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Abstract

Though online crowdsourcing has existed since the early 2000s, human perception exper-

iments regarding shape from shading are largely run in-person. In-person experiments

permit the researchers to control for as many external factors as possible. In this thesis,

we test whether Amazon Mechanical Turk or MTurk is a viable crowd-sourcing platform

for shape from shading research. With the help of MTurk, we replicate a previous shape

from shading experiment [16] and we re-evaluate the role of contrast in the work. We find

that an increase in contrast can independently improve the perception of shape. Shape

perception of glossy materials is more heavily dependent on contrast than shape percep-

tion of matte materials. In particular subjects perceive matte materials better than glossy

materials in low contrast conditions. Finally, we find that MTurk can be a viable platform

for human perception experiments.
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Abrégé

Même si les plateformes d’approvisionnement par la foule existent depuis les années

2000, la recherche dans la perception humaine de la forme par ombre s’effectue normale-

ment face-à-face. Le sondage en personne permet aux chercheurs de controller pour le

maximum de facteurs externes. Dans ce thèse, nous testons si Amazon Mechanical Turk

ou MTurk est une plateforme d’approvisionnement par la foule viable pour la recherche

en perception humaine. Avec l’aide de MTurk, nous reproduisons une experimentation

scientifique en perception de la forme par ombre [16]. En particulier, nous réévaluons le

rôle que le contraste joue dans la perception de la forme. Nous trouvons qu’augmenter

le contraste peut unilatéralement augmenter la perception de la forme. La perception des

matériaux brillants est très dépendante du contraste donc les matériaux mats sont plus

visible sous les conditions de faible contraste. Finalement, nous trouvons que MTurk peut

être une plateforme viable pour la recherche en perception humaine.
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Chapter 1

Introduction

The perception of surface shape is strongly dependent on a number of factors including

and not limited to: the shape of the surface, the reflectance properties of the material, the

scene illuminant direction and the viewing direction. In applications where the shape is

required to be perceived accurately, it is important to choose these parameters carefully.

In this thesis, we re-examine the conclusions made in a previous shape from shading

experiment by Faisman and Langer [16]. The authors studied how performance of hu-

man shape perception varied depending on a number of parameters such as light slant,

surface slant and material. The authors concluded that at high light slants, participants

perceive the shape of glossy materials better than matte materials because the positioning

of the highlights at hilltops and valley bottoms demarcate the surface maximum. Increas-

ing light slant led to increasing accuracy of shape perception for both matte and glossy

materials.

On the other hand, we hypothesized that the effect of light slant on shape perception

is being confused with the effect of increasing contrast on shape perception as light slant

increases. Indeed, we believed that contrast is a confounding variable. A confounding

variable is a variable one might not have accounted for and it can increase the variance

or introduce bias. Due to previous work [16] not controlling for contrast, we suspect that

there may have been confusion between the effect of contrast and the effect of increasing
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light slant. We decided to isolate the effects of contrast and light slant on shape percep-

tion. In other words, we present an improvement to the previous experiment [16] by

normalizing for contrast.

Additionally, we suggest an interactive method to calibrate the experiment dynami-

cally for each online participant’s monitor’s gamma prior to a visual perception survey.

Since each MTurk worker has their own computer display, we needed a way to control as

much as possible for monitor gamma variances and image contrast.

The previous work’s experimental subjects were college students. In this thesis, we

choose to test the robustness of the previous conclusions against a novel population on

Amazon Mechanical Turk or MTurk. MTurk is an online platform for crowd-sourcing

studies and experiments. While the platform has been around since 2005, visual percep-

tion esperiments have historically been conducted in-person. We evaluate the reliability

of the MTurk population for academic experiments through a survey of MTurk papers

since 2005. We also evaluate the feasibility of running a visual perception experiment on

the platform by carrying out a series of shape from shading experiments. We hypothesize

that the data provided by running the experiments online on MTurk to be comparable in

quality to data collected in-person.

An overview of the thesis is as follows. Chapter 2 includes background information.

Chapter 3 presents the methods used for the experiments. Chapter 4 has the results of the

various experiments. Chapter 5 consists of the discussion and conclusion of the thesis.
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Chapter 2

Background

2.1 Mechanical Turk

Since its inception in 2005, Amazon Mechanical Turk [22] has been touted as a service for

“crowd-sourcing” human intelligence tasks or HITs. The name Mechanical Turk comes

from ’The Turk’, a fake chess-playing automaton of the 18th century. For more than 80

years, it played and defeated many challengers such as Napoleon Bonaparte and Ben-

jamin Franklin. It was later revealed that the automaton was actually a chess master

operating the operation of the machine from a hidden compartment.

Mechanical Turk the web service allows humans to perform tasks that machines are

not suited for. Mechanical Turk or MTurk became a popular platform amongst researchers

of various disciplines because it helped obtain cheap data for labour intensive tasks.

MTurk’s Application Programming Interface or API is supported by the AWS Software

Development Kit. The API allows you to programmatically distribute tasks to workers.

MTurk also provides an easy to use requester user interface featuring more than 30 tem-

plates of HITs. These templates can be customized and deployed with just a few clicks.

These features make MTurk accessible for all levels of programmers. Researchers or re-

questers post HITs for people or workers to complete. Now more than ever, with the me-

teoric rise of work from home in 2020, even more researchers are looking to the platform
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for their surveys. Still, an unfamiliarity with the online labour markets, an uncertainty

about demographic characteristics of their participants and the concerns about the data

quality may delay researchers looking to adopt the platform in their research toolkit.

The platform made headlines very quickly after its inception. In 2006, a Masters thesis

first put MTurk to use by requesting over 10,000 drawings of sheep [26]. Each Turker was

paid 2 cents for each sheep drawn. Out of the approximate 10560 sheep submitted, 662

sheep were rejected. This makes for a rejection rate of about 6.28%. The author Koblin was

intrigued and somewhat disturbed by the surprisingly overall high quality of the sheep

drawings obtained by the meager 2 cent reward [26]. His work showed the potential of

MTurk to provide high quality data for ”very low cost” or much below minimum wage

in its free market model.

In 2008, corporations started using the platform to obtain cheap feedback on their

products [25]. The study established early on that the platform was a faster way to obtain

data than traditional surveys. The data quality was comparable to traditional methods.

At the time, there were still very few academic studies who used MTurk directly.

Since then, MTurk usage has exploded in popularity in recent years in a variety of

fields. In 2005, less than 5% of psychology research studies were conducted online. In

2015, this number has risen to 50% [43]. Similarly, others predict that in coming years,

nearly half of all cognitive science articles will involve online samples [6]. Searching

MTurk on Google Scholar yields less than 30 results in 2005, around 500 results in 2010,

3250 in 2015 alone and more than 9000 results in 2020.

2.1.1 Demography of MTurk

In Mechanical Turk, one may directly restrict HIT participants to populations one wants

to query according to diverse qualifications. For example, one may restrict their survey

demographic to populations of a certain age, gender, occupation, economic status, coun-

try of residency, education level, etc. There still exists a small likelihood that the worker

has lied about their qualifications on their MTurk application [31].
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MTurk workers are made up of a diverse group. They vary widely in terms of age

range, education levels and socio-economic strata. However, they live primarily in highly

industrialized societies. Indeed, English language mastery and access to the Internet lim-

its the potential range of MTurk workers. An ongoing demographics study [12] run since

2015 reveals that most workers live in the USA (75%), followed by India (16%), Canada

(1.1%), Great Britain (0.7%), Philippines (0.35%), and Germany (0.27%).

MTurk reports having 500,000 registered workers from 190 countries. However, it is

estimated that if one used the MTurk population, one sampled from a population of about

7,300 workers [44] because the more active workers crowded out the less active workers.

The US MTurk population is the largest on the platform. US Turkers are more college

educated than the US general population (50% vs 25%). The US MTurk population also

tended to have lower levels of annual income than the general US population. This is

surprising considering the MTurk population is college educated. MTurk is not demo-

graphically representative of the broader U.S. population [42]. The US MTurk worker

population is majority female at around 55% . Indeed, one should not use an MTurk sam-

ple to directly represent the broader US population as it is more representative of a typical

college sample (see Fig. 2.1). If a sample of the broad US population is what one is looking

for, one could reweigh their answers accordingly or try probabilistic sampling [5].

The Indian MTurk population is the second largest workforce on the platform behind

the US. They are mostly male, an even larger proportion of them are college educated and

they report lower levels of income.

Many use Mturk as a part time or full-time job for less than $2/hour [41]. Significantly

more Indians treat MTurk as a primary source of income. Very few Indian workers partic-

ipate on MTurk to ”kill time”. Over 12 % of US Turkers use the platform as their primary

source of income versus over 27% of Indian Turkers. Turkers have lower income than the

broad US population [23].

Since MTurk is an anonymous platform, we do not know what the exact population

makeup of our subjects is. We did not query for the participant information either. Re-
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Figure 2.1: Demographics of MTurk workers [42]
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searchers have been confident about the demographic stability of the MTurk population

since the start of the COVID-19 pandemic [33]. Therefore, we assume that the make up of

the subject population resembles the general MTurk population breakdown.

2.1.2 Data quality

The MTurk population produces reliable results for experiments and surveys at low costs

[8–10, 25, 47]. MTurk may produce better data than commercial panels [49]. A commer-

cial panel is a group of prospective research participants gathered by a company who has

invested in the recruitment of people for research purposes. Still, there are concerns such

as misrepresentation of the population and non-compliant responding to survey ques-

tions that may compromise the validity of research based on MTurk data [7,21,48]. These

concerns are severe enough that some journal reviewers have essentially recommended

rejecting manuscripts that used MTurk [28, 46].

Work quality on MTurk was shown to be independent of compensation rates. Com-

pensation primarily affects the quantity but not the quality of work [32]. However, the

lack of relationship between the compensation rate and quality of work was shown only

with compensation below minimum wage. In fact, the data quality of India based par-

ticipants is directly affected by compensation rates. The data quality of US participants,

however, was not. The data of India based participants is of lesser quality than the data

among US participants, even with the usage of optimal payment strategies. Optimal pay-

ment strategies refers to pay rate slightly above minimum wage for India based work-

ers. Increasing the pay rate far above the minimum wage does not appear to further

improve data quality. The motivation of MTurk workers shifted and monetary compen-

sation is now the primary reason for working on MTurk for both US and India based

participants [30].

As for the relationship between compensation and data quantity, increased pay to

certain level results in greater responses for the task in question. However, pay that is

too high will actually reduce demand for a task. This is due to the fact that higher pay
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are linked to more complex and involved tasks [17]. The median hourly wage of MTurk

workers is around $2/h while only 4% of workers earn more than $7.25 [19].

A requester’s reputation matters to MTurk workers. High quality MTurk workers

may avoid one’s account if one has a history of rejecting lots of people, being slow to

pay, or paying below platform standards. High quality workers are workers with a high

approval rate (above 95%). The approval rate is the percentage of submitted tasks that the

Turkers have been paid for. There are third party sites like Turkopticon that can influence

a worker’s interest in taking one’s HIT [40]. On Turkopticon, one may rate a requester.

On MTurk, one has the option of limiting workers on a HIT to only being high quality

workers. For example, one can restrict HIT only to workers with above 95% approval

rate [1]. MTurkers care a lot about their approval rating since it can directly influence the

type of work they qualify for. These issues matter to us because we needed a criteria for

accepting good data and rejecting data whose quality was not high enough.

One study reports that MTurk participants perform better on online attention checks

than do subject pool participants [20]. MTurkers were shown to be more likely to pass in-

structional manipulation checks or IMCs than their traditional subject pool counterparts.

IMCs are trick questions designed to assess participants attention to instructions. The

authors argued that they would be more attentive to online instructions than traditional

subject pool samples such as college students because the MTurk population encounters

more online attention checks. They are more used to the patterns and have learned from

them through repeated exposure. The research suggested that MTurk can reasonably be

used for social science research.

Black and white decisions categorizing convenient online samples such as MTurk as

good or bad ultimately harms researcher’s ability to conduct research by limiting the type

of samples researchers are willing to draw from [28]. Samples such as MTurk are neither

good or bad, just different. Each sample has their own set of pros and cons. MTurk

allows researchers to quickly obtain many responses for low cost. Conversely, the nature

of anonymous online studies restricts the variables that the researcher may control. If the
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pros of MTurk outweigh the cons for one’s research, there is nothing wrong with using

MTurk for research.

This completes our review of MTurk as a platform for carrying out research. We next

turn to the main goal of the thesis project which was to carry out a perception experiment

using MTurk. Specifically, we chose to replicate and expand on an earlier study of shape

from shading perception [16]

2.2 Shape from shading perception

Shape from shading or SFS is a classic problem in human perception where the goal is to

correctly infer the shape of a 3D scene from shading. Inferring exact shape from shad-

ing is impossible as there are infinitely many shapes, lighting conditions, and surface

reflectances that can produce any given shading pattern [13]. The visual system relies

on prior assumptions in order to solve the ambiguities posed by the shape from shading

problem such as illumination from above [39], viewpoint from above or a globally con-

vex surface [29]. Perhaps due to humans evolving in a solar system with a single sun, our

brain also seems to prefer the ’single-light-source’ assumption [39].

2.2.1 How Does Lighting Direction Affect Shape Perception of Glossy

and Matte Surfaces?

Experiments in this thesis are based on the experiment from Faisman and Langer’s work

[16]. There, the authors present an experiment that examines local qualitative shape per-

ception on matte and glossy surfaces. They vary the slant of the surface with the respect to

the viewing direction as well as the slant of the light source. This experiment deserved a

reproduction for a few reasons. One reason is the lack of gamma correction in the original

study. Gamma refers to the relationship between the numerical value of a pixel and the

displayed value of a pixel. Different computer monitors may have different gamma such

that they display the same image in non-identical colors. Although the previous study
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used a single monitor, the gamma value was not reported. When conducting perception

studies, it is important to report the gamma used and to correct accordingly in order to

ensure that the results are reproducible (see Sec. 2.2.2). The second reason is the previous

work’s authors ran their experiment with 18 subjects and we wanted to have more. The

third reason is we wanted to leverage MTurk and see if a perception study offered via the

platform could be a viable alternative to in-person studies.

Figure 2.2: Definitions of the angles used. More details will be given in the next chapters.

Indeed Figure is repeated in Chapter 3. Figure from [16].

In their work [16], the authors manipulated the slant of a surface by rotating it (see

Fig. 2.2). They also manipulated the light direction and studied how these manipulations

affected the patterns of shading and highlights on the surface. They vary the slant of the

surface with the respect to the viewing direction as well as the slant of the light source.

In turn, they analyzed how these manipulations affected shape perception. The paper

reported that increasing the slant of the light source to twice that of the surface slant

angle improved subjects’ perception of qualitative shape but only in glossy surfaces. At

high light slant angles, matte surfaces percepts were argued to be worse than those of

glossy surfaces because of the positioning of highlights at the peaks and valleys of the

terrain which help demaracte the surface extremas. They also found that increasing the

light slant produced more consistent shape percepts than default lighting in commercial

visualization software such as Matlab and Mathematica.
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In this thesis, we replicated the previous study [16] but we also investigated another

variable - contrast - which the authors of the previous work neglected and which we

thought might be a determining factor in SFS perception.

2.2.2 Gamma Correction

Normally, when displaying stimuli for a perception experiment, the images should be

presented as intended. The physical luminance should be proportional to rendered gray

values. In other words, luminances should be specified exactly. This way, different exper-

imenters would be able to replicate results. Often, images may not be displayed with the

correct colors or intensity because monitors expect non-linear input for intensity. Inten-

sity is raised to a number dubbed gamma factor. Therefore, we must gamma-correct the

stimuli before displaying them. One of the motivations of the thesis is to see whether the

results from Faisman and Langer’s work [16] could be replicated with gamma correction.

Usually, we would determine the gamma of the monitor being used and correct for it

such that the output luminance is proportional to the rendered image intensities. How-

ever, since we are presenting the perception experiment online, we cannot easily retrieve

the gamma of the monitor. Preceding the experiments presented in this thesis, we present

a method to figure out the gamma of a participant’s monitor (see Sec. 3.1.2).

The relationship between the rendered image intensity value of a pixel and the dis-

played luminance can be modeled by the following power function,

L = Dγ (2.1)

where L is the displayed luminance, D ∈ [0, 1] is the rendered image intensity value and

gamma is denoted as the positive constant γ > 0.

D = D
1
γ

linear. (2.2)
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The non-linearity can be corrected by applying the inverse relationship and is called

gamma correction.

L = (D
1
γ )γ (2.3)

With all this in mind, note that images in this document may not necessarily be shown on

the reader’s display with their intended intensity values.

2.2.3 Contrast

When distinguishing objects amongst other objects, contrast plays a key role. When dis-

tingushing shape of an object itself, contrast produced by shading plays a key role as

well. Contrast is the difference in luminance that make different parts of an object dis-

tinguishable. Contrast is modeled by taking the difference in luminance between of the

object and other objects in the same field of view. The measure of contrast used was RMS

Contrast [27]:

CRMS ≡
1

µL
(

1

N

N∑
i=0

[Li − µL]2)1/2 =
σL
µL

where µL denotes the mean luminance, σL denotes the standard deviation of the target’s

luminance, Li denotes the target’s luminance at spatial location i and N denotes the total

number of spatial locations. The target refers to the object whose contrast one wishes to

evaluate. In this thesis, the target corresponds to the surface in each rendered image. We

are discussing contrast because we believe it to be a primary factor in shape perception.

Experiment 0 and Experiment 1 revealed the effect that a slight change in contrast from

the gamma correction can have on the results. We noticed that as light slant increased,

contrast increased as well. We conjectured that contrast may be a confounding variable in

the previous work. We do not control for contrast in the gamma corrected reproduction

(Experiment 1) of Faisman and Langer’s work [16]. In Experiment 2 and 3, we normalize

the contrast and the luminance of the renderings in order to remove the effect of contrast

from Experiment 1.
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We use RMS contrast as our measure of contrast because for a random noise surface,

it is a much more representative measure than something simple like Weber or Michelson

contrast. Weber is used for center-surround type images. Michelson contrast is typically

more suited for use in simple repetitive patterns like a sinusoid grating [37]. In random

noise, it is difficult to pinpoint which luminances have the largest effect on the contrast.

Indeed, absolute measures of contrast like Weber or Michelson are not appropriate for the

use case of the experiments in this thesis because they are defined by the extreme values

(min and max) of luminance, and one or two points of extreme darkness and brightness

are not representative of the contrast of the image as a whole.
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Chapter 3

Methods

3.1 General Methods

3.1.1 Task and Stimuli

The shape from shading task requires the participant to indicate whether a probe point

on the planar surface in the image is in a valley or on a hill. In each trial, we present a

new surface along with a hill or valley probe point. An initial rendering with a large red

sphere at the location of the probe point is used to allow the participant to make an eye

movement to that general area. After 350 ms, a small red probe point with a diameter

of approximately 0.2 degrees visual angle replaces the large red sphere. The participants

then needs to determine whether the probe point is located on a hill or in a valley. The

application presents the surface for 3.5 seconds total during which the subject must press

either ’h’ for hill or ’v’ for valley on the keyboard. (See Fig. 3.1.) Pressing ’h’ or ’v’

prematurely ends the current trial and automatically starts the next one. If one fails to

make one of two choices, a random choice will be made in post processing.

To each participant, we present 2 full sets of each condition for each experiment. For

Experiment 0 and Experiment 1, this comes out to 88 ∗ 2 = 176 trials per experiment.

For Experiment 2 and Experiment 3, this comes out to 80 ∗ 2 = 160 trials per experiment.
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(a) Image shown for 350 ms. (b) Image shown for remaining 3150 ms.

Figure 3.1: Example of a trial. (a) is shown for 350 ms and then (b) is shown for up to 3150

ms.

Surfaces in Experiment 2 and 3 are achromatic (gray level only). The small number of

trials per condition per participant has an effect on the standard error in our results which

we discuss in Sec. 4.1. Each surface is randomly generated as this would reduce the

likelihood of the data being affected by statistical variance caused by repeat surfaces.

This meant that new surfaces had to be generated for each new participant.

Each surface is randomly generated using heights given by simplex noise which came

from the simplex-rise package on npm [45]. The surface was defined using a 350 × 350

mesh terrain rendered in the web browser. The surfaces were generated such that each

surface has about five to nine peaks per surface width. This is specified by tuning a factor

which would multiply the x and y parameters of a simplex noise function. Each surface

was generated in the fronto-parallel plane to the viewer. The viewing distance used was

53 cm. The camera faced the -z direction. For each surface, a probe point was placed on

a convex part or in a concave part, that is, on a hill or in a valley. Again, the experiment

participant determines whether that probe point is located on a hill or in a valley.

The experiment renders the surfaces with 30, 45, 60 degree rotation with respect to the

normal of the fronto-parallel surface about the x axis. This is referred to as the surface

slant. Recall Fig. 2.2. The surface amplitude also varies depending on the surface slant

chosen. The amplitude is a chosen value that effectively represents the absolute value
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maximum of the surface height value. It is a constant that multiplies the simplex noise

function’s result to generate random terrain. The amplitude is chosen such that the sur-

face is fully visible. In other words, the amplitude should not be too high such that part of

the surface is occluded. The occlusion contour would provide information about the local

shape. The reason is that all the surfaces in this experiment have a floor-like slant (the top

of the image is farther than the bottom) and, in this case, occluding contours tend to come

from hills, which have an inverted U shape. So the presence of occluding contours would

give information about shape. Therefore, smaller amplitudes were chosen for greater

surface slants and bigger amplitudes were chosen for smaller surface slants. Each sur-

face slant has a single different associated surface amplitude. The standard deviation of

the surface heights for each surface slant were 0.1978, 0.1538 and 0.0835 for the 30°, 45°,

60° surface slant conditions respectively. The standard deviation of the surface heights

is calculated by generating surfaces for each surface slant condition and their associated

amplitude and taking the standard deviation of the point cloud z coordinates. The z coor-

dinates are scaled by the ’amplitude’. It is unclear whether the change in contrast caused

by different surface heights has a large effect on the perception of the different surface

slant conditions. Therefore, the experiments in this thesis deal with contrast in different

ways. Experiment 0 and 1 do not control for contrast. Experiment 2 and 3 deal with it

by controlling for contrast by manipulating the image intensities, as will be discussed in

Chapter 3.

Two reflectances are used: matte and glossy. The matte surface reflectance only has

a diffuse reflectance component and no specular component. The glossy surface is com-

posed of 0.7 diffuse and 0.3 specular (see Eq. 3.3 where Id = 0.7 and Is = 0.3).

Ifinal(x) = Iambient(x) + Idiffuse(x) + Ispecular(x) (3.1)

Ifinal = Iambient(x) + Id max(n(x) · l, 0) + Is(H · n)shininess (3.2)
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Ifinal = Iambient(x) + 0.7max(n(x) · l, 0) + 0.3(H · n)shininess (3.3)

H =
l + v

|l + v|
(3.4)

where n is the surface normal, l is the direction of the light, v is the viewer direction, H

is the ‘half vector’ that defines the normal that would produce a mirror reflection, x is a

point on the surface. Ifinal is the final intensity, Iambient is the ambient component of inten-

sity, Idiffuse is the diffuse component of intensity and Ispecular is the specular component

of intensity. Id and Is are the diffuse and specular light intensities respectively.

All colors mentioned correspond to RGB colors. For the matte material, 1 and 0

are used as the diffuse and specular component respectively . In addition, we used a

shininess exponent (also called shininess in Three.js) of 51. Three.js is the interface used

to interact with WebGl in Javascript (see Sec. 3.1.3). Note that in Three.js the shininess

exponent is not limited to a number between 0 and 128. Each surface was additionally

rendered against a dark gray background of 0.067. All rendered values are between 0 and

1 and have no units.

Each surface will be tested under different lighting conditions, namely differently an-

gled directional lights, the default MATLAB lighting and the Mathematica lighting.

The directional lighting will consist of a directional light at infinity shining in the di-

rection of the surface. The line of sight of the viewer to the centre of the surface is referred

to as the viewing direction. For our purposes, the angle formed by the viewing direction

and the light direction is dubbed light slant (see Fig. 3.3).

A different range of light slants were tested with each surface slant. We chose the same

conditions as in the previous work [16], which were chosen to avoid low contrast images.

Refer to Fig. 4.2 for specific tested conditions .

The Matlab lighting consists of the default lighting direction used by MATLAB, a di-

rectional light source from (1, 0, 1) or at 45 degrees azimuth.
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(a) 30° surface slant, 40° light slant, glossy (b) 45° surface slant, 60° light slant, glossy

(c) 30° surface slant, 40° light slant, matte (d) 45° surface slant, 60° light slant, matte

(e) 30° surface slant, Matlab, matte (f) 45° surface slant, Matlab, glossy

(g) 60° surface slant, Mathematica, matte (h) 60° surface slant, 100° light slant, glossy

Figure 3.2: Examples of surfaces
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Figure 3.3: Definitions of the angles used. Figure from [16].

The Mathematica lighting consists of an ambient light component accompanied by

three directional lights located at infinity. This matches the default Mathematica “auto-

matic” lighting condition. The three diffuse light sources are coloured red, green and blue

respectively. The RGB directional lights are located at infinity in the (1, 0 ,1), (1, 1, 1) and

(0, 1, 1) directions respectively. (See Fig. 3.2 for examples of different conditions.)

In the previous work [16], the stimuli were displayed on a 24” Apple monitor at 1920

x 120 resolution with a gamma of 2.2. No gamma correction was used. For Experiment 1

- 3, we gamma corrected according to our gamma calibration test. (See Sec. 3.1.2.)

Due to the experiment being run online, we were unable to enforce various other fac-

tors. Namely, we only recommended that the viewing distance to the monitor be roughly

two monitor widths away, whereas in the lab one can control the viewing angle exactly

by using a chin rest to restrain head motion. In addition, monocular viewing of the ex-

periment with an eye patch over the non-dominant eye could not be enforced. Therefore,

binocular viewing was simply allowed and monocular viewing of the experiment was

not mentioned to the participants. Finally, due to pixel density variations across moni-

tors and variations in viewing distance, the viewing angle of the stimulus was likely not

exactly 17 x 13 degrees for each subject. We did not expect these factors to significantly

influence results.
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3.1.2 Gamma Calibration

Test used in our experiments

In order to adjust for the wide range of gammas from MTurk worker’s computer mon-

itors, certain experiment were preceded by an interactive visual gamma calibration test

[3] [4]. The interactivity is also partly inspired by MacOS’ own calibration test that they

use for their monitors. The purpose is to estimate the gamma of the user’s display. The

gamma can then be corrected on the fly during the experiment.

(a) γ = 1 (b) γ = 2.27

Figure 3.4: Visual Interactive Gamma Calibration Test. Look at image from a distance

where the the black stripes start to blend with the underlying color. Squinting can help

achieve this effect as well. Participants were told to adjust the slider until the circle blends

in with the striped background. Note that this may happen at different gammas for dif-

ferent monitors. LATEX may not display this image as intended. Each horizontal line is

defined to be 1 pixel wide in reality.

The images used for the calibration test are shown in Fig. 3.4. The images are gen-

erated as follows. The background has alternating black (0,0,0) and red (255,0,0) lines

1 pixel thick. When viewed at a distance, the background lines should blend together
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and appear as a shade of red. On a linear monitor, this would correspond to looking at

(128,0,0). The middle circle has an intensity that is halved compared to the background

color. In Figure 3.4, a red (128,0,0) is used.

The slider at the top is used to adjust the gamma of the whole image interactively ac-

cording to the formula 2.3. The idea is the participant should try to adjust the slider such

that the brightness of the red circle matches that of the striped background. The + and −

buttons help to make minute adjustments of order 0.01. The image should be viewed at

a distance where the black stripes are imperceptible. Squinting may help enhance this ef-

fect. Subjects are given this hint. The calibration is repeated for each RGB channel in order

to get the most accurate gamma reading possible. We take the determined gamma values

and average them to a single gamma factor that we use to correct each of the generated

images from the experiments.

In order to offer custom gamma correction without affecting the speed of the render-

ings, we extended the built-in MeshPhongMaterial’s fragment shader (from THREE.Js) to

incorporate gamma correction based on a gamma factor we provide as an uniform.

3.1.3 Software platform and technologies used

The JsPsych library provides a flexible Javascript framework for building a wide range of

laboratory-like experiments that can be run online [11]. This library was used to register

the keyboard clicks and to manage the linear progression of the experiment. It structures

experiments in the form of a timeline. There is a number of trial templates that can be

easily used out of the box and appended to the timeline. Trials are served in the same

order in which they are added to the timeline which is a list.

The experiment website was hosted on Amazon Elastic Beanstalk or EBS which is

an all-inclusive auto scaling web hosting service offered by Amazon Web Services [2] or

AWS. We decided to use this service as it enables us to deploy a website in a matter of

a few clicks. It is also pay as you go which is perfect for this sort of survey. Amazon

DynamoDB or DDB is a NoSQL database service also offered by AWS. Since they are
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both part of the same cloud ecosystem, EBS can easily send the experiment data to DDB

without much additional configuration. Amazon EBS also configures auto balancing and

scales one’s resources according to current site traffic. Indeed, when traffic to a website

hosted by EBS is too high, it will spawn additional instances of the website so as to serve

all visitors with no downtime. EBS will also scale back automatically when traffic is lower,

thus keeping additional costs minimal. For similar experiments, creating a new account

to take advantage of free tier should cover all the costs. We only exceeded the free tier

because we hosted the website for longer than we needed for demonstration purposes.

Free tier on AWS includes basic usage of their services without incurring any additional

cost.

NodeJs [34] and ExpressJs [36] are the platforms used to serve the experiment and host

the server respectively. NodeJs is a Javascript runtime environment that allows Javascript

to do things other than just making websites interactive. It allows for Javascript to be

more than just a scripting language. ExpressJs is a back end web framework for NodeJs.

The most important distinction here is that ExpressJs is a framework for NodeJs and not

Javascript even though it has ’Js’ in its name. Javascript code written for NodeJs and reg-

ular web browser Javascript runtime environments (the most basic use case of Javascript)

often behaves differently and follow different rules even though the syntax is the same.

The NodeJs and ExpressJs stack is an industry standard web application server that is

very quick to set up. We used NodeJs version 12.8.13 because it is one of the most stable

versions that Amazon Elastic Beanstalk supports out of the box. This made it easier for

me to focus more on the project and less on infrastructure setup. Using a supported ver-

sion of NodeJs, one can deploy a ‘hello world’ website to Amazon EBS for the world to

see in probably less than 10 minutes.

We used Three.js [35], an application programming interface or API to WebGL [24].

WebGL is a cross-platform royalty-free web standard for a low-level 3D graphics API

based on OpenGL ES, exposed to ECMAScript or Javascript via the HTML5 Canvas ele-

ment. WebGL is the widely available OpenGL distribution for web applications. Three.js
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and WebGL helps generate all the figures we need to serve in the experiment on the fly.

We render the images on the fly as a participant loads the website in order to randomize

the surfaces.

We used Node Package Manager (NPM) to manage the Javascript packages needed

for the website. Namely, we used NPM to install NodeJs, ExpressJs, Three.js, AWS SDK

and simplex-noise to name the core packages.

On MTurk, the ‘Survey Link’ HIT template was used when creating the HIT. The con-

sent form was pasted into the survey link instructions tab that MTurkers may expand (see

Sec. 3.5). The consent form was pasted once more in the experiment to ensure they will

have viewed it. The link to the shape perception experiment was simply added to the

template without significant change to the format. (See Fig. 3.5.)

Figure 3.5: MTurk HIT Link Survey page. See Sec.3.5 for consent form.

For all experiments listed, we decided to pay participants of our survey 1 USD should

they be approved. (More details can be found in subsection 3.3.)
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3.1.4 Optimizations used to successfully offer the experiment online

Due to random surfaces having to be generated for each trial, it was important to prop-

erly manage the computation and stagger it effectively such that our participants are not

negatively affected. In other words, we tried to remove as much lag and wait time as

possible.

Each surface’s point cloud is generated on the server side (meaning in NodeJs). In

NodeJs, we are calling a simplex noise function to generate the point cloud. There is

a GET request analogous to generating a single surface. The GET method refers to a

HyperText Transfer Protocol (HTTP) method that is applied while requesting information

from a particular source. In web applications, large amounts of data must be split up into

smaller portions to be transferred over the web. In addition, most web browsers only wait

for a server response for up to a minute. For that reason, making one large GET request,

generating all 176 surfaces at once and sending the data over does not work. Instead, we

make 176 different GET requests that each take a fraction of a second each.

This still results in a rather large download for the participants. Another optimization

we used was to strictly send a height map of only z values. As the surface height map

is generated using a predetermined size, we can infer the x y coordinates and reduce

the download sizes for each request. This optimization helps reduce the size of the data

transfer for each get request from 7 Mb to about 2.5 Mb uncompressed. With over 176

surfaces to generate overall, this makes a large difference in the download bandwidth

required to run the experiment.

Simplex noise is used to generate the point cloud. In this study, the code for the fast

simplex noise implementation came from the simplex-noise package on NPM or Node

Package Manager [45]. Upon receiving the GET request, the server will generate the point

cloud as well as find a hill or valley point. In order to reduce the computation time for

finding the hill or valley point, a curvature estimation technique called Umbrella Curva-

ture was used to determine suitable local maximums and local minimums [18]. Umbrella

curvature uses 8 coordinates around a center point like spokes of an umbrella to produce
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an estimate of the curvature at the center point. More specifically, two coordinates are

taken from each of the horizontal, vertical, and the 2 diagonal axes around the center

point. The curvature estimation runs in O(1) time complexity. When iterating over all

suitable points of the surface, the time complexity is merely O(MN) where M x N define

an area of points near the center of the surface. Suitable points were determined to be

points near the center of the surface.

3.2 Experiments

3.2.1 Experiment 0

Experiment 0 is a reproduction of the experiment described in subsection 3.1. We wanted

to see if the data from the previous work [16] was reproducible under slightly different

conditions in an experiment offered via MTurk. In exchange for easy accessibility to a

larger audience, we could not enforce monocular viewing. Viewing distance could not be

enforced either. Thus, viewing distance was recommended and monocular viewing was

not mentioned.

3.2.2 Experiment 1

Experiment 1 is a variation of the experiment described subsection 3.1 and 3.2.1. We

wanted to see if the data from the previous paper [16] held up with a larger sample size.

We also wanted to see if gamma correction for each participant’s monitor would affect

the results. The main differences between Experiment 0 and Experiment 1 is the presence

of the gamma calibration module in Experiment 1.

3.2.3 Experiment 2

From qualitative analysis of experiment 1 surfaces conditions, we conjectured that con-

trast played a large role in discerning shape. In the previous work [16], the authors men-

25



tioned issues with low contrast which were mitigated by adjusting surface amplitudes

and light source directions based on surface slant. However, they did not control for

contrast.

We believe there is a theoretical confound between the effect of contrast and the φ = 2θ

argument since contrast increases when the slant of the light source φ increases. Exper-

iment 2 revisits the role of contrast by controlling for it. If contrast were kept constant

across all conditions, performance should theoretically be similar across all conditions.

By removing the effects of contrast, we may be able to draw additional conclusions from

the previous studies results. We used Eq. 3.5 to normalize all conditions to the same

”target” mean and standard deviation:

Inormalized = mean(target) +
std(target)

std(I)
(I −mean(I)) (3.5)

= mean(target)− std(target)

std(I)
mean(I) +

std(target)

std(I)
I (3.6)

where the first two terms of Eq. 3.6 can be considered the ambient light component and

the third term is the same image but scaled (changing light intensity). Eq. 3.6 corresponds

to Eq. 3.7 located below.

Inormalized(x, y) = Iambient + cI(x, y) (3.7)

where Iambient = mean(target)− std(target)
std(I)

mean(I) and c = std(target)
std(I)

. To guarantee that the

ambient light term from Eq. 3.6,3.7 is positive, we require

std(target)

mean(target)
<

std(I)

mean(I)
(3.8)

That is, the RMS contrast of the target must be less than the RMS contrast of each of the

rendered images. For this experiment, the target was the image with the lowest contrast.

The ambient light term was required to be non-negative and we wanted all the images to

have the same contrast. Plots of the RMS contrast values of each light slant condition were
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used to help determine appropriate RMS contrast values to normalize to (see Fig. 3.6). We

used amean(target) of 164.320 and a std(target) of 10.37 which are the values from the 45°

surface slant and 45° light slant condition with matte material. This condition has a target

RMS contrast of 0.07. (see Fig. 3.6 where it is the lowest point of the ”Matte” curve in (b).)

After applying Eq. 3.5, we applied Eq. 2.2 with gamma submitted by the participant. The

target RMS contrast value is the RMS contrast without any gamma correction. Gamma

correction was applied post contrast normalization in each of the figures.

(a) 30° Surface Slant (b) 45° Surface Slant (c) 60° Surface Slant

Figure 3.6: We plotted the RMS contrast values of each light slant condition. The plots

were used to help determine RMS contrast values we would normalize to for Experiment

2 and 3. Experiment 2 normalizes rendered surfaces to an RMS contrast of 0.07 which cor-

responds to the RMS contrast of the 45° surface slant and 45° light slant matte condition.

Experiment 3 aims for RMS contrast of 0.25 which is a value that is reasonably reached

by each of the curves.

The Mathematica surfaces were not considered as part of this experiment. Since the

Mathematica surfaces are not grayscale, normalizing for contrast was not easily applica-

ble.

Initially, we opted to treat the normalization in post processing but that turned out to

be much too slow. Each rendering would easily take up to one second which made taking

the survey very tedious. We ended up using a lookup table of pre-computed mean(I)

and std(I) values. We computed the average luminance and average standard deviations

of 100 random surfaces for each condition and used those values in the lookup table of
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fragment shaders. This eliminated having to calculate the mean luminance and mean

standard deviation of each image at run time.

3.2.4 Experiment 3

After running Experiment 2, we realized the contrast was too low, causing the perfor-

mance on all conditions to be poor. Therefore, we had to run another experiment to fix

this problem. In Experiment 3, some of the images were given a greater contrast and some

were given lower contrast. In Experiment 2, all images were given lower contrast. For

Experiment 3, we chose to normalize to a RMS contrast value of 0.25 (see Fig. 3.6) using

Eq. 3.6. This is a much higher RMS contrast value than in Experiment 2. We felt this was

a reasonable value that all surfaces from each condition could be normalized to (see Fig.

3.6). So in terms of the ambient light terms in Eq. 3.6 and Eq. 3.7, some conditions had a

negative ambient term while others had a positive ambient term. We do not get negative

intensities because the target RMS contrast was so low. Gamma correction was applied

after normalizing for contrast in each figure’s rendering process.

Like in Experiment 2, the Mathematica surfaces were not considered for this experi-

ment.

3.3 MTurk Participants

Due to the anonymous nature of MTurk, we hypothesized that many participants would

try to game the experiment which would lead to poor data. For each trial in the experi-

ment, the participant faces a binary choice (hill or valley). In order to raise our likelihood

of obtaining good data, we indicated that participants would only get paid if they score

above 55 % (or slightly above chance) on our experiment. At the end of the experiment,

we indicated their score. Turkers who scored below 55% should theoretically avoid sub-

mitting the task or return the task to avoid being issued a rejection. This directly affects
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their approval ratings and can limit the quantity and quality of studies in which they can

participate.

So when a participant scores above 55% in the experiment, they get approved and

paid. In addition, we hypothesized that many participants might only pay attention for

a small portion of the experiment and then just let the random choice do the rest of the

experiment.

Naiveté of participants was preserved by restricting participation in the experiments

to users who have never participated in an experiment run by us – including pilot studies

that are not discussed in the thesis. In order to reduce nonnaı̈veté, we set up each batch

such that MTurkers that have taken my experiments before cannot see the experiment.

One can do that in MTurk by assigning a custom qualification to past workers and re-

stricting potential workers on the new task to users that do not possess the qualification.

For each experiment, we tried to recruit 100 subjects and thus we ran experiments

with batch size 100. Due to rejecting users who scored below 55% and users who tried to

”game” the system, each experiment ended up with a minimum of 56 participants.

3.4 Cost of running an experiment on MTurk

Running experiments on MTurk can be very cheap. They can just as easily become very

expensive. We ran several pilot studies including studies with errors, all of which cost

money. MTurk takes a 20% cut of any payout. MTurk takes an additional 20% cut of any

payout one makse to participants of one’s surveys when one exceeds a sample request

of 10 MTurkers. There is a minimum fee of $0.01 that MTurk charges for any payout. In

all studies performed in this thesis, We ran experiments in batches of 100. In theory, one

could run batches of 10 and save 20% on costs. We were unaware that there was different

pricing for different batch sizes until we finished conducting our experiments. In the end,

we spent $887.6 overall on MTurk.
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If one is interested in running a highly custom experiment, it is likely one will also

have to spend on server costs for their custom experiment. We recommend using free

cloud credits that various providers such as Google or AWS provide to new account hold-

ers in order to cut costs.

3.5 Appendix: Waiver presented prior to experiment

Here is the text of the waiver that each MTurk worker needed to read and acknowledge

prior to the experiment:

This MTurk experiment is part of a research project at McGill University in Montreal, Canada.

The research examines how well people can judge the shape of surfaces that are rendered with com-

puter graphics. The researchers are Silan He and Prof. Michael Langer in the School of Computer

Science. The study is funded by the Natural Science and Engineering Research Council of Canada

(NSERC).

The experiment will take less than 10 minutes, including a practice phase at the start. You will

be shown a sequence of 160 rendered images and you will have to make a quick judgment about the

surface shown in each image, by pressing one of two keys on your keyboard. If you do not answer

within 2 seconds, we will provide a random guess answer for you and move on to the next image.

You will be paid 1 USD for this work. To receive this payment, you must answer correctly on

at least 55% of the examples (score 88 or better out of 160). We also require that your answers and

the correct MTurk ID are successfully posted at the end of the experiment.

Since MTurk terms of use do not allow us to collect your name, your responses are anonymous.

By submitting your responses to this task, you are consenting to be in this research study.

If you have questions, you may contact Prof. Langer by email at langer@cim.mcgill.ca. If you

have any ethical concerns and wish to speak with someone not on the research team, please contact

the McGill Ethics Manager at lynda.mcneil@mcgill.ca.
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Chapter 4

Results

In Sec. 4.1, we preface the results with comments on the standard error which is repre-

sented in Fig. 4.2 by the horizontal bars directly above and below a data point. This is

followed by the shape from shading experiment results in Sec. 4.2 - 4.6. Finally, in Sec.

4.7 we will detail observations and results on MTurk as a viable platform for perception

research.

4.1 Comments on Standard Error

In the previous work [16], Faisman did not report how many trials he ran per subject per

condition. For Experiment 0 and 1, we ran 176 trials to account for the hypothesized low

attention spans of MTurk users. For the same reason, we chose a set of 160 trials for

Experiment 2 and 3. We tried to avoid making the task tedious in order to get higher

quality data. This means that we only show 4 images per condition per subject. As 4 images

total were shown for each condition, each participant could only score 0%, 25%, 50%,

75% or 100%. Having only 4 trials per condition per participant normally leads to large

standard deviation. In this case, the sample means xi for subject i in a given condition

would normally be poor approximations to the true population (all subjects) mean for
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that condition. For that reason that we might expect the estimate of the standard deviation

over subjects and for each condition to be large.

We counter this effect by surveying a large number of subjects n in our sample. (Notice

the denominator of Equation 4.2.) In all our experiments, n > 56. Basically, the number of

trials per condition per experimental subject is small but the number of subjects is large

in our experiments. This ensures the standard error of the mean SE is small. Specifically,

per condition, we use an unbiased estimate of the standard deviation of the xi’s:

sx =

√∑n
i=1 (xi − x̄)2

n− 1
(4.1)

where xi is percent correctness of participant i, n is the number of subjects and x̄ is the

mean over all i subjects for that condition. The standard error of the mean is defined:

SE =
sx√
n

(4.2)

and is shown in the result graphs in Fig. 4.2, namely the error bars per condition show ±

SE. The error bars are quite tight. For this reason, we will not delve into statistics when

analyzing the data. Instead, most of our observations will be high level and qualitative.

Figure 4.1: (a) Definitions of the angles used. (b,c) Typical locations of the peak com-

ponents of the diffuse and highlight lighting components for two configurations of the

light slant (φ) given a constant surface slant (θ). The case (b) demonstrates φ = θ whereas

(c) demonstrates φ = 2θ. Red dot indicates the top of a hill, which is a candidate probe

location in the experiment. Figure from [16].
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Figure 4.2: Each row shows the results one of the experiments. The first row shows the

results from [16] for the reader’s convenience. Within each data plot, the first vertical

dotted line marks the φ = θ condition and the second vertical dotted line marks the

φ = 2θ condition. Error bars show standard error (SE).

4.2 Results from [16]

Before presenting the results of our experiments, we first review those of [16]. Fig. 4.1

is taken from that paper. To understand these results, we review some of the basic argu-

ments and observations made in that paper.

33



For rendered images used in the experiments in the previous work and this thesis,

the location of the high intensity peaks from the diffuse component and from the glossy

component occur at different locations. The locations where the peaks occur depend on

the light slant. Fig. 4.1 (b)(c) shows the location of the diffuse peaks and the glossy peaks

when φ = θ and when φ = 2θ. We define φ to be the light slant and θ to be the surface

slant. As shown in Fig. 4.1(b) at φ = θ, the diffuse peak is located at the highest point of

the hills and the lowest point of valleys. As shown in Fig. 4.1(c), at φ = 2θ, the highlight

peak is located at the highest point of the hill. The intensities also peak at the bottom of

the valleys because the surface normal is parallel to the intensity peak on the hills.

The data from the previously published work is reproduced in Fig. 4.2 first row. As

previously reported, once φ = 2θ is reached, the glossy condition seems to produce con-

sistently higher performance [16]. As described above, φ = 2θ corresponds to conditions

where the light slant yields highlights appear exactly at the tops of hills and the bot-

toms of valleys. At these high light slants, the peaks on diffuse surfaces are located on

the oblique part of the surface above hilltops and are foreshortened, which provides an

effective shape cue [15]. In addition, the previous work showed that increasing the light

slant lead to better shape perception than in the Matlab and Mathematica built-in lighting

conditions.

Finally, the previous work mentions one last factor that may play a role in perception

of shape, namely at high light slant (φ = 2θ) diffuse shading becomes linear [38]. With lin-

ear shading, intensity maxima appear where the surface slope is the greatest with respect

to the terrain, instead of at the hilltops and valley bottoms. Linear shading generally pro-

duces lower spatial frequencies in image intensity We will discuss linear shading again

shortly, in the context of the normalization of the image intensities in Experiments 2 and

3. For now, we begin our discussion of the results with Experiment 0.
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4.3 Experiment 0

In the previous work (see Fig. 4.2 first row), in-lab subjects perform substantially better

on the glossy conditions than on the matte conditions at high light slants (φ = 2θ). In

Experiment 0 (see Fig. 4.2 second row) , MTurk subjects perform marginally better on the

glossy conditions than on the matte conditions at high light slants (φ = 2θ).

The MTurk subjects perform much better at the Mathematica and Matlab conditions

than the in-lab subjects of the previous work. Unlike the previous results, increasing

the light slant does not always lead to better shape perception when compared to the

Mathematica or Matlab lighting conditions.

4.4 Experiment 1

In Experiment 1, we are reproducing the previous work’s experiment but with gamma

correction. At high light slants, subjects perform similar on the glossy conditions com-

pared to the matte conditions. The data from Experiment 0 and Expeirment 1 look nearly

identical. Unlike the previous results, increasing the light slant does not improve shape

perception substantially compared to the Mathematica or Matlab lighting conditions.

4.5 Experiment 2

Recall that the main motivation for Experiments 2 and 3 is to examine a potential theo-

retical confound between the effect of contrast and the φ = 2θ effect, namely contrast also

increases when φ increases. Experiment 2 removes the contrast factor that may have led

to the Experiment 1 results.

In Experiment 2, the Turkers perform worse in all conditions but are still able to dis-

cern shape. The performance on Experiment 2 is low overall because the surfaces have

low contrast (see Fig. 4.3). Performance for the glossy surfaces was much worse than

before when compared to matte surfaces. The absolute values of the performance for the
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glossy conditions is rather close to chance in certain conditions, namely when either the

surface slant is low (30°) or the light slant is low.

Experiment 1 Experiment 2
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Figure 4.3: Experiment 2 surfaces have very low contrast compared to Experiment 1 sur-

faces

For the 60° surface slant matte condition, all different light slant conditions render

the same image in Experiment 2 where images are normalized to the same contrast (see

Fig. 4.4). This is because at high light slant, the diffuse shading becomes linear [38]. See

the paper for the derivation. Specifically, the usual rendering model for matte surface

illuminated from direction L is

I(x, y) = N(x, y) · L

where N(x,y) is the local surface normal, which depends non-linearly on the height

Z(x, y) of the terrain. Under certain conditions, this model can be approximated by a

36



linear model

I(x, y) = I0 + I1
∂Z

∂x
+ I2

∂Z

∂y

where ∂Z
∂x

and ∂Z
∂y

are the slopes of the surface in the x and y directions. This linear shading

model is accurate when the magnitudes of these slopes are small (low relief) and when

the surface is illuminated from an oblique angle.

In particular, observe that normalizing the images by setting the mean and contrast

to some target value will just lead to another linear model, which has some target mean

instead of I0 and the constants I1 and I2 will be rescaled such that the target contrast is

obtained.

When comparing identical surfaces from Experiment 1 to their contrast normalized

counterpart in Experiment 2, we see that the spatial pattern of the shading is actually

identical across all the light slant conditions. The contrast of the shading in Experiment 1

increases as light slant increases but the spatial pattern of the shading stays the same (see

Fig 4.4). Thus we may conclude, in Experiment 1, the improvement of shape perception

for the 60° surface slant matte conditions as light slant increases seems to have come

purely from the increase in contrast.

The shape from shading performance of subjects on glossy sees a large drop off when

comparing Experiment 1 and Experiment 2. Shape from shading of subjects on matte sees

a smaller performance drop off when comparing Experiment 1 and 2. Indeed, perception

of shape from shading in glossy conditions is more heavily influenced by low contrast

than the perception of shape from shading in matte conditions. The lower performance

in the glossy conditions could be directly attributed to the normalization of contrast in

Experiment 2, namely to a contrast value lower than in Experiment 1 (see Fig. 3.6 and

note that contrast is lower in the right column (Exp. 2)). In Experiment 3, we correct

the low contrast performance issue by normalizing the images to a higher RMS contrast

value.
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Figure 4.4: Experiment 2 surfaces are all identical. At high light slant conditions, the in-

crease in the people’s performance from Experiment 1 may come directly from an increase

in contrast for the 60° surface slant conditions.
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4.6 Experiment 3

Going from Experiment 2 to Experiment 3 (see last 2 rows of Fig. 4.2), the percent cor-

rectness of shape perception for all conditions improved. Indeed, increasing contrast can

directly lead to improvement in shape perception. This is in line with the expectation that

contrast plays an especially large role in shape perception.

The performance in perceiving the 60° surface slant matte conditions is flat with re-

gards to light slant since this is a linear shading situation and so the normalized images

for this condition are all roughly the same. (see Fig. 4.5 right column). Similarly to our

linear shading argument in Experiment 2, we conclude that for Experiment 1, the increase

in performance in matte conditions for 60° surface slant conditions and across the (high)

light slant conditions tested was purely due to contrast. The increase in performance due

to contrast can also be seen for the 30° surface slant conditions and the 45° surface slant

conditions (see Fig. 4.2 data to the right and including second vertical dotted line).

In summary, contrast has a negative effect on shape perception when there is not

enough of it. An increase in contrast can independently lead to an enhancement in the

perception of matte and glossy surfaces. An increase in light slant does lead to an im-

provement in shape perception even when normalizing contrast.

39



Experiment 1 Experiment 3

60
°

su
rf

ac
e

sl
an

t,
90

°
lig

ht
sl

an
t,

m
at

te

(a) (b)

60
°

su
rf

ac
e

sl
an

t,
11

0°
lig

ht
sl

an
t,

m
at

te

(c) (d)

60
°

su
rf

ac
e

sl
an

t,
13

0°
lig

ht
sl

an
t,

m
at

te

(e) (f)

Figure 4.5: Experiment 1 and Experiment 3 figures.
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4.7 MTurk issues

In addition to exploring contrast effects on shading, another motivation of this work was

to examine how well MTurk could be used. Here we discuss some of the issues.

4.7.1 Data Quality

We decided to only consider all data for people who scored more of equal to 55% overall

(’Approvals’ in Table 4.1). If we consider all the MTurk data (including ’Rejections’ and

’Incomplete’ in Table 4.1), it only shifts the data points down. When considering the

whole data set, the data quality from [16] was higher when compared to the data to the

MTurk version of the experiment. When only considering the data for participants who

scored more than 55% overall on this 50-50 task, the MTurk subjects outperform the in-

person subjects.

Batch Details Approvals Rejections Incomplete
Exp 0, 1 52 35 13
Exp 0, 2 41 44 15
Exp 0, 3 48 49 24
Exp 0, 4 47 37 24
Exp 1, 1 56 29 15
Exp 2, 1 67 26 7
Exp 2, 2 66 25 9
Exp 3, 1 66 27 7

Total 443 272 114
Percent (%) 53 33 14

Table 4.1: Batch data. Starting Experiment 1, batch sizes of 100 were used. Two batches

were run for Experiment 2 to confirm a statistical variation. After including the second

batch of data, the statistical variation disappeared. ’Approvals’ scored more of equal to

55% and ’Rejections’ scored below 55%. ’Incomplete’ refers to participants who submitted

the task on MTurk but did not fully complete the experiment on my website. These people

tried to ’game’ the system. Their data were not included.
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Throughout this experiment, more than 30 % of eligible participant data were found to

be below the arbitrary 55% threshold (refer ’Rejections’ column in Table 4.1). The overall

acceptance rate of these participants hovers just below 50% for all tasks given (see Fig.

4.6(b)). This suggests that these people simply could not do the task or that they were

guessing.

Due to the experiment not being hosted on MTurk itself but rather being hosted on my

own website, certain users could be expected to try to game the experiment and directly

submit the survey on MTurk but not have completed the experiment which is hosted on

the separate website. This corresponds to the 15% of data which was dropped because the

subjects were not found within the database. These 15% consists of participants did not

complete the survey but submitted the MTurk task regardless, likely hoping to game the

system. They are reflected in Table. 4.1 as the ’Incomplete’ column. Starting Experiment 1,

batch size of 100 were used. The core experiment remained the same throughout. Due to

the large amount of rejections, each experiment ended up with a minimum of 56 subjects.

We paid each participant 1 USD for a task that takes less than 10 minutes. This time

includes time required to read the instructions and time needed to download the data.

This should bring the compensation of the experiment close to the minimum federal US

wage. By this train of thought, one should expect that the data is of high quality. Consid-

ering this, we can choose to ignore the arbitrary 55% threshold and consider the data as a

whole. Due to the small sample size of 18 subjects in the previous work, our larger sam-

ple size could be a more accurate representation of perception abilities of the population

as a whole. It remains to be seen why about 30% of participants ’failed’ to score above

55%. Most researchers approve more than 90% of survey takers on MTurk. In fact, less

than 10% of requesters reject more than 10% of survey takers on MTurk [14].

We presented the MTurker’s percent correctness to the survey website as soon as they

completed the survey. This would allow them to return the task on MTurk if they wished

preserve their approval ratings. Still, quite a large portion of the submitted data did not

satisfy the 55% correctness threshold that warrants payment. These people submitted
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their task on MTurk even though it was clearly indicated thrice that only people who

scored at least slightly above chance would be paid. We received a total of 41 emails over

the course of all the experiments from people complaining about the passing threshold

even though they agreed to the waiver. Most of the 41 came from our pilot experiments.

In order to minimize the number of such emails in the actual experiments i.e. reported

in this thesis, we indicated the 55% passing criteria in the MTurk ’description’ of the

experiment on the MTurk website. This would ensure that there is visual evidence that

this criterion was mentioned even after we take down the experiment website. We believe

this led to fewer complaints in the latter studies. All of the 41 people responded directly

via MTurk and not using the emails provided in the waiver (from Sec. 3.5).

4.7.2 Feedback from MTurkers

For all my studies, we asked for feedback on the experiment. Some complained that a

survey completion code should be provided since it is standard with surveys conducted

outside of MTurk. One individual even thought our experiment might be a scam because

of the lack of survey completion code. For future reference, even though a survey code

was not required to properly acknowledge and pay participants, it might be better to

include one.

Through the feedback from the pilot studies, we were able to clean up a lot of the

issues with the experiment and how it was conducted. We would recommended re-

searchers considering MTurk to run small batches on MTurk purely for feedback on the

study as well. As the feedback loop of running an experiment on MTurk is quite short,

this allows researchers to quickly improve their studies. MTurkers in the pilot studies

were happy to provide constructive feedback on the survey.
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(a) Participants above 55% correctness overall (b) Participants below 55% correctness overall

Figure 4.6: (a) Correctness average increases during experiment for Experiment 1 - 3.

When fitting the correct data points in (a) with a linear fit, we get a line with m = 0.026

and b = 71.97. The ’none’ line represents how many percent of people failed to click either

h or v in response to the stimulus. The ’correct’ line represents the percentage of people

who got the right answer.

4.7.3 MTurkers learn

Over the course of the experiment, participants of the experiment actually improved their

percent correctness (see Fig. 4.6). This shows that on average most participants paid

enough attention and even learned to perform better without any feedback. It may also be

interesting to observe how much participants improve over the course of a larger sample.
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Chapter 5

Discussion and Conclusion

We found that trends in the directional light conditions from the previous work [16] held

in Experiment 0, which was our MTurk replication of the previous work. Unlike the

subjects in the previous work, the Turkers performed much better in the Matlab and

Mathematica conditions thus putting some doubt on whether increasing light slant is

better than the Matlab and Mathematica built in lighting conditions as was previously

concluded. Experiment 1, the variant of Experiment 0 with gamma calibration, generally

reproduced the trends in the directional lighting conditions from Experiment 0 and the

previous work as well. Once more, the Matlab and Mathematica perform just as well as

the directional lighting conditions. The perception of glossy conditions was not better

than the perception of matte conditions at high light slants (φ = 2θ) where shading is

linear.

As performance between Experiment 1 and Experiment 3 is quite comparable and per-

formance on Experiment 2 is lower than the former, we conclude that contrast is impor-

tant to shape perception if there is not have enough of it. For the 60° surface slant, direc-

tional lighting and matte material condition, we showed that the improvement in shape

from shading can be directly attributed to an increase in contrast. When we controlled for

contrast in Experiment 2 and 3, every light slant condition for the 60° surface slant matte

material condition rendered the same surface because diffuse shading becomes linear at
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high light slant [38]. Since each of the surfaces rendered were the same, the perception

performance was flat across these light slant conditions. In Experiment 1, we see an in-

crease in shape from shading performance as light slant and contrast increased for the

60° surface slant, matte material condition. It is therefore possible to improve shape per-

ception purely by increasing image contrast. Contrast seems to play an especially large

role in glossy material conditions as the reduction in contrast caused a massive overall

dip in shape from shading performance in Experiment 2. Matte materials are much more

reliable in low contrast environments.

Past some threshold of contrast, the other factors stated in the previous work such as

the location of intensity maxima and the location of the highlights seem to play a larger

role in shape perception. It would be interesting to verify this claim by running the same

experiment at a larger variety of contrast levels and seeing how the performance changes

for the tasks. It would also be intriguing to find out where performance begins to suffer

at higher light slant conditions.

In terms of MTurk, we conclude that running a human visual perception experiment

online can be viable if one takes the proper precautions. Amongst these precautions are

proper pay, a robust testing environment that enables one to easily identify people who

try to game the system and per subject gamma correction. This thesis benefited from the

binary nature of the trials to easily identify poor data. We recommend running studies

where the questions posed to the subjects have right and wrong answers.
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[29] LANGER, M., AND BÜLTHOFF, H. A prior for global convexity in local shape from

shading. Perception 30 (2001), 403–10.

[30] LITMAN, L., ROBINSON, J., AND ROSENZWEIG, C. The relationship between moti-

vation, monetary compensation, and data quality among us- and india-based work-

ers on mechanical turk. Behavior research methods 47 (06 2014).

[31] MACINNIS, C. C., BOSS, H. C., AND BOURDAGE, J. S. More evidence of participant

misrepresentation on mturk and investigating who misrepresents. Personality and

Individual Differences 152 (2020), 109603.

[32] MASON, W., AND WATTS, D. J. Financial incentives and the ”performance of

crowds”. In Proceedings of the ACM SIGKDD Workshop on Human Computation

(New York, NY, USA, 2009), HCOMP ’09, Association for Computing Machinery,

p. 77–85.

[33] MOSS, A., ROSENZWEIG, C., ROBINSON, J., AND L., L. Demographic stability on

mechanical turk despite covid-19. Trends Cogn Sci (06 2020).

[34] OPEN SOURCE. Nodejs. https://nodejs.org/en/download/, 2019. version =

v12.18.3.

[35] OPEN SOURCE COMMUNITY. Three js. https://github.com/mrdoob/three.

js, 2019. commit = bcfa3339edf0222ee8b9509417c92640ce1cd3d9.

[36] OPENJS FOUNDATION. Expressjs. https://expressjs.com/, 2019. accessed:

2020-09-03.

[37] PELI, E. Contrast in complex images. Journal of the Optical Society of America. A,

Optics and image science 7 (11 1990), 2032–40.

50

https://nodejs.org/en/download/
https://github.com/mrdoob/three.js
https://github.com/mrdoob/three.js
https://expressjs.com/


[38] PENTLAND, A. Linear shape from shading. Int J Comput Vision 4, 4 (1990), 153–162.

[39] RAMACHANDRAN, V. S. Perceiving shape from shading. Scientific American 259, 2

(1988), 76–83.

[40] ROBINSON, J., ROZENSWEIG, C., AND LITMAN, L. The Mechanical Turk Ecosystem.

SAGE Publications, 2021, ch. 2.

[41] ROSS, J., IRANI, L., SILBERMAN, M., ZALDIVAR, A., AND TOMLINSON, B. Who

are the crowdworkers? shifting demographics in mechanical turk. Conference on

Human Factors in Computing Systems - Proceedings (01 2010), 2863–2872.

[42] ROSS, J., ZALDIVAR, A., IRANI, L., AND TOMLINSON, B. Who are the turkers?

worker demographics in amazon mechanical turk. Department of Informatics,

University of California, Irvine, USA, Tech. Rep (2009).

[43] STEWART, N., CHANDLER, J., AND PAOLACCI, G. Crowdsourcing samples in cog-

nitive science. Trends in Cognitive Sciences 21 (08 2017).

[44] STEWART, N., UNGEMACH, C., HARRIS, A., BARTELS, D., NEWELL, B., PAOLACCI,

G., AND CHANDLER, J. The average laboratory samples a population of 7,300 ama-

zon mechanical turk workers. Judgment and decision making 10, 5 (9 2015).

[45] WAGNER. Simplex noise. https://github.com/jwagner/simplex-noise.

js, 2019. commit: 7ec0556cc96cbc4db3f29ba0602ef0b4b9242009.

[46] WALTER, S., SEIBERT, S., GOERING, D., AND O’BOYLE, E. H. A tale of two sample

sources: Do results from online panel data and conventional data converge? Journal

of Business and Psychology (2018), 1–28.

[47] WOODS, A., VELASCO, C., LEVITAN, C., WAN, X., AND SPENCE, C. Conducting

perception research over the internet: A tutorial review. PeerJ 3 (07 2015).

51

https://github.com/jwagner/simplex-noise.js
https://github.com/jwagner/simplex-noise.js


[48] ZACK, E. S., KENNEDY, J. M., AND LONG, J. S. Can nonprobability samples be used

for social science research? a cautionary tale. Survey research methods 13 (2019),

215–227.

[49] ZHANG, B., AND GEARHART, S. Collecting online survey data: A comparison of

data quality among a commercial panel —& mturk. Survey Practice 13 (12 2020),

1–10.

52


	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background
	Mechanical Turk
	Demography of MTurk
	Data quality

	Shape from shading perception
	How Does Lighting Direction Affect Shape Perception of Glossy and Matte Surfaces?
	Gamma Correction
	Contrast


	Methods
	General Methods
	Task and Stimuli
	Gamma Calibration
	Software platform and technologies used
	Optimizations used to successfully offer the experiment online

	Experiments
	Experiment 0
	Experiment 1
	Experiment 2
	Experiment 3

	MTurk Participants
	Cost of running an experiment on MTurk
	Appendix: Waiver presented prior to experiment

	Results
	Comments on Standard Error
	Results from FaismanLanger2013
	Experiment 0
	Experiment 1
	Experiment 2
	Experiment 3
	MTurk issues
	Data Quality
	Feedback from MTurkers
	MTurkers learn


	Discussion and Conclusion

