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Abstract—Atomistic simulations can be used to compute 
damping from first principles and gain unprecedented insights 
into the mechanisms of dissipation. However, the technique is still 
in its infancy and many foundational aspects remain unexplored. 
As a step towards addressing these issues, we present here a 
comparative study of five different methods for estimating 
damping under isothermal conditions. Classical molecular 
dynamics was used to simulate the fundamental longitudinal-
mode oscillations of nanowires and nanofilms of silicon and 
nickel at room temperature (300 K) in the canonical ensemble 
using the Nosé-Hoover thermostat. In the sub-resonant regime, 
damping was quantified using the loss tangent and loss factor 
during steady-state harmonic vibration. The quality factor was 
obtained by analyzing the spectrum of thermomechanical noise 
and also from the Duffing-like nonlinearity in the frequency 
response under harmonic excitation. In addition, the nonlinear 
logarithmic decrement was obtained from the Hilbert transform 
of freely-decaying oscillations. We discuss the factors that must 
be considered while selecting simulation parameters; establish 
criteria for convergence and linearity; and highlight the relative 
merits and limitations of each method. 

Index Terms—Damping, dissipation, molecular dynamics, 
MEMS, NEMS, quality factor. 

I. INTRODUCTION 
LL vibrating structures dissipate energy by damping. The 
various sources of dissipation have been studied 

extensively using continuum thermomechanics and 
phenomenological models. Despite considerable effort, 
however, it has proved difficult to obtain a detailed atomic-
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level understanding of the numerous mechanisms by which 
mechanical energy is converted into thermal energy (see, for 
example, [1]-[4]). In this context, a remarkable recent 
development is the emergence of a fundamentally new 
approach for studying material damping using large-scale 
atomistic simulations. Such simulations can provide 
unprecedented insights into the mechanisms of dissipation; 
predict the magnitude of damping from first-principles; and 
guide the design of resonant microelectromechanical systems 
(MEMS) and nanoelectromechanical systems (NEMS).  

Classical molecular dynamics (MD) is a powerful and 
versatile technique for atomistic simulations in which atoms 
are modeled as point particles that evolve in time according to 
Newton’s equations of motion. Material and structural 
properties are estimated by invoking ergodicity which states 
that time averages are equal to ensemble averages. Typically, 
the time evolution of a single ensemble is simulated to 
characterize the system [5]. Using this approach, classical MD 
has been used to explore dissipation in a small set of materials 
(including silicon [6], quartz [6], carbon nanotubes [7]-[11], 
graphene [12], [13], and silver [14]) using the microcanonical 
NVE ensemble wherein the number of atoms (N), volume (V), 
and total energy (E) are maintained constant. The 
microcanonical ensemble is well suited for simulating the 
exchange of energy between different mechanical modes 
(including, for example, energy conversion from a collective 
mode of mechanical vibrations to internal energy), but the
average temperature of the structure increases steadily due to 
damping because the structure is isolated from its thermal 
environment [8]. 

In 2011, Kunal and Aluru [15] introduced an approach for 
MD simulations of damping under isothermal conditions by 
employing the canonical NVT ensemble to explore Akhiezer 
damping in nickel. The temperature (T) was controlled by 
coupling the structure to the thermal reservoir using the Nosé-
Hoover thermostat [16], [17], and damping was quantified by 
computing the work done per cycle of oscillation [15]. 
Isothermal simulations are of great interest because they 
match the typical operating conditions of MEMS and NEMS, 
but the technique is still at an early stage of development.  

As a step towards developing the technique, we present here 
a comparative study of five different methods for computing 
damping using the canonical ensemble. The various methods 
are as follows: (i) estimate dissipation using the loss factor, 
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/ 2W Wη π≡ ∆ (or, equivalently, the specific damping 
capacity, / 2W Wψ πη≡ ∆ = ) where W∆  is the energy 
dissipated per cycle of vibration and W is the maximum elastic 
energy during the vibration cycle; (ii) analyze steady-state 
time-harmonic oscillations to estimate damping in terms of the 
loss tangent, tanφ , where φ is the phase angle by which the 
force leads the displacement; (iii) estimate damping from 
thermomechanical noise by fitting the power spectral density 
(PSD) of displacement fluctuations to extract the quality factor 
(Q); (iv) analyze the frequency response to estimate the 
quality factor (Q) at resonance; and (v) analyze the freely 
decaying oscillations of the structure to obtain the logarithmic 
decrement, δ. The loss factor, specific damping capacity, and 
loss tangent are well suited for characterizing damping in the 
sub-resonant regime (that is, at frequencies less than the 
fundamental natural frequency, f0). The other two measures (Q 
and δ ) are used to quantify damping at the natural frequency.  

The methods are demonstrated by using nickel and silicon 
as model materials. Damping is computed at room temperature 
(300 K) for the fundamental longitudinal-mode oscillations of 
nanofilms and nanowires of Si and Ni. In all cases, the main 
goals are to establish robust protocols for selecting simulation 
parameters; establish criteria for convergence and linearity; 
and identify the relative merits and limitations of each of the 
five methods. All these goals are closely associated with the 
effects of thermomechanical noise and fluctuations on 
dynamic and thermodynamic properties. When a dissipative 
structure is coupled to its thermal reservoir, the structure will 
exhibit spontaneous random fluctuations (also known as 
thermomechanical noise) as specified by the Fluctuation-
Dissipation Theorem. Numerous theoretical and experimental 
studies have extensively studied the effects of 
thermomechanical noise on the dynamics, performance, and 
linearity of MEMS and NEMS (see, for instance, [18]-[23]), 
but this phenomenon has not yet been explored using atomistic 
simulations. 

II. SIMULATION METHODOLOGY 

Molecular dynamics simulations were performed using the 
large-scale atomic/molecular massively parallel simulator 
(LAMMPS) package [24]. Single-crystal materials were 
constructed by arranging atoms on a face-centered cubic (fcc) 
lattice with a lattice parameter of 3.53 Å for nickel, and on a 
body-centered tetragonal (bct) lattice with a lattice parameter 
of 5.43 Å for silicon. The interactions between atoms were 
modeled using the embedded-atom-method (EAM) potential 
for Ni [25], [26] and the Stillinger-Weber potential for Si [27]. 
A Cartesian coordinate system was attached to the structures 
with the x, y, and z axes oriented along the [1 0 0], [0 1 0], and 
[0 0 1] directions respectively. The dimensions of the y-z 
cross-section were 4.2 nm × 4.2 nm for Ni and 4.3 nm × 4.3 
nm for Si, and the length (L) along the [1 0 0]-direction ranged 
from 6.75 nm to 7.60 nm (Table I).  In the axial direction, all 
structures were clamped at one end, and free at the other. In  
the lateral (y and z) directions, the boundaries were free for 

nanowires and periodic for nanofilms. 
The equations of motion were integrated using the velocity-

Verlet algorithm [28] with a time step, int 1t = fs, a typical 
value used in MD simulations of solids. The time step was 
selected as a trade-off between minimizing truncation errors 
during numerical integration and reducing computational cost. 
In addition, intt  should be less than 10% of the shortest time 
period of atomic, molecular, or structural vibrations of the 
system [29]. All structures were evolved in time as an NVT 
ensemble using the Nosé-Hoover (NH) thermostat which is 
characterized by a time constant ( NHt ). In general, the time 
constant is chosen as a trade-off between minimizing 
fluctuations in temperature and the time required for attaining 
equilibrium. To identify a suitable value, parametric studies 
were performed by monitoring the potential energy, pressure, 
and temperature as functions of time for NHt  ranging from 
0.01 ps to 10 ps, and time constants of 0.1 ps and 0.01 ps were 
selected for Ni and Si, respectively. 

To attain thermodynamic equilibrium at room temperature, 
each structure was gradually heated from 1 K to 300 K over a 
duration ranging from 3 ns to 5 ns, and then further relaxed at 
300 K for 2 ns (for Ni) and 40 ns (for Si). Fig. 1 shows the 
temperature profile used for equilibrating the Ni nanofilm and 
Si nanofilm. After equilibration, the thermomechanical noise  

TABLE I 
GEOMETRIC AND MECHANICAL PROPERTIES OF THE NANORESONATORS 

Structure Length 
(L) Cross-Section 

Axial 
Stiffness 

(kx) 

Fundamental 
Natural 

Frequency 
(f0) 

Ni nanofilm 6.75 nm 4.2 nm × 4.2 nm 552 N/m 183 GHz 
Si nanofilm 7.60 nm 4.3 nm × 4.3 nm 352 N/m 255 GHz 
Ni nanowire 6.75 nm 4.2 nm × 4.2 nm 316 N/m 136 GHz 
Si nanowire 7.60 nm 4.3 nm × 4.3 nm 210 N/m 202 GHz 

Fig. 1.  Equilibration of the nanofilms at room temperature. The structures were 
heated from 1 K to 300 K over 3 to 5 ns, and then further relaxed at 300 K for 2 
ns in the case of nickel and for 40 ns in the case of silicon. 
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spectrum was acquired by recording the spontaneous axial 
displacements of the atomic layer at the free end (x = L) with 
respect to the mean center-of-mass coordinates. No external 
forces were applied during these simulations. The time-series 
was then analyzed in the frequency domain using the Fourier 
transform and the power spectral density (PSD). In both cases, 
the spectra exhibit characteristic peaks at the natural 
frequencies of longitudinal vibration. The first and most 
prominent peak was identified as the fundamental natural 
frequency.  

Fig. 4.  Mode shape of the harmonic longitudinal oscillations of the nanofilms. 
The inset shows a schematic illustration of the face centered cubic (fcc) 
structure used to analyze damping in Ni. The clamped end was simulated by 
fixing the displacements and velocities of two layers of atoms (shown in 
blue). 

Subsequently, tensile tests were simulated by applying 
static forces at the free end of the structures and recording the 
corresponding displacements. The axial stiffness was obtained 
by a least-squares analysis of the elastic response; in all cases, 
the coefficient of regression exceeded 0.99. The Young’s 
modulus and elastic limit were determined by transforming the 
data into axial stress and axial strain. Finally, the mode shape 
was determined by applying an axial harmonic force and 
recording the axial displacements at cross-sections along the 
length of the structures. The driving frequency was less than 
the fundamental natural frequency in these simulations. 

Fig. 2 shows the force-displacement curves in the elastic 
regime for all four structures. The axial stiffness ranges from 
210 N/m to 552 N/m. The corresponding stress-strain curves 
are shown in Fig. 3 for the nickel nanofilm and nanowire. The 
former shows an elastic response followed by inelastic 
deformation, and the Young’s modulus of 200 GPa is 
consistent with bulk values and the properties of the EAM 
potential used for Ni [26]. The elastic limit (stress of 4 GPa 
and strain of 2%) is relatively large as a consequence of 
modeling the structures as ideal defect-free single crystals. In 
contrast, the nanowire deforms elastically before undergoing 
brittle fracture, and the Young’s modulus drops to 119 GPa, 
which is in excellent agreement with previous MD simulations 
of the effects of free surfaces on the mechanical behavior of 
Ni nanowires [30]. Fig. 4 shows the mode shapes in the sub-
resonant regime for the Ni nanofilm and Si nanofilm. To an 
excellent approximation, the displacement is a linear function 
of position and the axial strain is constant along the length of 
the structure, which is consistent with expectations based on 
an elementary model for the forced harmonic oscillations of a 
fixed-free elastic beam [15]. 

Fig. 2.  Force-displacement curves obtained by simulating static tensile tests 
on nanowires and nanofilms of nickel and silicon. The axial stiffness was 
estimated by linear regression analysis.  

Fig. 3.  Stress-strain curves obtained by simulating static tensile tests on the 
nickel nanostructures. The Young’s modulus is 200 GPa for the nanofilm and 
119 GPa for the nanowire. 
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III. DAMPING IN THE SUB-RESONANT REGIME

In the sub-resonant regime, damping can be quantified in 
terms of the loss tangent and loss factor by applying an axial 
harmonic force, ( )0 sinx dF F tω= , at the free end of the
structure and recording the velocity and displacement. Here, 

0F  is the amplitude of the force, 2d dfω π=  is the angular 
driving frequency (with 0df f< ), and t is time. For all 
simulations, the steady-state axial response of the free end was 
well described by 

      ( )
ThermalMechanical

( , ) sin ( , ).du L t X t u L tω φ= − + 


((((

 (1) 

The first term is the harmonic mechanical response with 
amplitude X and phase angle φ, and the second term is the 
spontaneous random displacement due to thermomechanical 
noise. The phase angle was calculated in the frequency-
domain using the Fourier transforms of the displacement and 
force. As a check, the results were verified by fitting the 
response in the time domain using linear regression analysis. 
The time-domain and frequency-domain estimates of tanφ  
matched within 1%. Using the same set of simulations, the 
loss factor was computed using the approach of Kunal and 
Aluru [15]. The work done per cycle of vibration is given by 

       ( )0
0

2 2 vsin ,d
d d

W W F t dt
t

t
π π ω

ω t ω t
   

∆ = ∆ =   
   

∫  (2) 

where Wt∆  is the work done over time t, and v is the axial 

atomic velocity.  The peak elastic energy is 20.5 xW k X=  and 
the amplitude X was extracted from simulations using [15] 

( )
FFT ( , )

2d
data

u L t
X

n
ω = × . (3) 

In this expression, ( , )u L t  is the average displacement of the 
atoms at the free end, and datan  is the number of data points 
used in the Fast Fourier Transform (FFT). 

A. Response Regimes 
The displacement of the structure can be classified into 

three regimes: fluctuation-dominated response, linear 
mechanical response, and non-linear mechanical response. 
Fig. 5 illustrates the classification using the steady-state 
oscillations at 10 GHz of the nickel nanofilm as a typical 
example. In the absence of the harmonic force ( 0 0F = ), the 
response is entirely due to thermomechanical noise with a 
root-mean-square (rms) value of 3/ 2.7 10B xk T k −= × nm,

where Bk  is Boltzmann’s constant. For relatively small forces 
( 0 0.2F = nN), the harmonic response is of the same order as 
the thermomechanical noise ( ~ BW k T∆ ). However, as 0F  
increases further, the harmonic amplitude greatly exceeds the 
thermomechanical fluctuations and the displacement is 
dominated by the mechanical response. For 0 55F = nN, the 

Fig. 5.  Axial displacement as a function of time at the free end of the nickel 
nanofilm at 10 GHz. The blue curve shows the thermomechanical noise. The 
red, green, and black curves show the response when the structure is driven 
harmonically with force amplitudes of 2 nN, 18 nN, and 55 nN, respectively. 

harmonic amplitude is ~0.1 nm, which is more than an order 
of magnitude greater than the rms thermal noise. 

In the fluctuation-dominated regime, the analysis of 
damping must account for fluctuations in thermodynamic 
quantities (entropy, work done, heat, internal energy, and 
dissipation). For a harmonic oscillator, the Steady-State Work 
Fluctuation Theorem can be expressed as [31]  

( )
( )

1 exp ,
B

p W W
p W k T

t t

t t

∆  ∆
=  Σ −∆  

(4) 

where p is the probability distribution function, t is the time 
interval over which the work is calculated, and tΣ is a 
dimensionless factor that accounts for finite-time effects. 
Equation (4) has many intriguing consequences; for instance, 
depending on the statistical properties of the work distribution, 
there is a finite probability of observing trajectories for which 
the work done is negative (corresponding to entropy 
destruction) [31]. This topic is an active area of current 
research and only a few cases (including viscously-damped 
harmonic oscillators with a Gaussian distribution of Wt∆ ) 
have been studied thus far. Establishing finite-time corrections 
for systems dominated by anelastic or viscoelastic material 
damping, and for systems with non-Gaussian work 
distributions, are interesting open questions of fundamental 
scientific interest. However, from the viewpoint of estimating 
damping using classical MD, it is best to avoid the fluctuation-
dominated regime and focus instead on the mechanical 
regime.  

Fig. 6 illustrates the difference between the fluctuation-
dominated regime and linear mechanical regime for the typical 
example of oscillations at 10 GHz of the silicon nanofilm. 
Damping was calculated after every nanosecond: the symbols 
denote the loss factor and the lines indicate the loss tangent. In 
all cases, tanφ  differs from η by less than 5%. 
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Fig. 6.  Convergence behavior of damping for the longitudinal-mode 
oscillations at 10 GHz of the silicon nanofilm. The open circles represent the 
loss factor (η) and the lines represent the loss tangent (tan φ). Both measures 
were computed every nanosecond; in all cases, the difference between η  and 
tan φ  is less than 5%. 

In the fluctuation-dominated regime ( 0 12F = nN), the 

damping fluctuates between 410−  and 42.5 10−× , and the 
simulations do not converge even after 150 ns of forced 
oscillation. In the mechanical regime ( 0 49F = nN), the loss 

factor and loss tangent converge to 42.4 10−×  after 122 ns. 
The convergence time, ct , was defined as the simulation time 
beyond which the changes in tanφ  and η  were less than 3%. 
Both measures remained unchanged when the force was 
increased further to 61 nN and 86 nN, which satisfies the two 
criteria for linear damping: the loss factor and loss tangent are 
independent of the oscillation amplitude, and tanφ η=  [1], 
[32]. 

Fig. 7.  Nonlinear damping in the longitudinal-mode oscillations at 10 GHz of 
the nickel nanofilm. The loss factor and loss tangent are indicated by the open 
circles and closed circles, respectively. 

The nanoresonator can be driven into the nonlinear 
mechanical regime by increasing the force beyond the linear 
limit. Fig. 7 shows a typical example of nonlinear damping in 
the longitudinal-mode oscillations at 10 GHz of the nickel 
nanofilm. For this structure, the simulations converge in the 
linear regime with 4tan 9 10φ η −= = × , as indicated by the 
dashed line in the graph. When the harmonic force exceeds the 
elastic limit of 92 nN, the damping exhibits both signatures of 
nonlinearity. Thus, for 0 230F = nN, the loss tangent is 14% 
higher than the loss factor.  

B. Damping in the Linear Mechanical Regime 
Table II presents the full set of results for linear sub-

resonant damping at room temperature for the longitudinal 
mode oscillations of nanowires and nanofilms of silicon and 
nickel. In all cases, damping was calculated in the linear 

TABLE II 
LINEAR DAMPING AT 300 K FOR NANOFILMS AND NANOWIRES OF NICKEL AND SILICON 

Structure Frequency, 
f (GHz) 

Force, F0 
(nN) 

Convergence 
time, ct  (ns) 

tanφ  η tan
tan

φ η
φ
−  

Nickel 
nanofilm 

10 

55 

80 8.67 × 10-4 9.06 × 10-4 4.5% 
15 42 1.21 × 10-3 1.27 × 10-3

 4.3% 
20 30 1.50 × 10-3

 1.56 × 10-3

 4.0% 
25 11 1.81 × 10-3 1.87 × 10-3

 3.4% 
30 14 2.05 × 10-3

 2.11 × 10-3 2.6% 

Silicon 
nanofilm 

10 

49 

122 2.44 × 10-4

 2.48 × 10-4 1.7% 
15 54 2.13 × 10-4

 2.16 × 10-4

 1.5% 
20 76 2.00 × 10-4 2.03 × 10-4 1.4% 
25 47 1.76 × 10-4 1.77 × 10-4 1.2% 
30 51 1.62 × 10-4

 1.62 × 10-4 0.0% 

Nickel 
nanowire 

10 

46 

51 1.17 × 10-3 1.15 × 10-3 1.7% 
15 27 1.64 × 10-3

 1.61 × 10-3

 1.8% 
20 23 2.11 × 10-3 2.06 × 10-3 2.4% 
25 19 2.57 × 10-3 2.48 × 10-3 3.5% 
30 5 3.02 × 10-3 2.87 × 10-3 4.3% 

Silicon 
nanowire 

10 
37 

38 4.24 × 10-4 4.38 × 10-4 3.2% 
15 62 4.06 × 10-4

 4.18 × 10-4 2.9% 
20 56 3.82 × 10-4 3.92 × 10-4 2.6% 
25 16 3.66 × 10-4 3.74 × 10-4

 2.1% 
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mechanical regime. For each structure, damping was evaluated 
at several different frequencies ranging from 10 GHz to 30 
GHz. At each frequency, the convergence behavior was 
studied by computing the loss factor and loss tangent after 
each nanosecond for a total of 150 ns at different levels of 
harmonic excitation.  

The convergence time is a function of several variables 
including the material, crystal structure, mode of oscillation, 
magnitude and mechanism of damping, frequency, force, 
stiffness, and the criterion used for convergence. All else 
being constant, the convergence time generally decreases as 
the harmonic force is increased because of a corresponding 
increase in the ratio of mechanical response to 
thermomechanical noise. Another general trend is a reduction 
of the convergence time at higher frequencies because the 
structure executes a greater number of oscillations per unit 
time. This trend is evident in Table II with the exception of the 
silicon nanowire at 10 GHz and the silicon nanofilm at 20 
GHz. The reasons for these anomalies have yet to be 
identified. Finally, we note that the criterion of 3% is an 
arbitrary choice; ct  will change significantly if other criteria 
are used for convergence. 

IV. ESTIMATING Q FROM THERMOMECHANICAL NOISE

The power spectral density (PSD) of thermomechanical 
noise exhibits prominent peaks at the natural frequencies of 
oscillation [18]. For the three major classes of linear damping 
(viscous, viscoelastic, and anelastic), the first peak 
(corresponding to the fundamental natural frequency) is 
symmetric and well-approximated by a simple Lorentzian 
function given by [18], [33] 

      
( )

( ) ( )
0
2 2

0 0

/ 2
( )

/ 2
B

x
f Qk TS f

k f f f Qπ
=

− +
, (5) 

where xS  denotes the PSD of axial displacement noise. 
Equation (5) can be used to estimate damping at the natural 
frequency by fitting the PSD to obtain the quality factor. 
Typically, the fit is performed by least-squares analysis of 
thermomechanical noise acquired over a finite time duration t 
which will invariably introduce uncertainties in the estimate of 
the quality factor. To leading order, the standard deviation is 
given by [34] 

3
0

0

6
Q

Q
f

σ
π t

= , (6) 

where 0Q  is the mean value of the quality factor. 
To implement this approach using MD simulations, the 

time-series of the spontaneous random fluctuations of the 
atomic layer at the free end (x = L) were recorded at 300 K in 
the NVT ensemble without applying any external forces on the 
structure. The displacement was sampled at intervals of 1 fs to 
ensure that the Nyquist frequency (that is, one-half of the 
sampling frequency) is significantly greater than the 

Fig.  8.  Power spectral density (PSD) of the displacement noise for the nickel 
nanofilm. The inset shows the first peak corresponding to the fundamental 
longitudinal-mode at 183 GHz. The red line is the result of a least-squares fit 
to (5). 

fundamental natural frequencies of the nanostructures. The 
thermomechanical noise was recorded for 154t = ns and then 
divided into five contiguous segments. For each segment, the 
PSD of the displacement noise was computed using the Welch 
periodogram technique implemented in MATLAB (The 
MathWorks, Inc., Natick, MA), and the first peak was fit to 
(5) by a weighted least-squares analysis using the Levenberg-
Marquardt algorithm to obtain the natural frequency and 
quality factor.  

For the fundamental mode at 183 GHz of the Ni nanofilm 
(Fig. 8), the analysis of the five noise segments resulted in 
estimates of 187, 174, 148, 219, and 186 for the quality factor. 
Hence, 0 183Q =  and 25Qσ = . The latter is in good 

agreement with (6) which predicts a standard deviation of 20.3 
(i.e., 11% of the mean).  

V. ESTIMATING NONLINEAR DAMPING USING Q AND δ 
For linear systems, damping can be obtained by analyzing 

the steady-state harmonic oscillations in the frequency 
domain. As in the case of thermomechanical noise, the peak 
corresponding to the fundamental natural frequency can be fit 
to a Lorentzian function to obtain the quality factor. 
Alternately, the system can be subjected to an impulsive force 
and the freely decaying oscillations can be analyzed in the 
time domain to obtain the logarithmic decrement, δ. For 
phenomenological models of viscous, viscoelastic, and 
anelastic damping, the two measures are related by 1Qδ π −=  
[1], and this relationship has been observed in MD simulations 
of linear damping in carbon nanotubes in the microcanonical 
NVE ensemble [10].  

In stark contrast, our results indicate that the dynamics are 
strikingly different when nanomechanical structures are 

mailto:pubs-permissions@ieee.org


Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org. 
7 

simulated in the canonical NVT ensemble. The use of a 
thermostat to couple the structure to its thermal bath, and the 
resultant thermomechanical noise, make it difficult to access 
the linear range. In other words, the structure can be driven 
into the nonlinear regime simply by requiring the harmonic 
response to be significantly greater than the thermal noise. 
Furthermore, the frequency response displayed the 
characteristic signatures of the Duffing-like nonlinearity, as 
also observed in experimental studies of nonlinear damping in 
micromechanical and nanomechanical resonators [20], [35]-
[38].  

For a Duffing oscillator, damping can be estimated in the 
frequency domain to obtain the quality factor [39]. 
Alternately, the free decay can be analyzed in the time domain 
to obtain the average log decrement as a function of oscillation 
amplitude [40]. Both methods are illustrated below for the 
fundamental mode oscillations at 183 GHz of the nickel 
nanofilm. 

A. Duffing Nonlinearity at Resonance 
In the vicinity of the natural frequency, the nonlinear 

frequency response can be approximated by [20], [39] 

( ) 22
0

2 2
0

2 2 1
3

p

c

XQ f f X
f X X

−
= ± − ,              (7) 

where pX  is the peak amplitude and cX  is the critical 
amplitude. The latter is the point of bifurcation (that is, the 
coordinate at which the slope of the amplitude-frequency 
curve is infinite) [20]. The backbone curve (that is, the graph 
of pX  as a function of the peak frequency, pf ) is obtained by 

setting pX X= . The term under the radical vanishes to give 

2
0

2
0

2 ( ) 2
3

p p

c

Q f f X
f X

−
= .          (8) 

The quality factor was estimated by applying harmonic axial 
forces (with amplitudes ranging from 0.09 nN to 0.23 nN) and 
recording the steady-state mechanical response. The frequency 
response was examined to identify the critical amplitude (for 
this structure, 0.04cX = nm) and the backbone curve was 
obtained from simulations and fit to (8) to obtain 0 183f =
GHz and 215Q = . Finally, the frequency response curves 
were computed using (7). 

Fig. 9 shows the nonlinear frequency response for the nickel 
nanofilm. The spring softening nonlinearity was also observed 
in simulations of the silicon nanofilm. Material nonlinearities 
can be eliminated as the origin of this response because the 
oscillation amplitudes ( )0.06nm≤  are an order of magnitude 
below the elastic limit. Similarly, dissipative nonlinearities can 
be neglected because the quality factor of 215 is in good 
agreement with the value (183 25± ) obtained from the linear 
analysis of thermomechanical noise. By a process of 
elimination, and guided by an analysis of the mode shapes in 
the vicinity of resonance, we identify mode coupling  

Fig. 9.  Nonlinear frequency response for the nickel nanofilm. The symbols 
are the results of simulations and the curves were computed using (7) with 

0.04cX = nm, 0 183f = GHz, and Q = 215. 

(specifically, a coupling of the longitudinal mode at 183 GHz 
with torsional modes at 128 GHz) as the source of the Duffing 
nonlinearity. This conclusion is qualitatively supported by the 
literature on the nonlinear oscillations of fixed-free beams 
which suggests that spring softening can arise when new 
degrees-of-freedom are activated by mode coupling [41].  

B. Nonlinear Free Decay 
The free decay method was implemented by applying a 

harmonic axial force with amplitude of 0.09 nN on the nickel 
nanofilm for 2 ns. The excitation frequency was close to, but 
less than, the fundamental natural frequency of 183 GHz. 
After the structure reached steady-state, the excitation was 
terminated and the free oscillations of the atomic layer at 
x L=  were recorded. In the first nanosecond of free 
oscillations, the amplitude reduced from 22.5 10−× nm to 

35.2 10−× nm. The free decay was segmented into time-
windows, each 0.03 ns in duration, and then analyzed using 
FFT to determine the instantaneous decay frequency. This 
frequency varied between 180 GHz and 185 GHz, which is a 
signature of the underlying nonlinear dynamics. 

Finally, the damping was estimated by combining the decay 
signal ( )x t  with its Hilbert transform [ ]( ) ( )x t x tΗ =   to

construct the analytic signal ( ) ( ) ( )z t x t i x t= +   [40]. The log 
decrement was extracted by linear regression analysis of the 

slope of ( )ln ( )A t , where 2 2( ) ( ) ( )A t x t x t= +   is the 
envelope signal [40]. The damping varied as a function of the 
oscillation amplitude (and hence as a function of the decay 
duration). For the full decay duration of 1 ns, the log 
decrement ( δ = 0.015) is in good agreement with the 

frequency domain analysis ( 1 0.0146Qπ − = ). 

mailto:pubs-permissions@ieee.org


Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org. 
8 

VI. DISCUSSION

  In this paper, we explored five different methods for 
computing damping in a single mode of vibration under 
isothermal conditions using atomistic simulations. The 
methods were demonstrated by using classical molecular 
dynamics to simulate the fundamental mode of longitudinal 
oscillations of nanowires and nanofilms of two materials 
(silicon and nickel) in the canonical NVT ensemble, and 
damping was calculated at 300 K by controlling the 
temperature with the Nosé-Hoover thermostat.  

A. Comparison of Methods 
For all methods, damping was estimated without recourse to 

macroscale (or continuum-based) concepts. Instead, the 
analysis is based on simple dynamic models for the linear and 
nonlinear oscillations of a system with a single degree-of-
freedom. The choice of the dynamic model was guided by the 
response observed in the simulations, and by following the 
dictum of selecting the simplest model that can provide the 
required level of detail and insight. For instance, the equations 
used for estimating the loss tangent and loss factor were 
selected after observing the linear force-displacement curve 
(Fig. 2) and steady-state time-harmonic oscillations (Fig. 5) in 
the sub-resonant regime. Similarly, the use of the Duffing 
model was guided by the spring-softening nonlinearity 
observed at resonance.  

In the sub-resonant regime, damping can be estimated by 
using the loss tangent and loss factor. No assumptions are 
made about the nature, magnitude, or mechanisms of 
dissipation. The same structure can be used to simulate 
damping at several different frequencies below the 
fundamental natural frequency. Further, both measures can be 
computed using the same set of simulations with little 
incremental cost. It is useful to do so because the relative 
values of tanφ  and η can be used to assess linearity. In 
general, however, simulating damping in the sub-resonant 
regime is expensive because of the cost associated with 
assessing convergence and linearity. 

Analysis of thermomechanical noise is the method of choice 
for obtaining the quality factor at resonance. Simple formulas 
are available for estimating the mean and standard deviation of 
the quality factor. Equation (5) can be applied to all major 

classes of linear dissipation (anelastic, viscoelastic, and 
viscous) without any assumptions about the underlying 
mechanisms. In principle, the technique can be extended to 
extract the quality factors of the higher modes of oscillations 
by using modal coordinates to analyze the PSD [42]. 
However, the modal approach requires assumptions about the 
mode shapes and spatial distribution of damping [42, 43]. 

For nanomechanical resonators, it is usually necessary to 
account for nonlinearities while analyzing the frequency 
response at resonance. In our simulations, the response was 
accurately captured by the Duffing equation which assumes 
linear dissipation with a damping force that is proportional to 
velocity [39]. For structures with significant nonlinear 
dissipation, it is necessary to use higher-order models to 
analyze the response. In recent studies of MEMS and NEMS, 
a nonlinear damping coefficient has been introduced into the 
equation of motion in a term that contains the product of the 
velocity and the square of the displacement [37, 38]. For this 
model, simple closed-form expressions (analogous to (7) and 
(8)) are available for extracting the nonlinear damping 
coefficient by analyzing the frequency response in the vicinity 
of resonance [37, 44].  

B. Validation of Results 
As a check on our simulations, the loss factors for the Ni 

nanofilm (Table II) were compared with previous results 
presented in Ref. [15]. The structural dimensions and several 
simulation parameters (including the EAM potential, 
integration time step, and the thermostat time constant) are the 
same in both studies, but the simulation times are significantly 
different at certain frequencies, as noted parenthetically in 
Table III. The two studies are in good agreement with 
differences ranging from 9% to 24%. 

A direct comparison with experiments is not currently 
possible because of a lack of measurements of damping at the 
ultrahigh frequencies under consideration. However, an 
indirect comparison can be made by using a simple model for 
Akhiezer damping to link simulations with experiments. 
Kunal and Aluru [15] have shown that the frequency 
dependence of damping in Table III is consistent with 
expectations based on Akhiezer damping with a single 
relaxation time. Furthermore, the relaxation time obtained 
from simulations matches experimental data. Our preliminary 
simulations suggest that the same is true for single-crystal 
silicon. We are currently refining this analysis with extensive 
MD simulations of damping in the longitudinal-mode 
oscillations of nanoresonators constructed using single-crystal 
and amorphous silicon. 
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