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Abstract 

The resource dwindling of our planet calls for the development of environmentally-friendly 

materials that can preserve our environment. Paper is one of them and has long been used mainly 

for artwork, printing, and packaging. Only recently, the art of paper folding, i.e., Origami, has been 

leveraged to create structural materials that can spatially fold from a flat sheet into a structurally 

resistant material. This thesis proposes using folds and cuts in sheets of paper to generate a class 

of environmentally-friendly materials that attain both load-bearing and energy absorption capacity.  

On the first front, chapter 2 introduces a strategy to impart multidirectional load-bearing capacity 

to a stacked structure of papers. Most origami concepts in the literature cannot provide load-

bearing capacity, and those that can, do so in specific directions but collapse along the direction of 

deployment, limiting their use as structural materials. Here we introduce a rigidly foldable class of 

cellular metamaterials that can flat-fold and lock into several stiff states across multiple directions, 

including the deployment direction. Our metamaterials rigidly fold with one degree of freedom 

and can reconfigure into several flat-foldable and spatially-lockable folding paths due to face 

contact. Locking under compression yields topology and symmetry changes that impart 

multidirectional stiffness. Additionally, folding paths and mixed-mode configurations can be 

activated in situ to modulate their properties. Their load-bearing capacity, flat-foldability, and re-

programmability can be harnessed for deployable structures, reconfigurable robots, and low-

volume packaging. 

A second trajectory explored in this thesis stems from relaxing the rigid foldability restriction of 

the origami panels to enable energy absorption and dissipation. Most of the existing multistable 

concepts used to absorb energy rely on inclined beams and shallow shells supported by heavy and 

bulky frames, which do not contribute to deformation and energy dissipation. In chapter 3, this 

thesis presents an origami-inspired multistable material with an extensive range of multistable 

reconfiguration that can substantially dissipate energy. The reconfiguration process consists of two 

phases. First, the panels rotate rigidly about their connection lines. Next, while a set of panels 

provide axial stiffness, the other set undergoes flexural deformation leading to snap-through 

instability. The axial stiffness offered by the first set of panels eliminates the need for stiff and 

bulky frames, culminating in a more efficient distribution of the base material. In addition, we 

propose a relatively simple yet effective method of manufacturing layered structures from paper 
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and polymeric sheets. The energy absorption capability and relatively easy manufacturing method 

make them a good candidate for the packaging industry. 

Overall, this research contributes to the following fronts: (1) Developing a reconfigurable load-

bearing paper-based material inspired by the art of paper folding; (2) Offering a strategy for 

designing paper-based energy absorbers; (3) Proposing a low-cost, lightweight, and sustainable 

material that is structural, flat-transportable and in situ deployable as well as safely disposable 

upon the end of its service life. The concept introduced here may find a wide range of applications, 

from aerospace, flexible electronics, and packaging to furniture. 
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Résumé 

L'épuisement des ressources de notre planète appelle au développement de matériaux écologiques 

qui peuvent préserver notre environnement. Le papier est l'un d'entre eux et a longtemps été utilisé 

principalement pour les œuvres d'art, l'impression et l'emballage. Ce n'est que récemment que l'art 

du pliage du papier, c'est-à-dire l'Origami, a été mis à profit pour créer des matériaux structurels 

qui peuvent se plier dans l'espace à partir d'une feuille plate pour devenir un matériau 

structurellement résistant. Cette thèse propose d'utiliser les plis et les coupes dans les feuilles de 

papier pour générer une classe de matériaux écologiques qui atteignent à la fois une capacité de 

charge et d'absorption d'énergie.  

Sur le premier point, le chapitre 2 présente une stratégie visant à conférer une capacité de charge 

multidirectionnelle à une structure empilée de papiers. La plupart des concepts d'origami de la 

littérature ne peuvent pas fournir de capacité de charge, et ceux qui le peuvent le font dans des 

directions spécifiques mais s'effondrent dans la direction du déploiement, ce qui limite leur 

utilisation comme matériaux structurels. Nous présentons ici une classe de métamatériaux 

cellulaires rigidement pliables qui peuvent se plier à plat et se verrouiller dans plusieurs états de 

rigidité dans plusieurs directions, y compris la direction de déploiement. Nos métamatériaux se 

plient de manière rigide avec un degré de liberté et peuvent se reconfigurer en plusieurs chemins 

de pliage à plat et verrouillables dans l'espace grâce au contact des faces. Le verrouillage sous 

compression entraîne des changements de topologie et de symétrie qui confèrent une rigidité 

multidirectionnelle. De plus, les chemins de pliage et les configurations en mode mixte peuvent 

être activés in situ pour moduler leurs propriétés. Leur capacité de charge, leur pliabilité à plat et 

leur reprogrammabilité peuvent être exploitées pour des structures déployables, des robots 

reconfigurables et des emballages à faible volume. 

Une deuxième voie explorée dans cette thèse consiste à assouplir la restriction de pliabilité rigide 

des panneaux d'origami pour permettre l'absorption et la dissipation d'énergie. La plupart des 

concepts multi-stables existants utilisés pour absorber l'énergie reposent sur des poutres inclinées 

et des coquilles peu profondes soutenues par des cadres lourds et encombrants, qui ne contribuent 

pas à la déformation et à la dissipation de l'énergie. Dans le chapitre trois, cette thèse présente un 

matériau multi-stable inspiré de l'origami avec une gamme étendue de reconfiguration multi-stable 

qui peut dissiper une grande quantité d'énergie. Le processus de reconfiguration se compose de 
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deux phases. Tout d'abord, les panneaux tournent de manière rigide autour de leurs lignes de 

connexion. Ensuite, tandis qu'un ensemble de panneaux assure la rigidité axiale, l'autre ensemble 

subit une déformation en flexion, ce qui entraîne une instabilité de type "snap-through". La rigidité 

axiale offerte par le premier ensemble de panneaux élimine le besoin de cadres rigides et 

encombrants dans notre structure, ce qui se traduit par une distribution plus efficace du matériau 

de base. En outre, nous proposons une méthode relativement simple mais efficace de fabrication 

de structures en couches à partir de feuilles de papier ou de polymères. La capacité d'absorption 

d'énergie et la méthode de fabrication relativement facile en font un bon candidat pour l'industrie 

de l'emballage. 

Dans l'ensemble, ces travaux de recherche contribuent aux objectifs suivants : (1) développer un 

matériau porteur reconfigurable à base de papier inspiré de l'art du pliage du papier ; (2) proposer 

une stratégie de conception d'absorbeurs d'énergie à base de papier ; (3) proposer un matériau peu 

coûteux, léger et durable qui soit structurel, transportable à plat et déployable in situ, et qui puisse 

être éliminé en toute sécurité à la fin de sa vie utile.  
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Claim of originality 

 

The following list summarizes the main findings accomplished in this thesis. 

• A class of rigidly-foldable origami-inspired mechanical metamaterial has been introduced to 

achieve multiple lockable and flat-foldable states. Lockable states are able to withstand large 

external loads in multiple directions. 

• A method for manufacturing layered origami patterns has been proposed, which can be easily 

automated to increase the manufacturing rate. 

• A series of innovative test setups has been developed that can be employed in research on 

origami-inspired structures. 

• A class of multistable origami-based structures has been developed. It has been shown that 

these structures have an extensive range of multistable reconfigurations that can effectively 

dissipate energy. 
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Chapter 1: Introduction and literature review 

Materials contribute to chart human history. The significance of materials in human civilization is 

reflected in the system of names we currently use to denote three historic ages (e.g., Stone Age, 

Bronze Age and Iron Age). Materials have been the backbone of engineering development across 

sectors and disciplines. The rapid developments of the 20th century, especially in the areas of 

manufacturing, have resulted in the emergence of new engineering materials with enhanced 

properties capable of attaining outstanding performance.  

1.1 Metamaterials 

Metamaterials are artificially engineered materials with exceptional thermal [1-3], photonic [4, 5], 

optical [6-8], electromagnetic [9], acoustic [10-13], or mechanical properties [14-19] that differ 

significantly from those of natural materials. Metamaterials are constructed by arranging small 

structures, known as unit cells, in a specific pattern, leading to unconventional behaviors. The unit 

cells can range from wires [20], beams [21], plates [22], shells [23], split-ring resonators [24], 

acoustic resonators [12, 13], gears [25, 26] and hinged links [27]. These materials can exhibit 

unprecedented properties, such as negative Poisson’s ratio [15, 17, 28], negative [2, 3] and 

unlimited coefficient of thermal expansion [1], and negative refraction index [11]. Metamaterials 

are considered a novel field of study and hold great potential for a variety of technological 

applications, including super-resolution imaging [6-8], energy harvesting [29-32], electromagnetic 

shielding [33], noise reduction [34], impact mitigation [35-38], and vibration damping [39-42]. 

Figure 1-1 shows a series of applications of metamaterials from various fields of study. 
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Figure 1-1 Examples of metamaterials; A Metamaterial lattice with negative refraction index. The array of 

square split-ring resonators gives the material a negative magnetic permeability, while the array of straight 

wires gives it a negative permittivity [43]  B Architected material consisting of two constituents with tunable 

coefficient of thermal expansion [3]. C Metamaterial system proposed as  a three-dimensional acoustic 

cloak, where acoustic waves cannot detect the object at the center of the pyramid [44] 

1.2 Mechanical metamaterials 

Mechanical metamaterials are a subset of metamaterials that exhibit unconventional mechanical 

properties, including negative stiffness [45, 46], negative Poisson’s ratio [47-50], zero thermal 

expansion [1, 3], energy absorption [23, 42, 51, 52], energy dissipation [39, 42, 52], and energy 

entrapment [53]. The underlying structure of mechanical metamaterials often consists of 

periodically arranged building blocks [14]. With the emergence of novel manufacturing 

technologies, amorphous and non-periodic structures have also been introduced [14]. Figure 1-2 

shows a collection of mechanical metamaterials. 

Mechanical metamaterials can be loosely classified with respect to their characteristics [14], 

including the mechanical response of the base material, the underlying deformation mechanism in 

the base material and the topology of the deformable unit. The mechanical response of the base 

material can be of various types including linear elastic, hyperelastic, and viscoelastic. A 

deformable building block can be made of hinges, beams, and thin shells among other basic 

structural elements. The deformation can take place locally or throughout the structure of the 
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material. A subclass of mechanical metamaterials with localized deformations is mechanism-based 

metamaterials [14].  

 

Figure 1-2 Examples of mechanical metamaterials; A Snapping metamaterial in tension [54], B 

Propagating instability along perforated shell [55], C Bistable auxetic metamaterials [49], D Two 

dimensional instability-based mechanical metamaterial [56], E Mechanical metamaterials with coupling of 

axial and rotational response [16], F Metamaterial with high bulk modulus to mass ratio, the shear modulus 

is approximately zero [57], G Instability induced negative Poisson’s ratio [17], H Metamaterial with tunable 

coefficient of thermal expansion [3], I A combinatorial metacube consisting of 10 × 10 × 10 unit cells; 

under uniaxial compression distinct patterns can appear on the faces of the cube [58], J Unit cell of material 

with maximum stiffness to mass ratio (i.e. Hashin-Shtrikman bound) [22], K Magnetically assisted rotary 

damper [42], L A metamaterial with switchable topological polarization that alternate between deformable 
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and stiff states [25], M A metamaterial in which states of self-stress enable selective buckling [59], N 

Gyroscopic metamaterial preventing the scatter of sound waves from the boundaries to the bulk of the 

material [60]  

 

Figure 1-3 Examples of mechanism-based mechanical metamaterials: A Hoberman sphere, a popular toy 

and a pneumatically actuated mechanical metamaterial that has similar collapsible behavior to Hoberman 

sphere [61], B An auxetic material made of squares hinged at their vertices [62], C A shape changing 

metamaterial featuring multiple steps of deformation inspired by square based auxetic metamaterials in (B) 

[18], D A material with zero energy modes that can reconfigure to adopt its boundary to a variety of shapes 

[63], E Localization of zero mode (modes with zero elastic energy) around a dislocation in a topological 

metamaterial [27], and F Gears mounted on solid links, connected through joints and arranged into a lattice 

to form a geared topological metamaterial [26]. 

A widely studied class of mechanism-based materials stems from origami and kirigami principles. 

Origami and kirigami, the arts of paper folding and paper cutting, have recently received much 

attention in engineering and beyond.  
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1.3 Mechanism-based metamaterials 

Mechanism-based metamaterials incorporate mechanical elements into their structure to allow 

some degree of motion [14]. The mechanical components, such as actuators, hinges, or beams, are 

designed to interact with each other and with external stimuli to produce specific mechanical 

responses [14]. This interaction allows the material to exhibit unique functionalities, such as 

changing its shape, acoustic properties,  and thermomechanical behavior [14]. Slender elements, 

e.g., beams and shells, are the cornerstone of designing mechanical metamaterials since they allow 

for large reconfigurations. Large deformations lead to nonlinearities, including elastic, snap-

through and snap-back instabilities. Nonlinearities and instabilities have been employed to 

incorporate advanced functionalities, such as multistability and programmability, into mechanical 

metamaterials. Figure 1-3 shows examples of mechanism-based metamaterials.  

1.4 Origami 

Origami is the traditional Japanese art of paper folding. The word “origami” comes from the 

Japanese words “ori” (to fold) and “kami” (paper). Origami has a long history in Japan, with the 

documented evidence of paper folding dating back to the 17th century [64]. Figure 1-4A shows the 

first documented origami principle. Today, origami is enjoyed by people of all ages and 

backgrounds, and it has also been used in various fields, such as mathematics [64, 65], science 

[66-69], engineering [70-88], and art design [89, 90]. The basic origami technique is to fold a flat 

sheet of paper into a desired shape. Three-dimensional shapes can be constructed from flat sheets 

by following a set of instructions collected in a folding diagram, which also contains the sequence 

of folding. Figure 1-4 shows the application of origami in several fields, from architecture and 

jewelry to fashion and art.  
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Figure 1-4 Application of origami patterns: A The first document on origami principles showing the fold 

lines and the final configuration, B Origami lamp shade, C Origami inspired jewelry, D Origami inspired 

dress, E Origami as façade of a building, F Decorative curved crease origami, G Twist tilling origami [65], 

and H Origami pattern as the texture of a beverage can. 

1.5 Kirigami 

Kirigami is a Japanese art that involves cutting and folding paper to create intricate designs and 

patterns. The word kirigami comes from the Japanese words “kiru” that means to cut, and “kami” 

that means paper. Unlike origami, the art of folding paper, kirigami allows cutting paper to create 

3D models and designs. One advantage of kirigami over origami is that kirigami enables more 

complicated designs since cutting the base material provides more freedom than folding [91]. 

Kirigami is often used to create pop-up books, greeting cards, and other paper crafts. Figure 1-5 

shows applications of kirigami in art and engineering. 
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Figure 1-5 Kirigami-inspired structures and engineering applications of kirigami: A A classical pop-up 

kirigami, B An instability induced three-dimensional kirigami structure [92], C Stretchability of kirigami 

patterns inspired new bandages that better adhere to skin [93, 94], D Kirigami cuts as a means to program 

boundaries and surfaces [95], E Kirigami patterns as a means for tracking a solar path in flexible solar cells 

[96]. 

Kirigami is used in science [91, 97, 98] and engineering [99]  to create structures that can fold and 

unfold, such as solar panels [96], medical devices, and robotic actuators [99]. Kirigami has also 

been used in designing facades of buildings and architectural structures, as it allows the creation 

of complex geometric shapes and patterns [100]. 

1.6 Mathematical tools 

The study of origami/kirigami in mathematics focuses on the pattern geometry, topology, and 

mobility. The field encompasses various aspects of mathematics, including Euclidean and non-

Euclidean geometry [64, 65], graph theory, knot theory, and algorithms [101]. Researchers in this 

field are interested in understanding the mathematical foundations of origami/kirigami, developing 

new methods for folding/cutting and deriving rules to assess and predict their reconfiguration. 

Mathematical tools  are developed to gain deeper insights into the folding principles, which in turn 
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are often applied in several engineering sectors, from  aerospace, robotics [102], to materials 

science [67]. 

A nomenclature is required to understand origami from a mathematical point of view. Figure 1-6 

shows the basic features and terminology commonly adopted in the origami field and throughout 

this thesis. 

 

Figure 1-6 Nomenclature of origami: A Origami pattern in the fully developed (flat) configuration; red 

lines denote mountain folding while valley folds are indicated with blue lines. B A folded configuration C 

A render of a well-known origami pattern (Miura). 

In general, origami can be considered as a series of flat panels (facets) connected at their edges. 

Figure 1-6A shows a fold pattern on which fold lines are assigned either a mountain or a valley 

folding. A fold line is called mountain (valley) folding, provided it leads to the convex (concave) 

dihedral angle between the connected faces (or facets) in the folded state, Figure 1-6B. The fold 

lines meet at a shared point of neighbor faces, namely a vertex. In the origami literature, a 

configuration is a state of folding that can be realized when the dihedral angles assume specific 

values, e.g., Figure 1-6C. Typically, in origami mathematics, the panels are assumed to be 

infinitely rigid. This assumption has formed the pure mathematical investigations and the study of 

origami systems as reconfigurable mechanisms.  

The mathematical study of origami has culminated in several theorems that postulate the 

mechanism of shape formation by origami principles [65, 101]. These theorems help to classify 
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origami systems which play a pivotal role in understanding the properties of origami patterns. Here 

we briefly discuss these classifications. 

1.1.1 Developability and Flat-foldability 

The first classification concerns only the origami’s initial and final state. Developable origami 

patterns can be made by sequential folding of a flat sheet [64, 65], while non-developable origami 

patterns cannot be flattened  into a monolithic sheet. Developable patterns are characterized by 

zero gaussian curvature in their initial and final pattern while non-developable patterns may 

acquire non-zero gaussian curvatures. Figure 1-7 shows examples of developable and non-

developable origami patterns.  

In the case of origami, developability refers to a property of the initial configuration of the pattern 

and describes its ability to unfold (flattened) without stretching or cuts. Another property known 

as flat-foldability refers to the final configuration and specifies the property of folding into a final 

flat surface. A flat-foldable origami can be folded into a two-dimensional shape [64, 65]. Flat-

foldability is widely studied in mathematics of origami. Two types of flat-foldability have been 

classified in the literature, local and global. A locally flat-foldable pattern can be folded to a two-

dimension configuration in the vicinity of a vertex. On the other hand, a globally flat-foldable 

pattern comprises several facets and vertices which can be folded as a whole into a two dimensional 

plane. Maekawa and Kawasaki theorems clearly stipulate the conditions for local flat-foldability 

[65]. However, global flat-foldability has been proved to be notoriously challenging and so far no 

decisive theorem has been derived to describe the global flat-foldability of a generic origami 

pattern [101].  Figure 1-8 shows examples of flat-foldable and non-flat foldable origami patterns. 

In summary, developability pertains to the initial configuration, while flat-foldability describes a 

property of the final configuration without considering the folding process.  
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Figure 1-7 Developable and non-developable origami patterns [103]: A Miura origami pattern, a 

developable origami system, B The building block of the Miura pattern, C Fully developed configuration 

of Miura pattern; no cut is required to unfold the pattern, D Eggbox origami pattern, a non-developable 

origami system, E The building block of the eggbox pattern, F Fully developed configuration of eggbox 

pattern, where cuts (red regions) are required to unfold the pattern into a flat surface. 

 

Figure 1-8 Flat foldable and non-flat foldable origami patterns; A A flat-foldable but non-developable 

origami pattern made of interleaved Miura pattern [104], B A modified square-based Ron Resch pattern, a 

developable but non-flat-foldable [105]; a non-flat-foldable but developable origami system, C Snapology, 

a non-flat-foldable and non-developable origami pattern [87].  

1.1.2 Rigid-foldability 

The next criterion for classifying origami systems examines the transition state from one shape to 

another. A rigid-foldable origami system can deploy with deformations exclusively concentrated 

only in the  fold lines of the crease pattern [106]. Non-rigid-foldable origami systems require the 

deformation of panels during reconfiguration [71, 76, 77, 79]. Figure 1-9 shows examples of rigid-

foldable and non-rigid foldable origami patterns. 
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Figure 1-9 Rigid foldable versus non-rigid foldable origamis: A A zipper assembly of tubular origami, an 

example of a rigidly foldable pattern; the tubular system is made by assembling an eggbox pattern on a 

Miura system [107], B Yoshimura pattern, an example of a rigidly foldable pattern [108], C Snapology-

inspired origami system, a non-rigid-foldable pattern [109], D Non-rigid-foldable Kresling pattern [81, 110]  

 

Figure 1-10 Application of origami in engineering; A Collapsable origami-inspired kevlar bullet-proof 

shield based on Yushimora origami system [111], B Origami-inspired artery stent [112], C Deployable 

solar panels of international space station [111], D An origami-inspired concept for deploying the solar 

panels of satellites [111], E Deployment of the solar shield of James Webb Space Telescope [113], F An 

origami-inspired solar shield [114], G A modular concept for deployment of solar panels in geostationary 

earth orbit; each module is made of deployable planar origami [115] 



  13 

 

The theory of mechanisms [116, 117] can explain rigid foldability. In mechanism theory, a 

configuration is commonly described by the independent parameters that govern the mechanism 

motion, namely the degrees of freedom. In the framework of mechanism theory, origami can be 

modeled as a network of rigid bodies connected by hinge joints. 

1.7 Choice of the base material 

Origami relies on the selection of a suitable base material to facilitate their geometric folding and 

reconfiguration. The choice of the base material is highly dependent on the pattern and the 

manufacturing process; hence it is difficult to list general requirements. Nonetheless, we can 

highlight below key properties the base material of an origami could benefit from: 

• Flexibility: The selected base material should exhibit adequate flexibility to enable precise 

folding around the creases without the risk of fracture and/or tear.  

• Strength: The base material should possess the required degree of strength to maintain the 

integrity of the folded shapes. Brittle base materials may compromise their structural 

stability and durability.  

• Size and Shape of the base material sheet: Origami are typically folded from a sheet of 

square or rectangular shape to generate a pattern that can transform into spatial 

reconfiguration. The selection of the size and shape of the base sheet to fold should thus 

account for these geometric considerations. 

• Thickness: The thickness of the base material plays a pivotal role in the folding and 

contributes to the structural characteristics of the folded specimen. Thicker sheets are 

conducive to complex, three-dimensional origami patterns, while thinner substrates are 

preferred for traditional and delicate models. 
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• Memory: The base material is often chosen for its ability  to retain the folded shape. 

Therefore, the base material is required to have limited spring back upon non-elastic 

folding. An elastoplastic material with resistance to cyclic folding can be considered as an 

adequate choice.  

• Special properties imposed by a given manufacturing process: Advanced fabrication 

techniques for origami, such as wet-folding, may necessitate a base material with specific 

attributes. In such instances, the material is expected to retain its structural integrity when 

exposed to moisture, thereby accommodating the distinctive demands of wet-folding. 

Besides the properties listed above, the functionality of the target origami also plays a role in the 

base-material selection. Advanced manufacturing strategies have also enabled the use of  materials 

that are not  traditionally used in the realm of origami [118]. 

1.8 Manufacturing technics 

The type of origami manufacturing is highly dependent on the choice of the base material. Through 

the lens of folding, we can categorize the manufacturing methods into synchronous, gradual 

folding and pre-gathering processes. In synchronous processes, folding takes place along all fold 

lines simultaneously. On the other hand, gradual folding involves step-by-step transitions from a 

flat to the fully folded state. A pre-gathering technique introduces a feature in one direction 

followed by folding in other planar directions. The difference between gradual folding and pre-

gathering technique is that in the former, the folding starts from a small area of the patten and then 

it is expanded to the whole pattern., whereas in the pre-gathering technique, all crease folding 

along a specific direction is introduced before switching to other directions. Figure 1-11 shows the 

conventional manufacturing technique of corrugated origami pattern. 
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Figure 1-11 Conventional manufacturing techniques. A-C Synchronous manufacturing methods. A 

Combined molding and motive structure, joined at the mating fold lines. The base material here is 

sandwiched between the two structures, and then  folded in vacuum [119]. B The blank is sucked onto the 

forming mandrel using an internal vacuum bag. Next, the folding process is done by  vacuumization of the 

bag surrounding the auxiliary dies [120]. C A die designed to form corrugated sheet in a single step [121]. 

D-G Gradual manufacturing methods. D a folding method using a gradually deepening set of dies. In each 

stroke, the dies move apart, before adding a new row and deepening the existing folds [122]. E The base 

material is first pre-patterned, then a bristle belt presses the pre-folded sheet against a master sheet [123]. 

F One-step patterning and gathering method [124]. G In this technique, fold lines are embossed onto the 

base material using a series of rollers. Then bristles on the second pair of rollers fold the pattern [125]. H 

Pre-gathering manufacturing technique. For the transverse pattern orientation, the double corrugation is 

formed by cyclically clamping a pre-corrugated sheet using mating jaws, and inverting the longitudinal 

corrugations. 
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Figure 1-12 Recent developments in manufacturing of origami and kirigami. A A manufacturing method 

that involves stacking multiple layers of polymeric sheets and tapes. In each step, laser cutting is employed 

to remove parts of the stacked layers. The cover tape layers ultimately form the hinges of the specimen. 

The core polymeric sheet also adds stiffness to the panels [86]. B Laser cutting gold layers. Upon excitation 

by laser beam the patterns reconfigure permanently [118]. C Three-dimensional printing of inflatable 

origami sample [126]. D Layers of stiffening polymeric cores and tapes are cut by laser and assembled to 
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form an inflatable origami pattern [127]. E Digital light processing technique for printing complex origami 

patterns. A special mixture of curable resins ensures that the specimen remains flexible after exposure to 

ultraviolet light [128]. F Laser cutting of polymeric sheets and edge bonding to form a tubular kirigami 

pattern [129]. G A manufacturing technique that involves the machining  of stiff panels and their connection 

utilizing flexible elastomeric hinges [78]. H A manufacturing technique inspired by nanofabrication. 

Different layers are chemically deposited and bond to form a flexible assembly of panels that can 

reconfigure upon applying electrical current through conductive layers [130]. I Two-photon beam printing 

is utilized to manufacture microscale origami patterns [131]. 

Recent advanced manufacturing such as three-dimensional printing has provided manufacturing 

alternatives for realizing origami/kirigami patterns. Figure 1-12 shows a series of origami-inspired 

materials manufactured by recently introduced strategies which in most cases involve several 

steps. 

1.9 Applications of origami systems 

Origami has long inspired the development of deployable structures in various fields, from 

aerospace engineering to medical devices. Perhaps aerospace applications have been the first 

engineering field benefiting from the reconfiguration property of origami systems. Origami 

structures have been used for solar panels [132-135], solar shields [136], and small deployable 

satellites [137]. However, recent advances in manufacturing technology have enabled their  

application in other fields, including biomedical applications, robotics, [134, 138]. Figure 1-10 

shows applications of origami inspired structures. 

The desired properties of origami that make it an ideal candidate for deployable structures include 

the following: 

• Compactness: Origami-inspired folding techniques allow structures to be folded into a small, 

compact shape for transportation or storage and then readily and rapidly deployed into their 

final form when needed [139]. 
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• Lightweightness: Made of thin layers, origami-inspired structures are lightweight, making 

them more accessible and cheaper for launch into space or transport into remote locations 

[127]. 

• Scalability: Origami structures can be designed to be easily scaled up or down in size, allowing 

for a wide range of applications from micro to meter scales [127]. 

• Cost-effectiveness: Integrating the cost associated with their manufacturing and assembling, 

origami-inspired structures are dramatically more affordable compared to traditional structures 

whose components are made independently and require a setup to assemble individual 

components.   

Origami systems have shown potential for developing modular and repeated reconfigurable 

structures. Several origami patterns with one, two, and three-dimensional periodic patterns have 

been proposed recently [86, 87, 104]. The repeated arrays have enabled the incorporation of 

advanced functionalities into origami patterns including modulation of stiffness [86, 87], actuation 

[81, 86] and sensing [80]. 

1.10 Origami/Kirigami-inspired metamaterials 

Origami and kirigami systems have recently contributed to the field of mechanical metamaterials 

thanks to a series of desirable properties. Firstly, origami and kirigami techniques can be used to 

create complex folding geometries that result in materials with unique mechanical [28, 69, 82, 86, 

128, 139-146], optical [118], and thermal properties [147]. Secondly, the complex network of 

hinges/cuts and faces makes origami/kirigami ideal candidates for realizing complex 

configurations that are impossible to attain with linkage-based mechanisms [68, 79, 95, 148]. 

Lastly, origami and kirigami have unveiled the possibility of incorporating several functions into 

a single structure, such as load-bearing [73, 78, 86, 87, 107, 109, 144, 149, 150], sensing [47, 80, 
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81, 84, 151], actuation [81, 83, 84, 110, 129, 152, 153], energy harvesting [32, 154-158], 

programmability [78, 159-170], and multistability [79, 109, 126, 170-174]. Figure 1-13 shows 

applications of origami concepts capable of delivering more than one function in a single structure.  

 

Figure 1-13 Application of origami concepts for multifunctionality; A A reconfigurable origami-inspired 

antenna [80], B Magnetically actuated origami-inspired robotic arm [83], C Magnetically actuated origami-

inspired robot made by three-dimensional printing of magnetic ink [175], D Thermally actuated origami 

[176], and E Pneumatically actuated origami-inspired reconfigurable structure [86]. 

1.11 Load-bearing 

Origami-based structures have been the source of inspiration for mechanical metamaterials with 

load-bearing capacity. Being load-bearing makes an origami system desirable for material systems 

that can switch from a floppy mode to a load-bearing (rigid) state. The mechanism of load-bearing 

capacity differs among the proposed designs. Yet, the main characteristics that explain the load-

bearing capability in origami systems can be classified into the following eight groups: existence 

of an energy barrier [170, 173, 177], interlocking of the facets [144], external confinement [48], 

dead point of reconfiguration [86, 139], conflicting reconfiguration modes [149], internal locks 
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[178], curved creases [179], and intrinsic rigidity of the unit cell [87]. The examples of the 

aforementioned mechanisms are shown in Figure 1-14. 

 

Figure 1-14 Examples of load-bearing mechanisms: A Load-bearing due to an energy barrier [142], B 

Contact induced load-bearing [144], C A load bearable structure at the deadpoint of the mechanism [86, 

87], D, E Load bearing structures due to conflicting reconfiguration paths [107, 149], F Load bearing due 

to external confinement [48], G An internal locking mechanism makes the robotic arm load bearable in a 

specific configuration [178], H Curved crease imparts load bearing capability to a flat sheet, and I Load-

bearing origami-inspired material with intrinsic rigidity [87]. 

Despite the ongoing research studies in deployable and load-bearing origami/kirigami-inspired 

materials, the stability of these materials against disturbance in the deployed direction have not 

received enough attention in the literature.  
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1.12 Reprogrammability 

Some metamaterials offer the freedom to change their mechanical response after they have been 

fabricated. This property allowing in-situ changes of response and reconfiguration is often denoted 

as “reprogrammability”. The ability to reprogram the behavior of metamaterials post-fabrication 

enables a wide range of applications, including response tailoring [180-184], advanced sensing 

[51], imaging [8], locomotion [55], communication [80], and energy harvesting [31, 154, 156, 

185]. In most cases, reprogrammability in metamaterials is achieved by incorporating a stimuli-

responsive switching mechanism into the building block of the material. A change in the stimuli 

serves as a trigger and shifts the state of the switch leading to a change in the overall response of 

the metamaterial. Stimuli can be of various types, such as  electrical, thermal [180], magnetic [9, 

33, 175], and mechanical signals [23, 51, 182, 183]. 

A potential application of reprogrammable mechanical metamaterials is for deployable load-

bearing structures. Origami and kirigami-inspired materials offer an enlarged reconfiguration 

space over other mechanical metamaterials [139, 144, 184]. Some origami patterns in literature 

provide a certain level of reprogrammability. Examples of reprogrammable origami/kirigami-

inspired structures are shown in Figure 1-15.  These concepts, however, fail to attain concurrently 

rigid-foldability, flat-foldability, and load-bearing capacity along the deployment direction. Non-

flat-foldable concepts lack reconfigurability, making their size and volume large. Most existing 

concepts utilizing structural instability to achieve reconfigurability are non-rigid foldable. Instead, 

to fold, they must overcome a significant energy barrier that bends and stretches their panels, thus 

requiring a large input signal.    
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Figure 1-15 Examples of reprogrammable origami: A Energy barrier as a means for programming origami-

inspired structure [109], B Different deployment and collapse routes leads to a switch from soft to rigid 

configurations [139], C Switchable curved creases are used to program the stiffness of the structure [184], 

and D Popping Miura cells in a tessellation affects the stiffness of the whole structure [166] 

One of the challenges involving metamaterial reprogrammability is ensuring that the structure 

maintains its programmed configuration upon removal of the input (trigger) signal. To this end, 

several methods have been introduced, including the use of external confinement, exploiting the 

base material response transformation, using internal locking mechanisms, and incorporating 

energy barriers to separate the programmed configurations. The last method, multistability, has 

gained much attention in the arena of reprogrammable materials. 
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1.13 Multistability 

Multistable mechanisms can exist in multiple distinct and stable states and can be switched 

between these states with the application of an external input. These mechanisms are widely used 

in various applications, including switches, locks, and grips. Multistable mechanisms typically 

consist of components that interact to produce several stable states. These components may include 

springs, levers, gears, or electronic components such as transistors. Thanks to their switching 

behavior, Multistable structures have recently gained much attention for the design of actuators, 

robots, microelectromechanical systems, energy harvesters, programmable devices, and 

metamaterials [14]. Multistable concepts have enabled the incorporation of advanced 

functionalities into mechanical metamaterials. Among these novel applications are energy trapping 

[42, 53], energy dissipation [42] and programmable  behavior [23, 42, 51, 53, 56]. Examples of 

multistable mechanisms and materials are shown in Figure 1-16. 

 

Figure 1-16 Examples of multistable mechainsms and materials; A A bistable mechanism, B A 

metamaterial made of inclined confined beams undergoing snap-through instability [53], C Perforated 

shellular structure showing multistability in different directions [23], D A metamaterial made of flexibly 

hinged links shows multistability in different directions [56]. 

There are numerous reports of multistability in non-rigid origami structures [66, 78, 79, 81, 109, 

174, 186]. Multistability in non-rigid origami structures has been attributed to the interaction 

between the flexural deformation of the panels and the rotational stiffness of the hinges [66, 79, 

110, 126, 141, 152, 173, 187, 188]. In a rigid-foldable origami, the interaction of the hinges can 

lead to a multistable response [78, 109, 170, 174, 189]. Examples of origami inspired multistable 

materials are shown in Figure 1-17. 
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The multistability behavior has been exploited to develop foldable tents [173], electrical switches 

[81], materials with tunable mechanical properties [109], shape-shifting structures [79], multi-

response materials [109], and robotic arms [83, 84]. Figure 1-17 shows origami-inspired 

multistable structures/materials. Although various studies have demonstrated the emergence of 

Multistability in origami systems, applying these concepts to the design of cellular materials is 

limited [78, 109]. Complex shapes, complex reconfiguration space, and manufacturing challenges 

have limited the implementation of origami-based structures in developing multistable materials 

for real-world applications [78, 109]. Incorporating origami concepts in designing multistable 

systems is a relatively unexplored field of research.  

 

Figure 1-17 Exmaples of multistable origami systems; A A Origami-inspired impact mitigating system 

relying on rarefication solitary wave creation [145], B Inflatable deployable multistable origami-inspired 

structure [127], C Magnetically actuated multistable origami-inspired structure as a logic gate [81], D Re-

entrant origami inspired tube with auxetic and multistable behavior [28], E A multistable rigidly-foldable 

origami inspired metamaterial [78], F Programmable metamaterial with multiple soft and rigid 

configurations [109] 

1.14 The scope of the present work 

The goal of this thesis is to develop an origami-inspired reconfigurable mechanical metamaterial 

that is both load-bearing and multistable. This goal is broken down into two complementary tasks. 

The first calls for the search of  a class of origami-inspired metamaterials that are rigidly foldable 

and can withstand sizeable external loading. The second aims at leveraging the lessons learned 
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from the first task to integrate multistability into the origami architecture and attain 

multifunctionality. 

Specifically, the objectives of the former are to: 

• Propose a framework for developing a class of origami-inspired metamaterials; 

• Study the folding process through a systematic matrix-based mobility analysis; 

• Systematically study the distinct reconfiguration kinematic paths and final configurations; 

• Study their load-bearing capacity; 

• Show their potential for in-situ programming of stiffness and strength; 

For the latter, the specific objectives are to: 

• Employ the insights of the first study to design a class of multistable mechanical 

metamaterials; 

• Develop a simplified model that can predict the behavior of the hinges from experimentally 

obtained data; 

• Propose a feasible manufacturing method that enables the attainment of large deformation 

in the panels; 

• Investigate the role of geometric parameters and mechanical properties in the multistable 

behavior of the unit cell; 

• Explain the behavior of interacting bistable units; 

• Show their potential application for energy dissipation, energy absorption, and 

reprogrammability of stiffness and strength. 
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1.15 Structure of the thesis 

This thesis is manuscript-based and consists of four chapters. Chapter 1 provides an introduction 

and literature review of origami-inspired metamaterials. In particular, the first part briefly 

introduces the background and is followed by a review of origami-inspired mechanical 

metamaterials. The second part surveys multistable materials, including their background, 

mechanism, and applications. The chapter concludes with the objectives and structure of the thesis. 

Chapter 2 introduces a strategy to impart multidirectional load-bearing capacity to a stacked 

structure of papers. A rigidly foldable class of cellular metamaterials is introduced that can flat-

fold and lock into several stiff states across multiple directions, including the deployment direction. 

These metamaterials rigidly fold with one degree of freedom and can reconfigure into several flat-

foldable and spatially-lockable folding states. Locking under compression yields topology and 

symmetry changes that impart multidirectional stiffness. Additionally, folding paths and mixed-

mode configurations can be activated in situ to modulate their properties. Their load-bearing 

capacity, flat-foldability, and programmability can be harnessed for deployable structures, 

reconfigurable robots, and low-volume packaging. 

Chapter 3 explores the second trajectory that stems from relaxing the rigid foldability restriction 

of the origami panels to enable energy absorption and dissipation. This thesis presents an origami-

inspired multistable material with an extensive range of multistable reconfigurations that can 

dissipate energy effectively. The reconfiguration process consists of two phases. First, the panels 

rotate rigidly about their connection lines. Next, while a set of panels provide axial stiffness, the 

other set undergoes flexural deformation leading to snap-through instability. The axial stiffness 

offered by the first set of panels eliminates the need for stiff and bulky frames in our structure, 

culminating in a more efficient distribution of the base material. In addition, a relatively simple 
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yet effective method is proposed for manufacturing layered structures from paper or polymeric 

sheets. The energy absorption capability and relatively easy manufacturing method make the 

proposed structure a good candidate for the packaging industry. 

Finally, Chapter 4 highlights the main results and contributions of this thesis and concludes with 

a brief description of possible paths for future work. 
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2.1 Abstract 

Origami crease patterns have inspired the design of reconfigurable materials that can transform 

their shape and properties through folding. Unfortunately, most designs cannot provide load-

bearing capacity, and those that can, do so in certain directions but collapse along the direction of 

deployment, limiting their use as structural materials. Here, we merge notions of kirigami and 

origami to introduce a rigidly foldable class of cellular metamaterials that can flat-fold and lock 

into several states that are stiff across multiple directions, including the deployment direction. Our 

metamaterials rigidly fold with one degree of freedom and can reconfigure into several flat-

foldable and spatially-lockable folding paths due to face contact. Locking under compression 

yields topology and symmetry changes that impart multidirectional stiffness. Additionally, folding 

paths and mixed-mode configurations can be activated in situ to modulate their properties. Their 

load-bearing capacity, flat-foldability, and reprogrammability can be harnessed for deployable 

structures, reconfigurable robots, and low-volume packaging. 

mailto:damiano.pasini@mcgill.ca
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2.2 Introduction 

Origami and kirigami, the arts of folding and cutting paper, have inspired the development of a 

plethora of scale-invariant reconfigurable materials and structures that can deploy either spatially 

or in-plane [127, 190]. These concepts have been implemented across disciplines, from mechanical 

memories [146], robotic actuators [55, 81, 83, 152, 153], thermally tunable structures [147, 191], 

multistable devices [28, 50, 79, 109, 192], complex 3D geometries [91, 95], and programmable 

surfaces [68, 82, 98, 193] to flexible electronics [80, 96]. Origami crease and kirigami cut patterns 

also proffer mechanical metamaterial designs with distinct geometric and mechanical properties, 

such as reconfigurability [86, 87], flat-foldability [70, 86, 104, 107, 149, 194], and bistable 

auxeticity [49, 50] among others. 

Of recent interest are in situ reprogrammable folding metamaterials [139, 144, 159, 166, 167, 184, 

195] which harness an inherent coupling between the folding pattern and the geometry of motion. 

Here, rigid-foldability, flat-foldability, and load-bearing are distinct characteristics that can 

describe the modality of folding and the realization of certain functional performances. Rigid-

foldability indicates that folding is solely controlled by the crease lines acting as rotational hinges, 

and not the deformation of the rigid panels [196]. Alternatively, in non-rigid-foldable patterns, 

both panel compliance and crease lines govern folding. Flat-foldability is a property that imparts 

a high level of reconfigurability by allowing spatial transformations leading into one or more flat 

states. Load-bearing in a foldable metamaterial simply denotes the capacity to offer structural 

resistance to a load applied in any given configuration across multiple directions. 

Existing origami-inspired metamaterials offer a certain level of programmability, yet they are 

unable to attain concurrently rigid-foldability, flat-foldability, and load-bearing capacity along the 

deployment direction. One reason stems from the kinematics of their unit cell, which controls the 
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way the crease pattern folds. Foldable metamaterials using the Miura-ori [70, 104], interleaved 

[149], and tubular [28, 72, 107] patterns as well as cylindrical structures based on waterbomb 

patterns [195], and other unit cells, utilize crease geometry that exhibits some but not all of the 

properties defined above. For example, rigid-foldable material systems with multiple degrees of 

freedom (DoFs) [86, 87], are either floppy or require precise control of the folding sequence, a 

characteristic that severely limits their capacity to withstand multidirectional loads. Alternatively, 

non-flat-foldable concepts [159, 195] have limited reconfigurability, making their size and volume 

large, and most existing concepts utilizing structural instability [81, 109, 127, 166, 195] or the 

Kresling pattern [110, 139] to achieve reconfigurability are non-rigid-foldable. To fold, they must 

overcome a large energy barrier that bends and stretches their panels, thus sacrificing load-bearing 

capacity. On the other hand, foldable patterns that offer some load resistance can do so in certain 

directions only and mainly loses stiffness in the deployment direction [28, 48, 72, 86, 87, 107, 

144]. This aspect can be problematic in applications where during service the load direction is 

uncertain, hence potentially reverting a stiff into a floppy configuration. 

From the current state of the art, an interesting question arises: Can a crease pattern be conceived 

to reconcile the conflicting nature of rigid-foldability, flat-foldability, and load-bearing capacity 

in multiple directions, including that of deployment? This paper presents a framework for 

designing a topological class of rigidly flat-foldable metamaterials that are reprogrammable in situ 

to reconfigure along multiple directions, some flat-foldable and others lockable, where the latter 

is multi-directionally stiff even along the deployment direction. Our basis combines origami and 

kirigami concepts to introduce a crease pattern that is built cellular in its flat configuration, and 

subsequently stacked with the minimum number of layers to steer folding along one trajectory. To 

imbue reconfigurability, excisions are introduced in a crease pattern so as to relax the deformation 
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constraints enacted by the rigidity of the faces of the parent origami, and to enable face contact 

within their intracellular spaces. Besides load-bearing capacity, our concept offers additional 

hallmarks including topology and symmetry switching that altogether enlarge the degree of in situ 

programmability. Finally, a simple yet effective fabrication process that can be easily automated 

is presented to impart three-dimensionality in the flat configuration. 

2.3 Results 

2.3.1 Geometry of reconfigurable unit chain 

To generate a rigidly-foldable unit that is flat-foldable and can lock into a stiff state upon panel 

self-contact, we start from a primitive network of bars connected in a planar loop. The network is 

a planar N-bar linkage that forms a regular N even-sided polygon. Figure 2-1A shows the 

generative process is exemplified with a network of four bars, each of length 𝑎 and enclosing a 

square void. Extruding each bar outward to the length 𝑏 (red arrow) in the x-y plane and at a given 

angle 𝜙 ∈ [
𝜋

𝑁
, 𝜋 −

𝜋

𝑁
] yields four parallelograms, which we connect using isosceles triangles with 

a vertex angle of 𝜆 = 2𝜋/𝑁. By prescribing the folding profiles (dash lines) at each boundary 

between interfacing panels, we obtain a planar assembly of rigid surfaces that altogether can 

spatially fold along their connecting valley (V) and mountain (M) folding lines. The conceptual 

process can be thought as complementary to the fabrication steps, where the unit void is first 

excised from a planar sheet of paper (kirigami cuts), and then folded along prescribed dashed lines 

(origami folds), thereby generating a hybrid architecture. 

The fold lines of both V and M panels enable the system to act as a kinematic chain. Here we 

define its configurational changes (Figure 2-1A) using 𝑚 independent dihedral angles 𝜃1, 𝜃2, …, 

𝜃𝑚. Each dihedral angle specifies the angle between the triangular panel and its adjacent quad 
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panel as shown in Figure 2-1A, and 𝑚 denotes the mobility or nontrivial degrees of freedom (DoF) 

of the kinematic chain that exclude rigid-body motions. Since two dihedral angles, one concave 

and the other convex, can always be identified between connected panels, we here consider a 

dihedral angle as convex. In addition, we assume the mountain and valley fold lines are constrained 

to remain on two parallel planes during folding. This strategy, as explained later, is enforced by 

using unit chain stacking, and it enables the unit to engage motion along a single DoF. In this case, 

the out-of-plane rise ℎ can be expressed as a function of three geometric parameters by  

ℎ = 𝑎 sin𝜙 sin 𝜃1 (3-1) 

During folding, a process that decreases 𝜃1, the “unit kinematic chain”, in short “unit chain”, can 

reach a lock state, denoted with the superscript “𝐿”, where self-contact between panels forbids any 

further motion (right sketch in Figure 2-1A). In a lock state, the acute dihedral angles are given by 

𝜃𝐿 = cos−1 (cot𝜙 tan
𝜆

2
) (3-2) 

The generative process illustrated in Figure 2-1A for a unit chain with square primitive can now 

be abstracted to other primitives, i.e., regular 𝑁 even-sided polygons, by merely varying 𝑁. The 

outcome is a class of planar unit chains that spatially reconfigure within the voids and lock upon 

self-contact of their panels, thus behaving stiff under compression. Figure 2-1B illustrates five of 

them, each for a given 𝑁. The first three rows show their initial fully developed state, the partially 

folded states, and one among the lock configurations they can attain. The last two rows depict their 

most compact in-plane tessellation and their out-of-plane stacking in paperboard specimens, where 

each layer is flipped with respect to the x-y plane and bonded at the triangular panels of the adjacent 

layers (above and below). 
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Figure 2-1 Origami inspired metametrial A The building block of our reconfigurable class of rigidly flat-

foldable materials. Primitive regular polygon describing a four-bar linkage, followed by in-plane angled 

B 
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(𝜙) extrusion (red arrow of length 𝑏) of constitutive links; connection of extruded panels with isosceles 

triangular panels; addition of fold lines and assignment of a mountain (M) and valley (V). Upon folding, 

the unit chain reconfigures to reach its lock state (specified with “𝐿”) where contact is established between 

panels. B Concept abstraction to generate unit chains with an N even-sided regular polygon for 

representative 𝑁, i.e., 4, 6, 8, 10, and 12. The first three rows show respectively the developed, partially 

folded, and one of the (multiple) lock states. The last two rows show the in-plane tessellation and their 

paperboard proof-of-concepts. The latter are multilayered spatial realizations obtained with the minimum 

number of layers, i.e., an even number of layers preserving their symmetry with respect to x-y plane, that 

provides one degree of freedom. Rubber bands are here used to hold the unloaded configuration of the 

prototypes in their lock state, as the transition to the lock state requires the application of compressive forces 

in the x-y plane, as explained later in the manuscript. Scale bars = 30 mm. 

2.3.2 Kinematic model  

Upon folding, the panels of the unit chain (Figure 2-1A) are in relative motion before coming into 

contact. To study kinematics, we make a set of assumptions. First, we assume the panels as 

infinitely rigid and the fold lines as pure rotational hinges. Second, to ease the formulation of the 

kinematic constraints, we replace the unit chain with a triangulated network of inextensible 

elements connected through pin joints (see Section 2.6.1 for details). Third, the edges of the 

triangular panels are modelled as bars, whereas we replace quad panels with two triangles 

satisfying the planarity condition of their interplanar angles over the entire folding process (see 

Section 2.6.1 for details). With the assumptions above, we now examine a generic pin-jointed 

network of inextensible bars and determine the number of mechanisms i.e., DoFs, and types of 

motion, i.e., kinematic paths, our unit chain can attain in space. 

2.3.3 Number of Degrees of Freedom 

To determine the mobility of our unit chain, we formulate the rigidity matrix R pertinent to its 

structural assembly. In general, the number of degrees of freedom, 𝑚, for a pin-jointed triangulated 

network is given by 𝑚 = 3𝑗 − 𝑛𝐾 − 𝑟, where 𝑗 is the total number of joints, 𝑛𝐾 the number of 

external kinematic constraints, and 𝑟 the rank of R (see Section 2.6.1 for details). For our unit 

chain, 𝑚 also represents the number of independent dihedral angles. For the unit chain N̂4 in Figure 
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2-1A, 𝑚 = 5 represents the number of mechanisms it can attain, i.e., its DoFs. 𝑚 can be reduced 

to 1 if the mountain and valley fold lines are constrained to remain on two parallel planes during 

the folding process. The specific values and the relationships these dihedral angles assume define 

distinct types of motion, as described below.  

2.3.4 Kinematic paths 

There are specific trajectories our unit chain can follow during motion. Each of them can be 

uniquely defined by a relation between the independent parameters, in our case the dihedral angles. 

For example, the equality of dihedral angles, i.e., 𝜃1 = 𝜃2, represents one type of motion, whereas 

𝜃1 = 𝜋 − 𝜃2 describes another type of motion. Each relationship between angles defines a given 

trajectory, namely a kinematic path. For example, the kinematic path shown in Figure 2-1A can 

be defined by the relation of equality between its dihedral angles.  

2.3.5 Unit stacking as a pathway to reduce mobility.  

If the triangular panels shown in Figure 2-1A do not remain parallel during folding, our unit chain 

is endowed with manifold DoFs, which for N̂4 are five. Having too many DoFs, 𝑚, can be 

problematic, as the unit chain acts as a multi-degree-of-freedom mechanism; in this case, the unit 

tends to be floppy, and folding cannot be unequivocally and easily controlled for use as a 

reconfigurable load-bearing material. One way to prune 𝑚 is to act along the third direction (z), 

and stack layers of unit chains one on the top of the other. Figure 2-2A shows this strategy applied 

to N̂6. Here, the mountain facets of the triangular panels of the top unit are bonded to the valley 

facets of the adjacent unit (below). By stacking and bonding three unit chains, the mountain and 

valley triangular panels are set to lie in parallel planes. If made out of a real material with 

sufficiently high elastic modulus, the non-negligible thickness of the triangular panels has the 

effect of restricting the relative rotation range of two connected quad panels, allowing only equal 
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and opposite rotation to satisfy kinematic compatibility and to avoid encountering the energy 

barrier caused by the bending or stretching panels during deformation (see Section 2.6.2 and Figure 

2-8). 

The strategy above is simple yet effective. It not only turns off DoFs, but also provides the potency 

for a robust reconfiguration along a single route. Having now layers of unit chains, we can denote 

a generic multilayered N even-sided unit chain with n stacking layers by N𝑁n𝑛. Through a rigidity 

analysis of N𝑁n𝑛, we can assess the role of layer stacking, 𝑛, on the DoFs (Section 2.6.1). The 

outcome of this investigation is shown in Figure 2-2B, where 𝜃𝑖 ≠ 𝜋/2 is assumed, and 𝜃𝑖 = 𝜋/2 

refers to the kinematic bifurcation. From the plot, we gather that the DoFs of the single layer unit 

chains increases linearly with 𝑁 through the relation 𝑚 =  2𝑁 –  3 which can be reduced to 1 if 

multiple layers are stacked upon them. Stacking layers can thus enact reconfigurability along one 

single path. The minimum number of layers, �̅�, necessary to trim 𝑚 to 1 is not unique, rather it 

depends on the unit chain primitive. Figure 2-2B shows that for unit chains N4 and N6, �̅� = 3, 

whereas for N𝑁>6, �̅� = 5. We now focus on multilayered units with a single DoF prior to 

bifurcation, denoted by N𝑁n�̅�, and investigate their behaviour at the instant of kinematic 

bifurcation and post-bifurcation. 

2.3.6 Kinematic bifurcation: emergence of lock and flat-fold modes 

In the early stage of folding, our N𝑁n�̅� chain can travel along one route governed by �̅�. However, 

as soon as it reaches a configuration where all its dihedral angles are 𝜋/2, i.e., kinematic 

bifurcation, the DoFs instantaneously grow, and multiple kinematic paths become active (Figure 

2-2A and Figure 2-2C). We classify the post-bifurcation modes into either two-dimensional (2D) 

flat-foldable, or three-dimensional (3D) lockable (Figure 2-2C). Flat-foldable modes are fully flat 
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patterns that are distinct from the initial state. Lockable modes describe 3D states with contact 

between adjacent panels that impart compressive stiffness. 

We can show (Section 2.5.1) that our single-DoF multilayered unit chains possess only two types 

of dihedral angle pairs (Figure 2-2A and Figure 2-2D), acute 𝒜 and obtuse 𝒪, obeying the relation 

𝒜 + 𝒪 = 𝜋 during the entire range of motion. A given sequence with angle pairs, e.g., two 𝒜s 

and one 𝒪 depicted in Figure 2-2D, can be simply denoted by the series of angle pairs, e.g., 𝒜𝒜𝒪, 

and in compact form with the power indicating the repeated pairs, e.g., 𝒜2𝒪. This notation allows 

discriminating between kinematic modes that emerge at bifurcation. Given the modes defined by 

a repeating sequence of 𝒜𝒪, such as 𝒜𝒪𝒜𝒪𝒜𝒪 … (or simply 𝒜𝒪̅̅ ̅̅ ̅), cannot be tessellated in-plane, 

we denote them as irregular modes as opposed to the regular ones which are tileable in-plane 

(Section 2.6.4).  

With the above, we systematically characterize the regular modes of a generic N𝑁n�̅� and determine 

the total number of possible reconfiguration modes. We use the Pólya enumeration theorem of 

combinatorics (Section 2.6.3) to (i) count the regular modes and then (ii) define their kind. The 

problem of finding all independent regular modes of a generic N𝑁n�̅� unit can be treated as the 

classical necklace problem. The goal is to reconstruct the colored pattern of a necklace of several 

beads, each colored either in white or black (𝒜 or 𝒪), from the knowledge of a limited set of 

information (Section 2.5.1). By using a predictor-corrector type incremental method (Section 

2.6.1), we can now visualize the post-bifurcation kinematic paths of N̂4n4, N̂6n4, N̂8n5, N̂10n5. 
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Figure 2-2 Stacking layers as a means for reducing degrees of freedom. A Unit chain stacking for a three-

layered unit N̂6n3. On its right, a representative pre-bifurcation reconfiguration with 𝜃 < 𝜋 (above) and 
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the bifurcation state with 𝜃 = 𝜋/2 (below). B Pre-bifurcation DoFs, 𝑚, plotted as a function of the number 

of stacked layers, 𝑛, for given 𝑁 even-sided primitives (𝑁 =  4, 6, 8, 10, 12). C Isometric and top views of 

five post-bifurcation modes belonging to three kinematic paths: four regular modes, of which two are locked 

(𝒜3 and 𝒜2𝒪) and two flat-folded (𝒪3 and 𝒜𝒪2), and one irregular mode (𝒜𝒪̅̅ ̅̅ ̅). D Zoom on the top layer 

of N̂6n3 in lock mode 𝒜2𝒪 showing the arrangement of pairs of valley dihedral angles (in color). E Mode 

counts calculated from discrete data points for 𝑁 >  4 along with the best curve fits characterizing the 

number of flat-foldable 𝑐𝐹 and lockable 𝑐𝐿 modes vs. 𝑁 for a generic multilayered unit N𝑁n�̅� (semi-log 

plot). 

To understand the relation between the total number of post-bifurcation modes and the sides of the 

unit chain primitive 𝑁, Figure 2-2E plots the total number of lockable modes 𝑐𝐿 and flat-foldable 

modes 𝑐𝐹 versus 𝑁. The best curve fits are included to provide phenomenological closed-form 

relations that characterize folding paths and differentiate lockable modes (𝑐𝐿 = 0.21exp(0.3𝑁)) 

from flat-foldable modes (𝑐𝐹 = 0.54exp(0.16𝑁)) as a function of 𝑁 for a generic N𝑁n�̅�. The 

results show that the number of regular modes grows exponentially, hence providing a rich 

platform to program lockable paths (Table 2-1). 

2.3.7 Symmetry and topology 

From a single multilayered unit chain, we now turn to its periodic and multilayered tessellation 

forming a material system. Multilayered unit chains are connected to follow a tessellation pattern 

(see Section 2.6.4) that replicates a crystallographic arrangement of atoms. Figure 2-3 shows the 

top view of representative patterns for 𝑁 = 4, 6, 8, and 10. While several others exist, here we focus 

on tessellations with the most compact pattern. The goal is to show that upon folding along a given 

path our material systems undergo switches in symmetry and apparent topology, both hallmarks 

of in situ programmability. 
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Figure 2-3 Various reconfiguration modes of origami-inspired metamaterial from the top view. Flat-

foldable and lockable modes of in-plane tessellated systems made of multilayered unit chains N̂4n�̅�, N̂6n�̅�, 

N̂8n�̅�, and N̂10n�̅� (qualitative sketches out-of-scale). Group points using Schoenflies notation are shown 

for all modes. 𝐶𝑛 refers to an n-fold rotation axis, 𝐶𝑛ℎ refers to 𝐶𝑛 with the addition of a mirror plane 

perpendicular to the axis of rotation, and 𝐶𝑠 denotes a group with only a mirror plane (𝐶1ℎ). Edge and face 

connectivity are only shown for lockable modes. 𝑍𝑒 is the number of edges that meet at a point (joint). 𝑍𝑓 

represents the number of faces that meet at an edge. The values of 𝑍𝑒 and 𝑍𝑓 for each configuration are 

shown after a vertical line separating them from their Schoenflies notation; parentheses are used whenever 

more than one connectivity value exists. For each configuration, multiple values of 𝑍𝑒 and 𝑍𝑓 may exist for 

a given joint and edge within the lattice. In these cases, all the values are reported in parentheses. 

Notions of crystallography become handy to study changes in symmetry. Each pattern is formed 

by tessellating in-plane a representative unit (red boundaries in Figure 2-3) defined by the periodic 

vectors. Upon reconfiguration, the material system at bifurcation can access a new kinematic path 

that causes the smooth transition of certain dihedral angle pairs from 𝒜 to 𝒪; the result is a break 

in symmetry. This phenomenon is visualized by the patterns that followed those in the first column 

of Figure 2-3, each denoted by their crystallographic point group and Schoenflies symbol. A 

variation in the lattice point groups translates into a change of the elastic constants defining the 

elastic tensor; the symmetry shift endows the material system with another set of elastic properties. 

For example, the lattice made of N̂4n�̅� (first row of Figure 2-3) is shown in one of its lock modes, 

𝒜𝒪, in the second column. In this mode, 𝒜𝒪 has 𝐶2ℎ symmetry, i.e., a twofold rotational 

symmetry, and its elastic compliance matrix contains 13 elastic constants defining a monoclinic 

behavior. Upon switching to lock mode 𝒜2 (third column), its symmetry changes to 𝐶4ℎ, a fourfold 

rotational symmetry, resulting in an elastic compliance matrix with seven independent constants. 

Besides symmetry, another aspect enabling in situ programmability is the apparent change of 

topology undergone after bifurcation. Here topology is defined by connectivity through 𝑍𝑓, the 

number of faces that meet at an edge, which is equivalent to a fold-line as opposed to a cut-edge, 

and 𝑍𝑒, the number of edges meeting at a vertex. The values of 𝑍𝑒 and 𝑍𝑓 are calculated for the 
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corresponding spatial lattice upon the assumption that in the lock state coincident edges and 

vertices form a single edge and a single vertex (values on top of each configuration in Figure 2-3). 

A change in 𝑍𝑒 and 𝑍𝑓 denotes topology differentiation in the physical space, whereas topology is 

invariant to other geometric parameters, such as the length of the primitive void. Results show an 

increase in connectivity values from the partially folded state to the lock state (see also Section 

2.6.7). A break in topology impacts the deformation mode of the panels, which transition from 

bending to stretching [197], as shown later. The versatility to impart topological changes by 

traveling across a kinematic bifurcation can be used not only to tune the mechanical and physical 

properties in situ (see also Sections 2.6.11, 2.6.12, and 2.6.13), but also to switch the mechanism 

of deformation. 

2.3.8 Energy landscape 

Prior to bifurcation, our multilayered system N𝑁n�̅� folds with one DoF through the application of 

in-plane forces. At the point of kinematic bifurcation, however, multiple kinematic paths become 

accessible. The entry into a specific path depends on the interplay between the components of the 

compressive forces, applied in its plane at the bifurcation instant. To study their role, we examine 

a generic N𝑁n𝑛 (with 𝑛 ≥ �̅�) bi-axially and uniformly compressed and investigate the energy 

landscape of each kinematic path. The goal is to find the path and pertinent mode with the lowest 

energy level. 

To formulate the total energy of N𝑁n𝑛 we assume infinitely rigid panels and frictionless rotational 

springs (hinges) of uniform stiffness per unit length, 𝑘. We consider our unloaded system in mode 

𝒪𝑁/2, with all dihedral angle pairs being obtuse; this is the zero-energy state of the system denoted 

by 𝜃0 specifying a configuration that is either flat or partially folded due to the presence of residual 

stresses induced by manufacturing. 𝜃𝐿, on the other hand, is the acute dihedral angle of the lock 
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unit. We assume 𝜃0 > 𝜋/2, a condition implying that upon the application of an out-of-plane load 

(z direction in Figure 2-1A), our system can only fold from its zero-energy state to its fully 

developed configuration. 

2.3.9 Mode-phase diagram: the role of in-plane confinement 

We consider a pair of compressive in-plane forces, 𝑓𝑥 and 𝑓𝑦, applied uniformly, quasi-statically, 

and oriented along the principal directions x and y (Figure 2-1A). We define the biaxiality ratio 

𝑟𝐵 = 𝑓𝑦/𝑓𝑥 with 𝑓𝑦 ∈ [0,∞), 𝑓𝑥 ∈ (0,∞) and 𝑟𝐵 ∈ [0,1] to discriminate between the relative 

magnitude of the applied forces, and derive an expression of the total energy as a function of the 

applied forces and the dihedral angle, i.e., Π = Π(𝜃, 𝑓𝑥, 𝑓𝑦) or Π = Π(𝜃, 𝑓𝑥, 𝑟𝐵) (Section 2.6.13). 

Two representative systems N̂4n𝑛 and N̂6n𝑛 (with 𝑛 ≥ n̅ and geometric parameter �̅� = 𝑏/𝑎 = 1) 

are examined. Their energy landscapes can be mapped into mode-phase diagrams (see Section 

2.5.2) and their application showcased in demonstrative scenarios defined by families of applied 

in-plane forces. Each family is specified by (𝑓𝑥,𝑟𝐵) where 𝑟𝐵 is maintained constant over the entire 

loading history. We consider two load families. The first is (𝑓𝑥,𝑟𝐵 = 1/3), where 𝑓𝑥 and 𝑓𝑦 can be 

proportionally scaled to respect the one third ratio; the (dimensionless) total energy landscape of 

one specific case (𝑓𝑥 = 1, 𝑟𝐵 = 1/3) of that family is shown in Figure 2-4A by the blue curve for 

a system with 𝑛  =  3 and 𝜃0  =  𝜋. In Figure 2-4B, (𝑓𝑥,𝑟𝐵  = 1/3) is shown by the blue load-path 

ABCD crossing three domains. In the light-yellow region, an increase of the force magnitudes 

from A to B is not sufficient to reconfigure our system, which remains flat (𝜃  =  𝜋) in its fully 

developed state. Once the load magnitude reaches the first domain boundary (black dash line), 

point B, the system starts to fold along the only kinematic path (yellow region) up to bifurcation 

(black solid line), point C. Immediately after bifurcation, the system can in principle access two 
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modes (𝒜𝒪 and 𝒜2 branches in Figure 2-4A), yet it enters 𝒜𝒪 due to the lower energy it requires 

for activation. After entering in mode 𝒜𝒪, the system momentarily continues to reconfigure until 

it locks at point D (Figure 2-4A, B). At this stage regardless of the magnitude of 𝑓𝑥 and 𝑓𝑦 satisfying 

𝑟𝐵 = 1/3 , no further folding is possible as the panels have come into contact, thus imparting 

stiffness. 

 

 

Figure 2-4 Energy analysis of the origami-inspired metamaterial. A Dimensionless total energy landscape 

of N̂4n�̅�  unit subjected to two representative in-plane biaxial forces: (𝑓𝑥 , 𝑟𝐵 = 𝑓𝑦/𝑓𝑥) =  (1,1/3), shown in 

blue, and (1,1) shown in green. B Mode-phase diagram of N̂4n𝑛 unit subjected to dimensionless forces 
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describing in-plane biaxial confinement 𝑓𝑥/(𝑛𝑘) and 𝑓𝑦/(𝑛𝑘), where 𝑘 is the rotational stiffness of the 

hinges per unit length: Family-load paths ABCD and AEFG describing uniform scaling of the applied 

forces. C Mode-phase diagram of N̂6n𝑛 unit under in-plane biaxial loads. Complementary information to 

plots B and C about the orientation of the lattice relative to the load direction is given in Figure 2-12 and 

Figure 2-13. D Schematic total energy landscape of N̂4n�̅� subjected to representative uniformly applied 

out-of-plane loads: 𝑓̅ < 1, 𝑓̅ = 1, 𝑓̅ > 1, where 𝑓̅ = 𝑓𝑜/𝑓
𝐿. Three regions emerge for mode 𝒜2: Region I 

(light brown) shows the configuration space in which the unit under compressive load 𝑓̅ < 1 folds in mode 

𝒪2 towards a state in proximity to its zero-energy configuration; Region iIa (light yellow) shows the 

configuration space where the unit despite being subject to 𝑓̅ > 1 still fold in mode 𝒪2 towards a state in 

proximity to its fully developed state; Region iIb (blue) illustrates the lockable domain, describing folding 

states where the unit has been brought by in-plane forces to a dihedral angle above the threshold of 

maximum energy (dot boundary); from this state the sole application of 𝑓̅ > 1 makes the unit spontaneously 

folds in mode 𝒜2 until its panels contact. 

The second family of in-plane forces is (𝑓𝑥 , 𝑟𝐵 = 1), shown in Figure 2-4B by the green load-path 

AEFG. The total energy landscape of one specific load case (𝑓𝑥 = 1, 𝑟𝐵 = 1) for that family is 

illustrated in Figure 2-4A (green). Similar to ABCD, the system remains in its flat configuration 

for a load increase from A to E. A further increase of the in-plane confinement makes the system 

exit the initial region (black dash line) and gradually deform up to the bifurcation point F (second 

boundary threshold). Thereafter, it enters the lowest energy branch (𝒜2 in Figure 2-4A and light 

blue region in Figure 2-4B) with an energetically stable state that occurs slightly prior to its lock 

state, point G. An additional load increase makes the system fold until it reaches its lock state (dark 

blue region in Figure 2-4B). 

The map in Figure 2-4B shows that the only way for N̂4n𝑛 to access mode 𝒜2 is with 𝑟𝐵 = 1; in 

contrast, any other values of 𝑟𝐵 would bring the system to lock in mode 𝒜𝒪. This is an outcome 

that is distinctive to N̂4n𝑛, and does not necessarily translate to other systems. For instance, for 

N̂6n𝑛, more kinematic paths are available, i.e., multiple ranges of 𝑟𝐵 exist to switch between 

modes. Figure 2-4C shows the mode-phase diagram of N̂6n𝑛. Here, 𝑟𝐵 = 0.74 (diagonal in the 

light green region) defines a condition for which the system, initially in 𝒪3 mode, enters 𝒜3 mode 
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immediately after bifurcation. For 𝑟𝐵 > 0.74, the unit enters its lockable mode 𝒜2𝒪 (dark green), 

whereas for 𝑟𝐵 < 0.74, it accesses its flat-foldable mode 𝒪2𝒜 (brown region). Once entered in the 

post-bifurcation mode with minimum energy, the system remains in that region until it locks. At 

this stage, the system is rigid under compression and can no longer reconfigure; no other regions 

beyond the red boundaries (Figure 2-4B, C) are accessible. The mode-phase diagrams depend on 

the geometric parameters �̅� and 𝜙 only, the former being a nonlinear scale factor, and the latter 

governing the slope of the lines separating mode-regions and the loading path (biaxiality ratio 𝑟𝐵) 

of a given mode (see also Section 2.6.13). They enable the choice of in-plane confining forces to 

attain desired post-bifurcation modes. The role of out-of-plane confinement is examined in the 

following. 

2.3.10 Lock state domains governed by out-of-plane force 

Our goal is to determine the magnitude of an out-of-plane (z axis in Figure 2-1A) compressive 

force 𝑓𝑜 necessary to bring and keep the system in its lock state without the need of in-plane 

confining forces. 

For the demonstrative purpose, we examine N̂4n𝑛 folding in mode 𝒜2. Figure 2-4D schematically 

shows its energy curves (see Section 2.5.3) for three representing values of the out-of-plane load 

normalized by the lock load, i.e., 𝑓̅ = 𝑓𝑜/𝑓
𝐿 where the lock load 𝑓𝐿 is the minimum out-of-plane 

force at the lock state (see Section 2.5.2). The interplay between 𝑓𝑜 and 𝑓𝐿 gives rise to three 

domains: 

Region I (light brown): 𝑓̅ < 1. Since 𝑓𝑜 < 𝑓𝐿, the system cannot access the lock state from a given 

configuration. 
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Region iIa (yellow): 𝑓̅ > 1, 
𝜕Π

𝜕𝜃
< 0 and 

𝜕2Π

𝜕𝜃2
< 0 – recall Π is expressed as a function of (𝜋 − 𝜃). 

Partially folded at a given dihedral angle, the system is prone to fold back to its fully developed 

(flat) state. 

Region iIb (blue): 𝑓̅ > 1, 
𝜕Π

𝜕𝜃
> 0, and 

𝜕2Π

𝜕𝜃2 < 0. This is the lockable domain (see Section 2.5.2). 

If in-plane forces lead the system to reach one unstable dihedral angle (blue point in Figure 2-4B), 

a small perturbation prompts the system to naturally abandon it. Once the in-plane forces succeed 

in generating dihedral angles smaller than those described by Eq. (2-5) in Section 2.5.2, our system 

can access the descending path in the lockable domain. Here spontaneous folding towards the lock 

state occurs, and in-plane forces are no longer needed. The magnitude of the out-of-plane action 

(𝑓𝑜 > 𝑓𝐿) enables lifting the in-plane confinement. Once in the lockable domain, e.g., orange point, 

the system is drawn to fold towards a stable configuration of equilibrium until it arrests due to 

panel contact (black point). 

The analysis above has revealed the interplay between in-plane and out-of-plane confinement. The 

former can be imparted through the biaxiality ratio to program and steer the reconfiguration mode 

(either lockable or flat-foldable) during the folding process. The latter, in particular its magnitude 

(𝑓𝑜 > 𝑓𝐿) and the threshold value of the dihedral angle, i.e., the lockable domain boundary, set the 

conditions for spontaneous folding into the lock state without the need for in-plane compression. 

Once contact is attained, our system becomes a stiff structure (see Sections 2.5.4 and 2.6.7), and it 

is ready to sustain compressive loads exerted in all three directions, as described below. 
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Figure 2-5 Out-of-plane loading of the origami-inspired metamaterial. Fabricated samples and measured 

properties of N̂4n6(7,7) and N̂6n6(7,7) unit in dissimilar lock modes; A Top view illustration of N̂4n6(7,7) 

sample showing its primitive unit cell, and tessellation base vectors and tessellation levels. Engineering 

stress-strain curves measured for B N̂4n6(7,7) in two lock configurations 𝒜2 and 𝒜𝒪, and for C N̂6n6(7,7) 

in two lock configurations 𝒜3 and 𝒜2𝒪. In B and C the shaded domain describes the dispersion of the 

results obtained from testing three samples. D Normalized compressive Young’s modulus (triangle 

symbols) and normalized yield strength (circle symbols) of N̂4n6(7,7) vs. relative density. Error bars 

represent the standard deviation of our measurements. The subset in D schematically illustrates how the 

compressive Young’s modulus 𝐸∗ and yield strength 𝜎∗ were measured. Cyclic (compressive loading-

unloading) response of E N̂4n6(7,7) (after ten cycles) and F N̂6n6(7,7) (after four cycles) in their most 

compact lock modes 𝒜2 and 𝒜3, respectively, showing the cyclic response stabilizes nearly after four 

cycles. In these experiments, the unloading is performed at 75% of the compressive strength of the initial 

cycle of each sample. 

2.3.11 Mechanical performance and programmability 

We examine a set of representative proof-of-concept specimens made of cellulose paperboard in 

their lock states under compression. The purpose is to demonstrate their capacity to achieve in situ 
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distinct mechanical properties by uniform and nonuniform application of confining forces. 

Experimentally investigated are the Young’s modulus 𝐸∗ (the tangent of the compressive stress-

strain curve in the first loading cycle assessing panel engagement as opposed to initial slippage) 

and the yield strength 𝜎∗ (the first peak stress before densification); relative density and Poisson’s 

ratio are given in the closed form in Sections 2.6.11 and 2.6.12. We avoid finite-size effects by 

tessellating in-plane 𝑙e1
= 𝑙e2

= 7 unit-cells along the base vectors {e1, e2} and stacking 𝑛  =  6 

layers (see Figure 2-5A and Section 2.5.5). A generic tessellated system is thus denoted by 

N̂𝑁n𝑛(𝑙e1
, 𝑙e2

), and below two representative systems, N̂4n6(7,7) and N̂6n6(7,7), are examined. 

2.3.12 Load-bearing capacity 

Figure 2-5A shows the top view of N̂4n6(7,7) along with an inset of a representative primitive 

unit cell (yellow) in the lock mode 𝒜2. Figure 2-5B reports its engineering stress-strain curves 

obtained in two lock configurations 𝒜2 and 𝒜𝒪, and Figure 2-5C the corresponding response of 

N̂6n6(7,7) in its two lock configurations 𝒜3 and 𝒜2𝒪. The shaded domain describes the 

dispersion of the results obtained from testing three samples for each material system in a given 

mode. Three regions emerge: (i) An initial nonlinear regime, describing panels not yet engaged 

under compression, hence unable to establish a proper contact. (ii) A linear material response for 

both locked states of each system. (iii) The stress-peak and the following regime, both indicative 

of progressive panel buckling and creasing. For N̂4n6(7,7) switching from 𝒜2 to 𝒜𝒪, the Young’s 

modulus and yield strength reduce approximately by an order of magnitude. For N̂6n6(7,7) 

switching from 𝒜3 to 𝒜2𝒪, the corresponding reductions are approximately three and two times. 

Minor deviations emerge in regions (i) and (ii), as opposed to large values attained in region (iii) 

far from the peak. Our measurements are comparable with values reported for kirigami-based 

concepts made of similar material [198]. 
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2.3.13 Scaling laws 

Figure 2-5D shows the normalized Young’s modulus, 
𝐸∗

𝐸𝑠
, and normalized yield strength, 

𝜎∗

𝜎𝑓
, (where 

𝐸𝑠 and 𝜎𝑓 are the Young’s modulus and failure stress of the base material in the machine direction, 

MD) for N̂4n6(7,7) measured at three values of relative density. The results are obtained for 

samples with geometric parameters 𝑎  =  𝑏  =  10 mm, 15 mm, and 20 mm; for each of them, five 

identical samples were fabricated and tested. The normalized Young’s modulus scales almost 

linearly with the relative density (
𝐸∗

𝐸𝑠
∝ �̅�1.1), where �̅� ∝ (𝑡/𝑎) (see Section 2.6.11), hence obeying 

the classical scaling law of stretching dominated structures. The normalized yield strength, on the 

other hand, scales almost quadratically with relative density (
𝜎∗

𝜎𝑓
∝ �̅�1.9), a scaling law deviating 

from the buckling or yield failure predictions of stretching dominated 3D plate-lattices. This can 

be attributed to the presence of additional failure mechanisms, which are governed by hinge 

stiffness, panel contact and the presence of geometrical imperfections, a topic of ongoing research. 

2.3.14 Cyclic response 

Figure 2-5E and F show the cyclic loading-unloading curves of N̂4n6(7,7) and N̂6n6(7,7) under 

compression. Given their similarity, only the response of N̂4n6(7,7) is examined. The hysteretic 

behavior might be attributed to the friction of faces and edges coming to contact, the viscoelastic-

viscoplastic nature of the base material (cellulose paperboard) as well as the local accumulation of 

plastic damage, which is also responsible for progressive softening. This is caused by the repeated 

strain of the weak crease ligaments which amplify their detrimental effect at each cycle until the 

response stabilizes. This occurs after approximately four cycles. Thereafter, no appreciable 

softening can be observed at higher strains nor significant variations of the modulus. At the end of 

the test, a strain of 0.04 is registered, indicating a permanent set not fully recovered even after 
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several hours from the test end. These characteristics are qualitatively comparable with those 

observed in soft polymeric lattices exhibiting viscoelasticity and localized plasticity under cyclic 

loading [199]. Further work is required to quantitatively assess the response we observed and the 

role of the governing factors. 

2.3.15 Multidirectional stiffness 

N̂4n6(7,7)  in the lock configuration 𝒜2 is tested under in-plane and out-of-plane compression 

(Figure 2-6A) along two in-plane directions (A and B) at 45° and 90° with respect to the x axis, 

and along the z-direction. Representative curves of their engineering stress-strain responses in 

Figure 2-6B attest a comparable yet distinct elastic response and load-bearing capacity. The largest 

strength (A) and stiffness (B) observed during in-plane testing are attributed to the presence of 

double-layered panels, i.e., quad panels bonded to stack layers, an aspect that confers additional 

anisotropy and larger strength to bear the compressive load beyond the elastic regime. The 

difference between the initial in-plane responses (more compliant for the unit loaded at 45°) is due 

to the occurrence of a shear deformation that is dominant at the start of the compression test. 

Overall, our paperboard N̂4n6(7,7) specimens with 𝑎  =  𝑏  =  15 mm and locked in mode 𝒜2 

weighs ~ 40 g, and can withstand up to 850 N under compression along the z-direction, while up 

to 1450 N when compressed in the in-plane directions. In the lock mode 𝒜3, N̂6n6(7,7) with 

identical geometric parameters and weight can resist 1000 N under out-of-plane compression. 
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Figure 2-6 Multidirectional and Multimodal load-bearing capability of the origami-inspired metamaterial. 

A Directions (two in-plane and one out-of-plane) of the applied compressive loads relative to the orientation 

of the N̂4𝑛6(7,7) specimen, and B their corresponding representative engineering stress-strain responses: 

Scale bar in 𝒂  = 100 mm. C Top view of seven mixed-mode configurations of N̂4𝑛6(7,7) with 𝑎  =  𝑏  =

 10 mm: Scale bar in 𝑐  = 30 mm. Regions of a given mixed-mode highlighted in semitransparent color for 

𝒜2, 𝒪2 and 𝒜𝒪. Out-of-plane normalized compressive Young’s modulus D and normalized open-channel 

(void) area in the out-of-plane direction E for the seven configurations shown in C. 

2.3.16 Mixed-mode configurations 

Uniformly applied forces at the instant of kinematic bifurcation cause the material system to fold 

into one of its lock modes, each with its own set of properties (e.g., Figure 2-5B and C). Here we 

examine the outcome of a nonuniform set of forces locally applied in given zones, hence bringing 

the system into a mixed-mode configuration, i.e., a state that is partially folded and encompasses 

a combination of lockable and flat-foldable modes. Figure 2-6C depicts seven mixed-mode 

configurations among several others for our N̂4n6(7,7) specimen with square primitive side 𝑎  =
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 𝑏  =  10 mm. The top row shows the emergence of voids from configurations 4 to 7. In the second 

row, the distribution of the attainable modes, i.e., 𝒜2, 𝒪2 and 𝒜𝒪, which can concurrently form 

in a given mixed-mode, is highlighted with a given color. Figure 2-6D reports Young’s modulus 

normalized with respect to that of the configuration (1), i.e., 𝐸∗(1)
, measured in each mixed-mode 

configuration. Measurements of Young’s modulus 𝐸∗ for N̂4n6(7,7) shows only a 1.2-fold 

decrease when the tessellation level (3,3) increases to (7,7) (see Figure 2-20B). The difference is 

small compared to the decrease observed for a switch from mode 𝒜2 to 𝒜𝒪 (Figure 2-5B) or 𝒪2 

(Figure 2-6D). This result suggests that the stiffness values of mixed-mode configurations are 

relatively insensitive to finite-size effects. In general, the addition of mode-regions 𝒪2 and 𝒜𝒪 

reduces stiffness, e.g., a drop to half is observed when configuration (1) switches to (3). 

Configuration (4) including all three mode-regions shows slightly higher stiffness than 

configuration (2), a counterintuitive result that might be attributed to the distribution of mode-

regions with a twofold symmetry, as opposed to configurations (2) and (3), which exhibits 

reflection symmetry only. In this mode, only a single channel (an out-of-plane void) is formed as 

opposed to configurations (1), (2), and (3), which have no open channels or voids. Figure 2-6E 

shows the normalized open-channel area 
𝐴𝑐ℎ

𝐴𝑐ℎ
(4) changes upon reconfiguration, where 𝐴𝑐ℎ is the open-

channels area in the out-of-plane direction and 𝐴𝑐ℎ
(4)

 that of configuration (4) with a single channel. 

The change in the open-channel area can be considered as a descriptor of the system permeability, 

which scales linearly with the conduit area as in a porous medium. The trends show that the 

compressive Young’s modulus and permeability are antagonists. While not quantified here, this 

qualitative result attests the versatility of our systems to tune on-the-fly flow permeability. Further 

work is required to quantify this aspect in detail. 
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2.4 Discussion 

This work has introduced a class of reprogrammable rigidly flat-foldable metamaterials that are 

topological and load-bearing in multiple directions including the deployment direction. By 

merging notions of origami-folding with kirigami-cuts, we have created foldable patterns made of 

chains that are shaped with an N even-sided regular polygonal primitives defining the inner void. 

Cellular excisions relax certain deformation constraints imposed by panel planarity and 

connectivity of the parent origami. The strategy enables folding within the embedded voids with 

multiple DoFs, which can be reduced upon stacking. This trait simplifies the fabrication process 

and eases its automation (see Section 2.6.16). At the bifurcation instant, however, the DoFs grow, 

and multiple kinematic paths become temporarily accessible. Some lead to 3D stiff (locked) 

configurations, and others to 2D flat-folded states; this hallmark extends the level of 

programmability offered by existing origami concepts. When tessellated, our metamaterials 

undergo symmetry and topology transformations that are amenable to in situ modulation in 

uniform and mixed-mode configurations, each with its own set of properties. 

Our foldable metamaterials offer functionalities that can be used as lightweight deployable and 

self-locking materials, low-volume transportable packaging, actuators, and lockable robotic 

systems that tune stiffness upon actuation. Their rigid-foldability also enables the adoption of stiff 

materials other than paper [196]. In addition, the load-bearing capacity in their densest lock 

configuration is not limited to any specific directions, rather it is offered along their three main 

directions, paving the way to their use as omnidirectionally structural, yet rigidly flat-foldable 

mechanical metamaterials. This aspect is distinct from current origami metamaterials featuring a 

trade-off between reconfigurability and load-bearing capacity, the latter being limited to certain 

directions [28, 48, 70, 72, 86, 87, 104, 107, 144, 149, 159, 166, 194]. These concepts, when used 
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to withstand volumetric pressure in their deployed state or another set of multidirectional forces, 

would collapse as they remain floppy at least in one direction. Volumetric pressure can be either 

externally or internally applied. Examples of the former include remotely operated vehicles, such 

as shape-changing vessels and submarines, made of structural components that need to deploy 

underwater and provide multidirectional stiffness and strength to resist water pressure during 

operation. Examples of the latter include inflatable systems, such as air tents, inflatable shelters, 

and buildings, saving boats and vests, which can not only be packed into a flat or other compact 

flat-folded configurations but also safely maintain their deployed state if punctured. Our 

metamaterials can thus work as the skeleton of puncture-resistant inflatable systems that lock in 

place after deployment, without collapse or losing their functionality due to unforeseen deflation. 

Furthermore, the capacity to switch permeability while remaining stiff can find application in the 

design of adaptive porous media and breathable walls for civil engineering, or as smart-valves for 

medical implants where fluid flow could be modulated in situ by structure rather than by external 

occlusions. 

2.5 Methods 

2.5.1 Identification of lockable and flat-foldable modes 

We systematically study the relations that define the post-bifurcation modes belonging to a given 

kinematic path for a single-DoF stacked unit chain N𝑁n�̅�. As illustrated in Figure 2-2A, in the pre- 

and post-bifurcation stages, the triangular panels (six in dark green in the middle layer) in each set 

of mountains and valleys remain parallel as �̅�  =  3. Three of them are mountain panels that lay in 

a mountain plane, and the others rest in a valley plane. The distance between them is h (Figure 

2-2A) which can be calculated through relation (2-1). In a given plane, there are six fold lines (two 

per triangle) which form a total of six dihedral angles. The fold lines that are parallel form a pair 
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of dihedral angles (Figure 2-2A). This pair can contain either equal or supplementary angles, a 

condition that defines the type of post-bifurcation mode. Equality of dihedral angles in each pair 

defines regular modes, which in Figure 2-2C belong to paths 1 and 2; this implies that the 

reconfiguration of the unit chain leads to a folded pattern that is compatible with its original 

tessellation. In contrast, supplementarity of dihedral angles in all pairs, i.e., the dihedral angles 

sum up to 180° in each pair, gives rises to irregular modes, and path 3 in Figure 2-2C shows an 

example. Irregular modes can be attained only in a single unit chain but not in a tessellated pattern, 

as they forego folding congruence between the initial and the final pattern, revealing that the flat-

foldable tessellation cannot be unpacked to its initial pattern. Only one irregular mode exists for 

N𝑁n�̅� with 𝑁  >  4 and 𝑁/2 equal to an odd number, e.g., modes of N̂6n3 shown in Figure 2-2B. 

Given the folding incompatibility of irregular modes, we now focus on the regular counterparts 

and study the conditions that can be used for a given kinematic path to count the number of existing 

modes and define the characteristics of each of them. Our goal is to demonstrate the existence of 

relations between distinct pairs of dihedral angles, which in turn govern the kinematic paths N𝑁n�̅� 

can access post-bifurcation. We first introduce some basic notions for our analysis. In the 

denomination of dihedral angles, we specify acute angles with 𝒜 and obtuse angles with 𝒪. The 

geometry of the units enforces the condition 𝒜 + 𝒪 = 𝜋 during their entire range of motion. As 

an example, three pairs of valley dihedral angles are illustrated in Figure 2-2D, two 𝒜s (violet and 

blue) and one 𝒪 (yellow) for a total of six valley dihedral angles. Since in N𝑁n�̅�, which has 1 DoF, 

each pair contains equal angles, all 𝒜s are equal as are all 𝒪s. A given sequence with angle pairs, 

e.g., two 𝒜s and one 𝑂 depicted in Figure 2-2D, can be simply denoted by the series of angle pairs, 

e.g., 𝒜𝒜𝒪, and in compact form with the power indicating the repeated pairs, e.g., 𝒜2𝒪. This 

notation allows discriminating between kinematic modes that emerge at bifurcation. For example, 
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N̂6n3 (Figure 2-2C) can travel along four regular modes: 𝒪3 (three obtuse angles are engaged 

only), 𝒜3 (three acute angles are engaged only), 𝒜2𝒪 (two acute angles and one obtuse angle), 

𝒜𝒪2 (one acute and two obtuse), and one irregular, shown with 𝒜𝒪̅̅ ̅̅ ̅. Modes containing identical 

pairs of dihedral angles belong to the same kinematic path, and we designate them by swapping 

𝒜s and 𝒪s, i.e., 𝒜2𝒪 and 𝒜𝒪2 belong to path 2, and 𝒜3 and 𝒪3 to path 1. 

With the notions above, we can now systematically characterize the regular modes of a generic 

N𝑁n�̅� and determine the total number of possible reconfiguration modes. The problem of finding 

all independent regular modes of a generic N𝑁n�̅� unit can now be treated as the classical necklace 

problem. In our case, the equivalent necklace is our unit chain N𝑁n�̅� with 𝑁/2 colored beads 

(Figure 2-2D), and each color represents a type of dihedral angles, either 𝒜 or 𝒪. By applying the 

Pólya enumeration theory, we determine all reconfiguration modes our N𝑁n�̅� chain can attain from 

knowledge of 𝑁/2 numbers of 𝒜 and 𝒪. We also assume that the beads can be rotated around the 

necklace and that the necklace can be flipped over. By applying this theory to N̂6n3, for instance, 

all the possible modes can be collected in a generating function of the form 𝒜3 + 𝒜2𝒪 + 𝒜𝒪2 +

𝒪3, which describes the four regular modes illustrated in Figure 2-2, and where the sum of the 

powers of 𝒜 and 𝒪 in each mode is 𝑁/2. Similar results can be obtained for other unit chains, 

N𝑁n�̅� (see Sections 2.6.3 and Figure 2-9 for more details). 

2.5.2 Energy of the in-plane confinement and mode-phase diagram 

We start with N̂4n𝑛 described by the representative set of parameters: 𝑘  =  1/3 N, 𝑛  =  3, 𝜃0  =

 𝜋 and 𝑎  =  𝑏  =  15 mm. Figure 2-4A illustrates two typical curves of the dimensionless total 

energy, each for a given value of (𝑓𝑥, 𝑟𝐵). Upon bifurcation, when 𝜃  =  𝜋/2, the total energy curve 

splits into two branches, each representing a reconfiguration mode 𝒜𝒪 and 𝒜2. Between these 
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two, the system chooses the mode which has the lowest energy level. This outcome can be 

determined by examining (i) the magnitude of the energy of all branches immediately before and 

after the bifurcation, and (ii) the gradient of the energy of all branches at bifurcation, for example, 

𝜕Π
𝒜2

𝜕𝜃
|𝜃=𝜋/2 and 

𝜕Π𝒜𝒪

𝜕𝜃
|𝜃=𝜋/2 (see Section 2.6.13 for more details). The magnitude and the ratio of 

the in-plane biaxial loads, i.e., (𝑓𝑥,𝑟𝐵), govern the relative energy level of each energy branch, 

dictating the configuration mode our system would travel after bifurcation. For example, Figure 

2-4A shows the role of 𝑟𝐵 in entering a given post-bifurcation mode. For a load case 

(𝑓𝑥,𝑟𝐵)=(1,1/3), the system at bifurcation chooses the 𝒜𝒪 energy branch until reaching the lock 

state in this mode; in contrast once subjected to (𝑓𝑥,𝑟𝐵)=(1,1), the system follows the 𝒜2 energy 

branch to reach the lock state. 

The example above suggests the prospect to generate a mode-phase diagram that maps the 

activation of a given mode with respect to the relative magnitude of the in-plane confinement 

forces 𝑓𝑥 and 𝑓𝑦. Figure 2-4B visualizes such a map for N̂4n𝑛 with 𝑎  =  𝑏  =  15 mm and 𝜃0   =

 𝜋. Each color is assigned to a region that describes a given configuration mode. The boundaries 

separating modes 𝒜𝒪 and 𝒜2 are obtained by equating the gradient of the total energy of each 

branch at bifurcation,  (
𝜕Π

𝒜2

𝜕𝜃
|
𝜃=

𝜋

2
=

𝜕Π𝒜𝒪

𝜕𝜃
|
𝜃=

𝜋

2
)
𝜃=

𝜋

2

. 

2.5.3 Formulation of the energy of the out-of-plane confinement 

We start by expressing the potential energy of the hinges as 𝑉 = 𝑉(𝜃) = 2𝑛𝑁𝑘𝑏(𝜃 − 𝜃0)2 and 

the work of a uniformly applied external force fo as 𝑊𝑜 = 𝑛𝑓𝑜𝑎 sin𝜙 (sin 𝜃0 − sin 𝜃) where we 

recall 𝑛 is the number of stacked layers and the other parameters are defined in Figure 2-1A. The 

potential energy due to gravity is neglected since the panels of our system are made of cellulose 

paperboard, lightweight material with the gravitational potential energy of few orders of magnitude 
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lower than that of the hinges and the work of the external forces. If we introduce 𝑉′ = 𝑉(𝜋 − 𝜃), 

and denote a generic mode with 𝒜𝜉𝒪𝜉′
, where 𝜉 is the total number of valley pairs for the acute 

dihedral angles (𝒜) and 𝜉′ counts the total number of valley pairs for the obtuse dihedral angles 

(𝒪) with 𝜉 + 𝜉′ = 𝑁/2, we can express the total energy Π = Π(𝜃, 𝑓𝑜) of the 𝐴𝜉𝑂𝜉′
mode as 

{
Π =

2𝜉

𝑁
(𝑉 − 𝑉′) + 𝑉′ − 𝑊𝑜

Π =
2𝜉′

𝑁
(𝑉′ − 𝑉) + 𝑉 − 𝑊𝑜

 
∀𝜉 < 2 𝜋/2 ≤ 𝜃 ≤ 𝜋 

(2-3) 

∀𝜉 ≥ 2 𝜃𝐿 ≤ 𝜃 ≤ 𝜋 

The first expression in Eq. (2-3) describes the total energy of the system in mode 𝒜𝜉𝒪𝜉′
 prior to 

bifurcation, while the second gives the total energy after bifurcation. 

Under an out-of-plane force, a generic system N𝑁n𝑛 is in equilibrium at the lock state when the 

total energy has a stationary value. Given N𝑁n𝑛 has one DoF, and the total energy and its derivative 

are continuous functions, we can determine the minimum out-of-plane force 𝑓𝐿 at the lock state 

by solving 
𝜕Π(𝜃,𝑓𝑜)

𝜕𝜃
|𝜃=𝜃𝐿 = 0 for 𝜉 ≥  2, which yields: 

𝑓𝐿 = −4𝑘𝑏
2𝜉(𝜋 − 2𝜃0) − 𝑁(𝜋 − 𝜃𝐿 − 𝜃0)

𝑎 sin𝜙 cos 𝜃𝐿
 (2-4) 

Equations (2-3) and (2-4) can be used to map the total energy landscape of a system under a 

uniform out-of-plane compression as a function of the supplementary of the dihedral angle 𝜃, i.e., 

𝜋 − 𝜃 (Figure 2-1A). For demonstrative purpose, we examine N̂4n𝑛 folding in mode 𝒜2 with 

𝜃0  =  2𝜋/3. Figure 2-4D shows its energy curves (Eq. (2-3)) for three representing values of the 

out-of-plane load normalized by the lock load, i.e., 𝑓 = 𝑓𝑜/𝑓
𝐿. Setting 𝑓̅ = 1 yields the boundary 

(thick curve) between two energy domains, one (below) satisfying 𝑓̅ < 1 and the other (above) 

𝑓̅ > 1. The red point, which all curves (three shown) pass through, represents the zero-energy 
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state, described above as the state of the system immediately after manufacturing, either flat (ideal 

case) or marginally folded due to residual stress from fabrication. 

Subject to uniform out-of-plane compression, our material system can fold into its lock state under 

two conditions. First, the magnitude of the uniformly applied force 𝑓𝑜 should be above the 

minimum out-of-plane force, 𝑓𝐿, required to lock up the unit. Second, the dihedral angle of our 

unit should be larger than a threshold value defined by the maximum energy barrier of the system. 

The interplay between 𝑓𝑜 and 𝑓𝐿 described by these conditions gives rise to three domains: 

Region I (light brown): 𝑓̅ < 1. Here fall configurations are defined by supplementary angles for 

which our system can reach an equilibrium that is either stable if 
𝜕2Π

𝜕𝜃2 > 0, or unstable if 
𝜕2Π

𝜕𝜃2 < 0. 

Since 𝑓𝑜 < 𝑓𝐿, the system cannot access the lock state from a given configuration, e.g., lower 

orange point, and it tends to fold back to its equilibrium point along the “flat-fold” direction 

towards the zero-energy point (red). 

Region II: 𝑓̅ > 1. In this domain, our system can potentially reach the lock state, but a difference 

in the outcome exists as determined by the stability of equilibrium. Region II splits into two 

subdomains (iIa and iIb), each defined by the slope of the energy curve, i.e., the sign of 
𝜕Π

𝜕𝜃
, where-

we recall-Π is expressed as a function of (𝜋 − 𝜃). 

Region iIa (yellow): 
𝜕Π

𝜕𝜃
< 0 and 

𝜕2Π

𝜕𝜃2
< 0. The condition of equilibrium here is unstable despite the 

out-of-plane force being larger than the minimum locking force. In this region, a system partially 

folded at a given dihedral angle by the applied in-plane forces is prone to fold back to its fully 

developed (flat) state. 
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Region iIb (blue): 
𝜕Π

𝜕𝜃
> 0 and 

𝜕2Π

𝜕𝜃2
< 0. This is the lockable domain, bounded by the locus of points 

(dot line), which satisfies the condition 
𝜕Π

𝜕𝜃
= 0 for all 𝑓̅ > 1. Upon imposing the condition 

𝜕Π(𝜃,𝑓𝑜)

𝜕𝜃
= 0 in Eq. (2-3), we can express the dihedral angle θ as a function of the load fo when the 

energy is maximum, 
𝜕Π

𝜕𝜃
= 0, from which we obtain 

𝑓𝑜(𝜃) = −16𝑘𝑏
(𝜃 − 𝜃0)

𝑎 sin𝜙 cos 𝜃
 (2-5) 

Substituting Eq. (2-5) into Eq. (2-3) yields the lockable domain boundary of maximum energy (dot 

bound in Figure 2-4D) given as a function of the dihedral angle (𝜃𝐿 ≤ 𝜃 ≤
𝜋

2
 and 𝜉 = 2): 

Π = 𝑉(𝜃) + 16𝑛𝑘𝑏
(𝜃 − 𝜃0)

cos 𝜃
(sin𝜃0 − sin 𝜃) (2-6) 

Equation (2-6) traces points of the dot boundary that are unstable configurations of equilibrium, 

where the total energy attains maximum values, one of which is shown by the blue point of the 

representative energy curve 𝑓̅ > 1. 

2.5.4 Rigidity under compression 

Once folded into the lock state, our multilayered unit chain N𝑁n�̅� inherits compressive load-

bearing capacity as panels reach contact and prevent further motion. We study the load-bearing 

capacity of our class of foldable material systems in relation to their layer stacking. The condition 

that guarantees their structural rigidity in one of their lock states can be determined by studying 

their pin-jointed counterpart made of a triangulated network (Figure 2-1C). We can formulate the 

general problem that predicts the rigidity of a structure by theoretical analysis (see Sections 2.6.1 

and 2.6.7). While the units are subjected to compressive loads, we assume coincident bars as a 

single bar and multiple coincident joints as a single joint. The results can be expressed for a single 
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unit chain as a function of the number of bars and joints at its lock and partially folded 

configurations along with the conditions of rigidity (see Section 2.6.7). 

Carried out for the general lock state 𝒜𝑁/2, where all dihedral angles are acute, our rigidity 

analysis reveals that N4 becomes rigid with a single layer, whereas at least two layers must be 

stacked for N6 and three layers for N𝑁 > 6. Knowing the minimum number of stacked layers 

provides an essential guideline to make our unit chain stiff in a lock state under compression. 

2.5.5 Experimental methods 

Test samples were built out of cellulose paperboard material (200 g m−2 Fabriano Craft paper) 

with a dry thickness 𝑡  =  0.21 mm. Each flat sheet was perforated via laser cutting (CM1290 laser 

cutter, SignCut Inc.) along prescribed patterns, followed by manual-folding and layer bonding 

(using a commercial Polyvinyl acetate, commonly known as white glue). Fold lines were obtained 

with cuts of 2 mm length spaced uniformly at 1.4 mm intervals. Experiments were performed with 

a BOSE ElectroForce-3510 tester (Bose Corporation, Framingham, Massachusetts) and a BOSE 

load-cell with a load capacity of 12.5 kN. Displacement-control was used with a quasi-static ramp 

loading and strain rate of 10−3 s−1. Manufacturing and testing were performed at room 

temperature (22 °C) with a relative humidity of about 30%. To measure the properties, e.g., 

Young’s modulus, we used both the displacement data obtained from the crosshead displacement 

readings as well as Digital Image Correlation (CCD camera—PointGrey) for comparative 

purposes. The largest difference in measurements provided by the two techniques was below 3%. 

Young’s modulus and yield strength were measured as the initial (linear region) slope (maximum 

strain at 0.05) and the first peak in the stress-strain curve, respectively, for the first loading cycle 

(see subset in Figure 2-5D). Cyclic loading-unloading experiments were carried out using a 
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displacement-control module at the same strain rate. The direction of the load was reversed when 

the load reached ~75% of the first cycle peak load. 

All samples were realized with the following geometric parameters 𝑎  =  𝑏  =  15 mm and 𝜙  =

 60° and loaded in the out-of-plane in compression unless stated otherwise. The relative density is 

defined by �̅� =
𝜌∗

𝜌𝑠
 (density of our reconfigurable cellular material, 𝜌∗, divided by the density of 

the solid material, ρs). To vary relative density, three values were used 𝑎  =  𝑏  = 10, 15, and 

20 mm. Specimens were compressed between two smooth flat platens of Aluminum. Initially, 

samples were brought to their lock position manually and kept in this configuration by wrapping 

them up with a rubber band. To assess the role of the rubber band during the experiments, we 

repeated a few compression tests without a rubber band. In these instances, we started the 

experiment while the sample was wrapped with a rubber band, and then cut it after applying 2% 

of the peak load, i.e., ~28 N for N̂4n6(7,7). The results attest that the stress-strain curves were 

almost identical to those obtained on samples confined with a rubber band for the entire duration 

of the tests. See also Sections 2.6.14 and 2.6.15 for further details about the properties of the 

paperboard. 

2.6 Appendix 

2.6.1 Kinematic Analysis 

To study the mobility of our unit kinematic chain (Figure 2-7A), we use a surrogate bar network 

where the planar faces are replaced with pin-jointed bars (Figure 2-7B and C). This assembly 

consists of nb inextensible bars, nj pin joints and rigid triangular panels; quad panels are replaced 

by a set of two connected rigid triangles, thus eliminating in-plane shear deformation. The rigidity 
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of each quad or triangular panel is ensured by imposing two constraints: (i) bar inextensibility and 

(ii) panel coplanarity for the triangular faces making up a quad panel (Figure 2-7C and D). 

To determine the first set of constraints for panel rigidity, we first denote the position of joint 𝑖 by 

vector x𝑖
1

 and joint 𝑗 by vector x𝑗; the bar connecting joint 𝑖 to joint 𝑗 is given by the vector r𝑖𝑗  =

 (x𝑖 – x𝑗) with length 𝑙𝑖𝑗 = ‖r𝑖𝑗‖ where ‖ ‖ represents the vector norm. With this notation, the 

first-order inextensibility condition for bar r𝑖𝑗 can be written by equating the first derivative of the 

bar length 𝑙𝑖𝑗 to zero, 𝑑𝑙𝑖𝑗 = 0, as 

r𝑖𝑗 . (𝑑x𝑖 − 𝑑x𝑗) = 0 (2-7) 

where 𝑑x𝑖 and 𝑑x𝑗  are the infinitesimal displacements of the joints 𝑖 and 𝑗, respectively. The 

second set of constraints imposes panel planarity for the quad faces, to impede the rotation of 

triangular faces that make the quad panel. It is formulated as follows. Assume a quad panel 

connecting joints 𝑖, 𝑗, 𝑘 and 𝑙 and comprising two triangular panels 𝑝 (connecting joints 𝑖, 𝑗 and 

𝑘) and 𝑞 (connecting joints 𝑖, 𝑗 and 𝑙) with the normal vectors n𝑝  =  r𝑖𝑗  ×  r𝑖𝑘 and n𝑞  =  r𝑖𝑗  ×  r𝑖𝑙 

(Figure 2-7D). The angle between two adjacent panels 𝑝 and 𝑞 can be expressed as 𝑑𝜔 =

cos−1 n𝑝∙n𝑞

‖n𝑝‖‖n𝑞‖
. Equating the first differential of the angle 𝜔 to zero, 𝑑𝜔 = 0, gives the coplanarity 

condition for the quad panel as 

𝜕𝜔

𝜕x𝑖
𝑑x𝑖 +

𝜕𝜔

𝜕x𝑗
𝑑x𝑗 +

𝜕𝜔

𝜕x𝑘
𝑑x𝑘 +

𝜕𝜔

𝜕x𝑙
𝑑x𝑙 = 0 (2-8) 

The rigidity constraints, Eqs. (2-7) and (2-8), can be expressed in matrix form for all panels as  

R. 𝑑x = [
B
P
] . 𝑑x = 0 (2-9) 

where R is the rigidity matrix consisting of the inextensibility constraints (compatibility) matrix B 

and the planarity constraints matrix P, and 𝑑x is the infinitesimal displacement vector of the joints.  
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The relations above can now be used to determine the number of degrees of freedom m, of the pin-

jointed triangulated network as [200] 

𝑚 = 𝑑𝑛𝑗 − 𝑛𝐾 − 𝑟 (2-10) 

where 𝑛𝐾 is the number of external kinematic constraints, such as those confining the rigid 

motions, and 𝑟 is the rank of the rigidity matrix R in Eq. (2-9). In Eq. (2-10), 𝑑 represents the 

dimensions of the problem; for spatial mechanisms 𝑑 is 3. For an infinitesimally rigid structure 𝑚 

is zero, while for infinitesimal mechanisms 𝑚 >  0. 

 

Figure 2-7 Reconfiguration parameters and constraints of a kinematic unit chain. A Geometric parameters 

describing our reconfigurable unit with 𝑁 =  4. Superscript 𝐿 assigned to a given variable in the first locked 

configuration mode of the unit chain, when all dihedral angels 𝜃𝑖 are equal. B Equivalent network of rigid 

panels connected through flexible hinges replaced by a bar and pin-joint mechanism in C described by 

parameters used to impose planarity condition, D. 
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With the rigidity matrix, we can now use the singular value decomposition (SVD) to determine 

the kinematic paths that our unit can travel upon bifurcation and track its configuration using a 

predictor-corrector type incremental method [201].  

The SVD of the rigidity matrix R =  WV𝑇U𝑇 is composed of a set of left singular values matrices 

U = [U𝑟 ⋮ U𝑚] and right singular values matrices W = [W𝑟 ⋮ W𝑠],
1 and a set of non-zero singular 

values matrix 

V = [
diag(𝑣1, … , 𝑣𝑟) 0

0 0
] (2-11) 

U is a block matrix comprising the extensional deformation submatrix U𝑟 = [u̅1, … , u̅𝑟] and the 

orthogonal sets of 𝑚 inextensional deformation (mechanism) vectors U𝑚 = [u1, … , u𝑚]. W 

comprises a kinematically compatible extension matrix W𝑟 = [w̅1, … , w̅𝑟] and the orthogonal sets 

of 𝑠 kinematically incompatible extension (states of self-stress) vectors W𝑠 = [w1, … ,w𝑠], [201]. 

Prior to bifurcation, our unit stands in a configuration defined by the vector C𝑖 and can move along 

one path defined by the dihedral angle relation 𝜃1  =  𝜃2  =  … =  𝜃𝑚. Post bifurcation can follow 

multiple paths, each specified by its own configuration C𝑖′ . To find C𝑖′, we introduce a 

displacement amplitude parameter 𝛿, and impose a small displacement to C𝑖 by adding a finite 

amplitude of its inextensional deformation u𝑗
𝑖, previously obtained from the first-order SVD. This 

leads to a new set of configurations  

C𝑖′ = C𝑖 + 𝛿u𝑗
𝑖. sign(u𝑗

𝑖−1. u𝑗
𝑖) (2-12) 

 
1 𝑠 denotes the number of states of self-stress (redundant constraints present in the structure) and can be calculated 

using 𝑠 = 𝑛𝑏 + 𝑛𝑃 − 𝑟, in which 𝑛𝑃 is the number of planarity constraints.  
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where sign(u𝑗
𝑖−1. u𝑗

𝑖) ensures that the sign of 𝛿 controls the reconfiguration direction, as SVD does 

not guarantee the direction of the inextensional deformation u𝑗
𝑖, [202].  

When we use the linear perturbation equation, Eq. (2-7), to obtain the updated configuration, the 

length of the inextensible bars does not remain constant. To eliminate the excess elongation e of 

the bars imposed by Eq. (2-7), we iteratively find the nearest strain-free configuration by adding a 

correcting nodal displacement vector (d), [202] 

d = −∑
w̅𝑗

𝑇e

𝑣𝑗
u̅𝑗

𝑟

𝑗=1

 (2-13) 

to the predicted configuration C𝑖′  as 

C𝑖+1 = C𝑖′ + d (2-14) 

When a new path has been found, we must control the independency of the kinematic paths. We 

do so by comparing the newly found path with other paths. This strategy is necessary since using 

the predictor-corrector algorithm with the first-order analysis does not guarantee that the obtained 

path converges to a distinct finite mechanism. The predictor-corrector algorithm is implemented 

in MATLAB and all the simulations are based on an in-house developed code.  

While the aforementioned algorithm can be used to execute large displacement simulations with 

any desired level of accuracy, it is not sufficient to find all the possible post-bifurcation kinematic 

paths. To this end, we resort to principles of Pólya Enumeration Theory, which enables to find all 

independent post-bifurcation kinematic paths, as explained in Section 2.6.3. 

2.6.2 Additional constraints imposed by unit chain stacking 

A single unit kinematic chain has multiple degrees of freedom that lead to certain configurations, 

and the fully developed (flat) one is one among others. To reduce its degrees of freedom, we resort 
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to layers stacking, which leads our unit to share certain panels with those of the units placed above 

and below. Figure 2-8A shows a physical prototype where only the triangular panels are shared 

between two units, whereas the others are not shared. Here the non-zero thickness of adjacent 

hinged panels causes an offset between the hinges. Figure 2-8B shows the only possible rigid-body 

motion the planes can undergo. The quad planes cannot rotate in the same direction, such as that 

shown in Figure 2-8C. This is due to the actions exerted by planes and hinges. The outcome is that 

both plane interference and hinge offset come to play and geometrically constraint the unit to 

respect the rigid body motion. For example, the motion in Figure 2-8C would be possible only if 

the quad planes can undergo flexural deformation (Figure 2-8D), which violates our rigid motion 

assumption. 

2.6.3 Pólya Enumeration Theorem 

The post-bifurcation kinematic analysis given in the previous section cannot guarantee that all 

post-bifurcation paths are found [202]. We now use principles of Pólya Enumeration Theory [203] 

to identify (and count) all independent post-bifurcation kinematic paths and available modes. The 

Pólya Enumeration Theorem is instrumental to search the reconfiguration modes of our unit 

kinematic chain. 
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Figure 2-8 Admissible reconfigurations. A Flat configuration for a two-layered unit kinematic chain N̂4n2 

made of non-negligible thickness panels. B A kinematic path of the multilayered units, where two adjacent 

quad panels rotate in opposite directions under in-plane load f. C Example of inadmissible kinematic path 

for two quad panels rotating in identical direction under in-plane load f; this kinematic path violates the 

rigidity assumption of the panels and is feasible only if the neighboring panels can deform, D. 

As stated in the manuscript, the problem of finding all independent regular modes of N𝑁n𝑛 is 

equivalent to the classical necklace problem in combinatorics. There, the goal is to find the number 

of necklace arrangements we can construct from knowledge of 𝑁/2 numbers of colored beads, 

each painted in two distinct colors, e.g., white or black. In our case, the dihedral angle 𝒜 of our 

unit chain represents one color, e.g., white, and 𝒪 the other, e.g., black. Due to the mountain and 

valley assignment, the transformations are defined on hypothetical 𝑁/2 sided polygons since 

congruent triangular faces are located on every other corner of the original chain. Thus, the 
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necklace problem of an 𝑁 even-sided polygonal unit chain, NN, with constraints of mountains and 

valleys degenerates to an 𝑁/2 sided necklace. 

We start by stretching the necklace with 𝑁/2 beads into the shape of a uniform 𝑁/2-sided regular 

polygon with one bead at each corner. Let define the set of the vertices of this polygon by 𝑆 =

{𝜒1, 𝜒2, … , 𝜒𝑁/2} and the set of binary colors by 𝑅 = {𝒜,𝒪}  and introduce set 𝑋 = {all possible 

coloring arrangement of 𝑆 by 𝑅}. Next, we define rigid body transformations on the necklace. We 

assume that the beads can rotate around the necklace, and the necklace can be flipped over. The 

operations of beads rotation around the necklace and flip over are considered as rigid motions 

applied to the necklace.  

Figure 2-9 depicts the set of all rigid body motions each N𝑁 unit chain with 𝑁 = 4, 6, 8 and 10 

can undergo. We denote them with the set 𝐺 = {𝜋1, 𝜋2, … , 𝜋𝑁} where 𝜋𝑗 (𝑗 = 1,… ,𝑁) are the 

members of the Dihedral symmetry group 𝐷𝑁/2  for a uniform 𝑁/2-sided regular polygon, which 

acts on the set 𝑋 of the necklace problem. The members of 𝐺 are defined as 

𝜋𝑖 ∈ 𝐺| 𝑖 ≤
𝑁

2
∶  𝜋𝑖 = Rot𝑧 ((𝑖 − 1)

4𝜋

𝑁
) 

(2-15) 

𝜋𝑖 ∈ 𝐺| 𝑖 >
𝑁

2
∶  𝜋𝑖 = Ref𝑎𝑖

  

where Rot𝑧(𝛼) is the rotation operator about the z axis through the angle 𝛼 and Ref𝑎𝑖
 is a reflection 

operator about the axis 𝑎𝑖 whose angles with the x axis can be obtained from 

If 
𝑁

2
∈ 𝔼 ∶ 𝛽𝑖 = (𝑖 − 1)

2𝜋

𝑁
       for      𝑖 ≤ 𝑁  , and 

(2-16) 
If 

𝑁

2
∈ 𝕆 ∶ 𝛽𝑖 = (𝑖 − 1)

4𝜋

𝑁
       for      𝑖 ≤

𝑁

2
. 

As each rigid motion permutes the elements in 𝑋 and 𝑆, we can represent these rigid motions by 

their permutations on 𝑆 or 𝑋. For each 𝑁, there are exactly 𝑁 rigid body transformations, 𝑁/2 
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rotation operations and 𝑁/2 reflection operations (Figure 2-9). We note that for N4 two rigid body 

motions are equivalent.  

Figure 2-9 shows both the original unit kinematic chain and its necklace counterpart at the top of 

each table for a given N. In each case, the dark and light shadings of the kinematic unit chain (left) 

denote the mountain- and valley-faces, respectively. In the necklace representation (right), each 

number specifies a corresponding pair of valley dihedral angles. For example, N4 has two pairs of 

valley-dihedral angle and thus its equivalent necklace has 2 beads, shown as ① and ②. Below 

the first row of each kinematic chain, the possible rigid motion operations (rotation and reflection) 

are shown. In particular, the successive application of rigid-body motions makes the vertices 

alternate and form a periodic loop, namely a cycle. A cycle is described by a number, or a series 

of numbers placed in one bracket underneath each kinematic unit chain. The length of a cycle is 

the number of elements in each bracket. A string of cycles, i.e. a sequence of brackets, describes a 

rigid-motion.  

To illustrate the above, we consider N6 as an example for the case of 0˚ rotation. We note the 

vertex assignment is identical to the initial assignment. The transformation corresponding to its 

rigid motion is the identity operation which maps every vertex to itself regardless of the number 

of times the transformation is applied. Its vertex counterpart can be written as (1)(2)(3). By using 

the Pólya’s enumeration theorem, this rigid motion is made of three cycles, each of length one. 

On the other hand, a 120˚ rotation applied to N6 is described by (132), which consists of 1 cycle 

of length three. 
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Figure 2-9 Group operations on kinematic unit chains. Schematic representation of unit kinematic chain 

with 𝑁 = 4, 6, 8 and 10 (left) and its equivalent necklace (right). Two valley “dihedral angle pairs” are 

shown as an example for N4 only. 

Below the first row are the possible rigid body motions of each unit chain can undergo. The 

alternating light and dark colors on the triangular faces of the kinematic chain refer to mountain 

and valley assignments respectively. The equivalent necklace has numbered vertices and is used 

to describe a given rigid motion. Below each given motion is a sequence of parentheses describing 

the rigid body motion expressed in cycle notation. A black dot represents zero-degree rotation. A 

combination of dashed lines and circular arcs represent the rotation operations. A dashed line is 

used for reflection operations and indicates the mirror line.  

Assume 𝜋𝑗 ∈ G is a rigid motion operation that can be described by a combination of its cycles. 

Now we can assign a monomial to every 𝜋𝑗. The monomial is the product of 𝜒𝑖1, 𝜒𝑖2, …,𝜒𝑖𝜏  where 

𝑖1, 𝑖2, … 𝑖𝜏 represent the lengths of the cycles in the rigid operation 𝜋𝑗. The monomial can be 

written as 𝑓𝜋𝑗
= 𝜒𝑖1𝜒𝑖2 …𝜒𝑖𝜏 , and the cycle index 𝑓(𝜒1, 𝜒2, … , 𝜒𝑤) of 𝐺 acting on 𝑆 can be written 

as the sum of the monomials 

𝑓(𝜒1, 𝜒2, … , 𝜒𝑤) =
1

|𝐺|
∑ 𝑓𝜋𝑗

𝜋𝑗∈𝐺

 (2-17) 

where w is the length of the longest cycle in the vertex representation of each of 𝜋𝑗 ∈ 𝐺 in Figure 

2-9. The number of distinct patterns in 𝑋 under the corresponding action of 𝐺 on 𝑋 is 𝑓(𝜚, 𝜚, … , 𝜚), 

where 𝜚 is the length of the set R, 𝜚 =  |𝑅|; in our case 𝜚 =  2.  

If we denote the general set of color arrangements by 𝑅 = {𝒞1, 𝒞2, … , 𝒞𝜏} , the pattern inventory 

of 𝑋 can be defined as 𝑓(𝒞1 + 𝒞2 + ⋯+ 𝒞𝜏, 𝒞1
2 + 𝒞2

2 + ⋯+ 𝒞𝜏
2, … , 𝒞1

𝑤 + 𝒞2
𝑤 + ⋯+ 𝒞𝜏

𝑤). 

The Pólya Enumeration Theorem states that if 𝜅𝒞1
𝑖1𝒞2

𝑖2 …𝒞𝜏
𝑖𝜏   appears in the pattern inventory of 

𝑋, then there are 𝜅 patterns in 𝑋 where 𝒞1 appears 𝑖1 times, 𝒞2 appears 𝑖2 times, …, and 𝒞𝜏 appears 
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𝑖𝜏 times. The summation of the coefficients 𝜅 of the pattern inventory gives the number of necklace 

arrangements. For example, the N8n𝑛 unit is analogous to a necklace with four beads where 𝑅 =

{𝒜,𝒪} and its pattern inventory becomes 𝑓(𝒜 + 𝒪,𝒜2 + 𝒪2, 𝒜3 + 𝒪3, 𝒜4 + 𝒪4) =  𝒜4 +

𝒜3𝒪 + 2𝒜2𝒪2 + 𝒜𝒪3 + 𝒪4. The mode is lockable when at least two successive acute dihedral 

angles 𝒜 exist in the pattern sequence. For example, in the case of N8n𝑛, the lockable mechanisms 

are 𝒜2𝒪2 (i.e., the one with the sequence of 𝒜𝒜𝒪𝒪), 𝒜3𝒪 and 𝒜4.  

2.6.4 Tessellations: from individual stacks of unit cells to a periodic cellular material  

Each unit chain can aggregate with others to form a periodic material system that can reconfigure 

along either lockable or flat-foldable modes. To examine their in-plane tessellation patterns (see 

Figure 2-1B), we refer to the most compact periodic array our N𝑁n𝑛 forms in 2 dimensions, with 

centroids falling onto a simple Bravais lattice of the base-centered orthorhombic family (Figure 

2-10A).  

Here, we study ways our multilayered unit chains can be connected to tile the x-y plane while 

preserving its characteristic kinematics. Two classes of tessellation containing similar unit chains 

can be realized1:  

i) Most packed tessellation patterns. This class describes the densest lattices that can be made out 

of our primitive units,  

ii) Less packed tessellation patterns. This class includes realizations of other possible low-density 

lattices; it is analyzed through the notion of macro-chains.  

 
1 Note that we do not examine here connections of dissimilar unit chains. 
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Table 2-1 Final configurations of different kinematic unit chains. Top view of the nearly developed, locked 

and flat-folded states of N𝑁n𝑛 unit kinematic chains for 𝑁 = 4, 6, 8 and 10. Light orange shading indicates 

flat-foldability and light blue refers to lockability. The number of modes per given 𝑁 is reported in the last 

row. 

N 4 6 8 10 

Developed 

(initial) 

state   
 

 
 

Locked  

state 

 
   

    

Flat-folded 

state 
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# of modes 

(N-2) 

2 4 6 8 

2.6.5 Most packed tessellation patterns:  

The most compact form of tessellation can be described by a periodic array of N𝑁n𝑛 multilayered 

unit chains in two dimensions, whose centroids (centers of mass) fall onto a simple Bravais lattice 

of the base-centered orthorhombic family with basis vectors {e1, e2}.  

Let us consider a rhombus constructed from vertices that are the centroids of the four adjacent unit 

chains in a tessellated pattern (Figure 2-10A). The geometric constraints imply that its vertex angle 

𝛾 ≡ cos−1(e1 ∙ e2) ≥
𝜋

3
 impedes the overlap of unit chains along the short diagonal of the rhombus 

(Figure 2-10A). Additionally, the vertex angle 𝛾 must be made of 𝜁 segments of 𝜆 (where 𝜆 =  
2𝜋

𝑁
), 

i.e.,  𝛾 =  𝜁𝜆 = 𝜁
2𝜋

𝑁
, and its supplementary angle 𝛾′ must be made of 𝜁′ segments of 𝜆, i.e., 𝛾′ =

𝜁′𝜆. All admissible angles 𝛾 can be obtained by solving the linear Diophantine equation [204]  
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𝜁 + 𝜁′ = 𝑁/2 (2-18) 

which is written assuming the condition 𝛾 + 𝛾′ = 𝜋 (see Figure 2-10A).  

Table 2-2 shows all possible solutions (𝜁 , 𝜁′) of Eq (2-18) for a given N (representing the unit 

kinematic chain N𝑁n𝑛), with the resulting vertex angle 𝛾 (=  𝜁
2𝜋

𝑁
). The choice of the smallest 𝜁 

among both solutions (if two solutions exist) gives the most packed pattern. For example, for N 

=16 we have two possible solutions of Eq. (2-18): (𝜁 , 𝜁′) = (3,5) and (4,4), from which we calculate 

the resultant vertex angle 𝛾 as 67.50˚ and 90˚. The former gives the most packed tessellation 

pattern. On the other hand, if 𝛾 =  
𝜋

3
, the tessellation belongs to the hexagonal family, while 𝛾 =

 
𝜋

2
 results in a tessellation of the tetragonal family.  

Table 2-2 All possible solutions of Eq. (2-18). i.e., (𝜁 , 𝜁′), and resultant acute rhombus angles 𝛾 for the 

most compact tessellation patterns of N𝑁n𝑛 for 𝑁 = 4 to 22. 

N 
Number of solutions of 

Eq. (2-18) 
Possible solutions of (𝜁 , 𝜁′) Angle of rhombus 𝛾 = 𝜁𝜆 

4 1 (1,1) 90˚ 

6 1 (1,2) 60˚ 

8 1 (2,2) 90˚ 

10 1 (2,3) 72˚ 

12 2 (3,3), (2,4) 90˚, 60˚ 

14 1 (3,4) 77.14˚ 

16 2 (3,5), (4,4) 67.50˚, 90˚ 

18 2 (3,6), (4,5) 60˚, 100˚ 

20 2 (5,5), (4,6) 90˚, 72˚ 

22 2 (4,7), (5,6) 65.45˚, 81.82˚ 

Unit kinematic chains can connect along the periodic base vectors, e1 and e2, through the base of 

the isosceles triangulated panels (Figure 2-10). In certain cases, e.g., hexagonal family (𝛾 =  
𝜋

3
) 

with an odd 𝜁 (see for example, the case 𝑁 =  18 in Table 2-3), the base of the isosceles 

triangulated panels coincide, and an extra bond (connection) along the short diagonal of the 
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rhombus can be considered. The bonds in the most packed tessellation patterns of N4n𝑛 and N6n𝑛 

are a shared parallelogram panel intersecting the basis vectors e⃗ 1 and e⃗ 2. 

2.6.6 Less-packed tessellation patterns using macro chains 

An alternative way to tessellate our pattern is to start from a macro-chain containing primitive 

units. A macro-chain is constructed by the in-plane connection of a certain number of similar N𝑁n𝑛 

unit chains, i.e., units with prescribed 𝑁, to form a regular polygon; this is done by replacing each 

edge with one primitive unit, e.g., Figure 2-10C-D.  

The shape of macro-chains is governed by the geometry of their constituents. Their existence can 

be formulated as follows. Let denote the 𝑖𝑡ℎ  positive factor of 𝑁 with ℳ𝑖. For any given ℳ𝑖 > 4 

one ℳ𝑖-sided regular polygonal macro-chain (N𝑁
ℳ𝑖n�̅�) exists provided either of ℳ𝑖 or 

𝑁

2ℳ𝑖
(ℳ𝑖 −

2) becomes an even number. N𝑁
ℳ𝑖n�̅� is a macro-chain connecting the centroids of the unit chains 

N𝑁n�̅�.  

In-plane tessellations of macro-chains can be formulated using the method described above if they 

fall into one of the Bravais lattice families1. Figure 2-10B illustrates the smallest macro-chain, i.e., 

N16
4 n�̅�, and its tessellation that can be built using the unit kinematic chain N16n�̅�. Figure 2-10C, 

D and E shows examples of possible tessellations one can imagine using the macro-chain of 

N16
8 n�̅�; several more exist that are beyond the scope of this work. In the figures, orange lines 

indicate the connectivity between units in a macro-chain, and red lines describe the connectivity 

of macro-chains in the tessellation.   

 
1 ℳ𝑖 = 4 results in the Bravais lattice of the tetragonal family and ℳ𝑖 = 3 results in the Bravais lattice of the 

hexagonal family. 
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In the tessellations of N𝑁
ℳ𝑖n�̅� macro-chains, the connection of the macro-chains may be much more 

complex than that of the single unit chains, as inter-chain connections can also be established, e.g., 

red dash-lines in Figure 2-10C. Here, the main bonds between macro-chains occur either through 

the bases of the isosceles triangulated panels that intersect the direction vectors e⃗ 1 and e⃗ 2 (see 

Figure 2-10C and D) or through the overlapped unit-chains N𝑁n�̅� as shown in Figure 2-10E.  

The results of the analysis above exemplify the breadth of the design space one can attain through 

the selection of alternative tessellation patterns. The design space is rich and diverse. Each 

tessellation pattern is characterized by its own set of rigid foldability attributes, physical properties, 

and load-bearing capacity.  

2.6.7 Rigidity 

As explained in the main text, to study the mobility of our unit, we replace the actual panels with 

their bar and hinge counterparts. Upon locking, certain bars and hinges coincide (Figure 2-11). 

This holds if at the lock state we assume there is full contact between edges and faces, and thus 

relevant bars and hinges condense into a single bar and a single hinge. Such an assumption 

underpins our rigidity analysis and is considered valid as long as the direction of the force is 

unchanged [197]. 

To analyze the rigidity of our unit chains, one panel is constrained to eliminate rigid body motions. 

Table 2-3 shows the number of bars and hinges in the fully developed and 𝒜
𝑁

2  locked states for a 

single layer of a given unit. For example, for 𝑁 =  4, the number of bars upon locking is reduced 

from 36 to 30, while the joints of four pairs coincide. The reduction in the number of joints and 

bars bring about an increase in connectivity which in turn can lead to rigidity. For certain patterns, 

a certain number of layers (last row) are required to achieve rigidity. The analysis indicates that 
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other locked configurations presented in Table 2-1 can also satisfy the rigidity condition (i.e., 𝑚 =

 0 in Eq. (2-10)).  

  

 

 



  92 

 

 

 



  93 

 

 

Figure 2-10 Compact and Non-compact tessellations. A In-plane view of most compact tessellations for 

N16𝑛�̅� along with other possible less-packed tessellations for  N16
8 𝑛�̅� shown in B-E. 

 

Figure 2-11 Coinciding joints and bars. Schematic of N4n1 unit kinematic chain showing alignment of 

joints and bars upon locking. A Top view and B isometric view immediately prior to locking, in A and B 

the coinciding points are (𝑣1, 𝑣2) and (𝑣3, 𝑣4), concisely shown by the pairs V1 and V2 respectively. C 

Isometric view showing all bars and hinges before reaching full contact, thus condensing into one element. 

Vertex pairs are shown by Vi; numbers in circles denote coinciding lines/edges.  

2.6.8 Geometric mechanics of representative unit cell (RUC) 

During reconfiguration, our units pass a kinematic bifurcation instant which provides access to 

dissimilar kinematic paths, each having modes that can be either flat-foldable and lockable. Each 
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path has its own physical characteristics, e.g., geometry, relative density and Poisson’s ratio. In 

this section, we first derive the closed-form expressions that describe changes in properties upon 

folding for N4n𝑛 and N6n𝑛 units. Next, we derive the representative energy landscape relations 

for given lockable and flat-foldable modes and generate energy-phase diagram that can explain the 

underlying physics of activation through in-plane confinement.   

Table 2-3 Rigidity of different kinematic unit chains. Bar and joint counts of N𝑁n𝑛 unit kinematic chains 

(top row) for 𝑁 = 4, 6, 8, 10 and 12 during folding (light pink) and   at the  locked state (light blue), along 

with the number of layers to attain rigidity (dark blue). Red solid and shaded red circles represent vertices 

laying respectively on mountain and valley planes. 

Pattern 

     

Joints  

(during folding) 
12 18 24 30 36 

Bars  

(during folding) 
24 36 48 60 72 

Joints 

(locked state) 
8 12 16 20 24 

Bars 

(locked state) 
18 30 40 50 60 

Top view 

     

Riquired layers 

for rigidity 
1 2 3 3 3 

2.6.9 RUC model with boundary and loading conditions for 𝐍𝟒𝒏𝒏 unit 

We examine a representative unit cell for N4n𝑛 that can describe the behavior of its entire periodic 

tessellation. Figure 2-12 shows the RUC with its own geometric parameters and loading conditions 

in a Cartesian coordinate system. 
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Figure 2-12 Biaxial reconfiguration of square based pattern. Top view of the most compact tessellations of 

𝐍𝟒𝐧𝒏 under two locking modes A 𝒜2 (or 𝒪2), B  𝒜𝒪 and geometric parameters used in the calculation of 

the total energy. RUC shown in red squares for each mode. 

In modes 𝒪2 and 𝒜2, the RUC is a square (red) with side 𝐿1  =  2𝑆1, in which 𝑆1 is the length of 

the line connecting the mid-points of the bases of two adjacent triangles separated by a 

parallelogram (right of Figure 2-12B) and can be calculated as 

𝑆1
2 = (𝑎 cos𝜙)2 + (𝑏 − 𝑎 sin𝜙 cos 𝜃)2. (2-19) 

Upon kinematic bifurcation, the square shape of the RUC switches to a parallelogram. One of its 

sides can be computed from Eq. (2-19), while the other side 𝐿2 =  2𝑆2 can be calculated by 

replacing 𝜋 − 𝜃 in Eq. (2-19) as  
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𝑆2
2 = (𝑎 cos𝜙)2 + (𝑏 + 𝑎 sin𝜙 cos 𝜃)2. (2-20) 

To obtain the skewness angle of the parallelogram angle Γ in Figure 2-12B, we first calculate the 

angles 𝛼1 and 𝛼2 from 

𝛼1 = tan−1 (
𝑎 cos𝜙

𝑏 − 𝑎 sin𝜙 cos 𝜃
)   

(2-21) 

𝛼2 = tan−1 (
𝑎 cos𝜙

𝑏 + 𝑎 sin𝜙 cos𝜃
)   

and then, replace them in the relation 

Γ = 90˚ − 𝛼1 + 𝛼2. (2-22) 

Then, the cross-section area of the RUC in the x-y plane can be obtained from 

𝐴𝑅𝑈𝐶 = 𝐿1𝐿2 sinΓ (2-23) 

 

2.6.10 RUC model with boundary and loading conditions for 𝐍𝟔𝒏𝒏 unit 

We now examine N6n𝑛 unit and derive geometric relations that describe the deformations of its 

kinematic paths. In this case, the smallest unit with parallel edges is a rectangle. The length of the 

line connecting the midpoints of the two adjacent triangles are  

𝑆1
2 = (𝑎 cos𝜙)2 + (

2ℎ

3
− 𝑎 sin𝜙 cos 𝜃)

2

 (2-24) 

In 𝒪3  and 𝒜3 modes, the sides of the RUC shown in Figure 2-13 are given by 

𝐿𝑥 = 3𝑆1 
(2-25) 

𝐿𝑦 = √3𝑆1 

A kinematic bifurcation can bring the unit into 𝒜2𝒪 or 𝒪2𝒜  modes. The new length of the line 

connecting the midpoints of the two adjacent triangles, S2, can be obtained by replacing 𝜋 − 𝜃 in 

Eq. (2-18) as 

𝑆2
2 = (𝑎 cos𝜙)2 + (

2ℎ

3
+ 𝑎 sin𝜙 cos 𝜃)

2

. (2-26) 
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The angles 𝛼1 and 𝛼2 representing the inclination of the S1 and S2 lines with respect to the 

vertical axis can be obtained as 

𝛼1 = tan−1 (
𝑎 cos𝜙

2ℎ

3
−𝑎 sin𝜙 cos𝜃

) and 𝛼2 = tan−1 (
𝑎 cos𝜙

2ℎ

3
+𝑎sin𝜙 cos𝜃

). (2-27) 

After bifurcation, the hexagons that are defined by the centroids of the triangular faces are 

distorted. The internal angles 𝜓𝑖 can be determined as a function of the inclination angles 𝛼1and 

𝛼2 as 

𝜓1 = 120˚ + 𝛼1 − 𝛼2, 

(2-28) 𝜓2 = 240˚ − 𝜓1, 

𝜓3 = 120˚. 

If we connect the centroids of every other triangle around a unit chain, we obtain a triangle. The 

sides of this triangle relates to S1 and S2, and 𝜓𝑖s through 

𝐿1
2 = 𝑆1

2 + 𝑆2
2 − 2𝑆1𝑆2 cos𝜓1, 

(2-29) 𝐿2
2 = 𝑆1

2 + 𝑆2
2 − 2𝑆1𝑆2 cos𝜓2, 

𝐿3 = 𝑆1√3 . 

The parallelogram of the RUC is defined by two triangles. One of the sides of the parallelogram 

is 𝐿1 while the other side is given by  

𝐿1
′ 2

= 2𝐿1
2 + 2𝐿3

2 − 𝐿2
2 . (2-30) 

Now, using the cosine rule, we obtain   

𝜆2 = cos−1 (
𝐿1
2+𝐿3

2−𝐿2
2

2𝐿1𝐿3
). (2-31) 

 The angle of the parallelogram can be obtained from 

Γ = 𝜆2 + 𝜆2
′  (2-32) 

where 𝜆2
′  can be calculated using the sine rule as 
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𝐿1
′

sin𝜆1
=

𝐿1

sin𝜆2
′  . (2-33) 

Then, the cross-section area of the RUC in the x-y plane can be obtained from 

𝐴𝑅𝑈𝐶 = 𝐿1𝐿1
′ sinΓ. (2-34) 

 

Figure 2-13 Biaxial reconfiguration of trinagle based pattern. Top view of the most compact 

tessellations of the N6𝑛𝑛 under two locking modes A 𝒜3 and B 𝒜2𝒪 along with their geometrical 

parameters used in the calculation of the energy of the hinges (Section 2.6.13). RUC shown in 

black squares for each mode. 

2.6.11 Relative Density 

The relative density of our multimodal rigid-foldable materials upon reconfiguration (and 

transition between modes) can be expressed as a function of the dihedral angle 𝜃 and other 
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geometric parameters of the unit chain for a given tessellation type. In addition, upon kinematic 

bifurcation, multiple paths emerge, and a distinct relative density can be associated to each given 

kinematic path. Figure 2-14 shows the relevant geometric parameters for N10n𝑛, here taken as 

example for the analysis. 

 

Figure 2-14 Unit cell of tessellation of kinematic unit chain. A Geometric parameters of a unit 

kinematic chain; B Connecting the mid-point of the bases of the triangles yields an N-sided 

polygon, shown in red; C Geometric parameters of the Bravais lattice tessellation. Regardless of 

N, four units can always be combined to form a rhombus defined by the angle 𝛾, which is obtained 

from Eq. (2-18).  

Figure 2-14B shows that by connecting the mid-points of the bases of the triangles, we obtain a 

regular polygon (red decagon here). 𝑅 is the radius of the circumscribing circle of the polygon. 

The side of the polygon, 𝐿, is given by 

𝐿 = √(𝑎 cos𝜙)2 + (𝑏 sin 𝜆 − 𝑎 sin𝜙 cos𝜙)2, (2-35) 

which relates to R through 
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𝐿 = 2𝑅 sin
𝜆

2
. (2-36) 

The volume of the rhombus shown in Figure 2-14 with height ℎ (recall that it is a 3D structure) 

for modes 𝒪𝑁/2 and 𝒜𝑁/2 can be related to R using 

𝑉𝑓 = 4𝑎𝑅2 sin 𝜃 sin𝜙 sin𝛾. (2-37) 

The volume of the solid material inside the rhombus is 

𝑉𝑠  = 𝑁𝑡 (
1

2
𝑏2 sin 𝜆 + 𝑎𝑏 sin𝜙). (2-38) 

Therefore, the relative density can be expressed as 

�̅� =
𝑉𝑠

𝑉𝑓
=

𝑁𝑡(
1

2
𝑏2 sin𝜆+𝑎𝑏 sin𝜙)

4𝑎𝑅2 sin𝜃 sin𝜙sin𝛾
. (2-39) 

Figure 2-15 shows the relative density calculated for the N̂4n𝑛 and N̂6n𝑛 lattices when they 

reconfigure through their two kinematic paths. While Eq. (2-39) can be used to obtain the relative 

density of N̂𝑁n�̅� units in their uniform reconfiguration (for modes 𝒪𝑁/2 and 𝒜𝑁/2), we resort to 

Figure 2-12 and Figure 2-13 for the parameters defining the RUC to calculate the relative density 

of other kinematic paths. The volume of the solid material within the RUC can still be obtained 

from Eq. (2-37). The volume of the RUC can be obtained by multiplying the height by the area of 

the cross-section of the RUC in the x-y plane. We observe the relative density of flat-foldable 

modes approaches infinity as the lattice approaches its flat-foldable configuration. Also, each 

deformation mode attains a certain minimum relative density during the reconfiguration process. 

As we expect, lock mode 𝒜𝑁/2 has the highest density of all locked configurations, while 𝒪𝑁/2 is 

the least dense flat-foldable mode. 



  101 

 

 

Figure 2-15 Relative densitiy vs. dihedral angle for square and triangle based patterns along different 

kinematic paths. Relative density computed for N̂4n𝑛 and N̂6n𝑛 lattices during reconfiguration along their 

two kinematic paths; t is the panel thickness, and a is the length of the sides of the primitive regular polygon.  

2.6.12 Poisson’s Ratio 

During folding our metamaterials exhibit auxetic in-plane behavior. The following derives 

expressions of the Poisson’s ratio that emerge at given modes. 

2.6.12.1 Poisson’s ratio of 𝓐𝑵/𝟐 and 𝓞𝑵/𝟐 modes 

To obtain the expressions of the Poisson’s ratio for N̂𝑛n𝑛, we begin by tessellating the rhombus of 

Figure 2-14. By doing so, we can express the increments of the strains, i.e., 𝑑𝜀𝑥, 𝑑𝜀𝑦 and 𝑑𝜀𝑧, in 

terms of the derivatives of the parameters ℒ𝑥, ℒ𝑦 and the height of the N̂𝑛n𝑛 unit. We first express 

ℒ𝑥, ℒ𝑦 as a function of the radius of the circumscribing circle, R and the skewness angle 𝛾.  

ℒ𝑥 = 2𝑅(1 + cos𝛾) 
(2-40) 

ℒ𝑦 = 2𝑅 sin 𝛾 

𝜈𝑥𝑦, the Poisson’s ratio in x-y plane, can be written as the ratio of the increments of the in-plane 

strains 
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𝜈𝑥𝑦 = −
𝑑𝜀𝑦

𝑑𝜀𝑥
= −

𝑑ℒ𝑥
ℒ𝑥

⁄

𝑑ℒ𝑦
ℒ𝑦

⁄
= −1.  (2-41) 

This value remains constant during the folding process. 𝜈𝑥𝑧 and 𝜈𝑦𝑧, the out-of-plane Poisson’s 

ratios, can be obtained from  

𝜈𝑥𝑧 = 𝜈𝑦𝑧 = −𝑅 cot 𝜃
𝑑𝜃

𝑑𝑅
 (2-42) 

Taking the derivative of Eqs. (S34) and substituting the derivatives of 𝑅 and 𝜃 from Eqs. (S29) 

and (S30) into Eq. (S36), we obtain 

𝜈𝑥𝑧 = 𝜈𝑦𝑧 =
((𝑎 cos𝜙)2 + (𝑏 sin𝜆 − 𝑎 sin𝜙 cos 𝜃)2) cos𝜃

𝑎(𝑏 sin 𝜆 − 𝑎 sin 𝜆 cos 𝜃) sin𝜙 sin2 𝜃
 (2-43) 

Interestingly, we observe a change in the sign of the out of plane Poisson’s ratios. This entails that 

passing the kinematic bifurcation, our folding metamaterials in 𝒜𝑁/2 mode have omnidirectional 

auxetic behavior. 

2.6.12.2 Poisson’s Ratio of Other Modes 

The Poisson’s ratio in other modes depends on the lattice (i.e., N) and the kinematic path. We 

examine here N̂4n𝑛 and N̂6n𝑛 and present the results of the Poisson’s ratio for other mode shapes.  

To simplify the calculation, we refer to the RUC in Figure 2-12 and Figure 2-13. In this case, the 

in-plane Poisson’s ratio expression can be written as 

𝜈𝑥𝑦 = −
𝑑𝜀𝑦

𝑑𝜀𝑥
= −

𝑑ℒ𝑦
ℒ𝑦

⁄

𝑑ℒ𝑥
ℒ𝑥

⁄
= −

𝑑𝐿⏊
𝐿⏊

⁄

𝑑𝐿1
𝐿1

⁄
= −

𝑑(𝐿2 sinΓ)
𝐿2 sinΓ⁄

𝑑𝐿1
𝐿1

⁄
 (2-44) 

where the parameters 𝐿1, 𝐿2 and Γ are presented in Eq. (2-19), Eq. (2-20) and Eq. (2-22) for N4 

pattern. The expression for the Poisson’s ratio of N6 pattern can be written as 

𝜈𝑥𝑦 = −
𝑑𝜀𝑦

𝑑𝜀𝑥
= −

𝑑ℒ𝑦
ℒ𝑦

⁄

𝑑ℒ𝑥
ℒ𝑥

⁄
= −

𝑑𝐿⏊
𝐿⏊

⁄

𝑑𝐿1
′

𝐿1
′⁄

= −

𝑑(𝐿2 sinΓ)
𝐿2 sinΓ⁄

𝑑𝐿1
′

𝐿1
′⁄

 (2-45) 
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The parameter 𝐿2, 𝐿1
′  and Γ can be obtained from Eqs. (2-29), (2-30) and (2-32). Figure 2-16 shows 

the in-plane Poisson’s ratio calculated for N̂4n𝑛 and N̂6n𝑛 evolving along their kinematic paths. 

We observe that the in-plane Poisson’s ratio of each lattice highly depends on the tessellation and 

kinematic path as opposed to that of the modes 𝒜𝑁/2and 𝒪𝑁/2. 

 

Figure 2-16 Poisson’s ratio vs. dihedral angle for square and triangle-based patterns along different 

kinematic paths. Poisson’s ratio calculated for the N̂4n𝑛 and N̂6n𝑛 lattices along their kinematic paths. 

2.6.13 Energy Analysis 

Here we derive the energy expressions for N4n𝑛 and N6n𝑛 as a function of their geometric 

parameters. Our analysis assumes the rigid panels are hinged with linear rotational springs, which 

represent the compliance of finite-thickness ligaments connecting panels. We also assume that our 

hinges maintain a linear behavior for most of the folding process. 
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2.6.13.1 Energy expression of  𝐍𝑵𝐧𝒏 under in-plane biaxial loading  

In this section we discuss the energy expressions for in-plane loading of N𝑁n𝑛. The expressions 

are derived with reference to Figure 2-12 and Figure 2-13. The total potential energy of RUC can 

be written as 

Π = ∑𝑛𝑘𝑏(𝜃 − 𝜃0)2

𝜉

𝑖=1

+ ∑𝑛𝑘𝑏(𝜋 − 𝜃 − 𝜃0)2

𝜉′

𝑖=1

− ∫ 𝑓𝑥𝑑ℓ
𝐿⟘𝑥

𝐿⟘𝑥0

− ∫ 𝑓𝑦𝑑ℓ
𝐿⟘𝑦

𝐿⟘𝑦0

 (2-46) 

where 𝜉 is the total number of pairs for the acute dihedral angles (𝒜) and 𝜉′ counts the total number 

of pairs for the obtuse dihedral angle (𝒪) with 𝜉 + 𝜉′ =
𝑁

2
. n is the number of stacked layers, k the 

stiffness per unit length of the hinge, b the extrusion length, 𝜃 and 𝜃0 are the current and initial 

(zero-energy configuration) dihedral angles respectively, i indicates the pair of parallelograms with 

identical dihedral angle, 𝑓𝑥 and  𝑓𝑦 are the in-plane forces. 𝐿⟘𝑥
 and 𝐿⟘𝑦

 are the distances of the 

boundaries of RUC where 𝑓𝑥 and  𝑓𝑦 are applied (Figure 2-12), and can be defined as 

𝐿⟘𝑥
= 𝐿𝑥 sinΓ 

(2-47) 
𝐿⟘𝑦

= 𝐿𝑦 sinΓ 

Moreover, the initial distances of the RUC boundaries are 𝐿⟘𝑥0
 and 𝐿⟘𝑦0

. Eq. (2-46) is valid for 

all in-plane loading conditions of N𝑁n𝑛.  

2.6.13.2 Energy analysis of  𝐍𝟒𝐧𝒏 under in-plane biaxial loading  

Starting from a flat configuration (i.e., 𝜉 = 0, 𝜃0 = 0), and applying biaxial loads, we can find a 

closed form expression of the critical bucking load that is necessary to move from a flat 

configuration to 𝒪2 mode. By taking the first variation of the energy expression with 𝜉′ = 0  in 

the first mode and setting 𝜃 = 180°, we obtain the critical load as 

𝑓𝑥 + 𝑓𝑦 =
𝑛𝑁𝑘𝑏

2𝑎 sin𝜙

√(𝑏+𝑎 sin𝜙)2+(𝑎 cos 𝜙)2

(𝑏+𝑎 sin𝜙)
. (2-48) 
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This boundary is shown by line 𝐼 in Figure 2-17. Passing the bifurcation,  N4n𝑛  buckles into its 

first mode. A load increase makes the metamaterial to continue its deformation in the 𝒪2 mode 

until 𝑓𝑥 + 𝑓𝑦 reaches the following limit corresponding to the kinematic bifurcation at 𝜃 = 90° 

(line 𝐼𝐼 in Figure 2-17), 

𝑓𝑥 + 𝑓𝑦 =
𝑛𝑁𝑘𝜋

4𝑎 sin𝜙
√(𝑎 cos𝜙)2 + 𝑏2. (2-49) 

To determine the post bifurcation behavior, we compare the slope of the energy for different modes 

at 𝜃 = 90°. The path taken by our metamaterial is the one with the lowest gradient.  

To obtain the boundaries of 𝒜𝒪 and 𝒜2 modes, i.e., lines 𝐼𝐼𝐼 and 𝐼𝑉 in Figure 2-17, we note that 

the 𝒜𝒪 mode is activated when the slope of the energy at 𝜃 = 90° is below the slope of the energy 

in 𝒜2 mode. This condition can be written as 

(𝛿Π𝒜𝒪 < 𝛿Π𝒜2)|
𝜃=

𝜋

2
→ (

𝜕Π𝒜𝒪

𝜕𝜃
<

𝜕Π
𝒜2  

𝜕𝜃
)|

𝜃=
𝜋

2

→ (
𝜕Π

𝜕𝜃
|
𝜉′=1

<  
𝜕Π

𝜕𝜃
|
𝜉′=0

)|
𝜃=

𝜋

2

. (2-50) 

Upon substituting the derivative of Eq. (2-46) into Eq. (2-50), and rearranging we obtain 

𝑓𝑥 or 𝑓𝑦 ≤ 𝑛𝑁𝑘𝜋
√𝑏2+𝑎2 cos2 𝜙

8𝑎 sin𝜙
. (2-51) 

The equality signs in Eq. (2-51) defines the boundary of 𝒜𝒪 (𝒪𝒜) with 𝒜2, (lines 𝐼𝐼𝐼 and 𝐼𝑉 in 

Figure 2-17). If the compressive forces are equal while passing the bifurcation (line 𝑉 in Figure 

2-17), the metamaterial shifts to mode 𝒜2. The reconfiguration in mode 𝒜2 continues until the 

loads reach a limit defined by the lock angle. This limit is obtained by taking the variation of Eq. 

(2-46) and solving for 𝜃 = 𝜃𝐿 as 
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Figure 2-17 Kinematic phase diagram of square based pattern. 

𝑓𝑥 + 𝑓𝑦 =
𝑘𝑏(𝜋 − 𝜃𝐿)

2𝑎 sin𝜙 sin 𝜃𝐿

√(𝑎 cos𝜙)2 + (𝑏 + 𝑎 sin𝜙 cos 𝜃𝐿)2

𝑏 + 𝑎 sin𝜙 cos 𝜃𝐿
. (2-52) 

This limit is shown by line 𝑉𝐼 in Figure 2-17.   

2.6.13.3 Energy analysis of  𝐍𝟔𝒏𝒏 under in-plane biaxial loading 

To obtain the reconfiguration behavior of N6n𝑛 we use Eq. (2-46). The length of the sides of RUC 

in Figure 2-18 can be obtained by using 

𝐿⟘𝑥
= 𝐿1 sinΓ, 

(2-53) 
𝐿⟘𝑦

= 𝐿1
′ sin Γ. 

The parameters 𝐿1, 𝐿1
′  and Γ are calculated from Eqs. (2-29), (2-30) and (2-32), respectively. In 

the case of N6, 𝜉 is equal to 3 for mode 𝒜3 while for mode 𝒜2𝒪, 𝜉 is 2.  

𝒇𝒚

𝒏𝒌
 

𝒇𝒙

𝒏𝒌
 

𝓞𝓐 

𝓐𝟐 

𝓞𝟐 

 

𝜽 = 𝝅/𝟐 𝜽 = 𝝅 

𝓞𝟐 

𝓐𝟐 

𝜽 = 𝜽𝑳 

𝓞𝟐 𝓐𝓞 𝓐𝟐 

𝜽 = 𝜽𝑳𝐨𝐫 (𝝅 − 𝜽𝑳) 

𝓐𝓞 

𝜽 = 𝜽𝑳 
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Figure 2-18 shows the phase diagram of N6. Initially, the metamaterial is assumed to be flat. By 

compressing it, a certain limit is reached and the metamaterial buckles to 𝒪3 (line 𝐼 in Figure 2-18). 

This deformation mode is maintained until the metamaterial reaches 𝜃 = 90° (line 𝐼𝐼 in Figure 

2-18). This also applies to the case of N4; at the bifurcation point, the ratio of the forces plays a 

major role in governing the deformation path that follows. The boundaries of 𝒜2𝒪, 𝒪2𝒜 and 𝒜3 

modes can be obtained by comparing the slope of the corresponding energy expressions. The 

smallest slope defines the deformation after the kinematic bifurcation. Therefore, we can write 

(𝛿Π𝒜2𝒪 ≤ 𝛿Π𝒜3)|
𝜃=

𝜋

2
→ (

𝜕Π
𝒜2𝒪

𝜕𝜃
≤

𝜕Π
𝒜3  

𝜕𝜃
)|

𝜃=
𝜋

2

→ (
𝜕Π

𝜕𝜃
|
𝜉′=2

<  
𝜕Π

𝜕𝜃
|
𝜉′=3

)|
𝜃=

𝜋

2

, (2-54) 

which can be simplified as  

𝑓𝑥 (
2

3
− √3

𝑎

ℎ
cos𝜙) + 𝑓𝑦 (

2

√3
+

𝑎

ℎ
cos𝜙) ≤ 2𝐾𝜋

√(
2ℎ

3
)
2
+(𝑎 cos𝜙)2

𝑎ℎ sin𝜙
 . (2-55) 

Note that the equality sign represents line 𝐼𝐼𝐼 in Figure 2-18. The boundary of 𝒪2𝒜 and 𝒜3 can 

be obtained from 

(−𝛿Π𝒜3 ≤ 𝛿Π𝒪2𝒜)|
𝜃=

𝜋

2
→ (−

𝜕Π
𝒜3  

𝜕𝜃
≤

𝜕Π
𝒪2𝒜

𝜕𝜃
)|

𝜃=
𝜋

2

→ (
𝜕Π

𝜕𝜃
|
𝜉′=3

<
𝜕Π

𝜕𝜃
|
𝜉′=1

)|
𝜃=

𝜋

2

, (2-56) 

which can be simplified to 

𝑓𝑥 (
10

3
+ √3

𝑎

ℎ
cos𝜙) + 𝑓𝑦 (

2

√3
−

𝑎

ℎ
cos𝜙) ≤ 10𝑘𝑏𝜋

√(
2ℎ

3
)
2
+(𝑎cos𝜙)2

𝑎ℎ sin𝜙
. (2-57) 

Here, the equality sign represents line 𝐼𝑉 in Figure 2-18. There is a certain ratio that induces 

metamaterial to deform into its 𝒜3 mode (line 𝑉 in Figure 2-18A). The boundaries defined by Eq. 

(2-55) and (2-57) intersect the boundary of the kinematic bifurcation at a point with the load ratio 

given by 



  108 

 

 

Figure 2-18 Kinematic phase diagram of triangle based pattern. 

𝑓𝑥

𝑓𝑦
=

|
2𝑅

2

√3
+

𝑎

ℎ
cos𝜙

10𝑅
2

√3
−

𝑎

ℎ
cos𝜙

|

|

2

3
−√3

𝑎

ℎ
cos𝜙 2𝑅

10

3
+√3

𝑎

ℎ
cos𝜙 10𝑅

|

, 𝑅 = 𝑘𝑏𝜋
√(

2ℎ

3
)
2
+(𝑎 cos𝜙)2

𝑎ℎ sin𝜙
, (2-58) 

where | | denotes the determinant. As per the case of N4, the metamaterial locks into its 𝒜3 mode 

provided that the load ratio of Eq. (2-58) is maintained during the reconfiguration. 

2.6.14 Base material characterization  

To characterize the Young’s modulus of the base paperboard material we realized rectangular 

samples of dimensions 240 mm × 5 mm (30 mm on each side for the grip) as suggested in literature 

[205] for a better outcome than that provided by standardized methods, i.e., ISO 1924–2 (see the 

left of Figure 2-19). The stress-strain response of the base paperboard material of our proof-of-

𝓐𝟑 

𝓞𝟑 

𝓞𝟑 

𝓐𝟐𝓞 

𝓞𝟐𝓐 

𝒇𝒚

𝒏𝒌
 

𝒇𝒙

𝒏𝒌
 

𝜽 = 𝜽𝑳𝐨𝐫 (𝝅 − 𝜽𝑳) 𝜽 = 𝝅/𝟐 

𝓐𝟑 

𝜽 = 𝜽𝑳 

𝓞𝟑 𝓞𝟐𝓐 𝓐𝟑 𝓐𝟐𝓞 

𝜽 = 𝝅 
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concept prototype has been characterized using in-plane uniaxial tensile tests conducted on 

rectangular samples. Tests were carried out under in-plane uniaxial tension along two main 

directions, i.e., machine direction (MD) and cross direction (CD) (Figure 2-19). The results show 

that the tensile Young’s modulus and strength of our paperboard sheets in the MD direction is 

about 7.9 gPa and 57 mPa, respectively, roughly two times higher than the values obtained in the 

CD direction. The difference we observe can be attributed to the pulp and paper process which 

tends to align the network of cellulose fibers in the MD direction.   

        

Figure 2-19 Tensile sample and testing results. Specimen geometry of base paperboard material along with 

their uniaxial stress-strain responses in the machine direction (MD) and cross (CD) direction. 

2.6.15 Response of periodic cellular material 

Prior to carrying a series of experiments on our material system, we studied the properties of finite 

size specimens to ensure they are representative of those of their periodic counterparts. We study 

the role of in-plane and out-of-plane tessellation of our material building block with the goal of 

determining the smallest material system (minimum number of unit-cells in all three directions) 

that represents the response of an unbounded periodic material. 
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To perform our convergence analysis of tessellation level, we examine two representative units, 

N̂4n𝑛 and N̂6n𝑛, and adopt the notation (𝑙e1
, 𝑙e2

) to refer to an in-plane level of tessellation where 

the primitive unit is tessellated 𝑙e1
 times in the in-plane direction e1 and 𝑙e2

 times in e2. Given the 

role of tessellation along the three directions, we denote our material system as N̂𝑁n𝑛(𝑙e1
, 𝑙e2

), and 

study two representative systems, N̂4n6(7,7) and N̂6n6(7,7). The out-ot-plane tessellation is 

assessed by the number of layers 𝑛 stacked in the third direction. Our experiments investigate:  

(A) In-plane tessellation. For a single layer sample N̂4n1, determine the minimum number 

of in-plane unit cells that is representative of the unbounded in-plane tessellation. 

(B) Out-of-plane tessellation. For a multilayer specimen N̂4n𝑛 with minimum number of 

in-plane unit cells, assess the minimum number of stacking layers, 𝑛, that can parallel the 

response of the unbounded periodic domain. 

(C) Comparison between of N̂4n1 and N̂6n1 at given levels of tessellation. 

(A) Mechanical response of single-layer specimen. Figure 2-20A shows the primitive unit-cell of 

the locked unit N̂4n1 along with the effective area of four tessellation levels (1,1), (2,2), (3,3) and 

(4,4), each shown by a color ranging from brown to yellow. In Figure 2-20B, C, the statistical 

values of Young’s moduli and yield strength (as measured in the subset of Figure 2-20B) of a 

single layer sample show that by increasing the number of unit-cells, the convergence for both 

parameters occur at the tessellation level of (7,7). Beyond this level, negligible changes in 

properties can be observed. (7,7) can thus be considered as the minimum level of tessellation 

representing the periodic unbounded response. 



  111 

 

(B) Mechanical response of multilayered specimens. The role of layer stacking (z-direction) was 

assessed for a specimen with (7,7) tessellation level (Figure 2-20D). The results in Figure 2-20E, 

F show that adding 𝑛 layers results in a convergence of the Young’s modulus and strength at 𝑛 =

 6. Beyond this value, only marginal changes can be observed, indicating that the periodic response 

of N̂4n6 with tessellation level (7,7) is attained with a minimum of 6 layers stacked in the z-

direction. 

(C) Comparison of the mechanical response of N̂4n1 and N̂6n1 at given levels of tessellation. 

Figure 2-20G shows the primitive unit cell of the locked unit kinematic chain N̂6n1  along with 

the manufactured paper sample with a tessellation level (7,7). Figure 2-20H and I show 

respectively the Young’s modulus and the yield strength of the single layer N̂6n1 and compare 

them with those of N̂4n1 at given levels of tessellation. The results show that a single unit chain, 

i.e., tessellation level (1,1), has the highest stiffness, but the lowest strength. Upon increasing the 

tessellation level up to (7,7), the stiffness decreases for both units; on the other hand, for N̂4n1 the 

strength monotonically increases, while for N̂6n1we observe first an increase and then a decrease. 

Beyond the tessellation level (7,7) the mechanical properties tested in our experiment do not show 

noticeable changes (Figure 2-20H and I). Hence (7,7) is the minimum level of tessellation that we 

identify as representative of the unbounded periodic response.  

2.6.16 Manufacturability 

Most of the current concepts in the literature require a laborious process of fabrication, which often 

adds a further layer of sophistication. In several cases, the fabrication of a single three-dimensional 

unit cell requires several steps (cutting, folding, and gluing) [86, 87]. The spatial assembly of 

multiple unit cells is another elaborate undertaking, as each cell needs to be attached one by one 
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in space to its neighbor via edge-to-edge bonding [86, 87, 104]. Alternatively, 3D printing has 

been effectively used to fabricate origami-based materials [75, 107, 128, 149]. The high stiffness 

of the 3D printed hinges, however, has been shown to sacrifice foldability [107, 128, 149]. In 

addition, 3D printing has been used mainly with soft materials [75, 128], thereby bringing to 

realization prototypes with limited load-bearing capacity.  

 

Figure 2-20 Convergence study of square and triangle-based patterns. Fabricated samples and measured 

properties of N̂4n𝑛 unit locked in mode 𝒜2; statistical data for each given geometry are test results of five 
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samples. A Top view illustration of manufactured unit chain showing its unit chain and tessellation levels. 

Compressive Young’s modulus B and yield strength C for a sample with one layer only and given planar 

tessellation levels. The subset in B schematically illustrates how the compressive Young’s modulus 𝐸∗ and 

yield strength 𝝈∗ were measured. D Material system N̂6n4 with representative number, 𝑛, of stacked layers. 

Measured compressive Young’s modulus 𝐸∗ E and yield  strength 𝜎∗ F for given numbers of stacking 

layers 𝑛. G Top view of representative fabricated N̂6n1 sample with unit chain area in locked mode 𝒜3 and 

tessellation level (7,7). Yellow hexagons represent the top area of our primitive unit cells used for the 

calculation of the stress values. Compressive Young’s modulus H and yield strength I of N̂6n1 and N̂4n1 

at given tessellation levels. For each tessellation level, five tests were conducted. 

In our work, we use a relatively straightforward process with two fabrication steps that can be 

easily automated. From a single layer of the base material, we introduce in one step the tessellation 

of shaped voids and folding lines through laser cutting. After partially folding one kirigami layer 

along the origami crease pattern, we stack identical layers and bond (here, using glue) their 

triangular faces. This process does not require the assembly of 3D unit cells in space, rather three-

dimensionality is imparted in the flat configuration where the constituent layers are stacked and 

bonded together. As a result, the flat multilayered crease pattern can be easily folded in space since 

each layer is geometrically constrained to lay between parallel planes. Such characteristics enable 

to bypass the more laborious procedures currently pursued in the literature. 
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The link between Chapter 2 and Chapter 3 

Chapter 2 has introduced a class of reprogrammable origami-inspired metamaterials with rigid 

flat-foldability inspired by the principles of origami. This class of origami materials is load-bearing 

in multiple directions, including the deployment direction. By integrating origami-folding and 

kirigami-cutting principles, we have developed foldable patterns consisting of chains that take the 

form of N even-sided regular polygons, thereby establishing an internal void. The excisions allow 

for the relaxation of constraints on the deformation imposed by the planarity of the panels and the 

connectivity of the parent origami structure. This approach facilitates folding within the enclosed 

voids, offering multiple degrees of freedom that can be reduced through stacking. The kinematic 

analysis of the unit chain has shown the existence of a kinematic bifurcation point along their 

kinematic path. Post-bifurcation, multiple paths become available and can be harnessed to 

modulate their structural behavior in flat-foldable or locked configurations. A discussion on the 

energy landscape has led to the development of energy phase diagrams that explain energetically 

favorable rigid foldable reconfigurations. 

Among the insights gained from chapter 2, several have stood out for generalizing the geometry 

of the kinematic chains. In particular, the geometric constraints can be relaxed to enable exploring 

the role of other so far unexplored geometric parameters governing folding. In addition, chapter 2 

has confined the investigation to rigidly foldable deformation modes only, hence neglecting the 

possibility for the panels to deform and eventually snap in a given direction. This response cannot 

be explained under the rigid-foldability assumption and thus becomes the motivation of the next 

chapter, where panel deformation is admitted and leveraged to induce a multistable response upon 

folding.  
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Chapter 3 

A multistable class of origami-inspired metamaterials for mechanical 

damping and vibration mitigation under oscillatory motion 
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Chapter 3: A multistable class of origami-inspired metamaterials for mechanical damping 
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3.1 Introduction 

Origami and kirigami, the ancient arts of folding and cutting paper, have recently spearheaded the 

design of a plethora of scale-invariant reconfigurable structures [1, 2] and materials [3, 4]. Their 

application ranges from robotic actuators [5-12], flexible electronics [13-15], thermally tunable 

structures [16], impact mitigation devices [17, 18], programmable surfaces [19-21], and 

deployable structures [22]. Origami and kirigami patterns have also been leveraged to develop 

mechanical metamaterials with unconventional properties, including reconfigurability [3, 22-24], 

flat-foldability [3, 22, 23], multistability [25-27], re-programmable materials [22, 28-33], and load-

bearing capability [22, 34-37] among others.   

Of emerging interest in origami-inspired metamaterials is the promise they offer for re-

programming their response in-situ, i.e., post-fabrication [22, 28-32]. Both rigidly [3, 22, 23, 37-

39] and non-rigidly foldable [25, 40-42] origami systems have been investigated to attain on the 

fly reprogrammable folding and  response tuning. During folding, the former group reconfigures 

via hinge rotation of non-deformable panels only, whereas the latter group also through the flexure 

of their constituent faces. Folding and properties reprogrammability in metamaterials typically 

requires the application of an external stimulus, such as air pressure [43], thermal variation [44], 



  120 

 

light [45], magnetic field [9, 10, 12], or mechanical load [3, 22, 23, 25, 37-42], which allow 

reconfiguration changes and switch in distinct states, each with its own set of properties.  

Of special interest to this work are strategies capable of preserving a given configuration upon 

removal of the external stimuli without permanent damage. Multistability is one - among others - 

effective strategy widely employed in origami metamaterials [25]. It is often leveraged to switch 

between at least two stable folding states that are separated by a significant energy barrier [25, 30]. 

Previous studies in origami metamaterials have successfully resorted to multistability to generate 

novel functionalities including locomotion [8, 9], deployability [1, 25, 46], shape shifting 

capability [42], response tunability of embedded in electronic devices [32, 47] and cushioning 

[48]. Yet not much has been so far accomplished in origami metamaterials to leverage the notion 

of multistable snapping for energy dissipation and vibration mitigation. Generating multistability-

induced damping in metamaterials has important implications as it can offer sizeable advantages 

over conventional damping mechanisms, such as material viscoelasticity. The large displacement 

range a multistable metamaterial can attain provides freedom to reprogram on demand the damping 

response at values dictated by a given application and potentially beyond those offered by other 

conventional means of damping.       

In this study, we build upon our previous work on rigidly foldable origami to present a generalized 

class of foldable metamaterials with void excisions that tap into cyclic multistable snapping to 

deliver mechanical damping and reprogram their energy dissipation performance. To this end, we 

relax the geometric restrictions of rigid body reconfigurability enforced on the primitive building 

blocks to enable compliant folding where the constitutive panels undergo monostable and 

multistable snapping to access a wide range of reconfigurations from flat-foldable to spatially 

locked. At the core of our multistable class of origami-inspired metamaterials stands the potential 
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to switch from rigid-body to deformable-panel folding via snap-through instability, an outcome 

that broadens their geometric and reconfiguration space. This enrichment enables to tune in-situ a 

range of mechanical responses including the snapping-induced damping as well as the final 

configuration, which can be either flat-foldable for flat-packed storage and transportation with 

minimum space or spatially lockable for load-bearing applications.   

3.2 Geometry of reconfigurable unit chain 

To develop a reconfigurable kinematic unit, we present a generative process that starts from a 

primitive linkage made of a two-dimensional assembly of bars that can form any N even-sided 

convex parallelogon, beyond the regular polygon we previously investigated [22]. Figure 3-1A 

shows the process applied to a representative linkage of four bars (N=4) with sides a1 and a2 and 

interspacing angle 𝛼. From the central polygon, the edges in the x-y plane are extruded outward to 

preserve the lengths 𝑏𝑖 and the angles of extrusion 𝜙𝑖 of opposite bars. The outcome is a set of 

four parallelograms connected at the vertices of the original quadrilateral. The gaps between 

parallelograms form triangular faces with interspacing angles defined by 𝜆 (= 𝜋 − 𝜙1 + 𝜙2) and 

𝜆′(= 𝜋 − 𝜆).  

The process above enables to generate a reconfigurable kinematic chain of panels that can rigidly 

fold along the edges of its mountain (M) and valley (V) triangles. To describe its geometry, we 

introduce three dimensionless independent parameters �̅� = 𝑎2/𝑎1, �̅�1 = 𝑏1/𝑎1 and �̅�2 = 𝑏2/𝑎1, 

which we use along with other three independent parameters to denote the unit cell as  

N4(�̅�, 𝛼, �̅�1, �̅�2, 𝜙1, 𝜙2), where N4 refers to the class of unit cells defined by a parallelogram void 

(Figure 3-1A and B), a generalization of our previous work. Complementary to the concept 

generation is the fabrication process which requires the excision of voids from a paperboard, the 
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partial perforation of fold lines, and the face folding along crease lines yielding a three-dimensional 

reconfiguration. 

 

Figure 3-1 Quadrilateral based unit chain and origami-based metamaterial. A Conceptual process for 

generating a representative building block for a rigidly foldable metamaterial. Primitive regular polygon 

with non-orthogonal angles describing a four-bar linkage, followed by in-plane angled extrusion (red arrow 

of length b) of constitutive links; connection of extruded panels with triangular panels; addition of fold lines 

and assignment of a mountain (M) and valley (V). Unit chain reconfiguration upon folding and layer 

stacking of unit kinematic chain obtained by bonding valley triangular faces of the upper layer to the 

mountain triangular faces of the lower layer. B Visualization of (�̅�, 𝛼, �̅�1, �̅�2, 𝜙1, 𝜙2), the six independent 

geometric parameters defining the kinematic unit chain. C Unit kinematic chain with additional constraints: 

i) parallelograms assumed with shorter diagonal equal to their free edges; ii) free edges of extruded 

parallelograms around the central void assumed equal. D In-plane tessellation of 𝑁4 kinematic unit chain 

with tessellation vectors, 𝑒 1 and 𝑒 2. E Paperboard proof-of-concept samples, each consisting of four layers 

bonded to the mountain face of an upper layer and connected to the valley face of a lower layer. Prototypes 

shown in their stable post-snapped configuration. 

The generative process visualized in Figure 3-1A guarantees that the crease lines (orange and red 

lines in Figure 3-1B) are parallel, and the triangular faces (mountain and valley) remain planar 

during folding. As a result, multiple kinematic unit chains can be stacked along the z direction by 

bonding each mountain face of a bottom layer to its valley counterpart on the adjacent top layer. 
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While a single layer of a unit kinematic chain has multiple degrees of freedom, stacking multiple 

layers can reduce the degrees of freedom to one, hence generating a one DoF reconfigurable system 

[22]. 

Without losing generality and unless otherwise specified, we now assume the diagonal and the 

edges of the parallelograms around the central void are equal (Figure 3-1C), and reduce the number 

of independent geometric parameters to �̅�, 𝛼, and �̅� (= �̅�1 = �̅�2) hence simplifying our notation to 

N̂𝑛(�̅�, 𝛼, �̅�). Tessellating our unit in plane with respect to the periodic vector, e⃗ 1 and e⃗ 2  yields a 

periodic system, e.g., in Figure 3-1D, able to fold with its voids and panels through their rotation 

along its creases. Figure 3-1E depicts a demonstrative set of proof-of-concept specimens made of 

paperboard for four N̂4 patterns of given geometric parameters as indicated at the top of each of 

them. Each specimen consists of four layers, each bonded to the upper and the lower layer through 

their mountain and valley faces. While in this study we focus on patterns with translationally 

symmetric kinematic unit chain, other patterns beyond N4 exist as explained in Section 3.9.1. In 

addition, the primitive parallelogon is not bound to be quadrilateral, as explained in Sections 3.9.2 

and 3.9.3, for the cases with 𝑁 >  4. 

3.3 Rigid reconfigurability  

The reconfiguration process of our origami systems involves both rigid and non-rigid folding, 

intrinsic characteristics defining their reconfiguration and studied now in-depth. The former is 

examined in this section and the latter in section 3. In our origami system, rigid reconfiguration 

denotes a process that folds our system through the crease lines only until a state where panels are 

in contact. In the following, we first explain the kinematics of folding with a snapshot at a given 

transition state, and then we focus on the final state, which in our system corresponds to the 

attainment of locking through panel contact. 
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3.3.1 Kinematics 

To examine rigid foldability, we assume panels as infinitely rigid and fold lines as rotational 

hinges. Given the periodicity, we examine a representative unit cell N4 (Figure 3-2A) where ① 

and ② refer to the directions of folding although the analysis reported here can be readily 

generalized to other patterns.  

During reconfiguration from an initial fully developed configuration (Figure 3-2A), our unit folds 

into a transition state (Figure 3-2B), where the angle 𝜃1 and 𝜃2 assume a positive value. For N4, 

two layers suffice to endow the system with one DoF [22] regardless of the values chosen for  ℎ1 

and ℎ2. Since layer stacking enables valley (or mountain) faces to remain in their initially flat 

plane, we can study rigid reconfigurability by analyzing the co-planar faces of adjacent layers. The 

distance between parallel faces, Δ𝑧, is governed by the dihedral angles, i.e., 𝜃𝑖, and is given by 

Δ𝑧 = ℎ1 sin 𝜃1 = ℎ2 sin 𝜃2 = ⋯ = ℎ𝑖 sin 𝜃𝑁/2   (3-1) 

For N4, only 𝜃1 and 𝜃2 are necessary to describe the kinematics (Figure 3-2C and Figure 3-2D) as 

their values govern one kinematic path, among others, the unit cell follows during folding. Each 

path is described by a given relation between dihedral angles; for simplicity here, we simply 

characterize the paths through the relative values of ℎ1 and ℎ2. Generalizing the kinematic analysis 

above to patterns with 𝑁 > 4 is straightforward and requires the inclusion of 𝑁/2 terms in Eq. (3-

1). In the case of N𝑁, the reconfiguration landscape consists of 𝑁 − 2 kinematic paths in an 𝑁/2 

dimensional space (see Section 3.9.2 for the case of N6). 

Case I: 𝒉𝟏 = 𝒉𝟐 

Figure 3-2C shows the possible paths that emerge by ensuring height equality, ℎ1 = ℎ2.  From a 

flat configuration, i.e., point a (𝜃1 = 𝜃2 = 0), our kinematic chain can fold along the branch I 
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(𝜃1 = 𝜃2) until 𝜃1 = 𝜃2 =  𝜋/2, point c. Here, it undergoes a kinematic bifurcation, where the 

number of degrees of freedom instantaneously increases from one to two [22]. Any of the branches 

II, III, and IV may represent the post-kinematic bifurcation path as determined by the relative 

magnitude of the applied forces [22].  

Post bifurcation, the mechanism reverts to a single degree of freedom system [22] and follows 

either the kinematic path 1, 𝜃2 = 𝜃1, or the kinematic path 2,  𝜃2 = 𝜋 − 𝜃1 (Figure 3-2C). Each 

of them has two branches, and switching between them is always possible through their 

intersection point, the bifurcation pass, hence ensuring continuity in the kinematic path. 

 Case II: 𝒉𝟏 ≠ 𝒉𝟐 

Without losing the generality, we examine the case ℎ1<ℎ2. In contrast to the previous case, here 

the kinematic landscape consists of two non-intersecting kinematic paths showing mutual 

discontinuity (Figure 3-2D). From an initially flat state, point a, the unit cell reconfigures along 

the kinematic path 1 for increasing folding angle 𝜃1. Point g is a representative transition state in 

the reconfiguration process which continues until point h, where the panels, P1 and P3 (Figure 

3-2B), become perpendicular to the central parallelogram, C. Point h (Figure 3-2D) is a limiting 

configuration that connects branch 1 and branch 2 of the kinematic path 1. Folding along branch 

2 requires a decrease in 𝜃2 for an increasing 𝜃1. 

Besides the kinematic path 1, Eq. (3-1) admits another solution. If (𝜃1
∗ < 90°, 𝜃2

∗) are a pair of 

solution, (𝜃1
∗, 𝜋 − 𝜃2

∗) also satisfies Eq. (3-1).  This explains the existence of a second kinematic 

path, which also encompasses two branches sharing the critical point k, Figure 3-2D. In this case, 

a switch between kinematic paths through the trajectory h-k is no longer possible under the rigid 

foldability assumption. The jump h-k becomes admissible only if the panels are admitted 

deforming, as explained in Section 3.4. 
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While the kinematic paths in Figure 3-2C and Figure 3-2D visualize the relation of the dihedral 

angles, 𝜃𝑖, at a transition state during reconfiguration, the final state of our unit cell is not captured 

in those maps. The final configuration the unit cell reaches at the end of the folding process, can 

be either locked or flat-foldable. The former is determined by contact between faces in an 

intermediate point along the kinematic path. The latter appears if at least one 𝜃𝑖 is 𝜋 (see Section 

3.9.4).  

 

Figure 3-2 A Top view of an N4(0.8,103˚, 1, 0.95, 45˚, 75˚) pattern with its governing geometric 

parameters; red dash line denotes unit cell boundary, orange lines describe folding directions. B Three-
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dimensional unit cell in a representative transition state with its main reconfiguration parameters, red letters 

denote panels above and below (with superscript) the yellow horizontal plane. C Kinematic path landscape 

for ℎ1 = ℎ2. Dash lines emphasize the existence of two branches on each kinematic path. Intermediate 

points, b, d, e, f, in orange describe representative transition states. Terminal points in white correspond to 

flat-foldable configurations, and kinematic bifurcation point in red enable continuous switch between paths. 

D Kinematic path landscape for ℎ1 ≠ ℎ2 and plotted for demonstrative value ℎ1/ℎ2 = 0.9. Representative 

paths are non-intersecting.  Other values of ℎ1/ℎ2 generates similar kinematic landscape consisting of two 

branches transitioning at configuration points h and k.  

The rigid reconfiguration of N4 can be described as a mapping from the initial unit cell shown in 

Figure 3-2B to the final configuration. The energy stored in the hinges can be interpreted as the 

internal energy resisting further deformation enabling pattern reconfiguration. As a result, an 

energy function can be used to correlate the deformation and the external forces acting on the 

boundaries of the unit cell (see Section 3.9.5 for the formulation of the smooth rigid 

reconfiguration of the N4 pattern)  

3.4 Non-rigid reconfigurability in single snapping unit 

A rigid foldable origami unit with ℎ1 ≠ ℎ2 is intrinsically unable to switch its kinematic path due 

to the non-intersecting nature of its paths, 1 and 2. One way to make the path switch admissible is 

to relax the assumption of panel rigidity and consider deformable panels. Here we study the 

deformation of a reconfigurable unit and examine its most representative and smallest portion 

(Figure 3-3A). This consists of two layers where Pi refers to the panels of the top layer, and Pi′ 

(with the prime sign) denotes those on the bottom layer. Since the panels are compliant, the unit 

cell panels can deform and snap following a distinct mechanism as described below.  

The behavior of our compliant reconfigurable unit is investigated through a large set of simulations 

(see Sections 3.9.6 and 3.9.7) and experiments (Section 3.9.11). Key conditions we enforce on 

both the model and physical prototypes we built are on the degrees of freedom of each panel. In 

our computational model, the faces P2 and P2′ can move in a direction perpendicular to their face, 
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i.e., z direction, and all their rotational DoFs are fixed. Face P1 can move in the y direction, while 

the rotational DoFs are constrained. Face P3 is free to move. Similarly, in our experiment (Figure 

3-3B) we replicate the boundary conditions of our model. To do so, the faces P4 and P′4 are screwed 

to very stiff panels made of acrylic plate and mounted on a slider that can move only in the ±z 

direction. The face P5 is screwed between two stiff acrylic panels. The upper platen is attached to 

the upper grip of our tensile tester (Instron 6800 series) while the lower plate is fixed to the lower 

grip (see Section 3.9.14 for additional information.)  

Figure 3-3C compares the experiment and finite element results of the force-displacement behavior 

of a single snap unit, and Figure 3-3D shows the corresponding snapshots. In Figure 3-3C, the 

force, F, normalized by Fcr, is the critical buckling force of a square panel hinged along two 

opposite edges and free along the other two; y is the displacement of the upper platen, normalized 

by the length of the hinge b1. Fcr, is given by  

𝐹𝑐𝑟 =
𝜋2𝐸𝑡3

12(1 − 𝜈2)𝑏1
 (3-2) 

where E and  are the Young’s modulus and Poisson’s ratio of the material. B and t, respectively, 

represent the side and the thickness of the panel. 

Starting from the initial configuration, point a (Figure 3-3C and Figure 3-3D), the unit undergoes 

rigid folding up to point b. At this stage, due to the difference between ℎ1 and ℎ2, rigid folding is 

no longer possible, and what we observe is a hardening of the response from point b to point c. 

While P5 and P′5 are in compression, P4 and P4′ undergo tensile forces. At point c, the structure 

withstands the maximum load, beyond which P2 and P′2 undergo a mechanical instability leading 

to the snap-through of the whole origami specimen. This is visualized in Figure 3-3C by the 

negative value of the incremental stiffness from c to e. During instability, the tensile forces in P4 
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and P′4 and the compressive forces in P5 and P′5 are released, and the reconfigurable unit reverts to 

a rigid folding mode from point e to point f. At point f, P2 and P′2 come into contact with P3 and 

P′3 leading to a sharp rise in the force-displacement curve. After contact, the reaction force 

continues to increase. When the loading cycle is completed through the unloading process, we 

observe the loading and unloading curves do not coincide resulting in a net dissipation of energy 

mainly due to the viscoelastic behavior of the hinges and the friction generated by the sliders and 

the rail. 

Figure 3-3E provides a qualitative representation of the loading curve of our origami unit with the 

main descriptors of the snap-through therein specified: the maximum and minimum force (red 

points) as well as the energy contributions (shaded domains). Fmax is the peak force required to 

generate instability in the forward direction, and Fmin can be interpreted as the peak force required 

to generate instability in the reverse direction (backward instability) in an ideal dissipative-free 

scenario. 𝐸𝑠𝑛𝑎𝑝 is the energy required to initiate elastic instability in the panels, while 𝐸𝑖𝑛 is the 

work exerted by the external force to shift the structure to its second stable State. 𝐸𝑜𝑢𝑡 is the energy 

released during the snap-through instability; it can also be interpreted as the energy barrier in the 

reverse direction. In an ideal scenario of snap-through instability, 𝐸𝑖𝑛 = 𝐸𝑜𝑢𝑡, an equality 

indicating that the energy barrier in the forward and backward instability (Figure 3-3D) does not 

change.  

The metrics in Figure 3-3E become now handy to define regimes of post-snap contact deformation, 

each describing a modality of panel contact. The emergence of a given regime is governed by the 

values assumed by the main governing parameters, �̅�, i.e. the normalized primitive void size, and, 

�̅�, the normalized extrusion length of the origami unit (Figure 3-1A). We can identify four post-

snap contact regimes of deformation, each visualized in Figure 3-3F-I for a representative unit cell 
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of prescribed �̅� and �̅�. For comparative purposes, we also plot the response of a hypothetical 

contact-free model (dash lines), here used as baseline.  

• Figure 3-3F depicts the first scenario where contact is established prior to instability. The 

subset of Figure 3-3F shows that the panel P2 and P2′ deform significantly and come into 

contact before their instability takes place. Compared to the contact free model (dash line 

in Figure 3-3F), here we observe that contact influences the magnitude of the maximum 

load, Fmax, that the unit can attain (red point). This is due to contact between P2 and P2′, a 

phenomenon that restricts their flexural deformation and hence stiffens the structural 

response of the unit; as a result, a larger peak force is required to trigger elastic instability. 

As our unit undergoes snap-through, the contact area between P2 and P2′ reduces until a 

new point of contact is formed between another pair of panels, i.e., P2 with P3, and P2′ with 

P3′ (Figure 3-3A)), denoted with the white point on the downward portion of the curve 

between the red circles. Again, this contact - newly formed during instability - limits the 

release of flexural deformation from P2 and P2′. As a result, the absolute value of the 

minimum force, Fmin, for instability (red point with negative force value) is larger than the 

contact free model. As per the energy contributions, we also observe that the contact 

between faces poses a higher energy demand to trigger instability in both (forward and 

backward) directions (Figure 3-3D).  

• Figure 3-3G describes the second case where contact is formed during snap-through 

instability. Here, the flexural deformation of P2 and P2′ during instability is sufficiently 

large to allow contact between P2 (and P2′) and P3 (and P3′). Similar to the deformation 

mechanism shown in Figure 3-3F, also here a higher magnitude of the minimum force of 

instability, Fmin, is required than the contact free model. As a result, in the backward 
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loading cycle, the peak load, Fmin, and the energy required for backward instability, Eout, 

are higher. In this case, however, the load required for the forward instability, Fmax, and the 

input energy of instability, Ein, are identical to those of the contact free model. 

• Figure 3-3H shows the third regime, characterized by a post-snap contact that occurs with 

an applied force at a negative value during the loading cycle. Contact here forms first 

between P2 (and P2′) and P3 (and P3′), followed by contact between the edges of P5 and P7.( 

Figure 3-3A). Establishing contact in this regime reduces the energy released during the 

snap-through instability, Eout, compared to the ideal contact-free case. As a result, the 

backward snap-through instability requires lower energy than the contact free case.  

• Figure 3-3I depicts the case where contact occurs in the post-snap response at a positive 

force value. Here, the sequence of contact is similar to the previous regime, first between 

panels P2 (and P2′) (see the onset of contact in inset) and P3 (and P3′) and then between the 

edges of P5 and P7 (Figure 3-3A).  In this regime, the response diverges from that of the 

contact free model only in the post contact portion of the force displacement curve, yielding 

a sharp increase of stiffness. As a result, contact has no influence on the metrics defined in 

Figure 3-3D.  

We now explore the role played by the characteristic parameters �̅� and �̅� in the four contact regimes 

each described by a characteristic force-displacement curve (Figure 3-3F-I). To do so, we sweep 

�̅� and �̅� in a selected portion of the design space (0.7 < �̅� < 1.1 and 1< �̅� <1.25) for prescribed 𝜃2, 

and discuss the changes in the force and energy metrics, Fmax, Fmin, Ein, Eout, Esnap, defined in Figure 

3-3E. Each map in Figure 3-3J-O shows the emergence of five regions enclosed by red boundaries, 

four corresponding to the contact regimes and the fifth indicating a geometrically unattainable 

region (grey) for the given value of 2 here assumed. A difference in shading of the full colors 
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denotes whether contact takes place in a given zone, whereas the semitransparent shading indicates 

that a given contact regime cannot be attained for the corresponding range of parameters, �̅� and �̅�, 

yet the metrics are plotted to provide the comparison baseline of the contact-free case. 

The map in Figure 3-3J plots the intensity of Fmax over Fcr, a metric that denotes the highest force 

our unit can withstand prior to snap-through instability. This is the contact regime 1 shown in 

Figure 3-3F for a representative unit of given �̅� and �̅�. This regime describes contact preceding 

instability; it can be accessed by a range of values �̅� and �̅�, which delineate the corresponding 

region 1 in Figure 3-3J. Within this region, Fmax is inversely proportional to �̅�. The lower �̅�,  the 

higher the maximum load of instability, a behaviour governed by the effective buckling length of 

P2 or P2′, i.e., the smaller panel dimension, undergoing buckling. On the other hand, Fmax is in 

direct correlation with �̅�. For given �̅�, the higher �̅�, the larger the maximum force required for 

snap-through due to the increasing difference between h1 and h2. 

Similarly to Figure 3-3J, in the parameter space �̅� versus �̅�, Figure 3-3K maps the absolute value 

of the minimum force of instability |Fmin| over Fcr. Since Figs 3F and 3G show that contact can 

take place either prior (regime 1) or post (regime 2) snap-through instability for given values �̅� 

and  �̅�, Figure 3-3K shows that a range of �̅� and  �̅� can also attain those regimes as visualized by 

their corresponding regions 1 and 2. Compared to the free- contact model, the higher value of |Fmin| 

indicates that in a reverse loading cycle the peak load for the onset of instability is higher. This is 

not only valid in ideal conditions where there is no energy dissipation, e.g., the viscoelasticity of 

the hinge material and/or friction between rails and sliders are not considered, but it also provides 

a reasonable estimate of a real sample response where viscous and/or frictional effects are present. 

As with Fmax, Fmin shows a similar dependence on �̅� and �̅� . A decrease of �̅� results in a larger 

force required to initiate instability in the reverse loading cycle due to the length reduction of panel 
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P2 or P2′ undergoing buckling. Similarly, for increasing �̅�, the difference of panel heights, h1 and 

h2, raises and hence culminates in an increase of |Fmin|. 

 

Figure 3-3 Deformation based reconfigurations of single snap units. A Geometry of a single snap unit. B 

Experimental setup consisting of upper and lower platens, respectively fastened to upper and lower grippers 

of tensile tester. A pair of stiff plates connect face P5 to upper platen. P4 and P4′ are screwed to sliders that 

allow translation motion on a rail mounted on the lower platen. C Experimental (dash line) and finite 
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element analysis (red solid line) of a single snap unit with representative values  �̅�  =  1 and �̅�  =  1.125. 

Shaded area visualizes the envelope of the dispersion curve. Representative points a to g along loading 

cycle correspond to reconfiguration snapshots in Fig 3D. D Front view configurations of single snap unit 

during loading corresponding to points in the loading curve in Fig 3C. Dash lines specify creases, i.e. 

rotational hinges. Shaded blue panel represents P2 face. Scale bar: 40 mm. E Definition of characteristic 

metrics, i.e., energies and forces during loading, used to specify the four contact regimes. F-I Four 

representative load displacement curves (continuous line) obtained for given values of �̅� and �̅�, each 

corresponding to a contact regime of deformation. Contact-free response (dash line) shown for baseline 

comparison. Red dots correspond to absolute load peak values. Onset of contact visualized as white circles, 

each referring to an x-z view (inset) of the contact event of specific panels. J-O Design maps exploring the 

role of geometric parameters �̅� and �̅� (�̅� from 0.7 to 1.1 and �̅� from 1 to 1.5.). Light shading designates 

regions where contact does not play a role. Dash black line in J-L corresponds to boundary of regions 

between Fmax>|Fmin| and Fmax<|Fmin|. Characteristic forces in J-K are normalized with respect to the critical 

buckling load of a square panel hinged along two edges and free along the other two, i.e., 𝐹𝑐𝑟 =

𝜋2𝐸𝑡3/12(1 − 𝜈2)𝑏1 where b1 is the side of the panel. Each number is representative of a region presented 

in maps J-O. M-O Characteristic energies on the loading curve. Dash black line in N indicates Ein=Emax, 

separating regions with Ein> Eout and Ein< Eout .  

Given contact plays a role in both Fmax and Fmin as shown in Figure 3-3J and Figure 3-3K, we can 

compare the peak load of instability in the forward and backward loading cycles. This is achieved 

by plotting the ratio |Fmin|/ Fmax as shown in Figure 3-3L. The results in this map are valuable for 

differentiating and tailoring the peak force for the forward and backward bistability in the 

reconfigurable unit. |Fmin|/ Fmax =1 is the boundary threshold (black dash line) that splits domain 2 

into two regions, where the peak force ratio is either above or below 1. The emergence of the 

boundary in domain 2 attests that contact between P2 and P3, as well P2′ and P3′, plays a major role 

in controlling |Fmin|/ Fmax. For lower values of �̅�, contact between P2 and P3 (also P2′ and P3′) occurs 

close to the end of the instability process, downward portion of the load history. As a result, its 

contribution to |Fmin| is low. On the other hand, for larger �̅�, contact takes place at the early stage 

of instability. As shown in the right-hand side inset of Figure 3-3F, P2 and also P2′ undergo a large 

flexural deflection along a span smaller than their height, h2, hence leading to an increase in |Fmin|. 

Similar to the force-metrics maps (Figure 3-3J to Figure 3-3L), we can explore the role of �̅� and �̅� 

on the energetic fronts. Figure 3-3M shows an example, where the energy released during snap-
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through instability, Ein, normalized by Fcrb1 is mapped for varying �̅� and �̅�. Ein can capture not 

only the influence of Fmax but also that of the displacement required to switch the unit from one 

stable configuration to the other. Since contact can occur prior  and during snap-through instability, 

as depicted by regime 1 and 2 in Figure 3-3F and Figure 3-3G, there exists a range of parameters 

for �̅� and �̅� that can give rise to those regimes. These are respectively visualized by the regions 1 

and 2 in Figure 3-3M. We can draw similar insights to those gained in the discussion of the force-

metrics map, where here there is an inverse relation between Ein and �̅�, as opposed to between Ein 

and �̅�.  

Figure 3-3N maps the ratio Eout/Ein in the parameter space �̅� versus �̅�. We recall that Eout (Figure 

3-3E) is the energy required to trigger instability in the reverse loading cycle in the absence of 

energy dissipation. In this ideal case, there is no change in the energy barrier, i.e. Eout/Ein=1, 

between the forward and backward loading cycle. In practice, however, there are mainly three 

factors contributing to the deviation from the ideal case. First, during the forward loading cycle, 

the creases due to their rotational stiffness of the hinges store a moment that resists the rotation of 

the faces about their common hinge. This moment is released in the backward cycle, making Eout 

significantly lower than Ein. Another factor is the contact between faces during snap-through 

instability. As shown in the load-displacement curves of Figure 3-3F and Figure 3-3G, contact 

limits the span of P2 and P2′ that undergo buckling. This process increases the minimum force of 

instability and the displacement of snap-through instability leading to an increase in Eout. The three 

regimes in Figure 3-3F, G and H obtained for given values of a and b can be attained by a range 

of a and b parameters which define their corresponding regions 1, 2, and 3 in Figure 3-3N. Eout 

increases inversely with �̅� and directly with �̅�. The third factor that contributes to the deviation of 
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response from the ideal case is the existence of dissipative elements, such as viscous damping in 

the hinges and frictional damping in the sliders. 

Finally, Figure 3-3O maps the ratio Esnap/Eout where Esnap is the energy required to generate 

buckling in the forward loading cycle. This metric is important because by comparing Figure 3-3N 

and Figure 3-3O, we observe that the maximum value of Eout/Ein does not coincide with the 

maximum of Esnap/Eout. Reconfigurable units with large �̅� and �̅� therefore require, on one hand, a 

small amount of energy to undergo buckling, Esnap, in P2 and P2′ (top right corner of Figure 3-3N), 

and, on the other hand, a large displacement to undergo snap-through instability. 

3.5 Interacting snapping units  

The snapping behavior of a single unit can differ from the response explained in the previous 

section if the panels of more units start to interact during reconfiguration. This section studies the 

role of two representative units whose snapping interaction brings multiple points of their panels 

into contact. Here our analysis combining experiments and numerical simulations focuses on the 

unit geometric parameters governing the snapping interaction. 

Figure 3-4A shows a representative specimen consisting of two snapping units that interact during 

reconfiguration. Similar to the single snapping unit, the specimen comprises two layers bonded in 

series at selected horizontal faces, i.e., P5 to P7 and P9. Circular holes are embedded in faces P5 and 

P9 to mount and brace the specimen on the testing apparatus shown in Figure 3-4B. This 

experimental setup consists of an upper and a lower platen fastened, respectively, to the upper and 

lower grippers of the tensile tester (see Section 3.9.14). The force-displacement curve during a 

forward/reverse cycle is illustrated in Figure 3-4C from results obtained via experiments (dash 

line) and finite element analysis (solid line). The former parallels the latter with a reasonable level 

of accuracy. Deviations exist and can be attributed to multiple factors including sample 
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imperfections, mounting-specimen misalignment, friction in the bearings, and assumptions behind 

the simplified model of the hinges (see Sections 3.9.6 and 3.9.10). The stable configurations during 

the forward (global compression) and reverse (global tension) loading cycles are identified with 

green and yellow dots at the intersections of the load-displacement curve with the horizonal axis. 

Between stable configurations, the specimen undergoes a sequence of deformations, which we 

track in Figure 3-4D and plot as sample snapshots, a to i, corresponding to their respective points 

in Figure 3-4C. These snapshots help gaining insights into the evolution of the snapping events 

between interacting panels as described below.  

From the initial configuration (Figure 3-4D(a)), the forward loading cycle moves the upper platen 

of the testing setup downward and induces the rotation of the faces P2  and P2′ as well as P8 and P8′ 

about their shared hinges with P4  and P4′ (Figure 3-4D(b). The governing mechanism in this 

intermediate configuration is mainly controlled by panel rotation. Upon further compression (point 

c), the panels not only rotate but also start to deform, hence generating a pseudo-hardening 

response with an increase in the slope of the loading curve (Figure 3-4C). At this stage, the pairs 

of panels P2 and P2′, and P8 and P8′, undergo compression, whereas the other two pairs, P1 and P1′, 

and P3 and P3′, are under tension, a phenomenon caused by the difference in height of the 

parallelogram faces surrounding the central panels P4 and P4′. The slope in the stiffening region 

from point c to point d reaches a maximum that corresponds to the apparent stiffness of the first 

snap-through instability, k1 shown in Figure 3-2E.  

At point d (Figure 3-4C and Figure 3-4D(d)), the elastic panels P8 and P8′ buckle, and a snap-

through instability from point d to point f follows, with point e (also shown in Figure 3-4D(e)) 

denoting a representative configuration of the snap-through. Upon advancing the forward loading 

cycle, the load-displacement curve from point f onwards exhibits a steep increase, which is caused 
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by a load reversal in panels P8 and P8′, i.e., the forces in the faces P8 and P8′ switch from 

compression to tension. An additional loading compresses the faces P2 and P2′ further, as opposed 

to P1 (also P1′) and P3 (also P3′) which are in tension. The compression increase culminates at point 

g with the elastic buckling of P2 and P2′ (also shown in Figure 3-4D(g)), followed in turn by a 

second snap-through instability, this time undergone by the pair of panels P2 and P2′. The specimen 

reaches the minimum load of the second instability in the forward loading cycle at point h, after 

which any further loading results mainly in panel rotation of P2 (and P2′) and P8 (and P8′) about 

their common hinges with P4 and P4′. This reconfiguration continues until the pairs of faces P2-P2′, 

P3-P3′, P1-P1′, and P8-P8′ come into contact leading to a sharp increase in the load-displacement 

curve (point i shown in Figure 3-4 D(i)). 

Upon a reversal of the loading cycle, the specimen response travels along a similar path (Figure 

3-4E), which is down-shifted from the forward counterpart due to energy dissipation, and it is also 

characterized by two snap-through events. In our case, the temporal order of snap-through 

instability is retained between the forward and backward loading cycle, i.e., the pair of facesP8 and 

P8’, undergoing first snap-through instability in the forward loading cycle, is also the first in the 

reverse loading cycle followed by the other pair, faces P2 and P2′. Figure 3-4E is a qualitative 

representation of the loading/unloading curve of a pair of interacting units with the main 

descriptors of the snap-through interaction therein specified, i.e., the maximum forces in the 

forward and backward loading cycles (𝐹𝑖 and �̅�𝑖), the minimum forces of instability (𝑓𝑖 and 𝑓�̅�), the 

apparent stiffness of snap-through instabilities (𝑘1 and 𝑘2) as well as the dissipated energy (cyan) 

in the loading cycle (𝐸𝑑𝑖𝑠𝑠) due to the viscous damping of the hinges.  

One interesting observation we can draw from the loading cycle in Figure 3-4C is that the stiffness 

and the maximum force corresponding to the second instability are noticeably larger than their 



  139 

 

counterparts corresponding to the first instability. This phenomenon appears regardless of the 

loading type, either tensile or compressive. To explain the root cause of this response, we to track 

the evolution of the reconfiguration process from the side view, i.e., y-z plane, as shown in Figure 

3-4F, which enables to monitor the specimen folding from the initial state (Figure 3-4F(a)) 

onwards. As the upper platen is moved downward (Figure 3-4F(b)), P2 and P2′ as well as P8 and 

P8′ rotate about their common hinges with P4. As the forward loading cycle proceeds, prior to the 

first instability we can measure the angle between faces P2 and P2′ (as well as P8 and P8′) (Figure 

3-4F(c)), which is 144˚ as opposed to 114˚ (Figure 3-4F(d)), the angle preceding the second 

instability. The underlying physics for the angle change can be understood by inspecting the 

reconfiguration sequence in Figure 3-4D. The first snap-through instability causes a drop in the 

reaction force, which in turn releases the moment stored in the common hinges of P1 (P1′), P2 (P2′) 

and P3 (P3′) with P4 (P4′). As shown in Figure 3-4D(f) the decrease in the reaction force culminates 

in the displacement of P6 and P7 in the -x and +x directions respectively.  

As the upper platen continues to move downward, the reaction force increases as shown in Figure 

3-4C. As a result, faces P1 (also P1′) and P3 (also P3′) further rotate around the hinges they share 

with P4 and P4′. During this reconfiguration, faces P8 and P8′ come into contact with faces P1 and 

P1′ (Figure 3-4D(e)), and the contact between these pairs restricts further the rotation of P1 and P1′, 

hence limiting the rigid body reconfiguration. This panel interaction leads P2 (and P2′) to buckle 

(Figure 3-4D(f)). The panels buckled in a way that is not unique and lead to distinct configurations. 

To compare the difference in panel configuration between the two buckling events, we can monitor 

the angle formed between P2 (also P2′) and P8 (also P8′)  prior to the onset of the first (144˚ in 

Figure 3-4F(c), and the second buckling, (114˚ in Figure 3-4F(d) In the former case, P2 and P2′ 
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undergo instability as in a von Mises truss at a more acute angle than in the second case, hence 

explaining the larger force required for the second instability. 

To better understand the role of snapping interaction in a single snap-through unit (Figure 3-3A) 

and in two interacting snap-through units (Figure 3-4A), we now compare the energy barriers 

required to trigger their snap-through instability. Before analyzing both the forward and reverse 

loading cycles, we first define the characteristic energies in Figure 3-4G, a qualitative plot of the 

loading/unloading curve for a pair of interacting units in the forward cycle (blue) and backward 

cycle (yellow). 𝐸𝑖𝑛
𝑖  is the energy required to cause snap-through instability where the superscript 

denotes the order of instabilities, where i=1 is for a single snap-through unit and i=2 for two 

interacting snap-through units. 𝐸𝑜𝑢𝑡
𝑖  is the energy released in each event of instability. An overbar 

denotes the corresponding characteristic energies in the reverse loading, highlighting the dominant 

role of displacement and the reduced energy requirement for the second snapping in the two 

snapping units. 

As per the reverse loading cycle (yellow in Figure 3-4G), the energy contributions resemble those 

of the forward cycle (blue), but in a reversed order and with a downward shift due to the dissipated 

energy. Here �̅�𝑖𝑛 and �̅�𝑜𝑢𝑡 account for the stored moment in the elastic hinges which are now 

released during the snap-through instability in the reverse loading cycle. For this reason, Figure 

3-4H shows a lower energy requirement to trigger instability in the reverse cycle �̅�𝑖𝑛
𝑖 , than in the 

forward loading cycle. Moreover, the energy required to cause snap-through instability in the 

reverse cycle is smaller in the specimen comprising two interacting units compared to its 

counterpart in a single snap unit; this is because two interacting units have stored larger moments 

in their hinges prior to undergo bistable snapping in the reverse cycle. As a result, two snapping 

units release more energy than one single snapping unit during the reverse cycle, i.e., �̅�𝑜𝑢𝑡
𝑖  >  𝐸𝑜𝑢𝑡

𝑖 . 
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Furthermore, Figure 3-4H shows that a pair of two interacting units can dissipate five times the 

energy of a single snapping unit. This phenomenon can be mainly attributed to the difference 

between 𝐸𝑖𝑛
𝑖  and �̅�𝑜𝑢𝑡

𝑖 ,and can be leveraged to generate a reconfigurable metamaterial with 

remarkable dissipative response. This is demonstrated in the next section where a tessellated 

assembly (in series) of interacting snapping units, i.e., a foldable origami-inspired dissipator, can 

boost energy dissipation through a cyclic sequence of snapping events occurring in the forward 

and backward loading paths. 

3.6 From unit cell to periodic metamaterial system  

With the insights gained above, we now examine the role of panel interaction in a periodic 

metamaterial consisting of multiple units. For demonstration purposes, we consider a 5⨯5 units 

system with two stacked layers and dimensions �̅� = 1.125 and �̅� = 1; we experimentally and 

computationally investigate the response of a set of proof-of-concept prototypes under 

compression and tension. As shown in Figure 3-5A, the faces of the interface of the two layers on 

the plane of the material symmetry are attached to sliders that can freely move along the x axis. 

The rail is attached to a platen fastened to the gripper of our tensile tester, and the middle slider at 

the bottom is fixed to prevent the rigid body movement of the specimen. We also examine to role 

of the clamp inclination onto the specimen response by comparing a sample mounted at a given 

angle (Figure 3-5B) with one mounted parallel (Figure 3-5C) to the sliders.  
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Figure 3-4 Interaction of two snapping units. A Geometry of a specimen with two interacting units undergoing 

bistable snap-through instability. B Experimental setup consisting of upper and lower platens, respectively 

fastened to upper and lower grippers of tensile tester. A pair of stiff plates connect face P5 and P9 

respectively to upper and lower platens. A pair of stiff faces are screwed to faces P4 and P4′, which carry 

two bearings (See Section 3.9.12). A pair of bars run through the bearings on P4 and P4′, which prevent the 

rotation of face P4 and P4′ about the x axis. C Experimental (dash line) and finite element analysis (red solid 
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line) of a single snap unit with prescribed values  �̅�  =  1 and �̅�  =  1.125. Representative points (a) to (i) 

along the loading cycle correspond to reconfiguration snapshots in Fig 4D. Green/Yellow dots indicate 

stable configurations in forward/reverse loading directions, respectively. D Front view configurations of 

the single snap unit during loading correspond to the points in the loading curve in Fig 4C. Dash lines 

specify the creases, i.e., rotational hinges. Shaded blue panel represents P2 and P8 faces. Scale bar: 20 mm. 

E Definition of characteristic metrics, i.e., forces and stiffnesses during loading cycle. Shaded blue region 

represents dissipated energy during loading cycle. F Side view of reconfiguration process of two snapping 

units during loading corresponding to points on the loading curve of C. Scale bar: 20 mm. G Definition of 

characteristic metrics, i.e., energies during forward and reverse loading directions for single snap unit (inset) 

and interacting units. H Comparison of characteristic energies between a single snap unit and two 

interacting units in a loading cycle obtained from finite element analysis. Red border denotes the 

corresponding metrics for the single snap unit. (See Section 3.9.8 for comparison of experimental results 

and finite element simulations). 

Figure 3-5B shows the load-displacement curve with the corresponding snapshots in Figure 3-5A 

of a sample mounted at a given angle with the sliders. From the response, we observe four events 

of snap-through instability, a number that equals the number of rows containing voids in the initial 

origami system, where a 5⨯5 in plane tessellation contains 4⨯4 voids. Given here panel interaction 

takes place among multiple units, the periodic metamaterial response resembles the mechanism 

observed in two interacting units (previous section), but the cumulative effect is here even more 

pronounced. The tangential stiffness increases with the specimen displacement and the peak force 

corresponding to snap-through amplifies at the snapping of each row of voids. As explained in the 

previous section, one reason for the peak force magnification can be attributed to the interaction 

and sequence of snapping events, each occurring at an increasingly acute angle between the 

inclined faces of a pair of snapping units. Another reason is the panel entanglement observed under 

tension during the unit cell reconfiguration, a phenomenon that reduces the acute angle between 

the inclined faces in the last snapping row of the specimen.  
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Figure 3-5 Reconfiguration process of a bilayer 5⨉5 multi-cell metamaterial A �̂�4(1,90˚, 1.125) with 

aligned mounting. Orange and yellow triangles denote respectively initial and instant locations of the sliders 

from (i) to (vii). Pre- and post-snap units highlighted respectively in blue and pale brown. Red circles 

indicate the pinned position of the panel-connectors. Scale bars = 40 mm. B Comparison between 

experimental and finite element analysis results for a 5⨉5 �̂�4(1,90˚, 1.125) specimen with inclined 

mounting under cyclic load. C Result comparison between the experiment and finite element analysis of a 

5⨉5 �̂�4(1,90˚, 1.125) connected with parallel mounting and subject to a compression and tension cycle. D 

Result comparison between experiments and finite element analysis for a confined bilayer 5⨉5 

�̂�4(1,90˚, 1.125) with parallel mounting under cyclic compression-tension. E Role of in-plane unit cell 

periodicity (5⨉5, 7⨉7, 9⨉9) on experimental force-displacement response during compression. Each 

specimen is made of four layers 

Figure 3-5C shows the response of a specimen with the bottom side, in particular the hinges 

connected to the snapping faces, parallel to the sliders. With this mounting method, the pair of P4 

- P4′ faces here experience a mixture of bending and axial deformation, as opposed to the pure axial 

deformation undergone by the panels in Figure 3-5B. While the peak force amplification is larger 

with the mounting in Figure 3-5C for large ratios of �̅�, the panel can collapse laterally (along the 

smooth reconfiguration direction) and does not undergo snapping instability. In contrast, the 

mounting in Figure 3-5B can ensure the pertinent panels always undergo snapping.  

One characteristic of the responses observed in Figure 3-4B and Figure 3-4C is the peak force 

amplification, which can be considered to have a positive as well as negative outcome. On one 

hand, one way to remove this phenomenon is through confinement. Figure 3-5D shows the 

application of this strategy to tuned to specimen response. The parallel faces are constrained via 

screws running through their central holes to preserve their mutual distance during reconfiguration 

with the result of cancelling out the maximum force amplification and the specimen stiffness 

increase before the limit point. Confinement is thus an effective strategy to tune the load-

displacement response. On the other hand, the magnification of the peak force can be leveraged 

by increasing the periodicity of the in-plane tessellation. Figure 3-5E shows an example where we 

compare the compressive response of four-layer specimen with 5⨉5, 7⨉7, and 9⨉9 in-plane unit 
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cells. As can be observed, the maximum force and stiffness associated with each instability 

cumulate and bring about a gradual increase in their value during the compression process, a 

characteristic that can be used for dissipative purposes as shown in the next section. 

3.7 Leveraging multistability in origami-inspired metamaterials 

Multistability and snap-through have been used in mechanical metamaterials with lattice and other 

non-origami architectures to program a range of mechanical properties including energy 

absorption [17, 18, 49], energy dissipation [50, 51] and programmable stiffness [50]. Here we 

focus on an origami-inspired architecture and showcase the promise of leveraging multistability 

for in-situ reprogrammability of i) elastic stiffness and ii) energy dissipation. 

In the first application, our goal is to tap into the multiple foldable paths our origami-inspired 

system can access via multistable snapping. Our target function here is to attain a reversible post-

fabrication switch of configurations between states with tailored high elastic stiffness under out-

of-plane loading. Figure 3-6A (top view) shows a 5⨉5 N̂4(1, 94.23˚, 1, 1.125, 90˚) representative 

specimen with four stacked layers designed with two types of reconfigurable directions, one 

enabling smooth folding, and the other multistable folding. If the system is compressed in direction 

①, the smoothly reconfigurable direction, we observe rigid body reconfiguration described by the 

kinematic path 1 in Figure 3-2D. In contrast, in the multistable direction, we observe a non-smooth 

reconfiguration due to the incompatibility between the heights of the parallelograms, a 

phenomenon that induces snap-through instability in the panels and enables to bridge the gap 

between the kinematic paths shown in Figure 3-2D.   

As discussed in section 5, snap-through instability occurs sequentially row by row. Given the 

specimen in Figure 3-6A has four rows of panels (light blue shading), four events of snap-through 
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can be expected in the multistable direction. Since each snap-through in our 4-rows periodic 

system corresponds to a switch between two stable configurations, there exist 24 stable 

configurations in the multistable direction. The top of Figure 3-6B shows a pre-snap through 

configuration, and the bottom the counterpart configuration where all rows underwent snap-

through. As expected, compression along the multistable direction causes the system to snap and 

then spontaneously maintain its post-snap-through configuration, as opposed to along the smoothly 

reconfigurable direction, where the system responds to load removal by returning to its initial state 

To maintain the configuration in the smoothly reconfigurable direction, we can either maintain the 

compressive forces or apply an out-of-plane confinement [22].  

Figure 3-6C shows 9 possible configurations (top view - along the z axis of the coordinate system 

in Figure 3-6B) among others defining the whole configuration space of a 5⨯5 structure. In the 

first five configurations, the specimen is compressed in direction ①. In Figure 3-6C, from left to 

right the number of rows that are set to lie in the post snap-through state increases, with 

configurations 5 and 9 being fully compressed in the multistable direction. The highlighted blue 

region in Figure 3-6C emphasizes the compression in the multistable direction. To ensure the 

specimen maintains its configuration in direction ①, an elastic band is introduced to confine the 

outer boundary of the specimen in the first five configurations. For the last four configurations, 

the elastic band is removed, and as the panels in direction ① unfold, the specimen regains the 

configuration with the least energy. Figure 3-6C shows only representative states among the 

admissible ones. For example, the second configuration in Figure 3-6C shows a case where only 

one row is in the pre-snap configuration; this state is one among all the other four possible 

configurations (not visualized here), as denoted by the number in the yellow circle, which specifies 

the number of all admissible configurations. In general, the total number of possible configurations 
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in the multistable direction is (
𝑛 − 1

𝑟
) where n is the size of the pattern in the multistable direction 

and r denotes the number of rows in their post-snap configuration. It can be shown that the sum of 

possible configurations in the yellow circles is 24, and that this number holds regardless of the 

direction of compression, either ① or ②. The last configuration shown in Figure 3-6A depicts the 

specimen not compressed in direction ①. 

The configurations shown in Figure 3-6C are load-bearable if loaded along the z axis in Figure 

3-6B. Their load-bearing capacity stems from the contact between the parallelogram faces [22], 

which can generate a distinct value of the out-of-plane stiffness in each locked configuration. 

Figure 3-6D compares the stiffness of a 5⨉5 N̂4(1, 94.23˚, 1, 1.125, 90˚) pattern in the 

configurations shown in Figure 3-6C. As more rows switch to their post snap-through 

configuration, the stiffness of the specimen raises as the number of load-bearing faces coming into 

contact increases upon the application of the external load. In addition, by compressing the 

specimen along direction ②, a larger number of configurations become available for stiffness 

tuning.  

Exploiting multistability enables to obtain multiple responses, hence demonstrating that 

multistability can be considered as a pathway to program in-situ the mechanical properties. We 

observe that for a prescribed number of rows set in their post-snap-through configurations, if the 

system is compressed along direction ②, a larger stiffness can be obtained compared to the case 

where the system is not compressed along direction ②. The resulting increase in stiffness can be 

attributed to the larger number of faces establishing contact. For a general pattern, beyond the N4 

pattern examined in this section, and multistable in one direction only, an N𝑛 pattern can exhibit 
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multistability in 
𝑛

2
− 1 in-plane directions (see Section 3.9.3), hence endowing multistable 

snapping with multidirectionality.  

The second application taps into the potential for energy dissipation and instability-induced 

damping of our origami-inspired metamaterial. Here the target function of our system is to deliver 

mechanical damping under cyclic vibrations. Figure 3-6D and Figure 3-6E show the experimental 

setup we designed for the purpose (details in Section 3.9.16). It is a mass-spring apparatus that 

consists of a frame, a sliding stage and a rotary exciter which carries an unbalanced rotating mass 

driven by a 24-volt DC gearmotor and controlled by a DC generator, which is used to regulate the 

input voltage and the rotational speed of the motor. During the experiment, we gradually increase 

the input voltage of the DC gearmotor, which in turn changes the rotational speed of the motor and 

hence the unbalanced mass. As a result, the rotation of the unbalanced mass causes the sliding 

stage to oscillate about the initial position. The oscillations of the sliding stage are recorded through 

a high-speed camera, whose data are stored and post-processed to obtain the amplitude versus 

rotational speed curve of the motor.  

Figure 3-6G shows the amplitude versus frequency of excitation for the cases of undamped and 

damped oscillation. The samples are tested by sweeping the 24-voltage range of the input with 0.5 

volt intervals. The inset of Figure 3-6G compares the response of undamped and damped (�̅� = 1.5 

and �̅� = 1.125) oscillations. The undamped oscillations (red curve in the inset) generate a 

nonlinear response featuring a jump with two limit points (green), in the speed up and slow down 

sweep of the excitation frequency range. The damper can reduce the peak magnitude of the 

oscillations by 43% as well as the nonlinearity of the vibrations by supplying damping to the 

oscillatory system. To better understand the role of the geometric parameters on the damping 

capacity of our metamaterial, four groups of specimens with prescribed �̅� = 1.125 and dissimilar 
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�̅� are tested, three specimens for each group (Figure 3-6G). The peak value of the oscillations 

decreases for lower values of �̅�, a result that parallels those in sections 3 and 4, where a decrease 

in �̅� raises the amount of energy dissipated in a loading/unloading cycle for a prescribed value of 

�̅�. Compared to the undamped vibrations, the specimens with �̅� =1.375, 1.25, and 1.125 can 

reduce the amplitude of the oscillations 48%, 51%, and 56% respectively. Furthermore, the 

frequency associated with the peak value in Figure 3-6G shifts to the right with an increase in �̅�, 

a phenomenon attributed to the higher stiffness and more pronounced damping provided by 

specimen with lower values of �̅�.  

In the oscillatory system shown in Figure 3-6E, the damping mechanisms arise mainly from the 

existence of drag forces, frictional interactions between slider/rail pairs, the damping induced by 

multistable metamaterials and the viscoelasticity of the hinge material. The extent, to which each 

factor governing damping contribute, is influenced by the amplitude of oscillation. At small 

amplitudes of oscillation, the primary damping contribution arises from the frictional forces 

between the sliders and the guides along with the viscoelastic dissipation of the hinge material. In 

contrast, at larger amplitudes, the dominant governing factors comprise the instability-induced 

damping of the specimen and the drag forces exerted on the sliding stage. By comparing the 

amplitude of oscillation with and without the specimen mounted on the frame, we can ascertain 

the role of instability-induced damping in significantly reducing the vibration amplitudes of the 

system, hence demonstrating how to leverage instability for vibration mitigation in origami-

inspired metamaterials. 
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Figure 3-6 Applications of multistable origami inspired metamaterial A Multilayered origami-inspired 

mechanical metamaterial using the 𝑵𝟒 pattern with creases shown in dash lines. Two principal directions, 

i.e., ①: smoothly reconfigurable direction, and ②: multistable direction) of 𝑁4 pattern shown 

perpendicular to the hinges of the central rectangle. B Two representative configurations of the material, 

pre-snap-through (top) and fully compressed in the multistable direction (bottom). Light blue shade added 

to discriminate between pre- and post-snap states. Panel numbers (1 to 4) denote the layer the panels belong 

to. Scale bar: 10mm. C Nine representative configurations of 5⨯5 𝑁4 pattern. In configurations 1 to 5 the 

specimen is compressed along the monostable direction, whereas in configurations 6 to 9 the specimen is 

not compressed in the smoothly reconfigurable direction. From left to right the number of rows set to the 

post-snap state increases. Pale blue shading indicates the location of rows in their post-snap state. Yellow 

circles enclose the total number of admissible configurations obtained by setting a given number of rows 

in the post-snap state; each configuration differs only from location of the row in the post-snap state. D Out 

of plane stiffness (along z axis in B) of the specimen in the multiple configurations shown in C. E Vibration 

testing setup consisting of a frame featuring a slider and a rotary exciter and an AC/DC converter. F Front 

view of the vibration testing setup consisting of rotary mass exciter, springs, sliders, and the origami-
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inspired damper. G Amplitude versus exciter rotational speed for a set of 5⨯3 𝑁4 patterns with dissimilar 

values of �̅�; inset at the top right corner schematically indicates the configuration of the vibration testing 

setup; inset at the bottom right corner compares the amplitude versus rotational speed of the undamped case 

(no specimen is mounted) with the case of �̅� = 1.5 and  �̅� = 1.125. H Snapshots of the configurations of a 

multistable specimen acting as a damper at distinct time values. Orange triangles indicate the initial location 

of the sliders and yellow triangles denote their current location. 

3.8 Concluding remarks  

This work has introduced a class of reprogrammable multistable metamaterials that merges 

origami-folding and kirigami-cuts to generate snapping foldable patterns with periodically 

arranged excisions enabling the formation of multiple degrees of freedom which can be reduced 

to one upon layer stacking. The study of the unit cell kinematics has revealed that the heights of 

the slanted faces play a pivotal role in governing the attainable space of rigid folding. For a rigid-

foldable system, a difference in height between the parallelogram faces forbids the smooth 

transition between kinematic paths, which on the other hand can be promoted by lifting the panel 

rigidity assumption. Panel compliance allows the emergence of snap-through instability which in 

turn permits to travel from one kinematic path to another, hence enlarging the admissible design 

space of non-rigid folding.  

The study of the geometric parameters governing the snap-through response of a single snap has 

revealed the existence of four deformation regimes, each characterized by a specific type of panel 

contact. Validated through experiments, design maps have been presented to tailor the multistable 

response of a single primitive as well as the interaction of snapping events occurring in a unit made 

of two primitives arranged in series. The results have shown that the peak load and the tangential 

stiffness accrued at the second instant of instability are significantly larger than the values 

registered in the first instant. Snap-trough instability has also been leveraged to program in-situ 

the out of plane response of our origami-inspired system. 
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Furthermore, we have demonstrated the benefit of the cumulative effect of multistable snapping 

from interacting units under cyclic loading, which holds promise for energy dissipation and 

mechanical damping. We have shown that multi-cell patterns tested in a setup that eliminates 

lateral constraints can undergo consecutive instabilities exhibiting strong interactions that 

synergically work to augment energy dissipation. Multistable snapping in interacting panels has 

been demonstrated as a pathway to generate mechanical damping with reduced oscillation 

amplitude in a system under unbalanced rotary excitation. 

3.9 Appendix 

3.9.1 Generalization of crease patterns 

The main text examines a demonstrative crease pattern (N4) encompassing a periodic tessellation 

of the kinematic unit chain shown in Figure 3-1. Here we explain the generative process to obtain 

its geometric variations and extend them to other polygonal crease patterns, such as N6. 

As discussed in the main text, the N4 pattern has two periodic directions perpendicular to the hinges 

of the mountain or valley faces (Figure 3-7A). The parallelogram faces in these two directions are 

shown with red and green edges. The parallelograms in each row or column can be reshaped 

without affecting the rest of the pattern. Figure 3-7B and Figure 3-7C show the process applied to 

the first and the second directions, respectively. To maintain periodicity, we alternate two 

parallelograms in each direction. However, there is no restriction on the parallelograms in each 

direction as they can be modified independently in each row or column. Figure 3-7D depicts a case 

where the parallelograms are reshaped in both directions. 
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While the main text examines the case of patterns made of similar parallelograms in each direction, 

the process described here enables to enrich the design space for generating other in-plane 

behaviors. 

 

Figure 3-7 In-plane variations of 𝑁4 pattern; A 𝑁4 pattern with extruded parallelogram faces with green 

and red edges and two in-plane programming directions (1) and (2); B Alternating two sets of 

parallelograms, green and yellow, in direction (1), enables to program the crease pattern in direction (1) 

only; C Alternating two sets of parallelograms, red and blue, in direction (2) allows to programming the 

response along this direction; D Combining B and C enables bi-directional in-plane programming of 𝑁4 

pattern. 

3.9.2 Other periodic patterns – 𝐍𝟔 pattern 

Any even-sided parallelogon with equal parallel sides can be considered as the primitive of our 

kinematic unit chain. In the main text we focus on N4, and here we discuss its extension to other 

parallelogons. 

3.9.2.1 Geometric parameters of 𝐍𝟔 pattern 

To generate a hexagonal-based pattern (N6), we start with a core hexagon with parallel opposite 

edges (Figure 3-8A) and defined by the lengths of its sides 𝑎1 to 𝑎3 and the internal angles 𝛼1and 

𝛼2. 
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Figure 3-8 Process of generating 𝑁6 kinematic unit chain A Hexagonal parallelogon as the primitive of 𝑵𝟔 

pattern; five independent geometric parameters are required to fully define a hexagonal parallelogon 

(𝑎1, 𝑎2 𝑎3, 𝛼1, 𝛼2); B Kinematic unit chain along with the constraints required for tessellating the kinematic 

unit chain; in general |AA′|=|B′B′′| and |A′A′′|=|BB′′| are required to ensure the tessellation of the kinematic 

unit chain;  C Three dimensional configuration of an 𝑁6 kinematic unit chain with pairs of angles required 

to describe its configuration; D A tessellation of three kinematic unit chain where mountain and valley faces 

are shown. 

Extruding the edges of the core polygon enables the formation of a series of parallelograms 

connected at their corners. We fill the gaps between the parallelograms with triangles, as shown in 

Figure 3-8B. A three-dimensional configuration of the kinematic unit chain is shown in Figure 

3-8B, where three pairs of angles, 𝜃1, 𝜃2, and 𝜃3 , are required to describe its spatial form.    

Imposing the rigidity of the panels and considering the shared edges of the panels as rotational 

hinges allows to obtain a kinematic unit chain with multiple degrees of freedom. For N6, we need 

two additional constraints to ensure the kinematic unit chain can be tessellated in the plane, i.e., 

|AA′| = |B′B′′| = 𝑏1 (3-3) 

And  

|A′A′′| = |BB′′| = 𝑏2 (3-4) 

Where | | in (S1) and (S2) denotes the length of the line segment. Satisfying (S1) and (S2) enables 

the tessellation of the kinematic unit chain shown in Figure 3-8D. The foregoing discussion leads 

to the most general N6 tessellation, which has eleven parameters, including the sides of the initial 

hexagon, (𝑎1, 𝑎2, and 𝑎3) , two internal angles, (𝛼1 and 𝛼2), the lengths of three extrusion vectors, 
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(𝑏1, 𝑏2, and 𝑏3), and three directions of the extrusion angles, (𝜙1, 𝜙2, and 𝜙3). Given two 

constraints are required for tessellation, the number of independent geometric parameters reduces 

to nine. 

3.9.2.2 Kinematic analysis of N6 pattern 

The kinematics of N6 pattern can be explained by studying a core triangle along with its hinged 

parallelograms (Figure 3-8D). For demonstrative purpose, here we study a subclass of N6 where 

the diagonal of each parallelogram is equal to the free edge of a neighbor parallelogram that 

converges to the same vertex on the central triangle. These pairs are shown as red lines in Figure 

3-8D. This constraint makes the three vertices indicated with black circles meet upon folding at a 

single point following the mountain/valley assignment therein indicated. 

To understand the diversity of the N6 response from that of its N4 counterpart, we investigate the 

role of the governing geometric parameters. Figure 3-9 shows the central triangle with three hinged 

parallelograms for three cases. Figure 3-9A depicts the case where the central triangle is arbitrary. 

In the initially flat configuration, the extensions of the heights of the parallelograms intersect at 

the center of the incircle of the central triangle. The two-dimensional pattern is also shown in 

Figure 3-9B.  In this case, ℎ1 = ℎ2 = ℎ3, and hence, we expect a continuous kinematic path upon 

folding. 

As discussed in the main text, the rigid folding of N6 is possible if  

ℎ1 sin 𝜃1 = ℎ2 sin 𝜃2 = ℎ3 sin 𝜃3 (3-5) 

Figure 3-9B shows the kinematic landscape for  ℎ1 = ℎ2 = ℎ3 . It consists of four kinematic paths 

intersecting at a kinematic bifurcation point, i.e., point e, where 𝜃1 = 𝜃2 = 𝜃3 =
𝜋

2
. As explained 

in the main text for N4, the transition from one kinematic path to the other requires the structure 
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to undergo kinematic bifurcation. We assume the initial configuration is fully flat with 𝜃1 = 𝜃2 =

𝜃3 = 0 at point a; upon folding, the structure reconfigures to point e, where the number of degrees 

of freedom increases from 1 to 4, and new paths become available as visualized in Figure 3-9B. 

Passed this point, the degree of freedoms  reverts to one. 

 

Figure 3-9 Reconfiguration space of generalized 𝑁6 patterns. A 𝑵𝟔 pattern with extensions of the 

parallelogram heights, here ℎ1 = ℎ2 = ℎ3, meeting at the center of the incircle of the central triangle. In 

this case. B Kinematic landscape for the case shown in A consisting s of four kinematic paths intersecting 
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at the point of kinematic bifurcation;, the continuity of the kinematic paths ensures rigid reconfiguration 

between paths is possible; C  𝑁6 pattern when with extensions of two parallelogram heights, ℎ1 = ℎ2 ≠

ℎ3where ℎ1/ℎ3 = ℎ2/ℎ3 = 0.9, of parallelograms meet at on the bisector of their common angle. In this 

case, ℎ1 = ℎ2 ≠ ℎ3where ℎ1/ℎ3 = ℎ2/ℎ3 = 0.9. D Kinematic landscape for the case shown in case C 

consisting of four kinematic paths in two groups of intersecting paths; The reconfiguration between the 

intersecting paths involves a kinematic bifurcation. However, rigid body reconfiguration between non-

intersecting paths is not admissible between non-intersecting paths.  E 𝑁6 pattern where the extensions of 

the parallelogram heights do not meet at any point of the bisectors of the central triangle. In this case, ℎ1 ≠

ℎ2 ≠ ℎ3where ℎ1/ℎ3 = 0.97 and ℎ2/ℎ3 = 1.04, selected as representative values. F Kinematic landscape 

for the case shown in E consisting of four non-intersecting kinematic paths. All rigid reconfigurations are 

bound to a single kinematic path while no rigid-body reconfiguration is admissible between the kinematic 

paths. 

Figure 3-9C shows a case where the extensions of the heights of P1 and P2 (ℎ1 = ℎ2 < ℎ3) intersect 

at a point along the bisector of the angle formed by two edges to which P1 and P2 are hinged. 

The third case, where ℎ1 = ℎ2 > ℎ3, is shown in Figure 3-9D, where the difference in the 

parallelogram heights leads to two pairs of intersecting kinematic paths. However, unlike the case 

in Figure 3-9D, the reconfiguration between the intersecting kinematic paths is not smooth since 

the range of rigid reconfigurations is governed by the smallest height of the parallelograms i.e., 

ℎ3. This means the kinematic bifurcation point is not an admissible configuration if the panels are 

assumed as rigid. 

In Figure 3-9E, the extensions of the parallelogram heights intersect at a point that does not lie on 

any of the bisectors of the central triangle. In this case, ℎ1 ≠ ℎ2 ≠ ℎ3 and the kinematic landscape 

in Figure 3-9F consists of 4 non-intersecting kinematic paths. Reconfiguration along each 

kinematic path only allows one of the angles 𝜃1, 𝜃2 and 𝜃3 to switch from a value below  
𝜋

2
 to 

values above  
𝜋

2
, while the other two angles remain on the same interval with respect to 

𝜋

2
. Switching 

from one path to another is possible only if the faces are assumed deformable. 
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3.9.2.3 Multistability of N6 pattern 

The foregoing discussion suggests that once the rigidity constraint is lifted, we can expect 

multistability in any N6 pattern featuring parallelograms of unequal heights. As a result, the 

patterns shown in Figure 3-9C and Figure 3-9E undergo unidirectional and bidirectional 

multistability during reconfiguration, as shown in Figure 3-10. 

 

Figure 3-10 Cardboard prototypes corresponding to the cases shown in Figure 3-9. Each prototype consists 

of three layers and is shown in a transition state, where 0 < 𝜃1, 𝜃2 and 𝜃3 < 𝜋/2. Scale bar =30mm. A 

Three-layer prototype with ℎ1 = ℎ2 = ℎ3. B Top view of the transition case shown in A. This combination 

of geometric parameters does not yield a multistable material. C Three-layer prototype with ℎ1 = ℎ2 ≠ ℎ3 

where ℎ1/ℎ3  = ℎ2/ℎ3  = 0.9. D Top view of the transition case shown in C. Specimen multistable only 

along direction ①. E Three-layer prototype of the third case where ℎ1 ≠ ℎ2 ≠ ℎ3 with  ℎ1/ℎ3 = 0.97 and 

ℎ2/ℎ3  = 1.04. F Top view of the transition case shown in E. Specimen multistable along both directions 

① and ②. 

As shown in Figure 3-10, the second and the third case undergo unidirectional and bidirectional 

multistability due to the height mismatch of the parallelograms surrounding the central triangle. The second 
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pattern is multistable along direction ①, while the third pattern exhibits multisability in both directions ① 

and ②. 

3.9.3 Other Patterns – N > 6 

The previous section has discussed N6 in more detail as more constraints than with N4 should be 

applied to make its kinematic unit chain tessellable in both planar dimensions. Our strategy, 

however, is not restricted to N4 and N6, as any even sided parallelogram can serve as the primitive 

polygon to generate the corresponding unit chain.  

 

Figure 3-11 Other patterns with 𝑁 > 6. A Kinematic unit chains of representative patterns: 𝑁8, 𝑁10, and 

𝑁12; B Patterns generated from unit chain  tessellation ; C Four groups of similar faces in 𝑁8 are indicated 

with numbers and distinct color shades; D Upon reconfiguration, similar faces perpendicular to the loading 

direction undergo snap-through simultaneously. Black lines emphasize corresponding faces that 
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sequentially undergo snap-through provided the loading direction is along the red lines. All faces connected 

by black lines experience snap-through instability simultaneously. 

Figure 3-11A shows the kinematic unit chains of eight, ten, and twelve-sided initial polygon. 

Figure 3-11B also shows the tessellation of each kinematic unit chain shown in Figure 3-11C. 

Contrary to N6 pattern, no additional requirement is required to ensure the kinematic unit chains 

can tessellate the plane. 

To demonstrate the level of attainable programmability, we examine the N8 pattern in Figure 

3-10C, where the faces with parallel hinges are numbered. As expected, N8 consists of four sets of 

panels with parallel hinges. Provided the faces are assumed to be deformable and each set of 

parallelograms has a unique height, we observe one direction with smooth reconfiguration 

corresponding to the smallest height among the four sets of parallelograms. As a result, along the 

other three directions the pattern is multistable, as shown in Figure 3-11D, where the black lines 

denote faces that undergo instability simultaneously if  the specimen  is compressed along the red 

lines. 

3.9.4 Final configuration of N4 pattern 

While the kinematic paths in Figure 3-8C and Figure 3-8D describe the pattern reconfiguration, 

they do not provide any information on the final state a given pattern can reach. The final 

configuration can be locked or flat-foldable in one or both directions. Locking occurs if the faces 

come into contact along the kinematic path at any point other than the terminal points of the 

branches. On the other hand, a flat-foldable configuration is characterized by the condition of either 

𝜃1 or 𝜃2 attaining 𝜋, i.e., points 𝑗, 𝑚, and 𝑜 in Figure 3-8D. 

To study the final configuration of the pattern we investigate a central parallelogram with its 

attached panels (Figure 3-12). Our investigation shows that in addition to the geometric 
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parameters, the extrusion direction of the sides of the initial polygon also plays a role in 

determining the final configuration of the pattern. Figure 3-12 shows two-unit cells and their 

corresponding patterns with identical central and extruded parallelograms. The extrusion angle in 

Figure 3-12B (𝜙𝑖′) is complementary to the extrusion angle of Figure 3-12A. Figure 3-12C and 

Figure 3-12D depict the patterns generated from the units in Figure 3-12A and Figure 3-12B 

respectively. 

 

Figure 3-12 𝑁4 pattern with parallelogram mountain/valley faces; A Clock-wise extrusion of the 

parallelogram faces B Counter clock-wise extrusion of the parallelogram faces; some geometric parameters 



  163 

 

are dependent on the direction of the extrusion. In the main manuscript, we adopt the extrusion shown in 

A; all the derivations are valid for case B as well, provided the convention complies with this figure. C and 

D The patterns derived from the primitives of A and B are distinct. While the kinematic landscapes of these 

patterns are similar, their final configurations are different. 

Figure 3-12 shows how the governing geometric parameters are affected by the direction of 

extrusion. Any mathematical derivation for each pattern is also valid for the other, provided the 

notation in Figure 3-12 applies. Without losing the generality of our discussion, we adopt the 

extrusion angle shown in Figure 3-12A, i.e. 𝜙1 and 𝜙2 < 90˚. To derive the required conditions 

for flat-foldability in each direction, we show the assumed flat-folded configurations from the top 

view in Figure 3-13B to Figure 3-13F regardless of the prospect of reaching a given configuration. 

 

Figure 3-13 Illustration of the flat-foldability conditions for 𝑁4 pattern. A Geometric parameters governing 

the final configuration B-H Different scenarios are possible for the final state; B-D Satisfying the first 

condition of flat-foldability; i.e. the existence of contact between the yellow and red edges; B and C Flat-

foldability in the directions shown in A; D Bi-directional flat-foldability; E and F Satisfying the second 

condition of flat-foldability; i.e. existence of overlap of  parallelograms with corner angles 𝜙1 and 𝜙2 E 

There is no overlap of parallelograms with corner angles 𝜙1 and 𝜙2 in the folded configuration in the first 
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direction  hence, this configuration is flat-foldable; F Overlap of 𝜙1 and 𝜙2 in the folded configuration in 

the second direction; as a result the structure is non-flat-foldable in the second direction. G and H Satisfying 

the third condition of flat-foldability, i.e., existence of contact between the edges (red and yellow) of faces 

on opposite edges in the central parallelogram. G Flat-foldable pattern in the first direction ensured by 𝜙1 <

𝛽1. H Non-flat-foldable pattern in the second direction due to 𝜙2 > 𝛽2.  

The first condition can be obtained from Figure 3-13B and Figure 3-13C. C is the central 

parallelogram. P1 (or P3) and P2 (or P4) are the faces of two converging fold lines F1 (or F3) and F2 

(or F4) (Figure 3-13A to Figure 3-13C). Upon folding P2 (or P4), the edge of P2 (or P4) parallel to 

F2 (or F4) may not penetrate the edge of P1 (or P3) parallel to the fold lines F1 (or F3). Graphically 

the first condition of flat-foldability prevents the red and yellow edges in Figure 3-13B to Figure 

3-13D from getting into contact. This condition states the following  

If ℎ𝑖 < 𝑎𝑗 sin(𝜌𝑖 − 𝜙𝑗), then ℎ𝑗 < min{𝛿𝑖, 𝛿�̅�} for 𝑖, 𝑗 = 1,2 (3-6) 

Where 𝜌𝑖 is the complementary external angle of the central parallelogram constructed by the 

extension of the fold lines shown in Figure 3-13A. 𝛿𝑗 and 𝛿�̅� are the distances between the vertex 

of each parallelogram and its adjacent fold line in the developed and folded configurations. They 

are given by 

𝛿𝑖 = 𝑎𝑖 sin(𝜌𝑖 − 𝜙𝑖) and 𝛿�̅� = 𝑎𝑖 sin(𝜌𝑖 + 𝜙𝑖) (2-7) 

which can be rewritten in terms of the parallelogram heights as 

𝛿𝑖 = ℎ𝑖
sin(𝜌𝑖−𝜙𝑖)

sin𝜙𝑖
 and 𝛿�̅� = ℎ𝑖

sin(𝜌𝑖+𝜙𝑖)

sin𝜙𝑖
 (3-8) 

After rearrangement, Eq. (3-6) can be written as 

If ℎ𝑖 < 𝑎𝑗 sin(𝜌𝑖 − 𝜙𝑗) then tan𝜙𝑗 < min(
sin𝜌𝑖

ℎ𝑖
ℎ𝑗

+cos𝜌𝑖

,
sin𝜌𝑖

ℎ𝑖
ℎ𝑗

−cos𝜌𝑖

) (3-9) 
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Figure 3-13C and Figure 3-13D show unidirectional folding in the second direction and 

bidirectional folding, respectively. The second condition of flat-foldability pertains to the 

condition where ℎ𝑖 > 𝑎𝑗 sin(𝜌𝑖 − 𝜙𝑗) and it states 

If ℎ𝑖 > 𝑎𝑗 sin(𝜌𝑖 − 𝜙𝑗) then 𝜙𝑖 + 𝜙𝑗 < 𝜌𝑖 (3-10) 

Figure 3-13E and Figure 3-13F shows the graphical interpretation of the second condition. In 

Figure 3-13E, the second condition of flat-foldability is satisfied in the first direction, where in the 

folded configuration there is no overlap between the angles 𝜙1 and 𝜙2. In Figure 3-13E, on the 

other hand, there is an overlap between 𝜙1 and 𝜙2, hence , the unit is non-flat-foldable in the 

second direction. 

The first and the second conditions must be both satisfied to ensure flat-foldability for any choice 

of the governing parameters. However, if ℎ𝑖 >
𝐻𝑖

2
, the panels on the opposite edges of the core 

parallelogram C may come into contact. Figure 3-13G depicts a case when this condition is 

satisfied in the first direction. While in Figure 3-13H, the third condition of flat-foldability is not 

satisfied in the second direction. As a result, the third condition can be mathematically expressed 

as 

If ℎ𝑖 >
𝐻𝑖

2
 then 𝜙𝑖 < 𝛽𝑖 (3-11) 

where 𝛽𝑖 is the angle of the diagonal of the central parallelogram and its edge as shown in Figure 

3-13I. This condition can be written as 

If ℎ𝑖 >
𝐻𝑖

2
 then  𝜙𝑖 < sin−1 𝑏𝑗 sin𝜌𝑗

√𝑏𝑖
2+𝑏𝑗

2+2𝑏𝑖𝑏𝑗 cos𝜌𝑖

 (3-12) 

As described by the conditions 1 (S7), 2 (S8), and 3 (S10), an N4 pattern can be flat-foldable 

respectively in one, both or neither of its folding directions. These conditions can be compiled 
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graphically in a map, namely the kinematic phase diagram (Figure 3-148), which defines the final 

configuration of the structure as function of its geometric parameters.  

Figure 3-14A shows the kinematic phase diagram for N4(𝑎1 =
ℎ1

sin𝜙1
, 𝑎2 =

ℎ2

sin𝜙2
, 𝛼 =

𝜋

2
+ 𝜙1 −

𝜙2, 𝑏1 = 𝑏2 = �̅�, 𝜙1, 𝜙2).  Here we assume the height of the parallelograms are equal, ℎ1 = ℎ2 =

ℎ̅. Moreover, the sides of the mountain and valley faces are also assumed to be equal, 𝑏1 = 𝑏2 =

�̅�. Lines 1 to 3 in Figure 3-14 correspond to the boundaries defined by conditions 1 to 3 

respectively. In region ⅰ all three conditions are satisfied, and therefore we expect flat foldability 

in both directions. As a result, three flat-foldable configurations are feasible. In regions ⅱ and ⅲ, 

the second condition of flat-foldability is not satisfied; accordingly, only one flat-foldable 

configuration exists in these two regions. Finally in region ⅳ none of the flat-foldability conditions 

is satisfied, and no flat-foldable configuration exists in this region.   

In Figure 3-14C, the role of 𝑏1 and 𝑏2 are investigated for N4(𝑎1 =
ℎ̅

sin𝜙1
, 𝑎2 =

ℎ̅

sin𝜙2
, 𝛼 =

𝜋

2
+

𝜙1 − 𝜙2, 𝑏1 = �̅�1, 𝑏2 = �̅�2, 𝜙1, 𝜙2). Here we assume the following representative values: ℎ̅ = 9 

mm, �̅�1 = 25 mm and �̅�2 = 20 mm. In this case, the third condition of flat-foldability is affected. 

In other words, only if ℎ̅ >
𝐻1

2
 or ℎ̅ >

𝐻2

2
 the boundaries of lines 3 determine the flat-foldability 

condition. In this case, we observe an unsymmetric boundary for lines 3 as the angle between the 

diagonal and the fold lines (Figure 3-13) are not identical for directions 1 and 2. 

Finally, Figure 3-14D shows the kinematic phase diagram for  N4(𝑎1 =
ℎ̅

sin𝜙1
, 𝑎2 =

ℎ̅

sin𝜙2
, 𝛼 =

�̅� + 𝜙1 − 𝜙2, 𝑏1 = 𝑏2 = �̅�, 𝜙1, 𝜙2). Here we prescribe ℎ̅ = 9 mm, ℎ̅ = 20 mm and �̅� = 75˚. In this 

case, all three flat-foldability conditions vary compared to the case of Figure 3-14A. First, the 

boundaries defined by lines 1 shrink compared to Figure 3-14A. Second, the skewness of the 
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central polygon shifts the boundary of the second condition, shown by line 2. Finally similar to the 

case of Figure 3-14C, we observe unsymmetric boundary for the third condition of flat-foldability, 

due to the difference of 𝛽1 and 𝛽2.  

 

Figure 3-14 Kinematic phase diagrams defining the final configuration of N4 as a function of  different 

combination of geometric parameters A Kinematic phase diagram of 𝑁4(𝑎1 =
ℎ̅

𝑠𝑖𝑛 𝜙1
, 𝑎2 =

ℎ̅

𝑠𝑖𝑛 𝜙2
, 𝛼 =

𝜋

2
+



  168 

 

𝜙1 − 𝜙2, 𝑏1 = 𝑏2 = �̅�,𝜙1, 𝜙2); B Kinematic phase diagram of 𝑁4(𝑎1 =
ℎ̅1

𝑠𝑖𝑛 𝜙1
, 𝑎2 =

ℎ̅2

𝑠𝑖𝑛 𝜙2
, 𝛼 =

𝜋

2
+ 𝜙1 −

𝜙2, 𝑏1 = 𝑏2 = �̅�,𝜙1, 𝜙2), in this case ℎ̅1 ≠ ℎ̅2. C Kinematic phase diagram of 𝑁4(𝑎1 =
ℎ̅

𝑠𝑖𝑛 𝜙1
, 𝑎2 =

ℎ̅

𝑠𝑖𝑛 𝜙2
, 𝛼 =

𝜋

2
+ 𝜙1 − 𝜙2, 𝑏1 = �̅�1, 𝑏2 = �̅�2, 𝜙1, 𝜙2), in this case �̅�1 ≠ �̅�2. D Kinematic phase diagram of 

𝑁4(𝑎1 =
ℎ̅

𝑠𝑖𝑛 𝜙1
, 𝑎2 =

ℎ̅

𝑠𝑖𝑛 𝜙2
, 𝛼 = �̅� + 𝜙1 − 𝜙2, 𝑏1 = 𝑏2 = �̅�, 𝜙1, 𝜙2). 

To investigate the role of each geometric parameter, we have studied three additional cases. Figure 

3-14B shows the kinematic phase diagram of N4(𝑎1 =
ℎ̅1

sin𝜙1
, 𝑎2 =

ℎ̅2

sin𝜙2
, 𝛼 =

𝜋

2
+ 𝜙1 − 𝜙2, 𝑏1 =

𝑏2 = �̅�, 𝜙1, 𝜙2). Here we assume the demonstrative values: ℎ̅1 = 12 mm,  ℎ̅1 = 9 mm and �̅� = 20 

mm. In this case we observe that only the boundaries of the first constraint, Lines 1, change 

compared to the first case.   

3.9.5 General formulation of rigid body reconfiguration in N4 pattern 

In this section, we present a general framework for rigid body reconfiguration of 𝑁4 pattern. We 

start our investigation from the governing geometric parameter followed by the formulation of the 

deformation metrics. 

3.9.5.1 N4 pattern unit cell  

As described in the main text, the reconfiguration of N4 involves both rigid and nonrigid 

reconfiguration. This section provide the geometric relations that describe its rigid reconfiguration. 

Figure 3-15 depicts the geometric parameters defining a generalized N4 pattern, where the sides of 

the unit cell 𝐿1, 𝐿2 and the angle between the diagonals 𝜔 are given by 

𝐿1 = √𝑙1
2 + 𝑙2

2 − 2𝑙1𝑙2 cos𝜔 

(3-13) 
𝐿2 = √𝑙1

2 + 𝑙2
2 + 2𝑙1𝑙2 cos𝜔 

𝜔 = 𝜆 + 𝜓1 + 𝜓2 
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with 𝜓1 and 𝜓2 as 

𝜓𝑖 = tan−1
𝑒𝑖

𝐻𝑗 + ℎ𝑖 cos 𝜃𝑖
= tan−1

𝑒𝑖

𝑎𝑗 sin 𝜆 + ℎ𝑖 cos 𝜃𝑖
 for 𝑖, 𝑗 = 1 and 2 (3-14) 

where 𝑒1 and 𝑒2 can be calculated as 

𝑒𝑖 = 𝑎𝑖 − 𝑝𝑖  for 𝑖 = 1 and 2 (3-15) 

 

Figure 3-15 Geometric parameters of 𝑁4 pattern. A General 5⨯5𝑁4 pattern in its planar configuration. Unit 

cell shown at the center with parametric dimensions. B Geometric parameters defining the unit cell and its 

kinematics. 

and 𝑝𝑖 can be obtained from 

𝑝𝑖 =
√𝑑𝑖

2 − 𝐻𝑖
2

2
 

for 𝑖 = 1 and 2 (3-16) 

The parameter definitions above are now used to define the deformation metrics of the unit cell in 

N4 as reported in the next section. 
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3.9.5.2 Kinematics 

To understand the effect of reconfiguration on the rigid deformation of our material system, we 

study the finite strain tensor E. We consider the representative unit cell of the N4 pattern. At each 

configuration, we can map the initial representative unit cell to the current one with a linear 

transformation as  

𝑥1 = 𝐶1𝑋1 + 𝐶2𝑋2 

𝑥2 = 𝐶3𝑋2 

𝑥3 = 𝐶4𝑋3 

(3-17) 

Where (𝑥1, 𝑥2, 𝑥3) are the current coordinates of a specific point in the representative unit cell, 

while its initial coordinates are (𝑋1, 𝑋2, 𝑋3). 𝐶1 to 𝐶4 are the constants of the linear transformation, 

which can be related to the lattice parameters as 

𝐶1 =
𝐿1

𝐿10

  

𝐶2 = cot 𝜂 − cot 𝜂0 

𝐶3 =
𝐿2 sin 𝜂

𝐿20
sin 𝜂0

 

𝐶4 =
𝐿3

𝐿30

 

(3-18) 

The partial derivative of the deformed coordinates with respect to the initial coordinates defines 

the deformation gradient as 

𝑑𝑥𝑖 =
𝜕𝑥𝑖

𝜕𝑋𝐽
𝑑𝑋𝐽, 𝐹𝑖𝐽 =

𝜕𝑥𝑖

𝜕𝑋𝐽
  (3-19) 

Therefore, the deformation gradient can be written as 
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F⃡ = 𝐹𝑖𝐽e𝑖⃗⃗⃗  ⨂e𝐽⃗⃗  ⃗ =  [

𝐶1 𝐶2 0
0 𝐶3 0
0 0 𝐶4

] (3-20) 

The local changes in distances can be obtained from the Cauchy-Green tensor as 

𝑑x2 = 𝑑X . C . 𝑑X  (3-21) 

Where the Cauchy-Green deformation tensor is defined as  

C = F𝑇F (3-22) 

 

3.9.5.3 Constitutive equations of rigid body reconfiguration 

Neglecting the viscous damping effect of hinges and assuming an isothermal process of 

deformation, we can assign a Helmholtz free energy to the material, Ψ(F). We can obtain the first 

Piola-Kirchhoff stress tensor, P, from  

P =
𝜕Ψ(F)

𝜕F
 or P𝑎𝐴 =

𝜕Ψ

𝜕𝐹𝑎𝐴
 for A, a =  1,2,3  (3-23) 

Which can be converted to the Cauchy stress tensor through  

𝜎 = 𝐽−1FPT (3-24) 

Where 𝐽 is the Jacobian of the deformation or the determinant of F. Moreover T denotes the 

transpose operation. We confine our analysis to the rigid rotation of the faces around their 

connecting hinges. In this case, the deformation takes place solely in the hinges. Hence, a change 

in energy can be attributed to a change of the dihedral angles, and the Helmholtz free energy can 

be written as 

Ψ =
1

𝑉
∑Δ𝐸𝑖

𝑛

𝑖=1

 (3-25) 
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Where 𝑉 denotes the volume of the unit cell, 𝑛 is the number of equal-length hinges and 𝐸 is the 

energy of the hinge. The volume of the unit cell can be written as 

𝑉 = 𝐿1𝐿2𝐿3 sin 𝜂 (3-26) 

If the hinges are considered linear, the energy expression for the hinges can be simplified as 

Δ𝐸𝑖 =
1

2
𝑘𝑖(𝜃𝑖

2 − 𝜃𝑖0
2) (2-27) 

From relations S21 to S25, we can obtain the constitutive relations of the rigid body deformation. 

3.9.6 Finite element model 

To better capture the deformation mechanism of our reconfigurable patterns, a finite element 

model is developed in ABAQUS (Dassault Systemes). Conventional bar and hinge formulations 

developed for origami-based structures fail short in assessing the response of our systems because 

the so-called bar and hinge models assume the edges do not undergo any flexural deformation. 

However, in our patterns bending occurs along the free edges of the panels. In addition, the study 

of contact in simplified origami formulations is challenging, motivating our choice to resort to a 

fully detailed finite element analysis. 

3.9.6.1 Details of Finite Element Modelling  

We model each panel as a shell with thickness much smaller than the in-plane geometric 

dimensions of the panel. We have used S4R shell elements to mesh the panels (Figure 3-16A) after 

ensuring mesh size convergence, and the coincidence of nodes on the two edges of the hinge 

(detailed view in Figure 3-16B), enabling the connection of corresponding nodes through 

connectors.  

In Figure 3-16B, two coincident edges are shown with an enlarged distance for visualization 

purpose. The red ovals emphasize the coincidence of nodes. Figure 3-16C shows a pair connection 
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with nodes in their local coordinate system. Perfect connection is enforced to all nodes ensuring 

equal translational degrees of freedom. Unconstrained here is only the relative rotation, 𝜃𝑖, 

between corresponding nodes the unit vector êt. Here 𝜃𝑖
𝑛 refers to the hinge rotation of the nth node 

on the ith edge.  

 

Figure 3-16 Details of finite element analysis. A Finite element model of a double layer 5⨯5 𝑁4 pattern. B 

Hinge magnified to better visualize the connection details. Coincident points of adjacent portions connect 

via corresponding constraints. Red ellipses emphasize the application of coincident points, and green line 

shows the rotational axis direction of the hinge. C Details of a connection showing unit vector directions 

of a connection. All displacement DoFs of the two coinciding points are constrained except the rotation 

about �̂�𝑡, which is allowed. D Reduced order model of a joint including elastic, viscous, and plastic 

components. Reduced order model applied between rotational DoFs about �̂�𝑡 of coincident points in C. E 

Double layer 5⨯5 𝑁4 pattern. Highlighted faces correspond to the locations where boundary conditions are 

applied. F Double layer 5⨯5 𝑁4 pattern with visualization of applied boundary conditions. 

We adopt a simplified model Figure 3-16D to describe the behavior of the rotational connector 

between coincident nodes of panels with overlapping edges. It consists of an elastic element acting 
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connected in series with a plastic element, and a dashpot acting in parallel so as to capture the 

viscoelastic behavior of the hinge. The choices of these model elements stem from observations 

of the experimental response of a hinge made of paper and composite samples (see Section 3.9.10). 

For small rotations, the hinge elastically returns to its original configuration upon load removal. 

As we increase the initial rotation, the hinge shows a permanent fold indicating a permanent set 

indicating the occurrence of plasticity. In response to a complete fold, the hinge exhibits a lag 

reminiscent of a viscous effect. For these reasons, we have adopted a model to incorporate elastic, 

plastic and viscous effects. 

For the simulation of the multi cell material of Figure 3-16E, we apply the boundary conditions on 

the faces on the middle plane of the specimen. The DoFs of the nodes on the circumference of the 

hole are kinematically constrained to the center point. The boundary conditions are applied on the 

center nodes of the holes (Figure 3-16F). The displacement is constrained along the y and z axes 

of the coordinate system. In addition, we fix the middle node on the bottom row along x axis to 

prevent the specimen from rigidly sliding along this direction.  

To model the friction caused by the sliders and the rails, we define a translational connector 

between the center nodes of the holes and a fixed reference point on the x axis (Figure 3-17A and 

Figure 3-17B). To associate the displacement of the center of a hole to the points laying on its 

circumference, we use a constraint (LINK in ABAQUS) that allows rotation and prevents the node 

from radially translating with respect to the center (Figure 3-17C). The role of this constraint 

replicates to action exercised by our experimental frame that attaches the sliders to the panels 

through pins (See Sections 3.6 and 3.9.14). The coefficient of friction is 0.05, similar to the 

coefficient of friction between zinc alloy and Teflon, the materials used in the corresponding 

elements of the experimental apparatus. The friction between the rail and the sliders is modeled as 
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a separate linear constraint between the center point of a hole and an arbitrary fixed point (Figure 

3-17D).  

 

Figure 3-17 Details of connections. A A 5⨯5 𝑁4 pattern with mounting points. B Details of sliders and 

frame. C Connection detail of slider and mounting panel, where a link constraint connect the panel to the 

pin. A link constraint maintains the distance between the circular hole and the center point. Friction is here 

neglected as an undersized pin is used in the experimental set up to connect the panel to the sliders. D In 

the finite element model, the sliders are modelled as linear constraints as in the experiments they have a 

low coefficient of friction; a coulomb friction model is used for the linear slider. 

We have developed an in-house python code that generates the model in ABAQUS. The code 

receives the geometric parameters and the initial configuration as input. In addition, the material 

properties including Young’s modulus and hinge properties are also another set of input for the 

code. The code generates and allocate the panels in the pattern, besides defining the hinges between 

the connection nodes.  

3.9.6.2 Imperfections 

The specimen reconfiguration involves both rigid-folding as well as deformation of its constituent 

elements. The former pertains to the rotation of the faces P1, P2, and P3 about their joint hinges 

with P4 (Figure 3-18A) the rotation continues until P1 (and P1′) and P3 (and P3′) prevent from 

further rigid folding due to the smaller ℎ1 than ℎ2, the height of P2 (and P2′). The latter, on the other 
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hand, mainly stems from the displacement caused by the snap-through instability of P2 (and P2′) 

panels.  

To capture the post-instability response of the specimen, we impose an initial imperfection to P2 

(and P2′) to guide the search of the solution (Figure 3-18B). As customary done, for the initial 

imperfection we adopt a fraction of the spatial displacement obtained from the analysis of the 

buckling modes of a parallelogram with hinged edges. As shown in Figure 3-18C, we assume the 

top and bottom edges are hinged and their displacement is prevented along the x axis, whereas the 

rotation about that axis is allowed. The other two edges are assumed free (Figure 3-18C). Figure 

3-18D depicts the first four mode shapes under compression along the y axis. Each color illustrates 

a value of the out-of-plane deformation of the panel. The red line in modes 2 to 4 denotes the line 

of zero displacement. 

 

Figure 3-18 Implementing inperfections. A Single snap unit with panels and heights of the parallelogram 

faces. Snap-through instability is caused by the difference between ℎ1 and ℎ2. B Finite element model of 

single snap unit, where faces are modeled as shells and meshed with S4R elements. C A small imperfection 

is assumed in our models to capture the post-snap-through behavior of the unit and represents the first mode 

of buckling of a parallelogram face with opposite edges hinged and undergoing uniform force on its planar 

edge. D Mode shapes of parallelogram face, where the contours visualize the out-of-plane displacement. In 

red is the curve with zero-displacement. 
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For our analysis we assume the imperfection is a multiple of the first mode with the largest 

amplitude equal to 5% of the thickness of the panel. The deformation type of the panel is shown 

in Figure 3-18C. Once obtained from the buckling mode analysis, the imperfection is directly 

inserted in the ideal model of the panel. 

3.9.7 Deformation regimes 

This section provides additional details on the finite element analysis of the single snap unit. The 

study here focuses on the cases where 𝜆 = 90˚. As discussed in Section 3.4, the contact between 

the faces plays a key role in the mechanical response of the single snap unit. Figure 3-3 reports the 

results of our parametric study on models with prescribed values of �̅� and �̅�. The energy metric 

maps identify four regions, each corresponding to the occurrence of either contact and/or snap-

through instability. In this section, we provide additional snapshots of the deformation history of 

the cases studied in the main text.  

Figure 3-19 presents the representative cases along with their load-displacement behavior. 

snapshots corresponding to points along the force-displacement curve are included. Figure 3-19A 

shows three dimensional snapshots of the deformation history for the case with �̅� = 1 and �̅� = 1.25, 

where we can clearly observe the snap-through instability of the inclined panels. Four cases have 

been identified in the text with respect to the nature of contact between panels in a single snap unit. 
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Figure 3-19 Snapshots of a single snap unit undergoing snap-through instability A with �̅� = 1 and �̅� = 1.25 

undergoing snap-through instability. B-E Deformation cases and load-displacement curves shown on the 
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left-hand side, three-dimensional view of the single snap unit is shown in the middle, and  snapshots of 8 

time history points along the force-displacement curves on the right-hand side Red dots on the curves 

represent the points where contact is established between faces. 

• Case 1: Contact here is established prior to instability (Figure 3-19B). Panel P2 and P2′ deform 

significantly and come into contact before their instability takes place. As our unit undergoes 

snap-through, the contact area between P2 and P2′ reduces until a new point of contact is formed 

between another pair of panels, i.e., P2 with P3, and P2′ with P3′. 

• Case 2: Figure 3-19C describes the second case where contact is formed during snap-through 

instability. Here, the flexural deformation of P2 and P2′ during instability is sufficiently large 

to allow contact between P2 (and P2′) and P3 (and P3′). 

• Case 3: Figure 3-19D shows the case where a post-snap contact occurs at a negative value of 

the applied force during the loading cycle. Contact here forms first between P2 (and P2′) and P3 

(and P3′), followed by contact between the edges of P5 and P7. 

• Case 4: Figure 3-19E depicts the case where contact occurs in the post-snap response at a 

positive force value. Here, the sequence of contact is similar to that of the previous regime, 

first between panels P2 (and P2′) (see the onset of contact in inset) and P3 (and P3′) and then 

between the edges of P5 and P7. 

3.9.8 Force and Energy metrics of interacting units 

Section 3.5 in the main text discusses the interaction of two snapping units from results obtained 

from FEA. In this section, we compare the results from experiments and computations for a 

representative specimen with �̅� = 1 and �̅� = 1. Figure 3-20A shows the characteristic stiffnesses, 

forces, energies of the snap-through instabilities in qualitative plot of the loading/unloading curve 

for a pair of interacting units in the forward and backward cycle. The definition and physical 

significance of these metrics have been presented in the main text. 
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Figure 3-20 Comparison of experimental and computational results for interacting snap-through 

instabilities A Definition of characteristic metrics, i.e., stiffnesses, forces, and energies during forward and 

reverse loading directions for interacting units. B-D Comparison of finite element analysis and experiment 

for (B) Stiffness, (C) Characteristic energies, (D) Dissipated energy, and (E) Characteristic forces. 

Percentage of deviation between finite element analysis and experiment are shown for each characteristic 

metric. 
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In our experiments we tested five samples, whose results are compared with the simulation results 

for each performance metric Figure 3-20B shows the stiffness of the structure prior to each 

instability. As discussed in the main text, due to the interaction of two snapping units we observe 

that the stiffness of the second instability is significantly larger than the first regardless of the 

loading cycle. The difference between the experiment and simulations can be attributed to 

manufacturing imperfections. The characteristic energies of the instabilities for two interacting 

units are presented in Figure 3-20C, where we observe the good alignment of our experimental 

data to the FEA results.    

The difference between the two can be attributed to several factors. First, manufacturing 

imperfections causing deviations from the ideal (as-designed) behavior. Given we have minimized 

the effect of this imperfection by ensuring the removal of air bubbles between the cover tape and 

the core during the manufacturing, we attribute the cause of the deviation to the delamination 

between the cover tape and the mylar core. The second reason is the friction between the slide 

bearings and the guide pins, which we intentionally attenuated by introducing lubricant between 

the brass sliders and the guide pins prior to the testing.  

The dissipated energy in a loading cycle is the area enclosed by the forward/backward loading 

paths in Figure 3-20A. Figure 3-20D presents the comparison between the dissipated energy in a 

loading cycle from both simulations and experiments. Although the experimental data parallels 

those from simulations, a deviation exists and can largely be attributed to the friction of the sliders 

and the guiding pin in the experimental setup. Finally, Figure 3-20E compares the forces of 

instability recorded from the experiments and the simulations, the former in acceptable agreement 

with the latter. 
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3.9.9 Experiments 

3.9.9.1 Base material considerations 

Paper, characterized by its affordability and extensive variety of styles and qualities as well as its 

capacity to readily create pliant creases, is an optimal choice for the creation of origami specimens. 

Nonetheless, due to its composition consisting of a fairly oriented arrangement of natural fibers, a 

piece of paper conceals intricate attributes. Furthermore, the stiffness properties associated with 

folding are contingent upon the type of paper material, as well as the nature of the crease method 

implemented, such as perforation, hemming, or scoring. Many challenges of characterizing paper 

as the base material for origami has been discussed [52]. In particular, the rest angles of the hinges 

depend largely on the history of the deformation. 

In addition to the challenges documented in the existing literature [52], our preliminary 

experiments involving multistable paper-based origami patterns have uncovered a multitude of 

additional challenges. As detailed in the main text, one of these challenges relates to the occurrence 

of a snapping instability, which involves the bending of the origami panels. Paper-based specimens 

exhibit a limited elastic range and undergo permanent flexural deformations during snapping 

instability. This permanent deformation introduces a novel dimension of complexity in the 

emergent behavior of the entire specimen. 

Furthermore, the deformation of the panels is notably contingent upon the sequence of snapping 

instabilities. In each cycle, the panels within a structure exhibit varying flexural characteristics as 

they experience dissimilar deformation from the preceding cycle. Panels undergoing the initial 

instability experience the least inelastic deformation, while those subject to the final instability 

event encounter substantial deformation from the previous cycles. 
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The progressive plastic damage of these panels poses an additional challenge. In each loading 

cycle, the panels and perforated hinges gradually experience irreversible damage, which 

subsequently impacts their mechanical response in the subsequent loading cycles. Panels subject 

to the highest flexural deformations in a particular cycle exhibit the greatest initial imperfections 

in subsequent cycle due to the irreversible inelastic deformation accumulated in the previous cycle. 

Consequently, the maximum load required to induce instability in imperfected panels is 

significantly reduced compared to panels in other rows. The order of instabilities is also influenced 

by the history of instabilities in the previous cycles. 

Finally, during the reverse loading cycles, the panels become entangled, leading to an increase in 

the force necessary to induce instability. Our experimental investigation of paper samples reveals 

that the hinges lack the necessary strength and tend to tear under load during the very first loading 

cycle. 

3.9.9.2 Base Material Characterization 

We tested five samples of the base material under tension. A Instron tensile tester (5965 series) 

equipped with a 2kN load cell is used to obtain the Young’s modulus. The specimens follow the 

standards ASTM D882-10, i.e. tensile properties of thin plastic sheets. Figure 3-21A shows the 

tensile sample, made of thin Mylar core of 0.127 mm covered on both sides with 0.045 mm thick 

tapes. The rectangular sample is made by laser cutting the three-layered stack. Tensile testing is 

conducted at the grip separation rate of 25 mm/min. The tensile response of a representative sample 

is shown in Figure 3-21B suggesting a linear elastic response within the tested range of strain. 

Table 3-1 summarizes the results obtained from the tensile specimens, showing excellent 

repeatability. 
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Figure 3-21 Tensile testing specimen and its response. A Tensile test specimen as per ASTM D882-10, B 

Tensile behavior of the sample 

Table 3-1 Test results for five samples 

Specimen 

number 
1 2 3 4 5 Average 

Standard 

Deviation 

Young’s 

Modulus 
5.3 5.25 5.21 4.96 5.36 5.21 0.15 

3.9.10 Hinge characterization 

Hinges play a major role in governing the behavior of our foldable specimens. To simulate the 

reconfiguration process and calibrate the parameters of the reduced model in Figure 3-22D, we 

characterize the stiffness and viscous behavior of the hinges. We assume that each fold line is 

made of a series of rotational hinges, and assume the behavior of each hinge can be captured by a 

reduced order model made of an elastic element acting in series to a plastic element along with a 

viscous damper (Figure 3-22D). 
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Two types of materials and fabrication methods are studied in this work. The first is paper, and the 

corresponding specimen are fabricated by perforating the paper sheets through a laser cutter 

(Figure 3-22A). The second is a composite material with a Mylar core sandwiched between two 

tapes (3M 336 polyester tape) (Figure 3-22B); the corresponding fabrication process involves first 

the laser cut of slits in the Mylar core, and then the coating of both sides with tape. As a result, the 

two layers of tape only make up the hinge. Our choice to examine this composite specimen is that 

previous studies have shown the fairly complex behavior of paper, which has an orientation 

dependent elasto-visco-plastic behavior with an anisotropic damage that cumulates during 

repeated folding/unfolding cycles.  

 

Figure 3-22 Specimen fabrication methods, A Paper sample with indication of machine direction (MD), 

transversal direction (TD) and perpendicular direction (PD). Paper is an orthotropic material much stiffer 

(higher Young’s modulus) and stronger (higher yield strength) in MD than in TD. B Composite sample 

made in a multi-step fabrication method; first the slits are laser cut on the mylar core, then two cover layers 

made of tapes are applied to two sides of the mylar core; finally, the contour of the sample and the holes 

for fixing and aligning the sample in the experimental test setup are laser cut. The final contour and the 

holes are shown in red. C Specimen dimensions with two sets of holes. The first is used for aligning the 

specimen with the test setup; pins with a tight tolerance run through the alignment holes to ensure the 

correct alignment of the sample. The second is used to clamp two of the faces between panels that fix the 

sample in the experimental setup. 

The specimen is initially flat with rectangular snape and dimensions a 20 mm ⨯84 mm (Figure 

3-22C). The specimen consists of four 20 mm ⨯20 mm panels with six holes designed to clamp 

two panels of the specimen. Two holes serve as alignment holes. A pin runs through each of these 
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holes to ensure perfect alignment of the specimen and the fold line with respect to the testing setup. 

The other four holes on the clamp panel are intended for four screws that clamp a stiff acrylic panel 

on the specimen. 

Figure 3-23 shows the setup for testing the bending behavior of the hinge. The setup consists of 

two assemblies designed to be fastened in the grippers of a tensile testing machine (Figure 3-24). 

In this study we have used an Instron model 5965 equipped with a 10 N load cell to perform tests 

on five samples. Figure 3-23B depicts the front view of the setup with the specimen. Two sets of 

panels are used to mount the specimen on the testing setup. The clamp panels hold the clamp faces 

of the specimen. The support panels ensure the hinges are aligned along the z axis of the coordinate 

system as shown in Figure 3-23A and Figure 3-23B. To ensure the proper mounting of the panels 

we introduce several holes. By aligning the holes, we ensure the proper alignment of platens, 

panels and specimen. The first set of alignment holes (Figure 3-23B) are used to ensure the platens 

are properly mounted on the gripper. The second set aligns the two platens while the third set 

ensures the specimen, the support plate and the clamp plate are positioned appropriately. 
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Figure 3-23 Bending test setup. A Bending test setup visualizing also the specimen clamped between the 

clamp panels and the platens. The setup features two support panels which ensure the alignment of the 

sample B Front view of the bending test setup designed to be clamped in the grips of a tensile tester. Two 

alignment holes accommodate aligning pins which ensure the y axis in B is aligned with the axis of the 

tensile tester. C Top view of the platens of the bending test setup. Two alignment hole sets are shown. The 

alignment holes set 2 are intended to ensure the two platens are parallel. Prior to testing four alignment pins 

run through these holes from the upper platen to the lower one. However, after the grips are fastened the 

pins are removed. The alignment holes of set 3 are used to ensure the specimen is mounted correctly on the 

testing setup. 

Once the setup is mounted on the tensile testing, the movement of the crosshead of the tester cause 

the folding and unfolding the specimen, as shown in Figure 3-24. The process starts from a state 

where the load cell reads a zero-force value and continues with the crosshead moving downward 

to induce the hinge folding. 

To calibrate the parameters of the reduced model in Figure 3-16D, we cyclically load the specimen, 

where the crosshead moves first downward and then upward (reverse direction). This pattern is 

repeated until the specimen response stabilized. Figure 3-16D shows the stable response only, 
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neglecting those of the intermediate cycles. The difference between the initial, the intermediate 

and the stabilized folding cycles is negligible for the composite sample. 

 

Figure 3-24 Bending test. A-G Bending testing of the specimen at sequential stages of compression. The 

setup is mounted on a tensile tester with upper and lower platens fastened in the upper and lower grips of 

the tester. The top row shows the front view snapshots while the bottom row presents the three-dimensional 

view of the setup and the specimen. The red line in the figures of the bottom row emphasizes the location 

of the hinge during folding. 

Figure 3-25A shows the counterpart finite element simulation of the experiment shown in Figure 

3-24. The coincident nodes of the adjacent panels in the model are connected with the reduced 

order model of the hinge shown in Figure 3-16D. Figure 3-25B shows the stabilized cyclic 

folding/unfolding behavior of a composite specimen after 3 cycles. The experimental results are 

visualized with a light blue shading and the dashed line represents the mean response. The black 

curve describes the calibrated response of the finite element simulation, where the viscoelastic 

behavior is evident and the plastic response almost negligible. On the other hand, for the paper 

sample, the comparison of the experimental results and the finite element response shown in Figure 

3-25C and Figure 3-25D for two direction shows the sizeable role of plasticity in the response of 

the paper specimen.  
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Figure 3-25 Comparison of FEM and experiment results of the bending test.  A Finite element model of 

bending specimen, where a connector similar to that shown in Figure 3-16 is applied to coincident nodes 

of adjacent panels. B Load-displacement curve of composite specimen with negligible plastic behavior. C 

Load-displacement curve of paper specimen cut aligned with the transverse direction (TD) in Figure 3-22A. 

D Load-displacement curve of the paper specimen cut aligned with machine direction (MD) in Figure 

3-22A. 

Figure 3-26 shows the details of the experimental set up we developed to test the snap-through 

instability of our single unit. The calibrated coefficients are summarized in Table 3-2 for the 

composite and paper specimens. 

Table 3-2 Coefficients of calibration for the finite element model 

Sample 
Rotational Stiffness 

(Nmm/mm) 

Viscous Component 

(Ns/rad) 

Plastic Component 

(Nmm/mm,) 

Composite 0.0459 0.0275 - 

Paper (MD) 0.0312 0.459 0.0293, 0 

Paper (TD) 0.0254 0.368 0.0221, 0.02 
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3.9.11 Single snap test setup 

 

Figure 3-26 Single snap unit test setup. A Single snap testing setup with upper and lower platens fastened 

to the grips of a tensile tester. B Alignment of upper and lower platens. C Slider assembly consisting of a 

linear slider made of Teflon, a pair of acrylic panels, attachment panels and screws D. Exploded view of 

slider assembly. E Specimen mounting process. First the sliders are screwed to the opposite faces of the 

specimen; next, the specimen is placed on the linear guide; then the upper grip is lowered to place the 

remaining face of the specimen between the mounting panels on the upper platen. Finally, the upper mount 

faces are screwed to the sample. F Single snap testing setup with inserted specimen. 

Figure 3-26A shows the assembly of the testing setup on our tensile tester. The first set of aligning 

pins are used to ensure that the two platens are parallel and their normal is coaxial with the axis of 

the tensile tester (Figure 3-26B). With the lower platen as the reference, we use the second set of 

aligning pins to ensure the two platens are parallel. Once the grippers are fastened, we remove the 

second set of the aligning pins. To mount a sample on a slider, we screw a pair of stiff acrylic 

panels to each slider (Figure 3-26C and Figure 3-26D). The acrylic panels guarantee that the 

displacement takes place only along the sliding direction. Figure 3-26E shows the mounting 

process. First, we screw the central faces of the sample to the acrylic panels of each slider. Next, 

we slide the sliders along the guide rail to the point where P5 face aligns with the acrylic faces on 

the top platen. Then we lower the top platen and finally P5 is screwed to the acrylic faces of the 

top platen. Figure 3-26F shows the final assembly of the sample on the test platform. 
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3.9.12 Testing setup of double snapping unit  

To investigate the interaction of two snap-through instabilities, we study the compression/tension 

behavior of two single snap units acting in series. Figure 3-27 shows the test set up designed for 

the purpose. 

 

Figure 3-27 Interacting units test setup. A Framework mounted on the tensile tester. The first set of aligning 

pins are used to ensure the axis of the tester and the face of the platen are perpendicular. The second set of 

aligning pins ensure the face of the platens are parallel and they share a common axis. After alignment, the 

grips are fastened, and the second set of the aligning pins are removed. B Specimen insertion on the tester. 

The holed faces of the specimen are screwed to the mounting panels of the platens. C The specimen consists 

of two interacting snap-through instabilities mounted on the tester. 

Figure 3-27A shows the process of mounting the setup on a tensile testing machine. As with the 

setup of the single snap unit, also here we use two sets of aligning pins. The first ensures that the 

faces of the platens are perpendicular to the axis of the tensile tester. The second guarantee the 

mount panels are at their correct location. The second set of the aligning pins are removed after 

the grips are fastened (Figure 3-27B and Figure 3-27C). We use two sets of acrylic panels (mount 
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panels) to screw the faces of the sample to the platens of the testing setup, Figure 3-27B and Figure 

3-27C. The assembly with the sample mounted on the testing setup is shown in Figure 3-27C. 

Figure 3-28 depicts a specimen made of two interacting units. In our experimental setup, we need 

to ensure the panels P4 and P′4, shown in Figure 3-28A, move parallel to their normal direction to 

obtain the interactions of two snap-through instabilities accurately. To this end, each panel, P4 and 

P′4, is screwed between two acrylic panels (Figure 3-28B). We insert two brass bearings on each 

set of acrylic panels. Two guiding pins perpendicular to the P4 run through the brass bearings. 

Therefore, the panels P4 and P′4 can slide along the guiding pins. We screw P5 and P9 to stiff acrylic 

panels that are attached to the upper and lower platens respectively. 

 

Figure 3-28 Specimen consisting of two interacting snapping units. A Specimen made of two interacting 

units with its geometric parameters. B Exploded view of the linear slider assembly. Two sets of brass 

bushings are mounted on the faces P4 and P′4 of A. Two acrylic panels are used to mount the brass bushings 

on the faces P4 and P′4. As the faces P5 and P9 are compressed in the y direction, the faces P4 and P′4 slide 

along the guide pins. C Assembly of specimen and testing apparatus.  

The key features of our experimental setup are the linear sliders. Figure 3-29 shows results from 

our computational and experimental results demonstrating that the removal of the guiding pins 

make the faces P4 and P′4 rotate about x axis (Figure 3-27A) and move out of their initial plane. As 

a result, the experimental values of stiffness and force corresponding to instability underestimate 

their computational counterpart representing for a periodic domain.  
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Figure 3-29 Comparison between the behavior of the interacting unit specimen without (A-C) and with 

(D-F) guiding pins. A Specimen without guiding pin on testing setup. B Side view of specimen without 

guiding pin at the onset of the first snap-through instability. Curved arrows show rotation direction of faces 

P4 and P′4. C Side view of specimen shown in A at the onset of the second instability. A direction reversal 

of rotation occurs for faces P4 and P′4 from B. D Specimen with guiding pin on testing setup. E Side view 

of specimen with guiding pin at the onset of the first snap-through instability. As opposed to the previous 

case, faces P4 and P′4 do not rotate about the z axis out of their initial plane. F Side view of specimen shown 

in D at the onset of the second instability. 

Figure 3-29 shows the effect of the guiding pins. Figure 3-29A to Figure 3-29C show the case 

when linear guides are not used to constrain the rotation of the panels P4 and P′4 about x axis. As 

a result, during the first snap-through instability, the panels P4 and P′4 rotate to accommodate the 

distance required for the panels P8 and P′8 (Figure 3-29B). During the second snap-through 

instability, the direction of rotation is reversed as the panels P2 and P′2 undergo instability. The 

rotation of the panels P4 and P′4 leads to an underestimation of the force required for snap-through 

instability. To overcome this problem, the setup of Figure 3-28 is used. When the guide pins 

constrain the rotation of the panels P4 and P′4, as shown in Figure 3-29F to Figure 3-29J, we 
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observe the movement of the panels P4 and P′4 away from the plane of symmetry, x-y plane, 

without rotation about the x axis. 

3.9.13 Specimen fabrication 

Our foldable specimens are made by stacking layers of pre-folded materials (either paper or 

composite). The fabrication process for both materials requires a sequence of steps to enable 

folding. Paper samples are first laser cut from cardboard paper, and then manually folded along 

the crease pattern before bonding the mountain faces of a bottom layer to the valley counterpart of 

the adjacent top layer. This sequence of steps is repeated for each layer, as required.  

Since paper samples have a complex anisotropic behavior, we resort to another base material, a 

polymer sheet that can undergo large deformation and resist breakage upon entanglement. The 

major drawback of a polymer sheet is the relative high elastic range which makes folding a 

challenging task, yet we use a method that provide high resilience and prevents the over-stiffening 

of the hinges.  

To fabricate a composite specimen, the process starts with laser cutting guiding holes on the 

polymeric sheet (Figure 3-30A). These guiding holes serve as a reference to ensure that in the 

subsequent step the polymeric sheet is placed at the identical position in the laser cutter. The 

references are of utmost importance to ensure the alignment of the sheets with respect to the laser 

cutter. Next, guiding pins with tight tolerance are inserted inside the guiding holes and run through 

the holes of the plates fixed to the laser cutter bed.  
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Figure 3-30 Manufacturing process of 𝑁4 pattern with composite sheets. A Laser cutting of  guiding holes, 

B Cutting of hinges  on the Mylar sheet core. A small ligament is left uncut to keep the central polygon in 

place. After this step, the Mylar sheet is fully covered on both sided with tape, which covers the previously 

cut hinge pattern and serve as the hinge. C The composite sheet made of the Mylar sheet core and the tapes 

are placed in the laser cutter. The guiding pins fixed to the laser cutter run through the guiding holes of the 

composite sheet and ensure the appropriate position of the sheet. The remaining ligament of the Mylar core 
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from the step shown in B is cut. D Cutting of mounting holes. These holes are intended to mount the sample 

on the test setup. E Cutting the holes in the pattern F Cutting the outer contour of the pattern. After this step 

the patterns are collected from the laser cutter and are manually folded to assign mountain and valley folds; 

then a double-sided tape is used to bond the adjacent layers. This process can be repeated as required to 

stack as many layers as needed. G A stack of three layers in pre-snap-through configuration H The same 

stack once all the units are set in their stable post-snap-through configuration. 

In the second step, we laser cut the hinges. We leave a small ligament uncut to avoid detachment 

of the faces surrounded by the cut pattern of the hinges, Figure 3-30B.   

Mylar is a hard-to-bond polymer and it may pose challenges as the powder residual released by 

laser cutting cannot be easily removed. To ascertain an acceptable bonding between layers, after 

the first step of laser cutting we have cleaned both faces of the Mylar sheet with 75% ethanol in 

an effort to remove as much debris as possible. 

Next, we remove the Mylar sheet and cover both sides with a 0.04 mm thick acrylic tape. The tape 

covers both the cuts and the faces and serves as hinge in the previously cut regions. The tape shows 

excellent bonding to the Mylar sheet. We place the covered sheet on the laser cutter bed using the 

guiding pins as reference. The remaining ligaments are cut in this step, Figure 3-30C. Next, we 

laser cut the mounting holes, Figure 3-30D. These holes are used to mount the attachment of the 

sliders. Then the polygonal holes are cut, Figure 3-30E. Finally, the outer contour is cut, Figure 

3-30F.  

Each layer is manually folded to impart the characteristic mountain-valley fold pattern. Then we 

use double-sided acrylic based adhesive transfer tape (3M 468MP) to bond the mountain faces 

from a bottom layer to the valley face of the top layer. We repeat the process to stack as many 

layers as required. 

The translucent nature of the Mylar sheet helps detecting air gaps emerging after layer stacking. 

These air gaps can be easily removed. In addition, we observe that even with several months of 
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shelf storage, the inter-layer bonding with double side adhesive is sufficiently strong and durable, 

hence allowing for the repetition of experiments at later stages without compromising the quality 

of the results. 

3.9.14 Testing of tessellated specimens  

The properties of a tessellated specimen are tested in compression and tension through a custom-

made fixture mounted on our mechanical tester (Figure 3-31). The fixture consists of two platens 

that carry two guiding rails, that prevent the specimen from lateral displacement. To avoid lateral 

constraints, we have used a series of sliders that are attached to the faces in the middle plane of the 

specimen. To ensure the alignment of the platens we utilize two sets of aligning pins (Figure 

3-31A).  

 

Figure 3-31 Multi-cell specimen test setup. A Mounting and alignment of the multi cell testing setup on 

the grips of a tensile tester. A set of aligning pins on each rail carrier ensures the rail is perpendicular to the 

axis of the tensile tester. To check the parallelism of the rails, the grips are lowered prior to mounting the 

specimen. Once the rails are in contact, their parallelism can be verified by inspecting the gaps and the 

displacement of one end of the pairs with respect to the other. B Mounting of the specimen on the testing 

setup. Three slider assemblies similar to that shown in Figure 3-26C are used on each rail to mount the 

specimen on the rails. Instead of screws in Figure 3-26, a set of pins are used to connect the panel to the 

slider assemblies. C A double layer 5⨯5 specimen mounted on the testing setup. 
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Figure 3-31B shows the mounting of a sample on the tester. We screw links made of stiff acrylic 

sheets to each slider. To attach acrylic panels to a face on the material, a clevis pin is used, (Figure 

3-31B). The sliders guarantee the lateral displacement can be achieved with minimum resistance. 

The assembly of the specimen on the testing fixture is shown in Figure 3-31C.  

3.9.15 Methods for mounting frame 

As described in the main manuscript, each sample can be mounted on the fixture at given angles. 

In this work, we examine two mounting methods as explained in this section. 

 

Figure 3-32 Two mounting methods hosting the N4 pattern. A Aligned mounting method where the hinges 

are parallel to the rails of the testing setup. Here, the slider assemblies consist of distinct heights ensuring 

the mounting faces remain at a fixed distance from the rails. For lager patterns, the lateral (x direction) force 

exerted by the specimen leads to large forces on the slider due to the clearance of the sliders and the rail. 

The large normal force at the location of the contact between the slider and the rails lead to large frictions. 

For this reason, this mounting method is mainly useful for small size specimens or when the sliders does 

not allow a tilt. B Parallel mounting method where the slider assemblies with equal heights are used to 

mount the specimen on the testing setup. In this method the mounting point are along a hypothetical line 

which is parallel to the rail. For samples with large value of �̅�, this method the specimen collapses laterally 

and does not undergo instability. 

Method 1 



  199 

 

In the first case, the hinges of the snapping faces (P4) are parallel to the guide rails (Figure 3-32A). 

Here, only P4 faces undergo flexural deformation. During compression, the specimen always 

undergoes snap through instability. However, as the periodicity of the finite tessellation increases, 

the uniform distribution of the displacement is challenging to enforce as the lateral load on the 

clevis pins on longer links exerts larger moments about the z axis. Larger moment causes further 

friction in the sliders, and hence larger deviation from the expected behavior (Figure 3-32A). This 

problem can be solved by using longer sliders, however longer sliders may contact during the 

reconfiguration, and hence adversely affect the specimen performance.  

Method 2 

The problem encountered with the first mounting method has leads us to develop another mounting 

method. Instead of links of different heights, here we use equal length links to attach the faces to 

each slider (Figure 3-32B). The line passing through the points of the attachment remains parallel 

to the guiding rails during the reconfiguration. Our study shows that during the snap through 

instability, P5 faces undergo bending, while P4 experiences a combination of axial and flexural 

deformation. Our experimental investigation shows this method allows the accommodation of 

specimen with a very large number of unit cells. However, for large values of 𝒂𝟐/𝒂𝟏,  the specimen 

no longer undergoes snap-through instability due to skewness of the specimen with respect to the 

loading direction; rather it collapses transversely. 

3.9.16 Vibration tester 

One application demonstrates the use of our metamaterial as mechanical damper. To this end we 

have developed a testing platform (Figure 3-33). Figure 3-33A shows the front view of the testing 

setup with the specimen mounted on the setup. Figure 3-33B presents the process of mounting the 
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structure on the testing setup. The process is similar to mounting a sample on the 

compression/tension testing setup in Figure 3-31B.    

 

Figure 3-33 Vibration test setup. A Setup consisting of a frame and an AC/DC converter, B Front view of 

the oscillatory testing assembly C-D Components of the oscillatory testing assembly C Spring D Linear 

ball bearing and housing mounted on a round slide. Each side of the sliding stage is carried on two linear 

ball bearings. E Slider assembly. The sliders are free to move along rails mounted on the frame and the 

sliding stage, except for the middle bottom slider which is fixed to prevent from any rigid body movement 

of the multi-stable test specimen along the rails (x axis). The assembly is similar to that shown in Figure 

3-26C and Figure 3-26D except for the mounting method. In this setup, pins are used to mount the setup on 

the testing setup. F Rotary exciter consisting of a gearmotor, a round disk featuring eccentric holes and a 

mass screwed to one of the eccentric holes on the disk. G Ruler and indicator, a ruler is mounted on the 

frame of the setup. An indicator is attached to the sliding stage. As the sliding stage oscillates the indicator 
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slides on top of the ruler. Using a high-speed camera, the slow motion of the displacement of the indicator 

on top of the ruler is recorded and later analyzed to obtain the amplitude of the vibrations. 

Figure 3-33C shows the experimental setup comprising a frame, a sliding stage and a rotating 

unbalanced exciter. The sliding stage can slide along two guiding shafts (Figure 3-33D and Figure 

3-33E). The sliding panel is attached to the frame using extension springs (Figure 3-33E). Four 

linear ball bearings are used to facilitate the movement of the sliding panel with respect to the 

guiding shafts (Figure 3-33E and Figure 3-33F). The ball bearing housings are 3d-printed and 

screwed to the sliding stage (Figure 3-33F). Similar to the tensile/compression testing setup, we 

use sliders to mount the sample on the experimental setup, Figure 3-33D and Figure 3-33G. The 

assembly can be considered as a mass-spring-damper system that can vibrate upon excitation or 

non-zero initial conditions. 

The excitation is provided through a rotating unbalanced mass (Figure 3-33D and Figure 3-33H). 

In our setup we include a 24-volt DC gearmotor with the maximum speed of 620 rpm, Figure 

3-33H. We use a 24 volts AC/DC converter to supply power to the motor (Figure 3-33C). By 

controlling the input voltage, we can control the speed of the motor and hence the frequency of the 

excitation. To obtain the amplitude of oscillation, we use a high-speed camera to record the 

displacement of an indicator panel with respect to a ruler, Figure 3-33I. The results are analyzed 

to obtain the amplitude of the vibrations at each excitation frequency. 
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Chapter 4: Discussion, conclusion, and future work 

This thesis has proposed a class of origami-inspired mechanical metamaterials focusing on two 

intertwined aspects: (1) the design of its rigidly foldable architecture enabling multiple locked and 

flat-folded configurations and (2) the study of its compliant architecture capable of undergoing 

multistable states. 

4.1 Summary of the main results 

Chapter 2 has examined a strategy to impart multi-directional load-bearing capacity to a stacked 

structure of cellulose-based papers. Existing origami-inspired metamaterials offer a certain level 

of programmability, yet they fall short in attaining concurrently load-bearing capacity and rigid 

foldability along the deployment direction. The reason can be attributed to the kinematics of 

deployment and the mechanism of load-bearing they use in their crease patterns. In general, the 

direction of their load-bearing capacity is distinct from the direction of their deployment. This 

characteristic limits their application. In particular, any perturbation of  the loading direction can 

deviate the material from its folding path and ultimately changes its response from rigid to floppy.  

In response to these shortcomings, chapter 2 has introduced a rigidly foldable class of cellular 

metamaterials, whose folding is mainly governed by their kinematics rather than their structural 

instability. This class of origami materials can flat-fold and lock into several stiff states across 

multiple directions, including the deployment direction. Notions of origami folding with kirigami 

cuts have been combined to generate reconfigurable patterns made of chains shaped with N even-

sided regular polygonal primitives that define the inner void. Cellular cuts relax the deformation 

constraints imposed by the connectivity of the parent origami. These metamaterials rigidly fold 

with one degree of freedom due to the constraints imposed by their adjacent layers. At the onset 
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of bifurcation, however, the degrees of freedom increase, leading to multiple reconfiguration paths. 

Each path leads to post-bifurcation modes, which can be either flat-foldable or lockable states. 

Locking under compression yields topology and symmetry changes that impart multi-directional 

stiffness. Additionally, folding paths and mixed-mode configurations can be activated in-situ to 

modulate their properties. Their load-bearing capacity, flat foldability, and programmability of 

shape can be harnessed for deployable structures, reconfigurable robots, and low-volume 

packaging. The main findings in chapter 2 are summarized as follows: 

● Starting from any even-sided uniform polygon, we have shown that the proposed strategy 

can achieve a class of reconfigurable materials. 

● Layer stacking is proposed to reduce the mobility of kinematic unit chains. A matrix-based 

kinematic analysis with pertinent planarity constraints has identified the minimum number 

of stacked layers to reduce the degrees of freedom to one. A predictor-corrector algorithm 

has been employed to obtain the post-kinematic bifurcation behavior. Post-bifurcation, the 

patterns can follow multiple kinematic paths. 

● Using an enumeration theorem, we have classified the post-bifurcation modes into locked 

and flat-folded configurations. The multi-modal response has been interpreted as a pathway 

for reprogramming their folding and mechanical response in-situ. In particular, it has been 

shown that post kinematic bifurcation a change in the kinematic path can be harnessed to 

modulate their compressive stiffness and elastic limit.  

● It has been shown that the load-bearing capacity stems from the contact between the 

surfaces and the edges of interlocking panels. Although this method has already been 

explored in the literature, previous studies have not investigated how to achieve multi-

directional load-bearing capacity. Moreover, the load-bearing performance of these 
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structures was yet to be experimentally evaluated. The major limitation of existing load-

bearable structures originates from the excessive forces exerted on the hinges upon the 

application of an external load. In contrast, this thesis has shown that once the structure is 

set in one of their locked configurations, it can withstand an external load applied along 

multiple directions. 

● A simple manufacturing method has been proposed involving a combination of laser 

cutting excision, crease pattern folding, and layer stacking. It has been shown that the layers 

can be stacked by bonding the mountain faces of the lower layer to the valley faces of the 

upper layer. Although in our prototypes the layers have been assembled manually, this 

layer-wise process can be easily automated. 

Chapter 3 has built upon the insights gained from chapter 2. Although the structures introduced in 

chapter 2 lock under an external load, upon unloading, they tend to revert to their initial 

configuration. This behavior might limit their performance under cyclic loading since upon the 

removal of the external load the proposed structures tend to unfold. Multistability can serve as a 

potential solution to enable the structure to maintain its programmed configuration even after 

unloading. 

Multistability has gained attention in developing programmable mechanical metamaterials in the 

past decade. Most ideas on multistable materials rely on unit cells made of inclined beams and 

shallow doubly-curved shells supported by bulky frames. The bulky frames limit the 

reconfiguration range of existing multistable materials. In response to this inefficient use of 

material, chapter 3 has presented a methodology to impart multistability in the class of origami 

materials introduced in chapter 2. The structures can benefit from the reliable deployment of 
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multistability while proffering minimum packaging volume due to their large reconfiguration 

space and flat-foldability. 

To this end, chapter 3 has examined the main governing geometric parameters and identified the 

parallelogon as the most general primitive polygon for a quadrilateral-based pattern. The parallel 

edges play a pivotal role in ensuring that the subsequent mechanism is reconfigurable between two 

parallel planes, known as mountain and valley planes. A single-layer structure has multiple degrees 

of freedom. The stacking strategy used in chapter 2 has been also employed here to reduce the 

degrees of freedom to one. By manipulating the geometric parameters, the final configuration can 

be changed from locked to flat foldable. Hence, this study has enlarged the design space explored 

in the first paper. 

Furthermore, the kinematic analysis has shown that the extent of rigid-body reconfiguration is 

controlled by the height of the inclined faces that connect the layers of origami system. Relaxing 

the rigidity constraint of the panels has enabled the emergence of multistability. The rigid-body 

motion and the mechanical instabilities synergically enlarge the reconfiguration space. In addition, 

the load bearing capacity has been achieved in a direction perpendicular to the loading direction. 

Mechanical instabilities can thus be regarded as an enabler for modulating elastic stiffness. The 

multistability behavior stems from the flexural and axial stiffness of the origami faces. As a result, 

the need for stiff frames is obviated since the axial stiffness is several orders larger than the flexural 

stiffness. The main findings of chapter 3 are: 

● Definition of the conditions required to achieve flat-foldability in multiple folding 

directions. The results of our analysis have been summarized in a map, namely the 

kinematic phase diagram, which shows the boundary for flat-foldable and lockable regions.   
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● Explanation of the role played by the hinges in the overall multistable behavior of the 

origami structure. The folding/unfolding behavior of the hinges can be captured by a 

reduced-order model consisting of elastic, plastic, and viscous elements. The hinge 

parameters can be tuned from data obtained from experiments. 

● Identification of four deformation regimes governing the response of a single snapping 

unit. Each regime is governed by a set of geometric parameters. We have shown that 

contact between the panels can dramatically change the behavior of the snap-through 

instability, and we have verified our simulation results against experimental data. 

● Understanding the interaction between two snapping units arranged in series, and the 

transition from snap-through to snap-back instability. It has been observed that the 

combination of rigid folding and snap-through instability increases the force of the 

secondary instability and plays a key role in the occurrence of snap-back instability. In 

addition, it has been shown that the interaction of two snap-through instabilities can 

increase the energy dissipation capacity of the system. 

● Construction and testing of multicell patterns demonstrating the advantages of the 

interaction mechanism between instabilities. The results of two experiments have been 

used to explain the role of interactions. In the first experiment, the faces of a two-layer 

structure were constrained in the out-of-plane direction using screws that keep the faces at 

a predefined distance. In the second experiment, the parallel faces were free to move in the 

out-of-plane direction. The results have shown the important role of panel interactions in 

the snapping behavior of the overall system. 
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● Demonstration of the use of multistability in origami specimens delivering mechanical 

damping for vibration attenuation. The experimental results have indicated that in each 

loading/unloading cycle, energy is dissipated due to the snapping behavior of the structure 

and other factors, hence suggesting their use to damp the oscillation caused by a rotary 

unbalanced mass. As a result, the proposed structures can reliably decrease the resonant 

amplitude of vibrations. 

4.2 Future work 

The following is proposed as continuation for future work: 

● The foam-like architecture of the origami-inspired materials described in this thesis makes 

them a possible candidate for packaging. The structures studied in this work feature tubular 

forms that can lock cylindrical objects upon folding. Our preliminary observation can be 

further investigated to evaluate their potential for package protection. Paper-based 

materials can thus potentially be used for environmentally friendly packaging.  

● One of the emerging applications of origami-inspired structures is wearable and flexible 

electronics. For example, in one application, the parallel faces of our structures can serve 

as the panels of a variable capacitor. The change in the distance can serve as feedback for 

sensing. In another example, the parallel faces can be coated with small antennas. Upon 

reconfiguration, the area covered by the antenna can changed, hence offering opportunity 

to control the frequency.  

● Our class of foldable materials possesses high stiffness-to-weight ratio. In their closed cell 

configuration, they can offer increased resistance against penetration. A potential 

application is thus for the core of rigid sandwich panels that can be multi-directionally 
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load-bearing. Our preliminary investigation corroborates this assumption; further study is 

required to assess their performance compared to that of existing sandwich panel cores. 

● The damping capacity has been demonstrated with an oscillatory system for two interacting 

instabilities. Future work can investigate the snapping interaction of multiple unit cells.  

Since the force required to generate instability can largely vary between subsequent 

instabilities, our metamaterials can serve as vibration insulators offering sizeable band 

gaps.  
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