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There have been considerable advances in the methodology for estimating dynamic treatment regimens, and
for the design of sequential trials which can be used to collect unconfounded data to inform such regimens.
However relatively little attention has been paid to how such methodology could be used to advance under-
standing of optimal treatment strategies in a continuous dose setting, even though it is often the case that
considerable patient heterogeneity in drug response along with a narrow therapeutic window may necessi-
tate the tailoring of dosing over time. Such is the case with warfarin, a common oral anticoagulant. We
propose novel, realistic simulation models based on pharmacokinetic-pharmacodynamic properties of the
drug that can be used to evaluate potentially optimal dosing strategies. Our results suggest that this method-
ology can lead to a dosing strategy which performs well both within and across populations with different
pharmacokinetic characteristics, and may assist in the design of randomized trials by narrowing the list of
potential dosing strategies to those which are most promising.
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1 Introduction

Finding the right dose of a drug is typically a question of balancing the drug’s desired action or efficacy
with its side effects, safety, and tolerability. Whether or not a standard dose can be recommended for an
entire target population depends on the degree of inter- and intra-individual variability in both the systemic
exposure resulting from a given dose (pharmacokinetics, PK), and the effects – both good and bad –
resulting from a given exposure (pharmacodynamics, PD), as well as the size of the therapeutic window
within which the metabolic uptake of the drug is desired to lie. A dynamic treatment regimen (DTR) results
when doses need to be individualized, with the adjustments being made in response to an evolving patient
profile. In this setting, estimation of an optimal treatment strategy is desirable.

Warfarin is a highly effective anticoagulant that works to decrease the risk of thrombosis (clotting) by
depleting the body’s active vitamin K. Following a (single) dose of warfarin, anticoagulant effects are
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typically observed in one day; the duration of the effect of a single dose is two to five days. The impact
of warfarin varies considerably between and within individuals, as diet can replenish vitamin K, warfarin
interacts with a variety of other medications, and there are known genetic polymorphisms which affect
warfarin’s metabolism and potency leading to an increased risk of bleeding or thrombosis in some patients
(The International Warfarin Pharmacogenetics Consortium, 2009).

Anticoagulation therapy requires careful monitoring of the international normalized ratio (INR), a mea-
sure of the time it takes for blood to clot, which must be kept in a narrow target range, typically between
2.0 and 3.0 for most indications (Hirsh et al., 2001). Important genetic and environmental factors that
influence warfarin PK and PD result in considerable response heterogeneity, such that the appropriate dose
to achieve an INR in the target range can vary by more than five-fold between individuals (Michaud et al.,
2008). Warfarin is frequently prescribed in the United States and inappropriate dosing is a major cause
of emergency hospitalizations resulting from adverse drug events (Wysowski et al., 2007; Budnitz et al.,
2011).

Because of the complexity of dosing warfarin (or other coumarin derivatives), several computer algo-
rithms have been developed to assist physicians in making dosing decisions (Cromme et al., 2010; Nielsen
et al., 2014, e.g.). For example, Figure 1 shows the INR and dose data from a random sample of three
patients, obtained from a London (UK) anticoagulation clinic, for the first six months following warfarin
initiation. As the data show, there are multiple adjustments over time, some large and others not, corre-
sponding to departures of the INR from the target range. These data were extracted from the DAWN AC
anticoagulation management system (http://www.4s-dawn.com/products/anticoagulation/dawnac/), which
provides computer-assisted dosing based on the INR, allowing easy recuperation of INR and dose informa-
tion. However it has been shown that computer-assisted dosing can fail to recommend a dose or medical
staff may choose to alter the recommended dose anywhere from 6-20% of the time (Poller et al., 2008,
2009).

That multiple seemingly largely heuristic algorithms exist, and that many physicians continue to rely
on clinical judgement, suggests that the optimal dosing strategy has not yet been found. Furthermore,
determining the optimal adaptive treatment strategy often requires very large samples. It is therefore rec-
ommended that the advantage of a proposed adaptive strategy – however identified – is ascertained by a
confirmatory randomized trial (Lei et al., 2012). In such circumstances, particularly when the PK and
PD characteristics of a drug are well understood, it can be advantageous to use simulations to suggest an
adaptive strategy to be tested in a confirmatory trial.

A dose adjustment strategy for warfarin is an example of a DTR. Such regimens have received much
attention in the statistical literature recently; for example, see Murphy (2003), Robins (2004), Moodie
et al. (2007), Dawid and Didelez (2010), Chakraborty and Moodie (2013) among others. However, the
literature on dynamic regimen methodology has focused almost entirely on binary or discrete treatments,
save for a few exceptions (Murphy, 2003; Henderson et al., 2010; Cotton and Heagerty, 2011; Joffe et al.,
2012). Applications with continuous doses, including simulation studies, remain sparse. Simulation of
data conforming to a particular treatment contrast model is most readily performed using the approach
described by Murphy (2003); we provide an illustration in the Supporting Information. However, such
simulation protocols are overly simplistic, and are unable to effectively capture the complexities that are
encountered in treatment with a drug like warfarin, where the true model for an outcome that captures, for
example, the deviations of INR from an optimal value over an extended period of time as a function of
covariates is unknown and possibly highly non-linear.

Recently, Fusaro et al. (2013) pointed out the usefulness of simulation in designing clinical trials for
warfarin, taking advantage of the availability of realistic PK/PD models for INR prediction. In their work,
the dose adjustment strategies compared were pre-specified, not estimated from data. Here we propose
that optimal DTR estimation can be effectively combined with PK/PD simulation to generate candidate
dynamic dosing strategies for warfarin treatment that could subsequently be validated in randomized clin-
ical trials. While the focus in this work is on warfarin, the methods and approach used are general and
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Figure 1 INR (raw and centered by the mid-point of the target INR range), as well as dosing for the first
six months following warfarin initiation from a sample of patients in a London anticoagulation clinic.

could be applied to other drugs. Some examples might include thiopurines for the treatment of inflam-
matory bowel disease (Teml et al., 2007), Theophylline (D’Argenio and Khakmahd, 1983), or other drugs
requiring therapeutic monitoring and for which a realistic PK/PD model is known or could be developed.

The paper is structured as follows. In Section 2 we provide a brief review of the framework proposed by
Robins (2004) for optimal dynamic treatment regimens using structural nested mean models (SNMMs) and
g-estimation; throughout we use the abbreviation SNMM to refer specifically to models for optimal DTRs.
We begin with the simpler case of binary treatments before focussing on methodological issues specific
to the continuous-scale treatment setting. A key component of the model is the so-called blip function,
which in the continuous treatment case generally ought to be non-monotone; a convenient choice, and the
one we adopt, is a quadratic function. In Section 3, we propose a sophisticated approach to generating
realistic data (i.e. mimicking those seen in Figure 1) using a PK/PD model under the plausible setting in
which a therapeutic agent’s biologic properties are sufficiently well understood. We demonstrate how such
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a simulation model could be used to evaluate several dynamic regimens, which could then be tested in
clinical practice or in a randomized trial setting. We conclude with a discussion in Section 4.

2 A framework for optimal dynamic regimens with continuous treatments

Robins (2004) gives a more general and complete treatment of optimal DTR estimation with SNMMs,
estimated by g-estimation. A number of other approaches have been proposed and compared (Murphy,
2003; Moodie et al., 2007; Rosthøj et al., 2006; Henderson et al., 2010). G-estimation offers several
attractive properties, including robustness against some forms of model misspecification (Robins, 2004)
and the potential for model checking using residual-based model diagnostics (Rich et al., 2010).

2.1 Notation

We begin by describing the complete vectors of observations for a randomly sampled individual from an
implicit underlying population, denoted by O, and suppose that the observed data consist of n i.i.d. such
vectors, O1, . . . , On. We use capital letters to denote random variables or vectors, and lower case letters
to denote realizations or constants. Thus, O = (L0, A1, L1, . . . , AK , LK) where K is the number of
treatment intervals, L0 denotes a vector of baseline or pre-treatment covariates, Aj , j = 1, . . . ,K denotes
the treatment observed at interval j, and Lj , j = 1, . . . ,K denotes a time-varying covariate (possibly
multidimensional) associated to interval j. Lj is assumed to be an intermediate response, observed after
treatment Aj and prior to treatment Aj+1, which it may inform. Indeed, it is assumed that the treatment
Aj+1 is chosen adaptively according to previous treatments and responses, in particular Lj . We define
Y = g(O) to be the final outcome of interest, where g(·) is a suitably defined reward function, meaning
that the larger the value of Y , the better the outcome.

Let Aj , j = 1, . . . ,K denote the set of possible treatments at interval j, and similarly let Lj denote
the set of the possible values for Lj , j = 0, . . . ,K. A dynamic treatment regimen d = (d1, . . . , dK) is a
sequence of functions dj : Hj → Aj where

Hj = L0 ×A1 × L1 × · · · × Aj−1 × Lj−1

that map “histories” to treatments. We assume the existence of counterfactual or potential outcomes Y (d)
under every possible dynamic regimen d. In the DTR context, the potential outcome Y (d) represents
the outcome that would have been observed in the event that the treatments had been assigned according
to regimen d, rather than the observed regime. An optimal DTR is one that maximizes the value of the
counterfactual outcome in expectation. Under regularity conditions (Robins, 2004; Moodie, 2009), the
optimal dynamic treatment regimen is uniquely defined and we write

dopt = arg max
d

E[Y (d)].

The outcome Y could be something such as a quality of life score, the ratio of healthy years gained per
$1,000 spent on treatment, or, as in our warfarin example, a measure of the deviations from the therapeutic
target. It is this optimal dynamic treatment regimen that one wishes to estimate. We now turn to the
estimation of an optimal dosing strategy via g-estimation.

2.2 Structural nested mean model and g-estimation for a binary exposure

We consider inference in a semiparametric setting: Consider a dynamic treatment regimen indexed by a
history hj ∈ Hj and a treatment a ∈ Aj and denoted dhj ,a,opt, defined as follows. For the intervals
m ≤ j, the regimen is static, i.e., fixed a priori and the same for all individuals. Note that hj contains a
sequence of treatments for intervals m < j, and these are precisely the treatments assigned by dhj ,a,opt at
the corresponding intervals. At interval j the treatment assigned by dhj ,a,opt is a. For intervals m > j, the
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regimen is dynamic, and optimal in the sense that the treatments assigned according to dhj ,a,opt and dopt

are identical for the same history.
A SNMM for optimal dynamic treatment regimen estimation is a parametrization of the blip function,

defined here for the jth interval as

γj(a, hj) = E[Y (dhj ,a,opt)− Y (dhj ,0,opt)|Hj = hj , Aj = a]

where a ∈ Aj denotes a possible treatment at interval j, 0 ∈ Aj denotes a reference treatment at interval j,
hj ∈ Hj denotes a possible history at interval j, Y (·) denotes the counterfactual outcome under the speci-
fied regimen as defined above. Two key features of the blip: (1) the blip function evaluated at a = 0 is zero
(by definition); (2) the blip function determines the optimal DTR through dopt(hj) = arg maxa γj(a, hj).
If a blip function is a function of a and hj parameterized by a parameter ψj ∈ Rpj , an optimal dynamic
treatment regimen structural nested mean model (SNMM) results. In the case of a binary treatment, a
common choice would be a linear blip model of the form

γj(a, hj ;ψj) = (ψ>j xj)a

for a covariate vector xj = xj(hj). Note that for this model the value of the blip function evaluated at
a = 0 is zero as required. Since the blip function determines the optimal DTR, the goal is to estimate
ψ = (ψ>1 , . . . , ψ

>
K)>. This can be achieved by recursive g-estimation (Robins, 2004). In this procedure,

we consider

Gj(ψj , ψj+1
) = Y −γj(Aj , Hj , ψj) +

K∑
m=j+1

[
max
a′∈Am

{
γm(a′, Hm;ψm)

}
−γm(Am, Hm;ψm)

]
where ψ

j+1
= (ψ>j+1, . . . , ψ

>
K)>. It then follows (Robins, 2004) that

E[Gj(ψj , ψj+1
)|Hj , Aj ] = E[Y (dHj ,0,opt)|Hj , Aj ].

A g-estimating equation at interval j is given by

0 =

n∑
i=1

Xij

{
Aij − πj(Hij ; α̂j)

}{
Gij(ψj , ψ̂j+1

)− ηj(Hij ; ς̂j(ψj , ψ̂j+1
))
}

(1)

where πj(hj ;αj) is an estimator of E[Aj |Hj = hj ] which equals Pr[Aj = 1|Hj = hj ] in the binary
treatment case, ηj(hj ; ςj) is an estimator ofE[Y (dHj ,0,opt)|Hj ] = E[Gj(ψj , ψj+1

)|Hj ], and ς̂j(ψj , ψj+1
)

is an estimator of ςj , determined up to a parameter. We refer to πj(hj ;αj) as the treatment model, and
to ηj(hj ; ςj) as the expected counterfactual (EC) model. The g-estimating equations (1) are solved for
ψj in reverse-time order, i.e., for j = K, . . . , 1, to obtain the estimator ψ̂j . It can be shown (Robins,
2004) that under standard identifiability assumptions of consistency and exchangeability and regularity
assumptions, the resulting estimator is doubly robust, that is, consistent and asymptotically normal under
correct specification of either πj(hj ;αj) or ηj(hj ; ςj). In addition, under regularity conditions, asymptotic
standard errors can be estimated by the sandwich estimator. For further details see, for example, Robins
(2004), Moodie et al. (2007), Moodie (2009), Moodie and Richardson (2010) and Rich et al. (2010).

2.3 Structural nested mean model and g-estimation for a continuous dose

With continuous doses, the need to balance efficacy and tolerability requires more complex modelling
than is required for binary doses. If a is a continuous variable such as a particular dose of warfarin, then
without further constraints, the value of a that maximizes a blip function that is linear in a, i.e., the optimal
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treatment, will be either +∞ or −∞, depending on the sign of ψ>j xj . Thus, the choice of model needs
to be reconsidered when treatments are on a continuous scale. First, one must consider the sensible finite
range over which the treatments can realistically be assigned, and bound the treatments during estimation.
If a represents a dose of a drug (in milligrams, say), then a is restricted to a range [0, Amax] where Amax

is the highest conceivable dose. Second, if it is believed that in some circumstances the optimal dose does
not correspond to either extreme of this acceptable range, but rather to some intermediate value, then the
functional form of the blip function should not be linear (nor, indeed, monotone) in a, but should rather
allow for a maximum at an interior point of the interval (Moodie and Richardson, 2010). One suitable
choice is a quadratic function, namely to assume that the blip function is quadratic in a, and write

γj(a, hj ;ψj) =
(
ψ

(1)>
j ψ

(2)>
j

)( ax
(1)
j

a2x
(2)
j

)

where the parameter has been partitioned as ψj = (ψ
(1)>
j , ψ

(2)>
j )> and x(1)

j and x(2)
j are two vectors of

model covariates, i.e., functions of the history hj . Robins (2004) considered a similar blip function model
in an example, while Murphy (2003) and Rosthøj et al. (2006) also suggest the use of quadratic models,
though in the context of modeling regret functions rather than blip functions (regret functions and blip
functions are related by µj(a, hj) = maxa′ γj(a

′, hj) − γ(a, hj); see Moodie et al. (2007)). We might
expect ψ(2)>

j x
(2)
j < 0 for all histories hj so that the quadratic indeed has a maximum and not a minimum.

This constraint could be incorporated into the model, or the model could be left unconstrained in which
case it should be verified that the constraint is indeed satisfied at the estimated value of ψ(2)

j . While more
complex forms could be considered, using a blip function that is quadratic in a has the advantage from
an implementation standpoint of being straightforward to maximize in closed form (a different unimodal
function is still easy to maximize numerically). The maximum occurs either at one of the two endpoints of
the acceptable range for a, or at the value a = − 1

2 (ψ
(1)>
j x

(1)
j )/(ψ

(2)>
j x

(2)
j ).

G-estimation proceeds with the estimating equations taking the form

0 =

n∑
i=1

wj(Hij)

(
X

(1)
ij

{
Aij − π(1)

j (Hij ; α̂
(1)
j )
}

X
(2)
ij

{
A2

ij − π
(2)
j (Hij ; α̂

(2)
j )
}){Gij(ψj , ψ̂j+1

)− ηj(Hij ; ς̂j(ψj , ψ̂j+1
))
}

for j = 1, . . . ,K, where π(1)
j (Hj ;α

(1)
j ) is a model for E[Aj |Hj ] as before, and now π

(2)
j (Hj ;α

(2)
j ) is

a model for E[A2
j |Hj ]. Using a quadratic blip function leads to an attractive property: if we assume a

generalized linear model for E[Aj |Hj ], then the GLM fit gives both fitted values π(1)
j (Hij ; α̂

(1)
j ) as well

as estimates of the conditional variance V̂ar(Aj |Hj ; α̂j) (the conditional variance could also be modelled
separately as in Joffe et al. (2012)), from which we can derive π(2)

j (Hij ; α̂
(2)
j ) = V̂ar(Aj |Hj ; α̂j) +

{π(1)
j (Hij ; α̂

(1)
j )}2. This is similar in spirit to the approach used by Joffe et al. (2012), although their

treatment model has an additional Bernoulli component for the probability of receiving a zero dose (i.e.,
their treatment model is zero-inflated).

3 A realistic biological simulation model for continuous dose effects

The simulation approach of Murphy (2003) (for details, please see the Supporting Information) allows
one to generating data from a known SNMM but these data do not necessarily resemble what one would
typically expect to find in a drug dosing study. In this section we develop a data generating strategy that
will allow the evaluation of g-estimation as an optimal dose finding strategy in the realistic setting in
which treatments are measured on a continuous scale, and the true model for the outcome as a function of
dose and patient history is complex. This is accomplished using a more elaborate simulation protocol and a
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PK/PD model that leads to data that conform better to our understanding of the underlying pharmacological
principles, at the expense of not knowing the true SNMM.

In pharmaceutical sciences, it is a standard paradigm to assume that the effect of a drug is completely
mediated through the true systemic exposure to the drug, i.e., the drug concentration at the site of action.
This leads to the decomposition of the dose-effect relationship into two distinct components (and associated
models): (1) the dose-concentration relationship; and (2) the concentration-effect relationship. Pharma-
cokinetics concerns dose-concentration relationships, or how the systemic exposure to a drug changes over
time as a result of: (a) the administration of the drug; as well as (b) the processes of absorption, distri-
bution, metabolism and excretion. Pharmacodynamics concerns concentration-effect (or exposure-effect)
relationships.

In this section, we demonstrate the feasibility of utilizing the SNMM framework for continuous-scale
treatments described in Section 2 to estimate adaptive dosing strategies assuming that the data are gen-
erated from an indirect pharmacodynamic model with random effects on the main structural PK and PD
parameters. An indirect PD model was chosen for the simulation because it creates a delay between admin-
istration of dose and observed response. This delayed response makes the estimation of an adaptive dosing
strategy more challenging. In particular, it implies that a myopic strategy that assigns at each interval the
dose that is most likely to lead to the targeted response at the end of that interval may not be optimal as it
fails to account for residual effects that carry over from one interval to the next. This indirect PD model
has been used previously to characterize the PK and PD of warfarin (Dayneka et al., 1993; Blesius et al.,
2006).

3.1 Data generating mechanism

To generate the simulation data, we require a treatment model by which doses are adaptively assigned, and a
PK/PD model to generate the observed responses. The population PK/PD model is a two-level hierarchical
model. The individual-level model, conditional on the individual-specific structural PK/PD parameters,
is a standard indirect PD model (Dayneka et al., 1993) that describes, through a system of differential
equations, the time-courses of drug concentration in the central compartment (e.g. blood plasma) and the
observed response (e.g. prothrombin time or INR), for a particular sequence of doses. The population-
level model describes variability between individuals in the population in terms of random effects in the
structural PK/PD parameters.

In the simulation, we assume the hypothetical drug to be taken orally once per day, for 21 days. Treat-
ments are modified every 3 days, thus on days 1, 4, 7, 10, 13, 16 and 19. The first six days consist of a
loading phase which serves to establish steady state conditions. Observations recorded during this phase
are considered pre-baseline; this phase is viewed as part of the history at the first treatment interval which
begins on day 7. Subsequently, five treatment intervals were considered for dose optimization, the first
beginning on day 7 and each interval lasting three days. Thus, in the notation that follows, we assume L0

is the response on day 7 and A1 to be the dose assigned on the same day. Because of the loading phase
leading up to the start of the first treatment interval, the notation used here differs slightly from that above
in that, for notational convenience, we also define L−1 and A0, corresponding to the response observed
and dose assigned on day 4 respectively (in the more generic notation presented above this would all have
been considered part of the baseline covariate L0). For simplicity, we assume that for each individual the
doses are exactly 24 hours apart, with no deviation in the time of administration. We also assume that a
response measurement is taken immediately prior to each dose modification. All individuals are treated
and observed for the full 21 days (no dropout or missing values).

Individual-level model
Let θi1 = CLi, θi2 = Vi and θi3 = ka,i be individual-specific pharmacokinetic parameters, where ka is the
absorption rate constant, ke = CL/V the elimination rate constant, CL the clearance, and V the central
volume of distribution, i.e. the blood volume. Further, let θi4 = IC50,i, θ5 = Υ, θ6 = S0 and θ7 = kd
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be pharmacodynamic parameters. IC50 is the concentration of the drug that results in 50% inhibition
of clotting factors (prothrombin complexes), assumed to be individual-specific. Υ is a sigmoidity factor,
controlling the relationship between drug concentration and clotting factor inhibition. S0 is the rate of
prothrombin production in the absence of the drug and kd is the degradation rate constant, i.e. the rate at
which prothrombin complexes degrade in the body.

The time-courses of the amount of drug in the depot compartment – the gut – C∗0 (t), and the central
compartment – the body’s circulatory system – C∗(t) are described by the system of differential equations:

∂C∗0 (t)

∂t
= −ka × C∗0 (t)

∂C∗(t)

∂t
= ka × C∗0 (t)− ke × C∗(t).

This is known in the pharmacokinetics literature as the one-compartment oral model with first-order ab-
sorption and first-order elimination (Gibaldi and Perrier, 1982; Gabrielsson and Weiner, 2007). The drug
concentration in the central compartment at time t is C(t) = C∗(t)/V .

The administration of a dose D causes an instantaneous (i.e., discontinuous) jump in C∗0 (t) at the time
of administration by the amount FD where F is the bioavailable fraction, i.e. the amount of the drug that
was absorbed, taken here to be 1. For a single dose D administered at time t = 0, the system has a closed
form solution (Gabrielsson and Weiner, 2007) given by

C(t) =
FDka

V (ka − ke)

{
exp(−ket)− exp(−kat)

}
.

When more than one dose is administered, each new dose results in an instantaneous jump in C∗0 (t) at
the time of administration. In the simulation, a dose is taken every 24 hours for 21 days. In order to
reach steady-state conditions more rapidly, the central compartment drug concentration of each individual
is initialized to 2 at t = 0.

The PD component of the model consists of a sigmoid Emax-type inhibitory model (Holford, 1986)

I
(
C(t)

)
=

1

1 +
(
C(t)/IC50

)Υ ,
and an indirect response model

∂R(t)

∂t
= S0 × I

(
C(t)

)
− kd ×R(t),

where in our motivating example, R(t) corresponds to the level of clotting factors in the blood. Initial
conditions are chosen so that R(0) = S0/kd, i.e., the rate of degradation matches the rate of synthesis and
the system is in equilibrium. As the concentration of the drug increases, synthesis is inhibited and the rate
of synthesis decreases. The response begins to decrease as degradation overtakes synthesis, however the
response lags behind the concentration somewhat because it takes time for a new equilibrium state to be
established.

This PD equation is solved simultaneously with the PK equations to produce the time-course of the
therapeutic response. The observed response Lj , i.e. the deviation of the INR from the target value of 2.5,
at time tj is a transformation of R(tj) given by

Lj =
Rpop

0

R(tj)
− 2.5

where the constant Rpop
0 is the (fixed) initial response R(0) (i.e., under no treatment) in the population,

taken here to be 120. For simplicity, measurement error is assumed to be negligible. The target value for
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Lj is 0. The outcome is defined by the reward function

Y = −
K∑
j=1

|Lj |,

i.e., the negative sum of absolute deviations of the responses from their target value. Thus, achieving re-
sponses close to the target value at all intervals implies a high value of Y , while deviations from the target
value (either positive or negative) are penalized.

Population-level model
Associated with each individual is a vector θi = (CL, V, ka, IC50,Υ, S0, kd)i of individual-specific
PK/PD model parameters. Of these, Υ, S0 and kd are assumed to be constant within the population. The
remaining parameters are drawn from independent log-normal distributions. Specifically, form = 1, . . . , 4
we set

θim = θpop
m × exp

(
ηim
)

where ηim ∼ N(0, ω2
m) are random effects, assumed independent, and θpop

m is the geometric mean or “typ-
ical value” of the parameter. The typical values for each parameter were taken from Blesius et al. (2006),
except for ka, which was not reported by those authors, and IC50. The IC50 value reported by Blesius
et al. (2006) did not produce suitable INR values in our model, so we used a value in line with those
reported by Holford (1986). For ka we used trial and error to obtain a value such that that the maximum
concentration occurred between 2 and 6 hours after the dose as reported by Holford (1986). Thus, the
parameter values used were: CL = 0.3, V = 15, ka = 1.2, IC50 = 1.8 Υ = 2, S0 = 4, kd = 0.033. For
all parameters that vary between individuals we set ωm = 0.2 so that about 95% of the population have
parameter values that are between 68% and 148% of the typical value. Systems of differential equations
were solved numerically using the R package deSolve.

Treatment model
The treatments (or actions) do not correspond to doses directly, but determine the doses through a transfor-
mation. On day 1 (pre-baseline), all individuals receive the same dose of 15 mg. On days 4, 7, 10, 13, 16
and 19 (j = −1, 0, 1, 2, 3, 4, 5 respectively), the dose is given by:

Dij = 15× exp(Aij)

where the treatments Aij are generated from simple linear regression models

Aij = α0 + α1Li(j−1) + α2Ai(j−1) + εij

where εij are independent, normally distributed with mean 0 and standard deviation 0.2, and Ai(−2) is
taken to be 0 for all i = 1, . . . , n. The random noise term, εij , is introduced to acknowledge the realistic
scenario in which different physicians make different dosing decisions in the face of the same patient
covariates, for reasons such as training, past experience, etc. Note that, due to the typical values for PK/PD
parameters used in the model, the reference dose of 15 mg/day (corresponding to Aij = 0), is somewhat
higher than the typical maintenance doses for warfarin observed in practice, which tend to be closer to 5
mg/day. The value of the parameter vector α used in the simulation is α0 = 0, α1 = −0.6 and α2 = 0.8.

3.2 Data, models, and additional scenarios

We generated data sets of sample size n = 2000 and sample size n = 1000 from the PK/PD model
described above. Profiles of three randomly generated individuals are shown in Figure 2.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



10 Benjamin Rich et al.: A PK/PD approach to DTRs

0 5 10 15 20

0
10

20
30

40

Time (days)

D
os

e

0 5 10 15 20

0
1

2
3

4
5

6
7

Time (days)

C
on

ce
nt

ra
tio

n

0 5 10 15 20

−
2

−
1

0
1

2
3

Time (days)

R
es

po
ns

e

●

●

● ●

●

●

0 5 10 15 20

0
10

20
30

40

Time (days)

D
os

e

0 5 10 15 20

0
1

2
3

4
5

6
7

Time (days)

C
on

ce
nt

ra
tio

n

0 5 10 15 20

−
2

−
1

0
1

2
3

Time (days)

R
es

po
ns

e

●

●
●

● ●

●

0 5 10 15 20

0
10

20
30

40

Time (days)

D
os

e

0 5 10 15 20

0
1

2
3

4
5

6
7

Time (days)

C
on

ce
nt

ra
tio

n

0 5 10 15 20

−
2

−
1

0
1

2
3

Time (days)

R
es

po
ns

e

●

●

●

●

●

●

Figure 2 Profiles of three individuals randomly generated from the PK/PD model. Each row corresponds
to a different individual. The first column shows the profile of the doses received, the second shows the
(latent) drug concentration and the third shows the response profile. Complete time courses are shown, but
only the circular points in the response profiles are available for estimation.

Multiple SNMMs were then fit to each simulated data set. Quadratic blip functions as described in
Section 2 were used. The models differed only in the linear part of the blip functions, and in each case the
quadratic part consisted of a single term (i.e., a constant). The first model included most recent treatment
and response as additive terms in the linear part of the blip functions. A second model additionally included
a linear interaction term between the most recent treatment and response. A third model included the last
two responses (as well as the most recent treatment). The models considered are summarized in Table 1.

Table 1 Models considered in Warfarin dosing simulation.

Model γj(a, hj) for j = 2, . . . , 5
SNMM 1 a(ψj0 + lj−1ψj1 + aj−1ψj2) + a2(ψj3)

SNMM 2 a(ψj0 + lj−1ψj1 + aj−1ψj2 + lj−1aj−1ψj3) + a2(ψj4)

SNMM 3 a(ψj0 + lj−1ψj1 + aj−1ψj2 + lj−2ψj3) + a2(ψj4)
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In all cases, flexible cubic spline models were used for the expected counterfactual models. At each
interval, the most recent treatment and two most recent responses were included in the EC model in an
additive fashion using cubic splines with 3 degrees of freedom—this was based on an evaluation of residual
plots (Rich et al., 2010) to produce adequate model fit. Some examples of these residual plots can be found
in the online Supporting Information. In all cases, the treatment model was a correctly specified linear
regression model.

To test the stability of the results and their sensitivity to parameter settings, the simulation was repeated
with modified parameter settings. In a second scenario, we considered the case where doses were adjusted
daily rather than every three days, and in a third, we consider a population of “slow metabolizers”, i.e.,
with reduced ability to clear the drug, was considered. To this end, the typical value of the clearance was
reduced by 30%, from 0.3 L/h to 0.21 L/h. Optimal dynamic treatment regimens in one population do not
carry over to a different population, but may still perform well as feasible and almost optimal regimens,
especially if there is some similarity or overlap between the two populations. In the reduced clearance
population, individuals would require lower doses on average to achieve the same responses and, due to
the increased drug half-life, the residual effects of each dose will have longer range. Nonetheless, the rule
used to assign doses based on history may be quite similar for the two populations.

3.3 Evaluation

The relative performance of the DTRs estimated by the different models were evaluated and compared to
a simple myopic dynamic regime. For each of the 1000 simulations, a training set was used to estimate
parameters of each of the three SNMMs, thus providing estimated dosing regimens. A simple myopic
dynamic regimen was obtained from the same data by fitting linear models regressing the response at
each interval on the most recent treatment and response. The myopic regimen assigns at each interval the
treatment for which the predicted response is zero. Note that unlike the SNMM approach, the myopic
strategy does not consider the terminal outcome, only the next value of Lj . These regimens were then each
used to “treat” new individuals (test set).

The performance of the different regimens can be compared according to different criteria. One ap-
proach is to compare the mean of the outcome Y in a test set across regimens, as in Figure 3. In this
case, the SNMM regimens demonstrate an advantage over the myopic regimen. Whether or not a myopic
regimen will perform well in a given situation will depend on the characteristics of the data generating
mechanism, in particular on the magnitude of the direct effect of treatment on responses more distant than
the current interval. In this particular simulation, there is relatively little carry-over effect of treatments
past the end of each three-day interval which implies that a myopic strategy can perform reasonably well.
The probability that SNMM 3 provides a better outcome, for an individual, than the myopic regime is 0.69
and 0.73 when regimes were estimated with training set sample sizes of n = 1000 and 2000, respectively.

A second, more ‘individual-level’ criterion for comparing the performance of the different regimens
is to determine for each individual in the test set the regimen that leads to the highest response. These
proportions are presented in Figure 4. In this winner-takes-all approach, SNMM 3, which incorporates
more past information into the dosing decision, clearly performs best. When the optimal dosing strategy is
estimated using a smaller training sample, results are remarkably consistent: when estimating the strategy
using 500 individuals, SNMM 3 produces the best outcome for 77% of the test set; using a sample size of
250 to estimate the optimal strategy found SNMM 3 led to the best outcome for 90% of the test set (for
further details, see Figures 2–4 in the Supporting Information).

If the duration of the treatment intervals is reduced, results change markedly. For instance, the results
in Figures 3(c) and 4(c) were obtained from a similar simulation set-up, but with the time between dose
adjustments reduced from three days to one day in the test set. In this scenario, the effect of each dose
extends well past the end of the dose interval and so the SNMM regimens, which account for the overall
course of treatment and response, perform much better. In both cases, there appears to be no benefit to
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(a) Training sample of size 2000
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(b) Training sample of size 1000

●

●

●●
●
●

●
●

●

●

●

●

●

●●●

●
●

●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●●

●

●●●
●

Original Myopic SNMM 1 SNMM 2 SNMM 3

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

Mean response in original and myopic regimen 
 and under the three SNMMs (1000 reps)

(c) Test set adjusting doses daily
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(d) Test set has a slower drug clearance

Figure 3 Distribution of the mean outcome Y obtained from the application of four different dynamic
regimens to 500 new individuals (the test set) across 1000 simulations: (a) and (b) are setting in which the
training sample and test set have identical characteristics; in (c), the doses are changed daily in the test
set rather than every three days as in the training sample; in (d) the test set comes from a population with
slower clearance rate, i.e. the PD characteristics of the training sample and test set differ.

including an interaction term in the blip model (SNMM 2), while the incorporation of an additional lagged
response (SNMM 3) does confer improved outcomes.

We also evaluated the performance of each of these dynamic treatment regimens when used to treat a
population different from that from which the data used for estimation were generated, namely the popu-
lation of slow metabolizers. As discussed, these regimens may not be optimal in the different population,
but nonetheless it is of interest to evaluate their performance in terms of external validity. The results are
presented in Figures 3(d) and 4(d). It is observed that, while individuals from this population have worse
outcomes on average, the dynamic treatment regimens still appear to provide useful treatment strategies
that effectively lead to better outcomes.

4 Discussion

In this paper, we provided the first realistic demonstration of the use of dynamic treatment regimen method-
ology, specifically G-estimation, to suggest individualized dosing strategies in the context of a continuous
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(a) Training sample of size 2000
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(b) Training sample of size 1000
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(c) Test set adjusting doses daily
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(d) Test set has a slower drug clearance

Figure 4 Distribution of the proportion of individuals in the test set for whom a particular regime yields
the best outcome across 1000 simulations: (a) and (b) are setting in which the training sample and test set
have identical characteristics; in (c), the doses are changed daily in the test set rather than every three days
as in the training sample; in (d) the test set comes from a population with slower clearance rate, i.e. the PD
characteristics of the training sample and test set differ.

treatment. G-estimation, like other semi-parametric approaches to optimal dynamic treatment regimens,
was developed for the setting where the conditional distribution of the responses given past treatments,
responses and other covariates is complex and difficult to specify with a parametric model. We have
correspondingly developed a framework for simulating data that mimic complex biological processes, as
described by PK/PD models. This is, to our knowledge, the first time PK/PD information has been incor-
porated into the design of simulations for dynamic treatment regimens. It is an approach that may prove
invaluable in the design of randomized trials for individualized dosing strategies, by allowing researchers
to narrow the field of candidate regimens.

While our warfarin example did not include unknown or unmeasured factors that impact on the dose-
response relationship, such as dietary or environmental factors that affect a drug’s PK/PD at the individual
level; omitting such factors should have no impact on bias provided that any unmeasured covariates are not
confounders, i.e., they do not feature in the dosing decisions used to generate the observed data. It should
be noted, however, that such covariates could easily be incorporated into the data generating models to
enhance the realism of the simulation. Genetic variants, for example, could be simulated and incorporated
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into the PK/PD model, although their usefulness has been found to be limited in practice (Furie, 2013, e.g.).
If we are interested in pharmacogenetically guided dosing strategies, these patient-level characteristics
could be included in the blip function as well. Local environmental changes, such as diet, could also be
input into the data generating models but we would not consider them for dose adjustment as that level of
tailoring is not realistic in clinical care.

Parametric approaches to optimal dosing have been considered Funatogawa and Funatogawa (2012),
however model mis-specification was not considered. While the PK/PD characteristics of warfarin have
been well-understood for many years, researchers have yet to use these nonlinear equations to suggest a
dosing strategy that is optimal or that accounts for delayed effects of treatment or can incorporate inter-
actions with other individual-level characteristics including laboratory measurements or the use of other
medications. Fitting the PK/PD models is relatively straightforward; however determining the optimal
dosing strategy is a large and complex optimization problem which does not have a closed-form solution
due to its non-myopic nature. Given the complex and non-linear dependence of common outcomes (such
as time in therapeutic range) on doses and other factors, we surmise that the utility of such approaches are
extremely limited in practice.

Much remains to be explored, and considerable work is needed before g-estimation can be adequately
applied to data such as those from the London anticoagulation clinic. Particular challenges include defin-
ing the outcome when visits are missed (since, for example, sums of deviations from the target INR or
proportion of time in target range are no longer meaningful with different lengths of follow-up); irregular
number and timing of visits between individuals; computational and theoretical aspects of the estimation
under the assumption that parameters are shared across treatment intervals; and the possibility that impor-
tant confounders may not be recorded in the electronic medical records. Thus, an important next step will
be to consider how to make our simulations, which are realistic in terms of the complexity of the treatment
effects, less ‘idealized’ in terms of the many ways that data acquisition and collection occurs in clinical
settings, including irregular timing of follow-up visits, missed visits, and poor compliance with a dosing
schedule.
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Cromme, L., Völler, H., Gäbler, F., Salzwedel, A., and Taborski, U. (2010) Computer-aided dosage in oral anticoagu-

lation therapy using phenprocoumon: Problems and approaches. Hämostaseologie, 30 (4), 183–189.
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Supporting Information to
“Optimal individualized dosing strategies: A pharmacologic

approach to developing dynamic treatment regimens for
continuous-valued treatments”

by Benjamin Rich, Erica E. M. Moodie and David A. Stephens

1 A simplistic simulation for continuous dose effects

Here, we demonstrate the usual approach to simulating data to evaluate DTR estimating approaches in
the case where the blip model for a continuous dose has been correctly specified, that is, where the data
generating mechanism conforms to a known SNMM with continuous treatments, and study the small and
large sample performance of g-estimation.

We consider a simulated example in which there are three treatment intervals. The treatments (doses)
are given on a continuous scale. Each treatment depends linearly on the previous observation, but not on
the previous treatment. That is, treatments may be viewed dose adjustments relative to the previously given
dose; for the first interval, the adjustment is relative to a standard dose.

Data with continuous-scale treatments are generated according to an SNMM as follows. First, a baseline
observation is drawn from a normal distribution: L0 ∼ N(0, 4). Then, for treatment intervals j = 1, 2, 3, the
treatments and observations are generated according to:

Aj ∼ N(−0.231Lj−1, 0.04),

Lj ∼ N(0.2Lj−1 − 0.3Aj , 0.25).

The blip functions at each interval are specified as:

γj(a, hj) = a(ψj0 + ψj1lj−1) + a2ψj2,

and finally the outcome is generated according to

Y ∼ N(5 + 0.2L0 − µ1(A1, H1) − µ2(A2, H2) − µ3(A3, H3), 0.25)

where µj(a, hj) = maxa′ γj(a
′, hj) − γ(a, hj), known as the regret function.

The parameters ψj0, ψj1 and ψj2 are varied to create different simulation scenarios. We consider sample
sizes n = 500, 1,000, 2,000 and 10,000 generated under the scenario ψ10 = ψ20 = ψ30 = 0.25, ψj1 = ψj1 =
ψj1 = −0.12 and ψj2 = ψj2 = ψj2 = −0.5.

To study the properties of the g-estimation procedure for continuous treatments described in Section
2 of the main text, we simulated 1000 data sets of varying sample sizes according to the data generating
mechanism just described. The results are displayed in Table 1. We observe that bias is low, and coverage
of the Wald-type confidence intervals based on the asymptotic variance sandwich estimator is close to the
nominal level, for sample sizes 2000 and up, whereas for sample size 500, there is substantial bias in the
estimators of the parameters relating to the first two treatment intervals, suggesting that for this sample
size asymptotic convergence of the estimators has not been reached. Additional simulations performed with
different parameter settings produced similar results (not shown).

The simulations described in this section are useful for studying properties of g-estimators (or other
approaches to estimating dynamic treatment regimen), owing to the ease with which they are understood
and implemented and the significant advantage of knowing the true regimen parameters. However it is
difficult to conceive of many scenarios that would conform to such simplistic models. These models are
unlikely to be useful in providing guidance in any real treatment setting.
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Table 1: Simulation results for g-estimation with continuous treatment and quadratic blip function for the
scenario ψ10 = ψ20 = ψ30 = 0.25, ψj1 = ψj1 = ψj1 = −0.12 and ψj2 = ψj2 = ψj2 = −0.5. Based on 1000
replicates. A ‘*’ in the last column indicates that the coverage is significantly different from 95%.

Sample size Truth MC mean MC SE Mean est. SE Absolute bias Percent bias Coverage
n=500 ψ10 = 0.25 0.080 13.387 0.324 -0.170 -68.2 93.8

ψ11 = -0.12 -0.475 21.667 0.604 -0.355 296.2 97.0 *
ψ12 = -0.50 -0.717 9.847 1.183 -0.217 43.4 96.2
ψ20 = 0.25 0.226 2.777 0.164 -0.024 -9.6 92.2 *
ψ21 = -0.12 -0.172 4.201 0.330 -0.052 43.2 93.5 *
ψ22 = -0.50 -0.586 9.092 0.548 -0.086 17.2 93.9
ψ30 = 0.25 0.247 0.117 0.111 -0.003 -1.0 93.8
ψ31 = -0.12 -0.122 0.289 0.273 -0.002 1.5 93.4 *
ψ32 = -0.50 -0.498 0.411 0.391 0.002 -0.3 93.3 *

n=1000 ψ10 = 0.25 0.241 0.567 0.097 -0.009 -3.6 93.1 *
ψ11 = -0.12 -0.125 0.428 0.172 -0.005 4.6 96.2 *
ψ12 = -0.50 -0.491 0.714 0.347 0.009 -1.9 95.6
ψ20 = 0.25 0.234 0.734 0.086 -0.016 -6.4 91.6 *
ψ21 = -0.12 -0.110 0.498 0.183 0.010 -8.7 93.7
ψ22 = -0.50 -0.489 0.491 0.302 0.011 -2.2 94.0
ψ30 = 0.25 0.249 0.080 0.079 -0.001 -0.3 94.9
ψ31 = -0.12 -0.120 0.203 0.195 0.000 0.0 93.6 *
ψ32 = -0.50 -0.497 0.291 0.279 0.003 -0.6 93.6 *

n=2000 ψ10 = 0.25 0.248 0.078 0.058 -0.002 -0.8 94.2
ψ11 = -0.12 -0.122 0.102 0.100 -0.002 1.9 95.7
ψ12 = -0.50 -0.500 0.209 0.205 0.000 0.0 95.5
ψ20 = 0.25 0.249 0.089 0.057 -0.001 -0.6 94.2
ψ21 = -0.12 -0.122 0.127 0.121 -0.002 1.8 94.6
ψ22 = -0.50 -0.501 0.223 0.200 -0.001 0.1 94.5
ψ30 = 0.25 0.251 0.056 0.056 0.001 0.3 95.0
ψ31 = -0.12 -0.123 0.140 0.139 -0.003 2.5 94.6
ψ32 = -0.50 -0.504 0.202 0.198 -0.004 0.7 94.5

n=10,000 ψ10 = 0.25 0.249 0.026 0.025 -0.001 -0.4 93.4 *
ψ11 = -0.12 -0.122 0.042 0.043 -0.002 1.5 95.4
ψ12 = -0.50 -0.502 0.088 0.089 -0.002 0.5 95.2
ψ20 = 0.25 0.250 0.026 0.025 0.000 0.0 94.6
ψ21 = -0.12 -0.121 0.044 0.044 -0.001 0.6 94.8
ψ22 = -0.50 -0.500 0.091 0.090 0.000 0.0 94.6
ψ30 = 0.25 0.250 0.025 0.026 0.000 0.0 95.0
ψ31 = -0.12 -0.120 0.045 0.045 0.000 0.0 95.1
ψ32 = -0.50 -0.499 0.091 0.091 0.001 -0.2 94.8
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2 Additional results for the realistic simulation for continuous
dose effects

Figure 1 consists of residual plots for the PK/PD simulation, constructed using the method described by (4).
These plots are provided as an example of the much larger number of plots considered. Cubic splines were
utilized to obtain adequate fit of the EC model (bottom row of panels).
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Figure 1: Residual plots from the fits of two different EC models to a data set of size n = 1, 000 simulated
from the PK/PD model. The residual at interval 3 is plotted against: most recent treatment A2 (first
column); most recent response L2 (second column); next most recent response L1 (third column). In the top
row, the corresponding terms are omitted from the EC model while in the bottom row all terms are included
(as cubic splines).

Figures 2 and 3 show the distribution of mean outcomes under the three SNMMs considered, as well as the
distribution of the proportion of new individuals in the test sets for which each treatment regimen produced
the highest outcome using sample sizes of 250 and 500, respectively, to estimate the optimal individualized
dosing strategy. Figure 4 plots the outcomes in a single test set of 1,000 new individuals under the optimal
regimen given by SNMM 3 estimated using a sample of size 250 as compared to the same regimen estimated
using a sample of size 2,000.
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(b) Regimen yielding the best outcome by individual

Figure 2: Results from the application of three different dynamic regimens estimated with a sample size of
250 (training set) to 1,000 new individuals (the test set).
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Figure 3: Results from the application of three different dynamic regimens estimated with a sample size of
500 (training set) to 1,000 new individuals (the test set).

4



●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●●●

●

●

●

●

●

●

●

−1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2

−
1.

4
−

1.
2

−
1.

0
−

0.
8

−
0.

6
−

0.
4

−
0.

2

Dosing regimen estimated using n=2000

D
os

in
g 

re
gi

m
en

 e
st

im
at

ed
 u

si
ng

 n
=

25
0

Figure 4: Outcomes in 1,000 new individuals (the test set) under the optimal regimen given by SNMM 3
estimated using a sample of size 250 (y-axis) as compared to optimal regimen given by SNMM 3 estimated
using a sample of size 2000 (x-axis). The grey line indicates where y = x.
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