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Abstract

T cells face high-dimensional chemical spaces. These white blood cells must sense fine differences
within convoluted mixtures of similar antigens. Through complex T cell receptor (TCR) signaling,
they transform these inputs into multivariate responses. Details of these mechanisms quickly be-
come too complicated to formulate exhaustive models that are still useful. Instead, we should seek
to uncover emergent physical laws regulating T cell responses and biological chemical sensing

more generally. Such quantitative principles are however still lacking.

Working in close collaboration with experimental immunology labs, we developed low-dimensional
theoretical models of T cell antigen sensing and receptor signaling. We studied the production of
cytokines — small extracellular messenger proteins — by activated T cells. We found that high-
dimensional cytokine dynamics could be represented in a two-dimensional space and parameter-
ized with simple equations inspired from ballistic physics. We used information theory to quantify
antigen encoding in this cytokine latent space, revealing a continuum of T cell responses. Build-
ing on the insight that these responses are mainly controlled by early sensing of antigen quality,
we could improve adaptive kinetic proofreading models of TCR signaling to explain antagonism
and enhancement effects in antigen mixtures. To account for all observed patterns when antigen
qualities, quantities, and receptor phosphorylation sites are varied, we needed to simplify pre-
vious models, and then introduce a nonlinear inhibitory coupling between receptors. We could
quantitatively fit the revised model to our collaborators’ data to estimate its parameters. Then,
we generalized the model to T cells expressing chimeric antigen receptors (CAR) to target tumor
cells in immunotherapy. We generated predictions for different receptor constructs, matching in
vitro experiments; we could also approximately predict mouse in vivo treatment outcomes against
tumors expressing TCR and CAR antigen mixtures. The model finally led us to design CAR T
cells in which antagonism by weak TCR stimulation is optimized to protect healthy tissues from
otherwise severe side effects. Our findings show that low-dimensional, physics-inspired models

can be accurate enough to capture meaningful dynamics in biological sensing and signaling.

X1



Résumé

Les lymphocytes T baignent dans des espaces chimiques a hautes dimensions. Ces globules blancs
doivent détecter d’infimes différences entre des antigenes similaires et présentés en mélanges. La
signalisation complexe de leurs récepteurs de cellules T (TCR) transforme ces stimuli en réponses
multivariées. Un modele exhaustif de ces mécanismes deviendrait rapidement trop labyrinthique
pour étre utile. Il serait préférable de tenter d’établir les lois physiques émergentes régissant
la réponse des lymphocytes T et, plus généralement, la détection chimique biologique. De tels

principes quantitatifs restent toutefois a formuler.

En étroite collaboration avec des laboratoires expérimentaux d’immunologie, nous avons développé
des modeles a basse dimension décrivant la détection d’antigénes et la signalisation des récepteurs
de lymphocytes T. Nous avons étudié la production de cytokines, de petites protéines messageres
extracellulaires, par les lymphocytes T. Nous avons réduit la dynamique a haute dimension des
cytokines a une représentation bidimensionnelle décrite par des équations inspirées de la physique
balistique. Grace a la théorie de I'information, nous avons quantifié la propriété d’encodage
antigénique de cet espace latent des cytokines, révélant un continuum de réponses cellulaires. En
constatant que ces réponses sont déterminées des les premiers instants par la qualité des antigenes,
nous avons pu améliorer les modeles de relecture cinétique adaptative des TCRs pour expliquer
des effets d’antagonisme et d’amélioration de la réponse dans des mélanges d’antigenes. Pour ex-
pliquer les subtilités des effets produits par la variation de la qualité et de la quantité d’antigenes
ainsi que des sites de phosphorylation des TCRs, nous avons dii simplifier les modeles préexis-
tants, puis leur ajouter un module d’inhibition non-linéaire couplant les récepteurs. Nous avons
pu estimer les parametres du modele amélioré en I’ajustant quantitativement aux données de nos
collaborateurs. Par la suite, nous avons étendu le modele amélioré aux lymphocytes T utilisés en
immunothérapie, modifiés génétiquement pour exprimer des récepteurs antigéniques chimériques
(CAR) leur permettant de cibler des tumeurs. Les prédictions du modele correspondaient bien aux
données in vitro pour divers types de récepteurs, et permettaient méme d’anticiper les résultats de
traitements par cellules CAR sur des souris ayant des tumeurs présentant des mélanges d’antigenes
TCR et CAR. Le modele nous a permis de concevoir des cellules CAR ou I’antagonisme causé par
une faible stimulation du TCR est optimisé pour protéger les tissus sains d’effets toxiques séveres.
Nos résultats montrent que des modeles de basse dimension issus de la physique permettent de

décrire avec précision les dynamiques de détection et de signalisation en biologie.
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Contribution to original knowledge

This thesis focuses on my original contributions to biological physics through three research pub-
lications in the field of quantitative immunology: one co-first authored and published in Science
(Antigen encoding, [1]), one co-second authored and published in Nature Immunology (CD3(
ITAMs, [2]), and one co-first authored and under review (TCR/CAR antagonism, [3]). This the-
sis is presented in the traditional format because my colleague Thomas Rademaker included his
contributions as co-first author of publication [1] in his PhD thesis [4]. Excerpts from the three
immunology publications are presented as indented quotations in Computer Modern Sans font,
with the source of the quote in parentheses at the end, e.g., (Antigen encoding, [1]). The text in
these excerpts is verbatim, except for a few ellipses (indicated by “[...]”) and rare minor edits (put
in [brackets]), to harmonize some quotes with the rest of the thesis. Moreover, the numberings of
figures, tables, sections, and references, have been adapted to this thesis. The next section details
my contributions and those of my co-authors to these works. Here, I summarize how they represent

original research scholarship.

Chapter 1 is a review of existing literature on chemical sensing in biology and on T cell immunol-
ogy. Still, I performed two original theoretical calculations in that chapter. I applied a small
noise approximation of channel capacity developed for transcriptional regulation to the different
problem of concentration sensing by surface receptors (section 1.1.6), and I analyzed a modified
version of an existing model of viral-immune dynamics, which leads to quite different phenomena

and bifurcations compared to the original model (section 1.2.2).

In Antigen encoding, [1], I worked in close collaboration with the lab of Grégoire Altan-Bonnet at
the National Cancer Institute (NCI, USA), in particular co-first author Sooraj Achar. They devel-
oped a unique robotic platform to record the dynamics of T cell activation. With Thomas Rade-
maker, we built a processing pipeline tailored to their datasets, and discovered a low-dimensional
description of cytokine dynamics. I formulated an accurate mathematical model of these dynamics,
and I developed numerical methods to quantify the channel capacity of cytokines. These methods

and findings, relevant for immunologists and biophysicists alike, are presented in chapter 2.

In CD3( ITAMs, [2], I collaborated with the labs of Grégoire Altan-Bonnet (NCI) and Paul E.
Love (NICHD) to dissect the ambiguous role of phosphorylation sites called ITAMs on the TCR.
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I extended mathematical models of TCR activation to account for T cell receptors with altered
ITAMs, and performed mutual information calculations based on their experimental data. These
analyses showed that ITAMs improve the ability of T cells to distinguish antigens by mediating an

inhibitory coupling between receptors. These findings are presented in chapter 3.

In TCR/CAR antagonism, [3], I collaborated with the labs of Grégoire Altan-Bonnet and Naomi
Taylor (NCI) to discover and quantitatively explain non-linear inhibitory interactions between T
cell receptors and chimeric antigen receptors (CAR) on T cells used for immunotherapy. I revisited
and improved TCR activation models, extended them to CARs, and generated predictions quanti-
tatively matching the measurements of co-first authors Sooraj Achar and Taisuke Kondo. We then
used the mathematical model’s insight to engineer cross-receptor interactions. These findings are
presented in chapters 3 and 4, and they have important implications for the model-guided design

of precision immunotherapies.
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Achar (SRA; Altan-Bonnet lab, NCI) and other authors (except theorists — TIR, PF and I) on the
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were developed jointly by SRA and I. Figures were made by SRA, TJR and I according to our
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In CD3( ITAMs, [2], which is part of chapter 3, I was co-second author with SRA and John S.
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and I performed the mutual information calculations (3.2.1) for 6Y vs 6F T cells. SRA performed
the latent space analysis of 6F T cells (3.2.2) using the pipeline we had developed jointly with TJR
in [1]. First author Guillaume Gaud (Love Lab, NICHD) and co-second author SRA performed
the experimental work. Figures from that paper shown in the chapter were made by Sooraj Achar
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SRA and I wrote the first draft of the main text together, with subsequent edits from all first and
corresponding authors. I wrote the supplemental information (SI) sections which are quoted in this
thesis, with edits from PF and GAB.

Xix



Introduction

Immunology, physics, and interdisciplinarity

The immune system is sometimes described as a “liquid brain” [5, 6]. What this catchphrase means
is that the immune system is a complex, out-of-equilibrium network of cells communicating with
each other to respond collectively to a multitude of stimuli. The analogy may therefore be overly
suggestive — we do not imply that the immune system gives rise to a form of consciousness — but
it has the merit to place the brain and immunity on an equal footing, challenging scientists to un-
derstand the latter with the same quantitative level of detail as the former. We are currently short
of the mark: while neurobiology and neurophysiology have long since integrated seminal con-
tributions from physics and mathematics, notably the 1952 Hodgkin-Huxley model of electrical
action potentials in neurons [7], quantitative immunology faces a dearth of universally recognized
mathematical principles. Meanwhile, the practical benefits to be reaped from quantitative im-
munology are significant, with applications ranging from the treatment and prevention of diseases
like COVID-19 [8] to the improvement of crop resilience against pathogens [9]. In particular, the
next generation of treatments in cancer immunotherapy [10, 11, 12, 13] will greatly depend on

model-guided design to improve precision and specificity [14].

For physicists, the ultimate ambition would be to go one step further in the “liquid brain” analogy:
to understand immunity not just as accurately as the brain, but as accurately as liquids. However,
we are still far from this level of quantitative knowledge — it may not be attainable at all. Working
towards it nonetheless, we should avoid the main pitfall existing in the study of any living system
from the physics perspective. The risk is to evacuate what makes biological systems interesting in
the first place — the fact that they are living — and treat them as just another state of matter, labelled
“living matter”, on which to apply hydrodynamics, thermodynamics, and so on. In Eric Siggia’s
words, we should instead “deal with problems first and tools second”, because “[bJiology is not
an excuse for doing physics with the names on the variables changed” [15]. Biological physics
should ultimately be oriented towards the defining features and functions of living systems. What
is life, and how does it evolve? How do organisms self-assemble and develop, move and main-
tain themselves, make decisions and learn in their fluctuating environments? Satisfactory answers
should take the form of emergent physical laws, consistent with but not reducible to fundamental

microscopic laws; as noted by Schrodinger, the distinctive properties of biological systems will



require a “new type of physical law” [16, p. 80]. Working towards such laws also requires dif-
ferent mathematical tools and formalisms; information theory, nonlinear dynamics, and statistical

learning might be especially appropriate to dissect complex living systems [17, 18, 19].

Is this style of research on immunity still part of physics? We believe so. The object of study
may differ compared to traditional fields of physics, but the scientific method is the same: we
seek mathematical predictions derived from theoretical principles and agreeing with experimen-
tal data. This common quantitative spirit is what constitutes physics. In William Bialek’s words:
“Academic disciplines can define themselves either by their objects of study or by their style of
inquiry. Physics is firmly in the second camp.” [17]. While the deductive method of physics re-
mains, “[t]he aspects of the world which capture the interest of the physics community can and do
change, not least as new phenomena become accessible to the physicists’ style of inquiry” [17].
This is currently the state of affairs in biology, particularly in immunology: there is a deluge of
new quantitative data, thanks to rapid technological advances unlocking high-throughput, precise,
and multiplexed measurements [20, 1, 21]. These data have no fundamental reason to be ignored
by the realm of physics. In fact, biology and physics have spent centuries hand in hand: Aristotle’s
Physics covered the fundamental causes of movement in inanimate and living entities alike [22]
and Lucretius attributed human perception of odors and tastes to “atoms” of different shapes and
sizes [23, 1V, 615-672]. Modern physics also has a tradition of studying living systems: Helmholtz
worked extensively on hearing [24], the “psychophysics” of olfaction and taste are an active re-
search area [25], and physicists have been contributing to theoretical immunology for at least 50

years (Perelson [26]).

Research objectives: immune sensing and signaling

The methods of physics can push quantitative immunology forward in several ways. For in-
stance, the statistical physics of immune repertoire generation [27] and the structural biophysics
of antigen-receptor affinity [28] have received significant attention and clarified how adaptive im-
munity is organized [29]. In this thesis, we focus on another fundamental challenge: the sensing
and signaling functions of T cells. These white blood cells, part of the adaptive immune system,
must constantly sense their surroundings for signs of infection or damage, and produce appropriate
responses through intracellular and extracellular signaling. What parameters determine T cell re-
sponse dynamics? How do these cells leverage their receptor structures and repertoires to perform
their functions? These processes depend on parallel chemical inputs and biochemical pathways,
and produce diverse outputs. These high-dimensional attributes complicate the formulation of a

concise theory of T cell sensing and signaling.



The physics style of inquiry might alleviate this difficulty. Satisfactory physical theories explain
natural phenomena with parsimonious mathematical rules and few parameters. We therefore at-
tempted, in this thesis, to find emergent quantitative descriptions of complex T cell activation
processes. Our main objective has been to derive low-dimensional representations of T cell dy-
namics, and to predict T cell activation by diverse antigenic stimuli. We wanted to compress the
high-dimensional chemical spaces of T cell inputs and outputs, to obtain a simplified description of
T cell activation and reverse engineer how it depends on the quality and quantity of antigens. We
also wanted to connect different time scales of immune activation by building phenomenological
models of T cell receptor (TCR) signaling and use them to predict immune responses on slower
time scales. Since the distinctive feature of T cell chemical sensing is to disentangle mixtures
of similar antigens, we focused in particular on nonlinear effects that arise in such mixtures. We
wanted to show how T cell antigen recognition differs from the concentration sensing problem
commonly treated in biophysics [30] and that it can nonetheless serve as a model for other combi-
natorial sensing and signaling problems in biology (e.g., in olfaction and developmental pathways).
Then, we finally wanted to show the potential for applications unlocked by quantitative theories
of T cell activation. To do so, we investigated cross-receptor interactions in T cell used for cancer
immunotherapy. Throughout, we collaborated closely with immunologists (principally the labs of
Grégoire Altan-Bonnet, Naomi Taylor, and Paul Love at the National Institues of Health), and we

sought quantitative agreement between model and data.

Thesis outline

We proceeded in several steps to achieve these goals. In chapter 1, we compared and contrasted
concentration sensing by bacteria with antigen sensing by T cells, providing background on the im-
mune system and seizing the opportunity to introduce nonlinear dynamics and information theory
methods used in subsequent chapters. The next three chapters cover our original research contri-
butions. In chapter 2, we found a low-dimensional compression of T cell secretion of cytokines
(extracellular messenger proteins), allowing us to correlate early and late time scales of immune
responses with the quality, rather than quantity, of recognized antigens. In chapter 3, we examined
responses to antigen mixtures, prompting us to revise previous phenomenological models of TCR
signaling. We attempted to explain, in particular, antagonism in mixtures of weak and strong TCR
antigens. In chapter 4, we extended our modelling efforts to chimeric antigen receptor (CAR)
T cells, to explain and harness cross-receptor antagonism. We covered specific literature review

elements at the beginning of these three main chapters.



Chapter 1

Review: chemical sensing and immunity

The immune system must sense early signs of infection and damage amidst an overwhelming
majority of healthy, functioning cells. In response, it must produce appropriate intracellular and
intercellular signals to restore homeostasis. Immune cells consequently possess complex biochem-
ical machineries to perform their functions. The high-dimensional nature of immune inputs, pro-
cesses, and outputs poses considerable challenges towards their physics-based understanding, i.e.,
with simple models based on quantitative principles. Fortunately, there are several examples of
biological systems which in fact have underlying low-dimensional descriptions, making simple
biophysical models unexpectedly efficient at capturing their properties. This thesis hopes to show

that T cell sensing and signaling might be another such example.

In this chapter, we review classical biophysical principles of concentration sensing by cellular
receptors (section 1.1), to contrast them with the unique challenges of T cell antigen sensing (sec-
tion 1.2). We then describe the mechanisms used by T cells to perform their sensing and signal-
ing functions, highlighting how their biochemical complexity might hide simpler principles (sec-
tion 1.3). Lastly, we summarize various examples of successful low-dimensional models in bio-
physics (section 1.4), and identify reasons to hope T cell responses also have a low-dimensional
structure (section 1.4.3). Some topics also serve as pretexts to introduce notions of information

theory and nonlinear dynamics, which form the theoretical foundations of this thesis.

1.1 Biophysics of chemical sensing in living systems

1.1.1 Overview of chemical sensing in biology

Living systems stand to gain selective advantages by acquiring information about their environ-
ment and responding accordingly [31]. For this reason, across the tree of life, species have evolved
mechanisms to sense chemical signals from their surroundings. These mechanisms are usually
surface proteins acting as receptors which can trigger downstream intracellular pathways upon ac-

tivation [32]. By chemical signals, we mean the identity, concentration, or dynamics of molecules

4



in the extracellular medium or on other cells (be it small compounds or large proteins). To make
these concepts more concrete, we briefly describe a few examples of chemical sensing by bio-
logical systems in appendix A: animals smelling odorant molecules via their olfactory receptor
neurons [33], bacteria performing chemotaxis in search of nutrient sources [34], or embryonic
cells reading morphogen concentrations to differentiate [35]. Despite each having peculiarities,
these examples share common features with the main topic of this thesis, sensing and signaling
in T cell immunity: antagonism and other nonlinear effects in antigen mixtures, discrimination of
relevant and background signals, combinatorial computations, communication between cells. We
will highlight these challenges again in our review of antigen and cytokine sensing by T cells, in

section 1.2 and the introductions of the following three chapters.

In all examples mentioned above, cells face the same physical limits and share a few fundamen-
tal principles. We summarize in the following subsections the canonical biophysics treatment of
concentration sensing by cellular receptors, before pointing out other biologically relevant ques-
tions (subsection 1.1.8) and transitioning to the additional detection challenges solved by T cell

receptors (section 1.2).

1.1.2 Berg-Purcell fundamental physical limit

Consider a single receptor of typical dimension ¢ (typically a few nanometers) faced with the
task of estimating its cognate ligand concentration c in the extracellular medium. Even if it could
instantaneously count all ligands within a neighborhood of volume ¢3 around it, its accuracy would
still be limited by the intrinsic variability in the number of ligands within that small volume at
a given time, due to the random walk of molecules diffusing in and out of it. This situation is

illustrated in figure 1.1.

We can estimate this variability using simple probabilistic arguments. In a stationary, homogeneous
state, each of the M molecules in the environment of volume V' at concentration ¢ = M/V has
the same probability p of being in the small volume ¢ or not, by symmetry. This probability is
proportional to the ratio of volumes: p = ¢3/V. Hence, the random number N of ligands within

the neighborhood follows a binomial distribution,

P[N =n] = (i\f)p"(l —p)M" (1.1)
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Figure 1.1: Physical limit to molecule counting due to diffusion in the neighborhood of a receptor with
linear dimension ¢. Ligands are at average concentration ¢, diffusing in and out of the small volume with
diffusion constant D and equilibration time 7, = ¢2/D, such that ¢¢3 ligands are present in the volume on

average, with Poisson variance c/3. Redrawn after figure 4.16 in [17].

Sincep = £3/V < land N < 1, this is approximately a Poisson distribution with mean N = Mp,

(Mp)reMp
n!

P[N =n] = (1.2)

which has variance 02 = Mp. This intrinsic noise, originating from the discrete nature and small
number of ligands in the neighborhood ¢3, is analogous to Poisson shot noise in detector electron-
ics [17]. Due to shot noise, the best possible relative accuracy of this receptor’s ideal concentration

estimate, ¢ = N/V/, is
Var[¢] o 1 1

E[¢] :ﬁn:\/_ﬁ:@

where we defined o2 = Var [¢] the variance of the concentration estimated, and used the change of

(1.3)

variable N = Mp = M{3/V = cf? in the last equality. This is the first fundamental physical limit

stated by Berg and Purcell [30] in the context of bacterial chemotaxis.

1.1.3 Time and receptor averaging in the Berg-Purcell limit
Given this fundamental limit on a single measurement, there are two obvious ways to improve
it, which were also considered by Berg and Purcell: to repeat the measurement over time and to

use several receptors. In both cases, averaging k independent measurements { Ny, . .., Ni} should
reduce the relative error by a factor /%, since Var [% Z?:l N j] = k%Var [N1].

If the measurement is averaged over a time 7, truly independent values are obtained after waiting
long enough for molecules to diffuse out of the small volume and be replaced by new ones, which
occurs over a characteristic diffusion time 7, = (2 /D, where D is the ligand diffusion constant.

Therefore, there are k = T'D/(? independent measurements in time 7', reducing the relative error



to & =
c VDecT*

numerical factors, resulting in a more precise fundamental physical limit!

O¢ . 4
eV 5DecT (14

If a cell averages the readout of R receptors, each of size /, the relative error is reduced by a fac-

Taking into account the autocorrelation time of ligand diffusion introduces extra

tor v/R, provided that receptors are sufficiently spread out to have uncorrelated neighborhoods.
Otherwise, the ligands around nearby receptors becomes correlated, as one receptor can bind a
ligand and prevent it from reaching the surrounding receptors [17, 36]. As the number of receptors
R — oo on a cell of dimension a, the physical limit approached is that where the sensing volume
is the entire cell, o;/c = 1/ v DacT. Putting numbers together for a bacterium with a = 1 ym
averaging for 7" = 1.5 s a ligand concentration of 1 nM, we find o;/E [¢] ~ 1/30, which is suffi-
ciently accurate for that bacterium to perform chemotaxis and decide if a concentration gradient is

increasing or decreasing.

1.1.4 Berg-Purcell limit for a simple receptor

The calculations above assumed an ideal observer that could perfectly count ligands within a given
volume. This served to set an absolute physical limit on concentration sensing which can at best be
approached by cells that do not have access to this instantaneous count. Instead, what can be read
out by signaling pathways in cells is the sequence of receptor binding and unbinding events. Con-
sidering only the available receptor-ligand kinetics, we can set more biologically realistic bounds

on cellular sensing accuracy.

Berg and Purcell [30] also treated the case of such a “simple observer” in which concentration
would be estimated based on the average receptor occupancy (i.e., fraction of time the receptor is
bound). We follow here a slightly different derivation, based on the master equation [37, 38] for
the probability p(¢) that the receptor is bound at time ¢, with binding rate k. ¢ and unbinding rate
k-,

dp(t)

B = ket~ plt) — b o) (15)

Solving for the stationary distribution (dp,/dt = 0), we find the average receptor occupancy, py, is

ke e
kic+k. ¢+ Kp

Do (1.6)

I'The autocorrelation time introduces a factor 4 /5; in the original article, a spherical volume was considered instead
of a box here, which introduced an additional factor of 3/4.
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matching the expected result for the macroscopic chemical reaction with equilibrium constant

Kp = k_/k.. Inverting the relationship, the concentration estimate for this cell is

23195
1 —ps

¢ = (1.7)
The occupancy p;, has to be computed in the cell by averaging the receptor state s € {0, 1} over

some time T, defining a time-averaged occupancy?

1 T
B, = T/o dt () (1.8)

which has an average equal to the true occupancy, E [p,] = p,, and variance
) 1 T T
7 =E[0) ~Bl = 55 [ [l B0 -5t (19)

To find out this variance, we need the autocorrelation function of s, G(t,t') = E [s(t)s(t')], which
we can get by solving the time-dependent master equation (1.5) of p(t) with the receptor bound
at the initial condition, s(0) = 1. Indeed, at stationarity, G(t,t') = G(0, |t' — t|) = G(7) where
T = |t —1|, and

G(7) =E[s(0)s(7)] = 0 x (1 =p(7)) + 1 X pop(7) = psp(T)

Solving eq. 1.5, which is a simple linear differential equation, with initial condition p(0) = 1, we
find

—A|7]

G(1) = pp(7) = 1 + po(1 — pr)e
where k = k,c + k_ is the total reaction rate. Inserting in the integral of eq. 1.9, we find the
variance on the occupancy time average,

2pp(1 —
o2 — pb( pb)

v po(1 — po)
Db «T (1_6 T)%u

kT

if the integration time 7' > 1/k. Finally, changing variable with a Taylor approximation ¢ ~

c+ dd—pi(& — ¢), this gives us the variance o2, resulting in a relative error on the concentration

ZPractically, this can be computed, for instance, by a phosphorylation network with a slow degradation time 7; see
e.g., the “Duty fraction decoder” model in [39].



estimate of

O¢ . 2
e T R o

This form becomes more intuitive by realizing that k¢ is the average number of ligand-receptor
encounters in time 7'. Encounters result in a binding event if the receptor is free, which happens a
fraction (1 — py) of the time; hence, (1 — py)kcT = v, the average number of binding events in
time 7'. Therefore, the simple observer, based on average receptor occupancy, has a concentration

sensing error bound of [30]

Y e (1.11)

This result can be contrasted with the ideal observer (shot noise) limit, which had error 2/v/5D/{cT;
considering that D/c is the diffusion-limited arrival rate &, of ligands on a square patch of side /,

the physical limit due to shot noise, eq. (1.4), is

Hence, the ideal observer’s physical limit is not quite reached by the simple observer receptor, but

the /2 scaling of both limits is the same.

1.1.5 Energy-accuracy tradeoff in concentration sensing

The simple receptor limit above, based on the average time the receptor is bound, can be improved
to approach the ideal observer shot noise limit. Using a maximum likelihood approach, Endres
and Wingreen [40] have derived the optimal sensing accuracy available in principle from the entire
time series of receptor occupancy. They found that signaling networks which would rely on the
unbound time intervals only, rather than the bound ones, could improve the accuracy by a factor

Oe

v/2. The fundamental limit for simple observers therefore becomes = = % for a system with

complete access to receptor binding and unbinding events.

This maximum likelihood calculation did not, however, solve the question of which biochemical
signaling scheme in cells can achieve this optimum. Trying to address that question, theoretical
studies showed that only out-of-equilibrium receptor signaling schemes (i.e., breaking detailed
balance) can approach the theoretical limit of \/1/_1/, at the expense of entropy production and
energy consumption. Such energy-accuracy tradeoffs were exhibited in various models of recep-
tors with non-equilibrium states [41, 42]. Recently, Harvey et al. [43] used large deviation theory

and stochastic thermodynamics to derive a universal theoretical bound [43, eq. 13] synthesizing



previous results,

O¢ 2 2
=) > 1.12
<c> T TYT A+ v (1.12)

where 2™ is the total rate of entropy production in the receptor network [44],

YT = Z(¢z‘j — ¢j;) log (@) (1.13)

i<j Pji

and where ¢;; = m;();; is the probability flux from state 7 to state j when the system with transi-
tion rate matrix ();; is in its stationary (non-equilibrium) probability distribution 7;. The bound in
eq. (1.12) holds until the maximum likelihood limit of 1/v is reached, beyond which energy con-
sumption cannot improve accuracy further. As we will see, this idea that non-equilibrium reaction
schemes and entropy production are needed to improve biological sensing accuracy also underlies

models of T cell antigen sensing [45].

1.1.6 Information transmission by simple receptors

We now examine concentration sensing under the angle of information theory, to introduce a few
notions which will be useful in chapter 2. We ask how much a cell with Ry, simple, independent
receptors can learn about the external concentration C' of a ligand, based on the number R of its
receptors that are bound. This can be quantified by mutual information (MI) [46], that is, how

much entropy is dissipated about C' once R is known:
MI(C; R) = H(C) — H(C|R) . (1.14)

This is the difference between the entropy H(C') of C, and the conditional entropy left when R
is known, H(C|R); in the limit where C' and R are continuous variables, we have differential

entropies, in bits,

H(C) = —/dc fo(e)log, fo(e)
H(C|R) = — / dr fa(r) / de foynr () oy foipr(c) |

where fx (z) denotes the probability density function of a random variable X . Using the definition

of conditional probability densities, fcr=.(c) = fc,r(c,7)/fr(r), and of marginal probabilities
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fr(r) = [ dc for(c,r), the expression for MI(C; R) can be rearranged in two useful forms [17],

MI(C; R) = / de / dr fo.r(c,r)log, ( fJ;C(R)(;cZ)Q (1.15)

= /dcfc(c)/deRo=c(7°) log, (fRf(;—(;gm) (1.16)

The first form shows that MI is symmetric in R and C', and would thus also be equal to the dissi-
pated entropy H(R) — H(R|C); it also shows that MI(R; C') = 0 for independent variables. The
second form is useful when treating the external concentration C' as an input to the system and the
receptor state R as the output; the distribution of inputs fc(c) is a property of the environment,
while the conditional distribution fg|c—.(r) is the input-output mapping of the system, specifying

how the output R depends on the input C', with some randomness specified by that density.

To compute MI(C; R), we consider the concentration C' to be a random variable that changes
slowly enough to allow R to reach its stationary distribution quasi-statically. Hence, at a given

concentration C' = ¢, each receptor has a probability p to be bound, given by the stationary solution

of the master equation 1.5: p(c) = where Kp = k_/k,. The number of bound receptors

c+K
R, then, is a sum of Bernoulli random variables, which has a binomial distribution (eq. 1.1)° with
mean Ry,p and variance Ry, p(1 — p). From the De Moivre-Laplace theorem [48], X = R/ Ry
approximately follows a normal distribution fx|c—.(x) with mean px(c) = p(c) and variance

0% (c) = p(1 — p)/Riot (We neglect the continuity correction here).

In this general context, we do not have the concentration distribution f. Instead of computing MI

for a specific choice of environment, we can compute the channel capacity of the receptors,
C(C; X) :n}aXMI(C';X) (1.17)
C

that is, the most information R could ever transmit about C, if f- is well tuned. In general, this
maximization over a functional space cannot be performed exactly, in particular because of the term
involving fx(z) = [dcfxjc—c(z)fc(c). Here, since the relative error ox /px ~ 1/v/ Ry < 1,
to gain some intuition, we can make a small noise approximation [49, 50, 51, 52, 53]. We perform
a saddle point approximation of the integral [ da fx|c—.(z)log,(fx(z)) with fyxjc—.(x) sharply

peaked around its mean, px(c). Then, only fx(ux(c)) remains, and it is related to fo via the

change of variable formula, fx(ux(c)) = fo(c) ’ . These approximations allow us to solve

3This binomial distribution also be derived by writing a master equation for R directly; see [47, appendix B].
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Figure 1.2: Distribution optimizing information on concentration from R, simple receptors. (Left)
Optimal input concentration distribution, f£ (c) found by a small-noise approximation in the channel capac-
ity C(X; R). Plotted against the output standard deviation depending on concentration, o x (c), to illustrate
that regions of small noise receive more probability weight: f7 ~ a)_(l. (Right) Optimal distribution of the
output’s concentration-dependent average, E [X] = E [R/Rot] = px(c), obtained by changing variable

from C'to px: fx(ux) = f&(c) ‘ duic(c) ’ Plotted against the output standard deviation as a function of the

average [1x, to illustrate the inverse relation between the two, fx (ux) = %O';(l.

the variational problem, with a Lagrange multiplier A enforcing fc(c) normalization,

o
dfc

Following steps analogous to those in Tkacik et al. [50], we find the optimum

=0 where L£=MI(X;C) —A/dcfc(c) .

1 1 d[,l,X

fele) = Zox(c) | de

and C(C;X) = log, <\/%) (1.18)
me

where Z = [dcox(c)™? dix | Replacin ux(c) and ox(c), we have, for R, receptors,
de p g Y

gl L K
T re+ Kp c
1 TRyt

This distribution is illustrated in figure 1.2. The important insight is that f5(c) ~ ox(c)™': to
optimize information transmission, input values which produce smaller noise on the number of
bound receptors should occur more often — here, this happens at small concentrations producing
very few bound receptors. Consequently, since fx(ux) = (Zox)™' by a change of variable,

the average output should have more weight in the region of small noise. Another important
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conclusion is that, as we would have expected, the mutual information increases logarithmically

with the number of receptors R.

1.1.7 Adequacy of well-mixed approximations in chemical sensing

Features of the optimal solution — maximum probability weight in f(c) at vanishing concentra-
tions and channel capacity increase with Ry, — are exaggerated by the small noise approximation.
To begin, the relative error ox /pux scales as 1/, which blows up when ¢ — 0. Noise is not re-
ally small in that region, so the small noise approximation made this regime more accurate than it
really is. For more accurate channel capacity calculations, numerical methods are needed, chiefly

the Blahut-Arimoto algorithm [54, 55, 56]; we will in fact use it in chapter 2.

Although we neglected shot noise contributions in this information-theoretic analysis of concen-
tration sensing, the ideas behind it are not completely wrong. Using chemical master equations
such as eq. 1.5 does assume that molecules are well-mixed and that mass-action kinetics apply.
Nonetheless, Van Zon et al. [57], studying the example of gene promoter binding with spatially-
resolved stochastic simulations, have shown that “the effect of spatial fluctuations can be described
by a well-stirred, zero-dimensional, model by renormalizing the reaction rates for repressor-DNA
(un)binding” [57]. These results suggest that well-mixed models of biochemical reactions can
be useful approximations, especially when parameter values are phenomenologically corrected to
account for underlying, microscopic physical processes. When experimental data are available,
the “renormalization” of chemical rates can be achieved by fitting model parameters; this is the

strategy we will employ in chapters 3 and 4.

Approximating exact physical processes by well-mixed chemical reactions constitutes a useful
strategy to establish low-dimensional, interpretable, and tractable models of biological dynam-
ics. Simplifications like these are imperative to discern, from a physics perspective, the emergent
laws regulating biological systems, without getting tangled in microscopic details. Neglecting mi-
croscopic details by leveraging experimental measurements will allow us to estimate information
transmission in T cells responses without having to enumerate all intrinsic physical and biological
sources of noise in the system, which would be a hopeless task in our current state of understanding
of immunity. These estimations are valuable despite their approximate nature, since tracking infor-
mation flow is an important method to dissect biological systems from a physics perspective [17,
chap. 6].
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1.1.8 Beyond concentration sensing by simple receptors

The calculations above provide a biophysical background to the problem of chemical sensing by
cells, specifically the determination of ligand concentration. However, it assumed receptors with
only one possible cognate ligand, and with a fixed time to average their occupancy state and acquire
information. Therefore, it does not address other fundamental chemical sensing challenges faced

by living systems.

Decision on the fly

To begin, living organisms probably do not always need very precise concentration estimates,
especially when the environmental concentration keeps changing anyways. Instead, they may
simply need to distinguish two hypotheses, e.g., the ligand concentration is closer to L; or Lo, and
wait until reaching a certain confidence level in either option. Siggia and Vergassola [58] have
developed a theory of “decisions on the fly” based on statistical hypothesis testing, showing that
organisms can make faster decisions using Wald’s ratio test than with fixed-time averaging. Siggia
and Vergassola [58] proposed actual biochemical models of receptor signaling which implement
this test. The decision on the fly strategy implies different optimal network architectures compared

to the classical Berg-Purcell treatment.

Although we will not directly use it in subsequent chapters, the decision on the fly framework
applies to a central problem in the immune system: antigen recognition, that is, as we will discuss
in the next section, the detection of rare, strongly binding ligands amidst a sea of slightly weaker
ones. Lalanne and Francois [59] used a similar statistical hypothesis testing framework to inves-
tigate this chemodetection problem when, additionally, the concentration of background ligands
fluctuates over time. They compared the performance of a few different receptor signaling models,
and found that receptor coupling by a global inhibitory feedback helps to buffer environmental
fluctuations. This contrasts with Berg-Purcell-style concentration sensing, where independent re-

ceptors provide the best improvement, reducing the relative error by v/ Ry.

Sensing of various other ligand properties

In fact, antigen recognition is one of several other facets of biological sensing beyond the classical
Berg-Purcell concentration estimation. Depending on the context, cells instead need to sense lig-

and combinations [60], identities [61], affinities [62], or dynamical patterns [39]. Real biological
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receptors do not simply function independently, in parallel, to each determine the concentration of

one ligand.

Regarding combinations, receptors often bind to several similar ligands, for example the receptors
for bone morphogenetic proteins (BMP) [63]. Moreover, receptors from the same family often
share sub-units (e.g., cytokine receptors in immune cells). This situation leads to nonlinear ef-
fects in ligand mixtures. For instance, because of competition for cytokine receptor sub-units,
one cytokine can reduce a cell’s sensitivity to another cytokine [64, 65]. Similarly, in olfaction,
odorant mixtures often exhibit antagonism: a reduction in the response to a mixture of molecules
compared to the individual responses. This effect is due to competition for receptors between the
odorants, as explained by a biophysical model of olfactory neuron signaling [66]. Ligand promis-
cuity (i.e., similarity) and cross-receptor interactions can actually improve concentration sensing
of multiple ligands [67], but it also serves other purposes beyond that, like computing ratios or
logic functions of ligand combinations and addressing specific cell types based on receptor expres-
sion profiles [68]. Mathematically, these effects translate into complicated polynomial equations,

requiring computational and algebraic solution techniques such as Grobner bases [69].

Regarding ligand identities and affinities, the cross-reactivity of receptors for several promiscu-
ous ligands seem to complicate the task of distinguishing ligands, which is important in situations
where different ligands mark different biological contexts. However, thinking outside of the con-
centration sensing paradigm, cells have evolved various mechanisms to distinguish antigens. For
example, in the case of Notch receptors and Delta ligands, the manner in which receptors clusters
in response to different Delta ligand variants can trigger very distinct temporal signals in cells [61].
In the case of T cell antigen recognition, which we will review in detail below, receptors amplify

small affinity differences between antigens to distinguish them [62].

Regarding the recognition of temporal patterns, some ligands have markedly different dynamics
dependent on the context. During embryonic development, the Wnt morphogen displays oscilla-
tions in propagating waves of gene expression when vertebrae form [70], but static Wnt gradients
establish anterior-posterior positional information [71], and Turing reaction-diffusion of Wnt leads
to digit patterning [72]. Cells could therefore extract valuable contextual information from these
different dynamics. Biochemical networks can in fact compute specific temporal features, such
as the period of oscillating signals [39]. However, we still lack a general formalism to formulate
how kinetic features of time series, i.e., their “shapes”, encode information that cells can decode.

Most formalisms are limited to the stochastic component of time series and require large sample
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sizes to be evaluated [73]. We will propose a different formalism, based on a parametrization of

low-dimensional dynamics, in section 2.7.

In summary, the Berg-Purcell treatment remains instructive about fundamental physical limits, but
we need new theoretical frameworks beyond it to study biologically relevant aspects of cellular
sensing. Our main topic, T cell receptor signaling, has some unique features (sensitivity, speed,
specificity), as well as important applications, making it interesting in its own right from the bio-
physics standpoint. It is also a great model system to better understand sensing of ligand identity
(according to affinity), cross-receptor interactions, and combinatorial effects in antigen mixtures.
After all, contrary to chemotactic bacteria, which have other functions to perform for their own
fitness, immune cells have evolved for the greater good of the organism: they are optimized solely

for chemical detection, and can therefore solve more complex sensing and signaling tasks.

1.2 Chemical sensing challenges in immunity

Having reviewed the canonical treatment of chemical sensing in biophysics, we can now introduce
in this context the specific biological problem examined in this thesis: antigen sensing and sig-
naling in T cell activation. We briefly introduce biological notions about mammalian immunity,
emphasizing problems of high dimensionality in cellular sensing and cellular responses, before

focusing on T cell receptor (TCR) activation mechanisms.

1.2.1 Brief introduction to the immune system

Roles of the immune system

The most apparent role of immunity is to protect the host against pathogens. In the current canoni-
cal view, tracing back at least to Burnet and Fenner [74], the immune system discriminates between
self and nonself, or in other words, between host constituents (“friends”) and foreign invaders
(“foes”). Obviously, this challenge differs fundamentally from the concentration sensing problem
above: a good immune system should sense the identity of antigens — by definition, molecules

recognized by immune receptors — from self and nonself sources, and respond only to the latter.

To complicate matters, immunologists have unearthed an entire constellation of immune system
functions beyond pathogen detection, nuancing the self/nonself paradigm. These functions include
clearing and repairing damaged tissues, regulating development and metabolism [75], and main-

taining beneficial gut and skin microbiomes [76, 77]. Healthy immune systems tolerate several
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“foreign” entities, for example commensal microbiota, grafts, and foetuses. Conversely, auto-
immune disorders arise when the immune system attacks antigens which are obviously derived
from the self. Instead of self/nonself discrimination, immunity would be better defined as the sys-
tem responsible for maintaining homeostasis and cohesion within the limits of the organism, which

it itself delineates; it does not merely enforce pre-existing, absolute self boundaries [78].

The multifaceted role of immunity has several theoretical implications. First, since the immune
system needs to repair tissues and clean up debris, it must be able to sense self antigens as well,
and respond to them in these contexts. The influence of self antigens will in fact be central to
chapters 3 and 4. In the latter chapter, we will also see that immunity can target mutated self,
i.e., cancer. Second, as we have alluded to in section 1.1.8, immune antigens are never presented
alone, but rather in highly diverse, fluctuating mixtures; immune cells therefore exploit nonlinear
cross-receptor and cross-ligand interactions to perform the appropriate functions in response to
these antigen combinations. Third, to respond in a context-dependent manner, immune cells need
to sense external chemical cues, such as small proteins like cytokines and chemokines secreted
in the extracellular medium (more on them in chapter 2). They also sense costimulatory ligands
presented on the surface of other cells [79]. In short, immune chemical sensing is not at all a one-
dimensional concentration estimation, nor a binary decision between self and nonself. Rather, it
seems that immune cells need to produce complex response within a high-dimensional continuum

of possible chemical cues.

Structure of the immune system in Vertebrates

All organisms have some form of immune defense strategies, likely tuned by evolution to match
the typical pathogen statistics they encounter — see figure 1.3 for a phase diagram of these possible
strategies, derived from a stochastic population dynamics model by Mayer et al. [80]. Vertebrates,
who typically live and evolve on much slower time scales than their pathogens (blue sector in the

phase diagram), have an adaptive immune system, in addition to an innate one.

The innate system detects molecular patterns that are broadly conserved across bacteria or viruses,
and mounts generic responses against them. It comprises several lines of defense, from the com-
plement system — proteins combining together on pathogens to pierce holes through their cell walls
— to dendritic cells and macrophages — polyvalent sentinel cells that can phagocytose bacteria and
dead cells [81]. The adaptive immune system comprises T cells (which mature in the thymus) and

B cells (which mature in the bone marrow). These cells have large receptor repertoires to specif-
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Figure 1.3: “Optimal immune strategies as a function of the frequency and characteristic time of pathogens.
(A) Distinct optimal immune strategies emerge for different statistics of appearance of the pathogens. Each
phase is characterized by the value of parameters indicated in B and named after a known immune sys-
tem that has similar characteristics (the term ‘adaptive’ refers to the vertebrate immune system).” [80].
Probabilities o and [ are probabilities of the pathogen to appear and disappear in a generation, such that
Tenv and Tepy defined on the axes are the frequency of a pathogen appearing, and the characteristic time it
stays around (in number of generations). (B) “The different phases of immunity are defined by the values
of parameters along three main axes: adaptability (constitutive cost Ceonstitutive) heritability (1 — q), and
mode of acquisition (p and pyptake).” [80] These three immune parameters represent the cost of the immune
protection, the probability to transfer protection against a given pathogen to offsprings, and the rate at which
the system mounts a defense (a system could choose to incur the cost of infection instead of the cost of
defense, hence a small p could be optimal). To determine the phase of immunity, these three parameters are
optimized to maximize population fitness under a given pathogen statistics «, 8. (C, D) Optimal param-
eters depending on ey, for two fixed 7oy, values. “For slowly varying environments (C), rare pathogens
are best targeted by CRISPR-like uptake of protection, whereas frequent pathogens are best dealt with by
spontaneous acquisition of protection, with a crossover in between where both coexist. For faster varying
environments (D), the constitutive cost invested in the protection goes from negligible to maximal as the
pathogen frequency increases. When it is maximal, the best strategy transitions from bet hedging (q > 0) to
a full protection of the population (¢ = 0).” [80] (E) Correlation time (typical duration) of the protection to
a pathogen in its presence or absence, for a fixed ey and as a function of 7.,. Figure and quoted caption

excerpts reproduced from Mayer et al. [80] with permission from PNAS.
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ically recognize a vast range of possible antigens, with the defining feature that they adapt their

response to each encountered pathogen, and form memories of previous encounters [29].

Importantly, the innate immune system initiates and orchestrates adaptive immune responses [82].
Innate immune cells provide much of the chemical cues giving context to T and B cells. They first
recognize that damage or infection has occurred, and push adaptive cells to mount a specialized
response, targeted at the relevant antigens. For instance, dendritic cells and macrophages bring
antigen samples into lymph nodes to activate antigen-specific T cells, and produce inflammatory
cytokines to attract and stimulate memory T cells on site [83, 84, 81]. Because of this sequence of
events, adaptive immune responses in vivo typically span a week or more, whereas innate responses

start within the first few days.

1.2.2 Nonlinear dynamics of immune responses

Immune responses exhibit complex, nonlinear dynamics in response to transient pathogenic en-
counters or chronic auto-immune stimulation. In nonlinear dynamics terms, an immune system
is an excitable system [85]: small perturbations away from the stationary state (homeostasis) can
cause large transient responses away from it, but ultimately returning to the resting point. We can
illustrate this behavior with a simple, two-dimensional system of nonlinear ordinary differential
equations (ODEs). We modify the model of Mayer et al. [86], which captured the power law scal-
ing of T cell proliferation after immunization with an inactivated virus; here, we add proliferation

of the virus (or other pathogens) and killing by immune cells*,

d
d_‘; = TV(V - %)(1 - V/Vmax) —kVC
dC aVC

— =}
dt Co+V+C ¢

where V are viruses and C' are immune cells. Viruses are killed at rate £V C' and immune cells,
as a result, proliferate with a saturable rate COZ-LVC;-C [86] where Cy is the saturation threshold.
The proliferation rate a also reflects the strength at which virus antigens stimulate the immune
cells. Immune cells die at rate kC'. Viruses replicate at rate rV (V — V)(1 — V/Vipax), Where
Vinax 18 the carrying capacity and V|, represents a minimal inoculum for successful infection, since
a single virion is unlikely to suffice [87, 88], and since several virus species (e.g., enteroviruses)

travel en bloc, hidden inside vesicles [89]. Our toy model (the cubic viral proliferation function, in

4Virus killing is not necessarily direct; rather, infected host cells are eliminated by cytotoxic immune cells.
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particular) also draws inspiration from the 2D model of excitable auto-immune flare-ups introduced
and analyzed by Lebel et al. [90]°.

If incoming viruses push this system a little bit away from the healthy state® V = C = 0, it
exhibits dynamics typical of an immune response, shown in figure 1.4: viruses proliferate, but
immune cells catch up and eventually clear them before waning back to the resting state. This is
what we meant by an excitable system. To understand this behavior more quantitatively, we first
change to dimensionless variables and parameters. We eliminate Vj, and ¢ by using them as scales

of cell number and time, to obtain

d
% = pv(v —1)(1 —v/vy,) — kv
dc avc

—=——cC. 1.19
dr cy+v+c ¢ ( )

Greek parameters are dimensionless versions of the original ones: o = al}/b, K = kuvy/b, etc.

This model has nullclines (lines where either derivative is zero)

dv

-0 - oy = — P _
dT_O : U—OOIC—R(U (1 —v/vy)
€ 0 c=0ore=(a—1)— (1.20)
- e or ¢ = (« v — ¢ :

shown as red and blue lines in figure 1.4. The v = 0 and ¢ = 0 nullclines ensure that cell numbers
remain non-negative. This system’s excitability comes from the parabolic ¢ nullcline: as soon as
a sufficient initial perturbation crosses it, the flow under the parabola has a strong dv/dr > 0
component; viruses replicate, until hitting the other branch of that nullcline, at which point dv/dr
is small again and immune cells have time to combat the infection. This parabolic nullcline sets

the threshold for long excitations.

The intersections of v and c nullclines define fixed points of the system (% = % = 0, also called

critical points, steady-states, stationary solutions). Chapters 3 and 4 will be especially concerned

SWhile excitable systems in neuroscience are typically relaxation oscillators poised just below a Hopf or SNIC
bifurcation of the stable fixed point, here and in [90], we only retain the notion of a large excursion being generated
by a small initial perturbation. Our model could be modified to have a bifurcation to oscillations around the healthy
state, but the latter would have to move away from (0, 0), for instance by adding constant cell and virus influxes. This
would have made the mathematical analysis too complicated for the purpose of this chapter.

6 A better model would have a small non-zero number of immune cells around at homeostasis, ready to respond;
this could be obtained by adding a small constant influx of immune cells ag to dC/dt, but we are simplifying here.
For the same reason, to facilitate visualization, we chose parameter values (V},,.x) making cell and virus numbers very
small. This model could describe viral-immune interactions in a very small region, which is rapidly saturated and
requires viruses and immune cells to migrate out of it.
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Figure 1.4: Excitable dynamics in a toy model of immune responses. (Left) Phase portrait of the model.
Flow lines represent the vector field f(v,c) = (%, %) (eq. 1.19). The black line is a solution trajectory
(obtained by integrating the differential equations) after displacing the model away from equilibrium (pale
red arrow). Solid colored lines are the model nullclines (eq. 1.20); at their intersections, stable fixed points
are indicated by black dots, and unstable ones, by open dots. (Right) Time series of v and ¢ corresponding

to the trajectory shown on the phase portrait. Parameter values used: o« =4,k =1, p = 2, ¢ = vy, = 10.
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Figure 1.5: Bifurcation diagram and sample trajectories of chronic infections in a toy model of im-
mune responses. (Left) Bifurcation diagram as a function of immune proliferation parameter c. It shows
the v coordinate of fixed points as « is varied. The appearance of a stable limit cycle out of a spiral that
goes from stable to unstable is a supercritical Hopf bifurcation, and the disappearance of the stable limit
cycle as it collides with saddle points is a homoclinic bifurcation. The limit cycle was tracked numerically
with the XPPAUT software [91]; other fixed points were evaluated analytically. (Center and right) Sample
trajectories in phase space when « is set such that the chronic infection state is a stable spiral (center, point
* in the bifurcation diagram) or an unstable spiral with a limit cycle (right, **). Figure 1.4 was showing a

case where « is large enough to eliminate the chronic state. Other parameters are fixed as in figure 1.4.
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with the fixed points of T cell receptor signaling models. The stability of fixed points — whether

nearby trajectories converge towards them or move away — can be assessed by linear stability

analysis. In summary, denoting x = (v, c), we linearize the flow 2 = f(v, ¢) around a fixed point

Cé—’t‘ = Df - x, where Df is the jacobian matrix %. The

eigenvalues of this matrix determine the fixed point’s stability (in short, negative real parts imply

of interest. We find a linear equation

linear stability).

This method is generally covered in nonlinear dynamics textbooks [85, 92, 93, 94], so we only
summarize the results for this toy model of immune activation, which are contained in figure 1.4.
The fixed point (v, ¢) = (0,0) is always a stable node, meaning that nearby points converge to it.
For biologically meaningful parameter values (i.e., positive and carrying capacity v,, > vy = 1),
fixed points at (1,0) and (v,,, 0) are typically saddles, that is, an asymptotically unstable point but
with one attracting line (stable manifold of codimension 1); however, for large «, (1, 0) can be an
unstable node (no attracting manifold) while for small v, (vy,, 0) can become stable — a successful

infection because immune cells are too slow to respond.

Such changes in existence or stability of fixed points are called bifurcations; they modify qualita-
tively the system’s global dynamics. The model has another fixed point with interesting bifurca-
tions: a chronic infection state (vk, cxy), solution of the quadratic equation for the intersection
between the parabolic v and linear c nullclines. For small ¢y, when « is small, both solutions can
be in the positive quadrant with one being stable: immune proliferation saturates too much to clear
the infection. As «v increases, however, the chronic state disappears (through a saddle-node bifur-
cation). For larger ¢, (as in figure 1.4), the + root only is in the upper quadrant. For small «;, it
is stable (either a node or a spiral): the immune system tolerates the weakly stimulatory pathogen.
As « increases, this chronic state becomes oscillatory through a subcritical Hopf bifurcation, and
eventually disappears through a homoclinc bifurcation, as shown in figure 1.5. Hence, even with
just a simple toy model, we found a rich repertoire of possible nonlinear dynamics in the immune

system.

This toy model is a first illustration of how low-dimensional models can provide insight into im-
mune dynamics. However, it reveals that the overall immune response depends finely on initial
stimuli to trigger excitable dynamics, with outcomes changing drastically for even moderate dif-
ferences in the activation strength of immune cells by pathogens — encoded by « in the toy model.
This suggests that we must understand particularly well the early events of immune responses. In
other words, we need good models of immune sensing and receptor signaling to determine which

antigenic stimuli will cross the threshold for response, and how large that response will be. How-
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ever, it is not immediately clear how low-dimensional models could also be useful in this next task,
since the chemical spaces in which immune cells evolve are, in principle, high-dimensional. This

is particularly the case for T cells, on which we now focus.

1.2.3 High-dimensional nature of T cell activation and functions

TCR antigens for different T cell types

As previously mentioned, T cells are white blood cells which mount specific responses to pathogens.
To do so, they express T cell receptors (TCRs) on their surface, with which they scan the surface
of other cells to detect signs of infection or other abnormalities. TCR antigens are short peptides
loaded on larger proteins called major histocompatibility complexes (MHC) on the surface of the
antigen presenting cells (APCs). These peptides act as ligands for TCRs, or in other words, bind
to them. This binding is specific: each T cell has a unique TCR sequence which is cognate to a
small fraction of all possible antigens, while different T cells generally have different TCRs such
that they collectively cover the antigenic space [95]. To recognize antigens, a TCR is made of two
extracellular chains, generally TCR« and TCR/3, and six chains with an intracellular domain: two
central CD3(, two lateral CD3¢, one CD3+ and one CD3/ (figure 1.6). The TCRa chains interact
with antigens and is the part that varies from cell to cell to confer its specific binding properties
to a TCR. The intracellular chains transduce signals and trigger signaling pathways, in particular

through phosphorylation sites called immunoreceptor tyrosine-based activation motifs (ITAMs).

‘ pMHC ; TCR 6

,8\7\-—0- C

_C)OO

a/ 6/-_0' \ C
ITAMs

Figure 1.6: Schematic of the T cell receptor structure with its « and 8 chains and its six CD3 chains, shown
bound to a peptide-loaded MHC. The CD4 or CD8 co-receptor is not shown.

There are two main types of T cells, depending on the co-receptor that they express: CD4™1 and
CD8™ T cells. CD4" T cells recognize class II peptide-MHC (pMHC) complexes, which load
peptides of typically 13—17 amino acids, while CD8" T cells recognize class I pMHCs, with pep-
tides of typically 8—10 amino acids [84, chap. 4]. Essentially all mammalian cells have dedicated
pathways to chop up and load samples of their proteome on class I MHCS to be inspected by CD8*
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T cells. Infected or defective cells thus present altered pMHCs that can trigger CD8" T cells. Ad-
ditionally, some innate immune cells like dendritic cells and macrophages are professional APCs
expressing class I MHCs, on which they present peptides coming from the pathogens or dead
cells they have phagocytosed, to activate CD4™ T cells. Hence, the two T cell types generally have
different functions: CD8™ T cells become cytotoxic cells which can directly kill their targets (since
their pMHCs show signs of infection or damage), while CD4* T cells generally become helper T
cells which, for instance, assist B cell response [84, chap. 6]. In this thesis, we focused on CD8"

T cells, except where mentioned otherwise.

The space of TCR antigens and the TCR repertoire

The number of possible peptides with length 8—10 and made out of the 20 canonical amino acids
1s 2711018 20" ~ 10'3. Even if only ~ 3 % of these sequences have the optimal hydrophobicity
in anchor positions to actually be presented on MHC molecules [96], the space of possible TCR
antigens is still very large. In principle, a naive description of this antigenic space would require
a high-dimensional vector L = (L1, Lo, ..., L4) specifying the concentration of all A ~ 10
antigens possibly presented. These possibilities are compounded with the diversity of MHC alleles
in humans — there are enough variants that each individual can have a unique combination of 5 or 6

alleles. These variants influence the loading of peptides and TCR-pMHC interactions in principle.

To cover this huge antigenic space, mammals evolved to have a large TCR repertoire. As men-
tioned above, each T cell has a single TCR sequence, but different cells have different receptors,
with a wide range in how many T cells are part of the same clone, i.e., share the same TCR [97].
The diversity of this repertoire is generated through a process called VDJ recombination, whereby
gene segments are mixed and matched, then further modified at their junctions, to form unique
TCR « and f3 chains in each T cell [27]. At least ~ 103 TCRa/f3 sequences are theoretically pos-
sible, although not all with the same probability of being generated [98]. A human has 10°~10% of

these sequences among its 101! T cells [99].

Importantly, the stochastically generated TCRa/3 diversity is filtered through thymic selection: T
cells are negatively selected to eliminate those responding too strongly to self peptides, and posi-
tively selected to eliminate completely unresponsive TCRs [100]. Thus, the TCR repertoire of an
individual is shaped to cover “gaps” between self peptides in antigenic space — in fact, targeting se-

quences one or few amino acid substitutions away from self peptides [95]. TCRs are cross-reactive:
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each TCR can in principle respond, with varying intensity, to over 10° different peptides’ [96], re-
sulting in adequate coverage of the antigenic space. Mixtures of antigens can therefore produce

nonlinear combinatorial effects as they stimulate the same given TCR with different strengths.

Other chemical cues sensed by T cells

In addition to antigens, T cells also sense other kinds of proteins. T cells have receptors besides
the TCR to detect co-stimulatory or inhibitory ligands from APCs. The CD4/CD8 co-receptor is
an example, sensing the presence of MHCs of the right class; another is CD28, binding to the B7
co-stimulatory ligand. Some co-receptors, for example CTLA-4 and PD-1, are inhibitory when
they bind to their surface ligands, (B7 and PD-L1, respectively). They are leveraged in cancer
immunotherapy (chapter 4) [84, 101]. Together, co-stimulatory ligands provide a signature of

APC type and immune context which does modulate T cell responses [79].

Additionally, T cells respond to diffusible extracellular proteins, chiefly cytokines and chemokines.
We will review cytokines in more detail in chapter 2; we mention here that these are extracellular
messenger proteins that can stimulate, sustain proliferation, and guide migration of T cells. There
are over 30 different cytokines in humans [102] and a similar number of chemokines [103]; this
multiplicity perhaps serves to multiplex information [104] or to improve robustness through re-
dundancy [102]. Moreover, receptors for cytokines, in particular, share sub-units and therefore can

sense combinatorial effects of these messenger proteins [64, 65].

High-dimensional outputs of T cells

Cytokines are produced by innate immune cells, but also by T cells themselves as part of their
outputs after activation. They have the potential to create important feedback effects within T cell
populations, where different clones can co-opt each other into activation [105]; on the contrary, cy-
tokines like IL-2 activate regulatory T cells, which suppress self-reactive T cells [106]. In addition
to cytokines, T cells secrete other effector molecules; in particular, cytotoxic T cells release chem-
icals like granzymes and perforin to lyse their target cells [107]. CD4* helper T cells upregulate
surface antigens such as the CD40 ligand that help activate B cells [108]. Besides secretion of pro-
teins, activated T cells also start proliferating, growing in size, and leaving lymph nodes, stopping

their migration when encountering stimulatory antigens at the site of infection [84, chap. 1]. We

"The converse is not true: one antigen typically does not trigger more than ~ 100 possible TCRs in an individual.
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lack quantitative principles to understand how the timing and amplitude of these multiple T cell

outputs are determined by the various inputs they integrate.

1.3 Antigen recognition mechanisms in T cells

We will focus our efforts on TCR antigen recognition, since pMHCs are still the most decisive in-
put among all biochemical cues mentioned above. While the detection of co-stimulatory molecules
and cytokines rely on simpler receptor binding-unbinding mechanisms like those reviewed in sec-

tion 1.1.4, antigen sensing by TCRs is representative of a different chemical sensing paradigm.

1.3.1 The TCR antigen recognition problem

To state it again clearly, the function of a T cell is to recognize and respond to its cognate anti-
gens, which constitute a small fraction of all possible peptide sequences, are typically present on
APCs in far smaller numbers than self antigens, and have only small affinity differences with the
latter. As we will see in chapter 3, there could be up to 10° self antigen copies on an APC, and
only ~ 10 cognate antigens, which T cells nonetheless detect. To make the challenge seem even
more difficult, T cells having undergone thymic selection do not respond strongly to self anti-
gens (negative selection), yet they still interact weakly with them — because they need to make it
through positive selection, and because these self antigens tend to be one amino acid substitution
away from cognate TCR antigens [95]. Despite that, T cells are not activated by the large numbers
of self antigens always present in the background. Moreover, TCRs are cross-reactive enough to
recognize, in principle, several different peptides, meaning they must also be able to distinguish
small differences between these ligands. Overall, this suggests that TCRs have an exquisite sensi-
tivity to small differences between their cognate antigens and other peptides mixed with them on

APCs [62], despite fluctuations of these mixtures.

1.3.2 Complexity of the TCR signalosome

Consequently, T cells have evolved an incredibly complex biochemical machinery to transduce
signals from complex antigen mixtures and turn them into appropriate high-dimensional outputs.
When a T cell encounters an APC, it sticks to it for a duration ranging from seconds to minutes,
forming a zone of close contact between cell membranes called an immunological synapse [109,
110, 111]. Within this synapse, receptors on the T cell side and pMHCs on the APC side diffuse

on their respective membranes and interact with each other [112, 113].
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Upon binding of a pMHC to a TCR, several biochemical events are set in motion. The kinase
Lck is brought closer to the CD3 chains to phosphorylate their ITAMs. This allows enzymes and
signaling proteins to be sequentially recruited and activated (generally, by further phosphorylation)
to the TCR, starting with proteins called ZAP-70, then LAT and PLC-+, and so on [114, 84, 115].
Some smaller enzymes, like the phosphatase SHP-1, can also diffuse around and may couple indi-
vidual receptors. The resulting cluster of signaling proteins is referred to as the TCR signalosome
and is shown in figure 1.7. When it assembles, it triggers amplifying signals like ERK phosphory-
lation [116], leading to activation of key biochemical pathways like the phosphoinositide 3-kinase

(PI3K) pathway [105] and thus starting the production of T cell chemical outputs described above.

The exact biophysical nature of this large aggregate of signaling proteins is unclear; it probably in-
volves a combination of direct binding (e.g., ZAP-70 [117]), clustering, and phase separation (e.g.,
LAT [118] and Lck-CD3e [119] condensates). Antigen recognition is the problem for which T
cells are made by an organism, hence they can spend the resources and energy (stored in adenosine
triphosphate, ATP) needed to maintain this machinery out of equilibrium and to perform above the
limits imposed by chemical detailed balance [45]. The signalosome’s complexity is intimidating,
making exhaustive physical models hard to interpret and analyze. In contrast, our understanding
of T cell activation would be facilitated if we could find low-dimensional quantitative models of

the effective processes implemented by the TCR signalosome.

1.3.3 TCR-antigen binding: the lifetime hypothesis

As a starting point for a simplified description of TCR signaling, we first examine the physical basis
on which TCRs distinguish different antigens. What antigen properties are sensed by the TCR
signalosome? While B cell antibodies have very strong binding affinity for their target epitopes
(dissociation constant K p = kog/kon ~ 1 nM), TCR-pMHCs affinities are much weaker ( Kp >
1 M), with Kps in the same range for strong and weak antigens [120]: hence, TCRs are not
recognizing ligand identities based on very specific, antibody-like binding. It has been proposed
that TCR-pMHC binding induces conformational changes in the TCR or forms catch bonds (where
mechanical pulling on the receptors increases the lifetime) [121]. However, recent cryo-EM studies
have not found evidence of such molecular structure changes in the binding region of TCRs [122].
Conformational changes in the intracellular domain of the TCR, such as unfolding of the CD3(
chains out of the plasma membrane [123], could explain how pMHC binding triggers downstream

signals, but not how different ligands are distinguished in the first place.
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Figure 1.7: Structure of the TCR sig-
nalosome (a) Steady-state in absence of
a bound pMHC. ITAMs are mostly non-
phosphorylated, since Lck is inhibited by
Csk and CD45. (b) Recruitment of several
signaling molecules upon pMHC binding.
Lck is active, CD45 is segregated away
from the receptor, the receptor ITAMS are
fully phosphorylated, ZAP-70 is bound to
CD3 chains, leading to phosphorylation
of LAT, activation of PLC-v, and so on,
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Instead, it seems that the dissociation rate, typically reported as a binding lifetime 7 = 1/k.g, is
the property recognized by TCRs to establish differences between ligands, while the binding rates
ko, are diffusion-limited and quite similar between antigens. TCR-pMHC binding times typically
range between roughly 0.5 s (for non or weakly stimulating antigens) to 15 s (for strong antigens),
with excellent correlation between the binding time and antigenicity of a peptide [120]. We will
thus often use the term “antigen quality” to designate TCR binding times 7. Although recent
measurements using surface plasmon resonance suggest a wider range of binding times [124],
the fact remains that the TCR can sense, amplify, and respond specifically to small differences
in binding times between different antigens. This idea is sometimes referred to as the “lifetime
dogma”. As with any dogma in biology, other factors are likely at play [62], but pMHC binding
times are central in most recent TCR modelling efforts [125, 124, 115, 113].

1.3.4 Kinetic proofreading
Thus, the TCR signalosome performs chemical sensing of antigen binding times, but the essence
of the mechanisms carrying out that function remains obscured under complicated biochemistry

(figure 1.7). Does it in fact boil down to simple principles? Simple bound receptors like those of
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Figure 1.8: Cartoon representing the biochemical reaction network of the classical KPR model of TCR

antigen recognition.

section 1.1.4 are poor sensors of antigen quality (binding times), since increasing the concentration
c of a ligand can compensate its smaller 7 to obtain the same receptor binding state. Indeed, the

average number of bound receptors is

c ckonT
R = R, tc%—KD CkonT + 1

such that only the product c7 appears in the equation, showing that ¢ and 7 cannot be sensed

independently by this scheme.

Key inspiration came from the work of Hopfield [126] and Ninio [127] on the surprising accuracy
of DNA replication. They noticed that error rates ~ 10~® in DNA replication are much smaller
than the equilibrium prediction ~ 10~ based on the small free energy differences AG ~ 10kgT
between correct (A-T, C-G) and incorrect (A-G, C-T, etc.) base pairings. They proposed a mecha-
nism, termed kinetic proofreading (KPR), in which an extra reaction step — the proofreading step —
amplifies these small differences in dissociation rates between correct and incorrect pairs, approx-

2
. . 2
imately squaring the error rate down to (e‘AG/ ’“BT) = <M> ~ 1078,

koff,incorrect

This amplification of small differences in unbinding rates is exactly what T cells need to sense
small differences in antigen quality without letting differences in antigen abundances interfere®.
McKeithan [128] turned this idea into a low-dimensional model of TCR binding and signaling.
They key idea is that upon binding a pMHC, the TCR undergoes a sequence of N biochemical

modification steps leading to an output-producing activated state, with a chance to unbind with

8CD4* T cells may be more sensitive than CD8* T cells to antigen quantity: they select B cells in germinal centers
based on how many antigens they present bound on their BCRs [108], because that number depends on the affinity of
their antibodies. So CD4™ cells, to select B cells with the best antibodies, must read antigen quantity very accurately,
once antigen quality is fixed (by the high specificity of the B cells’ antibody, ensuring they bind the relevant antigen
only).
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rate 1/7 at each step. We assume that these steps are irreversible when the ligand is bound, but
rapidly undone after it unbinds. This network of reactions is illustrated in figure 1.8. Consider
now Ry, receptors interacting in an immunological synapse with L ligands presented by the APC.
We treat the KPR network as a well-mixed, deterministic biochemical network, where we model
C,,, the average number of TCRs in state n, for each n € {0,1,..., N}, as a function of time.
Applying mass-action kinetics, and considering the fact that the number of free ligands at a given

time is L minus the number of bound receptors R, = Zév , the corresponding system of ODEs is

dC

d—t“ = 1(Riot — Ry)(L — Ry) — (0 + 7 HCy

d;n = pCh1 — (90 + 7_1)Cn (1 <n< N)

TN — pOner 0 (1.21)

We take the space here to detail the steps to solve for the fixed point solution, since similar calcu-
lations will be often used in this thesis. The steady-state occurs within minutes after the immune

synapse formation [129]. Summing all equations, we have a constraint for R;:
N
0= K(Ruot = B)(L = By) =771 Y Cov = K(Ruot = Ro) (L = By) =7 'Ry
n=0

We make the approximation that L is small compared to the total number of receptors — we will

KiRtotT

Rt L. Then, we solve the

instead use the exact quadratic solution in chapter 3 — so R, ~

first-order recurrence relation (coming from % =0),

Co=—2T ¢, =dC,, (1<n<N)

B pr+1
where we defined ® = @fjrl' Iterating, we find that C,, = ®"Cj,. We also use the last equation,
dg—tN = 0to find Oy = p7Cn_1 = TPV 1. Inserting these expressions into R}, = Zf:fzo Ch,
and using the geometric series for the resulting sum of " factors, we find Cy = (1—-P)R, = wfj’rl,

and thus the stationary solution for all C), in terms of the model parameters (R, ~, ¢) and antigen

properties (L, 7),

R n
Ch = Ry(1 - )" = 2 Ll for 0 <n <N
T+ 1 \pr+1

/{RtOtT

here Ry ~ ————— L 1.22
where b K/RtotT + 1 ( )
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In the limit where ¢ < 77! (slow proofreading for better accuracy) and xR, > 7! (fast initial

binding), then we have the approximate scaling of the solution with antigen quality and quantity,
Cn ~ LTV (1.23)

showing that the ratio of responses to two different antigens would be amplified exponentially as

Cn1/Cna ~ L)Ly (11/ TQ)N, improving with the number of proofreading steps N.

Early experimental evidence in favor of this mechanism suggested that sequential phosphorylation
of CD3( ITAMs could play the role of kinetic proofreading steps [130]. More recently, events
further down in the TCR signalosome assembly, such as the binding of ZAP-70, LAT, PLC~,
have also been shown to act as putative kinetic proofreading steps [131, 115]. As we will see in
chapters 3 and 4, we do not need to model the biochemical particularities of each step to get pre-
dictive power. Hence, a generic KPR scheme constitutes a reasonable low-dimensional backbone

for phenomenological models aiming to capture high-dimensional TCR signaling events.

In this basic model, reverse reactions have been neglected under the assumption that the forward
KPR rate dominates when a pMHC is bound. An exactly zero reverse reaction flux is not pos-
sible, as it would imply infinite entropy production terms in equation 1.13, so this is only an
approximation for a non-zero but negligible reverse rate. Including these nonzero reverse rates
decrease the KPR performance, but it remains sufficiently high [132], as long as a (finite) break-
ing of detailed balance between forward and reverse rates is maintained. This non-equilibrium
regime is necessary to improve the antigen quality discrimination of simple equilibrium receptors,
R ~ Lt. Thus, KPR costs energy to T cells, consuming a power per receptor on the order of
10* kgT/s ~ 10° ATP /s, which is still only a tiny fraction (10°) of the total energetic budget of
a cell [133]. This enhancement of the forward rate, as well the rapid undoing of the reaction steps
following pMHC unbinding, could be explained by kinetic segregation of the CD45 phosphatase
away from the bound TCR-pMHC complex, due to its large extracellular domain [134, 135].

1.3.5 Adaptive Kkinetic proofreading

The reason why TCR signaling amplifies small binding time differences is, really, to ensure these
differences dominate changes in antigen abundance. However, the output in KPR still scales pro-
portionally to antigen quantity L, since C'y ~ L7". It is possible to improve this scaling further to
eliminate most of the L dependence and explain how TCRs can be sensing almost exclusively 7.

The key solution is to add an inhibitory coupling between TCRs, whether it is a negative feedback
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Figure 1.9: Illustration of the antigen quality discrimination problem. (Left) TCR model output curves, in
the deterministic limit, depending only on antigen quality (red vs blue curves) over a wide range of antigen
quantities L. (Right) Marginalization of the TCR output distribution over the range of L, to obtain p(O|T).
With a perfect model, these distributions would not overlap for different antigens. Redrawn after Lalanne
and Frangois [132, fig. 2].

or an incoherent feedforward loop. This was first shown using detailed computational models of
TCR activation, where the phosphatase SHP-1 played this inhibitory role [116, 136]. The mech-
anism became especially clear when a much simpler, low-dimensional phenotypic model of this
SHP-1 feedback was proposed [129].

In parallel, the same class of models was found de novo using an in silico evolution algorithm [132],
p-evo [137], which simulates rounds of mutation and selection on a population of biochemical
networks optimized for a fitness function. For TCR activation models, this fitness function should
measure how well the output reflects antigen quality 7 without depending on antigen quantity L.
Information theory provides a quantitative formulation: the input-output function of the model,
p(O|r, L), should maximize the mutual information MI(O; 7) between its output O and 7 while

the inputs are marginalized over all possible antigen quantities L:
p(OIT))
max [ drp(r) | dOp(O|1)lo
p(om/ 4 )/ p(Ofr) oz, ( p(0)

where p(O|7) = / 4L p(Olr, L)p(L|r) = / 4L p(Olr, L)p(L)

and p(O) Z/dTp(T)p(O|T) :

This objective is illustrated in figure 1.9. The distribution p(L) over which we marginalize could

be, for instance, uniform over a wide range of possible quantities, L € [10°, 10°] approximately.
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Figure 1.10: Cartoon representation of the biochemical network of the AKPR model introduced in [132].
The global inhibitory coupling between receptors is mediated by the feedforward module, where the kinase

K is deactivated by intermediate complexes, thus reducing the final proofreading step rate.

KPR schemes with inhibitory coupling are called adaptive kinetic proofreading (AKPR) models,
and will be at the core of chapters 3 and 4, where we will analyze them in more depth. Here, we
introduce the simplest version of AKPR, found by in silico evolution [132], depicted in figure 1.10.
The basic KPR model is modified to have a shared pool of a kinase, K, mediating the last proof-
reading step with rate a/A. This kinase is deactivated by receptor complexes in an intermediate
state C,,,, with m < N, thus implementing an incoherent feedforward loop. Intuitively, the point
of this feedback is to decrease the response to weak TCR antigens present in large quantities: these
antigens produce a lot of C,,, to activate the feedback, but — because of the L7™ versus L7 scaling

of C,,, versus C'y — not as much C'y to overcome it.

Compared to the basic KPR model, only the ODEs for Cy_; and Cy are affected, changing term

pCy_1 for aKCy_1, and one new equation is needed for K,

dK

E — B(Ktot - K) —5CmK .

Solving for C'y at the fixed point, one factor ® is replaced by a factor containing K,

Koot T o7 N
Cv =R fot 1.24
N b(OéKtotT+1) (QOT‘{’:[) ( )

where the steady-state value of K is

Cm ,thresh

K - Ktot (125)

Cm + C1m,thresh
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where Cy, thesh = /0, typically chosen small. Hence, at small L, K ~ K, and the model
behaves as regular KPR, but as C,, increases at moderate L, eventually C,, > C};, thresh, and then
K ~ L7'7=™, Inserting in C'y’s expression, this cancels the L dependence and we are left with

N—

Cy ~ 7V7™ ie., an output independent of antigen quantity. This gives output curves Cy (L, 7) as

in figure 1.9.

This version of AKPR is not completely biologically faithful, because the inhibitory coupling is
likely mediated by a phosphatase like SHP-1 [138] rather than by a kinase. It is also unclear which
kinase could be mediating only the last reaction step and not others. Nonetheless, it makes the
adaptive part of AKPR very clear: the point of the inhibitory coupling between receptors is to
cancel the L dependence in C'y. Beyond improving concentration-independent sensing of antigen
quality, such inhibitory coupling between receptors causes non-linear effects (such as antagonism)
in antigen mixtures [139], as we will see in chapters 3—4. Hence, the AKPR framework provides
inspiration to find low-dimensional models clarifying how the TCR signalosome processes high-

dimensional antigenic inputs to trigger appropriate T cell outputs.

1.4 Low-dimensional models in biophysics and immunity

1.4.1 Definition and examples of low-dimensional models

What do we mean by low-dimensional?

As outlined in section 1.2.3, biological systems evolve in high-dimensional chemical spaces: they
face millions of potential different proteins and molecules, requiring large vectors of concentra-
tions and affinities to describe them all. They also have complicated, redundant biochemical sig-
naling networks and gene expression programs, such as the TCR signalosome and the pathways it
triggers downstream. A complete pedestrian mathematical description of all these concentrations
and biochemical reactions with, e.g., conventional biochemical rate equations or chemical master

equations, would require an inordinate amount of parameters and dynamical variables.

Thus, by low-dimensional model, we mean a mathematical description of biochemical inputs,
processes, and outputs that uses far fewer parameters and variables than dictated by the naive
enumeration of all molecular players or underlying microscopic dynamics. This definition is not
very precise, since any model is to some extent lower-dimensional than the complete system, under
standard approximations — not modelling unimportant or unrelated proteins, neglecting very small
reaction rates, and so on. The kind of low-dimensional models we are most interested in are

those where the possibility of dimensional reduction is not at all obvious initially, compresses
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the system to very low dimensions (say, 1-10 variables) compared to the initial system, and may
require some data-driven analysis to be found. This implies trying to find the “natural variables” of
a biological system, which can simplify its dynamics or collapse its statistics onto universal curves
at the time and complexity scale of interest [140, fig. 2]. Being able to graph the system’s dynamics
or parameter values in 2D plots, as we did with our toy model of immune responses (figure 1.4), is

a good sign of low dimensionality.

Examples of low-dimensional models in biophysics

To illustrate this definition, we summarize a few recent examples of successful low-dimensional
models in biophysics. In a data-driven approach very similar to what we will do in chapter 2, Sey-
boldt et al. [141] have reduced the expression dynamics of four gap genes in larval Drosophila to
a two-dimensional embedding, where each axis turns out to be the difference between two genes.
They parameterized the dynamics with a polar angle in this 2D space, revealing that interactions be-
tween genes are in fact limited, and predicting the effect of various mutations. Also in Drosophila,
but at a very different level, Berman et al. [142] have compressed long recordings of fly postural
behaviors down to a 2D space categorizing typical behaviors, using a sequence of dimensional
reduction techniques: PCA, wavelet transforms, t-SNE. They also quantified stochastic transition

dynamics between these states [143].

In developmental biology, theorists have proposed low-dimensional models of cell fate decisions
under the names of gene-free [144] or geometric [145, 146, 147] models. The idea is to represent
cell states as attractors in an abstract 2D or 3D phase space, properly disposed to reflect possible
transitions between states, and then to build phenomenological equations for the flow of cells in
that space. Without explicit reference to complicated gene regulatory networks, and without fitting
tons of parameters, this method can successfully predict bifurcations (changes in available states

or transitions) that occur as developmental conditions are changed.

Geometric models are connected to the idea of Waddington landscapes in development and hema-
topoiesis, according to which cell differentiation paths are trajectories travelling down different
junctions in a low-dimensional epigenetic landscapes with quasi-potential dynamics [148]. Recent
studies have made this idea very concrete by deriving epigenetic landscapes from high-throughput
single-cell datasets [149, 150]. A recent study has revealed a Waddington-like landscape in the
memory learning process of generalized Hopfield neural networks learn memories, with suc-
cessive splits taking place in that low-dimensional landscape between prototypes of the learnt

classes [151]. These various examples show that effective, low-dimensional representations of
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biological dynamics enable theoretical and experimental progress in different organisms and con-

texts.

1.4.2 Motivating low-dimensional models in biophysics

Why seek low-dimensional models?

Despite being simplifications of the underlying physical, chemical, and biological processes, low-
dimensional models should still capture the important dynamics or statistics of the system, and gen-
erate quantitative, experimentally testable predictions [152]. Hence, by seeking emergent physical
laws and phenomenological models of this kind, we can gain significant interpretability without
sacrificing accuracy at the scale of interest. Such streamlined yet predictive theories are also valu-
able for engineering applications, because they provide a better intuition to propose new design
concepts, together with quantitative tools to actually implement them. To take a non-biological
example, classical thermodynamics laws and state variables emerging from the statistical physics
of microscopic components [153] have enabled uncounted innovations in mechanical and chemical
engineering. Hopefully, chapter 4 will show that low-dimensional models can have translational

value in immunology too.

Why might there be low-dimensional models?

Why can we hope that simple models have anything useful to say about complicated, messy bi-
ological systems? The usual statistical physics trick of self-averaging ~ 10% identical particles
does not usually work for biological systems, where the main challenge is the large number of
different chemical species, each present in small quantities. There are, however, other reasons for

which biological systems might have low-dimensional representations.

Complex systems with many dynamical variables tend to have slow manifolds on which dynam-
ics converge, once fast fluctuations have dissipated [154]. This separation of time scales leads to
effective low-dimensional dynamics on the slow manifolds. The effect has been well studied in
molecular simulations of chemical reactions, where a key goal is to identify reaction coordinates
and other collective variables distinguishing stable and transition states [155]. Similar slow man-
ifolds may well underlie low-dimensional models of biological systems, and there is a potential
evolutionary explanation for it. Husain and Murugan [156] have shown that slow modes of dy-
namical systems and soft modes of protein structures restrict the impact of mutations (changes

in model parameter or sequence space) to these slow directions. Mutations naturally pushing the
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system in these directions therefore have a higher chance of conferring a significant evolution-
ary advantage, such that biological systems would keep evolving in regions of parameter space

maintaining these slow modes in existence.

This canalization could also explain a related phenomenon: the low-dimensional parameter space
structure of biological models. It seems these models universally have a few parameter combina-
tions that significantly impact the model’s fitness or fit accuracy, while most other directions in
parameter space are irrelevant [157, 158]. This effect, called parameter sloppiness, suggests that
biological functions can be captured with few effective model parameters, instead of an exhaus-
tive list of reaction rates — the main challenge being to find these parsimonious parametrizations.
At least, this challenge can be somewhat simplified by using well-mixed approximations for bio-
chemical reaction rates, as discussed in section 1.1.7, with effective rate values compensating for
the neglected microscopic processes. Parameter space compression algorithms based on sloppiness

theory could also automate the task of simplifying large models of biological functions [159].

Criticality is another property that could confer a low effective dimension to biological system.
Work on maximum entropy models for neuron populations, protein sequences, and flocks of birds
suggests that these systems are poised near criticality, i.e., phase transitions in their macroscopic
order or bifurcations of their dynamics [160, 161]. This creates long-ranged correlations between
individuals or molecules and presumably reduces the underlying dimensionality of these systems.
Moreover, biological systems tune themselves near optimal operating points; some of their pa-
rameters are in fact slow dynamical variables regulated by various feedbacks [162]. This is the
case, for instance, in neurons, where calcium activity feeds back onto the genetic regulation of ion

channel levels, and can tune conductance by changing these levels [163].

We mention two more mechanisms that could contribute to low dimensionality in biological sys-
tems. One is the fact that cells have core pathways that integrate inputs from several different
sources and control several outputs, such as the NF-xB and MAPK pathways [164, 104]. Further-
more, in these pathways, interaction networks often have a “hub-and-spoke” or “bow-tie” structure
where one protein is a central node interacting with many others, for instance c-di-GMP in bac-
teria [165] or p53 in mammalian cells [166]. These network structures with bottlenecks have the
potential to create some correlations between cellular outputs. Another possible explanation, re-
lated to network structure, is the low-rank hypothesis recently proposed by Thibeault et al. [167];
using mathematical properties of singular value decompositions (SVD), they have shown that sev-
eral classes of high-dimensional dynamical systems often have interaction matrices with effective

low ranks (i.e., a rapid decrease in their singular value spectra). Their work gives mathematical
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substance to phenomenological, low-dimensional models, but it also shows that rigorous reduc-
tions sometimes should keep a significant fraction of the original dimensionality. In the end, we
think that proof is in the pudding: validation of model predictions against experimental data re-

mains the best way to check that a low-dimensional approximation was justified.

1.4.3 Hopes for low-dimensional descriptions of immunity

In this chapter, we have formulated the theoretical challenge posed by immune sensing of high-
dimensional inputs, and immune signaling leading to high-dimensional outputs, contrasting it
with the classical biophysics problem of concentration sensing. We have then discussed low-
dimensional models and their advantage of interpretability. Is there hope that low-dimensional
models could also apply to T cell immunity? Could they reveal simpler quantitative principles
underlying complex biochemical mechanisms of TCR sensing and cytokine communication? We

have a few reasons to hope so.

To begin, we have already seen examples of low-dimensional models of immunity in this chapter.
Our two-dimensional toy model of immune excitability could capture the global dynamics of an
immune response, without detailing all cell types or signaling pathways (section 1.2.2). More-
over, the KPR and AKPR models of T cell receptor signaling clearly simplify the TCR signalo-
some’s complicated machinery (section 1.3.2) down to a few phenomenological ODEs, yet they
still capture the same key features (e.g., how the output scales with L and 7) found in detailed

computational models [116].

Moreover, the general hypotheses mentioned above in section 1.4.2 to explain low-dimensionality
in general biological systems most likely apply to immunity as well. There are a few likely di-
mensional bottlenecks in T cell signaling pathways, starting with the TCR itself: a T cell senses
all antigens presented to it with its unique TCR sequence (present in many copies). Any pMHC
can thus be reduced to one scalar number, its affinity or binding time 7. Since many pMHCs in
the space of all possible amino acid sequences will necessarily have very similar 7s, a complex
mixture of pMHC:s can probably be coarse-grained to a simpler effective mixture of a few different
7s — this is why we will study binary mixtures in chapter 3. Moreover, the TCR, as the single entry
point for antigenic signals, activates all main pathways for proliferation and cytokine production,
such as the phosphoinositide 3-kinase (PI3K) pathway [105], so we can expect correlations to exist
between all these outputs, effectively reducing their dimensionality as well. These pathways also
receive inputs from cytokine receptors, such that extracellular feedbacks from cytokines might not

be that complicated, merely adjusting the level of antigenic stimulation.
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With the hope of finding underlying simplicity in T cell activation, we seized the unique oppor-
tunity to develop new theories offered by our collaborators’ new robotic platform, which records
high-dimensional T cell cytokine dynamics in response to antigen stimulation. We first focused
on deriving a data-driven, low-dimensional model of these dynamics controlled by antigen quality
(chapter 2). Building on this first step, we developed improved phenomenological models of early
TCR antigen recognition mechanisms, to explain nonlinear effects in our collaborators’ measure-
ments of cytokine responses to antigen mixtures — in regular T cells (chapter 3) and in T cells with

synthetic receptors engineered for cancer immunotherapy (chapter 4).
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Chapter 2

Antigen encoding of T cell activation from cytokine

dynamics

We first approached the problem of finding low-dimensional descriptions of T cell responses with
a data-driven modelling strategy. Analyzing quantitative measurements of cytokine time series
from the Altan-Bonnet lab (section 2.1) with small neural networks, we found a two-dimensional
latent space in which cytokine trajectories separated very well according to antigen quality. We
parameterized the dynamics in this latent space using ballistic-inspired equations, and found that
all parameters were strongly correlated to antigen quality and to the initial rates of cytokine pro-
duction. I quantified the information content of this latent space, to establish that T cells can
recognize (and respond to) a continuum of antigen qualities, which can be subdivided into six
non-overlapping classes (corresponding to 2.6 bits of information). The insights offered by the
present chapter into the structure of T cell responses — and their strong dependence on initial anti-
gen quality recognition — paved the way for the more mechanism-focused investigation presented

in chapters 3 and 4.

This chapter contains my theoretical contributions to Antigen encoding, [1]:
» Time series processing and filtering (sections 2.2.2-2.2.3 and B.1), turned into a full pipeline

with Thomas Rademaker and Sooraj Achar;
* Mutual information estimation in cytokine time series (2.2.4);
* Robustness analysis of the antigen encoding latent space (2.4);
* Cytokine time series reconstruction from the latent space (2.5 and 2.6.5-2.6.6);

* Developing a simple latent space model and parameter fitting procedure jointly with Thomas
Rademaker (2.6.1-2.6.2), and a refined latent space model myself (2.6.4);

* Ranking antigens with a Kendall Tau metric, jointly with Sooraj Achar (2.6.3);
* Channel capacity analysis of antigen encoding in latent space (2.7);

* Earth Mover’s Distance analysis of drug perturbations (2.8.1).

40



The code that I wrote to produce my theoretical analyses is available on Github [168]. The neu-
ral network classifier in section 2.3 was primarily Thomas Rademaker’s work. The experiments
(2.2.1) were performed by Sooraj Achar (mainly) and by Emanuel Salazar-Cavazos, Angela Lee,
and Grégoire Altan-Bonnet. Most of the quoted excerpts are from modelling-related sections of

the supplementary information (SI) which I wrote.

2.1 Introduction: the cytokine code of T cells

2.1.1 Complexity and multiplicity of cytokine mechanisms

Within the complicated, multifarious world of chemical signals in the immune system, cytokines
play a crucial role: immune cells communicate with each other by producing and detecting these
small extracellular messenger proteins. When T cells get activated by antigens recognized through
their T cell receptor (TCR), they start producing a complex cocktail of cytokines to alert other
cells and sustain their own activation and proliferation [105]. However, we lacked a quantitative
framework to understand how TCR antigen recognition, initiated within minutes [131], can map
diverse antigenic inputs to high-dimensional cytokine responses spanning days. Therefore, we
decided to tap into the cytokine communication network to reverse-engineer the principles of TCR-

mediated chemical sensing and information transmission through cytokines.

As mentioned in section 1.2.3, there are over 30 different cytokines in the human (and mouse)
immune system, and each has been associated with various functions and idiosyncratic patterns
of secretion by a whole body of biological studies [102]. Without going into the minute details
of production and consumption mechanisms, a brief overview suffices to show that the cytokine
code can be tremendously complex, and that finding the principles connecting T cell activation to

cytokine dynamics requires quantitative, physics-inspired methods.

The spatiotemporal evolution of the concentration of a given cytokine, ¢(r,t), during a T cell
population response in some region of the body (e.g., a lymph node or an infected tissue), could in
principle be described by a relatively simple partial differential equation [169, 98, 4], neglecting
stochastic effects,

% =V - (DVe) + ky(e,r,t) —k_(c,r t) 2.1
where the first term is diffusion with diffusion constant D, and k. (c,7,t) and k_(c, r, t) represent
the production and consumption of cytokine c. This equation may be useful in very simple scenar-
ios: for instance, for a single activated cell surrounded by consumer cells, it establishes a typical

length scale over which the produced cytokines can diffuse before being captured: A\ = , /k%c’
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where k is the consumption rate and 7. is the density of consuming cells [169]. However, in
general, equation (2.1) is far from telling the complete picture of cytokine dynamics, as each term
encompasses multiple biological processes going on in parallel inside every immune cell and in the
extracellular medium, with no systematic way of determining a priori which processes are relevant

or not.

Several mechanisms contribute to the production term k. (¢, r,t). In each T cell, upon activation
of key signaling molecules (e.g., ZAP-70, LAT, PLC~, ERK) by an antigen-bound TCR, various
transcription factors (such as NFAT or NF-xB) translocate into the cell nucleus to execute the gene
expression program corresponding to T cell activation [170]. It includes the synthesis of cytokines,
which are then exported (through vesicles) outside of the cell, into the extracellular medium [171].
This program also comprises the acquisition of effector functions and cell proliferation [105];
hence, the density of active, cytokine-producing cells N(¢) will increase over time, increasing
the overall rates k4 (c,r,t) oc N(t). In addition to TCR antigen recognition, co-stimulatory sig-
nals (such as CD28 binding) and immune checkpoints (such as CTLA-4 or PD-1) modulate the
overall activation [84] and thus the cytokine production rate. Moreover, antigen-presenting cells
(APCs) also produce several cytokines (especially IFN-+, IL-6, TNF), either through transcription-

translation, or through recycling of previously captured protein copies [172].

Importantly, T cells also have receptors with which they detect and internalize cytokines — those
produced by other cells (paracrine signaling) but also their own (autocrine signaling) [102]. The
consumption of cytokines by T cells and by antigen presenting cells directly enters the degradation
term k_(c, r,t), although the detailed dynamics can become complicated. Receptor sub-units are
up-regulated only following T cell activation [170, 105], and the receptors for different cytokines
often compete for the same receptor sub-units, such that consuming some cytokines can alter the
sensitivity of a T cell to others [64, 65]. Antigen presenting cells also consume cytokines and
contribute to k_ [84]. Furthermore, cytokine sensing impacts the production term k, as well:
inflammatory cytokines such as IL-2 or IFN-v act as additional activation signals for T cells [105]",
while anti-inflammatory cytokines like IL-10 can bring down the activation level [173]. Complex
feedback loops can thus play out in the T cell population due to cytokines: following initial TCR
antigen recognition, cytokine production is turned on, but cytokine receptors are also upregulated,
such that cytokine consumption increases, maybe enough to dominate the production rate, but also
providing supplementary activation signals to more weakly reactive T cells. This can go on for

each cytokine and with coupling effects between them.

I'This explains autocrine cytokine signaling: T cells export cytokines to the extracellular medium to bind their own
surface receptors and thus sustain their activation through cytokine receptor activation pathways.
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Consequently, to be mechanistically exhaustive, the overall production and degradation rates, k.
and k_, would have to be complicated functions of many dynamical variables, external or internal
to individual cells, beyond the cytokine c itself. Such a ground-up approach is unlikely to encom-
pass the whole complexity of cytokine dynamics while still being comprehensible and instructive
about the core principles. It takes cytokine concentrations, production and degradation rates too
literally, while these may not be the most informative variables or the most parsimonious descrip-
tion of the system. For this reason, we explored a different approach in this chapter, taking as a
starting point our collaborators’ experimental measurements of overall high-dimensional cytokine
dynamics in a T cell and APC population, and trying to reconstruct how they were connected to

the initial antigen recognition properties.

2.1.2 Connecting cytokine dynamics to antigen quality

In particular, we sought to determine whether T cell activation, and ensuing cytokine dynamics,
could in fact hide a low-dimensional structure. In our physics style of inquiry, striving to keep
the number of parameters to a minimum, we thought that such a structure would be determined by
only a few immune parameters such as the antigen quality (strength or binding time 7) and quantity
(abundance L or density on the surface of APCs) as well as the initial number of T cells, the kind
of APCs used, and so on. We hypothesized that T cell responses could indeed be low-dimensional
after all, since the TCR effectively acts as a dimensional bottleneck, through which T cells must
sense all pMHC antigens they encounter before producing the aforementioned high-dimensional
activation genetic program (figure 2.1A). We also hypothesized that antigen quality would be the
main driver of the T cell response, as their primary function for defense against pathogens is to
respond to foreign peptides despite their small number (at the start of an infection), without ever
responding to the large amounts of self-derived peptides normally presented by APCs; in other

words, to sense antigen quality without being sensitive to antigen quantity (figure 2.1B).

“Current understanding of T cell responses defines three functional classes of antigen
— non-agonist, weak and strong agonists — based on their impact on thymic selec-
tion: death by neglect, positive selection, and negative selection, respectively [174].
This observation led to the concept of antigen quality, which has proved useful to
predict successful eradication of viruses or tumors but has been difficult to predict
from antigen sequences [175]. Estimating antigen quality usually involves measuring
the antigen levels triggering 50 % of the maximal immune response (ECs) [174,

175, 176]. However, antigen quality should be defined as an absolute property, as
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Figure 2.1: “Robotic platform to quantify the dynamics of antigen-driven activation of T cells.
(A) The TCRap signaling machinery of T cells engages a repertoire of peptide-MHC (pMHC) ligands
(antigens), triggers a signal transduction cascade and activates a functional response (e.g., cytokine
secretion). (B) T cells must deconvolve quality and quantity to accurately discriminate between antigens.
(C) Robotic platform to multiplex immunological settings and dynamic measurements (e.g., cytokines).
This platform generates large datasets quantifying the inflammatory outputs generated by T cell activation
ex vivo. We used a custom-designed pipeline to compile high-throughput bulk cytokine, surface marker
and single cell data (section 2.2.1). (D) Single readouts (here IL-2 and IFN-v) of OT-1 T cell activation
at varied time points for different antigenic peptides [SIIVFEKL(V4), SHTFEKL(T4), SHQFEKL(Q4)
and SIINFEKL(N4)] (left) failed to deconvolve antigen quality and quantity, no matter the time point
(center); this resulted in partial overlap between amount of secreted cytokines depending on antigen
quality and complete confusion depending on antigen quantity (right). (E) Mutual information between
antigen quality and secreted cytokines, combined vs individually.”" (Antigen encoding, [1])
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higher quantities of weak antigens do not functionally match low quantities of strong

antigens (Fig. 2.1B) [62]." (Antigen encoding, [1])

Challenging the canonical thinking in terms of three antigen classes, we wanted to determine
whether T cell populations can actually make finer distinctions between antigen qualities, and

whether cytokine dynamics reflect this refined readout of antigen quality, independent of quantity.

To answer these questions, we needed not only static, end-point snapshots of immune activation,

but time-dependent measurements:

“Although high-dimensional snapshots of immune cells are routinely acquired [177, 20,
178], they are often ill-suited to elucidate the time-dependent processes of immune
responses. For instance, expression of the Programmed-Cell-Death-1 (PD-1) protein
correlates with either T cell activation or exhaustion depending on the timing and
context [178]. Such complexity stems from the multivariate responses triggered by
multiple ligands (antigens) engaging a monogenic T cell receptor (TCR) (Fig. 2.1A).
Downstream responses drive distinct patterns of activation dynamics encoding differ-

ent stimuli using feed-forward processing [179, 180]." (Antigen encoding, [1])

We however lacked such a set of experimental measurements, and the corresponding quantitative
theoretical framework, to connect antigen parameters to T cell responses over days. Therefore,

with our NCI collaborators, we

“set out to robotically generate high precision, multidimensional kinetic data of T
cell activation, and applied supervised machine learning approaches [181] to learn a
dynamic encoding of information [182, 183]. We focused on modeling the responses

of T cells to antigens on target cells.” (Antigen encoding, [1])

2.2 Experimental platform and data processing

2.2.1 Robotic experimental platform
To start systematically mapping out T cell responses, the Altan-Bonnet lab, with Sooraj Achar
and Angela Lee in particular, built a robot-assisted platform to track the dynamics of multiple

immune molecules in parallel. Figure 2.1C illustrates the main experimental steps. We provide
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here a summary of this platform; more details on the experimental protocols are provided in the

supplementary information of [1], section 1.

In a typical experiment, they first (manually) prepared cocultures of T cells and antigen-presenting
cells that were loaded with various qualities and quantities of antigens. Some experiments also
included cocultures with varying initial T cell numbers (10° by default) to assess the impact of
this parameter as well. To load antigen peptides on the APCs, they were pulsed, that is, APCs
were placed in a solution with a given concentration of peptides, which then bind to the MHC
molecules [84] within a few hours of incubation. By default, the T cells came from TCR-transgenic
mice expressing a unique TCR sequence called OT-1, which is specific to the ovalbumin-derived
antigen peptide (OVA, amino acide sequence: SIINFEKL, called N4 for shorthand), the APCs
were splenocytes (spleen cells) from B6 mice, and the peptides loaded on them were variants of
the OVA peptide with well-characterized affinities [174, 176]. These variants are named A2, Y3,
etc.; the letter specifies an amino acid substitution to the default sequence SIINFEKL, and the
digit specifies the position of this substitution. For instance, A2 corresponds to peptide sequence
SAINFEKL. Over the course of the project, we also tested a wide range of other TCR lines, APC

types, and peptide repertoires.

Second, right after starting the immune reaction by mixing the APCs and T cells, our collaborators
placed the cocultures in their Immunotron robotic platform (figure 2.2), which has an automated
arm to handle pipetting and moving plates. The robot took care of sampling supernatant or col-
lecting cells from the cocultures at pre-defined time points (typically one per every 2-6 hours),
replacing the plates in an incubator and freezing the collected samples between sampling opera-
tions.

Liquid Handler Robotic Manipulator

(LiHa) M (RoMa)
Centrifuge ¥~ Incubator
Cooling Units Incubator Access
Pipette tips Tip disposal
Reagent Computer
Reservoirs

R Interface

Figure 2.2: Photo of the Immunotron robotic platform built by the Altan-Bonnet lab, with annotations

defining its main parts. (Antigen encoding, [1], SI)
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Third, after completion of the time series, various reagents were added (manually) to the collected
samples, such as cytokine capture beads — polystyrene beads coated with antibodies specific to
a given cytokine — and fluorescent antibodies to tag the bead-captured cytokines or cell surface
markers. Then, these samples were analyzed by flow cytometry? . The flow cytometer used by our
collaborators in most experiments had 5 lasers and 18 detection frequency channels, allowing for

the multiplexed measurement of several cytokines or cell surface markers in parallel.

Fourth, the raw counts of the flow cytometer were sorted, converted to absolute concentration
units (molar) based on calibration curves, and organized into convenient data tables by a Python

pipeline, plateypus, developed by Sooraj Achar [184].

In the end, the datasets we received for theoretical analysis typically consisted in the supernatant
concentration of 7 cytokines — IFN-v, IL-2, IL-4, IL-6, IL-10, IL-17A, and TNF — at ~12 time
points spanning 72 hours, for an array of cocultures prepared with varying antigen qualities, anti-
gen quantities, and initial T cell numbers (figure 2.1D). These cytokines were chosen by our col-
laborators for their biological relevance and importance in the literature about T cell immunology.
Some datasets were supplemented with single-cell expression levels of over 10 different surface

markers, such as IL-2 receptors (IL-2Rc, also called CD25) or the early activation marker CD69.

2.2.2 Time series processing

Most of the time series preprocessing steps were initially developed for my Master’s thesis [47],
which used some early datasets from the Altan-Bonnet lab, for theoretical analyses completely
distinct from those in the present thesis. Thomas Rademaker added preprocessing steps to correct
missing data points [4], and with Sooraj Achar, we turned this algorithm in a more systematic
Python pipeline [185]. Here, we provide a summary (written for the SI of [1]) of the time series
smoothing and interpolation steps. The purpose of these steps was to mitigate noise in experi-
mental measurements, rescale datasets similarly to correct for batch effects, and use interpolation
to generate more time point samples and thus have more data on which to test and train machine

learning and dimensionality reduction methods.

2A flow cytometer is a microfluidic instrument that can channel one cell at a time, with a high throughput, through
an array of lasers and light detectors, allowing for the detection of single-cell properties. Cytokine beads are thus nec-
essary to measure extracellular concentration: beads flow in the microfluidic channel, and the amount of fluorescence
detected per bead is proportional to the amount of cytokine bound to the bead, itself proportional to the concentration
in the supernatant.
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Figure 2.3: “ Time series processing steps described in section 2.2.2. (A) Histogram of cytokine

concentration measurements in the training datasets, in linear scale (top row) and after log transformation

(bottom row).

(B) Time series for the concentration of IL-2, as measured with a calibrated cytokine

bead array (here, response to peptide N4 at pulse concentration 10 nM). (C) The same time series, after

taking the logarithm of the concentration normalized by the lower limit of detection for that cytokine

(3.0pM in that experiment).

(D) The result of applying a moving average of width 3 on the log-

transformed time series. (E) The cubic B-spline smoothing interpolation fitted to the log-transformed

and smoothed time series, with relative smoothing parameter » = 0.2. ” (Antigen encoding, [1], SI)
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“Cytokine concentration measurements exhibit long-tailed distributions which become
more evenly distributed in logarithmic scale, as can be seen by comparing the first and
second rows of figure 2.3A. Therefore, we first took the logarithm of concentrations
normalized by the lower limit of detection (LOD), as shown in figure 2.3C. We then
applied a moving average filter with the smallest possible window width (3 time
points), to minimize edge effects on our experimental time series typically containing
12 time points. Fig. 2.3D shows an example of a time series after applying this

moving average.

Because there remains visible noise after this first step of filtering, we used an interpo-
lation algorithm that both interpolated and smoothed further the data points [186].
This algorithm (as implemented in SciPy [187]) fits a cubic B-spline function ¢ (t)
to data points y(t;), ¢ € {1,2,...,n}, automatically selecting the minimal number

k of internal knots that allows ¢, to satisfy the following criterion:

n

> lyt:) — et < s (2.2)

i=1
where s is the tolerance (smoothing parameter). Note that the curve does not have
to go through all data points. We set s equal to some fraction r of the residuals

between the the data points before (y(¢;)) and after (z(¢;)) applying the moving

average filter,

n

s=r Z[z(tz) —y(t:))? (2.3)

i=1
which ensures that s has an appropriate scale compared to the amount of noise in
the data. We found that a value of » = 0.5 gives smooth curves ¢(¢) which still
reasonably capture the essential kinetic features of the experimental data. Fig. 2.3E

illustrates this last processing step [...]." (Antigen encoding, [1], SI)

In summary, these preprocessing steps turned noisy experimental time series of 7 cytokine con-

centrations y(¢) into smooth, time-continuous interpolations ¢(t) of log,, (%) , where LOD is

the lower limit of detection for that cytokine. Some datasets required additional processing steps,

mainly to deal with experimental variability; these are described in appendix B.
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2.2.3 Excluding IL.-4 and IL-10 from inputs

Before embarking on machine learning analyses to search for a low-dimensional representation of
cytokine dynamics, we sought to reduce the dataset dimensionality based on interpretable feature
selection. An immediate simplification came from realizing that two cytokines, IL-4 and IL-10,
were not produced at detectable levels in most experiments with mouse CD8" T cells; we could
therefore discard them before focusing on more informative cytokines. We motivated further this

choice with information theory (next subsection), and further below in subsection 2.4.3.

2.2.4 Mutual information estimation from cytokine trajectories
We performed an information theoretic analysis of cytokine time series, to confirm that IL-4 and
IL-10 were indeed the least informative cytokines, and to ensure we could hope to extract infor-

mation about antigen quality from these dynamics.

We set up the calculation of mutual information between cytokines and antigen quality in the
following way. We define () to be the random variable giving the quality of an unknown peptide;
here, this is a discrete variable equal to one of the peptides in the OVA family (N4, A2, Y3, etc.).
We also define X to be a random vector of quantities derived from cytokine time series. We
consider two possible choices of X in particular: either the concentration of one cytokine, e.g.,
X = cpn_4(t), or the vector of concentrations of all cytokines, X = (crpn—-(t), ciL—2(t),- - .),
where the ¢(t) are the log-transformed, smoothed and interpolated cytokine concentrations at a

given time.

“We will be interested in the mutual information between (), the input, and various
such X vectors, the outputs — the cytokine response caused by the input peptide
@. Intuitively, mutual information equals the amount of entropy (or uncertainty)
dissipated about () when X is measured, since MI(Q; X) = H(Q) — H(Q|X).

The mutual information (MI) between ) and X is computed, in bits, as

MI(Q: X) =) po(q) / d*x fx|g=q(x) log, (“’C’}i—zf)x)) . (2.4)

Here, pg(q) is the probability mass function (pmf) of the input variable, the quality
Q. while fx|g=q is the conditional output probability density function (pdf) when @

takes on one of its possible values q. The marginal pdf fx derives from the other
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two distributions as

Fx() =Y po(a) fxig=q(%) - (2.5)

To accurately estimate the mutual information, we used our own Python implemen-
tation of a bin-less, distribution-free mutual information estimator proposed in [188]
and adapted to the discrete input case in [189]. We take data points coming from all
concentrations of a peptide () = ¢ as different samples from the same distribution

Ixj0=¢." (Antigen encoding, [1], SI)

The central idea of this bin-less MI estimator is to compute, for each data sample, the size of the
neighborhood extending up to the kth nearest-neighbor point of the same category, and then count
how many data points of any category are present in this neighborhood. Intuitively, if all points
within the neighborhood are from the same category, the MI will be large, while many neighboring
points from other categories indicate overlapping marginal distributions P(X|Q) and thus lower
MI. £ is a hyperparameter that should remain (much) smaller than the total number of data points

per category. Values of k between 3 and 6 typically work well [189].

Using this algorithm,

“we computed mutual information over time, M1(Q;X(t)), with X(t) representing
the vectors of cytokines or latent space variables at time t. To do so, we aggregated
time points within a sliding window of 3 h as coming from the same distribution. In
Fig. 2.1E, we show the information on () over time for various X built from cytokines:
each cytokine concentration alone, and the vector of the five cytokine concentrations.
We found that cytokines IL-4 and IL-10 were not informative (justifying further why
we discarded them from the latent space construction). For the five other cytokines
taken jointly, the mutual information roughly peaked at ¢ =~ 45h at a value of
slightly above 2.5 bits. This corresponds to 22° > 5 categories of peptides that can
be perfectly discriminated.” (Antigen encoding, [1], SI)

In short, we found that we could discard IL-4 and IL-10, and that high-dimensional cytokine dy-
namics contained significantly more information about the absolute antigen quality than any single
cytokine. This meant that T cells do not rely on a single cytokine to fully encode antigen qual-

ity, and that we needed to consider the remaining five-dimensional space of cytokine dynamics to
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really dissect the structure of T cell responses. To make initial progress in this direction, we uti-
lized machine learning techniques (section 2.3), which then unlocked more traditional theoretical

approaches (sections 2.6 sq.).

2.3 Latent space discovery with machine learning

2.3.1 Using the cumulative time integral of cytokines

Our 1nitial attempts to decode cytokines relied on in silico evolution of biochemical networks [47]
with the (p-evo algorithm, which simulates rounds of mutation and selection of candidate models.
We found several models able to extract a coarse-grained measure of antigen quality from cytokine
inputs simply by effectively taking the average of cytokine time series over a long time window.
In the limit of infinitely slow averaging, this amounts to computing the cumulative time integral
of cytokines. These methods revealed that information could be decoded from cytokine dynam-
ics by relatively simple schemes; however, the degeneracy and variability of network solutions

encouraged us to seek more robust decoder models.

We retained an important insight from this preliminary work: time-integrating cytokines improves
their separation in terms of antigen quality. Therefore, instead of working directly with (log-
transformed) cytokine concentrations, we used the cumulative time integrals of cytokines as input

features in machine learning models:

! / / ' / yi(t/)>
Ci(t) = dt'c;(t') = dt'l — 2.6
0= [ atete) = [ atro, (150 6

where ¢;(t) is the smoothed, log-transformed, interpolated concentration time series of cytokine 7,

LOD;
the time interpolation is performed on the log-transformed values).

that is, log,, (yi(t/) ) where y;(t’) are the experimental measurements (with the understanding that

2.3.2 Neural networks reveal antigen encoding in a latent space

The preprocessed cytokine time integrals displayed some organization as a function of antigen
quality (figure 2.4A), but we wanted to reduce further the dimensionality of these cytokine dy-
namics, which were still too complex to interpret and decipher. Therefore, to reverse-engineer
the relationship between antigen quality and cytokines, we trained neural networks to perform su-
pervised classification of antigen quality from cytokine dynamics. Thomas Rademaker initially

performed this important work (I replicated it in the revision stage of the project); the details are

52



provided in his PhD thesis [4] and in the SI of [1]. In this subsection, we provide a summary of

these findings.

We trained three-layer perceptrons to predict the antigen responsible for a given cytokine response
(figure 2.4B). The input layer takes a single time point from C(t), the cumulative time integrals
of the five log-transformed cytokines — time points from the same time series are given one at a
time to the network and are classified independently. The output layer is a softmax layer predicting
the probability that the input came from one of six OT-1 antigens included in the training set and
spanning a wide range of affinities (from E1, a nearly null peptide, to N4, the original strong OT-1
agonist). Mathematically, to transform an input into a prediction, the network projects inputs C(t)

(at a given time point ?) to the intermediate, or “hidden”, layer h(¢) of size ny, as

5

J=1

where the P;; are the learned input layer weights (from 1st to 2nd layer) and the 0; are learned
biases. The last layer computes a softmax transform of projections of the hidden layer to generate
predicted probabilities g, that the input came from each antigen class g, for each of n, = 6 classes

in the training dataset:

22581 Washy (2)
ZZ/qzl (2?21 Wy hj (t)>

gq(t) = Vge{l,...,n,}. (2.8)

The W;; are the learned output weights (from 2nd to 3rd layer). The neural network weights were
optimized by stochastic gradient descent to minimize a cross-entropy loss function (i.e., to predict
the correct antigen as often as possible with as little uncertainty as possible), using the scikit-
learn package in Python [190]. The data used for training comprised a total of 80 time-smoothed
time series for six different OT-1 antigens (N4, Q4, T4, V4, G4, El), pooled from 6 different
experimental repeats, and sampled every hour for 72 hours. The neural network was then tested

and cross-validated on at least 3 other OT-1 experimental repeats.

By systematically testing all possible layer sizes, we found that a two-node bottleneck in the inter-
mediate layer (n;, = 2) achieved excellent classification accuracy — with over 80 % of time series
correctly classified [4] — despite the dimensionality reduction. But beyond considerations about
classification performance which are conventional in machine learning, we were most interested in

what the latent space revealed. We projected the time series of cumulative cytokine integrals in the
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Figure 2.4: “Antigen encoding from a neural network that compresses the dynamics of T cell
activation according to quality, independently of quantity. (A) Dynamics of five cytokines for
different quality and quantity of OT-1 antigens (left) are pre-processed and (B) classified according
to antigen sequences through a trained three-layer neural net with a 2-dimensional bottleneck (latent
space LSy, LSs). (C) Time courses of compressed cytokine dynamics in the latent space stratify T cell
activation according to antigen sequence (quality), independently of antigen quantity [...]. (D) Examples
of latent space trajectories for different antigen qualities. (E) Nonlinear reconstruction of cytokine time
series from latent space trajectories yielded an accurate fit with experimental data (Fig. 2.11), (F)
demonstrating completeness of antigen encoding [4 peptide antigens are introduced here: EIINFEKL(E1),
SIIGFEKL(G4), SIYNFEKL(Y3) and SAINFEKL(A2)]." (Antigen encoding, [1])
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latent space, neglecting the tanh activation function and the biases b; (time points of a series are
projected individually, then connected back together in the latent space). This defined two latent

space coordinates, .S; and LS5,
LSi(t) =Y PyCy (i €{1,2}) . (2.9)
k
In these latent space coordinates,

“2d trajectories separated well according to antigen sequences and were independent
of antigen quantity over 3 orders of magnitude (Fig. 2.4C). We refer to such well-
separated projections in latent space as ‘antigen encoding’ to emphasize how T cell
responses are classifiable according to antigen quality (as determined by antigen
sequences). This encoding reliably distinguished antigens even at high dose when

other markers typically saturate (Fig. 2.4D)." (Antigen encoding, [1])

Discovering the latent space antigen encoding property was a crucial simplification that unlocked
further theoretical understanding of T cell responses. We worked to dissect this striking structure
and gain a full quantitative handle on T cell cytokine dynamics. We first made sure it was ro-
bust to preprocessing and machine learning model choices (section 2.4) and that it was preserving
information about cytokines (section 2.5). We then wanted to write down equations accurately
describing the dynamics in latent space (section 2.6), which could be used to generate realistic
cytokine time series (section 2.6.6). Then, we quantified the information capacity of T cell re-
sponses and the typical antigen classes they can distinguish (section 2.7), and we finally explored

the universality of antigen encoding across immune settings (section 2.8).

2.4 Robustness of the antigen encoding latent space

To determine the robustness and reliability of the latent space found via machine learning, we ex-
plored other dimensionality reduction methods and variations in our processing choices. Thomas
Rademaker performed some robustness analyses in his thesis, for instance showing how the la-
tent space is refined as more cytokines are added [4]. The verifications described in this section,

however, are distinct and are my own work.
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Figure 2.5: "Dimension of the cytokine manifold and linear reconstruction procedure. (A) Three-
dimensional plot of cytokine concentration time courses with IFN-v, IL-2, and TNF shown; the plots
are similar when [L-6 and IL-17A are included. The arrows represent the latent space axes on which the
neural network projects data. (B) Three-dimensional plot of cytokine time integrals (from 0 to ¢, plotted
for increasing t) with IFN-v, IL-2, and IL-17. See supplemental movie for an animated version of these
two graphs. (C) Linear regression and Takens estimator of the log-log scaling of the correlation function
C(r) at small cytokine distances, giving estimates of the manifold's intrinsic dimension. The line fit for
the Takens estimate is illustrative: its slope is fixed by the estimator, and the intercept is found later
by linear regression. (D) Linear least-squares fitting of a parabolic surface as an illustration of why the

non-linear cytokine reconstruction method introduced in section 2.5.2 is necessary.” (Antigen encoding,
[1], SI)
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2.4.1 Cytokine trajectories lie on an approximately 2d manifold
To begin, we sought to determine whether the underlying dimensionality of cytokine time series
really was two-dimensional. Why could cytokine dynamics be compressed by the mere linear

mapping (matrix product) given in components form in equation 2.9? As shown by

“the three-dimensional plots in figure 2.5A and B, cytokine trajectories — time inte-
grals and concentrations alike — approximately lie on a bidimensional manifold. The
“true" dimensionality of the data can be quantified by estimating the Hausdorff di-
mension of the structure, as described in [191]. Classically, calling C'(r) the fraction
of neighboring points within an Euclidean distance r of a point on a manifold, the
Hausdorff dimension v is obtained from the scaling of C(r) ~ r” with 7 in the
r — 0 limit (for instance, C(r) ~ r? for a plain square). A more refined estimate vr

proposed by Takens removes finite size effect [191].

We computed both estimates from the correlation function of the 5D cytokine time
integrals, which are shown in figure 2.5B; the scaling of C'(r) is shown in figure 2.5C.
We obtain vy = 2.7+ 0.1 and vy = 2.4 + 0.3 with the linear fit and the Takens
estimate, respectively. This confirms the visual intuition that the time integrals of
our five cytokines are correlated on a manifold approximately of dimension v = 2,
and explains why a projection onto a two-dimensional latent space was so successful.”

(Antigen encoding, [1], SI)

2.4.2 Comparing dimensionality reduction methods
“To further understand the structure of our data, we found it interesting to com-
pare how unsupervised learning would perform compared to our supervised learning
described above. Such a comparison is shown in Fig. 2.6. We took our training
features (time integral of log cytokines) and performed a Principal Component Anal-
ysis (PCA: Fig. 2.6A-B) or ran an auto-encoder (A-E: Fig. 2.6C-D). In both cases,
we indeed found a very similar structure for the first two principal components or
the autoencoder latent space, separating trajectories according to ligand quality, in-
dependently of ligand quantity, in a very comparable way to our learnt latent space
(Fig. 2.6E-F). But when we quantified the amount of Mutual Information between
antigen quality and latent space projections (see section 2.7 for details), we found
that our Antigen Encoding model derived from supervised training |[.. .| outperforms

the PCA and A-E unsupervised training methods (Fig. 2.6G). Moreover, one-layer
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perceptron models trained on each latent space resulted in higher accuracy when
using our classifier-derived latent space, compared to latent spaces found through
unsupervised methods (Fig. 2.6H). This demonstrated that, while both supervised
and unsupervised approaches can capture the general structure of data in a similar
way, our supervised training allows for a better classification and ranking of antigens.”

(Antigen encoding, [1], SI)

2.4.3 Impact of excluding IL-4 and IL-10 on the latent space
“We excluded the measurements for the cytokines IL-4 and IL-10 on the basis that
their noisy time series mainly reflected the background fluorescence in the cytokine

bead assay, rather than real concentrations.

We quantified the level of noise using the signal-to-noise ratio (SNR), defined here
as

SNR = {c) , (2.10)
V() = c)?)

where (c) is the mean cytokine signal, and \/<(y(tz) - c(ti))2> is the root-mean-

squared deviation of data points y(t;) from the smoothing spline fits ¢(¢). Fig. 2.7A
shows that IL-4 and IL-10 have SNRs at least twice smaller than other cytokines.
Note that we computed the SNR for y(t) and ¢(t) either with (left panel) or without
(right panel) the logarithmic transform described in section 2.2.2; this transformation
clearly attenuated experimental noise and lead to higher SNR. We further ascertained
the low SNR for IL-4 and IL-10 by dividing the range of each cytokine in quintiles and
computing the SNR within each interval. Even for the top 20 % recorded concentra-

tions, their SNR is at least twice as small as for any other cytokine (figure 2.7B).

Moreover, we checked that the latent space found when training a new classifier with
IL-4 and IL-10 included in the inputs had the same structure as when training with
five cytokines only (figure 2.7D). The training score was slightly higher with seven
cytokines, but this could be attributed to overfitting. Indeed, the cross-validation and
test scores reduced to those of the classifier using five cytokines only (figure 2.7C)."

(Antigen encoding, [1], SI)
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Figure 2.6: “Comparison of supervised vs. unsupervised learning procedures We compared three
dimensional reduction procedures to analyze the data used in Fig. 2 of the main text, i.e. the time integral
of the log of cytokines. (A-B) Principal Component Analysis (PCA) of the 5d cytokine dynamics resulted
in trajectories displayed along the first two Principal Components (C-D) Trained auto—encoder (A-E)
with a two-node bottleneck resulted in trajectories in 2d latent space (E-F) Neural network and latent
space as used in the main text (G) Mutual Information as a function of time for the three learning
modalities, computed on the training set (H) Performance of a one-layer perceptron trained for antigen
classification on the latent spaces derived from the three learning modalities (same color code as in (G)).
Note how our supervised learning procedure performed best for training, cross-validating and testing,
compared to the PCA and A-E unsupervised methods.” (Antigen encoding, [1], SI)
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Figure 2.7: “ Negligible impact of IL-4 and IL-10 for the classifier inputs. (A) Signal-to-noise
ratio (SNR, eq. 2.10) of each cytokine computed across all times and conditions in the training data.
The left panel shows how the log-transformation of cytokine concentrations more than doubles the SNR
compared to the SNR derived from data in linear scale (right panel), for all cytokines except IL-4 and IL-
10. (B) SNR analysis by quintiles. The ranges of each cytokine concentration (in log scale) were divided
by quintiles and SNR were computed within each interval between quintiles. Even when considering
only the top 20 % of recorded concentrations, the SNR of the 5 cytokines under consideration are more
than 4 times larger than the SNR for IL-4 and IL-10, justifying why including these 2 cytokines made a
negligible contribution to antigen encoding. (C) Training, cross-validation (five-fold) and testing scores
for antigen quality classifiers (same structure with one 2d hidden layer). Test scores are evaluated on
data from separate experiments; error bars on test scores come from 100 bootstrap replicates. (D) The
latent spaces found by the classifier with or without IL-4 and IL-10 are essentially identical.” (Antigen
encoding, [1], SI)
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2.4.4 Impact of logarithmic transform, time integration, and smoothing
“Our data pre—processing consisted in a combination of logarithm, smoothing and
integral of trajectories. We compared those modalities and trained a neural network
on each to see how they influence the final results (Fig. 2.8). We found that the
logarithmic transformation and, to a smaller extent, time integrals were crucial for
the emerging structure of latent space. Smoothing further improved the accuracy in

training and testing, but to a lower extent.” (Antigen encoding, [1], SI)

2.5 Cytokine time course reconstruction
“Qur goal in this section was to map the system'’s trajectories in the 2d latent space
back to the actual cytokine concentration. In other words, we aimed at reconstructing
the entire dataset based only on the trajectories in the latent space, to demonstrate

the encompassing strength of our data compression.” (Antigen encoding, [1], SI)

2.5.1 Linear reconstruction
“We first explored whether standard linear reconstruction would be sufficient. Fig-
ure 2.9 compares the original and reconstructed cytokine time courses for a test
dataset (one experiment, 100 k initial T cells) computed with a linear least-square
regression. The training and test data are different replicates coming from the same

experiment.

With this method, IL-2 is accurately reconstructed because node 1 of the neural
network (LS;) has a heavy contribution from IL-2 and thus closely matches its shape.
Other cytokines, however, suffer from important reconstruction artifacts: IFN-~ and
IL-6 in particular have unnatural peaks at intermediate times and then drop below
their true steady-state value at later times. This is akin to the residuals expected
when fitting a curved surface with a plane, as in the example of figure 2.5D." (Antigen
encoding, [1], SI)

2.5.2 Nonlinear reconstruction
“We thus considered increasingly complex reconstruction methods to remove the ar-

tifacts visible in figure 2.9 and better capture the curvature of the cytokine manifold.
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Figure 2.8: “Effect of each preprocessing step on the classifier accuracy We trained the same
classifier architecture (one 2d hidden layer) on the same datasets but processed with each possible
combination of log-transformation, time-integration, and spline smoothing of the data. (A) The training
score of classifiers trained on each possible combination of preprocessing modalities, indicated by the
three axes, is given by the color bar and the numerical labels in each square. (B) The test scores of
the classifiers on previously unseen datasets, for each preprocessing modality (same color scale as A).
Testing scores are always lower because of experiment-to-experiment variability. (C) The latent space
found by the classifiers trained on each preprocessing modality (irrelevant rotations and reflections were
automatically applied when necessary to allow comparison of all latent spaces in similar orientations).
The last latent space (Log-Integral-Smooth) is the one used in the main text.” (Antigen encoding, [1],

SI)
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A significant improvement resulted from including, as inputs to the reconstruction,
quadratic terms in [s1(t) and lso(t) and the hyperbolic tangent (tanh) of the la-
tent space time integrals, tanh (LS;(¢)/N;) and tanh (LSy(t)/N5), where N; is a

normalization constant. Mathematically speaking, the log¢;(t) are reconstructed as

loge;, = Qalsi + Qialsa + Qi?)ls% + Qi4l5§ + Qislsilsy
+ Qg tanh (LS1(t)/N1) + Qg tanh (LSs(t)/N>) (2.11)

The tanh function prevents excessive increase of the integrals’ contribution at late
times. For simplicity, the normalization constants N; were chosen as the average

value of LS;(t) across all times and condition in the reconstruction training data.

The coefficients ();; were fitted using least-square regression on a subset of the data,
and tested on other datasets. With this accurate method, cytokine concentrations
were almost perfectly reconstructed, both for the training and test data (R? > 0.94),
the latter shown in figure 2.10. Fig. 2.11 supports this claim by showing the dis-
tribution of reconstruction residuals (across peptides, concentrations, and replicates)
as a function of time for both methods. The artifacts produced by the linear method
correspond to the large, time-dependent deviations of the mean residuals from zero.
In contrast, the accurate method has residual distributions centered around zero and
with noticeably smaller standard deviations and extrema, especially for IL-6, TNF,
and IL-17A. This demonstrated that our projection of the cytokine dynamics onto the
2d latent space (antigen encoding) could be used to reconstruct the entire cytokine

dynamics (antigen decoding),” (Antigen encoding, [1], SI)

and, hence, that it does not cause information loss about any cytokine in particular. Figure 2.4D-
F illustrates our non-linear reconstruction method on sample latent space trajectories from the

training data (D-E) , and the reconstruction versus data for all training and test datasets generated

with OT-1 antigens in this project (F).

2.6 Dynamical latent space models and parameter correlations

After employing a classifier neural network to discover the latent space of cytokine dynamics,

“we aimed at going beyond antigen quality prediction to build a parsimonious gen-

erative model of the cytokine trajectories from the latent space downstream of TCR
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Figure 2.11: “Residuals of the cytokine reconstruction. Distribution of residuals of cytokine con-
centrations reconstructed from latent space (for a test dataset) as a function of time. The “accurate”
non-linear method, where we include tanh LS7, tanh LS and quadratic terms in [s;, gives overall lower
residuals with less trend over time. The improvement is especially significant for IL-17A, TNF, and IL-6.”
(Antigen encoding, [1], SI)

66



engagement [192]. Modelling of trajectories with simple equations allowed us to de-
rive a quantitative understanding of the impact of antigenicity on T cell activation
(when individual cytokines were too tangled to allow classification — see Fig. 2.5A)
and, more practically, to estimate the number of antigen classes encoded by the

cytokine dynamics.

Two dynamical models were derived. The first model is called the ‘velocity’ model :
this is the simplest model, with a minimum number of parameters, easy to interpret
and fit. Its dynamics contains two discrete phases (see below). To get a more accurate
generative model of cytokine trajectories and quantify more precisely information
content, we also developed a refined model, called the ‘Force model with matching’,
with more parameters and matching terms to ensure a smooth transitions between
the two dynamical phases. Having models of diverse complexity levels allows for a
tuning between easiness of interpretation (velocity model), accuracy of reconstruction
(Force model with matching) and parameter estimation (which can be challenging
in models with bigger number of parameters due to parameter sloppiness [193])."”

(Antigen encoding, [1], SI)

2.6.1 Constant velocity model

The simpler model, called “constant velocity”, was developed jointly by Thomas Rademaker and
I, as well as the model parameter fitting procedure in the next subsection. We used it for simple
analyses of the data, but not for the accurate parameterization of dynamics or for the channel

capacity calculations below. Recall how we

“defined LS;(t) and LSy(t) as the projections of time integrals (from 0 to ¢) of the
log-transformed cytokine concentrations, on node 1 and node 2 of the neural network.

In equations,
t
LS, = Z Py.Cy  where Cy, = / du logy, cx(u) (2.12)
- 0

where ¢x(t) is the concentration of cytokine k£ normalized by the lower limit of de-
tection for that cytokine (as explained in section 2.2.2) and the P, are the neural
network weights from the input layer to the intermediate layer. We defined in an anal-

ogous way [s1(t) and [sy(t), the projections of the time courses of log—transformed
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cytokine concentrations on node 1 and node 2. Note that Is;(t) = 9% (i = 1,2)

because the projections defined in (2.12) are linear.

The trajectories of LS;(t) and LS5(t) resemble ballistic motions. Therefore, we de-
rived a model in analogy with the motion of a projectile or rocket with two phases:
first, a constant velocity phase, and second, a free fall with air resistance. The first
phase of a trajectory is thus described by r(t) = vot, where r(t) = (LS1(t), LSa(t))
and vq is a vector with magnitude vy and angle 6, measured counterclockwise rel-
ative to the direction of the terminal velocity (see Fig. 2.12A). The second phase's

description starts with a second-order linear differential equation for r(t),

2
% -k (% - vt) (2.13)
where k is a "drag” constant (units of inverse time) and v, = (v, vy2) is the terminal
velocity of the trajectories. Defining ¢y as the time at which the constant velocity
phase ends and integrating eq. (2.13) twice with the initial conditions to match the
end of the first phase at ¢y, we get the following parametric equations describing
r(t) = (LS1(t), LSs(t)):

r(t) = { Vol t=to (2.14)

Yov, (1 — e—k(t—to)) +vi(t —to) +voto > to.

In total, six parameters (vg, 0, to, vy, k) are used for this model. Each can be given
a biological interpretation. The initial (TCR-mediated) T cell activation strength is
captured by vy. The initial orientation 6 gives the ratio, at early times, of cytokines
associated to the innate (node 2: IL-6 and TNF) and adaptive (node 1: IL-2 and
IL-17A) responses of the immune system [...]. The time t, measures how long the
initial cytokine production phase lasts; it may correspond to the delay before T cells
switch between IL-2 production and IL-2 consumption [105]. v; describes the final
slope of LS5 versus LS, in latent space, which relates to the ratio of innate and
adaptive cytokines. This slope is remarkably conserved across all peptide conditions
in an experimental repeat (see Fig. 2.13B for instance). Finally, the rate k in Eq. 2.14
is introduced to capture the decay of cytokine concentrations over long time scales.
From previous models, we know that this corresponds to the rate of consumption of
cytokines [105]." (Antigen encoding, [1], SI)
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Figure 2.12A illustrates the four main parameters of this model on sample latent space trajectories.

2.6.2 Parameter fitting procedure
“Without complex curve fitting, we could determine two of the parameters for all
trajectories in a given experimental repeat. First, as can be seen from the final
orientation of all (LSy(t), LS5(t)) trajectories in Fig. 2.13B, the final slope m =
Vo /vy was the same for peptides Q4 and weaker at all concentrations. We simply
took the median of all final slopes found by linear regression in this LS, vs LS
space. This eliminated, e.g., the component v;;, derivable as v;; = vy /m. Second, we

typically fixed the time scale k = % h~!, because this gave reasonable fits throughout.

This left four dimensionless parameters to determine: vy /k, ktg, 6, and v /k. To fit
them, we numerically solved a non linear least squares problem, optimizing the cost

function :
¢ = Z e (t;) — N(£:)[]* + Z Ip; — )|
= D [(r(t) = LS1(@))" + (ra(t)) = LS2(t:))*] + 3 Ip; = pj| 219)

i

where the term >__ [p; — pj| introduces a L1 regularization. p} are “default” values
for parameters corresponding to trajectories for null peptides (no constant velocity
phase, no terminal velocity, minimal angle): v) = 0, tJ = 0, 8° = —27/3, v}, = 0.

We also set reasonable bounds on parameter values:
vy € [0,5k], to € [0,tenp +20] hrs, 6 € [—27/3,7/3], v € [0, 5] (2.16)

Optimization was performed with a customized version of the curve_fit method
in SciPy [187]. Minimizing this cost function for each cytokine time course (caused
by one peptide at one concentration and initial T cell number) in 11 independent OT-
1 datasets (one including 4 technical replicates) yielded the parameter distribution
shown in Fig. 2.13C." (Antigen encoding, [1], SI)

2.6.3 Parameter fits show that early Kinetics control the response
“Fig. 2.13 shows how well the model fits the time course of LS;(¢) and LS5(t) and the

distribution of parameters vy, to, € and v, for different peptides and concentrations.
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Figure 2.12: “Quantifying the classes of T cell activation using antigen encoding in latent
space. (A) Cytokine trajectories in the latent space can be fitted with a 4-parameter ballistic model.
(B) Although one parameter (v;) is constant, the three others (vo, 8,%y) are strongly correlated. (C)
Distribution of ECsg (left) that maximizes the mutual information extracted from model parameters
(channel capacity ~ 2.6 bits, section 2.7). By evenly sampling the cumulative distribution function
(center), we find 226 ~ 6 classes of antigen with non-overlapping latent space trajectories (right).
The arrow connects the 36-hr coordinates of trajectories of increasing antigen EC5o. (D) Latent space
coordinates (LS7, LS>) at 36 hr, as a function of antigen quality as defined by ECsy. (E) Sketch
of the biochemical mechanisms governing antigen discrimination, as suggested from the latent space
coordinates in (D): each class of antigen activates positive and negative signals differentially and yields

varied patterns of cytokine secretion computed from the decoder (Fig. 2.4E) and trajectories in (C).

(Antigen encoding, [1])
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Figure 2.13: “Fits of the constant velocity model. (A) Fitted time courses of LS; and LS from
the constant velocity model (eq. 2.14) compared to data (spline interpolation) on a representative
experimental repeat (OT-1 T cells, 4 peptides x 2 concentrations shown). (B) Same trajectories as (A),
plotted against each other (4 concentrations shown per peptide). (C) Constant velocity model parameter
values, fitted on each time series from 11 independent datasets (one including 4 technical replicates),
for many peptides at different concentrations, with 100k initial T cells. " (Antigen encoding, [1], SI) Two
new antigens, A8 (SIINFEKA) and Q7 (SIINFEQL) are introduced in this figure; they were present in only

1-2 datasets each.
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Strikingly, the first three parameters are strongly correlated, and they are controlled by
antigen quality, with only minor variability caused by antigen quantity (Figures 2.12B
and 2.13C). The initial T cell activation strength (vg), which depends on the antigen,
also determines the initial orientation of the trajectories, #, and how long it takes
before cytokine consumption kicks in, tq. This correlation defines an antigenicity axis
in parameter space, with antigen quality controlling the variation along this axis (see
also figs. 2.14-2.15)." (Antigen encoding, [1], SI)

We used the Kendall tau distance to estimate how well model parameter values are ordered on the
antigenicity axis. This distance, first proposed by Kendall in 1938 [194], quantifies the number of
inversions needed to reorder a list; it is explained in figure 2.14. Applying it to model parameters
to check how well they reflected the ordering of antigens according to their quality, we found that
parameter v, ranks antigens more accurately and with less variability than any single cytokine time
point (figure 2.15); other parameters, correlated to vy, have similar accuracies. This analysis was

joint work between Sooraj Achar (who prepared the figure) and I (who wrote the analysis code).

2.6.4 Refined model
“The constant velocity model was enough to perform the antigen classification and
to understand most quantitative aspects of cytokine trajectories. Yet, it introduced
discontinuities in derivatives at the transition between different phases at t = 0 and
= tg. We improved this model by introducing two extra parameters to smooth out

the transition between phases.” (Antigen encoding, [1], SI)

While the constant velocity model was joint work with Thomas Rademaker, developing, integrat-

ing, and fitting the refined model on data was my own work.

Constant force model with matching

“The constant velocity model captured well the shape of trajectories in LS, LSy
space, but there was a noticeable time scale of activation of the velocity (first)
phase. For instance, LS;(t) trajectories in the model for peptide N4 in Fig. 2.13A
are straight lines, while the data curves have a noticeable curvature. An immediate
improvement came from considering a constant acceleration ag in the first phase,

rather than a constant velocity. Moreover, we fixed the remaining discontinuity in
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Figure 2.14: “Graphical explanation of Kendall tau distance accuracy metric. We used the Kendall
tau distance metric to estimate how well a parameter or marker preserves the order amongst antigens
according to quality. (A) This metric counts the number of swaps between neighboring elements one
needs to perform to reorder a ranked list. (B)Our accuracy metric is initially scaled between 0 and 100%,
the former for a completely reversed list — n(n — 1)/2 swaps needed for n elements — and the latter for
a well-ordered list. (C) The accuracy metric is then renormalized so that a randomly sorted list, which
would have an unnormalized order accuracy of 50 % (n(n — 1)/4 swaps), now has a normalized order
accuracy of 0% We now look at the absolute, not signed, order accuracy, to allow both a reverse-ordered
list (requiring n(n—1)/2 swaps) and a well-ordered list (requiring 0 swaps) to both formally correspond to
an accuracy of 100 %. This is important because the directionality of our parameters is mostly arbitrary,
so we want there to be no difference in order accuracy between a metric perfectly correlating or perfectly
anti-correlating with antigenicity.” (Antigen encoding, [1], SI)

73



A Feature B
] 20'
80— = Vo -
S = L2 1.5-
2 s IL-17A
@ 60 N -~ 7%
§ IL-6 31.0_ T4 // :
&, TNF & ,(5 N4
= e IFN-y S E1 Ga V4 7
o 404 : 0.54
° Time (h) o R4
° s 83 4
°
0.04 c P2 —
- R . 0 0t R?=0.81
T T T ® 45 AR VA AL G U
1071 ® 60 10> 10* 103 102 10' 10°
Noise (CV) Antigen ECsq (#)

Figure 2.15: Parameter vy ranks antigens according to quality. (A) A single model parameter
(vo) yields a higher order accuracy (see Fig. 2.14) for antigen quality independently from quantity,
more consistently (i.e., with smaller coefficient of variation [CV]) than any single time point cytokine
measurement. Variability of order accuracy (CV, horizontal axis) was estimated by computing order
accuracy in 1lindependent OT-1 datasets, one comprising 4 technical replicates. (B) The parameter
vg, derived from the ballistic model of the cytokine dynamics in the latent space, correlates with the
antigenicity of peptides as defined by their log;((ECs0) measured in classical dose-response assays [174,
176]." (Antigen encoding, [1], SI)

% at to by analogy with boundary layer theory [94]. We matched the velocity phase
and the asymptotic phase by introducing a sigmoidal term (1 4 e®(—%))~1 between

the two phases in [s; and [ss:

_a ag cos 0 + vy
si(t) = (1—e) (W‘)

Isy(t) = (1—e ) ((ao sinf + va)(1 = e _ th) 2.17)

eﬁ(t*tO) —+ 1

We squared the bounded exponential term in the first part of the equation for Is,,
in order to better capture its typical time courses. The expressions in equation 2.17
are analytically integrated to obtain expressions for LSi(t) and LSy(t), which can

be fitted on the data as explained in section 2.6.2. Define 7 = at, 79 = aty, and
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v = B/a. The result is

0 1
LSi(t) = QoCOS7 T o Cosa Rl ([(7’, To,7Y) — S In (e + eVTO)> — % (T+e ™)+ K,
in @ 1 1
LSy(t) = GoStn0 T iz 21(7,10,7) — =1(27, 270, z) ——In(e7 +e7M)
« 2 2 v
2 e ) Ky (2.18)

where the K; are chosen to get LS;(0) = 0. The complicated part is the integral
I(7,70,7), which is given by

I

ev(T—=70) 1+ 1
eToF (1,21 L—otm) L gt
= el . (2.19)
+€ Z_j 1 n— ]( )je 0 n
| F(=1)"ne™™ In (e77/" 4 e~™/m) %E N+

where 5 F is Gauss' hypergeometric function. Note that, in this version of the model,
0 was defined relative to the horizontal axis, and that we fitted 7y = at instead of ¢,

directly, because the former is a dimensionless parameter.” (Antigen encoding, [1],
SI)

Quality of fits and parameter space

“The force model with matching (equation 2.18) is fitted to data for LS;(¢) and
LSy(t), as outlined in section 2.6.2. Fig. 2.16A and 2.16B show how well the model
captures trajectories LS)(t) and LSy(t): the difference between data and model
curves is almost unnoticeable. Fig. 2.17D also shows how this accuracy of fits
extends to latent space concentration trajectories, [s;(t) and lsy(t). The squared
residuals plotted in Fig. 2.17A and B are indeed roughly 10 times lower than with
the constant velocity model, especially if parameters o and [ are fitted separately

(as opposed to fixing « = 1/20h~')." (Antigen encoding, [1], SI)

We provide, in figures B.4 and B.5, further examples of model fits of latent space integrals and

concentrations, respectively, for six randomly selected datasets (representative of all 14 OT-1 T
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cell datasets). We provide a dataset-per-dataset breakdown of fit residuals in figure 2.18, clearly
showing how the force model with matching captures s, [sy dynamics better than the constant

velocity model.

2.6.5 Model fits on high-dimensional cytokine dynamics

Combining the latent space model with the nonlinear decoder (eq. 2.11), we effectively obtained
a dynamical model that describes the time series of all cytokine concentrations. To fit (smoothed,
log-transformed) data with these expressions, we first projected the data to the latent space, where
we fitted the ballistic parameter values; then, we computed the (Is1(t),[s2(t)) model curve cor-
responding to these parameter values, and we reconstructed the five cytokines using the nonlin-
ear decoder (which was already trained on separate data). This gave model curves of cytokines
that should closely match the original data, despite the dimensional bottleneck through which the
model goes. We show an example of such fits in figure 2.19, with the goodness-of-fit quantified by
a multivariate y? test [195, 196] and found to be acceptable (large p-value) for all cytokines.

2.6.6 Generating synthetic cytokine time courses
Moreover, combining our latent space model with the reconstruction procedure of section 2.5

allowed us

“to generate synthetic time courses for the five cytokines we considered. The full

process for synthetic data generation is illustrated in figure 2.20 and detailed below :

1. We fitted multivariate kernel density estimates (KDEs, from the scikit-learn
module in Python [190]) in the parameter space of the force model with match-
ing (with free «), for each peptide. More specifically, the KDEs were fitted on
parameter values from similar OT-1 datasets with 100k initial T cells. Model
parameters were standardized prior to fitting the KDEs and scaled back after
sampling. This scaling ensured that a KDE bandwidth appropriate for all pa-
rameters could be chosen, even for those with typically smaller values, such as
vy1. Those KDEs (transformed back to the original parameter magnitudes) are
shown on figure 2.20A. Multimodality of some of the KDEs come from different
peptide concentrations (which were aggregated together) and from experimental

variability.
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Figure 2.16: “

Fits of the force model with matching.

(A) Fitted time courses of LS; and LSy

from the constant velocity model (eq. 2.14) compared to data (spline interpolation) on a representative

experimental repeat (OT-1 T cells, 4 peptides x 2 concentrations shown). Both time scales (a and 3)
are adjusted to the data, but the fits for LS; and LS5 are almost identical, for 100k T cells, if « is
fixed to 1/20 h=1. (B) Same trajectories as (A), plotted against each other (4 concentrations shown per

peptide). (C) Value of four parameters of the force model with matching (« and 3 not shown but fitted

as well), fitted on each time series from 11independent datasets (one including 4 technical replicates),

for many peptides at different concentrations, with 100k initial T cells.

this model’s fit accuracy and the simplicity of the constant velocity model’s parameter space.”

encoding, [1], SI)
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Figure 2.17: “Comparison of the quality of fits for the two latent space models. (A) Squared
residuals between the data projected in latent space and fitted curves of LS;(t) and LSs(t), for four
different models, averaged across 11independent datasets (one including 4 technical replicates) contain-
ing 8 peptides, 8 concentrations, and 8 initial T cell numbers. (B) Same as (A), but for residuals on
Is1 and lsg (but recall that model parameters are always fitted on LS; and LS3). (C, D) Comparison
between cytokine concentrations projected in latent space and model trajectories of Is1(t) and lsa(t)
for a representative dataset (100k initial OT-1 T cells, 4 peptides at 2 concentrations each shown).
(C) Constant velocity model (eq. 2.14) (D) Force model with matching (egs. 2.17 and 2.18). « and
3 are fitted separately. This model clearly describes more accurately the actual dynamics of cytokine

concentrations in latent space.” (Antigen encoding, [1], SI)
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Figure 2.18: Residuals of the various latent space models : (top) for the latent space time integrals (LS,
LS5); (bottom) for the latent space concentrations (Is1, [s2). The residuals are normalized by the range
spanned by the latent space variable (LS 2 or [s1 2) within each experiment, across all times and conditions.
The boxes’ whiskers mark the 5th and 95th percentiles. For every dataset, zero is contained within the first
and third quartiles, meaning there is no strong bias towards fits being above or below the spline-smoothed
data in latent space. Residuals were calculated at every hour in every time series, for each of the 14 OT-1 T

cells datasets used in figure 2.13. (Antigen encoding, [1], response to reviewers)

2. We sampled representative parameter values from those KDEs for each peptide.
We computed the corresponding latent space concentration trajectories s (t),
Isy(t), as well as tanh (LS, (t)/N1) and tanh(LS,(t)/N3) (figure 2.20B). Those
are the latent space quantities that enter the accurate reconstruction algorithm

described above.

3. We optimized the reconstruction coefficients on the same ensemble of datasets
(equivalent results are obtained when optimizing on a separate dataset with
many replicates). We finally applied this reconstruction method to the latent
space trajectories computed from the sampled parameters, to obtain cytokine

concentration time courses that look very similar to actual data.

Fig. 2.20C shows an example of synthetic time course for each peptide we usually

have in experiments.” (Antigen encoding, [1], SI)
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Figure 2.19: Latent space modelling and reconstruction provide a model for cytokine dynamics.
(A) Comparison, in log-scale, between experimental cytokine time courses (data) and time courses
reconstructed from fits of the force model with matching in latent space, as well as (B) residuals of
this model fit. Cytokine trajectories were obtained from latent space model curves using the non-
linear reconstruction method, with reconstruction coefficients optimized on a separate dataset. Standard
deviations of cytokine data (shown as error bars on (A) and dash-dotted lines on (B)) and covariances
(not shown) were estimated from 11 OT-1 experimental replicates. Goodness of fit was assessed for each
time course with a multivariate x? test. For the time series shown, x?/v values ranged between 1.16
(Q4, worst) and 0.56 (V4, best). Here, v = 5 x 12 — 6 = 54 is the number of degrees of freedom in
a five-dimensional time series of 12 time points fitted with 6 parameters. The corresponding p-values,
which indicate the probability that a correct model would give a similar or larger x2, ranged between
0.20 (Q4) and 0.998 (V4)." (Antigen encoding, [1], SI)
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Figure 2.20: Generating synthetic cytokine time courses from the latent space model and recon-
struction procedure. (A) Kernel density estimates (KDE) for each peptide over the complete parameter
space of the force model with matching, fitted on a selection of 9 datasets. (B) Latent space time courses
(concentrations and tanh-transformed integrals) corresponding to one set of model parameters sampled
from the KDEs for each peptide. (C) Cytokine concentration time courses reconstructed from the above
latent space trajectories, using reconstruction coefficients fitted on a separate experiment, as in figure

2.10. They are very similar to actual cytokine time series.” (Antigen encoding, [1], ST)
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To summarize, by building upon our initial discovery of antigen encoding in a latent space, we
have developed dynamical equations which can be used to fit experimental cytokine time series or
to generate realistic, synthetic time series simply by picking the value of a few interpretable param-
eters. Moreover, since all model parameters are mainly correlated to antigen quality, this means
that we can generate and predict the cytokine time courses caused by the antigen of our choice.
Hence, building on insights from a machine learning model solving the inverse problem (predict-
ing antigenicity given cytokines), we have developed a complete model of the forward problem
(predicting cytokines given antigen inputs), as it takes place in the actual biological system. We
next decided to use this end-to-end model to quantify the information being transmitted by T cells

via cytokines.

2.7 Channel capacity of antigen encoding in the latent space
We have already taken a first step towards quantifying the information content of cytokine dy-
namics in section 2.2.4, where we computed MI(X(t), ()) where X(¢) was the concentration of a

cytokine, or all of them, at a given time ¢.

“This calculation identified the most informative time points; however, it discarded
information available in kinetic features. What is more, experimental variability may
impact negatively the optimality of the chosen time point. Therefore, we estimated
the information contained in time series with a second approach, inspired by [197]. It
consisted in fitting the time courses in latent space with a model whose parameters
capture the kinetic features of interest, and computing mutual information between
peptide quality and those parameters, taken as X. The distributions fx|o—, are
then estimated in the space of model parameters (i.e., figure 2.13). We found, with
the same data used in figure 2.1E, that the constant velocity model parameters
X = (wo, to, 0) contain nearly as much information (/= 2.3 bits) about () as cytokines
do at any time point. Hence, the compression of cytokine trajectories to latent space
and their model-based parameterization preserves almost all information available in
cytokines. Note that this mutual information assumes an equiprobable choice of
peptide strengths among a limited OVA set; the MI could be higher if more peptide
categories were allowed and if py were better tailored to the cytokine channel.”

(Antigen encoding, [1], SI)
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The information theoretic quantity which answers this need of optimizing p, is the channel capac-
ity between X and @) [198, 199, 200, 201, 55, 46]. It has been suggested that information capacity
is a fundamental quantity optimized by living systems through evolution and adaptation [49, 51,
17]. We thus set out to compute information transmission in our concrete, data-driven example, to
check whether this potential fundamental principle of biological physics would provide additional

insight into T cell responses.

2.7.1 Channel capacity in model parameter space
“We define the channel capacity,

C(Q; X) = max MI(Q; X) (2.20)

PQ
that is, the MI maximized over all possible () distributions. This measure of infor-
mation has two advantages: it characterizes the information capacity of the cytokine
channel itself (dependence on the input distribution is eliminated), and it predicts the

peptide distribution p¢ that can optimally exploit the channel.

In a nutshell, we start by fitting the parameter space for different peptides using
multivariate distributions (section 2.7.2), then we interpolate distributions (section
2.7.4) to apply the Blahut-Arimoto algorithm [54, 55] and to compute channel capac-
ity (section 2.7.5). Fig. 2.21A gives a simplified illustration of the cytokine response
seen as a communication channel and of the procedure just outlined to estimate its
capacity by re-sampling the peptide quality axis more densely via interpolation. In
the next subsections, we give technical details on each step.” (Antigen encoding, [1],
SI)

Treating the T cell cytokine response as a communication channel provides a more formal defi-
nition of the antigen encoding concept: T cells transmit information about antigen quality (input)
into cytokine time series (output), and this information is encoded in the latent space and its dy-
namical model parameters. The question of how much information the latent space contains is thus

well posed, allowing us to compute that quantity.

2.7.2 Fitting multivariate Gaussian distributions in parameter space
“We chose parameters ag, 79 = atg and 0 of the force model with matching to

compose the vector X in parameter space, because the joint distribution of these
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Figure 2.21: “Cartoon illustration of cytokine dynamics as an information channel for peptide
quality, and of the procedure used to estimate the channel capacity. (A) Cytokine dynamics and
their parameterization with a model (here, the constant force with matching model) act as a channel
that maps peptides of different qualities (left) to different distributions in model parameter space (right).
If we have only a few peptides from the experiment and do not maximize the MI, the channel’s output
space is not optimally exploited and the information is limited by H(Q). (B) We can interpolate the
multivariate normal distributions in parameter space as a function of EC5q to obtain more closely sampled
peptide qualities. More precisely, we interpolate the means and the Cholesky decomposition elements of
the covariance matrix. (C) Information transmission is maximized after optimizing the input distribution

pq over the re-sampled ECsg axis.” (Antigen encoding, [1], SI)
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parameters, for each peptide, was the most closely Gaussian. We fitted the model on
an experimental dataset comprising 8 OVA peptides, each at 4 log-spaced concen-
trations (from 1 M down to 1 nM), and with 9 replicates of each condition — giving
a total of K = 36 time series per peptide. We applied the background noise filtering
described in section B.1.2 and rejected 12 time series (out of 8 x 36 = 288) because
of experimental errors. We rejected three parameter fits where § > —7/3 for peptide

G4 as experimental outliers.

For model parameter fitting, we used prior knowledge on the correlations between a
and 7y as well as ao and 6, by adding terms to the cost function (eq. 2.15) of the
form c(p; —aag —b)* (p; € (70,0)). Here, cis small (0.05), and a, b represent a linear
relationship between parameters ay and 7y or 6, roughly estimated from a first model
parameter fit without correlation terms. This extra regularization did not negatively
impact the quality of the model fits, but attenuated the model parameters’ sloppiness
[193].

Then, we fitted multivariate normal distributions N'(p,, X,) on the sample points
Xk,q in model parameter space, for each peptide g. We used the sample mean fi,
and the (unbiased) sample covariance matrix f];] as estimators of the true underlying
distribution for each peptide ¢. The variance of the mean estimator is simply
L s
A
]

Var[fi,] = -+ ~

e (2.21)

The variance on the covariance matrix estimator was not needed, since we only used

the Cholesky decomposition of Zf]j, as explained in section 2.7.3 below.

Consequently, the multivariate normal distribution fitted on the sample points for

peptide ¢ is N'(ft,, ), which has the probability density function:

1 1 AT .
fxig=q(x) = W exp (—Q(X — )"y 1(X - M)) ) (2.22)

where N = 3 is the number of dimensions of the parameter vector X. Fig. 2.22
compares the original samples in parameter space to the fitted multivariate normal

distributions.” (Antigen encoding, [1], SI)
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Figure 2.22: Comparison of empirical and fitted multivariate normal distributions of model
parameters (“Data:" bottom half of the plot) and an equal number of points resampled from the
multivariate normal pdfs fitted on them (“Synthetic™: upper half of the plot). Corresponding pair plots
are located symmetrically across the diagonal. Graphs on the diagonal show the marginal distribution of
each model parameter, all peptides combined (kernel density estimates from the scatter points), for the
empirical and fitted distributions.” (Antigen encoding, [1], SI)
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2.7.3 Cholesky decomposition estimator and its statistical variance
“We furthermore needed a statistical estimator W for the Cholesky decomposition
of the covariance matrix, ¥ = WUT. W is a lower triangular matrix and can be
computed straightforwardly for any positive definite matrix [196], such as 3 and )
As explained below in section 2.7.4, this was necessary to interpolate between the
covariance matrices fitted on the parameter distributions of peptides while ensuring
their positive definiteness. We needed, in particular, the statistical variance of this

estimator, to have error bars to interpolate between fitted distributions.

Olkin [202] provides an unbiased estimator W for ¥ and the necessary steps to derive
its variance. Their estimator is somewhat intricate to compute, and the covariance

matrix reconstructed as W is biased. For simplicity, we chose instead
U =1 where LLT =% (2.23)

that is, our estimator is simply the Cholesky decomposition of the covariance matrix
estimator. It is biased for W itself ((¥) # W) but it does reconstruct an unbiased
covariance matrix (<\if\i/T) = (3) = %), which was our chief concern.” (Antigen
encoding, [1], SI)

We can then derive the statistical variance of the Cholesky estimator. A mistake slipped into the
result given by Olkin [202] for this variance. In the original article’s notation, they correctly prove
that the variables u?, follow a x? distribution with parameter k = n —i + 1 (n = K — 1 for us), so
the correct conclusion is that (u%) = n —i+ 1 and thus Var[u;;] = n—j + 1 — (u)?. However, they
report the variance of \I;ii as if it were rather u;; that followed the x? distribution, and thus they use
the variance of a x? distribution, Var[u;] = 2(n — i + 1). This result is visibly incorrect, since it

gives a variance that does not go to zero when n — oo.

Following the same derivation, but avoiding this confusion, we find

< i K —i—a?

Var[¥ | = %1 (W2
siiy 1 i e  K—Ji—d i (s
Varll"] = —— IZJZH(\IJ Vot () (2.24)
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where

(K —i+1)/2)
V2 N CET (2.25)

a; =

and where we replace the (unknown) true W by its estimator W. When K — oo, this
variance goes to zero like % since the asymptotic behaviour of the I" function implies

a? ~ (K —j)— 3." (Antigen encoding, [1], SI)

2.7.4 Interpolating parameter distributions
“To compute the channel capacity without being restricted by the set of peptides
available experimentally, we interpolated the multivariate normal distributions in pa-
rameter space. More specifically, each statistical estimator fitted on each experi-
mental peptide’s distribution — the /;f] and the iflj — is interpolated as a function
of @ = log;y ECs0, used as a measure of peptide quality. @ thus ranges from 0
(N4, reference) to 5.2 (E1). The log,, EC5o we use are averages of values reported
by [174] and [176] and of our own ECj assays (figure 2.23) for OVA variant antigens.
Instead of interpolating matrix elements of 3, directly, we interpolated elements of
the Cholesky decomposition \i/q and then built the interpolated covariance matrices
as Xy = \Ifq/\I/qT,. This method ensures that the interpolated f]q/ remains positive

definite and is thus a proper covariance matrix.

We used a two-step interpolation procedure for each individual distribution estimator
(either fi* and \ifw) First, we fitted a smoothing cubic B-spline implemented in
SciPy (the same we used in section 2.2.2). Each point on the @) axis was weighted
as w, = 1/0 where o is the standard deviation, or “error bar”, of the statistical
estimator, computed from formulas 2.21 and 2.24. The tolerance s was set equal
to half the number of interpolated points (default setting). We then evaluated this
smoothing spline function at the ECj5, of the experimental peptides. Second, we fitted
through those smoothed points a piecewise cubic Hermite interpolating polynomial
(PCHIP) [203], as implemented in SciPy [187]. The latter interpolation functions
were guaranteed to be monotonic between interpolated points, which prevents large

non-monotonic artifacts.

. . . . ni ¥ ~ il ~ gl
This procedure yielded continuous functions ji(¢') and £ (¢/) = SN (Y ()
that constitute a multivariate normal distribution in parameter space, evaluated for

any desired peptide quality ¢’ = log,;, ECsq in the range [0, 5.2]. These interpolations

are shown in figure 2.24. Note how the average value of all three parameters increased
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Figure 2.23: Comparison of EC5q of OT-1 ligands published in different papers [174, 176] with our own
calibration experiments (Achar, 2020&2021). These EC5g were obtained with dose responses of antigen for
different assays (CD69 upregulation by thymocytes, IFN-v by naive splenocytes, and upregulation of acti-
vation markers in naive splenocytes). Dashed lines indicate the average we considered. (Antigen encoding,

[1], response to reviewers)

almost linearly with decreasing ECs in logarithmic scale, making them good readouts
of antigen quality. Moreover, note how the Cholesky decomposition of the covari-
ance increased for peptides of intermediate antigenicity (e.g., T4, V4, in the 102-10?
ECso range). This variability arose because these peptides could produce detectable

cytokine signals or not, depending on their concentrations.” (Antigen encoding, [1],

)

We note here that this interpolation procedure amounts to writing all cytokine dynamics as a func-
tion of a single parameter: the antigen quality, measured in terms of log,, EC5y. Moreover, since
all dynamical parameters are related to aq (or vg) through the ECs, the entire T cell response over

days is in fact determined by the early cytokine kinetics.

2.7.5 Blahut-Arimoto algorithm with Monte-Carlo integration
“To compute the channel capacity, we implemented the Blahut-Arimoto algorithm
(figure 2.25B), which provably converges to the optimum for continuous input @
and output X random variables [54]. We discretized the input @ into M = 25
discrete values of log,,(ECs), because it is numerically simpler to optimize a discrete
probability mass function pgy. We coded the algorithm in C and embedded it in a
Python C-API module to be executed as a Python script.
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Figure 2.24: Interpolation of multivariate normal distributions in the model parameter space as
a function of log;; ECs0. The first row shows the interpolation of the mean value of each parameter
(a0, 70, 0), while the last two rows show the interpolation of the Cholesky decomposition (lower triangular
matrix) of the covariance matrix. The Cholesky decomposition WU is used to preserve positive definiteness
of the covariance matrices, reconstructed as > = W’ Piecewise-cubic Hermite polynomials (which are

monotonous between data points) are used for the final interpolation after an initial smoothing spline

interpolation. (Antigen encoding, [1], SI)
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The crucial step in each iteration of the Blahut-Arimoto algorithm is to compute the

quantities

[x10=¢()
>y P Ix10=¢ (@)

c; = exp(b;); b; = /Xda:fXQq(sc) (2.26)
which serve to update the estimate of the optimal probability vector p,. Because the
output X is continuous and has N = 3 dimensions, the sums in the original definition
of the ¢; are replaced by multidimensional integrals. The latter are computationally
expensive and need to be evaluated often, so we resorted to Monte Carlo integration.
To reduce the number of samples needed to achieve a desired accuracy o.; on the

integral estimate, we drew them from the multivariate normal distribution fx|o—,,
Ix19=q(®)

q' Py’ fx\Q:q’ (x)’

2.25A. If the relative error (stopping criterion) resired for the channel capacity is

as illustrated in figure

since it is similar to the integrand fx|o—¢(2)s

Ec, we set 0., = Ec/M, ensuring that the lower bound on the capacity, Cjo,, =
log, <Z] p§c§> has a relative error of E or less. The algorithm starts with k& = 10°

samples and adaptively draws more if needed (usually not necessary for Ec = 1%).

Monte Carlo samples from fx|o—, were generated as follows. We generated uniform
random numbers with the dSFMT package, which is a fast and high-quality Mersenne
Twister [204]. We transformed the uniform samples to get Nk univariate N'(0,1)
samples with the Box-Muller method [196], and transformed them again into k£ mul-
tivariate samples using the Cholesky decomposition W of the covariance matrix X
[205].

We validated the algorithm against various configurations of multivariate Gaussian
distributions [164]. In every case, it converged to the correct value within the desired

accuracy, which we typically set to 1 %.” (Antigen encoding, [1], SI)

This compared favorably to the channel capacity estimation algorithm of [164], which has an

accuracy of 4 % on the test cases.

2.7.6 Channel capacity results and final estimate for the number of antigen

classes
“The Blahut-Arimoto algorithm converged to a capacity of 2.60 bits (within 1%

tolerance for convergence). To assess the robustness of this result, we repeated the

91



I Sampling pdf B

1 Integrand /lnpUt{P_;)},{ﬁ}},{Zj}/

® Samples 0.3 v
g —>|1. Compute the ¢; Vj
©
0.2 ?} 2. Compute /;; = log(max; c;)
0.1 E 3. Compute I; = log(ngipjf)
0.0
rel _ 9P r
pT = oy Return IL,pj
/4
’O 0.175 4 ] €=(2.4 +0.1) bits
0- o 0.150 -
5 Antigen ~ 0.125 A
o ECso (#) U 0.100 A
— —n/a- e} Q 1x10° w
@ . Q 3x10° a 0.075 -
1x10!
o %Cg: A 8 1% 102 0.050 7
—n/z-g%o“b (0] 4><102 0.025 -
2x10
? ° o 0.000 -
0 El G4 V4 T4 Q4Y3A2N4
ap (a.u.) log10(ECso) [-]

Figure 2.25: Blahut-Arimoto algorithm to derive the cytokine channel capacity from the model
parameter space. (A) Cartoon illustrating the Monte Carlo integration of equation 2.26 with variance
reduction by sampling from the input-output distribution, fx|g—q(z). (B) Flowchart of the Blahut-
Arimoto algorithm (adapted from [54]). (C) Model parameter distributions corresponding to the theo-
retical antigen categories determined from the channel capacity calculation, as explained in figure 2.12C.
(D) Optimal peptide distribution found with the channel capacity estimation algorithm of Grabowski et
al. [164], giving a capacity of (2.440.1) bits (the algorithm has a relative accuracy of 4 %). As expected,
the result is slightly lower than when interpolated ECs are allowed [(2.59 4+ 0.03) bits, subsection 2.7.6].
(Antigen encoding, [1], SI)
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procedure 32 times, including the model curve fitting and multivariate distribution
fitting, while perturbing randomly the regularization hyper-parameters involved in
model parameter fitting. Perturbations were sampled from a normal distribution
with a standard deviation of 0.05, for regularization coefficients that are on the
order of 0.8. We found an average capacity of (2.59 & 0.03) bits, where the error
represents the standard deviation of the replicates, thus confirming the robustness of

the calculation.” (Antigen encoding, [1], SI)

Figure 2.12C shows the optimal distribution py maximizing the mutual information MI(X, @), as
found by the Blahut-Arimoto algorithm. Since the capacity corresponds to 2259 =~ 6 categories
that should be completely distinguishable, we have subdivided the continuum of antigen qualities
into six classes: the two limiting ECj, values (which include all theoretically weaker or stronger
antigens as well) and four other ECs values equally distributed in the cumulative probability func-
tion (CDF) of () (figure 2.12C, center). These six prototypical antigen affinities indeed produce
non-overlapping latent space responses (figure 2.12C, right), as well as non-overlapping ballistic

model parameter distributions (figure 2.25C).

We note that the two probability peaks at the endpoints of the EC5, axis are reminiscent of the
optimal distributions found for concentration sensing in chapter 1, figure 1.2. This reflects the
inverse relationship imposed by channel capacity between the optimal pg and the variance of
parameter distribution fx|o—,. As can be seen in figures 2.22 and 2.24, there is little variability
in model parameters for all-out (N4, A2) or null (None, E1) T cell responses, while there is more
noise for responses in the middle, i.e., for intermediate agonists (V4, T4) at the threshold of T cell

activation.

“As a point of comparison, we ran the algorithm of [164] on the empirical parameter
distribution for the seven available peptides. We found a channel capacity of (2.4 £+
0.1) bits and the optimal distribution shown in figure 2.25D. This slightly lower
capacity is consistent with the fact that the ECs axis is not optimally sampled when

only empirical distributions are used, as opposed to our interpolation method.

Notice that Fig. 2.12C-D allows for a direct comparison between the ECsgs of the
6 antigen classes and the classical OT-1 ligands. The first category has ECy larger
than E1, so should correspond to self. The second category is between G4 and V4,

so in the middle of the antagonistic regime. The four other categories are spread
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above V4, so correspond to agonists of different strengths.” (Antigen encoding, [1],

SI)

2.7.7 Interpretation of latent space weights

We used the prototypical antigen classes to clarify how the antigen classifier of section 2.3 was
exploiting the latent space to perform antigen quality classification. We first examined how LS (t)
and LS,(t) at a fixed time point (f = 36 h) varied as a function of antigen ECs5q and we found
that LS, increases monotonically with antigen quality, while LS5 varies non-monotonically (fig-
ure 2.12D). Each prototypical antigen class lands in a distinct part of these curves, such that they
each correspond to a unique pattern of L.S; and LS, being null, positive or negative (figure 2.12E).
This suggests that cytokine dynamics could easily be decoded for antigen quality by discrete reg-
ulatory elements, such as the cytokine receptor pathways in neighbouringT cells reading out a
cytokine signal to be co-opted into response. This is consistent with findings in the context of
infomation optimization in genetic networks, showing that non-monotonicity is important for the

decoding of biological signals by binary pathways [206, figure 3].

The behaviour of each LS suggested a biological interpretation of their composition, as revealed
by the neural network’s set of weights connecting the inputs to the latent space (figure 2.26A): L.S;
is mostly made up of IL-2, which increases with activation, while LS5 is a difference between the
two cytokines IL-2 and IL-17A on the one hand, and cytokines IFN~, IL-6, and TNF on the other.
Since the first two are mostly associated with adaptive immunity and the last three, with innate
immunity [4], we would expect the last three to fire up at low antigen qualities because innate
immunity is less antigen-specific, and thus make L.S; decrease due to their negative contribution

to it, whereas adaptive immunity cytokines would have a more gradual response.

The second set of neural network weights, connecting the latent space to the output layer, closely
matched the patterns seen in LS, LS, as a function of antigen quality, with weights reading out
LS increasing (essentially) monotonically and weights reading out LS5 being non-monotonic
(figure 2.26B). These weights decode the latent space by dividing it into sectors each attributed to
one class, as seen in figure 2.26C, where we computed the softmax output p,(LS;, LS2) (eq. 2.8)
at each point in latent space, and plotted the color of the most likely predicted antigen class among

the six OVA training peptides®.

3To be precise, we plot p,(LSy, LSs) for all six antigen classes g at every point, on top of each other, each in a
different color, but we set the opacity for each color equal to p,: hence, only the color of the most probable peptide in
a given region is non-transparent and thus shows up in that region. Boundaries are generally very sharp, except for the
V4-G4 distinction.

94



Moreover, interpolating the network’s output weights as a function of EC5, and evaluating them
for each of the six prototypical antigen class, we could visualize the regions of latent space most
associated to each theoretical class (figure 2.26D). Unsurprisingly, they corresponded to the regions
containing the prototypical latent space trajectories of figure 2.12D. Figure 2.26D also reveals how
the training antigen class Q4 can in fact be subdivided roughly in two distinct classes: the training
set was not completely filling the continuum of possible antigen qualities. Yet, the neural network
had the ability to place intermediate new antigens like A2 and Y3 in the right regions of latent space
(as seen in figure 2.4D-E), supporting further the idea that this latent space is a natural encoding of

antigen quality.

2.7.8 Cytokine trajectories for prototypical antigen classes

To close the loop, we reconstructed the cytokine time series corresponding to the six prototypical
antigen categories of figure 2.12C. We used the parameter covariance estimates of section 2.7.2
and the nonlinear decoder of figure 2.4D-E to reconstruct sample cytokine trajectories for each
class. We show in figure 2.27, the reconstructed cytokine trajectories for archetypal antigens. We
show, for each antigen, both the average cytokine time course and its standard deviation (obtained
numerically by generating 100 trajectories for each antigen prototype). Consistent with our mutual
information optimization, we see well-defined trajectories, especially for the stronger ligands, and
larger uncertainty for weaker ligands (category 5, EC50= 4 x 10%). While these trajectories exhibit
a few artifacts, for some cytokines and antigens in particular, they still have the correct general

shape and ordering according to antigen quality.

Generative modelling by pure machine learning usually requires large datasets to produce realistic
synthetic outputs. Even then, finer details in generative modelling can easily go awry, as illus-
trated by symmetry or background artifacts in random face generation by generative adversarial
networks [207, 208]. It is therefore expected that some artifacts remain in the synthetic cytokine
time series. Owing to our biophysically-informed modelling, we were in fact able to do a lot with
relatively “little” data (compared to traditional machine learning datasets). Of course, more experi-
ments with OT-1 T cells would enable better reconstruction quality, correctly capturing all possible
intrinsic and extrinsic sources of variability. This improvement in accuracy with additional data,
however, was beyond the scope of our work. In the next section, we rather focused on the universal

character of antigen encoding in different immune contexts.
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Figure 2.26: “Neural network weights to each layer and their interpretation. (A) Weights con-
necting the input layer to the intermediate layer give the contribution of each cytokine to each latent
space variable. (B) Weights to the neural network's prediction layer, from each latent space variable
to each training antigen category. For optimal accuracy of the network, those weights have to match
the monotonic (LS1) and non-monotonic (LS2) behaviour of the latent space variables as a function of
ECs0, which was shown in figure 2.12D. (C) Latent space colored according to which training antigen
is the most probable prediction of the neural network at each point, as determined from the weights of
panel (B) and the softmax function in eq. (2.8). This reflects antigen encoding: each antigen has its own
sector, corresponding to the typical location of its latent space trajectories. Notice that since the last
layer before the softmax regularization is linear, those sectors are separated by straight lines; intuitively
the sectors define where the latent space trajectories corresponding to each ligand can be located (D)
Latent space domains for the theoretical antigen classes determined from channel capacity calculation.
The weights defining this map were linearly interpolated from the weights for training antigens at the
theoretical antigens’ ECss, indicated by vertical dashed lines on panel (B).” (Antigen encoding, [1], SI)
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Figure 2.27: Reconstruction of cytokine trajectories for the 6 ligand categories obtained through mutual
information optimization, using the decoder of Fig. 2.4D and the noise structure of Fig. 2.12C. (Antigen

encoding, [1], response to reviewers)
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2.8 Universality of antigen encoding

To support the idea that antigen encoding is a (relatively) universal feature of T cell responses,
and not merely an idiosyncrasy of the OT-1 TCR and its cognate peptides, we tested how our latent
space description, as trained on OT-1 data sets, could generalize to diverse immunological settings,
where the number of initial T cells, the APC cell types, the TCR line, and the T cell donor species
were varied. We also tested a wide panel of drug perturbations to try to break the correlation
between latent space dynamical parameters. Some of these diversified datasets required custom

preprocessing, which we discuss in appendix B.

2.8.1 Testing various immunological conditions

We tested antigen encoding in several different immune settings. Our collaborators performed a
whole panel of robot-assisted experiments where cocultures were varied from their default prepa-
ration (OT-1 T cells and B6 splenocytes). On the T cell side, we measured cytokine responses of
pre-activated (“blast”) T cells, as opposed to naive T cells; we also tested an array of initial T cell
numbers, to assess how this parameter impacts cytokine trajectories. We assessed additional CD8"
T cell lines beyond OT-1, and even performed experiments with CD4" T cells. On the APC side,
we measured T cell responses in cocultures containing macrophages, dendritic cells, tumor cells,
or other APC types pulsed with peptides — instead of the mixed splenocytes used for training the
model. The experimental protocols are detailed in the SI of Antigen encoding, [1]. The results are
presented below to highlight how latent space cytokine trajectories remain similarly structured by

antigen quality across diverse conditions, rather than to discuss their specificities in detail.

Most figures in this subsection (2.28 — 2.31) were prepared by Sooraj Achar and generated using
the latent space fitting pipeline [185] developed by us with Thomas Rademaker. I reproduce them
here for completeness and to illustrate the generalizability of our approach. Analyzing the effect
of T cell number on the vy vs ¢ slope (figure 2.28E) and the Earth Mover’s distance analysis of
drug perturbations (figure 2.28F, right) was my own work.

To assess how our latent space model could capture antigen quality across different conditions, we

“first plotted the parameter vy (Fig. 2.12A) as a function of ECjy, for both our train-
ing and test sets and recovered a log-linear correlation above a minimum threshold
(Fig. 2.28A): our model of cytokine dynamics yielded a measure of antigen quality,
Vg, as faithful as an ECjy, derived from a functional dose response. We further con-

firmed the predictive power of vy on additional immunological settings: i. two states
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Figure 2.28: “Antigen encoding to explore diverse immunological settings. (A) Testing the ballistic
model of the latent space on all OT-1 antigens yielded measurements of v that correlated with their rank
(as defined by the ECs of a functional dose-response). (B) Antigen encoding learned from naive OT-1
T cells yields accurate v ranking with different mouse TCR transgenic T cells, (C) with human TCR
transgenic T cells and (D) with OT-1 T cells responding to tumors constitutively expressing antigens. (E)
Antigen encoding captures dependency on T cell numbers in (vg, 8) space. (F) (left) Antigen encoding
(vo, ) of T cell activation under various molecular perturbations. (right) Earth Mover's Distance (EMD)
for individual antigens. PC1 captures the variation in antigen quality (EMDs = 0). While most molecular
perturbations simply downgraded the apparent antigenicity (EMD; < 0, EMDs ~ 0), JAK inhibitors
(AZD1480 and Ruxolitinib) severely impacted T cell activation (EMDy < 0) and the TLR7/8 agonist
Resiquimod boosted it (EMDs > 0). (G) Antigen encoding of anti-CD19 Chimeric Antigen Receptor
(CAR)-T cells (left) revealed a pattern of weak activation and antagonism for cytokine responses (right).”

(Antigen encoding, [1])
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Figure 2.29: “Antigen encoding with different antigen—presenting settings. (A) We compared the
latent space projection (i.e. antigen encoding) of the cytokine dynamics for naive OT-1 T cells, activated
with peptide-pulsed splenocytes, or bone-marrow derived macrophages or bone-marrow derived dendritic
cells, in the presence of varied costimulation (aCD28) or TLR agonists (LPS or poly-IC). The antigen
encoding was trained with splenocytes and remained consistent across different antigen-presenting cells.
(B) Immune velocity (vg) as a measure of antigenicity was defined using splenocytes as antigen presenting
cells, and remained essentially accurate for other antigen presentation settings — macrophages or dendritic
cells with or without costimulation of inflammatory signals. (C) Immune velocity (vg) has high order
accuracy in splenocytes and dendritic cells regardless of costimulatory and inflammatory signals, although
macrophages perform more poorly in this setting. (D) Examination of the input cytokines reveals that
stimulation of macrophages with the polylC and LPS TLR agonists induces a high, antigen—quality—
independent secretion of the innate cytokines IL-6 and TNF, leading to a high background of activation
in panel B and a more limited vy order accuracy observed in panel C. The data used in this figure are

from two independent experiments.
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Figure 2.30: “Antigen encoding with different tumor settings. (A) We compared the latent space
projections (i.e. antigen encoding) of the cytokine dynamics for effector OT-1 T cells, activated with
peptide-pulsed splenocytes (training set) or with B16 melanoma or MC38 carcinoma tumor cells con-
stitutively expressing OT-1 antigens. Antigen density on the tumor cells was increased using a 48hr
pulsing with IFN-y pre-activation. (B) Immune velocity (vg) as a measure of antigenicity was defined
using splenocytes as antigen presenting cells, and remained essentially accurate for peptides constitutively
expressed and presented on the surface of B16 melanoma or MC38 carcinoma tumor cells. (C) Immune
velocity (vp) has high order accuracy across all tested tumors regardless of antigen density. The data
used in this figure are from two independent experiments.” (Antigen encoding, 1], SI)
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of differentiation of OT-1 T cells (naive or pre-activated effector; Fig. B.6); ii. dif-
ferent antigen-presenting cells (splenocytes, bone marrow derived macrophages and
dendritic cells) pulsed with peptides (Fig. 2.29); iii. different mouse TCR transgenic
T cells (Fig. 2.28B); iv. human T cells expressing a TCR transgene (Fig. 2.28C); and
v. different tumors constitutively expressing antigens (Fig. 2.28D, 2.30). While the
latent space may rotate (angle 6, Fig. 2.12A) according to immune contexts — e.g.,
when varying the number of T cells (Fig. 2.28E, B.7) — in all settings, the structure
of the latent space was preserved and vy accurately ranked antigens according to
their quality. Overall, our model generalized well to infer antigen quality from unseen

patterns of immune activation.” (Antigen encoding, [1])

Drug perturbations

“We tested whether molecular perturbations (small drug inhibitors, cytokines or an-
tibody blocking) could generate novel cytokine dynamics. For most perturbations,
the strong correlation between parameters of antigen encoding remained intact, and
antigen hierarchy was preserved, albeit with a downshift in apparent antigen quality.
However, two types of perturbation (activation of innate signaling and inhibition of
cytokine signaling) maximally broke this parameter correlation and generated distinct
dynamic patterns, i.e., , new classes of T cell activation with potentially new functions
(Fig. 2.28F, 2.31)." (Antigen encoding, [1])

As explained in the figure caption, we quantified shifts in parameter distributions using the Earth
Mover’s Distance (EMD). This metric is equal to the average distance over which each point of the
starting distribution must be moved to create the final distribution with the minimal possible total
transport work [209]. In the general case, the EMD is computed using tools from graph theory.
Summarizing, we have two sets of sample points, X; = {z1,} and Xy = {x5;}, from the initial
and final distributions, respectively, with weights {w; ;} and {w, ;} (typically, w,; = Wl(xa))'
First, we build a bipartite graph where nodes are samples from X; or X5, and edges connect each
point in X, to all points in X, and have weights d;; equal to the distance between samples x ;
and z, ;. Then, we use linear programming to compute the flow f;; which transports all weight
from X, towards X (f;; is how much weight is transported on edge (7, j)), while minimizing the
total “work” C' =}, . d;; fi; (weight x distance). The EMD is equal to this total minimal work,
divided by the total weight in X; or X, (whichis 1 if w,; = %). We wrote our own Python

card(Xq
implementation of these steps, relying on the min flow solver of the networkx package [210].
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Figure 2.31: “Latent space projections (antigen encoding) for the cytokine dynamics under
varied molecular perturbations. The data used in this figure are from eight independent experiments.”
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To compute the EMD along each principal component (PC) direction, we first projected the initial
and final distributions along the desired PC, then computed EMD between these 1D marginal

distributions.

Antigen encoding with chimeric antigen receptor T cells

Given the robustness of our antigen encoding latent space, we wanted to extend its applicability
to immune settings closer to clinically relevant immune therapies and to contemporary cellular

engineering. We therefore

“investigated T cells genetically engineered to express a Chimeric Antigen Receptor
(CAR) against ligands expressed on B cell leukemia (CD19), as used in patients with
relapsed lymphoma [211]. The dynamics of cytokines released and consumed by CAR-
T cells were similar to the trajectories derived from natural T cells (Fig. 2.28G-left).
CAR-T cells responding to CD19 yielded cytokine dynamics similar to OT-1 TCR re-
sponding to weak agonists such as V4 (Fig. 2.28G-right), thus signaling through CAR
may only sub-optimally activate T cells. We therefore tested the response of CAR-
OT-1T cells to a mixture of CAR and TCR ligands. Our latent space parametrization
then revealed highly-nonlinear, hierarchical effects: weak OT-1 ligands (E1) antago-
nized CD19, whereas stronger OT-1 ligands dominated the response to CD19. This
is consistent with the AKPR mechanism for T cell signaling with differential effects
on positive and negative feedbacks (Fig. 2.12E) [62]. Complex antagonism and syn-
ergism by weak TCR ligands highlight the importance of fine tuning CAR-T cells for

immunotherapeutic optimization.” (Antigen encoding, [1])

These preliminary observations, in the cytokine latent space, of non-linear effects of TCR/CAR
antigen mixtures led us to investigate systematically cross-receptor interactions, as detailed in the

next two chapters of this thesis.

2.9 Summary of key insights from antigen encoding

In summary, from the high-dimensional T cell response kinetics acquired by our collaborators with
their robotic platform, we have derived a quantitative model of T cell antigen encoding (figure 2.1).
Using a neural network classifier, we have discovered a two-dimensional latent space in which cy-

tokine dynamics encode antigen quality (figure 2.4). This dimensionality reduction enabled us to
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perform detailed analyses, such as deriving a mathematical model of the latent space trajectories
and generating model-based cytokine time series from it. We have also rigorously quantified the
amount of information transmitted by cytokine dynamics about antigen quality, finding that the
continuum of T cell responses could be subdivided into 226 = 6 non-overlapping classes (fig-
ure 2.12). This showed how high-throughput experimental platforms and physics-inspired mod-
elling might reveal underlying quantitative principles of immunity. Seeing how antigen encoding
was robust across immune conditions (figure 2.28), we thought it could prove useful in analyz-
ing the mechanisms of chemical sensing by T cell receptors, and ultimately to fine-tune T cell

responses for immunotherapy and vaccine development [175].

We carried three main insights from antigen encoding into more mechanistic studies of TCR ac-
tivation. First, T cell activation dynamics over days is low-dimensional, so we may not need to
model T cell outputs as a high-dimensional set of variables; coarse-grained models may suffice.
Second, the long time scales of T cell activation are essentially determined by the early activation
kinetics (i.e., by the v, or ay parameter); hence, models of these early events could be predictive of
slower processes as well. Third, antigen quality is a continuous, quantitative property that elicits a
corresponding continuum of T cell responses. Taken together, these points suggest that models of
TCR-antigen interactions occurring within minutes, as introduced in chapter 1, might be used to
quantitatively predict T cell activation mechanisms, even those measured on longer time scales. In
the next two chapters, we have used exactly this approach to understand non-linear receptor inter-
actions in T cells with altered TCR phosphorylation sites (chapter 3) and with synthetic receptors

for immunotherapy (chapter 4).
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Chapter 3

Revisiting antagonism in T cell receptors

In the previous chapter, we have essentially mapped T cell responses to a single antigen at a time,
and we have treated the effect of antigen quantity as randomness in the response (e.g., section 2.7).
Here, we aimed to gain mechanistic understanding of TCR signaling by studying mixtures of anti-
gens, which reveal nonlinear interactions between receptors [62]. We applied the insights gained
from antigen encoding: since population-level cytokine dynamics correlate strongly with early
activation kinetics, parsimonious models of T cell receptor signaling (time scale of minutes) can
provide quantitative predictions of T cell responses. Aided by our collaborators’ robotic platform,
we systematically varied the qualities and quantities of antigens in the mixture, to better explore
the high-dimensional chemical space faced by T cells in physiological settings. Moreover, T cell
lines (6F-CD3( TCR) from Paul Love’s lab (NICHD), with altered TCR phosphorylation sites,
gave us an additional experimental constraint to pinpoint receptor interactions. As we searched for
a mathematical model that can account for these various phenotypes and antigen mixtures, we had
to revise existing TCR activation models, which had previously been verified only for a small set

of antigen mixtures.
This chapter contains my contributions to two manuscripts [2, 3] presented together here:

* Information theoretic analysis of 6F T cell responses (section 3.2.1);
* Adjusting the classical AKPR model to account for early datasets on 6F T cells (3.3 and 3.4);

* Finding this model needs to be improved to capture more extensive datasets, developing an

revised model, and performing Monte Carlo simulations to estimate its parameters (3.5).

The 6F latent space analysis in section 3.2.2 was performed by Sooraj Achar using the antigen
encoding pipeline [185] of section 2.2.2, which we built together with Thomas Rademaker. Ex-
perimental work was carried by collaborators, mainly Sooraj Achar and Guillaume Gaud. Quoted

excerpts are from sections of the of the main text or supplementary information (SI) written by me.
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3.1 Timeliness of revisiting TCR activation models

We have reviewed the mechanisms of TCR activation in chapter 1. Here, we bring out remaining
questions about these mechanisms, especially when encountering antigen mixtures (as it is the
case in vivo). We then describe the experiments performed by our collaborators to address them:
the unprecedented level of robustness, accuracy, and throughput they achieve when they measure
immune dynamics allowed us to push the envelope of phenomenological TCR models, seeking

quantitative agreement between data and predictions to select the best model.

3.1.1 Nonlinear effects and antagonism in TCR signaling

Cells in a given tissue present on the order of 10? different peptide sequences on their surface
MHCs, with different peptides being presented at anything between 10 and 10,000 copies per
cell [212, 213, 214] (0.01% — 10% of 105-105 MHCs/cell). An example of the broad distribution
of copy numbers for different peptides is shown in figure 3.1. Given the complexity of the TCR
biochemistry and signaling pathways (section 1.3.2), it would have been most surprising that the
various antigenic signals in a mixture contribute to T cell activation in a purely additive manner.
Non-additive responses to mixtures of ligands are common in biology, for instance in olfactory

receptor neurons [66], giving us another reason to expect them in T cells too.
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Figure 3.1: Relative frequency distribution of the class I peptide MHCs on the surface of antigen presenting
cells (here, melanoma cells). Replotting the data for “background peptides” in the “DMSO” condition (i.e.,
no treatment), averaged over three repeats, from figure 1D of [214], available publicly (Dataset_S02). We
notice a Zipf-like behavior for the first 103 most abundant peptides, followed by a sharp cutoff. However,
the abundances are approximative, based on mass spectrometry abundances; obtaining absolute cell surface
abundance requires building a different calibration curve for each peptide [213], to compensate for, e.g.,

unequal processing efficiency in the mass spectrometry pipeline.
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There are in fact constructive and destructive “interferences” between TCR antigens, the most
striking case of which is antagonism: a reduction of the T cell response due to weakly stimulating
antigens. Adding weak antigens, which produce some response on their own, to a small amount
of strong antigens actually reduces the overall response compared to the response elicited by the
same small amount of strong antigens alone [215, 216, 217]. Figure 3.2 illustrates this effect. In
this situation, the strong antigen is called an agonist and the weaker antigen causing a response
reduction is called an antagonist. Since very few (< 10) agonist peptide copies are needed to
trigger an immune response [110], antagonism of small agonist quantities may play a significant

role in allowing or delaying T cell responses in vivo.
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Figure 3.2: Example of TCR antagonism. (Left) TCR antagonism occurs when a T cell encounter a
mixture of strong ligands (red) and weak ligands (grey) which can both bind to TCRs. (Right) IL-2 cytokine
response over time of T cells (OT-1) exposed either to a strong antigen alone in a small dose (N4 at 10pM,
red) or to the same amount of strong antigen plus a weak antigen (V4 at 1 uM). The response is reduced
by the addition of the antagonist peptide. This antagonist peptide, on its own and at a high dose, would
produce a small amount of cytokine response as well (not shown) — it is not a completely null antigen.
Hence, the response to the mixture is not at all equal to the sum of responses to each individual component.
Data measured by the Altan-Bonnet lab using the Immunotron platform [2]. (Left is adapted from TCR/CAR
antagonism, [3], figure 2; Right is adapted from CD3( ITAMs, [2])

Antagonism was observed in T cells over 50 years ago, but its explanation has long been elu-
sive. In the 1960s, experiments involving the sequential injection in vivo of a strong antigen, then
a weak antigen revealed antagonism (then called “antigen competition”), but the effect was at-
tributed primarily to “humoral” factors [218], i.e., global feedbacks in the blood and lymph, such
as cytokines. It was later realized — with the advent of molecular cell biology and discovery of
the TCR - that cellular factors were probably more important, since mixtures delivered simultane-
ously still exhibited antagonism. The next proposed explanation was competition between agonist

and antagonist peptides for presentation on MHCs [219]. This hypothesis was also ruled out when
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antagonism was found to be TCR clone-dependent — all T cells would be antagonized if the effect
came from hindered presentation of agonist peptides, but some TCRs were unaffected by the an-
tagonists [220, 221, 222]. The next proposed explanation was rather competition for the binding
of TCRs (antagonist peptides taking up all receptors) [223], but this was also ruled out by experi-
ments showing antagonism in T cells engineered to express two TCRs, one dedicated to the agonist
and the other, to the antagonist peptides, such that there was no possible competition for receptor
binding [224]. Our work on antagonism in chimeric antigen receptor T cells, in the next chap-
ter, also reveals antagonism between completely separate receptor-ligand pairs. Therefore, TCR
antagonism most likely comes from intracellular receptor signaling mechanisms, where antigen
mixtures change the balance between positive and negative effects triggered by TCR stimulation
of different strengths [138, 116, 225].

3.1.2 Quantitative questions regarding TCR antagonism

Antagonism thus seems to occur due to inhibitory mechanisms in TCR signaling which prevent
undesirable response to weakly stimulating antigens [59]: the weak antigens trigger inhibitory
molecules, thus reducing the response to strong antigens, without producing enough activation
on their own to compensate. In particular, the phosphatase SHP-1!, which can dephosphorylate
TCRs and prevent their signaling [226], is thought to be responsible for mediating this inhibitory
feedback [138, 116, 109]. However, other inhibitory molecules are also potential candidates, such
as the CD45 phosphatase [134], or the c-SRC kinase (Csk), which can restrain the activity of the
Lck kinase (necessary for TCR signaling) [227]. Decisive verification of the exact molecular un-
derpinnings of this inhibitory feedback is however difficult experimentally, due to its delicate and
dynamical nature (immunoprecipitation only gives static, bulk snapshots), and because antibod-
ies to distinguish the various phosphorylated versions of, e.g., SHP-1, are lacking or unreliable
(Grégoire Altan-Bonnet, private communication). Beyond any specific mechanism, Francois et
al. proved mathematically that any TCR model performing absolute ligand quality recognition,

independent of ligand quantity, must exhibit antagonism as a by-product [139].

Therefore, in our work, we adopted a phenomenological modelling approach where we postulate
the existence of an inhibitory species, I, without specifying its precise molecular identity; it could
in fact be an aggregate of several inhibitory pathways (such as SHP-1, CD45, Csk, etc.). This
approach lowers the dimensionality of T cell dynamical models and enables us to address the more

relevant question of how TCR antagonism is quantitatively determined by the qualities 7; (affin-

'SHP-1 stands for Src homology region 2 domain-containing phosphatase-1 and is also known as PTPNG6, standing
for Tyrosine-protein phosphatase non-receptor type 6.
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ity, binding time) and quantities L; (density, abundance) of antigens (indexed by /) in a mixture.
Previous modelling studies have been limited to qualitative comparisons between predictions and
data for a few different antagonist peptides presented at a high density; they could not make fine
distinctions between different regulatory networks and activation functions in the inhibitory feed-
back module surrounding species [ [129, 132, 62]. Here, we attempted to go one step further and
to compare alternative models on the basis of how accurately they match experimental patterns of

antagonism.

Antagonism has generally been characterized in binary antigen mixtures [116], i.e., in mixtures
of two ligands with binding times 7, 75 and abundances L., Lo, respectively. Two-component
mixtures are interesting because most of the ~ 103 distinct peptides on an APC will have a very
low affinity for the TCR; they effectively act like a background of weak peptides, reasonably
well approximated by a large amount of one low-affinity peptide sequence [59]. The remaining
one (or few) peptide sequences on the APC which might be cognate to a TCR can similarly be
approximated by one high-affinity antigen type. Hence, receptor interactions in binary antigen
mixtures give a reasonably good first approximation of the non-linear effects going on in actual
physiological antigen mixtures. This is why we have also studied binary mixtures in this thesis: we
have sought models able to quantitatively predict TCR antagonism for any combination of antigen

mixture parameters 7y, T, L1, Lo, across different T cell types.

3.1.3 The role of ITAM multiplicity in TCR antigen recognition

Another open question regarding T cell activation is the role of immunoreceptor tyrosine-based
activation motifs (ITAMs), which are pairs of tyrosine phosphorylation sites on the intracellular
chains of the TCR [2]. As depicted by pale blue rectangles on the two TCRs of figure 3.2, one
TCR has ten ITAMs (thus twenty phosphorylation sites): three on each of its two CD3( chain, and
one on each CD3~, CD30, and CD3e (two copies of €). The functions played by this ITAM mul-
tiplicity, unique among immune receptors, appear paradoxical. On the one hand, phosphorylation
of both tyrosines of an ITAM leads to recruitment of ZAP-70, a major step towards activation of
downstream TCR signaling pathways [131] (by, e.g., the Lck kinase). Having multiple ITAMs per
TCR may serve to amplify T cell activation signals [228, 229, 230], and T cell signaling cannot
happen without at least one ITAM, yet no ITAM in particular is essential [231]. On the other hand,
weak TCR stimulation leads to different states of ITAM phosphorylation compared to agonist stim-
ulation [232, 233]. Furthermore, single-phosphorylated ITAMs seem to inhibit T cell signaling and
mediate TCR antagonism [234, 235, 236], for instance by activating the SHP-1 phosphatase [138],
although not all studies report this inhibitory role [237, 238].
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Overall, the conflicting evidence surrounding TCR ITAMs may stem from the fact that this mul-
tiplicity supports parallel positive and inhibitory TCR signals, and that such a delicate balance
evades qualitative, all-or-nothing functional descriptions, instead requiring quantitative modelling
to be accounted for properly. A quantitative approach could reconcile apparently contradictory
studies by avoiding all-or-nothing claims about ITAM functions?. Low-dimensional, phenomeno-
logical models of T cell receptor activation are most desirable for this task, since they are more

easily interpretable.

3.1.4 CD3-6F TCRs from the Love lab

To elucidate the role of CD3( ITAMs, and to provide an additional phenotype in which to probe
TCR antagonism quantitatively, the lab of Paul Love (NICHD) has developed OT-1 mouse lines
in which the three CD3( ITAMs of each ( chain are inactivated (figure 3.3). The tyrosines (Y)
in all 6 phosphorylation sites of the 3 ITAMs are substituted by a phenylalanine amino acid (F).
This mutated phenotype is therefore called 6F (indicating the six Y — F substitutions), while the
TCRs with the original CD3( phenotype are called 6Y. The Y — F substitutions prevent ITAM
phosphorylation without significantly changing the charge or structural properties of the ¢ chain.
The functions of CD3( ITAMs can likely be inferred from the impact of their inactivation in 6F
TCREs.

CD3{ CD3¢

Figure 3.3: Illustration of ITAM mutations in the 6F TCR. The six red crosses indicate alteration of the
six ¢ ITAMs by tyrosine (Y) to phenylalanine (F) substitutions (Y — F) in the two phosphorylation sites of
each ITAM.

Other labs have previously used ITAM mutation or deletion in other TCR-monogenic mouse lines
(e.g., P14 [239], H-Y [240], 3A9 [237]). These were however germline mutants, in which the mice

%For instance, reference [239] claims that TCR antagonism occurs “irrespective of the presence of ¢ ITAMs”
because they still observe some antagonism in CD3(-deficient TCRs, while their own data in figure 6B shows that the
amplitude of antagonism is reduced, with mutated ITAMs producing only a ~ 2x antagonism effect, compared to a
~ bx with wild-type ITAMs.
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express the altered ITAMs as soon as they are born, and go through thymic selection (growth and
selection of T cells in the thymus after birth) with them. Their T cells may therefore be selected
with compensatory mechanisms for the inactive or missing ¢ ITAMs [241]. To circumvent this
problem, the Love lab has three OT-1 mouse lines (in addition to germline 6F) where the 6F
mutation is induced only after thymic selection via a Cre-Lox recombination system®. These three
T cell lines are referred to as 6F(i), because they are “inducible” 6F, and they turned out to all have
similar activation properties (and to the germline 6F as well), so we will not distinguish between
them for modelling purposes. The 6F(i) TCR allowed us to disentangle the impact of CD3( ITAMs
on T cell activation and inhibition, and to probe new regimes of TCR/TCR antagonism to further

decide between competing low-dimensional models of T cell activation.

3.1.5 Experimental measurements of TCR responses to antigen mixtures

Our collaborators in the Altan-Bonnet lab characterized the immune response of 6F (4-ITAM)
TCRs using their robotic Immunotron platform, introduced in section 2.2.1. They compared 6F
and 6Y (regular, 10-ITAM TCRs) T cell responses first to single antigens of varying strengths,
and to several mixtures of two antigens. We applied our antigen encoding pipeline to process the
experimental data (section 3.2), but after verifying that antigen encoding still applied to 6F T cells,
we found that simply taking the average of cytokines over time proved a reasonable proxy of T cell

activation levels to be compared against our models of TCR activation.

In our first study (CD3( ITAMs, [2]), we initially tested only a high concentration of various
antagonist peptides, which allowed us to developed a slightly modified version of the classical
adaptive kinetic proofreading (AKPR) model in Francois et al., 2013 [129] (section 3.3). Later on,
we tested smaller concentrations of antagonists peptides. The results led us to develop a revised
AKPR model, introduced in our second study (TCR/CAR antagonism, [3]) and presented here in
section 3.5. Hence, our quantitative framework of antigen encoding, developed for single antigen

responses in the previous chapter, provided the necessary insights to develop parsimonious, low-

3Cre-Lox recombination is used to replace a target gene sequence by another upon activation of the system. The
Cre recombinase is an enzyme which can cut out DNA at specific sites — called Lox sequences — to insert another
genetic sequence instead. For the activation of some gene or promoter to trigger Cre-Lox recombination, the gene
coding for Cre is added downstream of that desired trigger promoter or gene [242]. The three Cre-Lox mouse lines
from the Love lab have their genotype switch induced by administration of the drug tamoxifen, by activation of the
distal Lck promoter, or by expression of the gene OX40, respectively. The dLck promoter is only active in post-
selection CD4* and CD8T T cells, while the OX40 gene is only expressed upon T cell activation. The dLck and
tamoxifen-induced 6F are used for in vitro experiments, to ensure all cells already have the 6F CD3( at the start of the
experiment; the OX40 line is used for longer in vivo experiments, where having the 6Y to 6F switch occur during the
first few hours of the reaction does not matter too much.
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dimensional models of TCR antigen recognition kinetics that could account for longer time scales

of immune responses.

3.2 Antigen encoding by altered TCRs

We started by applying the latent space analysis and antigen encoding framework to 6F T cells
with altered CD3( ITAMs, to gain insights that we could then integrate into more mechanistic (yet

still low-dimensional) models of TCR antigen recognition.

3.2.1 Information theoretic analysis

The cytokine time series data acquired by our collaborators revealed, surprisingly, that 6F(i) T cells
displayed enhanced sensitivity to weak antigens (e.g., G4, V4, T4), yet slightly reduced responses
to strong antigens (A2, N4). This is illustrated in figure 3.4a-b, where we used the cytokine con-
centrations averaged over 72 hours as a readout of T cell activation. This data suggests that the
six CD3( ITAMs improve the TCR ability to distinguish between weak antigens — whereas 6F(i)
T cells have a nearly binary response with just over 1 bit of mutual information — and that these
ITAMs can also produce a small additional output upon strong antigen stimulation. Overall, the

presence of additional ITAMs seemed to improve TCR antigen recognition.

To make this point more quantitative, we computed the mutual information (MI) between antigen
quality ) and each cytokine produced by T cells (figure 3.4), using the MI estimator introduced
in section 2.2.4. The error bars represent the statistical error on the MI estimator, computed by
bootstrapping over the 12 data points available for each genotype and peptide (3 biological repli-
cates with 4 technical replicates in each). Despite the small sample sizes, we found a statistically
significant decrease in MI in 6F(i) T cells compared to 6Y in cytokines IFN-+y and TNF. The mu-
tual information difference was more pronounced in germline, pre-activated 6F T cells, as shown
in figure 3.5. The difference between 6Y and 6F was also present when we computed MI between

@ and all cytokines taken together (figure 3.5b).

This information theoretic analysis of 6F T cell responses suggests that multiple ITAMs enable
additional kinetic proofreading of TCR ligand binding. This was the first valuable insight from our
antigen encoding analysis of 6F T cells: in AKPR models of TCR recognition, we should decrease

the number of kinetic proofreading steps, /V, when the number of ITAMs is decreased.
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Figure 3.4: Mutual information analysis of naive 6F(i) T cells. “a, Averaged distribution of normalized
cytokine secretion of 4-OH tamoxifen treated naive OTI-6Y or OTI1-6F(i) (Ert2-Cre) CD8' T cells
stimulated with APC + 1 uM antigen of varying affinities. n = 3 biological replicates. The data shown
are representative of two independent experiments. b, Plots of cytokine secretion for IFN+, IL-2 or TNF
averaged over the 72-h time course. n = 3 biological replicates. Data are shown as the mean + s.d. and
are representative of at least three independent experiments. ¢, Mutual information (antigen classes)
between antigen quality and each secreted cytokine for each genotype. Data are expressed as the MI
estimator & s.d. n = 3 biological replicates representative of at least three independent experiments.”

(CD3( ITAMs, [2], adapted from figure 4)
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Figure 3.5: Mutual information analysis of blast, germline 6F T cells. “(a) Distribution of cytokine
secretion levels of effector OTI1-6Y or OTI-6F (germline) CD8F T cells pre-stimulated with 1076 M
N4 antigen 4+ APCs for 6 days then re-stimulated with APC 4+ 107® M antigens of varying affinities.
(b) Mutual information (antigen classes) between antigen quality and all secreted cytokines for each
genotype. While OT1-6Y T cells can distinguish more than four classes of antigen across the 6 peptide
affinities tested, OT1-6F T cells only distinguish two. Data are expressed as Ml estimator + SD. (c)
Summary plots of cytokine secretion showing scaled mean over time. Data are represented as mean +
SD. (d) Mutual information (antigen classes) between antigen quality and each secreted cytokine for
each genotype. Data are expressed as Ml estimator + SD.” For MI estimation, we had n. = 20 data points
(technical or biological replicates) for 6Y T cells and » = 10 data points for 6F, because some experiments
only had 6Y (10-ITAM) T cells. (CD3( ITAMs, [2], adapted from Extended Data Figure 5)
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3.2.2 Latent space analysis

Moreover, we noticed in figure 3.4 that all cytokines showed similar patterns as a function of
antigen quality, suggesting that 6F T cell responses still lie on a low-dimensional manifold, just
like we discovered for 6Y T cells in the previous chapter. We therefore applied our preprocessing
and latent space projection method to the cytokine time series collected for 6F(i) T cells (as well as
for control 6Y T cells). This analysis was performed by Sooraj Achar using the antigen encoding
pipeline developed jointly with Thomas Rademaker and myself [185]; we reproduce the results in

figure 3.6, because they provide important hints about CD3( ITAM mechanisms.

a b
6Y 6F(i)
Preprocessing Antigen encoding
3 < <«
= PNy . Latent . 8 /
> > g Cytokine : Space : Antigen 50
L = . .
= E E -
< IL-17A 2 - : :
:‘ 3 P /,{’{:"f" T T
= =5 0 0
? LS; (a.u.) LS; (a.u.)
5 g c
2 3 LS; at 36h LS, at 36h
_ g 3 |eor
© o & | @ 6F()
= 8
g

£ | - : g

(= = =

Pe—— —r— = ] R A

0 24 48 72 0 24 48 72 ~10 5 5 : 10 T 1T T T T T T T T T T T

Time (h) Time (h) El G4 V4 T4 Q4 N4  E1 G4 V4 T4 Q4 N4
Antigen Antigen
Strength

Figure 3.6: Latent space analysis of 6F T cells. “a, Cytokine secretion dynamics of naive OT1 T
cells in response to antigens of six different affinities were preprocessed (left) and then projected into
a compressed two-dimensional space (LS, LS2) through the application of the weight matrix obtained
from a three-layer neural network trained to predict antigen quality (right) (n = 3 biological replicates).
b, Time trajectories of LSy and LS, for each antigen in 4-OH tamoxifen treated OTI1-6Y and OTI-
6F(i) (Ert2-Cre) CD8" T cells. ¢, LSy and LS5 values at 36 h as a function of antigen affinity. n =3
biological replicates. Data are shown as the mean + s.d. and are representative of at least three
independent experiments.” (CD3( ITAMs, [2], adapted from figure 4)

After preprocessing cytokine time series and projecting them into the latent space (figure 3.6a,
using the pre-trained neural network weights of chapter 2), we observed similar latent space tra-
jectories for 6Y (10-ITAM) and 6F(i) (4-ITAM) T cells, although with different initial angles # for
antigens of intermediate strength (figure 3.6b). We inspected more closely how LS; and LS, at a
given time (here, ¢ = 36 h) varied as a function of antigen quality in both TCR types (figure 3.6¢).
The LS; dimension reflected the pattern seen in individual cytokines (figures 3.4b and 3.5¢), with
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an increased response to weak antigens in 4-ITAM T cells. The most interesting change occurred
in LS,: whereas it had a non-monotonic behaviour as a function of antigen quality in 10-ITAM T
cells, it became monotonically increasing in 4-ITAM T cells. As mentioned in section 2.7.7, the
“bell-shaped” LS, curve could reflect a strategy by T cells to encode information about antigen
quality in a format easier to decode by other cells. The coincidence of the loss of non-monotonicity
in LS, with a loss of information content in cytokines (figures 3.4 and 3.5) further supports the
idea that CD3( ITAMs help T cells encode finer distinctions between antigens in their cytokine

response.

The observed (LS, LSs) pattern shifts in 4-ITAM T cells further hinted at possible molecular
correlates of the latent space variables. Since the increase in cytokine responses to weak antigens
in 6F T cells directly translated into an increase in LS, this variable most likely encodes the
positive signals triggered by TCR stimulation: more activation implies larger LS;. Because of its
non-monotonic behaviour in 6Y (10-ITAM) TCRs, LS5 might reflect inhibitory feedbacks, such as
SHP-1 activation, in TCR activation: these inhibitory signals dominate against weak antigens, for
which LS, becomes negative in 6Y T cells. The loss of this non-monotonic L.S; in 6F (4-ITAM) T
cells would indicate a reduction in the inhibitory feedback against weak antigens. Therefore, CD3¢
ITAMs potentially play an inhibitory function in TCR signaling, which is partially lost when these
ITAMs are disabled in 6F T cells.

Our collaborators tested the hypothesis that CD3( ITAMs play an inhibitory role in TCR signal-
ing. They compared recruitment of the SHP-1 phosphatase by 6Y and 6F TCRs. Confirming our
prediction, they found that 6Y TCRs activated more SHP-1, due to their 10 intact ITAMs, than
6F TCRs, with only 4 ITAMs left to recruit SHP-1 [2, figure 5]. Hence, ITAMs have a previ-
ously overlooked inhibitory function, via activation of enzymes to slow down TCR signaling. This

explains their importance in lowering T cell activation due to weak antigens.

Thus, we obtained a second important insight from antigen encoding: the CD3( ITAMs, in addition
to contributing to kinetic proofreading, seem to support the negative feedback implemented in
adaptive KPR models [116, 129, 132], which inhibits responses to weak antigens. Hence, 6F (4-
ITAM) TCRs should be modelled as having a lower activation rate of the inhibitory feedback, and
maybe a reduced sensitivity to the inhibitory molecule / as well — for instance because SHP-1 has
fewer ITAMs on which to act.

An important prediction follows from postulating that CD3( ITAMs have an inhibitory function:

since 6F TCRs produce less inhibitory feedback and are less sensitive to it, they should also exhibit
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reduced antagonism. We therefore set out to make this prediction quantitative by developing a low-
dimensional yet predictive model of TCR activation kinetics, implementing the insights gained
from antigen encoding in 6F T cells. Incidentally, having experimental data for two TCR types —
10-ITAM 6Y and 4-ITAM 6F — allowed us to better constrain our model and our understanding of

how T cells parse antigen mixtures.

In section 3.3, we formally introduce our modelling framework for TCR signaling dynamics. We
explain in particular (section 3.4) how we tuned the classical AKPR model for 6F T cells based
on the two insights just discussed, yielding promising early predictions. Then, we explain how
the classical model could not stand the test of more systematic experimental characterization, and
how we ultimately revised the AKPR model, by starting from an even more parsimonious model

(section 3.5).

3.3 Revisiting the classical AKPR model

To disentangle T cell responses to antigen mixtures, we used mathematical models of the early
biochemical events occurring when T cell receptors are put in contact with pMHCs on the surface
of antigen presenting cells. The models are all based on the idea, introduced in chapter 1, that
TCRs perform kinetic proofreading (KPR) of ligand binding times [128]. Although these binding,
unbinding, and phosphorylation reactions equilibrate on a time scale of minutes [116], we assumed
they would be predictive of T cell activation levels experimentally measured over days in our
collaborators’ Immunotron robotic platform. This assumption is based on the insight, from our
antigen encoding theory (chapter 2), that cytokine dynamics upon T cell activation are determined

by early antigen recognition kinetics.

In this section, we introduce in detail the adaptive KPR (AKPR) modelling framework, and explain
how we extended the classical AKPR model (Francois et al., 2013) to account for antagonism in
T cells with altered ITAMs. In the next section, we explain how we directly fitted TCR model
outputs to experimental data (by computing dimensionless ratios), and how we needed to propose

arevised AKPR model, because the classical model failed to provide a quantitative match.

3.3.1 Modelling framework
“All models belong to the adaptive kinetic proofreading (AKPR) framework (see
Francois and Altan-Bonnet [62], Lalanne and Frangois [132], and Francois et al.

[129]). In brief, this class of models explains the speed, sensitivity, and specificity
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of immune ligand recognition, achieving so-called “absolute discrimination”, i.e., dis-
crimination between different antigenicities (ligand quality, characterized by ligand

binding time 7) irrespective of ligand numbers, L.

All AKPR models comprise two components:

1. A kinetic proofreading (KPR) cascade, triggered by the formation of ligand-
receptor complexes at the T cell-antigen presenting cell (APC) interface, akin
to the initial KPR model proposed for T cell receptors [128]. In this cascade,
a ligand-receptor complex goes through sequential activation steps (e.g., phos-
phorylation of associated chains, recruitment of ZAP-70 and LAT). The variable
C,, represents the number of complexes at step n. It is generally assumed that
the last complex of the cascade, Cly, is responsible for the response. When the
ligand dissociates from the receptor, it is assumed that all complexes quickly
revert back to the first step of the cascade, i.e., to the free, unmodified re-
ceptor. The KPR cascade is responsible for the amplification of the relative
response between ligands of different qualities. However, on its own, it fails to
discriminate between a high concentration of low quality ligands (large L, small
7) and a very low concentration of very antigenic ligands (small L, large 7) as

explained in Altan-Bonnet and Germain [116] and Lalanne and Frangois [59].

2. A negative feedforward or feedback interaction, slowing down the proofreading
steps in the KPR cascade [116, 129, 225]. In its simplest form, the negative
interaction is turned on by a given complex C,, in the KPR cascade. Depending
on the model, this negative interaction can act either on the forward or backward
rates of the KPR cascade [132]. This negative interaction is responsible for the
adaptive part of the AKPR model, ensuring that a vast quantity of low quality

ligands gives a weaker response than a small amount of high quality ligands.

It was proven mathematically [139] that all models achieving absolute discrimination
must exhibit antagonism, defined as the reduction of the overall response to a mixture
of ligands compared to the response when only the strongest ligands of the mixture
(the “agonists”) are presented (figure 4.2). This is typically due to the fact that the
less potent ligands (the “antagonists”) increase the relative intensity of the negative
interactions, so that the total signal is lowered. Importantly, however, quantitative

aspects of T cell antagonism (amplitude, dependence on ligand concentration, etc.)
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depend on the details of the negative interactions and thereby allow us to distinguish

between models.

In the following, we detail how we built upon the initial AKPR model (from Frangois
et al. [129]), and how we needed to modify the negative interactions to account for
all experimental data collected in this study. Throughout, we modelled signaling net-
works in the deterministic limit as a system of ordinary differential equations (ODEs)
derived assuming mass-action or Michaelis-Menten kinetics. The KPR cascade was
modelled in a similar way in all versions. The full ODE systems for all models are
given [...], and we used them to derive the steady-state solutions discussed below.
We assumed these steady-state solutions described the average T cell population-level
readouts of signals.” (TCR/CAR antagonism, [3], SI)

We adopt a notation where superscripts indicate receptor type and subscripts specify the meaning
of a variable, e.g., by indicating the proofreading step or the ligand type. For example, qu,z is the
number of receptors of type p € {TCR, CAR} at proofreading step m and bound to ligand type
[ € {1,2,...}. Receptor type indices will be relevant in chapter 4 discussing TCR interactions

with chimeric antigen receptors (CAR).

3.3.2 Initial AKPR model for a single TCR antigen type
“The ODEs of the Francois et al., 2013 model for mixtures of TCR antigens were
formulated in Francois et al. [129]; we reproduce them here in the notation chosen

for this work. We drop the p = T superscript, which is implied for T cells without a

CAR.
dC :
d;,l = k(L — Ryy) (RtOt N Z,Z; Rb,l/) +(b+71)C = (1/7+ ¢)Coy
anl
dt’ = pCh10+ (0 +7)Crirg — (p+ 1/ +b+91)Cpy (L <n < N)
dC
dftv’l = ¢Cny— (1/n+b+71)Cny G-D
a RS
— = Om 4 Lot — 1) =1 32
dt P (Cm,th l/z::l J) (et ) ] oY
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where [ € {1,2} indicates the ligand type (agonist or antagonist) bound to these
TCRs, and where R;,; = ZTJLV:O Ch,. The rate 3 is assumed to be fast enough for
I and the C,, to reach steady state within minutes and does not enter equations
(3.4)—=(3.7) for that steady state.” (TCR/CAR antagonism, [3], SI)

-1
T
— © ©

== Cna

K
R +Li <—=Ci=—=C == Cphi<==
7-1*1 b+~I b+~I | b+~I

ﬁTXICm ,l/cm ;th

47

; ; Br

—1

T2 b+ b+~I b+

R + Ly = 0,2‘—(p>C1,2‘—_$—> Cm,2<—_'(;—_> N,2
K

~N——

Ty

Figure 3.7: Reaction network structure of the classical AKPR model (Frangois et al., 2013) in the presence

of agonist (71, L1) and antagonist (72, L2) antigens.

Figure 3.7 shows a diagram of the biochemical reaction network to which this ODE systems cor-
responds when there are two ligands. To summarize, the ), ; variables implement a kinetic proof-
reading cascade, where we distinguish TCRs bound to either ligand type [, and the inhibitory
feedback is implemented by a phosphatase I, which is activated by C),, ; from its inactive form I*

out of a total pool of molecules I, = [ + I*.

We first consider this model in the case of a single ligand type and drop the index [ = 1. For L

ligands of binding time 7, the total number of bound receptors at steady-state is

1 1 1 1\?
Rb = 5 Rtot —I— L + — - = Rtot + L _I_ - - 4RtOtL (3'3)

KT 2 KT

and the rest of the solution for the steady-state is carried as in Francois et al. [129]
(see table 3.1 for the definition of parameters). In particular, the steady-state number

of complexes in proofreading step n is given by

On = Rb ((I_T_n + a+r+") (34)
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where, for a given I, 4 and a4 are given by:

o _ptbtyl Y Vet b 4yl +1/7) —dp(b+9])
=T 20 +0) 2(b+ 1)

T+ — 1
as = (3.6)
(ra/rs)" =1

(3.5)

Egs. (3.3)—(3.6) correspond to a standard proofreading cascade with a forward rate ¢
and a backward rate b+~1, where the inhibitory species I thus favors reverse reactions
in the KPR cascade (see figure 3.12D). The crucial feature of the AKPR model is
that I depends on a complex C,, in the cascade, so the steady-state value of I is the

solution of the following implicit equation :

C,
I =lLy4——F7— 3.7
t tCm,th N (3.7)
where C,,, depends on [ via egs. (3.4)=(3.6), and C,, 4, is a fixed parameter setting
the scale of I activation. Eq. (3.7) is solved numerically for I to close the system of

equations.” (TCR/CAR antagonism, [3], SI)

With the default parameter values used in [129], the classical AKPR model produces the steady-
state response curves to a single antigen shown in figure 3.8. Increasing 77, even just moderately,
increases the output significantly, at all L;: this is kinetic proofreading. Moreover, as L, increases,
C'y eventually stops increasing and remains flat as a function of L, (over three orders of magnitude
for stronger antigens), due to the negative feedback implemented by I and activated by C),,. The
combination of kinetic proofreading (scaling with 71) and adaptive feedback (independence of
the output on L;) makes it possible to imagine a response threshold on C) (horizontal dashed
line) such that intermediate antigens (e.g., 7, = 3.5 s) will never cross it, while slightly stronger
antigens (e.g., 1 = 5 s) cross it at small antigen concentrations ;. This illustrates how AKPR
models perform absolute ligand discrimination on the basis of binding time 7, with minimal effect

from antigen concentration L.

3.3.3 Classical AKPR model for TCR/TCR antagonism
“This study focuses on antagonistic interactions between receptors on the surface of
T cells. Hence, we revisited the initial Francois et al., 2013 model on TCR/TCR
antagonism data, to explore whether it could account for quantitative effects of

varying antigen quality and density.
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Parameter Definition

Input T Binding time of ligands of type [
variables L Total number of ligands of type [ (free or TCR-bound)
Stat Chi Number of TCRs in state n bound to ligand type [
ate
variables Ry, Total number of TCRs bound to ligand type [
I Number of active inhibitory molecules

Riot Number of TCRs per T cell

Integer Tiot Total number of inhibitory molecules (active or not)
parameters N Number of proofreading steps for TCRs
m Proofreading state of TCRs activating the inhibitory module
© Forward KPR rate
Rat K Binding rate of ligands (of any type [) to TCRs
ate
b Basal reverse rate in the KPR cascade
parameters
vy Reverse KPR rate mediated by inhibitory molecules /

Cn.th Activation threshold of I by C,,, (same for all types [)

Table 3.1: Definition of parameters in the classical AKPR model. Variables and parameters in the
classical AKPR model, for TCR/TCR antagonism. Superscripts p = T, indicating the receptor type is TCR,
are implicit. Note that [?,; = ZTJLO (1, so it is not an independent state variable. 6Y: 10-ITAM TCR, 6F:
4-ITAM TCR (CD3¢ ITAMs mutated).

For a mixture of two TCR antigens, we distinguish receptors bound to agonist ligands,
denoted by variables C), 1, and receptors bound to ligands of lower potency (e.g.,
antagonists), denoted by C,, ». Agonist and weaker ligands have binding times 7; and
Ty, respectively, and quantities Ly and Lo." (TCR/CAR antagonism, [3], SI)

We again are interested in the fixed point solution of the system of ODEs (3.2), now for [ € {1,2}.

“The stationary solution is given by (3.4)—(3.6), with 7 = 7 or 75, respectively.
However, the numbers of bound receptors to each ligand type, R, and Ry, are

coupled via,

0= m'l(Ll — Rb,1)(Rtot - Rb,l - Rb,2) - Rb,l
0= /{TQ(LQ — Rb72)(Rtot - Rb,l - Rb,Q) - Rb,2 : (3.8)

This system is solved exactly [...] by expressing Ry 5 in terms of Ry,

Ry,
— R — Ry1 — ’ 3,
Ryo = Riot — Rp1 (L1 — Fon) 3.9
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Figure 3.8: Response curves — steady-state output C'y as a function of antigen density L1 — of the classical
AKPR model [129], for various antigen qualities 7. The horizontal dashed line is a hypothetical response
threshold, to illustrate how intermediate antigens can be absolutely distinguished from stronger ones, at all
L;. The steady-state solution plotted is exact and includes receptor saturation at large L; (contained in

equation 3.3): the curves all become flat as L; becomes larger than the number of receptors Ryoy.

and solving the resulting cubic equation for Ry,
po(Rb,1)3 +P1(Rb,1)2 +paRy +p3 =0 (3.10)
where the coefficients are

po=——1
T2

T 1 T
p1=—<—1—1) (Rtot+L1+_) —Ly— —L,
T2 KTy T2

T T L
pr=—L+ (2—1 — 1) RitL1 + — + L Ly
T2 T2 KTy

-
p3 = _T_lRtotL12 (3.11)
2

The physically correct solution is the only root satisfying 0 < R, 1 < L. It always ex-
ists and ensures 0 < Ry, < Ly and Ry, + Ry 2 < Ryot too.” (TCR/CAR antagonism,
[3], SI)

We give a proof of these claims about the existence and uniqueness of the solution for (Ry 1, Ry, 2) in
appendix C. We derived this exact solution for (R 1, Ry 2) for the first time in [2], to avoid relying

on the approximation that receptors are not saturated by ligands, which was used in previous papers
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on AKPR models [129, 132] although it in fact breaks down at high (1xM) antagonist doses. Our

exact solution solves this problem and remains valid in all regimes of ligand and receptor numbers.

“Lastly, the implicit solution for I in eq. (3.7) now contains a sum over ligand types

Chi+Chy

I=1, .
“er L+ e +Cr,

(3.12)

" (TCR/CAR antagonism, [3], SI)

The equation for I is solved numerically, by treating C),,; as a function of I.

3.4 Initial AKPR model for TCRs with fewer ITAMs

In our first attempt to predict the response of 6Y and 6F TCRs to antigen mixtures, we slightly
augmented the classical AKPR model to account for the effect of ITAM number, using the insights
gained in section 3.2. Figure 3.9A illustrates the model variants thus defined for 6Y and 6F T cells.
Then, we proceeded in two steps to extract predictions from the model. First, we tweaked model
parameters and output definitions to fit the response of both TCR types to single antigens. Second,
we generated model predictions for responses to antigen mixtures as a function of Ly, 7y, 75, which

we compared qualitatively to experimental measurements.

3.4.1 Adapting the model to distinguish 6Y and 6F(i) TCRs
“We adapted the model to capture differences seen between 6Y and 6F TCRs in
response to a single type of antigen at a time, such as shown in figure 3.9B. The
main features we aimed to capture were that 6F(i) cells produce more output for
weak antigens — the curve looks shifted to the left according to ligand quality— but
that 6Y cells eventually catch up (for strong agonists) and produce a higher maximal

response.

In our model, we hypothesized that differences in ITAM multiplicity correspond to
different numbers of kinetic proofreading steps. We assigned fewer steps to 6F TCRs
— which lack 6 ITAMs — than to 6Y: Ngy > Ngr. Less proofreading may explain the
increased response of 6F(i) T cells to weak agonists. Additionally, we made the last
kgy > 1 complexes (from Cl,, —x+1 to Cly, ) contribute to the signaling output of
6Y TCRs, compared to only the last complex, C,,., with 6F(i) TCRs (i.e., kgr = 1).
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Figure 3.9: Classical AKPR model for 6F TCRs{ “ a, Phenomenological model of TCR activation
predicting antagonism, as modified from Francois et al. [129]. On binding to a ligand (left), the TCR
undergoes a series of biochemical modifications (indicated by color changes on ITAMs). Complexes
can also unbind, followed by rapid dephosphorylation of ITAMs; thus, the TCR implements a KPR
scheme. Complex C), (m = 1) activates the negative feedback realized by the phosphatase SHP1 (S:
active, Sx: inactive); SHP1 activation is reduced in 6F(i) by a factor f,¢r to reflect the experimental
observations reported in [2], Fig. 5. To reflect their higher ITAM multiplicity, 6Y TCRs can undergo
Ngy proofreading steps and 6F TCRs can undergo Ngp steps, with Ngy > Ngpr. Moreover, the last kgy
complexes of 6Y TCRs contribute to the total output (green arrows), compared to only one for 6F(i) b,
Left, model constructed to recapitulate the differences between the responses of OT1-6Y and OT1-6F(i)
T cells to antigens with different affinity for the TCR. Right, experimental results as measured by IL-2
concentration at 24 h in response to different OT1 peptides.” (CD3( ITAMs, [2], figure 7). Error bars are

standard deviations over 3 repeats with cells from 3 different mice.
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This postulated effect of reduced ITAM multiplicity is consistent with the suboptimal
6F(i) response to antiCD3/antiCD28 crosslinking ([2], figure 1) or strong antigens
(N4, figure 3.9B). The numbers we used are listed in the parameter table 3.3. Note
that Ngy and Ngp represent phenomenological TCR states and are not necessarily
equal to the number of ITAMs." (CD3¢ ITAMs, [2], SI)

From the steady-state solutions of the model variables C), ;, we defined the activation output in the
presence of Ly, Lo ligands of binding times 71, 75. We summed the scaled values of the last k

complexes in the proofreading cascade,

N

O(r1, 72, Ly, La) = Y 0n(Cy + Ci2)
n=N—k+1
(Cn,l + Cn,2>2

where 0,,(Cp1 + Ch2) = 21 (Cor s Coa)? (3.13)
n n,1 n,

where, of course, ), » = 0 when considering the response to a single ligand type.

“The normalization constants 6,, are the values of C,;s in response to a large amount of
L, strong agonist ligands alone (0,, = C,,(7 = 158, L — o0)), to ensure that ®,, only
saturates for very strong agonists. This normalization accounts phenomenologically
for possible differences in the signaling potency of CD3( and CD3~, 0, ¢ chains. It
also compensates for the different scales of C,, at successive steps n in our model.
Lastly, for plotting purposes, we added a small positive value (1073) to the output
O(7, L) to mimic the effect of an experimental lower limit of detection; it does not
alter the predictions of the model.” (CD3¢ ITAMs, [2], SI)

3.4.2 Choosing binding times and ligand numbers
“To make comparisons between our model and experimental data, we had to match
ligand binding times 7 in the model with the binding times for OT-1 TCR binding to
H-2K?-OVA-derived antigens, and the numbers of ligands L per antigen presenting
cell (APC) in the model with the number of ligands for different peptide pulse con-
centrations. Our model relies on phenomenological parameters so we did not attempt
to match them with exact biochemical parameters; instead, we chose the following

reasonable estimates. For 7, we associated evenly spaced values to the OVA-derived
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antigens, which are more or less evenly spaced on a logarithmic ECj5, axis [174, 176].

The table 3.2 below summarizes the selected values for 7.

For L, we assumed that a 1 uM pulse concentration P saturated the MHC molecules
on the surface of the antigen presenting cell (APC), thus giving roughly 10° pMHCs
per APC. Concentrations between 1 M and 1nM are almost saturating, such that a
1nM pulse leads to 10* bound peptides per APC. We finally assumed that concentra-
tions between 1nM and 10 pM (those used in our experiments) are in the log-linear
region of the dose response curve. To generate the continuous model prediction
lines as a function of pulsing antigen concentrations P, we fitted a Michaelis-Menten

calibration curve to those assumptions,

P

L= Lmax—
P+ Fy

(3.14)
such that any number of ligands L could be mapped to a pulsing peptide concen-
tration. This conversion curve is shown in figure 3.10 below.” (CD3( ITAMs, [2],
SI)

Peptide 7 (s)

N4 10
A2 8
Q4 6
T4 4.5
V4 3.5
G4 0.75
El 0.1
None 0.001

Table 3.2: Peptide - 7 map for early studies of 6F TCRs in section 3.4. It will be replaced by a more

systematic conversion rule later.

3.4.3 Parameters of the model for single antigen types

For convenience of interpretation, in this version of the model, we supposed that the inhibitory
molecule [ was in fact SHP-1, so we called it .S in this section, and we took m = 1 — both of

these assumptions are as in the original model [129]. We also called 3;/C,, «n = « and 5; = /5 the

SHP-1 activation and deactivation rates, respectively.
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Figure 3.10: Approximate pulse concentration — L map conversion function, for section 3.4. It will be

replaced by more systematic experimental characterizations later.

“After defining the model network and output, we made two modifications to the
original parameter values to qualitatively match the cytokine response curves as a

function of antigen quality (figure 3.9B), in response to a single kind of antigen (i.e.,
L2 - O)

First, we included the important experimental observation that 6F(i) T cells recruit
less SHP-1 by decreasing the phosphatase activation rate a by a factor f,¢r = 8,
for this type of TCR only. Note that the normalization factors 6,,, however, were
defined without this lowered SHP-1 rate, because those thresholds are set by the
biochemistry of unaltered TCRs.

Moreover, the original model parameters were selected for pre-activated (‘blast’) T
cells, while experiments here were done on naive cells; as a consequence, we had
to reduce, for both TCR types, reaction rates ¢, b, and v by a factor fuave = 4,
and to increase the SHP-1 activation rate o by a factor 2f,.iv.. Biologically, these
modifications make sense: we expect pre-activated T cells to respond faster and to

have less negative feedback inhibiting their response.

After making those two modifications, the model could qualitatively match data for
a single antigen type (figure 3.9).The resulting model parameters are summarized
in the table below. We did not tune parameters to fit antagonism experiments;
antagonism predictions in figure 3.11f-h were generated after having selected final
model parameters.” (CD3( ITAMs, [2], SI)
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Parameter  Value in [129] Value for 6Y Value for 6F(i) Description

R 3 x 10% Same value as original TCRs per T cell
St 6 x 10° Same value as original Total number of SHP-1 per cell
K 107457t Same value as original Ligand-receptor pair binding rate
T 0.01to 10 s Same range as original Ligand dissociation time
N 5 8 4 Number of proofreading steps
k N/A 4 1 Last k complexes contribute to output
© 0.09s7! 1 0.0957! Same as 6Y Phosphorylation rate
b 0.04s71 % x 0.04s71 Same as 6Y Spontaneous dephosphorylation rate
v 12x107%s7! 1 x1.2x107%s7!  Sameas 6Y Dephosphorylation rate by SHP-1
B/ 500 500/8 = 67.5 500 SHP-1 deactivation-activation ratio

Table 3.3: “Model parameter values for 6Y and 6F or 6F(i) (germline or switched phenotype) naive T
cells, compared to original model values (which were based on the literature and tuned for pre-activated
T cells).” (CD3¢ ITAMs, 2], SI)

3.4.4 Predictions of the antagonism ratio in various mixtures
To compare model predictions and cytokine data, the amount of antagonism exhibited by cytokines
was quantified by the fold-change F'C' in cytokine output in presence of the antagonist peptide,

compared to the agonist peptide alone. This defined an “antagonism ratio”,

[Cytokine|(agonist 4+ antagonist)

FOdata = (315)

[Cytokine](agonist alone)

“which is lower than 1 if the addition of the antagonist ligand lowers the total cytokine
response, I.e., if there is antagonism. From our cytokine time series, we computed
the ratio at each time point, then took the geometric average of ratios across time,

to have a single number characterizing each agonist-antagonist mixture.” (CD3¢
ITAMS, [2], SI)

Figure 3.11a—e illustrates this process. Analogously, for the model, we computed the ratio of the

steady-state outputs for the mixture compared to the agonist alone,

O(agonist + antagonist)

FCmodel - (3 . 16)

O(agonist alone)

where O is the model output defined in equation (3.13) (for 6Y or 6F(i) T cells).

“We computed this ratio for a range of agonist binding times and agonist concentra-

tions, in the presence of model equivalents for the antagonists we planned to used
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Figure 3.11: Model predictions of antagonism in 6Y and 6F T cells compared to data. Adapted from
CD3(¢ ITAMs, [2]. “a, IL-2 secretion dynamics over 72 h for naive OT1-6Y or OTI-6F(i) (dLck-Cre)
CD8* T cells incubated with APCs pulsed with either an agonist alone (N4) or agonist plus antagonist
(N4 + V4) at the indicated concentrations (n = 3 biological replicates). b, At 18 h, IL-2 levels were
markedly lower in OT1-6Y T cells stimulated with both N4 and V4 compared to N4 alone, whereas
V4 functioned as a co-agonist with N4 for OTI-6F(i) T cells. Data are shown as the mean + s.d.

¢, Antagonism ratio for b. Values greater than 1 indicate enhancement of the agonist response by an

antagonist ligand, while values smaller than 1 are indicative of antagonism. d, Antagonism ratio as
a function of time revealed that adding V4 peptide increased IL-2 secretion by N4 peptide-stimulated
OTI1-6F(i) T cells but antagonized IL-2 secretion by N4 peptide-stimulated OT1-6Y T cells. e, Averaged

antagonism ratio over all recorded time points.” (CD3( ITAMs, [2], figure 6).
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Figure 3.11: (Continued) (f), “Comparison of modeled versus experimental results on the degree of an-
tagonism in OT1-6Y and OTI-6F(i) T cells as a function of antagonist peptide affinity. Both model and
experiment show that OT1-6F(i) T cells are less susceptible to antagonism than OT1-6Y T cells across
a range of antagonist affinities, and that there is an optimum range of antagonist affinities needed to
maximize an antagonistic response. [g], Model (left) and experimental results (right) for antagonism as
a function of agonist concentration, agonist and genotype [...]. Both model and experiment show that
OTI-6F(i) T cells are antagonized less effectively than OTI-6Y T cells. [h], Model (left) and experi-
mental results (right) for antagonism as a function of agonist concentration, antagonist and genotype
for different antagonists [...]. Both model and experiment show that the antagonist that produces the
largest antagonistic effect changes as the agonist concentration varies. n = 3 biological replicates. Data
are represented as the mean + s.d. Data are representative of three independent experiments.” (CD3¢
ITAMs, [2], figure 7)

in experiments (V4, G4, E1 at 1uM). In particular, we predicted the antagonism ef-
fects highlighted in figure 3.11f-h. Then, we compared the model predictions to the
experimental results, without further tuning of the model parameters (except G4's T,
which was lowered from 1.5 to 0.75 s). Hence, the proper output definition and the
aforementioned adjusted model parameters for 6F(i) naive T cells were determined in

advance to capture data on the response to pure antigens (figure 3.11), which came
from a previous experiment.” (CD3(¢ ITAMs, [2], SI)

Figure 3.11 shows that the classical AKPR model, with a few small adjustments based on insights
from our latent space analysis (section 3.2), provides counter-intuitive, qualitative predictions of
TCR/TCR antagonism, which are verified in the experimental data. The reduction in antagonism
in 6F(1) (4-ITAM) T cells is captured by the model, and the measurements confirm our hypothesis
(figure 3.11f). We did not expect the fact that the V4 peptide goes from partial agonist to antago-
nist as the dose of TCR agonist is increased, yet it is verified in the data (figure 3.11g). We also
did not expect the crossover of which antigen is the best antagonist as agonist density is increased
(figure 3.11h). Just as it happens often in other fields of physics, the results could not have been
guessed from qualitative reasoning only; they required a mathematical formulation to be derived.
Our results illustrate how broad insights gained from latent space cytokine dynamics can be trans-
lated into mechanistic understanding of TCR signaling, thus bridging slow and fast T cell response

time scales.

However, the agreement between the classical AKPR model and experimental data started to crack
as we sought a direct quantitative agreement (i.e., as we tried to directly superpose data and model

curves). Upon a more systematic exploration of antagonist density Lo in particular, and after
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experimentally calibrating ligand densities as a function of antigen pulse concentration (to have
more accurate estimates than those hypothesized in figure 3.10), we realized that a revised model

of TCR kinetics would be necessary.

3.5 Revising the AKPR model of TCR/TCR antagonism

The previous model worked qualitatively for the conditions tested in section 3.4, but we then
sought a direct, quantitative agreement between model and data. Moreover, we anticipated the
need to generalize our framework to synthetic receptors for cancer antigens in immunotherapy,
which have very different abundances and affinities than TCR antigens. Thus, we set out to more

systematically explore the space of antigen parameters and to develop a revised AKPR model.

For this purpose, our collaborators

“generated a comprehensive dataset cataloging TCR-mediated antagonism and en-
hancement of functional T cell responses across a large set of TCR-engaging antigen
mixes (Figure 3.12A). We documented highly-variable F'C'rcg/rcr in response to dif-
ferent strengths and quantities of antigens, compared to the response to an agonist
alone (Figure 3.12B)." (TCR/CAR antagonism, [3])

This F'Crer/rer ratio is the fold-change in T cell activation output in the presence of a mixture
of antigens, compared to the agonist antigens alone, which was already introduced in section 3.4.
We discuss again its calculation from data and model outputs below (section 3.5.1). It allowed us
to directly overlay model and data antagonism levels. We exploited this quantitative comparison
opportunity to estimate model parameters using Markov Chain Monte Carlo (MCMC) simula-
tions and to develop a revised AKPR model with better fits to the data than the classical model
(figure 3.12C).

3.5.1 Quantitative comparison between models and data

Appendix D details the procedures by which we estimated model parameters for TCR/TCR antag-
onism (this chapter) and TCR/CAR antagonism (next chapter) from experimental calibration and
MCMC simulations. Here, we summarize the main steps we followed to first thoroughly assess
the classical AKPR model, and then develop new models based on quantitative agreement with

experimental measurements.
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Figure 3.12: “Modeling TCR responses to mixes of antigens to quantify receptor cross-inhibition
(A) Scheme for multiplexed experimental settings to quantify TCR/TCR crosstalk. (B)
Different TCR antagonist ligands modulated TCR response to the agonist ligand (OVA-N4) in both
directions over time across a variety of conditions in vitro, as measured using fold changes (F'C) of
cytokine dynamics obtained from the IMMUNOtron robotic platform [1] (n = 3 biological replicates).

(C) These data were used to develop analytically tractable mathematical models of receptor crosstalk

in T cells.
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Figure 3.12: (Continued) “(D) Biochemical reaction network of the classical adaptive kinetic proofreading
(AKPR) model used to describe TCR antagonism [129], extended to CAR and TCR receptors. Bolded
parameters were fitted by MCMC. (E) Posterior parameter distributions of the classical model sampled
by MCMC to fit TCR/TCR antagonism data. Crosshairs indicate the maximum a posteriori parameter
estimate. (F) TCR/TCR antagonism model curves of the classical model, with the maximum a posteriori
parameter estimates, compare poorly to the experimental data on which they were fitted. (G) Biochemical
network of the revised AKPR model, differing from (A) by its inhibitory module, which only impacts the
last KPR step. Model parameters are defined in table 3.4. (H) Posterior parameter distributions of the
revised model, obtained by MCMC. (I) TCR/TCR antagonism model curves of the revised model, with
the maximum a posteriori parameter estimates, fit well TCR/TCR antagonism data. Shaded areas in
(F,1) are 90 % model Cls, generated by pulling 1000 parameter samples from the MCMC distributions
in (E,H), while error bars are 95 % Cl on the geometric mean of cytokine data from 3 experimental
replicates with 6 time points each, based on a Student’s t-distribution.” (TCR/CAR antagonism, [3],
figure 2)

Surface molecule abundances

To begin, our collaborators measured the abundance of TCRs on the surface of T cells and of
MHC:s on the surface of antigen presenting cells, using fluorescent antibodies and flow cytometry.
Since our AKPR model describes the TCR signaling of a typical cell generalized to the whole
population, we computed the geometric average across the measured single-cell abundance distri-
butions*. These average abundances allowed us to fix the total number of TCRs, Ry, and the total
number of MHC (loaded with a peptide or not), respectively. The results for various cell types
are in figure 3.13A-B and in the appendix, table D.1. Of note, while earlier modelling studies
reported R, = 30, 000 receptors per T cell [116, 129, 124], we consistently found higher receptor

numbers, Ry ~ 1 x 10°.

Then, to calibrate ligand abundance L; as a function of the peptide pulse concentration, our col-
laborators measured the number of pMHCs on antigen presenting cells pulsed at various concen-
trations. We fitted these measurements with a Michaelis-Menten curve as a function of the pulse
concentration [P] (figure 3.13C left). We found a similar loading constant, /p joa4, for a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>