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Abstract 

Data-driven forecasting (i.e., regression, machine learning, artificial intelligence, etc.) has become a 

popular and very useful alternative to physically-based and conceptual forecasting approaches in the 

water resources domain since such methods solely rely on statistical relationships between explanatory 

variables and the target process, require no explicit physical knowledge of the processes under study, are 

rapid to develop, have low-costs, and are easy to implement in real-time.  However, similar to physically-

based and conceptual forecasting approaches, the nonlinear, multiscale, and uncertain nature of water 

resources provide challenges in the development of accurate and reliable data-driven forecasts. 

To address the nonlinear, multiscale, and uncertain nature of water resources this research develops an 

innovative ensemble wavelet-based stochastic data-driven forecasting framework (EW-SDDFF) that 

results in forecasts of a target process in the form of a probability density function.  EW-SDDFF is 

developed, tested, and applied to a real-world daily urban water demand forecasting experiment in 

Montreal, Quebec where it is shown to produce accurate and reliable forecasts at multiple lead times, 

outperforming numerous benchmarks, and performing especially well during the July, 2010 heatwave that 

affected Montreal (and many other parts of Quebec). 

EW-SDDFF addresses the nonlinear, multiscale, and uncertain nature of water resources in three main 

ways: 1) it uses nonlinear information-theoretic input variable selection and nonlinear data-driven 

forecasting methods; 2) it uses wavelet transforms to address multiscale changes in explanatory variables 

and the target process; and 3) it adopts stochastics for the uncertainty assessment of input data, input 

variable selection, parameters, and model output.  The end result of EW-SDDFF is a stochastic forecast 

that holistically addresses nonlinearity, multiscale change, and uncertainty. 

The main innovations behind the EW-SDDFF are contained in its development which takes place in four 

key stages: 1) new computationally efficient, non-parametric, nonlinear information-theoretic input 

variable selection methods are developed to provide the most important input variables to nonlinear 

data-driven methods to forecast the target process; 2) a set of best (correct) practices are developed for 

using wavelet transforms correctly in wavelet-based forecasting models and formed into a new wavelet-

based forecasting framework (WDDFF) that can be used with multiple wavelet transforms, different input 

variable selection methods, and data-driven forecasting models and that may be applied for the correct 

development of wavelet-based forecasting models for real-world applications; 3) uncertainty assessment 

is included in WDDFF by adopting a stochastic framework, resulting in a new stochastic wavelet-based 
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forecasting framework (SWDDFF); and 4) to take advantage of the strengths of multiple wavelet 

transforms, different input variable selection methods and data-driven models, the single-wavelet 

SWDDFF is transformed into an ensemble multi-wavelet stochastic data-driven forecasting framework 

(EW-SDDFF) by using multiple WDDFF forecasts as input data, improving forecast accuracy and reliability 

when compared to its single-wavelet counterparts (SWDDFF).  EW-SDDFF includes both ensemble 

member selection and weighting uncertainties, using input variable selection and data-driven modeling, 

respectively, and also accounts for input data and ensemble model output uncertainties.  Both SWDDFF 

and EW-SDDFF represent the most advanced single- and multi-wavelet data-driven forecasting 

frameworks in the literature. 

Since EW-SDDFF quantifies forecast uncertainty (in the form of a probability density function), it may serve 

as a useful tool for operational, planning, and management tasks faced by water resources managers, 

especially during decision-making stages. 
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Résumé 

Devenue, dans le domaine des ressources en eau, une alternative à la fois populaire et utile aux approches 

prévisionnelles conceptuelles ou fondées sur des critères physiques, les prévisions axées sur les données 

(c.à.d. régression, apprentissage machine, intelligence artificielle, etc.) sont privilégiées parce qu’elles 

reposent uniquement sur les relations statistiques entre les variables explicatives et le processus cible, 

n’exigent aucune connaissance physique explicite du processus étudié, sont rapidement élaborés, de 

faible coût, et faciles à mettre en œuvre en temps réel. Cependant, tout comme avec les approches 

prévisionnelles conceptuelles ou fondées sur des critères physiques, le caractère non-linéaire, multi-

échelle et incertain des ressources hydriques pose un défi au développement de prévisions axées sur les 

données qui soient à la fois précises et fiables. 

Afin de s’adresser au caractère non-linéaire, multi-échelle et incertain des ressources hydriques, la 

présente étude visa à élaborer un innovant ensemble prévisionnel stochastique axé sur les données 

invoquant l’utilisation d’ondelettes (EW-SDDFF), permettant ainsi de prévoir un processus cible sous 

forme de fonction de densité de probabilité.  Élaboré, mis à l'épreuve et mis en pratique dans une situation 

réelle de prévision de la demande urbaine d'eau quotidienne de la ville de Montréal (Québec), le EW-

SDDFF offrit des prévisions précises et fiables sous différents délais, surpassant plusieurs indices de 

référence, et s’avérant particulièrement performant lors de la canicule de juillet 2010 qui frappa Montréal 

et plusieurs autres régions du Québec. 

L’EW-SDDFF aborde le caractère non-linéaire, multi-échelle et incertain des ressources hydriques de trois 

manières innovant, il emploi (i) un critère puisé de la théorie de l'information pour choisir les variables 

d'entrée, ainsi que des méthodes de prévision non-linéaires axées sur les données, (ii) une transformée 

en ondelettes pour s’adresser aux variations multi-échelles des variables explicatives et du processus 

cible, et (iii) la stochastique pour évaluer l’incertitude dans les données d’entrée, la sélection des données 

d’entrée, des paramètres et données de sortie des modèles.  En fin de compte, l’EW-SDDFF offre une 

prévision stochastique qui s’adresse globalement à la non-linéarité, les variations multi-échelle et 

incertitude. 

 

L’élaboration de l’EW-SDDFF s’opéra en quatre étapes principales: (i) élaborer de nouvelles méthodes de 

modélisation dont le traitement informatique est efficace, non-linéaire et non-paramétrique, et qui 

permettent de sélectionner de données d’entrée pertinentes à la prévision du processus cible par un 
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modèle non-linéaire axé sur les données, selon des critères puisés dans théorie de l'information; (ii) 

élaborer à la fois un ensemble de pratiques visant le bon usage des transformées en ondelettes dans les 

modèles prévisionnels à base d’ondelettes, et un réseau prévisionnel à base d’ondelettes (WDDFF) 

permettant de mettre en œuvre et comparer plusieurs types de transformées en ondelettes, différentes 

méthodes de sélection des données d’entrée, et différents modèles prévisionnels axées sur les données, 

tout cela pour créer de tels modèles pouvant être appliqués en situation réelle; (iii) en adoptant un cadre 

stochastique, une évaluation de l’incertitude est incluse dans le WDDFF, donnant lieu a un réseau 

prévisionnel à base d’ondelettes stochastique (SWDDFF); et (iv) en vue de tirer parti de la puissance des 

transformées en ondelettes multiples, des différentes méthodes de sélection des données d’entrée, et 

des modèles axées sur les données, un SWDDFF mono-ondelette fut transformé en un cadre stochastique 

multi-ondelettes d’ensemble axée sur les données (EW-SDDFF) et puisant sur de multiples prévisions 

WDDFF comme données d’entrée. En comparaison à son homologue mono-ondelette (SWDDFF), le EW-

SDDFF améliora la précision et la fiabilité des prévisions. Le EW-SDDFF inclus à la fois une sélection 

d’ensemble des membres et une pondération d’incertitudes, de manière qu’un choix entre données 

d’entrée variables et une modélisation axée sur les données sont, respectivement, mis en œuvre. Cette 

approche tient également compte des incertitudes des données d’entrée et des données de sortie des 

modèles d’ensemble. Ensemble, SWDDFF et EW-SDDFF représentent les réseaux de prévision axées sur 

les données mono- et multi-ondelette les plus avancés rapportés dans la littérature. 

Comme l’EW-SDDFF quantifie l’incertitude des prévisions (sous forme de fonction de densité de 

probabilité), il peut représenter un important outil pour les tâches opérationnelles, de planification et de 

gestion auxquels sont confrontés — particulièrement lors d’étapes décisionnelles — les gestionnaires des 

ressources en eau. 
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Chapter 1: Introduction 

Water resources forecasts are often used to support the design, operation, management, and planning of 

water resources systems (Loucks and van Beek, 2017).  However, the nonlinear, multiscale, and uncertain 

nature of water resources provide challenges in the development of accurate and reliable forecasting 

models (Bogner and Pappenberger, 2011; House-Peters and Chang, 2011; Maier et al., 2010).  This 

research attempts to address these three issues by developing, testing, and applying a novel ensemble 

multi-wavelet stochastic data-driven (e.g., time series, machine learning, artificial intelligence, etc. 

(Solomatine and Ostfeld, 2008)) forecasting framework.  The method proposed in this research is named 

the Ensemble Wavelet – Data-Driven Forecasting Framework (EW-SDDFF).   

First, a brief description of different water resources forecasting approaches (e.g., physically-based, 

conceptual, and data-driven) is given in order to provide background on available methods and to justify 

the use of a data-driven forecasting framework.  Next, discussion is provided with reference to the 

different challenges that hinder the development of accurate and reliable water resources forecasts (i.e., 

nonlinearity, multiscale change, and uncertainty).  To address each of these challenges a number of 

solutions are identified and then stated in terms of the main research objective and several specific 

(supporting) objectives.  Afterwards, the contributions of this research are stated before an outline is 

given for the remainder of the thesis. 

1.1. Water Resources Forecasting Approaches 

In the water resources domain there are three main approaches to forecasting: physically (process)-based, 

conceptual, and data-driven methods (Devia et al., 2015; Remesan and Mathew, 2015).  In simplified 

terms, the first approach relies on physical laws to relate observable processes to the target process and 

is based on the theory of mass-balance; conceptual models seek to mimic physical processes through 

various simplifications in order to transform external factors (predictors, explanatory variables, etc.) into 

the target process (predictand, response variable, etc.) (Jajarmizadeh et al., 2012).  In contrast to both 

physically-based and conceptual approaches, data-driven models seek to establish statistical relationships 

between explanatory variables and the target process and do not require any physical knowledge of the 

processes under study (albeit, physical knowledge of the interactions between explanatory variables and 

the target process is essential in understanding the benefits and limitations of data-driven forecasts).  This 

research is concerned with data-driven forecasting methods.  Justification for the use of data-driven 

forecasting approaches is given in the sub-section below. 
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1.1.1. Why are Data-Driven Forecasting Methods Useful in Water Resources? 

Different than physically-based or conceptual models, data-driven methods rely only on time series 

records that have been collected at regular (or even irregular (Sun and Trevor, 2017)) time intervals in 

order to estimate statistical relationships (in the form of model parameters) that can map a set of 

explanatory variables into forecasts of the target process.  In general, depending on the complexity of a 

given physically-based or conceptual model, time series records of significant length for a large number 

of different explanatory variables are needed to forecast the target process at a high computational cost 

(Clark et al., 2017; Fatichi et al., 2016).  In contrast, data-driven methods can be developed by solely 

considering previous time series records of the given target process (i.e., they do not require an extensive 

set of model inputs outside of historical measurements of the target process) while their parameters may 

be solved using simple and computationally inexpensive methods such as least squares. Thus, data-driven 

methods may be used as a flexible and inexpensive alternative to physically-based or conceptual models 

that require (potentially, site-specific) data that is difficult and/or expensive to collect (Zaier et al., 2010). 

A further benefit of data-driven models is that accurate forecasts can be obtained even with relatively 

short time series records that may be corrupted by noise or measurement errors and that contain complex 

nonlinear relationships (Mishra and Desai, 2006; Sun and Trevor, 2018; Zhang et al., 2011).    Once a data-

driven model has been calibrated, it is simple to use in real-time applications since it has a mathematical 

structure that does not require specialized software in order to generate forecasts. In addition to their 

minimal information requirements, flexibility, computational efficiency, strong performance in cases of 

poor data quality and availability, and ease of real-time use, data-driven models (such as artificial neural 

networks) have been shown to provide similar or better performance than their physically-based or 

conceptual counterparts for hydrological and water resources modeling and forecasting applications such 

as predicting ice growth on lakes (Seidou et al., 2006), estimating daily evaporation rates (Antonopoulos 

et al., 2016), rainfall-runoff forecasting (Daliakopoulos and Tsanis, 2016), streamflow forecasting (Demirel 

et al., 2009), and real-time flood forecasting (Napolitano et al., 2010). In summary, data-driven methods 

are ideal alternatives to physically-based and conceptual models for water resources forecasting due to 

their rapid development times, minimal information requirements, and ease of real-time implementation 

(Adamowski, 2008) alongside their ability to provide similar or better performance than their physically-

based and conceptual counterparts (Banihabib, 2016).  Due to these useful properties, data-driven 

forecasting methods have been adopted in this research.  In the next sub-section, some challenges facing 

the development of accurate and reliable data-driven water resources forecasts are described and 
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solutions for overcoming these challenges are proposed before a more in-depth discussion of the 

objectives of this research. 

1.2. Nonlinearity, Multiscale Change, and Uncertainty as Challenges in the Development of 

Accurate and Reliable Data-Driven Water Resources Forecasting Models 

Notwithstanding the attractiveness of using data-driven methods for forecasting water resources, they 

are not without their challenges due to the nonlinear, multiscale, and uncertain nature of water resources.  

The nonlinear and multiscale nature of water resources causes difficulties in providing accurate data-

driven forecasts since the intra- and inter-scale changes in explanatory and target processes often interact 

in non-trivial (nonlinear) ways (Adamowski et al., 2012; Peters-Lidard et al., 2017; Schwenk and Foufoula-

Georgiou, 2017).  The identification of which explanatory variables to choose and which scales of change 

are most important for including in a forecasting model of a given a target process (i.e., input variable 

selection), greatly influences the calibration of data-driven models and their forecasting accuracy (Galelli 

and Castelletti, 2013; Rathinasamy et al., 2013; Sang et al., 2015; Tran et al., 2015).  Furthermore, 

uncertainty seems to be an inherent feature of any water resources process and might not be completely 

resolved even with better models, abundant data, or sophisticated uncertainty estimation methods 

(Montanari and Koutsoyiannis, 2012).  In cases where one has access to numerous forecasting models, 

the uncertainty in deciding which forecasting model(s) (i.e., an ensemble forecast) to use for a given 

process, including the weight assigned to each model’s forecast, is also an important factor to consider 

when evaluating water resources forecasting uncertainty (Herger et al., 2018; Sivillo et al., 1997; Weijs 

and van de Giesen, 2013).  It is for these reasons that each stage in the design of data-driven forecasting 

models (e.g., input variable selection, parameters, model selection, model output, etc.) should be 

considered and explicitly estimated (Tyralis and Koutsoyiannis, 2017) if a high level of forecast accuracy 

and reliability is to be achieved.  The EW-SDDFF embodies such considerations in several novel ways.  It is 

shown below (as well as in Chapter 3-6) how each of these issues are innovatively addressed and 

considered in EW-SDDFF.  A brief discussion follows concerning the different challenges and their 

solutions (as proposed in this research). 

1.2.1. Challenge 1: Nonlinearity 

The practice of adopting nonlinear data-driven methods is well-established in the water resources 

forecasting domain with over two decades of research on this topic (Abrahart et al., 2012; Remesan and 

Mathew, 2015).  In order to address nonlinearity in water resources, nonlinear data-driven methods (e.g., 

artificial neural networks, support vector regression, etc.) have been adopted to provide more accurate 
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forecasts than linear methods (e.g., multiple linear regression, autoregressive integrated moving 

averages, etc.) (Li et al., 2010; Valipour et al., 2013; Zeynoddin et al., 2018).  One main drawback to using 

nonlinear data-driven forecasting methods is the large amount of parameters and hyper-parameters that 

need to be carefully selected in order to calibrate accurate forecasting models that provide strong 

performance out-of-sample.  The careful calibration of many parameters and identification of suitable 

hyper-parameter settings often lead to computationally demanding calibration times.  Since many real-

world water resources forecasting applications (e.g., water quality warning systems (Shi et al., 2018)) 

require accurate forecasts that can address nonlinearities between the target process and explanatory 

variables as well as issue forecasts in a timely manner,  nonlinear data-driven methods that can generate 

accurate and computationally efficient forecasts should be sought (Deo and Şahin, 2015).   

A problem intimately connected to the development of nonlinear data-driven forecasts but less often 

investigated, is the careful selection of input variables (Maier et al., 2010), a pre-requisite for the 

development of any accurate data-driven model (Guyon and Elisseeff, 2003).  If one selects redundant or 

irrelevant input (explanatory) variables, then the performance of a given data-driven forecast will 

(potentially) be severely compromised (Šindelář and Babuška, 2004).  While linear-based input variable 

selection methods are more common in water resources forecasting, nonlinear methods are seldom used, 

and those that are adopted are generally very computationally demanding (Galelli et al., 2014).  Therefore, 

in order to provide nonlinear data-driven water resources forecasting models with appropriate input 

variables, nonlinear input variable selection methods are required - methods which can identify useful 

input variables in a computationally efficient manner are highly valuable.   

1.2.1.1. Solution to Challenge 1 

This research investigates nonlinear data-driven models and input variable selection methods that 

together produce accurate forecasts that are computationally efficient to generate and which effectively 

account for nonlinear and complex interactions between target and explanatory variables.  The nonlinear 

data-driven methods estimate model parameters using a computationally efficient least squares solution.  

The first method is based on a new type of artificial neural network, named extreme learning machine 

(ELM), which is much faster to calibrate than traditional artificial neural networks and provides similar or 

better performance (Huang et al., 2006). The second method is based on a second order Volterra series 

model (SOV) which accounts for second order (nonlinear) interactions between explanatory variables and 

the target process through a Taylor series expansion (Labat et al., 1999).  A useful quality of the SOV is 
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that its parameters can be interpreted similarly to multiple linear regression (Maheswaran and Khosa, 

2012).  Both methods are described in more detail in Chapters 2-4.   

The nonlinear input variable selection methods explored in this research are based on information theory.  

Information theory provides a framework that permits the estimation of general (linear and nonlinear) 

forms of dependencies amongst two or more variables.  In particular, this thesis proposes the first 

computationally efficient non-parametric information-theoretic input variable selection methods that act 

as alternatives to current parametric approaches (that are computationally demanding).  The first method 

allows for the estimation of information-theoretic quantities (such as entropy and mutual information) by 

using Taylor series expansions.  An extremely useful innovation is developed that extends the first method 

to account for the estimation of uncertainty in the input variable selection process, creating another new 

input variable selection method.  The two methods are named Edgeworth Approximations-based 

conditional mutual information (EA) and its variant that includes uncertainty assessment, bootstrap rank-

ordered conditional mutual information (broCMI) (see Chapter 3 for more details).  The nonlinear data-

driven methods and input variable selection approaches mentioned above are considered in EW-SDDFF 

for generating forecasting models and selection forecasting model inputs (i.e., input variable selection), 

respectively. 

1.2.2. Challenges 2: Multiscale Change 

To improve forecast accuracy when using data-driven methods, including information on multiscale 

changes in water resources is essential (Koutsoyiannis et al., 2010).  Since the early 2000’s, researchers 

have made use of the wavelet transform for uncovering transients, trends, periodicities, and other 

peculiar phenomena across multiple scales in water resources processes and have used these physically 

meaningful traits as input to data-driven forecasting models, realizing superior accuracy when compared 

to models that did not incorporate the same information (Fahimi et al., 2017; Nourani et al., 2014).  

However, since the literature lacks a set of best (correct) practices for wavelet-based forecasting, a widely 

overlooked aspect of the wavelet transform has led to the use of data that exists ahead of the forecast 

date (referred to as, ‘future data’) to be used as input to the forecast, resulting in a large number of 

incorrectly-developed wavelet-based data-driven forecasting models (Du et al., 2017) (please see Chapter 

4 for an in-depth treatment). 

1.2.2.1. Solution to Challenge 2 

To overcome this deficiency, this research develops a set of best (correct) practices for wavelet-based 

forecasting.  The best practices ensure that the wavelet transform is applied correctly to the model inputs, 
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primarily by addressing the ‘future data’ issue. By adopting this set of best practices, one can use the 

wavelet transform to correctly develop wavelet-based data-driven forecasting models.  The best practices 

are incorporated in the new Wavelet Data-Driven Forecasting Framework (WDDFF) (see Chapter 4) by 

using the wavelet transform to (correctly) extract multiscale information from the target and explanatory 

variables. Input variable selection is then used to select scale-based information from the explanatory 

variables, which is used as input to a particular data-driven model to forecast the target process.  WDDFF 

is flexible and can be used with any (linear or nonlinear) input variable selection and data-driven method.  

Thus, WDDFF is a very useful tool that can be used for forecasting nonlinear and multiscale water 

resources.  WDDFF is used as the base data-driven method for EW-SDDFF, which allows different wavelet-

based forecasting models to be combined in a multi-wavelet ensemble stochastic data-driven forecasting 

framework. 

1.2.3. Challenge 3: Uncertainty Assessment 

Estimation of uncertainty is an important task often required in optimizing, managing, and planning water 

resources systems (Ajami et al., 2008; Wei, 2012).  In order to estimate uncertainty in each stage of the 

forecast design and to derive a probability-based forecast as the end result (a very useful tool for 

operational, managerial, and decision-making tasks in water resources systems), one is faced with 

numerous options of varying complexity: Bayesian methods (Krzysztofowicz, 2014), evolutionary 

approaches (Dotto et al., 2012), Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 

2014), and stochastics (Farmer and Vogel, 2016).  Each uncertainty estimation method uses different 

means for characterizing uncertainty and most methods often require tuning several parameters, 

assuming distributional properties, or estimating a likelihood function, e.g., particle swarm optimization 

(Zambrano-Bigiarini and Rojas, 2013), Bayesian methods (Herr and Krzysztofowicz, 2015), and GLUE (Khoi 

and Thom, 2015), respectively. 

1.2.3.1. Solution to Challenge 3 

This research adopts a stochastics-based approach for uncertainty estimation referred to as the blueprint 

(Montanari and Koutsoyiannis, 2012; Sikorska et al., 2015).  This stochastics-based approach relies on the 

use of probability density functions to characterize uncertainty in different facets of the model design 

(e.g., input variable selection, model parameters, model output, etc.) and is different from other 

prominent methods.  For example, it does not require the estimation of a likelihood function and can 

therefore estimate probability density functions using simple methods, such as the bootstrap (Efron and 

Tibshirani, 1993).  By using a stochastic approach based on the bootstrap, uncertainty can be estimated 
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without any distributional assumptions, parametric settings, or likelihood estimation. The bootstrap 

simply relies on sampling with replacement from a given dataset.  This allows the estimation of input data, 

input variable selection, parameter, and model output uncertainties.  By considering these uncertainties, 

WDDFF is transformed into its stochastic version (SWDDFF) and its non-wavelet-based version, SDDFF 

(i.e., by not performing wavelet analysis).  Both SDDFF and SWDDFF characterize the uncertainty in these 

respective aspects of the data-driven forecasting model design (i.e., input data, input variable selection, 

parameters, and model output) and can therefore be used for generating probability-based forecasts in a 

holistic manner.  SWDDFF (and SDDFF) are the first wavelet- (and non-wavelet) based stochastic data-

driven forecasting models to include input data, input variable selection, parameter, and model output 

uncertainty. 

By feeding individual WDDFF forecasts into SDDFF, the proposed EW-SDDFF is generated.  EW-SDDFF is 

an ensemble version of the SWDDFF and the first ensemble multi-wavelet stochastic forecasting 

framework for probability-based forecasting and the first ensemble stochastic data-driven water 

resources forecasting model to consider ensemble model selection and weighting uncertainties, alongside 

input data and ensemble model output uncertainties.  The EW-SDDFF is the most advanced ensemble 

multi-wavelet forecasting framework proposed in the literature. 

1.3. Research Objectives 

Due to the complex nature of water resources that exhibit nonlinearity, multiscale change, and 

uncertainty, one wishing to adopt a data-driven forecasting framework must seek a paradigm that can 

address each of these features in all facets of the model design in order to enable accurate and reliable 

water resources forecasts.  While there have been numerous studies in the data-driven water resources 

forecasting literature that have sought to address these issues (which will be discussed in more detail 

within Chapter 2), most proposed frameworks choose to address only one of these issues (e.g., 

nonlinearity (Laio et al., 2003; Wu et al., 2014)), others will focus on addressing two of these issues (e.g., 

nonlinearity and multiscale changes (Patil and Deka, 2017; Yadav and Eliza, 2017)), and very seldom, some 

will attempt to address each issue (Barzegar et al., 2017; Kasiviswanathan et al., 2016; Liu et al., 2015; 

Wang et al., 2013) but fall short of including uncertainty assessment in each stage of the data-driven 

forecast design (e.g., input variable selection, estimating uncertainties in model output, etc.).   

Many of the most advanced data-driven water resources forecasting methods that seek to account for 

nonlinearity, multiscale change, and uncertainty assessment are based on the wavelet transform (Nourani 

et al., 2014).  However, the vast majority of wavelet-based data-driven forecasting models that consider 
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uncertainty assessment use the wavelet transform incorrectly (e.g., Bachour et al. (2016); 

Kasiviswanathan et al. (2016); Sang et al. (2013); Tiwari and Chatterjee (2010)), which results in forecasting 

models that cannot be used properly for real-world applications.   

It is clear that the literature is lacking a holistic data-driven forecasting framework that can properly 

address nonlinearity, multiscale change, and uncertainty assessment in the water resources domain.  

Therefore, the main objective of this research is to develop, test, and apply an ensemble multi-wavelet 

stochastic data-driven framework (EW-SDDFF) for real-world water resources forecasting applications.  

The purpose behind the development of EW-SDDFF is to address the short-comings of the many current 

water resources forecasting models that do not properly or holistically account for the nonlinear, 

multiscale, and uncertain nature of water resources.  The ultimate goal of this research is to demonstrate 

that EW-SDDFF can be used to generate accurate and reliable (probability-based) forecasts of nonlinear, 

multiscale, and uncertain water resources.  In order to meet this goal, the main objective of this research 

is split into several supporting objectives that explore specific components of EW-SDDFF.  The specific 

(supporting) objectives of this research are to: 

1. Develop, test, and apply two new nonlinear input variable selection methods (EA and broCMI) for 

synthetic and partially-synthetic input variable selection problems by comparing them against 

benchmark methods in terms of input variable selection accuracy, then couple the new nonlinear 

input variable selection methods and their benchmarks with nonlinear data-driven models and 

forecast real-world nonlinear water resources processes and assess the different methods in 

terms of forecast accuracy (Objective 1). 

2. Develop a set of best (correct) practices for wavelet-based data-driven forecasting, then coalesce 

the best practices into a new wavelet-based data-driven forecasting framework (WDDFF) and test 

and apply the WDDFF for forecasting a real-world (nonlinear and) multiscale water resources 

process by comparing it against benchmark methods in terms of forecast accuracy (Objective 2). 

3. Develop, test, and apply the new stochastic WDDFF, and its non-wavelet-based counterpart 

(SDDFF) on a real-world (nonlinear) and multiscale water resources process by comparing it 

against benchmark methods (that consider varying sources of uncertainty; e.g., input variable 

selection, parameter, and/or model output) (Objective 3) in terms of forecast accuracy and 

reliability. 

4. Develop, test, and apply the new ensemble multi-wavelet version of SWDDFF (EW-SDDFF) on a 

real-world (nonlinear) and multiscale water resources process by comparing it against benchmark 
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methods (i.e., SWDDFF, WDDFF, and its non-stochastic version, EW-DDFF) in terms of forecast 

accuracy and reliability (Objective 4). 

While the first objective is concerned with addressing nonlinearity in water resources forecasting, the 

second objective builds from the first to address (nonlinearity) and multiscale change.  The third objective 

builds from the first and second objectives and accounts for (nonlinearity, multiscale change, and) 

uncertainty assessment in water resources forecasting.  The fourth objective extends the new method 

developed in the third objective by considering an ensemble of multiple models in order to improve 

forecast accuracy and reliability.  The goal of each specific objective is to show how forecast accuracy 

and/or reliability can be increased through the progressive developments of each component included in 

the EW-SDDFF. 

The main study area considered in this research is Montreal, Quebec, where the focus is on forecasting 

average daily demand for the City’s urban water supply system which supplies drinking water to over a 

million residents (Tiwari and Adamowski, 2013).  The city experiences peak demands in the summer 

seasons primarily due to outdoor water use related to warmer weather and periods of low rainfall.  

Further information on this study site can be found in Chapter 4 and is used in the case studies contained 

in Chapters 4-6.  In Chapter 3, several synthetic and partially-synthetic datasets (Galelli et al., 2014) are 

used for comparing the proposed EA and broCMI input variable selection methods against existing 

methods.  In the same chapter, two real-world daily urban water demand time series from Ottawa, 

Ontario are also used for assessing nonlinear data-driven forecasting model performance based on 

explanatory variables selected by the proposed (EA and broCMI) methods and their competitors – detailed 

information on these datasets are available in Chapter 3.  Therefore, Chapter 3 is the only chapter that 

uses different datasets than the remaining chapters.  The next sub-section highlights the contributions of 

this research before giving an outline of for the remainder of this thesis. 

1.4. Contributions 

The research contained in this thesis is innovative in four main ways: 

1. It develops, tests, and applies the first non-parametric and computationally efficient nonlinear 

input variable selection method based on information theory (i.e., the EA method) and advances 

upon this method by including uncertainty in the input variable selection procedure (i.e., the 

broCMI method). 
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2. It develops, tests, and applies the first set of best (correct) practices for wavelet-based data-driven 

forecasting for real-world applications (to address the fact that many current wavelet-based 

forecasting methods are incorrect and cannot be used for real-world applications); these best 

practices are adopted within a new wavelet-based data-driven forecasting framework (i.e., 

WDDFF) that can be used with any input variable selection method and data-driven model. 

3. It develops, tests, and applies the first wavelet- (and non-wavelet-) based stochastic data-driven 

forecasting framework that considers input data, input variable selection, parameter, and model 

output uncertainty (i.e., SWDDFF and SDDFF, respectively). 

4. It develops, tests, and applies the first ensemble multi-wavelet stochastic forecasting framework 

for probability-based forecasting and the first ensemble stochastic data-driven water resources 

forecasting model to consider ensemble model selection and weighting uncertainties, alongside 

input data and ensemble model output uncertainties (i.e., EW-SDDFF). 

1.5. Thesis Outline 

The objectives and contributions listed in the last two sub-sections are contained within this thesis and 

expounded as a series of manuscripts that flow from one objective to the next. 

Chapter 2 reviews literature related to data-driven forecasting methods, input variable selection, 

multiscale time series approaches, wavelet-based forecasting, and uncertainty assessment methods in 

the water resources domain.  The literature review is followed by four integrated manuscripts. 

The first manuscript (Chapter 3) reviews input variable selection methods in general, introduces and 

develops the proposed EA and broCMI methods, provides their theoretical underpinnings, and then 

proceeds to test and apply the methods on synthetic, partially-synthetic, and real-world input variable 

selection problems by comparing them against benchmark methods. 

The second manuscript (Chapter 4) provides an in-depth review on the use of wavelet-based data-driven 

forecasting for real-world applications and exposes three main issues that have led to the incorrect 

development of wavelet-based forecasts.  A set of best (correct) practices are proposed (to address these 

three issues) and adopted in a new wavelet-based data-driven forecasting framework (WDDFF) that uses 

input variable selection methods from Chapter 3 (e.g., EA) and nonlinear data-driven methods to forecast 

a real-world water resources process. 

The third manuscript (Chapter 5) explores the use of a blueprint for converting a deterministic forecast 

into a stochastic one and adapts this framework to be used with WDDFF (from Chapter 4) by considering 
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uncertainty in input data, input variable selection, parameter, and model output, resulting in the SWDDFF 

(and its non-wavelet-based counterpart SDDFF).  SWDDFF is compared against benchmark methods on a 

real-world water resources forecasting problem. 

The fourth manuscript (Chapter 6) discusses how to develop EW-SDDFF, an ensemble multi-wavelet 

version of SWDDFF (from Chapter 5) and demonstrates for the same study area in Chapter 4 and 5 that it 

provides substantially better performance than SWDDFF and other benchmark methods. 

Chapter 7 discusses the most significant results of this research and provides concluding remarks.   

Chapter 8 recounts the primary contributions of this research to the literature, discusses some limitations 

of the work covered in this thesis, and indicates several avenues for future research. 
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Chapter 2: Literature Review 

The main focus of this research is to develop, test, and apply a new ensemble multi-wavelet stochastic 

data-driven forecasting framework (EW-SDDFF) and to demonstrate how it can be used for probability-

based forecasting of any (nonlinear, multiscale, and uncertain) water resources process.  The EW-SDDFF 

is very useful for operational, management, and decision-making tasks routinely faced by water resources 

managers.  The EW-SDDFF contains three main components: 

1. Addressing nonlinearity via nonlinear information-theoretic-based input variable selection 

methods (EA and broCMI) that identify which explanatory variables to use as input to a nonlinear 

data-driven model for forecasting the target water resources process. 

2. Addressing multiple scales of change via a set of best (correct) practices for wavelet-based 

forecasts that are used to capture and extract multiscale properties of model inputs that were 

selected by the input variable selection methods (step 1) and that are subsequently fed to the 

wavelet-based data-driven framework (WDDFF) for forecasting the target process. 

3. Addressing uncertainty via a stochastic framework used for quantifying uncertainty in the 

framework developed in step 2.  This is accomplished in two main ways through: 

a. A single wavelet-based forecasting model (SWDDFF) that accounts for uncertainty in input 

data, input variable selection, parameter, and model output uncertainty from step 2. 

b. An ensemble multi-wavelet stochastic framework (EW-SDDFF) used for combining 

multiple wavelet-based forecasting models from step 2 in order to provide a 

computationally efficient version of step 3a (which only considers a single wavelet-based 

forecasting model).  The EW-SDDFF includes ensemble model selection and weighting 

uncertainties, alongside input data and ensemble model output uncertainties. 

The three steps are explored in this order within the literature review, which has been divided into three 

main sections that covers each of these components.  The first sub-section covers the topic of addressing 

nonlinearity by giving a brief review of different data-driven forecasting methods before a more in-depth 

treatment of input variable selection methods that includes the new novel approaches developed in this 

research.  To address multiscale change, the second sub-section gives a high-level overview of different 

methods for analysing multiscale change in water resources before honing in on wavelet-based methods, 

with a key focus on how wavelets have been incorrectly used for wavelet-based water resources 

forecasting and how this is resolved by the proposed set of best practices and their use in a new wavelet-

based data-driven forecasting framework (WDDFF).  The third sub-section focuses on uncertainty 
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assessment in water resources forecasting applications.  This sub-section discusses how uncertainty can 

be estimated via stochastics and how uncertainty assessment can be incorporated in WDDFF, leading to 

two new stochastic wavelet-based forecasting frameworks (SWDDFF and its ensemble multi-wavelet 

version, EW-SDDFF) for the probability-based forecasting of water resources. 

2.1. Nonlinearity – Data-Driven Forecasting and Input Variable Selection Methods 

To generate accurate water resources forecasts it is often necessary to use nonlinear methods that can 

model such behaviour.  Both linear and nonlinear data-driven approaches for water resources forecasting 

are briefly discussed before a more detailed analysis of (linear and nonlinear) input variable selection 

methods.  This sub-section is split in two to cover both topics.  While data-driven methods are a central 

component of the proposed EW-SDDFF, it is important to stress than any data-driven model may be used 

within EW-SDDFF.  However, since the novelty of this research is tied to input variable selection, (the 

correct development of) wavelet-based forecasting models, and uncertainty assessment, higher 

importance is placed upon these topics in the literature review that ensues. 

2.1.1. Different Data-Driven Methods 

There are a wide range of data-driven methods used in water resources forecasting applications 

(Solomatine and Ostfeld, 2008): time series methods such as autoregressive integrated moving averages 

(ARIMA) (Mohammadi et al., 2006; Valipour et al., 2013) and Hurst-Kolmogorov processes (HKp) 

(Koutsoyiannis et al., 2010; Tyralis and Koutsoyiannis, 2017), multiple linear and nonlinear regression 

(Adamowski et al., 2012; Ghanbarpour et al., 2009), artificial neural networks (ANN) (Bougadis et al., 2005; 

Maier et al., 2010), support vector regression (SVR) (Baydaroǧlu and Koçak, 2014; Matos et al., 2018), 

genetic programming (Danandeh et al., 2013; Elshorbagy et al., 2010), fuzzy logic (Goyal et al., 2014; 

Marvuglia et al., 2014), multivariate adaptive regression splines (Deo et al., 2017a; Kisi, 2016), Volterra 

series models (Hasanpour Kashani et al., 2014; Maheswaran and Khosa, 2012a), regression trees (Kisi, 

2016; Rahimikhoob, 2016), non-parametric methods, such as nearest neighbours (Lee et al., 2017; Sharma 

et al., 2016), response surface method (Keshtegar et al., 2017, 2016), deep learning approaches (Li et al., 

2016; Wu et al., 2015),  and many others. 

2.1.2. Popular Nonlinear Data-Driven Methods in Water Resources Forecasting 

In recent years, the most popular of these data-driven methods in water resources forecasting are 

nonlinear methods that bear the traits of universal approximation such as ANN and SVR (Abrahart et al., 

2012), see Afan et al. (2016); Remesan and Mathew (2015); Yaseen et al. (2015) for numerous applications 
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of the methods mentioned above.  The benefit of using universal approximation techniques (such as ANN) 

for water resources forecasting, is that these methods have the ability to represent any (nonlinear) 

function to any arbitrary degree of accuracy, given enough parameters (Ince, 2006), which avoids the 

strict parametric forms afforded by traditional methods (such as multiple linear regression (MLR) or 

ARIMA) and addresses the inherent nonlinearity of the target process through a flexible mathematical 

expression (Maier et al., 2010).  It is worth clarifying that a model parameter is a scalar value that 

functionally maps the explanatory variables of a given model to the output (within a given error 

tolerance).  Hyper-parameters exert influence over how the model parameters are selected.  To make this 

idea more explicit, imagine an autoregressive model that explains a certain water resources process: the 

parameters of the model would be the autoregressive coefficient(s) and the bias term (if any).  An example 

of a hyper-parameter of this model would be the calibration algorithm used to select the (bias, if any, and 

the) autoregressive coefficient(s).  If a particular calibration algorithm has settings that need to be 

adjusted to determine an optimal solution (i.e. the smallest prediction error), then these settings are also 

hyper-parameters of the model.   Considering the ANN paradigm: parameters include the weights and 

biases, while hyper-parameters include the number of hidden layers, type of hidden neurons, learning 

rates, number of training epochs, etc. 

 2.1.2.1. Drawbacks of Popular Nonlinear Data-Driven Methods in Water Resources Forecasting 

One of the largest drawbacks to using nonlinear data-driven methods such as ANN, SVR, and others is the 

large amount of parameters to tune and hyper-parameters that require careful selection if the resulting 

model is to provide accurate predictions of the target process (Luo, 2016).  In short, these data-driven 

methods can be computationally intensive to calibrate and require expert intervention, hampering their 

development and operational usage.  Another potential issue with data-driven methods (such as ANN) is 

that these methods are “black-boxes”, meaning that it is not straightforward to understand why/how a 

set of optimized parameters lead to a given model output (Mount et al., 2013), hampering the ability to 

associate meaning between data-driven model output(s) and the physical process under study, except in 

the case of very simple models (Giustolisi and Savic, 2006; Koutsoyiannis et al., 2010; Solomatine and 

Dulal, 2003). 

To overcome these two main drawbacks of popular nonlinear data-driven methods used in many water 

resources forecasting studies, two different methods are explored in this research that are easy to use 

(fewer hyper-parameter settings), are computationally efficient to calibrate, and one of which has 

interpretational qualities similar to MLR. 
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2.1.2.2. Overcoming Drawbacks of Popular Nonlinear Data-Driven Methods in Water Resources 

Forecasting with Easy to Use and Computationally Efficient Methods 

2.1.2.2.1. Extreme Learning Machine 

 The first method is the extreme learning machine (ELM).  ELM was recently introduced to the literature 

(Huang et al., 2006) as a computationally efficient ANN variant that possesses two attractive qualities 

different from the traditional ANN: a randomized component setting input weights and biases to values 

drawn from a given distribution (e.g. normal, uniform, triangular, etc.) and the output weights are 

determined directly using linear systems of equations (Huang et al., 2012).  These two strengths of the 

ELM have significantly improved the computational efficiency and generalization qualities when 

compared to the ANN and SVR methods (Huang et al., 2012), mainly because there is no requirement for 

a parameter optimization routine since the input weights are randomly generated and the output weights 

form a least-squares solution that can be solved directly.  The only hyper-parameters of the ELM are the 

number of hidden nodes and their activation function type.  This advantage possessed by ELM makes it 

more suitable for this research as it overcomes the need to tune model hyper-parameters in a careful 

manner, greatly reducing computational efforts and as will be demonstrated below, ELM has exhibited 

better performance than ANN and SVR methods in forecasting different water resources processes.  As 

mentioned earlier, the ELM framework is very new to the water resources domain with very few 

applications.  The earliest water resources study compared the performance of Echo State Networks, ELM, 

and ANN for seasonal stream flow prediction (Siqueira et al., 2012) and found both the Echo State 

Networks and ELM frameworks to provide good predictive ability and noted the significant improvement 

in simplicity for the ELM model construction and the superior performance when compared to ANN.  The 

second study compared forecasts of fresh algae blooms in drinking water storage reservoirs at multiple 

lead times using SVR and ELM (Lou et al., 2016).  The authors noted the superiority of the ELM forecasts 

to that of the SVR and recommend the ELM as a useful forecasting method.  Deo and Şahin (2015) used 

ELM to forecast the Effective Drought Index (EDI) over eastern Australia and found ELM to outperform 

ANN.  The authors obtained more computationally efficient forecasts with ELM over ANN and declared 

ELM as a promising new approach for determining the onset of future drought events.  More recent 

studies have confirmed the high level of accuracy and computational efficiency of ELM when compared 

against traditional data-driven methods in water resources forecasting (Alizamir et al., 2018; Barzegar et 

al., 2018b; Dou and Yang, 2018; Heddam and Kisi, 2017; Lima et al., 2016; Rezaie-Balf and Kisi, 2017; 

Yaseen et al., 2016).  Therefore, ELM is a very new and accurate forecasting method that overcomes the 

issues related to hyper-parameter selection (since it contains only two) and provides a simple model that 
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avoids computationally demanding calibration of model parameters as in data-driven methods such as 

ANN, SVR, fuzzy logic, etc. and is not restricted to assumptions of linearity as in ARIMA, MLR, and HKp. 

2.1.2.2.2. Volterra Series Model 

The second data-driven method that is considered in this research is the Volterra series model and 

specifically the second order Volterra series model (SOV) (Maheswaran and Khosa, 2014; Wu and Kareem, 

2014).  Essentially, the Volterra series model is a multiple-input single-output system of equations that is 

constructed as a Taylor series expansion and can therefore model any system to an arbitrary degree of 

accuracy, which depends on the order of the Taylor series expansion adopted for the problem (Labat et 

al., 1999).  A first-order Volterra series model reduces to MLR. 

In hydrology and water resources, a second order expansion (i.e., a second order Volterra series model) 

is most often suitable for the target processes studied in this domain (Diskin et al., 1984; Labat et al., 1999; 

Maheswaran and Khosa, 2012b).  This means that in an SOV model, only second order interactions 

between explanatory variables and the target process are considered, which can be likened to a second 

order polynomial regression.  What makes the SOV a powerful data-driven forecasting tool in water 

resources (and elsewhere) is that its model parameters can be solved as a least-squares solution (Wu and 

Kareem, 2014), providing an analytical expression for mapping explanatory variables to the target process 

in a manner akin to MLR.  Although Volterra series models (and the SOV in particular) have been seldom 

studied in the water resources forecasting literature, there are a number of cases where the Volterra 

series models have outperformed or provided similar performance to other data-driven methods based 

on ANN, random forest, M5 model trees, and ELM (Maheswaran and Khosa, 2014, 2013a, 2013b, 2012a; 

Prasad et al., 2018; Rathinasamy and Khosa, 2012) with the added benefit that they provide an analytical 

forecasting equation that has interpretational value. 

Due to the ease of use, computational efficiency, and interpretational value of the SOV it is adopted in 

this research alongside ELM as the nonlinear data-driven methods used for the purpose of mapping 

explanatory variables into target forecasts.  MLR is also adopted as a linear data-driven benchmark 

method.  The next sub-section focusses on input variable selection as a means for identifying useful 

explanatory variables that are subsequently fed into the data-driven forecasting methods (mentioned in 

this sub-section) to produce forecasts of a target process. 
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2.1.3. Nonlinearity – Input Variable Selection Methods 

A brief overview of input variable selection is given before issues with current approaches are highlighted.  

Solutions to the highlighted problems are discussed according to the merits of the new input variable 

selection methods proposed in this research. 

2.1.3.1. Overview 

Input variable selection is an approach to identifying important explanatory variables from a large 

database of variables that may contain relevant, irrelevant, or redundant information in terms of a target 

process.  Choosing an appropriate input variable selection method helps against selecting irrelevant inputs 

that can significantly influence data-driven model accuracy and add unnecessary complexity impacting 

model reliability, while also improving computational efficiency and potentially improving model 

interpretability (Back and Trappenberg, 2001; Hejazi and Cai, 2009; Šindelář and Babuška, 2004).  In input 

variable selection procedures the user selects either a predefined number of input variables to choose or 

sets a threshold on the measure of dependence that halts the input variable selection procedure when 

the threshold is met (returning all input variables selected up to the particular point).   

There are three main classes of input variable selection methods: filter (the focus of this research), 

wrapper, and embedded methods.  Filters are most typically used for input variable selection since they 

may be applied independent of a model (e.g., ANN) while wrapper and embedded methods rely on a 

modeling mechanism to decide on the most important input variables (May et al., 2011).  Wrapper and 

embedded methods will not be discussed in this research since they are computationally demanding and 

require some form of additional modeling mechanism for the selection of input variables (unlike filter 

methods).  

2.1.3.2. Popular Filter-based Input Variable Selection Methods  

The most popular input variable selection technique is the linear correlation coefficient ranking method, 

which essentially selects the explanatory variables that have the highest magnitude linear (Pearson) 

correlation with the target (May et al., 2011).  A nonlinear analogue, and the most popular nonlinear input 

variable selection method, is based on the information-theoretic concept of mutual information (MI) 

(Shannon, 1948) and is known as the MI ranking method (Guyon and Elisseeff, 2003).  This approach 

provides a significantly improved ability to identify dependencies between water resources variables since 

it can estimate nonlinear interactions (Khan et al., 2007).  The linear and MI ranking approaches seek to 

select relevant variables and follow what is known as ‘greedy’ selection since they iteratively add one 

input variable at a time to the selected input variable set until a stopping criterion is met (i.e., either a 
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tolerance or pre-determined number of inputs), which is common with most filter-based input variable 

selection methods.  However, a significant issue with these methods is that they do not account for 

redundancy amongst previously selected inputs and can lead to overly large input variable sets (especially 

for highly autocorrelated processes, which are commonly studied in water resources) that can cause poor 

model performance (May et al., 2011).  At this point, the most basic linear and nonlinear approaches to 

input variable selection have been given; both methods seek to identify relevant variables but do not 

account for redundancy.  Next, methods proposed to address redundancy (in addition to relevancy) will 

be discussed. 

2.1.3.3. Methods that Account for Redundancy amongst Already Selected Inputs 

To address the issue of (relevancy and) redundancy input variable methods based on partial (conditional) 

relevancy, that only recognizes a variable as being important if it shares significant correlation 

(information) with the target variables given all previously selected input variables, are considered.  Using 

the concept of conditional relevancy, the partial correlation input selection (PCIS) and partial mutual 

information selection (PMIS) approaches were developed (Bowden et al., 2005b, 2005a, May et al., 2008b, 

2008a, Sharma, 2000a, 2000b).  For water resources forecasting problems, PMIS is preferred over PCIS 

since it accounts for nonlinear dependencies and has been shown to outperform PCIS in input variable 

selection problems in this domain (Galelli et al., 2014; May et al., 2008b). 

PCIS uses the same concepts as partial least-squares regression for determining partial correlation 

between an input and the target, conditional on all other inputs.  Similarly, PMIS involves the estimation 

of partial mutual information (PMI), also known as conditional MI (CMI), which is mutual information 

between an input and the response, conditional on all other inputs.  While partial correlation in PCIS is 

derived analytically (Gustafson, 1961), the PMI (CMI) in PMIS is derived heuristically using two regression 

models (e.g., neural networks or kernel regression (Galelli et al., 2014; Sharma, 2000a)) to account for the 

conditional dependence of the previously selected inputs on the target and the input under consideration 

(for input selection) (May et al., 2008b; Sharma, 2000a).  Therefore, input variable selection using PMIS is 

heavily dependent on conditional regression models and the optimization of their parameters, leading to 

studies that have sought optimal methods to estimate such parameters (Li et al., 2015a, 2015b).  The 

downside to using PMIS, aside from its heuristic approach to the estimation of CMI, is the computational 

burden associated with the estimation of optimal parameters for the conditional models (Galelli et al., 

2014).  Therefore, while PMIS is a useful tool for nonlinear information-theoretic-based input variable 

selection and has found success in water resources forecasting studies (Chen et al., 2013; Fang et al., 2018; 
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He et al., 2011, 2015; Tran et al., 2015), more efficient methods that avoid heuristics are needed to reduce 

the computational burden and provide a direct means for estimating CMI. 

2.1.3.4. Non-Heuristic Methods for the Estimation of Partial (Conditional) Mutual Information 

More recently, a kernel density estimation approach called Partial Information (PI) was proposed for 

estimating CMI directly and therefore performing PMIS without heuristics (Sharma et al., 2016; Sharma 

and Mehrotra, 2014).  Similarly to partial correlation, CMI has an analytical form that can be estimated 

using either joint entropy or mutual information terms based on the chain rule of entropy (Brown et al., 

2012; Cover and Thomas, 2006) and it is this manner in which CMI is estimated by the authors in their PI 

approach (Sharma and Mehrotra, 2014).  However, given the nature of kernel density estimation, which 

requires the specification of a bandwidth parameter (analogous to the bin width for histogram-based 

density estimation (Fernando et al., 2009)), the PI approach is also subject to careful bandwidth parameter 

selection in order to accurately estimate CMI.  A similar approach to the kernel density estimation-based 

input variable selection relies on k nearest neighbours’ statistics (Tsimpiris et al., 2012).  While this method 

is more straightforward for parameter estimation (since its parameter, the number of nearest neighbours, 

is an integer rather than a continuous variable), it is still computationally demanding (Evans, 2008; Póczos 

and Schneider, 2012).  Although non-heuristic approaches to CMI estimation and their related input 

variable selection methods improve upon the heuristic PMIS, they are still subject to high computation 

times.  To overcome the computational issues with the methods mentioned in this sub-section, a very 

useful CMI-based input variable selection approach that does not require parametric tuning and is 

computationally efficient, is described in what follows. 

2.1.3.5. Non-Heuristic and Computationally Efficient Conditional Mutual Information-based Input 

Variable Selection 

In Van Hulle (2005), an Edgeworth approximation-based approach to MI estimation was defined and 

shown to be more computationally efficient and provide similar or better performance than kernel density 

estimation and nearest neighbour approaches.  The approach derives MI via a Taylor series expansion 

around a reference distribution (taken as a zero mean Normal distribution with unit variance) and does 

not require any parameters to be set (Van Hulle, 2005).  The Edgeworth approximations approach was 

used to estimate MI for short datasets, such as between the river Nile and the El-Nino Southern Oscillation 

Index (Khan et al., 2007, 2006).  In this research, the Edgeworth-approximations approach was modified 

from MI estimation used in earlier studies (Khan et al., 2007, 2006; Van Hulle, 2005) for the non-

parametric estimation of CMI (see Chapter 3 for details).  The Edgeworth-approximations estimation of 
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CMI was then used in the same manner as earlier filter-based approaches, such as PCIS, PMIS, PI, etc. and 

formulated into an input variable selection routine that is named EA.  The EA method is a computationally 

efficient, non-parametric, nonlinear information-theoretic method for input variable selection that does 

not require heuristic approaches for calculating CMI (such as PMIS) or require careful parametric tuning 

(such as PMIS and PI).  It is therefore an attractive option for selecting input variables for nonlinear water 

resources forecasting problems.  In the next sub-section, an approach is introduced based on the EA 

method that can be used to quantify input variable selection uncertainty. 

2.1.3.6. Input Variable Selection Uncertainty 

Filter-based input variable selection methods (e.g., PCIS, PMIS, PI, EA, etc.) focus on selecting a single set 

of input variables.  However, since water resources are uncertain in nature it is reasonable to expect that 

there is likely to be uncertainty in the input variable selection procedure.  Interestingly, the topic of input 

variable selection uncertainty is very new to the literature and only considered in a single study (outside 

of Chapter 3) that considers wrapper methods (and not filter methods, such as in this research) (Taormina 

et al., 2016).  Essentially, input variable selection uncertainty supposes that for a given dataset if multiple 

samples are drawn and input variable selection performed, different selected input variable sets will be 

obtained.  Therefore, this research proposed a bootstrap resampling approach to draw samples from a 

given dataset and uses EA to select input variables for each resample.  The variables selected for each 

resample are stored.  Afterwards, to assess the variation (uncertainty) across the selected input variable 

sets, a rank-ordering approach is used to identify those input variables which are selected often, seldom, 

or not at all.  The combined bootstrap and rank-ordering procedure attached to the EA method results in 

the bootstrap rank-ordered CMI or broCMI.  Since broCMI is based on the EA it is also computationally 

efficient and non-parametric.  The broCMI approach is useful as it can be used for identifying a single input 

variable selection set that contains the inputs that are most often selected over a number of resamples 

or can be used to build an empirical input variable selection probability distribution that can be 

incorporated into uncertainty estimation of a data-driven forecasting model.  Details on the broCMI 

method are given in Chapter 3 and the concept of estimating input variable selection uncertainty is 

explored using stochastics in Chapter 5 and 6. 

In this sub-section, methods for addressing nonlinearity in water resources forecasting were discussed.  

Computationally efficient and easy to use nonlinear data-driven forecasting methods (i.e., ELM and SOV) 

that overcome limitations of traditional methods were highlighted.  To provide useful model inputs to 

these data-driven techniques, two computationally efficient, non-parametric, nonlinear information-
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theoretic-based input variable selections were introduced (EA and broCMI), the latter of which accounts 

for input variable selection uncertainty, a new topic in water resources forecasting.  In the next sub-

section, discussion is focussed on wavelet-based forecasting for addressing the multiscale nature of water 

resources. 

2.2. Multiscale Change – Wavelet-based Forecasting 

Addressing multiscale change in water resources is essential in improving forecasting accuracy when using 

data-driven methods (Hadi and Tombul, 2018).  This sub-section briefly reviews some of the different 

approaches that have been paired with data-driven methods for assessing multiple scales of change in 

water resources forecasting and includes comparisons of these methods with wavelet-based forecasting 

methods, which are the focus of this sub-section.  Most of the sub-section is devoted to a discussion on 

the incorrect usage of wavelets in the water resources forecasting literature followed by the proposed 

best (correct) practices for addressing this issue alongside the new wavelet-based data-driven forecasting 

framework (WDDFF) that adopts these best practices, conjoining the data-driven forecasting and input 

variable selection methods mentioned in the last sub-section. 

2.2.1. Overview of Different Methods used for Capturing Multiscale Changes in Data-Driven Water 

Resources Forecasting Models 

One of the traditional methods for capturing multiscale information and using it within water resources 

forecasts is through the Fourier Transform (FT) since it is able to extract periodic patterns from time series 

data (e.g., seasonality).  For instance, Caiado (2010) used Fourier transforms to develop a Holt-Winters 

exponential smoothing function for one through seven day ahead forecasts and found it provided 

accurate urban water demand forecasts by extracting the seven and 365 day cycles embedded within the 

data.   A study on river flow forecasting found that pre-processing input data by the FT and using this 

information as input to ANN resulted in worse performance than directly using the original input data 

(Atiya et al., 1999).  The authors in Brentan et al. (2014) compared FT and the average reconstruction 

method for real-time urban water demand forecasting in Sao Paulo, Brazil using data measured every 20 

minutes.  The authors found the FT method the most appropriate for real-time forecasting as it was able 

to replicate the diurnal pattern; however, the authors noted that the FT had difficulty forecasting extreme 

demands.  Typically, extreme demands are difficult to forecast due to their infrequent occurrence in the 

observed time series.  Inherently, the FT assumes stationarity of a particular time series and it is expected 

to perform poorly at extracting the time period in which extreme values occur, as these values are outliers 

(i.e. they do not occur at a high frequency) and do not form a ‘regular’ pattern. 
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To overcome the inability of the FT to adequately capture infrequent extreme values typical of water 

resources time series (Hao and Singh, 2016; Katz et al., 2002), the water resources forecasting domain has 

more recently explored wavelet transforms (WT) (Abdollahi et al., 2017; Kalteh, 2013; Moosavi et al., 

2013; Nanda et al., 2016; Sang, 2013) since the WT is known for its time-frequency localization properties 

(Percival and Walden, 2000; Percival et al., 2011) which allows the time-frequency analysis of (non-

constant) variation through time for a given time series process.  The ability of the WT to deal with 

multiscale time series makes it an ideal candidate for isolating low-frequency events.  Therefore, since WT 

are apt at determining the period in which extreme values occur, use of the WT with nonlinear data-driven 

methods has improved the ability to forecast extreme value events common amongst water resources 

(Nourani et al., 2014), overcoming two prominent barriers (nonlinearity and multiscale changes) in 

providing accurate water resources forecasts.   For instance, Adamowski et al. (2012) applied a coupled 

WT-ANN model and compared it against ANN, multiple linear regression, nonlinear regression, and 

autoregressive integrated moving average models for short-term urban water demand forecasting in 

Montreal, Canada.  The authors found the WT-ANN model to perform the best as it was able to adequately 

address the multiscale behaviour of the urban water demand and explanatory variables, improving upon 

the ANN model which did not use time series pre-processed by WT.  In Pammar and Deka (2017), the 

authors combined WT with SVR and compared it against SVR (without wavelet analysis) for forecasting 

daily pan evaporation finding that the WT-based SVR was better able to forecast the trends, seasonal 

patterns, and other complex behaviours, which the SVR could not forecast effectively.  In a study on daily 

rainfall-runoff forecasting (Shoaib et al., 2018), a large number of ANN variants were coupled with WT 

and shown to provide substantially better performance than the standalone ANN and MLR models, with 

the authors noting that the WT-based forecasting methods were better able to capture different 

watershed signatures than the standalone models.  While in Shi et al. (2018), WT coupled with ANN were 

found useful for uncovering high-frequency events in surface water quality prediction for anomaly 

detection which was subsequently used in an early warning system.  Many other instances demonstrating 

the strong ability of WT coupled with data-driven methods to capture nonlinear and multiscale changes 

in water resources forecasting problems can be found in several review articles (Afan et al., 2016; Dixit et 

al., 2016; Fahimi et al., 2017; Nourani et al., 2014; Sang, 2013). 

Aside from the WT, other approaches that can capture time-frequency localized properties of time series 

and that have been used with data-driven approaches for water resources forecasting include singular 

spectrum analysis (SSA) (Baratta et al., 2003) and empirical mode decomposition (EMD) (Karthikeyan and 

Kumar, 2013).  SSA is related to principal component analysis and relies on the time-delay embedding of 
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time series in phase space.  Therefore, SSA requires specification of a time delay and embedding 

dimension (Alexandrov et al., 2012) which can be difficult to estimate (Koutsoyiannis, 2006).  Although 

SSA has been used in conjunction with data-driven methods for water resources forecasting (Latifoğlu et 

al., 2015; Unnikrishnan and Jothiprakash, 2018; Zhang et al., 2011), SSA can be computationally expensive 

and requires careful procedures to ensure that it provides meaningful results (Du et al., 2017; Zhang et 

al., 2015).  Opposite to WT and SSA, which are rigorously grounded in mathematical principles (Allen, 

1997; Hassani, 2010; Hassani et al., 2011; Heil and Walnut, 1989; Percival and Walden, 2000), EMD is a 

completely empirical method that relies solely on the dataset properties (mainly their local maxima and 

minima) (Huang et al., 1998).  Although EMD has become popular for coupling with data-driven water 

resources forecasting models (Karthikeyan and Kumar, 2013; Xu et al., 2017; Zhang et al., 2016), it cannot 

be used correctly for forecasting applications.  This is mainly because it suffers from boundary-conditions 

that make it difficult to incorporate new data points without having to recalibrate a given forecasting 

model for each new observation (Wang and Wu, 2016; Xiong et al., 2014; Zhang et al., 2015) which is time-

consuming and non-optimal for real-time forecasting applications common in operational water resources 

systems (Bakshi, 1999; Maheswaran and Khosa, 2012b).   

The WT is used in this research for capturing multiscale changes in water resources instead of the SSA and 

EMD since it can be updated in real-time (i.e., when new data is received) without a high computational 

cost (unlike SSA and EMD) and also because it is based on concrete mathematical properties that do not 

require empirical procedures for calculating multiscale changes such as EMD (which results in errors).  

Notwithstanding, the WT requires careful attention when it is adopted in forecasting applications in order 

to ensure that it used correctly and is thus applicable for real-world forecasting problems.  Therefore, 

discussion on the use and misuse of WT in real-world wavelet-based forecasting is the subject of the next 

sub-section before identifying a set of best practices that shows how wavelet-based forecasts can be used 

correctly for real-world forecasting problems. 

2.2.2. The Use and Misuse of the Wavelet Transform in Wavelet-based Data-Driven Forecasting 

Before reviewing the use and misuse of WT in wavelet-based forecasting, some very brief properties of 

the WT are discussed.  Chapter 4 provides a more in-depth treatment of these properties. 

2.2.2.1. Overview 

Wavelet transforms (like the Fourier transform) are calculated through convolution of a basis function 

with the original time series.  Thus, just as the sine wave is the basis function for the FT, the WT also has 

a variety of possible basis functions.  The different basis functions come in a variety of shapes (families) 
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and sizes (lengths or widths).  A given wavelet family may be better at capturing transient behaviour while 

another may be better at capturing peaks.  Wider wavelet basis functions are better suited to capturing 

long-period events and polynomial behaviour and have better frequency localization properties while 

narrower wavelet families have better time localization properties (which is why they are better at 

capturing transient events) (Maheswaran and Khosa, 2012b).  Therefore, it is common within WT-based 

forecasting studies to match a given wavelet basis function to the type of properties contained within a 

target process and its explanatory variables (Barzegar et al., 2018a, 2017; Maheswaran and Khosa, 2012b; 

Rathinasamy et al., 2013; Shoaib et al., 2014).  A second step in developing accurate WT-based forecasts 

is determining the scales of change that represent high variability and extracting these properties into 

sub-time series (Khokhlov et al., 2006; Percival et al., 2011) that can be included in the forecasting model 

(Karbasi, 2017; Kişi, 2011; Maheswaran and Khosa, 2012a; Murtagh et al., 2004; Nanda et al., 2016; 

Nourani et al., 2009; Özger et al., 2012).  This step is referred to as wavelet decomposition, which requires 

one to not only specify which wavelet basis function to use but also the depth (level) of decomposition.  

The level of decomposition is usually selected to be no larger than half the number of time series records 

(due to the Nyquist frequency) and also such that the lowest-frequency information extracted from the 

time series is smooth and free of unnatural artifacts such as shark fins, triangles, etc. (Percival and Walden, 

2000).   

The procedure for using the WT for wavelet-based data-driven forecasting proceeds as follows: 1) a 

wavelet transform is selected, 2) a wavelet basis function and decomposition level is selected; 3) the WT 

using these ‘settings’ extracts the low- and high-frequency information (also known as scaling and wavelet 

coefficients) from the explanatory variables and/or target, i.e., wavelet decomposition); and 4) the 

wavelet and scaling coefficients are used as input to data-driven forecasting methods to forecast the 

target process. 

There are several different WT that can be used and each WT have subtle differences.  While the process 

of selecting a wavelet basis function and decomposition level is the same for each WT, the way in which 

low-and high-frequency information is extracted from the explanatory and/or target process (wavelet 

decomposition) is different and plays a key role in how a given WT can/should be used for wavelet-based 

forecasting.  In the next sub-section, the different WT used in water resources forecasting studies are 

discussed before moving on to the implications of each method in real-world wavelet-based forecasting 

applications. 
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2.2.2.2. Contrasting Different Wavelet Transforms  

Different WT used in water resources forecasting studies include the Continuous WT (CWT) (Hadi and 

Tombul, 2018), the discrete WT (DWT) multiresolution analysis (DWT-MRA) (Kişi, 2011), the maximal 

overlap DWT (MODWT) (see Chapter 4), the MODWT-MRA (Prasad et al., 2017), and the à trous algorithm 

(AT) (Rajaee et al., 2018).   

The CWT allows one to extract time-frequency information for any scale of change (e.g., at a frequency 

(𝑓) related to 7 days, 3 months, 365 days, 11 years, etc.).  However, the CWT is more useful for continuous 

time signals and is often avoided in wavelet-based forecasting studies mainly due to its computational 

inefficiency and ad-hoc corrections required to address the fact that it is a continuous method applied to 

a discrete time series (Adamowski, 2008; Rathinasamy et al., 2014).   

The DWT-MRA is the most popular WT used in wavelet-based forecasting and its numerous applications 

in water resources are covered in recent review articles (Afan et al., 2016; Dixit et al., 2016; Fahimi et al., 

2017; Nourani et al., 2014; Sang, 2013; Yaseen et al., 2015).  The DWT-MRA differs from the CWT in that 

it can be applied to discrete time series and its decomposition process is dyadic meaning that wavelet 

decomposition is carried out in powers of two (therefore, in the frequency domain, information can only 

be extracted within neighbouring frequency bands of the form 2−𝑗 ≤ 𝑓 < 2−(𝑗+1), where 𝑗 is a (integer) 

scale).  Therefore, its decomposition process has a substantially reduced computational complexity when 

compared to the CWT.  However, one of the main drawbacks of the DWT-MRA is that during 

decomposition it sub-samples the time series at powers of two and as the decomposition level is 

increased, fewer time series records are sampled in the calculation of the low-and high-frequency 

components.  Another drawback is that it requires the time series to be a power of two and if it is not, 

requires alteration of the time series by appending values to the beginning of the time series to increase 

its sample size to the next highest power of two.  This creates severe issues for real-time forecasting 

applications when new data is constantly being collected and used to update the forecasting model since 

the appending of new values changes the decomposed low- and high-frequency values at a given time 

point each time the DWT-MRA is re-computed.  Therefore, it is easy to realize that the DWT-MRA is not 

ideal for real-world forecasting problems (Du et al., 2017; Maheswaran and Khosa, 2012b).   

To mitigate this important issue concerning the DWT-MRA, the MODWT and MODWT-MRA were 

proposed to remove the need to sub-sample in powers of two during wavelet decomposition and as a 

result reduces the loss of information in the calculation of low-and high-frequency components (Percival 

and Walden, 2000).  For a modest increase in computational cost (compared to the DWT-MRA), the 
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MODWT and MODWT-MRA do not require the time series to be a power of two and adding new data 

points to the time series does not change the low- and high-frequency values at a given time point each 

time the MODWT or MODWT-MRA are computed.  The main difference between the two methods 

(MODWT and MODWT-MRA) is that the MODWT is a causal filter, meaning that only information from 

the present and past is used to calculate low- and high-frequency content of a time series at a given time 

point, while the MODWT-MRA is a non-causal filter, meaning that information before and after a given 

point in time are used in the calculation of low- and high-frequency information (Percival and Walden, 

2000).  For this reason, the MODWT is better suited to forecasting applications since it does not require 

any information from future times in the calculation of low- and high-frequency information for a given 

time point, while the MODWT-MRA cannot be used correctly for forecasting since any given point in time 

relies on information from the future.  It is interesting to note that the DWT-MRA is also a non-causal 

filter, alike the MODWT-MRA and therefore requires information from the future to determine low-and 

high-frequency information at a given point in time and as a result cannot be used correctly for real-world 

forecasting applications.   

The AT, alike the MODWT, is also a causal filter and can therefore be used for forecasting applications 

(Aussem et al., 1998).  The difference between the AT and the MODWT is in how each method calculates 

coefficients in the high-frequency components.  This difference is highlighted very clearly in Chapter 4 

alongside mathematical and graphical depictions showing how and why, in the calculation of low- and 

high-frequency information at a given time point, the DWT-MRA and MODWT-MRA require future 

information while the MODWT and AT only require information from the past and present.  Due to the 

manner in which the MODWT calculates high-frequency information, it may only be used to decompose 

explanatory variables and use those explanatory variables to forecast the target process directly.  

However, given the nature in which the AT decomposes a given time series, it may be used to decompose 

both target and explanatory variables and use the decomposed explanatory variables to forecast the 

decomposed target.  The resulting forecasts for each scale of the decomposed target can then be 

aggregated to achieve an overall forecast of the target (i.e., a forecast of the original target prior to 

wavelet decomposition).  Interestingly, the literature has not discussed this important distinction between 

the MODWT and AT and neither have both algorithms been compared against one another in terms of 

theory or forecasting performance outside of this research.  More detailed information on the differences 

in wavelet-based forecasting models that use the MODWT or AT are given in Chapter 4.   
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Notwithstanding the fact that the MODWT and AT have properties that support their use in forecasting 

real-world (water resources) processes, there are some important best (correct) practices, developed in 

this research, that must be taken into account if they are to be used correctly.  This is the subject of the 

next sub-section.  Before proceeding, the important takeaways at this point are: 

1. The DWT-MRA and the MODWT-MRA cannot be used correctly for forecasting real-world 

processes since they require information from the future in order to calculate low- and high-

frequency coefficients at a particular point in time (i.e., they are non-causal filters).  This is 

significant as the vast majority (about 90%, see Chapter 4) of wavelet-based forecasting studies, 

especially in water resources, adopt these methods and therefore have resulted in the 

development of incorrect forecasting models. 

2. The MODWT and AT may be used correctly for wavelet-based forecasting of real-world (water 

resources) processes since they only consider past and present observations in the calculation of 

low- and high-frequency information at a given point in time (i.e., they are causal filters).  

However, best (correct) practices must be followed in order to use these methods correctly for 

real-world forecasting problems (see the next sub-section and Chapter 4). 

2.2.3. Best (Correct) Practices for Wavelet-based Forecasting of Real-World Processes 

This research contributes a set of best (correct) practices for the development of wavelet-based data-

driven forecasting models, a key component that is missing in the wavelet-based forecasting literature.  

Since this the first set of best practices for wavelet-based forecasting proposed in the literature, the focus 

of this sub-section will be to briefly recount the different components of the best practices and highlight 

some areas where the literature has deviated from these best practices.  A more thorough discussion of 

the ensuing topics can be found in Chapter 4. 

The best practices for wavelet-based forecasting developed in this research are based on three key 

principles: 1) use of WT that are causal filters (e.g., that do not use future information), such as the 

MODWT and AT; 2) careful selection of decomposition levels and wavelet basis functions (also known as 

wavelet filters); and 3) proper partitioning of calibration and validation datasets.  Following the first two 

principles results in what are termed “boundary-corrected” wavelet and scaling coefficients (high- and 

low-frequency components) that are calculated by performing wavelet decomposition on a given time 

series using causal filters (MODWT and AT) and carefully selecting decomposition levels and wavelet 

filters.  The third step makes sure that there are a suitable number of wavelet and scaling coefficients in 
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the calibration and validation datasets to ensure the development of an accurate wavelet-based 

forecasting model that can be used for real-world applications. 

2.2.3.1. Best Practice 1: Using Causal Wavelet Transforms 

Both the MODWT and AT algorithms may be used for forecasting real-world water resources processes 

since they only require past and present time series observations to calculate low- and high-frequency 

information (scaling and wavelet coefficients).  However, due to the differences in how the wavelet 

coefficients are calculated by the two methods: 1) the MODWT is restricted to decomposition of only the 

explanatory variables and must forecast the target directly (direct approach) while 2) the AT can use 

decomposed explanatory variables to forecast the target directly or it may be used to decompose the 

target and forecast the decomposed target using the decomposed explanatory variables, and then 

aggregate the decomposed target forecasts to achieve the forecast of the target at its original scale 

(multicomponent approach).  This finding has not been discussed in the literature and its implications in 

terms of different levels of forecasting accuracy that can be achieved by either method is significant and 

discussed in more detail in Chapter 4. 

2.2.3.2. Best Practice 2: Careful Selection of Decomposition Levels and Wavelet Filters 

Since WT requires convolution between a wavelet filter and the time series (in other words, quantifying 

the similarity between a wavelet filter and a time series), a certain number of wavelet and scaling 

coefficients (based on the decomposition level and wavelet filter length) are effected by what is known 

as the boundary condition.  A more detailed discussion of this item is given in Chapter 4.  However, what 

is important to takeaway is that the boundary condition causes errors to be introduced in the calculation 

of wavelet and scaling coefficients at certain points in time (dependent on the WT, decomposition level, 

and wavelet filter).  A high (low) decomposition level and wide (narrow) wavelet filter results in a high 

(low) number of time series observations affected by the boundary condition (Percival and Walden, 2000).  

For the DWT-MRA and the MODWT-MRA, the boundary condition is present at both the beginning and 

end of the time series (Maslova et al., 2016; Percival and Walden, 2000), while for the MODWT and AT it 

exists only at the beginning of the time series (Aussem et al., 1998; Percival and Walden, 2000).  In the 

literature, it is very seldom that the boundary condition due to wavelet type, decomposition level, and 

wavelet filter selection are discussed (Aussem et al., 1998; Maslova et al., 2016; Percival, 2008; Percival 

et al., 2011; Percival and Mofjeld, 1997).  While Maslova et al. (2016) explored the effect of different 

methods to reduce the effect of boundary condition, they used the MODWT-MRA and therefore, the 

models developed in their study cannot be used correctly for real-world forecasting applications.  With 
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the exception of Chapter 4, no studies exist that explore the effect of the boundary condition due to 

wavelet type, decomposition level, and wavelet filter selection in terms of real-world forecasting 

performance.   

The simple solution to the boundary condition problem for real-world forecasting as proposed in this 

research is to adopt the MODWT and AT for wavelet decomposition and to remove any wavelet and 

scaling coefficients from the beginning of the time series effected by the boundary condition.  This results 

in what this research terms, “boundary-corrected” wavelet and scaling coefficients.  The “boundary-

corrected” wavelet and scaling coefficients can then be used for calibrating and validating real-world 

water resources forecasting models. 

2.2.3.3. Best Practice 3: Proper Partitioning of Calibration and Validation Data 

Many studies in the literature have made the inadvertent mistake of including wavelet and scaling 

coefficients affected by the boundary condition in the calibration and validation of their forecasting 

models, especially those adopting the DWT-MRA and MODWT-MRA (e.g., Barzegar et al. (2017); Deo et 

al. (2017b); Nourani et al. (2009); Prasad et al. (2017)), resulting in incorrectly developed forecasting 

models that cannot be used for real-world problems (see Chapter 4 for further details).  To overcome this 

issue, this research proposes that the “boundary-corrected” wavelet and scaling coefficients (from the 

first two best practices) be divided into calibration and validation sets of suitable size, and their forecasting 

accuracy assessed on the validation set to ensure suitable accuracy is achieved for the user’s intended 

purpose.  Therefore, this best practice is intimately connected to the second best practice, as the number 

of “boundary-corrected” wavelet and scaling coefficients are determined by the selected decomposition 

level and wavelet filter.  This research recommends that one select an initial set of wavelet decomposition 

level(s) and wavelet filter(s) and assess performance on the validation set in order to choose an optimal 

decomposition level and wavelet filter.  Outside of this research, there does not exist best practices that 

base the selection of calibration and validation partitioning on “boundary-corrected” wavelet and scaling 

coefficients. 

The best practices discussed in the last three sub-sections are an integral component of the new wavelet-

based data-driven forecasting framework (WDDFF) proposed in this research.  The subject of the next sub-

section is focussed on the different components making up the WDDFF before moving on to how 

uncertainty assessment can be incorporated into the WDDFF using stochastics. 
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2.2.4. Best Practices and the Wavelet Data-Driven Forecasting Framework 

The new WDDFF proposed in this research incorporates the best practices discussed in the last three sub-

sections and adopts input variable selection and data-driven forecasting methods from section 2.1 (see 

also Chapter 3) in the following ways: 

1. A wavelet-based forecasting method is selected according to either the MODWT (direct approach) 

or the AT (direct or multicomponent approach). 

2. Input variable selection is used for selecting the most important wavelet and scaling coefficients 

to include in the forecasting model for the target process. 

3. Data-driven forecasting methods are used to map the selected wavelet and scaling coefficients 

into target forecasts. 

The WDDFF is the first wavelet-based forecasting framework to account for best (correct) practices for 

real-world wavelet-based forecasting applications.  WDDFF is a very flexible and widely applicable tool for 

water resources managers requiring nonlinear and multiscale forecasts since it can adopt: 1) different 

wavelet-based forecasting methods (e.g., direct or multicomponent approaches based either on the 

MODWT or AT, noting that the MODWT can only be used with the direct approach), different input 

variable selection methods (e.g., PCIS, EA, broCMI, etc.), and different data-driven methods (e.g., MLR, 

ELM, SOV, etc.).  Therefore, a large number of WDDFF variants can be developed and explored to 

determine which variant provides the best forecast or each can be used within an ensemble method, such 

as the proposed EW-SDDFF, which will be discussed further in the next section. 

2.3. Uncertainty – Using Stochastics for Uncertainty Assessment 

Since the WDDFF introduced in the last sub-section is only suited to addressing nonlinearity and multiscale 

change, a suitable uncertainty assessment method needs to be coupled with WDDFF in order to develop 

a holistic framework that can account for the nonlinear, multiscale, and uncertain nature of water 

resources and generate probability-based forecasts that are accurate and reliable.  In this sub-section, a 

stochastic approach for uncertainty assessment is discussed and used for creating the stochastic version 

of WDDFF (SWDDFF) and its ensemble multi-wavelet version (EW-SDDFF).  The new SWDDFF, a single-

wavelet stochastic data-driven forecasting framework can be used to quantify uncertainty in the WDDFF 

and its resulting forecasts, while the EW-SDDFF, an ensemble multi-wavelet version of SWDDFF can be 

used to quantify the uncertainty in multiple WDDFF models, providing superior performance than its 

single-wavelet version (i.e., SWDDFF).  The SWDDFF and EW-SDDFF are useful tools for forecasting 
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nonlinear, multiscale, and uncertain water resources that may be used by water resources managers for 

operating, planning, and managing water resources systems.  This sub-section begins by introducing the 

stochastic framework adopted by SWDDFF and EW-SDDFF and compares it to other approaches in the 

literature, justifying its use in this research. 

2.3.1. Uncertainty Assessment in Water Resources Forecasting 

Uncertainty assessment is a crucial task in water resources forecasting in order to effectively manage, 

plan, and operate water resources systems (Farmer and Vogel, 2016; Krzysztofowicz, 2001; Matte et al., 

2017).  Different types of uncertainty are often considered (not necessarily together) in forecasting 

models, some of which include: initial conditions, input data, parameters, model structure, model output, 

etc. (Beven, 2015).  A large benefit of considering different sources of uncertainty is that this information 

may be translated into a probability-based forecast (i.e., a forecast in the form of a probability density 

function) that can then be used for decision-making purposes (Ramos et al., 2013; Serinaldi and Kilsby, 

2016; Yung et al., 2011).  Therefore, the development and application of probability-based forecasting is 

an important area of research in the water resources domain (Hemri et al., 2015; Montanari and Grossi, 

2008; Ren et al., 2018; Wang et al., 2017).  Some of the more prominent approaches to developing 

probability-based forecasting frameworks include those based on Bayesian methods (Han and Coulibaly, 

2017), evolutionary methods (Dotto et al., 2012), Generalized Likelihood Uncertainty Estimation (GLUE) 

(Beven and Binley, 2014), and stochastics (Fan et al., 2016).   

The focus of this research is to use a recent stochastic framework for process-based models (Montanari 

and Koutsoyiannis, 2012) and to adopt it for the case of data-driven forecasting.  This stochastic 

framework is chosen over other potential choices such as Bayesian methods since it does not require the 

specification of a prior or distributional assumptions, or methods such as GLUE that require estimation of 

a likelihood function (which may not include a trivial solution), or evolutionary methods which involve the 

selection of many hyper-parameters to obtain optimal performance.  Furthermore, the stochastic 

approach of Montanari and Koutsoyiannis (2012) is straightforward to implement and can be used with 

very simple tools, such as the bootstrap (Efron and Tibshirani, 1993), making it a very useful and practical 

approach for estimating the probability density functions of different uncertainty sources (Sikorska et al., 

2015).  A very interesting result of adopting this stochastic framework and combining it with the 

bootstrap, is that many earlier data-driven forecasting methods that have used the bootstrap are special 

cases of the framework proposed in this research.  The framework proposed by Montanari and 

Koutsoyiannis (2012), hereafter referred to as the blueprint, may be used for converting any deterministic 
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forecasting model (i.e., physically-based, data-driven, etc.) into a stochastic one.  The next section uses 

recent literature to briefly explain this process and how it is modified from the case of physically-based 

models to data-driven models (further details on this process can be found in Chapter 5 and 6). 

2.3.2. The Blueprint for Converting Deterministic Forecasting Models into their Stochastic 

Counterparts 

The blueprint treats uncertainty as stemming from randomness (Montanari and Koutsoyiannis, 2012) and 

does not seek to split uncertainty into different (often times, “philosophical”) categories such as epistemic 

or aleatory (Beven, 2015; Gong et al., 2013; Nearing et al., 2016), but rather treats uncertainty as a whole 

-  an inability to perfectly explain a process.  However, the blueprint does acknowledge that uncertainty 

or randomness is present in the different components making up the forecasting process and allows for 

the explicit consideration of such uncertainties, e.g., initial conditions, input data, parameters, model 

structure, model output, etc.  To date, the blueprint has been used to explicitly consider input data, 

parameter, and model output uncertainty in process-based models (Montanari and Koutsoyiannis, 2012; 

Sikorska et al., 2015).  This research also considers these uncertainties but extends the blueprint to the 

case of data-driven methods (instead of physically-based models) and further enhances the framework 

by considering input variable selection uncertainty and wavelets in order to holistically account for 

nonlinearity, multiscale change, and uncertainty in a single framework - extending the WDDFF from a 

deterministic to a stochastic forecasting framework.  This is the topic of section 2.3.3 (as well as Chapter 

5).  Firstly, how the blueprint is used to account for forecasting uncertainty is given below. 

Since stochastic uncertainty assessment relies on randomness, in order to incorporate its use in 

forecasting it requires: 1) the specification and estimation of probability density function(s) and 2) 

randomly drawing samples from the probability density function(s) during forecasting.   Therefore, the 

first step in using the blueprint for forecast uncertainty assessment is to explicitly define which sources of 

uncertainty are to be considered (all other sources not explicitly considered are assumed to be contained 

within the model error) and then to estimate the probability density function of each uncertainty source.  

Finally, during forecasting, for a given input, one draws from each probability density function a large 

number of times in order to build a forecast probability density function for the target process (Montanari 

and Koutsoyiannis, 2012).  This procedure is described in more detail in Chapter 5 and 6.  This is a very 

flexible paradigm as one can explicitly consider different sources of uncertainty that may be important to 

the problem and neglect explicitly quantifying other sources that may be insignificant or that are difficult 
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to characterize.  In this way, the framework can be used to identify and quantify the significant sources of 

uncertainty for a given forecasting problem. 

As mentioned above, a very useful feature of this blueprint is that it can be applied to physically-based, 

conceptual, and  data-driven forecasting, while the different probability density functions can be 

estimated using simple tools, such as the bootstrap - a widely used uncertainty assessment tool in water 

resources forecasting (Erkyihun et al., 2016; Srivastav et al., 2007; Trichakis et al., 2011).  Therefore, 

stochastics offers a natural and holistic framework for extending the nonlinear and multiscale WDDFF 

framework to incorporate uncertainty assessment broadening its applicability to a wider range of water 

resources management tasks requiring probability-based forecasts to improve decision-making. 

2.3.3. Stochastic Wavelet Data-Driven Forecasting Framework 

The SWDDFF is different than the blueprint in three keys ways: 1) it adopts data-driven forecasting 

methods (e.g., MLR, ELM, etc.) instead of physically-based models; 2) it considers input variable selection 

uncertainty (in addition to input data, parameter, and model output uncertainty); and 3) it adopts 

wavelets to account for multiscale change.  If wavelets are removed from the framework then it results 

in the Stochastic Data-Driven Forecasting Framework. 

The SWDDFF is novel in that it is the first wavelet-based stochastic data-driven forecasting framework to 

consider input data, input variable selection, parameter, and model output uncertainties.  Other wavelet-

based forecasting approaches in the literature consider different sources of uncertainty (mainly 

parameter uncertainty) and few consider both parameter and model output uncertainty.  Tiwari and 

Adamowski (2017) combined bootstrap resampling and wavelet-based ANN models for forecasting urban 

water demand in Calgary, Alberta.  In their approach, bootstrap resampling was used for estimating 

parameter uncertainty; many other wavelet-based data-driven forecasting frameworks used the 

bootstrap for estimating parameter uncertainty (Belayneh et al., 2016; Kasiviswanathan et al., 2016; Khalil 

et al., 2015; Kumar et al., 2015; Sehgal et al., 2014; Tiwari and Chatterjee, 2011).  Wang et al. (2013) 

proposed a wavelet-based ANN for monthly forecasting of water quality in Harbin (Northeast China) that 

accounts for both parameter and model output uncertainty.  The above examples of bootstrap-based 

approaches for quantifying parameter or parameter and model output uncertainty in wavelet-based data-

driven forecasting models are special cases of the SWDDFF.  For example, by explicitly considering 

parameter and model output uncertainty, but neglecting input data and input variable selection 

uncertainty, the SWDDFF can be used to replicate the model described in Wang et al. (2013).  Therefore, 

not only is the SWDDFF a new and useful forecasting method for holistically capturing nonlinearity, 
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multiscale change, and uncertainty but it also may be modified to take on the form of many different 

approaches studied earlier in the literature, supporting its use for a wide array of water resources 

forecasting problems.  While other approaches to uncertainty assessment in wavelet-based forecasting 

have been proposed, such as Bayesian-based methods (Bachour et al., 2016; Liu et al., 2015; Maslova et 

al., 2016; Sang et al., 2015, 2013), these methods neglect input variable selection uncertainty.  This 

research (Chapter 5) shows that input variable selection uncertainty plays a key role in improving 

forecasting accuracy and reliability within SWDDFF.  Therefore, given that SWDDFF includes input data, 

input variable selection, parameter, and model output uncertainty it represents the most advanced 

wavelet-based forecasting framework to date. 

While the SWDDFF represents the most advanced wavelet-based forecasting framework, it can still be 

improved upon.  Several recent studies (Alizadeh et al., 2017; Barzegar et al., 2018a, 2017; Rathinasamy 

et al., 2013) have demonstrated that by creating an ensemble framework of multiple wavelet-based 

(multi-wavelet) forecasts one can improve forecasting performance over the case where only a single-

wavelet-based forecasting model is used (i.e., a single wavelet-based forecasting model that considers 

only a single decomposition level and wavelet filter).  In the next sub-section, it is shown how the single-

wavelet SWDDFF can be extended to an ensemble multi-wavelet stochastic data-driven forecasting 

framework (EW-SDDFF) that uses multiple WDDFF-based forecasts as input data.  This generates a more 

robust probability-based forecasting framework that has higher accuracy and reliability when compared 

against SWDDFF. 

2.3.4. Ensemble Wavelet - Data-Driven Forecasting Framework 

Decomposing a time series using different decomposition levels and wavelet filters can be likened to 

taking a picture of an object (time series) with a multitude of zoom lenses (wavelet filters) and zoom 

factors (decomposition level).  Each lens and zoom factor can take a picture of the same object; however, 

each picture of the object would differ based on the qualities of the lens and its zoom setting(s).  

Therefore, different decomposition levels and wavelet filters can be used to extract different 

interpretations of behaviours (properties) from a given time series and it is the task of the modeller to 

identify the most appropriate decomposition level(s) and wavelet filter(s) for a particular task.  However, 

in many cases multiple decomposition levels and wavelet filters may perform very well but capture 

different phenomena, such as base flow, seasonal peaks, or transient events (Maheswaran and Khosa, 

2012b).  Therefore, it is intuitive to try to utilize the strength of each model (based on different 

decomposition levels and wavelet filters) in an ensemble to improve forecast accuracy and reliability.   
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For instance, Rathinasamy et al. (2013) created an ensemble of wavelet-based second order Volterra 

series models using Bayesian Model Averaging for streamflow forecasting at different time scales and 

found their ensemble model to provide better performance than any of the single wavelet-based models.  

Barzegar et al. (2017) used an ensemble of wavelet-based data-driven forecasting models using least-

squares boosting for monthly groundwater forecasting finding their ensemble model to also outperform 

the best single wavelet-based model.  Similar findings have also been found in other ensemble wavelet-

based forecasting studies for water quality (Barzegar et al., 2018a) and suspended sediment concentration 

(Alizadeh et al., 2017).  However, in each of the studies the focus was on issuing deterministic forecasts 

based on an ensemble multi-wavelet approach and none of these studies considered the uncertainty in 

the resulting forecasts.  This research addresses this gap by proposing an ensemble multi-wavelet 

stochastic data-driven forecasting framework (EW-SDDFF) that generates probability-based forecasts and 

estimates ensemble model selection and ensemble weighting uncertainties, in addition to input data and 

ensemble model output uncertainties.   

The EW-SDDFF is the first ensemble stochastic data-driven forecasting framework that considers 

ensemble model selection and weighting uncertainties and is the first ensemble multi-wavelet stochastic 

data-driven forecasting framework.  Ensemble model selection and weighting uncertainties are estimated 

using input variable selection and data-driven forecasting methods, respectively.  The EW-SDDFF extends 

the SWDDFF from the case of a single-wavelet-based stochastic forecasting framework to an ensemble 

multi-wavelet-based stochastic forecasting framework.  A key benefit of EW-SDDFF is that, due to its data-

driven nature, it can incorporate as input data the output from different forecasting methods (such as 

different physically-based models or data-driven methods, or even numerical weather predictions).   

In this research, EW-SDDFF takes as input data multiple wavelet-based forecasts generated by the WDDFF.  

Since EW-SDDFF implicitly considers ensemble model selection (using input variable selection) and 

weighting (using data-driven methods), it automatically determines which WDDFF forecasts to 

incorporate in the ensemble and assigns a weight (importance) to each forecast.  This is a major advantage 

of EW-SDDFF as typically, ensemble forecasting methods in the literature separately perform ensemble 

model selection and weighting (Doycheva et al., 2017; Lee et al., 2012; Tapiador and Gallardo, 2006; Weijs 

and van de Giesen, 2013).  The EW-SDDFF can also incorporate the uncertainty in each WDDFF forecast 

used as input data in addition to estimating ensemble model output uncertainty, resulting in a probability-

based forecast.  A major advantage of the EW-SDDFF over the SWDDFF is that it can include the strengths 

of multiple wavelet-based forecasting models that use different decomposition levels and wavelet filters 
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(i.e., based on different WDDFF forecasts) and can inherently select the most useful forecasts to use and 

appropriately weight their contribution to the overall forecast, all while incorporating uncertainty in input 

data, ensemble model selection, ensemble model weighting, and ensemble model output uncertainties.  

This feature of EW-SDDFF is shown to provide significant improvements in forecasting accuracy and 

reliability when compared to SWDDFF and other benchmarks in the case study used in Chapter 6.  

Therefore, EW-SDDFF represents a very useful probability-based forecasting tool that accounts for 

nonlinearity, multiscale change, and uncertainty assessment that can be adopted by water resources 

managers for a variety of important tasks related to the operation, planning, and management of water 

resources systems.  The final sub-section of this chapter contains a brief summary of the novel tools 

discussed in this chapter that will be studied in more detail in Chapter 3-6. 

2.4. Summary 

This chapter focussed on a literature review that introduced and discussed several key facets of this 

research and compared their novelty to approaches existing in the literature.  The new methods discussed 

in this chapter include: 

1. New computationally efficient, non-parametric, nonlinear information-theoretic input variable 

selection methods have been proposed (EA and broCMI, the latter considers input variable 

selection uncertainty) for selection of explanatory variables for use in nonlinear and 

computationally efficient data-driven forecasting methods (ELM and SOV), allowing for the 

nonlinear nature of water resources to be forecasted. 

2. A set of best (correct) practices for wavelet-based forecasting have been proposed and coalesced 

into a new wavelet-based data-driven forecasting framework (WDDFF) that can adopt different 

wavelet-based forecasting methods (e.g., MODWT and AT, and their direct and/or 

multicomponent approaches), input variable selection methods, and data-driven forecasting 

models, to enable capturing nonlinearity and multiscale changes in water resources forecasting 

problems.  The best practices are very useful (and necessary) since the majority of wavelet-based 

forecasting models in the literature are incorrect and cannot be used for real-world forecasting 

applications.  

3. A new holistic stochastic-based uncertainty assessment framework that can be coupled with 

WDDFF was proposed to generate: 

a. A single-wavelet stochastic data-driven forecasting framework (SWDDFF) that accounts 

for input data, input variable selection, parameter, and model output uncertainty. 
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b. An ensemble multi-wavelet stochastic data-driven forecasting framework (EW-SDDFF) - a 

multi-wavelet version of SWDDFF - that accounts for ensemble model selection and 

weighting uncertainties, as well as input data and model output uncertainty. 

In the chapters to follow (3-6), each of these innovations will be developed, tested, and applied to real-

world water resources forecasting problems and will be demonstrated to provide accurate and reliable 

forecasts when compared against existing methods in the literature, highlighting their usefulness for a 

number of challenging forecasting problems facing water resources managers. 

2.5. References 

Abdollahi, S., Raeisi, J., Khalilianpour, M., Ahmadi, F., Kisi, O., 2017. Daily Mean Streamflow Prediction in 

Perennial and Non-Perennial Rivers Using Four Data Driven Techniques. Water Resour. Manag. 

doi:10.1007/s11269-017-1782-7 

Abrahart, R.J., Anctil, F., Coulibaly, P., Dawson, C.W., Mount, N.J., See, L.M., Shamseldin, A.Y., Solomatine, 

D.P., Toth, E., Wilby, R.L., 2012. Two decades of anarchy? Emerging themes and outstanding 

challenges for neural network river forecasting. Prog. Phys. Geogr. 36, 480–513. 

doi:10.1177/0309133312444943 

Adamowski, J., Fung Chan, H., Prasher, S.O., Ozga-Zielinski, B., Sliusarieva, A., 2012. Comparison of 

multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural 

network, and wavelet artificial neural network methods for urban water demand forecasting in 

Montreal, Canada. Water Resour. Res. 48, W01528. doi:10.1029/2010WR009945 

Adamowski, J.F., 2008. Development of a short-term river flood forecasting method for snowmelt driven 

floods based on wavelet and cross-wavelet analysis. J. Hydrol. 353, 247–266. 

doi:10.1016/j.jhydrol.2008.02.013 

Afan, H.A., El-shafie, A., Mohtar, W.H.M.W., Yaseen, Z.M., 2016. Past, present and prospect of an Artificial 

Intelligence (AI) based model for sediment transport prediction. J. Hydrol. 

doi:10.1016/j.jhydrol.2016.07.048 

Alexandrov, T., Bianconcini, S., Dagum, E.B., Maass, P., McElroy, T.S., 2012. A Review of Some Modern 

Approaches to the Problem of Trend Extraction. Econom. Rev. doi:10.1080/07474938.2011.608032 

Alizadeh, M.J., Jafari Nodoushan, E., Kalarestaghi, N., Chau, K.W., 2017. Toward multi-day-ahead 

forecasting of suspended sediment concentration using ensemble models. Environ. Sci. Pollut. Res. 



45 
 

28017–28025. doi:10.1007/s11356-017-0405-4 

Alizamir, M., Kisi, O., Zounemat-Kermani, M., 2018. Modelling long-term groundwater fluctuations by 

extreme learning machine using hydro-climatic data. Hydrol. Sci. J. 63, 63–73. 

doi:10.1080/02626667.2017.1410891 

Allen, M., 1997. Optimal filtering in singular spectrum analysis. Phys. Lett. A 234, 419–428. 

doi:10.1016/S0375-9601(97)00559-8 

Atiya, A.F., El-Shoura, S.M., Shaheen, S.I., El-Sherif, M.S., 1999. A comparison between neural-network 

forecasting techniques--case study: river flow forecasting. IEEE Trans. Neural Netw. 10, 402–409. 

doi:10.1109/72.750569 

Aussem, A., Campbell, J., Murtagh, F., 1998. Wavelet-based feature extraction and decomposition 

strategies for financial forecasting. J. Comput. Intell. Financ. 6, 5–12. 

Bachour, R., Maslova, I., Ticlavilca, A.M., Walker, W.R., McKee, M., 2016. Wavelet-multivariate relevance 

vector machine hybrid model for forecasting daily evapotranspiration. Stoch. Environ. Res. Risk 

Assess. 30, 103–117. doi:10.1007/s00477-015-1039-z 

Back, A.D., Trappenberg, T.P., 2001. Selecting inputs for modeling using normalized higher order statistics 

and independent component analysis. IEEE Trans. Neural Networks 12, 612–617. 

doi:10.1109/72.925564 

Bakshi, B., 1999. Multiscale analysis and modeling using wavelets. J. Chemom. 434, 415–434. 

Baratta, D., Cicioni, G., Masulli, F., Studer, L.E., 2003. Application of an ensemble technique based on 

singular spectrum analysis to daily rainfall forecasting. Neural Networks 16, 375–387. 

doi:10.1016/S0893-6080(03)00022-4 

Barzegar, R., Asghari Moghaddam, A., Adamowski, J., Ozga-Zielinski, B., 2018a. Multi-step water quality 

forecasting using a boosting ensemble multi-wavelet extreme learning machine model. Stoch. 

Environ. Res. Risk Assess. 32, 799–813. doi:10.1007/s00477-017-1394-z 

Barzegar, R., Fijani, E., Moghaddam, A.A., Tziritis, E., 2017. Forecasting of groundwater level fluctuations 

using ensemble hybrid multi-wavelet neural network-based models. Sci. Total Environ. 599–600, 20–

31. doi:10.1016/j.scitotenv.2017.04.189 

Barzegar, R., Moghaddam, A.A., Deo, R., Fijani, E., Tziritis, E., 2018b. Mapping groundwater contamination 



46 
 

risk of multiple aquifers using multi-model ensemble of machine learning algorithms. Sci. Total 

Environ. 621, 697–712. doi:10.1016/j.scitotenv.2017.11.185 

Baydaroǧlu, Ö., Koçak, K., 2014. SVR-based prediction of evaporation combined with chaotic approach. J. 

Hydrol. 508, 356–363. doi:10.1016/j.jhydrol.2013.11.008 

Belayneh, A., Adamowski, J., Khalil, B., Quilty, J., 2016. Coupling machine learning methods with wavelet 

transforms and the bootstrap and boosting ensemble approaches for drought prediction. Atmos. 

Res. 172–173. doi:10.1016/j.atmosres.2015.12.017 

Beven, K., 2015. Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis 

testing, and communication. Hydrol. Sci. J. 6667, 150527103244004. 

doi:10.1080/02626667.2015.1031761 

Beven, K., Binley, A., 2014. GLUE: 20 years on. Hydrol. Process. 28, 5897–5918. doi:10.1002/hyp.10082 

Bougadis, J., Adamowski, K., Diduch, R., 2005. Short-term municipal water demand forecasting. Hydrol. 

Process. 19, 137–148. doi:10.1002/hyp.5763 

Bowden, G.J., Dandy, G.C., Maier, H.R., 2005a. Input determination for neural network models in water 

resources applications. Part 1 - Background and methodology. J. Hydrol. 301, 75–92. 

doi:10.1016/j.jhydrol.2004.06.021 

Bowden, G.J., Maier, H.R., Dandy, G.C., 2005b. Input determination for neural network models in water 

resources applications. Part 2. Case study: Forecasting salinity in a river. J. Hydrol. 301, 93–107. 

doi:10.1016/j.jhydrol.2004.06.020 

Brentan, B.M., Ribeiro, L.C.L.J., Luvizotto-Jr, E., Mendonça, D.C., Guidi, J.M., 2014. Synthetic 

Reconstruction of Water Demand Time Series for Real Time Demand Forecasting. J. Water Resour. 

Prot. 6, 1437–1443. 

Brown, G., Pocock, A., Zhao, M.-J., Lujan, M., 2012. Conditional Likelihood Maximisation: A Unifying 

Framework for Mutual Information Feature Selection. J. Mach. Learn. Res. 13, 27–66. 

doi:10.1016/j.patcog.2015.11.007 

Caiado, J., 2010. Performance of Combined Double Seasonal Univariate Time Series Models for 

Forecasting Water Demand. J. Hydrol. Eng. 15, 215–222. doi:10.1061/(ASCE)HE.1943-5584.0000182 

Chen, L., Singh, V.P., Guo, S., Zhou, J., Ye, L., 2013. Copula entropy coupled with artificial neural network 



47 
 

for rainfall–runoff simulation. Stoch. Environ. Res. Risk Assess. 28, 1755–1767. doi:10.1007/s00477-

013-0838-3 

Cover, T.M., Thomas, J.A., 2006. Elements of Information Theory. Wiley-Interscience, New York. 

Danandeh, A., Kahya, E., Olyaie, E., 2013. Streamflow prediction using linear genetic programming in 

comparison with a neuro-wavelet technique. J. Hydrol. 505, 240–249. 

doi:10.1016/j.jhydrol.2013.10.003 

Deo, R.C., Kisi, O., Singh, V.P., 2017a. Drought forecasting in eastern Australia using multivariate adaptive 

regression spline, least square support vector machine and M5Tree model. Atmos. Res. 184, 149–

175. doi:10.1016/j.atmosres.2016.10.004 

Deo, R.C., Şahin, M., 2015. Application of the extreme learning machine algorithm for the prediction of 

monthly Effective Drought Index in eastern Australia. Atmos. Res. 153, 512–525. 

doi:10.1016/j.atmosres.2014.10.016 

Deo, R.C., Tiwari, M.K., Adamowski, J.F., Quilty, J.M., 2017b. Forecasting effective drought index using a 

wavelet extreme learning machine (W-ELM) model. Stoch. Environ. Res. Risk Assess. 31, 1211–1240. 

doi:10.1007/s00477-016-1265-z 

Diskin, M.H., Boneh, A., Golan, A., 1984. Identification of a Volterra series conceptual model based on a 

cascade of nonlinear reservoirs. J. Hydrol. 68, 231–245. doi:10.1016/0022-1694(84)90213-0 

Dixit, P., Londhe, S., Deo, M.C., 2016. Review of Applications of Neuro-Wavelet Techniques in Water Flows. 

Ina. Lett. 1, 99–104. doi:10.1007/s41403-016-0015-3 

Dotto, C.B.S., Mannina, G., Kleidorfer, M., Vezzaro, L., Henrichs, M., McCarthy, D.T., Freni, G., Rauch, W., 

Deletic, A., 2012. Comparison of different uncertainty techniques in urban stormwater quantity and 

quality modelling. Water Res. 46, 2545–2558. doi:10.1016/j.watres.2012.02.009 

Dou, X., Yang, Y., 2018. Evapotranspiration estimation using four different machine learning approaches 

in different terrestrial ecosystems. Comput. Electron. Agric. 148, 95–106. 

doi:10.1016/j.compag.2018.03.010 

Doycheva, K., Horn, G., Koch, C., Schumann, A., König, M., 2017. Assessment and weighting of 

meteorological ensemble forecast members based on supervised machine learning with application 

to runoff simulations and flood warning. Adv. Eng. Informatics 33, 427–439. 



48 
 

doi:10.1016/j.aei.2016.11.001 

Du, K., Zhao, Y., Lei, J., 2017. The incorrect usage of singular spectral analysis and discrete wavelet 

transform in hybrid models to predict hydrological time series. J. Hydrol. 552, 44–51. 

doi:https://doi.org/10.1016/j.jhydrol.2017.06.019 

Efron, B., Tibshirani, R.J.J., 1993. An Introduction to the Bootstrap. Chapman and Hall, London, U.K. 

Elshorbagy, A., Corzo, G., Srinivasulu, S., Solomatine, D.P., 2010. Experimental investigation of the 

predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application. Hydrol. 

Earth Syst. Sci. 14, 1943–1961. doi:10.5194/hess-14-1943-2010 

Erkyihun, S.T., Rajagopalan, B., Zagona, E., Lall, U., Nowak, K., 2016. Wavelet-based time series bootstrap 

model for multidecadal streamflow simulation using climate indicators. Water Resour. Res. 52, 

4061–4077. doi:10.1002/2016WR018696 

Evans, D., 2008. A computationally efficient estimator for mutual information. Proc. R. Soc. A Math. Phys. 

Eng. Sci. 464, 1203–1215. doi:10.1098/rspa.2007.0196 

Fahimi, F., Yaseen, Z.M., El-shafie, A., 2017. Application of soft computing based hybrid models in 

hydrological variables modeling: a comprehensive review. Theor. Appl. Climatol. 128, 875–903. 

doi:10.1007/s00704-016-1735-8 

Fan, F.M., Schwanenberg, D., Alvarado, R., Assis dos Reis, A., Collischonn, W., Naumman, S., 2016. 

Performance of Deterministic and Probabilistic Hydrological Forecasts for the Short-Term 

Optimization of a Tropical Hydropower Reservoir. Water Resour. Manag. 30, 3609–3625. 

doi:10.1007/s11269-016-1377-8 

Fang, W., Huang, S., Huang, Q., Huang, G., Meng, E., Luan, J., 2018. Reference evapotranspiration 

forecasting based on local meteorological and global climate information screened by partial mutual 

information. J. Hydrol. 561, 764–779. doi:10.1016/j.jhydrol.2018.04.038 

Farmer, W.H., Vogel, R.M., 2016. On the deterministic and stochastic use of hydrologic models. Water 

Resour. Res. 52, 5619–5633. doi:10.1002/2016WR019129 

Fernando, T.M.K.G., Maier, H.R., Dandy, G.C., 2009. Selection of input variables for data driven models: 

An average shifted histogram partial mutual information estimator approach. J. Hydrol. 367, 165–

176. doi:10.1016/j.jhydrol.2008.10.019 



49 
 

Galelli, S., Humphrey, G.B., Maier, H.R., Castelletti, A., Dandy, G.C., Gibbs, M.S., 2014. An evaluation 

framework for input variable selection algorithms for environmental data-driven models. Environ. 

Model. Softw. 62, 33–51. doi:10.1016/j.envsoft.2014.08.015 

Ghanbarpour, M.R., Abbaspour, K.C., Hipel, K.W., 2009. A comparative study in long‐term river flow 

forecasting models. Int. J. River Basin Manag. 7, 403–413. doi:10.1080/15715124.2009.9635398 

Giustolisi, O., Savic, D.A., 2006. A symbolic data-driven technique based on evolutionary polynomial 

regression. J. Hydroinformatics 8, 207–222. doi:10.2166/hydro.2006.020 

Gong, W., Gupta, H. V., Yang, D., Sricharan, K., Hero, A.O., 2013. Estimating epistemic and aleatory 

uncertainties during hydrologic modeling: An information theoretic approach. Water Resour. Res. 

49, 2253–2273. doi:10.1002/wrcr.20161 

Goyal, M.K., Bharti, B., Quilty, J., Adamowski, J., Pandey, A., 2014. Modeling of daily pan evaporation in 

sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert Syst. Appl. 41. 

doi:10.1016/j.eswa.2014.02.047 

Gustafson, R.L., 1961. Partial Correlations in Regression Computations. J. Am. Stat. Assoc. 56, 363–367. 

doi:10.1080/01621459.1961.10482120 

Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 

1157–1182. 

Hadi, S.J., Tombul, M., 2018. Monthly streamflow forecasting using continuous wavelet and multi-gene 

genetic programming combination. J. Hydrol. 561, 674–687. doi:10.1016/j.jhydrol.2018.04.036 

Han, S., Coulibaly, P., 2017. Bayesian flood forecasting methods: A review. J. Hydrol. 551, 340–351. 

doi:10.1016/j.jhydrol.2017.06.004 

Hao, Z., Singh, V.P., 2016. Review of dependence modeling in hydrology and water resources. Prog. Phys. 

Geogr. 40, 549–578. doi:10.1177/0309133316632460 

Hasanpour Kashani, M., Ghorbani, M.A., Dinpashoh, Y., Shahmorad, S., 2014. Comparison of Volterra 

Model and Artificial Neural Networks for Rainfall-Runoff Simulation. Nat. Resour. Res. 23, 341–354. 

doi:10.1007/s11053-014-9235-y 

Hassani, H., 2010. Singular spectrum analysis based on the minimum variance estimator. Nonlinear Anal. 

Real World Appl. 11, 2065–2077. doi:10.1016/j.nonrwa.2009.05.009 



50 
 

Hassani, H., Xu, Z., Zhigljavsky, A., 2011. Singular spectrum analysis based on the perturbation theory. 

Nonlinear Anal. Real World Appl. 12, 2752–2766. doi:10.1016/j.nonrwa.2011.03.020 

He, J., Valeo, C., Chu, A., Neumann, N.F., 2011. Prediction of event-based stormwater runoff quantity and 

quality by ANNs developed using PMI-based input selection. J. Hydrol. 400, 10–23. 

doi:10.1016/j.jhydrol.2011.01.024 

He, X., Guan, H., Qin, J., 2015. A hybrid wavelet neural network model with mutual information and 

particle swarm optimization for forecasting monthly rainfall. J. Hydrol. 527, 88–100. 

doi:10.1016/j.jhydrol.2015.04.047 

Heddam, S., Kisi, O., 2017. Extreme learning machines: a new approach for modeling dissolved oxygen 

(DO) concentration with and without water quality variables as predictors. Environ. Sci. Pollut. Res. 

24, 16702–16724. doi:10.1007/s11356-017-9283-z 

Heil, C., Walnut, D., 1989. Continuous and discrete wavelet transforms. Soc. Ind. Appl. Math. 31, 628–666. 

doi:10.1137/1031129 

Hejazi, M.I., Cai, X., 2009. Input variable selection for water resources systems using a modified minimum 

redundancy maximum relevance (mMRMR) algorithm. Adv. Water Resour. 32, 582–593. 

doi:10.1016/j.advwatres.2009.01.009 

Hemri, S., Lisniak, D., Klein, B., 2015. Multivariate postprocessing techniques for probabilistic hydrological 

forecasting. Water Resour. Res. 51, 7436–7451. doi:10.1002/2014WR016473 

Huang, G.-B., Zhou, H., Ding, X., Zhang, R., 2012. Extreme learning machine for regression and multiclass 

classification. IEEE Trans. Syst. Man, Cybern. Part B Cybern. 42, 513–529. 

doi:10.1109/TSMCB.2011.2168604 

Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2006. Extreme learning machine: Theory and applications. 

Neurocomputing 70, 489–501. doi:10.1016/j.neucom.2005.12.126 

Huang, N., Shen, Z., Long, S., Wu, M., Shih, H., Zheng, Q., Yen, N., Tung, C., Liu, H., 1998. The empirical 

mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. 

Proc. R. Soc. A Math. Phys. Eng. Sci. 454, 995, 903. doi:10.1098/rspa.1998.0193 

Ince, H., 2006. Non-parametric regression methods. Comput. Manag. Sci. 3, 161–174. 

doi:10.1007/s10287-005-0006-4 



51 
 

Kalteh, A.M., 2013. Monthly river flow forecasting using artificial neural network and support vector 

regression models coupled with wavelet transform. Comput. Geosci. 54, 1–8. 

doi:10.1016/j.cageo.2012.11.015 

Karbasi, M., 2017. Forecasting of Multi-Step Ahead Reference Evapotranspiration Using Wavelet- 

Gaussian Process Regression Model. Water Resour. Manag. doi:10.1007/s11269-017-1853-9 

Karthikeyan, L., Kumar, D.N., 2013. Predictability of nonstationary time series using wavelet and EMD 

based ARMA models. J. Hydrol. 502, 103–119. doi:10.1016/j.jhydrol.2013.08.030 

Kasiviswanathan, K.S., He, J., Sudheer, K.P., Tay, J.-H., 2016. Potential application of wavelet neural 

network ensemble to forecast streamflow for flood management. J. Hydrol. 536, 161–173. 

doi:10.1016/j.jhydrol.2016.02.044 

Katz, R.W., Parlange, M.B., Naveau, P., 2002. Statistics of extremes in hydrology. Adv. Water Resour. 25, 

1287–1304. doi:10.1016/S0309-1708(02)00056-8 

Keshtegar, B., Allawi, M.F., Afan, H.A., El-Shafie, A., 2016. Optimized River Stream-Flow Forecasting Model 

Utilizing High-Order Response Surface Method. Water Resour. Manag. 30, 3899–3914. 

doi:10.1007/s11269-016-1397-4 

Keshtegar, B., Kisi, O., Asce, M., 2017. Modified Response-Surface Method : New Approach for Modeling 

Pan Evaporation. J. Hydrol. Eng. 22, 1–14. doi:10.1061/(ASCE)HE.1943-5584.0001541. 

Khalil, B., Broda, S., Adamowski, J., Ozga-Zielinski, B., Donohoe, A., 2015. Short-term forecasting of 

groundwater levels under conditions of mine-tailings recharge using wavelet ensemble neural 

network models. Hydrogeol. J. 23, 121–141. doi:10.1007/s10040-014-1204-3 

Khan, S., Bandyopadhyay, S., Ganguly, A.R., Saigal, S., Erickson III, D.J., Protopopescu, V., Ostrouchov, G., 

2007. Relative performance of mutual information estimation methods for quantifying the 

dependence among short and noisy data. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 76. 

doi:10.1103/PhysRevE.76.026209 

Khan, S., Ganguly, A.R., Bandyopadhyay, S., Saigal, S., Erickson III, D.J., Protopopescu, V., Ostrouchov, G., 

2006. Nonlinear statistics reveals stronger tie between ENSO and the tropical hydrological cycle. 

Geophys. Res. Lett. 33. doi:10.1029/2006GL027941 

Khokhlov, V.N., Glushkov, A. V, Loboda, N.S., 2006. On the nonlinear interaction between global 



52 
 

teleconnection patterns 132, 447–465. doi:10.1256/qj.05.05 

Kisi, O., 2016. Modeling reference evapotranspiration using three different heuristic regression 

approaches. Agric. Water Manag. 169, 162–172. doi:10.1016/j.agwat.2016.02.026 

Kişi, Ö., 2011. A combined generalized regression neural network wavelet model for monthly streamflow 

prediction. KSCE J. Civ. Eng. 15, 1469–1479. doi:10.1007/s12205-011-1004-4 

Koutsoyiannis, D., 2006. On the quest for chaotic attractors in hydrological processes. Hydrol. Sci. J. 51, 

1065–1091. doi:10.1623/hysj.51.6.1065 

Koutsoyiannis, D., Yao, H., Georgakakos, A., 2010. Medium-range flow prediction for the Nile: a 

comparison of stochastic and deterministic methods. Hydrol. Sci. J. 53, 142–164. 

doi:10.1623/hysj.53.1.142 

Krzysztofowicz, R., 2001. The case for probabilistic forecasting in hydrology. J. Hydrol. 249, 2–9. 

doi:10.1016/S0022-1694(01)00420-6 

Kumar, S., Tiwari, M.K., Chatterjee, C., Mishra, A., 2015. Reservoir Inflow Forecasting Using Ensemble 

Models Based on Neural Networks, Wavelet Analysis and Bootstrap Method. Water Resour. Manag. 

29, 4863–4883. doi:10.1007/s11269-015-1095-7 

Labat, D., Ababou, R., Mangin, A., 1999. Linear and nonlinear input/output models for karstic springflow 

and flood prediction at different time scales. Stoch. Environ. Res. Risk Assess. 13, 337–364. 

doi:10.1007/s004770050055 

Latifoğlu, L., Kişi, Ö., Latifoğlu, F., 2015. Importance of hybrid models for forecasting of hydrological 

variable. Neural Comput. Appl. 26, 1669–1680. doi:10.1007/s00521-015-1831-1 

Lee, J.A., Kolczynski, W.C., McCandless, T.C., Haupt, S.E., 2012. An Objective Methodology for Configuring 

and Down-Selecting an NWP Ensemble for Low-Level Wind Prediction. Mon. Weather Rev. 140, 

2270–2286. doi:10.1175/MWR-D-11-00065.1 

Lee, T., Ouarda, T.B.M.J., Yoon, S., 2017. KNN-based local linear regression for the analysis and simulation 

of low flow extremes under climatic influence. Clim. Dyn. 49, 3493–3511. doi:10.1007/s00382-017-

3525-0 

Li, C., Bai, Y., Zeng, B., 2016. Deep Feature Learning Architectures for Daily Reservoir Inflow Forecasting. 

Water Resour. Manag. 30, 5145–5161. doi:10.1007/s11269-016-1474-8 



53 
 

Li, X., Maier, H.R., Zecchin, A.C., 2015a. Improved PMI-based input variable selection approach for artificial 

neural network and other data driven environmental and water resource models. Environ. Model. 

Softw. 65, 15–29. doi:10.1016/j.envsoft.2014.11.028 

Li, X., Zecchin, A.C., Maier, H.R., 2015b. Improving partial mutual information-based input variable 

selection by consideration of boundary issues associated with bandwidth estimation. Environ. 

Model. Softw. 71, 78–96. doi:10.1016/j.envsoft.2015.05.013 

Lima, A.R., Cannon, A.J., Hsieh, W.W., 2016. Forecasting daily streamflow using online sequential extreme 

learning machines. J. Hydrol. 537, 431–443. doi:10.1016/j.jhydrol.2016.03.017 

Liu, Z., Zhou, P., Zhang, Y., 2015. A Probabilistic Wavelet–Support Vector Regression Model for Streamflow 

Forecasting with Rainfall and Climate Information Input. J. Hydrometeorol. 16, 2209–2229. 

doi:10.1175/JHM-D-14-0210.1 

Lou, I., Xie, Z., Ung, W.K., Mok, K.M., 2016. Freshwater algal bloom prediction by extreme learning 

machine in Macau Storage Reservoirs. Neural Comput. Appl. 27, 19–26. doi:10.1007/s00521-013-

1538-0 

Luo, G., 2016. A review of automatic selection methods for machine learning algorithms and hyper-

parameter values. Netw. Model. Anal. Heal. Informatics Bioinforma. 5, 18. doi:10.1007/s13721-016-

0125-6 

Maheswaran, R., Khosa, R., 2014. A Wavelet-Based Second Order Nonlinear Model for Forecasting 

Monthly Rainfall. Water Resour. Manag. 28, 5411–5431. doi:10.1007/s11269-014-0809-6 

Maheswaran, R., Khosa, R., 2013a. Long term forecasting of groundwater levels with evidence of non-

stationary and nonlinear characteristics. Comput. Geosci. 52, 422–436. 

doi:10.1016/j.cageo.2012.09.030 

Maheswaran, R., Khosa, R., 2013b. Wavelets-based non-linear model for real-time daily flow forecasting 

in Krishna River. J. Hydroinformatics 15, 1022. doi:10.2166/hydro.2013.135 

Maheswaran, R., Khosa, R., 2012a. Wavelet-Volterra coupled model for monthly stream flow forecasting. 

J. Hydrol. 450–451, 320–335. doi:10.1016/j.jhydrol.2012.04.017 

Maheswaran, R., Khosa, R., 2012b. Comparative study of different wavelets for hydrologic forecasting. 

Comput. Geosci. 46, 284–295. doi:10.1016/j.cageo.2011.12.015 



54 
 

Maier, H.R., Jain, A., Dandy, G.C., Sudheer, K.P., 2010. Methods used for the development of neural 

networks for the prediction of water resource variables in river systems: Current status and future 

directions. Environ. Model. Softw. 25, 891–909. doi:10.1016/j.envsoft.2010.02.003 

Marvuglia, A., Messineo, A., Nicolosi, G., 2014. Coupling a neural network temperature predictor and a 

fuzzy logic controller to perform thermal comfort regulation in an office building. Build. Environ. 72, 

287–299. doi:10.1016/j.buildenv.2013.10.020 

Maslova, I., Ticlavilca, A.M., Mckee, M., 2016. Adjusting wavelet-based multiresolution analysis boundary 

conditions for long-term streamflow forecasting. Hydrol. Process. doi:10.1002/hyp.10564 

Matos, J.P., Portela, M.M., Schleiss, A.J., 2018. Towards Safer Data-Driven Forecasting of Extreme 

Streamflows. Water Resour. Manag. 32, 701–720. doi:10.1007/s11269-017-1834-z 

Matte, S., Boucher, M.A., Boucher, V., Fortier Filion, T.C., 2017. Moving beyond the cost-loss ratio: 

Economic assessment of streamflow forecasts for a risk-Averse decision maker. Hydrol. Earth Syst. 

Sci. 21, 2967–2986. doi:10.5194/hess-21-2967-2017 

May, R.J., Dandy, G., Maier, H., 2011. Review of input variable selection methods for artificial neural 

networks. Artif. Neural Networks-Methodological Adv. Biomed. Appl. 19–44. 

May, R.J., Dandy, G.C., Maier, H.R., Nixon, J.B., 2008a. Application of partial mutual information variable 

selection to ANN forecasting of water quality in water distribution systems. Environ. Model. Softw. 

23, 1289–1299. doi:10.1016/j.envsoft.2008.03.008 

May, R.J., Maier, H.R., Dandy, G.C., Fernando, T.M.K.G., 2008b. Non-linear variable selection for artificial 

neural networks using partial mutual information. Environ. Model. Softw. 23, 1312–1326. 

doi:10.1016/j.envsoft.2008.03.007 

Mohammadi, K., Eslami, H.R., Kahawita, R., 2006. Parameter estimation of an ARMA model for river flow 

forecasting using goal programming. J. Hydrol. 331, 293–299. 

doi:https://doi.org/10.1016/j.jhydrol.2006.05.017 

Montanari, A., Grossi, G., 2008. Estimating the uncertainty of hydrological forecasts: A statistical 

approach. Water Resour. Res. 44. doi:10.1029/2008WR006897 

Montanari, A., Koutsoyiannis, D., 2012. A blueprint for process-based modeling of uncertain hydrological 

systems. Water Resour. Res. 48. doi:10.1029/2011WR011412 



55 
 

Moosavi, V., Vafakhah, M., Shirmohammadi, B., Behnia, N., 2013. A Wavelet-ANFIS Hybrid Model for 

Groundwater Level Forecasting for Different Prediction Periods. Water Resour. Manag. 27, 1301–

1321. doi:10.1007/s11269-012-0239-2 

Mount, N.J., Dawson, C.W., Abrahart, R.J., 2013. Legitimising data-driven models : exemplification of a 

new data-driven mechanistic modelling framework. Hydrol. Earth Syst. Sci. 17, 2827–2843. 

doi:10.5194/hess-17-2827-2013 

Murtagh, F., Starck, J.L., Renaud, O., 2004. On neuro-wavelet modeling. Decis. Support Syst. 37, 475–484. 

doi:10.1016/S0167-9236(03)00092-7 

Nanda, T., Sahoo, B., Beria, H., Chatterjee, C., 2016. A wavelet-based non-linear autoregressive with 

exogenous inputs (WNARX) dynamic neural network model for real-time flood forecasting using 

satellite-based rainfall products. J. Hydrol. 539, 57–73. doi:10.1016/j.jhydrol.2016.05.014 

Nearing, G.S., Tian, Y., Gupta, H. V., Clark, M.P., Harrison, K.W., Weijs, S. V., 2016. A Philosophical Basis for 

Hydrologic Uncertainty. Hydrol. Sci. J. 6667, 1–20. doi:10.1080/02626667.2016.1183009 

Nourani, V., Alami, M.T., Aminfar, M.H., 2009. A combined neural-wavelet model for prediction of 

Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 22, 466–472. 

doi:10.1016/j.engappai.2008.09.003 

Nourani, V., Hosseini Baghanam, A., Adamowski, J., Kisi, O., 2014. Applications of hybrid wavelet-Artificial 

Intelligence models in hydrology: A review. J. Hydrol. 514, 358–377. 

doi:10.1016/j.jhydrol.2014.03.057 

Özger, M., Mishra, A.K., Singh, V.P., 2012. Long Lead Time Drought Forecasting Using a Wavelet and Fuzzy 

Logic Combination Model: A Case Study in Texas. J. Hydrometeorol. 13, 284–297. doi:10.1175/JHM-

D-10-05007.1 

Pammar, L., Deka, P.C., 2017. Daily pan evaporation modeling in climatically contrasting zones with 

hybridization of wavelet transform and support vector machines. Paddy Water Environ. 15, 711–

722. doi:10.1007/s10333-016-0571-x 

Percival, D.B., 2008. Analysis of Geophysical Time Series Using Discrete Wavelet Transforms: An Overview, 

in: Donner, R. V, Barbosa, S.M. (Eds.), Nonlinear Time Series Analysis in the Geosciences. Springer 

Berlin Heidelberg, Berlin, Heidelberg, pp. 61–79. doi:10.1007/978-3-540-78938-3_4 



56 
 

Percival, D.B., Lennox, S.M., Wang, Y.G., Darnell, R.E., 2011. Wavelet-based multiresolution analysis of 

Wivenhoe Dam water temperatures. Water Resour. Res. doi:10.1029/2010WR009657 

Percival, D.B., Mofjeld, H.O., 1997. Analysis of Subtidal Coastal Sea Level Fluctuations Using Wavelets. J. 

Am. Stat. Assoc. 92, 868. doi:10.2307/2965551 

Percival, D.B., Walden, A.T., 2000. Wavelet Methods for Time Series Analysis, 1st ed, Cambridge Series in 

Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge. 

Póczos, B., Schneider, J.G., 2012. Nonparametric estimation of conditional information and divergences. 

Int. Conf. Artif. Intell. Stat. 22, 914--923. 

Prasad, R., Deo, R.C., Li, Y., Maraseni, T., 2018. Ensemble committee-based data intelligent approach for 

generating soil moisture forecasts with multivariate hydro-meteorological predictors. Soil Tillage 

Res. 181, 63–81. doi:https://doi.org/10.1016/j.still.2018.03.021 

Prasad, R., Deo, R.C., Li, Y., Maraseni, T., 2017. Input selection and performance optimization of ANN-

based stream flow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT 

algorithm. Atmos. Res. 197, 42–63. doi:10.1016/j.atmosres.2017.06.014 

Rahimikhoob, A., 2016. Comparison of M5 Model Tree and Artificial Neural Networks Methodologies in 

Modelling Daily Reference Evapotranspiration from NOAA Satellite Images. Water Resour. Manag. 

1–13. doi:10.1007/s11269-016-1331-9 

Rajaee, T., Ravansalar, M., Adamowski, J.F., Deo, R.C., 2018. A New Approach to Predict Daily pH in Rivers 

Based on the “à trous” Redundant Wavelet Transform Algorithm. Water, Air, Soil Pollut. 229, 85. 

doi:10.1007/s11270-018-3715-3 

Ramos, M.H., Van Andel, S.J., Pappenberger, F., 2013. Do probabilistic forecasts lead to better decisions? 

Hydrol. Earth Syst. Sci. 17, 2219–2232. doi:10.5194/hess-17-2219-2013 

Rathinasamy, M., Adamowski, J., Khosa, R., 2013. Multiscale streamflow forecasting using a new Bayesian 

Model Average based ensemble multi-wavelet Volterra nonlinear method. J. Hydrol. 

doi:10.1016/j.jhydrol.2013.09.025 

Rathinasamy, M., Khosa, R., 2012. Multiscale nonlinear model for monthly streamflow forecasting: a 

wavelet-based approach. J. Hydroinformatics 14, 424. doi:10.2166/hydro.2011.130 

Rathinasamy, M., Khosa, R., Adamowski, J., Ch, S., Partheepan, G., Anand, J., Narsimlu, B., 2014. Wavelet-



57 
 

based multiscale performance analysis: An approach to assess and improve hydrological models. 

Water Resour. Res. 50, 9721–9737. doi:10.1002/2013WR014650 

Remesan, R., Mathew, J., 2015. Hydrological data driven modelling: A case study approach, Hydrological 

Data Driven Modelling: A Case Study Approach. Springer International Publishing. 

Ren, W., Yang, T., Shi, P., Xu, C. yu, Zhang, K., Zhou, X., Shao, Q., Ciais, P., 2018. A probabilistic method for 

streamflow projection and associated uncertainty analysis in a data sparse alpine region. Glob. 

Planet. Change 165, 100–113. doi:10.1016/j.gloplacha.2018.03.011 

Rezaie-Balf, M., Kisi, O., 2017. New formulation for forecasting streamflow: evolutionary polynomial 

regression vs. extreme learning machine. Hydrol. Res. doi:10.2166/nh.2017.283 

Sang, Y.-F., 2013. A review on the applications of wavelet transform in hydrology time series analysis. 

Atmos. Res. 122, 8–15. doi:10.1016/j.atmosres.2012.11.003 

Sang, Y.-F., Wang, Z., Liu, C., 2015. Wavelet Neural Modeling for Hydrologic Time Series Forecasting with 

Uncertainty Evaluation. Water Resour. Manag. 29, 1789–1801. doi:10.1007/s11269-014-0911-9 

Sang, Y.F., Shang, L.Y., Wang, Z.G., Liu, C.M., Yang, M.G., 2013. Bayesian-combined wavelet regressive 

modeling for hydrologic time series forecasting. Chinese Sci. Bull. 58, 3796–3805. 

doi:10.1007/s11434-013-5903-2 

Sehgal, V., Tiwari, M.K., Chatterjee, C., Sehgal, V., Tiwari, M.K., Chatterjee, C., 2014. Wavelet Bootstrap 

Multiple Linear Regression Based Hybrid Modeling for Daily River Discharge Forecasting. Water 

Resour Manag. 28, 2793–2811. doi:10.1007/s11269-014-0638-7 

Serinaldi, F., Kilsby, C.G., 2016. A Blueprint for Full Collective Flood Risk Estimation: Demonstration for 

European River Flooding. Risk Anal. doi:10.1111/risa.12747 

Shannon, C.E., 1948. A Mathematical Theory of Communication. Bell Syst. Tech. J. 27, 379–423. 

doi:10.1002/j.1538-7305.1948.tb01338.x 

Sharma, A., 2000a. Seasonal to interannual rainfall probabilistic forecasts for improved water supply 

management: Part 1 - A strategy for system predictor identification. J. Hydrol. 239, 232–239. 

doi:10.1016/S0022-1694(00)00346-2 

Sharma, A., 2000b. Seasonal to interannual rainfall probabilistic forecasts for improved water supply 

management: Part 3 - A nonparametric probabilistic forecast model. J. Hydrol. 239, 249–258. 



58 
 

doi:10.1016/S0022-1694(00)00348-6 

Sharma, A., Mehrotra, R., 2014. An information theoretic alternative to model a natural system using 

observational information alone. Water Resour. Res. 50, 650–660. doi:10.1002/2013WR013845 

Sharma, A., Mehrotra, R., Li, J., Jha, S., 2016. A programming tool for nonparametric system prediction 

using Partial Informational Correlation and Partial Weights. Environ. Model. Softw. 83, 271–275. 

doi:10.1016/j.envsoft.2016.05.021 

Shi, B., Wang, P., Jiang, J., Liu, R., 2018. Applying high-frequency surrogate measurements and a wavelet-

ANN model to provide early warnings of rapid surface water quality anomalies. Sci. Total Environ. 

610–611, 1390–1399. doi:10.1016/j.scitotenv.2017.08.232 

Shoaib, M., Shamseldin, A.Y., Khan, S., Khan, M.M., Khan, Z.M., Sultan, T., Melville, B.W., 2018. A 

Comparative Study of Various Hybrid Wavelet Feedforward Neural Network Models for Runoff 

Forecasting. Water Resour. Manag. 32, 83–103. doi:10.1007/s11269-017-1796-1 

Shoaib, M., Shamseldin, A.Y., Melville, B.W., 2014. Comparative study of different wavelet based neural 

network models for rainfall-runoff modeling. J. Hydrol. 515, 47–58. 

doi:10.1016/j.jhydrol.2014.04.055 

Sikorska, A.E., Montanari, A., Koutsoyiannis, D., 2015. Estimating the uncertainty of hydrological 

predictions through data-driven resampling techniques. J. Hydrol. Eng. 20. 

Šindelář, R., Babuška, R., 2004. Input selection for nonlinear regression models. IEEE Trans. Fuzzy Syst. 12, 

688–696. doi:10.1109/TFUZZ.2004.834810 

Siqueira, H., Boccato, L., Attux, R.R.F., Lyra, C., 2012. Echo State Networks and Extreme Learning Machines: 

A Comparative Study on Seasonal Streamflow Series Prediction, in: Huang, T., Zeng, Z., Li, C., Leung, 

C.S. (Eds.), Proc. of the 19th International Conference on Neural Information Processing. Springer 

Berlin Heidelberg, Berlin, Heidelberg, pp. 491–500. doi:10.1007/978-3-642-34481-7{_}60 

Solomatine, D.P., Dulal, K.N., 2003. Model trees as an alternative to neural networks in rainfall—runoff 

modelling. Hydrol. Sci. J. 48, 399–411. doi:10.1623/hysj.48.3.399.45291 

Solomatine, D.P., Ostfeld, A., 2008. Data-driven modelling: some past experiences and new approaches. 

J. Hydroinformatics 10, 3–22. doi:10.2166/hydro.2008.015 

Srivastav, R.K., Sudheer, K.P., Chaubey, I., 2007. A simplified approach to quantifying predictive and 



59 
 

parametric uncertainty in artificial neural network hydrologic models. Water Resour. Res. 43, 1–12. 

doi:10.1029/2006WR005352 

Taormina, R., Galelli, S., Karakaya, G., Ahipasaoglu, S.D., 2016. An information theoretic approach to select 

alternate subsets of predictors for data-driven hydrological models. J. Hydrol. 542, 18–34. 

doi:10.1016/j.jhydrol.2016.07.045 

Tapiador, F.J., Gallardo, C., 2006. Entropy-based member selection in a GCM ensemble forecasting. 

Geophys. Res. Lett. 33, 2–5. doi:10.1029/2005GL024888 

Tiwari, M.K., Adamowski, J.F., 2017. An ensemble wavelet bootstrap machine learning approach to water 

demand forecasting: a case study in the city of Calgary, Canada. Urban Water J. 14, 185–201. 

doi:10.1080/1573062X.2015.1084011 

Tiwari, M.K., Chatterjee, C., 2011. A new wavelet–bootstrap–ANN hybrid model for daily discharge 

forecasting. J. Hydroinformatics 13, 500. doi:10.2166/hydro.2010.142 

Tran, H.D., Muttil, N., Perera, B.J.C., 2015. Selection of significant input variables for time series 

forecasting. Environ. Model. Softw. 64, 156–163. doi:10.1016/j.envsoft.2014.11.018 

Trichakis, I., Nikolos, I., Karatzas, G.P., 2011. Comparison of bootstrap confidence intervals for an ANN 

model of a karstic aquifer response. Hydrol. Process. 25, 2827–2836. doi:10.1002/hyp.8044 

Tsimpiris, A., Vlachos, I., Kugiumtzis, D., 2012. Nearest neighbor estimate of conditional mutual 

information in feature selection. Expert Syst. Appl. 39, 12697–12708. 

doi:10.1016/j.eswa.2012.05.014 

Tyralis, H., Koutsoyiannis, D., 2017. On the prediction of persistent processes using the output of 

deterministic models. Hydrol. Sci. J. 62, 2083–2102. doi:10.1080/02626667.2017.1361535 

Unnikrishnan, P., Jothiprakash, V., 2018. Daily rainfall forecasting for one year in a single run using Singular 

Spectrum Analysis. J. Hydrol. 561, 609–621. doi:https://doi.org/10.1016/j.jhydrol.2018.04.032 

Valipour, M., Banihabib, M.E., Behbahani, S.M.R., 2013. Comparison of the ARMA, ARIMA, and the 

autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam 

reservoir. J. Hydrol. 476, 433–441. doi:https://doi.org/10.1016/j.jhydrol.2012.11.017 

Van Hulle, M.M., 2005. Edgeworth Approximation of Multivariate Differential Entropy. Neural Comput. 

17, 1903–1910. doi:10.1162/0899766054323026 



60 
 

Wang, S., Huang, G.H., Baetz, B.W., Ancell, B.C., 2017. Towards robust quantification and reduction of 

uncertainty in hydrologic predictions: Integration of particle Markov chain Monte Carlo and factorial 

polynomial chaos expansion. J. Hydrol. 548, 484–497. doi:10.1016/j.jhydrol.2017.03.027 

Wang, Y., Wu, L., 2016. On practical challenges of decomposition-based hybrid forecasting algorithms for 

wind speed and solar irradiation. Energy 112, 208–220. doi:10.1016/j.energy.2016.06.075 

Wang, Y., Zheng, T., Zhao, Y., Jiang, J., Wang, Y., Guo, L., Wang, P., 2013. Monthly water quality forecasting 

and uncertainty assessment via bootstrapped wavelet neural networks under missing data for 

Harbin, China. Environ. Sci. Pollut. Res. 20, 8909–8923. doi:10.1007/s11356-013-1874-8 

Weijs, S. V., van de Giesen, N., 2013. An information-theoretical perspective on weighted ensemble 

forecasts. J. Hydrol. 498, 177–190. doi:10.1016/j.jhydrol.2013.06.033 

Wu, T., Kareem, A., 2014. Simulation of nonlinear bridge aerodynamics: A sparse third-order Volterra 

model. J. Sound Vib. 333, 178–188. doi:10.1016/j.jsv.2013.09.003 

Wu, Z.Y., El-Maghraby, M., Pathak, S., 2015. Applications of deep learning for smart water networks. 

Procedia Eng. 119, 479–485. doi:10.1016/j.proeng.2015.08.870 

Xiong, T., Bao, Y., Hu, Z., 2014. Does restraining end effect matter in EMD-based modeling framework for 

time series prediction? Some experimental evidences. Neurocomputing 123, 174–184. 

doi:10.1016/j.neucom.2013.07.004 

Xu, X., Zhang, X., Fang, H., Lai, R., Zhang, Y., Huang, L., Liu, X., 2017. A real-time probabilistic channel flood-

forecasting model based on the Bayesian particle filter approach. Environ. Model. Softw. 88, 151–

167. doi:10.1016/j.envsoft.2016.11.010 

Yaseen, Z.M., El-shafie, A., Jaafar, O., Afan, H.A., Sayl, K.N., 2015. Artificial intelligence based models for 

stream-flow forecasting: 2000-2015. J. Hydrol. doi:10.1016/j.jhydrol.2015.10.038 

Yaseen, Z.M., Jaafar, O., Deo, R.C., Kisi, O., Adamowski, J., Quilty, J., El-Shafie, A., 2016. Stream-flow 

forecasting using extreme learning machines: A case study in a semi-arid region in Iraq. J. Hydrol. 

542, 603–614. doi:10.1016/j.jhydrol.2016.09.035 

Yung, B.B., Tolson, B.A., Burn, D.H., 2011. Risk assessment of a water supply system under climate 

variability: a stochastic approach. Can. J. Civ. Eng. 38, 252–262. doi:10.1139/L10-132 

Zhang, H., Singh, V.P., Wang, B., Yu, Y., 2016. CEREF: A hybrid data-driven model for forecasting annual 



61 
 

streamflow from a socio-hydrological system. J. Hydrol. 540, 246–256. 

doi:10.1016/j.jhydrol.2016.06.029 

Zhang, Q., Wang, B.-D., He, B., Peng, Y., Ren, M.-L., 2011. Singular Spectrum Analysis and ARIMA Hybrid 

Model for Annual Runoff Forecasting. Water Resour. Manag. 25, 2683–2703. doi:10.1007/s11269-

011-9833-y 

Zhang, X., Peng, Y., Zhang, C., Wang, B., 2015. Are hybrid models integrated with data preprocessing 

techniques suitable for monthly streamflow forecasting? Some experiment evidences. J. Hydrol. 530, 

137–152. doi:10.1016/j.jhydrol.2015.09.047 

 

  



62 
 

Connecting Text to Chapter 3 

This chapter describes the development, testing, and application of two novel computationally efficient, 

non-parametric, nonlinear information-theoretic input variable selection methods.  The first method, 

Edgeworth Approximations-based condition mutual information (EA) provides a useful alternative to 

existing computationally expensive, parametric, nonlinear information-theoretic input variable selection 

methods and provides similar or better performance.  The second method, bootstrap rank-ordered 

conditional mutual (broCMI) is an extension of the EA method that accounts for input variable selection 

uncertainty, a new topic in the input variable selection literature.  The EA and broCMI approaches are 

useful for identifying which input (explanatory) variables to include in the development of nonlinear data-

driven water resources forecasting models. 

This chapter was published in Water Resources Research (Quilty et al., 2016).  The format of the paper 

has been modified to ensure consistency with the style of this thesis.  A list of references cited in this 

paper is available at the end of the chapter. 

The author of the thesis was responsible for the development, testing, and application of the different 

methods and wrote the manuscript presented here.  Prof. Adamowski, the supervisor of this thesis, 

provided valuable advice on all aspects of the research and contributed to the review and editing of the 

manuscript.  Dr. Bahaa Khalil, Post-doctoral Researcher in the Bioresource Engineering Department at 

McGill and Dr. Maheswaran Rathinasamy, Humboldt Fellow at the Potsdam Institute for Climate Impact 

Research, Germany, provided advice on the methodological aspects and contributed to the review and 

editing of the manuscript. 
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Chapter 3: Bootstrap Rank-Ordered Conditional Mutual Information 

(broCMI): A Nonlinear Input Variable Selection Method for Water 

Resources Modeling 

3.1. Abstract 

The input variable selection problem has recently garnered much interest in the time series modeling 

community, especially within water resources applications, demonstrating that information theoretic 

(nonlinear) based input variable selection algorithms such as partial mutual information (PMI) selection 

(PMIS) provide an improved representation of the modeled process when compared to linear alternatives 

such as partial correlation input selection (PCIS).  PMIS is a popular algorithm for water resources 

modeling problems considering nonlinear input variable selection; however, this method requires the 

specification of two nonlinear regression models, each with parametric settings that greatly influence the 

selected input variables.  Other attempts to develop input variable selection methods using conditional 

mutual information (CMI) (an analogue to PMI) have been formulated under different parametric 

pretenses such as k nearest-neighbour (KNN) statistics or kernel density estimates (KDE).  In this paper we 

introduce a new input variable selection method based on CMI that uses a non-parametric multivariate 

continuous probability estimator based on Edgeworth approximations (EA).  We improve the EA method 

by considering the uncertainty in the input variable selection procedure by introducing a bootstrap 

resampling procedure that uses rank statistics to order the selected input sets; we name our proposed 

method bootstrap rank-ordered CMI (broCMI).  We demonstrate the superior performance of broCMI 

when compared to CMI based alternatives (EA, KDE, and KNN), PMIS, and PCIS input variable selection 

algorithms on a set of seven synthetic test problems and a real-world urban water demand (UWD) 

forecasting experiment in Ottawa, Canada. 

Keywords: input variable selection, conditional mutual information, uncertainty, bootstrap, rank-

ordering, regression models 

3.2. Introduction 

Regression models such as multiple linear regression (MLR), artificial neural networks (ANN), and support 

vector regression (SVR) are ubiquitous across many scientific and technological applications seeking to 

quantify relationships existing between a process (response variable) and a set of potential drivers 

(candidate input variables or explanatory variables) that may contain relevant, irrelevant, and/or 
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redundant information.  The task of the data modeller is twofold: 1) to extract only the relevant input 

variables and separate them from those candidate inputs that are irrelevant and/or redundant, also 

known as the input variable selection task and 2) to build regression models using input variables from 

the selection task to explain the process. Choosing an appropriate input variable selection method 

reduces the amount of variables used within the model and this helps against selecting irrelevant inputs 

that can significantly influence model accuracy and add unnecessary complexity impacting model 

reliability (Hejazi and Cai, 2009) while also increasing computational efficiency, minimizing redundancy, 

reducing noise, and increasing the interpretability of the model (Back and Trappenberg, 2001; May et al., 

2008a; Šindelář and Babuška, 2004). 

There are three general types of input variable selection algorithms: filter (the focus of this paper), 

wrapper, and embedded methods. Filters are the most commonly used input variable selection method 

since they may be applied independent of the regression model (e.g. ANN) while both wrappers and 

embedded methods rely on a model in order to choose the final set of input variables (May et al., 2011).  

The most common filter based input variable selection algorithm is the linear (and partial linear) 

correlation ranking method (May et al., 2011) which selects input variables one at a time, choosing the 

input variable that has the largest dependence score with the response variable, which has also been 

referred to as ‘greedy selection’ (Brown et al., 2012).  We focus on filters in this work due to their 

independence from and their ability to be coupled with any type of regression model and direct the 

interested reader to Guyon and Elisseeff (2003) and Galelli et al. (2014) for further information on wrapper 

and embedded methods.   

The goal of this paper is to propose and assess a new filter based input variable selection method that 

may easily be coupled with regression models (we consider nonlinear neural network based machine 

learning models) for specifying (water resources) time series/processes (e.g. urban water demand (UWD), 

streamflow, rainfall-runoff, etc.).  Our proposed algorithm is derived using concepts from information 

theory; specifically we consider mutual information (MI) (Shannon, 1948) based metrics since they 

capture general (nonlinear) dependence existing between (multivariate) variables by using their joint and 

marginal probability distribution functions (PDF) to compute the measure.  Thus, MI is an improvement 

over the linear correlation statistic due to its ability to estimate general (linear and nonlinear) 

dependencies amongst (potentially) multivariate variables. Due to these useful theoretical qualities MI 

based metrics are popular in diverse fields such as: biology (Penner et al., 2011), chemistry (Hnizdo et al., 

2007), medical practice (Lee and Maslove, 2015), engineering (Nichols et al., 2006), finance (You et al., 
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2015), psychology (Harel et al., 2007), image and video analysis (Korshunov and Ooi, 2011; Liu and Karam, 

2005), geophysics (Chen et al., 2008), agriculture (Mishra et al., 2013), and water resources (Gong et al., 

2013; Maier et al., 2006; Sharma, 2000a) (among many fields of application). 

In an experiment focused on input variable selection, Guyon and Elisseeff (2003) discussed linear 

correlation coefficient ranking and mutual information ranking input variable selection approaches.  Both 

linear and MI ranking methods list in order (from first to last) the candidate input variables with the largest 

dependence score with the response variable.  To help guide efforts in selecting an effective input variable 

selection strategy Guyon and Elisseeff (2003) concluded three main points from their experiments that 

should be considered when choosing a pre-existing, or designing a new, input variable selection routine.  

Their findings are paraphrased as follows: 1) presumably redundant variables (variables that score similar 

dependence measures) can be utilized to reduce noise and facilitate better (potentially nonlinear) 

mappings between response and explanatory variables, 2) perfectly correlated variables are truly 

redundant and cannot provide additional information to an augmented input variable set by including one 

or more perfectly correlated variable(s).  Very large (positive or negative) correlation does not necessarily 

mean the absence of variable complementarity.  Therefore, input variable selection methods that score 

variables individually and independently of each other cannot determine which combination of variables 

would give the best performance, and 3) two variables that are useless by themselves can be useful 

together. 

From the above three statements it is realized that for an input variable selection method to be effective 

at choosing the best hypothetical input variables it must consider variable redundancy and 

complementarity simultaneously (which requires a multivariate approach to calculate such 

dependencies).  This means that standard linear correlation and MI ranking techniques are not sufficient 

for an optimal input variable selection routine as linear correlation can only assess linear dependence and 

it is not a conditional measure - MI is also not a conditional measure. 

Since we are focused on the problem of selecting appropriate input variables when working with datasets 

containing candidate input variables that may be considered as either relevant, redundant, or irrelevant 

in accordance with some process (response variable) and other side information (explanatory variables 

deemed as important from an earlier study or through expert knowledge, for example) it is of practical 

significance to choose an evaluation metric which can define a candidate input variable as either relevant, 

redundant, or irrelevant.  To this end, we are motivated by the recent work of Brown et al. (2012) who 

derived the conditional mutual information metric (CMI) (Cover and Thomas, 2006) under the objective 
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function of the conditional likelihood maximization between the response and explanatory variables.  (We 

note that CMI has also been referred to as partial mutual information (PMI) elsewhere in the literature 

(Frenzel and Pompe, 2007; Sharma and Mehrotra, 2014).) The authors derived the CMI metric under this 

pretense, compared CMI to other heuristic CMI alternatives developed earlier in the machine learning 

community, used each technique for input variable selection, and then applied the selected input 

variables towards multiclass classification problems (see Brown et al. (2012) for details).  The caveat of 

the CMI formulation in Brown et al. (2012) is that the conditional mutual information breaks down into 

the following terms: informational relevancy – informational redundancy + informational conditional 

redundancy.  (This statement is embodied by equation (12) in Brown et al. (2012).)  We can appreciate 

that the CMI metric (by its very nature) explicitly quantifies a candidate variable’s relevancy and 

conditional relevancy - even if the candidate variable seems to contain redundant information with pre-

selected inputs (side information) it may still be useful if it can add any further information to the system 

(i.e. the difference between conditional redundancy and redundancy terms).  Thus, the CMI embodies the 

qualities of an objective (nonlinear) input variable selection routine as outlined by Guyon and Elisseeff 

(2003) and for this reason CMI is considered in this work for the input variable selection task.   

Our important modification to the method proposed by Brown et al. (2012) is that we develop CMI for 

use with multivariate datasets containing continuous variables which are used in time series modeling 

scenarios (rather than multivariate categorical variables which are focused on in Brown et al. (2012)).  This 

modification is made possible via Edgeworth approximations enabling the estimation of arbitrary 

continuous multivariate probability distribution functions (Van Hulle, 2005).  The benefit of formulating 

CMI via Edgeworth approximations is that it does not require any parameters to be set as it is based on 

Hermitian polynomials and standardized cumulants (please refer to Van Hulle (2005) for details).  

Formulating MI through Edgeworth approximations has been shown to outperform other MI estimators 

such as those based on kernel density estimation and k nearest-neighbours for estimating MI for 

multivariate Gaussian and exponential distributions (Van Hulle, 2005) and has also been used to estimate 

the MI for short and noisy data (Khan et al., 2007); for example, measuring nonlinear dependencies 

between hydrological variables such as the river Nile and the El Nino-Southern Oscillation cycle (Khan et 

al., 2006). Extending the logic applied to MI estimation (Khan et al., 2007, 2006; Van Hulle, 2005), we use 

Edgeworth approximations to formulate a new CMI based input variable selection method which we name 

Edgeworth approximations (EA) for short. 
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The EA input variable selection method was developed to offer a competitive non-parametric alternative 

to current nonlinear CMI based alternatives that require the specification of parameters which must be 

carefully selected to guarantee an optimal input variable selection performance. Existing parametric 

CMI/PMI (i.e. information theoretic) based input variable selection methods that we focus on include the 

popular partial mutual information selection (PMIS) method (May et al., 2008b; Sharma, 2000a, 2000b; 

Sharma et al., 2000), the kernel density estimation CMI method (KDE) (used as the basis for the Partial 

Information modeling approach (Sharma and Mehrotra, 2014)), and the k nearest-neighbour CMI method 

(KNN) (Frenzel and Pompe, 2007; Tsimpiris et al., 2012; Vejmelka and Paluš, 2008).   

The PMIS method was introduced in Sharma (2000a) (and subsequently explored in Sharma (2000b) and 

Sharma et al. (2000)).  The PMIS algorithm estimates partial mutual information/CMI by calculating the 

MI between residual information from two intermediate regression models (that each require parametric 

settings); one of which estimates the residual information between the pre-selected input variables (or 

side information) and the response and the other which estimates the residual information between the 

pre-selected input variables and the candidate input variable (please see details within Sharma (2000a)).  

The two main components of the PMIS algorithm require specification of: 1) the method used to estimate 

the MI between the residual information (pre-calculated by the intermediate regression models) and 2) 

the (conditional) regression models.  For instance, the intermediate regression models have been 

specified in the literature through multivariate kernel density estimates (He et al., 2011; May et al., 2008a, 

2008b, Sharma, 2000a, 2000b; Sharma et al., 2000) and general regression neural networks (GRNN) 

(Bowden et al., 2005b, 2005a, Chen et al., 2013, 2014).  In regards to MI estimation within PMIS, this has 

been calculated through (multivariate) kernel density estimation (Sharma, 2000a, Bowden et al., 2005a; 

May et al., 2008a); average shifted histograms (Fernando et al., 2009), and copula entropy (Chen et al., 

2013, 2014). (Entropy is known as a measure of uncertainty for a given (univariate or multivariate) variable 

computed through the variables’ PDF and it is through the notion of entropy that MI is derived (Singh, 

2013); while copula entropy (AghaKouchak, 2014; Hao and Singh, 2015) is analogous with the negative of 

MI (please see details within Calsaverini and Vicente (2009); Ma and Sun (2011); Zeng and Durrani (2011).)   

The KDE (based CMI) method, recently introduced as part of the Partial Information modeling approach 

(Sharma and Mehrotra, 2014), relies on multivariate kernel density estimation to compute the CMI metric, 

requiring specification of the kernel type and the kernel’s parameters; a common choice of which is the 

Gaussian kernel and Gaussian Reference Rule (for the kernel bandwidth), respectively.  
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The KNN (based CMI) method, introduced in Frenzel and Pompe (2007), computes the CMI metric by using 

distances in nearest-neighbours space (Gómez-Herrero et al., 2015; Kraskov et al., 2004). This method 

requires the specification of the number of nearest-neighbours (𝑘𝑛𝑛) to estimate CMI, which is (in general) 

dataset dependent and must be explored through trial-and-error (Tsimpiris et al., 2012). 

In addition to introducing the non-parametric EA method for calculation of the CMI, we further extend 

the EA method by acknowledging uncertainty within the CMI based input variable selection method by 

adopting a resampling procedure based on the bootstrap (Efron and Tibshirani, 1993), allowing us to 

generate multiple selected input variable sets.  To make use of the information contained across the 

multiple selected input variable sets we incorporate an idea from Kuncheva (2007) and use the rank-

ordering procedure to encompass the variability across the selected input variable sets and generate new 

input variable sets by ordering the selected input variables based on the variation in their selection ranks 

across the resamples (this procedure is explained further in section 3.3.3.2 where we define our proposed 

input variable selection method).  Essentially, the rank-ordering procedure uses the (selection) ranks of 

the selected input variables across multiple trials (bootstrap resamples) and returns a single list of ordered 

ranks (for the selected input variables) based on the variability of the (input variable) ranks across the 

various trials.  We have named our proposed input variable selection method: bootstrap rank-ordered 

conditional mutual information (broCMI).   

Both the EA and broCMI algorithms incorporate all desired facets of an objective input variable selection 

algorithm as outlined by Guyon and Elisseeff (2003) and include the added benefit of being non-

parametric; this is a very attractive quality as it mitigates the need to search for optimal parameterization 

during the input variable selection procedure, such as required for PMIS, KDE, and KNN (CMI based 

methods,) and avoids heuristic approaches, such as the combination of kernel density estimation and 

intermediate regression models as within PMIS (May et al., 2008a). Our proposed broCMI further 

improves upon these favorable characteristics (of the EA method) by additionally considering the 

uncertainty in the input variable selection procedure (through bootstrap resampling and rank-ordering of 

the resampled trials). 

Both Elshorbagy et al. (2010) and Galelli et al. (2014) have noted that any prospective modeling tool that 

is introduced to the modeling community for a particular application should be compared with other 

existing methods to assess its added value.  Therefore, we adopt, in addition to our EA method, four 

previously established input variable selection algorithms for comparison with our newly proposed 

broCMI algorithm.  The three nonlinear CMI based methods described above (i.e. KDE, KNN, and PMIS) 
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are included in addition to a linear alternative, partial correlation input selection (PCIS) (May et al., 2008a; 

Tran et al., 2015).  Thus, we explore and compare three parametric (KDE, KNN, and PMIS) and three non-

parametric (PCIS, EA, and broCMI) input variable selection algorithms in this study.  Each of these 

algorithms are discussed further in section 3.4 including any required parametric settings or modifications 

that we make to an original method.  While we acknowledge other nonlinear input variable selection 

algorithms such as the Gamma Test (Goyal et al., 2014; Stefánsson et al., 1997; Wan Jaafar et al., 2011), 

the Iterative Input Selection (Galelli and Castelletti, 2013), or the Genetic Programming (Tran et al., 2015) 

methods we do not consider these algorithms in this work to preserve brevity and to focus on information 

theoretic based methods; however, these algorithms may be considered in future studies - readers 

interested in other input variable selection algorithms within water resources and environmental 

modeling may consult Maier et al. (2010), May et al. (2011), Galelli et al. (2014), and Tran et al. (2015). 

To compare broCMI against EA, KDE, KNN, PMIS, and PCIS input variable selection algorithms we carried 

out two experiments in this study that are relevant in demonstrating any gains that may be achieved by 

using broCMI for input variable selection.  Our first experiment uses a set of synthetic datasets developed 

for the sole purpose of evaluating new (and/or existing) input variable selection methods in a standardized 

manner using selection accuracy metrics that can identify the degree to which a model is 

correctly/incorrectly specified (Galelli et al., 2014).  Our second experiment focuses on an urban water 

supply system whereby candidate input variables (historical urban water demand and meteorological 

variables) are selected (using EA, broCMI, and existing methods) and used in forecasting urban water 

demand at multiple lead times using neural network based machine learning models (specifically, ANN 

and the extreme learning machine (ELM) (Huang et al., 2006)) whereby forecast performance evaluation 

is used to identify the best predictor set selected by the various input variable selection algorithms.  We 

have adopted neural network based models in this work for mapping explanatory variables into process 

forecasts as these (nonlinear) methods are very common in water resources forecasting applications 

(Abrahart et al., 2012; Yaseen et al., 2015).  We study ELM as an alternative to the traditional feedforward 

backpropagation (FFBP)-ANN (which requires iterative training and does not guarantee a global solution) 

since it is a more computationally efficient method for solving the network parameters (i.e. via a global 

least squares solution, please see the online supplementary material [appendix] for further details) 

enabling the data modeller to test a wide variety of network architectures in a smaller amount of time 

(with similar or better performance) (Huang et al., 2012) which becomes very important for large datasets 

(Akusok et al., 2015).  The interested reader may refer to our supplementary material [appendix] for 

theoretical background on ELM. 
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The rest of this paper is organized as follows: section 3.3 provides theoretical background used for 

developing our broCMI algorithm; section 3.4 briefly describes the various input variable selection 

algorithms (including any required parametric settings); section 3.5 outlines the design of our experiments 

used to demonstrate the usefulness of broCMI on benchmark and real-world datasets; section 3.6 

provides discussion on the experimental results; and section 3.7 concludes our study by summarizing our 

main findings and highlighting opportunities for future research. 

3.3. Theoretical Background 

In this section we describe our proposed bootstrap rank-ordered conditional mutual information input 

variable selection algorithm by first highlighting information theoretic background used in its 

development. 

3.3.1. Entropy, Mutual Information, and Conditional Mutual Information 

When dealing with continuous variables one must apply differential entropy to estimate the entropy of a 

random variable (as explained in Shannon (1948)).  Given an independent and identically distributed (i.i.d.) 

random variable 𝑉 ∈ ℝ𝑑 with PDF 𝑝(𝑣) and set theoretic support 𝒱 (which is dropped for simplicity in 

sub-sequent entropy and MI formulations) the (differential) entropy for continuous data is defined by 

(Cover and Thomas, 1991): 

 
𝐻(𝑉) =  − ∫ 𝑝(𝑣) ln 𝑝(𝑣) 𝑑𝑣

𝒱

 (3.1) 

 

When the natural logarithm is used, the units of measure for entropy are in nats (natural units).  A simple 

extension from single variable entropy to joint variable entropy considering variables of arbitrary 

dimension can be calculated as follows (Cover and Thomas, 1991): 

 
𝐻(𝑉1, 𝑉2, … , 𝑉𝑛) =  − ∫ ⋯ ∫ 𝑝(𝑣1, … , 𝑣𝑛) ln 𝑝(𝑣1, … , 𝑣𝑛) 𝑑𝑣1 … 𝑑𝑣𝑛 (3.2) 

 

From here, one can begin to frame marginal and joint entropies as conditional entropy terms.  The 

conditional entropy between two random variables can be calculated using the chain rule (Cover and 

Thomas, 1991): 

 𝐻(𝑉1|𝑉2) =  𝐻(𝑉1, 𝑉2 ) − 𝐻(𝑉2) (3.3) 
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Given the above formulae one may now estimate MI and CMI quantities.  MI uses the joint and marginal 

PDFs of the considered variables to measure dependence between such variables and can be calculated 

from joint and marginal entropy terms as follows (Cover and Thomas, 1991): 

 

 𝑀𝐼(𝑉1; 𝑉2) = 𝐻(𝑉1) + 𝐻(𝑉2) − 𝐻(𝑉1, 𝑉2) 

=  ∫ ∫ 𝑝(𝑣1, 𝑣2)ln
𝑝(𝑣1, 𝑣2)

𝑝(𝑣1)𝑝(𝑣2)
𝑑𝑣1𝑑𝑣2 

(3.4) 

 

By introducing a third variable one may calculate the MI between the first two variables conditioned on 

the third variable to estimate the CMI.  The CMI using three variables can be calculated as follows 

(Tsimpiris et al., 2012): 

 𝐶𝑀𝐼(𝑉1; 𝑉2|𝑉3) = 𝑀𝐼(𝑉1; (𝑉2, 𝑉3)) − 𝑀𝐼(𝑉1; 𝑉3) (3.5) 

 

Since MI may be calculated through marginal and joint entropy terms, CMI can also be decomposed into 

joint and marginal entropy terms as follows (Frenzel and Pompe, 2007): 

 𝐶𝑀𝐼(𝑉1; 𝑉2|𝑉3) =  𝐻(𝑉1, 𝑉3) + 𝐻(𝑉2, 𝑉3) − 𝐻(𝑉3) − 𝐻(𝑉1, 𝑉2, 𝑉3) (3.6) 

 

 (If 𝑉3 contains no information then Eq. 3.6 will reduce to Eq. 3.4.) We use Eq. 3.6 (i.e. multivariate 

differential entropy terms) to estimate CMI for KDE, along with our EA and broCMI algorithms. The KNN 

algorithm uses a different approach (i.e. nearest-neighbour distances) to estimate CMI and we direct the 

interested reader to Frenzel and Pompe (2007) for further details. 

Since the CMI and PMI metrics are equivalent (Sharma and Mehrotra, 2014) the EA, broCMI, KDE, KNN, 

and PMIS algorithms implicitly consider variable redundancy and complementarity.  Recalling that the 

PMIS algorithm (within each referenced article) estimates PMI in a number of heuristic ways, our 

proposed EA and broCMI (along with KDE) algorithms are more natural in that there are no heuristics 

used: the joint and marginal entropy terms are estimated and then aggregated.  This avoids involving 

heuristic techniques to account for redundancy and complementarity that is accounted for with nonlinear 

regression models in recent PMI approaches (Bowden et al., 2005a; May et al., 2008a; Chen et al., 2014).  
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If one considers the variable 𝑉3 to contain conditional information (i.e. the pre-selected input variables) 

the PMI metric introduced by Sharma (2000a) may be calculated as follows: 

 𝑃𝑀𝐼(𝑉1; 𝑉2|𝑉3) = 𝑀𝐼(𝑉1
′; 𝑉2

′) = 𝐻(𝑉1
′) + 𝐻(𝑉2

′) − 𝐻(𝑉1
′, 𝑉2

′) (3.7) 

 

where 

 𝑉1
′ = 𝑉1 − 𝐸[𝑉1|𝑉3] and 𝑉2

′ = 𝑉2 − 𝐸[𝑉2|𝑉3] (3.8) 

 

and 𝐸[] is the expectation operator.  (The conditional expectation terms are generally estimated using 

kernel regression (Sharma, 2000a) or general regression neural networks (Bowden et al., 2005a).)  The 

analogy between PMI and partial correlation is observed by replacing MI in Eq. 3.7 by the linear (Pearson) 

correlation statistic and the conditional expectation terms in Eq. 3.8 by multiple linear regression (May et 

al., 2008a). 

3.3.2. Input Variable Selection via Conditional/Partial Mutual Information 

For the CMI based input variable selection algorithms we study, each follows the ‘greedy’ selection 

principle (Brown et al., 2012) (choosing the best input variable) one input variable at a time and may be 

summarized as follows (noting that for the PCIS approach, linear correlation replaces MI estimation and 

multiple linear regression replaces the conditional expectation as shown by Eqs. 3.7 3.8, respectively) 

(Tsimpiris et al., 2012): 1) among all input variables find the most relevant to the response variable by the 

MI metric and add the variable to the selected input variable set; 2) to find the next optimal input variable 

to be added to the selected input variable set, compute for all remaining candidate input variables the 

CMI/PMI metric considering the already selected input variable(s); 3) asses if the candidate variable 

should be added to the selected input variable set (based either on a specific threshold being satisfied or 

a predefined number of input variables having been selected); and 4) repeat steps 2 and 3 until the 

termination criterion is met (please refer to Figure 3.1(a)).   

3.3.3. Input Variable Selection via Bootstrap Rank-Ordered Conditional Mutual Information 

3.3.3.1. Bootstrap Rank-Ordered Conditional Mutual Information Overview 

The proposed broCMI input variable selection algorithm is built on three main components: 1) resampling 

with replacement (i.e. bootstrapping) from a given input-output dataset (for a specified number of 

bootstrap resamples); 2) input variable selection using CMI for each bootstrap resampled input-output 
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data pair (i.e. Figure 3.1(a)); and 3) rank-ordering the selected input variable sets returned from input 

variable selection for each bootstrap resample. In Figure 3.1(a) we have illustrated the standard input 

variable selection procedure (adapted from Galelli et al. (2014)) along with our proposed modifications 

(bootstrap rank-ordering) to the standard procedure (Figure 3.2(b)).  We should state that although we 

have developed our bootstrap rank-ordering algorithm for use with CMI (in particular using Edgeworth 

approximations of multivariate entropy) it may easily be extended to any other input variable selection 

algorithm returning the order of importance of the selected input variable set, such as PMIS or PCIS.  In 

future studies we will explore the coupling of bootstrap rank-ordering with a variety of input variable 

selection algorithms. 

 

Figure 3.1.  Input variable selection procedure for (a) the standard and (b) bootstrap rank-ordered 

approaches 

If one opted to select all input variables in the candidate set then broCMI essentially orders the 

importance of each input variable based on its estimated dependency with the response variable (in 

addition to any previously selected input variables).  In this regard, we describe two different methods 

that may be used to terminate and return information from the broCMI algorithm: 1) an exhaustive search 

through the whole input variable set and 2) a stopping/threshold-criterion.  A stopping-criterion may be 
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used to define a significance threshold that must be met for a candidate input variable to be selected (else 

the algorithm is terminated and the inputs selected up to that point are returned) or one may simply 

request a particular number of inputs to be returned (i.e. the algorithm selects a specified number of 

inputs and ranks them by their order of importance), while the exhaustive search requires that each input 

variable has been selected by broCMI (i.e. ranking all candidate input variables by their order of 

importance). 

3.3.3.2. Bootstrap Rank-Ordered Conditional Mutual Information Details 

We begin defining broCMI by considering the input-output dataset: 𝑌 represents the response 

(target/output) variable and assumes an underlying i.i.d. process where 𝑋 (explanatory variables/inputs) 

are mapped to 𝑌 using 𝑁 observations.  Each observation can be regarded as a pair (𝑥, 𝑦) where 𝑥 ∈

ℝ𝑑  represents the explanatory variable(s) vector (in d-dimensional space) and 𝑦 ∈ ℝ is the response 

scalar (target) drawn from the underlying random variables 𝑋 = {𝑋1, … , 𝑋𝑑} and 𝑌.  (Note: we do not 

discuss the case of information theoretic estimation for non i.i.d. processes as this is beyond the scope of 

this work, however, the recent (annual) Beyond i.i.d. in Information Theory (2015) conferences (and their 

proceedings), along with the November 2015 special issue (with the same title) in the peer-reviewed 

journal Entropy, may be of interest to the reader as this is an evolving area of research.)   

We further develop broCMI as follows: introduce Ω a d-dimensional binary row vector used to keep track 

of which input variables have been selected up to step i (1 ≤  𝑖 ≤ 𝑑) of the input variable selection 

procedure for each bootstrap resample.  Then use 𝑥Ω to indicate the vector of the selected input variables 

which is the vector 𝑥 projected onto the dimensions of Ω.  The complement 𝑥Ω̃ indicates the unselected 

input variables, with the full input variable vector 𝑥 =  {𝑥Ω, 𝑥Ω̃} (Brown et al., 2012).  Defining (𝑋𝑏 , 𝑌𝑏) as 

a particular bootstrap resample (𝑏) from the input-output data pair (𝑋, 𝑌) we may now provide the CMI 

calculation that is used at step 𝑖 (1 ≤  𝑖 ≤ 𝑑) of the broCMI input variable selection procedure for the c-

th (1 ≤  𝑐 ≤ 𝑑) candidate input variable in 𝑥Ω̃ (noting that the size of 𝑐 is decreased by one each time 𝑖 

is incremented): 

 𝐶𝑀𝐼 (𝑋𝑏
𝑖

Ω̃𝑐
; 𝑌𝑏|𝑋𝑏

𝑖
Ω

) = 𝐻 (𝑋𝑏
𝑖

Ω̃𝑐
, 𝑋𝑏

𝑖
Ω

) + 𝐻(𝑌𝑏 , 𝑋𝑏
𝑖

Ω
) − 𝐻(𝑋𝑏

𝑖
Ω

) − 𝐻 (𝑋𝑏
𝑖

Ω̃𝑐
, 𝑌𝑏 , 𝑋𝑏

𝑖
Ω

) (3.9) 

 

If broCMI is implemented with a stopping-criterion, then we may introduce the (B-dimensional) row 

vector 𝜃 which simply counts the number of input variables selected and returned by the CMI algorithm 

(i.e. the number of variables in 𝑥Ω ) for each bootstrap resample.  (The variable 𝜃 is not necessary if 
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broCMI is setup as an exhaustive search.)  The matrix 𝜂 ∈ ℤ𝑑×𝐵 can then be used to indicate the position 

in which each input variable is selected (i.e. once the stopping-criterion is met or each input variable has 

been selected) for each bootstrap resampled data pair.  Depending on the two aforementioned methods 

(exhaustive search or stopping-criterion) in which broCMI may be used, the variable 𝜂 can take on values 

differently.  For the first case (exhaustive search) we illustrate the use of the position vector with an 

example: if one had four input variables 𝑋 =  {𝑋1, 𝑋2, 𝑋3, 𝑋4} and it was determined by a hypothetical 

input variable selection strategy that they should be ordered as {𝑋2, 𝑋3, 𝑋1, 𝑋4} then 𝜂 would have the 

following values {3; 1; 2; 4}.  For the second case (stopping-criterion) we need to specify two different 

scenarios that can potentially arise: 1) none of the input variables are selected (for a particular bootstrap 

resampled data pair) and 2) only some of the input variables are selected (for a particular bootstrap 

resampled data pair).  If the case arises where an empty selected input variable set is returned (for a 

particular bootstrap resampled data pair) we simply ignore the instance (as is reasonable to do) and in 

the second case we rank (using the position vector) the unselected variables equally by assigning the 

“maximum” penalty to each unselected input (set as the dimension of the candidate input variable set, 𝑑) 

for that bootstrap resampled data pair.  Assigning the maximum penalty (𝑑) ensures that each unselected 

input variable is treated equally.  Reusing our example above, consider the case where a hypothetical 

input variable selection algorithm (using a stopping-criterion) returns the selected input variables in the 

following order, {𝑋2, 𝑋4} (from the input dataset 𝑋 =  {𝑋1, 𝑋2, 𝑋3, 𝑋4}) then 𝜂 would take the values 

{4; 1; 4; 2}. 

We now introduce the variable 𝑆 which holds the selected input variable sets determined by CMI for each 

bootstrap resample (𝑏).  That is, 𝑆 stores the results of the selected input variable sets from 𝜂𝑏 (column 𝑏 

of 𝜂).  The variable 𝑆 contains all information necessary to perform the rank-ordering procedure 

mentioned above.  The final variable to introduce is 𝑅 and this variable holds the rank-ordered input 

variable sets.  The variables 𝑆 and 𝑅 may take on two different forms depending on whether an exhaustive 

search or stopping-criterion strategy is employed when using broCMI: 1) in the exhaustive case (𝑆 ∈ ℤ𝑑×𝐵  

and 𝑅 ∈ ℤ𝑑×𝐵) 𝑅 is determined simply by summing 𝑆 across its columns for increasing bootstrap size (i.e. 

from 1: 2,1: 𝑏, … ,1: 𝐵) and sorting the result in ascending order and 2) if a stopping-criterion is used then 

we form 𝑆 and 𝑅 using the information contained in 𝜃 (a vector holding the selected input variable set 

size for each bootstrap resample).  A row vector Ξ is then used to identify and sort in ascending order the 

unique selected input variable set sizes existing in 𝜃.  Thus, the variable Ξ can be no larger in dimension 

than 𝜃 (i.e. Ξ ⊆ θ) and is said to be of size 𝑁Ξ ≤ 𝐵.  The variable 𝑆 is formed as a function of Ξ. Thus, 

𝑆(Ξ(𝑗)) gathers all selected input variable sets (from the bootstrap resamples) containing at least as many 
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selected input variables as the jth (𝑗 ∈ 1,2, … , 𝑁Ξ) entry in Ξ and stores them for rank-ordering.  The 

variable 𝑅 is then formed as a function of Ξ (similar to 𝑆).  Thus, 𝑅(Ξ(𝑗)) is formed by rank-

ordering 𝑆(Ξ(𝑗)) across bootstrap resamples within 𝑆(Ξ(𝑗)) (using the same approach as discussed for 

the exhaustive search scenario) for 𝑗 ∈ 1,2, … , 𝑁Ξ.  We provide pseudo-code for the broCMI algorithm 

considering both the exhaustive search (Table 3.1(a)) and stopping-criterion (Table 3.1(b)) scenarios in 

Table 3.1. 

Table 3.1.  Pseudo-code for bootstrap rank-ordered conditional mutual information (broCMI) 

Table 3.1(a) – broCMI: exhaustive search scenario 

1. Input: (𝑋, 𝑌) (input-output dataset) and B (bootstrap resample size); initialize: 𝜂 (position matrix), 𝑆 

(selected input variable sets), and 𝑅 (rank-ordered selected input variable sets) 

2. for 𝑏 = 1 to 𝐵 (resampling) 

3. Draw bootstrap resamples from 1: 𝑁 creating resampled dataset {𝑋𝑏 , 𝑌𝑏} 

4. for 𝑖 = 1 to d (CMI estimation) 

5.     for 𝑐 = 1 to d-i+1 

6.    Compute 𝐶𝑀𝐼 (𝑋𝑏
𝑖

Ω̃𝑐
; 𝑌𝑏|𝑋𝑏

𝑖
Ω

) and retain the input variable 𝑋𝑐  with the largest CMI 

7. Determine 𝜂𝑏, 𝑆𝑏, and compute 𝑅𝑏 (rank-ordering) 

8. return 𝑆 and 𝑅 

Table 3.1(b) – broCMI: stopping-criterion scenario 

1. Input: (𝑋, 𝑌) (input-output dataset) and B (bootstrap resample size); initialize: 𝜂 (position matrix), 𝑆 

(selected input variable sets), and 𝑅 (rank-ordered selected input variable sets) 

2. for 𝑏 = 1 to 𝐵 (resampling) 

3. Draw bootstrap resamples from 1: 𝑁 creating resampled dataset {𝑋𝑏 , 𝑌𝑏} 

4. for 𝑖 = 1 to d (CMI estimation) 

5.     for 𝑐 = 1 to d-i+1 

6.    Compute 𝐶𝑀𝐼 (𝑋𝑏
𝑖

Ω̃𝑐
; 𝑌𝑏|𝑋𝑏

𝑖
Ω

) and retain the input variable 𝑋𝑐  with the largest CMI 

7. Determine 𝜂𝑏, 𝜃𝑏, and Ξ 
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8. for 𝑗 = 1 to 𝑁Ξ  

9. Determine 𝑆(Ξ(𝑗)) and compute 𝑅(Ξ(𝑗)) (rank-ordering) 

10. return 𝑆 and 𝑅 

 

3.4. Input Variable Selection Algorithms 

The six input variable selection algorithms we explore follow the procedures outlined in section 3.3.2 (EA, 

KDE, KNN, PMIS, and PCIS) and 3.3.3 (broCMI).  We give a brief overview of each method in the sub-

sections below, noting any parametric settings or modifications we make to an original algorithm; the 

stopping-criterion used to terminate each algorithm is also briefly described.  

3.4.1. Partial Correlation Input Selection 

Partial correlation input selection involves the use of partial correlation measures when assessing the 

dependence of a candidate input variable with a response variable by conditioning on pre-selected input 

variables and is performed through multiple linear regressions as described in May et al. (2008a).  We 

developed the PCIS code in Matlab using custom scripts. 

3.4.2. Partial Mutual Information Selection 

The PMI selection algorithm is analogous to PCIS but instead of using linear correlation to assess 

dependence between the candidate input variable and the response, mutual information is used; instead 

of multiple linear regression to account for the conditional dependence of the pre-selected input 

variable(s) on the response and candidate input variable, nonlinear regressions are used (e.g. kernel 

regressions) (Sharma, 2000a).  Thus, PMIS can be seen as a type of nonlinear analogue of PCIS.  The PMIS 

method uses the PMI calculation described by Eq. 3.7.  We have opted to use general regression neural 

networks within PMIS when accounting for (nonlinear) conditional dependencies as this method was 

found by the present authors to be more computationally efficient when compared to kernel regression.  

We used Matlab to develop GRNN models which automatically tuned the network’s smoothing parameter 

(the only required parameter in GRNN).  Although evaluating multiple criteria for the selection of the 

optimal smoothing parameter for the GRNN is a worthwhile consideration, it is outside the scope of this 

work; however, a guideline for the selection of optimal smoothing parameter selection for GRNN is 

provided in Li et al. (2014).  To estimate the PMI of a candidate input variable one also needs to specify 

the method for computing MI between the candidate input and the response (after removing conditional 
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dependencies of pre-selected input variables via GRNNs) and we do so using kernel density estimation 

using multivariate Gaussian distributions and adopting the Gaussian Reference Rule for bandwidth 

selection (Moon et al., 1995; Sharma, 2000a) as is done in May et al. (2008a).  The interested reader 

wishing to explore other methods for selecting the kernel bandwidth may consult Harrold et al. (2001) 

and Li et al. (2015a, 2015b) for such considerations.  We developed the PMIS code in Matlab using custom 

scripts. 

3.4.3. k Nearest-Neighbours based Conditional Mutual Information 

The third input variable selection method that we considered is based on CMI derived through k nearest-

neighbours estimation (Kraskov et al., 2004; Tsimpiris et al., 2012) which was recently programmed into 

the Information Theoretic Measures (TIM) Matlab toolbox (Gomez-Herrero et al., 2015).  We use the TIM 

Matlab toolbox to compute this version of CMI (http://www.cs.tut.fi/~timhome/tim/tim.htm) and 

develop custom Matlab scripts to carry out input variable selection using this technique.  The KNN method 

requires identification of the number of nearest-neighbours 𝑘𝑛𝑛 to use in the algorithm.  Kraskov et al. 

(2004) recommend using between two and four nearest-neighbours as a guideline.  We explored a slightly 

larger range of 1-15 nearest-neighbours based on an interest in assessing different input variable sets that 

may be selected by choosing a larger number of nearest-neighbours than usually necessary. 

3.4.4. Kernel Density Estimation based Conditional Mutual Information 

The fourth input variable selection method we consider is a slight modification of the Partial Information 

approach recently introduced in Sharma and Mehrotra (2014).  Essentially Sharma and Mehrotra (2014) 

formulate a CMI based input variable selection (and modelling) algorithm using multivariate kernel density 

estimation and convert the CMI dependence measure on to a 0.0 - 1.0 scale, transforming the CMI statistic 

into the Partial Information statistic, using the partial informational correlation identity with CMI.  They 

formulate the CMI statistic through multivariate MI terms (please refer to equation 4 in Sharma and 

Mehrotra (2014)) – our slight modification is that we estimated CMI using multivariate entropy terms 

instead of multivariate MI terms (please refer to Eq. 3.6).  Like Sharma and Mehrotra (2014) we specify 

the multivariate kernel density estimates to take the form of multivariate Gaussian kernels and adopted 

the Gaussian Reference Rule for kernel bandwidth selection (Moon et al., 1995).  The interested reader is 

directed to Li et al. (2015a, 2015b) to provide useful information regarding different approaches for 

specifying the multivariate kernel density estimation within the KDE algorithm.  We developed the KDE 

method in Matlab using custom scripts. 
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3.4.5. Edgeworth Approximations based Conditional Mutual Information 

We derived CMI for the fifth input variable selection algorithm through Edgeworth approximations of 

multivariate differential entropy (Van Hulle, 2005).  For this method, CMI is calculated using multivariate 

entropy terms as in Eq. 3.6.  However, unlike the PMIS, KNN, and KDE methods, EA is non-parametric.  We 

developed the EA method using the Information Theoretic Estimators (ITE) Matlab toolbox described in 

Szabó et al. (2012, 2007) and Szabó (2014) along with implementing custom scripts in Matlab. 

3.4.6. Bootstrap Rank-Ordered Conditional Mutual Information 

The final input variable selection method used in this work is broCMI, the main contribution of this paper.  

The broCMI algorithm (as previously mentioned) uses the EA approach for determining which input 

variables should be selected for each bootstrap resample, thus broCMI is also non-parametric.  One only 

need specify the number of bootstrap resamples to draw when using broCMI.  The selection of an 

appropriate bootstrap resample size is discussed further in section 3.5.1.3.  An advantage of using the 

broCMI method is that there are multiple input variable sets that are developed due to the resampling 

procedure.  Thus, (for this study) each input variable set produced by broCMI during the rank-ordering 

step was considered when searching for an optimal input variable set for a given dataset. 

The broCMI algorithm was developed in Matlab using custom scripts (along with the requirement of the 

ITE Matlab toolbox (Szabo, 2014) for the estimation of CMI via the EA method). 

3.4.7. Stopping-Criterion for Input Variable Selection 

Current research has shown that the stopping-criterion approach for input variable selection is the most 

popular in water resources modeling applications (see for instance, May et al. (2008a), Fernando et al. 

(2009), He et al. (2011), Galelli et al. (2014), and Chen et al. (2014)) and is adopted in this work to facilitate 

meaningful comparisons between our proposed input variable selection methods (EA and broCMI) and 

existing benchmark methods (e.g. PMIS, PCIS, etc.).  To permit a fair comparison between input variable 

selection methods we adopted a single stopping-criterion (i.e. the Hampel test (May et al., 2008a)) and 

applied it to each method (EA, KDE, KNN, PMIS, PCIS, and broCMI).  We believe that this is the most 

objective way in which we could have assessed the various input variable selection algorithms when using 

a stopping-criterion; however, other authors (e.g. Galelli et al. (2014)) have sometimes adopted different 

stopping-criteria for different algorithms.  Again, we avoided this situation because we find it rather 

subjective.  Some of the other stopping-criteria used for input variable selection within water resources 

modeling studies include the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), 

bootstrap tests, outlier detection methods, tabulated critical values, and t-tests based on partial weights 
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(among others) (Sharma, 2000a; May et al., 2008a; He et al., 2011; Galelli et al., 2014; Sharma and 

Mehrotra, 2014; Li et al., 2015a; Chen et al., 2014).  In this study we have adopted the computationally 

efficient Hampel test stopping-criterion because it is a robust outlier detection method that is simple to 

implement and has been used in other studies focused on input variable selection for water resources 

modeling with success (May et al., 2008a; Fernando et al., 2009; Chen et al., 2014).  The Hampel test is an 

efficient stopping-criterion because, at a particular selection step, it relies only on comparing the CMI for 

each candidate input variable and measuring its distance from the median CMI value (of all considered 

candidate input variables) and then determines if the Hampel distance for each candidate is greater than 

a significance threshold (generally chosen as 3 (which is also used in this study), identifying the variable 

as an outlier) – out of those candidate input variables meeting the significance threshold, the variable 

with the largest Hampel distance is added to the selected input variable set. We refer the interested 

reader to May et al. (2008a) for further details on input variable selection stopping-criteria (including the 

Hampel test criterion). 

3.5. Experimental Set-Up 

In this section we discuss details regarding the two input variable selection experiments that were 

designed to compare broCMI with other relevant input variable selection algorithms (EA, KDE, KNN, PMIS, 

and PCIS). 

3.5.1. Experiment I – Input Variable Selection Comparisons using Synthetic Datasets 

3.5.1.1. Selection Accuracy Evaluation Metrics for Input Variable Selection 

In this study the input variable selection accuracy metrics developed in Galelli et al. (2014) are adopted 

for measuring the accuracy of each considered input variable selection algorithm using the synthetic 

datasets that are described in section 3.5.1.2.  We give a very brief synopsis of these accuracy metrics and 

recommend the interested reader to review Galelli et al. (2014) for further details.  The selection accuracy 

(𝑆𝐴) score measures the similarity between the selected input subset produced by a particular input 

variable selection algorithm and the true input subset (which must be known a priori) and is given as 

follows (Galelli et al., 2014): 

 
𝑆𝐴 = 𝛾

𝑘

𝐾
+ (1 − 𝛾) (1 −

𝑝

𝑃 − 𝐾
) (3.10) 
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where 𝑃 is the total number of candidate input variables, 𝐾 is the total number of relevant input variables, 

𝑘 is the number of relevant inputs selected by a given algorithm, 𝑝 is the number of extraneous inputs 

selected, and 𝛾 is a weight (ranging between 0.0 and 1.0) that penalizes the selection of irrelevant inputs 

against those that are correctly selected.  The 𝑆𝐴 metric can take values between 0.0 and 1.0:  when 𝑆𝐴 =

 1.0 the model has been correctly specified and when 𝑆𝐴 =  0.0 the model is completely mis-specified by 

only selecting extraneous inputs (Galelli et al., 2014).  The authors (Galelli et al., 2014) recommend that 𝛾 

be set such that it reflects the general preference for selecting some irrelevant variables if it allows the 

selection of the correct model inputs.  That is to say, the weighting factor should be set such that an input 

variable selection algorithm that selects the correct inputs in addition to several irrelevant inputs should 

be (to a certain degree) preferable over an algorithm that can only select (for example) one or two 

relevant variables (from a list of many) and that does not include any irrelevant variables.  Through a 

theoretical example Galelli et al. (2014) found 𝛾 = 0.7 to provide a suitable weighting strategy (please see 

(Galelli et al., 2014) for more details).  We also adopt this weight when calculating the 𝑆𝐴 score in our 

work. 

The 𝑆𝐴 score can further be divided into two terms describing the proportion of correct inputs that have 

been selected (𝑆𝐴𝑐) and the proportion of extraneous inputs that have been selected (𝑆𝐴𝑒) – the two 

terms are given as follows (Galelli et al., 2014): 

 
𝑆𝐴𝑐 =

𝑘

𝐾
 (3.11) 

  

 𝑆𝐴𝑒 = 1 −
𝑝

𝑃 − 𝐾
 (3.12) 

 

where both terms take on values between 0.0 and 1.0 – values closer to 1.0 are indicative of a better 

model for the considered dataset. 

3.5.1.2. Synthetic Test Problems 

The seven synthetic datasets used in our first experiment comparing different input variable selection 

algorithms using selection accuracy evaluation metrics were selected from an online database with 

detailed dataset descriptions (http://ivs4em.deib.polimi.it) and which were discussed and utilized in the 

recent study of Galelli et al. (2014).  These datasets are part of the input variable selection for 

environmental modeling (IVS4EM) project focused on introducing a new evaluation framework for input 
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variable selection methods using selection accuracy evaluation metrics (e.g. 𝑆𝐴, 𝑆𝐴𝑐, and 𝑆𝐴𝑒) and 

qualitative criteria (e.g. computational feasibility, ease of use, etc.).  We will only give a very brief account 

of the seven synthetic datasets (detailed in Table 3.2) that were used in our aforementioned comparison 

of input variable selection algorithms and direct the reader to Galelli et al. (2014) (and their online 

supplementary material [appendix] mentioned therein) for further information.  The datasets that we 

consider as part of our first experiment have been used in other input variable selection studies within 

water resources modeling (see for instance, (Sharma, 2000a; Bowden et al., 2005a; May et al., 2008a; 

Fernando et al., 2009; Galelli and Castelletti, 2013)) and for these reasons the particular datasets 

considered in this work were adopted.  The most valuable characteristic of these datasets is that there 

exists 30 different instances of each dataset generated through random sampling, allowing for the 

statistical assessment of selection accuracy results (e.g. 𝑆𝐴, 𝑆𝐴𝑐, and 𝑆𝐴𝑒).  The various datasets are 

described below – AR is taken as autoregressive; TAR as threshold-autoregressive; and NL as nonlinear. 

Table 3.2.  Synthetic datasets used for comparing input variable selection algorithms 

Dataset No. 
Observations 

K P Fully/Partially 
Synthetic 

Nonlinear High 
Noise 

High 
Collinearity 

AR1 500 1 15 Fully 
 

X X 

AR9 500 3 15 Fully 
 

X X 

TAR1 500 1 15 Fully X X X 

TAR2 500 2 15 Fully X X X 

NL 500 3 15 Fully X 
  

NL2 500 3 15 Fully X X X 

Kentucky 4739 4 21 Partially X 
 

X 

 

3.5.1.2.1. Linear and Nonlinear Autoregressive Datasets 

We utilized the AR1, AR9, TAR1, and TAR2 datasets (Sharma, 2000a; Hejazi and Cai, 2009; Sharma and 

Mehrotra, 2014; Galelli et al., 2014; Chen et al., 2015a) to examine how each input variable selection 

method performs in terms of high noise and collinearity (linear correlation between variable pairs 

considered to be larger than 0.7 for the purposes of this study) situations that are both linear (AR) and 

nonlinear (TAR) in nature.  The datasets may be described as follows: 

 𝐴𝑅1: 𝑥𝑡 = 0.9𝑥𝑡−1 + 0.866𝜖𝑡 (3.13) 
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 𝐴𝑅9: 𝑥𝑡 = 0.3𝑥𝑡−1 − 0.6𝑥𝑡−4 − 0.5𝑥𝑡−9 + 𝜖𝑡 (3.14) 

 

 
𝑇𝐴𝑅1: 𝑥𝑡 = {

−0.9𝑥𝑡−3 + 0.1𝜖𝑡  if 𝑥𝑡−3 ≤ 0
0.4𝑥𝑡−3 + 0.1𝜖𝑡     if 𝑥𝑡−3 > 0

 (3.15) 

 

 
𝑇𝐴𝑅2: 𝑥𝑡 = {

−0.5𝑥𝑡−6 + 0.5𝑥𝑡−10 + 0.1𝜖𝑡  if 𝑥𝑡−6 ≤ 0
0.8𝑥𝑡−10 + 0.1𝜖𝑡                         if 𝑥𝑡−6 > 0

 (3.16) 

 

where 𝜖𝑡 is the noise component in the model (i.e. random Gaussian noise with zero mean and unit 

standard deviation).  The number of relevant variables for each dataset are given in Table 3.2, however it 

is clear for each model which input variables are relevant to the response.  A total of 15 candidate input 

variables (e.g.  𝑥𝑡−1, 𝑥𝑡−2, …, 𝑥𝑡−15) were generated and there were 500 observations for each of the 

autoregressive models. 

3.5.1.2.2 Nonlinear Datasets with Exogenous Covariates 

The nonlinear datasets with exogenous covariates considered in this work were discussed and utilized in 

Bowden et al. (2005a) and are given as follows: 

 𝑦 = 𝑥2
2 + cos(𝑥6) + 0.35 sin(𝑥9) + 𝑠𝜖 (3.17) 

 

where 𝑠 is a scaling factor that may be used to alter the noise level 𝜖 in the output variable.  Again, there 

were 500 observations available and 15 candidate input variables were randomly sampled from 𝑥, which 

was drawn from a Gaussian distribution with zero mean and predefined covariance matrix ∑.  For the NL 

dataset, 𝑠 was set equal to zero and the covariance matrix set to the identity matrix.  Therefore each input 

variable was sampled independently of one another (e.g. no collinearity was present amongst input 

variables).  For the NL2 dataset 𝑠 was set equal to one, introducing a high level of noise in the response 

variable.  The covariance matrix was set such that 25 pairs of inputs were highly correlated (i.e. linear 

correlation > 0.7). 

3.5.1.2.3 Kentucky River Basin Dataset 

The Kentucky (River basin) dataset originates from the work of Jain and Srinivasulu (2006) whereby the 

data are derived from real-world rainfall-runoff data in the basin with an output (response) variable 

synthetically generated from an ANN model (hence the identification of this dataset in Table 3.2 as 
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partially synthetic).  The dataset contains 26 years (1960-1972 and 1977-1989) of average daily 

streamflow data (𝑄𝑡) from the Kentucky River and includes an effective rainfall variable (𝐸𝑟) that 

incorporates rainfall data from five gauges within the basin.  The average daily streamflow at time step 𝑡 

is set as the response variable and the candidate input (explanatory) variables include the 10 previous 

time steps of the average daily stream flow and the effective rainfall at time step 𝑡, including the 10 

previous time steps.  Thus, there were a total of 21 candidate input variables 

(𝑄𝑡−1, 𝑄𝑡−2, … , 𝑄𝑡−10, 𝐸𝑟𝑡 , 𝐸𝑟𝑡−1, … , 𝐸𝑟𝑡−10) and a total of 4739 observations (Jain and Srinivasulu, 2006; 

Galelli et al., 2014).  The model used to generate the synthetic flow data is as follows (Galelli et al., 2014): 

 𝑄𝑡 = 𝑓(𝑄𝑡−1, 𝑄𝑡−2, 𝐸𝑟𝑡 , 𝐸𝑟𝑡−1) + 𝜖 (3.18) 

 

where 𝑓(∙) represents a single hidden layer, four hidden node, fully connected FFBP-ANN.  The 30 

replicates of this dataset were generated by resampling the noise term 𝜖 (Galelli et al., 2014). 

3.5.1.3. Procedure for Comparing Input Variable Selection Algorithms on Synthetic Datasets 

For the first experiment each of the six input variable selection methods (EA, KDE, KNN, PMIS, PCIS, and 

broCMI) are compared against one another using selection accuracy metrics (𝑆𝐴, 𝑆𝐴𝑐, 𝑆𝐴𝑒) for the 

synthetic input variable selection datasets mentioned in the last sub-section.  We used 30 different 

replications for each of the seven synthetic datasets (AR1, AR9, TAR1, TAR2, NL, NL2, and Kentucky) that 

were generated through random sampling (Galelli et al., 2014).  These synthetic datasets share the 

commonality that each bears a specific input-output relationship and there are both relevant and 

exogenous (redundant or irrelevant) input variables contained within the input variable sets (allowing 

quantitative assessment using the selection accuracy evaluation metrics discussed in section 3.5.1.1).  We 

performed input variable selection using each algorithm for all 30 replications for each of the seven 

synthetic datasets.  After obtaining selection accuracy results for the 30 different instances for each 

dataset we computed the mean and interquartile range (IQR) of the selection accuracy metrics to enable 

a graphical comparison between each input variable selection method.   

Since this is the first investigation evaluating the abilities of broCMI for input variable selection, we chose 

four different bootstrap resample sizes (5, 25, 50, and 100) for evaluation and for attempting to identify 

an optimal (or at least an appropriate) bootstrap resample size.  These four resample sizes were adopted 

based on computational resources.  This miniature experiment was considered to help identify an 

appropriate amount of bootstrap resamples that are needed to improve selection accuracy results.  The 
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bootstrap resample size that provided the optimal selection accuracy was then used in our second 

experiment where we mapped input variables selected by the various input variable selection algorithms 

into urban water demand forecasts using machine learning methods (e.g. ELM). 

3.5.2. Experiment II – Input Variable Selection Applied in the Context of Urban Water Demand 

Forecasting 

3.5.2.1. Study Site and Datasets 

The site location of the urban water supply system used in our second experiment focused on forecasting 

urban water demand (using inputs selected by the various input variable selection algorithms) is located 

at 45º19'N 75º40'W in Ottawa, the capital of Canada.  The urban water supply system serves the City of 

Ottawa with nearly 871, 000 residents (City of Ottawa, 2013a).  The urban water supply system is divided 

into pressure zones segregated throughout the City of Ottawa.  The specific pressure zones used in this 

study are the 3W and Morgan’s Grant (MG) pressure zones.  The amount of estimated persons residing in 

3W and MG pressure zones are 83, 615 and 4196, respectively (City of Ottawa, 2013b).  The 3W pressure 

zone is subject to demands of residential, commercial, and industrial uses while the MG pressure zone is 

solely comprised of residential customers (City of Ottawa, 2009).  Ottawa is 114 meters above sea level 

and has a humid continental climate that has an average annual daily air temperature of 6.0 °C; in July the 

average air temperature is 20.9 °C, and in January the average air temperature is -10.8 °C.  The average 

annual rainfall amounts to 732.0 millimeters (City of Ottawa, 2013c).  This study focuses on the summer 

demand period (since the winter demand period is insensitive to rainfall and air temperature due to the 

cool climate and very limited outdoor water use) which covers May 1 to September 30 (a total of 153 days 

for each summer demand period), inclusively. 

In this study the response variables that were forecasted were average daily UWD for the 3W and MG 

pressure zones at lead times of 1 and 3 day(s) ahead between the dates of May 1, 1999 to September 30, 

2012, and September 26, 2003 (since data within this pressure zone was unavailable for May 1 – 

September 25, 2003) to September 30, 2012, respectively.  The lead times were chosen by the water utility 

(City of Ottawa) as useful lead times for planning water main maintenance during summer months.  The 

water utility also considers daily UWD forecasts valuable since the hourly demand pattern scales to both 

average UWD; this can be used to define which hours of the day maintenance work should be 

initiated/completed. 
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In the rest of this work the following short forms are assigned to the pressure zone water demand time 

series that are forecasted (all measurements are in megalitres per day (ML/D)): average daily water 

demand for the 3W pressure zone (a3w) and average daily water demand for the MG pressure zone 

(amg).   

Based on previous studies by one of the contributing authors (Adamowski et al., 2013, 2012; Adamowski, 

2008; Karapataki, 2010; Tiwari and Adamowski, 2013, 2015) previous days’ UWD, rainfall (rain (mm/day)), 

and maximum air temperature (mat (°C)) time series have all been reported as important explanatory 

variables to consider in building UWD forecast models and as such have been included in this study, too.  

Furthermore, an alternative variable that can potentially provide further explanatory information to an 

UWD forecast model is the daily Antecedent Precipitation Index (api (mm)) which was successfully used 

in the UWD models developed in  Wong et al. (2010) and Cresswell and Naser (2013), and is also 

considered as a soil moisture index (Anctil et al., 2004) (which may influence lawn-watering, an influential 

factor in urban water demand during the summer demand period in Ottawa).  Therefore, api was included 

as a potential explanatory variable in this study. All UWD and meteorological data used in this experiment 

were made available to the authors by the City of Ottawa (with the exception of api which was calculated 

from the daily rainfall data).  Any dates that contained missing UWD or meteorological data were excluded 

from our analysis which amounted to 8% for a3w, 5% for p3w, 6% for amg, and 1% for pmg. 

Descriptive statistics for each time series variable considered in this experiment are presented in Table 

3.3 below while each UWD time series is presented in Figure 3.2.  The procedure for comparing the input 

variable selection algorithms for this experiment (including details on the number of observations and the 

candidate input variable sets for each UWD dataset) are described in the sub-section below. 

Table 3.3.  Descriptive statistics for the time series used in Experiment II 

Time 
Series 

Units of 
Measure 

Mean Variance Minimum Maximum Median 

a3w 
ML/D 

27.730 30.409 11.889 51.387 26.421 

amg 0.666 0.096 0.197 1.593 0.640 

api mm/D 19.168 196.553 0.345 136.367 15.412 

rain mm/D 2.937 47.459 0.000 108.600 0.000 

mat °C 23.722 27.534 4.600 37.300 24.300 
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Figure 3.2.  Time series plots for the urban water demand time series used in Experiment II 

3.5.2.2. Procedure for Comparing Input Variable Selection Algorithms on the Urban Water Demand 

Forecasting Datasets 

In our second experiment we explored the use of the six input variable selection algorithms (EA, KDE, KNN, 

PMIS, PCIS, and broCMI) for selecting relevant variables that were subsequently used in forecasting urban 

water demand time series from Ottawa, Canada at lead times of 1 and 3 day(s) ahead.  We forecasted 

average UWD for the 3W and Morgan’s Grant pressure zones within the City of Ottawa’s water utility 

boundaries.  Since the true function underlying the urban water demand processes in these pressure 

zones is unknown, it is impossible to identify which input variables are correct in specifying the system so 

one must produce forecasts using a suitable strategy (e.g. machine learning) and assess their forecasts 

using appropriate evaluation metrics in order to judge which input variable selection algorithms provided 

the best input variables.  Thus, in order to carry out this experiment five basic steps were undertaken: 1) 

generation of candidate input variable sets (from potential explanatory variables); 2) dataset partitioning; 

3) input variable selection using each algorithm; 4) mapping the selected input variable sets to forecasts 

using machine learning methods; and 5) evaluating the forecasts to identify the best input variable 

selection algorithm(s).  Explanations regarding each of these steps have been placed in the online 

supplementary material [appendix] due to space limitations.  The response and candidate input variable 

sets (along with the total number of available observations) used for input variable selection and UWD 

forecasting are provided in Table 3.4 and were generated through phase space reconstruction using the 
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time delay embedding window approach (Kim et al., 1999) as mentioned earlier (please see details within 

the online supplementary material [appendix]). 

Table 3.4.  Response variables and candidate input variable sets for Experiment II  

Response 
(Target) 

Variables 

Candidate Input Variable Set 

Urban Water 
Demand 

Explanatory 
Variables 

Meteorological Explanatory 
Variables 

Number of 
Candidate 

Input 
Variables 

Number of 
Available 

Observations  

a3w(t+1, t+3) a3w(t, t-1, …, t-15) [api(t, t-1),  rain(t, t-1, …, t-8),  
mat(t, t-1, …, t-21)] 

49 1949 

amg(t+1, t+3) amg(t, t-1, …, t-19) 53 1260 

 

The important idea to maintain when considering this case study is the identification of the best selected 

input variable set is solely based on the fitness (performance) of the machine learning model using such 

inputs; whereby each dataset was split into training (calibration of model parameters), cross-validation 

(model selection), and testing (independent evaluation) sets (Hastie et al., 2009) (please see details within 

the online supplementary material [appendix]).  Different fitness functions may lead to different optimal 

selected input variable sets; the selection of the fitness function should always be chosen to meet the 

objective of the modeller.  Here we choose to minimize the sum of squared errors by adopting the root 

mean square error (RMSE) as the fitness function (a popular choice in water resources modeling); 

however, the maximization of information theoretic terms (such as the mutual information between 

forecasts and observations) may be useful in different modeling problems such as the quantification of 

process modeling uncertainty (Gong et al., 2013).  We believe it necessary to stress this point to benefit 

the interested reader in their own explorations of input variable selection algorithm comparisons on (real-

world) time series modeling problems. 

In the next section we provide the results of both experiments and provide relevant discussion regarding 

our findings. 

3.6. Results and Discussion 

3.6.1. Experiment I – Synthetic Datasets 

In this sub-section we present our comparative results obtained from the EA, KDE, KNN, PMIS, PCIS, and 

broCMI algorithms on the synthetic input variable selection datasets and provide discussion regarding the 

quantitative (selection accuracy and computation time) and qualitative (ease of use and robustness, 
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explanation capability, and flexibility) performance of each method using the input variable selection 

evaluation procedures recently outlined in Galelli et al. (2014).  We follow the guidelines for quantitative 

and qualitative input variable selection evaluation provided in Galelli et al. (2014) as we believe their 

framework to be the most robust protocol currently available for the comparison of input variable 

selection algorithms. 

3.6.1.1. Quantitative Performance Comparisons across Input Variable Selection Algorithms 

3.6.1.1.1. Selection Accuracy 

The selection accuracy (𝑆𝐴, 𝑆𝐴𝑐, 𝑆𝐴𝑒) results for each input variable algorithm is provided in Figure 3.3.  

The following discussion covers the key results related to each synthetic dataset: 

3.6.1.1.1.1. Linear and Nonlinear Autoregressive Datasets   

The autoregressive datasets are marked by their high degrees of collinearity and noise.  Interestingly, the 

only algorithm that performed poorly on the linear autoregressive datasets was the PCIS algorithm.  The 

reason for the poor 𝑆𝐴 score is related to the Hampel test criterion providing too strict of a tolerance (as 

reflected in the 𝑆𝐴𝑐 scores) in combination with high noise – with reduced noise on the nonlinear 

autoregressive datasets, performance increased for PCIS across each selection accuracy metric, even 

outperforming some of the nonlinear methods such as PMIS and KNN.  It is clearly seen that broCMI 

outperforms the EA method (indicating that the bootstrap rank-ordering procedure (Figure 3.1(b)) is 

useful for increasing selection accuracy) with as few as 5 bootstrap resamples – with increasing bootstrap 

resample size the performance of broCMI consistently increased.  It is seen that for this class of datasets 

broCMI and the KDE method are the most robust and accurate methods as reflected by 

their 𝑆𝐴, 𝑆𝐴𝑐, 𝑆𝐴𝑒, and IQR scores.  The KNN method exhibits the largest fluctuation in selection accuracy 

across the nonlinear algorithms - we explored different 𝑘𝑛𝑛 values ranging from 1 to 15 - it is of course 

possible that exploring a larger range of values may lead to improved performance for this algorithm, 

however such considerations are reserved for future research. 

3.6.1.1.1.2. Nonlinear Datasets with Exogenous Covariates 

The nonlinear datasets with exogenous covariates were specified for two cases: noiseless (NL) and noisy 

(NL2).  It is clear that the linear PCIS algorithm performed very poorly for these datasets, which is more 

dramatically pronounced for the noisy NL2 dataset.  The EA method is the worst-performing nonlinear 

method for the NL dataset but performs slightly better than PMIS for the NL2 dataset.  In each case the 

broCMI algorithm can be seen to significantly outperform EA as the number of bootstrap resamples are 

increased.  Similar to the autoregressive datasets, as few as 5 bootstrap resamples were needed to 
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significantly improve performance over the EA method, again indicating that the bootstrap rank-ordering 

procedure can improve the quality of returned input variable sets when compared to the standard 

approach.  For the NL2 case, the increase in selection accuracy performance as a function of increased 

bootstrap resample size is clearly seen for the broCMI method.  Again it is seen that the broCMI is the best 

performing method for the nonlinear datasets with exogenous covariates.  A notable mention is the KNN 

method which performed just as well as PMIS and broCMI on the NL dataset and performed second best 

after broCMI for the NL2 dataset. 

3.6.1.1.1.3. Kentucky River basin Dataset   

This partially synthetic hydrological example is characterized by its high degree of nonlinearity and 

collinearity.  The most striking result is the fact that PCIS outperformed PMIS.  This is due to the Hampel 

test stopping-criterion placing too strict of a tolerance on the selection of candidate variables for PMIS as 

evidenced by the 𝑆𝐴𝑐 score.  The KNN method performed intermediately between all other methods and 

in general exhibited the largest fluctuations in selection accuracy as evidenced by the IQR score.  The best 

performing method on this dataset is KDE, with perfect model specification.  The broCMI method is ranked 

in second place – as the bootstrap resample size increases from 25-100 the selection accuracy stays 

constant around 0.95.  The only algorithms that could identify the correct input variables for this dataset 

were EA, KDE, and broCMI.  However, EA and broCMI had the tendency to include a few irrelevant 

variables in the input variable sets.  It can be seen that broCMI, even with as few as 5 bootstrap resamples, 

was able to improve the 𝑆𝐴𝑒 score when compared to EA, providing further evidence that the bootstrap 

rank-ordering procedure may be used to improve input variable selection accuracy. 
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Figure 3.3.  Selection accuracy results for the synthetic test problems (Experiment I); note: the square 

brackets indicate the number of nearest-neighbours used in KNN and the rounded brackets indicate the 

number of bootstrap resamples used in broCMI 

It is clear for the synthetic datasets that the most consistent and best performing input variable selection 

algorithm is broCMI in terms of selection accuracy evaluation metrics  (𝑆𝐴, 𝑆𝐴𝑐, 𝑆𝐴𝑒).   Our proposed 

broCMI method was either the best (AR1, AR9, TAR2, and NL2) or second best (TAR1, NL, and Kentucky) 

performing algorithm across each synthetic dataset and also provided the most robust results (smallest 

IQR) – not a single other input variable selection algorithm displayed near the same amount of consistency 

as broCMI.  Since using 100 bootstrap resamples within broCMI provided the best selection accuracy 

results for this experiment, the same number of bootstrap resamples were used within broCMI for 

Experiment II. 

3.6.1.1.2. Computational Run-Time 

In Table 3.5 we provide the computational run-times required to generate the results presented in the 

last sub-section.  It can easily be seen that the most computationally efficient method is the linear PCIS.  

The most computationally efficient nonlinear method is EA, followed by KNN, KDE, broCMI (using 5 
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bootstrap resamples), PMIS, and then broCMI (for bootstrap resample sizes of 25, 50, and 100).  Since a 

stopping-criterion is employed for all input variable selection algorithms in this work, the run-time order 

becomes a bit cumbersome to detail for a method such as broCMI (since the algorithm involves a search 

function for isolating input variable sets from the bootstrap resamples of a particular input variable set 

size), a similar difficulty was found in Galelli et al. (2014) when the authors considered the run-time order 

for the genetic algorithm-ANN based input variable selection approach and found it impractical to provide 

a general run-time order formula due to its complexity.  Instead of considering the run-time order for the 

stopping-criterion approach, we consider the run-time order for the exhaustive search scenario (i.e. when 

all candidate input variables are selected) as is done by Galelli et al. (2014).  This approach is more suitable 

to follow since it provides the worst-case run-time order for a given algorithm.  We do not provide a step-

by-step analysis of the run-time order calculations for each algorithm as a suitable procedure is already 

provided in Galelli et al. (2014) for the PMIS and PCIS algorithms used in our experiments (please see their 

Appendix B for details).  Instead, we follow the exact same approach as taken by the authors and compute 

the run-time order for the KDE, EA, and broCMI algorithms, providing sufficient details on their various 

components attributing to their associated run-time orders.  Since we were unable to locate a run-time 

order analysis for the KNN based CMI method in the literature we do not provide an explicit run-time 

order for this method and instead refer the interested reader to the works of Kraskov et al. (2004), Van 

Hulle (2005), Frenzel and Pompe (2007), and Evans (2008) as a starting point for such a study.  We do note 

that Van Hulle (2005), who explored kernel density estimation, k nearest-neighbours, and Edgeworth 

approximations for multivariate entropy and MI estimation, found the k nearest-neighbours (multivariate) 

MI estimation approach to be more computationally efficient than that based on kernel density 

estimation, but less efficient when compared to Edgeworth approximations; with KDE and KNN having a 

time-complexity (i.e., as 𝑁 → ∞) of 𝒪(𝑁2 ∙ 𝑑) and Edgeworth approximations having a time-complexity 

of 𝒪(𝑁 ∙ 𝑑3).  Although the kernel density estimation and the k nearest-neighbours (multivariate entropy 

and MI estimation) methods have the same worst-case run-time orders, the k nearest-neighbours 

approach is usually faster since nearest-neighbours are searched for within an unsorted list while kernel 

density estimation, in all cases, requires one to compute a pairwise-distance calculation for each datum 

in the dataset which takes (for the best-case) as long or longer (in computation time) than sorting a list of 

nearest-neighbour distances (Van Hulle, 2005).  (Of interest in improving the efficiency of the nearest-

neighbour search routine, Evans (2008) discusses algorithms that may be employed to improve the 

computational efficiency (over the naive approach) for searching for nearest-neighbours in multivariate 

spaces (in the context of MI estimation).) 
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The PMIS (PCIS) algorithm requires one to estimate the MI (linear correlation) between two conditional 

model residuals (see Eq. 3.7 and Eq. 3.8), respectively).  In our experiment, kernel density estimation 

(linear correlation) was used for computing Eq. 3.7 and general regression neural networks (multiple 

linear regression) were used for computing Eq. 3.8, each with a run-time order of 𝒪(𝑁2) (𝒪(𝑁)) and 

𝒪(𝑑2 ∙ 𝑁2 + 𝑑3) (𝒪(𝑑2 ∙ 𝑁 + 𝑑3)), respectively.  Considering input variable selection for the worst-case 

scenario (i.e. selecting all candidate input variables, 𝑃) this amounts to a total run-time order of 

𝒪(𝑃4 ∙ 𝑁2 + 𝑃5) (𝒪(𝑃4 ∙ 𝑁 + 𝑃5)) and a time-complexity of 𝒪(𝑁2) (𝒪(𝑁)) for the PMIS (PCIS) algorithm 

(Galelli et al., 2014).  The run-time order derivations for the KDE and EA algorithms follows directly from 

the PMIS algorithm except instead of estimating CMI/PMI using general regression neural networks (to 

compute the two conditional model residuals) and kernel density estimation (to compute MI), 

multivariate entropy terms Eq. 3.6 are used instead.  Since Eq. 3.6 is used for the KDE and EA methods, 

their run-time orders are 𝒪(𝑁2 ∙ 𝑃2) and 𝒪(𝑁 ∙ 𝑃4), respectively.  (The run-time order for KNN is thus 

less than or equal to KDE based on the analysis in Van Hulle (2005).) The run-time order for the worst-

case input variable selection scenario for broCMI is determined by realizing that an (EA based) CMI 

estimate is made for each bootstrap resample.  Drawing a bootstrap resample has a run-time order 

of 𝒪(𝑁) (which is of negligible importance to the final run-time order since the EA based CMI estimation 

grows linearly); afterwards the returned selected input variable sets from each bootstrap resample are 

rank-ordered (following Table 3.1(a)) which has a run-time order of 𝒪(𝐵! ∙ 𝑃 + 𝑃2); 𝒪(𝐵! ∙ 𝑃) that 

represents the sum over each selected variable for an increasing bootstrap resample size (i.e. from 1: 𝐵) 

and 𝒪(𝑃2) that represents the worst-case run-order time for ranking an unsorted list of 𝑃 variables.  

Combining the run-time orders for the various components of the broCMI algorithm, we arrive at a final 

run-time order of 𝒪(𝐵 ∙ 𝑃 ∙ (𝑁 ∙ 𝑃3 + 𝐵! + 𝑃)).
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Table 3.5.  Computational run-times for the various input variable selection algorithms on the synthetic datasets (the brackets proceeding broCMI 

indicates the number of bootstrap resamples used in the algorithm) 

 
Input Variable Selection Algorithm 

EA KDE KNN PCIS PMIS broCMI 
(5) 

broCMI 
(25) 

broCMI 
(50) 

broCMI 
(100) 

Dataset Computation Time (seconds) 

AR1 2.61 18.05 9.66 0.06 56.00 31.32 165.81 320.73 714.92 

AR9 3.97 28.21 20.92 0.23 110.34 50.83 243.19 515.61 1075.86 

TAR1 5.34 17.98 11.68 0.50 180.69 61.70 315.75 635.87 1342.10 

TAR2 3.94 18.70 11.44 0.58 99.38 38.24 201.33 424.80 898.01 

NL 4.14 25.85 8.99 0.43 108.79 45.35 225.28 495.15 1043.44 

NL2 6.16 17.23 21.89 0.03 81.13 54.13 290.25 614.48 1304.60 

Kentucky 35.71 4560.83 289.44 1.98 3682.89 332.71 1789.20 3746.79 7795.05 



95 
 

Of practical interest, it may be seen that for each dataset broCMI significantly increases the selection 

accuracy and input variable selection robustness when compared to EA - significant selection accuracy 

performance increases are obtained with as few as 5 bootstrap resamples, which demonstrates the 

exceptional performance and computational efficiency of broCMI for the synthetic datasets.   

3.6.1.2. Qualitative Comparisons across Input Variable Selection Algorithms 

To compare the qualitative characteristics of EA, KDE, KNN, PMIS, PCIS, and broCMI we use the following 

criteria from Galelli et al. (2014): ease of use and robustness, explanation capability, and flexibility – each 

of these criteria are listed below with appropriate reference to each input variable selection algorithm: 

3.6.1.2.1. Ease of Use and Robustness   

This metric relates to the settings one needs to employ to use a particular algorithm.  The PCIS and EA 

methods are the easiest to use as they do not require any parametric settings.  The broCMI algorithm is 

the next easiest to use, as one simply needs to increase the bootstrap resample size until sufficient results 

are obtained.  If sufficient results are not achieved by increasing the bootstrap resample size within 

computational resource allowances then another algorithm should be considered.  The KNN method is 

the fourth easiest to use as one simply needs to specify the number of nearest-neighbours 𝑘𝑛𝑛 to employ, 

however this parameter is problem dependent and needs to be optimized carefully to ensure optimal 

results.  The KDE method requires a kernel type and associated parameters to be specified which require 

tuning for optimal performance.  The PMIS algorithm is the most parametrically involved method of all 

the methods considered in this work.  It requires one to specify a kernel type and associated parameters 

to estimate MI (or a specified copula distribution and associated parameters (Chen et al. (2015a))) and 

requires the specification of two intermediate regression models (each with tunable parameters). 

3.6.1.2.2. Explanation Capability 

Each method used in this work has the ability to express the level of dependence associated between 

each selected input variable and the response variable.  Such dependencies between selected inputs and 

the process response have been exploited by Sharma and Mehrotra (2014) to enable predictive modeling 

by taking into account such dependencies in the model specification.  The approach introduced in Sharma 

and Mehrotra (2014) may also be extended to include ensemble averaging of forecasts from a set of 

bootstrap resamples if bootstrap rank-ordering is coupled with their Partial Information approach – such 

considerations are set aside for future research. 
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3.6.1.2.3. Flexibility 

This characteristic is related to the type of input variable selection employed (filter, wrapper, or 

embedded) and the ability to mitigate poor performance in a given method by improving a particular work 

flow process or removing time-consuming steps. Since each input variable selection algorithm, with the 

exception of broCMI, follows the standard input variable selection process (see Figure 3.1 (a)) we only 

briefly consider the flexibility offered by bootstrap rank-ordering (see Figure 3.1 (b)).  Based on the results 

presented in Figure 3.3 one may clearly ascertain that the bootstrap rank-ordering approach greatly 

improves performance over the standard method (see differences between the EA method and broCMI).  

Since the bootstrap rank-ordering procedure is more or less a post-processing technique, it may be used 

with any other input variable selection algorithm used in this work.  We plan to explore this in future 

studies. 

3.6.2. Experiment II – Urban Water Demand Datasets 

To explore broCMI for addressing real-world time series (water resources) modeling problems we 

compare its abilities against pre-existing methods (PCIS, PMIS, KNN, and KDE), in addition to the EA 

algorithm (used for selecting inputs within broCMI) for selecting input variables for use in machine 

learning models (in this case the new ELM approach) by using the selected variables from each algorithm 

to generate urban water demand forecasts in Ottawa, Canada and evaluating their forecast performance 

to identify the best input variable selection algorithm.  We focus on demonstrating: 1) how the forecasts 

generated via inputs selected by broCMI perform when they are used with different machine learning 

models (i.e. ELM and ANN), 2) how forecasts using the same model type (e.g. ELM) but with inputs 

selected via broCMI compares to those selected by EA, KDE, KNN, PMIS, and PCIS, and 3) how 1 and 3 day 

lead time forecasts generated via machine learning models (i.e. ELM) using inputs selected via broCMI 

performs out-of-sample.   

Before we begin our discussion of the results of this experiment a few important points must be 

mentioned.  The broCMI algorithm used 100 bootstrap resamples as this was demonstrated to provide 

the best selection accuracy results in Experiment I.  We only present the results (optimal selected input 

variable sets, machine learning model structure/parameters, and model performance) for the best 

developed UWD forecasts for the 1 and 3 day lead times.  We also only present the results of ANN for 1 

day lead times to try and keep the presentation of the results as brief as possible; we present the results 

of ELM for all lead times due to its computational efficiency and similar performance with ANN and also 

because it is a newer approach than ANN.  It is worth reiterating that the fitness function was chosen as 
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the root mean square error and that optimal models were selected based on their cross-validation 

performance (fitness) (Hastie et al., 2009). 

For this (UWD forecasting) experiment the broCMI algorithm provided the best input variable sets for 

each dataset and model type providing further evidence that the bootstrap rank-ordering procedure 

(Figure 3.1(b)) may be used to improve the quality of selected input variable sets when compared to the 

standard approach (Figure 3.1(a)).  The run-time for the various algorithms is as follows: EA – 31 s; KDE – 

22 s; KNN – 139 s; PMIS – 364 s; PCIS – 1 s; and broCMI – 2422 s.  The reason for the longer run times for 

broCMI is because 100 bootstrap resamples were used in this experiment (since it provided the best 

results for the test problems in Experiment I).  Future studies focused solely on the broCMI method (in 

contrast to this study which focuses on introducing and comparing broCMI against EA and existing 

methods) can compare the optimal bootstrap resample size for different time series modeling problems 

as it is has been suggested that the optimal bootstrap resample size is problem dependent (Tiwari and 

Adamowski, 2013).  In the next paragraph we discuss results pertaining to the different machine learning 

models and their performances when using inputs selected via broCMI. 

3.6.2.1 Different machine learning models (ELM and ANN) paired with broCMI   

In Table 3.6 we present the results of the input variable selection process for each forecast lead time (it is 

important to remember that the model fitness in Table 3.6 refers to the cross-validation performance, i.e. 

how the optimal models were selected - we do not report the training or test performances for this 

comparison since the performances are similar and to maintain brevity).  It is seen in general that ELM 

and ANN are very competitive in terms of performance.  We found ELM to be the most computationally 

efficient method in producing forecasts – our investigations demonstrated that on average for each ANN 

model that was developed, approximately 50 ELM models could be developed in the same time.  We 

found the best input sets used in ANN and ELM to be very similar, providing evidence that the broCMI 

algorithm was able to identify suitable process predictors that can provide forecasts of a similar nature 

even when using different modeling techniques (e.g. ELM and ANN) with different model structures (i.e. 

number of hidden neurons and different input variables); see for instance the ELM and ANN models for 

a3w(t+1) (Figure 3.4 and Table 3.6) where the models differ by a single predictor (i.e. a3w(t-5)) but provide 

similar forecast results.  To show the differences between the two model types we plot them in Figure 3.4 

by taking the mean of the 1 day lead time forecasts produced by the ELM and ANN models for each day 

in the summer water demand period (i.e. the mean forecast for the calendar dates May 1 to September 

30 considering all available observations, thereby grouping training, cross-validation, and testing data 



98 
 

together) and plotting it against the mean observation (target) for that calendar date; which may be 

likened to an average seasonal hydrograph.  One may see that the ELM and ANN models produce quite 

similar hydrographs, however noticeable differences between the models are still present.  We found in 

general that the ANN required less hidden neurons than ELM to produce an optimal forecast – this is very 

likely due to the randomization of the ELM hidden neuron parameters that generally requires successive 

trials to be averaged over to improve model performance (Lima et al., 2015) (which was also adopted in 

this study, please see the online supplementary material [appendix] for details).  The differences exhibited 

by each of the models can be regarded as useful should one wish to build an ensemble model.  Diversity 

amongst forecasts would be exploitable in ensemble methods to improve the overall forecast accuracy 

(Tiwari and Adamowski, 2015).  We intend to explore using each input variable set produced by broCMI 

in a probabilistic forecasting framework in future publications – it would also be interesting to compare 

probabilistic forecasts developed through different machine learning models (ELM, ANN, SVR, 

multivariate adaptive regression splines, or Bayesian based regression methods (Ciupak et al., 2015), for 

example) using inputs selected via broCMI. 



99 
 

Table 3.6.  Input variable sets selected via broCMI and used to generate 1 and 3 day lead time UWD forecasts (note: NH represents the number of 

hidden layer neurons used in ELM or ANN) 

Target 
No. 

Inputs 
Selected Input Variable Sets Model NH 

Fitness 
(ML/D) 

a3w(t+1) 

9 
a3w(t) a3w(t-1) a3w(t-3) rain(t) a3w(t-2) 

ELM 18 2.736 
a3w(t-4) a3w(t-6) a3w(t-5) a3w(t-7) 

 

8 
a3w(t) a3w(t-1) a3w(t-3) a3w(t-2) rain(t) 

ANN 3 2.558 
a3w(t-4) a3w(t-6) a3w(t-7) 

  

a3w(t+3) 14 

a3w(t) a3w(t-4) a3w(t-1) a3w(t-2) rain(t) 

ELM 24 4.213 a3w(t-3) a3w(t-5) rain(t-1) api(t) mat(t) 

mat(t-2) rain(t-5) a3w(t-6) rain(t-8) 
 

amg(t+1) 

23 

amg(t) amg(t-6) amg(t-3) amg(t-13) amg(t-2) 

ELM 40 0.098 

amg(t-1) amg(t-4) amg(t-5) amg(t-12) amg(t-7) 

amg(t-14) amg(t-19) amg(t-10) amg(t-11) amg(t-17) 

amg(t-16) amg(t-18) amg(t-15) amg(t-8) amg(t-9) 

rain(t) rain(t-7) rain(t-1) 
  

20 

amg(t) amg(t-6) amg(t-13) amg(t-2) amg(t-3) 

ANN 1 0.097 
amg(t-1) amg(t-12) amg(t-5) amg(t-4) amg(t-7) 

amg(t-14) amg(t-11) amg(t-10) amg(t-19) amg(t-15) 

amg(t-17) amg(t-8) amg(t-16) amg(t-18) amg(t-9) 

amg(t+3) 29 

amg(t) amg(t-4) amg(t-1) amg(t-5) amg(t-3) 

ELM 46 0.112 

amg(t-11) amg(t-2) amg(t-8) amg(t-12) amg(t-7) 

amg(t-9) amg(t-6) amg(t-10) amg(t-13) amg(t-15) 

amg(t-14) amg(t-16) amg(t-17) amg(t-19) amg(t-18) 

rain(t-2) rain(t) rain(t-7) api(t-1) api(t) 

rain(t-3) rain(t-4) rain(t-1) mat(t-2) 
 

rain(t-1) rain(t-8) 
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Figure 3.4.  Average seasonal hydrograph generated via ELM and ANN for the 1 day lead time considering 

each urban water demand time series using inputs derived from broCMI  

3.6.2.2. Different Input Variable Selection Algorithms Paired with ELM 

We now explore ELM models created using the input variables produced by the various input variable 

selection algorithms by comparing broCMI against each algorithm.  The inputs selected by the various 

input variable selection algorithms (EA, KDE, KNN, PMIS, PCIS, and broCMI) along with their model rank 

and (cross-validation) fitness is provided in Table 3.7 and 3.8.  For the 1 day lead time forecasts we plot 

(please see Figure 3.5) the mean absolute errors (between forecast and observation) for each calendar 

date in the summer demand period, considering all available observations (i.e. combining training, cross-

validation, and test data).  Both Table 3.7 and 3.8 identify broCMI as the best performing algorithm which 

is corroborated by the plots in Figure 3.5, showing broCMI to exhibit smaller or equal mean absolute 

model residuals for the majority of the data points when compared to the other methods.  For each 

dataset different mean absolute error patterns can easily be seen, providing great evidence to the 

diversity of models that may be developed by considering different input variable selection algorithms.  

The EA algorithm performs moderately well for each dataset in comparison to broCMI which provides 

further support that bootstrap rank-ordering (Figure 3.1(b)) can be used to improve the quality of selected 

input variable sets when applied instead of the standard method (Figure 3.1(a)).  The KNN method seems 

to be the next best method for these datasets, followed by EA, PMIS, PCIS, and finally KDE.  It is interesting 

to note that the KDE method performed the worst on this real-world example.  This is very likely due to 

the combination of the Hampel test stopping-criterion providing too strict a tolerance and the improper 

specification of the kernel density bandwidth, which was set as the Gaussian Reference Rule for simplicity 

in this work (which has also been done in other similar studies, e.g. Sharma and Mehrotra (2014)).  The 
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PMIS method also adopted the Gaussian Reference Rule for specifying the bandwidth for MI estimation.  

Carefully tuning the kernel bandwidth and exploration of other stopping-criteria would very likely result 

in much improved results for KDE and PMIS; however, this is outside the scope of this work and left for 

future research. 

Table 3.7.  Comparison of 1 day lead time forecasts using different input variable selection algorithms and 

ELM for the a3w time series (note: the square brackets indicate the number of nearest-neighbours used 

in KNN; the number of unique input variable sets for each dataset are listed in the rounded brackets beside 

Model Rank)  

 a3w(t+1) 

broCMI EA KDE KNN[9] PMIS PCIS 

Model Rank (/73) 1 44 73 8 72 68 

Fitness (ML/D) 2.736 2.837 2.956 2.789 2.988 2.859 

Input Order Selected Input Variables 

1 a3w(t) a3w(t) a3w(t) a3w(t) a3w(t) a3w(t) 

2 a3w(t-1) a3w(t-1)  rain(t) a3w(t-1) rain(t) 

3 a3w(t-3) a3w(t-2)  a3w(t-5) a3w(t-4)  

4 rain(t) a3w(t-3)     

5 a3w(t-2) rain(t)     

6 a3w(t-4) a3w(t-4)     

7 a3w(t-6) a3w(t-6)     

8 a3w(t-5) a3w(t-5)     

9 a3w(t-7) a3w(t-10)    

10  a3w(t-9)     

11  a3w(t-8)     

12  a3w(t-11)    

13  a3w(t-7)     

14  rain(t-2)     

15  rain(t-1)     

16  api(t)     

17  api(t-1)     

 

Table 3.8.  Comparison of 1 day lead time forecasts using different input variable selection algorithms and 

ELM for the amg time series (note: the square brackets indicate the number of nearest-neighbours used 
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in KNN; the number of unique input variable sets for each dataset are listed in the rounded brackets beside 

Model Rank) 

 
amg(t+1) 

broCMI EA KDE KNN[1] PMIS PCIS 

Model Rank (/59) 1 21 59 34 20 46 

Fitness (ML/D) 0.098 0.099 0.101 0.099 0.099 0.100 

Input Order Selected Input Variables 

1 amg(t) amg(t) amg(t) amg(t) amg(t) amg(t) 

2 amg(t-6) amg(t-6)  amg(t-19) amg(t-1) amg(t-6) 

3 amg(t-3) amg(t-2)  amg(t-12) amg(t-6)  

4 amg(t-13) amg(t-13)  amg(t-6) amg(t-5)  

5 amg(t-2) amg(t-1)  amg(t-8) amg(t-2)  

6 amg(t-1) amg(t-3)  mat(t-8) amg(t-3)  

7 amg(t-4) amg(t-12)  amg(t-4) amg(t-12)  

8 amg(t-5) amg(t-7)  rain(t-8) amg(t-13)  

9 amg(t-12) amg(t-5)  rain(t-4) amg(t-7)  

10 amg(t-7) amg(t-4)  amg(t-5) amg(t-4)  

11 amg(t-14) amg(t-14)  amg(t-11) amg(t-11)  

12 amg(t-19) amg(t-11)  amg(t-13) amg(t-19)  

13 amg(t-10) amg(t-10)  amg(t-17) amg(t-14)  

14 amg(t-11) amg(t-9)  amg(t-7) amg(t-8)  

15 amg(t-17) amg(t-15)  mat(t-16) amg(t-10)  

16 amg(t-16) amg(t-19)  mat(t) amg(t-18)  

17 amg(t-18) amg(t-17)  mat(t-19) amg(t-9)  

18 amg(t-15) amg(t-16)   amg(t-15)  

19 amg(t-8) amg(t-8)   amg(t-17)  

20 amg(t-9) amg(t-18)   amg(t-16)  

21 rain(t) rain(t-1)     

22 rain(t-7) rain(t-4)     

23 rain(t-1) rain(t-3)     

24  rain(t-2)     

25  rain(t-7)     

26  rain(t)     

27  api(t)     

28  api(t-1)     

29  mat(t)     

30  mat(t-11)     
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Figure 3.5.  Comparing broCMI against EA, KDE, KNN, PMIS, and PCIS using their mean absolute residuals 

(forecasts versus observations) for each calendar date during the summer demand period generated via 

ELM for the 1 day lead time considering each urban water demand time series (note: square brackets 

indicate the number of nearest-neighbours used in KNN while the rounded brackets represents the model 

rank (i.e. a score of 1 indicates the best model)) 

3.6.2.3. Out-of-Sample ELM Forecasts 

The out-of-sample (i.e. test set) 1 and 3 day lead time UWD forecasts using inputs selected via broCMI 

and forecasts generated via ELM were evaluated using the RMSE, Nash-Sutcliffe Efficiency Index (NASH) 

(Moriasi et al., 2007), and mean absolute percentage error (MAPE) (De Gooijer and Hyndman, 2006) 

performance metrics; their results are provided in Figure 3.6 and Table 3.9.  One may notice that the 

forecasts for the amg dataset were the only models that provided satisfactory model efficiency scores 

(NASH > 0.5) across all lead times (Moriasi et al., 2007).  The only other satisfactory forecast occurred for 

a3w at the 1 day lead time.  The poor performance of the a3w(t+3) forecast is likely due to the average 

water demand processes responding to system drivers not available in the input variable selection sets 

(inadequately capturing the process variability) in addition to the increasing difficulty that goes along with 

forecasting chaotic time series at larger forecast horizons (Liu et al., 2004).  As expected, the forecast 

performance decreases for increasing lead times across each time series.  
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Figure 3.6.  Scatter plots for the out-of-sample forecasts for each urban water demand time series and 

lead time using ELM with inputs selected via broCMI 

Table 3.9.  ELM out-of-sample performance for 1 and 3 day lead time UWD forecasts (note: NH represents 

the number of hidden layer neurons used in ELM) 

Dataset Lead Time 
ELM Model Structure 
(Inputs - NH - Outputs) 

NASH 
RMSE 

(ML/D) 
MAPE 

(%) 

a3w 
1 (9-18-1) 0.633 3.175 8.234 

3 (14-24-1) 0.339 4.402 11.794 

amg 
1 (23-40-1) 0.911 0.096 10.09 

3 (29-46-1) 0.844 0.126 15.028 

 

Our observations on the selected input variable sets across the various UWD datasets can be summarized 

as follows: 

1. Meteorological variables are valuable explanatory variables for forecasting UWD within the 3W 

and Morgan’s Grant pressure zones in Ottawa, Canada; 

2. The daily antecedent precipitation index and daily rainfall were found to be more prominent 

amongst the 1 day lead time forecasts while the maximum air temperature was found to be more 
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prominent amongst the 3 day lead time forecasts.  This is likely due to the UWD process 

responding more acutely to rainfall or dry periods and responding more gradually to maximum 

air temperature, referred to as the “hysteresis” effect in Miaou (1990).  It would be interesting to 

consider in future studies re-running the input variable selection procedure for these datasets by 

thresholding certain meteorological variables, for example maximum air temperature, to examine 

if the relationship between UWD and certain meteorological variables fluctuate within certain 

tolerance levels; and 

3. In general, broCMI generated input variable sets that were found to be optimal when generating 

UWD forecasts in comparison with all other methods (EA, KDE, KNN, PMIS, and PCIS).  In all cases 

the KDE, PMIS, and PCIS methods tended to choose too few input variables for each of the UWD 

forecast models (please refer to Table 3.7 and Table 3.8).  The EA and KNN methods also tended 

to provide either too few input variables or selected input variable sets that were overly complex, 

resulting in poor quality UWD forecast models (for example, the EA method created an overly 

complex model for the amg(t+1) dataset while KNN selected too few inputs for the amg(t+1) 

dataset).  The improved performance of broCMI (in comparison to the other input variable 

selection algorithms) relates to the multiple input variable sets it produces based on the bootstrap 

rank-ordering procedure which smooths variations in the resampled selected input variable sets 

by assessing the variability in their selection ranks and ordering the selected input variables by 

their magnitude of variability (from least to most variable). This procedure results in the selection 

of input variable sets that retain much of the training data variability, which is useful for improving 

the predictive capability of machine learning based forecasts (whose performance are highly 

dependent on the training data variability (LeBaron and Weigend, 1998; Singh et al., 2014)).  For 

this reason, the bootstrap rank-ordering procedure would very likely improve the results obtained 

from, KDE, KNN, PMIS, and PCIS algorithms should they be coupled together. 

Finally, we conclude this section by commenting on a trend within both experiments where the EA and 

broCMI algorithms selected a larger number of input variables when compared to the other algorithms.  

We provide the following observations:  

1. PCIS lacks the ability to identify nonlinear dependencies existing between candidate inputs, pre-

selected variables, and the response, which is a necessity for the proper specification of the 

processes in the more strongly nonlinear problems (i.e. NL, NL2, Kentucky, and UWD datasets). 

Because PCIS cannot detect significant nonlinear associations that exist in a number of the 
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datasets used  in our experiments, the Hampel test, as expected, rejects the selection of significant 

variables that are useful in specifying these (nonlinear) processes; 

2. EA and broCMI do not require parametric settings, thus the estimation of CMI for these methods 

is solely dataset dependent and not influenced by non-optimal parameter identification such as 

for the KDE, KNN, and PMIS methods. Therefore, the number of selected variables using KDE, 

KNN, and PMIS is dependent on both the chosen stopping-criterion and the parametric settings, 

which aside from the KNN method, were not varied in our experiments and depended solely on 

the dataset properties. This is the likely reason why EA (and broCMI) chose, on average, more 

input variables than the rest of the algorithms - the Hampel-test criterion did not provide a strict 

tolerance for these methods and, for certain problems, selected more input variables than were 

required to specify the process (see for instance the Kentucky dataset results).  This is not 

necessarily a drawback of our proposed (EA and broCMI) algorithms as the addition of (a few) 

superfluous inputs, when those inputs pertinent to the problem are selected, is (in general) 

preferred to the opposite situation (Galelli et al., 2014); and 

3. In general, the KDE and PMIS algorithms are mis-specified by the Gaussian Reference Rule 

assumption for the kernel bandwidth used in kernel density estimation, which insufficiently 

estimates the dependencies in the various nonlinear datasets (NL2, Kentucky, and the UWD 

datasets for PMIS and the UWD datasets for KDE). While for the KNN method, it is very likely that 

the optimal number of nearest-neighbours was not identified for the majority of the datasets as 

it is dataset dependent (Tsimpiris et al., 2012) and we only studied a relatively small range of 

nearest-neighbours (1-15) (since between two and four nearest-neighbours were suggested in 

the literature for MI estimation (Kraskov et al., 2004)).  An investigation using a wider range of 

nearest-neighbours for the KNN method and different kernel types (and parameter optimization 

routines) for the KDE and PMIS algorithms can be more rigorously explored in further studies. 

3.7. Closure 

Through this study we developed, tested, and compared two new and non-parametric nonlinear input 

variable selection algorithms based on conditional mutual information, the EA and broCMI methods, on 

seven synthetic input variable selection datasets and a real-world time series (urban water demand) 

forecasting experiment (in Ottawa, Canada).  The EA and broCMI input variable selection methods were 

validated against parametric algorithms already existing in the water resources domain (e.g. partial 

mutual information selection) demonstrating the comparable performance of the (non-parametric) EA 
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method and the superior performance of (non-parametric) broCMI when compared to each other method 

(EA, KDE, KNN, PMIS, and PCIS).  The broCMI algorithm is a simple extension of the EA method in that it 

uses the EA method to select input variables over a number of bootstrap resamples of the dataset and 

then rank-orders the variability across their selection ranks to develop new input variable sets 

incorporating the variability across the resamples.  We found the broCMI method to be the best overall 

method at selecting the best input variable sets across both synthetic and real-world experiments.  The 

synthetic test problems showed broCMI to be the most accurate in terms of selection accuracy and it was 

also the most robust method (i.e. broCMI had the smallest selection accuracy interquartile range).  For 

the real-world experiment, the urban water demand forecast models whose inputs were selected via 

broCMI were the best specified models, while all other input variable selection algorithms tended to mis-

specify the input variables for each model, with no method providing comparable performance to broCMI.  

We also demonstrated the performance of broCMI for increasing bootstrap resample size but still believe 

much more testing on a wider variety of datasets is needed before making claims on appropriate 

bootstrap sizes which is in line with recent research that has suggested that the optimal bootstrap 

resample size is dataset dependent (Tiwari and Adamowski, 2013).  However, this study found 100 

bootstrap resamples to be appropriate for the datasets considered in this work; in many cases (please 

refer to the results for the synthetic test problems) as few as 5 bootstrap resamples provided a substantial 

increase in performance over the standard approach (e.g. the EA method). 

The characteristic imbuing broCMI with the ability to outperform each other method presented in this 

paper lies in its ability to envelop variability across a number of selected input variable sets by simply using 

rank statistics to order the selected input variable sets for increasing resample size.  An interesting metric 

that can be used to quantify the amount of variability present in the resampled selected input variable 

sets is the Kuncheva Stability Index, which provides a measure of uncertainty over the input variable 

selection procedure (Kuncheva, 2007).  In future studies we plan to assess the relationship between 

forecast performance and the Kuncheva Stability Index for real-world time series (water resources) 

modeling problems as it may enable an automatic selection of the bootstrap resample size for the 

bootstrap rank-ordering procedure discussed in this paper.  To improve the computational efficiency of 

the bootstrap resampling procedure new bootstrap methods designed for “big data” scenarios may be 

considered such as the new scalable bootstrap approach (Kleiner et al., 2014).  

Future research will investigate the use of broCMI for creating ensemble probabilistic forecasts where 

each bootstrap resample will achieve a weight that determines its contribution to the ensemble.  
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Immediate extensions of our method to formulate a forecast model similar to Sharma and Mehrotra 

(2014) are indeed plausible too and may also be cast as an ensemble forecast scheme.  We also have an 

interest in applying the bootstrap rank-ordering approach to the standard partial mutual information 

selection algorithm to assess its added value as it is currently the most popular nonlinear input variable 

selection method in water resources modeling (Maier et al., 2010).  More so, the same algorithm may also 

be investigated by using Edgeworth approximations to compute mutual information instead of kernel 

density estimates (May et al., 2008a) or the copula-entropy approach (Chen et al., 2014).  We also wish 

to extend the application of input variable selection to include time-frequency analysis (e.g. wavelet 

transforms, empirical mode decompositions, and singular spectrum analysis) by decomposing each time 

series into periodic and trend components whereby the complicated relationships between response and 

candidate inputs are more easily ascertained.  Finally, pre-processing time series data before estimating 

conditional mutual information via methods such as independent component analysis is readily applicable 

to broCMI and may even reduce some of the computational burden by exploiting the independence 

property of entropy (please see section 3 in Gong et al. (2013)). 
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Appendix 

This appendix contains online supplementary material related to Chapter 3 that may be accessed via: 

https://doi.org/10.1002/2015WR016959. 

3. A.1. Introduction 

This supporting information provides details regarding our second experiment on a real-world urban 

water demand (UWD) forecasting problem in Ottawa, Canada using kernel density estimation (KDE), k 

nearest-neighbors (KNN), partial mutual information selection (PMIS), partial correlation input selection 

(PCIS), and our proposed Edgeworth approximations (EA) and bootstrap rank-ordered conditional mutual 

information (broCMI) input variable selection algorithms. This experiment is carried out in the following 

steps: 1) generation of candidate input variable sets (from potentially useful explanatory variables); 2) 

dataset partitioning; 3) input variable selection using each algorithm; 4) mapping the selected input 

variable sets to forecasts using regression methods; and 5) evaluating the forecasts to identify the best 

input variable selection algorithm(s). 

3. A.2. Generation of Candidate Input Variables 

In order to generate candidate input variable sets for UWD forecasting at lead times of 1 and 3 days ahead 

we used historical UWD and available meteorological records provided to us by the City of Ottawa since 

these variables have been shown to have significant relationships with UWD at multiple forecast lead 

times (Adamowski et al., 2012; Adamowski, 2008; Bougadis et al., 2005).  The explanatory variables used 

in this experiment included the daily antecedent precipitation index (api), rainfall (rain), maximum air 

temperature (mat), and historical UWD (average UWD in the 3W pressure zone, a3w, and average UWD 

in the Morgan’s Grant pressure zone, amg).  The identification of important explanatory variable time lags 

was carried out using nonlinear time series analysis since the relationship between UWD and its 

determinant factors are potentially nonlinear (House-Peters and Chang, 2011).  Before we generated 

input variable sets we first confirmed the nonlinearity of each UWD and meteorological time series via 

the delay vector variance method (Gautama et al., 2003b, 2004a, 2004b) in order to justify the use of 

nonlinear time series analysis.  Nonlinear time series analysis from chaos theory (please see the sub-

section below) was used since UWD processes have been identified as a chaotic system within other urban 

water supply systems (Bai et al., 2014; Liu et al., 2004; Xu et al., 2015) providing a potentially useful 

nonlinear framework for describing the UWD processes considered in this work (which is an improvement 

over the classic autocorrelation and partial-autocorrelation analysis commonly applied in UWD 

forecasting (Tiwari and Adamowski, 2013, 2015)). 
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We found each of the UWD and meteorological time series considered in this work to have chaotic 

properties as positive largest Lyapunov exponents were estimated for each time series (an indicator of 

chaos, please see 3.10.2.1 for further details) using the methods suggested by Kodba et al. (2005) (results 

are not shown for brevity).  We applied phase space reconstruction based on the time delay embedding 

window approach as described in sub-section 3.A.2.1 to each time series in this experiment producing the 

candidate input variable sets for the average UWD time series for both 3W and Morgan’s Grant pressure 

zones.  For example, if we consider the average UWD process in the 3W pressure zone the candidate input 

variable set contained the multivariate space spanned by the phase space reconstruction of a3w, api, rain, 

and mat time series combined into a single matrix.  This candidate input variable set was then considered 

during input variable selection for the a3w(t+1) (1day), and a3w(t+3) (3 days) lead time forecast scenarios.  

The embedding window parameter determined via phase space reconstruction for each time series 

considered in this experiment were found to be: a3w – 15; amg – 19; api – 1; rain – 8; and mat – 21. 

3. A.2.1. Phase Space Reconstruction 

Phase space reconstruction stems from chaotic time series analysis (Packard et al., 1980; Takens, 1981).  

Chaotic time series analysis operates under the hypothesis that the studied system (e.g. urban water 

demand) is dynamic and sensitive to initial conditions.  That is, the time evolution of a chaotic process 

may evolve along very different trajectories if the initial conditions specified for the system are slightly 

altered.  The trajectories of the system are obtained through phase space reconstruction which maps a 

given univariate observational time series into an m-dimensional multivariate space, unfolding the 

dynamics of the system (which are considered the important time lags of the system – the number of 

important time lags specifies the dimension of the system, 𝑚).  This new multivariate description of the 

time series may be used to forecast future trajectories or to uncover dependencies that may exist 

between different explanatory variables at different time lags (e.g. connections between urban water 

demand and rainfall at different time lags).  Phase space reconstruction has been recently utilized for 

producing daily ensemble rainfall forecasts (Dhanya and Kumar, 2011), forecasting extreme air 

temperature events (Zhang et al., 2013), predicting daily evaporation (Baydaroǧlu and Koçak, 2014), and 

forecasting urban water demand (Bai et al., 2014) (among other relevant applications). 

In order to apply chaos based time series analysis, the time series of interest must first be identified as 

exhibiting chaotic characteristics. A chaotic system may be identified by transforming the observed time 

series into an m-dimensional space via phase space reconstruction and computing the largest Lyapunov 

exponent (Kodba et al., 2005; Wolf et al., 1985).  Since the Lyapunov exponents measure the rate of 
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divergence (convergence) of two nearby initial points of a dynamical system, a positive (negative) 

Lyapunov exponent measures the average exponential divergence (convergence) of two nearby 

trajectories.  By definition, a system that produces a positive largest Lyapunov exponent is dissipative and 

is considered chaotic (Kodba et al., 2005; Liu et al., 2004).  We suggest the interested reader to review the 

work of Wolf et al. (1985), Liu et al. (2004), and Kodba et al. (2005) for necessary algorithms to implement 

the estimation of Lyapunov exponents and the work of Bradley and Kantz (2015) for general nonlinear 

time series analysis considerations.  Once a time series has been identified as stemming from a chaotic 

system one may examine different phase space reconstructions to identify an optimal multivariate 

representation of the original time series.  From a time series 𝑦(𝑡) with 𝑡 =  1, 2, … , 𝑁 observations, one 

reconstructs a multivariate vector time series with evolution topologically equivalent to the original 

system via the transformation (Takens, 1981): 

 𝑦(𝑡) = 𝑦𝑡  → (𝑦𝑡 , 𝑦𝑡−𝜏, … , 𝑦𝑡−(𝑚−1)𝜏) (3.A.1) 

 

where 𝑚 is known as the embedding dimension and 𝜏 is known as the time delay and both together are 

known as the (time delay) embedding parameters. The embedding dimension determines the size of the 

phase space reconstruction while the time delay determines the dynamic components of the system.  

Generally, one chooses the time delay such that it induces the minimum level of dependence between 

the coordinates of the embedding vector (𝑦𝑡 , 𝑦𝑡−𝜏, … , 𝑦𝑡−(𝑚−1)𝜏) (Bradley and Kantz, 2015).  Often the 

phase space reconstruction step is carried out in two stages by: 1) determining the time delay (usually 

through autocorrelation or average mutual information) and 2) determining the embedding dimension 

(usually through the correlation sum or false nearest-neighbours) (Baydaroǧlu and Koçak, 2014). 

However, since both the embedding dimension and the time delay are related to one another, the 

sequential estimation of both parameters can obscure the key dynamic features of the system which may 

be better captured by estimating both the embedding dimension and the time delay simultaneously (Kim 

et al., 1999).  To this end, Gautama et al. (2003a) formulated the Entropy Ratio method based on 

multivariate differential entropy to compute the optimal time delay embedding 

parameters (𝜏𝑜𝑝𝑡 , 𝑚𝑜𝑝𝑡) simultaneously and demonstrated this approach to outperform the sequential 

estimation of embedding parameters (using average mutual information and false nearest-neighbours) 

on a dynamical system benchmark (Henon Map) and real-world examples of physiological time series.  

The Entropy Ratio method has also proven useful in wind-profile forecasting using neural networks [Goh 

et al., 2006], in detecting signs of financial crisis (Addo et al., 2013), controlling the air temperature within 
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office buildings (Marvuglia et al., 2014), and detecting linear and nonlinear scaling laws in the Yangtze 

River flow (Wang et al., 2008).  We also adopted the Entropy Ratio method for estimating the embedding 

parameters of time series in this study due to its simplicity and ability to select the time delay embedding 

parameters simultaneously.  We direct the interested reader to Gautama et al. (2003a) for theoretical 

details. 

To use the Entropy Ratio method for determining the optimal time delay embedding parameters  

(𝜏𝑜𝑝𝑡 , 𝑚𝑜𝑝𝑡) of a time series one needs to provide a search-range over each embedding parameter as 

follows: (𝜏𝑚𝑖𝑛: 𝜏𝑚𝑎𝑥, 𝑚𝑚𝑖𝑛: 𝑚𝑚𝑎𝑥). The issue of determining a suitable range for 𝜏𝑚𝑖𝑛: 𝜏𝑚𝑎𝑥 is carried out 

by three different methods in this study: autocorrelation function (ACF), partial autocorrelation function 

(PACF), and time-delayed mutual information (TDMI) (15 bins is used in this study) (Baydaroǧlu and Koçak, 

2014; Tsimpiris et al., 2012).  One first computes the ACF, PACF, and TDMI of the time series which each 

return a set of significant time delays; the method (ACF, PACF, or TDMI) that produces the largest 

significant time delay is used for 𝜏𝑚𝑎𝑥, and in all cases one uses 𝜏𝑚𝑖𝑛 = 1.  The range (𝑚𝑚𝑖𝑛: 𝑚𝑚𝑎𝑥) is set 

at 1:5 since larger embedding dimensions require a large dataset (Maheswaran and Khosa, 2012).  This 

was not available to the authors for this study. 

Once the optimal time delay embedding parameters (𝜏𝑜𝑝𝑡 , 𝑚𝑜𝑝𝑡) have been obtained the time delay 

embedding window (𝜏𝑤) may be determined from: 𝜏𝑤 = (𝑚𝑜𝑝𝑡 − 1)𝜏𝑜𝑝𝑡.  There has been discussion, 

analysis, and results to demonstrate that one need only concern themselves with finding the embedding 

window of the time series in order to capture the system dynamics appropriately (Kim et al., 1999; 

Kugiumtzis, 1996).  Gibson et al. (1992); Krakovská et al. (2015); Maus and Sprott (2011) (among others) 

conjecture that one only need determine 𝜏𝑤 as the isolation of the most important time delays reduces 

to a model dependent search (Small and Tse, 2004).  For the present work, each time series 𝑦(𝑡) with 𝑡 =

 1, 2, … , 𝑁 subjected to chaotic time series analysis (and characterized as chaotic) is transformed through 

phase space reconstruction using the embedding window strategy as follows: 

 𝑦(𝑡) = 𝑦𝑡  → (𝑦𝑡 , 𝑦𝑡−1, … , 𝑦𝑡−𝜏𝑤
) (3.A.2) 

 

In this study the model dependent search (for important intermediate time delays, 𝑡: 𝑡 − 1: 𝑡 − 𝜏𝑤) is 

accomplished via input variable selection (which is very well suited to the input variable selection problem 

since the larger set of time lags will make those that are significant easier to identify (Maus and Sprott, 
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2011)) and the suitability of the selected input variables are judged via evaluation of regression-based 

forecasts. 

3. A.3. Dataset Partitioning 

In this study training, cross-validation, and testing sets were used within all developed forecast models.  

Indices were chosen randomly based on the following percentages: 50% for training, 25% for cross-

validation, and the remainder for testing.  This partitioning was found to provide the best generalized 

models.  The training set was used for calibrating the model parameters, the cross-validation set was used 

for choosing the best model and its parameters (using the root mean square error fitness function), and 

the test set was used to independently assess model performance (Hastie et al., 2009). 

3. A.4. Selecting Input Variables 

After generating the candidate input variable sets for each dataset and lead time forecast we selected 

input variable sets over the training indices using the six input variable selection algorithms: EA, KDE, KNN, 

PMIS, PCIS, and broCMI. 

3. A.5. Forecasting Selected Input Variable Sets using Regression Models 

Each UWD time series considered in this experiment was deemed nonlinear via the delay vector variance 

method (Gautama et al., 2003b, 2004a, 2004b), justifying the use of nonlinear regression models to 

produce forecasts for the time series in this experiment.  The selected input variable sets chosen by each 

input variable selection algorithm were used to map the selected input variables into forecasts for each 

dataset and forecast lead time using regression methods.  We note that it is possible for multiple input 

variable selection algorithms to select the same input variable set(s).  In such cases, we only produced 

forecasts for the unique input variable sets and identified any cases where an optimal model was 

produced using selected input variables from multiple input variable selection algorithms.   

In this experiment we considered the extreme learning machine (ELM) and artificial neural network (ANN) 

for producing UWD forecasts using inputs selected from the various input variable selection algorithms.  

Both methods are nonlinear regression paradigms with universal approximation capability (Ince, 2006) 

meaning that they are capable of approximating any continuous function within arbitrary precision given 

enough training data and/or model parameters.  We considered the traditional feedforward 

backpropagation (FFBP)-ANN for comparison with the recently proposed extreme learning machine (ELM) 

(Huang et al., 2006) which shares the same topology as the FFBP-ANN but instead of iteratively training 

the network (as required by FFBP-ANN) the network parameters are determined through randomization 
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and solving a linear system of equations which provides a much more computationally feasible 

framework, especially for large scale forecasting tasks (Zhou et al., 2015).  An advantage of ELM over ANN 

relates to the least-squares formulation of ELM which provides global solutions to the network 

parameters, unlike the FFBP-ANN which is based on iterative tuning of the network parameters in 

accordance with minimizing a fitness (objective) function (often leading to local minima solutions for the 

network parameters). 

Since each modeling paradigm (ELM and ANN) requires initialization of their parameter space to begin the 

learning procedure, we randomly initialized each model five times and considered these five trials in 

identifying the best input variable sets (and network architecture).  Since the ELM and ANN models were 

evaluated over numerous network architectures (due to varying the number of hidden layer neurons) the 

average fitness score over the five trials is used to identify the best network architecture.  For each optimal 

model the five trials are then averaged to make the final forecast.  Thus, each ELM and ANN forecast 

model is a combination of the forecasts produced by the five randomly initialized instances.  We found 

this approach to smooth out random variations in the different model trials while still keeping the 

computation time at a feasible level.  The best models were identified using the fitness function (root 

mean square error) on the cross-validation set. 

3. A.5.1. Artificial Neural Network Theoretical Background 

Since the application of the FFBP-ANN is very common within water resources forecasting applications 

(Abrahart et al., 2012) we direct the interested reader to Piotrowski et al. (2015) for theoretical 

development. 

3. A.5.2. Artificial Neural Network Model Development 

All ANN models developed in this study followed the best practices for ANN development outlined in 

Goyal and Burn (2012) and Adamowski and Karapataki (2010).  The FFBP-ANN was used and its parameters 

(number of hidden neurons, network weights, and biases) were updated using the Levenberg-Marquardt 

backpropagation training algorithm.  To further reduce the chance of poor generalization properties, 

early-stopping was used on a cross-validation set and set to six contiguous epochs.  For the same reasons, 

the amount of training epochs were limited to 150 (which provided enough iterations to train each ANN 

model developed in this study).  The initial step size of the network was set as 0.001 and the minimum 

performance gradient was set to 1e-7 (both default settings for the Levenberg-Marquardt algorithm in 

the Neural Network toolbox within Matlab).  The ANN parameters were initialized using the Nguyen-

Widrow method.  Performing network parameter selection using this method provides more robust 
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estimates of the network parameters by taking into account over- and under-fitting.  A three layer FFBP-

ANN was used containing an input, hidden, and output layer.  The hidden layer activation function was 

the tan-sigmoid and the output activation function was linear (default settings within the aforementioned 

Neural Network toolbox).  All explanatory and response variable(s) were first normalized between [-1, 1] 

prior to model entry.  Following recommendations made in Hecht-Nielsen (1989) we explored hidden 

neuron architectures spanning from 1 to 𝑁𝐻 ≤ 2𝑑 + 1 hidden neurons (Amiri et al., 2015).  This upper 

limit for the number of ANN hidden layer neurons (along with slight variations, usually implementing a 

stricter upper limit, 𝑁𝐻 < 2𝑑) has been expressed by others in the literature (Shu and Burn, 2004; Shu 

and Ouarda, 2007).  We explored different hidden neuron architectures for each selected input variable 

set considering between 1 and the upper limit of the hidden neurons as governed by each selected input 

variable set size.  The fitness function was set as the root mean square error.  The ANN models developed 

in this work were based on custom scripts incorporating functions from the Neural Network toolbox in 

Matlab. 

3. A.5.3. Extreme Learning Machine Theoretical Background 

The extreme learning machine is a recently proposed class of single layer feed-forward network (SLFN) 

with very similar performance to traditional ANN and least-squares support vector regression (LSSVR) 

models, with the potential to arrive at solutions in fractions of the time spent tuning ANN or LSSVR (Huang 

et al., 2012).  The underlying differences with ELM (when compared to ANN) is that the input weights and 

hidden neuron biases are randomized (within the domain [-1, 1]) such that the output layer weights form 

a unique least-squares solution that may be solved by the Moore-Penrose generalized inverse technique, 

which yields a run-time improvement with respect to the gradient-based techniques that are generally 

employed for training ANN (Huang et al., 2006).  The ELM method is regarded as a simple three-step 

procedure that requires no parameterization with the exception of determining a suitable amount of 

hidden neurons and their activation functions (which must be infinitely differentiable).  Common 

activation function choices for the hidden neurons consist of sigmoid, sine, and hard limit (among many 

other choices). 

The ELM SLFN with arbitrary distinct samples (𝑥𝑡 , 𝑦𝑡) for 𝑡 = 1, 2, … , 𝑁, where 𝑥𝑡 ∈ ℝ𝑑  and 𝑦𝑡 ∈ ℝ (i.e. 

entries of the input/explanatory matrix 𝑋 and the output/response vector 𝑌 at time 𝑡, respectively) with 

𝑁𝐻 randomly assigned hidden nodes and biases can be mathematically modeled as (Huang et al., 2006): 

 



125 
 

 

∑ 𝛽𝑖𝑔𝑖(𝑤𝑖 ∙ 𝑥𝑡 + 𝑧𝑖)

𝑁𝐻

𝑖=1

= 𝑜𝑡 (3.A.3) 

  

where 𝛽 are the ELM output weights that are to be estimated from a given input-output dataset, 𝑔 is the 

hidden layer activation function (taken as the sigmoid function in this work), 𝑤 is the set of randomized 

input weights, 𝑧 is the set of randomized bias/threshold parameters (such that 𝑤𝑖 ∈ ℝ𝑑 and  𝑧𝑖 ∈ ℝ), and 

𝑜 is the output of the network.  The SLFN described in Eq. 3.A.3) can approximate the 𝑁 dataset samples 

with zero error, i.e. ∑ ‖𝑜𝑡 − 𝑦𝑡‖ = 0𝑁
𝑡=1 , suggesting that there exists 𝑤𝑖, 𝑧𝑖, and  𝛽𝑖 such that (Huang et al., 

2006): 

 

∑ 𝛽𝑖𝑔𝑖(𝑤𝑖 ∙ 𝑥𝑡 + 𝑧𝑖)

𝑁𝐻

𝑖=1

= 𝑦𝑡 (3.A.4) 

 

for all 𝑡 = 1, 2, … , 𝑁.  Thus, one may estimate 𝛽 directly from the dataset by recasting the problem as a 

linear system of equations.  The reformulation is written as follows [Huang et al., 2006]: 

 𝐻𝛽 = 𝑌 (3.A.5) 

 

where: 

 

𝐻 =  [
ℎ(𝑥1)

⋮
ℎ(𝑥𝑁)

] = [
𝑔1(𝑤1 ∙ 𝑥1 + 𝑧1) ⋯ 𝑔𝑁𝐻(𝑤𝑁𝐻 ∙ 𝑥1 + 𝑧𝑁𝐻)

⋮ ⋯ ⋮
𝑔1(𝑤1 ∙ 𝑥𝑁 + 𝑧1) ⋯ 𝑔𝑁𝐻(𝑤𝑁𝐻 ∙ 𝑥𝑁 + 𝑧𝑁𝐻)

]

𝑁×𝑁𝐻

 (3.A.6) 

 

 

𝛽 =  [

𝛽1
𝑇

⋮
𝛽

𝑁𝐻
𝑇

]

𝑁𝐻×1

and 𝑌 =  [
𝑌1

𝑇

⋮
𝑌𝑁

𝑇
]

𝑁×1

 (3.A.7) 

 

𝐻 is referred to as the hidden layer output matrix of the SLFN (and the 𝑇 represents the transpose 

function).  One may realize that 𝛽 may be solved for by setting 𝛽 = 𝐻−1𝑌.  This is accomplished in the 

ELM paradigm via the Moore-Penrose generalized inverse function [Huang et al., 2006]: 
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 �̂� = 𝐻†𝑌 (3.A.8) 

 

where † represents the Moore-Penrose generalized inverse and �̂� represents the estimated output 

weights (the only parameters that need to be solved for in the SLFN ELM model).  For newly acquired data 

(𝑥∗) an ELM forecast (�̂�) may be achieved through (Akusok et al., 2015): 

 

 

�̂� = ∑ �̂�𝑖𝑔𝑖(𝑤𝑖 ∙ 𝑥∗ + 𝑧𝑖)

𝑁𝐻

𝑖=1

 (3.A.9) 

 

3. A.5.4. Extreme Learning Machine Development 

The ELM method in comparison to FFBP-ANN does not require successive updates to model parameters 

(network weights and biases) and is solved as a linear system of equations using the Moore-Penrose 

generalized inverse technique (after randomly assigning the hidden layer neurons and biases with values 

between [-1, 1]).  All ELM models designed in this study contain three layers: an input layer, hidden layer, 

and output layer.  The hidden layer activation function was the sigmoid and the output activation function 

was linear.  For consistency with the ANN models we used an upper limit (𝑁𝐻) on the number of hidden 

neurons as suggested by Hecht-Nielsen (1989): 𝑁𝐻 ≤ 2𝑑 + 1 (Amiri et al., 2015).  Thus, we explored 

different hidden neuron architectures for each selected input variable set considering between 1 and the 

upper limit of the hidden neurons as governed by each selected input variable set size.  All explanatory 

and response variable(s) were first normalized between [0, 1] prior to model entry.  The fitness function 

was set as the root mean square error.  The ELM models used in this study were developed using custom 

Matlab scripts. 

3. A.6. Forecast Performance Evaluation 

In order to infer the adequacy of each input variable selection method in providing the best input variable 

sets for forecasting UWD we judge our forecasts using very common forecast performance metrics within 

the water resources domain: Nash-Sutcliffe Efficiency Index (NASH), root mean squared error (RMSE), and 

mean absolute percentage error (MAPE).  (Since these performance metrics are very common within 

water resources forecasting we direct the reader to De Gooijer and Hyndman (2006); Moriasi et al. (2007) 

for these formulae.) In general, one seeks a NASH score as close to 1.0 as possible (indicating a perfect 
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fit), and one seeks RMSE and MAPE scores as close to 0 as possible (indicating null forecast error).  If one 

obtains NASH > 0.5 then one can consider the forecast model satisfactory (Moriasi et al., 2007). 

The optimal selected input variable sets are identified from the models with the best fitness performance 

on the cross-validation set as this set was used to judge the adequacy of each trained model’s parametric 

settings.  As usual, the test set is reserved for making out-of-sample inferences once a suitable model has 

been identified based on cross-validation performance (fitness) (Hastie et al., 2009). 
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Connecting Text to Chapter 4 

The new computationally efficient, non-parametric, nonlinear information-theoretic input variable 

selection methods from Chapter 3 form an integral component of the Wavelet Data-Driven Forecasting 

Framework (WDDFF) developed, tested, and applied in this chapter.  The WDDFF is developed according 

to a set of best (correct) practices for wavelet-based forecasting for real-world applications.  The new 

input variable selection methods from Chapter 3 are adopted to identify which wavelet and scaling 

coefficients (high- and low-frequency information extracted through the wavelet decomposition 

procedure) are to be used as input to a data-driven method for forecasting the target (water resources) 

process.  The WDDFF is a useful framework for forecasting nonlinear and multiscale processes commonly 

encountered in the water resources domain. 

This chapter was published in the Journal of Hydrology (Quilty and Adamowski, 2018).  The format of the 

paper has been modified to ensure consistency with the style of this thesis.  A list of references cited in 

this paper are available at the end of the chapter. 

The author of the thesis was responsible for the development, testing, and application of the different 

methods and wrote the manuscript presented here.  Prof. Adamowski, the supervisor of this thesis, 

provided valuable advice on all aspects of the research and contributed to the review and editing of the 

manuscript. 
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Chapter 4: Addressing the Incorrect Usage of Wavelet-based Hydrological 

and Water Resources Forecasting Models for Real-World Applications 

with Best Practices and a New Forecasting Framework 

4.1. Abstract 

Many recent studies propose wavelet-based hydrological and water resources forecasting models that 

have been incorrectly developed and that cannot properly be used for real-world forecasting problems.  

The incorrect development of these wavelet-based forecasting models occurs during wavelet 

decomposition (the process of extracting high- and low-frequency information into different sub-time 

series known as wavelet and scaling coefficients, respectively) and as a result introduces error into the 

forecast model inputs.  The source of this error is due to the boundary condition that is associated with 

wavelet decomposition (and the wavelet and scaling coefficients) and is linked to three main issues: 1) 

using ‘future data’ (i.e., data from the future that is not available); 2) inappropriately selecting 

decomposition levels and wavelet filters; and 3) not carefully partitioning calibration and validation data.  

We identify that the discrete wavelet transform (DWT) multiresolution analysis (DWT-MRA) and maximal 

overlap discrete wavelet transform (MODWT) multiresolution analysis (MODWT-MRA), two commonly 

adopted methods in hydrological and water resources wavelet-based forecasting, suffer from these 

boundary conditions and cannot be used properly for real-world forecasting.  However, by following a 

proposed set of best (correct) practices, we show that the MODWT and à trous algorithm (AT) can be used 

to correctly forecast target (e.g., hydrological and water resources) processes in real-world scenarios.  In 

this vein, we contribute a set of best practices, which focusses on deriving “boundary-corrected” wavelet 

and scaling coefficients from time series data, overcoming the boundary condition issues and providing 

hydrological and water resources modellers with a justified and coherent strategy for developing wavelet-

based forecasting models that may be used for real-world forecasting problems.  We coalesce these best 

practices into a new forecasting framework named Wavelet Data-Driven Forecasting Framework (WDDFF) 

that uses a combination of input variable selection and data-driven models to convert “boundary-

corrected” wavelet and scaling coefficients into forecasts of a target process.  We demonstrate the 

superiority of WDDFF against benchmark forecasting models such as (non-wavelet-based) multiple linear 

regression, extreme learning machines, a second-order Volterra series model, and a recent wavelet-based 

forecasting model (that adopts the MODWT-MRA) through a real-world urban water demand forecasting 

experiment in Montreal, Canada. 
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4.2. Introduction 

The presence of multiple periodicities, transients, and/or trends in hydrological and water resources time 

series often present difficulties to traditional data-driven (time series, machine learning, computational 

intelligence, etc. (Solomatine and Ostfeld, 2008)) forecasting methods (e.g., autoregressive integrated 

moving average (ARIMA), multiple linear regression (MLR), artificial neural networks (ANN), etc.) 

(Adamowski et al., 2012).  The fact that the wavelet transform (WT, or wavelets, for short) can decompose 

this information (wavelet decomposition) into separate (high- and low-frequency) sub-time series 

(wavelet and scaling coefficients) and provide a more coherent structure of the complex time series (and 

related variables) to a data-driven model, has often lead to significant improvements in forecast accuracy 

and for that reason has made it a popular tool in hydrological and water resources forecasting (Fahimi et 

al., 2017).  Recent reviews (Afan et al., 2016; Dixit et al., 2016; Fahimi et al., 2017; Nourani et al., 2014; 

Sang, 2013; Yaseen et al., 2015) have highlighted the popularity of wavelet-based forecasting in hydrology 

and water resources; for example, using Scopus, Nourani et al. (2014) cited around 100 papers on this 

topic between 2003-2013 while at the time of writing this paper we identified around 110 papers between 

2014-2018.  However, despite the growing popularity of wavelet-based time series forecasts in  hydrology 

and water resources, the proper design and interpretation of wavelet-based forecasts has not always 

been carefully scrutinized, often resulting in the design of forecasts that are invalid and that cannot be 

used in real-world scenarios  (Du et al., 2017; Zhang et al., 2015) (see section 4.3 and 4.4 for details and 

section 4.6 for a real-world example).  The largest misinterpretation regarding wavelet-based forecasts 

and a significant impediment to their use in real-world forecasting problems is related to wavelet 

decomposition (where isolation and extraction of relevant features from a given time series using WT 

occurs) and the inadvertent addition of  error into the wavelet and scaling coefficients (sub-time series 

produced by the WT) – the main source responsible for generating this  error in the wavelet and scaling 

coefficients is caused by what is known as the boundary condition (BC) (or boundary treatment) (Aussem 

et al., 1998; Bakshi, 1999; Maheswaran and Khosa, 2012a).   

Below we briefly review basics of wavelet decomposition and then attempt a high-level discussion of the 

BC before a more detailed treatment in the next section. Essentially, wavelet decomposition can be 

understood as a convolution (which can be likened to quantifying the similarity) between a wavelet filter 

and a given time series, resulting in a set of wavelet and scaling coefficients (which contain high- and low-

frequency information from the original time series).  The high- and low-frequency content of the wavelet 
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and scaling coefficients depends on: 1) the decomposition level, which represents the different scales of 

change in the time series and 2) the wavelet filter, whose width and shape determines the type of features 

that can be extracted from the time series (e.g., trends, transients, periodicities, polynomial behaviour, 

etc.) (Maheswaran and Khosa, 2012a). Now, the BC arises during wavelet decomposition when one seeks 

to calculate wavelet or scaling coefficients at a particular time and scale that cannot be calculated correctly 

(i.e., without introducing error) because the entire range of time series observations that are required in 

the calculation are not available (we will refine this explanation later with some detailed examples).  

Different WT (e.g., Continuous Wavelet Transform (CWT), Discrete Wavelet Transform (DWT), the 

Maximal Overlap DWT (MOWDT), and à trous algorithm (AT)) slightly vary in how wavelet decomposition 

is carried out and this (as will be discussed in detail in the next section) leads to important differences in 

how one is to evaluate and treat the BC associated with a particular WT.  Before giving technical details, 

it is important to take note that the BC, if not properly treated, will add error into the wavelet and scaling 

coefficients in three distinct ways: 

1. Through the inclusion of ‘future data’ (i.e., time series observations at future times (> 𝑡) are used 

in the calculation of wavelet or scaling coefficients at time 𝑡, see section 4.3.3.1.); 

2. The improper selection of decomposition levels and wavelet filters (i.e., decomposition levels that 

are too high and/or wavelet filters that are too wide for a given time series – see section 4.3.3.2.); 

and 

3. The incorrect partitioning of data into calibration and validation sets (i.e., due to issues 1 and 2 

above, the calibration wavelet and scaling coefficients may include information from the time 

series observations that belong to the validation dataset and vice versa – see section 4.3.3.3.).   

Before proceeding, we must make clear two key items: 

1. We make an important distinction between error introduced to a wavelet-based forecasting 

model via the BC and errors encountered in general modeling problems.  Error due to the BC is 

avoidable if proper precautions (which will be discussed in detail in the next section) are taken, 

while typical sources of error (e.g., due to model parameterization, initial conditions, model 

structure, etc.) are inherent in any modeling exercise (i.e., whether WT are used or not).  This 

work is only focussed on the former. 

2. Real-world wavelet-based forecasting is defined in this study as the use of a wavelet-based 

forecasting model that is calibrated on a sequential historical record (i.e., for 𝑡 ∈ 0,1, … 𝑁𝑐 − 1, 

where 𝑁𝑐  is the number of calibration records) and subsequently used to generate forecasts for a 
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validation record (i.e., for 𝑡 ∈ 𝑁𝑐 , 𝑁𝑐 + 1, … 𝑁𝑐 + 𝑁𝑣 − 1, where 𝑁𝑣  is the number of validation 

records), where the validation record is unknown at the time of model calibration and becomes 

available to the forecaster only one record at a time (i.e., at 𝑡 = 𝑁𝑐 + 1 only time series records 

𝑡 ∈ 0,1, … 𝑁𝑐 + 1 are known to the forecaster, while time series records 𝑡 ∈ 𝑁𝑐 + 2, 𝑁𝑐 +

3, … 𝑁𝑐 + 𝑁𝑣 − 1 remain unknown (since they would not be available to the forecaster in a real-

world scenario).  By assuming this definition for real-world wavelet-based forecasting, wavelet 

decomposition must be carried out on the validation records sequentially, as would be the case 

in a real-world scenario, when new data becomes available to the forecaster only after it has been 

observed (measured), i.e., in real-time.  It is the opinion of the authors that this is the correct way 

to treat the development of wavelet-based forecasting models for use in real-world scenarios.  

In advance of our detailed exploration of each of the BC-related problems (i.e., the ‘future data’ issue, 

improper selection of decomposition levels and wavelet filters, and calibration and validation set 

partitioning) in the next section, it is important to note that when any of these sources of error are 

included in the wavelet coefficients and subsequently used within a wavelet-based forecasting model, 

error is introduced and carried throughout the entire model development and testing stages (model 

calibration and validation, respectively).  This error, which is difficult to characterize (since it is related to 

many different factors, e.g., the type of WT, the decomposition level, wavelet filter, and dataset 

partitioning), can lead to both overly optimistic and pessimistic forecasts and is the result of the incorrect 

development of a wavelet-based forecasting model by neglecting to address the BC (Du et al., 2017).  By 

not addressing each of the BC, one cannot use WT correctly for real-world forecasting problems (i.e., 

without introducing error due to the BC).  Therefore, if one is to correctly develop a wavelet-based 

forecasting model it is important to understand how wavelet decomposition is related to the WT (e.g., 

DWT, MODWT, or AT) selected by the forecaster and how to adjust for the resulting BC.  Of significance, 

we note (and will show in the next section) that the most popular WT, the DWT, used in hydrology and 

water resources wavelet-based forecasting studies (e.g., Altunkaynak and Nigussie (2017); Deo et al. 

(2017c); Dixit et al. (2016); Fahimi et al. (2017); Nourani et al. (2014); Rezaie-balf et al. (2017); 

Samadianfard et al. (2018)), cannot be corrected in terms of the above-mentioned BC and therefore 

should not be used for real-world forecasting applications (Du et al., 2017). As pointed out in Du et al. 

(2017), since the DWT does not address any of the boundary conditions during wavelet decomposition, 

the (incorrectly developed) DWT-based forecasting models often result in much better performance than 

what is realistically achievable.  This is an important issue since an estimated 90% of papers (191/210) 

identified on Scopus between 2003 and 2018 use the DWT.  However, we will show how the BC associated 
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with both the MODWT and AT can be straightforwardly addressed.  Once the BC-related adjustments have 

been made, both the MODWT and AT can be used correctly for real-world forecasting problems.  To 

illustrate the importance of the BC and its connection to these WT, we compare and contrast the DWT, 

MODWT, and AT algorithms showing where the BC arises for each method and how it can be addressed 

for the MODWT and AT (but not the DWT), allowing for the proper development of wavelet-based 

forecasting models for real-world use.  Interestingly, the comparison of the BC-related issues arising from 

each of these WT (i.e., DWT, MODWT, and AT) in terms of (wavelet-based) forecasting applications has 

yet to be carried out in the literature.  

Since a large majority of studies mentioned in numerous review articles on wavelet-based forecasting in 

hydrology and water resources (Afan et al., 2016; Dixit et al., 2016; Fahimi et al., 2017; Nourani et al., 

2014; Yaseen et al., 2015) - including more recent studies (Bachour et al., 2016; Barzegar et al., 2018, 

2017; Baydaroğlu et al., 2017; Maslova et al., 2016; Prasad et al., 2017; Rezaie-balf et al., 2017; 

Samadianfard et al., 2018; Seo et al., 2017; Shi et al., 2018; Yadav and Eliza, 2017; Yu et al., 2018) - propose 

wavelet-based forecasting models that cannot be used in real-world forecasting problems, due to 

(different combinations of) the BC-related issues mentioned above, we feel that it is very important to 

address this gap in the literature.  Therefore, we make it our goal to explore and address the above-

mentioned BC-related problems connected to DWT, MODWT, and AT, enabling the correct development 

of wavelet-based forecasts that may be used for real-world applications.  To meet this goal, we contribute 

to the literature in two main ways: 

1. By developing a set of best (and correct) practices for wavelet-based forecasting that addresses 

each of the three BC-related problems (e.g., ‘future data’, selection of decomposition levels and 

wavelet filters, and calibration and validation set partitioning) through careful analysis of different 

WT (i.e., the DWT, MODWT and AT) and their wavelet decomposition procedure and 

2. Adopting our proposed best practices in a new wavelet-based forecasting framework that can be 

utilized in real-world forecasting scenarios.   

Both contributions are important for the field of hydrology and water resources, as most wavelet-based 

forecasting studies in hydrology and water resources are incorrect and there currently does not exist: 1) 

a comprehensive study of the differences between the DWT, MODWT, and AT in terms of each BC; 2) best 

practices that addresses each of the BC; and 3) a general forecasting framework incorporating a set of 

best practices that can be applied to any type of data-driven model and be used for real-world (wavelet-

based) forecasting scenarios.   These important contributions are realized through the following steps: 
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1. We systematically review wavelet decomposition for the most popular WT used in hydrological 

and water resources forecasting - the DWT, MODWT, and AT - by focussing on the three BC-

related issues (i.e., ‘future data’, selection of decomposition levels and wavelet filters, and 

calibration and validation set partitioning) in terms of both theory and practical application, 

showing how they are commonly misunderstood and misused, resulting in invalid forecasts; 

2. We then introduce a set of best (correct) practices to address each of the BC-related issues that 

ultimately results in the calculation of what we term, “boundary-corrected” wavelet coefficients; 

3. We show how “boundary-corrected” wavelet coefficients can be determined through two 

different WT, the MODWT and AT (that until now, have not been studied together in the wavelet-

based forecasting literature); 

4. We review the differences between the MODWT and AT, in terms of their wavelet decomposition 

strategies, discovering that for forecasting applications the MODWT can only be used for pre-

processing input data, while the AT can be used for pre-processing both target and input data (to 

the best of our knowledge, this finding has been overlooked in the wavelet-based forecasting 

literature); 

5. We develop a new wavelet-based forecasting framework, Wavelet Data-Driven Forecasting 

Framework (WDDFF), that adopts our best practices and uses the “boundary-corrected” wavelet 

coefficients, derived from either the MODWT or AT, and any data-driven model (e.g., ARIMA, MLR, 

ANN, etc.) to forecast a target process; and 

6. We use WDDFF in a real-world daily urban water demand (UWD) forecasting exercise in Montreal, 

Canada, demonstrating its usefulness and potential for forecasting real-world hydrological and 

water resources time series.   

To introduce our proposed best practices for wavelet-based forecasting and the WDDFF, the rest of this 

work is arranged in the following order.  In section 4.3, we introduce the different wavelet decomposition 

approaches commonly used in wavelet-based hydrological and water resources forecasting models, 

discuss how the BC-related issues apply to each wavelet decomposition approach, and show how these 

issues can be solved.  In section 4.4, we show how the solutions to each of the BC-related issues can be 

formulated as a set of best practices and then used within a new wavelet-based forecasting framework 

(WDDFF).  Section 4.5 explains our real-world forecasting experiment used to demonstrate the usefulness 

of WDDFF.  Section 4.6 focusses on the results of our experiment and discusses their significance.  Finally, 

section 4.7 concludes the study by highlighting its main contributions, originality, and suggesting avenues 

for future research. 
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4.3. Theoretical Basis for Best (Correct) Practices in Wavelet-based Forecasting 

4.3.1. An Overview of the Different Wavelet Transforms used in Hydrology and Water Resources 

for Wavelet-based Forecasting 

Our focus in this sub-section is on the theoretical details of (and comparison between) the DWT, MODWT, 

and AT.  We chose to focus on these three WT since the DWT is the most commonly used in hydrology 

and water resources wavelet-based forecasting (and, as we will show below, results in incorrect forecasts) 

and because the MODWT and AT are the only WT that can be used correctly for real-world forecasting.  

In Table 4.1 we have provided the equations (Eqs. 4.1-4.9) needed to perform wavelet decomposition 

using the DWT (Eqs. 4.1-4.2), MODWT (Eqs. 4.4-4.5), and AT (Eqs. 4.7-4.8) (Aussem et al., 1998; 

Maheswaran and Khosa, 2012a; Percival and Walden, 2000).  Equation 4.3, 4.6, and 4.9 can be used to 

reconstruct the time series (i.e., back to its original values) via the DWT, MODWT, and AT, respectively.  

We note that we have not included the CWT in our discussion at it suffers from the same BC-related issues 

as the DWT (less the dyadic condition mentioned below), typically requires many ad-hoc corrections when 

used for forecasting, and is computationally expensive (Adamowski, 2008a, 2008b; Nourani et al., 2009b; 

Rathinasamy et al., 2014).  Previously studied details concerning the wavelet decomposition process that 

results in the (DWT, MODWT, and AT) wavelet (𝑊𝑗, �̃�𝑗, and �̃�𝑗,𝑡
𝑎 ) and scaling coefficients (𝑉𝑗, �̃�𝑗, and �̃�𝑗,𝑡

𝑎 ) 

(where 𝑗 ∈ 1,2, … , 𝐽 and 𝐽 is the decomposition level), including information on their properties and those 

of their wavelet and scaling filters, can be found in section 4.A of our Supplementary Material [appendix].  

Instead, we focus on the key differences between the DWT, MODWT, and AT wavelet and scaling 

coefficients to prepare our discussion on how each of the BC-related issues (i.e., ‘future data’, selection 

of decomposition levels and wavelet filters, and calibration and validation set partitioning) are related to 

each WT. 

The key difference between the DWT and the MODWT and AT is that the DWT involves decimation.  

Therefore, DWT wavelet and scaling coefficients at a given level 𝑗 have 2𝑗 fewer coefficients than at 

scale 𝑗 − 1.  The decimation of the DWT causes several major issues for wavelet-based forecasting 

applications, thus making it invalid for real-world forecasting problems: 1) it requires the time series to be 

an integer multiple of 2𝐽, 2) it is shift-invariant; and 3) it is sensitive to adding new data points 

(Maheswaran and Khosa, 2012a; Percival and Walden, 2000; Walden, 2001) (each point is explained in 

more detail in section 4.A of our Supplementary Material [appendix]).  The drawbacks of the DWT 

(mentioned in points 1-3) can be overcome through the MODWT and AT by simply rescaling the wavelet 

(ℎ𝑙) and scaling filters (𝑔𝑙) used by the DWT as follows: ℎ̃𝑙 ≡ ℎ𝑙/√2 and �̃�𝑙 ≡ 𝑔𝑙/√2.  The re-scaling of the 
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DWT filters conserves energy and obviates the need to sub-sample in the MODWT and AT (i.e., dyadic 

sub-sampling is avoided resulting in wavelet and scaling coefficients that are the same length as the 

original time series) (Walden, 2001). 

From Table 4.1 (Eqs. 4.5 and 4.6), it is clear that the MODWT and AT share the same scaling coefficients 

(since they are calculated using the same low-pass filter �̃�).  However, their wavelet coefficients differ.  

The MODWT uses a high-pass filter (ℎ̃) to calculate its wavelet coefficients, while the AT calculates its 

wavelet coefficients at scale 𝑗 by differencing the scaling coefficients at levels 𝑗 and 𝑗 − 1.  Therefore, the 

AT permits an additive reconstruction of a given time series (Eq. 4.9) while the MODWT must apply an 

iterative reconstruction of the time series (through the reverse pyramid algorithm, Eq. 4.8) - this 

interesting result has important consequences for forecasting applications and is discussed later in this 

section. 

Now that we have noted the key differences between the DWT, MODWT, and AT in terms of wavelet 

decomposition (and reconstruction), we can now look at how the wavelet and scaling coefficients 

produced by the different WT have been used and misused in hydrology and water resources wavelet-

based forecasting studies.  Afterwards, our discussion will focus on the implications of the BC related to 

each WT in terms of wavelet-based forecasting. 
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Table 4.1.  Wavelet decomposition formulae for different wavelet transforms 

 Wavelet Coefficients Scaling Coefficients Reconstruction Coefficients 

D
W

T 

𝑊𝑗,𝑡 = ∑ ℎ𝑙

𝐿−1

𝑙=0

𝑉𝑗−1,2𝑡+1−𝑙 mod 𝑁𝑗−1
 (4.1) 𝑉𝑗,𝑡 = ∑ 𝑔𝑙

𝐿−1

𝑙=0

𝑉𝑗−1,2𝑡+1−𝑙 mod 𝑁𝑗−1
 (4.4) 𝑉𝑗−1,𝑡 = 

∑ ℎ𝑙

𝐿−1

𝑙=0

𝑊𝑗,𝑡+𝑙 mod 𝑁𝑗−1

↑

+ ∑ 𝑔𝑙

𝐿−1

𝑙=0

𝑉𝑗,𝑡+𝑙 mod 𝑁𝑗−1

↑  

(4.7) 

M
O

D
W

T 

�̃�𝑗,𝑡 = ∑ ℎ̃𝑙

𝐿−1

𝑙=0

�̃�𝑗−1,𝑡−2𝑗−1𝑙 mod 𝑁 (4.2) �̃�𝑗,𝑡 = ∑ �̃�𝑙

𝐿−1

𝑙=0

�̃�𝑗−1,𝑡−2𝑗−1𝑙 mod 𝑁 (4.5) �̃�𝑗−1,𝑡 = 

∑ ℎ̃𝑙

𝐿−1

𝑙=0

�̃�𝑗,𝑡+2𝑗−1𝑙 mod 𝑁

+ ∑ �̃�𝑙

𝐿−1

𝑙=0

�̃�𝑗,𝑡+2𝑗−1𝑙 mod 𝑁 

(4.8) 

A
T �̃�𝑗,𝑡

𝑎  = �̃�𝑗−1,𝑡
𝑎 − �̃�𝑗,𝑡

𝑎  (4.3) �̃�𝑗,𝑡
𝑎  = ∑ �̃�𝑙

𝐿−1

𝑙=0

�̃�
𝑗−1,𝑡−2𝑗−1𝑙 mod 𝑁
𝑎  (4.6) �̃�𝑗−1,𝑡

𝑎  = �̃�𝑗,𝑡
𝑎 + �̃�𝑗,𝑡

𝑎  (4.9) 

N
o

te
s 

 
(D

W
T)

 

𝑡 = 0, 1, … , 𝑁𝑗−1 − 1; where: 𝑁𝑗 ≡ 𝑁/2𝑗 

𝑊𝑗,𝑡
↑  ≡ {

0, 𝑡 = 0, 2, … , 𝑁𝑗−1 − 2 

𝑊
𝑗,

𝑡−1

2

, 𝑡 = 1, 3, … , 𝑁𝑗−1 − 1  (note that the scaling coefficients are defined similarly) 

N
o

te
s 

(M
O

D
W

T/
 

A
T)

 

𝑡 = 0, 1, … , 𝑁 − 1   

𝑡 is a time index; 𝑉0,𝑡 ≡ �̃�0,𝑡  ≡ �̃�0,𝑡
𝑎  represents the original time series at time 𝑡; 𝑊𝑗,𝑡 (𝑉𝑗,𝑡) represents the 𝑗th level wavelet (scaling) coefficient for the discrete 

wavelet transform (DWT) at time 𝑡; �̃�𝑗,𝑡 (�̃�𝑗,𝑡) represents the 𝑗th level wavelet (scaling) coefficient for the maximal overlap discrete wavelet transform (MODWT) 

at time 𝑡; �̃�𝑗,𝑡
𝑎  (�̃�𝑗,𝑡

𝑎 ) represents the 𝑗th level wavelet (scaling) coefficient for the à trous algorithm (AT) at time 𝑡; ℎ (𝑔) is a wavelet (scaling) filter; 𝑁 is the number 

of samples; and mod refers to the modulo operator. Note that �̃�𝑙 ≡ 𝑔𝑙/√2; ℎ̃𝑙 ≡ ℎ𝑙/√2; and 𝑔𝑙 ≡ (−1)𝑙+1ℎ𝐿−1−𝑡 where 𝐿 is the length of the wavelet (scaling) 
filter (Maheswaran and Khosa, 2012a; Walden, 2001)
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4.3.2. Use and Misuse of Wavelet and Scaling Coefficients in Hydrology and Water resources 

Wavelet-based Forecasting 

Since the DWT wavelet ({𝑊1, 𝑊2, … , 𝑊𝐽}) and scaling coefficients (𝑉𝐽) are decimated at each scale, those 

adopting the DWT for wavelet-based forecasting must use multiresolution analysis (MRA) (Mallat, 1989) 

to convert the decimated wavelet and scaling coefficients in to detail ({𝐷1, 𝐷2, … , 𝐷𝐽}) and approximation 

coefficients (𝑆𝐽), respectively, that are of the same length as the original time series.  Afterwards, the 

detail(s) and approximation coefficients are used as input to a given forecasting model (Kişi, 2011).  We 

refer to the conversion of wavelet and scaling coefficients to detail and approximation coefficients, 

respectively, as DWT-based MRA or DWT-MRA (although it is often referred to in the literature as simply 

DWT (Sang, 2013) or MRA (Dixit et al., 2016)).    Similar to the DWT-MRA, the same process can be followed 

for the MODWT to produce the MODWT-MRA detail(s) (�̃�1, �̃�2, … , �̃�𝐽) and approximation coefficients (�̃�𝐽) 

(Percival and Walden, 2000). 

An interesting characteristic of the DWT-MRA and MODWT-MRA is that similar to the AT, the detail(s) and 

approximation coefficients provide an additive reconstruction of the time series.  Because of this property, 

the AT wavelet and scaling coefficients are often referred to as detail and approximation coefficients in 

the literature (Aussem et al., 1998; Maheswaran and Khosa, 2012a)).  The additive reconstruction 

property of the DWT-MRA, MODWT-MRA, and AT is given as (Aussem et al., 1998; Percival and Walden, 

2000): 

 

𝑋𝑡 = ∑ 𝐷𝑗,𝑡 + 𝑆𝐽,𝑡

𝐽

𝑗=1

= ∑ �̃�𝑗,𝑡 + �̃�𝐽,𝑡

𝐽

𝑗=1

= ∑ �̃�𝑗,𝑡
𝑎 + �̃�𝐽,𝑡

𝑎

𝐽

𝑗=1

 (4.10) 

 

However, unlike the AT, the DWT-MRA and MODWT-MRA suffer from a serious drawback in terms of their 

usefulness in real-world forecasting applications: they require ‘future data’ in order to calculate detail 

and/or approximation coefficients at a given point in time.  We give a detailed example showing why this 

occurs in the next sub-section.  An inadvertent misunderstanding of this important drawback, has led to 

the detail(s) and approximation coefficients derived from both the DWT-MRA and MODWT-MRA being 

commonly used in hydrological and water resources wavelet-based forecasting models resulting in invalid 

forecasts (e.g., Alizadeh et al. (2017); Bachour et al. (2016); Barzegar et al. (2017a, 2017b); Ebrahimi and 

Rajaee (2017); Ghazvinei et al. (2017); He et al. (2015); Maslova et al. (2016); Patil and Deo (2017); Prasad 

et al. (2017); Seo et al. (2017); Shoaib et al. (2017); Yang et al. (2014)).  While the wavelet (or detail) and 
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scaling (or approximation) coefficients derived by the AT have been used in a number of studies 

(Adamowski and Chan, 2011; Belayneh et al., 2016b; Bogner and Kalas, 2008; Djerbouai and Souag-

Gamane, 2016; Khalil et al., 2015; Maheswaran and Khosa, 2012b; Rathinasamy et al., 2013), it is 

surprising to note (given that the MODWT-MRA detail(s) and approximation coefficients have been used 

in several studies) that the MODWT wavelet and scaling coefficients have yet to be used in any 

hydrological or water resources wavelet-based forecasting studies.  Therefore, this study introduces the 

first use of the MODWT wavelet and scaling coefficients for wavelet-based forecasting of hydrological and 

water resources. 

The two most common ways in which the detail(s) and approximations from the DWT-MRA, MODWT-

MRA, and AT are used for wavelet-based forecasting are: 

1. Decomposing only the explanatory variables into detail(s) and approximation coefficients and 

forecasting the target directly (Alizadeh and Kavianpour, 2015; Kişi, 2011; Samadianfard et al., 

2018), also known as the direct approach (Nguyen and Nabney, 2010). 

2. Decomposing both target and explanatory variables into detail(s) and approximation coefficients 

and forecasting each decomposed target series (detail or approximation) separately using the 

decomposed explanatory variables, and then aggregating the separate target series predictions 

using additive reconstruction (Eq. 4.10) (Barzegar et al., 2017; Shafaei and Kisi, 2016; Yadav and 

Eliza, 2017), also known as the multicomponent approach (Nguyen and Nabney, 2010).  Another 

similar (but less popular) approach is to use another model (e.g., ANN) to reconstruct the separate 

target series predictions instead of Eq. 4.10 (Cannas et al., 2006; Kim and Valdés, 2003).  This 

approach is unnecessary since it adds additional errors to the forecast due to the use of a model 

for reconstruction instead of the simple additive reconstruction offered by Eq. 4.10. 

It is significant to note that both wavelet-based forecasting approaches (e.g., the direct and 

multicomponent methods) can lead to different levels of forecast accuracy and it is therefore important 

to consider both approaches in order to identify the best possible forecast for a given dataset (Nguyen 

and Nabney, 2010) a result that is confirmed later in this paper (section 4.6) and which is seldom 

considered in wavelet-based hydrological and water resources forecasting studies.  We will also show 

later that both the multicomponent and direct approaches can be used by the AT for real-world wavelet-

based forecasting, while only the direct approach is applicable to the MODWT. 
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We now discuss how the different BC-related issues (i.e., the ‘future data’ issue; inappropriately selecting 

decomposition levels and wavelet filters; and not carefully partitioning calibration and validation data) 

affect each of these wavelet-based forecasting approaches and propose our solutions to these problems.   

4.3.3. Boundary Condition-related Issues and Solutions in Wavelet-based Forecasting 

It is important to re-iterate that our intention is to circumvent the use of wavelet and scaling coefficients 

impacted by BC and to only use “boundary-corrected” wavelet and scaling coefficients (that do not suffer 

from any boundary condition) for wavelet-based forecasting.  By meeting these conditions, “boundary-

corrected” wavelet and scaling coefficients can be used correctly for real-world forecasting applications.  

We start by showing how the ‘future data’ issue is related to the DWT-MRA and MODWT-MRA and how 

it is avoided by the MODWT and AT. 

4.3.3.1. The ‘Future Data’ Issue 

The ‘future data’ issue occurs when a given WT (e.g., DWT-MRA and MODWT-MRA) requires time series 

observations existing after (ahead of) time 𝑡 in order to perform wavelet decomposition on a time series 

observation at time 𝑡.  In other words, data from the future of the time series (> 𝑡) is required to calculate 

a wavelet or scaling coefficient in the present (at 𝑡).  It becomes obvious that if time series observations 

> 𝑡 are unavailable to the forecaster (which is the case in real-world scenarios), then they are unable to 

perform wavelet decomposition at time 𝑡.  It is therefore of great importance that WT that do not use 

‘future data’ (such as the MODWT and AT) are adopted in real-world wavelet-based forecasting models 

and those that require ‘future data’ (such as the DWT-MRA and MODWT-MRA) are avoided.   

In Table 4.2, we give a very simple example showing how the ‘future data’ BC issue occurs in the DWT-

MRA and MODWT-MRA and how it is avoided by the MODWT and AT using the formulae from Table 4.1.  

In this example, we consider a time series of length 32 (𝑁 = 32), a wavelet filter of length four (𝐿 = 4) 

(e.g., the Daubechies 4 filter– see section 4.A of the Supplementary Material [appendix]), and a 

decomposition level of one (𝐽 = 1).  We calculate the first level detail coefficient at time index 16 (𝑡 = 16) 

for the DWT-MRA (𝐷1,16), MODWT-MRA (�̃�1,16), and AT (�̃�1,16
𝑎 ) using Eqs. 4.7-4.9 (see also section 4.A of 

the Supplementary Material [appendix] for how the DWT-MRA and MODWT-MRA detail coefficients are 

calculated).  Figure 4.1 provides a graphical depiction of the ‘future data' issue showing which of the 

original time series observations are used for calculating the detail coefficients at 𝑡 = 16 by the DWT-

MRA, MODWT-MRA, and AT (note that the MODWT uses the same observations as the AT when 

calculating its wavelet and scaling coefficients)
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Table 4.2.  Example of wavelet decomposition using the different wavelet transforms (in Table 4.1) 
D

et
ai

l C
o

ef
fi

ci
en

ts
 

D
W

T 
- 

M
R

A
 

  

𝐷1,16 = ∑ ℎ𝑙

3

𝑙=0

𝑊1,16+𝑙 mod 32
↑ = ℎ0𝑊1,16

↑ + ℎ1𝑊1,17
↑ + ℎ2𝑊1,18

↑ + ℎ3𝑊1,19
↑ = ℎ0(0) + ℎ1𝑊1,8 + ℎ2(0) + ℎ3𝑊1,9 

𝐷1,16 = ℎ1(ℎ0𝑉0,17 + ℎ1𝑉0,16 + ℎ2𝑉0,15 + ℎ3𝑉0,14) + ℎ3(ℎ0𝑉0,19 + ℎ1𝑉0,18 + ℎ2𝑉0,17 + ℎ3𝑉0,16) 

M
O

D
W

T 
- 

M
R

A
 

�̃�1,16 = ∑ ℎ̃𝑙

3

𝑙=0

�̃�1,16+𝑙 mod 32 = ℎ0�̃�1,16 + ℎ1�̃�1,17 + ℎ2�̃�1,18 + ℎ3�̃�1,19 

�̃�1,16 = 
ℎ̃0(ℎ̃0𝑉0,16 + ℎ̃1𝑉0,15+, … , +ℎ̃3𝑉0,13)

+ ℎ̃1(ℎ̃0𝑉0,17 + ℎ̃1𝑉0,16+, … , +ℎ̃3𝑉0,14)+, … , +ℎ̃3(ℎ̃0𝑉0,19 + ℎ̃1𝑉0,18+, … , +ℎ̃3𝑉0,16) 

A
T �̃�1,16

𝑎  = �̃�0,16
𝑎 − �̃�1,16

𝑎 = 𝑉0,16 − 𝑉1,16 = 𝑉0,16 − ∑ �̃�𝑙

3

𝑙=0

𝑉0,𝑡−𝑙 mod 32 = 𝑉0,16 − (�̃�0𝑉0,16 + �̃�1𝑉0,15 + �̃�2𝑉0,14 + �̃�3𝑉0,13) 

N
o

te
s 

𝑊1,𝑡
↑  ≡ {

0, 𝑡 = 0, 2, … , 𝑁 − 2 
𝑊

1,
𝑡−1

2

, 𝑡 = 1, 3, … , 𝑁 − 1   

𝑊1,𝑡 = ∑ ℎ𝑙

3

𝑙=0

𝑉0,2𝑡+1−𝑙 mod 32 = ℎ0𝑉0,2𝑡+1mod 32 + ℎ1𝑉0,2𝑡 mod 32 + ℎ2𝑉0,2𝑡−1 mod 32 + ℎ3𝑉0,2𝑡−2 mod 32 

�̃�1,𝑡 = ∑ ℎ̃𝑙

3

𝑙=0

�̃�0,𝑡−𝑙 mod 32 = ∑ ℎ̃𝑙

3

𝑙=0

𝑉0,𝑡−𝑙 mod 32 = ℎ̃0𝑉0,𝑡 mod 32 + ℎ̃1𝑉0,𝑡−1 mod 32 + ℎ̃2𝑉0,𝑡−2 mod 32 + ℎ̃3𝑉0,𝑡−3 mod 32 

�̃�1,𝑡
𝑎  = ∑ �̃�𝑙

3

𝑙=0

�̃�0,𝑡−𝑙 mod 32
𝑎 = ∑ �̃�𝑙

3

𝑙=0

𝑉0,𝑡−𝑙 mod 32 = �̃�0𝑉0,𝑡 mod 32 + �̃�1𝑉0,𝑡−1 mod 32 + �̃�2𝑉0,𝑡−2 mod 32 + �̃�3𝑉0,𝑡−3 mod 32 

In this example, we calculate the detail coefficients (using Eqs. 1-9 Table 4.1) for the discrete wavelet transform (DWT) multiresolution analysis (MRA), i.e., the 
DWT-MRA; the maximal overlap DWT (MODWT) MRA, i.e., MODWT-MRA; and the à trous algorithm (AT) for a wavelet filter length of 𝐿 = 4 at time index 𝑡 = 16 

where 𝑁 = 32 samples and 𝐽 = 1; 𝑡 is a time index; 𝑋 ≡ 𝑉0,𝑡 ≡ �̃�0,𝑡  ≡ �̃�0,𝑡
𝑎  represents the original time series at time 𝑡; 𝑊𝑗,𝑡 (𝑉𝑗,𝑡) represents the 𝑗th level wavelet 

(scaling) coefficient for the DWT at time 𝑡; �̃�𝑗,𝑡 (�̃�𝑗,𝑡) represents the 𝑗th level wavelet (scaling) coefficient for the MODWT at time 𝑡; �̃�𝑗,𝑡
𝑎  represents the 𝑗th level 

scaling coefficient for the AT at time 𝑡; ℎ (𝑔) is a wavelet (scaling) filter; 𝑁 is the number of samples; and mod refers to the modulo operator. Note that �̃�𝑙 ≡

𝑔𝑙/√2; ℎ̃𝑙 ≡ ℎ𝑙/√2; and 𝑔𝑙 ≡ (−1)𝑙+1ℎ𝐿−1−𝑡 where 𝐿 is the length of the wavelet (scaling) filter.
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Noting that 𝑋𝑡 ≡ 𝑉0,𝑡, we can clearly see that both the DWT-MRA and MODWT-MRA require information 

from 𝑉0 (𝑋) as far into the future as 𝑡 = 19 to calculate 𝐷1,16 and �̃�1,16, respectively.  However, the AT 

does not require future information to exist as it requires only the present time index, or earlier, i.e., 𝑡 ≤

16, to calculate �̃�1,16
𝑎  (which is equivalent to �̃�1,16

𝑎 ).  Note also that the MODWT wavelet 

coefficient, �̃�1,16, has the same requirement as the AT in this regard.  To borrow a definition from linear 

filtering, the AT and MODWT are causal algorithms, as they do not require any future information to 

calculate their value at a given time index.  Since this is not the case for the DWT-MRA and MODWT-MRA, 

they are non-causal algorithms (Bašta, 2014; Maheswaran and Khosa, 2012a). 

 

Figure 4.1.  Depiction of the ‘future data’ issue boundary condition (see Table 4.1) 

Another important point that we explore in more detail in section 4.3.3.3 is related to the calibration and 

validation set partitioning BC problem. Using the same example, if we consider that the first 17 time series 

observations as calibration records, and the remaining 15 as validation records, one can immediately 

realize that if we were to treat forecasts over the validation record in real-time (as in a real-world 

problem), one would not even have enough data to issue a forecast at time 𝑡 = 16 for 𝑡 > 16 using the 

DWT-MRA and MODWT-MRA.  However, the AT and MODWT do not suffer from this issue as they do not 

require information in advance of 𝑡 = 16 and could therefore be used to make a forecast for 𝑡 > 16 at 

time 𝑡 = 16.  This very important issue is overlooked in the vast majority of studies considering wavelet-

based forecasting models. 
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4.3.3.1.1. The ‘Future Data’ Solution 

The solution to the ‘future data’ issue is simple.  For any wavelet-based forecasting model, the non-causal 

DWT-MRA and MODWT-MRA (that use ‘future data’) should be avoided and the causal AT or MODWT 

algorithms should be used instead (since they do not use ‘future data’).  Henceforth, we limit our 

discussion of the DWT-MRA and MODWT-MRA (since they cannot be used correctly for real-world 

forecasting due to the ‘future data’ issue) and focus on the AT and MODWT (since they may be used for 

real-world forecasting) when discussing the remaining BC-related issues (e.g., selection of decomposition 

level(s) and wavelet filter(s) and the partitioning of calibration and validation sets). 

A relevant question to ask is, “are there any ‘catches’ to using the AT and MODWT for real-world 

forecasting?”.  The answer is ‘yes’ and the ‘catches’ to using the AT and MODWT are as follows:  

1. The MODWT cannot be used with the multicomponent approach, as it does not provide an 

additive reconstruction via Eq. 4.10; 

2. The decomposition level and wavelet filter must be appropriately selected; and 

3. A suitable number of calibration and validation records should be used. 

We discuss the proper selection of the decomposition level and wavelet filter in the next sub-section and 

show how the second and third points are intimately tied to one another in section 4.3.3.3. 

4.3.3.2. The Improper Selection of Decomposition Level(s) and Wavelet Filter(s) Issue 

The BC due to decomposition level and wavelet filter selection introduces error into the wavelet and 

scaling coefficients at the beginning (and potentially end) of the time series (depending on the WT – see 

below) according to the following formula (Bašta, 2014; Maslova et al., 2016; Percival and Walden, 2000): 

 𝐿𝐽 = (2𝐽 − 1)(𝐿 − 1) + 1 (4.11) 

  

where 𝐿𝐽 represents the number of wavelet and scaling coefficients affected by the BC for decomposition 

level 𝐽 and a wavelet filter of length 𝐿.  For the AT and MODWT only the beginning of the time series, i.e., 

for 𝑡 = 0,1, … , 𝐿𝐽 − 1 is affected by the BC due to the selected decomposition level and wavelet filter, 

while the first and last 𝐿𝐽 wavelet and scaling coefficients are affected (i.e., 𝑡 = 0,1, … , 𝐿𝐽 − 1 and 𝑁 −

1, 𝑁 − 2, … , 𝑁 − 𝐿𝐽 + 1) for the DWT-MRA and MODWT-MRA (Percival and Walden, 2000).) 

The BC issue related to decomposition level and wavelet filter selection can be seen in Table 4.1   (e.g., 

refer to 𝑡 − 2𝑗−1𝑙 mod 𝑁 for the MODWT and AT algorithms) where the modulo operator (mod) is used 
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to represent circular convolution (also referred to in the literature as the ‘circularity boundary condition’) 

and is necessary in order to calculate wavelet (detail) and scaling (approximation) coefficients that require 

observations for 𝑡 < 0 (𝑡 < 0 and 𝑡 > 𝑁 − 1) (Bašta, 2014; Percival and Walden, 2000). 

It is important to consider the significance of the BC-issue related to decomposition level and wavelet 

filter selection: when one selects a wavelet filter that is too wide (long) and chooses a decomposition level 

that is too high, it leaves very few wavelet and scaling coefficients (free from BC-related uncertainty) from 

which to calibrate a wavelet-based forecasting model (Aussem et al., 1998).  This important item is often 

overlooked in numerous hydrological and water resources forecasting studies employing WT, where the 

common approach is to neglect the error introduced in those wavelet coefficients and to use the incorrect 

coefficients as input to a data-driven model (e.g., as in Barzegar et al. (2017b); Karbasi (2017); Nourani 

and Saeidifarzad (2017); and Shoaib et al. (2017)), when the correct approach is to not include those 

coefficients in the forecast and only use those wavelet and scaling coefficients that can be calculated with 

certainty (Aussem et al., 1998; Bašta, 2014).   

The common practice of ignoring the error introduced due to improper selection of decomposition levels 

and wavelet filters in wavelet-based forecasting can be better understood through an example.  A popular 

wavelet filter used in wavelet-based hydrological and water resources forecasting studies (Akrami et al., 

2014; Barzegar et al., 2017; Ebrahimi and Rajaee, 2017; Mirbagheri et al., 2010; Rajaee, 2011; Ravansalar 

and Rajaee, 2015; Rezaie-balf et al., 2017; Sahay and Srivastava, 2014; Shoaib et al., 2016a), that very 

seldom should be used, except for cases considering very large time series records and low decomposition 

levels, is the Discrete Meyer (dmey) wavelet filter (with a filter length, 𝐿, of 102 coefficients).  As an 

example, the dmey wavelet filter has been used to forecast a monthly precipitation time series that 

included only ~ 350 historical records, using the DWT-MRA at a decomposition level of three (Nourani et 

al., 2009a).  Using the dmey with a three level decomposition produces 708 boundary coefficients 

(i.e., 𝐿3 = (23 − 1)(102 − 1) + 1 = 708).  This is more than double the amount of time series records 

that were available to the authors, which means that not only was the entire calibration dataset filled 

with wavelet and scaling coefficients that included errors due to the BC, but also the entire validation set.  

The model reported coefficient of determination scores of 0.935 and 0.890 on the calibration and 

validation partitions, respectively.  However, these results are difficult to interpret in terms of model 

generalization since both datasets used wavelet and scaling coefficients that were incorrect, not only due 

to the ‘future data’ issue, but also due to the improper selection of decomposition level and wavelet filter.  

In addition to the references mentioned earlier in this paragraph, other very similar cases are present in 
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the literature (e.g., Krishna (2013); Moosavi et al. (2013); Shirmohammadi et al. (2013); Sehgal et al. 

(2014); Shoaib et al. (2015, 2016a)) where unrealistically wide wavelet filters are used with high 

decomposition levels causing most calibration and validation records to be tainted with error. 

While the literature includes so-called ‘boundary condition’ correction methods to counteract the 

selection of high and wide decomposition level(s) and wavelet filter(s), respectively, such as those 

employed for the DWT-MRA and MODWT-MRA (Karthikeyan and Kumar, 2013; Maslova et al., 2016; 

Percival et al., 2011), the ‘future data’ issue still remains for these methods, which makes them not usable 

in real-world forecasting studies.  We do not delve into BC correction methods as our goal is to avoid 

adding any error due to BC into our wavelet-based forecasting models (realistically, any BC correction-

method adds some form of error since it is inherently a model in itself).  Instead, we propose an alternative 

approach in the next sub-section and show how to properly address decomposition level and wavelet 

filter BC-related error for the AT and MODWT algorithms.  

4.3.3.2.1. The Solution for Properly Selecting Decomposition Level(s) and Wavelet Filter(s) 

The proper selection of decomposition level(s) and wavelet filter(s) is a three-step process: 

1. Choose either the MODWT or AT for wavelet decomposition;  

2. Select a decomposition level and wavelet filter; and  

3. Remove the first 𝐿𝐽 wavelet and scaling coefficients (as determined by Eq. 4.11), resulting in 

“boundary corrected” wavelet and scaling coefficients. 

The final BC-related issue to address is related to the partitioning of data into calibration and validation 

sets.  Since this item is tied to decomposition level and wavelet filter selection through the number of 

boundary-affected coefficients, as determined via Eq. 4.11 (recall our example of the dmey wavelet filter 

above), we will show below that it is imperative to select decomposition level(s) and wavelet filter(s) in 

conjunction with careful dataset partitioning. 

4.3.3.3. The Dataset Partitioning Issue 

A common practice in hydrological and water resources wavelet-based forecasting studies adopting the 

DWT-MRA and MODWT-MRA is to decompose both calibration and validation data separately to 

‘overcome’ the ‘future data’ issue (Barzegar et al., 2017, 2018; Deo et al., 2017c; Prasad et al., 2017).  

However, it appears that this is a misunderstanding of the ‘future data’ issue (as described in this study), 

since we have shown that at any given time the DWT-MRA and MODWT-MRA require ‘future data’ to 

compute detail and approximation coefficients.  In reality, if the calibration and validation data are 
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decomposed separately, this causes problems at the boundaries of each partition where: 1) the calibration 

data must ‘wrap around’ and use wavelet and scaling coefficients at the beginning of the time series as 

surrogates to calculate the boundary coefficients at the end of the calibration dataset and 2) the earlier 

boundary coefficients of the validation set use the wavelet and scaling coefficients at the end of the 

validation record as surrogate values for calculating their values (Du et al., 2017; Karthikeyan and Kumar, 

2013; Zhang et al., 2015).  We clearly show this to be the case by drawing on our example in Table 4.2.  

Assuming that the first 17 records are used for calibration and the remaining 15 for validation, if the DWT-

MRA (or MODWT-MRA) is used and the calibration and validation data are first partitioned and then 

decomposed separately, in the calculation of 𝐷1,16 (or �̃�1,16), i.e., the final calibration record: 𝑉0,19 would 

be swapped for 𝑉0,2 (since 𝑉0,19 mod 17 ≡ 𝑉0,2) as its surrogate, 𝑉0,18 for 𝑉0,1, 𝑉0,17 for 𝑉0,0, etc.  

Considering 𝐷1,17 (or �̃�1,17) (i.e., the first validation record), 𝑉0,16 which is required to calculate 

𝐷1,17 (or �̃�1,17), would no longer be taken as 𝑉0,16, but would be replaced by 𝑉0,32 as its surrogate.  

Similarly, 𝑉0,15 would be replaced by 𝑉0,31 as its surrogate and so on.  It is very clear that the DWT-MRA 

and MODWT-MRA cause significant issues when attempting to calibrate and validate real-world wavelet-

based forecasting models.   

It is worth re-iterating that this issue with the DWT-MRA and MODWT-MRA can be circumvented by 

adopting the MODWT and AT algorithms for wavelet decomposition of the calibration and validation 

records and is discussed in more detail below. 

4.3.3.3.1. The Solution for Correctly Partitioning a Dataset 

Our solution for correctly partitioning data in wavelet-based forecasting models is founded on two key 

principles: 1) avoiding the case where there are more boundary coefficients than available time series 

records (as discussed in 4.3.3.2) and 2) to provide enough time series records from which to calibrate and 

validate a wavelet-based forecast.  These two principles can be broken down in a set of steps: 

1. Adopt either the MODWT or AT (since they are causal filters, that do not have any dependence 

on ‘future data’); 

2. Select a maximum decomposition level (𝐽𝑚𝑎𝑥) and a variety of wavelet filters of suitable length 

(see section 4.A of the Supplementary Material [appendix] for examples) - the value 𝐽𝑚𝑎𝑥 and a 

series of wavelet filters can be selected by applying Eq. (4.11) to determine the number of 

boundary-affected coefficients and ensuring that 𝐿𝐽 ≪ 𝑁); 

3. Remove the first 𝐿𝐽 wavelet and scaling coefficients from the beginning of the wavelet and scaling 

coefficients (i.e., the boundary-effected coefficients), obtaining the “boundary-corrected” 
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wavelet and scaling coefficients, such that there are at least enough calibration records 

unaffected by the boundary condition (providing the wavelet-based forecasting model with 

enough records for calibrating the explanatory variables to the target variable); 

4. After calibration, apply the MODWT or AT to the validation set one-record at a time and calculate 

the forecast for each validation record;  and 

5. Repeat steps 1 to 3 until one has identified suitable decomposition levels and wavelet filters for 

forecasting a given target process.   

It may be useful to perform an initial exploratory analysis by selecting both a maximum decomposition 

level and wavelet filter length by cycling through a combination of each pair to identify suitable 

candidates.  Suitable candidate decomposition levels and wavelet filters should be identified by the 

modeller’s preference, which is usually a function of a trade-off between model accuracy on the validation 

records and computational efficiency (e.g., based on a tolerance that is appropriate to the modeller). 

Another key point connected to data partitioning of the calibration and validation records is to ensure 

that any data scaling applied to the explanatory and target variables prior to their input to a data-driven 

model (a useful practice for ensuring that certain inputs are not favoured due to a larger range in 

comparison with other inputs, but instead due to their intrinsic relationships with the target process), is 

to apply the scaling properties (e.g., maximum and minimum values, mean and standard deviation, etc.) 

from the calibration data to both calibration and validation data, and to not perform this separately.  

Otherwise, the calibrated model parameters might not generalize properly to unseen data (Hastie et al., 

2009).  While this is a fundamental concept, we mention it here since to the best of our knowledge, we 

have not yet seen this important issue discussed in studies on wavelet-based hydrological and water 

resources forecasting.   

4.4. Best (Correct) Practices and the Wavelet Data-Driven Forecasting Framework 

The solutions to the BC-related issues discussed in the last section (e.g., the ‘future data’ issue, selection 

of decomposition levels and wavelet filters, and calibration and validation set partitioning) can now be 

formulated in to a general wavelet-based forecasting framework, Wavelet Data-Driven Forecasting 

Framework (WDDFF).  We first summarize the best practices adopted within WDDFF and then discuss the 

‘building blocks’ of WDDFF that can be varied based on the forecasters’ preferences (e.g., type of WT (AT 

or MODWT), wavelet filter selection, data-driven model selection, etc.). 
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4.4.1. Best Practices Adopted by the Wavelet Data-Driven Forecasting Framework 

The WDDFF is based on the following best practices: 

1. Adopting either the AT or MODWT for wavelet decomposition. 

2. Using the AT or MODWT to calculate “boundary-corrected” wavelet and scaling coefficients (see 

section 4.3.3.2 and 4.3.3.3.), which is carried out according to:  

a. The selection of a decomposition level and wavelet filter such that 𝐽𝑚𝑎𝑥 and 𝐿 results in 

𝐿𝐽 ≪ 𝑁 (i.e., according to Eq. 4.11) and 

b.  Removing the first 𝐿𝐽 boundary-effected coefficients from the beginning of the wavelet 

and scaling coefficients such that after partitioning the dataset into calibration and 

validation partitions, there are at least enough calibration records unaffected by the 

boundary condition. 

3. Using the “boundary-corrected” wavelet and scaling coefficients to calibrate the wavelet-based 

forecasting model. 

4. Validating the wavelet-based forecasting model by applying the AT or MODWT to the validation 

set, one record at a time, and ensuring that the forecasting model’s performance and 

computational efficiency meet the forecasters’ requirements; else repeat steps 1-3 until a suitable 

forecasting model is obtained. 

4.4.2. The ‘Building Blocks’ of the Wavelet Data-Driven Forecasting Framework 

By assuming that the best practices described above are followed for wavelet-based forecasting, the main 

‘building blocks’ of the WDDFF can be broken down into: 1) selecting a wavelet-based forecasting method 

(section 4.4.2.1.); 2) input variable selection for wavelet and scaling coefficients (section 4.4.2.2.); and 3) 

selection of data-driven model (section 4.4.2.3.).  We discuss each of these items in detail in the sub-

sections below and summarize these steps in a flowchart (Figure 4.2). 
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Figure 4.2.  Wavelet Data-Driven Forecasting Framework flow chart 

 

4.4.2.1. Pre-Processing Data 

The first step in the WDDFF is to pre-process the data. To begin, the forecast lead time is set and the 

explanatory and target variables (i.e., input and output, respectively), are partitioned into calibration and 

validation sets.  Depending on the wavelet-based forecasting method (see sub-section 4.4.2.2. and 

4.4.2.1.1.), the explanatory variables are decomposed using the MODWT or AT (direct approach) or both 

explanatory and target variables are decomposed (multicomponent approach). 

4.4.2.1.1. Different Wavelet-based Forecasting Methods 

Since the AT can be used in either a direct or a multicomponent forecasting approach (i.e., both 

explanatory and target variables are decomposed and the target forecast is obtained through additive 

reconstruction (Eq. 4.10)) while the MODWT can only be used in a direct forecasting approach (i.e., only 

explanatory variables are decomposed and the target is forecasted directly) (see section 4.3.2.), one can 

develop a wide variety of wavelet-based forecasts under the WDDFF. Both direct and multicomponent 

approaches are important to consider as they can differ in forecast accuracy and it is thus significant to 

explore both approaches in order to obtain the best overall forecasting model for a given dataset.  This 

also gives the modeller access to different models that may be assessed in terms of trade-offs between 

computational efficiency and forecast accuracy or for ensemble modelling (Rathinasamy et al., 2013). 

Using the direct and multicomponent approaches, we define six different ways in which the WDDFF may 

be used to develop wavelet-based forecasts via the MODWT and AT (although there potentially exists 
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other approaches, we focus on only these approaches since they are straightforward to apply and 

encompass the different direct and multicomponent wavelet-based forecasting approaches studied thus 

far in hydrology and water resources): 

1. Single (Method 1), a direct approach - wavelet decomposed explanatory variables are used as 

input and the target variable as output for a given data-driven model. 

2. Within (Method 2), a multicomponent approach - forecast each set of wavelet and scaling 

coefficients for the target variable using the wavelet and scaling coefficients from the explanatory 

variables at the same levels (i.e., the first level wavelet coefficients for the target are forecasted 

using the first level wavelet coefficients from the explanatory variables, the second level wavelet 

coefficients for the target are forecasted using the second level wavelet coefficients from the 

explanatory variables, and so on).  We name this method Within, since only wavelet (and scaling) 

coefficients within the same level are used in the forecasts. 

3. Across (Method 3), a multicomponent approach - forecast each set of wavelet and scaling 

coefficients for the target process using the wavelet and scaling coefficients from the explanatory 

variables for all levels (i.e., the first level wavelet coefficients for the target are forecasted using 

the first, second, third, etc. level wavelet coefficients (including the scaling coefficients) from the 

explanatory variables).  We name this method Across, since wavelet (and scaling) coefficients 

from the explanatory variables across the different levels are used in the forecasts of the wavelet 

and scaling coefficients of the target process at each level. 

4. Single-hybrid (Method 4), a direct approach – the same as Method 1, but the original un-

decomposed explanatory variables are also used as input. 

5. Within-hybrid (Method 5), a multicomponent approach – the same as Method 2, but the original 

un-decomposed explanatory variables are also used as input for each of the target variable’s 

wavelet and scaling coefficients. 

6. Across-hybrid (Method 6), a multicomponent approach – the same as Method 3, but the original 

un-decomposed explanatory variables are also used as input for each of the target variable’s 

wavelet and scaling coefficients. 

Eight different wavelet-based forecasting approaches can be used (six using the AT and two using the 

MODWT): both Within and Across-based multicomponent approaches (Method 2, 3, 5, and 6) can only be 

used with the AT, since it is the only WT (amongst MODWT and AT) that can be reconstructed additively 

(i.e., via Eq. 4.10).  The reason for including the original un-decomposed explanatory variables along with 



155 
 

wavelet decomposed explanatory variables is because the original time series contain coarse, global 

details, while the wavelet decomposed time series contain specific, localized details – together they 

provide a more comprehensive structure (view) of the overall process that is being forecasted and this 

has been shown to increase forecast performance in earlier wavelet-based forecasting studies 

(Adamowski, 2008a, 2008b; Aggarwal et al., 2008; Nguyen and Nabney, 2010; Voronin and Partanen, 

2013).  We stress that Method 1-6 solely adopt “boundary-corrected” wavelet and scaling coefficients 

derived by MODWT and AT. 

Methods 1-3 are generalizations of methods 4-6, with the difference being that non-wavelet-decomposed 

data is not considered (in methods 1-3) – since the original data is available, we feel that its predictive 

ability, in concert with that of the wavelet-decomposed data, should be explored in order to develop the 

best forecast model (Adamowski, 2008b; Nguyen and Nabney, 2010).   

Method 1 has been used in numerous studies by the present authors (e.g., Adamowski and Sun (2010); 

Adamowski and Chan (2011); Adamowski et al., (2012); Campisi-Pinto et al. (2013); Belayneh et al. (2014, 

2016a, 2016b); and Khalil et al. (2015)) and others (e.g., Benaouda et al. (2006); Maheswaran and Khosa 

(2012a); Li and Cheng (2014); Djerbouai and Souag-Gamane (2016)), but in these studies, solely the AT 

was adopted and the MODWT was not explored.  Methods 4 and 5 were considered by Nguyen and 

Nabney (2010) (with methods 1 and 2 being specific cases of these methods), while a variant of method 

3 (in addition to method 1) was considered by Murtagh et al. (2004), where the authors included lower 

level (higher frequency) wavelet coefficients as predictors for scales at the same level or above, while our 

approach includes the potential to use higher level (lower frequency) wavelet coefficients as predictors 

for lower level coefficients, and vice versa.  We are not aware of any studies that have proposed method 

6, or compared each of the proposed (eight different varieties of) wavelet-decomposition forecasting 

strategies (i.e., six different methods (methods 1-6) with eight different modes (methods 1-6 apply to AT 

and methods 1 and 4 apply to the MODWT). 

4.4.2.2. Input variable selection for wavelet and scaling coefficients 

After decomposing the input-output dataset (according to the wavelet-based forecasting method in the 

previous stage), input variable selection is used to identify only those wavelet and scaling coefficients 

pertinent to the forecasting model. 

Input variable selection provides a systematic means for selecting which variables are useful in predicting 

a target process and can enable an automatic selection of relevant variables that consider relevancy and 
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redundancy amongst potential candidates (Quilty et al., 2016).  Performing input variable selection using 

wavelet-decomposed data is not a new concept (Alsberg et al., 1998).  Recent approaches have 

investigated using partial correlation input selection (PCIS) (Tran et al., 2016) , mutual information (MI) 

(Rana and Koprinska, 2016), and conditional (or partial) MI (CMI or PMI) (He et al., 2015; Li et al., 2016) 

for selecting the best wavelet-decomposed inputs for wavelet-based forecasting. 

As part of WDDFF, we opt to select which “boundary-corrected” wavelet and scaling coefficients are to 

be used in forecasting the target process by adopting the input variable selection methods discussed in  

Quilty et al. (2016).  We considered two input variable selection methods: the Edgeworth Approximations-

based CMI (EA) approach and PCIS (to maintain brevity readers should consult Quilty et al. (2016) for 

details on the EA method).  The EA method uses information theoretic concepts (e.g. multivariate 

differential entropy) to estimate CMI for multivariate datasets and is therefore well suited for capturing 

nonlinear dependence while the PCIS method is based on partial correlation using the typical linear 

Pearson correlation and is limited to identifying only linear relationships (Galelli et al., 2014).  In general, 

other input variable selection algorithms can be used instead of EA or PCIS within the WDDFF (Andersen 

and Bro, 2010; Creaco et al., 2016; Fernando et al., 2009; Galelli and Castelletti, 2013; Kariwala et al., 

2013; Taormina et al., 2016).  We selected the EA method instead of other similar nonlinear methods, 

such as Partial Mutual Information Selection (Fernando et al., 2009), k-nearest neighbours-based 

conditional mutual information (Tsimpiris et al., 2012), Partial Information (Sharma et al., 2016), etc. since 

it has been shown to be computationally efficient and provides similar (if not, better) results for a number 

of benchmark input variable selection problems (Quilty et al., 2016).  PCIS is adopted because it is a classic 

input variable selection method for linear (and nonlinear) regression problems.  To the best of our 

knowledge, we are the first to apply a conditional mutual information approach for wavelet-based input 

variable selection using the MODWT and AT. 

4.4.2.3. Data-Driven Model Selection 

The wavelet-based inputs (“boundary-corrected” wavelet and scaling coefficients) selected in the last 

stage are used, together with the target variable (which may also be a set of wavelet and scaling 

coefficients, i.e., if the multicomponent wavelet-based forecasting approach is adopted – see section 

4.4.2.1.1.), in nonlinear and linear regression frameworks to map inputs to target forecasts.  We used the 

extreme learning machine (Huang et al., 2006; Stulp and Sigaud, 2015) and the second-order Volterra 

(SOV) model (Labat et al., 1999; Maheswaran and Khosa, 2012a) as the nonlinear regression methods and 

multiple linear regression (MLR) as the linear model.  We adopted these three methods as they are easy 
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to program (they can be formulated as linear least-squares problems), are computationally efficient, and 

have performed very well in our experience for hydrological and water resources forecasting applications 

using wavelet- and non-wavelet-based approaches.  We do not provide theoretical details for these 

models as they can be found in a number of our earlier works (Deo et al., 2017a; Quilty et al., 2016; 

Rathinasamy et al., 2014, 2013; Yaseen et al., 2016).  As with the input variable selection methods, other 

regression models may easily be substituted for ELM, SOV, and MLR – popular methods such as kriging, 

fuzzy logic, support vector regression, model trees, multivariate adaptive regression splines, k-nearest 

neighbours, partial information, genetic programming, etc. (Altunkaynak et al., 2003; Deo et al., 2017b; 

Garg et al., 2014; Goyal et al., 2014; Kisi, 2016; Lee et al., 2017; Rahimikhoob, 2016; Sharma et al., 2016) 

may be used within WDDFF.  EA is paired with the nonlinear regression models (ELM and SOV) and PCIS 

is paired with the MLR model. 

4.4.3. Summary of the Wavelet Data-Driven Forecasting Framework 

Our proposed WDDFF takes into account best practices for wavelet-based forecasting by overcoming 

boundary condition-related issues during wavelet decomposition (that if not addressed would render a 

wavelet-based forecast invalid for real-world application, such as in many existing wavelet-based 

forecasting frameworks in the literature): 1) avoiding the use of ‘future data’; 2) selection of suitable 

decomposition levels and appropriate wavelet filters; and 3) proper dataset partitioning.  Additionally, 

WDDFF incorporates different approaches for using wavelet-decomposed data (i.e., “boundary-

corrected” wavelet and scaling coefficients) in wavelet-based forecasting models (i.e., via direct and 

multicomponent approaches, see section 4.4.2.1.1.), allowing one to identify the best wavelet-based 

forecast for a given input-output dataset, which is often overlooked but important to consider.   

WDDFF can be summarized as follows: 

1. WDDFF uses the MODWT and AT algorithms which do not consider ‘future data’ in calculating 

wavelet and scaling coefficients at a particular time; 

2. Decomposition levels and wavelet filters are selected such that they provide enough data for 

calibrating the wavelet-based forecasting model, without including any boundary coefficients 

(i.e., after wavelet decomposition of the input-output dataset, we remove any boundary 

coefficients prior to calibrating our forecasts - we only use “boundary-corrected” wavelet and 

scaling coefficients in our forecasts) and such that they provide suitable forecasting performance 

on a validation set (based on forecasting accuracy and computational- efficiency, suited to the 

user’s preference ); and 
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3. Direct and multicomponent wavelet-based forecasting approaches can be adopted (Methods 1-6 

listed in section 4.4.2.1.1.), allowing one to identify a forecasting approach that provides the best 

accuracy for a given dataset: 

a. Input variable selection is used to select which “boundary-corrected” wavelet and scaling 

coefficients should be used in the wavelet-based forecasting models and 

b. Data-driven methods are used to convert the selected “boundary-corrected” wavelet and 

scaling coefficients from the last step into target variable forecasts. 

4.5. Experimental Setup 

Here we first introduce the study area used in our experiments before discussing how the general 

methodology for the WDDFF is specifically adapted to our study area.  Afterwards, we discuss the details 

of the different experiments that were designed for demonstrating the usefulness of WDDFF for real-

world wavelet-based hydrological and water resources forecasting problems.  To keep this work succinct, 

we refer readers to section 4.B of our Supplementary Material [appendix] for specific experiment details. 

Briefly, our proposed WDDFF is tested on an urban water demand (UWD) forecasting case study in 

Montreal, Quebec where we forecasted average daily UWD, 𝑈,  for lead times (1, 3, 5, 7, and 14 days) 

common to water utility functions (e.g., optimization of planning, design, management, and operations).  

Recent UWD forecast studies have focussed on forecasting Montreal’s UWD (Adamowski et al., 2012; 

Tiwari and Adamowski, 2013).  Adamowski et al. (2012) forecasted daily summer demands (i.e., May to 

August) at one day lead times using MLR, multiple nonlinear regression, autoregressive integrated moving 

average (ARIMA), ANN, and wavelet-ANN (WA-ANN) based on the AT (however, the boundary condition 

at the beginning of the time series was not taken into account in the WA-ANN model).  The authors found 

that the WA-ANN provided the best one day-ahead forecast in the summer demand period between the 

years 2001-2009.  Tiwari and Adamowski (2013) compared ARIMA, ARIMA with exogenous variables 

(ARIMAX), ANN, bootstrap ANN (BANN), WT-ANN, and wavelet BANN (WT-BANN) for forecasting average 

UWD at daily (1, 3, 5, 7, and 14) and monthly (1 and 2) lead times between February 27, 1999 and August 

6, 2010.   The authors used the DWT-MRA to develop their wavelet-based models and found that the WT-

BANN models provided the best overall forecasts.  In both studies, historical average daily UWD, total 

daily rainfall, and maximum daily air temperature were used as explanatory variables.   

We incorporated the explanatory variables historical average daily UWD (𝑈), total daily rainfall (𝑅), 

maximum daily air temperature (𝑇), and the daily antecedent precipitation index (𝐴) to forecast the target 

variable (average daily UWD) at lead times of 1, 3, 5, 7, and 14 days ahead.  We collected average daily 
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UWD (U) from the City of Montreal and daily meteorological variables (𝑅, 𝑇, and 𝐴) from Environment 

Canada within the period February 27, 1999 to August 6, 2010 (4179 daily records). 

4.5.1. Methodology for Wavelet Data-Driven Forecasting Framework 

The general workflow (Figure 4.2) that was followed for developing the WDDFF forecasts for our UWD 

forecasting case study in Montreal Canada is summarized below (specific details may be found in section 

4.C of our Supplementary Material [appendix]). 

4.5.1.1. Quantitative Performance Comparisons across Input Variable Selection Algorithms 

The target variable, 𝑈, was set to lead times of 1, 3, 5, 7, and 14 days ahead.  Each explanatory variable 

(𝑈, 𝑅, 𝑇, and 𝐴) was time-lagged up to 14 days in the past to allow historical information to be exploited 

through input variable selection (see Section 4.C of our Supplementary Material [appendix]).  Calibration 

and validation sets were partitioned as follows: February 27, 1999 to December 31, 2007 for calibration 

(3230 records) and January 1, 2008 to August 6, 2010 for validation (949 records) – we found this data 

partitioning to provide good performance as it afforded us with enough records for calibration and a 

reasonable amount of data (over two and a half years) to validate the performance of the WDDFF out-of-

sample.  

Wavelet decomposition using the MODWT and AT algorithms was used to calculate “boundary-corrected” 

wavelet and scaling coefficients and was carried out using each of the six wavelet-based forecasting 

methods described in section 4.4.2.1.1 (i.e., Single (Method 1), Within (Method 2), Across (Method 3), 

Single-hybrid (Method 4), Within-hybrid (Method 5), and Across-hybrid (Method 6)).  The maximum 

decomposition level was set to six (𝐽𝑚𝑎𝑥 = 6) and we considered wavelet filters up to length 14 (𝐿 ≤ 14) 

(see section 4.C of our Supplementary Material [appendix] for further details on how  𝐽𝑚𝑎𝑥 was 

determined and why these wavelet filters were selected).   

The different wavelet families and their filters that were used in our study are as follows (their coefficients 

can be found in the Supplementary Material [appendix]): Haar (haar), Daubechies (db2, db3, db4, db5, 

db6, db7), Symlets (sym4, sym6,), Coiflets (coif1, coif2), Fejer-Korovkin (fk4, fk6, fk8, fk14), Least-

Asymmetric (la8, la12, la14), and Best-Localized (bl14) (Crowley, 2007; Nielsen, 2001; Olhede and Walden, 

2004; Percival and Walden, 2000; Rathinasamy et al., 2013; Zhang et al., 2016).  Since the largest (widest) 

wavelet filter had 14 filter coefficients (d7, sym7, fk14, la14, and bl14) and we used a maximum 

decomposition level of six, there were 𝐿𝑗 = (2𝑗 − 1)(𝐿 − 1) + 1 = 820  boundary-effected coefficients.  

Therefore, we removed the first 820 records from the beginning of our input-output datasets (creating 
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the “boundary-corrected” wavelet and scaling coefficients) prior to selecting input variables and before 

model calibration, to eliminate the effect of the boundary condition on our forecasts (see section 4.3.3.3.).  

Since explanatory variables were time lagged up to 14 days, forecast leads times of 1, 3, 5, 7, and 14 day 

were explored, and we removed the first 820 boundary coefficients from each dataset, the original 

calibration set of 3230 records was reduced to a total of: 2395, 2393, 2391, 2389, and 2382 calibration 

records for the 1, 3, 5, 7, and 14 day ahead forecasts, respectively.  Therefore, 949 validation records were 

used for evaluating each lead time forecast out-of-sample (i.e., each lead time forecast had the exact same 

validation set for the target variable). 

4.5.1.2. Input Variable Selection for Wavelet and Scaling Coefficients 

The Edgeworth Approximation-based conditional mutual information and partial correlation input 

selection input variable selection methods (Quilty et al., 2016) were used for selecting wavelet and scaling 

coefficients as inputs for the different data-driven models within WDDFF (see section 4.C of our 

Supplementary Material [appendix] for further details). 

4.5.1.3. Data-Driven Models 

The extreme learning machine, second order Volterra, and multiple linear regression were selected as the 

data-driven models that were fed wavelet and scaling coefficient inputs according to the EA and PCIS input 

variable selection methods.   The data-driven models using wavelet-decomposed inputs are appended 

with a ‘W’, i.e., WELM is a wavelet-based extreme learning machine, while WMLR is a wavelet-based 

multiple linear regression model.  The EA method was used to select inputs for the nonlinear models (ELM 

and SOV) while PCIS was used to select inputs for the MLR.  Non-wavelet based models were used as a 

benchmark for the wavelet-based models developed using WDDFF.  A random walk (RW) (without 

wavelet-based inputs) was also considered as a benchmark model.  Therefore, the following models were 

considered (input variable selection method-model): EA-WELM, EA-WSOV, PCIS-WMLR, EA-ELM, EA-SOV, 

PCIS-MLR, and RW. 

4.5.1.4. Forecast Calibration and Evaluation 

The ELM, SOV, and MLR-based models were calibrated using linear-least squares.  Forecasts were 

evaluated over the validation set (an estimate of out-of-sample or generalization performance) using 

metrics commonly adopted in hydrological and water resources forecasting studies: Nash-Sutcliffe 

Efficiency Index, the root mean square error (RMSE), and mean absolute percentage error (MAPE) 

(Adamowski et al., 2012; Moriasi et al., 2007; Quilty et al., 2016) (see section 4.C of our Supplementary 

Material [appendix] for further details). 
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4.5.2. Experimental Details 

In order to demonstrate the usefulness of WDDFF for wavelet-based hydrological and water resources 

forecasting we focussed on three main experiments, using the daily UWD dataset from Montreal, to 

highlight how the best practices adopted by WDDFF can be used for identifying the best performing 

wavelet-based forecast among a variety of alternatives based on different decomposition levels, wavelet 

filters, and forecasting strategies (direct and multicomponent) (i.e., optimal decomposition levels, wavelet 

filters, and forecasting approaches) and show its added value in comparison to a recent, and invalid (in 

terms of real-world applications), wavelet-based forecasting framework that adopts the MODWT-MRA 

(Bachour et al., 2016; Barzegar et al., 2018, 2017; Maslova et al., 2016; Prasad et al., 2017; Yang et al., 

2014).  The three different experiments are as follows: 

1. Best performing models - for the different wavelet-based forecasts contained within the WDDFF 

(see section 4.4.3.1.1. and 4.5.1.), we identified which wavelet decomposition algorithm (MODWT 

or AT), wavelet-based forecasting approach (direct or multicomponent), and Method (1-6 - Single, 

Within, Across, Single-hybrid, Within-hybrid, or Across-hybrid) performed best. 

2. Best decomposition levels and wavelet filters - of the best WDDFF-based forecasts, we showed 

that certain decomposition levels and wavelet filters were most useful in providing the best 

forecast accuracy.  Some visible trends stood out. 

3. WDDFF vs. MODWT-MRA – our proposed WDDFF, in comparison to a current wavelet-based 

hydrological and water resources forecasting approach, MODWT-MRA (Barzegar et al., 2018, 

2017; He et al., 2015; Prasad et al., 2017; Yang et al., 2014), that we have demonstrated 

throughout this work to include ‘future data’ and that should be optimistically biased in terms of 

forecast accuracy (a sign of its incorrectness), provided more realistic forecast performance than 

MODWT-MRA; WDDFF’s usefulness and realistic performance for real-world forecasting problems 

was clearly shown. 

These experiments were chosen to demonstrate that: 

1. WDDFF can offer widely different performances for different settings (e.g., direct or 

multicomponent approaches); but, for our case study, WDDFF always provided the best 

performance against benchmark models (e.g., MLR, ELM, SOV, and RW); 

2. WDDFF had the tendency to provide the best performance for a given decomposition level and 

wavelet filter combination; and 
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3. WDDFF should be preferred over the MODWT-MRA-based (including the DWT-MRA-based) 

forecasts (currently adopted within many wavelet-based hydrological and water resources 

forecasting studies) as it provided realistic performance while MODWT-MRA provided incorrect 

performance for the dataset that we studied. 

4.6. Results and Discussion  

The results of our UWD forecasting experiment for the different daily lead times (1, 3, 5, 7, and 14) can 

be found in Table 4.3 (1 day lead time) while the remaining results (3, 5, 7, and 14 day lead times) are 

given in section 4.D of our Supplementary Material [appendix].  We included only the best forecasts for 

each model type, due to the large amount of models (14, 420 in total, see section 4.C of our 

Supplementary Material [appendix]), and reported their results for the validation partition (although the 

calibration performance is similar to the validation performance, affirming the stable generalization 

properties of the different forecasts).  The best model for a particular lead time forecast is in bold-face 

within our tabulated results.  Scatter plots for the best wavelet- and non-wavelet-based models are shown 

in Figure 4.3. 
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Table 4.3.  1 day lead time forecast results  

1 Day Lead-Time Forecasts 

Strategy IVS-Model Level Filter RMSE (ML/D) MAPE (%) NASH 

  

RW 

  

35.981 1.562 0.844 

PCIS-MLR 36.229 1.703 0.842 

EA-ELM 29.828 1.287 0.893 

EA-SOV 29.680 1.274 0.894 

AT - single 

PCIS-WMLR 5 fk4 26.986 1.162 0.912 

EA-WELM 1 coif1 30.091 1.289 0.891 

EA-WSOV 1 coif2 31.551 1.400 0.880 

MODWT - 
single 

PCIS-WMLR 3 fk8 26.660 1.148 0.914 

EA-WELM 2 fk4 32.581 1.406 0.872 

EA-WSOV 1 d1 33.888 1.476 0.862 

AT - within 

PCIS-WMLR 6 fk8 28.138 1.198 0.905 

EA-WELM 2 fk4 29.888 1.265 0.892 

EA-WSOV 2 d1 30.695 1.293 0.886 

AT - across 

PCIS-WMLR 5 d2 26.877 1.175 0.913 

EA-WELM 6 d1 28.266 1.212 0.904 

EA-WSOV 6 d1 28.779 1.243 0.900 

AT - single - 
hybrid 

PCIS-WMLR 3 coif1 27.040 1.187 0.912 

EA-WELM 2 d1 29.752 1.272 0.893 

EA-WSOV 1 bl14 29.680 1.274 0.894 

MODWT - 
single - 
hybrid 

PCIS-WMLR 6 la14 26.358 1.133 0.916 

EA-WELM 2 d1 29.752 1.272 0.893 

EA-WSOV 1 bl14 29.680 1.274 0.894 

AT - within 
- hybrid 

PCIS-WMLR 1 d2 29.372 1.304 0.896 

EA-WELM 1 fk4 28.372 1.226 0.903 

EA-WSOV 1 fk4 28.792 1.245 0.900 

AT - across 
- hybrid 

PCIS-WMLR 4 coif1 27.088 1.176 0.912 

EA-WELM 6 d1 28.332 1.215 0.903 

EA-WSOV 6 d1 28.528 1.229 0.902 

 



164 
 

 

Figure 4.3.  Scatter plots for the best wavelet-based and non-wavelet-based forecasts for each lead time 

(1, 3, 5, 7, and 14 days) 

4.6.1 Best Performing Models 

We may notice that the MODWT-single-hybrid class of WDDFF (wavelet-based) forecasts, particularly the 

WMLR model, provided the best performance across the explored lead times.  Thus, for this dataset, it is 

the best of the eight different wavelet-decomposition forecasting strategies (see section 4.4.2.1.1. and 

4.5.2.).  When comparing the best wavelet-based forecasts against the non-wavelet-based forecasts 

(Table 4.3, Figure 4.3, and tables in section 4.D of our Supplementary Material [appendix]), we may notice 

that as the lead time increases, the difference in performance (generally) becomes more pronounced, 
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with the biggest gains in performance being realized for the 14 day lead time.  This is a very promising 

quality of the WDDFF against the non-wavelet-based methods for the Montreal UWD dataset, as longer 

lead time forecasts can be used to constantly monitor sustainability, planning, and construction initiatives 

with reasonable foresight, such as projecting expected water use during droughts or the amount of supply 

required to a site or pressure zone, that would be beneficial in setting water use restrictions or allocating 

temporary services for water main maintenance or construction.   

Since the MODWT-single-hybrid class of models provided the best forecasts for each lead time, it suggests, 

for this dataset, that including both wavelet-decomposed inputs and non-wavelet decomposed inputs can 

increase forecast performance considerably, in comparison to alternate cases where only wavelet-

decomposed or non-wavelet decomposed inputs are solely used.  This has also been the case in earlier 

wavelet-based forecasting studies (Adamowski, 2008b; Nguyen and Nabney, 2010; Voronin and Partanen, 

2013). However, the use of the un-decomposed inputs alongside wavelet-decomposed inputs is very 

rarely explored within hydrology and water resources. 

Furthermore, the superiority of the WMLR models shows that the linear wavelet-based models perform 

better than the nonlinear wavelet-based models for all lead times, while the nonlinear models tend to 

perform best when wavelet-decomposed data are not used as inputs.  The reason behind this can be 

argued similarly to the discussion in Koutsoyiannis et al. (2010), where the authors provided evidence that 

while most hydrological and water resources processes are naturally nonlinear, when they are observed 

from the standpoint of their changes across different time scales, there tends to be a linear relationship 

between the original time series and the time series when viewed at its different scales of change. 

We may also notice that in certain cases, the non-wavelet-based forecasts outperformed some of the 

WDDFF forecasts.  For instance, at the 1 day lead time, the nonlinear non-wavelet-based forecasts 

outperform the nonlinear WDDFF models that use the AT-single, MODWT-single, and AT-within wavelet 

decomposition forecasting strategies; for 3, 5, 7, and 14 day lead times, the nonlinear non-wavelet-based 

forecasts outperform the nonlinear WDDFF models that use the MODWT-single wavelet decomposition 

forecasting strategy.  Other similar cases can be inferred from Table 4.3 and section 4.D of the 

Supplementary Material [appendix].  These results highlight the importance of exploring a wide variety of 

different combinations wavelet decomposition strategies (MODWT and AT), decomposition levels and 

wavelet filters, and approaches for incorporating wavelet-decomposed data in forecast development 

(e.g., direct and multicomponent) – if this is not done it is possible to make generalized statements, such 
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as, wavelet decomposed inputs are not necessarily as useful as the original un-decomposed time series 

for forecasting purposes (Zhang et al., 2015). 

4.6.2. Best Performing Decomposition Levels and Wavelet Filters 

It can also be noted that a decomposition level of six and wavelet filters of length 14 provided the best 

performance for each lead time forecast (see Table 4.3 and section 4.D of the Supplementary Material 

[appendix]).  Figure 4.4 shows the U time series decomposed by the MODWT and AT algorithms using the 

la14 filter (the wavelet filter used in the best performing WDDFF forecasts at lead times 1, 3, 5, and 7).   

We can see that using a decomposition level of six with the la14 filter results in smooth scaling coefficients 

that track inter-annual, annual, and intra-annual changes that are free of unnatural artefacts, such as 

blocks, sharks’ fins, triangles, etc. (Percival and Walden, 2000, sec. 5.11).    

It can also be seen that the AT algorithm exhibits much larger variation across the wavelet coefficients 

than the MODWT.  The AT solely uses low-pass filtering, producing an additive decomposition, while the 

MODWT uses high-pass filtering to compute the wavelet coefficients, resulting in an energy-based 

decomposition (Aussem et al., 1998; Percival, 2008; Percival and Walden, 2000).  The scaling coefficients 

(in Figure 4.4) re-affirms our earlier statement that the scaling coefficients produced by the MODWT and 

AT are the same. 
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Figure 4.4.  Average urban water demand time series ‘U’ (measured in megalitres per day) decomposed 

by the maximal overlap discrete wavelet transform (light colored line) and the à trous algorithm (dark 

colored line) using the la14 wavelet filter and a decomposition level of six; where each ‘W’ time series 

represents the wavelet coefficients at a particular scale and ‘V’ represents the scaling coefficients; the 

grayed out area represents the number of coefficients (820) that are affected by the boundary condition 

for the given wavelet filter and decomposition level 

For a 1 day lead time, Figure 4.5 shows the performance of the best WDDFF and non-wavelet-based 

models for the last 366 time series records in the validation set.  A pronounced weekly cycle is evident in 

the UWD time series.  The weekly cycle is well captured by the la14 and bl14 wavelet filters within the 
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proposed WDDFF due to their larger support width, that is a multiple of a weekly periodicity for daily time 

series (when compared to shorter wavelet filters, such as the haar), which lend themselves well to 

capturing larger periods as opposed to smaller wavelet filters that are more suited to picking out transient 

events.  In Figure 4.5 (b), one can notice the lower variation in the WMLR (WDDFF) residuals when 

compared to the (non-wavelet-based) SOV forecast giving further evidence to support the use of WDDFF 

over the benchmark models. 

 

Figure 4.5.  Comparison between the best wavelet-based (gray) and non-wavelet-based (red) 1 day lead 

time forecasts for the last 366 records in the validation set: a) represent the hydrograph while b) 

represents the residual, measured in megalitres per day (ML/D) 

One may argue that certain wavelet-based forecasting approaches (e.g., Method 1-6, see section 

4.4.2.1.1.) produce similar results and that they do not help to clearly identify a best model or a significant 

difference in performance between competitors.  For example, let us consider the 1 day lead time (3, 5, 

7, and 14 day lead times have a wider gap between the best performing model and its competitors in 

terms of RMSE, MAPE, and NASH scores): one can see that at this lead time, many similar forecast results 
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are achieved in terms of the NASH score (e.g., compare the AT-single, MODWT-single, AT-across, AT-

single-hybrid, MODWT-single-hybrid, and AT-across-hybrid WMLR models in Table 4.3).  However, one 

important point to note is that the optimal decomposition level and wavelet filter selected for each of 

these different wavelet-based forecasting approaches, that score similarly (e.g., in terms of NASH), tend 

to be different (e.g., WMLR AT-single-hybrid uses a decomposition level of three and the coif1 wavelet 

filter while the MODWT-single-hybrid uses a decomposition level of six and the la14 wavelet filter, both 

models’ performance differ by a small margin, i.e., 0.002 in terms of NASH).  This can be looked at 

positively by noting that methods that produced similar results but used different decomposition levels 

and wavelet filters could be assessed in terms of a trade-off between computational-efficiency and model 

accuracy.  We argue that, without performing such a comprehensive exploration of these different 

wavelet-based forecasting approaches (Method 1-6, see section 4.4.2.1.1.), which has not yet been 

explored in such depth within the hydrology and water resources fields, one could not identify such cases.  

Therefore, our proposed WDDFF can be used as an exploratory analysis tool to identify optimal wavelet-

based forecasting strategies (i.e., decomposition levels, wavelet filters, and forecasting approaches 

(Method 1-6)), trading-off between computational-efficiency and model accuracy.  Using WDDFF as an 

exploratory analysis tool can be useful before selecting a single (or group of) model(s) for issuing forecasts 

using newly received data, such as for operational or planning tasks (e.g., opening of dam gates, 

identifying suitable crops to alleviate food shortages due to an impending drought, etc.).   

We now compare WDDFF against a MODWT-MRA-based forecasting approach to show how its forecasts 

are realistic compared to the overly optimistic and pessimistic MODWT-MRA forecasts than cannot be 

used properly for real-world forecasting. 

4.6.3. Comparing the Wavelet Data-Driven Forecasting Framework against a Forecasting Model 

using the Maximal Overlap Discrete Wavelet Transform-based Multiresolution Analysis 

In Figure 4.6 we have shown how misinterpretation of the MODWT and instead applying the MODWT-

MRA for forecasting (as in Kriechbaumer et al. (2014); Xiao et al. (2014); Yang et al. (2014); Zhu et al. 

(2014); Bachour et al. (2016); Barzegar et al. (2017a, 2017b); Prasad et al. (2017)), can lead to incorrect 

forecast performance.  Figure 4.6 (a) shows the results of the best 1 day lead time forecast’s residual on 

the validation set for the WDDFF which used the MODWT-single-hybrid approach and compares it against 

a MODWT-MRA-single-hybrid approach (Figure 4.6 (b)) - while we do not recommend this forecasting 

strategy, we simply adjusted the former by adopting the MODWT-MRA to decompose the target and 

explanatory variables instead of the MODWT.  The same wavelet filter (la14), decomposition level (six), 
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and model type (WMLR) were used by both (MODWT- and MODWT-MRA-based) forecasts.  Since the 

MODWT does not incorporate future information, the entire dataset can be decomposed at once without 

invoking uncertainty in the wavelet and scaling coefficients.  However, the MODWT-MRA requires ‘future 

data’ when calculating detail and approximation coefficients at any given time.  Since decomposing the 

calibration and validation set separately when using the MODWT-MRA causes ‘wrap around’ effects (see 

section 4.3.3.1.1.), we first decomposed the calibration data to obtain the calibration detail and 

approximation coefficients and then we decomposed the calibration and validation data together and 

extracted the detail and approximation coefficients associated with the validation indices to obtain the 

MODWT-MRA-based validation detail and approximation coefficients, in order to minimize the ‘wrap 

around’ effects (see section 4.C of our Supplementary Material [appendix] or refer to Eq. 4.2, 4.3, 4.5, and 

4.6 in Table 4.1).  Despite the fact that other studies commonly decompose both calibration and validation 

data separately (e.g., Barzegar et al. (2017a); Prasad et al. (2017)), which only exacerbates the BC-related 

uncertainty (see section 4.3.3.3.), our adjustment improved MODWT-MRA performance.  A similar 

approach to our adjustment of the usual (and incorrect) manner in which the MODWT-MRA has been 

used in forecasting studies was also adopted in the DWT-MRA-based forecasting experiments in Du et al. 

(2017), where they demonstrated the incorrect forecasts produced by the DWT-MRA for a real-world 

monthly rainfall forecasting problem, which qualitatively resembles the results of the MODWT-MRA 

based forecasts in this study. 
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Figure 4.6.  Plot showing the differences in 1 day lead time forecast residuals (in megalitres per day 

(ML/D)) for the validation partition where a) represents the maximal overlap discrete wavelet transform 

(valid for real-world forecasting problems) with a NASH score of 0.916 and b) the maximal overlap discrete 

wavelet transform-based multiresolution analysis (that should not be used for real-world forecasting 

problems due to its use of ‘future data’, see section 4.4.2.1., 4.4.2.3., and 4.6.1.) with a NASH score of 

0.940 

The MODWT-MRA-based forecast achieved a NASH score of 0.940 (which nears 1.0 when the poor quality 

forecasts at the end of the record are removed), significantly better than the MODWT (0.916).  We may 

notice that the MODWT-MRA has negligible forecast error until it reaches the most recent time series 

observations where it utterly fails to provide a representative forecast, since it requires data from the 

future (which is replaced by surrogates, see section 4.3.3.3.) to accurately compute its detail and 

approximation components (which are obviously unavailable to us!), while the MODWT, which does not 

require ‘future data’ to calculate the wavelet and scaling coefficients at the same time positions, has stable 

performance with errors ranging (approximately) between ± 100 megalitres per day.  Here we can clearly 

see the risks in applying the MODWT-MRA in forecasting studies – it truly cannot be used correctly for 

real-time forecasting. 

4.7. Summary and Conclusions 

Many wavelet-based water resources forecasting models, summarized in recent reviews (Afan et al., 

2016; Dixit et al., 2016; Fahimi et al., 2017; Nourani et al., 2014; Sang, 2013; Yaseen et al., 2015), cannot 
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be used for real-world forecasting problems since they are incorrectly developed due to misunderstanding 

certain problems related to wavelet decomposition and the boundary condition: 1) the ‘future data’ issue; 

2) inappropriately selecting decomposition levels and wavelet filters; and 3) not carefully partitioning 

calibration and validation data.  By not addressing these boundary conditions during wavelet 

decomposition, the incorrectly developed wavelet-based forecasting models often result in much better 

performance than what is achievable in reality (Du et al., 2017) (for an example, see section 4.6.3.).  To 

address these important and prevalent errors, we developed a set of best practices that were holistically 

combined in to a new wavelet-based forecasting framework, the Wavelet Data-Driven Forecasting 

Framework (WDDFF), that can be used to overcome these errors and that can be used for real-world 

hydrological and water resources forecasting problems (see section 4.3 and 4.4).  Using a real-world daily 

urban water demand forecasting experiment in Montreal, Canada, we showed that WDDFF outperformed 

benchmark methods such as (non-wavelet-based) multiple linear regression, extreme learning machines, 

and a second-order Volterra model and provided more realistic and correct performance when compared 

against a recent wavelet-based forecasting strategy, that adopted the maximal overlap discrete wavelet 

transform-based multiresolution analysis, MODWT-MRA (Bachour et al., 2016; Barzegar et al., 2017; He 

et al., 2015; Prasad et al., 2017; Seo et al., 2017; Yang et al., 2014), and that showed unrealistic and 

incorrect performance during validation. 

In addition to providing  an approach that overcomes the errors mentioned above (thus allowing it to be 

used for real-world forecasting applications), a useful property of our proposed WDDFF is that it uses two 

different wavelet decomposition algorithms (maximal overlap discrete wavelet transform (MODWT) and 

à trous algorithm (AT)), two different wavelet-based forecasting approaches (direct and multicomponent), 

and has several methods (Single, Within, Across, Single-hybrid, Within-hybrid, or Across-hybrid - see 

section 4.4.2.1.1.) for adopting wavelet-decomposed data in the forecast design.  Typically, in hydrological 

and water resources forecasting studies, only a single wavelet decomposition algorithm (e.g., MODWT-

MRA), forecasting approach (e.g., direct), and method (e.g. Single) is used.  For our experiments, the 

combination of different wavelet decomposition algorithms, wavelet-based forecasting approaches, and 

methods were demonstrated to provide significantly different performances when compared against one 

another, highlighting the usefulness, and supporting the practice, of exploring different strategies for 

incorporating wavelet-decomposed data in wavelet-based hydrological and water resources forecasting 

models.  By addressing common pitfalls and errors of wavelet-based forecasts for real-world hydrological 

and water resources problems and providing a number of different strategies for using wavelet-

decomposed data in the forecast design, WDDFF can be considered a promising new method for 
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hydrological and water resources forecasting and we expect its use to grow within hydrology and water 

resources (and potentially other domains).   

Before discussing future research endeavours, we summarize below our main contributions and 

originality: 

1. Since the wavelet-based forecasting literature in general (and specifically hydrology and water 

resources) does not contain any studies concerning best (and correct) practices for real-world 

wavelet-based forecasting models, this paper represents the first to comprehensively: a) compare 

correct (MODWT and AT) and incorrect (DWT-MRA and MODWT-MRA) wavelet decomposition 

methods for real-world forecasting (see section 4.2 and 4.3.2 of our revised manuscript); b) study 

the different boundary conditions that need to be properly addressed in order to correctly use a 

wavelet-based forecasting model in real-world problems (i.e., use of ‘future data’, improper 

selection of decomposition levels and wavelet filters, and improperly partitioning calibration and 

validation data - see section 4.2, 4.3.3, 4.3.4, and 4.3.5); c) propose (in addition to a set of best 

practices that addresses each boundary condition) a general wavelet-based data-driven 

forecasting framework (i.e., WDDFF) that can adopt any data–driven model and input variable 

selection routine, two wavelet decomposition algorithms (MODWT and AT), two wavelet-based 

forecasting approaches (direct and multicomponent), and several methods (Single, Within, 

Across, Single-hybrid, Within-hybrid, or Across-hybrid) for decomposing and including both target 

and explanatory data in the forecast design (see section 4.3.2., 4.4.2.1.1., and 4.4.3); and d) 

evaluate the forecasting performance of WDDFF on a real-world water resources forecasting 

problem using different combinations of the wavelet decomposition algorithms, wavelet-based 

forecasting approaches, and methods (see section 4.6). 

2. This paper is the first to discuss and compare the differences between the MODWT and AT 

wavelet and scaling coefficients in terms of theory (see section 4.3.1) and forecasting 

performance (see section 4.6.2).  This is also the first study to use the MODWT wavelet and scaling 

coefficients directly (i.e., instead of the MODWT-MRA detail and approximation coefficients) for 

hydrological or water resources forecasting (see section 4.3.2). 

3. This is the first paper to apply a conditional mutual information-based input variable selection 

approach for identifying which MODWT and AT-based wavelet and scaling coefficients to use in a 

data-driven forecasting model (see section 4.4.2.2). 
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Future research will focus on converting WDDFF from a deterministic forecast, into a stochastic forecast 

- such a model has already been developed by the authors and will be published under the name 

Stochastic Wavelet Data-Driven Forecasting Framework (SWDDFF) – allowing for the forecasts from this 

method to be used for forecast systems subject to uncertainty and which may be useful for complimentary 

objectives such as risk assessment (Chen et al., 2013; Yung et al., 2011).  One may expand WDDFF (and 

SWDDFF) by adopting singular spectrum analysis (SSA), to afford yet another method for taking into 

consideration the periodic and transient nature of hydrological and water resources processes – an 

interesting study would be to swap wavelets for SSA within our proposed WDDFF and compare 

performances between both methods.  Finally, since WDDFF was only studied for a single water resources 

process (since this work served as an introduction to the new method), further research is required to 

explore its usefulness for forecasting other hydrological and water resources processes (e.g., drought, 

rainfall-runoff, water quality, evaporation, etc.). 
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Appendix 

This appendix contains online supplementary material related to Chapter 4. 

4. A.1. Details on Wavelet Decomposition Wavelet and Scaling Coefficients, and Wavelet and 

Scaling Filters 

Wavelet decomposition through the discrete wavelet transform (DWT), maximal overlap DWT (MODWT), 

or à trous algorithm (AT) follows a recursive pyramid algorithm (Figure 4.A.1) and results in (DWT, 

MODWT, and AT) wavelet (𝑊𝑗, �̃�𝑗, and �̃�𝑗,𝑡
𝑎 )  and scaling coefficients (𝑉𝑗, �̃�𝑗, and �̃�𝑗,𝑡

𝑎 ), while the 

reconstruction follows a ‘reverse’ recursive pyramid algorithm (Figure 4.A.2 (a)) and converts the wavelet 

and scaling coefficients back into the original time series (see also Table 4.1 in the text). 

 

Figure 4.A.1.  A block diagram illustrating the process of wavelet decomposition for a given time series 

(𝑋) resulting in wavelet {𝑊1, … , 𝑊𝐽} and scaling coefficients {𝑉𝐽} using either the discrete wavelet 

transform (DWT), maximal overlap DWT (MODWT), or à trous algorithm (AT).  Note that 𝑋 ≡ 𝑉0. 
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Figure 4.A.2.  Using the block diagram notation in Percival and Walden (2000): a) The process for 

reconstructing a time series (𝑋) from its wavelet {𝑊1, … , 𝑊𝐽} and scaling coefficients {𝑉𝐽} using either the 

discrete wavelet transform, maximal overlap DWT, or à trous algorithm; b) the process of calculating the 

detail {𝐷1, … , 𝐷𝐽} coefficients using multiresolution analysis (MRA) via the DWT-MRA and MODWT-MRA; 

and c) the process of calculating the approximation coefficients {𝑆𝐽} using MRA via the DWT-MRA and 

MODWT-MRA.  Note that 0𝑘, for 𝑘 = 1, … , 𝑗, represents a vector of zeros of size 𝑁/2𝑘 for the DWT-MRA 

and 𝑁 for the MODWT-MRA.  The regular reconstruction formula for the DWT and MODWT is used to 

recover the details and approximation coefficients.  Also note that the AT is an additive deconstruction of 

the time series into wavelet and scaling coefficients, these coefficients can also be considered detail and 

approximation coefficients as they are equivalent (Aussem et al., 1998). 

The DWT and MODWT wavelet coefficients, 𝑊𝑗 and �̃�𝑗 (Eq. 4.1 and 4.4, respectively – see Table 4.1 in 

text), are associated with changes in averages over scale 𝜏𝑗 = 2𝑗−1 (𝑗 ∈ 1,2, … , 𝐽) where 𝐽 is the 

decomposition level, while the DWT, MODWT, and AT scaling coefficients, 𝑉𝑗, �̃�𝑗, and �̃�𝑗,𝑡
𝑎  (Eq. 4.2, 4.4, and 

4.7, respectively) are linked to variations at scales 𝜆𝑗 = 2𝑗  and higher.  The AT wavelet coefficients, �̃�𝑗,𝑡
𝑎 , 

represent differences in variations between scales 2𝑗−1 and 2𝑗(Aussem et al., 1998; Percival and Mofjeld, 

1997).  It follows that the scaling filters, 𝑔𝑙  (𝑙 ∈ 0, … , 𝐿 − 1, where 𝐿 is the filter length), are low-pass 

filters and the wavelet filters, ℎ𝑙  (𝑙 ∈ 0, … , 𝐿 − 1), are high-pass filters, fulfilling the quadrature mirror 

relationship,  𝑔𝑙 ≡ (−1)𝑙+1ℎ𝐿−1−𝑙 (where 𝑔𝑙 ≡ √2�̃�𝑙  and ℎ𝑙 ≡ √2ℎ̃𝑙). Therefore, the 𝑗-th level wavelet 
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coefficients are associated with frequencies in the pass-band [
1

2𝑗+1 ,
1

2𝑗] while the 𝑗-th level scaling 

coefficients are associated with the interval of frequencies in [0,
1

2𝑗+1] .  Further properties of the wavelet 

and scaling filters can be found in Bašta (2014), Percival and Mofjeld (1997), Percival and Walden (2000), 

and Walden (2001).  For illustration purposes, see Table 4.A.1 for the frequency bands corresponding to 

different decomposition levels at the daily scale (we use the daily scale since our case study involves daily 

time series forecasting, see section 4.5.2. and 4.6) and Table 4.A.2 for different scaling filters (up to length 

14) (these filters are also used in our case study). 

Another key difference between the DWT and the MODWT and AT is that the DWT involves decimation.  

Therefore, DWT wavelet and scaling coefficients at a given level 𝑗 have 2𝑗 fewer coefficients than the 

previous scale (𝑗 − 1).  The decimation of the DWT causes several issues for wavelet-based forecasting 

applications, thus making it invalid for real-world forecasting problems: 

1. It requires the time series to be an integer multiple of 2𝐽to compute the wavelet and scaling 

coefficients (in cases where this is not met, time series “extension methods”, such as zero-

padding, are used to make the time series an integer multiple of  2𝐽 (Percival and Walden, 2000)); 

2. It is shift-variant: circularly shifting the time series by some amount will not circularly shift the 

DWT wavelet and scaling coefficients by the same amount (Walden, 2001) – see Figure 1 in 

Maheswaran and Khosa (2012a) for a clear example of this issue; and 

3. It is sensitive to adding new data points: including additional data points (such as acquiring new 

data from a sensor in real-time and updating a forecast model with this new data) and re-

calculating the DWT creates errors, i.e., there is not a smooth continuity in the wavelet and scaling 

coefficients at time 𝑡 and 𝑡 + 1 when the DWT is re-calculated using new data occurring at 𝑡 + 1 

– this is a significant issue for real-world forecasting applications where forecast models must be 

updated regularly – see Figure 2 in Maheswaran and Khosa (2012a) for a clear example of this 

issue. 

Due to the decimation of the DWT wavelet and scaling coefficients, one must adopt multiresolution 

analysis (MRA) to convert DWT wavelet and scaling coefficients into detail ({𝐷1, 𝐷2, … , 𝐷𝐽}) and 

approximation coefficients (𝑆𝐽) in order to use the DWT for wavelet-based forecasting (Kisi and Cimen, 

2011).  The detail and approximation coefficients for a given scale, e.g., 𝐷𝑗 or 𝐴𝐽, are easily calculated by 

setting all other wavelet and/or scaling coefficients (i.e., except 𝑊𝑗 or 𝑉𝐽) to 0 and sequentially applying 
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the DWT reconstruction algorithm (Eq. 4.7 in Table 4.1 in text; see also Figure 4.A.2 (b) and (c)).  Sequential 

passes through the reconstruction algorithm (Eq. 4.7 in Table 4.1 in text) involves up-sampling (see the 

notes for the DWT in Table 4.1 text) and for this reason, the detail(s) and approximation coefficients retain 

the same number of observations as the original time series.  The same process can be followed for the 

MODWT and an MODWT-based MRA (MODWT-MRA) can be produced via Eq. 4.8 (Table 4.1 in text), 

resulting in MODWT-MRA detail(s) (�̃�1, �̃�2, … , �̃�𝐽) and approximation coefficients (�̃�𝐽). 

Table 4.A.1.  Different decomposition levels and the corresponding frequency and time-scale ranges for 

daily time series (copied from Bašta (2011)) 

Decomposition 
Level 

Corresponding Frequency Range 
Changes Between Averages which 
are Calculated on the Time-Scale 

of: 

1 2-2 < f ≤ 2-1 21 – 1 day =  1 day 
2 2-3 < f ≤ 2-2 2 days 
3 2-4 < f ≤ 2-3 4 days 
4 2-5 < f ≤ 2-4 8 days ≈ 1 week 
5 2-6 < f ≤ 2-5 16 days 
6 2-7 < f ≤ 2-6 32 days ≈ 1 month 
7 2-8 < f ≤ 2-7 64 days 
8 2-9 < f ≤ 2-8, contains the frequency year-1 128 days 
9 2-10 < f ≤ 2-9 256 days 

10 2-11 < f ≤ 2-10 512 days 
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Table 4.A.2.  Different scaling filters 

Filter 
 (𝑔) 

Scaling Filter Coefficients 

haar/d1 0.707 0.707             

d2 0.483 0.837 0.224 -0.129           

fk4 0.654 0.753 0.053 -0.046           

d3 0.333 0.807 0.460 -0.135 -0.085 0.035         

fk6 0.428 0.813 0.356 -0.146 -0.077 0.041         

coif1 -0.073 0.338 0.853 0.385 -0.073 -0.016         

d4 0.230 0.715 0.631 -0.028 -0.187 0.031 0.033 -0.011       

sym4 0.032 -0.013 -0.099 0.298 0.804 0.498 -0.030 -0.076       

fk8 0.349 0.783 0.475 -0.100 -0.160 0.043 0.043 -0.019       

la8 -0.076 -0.030 0.498 0.804 0.298 -0.099 -0.013 0.032       

d5 0.160 0.604 0.724 0.138 -0.242 -0.032 0.078 -0.006 -0.013 0.003     

la10 0.020 -0.021 -0.175 0.017 0.634 0.723 0.199 -0.039 0.030 0.027     

d6 0.112 0.495 0.751 0.315 -0.226 -0.130 0.098 0.028 -0.032 0.001 0.005 -0.001   

sym6 -0.008 0.002 0.045 -0.021 -0.073 0.338 0.788 0.491 -0.048 -0.118 0.003 0.015   

coif2 0.016 -0.041 -0.067 0.386 0.813 0.417 -0.076 -0.059 0.024 0.006 -0.002 -0.001   

la12 0.015 0.003 -0.118 -0.048 0.491 0.788 0.338 -0.073 -0.021 0.045 0.002 -0.008   

d7 0.078 0.397 0.729 0.470 -0.144 -0.224 0.071 0.081 -0.038 -0.017 0.013 0.000 -0.002 0.000 

fk14 0.260 0.687 0.612 0.051 -0.246 -0.049 0.124 0.022 -0.064 -0.005 0.030 -0.003 -0.009 0.004 

la14 0.010 0.004 -0.108 -0.140 0.289 0.768 0.536 0.017 -0.050 0.068 0.031 -0.013 -0.001 0.003 

bl14 0.012 0.017 -0.065 -0.064 0.360 0.782 0.484 -0.057 -0.101 0.045 0.020 -0.018 -0.003 0.002 
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4. B.1. Study Area Details 

Montreal, Quebec is the second largest city in Canada and provides safe drinking water to more than 1.9 

million citizens.   Montreal draws water from Riviere des Prairies, Lac Saint-Louis, and the St. Lawrence 

River where it is treated by six separate water treatment plants.  The city has made improvements in 

reducing the production of their water supply (while still meeting demands) with a decrease in yearly 

production by about 110 million cubic meters between 2001 and 2013 and now resides at a daily 

production rate of about 1.75 million cubic meters (about 640 million cubic meters per annum).  The City 

of Montreal transports water through their distribution system using nearly 5000 km of watermains 

(Tiwari and Adamowski, 2013; Ville de Montreal, 2014). 

The City of Montreal made an agreement through the Montreal Community Sustainable Development 

Plan to reduce water production by 15% (from 2000 to 2015) through the following initiatives: 1) reducing 

water loss and illegal uses; 2) indexing water consumption by sector of activity; and 3) improving efficient 

use of potable water (Ville de Montreal, 2015).  Since urban water demand forecasting (UWD) forecasting 

is very useful to apply for program tracking, the City of Montreal may use the proposed Wavelet Data-

Driven Forecasting Framework (WDDFF) for UWD forecasting to track each of the above mentioned 

sustainability initiatives through time.  This would provide water managers and/or city councillors access 

to UWD projections for a particular operational, planning and construction, or sustainability initiative that 

could allow more proactive measures to take place, such as accelerating certain system maintenance 

projects (e.g., to address water loss), planning temporary servicing requirements for large water main 

construction, repairs, or new site development, and/or implementing meaningful water use restrictions 

by sector of activity during times of need (e.g., severe droughts). 

Montreal has a humid continental climate.  The average yearly air temperature is 5.3 °C with the daily 

average air temperature peaking in July at 19.8 °C and at its lowest in January at -11.5 °C.  Annually, on 

average, 166 days drop below freezing while 111 days exceed 20 °C.  Average yearly rainfall is 836 mm 

with only 50 days exceeding 5 mm.  Montreal’s primary economy consists of manufacturing industries, 

retail and health sectors, professional, scientific, and technological services (Environment Canada, 2014; 

Learn Quebec, 2014). 

We collected average daily UWD (U) from the City of Montreal and daily meteorological variables from 

Environment Canada within the period February 27, 1999 to August 6, 2010 (4179 daily records).  Average 

daily UWD represents the dependent (target/response) variable which we forecasted at daily (1, 3, 5, 7, 

and 14) lead times.  Based on previous UWD forecasting studies (Adamowski et al., 2012; Akuoko-Asibey 
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et al., 1993; Gato et al., 2007; Wong et al., 2010) and the data available to us through Environment Canada, 

the following explanatory (input) variables were considered as the independent variables used for 

forecasting UWD: historical average daily UWD, 𝑈, maximum daily air temperature (𝑇), total daily rainfall 

(𝑅), and a daily antecedent precipitation index (𝐴, an indicator of soil moisture, an important variable to 

consider for outdoor water demand (Quilty et al., 2016)) with decay constant 0.95 (determined empirically 

via correlation analysis with UWD – typical values range between 0.85 – 0.99).   antecedent precipitation 

index, 𝐴, was calculated from the daily rainfall time series using the relation (Fedora and Beschta, 1989): 

 𝐴𝑡 = 𝑘 ∗ 𝐴𝑡−1 + 𝑅𝑡 (4.B.1) 

 

where 𝑘 is the decay constant. 

While 𝑈, 𝑅, and 𝐴 did not contain any missing observations, 𝑇 had six missing records (missing at random) 

that were imputed using linear regression. 

Descriptive statistics for the target and input variables are provided in Table 4.B.1 while the time series 

are plotted in Figure 4.B.1.  Pearson correlation and information correlation (i.e., mutual information 

scaled between 0 and 1 (Sharma and Mehrotra, 2014), estimated using Edgeworth Approximations of 

differential entropy (Van Hulle, 2005) – the base method in our Edgeworth Approximations-based 

conditional mutual information input variable selection method, recently introduced in Quilty et al. 

(2016)) were calculated between each pair of variables and listed in Table 4.B.2. 
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Figure 4.B.1.  Time series plots for a) average daily urban water demand time series measured in 

megalitres per day (ML/D); b) daily maximum air temperature measured in degrees Celsius (deg. C); c) 

daily total rainfall measured in millimetres per day (mm/D); and d) antecedent precipitation index 

measured in millimetres per day (mm/D) 
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Table 4.B.1.  Descriptive statistics for the time series in our experiment 

Time 
Series 

Units of 
Measure 

Number 
of 

Records 
Mean Variance Minimum Maximum Median 

U ML/D 

4179 

1728.275 15939.821 1446.212 2275.202 1705.833 

T °C 12.148 150.151 -23.900 36.200 13.100 

R mm/D 2.206 37.060 0.000 73.800 0.000 

A mm/D 43.613 704.581 2.177 158.297 40.103 

 

Table 4.B.2.  Pearson and information correlation for the time series in our experiment 

Pearson Correlation 

Time Series U T R A 

U 1.000 0.580 -0.009 0.121 

T 0.580 1.000 0.122 0.385 

R -0.009 0.122 1.000 0.106 

A 0.121 0.385 0.106 1.000 

Information Correlation 

Time Series U T R A 

U 1.000 0.692 0.090 0.124 

T 0.692 1.000 0.285 0.403 

R 0.090 0.285 1.000 0.269 

A 0.124 0.403 0.269 1.000 

 

4. C.1. Experimental Setup for the Wavelet Data-Driven Forecasting Framework 

4. C.1.1. Target, Forecast Lead Times, and Explanatory Variables 

The target time series, average UWD, 𝑈, was forecasted for lead times 1, 3, 5, 7, and 14 days ahead by 

using explanatory variables: previous observations of 𝑈, 𝑅, 𝐴, and, 𝑇; where each explanatory variable 

was time lagged  up to 14 days.  We chose this value as the UWD record displayed a strong weekly 

structure and we wanted to provide the developed models with enough temporal structure from which 

to identify suitable predictors while ensuring that we did not include too many variables that may 

potentially slow down the input variable selection process while not necessarily increasing the model 

performance (Galelli et al., 2014).  We found that by increasing the lag time past this point, the model 

performance did not significantly change. 
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4. C.1.2.  Wavelet Decomposition: Decomposition Level and Wavelet Filter Selection and Wavelet-

based Forecasting Approaches 

To obtain the “boundary-corrected” wavelet and scaling coefficients, i.e., those that avoid adding 

uncertainty into the wavelet and scaling coefficients due to the ‘future data’ problem, we adopted both 

the maximal overlap discrete wavelet transform (MODWT) and à trous (AT) algorithms for wavelet 

decomposition.  Since both methods generate different sets of wavelet coefficients (see section 4.3.1. and 

4.3.3.1.1.), it is important to understand which method is more useful in providing the best forecast 

accuracy for a given dataset. 

Decomposition levels that allowed us to explore periodicities up to the inter- and intra-annual scale (𝐽 ≤

9 since we study a daily time series) were selected (i.e., 𝐽𝑚𝑎𝑥 = 9, see section 4.3.3.3.1.) – see Table 4.A.1.  

We considered wavelet filters (see Table 4.A.2) of reasonable length (𝐿 ≤ 14) since this filter length 

covered a two week period for the daily time series that we considered, which was useful since we 

selected explanatory variables with time lags of 14 days (time lags past this point did not improve our 

models significantly).    The wavelet families we considered included: Haar (haar), Daubechies (db2, db3, 

db4, db5, db6, db7), Symlets (sym4, sym6,), Coiflets (coif1, coif2), Fejer-Korovkin (fk4, fk6, fk8, fk14), 

Least-Asymmetric (la8, la12, la14), and Best-Localized (bl14) (Crowley, 2007; Nielsen, 2001; Olhede and 

Walden, 2004; Percival and Walden, 2000; Rathinasamy et al., 2013; Zhang et al., 2016).  A total of 20 

wavelet filters were considered in our wavelet-based forecasts, a much larger number of wavelet filters 

than are commonly used in wavelet-based forecasting studies (Adamowski and Chan, 2011; Aussem et 

al., 1998; Barzegar et al., 2017; Belayneh et al., 2016; Murtagh et al., 2004; Nourani et al., 2015; 

Rathinasamy et al., 2013).  The reader can find the different scaling filters for these wavelets in Table 

4.A.2. 

We used both direct and multicomponent wavelet-based forecasting approaches - each method (1-6 - 

Single, Within, Across, Single-hybrid, Within-hybrid, or Across-hybrid – see section 4.4.2.4.) were adopted 

in order to determine which forecasting approach and method performed best for our given dataset. 

4. C.1.3.  Dataset Partitioning 

We selected our calibration and validation periods as follows: February 27, 1999 to December 31, 2007 

for calibration (3230 records) and January 1, 2008 to August 6, 2010 for validation (949 records) – we 

found this data partitioning to provide good performance as it afforded us with enough records for 

calibration and a reasonable amount of data (over two and a half years) to validate forecast performance 

out-of-sample.  Since the MODWT and AT avoid using ‘future data’ during wavelet decomposition this 
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allowed us to decompose the calibration and validation data in bulk (i.e., all calibration and validation 

records are decomposed at once) in order to obtain the “boundary-corrected” wavelet and scaling 

coefficients.  Studies using the discrete wavelet transform multiresolution analysis (DWT-MRA) or the 

MODWT multiresolution analysis (MODWT-MRA) generally decompose both datasets separately by citing 

that this avoids incorporating ‘future data’ from the validation set in the calibration set (and vice versa) 

(e.g., (Barzegar et al., 2017; Deo et al., 2017)); however, as discussed in section 4.3.3.3., both the DWT-

MRA and MODWT-MRA require ‘future data’ to be available at the decomposition stage for any given 

time 𝑡 and that by decomposing both the calibration and validation records separately, this does not 

actually remedy this issue and instead incurs boundary artefacts in both the calibration and validation 

partitions (see section 4.3.3.3) which was verified mathematically in Table 4.2 (in text).  In these cases 

where the DWT-MRA and MODWT-MRA have been used separately to decompose the calibration and 

validation records, it would have been more “appropriate” to first decompose the calibration records, 

then decompose the calibration and validation records together and “stitch” together the calibration 

records decomposed in the first step to the validation records decomposed in the second step (as this 

lessens the effect of the boundary condition on the validation records).  In other words, the decomposed 

validation records (from the second step) should be placed ahead of the decomposed calibration records 

(from the first step) (see section 4.6.3.).  Regardless, we do not recommend that one uses the DWT-MRA 

or MODWT-MRA and instead recommend the use of the MODWT and AT algorithms.  In cases where one 

has access to a historical record and is calibrating then validating a wavelet-based forecast (as is the case 

in the literature) using the MODWT or AT, prior to adopting the model for real-world use, one does not 

have to decompose calibration and validation records separately since these methods do not incorporate 

‘future data’.  However, if the model is to be subsequently used for forecasting when new data is received, 

then the newly received data needs to be decomposed after it is appended to the historical (combined 

calibration and validation) record. 

It is important to note that although we originally explored decomposition levels from one to nine, we 

found that our forecasts were essentially identical at decomposition levels six and above.  Thus, we 

reduced the maximum decomposition level to six and re-ran the models.  Performance did not 

significantly change and the models were quicker to run since the wavelet decomposition stage had a 

lower number of decomposition levels to explore and there were less variables to consider during input 

variable selection.  This is why we suggested (in section 4.3.3.3.1.) that a preliminary exploration of 

different decomposition levels and wavelet filters in conjunction with dataset partitioning should be 



198 
 

performed to identify reasonable decomposition levels and wavelet filters that suit the modellers 

preference in terms of model accuracy versus computation efficiency. 

By setting the largest wavelet filter length at 14 filter coefficients (d7, sym7, fk14, la14, and bl14) and a 

maximum decomposition level of six, we had 𝐿𝑗 = (2𝑗 − 1)(𝐿 − 1) + 1 = 820  boundary-effected 

coefficients.  We removed the first 820 records from the beginning of our input-output datasets (creating 

the “boundary-corrected” wavelet and scaling coefficients) prior to selecting input variables and before 

model calibration (eliminating the effect of the boundary condition on our forecasts (see section 

4.3.3.3.1.)).  This is a large number of records to remove (more than two years of daily observations), but 

it is a reasonable sacrifice to make if one does not want to introduce uncertainty into their wavelet-based 

forecasts due to the boundary condition - in our case, we found that the performance of the models was 

still reasonably high after removing these records.  To ensure that each model used the same time datum 

for calibrating (and validating the forecasts) the same calibration and validation records were used for 

each decomposition level and wavelet filter combination (although, lower decomposition levels and 

narrower wavelet filters technically have less boundary-effected coefficients) - this was done to permit a 

fair comparison when evaluating the different wavelet-based forecasts that used different decomposition 

levels and wavelet filters. 

Since we included explanatory variables with time lags up to 14 days, explored 1, 3, 5, 7, and 14 day ahead 

forecasts, and removed the first 820 boundary coefficients from each dataset there was a total of: 2395, 

2393, 2391, 2389, and 2382 calibration records for the 1, 3, 5, 7, and 14 day ahead forecasts, respectively.  

This left us with 949 validation records for evaluating each lead time forecast out-of-sample (i.e., each 

lead time forecast had the exact same validation set for the target process).  Each input was scaled such 

that it fell within the range of 0 to 1 for the calibration data, which required the calculation of the 

minimum and maximum values for each input variable (in a particular calibration dataset).  The minimum 

and maximum values were then used to scale the validation dataset, a common practice for data-driven 

models that could suffer performance issues if inputs are on widely different scales, since certain model 

parameters may only focus on certain variables that contain much of the dataset variability within the 

original input variables (when compared to other inputs included in the set of explanatory variables) 

(Hastie et al., 2009). 

4. C.1.4. Input Variable Selection, Forecast Calibration, and Assessment 

As part of the WDDFF, we adopted the Edgeworth Approximation-based conditional mutual information 

(EA) and partial correlation input selection (PCIS) input variable selection methods (see section 4.4.2.2.) 
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to select inputs (i.e., “boundary-corrected” wavelet and scaling coefficients) for the different forecast 

models: multiple linear regression (MLR), extreme learning machine (ELM), and second order Volterra 

(SOV) (see section 4.5.1.).  The PCIS, a linear method, was paired with MLR, and EA was paired with the 

nonlinear ELM and SOV methods. 

We compared wavelet-based nonlinear models (EA paired with ELM and SOV) with wavelet-based linear 

models (PCIS paired with MLR) and a random walk (RW) benchmark.  Standard models were also 

considered as comparison tools, i.e., models without wavelets were also considered.  Models that used 

wavelets are appended with a ‘W’, i.e., WELM is a wavelet-based extreme learning machine, while WMLR 

is a wavelet-based multiple linear regression model.  The following models were considered (input 

variable selection method-model): EA-WELM, EA-WSOV, PCIS-WMLR, EA-ELM, EA-SOV, PCIS-MLR, and 

RW.  Each model based on wavelet-decomposed inputs was developed for each of the different wavelet-

based forecasting approaches (direct and multicomponent) and method (1-6 - Single, Within, Across, 

Single-hybrid, Within-hybrid, or Across-hybrid – see section 4.4.2.1.1.) by considering each decomposition 

level (six in total) and wavelet filter (20 in total).   

Since MLR, ELM, and SOV are traditionally formulated as linear least-squares problems, their parameters 

were calibrated such that they minimized the mean square error.  The commonly adopted Nash-Sutcliffe 

Efficiency Index (NASH) (Moriasi et al., 2007) was used to select the best performing models by assessing 

performance on the validation set.  We also adopted two criteria that we have used in other urban water 

demand forecasting studies (e.g., the root mean square error (RMSE) and mean absolute percentage error 

(MAPE) (Adamowski et al., 2012; Quilty et al., 2016; Tiwari and Adamowski, 2017)) to evaluate the 

different forecasts.   

4. C.1.5. Summary of the Different Experiments 

Since we explored: six decomposition levels, 20 different wavelet filters, eight different wavelet-based 

forecasts (Methods 1-6 - Single, Within, Across, Single-hybrid, Within-hybrid, or Across-hybrid (remember 

that the AT can be used with each method while the MODWT can only be used with methods 1 and 4, see 

section 4.3.3.1.1.)) combined with three different regression models (MLR, ELM, and SOV), and explored 

five forecast lead times, a total of 14, 400 different wavelet-based forecasts were developed and 

compared as part of our experiments.  Additionally, we studied four different non-wavelet-based models 

(MLR, ELM, SOV, and a random walk model) for the different lead times.  Therefore, 14, 420 different 

models were explored in this work. 
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4. D.1. Experiment Results 

Table 4.D.1.  3 day lead time forecast results 

3 Day Lead-Time Forecasts 

Strategy IVS-Model Level Filter RMSE (ML/D) MAPE (%) NASH 

  

RW 

  

57.981 2.642 0.595 

PCIS-MLR 58.895 2.787 0.582 

EA-ELM 45.880 1.864 0.746 

EA-SOV 46.237 1.874 0.742 

AT - single 

PCIS-WMLR 3 d5 41.664 1.746 0.791 

EA-WELM 1 la12 43.246 1.799 0.774 

EA-WSOV 4 d2 46.178 1.836 0.743 

MODWT - 
single 

PCIS-WMLR 3 fk6 42.250 1.810 0.785 

EA-WELM 1 fk6 46.136 1.897 0.743 

EA-WSOV 1 fk4 46.946 1.909 0.734 

AT - within 

PCIS-WMLR 5 fk4 44.985 1.814 0.756 

EA-WELM 5 fk4 43.985 1.776 0.767 

EA-WSOV 6 fk4 44.680 1.792 0.759 

AT - across 

PCIS-WMLR 4 d6 41.156 1.743 0.796 

EA-WELM 5 d3 43.547 1.769 0.771 

EA-WSOV 4 fk4 44.694 1.863 0.759 

AT - single - 
hybrid 

PCIS-WMLR 2 la10 41.666 1.734 0.791 

EA-WELM 2 d6 44.141 1.845 0.765 

EA-WSOV 2 d6 44.246 1.880 0.764 

MODWT - 
single - 
hybrid 

PCIS-WMLR 6 la14 39.048 1.611 0.816 

EA-WELM 2 d6 44.141 1.845 0.765 

EA-WSOV 2 d6 44.246 1.880 0.764 

AT - within 
- hybrid 

PCIS-WMLR 1 la8 46.687 2.082 0.737 

EA-WELM 6 fk4 44.032 1.820 0.766 

EA-WSOV 2 d1 44.878 1.862 0.757 

AT - across 
- hybrid 

PCIS-WMLR 4 d6 41.276 1.747 0.795 

EA-WELM 4 d2 44.064 1.846 0.766 

EA-WSOV 4 fk4 44.364 1.836 0.763 
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Table 4.D.2.  5 day lead time forecast results 

5 Day Lead-Time Forecasts 

Strategy IVS-Model Level Filter RMSE (ML/D) MAPE (%) NASH 

  

RW 

  

61.096 2.676 0.550 

PCIS-MLR 62.023 2.908 0.536 

EA-WELM 49.785 2.039 0.701 

EA-WSOV 49.842 2.035 0.700 

AT - single 

PCIS-WMLR 3 fk6 47.912 2.005 0.723 

EA-WELM 4 d6 49.684 2.109 0.702 

EA-WSOV 1 d6 50.534 2.059 0.692 

MODWT - 
single 

PCIS-WMLR 2 d2 48.759 2.138 0.713 

EA-WELM 1 d6 50.019 2.079 0.698 

EA-WSOV 1 d6 50.534 2.059 0.692 

AT - within 

PCIS-WMLR 4 d1 49.837 2.011 0.701 

EA-WELM 4 d1 49.391 1.980 0.706 

EA-WSOV 3 fk6 49.212 1.937 0.708 

AT - across 

PCIS-WMLR 6 coif1 46.743 1.903 0.737 

EA-WELM 6 d1 47.604 1.911 0.727 

EA-WSOV 6 d1 48.630 2.003 0.715 

AT - single - 
hybrid 

PCIS-WMLR 3 coif2 49.025 2.058 0.710 

EA-WELM 3 d2 49.583 2.040 0.704 

EA-WSOV 3 d2 49.794 2.045 0.701 

MODWT - 
single - 
hybrid 

PCIS-WMLR 6 la14 44.160 1.832 0.765 

EA-WELM 1 bl14 49.779 2.039 0.701 

EA-WSOV 1 bl14 49.842 2.035 0.700 

AT - within 
- hybrid 

PCIS-WMLR 1 sym4 49.702 2.080 0.702 

EA-WELM 6 d1 48.929 2.115 0.711 

EA-WSOV 1 fk4 50.010 2.028 0.698 

AT - across 
- hybrid 

PCIS-WMLR 5 d1 47.202 1.964 0.731 

EA-WELM 6 d1 48.860 2.022 0.712 

EA-WSOV 1 d7 49.125 1.996 0.709 
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Table 4.D.3.  7 day lead time forecast results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

7 Day Lead-Time Forecasts 

Strategy IVS-Model Level Filter RMSE (ML/D) MAPE (%) NASH 

  

RW 

  

52.804 2.056 0.664 

PCIS-MLR 52.415 2.324 0.669 

EA-ELM 51.052 2.185 0.686 

EA-SOV 50.554 2.069 0.692 

AT - single 

PCIS-WMLR 1 la14 50.754 2.182 0.689 

EA-WELM 2 bl14 50.600 2.152 0.691 

EA-WSOV 1 d1 52.070 2.105 0.673 

MODWT - 
single 

PCIS-WMLR 3 d1 51.421 2.295 0.681 

EA-WELM 1 d1 51.863 2.242 0.676 

EA-WSOV 1 d1 52.070 2.105 0.673 

AT - within 

PCIS-WMLR 1 d1 52.416 2.300 0.669 

EA-WELM 4 d1 50.137 2.076 0.697 

EA-WSOV 6 d1 50.654 2.059 0.691 

AT - across 

PCIS-WMLR 6 fk4 49.913 2.171 0.700 

EA-WELM 6 d1 48.622 1.964 0.715 

EA-WSOV 1 d7 50.891 2.078 0.688 

AT - single - 
hybrid 

PCIS-WMLR 3 fk8 51.317 2.302 0.683 

EA-WELM 1 sym6 50.762 2.141 0.689 

EA-WSOV 2 bl14 50.554 2.069 0.692 

MODWT - 
single - 
hybrid 

PCIS-WMLR 6 la14 46.840 1.974 0.735 

EA-WELM 2 bl14 51.061 2.183 0.686 

EA-WSOV 2 bl14 50.554 2.069 0.692 

AT - within 
- hybrid 

PCIS-WMLR 1 d1 54.479 2.424 0.642 

EA-WELM 5 d2 50.045 2.112 0.698 

EA-WSOV 2 d1 50.877 2.100 0.688 

AT - across 
- hybrid 

PCIS-WMLR 4 d1 50.303 2.179 0.695 

EA-WELM 6 d2 49.993 2.119 0.699 

EA-WSOV 1 d7 51.032 2.098 0.686 
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Table 4.D.4.  14 day lead time forecast results 

14 Day Lead-Time Forecasts 

Strategy IVS-Model Level Filter RMSE (ML/D) MAPE (%) NASH 

  

RW 

  

64.914 2.628 0.492 

PCIS-MLR 64.205 3.037 0.503 

EA-ELM 62.759 2.959 0.525 

EA-SOV 61.218 2.680 0.548 

AT - single 

PCIS-WMLR 1 d1 64.751 3.081 0.494 

EA-WELM 2 bl14 61.944 2.877 0.537 

EA-WSOV 1 fk4 62.151 2.701 0.534 

MODWT - 
single 

PCIS-WMLR 1 fk14 63.691 3.017 0.511 

EA-WELM 1 fk4 63.017 2.979 0.521 

EA-WSOV 1 fk4 62.151 2.701 0.534 

AT - within 

PCIS-WMLR 3 d1 61.868 2.863 0.539 

EA-WELM 5 fk6 59.508 2.591 0.573 

EA-WSOV 5 fk6 60.406 2.531 0.560 

AT - across 

PCIS-WMLR 6 fk8 59.032 2.736 0.580 

EA-WELM 5 coif1 59.401 2.511 0.575 

EA-WSOV 1 d2 61.255 2.647 0.548 

AT - single - 
hybrid 

PCIS-WMLR 1 d1 64.205 3.037 0.503 

EA-WELM 6 bl14 52.396 2.283 0.669 

EA-WSOV 6 bl14 51.967 2.114 0.674 

MODWT - 
single - 
hybrid 

PCIS-WMLR 6 bl14 51.048 2.234 0.686 

EA-WELM 6 bl14 52.396 2.283 0.669 

EA-WSOV 6 bl14 51.967 2.114 0.674 

AT - within - 
hybrid 

PCIS-WMLR 1 d1 65.772 3.123 0.478 

EA-WELM 1 sym6 62.114 2.796 0.535 

EA-WSOV 2 d1 61.673 2.779 0.541 

AT - across - 
hybrid 

PCIS-WMLR 6 coif1 58.882 2.621 0.582 

EA-WELM 1 sym6 61.454 2.757 0.545 

EA-WSOV 3 d2 62.071 2.819 0.535 
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Connecting Text to Chapter 5 

The Wavelet Data-Driven Forecasting Framework (WDDFF) developed in Chapter 4, which adopted the 

new computationally efficient, non-parametric, nonlinear information-theoretic input variable selection 

methods from Chapter 3, is extended in this chapter by including uncertainty assessment through a 

stochastic approach, resulting in the Stochastic Wavelet Data-Driven Forecasting Framework (SWDDFF).  

SWDDFF can be used for generating probability-based forecasts of water resources and is a very useful 

tool for accounting for the nonlinear, multiscale, and uncertain nature of water resources.  SWDDFF can 

be used for decision-making tasks commonly encountered by water resources managers in the operation, 

planning, and management of water resources systems. 

This chapter has been submitted to Journal of Hydrology.  The format of the paper has been modified to 

ensure consistency with the style of this thesis.  A list of references cited in this paper are available at the 

end of the chapter. 

The author of the thesis was responsible for the development, testing, and application of the different 

methods and wrote the manuscript presented here.  Prof. Adamowski, the supervisor of this thesis, 

provided valuable advice on all aspects of the research and contributed to the review and editing of the 

manuscript. 
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Chapter 5: A stochastic wavelet-based data-driven framework for 

forecasting uncertain multiscale hydrological and water resources 

processes 

5.1. Abstract 

A recent blueprint was proposed for converting a deterministic process-based model into a stochastic one 

that accounts for input data, parameter, and model output uncertainty - yielding predictions of a target 

process in the form of a probability distribution.  We extend this blueprint in three key directions, by: 1) 

focussing on data-driven (i.e., regression, machine learning, artificial intelligence, etc.) forecasting models 

(in contrast to process-based models), due to their flexibility and widespread use in hydrology and water 

resources; 2) modifying the original blueprint to include input variable selection uncertainty (in addition 

to input data, parameter and model output uncertainty) - a recent topic that has shown promise for 

improving forecasting performance; and 3) incorporating wavelet transformation of model inputs - a 

method that has been used in numerous studies to improve the ability of data-driven forecasting models 

to account for the multiscale nature of hydrological and water resources processes.  The first two 

developments lead to a new forecasting framework named Stochastic Data-Driven Forecasting 

Framework (SDDFF).  The third development is an extension of the SDDFF and our earlier work on wavelet-

based data-driven forecasting which results in a second new framework, the Stochastic Wavelet Data-

Driven Forecasting Framework (SWDDFF).  Through a real-world urban water demand forecasting 

experiment in Montreal, Canada, we compare SDDFF and SWDDFF against benchmarks and demonstrate 

that both input variable selection uncertainty and wavelet transformation play key roles in improving 

forecasting accuracy and reliability according to deterministic and probabilistic forecast evaluation 

metrics commonly adopted in water resources.  Many earlier wavelet-based (and non-wavelet-based) 

data-driven forecasting models are also shown to be special cases of the SDDFF and SWDDFF, highlighting 

the generality of the proposed frameworks. 

Keywords: uncertainty, stochastic, data-driven forecasting, input variable selection, wavelets 

5.2. Introduction 

Accounting for the uncertainty in hydrological and water resources forecasts is recognized as a crucial task 

in the management, planning, and operation of hydrological and water resources systems (Krzysztofowicz, 

2001).  The literature abounds with studies seeking to estimate uncertainties related to input data, 
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parameters, model structure, model output, initial conditions, etc. and their impact on the resulting 

forecasts (see Gong et al. (2013); Beven (2015); and Nearing et al. (2016) and references therein for many 

different examples).  Often the goal is to incorporate (one or many of) these different sources of 

uncertainty into a reliable forecasting framework that issues forecast probabilities (instead of single-

valued deterministic forecasts) which can be used for decision-making purposes (Ramos et al., 2013).  

Therefore, much effort is spent on refining and innovating various probability-based forecasting methods 

to serve this end (Fortin et al., 2006; Pappenberger et al., 2015; Raftery, 2016; Sivillo et al., 1997; Thiboult 

et al., 2017; Wani et al., 2017).  Our purpose is not to delve into the vast literature on probability-based 

hydrological and water resources forecasting approaches but rather to extend a recent stochastic 

modeling framework that is flexible and allows us to extend our earlier research on data-driven 

hydrological and water resources forecasting.  In this work, the term data-driven is used to represent 

models based on regression, machine learning, artificial intelligence, etc. (Solomatine and Ostfeld, 2008). 

Recently, Montanari and Koutsoyiannis (2012) introduced a general and simple ‘blueprint’ for converting 

a deterministic model into a stochastic one (see section 5.3.1.).  The blueprint’s generality lies in that it 

can be equally applied to any deterministic model, process-based (the focus of the original authors), data-

driven (our focus), or anything in between, and result in a target forecast in the form of a probability 

distribution.  The blueprint’s simplicity stems from its incorporation of different uncertainty sources 

through use of stochastic perturbations to input data, parameters, and model error (among other 

sources), whose probability distributions may be defined with simple tools such as the bootstrap  

(Srivastav et al., 2007).  The original authors focussed on process-based hydrological models (Montanari 

and Koutsoyiannis, 2012; Sikorska et al., 2015) that incorporated input data, parameter, and model output 

uncertainty. Using these attractive features of the blueprint as our starting point, our objectives for 

extending the blueprint are three-fold: 

1. We focus on data-driven models (i.e., multiple linear regression, neural networks, etc. 

(Solomatine and Ostfeld, 2008)) instead of process-based models – the blueprint authors 

mentioned this as a possible extension of their method (Montanari and Koutsoyiannis, 2012; 

Sikorska et al., 2015).  

2. The blueprint is modified to include input variable selection uncertainty (this is in addition to input 

data, parameter, and model output uncertainty previously defined within the blueprint) (Quilty 

et al., 2016).   



211 
 

3. Wavelet transformation of the input data is adopted to account for the multiscale nature of 

hydrological and water resources processes (Kumar and Foufoula-Georgiou, 1997; Labat, 2005; 

Maheswaran and Khosa, 2012; Nourani et al., 2014) and improve forecasting performance.   

Our justification for extending the blueprint in these three directions is as follows: 

1. We chose to focus on data-driven models as they are more flexible (convenient) than process-

based models and since they may be used, and have shown success, in modeling and forecasting 

complex problems where there is a lack of apriori knowledge, many potential input variables, and 

relatively few samples from which to build a model (Abrahart et al., 2012; Abrahart and See, 2007; 

Bowden et al., 2012, 2002; Dawson and Wilby, 2001).   

2. In the case of adopting a data-driven forecasting framework and given that the necessary 

condition of data availability exists (i.e., that useful model inputs are available), the selection of 

model inputs is of great importance in guiding the development of accurate and useful models 

for real-world applications (Creaco et al., 2016; Fernando et al., 2009; Galelli et al., 2014; Sharma 

and Mehrotra, 2014; Sun and Bertrand-Krajewski, 2013).  Although a relatively new topic, recent 

work has shown that by taking into account input variable selection uncertainty in data-driven 

models, hydrological and water resources model performance can be improved and may also act 

as a useful tool to gain further insight into the nature of the studied processes (Quilty et al., 2016; 

Taormina et al., 2016).  

3. By transforming the input data in to the wavelet domain, we are able to localize events (such as 

periodicities, transients, trends, etc.) in both time and frequency (scales), which has proven useful 

for increasing data-driven forecasting performance of hydrological and water resources processes 

(Afan et al., 2016; Dixit et al., 2016; Fahimi et al., 2017).  The likely reason why many data-driven 

models perform better when wavelet-decomposed inputs are used instead of the original inputs 

is because the variance of the original input data is dispersed amongst the different wavelet sub-

series allowing for model parameters to be more easily fit to these sources of variation (a similar 

idea can be said for principal component analysis, although both methods approach this problem 

differently).  This often results in a useful portrait of the original data that depicts its source of 

variation, sometimes in physically meaningful ways, such as seasonal periodicities, transients due 

to system failures (e.g., water main breaks), or level shifts due to anthropogenic factors (e.g., dam 

construction).  Furthermore, the topic of input variable selection using wavelet-transformed data 
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is a new topic (He et al., 2015; Prasad et al., 2017; Quilty and Adamowski, 2018; Tran et al., 2016) 

and so far no studies have combined input variable selection uncertainty with wavelet-based 

data-driven forecasting models. 

The first and second objectives (i.e., adjusting the blueprint for use with data-driven models and including 

input variable selection uncertainty, amongst input data, parameter, and model output uncertainty) leads 

us to the first of our proposed models, named the Stochastic Data-Driven Forecasting Framework (SDDFF).  

By altering the appellation of the blueprint to the Stochastic Data-Driven Forecasting Framework our 

intention is not to lay claim to the interesting framework developed by the earlier authors by a change of 

name, nor to suggest that data-driven models are superior or should be given more attention than 

process-based models, but rather to extend the blueprint by more prominently focussing on the case of 

data-driven forecasting since it offers a flexible alternative to process-based models that is becoming 

increasingly popular in hydrology and water resources (Remesan and Mathew, 2015).  Our second 

proposed model combines wavelet transformation and the SDDFF; we name this model Stochastic 

Wavelet Data-Driven Forecasting Framework (SWDDFF).   

The SDDFF is an extension of our earlier work on data-driven forecasting of hydrological and water 

resources processes (Adamowski et al., 2012; Belayneh et al., 2016; Ciupak et al., 2015; Goyal et al., 2014; 

Yaseen et al., 2016) and input variable selection uncertainty (Quilty et al., 2016) since SDDFF advances our 

forecasting strategies from evaluating and using a single best input variable selection set in a deterministic 

forecast to incorporating input variable selection uncertainty (many different input variable sets) in a 

stochastic forecasting framework (SDDFF).  The SWDDFF is a direct extension of the Wavelet Data-Driven 

Forecasting Framework (WDDFF) recently proposed by Quilty and Adamowski (2018) and permits us to 

not only account for the multiscale nature of processes commonly encountered in hydrology and water 

resources - that often leads to poor accuracy when using data-driven forecasting methods (Dixit et al., 

2016; Nourani et al., 2014; Yaseen et al., 2015) – but also allows us to quantify the uncertainty associated 

with input data, input variable selection, parameters, and model output. 

A significant step in building and using the SDDFF and SWDDFF is the characterization of the probability 

distributions associated with input data, input variable selection, parameters, and model output 

uncertainty (see section 5.3.3., 5.4, and 5.5).  To estimate these probability distributions we adopted the 

bootstrap resampling method (Efron and Tibshirani, 1993) due to its simplicity and ubiquity in empirically 

estimating probability distributions (Henderson, 2005; Polikar, 2007) (see section 5.5.1.).  Since we used 

the bootstrap method for estimating the different sources of uncertainty and employed wavelet 
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transformation for improving our ability to forecast the multiscale nature of hydrological and water 

resources time series, we make note of earlier examples in the literature that share some form of 

resemblance to SWDDFF below.   

Wavelet transformation and the bootstrap method have been combined with data-driven models (e.g., 

MLR, neural networks, and extreme learning machines) to account for parameter uncertainty in 

forecasting models used for various hydrological and water resources processes such as drought, 

groundwater, streamflow, reservoir inflows, urban water demand, and river discharge (Belayneh et al., 

2016; Kasiviswanathan et al., 2016; Khalil et al., 2015; Kumar et al., 2015; Sehgal et al., 2014; Tiwari and 

Adamowski, 2013, 2015, 2017, Tiwari and Chatterjee, 2010a, 2011).  The bootstrap has also been used to 

account for both parameter and model output uncertainty in wavelet-neural network-based data-driven 

forecasts of monthly water quality (Wang et al., 2013).  Using a Relevance Vector Machine (RVM) (a 

Bayesian approach), earlier studies were able to estimate both parameter and model output uncertainty 

for daily evaporation and long-term streamflow forecasting (Bachour et al., 2016; Maslova et al., 2016).  

The wavelet-based data-driven forecasts that have adopted the bootstrap for parameter and/or model 

output uncertainty will be shown to be special cases of SWDDFF.  It is significant to note that we are not 

aware of a single study that has combined wavelet transformation with data-driven models that accounts 

for input variable selection, parameters, and model output uncertainty (using the bootstrap or any other 

method).  Therefore, the SWDDFF can be seen to improve upon the most advanced wavelet-based data-

driven forecasting models available in the literature. 

The main goal of this research is to move from the original blueprint (Montanari and Koutsoyiannis, 2012; 

Sikorska et al., 2015) to the development of the SDDFF and SWDDFF and then to show, via a real-world 

water resources forecasting problem, how both input variable selection and wavelet transformation are 

key factors in improving forecasting accuracy and reliability.  We note that for this study, we chose to 

focus on (empirically) estimating the input variable selection, parameter, and model error probability 

distributions.  We leave the estimation of the input data uncertainty to future work, primarily because we 

are interested in: 

1. Introducing how input variable selection uncertainty can be included in the blueprint (particularly 

in a data-driven context), resulting in the SDDFF; 
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2. How the SDDFF can be extended to include wavelet transformation (SWDDFF), making it 

amenable to improving the forecasting performance for multiscale processes commonly 

encountered in hydrology and water resources; and 

3. Demonstrating, through a real-world water resources case study, the usefulness of SDDFF and 

SWDDFF for accurately and reliably forecasting hydrological and water resources processes 

against benchmarks, such as the earlier wavelet-based data-driven forecasting models that 

incorporated (solely parameter or both parameter and model output) uncertainty using the 

bootstrap (as mentioned two paragraphs above). 

Notwithstanding, our exclusion of input data uncertainty in our case study, we still incorporate input data 

uncertainty in our theoretical development of SDDFF and SWDDFF. 

Before outlining the rest of our study, we summarize our main contributions to the literature as follows: 

1. We extend the blueprint for converting deterministic process-based models to stochastic ones 

(Montanari and Koutsoyiannis, 2012; Sikorska et al., 2015) by focussing on the domain of data-

driven forecasting methods. 

2. The blueprint is modified to include input variable selection uncertainty, a relatively new topic, in 

addition to the input data, parameter, and model output uncertainty (that was explicitly 

accounted for in the original blueprint).  The former contribution combined with this contribution 

results in our first proposed model SDDFF (Stochastic Data-Driven Forecasting Framework). 

3. Our second contribution (SDDFF) is modified to include wavelet transformation of the model 

inputs, resulting in the SWDDFF (Stochastic Wavelet Data-Driven Forecasting Framework), a 

stochastic wavelet-based forecasting framework accounting for uncertainty in input data, input 

variable selection, parameter, and model output.  SWDDFF innovates upon the most advanced 

wavelet-based forecasting models available in the literature. 

The rest of our study is outlined as follows: section 5.3 contains the theory behind the blueprint, SDDFF, 

and SWDDFF; section 5.4 gives instructions for using SDDFF and SWDDFF in practice; section 5.5 provides 

experimental details concerning our real-world case study; section 5.6 discusses our experiment results; 

and section 5.7 concludes our study with a summary of our work and future research directions. 
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5.3. Theory 

5.3.1. A Brief Overview of the Blueprint (Montanari and Koutsoyiannis, 2012) 

Since we are interested in adapting the blueprint by focussing on its use for data-driven forecasting, 

including input variable selection, and the incorporating wavelet transformation of model inputs, we only 

give the main result of the blueprint and refer the interested reader to a more detailed treatment by the 

original authors (Montanari and Koutsoyiannis, 2012; Sikorska et al., 2015).  In what follows we attempt 

to keep as close as possible to the assumptions and notations of the original authors. 

The blueprint begins with the simple deterministic formulation (Montanari and Koutsoyiannis, 2012; 

Sikorska et al., 2015): 

 𝑄 = 𝑆(𝜣, 𝑿) (5.1) 

 

where 𝑄 is the model output (which through the deterministic formulation in Eq. 5.1 is assumed to be 

equal to the true value of the target variable to be forecasted); 𝑆 represents the model structure (which 

in this case takes on the form of a data-driven model (e.g., multiple linear regression) and transform the 

input data and model parameters in to the model output using an empirical formulation), 𝑿 represents 

the input data, and 𝜣 are the model parameters.   

Omitting several detailed steps (captured by equations 2–6 in Montanari and Koutsoyiannis (2012)), the 

deterministic framework in Eq. 5.1 is converted to its stochastic counterpart resulting in (Montanari and 

Koutsoyiannis, 2012; Sikorska et al., 2015): 

 
𝑓𝑄(𝑄) =  ∫ ∫ 𝑓𝑒(𝑄 − 𝑆(𝜣, 𝑿)|𝜣, 𝑿)𝑓𝜣,𝑿(𝜣, 𝑿)𝑑𝜣𝑑𝑿

𝑿𝜣

 (5.2) 

 

where: 

𝑒 = 𝑄 − 𝑆(𝜣, 𝑿) is the model error which incorporates all uncertainties not explicitly accounted for in Eq. 

5.2, such as input and parameter uncertainty – it is important to note the emphasis placed upon the fact 

that, in the stochastic framework of Eq. 5.2, the blueprint relies on the assumption that 𝑄 is the true 

variable to be forecasted, which is an unknown quantity at the time of issuing the forecast, and therefore 

is to be treated as a random variable, see also Montanari and Koutsoyiannis (2014); 
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𝑓𝜣,𝑿(𝜣, 𝑿) is the joint probability density function of the parameters and input data (which jointly 

quantifies parameter and input data uncertainty); 

𝑓𝑒(𝑄 − 𝑆(𝜣, 𝑿)|𝜣, 𝑿) or 𝑓𝑒(𝑒|𝜣, 𝑿) is the conditional probability density function of the model error (𝑒), 

conditioned on the input data and parameters (which, as mentioned above, quantifies model uncertainty 

or uncertainties not explicitly accounted for in the model); and 

𝑓𝑄(𝑄) is the probability density function of the true value of the target variable to be forecasted (which 

quantifies uncertainty in the forecast of the true target variable). 

One minor difference between Eq. 5.2 and that given in the original blueprint (Montanari and 

Koutsoyiannis, 2012; Sikorska et al., 2015), is that we choose to consider a joint probability density 

function of the parameters and input data instead of considering that parameter uncertainty is 

independent of data uncertainty.  We use this dependence (between input data and parameters) as a 

convenience for introducing input variable selection uncertainty within our proposed Stochastic Data-

Driven Forecasting Framework in the next sub-section. 

In keeping with the original blueprint (Montanari and Koutsoyiannis, 2012) a number of assumptions are 

also maintained here: uncertainty is considered as randomness inherent in the hydrological or water 

resources process under study; the input data (𝑿) contains uncertainties mostly related to observation 

methods (e.g., in a water distribution system the measurement of system demands could be effected by 

meter inaccuracies); parameters (𝜣) contain uncertainties due to the model structure, calibration 

schemes, and dataset consistency; while the model error (𝑒), which is equal to the difference between 

the forecast and the observed target value, contains all uncertainties not captured in the input data and 

parameter uncertainties and is a result of the model’s inability to replicate the real process (referred to 

as model structural error).  The prediction (forecast) uncertainty is the uncertainty in the forecast of the 

true value of the given target process and is dependent on the input data uncertainty, parameter 

uncertainty, and model error.  Normally, prediction (forecast) uncertainty is defined using prediction limits 

for the forecast which defines a range that the true value of the target process is contained within with 

probability equal to the nominal confidence level.  These same assumptions are kept in both proposed 

SDDFF and SWDDFF methods. 

As noted by the blueprint authors, a very useful aspect of this framework is related to its ability to explicitly 

incorporate other sources of uncertainty (e.g., input variable selection) in to Eq. 5.2, given that we have 

some knowledge pertaining to the related probability distribution for the source of uncertainty.  Later 
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(see section 5.5.1.), we discuss how one may infer such probability distributions (for input data, input 

variable selection, parameters and model error). Next, we demonstrate how input variable selection 

uncertainty (a relatively new topic of interest in hydrological and water resources modeling) can be 

included within the blueprint. 

5.3.2. From the Blueprint to the Stochastic Data-Driven Forecasting Framework 

By slightly modifying Eq. 5.2, we can explicitly account for the uncertainty due to input variable selection 

(in addition to input data, parameters, and model error) within the blueprint as follows: 

 
𝑓𝑄(𝑄) =  ∫ ∫ ∑ 𝑓𝑒(𝑄 − 𝑆(𝜣, 𝑿, 𝝎)|𝜣, 𝑿, 𝝎)𝑓𝜣,𝑿,𝜴(𝜣, 𝑿, 𝝎)𝑑𝜣𝑑𝑿

𝝎∈𝜴𝑿𝜣

 (5.3) 

 

where 𝝎 ∈ 𝜴 is a binary vector spanning 𝑿, identifying the variables in 𝑿 which have been selected (i.e., 

𝝎 ∈ {0,1}𝑫) using an input variable selection routine (e.g., simple correlation ranking or more involved 

schemes such as iterative input selection (Galelli and Castelletti, 2013) or partial mutual information 

selection (Li et al., 2015)).  The joint and conditional distributions take on similar meanings as in Eq. 5.2; 

specifically, the joint distribution 𝑓𝜣,𝑿,𝜴(𝜣, 𝑿, 𝝎) represents the uncertainty in the parameters, input data, 

and the selected input variables while the conditional distribution 𝑓𝑒(𝑄 − 𝑆(𝜣, 𝑿, 𝝎)|𝜣, 𝑿, 𝝎) relates the 

model error to the parameters, input data, and selected input variables.  Note in Eq. 5.3 that we use a 

summation operator instead of an integral for the selected input variables term, 𝝎, since this variable 

takes on binary (discrete) values – this, however, does not hinder our ability to estimate the mixed joint 

probability distribution (between discrete and continuous variables) (Coelho et al., 2016; Moon et al., 

2017; Ross, 2014), which we will show can be accomplished through bootstrap resampling (see section 

5.5.1.). 

Since it is well-accepted that the performance of a given data-driven model greatly depends upon the 

input variables used within the model (Fernando et al., 2009; Hejazi and Cai, 2009; Sharma and Mehrotra, 

2014; Tran et al., 2016), conditioning the parameters of a data-driven model on selected input variables 

seems to be a natural and reasonable assumption.  What appears less obvious, is how input data 

uncertainty plays a role in input variable selection (Galelli et al., 2014).  While this latter point is outside 

the scope of this work (since we instead focus on introducing input variable selection uncertainty within 

the blueprint), it could also be a reasonable assumption to condition input variable selection on input 

data.  In light of this idea, we modify Eq. 5.3, by using the chain rule (of probability),  to take into account 
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the conditional dependence of parameters on input data and selected input variables and the conditional 

dependence of selected input variables on input data: 

 
𝑓𝑄(𝑄) =  ∫ ∫ ∑ 𝑓𝑒(𝑄 − 𝑆(𝜣, 𝑿, 𝝎)|𝜣, 𝑿, 𝝎)𝑓𝜣(𝜣|𝑿, 𝝎)𝑓𝜴(𝝎|𝑿)𝑓𝑿(𝑿)𝑑𝜣𝑑𝑿

𝝎∈𝜴𝑿𝜣

 (5.4) 

 

where 𝑓𝜣(𝜣|𝑿, 𝝎) represents the conditional probability density function of the parameters given the 

input data and selected input variables and 𝑓𝜴(𝝎|𝑿) is the conditional probability density function of the 

selected input variables conditioned on input data.  Notably, we have converted Eq. 5.2 into a more 

general form Eq. 5.4) where model error is dependent on parameters, input data, and selected input 

variables; parameters are dependent on input data and selected input variables; and selected input 

variables are conditioned on input data. The process for estimating 𝑓𝑄(𝑄) using the different conditional 

probability density functions mentioned above is given in section 5.4.  

We have moved from the blueprint used for process-based modeling by the original authors (Montanari 

and Koutsoyiannis, 2012; Sikorska et al., 2015) to focus on data-driven applications, modifying the 

blueprint in terms of our earlier work on data-driven forecasting  and input variable selection (Adamowski 

et al., 2012; Goyal et al., 2014; Quilty et al., 2016; Yaseen et al., 2016).  In the next sub-section, using Eq. 

5.4, we develop the Stochastic Wavelet Data-Driven Forecasting Framework (SWDDFF), an extension of 

both the Wavelet Data-Driven Forecasting Framework (WDDFF) proposed by Quilty and Adamowski 

(2018) and the SDDFF proposed above. 

5.3.3. Stochastic Wavelet Data-Driven Forecasting Framework 

The SWDDFF builds directly from the SDDFF, represented by Eq. 5.4, by applying wavelet transformation 

to the input data (𝑿) via the mapping 𝓦: 𝑿 → 𝑿𝑾; where 𝑿𝑾 represents the wavelet-transformed inputs.  

The wavelet transformation of the input data maps an input matrix, 𝑿 of dimension 𝐷 to a matrix, 𝑿𝑾 of 

dimension 𝐷(𝐽 + 1) (i.e., 𝓦: 𝑿 ∈ ℝ𝑁xD → 𝑿𝑾 ∈ ℝ𝑁xD(𝐽+1)); where 𝑁 is the number of observations and 

𝑗 ∈ 𝐽 + 1 represents a scale of change for each input data vector.  The wavelet-transformed inputs at 

scales 𝑗 = 1: 𝐽, usually referred to as wavelet coefficients, represent changes in averages over a 

scale 𝜏𝑗 = 2𝑗−1 while the wavelet-transformed inputs at scale 𝐽 + 1, usually referred to as scaling 

coefficients, are linked to variations at scales 𝜆𝐽 = 2𝐽 and higher (Percival and Walden, 2000, sec. 4.8).  

The major benefit of using wavelet-transformed inputs (instead of the original inputs) is that we can 

extract scales of change within the input data and use input variable selection to select only the relevant 
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scale-based information that is necessary to forecast the target process, which has been shown to be a 

key factor in improving model performance when forecasting multiscale processes in hydrology and water 

resources (Nourani et al., 2014; Rathinasamy et al., 2014; Sang, 2013).  We adopted the best practices 

discussed in Quilty and Adamowski (2018) to perform wavelet transformation on the input data and refer 

the interested reader to their work for thorough theoretical background and a discussion of the key 

features of wavelet transformation and its use in forecasting applications.   

The SWDDFF is realized by a simple adjustment to Eq. 5.4, i.e., modifying the SDDFF to include wavelet-

transformed input data (𝑿𝑾): 

 
𝑓𝑄(𝑄) =  ∫ ∫ ∑ 𝑓𝑒(𝑄

𝝎∈𝜴𝑿𝑾𝜣

− 𝑆(𝜣, 𝑿𝑾, 𝝎)|𝜣, 𝑿𝑾, 𝝎)𝑓𝜣(𝜣|𝑿𝑾, 𝝎)𝑓𝜴(𝝎|𝑿𝑾)𝑓𝑿𝑾
(𝑿𝑾)𝑑𝜣𝑑𝑿𝑾 

(5.5) 

 

We now move from the theoretical development of SDDFF (Eq. 5.4) and SWDDFF (Eq. 5.5) to show how 

they may be developed for practical applications.   

5.4. Applying the Stochastic Wavelet Data-Driven Forecasting Framework 

Here we give the workflow required for using the SDDFF and SWDDFF in practice.  The workflow builds 

directly from that given by the blueprint authors (Montanari and Koutsoyiannis, 2012; Sikorska et al., 

2015) by considering the addition of input variable selection uncertainty and wavelet transformation 

(compare Eq. 5.2 with Eq. 5.4 and Eq. 5.5, respectively).  Another source of difference between SDDFF, 

SWDDFF, and the original blueprint is the fact that we avoid assuming independence between the model 

error, parameters, (input variable selection) and input data.  Due to the similarity between the workflow 

of SDDFF and SWDDFF, we only provide details for the latter.  The workflow for the SWDDFF (as 

summarized in Figure 5.1) can be stated as follows:  

1. A random sample is drawn from the probability density 𝑓𝑿(𝑿). 

2. Wavelet transformation is performed on the drawn sample from 1 (i.e., 𝓦: 𝑿 → 𝑿𝑾), obtaining 

an equivalent realization from 𝑓𝑿𝑾
(𝑿𝑾). 

3. A random sample is drawn from the conditional probability density 𝑓𝜴(𝝎|𝑿𝑾). 

4. A random sample is drawn from the conditional probability density 𝑓𝜣(𝜣|𝑿𝑾, 𝝎). 

5. Using the sampled information (𝜣, 𝑿𝑾, 𝝎), a model prediction is computed via 𝑆(𝜣, 𝑿𝑾, 𝝎); 
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6. For the model prediction from 5, a random error is picked up from the conditional probability 

density 𝑓𝑒(𝑄 − 𝑆(𝜣, 𝑿𝑾, 𝝎)|𝜣, 𝑿𝑾, 𝝎) and added to 𝑆(𝜣, 𝑿𝑾, 𝝎); 

7. Steps 1 to 6 are repeated 𝑛 times, giving 𝑛 different predictions of 𝑄. 

8. The probability density 𝑓𝑄(𝑄) is realized by the 𝑛 predictions of 𝑄. 

If one wished to forgo the wavelet transformation step and instead adopt the SDDFF, then one solely 

needs to remove step 2 above (substituting 𝑿 for 𝑿𝑾 in the remaining steps).  Furthermore, if one wanted 

to estimate uncertainty related to only specific components of SWDDFF (or SDDFF), e.g., parameter 

uncertainty, perhaps to compare the contribution of the different sources of uncertainty, then only those 

steps in the workflow need to be carried out (Montanari and Koutsoyiannis, 2012).  We note that in our 

experiments we do not include the uncertainty due to the input data (i.e., step 1 in the SWDDFF workflow), 

primarily to focus on input variable selection uncertainty (see section 5.2); however, future work could 

consider input data uncertainty. 
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Figure 5.1.  Workflow for the Stochastic Wavelet Data-Driven Forecasting Framework (modified from 

Montanari and Koutsoyiannis (2012) and Sikorska et al. (2015)) 

5.5. Experiment Settings, Case Study, and Forecast Evaluation 

We discuss the details necessary to implement the SDDFF and SWDDFF by first demonstrating how one 

can both estimate and sample from the probability distributions in Eq. 5.4 and Eq. 5.5.  Afterwards, we 

give details concerning our case study, and the evaluation metrics used to judge the quality of the 

forecasts produced by SDDFF and SWDDFF.  In order to study the impact of input variable selection 

uncertainty, we simplify the application of the SWDDFF in our experiments (as discussed in the sub-section 
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above) by ignoring input data uncertainty, removing the need to estimate its related probability density 

function (step 1 in the SWDDFF workflow). 

5.5.1. Estimation of Probability Density Functions 

As noted in Montanari and Koutsoyiannis (2012), a key ingredient to using the blueprint (and therefore, 

SDDFF and SWDDFF), is the specification of the probability density functions.  We used the bootstrap 

(Efron and Tibshirani, 1993; Henderson, 2005) to estimate the different probability density functions (e.g., 

input variable selection, parameters, and model error).  We chose the bootstrap as it is a popular method 

that can be used for empirically estimating the probability density function of a random variable, leading 

to its use in a wide array of hydrological and water resources applications involving resampling and 

uncertainty estimation (Erkyihun et al., 2016; Faghih et al., 2017; Gupta, 2010; Hirsch et al., 2015; Lall and 

Sharma, 1996; Rustomji and Wilkinson, 2008; Sharma and Tiwari, 2009; Srinivas and Srinivasan, 2005).  It 

was also suggested as a means to estimate parameter uncertainty in Montanari and Koutsoyiannis (2012) 

and was used in Sikorska et al. (2015) for estimating the model error uncertainty.   The key benefits of the 

bootstrap is that it is non-parametric, likelihood-free, and simple to implement (as it solely relies on 

random sampling from a given dataset) (Srivastav et al., 2007; Wani et al., 2017).  For those interested in 

non-bootstrap-based probability density function estimation methods we recommend that the reader 

reviews section 3, 4, and 6 in Montanari and Koutsoyiannis (2012) (and the references mentioned therein).  

Taormina et al. (2016) can be reviewed for an interesting information-theoretic approach to exploring 

input variable selection uncertainty. 

We do not discuss theoretical details concerning the bootstrap as the above-mentioned references give 

excellent explanations about the method.  For building the bootstrap-based probability distributions we 

rely on: Quilty et al. (2016) for estimating the input variable selection probability distribution; the paired 

bootstrap approach in Wan et al. (2014) for estimating the parameter probability density functions; and 

the k nearest-neighbours bootstrap approach for estimating the model error probability density function 

(Sikorska et al., 2015).  Although it is not covered in this work, the bootstrap can also be used for 

estimating the input data probability density function (Barton et al., 2014; Freschi et al., 2017; Xie et al., 

2016). 

5.5.1.1. Input Variable Selection Uncertainty 

The input variable selection probability distribution, 𝑓𝜴(𝝎|𝑿𝑾), was estimated via the bootstrap by 

resampling the calibration data set pairs (𝑌, 𝑿𝑾) several times (where 𝑌 represents past observations of 

𝑄, i.e., in the calibration dataset), evaluating a given input variable selection algorithm for each resample, 
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and storing its result (i.e., the selected input variables) in the binary variable 𝝎 ∈ 𝛀.  The different 𝝎 (for 

each resample) were used to infer the (empirical) input variable selection probability distribution.  Note 

that the empirical input variable selection probability distribution could have multiple instances where 

the same input variables are selected for different bootstrap resamples.  If the input variable selection 

uncertainty is minimal (or null), this could lead to the same input variables being selected for each 

bootstrap resample or, in the other extreme, each bootstrap resample may lead to completely different 

selected input variables, resulting in a flat (uniform) probability distribution.  We note that for cases where 

each input variable selection set (i.e., for a given bootstrap resample) is unique, it is not to say that each 

selected input variable in that set is unique, when compared to the remaining selected input variable sets.  

In other words, even for an input variable selection probability distribution that is flat, there may be a 

single (or group of) input variable(s) that are selected in each input variable set.  

5.5.1.2. Parameter Uncertainty 

Since the parameter uncertainty is conditioned on the input variable selection uncertainty, for each 

unique input variable selection set, 𝝎 ∈ 𝛀 , the parameter probability density function is estimated 

through the bootstrap by resampling the calibration data set pairs (𝑌, 𝑿𝑾
𝝎 ) several times (where 𝑿𝑾

𝝎  simply 

represents that only variables 𝝎 ∈ 𝟏 have been selected in 𝑿𝑾) and optimizing the parameter vector for 

each resample using a given deterministic model, 𝑆.  Note that (𝑌, 𝑿𝑾
𝝎 ) is a simplification of the triple 

(𝑌, 𝑿𝑾, 𝝎), where 𝝎 ∈ 𝛀 is held constant for each bootstrap resample when inferring the parameter 

uncertainty for that particular (unique) selected input variable set. 

The different parameter sets for each 𝝎 ∈ 𝛀 make up the conditional probability density function for the 

parameters, i.e., 𝑓𝜣(𝜣|𝑿𝑾, 𝝎).  Note that this conditional probability density function can be 

computationally intensive to estimate, as it requires a sufficient number of bootstrap resamples for each 

selected input variable set (which directly depends on the number of unique selected input variable sets 

in 𝛀 and the number of required bootstrap resamples). 

5.5.1.3. Model Error Uncertainty 

As the model error uncertainty is conditioned on both the parameter and input variable selection 

uncertainty, the conditional probability density function for the model error, 𝑓𝑒(𝑄 −

𝑆(𝜣, 𝑿𝑾, 𝝎)|𝜣, 𝑿𝑾, 𝝎), was obtained by estimating the error, 𝑒 = 𝑄 − 𝑆(𝜣, 𝑿𝑾, 𝝎), on the validation 

set for the model’s optimal parameter vector (which was determined by the Nash Sutcliffe Efficiency Index 

(NASH) (Moriasi et al., 2007)) associated with each (unique) input variable set (Montanari and 

Koutsoyiannis, 2012; Sikorska et al., 2015).  Therefore, a set (distribution) of model errors was associated 
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with each model attached to the different (unique) selected input variable sets. As noted in Montanari 

and Koutsoyiannis (2012), the optimal parameter vector could be exchanged for the parameter vector 

that provided average (or median) performance, or in the extreme case, one could use the model error 

for each parameter set.  We did not follow these approaches, as the performance using our discussed 

method was high and reflective of performance that would generally satisfy most real-world applications.  

The caveat of estimating the model error distribution using this approach is that the model error in the 

validation set should be reflective of the model error which could be expected when running the model 

in simulation/forecast mode (which can easily be verified by a hold-out (test) set, as done in this study) 

(Montanari and Koutsoyiannis, 2012; Sikorska et al., 2015).  It is important to note the distinction between 

the use of 𝑌 for the calibration dataset and the use of 𝑄 in validation mode.  In keeping with the 

assumptions of the blueprint, during validation mode 𝑄 is not yet observed at the time of issuing the 

forecast using 𝑆(𝜣, 𝑿𝑾, 𝝎) for some new input 𝑿∗, while in calibration mode, past realizations of 𝑄, i.e., 

𝑌, are available since it is on the basis of past realizations that input variables are selected and model 

parameters estimated. 

Below, we briefly discuss how we sample from the input variable selection, parameter, and model error 

probability distributions in the SWDDFF workflow.  For the SDDFF workflow, wavelet transformation is 

excluded and the remaining steps are the same. 

5.5.2. Sampling from the Probability Density Functions 

In order to use the SWDDFF in a forecasting application, i.e., to obtain 𝑓𝑄(𝑄) for a given input 𝑿∗, which 

may be a realization from a hold-out (test) set or newly received information in a real-time setting, one 

needs to pass 𝑿∗ through the SWDDFF workflow described in Figure 5.1 (section 5.4) by sampling from 

the probability distributions mentioned above (section 5.5.1.1., 5.5.1.2, and 5.5.1.3.).  

Sampling from the probability distribution functions mentioned above (i.e., as part of the SWDDFF 

workflow) is straightforward.  First, a selected input variable set 𝝎 is picked up at random from 𝑓𝜴(𝝎|𝑿𝑾); 

second, a parameter vector from 𝜣, associated with the selected input variable set (𝝎), is picked up at 

random from 𝑓𝜣(𝜣|𝑿𝑾, 𝝎); third, 𝑆(𝜣, 𝑿𝑾, 𝝎) is evaluated, resulting in a model output, 𝑄; fourth, 𝑄 is 

then compared against the validation model outputs for the selected input variable set (𝝎) and using the 

k nearest-neighbour bootstrap (see Sikorska et al. (2015) for details), a model error is randomly sampled 

from 𝑓𝑒(𝑄 − 𝑆(𝜣, 𝑿𝑾, 𝝎)|𝜣, 𝑿𝑾, 𝝎) and added to 𝑄.  This process is repeated a sufficient number of 

times and results in 𝑓𝑄(𝑄) for a given input 𝑿∗.  
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5.5.3. Case Study 

To demonstrate the potential usefulness of the SDDFF and SWDDFF for obtaining accurate and reliable 

hydrological and water resources forecasts we chose a real-world case study based on an urban water 

demand (UWD) dataset from Montreal, Canada that was recently studied in Quilty and Adamowski (2018). 

The objective of this case study was to accurately and reliably forecast, via SDDFF and SWDDFF, average 

daily UWD (whose multiscale nature is shown in Figure 5.2) at lead times of 1, 7, and 14 day(s) ahead for 

the urban water supply system in Montreal, Canada using historical UWD, maximum air temperature, 

rainfall, and the antecedent precipitation index as model inputs. 

 

Figure 5.2.  Average urban water demand time series, U, (measured in megalitres per day) decomposed 

by the maximal overlap discrete wavelet transform using the la14 wavelet filter and a decomposition level 

of six; where each ‘W’ time series represents the wavelet coefficients at a particular scale and ‘V’ 

represents the scaling coefficients; wavelet and scaling coefficients are also measured in megalitres per 

day  
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Since Montreal’s urban water supply system is the second largest in Canada (supplying water to over 1.3 

million persons), it is important that expected short-term UWD be known in advance for optimizing 

system operations (e.g., pump scheduling, reservoir operations, etc.), planning (e.g., water main 

maintenance, hydrant flow testing, etc.) and construction (e.g., chlorination, temporary servicing, etc.) for 

which 1, 7, and 14 day ahead forecasts of average daily UWD are useful. 

The authors in Quilty and Adamowski (2018) developed a number of wavelet (WDDFF) and non-wavelet 

data-driven forecasts for this dataset for the purpose of demonstrating: 1) best practices for wavelet-

based forecasting and 2) the improvement in accuracy that can be achieved by wavelet-based forecasts 

in comparison to their non-wavelet-based counterparts.  We used the WDDFF (and non-wavelet-based) 

models (which we term Data-Driven Forecasting Framework (DDFF)) from this earlier study as benchmarks 

for the SWDDFF and SDDFF models developed in this paper.  The SWDDFF and SDDFF models were 

developed by modifying the respective (WDDFF and DDFF) models from Quilty and Adamowski (2018) 

through application of the workflow described in section 5.4 and given in Figure 5.1. 

In Table 5.1, we list the different models (and their properties) that were used in Quilty and Adamowski 

(2018) along with their SDDFF and SWDDFF counterparts.  For details on the original models we refer the 

reader to Quilty and Adamowski (2018).  Briefly, the models shown in Table 5.1 can be described by the 

following information: Model, i.e., model  name (DDFF, SDDFF, WDDFF, and SWDDFF); Method, i.e., data-

driven method used in the model (second order Volterra (SOV) and multiple linear regression (MLR)); 

input variable selection (IVS), i.e., input variable selection algorithm used to select input variables for the 

model (Edgeworth Approximations–based conditional mutual information (EA) and partial correlation 

input selection (PCIS)); Wavelet, i.e., wavelet filter used in the WDDFF models (Least-Asymmetric with 14 

coefficients (la14) and Best-Localized with 14 coefficients (bl14)); and Decomposition Level, i.e., the 

number of scales, 𝐽, used in the wavelet transformation of the inputs for the WDDFF models. 
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Table 5.1.  Description of models 

Model Method IVS Wavelet 
Decomposition 

Level 

1 Day Lead Time 

DDFF, SDDFF SOV EA   

WDDFF, SWDDFF MLR PCIS la14 6 

7 Day Lead Time 

DDFF, SDDFF SOV EA   

WDDFF, SWDDFF MLR PCIS la14 6 

14 Day Lead Time 

DDFF, SDDFF SOV EA     

WDDFF, SWDDFF MLR PCIS bl14 6 

 

The dataset (i.e., consisting of average daily historical UWD, daily maximum air temperature, daily rainfall, 

and daily antecedent precipitation index) extends over the period February 1999 to December 2010.  For 

the 1 (7 and 14) day lead time(s), i.e., the target variable, there are a total of 2395 (2389 and 2382) 

calibration, 583 validation, and 366 hold-out (test) records (i.e., the same validation and test records are 

used for each lead time forecast).  The non-wavelet-based models (DDFF and SDDFF) had a total of  56 

inputs that were considered during input variable selection, which included 14 days of time lagged time 

series for each explanatory variable (historical UWD, daily maximum air temperature, daily rainfall, and 

daily antecedent precipitation index).  The wavelet-based models (WDDFF and SWDDFF) had a total of 

448 inputs that were considered during input variable selection, comprising of the same inputs as the non-

wavelet-based models in addition to their wavelet-transformed counterparts at a decomposition level of 

six (𝐽 = 6) (56 + (6 +1) * 56 = 448).  We refer the reader to Quilty and Adamowski (2018) for further details 

on the process followed for creating the input-output dataset (the target and input variables) discussed 

above. 

5.5.3.1. Model Settings 

It is important to re-iterate that the calibration records were used for building the input variable selection 

and parameter probability distributions, thus characterizing their respective sources of uncertainty, while 

the validation set was used for building the model error probability distribution.  The hold-out (test) set 

was used to assess the accuracy and reliability of the forecasts since it was not involved in the estimation 

of the previously mentioned probability distributions, allowing one to infer the generalization abilities of 

the SDDFF and SWDDFF models and their potential for real-world problems.  This approach is consistent 
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with what was followed by the blueprint authors (Montanari and Koutsoyiannis, 2012; Sikorska et al., 

2015).   

In our experiments we used a total of 500 bootstrap resamples to develop the different probability 

distributions (input variable selection, parameter, and model error) and drew from the respective 

probability distributions 500 times (𝑛 = 500) to generate the probability distribution of the model output 

𝑓𝑄(𝑄).  Ten (𝑘 = 10) nearest-neighbours were considered in the k nearest-neighbour bootstrap for 

drawing from the model error probability density function. We found that these settings provided 

generally good performance that would be suitable for real-world applications. 

To demonstrate the role and importance of the different sources of uncertainty (i.e., input variable 

selection, parameters, and model output) on the forecast results, we explored three different settings for 

the SDDFF and SWDDFF models.  The three different settings that were explored explicitly considered the 

following sources of uncertainty: 1) parameter (SDDFF_1 and SWDDFF_1); 2) parameter and model output 

(SDDFF_2 and SWDDFF_2); and 3) input variable selection, parameter, and model output (SDDFF_3 and 

SWDDFF_3).  We chose these three settings to compare the performance achieved by the SDDFF and 

SWDDFF models when different sources of uncertainty were explicitly accounted for, allowing us to 

discern the relative importance of each source of uncertainty, with a focus on the role of input variable 

selection uncertainty and its impact on forecast accuracy and reliability.  We note that these sources of 

uncertainty should not be considered additive (Montanari and Koutsoyiannis, 2012). 

It is relevant to note earlier studies in hydrology and water resources whose models are special cases of 

the different SDDFF and SWDDFF models described above:  

 SDDFF_1 is comparable to the bootstrap data-driven forecasting models that focussed on 

estimating parameter uncertainty (Jia and Culver, 2006; Tiwari and Chatterjee, 2010b; Zaier et al., 

2010); 

 SDDFF_2 is similar to the bootstrap neural network forecasting models in Wang et al., (2013) that 

considered parameter and model output uncertainty; 

 SWDDFF_1 is akin to the bootstrap wavelet-data-driven forecasting models that considered 

parameter uncertainty (Belayneh et al., 2016; Kasiviswanathan et al., 2016; Tiwari and 

Adamowski, 2017). 
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 SWDDFF_2 is most alike the bootstrap wavelet-neural network forecasting model in Wang et al., 

(2013), however the authors in this study used a wavelet-based activation function for the neural 

network nodes instead of applying wavelet transformation directly to the input data; and 

 Finally, SWDDFF_3 is the first wavelet-based forecasting method that considered input variable 

selection, parameter, and model output uncertainty. 

In the next sub-section we briefly describe the evaluation metrics used to judge the accuracy and reliability 

of the SDDFF and SWDDFF forecasts for our case study. 

5.5.4. Forecast Evaluation Metrics 

To assess the accuracy and reliability of the SDDFF and SWDDFF models, we applied both deterministic 

and probabilistic performance evaluation metrics commonly adopted in hydrology and water resources 

studies.  To measure the accuracy of the different forecasts we used the NASH, root mean square error 

(RMSE), and mean absolute error (MAE) (Hauduc et al., 2015; Legates and McCabe Jr., 1999; Moriasi et 

al., 2007).  We considered the mean continuous ranked probability score (CRPS), prediction interval 

coverage probability (PICP), average prediction interval width (AW), and interval score (IS) (Boucher et al., 

2011; Del Giudice et al., 2015; Kasiviswanathan et al., 2013; Solomatine and Shrestha, 2009) to assess the 

SDDFF and SWDDFF forecasts from a probabilistic perspective.  To supplement these performance 

evaluation metrics, we also used scatter plots and time series plots for a graphical assessment of the 

different models. 

The NASH, RMSE, and MAE measure the deviation of the forecast from the observations – both NASH and 

RMSE are based on the square of errors and are more sensitive to large errors while the MAE treats small 

and large errors equally.  The mean CRPS - a useful measure reflecting both forecast sharpness and 

reliability - compares the distribution of the forecast with that of the observations and reduces to the 

mean absolute error for point forecasts, allowing for the direct comparison between point and 

probabilistic forecasts (Fortin et al., 2006; Gneiting and Katzfuss, 2014; Hersbach, 2000; Pappenberger et 

al., 2015).  The PICP measures the coverage of the observations within the forecasts’ prediction intervals, 

which should ideally match that of the prediction interval nominal confidence of 100(1 – 𝛼) % (we set 𝛼 

at 0.05 in our experiments), and is related to the reliability of the forecast (Wan et al., 2014).  The AW 

simply measures the average width of the prediction intervals and is related to the forecasts’ sharpness 

(Gneiting et al., 2007).  The IS combines both sharpness and reliability into a single metric by considering 

the width of the uncertainty bound in combination with the position of the observation relative to the 

uncertainty bound (Bourgin et al., 2015; Gneiting and Raftery, 2007). 
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For the SDDFF and SWDDFF models, the deterministic measures (NASH, RMSE, and MAE) were calculated 

by using the mean of the 𝑛 different realizations defining 𝑓𝑄(𝑄), enabling comparisons with the DDFF and 

WDDFF models.  The probabilistic measures (CRPS, PICP, AW, and IS) use the entire distribution (i.e., all 𝑛 

different realizations from) 𝑓𝑄(𝑄) for evaluating their functions.  

Since the SDDFF_1 and SWDDFF_1 models only account for parameter uncertainty, their 𝑛 forecasts 

provide an estimate of the variance (or uncertainty) of only the parameters and not the true value of the 

target process.  However, SDDFF_2, SWDDFF_2, SDDFF_3, and SWDDFF_3 through their 𝑛 forecasts 

include the variance of not only the parameters but also of the future (forecasted) target process.  

Therefore, the former results in confidence intervals while the latter results in prediction intervals (which 

are always wider and encompass the confidence intervals) (Faraway, 2014, sec. 4.1).  Since prediction 

intervals are required to estimate PICP, AW, and IS (Gneiting and Raftery, 2007), we assess only the 

SDDFF_2, SWDDFF_2, SDDFF_3, and SWDDFF_3 using these measures.  However, the CRPS can be used 

more generally to assess an ensemble of forecasts (e.g., whether generated by drawing samples from a 

stochastic model (such as in this study), making perturbations to initial conditions, tweaking hyper-

parameters, or combining forecasts from different models (Boucher et al., 2015; Zamo and Naveau, 2017)) 

and is therefore used for assessing how well the 𝑛 realizations from the SDDFF and SWDDFF models 

forecast the target process.  Therefore, the CRPS acts as a useful measure for assessing the impact that 

the different sources of uncertainty (input variable selection, parameter, and model output) have on 

SDDFF and SWDDFF accuracy and reliability.  At the same time, since CRPS reduces to the MAE for 

deterministic forecasts, it is a useful tool for comparing the SDDFF and SWDDFF against the DDFF and 

WDDFF forecasts. 

In terms of the probabilistic assessment of the WDDFF and SWDDFF models, we prefer reliable forecasts 

to sharp forecasts since users of probability-based forecasts are often interested in the uncertainty of the 

next outcome and unreliable forecasts are usually of little use regardless of their sharpness (Boucher et 

al., 2010).  Therefore, we are most interested in the PICP score then the CRPS, IS, and AW scores.  In other 

words, if a forecasting model has the best PICP score and relatively close CRPS, IS, AW, and deterministic 

(NASH, RMSE, and MAE) scores when compared to its competitors, the model with the best PICP score is 

deemed superior for the task of probability-based forecasting. 

5.6. Results and Discussion 

We now turn to the evaluation of the proposed SDDFF and SWDDFF models and their benchmarks (DDFF 

and WDDFF).  Table 5.2 records the deterministic (NASH, RMSE, and MAE) and probabilistic (CRPS, PICP, 
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AW, and IS) forecast evaluation metrics for our UWD forecasting case study in Montreal, Canada. Our 

focus is on comparing the SDDFF and SWDDFF forecasts against their competitors.  The results in Table 

5.2 supports our thesis (at least for this case study) that input variable selection uncertainty and wavelet 

transformation are two important factors in improving forecast accuracy and reliability in comparison to 

forecasts that do not consider either (or only one) of these tools (compare SDDFF_3 and SWDDFF_3 

forecasts against the others in Table 5.2).  To support this claim we summarize our main findings below.  

(Remember that only the test set performances are discussed in this sub-section, as we are solely 

concerned with how the forecasting models performed out-of-sample.) 

1. For each lead time, the SWDDFF_3 model exhibited the most reliable forecasts in terms of the 

PICP score (ideally the PICP should match the prediction interval nominal confidence of 95%).  

Therefore, in a probabilistic sense, the inclusion of input variable selection uncertainty and 

wavelet transformation were important factors that resulted in the most reliable forecasts for our 

case study.  

2. For each lead time, the SWDDFF_3 model provided either the best (lowest) interval score or CRPS 

score (in conjunction with the best PICP score).  Since the CRPS reduces to the MAE for a point 

forecast, SWDDFF and SDDFF models demonstrated better forecast performance by accounting 

for forecast probabilities rather than using the methods deterministically, since in all cases the 

CRPS scores were lower than the MAE scores. 

3. For each lead time and most performance measures, wavelet transformation improved forecast 

performance over the non-wavelet-based models; however, there were exceptions for the 7 day 

lead time:  

a. The CRPS for the SWDDFF_1 model was inferior to that of the SDDFF_1.   However, the 

SWDDFF_3, which accounted for input variable selection uncertainty, had the lowest 

CRPS score at the 7 day lead time. 

b. The PICP for the SWDDFF_2 model indicated that it was less reliable than the SDDFF_2 

model although it had better CRPS, PICP, AW, and IS scores.  Regardless, the SWDDFF_3 

exhibited the best reliability (PICP).  

4. Input variable selection uncertainty appears to become more important in improving model 

performance, both in terms of deterministic and probabilistic measures, at the 7 and 14 day lead 

times in contrast to the 1 day lead time. 
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Table 5.2.  Test set performance for different models using the deterministic (NASH, RMSE, and MAE) and 

probabilistic (CRPS, PICP, AW, and IS) forecast evaluation metrics 

Model NASH 
RMSE 

(ML/D) 
MAE 

(ML/D) 
CRPS 

(ML/D) 
PICP 
(%) 

AW 
(ML/D) 

IS 
(ML/D) 

1 Day Lead Time 

DDFF 0.909 30.631 20.908     

WDDFF 0.929 27.026 18.535     

SDDFF_1 0.909 30.694 20.907 18.289    

SWDDFF_1 0.929 27.019 18.521 16.668    

SDDFF_2 0.903 31.659 21.901 16.714 92.077 117.009 191.467 

SWDDFF_2 0.924 27.960 19.418 14.880 92.077 106.163 160.089 

SDDFF_3 0.904 31.467 21.800 16.552 92.623 116.377 185.815 

SWDDFF_3 0.926 27.689 19.178 14.640 93.169 111.449 160.598 

7 Day Lead Time 

DDFF 0.662 59.101 38.857     

WDDFF 0.707 55.027 38.421     

SDDFF_1 0.659 59.394 39.172 35.658    

SWDDFF_1 0.707 55.019 38.405 36.893    

SDDFF_2 0.640 60.967 42.091 31.078 87.158 169.206 406.591 

SWDDFF_2 0.694 56.248 39.110 29.621 86.066 141.776 400.841 

SDDFF_3 0.642 60.832 42.223 31.111 87.978 170.834 404.286 

SWDDFF_3 0.726 53.207 35.923 27.197 91.803 155.963 340.225 

14 Day Lead Time 

DDFF 0.504 71.613 51.136         

WDDFF 0.665 58.834 42.919     

SDDFF_1 0.503 71.629 51.048 47.653    

SWDDFF_1 0.665 58.838 42.908 41.281    

SDDFF_2 0.503 71.651 52.947 37.885 83.880 201.832 505.484 

SWDDFF_2 0.651 60.022 43.120 32.094 85.246 157.778 416.632 

SDDFF_3 0.505 71.498 52.996 37.601 85.246 207.422 468.415 

SWDDFF_3 0.674 58.049 42.490 30.770 89.071 168.042 352.173 

 

One may observe that the DDFF and WDDFF models often provided “better” deterministic performance 

than their respective SDDFF and SWDDFF counterparts (e.g., see the 1 day lead time results in Table 5.2).  

This is easily explained by the fact that these models (DDFF and WDDFF) did not take into account any 

form of uncertainty assessment and therefore were biased, with their forecasts relying on only a single 

set of parameters and selected input variables.  Likewise, there exist cases where the SDDFF_1 and 

SWDDFF_1 models performed “better” than, or as nearly good as, in a deterministic sense, their 
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respective SDDFF_2 (and SDDFF_3) and SWDDFF_2 (and SWDDFF_3) counterparts (e.g., refer again to the 

1 day lead time results in Table 5.2).  This is met with similar reasoning as above – the SDDFF_1 and 

SWDDFF_1 forecasts do not explain the variance in their predictions, only in their parameters and 

therefore the mean of their 𝑛 forecasts are biased, as evidenced by the CRPS score.  Furthermore, a 

comparison between the SDDFF_2 and SWDDFF_2 with their respective SDDFF_3 and SWDDFF_3 

counterparts reveals that the forecasts of the former are also biased since they do not consider the source 

of error stemming from forecasts produced using different input variable sets, which resulted in lower 

reliability for all cases (for the SDDFF_2 and SWDDFF_2 models). 

The last point is worth re-iterating: in each case that input variable selection uncertainty was considered 

(whether wavelets were used or not), forecast reliability improved as well as either or both the CRPS and 

IS scores.  This performance was further increased by incorporating wavelet transformation.  We believe 

that this is evidence supporting the importance of including input variable selection uncertainty and 

wavelet transformation in stochastic data-driven forecasting of multiscale processes, such as those 

commonly encountered in hydrology and water resources.  Furthermore, by including input variable 

selection uncertainty alongside parameter and model output uncertainty, SWDDFF (SWDDFF_3 in 

particular) improved upon the most advanced wavelet-based forecasting models (e.g., those comparable 

to SWDDFF_1 and SWDDF_2, see the end of section 5.5.3.1.) in the hydrological and water resources 

literature that to date have either included an assessment of only parameter uncertainty (Belayneh et al., 

2016; Kasiviswanathan et al., 2016; Sehgal et al., 2014; Tiwari and Adamowski, 2017) or parameter and 

output uncertainty (Bachour et al., 2016; Maslova et al., 2016; Wang et al., 2013).  While there have been 

some wavelet-based forecasting models that have focussed on combining multiple wavelet-based 

forecasts to reduce forecasting uncertainty (Barzegar et al., 2018, 2017; Rathinasamy et al., 2013), they 

were not concerned with providing probability-based forecasts but rather an average (pooled) ensemble 

forecast. 

Given that the SWDDFF_3 models provided the best overall performance, we now compare its 

performance against SDDFF_3 using different graphical tools (note that in these figures SWDDFF and 

SDDFF are equivalent to SWDDFF_3 and SDDFF_3, respectively): 

1. Figure 5.3 - A plot of the CRPS score versus the number of resamples (𝑛) included in 𝑓𝑄(𝑄); 

2. Figure 5.4 and 5.5 - Scatter plots for the observed versus the mean forecast of 𝑓𝑄(𝑄) and each of 

the 𝑛 forecasts in 𝑓𝑄(𝑄), respectively); and 
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3. Figure 5.6 - Time series plots for the mean of the 𝑓𝑄(𝑄) forecasts and for the 0.025 and 0.975 

quantiles of the 𝑓𝑄(𝑄) forecasts versus the observations. 

We notice in Figure 5.3 that the CRPS steadily decreases as the number of resamples (n) is increased.  

There is a noticeable drop in CRPS around n=50 but the CRPS continues to descend after this point.  This 

is an indication that n=500 is more than sufficient for stabilizing performance of the SDDFF and SWDDFF 

models for this case study. 

 

Figure 5.3.  CRPS versus the number of resamples (𝒏) for different lead times 
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Figure 5.4.  Scatter plots for the mean of the 𝒏 different forecasts defining 𝒇𝑸(𝑸) for different lead times 

a) 1 day ahead, b) 7 day ahead, and c) 14 day ahead 

In Figure 5.4 and 5.5, the SWDDFF forecasts are more tightly centered on the bisector line indicating a 

better fit than the SDDFF forecasts.  The SDDFF forecasts tend to have larger outliers for medium and 

higher flows than the SWDDFF. 

 

Figure 5.5.  Scatter plots for the 𝒏 different forecasts defining 𝒇𝑸(𝑸) for different lead times a) 1 day 

ahead, b) 7 day ahead, and c) 14 day ahead 

 

Figure 5.6 compliments Figure 5.4 and 5.5, demonstrating that the SDDFF and SWDDFF forecasts are not 

only accurate but successful at matching the different scales of change in the UWD time series through 

time.  For each lead time, the SDDFF and SWDDFF captured the weekly cycle during lower flows (time 

indices around 60 – 280) reasonably well in terms of its mean forecast and its prediction intervals (i.e., 

0.025 and 0.0975 quantiles).  During the seasonal drop in UWD (time indices around 0 – 60), the SDDFF 

and SWDDFF dropped in accuracy but were still reliable across all lead times.  When the seasonal demand 

picked up (time indices around 280 onwards), the 1 day lead time forecasts were both accurate and 
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reliable.  However, the accuracy and reliability of the mean forecast and its prediction intervals were 

noticeably worse for 7 and 14 day lead times.  In general, the prediction intervals for the SWDDFF can be 

deemed superior to those for the SDDFF (visually and statistically) as there is not only an improvement in 

sharpness (see the AW scores) but also in reliability (see PICP, CPRS, and IS).  However, while both 

forecasting models tended to exhibit good reliability, their upper prediction interval tended to 

overestimate lower flows, especially at longer lead times (e.g., 7 and 14 days ahead). 



237 
 

 

Figure 5.6.  Time series plots for the mean of the 𝒇𝑸(𝑸) forecasts (at a 1 day lead time (a), 7 day lead time 

(c), and 14 day lead time (e)) and for the 0.025 and 0.975 quantiles of the 𝒇𝑸(𝑸) forecasts (at a 1 day lead 

time (b), 7 day lead time (d), and 14 day lead time (f)) versus the observations 

5.7. Summary and Conclusions 

This study introduced two new models: a stochastic data-driven forecasting framework (Stochastic Data-

Driven Forecasting Framework (SDDFF)) and a wavelet-based stochastic data-driven forecasting 

framework (Stochastic Wavelet Data-Driven Forecasting Framework (SWDDFF)) for forecasting of 
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multiscale hydrological and water resources processes.  Our proposed methods contribute to the 

literature by: 

1. Extending the recent stochastic process-based modeling blueprint (Montanari and Koutsoyiannis, 

2012; Sikorska et al., 2015) by: 

a. Adopting a more general data-driven framework (instead of process-based models); 

b. Explicitly accounting for input variable selection uncertainty, alongside input data, 

parameter, and model output uncertainty (resulting in the SDDFF); and  

c. Incorporating wavelet transformation of model inputs to address the multiscale nature of 

hydrological and water resources processes (resulting in the SWDDFF). 

2. By accounting for input variable selection, input data, parameter, and model output uncertainty 

we improve upon the most advanced wavelet-based data driven forecasting models that until 

now have either only considered parameter uncertainty (Belayneh et al., 2016; Kasiviswanathan 

et al., 2016; Khalil et al., 2015; Sang et al., 2013; Tiwari and Adamowski, 2013, 2017; Tiwari and 

Chatterjee, 2011) or parameter and model output uncertainty (Bachour et al., 2016; Maslova et 

al., 2016; Wang et al., 2013) in their forecasts. 

We demonstrated through a real-world daily urban water demand forecasting study in Montreal, Canada 

that both input variable selection uncertainty and wavelet transformation were key factors in improving 

both forecast accuracy and reliability as measured by deterministic and probabilistic forecasting metrics 

commonly adopted in hydrology and water resources.  Since input variable selection uncertainty is a new 

topic in this domain (Quilty et al., 2016; Taormina et al., 2016) and since input variable selection has just 

recently began to be studied in conjunction with wavelet transformation (He et al., 2015; Prasad et al., 

2017; Tran et al., 2016) (but not yet in terms of stochastic forecasting), this study introduces a simple and 

effective manner for building stochastic wavelet-based forecasts incorporating input variable selection, 

parameter, and model output uncertainty.  We hope that SWDDFF serves as a useful reference for those 

interested in building stochastic wavelet-based forecasting models.  

We note that our study was limited in a number of ways: 1) we did not consider a wide variety of wavelet 

filters and decomposition levels; 2) only a small number of data-driven models and input variable selection 

methods were studied; 3) we did not consider input data uncertainty (in order to focus on input variable 

selection uncertainty); and 4) we only used a single case study.  We believe that these limitations are 

reasonable for the present study, as our main purpose was to introduce SDDFF and SWDDFF and test its 
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efficacy on a case study familiar to the authors.  However, different research avenues can be explored in 

future studies such as:  

1. Testing the suitability of different methods (i.e., in addition to the bootstrap) for generating the 

various probability density functions (e.g., input data, input variable selection, parameters, and 

model output); 

2. The evaluation of a number of different wavelet families and decomposition levels; 

3. Exploring a wider range of data-driven models and input variable selection methods; 

4. Considering an ensemble-SWDDFF based on different wavelet families, decomposition levels, 

data-driven models, and input variable selection methods; 

5. Including input data uncertainty alongside input variable selection, parameter, and model 

uncertainty; 

6. Comparing the performance of SDDFF and SWDDFF against process-based models, such as those 

used in the original blueprint; and 

7. Testing SDDFF and SWDDFF on a larger number of hydrological and water resources processes as 

well as time series stemming from different domains. 
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Connecting Text to Chapter 6 

The Stochastic Wavelet Data-Driven Forecasting Framework (SWDDFF) from Chapter 5 accounts for the 

multiscale nature of water resources by relying on a single wavelet basis function (wavelet filter).  This 

hinders the ability of SWDDFF to comprehensively capture the complex behaviour of water resources 

which may differ across scales.  Therefore, in this chapter, an ensemble multi-wavelet version of SWDDFF, 

Ensemble Wavelet – Stochastic Data-Driven Forecasting Framework (EW-SDDFF) is proposed to 

incorporate the strengths of multiple wavelet filters through an ensemble approach to better capture the 

complex multiscale nature of water resources and to generate probability-based forecasts of the target 

process.  EW-SDDFF uses multiple forecasts previously developed by the Wavelet Data-Driven Forecasting 

Framework (WDDFF) from Chapter 4 and identifies and weights the importance of each forecast using 

input variable selection and data-driven methods, respectively.  EW-SDDFF is a useful probability-based 

forecasting tool for capturing the nonlinear, multiscale, and uncertain nature of water resources (that can 

vary across scales) improving upon its single-wavelet counterpart from Chapter 5.  EW-SDDFF can be used 

by water resources managers for operating, planning, and managing water resources systems under 

uncertainty and is particularly useful in the decision-making stages due to its probability-based 

interpretation. 

This chapter has been submitted to Water Resources Research.  The format of the paper has been 

modified to ensure consistency with the style of this thesis.  A list of references cited in this paper are 

available at the end of the chapter. 

The author of the thesis was responsible for the development, testing, and application of the different 

methods and wrote the manuscript presented here.  Prof. Adamowski, the supervisor of this thesis, 

provided valuable advice on all aspects of the research and contributed to the review and editing of the 

manuscript.  Prof. Marie-Amélie Boucher at the Civil Engineering Department, Université de Sherbrooke, 

provided valuable advice on ensemble and probabilistic forecasting model evaluation and contributed to 

the review and editing of the manuscript. 
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Chapter 6: A Stochastic Data-Driven Ensemble Forecasting Framework 

for Water Resources: A Case Study using Ensemble Members Derived 

from a Database of Deterministic Wavelet-based Models 

6.1. Abstract 

The computational burden in operational water resources forecasting can be very high. It can involve 

combining a large number of forecasts via post-hoc ensemble model selection and weighting strategies.  

Since this is prohibitive for project resources and timelines, we propose and test a stochastic data-driven 

ensemble forecasting framework that uses archived deterministic forecasts as input and results in water 

resources forecasts in the form of a probability distribution.  In addition to input data and (ensemble) 

model output uncertainty, the proposed approach integrates both model selection and weighting 

uncertainties, using input variable selection and data-driven methods, respectively (first contribution).  

Therefore, it does not require one to perform model selection and weighting separately.  We applied the 

proposed forecasting framework to a previous real-world case study in Montreal, Canada to forecast daily 

urban water demand (UWD) at multiple lead times. Using wavelet-based forecasts as input data, we 

develop the Ensemble Wavelet - Stochastic Data-Driven Forecasting Framework (EW-SDDFF), the first 

multi-wavelet ensemble stochastic forecasting framework that produces probability-based forecasts 

(second contribution).  For the considered case study, several variants of EW-SDDFF, produced using 

different input variable selection methods (partial correlation input selection and Edgeworth 

Approximations-based conditional mutual information) and data-driven models (multiple linear 

regression, extreme learning machines, and second order Volterra series models), are shown to 

outperform wavelet- and non-wavelet-based benchmarks, especially during a heatwave (first time studied 

in the UWD forecasting literature).  Future work will consider using the stochastic data-driven ensemble 

forecasting framework for combining forecasts produced by physically-based and data-driven models for 

a variety of water resources processes. 

Keywords: ensemble forecasting, stochastics, input variable selection, data-driven, wavelets 

6.2. Introduction 

Research in to the development and application of ensemble forecasting systems is of key interest in the 

hydrological and water resources domains due to their importance in operations, decision-making, and 

communicating risks to the public (Cloke and Pappenberger, 2009; Silvestro et al., 2017; Thiboult et al., 
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2017).  Understandably, the topic of probability-based forecasts (i.e., a forecast in the form of a probability 

density function) draws much attention in ensemble forecasting since probability-based forecasts easily 

translate into estimations of risk and provides a range of potential outcomes (forecasts) instead of only a 

single (deterministic) forecast (Farmer and Vogel, 2016; Han and Coulibaly, 2017; Krzysztofowicz, 2001; 

Yung et al., 2011).  Generally, the purpose behind developing an ensemble forecast is to capture the 

individual strengths of candidate models (which themselves might be deterministic or probability-based 

(Hemri et al., 2015)) through model selection (Adhikari et al., 2015; Brochero et al., 2011a; Doycheva et 

al., 2017; Herger et al., 2018; Tapiador and Gallardo, 2006) and to combine them through model weighting 

(Li et al., 2017; Weijs and van de Giesen, 2013; Zeng et al., 2016).  The ensemble forecasting framework 

then provides a better overall forecast, usually judged by its accuracy and reliability, when compared to a 

suitable benchmark (such as the single ‘best’ candidate forecasting model) (e.g., Brochero et al. (2011b); 

Pappenberger et al. (2015a); Thiboult et al. (2017)).  However, what is one to do when selecting an optimal 

set of models to include in the ensemble and determining their individual weights or identifying a suitable 

benchmark (i.e., the single ‘best’ candidate forecasting model) for which to compare a particular ensemble 

forecasting model against, is computationally prohibitive for a given budget or set of project resources?  

This set of questions (or rather constraints) motivates the present paper.  In the remainder of this section, 

we: 1) give a brief history of how we arrived at these constraints during previous research; 2) introduce 

our attempt to mitigate this problem, resulting in a general ensemble stochastic data-driven forecasting 

framework; and 3) discuss the benefits of the proposed approach, including our contributions to the 

literature. 

6.2.1. A Blueprint for Converting Deterministic to Stochastic Forecasts 

Recently, Montanari and Koutsoyiannis (2012) proposed a versatile ‘blueprint’ that converts any 

deterministic model into a stochastic one and that results in a probability-based forecast (i.e., a forecast 

in the form of a probability density function).  Two main facets of their blueprint are extremely useful for 

forecasting problems (particularly those in hydrology and water resources): 1) it can be used with both 

process-based and data-driven models and 2) it can explicitly account for many different sources of 

uncertainty (e.g., input data, parameters, model output, model structure, initial conditions, etc.) by 

estimating their probability density functions, using simple tools such as the bootstrap (Efron and 

Tibshirani, 1993). To estimate the probability distribution of the target forecast, stochastic perturbations 

are made to the input data, model parameters, and model output via random draws from the respective 

probability distributions.  The authors showed how their blueprint could also be used to create a ensemble 

forecast by weighting the output probability distributions of different candidate models (Montanari and 
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Koutsoyiannis, 2012).  The only potential drawback of the blueprint is the computational time required to 

estimate the various probability functions and to draw from them during forecasting.  We discuss this 

drawback in more detail in section 6.3.2, 6.3.3 and 6.4.1. Notwithstanding, the proposed blueprint still 

serves as a powerful tool for hydrological and water resources modelling practitioners. 

6.2.2. From a Blueprint for Stochastic Process-based Models to a Stochastic Data-Driven 

Forecasting Framework Involving Wavelets 

Montanari and Koutsoyiannis (2012) focussed on process-based models that include input data, 

parameter, and model output uncertainty; however, the authors alluded to the fact that their method 

could be adapted for data-driven modelling (Sikorska et al., 2015).  In that vein, Quilty and Adamowski 

(2018a) extended the original blueprint in three main directions by: 1) focussing on the general case of 

data-driven models (e.g., multiple linear regression (MLR), neural networks, etc.) (Solomatine and Ostfeld, 

2008); 2) amending the original blueprint to also include input variable selection uncertainty; and 3) 

incorporating wavelet transformation of model inputs to extract (potentially complex) time-frequency 

information into different sub-series.  The first two developments resulted in the Stochastic Data-Driven 

Forecasting Framework (SDDFF).  By using wavelet transformed model inputs within the SDDFF, the 

authors developed the Stochastic Wavelet Data-Driven Forecasting Framework (SWDDFF). The SWDDFF 

is a combination of the SDDFF and the Wavelet Data-Driven Forecasting Framework (WDDFF), which was 

developed in Quilty and Adamowski (2018b) according to best practices for real-world wavelet-based 

forecasting.  Quilty and Adamowski (2018a) converted the deterministic WDDFF forecasts from Quilty and 

Adamowski (2018b) into their stochastic counterparts (SWDDFF) by considering input variable selection, 

parameter, and model output uncertainties.  The authors demonstrated that SWDDFF was able to 

outperform its non-wavelet-based version (SDDFF) and its non-stochastic version (WDDFF) on a real-world 

urban water demand forecasting experiment in Montreal, Canada.  The main finding of their experiment 

was that input variable selection uncertainty and wavelet transformation of the model inputs were key 

factors in improving forecast accuracy and reliability. 

6.2.3. The Case for a Multi-Wavelet Stochastic Data-Driven Ensemble Forecasting Framework 

However, our previous study (Quilty and Adamowski, 2018a) was limited in that it only explored the single 

‘best’ (deterministic) WDDFF model and converted it into its stochastic counterpart.  Quilty and 

Adamowski (2018b) clearly demonstrated that different wavelet decomposition algorithms, 

decomposition levels, and wavelet filters lead to substantially different performance.  The SWDDFF only 

considered a single wavelet transform algorithm, decomposition level, and wavelet filter.   Although they 
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performed better than their deterministic WDDFF counterparts and their (non-wavelet-based) SDDFF 

benchmarks, it remains that other combinations of wavelet transform algorithms, decomposition levels, 

and wavelet filters could have been used within SWDDFF to provide improved performance.  In fact, many 

recent studies have shown that different combinations of wavelet decomposition levels and wavelet 

filters perform better at capturing different features of hydrological and water resources processes than 

others, such as at low-flows or flood regimes (Maheswaran and Khosa, 2012; Rathinasamy et al., 2014, 

2013).  Furthermore, the decomposition of model inputs through different wavelet decomposition levels 

and wavelet filters often results in physically interpretable information such as periodicities, trends, 

transients, and level-shifts, leading to increased forecasting accuracy when wavelet decomposed inputs 

are used as input to data-driven models (Dixit et al., 2016; Fahimi et al., 2017; Nourani et al., 2014).  In 

connection with these finding, three very recent topics in the wavelet-based forecasting community have 

been converging: 1) accounting for uncertainty in wavelet-based forecasting models (Belayneh et al., 

2016; Bogner and Pappenberger, 2011; Khalil et al., 2015; Liu et al., 2015; Tiwari and Adamowski, 2013); 

2) using input variable selection to select the most important wavelet sub-series for forecasting the target 

process (He et al., 2015; Prasad et al., 2017; Quilty and Adamowski, 2018b; Tran et al., 2016); and 3) 

combining different wavelet-based forecasts that have been developed using different decomposition 

levels and wavelet filters in an ensemble forecasting system (as in Alizadeh et al. (2017); Barzegar et al. 

(2018, 2017); Rathinasamy et al. (2013)).   

Therefore, in designing this study, we chose to tackle the problem of creating a multi-wavelet ensemble 

version of SWDDFF. The goal to develop a multi-wavelet ensemble SWDDFF aligns with the theme of 

generating probability-based forecasts using ensembles, prominent in hydrology and water resources, 

along with advancing the wavelet-based forecasting literature (in the same domains).  Furthermore, our 

proposed approach accounts for both model selection and weighting uncertainties (a difficult task in 

ensemble forecasting (Doycheva et al., 2017; Han and Coulibaly, 2017; Herger et al., 2018)).  We are not 

aware of any studies that have developed a multi-wavelet ensemble stochastic data-driven forecasting 

model that encompasses each of the features mentioned in this sub-section. 

Our intention is to use variations of different wavelet transformation algorithms, decomposition levels, 

and wavelet filters to create a multi-wavelet ensemble SWDDFF that outperforms the single ‘best’ 

SWDDFF model, taking advantage of the strengths of multiple SWDDFF models built on these different 

variations.  Since SWDDFF is the most advanced wavelet-based forecasting method proposed to date, as 

it is the first to consider input variable selection, parameter, and model output uncertainty (Quilty and 
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Adamowski, 2018a), extending it to a multi-wavelet ensemble framework that generates probability-

based forecasts further improves upon earlier multi-wavelet ensemble approaches that have only sought 

to develop an aggregated multi-wavelet forecast without taking into account forecast probabilities nor 

studying the reliability of the forecasts (such as in Alizadeh et al. (2017); Barzegar et al. (2018a, 2017)). 

6.2.4. How to Make a Computationally Efficient Ensemble Multi-Wavelet Stochastic Data-Driven 

Forecasting Framework 

In order to show that a multi-wavelet ensemble SWDDFF model can outperform the ‘single’ best SWDDFF 

model, we would have to convert each of the 4320 WDDFF models from Quilty and Adamowski (2018b) 

into their stochastic counterparts (SWDDFF (Quilty and Adamowski, 2018a)), select which SWDDFF 

models to include in the ensemble and weight them.  Then the performance between each individual 

SWDDFF and the multi-wavelet ensemble SWDDFF could be compared to verify that the multi-wavelet 

ensemble SWDDFF performed better than the ‘single’ best SWDDFF.  When attempting to strike a balance 

between the accuracy of the model and computational time required in estimating the various probability 

density functions in the SWDDFF, we approximated that it would take about 60 days of computation time 

on a desktop PC (with specifications as follows: Intel(R) Xeon (R) CPU @ 2.40 GHz with 32.0 GB RAM) to 

convert all WDDFF models into SWDDFF models before selecting then weighting the individual models in 

the multi-wavelet ensemble SWDDFF.  This computational requirement would breach most project 

timelines and resources and would be impractical for most organizations to consider.  Thus, we re-

explored how we could still use the WDDFF models in a stochastic ensemble forecasting system that 

generated probability-based forecasts. 

The above computational constraint lead us to use the already produced forecasts from each WDDFF 

model as input data to a single SDDFF model.  Therefore, instead of having to compute thousands of 

models, perform model selection, and then weight each individual model in the ensemble, this can all be 

accomplished in one single model.  We named our model the Ensemble Wavelet - SDDFF (EW-SDDFF) 

since it uses an ensemble of deterministic WDDFF forecasts as input data to a SDDFF (inherently 

performing ensemble member selection and weighting). 

6.2.5. Contributions and Benefits of the Proposed Framework 

Before moving into the details of the various methods used to develop the EW-SDDFF, we briefly discuss 

how the SDDFF can be used as a general stochastic ensemble forecasting system, including some of its 

benefits in this regard; we end this sub-section with a list of our contributions and an outline of the 

remainder of this paper. 
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Using the SDDFF model as an ensemble forecasting system by adopting deterministic forecasts as input 

data reduces the burden of (separately) adopting model selection and weighting strategies within the 

ensemble since it uses input variable selection to determine useful model inputs and data-driven methods 

to estimate model weights - inherently handling both model selection and weighting tasks at once.    In 

other words, since the SDDFF incorporates input variable selection uncertainty it selects, amongst the 

different individual models used as input data, the models whose forecasts are similar to the target 

process, which can be seen likened to estimating (ensemble) model selection uncertainty.  The modeling 

component (i.e., mapping inputs to the target via a set of parameters in a given model), can be understood 

from the viewpoint of estimating model weight (parameter) uncertainty based on the selected models in 

the ensemble.  We are not aware of any studies that have used an ensemble stochastic data-driven 

forecasting framework in terms of probability-based forecasting that inherently considered both 

ensemble model selection and ensemble weight uncertainties.   

The other benefit of using the SDDFF as an ensemble forecasting system is that it is flexible in what can 

be used as input data, owing to its data-driven nature.  The ensemble SDDFF could take as input: different 

deterministic model outputs from process-based models and/or data-driven models (e.g., WDDFF), large-

scale climate indicators, numerical weather predictions, etc.  Earlier studies have used data-driven 

methods to create ensemble forecasting systems, combining process-based and/or data-driven model 

outputs (Barzegar et al., 2018b; Fernando et al., 2012; Humphrey et al., 2016; Noori and Kalin, 2016; 

Phanida et al., 2016; Shamseldin et al., 1997; Shoaib et al., 2018; Sun and Trevor, 2018, 2017; Young et 

al., 2015).  Yet none of these approaches inherently incorporated ensemble member selection uncertainty 

nor produced probability-based forecasts, with the exception of Humphrey et al. (2016).  Their approach 

used GR4J (Perrin et al., 2003) model outputs as input to a Bayesian neural network and produced 

probabilistic monthly stream flow forecasts near South Australia.  Another notable approach, although 

quite different in the manner of combining model outputs, is that of Tyralis and Koutsoyiannis (2017).  The 

authors combined historical observations, Hurst-Kolmogorov processes, and the output of different 

general circulation models (GCMs) through the Bayesian processor of forecasts (BPF) in order to 

probabilistically forecast mean annual air temperature and annual precipitation across the USA for the 

time period 2016-2100.  Both approaches differ from ours since they did not implicitly consider both 

ensemble model selection and weighting.   

The implicit consideration of both ensemble model selection (via input variable selection) and model 

weighting (via data-driven models) tasks at once is the first contribution of this research to the literature. 
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The proposed EW-SDDFF is also the first multi-wavelet ensemble stochastic forecasting framework that 

produces probability-based forecasts accounting for ensemble model weighting and model selection 

uncertainties, alongside input data and (ensemble) model output uncertainty. This is our second main 

contribution to the scientific literature.  A further contribution of this study is the first application and 

comparison of deterministic and stochastic forecasts of urban water demand during a heatwave period 

(see section 6.5.3). 

To demonstrate the development and use of the EW-SDDFF on a real-world case study, the rest of this 

paper is organized as follows: in section 6.3 we discuss the different methods used to develop EW-SDDFF; 

section 6.4 describes our experiments involving EW-SDDFF and its benchmarks; section 6.5 discusses our 

main results and their significance; and section 6.6 with a summary and some recommendations for future 

work. 

6.3. Methods 

Here we briefly describe the main methods that influenced the development of the proposed EW-SDDFF. 

6.3.1. Wavelet Data-Driven Forecasting Framework 

In Quilty and Adamowski (2018b) a set of best practices were proposed for the correct development of 

wavelet-based forecasting models for use in real-world forecasting problems, culminating in the Wavelet 

Data-Driven Forecasting Framework.  In their study, the authors proposed two different wavelet 

decomposition algorithms, the MODWT (Olhede and Walden, 2004) and à trous algorithm (AT) (Aussem 

et al., 1998), that do not use future information (i.e., data from the present and past is solely required) 

during wavelet decomposition and therefore may be used correctly for real-world forecasting problems. 

Briefly, the MODWT and AT are used to carry out wavelet decomposition (transformation) on given input 

data (𝑿 ∈ ℝ𝑁xD, where 𝑁 is the number of samples and 𝐷 is the number of inputs) via the 

mapping 𝓦: 𝑿 → 𝑿𝑾; where 𝑿𝑾 represents the wavelet-decomposed (transformed) inputs.  The wavelet 

transformation of the input data maps an input matrix, 𝑿 of dimension 𝐷 to a matrix, 𝑿𝑾 of 

dimension 𝐷(𝐽 + 1) (i.e., 𝓦: 𝑿 ∈ ℝ𝑁xD → 𝑿𝑾 ∈ ℝ𝑁xD(𝐽+1)); where each 𝑗 ∈ 𝐽 + 1 represents a scale of 

change for each input data vector Quilty and Adamowski (2018a).  We refer to the wavelet-transformed 

inputs at scales 𝑗 = 1: 𝐽 as wavelet coefficients (which represent changes in averages over a 

scale 𝜏𝑗 = 2𝑗−1); the wavelet-transformed inputs at scale 𝐽 + 1 are termed scaling coefficients (and 

represent variations in the data at scales 𝜆𝐽 = 2𝐽 and higher) (Percival and Walden, 2000, sec. 4.8). 
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The WDDFF can be used to forecast a given hydrological or water resources process through the following 

steps (Quilty and Adamowski, 2018b): 

1. The MODWT or AT are used to decompose input data; 

2. The decomposed sub-series are fed to an input variable selection method that determines which 

wavelet-decomposed sub-series (wavelet and scaling coefficients) to use in the forecasting model; 

3. A data-driven method (e.g., multiple linear regression (MLR), neural networks, etc.) is then used 

to map the selected wavelet-decomposed sub-series into a target forecast, 𝑄𝑊𝑖,𝑗
, 

where 𝑊𝑖,𝑗 represents that the forecast was produced using a wavelet decomposition algorithm 

(MODWT or AT), decomposition level 𝑖, and wavelet filter 𝑗 for the target (𝑄); and 

4. Common forecast evaluation methods (e.g., Nash-Sutcliffe Efficiency Index, root mean square 

error, etc.) are used to select the best forecasting model(s) – which can be built using different 

variations of the wavelet decomposition algorithm, decomposition levels, wavelet filters, input 

variable selection methods, data-driven methods, and so on. 

6.3.2. Stochastic Data-Driven Forecasting Framework 

The Stochastic Data-Driven Forecasting Framework takes input data (𝑿), a given data-driven model (𝑆), 

any input variable selection method (e.g., partial correlation input selection (PCIS) (May et al., 2008; Quilty 

et al., 2016; Tran et al., 2016)), and estimates the probability density function of the true target variable 

to be forecasted 𝑓𝑄(𝑄) via (Quilty and Adamowski, 2018a): 

 
𝑓𝑄(𝑄) =  ∫ ∫ ∑ 𝑓𝑒(𝑄

𝝎∈𝜴𝑿𝜣

− 𝑆(𝜣, 𝑿, 𝝎)|𝜣, 𝑿, 𝝎)𝑓𝜣(𝜣|𝑿, 𝝎)𝑓𝜴(𝝎|𝑿)𝑓𝑿(𝑿)𝑑𝜣𝑑𝑿 

(6.1) 

 

where: 

𝑓𝑿(𝑿) is the marginal probability density of the input data; 

𝝎 ∈ 𝜴 is a binary vector spanning 𝑿, identifying the variables in 𝑿 which have been selected (i.e., 𝝎 ∈

{0,1}𝑫) using an input variable selection routine; 

𝑓𝜴(𝝎|𝑿) is the conditional probability density function of the selected input variables conditioned on 

input data; 
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 𝑓𝜣(𝜣|𝑿, 𝝎) represents the conditional probability density function of the parameters given the input 

data and selected input variables; 

𝑆(𝜣, 𝑿, 𝝎) is the deterministic output of the model 𝑆 for parameters 𝜣, input data 𝑿, and selected input 

variables 𝝎; 

𝑓𝑒(𝑄 − 𝑆(𝜣, 𝑿, 𝝎)|𝜣, 𝑿, 𝝎) is the conditional probability density function of the model error (𝑒 = 𝑄 −

𝑆(𝜣, 𝑿)) conditioned on the parameters, input data, and selected input variables (which quantifies model 

uncertainty or uncertainties not explicitly accounted for in the model, such as model structural 

uncertainty, uncertainty due to initial conditions, etc.).  

The original blueprint (Montanari and Koutsoyiannis, 2012), and therefore SDDFF (Quilty and Adamowski, 

2018a), relies on the assumption that 𝑄 is the true variable to be forecasted, which is an unknown quantity 

at the time of issuing the forecast, and therefore is to be treated as a random variable, see also Montanari 

and Koutsoyiannis (2014). 

Essentially, the SDDFF is a tool to convert any deterministic forecasting model (process-based, data-

driven, etc.) into a stochastic one, with the ability to account for various sources of uncertainty explicitly 

(e.g., input data, input variable selection, parameter, and model output) or implicitly (e.g., model 

structure, initial conditions, etc.).  For further details on the theoretical basis of the SDDFF, readers are 

referred to the papers on the original blueprint (i.e., Montanari and Koutsoyiannis (2012); Sikorska et al. 

(2015)) as well as Quilty and Adamowski (2018a). 

Perhaps one of the most convenient and flexible features of SDDFF (and the original blueprint) is that it is 

likelihood-free and that the various sources of uncertainty can each be formulated under different 

hypotheses.  For example, in Montanari and Koutsoyiannis (2012), parameter uncertainty was estimated 

using the Differential Evolution Adaptive Metropolis (DREAM) algorithm (Vrugt and Robinson, 2007); 

input variable selection and parameter uncertainty were estimated using the paired bootstrap in Quilty 

and Adamowski (2018a); the meta-Gaussian (Montanari and Koutsoyiannis, 2012) and the k nearest-

neighbour (Quilty and Adamowski, 2018a; Sikorska et al., 2015) approaches were used for model error 

uncertainty in other studies.  Furthermore, akin to the blueprint, one may easily ‘turn-off’ various sources 

of uncertainty within the SDDFF.  One could choose to solely estimate parameter uncertainty, or 

combined sources of uncertainty (such as input variable selection, parameter, and model output, as in 

Quilty and Adamowski (2018a)).  Alternatively, one could choose to aggregate all sources of uncertainty 

into the model output uncertainty, similar to Wani et al. (2017).   
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We now discuss how the SDDFF and WDDFF can be converted into the SWDDFF. 

6.3.3. Stochastic Wavelet Data-Driven Forecasting Framework 

Merging together the WDDFF and SDDFF, Quilty and Adamowski (2018a) developed the SWDDFF.  The 

main difference between SDDFF and its wavelet-based counterpart, is that SWDDFF includes wavelet-

transformation of the input data.  The main equation for the SWDDFF is given as: 

 
𝑓𝑄(𝑄) =  ∫ ∫ ∑ 𝑓𝑒(𝑄

𝝎∈𝜴𝑿𝑾𝜣

− 𝑆(𝜣, 𝑿𝑾, 𝝎)|𝜣, 𝑿𝑾, 𝝎)𝑓𝜣(𝜣|𝑿𝑾, 𝝎)𝑓𝜴(𝝎|𝑿𝑾)𝑓𝑿𝑾
(𝑿𝑾)𝑑𝜣𝑑𝑿𝑾 

(6.2) 

 

where the meanings remain the same for the marginal and conditional probability distributions in Eq. 6.1, 

with the exception that 𝑿 in SDDFF is swapped for the wavelet-transformed inputs 𝑿𝑾.   

The workflow for applying the SWDDFF (and SDDFF) follows directly from the original blueprint 

(Montanari and Koutsoyiannis, 2012; Sikorska et al., 2015) and is summarized below and in Figure 6.1 

(which is an adapted version of the original blueprint (Montanari and Koutsoyiannis, 2012) taken from 

Quilty and Adamowski (2018a)). 

1. A random sample is drawn from the probability density function 𝑓𝑿(𝑿). 

2. Wavelet transformation is performed on the drawn sample from 1 (i.e., 𝓦: 𝑿 → 𝑿𝑾), obtaining 

an equivalent realization from 𝑓𝑿𝑾
(𝑿𝑾). 

3. A random sample is drawn from the conditional probability density function 𝑓𝜴(𝝎|𝑿𝑾). 

4. A random sample is drawn from the conditional probability density function 𝑓𝜣(𝜣|𝑿𝑾, 𝝎). 

5. Using the sampled information (𝜣, 𝑿𝑾, 𝝎), a forecast is computed via 𝑆(𝜣, 𝑿𝑾, 𝝎); 

6. For the forecast from 5, a random error is picked up from the conditional probability density 

function 𝑓𝑒(𝑄 − 𝑆(𝜣, 𝑿𝑾, 𝝎)|𝜣, 𝑿𝑾, 𝝎) and added to 𝑆(𝜣, 𝑿𝑾, 𝝎); 

7. Steps 1 to 6 are repeated 𝑛 times, giving 𝑛 different forecasts of 𝑄. 

8. The probability density function 𝑓𝑄(𝑄) is realized by the 𝑛 forecasts of 𝑄. 

By skipping step 2 (wavelet transformation), the SWDDFF reverts to the SDDFF.  It is worth recalling that 

one can “turn-off” various sources of uncertainty – this is accomplished by skipping a particular step in 

the above workflow.  For example, if one did not want to include input data uncertainty (which we do not 

incorporate in our case study given later), one can skip step 1. 
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An important item to mention is that the different hypotheses employed for estimating the various 

marginal and conditional probability density functions within SDDFF and SWDDFF can take a significant 

amount of time to compute, especially when estimating conditional probability density functions.  Both  

Montanari and Koutsoyiannis (2012) and Sikorska et al. (2015) relaxed assumptions on the conditional 

dependencies and instead considered independence between input data, parameters, and model error 

and found that their blueprint resulted in sufficient performance for their case studies.  However, Quilty 

and Adamowski (2018a) explicitly accounted for input variable selection, parameter, and model output 

uncertainty, which, as given in Eq. 6.1 and Eq. 6.2, requires the estimation of the conditional probability 

density function, i.e., parameter and model output uncertainties and the input variable selection marginal 

probability density function (since input data uncertainty was not considered). 

Finally, the development of the SDDFF and SWDDFF tend to increase in computation time when there is 

high input variable selection uncertainty.  This is because parameter uncertainty is conditioned on input 

variable selection uncertainty and model error uncertainty is conditioned on both parameter uncertainty 

and input variable selection uncertainty.  The reader is referred to section 6.4 below as well as Quilty and 

Adamowski (2018a) for further details.  We now discuss our proposed EW-SDDFF.   
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Figure 6.1.  Workflow for the Stochastic Wavelet Data-Driven Forecasting Framework (according to Quilty 

and Adamowski (2018a) and originally modified from Montanari and Koutsoyiannis (2012) and Sikorska 

et al. (2015)) 

6.3.4. Ensemble Stochastic Data-Driven Forecasting Framework using Wavelet-based Forecasts as 

Input Data 

The original blueprint authors discussed how their stochastic modelling framework could be extended to 

a multi-model (ensemble) stochastic modelling framework by weighting the predictive distribution of each 

separate model output according to (Montanari and Koutsoyiannis, 2012): 
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𝑓𝑄(𝑄) =  ∑ 𝑤𝑘𝑓𝑄
(𝑘)(𝑄)

𝑀

𝑘=1

 (6.3) 

 

where 𝑀 is the number of models in the ensemble, 𝑤𝑘  is the weight associated to each ensemble member 

(with positive weights that sum to unity), and 𝑓𝑄
(𝑘)

(𝑄) is the probability distribution for each 𝑘-th model 

as given in Eq. 6.1.  However, equation Eq. 6.3 can be extremely computationally demanding when one is 

working with a large number of candidate models.  This is particularly true when there is no clear indicator 

a priori to judge which models should not be included in the multi-model ensemble.  We elaborate more 

on this topic below giving an example from our experience during this study. 

In light of the above, our goal was to develop an ensemble SWDDFF that could outperform the best single 

SWDDFF.  For our case study (described in more detail in section 6.4.2), to develop an SWDDFF for each 

candidate model, we estimated that it would have taken nearly 60 days on a desktop PC (Intel(R) Xeon (R) 

CPU @ 2.40 GHz with 32.0 GB RAM) to produce all single SWDDFF models prior to determining which 

models to include in the ensemble as well as their respective weights (i.e., in the multi-model scheme 

given in Eq. 6.3).  We instead decided to use the SDDFF as the ensemble model itself, by using the various 

deterministic WDDFF forecasts as input data (to SDDFF), leading to a single probability distribution of the 

target to be forecasted, rather than 𝑀 separate probability distributions that would then need to be 

combined via ensemble member weighting as per Eq. 6.3.  In other words, if we were to develop an 

ensemble SWDDFF it would have taken nearly 60 days to obtain all ensemble members, which would then 

have to be selected individually for consideration in the ensemble and only afterwards, would the weights 

(𝑤𝑘 for 𝑘 = 1, … , 𝑀) for each model in the ensemble be calculated (in three separate steps); instead, EW-

SDDFF performs each of the steps required by the ensemble SWDDF at once (i.e., via a single model, 𝑀 =

1) using the previously developed WDDFF as input data to an SDDFF, which uses input variable selection 

for model selection and data-driven modelling for model weighting.  This reduces computing time to 

within an hour or less (for our particular case study discussed section 6.4.2). 

Furthermore, due its data-driven nature, the SDDFF does not require any strictly defined relationships 

between input data and the target variable, a significant difference when compared with its blueprint 

counterpart that is process-based (Montanari and Koutsoyiannis, 2012; Sikorska et al., 2015).  Therefore, 

it benefits from flexibility in what can be used as input data.  For this study, we used the different WDDFF 

forecasts (i.e., 𝑄𝑊𝑖,𝑗
) from Quilty and Adamowski (2018b) as input data to forecast the target process, 
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resulting in our proposed EW-SDDFF.  The EW-SDDFF allows us to avoid the excessive computational 

requirements of a multi-wavelet ensemble of SWDDFF models built according to Eq. 6.3 while still 

benefitting from the strengths of using different wavelet decomposition levels and wavelet filters in a 

multi-wavelet ensemble forecasting system. 

The EW-SDDFF may be written as follows: 

 𝑓𝑄(𝑄)

= ∫ ∫ ∑ 𝑓𝑒(𝑄

𝝎∈𝜴𝑸𝑾𝜣

− 𝑆(𝜣, 𝑸𝑾, 𝝎)|𝜣, 𝑸𝑾, 𝝎)𝑓𝜣(𝜣|𝑸𝑾, 𝝎)𝑓𝜴(𝝎|𝑸𝑾)𝑓𝑸𝑾
(𝑸𝑾)𝑑𝜣𝑑𝑸𝑾 

(6.4) 

 

where 𝑸𝑾 is used to represent the collection of the different 𝑄𝑊𝑖,𝑗
 forecasts from Quilty and Adamowski 

(2018b).  Notice that the only difference between Eq. 6.1 and Eq. 6.4 is that 𝑿𝑾 has been swapped for 

𝑸𝑾 and the only difference between the SWDDFF workflow and the workflow for EW-SDDFF is that 

wavelet transformation is no longer required since 𝑸𝑾 embodies the outputs of different forecasts that 

used wavelet-transformed data as model inputs (i.e., the WDDFF models in Quilty and Adamowski 

(2018b)). 

We now discuss the different experiment settings along with our case study adopted for exploring the use 

of the EW-SDDFF for a real-world water resources forecasting task. 

6.4. Experiment Details 

6.4.1. Estimation and Sampling from the Different Probability Density Functions 

The most important components of the EW-SDDFF (SDDFF and SWDDFF) is the estimation of and sampling 

from the different probability density functions.  For the estimation and sampling from the different 

probability density functions in EW-SDDFF (and SWDDFF), we follow our earlier study (Quilty and 

Adamowski (2018a)): 

1. We focus on the estimation of ensemble model selection, model weighting, and model output 

uncertainty.  We do not consider input data uncertainty in order to maintain consistency with our 

earlier study. 

2. The bootstrap resampling method (Efron and Tibshirani, 1993) is used to estimate the input 

variable selection (ensemble model), parameter (weights), and model output uncertainties: 
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a. The input variable selection probability distribution 𝑓𝜴(𝝎|𝑸𝑾) is estimated using the 

paired bootstrap approach (Wan et al., 2014) by relying on the calibration dataset pairs 

(𝑌, 𝑸𝑾) where 𝑌 represents past observations of 𝑄, i.e., in the calibration dataset.  In 

other words, 𝑄 is a random variable to be observed In the future while 𝑌 are previously 

observed realizations of 𝑄; 

b. The conditional probability density function for the parameters, i.e., 𝑓𝜣(𝜣|𝑸𝑾, 𝝎) was 

also estimated using the paired bootstrap approach (Wan et al., 2014) by relying on the 

calibration data and selected input variables (𝑌, 𝑸𝑾, 𝝎).  This requires a parameter 

distribution to be estimated for each unique selected input variable set (i.e., the different 

selected input variable sets in 𝜴); and 

c. The conditional probability density function for the model error, 𝑓𝑒(𝑄 −

𝑆(𝜣, 𝑸𝑾, 𝝎)|𝜣, 𝑸𝑾, 𝝎), is obtained by estimating the error, 𝑒 = 𝑄 − 𝑆(𝜣, 𝑸𝑾, 𝝎), on 

the validation set for each model’s ‘optimal’ parameter vector (judged by the Nash 

Sutcliffe Efficiency Index (Krause and Boyle, 2005; Moriasi et al., 2007)) associated with 

each unique input variable set through the k nearest-neighbour bootstrap (Sikorska et al., 

2015). 

The EW-SDDFF can be used to generate the probability density function of the target forecast 𝑓𝑄(𝑄) for a 

given input 𝑸𝑾
∗.  This input can be the test (hold-out) set data or newly received data, such as from a 

sensor in a monitoring network.  To generate 𝑓𝑄(𝑄), sampling from the various probability density 

functions is required and is accomplished by following the workflow below.  It is equivalent to the steps 

shown in Figure 6.1 but is modified according to section 6.3.4.  See also Quilty and Adamowski (2018a)): 

1. First, a selected input variable set 𝝎 is picked up at random from 𝑓𝜴(𝝎|𝑸𝑾);  

2. Second, a parameter vector from 𝜣, associated with the selected input variable set (𝝎), is picked 

up at random from 𝑓𝜣(𝜣|𝑸𝑾, 𝝎);  

3. Third, 𝑆(𝜣, 𝑸𝑾, 𝝎) is evaluated, resulting in a model output, 𝑄; and 

4. Finally, 𝑄 is compared against the validation model outputs for the selected input variable set (𝝎) 

and using the k nearest-neighbour bootstrap (see Sikorska et al. (2015) for details).  A model error 

is randomly sampled from 𝑓𝑒(𝑄 − 𝑆(𝜣, 𝑸𝑾, 𝝎)|𝜣, 𝑸𝑾, 𝝎) and added to 𝑄.  This process is 

repeated a sufficient number of times (𝑛) and results in 𝑓𝑄(𝑄) for a given input 𝑸𝑾
∗. 

We used 100 bootstrap resamples (𝑛 = 100) to estimate each of the input variable selection, parameter, 

and model error probability distributions.  For the k nearest-neighbour bootstrap, we used ten nearest-
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neighbours for picking up a random error from the validation set predictions used to infer the conditional 

probability density function for the model error.  Similarly, 100 bootstrap resamples were used for 

generating 𝑓𝑄(𝑄) by randomly sampling from the different probability distributions.  In Quilty and 

Adamowski (2018a), we found that the reliability of the SDDFF and SWDDFF for generating 𝑓𝑄(𝑄) was 

sufficient for 50 bootstrap resamples and greater; in the same study we also found that 10 nearest-

neighbours provided good performance.   

We now discuss the details of our case study, which includes a discussion of the forecasts produced by 

the WDDFF (Quilty and Adamowski, 2018b), which are used as input data for the EW-SDDFF. 

6.4.2. Case Study 

Our objective is to use the real-world water resources dataset discussed in section 6.4.2.1 in a case study 

to demonstrate the usefulness of the proposed EW-SDDFF (section 6.3.4 and 6.4.2.2) by evaluating its 

forecasts through deterministic and probabilistic evaluation metrics commonly adopted in water 

resources (section 6.4.2.3) and comparing its performance against suitable benchmarks (section 6.4.2.4).   

6.4.2.1. Study Site Overview 

In earlier studies, Quilty and Adamowski (2018a, 2018b) focussed on a real-world daily urban water 

demand (UWD) forecasting experiment in Montreal, Canada.  Daily UWD forecasting in Montreal is very 

important as the municipality’s water supply system provides drinking water to over 1.3 million people 

and is subject to changing demands due to seasonal usage.  The period where UWD in Montreal is most 

variable occurs during the summer when water demand is heavily dependent on weather (e.g., lawn 

watering, outdoor recreational activities, construction, etc. (Toth et al., 2018)).  The available dataset 

consists of average daily historical UWD, daily maximum air temperature, daily rainfall, and daily 

antecedent precipitation index collected from both the City of Montreal (UWD) and Environment and 

Canada (meteorological data) and covers the period from February 1999 to December 2010.  The lead 

times explored in this study are 1, 7, and 14 day(s) ahead.  These lead times were selected since they are 

important for operations, planning, and construction activities associated with the water supply system 

(Quilty and Adamowski (2018a, 2018b)).  For the 1 (7 and 14) day lead time(s) there were: 2395 (2389 and 

2382) calibration, 583 validation, and 366 hold-out (test) records.  The same validation and test records 

are used for each lead time forecast.  The dataset partitioning follows our previous study (Quilty and 

Adamowski, 2018a).  More information on this UWD dataset can also be found in earlier work (Adamowski 

et al., 2013, 2012; Mouatadid and Adamowski, 2017; Tiwari and Adamowski, 2013).   
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6.4.2.2. Input Data for the Ensemble Wavelet – Stochastic Data-Driven Forecasting Framework 

In this study, we consider the forecasts produced by the WDDFF models from Quilty and Adamowski 

(2018b) that forecasted the target variable directly (i.e., the target variable was not decomposed into 

separate sub-series).  Those forecasts are used as input data to our proposed EW-SDDFF.  In this regard, 

we consider WDDFF models that: (1) used the MODWT and AT for wavelet decomposition; (2) considered 

decomposition levels between one and six and 20 different wavelet filters; (3) adopted either the partial 

correlation input selection (PCIS) or Edgeworth Approximations-based conditional mutual information 

(EA) input variable selection methods; and (4) used either multiple linear regression (MLR), extreme 

learning machines (ELM), or second order Volterra series models (SOV) for the data-driven method.  For 

each WDDFF we considered two cases: (1) using only wavelet-decomposed input data or (2) using both 

wavelet-decomposed and the original (non-decomposed) input data as potential model inputs during 

input variable selection.  In total, for each lead time, there were 1440 different WDDFF forecasts 

(scenarios).  In addition to the WDDFF forecasts, we also include their non-wavelet-based counterparts, 

resulting in a total of 1443 forecasts that were considered as input data for the EW-SDDFF. 

Following earlier studies on ensemble forecasting we removed poorly performing forecasts for inclusion 

in the ensemble forecast model (Lee et al., 2012; Rathinasamy et al., 2013).  In order to remove poorly 

performing WDDFF and non-wavelet-based forecasts from the input dataset for each EW-SDDFF model, 

we took a practical approach.  We removed any forecast from the input dataset that could not beat a 

random walk (RW) model on the calibration dataset.  We think that this is justified as persistence-based 

forecast measures (such as the RW) have been used in earlier UWD forecasting studies to rationalize the 

adoption of more ‘complicated’ models (Fullerton et al., 2016; Fullerton and Cárdenas, 2016; Fullerton 

and Molina, 2010).   We also removed any WDDFF forecasts that produced identical forecasts.  For 

example, input variable selection was used in WDDFF to select which wavelet-decomposed input data to 

use in the forecast, which also included the original (non-decomposed) input data.  In a number of cases, 

only the original (non-decomposed) input data was selected during input variable selection. Therefore, 

when the same (deterministic) data-driven model was used in such instances, the same calibrated 

parameters were estimated for the different models, resulting in the same forecast.  In other words, in 

certain cases input variable selection within WDDFF did not select wavelet-decomposed data as useful 

inputs.  In these cases, we kept only those forecasts that were unique and removed any other forecast 

that could not beat the RW benchmark on the calibration dataset.   
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We now discuss the different deterministic and probabilistic forecast evaluation metrics used to judge the 

performance of our proposed EW-SDDFF against benchmark methods. 

6.4.2.3. Forecast Evaluation Metrics 

We adopted the same deterministic and probabilistic performance measures as Quilty and Adamowski 

(2018a).  The interested reader should consult our earlier work and references therein for further details 

on each method.  The deterministic forecast evaluation metrics are: the Nash-Sutcliffe Efficiency Index 

(NASH); root mean square error (RMSE); and mean absolute error (MAE).  The probabilistic forecast 

evaluation metrics: mean continuous ranked probability score (CRPS), prediction interval coverage 

probability (PICP), average prediction interval width (AW), and interval score (IS).   

The PICP is a measure of forecast reliability while the AW in a measure of forecast sharpness.  A reliable 

forecasting model does not always indicate useful forecasts since it can also lack sharpness and provide 

poor forecasts, while an unreliable model will always indicate poor forecasts (in the probabilistic sense) 

(Humphrey et al., 2016).  Both the CRPS and IS simultaneously measure forecast sharpness and reliability 

(Gneiting et al., 2007; Gneiting and Raftery, 2007).  However, it is not straightforward to identify the level 

of sharpness and/or reliability solely by these measures, which is why we also incorporated the PICP and 

AW.  In order to calculate the PICP, AW, and IS one needs to specify the confidence level (1 − 𝛼 %) at 

which they are to be evaluated.  In this study, we selected a 95 % confidence level (i.e., 𝛼 = 0.05). 

Additionally, we include the Coverage Probability Plots (CPP) (Laio and Tamea, 2007) to visually inspect 

the quality of the forecast quantiles against the theoretical quantiles.  The CPP has been used for the same 

task in a number of other recent studies for assessing forecast quality (Humphrey et al., 2016; Montanari 

and Koutsoyiannis, 2012; Sikorska et al., 2015).  Essentially, the CPP produces a scatter plot between 

theoretical and forecast quantiles and in the ideal case each point in the scatter plot lies on the bisector.  

Using the ideal case, one can estimate the mean square error (MSE) between the bisector line and the 

plotted points in the CPP.  Using this concept, we adopt what we call the ‘CPP_mse’ as a means to 

summarize the CPP in terms of a MSE-based scoring metric, similar to the MSE calculated for reliability 

diagrams (Brochero et al., 2011b). 

6.4.2.4. Developing our Proposed Method and its Comparison with Benchmarks 

Our proposed EW-SDDFF was built using WDDFF forecasts (Quilty and Adamowski, 2018b) as input data.  

Based on our discussion in section 6.4.2.2, the WDDFF forecasts that beat the RW benchmark on the 

calibration dataset were considered as input data when developing the EW-SDDFF for each lead time (1, 
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7, and 14 days ahead).  To evaluate whether each individual WDDFF was better than the RW benchmark, 

we used the MAE as an indicator, since it is related to the CRPS (discussed further below).  We considered 

two different input variable selection methods in the design of each EW-SDDFF; the linear PCIS and the 

nonlinear EA.  We then matched each input variable selection method with linear (MLR) and nonlinear 

(ELM and SOV) data-driven models.  Recall that input variable selection within the EW-SDDFF acts as a 

method for ensemble model selection while the data-driven model acts as a tool for ensemble model 

weighting, both of which account for uncertainty in each process.  In addition to ensemble model selection 

(input variable selection) and weighting (parameter) uncertainties, EW-SDDFF also considers model 

output uncertainty.  

As a type of EW-SDDFF-based benchmark, we also considered the case where input variable selection was 

not performed (i.e., ensemble model selection was not considered).  In that case, we used the MLR as the 

data-driven model (i.e., simple linear ensemble weighting).  As mentioned before, other options were 

discarded because of computation issues.  Therefore, there were four variants of the EW-SDDFF used in 

our case study (input variable selection method – data-driven model): 1) None-MLR; 2) PCIS-MLR; 3) EA-

ELM; and 4) EA-SOV. 

To evaluate the proposed EW-SDDFF we compared it against both deterministic and stochastic forecasting 

benchmarks.  We selected the SWDDFF that was built using the WDDFF that performed best on the 

calibration dataset in terms of the MAE.  This ‘best’ SWDDFF served as the main stochastic forecasting 

method benchmark for EW-SDDFF.  The deterministic benchmarks included the RW, the WDDFF that 

performed best on the calibration dataset (i.e., the non-stochastic version of the ‘best’ SWDDFF), and the 

non-stochastic versions of the different EW-SDDFF approaches, which we named EW-DDFF (there were 

four in total).  The EW-DDFF did not include input variable selection (ensemble model selection), 

parameter (ensemble model weighting), or model output uncertainty.  Overall, we compared five 

different methods (EW-SDDFF, EW-DDFF, SWDDFF, WDDFF, and RW).  Since EW-SDDFF and its non-

stochastic counterpart (EW-DDFF) were considered using four separate variations of input variable 

selection methods and data-driven models (None – MLR, PCIS-MLR, EA-ELM; and EA-SOV), there was a 

total of ten different model combinations explored in our case study for each lead time.  Therefore, there 

is a total of 30 models for all lead times: 1, 7, and 14 days ahead. 

In order to compare deterministic and stochastic forecasts, we adopted the CRPS since it reduces to the 

MAE in the case of deterministic models (Hersbach, 2000).  Therefore, a stochastic forecasting method 
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was deemed preferable to a deterministic method when the CRPS of the stochastic forecast was lower 

than the MAE of the deterministic forecast.   

In the following section we present and discuss the results of our experiments. 

6.5. Results and Discussion 

We begin with a discussion on the use of the RW benchmark to select input data for the EW-SDDFF and 

give details on the ‘best’ WDDFF models that were subsequently converted to their SWDDFF versions.  

Following this, we compare the performance of EW-SDDFF against its stochastic (SWDDFF) and 

deterministic benchmarks (EW-DDFF, WDDFF, and RW).  Finally, we explore the quality of the EW-SDDFF 

and SWDDFF models’ probability-based forecasts during a heatwave that occurred in Montreal during July 

2010.  All results mentioned in this section are for the test set and therefore represent the generalization 

capabilities of the different forecasting models (EW-SDDFF, EW-DDFF, SWDDFF, WDDFF, and RW). 

6.5.1. Selecting Input Data for the Ensemble Wavelet-Stochastic Data-Driven Forecasting 

Framework and Deterministic Benchmark Results 

In Table 6.1, we have noted for each lead time: the number of WDDFF (1440 for each lead time) and non-

wavelet-based forecasting models (three for each lead time) including how many unique forecasts were 

produced as well as the number of models that had a MAE lower than that of the RW benchmark (see 

section 6.4.2.2 and 6.4.2.4).  The performance of the RW benchmarks in terms of MAE are also provided 

for both the calibration and test sets.  Therefore, 441 (1), 416 (1), and 604 (1) different WDDFF and non-

wavelet-based-forecasts were considered as input data for the different EW-SDDFF and EW-DDFF models. 

Table 6.1.  Random walk (RW) benchmark results used for identifying input data for the EW-SDDFF 

Lead 
Time 

(Days) 

No. 
Total 

Models 

No. 
Unique 
Models 

No. 
Models 
Better 

than RW 

Calibration 
Set RW 

MAE 
[ML/D] 

Test 
Set RW 

MAE 
[ML/D] 

1 1443 874 442 35.135 26.363 

7 1443 893 417 44.648 38.708 

14 1443 938 605 56.573 50.945 

 

Table 6.2 summarizes information regarding the best WDDFF forecasting models including their test set 

performance.  The best WDDFF forecasting models were selected according to their calibration set MAE. 
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Each of the selected models incorporated a combination of both wavelet- and non-wavelet-decomposed 

input data.  The best WDDFF models, according to the calibration set MAE, had high decomposition levels 

(six, five, and six) and wide wavelet filters.  The wavelet filters contained fourteen, eight, and twelve 

wavelet coefficients for the different (1, 7, and 14 day) lead times.  Since high decomposition levels and 

wide wavelet filters provided the best performance for the UWD time series, it is likely an indication of a 

process that changes across both high- and low-frequency scales and that exhibits a polynomial behaviour 

(Maheswaran and Khosa, 2012; Rathinasamy et al., 2014).  This is a reasonable hypothesis for this time 

series since it has prominent weekly, bi-weekly, seasonal, and annual cycles and corresponds with 

seasonal cycles of air temperature and rainfall (Adamowski et al., 2013). 

Table 6.2.  Information and results for the best WDDFF models 

 WDDFF Benchmark Model Details Test Set Performance 

Lead 
Time 

(Days) 

Wavelet 
Decomposition 

Algorithm 

Wavelet 
Decomposition 

Level 

Wavelet 
Filter 

IVS 
Data-

Driven 
Model 

NASH 
RMSE 

[ML/D] 
MAE 

[ML/D] 

1 MODWT 6 la14 PCIS MLR 0.929 27.026 18.535 

7 MODWT 5 sym4 PCIS MLR 0.724 53.418 34.679 

14 AT 6 la12 EA SOV 0.640 60.981 39.389 

 

When comparing the RW to the WDDFF benchmarks, the biggest gain in terms of forecasting accuracy 

(MAE) appears at the 14 day lead time.  Even at the 14 day lead time, the WDDFF provides good forecast 

performance as its NASH score is above 0.5 (Moriasi et al., 2007).  The RW had test set NASH scores of 

0.864, 0.635, and 0.439 for the 1, 7, and 14 day lead times, respectively. 

6.5.2. Comparing the Proposed Model against its Benchmarks 

A summary of our experiments comparing EW-SDDFF against competing methods (SWDDFF, EW-DDFF, 

and WDDFF) is provided in Table 6.3.  The best EW-SDDFF and EW-DDFF models for a particular metric 

are bolded while the SWDDFF and WDDFF models that outperformed their ensemble counterparts for a 

particular metric are highlighted in grey.  The deterministic forecast evaluation metrics for the stochastic 

methods (EW-SDDFF and SWDDFF) were calculated by taking the mean of 𝑓𝑄(𝑄). The forecasts for each 

method are compared against the observed (target) time series in Figure 6.2.  Our experiments indicated 

that the EW-SDDFF was at least as computationally efficient as a single SWDDFF and incorporated the 

same information that would be needed be needed to generate an SWDDFF for each WDDFF model (to 

maintain brevity these results are not shown). 
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The most encouraging result of this experiment is that the EW-SDDFF provided the best forecast 

performance in terms of CRPS across all lead times when compared against its competitors.  Remembering 

that the CRPS reduces to the MAE for deterministic forecasts, this enables us to compare the CRPS for a 

stochastic forecast against the MAE for a deterministic forecast (allowing us to identify if the stochastic 

forecast should be preferred over the deterministic forecast).   

However, no single variation of EW-SDDFF (None – MLR, PCIS-MLR, EA-ELM, and EA-SOV) performed best 

across all lead times or forecast evaluation metrics.  This indicates the importance of considering different 

methods for input variable selection and data-driven modelling within the EW-SDDFF.  In general, it can 

be said that by considering each EW-SDDFF variant, the EW-SDDFF provided improved performance when 

compared against the SWDDFF, which is significant given that both methods are nearly equal in 

computational requirements (at least for this study).
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Table 6.3.  Test set performance for the EW-SDDFF, EW-DDFF, SWDDFF, and WDDFF models (Note: the results for best EW-SDDFF and EW-DDFF 

models for a particular forecast evaluation metric are bolded while the results for the SWDDFF and WDDFF models that outperformed their EW-

SDDFF and EW-DDFF counterparts are highlighted in grey) 

Lead 
Time 

(Days) 

Forecasting 
Framework 

IVS 
Data-

Driven 
Model 

NASH 
RMSE 

[ML/D] 
MAE 

[ML/D] 
CRPS 

[ML/D] 
PICP 
[%] 

AW 
[ML/D] 

IS 
[ML/D] 

CPP_mse 

1 

WDDFF PCIS MLR 0.929 27.026 18.535           

EW-DDFF 

None MLR 0.929 27.087 19.116           

PCIS MLR 0.923 28.191 20.134      
EA ELM 0.929 27.120 18.575      
EA SOV 0.924 27.991 20.320           

SWDDFF PCIS MLR 0.925 27.886 19.409 14.790 92.350 109.715 166.143 0.006 

EW-SDDFF 

None MLR 0.926 27.706 19.645 15.421 94.809 126.919 160.580 0.004 

PCIS MLR 0.921 28.524 20.170 15.503 86.885 96.685 193.962 0.004 

EA ELM 0.926 27.625 19.098 14.651 91.803 108.985 161.693 0.002 

EA SOV 0.928 27.356 18.858 14.803 93.716 121.532 165.711 0.003 

7 

WDDFF PCIS MLR 0.724 53.418 34.679           

EW-DDFF 

None MLR 0.684 57.183 43.314           

PCIS MLR 0.713 54.494 41.312      
EA ELM 0.478 73.434 65.321      
EA SOV 0.616 63.007 46.354           

SWDDFF PCIS MLR 0.691 56.509 39.624 29.756 92.350 192.773 347.416 0.021 

EW-SDDFF 

None MLR 0.728 52.966 36.334 27.553 92.077 186.646 321.638 0.004 

PCIS MLR 0.736 52.241 37.455 27.810 91.257 152.883 313.316 0.042 

EA ELM 0.718 53.938 40.179 29.203 89.891 163.760 308.462 0.047 

EA SOV 0.736 52.197 36.069 27.028 89.617 162.892 327.956 0.025 
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14 

WDDFF EA SOV 0.640 60.981 39.389           

EW-DDFF 

None MLR 0.043 99.451 80.338           

PCIS MLR 0.388 79.500 71.299      
EA ELM 0.294 85.437 75.095      
EA SOV 0.479 73.394 59.426           

SWDDFF EA SOV 0.641 60.930 43.324 31.949 87.432 186.574 367.335 0.021 

EW-SDDFF 

None MLR 0.181 92.000 73.475 52.777 79.508 264.444 552.345 0.011 

PCIS MLR 0.689 56.688 45.524 32.248 88.525 175.975 282.629 0.063 

EA ELM 0.679 57.580 46.507 32.718 90.437 182.539 271.016 0.060 

EA SOV 0.704 55.291 43.813 31.101 91.530 178.876 267.488 0.052 
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Figure 6.2.  Time series plots for the benchmark (SWDDFF), EW-SDDFF variants (MLR (without input 

variable selection), PCIS-MLR, EA-ELM, and EA-SOV), and RW against the observed time series for a) 1, b) 

7, and c) day lead time(s); the variable 𝑼 denotes urban water demand measured in megalitres per day 

[ML/D] 

6.5.2.1. Comparing the Proposed Method against its Deterministic Version 

The EW-SDDFF outperformed its deterministic counterpart (EW-DDFF) when comparing the CRPS versus 

the MAE for each lead time.  It also substantially outperformed the EW-DDFF in terms of deterministic 

forecast evaluation metrics at 7 and 14 day lead times, while providing similar performance for the 1 day 

lead time across the same metrics.  These results indicate that it is very important to consider the 

uncertainties related to ensemble model selection and weighting in the EW-SDDFF as the lead time 

increases, at least for the dataset under study.  For example, for the 7 and 14 day lead times the EW-
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SDDFF reduced the MAE between 9 and 38 % when compared to the EW-DDFF.  The improvement in 

performance shown by the EW-SDDFF when compared to the EW-DDFF at these longer lead times is not 

surprising and could be expected for a process such as UWD since it is intimately tied to meteorological 

conditions that can change quite suddenly over the course of 7 and 14 days.  Therefore, by taking into 

account the variability in the different WDDFF forecasts via ensemble model selection and weighting 

uncertainties, the EW-SDDFF combines and appropriately weights their individual strengths.  Such 

advantages (of the EW-SDDFF) are not present in the EW-DDFF nor the SWDDFF, since the former does 

not include ensemble model selection and weighing uncertainty and the latter only includes stochastic 

perturbations stemming from a single (wavelet-based) forecasting model (i.e., that incorporates only a 

single wavelet decomposition algorithm, decomposition level, wavelet filter, input variable selection 

method, and data-driven model).  Therefore, both EW-DDFF and SWDDFF lack the variability in their input 

data that is required to improve UWD forecasting performance at longer lead times.  However, since the 

EW-SDDFF contains such information as input data, it is able to provide better longer-lead time forecasts 

than its benchmarks. 

6.5.2.2. Comparing the Proposed Method against its Stochastic Benchmark 

When comparing the EW-SDDFF against its stochastic benchmark (SWDDFF), we notice that, with the 

exception of the PICP and the MAE at the 7 and 14 day lead times, respectively, at least one of the EW-

SDDFF variants (None-MLR, PCIS-MLR, EA-ELM, and EA-SOV) outperformed the SWDDFF across the 

remaining forecast evaluation metrics.  In most cases, the EW-SDDFF provided sharper forecasts (see the 

AW metric) and was nearly as, or more, reliable than the SWDDFF for a number of EW-SDDFF variants.  

This can be seen for instance by comparing the EA-SOV variant of the EW-SDDFF against the SWDDFF at 

the 14 day lead time.  This is a positive indication that including multiple wavelet-based forecasts in an 

ensemble framework can lead to more accurate and reliable probability-based forecasts than wavelet-

based forecasting models that include only a single wavelet decomposition algorithm, decomposition 

level, wavelet filter, input variable selection method, and data-driven model. 

6.5.2.2.1. Using Coverage Probability Plots to Supplement Probabilistic Forecast Evaluation Metrics 

To supplement Table 6.3, we explore Coverage Probability Plots (Figure 6.3) to evaluate the quality of the 

forecast quantiles produced by the different EW-SDDFF variants and the SWDDFF.  We notice through the 

CPP (Figure 6.3) that each model performed fairly well by considering the relative closeness of each 

model’s forecasted quantiles versus theoretical quantiles to the bisector, summarized by the CPP_mse in 

Table 6.3.  The EA-ELM variant of EW-SDDFF, deemed the best model in terms of CRPS, also provided the 
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best CPP_mse at the 1 day lead time.  However, like the remaining models, it overestimated the UWD for 

the upper quantiles.  The ‘S’ shape of the MLR variant of the EW-SDDFF (which did not consider input 

variable selection) is characteristic of an over-dispersed forecast (see Figure 2 and supporting text in Laio 

and Tamea (2007)).  This was probably the result of some ensemble members that were biased towards 

large predictions that were not included in the remaining EW-SDDFF variants since these members were 

not selected during input variable selection.  Interestingly, the same model provided the best PICP and IS, 

while the CPP_mse was lower than that of the SWDDFF.  The PCIS-MLR variant of EW-SDDFF provided the 

sharpest forecasts (based on the AW) but also provided the highest (worst) CRPS and IS as well as the 

lowest PICP.  However, it still had a better CPP_mse score than the benchmark (SWDDFF). 

Inspecting the CPP at the 7 day lead time we see that the MLR variant of EW-SDDFF had the best CPP_mse 

and the sharpest forecasts according to the AW.  It also maintained the second best coverage probability 

next to the benchmark (SWDDFF).  While the remaining EW-SDDFF variants exhibited better (lower) CRPS 

than the SWDDFF, their CPP displayed inferior coverage probabilities at most quantiles with the exception 

of the EA-SOV variant of the EW-SDDFF.   

Moving to the 14 day lead time CPP we notice a very interesting result for the MLR variant of the EW-

SDDFF.  It over-predicted the lower forecast quantiles, but was nearly perfect for the upper quantiles and 

provided the best CPP_mse.  However, it gave considerably worse performance for the other probabilistic 

performance measures (CRPS, PICP, AW and IS).  The remaining EW-SDDFF variants over-predicted each 

quantile along with the SWDDFF.  Although, the different EW-SDDFF provided better or similar CRPS, 

sharper forecasts (AW), and substantially better interval scores. 

 

Figure 6.3.  Coverage Probability Plot for the benchmark (SWDDFF) and EW-SDDFF variants (MLR (without 

input variable selection), PCIS-MLR, EA-ELM, and EA-SOV) for a) 1, b) 7, and c) 14 day lead time(s) 
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The CPP can be seen to provide a useful basis for expanding upon the ‘summarized’ probabilistic metrics 

in Table 6.3. It also highlights how each of the different EW-SDDFF variants have their own strengths and 

weaknesses, again supporting the practice of exploring different input variable selection and data-driven 

models in the EW-SDDFF. 

6.5.2.2.2. The Effect of Ensemble Size on Performance 

The various probability density functions required in the development of the EW-SDDFF and SWDDFF 

were estimated using 100 bootstrap resamples.   In order to assess the effect of ensemble size (𝑛) on 

generating sharp and reliable forecast probability densities 𝑓𝑄(𝑄), we explored the performance of 

different probabilistic forecast evaluation metrics (i.e., CRPS, AW, IS, and CPP_mse) as a function of 

ensemble size (i.e., number of stochastic resamples (𝑛) used to infer 𝑓𝑄(𝑄)).  We note that the MLR 

variant for the EW-SDDFF at the 14 day lead time is not included in most plots (i.e., CRPS, AW, and IS) due 

to its substantially inferior performance.  The interested reader can find a study on the effect of ensemble 

size on the CRPS in Ferro et al. (2008). 

Figure 6.4 shows the CRPS as a function of ensemble size for 1 (a), 7 (b), and 14 (c) day lead times.  In 

general, we notice that for each lead time an ‘elbow’ appears in each plot around 10 members, with 

decreasing CRPS that tends to stabilize around 𝑛 = 80.  Similar to the CRPS, an elbow in the AW versus 

ensemble size plot (Figure 6.5) appears around 15-20 members for the different lead times.  The PICP 

displayed very similar characteristics to the AW and for that reason it is not included.  Figure 6.6 shows 

the IS versus ensemble size. Note that for this plot we only consider ensemble sizes from five to 100 (𝑛 =

5: 100) to improve interpretability.  Studying the IS as a function of ensemble size, we notice that each 

method requires a relatively high ensemble size before stable performance is achieved (at least 𝑛 = 50 

for most of the methods and lead times).  Similar to the IS, the CPP_mse versus ensemble size plots (Figure 

6.7) also indicate that relatively high ensemble sizes are needed to stabilize performance.  Since the 

CPP_mse requires the estimation of empirical quantiles (similar to the IS), a sufficiently large ensemble 

size is needed to get accurate estimates of the empirical quantiles.  Figure 6.6 and 6.7 suggest that 

ensemble sizes of around 50 members is required for most lead times and methods in order to achieve 

stable IS and CPP_mse scores.  Furthermore, both the IS (Figure 6.6) and CPP_mse (Figure 6.7) versus 

ensemble size plots provide strong evidence that at most ensemble sizes at least one of the EW-SDDFF 

variants outperform the benchmark (SWDDFF). 
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Figure 6.4.  CRPS versus Ensemble Size (𝒏) for a) 1, b) 7, and c) 14 day lead time(s) 
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Figure 6.5.  AW versus Ensemble Size (𝒏) for a) 1, b) 7, and c) 14 day lead time(s) 
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Figure 6.6.  IS versus Ensemble Size (𝒏) for a) 1, b) 7, and c) 14 day lead time(s) 

 

By reviewing the different probabilistic forecast evaluation metrics as a function of ensemble size we 

cannot identify an optimal ensemble size according to all metrics.  However, we can establish that for 

each metric separately, with the exception of CPP_mse at the 1 day lead time for the benchmark 

(SWDDFF), performance has stabilized before 𝑛 = 100, justifying the selection of this ensemble size in 

our experiments.  It is very important to note that we did not vary the number of bootstrap samples used 

to estimate the different probability densities and therefore the characteristics of the plots shown here 

may differ for a lesser or greater number of bootstrap resamples.  It is outside the scope of this work to 

study the effect of bootstrap size on estimating the different probability density functions; however, this 

could be an interesting study in the future.  We also note that for each performance metric, the best 

performing model was the EW-SDDFF and the best EW-SDDFF tended to outperform the benchmark 

(SWDDFF) across each ensemble size with the exception of the CPP_mse for very low ensemble sizes (𝑛 <

10).  It could be argued that performance across the different models had yet to stabilize at this point.  
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Finally, corroborating our results in Table 6.3, there was not a single EW-SDDFF variant that performed 

best across each metric or lead time, demonstrating the importance of exploring different input variable 

selection (ensemble member selection) and data-driven models (ensemble weighting methods) within 

our proposed approach. 

 

Figure 6.7.  CPP_mse versus Ensemble Size (𝒏) for a) 1, b) 7, and c) 14 day lead times 

 

We now move on to an evaluation of the different methods concerning the forecasting of UWD during 

the July 2010 heatwave in Montreal (Bustinza et al., 2013; Price et al., 2013).  The reaction of UWD to a 

heatwave is a very useful test case for any water supply system since this type of scenario could be 

expected to substantially increase demand on the system.  Interestingly, the study of the impacts of 

heatwaves on UWD is a research topic that has received very little attention (Hatvani-Kovacs et al., 2016a, 

2016b).  This study is the first to test different deterministic and stochastic forecasting methods for this 

task. 
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6.5.3. Stochastic Urban Water Demand Forecasting During a Heatwave 

Starting on July 5, 2010 and lasting five days, Montreal (Canada) experienced a heat wave where the 

maximum temperature reached 33.7 °C three days into the heatwave with the minimum temperature 

staying above 25.4 °C during the same period (Bustinza et al., 2013; Price et al., 2013).  We now study the 

performance of the EW-SDDFF by comparing it against the SWDDFF during the period leading up to, 

during, and after the heatwave (July 2 – 18, 2010) in order to further demonstrate the usefulness of our 

proposed approach.  In Figure 6.2, one can see that during this period the different deterministic models 

provide adequate performance for the 1 day lead time.  However, at 7 and 14 day lead times they are 

quite poor.  In Figure 6.8 we compare the mean forecast and its 95 % prediction intervals for the SWDDFF 

and the EW-SDDFF model that provided the best CRPS score over the entire test set for the 1, 7, and 14 

day lead times (EA-ELM, EA-SOV, and EA-SOV, respectively).  Figure 6.9 is the same as Figure 6.8, with the 

exception that at the 1 and 7 day lead times the best EW-SDDFF (MLR in both cases) is different when 

considering the models with the best CRPS during the heatwave period.  Our Supplementary Material 

[appendix] contains the same figures but for each EW-SDDFF variant plotted separately.  Table 6.4 

includes the same forecast evaluation metrics as Table 6.3, but instead considers the heat wave period. 

 

Figure 6.8.  Mean forecasts and their 95 % prediction intervals for the SWDDFF and the EW-SDDFF for the 

a) 1 (EA-ELM), b) 7 (EA-SOV), and c) 14 (EA-SOV) day lead time(s) 
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Figure 6.9.  Mean forecasts and their 95 % prediction intervals for the SWDDFF and the EW-SDDFF for the 

a) 1 (MLR) and b) 7 (MLR) day lead time(s) 

 

For each lead time, the EW-SDDFF provided better performance than the SWDDFF across each forecast 

evaluation metric with the exception of the PICP at the 7 day lead time.  In that case, both methods had 

the same performance.  At the 1 day lead time, both methods provided satisfactory performance in terms 

of deterministic and probabilistic forecast evaluation metrics.  The deterministic performance severely 

degraded for the 7 and 14 day lead times, which is not surprising given the rapidity of the onset of the 

heatwave and the lack of such information as input to the different forecasting models.  However, in terms 

of probabilistic performance, especially in terms of the PICP, the EW-SDDFF performed quite well even at 

7 and 14 day lead times.  They provided substantially better performance than the SWDDFF.  It is 

interesting to note that the EW-SDDFF at the 14 day lead time had better performance than at the 7 day 

lead time (with the exception of the CPP_mse).  This could be due to the magnitude of the prediction 

errors over the validation set, which is used within the stochastic framework to draw from the model error 

conditional probability density function.  As is evident from Figure 6.2, the UWD in Montreal has a 

prominent weekly cycle and therefore there is a high correlation between UWD at time 𝑡 and 𝑡 + 7.  The 

magnitude of errors at the 7 day lead time are smaller than at the 14 day lead time.  Thus, at the 14 day 

lead time there is a higher probability of drawing a larger value from the model error conditional 
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probability density function than at the 7 day lead time.  This could be the reason for the improved 

coverage probability at the 14 day lead time.  However, at an aggregated scale, when comparing the best 

EW-SDDFF, the 7 day lead time had lower overall errors between the forecasted quantiles and the 

theoretical quantiles as indicated by the CPP_mse. 

We believe that the reason for the EW-SDDFF providing superior performance than the SWDDFF during 

the heatwave period is that the EW-SDDFF combines forecasts that have quite different characteristics.  

Those forecasts were produced using different wavelet decomposition algorithms, decomposition levels, 

wavelet filters, input variable selection methods, and data-driven models.  This variety of characteristics 

increased the diversity in the generated forecast probability density function compared to the SWDDFF 

(which relies only on a single wavelet decomposition algorithm, decomposition level, wavelet filter, input 

variable selection method, and data-driven model). 

Even though the deterministic forecasting performance of the EW-SDDFF was quite low for 7 and 14 day 

lead times, the EW-SDDFF still has skill when considering forecast in terms of probabilities (e.g., compare 

the MAE against the CRPS).  This supports the potential usefulness of stochastic forecasting models even 

when their deterministic forecasting performance is low.  Besides, during a heatwave, it is logical to 

deduce that an urban water supply system will be more closely monitored, and with such strong 

performance as that provided by the EW-SDDFF at one day lead times, suitable adjustments to the 

operation of pumps and reservoirs can be made in sufficient time (i.e., to ensure adequate demand is 

available at a suitable pressure).  However, reliable 7 and 14 day lead times could be valuable tools for 

planning the purchase of additional supplies in water scarce areas, exploring water demand reduction 

programs, or making adjustments to construction and maintenance projects planned prior to the 

heatwave.
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Table 6.4.  Test set performance for the EW-SDDFF, EW-DDFF, SWDDFF, and WDDFF models leading up to, during, and after the July 2010 heatwave 

(July 3 – 17, 2010) (Note: the results for best forecast models for a particular forecast evaluation metric are bolded) 

Lead 
Time 

(Days) 

Forecasting 
Framework 

IVS 
Data-

Driven 
Model 

NASH 
RMSE 

[ML/D] 
MAE 

[ML/D] 
CRPS 

[ML/D] 
PICP 
[%] 

AW 
[ML/D] 

IS 
[ML/D] 

CPP_mse 

1 

SWDDFF PCIS MLR 0.622 62.786 52.048 36.763 82.353 151.913 413.889 0.033 

EW-SDDFF 

None MLR 0.699 56.022 43.287 30.994 94.118 160.304 351.695 0.004 

PCIS MLR 0.620 62.969 52.330 39.664 64.706 127.725 368.327 0.033 

EA ELM 0.659 59.640 48.935 34.885 88.235 136.381 349.202 0.024 

EA SOV 0.670 58.647 48.396 34.181 88.235 148.340 363.879 0.019 

7 

SWDDFF PCIS MLR -0.810 137.443 98.374 82.634 70.588 189.820 1669.746 0.076 

EW-SDDFF 

None MLR -0.251 114.253 86.345 69.325 64.706 238.104 786.056 0.035 

PCIS MLR -0.520 125.941 95.040 77.685 58.824 169.263 1657.527 0.067 

EA ELM -0.369 119.551 91.125 73.686 70.588 188.520 1356.765 0.061 

EA SOV -0.454 123.209 90.034 74.064 58.824 184.466 1474.118 0.062 

14 

SWDDFF EA SOV -1.129 149.083 126.882 106.945 52.941 214.924 1483.119 0.164 

EW-SDDFF 

None MLR -1.616 165.241 137.326 109.792 64.706 293.696 1571.699 0.113 

PCIS MLR -0.295 116.250 96.025 75.335 64.706 232.779 586.373 0.061 

EA ELM -0.063 105.331 86.842 66.288 88.235 260.675 402.240 0.041 

EA SOV 0.021 101.092 84.253 62.946 82.353 244.063 360.424 0.041 
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Through the results and discussion presented in this section, it is evident that the EW-SDDFF provided the 

best overall forecasting performance when compared against deterministic (EW-DDFF, WDDFF, and RW) 

and stochastic (SWDDFF) benchmarks.  Perhaps the most useful feature of the EW-SDDFF is that it can 

incorporate multiple wavelet-based deterministic forecasts as input data.  It also has the ability to include 

other information, such as large-scale climate indicators or numerical weather predictions and inherently 

accounts for the uncertainty in selecting and weighting different forecasts.  Combined with model output 

uncertainty, this results in probability-based forecasts of the target process.  This advantage of the 

proposed approach is different than many other ensemble forecasting methods (wavelet-based and 

otherwise) in hydrology and water resources that apply ensemble model selection and weighting 

separately (as in Rathinasamy et al. (2013); Alizadeh et al. (2017a); Barzegar et al. (2018b, 2017), Sun and 

Trevor (2018, 2017)). 

6.6. Summary and Conclusions 

Extending earlier work (Quilty and Adamowski (2018a) on a stochastic data-driven forecasting framework 

(SDDFF) inspired by Montanari and Koutsoyiannis (2012)), this study introduced a new ensemble SDDFF 

that uses the output of different deterministic models as input data to generate a forecast in the form of 

a probability density function.  The different deterministic models can be process-based, data-driven, etc.  

Although not considered in this study, additional inputs could eventually include numerical weather 

predictions, large-scale climate indicators, etc.  The proposed framework can explicitly account for various 

sources of uncertainty: input data (forecast data), input variable selection (ensemble model selection), 

parameter (ensemble model weighting), and model output.  Additionally, other sources of uncertainty 

(e.g., initial conditions) could be explicitly defined within the framework in future studies.  To the best of 

our knowledge, this is the first study to introduce an ensemble stochastic data-driven forecasting 

framework that inherently accounts for ensemble model selection and weighting uncertainties.  The 

former can be estimated using a variety of different input variable selection methods and the latter by 

data-driven models. 

Data-driven wavelet-based forecasting is a growing field in hydrology and water resources.  However, 

despite the popularity of wavelet-based data-driven forecasting in hydrology and water resources (Afan 

et al., 2016; Dixit et al., 2016; Nourani et al., 2014; Sang, 2013), only a small number of studies have 

considered multiple wavelet-based forecasts (i.e., derived using different wavelet decomposition 

algorithms, decomposition levels, wavelet filters, etc.) in an ensemble forecasting model (Alizadeh et al., 

2017a; Barzegar et al., 2018a, 2017; Rathinasamy et al., 2013).  Furthermore, none exist that consider an 
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ensemble stochastic data-driven forecasting framework based on wavelets.  To address these gaps and 

demonstrate the usefulness of our proposed framework, we used the large number of deterministic 

forecasts derived from our previous study (Quilty and Adamowski, 2018b) as input data to the method 

proposed herein.  This results in the Ensemble Wavelet-SDDFF (EW-SDDFF).  For the same case study as 

in Quilty and Adamowski (2018a, 2018b), we used EW-SDDFF to forecast urban water demand (UWD) in 

Montreal, Canada at several lead times.  This forecasting system was then compared against several 

benchmarks, including its non-stochastic version (EW-DDFF), the WDDFF, and its stochastic version 

SWDDFF (Quilty and Adamowski, 2018a).   We also used EW-SDDFF to incorporate the same information 

(i.e., the forecasts produced by the different WDDFF models) more efficiently (than an ensemble 

SWDDFF).  Another important benefit of adopting EW-SDDFF instead of an ensemble of SWDDFF models 

is that it inherently accounts for both ensemble model selection and weighting uncertainties that would 

have to be done separately for an ensemble of SWDDFF models. 

By exploring different input variable selection methods and data-driven models for ensemble model 

selection and weighting, respectively, within EW-SDDFF, we were able to demonstrate across a wide 

number of deterministic and probabilistic forecast evaluation metrics that EW-SDDFF led to more accurate 

and reliable forecasts than the ‘best’ single SWDDFF.  Furthermore, for a historical heatwave that occurred 

during July 2010 and caused very high UWD in Montreal, our EW-SDDFF provided strong probabilistic 

forecast performance, even as far into the future as 14 days ahead.  It also significantly outperformed its 

SWDDFF counterpart.  During this period, different variants of EW-SDDFF (MLR, PCIS-MLR, EA-ELM, and 

EA-SOV) proved to be instrumental in achieving a high level of performance (as some performed better 

at different lead times).  This finding highlights the importance of considering different input variable 

selection methods and data-driven models when accounting for ensemble model selection and weighting 

within EW-SDDFF for our case study. 

Our results indicate that EW-SDDFF and the ensemble SDDFF, in general, are promising forecasting 

frameworks for hydrology and water resources.  However, our study was limited in several ways: 1) only 

a small number of input variable selection methods (PCIS and EA) and data-driven models (MLR, ELM, and 

SOV) were included; 2) we did not consider input data uncertainty; and 3) we only used a single case study.  

These limitations are reasonable for this study as our focus was on introducing the ensemble SDDFF and 

demonstrating its use for the relatively under-explored topic of multi-wavelet ensemble forecasting, and 

the unexplored topic of ensemble wavelet-based stochastic data-driven forecasting.  However, there is 
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much more to be explored by considering the ensemble SDDFF as a general method in ensemble 

hydrological and water resources forecasting.  Some future research topics include:  

1. Using the outputs of process-based and data-driven models alongside additional process-related 

information (e.g., large-scale climate indicators and numerical weather predictions) for 

forecasting different hydrological and water resources processes such as streamflow, drought, 

evaporation, etc. 

2. Exploring the impact of bootstrap resample size for both estimating and sampling from the 

different probability density functions in terms of forecasting performance (in this study we only 

considered the impact of bootstrap resampling size on forecasting performance); 

3. Testing the suitability of different methods (i.e., in addition to the bootstrap) for generating the 

various probability density functions (e.g., input data, input variable selection, parameters, and 

model output); and 

4. Considering a wider range of input variable selection methods and data-driven models for 

ensemble model selection and weighting, respectively. 
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Appendix 

This appendix contains online supplementary material related to Chapter 6. 

6. A.1. Different Variants of Figure 6.8 in Text 

This supporting information provides different versions of Figure 6.8 (in-text) for different variants of the 

Ensemble Wavelet-Stochastic Data-Driven Forecasting Framework (EW-SDDFF). 

 

Figure 6.A.1.  Mean forecasts and their 95 % prediction intervals for the SWDDFF (benchmark) and the 

MLR variant of EW-SDDFF for the a) 1, b) 7, and c) 14 day lead time(s) (see Figure 6.8 in text) 
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Figure 6.A.2.  Mean forecasts and their 95 % prediction intervals for the SWDDFF (benchmark) and the 

PCIS-MLR variant of EW-SDDFF for the a) 1, b) 7, and c) 14 day lead time(s) (see Figure 6.8 in text) 
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Figure 6.A.3.  Mean forecasts and their 95 % prediction intervals for the SWDDFF (benchmark) and the 

EA-ELM variant of EW-SDDFF for the a) 1, b) 7, and c) 14 day lead time(s) (see Figure 6.8 in text) 
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Figure 6.A.4.  Mean forecasts and their 95 % prediction intervals for the SWDDFF (benchmark) and the 

EA-SOV variant of EW-SDDFF for the a) 1, b) 7, and c) 14 day lead time(s) (see Figure 6.8 in text) 
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Chapter 7: Summary and Conclusions 

The main objective of this research was to develop, test, and apply a new ensemble multi-wavelet 

stochastic data-driven forecasting framework (EW-SDDFF) for real-world water resources forecasting 

applications.  The main goal of this thesis was to demonstrate that EW-SDDFF can be used to generate 

accurate and reliable probability-based forecasts, which are very useful for supporting operational, 

management, and planning tasks commonly encountered by water resources managers.  To demonstrate 

the usefulness of the method, EW-SDDFF was applied for the task of daily urban water demand forecasting 

in the City of Montreal, Quebec and was shown to significantly outperform benchmark methods in terms 

of accuracy and reliability, especially during a heatwave that occurred in July, 2010. 

EW-SDDFF was primarily motivated by the nonlinear, multiscale, and uncertain nature of water resources 

that creates significant challenges for data-driven forecasting methods and often hampers their accuracy 

and reliability.  A second motivating factor behind the development of EW-SDDFF was related to the 

incorrect development of the majority of wavelet-based forecasting models in hydrology and water 

resources that has led to erroneous forecasts that cannot be used properly in real-world forecasting 

applications.  EW-SDDFF provided solutions to each of these obstacles.  In particular, EW-SDDFF 

addressed: 

1. Nonlinearity, through the use of new computationally efficient, non-parametric, nonlinear 

information-theoretic input variable selection methods, developed in this research, and fed 

selected inputs to nonlinear data-driven forecasting methods.  

2. Multiscale change, by using wavelet transforms (a useful tool for time-frequency localization) that 

were adopted within a new wavelet-based data-driven forecasting framework (WDDFF) 

incorporating a set of best (correct) practices that addressed the incorrect development of 

wavelet-based forecasting models (which is prevalent within water resources forecasting).  

Additionally, WDDFF is able to be used with any input variable selection and data-driven 

forecasting method. 

3. Uncertainty, by using stochastics to: 

a. Transform the WDDFF into a new wavelet-based stochastic data-driven forecasting 

framework (SWDDFF) that accounted for different sources of uncertainty (input data, 

input variable selection, parameter, and model output) and resulted in probability-based 

forecasts.   
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b. To take advantage of the strengths of different wavelet transforms, an ensemble multi-

wavelet version of the single-wavelet framework (SWDDFF) was created (EW-SDDFF), 

accounting for ensemble model selection and weighting uncertainties (along with input 

data and ensemble model output uncertainties), and was shown to provide significantly 

more accurate and reliable (probability-based) forecasts than SWDDFF.  

This research was divided into four main parts (each resulting in peer-reviewed journal manuscripts) 

based on the four developments mentioned above.  In the next four sub-sections, a summary and set of 

conclusions is given for each of the four components of this research. 

7.1. Computationally Efficient, Non-parametric, Nonlinear Information-Theoretic Input 

Variable Selection Methods 

Two new computationally efficient, non-parametric, nonlinear information-theoretic input variable 

selection methods were developed to overcome the drawbacks of existing nonlinear information-

theoretic methods that require careful parametric tuning that is often computationally prohibitive.  The 

first method is the Edgeworth Approximations-based conditional mutual information (EA) approach.  By 

coupling input variable selection uncertainty (through bootstrap resampling) with the EA method, the 

bootstrap rank-ordering conditional mutual information (broCMI) approach was developed.  The EA and 

broCMI approaches were compared against existing methods on several synthetic, partially-synthetic, and 

a real-world urban water demand forecasting experiment.  The main findings of this study are: 

1. The EA method provided similar or better performance than existing nonlinear information-

theoretic input variable selection methods but had the benefit of being much more 

computationally efficient since it did not require the tuning of parameters. 

2. By including bootstrap rank-ordering, broCMI was able to provide substantially better and more 

robust input variable selection accuracy and forecasting model performance when compared 

against its EA counterpart (and other parametric nonlinear methods). 

3. Bootstrap rank-ordering is a very simple procedure for incorporating uncertainty assessment in 

the input variable selection procedure and can be applied to any input variable selection method. 

7.2. Best (Correct) Practices for Wavelet-based Forecasting and the Wavelet Data-Driven 

Forecasting Framework 

In order to address an important gap in the literature, the first set of best (correct) practices for wavelet-

based forecasting models for real-world applications was developed.  This set of best practices addressed 
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deficiencies with many incorrect wavelet-based forecasting models reported in the literature and 

provided a step-by-step guide that can be followed in order to develop correct wavelet-based forecasting 

models that can be applied for real-world water resources forecasting scenarios.  The best practices were 

then formed into a general wavelet-based data-driven forecasting framework (WDDFF) that can be used 

with both the maximal overlap discrete wavelet transform (MODWT) and à trous algorithm (AT), any input 

variable selection method,  and any data-driven model for forecasting a target (water resources) process.  

The WDDFF was used with different: wavelet transforms (MODWT and AT), decomposition levels and 

wavelet filters, input variable selection methods, and data-driven models for a daily urban water demand 

forecasting experiment in Montreal, Quebec where multiple forecast lead times were considered.  For the 

same case study, the WDDFF was also compared with a commonly adopted and incorrect wavelet-based 

forecasting method (that incorporated the MODWT multiresolution analysis (MODWT-MRA)).  The main 

conclusions of this study are: 

1. The WDDFF, which adopted best (correct) practices for wavelet-based forecasting, provided 

realistic and correct forecast performance while the MODWT-MRA (a method based on the 

incorrect usage of the wavelet transform for forecasting purposes) provided unrealistic forecast 

performance that demonstrated its incorrectness. 

2. WDDFF provided significantly different forecasting performance depending on the wavelet 

transform (MODWT or AT), decomposition level, and wavelet filter that was used in the 

forecasting model.  This is useful because different decomposition levels and wavelet filters are 

better suited to capturing different phenomena and therefore multiple WDDFF forecasts could 

be combined in an ensemble framework to improve forecast performance. 

3. WDDFF provided significantly better performance than benchmark methods that did not include 

the use of wavelets. 

7.3. Stochastic Wavelet Data-Driven Forecasting Framework 

To provide a holistic means for uncertainty assessment in the WDDFF, a stochastic framework was 

adopted.  The stochastic framework allowed for the estimation of uncertainties related to input data, 

input variable selection, parameter, and model output to be incorporated in a stochastic version of 

WDDFF (i.e., SWDDFF) and resulted in probability-based forecasts.   The SWDDFF was implemented using 

three different settings that considered varying sources of uncertainty: 1) parameter; 2) parameter and 

model output; and 3) input variable selection, parameter, and model output.  SWDDFF was compared 

against a) its non-wavelet-based version (i.e., SDDFF) which also considered the same varying levels of 
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uncertainty and b) deterministic benchmarks.  Similar to the WDDFF, each of these methods were tested 

on the daily urban water demand dataset in Montreal.  The main results of this study indicated that: 

1. In all cases, including input variable selection, parameter, and model output uncertainty in 

SWDDFF and SDDFF provided the most accurate and reliable forecasts when compared against 

those forecasts that only included parameter or parameter and model output uncertainties. 

2. In all cases, wavelet transformation was shown to improve forecasting accuracy and reliability. 

3. Benchmark methods that did not include uncertainty assessment or only various sources of 

uncertainty provided biased performance. 

7.4. Ensemble Wavelet – Data-Driven Forecasting Framework 

An ensemble multi-wavelet stochastic data-driven forecasting framework (EW-SDDFF) was developed to 

extend its single-wavelet counterpart (SWDDFF) in order to improve forecast accuracy and reliability.  This 

was done by using multiple forecasts generated by the WDDFF as input data.  The WDDFF forecasts vary 

according to the different wavelet transforms (MODWT and AT), decomposition levels, wavelet filters, 

input variable selection methods, and data-driven models used in their production.  Therefore, each of 

the different WDDFF forecasts displayed similar or complementary strengths in capturing different 

phenomena in the studied process.  The EW-SDDFF was able to take advantage of the varying strengths 

of the different WDDFF models by using input variable selection and data-driven methods to perform 

ensemble model selection and weighting, respectively.  For the same urban water demand forecasting 

case study in Montreal (used to demonstrate the useful of WDDFF and SWDDFF), the EW-SDDFF was 

compared against its single-wavelet counterpart (SWDDFF), it’s non-stochastic counterpart (EW-DDFF), 

WDDFF, and a random walk (RW) benchmark.  Different variants of EW-SDDFF and EW-DDFF were 

considered based on varying the input variable selection and data-driven methods used for ensemble 

model selection and weighting.  EW-SDDFF considered ensemble model selection, weighting, and model 

output uncertainties (while EW-DDFF did not consider uncertainty), SWDDFF considered input variable 

selection, parameter, and model output uncertainty (while WDDFF did not consider uncertainty).  Based 

on the comparison of EW-SDDFF variants and its benchmark methods (SWDDFF, EW-DDFF, WDDFF, and 

RW), the conclusions drawn from this study are as follows: 

1. The EW-SDDFF provided the best performance (in terms of forecast accuracy and reliability) when 

compared against the different benchmarks, including its single-wavelet counterpart, SWDDFF, 

highlighting the usefulness of the multi-wavelet ensemble framework. 
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2. EW-SDDFF provided exceptionally better performance than SWDDFF during the July, 2010 

heatwave in Montreal.  Therefore, EW-SDDFF could be a very useful tool for water resources 

managers for planning the purchase of additional water supplies, implementing water 

restrictions, or making adjustments to construction and/or maintenance projects leading up to, 

during, and after heatwave periods. 

3. Different variants of EW-SDDFF provided different levels of forecast accuracy and reliability and 

no single method performed best across each forecast lead time.  This highlights the usefulness 

of exploring different input variable selection methods and data-driven models for ensemble 

model selection and weighting, respectively. 

The EW-SDDFF is a very useful tool that can be applied towards the operation, management, and planning 

of water resources systems due to its ability to address the nonlinear, multiscale, and uncertain nature of 

water resources in a holistic manner, resulting in probability-based forecasts that can provide valuable 

information to water resources managers, especially during decision-making stages. 
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Chapter 8: Contributions to Knowledge, Limitations, and 

Recommendations for Further Research 

A new ensemble multi-wavelet stochastic data-driven forecasting framework (EW-SDDFF) was developed, 

tested, and applied for the purpose of generating probability-based forecasts of water resources.  Firstly, 

contributions to knowledge stemming from this research are given.  Secondly, limitations concerning the 

application of the main methods developed in this work are discussed.  Lastly, avenues for future research 

are noted.  These research ideas may be useful in addressing some of the noted limitations and may serve 

as motivation for the study of new topics related to the methods discussed herein. 

8.1. Contributions to Knowledge 

1. Two new computationally efficient, non-parametric, nonlinear information-theoretic approaches 

for input variable selection (i.e., Edgeworth Approximations-based conditional mutual 

information (EA) and bootstrap rank-ordered conditional mutual information (broCMI)) have 

been developed.  The EA and broCMI (a version of the EA method that accounts for input variable 

selection uncertainty) provide similar or better performance than existing nonlinear information-

theoretic input variable selection methods that are computationally expensive (due to the need 

to optimize parameters and their settings).  

2. A new procedure for assessing input variable selection uncertainty (bootstrap rank-ordering) was 

developed and shown to improve input variable selection accuracy and robustness.  The new 

procedure can be used to assess input variable selection uncertainty for any input variable 

selection method. 

3. The majority of wavelet-based forecasting models developed for water resources forecasting are 

incorrect and cannot be used properly in real-world applications.  To address this significant issue, 

a set of best (correct) practices for using wavelet-based forecasting models for real-world 

applications were developed, addressing earlier methodological problems that led to incorrect 

wavelet-based forecasts. 

4. The best practices for wavelet-based forecasting were adopted in a new wavelet-based data-

driven forecasting framework (WDDFF) that can be applied for real-world forecasting 

applications.  WDDFF can be used with different wavelet transforms (maximal overlap discrete 

wavelet transform (MODWT) and à trous algorithm (AT)), any input variable selection method 

(e.g., EA and broCMI), and any data-driven forecasting method (e.g., multiple linear regression, 



308 
 

artificial neural networks, etc.).  This method is useful for addressing nonlinearity and multiscale 

changes in water resources forecasting applications. 

5. A new stochastic wavelet-based data-driven forecasting framework (SWDDFF) was developed 

using stochastics (that makes use of bootstrap resampling) to quantify uncertainty in the WDDFF.  

SWDDFF considers input data, input variable selection, parameter, and model output 

uncertainties and results in forecasts in the form of a probability density function.  This framework 

is useful for holistically addressing nonlinearity, multiscale change, and uncertainty in water 

resources forecasting applications. 

6. A new ensemble multi-wavelet data-driven forecasting framework (EW-SDDFF) was proposed to 

improve forecast accuracy and reliability in relation to its single-wavelet counterpart (SWDDFF).  

EW-SDDFF takes advantage of the strengths of multiple wavelet-based forecasts (that may vary 

according to wavelet transform (MODWT or AT), input variable selection method, and data-driven 

model) by using different WDDFF forecasts as input data.  EW-SDDFF considers ensemble model 

selection and weighting uncertainties, in addition to input data and ensemble model output 

uncertainties.  EW-SDDFF is very useful as it has nearly the same computational requirements as 

its single-wavelet counterpart (EW-SDDFF), yet provides improved forecast accuracy and 

reliability.  Similar to SWDDFF, EW-SDDFF results in probability-based forecasts and holistically 

addresses nonlinearity, multiscale change, and uncertainty in water resources forecasting 

applications. 

8.2. Limitations 

The present research has several limitations: 

1. While the new input variable selection algorithms (EA and broCMI) were tested on a number of 

synthetic, partially-synthetic, and real-world problems, WDDFF, SWDDFF, and EW-SDDFF were 

only tested using a single study site (i.e., for forecasting daily urban water demand within the City 

of Montreal’s urban water supply system).  This was deemed acceptable for this research as the 

intention was to develop, test, and apply these new methods (WDDFF, SWDDFF, and EW-SDDFF) 

to a case study familiar to the author (see section 8.3 for an idea to address this limitation).  

Therefore, it should be noted that while the WDDFF, SWDDFF, and EW-SDDFF provided accurate 

and reliable forecasts for the study site explored in this research, its performance at other sites 

or for other water resources processes may differ significantly.  Notwithstanding, it is believed 

that due to the generality of the proposed frameworks (WDDFF, SWDDFF, and EW-SDDFF) they 
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have the potential to provide accurate and reliable forecasts for different water resources 

processes exhibiting nonlinear, multiscale, and uncertain properties. 

2. Both the SWDDFF and EW-SDDFF rely on the estimation of different probability density functions 

relating to input data, input variable selection, parameter, and model output uncertainties (see 

Chapter 5 and 6).  In this research, the bootstrap method was used for this since it is a very simple, 

intuitive, and widely-used approach in water resources forecasting for uncertainty quantification.  

However, different uncertainty estimation methods (e.g., Bayesian or evolutionary approaches) 

may be adopted instead and may lead to different levels of forecast accuracy and reliability. 

3. Multiscale change can be accounted for using methods other than the wavelet transform (e.g., 

singular spectrum analysis) and such methods may lead to different levels of forecast accuracy 

and reliability.  The wavelet transform was adopted in this research since it is growing in 

popularity within water resources forecasting applications and has been used incorrectly in the 

vast majority of cases. 

4. This research only adopted two nonlinear data-driven forecasting methods (extreme learning 

machine and second order Volterra series models).  These methods were adopted since they are 

simple to use, are computationally efficient, and have performed well in other studies familiar to 

the author.  However, different nonlinear data-driven methods may provide different levels of 

forecast accuracy and reliability. 

8.3. Recommendations for Further Research 

1. Forecasting different water resources (e.g., streamflow, rainfall, evaporation, groundwater, etc.) 

using the WDDFF, SWDDFF, and EW-SDDFF should be explored in order to understand the 

usefulness of these approaches for forecasting a wide range of processes important to water 

resources managers.  

2. To highlight the importance of the best (correct) practices for wavelet-based forecasting 

introduced in this thesis and to explore their usefulness in real-world forecasting applications: the 

WDDFF, SWDDFF, and EW-SDDFF should be compared against incorrect wavelet-based 

forecasting approaches proposed in the literature for a number of different case studies involving 

operational (e.g., reservoir operation) and decision-making (e.g., whether to impose water use 

restrictions during a drought) tasks in order to demonstrate how incorrect wavelet-based 

forecasts can cause unrealistically high forecast performance that can lead to non-optimal water 

resources system operations and poor decisions while WDDFF, SWDDFF, and EW-SDDFF can 
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provide correct forecasts that can improve operational efficiencies and lead to beneficial 

decisions in water resources system management.  This is an important area to study as the vast 

majority of wavelet-based forecasting approaches proposed in the literature are incorrect and 

(outside of this research) little work has been done to highlight and correct these deficiencies.  

Furthermore, no work has been done in terms of identifying the risks posed by adopting incorrect 

wavelet-based forecasts in terms of water resources system operations and decision-making 

scenarios.  

3. Different input variable selection methods and data-driven models should be considered within 

WDDFF, SWDDFF, and EW-SDDFF in order to gauge whether improvements can be made in 

forecasting accuracy and/or reliability.  For example, input variable selection based on random 

forests, which are very useful at identifying all relevant input variables in very large datasets, can 

be considered to explore the use of randomly selected features, in contrast to the filter-based 

approaches studied in this thesis (that identified the best inputs one input at a time and 

sometimes missed out on identifying all relevant variables due to an overly simplistic input 

variable selection stopping criteria).  New data-driven methods that can rapidly calibrate model 

parameters such as the ‘No-prop’ class of neural networks, deep-learning approaches such as 

convolutional neural networks (that can be used to forecast time-synchronous datasets when a 

large amount of data is available) or deep representation extreme learning machines (that are 

useful when forecasting shorter datasets), have not been explored in any detail within water 

resources forecasting and should therefore be explored in order to assess potential performance 

improvements (within WDDFF, SWDDFF, and EW-SDDFF). 

4. Testing different approaches (i.e., other than the bootstrap) for estimating the sources 

uncertainty in SWDDFF and EW-SDDFF (i.e., input data, input variable selection, parameter, and 

model output uncertainties) would be very useful and could form the basis of identifying the best 

methods for estimating a particular source of uncertainty.  For example, the restricted Boltzmann 

machine might be used for estimating input data uncertainty; the block-bootstrap or maximum 

entropy bootstrap may be used for estimating input variable selection uncertainty; parameter 

uncertainty could be estimated using the Differential Evolution Adaptive Metropolis algorithm; 

and model output uncertainty can be estimated using Distribution Element Trees. 

5. In the EW-SDDFF approach, multiple WDDFF-based forecasts were used as input data.  Since data-

driven methods are flexible in what can be used as input data, it would be interesting to include 

the outputs of different types of (physically-based, conceptual, or data-driven) forecast models 
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and other information sources (such as numerical weather predictions or large-scale climate 

indicators, etc.) to assess whether forecasting accuracy and reliability can be improved within EW-

SDDFF. 

6. The WDDFF, SWDDFF, and EW-SDDFF can be modified by using singular spectrum analysis instead 

of wavelets for the purpose of capturing multiscale change(s).  It would be interesting to assess 

the differences in forecast accuracy and reliability that could be achieved when using singular 

spectrum analysis instead of wavelets. 


