
A Reusable Concern for Continuous
Integration Specifications

Puneet Kaur Sidhu

A thesis submitted to McGill University
in partial fulfillment of the requirements of the degree of

MASTER OF ENGINEERING

Department of Electrical and Computer Engineering

McGill University
Montreal

July 2019

© Puneet Kaur Sidhu 2019

Abstract

Continuous Integration (CI) is a broadly adopted practice where code changes are automatically

built and tested to check for regression as they appear in the Version Control System (VCS). CI

services allow release engineers to customize phases, which define the sequential steps of build

jobs that are triggered by changes to the project. While the past work has made important

observations about the adoption and usage of CI, little is known about patterns of reuse in CI

specifications. Should reuse be common in CI specifications, we envision extending the framework

for Concern-Oriented Reuse (CORE) to help developers reuse textual CI specifications based on

popular sequences of phases and commands. To assess the feasibility of providing reuse suggestions

in CORE, we perform an empirical analysis of the use of different phases and commands in a

curated sample of 913 CI specifications for Java-based projects that use Travis CI—one of the most

popular public CI service providers. First, we observe that five of nine phases are used in 18%-

75% of the projects. Second, for the five most popular phases, we apply association rule mining

to discover frequent phase, command, and command category usage patterns. We observe that

the association rules lack sufficient support, confidence, or lift values to be considered statistically

significantly interesting. Our findings suggest that the usage of phases and commands in Travis CI

specifications is broad and diverse. Hence, we cannot provide suggestions for Java-based projects

as we had envisioned. However, we provide a proof-of-concept implementation for the reuse of

CI specifications (without suggestions) by extending the feature model in CORE as well as the

composition mechanism with the ability to handle textual CI specifications.

ii

Abrégé

L’intégration continue (IC) est une pratique largement adoptée dans laquelle les modifications au

code sont automatiquement construites et testées pour vérifier la régression telles qu’elles apparais-

sent dans un système de contrôle de versions (VCS). Les services IC permettent aux ingénieurs de

mise en production de personnaliser des phases qui définissent les étapes séquentielles des tâches de

construction déclenchées par des modifications apportées au projet. Bien que des travaux antérieurs

fassent d’importantes observations sur l’adoption et l’utilisation de l’IC, on en sait encore peu

sur les modèles de réutilisation dans les spécifications IC. Si la réutilisation est commune aux

spécifications IC, nous envisageons d’étendre le cadre CORE (Concern-Oriented Reuse) pour aider

les développeurs à réutiliser les spécifications textuelles IC basées sur des séquences fréquentes de

phases et de commandes. Pour évaluer la faisabilité de proposer des suggestions de réutilisation dans

CORE, nous effectuons une analyse empirique de l’utilisation de différentes phases et commandes à

l’aide d’un échantillon de 913 spécifications de projets basées sur Java qui utilisent Travis CI, l’un

des fournisseurs publics de services IC les plus populaires. Premièrement, nous observons que cinq

phases parmi neuf sont utilisées dans 18% à 75% des projets. Deuxièmement, pour les cinq phases

les plus populaires, nous effectuons un forage de règles d’associations afin de découvrir des motifs

d’usages fréquents de phases, de commandes et de catégories de commandes. Nous observons que

les règles d’association manquent d’évidence, de confiance ou de valeurs de montée suffisantes pour

être considérées comme statistiquement significatives. Nos résultats suggèrent que l’utilisation de

phases et de commandes dans les spécifications Travis CI est diversifiée. Par conséquent, nous ne

pouvons pas fournir de suggestions pour les projets basés sur Java comme nous l’avions envisagé.

Cependant, nous fournissons une implémentation démontrant la faisabilité de la réutilisation des

iii

Abrégé

spécifications IC (sans suggestions) en étendant le modèle de caractéristiques dans CORE et son

mécanisme de composition avec la capacité de gérer des spécifications IC textuelles.

iv

Related Publication

The part of the Empirical Analysis of Travis CI performed in this thesis has been published in the

Proceedings of the IEEE International Conference on Software Analysis, Evolution and Reengi-

neering (SANER) 2019, pages 524-533:

Reuse (or Lack Thereof) in Travis CI Specifications: An Empirical Study of CI Phases and

Commands [42] (Chapter 4). Puneet Kaur Sidhu, Gunter Mussbacher, and Shane McIntosh.

v

Acknowledgements

I use this opportunity to thank everyone who helped me towards the successful completion of

my thesis. I would first like to thank my thesis supervisor Professor Gunter Mussbacher and

co-supervisor Professor Shane McIntosh. The door to Prof. Mussbacher and McIntosh’s office

was always open for continuous guidance and support throughout my research and writing. They

consistently pointed me in the right direction whenever they thought I needed their advice and

allowed me to independently follow my research.

Other than my supervisors, I would like to thank my mates from Software Engineering and

Software REBEL’s lab. Keheliya Gallaba’s continuous guidance and feedback helped me through

a major part of my thesis. Ruchika Kumar and Nadine Bou Khzam’s comments always helped me

improve my work and kept me motivated. I am also immensely thankful to Nadine for working on

the French version of the abstract of my thesis.

Finally, I must express immense gratitude to my parents and siblings for providing me with

unfailing support and continuous encouragement throughout the two years of my study and through

the process of researching and writing this thesis along with my friends in Montreal who made these

two years great fun. This accomplishment would not have been possible without them.

Thank you.

vi

Table of Contents

Abstract . ii

Abrégé . iii

Related Publication . v

Acknowledgements . vi

Table of Contents . vii

List of Tables . ix

List of Figures . x

List of Programs . xi

1 Introduction . 1
1.1 Problem Statement . 2
1.2 Thesis Methodology and Contribution . 3
1.3 Thesis Overview . 5

2 Background . 7
2.1 Continuous Integration . 7
2.2 Concern-Oriented Reuse . 9
2.3 Summary . 14

3 The Design of the Empirical Study and Proof-of-Concept 15
3.1 Data Extraction . 15
3.2 Data Analysis and Validation . 16
3.3 Reuse . 17
3.4 Summary . 18

4 Empirical Study Results (Advocatus Diaboli) . 19
4.1 Experiment Approach . 20
4.2 Experiment Conduct . 26
4.3 Summary . 34

5 Concern-Oriented Reuse of CI Specification Files 35
5.1 Feature Model of Travis CI and its Realization Models 36
5.2 Extension of CORE’s Metamodel . 42
5.3 Specification File Metamodel . 45

vii

Table of Contents

5.4 Composition Mechanism to Create .travis.yml Files 46
5.5 Summary . 49

6 Related Work . 50
6.1 Adoption of CI . 50
6.2 Outcome of CI . 51
6.3 Concern-Oriented Reuse . 52
6.4 Summary . 54

7 Conclusions . 55
7.1 Contributions and Findings . 55
7.2 Future Research . 57

7.2.1 Empirical Study . 57
7.2.2 Reuse . 57

Bibliography . 58

Appendices

A Python Code for Parser . 62

B R Code for Empirical Study and Association Rule Mining 68

C UMPLE and Java Code for the Composition Mechanism 77

viii

List of Tables

3.1 Measures of the interestingness of association rules 16

4.1 Domain specification of subset of sample projects . 21
4.2 Phases studied from .travis.yml files . 23
4.3 All projects: Categorization of commands . 23
4.4 Topmost frequently used categories of commands per phase 24
4.5 Usage of the most frequent category per phase . 24
4.6 Association Rules for Phases . 27
4.7 Association Rules for Commands across Phases . 32
4.8 Association Rules for Categories across Phases . 33

ix

List of Figures

2.1 An example .travis.yml specification from the Dlanza1 project 8
2.2 Feature and impact modelling and analysis of Authentication concern [44] 12
2.3 Reusing Authentication in TouchRAM [44] . 13

3.1 An overview of our approach to study the .travis.yml files and analyze the phases
and commands inside them . 17

3.2 Overview of our approach to implement the reuse of .travis.yml files in CORE . . 18

4.1 Association rules for phases used in all projects . 28
4.2 Association rules for commands used in all projects per phase 30
4.3 Association rules for categories used in all projects per phase 31

5.1 A sample feature model [7] . 37
5.2 Feature Model of Travis CI . 38
5.3 Feature Selection from Travis CI concern . 40
5.4 .travis.yml specification file created after execution of the composition mechanism 41
5.5 Customized .travis.yml specification file . 41
5.6 Example .travis.yml specification file for Authentication concern 42
5.7 Woven Travis CI specification file for Authentication and Banking Application concerns 42
5.8 Extended metamodel of CORE to support the concept of specifications files 44
5.9 Metamodel of CI specification file . 46
5.10 Flowchart explaining the composition algorithm . 48

C.1 Test SpecFile 1 and SpecFile 2 ready to be merged 83
C.2 Composed SpecFile 1 and 2 to create a final .travis.yml specification 83
C.3 Test .travis.yml specification for ServiceCutter Project 86

x

List of Programs

5.1 An example .travis.yml specification from the ServiceCutter project 43

A.1 Parser.py . 62

B.1 FrequencyAnalysis.R . 68
B.2 ARM Phases.R . 69
B.3 ARM Commands.R . 70
B.4 ARM Categories.R . 71
B.5 ARM CommandsAcrossPhases.R . 73
B.6 ARM CategoriesAcrossPhases.R . 74
B.7 CohenKappa.R . 74

C.1 Metamodel.ump . 77
C.2 Weaver.java . 78
C.3 TestCase.java . 82
C.4 TestCase ServiceCutter.java . 84

xi

1
Introduction

Continuous Integration (CI) is a commonly adopted Software Engineering practice these days [9, 13,

15]. CI aims to ensure that each change to the software system is scanned by routine checks (e.g.,

automated compile, test, static code analysis) [21]. Automated CI services like Travis CI1 integrate

with GitHub2 to facilitate this process by allowing release engineers to script build routines for their

project. Whenever a code change is pushed or a pull request is received, the contribution is checked

by configuring machines and executing build scripts as expressed in the Travis CI specification (i.e.,

.travis.yml). Stakeholders are notified (e.g., via email, Slack message) of build results (e.g., when

build jobs pass, fail, or either) as set in the Travis CI specification.

Travis CI is a hosted, distributed CI service used to build and test software projects on GitHub.

Travis CI provides free service for open source repositories on GitHub, and a paid service for

1https://docs.travis-ci.com
2https://github.com

1

https://docs.travis-ci.com
https://github.com

1.1. Problem Statement

private repositories.3 According to a recent analysis conducted by GitHub, Travis CI is the most

popular CI platform.4 The .travis.yml file contains build machine configuration details (e.g.,

which programming language toolchain needs to be installed), notification settings, and scripts

that describe the order-dependent steps that must be executed to build, test, and deploy the

project.5

Travis CI’s .travis.yml is a technical specification that is subject to the same types of main-

tenance concerns as code [17]. One such key maintenance concern for .travis.yml files is reuse.

Little is known about patterns of reuse in CI specifications, and in general, there is a lack of

tool support for the reuse of Travis CI specifications. We envision extending the framework for

Concern-Oriented Reuse (CORE) by building a CORE concern for Travis CI specifications to help

developers reuse textual CI specifications.

CORE is a next-generation reuse technology inspired by multidimensional separation of con-

cerns [33]. CORE builds on the fundamentals of Model Driven Engineering (MDE), Software

Product Lines (SPL) [34], Goal modeling [3], and advanced modularization techniques offered by

Aspect-Orientation [26] to define flexible software artifacts called concerns that promote model-

based reuse.

A CORE concern [1, 2] is a unit of reuse that groups together modeling artifacts that describe

properties and behavior of a domain of interest. Building a concern is a significant, time-consuming

task, done by the concern designer, who is an expert of the concern’s domain [40]. A concern pro-

vides a three-part interface comprised of the Variation, Customization, and Usage (VCU) interfaces

which support and streamline the CORE reuse process [27].

1.1 Problem Statement

Thesis Statement. Despite the lack of tool support, reuse is a common activity when preparing

and maintaining CI configuration files. The swaths of available CI configuration files can be mined

to guide the extension of reuse frameworks to the CI configuration use case.

3http://docs.travis-ci.com/user/getting-started/
4https://blog.github.com/2017-11-07-github-welcomes-all-ci-tools/
5https://docs.travis-ci.com/user/customizing-the-build

2

http://docs.travis-ci.com/user/getting-started/
https://blog.github.com/2017-11-07-github-welcomes-all-ci-tools/
https://docs.travis-ci.com/user/customizing-the-build

1.2. Thesis Methodology and Contribution

Recent studies have analyzed CI adoption (and omission) trends [18, 20], the types of failures that

occur during CI [6, 25, 41, 47], and the outcomes associated with CI adoption [45]. Many CI “best

practices” have been proposed.6 However, despite the large scale adoption of CI, we know relatively

little about the general practices followed in CI implementation and if developers are aligning their

practices with “best practices”.

Qualitative studies suggest that a frequent reason for the omission of CI is due to lack of

familiarity with it [19]. Familiarity with the usage of CI can help developers to optimize their

practices, project maintainers to make informed decisions about adopting CI, and researchers and

tool builders to identify areas in need of attention [51]. There are many other systematic studies

of CI systems, e.g., Vasilescu et al. [45] conducted a study on 246 projects, which compares several

quality standards of projects that use and do not use CI. However, little is known about patterns

and reuse in CI specifications. We submit that reuse of existing configuration snippets is a common

activity, and better support for such activities is needed.

1.2 Thesis Methodology and Contribution

It seems reasonable that a CI template generation framework may be useful to ease the burden

of CI adoption. As a step towards such a template generation framework, this thesis performs an

empirical analysis of which phases and commands are being used in real-world Travis CI specifica-

tions and provides a proof-of-concept implementation that uses the results of the empirical study

to show feasibility for the envisioned reuse tool for Travis CI specifications. The proof-of-concept

implementation defines a reusable concern for Travis CI to help release engineers automatically

create specification files for Travis CI. For this, we create a feature model [24] using the domi-

nant phases and commands of Travis CI, which we discover through empirical analysis of Travis

CI specification files. Furthermore, we aim to provide suggestions on popular sequences of phases

and commands based on our empirical study to help the release engineer with the specification of

the desired Travis CI file. Once the release engineer has selected his desired features, which are

realized by corresponding Travis CI specification files, our novel composition mechanism for Travis

CI automatically merges the corresponding specification files into a partial Travis CI specification

6https://martinfowler.com/articles/originalContinuousIntegration.html

3

https://martinfowler.com/articles/originalContinuousIntegration.html

1.2. Thesis Methodology and Contribution

file. This partial file can then be customized further by the release engineer. The implementation of

our Travis CI composition mechanism requires improvements to the CORE metamodel to support

particularities of the feature selection process for Travis CI features.

For this empirical study, we analyze a corpus of 913 open source, active, large, non-forked

and non-duplicate Java projects that were analyzed by Gallaba and McIntosh [17]. Using these

projects, we set out to study the phases and commands that are frequently used together in the

.travis.yml files, i.e., Travis CI specification files. Using an association rule mining approach, we

make the following observations:

• Of the nine phases provided by Travis CI, the “script”, “before install”, “install”, “af-

ter success”, and “before script” phases are the most frequently used phases by developers

• The mined association rules among phases, among commands, and among functionally-similar

commands (i.e., command categories) lack sufficient interestingness scores (i.e., support, con-

fidence, lift, or count) to be of use in the context of our envisioned tool

The study thus suggests that .travis.yml files are user-defined files with no generic structure

beyond the already existing phases as each developer programs this file in a different way. Hence,

irrespective of the patterns which would have been useful to provide suggestions in the feature

selection, we still contribute to CORE by:

• Defining a feature model for Travis CI with all the dominant phases and commands as per

our empirical study

• Extending the CORE metamodel to allow the same feature to be selected multiple times in

a specific order from a feature model

• Introducing a metamodel for Travis CI specification files which depicts their generic structure

• Implementing a proof-of-concept composition mechanism for Travis CI specification files

which allows to create .travis.yml files which can be further customized by the release

engineer

• Extending the CORE metamodel with support for the selection of related features

4

1.3. Thesis Overview

1.3 Thesis Overview

The thesis is organized as follows:

• Chapter 2: Background — This chapter first discusses the terminology used in our thesis

concerning CI and then describes the concept of CORE and related paradigms such as reuse,

concerns, MDE, SPLs, and Feature Models.

• Chapter 3: The Design of the Empirical Study and Proof-of-Concept — This chapter gives

details on how we conduct our analysis and all the different techniques and concepts we use

to derive conclusions. We start with our analyses of 913 travis files from Java projects taken

from GitHub. We try to parse these files and build a structure where we could understand

how different phases and commands are used in these projects. We then interpret the usage

of phases and commands to know if there are any patterns or similarities. Furthermore, we

describe how the proof-of-concept implementation of our envisioned tool uses the results of

our empirical study to support the reuse of Travis CI specification files.

• Chapter 4: Empirical Study Results (Advocatus Diaboli) — In this chapter, we take “a devil’s

advocate” approach to describe the lack of evidence for useful reuse patterns in Travis CI

specifications. We address arguments that question our negative findings by explaining how

we have taken care of these potential shortcomings to strengthen our analysis.

• Chapter 5: Concern-Oriented Reuse of CI Specification Files — This chapter explains how

to create a concern for Travis CI specification files using the dominant features as in the

phases and commands in Travis CI files. The release engineer can use this concern to select

the required features. Using our proof-of-concept composition mechanism, the corresponding

specification files of those features are then used to automatically create a partially completed

.travis.yml file which may be further customized by the release engineer. The required

improvements to the CORE metamodel for the reuse of the Travis CI specification files are

discussed.

• Chapter 6: Related Work — In this chapter, we situate our thesis with similar prior research.

Thus, we explain the relevance of our work in the field of Software Reuse and Continuous

Integration.

5

1.3. Thesis Overview

• Chapter 7: Conclusions: This chapter summarizes the findings and contributions of our thesis

along with a discussion of future work.

6

2
Background

In this chapter, we describe terminology related to Continuous Integration (CI) and Concern-

Oriented Reuse (CORE).

2.1 Continuous Integration

In this thesis, we use common build terminology in the Travis CI context. Figure 2.1 provides an

example of how key build terminology maps onto the .travis.yml specification.

The Travis CI service listens for when an integration into the subscribing project is queued

(i.e., a new pull request has been created) or performed (i.e., new commits have been pushed into

the repository). When an integration is performed, Travis CI spawns a new build, i.e., a logical

group of build jobs. The status of a build is dependent on the status of each of its jobs. A build is

successful if all of its jobs are (a) labeled as successful; or (b) configured to be irrelevant [16].

7

2.1. Continuous Integration

PHASE

COMMANDS

JOB

Figure 2.1: An example .travis.yml specification from the Dlanza1 project

A build job is an automated process that (1) downloads an up-to-date copy of the project under

test to a testing (virtual) machine in the Travis CI environment; and (2) executes the specified

steps to prepare the machine, compile and test the project, and optionally deploy a new release of

the project to staging or production environments.

Build jobs are composed of a sequential series of phases, which are in turn composed of a

sequence of commands to be invoked during phase execution. Travis CI phases fall into three

categories. First, the install phase is responsible for preparing the job processing machine for the

subsequent phases. Next, the script phase performs the tasks that are necessary to build and test

the project. Finally, the optional deploy phase makes a new release of the project available for the

users. Each phase has a before variant for performing setup steps before executing the core phase

logic. The script and deploy phases have after variants for cleaning up the execution environment

after the phase has been performed.

8

2.2. Concern-Oriented Reuse

2.2 Concern-Oriented Reuse

We strive to increase productivity by building reusable software artifacts on the basis of the em-

pirical study of phases and commands of Travis CI. By definition, software reuse is the process

of creating software systems from existing software rather than building software systems from

scratch [29]. Alam et al. [1] suggest that in order for reuse to be maximally effective, a new,

broader unit of reuse that incorporates all design solutions targeted at solving a design problem is

needed. They call this new unit of reuse a concern and the reuse technique Concern-Oriented Reuse

(CORE). Concern Driven Development (CDD) [1] seeks to address the challenge of how to enable

broad-scale, model-based reuse. This thesis applies the CORE techniques supported by Model

Driven Engineering (MDE) [37] and Software Product Lines (SPLs) [34]. As CI strives to achieve

automation, so does MDE. One approach for MDE is the Model Driven Architecture (MDA) which

is a venture of the Object Management Group (OMG).7 MDA provides guidelines for structuring

software specifications that are expressed as models. In general, MDE aims to simplify how sys-

tems are built from scratch by allowing domain concepts to be captured with the most appropriate

modeling formalisms, describing properties of the application domain at the right abstraction level,

and then transforming models to lower-level, more detailed models or executable code.

On the other hand, an SPL is a set of software intensive systems sharing a common, managed set

of features that satisfy the specific needs of a particular domain of interest and that are developed

from a common set of core assets in a prescribed way. The set of systems described by an SPL

is commonly called a family of systems and a particular system is called a member of this family.

Common examples of SPLs are mobile operating systems and the Linux Kernel. An SPL generally

consists of three kinds of artifacts, representing the problem space, the solution space, and the

mappings between problem and solution spaces [14]. Artifacts in the solution space represent

design and implementation of all members of the family. The problem space, on the other hand,

is comprised of all the features for the family members. Typically, the problem space is captured

with feature models [24]. A feature is a characteristic which shows the behavior of a software

component. Features are used in SPL engineering to specify and communicate commonalities and

differences of the systems in the software family among stakeholders and to guide the structure,

7https://www.omg.org

9

https://www.omg.org

2.2. Concern-Oriented Reuse

reuse, and variations of the family. SPL engineering promotes development for reuse using domain

analysis.8 Domain analysis, the systematic exploration of software systems to define commonalities

and differences, comprehends the features and capabilities of a class of a related software system [24]

and is often captured in feature models.

Feature Models are widely accepted means of capturing commonality and managing variability

within SPLs. They are modeled as feature diagrams, i.e., tree-like structures consisting of nodes

that represent features of a modeled SPL and their relationships [10]. Features are those attributes

of a system that directly affect end-users. The relationships among the features determine if the

features are mandatory or optional and mutually exclusive or inclusive. An example of a feature

model for Authentication is shown in Figure 2.2. A selection of features that describes a particular

member of the software family is called a configuration. Each feature has its realizations associated

with it which describe how that feature is implemented in the formalisms chosen for the problem

domain. In the context of CORE, these realizations are called Realization Models. In our case

in the context of Travis CI, we have a textual specification file thus each feature is realized by a

‘string’ component.

A CORE concern consists of all relevant features of a problem domain, is a software artifact

that enables broad-scale model-based software reuse, and groups together software artifacts de-

scribing properties and behavior related to any area of interest to a developer at different levels of

abstraction. Extensive knowledge of the character of the concern is needed to be able to establish

its user-relevant features, to model the common properties and variation of all features of a concern

in any respective level of abstraction, and to specify the impact of variants on high-level stakeholder

goals and qualities. This is often ensured by creating requirements, design, and implementation

models that (i) realize the features of the concern using the most appropriate modeling notations

and programming languages, and (ii) are eventually refined into executable specifications [8].

A concern provides three interfaces [1] that represent different stages of the reuse process.

The term, interfaces, is used because people with different roles interact with the artifact during

different activities of the development process through the appropriate interface to achieve a desired

result. Each interface targets a different dimension of reuse, and together they streamline the reuse

process [27]. The three interfaces employed in the reuse process are called VCU interfaces and

8http://stg-tud.github.io/sedc/Lecture/ws16-17/6-SPL.pdf

10

http://stg-tud.github.io/sedc/Lecture/ws16-17/6-SPL.pdf

2.2. Concern-Oriented Reuse

explained below:

• The Variation Interface allows us to see the impact of different variations of a concern on high-

level goals, qualities, and requirements. This is facilitated by a feature model that specifies

all features of the concern and connected goal models that capture the impact of features. In

this thesis, we build a feature model for Travis CI specification files. The definition of goal

models is left for future work.

• The Customization Interface describes the way each variant of a concern can be adapted to

the needs of a specific application, i.e., a specific reuse context. A concern is built as generally

as possible to increase reusability. This means that the concern includes partial elements that

can only be completed with application-specific information available at the time of a reuse.

The customization interface clearly specifies all partial elements that need to be completed.

• The Usage Interface describes how the reusing application can finally access the structure

and behavior provided by the reused concern, similar to what the set of public operations

represents for a class in the object-oriented methodology.

Consequently to use the Travis CI concern, a release engineer must (i) select the feature(s) from

the variation interface (the Travis CI feature model; in our case we do not cover impact analysis of

features, hence the release engineer selects features as per his needs), then (ii) adapt the generated

specification file models to the application context by mapping generic customization interface

elements to application-specific model elements (mostly parameters in the Travis CI specification

file), and finally (iii) use the behaviour provided by the complete Travis CI specification file as

defined in its usage interface (i.e., run the Travis CI specification file).

As a concrete example of a CORE concern, consider the example of Authentication. The

concern user opens the Authentication concern [44] and selects the desired features from the feature

model shown in the left part of Figure 2.2. While interacting with the feature model, the impacts

resulting from the current selection are constantly updated. An example is shown in the right

part of Figure 2.2 where we see the impact of the current selection of features from the feature

model on security. Additional impact models capture other system qualities and non-functional

requirements. When a satisfactory selection has been made, a composition algorithm composes

11

2.2. Concern-Oriented Reuse

all design models of the selected features together to produce a detailed design model for this

specific configuration. The result of this composition is shown at the bottom of Figure 2.3. In this

case, the features Blocking, PasswordExpiry, and Password are selected. The composed model

is still generic as it contains partial elements (e.g., |ProtectedClass and |Authenticatable). The

concern user is then presented with a mapping view as shown in Figure 2.3 that allows the concern

user to customize the generic Authentication concern to his specific needs by establishing mappings

between the partial model elements in the concern and the application model. In this case, the

software is a simple Banking application, and the concern user wants to enforce authenticated

access to accounts. Therefore, |Authenticatable maps to the Customer class, |ProtectedClass

to Account, and |protectedMethod() to withdraw(), deposit(), and transfer(). Once the

customization is completed, the composition algorithm composes the application model with the

Authentication concern to yield the combined structure and behaviour of the system. Now, the

functionality of the Authentication concern (e.g., changePassword() or authenticate() in the

AuthenticationManager) is available in the Banking application.

Figure 2.2: Feature and impact modelling and analysis of Authentication concern [44]

As can be seen from the above example, CORE requires a composition mechanism for two

situations. First, the realization models of all selected features need to be combined to automatically

generate a generic, reusable artifact. This artifact is tailored, because it only includes the realization

models of selected features but not those of unselected features. Furthermore, this reusable artifact

is generic, because it still contains partial elements. Once the partial elements are mapped to

elements from the application domain, the composition mechanism needs to combine the generic

artifact with the application artifact. In this thesis, we build a proof-of-concept implementation of

the composition mechanism for Travis CI specification files.

12

2.2. Concern-Oriented Reuse

Figure 2.3: Reusing Authentication in TouchRAM [44]

The combination of the generic artifact with the application artifact constitutes the actual

reuse, which results in a clear reuse hierarchy because smaller concerns are combined with larger

concerns, which are then combined with even larger concerns until eventually the application is

complete.

Hence, for implementing Concern Driven Development (CDD), it is desirable to restrict the

expressiveness of the modeling language to only allow the construction of correct and relevant

models. The relevance of a modeling language is, to a large degree, determined by its abstract

syntax. As a result, the abstract syntax of modeling languages ought to be constrained in agreement

with the problem domain. The abstract syntax of well known conceptual modeling languages like

User Requirements Notation (URN) [4, 22], Business Process Model and Notation (BPMN) [48],

Unified Modeling Language (UML) [32], and Entity Relationship (ER) model [12] is depicted by

the language’s metamodel. As the name suggests, a metamodel is a model of an other model, i.e.,

it defines a modeling language. For example, the UML is itself defined by a Meta Object Facility

(MOF) model.9 MOF is a language standardized by OMG for the specification of metamodels.10

Similarly, the metamodel for CORE defines the abstract syntax required to follow CDD [1]. This

thesis extends the CORE metamodel to support new functionality required for the feature model

of Travis CI.

9https://www.omg.org/spec/UML/2.5.1/PDF
10https://www.omg.org/spec/MOF/2.5

13

https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/MOF/2.5

2.3. Summary

Finally, to create realization models for Travis CI specification files, this thesis defines a meta-

model for the specification files to be able to create a .travis.yml specification file with our

proof-of-concept composition mechanism, which composes the realization models of all selected

features. This composition is often called weaving.

2.3 Summary

In this chapter, we discuss the key technologies and concepts related to Travis CI and CORE

used and mentioned in this thesis. We move forward to the next chapter and explain how we

conduct the empirical study of Travis CI phases and commands and how we use the results of our

empirical study to support reuse of Travis CI specification files with the help of our proof-of-concept

implementation.

14

3
The Design of the Empirical Study and

Proof-of-Concept

In this chapter, we provide an overview of the design of our empirical study of the phases and

commands used in Travis CI specifications, including details of the subject data-set as well as the

outline of the data analysis and data validation processes. Furthermore, we describe the proof-of-

concept of our envisioned concern-oriented tool for Travis CI specification files.

3.1 Data Extraction

In this study, we analyze 913 open source Java projects, which are a subset of the corpus of

projects studied by Gallaba and McIntosh [17]. Gallaba and McIntosh collected GitHub repositories

that use Travis CI to implement continuous integration. These projects were selected for analysis

15

3.2. Data Analysis and Validation

because they are active, large, non-forked and non-duplicate projects that contain a valid Travis

CI specification file in their root directory.

3.2 Data Analysis and Validation

Figure 3.1 shows an overview of the process that we followed for our analysis. As shown, we

automatically and manually parse the .travis.yml files of the selected projects and store the

parsed output. Bashlex is a python parser for bash that creates an Abstract Syntax Tree (AST)

for the input data provided to it.11 We parse through the AST to collect the node information that

corresponds to the CI phases and commands. We notice that even after customizing the parser

as much as possible, the output produced is not clean and complete because of the indefinite and

random structure of the Travis files. Therefore, we manually inspect each line after running the

parser script for all phases on the entire data-set. Then, we analyze and evaluate reuse patterns

using Association Rule Mining (ARM).

The aim of ARM is to determine rules based on co-occurrence patterns in the data-set. Table

3.1 defines the commonly used ARM measures12 that we use to estimate the interestingness of

mined association rules.

Table 3.1: Measures of the interestingness of association rules

Measure Definition Formula

support(X, Y) An estimate of the popularity of a rule. The
proportion of projects in which an associa-
tion (i.e., X and Y) is present.

support(X,Y) = |X∩Y |
|Dataset|

confidence(X, Y) An estimate of the strength of the implica-
tion of the rule. In projects that include X,
what is the proportion that also include Y?

confidence(X,Y) = support(X,Y)
support(X)

lift(X, Y) An estimate of the likelihood of the rule
due to a spurious correlation. More specif-
ically, the ratio of the measured rate of co-
occurrence of X and Y (i.e., support(X, Y))
to that which would be expected due to ran-
dom chance (i.e., support(X) x support(Y)).

lift(X,Y) = support(X,Y)
support(X)×support(Y)

11https://github.com/idank/bashlex/blob/master/README.md
12https://algobeans.com/2016/04/01/association-rules-and-the-apriori-algorithm/

16

https://github.com/idank/bashlex/blob/master/README.md
https://algobeans.com/2016/04/01/association-rules-and-the-apriori-algorithm/

3.3. Reuse

Extract .yml files
from 913 Java

projects

Analyse data

Initial project list Parse .yml
files using

bashlex

Stored passed
output in .csv

Manual
parsing
of .yml

files

Manipulate csv
data as per the

requirement

Interpret
phases

Interpret
commands

Interpret
categories

Data Analysis Data Validation

Figure 3.1: An overview of our approach to study the .travis.yml files and analyze the phases
and commands inside them

3.3 Reuse

Figure 3.2 provides an overview of our approach to implement the reuse of .travis.yml spec-

ification files. Considering the results of the empirical study, we create a feature model of CI

specification files, which contains the commonalities and variations of the functions provided by

Travis CI. We also extend the CORE metamodel to support additional functionality in feature

models, since Travis CI requires the ability to (i) choose the same feature multiple times and in an

ordered fashion; and (ii) provide suggestions for features that occur together as per the observed

patterns of reuse in Travis CI specifications. Thus, a feature must support having co-occuring fea-

tures from the feature model with a certain likelihood. We also create a metamodel for Travis CI

17

3.4. Summary

specification files that describes the relevant components of a .travis.yml specification file (i.e.,

phases, commands, and arguments). With this in place, we create a proof-of-concept composition

mechanism that binds the features selected by the release engineer from the feature model and

creates a partially completed .travis.yml file to which the release engineer may add details if

required.

Extension of CORE metamodel
to support ordered configuration
for features with the possibility

to select a feature multiple times

Suggestion for other features
based on feature configuration

and patterns of reuse

Composition mechanism
for

CI Specification Files
Generation of custom

.travis.yml files

CORE
Metamodeling

Integration of
CI Specification Files

in CORE

Figure 3.2: Overview of our approach to implement the reuse of .travis.yml files in CORE

3.4 Summary

This chapter gives an overview of our empirical study (i.e., data extraction from 913 open source

Java projects from GitHub, analysis, and validation using association rule mining required to

perform empirical analysis of Travis CI phases and commands) along with how we use the results

of the empirical analysis to implement support for the reuse of Travis CI specification files by

creating a Travis CI CORE concern.

In the next chapter, we present results of our empirical analysis and address arguments that

may arise with respect to our negative finding.

18

An earlier version of the work in this chapter appears in

the proceedings of the International Conference on Soft-

ware Analysis, Evolution, and Reengineering (SANER)

2019 [42].

4
Empirical Study Results (Advocatus Diaboli)

Following the study design laid out in Chapter 3, we do not observe any patterns of phases and

commands of sufficient interestingness to provide suggestions in our envisioned tool. Nonetheless,

support for the reuse of Travis CI specifications can still be provided by integrating CI specification

files into CORE and providing a composition mechanism for them. We summarize our results below

and discuss the details in the remainder of this chapter.

19

4.1. Experiment Approach

Summary of Results. The results of our analysis suggest a negative result, i.e., we are not

able to find patterns of phases and commands in Travis CI specifications for Java projects with

ARM that are statistically interesting. Based on these results, our vision of a tool that provides

suggestions to build CI specifications based on popular sequences of phases and commands cannot

be realized. However, using the results of our empirical study, we create a feature model of Travis

CI. Furthermore, we enhance the metamodel of CORE and create a new metamodel for Travis CI

specification files to enable the integration of Travis CI specifications in CORE. Finally, we build

a composition mechanism that generates Travis CI specification files based on the feature selection

in the CORE feature model of Travis CI.

To structure our empirical analysis, we follow the Advocatus Dioboli (AD, i.e., Devil’s

Advocate) approach. The AD represents the domain expert for our area of study. The concept

of the AD is inspired from a former process followed in the Catholic Church where the AD would

support a prosecution case against the candidates for canonization to sainthood. The AD was

required to question every reason for the candidate’s elevation. Proponents for canonization would

then build a defense case to answer each of the points raised by the AD.13

In our case, we are the proponents who analyze Travis CI specification files and state a negative

result, i.e., relationships based on ARM among phases and commands in Travis CI files of Java

projects cannot be used to create a prediction system for building CI specifications. Thus, in the

following sections, the AD questions our methodology and results, and we address those arguments.

Consequently, we state the details of our approach, the precautions, and actions taken to support

our analysis.

4.1 Experiment Approach

Below the AD presents arguments related to the experiment setup.

Argument A.1: The right projects were not selected for the analysis.

The AD wants to understand if we selected the correct data-set for our analysis as that might affect

the results adversely. We refute the AD’s concern by stating that we selected only valid and active

13http://www.enase.org/CallForPapers.aspx?y=2013#ADF

20

http://www.enase.org/CallForPapers.aspx?y=2013#ADF

4.1. Experiment Approach

Java projects taken from GitHub. These 913 projects use Travis CI which is verified manually by

checking each project as during analysis we inspect all .travis.yml files in the root directory of the

project. These are non-forked and non-duplicated projects as backed up by Gallaba and McIntosh

[17] who state that forked projects should not be included as their analysis leads to duplicated

outcomes.

In addition, we studied the domain of the projects to check the heterogeneity of the sample. We

do this by iteratively going through the project documentation on GitHub until we find no more

new domains for the last 20 studied projects. In our case, we needed to look at 44 projects and

our observations are shown in Table 4.1. Thus, we see that we study different types of projects and

also that the sample is not too heterogeneous which also might lead to inconsistent results. Note

that we are still using all 913 projects for all other analyses.

Table 4.1: Domain specification of subset of sample projects

Type of Project No. Of Projects Percentage%

Application Framework/Library 15 34.09
Development Tool 10 22.72
Mobile Application 8 18.18
Web Application 4 9.10
DevOps 3 6.81
Games/Game Engine 2 4.54
Communication/Collaboration Tool 1 2.27
Other 1 2.27

Total 44 100.00

At this point, the AD questions whether we conducted the experiment in the right way as the

results can be invalid if the right approach is not followed. Thus, we explain our approach below.

Argument A.2: The study design is flawed.

We first clone the projects from the initial project list of 913 projects with just the .travis.yml

files in them from GitHub. We iterate over the project list and parse the .travis.yml files kept

in the root directory of the projects. We use the bashlex parser library of python to do this

and we parse each line word by word to extract the phases and commands with their prefixes and

parameters separately. To get a refined list of commands as per the related phases, we apply various

regular expressions to avoid getting irrelevant data for the study such as hard-coded arguments and

21

4.1. Experiment Approach

conditional statements. Also, there are lines in .travis.yml files which contain more than one

command. For handling this, we use the bashlex parser as it creates an abstract syntax tree which

maintains the inherent structure of phases and the commands under them.

We verify the output of our python script by checking that the parser has read the prefixes,

commands, and arguments of commands correctly for a small set of 10 projects and after the

initial validation, we move ahead with running our script over the entire data-set for the “install”

phase. We choose the “install” phase, because it is one of the main phases and is frequently used.

After verification of this output, we see that the parser does not work quite well on lines containing

multiple brackets and commands having more than one option. We also see that there is no definite

structure of the Travis CI files. Therefore, we manually inspect each line after running the script

for all phases on the entire data-set.

The resulting output is saved in a csv file. We create the output such that it denotes the project

name, the phase, the prefix of the command, the command, the sub-command, the option(s), and

the parameter. If a command has more than one parameter we write the same line again but with

the other parameter and so on. We also categorize the commands using our output from the csv

and we write the category in the same csv under which each command falls. For example, we

say that “mvn” and “gradle” fall under the “builders” category. We create these categories based

on the functionality provided by the command. The parsing approach is built based on multiple

discussions among all three authors and on multiple .travis.yml files with different styles of

commands.

We started our analysis with the phases mentioned in Table 4.2. We also state the number of

projects out of the total projects in which the mentioned phases are used respectively. We observe

that the top five phases are used in 18%-75% of the projects. Thus, we study only the top five

phases in greater detail as we expect to find patterns in the phases that are the most common.

Table 4.3 shows the details of the various categories of commands used in Travis files across all

projects. We further find the command usage as per categories in the top five phases respectively

which is stated in Table 4.4. We show only the top five categories occurring under each phase to

reduce clutter. Now, as we know the top categories in each of the phases, we study the frequency

of the top most used category in each phase. Table 4.5 shows the most popular category per phase

and its usage as per the number of projects. For example, ‘builders’ is the most popular command

22

4.1. Experiment Approach

Table 4.2: Phases studied from .travis.yml files

No. Of Projects Project Percentage Phase

681 74.6 script
397 43.5 before install
329 36.0 install
254 27.8 after success
162 17.7 before script
36 3.9 after failure
27 3.0 after script
21 2.3 before deploy
3 0.3 after deploy

category in the ‘script’ phase and it is used 14 times, 10 times, and 9 times in one project, 7 times

in three other projects, and so on. We understand the dominance of the various categories per

phase and proceed with our analysis accordingly by studying the most frequent category per phase.

Again, we expect patterns to appear in the most used categories.

Table 4.3: All projects: Categorization of commands

No. Of Projects Category

746 builders
277 not mutate
255 env setup
194 interpreter
180 pkg mgr
136 fs
123 internet
101 security
96 execute script
96 vcs
80 compress
54 database
45 text manipulate
38 travis command
28 sca
25 process mgmt
15 mobile framework
7 compiler
3 browser env

We analyze all the above information as the source for ARM. Our scripts and parsed data

are available online at the following address: https://figshare.com/s/96287a53e4ad7e55a906

23

https://figshare.com/s/96287a53e4ad7e55a906

4.1. Experiment Approach

Table 4.4: Topmost frequently used categories of commands per phase

Frequency script before install install after success before script

Top-1 builders env setup builders builders env setup
Top-2 not mutate pkg mgr not mutate interpreter not mutate
Top-3 env setup not mutate pkg mgr not mutate database
Top-4 execute script interpreter travis command internet interpreter
Top-5 interpreter internet vcs sca builders

which can be used for attestation of our analysis.

However, the AD is not satisfied with the description of our parsing approach and wants to dig

deeper into details of how we decided on the parsing of the commands as that is at the core of our

analysis. Incorrect parsing can altogether affect the outcome drastically. This concern is addressed

below.

Table 4.5: Usage of the most frequent category per phase

Frequency 14 10 9 7 6 5 4 3 2 1

script: builders 1 1 1 3 3 1 9 30 70 493
before install: env setup 8 1 4 4 3 11 37 82
install: builders 1 4 20 217
after success: builders 4 6 40 95
before script: env setup 1 1 1 10 47

Argument A.3: The parsing of lines in .travis.yml files is not valid.

To efficiently and clearly analyze commands, we segregated commands to have prefixes, sub-

commands, and options. We explain how and why we did this with an example. We take this

line from one of the Travis files and try to understand its structure: “./gradlew –console=plain –no-

daemon -S –scan check test integrationTest functionalTest jacocoTestReport jacocoIntegrationTestRe-

port jacocoFunctionalTestReport jacocoRootReport -x :sample-javafx-groovy:jfxJar -x :sample-javafx-

java:jfxJar -x clirr”. In this line, there are four options used for the “gradlew” command. The

sub-commands “check” and “test” are used later with multiple parameters like “integrationTest”

and three “-x” options to uninstall and update jars. Thus, in this case, it is difficult to define a

parser that goes through the indefinite number of options and parameters with options present in

between the parameters. The case gets more complicated with multiple commands in a single line.

24

4.1. Experiment Approach

We also segregate commands with prefix such as “sudo” to focus on the functionality of the

commands. We divided commands into main command and sub-command. This was mainly done

for commands which work in pairs. For example, ‘pip’, ‘apt-get’, ‘git’, ‘clean’, ‘npm’, ‘bower’, ‘nvm’,

‘go’, ‘xargs’, ‘pip3’, ‘bundle’, ‘service’, ‘time’, ‘bash’, ‘sh’, ‘travis retry’, ‘travis wait’, ‘travis terminate’,

‘ant’, ‘android’, ‘mvn’, ‘mvnw’, ‘gradle’, ‘gradlew’, ‘bash64’, and ‘python’ would have a second part

to them such as ‘git push’. In this case, ‘git’ is the main command and ‘push’ is the sub-command.

We restricted our analyses to the main command to get considerable association rules.

Thus, we tried to customize the parser as much as possible but the random structure of the

.travis.yml files made it unfeasible to create a generic parser that could produce a perfectly

traversed output with no data loss. To counter this, we manually check the parsed output of all

top five phases and make the required changes. The manual inspection is done by the first author

following a discussion of the parsing approach among all three authors.

With the manually inspected, parsed output now matching the .travis.yml files, the AD

questions whether we chose the right set of values of support and confidence to filter out association

rules and ensure that these values are not too strict.

Argument A.4: The criteria for association rule mining are too strict.

Our goal is to find strong rules for phases, commands and categories in a single phase, and com-

mands and categories across phases based on the computation metrics of support, confidence, and

lift. We researched what can be the minimum values of these metrics to be considered for mak-

ing solid rules and proceeded with our analysis accordingly.14 We understand that we have to do

sensitivity analyses by changing the values for support and confidence to generate rules that are

complemented by a high number of projects.

We chose different values of support starting from 0.5 and confidence as 1 for which we got no

rules. We then subsequently lowered the value of support to find more frequent rules but keeping

the value of confidence at 1. We went to as low a value as 0.001 which means minimum 1 out of 1000

projects will have this rule. We found 10 projects which satisfied the strongest rule for phase-phase

relationship. We did the same for commands and categories. The strongest rule for commands that

14https://www.quora.com/How-do-I-pick-appropriate-support-confidence-value-when-doing-basket-

analysis-with-Apriori-algorithm

http://r-statistics.co/Association-Mining-With-R.html

25

https://www.quora.com/How-do-I-pick-appropriate-support-confidence-value-when-doing-basket-analysis-with-Apriori-algorithm
https://www.quora.com/How-do-I-pick-appropriate-support-confidence-value-when-doing-basket-analysis-with-Apriori-algorithm
http://r-statistics.co/Association-Mining-With-R.html

4.2. Experiment Conduct

appear together in the most used “script” phase with this criteria resulted in 32 projects and the

second strongest rule resulted in 6 projects. Similarly the strongest rule for categories occurring

together in the “script” phase resulted in 3 projects. We could not decrease the value of support

further as we were analyzing approximately 1000 projects thus support lower than 0.001 would not

have made sense.

Thus, we started decreasing the value of the confidence metric. We started with 0.9 keeping

support at 0.001. We found 12 projects for the strongest rule for phases that occur together, 32

projects for commands, and 3 projects for categories in the “script” phase. We continued to tweak

these metric values for lower values of confidence going as low as 0.4 for all phases. To reinforce

well-built rules with considerable lift value, we finalized the minimum value for support to be 0.001

and confidence to be 0.7 for each of the ARM done on phases, commands, and categories as with

confidence lower than 0.7 we only find rules with lift values that are too low. We show the results

of the same in the remainder of this chapter.

Finally, the AD questions the categorization of commands.

Argument A.5: The command-category mapping is incorrect.

Two authors independently checked the functionality provided by each command and categorized

accordingly. We match the categorization results of the two authors and verify the coherence by

calculating Cohen’s Kappa which resulted in 0.46. Since the result is not as high as desired, the

differences are discussed among all three authors and consensus is reached for each of the distinct

245 commands.

4.2 Experiment Conduct

After we refuted the arguments against our experiment setup, the AD now focuses on the conduct

of the experiment by stating a series of arguments about coverage of the right set of relationships

while doing ARM. If we do not compare the right relationships, then obviously we may miss some

commonality in the data. Below, we address these concerns.

26

4.2. Experiment Conduct

Argument B.1: The relationships among phases are not checked.

We started our analysis with the phases as they are at the highest level of generalization. We state

our results in Table 4.6 and Figure 4.1.

Table 4.6: Association Rules for Phases
rules support confidence lift count

{} =>{script} 0.7459 0.7459 1.0000 681
{install} =>{script} 0.2673 0.7416 0.9943 244
{before script} =>{script} 0.1413 0.7963 1.0676 129
{before install,install} =>{script} 0.1314 0.7595 1.0182 120
{after success,install} =>{script} 0.0734 0.8072 1.0822 67
{before script,install} =>{script} 0.0537 0.8596 1.1525 49
{before install,before script} =>{script} 0.0471 0.7679 1.0294 43
{after success,before script} =>{script} 0.0449 0.8200 1.0994 41
{after success,before install,install} =>{script} 0.0383 0.7778 1.0427 35
{after failure} =>{script} 0.0318 0.8056 1.0800 29
{after script} =>{script} 0.0263 0.8889 1.1917 24
{before install,before script,install} =>{script} 0.0241 0.8462 1.1344 22
{after success,before install,before script} =>{script} 0.0219 0.8333 1.1172 20

Approach. We identify the percentage of the projects having the phases mentioned in Table

4.2. We find this by querying our csv file so as to find the number of projects containing the

respective phase. We also run ARM on the top 5 popular phases mentioned in Travis CI files

across projects to find patterns in their usage. We find all combinations of frequently occurring

phases. We create a data-set for all these combinations. We feed this data to the arules and

arulesViz libraries of the R language and using apriori algorithm we find out the relationship

pattern between these phases. We find out the support, confidence, and lift values for all these

relationship rules. We derive various rules as shown in Table 4.6 and Figure 4.1 shows the plots

that depict the same trends.

Results. The percentages of projects in Table 4.2 clearly show that there is a difference in

usage of all the phases. We can gather that all phases are not equally used by all developers and

there are phases like “script”, “before install”, “install”, “after success”, and “before script” which

are dominantly used. Among these common phases, we found 13 rules of multiple phases occur-

ring together in a .travis.yml file and with a minimum support value of 0.001 and a minimum

confidence value of 0.7. We see in Table 4.6 that the topmost rule is the one showing that “script”

phase on its own is used in 681 projects (i.e., 75%). This can also be verified from Table 4.2.

27

4.2. Experiment Conduct

Graph for 13 rules

after_failure

after_scriptafter_script

after_successafter_successafter_success

before_installbefore_installbefore_installbefore_installbefore_installbefore_installbefore_installbefore_installbefore_installbefore_installbefore_installbefore_installbefore_installbefore_installbefore_installbefore_installbefore_installbefore_install

before_scriptbefore_scriptbefore_scriptbefore_scriptbefore_scriptbefore_scriptbefore_scriptbefore_scriptbefore_scriptbefore_scriptbefore_scriptbefore_scriptbefore_scriptbefore_script

installinstallinstallinstall

scriptscriptscriptscriptscriptscriptscriptscriptscriptscriptscriptscriptbefore_scriptscriptbefore_scriptbefore_scriptscriptbefore_script

size: support (0.022 ! 0.746)
color: lift (0.994 ! 1.192)

size: support (0.022 - 0.746)
color: lift (0.994 - 1.192)

Figure 4.1: Association rules for phases used in all projects

However, this is not a very interesting rule for our purpose of building a tool that suggest phases

and commands based on already specified phases and commands. The subsequent rules hold true

in 27%, 14%, 13%, 7% and so on with respect to the total number of projects. Although, we find

1 rule which occurs in more than 20% of the projects, the rest of the rules have low existence. We

also plot these rules in Figure 4.1 where we can see that the usage of the “script” phase alone is

the most as inferred from the size of the associated circle. This rule has lower lift which can be

clearly seen from the light color of the circle as compared to, e.g., the rule between “after script”

and “script” which has a darker color. Similarly, we can understand the intensity of the rules using

this figure. As we did not find any prominent, useful rule among phases, we move to find patterns

between commands in a phase to determine if the developers use similar functionality for their

projects in Travis CI specifications.

28

4.2. Experiment Conduct

Summary for Phase-Phase relationship. Among all the phases taken into consideration, we

find out that “script”, “before install”, “install”, “after success”, and “before script” are the most

frequently used phases by the developers in their Travis CI files. We find 1 rule among two phases

that is present in 27% of the total projects, but the occurrences of further rules are rare. It shows

that although phases are at the top level of generalization in a .travis.yml file, even then there

is no strong coherence in their usage.

Argument B.2: The relationships among commands in a single phase are not

checked.

To consolidate our analyses to derive patterns in the usage of Travis CI specifications which could

help developers to specify them faster, we try to deduce repetitions in the command usage in a

single phase. Commands specify the functions performed by the CI script, thus it is important that

we examine their usage.

Approach. To study this, we pick up all combinations of commands as per phase for all

projects. We follow the same approach of finding association rules and then plotting them to

understand if the commands co-occur.

Results. We find various rules for all the five phases that we study. We state our results in

Figure 4.2 which shows that for each of the studied phases there is a maximum of 6 rules with

confidence of more than 1. Also, the color of the rules depicts the lift value, therefore the darker

the color, the more the lift of the rule. Rules which do not have a lift value specified in the legend

are shown in blue color. Similar to phases, we do not find any patterns in the usage of commands

in the Travis CI specifications.

Summary for Command-Command relationship in a single Phase. We do not find any

common patterns in the way CI is implemented by developers even on the most popular CI service

on GitHub. We find a maximum of 6 rules supported by strong values of confidence but low

values of support and count, i.e., even these strong rules occur at the most in 4.3% of the projects.

Furthermore with lower confidence values, the most frequent rule in the “script” phase still occurs

in only 9% of the total projects and this percentage further falls for other phases.

29

4.2. Experiment Conduct

SCRIPT PHASE

INSTALL PHASE

BEFORE_INSTALL PHASE

AFTER_SUCCESS PHASE BEFORE_SCRIPT PHASE

Figure 4.2: Association rules for commands used in all projects per phase

Argument B.3: The relationships among command categories in a single phase

are not checked.

Expanding our analysis deeper into the phases and their commands and to be able to find solid rules

between commands in a phase, we increase our level of analysis and study categories of commands.

We strive to understand what type of functionality different developers tend to perform using Travis

CI. Performing ARM on categories after phases and commands shall finally give a clear picture of

the implementation of Travis CI specifications.

Approach. We analyze all the commands stated in the Travis files and categorize them ac-

cording to the function they perform. In Table 4.4, we show which categories of commands appear

30

4.2. Experiment Conduct

per phase across all projects. More details are shown in Figure 4.3.

SCRIPT PHASE

BEFORE_SCRIPT PHASEAFTER_SUCCESS PHASE

INSTALL PHASE

BEFORE_INSTALL PHASE

Figure 4.3: Association rules for categories used in all projects per phase

Results. Although, we see that the category usage across projects is significant as stated in

Table 4.3, we do not find strong association rules supported by high values of support, confidence,

and lift. By analyzing Figure 4.3, we can see that, for all phases, they are just 4-6 rules that

have the confidence value of at least 1. However, the strongest support for any of these rules is

less than 1%, i.e., there is no combination of categories of commands that frequently occurs together.

31

4.2. Experiment Conduct

Summary for Category-Category relationship in a single Phase. Among all the defined

categories, we find that different phases have different functionality that they dominantly perform

in terms of categories of commands. This is inferred from Table 4.4 and 4.5. We find a maximum

of 6 rules supported by strong values of confidence but low values of support and count, i.e., even

these strong rules occur in less than 1% of the projects. Furthermore with lower confidence values,

the most frequent rule in the most frequent phase, i.e., the “script” phase, still occurs in just 8.5%

of the total projects and the usage falls further for categories in other phases.

Argument B.4: The relationships among commands across phases as well as

command categories across phases are not checked.

To not leave any shred of doubt, we inspect commands and command-categories, respectively,

across phases, that is irrespective of the phases in which they are predominately used. Although

it is expected that patterns of commands and categories occur more likely within their respective

phases, we perform this analysis to be sure of the fact that there are no useful patterns of commands

and command categories in Travis CI specifications.

Approach. We collect all distinct commands and categories for all projects with no filter on

phase and apply ARM on them. As with all other ARM, we find rules with a minimum support

value of 0.001 and a minimum confidence of 0.7. Our results are shown in Table 4.7 and 4.8. Table

4.7 shows only the top 5 most frequent rules to reduce clutter. We look over these trends generated

by ARM and analyze the results.

Table 4.7: Association Rules for Commands across Phases

rules support confidence lift count

{sh} =>{export} 0.0788 0.8275 3.7221 72
{tar} =>{wget} 0.0558 0.9622 10.5849 51
{tar} =>{export} 0.0493 0.8491 3.8186 45
{tar,wget} =>{export} 0.0482 0.8627 3.8802 44
{export,tar} =>{wget} 0.0482 0.9778 10.7556 44

Results. As expected, we do not find rules that are applicable to a large number of projects.

In Table 4.7, we have rules for commands occurring together across phases sorted by the number of

projects in which they appear. The most common occurs in 72 out of 913 projects which is only 8%

of the projects. While there are other rules with high values of confidence and lift, their support

32

4.2. Experiment Conduct

and count are low.

A similar inference can be made for command categories occurring together across phases when

we look at the data in Table 4.8. The “builders” category is the most common category as we

already know from Table 4.3 and by itself forms the most common rule. Again, however, this is

not a very interesting rule for our purpose of building a tool that suggest phases and commands

based on already specified phases and commands. While the second most frequent rule occurs in

approximately 25% of the total projects and the sixth most frequent rule still occurs in more than

10% of the total projects, the vast majority of projects still cannot benefit from these rules and

they are so abstract that the benefits derived would be small in our envisioned tool. For example,

if we were to use the second most frequent rule in our tool, the developer could select a command

from the “not mutate” category (‘echo’, ‘cd’, ‘ls’, ‘pwd’, ‘sleep’, . . .) and the tool could then tell

the developer that it is likely that a command from the “builders” category (‘mvn’, ‘gradlew’, ‘ant’,

‘gradle’, ‘make’, . . .) should be used in the same or some other phase. Hence, the rule is of limited

use for the developer, because the tool cannot inform the developer about which exact commands

in which exact phases are likely to appear together.

Table 4.8: Association Rules for Categories across Phases

rules support confidence lift count

{} =>{builders} 0.8171 0.8171 1.0000 746
{not mutate} =>{builders} 0.2530 0.8339 1.0206 231
{env setup} =>{builders} 0.2180 0.7804 0.9551 199
{interpreter} =>{builders} 0.1698 0.7990 0.9778 155
{env setup,not mutate} =>{builders} 0.1369 0.8503 1.0407 125
{fs} =>{builders} 0.1183 0.7941 0.9719 108
{internet} =>{env setup} 0.0953 0.7073 2.5325 87
{env setup,interpreter} =>{builders} 0.0887 0.8100 0.9913 81
{security} =>{builders} 0.0865 0.7822 0.9573 79

Summary for Command-Command relationship across Phases and Category-Category

relationship across Phases. As anticipated, we do not find any rules with high enough confi-

dence, lift, and support values which could help us provide suggestions based on existing Travis CI

specifications.

33

4.3. Summary

4.3 Summary

This chapter presents the results of our empirical study, the precautions, and actions taken to

support our analysis. We find out that of the nine phases provided by Travis CI, the “script”,

“before install”, “install”, “after success”, and “before script” phases are the most frequently used

phases by developers and the mined association rules among phases, among commands, and among

functionally-similar commands (i.e., command categories) lack sufficient interestingness scores (i.e.,

support, confidence, lift, or count) to be of use in the context of our envisioned tool.

In the next chapter, we discuss the details of our envisioned tool and how we use the results of

our empirical study to create a reusable concern for Travis CI and implement the VCU interfaces

to support generation and reuse of Travis CI specification files.

34

5
Concern-Oriented Reuse of CI Specification Files

This chapter states our work towards creating a reusable concern for CI specification files. We

proceed with the results of our empirical study and keeping in mind the concept of reuse. We start

by presenting a feature model for Travis CI specification files, which is comprised of the five most

frequently occurring phases, their topmost frequently used category of commands and their five

most frequently occurring commands. We show this feature model in Figure 5.2. We state all the

stages of the creation of the feature model in Section 5.1.

In Section 5.2, we move further in the process of reuse and extend the metamodel of CORE

to support our need to choose the same feature (i.e., same command) multiple times in a feature

model, because one command can be used more than once in each phase (e.g., ‘npm install’ in

the ‘before install’ phase of Program 5.1). We also add to the CORE metamodel the functionality

of providing suggestions for features that are selected together as per association rule mining (see

Chapter 4).

35

5.1. Feature Model of Travis CI and its Realization Models

After extending the metamodel of CORE, we specify the metamodel for CI specification files

as shown in Figure 5.9. We give the details of the process followed in Section 5.3.

Finally, after building the infrastructure in terms of metamodels for our study, we work towards

creating a composition (weaving) mechanism explained in Section 5.4 to compose the models of CI

specification files to create custom CI specification files.

5.1 Feature Model of Travis CI and its Realization Models

Feature models are a widely accepted means of capturing commonality and variation in SPLs [10].

They consist of a tree like structure with nodes that represent features of a particular concern and

their interrelationships. Figure 5.1 shows a sample feature model of the mobile phone domain [7].

From this feature model, we understand that the nodes represent the features/functionality offered

in a mobile phone. According to the model, all phones must have a Screen and Calls feature, which

is denoted by the Mandatory relationship (denoted by a filled black circle). A phone may or may

not have a GPS and Media feature which is represented by the Optional relationship (denoted

by a non-filled white circle). The Alternative relationship (denoted by a non-filled white quarter-

circle) among features under Screen denotes that if Screen is selected then exactly one of the three

underlying features must be selected (i.e., it is an XOR relationship). The Or relationship (denoted

by a filled black quarter-circle) under Media explains that either one or both of Camera and MP3

features must be selected if Media is selected (i.e., it is an IOR relationship). Also, if the Camera

feature exists in a phone, then that phone must have a High Resolution Screen. This is indicated

by the Requires relationship between Camera and High Resolution features. Lastly, we get to know

from the Excludes relationship that if a phone has the GPS feature, then that phone must not have

a Basic Screen and vice versa. Thus, a mobile phone will have different features depending on its

configuration.

Similarly, we construct a feature model to describe the commonalities and variations in the

features of Travis CI specification files. We capture the most prominent phases and commands of

Travis CI in the feature model. However, since the release engineer may freely choose which phases

and commands to include in a specification file, all features in the feature model are optional.

We start by defining the Variation Interface for Travis CI. Since, an investigation of the impact

36

5.1. Feature Model of Travis CI and its Realization Models

Mandatory

Optional

Requires

Excludes

Alternative

Or

Camera MP3
High

ResolutionColourBasic

Mobile Phone

GPS Screen MediaCalls

Figure 5.1: A sample feature model [7]

of Travis CI features on system characteristics such as security or performance is outside the scope

of this thesis, we focus on the feature model part of the Variation Interface and leave the goal

model part for future work. We first add two features, JobProcessing and JobReporting, as per the

functions performed by the underlying phases. A JobProcessing feature is responsible for processing

build jobs and a JobReporting feature is responsible for reporting on the status of build jobs. We

see from the most frequently used phases as described in Table 4.2 that the ‘script’, ‘before script’,

‘install’, and ‘before install’ phases fall under the JobProcessing category and that ‘after success’

falls in the JobReporting category. We separate the JobProcessing category into RunScript and

RunInstall because of the nature of phases under this category. Under the RunScript category, we

allow the release engineer to choose the ‘script’ phase. Under the ‘script’ phase, as determined from

Table 4.4, we know the most used command type is ‘builders’. Therefore, we show the top five

commands used under ‘builders’ category as per Table 4.5. We use only the Optional relationship

among all features as no phase or command in a .travis.yml file is Mandatory. Also, there are

no conditional constraints that one phase/command should appear if another does or does not,

therefore, we do not have Alternative, Or, Requires, or Excludes relationships.

37

5
.1.

F
eatu

re
M

o
d

el
of

T
rav

is
C

I
an

d
its

R
ealization

M
o
d

els

TravisFeatureModel

JobProcessing JobReporting

RunScript

builders

before_installinstall

env_setupbuilders

before_scriptscript

RunInstall

buildersenv_setup

after_success

AfterJobRun

unset

export

jdk_switcher home

hostname

java_home

gradlew

mvn install

gradle setupCIWorkspace

mvnw install

ant test

gradlew

mvn

mvnw clean

gradle clean

rake travis:reportprintenv

createuser

unset

set

export

mvn verify

mvn install

mvn clean install

mvn clean

mvn test

Optional

Mandatory

Figure 5.2: Feature Model of Travis CI

38

5.1. Feature Model of Travis CI and its Realization Models

We follow a similar approach for all the five phases and create a feature model for Travis CI as

shown in Figure 5.2. Thus, our feature model shows all the dominant phases and commands used

in Travis CI specification files. This feature model forms the basis for our proof-of-concept as the

release engineer will have to select the desired features from this model to automatically create a

.travis.yml file. To build a textual specification file, we need to define how each feature from the

feature model is realized in it, thus specifying the realization models for the features of Travis CI.

The features of Travis CI in its feature model are simply the phases and commands defined by the

release engineer. For example, the feature ‘mvn test’ in the script phase of the feature model in

Figure 5.2 is realized by the specification file “script: mvn test |a” as shown in Figure 5.3. Since

file header and arguments of Travis CI commands are completely application-specific, they are

specified as partial elements in the realization models and hence have to be defined by the release

engineer. The file header and arguments are identified by a ‘|’ symbol and are hence part of the

Customization Interface of the reusable artifact. For example, the feature ‘mvn test’ in the ‘script’

phase uses the partial element |a for its arguments. Note that the ‘|’ symbol is chosen, because it

is the symbol typically used in the CORE reuse process to denote partiality and a check of the 913

project used for the empirical study in Chapter 4 reveals that the ‘|’ symbol does not appear in any

of the .travis.yml files. After the definition of features and realization models for Travis CI features,

we use the composition mechanism to create a .travis.yml file. Once the composition mechanism

has created the specification file, it can be executed, i.e., the ability to execute the specification file

represents the Usage Interface for our Travis CI concern.

In general, CORE allows many concerns to be reused to create a larger reusable artifact. The

Travis CI concern is just another one of those reusable concerns. For example, if Continuous

Integration is needed by a concern, then the following example demonstrates the CORE reuse

process as it is applied to Travis CI specification files.

1. The first step in the CORE reuse process is to select features from the feature model. For

demonstration, we select a subset of the Travis CI features shown in Figure 5.2. The se-

lected features are shown in Figure 5.3, including the order in which the features are selected

(denoted by a number in a black circle next to the selected feature).

2. We use the composition mechanism to create the .travis.yml specification file for the fea-

39

5.1. Feature Model of Travis CI and its Realization Models

TravisFeatureModel

JobProcessing

RunScript

builders

install

builders

script

RunInstall

gradlew

mvn install

gradle setupCIWorkspace

mvnw install

ant testmvn verify

mvn install

mvn clean install

mvn clean

mvn test install:
mvn install |a

script:
mvn verify |a

script:
mvn test |a

install:
ant test |a

|h

1

2

3

4

Feature
Realization

Unselected
Feature

Selected
Feature

n

n = Order of Selection

Figure 5.3: Feature Selection from Travis CI concern

tures selected in Step 1. The result is shown in Figure 5.4 and contains the merged realization

models of the selected features but still with the ‘|’ symbol showing the partial elements (i.e.,

headers and arguments). This step hence creates a generic reusable artifact that still needs

to be customized by the release engineer.

3. After the generic specification file has been created, the release engineer now customizes the

generic artifact by specifying the partial elements (i.e., the headers and arguments). The

resulting file is shown in Figure 5.5.

4. The reusable artifact created in Step 3 can now be used by the concern in need of Continuous

Integration. Let us assume that this concern is the Banking Application concern. Many

other concerns may also use the Travis CI concern to create a reusable specification file, e.g.,

40

5.1. Feature Model of Travis CI and its Realization Models

|h
script:
 - mvn test |a
 - mvn verify |a
install:
 - mvn install |a
 - ant test |a

Figure 5.4: .travis.yml specification file created after execution of the composition mechanism

language: java
script:
 - mvn test cobertura:cobertura
 - mvn verify jacocoAggregateReport
install:
 - mvn install postgres
 - ant test

Figure 5.5: Customized .travis.yml specification file

the Authentication CORE concern discussed in Chapter 2. When the Banking Application

concern reuses the Authentication concern, the realization models of these two concerns need

to be combined. Therefore, in this case, we need to combine the specification files of the con-

cerns together to form one Travis CI specification file. This is again done by the composition

mechanism. It weaves both the files together by combining their headers, phases, commands,

and arguments. Figure 5.6 shows an example of the reusable Travis CI specification file for

the Authentication concern. This specification file was created for the Authentication concern

by going through Steps 1-3 just like the specification file for the Banking Application concern.

We take the file shown in Figure 5.5 to be the specification file for the Banking Application

for demonstration purposes.

Now, we use the composition mechanism to combine these two files and the result is shown

in Figure 5.7. If necessary, the release engineer may still modify this specification file, e.g.,

to remove duplicate lines from the header. Such optimization of the composition mechanism

41

5.2. Extension of CORE’s Metamodel

script:
 - mvn clean cypher-test elasticsearch-test
before_install:
 - export PATH

Figure 5.6: Example .travis.yml specification file for Authentication concern

is out of scope for this thesis and left for future work.

language: java
script:
 - mvn clean cypher-test elasticsearch-test
 - mvn test cobertura:cobertura
 - mvn verify jacocoAggregateReport
before_install:
 - export PATH
install:
 - mvn install postgres
 - ant test

Figure 5.7: Woven Travis CI specification file for Authentication and Banking Application concerns

5.2 Extension of CORE’s Metamodel

The metamodel shown in Figure 5.8 is an excerpt of the CORE metamodel, focusing on relevant

parts for the definition and composition of CI specification files. The COREModel class is the

main class and the super class of other types of models such as class diagrams, goal models, state

machines, and, in our case, COREFeatureModel and SpecFile. The COREFeatureModel

(COREModel) can have multiple COREFeature(s) and a COREFeature may be associated

with many realization models (COREModel). For simplicity, we state in our metamodel of

CORE that a COREFeature is realized by one COREModel as this is the case for the Travis CI

Feature Model. In the general case, though, a COREFeature may be realized by many CORE-

Model(s). The class CORECompositionSpecification captures details of all the reuses of the

42

5.2. Extension of CORE’s Metamodel

COREModel class. The subclass of CORECompositionSpecification that is relevant for the

composition of CI specification files is the COREConfiguration class, which allows the selection

of features in the COREFeatureModel (COREModel). We explain below our extension to the

CORE metamodel as highlighted in Figure 5.8.

Once we have modeled the features of Travis CI, we strive to extend the metamodel of CORE

as per our findings. First, it must be possible to choose the same feature (command) within a phase

more than once from Program 5.1. Thus, we first inject a class between the COREFeature and

COREConfiguration classes. The COREFeature class represents a feature of a feature model

and the COREConfiguration class keeps a record of all selected features in the current selection.

We call this class OrderedConfiguration with a position attribute, which captures the order in

which the features are selected in its COREConfiguration. Hence, every selected COREFeature

has multiple OrderedConfiguration(s), which specify the feature’s ordered occurrences in the

specification file. Only a selected feature of a COREConfiguration can be an OrderedFeature

(see OCL constraint). Therefore, we maintain the order in which phases and commands are to

be used by the release engineer. Although the order of phases is not semantically relevant in a

.travis.yml file, we still need to reflect the user’s discretion of ordering.

1 language: java

2 jdk:

3 - oraclejdk8

4 sudo: false

5 env:

6 - NODE_VERSION=4.4.7

7 before_install:

8 - nvm install $NODE_VERSION

9 - npm install -g npm

10 - npm install -g bower grunt-cli

11 install: npm install

Program 5.1: An example .travis.yml specification from the ServiceCutter project

Our second aim for the tool was to provide suggestions to the release engineer to select features

that occur together as per the empirical analysis. Although we did not find significant patterns in

the usage of phases or commands used in Travis CI, we still incorporate this functionality in the

43

5.2. Extension of CORE’s Metamodel

metamodel of CORE, because further empirical studies may discover such patterns. Hence, we have

a class CORERelatedFeature that is associated with COREFeature. This class signifies that

a COREFeature can have multiple related features that may be chosen based on a supportValue.

If all features in the sourcePattern of a CORERelatedFeature are selected, then the features in

the targetPattern and the supportValue are presented to the release engineer to indicate potential

candidates. An OCL constraint ensures that the features in the sourcePattern and targetPattern

are distinct.

COREModel

CORECompositionSpecification

COREConfiguration

COREFeatureModel

COREFeature

CORERelatedFeature
+ supportValue: EFloat

SpecFile

[0..*]features

[0..*]relatedFeatures

[1..1]root[0..1]parent

[0..*]children

[0..*]selected
1 parentRelationship : COREFeatureRelationshipType = None

<<enumeration>>
COREFeatureRelationshipType

- None

- Optional

- Mandatory

- XOR

- OR

OrderedConfiguration

[0..1]realizedBy

[0..*]realizes

[1..*]sourcePattern

[0..*]outgoing

[1]orderedFeature

* [0..*] orderedConfiguration

[1..*]targetPattern

[0..*]incoming

1

+ position : EInt

<<bind S>> COREFeatureModel

[0..*]reuses

[1]

NewClass

ExistingClass

OCL Contraints:
context COREConfiguration
inv: self.selected = self.orderedConfiguration.orderedFeature --> asSet()

context CORERelatedFeature:
inv: (self.sourcePattern --> intersection(self.targetPattern)) --> isEmpty()

Figure 5.8: Extended metamodel of CORE to support the concept of specifications files

Applying the metamodel of CORE shown in Figure 5.8 to the Travis CI concern, we have a

COREFeatureModel (Feature Model of Travis - Figure 5.2) which is a type of COREModel.

This feature model has one root COREFeature from where the feature model starts and related

features. Furthermore, it is possible to select the features in the Travis CI feature model in an

ordered fashion.

44

5.3. Specification File Metamodel

Finally, we add the SpecFile class as a sub-class of COREModel to define a CI specification

file as a kind of model in CORE. We explain the metamodel of the CI specification file in the next

section.

5.3 Specification File Metamodel

A .travis.yml file contains phases, commands, and arguments of commands. The metamodel of

a CI specification file is shown in Figure 5.9. We define a SpecFile to encapsulate a complete

.travis.yml file, including all of its phases, commands, and their arguments. We define a phase

as a Group, which is comprised of Line(s) as in commands in the context of Travis. We also show

the Argument class, which is a part of the Line class as we know commands may or may not

have arguments. All of the compositions are ordered, as a textual specification file implies a strict

sequence of elements. Now, there are certain lines in a .travis.yml file which are not represented

by any group. For example, the first line in the .travis.yml file shown in Program 5.1 is ‘language:

java’. It is not a part of any phase thus meaning that it applies to the whole file. We support

such statements by having a composition association directly between the SpecFile class and the

Line class and we call those lines headers. We know from the examples stated in Section 5.1 that

partial file headers and arguments are needed. We represent them with the Boolean attributes

partial in the Line and Argument classes of the specification file metamodel, respectively, which

allows us to identify partial elements with a ‘|’ symbol in the textual representation of a Travis CI

specification file. Hence, from our metamodel in Figure 5.9, we understand that a specification file

may have more than one group (phase). A specification file also contains headers, which are not a

part of any group. Groups may contain more than one line (command). These lines may consist of

arguments and if an argument is present in the specification file then it must have a line containing

it.

An OCL constraint ensures that a line in a header does not have any arguments. This is a useful

restriction to simplify the composition mechanism, because the header is always application-specific

(as we have seen in the examples in Figures 5.4 and 5.5) and hence the header is always a partial

element. Since a partial element may be replaced by anything by the release engineer, it is not

necessary to model lines and arguments of header lines.

45

5.4. Composition Mechanism to Create .travis.yml Files

SpecFile
+ fname: EString

Group
+ gname: EString

Line
+ cname: EString
+ partial: EBoolean

Argument
+ aname: EString
+ partial: EBoolean

1

[0..*]groups
<<ordered>>

[0..*]header
<<ordered>>

1

[0..*]arguments
<<ordered>>

0..1

COREModel

0..1

[0..*]
g_lines
<<ordered>>

NewClass

ExistingClass

OCL Constraint:
context Line:
inv: self.specFile -> size() > 0 implies self.arguments -> size() = 0

Figure 5.9: Metamodel of CI specification file

5.4 Composition Mechanism to Create .travis.yml Files

In this section, we illustrate how we use the realizations of the selected features from COREFea-

tureModel (COREModel) and its COREConfiguration to create a .travis.yml file. First

of all, we generate code from our extended metamodel of CORE and the metamodel of the Spec-

ification File. The generated code contains all the classes with their methods and attributes and

inter-class method calls to allow consistent manipulation of instances of the two metamodels. We

use this code as the base of our weaving algorithm.

From the metamodel of CORE shown in Figure 5.8, we know that we need a COREFeature-

Model with a root COREFeature and other features. The proposed composition mechanism does

not consider related features because we did not find any patterns in the usage of Travis CI. Our

COREFeatureModel has a COREConfiguration, which comprises of all the selected features

of the feature model. We also need OrderedConfiguration(s) as discussed in Section 5.2. After

creating a feature, we select it as necessary with the help of a COREConfiguration, and then assign

46

5.4. Composition Mechanism to Create .travis.yml Files

it the positions as required by the multiple selection of the same feature. To do this, we add the

created features to the OrderedConfiguration list. A COREFeature is realized by a SpecFile.

As we know, SpecFile contains Group(s), Line(s), and Argument(s), so our motivation for this

choice is to enable weaving of all the different SpecFile(s) of the selected features in an ordered

fashion. The detailed reuse process and the creation of the Travis CI specification file is explained

in Section 5.1.

The composition mechanism runs in two different situations, (i) when we have two different

specification files required to be woven together as discussed in step 4 of Section 5.1 and (ii)

when we have a COREFeatureModel and we need to weave all the COREFeature(s) given a

COREConfiguration and OrderConfiguration(s) as discussed in steps 1-3 in Section 5.1. We

explain these two scenarios below:

(i) The release engineer inputs the two SpecFiles to the method weave(SpecFile higherSpecFile,

SpecFile lowerSpecFile) of the composition mechanism. This method duplicates the headers

of both the input files and creates a new file (say, sfNew) with the headers of higherSpecFile

followed by that of lowerSpecFile. After this, the method duplicates the groups of the higher-

SpecFile and adds them to sfNew along with their duplicated lines and arguments using the

method merge(Group higherGroup, Group lowerGroup) followed by composing the groups

of the lowerSpecFile with sfNew using weave(SpecFile higherSpecFile, Group lowerGroup).

This method first checks if the name of the lowerGroup is same as the name of a group in the

higherSpecFile. If yes, it merges the contents of these two groups, else, it duplicates the lower-

Group and adds it to the higherSpecFile as a new group. Finally, the method, weave(SpecFile

higherSpecFile, SpecFile lowerSpecFile), returns the new SpecFile, sfNew. For all details,

see the first test case in Appendix C (i.e., Program C.3).

(ii) The release engineer inputs the Travis CI concern’s feature model (COREFeatureModel)

along with a COREConfiguration to the method weaveAll(COREFeatureModel cFM, CORE-

Configuration conf) of the composition mechanism. This method first identifies the realization

model of the root feature (SpecFile) of the feature model, cFM, and proceeds with iteratively

weaving the selected features pairwise according to the OrderedConfiguration(s) using the

weave(SpecFile higherSpecFile, SpecFile lowerSpecFile) method. After this, the same proce-

47

5.4. Composition Mechanism to Create .travis.yml Files

dure as mentioned in the first scenario is followed. For all details, see the second test case in

Appendix C (i.e., Program C.4).

The specifications of the two metamodels, i.e., the extension to CORE and the CI specification

file, are presented in Program C.1 in Appendix C. The proof-of-concept implementation of the

composition mechanism is shown in Program C.2 in Appendix C. The composition mechanism is

further explained in the flowchart in Figure 5.10 below. Starting at the start point, the first scenario

takes the bottom path through the flowchart, while the second scenario takes the top path through

the flowchart.

.travis.yml

Stop

Start

Returns the
woven

specification
file, sfNew

Returns the
woven

specification
file, sfNew

When the developer
calls the composition

mechanism with a
feature model and its
COREConfiguration

When the developer
calls the composition
mechanism with two

SpecFiles required to be
woven together

Returns the
woven SpecFile

weave(SpecFile higherSpecFile, Group lowerGroup)

Merge groups with the same name
in both SpecFiles together and add
the commands and arguments to

the same group.

weaveAll(COREFeatureModel cFM, COREConfiguration conf)

For all OrderedConfigurations of
conf, combine the realization models

of the root feature with the first
ordered feature, and then the result

with the second ordered feature,
and so on

Find the root
COREFeature from

cFM and its
associated SpecFile

Duplicate the lowerGroup in
higherSpecFile along with its

commands and arguments (i.e.,
create a new group and then

merge in the existing
lowerGroup)

No

Checks if the
lowerGroup

is the same as
any existing group in

higherSpecFile

Yes
merge(Group
higherGroup,

Group
lowerGroup)

merge(Group
gNew, Group
lowerGroup)

weave(SpecFile higherSpecFile, SpecFile lowerSpecFile)

Loop over the groups of
the lowerSpecFile and

adds them to sfNew
using the next method

Adds the headers of
the higher and lower

SpecFile(COREFeature)
in a new SpecFile,

say, sfNew

Loop over the groups of
the higherSpecfile and

replicate the same
in sfNew along with
their commands and

arguments

Figure 5.10: Flowchart explaining the composition algorithm

48

5.5. Summary

Thus, using the above algorithm, we are able to create CI specification files to which the release

engineer can add any additional information for both scenarios described earlier in this section.

5.5 Summary

This chapter presents our proof-of-concept required to implement CORE. We create a feature model

for Travis CI specification files and explain the four-step reuse process in Section 5.1. We discuss

the changes we implement to extend the metamodel of CORE in Section 5.2 to support a new type

of COREModel and other configurational enhancements. We also discuss the metamodel of the

SpecFile containing groups, lines, and arguments in Section 5.3. At the end, in Section 5.4, we use

all the above content to create a composition mechanism that creates Travis CI specification files

based on the features selected by a release engineer.

In the next chapter, we discuss the related work in terms of CI and CORE used for the empirical

analysis and reuse process implemented in this thesis.

49

6
Related Work

In this section, we situate our work with respect to the past work on Continuous Integration

(CI) along adoption and outcome dimensions as well as with respect to Concern-Oriented Reuse

(CORE).

6.1 Adoption of CI

An important trend of CI research has focused on adoption trends in software organizations. For

example, Beller et al. [6] analyzed and shared a large, curated sample CI data from thousands of

open source projects. Hilton et al. [20] studied the characteristics of projects that choose to adopt

CI (or not), and barriers that developers face when adopting CI [18].

Moreover, the adoption of CI has been associated with project properties. Vasilescu et al. [45]

found that CI adoption is often accompanied with a boost in team productivity. Hilton et al. [20]

50

6.2. Outcome of CI

found that CI adoption was linked with project popularity, i.e., greater popularity implied a higher

likelihood of CI adoption.

One of the most important barriers to CI adoption is the lack of support for specializing CI

towards the process that a team is using [18]. Indeed, Widder et al. [49] observed that projects using

language tool-chains with limited support from Travis CI (e.g., C#) are more likely to abandon it.

We envision a tool that could bridge that gap by supporting developers who are creating or editing

CI specifications. To support the development of this tool, in this thesis, we mine existing Travis

CI specifications in search of common patterns of use that could be extrapolated into templates.

These templates could be specialized during the development and maintenance phases of the CI

specification.

6.2 Outcome of CI

The plethora of available CI data has enabled large-scale analyses of build processes. For example,

Zampetti et al. [50] analyzed the usage of static analysis tools from within the CI process. Beller

et al. [6] studied testing practices in Java and Ruby projects using Travis CI, observing that build

breakages (i.e., failing builds) are most often associated with test failures.

At its core, a CI cycle produces feedback about code changes. Failing builds in theory signal

a problem that should be tackled immediately. Hence, researchers have set out to understand and

predict failing builds in the CI context. For example, Rausch et al. [36] studied common types

of build breakages in 20 Java open source systems. Vassallo et al. [47] compared build failures in

the CI processes of open source organizations to those of a large financial institution. Gallaba et

al. [16] analyzed the levels of noise in build outcome data, e.g., breakages that do not prompt quick

responses (implying they did not need to be tackled immediately) or passing builds that include

failing jobs.

Like other software artifacts, developers may make mistakes when specifying CI systems. Gal-

laba and McIntosh [17] formulated, quantified, and fixed patterns of misuse of CI features (i.e.,

anti-patterns) in a large sample of Travis CI specifications. In their study on CI anti-patterns,

Vassallo et al. [46] argue that process-related CI anti-patterns tend to accrue because CI tends

to be overlooked when practicalities take precidence, e.g., the pressure to release. Labuschagne et

51

6.3. Concern-Oriented Reuse

al. [30] observed that long chains of broken builds were often due to misconfigured CI specifications.

Inspired by these prior studies, we set out to ease the burden of development and maintenance of

CI specifications by learning from the plethora of existing specifications.

6.3 Concern-Oriented Reuse

In the era of innovation and automation, reuse is a core concept in the context of SPL engineer-

ing [11, 35]. Krueger [29] defines software reuse as the process of creating software systems from

existing systems rather than creating them from scratch. He also says that abstraction plays a vital

role in software reuse and without abstraction developers will have to juggle through a collection

of reusable artifacts trying to figure out the functionality of each artifact and when and how they

can be reused. This fact is also supported by various other researchers [1, 8, 38].

Concern-Oriented Reuse (CORE) [39] is a new reuse paradigm for general-purpose software

development that combines concepts of Model Driven Engineering (MDE), Component-Based Soft-

ware Engineering (CBSE), Software Product Lines (SPL), advanced Separation of Concerns (SoC)

(including feature-oriented and aspect-oriented software development), and goal modeling [23].

Jézéquel et al. [23] say that the main premise of CORE is that recurring development concerns

are made available in a concern library, which eventually should cover most recurring software

development needs. Similar to class libraries in modern programming languages, this library should

grow as new development concerns emerge, and existing concerns should continuously evolve as

alternative architectural, algorithmic, and technological solutions become available. Applications

are built by reusing existing concerns from the library whenever possible, following a well-defined

reuse process supported by clear interfaces.

The TouchCORE tool [40] supports the CORE reuse process and comes with its own concern

library containing several often-used concerns. An example of such a concern is the Associations

concern [8], which captures all variations to associate two classes that might exchange or share data

with each other. This concern has been extensively reused in many different models. In this thesis,

we add the Travis CI concern to the existing concern library and demonstrate how it can be used

to create CI specification files.

The CORE approach is a next-generation reuse technique that supports the encapsulation of

52

6.3. Concern-Oriented Reuse

different structural and behavioral models and their impacts within one reusable model [1, 2].

CORE is supported by class diagrams, sequence diagrams, and state machines, and more recently

also Use Case Maps [43]. In this thesis, we add Travis CI specification files to the models available

in CORE.

Jézéquel et al. [23] apply the concepts of CORE to the engineering of software languages in

an approach called Concern-Oriented Language Development (COLD) that promotes modularity

and reusability of language concerns. A language concern is a reusable piece of language that

consists of usual language artifacts (e.g., abstract syntax, concrete syntax, semantics) and exhibits

the use of the Variation, Customization, and Usage (VCU) interfaces. In future work, the SpecFile

language could be defined using the COLD approach instead of the standard MOF metamodel-

based approach used in this thesis.

In this thesis, we collect the dominant features of CI so that they can be reused by the developers.

Feature Models were first introduced by Kang et al. [24] to capture the problem domain of an

SPL [34]. A feature model captures the potential features of aspects of an SPL in a tree structure,

containing those features that are commonly used across the domain and differ in functionality. A

particular subset of the feature model is defined by selecting the desired features from the feature

model, resulting in a feature model configuration [1]. We extend the feature configuration provided

in CORE’s metamodel to be able to select the same feature multiple times in an ordered fashion.

At the more detailed level called the abstraction realization [29], we state the realization models

of all the features. Mohagheghi et al. [31] state that, similar to knowledge reuse, software reuse

partly reflects the reuse of architectures, templates, and processes. This concept is consolidated by

MDA, which is based on widely-used industry standards for visualizing, storing, and exchanging

software design and models [28]. In this thesis, we use templates of CI specification files as real-

ization models for the features in the Travis CI feature model. Furthermore, we follow the reuse

process defined by the CORE approach to support the reuse of specification files.

UMPLE (UML Programming Language) is a textual design modeling tool supporting class dia-

grams and state diagrams [5]. It has a powerful code generator capabilities that handle multiplicity

constraints and referential integrity for associations and compositions. It is able to generate code

from class diagrams and state machines in more than 20 languages.15 In this thesis, we create

15https://cruise.eecs.uottawa.ca/umple/GettingStarted.html

53

https://cruise.eecs.uottawa.ca/umple/GettingStarted.html

6.4. Summary

a proof-of-concept implementation of the composition mechanism for Travis CI specification files

based on the code generated by UMPLE using metamodels of CORE and Travis CI. However, this

is a choice of convenience due to our familiarity with UMPLE, and we could have used any other

code generation environment.

6.4 Summary

In this chapter, we situate our work with respect to the literature on CI and CORE. We state the

trends in adoption of CI and its current status and summarize the landscape of reuse related to

CORE.

54

7
Conclusions

Thesis Statement. Despite the lack of tool support, reuse is a common activity when preparing

and maintaining CI configuration files. The swaths of available CI configuration files can be mined

to guide the extension of reuse frameworks to the CI configuration use case.

7.1 Contributions and Findings

In this thesis, we set out to enhance the experience of Continuous Integration (CI) using Concern-

Oriented Reuse (CORE) by letting the release engineers automatically create Travis CI specification

files for their projects instead of creating them from scratch. Travis CI is a commonly used CI service

for open-source projects.

More specifically, we analyze the phases and commands mentioned in the Travis CI files. We

start by analyzing 913 open source projects that use Travis CI and are implemented in Java. We

55

7.1. Contributions and Findings

observe that the “script”, “before install”, “install”, “after success”, and “before script” phases

most frequently appear in those Travis CI specifications. Furthermore, these phases contain 245

unique commands that can be categorized based on the similarity of their functionality. We discover

that although the source sample was large, we find no strong coherence in the manner in which the

phases, commands, or command categories tend to appear together in Travis CI specification files.

To support our argument, we analyze relationships among phases, among commands in a single

phase as well as across phases, and command categories in a single phase as well as across phases

in our sample of projects using Association Rule Mining (ARM). However, techniques other than

ARM may find different results.

We transform these frequent phases and commands categorized by usage in a CORE feature

model. Since we do not find patterns in the usage of Travis CI specifications, our intention to

provide suggestions to release engineers to consider choosing related phases and commands in Java

projects while making selections from the Travis feature model cannot be realized. Nonetheless,

we lay the groundwork to enable release engineers to choose features from a feature model and

create a corresponding CI specification file. To do this, we extend the metamodel of CORE to

allow selection of the same feature multiple times in a specific order as the same command can

appear multiple times within the same phase. We also propose an enhancement to the metamodel

of CORE to support the selection of related features. In addition, we create a metamodel for Travis

CI specification files, capturing groups, lines, and arguments. Based on these two metamodels, we

introduce a composition mechanism that automates the creation of the CI specification file given

an ordered feature selection.

Our contribution towards software reuse with CORE is the Travis CI concern created on the

basis of the Travis CI feature model, the metamodel of Travis CI specification files, and enhance-

ments to the CORE metamodel. The composition mechanism built on top of these metamodels

lets the release engineers create the Travis CI specification files by choosing the required Travis CI

features from its feature model in an ordered fashion.

56

7.2. Future Research

7.2 Future Research

7.2.1 Empirical Study

We plan to take the technological context of a project into account in future work (e.g., does the

project use a database?), which may also influence the existence of interesting CI reuse patterns.

Additional empirical studies could be performed (e.g., for other languages than Java, using other

techniques than ARM, for a specific application domain), which could further enhance the results

of the usage of Travis CI phases and commands. While our search for reuse patterns in this context

did not yield useful results, we hope that our work is helpful for researchers to understand the

usage of phases and commands of Travis CI specifications and they can build on it to further study

Travis CI specifications.

7.2.2 Reuse

We want to provide suggestions during feature selection, which will be possible once we detect more

useful reuse patterns. We want to investigate the impact of Travis CI features on system qualities

and non-functional requirements and then formalize the results in a goal model for the Variation

Interface of the Travis CI concern. We plan to optimize the results of our composition mechanism

by incorporating the partial elements like prefixes and options for Travis CI commands. We also

plan to determine a feature selection for Travis CI based on the feature selection for the actual

concern (e.g., Authentication), i.e., if a specific Authentication feature is chosen, then a specific CI

commands needs to be added.

While the proposed SpecFile metamodel focuses on Travis CI specification files, the metamodel

could be extended more generally to textual configuration files not limited to CI. This would allow

additional information about the software product and the employed development process to be

incorporated into the CORE approach.

While we demonstrate the feasibility of a Travis CI concern and its composition in a reuse

hierarchy, an empirical analysis of the usage of our Travis CI concern would allow us to determine

how efficient, easy to use, and useful the concern is to release engineers.

57

Bibliography

[1] Omar Alam, Jörg Kienzle, and Gunter Mussbacher. Concern-oriented software design. In Pro-
ceedings of the International Conference on Model Driven Engineering Languages and Systems,
pages 604–621. Springer, 2013.

[2] Omar Alam, Jörg Kienzle, and Gunter Mussbacher. Modelling a family of systems for crisis
management with concern-oriented reuse. Software: Practice and Experience, pages 985–999,
2017.

[3] Daniel Amyot, Sepideh Ghanavati, Jennifer Horkoff, Gunter Mussbacher, Liam Peyton, and
Eric Yu. Evaluating goal models within the goal-oriented requirement language. International
Journal of Intelligent Systems, pages 841–877, 2010.

[4] Daniel Amyot and Gunter Mussbacher. User requirements notation: the first ten years, the
next ten years. Journal of Software, pages 747–768, 2011.

[5] Omar Badreddin, Andrew Forward, and Timothy C. Lethbridge. Improving code generation for
associations: enforcing multiplicity constraints and ensuring referential integrity. In Software
Engineering Research, Management and Applications, pages 129–149. Springer, 2014.

[6] Moritz Beller, Georgios Gousios, and Andy Zaidman. Oops, my tests broke the build: An
explorative analysis of travis ci with github. In Proceedings of the IEEE/ACM International
Conference on Mining Software Repositories, pages 356–367. IEEE, 2017.

[7] David Benavides, Alexander Felfernig, José A. Galindo, and Florian Reinfrank. Automated
analysis in feature modelling and product configuration. In Proceedings of the International
Conference on Software Reuse, pages 160–175. Springer, 2013.

[8] Céline Bensoussan, Matthias Schöttle, and Jörg Kienzle. Associations in mde: A concern-
oriented, reusable solution. In Proceedings of the European Conference on Modelling Founda-
tions and Applications, pages 121–137. Springer, 2016.

[9] Grady Booch. Object Oriented Design with Applications. Benjamin-Cummings Publishing Co.,
Inc., 1991.

[10] Marko Bošković, Gunter Mussbacher, Ebrahim Bagheri, Daniel Amyot, Dragan Gašević, and
Marek Hatala. Aspect-oriented feature models. In Proceedings of the International Conference
on Model Driven Engineering Languages and Systems, pages 110–124. Springer, 2010.

[11] Lianping Chen and Muhammad Ali Babar. A systematic review of evaluation of variability
management approaches in software product lines. Information and Software Technology, pages
344–362, 2011.

[12] Peter Pin-Shan Chen. The entity-relationship model—toward a unified view of data. ACM
Transactions on Database Systems, pages 9–36, 1976.

58

Bibliography

[13] Michael A. Cusumano and Richard W. Selby. Microsoft secrets: how the world’s most powerful
software company creates technology, shapes markets, and manages people. Simon and Schuster,
1998.

[14] Krzysztof Czarnecki and Ulrich W. Eisenecker. Components and generative programming. In
ACM SIGSOFT Software Engineering Notes, pages 2–19. Springer-Verlag, 1999.

[15] Martin Fowler and Matthew Foemmel. Continuous integration.
https://www.thoughtworks.com/continuous-integration, page 14, 2006.

[16] Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh. Noise and het-
erogeneity in historical build data: an empirical study of travis ci. In Proceedings of the
ACM/IEEE International Conference on Automated Software Engineering, pages 87–97. ACM,
2018.

[17] Keheliya Gallaba and Shane McIntosh. Use and misuse of continuous integration features: An
empirical study of projects that (mis) use travis ci. IEEE Transactions on Software Engineer-
ing, pages 1–1, 2018.

[18] Michael Hilton, Nicholas Nelson, Danny Dig, Timothy Tunnell, Darko Marinov, et al. Con-
tinuous integration (ci) needs and wishes for developers of proprietary code. Technical report,
Corvallis, OR: Oregon State University, Dept. of Computer Science, 2016.

[19] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny Dig. Trade-offs
in continuous integration: assurance, security, and flexibility. In Proceedings of Joint Meeting
of the European Software Engineering Conference and the International Symposium on the
Foundations of Software Engineering, pages 197–207. ACM, 2017.

[20] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. Usage,
costs, and benefits of continuous integration in open-source projects. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, pages 426–437.
ACM, 2016.

[21] Jez Humble and David Farley. Continuous delivery: reliable software releases through build,
test, and deployment automation. Addison-Wesley Boston, 2011.

[22] ITU-T. Recommendation z.151 (10/18): User requirements notation (urn) - language defini-
tion. In SERIES Z: Languages and General Software Aspects for Telecommunication Systems,
Geneva, Switzerland, 2018.

[23] Jean-Marc Jézéquel, Manuel Leduc, Olivier Barais, Tanja Mayerhofer, Erwan Bousse, Wal-
ter Cazzola, Philippe Collet, Sébastien Mosser, Benoit Combemale, Thomas Degueule, et al.
Concern-oriented language development (cold): Fostering reuse in language engineering. Com-
puter Languages, Systems & Structures, pages 139–155, 2018.

[24] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer Peterson.
Feature-oriented domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon
Univ Pittsburgh Pa Software Engineering Inst, 1990.

[25] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. Why do Automated Builds Break?
An Empirical Study. In Proceedings of the International Conference on Software Maintenance
and Evolution, pages 41–50. IEEE, 2014.

59

Bibliography

[26] Jörg Kienzle, Wisam Al Abed, Franck Fleurey, Jean-Marc Jézéquel, and Jacques Klein. Aspect-
oriented design with reusable aspect models. In Transactions on aspect-oriented software
development VII, pages 272–320. Springer, 2010.

[27] Jörg Kienzle, Gunter Mussbacher, Omar Alam, Matthias Schöttle, Nicolas Belloir, Philippe
Collet, Benoit Combemale, Julien Deantoni, Jacques Klein, and Bernhard Rumpe. Vcu: the
three dimensions of reuse. In Proceedings of the International Conference on Software Reuse,
pages 122–137. Springer, 2016.

[28] Anneke G. Kleppe, Jos Warmer, Jos B. Warmer, and Wim Bast. MDA explained: the model
driven architecture: practice and promise. Addison-Wesley Professional, 2003.

[29] Charles W. Krueger. Software reuse. ACM Computing Surveys, pages 131–183, 1992.

[30] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. Measuring the cost of regression
testing in practice: a study of Java projects using continuous integration. In Proceedings of the
International Symposium on the Foundations of Software Engineering, pages 821–830. ACM,
2017.

[31] Parastoo Mohagheghi and Reidar Conradi. Quality, productivity and economic benefits of
software reuse: a review of industrial studies. Empirical Software Engineering, pages 471–516,
2007.

[32] Object Management Group (OMG). Unified modeling language.

[33] Harold Ossher and Peri Tarr. Multi-Dimensional Separation of Concerns and the Hyperspace
Approach, pages 293–323. Springer US, 2002.

[34] Klaus Pohl, Günter Böckle, and Frank J. van Der Linden. Software product line engineering:
foundations, principles and techniques. Springer Science & Business Media, 2005.

[35] Klaus Pohl and Andreas Metzger. Variability management in software product line engineering.
In Proceedings of the International Conference on Software Engineering, pages 1049–1050.
ACM, 2006.

[36] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. How Open Source
Projects Use Static Code Analysis Tools in Continuous Integration Pipelines. In Proceedings
of the International Conference on Mining Software Repositories, pages 345–355. IEEE, 2017.

[37] Douglas C. Schmidt. Model-driven engineering. IEEE Computer, pages 25–31, 2006.

[38] Matthias Schöttle. Model-based reuse of apis using concern-orientation. In Proceedings of the
ACM/IEEE International Conference on Model Driven Engineering Languages and Systems,
pages 41–45. ACM, 2015.

[39] Matthias Schöttle, Omar Alam, Jörg Kienzle, and Gunter Mussbacher. On the modularization
provided by concern-oriented reuse. In Proceedings of the International Conference companion
on Modularity, pages 184–189. ACM, 2016.

[40] Matthias Schöttle, Nishanth Thimmegowda, Omar Alam, Jörg Kienzle, and Gunter Muss-
bacher. Feature modelling and traceability for concern-driven software development with
touchcore. In Proceedings of the International Conference companion on Modularity, pages
11–14. ACM, 2015.

60

[41] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and Robert Bow-
didge. Programmers’ Build Errors: A Case Study (at Google). In Proceedings of the Interna-
tional Conference on Software Engineering, pages 724–734. ACM, 2014.

[42] Puneet Kaur Sidhu, Gunter Mussbacher, and Shane McIntosh. Reuse (or lack thereof) in travis
ci specifications: An empirical study of ci phases and commands. In Proceedings of the IEEE
International Conference on Software Analysis, Evolution and Reengineering, pages 524–533.
IEEE, 2019.

[43] Cheuk Chuen Siow. Concern-oriented use case maps. Master’s thesis, School of Computer
Science, McGill University, Canada, 2018.

[44] Nishanth Thimmegowda, Omar Alam, Matthias Schöttle, Wisam Al Abed, Thomas Di’Meco,
Laura Martellotto, Gunter Mussbacher, and Jörg Kienzle. Concern-driven software develop-
ment with jucmnav and touchram. In Proceedings of the ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems, page 5. Citeseer, 2014.

[45] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir Filkov. Quality
and productivity outcomes relating to continuous integration in github. In Proceedings of the
Joint Meeting on Foundations of Software Engineering, pages 805–816. ACM, 2015.

[46] Carmine Vassallo, Sebastian Proksch, Harald C. Gall, and Massimiliano Di Penta. Auto-
mated reporting of anti-patterns and decay in continuous integration. In Proceedings of the
International Conference on Software Engineering, pages 105–115. IEEE, 2019.

[47] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp Leitner,
Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. A tale of CI build failures:
An open source and a financial organization perspective. In Proceedings of the International
Conference on Software Maintenance and Evolution, pages 183–193. IEEE, 2017.

[48] Stephen A. White. BPMN modeling and reference guide: understanding and using BPMN.
Future Strategies Inc., 2008.

[49] David Widder, Bogdan Vasilescu, Michael Hilton, and Christian Kästner. I’m leaving you,
travis: a continuous integration breakup story. In Proceedings of the IEEE/ACM International
Conference on Mining Software Repositories, pages 165–169. IEEE, 2018.

[50] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Massimiliano Di
Penta. How Open Source Projects Use Static Code Analysis Tools in Continuous Integration
Pipelines. In Proceedings of the International Conference on Mining Software Repositories,
pages 334–344. IEEE, 2017.

[51] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bogdan Vasilescu.
The impact of continuous integration on other software development practices: a large-scale
empirical study. In Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering, pages 60–71. IEEE, 2017.

61

A
Python Code for Parser

The code below shows the algorithm which we used to parse the .travis.yml files and find data
of their phases and commands.

Program A.1: Parser.py

1 import os, sys, yaml, codecs, csv, pprint, argparse

2 import sqlite3 as lite

3 from collections import Iterable, defaultdict

4 from bashlex import parser, ast, errors

5 from utils import get_category, valid_top_level_keys

6 from importPhase import getPhase

7 from insertTravisAnalysisJavaDB import insertRowsTA

8
9 con = lite.connect(’test.db’)

10
11 # List of phases that we are analysing

12 phases = [’before_install’, ’install’, ’after_install’,

13 ’before_script’, ’script’, ’after_script’,

14 ’after_deploy’,’before_deploy’,

15 ’after_failure’, ’after_success’]

16
17 # Listing commands which appear in pairs. For example: pip can be accompanied with install or

update

18 pairCommands = [’pip’, ’apt-get’, ’git’, ’clean’, ’npm’,

19 ’bower’, ’nvm’, ’go’, ’xargs’, ’pip3’,

20 ’bundle’, ’service’, ’time’, ’bash’, ’sh’,

21 ’travis_retry’, ’travis_wait’,

22 ’travis_terminate’, ’ant’, ’android’, ’mvn’,

23 ’mvnw’, ’gradle’, ’gradlew’, ’bash64’, ’python’]

24 results = {}

25 everything = set()

26 travis_keys = set()

27 travis_keys_count = defaultdict(int)

28 results_section_line_count = {}

29 global_category_count = defaultdict(int)

30 results_phase_type = {}

31 results_line_count = {}

62

Appendix A. Python Code for Parser

32 global_phase_line_count = defaultdict(int)

33 global_phase_count = defaultdict(int)

34 global_phase_project_list = defaultdict(list)

35 global_lang_count = defaultdict(int)

36 y = ""

37 x = ""

38 z = ""

39 option = ""

40 param = ""

41 setFlag = ""

42
43
44 class nodevisitor(ast.nodevisitor):

45 def __init__(self, phase, phase_by_type, commands_in_phase):

46 self.phase = phase

47 self.phase_by_type = phase_by_type

48 self.commands_in_phase = commands_in_phase

49
50 # command pairs, remove if(), if command numeric

51 def visitcommand(self, n, parts):

52 global x

53 x = next((x.word.split(’/’)[-1] for x in parts if (

54 x.kind == ’word’ and ’=’ not in x.word.split(’/’)[-1]

55 and x.word.split(’/’)[-1] not in

56 (’sudo’, ’-c’, ’-e’, ’=’, ’]’, ’[’, ’!’, ’bash)’, ’!’,

57 ’)’, ’(’, ’.’, ’:’))), None)

58 # collected all x from parts

59 if x in pairCommands:

60 # checked if any x exists in pair commands

61 global lenOfParts

62 lenOfParts = len(parts)

63 for index, item in enumerate(parts):

64 global setFlag

65 xMatch = item.word.split(’/’)[-1]

66 # xMatch is same as x as it is the part here

67 if (xMatch == x and index < (lenOfParts - 1)):

68 # checking if the xMatch(part extracted) is same as x i.e. if it is in pair

commands

69 try:

70 nextItem = parts[index + 1]

71 nextWord = nextItem.word.split(’/’)[-1]

72 paramItem = parts[index + 2]

73 paramWord = paramItem.word.split(’/’)[-1]

74 secNextItem = parts[index + 2]

75 secNextWord = secNextItem.word.split(’/’)[-1]

76 param_secNextItem = parts[index + 3]

77 param_secNextWord = param_secNextItem.word.split(’/’)[-1]

78 except IndexError:

79 secNextWord = ’’

80 param_secNextWord = ’’

81 paramWord = ’’

82 global z

83 z = nextWord

84 global param

85 param = paramWord

86 if z in (’-y’, ’-q’, ’-v’, ’-qq’,

87 ’-yq’, ’-p’, ’-B’, ’-e’, ’-U’,

88 ’-u’, ’-C’, ’-N’, ’-X’,

89 ’-c’, ’-s’, ’--force-yes’):

63

Appendix A. Python Code for Parser

90 global option

91 option = z

92 z = secNextWord

93 param = param_secNextWord

94 if param in (’-y’, ’-q’, ’-v’,

95 ’-qq’, ’-yq’, ’-p’, ’-B’,

96 ’-e’, ’-U’, ’-u’, ’-C’,

97 ’-N’,’-X’, ’-c’, ’-s’,

98 ’--force-yes’):

99 setFlag = ’yes’

100 param = ’’

101 if z in (’-c’, ’-s’):

102 return False

103 if z == ’clean’:

104 z = z + ’ ’ + param_secNextWord

105 # param = paramWord4

106 param = ’’

107 else:

108 global lenOfParts1

109 lenOfParts1 = len(parts)

110 for index, item in enumerate(parts):

111 xMatch = item.word.split(’/’)[-1]

112 # xMatch is same as x as it is the part here

113 if (xMatch == x and index < (lenOfParts1 - 1)):

114 # checking if the xMatch(part extracted) is same as x i.e. if it is in pair

commands

115
116 try:

117 paramItem = parts[index + 1]

118 paramItem2 = parts[index + 2]

119 param = paramItem.word.split(’/’)[-1]

120 paramWord2 = paramItem2.word.split(’/’)[-1]

121 if param in (’-y’, ’-q’, ’-v’,

122 ’-qq’, ’-yq’, ’-p’, ’-B’,

123 ’-e’, ’-U’, ’-u’, ’-C’, ’-N’,

124 ’-X’, ’-c’, ’-s’, ’--force-yes’):

125 option = param

126 param = paramWord2

127 if param in (’-y’, ’-q’, ’-v’, ’-qq’,

128 ’-yq’, ’-p’, ’-B’, ’-e’, ’-U’,

129 ’-u’, ’-C’, ’-N’, ’-X’, ’-c’, ’-s’,

130 ’--force-yes’):

131 param = ’’

132 setFlag = ’yes’

133 except IndexError:

134 param = ’’

135 paramItem2 = ’’

136 paramWord2 = ’’

137 if x.startswith("$", 0, len(x)):

138 return False

139 if x.startswith("’", 0, len(x)):

140 return False

141 if x.startswith("‘", 0, len(x)):

142 return False

143 if x.startswith("-", 0, len(x)):

144 return False

145 if x.startswith("_", 0, len(x)):

146 return False

147 if (x and x[0].isdigit()):

64

Appendix A. Python Code for Parser

148 return False

149 if "$" in x:

150 return False

151 if "." in x:

152 return False

153 if " fi" in x:

154 return False

155 if ";" in x:

156 return False

157 if "&&" in x:

158 return False

159 if ":" in x:

160 return False

161 if x in phases:

162 return False

163 global y

164 y = next((y.word.split(’/’)[-1] for y in parts if

165 (y.kind == ’word’ and ’=’ not in

166 y.word.split(’/’)[-1] and

167 y.word.split(’/’)[-1] in (’sudo’))), None)

168 if x and x not in self.commands_in_phase:

169 self.phase[x] += 1

170 self.phase_by_type[get_category(x)] += 1

171 print("Phase command: ", x, "--> Category :", get_category(x))

172 global_category_count[x] += 1

173 print ("command is ---> ", x)

174 self.commands_in_phase.add(x)

175 # TravisAnalysisJava (PROJECT_NAME,SUB_PHASE,COMMAND_PREFIX,COMMAND,COMMAND_ARGUMENT)

176 print("final values prefix is:", y, " command is: ", x, " option is: ", option, " param is:

", param)

177 if (x):

178 fileData = [project_name, testPhase, y, x, z, option, param, setFlag]

179 finalFile = open(’superDS.csv’, ’a’)

180 outputWriter = csv.writer(finalFile)

181 z = ""

182 setFlag = ""

183 option = ""

184 param = ""

185 try:

186 outputWriter.writerow(fileData)

187 except UnicodeEncodeError as err:

188 pass

189
190 return True

191
192
193 def parse_line(line, results_phase, results_phase_type_phase, commands_in_phase):

194 try:

195 trees = parser.parse(line)

196 for tree in trees:

197 visitor = nodevisitor(results_phase, results_phase_type_phase, commands_in_phase)

198 visitor.visit(tree)

199 except errors.ParsingError:

200 print("Bash Parsing Error...", yaml_path)

201 except NotImplementedError:

202 print("Not implemented command...", yaml_path)

203 except AttributeError:

204 print("Bashlex bug...", yaml_path)

205

65

Appendix A. Python Code for Parser

206
207 def traverse_node(root_node_name, content, results, current_node_name, r, p):

208 if isinstance(content, dict):

209 for k, v in content.items():

210 traverse_node(root_node_name, v, results, k, r, p)

211 elif isinstance(content, list) or isinstance(content, tuple):

212 for item in content:

213 traverse_node(root_node_name, item, results, current_node_name, r, p)

214 else:

215 if root_node_name in phases:

216 global sub_phase

217 sub_phase = root_node_name

218 r[root_node_name] += 1

219
220
221 def analyze_phases(language, doc, project_name):

222 global global_phase_count

223 global global_phase_line_count

224 global global_phase_project_list

225 global global_lang_count

226 r = defaultdict(int)

227 global_lang_count[language] += 1

228 temp_res = defaultdict(int)

229 for k, v in doc.items():

230 traverse_node(k, v, temp_res, k, r, project_name)

231 if True:

232 results_line_count[project_name] = defaultdict(int)

233 for phase in phases:

234 if phase in doc and doc[phase]:

235 commands_in_phase = set()

236 if not phase in results:

237 results[phase] = defaultdict(int)

238 results_phase_type[phase] = defaultdict(int)

239 phase_arr = doc[phase]

240 if isinstance(phase_arr, str):

241 phase_arr = [phase_arr]

242 if not isinstance(phase_arr, Iterable):

243 continue

244 global_phase_line_count[phase] += len(phase_arr)

245 global_phase_count[phase] += 1

246 global_phase_project_list[phase].append(project_name)

247 results_line_count[project_name][phase] = len(phase_arr)

248 for line in phase_arr:

249 if not isinstance(line, str):

250 continue

251 global testPhase

252 testPhase = phase

253 parse_line(line, results[phase], results_phase_type[phase], commands_in_phase)

254 else:

255 pass

256 if __name__ == ’__main__’:

257 argparser = argparse.ArgumentParser(description=’-d Directory -p path_to_project_list’)

258 argparser.add_argument(’-d’, dest=’directory’, default=’travis_yml_only’)

259 argparser.add_argument(’-p’, dest=’projects_path’, default=’javaProjectList.txt’)

260 args = argparser.parse_args()

261 directory = ’travis_yml_only’

262 if args.directory:

263 directory = args.directory

264

66

Appendix A. Python Code for Parser

265 projects_path = ’javaProjectList.txt’

266 if args.projects_path:

267 projects_path = args.projects_path

268
269 with open(projects_path, ’r’) as f:

270 for line in f:

271 project_name = line.strip()

272 yaml_path = os.path.join(directory, project_name, ’.travis.yml’)

273 print(’projectname’, project_name)

274 print(’parsing %s’ % yaml_path)

275 try:

276 num_lines = sum(1 for line in codecs.open(yaml_path, ’r’, ’utf-8’))

277 except UnicodeDecodeError as err:

278 print(err)

279 continue

280 with codecs.open(yaml_path, ’r’, ’utf-8’) as f:

281 try:

282 doc = yaml.load(f)

283 if doc:

284 if ’language’ in doc and doc[’language’]:

285 lang = doc[’language’]

286 if not isinstance(lang, str):

287 for language in lang:

288 language = language.strip(’",’).lower()

289 analyze_phases(language, doc, project_name)

290 break

291 else:

292 lang = lang.strip(’",’).lower()

293 analyze_phases(lang, doc, project_name)

294 except yaml.scanner.ScannerError as err:

295 print("Scanner Error...", yaml_path)

296 print (err)

297 except yaml.composer.ComposerError as err:

298 print("Composer Error...", yaml_path)

299 print (err)

300 except yaml.parser.ParserError:

301 print("Malformed YAML...", yaml_path)

302 except yaml.reader.ReaderError:

303 print("Reader Error...", yaml_path)

304 print(’.........................’)

67

B
R Code for Empirical Study and Association Rule

Mining

The program listings below state the R code used to analyze the data generated after parsing Travis
CI specification files.

Program B.1: FrequencyAnalysis.R

1 #reading input dataset

2 library(readr)

3 superDS <- read_csv("superDS.csv")

4
5 #Analysis

6
7
8 totalProjects<-sqldf::sqldf("select count(distinct project) from [superDS]")

9 totalPhases<-sqldf::sqldf("select distinct phase from [superDS]")

10 totalDistinctCommands <- sqldf::sqldf("select distinct command from [superDS]")

11 totalDistinctFullCommands <- sqldf::sqldf("select distinct fullCommand from [superDS]")

12
13 #Gives the frequency of the phases

14 phaseForAllProjects <- sqldf::sqldf("select count(distinct project) as p, phase from [superDS]

15 group by phase order by p desc")

16
17 #Gives the usage of top categories per phase

18 projectCount_buildersFrequency_scriptPhase<-sqldf::sqldf("select count(category) as buildersFreq,

project from [superDS]

19 where category = ’builders’ and phase = ’script’

20 group by project order by buildersFreq desc")

21 projectCount_env_setupFrequency_before_installPhase<-sqldf::sqldf("select count(category) as c,

project from [superDS]

22 where category = ’env_setup’ and phase = ’before_

install’

23 group by project order by c desc")

24 projectCount_buildersFrequency_installPhase<-sqldf::sqldf("select count(category) as c, project

from [superDS]

25 where category = ’builders’ and phase = ’install’

26 group by project order by c desc")

68

Appendix B. R Code for Empirical Study and Association Rule Mining

27 projectCount_buildersFrequency_after_successPhase<-sqldf::sqldf("select count(category) as c,

project from [superDS]

28 where category = ’builders’ and phase = ’after_

success’

29 group by project order by c desc")

30 projectCount_env_setupFrequency_before_scriptPhase<-sqldf::sqldf("select count(category) as c,

project from [superDS]

31 where category = ’env_setup’ and phase = ’before_

script’

32 group by project order by c desc")

33 projectCount_categoryUsage_allPhases<-sqldf::sqldf("select count(distinct project) as count,

category from [superDS]

34 where category != ’other’

35 group by category order by count desc")

36
37 #Finding usage of commands per phase and category

38 commandUsage <- sqldf::sqldf("select command, count(distinct project) as c from [superDS]

39 group by command order by c desc")

40 commandUsage_script_builders <- sqldf::sqldf("select command, count(distinct project) as c from [

superDS]

41 where phase = ’script’ and category = ’builders’

42 group by command order by c desc")

43 commandUsage_before_install_env_setup <- sqldf::sqldf("select command, count(distinct project) as c

from [superDS]

44 where phase = ’before_install’ and category = ’env_setup’

45 group by command order by c desc")

46 commandUsage_install_builders <- sqldf::sqldf("select command, count(distinct project) as c from [

superDS]

47 where phase = ’install’ and category = ’builders’

48 group by command order by c desc")

49 commandUsage_after_success_builders <- sqldf::sqldf("select command, count(distinct project) as c

from [superDS]

50 where phase = ’after_success’ and category = ’builders’

51 group by command order by c desc")

52 commandUsage_before_script_env_setup <- sqldf::sqldf("select command, count(distinct project) as c

from [superDS]

53 where phase = ’before_script’ and category = ’env_setup’

54 group by command order by c desc")

Program B.2: ARM Phases.R

1 #1. Which phases occur together?

2
3 library(arules)

4 library(arulesViz)

5 library(ggplot2)

6 arm_phase<-sqldf::sqldf("select distinct phase, project from [superDS]")

7 View(arm_phase)

8 write.csv(arm_phase, "arm_phase.csv")

9 #I run numbers, delete 1st column and 1 row of the above csv.

10 #Then run arules.py on the resultant after giving proper names to files.

11 #Created arule_arm_phase with arule source data. Now will apply apriori:

12 arule_arm_phase <- read.transactions("arule_arm_phase.csv", sep = ",", rm.duplicates= FALSE)

13 rules_arm_phase <- apriori(arule_arm_phase,parameter = list(supp=0.001,conf=0.7))

14 rules_arm_phase.sorted <- sort(rules_arm_phase,by="count")

15 inspect(rules_arm_phase.sorted)

16 write(rules_arm_phase.sorted, file = "rules_arm_phase.sorted1.csv", sep = ",")

17 #=12 rules

18

69

Appendix B. R Code for Empirical Study and Association Rule Mining

19 plot(rules_arm_phase.sorted)

20 plot(rules_arm_phase.sorted, method="graph", control=list(type="items"))

Program B.3: ARM Commands.R

1 #2(a) Which commands occur together in script phase?

2 arm_command_allCategories<-sqldf::sqldf("select distinct command, project from [superDS] where

phase = ’script’")

3 View(arm_command_allCategories)

4 write.csv(arm_command_allCategories, "arm_command_allCategories.csv")

5 #I run numbers, delete 1st column and 1 row of the above csv.

6 #Then run arules.py on the resultant after giving proper names to files.

7 #Created arm_command_allCategories with arule source data. Now will apply apriori:

8 arule_arm_command_allCategories <- read.transactions("arule_arm_command_allCategories.csv", sep = "

,", rm.duplicates= FALSE)

9 rules_arm_command_allCategories <- apriori(arule_arm_command_allCategories,parameter = list(supp

=0.002,conf=0.7))

10 #rules_arm_command_allCategories <- apriori(arule_arm_command_allCategories,parameter = list(supp

=0.003,conf=1))

11 rules_arm_command_allCategories_script.sorted <- sort(rules_arm_command_allCategories,by="count")

12 inspect(rules_arm_command_allCategories_script.sorted)

13 plot(rules_arm_command_allCategories_script.sorted, method = "scatterplot", engine = "htmlwidget",

control = list(max = 10))

14 84

15 #2(b) Which commands occur together in before_install phase?

16 arm_command_allCategories_before_install<-sqldf::sqldf("select distinct command, project from [

superDS] where phase = ’before_install’")

17 View(arm_command_allCategories_before_install)

18 write.csv(arm_command_allCategories_before_install, "arm_command_allCategories_before_install.csv")

19 #I run numbers, delete 1st column and 1 row of the above csv.

20 #Then run arules.py on the resultant after giving proper names to files.

21 #Created arm_command_allCategories with arule source data. Now will apply apriori:

22 arule_arm_command_allCategories_before_install <- read.transactions("arule_arm_command_

allCategories_before_install.csv", sep = ",", rm.duplicates= FALSE)

23 rules_arm_command_allCategories_before_install <- apriori(arule_arm_command_allCategories_before_

install,parameter = list(supp=0.04,conf=0.8))

24 #rules_arm_command_allCategories <- apriori(arule_arm_command_allCategories,parameter = list(supp

=0.003,conf=1))

25 rules_arm_command_allCategories_before_install.sorted <- sort(rules_arm_command_allCategories_

before_install,by="count")

26 inspect(rules_arm_command_allCategories_before_install.sorted)

27 write(rules_arm_command_allCategories_before_install.sorted, file = "rules_arm_command_

allCategories.csv", sep = ",")

28 plot(rules_arm_command_allCategories_before_install.sorted, method = "scatterplot", engine = "

htmlwidget", control = list(max = 10))

29 41

30 #2(c) Which commands occur together in install phase?

31 arm_command_allCategories_install<-sqldf::sqldf("select distinct command, project from [superDS]

where phase = ’install’")

32 View(arm_command_allCategories_install)

33 write.csv(arm_command_allCategories_install, "arm_command_allCategories_install.csv")

34 #I run numbers, delete 1st column and 1 row of the above csv.

35 #Then run arules.py on the resultant after giving proper names to files.

36 #Created arm_command_allCategories with arule source data. Now will apply apriori:

37 arule_arm_command_allCategories_install <- read.transactions("arule_arm_command_allCategories_

install.csv", sep = ",", rm.duplicates= FALSE)

38 rules_arm_command_allCategories_install <- apriori(arule_arm_command_allCategories_install,

parameter = list(supp=0.001,conf=0.7))

70

Appendix B. R Code for Empirical Study and Association Rule Mining

39 #rules_arm_command_allCategories <- apriori(arule_arm_command_allCategories,parameter = list(supp

=0.003,conf=1))

40 rules_arm_command_allCategories_install.sorted <- sort(rules_arm_command_allCategories_install,by="

count")

41 inspect(rules_arm_command_allCategories_install.sorted)

42 plot(rules_arm_command_allCategories_install.sorted, method = "scatterplot", engine = "htmlwidget",

control = list(max = 10))

43 7

44 #2(d) Which commands occur together in after_success phase?

45 arm_command_allCategories_after_success<-sqldf::sqldf("select distinct command, project from [

superDS] where phase = ’after_success’")

46 View(arm_command_allCategories_after_success)

47 write.csv(arm_command_allCategories_after_success, "arm_command_allCategories_after_success.csv")

48 #I run numbers, delete 1st column and 1 row of the above csv.

49 #Then run arules.py on the resultant after giving proper names to files.

50 #Created arm_command_allCategories with arule source data. Now will apply apriori:

51 arule_arm_command_allCategories_after_success <- read.transactions("arule_arm_command_allCategories

_after_success.csv", sep = ",", rm.duplicates= FALSE)

52 rules_arm_command_allCategories_after_success <- apriori(arule_arm_command_allCategories_after_

success,parameter = list(supp=0.001,conf=0.7))

53 rules_arm_command_allCategories_after_success.sorted <- sort(rules_arm_command_allCategories_after_

success,by="count")

54 inspect(rules_arm_command_allCategories_after_success.sorted)

55 plot(rules_arm_command_allCategories_after_success.sorted, method = "scatterplot", engine = "

htmlwidget", control = list(max = 10))

56 13

57
58 #2(e) Which commands occur together in before_script phase?

59 arm_command_allCategories_before_script<-sqldf::sqldf("select distinct command, project from [

superDS] where phase = ’before_script’")

60 View(arm_command_allCategories_before_script)

61 write.csv(arm_command_allCategories_before_script, "arm_command_allCategories_before_script.csv")

62 #I run numbers, delete 1st column and 1 row of the above csv.

63 #Then run arules.py on the resultant after giving proper names to files.

64 #Created arm_command_allCategories with arule source data. Now will apply apriori:

65 arule_arm_command_allCategories_before_script <- read.transactions("arule_arm_command_allCategories

_before_script.csv", sep = ",", rm.duplicates= FALSE)

66 rules_arm_command_allCategories_before_script <- apriori(arule_arm_command_allCategories_before_

script,parameter = list(supp=0.001,conf=0.7))

67 #rules_arm_command_allCategories <- apriori(arule_arm_command_allCategories,parameter = list(supp

=0.003,conf=1))

68 rules_arm_command_allCategories_before_script.sorted <- sort(rules_arm_command_allCategories_before

_script,by="count")

69 inspect(rules_arm_command_allCategories_before_script.sorted)

70 plot(rules_arm_command_allCategories_before_script.sorted, method = "scatterplot", engine = "

htmlwidget", control = list(max = 10))

Program B.4: ARM Categories.R

1 library(readr)

2 library(arules)

3 library(arulesViz)

4 superDS <- read_csv("superDS.csv")

5 #2(a). Which categories of commands occur together under script phase?

6
7 arm_category_script<-sqldf::sqldf("select distinct category, project from [superDS] where phase = ’

script’ and category !=’other’")

8 View(arm_category_script)

9 write.csv(arm_category_script, "arm_category_script.csv")

71

Appendix B. R Code for Empirical Study and Association Rule Mining

10 #I run numbers, delete 1st column and 1 row of the above csv.

11 #Then run arules.py on the resultant after giving proper names to files.

12 #Created arule_arm_category with arule source data. Now will apply apriori:

13 arule_arm_category_script <- read.transactions("arule_arm_category_script.csv", sep = ",", rm.

duplicates= FALSE)

14 rules_arm_category_script <- apriori(arule_arm_category_script,parameter = list(supp=0.001,conf

=0.7))

15 #rules_arm_category <- apriori(arule_arm_category,parameter = list(supp=0.002,conf=1))

16 rules_arm_category_script.sorted <- sort(rules_arm_category_script,by="count")

17 inspect(rules_arm_category_script.sorted)

18 plot(rules_arm_category_script.sorted, method = "scatterplot", engine = "htmlwidget", control =

list(max = 10))

19
20 #2(b). Which categories of commands occur together under before_install phase?

21
22 arm_category_before_install<-sqldf::sqldf("select distinct category, project from [superDS] where

phase = ’before_install’ and category !=’other’")

23 View(arm_category_before_install)

24 write.csv(arm_category_before_install, "arm_category_before_install.csv")

25 #I run numbers, delete 1st column and 1 row of the above csv.

26 #Then run arules.py on the resultant after giving proper names to files.

27 #Created arule_arm_category with arule source data. Now will apply apriori:

28 arule_arm_category_before_install <- read.transactions("arule_arm_category_before_install.csv", sep

= ",", rm.duplicates= FALSE)

29 #rules_arm_category_before_install <- apriori(arule_arm_category_before_install,parameter = list(

supp=0.001,conf=0.8))

30 rules_arm_category_before_install <- apriori(arule_arm_category_before_install,parameter = list(

supp=0.001,conf=0.7))

31 rules_arm_category_before_install.sorted <- sort(rules_arm_category_before_install,by="count")

32 inspect(rules_arm_category_before_install.sorted)

33 plot(rules_arm_category_before_install.sorted, method = "scatterplot", engine = "htmlwidget",

control = list(max = 10))

34
35 #2(c). Which categories of commands occur together under install phase?

36
37 arm_category_install<-sqldf::sqldf("select distinct category, project from [superDS] where phase =

’install’ and category !=’other’")

38 #View(arm_category_install)

39 write.csv(arm_category_install, "arm_category_install.csv")

40 #I run numbers, delete 1st column and 1 row of the above csv.

41 #Then run arules.py on the resultant after giving proper names to files.

42 #Created arule_arm_category with arule source data. Now will apply apriori:

43 arule_arm_category_install <- read.transactions("arule_arm_category_install.csv", sep = ",", rm.

duplicates= FALSE)

44 rules_arm_category_install <- apriori(arule_arm_category_install,parameter = list(supp=0.001,conf

=0.7))

45 #rules_arm_category_install <- apriori(arule_arm_category_install,parameter = list(supp=0.002,conf

=1))

46 rules_arm_category_install.sorted <- sort(rules_arm_category_install,by="count")

47 inspect(rules_arm_category_install.sorted)

48 plot(rules_arm_category_install.sorted, method = "scatterplot", engine = "htmlwidget", control =

list(max = 10))

49
50 #2(d). Which categories of commands occur together under after_success phase?

51
52 arm_category_after_success<-sqldf::sqldf("select distinct category, project from [superDS] where

phase = ’after_success’ and category !=’other’")

53 #View(arm_category_after_success)

54 write.csv(arm_category_after_success, "arm_category_after_success.csv")

72

Appendix B. R Code for Empirical Study and Association Rule Mining

55 #I run numbers, delete 1st column and 1 row of the above csv.

56 #Then run arules.py on the resultant after giving proper names to files.

57 #Created arule_arm_category with arule source data. Now will apply apriori:

58 arule_arm_category_after_success <- read.transactions("arule_arm_category_after_success.csv", sep =

",", rm.duplicates= FALSE)

59 rules_arm_category_after_success <- apriori(arule_arm_category_after_success,parameter = list(supp

=0.001,conf=0.7))

60 #rules_arm_category_after_success <- apriori(arule_arm_category_after_success,parameter = list(supp

=0.002,conf=1))

61 rules_arm_category_after_success.sorted <- sort(rules_arm_category_after_success,by="count")

62 inspect(rules_arm_category_after_success.sorted)

63 plot(rules_arm_category_after_success.sorted, method = "scatterplot", engine = "htmlwidget",

control = list(max = 10))

64
65 #2(e). Which categories of commands occur together under before_script phase?

66
67 arm_category_before_script<-sqldf::sqldf("select distinct category, project from [superDS] where

phase = ’before_script’ and category !=’other’")

68 #View(arm_category_before_script)

69 write.csv(arm_category_before_script, "arm_category_before_script.csv")

70 #I run numbers, delete 1st column and 1 row of the above csv.

71 #Then run arules.py on the resultant after giving proper names to files.

72 #Created arule_arm_category with arule source data. Now will apply apriori:

73 arule_arm_category_before_script <- read.transactions("arule_arm_category_before_script.csv", sep =

",", rm.duplicates= FALSE)

74 rules_arm_category_before_script <- apriori(arule_arm_category_before_script,parameter = list(supp

=0.001,conf=0.7))

75 #rules_arm_category_before_script <- apriori(arule_arm_category_before_script,parameter = list(supp

=0.002,conf=1))

76 rules_arm_category_before_script.sorted <- sort(rules_arm_category_before_script,by="count")

77 inspect(rules_arm_category_before_script.sorted)

78 plot(rules_arm_category_before_script.sorted, method = "scatterplot", engine = "htmlwidget",

control = list(max = 10))

Program B.5: ARM CommandsAcrossPhases.R

1 #Which commands occur together across phases?

2 library(arules)

3 library(arulesViz)

4 arm_command_allPhases<-sqldf::sqldf("select distinct command, project from [superDS]")

5 View(arm_command_allPhases)

6 write.csv(arm_command_allPhases, "arm_command_allPhases.csv")

7 #I run numbers, delete 1st column and 1 row of the above csv.

8 #Then run arules.py on the resultant after giving proper names to files.

9 #Created arm_command_allPhases with arule source data. Now will apply apriori:

10 arule_arm_command_allPhases <- read.transactions("arule_arm_command_allPhases.csv", sep = ",", rm.

duplicates= FALSE)

11 rules_arm_command_allPhases <- apriori(arule_arm_command_allPhases,parameter = list(supp=0.02,conf

=0.8))

12 rules_arm_command_allPhases.sorted <- sort(rules_arm_command_allPhases,by="count")

13 inspect(rules_arm_command_allPhases.sorted)

14 #write(rules_arm_command_allPhases.sorted, file = "rules_arm_command_allPhasesFile2.csv", sep =

",")

15 plot(rules_arm_command_allPhases.sorted, method = "scatterplot", engine = "htmlwidget", control =

list(max = 10))

73

Appendix B. R Code for Empirical Study and Association Rule Mining

Program B.6: ARM CategoriesAcrossPhases.R

1 #Which categories of commands occur together under script phase?

2
3 arm_categoryAllPhases<-sqldf::sqldf("select distinct category, project from [superDS] where

category !=’other’")

4 View(arm_categoryAllPhases)

5 write.csv(arm_categoryAllPhases, "arm_categoryAllPhases.csv")

6 #I run numbers, delete 1st column and 1 row of the above csv.

7 #Then run arules.py on the resultant after giving proper names to files.

8 #Created arule_arm_categoryAllPhases with arule source data. Now will apply apriori:

9 arule_arm_categoryAllPhases <- read.transactions("arule_arm_categoryAllPhases.csv", sep = ",", rm.

duplicates= FALSE)

10 rules_arm_categoryAllPhases <- apriori(arule_arm_categoryAllPhases,parameter = list(supp=0.009,conf

=0.7))

11 rules_arm_categoryAllPhases.sorted <- sort(rules_arm_categoryAllPhases,by="count")

12 inspect(rules_arm_categoryAllPhases.sorted)

13 #write(rules_arm_categoryAllPhases.sorted, file = "rules_arm_categoryAllPhasesFile3.csv", sep =

",")

14 plot(rules_arm_categoryAllPhases.sorted, method = "scatterplot", engine = "htmlwidget", control =

list(max = 10))

Program B.7: CohenKappa.R

1 install.packages(’psych’)

2 library(psych)

3
4 # Puneet

5 profOrig = c("builders","builders","interpreter","internet","pkg_mgr","pkg_mgr","pkg_mgr","pkg_mgr"

,"other_unix","vcs","travis_command","compress","env_setup","compress","fs","fs","not_mutate","

mobile_framework","not_mutate","builders","execute_script","execute_script","execute_script","

pkg_mgr","fs","not_mutate","env_setup","builders","other_unix","not_mutate","not_mutate","other

_unix","not_mutate","interpreter","text_manipulate","not_mutate","text_manipulate","execute_

script","builders","other_unix","other_unix","other_unix","execute_script","pkg_installers","

pkg_mgr","not_mutate","other","interpreter","fs","security","code_coverage","execute_script","

execute_script","fs","env_setup","database","execute_script","execute_script","","env_setup","

not_mutate","interpreter","database","compress","interpreter","database","execute_script","fs",

"execute_script","execute_script","not_mutate","compiler","compiler","interpreter","env_setup",

"internet","not_mutate","builders","execute_script","execute_script","process_mgmt","security",

"interpreter","security","security","fs","fs","compress","internet","other","security","

interpreter","builders","execute_script","database","execute_script","execute_script","execute_

script","execute_script","???","execute_script","other","database","database","travis_command",

"not_mutate","execute_script","execute_script","env_setup","compiler","fs","other_unix","text_

manipulate","interpreter","interpreter","fs","pkg_installers","pkg_mgr","pkg_mgr","interpreter"

,"builders","execute_script","execute_script","execute_script","execute_script","other_unix","

execute_script","fs","env_setup","execute_script","sca","pkg_mgr","execute_script","other_unix"

,"execute_script","pkg_installers","compress","not_mutate","pkg_mgr","interpreter","builders","

fs","travis_command","interpreter","interpreter","execute_script","execute_script","travis_

command","execute_script","execute_script","execute_script","execute_script","text_manipulate",

"env_setup","not_mutate","browser_env","code_coverage","env_setup","pkg_installers","

interpreter","interpreter","other","other","security","not_mutate","execute_script","execute_

script","execute_script","other_unix","execute_script","execute_script","execute_script","other

","other","other","other","interpreter","builders","other_unix","builders","process_mgmt","

process_mgmt","other","sca","vcs","other_unix","env_setup","execute_script","compiler","pkg_mgr

","execute_script","execute_script","compiler","execute_script","execute_script","execute_

script","interpreter","internet","execute_script","process_mgmt","sca","other_unix","execute_

script","code_coverage","env_setup","database","execute_script","compiler","other","other","

interpreter","text_manipulate","text_manipulate","fs","env_setup","env_setup","interpreter","

compiler","other","browser_env","security","builders","pkg_mgr","builders","builders","execute_

74

Appendix B. R Code for Empirical Study and Association Rule Mining

script","sca","pkg_installers","pkg_mgr","env_setup","other","anti-virus","not_mutate","execute

_script","other_unix","builders","builders","interpreter","compress","internet","not_mutate","

database","interpreter","","builders")

6 puneetOrig = c("builders","builders","interpreter","internet","pkg_installers","pkg_installers","

pkg_installers","pkg_mgr","other","vcs","travis_command","compress","other_unix","compress","fs

","fs","not_mutate","mobile_framework","not_mutate","compiler","execute_script","execute_script

","execute_script","pkg_mgr","fs","not_mutate","not_mutate","builders","other","not_mutate","

other_unix","other","not_mutate","interpreter","text_manipulate","text_manipulate","text_

manipulate","execute_script","builders","not_mutate","builders","other","execute_script","

version_mgr","pkg_mgr","other","env_setup","interpreter","fs","security","code_coverage","

execute_script","execute_script","security","not_mutate","storage","execute_script","execute_

script","execute_script","daemon_runner","daemon_runner","interpreter","storage","compress","

env_setup","storage","execute_script","fs","execute_script","execute_script","not_mutate","

compiler","compiler","interpreter","other","internet","execute_script","builders","execute_

script","execute_script","other","security","other_unix","security","security","not_mutate","

not_mutate","compress","internet","other","other_unix","other","other","execute_script","

storage","execute_script","execute_script","execute_script","execute_script","other","execute_

script","other","storage","storage","travis_command","text_manipulate","execute_script","env_

setup","fs","not_mutate","security","other","other","pkg_installers","execute_script","fs","

version_mgr","pkg_mgr","pkg_installers","web_framework","builders","execute_script","execute_

script","execute_script","execute_script","other","execute_script","fs","execute_script","

execute_script","other","pkg_mgr","execute_script","browser_env","execute_script","env_setup","

fs","fs","pkg_installers","interpreter","pkg_mgr","fs","travis_command","other","pkg_installers

","execute_script","execute_script","travis_command","execute_script","execute_script","execute

_script","execute_script","text_manipulate","web_framework","not_mutate","pkg_mgr","other","

security","pkg_mgr","pkg_mgr","not_mutate","other","other","security","other","execute_script",

"execute_script","execute_script","other","execute_script","execute_script","execute_script","

other","env_setup","other","other","other","pkg_mgr","other_unix","builders","process_kill","

other","other","other","vcs","other","other","execute_script","other","other","other","execute_

script","other","execute_script","execute_script","execute_script","other","other","execute_

script","other_node_modules","other","browser_env","other","code_coverage","security","storage"

,"other","sca","other","other","pkg_installers","not_mutate","security","fs","env_setup","pkg_

installers","other","other","other","web_framework","security","fs","pkg_installers","builders"

,"execute_script","daemon_runner","other","env_setup","interpreter","other","other","security",

"not_mutate","pkg_installers","other","execute_script","execute_script","pkg_mgr","other","

security","other","storage","other","not_mutate","other")

7 cohen.kappa(x=cbind(profOrig, puneetOrig))

8 catAgree1.df <- data.frame(profOrig, puneetOrig)

9 ck1 <- cohen.kappa(catAgree1.df)

10 ck1

11 ck1$kappa
12 #= 0.4617242

13 #---------------------

14 # With consenses of all authors

15 profLatest = c("builders","builders","interpreter","internet","pkg_mgr","pkg_mgr","pkg_mgr","pkg_

mgr","other","vcs","travis_command","compress","env_setup","compress","fs","fs","not_mutate","

mobile_framework","not_mutate","builders","execute_script","execute_script","execute_script","

pkg_mgr","fs","not_mutate","env_setup","builders","other","not_mutate","not_mutate","other","

not_mutate","interpreter","text_manipulate","text_manipulate","text_manipulate","execute_script

","builders","not_mutate","env_setup","other","execute_script","pkg_mgr","pkg_mgr","other","

execute_script","interpreter","fs","security","sca","execute_script","execute_script","security

","env_setup","database","execute_script","execute_script","execute_script","process_mgmt","not

_mutate","interpreter","database","compress","interpreter","database","execute_script","fs","

execute_script","execute_script","not_mutate","compiler","compiler","interpreter","env_setup","

internet","execute_script","builders","execute_script","execute_script","process_mgmt","

security","execute_script","security","security","not_mutate","not_mutate","compress","internet

","other","security","interpreter","builders","execute_script","database","execute_script","

execute_script","execute_script","execute_script","other","execute_script","other","database","

database","travis_command","text_manipulate","execute_script","execute_script","env_setup","

75

Appendix B. R Code for Empirical Study and Association Rule Mining

compiler","security","other","text_manipulate","interpreter","execute_script","fs","pkg_mgr","

pkg_mgr","pkg_mgr","other","builders","execute_script","execute_script","execute_script","

execute_script","other","execute_script","fs","not_mutate","execute_script","sca","pkg_mgr","

execute_script","browser_env","execute_script","pkg_mgr","compress","not_mutate","pkg_mgr","

interpreter","builders","fs","travis_command","env_setup","interpreter","execute_script","

execute_script","travis_command","execute_script","execute_script","execute_script","execute_

script","text_manipulate","env_setup","not_mutate","pkg_mgr","sca","env_setup","pkg_mgr","pkg_

mgr","builders","other","other","security","not_mutate","execute_script","execute_script","

execute_script","other","execute_script","execute_script","execute_script","other","execute_

script","other","other","compiler","pkg_mgr","other","builders","process_mgmt","process_mgmt","

other","sca","vcs","text_manipulate","env_setup","execute_script","compiler","pkg_mgr","execute

_script","execute_script","compiler","execute_script","execute_script","execute_script","

interpreter","internet","execute_script","process_mgmt","sca","execute_script","execute_script"

,"sca","env_setup","database","execute_script","vcs","other","other","interpreter","text_

manipulate","not_mutate","fs","env_setup","env_setup","interpreter","compiler","other","browser

_env","security","builders","pkg_mgr","builders","builders","process_mgmt","other","pkg_mgr","

builders","env_setup","other","security","not_mutate","execute_script","other","builders","

builders","other","compress","internet","not_mutate","database","interpreter","builders")

16 puneetLatest = c("builders","builders","interpreter","internet","pkg_mgr","pkg_mgr","pkg_mgr","pkg_

mgr","other","vcs","travis_command","compress","env_setup","compress","fs","fs","not_mutate","

mobile_framework","not_mutate","builders","execute_script","execute_script","execute_script","

pkg_mgr","fs","not_mutate","env_setup","builders","other","not_mutate","not_mutate","other","

not_mutate","interpreter","text_manipulate","text_manipulate","text_manipulate","execute_script

","builders","not_mutate","env_setup","other","execute_script","pkg_mgr","pkg_mgr","other","

execute_script","interpreter","fs","security","sca","execute_script","execute_script","security

","env_setup","database","execute_script","execute_script","execute_script","process_mgmt","not

_mutate","interpreter","database","compress","interpreter","database","execute_script","fs","

execute_script","execute_script","not_mutate","compiler","compiler","interpreter","env_setup","

internet","execute_script","builders","execute_script","execute_script","process_mgmt","

security","execute_script","security","security","not_mutate","not_mutate","compress","internet

","other","security","interpreter","builders","execute_script","database","execute_script","

execute_script","execute_script","execute_script","other","execute_script","other","database","

database","travis_command","text_manipulate","execute_script","execute_script","env_setup","

compiler","security","other","text_manipulate","interpreter","execute_script","fs","pkg_mgr","

pkg_mgr","pkg_mgr","other","builders","execute_script","execute_script","execute_script","

execute_script","other","execute_script","fs","not_mutate","execute_script","sca","pkg_mgr","

execute_script","browser_env","execute_script","pkg_mgr","compress","not_mutate","pkg_mgr","

interpreter","builders","fs","travis_command","env_setup","interpreter","execute_script","

execute_script","travis_command","execute_script","execute_script","execute_script","execute_

script","text_manipulate","env_setup","not_mutate","pkg_mgr","sca","env_setup","pkg_mgr","pkg_

mgr","builders","other","other","security","not_mutate","execute_script","execute_script","

execute_script","other","execute_script","execute_script","execute_script","other","execute_

script","other","other","compiler","pkg_mgr","other","builders","process_mgmt","process_mgmt","

other","sca","vcs","text_manipulate","env_setup","execute_script","compiler","pkg_mgr","execute

_script","execute_script","compiler","execute_script","execute_script","execute_script","

interpreter","internet","execute_script","process_mgmt","sca","execute_script","execute_script"

,"sca","env_setup","database","execute_script","vcs","other","other","interpreter","text_

manipulate","not_mutate","fs","env_setup","env_setup","interpreter","compiler","other","browser

_env","security","builders","pkg_mgr","builders","builders","process_mgmt","other","pkg_mgr","

builders","env_setup","other","security","not_mutate","execute_script","other","builders","

builders","other","compress","internet","not_mutate","database","interpreter","builders")

17
18 cohen.kappa(x=cbind(profLatest, puneetLatest))

19 catAgree2.df <- data.frame(profLatest, puneetLatest)

20 ck2 <- cohen.kappa(catAgree2.df)

21 ck2

22 ck2$kappa
23 #=1

76

C
UMPLE and Java Code for the Composition Mechanism

The UMPLE code below in Program C.1 defines the metamodel of CORE and SpecFile together.
We generate Java code from it which we use to create our composition (weaving) algorithm in
Listing C.2. In Listing C.3, we show a test case where we take two sample SpecFiles shown in
Figure C.1 and weave them to form a complete .travis.yml file shown in Figure C.2. In Listing
C.4, we show the test case for a real project - ServiceCutter also shown in Program 5.1 - followed
by the desired output in Figure C.3.

Program C.1: Metamodel.ump

1 namespace ca.mcgill.core.travisconcern;

2
3 class COREModel{

4 1 coremodel <@>- * CORECompositionSpecification reuses;

5 }

6
7 class COREFeatureModel{

8 isA COREModel;

9 1 model <@>- * COREFeature features;

10 1 model <@>- * CORERelatedFeature relatedFeatures;

11 1 -> 1 COREFeature root;

12 COREFeatureModel(){};

13 }

14
15 class COREFeature{

16 enum COREFeatureRelationshipType { None, Optional, XOR, OR, Mandatory }

17 1..* targetPattern -- * CORERelatedFeature incoming;

18 1..* sourcePattern -- * CORERelatedFeature outgoing;

19 0..1 parent -- * COREFeature children;

20 * realizes -- 0..1 COREModel realizedBy; // The 0..1 association is a simplification of the

actual CORE metamodel

21 COREFeatureRelationshipType parentRelationship;

22 1 -- * OrderedConfiguration;

23 }

24
25 class CORERelatedFeature{

26 Float supportValue;

77

Appendix C. UMPLE and Java Code for the Composition Mechanism

27 }

28
29 class COREConfiguration{

30 isA CORECompositionSpecification;

31 * -> * COREFeature selected;

32 1 -- * OrderedConfiguration orderedConf;

33 }

34
35 class CORECompositionSpecification{

36 }

37
38 class SpecFile{

39 isA COREModel;

40 fname;

41 1 sFile <@>- * Group groups;

42 0..1 <@>- * Line headers; // header lines are not associated with arguments

43 }

44
45 class Group{

46 gname;

47 0..1 <@>- * Line g_lines;

48 }

49
50 class Line{

51 cname;

52 Boolean partial;

53 1 line <@>- * Argument arguments;

54 }

55
56 class Argument{

57 aname;

58 Boolean partial;

59 }

60
61 class OrderedConfiguration{

62 Integer position;

63 }

Program C.2: Weaver.java

1 package ca.mcgill.core.travisconcern;

2
3 import java.io.BufferedWriter;

4 import java.io.FileWriter;

5 import java.io.IOException;

6 import java.io.PrintWriter;

7
8 /**

9 * This class creates .travis.yml file based on feature selection

10 *

11 * @author Puneet Kaur Sidhu

12 */

13 public class Weaver {

14
15 /**

16 * Weave all the configurations into the model

17 * @param cFM Core Feature Model

18 * @param conf Core Feature Configuration

19 */

78

Appendix C. UMPLE and Java Code for the Composition Mechanism

20 public void weaveAll(COREFeatureModel cFM, COREConfiguration conf) {

21 //Collecting all the selected features and the root

22 COREFeature root = cFM.getRoot();

23 SpecFile first = (SpecFile) root.getRealizedBy();

24 for(OrderedConfiguration oC : conf.getOrderedConf()) {

25 COREFeature f = oC.getCOREFeature();

26 if(f != root) {

27 SpecFile second = (SpecFile) f.getRealizedBy();

28 first = weave(first, second);

29 }

30 }

31 saveFile(first);

32 printFile(first);

33 }

34
35 /**

36 * Method to weave the lower spec file into the higher spec file

37 * @param higherSpecFile File to merge the lower spec file to

38 * @param lowerSpecFile Spec File to be merged

39 * @return sfNew result of the merge of two spec files

40 */

41 public SpecFile weave(SpecFile higherSpecFile, SpecFile lowerSpecFile) {

42 //Replicating the root SpecFile

43 SpecFile sfNew = new SpecFile(higherSpecFile.getFname());

44 /* Combining headers of higher and lower

45 * spec files together in higher spec file */

46 addHeadersToNewSpecFile(higherSpecFile, sfNew);

47 addHeadersToNewSpecFile(lowerSpecFile, sfNew);

48
49 //Replicating groups of higherSpecFile to the new root file object

50 for (Group g : higherSpecFile.getGroups()) {

51 Group gNew = new Group(g.getGname(), sfNew);

52 merge(gNew, g);

53 }

54
55
56 /* Getting groups of lower spec file

57 * and adding them to root file one by one */

58 for(Group g : lowerSpecFile.getGroups()) {

59 weave(sfNew, g);

60 }

61 return sfNew;

62 }

63
64 /**

65 * Method to add lines of the original spec file to the new spec file

66 * @param origFile original spec file

67 * @param newFile new spec file

68 */

69 private void addHeadersToNewSpecFile(SpecFile origFile, SpecFile newFile) {

70 /* Since headers do not have arguments,

71 * thus, they have not been considered here */

72 for (Line l : origFile.getHeaders()) {

73 Line hNew = new Line(l.getCname(), l.getPartial());

74 newFile.addHeader(hNew);

75 }

76 }

77
78 /**

79

Appendix C. UMPLE and Java Code for the Composition Mechanism

79 * Merge the group in the spec file

80 * @param higherSpecFile the spec file

81 * @param lowerGroup group to be weaved in

82 */

83 private void weave(SpecFile higherSpecFile, Group lowerGroup) {

84 int flag = 0;

85 for(Group higherGroup : higherSpecFile.getGroups()) {

86
87 /*Checking if the group names in root file and lower file match

88 * If yes, then we merge the contents of those groups

89 * Else, we create a new group in the root file */

90 if(higherGroup.getGname().equals(lowerGroup.getGname())) {

91 merge(higherGroup, lowerGroup);

92 flag = 1;

93 break;

94 }

95 }

96 if (flag == 0) {

97 Group gNew = new Group(lowerGroup.getGname(), higherSpecFile);

98 merge(gNew, lowerGroup);

99 }

100 }

101
102 /**

103 * Merge two groups

104 * @param higherGroup new group

105 * @param lowerGroup group to be merged

106 */

107 private void merge(Group higherGroup, Group lowerGroup) {

108 //Merging contents of two groups

109 for(Line l : lowerGroup.getG_lines()) {

110 Line lNew = new Line(l.getCname(), l.getPartial());

111 lNew.setGroup(higherGroup);

112 for(Argument a : l.getArguments()) {

113 Argument aNew = new Argument(a.getAname(), a.getPartial(), lNew);

114 }

115 }

116 }

117
118 /**

119 * Save the .travis.yml specification file in the project directory

120 * @param sf new spec file

121 */

122 public void saveFile(SpecFile sf) {

123 try(FileWriter fw = new FileWriter(sf.getFname(), false);

124 BufferedWriter bw = new BufferedWriter(fw);

125 PrintWriter out = new PrintWriter(bw)) {

126 for (Line h : sf.getHeaders()) {

127 if (h.isPartial() == true) {

128 out.println("|" + h.getCname());

129 }

130 else{

131 out.println(h.getCname());

132 }

133 }

134 for(Group g : sf.getGroups()) {

135 out.println(g.getGname() + ":");

136 for(Line l : g.getG_lines()) {

137 if (l.getArguments().size() > 0) {

80

Appendix C. UMPLE and Java Code for the Composition Mechanism

138 String wholeLine = null;

139 wholeLine = " - " + l.getCname() + " ";

140 for(Argument a : l.getArguments()) {

141 if(a.isPartial() == true) {

142 wholeLine = wholeLine + "|" + a.getAname() + " ";

143 }

144 else {

145 wholeLine = wholeLine + a.getAname() + " ";

146 }

147 }

148 out.println(wholeLine);

149 }

150 else {

151 out.println(" - " + l.getCname());

152 }

153 }

154 }

155 }

156 catch (IOException e) {

157 System.out.println(e.getMessage());

158 }

159 }

160
161 /**

162 * Prints the .travis.yml specification file on the console

163 * @param sf new spec file

164 */

165 public void printFile(SpecFile sf) {

166 for (Line h : sf.getHeaders()) {

167 if (h.isPartial() == true) {

168 System.out.println("|" + h.getCname());

169 }

170 else{

171 System.out.println(h.getCname());

172 }

173 }

174 for(Group g : sf.getGroups()) {

175 System.out.println(g.getGname() + ":");

176 for(Line l : g.getG_lines()) {

177 if (l.getArguments().size() > 0) {

178 String wholeLine = null;

179 wholeLine = " - " + l.getCname() + " ";

180 for(Argument a : l.getArguments()) {

181 if(a.isPartial() == true) {

182 wholeLine = wholeLine + "|" + a.getAname() + " ";

183 }

184 else {

185 wholeLine = wholeLine + a.getAname() + " ";

186 }

187 }

188 System.out.println(wholeLine);

189 }

190 else {

191 System.out.println(" - " + l.getCname());

192 }

193 }

194 }

195 }

196 }

81

Appendix C. UMPLE and Java Code for the Composition Mechanism

Program C.3: TestCase.java

1 package ca.mcgill.core.travisconcern;

2
3 import ca.mcgill.core.travisconcern.SpecFile;

4 import ca.mcgill.core.travisconcern.Argument;

5 import ca.mcgill.core.travisconcern.Line;

6 import ca.mcgill.core.travisconcern.Group;

7 import ca.mcgill.core.travisconcern.Weaver;

8 import java.util.ArrayList;

9 import java.util.List;

10
11 public class SpecsWeaver{

12
13 public static void main(String[] args) {

14 try {

15 //Spec File 1

16 SpecFile f1 = new SpecFile(".travis.yml");

17 Line l0 = new Line("language: java", false);

18 f1.addHeader(l0);

19 Line l00 = new Line("This is second header for first spec file", false);

20 f1.addHeader(l00);

21 Group g1 = new Group("script", f1);

22 Line l1 = new Line("sudo apt-get install", false);

23 g1.addG_line(l1);

24 Argument a0 = new Argument("build-essential", false, l1);

25 Group g12 = new Group("before_install", f1);

26 Line l2 = new Line("TERM=dumb ./gradlew -q assemble", false);

27 g12.addG_line(l2);

28 //Spec File 2

29 SpecFile f2 = new SpecFile("");

30 Line l01 = new Line("This is first header for second spec file", false);

31 f2.addHeader(l01);

32 Group g2 = new Group("install", f2);

33 Line l3 = new Line("apt-get install", false);

34 g2.addG_line(l3);

35 Argument a1 = new Argument("libboost-dev", false, l3);

36 Argument a2 = new Argument("libboost-program-options-dev", false, l3);

37 Group g3 = new Group("before_install", f2);

38 Line l4 = new Line("jdk_switcher use", false);

39 g3.addG_line(l4);

40 Group g4 = new Group("after_success", f2);

41 Line l5 = new Line("./gradlew coveralls", false);

42 g4.addG_line(l5);

43
44 // Testing the composition mechanism

45 Weaver obj = new Weaver();

46 SpecFile finalFile = obj.weave(f1, f2);

47 obj.saveFile(finalFile);

48 obj.printFile(finalFile);

49 }

50 catch(Exception e) {

51 System.out.println(e.getMessage());

52 }

53 }

54 }

82

Appendix C. UMPLE and Java Code for the Composition Mechanism

Test .travis.yml custom file

This example shows how we combine two SpecFiles, SpecFile 1 and 2 shown in Figure C.1 with
different headers, different groups with their lines and arguments, merging of lines and arguments
under the same groups. The final file after the execution of our composition algorithm is shown in
Figure C.2.

Figure C.1: Test SpecFile 1 and SpecFile 2 ready to be merged

language: java
This is second header for first spec file
script:
 - sudo apt-get install build-essential
before_install:
 - TERM=dumb ./gradlew -q assemble

This is first header for second spec file
install:
 - apt-get install libboost-dev libboost-program-options-dev
before_install:
 - jdk_switcher use
after_success:
 - ./gradlew coveralls

Spec
File 1

Spec
File 2

Figure C.2: Composed SpecFile 1 and 2 to create a final .travis.yml specification

language: java
This is second header for first spec file
This is first header for second spec file
script:
 - sudo apt-get install build-essential
before_install:
 - TERM=dumb ./gradlew -q assemble
 - jdk_switcher use
install:
 - apt-get install libboost-dev libboost-program-options-dev
after_success:
 - ./gradlew coveralls

83

Appendix C. UMPLE and Java Code for the Composition Mechanism

Program C.4: TestCase ServiceCutter.java

1 package ca.mcgill.core.travisconcern;

2
3 import ca.mcgill.core.travisconcern.SpecFile;

4 import ca.mcgill.core.travisconcern.Argument;

5 import ca.mcgill.core.travisconcern.Line;

6 import ca.mcgill.core.travisconcern.COREConfiguration;

7 import ca.mcgill.core.travisconcern.COREFeature;

8 import ca.mcgill.core.travisconcern.COREFeature.COREFeatureRelationshipType;

9 import ca.mcgill.core.travisconcern.COREFeatureModel;

10 import ca.mcgill.core.travisconcern.Group;

11 import ca.mcgill.core.travisconcern.Weaver;

12 import ca.mcgill.core.travisconcern.OrderedConfiguration;

13
14 public class TestCase_ServiceCutter {

15 public static void main(String[] args) {

16 try {

17 SpecFile f0 = new SpecFile(".travis.yml");

18 Line l0 = new Line("h", true);

19 f0.addHeader(l0);

20
21 SpecFile f1 = new SpecFile("f1");

22 Group g1 = new Group("before_install", f1);

23 Line l1 = new Line("nvm install", false);

24 g1.addG_line(l1);

25 Argument a1 = new Argument("a", true, l1);

26
27 SpecFile f2 = new SpecFile("f2");

28 Group g2 = new Group("before_install", f2);

29 Line l2 = new Line("npm install", false);

30 g2.addG_line(l2);

31 Argument a2 = new Argument("a", true, l2);

32
33 // install phase

34 SpecFile f3 = new SpecFile("f3");

35 Group g3 = new Group("install", f3);

36 Line l3 = new Line("npm install", false);

37 g3.addG_line(l3);

38 Argument a3 = new Argument("a", true, l3);

39
40 //Initializing metamodel objects for spec files

41 COREFeatureModel cFM = new COREFeatureModel();

42
43 COREFeature c0 = new COREFeature(COREFeatureRelationshipType.Mandatory, cFM);

44 cFM.setRoot(c0);

45 c0.setRealizedBy(f0);

46
47 COREFeature c1 = new COREFeature(COREFeatureRelationshipType.Mandatory, cFM);

48 c1.setRealizedBy(f1);

49
50 COREFeature c2 = new COREFeature(COREFeatureRelationshipType.Mandatory, cFM);

51 c2.setRealizedBy(f2);

52
53 COREFeature c3 = new COREFeature(COREFeatureRelationshipType.Mandatory, cFM);

54 c3.setRealizedBy(f3);

55
56 COREConfiguration conf = new COREConfiguration(cFM);

57 conf.addSelected(c0);

84

Appendix C. UMPLE and Java Code for the Composition Mechanism

58 conf.addSelected(c1);

59 conf.addSelected(c2);

60 conf.addSelected(c3);

61
62 OrderedConfiguration o1 = new OrderedConfiguration(1, c1, conf);

63 OrderedConfiguration o2 = new OrderedConfiguration(2, c2, conf);

64 OrderedConfiguration o3 = new OrderedConfiguration(3, c2, conf);

65 OrderedConfiguration o4 = new OrderedConfiguration(4, c3, conf);

66
67 Weaver obj = new Weaver();

68 obj.weaveAll(cFM, conf);

69 }

70 catch(Exception e) {

71 System.out.println(e.getMessage());

72 }

73 }

74 }

85

Appendix C. UMPLE and Java Code for the Composition Mechanism

Test .travis.yml file for ServiceCutter project

This example shows the Travis Specification file for the ServiceCutter project shown in Program
5.1. As the first step in the reuse process, the release engineer selects the desired features from the
Travis Feature Model. In this case, the same feature is selected twice for the before install phase.
Then, the composition mechanism creates a partially completed file shown in the top part of Figure
C.3 in which the release engineer can add headers and arguments as required. The completed file
is shown in the bottom part of Figure C.3 as per the ServiceCutter project.

Figure C.3: Test .travis.yml specification for ServiceCutter Project

language: java
jdk:
 - oraclejdk8
sudo: false
env:
 - NODE_VERSION=4.4.7
before_install:
 - nvm install $NODE_VERSION
 - npm install -g npm
 - npm install -g bower grunt-cli
install:
 - npm install

|h
before_install:
 - nvm install |a
 - npm install |a
 - npm install |a
install:
 - npm install |a

File created by
the composition

mechanism

File customised
by the release

engineer

86

	Abstract
	Abrégé
	Related Publication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Programs
	Introduction
	Problem Statement
	Thesis Methodology and Contribution
	Thesis Overview

	Background
	Continuous Integration
	Concern-Oriented Reuse
	Summary

	The Design of the Empirical Study and Proof-of-Concept
	Data Extraction
	Data Analysis and Validation
	Reuse
	Summary

	Empirical Study Results (Advocatus Diaboli)
	Experiment Approach
	Experiment Conduct
	Summary

	Concern-Oriented Reuse of CI Specification Files
	Feature Model of Travis CI and its Realization Models
	Extension of CORE's Metamodel
	Specification File Metamodel
	Composition Mechanism to Create .travis.yml Files
	Summary

	Related Work
	Adoption of CI
	Outcome of CI
	Concern-Oriented Reuse
	Summary

	Conclusions
	Contributions and Findings
	Future Research
	Empirical Study
	Reuse

	Bibliography
	Python Code for Parser
	R Code for Empirical Study and Association Rule Mining
	UMPLE and Java Code for the Composition Mechanism

