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Abstract

T cells face high-dimensional chemical spaces. These white blood cells must sense fine differences

within convoluted mixtures of similar antigens. Through complex T cell receptor (TCR) signaling,

they transform these inputs into multivariate responses. Details of these mechanisms quickly be-

come too complicated to formulate exhaustive models that are still useful. Instead, we should seek

to uncover emergent physical laws regulating T cell responses and biological chemical sensing

more generally. Such quantitative principles are however still lacking.

Working in close collaboration with experimental immunology labs, we developed low-dimensional

theoretical models of T cell antigen sensing and receptor signaling. We studied the production of

cytokines – small extracellular messenger proteins – by activated T cells. We found that high-

dimensional cytokine dynamics could be represented in a two-dimensional space and parameter-

ized with simple equations inspired from ballistic physics. We used information theory to quantify

antigen encoding in this cytokine latent space, revealing a continuum of T cell responses. Build-

ing on the insight that these responses are mainly controlled by early sensing of antigen quality,

we could improve adaptive kinetic proofreading models of TCR signaling to explain antagonism

and enhancement effects in antigen mixtures. To account for all observed patterns when antigen

qualities, quantities, and receptor phosphorylation sites are varied, we needed to simplify pre-

vious models, and then introduce a nonlinear inhibitory coupling between receptors. We could

quantitatively fit the revised model to our collaborators’ data to estimate its parameters. Then,

we generalized the model to T cells expressing chimeric antigen receptors (CAR) to target tumor

cells in immunotherapy. We generated predictions for different receptor constructs, matching in

vitro experiments; we could also approximately predict mouse in vivo treatment outcomes against

tumors expressing TCR and CAR antigen mixtures. The model finally led us to design CAR T

cells in which antagonism by weak TCR stimulation is optimized to protect healthy tissues from

otherwise severe side effects. Our findings show that low-dimensional, physics-inspired models

can be accurate enough to capture meaningful dynamics in biological sensing and signaling.
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Résumé
Les lymphocytes T baignent dans des espaces chimiques à hautes dimensions. Ces globules blancs

doivent détecter d’infimes différences entre des antigènes similaires et présentés en mélanges. La

signalisation complexe de leurs récepteurs de cellules T (TCR) transforme ces stimuli en réponses

multivariées. Un modèle exhaustif de ces mécanismes deviendrait rapidement trop labyrinthique

pour être utile. Il serait préférable de tenter d’établir les lois physiques émergentes régissant

la réponse des lymphocytes T et, plus généralement, la détection chimique biologique. De tels

principes quantitatifs restent toutefois à formuler.

En étroite collaboration avec des laboratoires expérimentaux d’immunologie, nous avons développé

des modèles à basse dimension décrivant la détection d’antigènes et la signalisation des récepteurs

de lymphocytes T. Nous avons étudié la production de cytokines, de petites protéines messagères

extracellulaires, par les lymphocytes T. Nous avons réduit la dynamique à haute dimension des

cytokines à une représentation bidimensionnelle décrite par des équations inspirées de la physique

balistique. Grâce à la théorie de l’information, nous avons quantifié la propriété d’encodage

antigénique de cet espace latent des cytokines, révélant un continuum de réponses cellulaires. En

constatant que ces réponses sont déterminées dès les premiers instants par la qualité des antigènes,

nous avons pu améliorer les modèles de relecture cinétique adaptative des TCRs pour expliquer

des effets d’antagonisme et d’amélioration de la réponse dans des mélanges d’antigènes. Pour ex-

pliquer les subtilités des effets produits par la variation de la qualité et de la quantité d’antigènes

ainsi que des sites de phosphorylation des TCRs, nous avons dû simplifier les modèles préexis-

tants, puis leur ajouter un module d’inhibition non-linéaire couplant les récepteurs. Nous avons

pu estimer les paramètres du modèle amélioré en l’ajustant quantitativement aux données de nos

collaborateurs. Par la suite, nous avons étendu le modèle amélioré aux lymphocytes T utilisés en

immunothérapie, modifiés génétiquement pour exprimer des récepteurs antigéniques chimériques

(CAR) leur permettant de cibler des tumeurs. Les prédictions du modèle correspondaient bien aux

données in vitro pour divers types de récepteurs, et permettaient même d’anticiper les résultats de

traitements par cellules CAR sur des souris ayant des tumeurs présentant des mélanges d’antigènes

TCR et CAR. Le modèle nous a permis de concevoir des cellules CAR où l’antagonisme causé par

une faible stimulation du TCR est optimisé pour protéger les tissus sains d’effets toxiques sévères.

Nos résultats montrent que des modèles de basse dimension issus de la physique permettent de

décrire avec précision les dynamiques de détection et de signalisation en biologie.
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Contribution to original knowledge

This thesis focuses on my original contributions to biological physics through three research pub-

lications in the field of quantitative immunology: one co-first authored and published in Science

(Antigen encoding, [1]), one co-second authored and published in Nature Immunology (CD3ζ

ITAMs, [2]), and one co-first authored and under review (TCR/CAR antagonism, [3]). This the-

sis is presented in the traditional format because my colleague Thomas Rademaker included his

contributions as co-first author of publication [1] in his PhD thesis [4]. Excerpts from the three

immunology publications are presented as indented quotations in Computer Modern Sans font,

with the source of the quote in parentheses at the end, e.g., (Antigen encoding, [1]). The text in

these excerpts is verbatim, except for a few ellipses (indicated by “[. . . ]”) and rare minor edits (put

in [brackets]), to harmonize some quotes with the rest of the thesis. Moreover, the numberings of

figures, tables, sections, and references, have been adapted to this thesis. The next section details

my contributions and those of my co-authors to these works. Here, I summarize how they represent

original research scholarship.

Chapter 1 is a review of existing literature on chemical sensing in biology and on T cell immunol-

ogy. Still, I performed two original theoretical calculations in that chapter. I applied a small

noise approximation of channel capacity developed for transcriptional regulation to the different

problem of concentration sensing by surface receptors (section 1.1.6), and I analyzed a modified

version of an existing model of viral-immune dynamics, which leads to quite different phenomena

and bifurcations compared to the original model (section 1.2.2).

In Antigen encoding, [1], I worked in close collaboration with the lab of Grégoire Altan-Bonnet at

the National Cancer Institute (NCI, USA), in particular co-first author Sooraj Achar. They devel-

oped a unique robotic platform to record the dynamics of T cell activation. With Thomas Rade-

maker, we built a processing pipeline tailored to their datasets, and discovered a low-dimensional

description of cytokine dynamics. I formulated an accurate mathematical model of these dynamics,

and I developed numerical methods to quantify the channel capacity of cytokines. These methods

and findings, relevant for immunologists and biophysicists alike, are presented in chapter 2.

In CD3ζ ITAMs, [2], I collaborated with the labs of Grégoire Altan-Bonnet (NCI) and Paul E.

Love (NICHD) to dissect the ambiguous role of phosphorylation sites called ITAMs on the TCR.
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I extended mathematical models of TCR activation to account for T cell receptors with altered

ITAMs, and performed mutual information calculations based on their experimental data. These

analyses showed that ITAMs improve the ability of T cells to distinguish antigens by mediating an

inhibitory coupling between receptors. These findings are presented in chapter 3.

In TCR/CAR antagonism, [3], I collaborated with the labs of Grégoire Altan-Bonnet and Naomi

Taylor (NCI) to discover and quantitatively explain non-linear inhibitory interactions between T

cell receptors and chimeric antigen receptors (CAR) on T cells used for immunotherapy. I revisited

and improved TCR activation models, extended them to CARs, and generated predictions quanti-

tatively matching the measurements of co-first authors Sooraj Achar and Taisuke Kondo. We then

used the mathematical model’s insight to engineer cross-receptor interactions. These findings are

presented in chapters 3 and 4, and they have important implications for the model-guided design

of precision immunotherapies.
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my own work. Section 2.2 summarizes experimental methods used by co-first author Sooraj R.

Achar (SRA; Altan-Bonnet lab, NCI) and other authors (except theorists – TJR, PF and I) on the

paper. The Kendall Tau metric in section 2.6.3 and the Earth Mover’s Distance analysis in 2.8.1

were developed jointly by SRA and I. Figures were made by SRA, TJR and I according to our

contributions but edited collectively. Regarding the excerpts of [1] quoted in the chapter, I wrote

all quoted excerpts of the supplementary information (SI), since they concern my theoretical con-

tributions. Last authors Paul François (PF) and Grégoire-Altan-Bonnet (GAB) wrote the main text
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In CD3ζ ITAMs, [2], which is part of chapter 3, I was co-second author with SRA and John S.

Davies (NCI). I was the only theorist on the project with PF for supervision and conceptualization.

I developed the mathematical model of TCR antagonism and analyzed its predictions (section 3.3),

and I performed the mutual information calculations (3.2.1) for 6Y vs 6F T cells. SRA performed

the latent space analysis of 6F T cells (3.2.2) using the pipeline we had developed jointly with TJR

in [1]. First author Guillaume Gaud (Love Lab, NICHD) and co-second author SRA performed

the experimental work. Figures from that paper shown in the chapter were made by Sooraj Achar

and I according to our respective contributions. I wrote modelling parts of the supplementary
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(TK; Naomi Taylor’s lab, NCI) and SRA. I was also the only theorist with PF for supervision and

conceptualization. I developed the revised AKPR model (section 3.5) and its extension to CAR
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the model predictions for in vitro (4.3.4 and 4.4.4) and in vivo (4.4) experiments, and for the
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Introduction

Immunology, physics, and interdisciplinarity
The immune system is sometimes described as a “liquid brain” [5, 6]. What this catchphrase means

is that the immune system is a complex, out-of-equilibrium network of cells communicating with

each other to respond collectively to a multitude of stimuli. The analogy may therefore be overly

suggestive – we do not imply that the immune system gives rise to a form of consciousness – but

it has the merit to place the brain and immunity on an equal footing, challenging scientists to un-

derstand the latter with the same quantitative level of detail as the former. We are currently short

of the mark: while neurobiology and neurophysiology have long since integrated seminal con-

tributions from physics and mathematics, notably the 1952 Hodgkin-Huxley model of electrical

action potentials in neurons [7], quantitative immunology faces a dearth of universally recognized

mathematical principles. Meanwhile, the practical benefits to be reaped from quantitative im-

munology are significant, with applications ranging from the treatment and prevention of diseases

like COVID-19 [8] to the improvement of crop resilience against pathogens [9]. In particular, the

next generation of treatments in cancer immunotherapy [10, 11, 12, 13] will greatly depend on

model-guided design to improve precision and specificity [14].

For physicists, the ultimate ambition would be to go one step further in the “liquid brain” analogy:

to understand immunity not just as accurately as the brain, but as accurately as liquids. However,

we are still far from this level of quantitative knowledge – it may not be attainable at all. Working

towards it nonetheless, we should avoid the main pitfall existing in the study of any living system

from the physics perspective. The risk is to evacuate what makes biological systems interesting in

the first place – the fact that they are living – and treat them as just another state of matter, labelled

“living matter”, on which to apply hydrodynamics, thermodynamics, and so on. In Eric Siggia’s

words, we should instead “deal with problems first and tools second”, because “[b]iology is not

an excuse for doing physics with the names on the variables changed” [15]. Biological physics

should ultimately be oriented towards the defining features and functions of living systems. What

is life, and how does it evolve? How do organisms self-assemble and develop, move and main-

tain themselves, make decisions and learn in their fluctuating environments? Satisfactory answers

should take the form of emergent physical laws, consistent with but not reducible to fundamental

microscopic laws; as noted by Schrödinger, the distinctive properties of biological systems will



require a “new type of physical law” [16, p. 80]. Working towards such laws also requires dif-

ferent mathematical tools and formalisms; information theory, nonlinear dynamics, and statistical

learning might be especially appropriate to dissect complex living systems [17, 18, 19].

Is this style of research on immunity still part of physics? We believe so. The object of study

may differ compared to traditional fields of physics, but the scientific method is the same: we

seek mathematical predictions derived from theoretical principles and agreeing with experimen-

tal data. This common quantitative spirit is what constitutes physics. In William Bialek’s words:

“Academic disciplines can define themselves either by their objects of study or by their style of

inquiry. Physics is firmly in the second camp.” [17]. While the deductive method of physics re-

mains, “[t]he aspects of the world which capture the interest of the physics community can and do

change, not least as new phenomena become accessible to the physicists’ style of inquiry” [17].

This is currently the state of affairs in biology, particularly in immunology: there is a deluge of

new quantitative data, thanks to rapid technological advances unlocking high-throughput, precise,

and multiplexed measurements [20, 1, 21]. These data have no fundamental reason to be ignored

by the realm of physics. In fact, biology and physics have spent centuries hand in hand: Aristotle’s

Physics covered the fundamental causes of movement in inanimate and living entities alike [22]

and Lucretius attributed human perception of odors and tastes to “atoms” of different shapes and

sizes [23, IV, 615–672]. Modern physics also has a tradition of studying living systems: Helmholtz

worked extensively on hearing [24], the “psychophysics” of olfaction and taste are an active re-

search area [25], and physicists have been contributing to theoretical immunology for at least 50

years (Perelson [26]).

Research objectives: immune sensing and signaling
The methods of physics can push quantitative immunology forward in several ways. For in-

stance, the statistical physics of immune repertoire generation [27] and the structural biophysics

of antigen-receptor affinity [28] have received significant attention and clarified how adaptive im-

munity is organized [29]. In this thesis, we focus on another fundamental challenge: the sensing

and signaling functions of T cells. These white blood cells, part of the adaptive immune system,

must constantly sense their surroundings for signs of infection or damage, and produce appropriate

responses through intracellular and extracellular signaling. What parameters determine T cell re-

sponse dynamics? How do these cells leverage their receptor structures and repertoires to perform

their functions? These processes depend on parallel chemical inputs and biochemical pathways,

and produce diverse outputs. These high-dimensional attributes complicate the formulation of a

concise theory of T cell sensing and signaling.
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The physics style of inquiry might alleviate this difficulty. Satisfactory physical theories explain

natural phenomena with parsimonious mathematical rules and few parameters. We therefore at-

tempted, in this thesis, to find emergent quantitative descriptions of complex T cell activation

processes. Our main objective has been to derive low-dimensional representations of T cell dy-

namics, and to predict T cell activation by diverse antigenic stimuli. We wanted to compress the

high-dimensional chemical spaces of T cell inputs and outputs, to obtain a simplified description of

T cell activation and reverse engineer how it depends on the quality and quantity of antigens. We

also wanted to connect different time scales of immune activation by building phenomenological

models of T cell receptor (TCR) signaling and use them to predict immune responses on slower

time scales. Since the distinctive feature of T cell chemical sensing is to disentangle mixtures

of similar antigens, we focused in particular on nonlinear effects that arise in such mixtures. We

wanted to show how T cell antigen recognition differs from the concentration sensing problem

commonly treated in biophysics [30] and that it can nonetheless serve as a model for other combi-

natorial sensing and signaling problems in biology (e.g., in olfaction and developmental pathways).

Then, we finally wanted to show the potential for applications unlocked by quantitative theories

of T cell activation. To do so, we investigated cross-receptor interactions in T cell used for cancer

immunotherapy. Throughout, we collaborated closely with immunologists (principally the labs of

Grégoire Altan-Bonnet, Naomi Taylor, and Paul Love at the National Institues of Health), and we

sought quantitative agreement between model and data.

Thesis outline
We proceeded in several steps to achieve these goals. In chapter 1, we compared and contrasted

concentration sensing by bacteria with antigen sensing by T cells, providing background on the im-

mune system and seizing the opportunity to introduce nonlinear dynamics and information theory

methods used in subsequent chapters. The next three chapters cover our original research contri-

butions. In chapter 2, we found a low-dimensional compression of T cell secretion of cytokines

(extracellular messenger proteins), allowing us to correlate early and late time scales of immune

responses with the quality, rather than quantity, of recognized antigens. In chapter 3, we examined

responses to antigen mixtures, prompting us to revise previous phenomenological models of TCR

signaling. We attempted to explain, in particular, antagonism in mixtures of weak and strong TCR

antigens. In chapter 4, we extended our modelling efforts to chimeric antigen receptor (CAR)

T cells, to explain and harness cross-receptor antagonism. We covered specific literature review

elements at the beginning of these three main chapters.
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Chapter 1

Review: chemical sensing and immunity

The immune system must sense early signs of infection and damage amidst an overwhelming

majority of healthy, functioning cells. In response, it must produce appropriate intracellular and

intercellular signals to restore homeostasis. Immune cells consequently possess complex biochem-

ical machineries to perform their functions. The high-dimensional nature of immune inputs, pro-

cesses, and outputs poses considerable challenges towards their physics-based understanding, i.e.,

with simple models based on quantitative principles. Fortunately, there are several examples of

biological systems which in fact have underlying low-dimensional descriptions, making simple

biophysical models unexpectedly efficient at capturing their properties. This thesis hopes to show

that T cell sensing and signaling might be another such example.

In this chapter, we review classical biophysical principles of concentration sensing by cellular

receptors (section 1.1), to contrast them with the unique challenges of T cell antigen sensing (sec-

tion 1.2). We then describe the mechanisms used by T cells to perform their sensing and signal-

ing functions, highlighting how their biochemical complexity might hide simpler principles (sec-

tion 1.3). Lastly, we summarize various examples of successful low-dimensional models in bio-

physics (section 1.4), and identify reasons to hope T cell responses also have a low-dimensional

structure (section 1.4.3). Some topics also serve as pretexts to introduce notions of information

theory and nonlinear dynamics, which form the theoretical foundations of this thesis.

1.1 Biophysics of chemical sensing in living systems
1.1.1 Overview of chemical sensing in biology
Living systems stand to gain selective advantages by acquiring information about their environ-

ment and responding accordingly [31]. For this reason, across the tree of life, species have evolved

mechanisms to sense chemical signals from their surroundings. These mechanisms are usually

surface proteins acting as receptors which can trigger downstream intracellular pathways upon ac-

tivation [32]. By chemical signals, we mean the identity, concentration, or dynamics of molecules
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in the extracellular medium or on other cells (be it small compounds or large proteins). To make

these concepts more concrete, we briefly describe a few examples of chemical sensing by bio-

logical systems in appendix A: animals smelling odorant molecules via their olfactory receptor

neurons [33], bacteria performing chemotaxis in search of nutrient sources [34], or embryonic

cells reading morphogen concentrations to differentiate [35]. Despite each having peculiarities,

these examples share common features with the main topic of this thesis, sensing and signaling

in T cell immunity: antagonism and other nonlinear effects in antigen mixtures, discrimination of

relevant and background signals, combinatorial computations, communication between cells. We

will highlight these challenges again in our review of antigen and cytokine sensing by T cells, in

section 1.2 and the introductions of the following three chapters.

In all examples mentioned above, cells face the same physical limits and share a few fundamen-

tal principles. We summarize in the following subsections the canonical biophysics treatment of

concentration sensing by cellular receptors, before pointing out other biologically relevant ques-

tions (subsection 1.1.8) and transitioning to the additional detection challenges solved by T cell

receptors (section 1.2).

1.1.2 Berg-Purcell fundamental physical limit
Consider a single receptor of typical dimension ℓ (typically a few nanometers) faced with the

task of estimating its cognate ligand concentration c in the extracellular medium. Even if it could

instantaneously count all ligands within a neighborhood of volume ℓ3 around it, its accuracy would

still be limited by the intrinsic variability in the number of ligands within that small volume at

a given time, due to the random walk of molecules diffusing in and out of it. This situation is

illustrated in figure 1.1.

We can estimate this variability using simple probabilistic arguments. In a stationary, homogeneous

state, each of the M molecules in the environment of volume V at concentration c = M/V has

the same probability p of being in the small volume ℓ3 or not, by symmetry. This probability is

proportional to the ratio of volumes: p = ℓ3/V . Hence, the random number N of ligands within

the neighborhood follows a binomial distribution,

P [N = n] =

(︃
M

n

)︃
pn(1− p)M−n (1.1)
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Figure 1.1: Physical limit to molecule counting due to diffusion in the neighborhood of a receptor with
linear dimension ℓ. Ligands are at average concentration c, diffusing in and out of the small volume with
diffusion constant D and equilibration time τc = ℓ2/D, such that cℓ3 ligands are present in the volume on
average, with Poisson variance cℓ3. Redrawn after figure 4.16 in [17].

Since p = ℓ3/V ≪ 1 andN ≪ 1, this is approximately a Poisson distribution with mean N̄ =Mp,

P [N = n] =
(Mp)ne−Mp

n!
(1.2)

which has variance σ2
n = Mp. This intrinsic noise, originating from the discrete nature and small

number of ligands in the neighborhood ℓ3, is analogous to Poisson shot noise in detector electron-

ics [17]. Due to shot noise, the best possible relative accuracy of this receptor’s ideal concentration

estimate, ĉ = N/V , is
Var [ĉ]

E [ĉ]
=
σn
N̄

=
1√
N̄

=
1√
cℓ3

(1.3)

where we defined σ2
ĉ = Var [ĉ] the variance of the concentration estimated, and used the change of

variable N̄ =Mp =Mℓ3/V = cℓ3 in the last equality. This is the first fundamental physical limit

stated by Berg and Purcell [30] in the context of bacterial chemotaxis.

1.1.3 Time and receptor averaging in the Berg-Purcell limit
Given this fundamental limit on a single measurement, there are two obvious ways to improve

it, which were also considered by Berg and Purcell: to repeat the measurement over time and to

use several receptors. In both cases, averaging k independent measurements {N1, . . . , Nk} should

reduce the relative error by a factor
√
k, since Var

[︂
1
k

∑︁k
j=1Nj

]︂
= k

k2
Var [N1].

If the measurement is averaged over a time T , truly independent values are obtained after waiting

long enough for molecules to diffuse out of the small volume and be replaced by new ones, which

occurs over a characteristic diffusion time τc = ℓ2/D, where D is the ligand diffusion constant.

Therefore, there are k = TD/ℓ2 independent measurements in time T , reducing the relative error
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to σĉ
c
= 1√

DℓcT
. Taking into account the autocorrelation time of ligand diffusion introduces extra

numerical factors, resulting in a more precise fundamental physical limit1

σĉ
c

=

√︃
4

5DℓcT
(1.4)

If a cell averages the readout of R receptors, each of size ℓ, the relative error is reduced by a fac-

tor
√
R, provided that receptors are sufficiently spread out to have uncorrelated neighborhoods.

Otherwise, the ligands around nearby receptors becomes correlated, as one receptor can bind a

ligand and prevent it from reaching the surrounding receptors [17, 36]. As the number of receptors

R → ∞ on a cell of dimension a, the physical limit approached is that where the sensing volume

is the entire cell, σĉ/c = 1/
√
DacT . Putting numbers together for a bacterium with a = 1µm

averaging for T = 1.5 s a ligand concentration of 1 nM, we find σĉ/E [ĉ] ≈ 1/30, which is suffi-

ciently accurate for that bacterium to perform chemotaxis and decide if a concentration gradient is

increasing or decreasing.

1.1.4 Berg-Purcell limit for a simple receptor
The calculations above assumed an ideal observer that could perfectly count ligands within a given

volume. This served to set an absolute physical limit on concentration sensing which can at best be

approached by cells that do not have access to this instantaneous count. Instead, what can be read

out by signaling pathways in cells is the sequence of receptor binding and unbinding events. Con-

sidering only the available receptor-ligand kinetics, we can set more biologically realistic bounds

on cellular sensing accuracy.

Berg and Purcell [30] also treated the case of such a “simple observer” in which concentration

would be estimated based on the average receptor occupancy (i.e., fraction of time the receptor is

bound). We follow here a slightly different derivation, based on the master equation [37, 38] for

the probability p(t) that the receptor is bound at time t, with binding rate k+c and unbinding rate

k−,
dp(t)

dt
= k+c(1− p(t))− k−p(t) . (1.5)

Solving for the stationary distribution (dpb/dt = 0), we find the average receptor occupancy, pb, is

pb =
k+c

k+c+ k−
=

c

c+KD

(1.6)

1The autocorrelation time introduces a factor 4/5; in the original article, a spherical volume was considered instead
of a box here, which introduced an additional factor of 3/4π.
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matching the expected result for the macroscopic chemical reaction with equilibrium constant

KD = k−/k+. Inverting the relationship, the concentration estimate for this cell is

ĉ =
pbKD

1− pb
. (1.7)

The occupancy pb has to be computed in the cell by averaging the receptor state s ∈ {0, 1} over

some time T, defining a time-averaged occupancy2

pb̂ =
1

T

∫︂ T

0

dt s(t) (1.8)

which has an average equal to the true occupancy, E [pb̂] = pb, and variance

σ2
pb̂
= E

[︁
pb̂

2
]︁
− E [pb̂]

2 =
1

T 2

∫︂ T

0

∫︂ T

0

dtdt′ E [s(t)s(t′)]− p2b (1.9)

To find out this variance, we need the autocorrelation function of s, G(t, t′) = E [s(t)s(t′)], which

we can get by solving the time-dependent master equation (1.5) of p(t) with the receptor bound

at the initial condition, s(0) = 1. Indeed, at stationarity, G(t, t′) = G(0, |t′ − t|) = G(τ) where

τ = |t− t′|, and

G(τ) = E [s(0)s(τ )] = 0× (1− p(τ)) + 1× pbp(τ) = pbp(τ)

Solving eq. 1.5, which is a simple linear differential equation, with initial condition p(0) = 1, we

find

G(τ) = pbp(τ) = p2b + pb(1− pb)e
−κ|τ |

where κ = k+c + k− is the total reaction rate. Inserting in the integral of eq. 1.9, we find the

variance on the occupancy time average,

σ2
pb̂
=

2pb(1− pb)

κT

(︁
1− e−κT

)︁
≈ pb(1− pb)

κT

if the integration time T ≫ 1/κ. Finally, changing variable with a Taylor approximation ĉ ≈
c + dĉ

dpb
(ĉ − c), this gives us the variance σ2

ĉ , resulting in a relative error on the concentration

2Practically, this can be computed, for instance, by a phosphorylation network with a slow degradation time T ; see
e.g., the “Duty fraction decoder” model in [39].
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estimate of
σĉ
c

=

√︄
2

(1− pb)k+cT
. (1.10)

This form becomes more intuitive by realizing that k+cT is the average number of ligand-receptor

encounters in time T . Encounters result in a binding event if the receptor is free, which happens a

fraction (1 − pb) of the time; hence, (1 − pb)k+cT = ν, the average number of binding events in

time T . Therefore, the simple observer, based on average receptor occupancy, has a concentration

sensing error bound of [30]
σĉ
c

=

√︃
2

ν
. (1.11)

This result can be contrasted with the ideal observer (shot noise) limit, which had error 2/
√
5DℓcT ;

considering that Dℓc is the diffusion-limited arrival rate k+ of ligands on a square patch of side ℓ,

the physical limit due to shot noise, eq. (1.4), is

σĉ
c

=

√︃
2(1− pb)

5

√︃
2

ν
<

√︃
2

ν
.

Hence, the ideal observer’s physical limit is not quite reached by the simple observer receptor, but

the ν−1/2 scaling of both limits is the same.

1.1.5 Energy-accuracy tradeoff in concentration sensing
The simple receptor limit above, based on the average time the receptor is bound, can be improved

to approach the ideal observer shot noise limit. Using a maximum likelihood approach, Endres

and Wingreen [40] have derived the optimal sensing accuracy available in principle from the entire

time series of receptor occupancy. They found that signaling networks which would rely on the

unbound time intervals only, rather than the bound ones, could improve the accuracy by a factor
√
2. The fundamental limit for simple observers therefore becomes σĉ

c
= 1

ν
for a system with

complete access to receptor binding and unbinding events.

This maximum likelihood calculation did not, however, solve the question of which biochemical

signaling scheme in cells can achieve this optimum. Trying to address that question, theoretical

studies showed that only out-of-equilibrium receptor signaling schemes (i.e., breaking detailed

balance) can approach the theoretical limit of
√︁
1/ν, at the expense of entropy production and

energy consumption. Such energy-accuracy tradeoffs were exhibited in various models of recep-

tors with non-equilibrium states [41, 42]. Recently, Harvey et al. [43] used large deviation theory

and stochastic thermodynamics to derive a universal theoretical bound [43, eq. 13] synthesizing
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previous results, (︂σĉ
c

)︂2
≥ 2

TΣπ/4 + ν
(1.12)

where Σπ is the total rate of entropy production in the receptor network [44],

Σπ =
∑︂

i<j

(ϕij − ϕji) log

(︃
ϕij
ϕji

)︃
(1.13)

and where ϕij = πiQij is the probability flux from state i to state j when the system with transi-

tion rate matrix Qij is in its stationary (non-equilibrium) probability distribution πi. The bound in

eq. (1.12) holds until the maximum likelihood limit of 1/ν is reached, beyond which energy con-

sumption cannot improve accuracy further. As we will see, this idea that non-equilibrium reaction

schemes and entropy production are needed to improve biological sensing accuracy also underlies

models of T cell antigen sensing [45].

1.1.6 Information transmission by simple receptors
We now examine concentration sensing under the angle of information theory, to introduce a few

notions which will be useful in chapter 2. We ask how much a cell with Rtot simple, independent

receptors can learn about the external concentration C of a ligand, based on the number R of its

receptors that are bound. This can be quantified by mutual information (MI) [46], that is, how

much entropy is dissipated about C once R is known:

MI(C;R) = H(C)−H(C|R) . (1.14)

This is the difference between the entropy H(C) of C, and the conditional entropy left when R

is known, H(C|R); in the limit where C and R are continuous variables, we have differential

entropies, in bits,

H(C) = −
∫︂
dc fC(c) log2 fC(c)

H(C|R) = −
∫︂
dr fR(r)

∫︂
dcfC|R=r(c) log2 fC|R=r(c) ,

where fX(x) denotes the probability density function of a random variable X . Using the definition

of conditional probability densities, fC|R=r(c) = fC,R(c, r)/fR(r), and of marginal probabilities

10



fR(r) =
∫︁
dc fC,R(c, r), the expression for MI(C;R) can be rearranged in two useful forms [17],

MI(C;R) =

∫︂
dc

∫︂
dr fC,R(c, r) log2

(︃
fC,R(c, r)

fR(r)fC(c)

)︃
(1.15)

=

∫︂
dc fC(c)

∫︂
dr fR|C=c(r) log2

(︃
fR|C=c(r)

fR(r)

)︃
(1.16)

The first form shows that MI is symmetric in R and C, and would thus also be equal to the dissi-

pated entropy H(R) −H(R|C); it also shows that MI(R;C) = 0 for independent variables. The

second form is useful when treating the external concentration C as an input to the system and the

receptor state R as the output; the distribution of inputs fC(c) is a property of the environment,

while the conditional distribution fR|C=c(r) is the input-output mapping of the system, specifying

how the output R depends on the input C, with some randomness specified by that density.

To compute MI(C;R), we consider the concentration C to be a random variable that changes

slowly enough to allow R to reach its stationary distribution quasi-statically. Hence, at a given

concentrationC = c, each receptor has a probability p to be bound, given by the stationary solution

of the master equation 1.5: p(c) = c
c+KD

where KD = k−/k+. The number of bound receptors

R, then, is a sum of Bernoulli random variables, which has a binomial distribution (eq. 1.1)3 with

mean Rtotp and variance Rtotp(1 − p). From the De Moivre-Laplace theorem [48], X = R/Rtot

approximately follows a normal distribution fX|C=c(x) with mean µX(c) = p(c) and variance

σ2
X(c) = p(1− p)/Rtot (we neglect the continuity correction here).

In this general context, we do not have the concentration distribution fC . Instead of computing MI

for a specific choice of environment, we can compute the channel capacity of the receptors,

C(C;X) = max
fC

MI(C;X) (1.17)

that is, the most information R could ever transmit about C, if fC is well tuned. In general, this

maximization over a functional space cannot be performed exactly, in particular because of the term

involving fX(x) =
∫︁
dcfX|C=c(x)fC(c). Here, since the relative error σX/µX ∼ 1/

√
Rtot ≪ 1,

to gain some intuition, we can make a small noise approximation [49, 50, 51, 52, 53]. We perform

a saddle point approximation of the integral
∫︁
dxfX|C=c(x) log2(fX(x)) with fX|C=c(x) sharply

peaked around its mean, µX(c). Then, only fX(µX(c)) remains, and it is related to fC via the

change of variable formula, fX(µX(c)) = fC(c)
⃓⃓
⃓ dc
dµX

⃓⃓
⃓. These approximations allow us to solve

3This binomial distribution also be derived by writing a master equation for R directly; see [47, appendix B].
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Figure 1.2: Distribution optimizing information on concentration from Rtot simple receptors. (Left)
Optimal input concentration distribution, f∗C(c) found by a small-noise approximation in the channel capac-
ity C(X;R). Plotted against the output standard deviation depending on concentration, σX(c), to illustrate
that regions of small noise receive more probability weight: f∗C ∼ σ−1

X . (Right) Optimal distribution of the
output’s concentration-dependent average, E [X] = E [R/Rtot] = µX(c), obtained by changing variable
from C to µX : f∗X(µX) = f∗C(c)

⃓⃓
⃓ dc
dµX(c)

⃓⃓
⃓. Plotted against the output standard deviation as a function of the

average µX , to illustrate the inverse relation between the two, fX(µX) = 1
Zσ

−1
X .

the variational problem, with a Lagrange multiplier Λ enforcing fC(c) normalization,

δL
δfC

= 0 where L = MI(X;C)− Λ

∫︂
dcfC(c) .

Following steps analogous to those in Tkacik et al. [50], we find the optimum

f ∗
C(c) =

1

Z

1

σX(c)

⃓⃓
⃓⃓dµX
dc

⃓⃓
⃓⃓ and C(C;X) = log2

(︃
Z√
2πe

)︃
(1.18)

where Z =
∫︁
dcσX(c)

−1
⃓⃓
dµX
dc

⃓⃓
. Replacing µX(c) and σX(c), we have, for Rtot receptors,

f ∗
C(c) =

1

π

1

c+KD

√︃
KD

c

C(C;X) =
1

2
log2

(︃
πRtot

2e

)︃
.

This distribution is illustrated in figure 1.2. The important insight is that f ∗
C(c) ∼ σX(c)

−1: to

optimize information transmission, input values which produce smaller noise on the number of

bound receptors should occur more often – here, this happens at small concentrations producing

very few bound receptors. Consequently, since fX(µX) = (ZσX)
−1 by a change of variable,

the average output should have more weight in the region of small noise. Another important
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conclusion is that, as we would have expected, the mutual information increases logarithmically

with the number of receptors Rtot.

1.1.7 Adequacy of well-mixed approximations in chemical sensing
Features of the optimal solution – maximum probability weight in f ∗

C(c) at vanishing concentra-

tions and channel capacity increase with Rtot – are exaggerated by the small noise approximation.

To begin, the relative error σX/µX scales as 1/µX , which blows up when c → 0. Noise is not re-

ally small in that region, so the small noise approximation made this regime more accurate than it

really is. For more accurate channel capacity calculations, numerical methods are needed, chiefly

the Blahut-Arimoto algorithm [54, 55, 56]; we will in fact use it in chapter 2.

Although we neglected shot noise contributions in this information-theoretic analysis of concen-

tration sensing, the ideas behind it are not completely wrong. Using chemical master equations

such as eq. 1.5 does assume that molecules are well-mixed and that mass-action kinetics apply.

Nonetheless, Van Zon et al. [57], studying the example of gene promoter binding with spatially-

resolved stochastic simulations, have shown that “the effect of spatial fluctuations can be described

by a well-stirred, zero-dimensional, model by renormalizing the reaction rates for repressor-DNA

(un)binding” [57]. These results suggest that well-mixed models of biochemical reactions can

be useful approximations, especially when parameter values are phenomenologically corrected to

account for underlying, microscopic physical processes. When experimental data are available,

the “renormalization” of chemical rates can be achieved by fitting model parameters; this is the

strategy we will employ in chapters 3 and 4.

Approximating exact physical processes by well-mixed chemical reactions constitutes a useful

strategy to establish low-dimensional, interpretable, and tractable models of biological dynam-

ics. Simplifications like these are imperative to discern, from a physics perspective, the emergent

laws regulating biological systems, without getting tangled in microscopic details. Neglecting mi-

croscopic details by leveraging experimental measurements will allow us to estimate information

transmission in T cells responses without having to enumerate all intrinsic physical and biological

sources of noise in the system, which would be a hopeless task in our current state of understanding

of immunity. These estimations are valuable despite their approximate nature, since tracking infor-

mation flow is an important method to dissect biological systems from a physics perspective [17,

chap. 6].

13



1.1.8 Beyond concentration sensing by simple receptors
The calculations above provide a biophysical background to the problem of chemical sensing by

cells, specifically the determination of ligand concentration. However, it assumed receptors with

only one possible cognate ligand, and with a fixed time to average their occupancy state and acquire

information. Therefore, it does not address other fundamental chemical sensing challenges faced

by living systems.

Decision on the fly

To begin, living organisms probably do not always need very precise concentration estimates,

especially when the environmental concentration keeps changing anyways. Instead, they may

simply need to distinguish two hypotheses, e.g., the ligand concentration is closer to L1 or L2, and

wait until reaching a certain confidence level in either option. Siggia and Vergassola [58] have

developed a theory of “decisions on the fly” based on statistical hypothesis testing, showing that

organisms can make faster decisions using Wald’s ratio test than with fixed-time averaging. Siggia

and Vergassola [58] proposed actual biochemical models of receptor signaling which implement

this test. The decision on the fly strategy implies different optimal network architectures compared

to the classical Berg-Purcell treatment.

Although we will not directly use it in subsequent chapters, the decision on the fly framework

applies to a central problem in the immune system: antigen recognition, that is, as we will discuss

in the next section, the detection of rare, strongly binding ligands amidst a sea of slightly weaker

ones. Lalanne and François [59] used a similar statistical hypothesis testing framework to inves-

tigate this chemodetection problem when, additionally, the concentration of background ligands

fluctuates over time. They compared the performance of a few different receptor signaling models,

and found that receptor coupling by a global inhibitory feedback helps to buffer environmental

fluctuations. This contrasts with Berg-Purcell-style concentration sensing, where independent re-

ceptors provide the best improvement, reducing the relative error by
√
Rtot.

Sensing of various other ligand properties

In fact, antigen recognition is one of several other facets of biological sensing beyond the classical

Berg-Purcell concentration estimation. Depending on the context, cells instead need to sense lig-

and combinations [60], identities [61], affinities [62], or dynamical patterns [39]. Real biological
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receptors do not simply function independently, in parallel, to each determine the concentration of

one ligand.

Regarding combinations, receptors often bind to several similar ligands, for example the receptors

for bone morphogenetic proteins (BMP) [63]. Moreover, receptors from the same family often

share sub-units (e.g., cytokine receptors in immune cells). This situation leads to nonlinear ef-

fects in ligand mixtures. For instance, because of competition for cytokine receptor sub-units,

one cytokine can reduce a cell’s sensitivity to another cytokine [64, 65]. Similarly, in olfaction,

odorant mixtures often exhibit antagonism: a reduction in the response to a mixture of molecules

compared to the individual responses. This effect is due to competition for receptors between the

odorants, as explained by a biophysical model of olfactory neuron signaling [66]. Ligand promis-

cuity (i.e., similarity) and cross-receptor interactions can actually improve concentration sensing

of multiple ligands [67], but it also serves other purposes beyond that, like computing ratios or

logic functions of ligand combinations and addressing specific cell types based on receptor expres-

sion profiles [68]. Mathematically, these effects translate into complicated polynomial equations,

requiring computational and algebraic solution techniques such as Gröbner bases [69].

Regarding ligand identities and affinities, the cross-reactivity of receptors for several promiscu-

ous ligands seem to complicate the task of distinguishing ligands, which is important in situations

where different ligands mark different biological contexts. However, thinking outside of the con-

centration sensing paradigm, cells have evolved various mechanisms to distinguish antigens. For

example, in the case of Notch receptors and Delta ligands, the manner in which receptors clusters

in response to different Delta ligand variants can trigger very distinct temporal signals in cells [61].

In the case of T cell antigen recognition, which we will review in detail below, receptors amplify

small affinity differences between antigens to distinguish them [62].

Regarding the recognition of temporal patterns, some ligands have markedly different dynamics

dependent on the context. During embryonic development, the Wnt morphogen displays oscilla-

tions in propagating waves of gene expression when vertebrae form [70], but static Wnt gradients

establish anterior-posterior positional information [71], and Turing reaction-diffusion of Wnt leads

to digit patterning [72]. Cells could therefore extract valuable contextual information from these

different dynamics. Biochemical networks can in fact compute specific temporal features, such

as the period of oscillating signals [39]. However, we still lack a general formalism to formulate

how kinetic features of time series, i.e., their “shapes”, encode information that cells can decode.

Most formalisms are limited to the stochastic component of time series and require large sample
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sizes to be evaluated [73]. We will propose a different formalism, based on a parametrization of

low-dimensional dynamics, in section 2.7.

In summary, the Berg-Purcell treatment remains instructive about fundamental physical limits, but

we need new theoretical frameworks beyond it to study biologically relevant aspects of cellular

sensing. Our main topic, T cell receptor signaling, has some unique features (sensitivity, speed,

specificity), as well as important applications, making it interesting in its own right from the bio-

physics standpoint. It is also a great model system to better understand sensing of ligand identity

(according to affinity), cross-receptor interactions, and combinatorial effects in antigen mixtures.

After all, contrary to chemotactic bacteria, which have other functions to perform for their own

fitness, immune cells have evolved for the greater good of the organism: they are optimized solely

for chemical detection, and can therefore solve more complex sensing and signaling tasks.

1.2 Chemical sensing challenges in immunity
Having reviewed the canonical treatment of chemical sensing in biophysics, we can now introduce

in this context the specific biological problem examined in this thesis: antigen sensing and sig-

naling in T cell activation. We briefly introduce biological notions about mammalian immunity,

emphasizing problems of high dimensionality in cellular sensing and cellular responses, before

focusing on T cell receptor (TCR) activation mechanisms.

1.2.1 Brief introduction to the immune system
Roles of the immune system

The most apparent role of immunity is to protect the host against pathogens. In the current canoni-

cal view, tracing back at least to Burnet and Fenner [74], the immune system discriminates between

self and nonself, or in other words, between host constituents (“friends”) and foreign invaders

(“foes”). Obviously, this challenge differs fundamentally from the concentration sensing problem

above: a good immune system should sense the identity of antigens – by definition, molecules

recognized by immune receptors – from self and nonself sources, and respond only to the latter.

To complicate matters, immunologists have unearthed an entire constellation of immune system

functions beyond pathogen detection, nuancing the self/nonself paradigm. These functions include

clearing and repairing damaged tissues, regulating development and metabolism [75], and main-

taining beneficial gut and skin microbiomes [76, 77]. Healthy immune systems tolerate several
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“foreign” entities, for example commensal microbiota, grafts, and foetuses. Conversely, auto-

immune disorders arise when the immune system attacks antigens which are obviously derived

from the self. Instead of self/nonself discrimination, immunity would be better defined as the sys-

tem responsible for maintaining homeostasis and cohesion within the limits of the organism, which

it itself delineates; it does not merely enforce pre-existing, absolute self boundaries [78].

The multifaceted role of immunity has several theoretical implications. First, since the immune

system needs to repair tissues and clean up debris, it must be able to sense self antigens as well,

and respond to them in these contexts. The influence of self antigens will in fact be central to

chapters 3 and 4. In the latter chapter, we will also see that immunity can target mutated self,

i.e., cancer. Second, as we have alluded to in section 1.1.8, immune antigens are never presented

alone, but rather in highly diverse, fluctuating mixtures; immune cells therefore exploit nonlinear

cross-receptor and cross-ligand interactions to perform the appropriate functions in response to

these antigen combinations. Third, to respond in a context-dependent manner, immune cells need

to sense external chemical cues, such as small proteins like cytokines and chemokines secreted

in the extracellular medium (more on them in chapter 2). They also sense costimulatory ligands

presented on the surface of other cells [79]. In short, immune chemical sensing is not at all a one-

dimensional concentration estimation, nor a binary decision between self and nonself. Rather, it

seems that immune cells need to produce complex response within a high-dimensional continuum

of possible chemical cues.

Structure of the immune system in Vertebrates

All organisms have some form of immune defense strategies, likely tuned by evolution to match

the typical pathogen statistics they encounter – see figure 1.3 for a phase diagram of these possible

strategies, derived from a stochastic population dynamics model by Mayer et al. [80]. Vertebrates,

who typically live and evolve on much slower time scales than their pathogens (blue sector in the

phase diagram), have an adaptive immune system, in addition to an innate one.

The innate system detects molecular patterns that are broadly conserved across bacteria or viruses,

and mounts generic responses against them. It comprises several lines of defense, from the com-

plement system – proteins combining together on pathogens to pierce holes through their cell walls

– to dendritic cells and macrophages – polyvalent sentinel cells that can phagocytose bacteria and

dead cells [81]. The adaptive immune system comprises T cells (which mature in the thymus) and

B cells (which mature in the bone marrow). These cells have large receptor repertoires to specif-
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Figure 1.3: “Optimal immune strategies as a function of the frequency and characteristic time of pathogens.
(A) Distinct optimal immune strategies emerge for different statistics of appearance of the pathogens. Each
phase is characterized by the value of parameters indicated in B and named after a known immune sys-
tem that has similar characteristics (the term ‘adaptive’ refers to the vertebrate immune system).” [80].
Probabilities α and β are probabilities of the pathogen to appear and disappear in a generation, such that
πenv and τenv defined on the axes are the frequency of a pathogen appearing, and the characteristic time it
stays around (in number of generations). (B) “The different phases of immunity are defined by the values
of parameters along three main axes: adaptability (constitutive cost cconstitutive), heritability (1 − q), and
mode of acquisition (p and puptake).” [80] These three immune parameters represent the cost of the immune
protection, the probability to transfer protection against a given pathogen to offsprings, and the rate at which
the system mounts a defense (a system could choose to incur the cost of infection instead of the cost of
defense, hence a small p could be optimal). To determine the phase of immunity, these three parameters are
optimized to maximize population fitness under a given pathogen statistics α, β. (C, D) Optimal param-
eters depending on πenv for two fixed τenv values. “For slowly varying environments (C), rare pathogens
are best targeted by CRISPR-like uptake of protection, whereas frequent pathogens are best dealt with by
spontaneous acquisition of protection, with a crossover in between where both coexist. For faster varying
environments (D), the constitutive cost invested in the protection goes from negligible to maximal as the
pathogen frequency increases. When it is maximal, the best strategy transitions from bet hedging (q > 0) to
a full protection of the population (q = 0).” [80] (E) Correlation time (typical duration) of the protection to
a pathogen in its presence or absence, for a fixed πenv and as a function of τenv. Figure and quoted caption
excerpts reproduced from Mayer et al. [80] with permission from PNAS.
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ically recognize a vast range of possible antigens, with the defining feature that they adapt their

response to each encountered pathogen, and form memories of previous encounters [29].

Importantly, the innate immune system initiates and orchestrates adaptive immune responses [82].

Innate immune cells provide much of the chemical cues giving context to T and B cells. They first

recognize that damage or infection has occurred, and push adaptive cells to mount a specialized

response, targeted at the relevant antigens. For instance, dendritic cells and macrophages bring

antigen samples into lymph nodes to activate antigen-specific T cells, and produce inflammatory

cytokines to attract and stimulate memory T cells on site [83, 84, 81]. Because of this sequence of

events, adaptive immune responses in vivo typically span a week or more, whereas innate responses

start within the first few days.

1.2.2 Nonlinear dynamics of immune responses
Immune responses exhibit complex, nonlinear dynamics in response to transient pathogenic en-

counters or chronic auto-immune stimulation. In nonlinear dynamics terms, an immune system

is an excitable system [85]: small perturbations away from the stationary state (homeostasis) can

cause large transient responses away from it, but ultimately returning to the resting point. We can

illustrate this behavior with a simple, two-dimensional system of nonlinear ordinary differential

equations (ODEs). We modify the model of Mayer et al. [86], which captured the power law scal-

ing of T cell proliferation after immunization with an inactivated virus; here, we add proliferation

of the virus (or other pathogens) and killing by immune cells4,

dV

dt
= rV (V − V0)(1− V/Vmax)− kV C

dC

dt
=

aV C

C0 + V + C
− bC ,

where V are viruses and C are immune cells. Viruses are killed at rate kV C and immune cells,

as a result, proliferate with a saturable rate aV C
C0+V+C

[86] where C0 is the saturation threshold.

The proliferation rate a also reflects the strength at which virus antigens stimulate the immune

cells. Immune cells die at rate kC. Viruses replicate at rate rV (V − V0)(1 − V/Vmax), where

Vmax is the carrying capacity and V0 represents a minimal inoculum for successful infection, since

a single virion is unlikely to suffice [87, 88], and since several virus species (e.g., enteroviruses)

travel en bloc, hidden inside vesicles [89]. Our toy model (the cubic viral proliferation function, in

4Virus killing is not necessarily direct; rather, infected host cells are eliminated by cytotoxic immune cells.
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particular) also draws inspiration from the 2D model of excitable auto-immune flare-ups introduced

and analyzed by Lebel et al. [90]5.

If incoming viruses push this system a little bit away from the healthy state6 V = C = 0, it

exhibits dynamics typical of an immune response, shown in figure 1.4: viruses proliferate, but

immune cells catch up and eventually clear them before waning back to the resting state. This is

what we meant by an excitable system. To understand this behavior more quantitatively, we first

change to dimensionless variables and parameters. We eliminate V0 and δ by using them as scales

of cell number and time, to obtain

dv

dτ
= ρv(v − 1)(1− v/vm)− κvc

dc

dτ
=

αvc

c0 + v + c
− c . (1.19)

Greek parameters are dimensionless versions of the original ones: α = aV0/b, κ = kv0/b, etc.

This model has nullclines (lines where either derivative is zero)

dv

dτ
= 0 : v = 0 or c =

ρ

κ
(v − 1)(1− v/vm)

dc

dτ
= 0 : c = 0 or c = (α− 1)v − c0 (1.20)

shown as red and blue lines in figure 1.4. The v = 0 and c = 0 nullclines ensure that cell numbers

remain non-negative. This system’s excitability comes from the parabolic c nullcline: as soon as

a sufficient initial perturbation crosses it, the flow under the parabola has a strong dv/dτ > 0

component; viruses replicate, until hitting the other branch of that nullcline, at which point dv/dτ

is small again and immune cells have time to combat the infection. This parabolic nullcline sets

the threshold for long excitations.

The intersections of v and c nullclines define fixed points of the system (dv
dt

= dc
dt

= 0, also called

critical points, steady-states, stationary solutions). Chapters 3 and 4 will be especially concerned

5While excitable systems in neuroscience are typically relaxation oscillators poised just below a Hopf or SNIC
bifurcation of the stable fixed point, here and in [90], we only retain the notion of a large excursion being generated
by a small initial perturbation. Our model could be modified to have a bifurcation to oscillations around the healthy
state, but the latter would have to move away from (0, 0), for instance by adding constant cell and virus influxes. This
would have made the mathematical analysis too complicated for the purpose of this chapter.

6A better model would have a small non-zero number of immune cells around at homeostasis, ready to respond;
this could be obtained by adding a small constant influx of immune cells a0 to dC/dt, but we are simplifying here.
For the same reason, to facilitate visualization, we chose parameter values (Vmax) making cell and virus numbers very
small. This model could describe viral-immune interactions in a very small region, which is rapidly saturated and
requires viruses and immune cells to migrate out of it.
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Figure 1.4: Excitable dynamics in a toy model of immune responses. (Left) Phase portrait of the model.
Flow lines represent the vector field f(v, c) = ( dvdτ ,

dc
dτ ) (eq. 1.19). The black line is a solution trajectory

(obtained by integrating the differential equations) after displacing the model away from equilibrium (pale
red arrow). Solid colored lines are the model nullclines (eq. 1.20); at their intersections, stable fixed points
are indicated by black dots, and unstable ones, by open dots. (Right) Time series of v and c corresponding
to the trajectory shown on the phase portrait. Parameter values used: α = 4, κ = 1, ρ = 2, c0 = vm = 10.
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Figure 1.5: Bifurcation diagram and sample trajectories of chronic infections in a toy model of im-
mune responses. (Left) Bifurcation diagram as a function of immune proliferation parameter α. It shows
the v coordinate of fixed points as α is varied. The appearance of a stable limit cycle out of a spiral that
goes from stable to unstable is a supercritical Hopf bifurcation, and the disappearance of the stable limit
cycle as it collides with saddle points is a homoclinic bifurcation. The limit cycle was tracked numerically
with the XPPAUT software [91]; other fixed points were evaluated analytically. (Center and right) Sample
trajectories in phase space when α is set such that the chronic infection state is a stable spiral (center, point
* in the bifurcation diagram) or an unstable spiral with a limit cycle (right, **). Figure 1.4 was showing a
case where α is large enough to eliminate the chronic state. Other parameters are fixed as in figure 1.4.
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with the fixed points of T cell receptor signaling models. The stability of fixed points – whether

nearby trajectories converge towards them or move away – can be assessed by linear stability

analysis. In summary, denoting x = (v, c), we linearize the flow dx
dt

= f(v, c) around a fixed point

of interest. We find a linear equation dx
dt

= Df · x, where Df is the jacobian matrix ∂(fv ,fc)
∂(v,c)

. The

eigenvalues of this matrix determine the fixed point’s stability (in short, negative real parts imply

linear stability).

This method is generally covered in nonlinear dynamics textbooks [85, 92, 93, 94], so we only

summarize the results for this toy model of immune activation, which are contained in figure 1.4.

The fixed point (v, c) = (0, 0) is always a stable node, meaning that nearby points converge to it.

For biologically meaningful parameter values (i.e., positive and carrying capacity vm > v0 = 1),

fixed points at (1, 0) and (vm, 0) are typically saddles, that is, an asymptotically unstable point but

with one attracting line (stable manifold of codimension 1); however, for large α, (1, 0) can be an

unstable node (no attracting manifold) while for small α, (vm, 0) can become stable – a successful

infection because immune cells are too slow to respond.

Such changes in existence or stability of fixed points are called bifurcations; they modify qualita-

tively the system’s global dynamics. The model has another fixed point with interesting bifurca-

tions: a chronic infection state (v∗±, c∗±), solution of the quadratic equation for the intersection

between the parabolic v and linear c nullclines. For small c0, when α is small, both solutions can

be in the positive quadrant with one being stable: immune proliferation saturates too much to clear

the infection. As α increases, however, the chronic state disappears (through a saddle-node bifur-

cation). For larger c0, (as in figure 1.4), the + root only is in the upper quadrant. For small α, it

is stable (either a node or a spiral): the immune system tolerates the weakly stimulatory pathogen.

As α increases, this chronic state becomes oscillatory through a subcritical Hopf bifurcation, and

eventually disappears through a homoclinc bifurcation, as shown in figure 1.5. Hence, even with

just a simple toy model, we found a rich repertoire of possible nonlinear dynamics in the immune

system.

This toy model is a first illustration of how low-dimensional models can provide insight into im-

mune dynamics. However, it reveals that the overall immune response depends finely on initial

stimuli to trigger excitable dynamics, with outcomes changing drastically for even moderate dif-

ferences in the activation strength of immune cells by pathogens – encoded by α in the toy model.

This suggests that we must understand particularly well the early events of immune responses. In

other words, we need good models of immune sensing and receptor signaling to determine which

antigenic stimuli will cross the threshold for response, and how large that response will be. How-
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ever, it is not immediately clear how low-dimensional models could also be useful in this next task,

since the chemical spaces in which immune cells evolve are, in principle, high-dimensional. This

is particularly the case for T cells, on which we now focus.

1.2.3 High-dimensional nature of T cell activation and functions
TCR antigens for different T cell types

As previously mentioned, T cells are white blood cells which mount specific responses to pathogens.

To do so, they express T cell receptors (TCRs) on their surface, with which they scan the surface

of other cells to detect signs of infection or other abnormalities. TCR antigens are short peptides

loaded on larger proteins called major histocompatibility complexes (MHC) on the surface of the

antigen presenting cells (APCs). These peptides act as ligands for TCRs, or in other words, bind

to them. This binding is specific: each T cell has a unique TCR sequence which is cognate to a

small fraction of all possible antigens, while different T cells generally have different TCRs such

that they collectively cover the antigenic space [95]. To recognize antigens, a TCR is made of two

extracellular chains, generally TCRα and TCRβ, and six chains with an intracellular domain: two

central CD3ζ , two lateral CD3ε, one CD3γ and one CD3δ (figure 1.6). The TCRαβ chains interact

with antigens and is the part that varies from cell to cell to confer its specific binding properties

to a TCR. The intracellular chains transduce signals and trigger signaling pathways, in particular

through phosphorylation sites called immunoreceptor tyrosine-based activation motifs (ITAMs).

MHCp TCR

ITAMs

Figure 1.6: Schematic of the T cell receptor structure with its α and β chains and its six CD3 chains, shown
bound to a peptide-loaded MHC. The CD4 or CD8 co-receptor is not shown.

There are two main types of T cells, depending on the co-receptor that they express: CD4+ and

CD8+ T cells. CD4+ T cells recognize class II peptide-MHC (pMHC) complexes, which load

peptides of typically 13–17 amino acids, while CD8+ T cells recognize class I pMHCs, with pep-

tides of typically 8–10 amino acids [84, chap. 4]. Essentially all mammalian cells have dedicated

pathways to chop up and load samples of their proteome on class I MHCs to be inspected by CD8+
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T cells. Infected or defective cells thus present altered pMHCs that can trigger CD8+ T cells. Ad-

ditionally, some innate immune cells like dendritic cells and macrophages are professional APCs

expressing class II MHCs, on which they present peptides coming from the pathogens or dead

cells they have phagocytosed, to activate CD4+ T cells. Hence, the two T cell types generally have

different functions: CD8+ T cells become cytotoxic cells which can directly kill their targets (since

their pMHCs show signs of infection or damage), while CD4+ T cells generally become helper T

cells which, for instance, assist B cell response [84, chap. 6]. In this thesis, we focused on CD8+

T cells, except where mentioned otherwise.

The space of TCR antigens and the TCR repertoire

The number of possible peptides with length 8–10 and made out of the 20 canonical amino acids

is
∑︁10

n=8 20
n ∼ 1013. Even if only ∼ 3 % of these sequences have the optimal hydrophobicity

in anchor positions to actually be presented on MHC molecules [96], the space of possible TCR

antigens is still very large. In principle, a naive description of this antigenic space would require

a high-dimensional vector L = (L1, L2, . . . , LA) specifying the concentration of all A ∼ 1011

antigens possibly presented. These possibilities are compounded with the diversity of MHC alleles

in humans – there are enough variants that each individual can have a unique combination of 5 or 6

alleles. These variants influence the loading of peptides and TCR-pMHC interactions in principle.

To cover this huge antigenic space, mammals evolved to have a large TCR repertoire. As men-

tioned above, each T cell has a single TCR sequence, but different cells have different receptors,

with a wide range in how many T cells are part of the same clone, i.e., share the same TCR [97].

The diversity of this repertoire is generated through a process called VDJ recombination, whereby

gene segments are mixed and matched, then further modified at their junctions, to form unique

TCR α and β chains in each T cell [27]. At least ∼ 1039 TCRαβ sequences are theoretically pos-

sible, although not all with the same probability of being generated [98]. A human has 107–108 of

these sequences among its 1011 T cells [99].

Importantly, the stochastically generated TCRαβ diversity is filtered through thymic selection: T

cells are negatively selected to eliminate those responding too strongly to self peptides, and posi-

tively selected to eliminate completely unresponsive TCRs [100]. Thus, the TCR repertoire of an

individual is shaped to cover “gaps” between self peptides in antigenic space – in fact, targeting se-

quences one or few amino acid substitutions away from self peptides [95]. TCRs are cross-reactive:
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each TCR can in principle respond, with varying intensity, to over 105 different peptides7 [96], re-

sulting in adequate coverage of the antigenic space. Mixtures of antigens can therefore produce

nonlinear combinatorial effects as they stimulate the same given TCR with different strengths.

Other chemical cues sensed by T cells

In addition to antigens, T cells also sense other kinds of proteins. T cells have receptors besides

the TCR to detect co-stimulatory or inhibitory ligands from APCs. The CD4/CD8 co-receptor is

an example, sensing the presence of MHCs of the right class; another is CD28, binding to the B7

co-stimulatory ligand. Some co-receptors, for example CTLA-4 and PD-1, are inhibitory when

they bind to their surface ligands, (B7 and PD-L1, respectively). They are leveraged in cancer

immunotherapy (chapter 4) [84, 101]. Together, co-stimulatory ligands provide a signature of

APC type and immune context which does modulate T cell responses [79].

Additionally, T cells respond to diffusible extracellular proteins, chiefly cytokines and chemokines.

We will review cytokines in more detail in chapter 2; we mention here that these are extracellular

messenger proteins that can stimulate, sustain proliferation, and guide migration of T cells. There

are over 30 different cytokines in humans [102] and a similar number of chemokines [103]; this

multiplicity perhaps serves to multiplex information [104] or to improve robustness through re-

dundancy [102]. Moreover, receptors for cytokines, in particular, share sub-units and therefore can

sense combinatorial effects of these messenger proteins [64, 65].

High-dimensional outputs of T cells

Cytokines are produced by innate immune cells, but also by T cells themselves as part of their

outputs after activation. They have the potential to create important feedback effects within T cell

populations, where different clones can co-opt each other into activation [105]; on the contrary, cy-

tokines like IL-2 activate regulatory T cells, which suppress self-reactive T cells [106]. In addition

to cytokines, T cells secrete other effector molecules; in particular, cytotoxic T cells release chem-

icals like granzymes and perforin to lyse their target cells [107]. CD4+ helper T cells upregulate

surface antigens such as the CD40 ligand that help activate B cells [108]. Besides secretion of pro-

teins, activated T cells also start proliferating, growing in size, and leaving lymph nodes, stopping

their migration when encountering stimulatory antigens at the site of infection [84, chap. 1]. We

7The converse is not true: one antigen typically does not trigger more than ∼ 100 possible TCRs in an individual.
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lack quantitative principles to understand how the timing and amplitude of these multiple T cell

outputs are determined by the various inputs they integrate.

1.3 Antigen recognition mechanisms in T cells
We will focus our efforts on TCR antigen recognition, since pMHCs are still the most decisive in-

put among all biochemical cues mentioned above. While the detection of co-stimulatory molecules

and cytokines rely on simpler receptor binding-unbinding mechanisms like those reviewed in sec-

tion 1.1.4, antigen sensing by TCRs is representative of a different chemical sensing paradigm.

1.3.1 The TCR antigen recognition problem
To state it again clearly, the function of a T cell is to recognize and respond to its cognate anti-

gens, which constitute a small fraction of all possible peptide sequences, are typically present on

APCs in far smaller numbers than self antigens, and have only small affinity differences with the

latter. As we will see in chapter 3, there could be up to 106 self antigen copies on an APC, and

only ∼ 10 cognate antigens, which T cells nonetheless detect. To make the challenge seem even

more difficult, T cells having undergone thymic selection do not respond strongly to self anti-

gens (negative selection), yet they still interact weakly with them – because they need to make it

through positive selection, and because these self antigens tend to be one amino acid substitution

away from cognate TCR antigens [95]. Despite that, T cells are not activated by the large numbers

of self antigens always present in the background. Moreover, TCRs are cross-reactive enough to

recognize, in principle, several different peptides, meaning they must also be able to distinguish

small differences between these ligands. Overall, this suggests that TCRs have an exquisite sensi-

tivity to small differences between their cognate antigens and other peptides mixed with them on

APCs [62], despite fluctuations of these mixtures.

1.3.2 Complexity of the TCR signalosome
Consequently, T cells have evolved an incredibly complex biochemical machinery to transduce

signals from complex antigen mixtures and turn them into appropriate high-dimensional outputs.

When a T cell encounters an APC, it sticks to it for a duration ranging from seconds to minutes,

forming a zone of close contact between cell membranes called an immunological synapse [109,

110, 111]. Within this synapse, receptors on the T cell side and pMHCs on the APC side diffuse

on their respective membranes and interact with each other [112, 113].
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Upon binding of a pMHC to a TCR, several biochemical events are set in motion. The kinase

Lck is brought closer to the CD3 chains to phosphorylate their ITAMs. This allows enzymes and

signaling proteins to be sequentially recruited and activated (generally, by further phosphorylation)

to the TCR, starting with proteins called ZAP-70, then LAT and PLC-γ, and so on [114, 84, 115].

Some smaller enzymes, like the phosphatase SHP-1, can also diffuse around and may couple indi-

vidual receptors. The resulting cluster of signaling proteins is referred to as the TCR signalosome

and is shown in figure 1.7. When it assembles, it triggers amplifying signals like ERK phosphory-

lation [116], leading to activation of key biochemical pathways like the phosphoinositide 3-kinase

(PI3K) pathway [105] and thus starting the production of T cell chemical outputs described above.

The exact biophysical nature of this large aggregate of signaling proteins is unclear; it probably in-

volves a combination of direct binding (e.g., ZAP-70 [117]), clustering, and phase separation (e.g.,

LAT [118] and Lck-CD3ε [119] condensates). Antigen recognition is the problem for which T

cells are made by an organism, hence they can spend the resources and energy (stored in adenosine

triphosphate, ATP) needed to maintain this machinery out of equilibrium and to perform above the

limits imposed by chemical detailed balance [45]. The signalosome’s complexity is intimidating,

making exhaustive physical models hard to interpret and analyze. In contrast, our understanding

of T cell activation would be facilitated if we could find low-dimensional quantitative models of

the effective processes implemented by the TCR signalosome.

1.3.3 TCR-antigen binding: the lifetime hypothesis
As a starting point for a simplified description of TCR signaling, we first examine the physical basis

on which TCRs distinguish different antigens. What antigen properties are sensed by the TCR

signalosome? While B cell antibodies have very strong binding affinity for their target epitopes

(dissociation constant KD = koff/kon ∼ 1 nM), TCR-pMHCs affinities are much weaker ( KD >

1µM), with KDs in the same range for strong and weak antigens [120]: hence, TCRs are not

recognizing ligand identities based on very specific, antibody-like binding. It has been proposed

that TCR-pMHC binding induces conformational changes in the TCR or forms catch bonds (where

mechanical pulling on the receptors increases the lifetime) [121]. However, recent cryo-EM studies

have not found evidence of such molecular structure changes in the binding region of TCRs [122].

Conformational changes in the intracellular domain of the TCR, such as unfolding of the CD3ζ

chains out of the plasma membrane [123], could explain how pMHC binding triggers downstream

signals, but not how different ligands are distinguished in the first place.
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Figure 1.7: Structure of the TCR sig-
nalosome (a) Steady-state in absence of
a bound pMHC. ITAMs are mostly non-
phosphorylated, since Lck is inhibited by
Csk and CD45. (b) Recruitment of several
signaling molecules upon pMHC binding.
Lck is active, CD45 is segregated away
from the receptor, the receptor ITAMS are
fully phosphorylated, ZAP-70 is bound to
CD3 chains, leading to phosphorylation
of LAT, activation of PLC-γ, and so on,
culminating with Ca2+ and ERK signaling
to activate cell effector functions. Phos-
phatase SHP-1 is also recruited to keep this
signaling complex in balance and prevent
over-activation. Figure from Werlen and
Palmer [114, figure 1], reproduced with
permission from Elsevier.

Instead, it seems that the dissociation rate, typically reported as a binding lifetime τ = 1/koff , is

the property recognized by TCRs to establish differences between ligands, while the binding rates

kon are diffusion-limited and quite similar between antigens. TCR-pMHC binding times typically

range between roughly 0.5 s (for non or weakly stimulating antigens) to 15 s (for strong antigens),

with excellent correlation between the binding time and antigenicity of a peptide [120]. We will

thus often use the term “antigen quality” to designate TCR binding times τ . Although recent

measurements using surface plasmon resonance suggest a wider range of binding times [124],

the fact remains that the TCR can sense, amplify, and respond specifically to small differences

in binding times between different antigens. This idea is sometimes referred to as the “lifetime

dogma”. As with any dogma in biology, other factors are likely at play [62], but pMHC binding

times are central in most recent TCR modelling efforts [125, 124, 115, 113].

1.3.4 Kinetic proofreading
Thus, the TCR signalosome performs chemical sensing of antigen binding times, but the essence

of the mechanisms carrying out that function remains obscured under complicated biochemistry

(figure 1.7). Does it in fact boil down to simple principles? Simple bound receptors like those of
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Figure 1.8: Cartoon representing the biochemical reaction network of the classical KPR model of TCR
antigen recognition.

section 1.1.4 are poor sensors of antigen quality (binding times), since increasing the concentration

c of a ligand can compensate its smaller τ to obtain the same receptor binding state. Indeed, the

average number of bound receptors is

E [R] = Rtot
c

c+KD

=
ckonτ

ckonτ + 1

such that only the product cτ appears in the equation, showing that c and τ cannot be sensed

independently by this scheme.

Key inspiration came from the work of Hopfield [126] and Ninio [127] on the surprising accuracy

of DNA replication. They noticed that error rates ∼ 10−8 in DNA replication are much smaller

than the equilibrium prediction ∼ 10−4 based on the small free energy differences ∆G ≈ 10kBT

between correct (A-T, C-G) and incorrect (A-G, C-T, etc.) base pairings. They proposed a mecha-

nism, termed kinetic proofreading (KPR), in which an extra reaction step – the proofreading step –

amplifies these small differences in dissociation rates between correct and incorrect pairs, approx-

imately squaring the error rate down to
(︁
e−∆G/kBT

)︁2
=
(︂

koff,correct

koff,incorrect

)︂2
≈ 10−8.

This amplification of small differences in unbinding rates is exactly what T cells need to sense

small differences in antigen quality without letting differences in antigen abundances interfere8.

McKeithan [128] turned this idea into a low-dimensional model of TCR binding and signaling.

They key idea is that upon binding a pMHC, the TCR undergoes a sequence of N biochemical

modification steps leading to an output-producing activated state, with a chance to unbind with

8CD4+ T cells may be more sensitive than CD8+ T cells to antigen quantity: they select B cells in germinal centers
based on how many antigens they present bound on their BCRs [108], because that number depends on the affinity of
their antibodies. So CD4+ cells, to select B cells with the best antibodies, must read antigen quantity very accurately,
once antigen quality is fixed (by the high specificity of the B cells’ antibody, ensuring they bind the relevant antigen
only).
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rate 1/τ at each step. We assume that these steps are irreversible when the ligand is bound, but

rapidly undone after it unbinds. This network of reactions is illustrated in figure 1.8. Consider

now Rtot receptors interacting in an immunological synapse with L ligands presented by the APC.

We treat the KPR network as a well-mixed, deterministic biochemical network, where we model

Cn, the average number of TCRs in state n, for each n ∈ {0, 1, . . . , N}, as a function of time.

Applying mass-action kinetics, and considering the fact that the number of free ligands at a given

time is L minus the number of bound receptors Rb =
∑︁N

0 , the corresponding system of ODEs is

dC0

dt
= κ(Rtot −Rb)(L−Rb)− (φ+ τ−1)C0

dCn
dt

= φCn−1 − (φ+ τ−1)Cn (1 ≤ n < N)

dCN
dt

= φCN−1 − τ−1CN . (1.21)

We take the space here to detail the steps to solve for the fixed point solution, since similar calcu-

lations will be often used in this thesis. The steady-state occurs within minutes after the immune

synapse formation [129]. Summing all equations, we have a constraint for Rb:

0 = κ(Rtot −Rb)(L−Rb)− τ−1

N∑︂

n=0

Cn = κ(Rtot −Rb)(L−Rb)− τ−1Rb

We make the approximation that L is small compared to the total number of receptors – we will

instead use the exact quadratic solution in chapter 3 – so Rb ≈ κRtotτ
κRtotτ+1

L. Then, we solve the

first-order recurrence relation (coming from dCn

dt
= 0),

Cn =
φτ

φτ + 1
Cn−1 = ΦCn−1 (1 ≤ n < N)

where we defined Φ = φτ
φτ+1

. Iterating, we find that Cn = ΦnC0. We also use the last equation,
dCN

dt
= 0 to find CN = φτCN−1 = φτΦN−1C0. Inserting these expressions into Rb =

∑︁N
n=0Cn,

and using the geometric series for the resulting sum of Φn factors, we findC0 = (1−Φ)Rb =
Rb

φτ+1
,

and thus the stationary solution for all Cn in terms of the model parameters (Rtot, κ, φ) and antigen

properties (L, τ ),

Cn = Rb(1− Φ)Φn =
Rb

φτ + 1

(︃
φτ

φτ + 1

)︃n
for 0 ≤ n ≤ N

where Rb ≈
κRtotτ

κRtotτ + 1
L (1.22)
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In the limit where φ ≪ τ−1 (slow proofreading for better accuracy) and κRtot ≫ τ−1 (fast initial

binding), then we have the approximate scaling of the solution with antigen quality and quantity,

CN ∼ LτN (1.23)

showing that the ratio of responses to two different antigens would be amplified exponentially as

CN,1/CN,2 ∼ L1/L2 (τ1/τ2)
N , improving with the number of proofreading steps N .

Early experimental evidence in favor of this mechanism suggested that sequential phosphorylation

of CD3ζ ITAMs could play the role of kinetic proofreading steps [130]. More recently, events

further down in the TCR signalosome assembly, such as the binding of ZAP-70, LAT, PLCγ,

have also been shown to act as putative kinetic proofreading steps [131, 115]. As we will see in

chapters 3 and 4, we do not need to model the biochemical particularities of each step to get pre-

dictive power. Hence, a generic KPR scheme constitutes a reasonable low-dimensional backbone

for phenomenological models aiming to capture high-dimensional TCR signaling events.

In this basic model, reverse reactions have been neglected under the assumption that the forward

KPR rate dominates when a pMHC is bound. An exactly zero reverse reaction flux is not pos-

sible, as it would imply infinite entropy production terms in equation 1.13, so this is only an

approximation for a non-zero but negligible reverse rate. Including these nonzero reverse rates

decrease the KPR performance, but it remains sufficiently high [132], as long as a (finite) break-

ing of detailed balance between forward and reverse rates is maintained. This non-equilibrium

regime is necessary to improve the antigen quality discrimination of simple equilibrium receptors,

R ∼ Lτ . Thus, KPR costs energy to T cells, consuming a power per receptor on the order of

104 kBT/s ≈ 103 ATP/s, which is still only a tiny fraction (10−6) of the total energetic budget of

a cell [133]. This enhancement of the forward rate, as well the rapid undoing of the reaction steps

following pMHC unbinding, could be explained by kinetic segregation of the CD45 phosphatase

away from the bound TCR-pMHC complex, due to its large extracellular domain [134, 135].

1.3.5 Adaptive kinetic proofreading
The reason why TCR signaling amplifies small binding time differences is, really, to ensure these

differences dominate changes in antigen abundance. However, the output in KPR still scales pro-

portionally to antigen quantity L, since CN ∼ LτN . It is possible to improve this scaling further to

eliminate most of the L dependence and explain how TCRs can be sensing almost exclusively τ .

The key solution is to add an inhibitory coupling between TCRs, whether it is a negative feedback
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Figure 1.9: Illustration of the antigen quality discrimination problem. (Left) TCR model output curves, in
the deterministic limit, depending only on antigen quality (red vs blue curves) over a wide range of antigen
quantities L. (Right) Marginalization of the TCR output distribution over the range of L, to obtain p(O|τ).
With a perfect model, these distributions would not overlap for different antigens. Redrawn after Lalanne
and François [132, fig. 2].

or an incoherent feedforward loop. This was first shown using detailed computational models of

TCR activation, where the phosphatase SHP-1 played this inhibitory role [116, 136]. The mech-

anism became especially clear when a much simpler, low-dimensional phenotypic model of this

SHP-1 feedback was proposed [129].

In parallel, the same class of models was found de novo using an in silico evolution algorithm [132],

φ-evo [137], which simulates rounds of mutation and selection on a population of biochemical

networks optimized for a fitness function. For TCR activation models, this fitness function should

measure how well the output reflects antigen quality τ without depending on antigen quantity L.

Information theory provides a quantitative formulation: the input-output function of the model,

p(O|τ, L), should maximize the mutual information MI(O; τ) between its output O and τ while

the inputs are marginalized over all possible antigen quantities L:

max
p(O|τ,L)

∫︂
dτ p(τ)

∫︂
dO p(O|τ) log2

(︃
p(O|τ)
p(O)

)︃

where p(O|τ) =
∫︂
dL p(O|τ, L)p(L|τ ) =

∫︂
dL p(O|τ, L)p(L)

and p(O) =

∫︂
dτ p(τ)p(O|τ) .

This objective is illustrated in figure 1.9. The distribution p(L) over which we marginalize could

be, for instance, uniform over a wide range of possible quantities, L ∈ [100, 105] approximately.
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Figure 1.10: Cartoon representation of the biochemical network of the AKPR model introduced in [132].
The global inhibitory coupling between receptors is mediated by the feedforward module, where the kinase
K is deactivated by intermediate complexes, thus reducing the final proofreading step rate.

KPR schemes with inhibitory coupling are called adaptive kinetic proofreading (AKPR) models,

and will be at the core of chapters 3 and 4, where we will analyze them in more depth. Here, we

introduce the simplest version of AKPR, found by in silico evolution [132], depicted in figure 1.10.

The basic KPR model is modified to have a shared pool of a kinase, K, mediating the last proof-

reading step with rate αK. This kinase is deactivated by receptor complexes in an intermediate

state Cm, with m < N , thus implementing an incoherent feedforward loop. Intuitively, the point

of this feedback is to decrease the response to weak TCR antigens present in large quantities: these

antigens produce a lot of Cm to activate the feedback, but – because of the Lτm versus LτN scaling

of Cm versus CN – not as much CN to overcome it.

Compared to the basic KPR model, only the ODEs for CN−1 and CN are affected, changing term

φCN−1 for αKCN−1, and one new equation is needed for K,

dK

dt
= β(Ktot −K)− δCmK .

Solving for CN at the fixed point, one factor Φ is replaced by a factor containing K,

CN = Rb

(︃
αKtotτ

αKtotτ + 1

)︃(︃
φτ

φτ + 1

)︃N−1

(1.24)

where the steady-state value of K is

K = Ktot
Cm,thresh

Cm + Cm,thresh
. (1.25)
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where Cm,thresh = β/δ, typically chosen small. Hence, at small L, K ≈ Ktot and the model

behaves as regular KPR, but as Cm increases at moderate L, eventually Cm ≫ Cm,thresh, and then

K ∼ L−1τ−m. Inserting in CN ’s expression, this cancels the L dependence and we are left with

CN ∼ τN−m, i.e., an output independent of antigen quantity. This gives output curves CN(L, τ) as

in figure 1.9.

This version of AKPR is not completely biologically faithful, because the inhibitory coupling is

likely mediated by a phosphatase like SHP-1 [138] rather than by a kinase. It is also unclear which

kinase could be mediating only the last reaction step and not others. Nonetheless, it makes the

adaptive part of AKPR very clear: the point of the inhibitory coupling between receptors is to

cancel the L dependence in CN . Beyond improving concentration-independent sensing of antigen

quality, such inhibitory coupling between receptors causes non-linear effects (such as antagonism)

in antigen mixtures [139], as we will see in chapters 3–4. Hence, the AKPR framework provides

inspiration to find low-dimensional models clarifying how the TCR signalosome processes high-

dimensional antigenic inputs to trigger appropriate T cell outputs.

1.4 Low-dimensional models in biophysics and immunity
1.4.1 Definition and examples of low-dimensional models
What do we mean by low-dimensional?

As outlined in section 1.2.3, biological systems evolve in high-dimensional chemical spaces: they

face millions of potential different proteins and molecules, requiring large vectors of concentra-

tions and affinities to describe them all. They also have complicated, redundant biochemical sig-

naling networks and gene expression programs, such as the TCR signalosome and the pathways it

triggers downstream. A complete pedestrian mathematical description of all these concentrations

and biochemical reactions with, e.g., conventional biochemical rate equations or chemical master

equations, would require an inordinate amount of parameters and dynamical variables.

Thus, by low-dimensional model, we mean a mathematical description of biochemical inputs,

processes, and outputs that uses far fewer parameters and variables than dictated by the naive

enumeration of all molecular players or underlying microscopic dynamics. This definition is not

very precise, since any model is to some extent lower-dimensional than the complete system, under

standard approximations – not modelling unimportant or unrelated proteins, neglecting very small

reaction rates, and so on. The kind of low-dimensional models we are most interested in are

those where the possibility of dimensional reduction is not at all obvious initially, compresses
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the system to very low dimensions (say, 1-10 variables) compared to the initial system, and may

require some data-driven analysis to be found. This implies trying to find the “natural variables” of

a biological system, which can simplify its dynamics or collapse its statistics onto universal curves

at the time and complexity scale of interest [140, fig. 2]. Being able to graph the system’s dynamics

or parameter values in 2D plots, as we did with our toy model of immune responses (figure 1.4), is

a good sign of low dimensionality.

Examples of low-dimensional models in biophysics

To illustrate this definition, we summarize a few recent examples of successful low-dimensional

models in biophysics. In a data-driven approach very similar to what we will do in chapter 2, Sey-

boldt et al. [141] have reduced the expression dynamics of four gap genes in larval Drosophila to

a two-dimensional embedding, where each axis turns out to be the difference between two genes.

They parameterized the dynamics with a polar angle in this 2D space, revealing that interactions be-

tween genes are in fact limited, and predicting the effect of various mutations. Also in Drosophila,

but at a very different level, Berman et al. [142] have compressed long recordings of fly postural

behaviors down to a 2D space categorizing typical behaviors, using a sequence of dimensional

reduction techniques: PCA, wavelet transforms, t-SNE. They also quantified stochastic transition

dynamics between these states [143].

In developmental biology, theorists have proposed low-dimensional models of cell fate decisions

under the names of gene-free [144] or geometric [145, 146, 147] models. The idea is to represent

cell states as attractors in an abstract 2D or 3D phase space, properly disposed to reflect possible

transitions between states, and then to build phenomenological equations for the flow of cells in

that space. Without explicit reference to complicated gene regulatory networks, and without fitting

tons of parameters, this method can successfully predict bifurcations (changes in available states

or transitions) that occur as developmental conditions are changed.

Geometric models are connected to the idea of Waddington landscapes in development and hema-

topoiesis, according to which cell differentiation paths are trajectories travelling down different

junctions in a low-dimensional epigenetic landscapes with quasi-potential dynamics [148]. Recent

studies have made this idea very concrete by deriving epigenetic landscapes from high-throughput

single-cell datasets [149, 150]. A recent study has revealed a Waddington-like landscape in the

memory learning process of generalized Hopfield neural networks learn memories, with suc-

cessive splits taking place in that low-dimensional landscape between prototypes of the learnt

classes [151]. These various examples show that effective, low-dimensional representations of
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biological dynamics enable theoretical and experimental progress in different organisms and con-

texts.

1.4.2 Motivating low-dimensional models in biophysics
Why seek low-dimensional models?

Despite being simplifications of the underlying physical, chemical, and biological processes, low-

dimensional models should still capture the important dynamics or statistics of the system, and gen-

erate quantitative, experimentally testable predictions [152]. Hence, by seeking emergent physical

laws and phenomenological models of this kind, we can gain significant interpretability without

sacrificing accuracy at the scale of interest. Such streamlined yet predictive theories are also valu-

able for engineering applications, because they provide a better intuition to propose new design

concepts, together with quantitative tools to actually implement them. To take a non-biological

example, classical thermodynamics laws and state variables emerging from the statistical physics

of microscopic components [153] have enabled uncounted innovations in mechanical and chemical

engineering. Hopefully, chapter 4 will show that low-dimensional models can have translational

value in immunology too.

Why might there be low-dimensional models?

Why can we hope that simple models have anything useful to say about complicated, messy bi-

ological systems? The usual statistical physics trick of self-averaging ∼ 1023 identical particles

does not usually work for biological systems, where the main challenge is the large number of

different chemical species, each present in small quantities. There are, however, other reasons for

which biological systems might have low-dimensional representations.

Complex systems with many dynamical variables tend to have slow manifolds on which dynam-

ics converge, once fast fluctuations have dissipated [154]. This separation of time scales leads to

effective low-dimensional dynamics on the slow manifolds. The effect has been well studied in

molecular simulations of chemical reactions, where a key goal is to identify reaction coordinates

and other collective variables distinguishing stable and transition states [155]. Similar slow man-

ifolds may well underlie low-dimensional models of biological systems, and there is a potential

evolutionary explanation for it. Husain and Murugan [156] have shown that slow modes of dy-

namical systems and soft modes of protein structures restrict the impact of mutations (changes

in model parameter or sequence space) to these slow directions. Mutations naturally pushing the
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system in these directions therefore have a higher chance of conferring a significant evolution-

ary advantage, such that biological systems would keep evolving in regions of parameter space

maintaining these slow modes in existence.

This canalization could also explain a related phenomenon: the low-dimensional parameter space

structure of biological models. It seems these models universally have a few parameter combina-

tions that significantly impact the model’s fitness or fit accuracy, while most other directions in

parameter space are irrelevant [157, 158]. This effect, called parameter sloppiness, suggests that

biological functions can be captured with few effective model parameters, instead of an exhaus-

tive list of reaction rates – the main challenge being to find these parsimonious parametrizations.

At least, this challenge can be somewhat simplified by using well-mixed approximations for bio-

chemical reaction rates, as discussed in section 1.1.7, with effective rate values compensating for

the neglected microscopic processes. Parameter space compression algorithms based on sloppiness

theory could also automate the task of simplifying large models of biological functions [159].

Criticality is another property that could confer a low effective dimension to biological system.

Work on maximum entropy models for neuron populations, protein sequences, and flocks of birds

suggests that these systems are poised near criticality, i.e., phase transitions in their macroscopic

order or bifurcations of their dynamics [160, 161]. This creates long-ranged correlations between

individuals or molecules and presumably reduces the underlying dimensionality of these systems.

Moreover, biological systems tune themselves near optimal operating points; some of their pa-

rameters are in fact slow dynamical variables regulated by various feedbacks [162]. This is the

case, for instance, in neurons, where calcium activity feeds back onto the genetic regulation of ion

channel levels, and can tune conductance by changing these levels [163].

We mention two more mechanisms that could contribute to low dimensionality in biological sys-

tems. One is the fact that cells have core pathways that integrate inputs from several different

sources and control several outputs, such as the NF-κB and MAPK pathways [164, 104]. Further-

more, in these pathways, interaction networks often have a “hub-and-spoke” or “bow-tie” structure

where one protein is a central node interacting with many others, for instance c-di-GMP in bac-

teria [165] or p53 in mammalian cells [166]. These network structures with bottlenecks have the

potential to create some correlations between cellular outputs. Another possible explanation, re-

lated to network structure, is the low-rank hypothesis recently proposed by Thibeault et al. [167];

using mathematical properties of singular value decompositions (SVD), they have shown that sev-

eral classes of high-dimensional dynamical systems often have interaction matrices with effective

low ranks (i.e., a rapid decrease in their singular value spectra). Their work gives mathematical
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substance to phenomenological, low-dimensional models, but it also shows that rigorous reduc-

tions sometimes should keep a significant fraction of the original dimensionality. In the end, we

think that proof is in the pudding: validation of model predictions against experimental data re-

mains the best way to check that a low-dimensional approximation was justified.

1.4.3 Hopes for low-dimensional descriptions of immunity
In this chapter, we have formulated the theoretical challenge posed by immune sensing of high-

dimensional inputs, and immune signaling leading to high-dimensional outputs, contrasting it

with the classical biophysics problem of concentration sensing. We have then discussed low-

dimensional models and their advantage of interpretability. Is there hope that low-dimensional

models could also apply to T cell immunity? Could they reveal simpler quantitative principles

underlying complex biochemical mechanisms of TCR sensing and cytokine communication? We

have a few reasons to hope so.

To begin, we have already seen examples of low-dimensional models of immunity in this chapter.

Our two-dimensional toy model of immune excitability could capture the global dynamics of an

immune response, without detailing all cell types or signaling pathways (section 1.2.2). More-

over, the KPR and AKPR models of T cell receptor signaling clearly simplify the TCR signalo-

some’s complicated machinery (section 1.3.2) down to a few phenomenological ODEs, yet they

still capture the same key features (e.g., how the output scales with L and τ ) found in detailed

computational models [116].

Moreover, the general hypotheses mentioned above in section 1.4.2 to explain low-dimensionality

in general biological systems most likely apply to immunity as well. There are a few likely di-

mensional bottlenecks in T cell signaling pathways, starting with the TCR itself: a T cell senses

all antigens presented to it with its unique TCR sequence (present in many copies). Any pMHC

can thus be reduced to one scalar number, its affinity or binding time τ . Since many pMHCs in

the space of all possible amino acid sequences will necessarily have very similar τs, a complex

mixture of pMHCs can probably be coarse-grained to a simpler effective mixture of a few different

τs – this is why we will study binary mixtures in chapter 3. Moreover, the TCR, as the single entry

point for antigenic signals, activates all main pathways for proliferation and cytokine production,

such as the phosphoinositide 3-kinase (PI3K) pathway [105], so we can expect correlations to exist

between all these outputs, effectively reducing their dimensionality as well. These pathways also

receive inputs from cytokine receptors, such that extracellular feedbacks from cytokines might not

be that complicated, merely adjusting the level of antigenic stimulation.
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With the hope of finding underlying simplicity in T cell activation, we seized the unique oppor-

tunity to develop new theories offered by our collaborators’ new robotic platform, which records

high-dimensional T cell cytokine dynamics in response to antigen stimulation. We first focused

on deriving a data-driven, low-dimensional model of these dynamics controlled by antigen quality

(chapter 2). Building on this first step, we developed improved phenomenological models of early

TCR antigen recognition mechanisms, to explain nonlinear effects in our collaborators’ measure-

ments of cytokine responses to antigen mixtures – in regular T cells (chapter 3) and in T cells with

synthetic receptors engineered for cancer immunotherapy (chapter 4).
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Chapter 2

Antigen encoding of T cell activation from cytokine
dynamics

We first approached the problem of finding low-dimensional descriptions of T cell responses with

a data-driven modelling strategy. Analyzing quantitative measurements of cytokine time series

from the Altan-Bonnet lab (section 2.1) with small neural networks, we found a two-dimensional

latent space in which cytokine trajectories separated very well according to antigen quality. We

parameterized the dynamics in this latent space using ballistic-inspired equations, and found that

all parameters were strongly correlated to antigen quality and to the initial rates of cytokine pro-

duction. I quantified the information content of this latent space, to establish that T cells can

recognize (and respond to) a continuum of antigen qualities, which can be subdivided into six

non-overlapping classes (corresponding to 2.6 bits of information). The insights offered by the

present chapter into the structure of T cell responses – and their strong dependence on initial anti-

gen quality recognition – paved the way for the more mechanism-focused investigation presented

in chapters 3 and 4.

This chapter contains my theoretical contributions to Antigen encoding, [1]:

• Time series processing and filtering (sections 2.2.2–2.2.3 and B.1), turned into a full pipeline

with Thomas Rademaker and Sooraj Achar;

• Mutual information estimation in cytokine time series (2.2.4);

• Robustness analysis of the antigen encoding latent space (2.4);

• Cytokine time series reconstruction from the latent space (2.5 and 2.6.5–2.6.6);

• Developing a simple latent space model and parameter fitting procedure jointly with Thomas

Rademaker (2.6.1–2.6.2), and a refined latent space model myself (2.6.4);

• Ranking antigens with a Kendall Tau metric, jointly with Sooraj Achar (2.6.3);

• Channel capacity analysis of antigen encoding in latent space (2.7);

• Earth Mover’s Distance analysis of drug perturbations (2.8.1).
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The code that I wrote to produce my theoretical analyses is available on Github [168]. The neu-

ral network classifier in section 2.3 was primarily Thomas Rademaker’s work. The experiments

(2.2.1) were performed by Sooraj Achar (mainly) and by Emanuel Salazar-Cavazos, Angela Lee,

and Grégoire Altan-Bonnet. Most of the quoted excerpts are from modelling-related sections of

the supplementary information (SI) which I wrote.

2.1 Introduction: the cytokine code of T cells
2.1.1 Complexity and multiplicity of cytokine mechanisms
Within the complicated, multifarious world of chemical signals in the immune system, cytokines

play a crucial role: immune cells communicate with each other by producing and detecting these

small extracellular messenger proteins. When T cells get activated by antigens recognized through

their T cell receptor (TCR), they start producing a complex cocktail of cytokines to alert other

cells and sustain their own activation and proliferation [105]. However, we lacked a quantitative

framework to understand how TCR antigen recognition, initiated within minutes [131], can map

diverse antigenic inputs to high-dimensional cytokine responses spanning days. Therefore, we

decided to tap into the cytokine communication network to reverse-engineer the principles of TCR-

mediated chemical sensing and information transmission through cytokines.

As mentioned in section 1.2.3, there are over 30 different cytokines in the human (and mouse)

immune system, and each has been associated with various functions and idiosyncratic patterns

of secretion by a whole body of biological studies [102]. Without going into the minute details

of production and consumption mechanisms, a brief overview suffices to show that the cytokine

code can be tremendously complex, and that finding the principles connecting T cell activation to

cytokine dynamics requires quantitative, physics-inspired methods.

The spatiotemporal evolution of the concentration of a given cytokine, c(r, t), during a T cell

population response in some region of the body (e.g., a lymph node or an infected tissue), could in

principle be described by a relatively simple partial differential equation [169, 98, 4], neglecting

stochastic effects,
∂c

∂t
= ∇⃗ · (D∇⃗c) + k+(c, r, t)− k−(c, r, t) , (2.1)

where the first term is diffusion with diffusion constant D, and k+(c, r, t) and k−(c, r, t) represent

the production and consumption of cytokine c. This equation may be useful in very simple scenar-

ios: for instance, for a single activated cell surrounded by consumer cells, it establishes a typical

length scale over which the produced cytokines can diffuse before being captured: λ =
√︂

D
knc

,
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where k is the consumption rate and nc is the density of consuming cells [169]. However, in

general, equation (2.1) is far from telling the complete picture of cytokine dynamics, as each term

encompasses multiple biological processes going on in parallel inside every immune cell and in the

extracellular medium, with no systematic way of determining a priori which processes are relevant

or not.

Several mechanisms contribute to the production term k+(c, r, t). In each T cell, upon activation

of key signaling molecules (e.g., ZAP-70, LAT, PLCγ, ERK) by an antigen-bound TCR, various

transcription factors (such as NFAT or NF-κB) translocate into the cell nucleus to execute the gene

expression program corresponding to T cell activation [170]. It includes the synthesis of cytokines,

which are then exported (through vesicles) outside of the cell, into the extracellular medium [171].

This program also comprises the acquisition of effector functions and cell proliferation [105];

hence, the density of active, cytokine-producing cells N(t) will increase over time, increasing

the overall rates k±(c, r, t) ∝ N(t). In addition to TCR antigen recognition, co-stimulatory sig-

nals (such as CD28 binding) and immune checkpoints (such as CTLA-4 or PD-1) modulate the

overall activation [84] and thus the cytokine production rate. Moreover, antigen-presenting cells

(APCs) also produce several cytokines (especially IFN-γ, IL-6, TNF), either through transcription-

translation, or through recycling of previously captured protein copies [172].

Importantly, T cells also have receptors with which they detect and internalize cytokines – those

produced by other cells (paracrine signaling) but also their own (autocrine signaling) [102]. The

consumption of cytokines by T cells and by antigen presenting cells directly enters the degradation

term k−(c, r, t), although the detailed dynamics can become complicated. Receptor sub-units are

up-regulated only following T cell activation [170, 105], and the receptors for different cytokines

often compete for the same receptor sub-units, such that consuming some cytokines can alter the

sensitivity of a T cell to others [64, 65]. Antigen presenting cells also consume cytokines and

contribute to k− [84]. Furthermore, cytokine sensing impacts the production term k+ as well:

inflammatory cytokines such as IL-2 or IFN-γ act as additional activation signals for T cells [105]1,

while anti-inflammatory cytokines like IL-10 can bring down the activation level [173]. Complex

feedback loops can thus play out in the T cell population due to cytokines: following initial TCR

antigen recognition, cytokine production is turned on, but cytokine receptors are also upregulated,

such that cytokine consumption increases, maybe enough to dominate the production rate, but also

providing supplementary activation signals to more weakly reactive T cells. This can go on for

each cytokine and with coupling effects between them.
1This explains autocrine cytokine signaling: T cells export cytokines to the extracellular medium to bind their own

surface receptors and thus sustain their activation through cytokine receptor activation pathways.
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Consequently, to be mechanistically exhaustive, the overall production and degradation rates, k+
and k−, would have to be complicated functions of many dynamical variables, external or internal

to individual cells, beyond the cytokine c itself. Such a ground-up approach is unlikely to encom-

pass the whole complexity of cytokine dynamics while still being comprehensible and instructive

about the core principles. It takes cytokine concentrations, production and degradation rates too

literally, while these may not be the most informative variables or the most parsimonious descrip-

tion of the system. For this reason, we explored a different approach in this chapter, taking as a

starting point our collaborators’ experimental measurements of overall high-dimensional cytokine

dynamics in a T cell and APC population, and trying to reconstruct how they were connected to

the initial antigen recognition properties.

2.1.2 Connecting cytokine dynamics to antigen quality
In particular, we sought to determine whether T cell activation, and ensuing cytokine dynamics,

could in fact hide a low-dimensional structure. In our physics style of inquiry, striving to keep

the number of parameters to a minimum, we thought that such a structure would be determined by

only a few immune parameters such as the antigen quality (strength or binding time τ ) and quantity

(abundance L or density on the surface of APCs) as well as the initial number of T cells, the kind

of APCs used, and so on. We hypothesized that T cell responses could indeed be low-dimensional

after all, since the TCR effectively acts as a dimensional bottleneck, through which T cells must

sense all pMHC antigens they encounter before producing the aforementioned high-dimensional

activation genetic program (figure 2.1A). We also hypothesized that antigen quality would be the

main driver of the T cell response, as their primary function for defense against pathogens is to

respond to foreign peptides despite their small number (at the start of an infection), without ever

responding to the large amounts of self-derived peptides normally presented by APCs; in other

words, to sense antigen quality without being sensitive to antigen quantity (figure 2.1B).

“Current understanding of T cell responses defines three functional classes of antigen

— non-agonist, weak and strong agonists — based on their impact on thymic selec-

tion: death by neglect, positive selection, and negative selection, respectively [174].

This observation led to the concept of antigen quality, which has proved useful to

predict successful eradication of viruses or tumors but has been difficult to predict

from antigen sequences [175]. Estimating antigen quality usually involves measuring

the antigen levels triggering 50 % of the maximal immune response (EC50) [174,

175, 176]. However, antigen quality should be defined as an absolute property, as
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Figure 2.1: “Robotic platform to quantify the dynamics of antigen-driven activation of T cells.
(A) The TCRαβ signaling machinery of T cells engages a repertoire of peptide-MHC (pMHC) ligands
(antigens), triggers a signal transduction cascade and activates a functional response (e.g., cytokine
secretion). (B) T cells must deconvolve quality and quantity to accurately discriminate between antigens.
(C) Robotic platform to multiplex immunological settings and dynamic measurements (e.g., cytokines).
This platform generates large datasets quantifying the inflammatory outputs generated by T cell activation
ex vivo. We used a custom-designed pipeline to compile high-throughput bulk cytokine, surface marker
and single cell data (section 2.2.1). (D) Single readouts (here IL-2 and IFN-γ) of OT-1 T cell activation
at varied time points for different antigenic peptides [SIIVFEKL(V4), SIITFEKL(T4), SIIQFEKL(Q4)
and SIINFEKL(N4)] (left) failed to deconvolve antigen quality and quantity, no matter the time point
(center); this resulted in partial overlap between amount of secreted cytokines depending on antigen
quality and complete confusion depending on antigen quantity (right). (E) Mutual information between
antigen quality and secreted cytokines, combined vs individually.” (Antigen encoding, [1])
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higher quantities of weak antigens do not functionally match low quantities of strong

antigens (Fig. 2.1B) [62].” (Antigen encoding, [1])

Challenging the canonical thinking in terms of three antigen classes, we wanted to determine

whether T cell populations can actually make finer distinctions between antigen qualities, and

whether cytokine dynamics reflect this refined readout of antigen quality, independent of quantity.

To answer these questions, we needed not only static, end-point snapshots of immune activation,

but time-dependent measurements:

“Although high-dimensional snapshots of immune cells are routinely acquired [177, 20,

178], they are often ill-suited to elucidate the time-dependent processes of immune

responses. For instance, expression of the Programmed-Cell-Death-1 (PD-1) protein

correlates with either T cell activation or exhaustion depending on the timing and

context [178]. Such complexity stems from the multivariate responses triggered by

multiple ligands (antigens) engaging a monogenic T cell receptor (TCR) (Fig. 2.1A).

Downstream responses drive distinct patterns of activation dynamics encoding differ-

ent stimuli using feed-forward processing [179, 180].” (Antigen encoding, [1])

We however lacked such a set of experimental measurements, and the corresponding quantitative

theoretical framework, to connect antigen parameters to T cell responses over days. Therefore,

with our NCI collaborators, we

“set out to robotically generate high precision, multidimensional kinetic data of T

cell activation, and applied supervised machine learning approaches [181] to learn a

dynamic encoding of information [182, 183]. We focused on modeling the responses

of T cells to antigens on target cells.” (Antigen encoding, [1])

2.2 Experimental platform and data processing
2.2.1 Robotic experimental platform
To start systematically mapping out T cell responses, the Altan-Bonnet lab, with Sooraj Achar

and Angela Lee in particular, built a robot-assisted platform to track the dynamics of multiple

immune molecules in parallel. Figure 2.1C illustrates the main experimental steps. We provide
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here a summary of this platform; more details on the experimental protocols are provided in the

supplementary information of [1], section 1.

In a typical experiment, they first (manually) prepared cocultures of T cells and antigen-presenting

cells that were loaded with various qualities and quantities of antigens. Some experiments also

included cocultures with varying initial T cell numbers (105 by default) to assess the impact of

this parameter as well. To load antigen peptides on the APCs, they were pulsed, that is, APCs

were placed in a solution with a given concentration of peptides, which then bind to the MHC

molecules [84] within a few hours of incubation. By default, the T cells came from TCR-transgenic

mice expressing a unique TCR sequence called OT-1, which is specific to the ovalbumin-derived

antigen peptide (OVA, amino acide sequence: SIINFEKL, called N4 for shorthand), the APCs

were splenocytes (spleen cells) from B6 mice, and the peptides loaded on them were variants of

the OVA peptide with well-characterized affinities [174, 176]. These variants are named A2, Y3,

etc.; the letter specifies an amino acid substitution to the default sequence SIINFEKL, and the

digit specifies the position of this substitution. For instance, A2 corresponds to peptide sequence

SAINFEKL. Over the course of the project, we also tested a wide range of other TCR lines, APC

types, and peptide repertoires.

Second, right after starting the immune reaction by mixing the APCs and T cells, our collaborators

placed the cocultures in their Immunotron robotic platform (figure 2.2), which has an automated

arm to handle pipetting and moving plates. The robot took care of sampling supernatant or col-

lecting cells from the cocultures at pre-defined time points (typically one per every 2-6 hours),

replacing the plates in an incubator and freezing the collected samples between sampling opera-

tions.

Liquid Handler
(LiHa)

Centrifuge

Cooling Units

Pipette tips

Reagent 
Reservoirs

Robotic Manipulator
(RoMa)

Incubator

Incubator Access

Tip disposal

Computer 
Interface

Figure 2.2: Photo of the Immunotron robotic platform built by the Altan-Bonnet lab, with annotations
defining its main parts. (Antigen encoding, [1], SI)
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Third, after completion of the time series, various reagents were added (manually) to the collected

samples, such as cytokine capture beads – polystyrene beads coated with antibodies specific to

a given cytokine – and fluorescent antibodies to tag the bead-captured cytokines or cell surface

markers. Then, these samples were analyzed by flow cytometry2 . The flow cytometer used by our

collaborators in most experiments had 5 lasers and 18 detection frequency channels, allowing for

the multiplexed measurement of several cytokines or cell surface markers in parallel.

Fourth, the raw counts of the flow cytometer were sorted, converted to absolute concentration

units (molar) based on calibration curves, and organized into convenient data tables by a Python

pipeline, plateypus, developed by Sooraj Achar [184].

In the end, the datasets we received for theoretical analysis typically consisted in the supernatant

concentration of 7 cytokines – IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-17A, and TNF – at ∼12 time

points spanning 72 hours, for an array of cocultures prepared with varying antigen qualities, anti-

gen quantities, and initial T cell numbers (figure 2.1D). These cytokines were chosen by our col-

laborators for their biological relevance and importance in the literature about T cell immunology.

Some datasets were supplemented with single-cell expression levels of over 10 different surface

markers, such as IL-2 receptors (IL-2Rα, also called CD25) or the early activation marker CD69.

2.2.2 Time series processing
Most of the time series preprocessing steps were initially developed for my Master’s thesis [47],

which used some early datasets from the Altan-Bonnet lab, for theoretical analyses completely

distinct from those in the present thesis. Thomas Rademaker added preprocessing steps to correct

missing data points [4], and with Sooraj Achar, we turned this algorithm in a more systematic

Python pipeline [185]. Here, we provide a summary (written for the SI of [1]) of the time series

smoothing and interpolation steps. The purpose of these steps was to mitigate noise in experi-

mental measurements, rescale datasets similarly to correct for batch effects, and use interpolation

to generate more time point samples and thus have more data on which to test and train machine

learning and dimensionality reduction methods.

2A flow cytometer is a microfluidic instrument that can channel one cell at a time, with a high throughput, through
an array of lasers and light detectors, allowing for the detection of single-cell properties. Cytokine beads are thus nec-
essary to measure extracellular concentration: beads flow in the microfluidic channel, and the amount of fluorescence
detected per bead is proportional to the amount of cytokine bound to the bead, itself proportional to the concentration
in the supernatant.
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A

Figure 2.3: “ Time series processing steps described in section 2.2.2. (A) Histogram of cytokine
concentration measurements in the training datasets, in linear scale (top row) and after log transformation
(bottom row). (B) Time series for the concentration of IL-2, as measured with a calibrated cytokine
bead array (here, response to peptide N4 at pulse concentration 10 nM). (C) The same time series, after
taking the logarithm of the concentration normalized by the lower limit of detection for that cytokine
(3.0 pM in that experiment). (D) The result of applying a moving average of width 3 on the log-
transformed time series. (E) The cubic B-spline smoothing interpolation fitted to the log-transformed
and smoothed time series, with relative smoothing parameter r = 0.2. ” (Antigen encoding, [1], SI)
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“Cytokine concentration measurements exhibit long-tailed distributions which become

more evenly distributed in logarithmic scale, as can be seen by comparing the first and

second rows of figure 2.3A. Therefore, we first took the logarithm of concentrations

normalized by the lower limit of detection (LOD), as shown in figure 2.3C. We then

applied a moving average filter with the smallest possible window width (3 time

points), to minimize edge effects on our experimental time series typically containing

12 time points. Fig. 2.3D shows an example of a time series after applying this

moving average.

Because there remains visible noise after this first step of filtering, we used an interpo-

lation algorithm that both interpolated and smoothed further the data points [186].

This algorithm (as implemented in SciPy [187]) fits a cubic B-spline function ck(t)

to data points y(ti), i ∈ {1, 2, . . . , n}, automatically selecting the minimal number

k of internal knots that allows ck to satisfy the following criterion:

n∑︂

i=1

[y(ti)− ck(ti)]
2 ≤ s (2.2)

where s is the tolerance (smoothing parameter). Note that the curve does not have

to go through all data points. We set s equal to some fraction r of the residuals

between the the data points before (y(ti)) and after (z(ti)) applying the moving

average filter,

s = r
n∑︂

i=1

[z(ti)− y(ti)]
2 (2.3)

which ensures that s has an appropriate scale compared to the amount of noise in

the data. We found that a value of r = 0.5 gives smooth curves c(t) which still

reasonably capture the essential kinetic features of the experimental data. Fig. 2.3E

illustrates this last processing step [. . . ].” (Antigen encoding, [1], SI)

In summary, these preprocessing steps turned noisy experimental time series of 7 cytokine con-

centrations y(t) into smooth, time-continuous interpolations c(t) of log10
(︂
y(t)
LOD

)︂
, where LOD is

the lower limit of detection for that cytokine. Some datasets required additional processing steps,

mainly to deal with experimental variability; these are described in appendix B.
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2.2.3 Excluding IL-4 and IL-10 from inputs
Before embarking on machine learning analyses to search for a low-dimensional representation of

cytokine dynamics, we sought to reduce the dataset dimensionality based on interpretable feature

selection. An immediate simplification came from realizing that two cytokines, IL-4 and IL-10,

were not produced at detectable levels in most experiments with mouse CD8+ T cells; we could

therefore discard them before focusing on more informative cytokines. We motivated further this

choice with information theory (next subsection), and further below in subsection 2.4.3.

2.2.4 Mutual information estimation from cytokine trajectories
We performed an information theoretic analysis of cytokine time series, to confirm that IL-4 and

IL-10 were indeed the least informative cytokines, and to ensure we could hope to extract infor-

mation about antigen quality from these dynamics.

We set up the calculation of mutual information between cytokines and antigen quality in the

following way. We define Q to be the random variable giving the quality of an unknown peptide;

here, this is a discrete variable equal to one of the peptides in the OVA family (N4, A2, Y3, etc.).

We also define X to be a random vector of quantities derived from cytokine time series. We

consider two possible choices of X in particular: either the concentration of one cytokine, e.g.,

X = cIFN−γ(t), or the vector of concentrations of all cytokines, X = (cIFN−γ(t), cIL−2(t), . . .),

where the c(t) are the log-transformed, smoothed and interpolated cytokine concentrations at a

given time.

“We will be interested in the mutual information between Q, the input, and various

such X vectors, the outputs – the cytokine response caused by the input peptide

Q. Intuitively, mutual information equals the amount of entropy (or uncertainty)

dissipated about Q when X is measured, since MI(Q;X) = H(Q)− H(Q|X).

The mutual information (MI) between Q and X is computed, in bits, as

MI(Q;X) =
∑︂

q

pQ(q)

∫︂
dkxfX|Q=q(x) log2

(︃
fX|Q=q(x)

fX(x)

)︃
. (2.4)

Here, pQ(q) is the probability mass function (pmf) of the input variable, the quality

Q, while fX|Q=q is the conditional output probability density function (pdf) when Q

takes on one of its possible values q. The marginal pdf fX derives from the other
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two distributions as

fX(x) =
∑︂

q

pQ(q)fX|Q=q(x) . (2.5)

To accurately estimate the mutual information, we used our own Python implemen-

tation of a bin-less, distribution-free mutual information estimator proposed in [188]

and adapted to the discrete input case in [189]. We take data points coming from all

concentrations of a peptide Q = q as different samples from the same distribution

fX|Q=q.” (Antigen encoding, [1], SI)

The central idea of this bin-less MI estimator is to compute, for each data sample, the size of the

neighborhood extending up to the kth nearest-neighbor point of the same category, and then count

how many data points of any category are present in this neighborhood. Intuitively, if all points

within the neighborhood are from the same category, the MI will be large, while many neighboring

points from other categories indicate overlapping marginal distributions P (X|Q) and thus lower

MI. k is a hyperparameter that should remain (much) smaller than the total number of data points

per category. Values of k between 3 and 6 typically work well [189].

Using this algorithm,

“we computed mutual information over time, MI(Q;X(t)), with X(t) representing

the vectors of cytokines or latent space variables at time t. To do so, we aggregated

time points within a sliding window of 3 h as coming from the same distribution. In

Fig. 2.1E, we show the information on Q over time for various X built from cytokines:

each cytokine concentration alone, and the vector of the five cytokine concentrations.

We found that cytokines IL-4 and IL-10 were not informative (justifying further why

we discarded them from the latent space construction). For the five other cytokines

taken jointly, the mutual information roughly peaked at t ≈ 45 h at a value of

slightly above 2.5 bits. This corresponds to 22.5 > 5 categories of peptides that can

be perfectly discriminated.” (Antigen encoding, [1], SI)

In short, we found that we could discard IL-4 and IL-10, and that high-dimensional cytokine dy-

namics contained significantly more information about the absolute antigen quality than any single

cytokine. This meant that T cells do not rely on a single cytokine to fully encode antigen qual-

ity, and that we needed to consider the remaining five-dimensional space of cytokine dynamics to
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really dissect the structure of T cell responses. To make initial progress in this direction, we uti-

lized machine learning techniques (section 2.3), which then unlocked more traditional theoretical

approaches (sections 2.6 sq.).

2.3 Latent space discovery with machine learning
2.3.1 Using the cumulative time integral of cytokines
Our initial attempts to decode cytokines relied on in silico evolution of biochemical networks [47]

with the φ-evo algorithm, which simulates rounds of mutation and selection of candidate models.

We found several models able to extract a coarse-grained measure of antigen quality from cytokine

inputs simply by effectively taking the average of cytokine time series over a long time window.

In the limit of infinitely slow averaging, this amounts to computing the cumulative time integral

of cytokines. These methods revealed that information could be decoded from cytokine dynam-

ics by relatively simple schemes; however, the degeneracy and variability of network solutions

encouraged us to seek more robust decoder models.

We retained an important insight from this preliminary work: time-integrating cytokines improves

their separation in terms of antigen quality. Therefore, instead of working directly with (log-

transformed) cytokine concentrations, we used the cumulative time integrals of cytokines as input

features in machine learning models:

Ci(t) =

∫︂ t

0

dt′ci(t
′) =

∫︂ t

0

dt′ log10

(︃
yi(t

′)

LODi

)︃
(2.6)

where ci(t) is the smoothed, log-transformed, interpolated concentration time series of cytokine i,

that is, log10
(︂
yi(t

′)
LODi

)︂
where yi(t′) are the experimental measurements (with the understanding that

the time interpolation is performed on the log-transformed values).

2.3.2 Neural networks reveal antigen encoding in a latent space
The preprocessed cytokine time integrals displayed some organization as a function of antigen

quality (figure 2.4A), but we wanted to reduce further the dimensionality of these cytokine dy-

namics, which were still too complex to interpret and decipher. Therefore, to reverse-engineer

the relationship between antigen quality and cytokines, we trained neural networks to perform su-

pervised classification of antigen quality from cytokine dynamics. Thomas Rademaker initially

performed this important work (I replicated it in the revision stage of the project); the details are
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provided in his PhD thesis [4] and in the SI of [1]. In this subsection, we provide a summary of

these findings.

We trained three-layer perceptrons to predict the antigen responsible for a given cytokine response

(figure 2.4B). The input layer takes a single time point from C(t), the cumulative time integrals

of the five log-transformed cytokines – time points from the same time series are given one at a

time to the network and are classified independently. The output layer is a softmax layer predicting

the probability that the input came from one of six OT-1 antigens included in the training set and

spanning a wide range of affinities (from E1, a nearly null peptide, to N4, the original strong OT-1

agonist). Mathematically, to transform an input into a prediction, the network projects inputs C(t)

(at a given time point t) to the intermediate, or “hidden”, layer h(t) of size nh as

hi(t) = tanh

(︄
5∑︂

j=1

PijCj(t) + bi

)︄
∀i ∈ {1, . . . , nh} , (2.7)

where the Pij are the learned input layer weights (from 1st to 2nd layer) and the bi are learned

biases. The last layer computes a softmax transform of projections of the hidden layer to generate

predicted probabilities gq that the input came from each antigen class q, for each of nq = 6 classes

in the training dataset:

gq(t) =

∑︁nh

j=1Wqjhj(t)
∑︁nq

q′=1

(︂∑︁nh

j=1Wq′jhj(t)
)︂ ∀q ∈ {1, . . . , nq}. (2.8)

The Wij are the learned output weights (from 2nd to 3rd layer). The neural network weights were

optimized by stochastic gradient descent to minimize a cross-entropy loss function (i.e., to predict

the correct antigen as often as possible with as little uncertainty as possible), using the scikit-

learn package in Python [190]. The data used for training comprised a total of 80 time-smoothed

time series for six different OT-1 antigens (N4, Q4, T4, V4, G4, E1), pooled from 6 different

experimental repeats, and sampled every hour for 72 hours. The neural network was then tested

and cross-validated on at least 3 other OT-1 experimental repeats.

By systematically testing all possible layer sizes, we found that a two-node bottleneck in the inter-

mediate layer (nh = 2) achieved excellent classification accuracy – with over 80 % of time series

correctly classified [4] – despite the dimensionality reduction. But beyond considerations about

classification performance which are conventional in machine learning, we were most interested in

what the latent space revealed. We projected the time series of cumulative cytokine integrals in the
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Figure 2.4: “Antigen encoding from a neural network that compresses the dynamics of T cell
activation according to quality, independently of quantity. (A) Dynamics of five cytokines for
different quality and quantity of OT-1 antigens (left) are pre-processed and (B) classified according
to antigen sequences through a trained three-layer neural net with a 2-dimensional bottleneck (latent
space LS1, LS2). (C) Time courses of compressed cytokine dynamics in the latent space stratify T cell
activation according to antigen sequence (quality), independently of antigen quantity [. . . ]. (D) Examples
of latent space trajectories for different antigen qualities. (E) Nonlinear reconstruction of cytokine time
series from latent space trajectories yielded an accurate fit with experimental data (Fig. 2.11), (F)
demonstrating completeness of antigen encoding [4 peptide antigens are introduced here: EIINFEKL(E1),
SIIGFEKL(G4), SIYNFEKL(Y3) and SAINFEKL(A2)].” (Antigen encoding, [1])
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latent space, neglecting the tanh activation function and the biases bi (time points of a series are

projected individually, then connected back together in the latent space). This defined two latent

space coordinates, LS1 and LS2,

LSi(t) =
∑︂

k

PikCk (i ∈ {1, 2}) . (2.9)

In these latent space coordinates,

“2d trajectories separated well according to antigen sequences and were independent

of antigen quantity over 3 orders of magnitude (Fig. 2.4C). We refer to such well-

separated projections in latent space as ‘antigen encoding’ to emphasize how T cell

responses are classifiable according to antigen quality (as determined by antigen

sequences). This encoding reliably distinguished antigens even at high dose when

other markers typically saturate (Fig. 2.4D).” (Antigen encoding, [1])

Discovering the latent space antigen encoding property was a crucial simplification that unlocked

further theoretical understanding of T cell responses. We worked to dissect this striking structure

and gain a full quantitative handle on T cell cytokine dynamics. We first made sure it was ro-

bust to preprocessing and machine learning model choices (section 2.4) and that it was preserving

information about cytokines (section 2.5). We then wanted to write down equations accurately

describing the dynamics in latent space (section 2.6), which could be used to generate realistic

cytokine time series (section 2.6.6). Then, we quantified the information capacity of T cell re-

sponses and the typical antigen classes they can distinguish (section 2.7), and we finally explored

the universality of antigen encoding across immune settings (section 2.8).

2.4 Robustness of the antigen encoding latent space
To determine the robustness and reliability of the latent space found via machine learning, we ex-

plored other dimensionality reduction methods and variations in our processing choices. Thomas

Rademaker performed some robustness analyses in his thesis, for instance showing how the la-

tent space is refined as more cytokines are added [4]. The verifications described in this section,

however, are distinct and are my own work.
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A

C

B

D

Figure 2.5: “Dimension of the cytokine manifold and linear reconstruction procedure. (A) Three-
dimensional plot of cytokine concentration time courses with IFN-γ, IL-2, and TNF shown; the plots
are similar when IL-6 and IL-17A are included. The arrows represent the latent space axes on which the
neural network projects data. (B) Three-dimensional plot of cytokine time integrals (from 0 to t, plotted
for increasing t) with IFN-γ, IL-2, and IL-17. See supplemental movie for an animated version of these
two graphs. (C) Linear regression and Takens estimator of the log-log scaling of the correlation function
C(r) at small cytokine distances, giving estimates of the manifold’s intrinsic dimension. The line fit for
the Takens estimate is illustrative: its slope is fixed by the estimator, and the intercept is found later
by linear regression. (D) Linear least-squares fitting of a parabolic surface as an illustration of why the
non-linear cytokine reconstruction method introduced in section 2.5.2 is necessary.” (Antigen encoding,
[1], SI)
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2.4.1 Cytokine trajectories lie on an approximately 2d manifold
To begin, we sought to determine whether the underlying dimensionality of cytokine time series

really was two-dimensional. Why could cytokine dynamics be compressed by the mere linear

mapping (matrix product) given in components form in equation 2.9? As shown by

“the three-dimensional plots in figure 2.5A and B, cytokine trajectories – time inte-

grals and concentrations alike – approximately lie on a bidimensional manifold. The

“true" dimensionality of the data can be quantified by estimating the Hausdorff di-

mension of the structure, as described in [191]. Classically, calling C(r) the fraction

of neighboring points within an Euclidean distance r of a point on a manifold, the

Hausdorff dimension ν is obtained from the scaling of C(r) ∼ rν with r in the

r → 0 limit (for instance, C(r) ∼ r2 for a plain square). A more refined estimate νT
proposed by Takens removes finite size effect [191].

We computed both estimates from the correlation function of the 5D cytokine time

integrals, which are shown in figure 2.5B; the scaling of C(r) is shown in figure 2.5C.

We obtain νH = 2.7 ± 0.1 and νT = 2.4 ± 0.3 with the linear fit and the Takens

estimate, respectively. This confirms the visual intuition that the time integrals of

our five cytokines are correlated on a manifold approximately of dimension ν = 2,

and explains why a projection onto a two-dimensional latent space was so successful.”

(Antigen encoding, [1], SI)

2.4.2 Comparing dimensionality reduction methods
“To further understand the structure of our data, we found it interesting to com-

pare how unsupervised learning would perform compared to our supervised learning

described above. Such a comparison is shown in Fig. 2.6. We took our training

features (time integral of log cytokines) and performed a Principal Component Anal-

ysis (PCA: Fig. 2.6A-B) or ran an auto-encoder (A-E: Fig. 2.6C-D). In both cases,

we indeed found a very similar structure for the first two principal components or

the autoencoder latent space, separating trajectories according to ligand quality, in-

dependently of ligand quantity, in a very comparable way to our learnt latent space

(Fig. 2.6E-F). But when we quantified the amount of Mutual Information between

antigen quality and latent space projections (see section 2.7 for details), we found

that our Antigen Encoding model derived from supervised training [. . . ] outperforms

the PCA and A-E unsupervised training methods (Fig. 2.6G). Moreover, one-layer
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perceptron models trained on each latent space resulted in higher accuracy when

using our classifier-derived latent space, compared to latent spaces found through

unsupervised methods (Fig. 2.6H). This demonstrated that, while both supervised

and unsupervised approaches can capture the general structure of data in a similar

way, our supervised training allows for a better classification and ranking of antigens.”

(Antigen encoding, [1], SI)

2.4.3 Impact of excluding IL-4 and IL-10 on the latent space
“We excluded the measurements for the cytokines IL-4 and IL-10 on the basis that

their noisy time series mainly reflected the background fluorescence in the cytokine

bead assay, rather than real concentrations.

We quantified the level of noise using the signal-to-noise ratio (SNR), defined here

as

SNR =
⟨c⟩√︂⟨︁

(y(t)− c(t))2
⟩︁ , (2.10)

where ⟨c⟩ is the mean cytokine signal, and
√︂⟨︁

(y(ti)− c(ti))
2⟩︁ is the root-mean-

squared deviation of data points y(ti) from the smoothing spline fits c(t). Fig. 2.7A

shows that IL-4 and IL-10 have SNRs at least twice smaller than other cytokines.

Note that we computed the SNR for y(t) and c(t) either with (left panel) or without

(right panel) the logarithmic transform described in section 2.2.2; this transformation

clearly attenuated experimental noise and lead to higher SNR. We further ascertained

the low SNR for IL-4 and IL-10 by dividing the range of each cytokine in quintiles and

computing the SNR within each interval. Even for the top 20 % recorded concentra-

tions, their SNR is at least twice as small as for any other cytokine (figure 2.7B).

Moreover, we checked that the latent space found when training a new classifier with

IL-4 and IL-10 included in the inputs had the same structure as when training with

five cytokines only (figure 2.7D). The training score was slightly higher with seven

cytokines, but this could be attributed to overfitting. Indeed, the cross-validation and

test scores reduced to those of the classifier using five cytokines only (figure 2.7C).”

(Antigen encoding, [1], SI)
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Figure 2.6: “Comparison of supervised vs. unsupervised learning procedures We compared three
dimensional reduction procedures to analyze the data used in Fig. 2 of the main text, i.e. the time integral
of the log of cytokines. (A-B) Principal Component Analysis (PCA) of the 5d cytokine dynamics resulted
in trajectories displayed along the first two Principal Components (C-D) Trained auto–encoder (A-E)
with a two-node bottleneck resulted in trajectories in 2d latent space (E-F) Neural network and latent
space as used in the main text (G) Mutual Information as a function of time for the three learning
modalities, computed on the training set (H) Performance of a one-layer perceptron trained for antigen
classification on the latent spaces derived from the three learning modalities (same color code as in (G)).
Note how our supervised learning procedure performed best for training, cross-validating and testing,
compared to the PCA and A-E unsupervised methods.” (Antigen encoding, [1], SI)
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A

B C

D

Figure 2.7: “ Negligible impact of IL-4 and IL-10 for the classifier inputs. (A) Signal-to-noise
ratio (SNR, eq. 2.10) of each cytokine computed across all times and conditions in the training data.
The left panel shows how the log-transformation of cytokine concentrations more than doubles the SNR
compared to the SNR derived from data in linear scale (right panel), for all cytokines except IL-4 and IL-
10. (B) SNR analysis by quintiles. The ranges of each cytokine concentration (in log scale) were divided
by quintiles and SNR were computed within each interval between quintiles. Even when considering
only the top 20 % of recorded concentrations, the SNR of the 5 cytokines under consideration are more
than 4 times larger than the SNR for IL-4 and IL-10, justifying why including these 2 cytokines made a
negligible contribution to antigen encoding. (C) Training, cross-validation (five-fold) and testing scores
for antigen quality classifiers (same structure with one 2d hidden layer). Test scores are evaluated on
data from separate experiments; error bars on test scores come from 100 bootstrap replicates. (D) The
latent spaces found by the classifier with or without IL-4 and IL-10 are essentially identical.” (Antigen
encoding, [1], SI)
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2.4.4 Impact of logarithmic transform, time integration, and smoothing
“Our data pre–processing consisted in a combination of logarithm, smoothing and

integral of trajectories. We compared those modalities and trained a neural network

on each to see how they influence the final results (Fig. 2.8). We found that the

logarithmic transformation and, to a smaller extent, time integrals were crucial for

the emerging structure of latent space. Smoothing further improved the accuracy in

training and testing, but to a lower extent.” (Antigen encoding, [1], SI)

2.5 Cytokine time course reconstruction
“Our goal in this section was to map the system’s trajectories in the 2d latent space

back to the actual cytokine concentration. In other words, we aimed at reconstructing

the entire dataset based only on the trajectories in the latent space, to demonstrate

the encompassing strength of our data compression.” (Antigen encoding, [1], SI)

2.5.1 Linear reconstruction
“We first explored whether standard linear reconstruction would be sufficient. Fig-

ure 2.9 compares the original and reconstructed cytokine time courses for a test

dataset (one experiment, 100 k initial T cells) computed with a linear least-square

regression. The training and test data are different replicates coming from the same

experiment.

With this method, IL-2 is accurately reconstructed because node 1 of the neural

network (LS1) has a heavy contribution from IL-2 and thus closely matches its shape.

Other cytokines, however, suffer from important reconstruction artifacts: IFN-γ and

IL-6 in particular have unnatural peaks at intermediate times and then drop below

their true steady-state value at later times. This is akin to the residuals expected

when fitting a curved surface with a plane, as in the example of figure 2.5D.” (Antigen

encoding, [1], SI)

2.5.2 Nonlinear reconstruction
“We thus considered increasingly complex reconstruction methods to remove the ar-

tifacts visible in figure 2.9 and better capture the curvature of the cytokine manifold.
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Figure 2.8: “Effect of each preprocessing step on the classifier accuracy We trained the same
classifier architecture (one 2d hidden layer) on the same datasets but processed with each possible
combination of log-transformation, time-integration, and spline smoothing of the data. (A) The training
score of classifiers trained on each possible combination of preprocessing modalities, indicated by the
three axes, is given by the color bar and the numerical labels in each square. (B) The test scores of
the classifiers on previously unseen datasets, for each preprocessing modality (same color scale as A).
Testing scores are always lower because of experiment-to-experiment variability. (C) The latent space
found by the classifiers trained on each preprocessing modality (irrelevant rotations and reflections were
automatically applied when necessary to allow comparison of all latent spaces in similar orientations).
The last latent space (Log-Integral-Smooth) is the one used in the main text.” (Antigen encoding, [1],
SI)
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A significant improvement resulted from including, as inputs to the reconstruction,

quadratic terms in ls1(t) and ls2(t) and the hyperbolic tangent (tanh) of the la-

tent space time integrals, tanh (LS1(t)/N̄ 1) and tanh (LS2(t)/N̄ 2), where N̄ i is a

normalization constant. Mathematically speaking, the log ci(t) are reconstructed as

log ci = Qi1ls1 +Qi2ls2 +Qi3ls
2
1 +Qi4ls

2
2 +Qi5ls1ls2

+Qi6 tanh (LS1(t)/N̄ 1) +Qi7 tanh (LS2(t)/N̄ 2) (2.11)

The tanh function prevents excessive increase of the integrals’ contribution at late

times. For simplicity, the normalization constants N̄ i were chosen as the average

value of LSi(t) across all times and condition in the reconstruction training data.

The coefficients Qij were fitted using least-square regression on a subset of the data,

and tested on other datasets. With this accurate method, cytokine concentrations

were almost perfectly reconstructed, both for the training and test data (R2 > 0.94),

the latter shown in figure 2.10. Fig. 2.11 supports this claim by showing the dis-

tribution of reconstruction residuals (across peptides, concentrations, and replicates)

as a function of time for both methods. The artifacts produced by the linear method

correspond to the large, time-dependent deviations of the mean residuals from zero.

In contrast, the accurate method has residual distributions centered around zero and

with noticeably smaller standard deviations and extrema, especially for IL-6, TNF,

and IL-17A. This demonstrated that our projection of the cytokine dynamics onto the

2d latent space (antigen encoding) could be used to reconstruct the entire cytokine

dynamics (antigen decoding),” (Antigen encoding, [1], SI)

and, hence, that it does not cause information loss about any cytokine in particular. Figure 2.4D-

F illustrates our non-linear reconstruction method on sample latent space trajectories from the

training data (D-E) , and the reconstruction versus data for all training and test datasets generated

with OT-1 antigens in this project (F).

2.6 Dynamical latent space models and parameter correlations
After employing a classifier neural network to discover the latent space of cytokine dynamics,

“we aimed at going beyond antigen quality prediction to build a parsimonious gen-

erative model of the cytokine trajectories from the latent space downstream of TCR
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engagement [192]. Modelling of trajectories with simple equations allowed us to de-

rive a quantitative understanding of the impact of antigenicity on T cell activation

(when individual cytokines were too tangled to allow classification – see Fig. 2.5A)

and, more practically, to estimate the number of antigen classes encoded by the

cytokine dynamics.

Two dynamical models were derived. The first model is called the ‘velocity’ model :

this is the simplest model, with a minimum number of parameters, easy to interpret

and fit. Its dynamics contains two discrete phases (see below). To get a more accurate

generative model of cytokine trajectories and quantify more precisely information

content, we also developed a refined model, called the ‘Force model with matching’,

with more parameters and matching terms to ensure a smooth transitions between

the two dynamical phases. Having models of diverse complexity levels allows for a

tuning between easiness of interpretation (velocity model), accuracy of reconstruction

(Force model with matching) and parameter estimation (which can be challenging

in models with bigger number of parameters due to parameter sloppiness [193]).”

(Antigen encoding, [1], SI)

2.6.1 Constant velocity model
The simpler model, called “constant velocity”, was developed jointly by Thomas Rademaker and

I, as well as the model parameter fitting procedure in the next subsection. We used it for simple

analyses of the data, but not for the accurate parameterization of dynamics or for the channel

capacity calculations below. Recall how we

“defined LS1(t) and LS2(t) as the projections of time integrals (from 0 to t) of the

log-transformed cytokine concentrations, on node 1 and node 2 of the neural network.

In equations,

LSi =
∑︂

k

PikCk where Ck =

∫︂ t

0

du log10 ck(u) (2.12)

where ck(t) is the concentration of cytokine k normalized by the lower limit of de-

tection for that cytokine (as explained in section 2.2.2) and the Pik are the neural

network weights from the input layer to the intermediate layer. We defined in an anal-

ogous way ls1(t) and ls2(t), the projections of the time courses of log–transformed
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cytokine concentrations on node 1 and node 2. Note that lsi(t) = dLSi

dt
(i = 1, 2)

because the projections defined in (2.12) are linear.

The trajectories of LS1(t) and LS2(t) resemble ballistic motions. Therefore, we de-

rived a model in analogy with the motion of a projectile or rocket with two phases:

first, a constant velocity phase, and second, a free fall with air resistance. The first

phase of a trajectory is thus described by r(t) = v0t, where r(t) = (LS1(t), LS2(t))

and v0 is a vector with magnitude v0 and angle θ, measured counterclockwise rel-

ative to the direction of the terminal velocity (see Fig. 2.12A). The second phase’s

description starts with a second-order linear differential equation for r(t),

d2r

dt2
= −k

(︃
dr

dt
− vt

)︃
(2.13)

where k is a “drag” constant (units of inverse time) and vt = (vt1, vt2) is the terminal

velocity of the trajectories. Defining t0 as the time at which the constant velocity

phase ends and integrating eq. (2.13) twice with the initial conditions to match the

end of the first phase at t0, we get the following parametric equations describing

r(t) = (LS1(t), LS2(t)):

r(t) =

{︄
v0t t ≤ t0
v0−vt

k

(︁
1− e−k(t−t0)

)︁
+ vt(t− t0) + v0t0 t > t0.

(2.14)

In total, six parameters (v0, θ, t0,vt, k) are used for this model. Each can be given

a biological interpretation. The initial (TCR-mediated) T cell activation strength is

captured by v0. The initial orientation θ gives the ratio, at early times, of cytokines

associated to the innate (node 2: IL-6 and TNF) and adaptive (node 1: IL-2 and

IL-17A) responses of the immune system [. . . ]. The time t0 measures how long the

initial cytokine production phase lasts; it may correspond to the delay before T cells

switch between IL-2 production and IL-2 consumption [105]. vt describes the final

slope of LS2 versus LS1 in latent space, which relates to the ratio of innate and

adaptive cytokines. This slope is remarkably conserved across all peptide conditions

in an experimental repeat (see Fig. 2.13B for instance). Finally, the rate k in Eq. 2.14

is introduced to capture the decay of cytokine concentrations over long time scales.

From previous models, we know that this corresponds to the rate of consumption of

cytokines [105].” (Antigen encoding, [1], SI)
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Figure 2.12A illustrates the four main parameters of this model on sample latent space trajectories.

2.6.2 Parameter fitting procedure
“Without complex curve fitting, we could determine two of the parameters for all

trajectories in a given experimental repeat. First, as can be seen from the final

orientation of all (LS1(t), LS2(t)) trajectories in Fig. 2.13B, the final slope m =

vt2/vt1 was the same for peptides Q4 and weaker at all concentrations. We simply

took the median of all final slopes found by linear regression in this LS2 vs LS1

space. This eliminated, e.g., the component vt1, derivable as vt1 = vt2/m. Second, we

typically fixed the time scale k = 1
20
h−1, because this gave reasonable fits throughout.

This left four dimensionless parameters to determine: v0/k, kt0, θ, and vt2/k. To fit

them, we numerically solved a non linear least squares problem, optimizing the cost

function :

C =
∑︂

i

||r(ti)−N(ti)||2 +
∑︂

j

|pj − p0j |

=
∑︂

i

[︁
(r1(ti)− LS1(ti))

2 + (r2(ti)− LS2(ti))
2]︁+

∑︂

j

|pj − p0j | (2.15)

where the term
∑︁

j |pj − p0j | introduces a L1 regularization. p0j are “default” values

for parameters corresponding to trajectories for null peptides (no constant velocity

phase, no terminal velocity, minimal angle): v00 = 0, t00 = 0, θ0 = −2π/3, v0t2 = 0.

We also set reasonable bounds on parameter values:

v0 ∈ [0, 5k], t0 ∈ [0, texp + 20] hrs, θ ∈ [−2π/3, π/3], vt2 ∈ [0, 5k]. (2.16)

Optimization was performed with a customized version of the curve_fit method

in SciPy [187]. Minimizing this cost function for each cytokine time course (caused

by one peptide at one concentration and initial T cell number) in 11 independent OT-

1 datasets (one including 4 technical replicates) yielded the parameter distribution

shown in Fig. 2.13C.” (Antigen encoding, [1], SI)

2.6.3 Parameter fits show that early kinetics control the response
“Fig. 2.13 shows how well the model fits the time course of LS1(t) and LS2(t) and the

distribution of parameters v0, t0, θ and vt for different peptides and concentrations.
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Figure 2.12: “Quantifying the classes of T cell activation using antigen encoding in latent
space. (A) Cytokine trajectories in the latent space can be fitted with a 4-parameter ballistic model.
(B) Although one parameter (vt) is constant, the three others (v0, θ, t0) are strongly correlated. (C)
Distribution of EC50 (left) that maximizes the mutual information extracted from model parameters
(channel capacity ≈ 2.6 bits, section 2.7). By evenly sampling the cumulative distribution function
(center), we find 22.6 ≈ 6 classes of antigen with non-overlapping latent space trajectories (right).
The arrow connects the 36-hr coordinates of trajectories of increasing antigen EC50. (D) Latent space
coordinates (LS1, LS2) at 36 hr, as a function of antigen quality as defined by EC50. (E) Sketch
of the biochemical mechanisms governing antigen discrimination, as suggested from the latent space
coordinates in (D): each class of antigen activates positive and negative signals differentially and yields
varied patterns of cytokine secretion computed from the decoder (Fig. 2.4E) and trajectories in (C).”
(Antigen encoding, [1])
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Constant velocity
A B

C

Figure 2.13: “Fits of the constant velocity model. (A) Fitted time courses of LS1 and LS2 from
the constant velocity model (eq. 2.14) compared to data (spline interpolation) on a representative
experimental repeat (OT-1 T cells, 4 peptides × 2 concentrations shown). (B) Same trajectories as (A),
plotted against each other (4 concentrations shown per peptide). (C) Constant velocity model parameter
values, fitted on each time series from 11 independent datasets (one including 4 technical replicates),
for many peptides at different concentrations, with 100k initial T cells. ” (Antigen encoding, [1], SI) Two
new antigens, A8 (SIINFEKA) and Q7 (SIINFEQL) are introduced in this figure; they were present in only
1-2 datasets each.
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Strikingly, the first three parameters are strongly correlated, and they are controlled by

antigen quality, with only minor variability caused by antigen quantity (Figures 2.12B

and 2.13C). The initial T cell activation strength (v0), which depends on the antigen,

also determines the initial orientation of the trajectories, θ, and how long it takes

before cytokine consumption kicks in, t0. This correlation defines an antigenicity axis

in parameter space, with antigen quality controlling the variation along this axis (see

also figs. 2.14-2.15).” (Antigen encoding, [1], SI)

We used the Kendall tau distance to estimate how well model parameter values are ordered on the

antigenicity axis. This distance, first proposed by Kendall in 1938 [194], quantifies the number of

inversions needed to reorder a list; it is explained in figure 2.14. Applying it to model parameters

to check how well they reflected the ordering of antigens according to their quality, we found that

parameter v0 ranks antigens more accurately and with less variability than any single cytokine time

point (figure 2.15); other parameters, correlated to v0, have similar accuracies. This analysis was

joint work between Sooraj Achar (who prepared the figure) and I (who wrote the analysis code).

2.6.4 Refined model
“The constant velocity model was enough to perform the antigen classification and

to understand most quantitative aspects of cytokine trajectories. Yet, it introduced

discontinuities in derivatives at the transition between different phases at t = 0 and

t = t0. We improved this model by introducing two extra parameters to smooth out

the transition between phases.” (Antigen encoding, [1], SI)

While the constant velocity model was joint work with Thomas Rademaker, developing, integrat-

ing, and fitting the refined model on data was my own work.

Constant force model with matching

“The constant velocity model captured well the shape of trajectories in LS1, LS2

space, but there was a noticeable time scale of activation of the velocity (first)

phase. For instance, LS1(t) trajectories in the model for peptide N4 in Fig. 2.13A

are straight lines, while the data curves have a noticeable curvature. An immediate

improvement came from considering a constant acceleration a0 in the first phase,

rather than a constant velocity. Moreover, we fixed the remaining discontinuity in
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Figure 2.14: “Graphical explanation of Kendall tau distance accuracy metric. We used the Kendall
tau distance metric to estimate how well a parameter or marker preserves the order amongst antigens
according to quality. (A) This metric counts the number of swaps between neighboring elements one
needs to perform to reorder a ranked list. (B)Our accuracy metric is initially scaled between 0 and 100%,
the former for a completely reversed list – n(n− 1)/2 swaps needed for n elements – and the latter for
a well-ordered list. (C) The accuracy metric is then renormalized so that a randomly sorted list, which
would have an unnormalized order accuracy of 50% (n(n− 1)/4 swaps), now has a normalized order
accuracy of 0% We now look at the absolute, not signed, order accuracy, to allow both a reverse-ordered
list (requiring n(n−1)/2 swaps) and a well-ordered list (requiring 0 swaps) to both formally correspond to
an accuracy of 100%. This is important because the directionality of our parameters is mostly arbitrary,
so we want there to be no difference in order accuracy between a metric perfectly correlating or perfectly
anti-correlating with antigenicity.” (Antigen encoding, [1], SI)
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Figure 2.15: Parameter v0 ranks antigens according to quality. (A) A single model parameter
(v0) yields a higher order accuracy (see Fig. 2.14) for antigen quality independently from quantity,
more consistently (i.e., with smaller coefficient of variation [CV]) than any single time point cytokine
measurement. Variability of order accuracy (CV, horizontal axis) was estimated by computing order
accuracy in 11 independent OT-1 datasets, one comprising 4 technical replicates. (B) The parameter
v0, derived from the ballistic model of the cytokine dynamics in the latent space, correlates with the
antigenicity of peptides as defined by their log10(EC50) measured in classical dose-response assays [174,
176].” (Antigen encoding, [1], SI)

d2r
dt2

at t0 by analogy with boundary layer theory [94]. We matched the velocity phase

and the asymptotic phase by introducing a sigmoidal term (1 + eβ(t−t0))−1 between

the two phases in ls1 and ls2:

ls1(t) =
(︁
1− e−αt

)︁(︃a0 cos θ + vt1
eβ(t−t0) + 1

− vt1

)︃

ls2(t) =
(︁
1− e−αt

)︁(︃(a0 sin θ + vt2)(1− e−αt)

eβ(t−t0) + 1
− vt2

)︃
(2.17)

We squared the bounded exponential term in the first part of the equation for ls2,

in order to better capture its typical time courses. The expressions in equation 2.17

are analytically integrated to obtain expressions for LS1(t) and LS2(t), which can

be fitted on the data as explained in section 2.6.2. Define τ = αt, τ0 = αt0, and
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γ = β/α. The result is

LS1(t) =
a0 cos θ + vt1

α

(︃
I(τ, τ0, γ)−

1

γ
ln
(︁
e−γτ + e−γτ0

)︁)︃
− vt1

α

(︁
τ + e−τ

)︁
+K1

LS2(t) =
a0 sin θ + vt2

α

(︃
2I(τ, τ0, γ)−

1

2
I(2τ, 2τ0,

γ

2
)− 1

γ
ln
(︁
e−γτ + e−γτ0

)︁)︃

−vt2
α

(︁
τ + e−τ

)︁
+K2 (2.18)

where the Ki are chosen to get LSi(0) = 0. The complicated part is the integral

I(τ, τ0, γ), which is given by

I(τ, τ0, γ) =

∫︂
dτ

−e−τ

eγ(τ−τ0) + 1

=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e−τ 2F1

(︂
1, −1

γ
; 1− 1

γ
;−eγ(τ−τ0)

)︂
1
γ
/∈ N+

e−τ + e−τ
∑︁n−1

j=1
n
n−j (−1)je(τ−τ0)

j
n

+(−1)nne−τ0 ln
(︁
e−τ/n + e−τ0/n

)︁
1
γ
∈ N+

(2.19)

where 2F1 is Gauss’ hypergeometric function. Note that, in this version of the model,

θ was defined relative to the horizontal axis, and that we fitted τ0 = αt0 instead of t0
directly, because the former is a dimensionless parameter.” (Antigen encoding, [1],

SI)

Quality of fits and parameter space

“The force model with matching (equation 2.18) is fitted to data for LS1(t) and

LS2(t), as outlined in section 2.6.2. Fig. 2.16A and 2.16B show how well the model

captures trajectories LS1(t) and LS2(t): the difference between data and model

curves is almost unnoticeable. Fig. 2.17D also shows how this accuracy of fits

extends to latent space concentration trajectories, ls1(t) and ls2(t). The squared

residuals plotted in Fig. 2.17A and B are indeed roughly 10 times lower than with

the constant velocity model, especially if parameters α and β are fitted separately

(as opposed to fixing α = 1/20 h−1).” (Antigen encoding, [1], SI)

We provide, in figures B.4 and B.5, further examples of model fits of latent space integrals and

concentrations, respectively, for six randomly selected datasets (representative of all 14 OT-1 T
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cell datasets). We provide a dataset-per-dataset breakdown of fit residuals in figure 2.18, clearly

showing how the force model with matching captures ls1, ls2 dynamics better than the constant

velocity model.

2.6.5 Model fits on high-dimensional cytokine dynamics
Combining the latent space model with the nonlinear decoder (eq. 2.11), we effectively obtained

a dynamical model that describes the time series of all cytokine concentrations. To fit (smoothed,

log-transformed) data with these expressions, we first projected the data to the latent space, where

we fitted the ballistic parameter values; then, we computed the (ls1(t), ls2(t)) model curve cor-

responding to these parameter values, and we reconstructed the five cytokines using the nonlin-

ear decoder (which was already trained on separate data). This gave model curves of cytokines

that should closely match the original data, despite the dimensional bottleneck through which the

model goes. We show an example of such fits in figure 2.19, with the goodness-of-fit quantified by

a multivariate χ2 test [195, 196] and found to be acceptable (large p-value) for all cytokines.

2.6.6 Generating synthetic cytokine time courses
Moreover, combining our latent space model with the reconstruction procedure of section 2.5

allowed us

“to generate synthetic time courses for the five cytokines we considered. The full

process for synthetic data generation is illustrated in figure 2.20 and detailed below :

1. We fitted multivariate kernel density estimates (KDEs, from the scikit-learn

module in Python [190]) in the parameter space of the force model with match-

ing (with free α), for each peptide. More specifically, the KDEs were fitted on

parameter values from similar OT-1 datasets with 100k initial T cells. Model

parameters were standardized prior to fitting the KDEs and scaled back after

sampling. This scaling ensured that a KDE bandwidth appropriate for all pa-

rameters could be chosen, even for those with typically smaller values, such as

vt1. Those KDEs (transformed back to the original parameter magnitudes) are

shown on figure 2.20A. Multimodality of some of the KDEs come from different

peptide concentrations (which were aggregated together) and from experimental

variability.
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Force model with matching, free 𝞪
A B

C

Figure 2.16: “Fits of the force model with matching. (A) Fitted time courses of LS1 and LS2

from the constant velocity model (eq. 2.14) compared to data (spline interpolation) on a representative
experimental repeat (OT-1 T cells, 4 peptides × 2 concentrations shown). Both time scales (α and β)
are adjusted to the data, but the fits for LS1 and LS2 are almost identical, for 100k T cells, if α is
fixed to 1/20 h−1. (B) Same trajectories as (A), plotted against each other (4 concentrations shown per
peptide). (C) Value of four parameters of the force model with matching (α and β not shown but fitted
as well), fitted on each time series from 11 independent datasets (one including 4 technical replicates),
for many peptides at different concentrations, with 100k initial T cells. There is a trade-off between
this model’s fit accuracy and the simplicity of the constant velocity model’s parameter space.” (Antigen
encoding, [1], SI)
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C   Constant velocity D   Force with matching

B   ConcentrationsA   Integrals

Figure 2.17: “Comparison of the quality of fits for the two latent space models. (A) Squared
residuals between the data projected in latent space and fitted curves of LS1(t) and LS2(t), for four
different models, averaged across 11 independent datasets (one including 4 technical replicates) contain-
ing 8 peptides, 8 concentrations, and 8 initial T cell numbers. (B) Same as (A), but for residuals on
ls1 and ls2 (but recall that model parameters are always fitted on LS1 and LS2). (C, D) Comparison
between cytokine concentrations projected in latent space and model trajectories of ls1(t) and ls2(t)

for a representative dataset (100k initial OT-1 T cells, 4 peptides at 2 concentrations each shown).
(C) Constant velocity model (eq. 2.14) (D) Force model with matching (eqs. 2.17 and 2.18). α and
β are fitted separately. This model clearly describes more accurately the actual dynamics of cytokine
concentrations in latent space.” (Antigen encoding, [1], SI)
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Figure 2.18: Residuals of the various latent space models : (top) for the latent space time integrals (LS1,
LS2); (bottom) for the latent space concentrations (ls1, ls2). The residuals are normalized by the range
spanned by the latent space variable (LS1,2 or ls1,2) within each experiment, across all times and conditions.
The boxes’ whiskers mark the 5th and 95th percentiles. For every dataset, zero is contained within the first
and third quartiles, meaning there is no strong bias towards fits being above or below the spline-smoothed
data in latent space. Residuals were calculated at every hour in every time series, for each of the 14 OT-1 T
cells datasets used in figure 2.13. (Antigen encoding, [1], response to reviewers)

2. We sampled representative parameter values from those KDEs for each peptide.

We computed the corresponding latent space concentration trajectories ls1(t),

ls2(t), as well as tanh(LS1(t)/N̄ 1) and tanh(LS2(t)/N̄ 2) (figure 2.20B). Those

are the latent space quantities that enter the accurate reconstruction algorithm

described above.

3. We optimized the reconstruction coefficients on the same ensemble of datasets

(equivalent results are obtained when optimizing on a separate dataset with

many replicates). We finally applied this reconstruction method to the latent

space trajectories computed from the sampled parameters, to obtain cytokine

concentration time courses that look very similar to actual data.

Fig. 2.20C shows an example of synthetic time course for each peptide we usually

have in experiments.” (Antigen encoding, [1], SI)
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Figure 2.19: Latent space modelling and reconstruction provide a model for cytokine dynamics.
(A) Comparison, in log-scale, between experimental cytokine time courses (data) and time courses
reconstructed from fits of the force model with matching in latent space, as well as (B) residuals of
this model fit. Cytokine trajectories were obtained from latent space model curves using the non-
linear reconstruction method, with reconstruction coefficients optimized on a separate dataset. Standard
deviations of cytokine data (shown as error bars on (A) and dash-dotted lines on (B)) and covariances
(not shown) were estimated from 11 OT-1 experimental replicates. Goodness of fit was assessed for each
time course with a multivariate χ2 test. For the time series shown, χ2/ν values ranged between 1.16

(Q4, worst) and 0.56 (V4, best). Here, ν = 5 × 12 − 6 = 54 is the number of degrees of freedom in
a five-dimensional time series of 12 time points fitted with 6 parameters. The corresponding p-values,
which indicate the probability that a correct model would give a similar or larger χ2, ranged between
0.20 (Q4) and 0.998 (V4).” (Antigen encoding, [1], SI)
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Figure 2.20: Generating synthetic cytokine time courses from the latent space model and recon-
struction procedure. (A) Kernel density estimates (KDE) for each peptide over the complete parameter
space of the force model with matching, fitted on a selection of 9 datasets. (B) Latent space time courses
(concentrations and tanh-transformed integrals) corresponding to one set of model parameters sampled
from the KDEs for each peptide. (C) Cytokine concentration time courses reconstructed from the above
latent space trajectories, using reconstruction coefficients fitted on a separate experiment, as in figure
2.10. They are very similar to actual cytokine time series.” (Antigen encoding, [1], SI)
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To summarize, by building upon our initial discovery of antigen encoding in a latent space, we

have developed dynamical equations which can be used to fit experimental cytokine time series or

to generate realistic, synthetic time series simply by picking the value of a few interpretable param-

eters. Moreover, since all model parameters are mainly correlated to antigen quality, this means

that we can generate and predict the cytokine time courses caused by the antigen of our choice.

Hence, building on insights from a machine learning model solving the inverse problem (predict-

ing antigenicity given cytokines), we have developed a complete model of the forward problem

(predicting cytokines given antigen inputs), as it takes place in the actual biological system. We

next decided to use this end-to-end model to quantify the information being transmitted by T cells

via cytokines.

2.7 Channel capacity of antigen encoding in the latent space
We have already taken a first step towards quantifying the information content of cytokine dy-

namics in section 2.2.4, where we computed MI(X(t), Q) where X(t) was the concentration of a

cytokine, or all of them, at a given time t.

“This calculation identified the most informative time points; however, it discarded

information available in kinetic features. What is more, experimental variability may

impact negatively the optimality of the chosen time point. Therefore, we estimated

the information contained in time series with a second approach, inspired by [197]. It

consisted in fitting the time courses in latent space with a model whose parameters

capture the kinetic features of interest, and computing mutual information between

peptide quality and those parameters, taken as X. The distributions fX|Q=q are

then estimated in the space of model parameters (i.e., figure 2.13). We found, with

the same data used in figure 2.1E, that the constant velocity model parameters

X = (v0, t0, θ) contain nearly as much information (≈ 2.3 bits) about Q as cytokines

do at any time point. Hence, the compression of cytokine trajectories to latent space

and their model-based parameterization preserves almost all information available in

cytokines. Note that this mutual information assumes an equiprobable choice of

peptide strengths among a limited OVA set; the MI could be higher if more peptide

categories were allowed and if pQ were better tailored to the cytokine channel.”

(Antigen encoding, [1], SI)
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The information theoretic quantity which answers this need of optimizing pQ is the channel capac-

ity between X and Q [198, 199, 200, 201, 55, 46]. It has been suggested that information capacity

is a fundamental quantity optimized by living systems through evolution and adaptation [49, 51,

17]. We thus set out to compute information transmission in our concrete, data-driven example, to

check whether this potential fundamental principle of biological physics would provide additional

insight into T cell responses.

2.7.1 Channel capacity in model parameter space
“We define the channel capacity,

C(Q;X) = max
pQ

MI(Q;X) (2.20)

that is, the MI maximized over all possible Q distributions. This measure of infor-

mation has two advantages: it characterizes the information capacity of the cytokine

channel itself (dependence on the input distribution is eliminated), and it predicts the

peptide distribution pQ that can optimally exploit the channel.

In a nutshell, we start by fitting the parameter space for different peptides using

multivariate distributions (section 2.7.2), then we interpolate distributions (section

2.7.4) to apply the Blahut-Arimoto algorithm [54, 55] and to compute channel capac-

ity (section 2.7.5). Fig. 2.21A gives a simplified illustration of the cytokine response

seen as a communication channel and of the procedure just outlined to estimate its

capacity by re-sampling the peptide quality axis more densely via interpolation. In

the next subsections, we give technical details on each step.” (Antigen encoding, [1],

SI)

Treating the T cell cytokine response as a communication channel provides a more formal defi-

nition of the antigen encoding concept: T cells transmit information about antigen quality (input)

into cytokine time series (output), and this information is encoded in the latent space and its dy-

namical model parameters. The question of how much information the latent space contains is thus

well posed, allowing us to compute that quantity.

2.7.2 Fitting multivariate Gaussian distributions in parameter space
“We chose parameters a0, τ0 = αt0 and θ of the force model with matching to

compose the vector X in parameter space, because the joint distribution of these
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Figure 2.21: “Cartoon illustration of cytokine dynamics as an information channel for peptide
quality, and of the procedure used to estimate the channel capacity. (A) Cytokine dynamics and
their parameterization with a model (here, the constant force with matching model) act as a channel
that maps peptides of different qualities (left) to different distributions in model parameter space (right).
If we have only a few peptides from the experiment and do not maximize the MI, the channel’s output
space is not optimally exploited and the information is limited by H(Q). (B) We can interpolate the
multivariate normal distributions in parameter space as a function of EC50 to obtain more closely sampled
peptide qualities. More precisely, we interpolate the means and the Cholesky decomposition elements of
the covariance matrix. (C) Information transmission is maximized after optimizing the input distribution
pQ over the re-sampled EC50 axis.” (Antigen encoding, [1], SI)
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parameters, for each peptide, was the most closely Gaussian. We fitted the model on

an experimental dataset comprising 8 OVA peptides, each at 4 log-spaced concen-

trations (from 1µM down to 1 nM), and with 9 replicates of each condition – giving

a total of K = 36 time series per peptide. We applied the background noise filtering

described in section B.1.2 and rejected 12 time series (out of 8× 36 = 288) because

of experimental errors. We rejected three parameter fits where θ > −π/3 for peptide

G4 as experimental outliers.

For model parameter fitting, we used prior knowledge on the correlations between a0
and τ0 as well as a0 and θ, by adding terms to the cost function (eq. 2.15) of the

form c(pi−aa0−b)2 (pi ∈ (τ0, θ)). Here, c is small (0.05), and a, b represent a linear

relationship between parameters a0 and τ0 or θ, roughly estimated from a first model

parameter fit without correlation terms. This extra regularization did not negatively

impact the quality of the model fits, but attenuated the model parameters’ sloppiness

[193].

Then, we fitted multivariate normal distributions N (µq,Σq) on the sample points

xk,q in model parameter space, for each peptide q. We used the sample mean µ̂q

and the (unbiased) sample covariance matrix Σ̂
ij

q as estimators of the true underlying

distribution for each peptide q. The variance of the mean estimator is simply

Var[µ̂iq] =
Σii
q

K
≈

Σ̂
ii

q

K
. (2.21)

The variance on the covariance matrix estimator was not needed, since we only used

the Cholesky decomposition of Σij
q , as explained in section 2.7.3 below.

Consequently, the multivariate normal distribution fitted on the sample points for

peptide q is N (µ̂q, Σ̂), which has the probability density function:

fX|Q=q(x) =
1

(2π)N/2|Σ̂q|1/2
exp

(︃
−1

2
(x− µ̂)T Σ̂

−1
(x− µ̂)

)︃
, (2.22)

where N = 3 is the number of dimensions of the parameter vector X. Fig. 2.22

compares the original samples in parameter space to the fitted multivariate normal

distributions.” (Antigen encoding, [1], SI)

85



0 2 4
a0

0

2

4

6

8

0

Data

0 2 4
a0

0

2

4

6

8

0

Synthetic

0 2 4
a0

1

0

Data

0 2 4
a0

1

0

Synthetic

0 5
0

1

0

Data

0 5
0

1

0

Synthetic

0 2 4
a0

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

 [-
]

0 5
0

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

 [-
]

1 0

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

 [-
]

N4
Q4

A2
Y3

T4
V4

G4
E1

Source
Data

Synthetic

Figure 2.22: Comparison of empirical and fitted multivariate normal distributions of model
parameters (“Data:” bottom half of the plot) and an equal number of points resampled from the
multivariate normal pdfs fitted on them (“Synthetic”: upper half of the plot). Corresponding pair plots
are located symmetrically across the diagonal. Graphs on the diagonal show the marginal distribution of
each model parameter, all peptides combined (kernel density estimates from the scatter points), for the
empirical and fitted distributions.” (Antigen encoding, [1], SI)

86



2.7.3 Cholesky decomposition estimator and its statistical variance
“We furthermore needed a statistical estimator Ψ̂ for the Cholesky decomposition

of the covariance matrix, Σ = ΨΨT . Ψ is a lower triangular matrix and can be

computed straightforwardly for any positive definite matrix [196], such as Σ and Σ̂.

As explained below in section 2.7.4, this was necessary to interpolate between the

covariance matrices fitted on the parameter distributions of peptides while ensuring

their positive definiteness. We needed, in particular, the statistical variance of this

estimator, to have error bars to interpolate between fitted distributions.

Olkin [202] provides an unbiased estimator Ψ̂ for Ψ and the necessary steps to derive

its variance. Their estimator is somewhat intricate to compute, and the covariance

matrix reconstructed as Ψ̂Ψ̂
T

is biased. For simplicity, we chose instead

Ψ̂ = L where LLT = Σ̂ (2.23)

that is, our estimator is simply the Cholesky decomposition of the covariance matrix

estimator. It is biased for Ψ itself (⟨Ψ̂⟩ ̸= Ψ) but it does reconstruct an unbiased

covariance matrix (⟨Ψ̂Ψ̂
T
⟩ = ⟨Σ̂⟩ = Σ), which was our chief concern.” (Antigen

encoding, [1], SI)

We can then derive the statistical variance of the Cholesky estimator. A mistake slipped into the

result given by Olkin [202] for this variance. In the original article’s notation, they correctly prove

that the variables u2ii follow a χ2 distribution with parameter k = n− i+ 1 (n = K − 1 for us), so

the correct conclusion is that ⟨u2ii⟩ = n− i+1 and thus Var[uii] = n− j+1−⟨u⟩2. However, they

report the variance of Ψii
ˆ as if it were rather uii that followed the χ2 distribution, and thus they use

the variance of a χ2 distribution, Var[uii] = 2(n − i + 1). This result is visibly incorrect, since it

gives a variance that does not go to zero when n→ ∞.

Following the same derivation, but avoiding this confusion, we find

“

Var[Ψ̂
ii
] =

K − i− a2i
K − 1

(Ψii)2

Var[Ψ̂
ij
] =

1

K − 1

i∑︂

l=j+1

(Ψil)2 +
K − j − a2j
K − 1

Ψij (i ̸= j) (2.24)

87



where

ai =
√
2
Γ((K − i+ 1)/2)

Γ((K − i)/2)
. (2.25)

and where we replace the (unknown) true Ψ by its estimator Ψ̂. When K → ∞, this

variance goes to zero like 1
K

since the asymptotic behaviour of the Γ function implies

a2j ∼ (K − j)− 1
2
.” (Antigen encoding, [1], SI)

2.7.4 Interpolating parameter distributions
“To compute the channel capacity without being restricted by the set of peptides

available experimentally, we interpolated the multivariate normal distributions in pa-

rameter space. More specifically, each statistical estimator fitted on each experi-

mental peptide’s distribution – the µiq
ˆ and the Σ̂

ij

q – is interpolated as a function

of Q = log10 EC50, used as a measure of peptide quality. Q thus ranges from 0

(N4, reference) to 5.2 (E1). The log10 EC50 we use are averages of values reported

by [174] and [176] and of our own EC50 assays (figure 2.23) for OVA variant antigens.

Instead of interpolating matrix elements of Σ̂q directly, we interpolated elements of

the Cholesky decomposition Ψ̂q and then built the interpolated covariance matrices

as Σq′ = Ψq′Ψ
T
q′ . This method ensures that the interpolated Σ̂q′ remains positive

definite and is thus a proper covariance matrix.

We used a two-step interpolation procedure for each individual distribution estimator

(either µ̂i and Ψ̂
ij
). First, we fitted a smoothing cubic B-spline implemented in

SciPy (the same we used in section 2.2.2). Each point on the Q axis was weighted

as wq = 1/σ where σ is the standard deviation, or “error bar”, of the statistical

estimator, computed from formulas 2.21 and 2.24. The tolerance s was set equal

to half the number of interpolated points (default setting). We then evaluated this

smoothing spline function at the EC50 of the experimental peptides. Second, we fitted

through those smoothed points a piecewise cubic Hermite interpolating polynomial

(PCHIP) [203], as implemented in SciPy [187]. The latter interpolation functions

were guaranteed to be monotonic between interpolated points, which prevents large

non-monotonic artifacts.

This procedure yielded continuous functions µ̂i(q′) and Σ̂
ij
(q′) =

∑︁N
l=1 Ψ̂

il
(q′)Ψ̂

jl
(q′)

that constitute a multivariate normal distribution in parameter space, evaluated for

any desired peptide quality q′ = log10 EC50 in the range [0, 5.2]. These interpolations

are shown in figure 2.24. Note how the average value of all three parameters increased
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Figure 2.23: Comparison of EC50 of OT-1 ligands published in different papers [174, 176] with our own
calibration experiments (Achar, 2020&2021). These EC50 were obtained with dose responses of antigen for
different assays (CD69 upregulation by thymocytes, IFN-γ by naive splenocytes, and upregulation of acti-
vation markers in naive splenocytes). Dashed lines indicate the average we considered. (Antigen encoding,
[1], response to reviewers)

almost linearly with decreasing EC50 in logarithmic scale, making them good readouts

of antigen quality. Moreover, note how the Cholesky decomposition of the covari-

ance increased for peptides of intermediate antigenicity (e.g., T4, V4, in the 102–103

EC50 range). This variability arose because these peptides could produce detectable

cytokine signals or not, depending on their concentrations.” (Antigen encoding, [1],

SI)

We note here that this interpolation procedure amounts to writing all cytokine dynamics as a func-

tion of a single parameter: the antigen quality, measured in terms of log10 EC50. Moreover, since

all dynamical parameters are related to a0 (or v0) through the EC50, the entire T cell response over

days is in fact determined by the early cytokine kinetics.

2.7.5 Blahut-Arimoto algorithm with Monte-Carlo integration
“To compute the channel capacity, we implemented the Blahut-Arimoto algorithm

(figure 2.25B), which provably converges to the optimum for continuous input Q

and output X random variables [54]. We discretized the input Q into M = 25

discrete values of log10(EC50), because it is numerically simpler to optimize a discrete

probability mass function pQ. We coded the algorithm in C and embedded it in a

Python C-API module to be executed as a Python script.
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Figure 2.24: Interpolation of multivariate normal distributions in the model parameter space as
a function of log10 EC50. The first row shows the interpolation of the mean value of each parameter
(a0, τ0, θ), while the last two rows show the interpolation of the Cholesky decomposition (lower triangular
matrix) of the covariance matrix. The Cholesky decomposition Ψ is used to preserve positive definiteness
of the covariance matrices, reconstructed as Σ = ΨΨT . Piecewise-cubic Hermite polynomials (which are
monotonous between data points) are used for the final interpolation after an initial smoothing spline
interpolation. (Antigen encoding, [1], SI)
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The crucial step in each iteration of the Blahut-Arimoto algorithm is to compute the

quantities

cj = exp(bj) ; bj =

∫︂

X
dxfX|Q=q(x)

fX|Q=q(x)∑︁
q′ pq′fX|Q=q′(x)

, (2.26)

which serve to update the estimate of the optimal probability vector pQ. Because the

output X is continuous and has N = 3 dimensions, the sums in the original definition

of the cj are replaced by multidimensional integrals. The latter are computationally

expensive and need to be evaluated often, so we resorted to Monte Carlo integration.

To reduce the number of samples needed to achieve a desired accuracy σcj on the

integral estimate, we drew them from the multivariate normal distribution fX|Q=q,

since it is similar to the integrand fX|Q=q(x)
fX|Q=q(x)∑︁

q′ pq′fX|Q=q′ (x)
, as illustrated in figure

2.25A. If the relative error (stopping criterion) resired for the channel capacity is

EC , we set σcj = EC/M , ensuring that the lower bound on the capacity, Clow =

log2

(︂∑︁
j p

r
jc
r
j

)︂
, has a relative error of EC or less. The algorithm starts with k = 105

samples and adaptively draws more if needed (usually not necessary for EC = 1%).

Monte Carlo samples from fX|Q=q were generated as follows. We generated uniform

random numbers with the dSFMT package, which is a fast and high-quality Mersenne

Twister [204]. We transformed the uniform samples to get Nk univariate N (0, 1)

samples with the Box-Muller method [196], and transformed them again into k mul-

tivariate samples using the Cholesky decomposition Ψ of the covariance matrix Σ

[205].

We validated the algorithm against various configurations of multivariate Gaussian

distributions [164]. In every case, it converged to the correct value within the desired

accuracy, which we typically set to 1 %.” (Antigen encoding, [1], SI)

This compared favorably to the channel capacity estimation algorithm of [164], which has an

accuracy of 4 % on the test cases.

2.7.6 Channel capacity results and final estimate for the number of antigen
classes

“The Blahut-Arimoto algorithm converged to a capacity of 2.60 bits (within 1%

tolerance for convergence). To assess the robustness of this result, we repeated the
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Figure 2.25: Blahut-Arimoto algorithm to derive the cytokine channel capacity from the model
parameter space. (A) Cartoon illustrating the Monte Carlo integration of equation 2.26 with variance
reduction by sampling from the input-output distribution, fX|Q=q(x). (B) Flowchart of the Blahut-
Arimoto algorithm (adapted from [54]). (C) Model parameter distributions corresponding to the theo-
retical antigen categories determined from the channel capacity calculation, as explained in figure 2.12C.
(D) Optimal peptide distribution found with the channel capacity estimation algorithm of Grabowski et
al. [164], giving a capacity of (2.4±0.1) bits (the algorithm has a relative accuracy of 4%). As expected,
the result is slightly lower than when interpolated EC50 are allowed [(2.59±0.03) bits, subsection 2.7.6].
(Antigen encoding, [1], SI)
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procedure 32 times, including the model curve fitting and multivariate distribution

fitting, while perturbing randomly the regularization hyper-parameters involved in

model parameter fitting. Perturbations were sampled from a normal distribution

with a standard deviation of 0.05, for regularization coefficients that are on the

order of 0.8. We found an average capacity of (2.59 ± 0.03) bits, where the error

represents the standard deviation of the replicates, thus confirming the robustness of

the calculation.” (Antigen encoding, [1], SI)

Figure 2.12C shows the optimal distribution pQ maximizing the mutual information MI(X, Q), as

found by the Blahut-Arimoto algorithm. Since the capacity corresponds to 22.59 ≈ 6 categories

that should be completely distinguishable, we have subdivided the continuum of antigen qualities

into six classes: the two limiting EC50 values (which include all theoretically weaker or stronger

antigens as well) and four other EC50 values equally distributed in the cumulative probability func-

tion (CDF) of Q (figure 2.12C, center). These six prototypical antigen affinities indeed produce

non-overlapping latent space responses (figure 2.12C, right), as well as non-overlapping ballistic

model parameter distributions (figure 2.25C).

We note that the two probability peaks at the endpoints of the EC50 axis are reminiscent of the

optimal distributions found for concentration sensing in chapter 1, figure 1.2. This reflects the

inverse relationship imposed by channel capacity between the optimal pQ and the variance of

parameter distribution fX|Q=q. As can be seen in figures 2.22 and 2.24, there is little variability

in model parameters for all-out (N4, A2) or null (None, E1) T cell responses, while there is more

noise for responses in the middle, i.e., for intermediate agonists (V4, T4) at the threshold of T cell

activation.

“As a point of comparison, we ran the algorithm of [164] on the empirical parameter

distribution for the seven available peptides. We found a channel capacity of (2.4±
0.1) bits and the optimal distribution shown in figure 2.25D. This slightly lower

capacity is consistent with the fact that the EC50 axis is not optimally sampled when

only empirical distributions are used, as opposed to our interpolation method.

Notice that Fig. 2.12C-D allows for a direct comparison between the EC50s of the

6 antigen classes and the classical OT-1 ligands. The first category has EC50 larger

than E1, so should correspond to self. The second category is between G4 and V4,

so in the middle of the antagonistic regime. The four other categories are spread
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above V4, so correspond to agonists of different strengths.” (Antigen encoding, [1],

SI)

2.7.7 Interpretation of latent space weights
We used the prototypical antigen classes to clarify how the antigen classifier of section 2.3 was

exploiting the latent space to perform antigen quality classification. We first examined how LS1(t)

and LS2(t) at a fixed time point (t = 36 h) varied as a function of antigen EC50 and we found

that LS1 increases monotonically with antigen quality, while LS2 varies non-monotonically (fig-

ure 2.12D). Each prototypical antigen class lands in a distinct part of these curves, such that they

each correspond to a unique pattern of LS1 and LS2 being null, positive or negative (figure 2.12E).

This suggests that cytokine dynamics could easily be decoded for antigen quality by discrete reg-

ulatory elements, such as the cytokine receptor pathways in neighbouringT cells reading out a

cytokine signal to be co-opted into response. This is consistent with findings in the context of

infomation optimization in genetic networks, showing that non-monotonicity is important for the

decoding of biological signals by binary pathways [206, figure 3].

The behaviour of each LS suggested a biological interpretation of their composition, as revealed

by the neural network’s set of weights connecting the inputs to the latent space (figure 2.26A): LS1

is mostly made up of IL-2, which increases with activation, while LS2 is a difference between the

two cytokines IL-2 and IL-17A on the one hand, and cytokines IFNγ, IL-6, and TNF on the other.

Since the first two are mostly associated with adaptive immunity and the last three, with innate

immunity [4], we would expect the last three to fire up at low antigen qualities because innate

immunity is less antigen-specific, and thus make LS2 decrease due to their negative contribution

to it, whereas adaptive immunity cytokines would have a more gradual response.

The second set of neural network weights, connecting the latent space to the output layer, closely

matched the patterns seen in LS1, LS2 as a function of antigen quality, with weights reading out

LS1 increasing (essentially) monotonically and weights reading out LS2 being non-monotonic

(figure 2.26B). These weights decode the latent space by dividing it into sectors each attributed to

one class, as seen in figure 2.26C, where we computed the softmax output pq(LS1, LS2) (eq. 2.8)

at each point in latent space, and plotted the color of the most likely predicted antigen class among

the six OVA training peptides3.

3To be precise, we plot pq(LS1, LS2) for all six antigen classes q at every point, on top of each other, each in a
different color, but we set the opacity for each color equal to pq: hence, only the color of the most probable peptide in
a given region is non-transparent and thus shows up in that region. Boundaries are generally very sharp, except for the
V4-G4 distinction.
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Moreover, interpolating the network’s output weights as a function of EC50 and evaluating them

for each of the six prototypical antigen class, we could visualize the regions of latent space most

associated to each theoretical class (figure 2.26D). Unsurprisingly, they corresponded to the regions

containing the prototypical latent space trajectories of figure 2.12D. Figure 2.26D also reveals how

the training antigen class Q4 can in fact be subdivided roughly in two distinct classes: the training

set was not completely filling the continuum of possible antigen qualities. Yet, the neural network

had the ability to place intermediate new antigens like A2 and Y3 in the right regions of latent space

(as seen in figure 2.4D-E), supporting further the idea that this latent space is a natural encoding of

antigen quality.

2.7.8 Cytokine trajectories for prototypical antigen classes
To close the loop, we reconstructed the cytokine time series corresponding to the six prototypical

antigen categories of figure 2.12C. We used the parameter covariance estimates of section 2.7.2

and the nonlinear decoder of figure 2.4D-E to reconstruct sample cytokine trajectories for each

class. We show in figure 2.27, the reconstructed cytokine trajectories for archetypal antigens. We

show, for each antigen, both the average cytokine time course and its standard deviation (obtained

numerically by generating 100 trajectories for each antigen prototype). Consistent with our mutual

information optimization, we see well-defined trajectories, especially for the stronger ligands, and

larger uncertainty for weaker ligands (category 5, EC50= 4 × 103). While these trajectories exhibit

a few artifacts, for some cytokines and antigens in particular, they still have the correct general

shape and ordering according to antigen quality.

Generative modelling by pure machine learning usually requires large datasets to produce realistic

synthetic outputs. Even then, finer details in generative modelling can easily go awry, as illus-

trated by symmetry or background artifacts in random face generation by generative adversarial

networks [207, 208]. It is therefore expected that some artifacts remain in the synthetic cytokine

time series. Owing to our biophysically-informed modelling, we were in fact able to do a lot with

relatively “little” data (compared to traditional machine learning datasets). Of course, more experi-

ments with OT-1 T cells would enable better reconstruction quality, correctly capturing all possible

intrinsic and extrinsic sources of variability. This improvement in accuracy with additional data,

however, was beyond the scope of our work. In the next section, we rather focused on the universal

character of antigen encoding in different immune contexts.
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Figure 2.26: “Neural network weights to each layer and their interpretation. (A) Weights con-
necting the input layer to the intermediate layer give the contribution of each cytokine to each latent
space variable. (B) Weights to the neural network’s prediction layer, from each latent space variable
to each training antigen category. For optimal accuracy of the network, those weights have to match
the monotonic (LS1) and non-monotonic (LS2) behaviour of the latent space variables as a function of
EC50, which was shown in figure 2.12D. (C) Latent space colored according to which training antigen
is the most probable prediction of the neural network at each point, as determined from the weights of
panel (B) and the softmax function in eq. (2.8). This reflects antigen encoding: each antigen has its own
sector, corresponding to the typical location of its latent space trajectories. Notice that since the last
layer before the softmax regularization is linear, those sectors are separated by straight lines; intuitively
the sectors define where the latent space trajectories corresponding to each ligand can be located (D)
Latent space domains for the theoretical antigen classes determined from channel capacity calculation.
The weights defining this map were linearly interpolated from the weights for training antigens at the
theoretical antigens’ EC50s, indicated by vertical dashed lines on panel (B).” (Antigen encoding, [1], SI)
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Figure 2.27: Reconstruction of cytokine trajectories for the 6 ligand categories obtained through mutual
information optimization, using the decoder of Fig. 2.4D and the noise structure of Fig. 2.12C. (Antigen
encoding, [1], response to reviewers)
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2.8 Universality of antigen encoding
To support the idea that antigen encoding is a (relatively) universal feature of T cell responses,

and not merely an idiosyncrasy of the OT-1 TCR and its cognate peptides, we tested how our latent

space description, as trained on OT-1 data sets, could generalize to diverse immunological settings,

where the number of initial T cells, the APC cell types, the TCR line, and the T cell donor species

were varied. We also tested a wide panel of drug perturbations to try to break the correlation

between latent space dynamical parameters. Some of these diversified datasets required custom

preprocessing, which we discuss in appendix B.

2.8.1 Testing various immunological conditions
We tested antigen encoding in several different immune settings. Our collaborators performed a

whole panel of robot-assisted experiments where cocultures were varied from their default prepa-

ration (OT-1 T cells and B6 splenocytes). On the T cell side, we measured cytokine responses of

pre-activated (“blast”) T cells, as opposed to naive T cells; we also tested an array of initial T cell

numbers, to assess how this parameter impacts cytokine trajectories. We assessed additional CD8+

T cell lines beyond OT-1, and even performed experiments with CD4+ T cells. On the APC side,

we measured T cell responses in cocultures containing macrophages, dendritic cells, tumor cells,

or other APC types pulsed with peptides – instead of the mixed splenocytes used for training the

model. The experimental protocols are detailed in the SI of Antigen encoding, [1]. The results are

presented below to highlight how latent space cytokine trajectories remain similarly structured by

antigen quality across diverse conditions, rather than to discuss their specificities in detail.

Most figures in this subsection (2.28 – 2.31) were prepared by Sooraj Achar and generated using

the latent space fitting pipeline [185] developed by us with Thomas Rademaker. I reproduce them

here for completeness and to illustrate the generalizability of our approach. Analyzing the effect

of T cell number on the v0 vs θ slope (figure 2.28E) and the Earth Mover’s distance analysis of

drug perturbations (figure 2.28F, right) was my own work.

To assess how our latent space model could capture antigen quality across different conditions, we

“first plotted the parameter v0 (Fig. 2.12A) as a function of EC50 for both our train-

ing and test sets and recovered a log-linear correlation above a minimum threshold

(Fig. 2.28A): our model of cytokine dynamics yielded a measure of antigen quality,

v0, as faithful as an EC50 derived from a functional dose response. We further con-

firmed the predictive power of v0 on additional immunological settings: i. two states
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Figure 2.28: “Antigen encoding to explore diverse immunological settings. (A) Testing the ballistic
model of the latent space on all OT-1 antigens yielded measurements of v0 that correlated with their rank
(as defined by the EC50 of a functional dose-response). (B) Antigen encoding learned from naïve OT-1
T cells yields accurate v0 ranking with different mouse TCR transgenic T cells, (C) with human TCR
transgenic T cells and (D) with OT-1 T cells responding to tumors constitutively expressing antigens. (E)
Antigen encoding captures dependency on T cell numbers in (v0, θ) space. (F) (left) Antigen encoding
(v0, θ) of T cell activation under various molecular perturbations. (right) Earth Mover’s Distance (EMD)
for individual antigens. PC1 captures the variation in antigen quality (EMD2 = 0). While most molecular
perturbations simply downgraded the apparent antigenicity (EMD1 < 0, EMD2 ≈ 0), JAK inhibitors
(AZD1480 and Ruxolitinib) severely impacted T cell activation (EMD2 < 0) and the TLR7/8 agonist
Resiquimod boosted it (EMD2 > 0). (G) Antigen encoding of anti-CD19 Chimeric Antigen Receptor
(CAR)-T cells (left) revealed a pattern of weak activation and antagonism for cytokine responses (right).”
(Antigen encoding, [1])
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Figure 2.29: “Antigen encoding with different antigen–presenting settings. (A) We compared the
latent space projection (i.e. antigen encoding) of the cytokine dynamics for naive OT-1 T cells, activated
with peptide-pulsed splenocytes, or bone-marrow derived macrophages or bone-marrow derived dendritic
cells, in the presence of varied costimulation (aCD28) or TLR agonists (LPS or poly-IC). The antigen
encoding was trained with splenocytes and remained consistent across different antigen-presenting cells.
(B) Immune velocity (v0) as a measure of antigenicity was defined using splenocytes as antigen presenting
cells, and remained essentially accurate for other antigen presentation settings – macrophages or dendritic
cells with or without costimulation of inflammatory signals. (C) Immune velocity (v0) has high order
accuracy in splenocytes and dendritic cells regardless of costimulatory and inflammatory signals, although
macrophages perform more poorly in this setting. (D) Examination of the input cytokines reveals that
stimulation of macrophages with the polyIC and LPS TLR agonists induces a high, antigen–quality–
independent secretion of the innate cytokines IL-6 and TNF, leading to a high background of activation
in panel B and a more limited v0 order accuracy observed in panel C. The data used in this figure are
from two independent experiments.
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Figure 2.30: “Antigen encoding with different tumor settings. (A) We compared the latent space
projections (i.e. antigen encoding) of the cytokine dynamics for effector OT-1 T cells, activated with
peptide-pulsed splenocytes (training set) or with B16 melanoma or MC38 carcinoma tumor cells con-
stitutively expressing OT-1 antigens. Antigen density on the tumor cells was increased using a 48hr
pulsing with IFN-γ pre-activation. (B) Immune velocity (v0) as a measure of antigenicity was defined
using splenocytes as antigen presenting cells, and remained essentially accurate for peptides constitutively
expressed and presented on the surface of B16 melanoma or MC38 carcinoma tumor cells. (C) Immune
velocity (v0) has high order accuracy across all tested tumors regardless of antigen density. The data
used in this figure are from two independent experiments.” (Antigen encoding, [1], SI)
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of differentiation of OT-1 T cells (naïve or pre-activated effector; Fig. B.6); ii. dif-

ferent antigen-presenting cells (splenocytes, bone marrow derived macrophages and

dendritic cells) pulsed with peptides (Fig. 2.29); iii. different mouse TCR transgenic

T cells (Fig. 2.28B); iv. human T cells expressing a TCR transgene (Fig. 2.28C); and

v. different tumors constitutively expressing antigens (Fig. 2.28D, 2.30). While the

latent space may rotate (angle θ, Fig. 2.12A) according to immune contexts – e.g.,

when varying the number of T cells (Fig. 2.28E, B.7) – in all settings, the structure

of the latent space was preserved and v0 accurately ranked antigens according to

their quality. Overall, our model generalized well to infer antigen quality from unseen

patterns of immune activation.” (Antigen encoding, [1])

Drug perturbations

“We tested whether molecular perturbations (small drug inhibitors, cytokines or an-

tibody blocking) could generate novel cytokine dynamics. For most perturbations,

the strong correlation between parameters of antigen encoding remained intact, and

antigen hierarchy was preserved, albeit with a downshift in apparent antigen quality.

However, two types of perturbation (activation of innate signaling and inhibition of

cytokine signaling) maximally broke this parameter correlation and generated distinct

dynamic patterns, i.e., , new classes of T cell activation with potentially new functions

(Fig. 2.28F, 2.31).” (Antigen encoding, [1])

As explained in the figure caption, we quantified shifts in parameter distributions using the Earth

Mover’s Distance (EMD). This metric is equal to the average distance over which each point of the

starting distribution must be moved to create the final distribution with the minimal possible total

transport work [209]. In the general case, the EMD is computed using tools from graph theory.

Summarizing, we have two sets of sample points, X1 = {x1,i} and X2 = {x2,j}, from the initial

and final distributions, respectively, with weights {w1,i} and {w2,j} (typically, wa,i = 1
card(Xa)

).

First, we build a bipartite graph where nodes are samples from X1 or X2, and edges connect each

point in X1 to all points in X2 and have weights dij equal to the distance between samples x1,i
and x2,j . Then, we use linear programming to compute the flow fij which transports all weight

from X1 towards X2 (fij is how much weight is transported on edge (i, j)), while minimizing the

total “work” C =
∑︁

i,j dijfij (weight × distance). The EMD is equal to this total minimal work,

divided by the total weight in X1 or X2 (which is 1 if wa,i = 1
card(Xa)

). We wrote our own Python

implementation of these steps, relying on the min flow solver of the networkx package [210].
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Figure 2.31: “Latent space projections (antigen encoding) for the cytokine dynamics under
varied molecular perturbations. The data used in this figure are from eight independent experiments.”
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To compute the EMD along each principal component (PC) direction, we first projected the initial

and final distributions along the desired PC, then computed EMD between these 1D marginal

distributions.

Antigen encoding with chimeric antigen receptor T cells

Given the robustness of our antigen encoding latent space, we wanted to extend its applicability

to immune settings closer to clinically relevant immune therapies and to contemporary cellular

engineering. We therefore

“investigated T cells genetically engineered to express a Chimeric Antigen Receptor

(CAR) against ligands expressed on B cell leukemia (CD19), as used in patients with

relapsed lymphoma [211]. The dynamics of cytokines released and consumed by CAR-

T cells were similar to the trajectories derived from natural T cells (Fig. 2.28G-left).

CAR-T cells responding to CD19 yielded cytokine dynamics similar to OT-1 TCR re-

sponding to weak agonists such as V4 (Fig. 2.28G-right), thus signaling through CAR

may only sub-optimally activate T cells. We therefore tested the response of CAR-

OT-1 T cells to a mixture of CAR and TCR ligands. Our latent space parametrization

then revealed highly-nonlinear, hierarchical effects: weak OT-1 ligands (E1) antago-

nized CD19, whereas stronger OT-1 ligands dominated the response to CD19. This

is consistent with the AKPR mechanism for T cell signaling with differential effects

on positive and negative feedbacks (Fig. 2.12E) [62]. Complex antagonism and syn-

ergism by weak TCR ligands highlight the importance of fine tuning CAR-T cells for

immunotherapeutic optimization.” (Antigen encoding, [1])

These preliminary observations, in the cytokine latent space, of non-linear effects of TCR/CAR

antigen mixtures led us to investigate systematically cross-receptor interactions, as detailed in the

next two chapters of this thesis.

2.9 Summary of key insights from antigen encoding
In summary, from the high-dimensional T cell response kinetics acquired by our collaborators with

their robotic platform, we have derived a quantitative model of T cell antigen encoding (figure 2.1).

Using a neural network classifier, we have discovered a two-dimensional latent space in which cy-

tokine dynamics encode antigen quality (figure 2.4). This dimensionality reduction enabled us to
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perform detailed analyses, such as deriving a mathematical model of the latent space trajectories

and generating model-based cytokine time series from it. We have also rigorously quantified the

amount of information transmitted by cytokine dynamics about antigen quality, finding that the

continuum of T cell responses could be subdivided into 22.6 = 6 non-overlapping classes (fig-

ure 2.12). This showed how high-throughput experimental platforms and physics-inspired mod-

elling might reveal underlying quantitative principles of immunity. Seeing how antigen encoding

was robust across immune conditions (figure 2.28), we thought it could prove useful in analyz-

ing the mechanisms of chemical sensing by T cell receptors, and ultimately to fine-tune T cell

responses for immunotherapy and vaccine development [175].

We carried three main insights from antigen encoding into more mechanistic studies of TCR ac-

tivation. First, T cell activation dynamics over days is low-dimensional, so we may not need to

model T cell outputs as a high-dimensional set of variables; coarse-grained models may suffice.

Second, the long time scales of T cell activation are essentially determined by the early activation

kinetics (i.e., by the v0 or a0 parameter); hence, models of these early events could be predictive of

slower processes as well. Third, antigen quality is a continuous, quantitative property that elicits a

corresponding continuum of T cell responses. Taken together, these points suggest that models of

TCR-antigen interactions occurring within minutes, as introduced in chapter 1, might be used to

quantitatively predict T cell activation mechanisms, even those measured on longer time scales. In

the next two chapters, we have used exactly this approach to understand non-linear receptor inter-

actions in T cells with altered TCR phosphorylation sites (chapter 3) and with synthetic receptors

for immunotherapy (chapter 4).
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Chapter 3

Revisiting antagonism in T cell receptors

In the previous chapter, we have essentially mapped T cell responses to a single antigen at a time,

and we have treated the effect of antigen quantity as randomness in the response (e.g., section 2.7).

Here, we aimed to gain mechanistic understanding of TCR signaling by studying mixtures of anti-

gens, which reveal nonlinear interactions between receptors [62]. We applied the insights gained

from antigen encoding: since population-level cytokine dynamics correlate strongly with early

activation kinetics, parsimonious models of T cell receptor signaling (time scale of minutes) can

provide quantitative predictions of T cell responses. Aided by our collaborators’ robotic platform,

we systematically varied the qualities and quantities of antigens in the mixture, to better explore

the high-dimensional chemical space faced by T cells in physiological settings. Moreover, T cell

lines (6F-CD3ζ TCR) from Paul Love’s lab (NICHD), with altered TCR phosphorylation sites,

gave us an additional experimental constraint to pinpoint receptor interactions. As we searched for

a mathematical model that can account for these various phenotypes and antigen mixtures, we had

to revise existing TCR activation models, which had previously been verified only for a small set

of antigen mixtures.

This chapter contains my contributions to two manuscripts [2, 3] presented together here:

• Information theoretic analysis of 6F T cell responses (section 3.2.1);

• Adjusting the classical AKPR model to account for early datasets on 6F T cells (3.3 and 3.4);

• Finding this model needs to be improved to capture more extensive datasets, developing an

revised model, and performing Monte Carlo simulations to estimate its parameters (3.5).

The 6F latent space analysis in section 3.2.2 was performed by Sooraj Achar using the antigen

encoding pipeline [185] of section 2.2.2, which we built together with Thomas Rademaker. Ex-

perimental work was carried by collaborators, mainly Sooraj Achar and Guillaume Gaud. Quoted

excerpts are from sections of the of the main text or supplementary information (SI) written by me.
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3.1 Timeliness of revisiting TCR activation models
We have reviewed the mechanisms of TCR activation in chapter 1. Here, we bring out remaining

questions about these mechanisms, especially when encountering antigen mixtures (as it is the

case in vivo). We then describe the experiments performed by our collaborators to address them:

the unprecedented level of robustness, accuracy, and throughput they achieve when they measure

immune dynamics allowed us to push the envelope of phenomenological TCR models, seeking

quantitative agreement between data and predictions to select the best model.

3.1.1 Nonlinear effects and antagonism in TCR signaling
Cells in a given tissue present on the order of 103 different peptide sequences on their surface

MHCs, with different peptides being presented at anything between 10 and 10, 000 copies per

cell [212, 213, 214] (0.01% – 10% of 105–105 MHCs/cell). An example of the broad distribution

of copy numbers for different peptides is shown in figure 3.1. Given the complexity of the TCR

biochemistry and signaling pathways (section 1.3.2), it would have been most surprising that the

various antigenic signals in a mixture contribute to T cell activation in a purely additive manner.

Non-additive responses to mixtures of ligands are common in biology, for instance in olfactory

receptor neurons [66], giving us another reason to expect them in T cells too.
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Figure 3.1: Relative frequency distribution of the class I peptide MHCs on the surface of antigen presenting
cells (here, melanoma cells). Replotting the data for “background peptides” in the “DMSO” condition (i.e.,
no treatment), averaged over three repeats, from figure 1D of [214], available publicly (Dataset_S02). We
notice a Zipf-like behavior for the first 103 most abundant peptides, followed by a sharp cutoff. However,
the abundances are approximative, based on mass spectrometry abundances; obtaining absolute cell surface
abundance requires building a different calibration curve for each peptide [213], to compensate for, e.g.,
unequal processing efficiency in the mass spectrometry pipeline.
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There are in fact constructive and destructive “interferences” between TCR antigens, the most

striking case of which is antagonism: a reduction of the T cell response due to weakly stimulating

antigens. Adding weak antigens, which produce some response on their own, to a small amount

of strong antigens actually reduces the overall response compared to the response elicited by the

same small amount of strong antigens alone [215, 216, 217]. Figure 3.2 illustrates this effect. In

this situation, the strong antigen is called an agonist and the weaker antigen causing a response

reduction is called an antagonist. Since very few (< 10) agonist peptide copies are needed to

trigger an immune response [110], antagonism of small agonist quantities may play a significant

role in allowing or delaying T cell responses in vivo.
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Figure 3.2: Example of TCR antagonism. (Left) TCR antagonism occurs when a T cell encounter a
mixture of strong ligands (red) and weak ligands (grey) which can both bind to TCRs. (Right) IL-2 cytokine
response over time of T cells (OT-1) exposed either to a strong antigen alone in a small dose (N4 at 10pM,
red) or to the same amount of strong antigen plus a weak antigen (V4 at 1 µM). The response is reduced
by the addition of the antagonist peptide. This antagonist peptide, on its own and at a high dose, would
produce a small amount of cytokine response as well (not shown) – it is not a completely null antigen.
Hence, the response to the mixture is not at all equal to the sum of responses to each individual component.
Data measured by the Altan-Bonnet lab using the Immunotron platform [2]. (Left is adapted from TCR/CAR
antagonism, [3], figure 2; Right is adapted from CD3ζ ITAMs, [2])

Antagonism was observed in T cells over 50 years ago, but its explanation has long been elu-

sive. In the 1960s, experiments involving the sequential injection in vivo of a strong antigen, then

a weak antigen revealed antagonism (then called “antigen competition”), but the effect was at-

tributed primarily to “humoral” factors [218], i.e., global feedbacks in the blood and lymph, such

as cytokines. It was later realized – with the advent of molecular cell biology and discovery of

the TCR – that cellular factors were probably more important, since mixtures delivered simultane-

ously still exhibited antagonism. The next proposed explanation was competition between agonist

and antagonist peptides for presentation on MHCs [219]. This hypothesis was also ruled out when
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antagonism was found to be TCR clone-dependent – all T cells would be antagonized if the effect

came from hindered presentation of agonist peptides, but some TCRs were unaffected by the an-

tagonists [220, 221, 222]. The next proposed explanation was rather competition for the binding

of TCRs (antagonist peptides taking up all receptors) [223], but this was also ruled out by experi-

ments showing antagonism in T cells engineered to express two TCRs, one dedicated to the agonist

and the other, to the antagonist peptides, such that there was no possible competition for receptor

binding [224]. Our work on antagonism in chimeric antigen receptor T cells, in the next chap-

ter, also reveals antagonism between completely separate receptor-ligand pairs. Therefore, TCR

antagonism most likely comes from intracellular receptor signaling mechanisms, where antigen

mixtures change the balance between positive and negative effects triggered by TCR stimulation

of different strengths [138, 116, 225].

3.1.2 Quantitative questions regarding TCR antagonism
Antagonism thus seems to occur due to inhibitory mechanisms in TCR signaling which prevent

undesirable response to weakly stimulating antigens [59]: the weak antigens trigger inhibitory

molecules, thus reducing the response to strong antigens, without producing enough activation

on their own to compensate. In particular, the phosphatase SHP-11, which can dephosphorylate

TCRs and prevent their signaling [226], is thought to be responsible for mediating this inhibitory

feedback [138, 116, 109]. However, other inhibitory molecules are also potential candidates, such

as the CD45 phosphatase [134], or the c-SRC kinase (Csk), which can restrain the activity of the

Lck kinase (necessary for TCR signaling) [227]. Decisive verification of the exact molecular un-

derpinnings of this inhibitory feedback is however difficult experimentally, due to its delicate and

dynamical nature (immunoprecipitation only gives static, bulk snapshots), and because antibod-

ies to distinguish the various phosphorylated versions of, e.g., SHP-1, are lacking or unreliable

(Grégoire Altan-Bonnet, private communication). Beyond any specific mechanism, François et

al. proved mathematically that any TCR model performing absolute ligand quality recognition,

independent of ligand quantity, must exhibit antagonism as a by-product [139].

Therefore, in our work, we adopted a phenomenological modelling approach where we postulate

the existence of an inhibitory species, I , without specifying its precise molecular identity; it could

in fact be an aggregate of several inhibitory pathways (such as SHP-1, CD45, Csk, etc.). This

approach lowers the dimensionality of T cell dynamical models and enables us to address the more

relevant question of how TCR antagonism is quantitatively determined by the qualities τl (affin-

1SHP-1 stands for Src homology region 2 domain-containing phosphatase-1 and is also known as PTPN6, standing
for Tyrosine-protein phosphatase non-receptor type 6.
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ity, binding time) and quantities Ll (density, abundance) of antigens (indexed by l) in a mixture.

Previous modelling studies have been limited to qualitative comparisons between predictions and

data for a few different antagonist peptides presented at a high density; they could not make fine

distinctions between different regulatory networks and activation functions in the inhibitory feed-

back module surrounding species I [129, 132, 62]. Here, we attempted to go one step further and

to compare alternative models on the basis of how accurately they match experimental patterns of

antagonism.

Antagonism has generally been characterized in binary antigen mixtures [116], i.e., in mixtures

of two ligands with binding times τ1, τ2 and abundances L1, L2, respectively. Two-component

mixtures are interesting because most of the ∼ 103 distinct peptides on an APC will have a very

low affinity for the TCR; they effectively act like a background of weak peptides, reasonably

well approximated by a large amount of one low-affinity peptide sequence [59]. The remaining

one (or few) peptide sequences on the APC which might be cognate to a TCR can similarly be

approximated by one high-affinity antigen type. Hence, receptor interactions in binary antigen

mixtures give a reasonably good first approximation of the non-linear effects going on in actual

physiological antigen mixtures. This is why we have also studied binary mixtures in this thesis: we

have sought models able to quantitatively predict TCR antagonism for any combination of antigen

mixture parameters τ1, τ2, L1, L2, across different T cell types.

3.1.3 The role of ITAM multiplicity in TCR antigen recognition
Another open question regarding T cell activation is the role of immunoreceptor tyrosine-based

activation motifs (ITAMs), which are pairs of tyrosine phosphorylation sites on the intracellular

chains of the TCR [2]. As depicted by pale blue rectangles on the two TCRs of figure 3.2, one

TCR has ten ITAMs (thus twenty phosphorylation sites): three on each of its two CD3ζ chain, and

one on each CD3γ, CD3δ, and CD3ϵ (two copies of ϵ). The functions played by this ITAM mul-

tiplicity, unique among immune receptors, appear paradoxical. On the one hand, phosphorylation

of both tyrosines of an ITAM leads to recruitment of ZAP-70, a major step towards activation of

downstream TCR signaling pathways [131] (by, e.g., the Lck kinase). Having multiple ITAMs per

TCR may serve to amplify T cell activation signals [228, 229, 230], and T cell signaling cannot

happen without at least one ITAM, yet no ITAM in particular is essential [231]. On the other hand,

weak TCR stimulation leads to different states of ITAM phosphorylation compared to agonist stim-

ulation [232, 233]. Furthermore, single-phosphorylated ITAMs seem to inhibit T cell signaling and

mediate TCR antagonism [234, 235, 236], for instance by activating the SHP-1 phosphatase [138],

although not all studies report this inhibitory role [237, 238].
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Overall, the conflicting evidence surrounding TCR ITAMs may stem from the fact that this mul-

tiplicity supports parallel positive and inhibitory TCR signals, and that such a delicate balance

evades qualitative, all-or-nothing functional descriptions, instead requiring quantitative modelling

to be accounted for properly. A quantitative approach could reconcile apparently contradictory

studies by avoiding all-or-nothing claims about ITAM functions2. Low-dimensional, phenomeno-

logical models of T cell receptor activation are most desirable for this task, since they are more

easily interpretable.

3.1.4 CD3-6F TCRs from the Love lab
To elucidate the role of CD3ζ ITAMs, and to provide an additional phenotype in which to probe

TCR antagonism quantitatively, the lab of Paul Love (NICHD) has developed OT-1 mouse lines

in which the three CD3ζ ITAMs of each ζ chain are inactivated (figure 3.3). The tyrosines (Y)

in all 6 phosphorylation sites of the 3 ITAMs are substituted by a phenylalanine amino acid (F).

This mutated phenotype is therefore called 6F (indicating the six Y → F substitutions), while the

TCRs with the original CD3ζ phenotype are called 6Y. The Y → F substitutions prevent ITAM

phosphorylation without significantly changing the charge or structural properties of the ζ chain.

The functions of CD3ζ ITAMs can likely be inferred from the impact of their inactivation in 6F

TCRs.

CD3𝜁 CD3𝜁

𝛾

𝛽𝛼

𝜀𝜀 𝛿

ITAMs
Y → F	
substitution

Figure 3.3: Illustration of ITAM mutations in the 6F TCR. The six red crosses indicate alteration of the
six ζ ITAMs by tyrosine (Y) to phenylalanine (F) substitutions (Y → F) in the two phosphorylation sites of
each ITAM.

Other labs have previously used ITAM mutation or deletion in other TCR-monogenic mouse lines

(e.g., P14 [239], H-Y [240], 3A9 [237]). These were however germline mutants, in which the mice
2For instance, reference [239] claims that TCR antagonism occurs “irrespective of the presence of ζ ITAMs”

because they still observe some antagonism in CD3ζ-deficient TCRs, while their own data in figure 6B shows that the
amplitude of antagonism is reduced, with mutated ITAMs producing only a ∼ 2× antagonism effect, compared to a
∼ 5× with wild-type ITAMs.
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express the altered ITAMs as soon as they are born, and go through thymic selection (growth and

selection of T cells in the thymus after birth) with them. Their T cells may therefore be selected

with compensatory mechanisms for the inactive or missing ζ ITAMs [241]. To circumvent this

problem, the Love lab has three OT-1 mouse lines (in addition to germline 6F) where the 6F

mutation is induced only after thymic selection via a Cre-Lox recombination system3. These three

T cell lines are referred to as 6F(i), because they are “inducible” 6F, and they turned out to all have

similar activation properties (and to the germline 6F as well), so we will not distinguish between

them for modelling purposes. The 6F(i) TCR allowed us to disentangle the impact of CD3ζ ITAMs

on T cell activation and inhibition, and to probe new regimes of TCR/TCR antagonism to further

decide between competing low-dimensional models of T cell activation.

3.1.5 Experimental measurements of TCR responses to antigen mixtures
Our collaborators in the Altan-Bonnet lab characterized the immune response of 6F (4-ITAM)

TCRs using their robotic Immunotron platform, introduced in section 2.2.1. They compared 6F

and 6Y (regular, 10-ITAM TCRs) T cell responses first to single antigens of varying strengths,

and to several mixtures of two antigens. We applied our antigen encoding pipeline to process the

experimental data (section 3.2), but after verifying that antigen encoding still applied to 6F T cells,

we found that simply taking the average of cytokines over time proved a reasonable proxy of T cell

activation levels to be compared against our models of TCR activation.

In our first study (CD3ζ ITAMs, [2]), we initially tested only a high concentration of various

antagonist peptides, which allowed us to developed a slightly modified version of the classical

adaptive kinetic proofreading (AKPR) model in François et al., 2013 [129] (section 3.3). Later on,

we tested smaller concentrations of antagonists peptides. The results led us to develop a revised

AKPR model, introduced in our second study (TCR/CAR antagonism, [3]) and presented here in

section 3.5. Hence, our quantitative framework of antigen encoding, developed for single antigen

responses in the previous chapter, provided the necessary insights to develop parsimonious, low-

3Cre-Lox recombination is used to replace a target gene sequence by another upon activation of the system. The
Cre recombinase is an enzyme which can cut out DNA at specific sites – called Lox sequences – to insert another
genetic sequence instead. For the activation of some gene or promoter to trigger Cre-Lox recombination, the gene
coding for Cre is added downstream of that desired trigger promoter or gene [242]. The three Cre-Lox mouse lines
from the Love lab have their genotype switch induced by administration of the drug tamoxifen, by activation of the
distal Lck promoter, or by expression of the gene OX40, respectively. The dLck promoter is only active in post-
selection CD4+ and CD8+ T cells, while the OX40 gene is only expressed upon T cell activation. The dLck and
tamoxifen-induced 6F are used for in vitro experiments, to ensure all cells already have the 6F CD3ζ at the start of the
experiment; the OX40 line is used for longer in vivo experiments, where having the 6Y to 6F switch occur during the
first few hours of the reaction does not matter too much.
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dimensional models of TCR antigen recognition kinetics that could account for longer time scales

of immune responses.

3.2 Antigen encoding by altered TCRs
We started by applying the latent space analysis and antigen encoding framework to 6F T cells

with altered CD3ζ ITAMs, to gain insights that we could then integrate into more mechanistic (yet

still low-dimensional) models of TCR antigen recognition.

3.2.1 Information theoretic analysis
The cytokine time series data acquired by our collaborators revealed, surprisingly, that 6F(i) T cells

displayed enhanced sensitivity to weak antigens (e.g., G4, V4, T4), yet slightly reduced responses

to strong antigens (A2, N4). This is illustrated in figure 3.4a-b, where we used the cytokine con-

centrations averaged over 72 hours as a readout of T cell activation. This data suggests that the

six CD3ζ ITAMs improve the TCR ability to distinguish between weak antigens – whereas 6F(i)

T cells have a nearly binary response with just over 1 bit of mutual information – and that these

ITAMs can also produce a small additional output upon strong antigen stimulation. Overall, the

presence of additional ITAMs seemed to improve TCR antigen recognition.

To make this point more quantitative, we computed the mutual information (MI) between antigen

quality Q and each cytokine produced by T cells (figure 3.4), using the MI estimator introduced

in section 2.2.4. The error bars represent the statistical error on the MI estimator, computed by

bootstrapping over the 12 data points available for each genotype and peptide (3 biological repli-

cates with 4 technical replicates in each). Despite the small sample sizes, we found a statistically

significant decrease in MI in 6F(i) T cells compared to 6Y in cytokines IFN-γ and TNF. The mu-

tual information difference was more pronounced in germline, pre-activated 6F T cells, as shown

in figure 3.5. The difference between 6Y and 6F was also present when we computed MI between

Q and all cytokines taken together (figure 3.5b).

This information theoretic analysis of 6F T cell responses suggests that multiple ITAMs enable

additional kinetic proofreading of TCR ligand binding. This was the first valuable insight from our

antigen encoding analysis of 6F T cells: in AKPR models of TCR recognition, we should decrease

the number of kinetic proofreading steps, N , when the number of ITAMs is decreased.
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Figure 3.4: Mutual information analysis of naive 6F(i) T cells. “a, Averaged distribution of normalized
cytokine secretion of 4-OH tamoxifen treated naive OT1-6Y or OT1-6F(i) (Ert2-Cre) CD8+ T cells
stimulated with APC + 1 µM antigen of varying affinities. n = 3 biological replicates. The data shown
are representative of two independent experiments. b, Plots of cytokine secretion for IFNγ, IL-2 or TNF
averaged over the 72-h time course. n = 3 biological replicates. Data are shown as the mean ± s.d. and
are representative of at least three independent experiments. c, Mutual information (antigen classes)
between antigen quality and each secreted cytokine for each genotype. Data are expressed as the MI
estimator ± s.d. n = 3 biological replicates representative of at least three independent experiments.”
(CD3ζ ITAMs, [2], adapted from figure 4)
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Figure 3.5: Mutual information analysis of blast, germline 6F T cells. “(a) Distribution of cytokine
secretion levels of effector OT1-6Y or OT1-6F (germline) CD8+ T cells pre-stimulated with 10−6 M
N4 antigen + APCs for 6 days then re-stimulated with APC + 10−6 M antigens of varying affinities.
(b) Mutual information (antigen classes) between antigen quality and all secreted cytokines for each
genotype. While OT1-6Y T cells can distinguish more than four classes of antigen across the 6 peptide
affinities tested, OT1-6F T cells only distinguish two. Data are expressed as MI estimator ± SD. (c)
Summary plots of cytokine secretion showing scaled mean over time. Data are represented as mean ±
SD. (d) Mutual information (antigen classes) between antigen quality and each secreted cytokine for
each genotype. Data are expressed as MI estimator ± SD.” For MI estimation, we had n = 20 data points
(technical or biological replicates) for 6Y T cells and n = 10 data points for 6F, because some experiments
only had 6Y (10-ITAM) T cells. (CD3ζ ITAMs, [2], adapted from Extended Data Figure 5)
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3.2.2 Latent space analysis
Moreover, we noticed in figure 3.4 that all cytokines showed similar patterns as a function of

antigen quality, suggesting that 6F T cell responses still lie on a low-dimensional manifold, just

like we discovered for 6Y T cells in the previous chapter. We therefore applied our preprocessing

and latent space projection method to the cytokine time series collected for 6F(i) T cells (as well as

for control 6Y T cells). This analysis was performed by Sooraj Achar using the antigen encoding

pipeline developed jointly with Thomas Rademaker and myself [185]; we reproduce the results in

figure 3.6, because they provide important hints about CD3ζ ITAM mechanisms.

Strength

Preprocessing Antigen encoding

a b	

c	

Figure 3.6: Latent space analysis of 6F T cells. “a, Cytokine secretion dynamics of naive OT1 T
cells in response to antigens of six different affinities were preprocessed (left) and then projected into
a compressed two-dimensional space (LS1, LS2) through the application of the weight matrix obtained
from a three-layer neural network trained to predict antigen quality (right) (n = 3 biological replicates).
b, Time trajectories of LS1 and LS2 for each antigen in 4-OH tamoxifen treated OT1-6Y and OT1-
6F(i) (Ert2-Cre) CD8+ T cells. c, LS1 and LS2 values at 36 h as a function of antigen affinity. n = 3

biological replicates. Data are shown as the mean ± s.d. and are representative of at least three
independent experiments.” (CD3ζ ITAMs, [2], adapted from figure 4)

After preprocessing cytokine time series and projecting them into the latent space (figure 3.6a,

using the pre-trained neural network weights of chapter 2), we observed similar latent space tra-

jectories for 6Y (10-ITAM) and 6F(i) (4-ITAM) T cells, although with different initial angles θ for

antigens of intermediate strength (figure 3.6b). We inspected more closely how LS1 and LS2 at a

given time (here, t = 36 h) varied as a function of antigen quality in both TCR types (figure 3.6c).

The LS1 dimension reflected the pattern seen in individual cytokines (figures 3.4b and 3.5c), with
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an increased response to weak antigens in 4-ITAM T cells. The most interesting change occurred

in LS2: whereas it had a non-monotonic behaviour as a function of antigen quality in 10-ITAM T

cells, it became monotonically increasing in 4-ITAM T cells. As mentioned in section 2.7.7, the

“bell-shaped” LS2 curve could reflect a strategy by T cells to encode information about antigen

quality in a format easier to decode by other cells. The coincidence of the loss of non-monotonicity

in LS2 with a loss of information content in cytokines (figures 3.4 and 3.5) further supports the

idea that CD3ζ ITAMs help T cells encode finer distinctions between antigens in their cytokine

response.

The observed (LS1, LS2) pattern shifts in 4-ITAM T cells further hinted at possible molecular

correlates of the latent space variables. Since the increase in cytokine responses to weak antigens

in 6F T cells directly translated into an increase in LS1, this variable most likely encodes the

positive signals triggered by TCR stimulation: more activation implies larger LS1. Because of its

non-monotonic behaviour in 6Y (10-ITAM) TCRs, LS2 might reflect inhibitory feedbacks, such as

SHP-1 activation, in TCR activation: these inhibitory signals dominate against weak antigens, for

which LS2 becomes negative in 6Y T cells. The loss of this non-monotonic LS2 in 6F (4-ITAM) T

cells would indicate a reduction in the inhibitory feedback against weak antigens. Therefore, CD3ζ

ITAMs potentially play an inhibitory function in TCR signaling, which is partially lost when these

ITAMs are disabled in 6F T cells.

Our collaborators tested the hypothesis that CD3ζ ITAMs play an inhibitory role in TCR signal-

ing. They compared recruitment of the SHP-1 phosphatase by 6Y and 6F TCRs. Confirming our

prediction, they found that 6Y TCRs activated more SHP-1, due to their 10 intact ITAMs, than

6F TCRs, with only 4 ITAMs left to recruit SHP-1 [2, figure 5]. Hence, ITAMs have a previ-

ously overlooked inhibitory function, via activation of enzymes to slow down TCR signaling. This

explains their importance in lowering T cell activation due to weak antigens.

Thus, we obtained a second important insight from antigen encoding: the CD3ζ ITAMs, in addition

to contributing to kinetic proofreading, seem to support the negative feedback implemented in

adaptive KPR models [116, 129, 132], which inhibits responses to weak antigens. Hence, 6F (4-

ITAM) TCRs should be modelled as having a lower activation rate of the inhibitory feedback, and

maybe a reduced sensitivity to the inhibitory molecule I as well – for instance because SHP-1 has

fewer ITAMs on which to act.

An important prediction follows from postulating that CD3ζ ITAMs have an inhibitory function:

since 6F TCRs produce less inhibitory feedback and are less sensitive to it, they should also exhibit
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reduced antagonism. We therefore set out to make this prediction quantitative by developing a low-

dimensional yet predictive model of TCR activation kinetics, implementing the insights gained

from antigen encoding in 6F T cells. Incidentally, having experimental data for two TCR types –

10-ITAM 6Y and 4-ITAM 6F – allowed us to better constrain our model and our understanding of

how T cells parse antigen mixtures.

In section 3.3, we formally introduce our modelling framework for TCR signaling dynamics. We

explain in particular (section 3.4) how we tuned the classical AKPR model for 6F T cells based

on the two insights just discussed, yielding promising early predictions. Then, we explain how

the classical model could not stand the test of more systematic experimental characterization, and

how we ultimately revised the AKPR model, by starting from an even more parsimonious model

(section 3.5).

3.3 Revisiting the classical AKPR model
To disentangle T cell responses to antigen mixtures, we used mathematical models of the early

biochemical events occurring when T cell receptors are put in contact with pMHCs on the surface

of antigen presenting cells. The models are all based on the idea, introduced in chapter 1, that

TCRs perform kinetic proofreading (KPR) of ligand binding times [128]. Although these binding,

unbinding, and phosphorylation reactions equilibrate on a time scale of minutes [116], we assumed

they would be predictive of T cell activation levels experimentally measured over days in our

collaborators’ Immunotron robotic platform. This assumption is based on the insight, from our

antigen encoding theory (chapter 2), that cytokine dynamics upon T cell activation are determined

by early antigen recognition kinetics.

In this section, we introduce in detail the adaptive KPR (AKPR) modelling framework, and explain

how we extended the classical AKPR model (François et al., 2013) to account for antagonism in

T cells with altered ITAMs. In the next section, we explain how we directly fitted TCR model

outputs to experimental data (by computing dimensionless ratios), and how we needed to propose

a revised AKPR model, because the classical model failed to provide a quantitative match.

3.3.1 Modelling framework
“All models belong to the adaptive kinetic proofreading (AKPR) framework (see

François and Altan-Bonnet [62], Lalanne and François [132], and François et al.

[129]). In brief, this class of models explains the speed, sensitivity, and specificity
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of immune ligand recognition, achieving so-called “absolute discrimination”, i.e., dis-

crimination between different antigenicities (ligand quality, characterized by ligand

binding time τ) irrespective of ligand numbers, L.

All AKPR models comprise two components:

1. A kinetic proofreading (KPR) cascade, triggered by the formation of ligand-

receptor complexes at the T cell–antigen presenting cell (APC) interface, akin

to the initial KPR model proposed for T cell receptors [128]. In this cascade,

a ligand-receptor complex goes through sequential activation steps (e.g., phos-

phorylation of associated chains, recruitment of ZAP-70 and LAT). The variable

Cn represents the number of complexes at step n. It is generally assumed that

the last complex of the cascade, CN , is responsible for the response. When the

ligand dissociates from the receptor, it is assumed that all complexes quickly

revert back to the first step of the cascade, i.e., to the free, unmodified re-

ceptor. The KPR cascade is responsible for the amplification of the relative

response between ligands of different qualities. However, on its own, it fails to

discriminate between a high concentration of low quality ligands (large L, small

τ) and a very low concentration of very antigenic ligands (small L, large τ) as

explained in Altan-Bonnet and Germain [116] and Lalanne and François [59].

2. A negative feedforward or feedback interaction, slowing down the proofreading

steps in the KPR cascade [116, 129, 225]. In its simplest form, the negative

interaction is turned on by a given complex Cm in the KPR cascade. Depending

on the model, this negative interaction can act either on the forward or backward

rates of the KPR cascade [132]. This negative interaction is responsible for the

adaptive part of the AKPR model, ensuring that a vast quantity of low quality

ligands gives a weaker response than a small amount of high quality ligands.

It was proven mathematically [139] that all models achieving absolute discrimination

must exhibit antagonism, defined as the reduction of the overall response to a mixture

of ligands compared to the response when only the strongest ligands of the mixture

(the “agonists”) are presented (figure 4.2). This is typically due to the fact that the

less potent ligands (the “antagonists”) increase the relative intensity of the negative

interactions, so that the total signal is lowered. Importantly, however, quantitative

aspects of T cell antagonism (amplitude, dependence on ligand concentration, etc.)
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depend on the details of the negative interactions and thereby allow us to distinguish

between models.

In the following, we detail how we built upon the initial AKPR model (from François

et al. [129]), and how we needed to modify the negative interactions to account for

all experimental data collected in this study. Throughout, we modelled signaling net-

works in the deterministic limit as a system of ordinary differential equations (ODEs)

derived assuming mass-action or Michaelis-Menten kinetics. The KPR cascade was

modelled in a similar way in all versions. The full ODE systems for all models are

given [. . . ], and we used them to derive the steady-state solutions discussed below.

We assumed these steady-state solutions described the average T cell population-level

readouts of signals.” (TCR/CAR antagonism, [3], SI)

We adopt a notation where superscripts indicate receptor type and subscripts specify the meaning

of a variable, e.g., by indicating the proofreading step or the ligand type. For example, Cρ
m,l is the

number of receptors of type ρ ∈ {TCR, CAR} at proofreading step m and bound to ligand type

l ∈ {1, 2, . . .}. Receptor type indices will be relevant in chapter 4 discussing TCR interactions

with chimeric antigen receptors (CAR).

3.3.2 Initial AKPR model for a single TCR antigen type
“The ODEs of the François et al., 2013 model for mixtures of TCR antigens were

formulated in François et al. [129]; we reproduce them here in the notation chosen

for this work. We drop the ρ = T superscript, which is implied for T cells without a

CAR.

dC0,l

dt
= κ(Ll −Rb,l)

(︄
Rtot −

2∑︂

l′=1

Rb,l′

)︄
+ (b+ γI)C1,l − (1/τl + φ)C0,l

dCn,l
dt

= φCn−1,l + (b+ γI)Cn+1,l − (φ+ 1/τl + b+ γI)Cn,l (1 ≤ n < N)

dCN,l
dt

= φCN,l − (1/τl + b+ γI)CN,l (3.1)

dI

dt
= βI

[︄(︄
1

Cm,th

2∑︂

l′=1

Cm,l′

)︄
(Itot − I)− I

]︄
(3.2)
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where l ∈ {1, 2} indicates the ligand type (agonist or antagonist) bound to these

TCRs, and where Rb,l =
∑︁N

n=0Cn,l. The rate βI is assumed to be fast enough for

I⃗ and the Cn to reach steady state within minutes and does not enter equations

(3.4)–(3.7) for that steady state.” (TCR/CAR antagonism, [3], SI)

Figure 3.7: Reaction network structure of the classical AKPR model (François et al., 2013) in the presence
of agonist (τ1, L1) and antagonist (τ2, L2) antigens.

Figure 3.7 shows a diagram of the biochemical reaction network to which this ODE systems cor-

responds when there are two ligands. To summarize, the Cn,l variables implement a kinetic proof-

reading cascade, where we distinguish TCRs bound to either ligand type l, and the inhibitory

feedback is implemented by a phosphatase I , which is activated by Cm,l from its inactive form I∗

out of a total pool of molecules Itot = I + I∗.

We first consider this model in the case of a single ligand type and drop the index l = 1. For L

ligands of binding time τ , the total number of bound receptors at steady-state is

“

Rb =
1

2

(︃
Rtot + L+

1

κτ

)︃
− 1

2

√︄(︃
Rtot + L+

1

κτ

)︃2

− 4RtotL (3.3)

and the rest of the solution for the steady-state is carried as in François et al. [129]

(see table 3.1 for the definition of parameters). In particular, the steady-state number

of complexes in proofreading step n is given by

Cn = Rb (a−r−
n + a+r+

n) (3.4)
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where, for a given I, r± and a± are given by:

r± =
φ+ b+ γI + 1/τ

2(b+ γI)
±
√︁

(φ+ b+ γI + 1/τ)2 − 4φ(b+ γI)

2(b+ γI)
(3.5)

a± =
r± − 1

(r±/r∓)
N+1 − 1

(3.6)

Eqs. (3.3)–(3.6) correspond to a standard proofreading cascade with a forward rate φ

and a backward rate b+γI, where the inhibitory species I thus favors reverse reactions

in the KPR cascade (see figure 3.12D). The crucial feature of the AKPR model is

that I depends on a complex Cm in the cascade, so the steady-state value of I is the

solution of the following implicit equation :

I = Itot
Cm

Cm,th + Cm
(3.7)

where Cm depends on I via eqs. (3.4)–(3.6), and Cm,th is a fixed parameter setting

the scale of I activation. Eq. (3.7) is solved numerically for I to close the system of

equations.” (TCR/CAR antagonism, [3], SI)

With the default parameter values used in [129], the classical AKPR model produces the steady-

state response curves to a single antigen shown in figure 3.8. Increasing τ1, even just moderately,

increases the output significantly, at all L1: this is kinetic proofreading. Moreover, as L1 increases,

CN eventually stops increasing and remains flat as a function of L1 (over three orders of magnitude

for stronger antigens), due to the negative feedback implemented by I and activated by Cm. The

combination of kinetic proofreading (scaling with τ1) and adaptive feedback (independence of

the output on L1) makes it possible to imagine a response threshold on CN (horizontal dashed

line) such that intermediate antigens (e.g., τ1 = 3.5 s) will never cross it, while slightly stronger

antigens (e.g., τ1 = 5 s) cross it at small antigen concentrations L1. This illustrates how AKPR

models perform absolute ligand discrimination on the basis of binding time τ , with minimal effect

from antigen concentration L.

3.3.3 Classical AKPR model for TCR/TCR antagonism
“This study focuses on antagonistic interactions between receptors on the surface of

T cells. Hence, we revisited the initial François et al., 2013 model on TCR/TCR

antagonism data, to explore whether it could account for quantitative effects of

varying antigen quality and density.
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Parameter Definition

Input
variables

τl Binding time of ligands of type l
Ll Total number of ligands of type l (free or TCR-bound)

State
variables

Cn,l Number of TCRs in state n bound to ligand type l
Rb,l Total number of TCRs bound to ligand type l
I Number of active inhibitory molecules

Integer
parameters

Rtot Number of TCRs per T cell
Itot Total number of inhibitory molecules (active or not)
N Number of proofreading steps for TCRs
m Proofreading state of TCRs activating the inhibitory module

Rate
parameters

φ Forward KPR rate
κ Binding rate of ligands (of any type l) to TCRs
b Basal reverse rate in the KPR cascade
γ Reverse KPR rate mediated by inhibitory molecules I

Cm,th Activation threshold of I by Cm (same for all types l)

Table 3.1: Definition of parameters in the classical AKPR model. Variables and parameters in the
classical AKPR model, for TCR/TCR antagonism. Superscripts ρ = T , indicating the receptor type is TCR,
are implicit. Note that Rb,l =

∑︁N
n=0Cn,l, so it is not an independent state variable. 6Y: 10-ITAM TCR, 6F:

4-ITAM TCR (CD3ζ ITAMs mutated).

For a mixture of two TCR antigens, we distinguish receptors bound to agonist ligands,

denoted by variables Cn,1, and receptors bound to ligands of lower potency (e.g.,

antagonists), denoted by Cn,2. Agonist and weaker ligands have binding times τ1 and

τ2, respectively, and quantities L1 and L2.” (TCR/CAR antagonism, [3], SI)

We again are interested in the fixed point solution of the system of ODEs (3.2), now for l ∈ {1, 2}.

“The stationary solution is given by (3.4)–(3.6), with τ = τ1 or τ2, respectively.

However, the numbers of bound receptors to each ligand type, Rb,1 and Rb,2, are

coupled via,

0 = κτ1(L1 −Rb,1)(Rtot −Rb,1 −Rb,2)−Rb,1

0 = κτ2(L2 −Rb,2)(Rtot −Rb,1 −Rb,2)−Rb,2 . (3.8)

This system is solved exactly [. . . ] by expressing Rb,2 in terms of Rb,1,

Rb,2 = Rtot −Rb,1 −
Rb,1

κτ1(L1 −Rb,1)
(3.9)
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Figure 3.8: Response curves – steady-state output CN as a function of antigen density L1 – of the classical
AKPR model [129], for various antigen qualities τ1. The horizontal dashed line is a hypothetical response
threshold, to illustrate how intermediate antigens can be absolutely distinguished from stronger ones, at all
L1. The steady-state solution plotted is exact and includes receptor saturation at large L1 (contained in
equation 3.3): the curves all become flat as L1 becomes larger than the number of receptors Rtot.

and solving the resulting cubic equation for Rb,1,

p0(Rb,1)
3 + p1(Rb,1)

2 + p2Rb,1 + p3 = 0 (3.10)

where the coefficients are

p0 =
τ1
τ2

− 1

p1 = −
(︃
τ1
τ2

− 1

)︃(︃
Rtot + L1 +

1

κτ1

)︃
− L2 −

τ1
τ2
L1

p2 =
τ1
τ2
L2
1 +

(︃
2
τ1
τ2

− 1

)︃
RtotL1 +

L1

κτ2
+ L1L2

p3 = −τ1
τ2
RtotL1

2 (3.11)

The physically correct solution is the only root satisfying 0 ≤ Rb,1 < L1. It always ex-

ists and ensures 0 ≤ Rb,2 < L2 and Rb,1+Rb,2 < Rtot too.” (TCR/CAR antagonism,

[3], SI)

We give a proof of these claims about the existence and uniqueness of the solution for (Rb,1, Rb,2) in

appendix C. We derived this exact solution for (Rb,1, Rb,2) for the first time in [2], to avoid relying

on the approximation that receptors are not saturated by ligands, which was used in previous papers
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on AKPR models [129, 132] although it in fact breaks down at high (1µM) antagonist doses. Our

exact solution solves this problem and remains valid in all regimes of ligand and receptor numbers.

“Lastly, the implicit solution for I in eq. (3.7) now contains a sum over ligand types

I = Itot
CT
m,1 + CT

m,2

CT
m,th + CT

m,1 + CT
m,2

. (3.12)

” (TCR/CAR antagonism, [3], SI)

The equation for I is solved numerically, by treating Cm,l as a function of I .

3.4 Initial AKPR model for TCRs with fewer ITAMs
In our first attempt to predict the response of 6Y and 6F TCRs to antigen mixtures, we slightly

augmented the classical AKPR model to account for the effect of ITAM number, using the insights

gained in section 3.2. Figure 3.9A illustrates the model variants thus defined for 6Y and 6F T cells.

Then, we proceeded in two steps to extract predictions from the model. First, we tweaked model

parameters and output definitions to fit the response of both TCR types to single antigens. Second,

we generated model predictions for responses to antigen mixtures as a function of L1, τ1, τ2, which

we compared qualitatively to experimental measurements.

3.4.1 Adapting the model to distinguish 6Y and 6F(i) TCRs
“We adapted the model to capture differences seen between 6Y and 6F TCRs in

response to a single type of antigen at a time, such as shown in figure 3.9B. The

main features we aimed to capture were that 6F(i) cells produce more output for

weak antigens – the curve looks shifted to the left according to ligand quality– but

that 6Y cells eventually catch up (for strong agonists) and produce a higher maximal

response.

In our model, we hypothesized that differences in ITAM multiplicity correspond to

different numbers of kinetic proofreading steps. We assigned fewer steps to 6F TCRs

– which lack 6 ITAMs – than to 6Y: N6Y > N6F . Less proofreading may explain the

increased response of 6F(i) T cells to weak agonists. Additionally, we made the last

k6Y > 1 complexes (from CN6Y −k+1 to CN6Y
) contribute to the signaling output of

6Y TCRs, compared to only the last complex, CN6F
, with 6F(i) TCRs (i.e., k6F = 1).
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predicting antagonism, as modified from François et al. [129]. On binding to a ligand (left), the TCR
undergoes a series of biochemical modifications (indicated by color changes on ITAMs). Complexes
can also unbind, followed by rapid dephosphorylation of ITAMs; thus, the TCR implements a KPR
scheme. Complex Cm (m = 1) activates the negative feedback realized by the phosphatase SHP1 (S:
active, S∗: inactive); SHP1 activation is reduced in 6F(i) by a factor fα,6F to reflect the experimental
observations reported in [2], Fig. 5. To reflect their higher ITAM multiplicity, 6Y TCRs can undergo
N6Y proofreading steps and 6F TCRs can undergo N6F steps, with N6Y > N6F . Moreover, the last k6Y
complexes of 6Y TCRs contribute to the total output (green arrows), compared to only one for 6F(i) b,
Left, model constructed to recapitulate the differences between the responses of OT1-6Y and OT1-6F(i)
T cells to antigens with different affinity for the TCR. Right, experimental results as measured by IL-2
concentration at 24 h in response to different OT1 peptides.” (CD3ζ ITAMs, [2], figure 7). Error bars are
standard deviations over 3 repeats with cells from 3 different mice.
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This postulated effect of reduced ITAM multiplicity is consistent with the suboptimal

6F(i) response to antiCD3/antiCD28 crosslinking ([2], figure 1) or strong antigens

(N4, figure 3.9B). The numbers we used are listed in the parameter table 3.3. Note

that N6Y and N6F represent phenomenological TCR states and are not necessarily

equal to the number of ITAMs.” (CD3ζ ITAMs, [2], SI)

From the steady-state solutions of the model variables Cn,l, we defined the activation output in the

presence of L1, L2 ligands of binding times τ1, τ2. We summed the scaled values of the last k

complexes in the proofreading cascade,

O(τ1, τ2, L1, L2) =
N∑︂

n=N−k+1

Θn(Cn,1 + Cn,2)

where Θn(Cn,1 + Cn,2) =
(Cn,1 + Cn,2)

2

θ2n + (Cn,1 + Cn,2)2
(3.13)

where, of course, Cn,2 = 0 when considering the response to a single ligand type.

“The normalization constants θn are the values of Cns in response to a large amount of

L1 strong agonist ligands alone (θn = Cn(τ = 15 s, L→ ∞)), to ensure that Φn only

saturates for very strong agonists. This normalization accounts phenomenologically

for possible differences in the signaling potency of CD3ζ and CD3γ, δ, ϵ chains. It

also compensates for the different scales of Cn at successive steps n in our model.

Lastly, for plotting purposes, we added a small positive value (10−3) to the output

O(τ, L) to mimic the effect of an experimental lower limit of detection; it does not

alter the predictions of the model.” (CD3ζ ITAMs, [2], SI)

3.4.2 Choosing binding times and ligand numbers
“To make comparisons between our model and experimental data, we had to match

ligand binding times τ in the model with the binding times for OT-1 TCR binding to

H-2Kb-OVA-derived antigens, and the numbers of ligands L per antigen presenting

cell (APC) in the model with the number of ligands for different peptide pulse con-

centrations. Our model relies on phenomenological parameters so we did not attempt

to match them with exact biochemical parameters; instead, we chose the following

reasonable estimates. For τ , we associated evenly spaced values to the OVA-derived
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antigens, which are more or less evenly spaced on a logarithmic EC50 axis [174, 176].

The table 3.2 below summarizes the selected values for τ .

For L, we assumed that a 1µM pulse concentration P saturated the MHC molecules

on the surface of the antigen presenting cell (APC), thus giving roughly 105 pMHCs

per APC. Concentrations between 1µM and 1 nM are almost saturating, such that a

1 nM pulse leads to 104 bound peptides per APC. We finally assumed that concentra-

tions between 1 nM and 10 pM (those used in our experiments) are in the log-linear

region of the dose response curve. To generate the continuous model prediction

lines as a function of pulsing antigen concentrations P , we fitted a Michaelis-Menten

calibration curve to those assumptions,

L = Lmax
P

P + P0

(3.14)

such that any number of ligands L could be mapped to a pulsing peptide concen-

tration. This conversion curve is shown in figure 3.10 below.” (CD3ζ ITAMs, [2],

SI)

Peptide τ (s)

N4 10
A2 8
Q4 6
T4 4.5
V4 3.5
G4 0.75
E1 0.1

None 0.001

Table 3.2: Peptide - τ map for early studies of 6F TCRs in section 3.4. It will be replaced by a more
systematic conversion rule later.

3.4.3 Parameters of the model for single antigen types
For convenience of interpretation, in this version of the model, we supposed that the inhibitory

molecule I was in fact SHP-1, so we called it S in this section, and we took m = 1 – both of

these assumptions are as in the original model [129]. We also called βI/Cm,th = α and βI = β the

SHP-1 activation and deactivation rates, respectively.
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replaced by more systematic experimental characterizations later.

“After defining the model network and output, we made two modifications to the

original parameter values to qualitatively match the cytokine response curves as a

function of antigen quality (figure 3.9B), in response to a single kind of antigen (i.e.,

L2 = 0).

First, we included the important experimental observation that 6F(i) T cells recruit

less SHP-1 by decreasing the phosphatase activation rate α by a factor fα,6F = 8,

for this type of TCR only. Note that the normalization factors θn, however, were

defined without this lowered SHP-1 rate, because those thresholds are set by the

biochemistry of unaltered TCRs.

Moreover, the original model parameters were selected for pre-activated (‘blast’) T

cells, while experiments here were done on naive cells; as a consequence, we had

to reduce, for both TCR types, reaction rates φ, b, and γ by a factor fnaive = 4,

and to increase the SHP-1 activation rate α by a factor 2fnaive. Biologically, these

modifications make sense: we expect pre-activated T cells to respond faster and to

have less negative feedback inhibiting their response.

After making those two modifications, the model could qualitatively match data for

a single antigen type (figure 3.9).The resulting model parameters are summarized

in the table below. We did not tune parameters to fit antagonism experiments;

antagonism predictions in figure 3.11f–h were generated after having selected final

model parameters.” (CD3ζ ITAMs, [2], SI)
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Parameter Value in [129] Value for 6Y Value for 6F(i) Description

R 3× 104 Same value as original TCRs per T cell
ST 6× 105 Same value as original Total number of SHP-1 per cell
κ 10−4 s−1 Same value as original Ligand-receptor pair binding rate
τ 0.01 to 10 s Same range as original Ligand dissociation time
N 5 8 4 Number of proofreading steps
k N/A 4 1 Last k complexes contribute to output
φ 0.09 s−1 1

4 × 0.09 s−1 Same as 6Y Phosphorylation rate
b 0.04 s−1 1

4 × 0.04 s−1 Same as 6Y Spontaneous dephosphorylation rate
γ 1.2× 10−6 s−1 1

4 × 1.2× 10−6 s−1 Same as 6Y Dephosphorylation rate by SHP-1
β/α 500 500/8 = 67.5 500 SHP-1 deactivation-activation ratio

Table 3.3: “Model parameter values for 6Y and 6F or 6F(i) (germline or switched phenotype) naive T
cells, compared to original model values (which were based on the literature and tuned for pre-activated
T cells).” (CD3ζ ITAMs, [2], SI)

3.4.4 Predictions of the antagonism ratio in various mixtures
To compare model predictions and cytokine data, the amount of antagonism exhibited by cytokines

was quantified by the fold-change FC in cytokine output in presence of the antagonist peptide,

compared to the agonist peptide alone. This defined an “antagonism ratio”,

FCdata =
[Cytokine](agonist + antagonist)

[Cytokine](agonist alone)
(3.15)

“which is lower than 1 if the addition of the antagonist ligand lowers the total cytokine

response, i.e., if there is antagonism. From our cytokine time series, we computed

the ratio at each time point, then took the geometric average of ratios across time,

to have a single number characterizing each agonist-antagonist mixture.” (CD3ζ

ITAMs, [2], SI)

Figure 3.11a–e illustrates this process. Analogously, for the model, we computed the ratio of the

steady-state outputs for the mixture compared to the agonist alone,

FCmodel =
O(agonist + antagonist)

O(agonist alone)
(3.16)

where O is the model output defined in equation (3.13) (for 6Y or 6F(i) T cells).

“We computed this ratio for a range of agonist binding times and agonist concentra-

tions, in the presence of model equivalents for the antagonists we planned to used
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Figure 3.11: Model predictions of antagonism in 6Y and 6F T cells compared to data. Adapted from
CD3ζ ITAMs, [2]. “a, IL-2 secretion dynamics over 72 h for naive OT1-6Y or OT1-6F(i) (dLck-Cre)
CD8+ T cells incubated with APCs pulsed with either an agonist alone (N4) or agonist plus antagonist
(N4 + V4) at the indicated concentrations (n = 3 biological replicates). b, At 18 h, IL-2 levels were
markedly lower in OT1-6Y T cells stimulated with both N4 and V4 compared to N4 alone, whereas
V4 functioned as a co-agonist with N4 for OT1-6F(i) T cells. Data are shown as the mean ± s.d.
c, Antagonism ratio for b. Values greater than 1 indicate enhancement of the agonist response by an
antagonist ligand, while values smaller than 1 are indicative of antagonism. d, Antagonism ratio as
a function of time revealed that adding V4 peptide increased IL-2 secretion by N4 peptide-stimulated
OT1-6F(i) T cells but antagonized IL-2 secretion by N4 peptide-stimulated OT1-6Y T cells. e, Averaged
antagonism ratio over all recorded time points.” (CD3ζ ITAMs, [2], figure 6).
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Figure 3.11: (Continued) (f), “Comparison of modeled versus experimental results on the degree of an-
tagonism in OT1-6Y and OT1-6F(i) T cells as a function of antagonist peptide affinity. Both model and
experiment show that OT1-6F(i) T cells are less susceptible to antagonism than OT1-6Y T cells across
a range of antagonist affinities, and that there is an optimum range of antagonist affinities needed to
maximize an antagonistic response. [g], Model (left) and experimental results (right) for antagonism as
a function of agonist concentration, agonist and genotype [. . . ]. Both model and experiment show that
OT1-6F(i) T cells are antagonized less effectively than OT1-6Y T cells. [h], Model (left) and experi-
mental results (right) for antagonism as a function of agonist concentration, antagonist and genotype
for different antagonists [. . . ]. Both model and experiment show that the antagonist that produces the
largest antagonistic effect changes as the agonist concentration varies. n = 3 biological replicates. Data
are represented as the mean ± s.d. Data are representative of three independent experiments.” (CD3ζ
ITAMs, [2], figure 7)

in experiments (V4, G4, E1 at 1µM). In particular, we predicted the antagonism ef-

fects highlighted in figure 3.11f–h. Then, we compared the model predictions to the

experimental results, without further tuning of the model parameters (except G4’s τ ,

which was lowered from 1.5 to 0.75 s). Hence, the proper output definition and the

aforementioned adjusted model parameters for 6F(i) naive T cells were determined in

advance to capture data on the response to pure antigens (figure 3.11), which came

from a previous experiment.” (CD3ζ ITAMs, [2], SI)

Figure 3.11 shows that the classical AKPR model, with a few small adjustments based on insights

from our latent space analysis (section 3.2), provides counter-intuitive, qualitative predictions of

TCR/TCR antagonism, which are verified in the experimental data. The reduction in antagonism

in 6F(i) (4-ITAM) T cells is captured by the model, and the measurements confirm our hypothesis

(figure 3.11f). We did not expect the fact that the V4 peptide goes from partial agonist to antago-

nist as the dose of TCR agonist is increased, yet it is verified in the data (figure 3.11g). We also

did not expect the crossover of which antigen is the best antagonist as agonist density is increased

(figure 3.11h). Just as it happens often in other fields of physics, the results could not have been

guessed from qualitative reasoning only; they required a mathematical formulation to be derived.

Our results illustrate how broad insights gained from latent space cytokine dynamics can be trans-

lated into mechanistic understanding of TCR signaling, thus bridging slow and fast T cell response

time scales.

However, the agreement between the classical AKPR model and experimental data started to crack

as we sought a direct quantitative agreement (i.e., as we tried to directly superpose data and model

curves). Upon a more systematic exploration of antagonist density L2 in particular, and after
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experimentally calibrating ligand densities as a function of antigen pulse concentration (to have

more accurate estimates than those hypothesized in figure 3.10), we realized that a revised model

of TCR kinetics would be necessary.

3.5 Revising the AKPR model of TCR/TCR antagonism
The previous model worked qualitatively for the conditions tested in section 3.4, but we then

sought a direct, quantitative agreement between model and data. Moreover, we anticipated the

need to generalize our framework to synthetic receptors for cancer antigens in immunotherapy,

which have very different abundances and affinities than TCR antigens. Thus, we set out to more

systematically explore the space of antigen parameters and to develop a revised AKPR model.

For this purpose, our collaborators

“generated a comprehensive dataset cataloging TCR-mediated antagonism and en-

hancement of functional T cell responses across a large set of TCR-engaging antigen

mixes (Figure 3.12A). We documented highly-variable FCTCR/TCR in response to dif-

ferent strengths and quantities of antigens, compared to the response to an agonist

alone (Figure 3.12B).” (TCR/CAR antagonism, [3])

This FCTCR/TCR ratio is the fold-change in T cell activation output in the presence of a mixture

of antigens, compared to the agonist antigens alone, which was already introduced in section 3.4.

We discuss again its calculation from data and model outputs below (section 3.5.1). It allowed us

to directly overlay model and data antagonism levels. We exploited this quantitative comparison

opportunity to estimate model parameters using Markov Chain Monte Carlo (MCMC) simula-

tions and to develop a revised AKPR model with better fits to the data than the classical model

(figure 3.12C).

3.5.1 Quantitative comparison between models and data
Appendix D details the procedures by which we estimated model parameters for TCR/TCR antag-

onism (this chapter) and TCR/CAR antagonism (next chapter) from experimental calibration and

MCMC simulations. Here, we summarize the main steps we followed to first thoroughly assess

the classical AKPR model, and then develop new models based on quantitative agreement with

experimental measurements.
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Figure 3.12: “Modeling TCR responses to mixes of antigens to quantify receptor cross-inhibition
in T cells. (A) Scheme for multiplexed experimental settings to quantify TCR/TCR crosstalk. (B)
Different TCR antagonist ligands modulated TCR response to the agonist ligand (OVA-N4) in both
directions over time across a variety of conditions in vitro, as measured using fold changes (FC) of
cytokine dynamics obtained from the IMMUNOtron robotic platform [1] (n = 3 biological replicates).
(C) These data were used to develop analytically tractable mathematical models of receptor crosstalk
and intracellular inhibition. Their parameters were estimated using Markov Chain Monte Carlo to fit
FCTCR/TCR measurements. ” (TCR/CAR antagonism, [3], figure 2)

134



Figure 3.12: (Continued) “(D) Biochemical reaction network of the classical adaptive kinetic proofreading
(AKPR) model used to describe TCR antagonism [129], extended to CAR and TCR receptors. Bolded
parameters were fitted by MCMC. (E) Posterior parameter distributions of the classical model sampled
by MCMC to fit TCR/TCR antagonism data. Crosshairs indicate the maximum a posteriori parameter
estimate. (F) TCR/TCR antagonism model curves of the classical model, with the maximum a posteriori
parameter estimates, compare poorly to the experimental data on which they were fitted. (G) Biochemical
network of the revised AKPR model, differing from (A) by its inhibitory module, which only impacts the
last KPR step. Model parameters are defined in table 3.4. (H) Posterior parameter distributions of the
revised model, obtained by MCMC. (I) TCR/TCR antagonism model curves of the revised model, with
the maximum a posteriori parameter estimates, fit well TCR/TCR antagonism data. Shaded areas in
(F,I) are 90 % model CIs, generated by pulling 1000 parameter samples from the MCMC distributions
in (E,H), while error bars are 95 % CI on the geometric mean of cytokine data from 3 experimental
replicates with 6 time points each, based on a Student’s t-distribution.” (TCR/CAR antagonism, [3],
figure 2)

Surface molecule abundances

To begin, our collaborators measured the abundance of TCRs on the surface of T cells and of

MHCs on the surface of antigen presenting cells, using fluorescent antibodies and flow cytometry.

Since our AKPR model describes the TCR signaling of a typical cell generalized to the whole

population, we computed the geometric average across the measured single-cell abundance distri-

butions4. These average abundances allowed us to fix the total number of TCRs, Rtot, and the total

number of MHC (loaded with a peptide or not), respectively. The results for various cell types

are in figure 3.13A–B and in the appendix, table D.1. Of note, while earlier modelling studies

reported Rtot = 30, 000 receptors per T cell [116, 129, 124], we consistently found higher receptor

numbers, Rtot ≈ 1× 105.

Then, to calibrate ligand abundance Ll as a function of the peptide pulse concentration, our col-

laborators measured the number of pMHCs on antigen presenting cells pulsed at various concen-

trations. We fitted these measurements with a Michaelis-Menten curve as a function of the pulse

concentration [P ] (figure 3.13C left). We found a similar loading constant, KD,load, for all OVA

peptides (figure 3.13C, right). Hence, the ligand abundance Ll on a cell type with some total MHC

abundance MHCtot, for any antigen, can be determined as

Ll([P ]l) = MHCtot
[P ]l

[P ]l +KD,load

(3.17)

4The geometric average is like the arithmetic average in log scale, hence it is better suited to the long-tailed
distributions of surface molecule abundance across cell populations.
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Figure 3.13: Quantification of surface molecule densities and antigen affinities. “(A) TCR and CAR
receptor numbers on the surface of naive, preactivated, and CAR OT-1 T cells. (B) Major histocompati-
bility complex (MHC) and CAR target antigen numbers on murine antigen presenting cells (splenocytes)
as well as B16 melanoma and E2aPBX leukemic cells (left), human leukemic cells (center), and human
lung epithelial (BEAS2B) and adenocarcinoma (PC9) cell lines (right). (C) Calibration of OVA peptide
MHC (pMHC) loading on transporter associated with antigen processing (TAP)-deficient RMA-S cells,
quantified by immunofluorescence, as a function of peptide pulse concentration (representative example
of three biological replicates show (left), and peptide loading EC50s inferred from Hill fits on loading
curves for each OVA peptide variant (right). (D) MHC loading curve built from EC50s shown in (C).
(E) KPR scaling law used to convert peptide affinity EC50s into ligand binding times τ for the model.
Error bars in panels a and b are cell population standard deviations in logarithmic scale. Shaded areas
in panels (C, right) and (D, left) are 95 % CI of loading EC50s across replicate and OVA peptides,
and the error bar in panel (C, right) is the 95 % CI on the geometric mean, obtained by bootstrapping.”
(TCR/CAR antagonism, [3], Figure S2).

We found a loading constant log10(KD, load/1nM) = 2.0+0.2
−0.3 . Of note, this implies that a pulse

concentration of 1 nM on APCs with 105 MHCtot molecules corresponds to L ≈ 103, which is 10

times less than what we had estimated in section 3.4. This means that we had over-estimated ligand

abundances in our initial investigation of antagonism in 6Y and 6F T cells with the classical AKPR

model. The wider than anticipated range of L values in the experimental data made it considerably

more challenging to explain the observed antagonism patterns as the amount of antagonist peptides

L2 is decreased, and it was part of the reason why we needed to design a revised AKPR model.
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Antigen quality and binding times

Moreover, we needed to assign a binding time τ to antigens based on their affinity, as quantified

by their activation EC50. We took the strong agonist N4 as a reference and assigned τ = 10 s to it,

following previous modeling studies with peptide binding times in the 0.1–10 s range [129, 124].

The binding time of other antigens was then computed by assuming EC50s are defined by a KPR

scaling law O ∼ LτN passing some activation threshold O = Θ, set by the reference N4. Hence,

τ = τN4

(︃
EC50,pep

EC50,N4

)︃−1/N

.

We usedN = 6 (since we also used thisN in our revised AKPR model). This scaling calibration is

shown in figure 3.13E. A different scaling of τ with EC50 could be (roughly) compensated for by

tuning the KPR rate φ in the model; hence, this KPR assumption was sufficiently accurate for our

purpose. The EC50s of the very weak antigen E1 could not be determined, so we used τ = 0.5 s.

Fixed and fitted model parameters

With these external parameters calibrated experimentally, we had to determine the rate parameters

of the biochemical network models. We fixed some parameters to default values; for the classical

AKPR model, these were the binding rate κ, the basal reverse rate b, and the I-mediated additional

reverse rate γ. We set N = 6 for 6Y T cells; this number of KPR steps was also used in [59]. It

provided a good balance between antigen discrimination, time to reach steady-state, and sufficient

magnitude of CN to avoid excessive noise in a stochastic version of the model [133, 45, 243, 244].

OtherN choices (within the 4–8 range, say) could have worked too, by adjusting the φ rate and the

KPR scaling law used to convert EC50s to binding times. We allowed the remaining parameters

to vary and fitted our models to our collaborator’s comprehensive TCR antagonism dataset. Ap-

pendix D details the different parameter fits that were performed (see especially tables D.2–D.4).

Antagonism fold-change ratio

To estimate model parameters, we fitted the model predictions to measurements of antagonism in

binary antigen mixtures, quantified in terms of the antagonism FC quantity. For each mixture of

agonists at concentration [P ]1 and antagonists at [P ]2, we computed the ratio of the responses to
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the mixture compared to the agonist peptide (usually N4) alone:

FCTCR/TCR,exp =
Out(agonist[P ]1 + antagonist[P ]2)

Out(agonist[P ]1)
(3.18)

We computed this quantity for several different output readouts. All cytokines gave similar patterns

of antagonism as a function of antagonist quality, simply with different amplitudes (see figure 3.12

in the next chapter). Thus, contrary to chapter 2 – where any single cytokine contained less in-

formation than the joint cytokine dynamics – here, we could use only one cytokine as a readout

of T cell activation, since we were only interested in relative changes in T cell activation due to

antagonism. We therefore decided to use cytokine IL-2 as the Out for model fitting purposes5.

Since we had multiple experimental repeats of each data point p, we could also compute error bars

σp on these measurements; we used a 95 % confidence interval based on Student’s t-distribution

(see section D.6).

To compute the model prediction corresponding to a mixture tested experimentally, we first ob-

tained the antigen binding times τ1, τ2 and abundances L1, L2 corresponding to the mixture, then

computed the model outputs. For TCR/TCR antagonism, we directly used the analytical steady-

state solution for CN,l({τl}, {Ll}) (i.e., the numbers of bound TCRs in the final signaling state, in

response to the antigen mixture {τl}, {Ll}, eq. 3.4) as the output. Hence, we computed

FCTCR/TCR,mod =
CN,1(τ1, τ2, L1, L2) + CN,2(τ1, τ2, L1, L2)

CN,1(τ1, 0, L1, 0)
. (3.19)

corresponding to each FCTCR/TCR,exp in the fitted dataset.

MCMC parameter estimation

Then, we estimated model parameters by fitting FC measurements, using Markov Chain Monte

Carlo simulations (figure 3.12C). To summarize, MCMC estimates model parameters by simu-

lating a Markov chain, whose stationary distribution is, by construction, the posterior probability

distribution of parameters θ given the data, P (θ | data). The Markov process is built from a prior

P (θ), a likelihood (or cost function) P (data | θ), and a proposal distribution, from which transi-

tions in parameter space are sampled. We used the MCMC algorithm implemented in the emcee

Python package [245], which is often used in astrophysics. It simulates an ensemble of random

5Specifically, we computed the FC at each experimental time point ti, then took the geometric average of FC
time points. Due to properties of the geometric average, this is equivalent to computing the geometric average of IL-2
over time, then computing FC of the averages.
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walkers in parameter space and proposes transitions based on the current position of all walkers

(so the moves are adapted to the local landscape). We opted for MCMC simulations, although they

are more computationally costly than local optimization methods, because they provide a more

complete exploration of parameter space and a Bayesian estimate of parameter uncertainty [246,

247, 248, 249, 250].

We used uniform priors with boundaries constraining parameters within biologically reasonable

values (see table D.3). Our log-likelihood function was the sum of squared residuals between

model and empirical FCTCR/TCR,

logP (data | θ) ∝ −
∑︂

data p

wp

(︃
log2 FCmodel({τl,p, Ll,p})− log2 FCdata, p

σp

)︃2

(3.20)

where we assigned a weight wp to each point p; we gave weight wp = 3 to data points coming

from the smallest agonist concentration (10 pM), since this was the most challenging condition to

capture adequately with models, and wp = 1 to other conditions. For the classical AKPR model,

we performed a grid search over the indexm of the complex which activates the negative feedback,

performing MCMC simulation of parameters φ, Cm,th, and Itot for each choice of m.

With these MCMC simulations set up for direct, quantitative comparison of antagonism between

model and data, we verified more rigorously than in section 3.4 whether the classical AKPR model

was able to account for TCR/TCR antagonism.

3.5.2 Shortcomings of the classical AKPR model
We performed MCMC simulations to fit the classical AKPR model (figure 3.12D) to our exten-

sive TCR/TCR antagonism dataset, searching over the three parameters φ, Cm,thresh, and Itot. We

ran the simulations for 32 parallel random walkers each taking 40,000 steps – long enough to en-

sure proper convergence to the stationary distribution, according to autocorrelation and acceptance

fraction metrics (figure 3.14). For every m value in {1, 2, 3, 4, 5},

“MCMC optimization yielded spurious multimodal distributions of parameters (Fig-

ure 3.12E) that consistently failed to fit our data (Figure 3.12F). A careful analysis of

this model failure revealed that the internal negative feedback in the classical AKPR

model does not adequately vary with antigen density to match our extensive charac-

terization, likely because it acts en bloc on all proofreading steps (Figure 3.12D).”

(TCR/CAR antagonism, [3])
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Indeed, the inhibitory species I , with an activation rate linear in Cm and an impact on all KPR

steps, did not have the necessary flexibility to capture two particularly challenging features of

the data: first, that a small dose of 1 nM antagonists (corresponding to < 1000 ligands) can still

produce significant antagonist compared to the larger dose; and second, that the antagonism curve

for 1 µM antagonists crosses the FC = 1 horizontal line to the left of the 1 nM curve6.
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Figure 3.14: Autocorrelation function during MCMC simulations for the three rate parameters in the classi-
cal AKPR model, averaged across random walkers, computed following [245] (details in appendix D). The
total simulation time is well above 50 times the autocorrelation time τ̂ , the burn-in fraction (taken to be 20τ̂ )
is small, and the acceptance fraction of proposed moves is between 0.2 and 0.5; these metrics indicate that
the MCMC simulation has converged.

“The original AKPR model accounted well for antagonism as experimentally probed

in earlier studies [129, 2] i.e., a small quantity of TCR agonist ligands mixed with a

large excess of TCR antagonist ligands.” (TCR/CAR antagonism, [3], SI)

However, it became unsatisfactory as we sought quantitative agreement between model and data

in terms of the FC ratio, and as we varied more systematically antigen qualities and quantities

L1, L2, τ2. No point in parameter space could account for all these antagonism and enhancement

patterns simultaneously; even the best fit, shown in figure 3.12F, does not match at all the exper-

imental data, merely producing a horizontal line roughly at the average antagonism FC for each

agonist concentration. The classical model failed as well when we tried to extend it to antagonism

in CAR T cells (next chapter). We did not attempt to fit data for 6F T cell receptors with full

MCMC simulations, and instead focused on developing a refined model to understand important

modulations in antagonism caused by antigen density.

6A model with perfect quantity-independent antigen recognition should have antagonism curves for any L2 cross
the line when τ1 = τ2 (as the mixture reduces to a single kind of antigen, the response to which only depends on τ , not
L = L1 + L2). Even though the classical AKPR model does not have a perfectly L-independent response to antigens
(figure 3.8), it cannot reproduce the crossover of the 1nM and 1 µM antagonism curves.
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3.5.3 Establishing a revised AKPR model
We needed an improved model to capture quantitatively non-linear effects in T cell responses to

antigen mixtures. We remained within the hypothesis that these effects are caused by intracellular

inhibitory cross-talk between receptors, since the experimental evidence reviewed in section 3.1.1

points to this cause (rather than competition for receptors or MHCs, or cytokine-mediated feed-

backs). We also assumed that ODE-based models of receptor signaling kinetics can capture this

cross-talk – while being prepared to explore stochastic or cell-population models, if necessary.

We focused on searching for models able to exhibit the rightwards shift of the antagonism versus

τ2 curve as L2 is decreased, since this was an unexpected and striking feature of the data shown

in figure 3.12F,I (compare the black and red sets of points). Designing more complicated models

with added biochemical details did not generate this feature in a straightforward manner. We tried

adding positive or negative feedbacks at various points of the kinetic proofreading cascade, based

on biochemical studies of TCR crosstalk [138, 136]. We also tried larger models accounting sep-

arately for the two phosphorylation sites of each ITAM, and allowing parallel phosphorylation of

these ITAMs. This led to a large space of receptor states Ck,l,m,n giving the number of TCRs bound

to ligand type l, with k ITAMs single-phosphorylated ITAMs, m doubly-phosphorylated ITAMs,

and n ITAMs bound to ZAP-70, where keeping track of all possible transitions could only be done

numerically. We explored several other such variations. Yet, in the end, these various models ex-

hibited response curves to single antigens and antagonism curves in binary mixtures which were

similar to effective AKPR models. Without added explanatory benefit, they were however more

mathematically complicated, often requiring numerical integration of their stiff ODE systems to

find steady-state solutions, which would have rendered model evaluation in MCMC simulations an

order of magnitude more computationally costly.

Therefore, we stayed within the AKPR framework and adopted a different strategy. We initially

sought to make the model as simple as possible, before parsimoniously adding back the ingredients

necessary to capture all experimentally observed patterns of antagonism. We realized that the key

solution was to introduce a non-linearity in how the inhibitory species I inhibits the KPR rate, to

reduce the difference in antagonism between the 1 nM and 1 µM antagonist doses, while keeping

the I ∼ L scaling necessary to obtain L-independent antigen recognition over some range of L.

Inspired by the AKPR model evolved in silico in [132], we

“first rendered the model mathematically simpler by neglecting reverse reactions in

KPR cascades, keeping only the forward rate, φ. Second, we changed the inhibitory
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interaction by making the rate in the inhibited steps a Hill function of the inhibitory

species I. Namely,

ψ(I) = φ
(Ith)

kI

(Ith)kI + (I)kI
+ ψ0 , (3.21)

where Ith is a threshold for inhibition. This form adds flexibility in the inhibitory

interaction by allowing different regimes of non-linearity and saturation as antigen

densities are varied; the inhibition terms in previous AKPR models were essentially

linear in I. Third, we assumed that the inhibitory species I only acts on the last f

KPR steps (instead of a feedback on all steps, in the initial AKPR model). This im-

plemented some asymmetry between proofreading steps in the cascade, allowing us to

capture the antagonism patterns documented in this study.” (TCR/CAR antagonism,

[3], SI)

This change in the inhibitory coupling turns the negative feedback into an incoherent feedforward

loop [251], which makes the mathematical solution simpler. Figure 3.12G illustrates this revised

AKPR model, and figure 3.15 shows the details and parameters of the reaction network.

Figure 3.15: “Biochemical network corresponding to the revised AKPR model for TCR activation. Vari-
ables in green correspond to numbers of TCRs in various states, while variables, arrows and parameters
in purple pertain to the inhibitory module.” (TCR/CAR antagonism, [3], SI)

Using mass-action kinetics for the remaining reaction rates in figure 3.15, we can derive the dif-

ferential equations corresponding to this system when there are several ligand types, indexed by

subscript l. We do not write the implied ρ = T superscript.
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“

dC0,l

dt
= κ(Ll −Rb,l)

(︄
Rtot −

2∑︂

l′=1

Rb,l′

)︄
− (φ+ 1/τl)C0,l

dCn,l
dt

= λn−1Cn−1,l − (λn + 1/τl)Cn,l

dI

dt
= βI

[︄(︄
1

Cm,th

2∑︂

l′=1

Cm,l′

)︄
(Itot − I)− I

]︄
(3.22)

where the forward rate is the same for either ligand type l ∈ {1, 2} and depends on

step n as

λn =

⎧
⎪⎪⎨
⎪⎪⎩

φ if n < N − f

ψ(I) if N − f ≤ n < N

0 if n = N

(3.23)

For the last f steps, the regulated KPR rate ψ(I) is as given in equation (3.21).”

(TCR/CAR antagonism, [3], SI)

Table 3.4 defines all parameters of the refined model of TCR/TCR antagonism, as well as for

TCR/CAR antagonism (next chapter).

This revised model has mathematically simpler closed form solutions for its steady state than the

classical AKPR model, due to neglecting reverse reactions. This simplicity allowed us to explore

the model modifications necessary to capture the experimental data, whereby we converged to the

non-linear form for the rate ψ(I). Obtaining analytical solutions was also crucial to accelerate

MCMC simulations, because these solutions are not computationally costly to evaluate; without

them, we would have needed to integrate in time the ODE system until steady-state, for each

MCMC step and each antigen mixture.

“To begin, consider a single receptor type and a single ligand type. The steady-state

total number of bound receptors is still given by eq. (3.3). The numbers of receptors

in each proofreading state are given by

Cn =
Rb

φτ + 1
Φn (0 ≤ n < N − f) (3.24)

Cn =
Rb

ψ(I)τ + 1
ΦN−fΦn−N+f

I (N − f ≤ n < N) (3.25)

CN = RbΦ
N−fΦf

I (3.26)
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Parameter Definition

Indices □ρ Receptor type (ρ ∈ {TCR,CAR})
□n Receptor state or other indication about the parameter

State
variables

Cρ
n Number of receptors of type ρ in proofreading state n

Rρ
b Total number of receptors of type ρ bound to a ligand
Iρ Number of inhibitory molecules I activated by receptor type ρ

Input
variables

τρ Binding time of ligands for receptor type ρ
Lρ Total number of available ligands for receptor type ρ

Integer
parameters

Rρ
tot Number of receptors of type ρ per T cell
Itot Total number of inhibitory molecules (active or not)
Nρ Number of proofreading steps for receptor type ρ
mρ Proofreading state of type ρ activating the inhibitory module
fρ Number of last KPR steps with forward rate reduced by I
kρI Hill power in ψρ(S⃗)

Rate
parameters

φρ Forward KPR rate for states n < fρ of receptor type ρ
ψρ(I⃗) Forward rate in the last fρ inhibited KPR steps
ψρ
0 Basal forward rate in the inhibited KPR steps
κρ Binding rate of receptors and ligands of type ρ
γρµ Strength of inhibition of receptor type ρ by Iµ.
Cρ

m,th Activation threshold of I by Cρ
m

Iρth Threshold on I to inhibit KPR rate ψ

Output
function
parameters

τρc Binding time defining output activation threshold of receptor type ρ
Aρ Maximum output amplitude of receptor type ρ
αT,6F
A Correction factor on TCR output amplitude for 6F TCR
αT,6F
τ Correction factor on TCR threshold for 6F TCR

αC,1CAR
A Correction factor on TCR output amplitude due to 1-ITAM CAR
αT,1CAR
A Correction factor on CAR output amplitude for 1-ITAM CAR

Table 3.4: “Definition of mathematical model parameters, related to figures 3.12 and 4.3.
Variables and parameters in the revised AKPR model, for TCR/TCR or TCR/CAR antagonism. 6Y:
10-ITAM TCR, 6F: 4-ITAM TCR (CD3ζ ITAMs are mutated).” (TCR/CAR antagonism, [3], table S3)
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where we defined the regular proofreading factor

Φ =
φτ

φτ + 1
(3.27)

and the inhibited proofreading factor

ΦI =
ψ(I)τ

ψ(I)τ + 1
. (3.28)

Those proofreading factors play the same amplification role as r± in eq. (3.4) and are

simpler to write because of the absence of backward rates. Just like in the François

et al., 2013 model, each complex is essentially given by the product of proofreading

factors corresponding to the upstream complex in the cascades. However, contrary

to the initial model, equations differ before and after n = N −f : the regular forward

rate φ applies in the first N − f steps, while the inhibited rate ψ(I) applies to the

last f steps. Lastly, we assumed, as in eq. (3.7), that I is activated by one complex,

Cm, in the cascade:

I = Itot
Cm

Cm,th + Cm
. (3.29)

This equation is an explicit solution for I if m < N − f , since Cm is then known,

but otherwise it has to be solved numerically when Cm depends on I via ψ(I) and

ΦI .” (TCR/CAR antagonism, [3], SI)

Mass-action implementation of the nonlinear rate ψ(I)

Figure 3.16: “(Left) Mass-action kinetics implementation of the nonlinear inhibitory module in our revised
model, relying on a kinase K to mediate the last f proofreading steps, and deactivation of that kinase
by the inhibitory molecule I. (Right) Recovering the nonlinear inhibitory module of our revised model
from a quasi-static approximation on the kinase K.” (TCR/CAR antagonism, [3], SI)

“The nonlinear proofreading rate ψ(I) can be derived as a quasi-static approximation

of a biochemical model with mass-action kinetics, in which the inhibitory molecule
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I deactivates the kinase K responsible for mediating the final f proofreading steps.

We consider the case kI = 1 for simplicity; higher exponents could be obtained by

adding cooperative steps to the activation of the kinase K by I. Figure 3.16 (left)

illustrates the reaction network corresponding to this implementation of the nonlinear

inhibitory module in our revised model (right).

The differential equation for the time evolution of K, derived from mass-action ki-

netics, would read
dK

dt
= rK(Ktot −K)− βKIK (3.30)

where rK is the rate at which inactive K∗ is turned into active K, βK is the rate

at which I deactivates K, and Ktot = K + K∗ is the total amount of kinase in

either form. Moreover, the rate of the final f proofreading steps in the main KPR

cascade is, again by mass-action kinetics, ψ̃K + ψ0, where we include a basal rate

ψ0 in the absence of the kinase, and where the rate ψ̃, to be specified, has units of

time−1molecule−1. Solving equation (3.30) at steady-state, we find

K = Ktot
rK

rK + βKI
(3.31)

so the rate of proofreading regulated by K is

ψ̃K = ψ̃Ktot
rK/βK

rK/βK + I

By taking ψ̃ = φ/Ktot and Ith = rK/βK , we recover the nonlinear rate ψ(I) we

introduced in equation (3.21) for our revised AKPR model.” (TCR/CAR antagonism,

[3], SI)

3.5.4 Results of the revised AKPR model for TCR antagonism
Model definition for binary mixtures

“For binary mixtures of TCR antigens (TCR/TCR antagonism), we distinguished as

before Cn,1 and Cn,2, τ1 and τ2, etc. The ODEs of our revised AKPR model in this

case are presented in eq. (3.22) [with l ∈ {1, 2}]. At steady state, the numbers of

TCRs bound to each ligand type, Rb,1 and Rb,2, are given by equations (3.9)–(3.11).

Complexes Cn,1 and Cn,2 are given by eqs. (3.24)–(3.26), with τ1 or τ2 (including

in Φ and ΦI) and Rb,1 or Rb,2, respectively. The regulated KPR rate ψ(I) is as in
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eq. (3.21). The negative interaction between receptors is mediated by the inhibitory

molecule I, given by (3.12), like in the François et al., 2013 model. This equation is,

in the revised model, an explicit solution for I if m < N − f , but otherwise it has to

be solved numerically.” (TCR/CAR antagonism, [3], SI)

Parameter optimization

We fitted four model parameters with MCMC: φ, Cm,th, Ith, and ψ0. Additionally, we performed

a grid search over integer parameters kI (Hill exponent in ψ(I)), m, and f (number of last KPR

steps regulated by the inhibitory species).

“Following this update of the network structure, MCMC optimization reliably con-

verged to unimodal distributions of parameters that fit the experimental data (Fig-

ure 3.12H). The optimized AKPR model was able to explain the observed range

of antagonism/enhancement of TCR signaling across all measured mixtures of TCR

antigens of varied densities and qualities (Figure 3.12I).” (TCR/CAR antagonism,

[3])

The autocorrelation functions of parameters in the MCMC simulations attest of their convergence

(figure 3.17). The best MCMC fit was obtained for m = 4, kI = 1, and f = 1, meaning the data is

better explained if the inhibitory coupling is a purely feedforward loop (N − f > m) with strong

dependence on antigen quality (Cm ∼ Lτm), but not a very sharp non-linearity in ψ(I) (k = 1).

Although the fits are not perfect for the 10 pM agonist, 1 nM antagonist conditions (red curve in

the leftmost plot of figure 3.12I), the overall behaviour of antagonism as a function of L1, L2, and

τ2 is much better captured than with the classical model (see the side-by-side comparison in figure

3.12). Moreover, the posterior parameter distributions, P (θ | data) shown in figure 3.12H are

much smoother than for the classical model. They are not very sharply peaked, but this sort of

broad parameter distribution is very frequent in biological model and has been termed “parameter

sloppiness” [157, 158], as we discussed in section 1.4.

Mechanisms of the revised model

To understand better why the revised model fits adequately the experimental data, we looked at the

model response curves to single antigens, shown in figure 3.18. They reveal three scaling regimes

as a function of L, before receptors saturate, such that Rb ≈ κRtotLτ
1+κRtotτ

∼ L.
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Figure 3.17: Autocorrelation function during MCMC simulations for the four rate parameters in the revised
AKPR model with m = 4, kI = 1, f = 1 (which yielded the best fit in the grid search over integer
parameters), averaged across random walkers, computed following [245] (details in appendix D). The total
simulation time is well above 50 times the autocorrelation time τ̂ , the burn-in fraction (taken to be 20τ̂ ) is
less than 5 % of the total simulation duration, and the acceptance fraction of proposed moves is between 0.2
and 0.5; these metrics indicate that the MCMC simulation has converged.

1. At small L, there is a pure kinetic proofreading regime while I ≈ 0 and receptors are

unsaturated: CN ≈ RbΦ
N ∼ LτN . This is the region where curves are increasing linearly

with L in the log-log plot.

2. Then, since the best parameter fit has a small threshold Ith for saturation of the regulated rate

ψ(I), but a large threshold Cm,th for the activation of I by Cm, the first thing occurring as

L increases is that I reaches Ith while Cm ≪ Cm,th still. Then, I ≈ ItotCm/Cm,th ∼ Lτm,

while ψ(I) ≈ φIth/I , such that CN ≈ RbΦ
N−1ψ(I)τ ∼ LτN/Lτm ∼ τN−m. This is the

region where CN as a function of L is flat. Note that this regime starts at a τ -dependent L∗,

when Ith = I , implying that L∗ ∼ τ−m – hence, this happens earlier for stronger antigens.

3. Eventually, Cm reaches Cm,th, so the inhibitory molecule I saturates near Itot, ψ(I) ≈
φIth/Itot, and thus CN ∼ LτN × Ith/Itot: another KPR scaling regime but at a lower

amplitude, reduced by a factor Ith/Itot < 1. This is the rightmost region where response

curves start increasing again (before receptors saturate). Note that this occurs at another lig-

and quantity L∗∗ > L∗, but also scaling as L∗∗ ∼ τ−m. Weaker ligands thus never reach this

second threshold and do not benefit from much extra activation at high doses.

The transition curves where regimes change, I = Ith and Cm = Cm,th, are drawn as dashed and

dotted lines, respectively, for a range of τs on figure 3.18. The third regime explains the crossover

between the 1 µM and 1 nM antagonists curves in figure 3.12I: at a high dose, stronger antagonist

peptides can produce some enhancement as their own output increases again, whereas at a lower

dose, all antagonists produce insufficient activation, resulting in FC < 1. This is a subtle effect that
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could not be achieved by the classical AKPR model while simultaneously fitting the antagonism

data at other antigen densities.
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Figure 3.18: Response curves – steady-state output CN as a function of antigen density L – of the revised
AKPR model [129], for various antigen qualities τ . The steady-state solution plotted is exact and includes
receptor saturation at large L. The transition between the first and second scaling regimes, when I = Ith,
and the transition between the second and third regimes, when Cm = Cm,th, are shown for various τ values
as dashed or dotted lines.

Revised model for 6F (4-ITAM) T cells

The classical AKPR model could not provide quantitative fits of antagonism for 6F (4-ITAM) T

cells in our collaborators’ extended dataset, especially because it contained varying doses L2 of

antagonist peptides (unlike the original dataset of section 3.4). To capture differences between 6Y

and 6F TCRs with the revised model, we adopted a more systematic approach. As we did for the

classical model, we set N = 4 for 6F TCRs, instead of N = 6, to represent curtailed proofreading

capabilities in the absence of functional CD3ζ ITAMs. Then, instead of introducing hand-picked

correction factors, we performed a separate MCMC estimation of the four fitted parameters – φ,

Cm,th, Ith, and ψ0 – specifically for 6F antagonism. We reasoned that any change in the 6F TCR

biochemistry could be reflected by changes in these four effective kinetic rates.

Figure 3.19 shows the results of this separate MCMC parameter estimation. The simulation con-

verged (as evidenced by the autocorrelation functions, panel B) to well-behaved parameter distri-

butions (panel A), although exhibiting parameter sloppiness, just in as in the 6Y (10-ITAM) case

(in figure 3.12H). The agreement between model and data in panel C is not perfect, but the model
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Figure 3.19: “[A] Posterior distribution of model parameters for 4-ITAM TCRs (6F), sampled by MCMC
to fit TCR/TCR antagonism data.” (TCR/CAR antagonism, [3], figure S2) (B) Autocorrelation functions of
the estimated parameters, with acceptance fraction, demonstrating convergence of the MCMC simulations.
“[C] TCR/TCR antagonism curves of the revised AKPR model with maximal a posteriori parameter
estimates for 4-ITAM TCRs (6F), as determined in (H), compared to the experimental data for these
TCRs. Shaded areas are 90 % model CIs generated by pulling 1000 samples from the distribution in [B]
while error bars are 95 % CI on the geometric mean of cytokine data, based on a Student’s t-distribution”.
(TCR/CAR antagonism, [3], figure S2)

curves at 10 pM agonist (top left graph) vary with antagonist concentration (various line colors)

similarly to the experimental data points, whereas this could not be captured by the classical model.

Comparing the optimal parameter values found for 6F (4-ITAM) and 6Y (10-ITAM) T cells, we

observe that ψ0 values are similar and poorly constrained in both receptor types; they just need to

be small enough to allow the maximum antagonism amplitude observed in the data. The φ values

are also similar, being ∼ 2× smaller in 6F receptors, potentially to improve kinetic proofreading

despite N = 4. This value of N could be an under-estimation of the true proofreading resolution

of 6F TCRs, since N does not only represent ITAM numbers but also other downstream signaling

reactions like ZAP-70 binding and LAT phosphorylation [115].

The most different parameters are Cm,th and Ith; this strongly supports our earlier findings that the

two receptor types have different strengths of inhibitory signals, and that CD3ζ ITAMs support this

inhibitory function. Here, in 6F T cells, we find a smallerCm,th = 102 and a larger Ith = 1.5×10−3.

The larger Ith threshold indicates that 6F TCRs lacking CD3ζ ITAMs are less sensitive to inhibitory

molecules, matching our insight from the classical model. The smaller Cm,th, while it may seem

counter-intuitive, makes sense in the revised model: the activation of I by 6F TCRs saturates more

easily, and the second scaling regime, i.e., L-independent antigen discrimination, has a reduced

150



range. This would contribute to their stronger responses to weak antigens and their lower mutual

information for antigen quality (section 3.2.1).

3.6 Summary of progress on TCR antigen mixtures
In this chapter, we used our latent space description of T cell cytokine dynamics, developed in

chapter 2, to gain a better mechanistic understanding of T cell receptor signaling, especially in the

context of antigen mixtures and of TCRs with altered ITAMs. We showed how we could obtain

qualitative, then quantitative, predictions of nonlinear TCR responses using parsimonious adaptive

kinetic proofreading (AKPR) models, which are low-dimensional compared to the full space of

biochemical receptor states (see discussion of more complicated models, p. 3.5.3). We developed

a MCMC pipeline to estimate effective biochemical parameters based on quantitative agreement

with antagonism FC data. This procedure allowed us to develop a revised AKPR model, and to

interpret biological differences between regular (6Y) and altered (6F) TCRs.

In section 3.5, we showed that we could fit simplified models to data and interpret the fit results.

However, we did not generate true predictions from the model, which could then be tested by

independent experiments. In the next chapter, we attempt this final step in a new T cell system. We

show how our revised AKPR model, originating from antigen encoding theory and calibrated on

TCR/TCR antagonism data, can be generalized to cross-receptor interactions in T cells engineered

for cancer immunotherapy.
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Chapter 4

Antagonism in chimeric antigen receptor T cells

In this chapter, we generalize the revised AKPR model to understand and engineer cross-receptor

interactions in chimeric antigen receptor (CAR) T cell immunotherapies. Our experimental collab-

orators, the laboratories of Grégoire Altan-Bonnet and Naomi Taylor (National Cancer Institute),

empirically discovered that there is significant antagonism between TCRs and CARs in these T

cells. To explain this effect, we built upon the results of previous chapters. We still relied on

the insight from antigen encoding theory (chapter 2) that early receptor activation kinetics predict

the continuum of T cell responses to antigen quality. We found that this correlation between time

scales extended to in vivo antagonism, unfolding over weeks. Combined with latent space analy-

ses and the Altan-Bonnet lab’s robotic platform, the revised AKPR model served as a convenient,

low-dimensional framework to predict and manipulate high-dimensional immune responses.

To detail my contributions in this chapter, which are part of a submitted manuscript [3]:

• I developed a theoretical model able to account for interactions across receptor types in

engineered T cells, extending the revised AKPR model (4.3.2–4.3.3);

• I obtained quantitative fits with experimental data to estimate the model parameters with

Markov Chain Monte Carlo (MCMC) methods (4.3);

• I generated model predictions for various immunological settings, including in vivo experi-

ments of CAR T cell treatments in mice (sections 4.4);

• In particular, the model predictions inspired a new CAR T cell design to my collabora-

tors, wherein TCR/CAR antagonism is exploited to protect healthy tissues while maintaining

treatment efficacy against tumors (4.4.5);

• I used the model as a pipeline to systematically analyze databases of TCR antigens (4.4.3).

In short, all theoretical analyses in this chapter are my work. Moreover, I wrote the supplemental

information (SI) and, jointly with Sooraj Achar (Altan-Bonnet lab), the first draft of the main text.
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The experiments (sections 4.2 and 4.3.1) were mainly performed by Sooraj Achar and Taisuke

Kondo (Taylor lab).

4.1 Introduction: receptor interactions in engineered T cells
4.1.1 Overview of cancer immunotherapy
Cancers develop when some cells accumulate mutations conferring them an elevated growth and

the ability to evade immune suppression [252]. Without the ability to grow unchecked, cancer

cells would be cleared by immune cells in charge of maintaining homeostasis [253]. Cancer

cells can acquire mutations allowing them to escape the immune system in various ways. They

may over-express surface molecules that inhibit immune cells through immune checkpoints recep-

tors [12] (such as CTLA4 [254] or PD-1 [101]). They tend to create a tumor microenvironment

with physico-chemical factors such as oxygen levels, metabolites, pH, etc. which hinder immune

cells [255]. To avoid T cells in particular, they may reduce their MHC levels [256]. Moreover,

while cancer cell mutations often create new peptide sequences, called neoantigens, that can be

presented on MHC and recognized by T cells, these peptides are not all very strong TCR agonists.

In fact, immune editing shapes heterogeneous tumors by suppressing the most immunogenic cell

clones while leaving weaker ones [257, 258].

Immunotherapy attempts to overcome these barriers and exploit a patient’s own immune system to

treat cancer cells. Several types of immunotherapy have been brought to various stages of clinical

trials since the 1980s, such as administration of high cytokine doses [10], checkpoint inhibitor

drugs [259, 12], cancer vaccines containing immunogenic neoantigens [11, 260], and adoptive cell

transfer therapies [261]. The latter type of treatment consists in collecting T lymphocytes from a

patient, activating and expanding them ex vivo, and re-injecting them in large numbers (108 – 109

cells) to attack cancer cells. Depending on the intended type of adoptive therapy, the collected

cells are either selected because they have a TCR which is sensitive to tumor neoantigens (tumor

infiltrating lymphocytes – TILs), or genetically engineered to express synthetic receptors that target

tumor antigens. Chimeric antigen receptor (CAR) T cells are a particularly promising type of

engineered T cell adoptive therapy [262, 263, 264, 265]. This is the type of immunotherapy we

focused on, because our quantitative framework of T cell activation promised especially valuable

insights into how natural T cell receptors interact and interfere with synthetic CARs.

When they work, immunotherapies produce a striking regression of cancer. Unfortunately, these

treatments still suffer from large variability between patients, poor generalizability across cancer
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types, and severe side effects like cytokine storms and toxicity in vital organs [266, 267]. Intense

efforts are ongoing to overcome these hurdles, and predictive quantitative frameworks will be

essential to optimize immunotherapy treatments [14].

4.1.2 Chimeric antigen receptor (CAR) T cell immunotherapy
Chimeric antigen receptor T cells offer a vast potential for model-guided bioengineering of anti-

cancer treatments. In this version of adoptive transfer therapy, T cells sampled from the patient

are endowed with a synthetic receptor to target surface antigens over-expressed in cancer cells,

for example CD19, BCMA or CD22 (in B cell lymphomas) or HER2 (in breast cancer). After

transduction of the CAR sequence and ex vivo expansion, the engineered cells are injected back in

the patient, as illustrated in figure 4.1, left.

CAR

Transduction

Cell harvesting

Proliferation

Adoptive transfer

TCR
CD3 chain

Costimulatory 
domain

Transmembrane 
domain

Hinge

Linker

Antibody chains

Figure 4.1: Chimeric antigen receptor (CAR) T cell therapy. (Left) Main steps of adoptive cell transfer
therapy with CAR T cells. Transduction is the injection, using a viral vector, of a DNA plasmid encoding
the CAR. Created with BioRender.com. (Right) Structure of a 2nd generation CAR. Due to the extracellular
binding domain and the CD3ζ chain, a CAR is a fusion between an antigen recognition domain, usually an
antibody, and part of the TCR intracellular domain.

A chimeric antigen receptor (CAR) is, roughly speaking, a fusion between the extracellular part

of a B cell receptor and the intracellular part of a T cell receptor. More specifically, as shown in

figure 4.1, right, the extracellular part of the chimeric receptor is a binding domain, usually an

antibody, specific to the target molecule, and the intracellular signaling domain is a CD3ζ chain

(of which a TCR has two, as explained in section 3.1.3). Upon binding of a CAR to its target, the

CD3ζ chain activates the same signaling pathways as TCRs (although with a potentially different

balance of stimulatory and inhibitory signals). The strong binding affinity between an antibody

and its target confers to CAR T cells a high activation and tumor killing potential. Moreover, a

CAR also has various other connecting parts between those two main components, which can be

tuned to further improve CAR function [268, 269].
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4.1.3 Receptor interactions in CAR T cells
“Chimeric antigen receptor (CAR) T cell therapies have demonstrated remarkable

success in the treatment of B cell malignancies [262, 263, 264, 265]. However,

their application to solid tumors has been limited by potentially life-threatening on-

target/off-tumor (OTOT) adverse events, caused by cytotoxicity against vital healthy

tissues expressing CAR targets [266, 267, 270, 271, 272]. Recent attempts to cir-

cumvent this issue have been based on Boolean logic-gated CARs recognizing com-

binations of targets [273, 274, 275, 276, 277, 278], but their clinical applicability

for the treatment of solid tumors remains challenging due, in part, to the limited

number of tumor-specific CAR targets [279]. In contrast, T cell receptors (TCRs)

recognizing mutated neoantigens on tumor cells operate under a different recogni-

tion paradigm, discriminating between tumor antigens and self-antigens on healthy

tissues [258]. Nonetheless, these TCRs often elicit suboptimal tumor cytotoxicity due

to the weak affinities and low densities of tumor neoantigens [280]. Combining these

two tumor targeting modalities – potent CAR anti-tumor toxicity (Figure 4.2A, left)

and exquisite TCR discrimination between neoantigen and self-antigen (Figure 4.2A,

middle) – could significantly improve immunotherapeutic specificity.” (TCR/CAR

antagonism, [3])

Hence, beyond molecular optimization of CAR components, there are also systems-level questions

remaining about how CAR receptors interact with the rest of the TCR signalosome, and how these

interactions could be exploited to fine-tune immunotherapies. Yet, we are lacking a quantitative

framework to understand how CAR and TCR outputs combine in T cells. For this reason, there

is no consensus on how TCRs impact CAR T cells: some labs simply knock out the TCR, while

other labs report that the TCR improves persistence in vivo [281]. At any rate, it seemed clear

to us that the TCR should have some effect, since CAR T cells clones with different TCRs have

different tumor killing effectiveness and different transcriptional states [282].

Our theoretical biophysics approach, based on low-dimensional descriptions of T cell activation

developed in the previous two chapters, has the potential to disentangle TCR/CAR interactions

in an efficient way. Reciprocally, CAR T cells represent a practical test of our framework and

its generality. Since both receptor types comprise CD3ζ chains and their three ITAMs, CARs

share signaling molecules with TCRs. They activate the same pathways, and they are most likely

inhibited by the same species (SHP-1, Csk, CD45, etc.). Based on the success of adaptive kinetic

proofreading in predicting antagonism in TCR antigen mixtures, we hypothesized that weak TCR
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stimulation could also antagonize CAR signals by activating the inhibitory modules supported by

CD3ζ ITAMs. In fact, our first observation of universal antigen encoding in CAR T cells (chapter 2,

figure 2.28) showed hints of such non-linear combination of TCR and CAR outputs.

We focused on TCR/CAR combinations, because the continuum of TCR antigen qualities, as found

in chapter 2, potentially creates a corresponding continuum of CAR response modulations due to

tumor neoantigens. In comparison, logic-gated chimeric receptor combinations are still confined to

the CAR recognition paradigm, i.e., recognition of the same antigens, merely expressed at different

levels, on cancer and healthy cells. Still, a generalizable model of cross-receptor interactions could

be exploited to maximize the reduction in off-tumor toxicity afforded by logic-gated CARs as well.

Hence, encouraged by this generalization potential, we built upon our characterization of antigen

encoding and TCR/TCR antagonism to model the nonlinear TCR/CAR interactions observed by

our collaborators.

4.2 Experimental characterization of TCR/CAR interactions
4.2.1 Experimental platform
Like previous chapters, this project stemmed from a dialogue between theory and experiment.

We therefore begin by summarizing the genetic engineering and immune profiling experiments

performed by Taisuke Kondo, Sooraj Achar, and other authors of TCR/CAR antagonism, [3].

Our collaborators generated various CAR T cell lines over the course of this project. For the

development and calibration of our mathematical model, they prepared CAR T cells from mouse

cells expressing the 6Y OT-1 TCR – the main mouse line used in previous chapters as well – or

the 6F (4-ITAM) TCR mouse line from the Love lab, discussed in chapter 3. They also generated

human CAR T cells of a few other TCR types (NY-ESO, HHAT-specific TCR, etc.), using T cell

samples from several donors at the NCI1. In all cases, the CAR engineering procedure was roughly

the same: cells were preactivated in vitro, transduced using viral vectors containing DNA plasmids

for the desired CAR and/or TCR sequences, then expanded and rested for 1–2 weeks before being

used for immune activation experiments.

Our collaborators also prepared or obtained at least 16 different lines of tumor cells expressing

various CAR and TCR antigens. For in vitro experiments, different types of tumor cells (E2aPBX

1All samples were collected and analyzed by our collaborators following NIH guidelines; the datasets I received
were completely anonymous, simply containing different experimental repeats of cytokine dynamics recordings la-
beled ‘Donor 1’, ‘Donor 2’, etc.
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Figure 4.2: “Differential modulation of CAR activity over a spectrum of TCR antigens. (A)
Outline of CAR, TCR, and combined recognition paradigms. (B) Experimental scheme to evaluate
TCR/CAR crosstalk. Naive OT-1 T cells were transduced with a murine CD19 CAR and then stimulated
with CD19+ E2aPBX leukemia cells expressing either no additional antigen or one of several ovalbumin
peptide variants with differing antigenicities. (C) Survival curves for mice bearing E2aPBX/OVA leukemia
cells treated with OT-1/CAR T cells (n = 10 mice per group). (D) A representative example of
IMMUNOtron-acquired cytokine dynamics quantifying the divergent effects of TCR on CAR activation,
as a function of the TCR antigen strength (n = 3 biological replicates). (E) TCR/CAR crosstalk for dual
OT-1/CAR T cells stimulated with CD19−/− (top) or CD19+/+ (bottom) E2aPBX leukemia cells. Y-
axis represents the fold change (FC) of responses for a combination of CAR and TCR ligands compared
to CAR ligand alone; an FC above 1 indicates that the strength of TCR signal enhances the overall
response of the CAR, while an FC below 1 indicates antagonism of the CAR response. The degree
of antagonism was evaluated by examining fold changes in the production of the cytokines IL-2, TNF
and IFN-γ (n = 6 biological replicates). (F) Logic table derived from FCTCR/CAR(IL− 2) for dual
TCR/CAR stimulation of CAR T cells. Note the multivalued (−1, 0,+1) continuous modulation (fuzzy
logic) of CAR activation (CAR Signal = CD19) as it relates to TCR signals alone (CAR Signal = ∅).
Data in (C,E) are pooled from two independent experiments. Statistics in (C) were calculated using
Kaplan-Meier survival estimates. Data in (D,E) are shown as mean ± 95 % confidence interval (CI).”
(TCR/CAR antagonism, [3], figure 1)
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leukemia cells, B16 melanoma cells, etc.) were pulsed with the desired set of TCR antigens, either

OT-1 or NY-ESO (these cells expressed the right MHC allele to present these peptides). Some

also were programmed to express different levels of the CAR target antigen (CD19, HER2) using

CRISPR/Cas9 and single cell cloning systems [283]. For in vivo experiments, tumor cell lines had

to be engineered (via lentiviral transduction) to constitutively express the desired TCR antigens,

since pulsed peptides would not stay MHC-bound long enough in vivo.

To assess TCR/CAR interactions in vitro, CAR T cells were put in coculture with tumor cells

expressing the CAR antigen, and pulsed with various strengths of TCR antigens (including cocul-

tures without any TCR antigen) in the Immunotron robotic platform (figure 4.2B, bottom). Their

cytokine dynamics were recorded over 72 h, providing the main datasets we used to develop our

mathematical model. Cocultures containing T cells without a CAR were included in some exper-

iments, to obtain TCR-only control data and assess TCR antigen strength on tumor APCs (e.g.,

figure 4.2E, top). Moreover, our collaborators performed various in vivo experiments, where they

typically injected tumor cells subcutaneously in mice, then treated them with CAR T cells a few

days later and monitored survival and tumor progression over the following weeks (as outlined in

figure 4.2B, top), either by direct measurement or via bioluminescence (section 4.4).

All experimental details are available in the supplemental information of TCR/CAR antagonism,

[3]. This summary hopefully gives an idea of the extensive experimental efforts behind the datasets

discussed in the next sections.

4.2.2 Evidence of antagonism (and enhancement) in CAR T cells
To characterize the impact of TCR signals on CAR T cell activation, our collaborators performed

preliminary experiments in vivo and in vitro. They used mouse OT-1 T cells engineered to express

a chimeric antigen receptor (CAR) specific to the surface molecule CD19, which is over-expressed

by lymphoma cells (E2aPBX). For both types of experiments, the naïve expectation would be an

additive model, where TCR and CAR signals simply add up to the total T cell activation. In this

view, weak TCR stimulation (sufficient to produce some response on its own) should increase T

cell activation and treatment efficacy compared to CAR stimulation alone (i.e., in the absence of

TCR stimulation). Strong TCR stimulation should increase the response even further.

In stark contrast with this linear view, the experiments revealed antagonism of the CAR by weak

TCR signals. In vivo, the presence of the weak TCR antigen V4 on tumors reduced the CAR

treatment efficacy (figure 4.2C): survival after CAR treatment of mice bearing these tumors was
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significantly poorer than for tumors expressing only the CD19 CAR antigen (blue versus green

lines). In vitro, the IL-2 concentration produced by CAR T cells responding to tumors presenting

weak TCR antigen was lower, throughout time, than the IL-2 concentration produced in response

to tumors without TCR antigens. In both cases, the CAR stimulation by its target molecule CD19

remains the same (all E2aPBX tumors had equal CD19 expression, see figure 3.13 and table D.1);

adding weak TCR stimulation paradoxically decreases the overall T cell activation. This being

said, in the case of strong TCR stimulation, the strong antigen N4 (red lines in panels C, D)

enhanced T cell activation compared to CAR stimulation alone in both experiments.

To assess the extent of antagonism and enhancement regimes of CAR T cell responses, our collab-

orators performed further in vitro experiments with the whole range of OT-1 antigens (figure 4.2E,

bottom). We quantified the level of antagonism or enhancement for each mixture of a TCR antigen

with the CAR antigen using the FC ratio defined previously in section 3.5.1, eq. (3.18), here with

the CAR antigen considered as the agonist:

FCTCR/CAR =
[Cytokine](TCRAg + CARAg)

[Cytokine](CARag alone)
. (4.1)

A ratio FC < 1 indicates antagonism of the CAR by the TCR, while FC > 1 indicates enhance-

ment of the CAR response. To compute FC, the experiments comprised cocultures without TCR

antigen pulsed on the tumors. Moreover, to ensure that the OT-1 antigens themselves, when pre-

sented on tumors, could stimulate T cells on their own, our collaborators included, in preliminary

datasets, cocultures with tumors lacking the CAR antigen (CD19 knockout, panel E, top).

The experimental data revealed, as we had hoped based on the AKPR model,

“that TCR signals transitioned from an antagonistic (FCTCR/CAR < 1) to an en-

hancing (FCTCR/CAR > 1) role as TCR signal strength was increased (Figure 4.2E,

bottom). In addition, comparing the responses of OT-1/CAR T cells to CD19−/−

and CD19+/+ leukemia cells revealed maximum antagonism upon stimulation with a

peptide producing very low (G4), but not zero (E1), TCR stimulation. Thus, ligands

producing TCR signals at the edge of agonism (response) functioned as the best

antagonists [284, 235, 116] of CAR function. Altogether, our results demonstrate

that strong TCR stimulation enhances CAR T responses, while weak TCR stimu-

lation antagonizes CAR activity, in vitro as well as in vivo. These observations are

summarized in a logic table (Figure 4.2F), highlighting the multi-valued and fuzzy

logic of dual TCR/CAR activation.” (TCR/CAR antagonism, [3])
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This continuous spectrum of possible CAR T cell tuning through TCR stimulation, and the striking

translation of in vitro antagonism to in vivo antagonism, sparked our interest in dissecting further

TCR/CAR antagonism with our collaborators, with the hope of engineering applications at the

outset. We were encouraged to attempt extending the AKPR model to TCR/CAR interactions

for several reasons. The cross-receptor nature of this antagonism (acting between two separate

sets of receptors and ligands) decisively rules out receptor or antigen competition as mechanisms

(section 3.1.1), and instead points to an inhibitory coupling between receptors containing CD3

ITAMs, like in the AKPR model. The observed antagonism agreed with this model’s prediction

for TCR/TCR antagonism at least at a qualitative level (peak antagonism is caused by weak, but

not null, TCR antigens, see e.g., figure 3.12I). The in vivo impact of antagonism indicates that the

correlation between short and long time scales extends even further than we had seen in the latent

space model parameters (chapter 2) and in our study of TCR/TCR antagonism in vitro (chapter 3).

Moreover, we noticed in figure 4.2E that all cytokines produce FC curves of nearly identical

shapes, simply with different absolute magnitudes; the FC ratio of a single cytokine – we chose

IL-2 because of its reliability in experiments – can suffice to describe TCR/CAR antagonism. For

all these reasons, it seemed feasible to capture the long-term response of CAR T cells, described

by the low-dimensional FC metric of antagonism, with a parsimonious model of cross-receptor

coupling kinetics.

4.3 Modelling TCR/CAR antagonism
“To rigorously elucidate the roles of both receptors in orchestrating the complex

logic underlying dual TCR/CAR activation, we followed a two-step strategy: initially

focusing on TCR recognition alone (Figure 3.12, previous chapter), then returning

to TCR/CAR interactions (Figure 4.3). We relied on our IMMUNOtron platform

(Figure 4.2B) that automatizes the measurement of lymphocyte activation over time,

allowing the development of theoretical modeling and machine learning approaches

to dissect complex immune functions [1].” (TCR/CAR antagonism, [3])

We presented our effort to dissect TCR/TCR antagonism in the previous chapter; it led to devel-

oping the revised AKPR model and estimating its TCR-related biochemical parameters. In the

present chapter, we generalize kinetic proofreading models to TCR/CAR interactions. We first

confirm that the classical AKPR model cannot account for empirical observations in CAR T cells

more than it did for TCR/TCR antagonism. We then build upon the revised model, extending it to

two (or more) types of receptors. Conveniently, by fitting TCR/TCR antagonism in the previous
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chapter, we already have MCMC estimates of the TCR-related parameters. To ensure we could

apply the same MCMC fitting pipeline to CAR-related parameters, our collaborators generated a

more complete dataset of TCR/CAR antagonism data, which we describe first.

4.3.1 Summary of the complete in vitro TCR/CAR antagonism data
To disentangle TCR/CAR interactions in a range of immunological conditions and help us con-

strain our modelling efforts, our collaborators

“performed extensive IMMUNOtron-based measurements of CAR responses in the

context of concomitant engagement of the TCR under conditions wherein TCR anti-

gen strength and TCR antigen density were modulated (Figure 4.3A). Furthermore,

both TCR and CAR signaling strength were altered by changing the number of

immunoreceptor tyrosine-based activation motifs (ITAMs) on these receptors (Fig-

ure 4.3A). The resulting data sets (Figure 4.3B) were then used to expand and

validate our optimized model of TCR responsiveness to include TCR/CAR crosstalk,

(Figure 4.3C) via the inhibitory module uncovered for TCR/TCR crosstalk (Fig-

ure 3.12H), together with additional parameters specific to TCR/CAR crosstalk (Fig-

ure 4.3C, right and Figure 4.3D).” (TCR/CAR antagonism, [3])

Knowing in advance which biological parameters could be varied experimentally provided some

modelling guidelines. A satisfactory model of TCR/CAR interactions should have parameter han-

dles to account for varying TCR antigen quality, TCR and CAR antigen densities, and TCR and

CAR ITAM numbers. Models from the AKPR framework naturally fit this description: binding

times τ , ligand abundances L, and kinetic proofreading steps (N , m, f ), respectively, can be tuned

to reflect changes in the varied biological parameters. Further effects of ITAM numbers can also

be described by phenomenological changes in biochemical rates (as we did for 6F TCRs in fig-

ure 3.19.

4.3.2 The classical AKPR model cannot capture TCR/CAR antagonism
We first attempted to model cross-receptor interactions in CAR T cells using the classical AKPR

model, to confirm the necessity of a revised model.

“We extended the phenotypic TCR activation model proposed in François et al. [129]

by modelling the CAR as a second type of receptor, analogous to the TCR (i.e., with
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Figure 4.3: “Modeling TCR/CAR crosstalk in CAR T cells. (A) Scheme for multiplexed experimental
settings to quantify TCR/CAR crosstalk. (B) Different TCR signal strengths modulated CAR activity in
both directions over time across a variety of conditions in vitro, as measured using fold changes (FC ) of
cytokine dynamics obtained from the IMMUNOtron robotic platform (n = 3 − 6 biological replicates).
(C) Structure of the model for TCR/CAR crosstalk. Both CARs and TCRs activate a shared inhibitory
module, I, that reduces the rate of the kinetic proofreading cascade leading to formation of activated
TCR (ZT ) and CAR (ZC) outputs. The model accounts for the variable density and quality of TCR and
CAR antigens, as well as the number of ITAMs of either receptor type. (D) Posterior distribution of the
revised AKPR model parameters related to CAR and TCR/CAR interactions, sampled by Markov Chain
Monte Carlo (MCMC) to fit TCR/CAR antagonism data for 3-ITAM CARs and 10-ITAM TCRs, for a
high dose (1 µM) or low dose (1 nM) of TCR antigen.” (TCR/CAR antagonism, [3], figure 3)
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Figure 4.3: (Continued) “(E) Best model fit with confidence intervals (top left). The model was then
used to predict antagonism for other CAR and TCR constructs with altered ITAM numbers (bottom)
The color of each curve refers to the color-coded condition presented in panel (top right). Data in (B,E)
are pooled from two independent experiments and are shown as mean ± 95 % CI on the mean. Model
curves shown in (E) are the best parameter fit and a 90 % CI obtained from MCMC parameter samples.”
(TCR/CAR antagonism, [3], figure 3)

+ ............

+ ............

Figure 4.4: “Biochemical network corresponding to the François 2013 model, extended to TCR and CAR
receptors. Blue: CAR variables and parameters, Green: TCR variables and parameters, Purple: shared
inhibitory coupling, which controls the reverse reactions.” (TCR/CAR antagonism, [3], SI)

a KPR cascade upon receptor-ligand binding), but with its own pool of antigens. We

used a superscript ρ ∈ {TCR,CAR} on proofreading complexes and parameters to

indicate the type of receptors considered. We then generalized the equations from

François et al. [129] described [in section 3.3]. The two types of receptors are only

coupled via the shared pool of inhibitory molecules I, which catalyzes with rate γρI

all reverse KPR reactions of each receptor type. Rate bρ represents the basal reverse

rate. Other variables and parameters are defined as in table 3.4. Figure 4.4 illustrates

this biochemical reaction network” (TCR/CAR antagonism, [3], SI)

and the ODEs can be derived from it by applying the law of mass-action.

“Conservation laws for the total number of ligands and receptors of each type com-

pletely determine the numbers of bound and free ligands, given the numbers of

receptor in each kinetic proofreading state, Cρ
n(t). These, along with the number of

active inhibitory molecules I(t), are the only dynamical variables we need to consider.

Writing the ODEs corresponding to the reaction network (ρ ∈ {TCR,CAR}), we
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have

dCρ
0

dt
= κρ(Rρ

tot −Rρ
b)(L

ρ −Rρ
b) + (bρ + γρI)Cρ

1 − (1/τ ρ + φρ)Cρ
0

dCρ
n

dt
= φρCρ

n−1 + (bρ + γρI)Cρ
n+1 − (φρ + 1/τ ρ + bρ + γρI)Cρ

n (1 ≤ n < Nρ)

dCρ
Nρ

dt
= φρCρ

Nρ−1 − (1/τ ρ + bρ + γρI)Cρ
Nρ (4.2)

where Rρ
b =

∑︁N
n=0C

ρ
n. The inhibitory coupling I, whose activation is catalyzed by

receptors in state Cρ
m, obeys

dI

dt
= βI

[︄(︄∑︂

µ

Cµ
mµ

Cµ
m,th

)︄
(Itot − I)− I

]︄
. (4.3)

” (TCR/CAR antagonism, [3], SI)

We are still mainly interested in the steady-state solution of this model, which is obtained by fol-

lowing steps analogous to the TCR-only model. Equation (3.3) for the total number of bound

receptors applies separately to each receptor type, since they each have their own ligands. There-

fore,

Rρ
b =

1

2

(︃
Rρ

tot + Lρ +
1

κτ ρ

)︃
− 1

2

√︄(︃
Rρ

tot + Lρ +
1

κτ ρ

)︃2

− 4Rρ
totL

ρ (4.4)

where ρ ∈ {TCR,CAR}.

Then, the steady-state number of receptors in each state can be calculated as in the TCR-only case,

by solving a second-order recurrent relation for each receptor type separately.

“The number of receptors in each proofreading step is given by

Cρ
n = Rρ

b (a
ρ
−(r

ρ
−)

n + aρ+(r
ρ
+)

n) (4.5)

with

rρ± =
φρ + bρ + γρI + 1/τ ρ

2(bρ + γρI)
±
√︁
(φρ + bρ + γρI + 1/τ ρ)2 − 4φρ(bρ + γρI)

2(bρ + γρI)
(4.6)

aρ± =
rρ± − 1

(rρ±/r
ρ
∓)

Nρ+1 − 1
(4.7)
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The level of the inhibitory species I at steady state is given by a similar implicit

equation, where the Cµ
m depend on I,

I = Itot

∑︁
µC

µ
mµ/C

µ
m,th

1 +
∑︁

µC
µ
mµ/C

µ
m,th

(4.8)

Again Cµ
m,th defines a threshold of activation of the shared inhibitory variable by

the complex Cµ
m, µ ∈ {TCR,CAR}. Those thresholds can be different since the

receptors are not identical. Equation (4.8) for the level of inhibitory molecules is

solved numerically to close the system of equations.” (TCR/CAR antagonism, [3],

SI)

Lastly, we defined TCR and CAR outputs, ZT and ZC , by applying Hill activation functions on

CT
NT and CC

NC ; we explain this choice in more detail below, in section 4.3.3.

Despite our attempts, the classical model could clearly not match the in vitro TCR/CAR antago-

nism data collected by our collaborators and introduced in figure 4.3B. Figure 4.5 illustrates why:

in this model, the maximal strength of antagonism scales inversely with the density of TCR anti-

gens, while the data shows similar FC amplitudes at 1µM and 1 nM concentrations. Hence, as

with the TCR/TCR data (section 3.5.2), the problem in the original model was manifest when

varying TCR antigen densities. We did not attempt to further fit the classical model to TCR/CAR

antagonism data. This analysis confirmed to us

“that the original model needed more flexibility in the implementation of the inhibitory

interactions. Indeed, in the François et al., 2013 model, all proofreading steps are

negatively regulated identically. This assumption limits the model too much and

fails to account for the TCR/CAR crosstalk and the TCR/TCR antagonism at low

antagonist concentrations.” (TCR/CAR antagonism, [3], SI)

The need to relax the symmetry in the inhibitory feedback in the classical model prompted us to

turn to the revised AKPR model.
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1Figure 4.5: “Typical model curves (parameters not fitted) of TCR/CAR antagonism, scaling of the peak
antagonism position with TCR antigen density, and the antagonism peak amplitude in the François et
al., 2013, compared to peak antagonism position and amplitude in experimental data. For the selected
parameters, the model and data agree qualitatively in terms of how peak antagonism shifts as a function
of LT (blue check mark), but not in terms of the amplitude of this peak (red cross).” (TCR/CAR
antagonism, [3], SI)

4.3.3 Revised AKPR model for TCR/CAR antagonism
Definition of the model

Equipped with our collaborators’ detailed dataset of antagonism as a function of antigen qualities

and quantities, we were able to extend our revised TCR activation model to CAR T cells. As

we did above when extending the classical model, we modelled the the CAR as a second type of

KPR receptor with its own pool of antigens, and used superscripts ρ ∈ {TCR,CAR} to indicate

receptor type.

We generalized the equations for the revised TCR model to both receptor types. Coupling receptor

types via the inhibitory species I was not entirely straightforward, since TCRs and CARs, sharing

only parts of their intracellular domains, may not recruit signaling proteins in the same way (but

we lack a complete empirical characterization of these details). To afford enough flexibility to fit

the experimental antagonism data and potential asymmetries between CAR and TCR, we settled

on the following structure for the inhibitory module.

“We applied the inhibitory effect only on the last fρ KPR steps of each cascade

(ρ ∈ {TCR,CAR}). We also allowed more asymmetry in the inhibition by CAR and

TCR by introducing separate forms of I activated by the TCR, IT , or the CAR, IC

(this accounts for the recruitment of negative regulators to each receptor, based
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Figure 4.6: “Biochemical network corresponding to the revised AKPR model for TCR/CAR antagonism.
Blue: CAR variables and parameters, Green: TCR variables and parameters, Purple: shared inhibitory
coupling, which inhibits the last fT and fC steps of TCR and CAR proofreading, respectively.” (TCR/CAR
antagonism, [3], SI)

on their state of activation [224, 138]). We generalized the inhibited rate in the

proofreading cascade of each type ρ:

ψρ(I⃗) = φρ
(Iρth)

kρI

(Iρth)
kρI + (

∑︁
µ γ

ρ
µI

µ)k
ρ
I

+ ψρ0 . (4.9)

The vectorial dependence (I⃗) indicates that the forward rates depend on both Iµ. We

also introduced a matrix γρµ that encodes how each form Iµ inhibits the proofreading

rate of receptor type ρ. This matrix has no reason to be symmetrical since receptors

are different.

Figure 4.6 illustrates the biochemical reaction network of the model,” (TCR/CAR

antagonism, [3], SI)

and the corresponding ODEs are

“

dCρ
0

dt
= κρ(Lρ −Rρ

b)(R
ρ
tot −Rρ

b)− (φρ + 1/τ ρ)Cρ
0

dCρ
n

dt
= λρn−1C

ρ
n−1 − (λρn + 1/τ ρ)Cρ

n

dIρ

dt
= βI

[︄(︄
Itot −

∑︂

µ

Iµ

)︄
Cρ
m

Cρ
m,th

− Iρ

]︄
(4.10)
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where the proofreading rate from Cρ
n to Cρ

n+1, λ
ρ
n, depends on n as in (3.23), that

is,

λρn =

⎧
⎪⎪⎨
⎪⎪⎩

φρ if n < Nρ − fρ

ψρ(I⃗) if Nρ − fρ ≤ n < Nρ

0 if n = Nρ

(4.11)

The regulated rate ψρ(I⃗) is defined in equation (4.9). The rate βI is assumed to be

fast enough for I⃗ and the Cρ
n to reach steady state within minutes and does not enter

equations (4.13)–(4.17) for that steady state.” (TCR/CAR antagonism, [3], SI)

For reference, all parameters of the revised AKPR model for several receptor types are defined

in table 3.4, in the previous chapter. Some parameters are highlighted in the condensed depic-

tion of the revised model, figure 4.3C: these are the parameters dictating TCR/CAR interactions,

through the inhibitory module and through the combination of their output signals, which had to

be estimated by MCMC (see below).

Again, we solved this system of equations at steady-state. The total number of bound receptors

of each kind is given by equation (4.4), as in the classical model. The rest of the solution can be

obtained by iterating the recurrence relation resulting from setting dCρ
n

dt
= 0,

Cρ
n =

λρn−1

(λρn + 1/τ ρ)
Cρ
n−1 . (4.12)

“The numbers of receptors in each proofreading state are, for each receptor type ρ,

Cρ
n =

Rρ
b

φρτ ρ + 1
(Φρ)n (0 ≤ n < Nρ − fρ) (4.13)

Cρ
n =

Rρ
b

ψρ(I⃗)τ ρ + 1
(Φρ)N

ρ−fρ(Φρ

I⃗
)n−N

ρ+fρ (Nρ − fρ ≤ n < Nρ) (4.14)

Cρ
Nρ = Rρ

b(Φ
ρ)N

ρ−fρ(Φρ

I⃗
)f

ρ

(4.15)

where we again defined the regular and inhibited proofreading factors

Φρ =

(︃
φρτ ρ

φρτ ρ + 1

)︃

Φρ

I⃗
=

(︄
ψρ(I⃗)τ ρ

ψρ(I⃗)τ ρ + 1

)︄
(4.16)
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Each form Iρ is activated out of a total pool of inhibitory molecules Itot by the

complexes Cρ
mρ , such that

Iρ = Itot
Cρ
mρ/C

ρ
m,th

1 +
∑︁

µ(C
µ
mµ/C

µ
m,th)

. (4.17)

Equation (4.17) for Iρ is explicit if mρ < Nρ− fρ for all types ρ. When one receptor

type, say ρ = T , satisfied this condition but not the other, we solved numerically

equation (4.14) for the missing CC
m (using Brent’s method [285] in SciPy [187]), then

determined I⃗ = (IT , IC). When both receptor types had implicit Cm, we solved

numerically the 2D system of equations for I⃗ (using the ’hybr’ method of Scipy’s

optimize.root function).

Notice that this model could readily be extended to more than two types of receptors.

Figure 4.7 shows how typical behavior of this model as a function of Lρ and τ ρ

promises to match experimentally observed features.” (TCR/CAR antagonism, [3],

SI)
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1Figure 4.7: “In the revised AKPR model, typical model curves (parameters not fitted) of TCR/CAR
antagonism, scaling of the peak antagonism position with TCR antigen density, and the antagonism
peak amplitude, compared to peak antagonism position and amplitude in experimental data. The blue
check marks highlight the qualitative agreement between model and data.” (TCR/CAR antagonism, [3],
SI)

Definition of CAR and TCR outputs

To complete the extension of our receptor kinetic proofreading model to CAR T cells,
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“we needed to combine TCR and CAR signals into a net T cell activation quan-

tity. We assumed that the last complexes in the proofreading cascade, Cρ
Nρ , activate

downstream pathways with potentially different efficacies, since receptors are differ-

ent. We assumed Hill activation functions of degree 2 and amplitudes Aρ; we defined

TCR, CAR, and total outputs as

Zρ = Aρ
(Cρ

Nρ)2

(Cρ
Nρ)2 + (Θρ)2

(ρ ∈ {TCR,CAR})

Ztot = ZT + ZC (4.18)

We set thresholds Θρ based on the Cρ
Nρ produced by a large amount of ligands having

some critical binding time τ ρc for receptor type ρ only,

Θρ = Cρ
Nρ

(︁
τ ρc , L

ρ → ∞, Lµ̸=ρ = 0
)︁

(4.19)

We considered the critical times τTc and τCc as model parameters to be estimated.

We normalized amplitudes Aρ = 1 for regular TCRs and 3-ITAM CARs, but adjusted

them based on separate data (section D.9) for 1-ITAM CARs and/or 6F TCRs (TCRs

with inactivated CD3ζ ITAMs, leaving 4 ITAMs [2]), to reflect curtailed proofreading

capabilities by these altered receptors.” (TCR/CAR antagonism, [3], SI)

4.3.4 Fit and predictions with the revised AKPR model
Parameter estimation

With the revised AKPR model (equations 4.15–4.17) promising to have the correct scalings when

extended to CAR T cells (figure 4.7), we proceeded to optimize its unknown parameters and assess

how accurately it could capture the extensive TCR/CAR dataset (figure 4.3B) generated by our

collaborators.

“We first fixed the parameters intrinsic for TCR activation – estimated from the

MCMC optimization applied to the TCR/TCR dataset (Figure 3.12H) – and then used

a new round of MCMC (Figure 4.3D) on the TCR/CAR interaction datasets collected

for CARs bearing 3 ITAMs and wild-type TCRs (10 ITAMs) following stimulation with

high and low TCR antigen doses (Figures 4.3E top and S2). Second, we validated

our model and its MCMC-optimized parameters by generating predictions for the

remaining dual TCR/CAR stimulation datasets generated with TCRs and/or CARs
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bearing reduced numbers of ITAMs (Figure 4.3E, bottom).” (TCR/CAR antagonism,

[3])

We determined model parameters similarly to our procedure for TCR/TCR antagonism (section

3.5.1). All details on the parameter estimation procedure, and on the generation of model predic-

tions for altered TCR and CAR ITAMs, are provided in appendix D. In summary, we estimated

ligand and receptor abundances from experimental calibrations, as explained in section 3.5.1 (and

appendix D.1); these molecule numbers are shown in figure 3.13 and table D.1. We reused TCR

parameters fitted on TCR/TCR antagonism, as appropriate for the TCR type (10-ITAM 6Y or 4-

ITAM 6F) of the CAR T cells. We determined CAR binding and proofreading rates (κC , φC , τC

for CD19) based on a previous study comparing relative TCR and CAR parameters [286]. We

set the number of KPR steps of a CAR to NC = 3, since it has only one CD3ζ chain and must

therefore have even less KPR steps than a 6F TCR, for which we have used NT = 4 previously.

We also normalized parameters γρρ = 1 and Itot = 1, since only the ratios of Iρth to Itot and of γρν
to γρρ matter in the steady-state solutions2. These fixed parameters are summarized in table D.3.

The remaining parameters were determined by Markov Chain Monte Carlo simulations; these are

the six parameters annotated in figure 4.3C, controlling TCR/CAR interactions in the inhibitory

module and the normalization of receptor states Cρ
Nρ into outputs Zρ. Boundaries of the a priori

distribution of parameters are given in table D.3. We performed a grid search over integer CAR

parameters, running a MCMC simulation for each combination of mC (step controlling the feed-

back), kCI (exponent in ψC(I⃗)), and fC (number of KPR steps regulated by I in CARs). We fitted

experimental data for 6Y (10-ITAM) TCRs at either TCR antigen density (1 µM and 1 nM); we

kept other receptor types for model validation. Table D.2, in the appendix, summarizes the details

of these MCMC runs.

As in our TCR/TCR simulations, we used a least-squares cost function of the residuals between

experimental and model antagonism values, measured by the FC ratio. For the TCR/CAR model,

this ratio was computed from the receptor outputs ZT and ZC ,

FCTCR/CAR =
Ztot(LT , τT ,CARAg)

ZC(CARAg only)
(4.20)

where Ztot = ZT + ZC , that is, considering the CAR antigen as the agonist (setting the denomi-

nator) and the TCR antigen as the antagonist (in the mixture at the numerator).

2The strength of negative interactions are thus controlled by Iρth and γρν , ρ ̸= ν.
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Figure 4.8: Autocorrelation function during MCMC simulations for the six estimated parameters in the
revised AKPR model extension to TCR/CAR interactions. The autocorrelation estimate is averaged across
random walkers, computed following [245] (details in appendix D). The total simulation time is well above
50 times the autocorrelation time τ̂ , the burn-in fraction (taken to be 20τ̂ ) is less than 5 % of the total
simulation duration, and the acceptance fraction of proposed moves is between 0.2 and 0.5; these metrics
indicate that the MCMC simulation has converged.

We ran MCMC simulations long enough to ensure convergence to the parameters’ a posteriori dis-

tribution (figure 4.8). The maximum a posteriori estimates we obtained from MCMC are provided

in table D.4 (they are also indicated by crosshairs in figure 4.3D). Several mC , kCI , fC values in

the grid search provided equivalent fit qualities; we therefore selected mC = 2, kI = 1, fC = 1

by analogy with TCR/TCR fits which also tended to give k = 1, f = 1, and m as large as possi-

ble. Moreover, these k, f values make the inhibitory module as simple as possible and there was

no biological reason to make it more complicated. The m = 2 value also helped to differentiate

3-ITAM CARs from 1-ITAM CARs, as explained below.

After estimating parameters using TCR/CAR antagonism data for 10-ITAM (6Y) TCRs, 3-ITAM

CARs, we validated the model by generating predictions for different receptor types. We setNC =

1, mC = 1 for 1-ITAM CARs, since their single ITAM implies few kinetic proofreading steps. To

obtain accurate predictions for antigen mixtures, we needed to compute correction factors for the

activation functions of these altered receptors, using independent measurements of responses to

single TCR or CAR antigens alone. These correction factors account for the different absolute

magnitude of 6F TCR or 1-ITAM CAR responses, and for the different impact of 1-ITAM and

3-ITAM CARs on the TCR response3. These calculations are illustrated in figure 4.9 and detailed

in appendix section D.9; values of the correction factors are provided in table D.3. It is important

to emphasize that the single-antigen (TCR or CAR) data used to compute these factors is distinct

3These effects cannot be captured by the other biochemical since response amplitudes were normalized to 1 for 6Y
TCR, 3-ITAM CAR T cells.
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Figure 4.9: Generation of TCR/CAR model predictions. “(A) Correction for 4-ITAM TCR output
amplitude and activation threshold, based on experimental IL-2 response to TCR antigens in the absence
of CAR antigens. (B) Correction for 1-ITAM CAR output amplitude, based on the responses of 3- vs
1-ITAM CARs to CD19. (C) Correction for the effect of 1-ITAM CARs on the TCR output amplitude,
based on the response of 1- vs 3-ITAM CAR T cells to TCR antigens in the absence of CAR antigen. (D)
Model predictions of antagonism and enhancement in mixtures of TCR and CAR antigens, for various
TCR and CAR constructs and TCR antigen doses, using the maximal a posteriori parameter estimates
and correction factors determined previously on separate data. (E) Experimental data for conditions
shown in [figure 4.3E]. Cluster ordering was performed on (D) and applied to (E). Error bars in panels
(A), (B), and (C) are standard deviations across time points in two experimental replicates with 2–3
biological replicates each.” (TCR/CAR antagonism, [3], figure S2)

from the measurements of responses to TCR and CAR antigen mixtures. We could hence compute

true model predictions, beyond mere parameter fitting, for these mixtures.

Fit quality and interpretation of the model

The revised AKPR model provided an excellent fit of FCTCR/CAR as as function of TCR antigen

quality and quantity (figure 4.3E). It captures both the antagonism (FC < 1) and enhancement

(FC > 1) regimes as TCR antigen quality is varied, and correctly captures the rightwards shift of

the antagonism curve when TCR antigen density is decreased (red line compared to black line).

The fit is particularly accurate for antagonism: despite the small error bars on the data (which

come from having multiple time points and experimental replicates averaged), the fit goes through

all data points with FC < 1. Enhancement is reasonably well captured, with some discrepan-
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cies. The fact that the strong agonist N4 enhances more at a 1 nM dose (rightmost point in red)

than at 1 µM may be due to second-order effects, like receptor internalization [287] or antigen

consumption [105]. We neglected such mechanisms, instead aiming for a simple cross-receptor

inhibition mechanism able encompass the wide range of immunological conditions tested by our

collaborators.

To understand how the model produces non-monotonic FC curves, we plotted, in figure 4.10,

the TCR and CAR outputs as a function of LT for a few representative TCR antigen qualities

mixed with the CAR antigen. The peak antagonism occurs at the crossing of the inhibited ZC

and the start of agonism in ZT , as seen in our preliminary experimental data (figure 4.2E). Hence,

patterns of TCR/CAR cross-receptor interactions rest on a delicate balance between positive and

negative signals from the TCR. In this balance, enhancement is almost entirely provided by the

TCR output ZT becoming larger than the initial ZC output. The experimental observations can

thus be explained without synergistic cross-receptor coupling in the model, which would provide

direct enhancement of ZC itself (as opposed to Ztot only via ZT ) by strong TCR stimulation4.
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Figure 4.10: “Illustration of antagonism or enhancement of the CAR signal by a TCR antagonist (left,
τ = 2 s), partial agonist (center, τ = 4 s), or agonist (right, τ = 10 s) as a function of antigen density.”
(TCR/CAR antagonism, [3], figure S2)

Underlying this fit, the MCMC simulations converged to smooth a posteriori parameter distribu-

tions, shown in figure 4.3D. The distributions reveal parameter sloppiness, as in the TCR/TCR

case. Some sloppy directions correspond to understandable parameter correlations. For instance,

there is a correlation between CC
m,th and ICth, the thresholds for activation of I by the CAR and for

inhibition of the CAR by I , respectively (see top left pairwise plot in panel D)5. This is because in

the scaling regime where IC ≫ ICth and CC
m ≪ CC

m,th, only the products ICthC
C
m,th and γCTCC

m,th

4Future experimental analyses could reveal that the CAR output itself is increased by strong TCR stimulation, in
which case the model would need to be improved to account for this true receptor synergy; positive interactions were
not necessary in the present study.

5This was also the case for the equivalent TCR parameters, ITth and CT
m,th, as can be seen in figure 3.12H
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are important in ψ(I⃗) :

CC
m ≪ CC

m,th ⇒ IC ≈ CC
m

CC
m,th

IC ≫ ICth ⇒ ψC(I⃗) ≈ φC
ICthC

C
m,th

CC
m,thγ

C
T I

T + CC
m

showing that there are only two products of the three parameters which appear in the steady-state

solution.

The optimal parameter values found by MCMC provide relevant biological observations. Most im-

portantly, the large value of the parameter giving the strength of inhibition of the CAR by the TCR,

γCT ≈ 102 (dimensionless, compared to γT T = 1), indicates that the CAR must be very sensitive

to IT , the inhibitory species activated by the TCR. Parameter γT C , quantifying the strength of in-

hibition of the TCR by the CAR, is poorly constrained, but has to be < 1 to prevent the CAR from

inhibiting the TCR too much, which would be inconsistent with the observed enhancement by TCR

antigens with τ > 5 s. This strong asymmetry in the inhibitory module is necessary to account

for the antagonism data, and stems from the necessity for TCRs to inhibit ∼ 106 CARs without

self-inhibiting more than what was observed in TCR/TCR antagonism data (figure 3.13). This is

especially challenging to model, because CAR antigens bind very strongly to the antibody portion

of the receptor (large τC), yet weak TCR stimulation can nonetheless antagonize that activation

with weak τT , and enhance it with slightly larger τT or LT . Hence, receptor asymmetry is a cru-

cial component of the revised AKPR model extension to TCR/CAR cross-interactions, and it was

missing from the classical model. Biochemically, there are various potential mechanisms: steric

effects (e.g., distance of ITAMs from the membrane) could make TCR-bound SHP-1 molecules

more potent at dephosphorylating CARs than other TCRs, the IT species could in reality be a

different, potent enzyme activated only by the TCR, and so on. Tracking down these biochemical

details was beyond the scope of the current project; our goal was to develop a phenomenological,

low-dimensional model, and follow up on detailed mechanistic hypotheses in future work. We will

nonetheless provide some biochemical characterization in section 4.4.4.

We made further observations about parameter values: we found that ψ0, the basal proofreading

rate in the last steps regulated by I , has to be small but non-zero, to avoid complete shutdown of the

CAR by the TCR. We noticed that CARs also have a small threshold for inhibition by I , ICth ∼ 10−3

(dimensionless compared to Itot = 1), and a large threshold to activate I , CC
m,th ∼ 5×105 receptors

(compared to typically RC ∼ 106 receptors total on a CAR T cell). This implies the same three
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scaling regimes explained for TCRs in section 3.5.4. Lastly, the thresholds τT and τC are the best-

determined parameters (bottom right graph of figure 4.3D), because they contribute to setting the

point at which TCR antigens transition from antagonism (FC < 1 while ZT ≈ 0) to enhancement

(FC > 1 because ZT increases). This transition point, however, also varies as a function of

antigen quantity LT , as shown by the “partial agonist” condition in figure 4.10. Hence, capturing

this transition across immunological parameters was still a considerable modelling challenge, not

solved only by fitting the τT parameter. This constrained our design of the revised AKPR model.

Prediction accuracy for altered receptors

Comparing the heat maps in figure 4.9D–E shows how the revised AKPR model qualitatively

captures all variations in the TCR/CAR antagonism and enhancement patterns as receptor ITAM

numbers change. Comparing model curves and data in figure 4.3E, bottom reveals that the model

predictions are accurate at a quantitative level. The main discrepancy is observed for conditions

with 4-ITAM (6F) TCRs and can in fact be attributed to a batch effect in the main experiment

involving these receptors: the CAR T cells with 4 ITAMs had an unusually high activity in the

absence of TCR antigens, thus reducing the extent of enhancement possible (whereby the model

curve is higher than data points)6.

“Our revised AKPR model correctly predicted a decrease in antagonism when the

number of ITAMs on either the CAR or TCR was decreased – from 3 to 1 and 10

to 4, respectively [2]. Crucially, the model also accounted for the observation that

a low dose of partial agonist can antagonize as efficiently as a larger dose of weaker

ligands, and that the peak of antagonism shifts to higher quality TCR antigens upon

a reduction in TCR antigen density (Figure 4.3E and Figure 4.10), suggesting that a

negative ‘background’ effect occurs as soon as the TCR is engaged, with stronger lig-

ands required to overcome this effect at low densities. Together, our data and model

predictions suggest that TCR-mediated antagonism as well as enhancement of CAR

signaling can take place in multiple immune settings, in particular in environments

characterized by low levels of antigen presentation such as solid tumors.” (TCR/CAR

antagonism, [3])
6We could have fitted another correction factor, αC,6F

A , accounting for the different amplitude of ZC in the pres-
ence of 4-ITAM versus 10-ITAM TCRs, but contrary to the other correction factors that we estimated separately for
predictions, this one seemed to be an experimental rather than truly biological effect, hence we did not attempt to
correct it.
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4.4 TCR/CAR antagonism in various immunological settings
Given the success of the revised AKPR model, we attempted to generalize it to immunological

settings that were increasingly relevant physiologically and clinically: solid tumors in vitro and in

vivo (section 4.4.1), human CAR T cells in vitro (section 4.4.4), and ultimately in mice with human-

derived tissues (section 4.4.5). We also show how the model can serve as a pipeline to optimize

TCR/CAR interactions to protect healthy tissues via antagonism of the CAR, yet maintain tumor

clearance via enhancement by the TCR (section 4.4.3). We did not aim for quantitative accuracy in

all these contexts, but the model served as a motivation for the exhaustive battery of experiments

carried out by our collaborators. We describe briefly the model predictions and the experimental

results for each immunological setting tested by our collaborators.

4.4.1 Generalizing model predictions to other tumor cell types
To generalize the model to various contexts, we first needed a systematic way to account for dif-

ferent tumor cell types. Fortunately, we could account for these contexts by changing TCR and

CAR antigen densities, based on calibrations with fluorescent antibodies and flow cytometry, in

the same way as for the default (E2aPBX) tumors.

“MCMC parameter estimation simulations were done with data from experiments

where the antigen presenting cells were either B6 splenocytes (for TCR/TCR an-

tagonism) or CD19-expressing or CD19-KO E2aPBX tumor cells (for CAR/TCR an-

tagonism). The effect of changing tumor cell type for further model predictions

(figures 4.11–4.15) was straightforwardly reflected in the model by changing ligand

numbers LT and LC according to surface molecule abundances we measured for these

other cell types (figure 3.13 and table D.1).

We took into account differences in cell surface area when setting Lρ from surface

expression measurements. We divided total surface abundance by the average surface

area of the tumor cells relative to E2aPBX, for which the model parameters were

estimated. This was particularly important for B16 melanoma cells, which are large

cells [288], ∼ 5× larger surface area than E2aPBX based on our observations (data

not shown). Nalm6 tumor cells are also moderately large cells [289], 2.5× larger

surface area than E2aPBX based on our observations.” (TCR/CAR antagonism, [3],

SI)

177



We accounted for surface area differences because T cells only come in contact (forming an im-

munological synapse) with some fraction of the entire tumor cell surface, and thus only have access

to some fraction of the total CAR antigen and pMHC numbers. The AKPR model’s biochemical

parameters were fitted to work with E2aPBX tumor cells, so we only needed to account for differ-

ences in size relative to that type. For the PC9 lung cancer cell line, used below in section 4.4.5,

we did not have a clear estimate of tumor cell size, hence we did not correct them for a potentially

different surface area.

4.4.2 Tumors with low TCR antigen density tested in vivo
“We therefore tested the functional significance of TCR-mediated antagonism in a

melanoma model (B16-CD19) expressing substantially lower basal MHC levels and

higher basal CD19 levels compared to E2aPBX leukemia cells (Figure 4.11A, left

and 3.13B). Our mathematical model predicted that despite this lower level of MHC

expression, TCRs would maintain their ability to tune CAR signals (Figure 4.11A,

right). To test this prediction, we injected B16-CD19 melanoma cells, engineered to

express strong (N4), weak (V4), or no (Null) OVA peptide [290], into the flanks of

mice prior to treatment with OT-1/CAR T cells (Figure 4.11B, left). We evaluated

immunotherapeutic activity by long-term measurements of tumor growth and high-

dimensional immunophenotyping of tumor-infiltrating T cells (Figure 4.11B, right).

There was no significant difference in the unperturbed growth of the three melanoma

lines in vivo (B16-CD19/Null, B16-CD19/V4, and B16-CD19/N4; Figure 4.11C, left),

and, as expected, the adoptive transfer of OT-1 T cells without a CAR limited tumor

growth commensurably with the strength of the TCR antigen (null<weak<strong)

(Figure 4.11C, center). Notably though, upon transfer of OT-1/CAR T cells, tu-

mor rejection was markedly antagonized by weak TCR stimulation and enhanced

by strong TCR stimulation (weak<null<strong) (Figure 4.11C, right).” (TCR/CAR

antagonism, [3])

Hence, the predictions of our revised model of cross-receptor interactions, with parameter values

estimated to fit in vitro experimental data acquired over 72 h, seemed to generalize at least qualita-

tively to in vivo measurements spanning weeks. We pushed this idea of correlation between time

scales to the limit and tried to quantitatively predict in vivo outcomes, in terms of post-treatment

survival times, based on the in vitro model output. We supposed that the survival time of tumor-

bearing mice after CAR treatment, Ts, is some linear function of the receptor model total output,
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Figure 4.11: “TCR/CAR crosstalk shapes CAR T cell responses in solid tumors. (A) Baseline
densities of MHC (TCR ligand) and murine CD19 (CAR ligand) in murine E2aPBX leukemia and murine
CD19-transduced B16 melanoma cell lines (left) and model predictions for TCR/CAR crosstalk against
B16-CD19 expressing weak (V4) and strong (N4) affinity OVA antigens (right) are presented. (B)
Experimental scheme to evaluate TCR/CAR crosstalk in OT-1/CAR T cells in response to dual antigen
B16-CD19/OVA melanoma cells. (C) Tumor growth (top) and survival curves (bottom) for treated
groups show TCR-mediated antagonism of CAR T cell responses to melanoma cells (n = 9–13 mice per
group). (D) Tumor weights at Day 8 after OT-1/CAR T-cell transfer into mice bearing melanoma cells
expressing no TCR antigen, weak (V4, blue) or strong (N4, red) TCR antigens (top left). UMAP plot of
3,514,537 tumor-infiltrating leukocytes colored by cluster membership (16 clusters, top right). Leukocyte
Cluster 1 frequency (bottom left) anti-correlated with tumor weight. Its phenotype (bottom right)
revealed a tumor-reactive population of CD8+ T-cells (n = 10–15 mice per group). (E) Experimental
scheme (left), representative FACS plots (center), and overall fold changes in cell frequencies (right)
show specific killing of B16-CD19 melanoma cells over B16-CD19/V4 melanoma cells by OT-1/CAR T
cells, due to TCR-mediated antagonism of the CAR T response. All mice were initially injected with
1:1 ratios of B16-CD19 or B16-CD19/V4 melanoma cells (n = 11–14 mice per group).” (TCR/CAR
antagonism, [3], figure 4)
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Figure 4.11: (Continued) “Data in (C,E) are pooled from three independent experiments. Data in (D)
are pooled from two independent experiments. (∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001) Statistics
in (C) were calculated using Kaplan-Meier survival estimates and (D, E) were calculated using two-tailed
unpaired Student’s t-test with Holm-Bonferroni error correction applied. Data in (A) are shown as means
± standard deviation.” (TCR/CAR antagonism, [3], figure 4)

Ztot:

Ts = mZtot(LT , LC , τT , τC) + T0 , (4.21)

where LT , LC , τT are the ligand numbers and binding times of the CAR and TCR antigens on

the tumor cells, determined from experimental calibrations, as explained earlier (section 3.5.1 and

appendix D)

We computed the AKPR model output Ztot for each condition in figure 4.11C: tumors with N4,

V4, or no TCR antigen, and either regular T cell treatment (equivalent to LC = 0 as the CAR anti-

gen can’t be detected), 3-ITAM CAR T cell treatment, and 1-ITAM CAR T cell treatment (data in

figure 4.12A). We estimated parameters m and T0 by linear regression on all single antigen con-

ditions – either TCR antigen only (regular T cell treatment) or CAR antigen only (tumors without

TCR antigen). This fit is shown in figure 4.12B, top. Then, from the estimated m, T0 and the

previously computed Ztot, we predicted the average survival time Ts for all antigen mixture condi-

tions – 1- or 3-ITAM CAR T cell treatments of tumors expressing N4 or V4 (figure 4.12B, bottom

and C). This strategy tested the ability of the model to correctly predict cross-receptor interactions,

given a calibration of single antigen responses, similarly to our first attempt at modelling 6F TCRs

(section 3.4), but now seeking quantitative predictions of in vivo results.

The linear regression of Ts as a function of Ztot had a sufficient accuracy (R2 = 0.75) to make

predictions with a confidence interval on the same scale as real biological variability in survival

time (±20 days). The OT-1 treatment of V4-expressing tumors was under-estimated in terms of

model output, potentially because the model’s TCR parameters were fitted on data from naive T

cells in chapter 2, while preactivated T cells, more sensitive to weak antigens, were used here.

Nonetheless, the predicted survival times lined up surprisingly well with the observations (panel

B, bottom and C), especially for conditions with antagonism (V4-expressing tumors), but not for

the 1-ITAM CAR treatment of N4-expressing tumors, for which the predicted survival was over-

estimated. This is because the revised AKPR model was fitted to accurately capture in vitro results,

where 1-ITAM CARs did produce larger absolute outputs than 3-ITAM CARs (blue and turquoise
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lines in figure 4.3E, bottom). Hence, our model was especially accurate when predicting TCR/CAR

antagonism, as we had observed even for the in vitro fits (figure 4.3E, top).

We performed the same survival prediction exercise for mice injected with E2aPBX lymphoma

cells, with corresponding ligand abundances in the revised model. However, the mouse-to-mouse

variability was greater than for the B16 melanoma experiments, and the linear regression was less

accurate (R2 < 0.3), leading to poor confidence on the model predictions (prediction interval on

the order of ±40 days). Still, the fact that a linear regression between Ztot and Ts was possible

for B16 tumors, and to some extent for E2aPBX tumors, was highly surprising. Together, the

B16 and E2aPBX results indicate that modelling early receptor interaction kinetics can predict the

extent of in vivo immune responses qualitatively (antagonism or enhancement). In some cases,

we can generate quantitative predictions, but on such long time scales, other biological processes

start having a significant impact after the initial activation. In particular, the short mouse survival

after 1-ITAM CAR treatments of N4 tumors compared to the very strong enhancement seen in

vitro, which is the main outlier compared to model predictions in figure 4.12C, could be attributed

to rapid exhaustion of the over-stimulated CAR T cells [292], or to upregulation of other anti-

inflammatory feedbacks like regulatory T cells [273] or IL-10 production [173].

Using the B16 tumor line, we wanted to ensure that CAR treatment outcomes have a real biological

connection to the single-cell receptor-ligand interactions we modelled. Our collaborators verified

experimentally that, even in vivo, TCR/CAR antagonism occurs because of interactions between

individual cells and their receptors, rather than through some systemic feedback, e.g., cytokines.

“We therefore tested whether the observed TCR-mediated CAR antagonism would

limit the specific killing of tumor cells in heterogeneous tumor populations. We co-

injected mice with a 1:1 ratio of melanoma cells expressing CD19 but no peptide and

melanoma cells expressing both CD19 and the weakly antigenic V4 peptide. We then

treated the mice with OT-1 or OT-1/CAR T cells, and analyzed tumor cell com-

position eight days after T cell adoptive transfer (Figure 4.11E, left). As expected,

treatment of mice with OT-1 T cells without a CAR resulted in the preferential

elimination of tumor cells expressing both the CAR ligand and the TCR antagonist

V4 over tumor cells expressing the CAR ligand alone. In contrast, treatment with

OT-1/CAR T cells resulted in significantly higher killing of melanoma cells expressing

the CAR ligand alone than the melanoma cells expressing the CAR ligand alongside

the TCR antagonist V4 (Figure 4.11E, center and right). These results demonstrate
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A

C

B

Figure 4.12: Prediction of in vivo survival from the cross-receptor model. (A) Tumor growth for mice
groups treated by 1-ITAM CAR, OT-1 TCR T cells, showing reduced TCR-mediated antagonism of CAR T
cell responses (n = 9–13 mice per group). Legend as in (B). (B) (Top) Linear regression of experimental
survival time as a function of model output for each tumor and treatment condition where T cells have
stimulation by only one antigen (either TCR or CAR). Data shown as average ± standard deviation across
mice of each group. The shaded area is the 95 % confidence interval on the linear fit based on Student’s
t-distribution [291, eq. 8.44]. (Bottom) Prediction of survival time for tumor conditions with dual receptor
stimulation (TCR and CAR), using the fitted linear regression and the pre-computed model output Zth.
The shaded area for each prediction is the 95 % prediction interval based on Student’s t-distribution [291,
eq. 8.45]. (C) Comparison of real survival times and predictions from the model output and linear regression
(fitted on the grey points, which are single stimulation conditions). Data shown as average ± standard
deviation across mice of each group. The shaded area is the 95 % prediction interval. The outlier point is
1-ITAM CAR treatment of tumors expressing the CAR antigen and the strong TCR agonist N4. The model
(backed up by the in vitro data) predicts strong activation and thus good treatment efficacy, but the observed
survival is poor; as explained in the text, T cell death and exhaustion or anti-inflammatory feedbacks might
explain the discrepancy.
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the potential for TCR-mediated antagonism to limit the anti-tumor cytotoxicity of

CAR T cells on a granular, cell-by-cell basis, shaping tumor composition and impair-

ing immunotherapeutic efficacy. Conversely, this finding raised the possibility that

triggering TCR-mediated CAR antagonism could be beneficial when T cells interact

with healthy cells, as it would potentially allow for a reduction in severe adverse

CAR events by limiting on-target/off-tumor toxicity against CAR antigens on healthy

tissues [267, 293, 294].” (TCR/CAR antagonism, [3])

From the theoretical perspective, this finding explains why receptor signaling models successfully

capture cytokine dynamics and even mouse survival: these responses are fundamentally deter-

mined by cell-cell interactions, and slower global processes follow suit. In particular, within a

fixed immunological context (APC type, in vivo or in vitro, etc.), our TCR/CAR cross-receptor

inhibition model can establish accurate relative comparisons (such as the FC ratio) between the

responses to different antigen mixtures. In future applications, the model could thus serve to an-

ticipate tumor immune editing by CAR T cells, based on the unique TCR neoantigens presented

by different cells in heterogeneous tumors. It could also shed some light on variability in treat-

ment outcomes, by quantifying the possible “background effect” of antagonistic TCR neoantigens

unique to each patient. But here, we have followed another promising direction: we showed how

the revised AKPR model can be used as an in silico tool to screen antigen databases and engineer

receptor combinations that help maximizing CAR T cell accuracy.

4.4.3 Prevalence of TCR/CAR antagonism in a mutated peptide library
“To quantitatively assess how frequently TCR-mediated antagonism might shape CAR

T cell responses in tumors as well as healthy tissues, we leveraged our mathematical

model of TCR/CAR crosstalk (Figure 4.3). In particular, we estimated, for a given

TCR agonist (pAg), the prevalence of antagonists among altered peptide ligands

(pAPL) generated by single amino acid mutations of pAg. This is particularly significant

if pAg is a tumor neoantigen, i.e., a mutated self-antigen, because its set of pAPL

would likely contain its potential self-counterpart (Figure 4.13A, left and center). We

hypothesized that moderately strong agonists would have the highest chance of being

derived from their self-counterparts that are antagonistic to begin with (Figure 4.13A,

right). To test this, we used a comprehensive mutagenesis dataset [258] of three

distinct human antigens associated with seven TCR clones (appendix section D.10).

We input the measured antigen strengths (EC50s) for all TCR-antigen combinations
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(Figures 4.13B–D) into our mathematical model (Figure 4.13E) to derive predictions

for FCTCR/CAR (Figures 4.13F–G). We then binned pAPL into three categories, based

on their predicted FCTCR/CAR: 1) antagonists (FC < 0.5); 2) null peptides (0.5 <

FC < 2), and 3) enhancers (FC > 2) (Figure 4.13H) and ordered TCRs by their

agonist antigen EC50 (Figure 4.13I). We found that between 17 and 80 % of pAPL

across all three antigens are potentially antagonistic, with pAg agonists of intermediate

strength producing the highest percentage of pAPL antagonists (Figures 4.13J–K).

These data confirm our hypothesis that intermediate strength neoantigens (pAg) have

the highest probability of being derived from an antagonistic self-antigen (pAPL).”

(TCR/CAR antagonism, [3])

This analysis illustrates how our model of CAR T cell chemical sensing can, from a single measure

of TCR antigen affinity, predict the level of cross-receptor inhibition or enhancement. This creates

an efficient pipeline to screen T cell receptor affinity databases (in terms of antigen EC50s) in

search of TCR-antigen pairs that can optimally enhance tumor elimination, or antagonize CAR

T cell toxicity against normal cells. In fact, our analysis suggests that both improvements can

be realized with a single receptor, since neoantigens (pAg) that are good agonists of a given TCR

frequently have self counterparts (pAPL) that can antagonize CAR T cells.

“These predictions illustrate the ubiquitous, yet variable, nature of TCR antagonism

and support the possibility of harnessing antagonism to engineer a transfer of anti-

gen discrimination – self vs. tumor neoantigen – from TCR to CAR.” (TCR/CAR

antagonism, [3])

4.4.4 Human CAR T cells
Before going after a specific preclinical application of TCR/CAR antagonism, with our collabora-

tors, we

“explored whether TCR-mediated CAR antagonism could be induced in a pre-clinical

setting by transducing a neoantigen-specific TCR into human CAR T cells. We

engineered human CD8+ T cells to express a human TCR specific for a cancer-testis

antigen, and, consistent with our predictions, found that most variants of the wild-

type antigen acted as weak agonists. According to our mathematical model, we
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Figure 4.13: “Universality of TCR-driven antagonism of CARs. (A) Theoretical scheme to evaluate
the probability of tumor neoantigens to have an antagonistic self counterpart. (B) Dose response curves
for 7 TCR responding to 1204 altered peptide ligands (from Łuksza et al. [258]). (C) Representative EC50

for all single amino acid mutations of the neoantigen. (D) Distributions of EC50s across all seven cloned
TCRs. Dashed line represents the EC50 of the agonist antigen pAg used to isolate the corresponding TCR.
(E) Schematic outlining the input parameters for the antagonism prediction pipeline: ligand/receptor data
for T cell/APC system of interest (top) and previously determined MCMC parameter data (bottom), were
passed to the model (middle), to estimate the magnitude of the TCR/CAR crosstalk. (F) FCTCR/CAR

as a function of TCR antigenicity (1/EC50s) for antigens analyzed in (C). (G) Representative predicted
FCTCR/CAR for all single amino acid mutations of the neoantigen activating TCR N1. (H) Distributions
of TCR/CAR interaction fold changes (FC) across all seven characterized TCRs.” (TCR/CAR antagonism,
[3], figure 5) (See next page for continued caption)
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Figure 4.13: (Continued) “(I) EC50s for pAg for each TCR. (J) Percentage of peptide variants pAPL

predicted to antagonize, enhance, or have no effect on CAR activation for each pAg/TCR pair. (K)
Average percentage of pAPL predicted to antagonize, enhance, or have no effect on CAR T cell activation
as a function of the strength of pAg.” (TCR/CAR antagonism, [3], figure 5)

predicted that these variant antigens would produce antagonism in a dual TCR/CAR

system, and confirmed this experimentally (Figure 4.14A–B), thus generalizing our

findings from murine to human cells (Figures 4.2 and 3.12).” (TCR/CAR antagonism,

[3])

“To get a semi-quantitative match between PLCγ immunophenotyping quantification

and model curves in figure 4.14, we had to take into account the limited dynamic

range of Western blots. We noticed that the TCR antigen 9C produced no visible

band, while 9V produced a weak band. We therefore added a constant background

value Z0 to the total model output Ztot, equal to ZT
(︁
1
2
(τT9C + τC9V )

)︁
(i.e. output of

an antigen halfway between 9C – no visible output – and 9V – some visible output).

Moreover, we took into account the very strong CAR signal in this proximal readout

(compared to cytokines), by dividing the threshold ΘC on CC
NC in ZC by a factor

of 20. These adjustments do not alter the qualitative prediction from our model

that lower agonist quantities are antagonized more strongly – see, for instance, the

decreasing antagonism with increasing agonist concentration in figures 3.12I and

4.3E.” (TCR/CAR antagonism, [3], SI)

“We further quantified TCR/CAR crosstalk in this human system by evaluating mi-

croscopic colocalization and downstream signaling responses (Figures 4.14C–D). In

particular, we measured the activation of the phospholipase C gamma subunit 1

(PLC-γ1), a critical downstream regulator [295, 268] of both TCR and CAR stim-

ulation. Our model predicted and our experiments confirmed that decreased CAR

antigen density, a common mode of immunotherapeutic escape in tumors [296], re-

sulted in increased antagonism (Figure 4.14D). Taken together, our modeling and

experimental data demonstrate that TCR-mediated CAR antagonism can be univer-

sally induced in human CAR T cells by co-expressing engineered TCRs targeting a

weak TCR agonist/antagonist on tumor cells.” (TCR/CAR antagonism, [3])
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Figure 4.14: “Human CAR T cell activity can be both antagonized and enhanced by a co-
transduced TCR. (A) Schematic of the generation of dual NYESO TCR/CD19 CAR T cells and
interactions with targets on leukemic cells. (B) Overall TCR/CAR crosstalk quantification across IFN-γ
and IL-2 functional outputs demonstrates the functional significance of TCR/CAR antagonism in the
human NYESO TCR/CD19 CAR system (n = 4 biological replicates). (C) Representative TIRF images
(left) and radial distributions (center) showing the accumulation of TCRs and CARs in the center of the
immune synapse when co-engaged with their respective ligands (n = 2 independent experiments, with
64-108 cells per stimulation). Pixel-by-pixel correlation of receptors in TIRF images revealing a moderate
level of CAR and TCR colocalization (right). Grey region represents the location of the CAR mask used
during correlations.” (TCR/CAR antagonism, [3], figure S5) (See next page for continued caption)
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Figure 4.14: (Continued) “(D) Four HLA-A*02:01+ NALM6 leukemia cell lines with different CD19
densities (center left) and NYESO peptides were used to stimulate NYESO TCR/CD19 CAR T cells
for 2 minutes. Representative immunoblots (center right) and quantification (right) of phosphorylated
PLC-γ1 in T cells activated via their TCR and CAR with different peptide variants (strengths indicated)
and CD19 levels, respectively. Experimental measurements are consistent with mathematical model
predictions (left). Data are representative of two independent experiments. Data in (B, C) are shown
as means ± 95% CI. Data in (D) are shown as means ± standard deviations. Biological replicates were
performed using T cells from different blood donors.” (TCR/CAR antagonism, [3], figure S5)

4.4.5 Application of the model to TCR/CAR engineering
The previous two subsections have shown, through model predictions verified experimentally, that

TCR self antigen and neoantigen pairs can antagonize and enhance CAR responses (4.4.3), re-

spectively, and that human CAR T cells also exhibit these cross-receptor effects (4.4.4). From

these findings emerged a way to combine the recognition paradigms of CARs – strong affinity

for antigens expressed more by tumors – and TCRs – amplification of small affinity differences

between tumor neoantigens and healthy cell self antigens – to sharpen CAR T cell precision. Our

objective was to minimize the toxicity of CAR T cells against healthy tissues expressing non-zero

levels of CAR antigens. This “on-target, off-tumor” (OTOT) toxicity creates severe side effects in

patients, sometimes leading to organ failures, cytokine storms, and death [266, 267]. This toxicity,

as mentioned in section 4.1.3, represents one of the major barriers limiting the generalization of

CAR treatments.

Our design strategy was to endow CAR T cells with a TCR which is strongly activated by a

neoantigen on tumor cells, while the corresponding (non-mutated) self antigen on healthy tis-

sues maximally antagonizes CAR responses. This combination transfers the TCR’s specificity in

distinguishing tumors from healthy cells to the CAR T cell, while preserving the CAR’s strong

stimulation by over-expressed tumor surface molecules (e.g., CD19). In other words, the TCR and

CAR act as a NOT gate for a self antigen plus CAR antigen mixture, yet as an OR gate for the

neoantigen plus CAR antigen combination. Against tumors, the CAR triggers the T cell response

unimpeded, whereas the TCR acts, via antagonism, as a brake against healthy cells (figure 4.15A).

Consequently, we termed this design an “Antagonism-Enforced Braking System” (AEBS) for CAR

T cells.

“Accordingly, we paired a CAR with a transduced TCR that binds strongly to a mu-

tated neoantigen on tumor cells but only weakly to its native self-antigen on healthy

tissues. We manufactured these dual TCR/CAR T cells by transducing three com-
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Braking System (AEBS) to enhance the eradication of tumors and reduce the toxicity against healthy
tissues.” (TCR/CAR antagonism, [3], figure 6) (B) “Dose response curves for HHAT TCR activation by both
self (HHATWT) and non-self (HHATp8F) antigens (n = 3 biological replicates)”. (TCR/CAR antagonism,
[3], figure 6) (C) Corresponding model predictions for TCR/CAR crosstalk in CAR T cells with the HHAT-
specific TCR, on either lung tumor cells (PC9) with the agonist neoantigen (p8F peptide), or healthy lung
cells (BEAS-2B) with the antagonist self antigen (WT peptide).

ponents into human CD8+ T cells: 1. a CAR targeting human epithelial growth

factor receptor 2 (HER2), which has previously been implicated in an adverse clin-

ical event due to lung tissue toxicity [266]; 2. a hedgehog acyltransferase (HHAT)

peptide-specific TCR, shown to bind strongly to a tumor neoantigen (HHATp8F)

while retaining weak affinity for the self-antigen (HHATWT) [297]; and 3. a Thy1.1

reporter. HER2+ PC9 lung adenocarcinoma cells and HER2+ BEAS-2B bronchial

epithelial cells were used as models of tumors and healthy tissue, respectively. First,

we confirmed a ∼ 10, 000 fold difference in the functional strength of HHATp8F

and HHATWT antigens in inducing a response from HHAT-specific T cells [298], as

assessed by co-culture with peptide-pulsed PC9 cells (Figure 4.15B). Accordingly,

our mathematical TCR/CAR crosstalk model predicted that the immunogenicity of

HHATp8F and HHATWT peptides would induce enhancement and strong antagonism

respectively in our dual TCR/CAR T cells (Figure 4.15C).

To evaluate in vitro OTOT toxicity of dual TCR/CAR T cells, we co-cultured them

with either self-antigen-pulsed HER2+ BEAS-2B cells or neoantigen-pulsed HER2+

PC9 cells. Importantly, the presence of the HHATWT self antigen on BEAS-2B

cells significantly antagonized CAR-driven effector molecule production and cyto-

toxic activity (Figure 4.16A, left) by dual TCR/CAR T cells. Conversely, neoantigen

HHATp8F presentation on PC9 cells significantly enhanced CAR-driven production of
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Figure 4.16: Experimental proof of the AEBS concept. (A) “Cell growth curves [. . . ] for GFP-tagged
target cells, monitored as green calibrated units (GCU), show lower cytotoxicity of dual TCR/CAR T cells
against healthy tissue compared to conventional CAR T cells (upward arrow) and increased cytotoxicity
against tumors compared to TCR T cells (downward arrow, n = 5 biological replicates).” (TCR/CAR
antagonism, [3], figure 6) (B) “[T]wo-dimensional trajectories of healthy tissue abundance and tumor
growth over time [. . . ] demonstrate the minimal on-target/off-tumor toxicity of AEBS CAR T cells
against healthy tissue compared to HER2 CAR T cells and increased anti-tumor toxicity compared to
HHAT TCR T cells (n = 20−29 mice per group). Data in (B) are pooled from four sets of experiments
with individual human blood donors. (∗∗∗∗p < 0.0001) Statistics in (B) were calculated using two-tailed
unpaired Student’s t-test with Holm-Bonferroni error correction applied. Data in (C) are shown as means
± 95 % CI.” (TCR/CAR antagonism, [3], figure 7)
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effector molecules by dual TCR/CAR T cells as compared to conventional CAR T

cells, and anti-tumor cytotoxicity was maintained (Figure4.16A, right). Thus, the

TCR in our dual TCR/CAR T cells operates as an ‘Antagonism-Enforced Braking

System (AEBS)’, enhancing CAR-mediated anti-tumor activity while simultaneously

antagonizing CAR activity against healthy tissues (Figure 4.15C), thereby preventing

OTOT toxicity.” (TCR/CAR antagonism, [3])

These in vitro findings confirmed the prediction from our TCR/CAR interaction model that weakly

stimulating self counterparts of TCR neoantigens are the best antagonists of CAR T cell responses

against healthy tissues. These findings led our collaborators to test AEBS CAR T cells in vivo.

They developed an experimental proof-of-concept with “humanized” mice: mice without their own

immune system, in which they engrafted human lung cells (BEAS-2B) presenting the HHATWT

antagonist and human lung cancer cells (PC9) presenting the HHATp8F neoantigen and the CAR

antigen (HER2). They then treated these mice with either regular human CAR T cells, regu-

lar human T cells with the receptor for HHATp8F, or human AEBS T cells with dual CAR and

neoantigen-specific TCR. The healthy human cells were engineered to be bioluminescent (express-

ing luciferase), so they could be tracked by imaging in visible light; the cancer cells were injected

subcutaneously and tracked by tumor size measurement.

The results of this preclinical experiment are shown in figure 4.16B. Regular CAR T cells exhibited

on-tumor and off-tumor toxicity: they slowed down tumor growth, but also depleted healthy lung

cells, because the latter also present the CAR antigen (HER2), albeit at a lower concentration

(pink line). Regular T cells spared healthy tissues, but were not efficient at killing tumor cells

(purple line), presumably because stimulation of the TCR by the HHATp8F peptide is not strong

enough to fully activate T cell cytotoxicity functions. Remarkably, AEBS CAR T cells struck

an optimal balance: they retained the cytotoxic ability of regular CAR T cells against tumors, but

TCR-mediated antagonism significantly reduced their toxicity against healthy tissues (orange line).

4.5 Outlook on cross-receptor interactions in CAR T cells
After using the cytokine latent space in chapter 2 to zoom into biophysical TCR signaling models

in chapter 3, we have built upon this mechanistic foundation to travel back up to even higher

system complexity and longer time scales. We thereby proposed a way to combine TCR and CAR

recognition paradigms to reduce CAR T cell toxicity. Our ability to quantitatively fit in vitro T cell

responses and to qualitatively predict in vivo responses confirmed our initial insights from antigen
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encoding: early kinetics in the TCR recognition of an antigen quality continuum determine, in

good part, immune responses on longer time scales.

The understanding of dual TCR/CAR chemical sensing gathered from our revised AKPR model

guided our collaborators to a promising preclinical concept to improve CAR T cell safety. In future

developments of the AEBS CAR T cell concept, our cross-receptor interaction model could be used

as a pipeline to scan databases of TCR antigen affinities. To fully improve CAR T cell treatments, it

will be crucial to identify TCRs which strike the optimal balance of antagonism from self antigens

and enhancement from neoantigen counterparts. More than a barcode for T cell identity, the TCR

may well underlie the different functional outcomes between CAR T cell clones [282] because of

its affinity landscape for self and neoantigens on tumors and healthy tissues. Our framework could

also generalize to other receptor combinations in the future.
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Discussion and conclusion

Discussion
Summary
T cell sensing and signaling pose theoretical challenges left unanswered by the usual biophysi-

cal treatment of concentration sensing (section 1.1). T cells have to sense small ligand affinity

differences among antigen mixtures. Their complex biochemical signaling machinery obfuscates

potentially simpler quantitative principles at play – if any. As such, systems immunology needs

systematic frameworks to rationalize and manipulate high-dimensional T cell responses [1].

Motivated by the theoretical and practical rewards that such a framework would bring, we at-

tempted to develop low-dimensional models of high-dimensional T cell activation processes. Our

collaborators’ robotic platform afforded us a rare opportunity to reverse-engineer T cell response

parameters from robust and precise cytokine dynamics measurements. We compressed cytokine

data, with little loss, to a universal two-dimensional latent space in which trajectories separated

mainly according to antigen quality – a property we termed “antigen encoding” (chapter 2). Bal-

listic physics inspired us with an accurate model of these latent space dynamics. Model parameters

describing early activation kinetics (a, θ, t0) correlated with each other and predictive of the overall

response dynamics. These parameters were primarily determined by antigen quality, with minor

effects from antigen quantity; they contained 2.6 bits of information about the continuum of anti-

gen affinities that can stimulate T cells. Most molecular or drug perturbations did not break this

correlation and merely shifted responses up or down the antigenicity axis (PC1, figure 2.28F).

Thus, we have obtained a connection in low dimension between the antigenic space sensed by T

cells and their high-dimensional cytokine outputs, based on the effective antigen quality sensed by

the TCR.

These results indicated to us – as hinted by the toy model of excitable immune dynamics in sec-

tion 1.2.2 – that early antigen recognition events set the tone for the rest of a T cell response.

We therefore investigated phenomenological models of cross-inhibition in TCR signaling to ex-

plain non-additive effects in cytokine responses to antigen mixtures measured in our collaborators’

robotic platform. While it may have seemed over-ambitious to model effects seen in 72-hour, non-

stationary cytokine dynamics with a steady-state model of receptor activation, we managed to set
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up direct quantitative fits by focusing on relative response magnitudes, simplifying data and model

outputs down to a one-dimensional antagonism ratio, FCTCR/TCR (chapter 3) or FCTCR/CAR

(chapter 4). Performing MCMC simulations to estimate model parameters allowed us to revise

the classical AKPR model, simplifying it further before adding back key ingredients, namely a

nonlinear function in the cross-receptor inhibitory coupling (in rate ψ(I)) and an asymmetry be-

tween TCR and CAR susceptibility to this inhibition (encoded in parameters γCT and γT C).

We validated the model by predicting antagonism and enhancement for various altered receptor

ITAMs. We even extended our predictions as far as in vivo time scales, with reasonable agreement

but more variability, likely due to slow feedback processes (e.g., tumor growth and exhaustion)

modifying the outcome of initial receptor-ligand interactions. Still, our revised AKPR model rep-

resents a drastic dimensional reduction of the TCR signalosome, the latter requiring in principle

hundreds of equations just to describe its known biochemical interactions [116]. Our results rein-

force the idea that TCR recognition of antigen quality boils down to kinetic proofreading steps plus

an inhibitory coupling between receptors; our collaborators’ precise datasets (capturing changes

less than two-fold in cytokine levels) provided enough detail to discriminate between different

versions of this inhibitory interaction. Our quantitative understanding of an emergent simplicity

in TCR antigen recognition inspired us to develop a new CAR T cell design where antagonism is

optimized, with assistance from the model, to protect healthy cells against off-tumor toxicity

Limitations, future work, remaining challenges
Although our results are encouraging, we are far from having fully elucidated the quantitative prin-

ciples of TCR sensing and signaling. To moderate our claims, we now highlight a few limitations

of our work, and suggest potential solutions that would strengthen our results if carried out suc-

cessfully. We also highlight important aspects of T cell activation that our theoretical work has not

addressed.

The full cytokine code might multiplex parameters beyond antigen quality

In chapter 2, our cytokine latent space was built from datasets including seven cytokines (quickly

reduced to five, as two had no signal). These cytokines were selected based on their anticipated

biological relevance, and spanned enough dimensions already to complicate interpretation, but

they did not account for the full range of chemical signals emitted by T cells. The communication

channel components that we overlooked might be used by T cells to transmit information about

other immune parameters: antigen quantity, antigen presenting cell (APC) types, cell numbers, etc.
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To address this concern, our collaborators have upgraded their robotic platform and flow cytometry

equipment to acquire panels of ∼ 20 cytokines and single-cell surface marker expression in parallel

(by multiplexing bead sizes and color channels). Preliminary analyses of these larger datasets still

show that antigen quality is the main parameter driving the response, down to the single-cell level.

It will however be interesting to attempt extracting other immune parameters from these larger

datasets. There may be other latent spaces, orthogonal to the one we found for antigen quality, in

which new information is encoded. For instance, T cells also sense combinations of co-stimulatory

ligands on APCs and modulate cytokine response levels and dynamics as a result – differently in

CAR and TCR T cells, too [79]. Hence, the rotations observed in our 2D latent space as APC types

are changed (figures B.6–2.30) could reflect large changes in other, intersecting latent spaces.

These spaces may be even more important with CD4+ T cells, which depend more on antigen

quantity to perform their helper roles in, e.g., B cell germinal centers [299].

Overfitting, systematic model search, and positive feedback

When seeking a quantitative agreement between data and models with free parameters, overfit-

ting is always a concern. We took various measures to avoid that issue: testing neural network

robustness against various preprocessing choices and comparing with other dimensional reduction

methods (chap. 2), estimating parameters of the classical AKPR model based on single antigen re-

sponses of 6Y versus 6F T cells to predict antagonism (chap. 3), cross-validating the revised AKPR

model with predictions compared to separate datasets of T cells with altered receptors (chap. 4),

and so on. These precautions ensure that our broad conclusions – about how the continuous spec-

trum of antigen qualities drives distinct cytokine responses and produces antagonism effects in

mixtures – are not merely fitting anomalies.

However, we cannot completely exclude the possibility that some details of our models have been

overfitted or poorly constrained by the experimental data. In chapter 2, the channel capacity we

calculated is based on one large experiment, combining several technical replicates with cells from

several mice; however, combining datasets from different days would likely have reduced the

channel capacity because of batch effects and of experiment-to-experiment variability. In fact, part

of this variability may be a feature rather than a bug of the immune system, a system primed to

respond very sensitively to all kinds of challenges7. An important future theoretical task will be to

anticipate these biological variations – or at least estimate their full statistics – based on the broad,

7Credits to William Bialek for proposing this idea in a discussion I was lucky enough to have with him.
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long-tailed distributions of TCR signaling molecule basal levels in T cells of a population [136].

Acquiring enough samples to do so remains a technical challenge, even with robots.

In chapter 3, the revised AKPR model fits are not perfect; in particular, they do not capture the

rightwards shift of the antagonism curve as the antagonist quantity L2 is decreased; the antago-

nism amplitude still decreases too much as L2 is lowered (red line, 10 pM agonist, figure 3.12I).

In chapter 4, on the contrary, the extension of the revised model to CAR T cells seems under-

determined, since several values of integer parameters k, m, f yielded similar fits. This might be

because the Hill activation function we are fitting for the outputs ZT and ZC could turn several

reasonable choices of Cρ
N receptor outputs into the right overall FC antagonism curve, with the

fitted thresholds, τTc and τCc , setting the exact crossover point.

These details do not detract from the revised AKPR model’s ability to achieve quantitative accu-

racy in different immune contexts: it still is a useful prediction tool. However, we could be missing

key mechanisms in our models. One likely candidate is a positive feedback loop, thought to be me-

diated by phosphorylated ERK downstream of the TCRs, preventing receptor deactivation once the

output crosses a certain threshold [116]. Striving for simple models, later studies found this posi-

tive feedback unnecessary to capture antagonism qualitatively in the classical AKPR model [129,

132]. With our collaborators’ robotic platform, we may now have reached the level of quantitative

precision where this positive feedback becomes noticeable.

We have, in fact, tried to include such an additional interaction in several versions of AKPR,

without significantly improving the model’s behavior (discussion in section 3.5.3). One issue is

that we have been manually searching for revised models, which is certainly not the most efficient

or systematic approach. Algorithms exist to evolve or simplify biochemical networks performing a

given function, or to compress large models into simpler ones [137, 159]. They were however not

easily applicable to our problem, since we do not have a qualitative biological function that we want

the model to perform, but rather a relatively small (by statistical standards; large by immunological

standards) dataset to fit. Instead, we could perform a systematic search in model space where we

include or remove a large set of possible network interactions (positive and negative feedbacks,

etc.), similar to the methods used in [64, 300]. Alternatively, following the approach in [301], we

could apply MCMC to a large network including many possible reactions, with strong exponential

priors on these reaction parameters, to enforce regularization and thus keep only the essential

interactions.
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To properly identify an eventual positive feedback from antigen mixture datasets, we should fit,

in addition to antagonism, not only enhancement but true synergy effects, i.e., a combined output

larger than the sum of either single receptor stimulation output. This could be quantified by a

second dimensionless ratio,

FCsynergy =
Out(TCR + CAR)

Out(TCR) + Out(CAR)
,

larger than 1 for true synergy, and below 1 for sub-additive responses (which are different from

antagonism, defined as a response below the agonist-only output). We did not compute this second

FC quantity in our thesis, because we did not have the TCR-only condition in all experimental

datasets, but future experiments should include it. Lastly, if traditional biochemical networks in

the AKPR framework ultimately fail to capture the range of antagonism and enhancement seen in

datasets, the most practical solution would be to resort to machine learning techniques to approx-

imate inhibitory and positive feedback modules, using recent tools like automatic differentiation

and universal differential equations [302]. This would not be the most interpretable solution, but

would at least enable a complete quantitative characterization of TCR sensing and signaling.

Explicitly connecting time scales to capture dose response curves

In chapter 3, it was interesting to note that we could recover absolute discrimination (output de-

pending only on quality τ while flat as a function of quantity L) in the model curves for single

antigens, after fitting the model on antagonism in binary antigen mixtures. In practice, we ob-

served the converse statement of the “spandrel” theorem proven in [139]. However, these model

output curves (CN versus L) in figure 3.18 do not quite capture the shape of experimental dose

response curves, which have very sharp increases as a function of antigen quantity before reaching

a plateau resembling absolute discrimination; see figure 5.1 below.

This sharpness could partly be due to using blast T cells in the experiment (pre-activated and

expanded), as opposed to naive cells. Still, we should properly predict these sharp response curves,

which will require improvements to our framework. The cause may be that we neglected positive

feedback loops, as mentioned in the previous section, which could sharpen the response around

the threshold. Otherwise, the problem might be situated downstream of TCR recognition. One

solution would be to use the AKPR model in its stochastic version, imagine a population of T cells

sensing antigens, and compute the fraction of T cells reaching some activation threshold before

starting to produce cytokines. A more phenomenological solution would be to apply a sharp Hill
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Figure 5.1: Cytokine dose response curves to OT-1 peptides. Data from Sooraj Achar, generated for
TCR/CAR antagonism, [3].

activation function on CN – similar to the output function we used in ZT and ZC for TCR/CAR

antagonism, but this time fitting the Hill thresholds directly on dose response data.

The next step to capture T cell responses in absolute values, for direct data-model comparisons,

would be to find a low-dimensional model of the T cell signaling pathways downstream of TCR

signaling. Such an end-to-end model of T cell responses would explicitly connect experimental

readouts and receptor outputs. We would no longer be restricted to fitting relative fold-changes.

We have relied on an empirical correlation between short (TCR sensing of antigen quality) and

long time scales (cytokine production and consumption), but we have not explained it entirely.

A mathematical model of this correlation would refine our ability to predict and manipulate it.

In fact, in preliminary stages of this work, we had attempted to achieve this goal using the IL-2

model of Voisinne et al. [105], finding quasi-static approximations to reduce its dimensionality

without changing its predictions (not shown in this thesis). However, that model relied only on

antigen decay to explain IL-2 decrease after 24 h, leading to a scaling of cytokine time integrals

with the initial antigen quantity – very different from what we saw in chapter 2. Further work will

be required in that direction.

Conclusion
Thesis objectives and potential impacts
In summary, there are still many remaining challenges regarding T cell sensing and signaling. Our

work on antigen encoding and revised AKPR models was nonetheless a step in the right direc-

tion, towards a better quantitative understanding of this uniquely complex and sensitive biological

system. We managed to reduce the dimensionality of T cell cytokine outputs without losing in-

formation about the antigen sensing performed by the TCR. We set up a MCMC method to fit
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phenomenological models of TCR signaling to robot-acquired datasets, comparing the model and

data through a dimensionless scalar ratio (the antagonism fold-change FC). The model predictions

were accurate and interpretable enough to guide the design of improved CAR T cells.

By seeking quantitative agreement between theory and experiment, by using computational physics

methods like MCMC simulations and the Blahut-Arimoto algorithm, we have attempted to bring

models of immune sensing and signaling to the same level of accuracy as other fields of physics

concerned with complex systems and using analogous techniques, for instance astrophysics [303].

We are still far from the lofty goal of unearthing immunity’s fundamental laws, but latent spaces

of immune dynamics may allow the establishment of deeper theoretical connections with the no-

tions of potential and fitness landscapes, which are increasingly common in biological physics:

for development [147], for mutations in protein sequences [156], for microbes in evolving popula-

tions [304], and for the functions of microbial communities [305]. Moreover, on the applied side,

our collaboration with the Altan-Bonnet and Taylor labs hopefully shows that even phenomeno-

logical, low-dimensional models can boost the engineering of precise immunotherapies.

Epistemological remarks
Optimistic and pessimistic views of low-dimensional models

Why do we find low-dimensional representations in immunity, and in biological physics more

generally? The pessimistic view would say it is due to limitations of human cognitive capabilities:

we cannot comprehend overly complicated models, we need low-dimensional descriptions to feel

satisfied about our understanding of something, so we come up with such simple theories even if

they are wrong. Such models however have little to do with the reality of the natural world and

would be at best, as James W. Black put it in his 1988 Nobel lecture, “accurate descriptions of our

pathetic thinking about nature” [306] (a phrase also used by Gunawardena [152]).

At the opposite end of the spectrum, the optimistic view would be some version of realism: the

biological world really has a low-dimensional underlying structure that we are uncovering in

mathematical terms. This conception would be similar to Galileo’s statement, in his criticism

of Ptolemy’s epicycles, that simpler mathematical theories are more satisfactory because they re-

veal the true structure and essence of the natural world [307, p. 508–510], [308, p. 245]. This

realism also shows through Albert Einstein’s phrase saying that “[t]he eternal mystery of the world

is its comprehensibility” [309], and through Eugene Wigner’s statement that “[t]he miracle of the

appropriateness of the language of mathematics for the formulation of the laws of physics is a

wonderful gift which we neither understand nor deserve” [310]. Although they are both agnostic
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to why that is the case, their position imply that we actually “comprehend” the world as it is, that

we uncover “laws of physics” truthful to reality when we find a successful mathematical theory,

including low-dimensional models.

A Kantian view as middle ground

A Kantian view can perhaps offer a middle ground between the pessimistic and optimistic views

of why low-dimensional models can describe biological systems. In the Critique of Pure Rea-

son [311, 312], Kant establishes an important distinction between a phenomenon and the “thing in

itself” (Ding an sich) that underlies it. The “thing in itself” is outside the realm of human knowl-

edge, but it is manifested as a phenomenon through our faculty of sensibility (Sinnlichkeit), and

interpreted through our faculty of understanding (Verstand). These faculties have a priori forms –

space and time for the faculty of sensibility, twelve categories such as causality and existence for

understanding – which shape all phenomena apprehended through their prism: “the object (as an

object of the senses) conforms to the constitution of our faculty of intuition” [311, B xvii]. Hence,

the regularities and mathematical laws that we find in natural phenomena really are in these phe-

nomena, because the latter are pre-conditioned, filtered by the a priori forms of our faculties; in

Kant’s words, “we ourselves bring into the appearances that order and regularity in them that we

call nature" [311, A 126]. In formulating his theory of knowledge, Kant aimed to rationalize the

possibility of deductive natural sciences like physics (in his words, of synthetic a priori judgments)

within the world of phenomena – which is ontologically different from the “thing in itself”, but not

any less real.

In this Kantian view, we think that low-dimensional models may be part of the a priori form of

our understanding. The things in themselves, beyond the realm of scientific knowledge, could

be high-dimensional, but we can only perceive, directly or through complicated machines, low-

dimensional projections of them in phenomena. They are not as immediately obvious as time and

space (the a priori forms of sensibility), but we can re-discover these low-dimensional structures,

latent in our perceptions and inherent to our understanding, through careful mathematical analysis

of datasets and mechanistic models. Thus, like in the pessimistic view, low-dimensional models

are a reflection of our perceptive and cognitive capabilities; yet, like in the optimistic view, they

are real, part of the highest level of reality that human beings have access to – phenomena. The

precise status that low dimensionality could have in Kant’s theory of knowledge (a category? sub-

category? a schema?) remains to be clarified, but revisiting the Critique of Pure Reason could be

valuable to interpret and guide contemporary developments of theory in biological physics.
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Appendix A

Examples of biological chemical sensing
A.1 Bacterial chemotaxis
When seeking food, bacteria need to find regions of high nutrient concentrations (e.g., aspartate,

serine), a phenomenon called chemotaxis. They use a characteristic “run and tumble” strategy,

stochastically alternating between swimming and stopping to change orientation [313], with the

transitions probability set by the chemoattractant concentrations sensed by the bacteria [314]. Each

bacterial species expresses a few different types (5 in E. coli) of chemoreceptors, called methyl-

accepting chemotaxis proteins (MCPs) [315]. While MCPs are typically first discovered for their

specific role in detecting some key chemoattractant (e.g., the Tar receptors for aspartate), they are

in fact involved in sensing various chemoattractants and repellents [316], giving bacterial cells the

potential to perform combinatorial decisions.

Upon binding to their ligand, MCPs trigger a dedicated enzymatic pathway resulting in the phos-

phorylation of protein CheY. In turn, phosphorylated CheY biases the rotation direction of flag-

ellar motors in an ultra-sensitive switch-like manner [314, 317, 318, 17]. Hence, presence of the

chemoattractant leads to more phosphorylated CheY and increases drastically the probability of

clockwise motor rotation, corresponding to the “tumbling” or stopping state (counter-clockwise

corresponds to running, in the absence of food). MCPs also trigger a biochemical adaptation

pathway based on methylation reactions, whereby bacteria only respond to relative changes in

concentration and swim in the direction of increasing chemoattractant gradients, i.e., towards food

sources [34]. Overall, bacterial chemotactic systems operate close to single-molecule physical

limits: they can amplify fractional changes in receptor occupancy as low as 0.2 % [319, 315], cor-

responding to a change of a few dozen ligand-bound receptors (assuming ∼ 104 receptor copies

per bacterium [320]). This is why they have been intensely studied by biophysicists.

A.2 Cell fate decisions in embryos
During embryonic development, individual cells integrate various chemical signals through a few

core families of receptors that regulate multiple differentiation pathways. The ligands targeted by
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Ligands Receptors

Delta ligands, Serrate/Jagged ligands Notch receptors
Wnt proteins Frizzled family
Fibroblast growth factors (FGF) FGF receptors
Transforming Growth Factor (TGF) β TGF-β receptors
Epidermal Growth Factor (EGF) Receptor tyrosine kinases (RTK)
Nerve Growth Factor (NGF) RTKs
Bone morphogenetic proteins (BMP) BMP receptors
Hedgehog (HH) Patched (PTCH) receptors

Table A.1: Pairs of cell surface receptor and extracellularly secreted ligand families involved in embryoge-
nesis, based on the review in Li and Elowitz [61]. Each of these families typically contain several receptors
and ligands and isoforms, with various degrees of cross-reactivity between them. Delta and Serrate are
surface ligands while other families are secreted ligands.

these receptors are either presented on the surface of neighbor cells, or secreted in the extracellular

medium. Table A.1 lists most of these receptor-ligand systems, which play key roles in embryo-

genesis. For example, bone morphogenetic protein (BMP) ligand diffusion implements a Turing

patterning mechanism for digit specification [72]. Oscillations in three families of receptor-ligand

systems– Notch, FGF, and Wnt – generate traveling waves of genetic expression which drive the

formation of vertebrae precursors called somites [70]. Gradients of morphogenetic proteins like

BMPs and TGF-β establish dorso-ventral and anterior-posterior axes to break symmetry in the

embryo [321]. In the early Drosophila embryo, cells make fate decisions within minutes based on

the concentration gradient of the Bicoid morphogen [35]1. The Gap genes downstream of these

morphogens then provide positional information to individual cells within a 1 % accuracy [53,

322].

Notably, each of the receptor-ligand families in table A.1 typically contain several receptors and

ligands or isoforms, with cross-reactivity and promiscuity (i.e., sharing of the same ligands by the

same receptors) between them. This enables cells to compute various functions of ligand combi-

nations depending on their receptor expression profile [60], allowing information to be addressed

to specific cell types [68]. These functions can decode different features of ligand combinations:

their identities, their concentrations, or their dynamical patterns [61]. Ligands can produce syn-

ergy or antagonism, that is, elicit responses larger or smaller than the sum of individual ligand

1In this case, there are no surface receptors involved, since before cell cycle 14, the embryo is in a syncytial state
where the 6̃000 nuclei share the same cytoplasm, but the promoters of downstream genes can be thought of as receptors
sensing the morphogen concentration.
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responses [63]. Hence, precise chemical sensing of ligand mixtures underlies the proper specifica-

tion of cell types to carry out developmental plans.

A.3 Olfaction
Odors are a valuable source of information to animals about their surroundings: using smell, they

can locate food, avoid predators, recognize a mate, and so on. Odors are caused by small organic

compounds sufficiently volatile and hydrophobic to be transported in the air; recent estimates sug-

gest there may be at least 4× 1010 such possible odorous molecules [323]. Evolution has endowed

animals with olfactory receptors (OR) to pick up these chemical cues in the air. These ORs are

transmembrane receptors expressed on olfactory receptor neurons (ORN) located in the nose ep-

ithelium (humans, mouse) or antenna (fly). Animals have R different OR types (R ≈ 50 in flies,

1000 in mice) with significant cross-reactivity for many different odorants. In canonical organisms,

each ORN expresses a single OR type, and all ORNs with the same receptor project to the same

small neural region in the olfactory bulb or antennal lobe, called a glomerulus [324]; hence, an

odorant can be encoded crudely as a R-dimensional vector x⃗ = (x1, x2, . . . , xR) specifying how

strongly each ORN type is stimulated by the odor (xi could be ORN firing rates in response to

the odor at a standard concentration, for instance) [325]. This way of encoding odors contrasts

with adaptive immunity, where receptor repertoires are much larger, but it implements efficient

algorithms – compressed sensing [326] and locality-sensitive hashing [327] – to distinguish sparse

odorant mixtures that are signatures of odor sources like preys and predators.

Various nonlinear and time-dependent effects arise in odor mixtures. A recent biophysical model

of ORN activation explained antagonism effects, whereby some odorants reduce the total response

compared to the sum of individual responses, and revealed that antagonism normalizes ORN ac-

tivity to prevent saturation in the olfactory response [66]; these predictions were confirmed ex-

perimentally [328]. Moreover, mice can have behavioral responses to fast fluctuations and delays

between odorants as short as ∼ 40 ms [329], indicating that temporal accuracy plays a role in

olfactory sensing performance. Animals can also discriminate turbulent background from sparse

relevant odors [330, 33, 331], and turn these signals into tailored behavioral strategies to track bro-

ken, intermittent olfactory trails [18, 332]. Theoretical work to understand olfactory circuits can

inform us on how fundamental chemical sensing challenges are solved across various biological

organisms.
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Appendix B

Supplementary results of universal antigen encoding

B.1 Filtering of large background noise in diverse immunolog-

ical settings
“Given the large number of experimental conditions and repeats produced by our

robotic platform, we found that a few time series had very limited signals and needed

to be additionally pre-processed and filtered out, as described below.” (Antigen

encoding, [1], SI)

I developed these processing steps in the later stages of the project, after Thomas Rademaker and

I had established the default processing pipeline.

B.1.1 IL-17A in human T cell time series
“Cytokine bead array measurements for the cytokine IL-17A consisted only in back-

ground fluorescence noise in ex vivo cultures of human T cells with peptide-pulsed

tumor cells, with a signal-to-noise ratio (see eq. 2.10 [above]) several fold smaller

than for other cytokines. We therefore set this cytokine to zero (in log-transformed

scale) in this dataset for the rest of the processing pipeline, for all peptides.” (Antigen

encoding, [1], SI)

To show why this processing was needed, we plot in figure B.1 the time series of human cytokine

concentrations, revealing that IL-17A values are essentially just experimental noise (due to back-

ground fluorescence in the flow cytometer): the values oscillate over time in a seemingly random

manner, only slightly above the lower limit of detection, similarly for all peptides and activating

agents (e.g., aCD3/CD28). Moreover, as shown in figure B.2, the signal-to-noise ratio (SNR) of

each cytokine in the human TCR experiment confirms that the IL-17A signal is essentially noise,

as opposed to the four other cytokines.
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Figure B.1: Calibrated cytokine time series in the human TCR experiment (showing every peptide, T cell
number, and cell donor tested). Compared to IFN-γ and IL-2, which exhibit clear dependency on antigen
quality, IL-17A trajectories look like background fluctuations, similar for all levels of stimulation. Moreover,
comparing IL-2 (first row) and IFN-γ time series (third row) reveals larger background fluctuations in IL-2
than in IFN-γ; this is why we could base the filtering of IL-2 background values on the level of IFN-γ signal,
as described in subsection B.1.2. (Antigen encoding, [1], response to reviewers)
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Figure B.2: (Left) Signal-to-noise ratio (SNR), as defined in equation (2.10) computed across all times and
all agonist peptides in the human TCR experiment, for each cytokine. “Agonist” peptides include NY-ESO,
4A, 9V, 8S, and 8K, which produced the highest CD69 expression levels at high peptide doses. The graph
shows that even for strong stimulation producing clear T cell activation, IL-17A still has a very low SNR
for IL-17A, meaning it is essentially background noise only. (Right) SNR computed within each interval
between quintiles, for each cytokine. Even when considering only the top 20 % of recorded concentrations
for each cytokine (i.e., values above the last quintile, rightmost point on the graph), the SNR of IL-17A is
less than 0.5 times that of any other cytokine, again indicating that the IL-17A was simply not detectable in
that experiment. (Antigen encoding, [1], response to reviewers)

B.1.2 Filtering based on IFN-γ
“The experimental results acquired with human anti-NY-ESO-1 TCR-expressing hu-

man T cell blasts, as well as the mouse cell dataset used in section 2.7, exhibited

fluorescence background higher than usual. This measurement noise (mostly for IL-2

and IL-17A) could not be entirely removed by our regular spline smoothing process

and required specific filtering.

We eliminated this excess background in the IL-2 measurements as follow. We no-

ticed that IFN-γ was the easiest cytokine to detect, even for weak antigens. Hence,

we compared each time series to the corresponding “null” condition included in the

experiment (un-pulsed tumor cells for the human datasets, antigen presenting cells

pulsed with E1 peptide for the mouse datasets). When we found a time series with

similar or smaller IFN-γ measurements than this “null” condition, we inferred that the

signal in IL-2 was necessarily background noise too, and thus we set IL-2 to zero for

that time series. The threshold for similarity was p > 0.5 in a two-sample, one-sided

Kolmogorov-Smirnov test, SciPy’s implementation [187].When the comparison was

inconclusive (p < 0.5), we did not filter out that IL-2 time series and proceeded with

spline smoothing as described above.” (Antigen encoding, [1], SI)
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Figure B.3: IL-2 time series filtered out based on a Kolmogorov-Smirnov comparison of IFN-γ with the
“null” condition (T cells and un-pulsed tumor cells). The two time series that seem to stand out in the top left
panel are those of antigen 5Y (which was the weakest non-agonist in our functional EC50 assay of NY-ESO
peptides) and of the “None” control condition (T cells, no tumors). No cytokine response is expected in
those conditions; hence, all IL-2 trajectories filtered out are certainly background noise, and any trend in the
time series must be due to a systematic measurement error, or contamination of the coculture by a stronger
peptide. (Antigen encoding, [1], response to reviewers)

Figure B.3 highlights the IL-2 trajectories that were filtered out based on this test; none is vis-

ibly above background fluorescence fluctuations, confirming that our method reliably identified

only time series that essentially consisted of background noise, thanks to the stringent similarity

criterion p > 0.5.

B.2 Supplementary figures related to antigen encoding
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Figure B.4: Comparison between latent space time courses obtained from data (Splines, dashed lines)
and fits of our model(s) (Fit, solid) for 6 independent experiments (labelled TCellNumer_1, etc.) chosen
randomly out of the 14 datasets used in figure 2.17. For clarity of the plots, two time series for each peptide
available in the experiment were selected also randomly. We see fits obtained with both the constant velocity
model and the more accurate force model with matching. (Antigen encoding, [1], response to reviewers)
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Figure B.5: Similar to figure B.4, but for latent space concentration time series (ls1(t), ls2(t)), and with a
different random selection of datasets. Comparing left and right subplots in each dataset makes particularly
clear the greater accuracy of the force model with matching for cytokine concentration dynamics. (Antigen
encoding, [1], response to reviewers)
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Figure B.6: “Antigen encoding with effector T cells. (A) Latent spaces of cytokine dynamics for
OT-1 effector T cells (“Blast”) compared to OT-1 naïve T cells. (B) Immune velocity (v0) as a measure
of antigenicity was defined using naïve T cells (left panel) and remained accurate for blast T cells (right
panel) Notice that for blast cells the trajectories in the latent space are rotated with respect to trajectories
for the naïve cells. (C) Despite the rotation in latent space, immune velocity (v0) is comparable and has
high order accuracy in both naive and blast T cells, showing the relevance of this parameter to compare
different immune contexts. The data used in this figure are from three independent experiments, each
with two technical replicates.” (Antigen encoding, [1], SI)
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Figure B.7: “Latent space and order accuracy for different number of OT-1 T cells. (A) The
latent space projections (trained with 100k T cell series) remain accurate in classifying antigens at lower
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latent space trajectories according to T cell number, for any given antigen, with good accuracy, especially
when a stronger antigen is presented. The data used in this figure are representative of three independent
experiments. (Antigen encoding, [1], SI)
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Appendix C

Existence and uniqueness of the solution for bound
receptors

Recall that in kinetic proofreading models for mixtures of two TCR antigens, the equation to solve

for the number of receptors bound to each type of antigen are

0 = κτ1(L1 −Rb,1)(Rtot −Rb,1 −Rb,2)−Rb,1

0 = κτ2(L2 −Rb,2)(Rtot −Rb,1 −Rb,2)−Rb,2 . (3.8)

Then, isolating Rb,2 in terms of Rb,1 gives

Rb,2 = Rtot −Rb,1 −
Rb,1

κτ1(L1 −Rb,1)
, (3.9)

resulting in a cubic equation for Rb,1,

f(Rb,1) = p0(Rb,1)
3 + p1(Rb,1)

2 + p2Rb,1 + p3 = 0 (3.10)

where the coefficients are

p0 =
τ1
τ2

− 1

p1 = −
(︃
τ1
τ2

− 1

)︃(︃
Rtot + L1 +

1

κτ1

)︃
− L2 −

τ1
τ2
L1

p2 =
τ1
τ2
L2
1 +

(︃
2
τ1
τ2

− 1

)︃
RtotL1 +

L1

κτ2
+ L1L2

p3 = −τ1
τ2
RtotL1

2 . (3.11)

We now want to prove that for physically meaningful values of parameters – namely, τl, Ll, Rtot,

and κ are all in (0,∞) – there is a unique real root (Rb,1, Rb,2) which is physically possible,
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meaning that

Rb,l ∈ [0, Ll] l ∈ {1, 2}(there can’t be more than Ll bound ligands of type l) (C.1)

Rb,1 +Rb,2 ≤ Rtot(there can’t be more bound receptors than Rtot) . (C.2)

We only need to consider the case τ1 ≥ τ2, else we could relabel ligands 1 ↔ 2 to enforce this

condition (or equivalently, solve in terms of Rb,2 first). Hence, it is clear that coefficients p0 and p2
are positive while p1 and p3 are negative.

Lemma C.0.1. A root Rb,1 ∈ (0, L1) ensures that (i) Rb,1 +Rb,2 ≤ Rtot and (ii) Rb,2 ∈ (0, L2).

Proof. To prove this, notice that isolating Rtot −Rb,1 −Rb,2 in both equations 3.8 gives

Rtot −Rb,1 −Rb,2 =
Rb,1

κτ1(L1 −Rb,1)
=

Rb,2

κτ2(L2 −Rb,2)

By hypothesis, Rb,1 > 0 and L1 −Rb,1 > 0, hence Rb,1

κτ1(L1−Rb,1)
> 0 since other parameters are also

positive; from the first equality, this means that Rtot−Rb,1−Rb,2 > 0, thus proving (i). Moreover,

from the second equality, Rb,2

κτ2(L2−Rb,2)
> 0 which, since L2 and other parameters are positive, is

only possible if Rb,2 > 0 and L2 −Rb,2 > 0, thus proving (ii).

Therefore, the problem reduces to proving (C.1) for l = 1, that is, to proving that the cubic equation

with coefficients in 3.11 has a unique solution in [0, L1]. We do this in two more steps.

Lemma C.0.2. The cubic polynomial (3.10) has at least one real root Rb,1 in [0, L1].

Proof. We prove this by evaluating f(Rb,1) defined in (3.10) at 0 and L1.

f(0) = p3 = −τ1
τ2
RtotL

2
1 < 0

while

f(L1) =

[︃
τ1
τ2

− 1

]︃
L3
1 +

[︃
−
(︃
τ1
τ2

− 1

)︃(︃
Rtot + L1 +

1

κτ1

)︃
− L2 −

τ1
τ2
L1

]︃
L2
1

+

[︃
τ1
τ2
L2
1 +

(︃
2
τ1
τ2

− 1

)︃
RtotL1 +

L1

κτ2
+ L1L2

]︃
L1 −

τ1
τ2
RtotL1

2

=
L2
1

κτ1
> 0
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Since f changes sign between 0 and L1, it has at least one real root in between. The root is not at

0 or L1 exactly, unless L1 = 0, which is not a relevant parameter value here.

The last step is to show there is never more than one root in [0, L1].

Lemma C.0.3. The cubic polynomial (3.10) has only one root in [0, L1].

Proof. Depending on the value of the cubic discriminant ∆3, the polynomial has either one (∆3 <

0), two (∆2 = 0) or three (∆3 > 0) real roots; the case ∆3 = 0 means that a root is degenerate. If

∆3 < 0, the only root is in [0, L1] by Lemma C.0.2, and we are done. We only need to consider

∆3 ≥ 0.

Just from the exact expression for the roots of a a cubic polynomial, it is hard to tell where they are

located. To make progress, we examine the derivative,

df

dRb,1

= 3p0R
2
b,1 + 2p1Rb,1 + p2 . (C.3)

Evaluated at Rb,1 = 0, it gives

df

dRb,1

⃓⃓
⃓
0
= p2 =

τ1
τ2
L2
1 +

(︃
2
τ1
τ2

− 1

)︃
RtotL1 +

L1

κτ2
+ L1L2

which is always positive. Hence, we must decide between the three cases illustrated in figure C.1,

which are the only possibilities for a cubic with p0 > 0, at least one root and a change of sign in

[0, L1], and an upwards branch intersecting at Rb,1 = 0.

L1

Rb,1

f(Rb,1)

(a) Only the first root in [0, L1].
The other two roots could be de-
generate if ∆3 = 0.

L1

Rb,1

f(Rb,1)

(b) All three roots in [0, L1]. Either
pair of adjacent roots could be de-
generate if ∆3 = 0.

L1

Rb,1

f(Rb,1)

(c) Only the last root in [0, L1]. The
other two roots could be degenerate
if ∆3 = 0.

Figure C.1: The three possible ways the real roots of f , in the case ∆3 ≥ 0 relevant here, can be distributed
to follow Lemma C.0.2 and to have df

dRb,1
> 0 at the intercept.

These cases can be distinguished by the positions of the zeros of f ′ = df
dRb,1

.
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• Case C.1a necessarily has one zero of f ′ at Rb,1 > L1, and at most one in [0, L1].

• Case C.1b has both zeros of f ′ in [0, L1].

• Case C.1c has both zeros of f ′ at Rb,1 < 0.

The zeros of f ′ are given by the quadratic formula,

R∗
b,1 =

−2p1
3p0

± 1

3p0

√︂
4p21 − 6p0p2

Since p0, p2 > 0 while p1 < 0, both solutions are positive, since −2p1
3p0

> 0 and
√︁
4p21 − 6p0p2 <

|2p1|. This rules out case C.1c.

The rightmost zero of f ′ (positive sign in the quadratic formula) is outside of [0, L1], since

R∗
b,1,+ =

−2p1
3p0

+
1

3p0

√︂
4p21 − 6p0p2

>
−2p1
3p0

=
2

3( τ1
τ2
− 1)

(︃(︃
τ1
τ2

− 1

)︃(︃
Rtot + L1 +

1

κτ1

)︃
+ L2 +

τ1
τ2
L1

)︃

=
2

3

(︄
L1 + L1

τ1
τ2

τ1
τ2
− 1

+Rtot +
1

κτ1
+

L2
τ1
τ2
− 1

)︄

>
2

3

(︄
L1 + L1

τ1
τ2

τ1
τ2
− 1

)︄

>
2

3
(L1 + L1) =

4

3
L1

> L1

This rules out case C.1b; hence, the real roots of the cubic polynomial f(Rb,1) are distributed as in

case C.1a: there is only one in [0, L1].

Combining the three lemmas, we can conclude that there is always a unique real root of f(Rb,1) in

[0, L1], which ensures the system of equations for the number of receptors bound to each type of

ligands (Rb,1, Rb,2) always has a unique physically meaningful solution satisfying conditions (C.1)

and (C.2).
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Appendix D

Parameter estimation methods

“For parameter estimations, since the revised TCR-CAR model expands on a sim-

pler TCR model, our general strategy was to first estimate the TCR parameters on

TCR/TCR data, before estimating CAR parameters on part of the TCR/CAR dataset,

and predicting the remaining part of that dataset. Additionally, some parameters

were fixed, either taken from the literature, derived from additional calibration exper-

iments, or chosen to perform simplifying assumptions ensuring a better convergence

of optimization.” (TCR/CAR antagonism, [3])

D.1 Calibration of receptor and ligand abundances
To faithfully compare our model to experimental data, we wanted to use realistic values of the anti-

gen quantity parameters, Lρ, in the model. Our collaborators therefore experimentally calibrated

the absolute number of ligands per APC (for a typical APC cell size). To calibrate the abundance

of TCR antigens, which are short peptides loaded on major histocompatibility complex (MHC)

molecules, our collaborators measured the MHC loading efficiency of peptide pulsing, i.e., the the

fraction of MHC loaded with a peptide, as a function of the concentration of the peptide solution.

They performed the assay with RMA-S antigen presenting cells, which have a deficiency in their

pathway to present intracellular-derived peptides, such that they only load peptides present in the

extracellular medium. They pulsed them with different doses of OVA-derived (OT-1) peptides and

measured the fraction of loaded MHC for each dose, using a fluorescent antibody.

“A Michaelis-Menten model with background was fit on the H-2Kb mean fluores-

cence intensity (MFI) curves of all RMA-S loading experiment replicates and each

ovalbumin-derived (OVA) peptide to determine their loading EC50s (figure 3.13c) in

terms of the peptide pulsing concentration [P ]:

MFI = MFIbackground +Amplitude
[P ]

[P ] + EC50

. (D.1)
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Cell Molecule CI2.5% Geo. mean CI97.5%

B16 CD19 7.7× 105 7.9× 105 8.0× 105

B16 MHC 4.7× 102 4.8× 102 5.0× 102

B6 Splenocyte CD19 7.6× 103 8.0× 103 8.4× 103

B6 Splenocyte MHC 5.20× 104 5.27× 104 5.35× 104

BEAS2B Her2 1.68× 104 1.71× 104 1.73× 104

BEAS2B MHC 2.997× 106 3.008× 106 3.016× 106

E2aPBX 19KO CD19 3.74× 102 3.80× 102 3.87× 102

E2aPBX 19KO MHC 4.42× 104 4.48× 104 4.54× 104

E2aPBX WT CD19 1.05× 105 1.07× 105 1.08× 105

E2aPBX WT MHC 5.73× 104 5.80× 104 5.88× 104

Nalm6 19KO CD19 4.57× 102 4.64× 102 4.72× 102

Nalm6 19KO MHC 6.19× 105 6.23× 105 6.27× 105

Nalm6 19hi CD19 4.60× 105 4.62× 105 4.64× 105

Nalm6 19hi MHC 8.09× 105 8.14× 105 8.19× 105

Nalm6 19int CD19 3.12× 104 3.15× 104 3.18× 104

Nalm6 19int MHC 5.86× 105 5.91× 105 5.95× 105

Nalm6 19low CD19 4.31× 103 4.39× 103 4.47× 103

Nalm6 19low MHC 8.1× 105 8.3× 105 8.4× 105

OT1 Blast CAR 4.07× 102 4.16× 102 4.27× 102

OT1 Blast TCR 1.515× 105 1.519× 105 1.523× 105

OT1 CAR CAR 9.5× 105 9.8× 105 10.1× 105

OT1 CAR TCR 1.211× 105 1.218× 105 1.225× 105

OT1 Naive TCR 9.9× 104 10.0× 104 10.1× 104

PC9 Her2 3.28× 104 3.33× 104 3.37× 104

PC9 MHC 7.3× 105 7.4× 105 7.5× 105

Table D.1: “Abundance of surface molecules on various cell types, related to figure 3.13. Molecule
numbers are as determined in figure 3.13 and used in the model. Bootstrapped 95 % confidence intervals
on the geometric mean computed across cells are also given (lower limit: CI2.5%, upper limit: CI97.5%).”
(TCR/CAR antagonism, [3], Table S2)
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Since all OVA peptides had similar loading EC50s, the geometric average was used to

determine a single loading EC50 parameter, KD, load, to build a universal Michaelis-

Menten loading curve from which all peptide-pulsing concentrations [P ] were con-

verted to fractions of loaded MHCs,

pMHC

TotalMHC
=

[P ]

[P ] +KD,load

, (D.2)

and ultimately to absolute numbers of TCR ligands, using total MHC numbers quan-

tified for each type of antigen-presenting cell (APC) in figure 3.13 and table D.1.

We found log10(KD, load/1nM) = 2.0+0.2
−0.3 (95 % CI of all replicates and peptides,

figure 3.13C-D).” (TCR/CAR antagonism, [3])

The abundance of other surface molecules, either CAR antigens or TCR and CAR receptors, was

also estimated using antibody-based fluorescence assays for each cell type used in this project. The

resulting surface antigen numbers are shown in figure 3.13A–D and table D.1.

D.2 Peptide binding time conversion
“In our models, we assumed that all ligands of receptor type ρ have the same binding

on-rate (κρ) and are distinguished only by their off-rates, or equivalently by their

binding times τ (inverse of the off-rate). We therefore needed a systematic, model-

independent way of assigning a binding time τ to TCR antigens based on their

experimental EC50s. We assumed EC50s are defined by an idealized KPR power law

passing a threshold of activation Θ, that is,

EC50τ
N = Θ (D.3)

where EC50is measured in antigen pulse concentration. The threshold Θ is set by

choosing a reference τref for one peptide with known EC50,ref . Then, the τ of any

other antigen is set by

τpep = τref

(︃
EC50,pep

EC50,ref

)︃−1/N

(D.4)

We used NT = 6, as in our improved AKPR model. For OT-1 antigens, we used

the same EC50s as in Achar et al. [1] and we set as a reference τ = 10 s for the

N4 antigen. We furthermore set τ = 0.5 s for the E1 antigen since it produces
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no measurable response in our assays, causing its EC50 to be ill-determined. This

conversion rule is illustrated in figure 3.13E.

For other antigens (NY-ESO antigens, HHAT/p8F), we carried a dose response ex-

periment based on the percentage of CD25+ cells at 24 h. We used the CD25 EC50

of N4 (OVA) as the reference point at τ = 10 s for these other antigens. For fig-

ure 4.13, we used the 4-1BB+ EC50s provided in Łuksza et al. [258], and we inferred

missing values for CMV-derived antigens with the correction method described below

in section 4.4.3.” (TCR/CAR antagonism, [3])

D.3 Parameter values in the initial AKPR model
“Before diving into our main parameter estimation efforts with the revised model, a

few words about parameters in the initial AKPR model. We set most TCR parameters

to their original value in François et al. [129], except for φ, Cm,th, Itot, and m,

which we estimated by MCMC as described below (section D.5 and table D.4).

For the extension of this model to TCR/CAR antagonism, we did not perform an

exhaustive parameter search; we only tested representative values (figure 4.5) to

conclude the model could evidently not fit all data. We kept CAR parameters in the

same relationship to their TCR counterparts as in the revised model (see table D.3),

e.g., we set κC = 10κT .” (TCR/CAR antagonism, [3])

D.4 Fixed parameter values
“Some parameters of the revised model were determined from the literature, as sum-

marized in the first part of table D.3.

• The TCR ligand on-rate, κT , was taken from François et al. [129], since it only

influences the absolute scale of all CT
n s via RT

b , as seen in equations (4.13)–

(4.17); the threshold CT
m,th could be rescaled to compensate.

• We set NT = 6 for regular 6Y TCRs and NT = 4 for 6F TCRs, to enforce

the idea that TCRs with fewer ITAMs need to undergo fewer proofreading steps

before activation (note: this number of steps N is not literally the number of

ITAMs).

• The CAR ligand on-rate κC was made 10× larger than κT , and the CAR antigen

unbinding time τC was set to τC = 500 s, 100× larger than typical TCR τT ,
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such that overall CAR ligands have an affinity 1000× larger than TCR ligands,

as in Harris et al. [286].

• Reference Harris et al. [286] also found that the CAR proofreading rate, φC ,

should be 100×-1000× smaller than φT , thus we set φC = φT/200.

• We set diagonal elements γρρ = 1, as any other value can be compensated by

rescaling off-diagonal elements and Iρth, as seen in equation (4.9). For the same

reason, Itot was normalized to 1.

Receptor (RT , RC) and ligand (LT , LC) numbers were determined from surface

molecule abundance calibration experiments (figure 3.13 and section D.1). table D.1

lists these numbers for the different cell types used in this work. The number of

loaded pMHC at a given pulse concentration was computed by multiplying the total

MHC number by the fraction of loaded MHCs, given by equation (D.2).

Parameter ψC0 was small and ill-determined in preliminary MCMC simulations, but it

needed a non-zero value to ensure some minimal antagonism and to help convergence.

Its value could be chosen arbitrarily as long as it was small enough but non-zero, but to

be more rigorous, we estimated its order of magnitude by adding a minimal condition

on inhibition: when I is fully activated, such that ψC ≈ ψC0 , the reduction1 in CC
NC

must be less than the minimum FCTCR/CAR in the data used for parameter fitting

(table D.2). Working this condition out from equation (4.15), and making ψC0 3×
smaller than this upper bound, we thus set

ψC0 =
1

3τC
ΦCFCmin

1− ΦCFCmin

(D.5)

where ΦC is defined in eq. (4.16) and evaluated at τC = 500 s and φC = φT/100.”

(TCR/CAR antagonism, [3])

D.5 Overview of the parameter estimation strategy and of the

generation of predictions
“Remaining parameters were estimated using the Markov Chain Monte Carlo (MCMC)

method. Our log-likelihood and posterior functions for each MCMC simulation, de-

fined in section D.7, compared model outputs to experimental measurements in terms
1For fC = 1; ψC

0 could be larger when more than 1 step has rate ψC , in which case the absolute limit we set is
certainly small enough.

244



antagonism fold-change FCR1/R2 , formally defined below in section D.6. Section D.8

details the MCMC algorithm employed (simulation lengths, proposal distribution, con-

vergence, etc.). Table D.2 summarizes which parameters were fitted in each MCMC

run and provides information on their convergence, as well as the datasets used for

each run. Table D.3 lists the bounds imposed on parameters fixed or fitted, and

table D.4 provides their best fit values and confidence intervals.

We used the following fitting strategy:

1. We fitted TCR-related parameters of both the François et al., 2013 model (sub-

section 3.3.3) and the revised AKPR model for TCR/TCR antagonism (sec-

tion 3.5.3) on cytokine data from T cells with 6Y (10 ITAMs) TCRs (fig-

ure 3.12). We noticed how inadequate the fitting of the data was for the

François et al., 2013 model

2. Using TCR-related parameters found in step 1, we fitted parameters related

to CARs and their interaction with TCRs in the revised AKPR model (section

4.3.3) on TCR/CAR antagonism data for 6Y (10 ITAMs) TCRs, 3-ITAM CARs

at 1 µM and 1 nM TCR antigen densities (figure 4.3D–E).

3. We fitted the revised AKPR model’s TCR-related parameters for 6F (4 ITAMs)

TCRs on TCR/TCR antagonism data (figure 3.19) . These were combined

with the values of CAR-related parameters found in step 2 for prediction of

TCR/CAR antagonism in these altered TCR T cells (figure 4.3F).

We used the estimated parameter distributions to compare the model to data and to

make various predictions in T cells with altered receptors and in various tumor cell

lines. We used the following validation/prediction strategy:

4. We compared models of TCR/TCR antagonism (François et al., 2013 vs re-

vised AKPR) using parameter distributions found in MCMC simulations 1 (fig-

ure 3.12).

5. We checked that the model captures accurately CAR/TCR antagonism for 3-

ITAM CAR as a function of TCR antigen density with parameters of MCMC

simulations 1 and 2 (figure 4.3E, top).

6. We generated predictions for 1-ITAM CAR and 6Y TCR (figure 4.3E, bottom

and figure 4.9B–D) using parameters of MCMC simulations 1 and 2.
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7. We generated predictions of CAR/TCR antagonism for T cells with 6F TCR

(4 ITAMs[2]) (figure 4.3E, bottom and figure 4.9A–D), using parameters of

MCMC simulations 2 and 3.

8. We generated predictions of CAR/TCR antagonism against various tumor cell

lines (figures 4.11, 4.13, 4.15; figure 4.14) with appropriate model parameters,

and with tumor antigen numbers detailed in section D.1 and table D.1 .

In addition to the main MCMC simulations, predictions in points 6 to 8 required

adjusting amplitudes and thresholds of ZT or ZC , which was done on independent

measurements of T cell responses to single CAR or TCR antigens (i.e., not on an-

tagonism data in response to mixtures of TCR and CAR antigens). Sections D.9 and

4.4.1 provide details about these model predictions.” (TCR/CAR antagonism, [3])

D.6 Calculation and statistics of antagonism fold-change
“To compare model predictions of antagonism with T cell activation measurements

(cytokines IFNγ, IL-2, TNF; % CD25+ cells, etc.), we needed a dimensionless quantity

that could be computed from both model and data. We used the fold-change ratio

introduced in the main text, FCTCR/TCR for TCR/TCR antagonism, or FCTCR/CAR,

for TCR/CAR antagonism. For antagonism of receptor kind X by the TCR,

FCTCR/X =
Output(X agonist + TCRantagonist)

Output(X agonist)
(D.6)

where Output is a measure of T cell activation. A ratio FC < 1 indicates antago-

nism: the response is lowered by adding a TCR antigen. A ratio FC > 1 indicates

enhancement of the response by the TCR signal.

For receptor type X = TCR (figure 3.12), we directly used CT
NT as the model output.

The denominator is CT
NT ,1(L

T
2 = 0), the number of active receptors bound to agonist

ligands in absence of antagonist ligands; the numerator is CT
NT ,1+C

T
NT ,2, the number

of active receptors bound to either ligand type in the mixture.

For X = CAR (figure 4.3), in the model, Output is Ztot. In the denominator,

Ztot = ZC for the CAR antigen (agonist) alone (LT = 0). In the numerator,

Ztot = ZC + ZT in response to the mixture of the CAR antigen and TCR antigen.”

(TCR/CAR antagonism, [3])
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Run Agonist lig-
and

TCR antago-
nists

Nb.
experiments

Replicates
per exp.

Timepoints Data per
cond. (np)

6Y TCR/TCR
(both models)

N4, 10 pM to
1 nM

None to Q4,
1 nM &
1 µM

3 1 6 18

6F TCR/TCR N4 10 pM to
1 µM

None to V4,
1 nM to
1 µM

2 3 biological,
1-2 technical

1-12 6-42

TCR/CAR CD19 None to N4,
1 nM and
1 µM

1 - 2* 3 12 36-72

Run Fitted parameters Steps maxθ τint,θ
(steps)

Burn-in (20τint,max)
(fraction of simulation)

6Y TCR/TCR,
initial AKPR

φT , CT
m,th, Itot 40, 000 234.9 0.117

6Y TCR/TCR,
revised AKPR

φT , CT
m,th, ITth, ψT

0 40, 000 79.2 0.040

6F TCR/TCR,
revised AKPR

φT , CT
m,th, ITth, ψT

0 40, 000 123.1 0.062

TCR/CAR CC
m,th, ICth, γT C ,

γCT , τTc , τCc

80, 000 64.1 0.016

Table D.2: “Information on MCMC simulations, related to figures 3.12 and 4.3. Top section:
details of datasets used for each MCMC parameter estimation run. *The 1 nM TCR antigen condition
was tested in one experiment; 1 µM was present in both. Bottom section: information on parameter
space, length, and convergence of MCMC simulations. 6Y: 10-ITAM TCR, 6F: 4-ITAM TCR.“ (TCR/CAR
antagonism, [3], Table S4)
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Parameter Constraints Value Units

Fixed κT [129] 10−4 molec.−1 s−1

κC 10× κT [286] 10−3 molec.−1 s−1

NT Choice 6Y TCR: 6 -
6F TCR: 4 -

NC Choice 3-ITAM CAR: 3 -
1-ITAM CAR: 1 -

Itot Normalized 1 -
ψC
0 (section D.4) 8.0× 10−5 s−1

γρρ Normalized 1 -
τCCD19 Intermediate agonist [1]

with ∼nM KD [286]
500 s

Fitted by MCMC on
TCR/TCR
antagonism

φT 6Y: [0.1, 5.0] Supp. Table D.4 s−1

6F: [0.05, 5.0] s−1

CT
m,th [1, 100RT

tot] molec

ITth [10−5, 103 Itot] -
ψT
0 [10−8, 10−2] s−1

mT 6Y: Grid {2 . . . 5} 4 -
6F: Grid {1 . . . 4} 3 -

fT Grid {1, 2} 6Y & 6F: 1 -
kTI 6Y: Grid {1, 2} 1 -

6F: choice 1 -

From 6Y TCR fit φC Less than 0.01φT [286] φT /200 s−1

Fitted by MCMC on
TCR/CAR
antagonism

CC
m,th [1, 1000RC

tot] Supp. Table D.4 molec

ICth [10−5, 103 Itot] -
γT C [0.1, 1.0] -
γCT [0.01, 104] -
τTc [1, 30] s

τCc [50, 5000] s

mC 3-ITAM: Grid {1, 2, 3} 2 -
1-ITAM: choice 1 -

fC Grid {1, 2, 3} 1 -
kCI Grid {1, 2} 1 -

Fitted on single
antigen response

αT,6F
A 6F TCR 0.51 -
αT,6F
τ 6F TCR 0.36 -

αC,1CAR
A 1-ITAM CAR 1.16 -
αT,1CAR
A 1-ITAM CAR 2.60 -

Table D.3: “Constraints on mathematical model parameters in MCMC simulations, related to
figures 3.12 and 4.3. Fixed and estimated parameters in the revised AKPR model, with the parameter
fit boundaries or the constraints from which other parameters were fixed. The last columns provide the
value of fixed parameters, or the value of integer parameters estimated by grid search (“Grid”), by running
MCMC simulations for each possible integer value. Real-valued parameters estimated by maximum a
posteriori probability are provided in table D.4 with confidence intervals.” (TCR/CAR antagonism, [3],
Table S5)
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Model Parameter P5% Best P95%

6Y TCR/TCR, initial AKPR
log10 φ

T −0.20 0.70 0.68

log10 C
T
m,th 0.03 0.01 1.84

log10 I
T
tot 7.220 8.167 8.165

6Y TCR/TCR, revised AKPR

log10 φ
T −0.99 −0.93 −0.69

log10 C
T
m,th 2.5 3.3 4.2

log10 I
T
th −4.9 −4.2 −3.6

log10 ψ
T
0 −7.8 −5.5 −4.8

6F TCR/TCR, revised AKPR

log10 φ
T −1.295 −1.301 −1.020

log10 C
T
m,th 1.7 2.0 4.3

log10 I
T
th −4.8 −2.8 −2.5

log10 ψ
T
0 −7.7 −4.6 −3.8

TCR/CAR

log10 C
C
m,th 3.6 4.5 5.2

log10 I
C
th −4.5 −3.7 −2.8

log10 γ
T
C −0.937 −0.058 −0.050

log10 γ
C
T 1.7 1.9 3.8

log10 τ
T
c 0.55 0.61 0.75

log10 τ
C
c 2.43 2.50 2.56

Table D.4: “Value of mathematical model parameters estimated by MCMC, related to fig-
ures 3.12 and 4.3. Parameter values estimated in each MCMC run, for the best grid search value of
integer parameters (kI , m, f). The best value is the maximum a posteriori probability point, while P5%

and P95% are limits of the 90 % confidence interval on each parameter, i.e., the 5th and 95th percentiles
of the marginal posterior distribution. Shaded rows are those where the best estimate lies outside the
5th-95th percentile range, because the marginal distributions are highly skewed. This occurs in particular
for the initial AKPR model, whose fit to data is poor.” (TCR/CAR antagonism, [3], Table S6)

249



Antagonism (FC < 1) occurs when a weak TCR signal lowers ZC via the inhibitory module I .

Enhancement occurs when the TCR signal is strong enough for ZT to compensate the reduction in

ZC .

“To compute experimental values of FCTCR/X, we collected cytokine time series of

T cells (naive OT-1 T cells for X = TCR, OT-1/CAR T cells for X = CAR) re-

sponding to X agonists alone or in mixture with TCR antagonists. For each replicate

of a given antigen mixture, we computed the FC ratio at each acquired time point,

with the corresponding “no TCR antagonist” replicate in the denominator. We then

computed the geometric average of FC across time points and replicates of each

condition p (i.e. a choice of TCR antigen, TCR antigen density, CAR and TCR

constructs).

As an error bar σp on these experimental values, we computed the 95% confidence

interval on the mean of log2 FC across replicates and time points, supposing normally

distributed residuals. In equation,

σp = t(0.975,np−1) ×

√︄
ˆ︃Var [log2 FCp]

np
(D.7)

where np is the number of time points and replicates of a given condition p, ˆ︃Var is the

sample variance estimator, and t(0.975,np−1) is the 97.5th percentile of the Student’s

t-distribution with np − 1 degrees of freedom [291]. The numbers of points in each

dataset we used for MCMC are provided in table D.2.

For MCMC parameter estimation, we computed FC from IL-2 concentration time se-

ries: since all cytokines gave identical antagonism patterns (Figure 4.2d, bottom), we

focused on one of them, IL-2, to have consistent FC amplitudes to fit.” (TCR/CAR

antagonism, [3])
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D.7 Likelihood function and prior distribution
“We used a least-squares log-likelihood function, considering residuals of model FC

compared to data FC in log2 scale, meaning that

logP (data | θ) ∝ −
∑︂

data p

wp

(︄
log2 FCmodel(τ

T
p , L

T
p )− log2 FCdata, p

σp

)︄2

(D.8)

where FC = FCTCR/X, defined in eq. (D.6), where, wp is the weight assigned to

point p, and where σp is the confidence interval in log2 scale of the FC of data point

p, defined in eq. (D.7). For TCR/TCR antagonism, used to estimate TCR-related

parameters, we gave more weight in eq. (D.8) to data points coming from the smallest

agonist concentration (10 pM), since this is the condition giving antagonism patterns

most similar to TCR/CAR antagonism, and thus the most important to capture. We

found that applying a weight factor of wp = 3 to residuals of these data points,

and wp = 1 for other agonist concentrations, provided fits that best transferred to

TCR/CAR antagonism.

We performed MCMC in a log-scaled parameter space. We used a uniform prior

distribution on the log of parameters, since we lacked good prior knowledge of the

parameter values in our phenomenological model. The boundaries are detailed in the

“Constraints” column of table D.3. From Bayes’ theorem, the posterior distribution

sampled by the MCMC algorithm was therefore equal to the likelihood within these

parameter boundaries, and zero outside.” (TCR/CAR antagonism, [3])

D.8 MCMC simulation details
“At each main parameter estimation step outlined in section D.5, we performed a

grid search over integer-valued parameters mρ, fρ, kρI : for each possible combination

of these integers, we ran a separate MCMC simulation in the space of the remaining

real-valued parameters. For TCR/TCR antagonism results (steps 1, 3), we selected

the (kTI ,m
T , fT ) combination yielding the best fit (highest posterior probability). For

TCR/CAR antagonism (step 2), all combinations gave equally good fits (within 5 %

of each other), hence we selected mC = 2, fC = kCI = 1, as it also provided the

best predictions for 4-ITAM CARs and 10-ITAM TCRs.
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MCMC simulations were performed with the emcee package [245] in Python, which

relies on an ensemble of walkers and affine-invariant proposal distributions. We used

nw = 32 walkers and a proposal distribution mixing so-called “walk” (affine-invariant),

differential evolution, and “snooker” moves with proportions (0.2, 0.6, 0.2) (we found

this combination to sample our parameter space more efficiently than pure walk

moves).”

We set the mean stretch factor (γ0) of the differential evolution move to 2
√
2D, where D is the

number of parameters, and the γ parameter of the snooker move to 1.5. These were slightly lower

than the default values, to favor smaller steps and avoid missing narrow maxima.

“The nw walkers were initialized at uniformly random positions in the log-scaled

parameter space within the prior distribution boundaries, to reduce the risk of getting

all walkers stuck in a local optimum.

We ran MCMC simulations for durations (in numbers of steps) listed in table D.2.

To ascertain convergence to the stationary distribution, we computed normalized 1D

autocorrelation functions, ρθθ(t), and the integrated correlation time, τint,θ for each

parameter and each walker. We used the automatic windowing estimator described

in Sokal [246]:

τ̂ int,θ(M) =
1

2
+

M∑︂

t=0

ρ̂θθ(t) (D.9)

where M is the smallest window size such that M ≥ 5τ̂ int,θ(M). We averaged the

autocorrelation estimators ρ̂θθ(t) and τ̂ int,θ across walkers to reduce their variance,

following Foreman-Mackey et al. [245]. We checked convergence of the estimator

τ̂ int,θ itself by also computing it over the first half of the simulation only; we considered

τ̂ int,θ an accurate estimate of the true τint,θ if the two values agreed within 10 %. We

also verified the algorithm’s proper behaviour by checking that the acceptance fraction

of proposed transitions was between 0.2 and 0.5. Finally, to establish parameter

distributions from MCMC samples, we dropped a burn-in phase of 20maxθ (τ̂ int,θ).

With the duration of our simulations, this corresponded to only 2–20 % of the total

length. Hence, our simulations were run longer than the recommended minimum

of 50τ̂ int. These MCMC convergence metrics are shown in figures 3.14, 3.17, 4.8,

3.19B.
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The posterior distributions sampled by MCMC are shown in figures 3.12E, H, 4.3D,

and 3.19A. The non-normal character of these distributions comes from possible

compensations between combinations of parameters. For instance, when CT
m,th ≫

typical values of CT
m, only the combination ITthC

T
m,th/Itot determines the strength of

the inhibitory module in ψT (I) (combining equations 3.12 and 3.21). This reflects

the “sloppiness” inherent to most biological models [158].

To estimate the best parameter fits, we took the MCMC sample with the best poste-

rior probability. We generated 90 % confidence intervals on model fits and predictions,

for instance in figure 4.3E, by randomly pulling 1000 parameter vector samples from

the MCMC results, computing model outputs for each, and computing the 5th–95th

percentiles of model FC values at each antigen τT .” (TCR/CAR antagonism, [3])

By construction of the MCMC algorithm, this parameter vector is in the most densely sampled

region of parameter space, around the global maximum of the posterior distribution. Visual in-

spection of MCMC corner plots in Figures 2, 3 confirms it is the case, keeping in mind that the

mode of any skewed multivariate distribution is different from the marginal modes.

D.9 Predictions in other T cell types
“MCMC parameter sampling was primarily performed for T cells with regular TCRs

(10 ITAMs) and 3-ITAM CARs. For other cell types, a few parameters had to be

adjusted on separate data to generate TCR/CAR antagonism predictions in figure 4.3.

The rest of parameters related to TCR/CAR interactions – CC
m,th, I

C
th, γ

T
C , γCT –

estimated by MCMC on 3-ITAM CAR, 10-ITAM TCR data (step 2) were kept the

same throughout. Parameter φC was also kept unchanged, equal to φT,6Y /200.”

(TCR/CAR antagonism, [3])

D.9.1 6F (4 ITAM) TCRs
“As stated in section D.5, step 3, a separate MCMC simulation established the value

of TCR-related parameters – φT , CT
m,th, I

T
th, ψ

T
0 , kTI , mT , and fT – for 6F TCRs

(figure 3.19A), and we set NT = 4 for 6F TCRs. Moreover, 6F TCRs displayed more

sensitivity to low-affinity TCRs but a lesser maximal response amplitude. To match

this effect quantitatively, we defined correction factors αT,6FA and αT,6Fτ to apply to

the amplitude AT and threshold binding time τTc of the Hill activation function in
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ZT , that is,

ZT,6F = αT,6FA

(CT,6F
NT )2

(CT,6F
NT )2 + (ΘT,6F)2

with ΘT,6F = CT,6F
NT

(︁
αT,6Fτ τTc , L

T → ∞, LC = 0
)︁

(D.10)

We estimated these correction factors as illustrated in figure 4.9A. We used the IL-2

response (geometric average across time points and CAR constructs over 72 hours)

of 6Y or 6F CAR T cells responding to single TCR antigens in the absence of a CAR

antigen, as a function of TCR antigen τ . The factor αT,6FA was set based on the ratio

of responses of 6F and 6Y T cells to strong TCR agonists N4 and A2; the factor

αT,6Fτ was set by fitting Hill functions on the response curves and taking the ratio

of Hill thresholds of 6F and 6Y. These α factors were then applied in ZT for model

predictions of FCTCR/CAR in figure 4.3.” (TCR/CAR antagonism, [3])

D.9.2 1-ITAM CARs
“For 1-ITAM CARs, we used the same real-valued rate parameters (φC , CC

m,th, etc.)

as for 3-ITAM CARs, but we setNC,1 = mC,1 = fC,1 = 1 and computed the threshold

ΘC with these integer parameters. We adjusted the amplitude of ZC since 1-ITAM

CARs consistently produced weaker responses than 3-ITAM CARs (observable in vivo

and in vitro, across cytokines). We defined a correction factor αC,1CAR
A , analogous

to equation αT,6FA in eq. (D.10), and fitted it to ensure that the ratio of 1-ITAM

versus 3-ITAM CAR T cell IL-2 responses to CD19 only (geometric average of IL-2

concentration across time points, replicates, and TCR constructs) was equal to the

ratio ZC,1/ZC,3 of CAR outputs in response to CD19 alone. This fit is illustrated in

figure 4.9B.

Moreover, the mere presence of 3-ITAM CARs on T cells, even in absence of a CAR

antigen, produced a somewhat lower TCR-mediated response than 1-ITAM CAR T

cells. We accounted for this passive influence by defining a correction factor αT,1CAR
A

to apply to ZT in 1-ITAM CAR T cells, as in eq. (D.10). We fitted this factor on

the response of 1-ITAM versus 3-ITAM CAR T cells to TCR agonists N4 and A2

in absence of CD19 (geometric average of IL-2 concentration across time points,

replicates, and TCR constructs). This fit is illustrated in figure 4.9C. These αA

factors were then applied to ZT and ZC for model predictions of FCTCR/CAR in

figure 4.3.” (TCR/CAR antagonism, [3])
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D.9.3 Combination of both altered receptors
“For T cells with 6F TCRs and 1-ITAM CARs, we applied all the parameter ad-

justments described above. The ZT amplitude corrections were multiplied with one

another in ZT : AT = αT,6FA αT,1CAR
A .” (TCR/CAR antagonism, [3])

D.10 Antagonism predictions from TCR antigen libraries
“We used the publicly available dataset of peptide EC50s from Łuksza et al. [258]. It

contains EC50s of all single amino acid substitution variants of three different TCR

antigens, for 1–3 different TCR clones each (CMV: TCRs C1–C3, gp100: TCRs

G1–G3, neoantigen: TCR N1).” (TCR/CAR antagonism, [3], SI)

D.10.1 Correcting missing CMV-derived peptide EC50s
“In the dataset, all CMV-derived peptides with 4-1BB+ response below ∼ 48 % at

maximal (100 µg/ml) dose were not measured at lower doses, as indicated by the

cumulative distribution functions shown in Inline Figure D.1, left panels (see also,

in the original reference, Extended Data Fig. 5). Therefore, no direct EC50s were

available for these peptides. Since these weaker peptides are precisely in the expected

range of antagonists, not including them would have severely underestimated the

abundance of null and antagonist CMV-derived peptides in figure 4.13H–K. Since the

EC50 for all other peptides (derived from gp100 and the neoantigen) were completely

measured in the dataset, we built a linear regression of log EC50 as a function of

4-1BB % response at maximal dose (figure D.1, right panel). We then used this

linear relationship to infer the EC50s of the CMV peptides missing full dose response

measurements, based on their maximum 4-1BB+ response (available even for these

peptides).” (TCR/CAR antagonism, [3], SI)

D.10.2 Model predictions
“We converted all µg/ml EC50s to molar units, then converted to binding times τ

with equation (D.4). For each TCR-peptide combination, we generated predictions of

FCTCR/CAR, modelling the peptide being pulsed at 1 µM on PC9 tumors presenting

CD19 (assuming that these cells are endowed with the right HLA haplotype to present

these peptides).” (TCR/CAR antagonism, [3], SI)
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Figure D.1: “(Left) Cumulative distribution function of 4-1BB+ % response of each pair of TCR and
CMV-derived peptide at maximal dose (100 µg/ml), split depending on the availability of a complete
dose response curve. Other peptides (gp100, neoantigen) would only have a ‘Complete dose response’
line. (Right) Correlation between 4-1BB+ response at maximal dose and log EC50, for all peptides with
an EC50 in the dataset (R2 = 0.81). We performed a linear regression on this distribution to infer the
missing EC50s of CMV-derived peptides.” (TCR/CAR antagonism, [3], SI)
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