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We consider the problem of selecting among different
physics-based computational models of varying, and often-
times not assessed, fidelity for evaluating the objective and
constraint functions in numerical design optimization. Typi-
cally, higher-fidelity models are associated with higher com-
putational cost. Therefore, it is desirable to employ them
only when necessary. We introduce a relative adequacy
framework that aims at determining whether lower-fidelity
models (that are typically associated with lower computa-
tional cost) can be used in certain areas of the design space
as the latter is being explored during the optimization pro-
cess. We implement our approach by means of a trust-region
management framework that utilizes the mesh adaptive direct
search derivative-free optimization algorithm. We demon-
strate the link between feasibility and fidelity and the key
features of the proposed approach using two design opti-
mization examples: a cantilever flexible beam subject to high
accelerations and an airfoil in transonic flow conditions.

1 Introduction

Numerical engineering design optimization requires
computational models to predict system behavior in large
and multi-dimensional design spaces. But what constitutes
an adequate model? How can we characterize it? How do
we choose among different models during the optimization
process depending on their fidelity level in different areas
of the design space? According to Gross, fidelity is the de-
gree to which a model or simulation reproduces the state
and behavior of a real-world object, feature or condition;
therefore, fidelity is a measure of the realism of a model or
simulation [1]. In the literature, the term “multi-fidelity” is

used as an adjective for several terms: physics [2, 3], sur-
rogates [4], approximations [5], analysis [6], optimization
[7], mapping [8] and multidisciplinary design optimization
(MDO) [9]. Therefore, the use of the term can differ sub-
stantially, which can lead to misconceptions and inappropri-
ate methods for multi-model management. The objective of
this work is to develop a framework for managing the use of
physics-based models of varying fidelity regardless of their
disciplinary context. The proposed methodology will sup-
port decisions related to which model(s), and at which com-
putational cost, should be used during the design exploration
of the optimization process.

Typically, when model fidelity increases, so does com-
putational cost as argued in [10]. However, this is not a law,
and there can be exceptions. In this work, we may some-
times expect that a high-fidelity model has higher compu-
tational cost than a low-fidelity model, but our methodology
does not depend on such assumptions. Existing multi-fidelity
optimization (MFO) approaches attempt to calibrate low-
fidelity models or replace low-fidelity analysis results using
data from higher fidelity analyses [11]. Moreover, the perfor-
mance of multidisciplinary systems is obtained not only by
conducting the analysis of each discipline but also by captur-
ing and accounting for their interactions. Therefore, quanti-
fying system interactions using high-fidelity (HF) models is
a computationally intensive process, because all disciplinary
models have to be repeatedly exercised at each iteration un-
til they achieve multidisciplinary convergence. A possible
remedy is to use low-fidelity (LF) models in lieu of HF ones
as long as adequate accuracy is maintained. Furthermore,
intermediate-fidelity models may be possible to obtain. But
how should multiple models be managed to achieve conver-



gent solutions for single and multidisciplinary analysis? Be-
fore we discuss how to manage multiple models, we have to
define how to assign fidelity levels to the available models.

The term multi-fidelity models (MFM) is used in the
literature to denote using more than one model to predict
the same phenomenon. To the best of our knowledge, the
most recent literature reviews on the MFO topic are the
ones of Fernandez-Godino et al. [12] and Peherstorfer et al.
[10]. Fernandez-Godino et al. classified MFM into two cat-
egories: multi-fidelity surrogate models (MFSM) and multi-
fidelity hierarchical models (MFHM). In both of these, the
HF model is used as the reference to validate, calibrate, or
replace lower-fidelity models or surrogate models. However,
the adequacy level of the HF model may change at different
points of the design space. Consequently, considering it as
an absolute criterion for model selection may mislead the op-
timization process as the latter explores the design space. Pe-
herstorfer et al. concluded that relative relationships among
models may be more effective than the hierarchy assumed by
existing MF methods, and recommended such an approach
for future developments of MFO frameworks [10].

Peherstorfer et al. characterize MFM approaches as
multi-fidelity management strategies that define how differ-
ent models are employed during the optimization process and
how outputs from different models may be combined [10].
They also classify MFM methods according to adaptation,
fusion, and filtering. Adaptation enhances the output of the
LF model with information from the HF model while the
computation proceeds and the surrogate model is updated at
each iteration. Methods based on fusion evaluate LF models
and HF models and then combine information. An example
of fusion is the co-Kriging method [6]. Filtering methods in-
voke the HF model following the evaluation of an LFM filter.
That is, the HF model is used only if the LF model is inac-
curate [6]. The authors include MFHM in the adaptation and
filtering management strategies.

Tables 1 and 2 list works that use MFHM, distinguish-
ing which of them was used as LF model and which as HF
model, in two different disciplines (structural mechanics and
fluid mechanics). As shown in these two tables, differ-

Table 1: Papers in structural mechanics organized by level of
fidelity of models used (Lin : Linear, Non : Nonlinear, M :
Single-fidelity model)

Discretization Linearity
Reference
Coarse Fine Lin Non
[13], [14] LF HF LF HF
[15], LF HF - M

[16], [17], [9] LF HF M

[18], [19], [20] LF HF LF HF

ent combinations may result in changing the fidelity level of
the same model. Therefore, the fidelity level of a model is
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Table 2: Papers in fluid mechanics organized by level of fi-
delity of models used (AN : Analytical, EM : Empirical, LI
: Linear, PF : Potential flow, EU : Euler, RANS : Reynolds-
averaged Navier Stokes)

Reference AN EM LI PF EU RANS
[21],[22] LF HF

(71, [23] LF HF

[15] LF HF
[19] LF HF

[9] LF HF
[24] LF HF
[3] LF HF

relative to the other available models.

Fernandez-Godino et al. stated in their review that there
is no clear relationship between the computational cost ra-
tio of the used models to HF models and the computational
cost ratio of the MFO process to the HF optimization process
[12]. Figure 1 depicts the cost ratio of the MFO process to
the optimization process using high-fidelity reference mod-
els (RFO) vs. the cost ratio of a single analysis of the low-
fidelity model (LFA) to a single analysis of the high-fidelity
reference model (RFA) for 18 papers that perform optimiza-
tion using MFM. It shows that employing multiple models

@ Cost ratios Linear (Trend line)
0.9
() Balabanov1998
() Robinson2008
0.7
o ) Molina2010 @ zahir2013
E 050 R
. obinson. i
3 S (Q Alexandrov2000  Keiber2013
e Qian2008
= & Padron2014
03 Q Alexandrov2001
Q NG04 oziel2010 Q Ren2016
(D Kenrigdy2000 Padron2016
0.1 € Choi2008)  vitaliz002
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Fig. 1: Cost ratio of the optimization process using MFM
(MFO) to the optimization process using high (reference)-
fidelity models (RFO) vs. cost ratio of a single analysis
of the low-fidelity model (LFA) to a single analysis of the
high(reference)-fidelity model (RFA); reproduced from [12],
which uses data reported in [2, 5, 25-35, 17, 36-39]

with low (LFA/RFA) cost ratio in the optimization process
does not necessarily yield a big reduction in (MFO/RFO)
cost ratio. Moreover, these ratios may change for different
applications or optimization problem formulations even if
the models stay the same [12].

The various types of models (theoretical, mathematical,
and computational) and errors (observational, modeling, and
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discretization) involved in the verification and validation pro-
cess are presented in [40]. In our work, we refer to discrep-
ancies among models as inadequacies and use the hierarchy
shown in Figure 2. Different approximation models A; may
be available for a physical phenomenon. These models can
be solved using different numerical methods ;. Finally, pa-
rameter values P, pertaining to the numerical method used

define a particular model instantiation Mijk'

Model inadequacy represents a model’s inability to pre-
dict the true behavior of a physical phenomenon [41]. An
adequacy level is assigned to each model instantiation based
on absolute and relative measures. These measures require
a reference model to be selected based on the highest com-
putational cost among available models. We use the term
absolute model inadequacy (AMI) to describe the difference
between a model’s prediction and the reference model’s pre-
diction. If more than two models are available, we use the
term relative model inadequacy (RMI) to describe the differ-
ence in the output between two different models other than
the reference model.

Model selection is then based on the capability to at-
tain feasible solutions, maintaining adequate accuracy, and
reducing computational cost. Oberkampf et al. discussed
the relationship between prediction and validation [42]. Our
methodology adopts their point of view and applies it to our
proposed relative adequacy framework (RAF).

2 Proposed Methodology

We will illustrate our approach by means of a running
example. In this example, computational models are used to
compute the dynamic free response of a cantilevered three-
dimensional beam under the effect of gravitational accelera-
tion. The beam is fixed at one end as shown in Figure 3. Let
us first consider modeling this problem using two approxi-
mation theories: a Timoshenko beam element with 6 degrees
of freedom (DOF) and an absolute nodal coordinate formu-
lation (ANCF) for a beam element with 12 DOF. The derived
computational models are then exercised using the parameter
values listed in Table 3, i.e., for varying gravitational accel-
eration. Initially, the beam is horizontal and at rest.

Table 3: Flexible beam dimensions and material properties

E (Pa)
lel0

gv(m/s?) L (m)
[-10,-100] 1

C(m?)
0.0001

I(m*) I(m)
8.3¢-10  0.01

p (kg/m?)
7500

As can be seen in Figure 4, the free response of the
beam’s tip changes smoothly until g, = 40m/s?; then the
tip starts to suffer from high-frequency fluctuations. ANCF
captures the high-frequency modes and large displacements
successfully. However, the Timoshenko beam model fails
to predict the response accurately throughout the parameter
space. The inadequacy between the two models increases
with increasing acceleration.
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Furthermore, Figure 5 shows how the Timoshenko beam
model cannot converge to attainable solutions for gravity ac-
celerations higher than 50m/s>. Consequently, if only the
Timoshenko beam model is used, inaccurate predictions (if
at all attainable) will misguide the optimization process. On
the other hand, ANCF has high computational cost; how-
ever, it has similar fidelity with the Timoshenko beam model
for predicting the dominant frequency within the accelera-
tion range g, € [—10, —20]m/s” as depicted in Figure 6.

2.1 Relative Adequacy Framework
Let us consider the general constrained optimization
problem

Inin f(d) o

subjectto  g,(d) <0, u=1,2,....U.

For example, suppose that we have one objective function
and one constraint. When a numerical method N; ; is used
with parameter values p;; to evaluate a function f, the cor-
responding function value is denoted by fijk . Given available
models 7,,, a reference model is chosen and assigned the new
index naught (Mj). New indices are also assigned to the re-
maining 7, — 1 models. In the remainder of the text, we will
usel €{1,2,..(ny—1)}and he {1,2,..(ny, — 1)} with [ # h
to consider two models at a time. The number of possible
absolute inadequacies is n, = n, — 1, while the number of
possible relative inadequacies between the n,, — 1 models is

n, = MW The AMI of model 4 is given by
&= [sfh SGh]v ()

where €, and £g, are model inadequacies of the objective
and constraint functions, respectively. They are defined as

e, = |fo—ful and €, = |g0— gl A3)

with respect to the reference model M.

At this point, model inadequacies can be represented
graphically in an inadequacy space. The number of dimen-
sions in the inadequacy space depends on the number of
functions, i.e., €&, € R'™V. To keep dimensionality at two,
we define one aggregate constraint function that sums con-
straint violations (if any) [43]. Consequently, the inadequacy
vector is reduced to consisting of two components €7, and
€G-

In the example of Figure 2, if we choose My, asa ref-
erence model, we have 13 remaining models; thus, n, = 13
and n, = 78. After specifying a reference model, a relative
adequacy matrix (RAM) & of size ((ny, — 1) X (ny, — 1)) is
built to summarize the relative inadequacies among remain-
ing models. For illustration, we will show the relative inad-
equacy space and the RAM for model instantiations M 1y,
M]13 s M121 R Ml22 R Ml31 and M132 (recall that M111 is our ref-
erence model). The new indices are listed in Table 4.



Phenomenon

Approximation models Ai

Numerical methods N .

J

Beam
deflection

Fig. 2: Example of derivation of model instantiations

D l(m)
I(m)

L(m)

Fig. 3: Flexible cantilevered beam

Table 4: New indices of considered models

Mlll — My
Ml12 — M
M113 - M
Mlzl - Ms
Ml22 — My
M131 —  Ms
M132 — Mg

Figure 7 depicts absolute model inadequacies, i.e., the
values of ||€;||; for h =1,2,...,6 with M, being the refer-
ence model. Table 5 shows the RAM, whose elements are
given by

E(h,1) = [l&s 1 — |[&nl[s
= les| + leg | — &g | — [€a,
= (lesl —leg D) + (Ieg, | — leg, )
=&y, +&q,- 4

Each element &(h,/) in the RAM reflects a relative rank be-
tween pairs of models. For example, the positive value of
&(1,3) indicates higher adequacy of model M| relative to M3
since ||€3]|1 > ||€1]|1. On the contrary, the negative value
of &(1,6) indicates lower adequacy of model M relative to
M since ||€1]||1 > ||€6]|1. Figure 8 is a graphical represen-
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(b) The free response of the beam’s tip at selected gravitational accelera-
tion values

Fig. 4: Tip displacements in z-direction (ANCF)

tation that depicts relative inadequacies for each element in
the RAM.

2.2 Penalizing Relative Inadequacy

Let us assume that M; has lower computational cost than
Mj,. Our objective is to minimize &, so we can improve the
fidelity of M; to approach the one of M}, as much as possible
while keeping the low computational cost of M;.
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60

, : T : : : : :
Dominant frequency _— _ 2 . _
ol at g 30 mee Timoshenko g =-10 m/s’ -+-ANCF g =-20 mis?
7 Fa-ANCFg=-10ms®  --Timoshenko g =-30 m/s’
Py 4o+ [rTimoshenko g =-20 m/s?-e-ANCF 9,730 mis?
Q 3
= 7 \
s o F 0 e
5
[=2]
o
S 10F
N
0
10k |
. . . . . . . . . .
0 1 2 3 4 5 6 7 8 9 10
w(H2)

Fig. 6: Frequency response of the beam’s tip at selected grav-
itational acceleration values

Table 5: An example of the relative adequate matrix

My | My | My | My | Ms | Mg
M| 0 | 02]01]|04]-05]|-07
My | 02| 0 |-01]02]-07]-09
M3 |-01]01| 0 |03]-06]-08
My | -04]-02(-03] 0 |-09]-1.1
Ms| 05|07 ]06|09] 0 |-02
Mg | 070908 |11][02] 0

A traditional penalty function ¢, penalizes constraint vi-
olations in the objective function:

q)h(d) :fh(d)+rc.7'71(d)7 ©)

where 7. is the penalty term parameter and F, =
Yy, max(g;,u,O)2 is the aggregate constraint function. We
adopt this approach and modify the penalty function to take
into account model’s fidelity:

on(d) = fi(d) +&, (d) +rci(d) + &G, (d),  (6)
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where

1 if d) <0
=gl A S )
inf otherwise.
By utilizing Eq. (4), this function can be simplified to
On(d) = ¢;(d) + & (d). ®)

We then minimize this penalty function using the derivative-
free optimization algorithm described in the next section.

2.3 Mesh Adaptive Direct Search

Gradients of functions evaluated by means of computa-
tional models may not exist or may not be prone to reliable
approximations at a reasonable cost [44]. Moreover, these
models may be prone to severe numerical noise or fail to
return a value. In these cases, we need to resort to derivative-
free optimization algorithms. In this work we use the mesh
adaptive direct search (MADS) algorithm of [45], which is
supported by convergence properties.

MADS ensures global convergence to a solution satisfy-
ing local optimality conditions based on the Clarke calculus
for nonsmooth functions [46]. Each MADS iteration consists
of two steps: the search and the poll. The search step allows
functions evaluation at any finite number of trial points gen-
erated by evaluating the objective function on a scaled dis-
cretized space of variables, called the mesh M. The search
favours exploration of the design space and allows users to
implement any appropriate method, given their knowledge
of the problem [47]. The mesh is centred around the incum-
bent solution d; € R" where the mesh size is parametrized
by A,,. The poll step involves local exploration around dy.
During this step, the distance between the trial point and the
current incumbent solution is dictated by the poll size param-
eter A, [48]. If the search fails to find an improvement, the
poll proposes trial points around the incumbent solution fol-
lowing polling conditions. The optimization process either
converges when the mesh size parameter is smaller than a
user-specified threshold or terminates when a pre-described
function evaluation budget is exhausted [47].

2.4 Our Search Step Strategy

We use the search step to solve a surrogate optimiza-
tion problem. In this problem, the SM are not built for the
output of the problem functions, but for the models’ inade-
quacies. The purpose is to mitigate the discrepancy among
available models to approach the adequacy level of the refer-
ence model while favoring the utilization of low-cost models.
A Latin Hypercube (LH) is used to populate a set of design
points Sy to obtain a set of observations and build a surrogate
model €,; which can be used to predict the value of € (dy)
for a given di ¢ S;. The difference between the predicted
inadequacy in the current iteration and the previous one is

5
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Fig. 8: Relative inadequacies among models M}, and M;
calculated as follows where A}, (dy) is the radius of a trust region in the inadequacy
space where surrogate model predictions are assumed to be
8fhz (det1) — 8fhz (di) reliable. For example, consider that we have four model in-
Ap(di+1) = ©)

€6y (dir1) —€g,, (di) |

In this work, we use polynomial response surfaces (PRSs) to
build the SM [49-51]. The surrogate problem is defined as

min O = 0r(de) + (E(de) + || Ane (dic)|]1)
dieR”
subject to ||Ahl (dk) | |1 < A}rd (dk),
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stantiations to solve the problem in Eq. (10): My (used as
the reference model), M1, M> and M3. The predicted relative
inadequacies f:lz(dk), @13(dk) and 523(dk) are bounded by
trust regions with radii A7, (dy), Af;(dx) and A%;(dy), respec-
Eively. In the next iteration, SM are used to predict &3 (dis1),
€12(dy 1) and €x3(dgy1).

In the example illustrated in Figure 9, ||A12(dis1)||1
and ||A23(dg41)|]1 lie outside their trust regions, while



[|A13(di+1)]|1 lies inside its trust region. Consequently, the

0.8 |
Agz(dysq &12(dys1)
ol B G
&12(dy)
&
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0.2
0 !
0 0.2 0.4 0.6 0.8 1

&

Fig. 9: Trust regions of the relative inadequacy space

predicted inadequacy &3(dy, ) is accepted to enhance the
output of the model ¢3(dg;). Utilizing the trust region in
the relative inadequacy space bounds the predicted inade-
quacy to increase the trust in the estimated inadequacies and
in the approximated objective function. If more than one
predicted inadequacies lie inside their adjacent trust regions,
then the inadequacy of the lowest cost model is utilized.

The trust region radius is updated as

1Ay (de) if ru(de) <R
A;rzl(dk_H) = CzAZl(dk) if rh;(dk) >Ry (11
Aj,(dy)  otherwise,
where
d;) — o5(d
r(dpr) = DG = Ol (12
O (dy) — 0p(di+1)

The trust region method used here is the one reported in [52]
as implemented by March and Willcox in [53]. The posi-
tive parameters Ry < Ry < 1 and ¢ < 1,¢2 > 1 are chosen to
define the ranges of the ratio value for which reduction or en-
largement are necessary [54]. In our implementation we have
used the values Ry = 0.01, R, = 0.9, ¢y =0.5and ¢, = 1.5.
In case multiple estimated inadequacies exist within the trust
region, the least expensive model is selected. If all estimated
inadequacies lie outside the trust region, then all models are
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evaluated to update the SM. The process of evaluating can-
didates using estimated model inadequacy within a trust re-
gion allows for an improvement of the solution with fewer
evaluations. The modified MADS pseudo-algorithm using
the RAF and the trust-region approach is provided in Algo-
rithm 1. Figure 10 depicts a flow chart of the proposed algo-
rithm.

2.5 Scaling Properties of our Algorithm

We investigate the scalability of our proposed algorithm
to larger number of variables by solving the following test
problem from [45]

n
Zd,' +€y,
i=1
n
subject to Zdlz +¢&g, < 3n.
i=1

min
deR”
(13)

To consider multiple models of varying fidelity and
computational cost, we introduce what we call inadequacy
terms to the objective and constraint functions as listed in
Table 6. Using the reference model (i.e., for &7 = 0), there
is a single optimal solution to the problem: every component
of the vector d is equal to —+/3 and the optimal objective
function value is —/3n.

We solved the problem using our RAF-MADS algo-
rithm for 6 values of n, namely 5, 10, 20, 30, 40, and 50.
For each value of n, we solved the problem 5 times using
different initial guesses. We used a convergence criterion
of A, <107!? and a termination criterion of a maximum of
600n function evaluations. In the search step, we used a 5n
point Latin hypercube sample at the initial iteration and a n/5
random search at other iterations (if necessary).

Figure 11 depicts how the average (over the 5 runs for
each n) number of function evaluations increases with n. The
plot shows an increase in the reduced cost ratio: the fact
that RAF-MADS utilizes relative relationships among mod-
els leverages the reduction in the number of evaluations of
the reference model M. We fitted an exponential to the ob-
tained data, obtaining the expression

N foval = 3411 x 0", (14)

where n ., is the number of function evaluations. We tested
this equation at n = 70 and obtained a result associated with
a 4% relative residual error (see Figure 11).

3 Numerical Examples

We demonstrate the application of our proposed
methodology on constrained design optimization problems
considering both computational structural dynamics (CSD)
and computational fluid dynamics (CFD) disciplines.

The CSD design problem of a flexible beam is used
to investigate the impact of framework parameters on the
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Algorithm 1 The MADS optimization pseudo-algorithm using relative model adequacies in trust regions

[1] Imitialization (k = 0)
Set maximum number of evaluations kmax.
Set convergence tolerance (typically machine precision)
Set initial poll and mesh sizes
Set initial trust radiuses A, (dy) = 0 and inadequacy distance |[Ay; (d)||; = +inf
Populate initial guesses using Latin Hypercube (LH) and store them in the cache matrix Dy
Evaluate ¢ using Eq. (5) Vd; € D
Set Omin = ¢ for dy that returns minimum values for f; and F
[2] Iteration
[2.1] Search
If k > 0, then
Populate possible points using LH and store them in S
Update the RAM using built SM
Compute the difference among model inadequacies of the current iteration and the previous one
End if
IF [|An(de) 11 > A (dg). then
Evaluate ¢y Vd; € Sy where Sy C M, but d; ¢ Dy
Disregard models that fail to return values
Calculate model cost ratios
Select the reference model that has the highest computational cost
Generate the RAM using Eq. (4)
Build a surrogate model for each inadequacy éhl(dk) in the RAM
Evaluate trust ratios and trust radiuses using Eq. (12) and Eq. (11), respectively
If ¢ < Omin, then
Update ¢min = ¢ and dpin = dy
Goto3
End if
Otherwise,
Select the model inadequacy that lies inside the trust region adjacent to the model with the lowest cost ratio
Enhance the model output using the selected model inadequacy
If & < Omin, then
Update Omin = ¢ and dpin = di
Goto3
End if
End if
[2.2] Poll
Determine the polling directions and frame
Update the RAM using the SM built in 2.1
Compute the difference between model inadequacies of the current iteration and the previous one
Select the model inadequacy that lies inside the trust region adjacent to the model with the lowest cost ratio
If all inadequacies lie outside their adjacent trust region, then go to 2.1
Evaluate ¢y, at each design point in the polling set using the model adjacent to the selected inadequacy
Enhance the model output using the selected model inadequacy
If & < Omin, then
Update Qmin = O and dppin = dy
End if
[3] Updates
k—k+1
Update A, Ap, A7, d; and Dy
If no stopping criteria is met, then go to 2.2
Otherwise terminate the algorithm; return dpi, and Qmin

ASME (©); CC-BY distribution license 8



Table 6: Models used in scalability study

Model  Inadequacies €5, and g, 0 a b Cost ratio (M} /M)

er, =0

M, fo - - - 1
€0 =
€, —=ax||d

Y fp— Ll n/4 0013 - 0.57
&g, = sin(0 x [|d||2)
e, =ax||d|?

M, - [l - 0005 - 0.42
€, =0
€r, =sin(bx0x||d

o EEsSmexexidl) o2
€y = sin(0 x [|d||2)
€r, = exp(—sin(||d +b

m, = exe(sin(ldl) - 001 03 0.0071

&g, = exp(—sin([[d|[1)) —a

cost ratio and accuracy of the overall optimization process.
The beam analysis and initial configuration are adopted from
[55]. The problem has a low-dimensional design space but
involves non-smooth functions and solutions that exhibit nu-
merical noise. A total of 9 optimization runs are conducted
by choosing six different sizes of initial trust regions, and
three different sampling sizes at the initial step (k = 0). For
each run, we allow a maximum of 100n black box evalua-
tions; the optimization process can obviously stop earlier if
the MADS termination criterion is satisfied.

The CFD design problem is adopted from the works
of Koziel and Leifsson [56-60]. In these works, the au-
thors proposed a hybrid approach of MFM that utilizes both
MFHM and MFSM to solve a physics-based design opti-
mization problem [56]. Moreover, they tested their pro-
posed approach for different design space ranges of the air-
foil shape optimization problem. To investigate the scala-
bility of our proposed framework, we reproduce their ap-
proach and illustrate the different aspects between our pro-
posed framework and their MFM method.

3.1 Structural Dynamics of Flexible Cantilever

The dynamic response of the cantilever beam described
in Table 7 can be computed using three different models:
absolute nodal coordinate formulation (ANCF) (A;), Euler-
Bernoulli (A ), and Timoshenko (A3). The main difference

Table 7: Flexible beam dimensions and material properties

E (Pa) L (m)

d(1)

C(m?)
d(2)

I(m?)
1(d(2))

p (kg/m?)
5400

g (m/sz)
-30

0.7e6

among the three models is the way the cross sectional rota-
tions are calculated, which has a considerable effect on the
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simulation of deformation shapes under large loads. Euler-
Bernoulli beam’s cross sectional rotations are assumed to
occur due to bending only, since the plane section remains
normal to the longitudinal axis. However, in Timoshenko’s
theory they are assumed to be a sum of two contributions of
bending and shear deformations. ANCF makes no assump-
tions on the sectional rotations which are represented by in-
terpolation functions. This allows for the cross section to
deform and change shape [61]. It is expected that this type
of description, together with a three dimensional continuum
mechanics approach, leads to more adequate results [62].

For isotropic material the vertical displacement r, sat-
isfies the following partial differential equation under the
Euler-Bernoulli beam assumption

g% _
oxt

q(x), 15)

where g(x) is the distributed load which satisfies the fol-

lowing condition under the Timoshenko beam assumption
[63, 64]:

otr,

EI 9%

m X 32 (16)

where v is the shear correction factor, and kg is the modulus
of rigidity.

In ANCEF the shape function is obtained using polyno-
mials that are cubic in x and linear in y and z, where x is
a material coordinate along the beam axis and y and z are
the two other perpendicular coordinates. The configuration
of the beam element is determined by the position and slope
vectors of two end nodes N, and N, as shown in Figure 12.
Each node is defined by one vector for the position r and
three vectors the slopes ry, ry and r,. Thus the element has

9
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Fig. 10: Flow chart of the algorithm integrating mesh adap-
tive direct search with the relative adequacy framework using
trust region principles

24 nodal coordinates given by the vector

[Ty Ty T ToTyp Ty T, TIT
e= [l‘p Tpx™ Tpy' Tpz T Tgxo Tgy qu] (17
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Fig. 12: ANCF beam

The location of an arbitrary point r in the beam is determined
by the interpolation

r=S(x,y,7)e, (18)

where S is the element shape function and e is the vector of
nodal coordinates

S = [S11 SoI S31 SqI Ss1 Sel S71.851] (19)
I is the 3 x 3 identity matrix, and
Sy =1-382 4283
Sy =1(§—-287+8)
S3=I(1-8&n
Sa=1(1-8)¢ (20)
§5 =382 — 283
Se =I(-&+&)
S7 =1&n
Sy =IEC
with the nondimensional coordinates
E=x/l, n=y/l, {=2z/I 21)
10



and / the initial length of the beam element. For Euler-
Bernoulli and Timoshenko beam elements the shape func-
tions S1, S»2, Ss and Sg are calculated using Eq. (20), and
S3 =84 = 87 = Sg = 0. Using the finite-element method
leads to solving the equations of motion in discretized form

[M]x + [K]x = Q(x), (22)
where [M] and [K] are the global mass and stiffness matrices
respectively, and Q is the global force vector. The mass and

stiffness matrices can be found in [61, 65, 66]. The kinetic
energy is calculated by

1
T = -¢' [M]e.
2e[ le

(23)
3.1.1 Problem Formulation

The beam kinetic energy (KE) 7'(d) is minimized con-
sidering the beam cross section area C and the beam length
L as design variables where d = [L C]T. The maximum ab-
solute displacement in the vertical direction of the beam tip
for t € [0,1.2s] must be greater than or equal to 1.5m. The
design domain is defined by the lower and upper bounds d
andd of d, whered =[1 0.1]" andd =[4 1]".

(24)

3.1.2 Modeling Parameters

The beam response can be obtained by means of three
models named here “Euler-Bernoulli beam,” “Timoshenko
beam,” and “ANCE.” The optimization process is conducted
considering a vector of parameters p for each model, p =
[ne At], where ne is the number of meshing elements and At
is the time step. The beam is under the effect of gravitational
acceleration g, = —30 m/s.

“ANCF” is assumed to be the reference model My;
“Euler-Bernoulli beam” and “Timoshenko beam” are used
as models M and M,, respectively, where the numerical in-
tegration method is Newmark. We use the validated models
reported in [55, 67, 68]. Parameter values for each model are
shown in Figure 13.

3.1.3 Results

Figure 14 depicts three different feasible design regions
obtained using My, M and M>. The high-cost model M| is
used as a reference to improve both lower-fidelity models M
and M, while keeping the computational cost as low as pos-
sible. Computational cost ratios are summarized in Table 8.
Table 9 summarizes the MFO/RFO and reduced cost ratios
for nine optimization runs; the first six runs use different ini-
tial trust region radii and the last three runs use different ini-
tial sample sizes. We can conclude that when the initial
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Fig. 13: Available models for predicting beam response

Table 8: Cost ratios among different models

Models Cost ratio
M, /My 0.15
M /My 0.1
M /M, 0.66

trust radius increases, the computational cost decreases, but
with an increase in the error of the obtained solution (defined
as the relative deviation from the best-known solution of the
problem). Figure 15 depicts the convergence history of the
first six runs.

Figure 16 depicts the choice of models based on the
multi-model management method at each iteration of the op-
timization algorithm for the first six optimization runs.

We observe that the higher-fidelity reference model is
preferred in the early stages of the optimization process
(where data are collected to improve the prediction capabil-
ity of the lower-fidelity models), but with less frequency as
the trust region is decreasing. We can also observe that the
higher-fidelity reference model is preferred when the predic-
tive capability of the lower-fidelity models deteriorates as
new areas of the design space are explored as depicted in
Figure 17. Figure 18 illustrates that there is no clear rela-
tionship between the size of the initial trust regions and the
number of evaluations of M in the first six runs. For the
last three runs, we observe a decrease in the number of eval-
uations of M and an increase in the number of evaluations
of M. This observation explains the linear increase in the
reduced cost ratio, the reason being that the increase of the
number of samples at the initial design step contributes to
larger trust regions in the approximated model inadequacy
as depicted in Figure 19.

3.2 Airfoil Shape Parameterization

We consider this problem to investigate the scalability of
our proposed framework and illustrate its differences from
existing MFO approaches. Koziel and Leifsson solved this

11
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Table 9: (MFO /RFO) cost ratios of the conducted optimization runs

Runs  Costratio Reduced cost nj, A} (dg) Error%
Run 01  60.55% 39.45% 27 0.8 0.5%
Run 02  55.61% 44.39% 27 0.9 1.1%
Run 03  48.72% 51.28% 27 2 2%
Run 04  48.89% 55.11% 27 2.5 2%
Run 05  27.46% 72.54% 27 3 4.4%
Run 06  25.20% 74.30% 27 3.2 7.2%
Run 07 24.9% 73.83% 30 32 6.8%
Run 08  23.4% 73.32% 36 3.2 6.1%
Run09  22.1% 72.71% 42 3.2 5.8%

problem to study the relationship between the design prob-
lem dimensionality and the computational cost of the opti-
mization process solved using their proposed algorithm [56].

NACA-four digits has a limited control to parameterize
the airfoil shape with only three design variables [56]. How-
ever, shape parameterization techniques (e.g., Bézier curves)
can provide better control by invoking more design parame-
ters (control points).

3.2.1 NACA and Bezier Airfoils

In the NACA-four digits, the airfoil is defined by three
design variables relative to the chord length, namely maxi-
mum ordinate of the mean camber m,, chordwise position of
the maximum ordinate p., and maximum thickness to chord

ratio ¢, [69].
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Bezier curves of order np are defined as

B = 3 3 (1~ ba(ks))"™ b(ks) P,

kg=1i=0

(25)

where Pg(i) are control points and bp is a row vector with
mp components verying from zero to one. Control points
location is selected to represent the airfoil shape. Koziel and
Leifsson used two setups in their study: one with 6 and one
with 8 control points (see Figure 20) [56].

The norm of the difference between the actual
NACAOQ012 and the curve shapes generated by Eq. 25 is min-
imized to find the approximate Bezier airfoil shapes as shown
in Figure 20. Invoking more control points yields a better
approximation to the actual airfoil shape. This improves the
control of the airfoil shape during the optimization process.
However, additional control points increase computational
cost.

12
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Fig. 16: Selected models in six optimization runs

3.2.2 Problem Formulation

The transonic design problem considers a free-stream
Mach number Mach., = 0.75 and an angle of attack o0 = 1°.
The objective is to maximize the lift coefficient C; subject to
constraints on the wave drag coefficient Cyy max = 0.006 and
the non-dimensional cross-sectional area Acsmin = 0.075.
The initial designs in all cases are approximations of the
NACA 2412 airfoil shape. These approximation shapes are
obtained for each design case by minimizing the norm of
the difference between NACA2412 and the airfoil shape ob-
tained by parameterization. The initial designs are different
in each design problem since the number of design variables
differs. The design domain for each problem is defined by
the lower and upper bounds d and d listed in Table 10. The
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Table 10: Design variables of the three optimization design problems

d DP#1 DP#2 DP#3
do d d d* do d d d* do d d d*
dr 012 0.09 0.13 0.1134 0.06  0.05 0.2 0.03 0.06 0.05 0.2 0.05
d 04 03 06 0.5435 -0.06 -02 -0.05 -0.04 -0.06  -02 -0.05 -0.07
dy 0.02 0 0.03 0.0178 0.3 0.2 0.8 0.36 0.3 0.2 0.6 0.25
ds - - - - 0.1 0.1 0.3 0.12 0.1 0.1 0.3 0.155
ds - - - - 0.3 0.2 0.8 0.22 0.3 0.2 0.6 0.4
ds - - - - -0.1 -0.2  -0.01 -.09 -0.1 -0.2  -0.01 -0.045
d7 - - - - 0.002 0.001 0.005 0.002 0.002 0.001 0.005 0.002
dg - - - - - - - - 0.85 0.6 0.8 0.85
do - - - - - - - - 0.025 0.1 0.3 0.043
dio - - - - - - - - 0.85 0.6 0.8 0.8
din - - - - - - - - -0.025  -02 -0.01 -0.005
79% 8% airfoil surface as
78% 7%
78% 6% )
S 7% 5% _ C,= f{Cp sin0 ds,
S % 4% 2 (28)
S 76% 3% Cz:—jgcpcoseds7
76% 2%
75% 1%
75% 0% where ds is the panel length on the surface of the airfoil and
2 32 _— 37 42 0 is the angle between the panel and the horizontal axis. The

—e—Reduced cost -=—Error%
Fig. 19: Reduced cost ratio and the solution accuracy in runs

7-9

optimization problem is summarized as

—Gi(Cy(a))

0.075—Acs(d) <0
Caw(Cp(d)) —0.006 <0

min
dern

S.t. (26)

Nondimensional coefficients of lift C; and wave drag Cg,, are
calculated from

C; = —Cysina+C;cosa,

. (27)
Caw = Cxcoso+ C; sinQL.

The force coefficients C, and C, are calculated by integrat-
ing the pressure coefficient C,, counter clockwise around the

ASME (©); CC-BY distribution license

pressure coefficient is defined as

P— P

= 05pav (29

where p is the pressure in the flow-field, p.. is the free-stream
pressure, P is the free-stream density, and V., is the free-
stream velocity.

3.2.3 Derivation of Available Models

Transonic flow phenomenon occurs when there are
mixed subsonic and supersonic local flows over a body mov-
ing with a speed near the speed of sound. Typically, the su-
personic region of the flow is terminated by a shock wave
where the flow slows down to subsonic speed. Across the
shock there is an abrupt increase in pressure, temperature,
density, and entropy. In this work, we consider a two-
dimensional transonic flow past an airfoil section assuming
a steady, inviscid, and adiabatic flow with no body forces.

Approximation Models Two approximation models are
utilized to represent the transonic flow phenomenon with
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Fig. 20: Bezier curve approximations of the NACAO0012 air-
foil

the aforementioned assumptions: the Euler equations and
the transonic small disturbance equation (TSDE). The Euler
equations are a set of coupled non-linear partial differential
equations that represent the conservation of mass, momen-
tum, and energy [56]. The TSDE is an approximation of the
Euler equations (thin airfoils at small angle of attack).

Solution Methods The Euler equations require a time-
marching solution method. In the steady case, it is assumed
that time-marching proceeds until a steady-state solution is
reached. In this work, the temporal discretization of the
governing equations is accomplished using an implicit time-
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marching algorithm. For the flow spatial discretization, a
second-order upwind scheme is utilized. Fluent [70] is used
to solve this approximation model. The TSDE can be solved
with a finite difference scheme on a rectangular grid. We also
used the legacy code (TSFOIL) to solve the TSDE; however,
the finite difference scheme which is embedded in the code is
inaccessible [71], which makes the tool a blackbox and thus
amenable to our framework since our derivative-free opti-
mization algorithm is ideal for blackbox problems.

Modeling parameters To set up multimodels we use the
grid independence studies that exist in [56]. These stud-
ies were conducted for the initial airfoil configuration only;
therefore, they may need to be repeated if the airfoil shape
parameters are modified. Figure 21 depicts the available
models that utilize modeling attributes used in the adopted
independent studies; RMSE is the root-mean-square error
used as the termination criterion of each model instantiation.

For the Euler model, the free-stream Mach number,
static pressure, and angle of attack are prescribed at the far-
field boundary. The solution domain boundaries are placed
at 25 chord lengths in front of the airfoil, 50 chord lengths
behind it, and 25 chord lengths above and below it. The
computational grids are of structured curvilinear body-fitted
C-topology with elements clustering around the airfoil and
growing in size with distance from the airfoil surface as de-
picted in Figure 22. The number of nodes in the discretized
flow domain is denoted npoges. For the TSDE model, the
number of panels npnels represents the discretized elements
of the airfoil surface.

3.2.4 Results

The three design optimization problems with different
number of variables (denoted DP#1, DP#2, and DP#3) are
solved using our proposed RAF algorithm where the prob-
lem formulation is the same, except that the number of de-
sign variables is different as listed in Table 10. While all ini-
tial designs approximate the same NACA2412 airfoil shape
parameters, there is a difference among them due to different
number of design variables. Consequently, there is a consid-
erable variation in the lift and drag coefficients of the initial
designs. Figure 23 depicts some similarities among the op-
timized airfoil shapes; however, there are differences at the
tailing-edge, where additional control points provide more
degree of flexibility to modify the airfoil shape. The flexible
shape parameterization impacts the lift coefficient as the op-
timized airfoil in DP#3 has the highest lift compared to DP#1
and DP#2, as summarized in Table 11.

Model instantiations, M, M, and M3, have low execu-
tion CPU time (about 1 to 3 seconds depending on the se-
lected number of panels) and for My, M4, Ms and Mg evalua-
tion takes higher CPU time (about 10 to 30 minutes depend-
ing on the selected number of nodes and the threshold value
of the RMSE). The total CPU time of evaluating the low cost
models in each optimization run is approximately from half
to one evaluation of the reference model. The total number
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Fig. 21: Available model instantiations for predicting the aerodynamic characteristics of the airfoil

Table 11: Results of the three design problems for 3, 7, and 11 optimization variables using either only the high-fidelity
reference model M\ or multiple models managed by our relative adequacy framework

DP#1 DP#2 DP#3
Aerodynamic
o Optimized o Optimized o Optimized
characteristics Initial Initial Initial
Mgyonly RAF Mgyonly RAF My only RAF
G 0492 0496 0479 0452  0.685 0.672 0.741 0.752  0.781
Caw 0.01 0.006  0.006 0.003 0.006  0.006 0.005 0.006  0.006
Area 0.077 0.08 0.077 0.078  0.088  0.082 0.074  0.085  0.076
and DP#2 needs 247 iterations, giving an increase of 98 it-
erations with the additional 4 design variables. The number
of iterations increases to 374 for DP#3, an increase of 127
for the additional 4 design variables. The overall computa-
tional cost rises accordingly. However, the reduced cost ratio
- =ESE=S of the optimization process increases by 2.4% from DP#I to
i i — DP#2 and by 0.3% from DP#2 to DP#3. Figure 24 depicts a

Fig. 22: A grid for the NACA 2412 airfoil

of models evaluation increases with additional design vari-
ables as depicted in Figure 24. From DP#1 to DP#2, the
number of evaluations of My increased by 1 (3 to 4), and
from DP#2 to DP#3 by 2 (4 to 6). DP#1 needs 149 iterations
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slope change which indicates that any further increase in the
number of design variables may lead the reduced cost ratio to
approach a plateau. A possible reason is that the number of
the initial samples, which increases accordingly with the in-
crease of the number of design variables, is part of the search
step that contributes to reducing the total number of design
iterations of the MFO compared to the RFO process. Further
increase in the number of design variables may be accompa-
nied by a significant increase in the cost ratio if the number
of evaluations of the reference model approaches the number
of design iterations of the RFO.

Figure 25 depicts the increase in the number of model
evaluations for each model instantiation with increasing
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Fig. 23: (a) Mach number contours for the initial design of problem DP#3 (M., = 0.70, oo = 1°); (b) pressure coefficient on
the surface of initial and optimal designs; (c), (e), and (g) Mach number contours of the optimal design for problems DP#1,
DP#2, and DP#3, respectively; (d), (f), and (h) corresponding optimal airfoil shapes

number of design variables. The use of multiple models con-
tributes to reducing the number of design iterations as the uti-
lized relative relationships among model instantiations help
to eliminate the deterioration in the inexpensive models by
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enhancing their predictive capabilities without the need to
evaluate the reference model. Koziel and Leifsson solved the
same three cases of the design optimization problem using
their MFSM approach [56]. Figure 25 plots the total number
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of evaluations they obtained along with ours. While curves
have similar trends, our algorithm requires considerable less
(approximately one fifth) total number of evaluations. It
should be noted that we present this plot for information
only, and not as a comparison. Koziel and Leifsson consider
only one high-fidelity model and one surrogate model while
our approach considers several numerical instantiations of
physics-based models (even though surrogate models can be
considered as well).

Figure 26 depicts the number of selections of each
model instantiation during the optimization process of the
three problems. We observe that the reference model is
selected only at the beginning of the optimization process;
thereafter more inexpensive models are selected.

Independent studies are conducted for the same bound-
ary and initial conditions to tune modeling parameters that
ensure numerical stability. Typically, these studies are con-
ducted for the initial design guess; however, design vari-
ables are altered during the optimization process, which may
change the boundary conditions of the analysis problem.
This may require repeating the independent studies to ensure
the adequacy of the selected modeling parameters. Our pro-
posed framework assess these studies for the selected sam-
ples at the initial step and during the optimization process (if
the approximated model inadequacies are mistrusted). The
exhausted cost for that assessment is compensated as the pos-
sibility of misleading the search process is minimized which
is reflected on reducing the total number of design itera-
tions. On the other hand, that assessment contributes to re-
ducing the number of evaluations of the reference model dur-
ing the optimization process. The main difference between
our methodology and other existing MFHM or MFSM ap-
proaches is that we utilize relative relationships among avail-
able models regardless of their expected fidelity to enhance
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Fig. 26: Selected models during the optimization problem

inexpensive models and reduce the number of evaluations of
expensive models.
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4 Concluding Summary

This work introduces a framework for managing the use
of models (whether physics- or data-based) of varying fi-
delity regardless of their disciplinary context. The frame-
work considers a set of available models and assigns an ad-
equacy level to each model based on its absolute and rela-
tive error relative to the other models and a reference model,
respectively. This requires a reference model which is se-
lected based on the highest computational cost among avail-
able models. Model inadequacies are represented graphi-
cally in a two-dimensional inadequacy space. Relative model
inadequacies are concatenated in a relative adequacy matrix.
The elements of this matrix are then used in an optimization
problem formulation where a penalty function is minimized
using the mesh adaptive direct search (MADS) algorithm.
The MADS search step is utilized to solve a surrogate of
the original optimization problem within trust regions where
polynomial response surfaces are built to predict model in-
adequacies. This enables multiple models to make consider-
ably faster predictions and attain solutions when non-linear
phenomena emerge.

We demonstrate the proposed framework by solving two
design optimization problems that have different disciplinary
structures. The first problem is the optimization of a can-
tilevered flexible beam using three models. The presented
results of this numerical example showed a significant re-
duction in the computational cost of the optimization pro-
cess. The second problem is the airfoil shape optimization
that utilizes Bezier airfoils to enhance its aerodynamic char-
acteristics. To investigate the scalability of our proposed
framework, the size of the design space is scaled up by invok-
ing more control points to the Bezier airfoil geometry. The
results show that both reduced cost ratio and optimization
computational cost increases linearly with increased number
of design variables.

The initial cost ratio (at the initial design step) increases
with increasing number of available models and/or design
variables. However, the reduced cost ratio does not decrease
sharply. A possible reason is that the increase in the num-
ber of initial model evaluations increase the trust in approxi-
mated model inadequacy. Moreover, the evaluation of mod-
els is conducted at the search step. This is reflected in the re-
duction in number of reference model evaluations during the
optimization process and the reduction in total number of de-
sign iterations. Independent studies are conducted for the ini-
tial design guesses and may be repeated (if necessary) during
the optimization process to ensure numerical stability. We
found that utilizing independent studies can assist the RAF
to alleviate the initial cost ratio when it is used to solve de-
sign optimization problems with larger number of variables.
In this work, we demonstrated the proposed framework us-
ing physics based models; however, it can be applied to any
types of models, including (data-based) surrogate models.

Ongoing and future research focuses on extending the
relative adequacy framework for solving multidisciplinary
design optimization problems.
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