prediction modelling methodology (Steyerberg, 2019, Steyerberg et al., 2004, Steyerberg and 

Vergouwe, 2014, Van Calster et al., 2019, Curtin et al., 2019). For each model, the linear predictor 

was the starting point for modifications. The linear predictor of each model was obtained, for each 

scouting visit, by using the model equation and its respective input variables available in Formulae 

3.2, 3.3 and 3.4 in Chapter 3 (Morier-Gxoyiya et al., in preparation).  The two simplest model 

modifications consisted of “Recalibration-in-the-large” and “Logistic recalibration” (Steyerberg, 

2019). In the first method, only one parameter, the intercept of the model, was adjusted while the 

model linear predictor was fixed with a coefficient of 1. The aim of Recalibration-in-the-large is 

for the average of the recalibrated model probabilities to return the overall apothecia presence rate 

observed in Québec from 2019 to 2021. In the second method, two parameters were estimated: the 

intercept and the coefficient of the model linear predictor. Through logistic recalibration, the 

coefficients of models with multiple variables (Willbur 2 and Willbur 3) were modified by a 

common factor (Steyerberg, 2019). These recalibration methods were conducted using maximum 

values of weather variables for both 20-day and 30-day moving average durations. 

 

A more altering modification method was the revision in which the number of parameters re-

estimated was equal to the intercept plus the number of input variables in the model. Revision was 

conducted by re-estimating the regression coefficients associated with the variables in the models 

freely through logistic regression (Steyerberg, 2019). Model revision was conducted using 

maximum values of model variables and both 20-day and 30-day moving average durations. 

Revised models were fitted through 10-fold cross-validation in the ‘caret’ package in R (Kuhn, 

2011, R Core Team, 2021). 

 

Finally, the most extensive modification method was the extension, in which model variables were 

added, and all regression coefficients and the model intercept were freely re-estimated (Steyerberg, 

2019). Model extension was conducted using maximum and mean values of model variables and 
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both 20-day and 30-day moving average durations. The extended model equations were fitted 

using 10-fold cross-validation in the ‘caret’ package in R (Kuhn, 2011, R Core Team, 2021). 

Additional variables included in model equations during the extension phase were 30-day moving 

averages of either mean values of wind speed, mean values of relative humidity or the abundant 

and well-distributed rainfall (AWDR) index. The AWDR was included as a representation of soil 

moisture over a period of 30 days (Tremblay et al., 2012). The duration of the period was chosen 

following a preliminary correlation analysis between AWDR durations ranging from 10 to 30-days 

and apothecia observations in Québec from 2019 to 2021 as reported in Chapter 3 (Morier-

Gxoyiya et al., in preparation). 

 

The fit of the modified models was evaluated on the data used for model modifications, the training 

dataset, and included the Akaike information criterion (AIC), the coefficient of determination (R2), 

and the Kappa statistic. Additionally, predictive performance metrics reported included model 

AUC,  accuracy, sensitivity, specificity, false positive and false negative rates, and likelihood 

ratios of positive and negative predictions of selected modified models at their respective Youden 

index.  

 

Following the modifications of the Willbur models, the calibration of modified Willbur models 

was re-evaluated graphically by plotting their calibration plots on the modification dataset (Figure 

4. 2). The calibration was conducted to assess the reliability of the revised Willbur model 

probabilities when compared to the magnitude of the risk of apothecia presence in Québec. 
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Table 4. 2. Modification methods used to customize the Willbur apothecia formation models for 

Québec agro-environmental conditions (Steyerberg, 2019). 

Modification method 

Model changes 

Intercept Regression coefficient(s) 
Addition of 

variable(s) 

Recalibration-in-the-large Yes  No No  

Logistic recalibration  Yes  Yes, by a common factor No  

Revision  Yes  Yes, by an individual factor No  

Extension Yes  Yes Yes, when s.s.b 

bs.s. stands for statistically significant (a =0.05). 

 

4.2.4 Validation of modified Willbur models 

4.2.4.1 Internal validation 

The modified Willbur models were validated using a test dataset comprised of a random sample 

of 30% of the data collected in Québec from 2019 to 2021. This validation is referred to as internal; 

while observations in the dataset were not used for model modifications, they were not entirely 

independent from the training set, since both sets were randomly partitioned from one common 

dataset. The training and internal test datasets respectively contained 33.9% and 36.7% scouting 

visits during which apothecia were observed. In addition to the modified model equations, the 

original Willbur model equations were also evaluated using the internal test set to provide 

comparable validation results. Predictive performance metrics for internal validation included 

model AUC, and the accuracy, sensitivity and specificity of models at their respective Youden 

index.  

 

4.2.4.2 External validation 

The performance of the original and modified Willbur models was validated externally using a test 

dataset comprising data collected in Québec during the soybean flowering period in 2017 and 

2018. These observations were collected from 12 commercial sites located across Québec soybean 

producing-regions in which sclerotia were artificially buried. The 2017 and 2018 observations 

were collected independently from data observed from 2019 to 2021 which were used for model 
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updating and internal validation (Figure 4. 2). The external validation dataset contained 35.0% of scouting visits during which apothecia 

were observed. Predictive performance metrics included model AUC, and the accuracy, sensitivity and specificity of models at their 

respective Youden index.  

 

 

Figure 4. 1. Workflow of model modifications, fit evaluation, and validations. Abbreviations: AIC, Akaike Information Criterion; R2, 

coefficient of determination; Kappa, Kappa statistic; AUC, Area under the Receiver Operating Curve; Fpos, False positive rate; Fneg, 

False negative rate; LR+, Positive Likelihood Ratio; LR-, Negative Likelihood Ratio; R1-R3, beginning of blooming to beginning of 

pod development soybean growth stages.

Original model

Model Modifications

Recalibration in the large
Logistic recalibration
Revision
Extension

Modified model versions

Model fit

Modification dataset: 
70% of 2019-2021 
observations in Québec

Fit evaluation dataset: 
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Accuracy, Sensitivity, Specificity,
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R1-R3 of 2017-2018 
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Figure 4. 2. Sample composition for datasets used for modifying and validating apothecia 
formation models in Québec soybean fields from 2019 to 2021. R1-R3: beginning bloom to 
beginning pod soybean growth stages. 1The Development Dataset refers to data used to develop 
the Willbur et al. (2018b) models. 

 

4.2.4.3 Dominance analysis 

After model modifications, a dominance analysis was conducted to compare the relative 

contribution of each variable to the prediction of apothecia using the two most complex modified 

models (set of four predictors). These models were chosen as the reference models to evaluate and 

relate the importance of all predictors of interest. The first model included 30-day moving average 

values of maximum temperature, maximum wind speed, maximum relative humidity and AWDR 

variables. The second model included 30-day moving average values of maximum temperature, 

maximum wind speed, mean relative humidity and AWDR variables. The contribution of each 

Development Dataset1
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2014-2016
Location
Iowa, Michigan, Wisconsin (US)
Sample composition
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Apothecia presence
Not available
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Québec (CAN)
Sample composition
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Apothecia presence
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Québec (CAN)
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237 scouting dates
Apothecia presence
Incidence 36.7%

Internal
Inclusion
R1-R3 2017-2018 observations
Location
Québec (CAN)
Sample composition
117 scouting dates
Apothecia presence
Incidence 35.0%

External
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predictor was assessed based on the change in model fit, for all possible subset models, following 

the addition of the predictor as measured through the McFadden index (R2M) (Azen and Traxel, 

2009). The dominance analysis was conducted for each year of data collection from 2019 to 2021 

individually and for the three years pooled using the package ‘dominanceanalysis’ in R (Bustos 

Navarrete and Coutinho Soares, 2020).  

4.3 Results 
4.3.1 Proportion of cases and controls 

Observations from the scouting visits at each experimental site were grouped into “cases” and 

“controls” based on the mean number of apothecia observed in the four deposits at each of the 

commercial sites, and 12 deposits at each of the research sites  (Willbur et al., 2018b). The 

proportion of observations in those two groups varied each year and in the different regions of 

Québec where data was collected. Overall, there was a tendency to observe a greater number of 

control situations (absence of apothecia), compared to case situations (presence of apothecia). 

Using a disease indicator of 0.25 mean total apothecia/deposit, the prevalence of cases was highest 

in 2021 at 49.8%. The prevalence of cases was lowest in 2019 at 17.7% (Table 4. 3).  The region 

with the highest prevalence of cases on average over the three years of data collection was the 

Laurentides at 53.3%, followed by Estrie at 46.5%. The prevalence of cases was lowest in the 

Montréal and Outaouais (one site in 2019) regions at 11.4% and 0.0%, respectively (Table 4. 4).  

 
Table 4. 3. Proportion of cases and controls in each data collection year from 2019 to 2021. 

Year 
Scouting 

Visits 

Apothecia 

Presence 

Apothecia 

Absence 

Cases 

(%)1 

Controls 

(%)2 

2019 238 42 196 17.7 82.4 

2020 302 107 195 35.4 64.6 

2021 249 124 125 49.8 50.2 

Total 789 273 516 34.6 65.4 

1Cases are scouting visits with at least 1 apothecium/deposit. 
2Controls are scouting visits with no apothecia observed. 
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Table 4. 4. Proportion of cases and controls in each data collection region from 2019 to 2021. 

Region 

Number of 

location-

years 

Scouting 

Visits 

Apothecia 

Presence 

Apothecia 

Absence 

Cases 

(%)1 

Controls 

(%)2 

Capitale Nationale 8 84 27 57 32.1 67.9 

Centre-du-Québec 5 55 22 33 40.0 60.0 

Chaudière-

Appalaches 
8 103 46 57 44.7 55.3 

Estrie 5 43 20 23 46.5 53.5 

Lanaudière 6 62 24 38 38.7 61.3 

Laurentides 3 30 16 14 53.3 46.7 

Mauricie 3 33 6 27 18.2 81.8 

Montérégie-Est 17 217 58 159 26.7 73.3 

Montérégie-Ouest 8 110 49 61 44.6 55.5 

Montréal 3 44 5 39 11.4 88.6 

Outaouais 1 8 0 8 0.0 100.0 

1Cases are scouting visits with at least 1 apothecium/deposit. 
2Controls are scouting visits with no apothecia observed. 
 

4.3.2 Validation of original Willbur apothecia formation models 

4.3.2.1 AUC pairwise comparisons from 2019 to 2021 

The original model equations developed by Willbur et al. (2018b) were first evaluated for their 

capacity to predict apothecial development over the three data collection years from 2019 to 2021 

through AUC analyses. Model performance was assessed over the data collected at all sites scouted 

in Québec from 2019 to 2021. Models were evaluated for their capacity to identify the presence of 

apothecia at different maturity levels; immature apothecia (IA), mature apothecia (MA) and all 

maturity levels combined (TA). All model AUCs, regardless of apothecia maturity, were 

significantly greater than 0.500, with values between 0.636 and 0.718, indicating a classification 

ability significantly superior to that of chance (Table A. 13).  
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Across all apothecia maturity levels and over the data from all the experimental sites and years, 

Willbur 3 model showed a better ability to determine whether apothecia were present or absent 

compared to Willbur 1 and Willbur 2 models. The Willbur 3 AUC curve was consistently the 

highest, with values of 0.677, 0.698, and 0.718, for IA, MA, and TA, respectively (Table A. 13). 

The curvature of the Willbur 3 ROC curve was the closest to the (0, 1) coordinates on the plot 

showing a better trade-off between sensitivity and specificity compared to the other models (Figure 

A.  4). The model showing the second-best predictive ability across IA, MA and TA was Willbur 

1 with AUCs of 0.657, 0.680 and 0.685, respectively (Table A. 13). Willbur 2 ROC curves were 

the closest to the line of no-discrimination for all apothecia maturity levels with areas of 0.636, 

0.654 and 0.675 for IA, MA, and TA, respectively (Table A. 13). All the model AUCs were higher 

using TA compared to using IA or MA as an indicator. However, the differences between the 

AUCs of the same model versions due to apothecia maturity levels were not statistically significant 

(a = 0.05) (Figure A.  4). Thus, the following analyses were carried out using TA as an indicator. 

 

4.3.2.2 Youden index from 2019 to 2021  

For each Willbur model, the optimal threshold for the TA indicator calculated using the Youden 

index and the 0.40 published probability action threshold are presented in Table 4. 5 along with 

each model’s accuracy, sensitivity, specificity, and likelihood ratios of positive (LR+) and negative 

(LR-) predictions at those thresholds. The model with the highest Youden index was Willbur 1, 

while the Youden indices of Willbur 2 and 3 were very low (Table 4.5). At the Youden index, the 

most accurate model was Willbur 3, which accurately predicted 68.0% of the apothecial 

development observations in all regions from 2019 to 2021. The second most accurate model was 

Willbur 2, and the least accurate model was Willbur 1. The Willbur 3 model was generally better 

at classifying instances of apothecial absence than apothecial presence since its specificity was 

higher than its sensitivity. The opposite was true for Willbur 1 and Willbur 2 which were more 

sensitive than specific (Table 4. 5). This is also represented by the LR+ and LR- values of the 

models with Willbur 3 showing the highest LR+, while Willbur 1 and 2 had lower LR+ and LR- 

values. The lower specificity of the Willbur 1 model was a key factor differentiating its predictive 

ability at the Youden index given that the dataset contained more instances of apothecia absences, 

which gave more weight to its weakness (Table 4. 5).  
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At a probability action threshold of 40%, the most accurate models from 2019 to 2021 were 

Willbur 1 and Willbur 3. In this case, all three models were better at classifying instances of 

apothecial absence than apothecial presence since sensitivity was lower than specificity for all 

three Willbur models (Table 4.5). Again, the model with the highest LR+ was Willbur 3. At a 0.40 

threshold, the Willbur 1 LR- value was the lowest, followed by Willbur 3 and Willbur 2 (Table 4. 

5). 

 

Table 4. 5. Performance parameters of apothecia formation of the Willbur models with the Youden 

index and a threshold of 0.40 using total apothecia as an indicator from 2019 to 2021. 

Model Threshold Accuracy Sensitivity Specificity LR+2 LR-2 

Willbur 1 0.251 0.61 0.75 0.54 1.62 0.46 

Willbur 2 0.011 0.64 0.70 0.60 1.75 0.50 

Willbur 3 0.051 0.68 0.65 0.70 2.13 0.51 

Willbur 1 0.40 0.66 0.55 0.72 1.98 0.62 

Willbur 2 0.40 0.64 0.03 0.96 0.80 1.01 

Willbur 3 0.40 0.66 0.08 0.97 2.97 0.95 

1Youden index  
2LR+, Positive Likelihood Ratio; LR-, Negative Likelihood Ratio. 
 

4.3.2.3 AUC pairwise comparisons by year 

The models’ abilities to determine whether apothecia were present varied throughout the three 

years of data collection. Willbur 1, the model based only on 30-day moving average of maximum 

daily temperature, had the highest discrimination ability in 2019, which was significantly higher 

than Willbur 2 and 3, the two models based on temperature and moisture variable(s) (Table 4. 6, 

Figure 4. 3A). In 2020, the presence or absence of apothecia was best determined by Willbur 1 

and Willbur 3 (Figure 4. 3B), while in 2021, Willbur 3 was also the most performant model, 

followed by Willbur 2, with both being significantly better than Willbur 1 (Figure 4. 3C). 

 

4.3.2.4 AUC pairwise comparisons during the flowering period 

The most important risk period for S. sclerotiorum infections is during the soybean flowering 

period corresponding to the growth stages R1 to R3. From 2019 to 2021, all three Willbur models 
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showed discrimination abilities significantly superior to that of chance during the soybean 

vulnerable stages, with AUCs ranging from 0.720 to 0.790 (Table 4. 6). Willbur 1 and Willbur 3, 

using 30-day moving averages of maximum daily temperature (Willbur 1), and relative humidity 

and wind speed (Willbur 3) had the highest discrimination ability (Figure 4.3E). However, only 

Willbur 3 was significantly better than Willbur 2 (Figure 4. 3E).  

 

Table 4. 6. Comparisons between the AUCs and the line of no-discrimination of apothecia 
prediction models in Québec from 2019 to 2021. 

Year Model AUC1 SE2 Z-Statistic P-value3 

2019 

Willbur 1 0.893 a 0.001 7.970 7.34E-16 

Willbur 2 0.633 c 0.003 2.710 3.40E-3 

Willbur 3 0.707 b 0.003 4.200 1.31E-5 

2020 

Willbur 1 0.649 ab 0.001 4.280 9.29E-06 

Willbur 2 0.639 b 0.001 3.990 3.24E-5 

Willbur 3 0.672 a 0.001 4.940 3.94E-07 

2021 

Willbur 1 0.517 b 0.001 0.450 0.33 

Willbur 2 0.733 a 0.001 6.360 1.02E-10 

Willbur 3 0.750 a 0.001 6.810 4.99E-12 

2019-2021 

Willbur 1 0.685 ab 0.0004 141.420 5.45E-18 

Willbur 2 0.675 b 0.0004 8.080 2.86E-16 

Willbur 3 0.718 a 0.0004 141.420 2.72E-24 

2019-2021, R1-R34 

Willbur 1 0.790 ab 0.004 3.770 8.31E-5 

Willbur 2 0.720 b 0.005 2.850 2.19E-3 

Willbur 3 0.781 a 0.004 3.650 1.31E-4 

1Area under the Receiver Operator Curve (AUC) was calculated using the Delong et. al. (1988) 
method. AUCs followed by the same letter within a given year(s) of analysis are not statistically 
different (a = 0.05).2SE: Standard error. 
3Significance between model AUC and the AUC of the line of no-discrimination (0.5) was 
determined at a = 0.05. 
42019-2021, R1-R3 indicates analyses performed with data collected only during the flowering 
periods in 2019, 2020 and 2021. 
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Figure 4. 3. Receiver operating characteristic curves for the original Willbur apothecia formation 
models in A) 2019, B) 2020, C) 2021, D) 2019 to 2021 and E) the flowering period (R1-R3) from 
2019 to 2021. 

 

4.3.3 Calibration plots of original Willbur models 

The original Willbur models’ calibration was evaluated using the data collected in Québec from 

2019 to 2021. The calibration plots for all three original models show that predicted probabilities 

generated by the models were not in line with the observed probabilities of apothecia presence in 

Québec. Willbur 1 predictions are inversed compared to the observed probabilities. Willbur 2 and 

3 predictions are concentrated at very low probability values (Figure 4. 4B and C). These plots 

A B

C D

E
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suggest that recalibration is required for these models to be reliably used to predict apothecia 

presence in Québec. 

 
Figure 4. 4. Calibration plots for the A) Willbur 1, B) Willbur 2 and C) Willbur 3 models in Québec 
from 2019 to 2021. The predicted probability represents the logistic regression model probability 
values and the observed probability represents the corresponding frequency of apothecia presence 
observed in Québec from 2019 to 2021. The diagonal line shows optimal calibration and the model 
calibration is represented by the coloured curves. The histogram below the x-axis shows the 
distribution of model predicted probabilities. 

 

4.3.4 Modified model fit (70% 2019-2021) 

Modified model fit was assessed on the training dataset (70% of the 2019 to 2021 data) through a 

combination of metrics including the AIC, R2, Kappa, and AUC (Table 4. 7), as well as the 

accuracy, sensitivity, specificity, false positive and false negative rates at each model’s Youden 

index (Table 4. 8). The recalibrated equations for all three Willbur models did not show 

improvement in classification ability compared to the original model equations in both the internal 

and external validation datasets and were not retained for the remainder of the analyses (Table A. 

14 and Table A. 15). All modified models retained were revised or extended equations that showed 

acceptable to excellent classification ability with AUCs between 0.693 and 0.865.  The best fitting 

models included a combination of maximum temperature (Tmax) and moisture variables. Moisture 

variables included maximum relative humidity (RHmax), mean relative humidity (RHmean) and 

AWDR and were chosen based on previous correlation analyses performed in Chapter 3 (Morier-

Gxoyiya et al., in preparation). All models that used 30-day moving averages of daily mean relative 

CBA
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humidity had the highest discrimination (AUC>0.840), R2 values (>0.430) and lowest AIC (<504) 

(Table 4. 7). In particular, the two-parameter model based on 30-day moving average of daily 

maximum temperature and mean relative humidity, Willbur 1x.2 , was among the most 

parsimonious models, while simultaneously being among the most accurate (77.5% for a 

probability level of 25.7% calculated through the Youden Index), and showing a low false negative 

rate (8.6%) (Table 4. 8).  

 

The Kappa statistic was used to assess the models’ performances given the unbalanced dataset 

collected in Québec from 2019 to 2021, which had a relatively low apothecia presence rate of 

33.9% (Figure 4. 2). This means that models could overly predict the absence of apothecia yet still 

achieve high accuracy. The four models with the highest Kappa statistic (>0.422) included 30-day 

moving average of daily maximum temperature and mean relative humidity in their predictors 

(Table 4. 7). Models were modified either with 20-day or 30-day moving averages of weather 

variables. The models using 20-day moving average durations generally did not outperform those 

modified with 30-day moving averages (Table A. 16), despite the shorter moving average duration 

showing stronger correlation with temperature and the binary apothecia variable as shown in 

Chapter 3 (Morier-Gxoyiya et al., in preparation). 

 

In all revised and extended models, the variables chosen as predictors were statistically significant 

(P < 0.05), except for the model using maximum temperature and wind speed, mean relative 

humidity and AWDR (Willbur 3x.2), where the AWDR variable was not statistically significant 

(P = 0.0748) (Table 4. 9). Temperature and wind speed had negative coefficients while relative 

humidity and AWDR had positive coefficients, suggesting that apothecia presence is linked to 

decreases in temperature and wind speed and increases in relative humidity and AWDR. All other 

variables being held constant, scouting visits with either higher maximum relative humidity, mean 

relative humidity or AWDR are more likely to have apothecia since these variable estimates are 

positive. Also, all other variables being held constant, scouting visits with lower maximum 

temperature or maximum wind speed are more likely to have apothecia since these variable 

estimates are negative (Table 4. 9, Formulae 4.1 to 4.10, and Table A. 17).  
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Table 4. 7. Modified apothecia formation model fit metrics for various combinations of 30-day 

moving average durations of weather variables. 

Model Variables  AIC R2 Kappa AUC 

Wilbur 1r1 Tmax 662.300 0.114 0.129 0.693 

Willbur 2r1 Tmax, WSmax 648.300 0.150 0.168 0.699 

Willbur 3r1 Tmax, WSmax, RHmax 611.000 0.235 0.283 0.745 

Willbur 1x.12 Tmax, AWDR 642.600 0.163 0.136 0.702 

Willbur 1x.22 Tmax, RHmean 504.000 0.434 0.453 0.853 

Willbur 1x.32 Tmax, RHmean, AWDR 501.400 0.442 0.422 0.840 

Willbur 2x.12 Tmax, WSmax, AWDR 630.000 0.194 0.173 0.705 

Willbur 2x.22 Tmax, WSmax, RHmean 461.900 0.507 0.512 0.865 

Willbur 3x.12 Tmax, WSmax, RHmax, AWDR 594.100 0.274 0.311 0.739 

Willbur 3x.22 Tmax, WSmax, RHmean, AWDR 460.700 0.512 0.490 0.856 

1Revised Willbur et al. (2018) equations updated using 70% of the data collected in Québec from 
2019 to 2021, Formulae 4.1, 4.2 and 4.3 below, the significance of regression coefficients is 
available in Table A. 17. 
2Extended Willbur et al. (2018) equations updated using 70% of the data collected in Québec from 
2019 to 2021, Formulae 4.4 to 4.10 below, the significance of regression coefficients is available 
in Table A. 17. 
Abbreviations:  Tmax, Maximum Temperature (°C); WSmax, Maximum Wind Speed (km/h); 
RHmax, Maximum Relative Humidity (%); RHmean, Mean Relative Humidity (%); AWDR, 
Abundant and Well-Distributed Rainfall (mm). All weather variables are 30-day moving averages. 
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Table 4. 8. Performance parameters of modified apothecia formation models at their Youden index using 70% of the data collected from 

2019 to 2021 in Québec. 

Model Threshold Accuracy Sensitivity Specificity Fpos Fneg LR+ LR- 

Wilbur 1r1 0.365 0.681 0.591 0.727 0.273 0.409 2.165 0.562 

Willbur 2r1 0.356 0.701 0.651 0.727 0.273 0.349 2.381 0.481 

Willbur 3r1 0.351 0.741 0.710 0.757 0.243 0.290 2.918 0.384 

Willbur 1x.12 0.239 0.658 0.952 0.508 0.492 0.048 1.935 0.095 

Willbur 1x.22 0.257 0.775 0.914 0.705 0.295 0.086 3.097 0.122 

Willbur 1x.32 0.221 0.754 0.946 0.656 0.344 0.054 2.749 0.082 

Willbur 2x.12 0.257 0.685 0.898 0.577 0.424 0.102 2.120 0.177 

Willbur 2x.22 0.197 0.745 0.930 0.650 0.350 0.070 2.660 0.107 

Willbur 3x.12 0.284 0.725 0.860 0.656 0.344 0.140 2.499 0.213 

Willbur 3x.22 0.337 0.788 0.807 0.779 0.221 0.194 3.644 0.249 

1Revised Willbur et al. (2018) equations updated using 70% of the data collected in Québec from 2019 to 2021. 
2Extended Willbur et al. (2018) equations updated using 70% of the data collected in Québec from 2019 to 2021. 

Abbreviations: Fpos: False positive rate, Fneg: False negative rate, LR+: Positive Likelihood Ratio, LR-: Negative Likelihood Ratio. 
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Table 4. 9. Range of variable logistic regression coefficients for modified apothecia formation 

models obtained using 70% of the data collected from 2019 to 2021 in Québec. 

Variable 
Range 

Coefficient Standard Error P-value 

Tmax -0.419 -0.172 0.0538 0.0661 <0.0001 0.0062 

WSmax -0.383 -0.168 0.0449 0.0593 <0.0001 0.0003 

AWDR 0.005 0.011 0.0025 0.0030 <0.0001 0.0748 

RHmax 0.130 0.130 0.0269 0.0271 <0.0001 <0.0001 

RHmean 0.299 0.363 0.0316 0.0353 <0.0001 <0.0001 

Abbreviations: Tmax: Maximum Temperature (°C), WSmax: Maximum Wind Speed/1.609 

(km/h), AWDR: Abundant and Well-Distributed Rainfall (mm), RHmax: Maximum Relative 

Humidity (%), RHmean: Mean Relative Humidity (%). All weather variables are 30-day moving 

averages. 

 

Formula 4. 1. Willbur 1r, revised model equation. 

Logit(µ) = -0.345(MaxT30MA) + 8.417 

Where MaxT30MA is the 30-day moving average of the maximum value of air temperature (℃). 

 

Formula 4. 2. Willbur 2r, revised model equation. 

Logit(µ) = -0.374(MaxT30MA) – 0.171(MaxWS30MA/1.609) + 10.657 

Where MaxT30MA is the 30-day moving average of the maximum value of air temperature (℃), 

and MaxWS30MA is the 30-day moving average of the maximum of wind speed (km/h). 

 

Formula 4. 3. Willbur 3r, revised model equation. 

Logit(µ) = -0.413(MaxT30MA) + 0.13(MaxRH30MA) – 0.235(MaxWS30MA/1.609) -0.31 

Where MaxT30MA is the 30-day moving average of the maximum value of air temperature (℃), 

MaxRH30MA is the 30-day moving average of the maximum of relative humidity (%), and 

MaxWS30MA is the 30-day moving average of the maximum of wind speed (km/h). 
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Formula 4. 4. Willbur 1x.1, extended model equation. 

Logit(µ) = -0.351(MaxT30MA) + 0.011(AWDR) +7.843 

Where MaxT30MA is the 30-day moving average of the maximum value of air temperature (℃) and 

AWDR is the 30-day moving average of the abundant and well-distributed rainfall index (mm). 

 

Formula 4. 5. Willbur 1x.2, extended model equation. 

Logit(µ) = -0.172(MaxT30MA) + 0.31(MeanRH30MA) -19.812 

Where MaxT30MA is the 30-day moving average of the maximum value of air temperature (℃) and 

MeanRH30MA is the 30-day moving average of mean relative humidity (%). 

 

Formula 4. 6. Willbur 1x.3, extended model equation. 

Logit(µ) = -0.191(MaxT30MA) + 0.299(MeanRH30MA) + 0.006(AWDR) -18.925 

Where MaxT30MA is the 30-day moving average of the maximum value of air temperature (℃), 

MeanRH30MA is the 30-day moving average of mean relative humidity (%), and AWDR is the 30-

day moving average of the abundant and well-distributed rainfall index (mm). 

 

Formula 4. 7. Willbur 2x.1, extended model equation. 

Logit(µ) = -0.38(MaxT30MA) – 0.168(MaxWS30MA/1.609) + 0.011(AWDR) + 10.07 

Where MaxT30MA is the 30-day moving average of the maximum value of air temperature (℃), 

and MaxWS30MA is the 30-day moving average of the maximum of wind speed (km/h), and AWDR 

is the 30-day moving average of the abundant and well-distributed rainfall index (mm). 

 

Formula 4. 8. Willbur 2x.2, extended model equation. 

Logit(µ) = -0.188(MaxT30MA) – 0.383(MaxWS30MA/1.609) + 0.363(MeanRH30MA) -20.286 

Where MaxT30MA is the 30-day moving average of the maximum value of air temperature (℃), 

and MaxWS30MA is the 30-day moving average of the maximum of wind speed (km/h), and 

MeanRH30MA is the 30-day moving average of mean relative humidity (%). 
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Formula 4. 9. Willbur 3x.1, extended model equation. 

Logit(µ) = -0.419(MaxT30MA) – 0.239(MaxWS30MA/1.609) + 0.13(MaxRH30MA) + 0.011(AWDR) 

– 0.815 

Where MaxT30MA is the 30-day moving average of the maximum value of air temperature (℃), 

and MaxWS30MA is the 30-day moving average of the maximum of wind speed (km/h), 

MaxRH30MA is the 30-day moving average of maximum relative humidity (%), and AWDR is the 

30-day moving average of the abundant and well-distributed rainfall index (mm). 

 

Formula 4. 10. Willbur 3x.2, extended model equation. 

Logit(µ) = -0.205(MaxT30MA) – 0.374(MaxWS30MA/1.609) + 0.354(MeanRH30MA) + 

0.005(AWDR) – 19.617 

Where MaxT30MA is the 30-day moving average of the maximum value of air temperature (℃), 

and MaxWS30MA is the 30-day moving average of the maximum of wind speed (km/h), 

MeanRH30MA is the 30-day moving average of mean relative humidity (%), and AWDR is the 30-

day moving average of the abundant and well-distributed rainfall index (mm). 

 

4.3.4.1 Calibration plots of modified Willbur apothecia formation models 

For each modified Willbur model, the calibration plot was obtained by plotting the frequency of 

observed apothecia presence in the 70% dataset collected from 2019 to 2021 against model 

predicted probability. Simple recalibration methods such as “Recalibration-in-the-large” and 

“Logistic recalibration” did not improve model calibration compared to the original Willbur 

models (data not shown). Rather, modified models showed some modest improvement in 

calibration when models were modified through the Revision method, in which each model 

predictor’s coefficient was refitted to the data observed in Québec from 2019 to 2021. All three 

revised Willbur models show some underestimation at very low and very high model predicted 

probabilities as shown by the model curves crossing above the ideal calibration diagonal line. This 

indicates that the risk of apothecia presence predicted by the revised Willbur models is lower than 

the observed rate of apothecia presence in Québec (Figure 4. 5 A, B and C). Some variations in 

calibration were observed for models modified using the Extension method. For the Willbur 1 

model extension, calibration was not improved by the addition of only the AWDR, but rather using 

RHmean, with or without AWDR (Figure 4. 5 D, E, F). This was also true for extended Willbur 2 
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and Willbur 3 model versions, where the curves for the models extended with AWDR do not 

follow the diagonal line as opposed to the curves for the models extended also with RHmean 

(Figure 4. 5 G, H, I and J). 

 

 
Figure 4. 5. Calibration plots for the A) Willbur 1r, B) Willbur 2r and C) Willbur 3r (Revised 

models), D) Willbur 1x.1, E) Willbur 1x.2, F) Willbur 1x.3, G) Willbur 2x.1, H) Willbur 2x.2, I) 

Willbur 3x.1, and J) Willbur 3x.2 (Extended models) in Québec using 70% 2019-2021 dataset. The 

predicted probability represents the logistic regression model probability values and the 

corresponding observed probability represents the frequency of apothecia presence observed in 

Québec from 2019 to 2021. The diagonal line shows optimal calibration and the model calibration 

is represented by the coloured curves. The histogram below the x-axis shows the distribution of 

model predicted probabilities. 
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Figure 4. 5. Calibration plots for the A) Willbur 1r, B) Willbur 2r and C) Willbur 3r (Revised 

models), D) Willbur 1x.1, E) Willbur 1x.2, F) Willbur 1x.3, G) Willbur 2x.1, H) Willbur 2x.2, I) 

Willbur 3x.1, and J) Willbur 3x.2 (Extended models) in Québec using 70% 2019-2021 dataset 

(cont’d). The predicted probability represents the logistic regression model probability values and 

the corresponding observed probability represents the frequency of apothecia presence observed 

in Québec from 2019 to 2021. The diagonal line shows optimal calibration and the model 

calibration is represented by the coloured curves. The histogram below the x-axis shows the 

distribution of model predicted probabilities. 
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4.3.5 Modified apothecia formation models  

4.3.5.1 Internal validation (30% 2019-2021) 

The extent to which the original Willbur models were modified influenced their classification 

performance on the validation dataset composed of the remaining 30% data collected in Québec 

from 2019 to 2021. The AUCs of the original Willbur models were the same as the versions 

obtained following the simplest modification methods, the recalibration-in-the-large and the 

logistic recalibration. This observation was true across Willbur 1, 2 and 3 equations. For example, 

the ROC curves of the recalibrated models for Willbur 1, had an AUC value of 0.664. The AUC 

value of the recalibrated models for Willbur 2 was 0.632 and the of the recalibrated models AUC 

value for Willbur 3 was 0.673 (Table A. 15). 

 

All modified models showed better classification ability than chance since their AUCs were greater 

than 0.500 (a = 0.05). However, improvement compared to the classification ability of the original 

model equations was not achieved using the recalibration methods. Significant improvement was 

achieved by extending Willbur 1 by adding 30-day moving average of mean daily relative 

humidity to the maximum daily temperature (Willbur 1x.2). The addition of other humidity 

parameters such as the AWDR (Willbur 1x.1) to the model originally based on maximum 

temperature alone improved its performance, but not significantly. The best-fitted models also 

performed best in the external validation; the four models with the highest classification ability 

(AUC>0.815) all included maximum temperature and mean relative humidity as predictors (Table 

4. 10).  

 

4.3.5.2 Youden index for internal validation (30% 2019-2021) 

The Youden index for the original and best modified models, calculated with 30% of the data from 

2019 to 2021, is presented in Table 4. 11 along with model accuracy, sensitivity, specificity, and 

likelihood ratios of positive (LR+) and negative (LR-) predictions. For Willbur 1, the original and 

modified models are associated with similar Youden index values. For Willbur 2 and 3, the 

modified models’ Youden index values increased compared to the original equations. While the 

accuracy of the original models was between 59.9% and 70.0%, the accuracy of modified models 

was generally higher, ranging from 59.9% to 77.2% (Table 4. 11). All original and modified 

models showed LR+ values above 1 and LR- below 1. The model using maximum temperature, 



 

 
104 

mean relative humidity and AWDR (Willbur 1x.3) was the most accurate modified model and had 

the highest LR+ value. The lowest LR- value was associated with the model using maximum 

temperature and mean relative humidity (Willbur 1x.1). Most models were more sensitive than 

specific at their Youden index, which shows that they had a better capacity at classifying instances 

of apothecial presence than apothecial absence (Table 4. 11). 
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Table 4. 10. Comparisons between the AUCs and the line of no-discrimination of original and 

modified apothecia prediction models in Québec using 30% of the data from 2019 to 2021. 

Model Variables AUC SE 
Z-

statistic 
P-value4 

Willbur 11 Tmax 0.664 0.001 4.200 1.35E-05 

Willbur 21 Tmax, WSmax 0.632 0.001 3.380 3.57E-04 

Willbur 31 Tmax, WSmax, RHmax 0.673 0.001 4.450 4.39E-06 

Wilbur 1r2 Tmax 0.664 0.001 4.200 1.35E-05 

Willbur 2r2 Tmax, WSmax 0.681 0.001 4.650 1.66E-06 

Willbur 3r2 Tmax, WSmax, RHmax 0.719 0.001 5.630 9.09E-09 

Willbur 1x.13 Tmax, AWDR 0.718 0.001 5.580 1.17E-08 

Willbur 1x.23 Tmax, RHmean 0.817 0.001 8.130 2.28E-16 

Willbur 1x.33 Tmax, RHmean, AWDR 0.815 0.001 8.080 3.41E-16 

Willbur 2x.13 Tmax, WSmax, AWDR 0.724 0.001 5.750 4.56E-09 

Willbur 2x.23 Tmax, WSmax, RHmean 0.831 0.001 141.420 1.05E-17 

Willbur 3x.13 Tmax, WSmax, RHmax, AWDR 0.752 0.001 6.460 5.37E-11 

Willbur 3x.23 Tmax, WSmax, RHmean, AWDR 0.833 0.001 141.420 6.29E-18 

1Original Willbur et al. (2018) equations. 
2Revised Willbur et al. (2018) equations updated using 70% of the data collected in Québec from 

2019 to 2021. 
3Extended Willbur et al. (2018) equations updated using 70% of the data collected in Québec from 

2019 to 2021. 
4Significance between model AUC and the AUC of the line of no-discrimination (0.5) was 

determined at a = 0.05. 

Abbreviations: AUC: Area under the Receiver Operator Curve, and SE: Standard Error, Tmax: 

Maximum Temperature (°C), WSmax: Maximum Wind Speed (km/h), RHmax: Maximum 

Relative Humidity (%), RHmean: Mean Relative Humidity (%), AWDR: Abundant and Well-

Distributed Rainfall (mm). All weather variables are 30-day moving averages.
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Table 4. 11 Performance parameters of apothecia formation of original and modified Willbur model versions at their Youden index 
from 2019 to 2021. 

Model Variables Threshold Accuracy Sensitivity Specificity LR+ LR- 

Willbur 11 Tmax 0.257 0.599 0.782 0.493 1.543 0.443 

Willbur 21 Tmax, WSmax 0.012 0.599 0.690 0.547 1.521 0.568 

Willbur 31 Tmax, WSmax, RHmax 0.104 0.700 0.460 0.840 2.874 0.643 

Wilbur 1r2 Tmax 0.299 0.599 0.782 0.493 1.543 0.443 

Willbur 2r2 Tmax, WSmax 0.305 0.637 0.724 0.587 1.752 0.470 

Willbur 3r2 Tmax, WSmax, RHmax 0.350 0.675 0.655 0.687 2.091 0.502 

Willbur 1x.13 Tmax, AWDR 0.239 0.616 0.954 0.420 1.645 0.110 

Willbur 1x.23 Tmax, RHmean 0.280 0.755 0.862 0.693 2.811 0.199 

Willbur 1x.33 Tmax, RHmean, AWDR 0.280 0.772 0.885 0.707 3.017 0.163 

Willbur 2x.13 Tmax, WSmax, AWDR 0.249 0.633 0.931 0.460 1.724 0.150 

Willbur 2x.23 Tmax, WSmax, RHmean 0.224 0.713 0.920 0.593 2.261 0.136 

Willbur 3x.13 Tmax, WSmax, RHmax, AWDR 0.299 0.696 0.828 0.620 2.178 0.278 

Willbur 3x.23 Tmax, WSmax, RHmean, AWDR 0.247 0.722 0.920 0.607 2.338 0.133 
1Original Willbur et al. (2018) equations. 
2Revised Willbur et al. (2018) equations updated using 70% of the data collected in Québec from 2019 to 2021. 
3Extended Willbur et al. (2018) equations updated using 70% of the data collected in Québec from 2019 to 2021. 
Abbreviations: LR+, Positive Likelihood Ratio; LR-, Negative Likelihood Ratio; Tmax, Maximum Temperature (°C); WSmax, 
Maximum Wind Speed (km/h); RHmax, Maximum Relative Humidity (%); RHmean, Mean Relative Humidity (%); AWDR, Abundant 
and Well-Distributed Rainfall. All weather variables are 30-day moving averages. 
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4.3.5.3 External validation 2017-2018 

During the soybean flowering periods in 2017 and 2018, both original and modified models 

predicted apothecia presence better than chance (a = 0.05) and had acceptable to excellent 

discrimination abilities (0.753<AUC<0.839). Willbur 3 was the original model with the highest 

AUC (0.795), while the best modified model was Willbur 3r (AUC=0.839). Both models used 

maximum temperature, maximum wind speed and maximum relative humidity, but the Willbur 3r 

model had revised coefficients. The models with the highest classification ability based on AUC 

all included maximum temperature and either maximum or mean relative humidity as predictors 

(Table 4. 12).  

 

4.3.5.4 Youden index for external validation in 2017-2018 

For each original and modified version of the model equations, the optimal Youden threshold, 

calculated with the data collected during the soybean flowering period in 2017 and 2018, is 

presented in Table 4. 13, along with the model’s accuracy, sensitivity, specificity, and likelihood 

ratios of positive (LR+) and negative (LR-) predictions. The value of the Youden index for the 

modified versions increased compared to the original versions of Willbur 2 and 3.  The Youden 

index for the original Willbur 1 model was higher than the Youden index values of modified 

Willbur 1 equations.  The accuracy of the original models ranged between 73.5% and 82.1%, while 

the accuracy of modified models went from 73.5% to 80.9%. The models using maximum 

temperature, maximum wind speed, and either maximum or mean relative humidity were the most 

accurate. The models were once again more sensitive than specific at their Youden index (Table 

4. 13).  

 

 

 

 

 

 



 
 

108 

Table 4. 12. Comparisons between the AUCs and the line of no-discrimination of original and 

modified apothecia prediction models in Québec using the data from the flowering period in 2017 

and 2018. 

Model Variables AUC SE 
Z-

statistic 
P-value4 

Willbur 11 Tmax 0.779 0.002 4.960 3.54E-07 

Willbur 21 Tmax, WSmax 0.753 0.002 4.490 3.51E-06 

Willbur 31 Tmax, WSmax, RHmax 0.795 0.002 5.240 7.95E-08 

Wilbur 1r2 Tmax 0.779 0.002 4.960 3.54E-07 

Willbur 2r2 Tmax, WSmax 0.769 0.002 4.790 8.32E-07 

Willbur 3r2 Tmax, WSmax, RHmax 0.839 0.001 6.040 7.90E-10 

Willbur 1x.13 Tmax, AWDR 0.782 0.002 5.000 2.85E-07 

Willbur 1x.23 Tmax, RHmean 0.817 0.002 5.640 8.42E-09 

Willbur 1x.33 Tmax, RHmean, AWDR 0.802 0.002 5.350 4.36E-08 

Willbur 2x.13 Tmax, WSmax, AWDR 0.791 0.002 5.150 1.28E-07 

Willbur 2x.23 Tmax, WSmax, RHmean 0.821 0.002 5.720 5.45E-09 

Willbur 3x.13 Tmax, WSmax, RHmax, AWDR 0.806 0.002 5.420 3.05E-08 

Willbur 3x.23 Tmax, WSmax, RHmean, AWDR 0.810 0.002 5.500 1.92E-08 
1Original Willbur et al. (2018) equations. 
2Revised Willbur et al. (2018) equations updated using 70% of the data collected in Québec from 
2019 to 2021. 
3Extended Willbur et al. (2018) equations updated using 70% of the data collected in Québec from 
2019 to 2021. 
4Significance between model AUC and the AUC of the line of no-discrimination (0.5) was 
determined at a = 0.05.  
Abbreviations: AUC, Area under the Receiver Operator Curve; SE, Standard Error; Tmax, 
Maximum Temperature (°C); WSmax, Maximum Wind Speed (km/h); RHmax, Maximum 
Relative Humidity (%); RHmean, Mean Relative Humidity (%); AWDR, Abundant and Well-
Distributed Rainfall (mm). All weather variables are 30-day moving averages. 
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Table 4. 13. Performance parameters of apothecia formation Willbur models original1 and modified versions at their Youden index from 

2017 to 2018. 

Model Variables Youden Index Accuracy Sensitivity Specificity LR+ LR- 

Willbur 11 Tmax1 0.418 0.735 0.927 0.632 2.516 0.116 

Willbur 21 Tmax, WSmax1 0.007 0.761 0.878 0.697 2.901 0.175 

Willbur 31 Tmax, WSmax, RHmax1 0.022 0.821 0.951 0.750 3.805 0.065 

Wilbur 1r2 Tmax 0.384 0.735 0.927 0.632 2.516 0.116 

Willbur 2r2 Tmax, WSmax 0.385 0.727 0.927 0.618 2.429 0.118 

Willbur 3r2 Tmax, WSmax, RHmax 0.411 0.795 0.829 0.776 3.707 0.220 

Willbur 1x.13 Tmax, AWDR 0.311 0.748 0.927 0.649 2.638 0.113 

Willbur 1x.23 Tmax, RHmean 0.242 0.795 0.902 0.737 3.429 0.132 

Willbur 1x.33 Tmax, RHmean, AWDR 0.231 0.791 0.927 0.716 3.266 0.102 

Willbur 2x.13 Tmax, WSmax, AWDR 0.348 0.748 0.927 0.649 2.638 0.113 

Willbur 2x.23 Tmax, WSmax, RHmean 0.060 0.803 1.000 0.697 3.304 0.000 

Willbur 3x.13 Tmax, WSmax, RHmax, AWDR 0.352 0.809 0.927 0.743 3.610 0.098 

Willbur 3x.23 Tmax, WSmax, RHmean, AWDR 0.091 0.809 0.976 0.716 3.438 0.034 
1Original Willbur et al. (2018) equations. 
2Revised Willbur et al. (2018) equations updated using 70% of the data collected in Québec from 2019 to 2021. 
3Extended Willbur et al. (2018) equations updated using 70% of the data collected in Québec from 2019 to 2021. 
Abbreviations: LR+, Positive Likelihood Ratio; LR-, Negative Likelihood Ratio; Tmax, Maximum Temperature (°C); WSmax, 
Maximum Wind Speed (km/h); RHmax, Maximum Relative Humidity (%); RHmean, Mean Relative Humidity (%); AWDR, Abundant 
and Well-Distributed Rainfall (mm). All weather variables are 30-day moving averages.
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4.3.6 Dominance analysis for modified apothecia formation models 

A dominance analysis was performed to assess the importance of each predictor in relation to the 

others in the two 4-parameter models Willbur 3x.1 and Willbur 3x.2 (Figure 4. 6 and Figure 4. 7). 

The results of the analysis varied from 2019 to 2021, as well as between the models including 

either mean or maximum relative humidity. In the Willbur 3x.1 model based on AWDR, maximum 

temperature, maximum wind speed and maximum relative humidity, temperature explained most 

of the deviance in apothecia presence in 2019, while the humidity variables AWDR and maximum 

relative humidity were more important in 2020 and 2021  (Figure 4. 6A, B and C). In addition, in 

that model, temperature was the most important variable in for the three pooled years as shown by 

its larger McFadden index value (R2M) in the general dominance analysis (Figure 4. 6D). In the 

Willbur 3x.2 model based on AWDR, maximum temperature, maximum wind speed and mean 

relative humidity, maximum temperature’s contribution to explain apothecia presence also 

generally dominated the other variables in 2019 (Figure 4. 7A). However, mean relative humidity 

was the most important variable for 2020, 2021 and the three pooled years as shown by its larger 

R2M in the general dominance analysis (Figure 4. 7 B, C and D).  

 

 
Figure 4. 6. McFadden index (r2.m) showing general dominance for variables in the Willbur 
3x.1 model based on 30-day moving averages of maximum temperature (Tmax30), maximum 
wind speed (Wsmax30), AWDR (awdr_30) and maximum relative humidity (Rhmax30) in A) 
2019, B) 2020, C) 2021 and D) 2019-2021. 
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Figure 4. 7. McFadden index (r2.m) showing general dominance for variables in the Willbur 3x.2 
model based on 30-day moving averages of maximum temperature (Tmax30), maximum wind 
speed (Wsmax30), AWDR (awdr_30) and mean relative humidity (Rhmean30) in A) 2019, B) 2020, 
C) 2021 and D) 2019-2021. 

4.4 Discussion 

In this report, three bioclimatic apothecia formation models developed in the North-Midwestern 

region of the United States were studied for their predictive ability in Québec. Model validation 

was performed through ROC curve analysis, a method frequently used in the medical field, that 

has gained popularity in other domains such as in botanical epidemiology. This method not only 

allowed us to validate whether models were better than chance at identifying apothecia presence 

in the field, but the AUC also served to compare the prediction ability amongst models and to 

identify possible action thresholds with the Youden index.  

 

The validation of the original Willbur model equations showed that all three models had acceptable 

performance in identifying apothecia presence in Québec soybean fields during the flowering 

period, and throughout the growing season from 2019 to 2021. Some differences in model 

performance over the three years of data collection indicated that the model using 30-day moving 

averages of maximum temperature, wind speed and relative humidity (Willbur 3) had the most 
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consistent capacity to identify apothecia presence. In comparison, the performance of the model 

using only maximum temperature (Willbur 1) varied considerably from one year to another, 

mainly because of the variations in prevailing weather conditions between the growing seasons.  

In 2019, the Willbur 1 model had excellent discrimination and Québec environmental conditions 

were characterized by spring floods, and light and frequent precipitations. However, in 2020 and 

2021, seasons where record heat and drought conditions predominated in Québec (MELCC, 2020, 

MELCC, 2021a), Willbur 1’s performance was much lower. This suggests that when moisture is 

not a limiting factor, temperature alone is sufficient to distinguish situations promoting apothecia 

formation from those preventing carpogenic germination. It further shows that relying on both 

temperature and moisture factors is overall preferable to using only one of those parameters while 

assessing the risk of apothecia presence in fields.  

 

On some aspects, the results obtained in Québec differ from those obtained in the development 

and validation phases of the models. For example, Willbur et al. (2018b) had identified the model 

based on maximum temperature and wind speed as amongst the most promising for apothecia 

prediction. However, from 2019 to 2021 in Québec, that model was never more accurate than the 

two other models evaluated. Wind speed had been suggested as a measure of dryness that could 

prove useful in predicting apothecial germination (Willbur et al., 2018b); however, except for the 

development of these Willbur models, its link to apothecia presence had not been extensively 

studied before. Furthermore, the findings from the model validation and dominance analyses in 

Québec fail to strongly support such a relationship. The fact that weather stations from which 

environmental data were sourced in Québec were not directly on-site might have affected the 

usefulness of the wind speed predictor. However, the influence of air temperature on the life cycle 

of S. sclerotiorum has been previously described by many and agreed with the results shown here 

(Clarkson et al., 2007, Clarkson et al., 2003, Young et al., 2004, Abawi and Grogan, 1975).  

 

The calibration and the probability threshold analyses revealed adjustment issues that needed to 

be addressed prior to these models being used reliably as disease management tools in Québec.  

As it is often reported, a model’s performance in new settings tends to diminish since there are 

often discrepancies between the outcome incidence in the development setting and in the new 

environment (Van Calster et al., 2019). In Québec, for models including dryness or moisture-
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related parameters such as maximum wind speed and relative humidity, poor calibration resulted 

in very low predicted probabilities and low Youden indices (J<0.05). Such low thresholds would 

potentially lead to incorrect decisions to apply fungicides since all predicted probabilities above 

0.05, even if they are actual situations of apothecia absence, would be mistaken for instances of 

apothecial presence. This would go against the purpose of prediction models to reduce the use of 

fungicides in low-risk situations. Youden index values changed from very small to moderate 

values after model modifications. This showed that the predicted probabilities of modified models 

were no longer concentrated in very low ranges, highlighting their increased capacity to 

discriminate between apothecia presence and absence. However, a drawback of the Youden index 

as a possible action threshold is that it equally values specificity and sensitivity. Yet, the cost of 

false positives and false negatives may not be equal, especially not to the producers at risk of 

financial loss (Madden, 2006). These considerations stressed the need for models to be properly 

calibrated for the Québec context.  

 

Several methods were used to modify the Willbur models and address both underlying 

miscalibration and poor discrimination. The more complex modifications, obtained using revision 

and extension methods, were not only associated with some calibration improvement, especially 

for models extended with mean relative humidity, but they also led to the most gain in model 

discrimination capacity. In comparison, simpler recalibration methods were not sufficient to 

significantly change model AUCs. In the past, model revision has been shown to be required to 

improve model discrimination (Janssen et al., 2008, Steyerberg, 2019). 

 

The fit of the modified models was evaluated in the training set. Following those analyses, we 

identified differences in model fit based on two main factors: the predictors included in model 

equations, and whether the values of the variables were 30-day moving averages of daily means 

or daily maximums. The models with the strongest fit, based on a combination of statistical 

measures, included maximum temperature and some moisture-related parameter. Out of all of the 

moisture predictors, which included the AWDR parameter, mean and maximum daily values of 

wind speed and relative humidity, the preferred one was mean relative humidity. It was included 

in four of the best fitted models. In addition, the modified models including maximum temperature 

and mean relative humidity successfully discriminated between apothecia presence and absence in 
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two additional datasets: one containing 30% of the data collected between 2019 and 2021 and 

another including apothecia observations during the soybean flowering period in Québec between 

2017 and 2018. Ideally, models should aim to fit the data and be parsimonious (Landau et al., 

2000). As such, the addition of variables should increase the accuracy of the model, which was not 

always the case in our validation experiments. Some 3-parameter models had lower AUCs and 

accuracy than the model based only on maximum temperature and mean relative humidity. This 

exact combination of variables was not included in the reported models of interest in the United 

States, but many of these models include mean relative humidity in combination with other 

predictors (Willbur et al., 2018b). In addition, there are multiple reports of an association between 

relative humidity and ascospore germination, disease incidence, and the rapidity of disease 

development in Sclerotinia spp. (Hannusch and Boland, 1996, Clarkson et al., 2014, Abawi, 1979, 

Torés and Moreno, 1991). 

 

Currently, model validations are limited by the low proportion of apothecial presence and disease 

incidence cases in the datasets used for model validations in Québec. As more data become 

available, model modifications and validations are expected to improve. In addition, 

environmental conditions are only part of the factors influencing the risk of apothecia presence 

and disease incidence. Other factors related to the crop and the inoculum should also be assessed 

to adequately manage the risk of disease. An assessment of cultivar branching pattern and growth 

characteristics, and row spacing effect on carpogenic germination of S. sclerotiorum and end-of-

season disease incidence will further inform the development of a risk assessment tool for soybean 

producers and agronomists in Québec. During this study, apothecial germination was monitored 

using sclerotia deposits artificially buried at each experimental sites for data collection purposes. 

However, disparities in natural inoculum densities at the field level likely exist based on the prior 

history of SSR at each of the locations. Thus, differences in previous disease management practices 

such as tillage and the length of the crop rotation without a host crop should also be considered. 
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4.5 Conclusion 

To conclude, the Willbur apothecial formation models were validated in Québec using apothecia 

observations from 2019 to 2021. Despite showing acceptable discrimination capacity, the original 

models were further improved by revision of the regression coefficients. In addition, the best-

fitting and most parsimonious model used a combination of 30-day moving average of maximum 

temperature and mean relative humidity to predict apothecia presence. Used in an integrated 

disease management strategy, these models could help Québec producers make informed decisions 

regarding the need for fungicides to reduce the risk of Sclerotinia stem rot development in soybean.  
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Chapter 5: General discussion 

 

The first objective of this project was to evaluate environmental and agronomic conditions that 

affect Sclerotinia sclerotiorum (Lib.) de Bary apothecia formation and SSR disease development 

in Québec soybean-producing regions. The second objective was to test, compare, and improve 

SSR risk and apothecia formation forecast models, initially developed outside of Québec, under 

the province’s growing conditions. This section revisits the results obtained, discusses their 

implication for soybean SSR management in Québec and suggests future areas of research. 

 

Among the weather variables evaluated, temperature and relative humidity were originally thought 

to be most strongly associated with S. sclerotiorum carpogenic germination and SSR development. 

This hypothesis was confirmed through the work described in this thesis. In Québec, from 2019 to 

2021, apothecia presence and DSI were negatively correlated with temperature and positively 

correlated with relative humidity. Moving-average durations from 10- to 30-days of relative 

humidity and temperature were most strongly associated with carpogenic germination. The S. 

sclerotiorum pathogen is present worldwide and associations with temperature and moisture have 

been repeatedly observed throughout geographical areas (Fall et al., 2018a, Foster et al., 2011, 

Twengström et al., 1998, Clarkson et al., 2014, Koch et al., 2007). In comparison, correlations 

between SSR disease indicators and other weather variables, such as wind speed and rainfall 

distribution patterns, varied based on the period considered and were overall weaker for fields 

surveyed in Québec from 2019 to 2021.  

 

The row spacing at planting was studied as an agronomic factor influencing apothecia presence. 

The hypothesis that a narrower row spacing would promote early and abundant carpogenic 

germination and result in higher end-of-season disease severity was not confirmed. There was 

limited apothecia formation and disease development in most of the plots at the research centres, 

and thus no significant effect of row spacing was observed in the three years of data collection. 

The results at IRDA in 2021, the site-year where the most apothecia and disease development were 

observed, suggested that when environmental conditions are favourable to carpogenic 

germination, the 38.1-cm plots could exacerbate inoculum dispersal resulting in higher DSIs (T. 

Copley, personal communication, October 2021). Yearly differences in environmental conditions 
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contribute to the variation in SSR development in a field from one year to the next. Additionally, 

agronomic practices, such as crop rotations and plant population density, as well as tillage 

practices, likely explain variability in carpogenic germination among fields exposed to similar 

environmental conditions, but managed differently (Rousseau et al., 2007, Lee et al., 2005).  

 

From 2019 to 2021, DSI ranged from 0.0 to 94.4%. Disease severity index was most strongly 

associated with apothecia observed during the R2, R3, and R4 soybean growth stages. There was 

inoculum in most sites scouted in Québec; however, carpogenic germination rates were low in 

some fields surveyed from 2019 to 2021. Variability in carpogenic germination following artificial 

soil inoculation with sclerotia produced under laboratory conditions was previously observed in 

Québec (Rousseau et al., 2004). Also, apothecia presence was rarely detected at the start or during 

the beginning and full bloom periods (R1-R2). Instead, most apothecia formation occurred when 

the pods and seeds were developing (R3 and beyond). S. sclerotiorum sclerotia produced and pre-

conditioned in laboratory conditions prior to field burial have been associated with delayed and 

reduced carpogenic germination rates when burial was done in late spring and early summer as 

opposed to during winter or early spring in the United Kingdom (Clarkson et al., 2007). Winters 

in the temperate oceanic climate of the United Kingdom are generally warmer than those occurring 

in the continental humid climate where soybean is produced in Québec (Beck et al., 2018). 

Conditioning requirements of S. sclerotiorum vary based on multiple factors including isolate 

adaptation to local conditions (Huang et al., 1998, Dillard, 1995). Due to the extended period from 

November to March where soil temperatures are generally below 0°C in Québec, sclerotia 

naturally occurring in the province’s fields would be assumed to be fully conditioned at the start 

of the soybean  growing season (MELCC, 2021b). In comparison, sclerotia used in the deposits 

were produced from one S. sclerotiorum strain, isolate NB-5, exposed to a laboratory conditioning 

protocol of 12 weeks at 4°C, with carpogenic germination rates between 85 and 90% in pre-burial 

tests from 2019 to 2021 (T. Copley, personal communication, 2021). Comparing the timing and 

rate of carpogenic germination of naturally occurring and artificially buried pre-conditioned S. 

sclerotiorum sclerotia isolates in Québec would improve our understanding of the role of 

temperature on apothecia formation in local conditions. 
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Given the strong influence of environmental conditions on carpogenic germination and SSR 

development, weather-based prediction modelling is an opportunity to support decision-making 

and strategically reduce unjustified pesticide use (Willbur et al., 2018c). Developing new models 

is resource-intensive, and multiple Sclerotinia-related forecasters are already available (Foster et 

al., 2011, Twengström et al., 1998, Turkington, 1993, Mila et al., 2004). The performance of a 

selection of these models was evaluated over three growing seasons to identify models with the 

most potential to be used by Québec soybean producers (Willbur et al., 2018b). Following ROC 

curve analyses, two model attributes were identified as most appropriate for the Québec agro-

environmental context. First, to predict end-of-season disease development, using models based 

on weather conditions suitable for the presence of apothecia during the soybean flowering period, 

such as those developed by Willbur et al. (2018b), performed better than disease prediction models 

that did not focus on forecasting in-season inoculum such as those developed by Fall et al. (2018a) 

and Harikrishnan et al. (2008), confirming our hypothesis. Second, among apothecia formation 

models, those using a combination of temperature and moisture-related predictors were more 

reliable over the three years of data collection than the model using only temperature.  

 

The miscalibration of models is a challenge limiting the use of existing forecasters in new settings 

(Van Calster et al., 2019). Model revision and extension addressed some of these issues when the 

Willbur models were modified using data collected in Québec during the soybean growing season. 

The adjusted models identified conditions favourable to the development of apothecia better than 

the original models. The modifications responsible for the most gain in model performance were 

the adjustment of coefficients associated with the model input, and the use of mean relative 

humidity instead of maximum relative humidity as a predictor. The most parsimonious model used 

30-day moving averages of maximum temperature and mean relative humidity and was among the 

best models following modifications (Formula 5.1).  

 

Formula 5.1 Willbur 1x.2. 

Logit(µ) = -0.172(TMax30MA) + 0.310 (RHMean30MA) – 19.812 

Where TMax30MA is the 30-day moving average of the maximum value of air temperature (°C), 

and RHMean30MA is the 30-day moving average of the mean relative humidity (%). 
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Model improvement is a dynamic process, and further modifications for the Québec setting could 

be made as additional data becomes available (Fall and Carisse, 2022). Integrating additional 

scouting observations from multiple locations during the soybean flowering stages in particular, 

would customize models to the period most relevant to SSR development. 

 

Results from of the evaluation of the original and modified apothecia formation models in Chapter 

4 are directly related to the findings from Chapter 3. With regards to the original Willbur models, 

the fluctuations in model performance over the years reflected the variations observed in the 

correlation analyses. In 2019, temperature was strongly correlated to the presence of apothecia and 

the model containing only that variable had the highest discrimination ability. However, in 2021 

the correlation between moisture-related variables and carpogenic germination was stronger than 

in the previous years at the benefit of the accuracy of the models using such predictors. In addition, 

the association observed between weather variables and apothecia presence allowed for an 

informed choice of the model modifications.  For example, mean relative humidity was strongly 

and consistently correlated with apothecia presence in all three years of data collection; however, 

it was not originally included in the Willbur models (Willbur et al., 2018b). Following model 

extension using mean values of relative humidity, the modified equations incorporating this 

predictor had high classification ability and accuracy in both internal and external validations. 

 

While model validation is the first step towards successful integrated disease management, another 

essential aspect is the adoption of the model by producers (Gent et al., 2013). SSR is one of the 

most critical yield-reducing diseases affecting soybeans in Québec. Producers are concerned 

because the disease impacts their current harvest and because epidemics increase the sclerotia load 

in the field, threatening future crops. Their past experiences with the disease coupled with their 

desire to prevent long-term consequences inform their decision-making behaviour. For example, 

in 2021, three surveyed sites were removed from the analyses since the producers had applied 

fungicides in the experimental plots. These anecdotes show the risk-averse behaviour of farmers 

and suggest that decision theory should be integrated into projects aimed at changing disease 

management practices (McRoberts et al., 2011, Gent et al., 2011).  
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This work’s emphasis was largely on characterizing environmental conditions promoting S. 

sclerotiorum carpogenic germination in Québec soybean-producing regions. Describing disease 

development is not limited to inoculum production, but also involves multiple intricately linked 

crop and pathogen aspects. Additional research with a greater focus on the impact of agronomic 

factors and cultural practices such as row spacing, plant population, cultivar choice, fertilization 

at planting, and cover cropping on SSR is needed to provide further guidelines to producers. 

Chapter 6: General conclusion 

 

Conditions favourable to carpogenic germination occurring past the soybean susceptibility 

window limited SSR development in fields surveyed in Québec from 2019 to 2021. Observations 

like these highlight the importance of the disease triangle for infections to occur and stress the 

need for integrated risk-based, rather than calendar-based, SSR management programs. SSR is a 

sporadic disease, yet it is common for producers to use fungicides preventatively once or twice 

during the soybean flowering period to limit SSR, regardless of the risk of disease development 

(Faucher et al., 2017). Environmental and health concerns are driving governments to address 

sustainability challenges in agriculture. For example, in its 2020-2030 “Plan d’agriculture durable” 

the Québec Ministry of Agriculture, Fisheries and Food (MAPAQ) directly targets reducing 

pesticide use on Québec farms (MAPAQ, 2020). Cutting down on unnecessary use of fungicide 

applications can contribute to diminishing the negative environmental impacts of food production. 

To achieve these outcomes without compromising yield, Québec soybean producers need reliable 

tools such as adapted disease prediction models to manage the risks associated with irregular SSR 

development.  
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Appendix 1 - Tables 

Table A. 1 Soybean development stages (adapted from Fehr and Caviness 1977). 

Stage Abbreviated    stage 

title 

Description 

VE Emergence Cotyledons above the soil surface. 

VC Cotyledon Unifoliolate leaves unrolled sufficiently so the leaf edges are 

not touching. 

V1 First-node Fully developed leaves at unifoliolate nodes. 

V2 Second-node Fully developed trifoliolate leaf at node above the unifoliolate 

nodes. 

V3 Third-node Three nodes on the main steam with fully developed leaves 

beginning with the unifoliolate nodes. 

V(n) Nth-node n number of nodes on the main stem with fully developed 

leaves beginning with the unifoliolate nodes. n can be any 

number beginning with 1 for V1, first-node stage. 

R1 Beginning bloom One open flower at any node on the main stem. 

R2 Full bloom Open flower at one of the two uppermost nodes on the main 

stem with a fully developed leaf. 

R3 Beginning pod Pod 5 mm (3/16 inch) long at one of the four uppermost nodes 

on the main stem with a fully developed leaf 

R4 Full pod Pod 2 cm (3/4 inch) long at one of the four uppermost nodes 

on the main stem with a fully developed leaf. 

R5 Beginning seed Seed 3 mm (1/8 inch) long in a pod at one of the four 

uppermost nodes on the main stem with a fully developed leaf. 

R6 Full seed Pod containing a green seed that fills the pod cavity at one of 

the four uppermost nodes on the main stem with a fully 

developed leaf. 

R7 Beginning maturity One normal pod on the main stem that has reached its mature 

pod color. 
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Table A.1 Soybean development stages (adapted from Fehr and Caviness 1977) (cont’d). 

Stage Abbreviated    stage 

title 
Description 

R8 Full maturity Ninety-five percent of the pods that have reached their mature 

pod color. Five to ten days of drying weather are required after 

R8 before the soybeans have less than 15 percent moisture. 

 
 

Table A. 2 Active substance in pesticides used to control Sclerotinia stem rot of soybean 
commercially available in Québec (SAgE Pesticides, 2020). 

Active Substance Class Commercial Products  

Azoxystrobine 11 Miravis Neo, Quilt, Top Notch, Trivapro A 

Bacillus amyloliquefaciens 

strains D747 and F727 

N/A Double Nickel 55 and LC, Stargus 

Bacillus subtilis strain QSR 

713 

N/A QST713 Liquid, Serenade Aso, CPb, Max and Opti 

Boscalid 7 Cotegra 

Coniothyrium minitans strain 

CON/M/91-08 

N/A Contans WG 

Fluazinam 29 Allegro 500F 

Fluopyram  7 Luna Privilege 

Fluxapyroxade 7 Xemium EC and SC, Acapela,  

Picoxystrobine  11 Priaxor, Pyr Flu Form 1, Cerefit A 

Propiconazole 3 Miravis Neo, Quilt, Top Nutch, Trivapro A 

Prothioconazole  3 Stratego Pro, USF0728 325 SC, Cotegra 

Pydiflumetofene 7 A19649, Miravis Neo 

Pyraclostrobine 11 Priaxor, Pyr Flu Form 1 

Reynoutria sachalinensis P Regalia Rx 

Trifloxystrobine  11 Stratego Pro, USF0728 325 SC 

N/A: classification non applicable (biological control). The class numbers 3, 7, 11, 29 and letter P 

are modes of action associated with the pesticide active substances (Table A. 3). 
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Table A. 3 Modes of action of fungicide active substances by FRAC group number (SAgE 
Pesticides, 2020) 

Class Mode of Action 

3 Inhibition of demethylation at the sterol biosynthesis stage  

7 

Inhibition of cell respiration and energy production and inhibition of 

succinate dehydrogenase (SDH, complex II) in the mitochondrial electron 

transport chain. 

11 

Inhibition of the mitochondrial respiratory chain at the complexe III 

(ubiquinol-cytochrome c reductase) and inhibition of Qol (ubiquinol 

oxidation site) of bc1 cytochrome. 

29 
Decoupling of oxidative phosphorylation (disturbance of the establishment 

of the H + gradient). 

P Plant defense simulator 

 
Table A. 4 Soybean sowing date and cultivar for experimental sites in Québec from 2019 to 
2021. 

Code_site Sowing date Cultivar SSR 

Rating1 

Agrometeo 

Station 

Distance 

(km) 

CÉROM_2019 2019-05-29 P09A53X NA Saint-Hilaire2 9.14 

CÉROM_2020 NA P09A53X NA Saint-Hilaire2 9.14 

CÉROM_2021 2021-06-01 P09A53X NA Saint-Hilaire2 9.14 

CHA1_2019 2019-06-06 P00A75X NA Saint-Bernard 12.23 

CHA1_2020 2020-05-17 P06A13R NA Saint-Bernard 11.52 

CHA1_2021 2021-05-10 A13 NA Saint-Bernard 11.54 

CHA2_2019 2019-05-22 Corus IP NA Saint-Bernard 16.13 

CHA2_2020 2020-05-21 Podaga R2 NA Saint-Bernard 17.10 

CN1_2019 2019-05-16 NA NA Saint-Léonard-

de-Portneuf 

4.19 

CN1_2020 2020-05-09 Bravent B0

39Y1 

NA Deschambault  

SM 

0.49 
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Table A. 4 Soybean sowing date and cultivar for experimental sites in Québec from 2019 to 2021 
(cont’d). 
Code_site Sowing date Cultivar SSR 

Rating1 

Agrometeo Station Distance 

(km) 
CN1_2021 NA Salto 2.3 Deschambault SM 0.25 

CN2_2020 2020-05-17 Hydra R2 3 Saint-Léonard-de-

Portneuf 

17.59 

CN2_2021 2021-05-05 Hydra R2 3 Saint-Léonard-de-

Portneuf 

16.54 

CQ1_2019 2019-05-22 Marula 1.5 Nicolet 11.05 

CQ1_2020 2020-05-13 Altitude R2 1.2 Princeville 0.20 

CQ1_2021 2021-05-09 Marula 1.5 Nicolet 11.18 

CQ2_2020 2020-05-07 Marula 1.5 Nicolet 6.85 

CQ2_2021 2021-05-16 Altitude R2 1.2 Inverness 8.13 

ES1_2019 2019-05-27 Ha 1.4 Stanstead 7.15 

ES1_2020 2020-05-08 Salto 2.3 Saint-Georges-de-

Windsor 

11.71 

ES1_2021 NA S04-D3 3.1 Melbourne 12.08 

ES2_2020 2020-05-14 Elite Chiba NA Melbourne 8.33 

ES2_2021 NA Fresco 2RX NA Saint-Georges-de-

Windsor 

7.15 

IRDA_2019 2019-06-17 Kendo R2 4.2 Saint-Bernard2 4.49 

IRDA_2020 NA Kendo R2 4.2 Saint-Bernard2 4.49 

IRDA_2021 NA Kendo R2 4.2 Saint-Bernard2 4.49 

LAN1_2019 2019-05-26 Pro seed  

H503RT33 

NA L'Assomption 2.00 

LAN1_2020 2020-04-29 Calypso NA Saint-Jacques 2.71 

LAN1_2021 2021-05-14 AAC Corylis NA Saint-Jacques 1.56 

LAN2_2019 2019-05-08 Calypso NA Saint-Jacques 2.77 

LAN2_2020 2020-05-05 S04-D3 3.1 Lanoraie 14.34 

LAN2_2021 2021-05-24 P2712 NA Saint-Jacques 9.97 
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Table A. 4 Soybean sowing date and cultivar for experimental sites in Québec from 2019 to 2021 
(cont’d). 
Code_site Sowing date Cultivar SSR 

Rating1 

Agrometeo Station Distance 

(km) 
LAU1_2019 2019-05-22 Dekalb 2510 NA Mont-Laurier F2 14.16 

LAU1_2020 2020-05-13 Podaga R2 NA Mont-Laurier F2 12.17 

LAU1_2021 2021-05-31 Akras R2 NA Mont-Laurier F2 11.90 

LAVAL_2019 NA Kendo R2 4.2 Saint-Antoine-de-

Tilly2 

2.56 

LAVAL_2020 NA Kendo R2 4.2 Saint-Antoine-de-

Tilly2 

2.56 

LAVAL_2021 NA Kendo R2 4.2 Saint-Antoine-de-

Tilly2 

2.56 

MAU1_2019 NA Marula 1.5 Saint-Barnabé 8.62 

MAU1_2020 NA NA NA Saint-Barnabé 8.55 

MAU1_2021 2021-05-10 Myco Progres NA Saint-Barnabé2 2.05 

MCGILL_201

9 

2019-05-23 P09A53X NA Sainte-Anne-de-

Bellevue 

0.73 

MCGILL_202

0 

2020-05-27 P09A53X NA Sainte-Anne-de-

Bellevue 

0.73 

MCGILL_202

1 

2021-05-18 P09A53X NA Sainte-Anne-de-

Bellevue 

0.73 

ME1_2019 2019-05-19 NA NA Calixa-Lavallée 9.39 

ME1_2020 2020-05-13 PS1162 2.3 Saint-Paul-

d'Abbotsford 

10.03 

ME1_2021 2021-05-16 P05A35X NA Saint-Hilaire 12.16 

ME2_2019 2019-05-30 Zana 1.2 Saint-Paul-

d'Abbotsford 

10.32 

ME2_2020 2020-05-11 P05T80 NA Saint-Hilaire 12.77 

ME3_2019 2019-06-05 Dekalb 2815 NA Saint-Grégoire 10.39 

ME3_2020 2020-05-05 NK 07M8 NA Calixa-Lavallée 13.34 



 

 
135 

Table A. 4 Soybean sowing date and cultivar for experimental sites in Québec from 2019 to 2021 
(cont’d). 
Code_site Sowing date Cultivar SSR 

Rating1 

Agrometeo Station Distance 

(km) 
ME3_2021 2021-05-11 NA NA Rougemont 3.40 

ME4_2019 2019-05-25 Cara NA Rougemont 10.82 

ME4_2020 2020-05-11 Dekalb 2815 NA Saint-Grégoire 9.77 

ME5_2019 2019-05-19 Acora 1.7 Saint-Hilaire 10.94 

ME5_2020 2020-05-13 NK S09R8X NA Saint-Hilaire 11.13 

ME5_2021 2021-05-08 Ezra NA Rougemont 10.07 

ME6_2019 2019-05-19 Natto NA Saint-Hilaire 11.67 

MO1_2019 2019-06-13 Calypso NA Hemmingford 10.83 

MO1_2020 2020-05-25 AAC Corylis NA Hemmingford 10.91 

MO1_2021 NA NA NA Hemmingford 10.83 

MO2_2019 NA Katonda 1.5 Hemmingford 10.83 

MO2_2020 2020-06-04 09A62 NA Hemmingford 10.83 

MO2_2021 NA NA NA Hemmingford 10.83 

MO3_2020 2020-06-05 Ajico 0.9 Hemmingford 10.83 

MO3_2021 NA NA NA Hemmingford 10.83 

OU1_2019 2019-06-10 Katonda 1.5 Masson 3.28 

 1SSR Rating: Sclerotinia Stem Rot susceptibility rating, the susceptibility scale ranges from 0 to 

10, with 10 being comparable to the extremely susceptible cultivar Nattosan (Oleo Quebec, 2019). 

2Data from on-site weather stations was collected to assess the validity of remote weather stations.  

NA, Information Not Available. 
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Table A. 5 Number of significant environmental variables for each moving average duration 
correlated with the apothecia binary variable of 0.25 apothecia/deposit (n = 9 total). 

Criteria Number of correlated variables 

10-day 20-day 30-day 40-day1  

P < 0.05 9 9 9 7 

Coefficient > ǀ0.2ǀ and P < 0.05 4 5 4 2 

18 weather variables (AWDR was excluded) were tested for the 40-day moving average durations. 

 
Table A. 6 Number of significant 20-day moving average environmental variables (n = 9 total) 
correlated with apothecia binary response variables established at four thresholds. 

Moving average 

duration 
Criteria 

Number of correlated variables  

0.25 0.50 0.75 1.00 

20-day P < 0.05 9 9 9 9 

Coefficient > ǀ0.2ǀ and P < 0.05 6 6 6 6 

30-day P < 0.05 9 9 9 9 

Coefficient > ǀ0.2ǀ and P < 0.05 5 5 5 5 

 
 
Table A. 7 Number of significant weather variables (n = 12 total) correlated with the DSI in 
Québec from 2019 to 2021. 

Criteria 

Number of correlated variables  

June July August September 
July-

September 

P < 0.05 12 1 0 9 0 

Coefficient > ǀ0.2ǀ 6 3 0 2 2 

Coefficient > ǀ0.2ǀ and   P < 0.05 6 1 0 2 0 
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Table A. 8 Estimated values for the time to 50% carpogenic germination at IRDA, CÉROM, 
Laval University and McGill University from 2019 to 2021. 

Research Centre Year Row Spacing (cm) T50 (days)1 Standard error 

IRDA 

2019 

17.8 56.41 3.94 

38.1 60.31 4.20 

76.2 64.66 4.51 

2020 

17.8 43.41 4.01 

38.1 44.56 4.14 

76.2 45.95 4.31 

2021 

17.8 33.47 2.79 

38.1 31.13 2.57 

76.2 28.77 2.38 

CÉROM 

2019 

17.8 NA NA 

38.1 NA NA 

76.2 NA NA 

2020 

17.8 NA NA 

38.1 NA NA 

76.2 NA NA 

2021 

17.8 33.94 4.94 

38.1 43.42 6.50 

76.2 41.11 5.97 

LAVAL 

2019 

17.8 77.18 4.89 

38.1 77.18 5.20 

76.2 78.70 5.36 

2020 

17.8 46.45 2.35 

38.1 48.02 2.44 

76.2 43.32 2.23 

2021 

17.8 68.37 23.68 

38.1 67.32 21.99 

76.2 118.92 43.67 
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Table A. 8 Estimated values for the time to 50% carpogenic germination at IRDA, CÉROM, 
Laval University and McGill University from 2019 to 2021 (cont’d). 
Research Centre Year Row Spacing (cm) T50 (days)1 Standard error 

MCGILL 

2019 

17.8 76.23 3.62 

38.1 72.11 3.46 

76.2 74.19 3.49 

2020 

17.8 NA NA 

38.1 NA NA 

76.2 NA NA 

2021 

17.8 NA NA 

38.1 NA NA 

76.2 NA NA 

1T50, the estimated values for the number of days until the presence of the one apothecium was 

observed in half of the sclerotia deposits representing the time to 50% germination. 

 

Table A. 9 Least square means for the area under the inoculum progress curve at research 
centres in Québec from 2019 to 2021. 

Year Research Centre LS Mean1 Standard error 

2021 IRDA 616.04 a 40.78 

2019 IRDA 340.46 b 40.78 

2019 MCGILL 113.71 c 40.78 

2020 IRDA 97.29 c 40.78 

2021 LAVAL 42.50 c 40.78 

2020 LAVAL 41.50 c 40.78 

2021 MCGILL 22.75 c 40.78 

2021 CÉROM 19.58 c 40.78 

2019 LAVAL 17.38 c 40.78 

2020 CÉROM 15.46 c 40.78 

2019 CÉROM 1.46 c 40.78 

2020 MCGILL 0.33 c 40.78 

1 Least square means followed by the same letter are not statistically different (a =0.05). 
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Table A. 10 Statistical model fit parameters for the effect of row spacing on apothecia formation 
at IRDA from 2019 to 2021. 

Distribution, covariance structure AIC Pearson Chi-square/DF 

Poisson, cs 1541.40 0.37 

Poisson, ar1 195.65 0.40 

Negative binomial, cs 1532.68 2.67 

Negative binomial, ar1 1497.67 0.40 

Abbreviations: Cs: Compound Symmetry Covariance Structure, ar1: 1st order Auto-Regressive 

Covariance Structure; AIC, Akaike’s Information Criterion; DF, Degrees of Freedom.  

 

 

Table A. 11 Least square means for disease severity index at R8 for 17.8-, 38.1-, and 76.2-cm 
spaced experimental plots at IRDA in 2021. 

Row Spacing (cm) LS Mean1 Standard error 

17.8 7.5 a 5.4 

38.1 19.2 a 5.4 

76.2 5.0 a 5.4 

1 LS, Least Square means followed by the same letter are not statistically different (a =0.05). 
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Table A. 12 Comparison between the area under the receiver of operating characteristic curve of 
Willbur models predicting DSI 10 based on the risk of apothecia presence from R1 to R3 and 
from R1 to R4 in Québec from 2019 to 2021. 

Model Year AUC R1-R3 AUC R1-R4 Z-statistic P-value 

Willbur 1 

2019 0.646 0.625 0.71 0.5 

2020 0.967 0.967 0.00 1.0 

2021 0.775 0.763 0.71 0.5 

2019-2021 0.754 0.750 1.00 0.3 

Willbur 2 

2019 0.583 0.500 1.20 0.2 

2020 0.833 0.817 0.71 0.5 

2021 0.663 0.681 -0.47 0.6 

2019-2021 0.654 0.633 0.75 0.5 

Willbur 3 

2019 0.479 0.458 0.31 0.8 

2020 0.833 0.817 0.71 0.5 

2021 0.688 0.744 -1.10 0.3 

2019-2021 0.675 0.667 0.31 0.8 

Abbreviations: R1-R3: Area under the Receiver Operating Curve of Willbur models during the 

soybean growth stages from beginning bloom to beginning pod formation. 

R1-R4: Area under the Receiver Operating Curve of Willbur models during the soybean growth 

stages from beginning bloom to full pod formation. 
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Table A. 13 Comparisons between the AUCs and the line of no-discrimination of SSR prediction 
models for different apothecia maturity levels in Québec from 2019 to 2021. 

Apothecia 

Maturity 
Model AUC1 SE2 Z-Statistic P-value3 

Immature 

Willbur 1 0.657 ab 0.0004 7.020 1.11E-12 

Willbur 2 0.636 b 0.0004 6.090 5.49E-10 

Willbur 3 0.677 a 0.0004 7.910 1.38E-15 

Mature 

Willbur 1 0.680 ab 0.0005 7.560 2.09E-14 

Willbur 2 0.654 b 0.0005 6.460 5.26E-11 

Willbur 3 0.698 a 0.0005 141.420 5.11E-17 

Total 

Willbur 1 0.685 ab 0.0004 141.420 5.45E-18 

Willbur 2 0.675 b 0.0004 8.080 2.86E-16 

Willbur 3 0.718 a 0.0004 141.420 2.72E-24 

1AUC: Area under the Receiver Operator Curve was calculated using the Delong et. al. (1988) 

method. AUC followed by the same letter are not statistically different (a = 0.05). 

2SE: Standard Error. 

3Significance between model AUC and the AUC of the line of no-discrimination was determined 

at a = 0.05. 
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Table A. 14 Evaluation of the Willbur models’ original and recalibrated versions on 70% of the 
2019-2021 dataset. 

Model AUC SE Z-Statistic P-value4 

Willbur 11 0.693  0.0005 7.430 5.26E-14 

W1_recal12 0.693  0.0005 7.430 5.26E-14 

W1_recal23 0.693  0.0005 7.430 5.26E-14 

Willbur 21 0.695  0.0005 7.500 3.07E-14 

W2_recal12 0.695  0.0005 7.500 3.07E-14 

W2_recal23 0.695  0.0005 7.500 3.06E-14 

Willbur 31 0.740  0.0005 141.420 1.71E-20 

W3_recal12 0.740  0.0005 141.420 1.71E-20 

W3_recal23 0.739  0.0005 141.420 1.73E-20 

1Original Willbur et al. (2018) equations. 

2Recalibrated-in-the-large Willbur models using 70% of the data collected in Québec from 2019 

to 2021. 

3Logistic recalibrated Willbur models using 70% of the data collected in Québec from 2019 to 

2021. 

4Significance between model AUC and the AUC of the line of no-discrimination was determined 

at a = 0.05. 

Abbreviations: AUC, Area under the Receiver Operating Curve; SE, Standard Error. 
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Table A. 15 Evaluation of the Willbur models’ original and recalibrated versions on 30% of the 
2019-2021 dataset. 

Model AUC2 SE3 Z-Statistic P-value4 

Willbur 11 0.664  0.001 4.200 1.35E-05 

W1_recal1 0.664  0.001 4.200 1.35E-05 

W1_recal2 0.664  0.001 4.200 1.36E-05 

Willbur 21 0.632  0.001 3.380 3.57E-04 

W2_recal1 0.632  0.001 3.380 3.57E-04 

W2_recal2 0.632  0.001 3.380 3.57E-04 

Willbur 31 0.673  0.001 4.450 4.39E-06 

W3_recal1 0.673  0.001 4.450 4.39E-06 

W3_recal2 0.673  0.001 4.450 4.39E-06 

1Original Willbur et al. (2018) equations. 

2Recalibrated-in-the-large Willbur models using 70% of the data collected in Québec from 2019 

to 2021. 

3Logistic recalibrated Willbur models using 70% of the data collected in Québec from 2019 to 

2021. 

4Significance between model AUC and the AUC of the line of no-discrimination was determined 

at a = 0.05. 

Abbreviations: AUC, Area under the Receiver Operator Curve; SE, Standard Error. 
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Table A. 16 Model fit for various combinations of 20-day moving average durations of weather variables. 

Variables AIC R2 Kappa AUC Threshold Accuracy Sensitivity Specificity Fpos Fneg LR+ LR- 

Tmax20d 691.500 0.119 0.144 0.700 0.362 0.683 0.567 0.741 0.259 0.433 2.189 0.584 

Tmax20d, WSmax20d 676.900 0.154 0.179 0.704 0.268 0.635 0.840 0.531 0.469 0.160 1.792 0.301 

Tmax20d, WSmax20d, RHmax20d 650.200 0.214 0.295 0.730 0.255 0.641 0.876 0.523 0.477 0.124 1.838 0.236 

Tmax20d, AWDR20 670.100 0.169 0.165 0.703 0.249 0.643 0.928 0.500 0.500 0.072 1.856 0.144 

Tmax20d, RHmean20d 598.900 0.310 0.328 0.791 0.352 0.738 0.737 0.738 0.262 0.263 2.817 0.356 

Tmax20d, WSmax20d, AWDR20 656.900 0.200 0.209 0.704 0.264 0.676 0.897 0.565 0.435 0.103 2.061 0.183 

Tmax20d, RHmean20d, AWDR20 593.900 0.323 0.319 0.780 0.249 0.697 0.887 0.601 0.399 0.113 2.222 0.189 

Tmax20d, WSmax20d, RHmean20d 548.100 0.403 0.442 0.818 0.356 0.760 0.758 0.762 0.238 0.242 3.179 0.318 

Tmax20d, WSmax20d, RHmax20d, AWDR20 632.400 0.253 0.302 0.734 0.265 0.707 0.887 0.617 0.383 0.113 2.312 0.184 

Tmax20d, WSmax20d, RHmean20d, AWDR20 547.400 0.408 0.422 0.808 0.376 0.766 0.727 0.785 0.215 0.273 3.380 0.348 

Abbreviations: AIC, Akaike’s Information Criterion; R2, Pearson Coefficient of Determination; AUC, Area under the Receiver Operator 
Curve;  Fpos, False Positive Rate; Fneg, False Negative Rate; LR+, Positive Likelihood Ratio; LR-, Negative Likelihood Ratio. 
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Table A. 17 Modified model coefficients for the best performing models in Québec from 2019 to 
2021. 

Model Parameter Coefficient SE1 Pr(>|Z|) 

Willbur 1r 
Tmax -0.345 0.0538 <0.0001 

Intercept   8.417 1.4151 <0.0001 

Willbur 2r 

Tmax -0.374 0.0549 <0.0001 

Wsmax -0.171 0.0449 0.0001 

Intercept 10.657 1.5541 <0.0001 

Willbur 3r 

Tmax -0.413 0.0577 <0.0001 

Wsmax -0.235 0.0566 <0.0001 

Rhmax 0.130 0.0271 <0.0001 

Intercept -0.310 3.0193 0.9183 

Willbur 1x.1 

Tmax -0.351 0.0539 <0.0001 

AWDR 0.011 0.0025 <0.0001 

Intercept 7.843 1.4123 <0.0001 

Willbur 1x.2 

Tmax -0.172 0.0629 0.0062 

Rhmean 0.310 0.0316 <0.0001 

Intercept -19.812 3.1607 <0.0001 

Willbur 1x.3 

Tmax -0.191 0.0631 0.0024 

Rhmean 0.299 0.0317 <0.0001 

AWDR 0.006 0.0028 0.0329 

Intercept -18.925 3.1424 <0.0001 

Willbur 2x.1 

Tmax -0.380 0.0552 <0.0001 

Wsmax -0.168 0.0464 0.0003 

AWDR 0.011 0.0025 <0.0001 

Intercept 10.07 1.5614 <0.0001 
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Table A. 17 Modified model coefficients for the best performing models in Québec from 2019 to 
2021 (cont’d). 
Model Parameter Coefficient SE1 Pr(>|Z|) 

Willbur 2x.2 

Tmax -0.188 0.0659 0.0044 

Wsmax -0.383 0.0593 <0.0001 

Rhmean 0.363 0.0351 <0.0001 

Intercept -20.286 3.2717 <0.0001 

Willbur 3x.1 

Tmax -0.419 0.0579 <0.0001 

Wsmax -0.239 0.0580 <0.0001 

Rhmax 0.130 0.0269 <0.0001 

AWDR 0.011 0.0026 <0.0001 

Intercept -0.815 2.9588 0.7829 

Willbur 3x.2 

Tmax -0.205 0.0661 0.0020 

Wsmax -0.374 0.0593 <0.0001 

Rhmean 0.354 0.0353 <0.0001 

AWDR 0.005 0.0030 0.0748 

Intercept -19.617 3.2698 <0.0001 

1SE: Standard Error. 

Abbreviations: Tmax, Maximum Temperature (°C); WSmax, Maximum Wind Speed/1.609 

(km/h); RHmax, Maximum Relative Humidity (%); RHmean, Mean Relative Humidity (%); 

AWDR, Abundant and Well-Distributed Rainfall (mm). All weather variables are 30-day moving 

averages. 
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Appendix 2 - Figures 

 
 

 
Figure A.  1 Experimental design at the commercial sites in Québec from 2019 to 2021. Figure 

not to scale. 

 
Figure A.  2 Experimental design at the CÉROM, IRDA, Laval University and McGill University 
research sites in Québec from 2019 to 2021. Figure not to scale. 
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Figure A.  3 Correlation matrices showing the correlation coefficients for Kendall correlations 
between 30-day moving averages of weather variables and the apothecia binary variable created 
based on a threshold of 0.25 mean apothecia/deposit in Québec in A) 2019, B) 2020 and C)2021. 
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Figure A.  4 Receiver operating characteristic curve for Sclerotinia stem rot apothecia formation 
models in Québec for A) immature apothecia, B) mature apothecia, and C) total apothecia from 
2019-2021. 
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