COMPUTER-AIDED SUBSURFACE DRAINAGE SYSTEM DESIGN AND DRAFTING

bу

SIE-TAN CHIENG

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Department of Agricultural Engineering Macdonald Campus McGill University Montreal, Canada

December 1979

Short title

COMPUTER-AIDED DRAINAGE SYSTEM DESIGN AND DRAFTING

SIE-TAN CHIENG

ABSTRACT

SIE-TAN CHIENG

Ph.D.

Agricultural Engineering

COMPUTER-AIDED SUBSURFACE DRAINAGE SYSTEM DESIGN AND DRAFTING

The use of computers and computer plotters to design and lay out plans of subsurface drainage systems was studied. A systematic approach was developed.

Two existing programs, TOPMAP and CONTUR, were used with some modifications to produce spot elevation topographic and contour maps from survey data.

Four main programs, HYCONS, PROFILE, DSDP and DSLP, were developed for drainage system design and drafting purposes. HYCONS was used to obtain the hydraulic conductivity and drain spacing from single auger hole tests and assigned design parameters. PROFILE was used to draw the profiles of collectors or laterals of the drainage system when needed. DSDP and DSLP were used to design and lay out the plans of those designed systems.

Nomographs for obtaining the equivalent depth of flow below the drains for seven commonly used drainage tubing diameters were presented. Another nomograph was developed interrelating the variables of design drainage rate, equivalent depth, drain depth, hydraulic conductivity and drain spacing between laterals. A new multiple-correlation graph for determining the required size and maximum allowable length of drain tubes was also developed.

RESUME

Ph.D.

SIE-TAN CHIENG

Génie rural

CONCEPTION ET DESSIN DE SYSTEMES DE DRAINAGE SOUTERRAIN A L'AIDE DE L'ORDINATEUR

L'utilisation des ordinateurs et des appareils à dessin automatiques pour concevoir et tracer les plans de systèmes de drainage souterrain est l'objet de cette étude. Une approche systèmatique a été développée.

Deux programmes déjà existants, TOPMAP et CONTUR, légèrement modifiés ont été utilisés pour produire des cartes avec lignes de contour à partir de relevés topographiques.

Quatre programmes principaux, HYCONS, PROFILE, DSDP et DSLP, ont été développés pour la conception et le dessin de systèmes de drainage. HYCONS utilise les résultats des tests du trou de tarière et d'autres paramètres de conception pour calculer la conductivité hydraulique et l'espacement des drains. PROFILE dessine les profils des collecteurs ou des latéraux du système de drainage au besoin. DSDP et DSLP font la conception et le tracé de plans des systèmes ainsi concus.

Des nomogrammes ont été formulés pour obtenir la profondeur équivalente de débit sous les drains pour les sept diamètres de drains utilisés couramment. Un autre nomogramme a été développé pour relier entre elles les variables de débit de drainage, de profondeur équivalente, d'espacement des drains, de conductivité hydraulique et d'espacement des drains entre les latéraux. Un nouveau graphique à correlation multiple pour déterminer le diamètre et la longueur maximale permise pour les tubes de drainage a également été développé.

ACKNOWLEDGEMENTS

The author wishes to express his sincere thanks and appreciation to Dr. R. S. Broughton, Professor of Agricultural Engineering and supervisor of this project, for his invaluable continued guidance, assistance and encouragement throughout this research and in the preparation of this thesis.

The author wishes to express his appreciation to Dr. R. Kok for his many useful and thought-provoking suggestions and his help with arrangements for computer facilities.

Dr. D. Burrage of the School of Computer Science is acknowledged for his helpful discussions and suggestions with respect to some computer matters.

During the course of this work, many useful discussions took place between the author and some staff members and graduate students of the department. The author wishes particularly to thank Dr. E. McKyes, Dr. V. Raghavan, Professor P. Jutras, Dr. E. R. Norris, Dr. S. Negi, Mr. P. Richard, Mr. S. Ami and Mr. G. Wall.

The financial support of the Quebec Agricultural Research and Services Council and the McGill University Summer Research Fellowship are gratefully acknowledged.

I shall remain indebted to my parents, brothers, sisters and fiancée for their blessings and encouragement in completing this work.

Special thanks are extended to Mrs. M. Couture for the great care she has taken in typing the manuscript.

CONTRIBUTIONS TO KNOWLEDGE

This study provides the following contributions to knowledge:

- The digital computer has been used together with the developed programs to design subsurface drainage systems - Section 3.5.
- 2. High-speed computer plotters have been used to draw spot elevation topographic and contour maps and the plans for drainage systems from item 1 above Sections 3.5.2 and 3.5.3.
- 3. It has been found, using the actual designed samples, that the computer drafting method is faster and cheaper than conventional (manual) drafting methods.
- 4. Nomographs for obtaining the equivalent depth below the drain centre for seven commonly used drain tube diameters have been developed Figures 8 to 14.
- 5. A nomograph was developed to interrelate the variables of design drainage rate, equivalent depth, drain depth, hydraulic conductivity and drain spacing between laterals Figure 36.
- 6. A new multiple-correlation nomograph showing the relations between areas drained, drain tube capacities, design drainage coefficients, slopes of the drains, spacings between laterals and the maximum allowable lengths of the drain lines has been presented Figure 37.

TABLE OF CONTENTS

	Pa	age
ABSTRAC	T	i
RESUME		ii
ACKNOWL	EDGEMENTS	
CONTRIB	BUTION TO KNOWLEDGE	iv
	FIGURES	
LIST OF	TABLES	 х
LIST OF	APPENDICES	xi
	SYMBOLS	
	ABBREVIATIONS	
		7T V
CHAPTER	I. INTRODUCTION	1
1.1	Statement and the nature of the problem	1
1.2	Objectives	3
1.3	Scope of the work	4
CHAPTER	II. REVIEW OF LITERATURE	5
2.1	Subsurface drainage	5
2.2	Water balance and subsurface drainage design	11
2.3	Subsurface drainage system design practice	13
2.4	Computer graphics for drafting and drainage system	
	layout	16
CHAPTER	III. METHODOLOGY CONSIDERATIONS	19
3.1	Hardware for computer drafting	19
3.2	Software for computer drafting	23
3.3	Topographic map preparation	23
3.4	Contour map drawing	26
3.5	Development of system design and layout programs	28
	3.5.1 Evaluation of parameters used in subsurface	
	drainage system design	30
	3.5.2 Development of design program	48
	3.5.3 Description of layout program	60
	3.5.4 Profile program	71

				P	age
CHAPTER IV. RESULTS AND DISCUSSION	•	•	•		75
4.1 General					
4.3 Discussion of features of programs and nomographs					
CHAPTER V. SUMMARY AND CONCLUSIONS	•	•	•	•	93
CHAPTER VI. RECOMMENDATIONS FOR FURTHER RESEARCH		•	•	•	96
REFERENCES	•	•	•	•	98
APPENDICES					103

LIST OF FIGURES

Figure		
1.	Drainage system in homogeneous and layered soil	. 8
2.	Sequences in computer-aided subsurface drainage system design and layout	15
3.	Plotting conventions of Calcomp 663 plotter	22
4.	Steps in off-line and on-line plotting systems	24
5.	Order of functional steps in the topographic mapping program	27
6.	Different types of subsurface drainage systems	29
7.	Definition sketch for flow to drains	31
8.	Relationship between d and d_e where S is the spacing between drains (Drain diameter = 100mm)	36
9.	Relationship between d and d_e where S is the spacing between drains (Drain diameter = 120mm)	37
10.	Relationship between d and d_e where S is the spacing between drains (Drain diameter = 150mm)	38
11.	Relationship between d and d_e where S is the spacing between drains (Drain diameter = 175mm)	39
12.	Relationship between d and d_{e} where S is the spacing between drains (Drain diameter = 240mm)	40
13.	Relationship between d and d_e where S is the spacing between drains (drain diameter = 300mm)	41
14.	Relationship between d and de where S is the spacing between drains (Drain diameter = 360mm)	42
15.	Definition sketch for auger hole method	46
16.	Generalized flow chart for program HYCONS	47

С.	rgure	P	'age
	17.	Generalized flow chart for drainage system design program	49
	18.	Design-area boundaries and corners with the grid system .	52
	19.	Number convention of the corners of design-area	53
	20.	Location of outlet and the type of collector	55
	21.	Definition sketch for design program	57
	22.	Generalized flow chart for drainage system layout program	62
	23.	Definition sketch for a gridiron type subsurface drainage system	64
	24.	North arrows in different sizes and orientations drawn by subprogram ARO1	67
	25.	Key to drainage plan drawn by subprogram PKEY10	68
	26.	Title block for drainage plan drawn by subprogram TBLK17.	69
	27.	Table of materials for drainage plans produced by subprogram COLEN4	70
	28.	Profile for land surface and collector drain drawn by program PROFILE	73
	29.	Profile for land surface and collector drain drawn by program PROFILE	74
	30.	Steps' functions in computer-aided design and layout system	76
	31.	Spot elevation topographic map produced by program TOPMAP (scale: 1:1200)	77
	32.	A much reduced size reproduction of a spot elevation topographic map produced by program TOPMAP	78
	33.	Contour map produced by program CONTUR (the 19th tee driving range)	80
		Contour map produced by program CONTUR (Job #E, N.C.C., Ottawa)	81

Figure		Page
35.	Spot elevation topographic and contour map produced by modified CONTUR program	. 83
36.	The graph for determining the spacing between drain laterals	. 90
37.	Chart for determining the required size and maximum length of laterals of corrugated plastic drainage tubing	. 92

LIST OF TABLES

Table		Page
1.	Design drainage rates generated for different soil parameters and drain depths using St. Hyacinthe, Quebec, weather data for the 35 years, 1941 to 1975	33
2.	Representative Manning's n values for some plastic drain tubes	65
3.	Comparison of time spent for manual and computer-aided drafting methods	85
4.	Cost comparison between manual and computer-aided drafting methods	87
5.	Samples of execution charges	88

LIST OF APPENDICES

APPENDIX A	A	Listing of computer program for hydraulic conductivity and drain spacing calculations, HYCONS 104
APPENDIX B	В	Listing of computer program for drainage system design Program, DSDP
APPENDIX C	C	Listing of computer program for drainage system layout program, DSLP
APPENDIX D	D	Job control language statements setup and input formats for computer programs DSDP and DSLP 162
APPENDIX E	Ε	Listing of computer program PROFILE
APPENDIX F	F	Subsurface drainage plan of Job #1 Area, Ottawa, Ontario, produced by computer plotter
APPENDIX G	G1	Drainage plan of Job #E Area, Ottawa, Ontario, drawn by draftsman
APPENDIX G	G 2	Drainage plan of the 19th tee driving range, Ottawa, Ontario, drawn by draftsman
APPENDIX H	H1	Drainage plan of Job #E Area, Ottawa, Ontario, designed and drawn by computer
APPENDIX H	H2	Drainage plan of the 19th tee driving range, Ottawa, Ontario, designed and drawn by computer 180

LIST OF SYMBOLS

A	area
а	a constant
Ъ	a constant
đ	the vertical distance from drain tube center to the impervious soil layer
D	the vertical distance from soil surface to the impervious soil layer
DD	drain depth
d _e	Hooghoudt's equivalent depth of soil, below the drain center, through which flow to drains occurs
DH	depth of auger hole below the ground water level
DWD	desirable water table depth from soil surface
H	total drain depth
h	height of water table at midspacing above subdrain centers
i	number of item
k or K	hydraulic conductivity
k _a or K _a	hydraulic conductivity for soil layer above the subdrain
k_b or K_b	hydraulic conductivity for soil layer below the subdrain
L	length of the drain line
И	number of connections of laterals and collector
n	Manning's roughness coefficient
R	drainage rate (drainage coefficient), volume of outflow per unit area of land drained per unit time
r	radius

- s or S drain spacing between laterals
- x or X horizontal distance from some vertical reference plane
- y or Y vertical distance from some horizontal reference plane
- z or Z elevation above the ground
- ΔX change in X
- ΔY change in Y
- ΔZ change in Z
- α , β , θ angles

LIST OF ABBREVIATIONS

cm centimeter, centimeters

CRT Cathode Ray Tube

ft foot, feet

ha hectare, hectares

hr hour, hours

in inch, inches

I.D. inside diameter

JCL Job Control Language

km kilometer, kilometers

m meter, meters

mm millimeter, millimeters

min minute, minutes

O.D. outside diameter

OS Operating System

sec second, seconds

t time

yr year, years

\$ dollar, dollars

CHAPTER I

INTRODUCTION

1.1 Statement and the nature of the problem

Subsurface drainage is a recognized and increasingly practised method of removing excess soil water from the agricultural lands. The rates of installations of subsurface drainage systems in the Provinces of Quebec and Ontario have blossomed out in the past few years. In Quebec alone, the installations had reached about 12100 km/year in 1975 (Broughton, 1976).

April (1967) and Jutras (1967) show that about 1214000 hectares, or approximately 60 per cent of the cultivable land in Quebec needs subsurface drainage improvements for its crop productive potential to be realized. Broughton (1976) points out that with installation rates of 13000 km/year and 0.5 km/ha, about 50 years will be required for these installations.

From the point of view of subsurface drainage system cost, it is desirable that the design drainage coefficient (drainage rate) be

not larger than necessary to remove excess water adequately soon for the needs of crop growth or field machine operations. In order to obtain adequate drainage systems for the agricultural lands, appropriate theories and approaches to system designing should be carefully chosen.

It is logical that the necessary drainage rate should depend on the climatic regime of the region as well as drainable porosity and available water holding capacity of the particular soils and the water table depth requirements of particular crops or field machine operations. The water balance computer drainage model developed by Chieng et al. (1978) has made good progress in relating subsurface drainage performance to the climatic regime of a region as well as the parameters of a specified soil. This model may be used with the input for a particular region to obtain adequate drainage criteria for the system design.

It is recognized that the number of days available for field operations, i.e., field surveying, drain installations, land smoothing, etc., is limited in this region of the country due to the long cold winter and wet spring and wet autumn conditions. Generally, the work for the soil measurements, topographic survey, system design report preparation and drain installations for a field or farm needs to be spaced over two summers. If the time required for these processes could be reduced, the time between the start of planning and the installation could be reduced. Thus, construction could be done in the same season as the planning, for the smaller more urgent jobs.

It is understood that one of the most tedious time-consuming parts of the processes of a subsurface drainage system design is "drafting," i.e., topographic mapping, contour lines drawing, drain lines layout and special key notes lettering, etc. To reduce this time and tedium, it has been conceived to be possible to apply modern computer plotting techniques to speed up the drafting processes. The computer is a capable helper when adequately instructed. It provides recall, speed, accuracy, and endurance.

The purpose of the present study is: by using the adequate design criteria generated by the water balance computer drainage model suggested by Chieng et al. (1978), the hydraulic conductivity measured in the field, to design the subsurface drainage system by using the well known Hooghoudt's equation (Luthin, 1973). The field topographic and contour maps, the designed plans and other necessary information for the system installations will be plotted by the high speed computer plotter.

1.2 Objectives

The objectives of the present study are:

- To use the computer drainage model suggested by Chieng et al.
 (1978) with some input modifications to obtain adequate
 subsurface drainage system design criteria for particular fields.
- 2. To plot the field survey data in different scales and orientations as spot elevation topographic maps by using the high speed computer plotter.

- 3. To use a contouring program to draw topographic maps with contour lines based on the field spot elevations.
- 4. To develop programs to instruct the computer to obtain different possibilities of the subsurface drainage designs and produce plans of those designs with a high speed computer plotter.
- 5. To develop programs for the computer to produce lists of materials needed for each drainage system designed.
- 6. To produce some sample computer controlled plotter drawings of drainage system designs for particular fields showing desired positions of drainage facilities, lists of materials for cost estimate so that the physically most suitable design, or the least expensive design could be chosen.

1.3 Scope of the work

This study is to make a systematic attempt to design and prepare drawings for subsurface drainage systems using the high speed digital computer and computer plotter. The research is restricted to the cases of agricultural lands whose slopes are less than 8 per cent. This might cover approximately 80% of lands needing subsurface drainage facilities in the world and 2 million hectares in the Province of Quebec.

CHAPTER II

REVIEW OF LITERATURE

2.1 Subsurface drainage

Within the past thirty years, a considerable amount of research on subsurface drainage problems has been done.

The criteria for design of subsurface drainage systems may be specified in terms of the depth of water to be removed within a specified time period, maximum height of the water table, rate of lowering the water table, or some other set of conditions. Hedstorm, Corey and Duke (1971) state that in determining these criteria, the drainage or aeration requirements of the predominant crop should be considered. It is generally considered that a unique analytical formulation of the various processes involved in the subsurface drainage system is very complex, and even if it could be achieved, the improvement over the results obtained by simpler methods may be insignificant. To date, engineering specifications of drainage systems have been based on field observations of existing systems, laboratory tests of soils and drainage materials, drainage equations,

and results from models and analogues. There is no universally accepted design procedure, although there is extensive literature on subsurface drainage.

So far, drainage problems have been divided into steady state and non-steady state flow conditions. A steady state condition exists when the boundaries and flow rates of a system do not change with time. Otherwise, a non-steady state prevails (Young, 1970).

One of the earliest analyses of steady state drainage conditions was that by Dupuit in 1863 (Broughton, 1972). On the basis of Dupuit's theory, Forchheimer proposed in 1886 a general equation for the free water surface by applying the equation of continuity to the water in a vertical column in a flow region, bounded above by the phreatic surface and below by an impervious layer.

Later, Hooghoudt (1940) proposed a formula for drain spacing computation for the case of steady flow. Hooghoudt's approach combines the concept of radial flow near the drain tubes and nearly horizontal flow at greater distances from the drains. His theory considers the effect of convergence of streamlines near the drains. Hooghoudt's equation may be expressed as:

$$S^2 = (4 K_a h^2 + 8 d_e K_b h)/R$$
 ... (1)

where S = spacing between drain laterals, m

h = water table height above the drains at mid-spacing, m

R = drainage rate, m/day

 d_e = equivalent depth of impermeable layer below drain centre, m (d_e is a function of d and S (Luthin, 1973))

 K_a, K_b = hydraulic conductivities of the soil layers above and below the drain, respectively, m/day.

When applying equation (1) to a homogeneous soil, i.e., $K_{\rm a}$ = $K_{\rm b}$, the equation may be simplified to:

$$S^2 = 4 \text{ K} (2 \text{ deh} + \text{h}^2)/\text{R}$$
 ... (2)

Equation (1) applies directly to the drainage cases (a) and (b) shown in Figure 1. Drain spacing can be calculated for case (c) in Figure 1 by using equation (1) if a weighted value of the hydraulic conductivity above the drain is determined for K_a and K_b . Van Beers (1965) suggested that Ernst's equation should be used rather than Hooghoudt's equation to compute drain spacings for case (d) in Figure 1. He had given a nomographic solution of Hooghoudt's equation and more recently, the nomographic solutions have been further generalized by Sakkas (1975).

Subsequent to Hooghoudt's work, various theories and interpretations of the subsurface drainage flow processes have been forwarded by a number of research workers.

Based on Darcy's law, Aronovici and Donnan (1946) developed a formula for the spacing between tile lines using the permeability of the aquifer as a criterion. Donnan (1947) showed with a number of

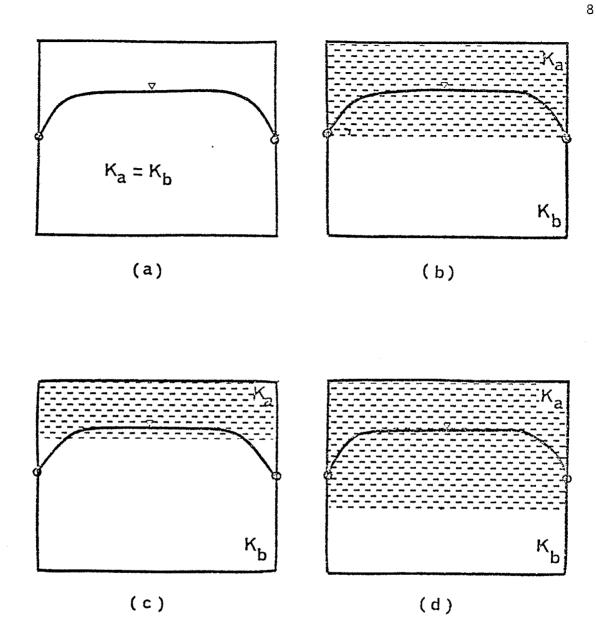


Figure 1. Drainage System in Homogeneous and Layered Soil. Case (a)
Case (b)
Case (c)
Case (d) Homogeneous soil. Two layered soil with drains at layer interface. Two layered soil with drains in the lower layer.

Two layered soil with drains in the upper layer.

laboratory and field experiments that, for a homogeneous soil, the formula is applicable within reasonable limits. Aronovici's spacing formula may be written as:

$$S^2 = 4 K(b^2 - a^2)/R$$
 ... (3)

where S = spacing between laterals, m

K = hydraulic conductivity, m/day

R = drainage rate, m/day

a,b = limits of the drawdown curve as delineated by a
strata survey of the site, m.

The above equation considers horizontal flow only and design values of the spacing S are calculated when the water table is at or very close to the soil surface. The convergence effect of flow lines near the drains had not been adequately considered. Therefore, Hooghoudt's equation, which takes into consideration the convergence effect by introducing a term d_e (equivalent depth) is considered superior to Aronovici's approach (Bhattacharya, 1977).

Later, Kirkham (1949, 1951) proposed a more rigorous approach by applying potential flow theory. His analysis was done for steady flow under ponded water conditions. His work shows the importance of placing drain laterals directly under the low spots in a field to reduce the distance ponded water must soak through the soil to reach a drain pipe.

During the past quarter century, non-steady state subsurface drainage problems have been studied and have been proposed for design of subsurface drainage systems (Young, 1970). Van Schilfgaarde (1965) reviewed and evaluated several of these analyses. He pointed out that most of the analyses including Boussinesq, Glover, Tapp and Moody, Krayenhoff, Maasland and Brook equations, are based on the simplified Dupuit-Forchheimer assumptions; and a few analyses, including the equations of Bouwer and Van Schilfgaarde, Wiser and Ligon, are based on the time-independent relationship between water table height and drainage rate assumptions. Van Schilfgaarde has also shown that, of the various steady and non-steady state drainage flow equations, Hooghoudt's formula, equation (1), for spacing computation gives the least percentage difference between the actual and calculated spacings.

Luthin (1973) reports that there are as many as 160 different theories associated with subsurface drainage. He states that the Hooghoudt's theory is simpler to use than most others and gives significantly small error to be widely acceptable.

It should be mentioned that Guyon's equation (Lagacé and Sylvestre, 1976) has been used extensively for drainage design work in France and Quebec. However, both the Hooghoudt and Guyon formulae are based on Dupuit-Forchheimer assumptions and they give similar results when applied to the same field conditions.

2.2 <u>Water balance and subsurface</u> drainage design

The water content of a soil volume at any time depends on the balance between water inflow and outflow and the changes of the soil water storage. The basic idea in applying the water balance approach to drainage design is to use some mathematical bookkeeping equations to balance the input and output of a drainage system for some specific time intervals and the process is repeated for a large number of years for which the weather data are available.

In 1965, Van Schilfgaarde (1965) applied the water balance approach to compute the daily water table height above a drain from daily precipitation input. He mentioned that the design criteria for drainage systems would be more meaningful if they take into account the probability distribution of water table height rather than considering only a constant water table level (steady state), or an assigned rate of water table level (non-steady state). He also pointed out that the concept of developing frequency distributions of water table heights by using a water balance model is important and feasible.

Taylor and Watts (1967) have used a water balance model to compute water table frequencies corresponding to various arbitrarily selected spacings and drainage rates. They did not apply any particular spacing equations, but had proposed regression equations between water table depth and time.

Young and Ligon (1972) had modified the water balance approach proposed by Van Schilfgaarde after verifying it with five months of field data. They used the modified model to compute both soil moisture and the daily water table heights above the drain with long-term meteorological data.

Foroud and Broughton (1974) adopted the probability analysis concept to predict the water table position by means of a water balance model with long-term precipitation and evapotranspiration data.

Skaggs (1975) has used the water balance approach to develop a water management model to predict the response of the water table and the soil water regime above it to rainfall and evapotranspiration. He used the model to evaluate conventional drainage systems consisting of both surface and subsurface components, and for drainage systems with water table control and with subirrigation.

Chieng (1975) developed a drainage model for water balance to obtain frequency distributions of water table depths above the drain for different drainage rates, available soil moisture contents, drainable porosities and drain depths. In his model, Hooghoudt's equation was incorporated to compute the drainage rates at different water table depths. The model has been used by Chieng et al. (1978), Asselin (1978), Bhattacharya (1978) and Holsambre and Sinai (1979) with different weather data inputs. All studies mentioned above had carried out field observations (water table depth measurements) in

fields with subsurface drainage systems installed in different areas in the St. Lawrence Lowlands and in Israel. The field observations were used to verify the model by comparing the predicted and observed water table depths. Good agreements were found (Chieng et at., 1978).

In this study, Chieng's model will be used to generate drainage criteria for the system design when needed.

2.3 Subsurface drainage system design practice

In order to provide a background perspective for the work presented later, an outline of the current subsurface drainage system design practice seems to be desirable. The outline is based on the literature noted, personal experience of the author and verbal discussions with drainage system designers.

The general practice for design of subsurface drainage systems for those flat lands in the Provinces of Quebec and Ontario, as indicated by Hore (1968), Jutras and Irwin (1970), Broughton (1972), Ministry of Agriculture and Food, Ontario (1976), and Ministry of Agriculture, Quebec (1978) includes the following steps:

- 1. A topographic survey is carried out in sufficient detail to give field elevations to the nearest 50 mm.
- A spot elevation map is prepared for the area to be drained, showing spot elevations and topographic symbols.
- From the spot elevation map, a contour map is prepared. Possible outlet locations and controlling elevations are noted.

- 4. Auger hole tests are carried out in the field to obtain the saturated hydraulic conductivity and information of soil types and layering conditions. If the water table is low at the time when auger holes are dug, an estimate of the hydraulic conductivity or necessary drain spacing is made from observation of soil structure and experience with drainage performance on similar soils.
- 5. From the information on the soils, climatic conditions and the knowledge or experience with drainage installations in the region, a design drainage rate (drainage coefficient) is selected and the spacing between laterals is calculated by using the selected drain spacing equation.
- 6. Subdrain diameters are selected on the basis of having sufficient capacity on the installed grade to discharge a given drainage rate from the area feeding the drain.
- 7. Finally, a drainage system plan is prepared to show information necessary for the installation and future maintenance.

The sequence of these steps in the process to prepare drainage system design plans is indicated in Figure 2 in a form which shows steps aided by computer programs.

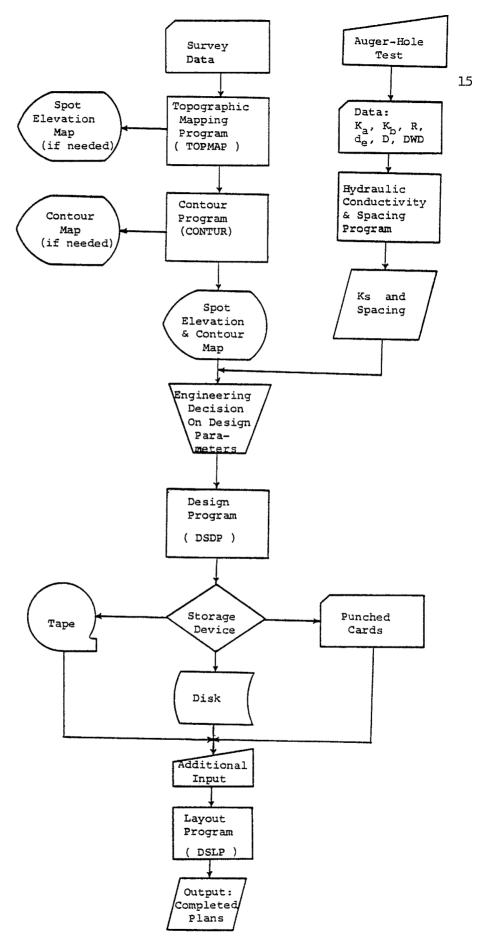


Figure 2. Sequences in Computer-aided Subsurface Drainage System Design and Layout.

2.4 Computer graphics for drafting and drainage system layout

It is a well-known fact that the computer has revolutionized our society in the past two decades. Man's horizon has been widened because of computers. During the past ten years, men and women have used computer systems to teach, contribute to knowledge and improve our environment, solve highly technical problems, and draw complicated engineering, architectural, medical, artistic, structural designs and simulations on picture tubes (Potts, 1975).

Among others, computer graphics is one of the important, farreaching, sophisticated and glamorous endeavors of the computer field.

It has blossomed out from the stage in which it was confined almost
exclusively to the large-scale industries of aircraft, automobile and
petroleum engineering in the past decade (Parslow et al., 1967).

Recently, with the advent of microprocessor and hence reduced cost in
graphics systems, the computerization of engineering drawing tasks
entered the drafting field.

Engineering drawings are a means of visual communication from the design stage on through the production cycle. Concepts are conveyed, reviewed and revised via the drafting medium throughout engineering work. A maximum effort has been made to reduce the cost of human labour and to minimize human errors. The automatic drafting machine has been introduced as an aid in minimizing these costs and errors and to relieve the draftsmen from the many tedious, time—consuming and routine tasks, such as lettering and making new

drawings of a revised design which has only a few changes from previous drawings.

Application of computer drafting is growing constantly. At the present time, some of the areas covered are in architecture, business, education, engineering, industry, medicine and science. In science, computer drafting has been used in atomic structure analysis, nuclear explosion, seismograms, weather data mapping, radio telescope studies, satellite flight tracking and submarine hull designs. In industry, applications include critical path method and planning evaluation review techniques, automobile and aircraft designs and gas line distribution. In medicine and psychiatric diagnosis, it has been employed in such studies as the biomedical research on the graph of sound vibrations in the inner ear and the speed of heart beats. In engineering, computer drafting has aided in air traffic recordings, traffic pattern analysis, analogs and contour mapping. In business, studies of inventory and budget control, advertising and market research, profit and loss trends, as well as financial analysis, have been aided. Samples of the items mentioned above can be found in Sedgewick (1974), Potts (1975), Wright (1975), Godfrey (1977), Whitsed (1978), Bleackley (1978), Kellie (1979) and Computer Data (1979).

A literature search for this topic was carried out by using the CAN/OLE (Canadian On Line Enquiry System) and DIALOG Searching System of the United States. It is found that during the past 15 years (1964-March 1979), there were about 5000 studies regarding

drainage and/or computer. Among those, only the work presented by Renner and Mueller (1974) was applying the computer and computer drafting techniques in the field of subsurface drainage system design and layout. However, the study was aimed at finding the sensitivity of the system cost to drain spacing computed by using the formula suggested by Dumm, Moody and Tapp (Renner and Mueller, 1974). This program shows horizontal positions of drain lines between manholes but cannot produce detailed plans for subsurface drainage systems.

Features such as slopes, lengths and depths of drains, directions of flow, etc., cannot be produced by their program. Nonetheless, they made a good step toward the application of computer drafting techniques to the field of subsurface drainage.

Recently, Murphy et al. (1979) and Kok and Bégin (1979) have used the computer drafting in preparing topographic spot elevation and contour maps. The former have developed a set of short programs for plotting the spot elevations from stadia survey data and the latter have developed a program for drawing contour lines from spot elevation data. These topographic and contour drawing programs are used in the present study with some modifications to produce spot elevations and contour lines for subsurface drainage system design.

CHAPTER III

METHODOLOGY CONSIDERATIONS

Broadly speaking, the study reported in this dissertation consists of three parts. In the first part, information on the available hardware for computer-aided drafting was gathered and examined. Among these, the accessible devices were closely studied. In the second part, a set of programs for designing and drafting the drainage system were developed. During the processes, some existing programs which may be modified and co-operated in the study were also reviewed. In the third part, the developed programs were used to design and lay out the actual system plans.

3.1 Hardware for computer drafting

It is recognized that there are two distinct divisions in the field of computerized drafting systems. These are passive and interactive drafting. Interactive computer drafting is associated with glamorous graphics as illustrated by commercials on television. This drafting uses a display console in interactive mode. Passive drafting

includes plotters, microfilm recorders and other devices which usually do not allow immediate active participation. Generally, a computer-ized drafting system consists of both passive and interactive devices.

There are many different types of hardware on the market currently, such as equipment manufactured by Tektronix, Hewlett-Packard, Calcomp, Wang Lab, Versatec, Gould, Gerber, etc. Bleackley (1978) indicates that Tektronix, Hewlett-Packard and Calcomp are found to be the most popular devices and dominate the computer graphics and drafting fields at the present time.

In this study, the following devices were used:

- 1. A Tektronix 4051 terminal.—This graphics CRT (Cathode Ray Tube) terminal is located in the Agricultural Engineering Department at the Macdonald Campus. It was used to compile and debug the drafting programs which it links to the host computer, an Amdahl V7, at the McGill University Computing Centre, via a data phone. The outputs can be routed to Calcomp plotter or produced in small size by the Tektronix 4631 hard copy unit attached to the terminal.
- 2. A Calcomp 663 plotter.--The McGill Computing Centre operates a Calcomp 663 digital incremental off-line plotter using output produced by a program run on either the Operating System (OS) or McGill University System for Interactive Computing (MUSIC). This particular plotter is a two-axis cylindrical plotter whose plotting surface is the face of the cylinder. Movement of the paper in the

X-direction is obtained by rotating the cylinder, while movement in the Y-direction consists of moving the pen across the face of the cylinder. The pen itself has an up and down position which controls the flow of ink onto the paper. A brief sketch of this plotter's movement is shown in Figure 3.

Communication of pen movements to the plotter is performed by passing arguments to a number of supplied FORTRAN subroutines (Fox, 1978). Plotting instructions are written on an 800 BPI (Bytes per inch) 9-track tape which the computing centre provides. plotting instructions are sensed from the plot tape and appropriate action is taken by the plotter. The largest individual pen movement in any direction is 0.0635 mm (0.0025 inches). By combining a series of short movements, the plotter is able to draw smooth curves. When the plot program redefines the origin, the plotter senses this and increases its counter by one. The plotter operator can then be instructed to set the counter to stop at any origin redefinition and can change the pen size or ink colour at that point. The plot then continues from the exact position at which it was interrupted. Different sizes of pen, colours of ink and types of paper for the plotter are detailed in the Calcomp Digital Plotter User's Guide (McGill University Computing Centre, 1978),

In general, plotting jobs should be able to be performed by either off-line or on-line plotting systems. However, all the plottings in this study were done by the off-line method since the

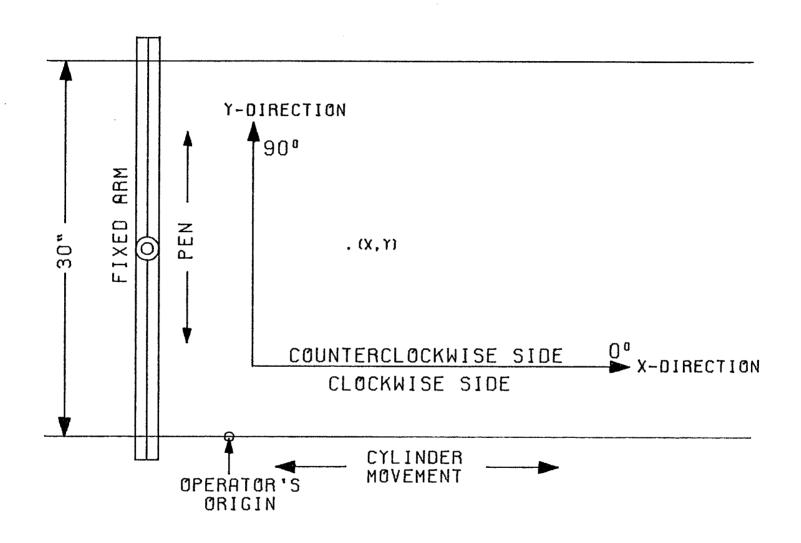


FIGURE 3. PLOTTING CONVENTIONS OF CALCOMP 663 PLOTTER.

McGill Computing Centre has no controller to operate the on-line system. Figure 4 illustrates the steps in off-line and on-line drafting systems.

3.2 Software for computer drafting

Among the computer languages, FORTRAN, COBOL, RPG, PL/1, BASIC and ASSEMBLER, Fortran is the most popular language for science and engineering work (Vaskevitch, 1979). Fortran is widely used as a graphic language. Most of the graphic subroutines or packages like Calcomp, Automat and Tektronix Plot 10 are written in Fortran. In this study, all programs and subprograms are written in Fortran language which can easily call the existing Calcomp subroutines and be called by other programs.

The following few sections discuss the software packages developed and used in the current study.

3.3 Topographic map preparation

An accurate topographic map is essential for good drainage planning. Ground surveys using stadia techniques are currently the most common method of collecting the required topographic information for drainage system design. Aerial photographs can be useful in providing auxilliary information on vegetation, pondings, wetland locations, etc.; but expensive, detailed supplementary ground surveys to establish the elevations of the control points are necessary if topographic maps are to be produced photogrammatrically. Because of

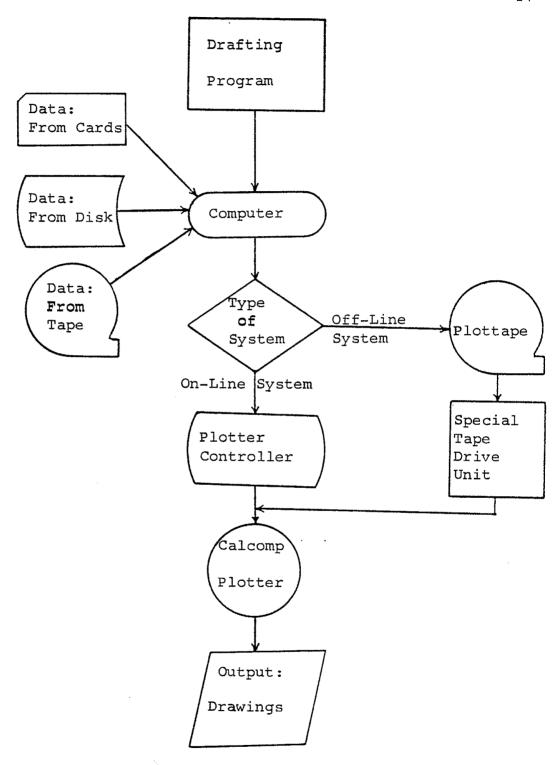


Figure 4. Steps in Off-Line and On-Line Plotting Systems.

the requirements for vertical-axis accuracy in maps for drainage planning, low altitude photography is necessary, requiring several photographs to cover the average farm. Also, air photos should be taken at a time when vegetation and snow cover do not interfere with the observation of ground points. Experience has shown that the stadia survey is a sound choice (Harrington, 1976), although its efficiency can be substantially improved by the introduction of some modern measuring equipment and data processing techniques.

The programs developed by Murphy (1978) for topographic map plotting from stadia surveyed data were used in the study with some modifications. The programs are written in Fortran language and consist of the following components:

- 1. <u>Input section</u>.—There are four short programs in this section. The main task of this section is to transfer the data from card deck or recording tape to magnetic disk on the system. It also corrects or deletes the bad or unwanted data if necessary. After the processes of this section, the raw data are stored in the system as INPUTFILE.
- 2. <u>Processing section</u>.—This section consists of ten programs. It calculates the horizontal and vertical distances for the stadia survey. If the survey involves more than one instrument station, the readings from the different stations will be converted into single—station readings by using trigonometry and the observations from the 3-sighting method of moving from station to station. All the numeric,

alphanumeric and alphabetic codings in the INPUTFILE are converted into mapping information and stored as a new file called MAINFILE.

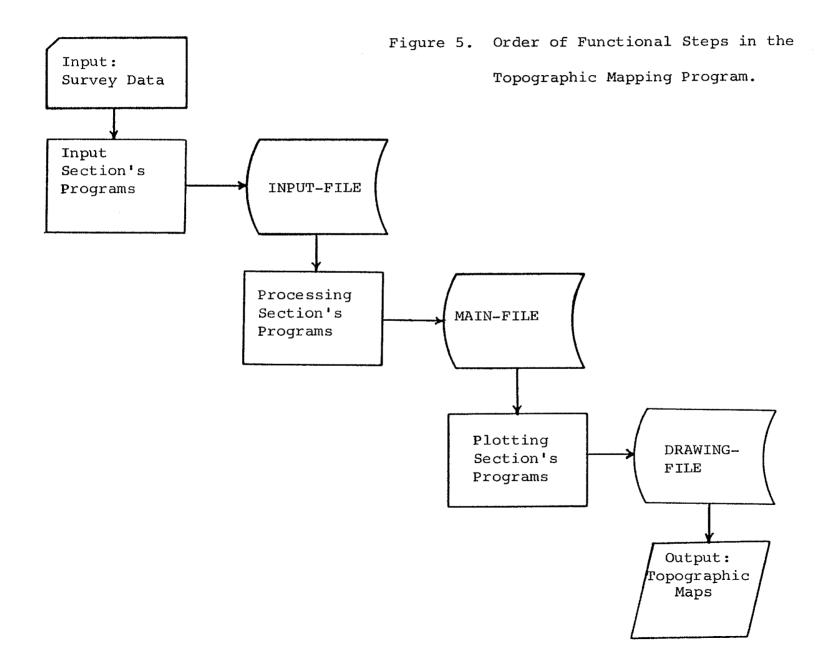

3. Plotting section. -- The MAINFILE that was created in the previous section is processed in this section. A new file known as DRAWING-FILE is created at the end of this section. The plotting section has a listing program that displays the contents of the DRAWING-FILE, an update program that is used for editing purposes, and a plotting program that produces the complete spot elevation topographic map.

Figure 5 illustrates the step-by-step process of the topographic mapping program. The detailed descriptions are documented by Murphy (1978).

3.4 Contour map drawing

In the conventional way of subsurface drainage plan preparation, the production of a contour plan from a spot elevation map is an essential step.

Kok and Bégin (1979) point out that contour drawing in agricultural industries is usually done by draftspersons. It is a routine activity which is time-consuming, boring and expensive. After reviewing a number of computerized contouring methods and several existing contouring programs, they selected a method which is suitable for farm lands and wrote their own contouring program.

The program was tested by comparing the program-generated contour maps to those drawn by the skilled draftspersons using the same field-surveyed data. Good agreements were found (Kok et al, 1979). They also found that it is cheaper to produce contour maps by using computer drafting than manual drawing. The descriptions of the contouring program were detailed by Kok et al (1979). The program was used in the study to produce the contour lines for subsurface drainage system design purposes.

3.5 Development of system design and layout programs

Subsurface drainage systems in general use are the interceptor, natural or partial, herringbone and gridiron types shown in Figure 6.

Among these four types, the gridiron type is the most common system used for flat lands (Schwab et al., 1970; Broughton, 1972). Interceptor and partial drainage systems are used for undulating lands where the subsurface drainage needs are localized. Although the drainage design program was written on the basis of the gridiron type drainage system, it can be used to produce plans for gridiron, herringbone and the combination of these two types of drainage systems.

In the next few sub-sections, the eveluation of parameters used in the system design and the development of the design and layout programs are discussed.

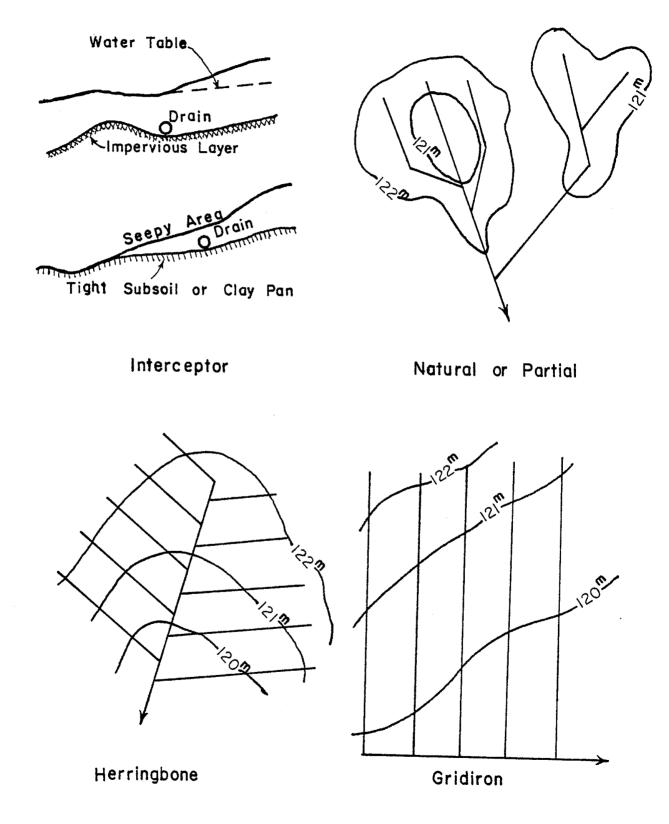
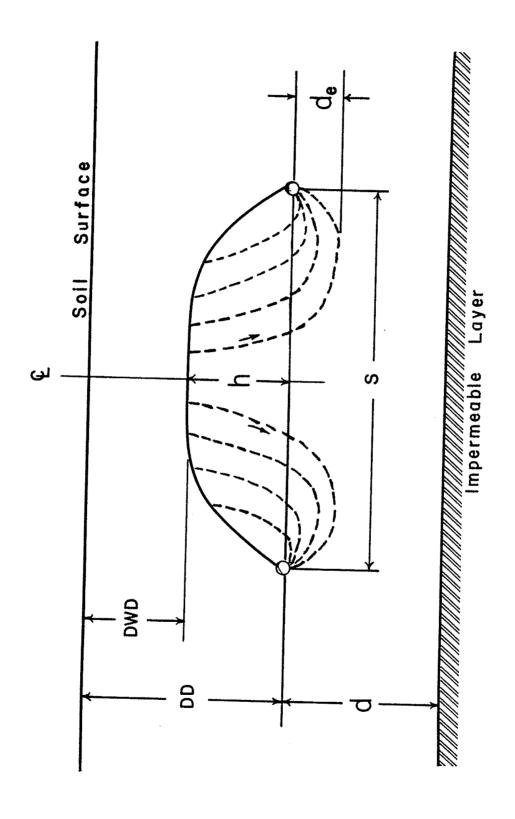


Figure 6. Different Types of Subsurtace Drainage Systems.

3.5.1 Evaluation of parameters used in subsurface drainage system design

In planning a subsurface drainage system, designers must take into account many aspects of soil physical characteristics, climate, crops to be grown and topography. The specific combination of these factors for a particular farm gives the design its own final shape. Van Dort (1974) states that drainage areas which look similar at first glance, may turn out to be very different in some of their factors and their drainage systems will be different in the end.

Some of the requirements for a particular field may be contradictory, and meeting all of them will be impossible. The final design will therefore be produced by weighing several possibilities, and the result will be a compromise. Risks and disadvantages can never be entirely excluded, but the aim is to ensure that the total negative influence is as small as possible. The design and drafting programs developed in this study take into account many design requirements.


Hooghoudt's equation ($S^2 = (8 \text{ Kbd}_{\mathbf{e}}h + 4 \text{ K}_{\mathbf{a}}h^2)/R$) is used to obtain the spacing between drain laterals in the design. The symbols of the equation are depicted in Figure 7. Noting from this figure that h = DD - DWD, the equation may be expressed as

$$S^{2} = \frac{8 K_{b} d_{e}(DD-DWD)}{R} + \frac{4 K_{a}(DD-DWD)^{2}}{R} ... (4)$$

where DD = depth of drain, m

DWD = minimum desirable water table depth from ground surface, m

Other symbols have been defined in equation (1).

Definition Sketch for Flow to Drains. Figure 7.

In the design program developed in this study, the elements in equation (4) are determined in the following ways:

- 1. Drainage rate (R).--Selection of drainage rate is based on the climatic regime of the region as well as soil parameters and the water table depth requirement of the particular crop and field machinery operations. The water balance computer drainage model developed by Chieng et al. (1978) can be operated for several drainage rates with different combinations of soil parameters with the climatic data for the region of interest. Table 1 shows some of the results generated by this model using weather data for St. Hyacinthe, Quebec. Results for other sets of soil and drainage parameters could be obtained by running the model with different inputs. From these computer outputs, designers could select an adequate drainage rate to suit a particular field.
- 2. <u>Drain depth (DD)</u>.--Depth of the subsurface drainage systems is generally chosen within the range that can be reached by available drainage machinery. In the Provinces of Quebec and Ontario, drain depths used are generally varied from 0.8 to 1.5 meters. The cost per meter of drains installed is relatively constant for depths less than 1.3 meters, but increases rapidly with depths greater than 1.3 meters.

From inspection of equation (4) it can be seen that wider drain spacings should be able to be used as the drain depth is increased. However, there are several constraints on selection of

TABLE 1. Design drainage rates generated for different soil parameters and drain depths using St. Hyacinthe, Quebec, weather data for the 35 years 1941 to 1975

Drain	Drainable porosity		Successive	Region A		Region B	
depth (m)		/m ³) Lower zone	days duration	Condition I (mm/day)	Condition II (mm/day)	Condition I (mm/day)	Condition II (mm/day)
1.0	0.07	0.05	4	10.5	12.0	6.0	9.0
	0.07	0.05	3	12.0	15.5	7.0	10.5
	0.07	0.05	2	14.5	19.0	9.0	12.0
1.4	0.07	0.05	4	10.5	12.0	5.1	6.0
	0.07	0.05	3	12.0	14.0	6.0	7.3
	0.07	0.05	2	13.4	16.4	7.3	9.0
1.8	0.07	0.05	4	9.0	12.0	3.5	5.0
	0.07	0.05	3	10.5	13.8	4.0	6.0
	0.07	0.05	2	12.0	16.0	5.0	7.5

Note: Region A = for those areas whose cultivation season must begin in April.

Region B = for those areas whose cultivation season begins in May (or after April).

Condition I = when the allowable water table is 30 cm or less for not more than the indicated number of successive days duration for a once-in-5-year return period.

Condition II = when the allowable water table is 50 cm or less for not more than the indicated number of successive days duration for a once-in-5-year return period.

drain depth. For irrigated soils where soil salinity problems could occur, the drains should normally be 1.8 meters deep or deeper. For humid regions where salinity is not a problem, drain depth may be restricted by the depth of the outlet watercourse, or by the requirement to maintain a drain slope of at least 1 mm/m, even if the land is flatter than this. In some sandy soils it is desirable to keep the drains between 0.55 and 0.8 meters if possible.

- 3. <u>Desirable water table depth (DWD)</u>.--It can be seen from equation (4) that including the term DWD will lead to a conservative system design in a sense that, for a given R, drain spacing will be reduced if DWD > 0. The value of DWD depends on the type of crop grown and its root zone depth. It appears that 300 to 500 mm is a widely used range for DWD (Bhattacharya, 1978; Chieng, 1975; Luthin, 1973). The value of 400 mm was selected and used in the design program. For soils where DD must be kept smaller than 0.8 m, economics may cause the designers to accept DWD values as low as 200 mm.
- 4. Equivalent depth (de).--de is the depth of effective flow below the drain. It is a function of the drain spacing (S), drain tube radius (r) and the depth to impermeable layer below the drain centre (d). Van Schilfgaarde (1963) has suggested the use of equivalent depth to replace the actual depth to the impermeable barrier as a means of accounting for the physical convergence of flow lines near the drains. Van Beers (1965) prepared a nomograph to

obtain de from known values of S and d for a specific drain radius of 100 mm.

In Quebec and Ontario, the most commonly used drain outside diameters are 100 mm, 120 mm, 175 mm, 240 mm, 300 mm, and 360 mm. In the mid-western United States much tubing of 150 mm outside diameter is used. In this study, different graphs for obtaining the values of $d_{\rm e}$ from d and S are presented for these drain diameters (see Figures 8 to 14, inclusive). The values of $d_{\rm e}$ for different drain tubes radius were generated by using the Hooghoudt's equivalent depth equations reported by Moody (1966). The equations may be expressed as

$$d_{e} = \left[1 + \frac{d}{S}(\frac{8}{\pi} \ln \frac{d}{r} - \alpha)\right]^{-1} \cdot d$$
when $0 < \frac{d}{S} < 0.3$ (5)

where
$$\alpha = 3.55 - 1.6 \cdot \frac{d}{S} + 2(\frac{d}{S})^2$$
 . . . (6)

and
$$d_e = \left[\frac{8}{\pi}(\ln(\frac{S}{r}) - 1.15)\right]^{-1} \cdot S$$
 ... (7)
when $\frac{d}{S} > 0.3$

where d_e = equivalent depth, m

S = spacing between lateral drains, m

d = depth of impermeable layer below drain centre, m

r = radius of the drain tube, m

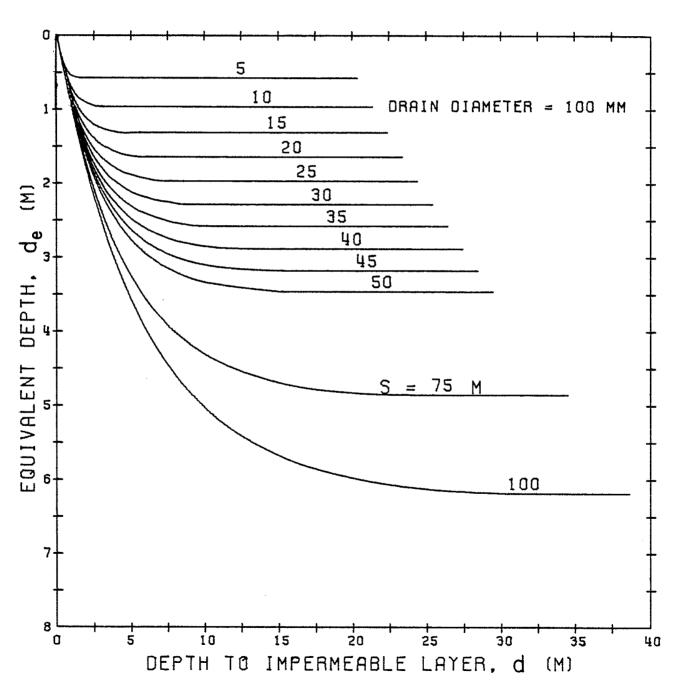


FIGURE 8. RELATIONSHIP BETWEEN d AND de WHERE S IS THE SPACING BETWEEN DRAINS.

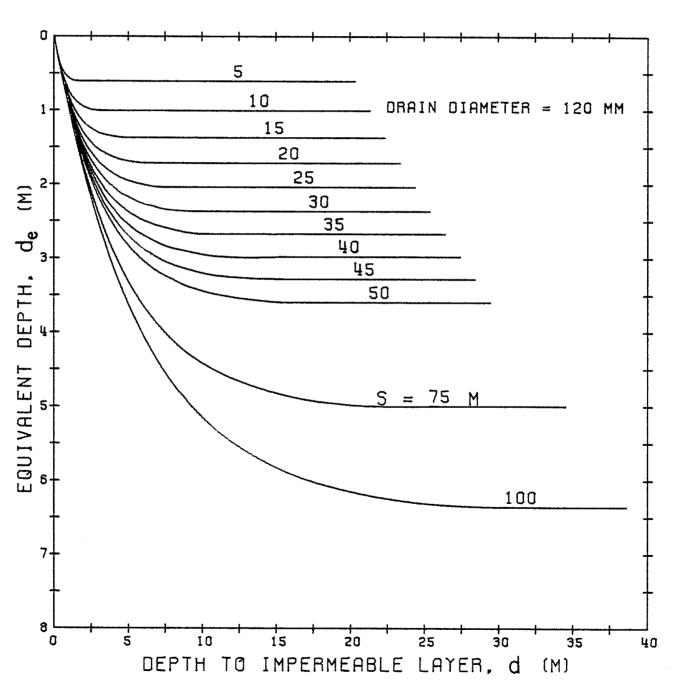


FIGURE 9. RELATIONSHIP BETWEEN d AND d_e WHERE S IS THE SPACING BETWEEN DRAINS.

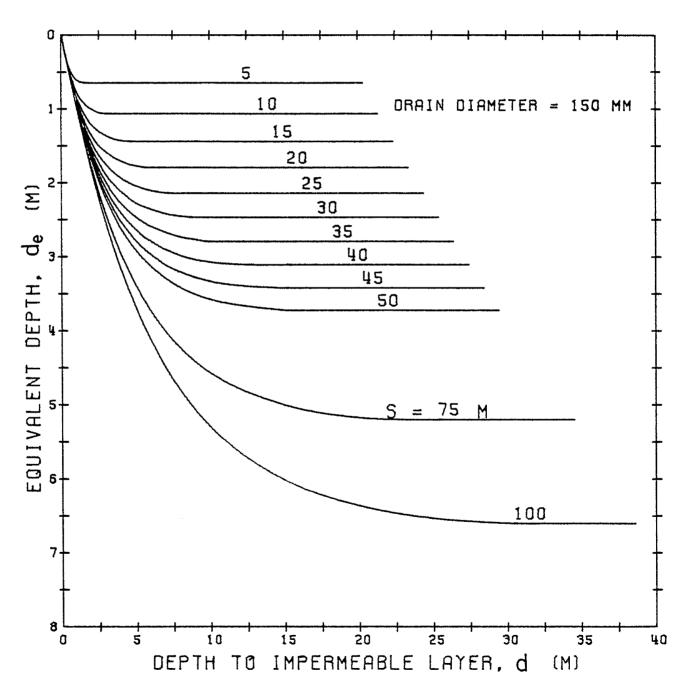


FIGURE 10. RELATIONSHIP BETWEEN d AND d_e WHERE S IS THE SPACING BETWEEN DRAINS.

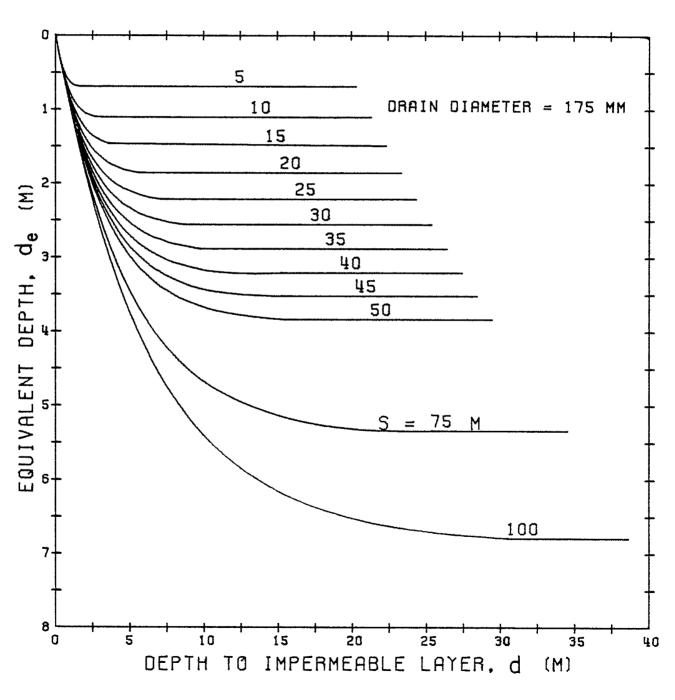


FIGURE II. RELATIONSHIP BETWEEN d AND d_e WHERE S IS THE SPACING BETWEEN DRAINS.

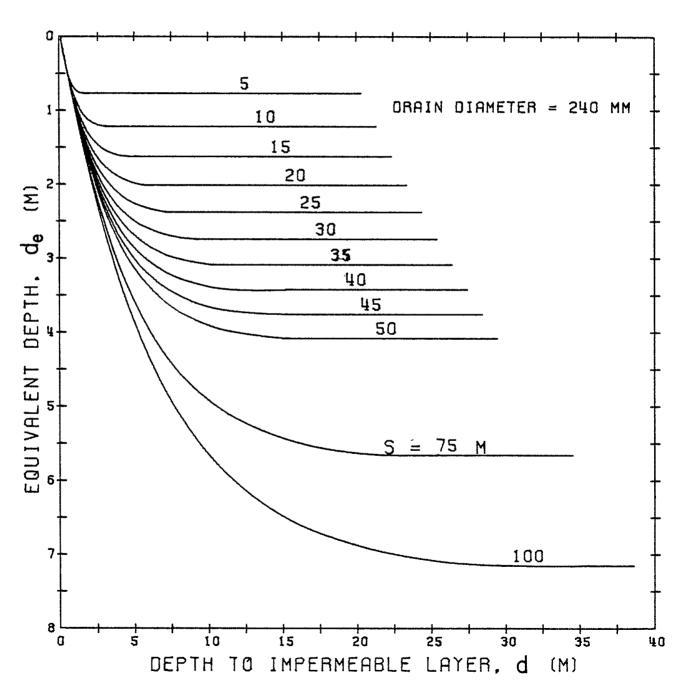


FIGURE 12. RELATIONSHIP BETWEEN d AND d_e WHERE S IS THE SPACING BETWEEN DRAINS.

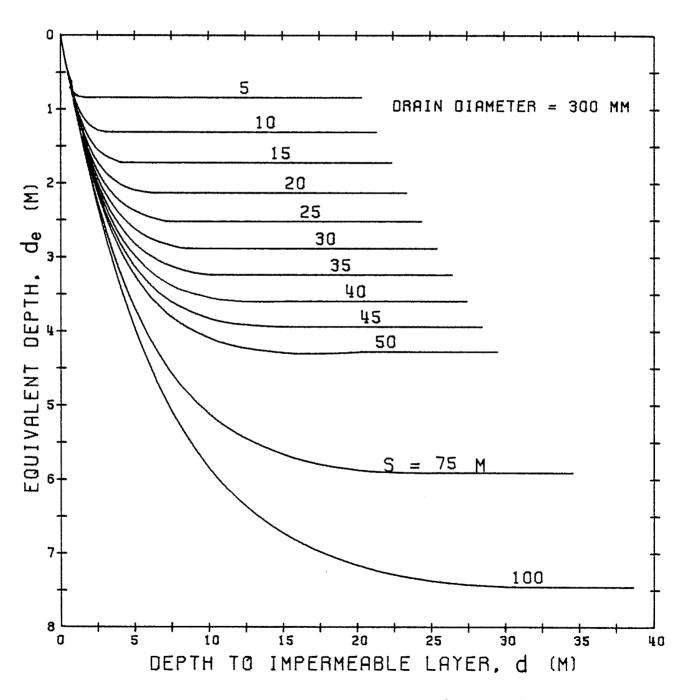


FIGURE 13. RELATIONSHIP BETWEEN d and d_e where s is the spacing between drains.

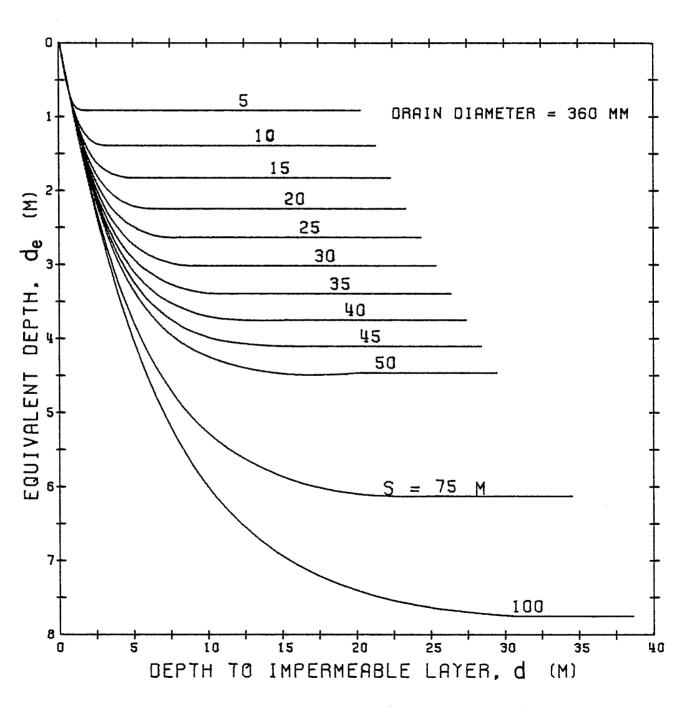


FIGURE 14. RELATIONSHIP BETWEEN d AND d_e WHERE S IS THE SPACING BETWEEN DRAINS.

For many farms in the St. Lawrence Lowlands, it appears that de of 1 m is an acceptable value (Broughton, 1972; Chieng, 1975). For the sake of simplification, $d_{\rm e}$ of 1 m was used in the design program. However, different values can be assigned to design for drainage areas where soil information indicates other values to be appropriate.

5. Hydraulic conductivity (K_a, K_b) .-- K_a and K_b are the hydraulic conductivities of the soil above and below the drain, respectively. If $K_a = K_b$, then the soil is said to be homogeneous with respect to hydraulic conductivity. There are at least 10 different methods which could be employed to determine the hydraulic conductivity (Broughton, 1972). Among these, the single auger hole method has been widely used in the field measurements. A detailed description of the procedures of the auger hold method is given by Van Beers (1970).

Auger hole tests should be made when the water table is 200 to 500 mm below the soil surface. In the region of the Ottawa and St. Lawrence lowlands, water table conditions are suitable for auger hole tests primarily in the months of April, May and November. Occasionally, conditions are suitable after rainy days in the months of June, July, August, September and October.

When drainage planning could be done one year and construction in a later year, it is then possible to schedule auger hole test at times when the water table conditions are suitable. Currently,

farmers and contractors are more frequently wanting to have drainage plans prepared in summer for construction within a few weeks. In such cases, water table conditions are often not suitable for auger hole tests. Applied research efforts are needed to develop methods other than auger hole tests to obtain reasonable values of hydraulic conductivity for drainage design work. Possible methods which should be investigated for field production use are: the air-entry permeameter test; soil cores for laboratory measurement of hydraulic conductivity; and correlation of qualitative field observations of soil texture and structure with hydraulic conductivity.

In this study, a separate program (HYCONS) was prepared to compute the hydraulic conductivity directly from the data measured in the field by using single auger hole method. The equation for the auger hole method can be written as

$$K = \frac{4000 \text{ r}^2}{(DH + 20 \text{ r})(2 - \frac{Y}{DH}) \cdot Y} \cdot \frac{\Delta Y}{\Delta t} \qquad (8)$$

where K = hydraulic conductivity, m/day

 $DH = depth \ of \ hole \ below \ the \ ground \ water \ table, \ m$

Y = distance between ground water level and the average level of the water in the hole for the time interval Δt , cm

 ΔY = change in ground water level in time interval Δt , cm

 Δt = time interval, sec.

r = radius of the hole, cm

Van Beers (1970) indicates that equation (8) represents an empirically derived approximate expression of the results of a number of relaxation constructions. It does not show the exact relationship that should theoretically exist between the different quantities, although value of K will be sufficiently accurate if the following conditions are met:

3 cm < r < 7 cm

20 cm < DH < 200 cm

Y > 0.2 DH

d > DH

and $\Delta Y < 1/4 Y_0$

where d = depth of the impermeable layer below the bottom of the hole or the layer, which has a permeability of about 1/10 or less of the permeability of the layers above, cm.

The symbols of the equation are depicted in Figure 15.

Based on equation (8), the program HYCONS (Hydraulic Conductivity and Drain Spacing) was written to compute the hydraulic conductivity and the drain spacing from the field measured data. A flow chart, representing the basic operations in the HYCONS, is shown in Figure 16. The program is listed in Appendix A.

The program HYCONS can be used to process the measurements from one up to two fields with as many auger holes as one wishes for each field. However, if the computation is done for two different fields, the design parameters, i.e., design drainage rate, total drain depth,

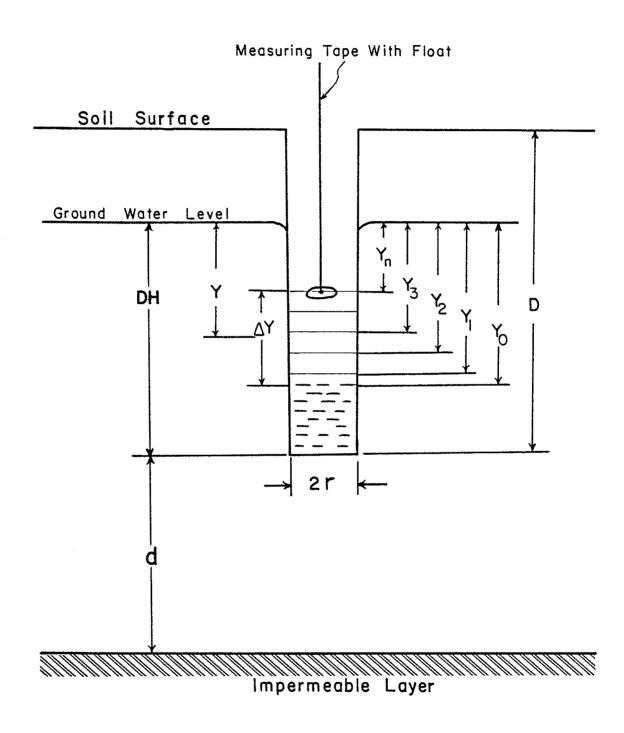


Figure 15. Definition Sketch for Auger Hole Method

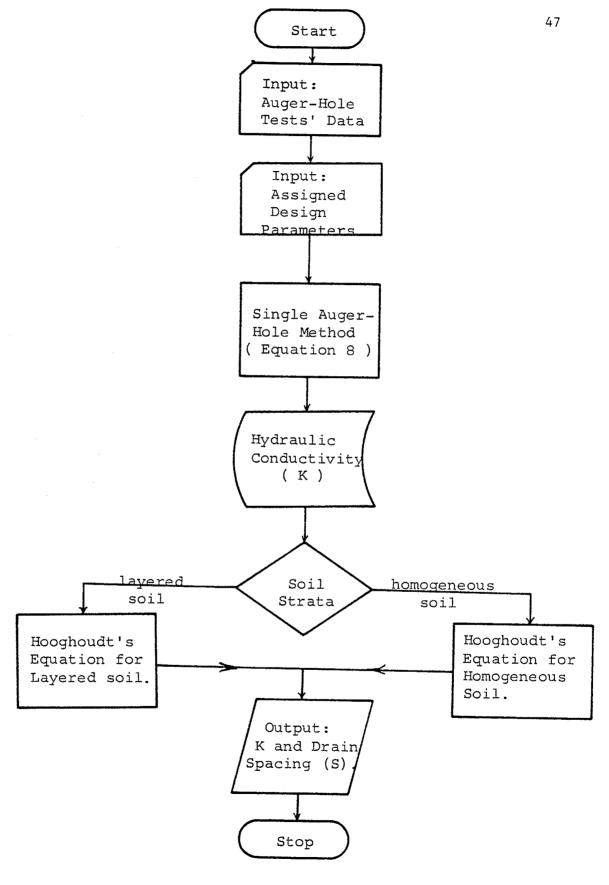
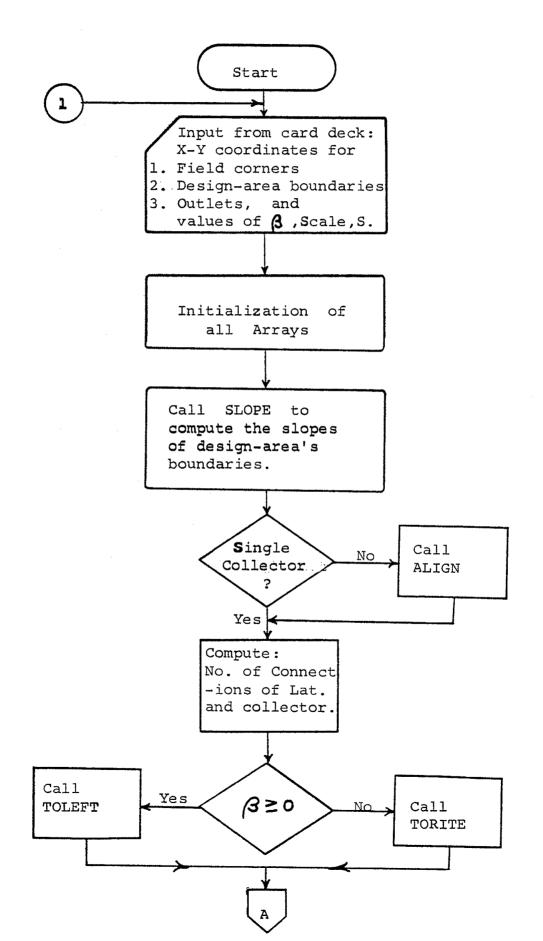
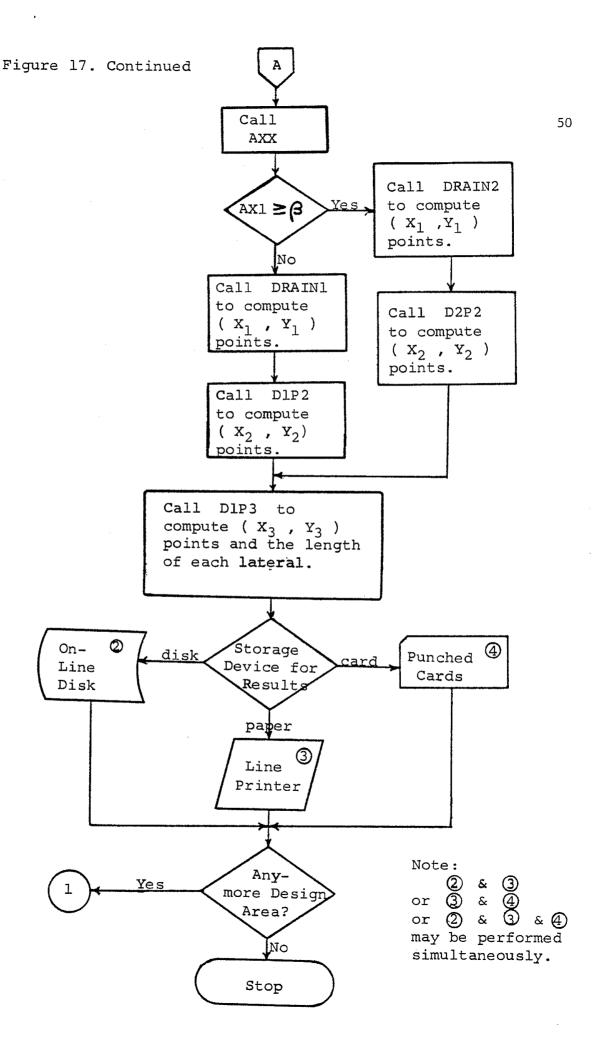


Figure 16. Generalized Flow Chart for Program HYCONS.

and the desirable water table depth from the soil surface, for each field should be declared. Otherwise, design parameters of the first field will be used for the second field.

3.5.2 Development of design program


The Drainage System Design Program (DSDP) contains a main program and several subprograms which perform different functions under different conditions when called by the main program. All programs are written in standard Fortran language and were compiled by Fortran IV Gl compiler. A flow chart of DSDP is shown in Figure 17 and a complete listing of DSDP is given in Appendix B.


Initially, the area or field that needs drainage must be clearly defined. It will be called "design-area" from here on to distinguish it from other areas. The design-area will be the total area under consideration for which a system of parallel drainlines connected by one collector will be designed. A field may have more than one design-area or collector. The program can handle as many as 10 design-areas in a single run. It can be easily modified to handle more than 10 design-areas if necessary.

The design-area can have any number of sides, but they must be straight. The boundaries of the design-area are then defined by corner points.

The locations of the outlets for the system should also be defined. In the primary stage of this study, effort was made to

Figure 17. Generalized Flow Chart for Drainage System Design Program.

locate the general slope and the outlet by using a gradient searching program. Due to the large amount of spot elevation points obtained from the field survey, large computer memory and time were needed to store and sort the data in order to get the general slope. It was found that the method was not time efficient and cost effective. On the other hand, after the topographic and contour map has been prepared, the designer may need only a few minutes to select outlet points and possible appropriate paths of collectors. Also, suitable outlet locations are usually selected by the field crew when doing the topographic survey. Therefore, after making several trials of the gradient search by computer, it was decided not to use the searching program but to require the designer to select the locations of outlet and collector during the design processes.

In order to define the relative field boundaries and outlet positions, a grid will be placed over the topographic and contour map. The locations of the field corners can then be expressed by the appropriate coordinates of the grid. The origin of the X-Y coordinate is at the lower left corner of the grid (see Figure 18). It should be mentioned that the placing of the grid over the drainage plan is optional, the designer can specify the option when running the program.

Although the design-area can be in any shape as long as all the field boundaries are straight lines, for the sake of description, a four-sided polygon as shown in Figure 19 is used for illustration purposes.

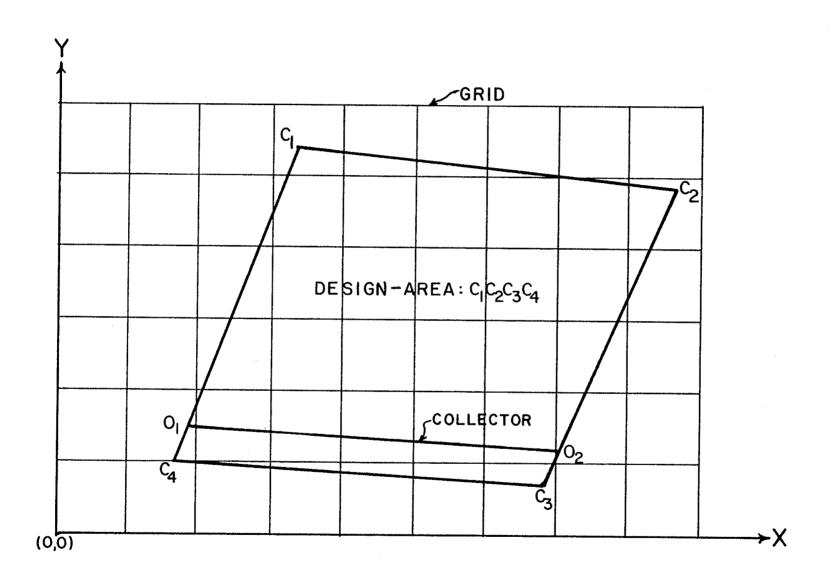


Figure 18. Design-area Boundaries and Corners with the Grid System.

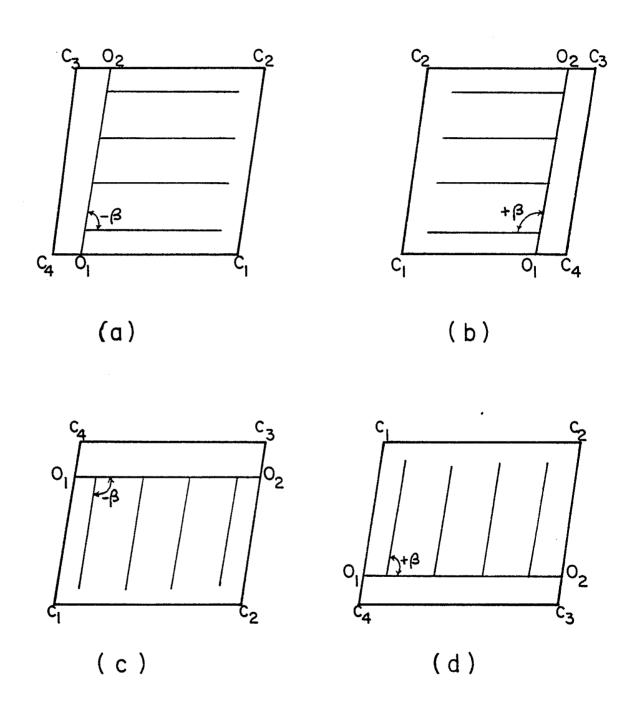


Figure 19. Number Convention of the Corners of Design-area.

Referring to Figure 19, O_1 and O_2 are the start and end points of the collector. Beta (β) is the angle between the lateral and collector. Noting from the same figure that laterals are on the left hand side of the collector when β is greater than zero and on the right when β is smaller than zero. If $\beta=0$, the program will issue a warning and stop execution since laterals will run on the same path as the collector does.

The program was constructed in such a way that corners of the design-area are numbered clockwise or counter-clockwise depending on the algebraic sign attached to the angle beta. When β has a negative sign, corners are numbered counter-clockwise, otherwise corners will be numbered clockwise. However, corner 1 is adjacent to point 0_1 all the time (see Figure 19 (a), (b), (c) and (d)).

It should be noted that O_1 may or may not be the outlet of the drainage system. If the outlet is located beyond the design-area, it can be linked to O_1 by a conduit or open ditch as shown in Figure 20 (a) and (b).

It should also be mentioned that the collector may or may not be a single straight line. It may consist of two or more straight line segments with different directions or slopes as shown in case (c) of Figure 20. The program developed in this study can be used to design a drainage system with a collector consisting of a single straight line or a collector with two straight line segments. However, the program can be easily adjusted to handle the case where a collector consists of more than two straight line segments.

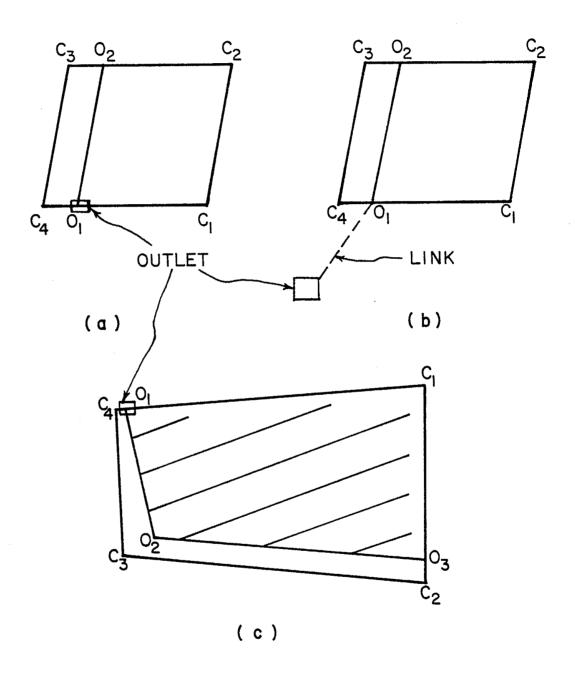


Figure 20. Location of Outlet and the Type of Collector.

After the program has read all the necessary data from card deck or on-line device, it proceeds to design the drainage system in the following ways:

Firstly, the connections of the laterals and collector are determined (i.e. (X_1, Y_1) points in Figure 21). The following equations were developed for determining the (X_1, Y_1) points.

$$(X_1)_i = OX_1 + \Delta X \cdot (2i - 1) \text{ for } 0^\circ < \theta \le 90^\circ, i=1,N$$
 . . . (9)

$$(X_1)_i = OX_1 - \Delta X \cdot (2i - 1) \text{ for } 90^\circ \leqslant \theta \leqslant 180^\circ, i=1,N$$
 . . . (10)

$$(Y_1)_i = OY_1 + \Delta Y \cdot (2i - 1) \text{ for } O^\circ < \theta < 180^\circ, i=1,N$$
 . . . (11)

where

$$\Delta X = S \cdot \frac{\cos \theta}{\sin \beta} \qquad . . . (12)$$

$$\Delta Y = S \cdot \frac{\sin \theta}{\sin \beta} \qquad . . . (13)$$

and

S = spacing between laterals, m

 β = angle between lateral and collector, degree

 θ = angle of the collector from X-axis, degree

i = subscript, i.e., i = 1,2,3,...N

(See Figure 21 for notations.)

The total number of laterals required in a design-area is denoted by N which can be determined by the equation:

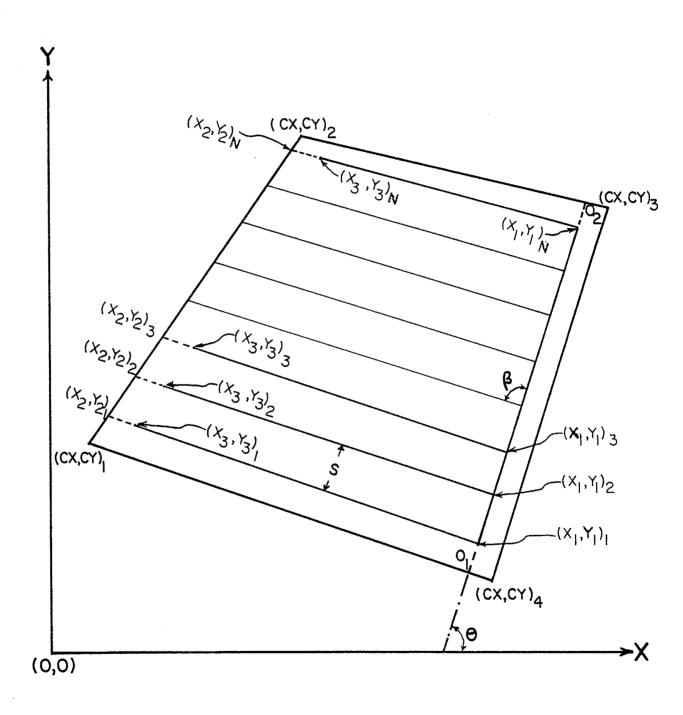


Figure 21. Definition Sketch for Design Program.

$$N = \frac{\sqrt{(0X_2 - 0X_1)^2 + (0Y_2 - 0Y_1)^2 \cdot \sin \beta}}{s} \qquad . . . (14)$$

where $(0X_1,\ 0Y_1)$ and $(0X_2,\ 0Y_2)$ are the X-Y coordinates of the points 0_1 and 0_2 and S and β as defined before.

In the case where N is not an integer number, the next larger integer will be used and the spacing between laterals will be adjusted accordingly. The adjusted spacing is normally a little narrower than the value obtained from the HYCONS program. This will lead to a more conservative design and give slightly better field drainage.

After all the (X_1, Y_1) points have been computed, straight lines will be extended from (X_1, Y_1) to the design-area boundaries with an angle β (lines are imaginary and not actually drawn). All lines will be ended at points (X_2, Y_2) at the boundaries as shown in Figure 21. Points (X_2, Y_2) can be calculated by the following equations:

$$X_{2} = \frac{CY_{1} - Y_{1} - M_{1} \cdot CX_{1} + M_{2} \cdot X_{1}}{M_{2} - M_{1}} \qquad (15)$$

$$Y_2 = Y_2 + M_2 \cdot (X_2 - X_1)$$
 . . . (16)

where M₁ = slope of the boundary, i.e., M₁ = $tan(\frac{CY_2 - CY_1}{CX_2 - CX_1})$ in this case.

 M_2 = slope of the lateral, i.e., M_2 = $tan(\theta + \beta)$ in this case.

 CX_1, CY_1 = coordinate of the corner C_1 .

. . . (23)

Note from equations (15) and (16) that (CX_1, CY_1) will be changed to (CX_2, CY_2) if the point (X_2, Y_2) falls on the second boundary and to (CX_3, CY_3) if (X_2, Y_2) is on the third boundary. The slope of M_1 will be changed when (CX_1, CY_1) is changed.

One of the basic design conditions was that all laterals should be started a half-spacing away from the boundaries and ended at collector or outlet. To satisfy this condition, (X_3,Y_3) points (see Figure 21), which are one half-spacing from (X_2,Y_2) , are calculated. The following equations were used:

$$X_{3} = X_{2} + \sqrt{\frac{W^{2}}{F^{2} + 1}}$$

$$Y_{3} = Y_{2} + F \cdot (X_{3} - X_{2})$$

$$X_{3} = X_{2}$$

$$Y_{3} = X_{2}$$

$$Y_{3} = X_{2}$$

$$Y_{3} = X_{2} - \frac{S}{2}$$

$$X_{3} = X_{2} - \frac{S}{2}$$

$$Y_{3} = X_{3} - \frac{S}{2}$$

$$Y_{4} = X_{4} - \frac{S}{2}$$

$$Y_{5} = X_{5} - \frac{S$$

and
$$\alpha = \tan^{-1}(\frac{M_2 - M_1}{1 + M_1 \cdot M_2})$$

 $W = \frac{S}{2 \cdot \sin \alpha}$

S = drain spacing between laterals

 M_1, M_2 = slopes of field boundary and lateral, respectively.

If the boundary is parallel to Y-axis, i.e., $M_1=\infty$, then equation (24) should be used instead of equation (23).

$$W = \frac{S \cdot 1_{12}}{2(X_1 - X_2)} \qquad . . . (24)$$

where

 1_{12} = distance between points (X_1,Y_1) and (X_2,Y_2) .

Finally, straight lines joining the points (X_1,Y_1) and (X_3,Y_3) are the laterals for the design-area. At this stage, all the input data and computed results will be written on disk or punched on cards as specified for drafting purposes as will be discussed in the next section.

3.5.3 Description of layout program

Similar to DSDP, the Drainage System Layout Program (DSLP) was written in standard Fortran language. However, it was debugged and tested by using the catalogued procedure PLOTTEST created at McGill University Computing Centre.

DSLP is composed of a main program and 25 subprograms. The main program reads the data from disk file or card deck generated by DSDP as discussed in the previous section. Additional data could be supplied on punched cards if necessary. The main program initiates and terminates the plotting operation by calling the subroutines

PLOTON and ENDPLT, respectively. The subroutines PLOTON and ENDPLT must be called once, and only once, at the beginning and at the end of the main program. A generalized flow chart of DSLP is shown in Figure 22 and a complete program listing is given in Appendix C.

DSLP's main program also determines the positions where the grades or pipe sizes of the drain lines need to be changed. It estimates the maximum areas that can be drained by the hydraulic capacity of a given drain pipe size with a specific design drainage coefficient. The equation used to determine the areas drained was derived from Manning's formula (Chow, 1959) and can be expressed as,

$$A_c = \frac{0.311685}{n} \cdot (DIA)^{8/3} (SL)^{1/2} \cdot \frac{86400}{R}$$
 ... (25)

where

 A_{c} = maximum areas drained, sq.m

n = Manning's roughness coefficient for the drain pipe

DIA = diameter of the drain pipe, m

SL = slope of drain pipe

R = design drainage rate, m/day

86400 = conversion factor from flow rate per day to flow rate per second.

The areas drained by each lateral can be found from the equation

$$A_1 = L \cdot S + \frac{S^2}{2}$$
 ... (26)

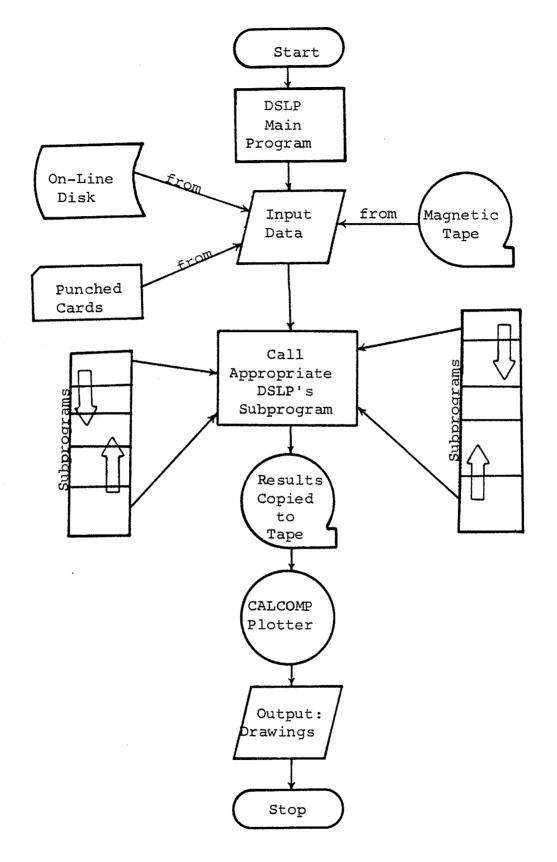


Figure 22. Generalized Flow Chart for Drainage System Layout Program.

where A_1 = maximum areas drained by a given size of drain line, m^2 .

L = length of the drain line, m

S = spacing between laterals, m.

If the drain pipe capacity is not to be exceeded, the areas ${\rm A}_1$ must not be larger than ${\rm A}_{\rm c}$. In general, the collector size should be gradually enlarged, starting from the upper end of the line because more and more laterals are connected to it along the line (see Figure 23).

The full flow hydraulic capacity of some commonly used plastic drain tubes has been estimated by Wesseling and Homma (1967), Hermsmier and Willardson (1970), Irwin (1971), Broughton and Ami (1975), Ami, Broughton and Shady (1978) and others. The Manning's roughness coefficient of plastic drain tubes of several makes has been measured by Broughton and Negi (1971) and Irwin and Motycka (1979) as given in Table 2.

Subprograms in DSLP were initially prepared for plotting keysymbols for the drainage plans, but most of them were generalized and
can be used in DSLP as well as in other Fortran programs. These
subprograms call one or several CALCOMP subroutines to perform
different functions such as drawing straight lines, tracing smooth
curves, plotting special symbols and lettering alphabetic, numeric
and alphanumeric characters, etc. Different subprograms have different functions and options. The subprogram ARO1 has been used

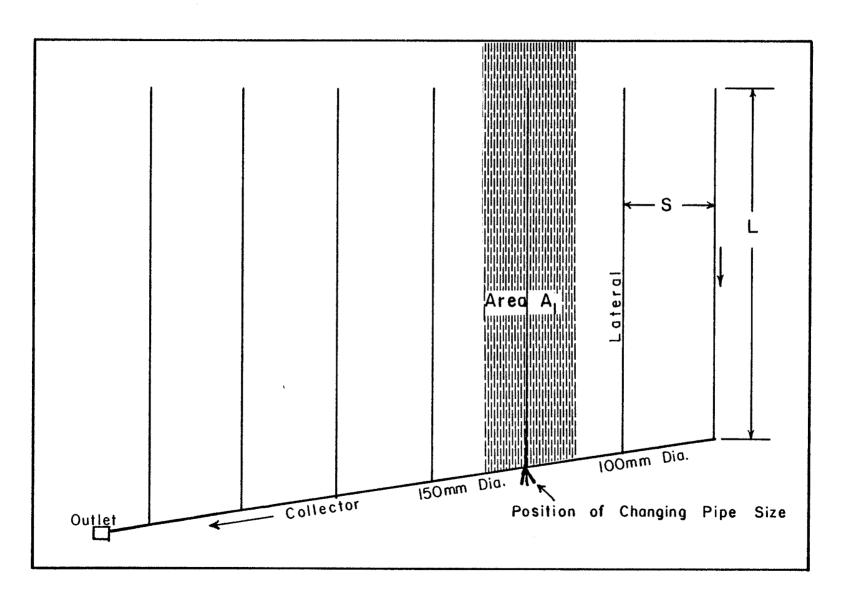


Figure 23. Definition Sketch for a Gridiron Type Subsurface Drainage System.

TABLE 2. Representative Manning's n values for some plastic drain tubes

Plastic drain (m	tube diameter m)	Manning's n value
80	+	0.0167
100	*	0.0160
150	†	0.0160
200	*	0.0190
250	*	0.0180
300	*	0.0220

[†] After Broughton et al. (1971).

^{*} After Irwin et al. (1979).

to exemplify the flexibility and applicability of the subprograms in DSLP. Input formats and their options are specified in each subprogram as shown in Appendices C and D.

As can be seen in Figure 24, subprogram ARO1 draws the North Arrow in different sizes and orientations as required. Case (1) indicates the North Arrow is 2 inches long at 90° from X-axis.

Case (2) shows an arrow of 3 inches long at 230° from X-axis, and North Arrow in Case (3) is 4 inches long with an angle of 60° from X-axis.

Figures 25 through 27 are the samples drawn by some of the sub-programs. Other symbols produced by DSLP's subprograms can be seen in the completed drainage plans given in Appendices F, H1 and H2.

DSLP requires a setup step that instructs the console operator to mount a plottape. In addition, instructions can be sent directly to the Calcomp plotter operator at this time. The plotter is off-line at McGill Computing Centre and the instructions are copied by the console operator onto a card that accompanies the completed plottape.

Plans produced by using DSLP can be drawn in a variety of pen sizes and ink colours. However, it is necessary to execute a particular plotter instruction (origin redefinition) in order to pause the plotter so that the plotter operator may make changes.

It should be mentioned that the subroutine PLOTON defines the plotter's origin twice. Therefore, with DSLP, plotting starts with

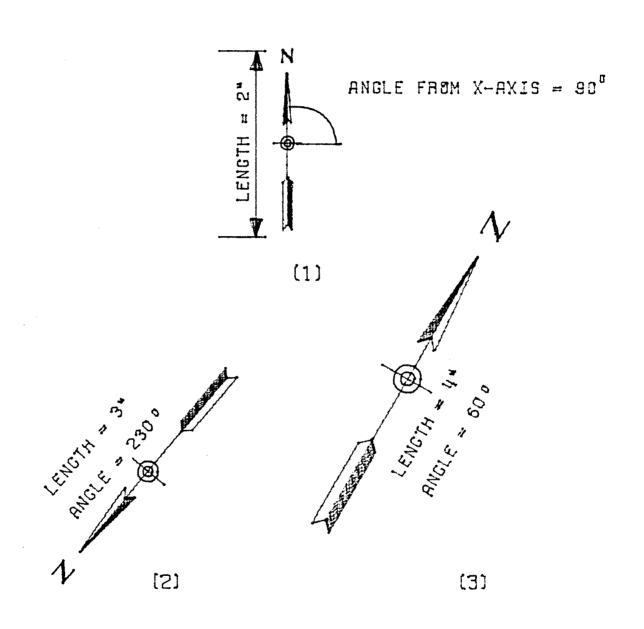


FIGURE 24. NORTH ARROWS IN DIFFERENT SIZES AND ORIENTATIONS DRAWN BY SUBPROGRAM ARO1.

KEY TO PLAN

RELATIVE ELEVATIONS 98.6 CONTOURS (1' INTERVALS) -288-FENCES AND BOUNDARIES X X X X ABOVE DRAINS LENGTH & SIZE OF DRAIN BELOW DRAINS GRADES NATURAL GRADE N.G. CHANGE IN DRAIN SIZE CHANGE IN DRAIN GRADE BENCH MARK B.M. HUB STAKE H.S.A TREE BUILDING OPEN DITCH B98.2 DITCH BOTTOM ELEVATION 4.5 DEPTH OF TRENCH BOTTOM TRENCH BOTTOM ELEVATION OUTLET NO. RAILROAD ROAD AND LANE ROAD

FIGURE 25. KEY TO DRAINAGE PLAN DRAWN BY SUBPROGRAM PKEY10.

REVISION	DATE	DESCRIPTION				
AGRIC	ULTURAL	ENGINEERING DEPARTMENT				
	MCG	ILL UNIVERSITY				
BOX 950, MACDONALD COLLEGE, QUE. H9X 1CO						
SAMPLE TITLE						
AGR. ENG. DEPT. MACDONALD COLLEGE						
MCGILL UNIVERSITY, QUEBEC, CANADA						
SCALE		DATE PERSON DWG. NO.				
	DRA	NME				
1CM = 1	UUW CHE	AG79-01				
	REV	/1SE0				

FIGURE 26. TITLE BLOCK FOR ORAINAGE PLAN DRAWN BY SUBPROGRAM TBLK17.

COLLECTOR		DRAIN TUBE	REQUIRED	METERS	
COLLECTOR	100 mm	150 MM	200 mm	250 MM	300 MM
A					
В					
С					
D					
E					
F					
G					
Н					
J					
K					
TOTAL					
OVERALL TOTAL: METERS					RS

FIGURE 27. TABLE OF MATERIALS FOR DRAINAGE PLANS PRODUCED BY SUBPROGRAM COLEN4.

the plotter's origin #003. The first redefinition of the origin sets the counter to #004, and each subsequent origin redefinition increases it by 1. With the following JCL statements, the plottape is mounted and the message concerning the pen sizes is displayed at the console. DSLP itself will then execute.

```
// EXEC SETUP

//SETUP.SYSIN DD *

T8=PLTTP(RI,SL,30" PLAIN PAPER. PENS: 0.3mm AT START #003,)

(CONTINUED. 0.5mm AT #004, AND 0.8 mm AT #005. THANKS)
```

A complete setup JCL can be seen in the program listing in Appendix D.

3.5.4 Profile program

In drainage system design, profiles are often employed to show graphically the relation of the surface to the grade and depth of the drain pipe. Generally, profiles are prepared to supplement plans of drainage systems.

In practice, the vertical scale for a unit of distance is very much greater than the horizontal in order that the vertical distances may be more accurately represented. The scales of 1 m to 50 m for vertical and 1 m to 5000 m for horizontal in the profile drawings are currently used by most of the design engineers in the Ministry of Agriculture of the Province of Quebec. However, designers in

different regions may use different scales in drawing profiles for particular purposes.

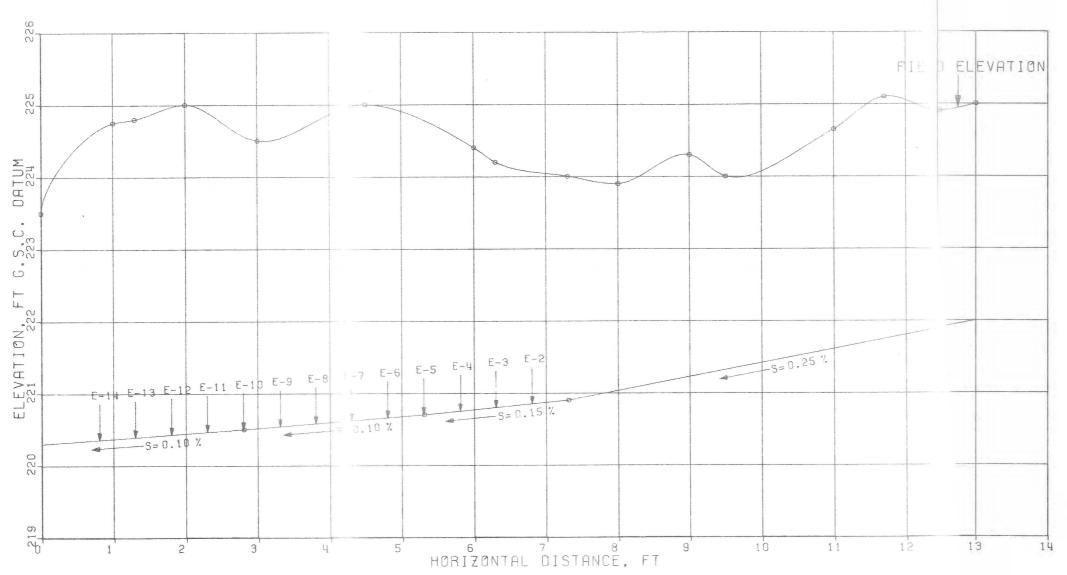
The profile program developed in this study can be used to draw any magnitudes of vertical and horizontal scales. The vertical and horizontal scales need not be the same. Two profile samples representing two different scales drawn by the program are shown in Figures 28 and 29. The listing of the profile program is given in Appendix E.

Since the plotter operated by McGill University Computing

Centre was designed in Imperial units, the conversion from Imperial

to Metric units was found to be impractical because of the rounding
error performed by computer during the computation and conversion.

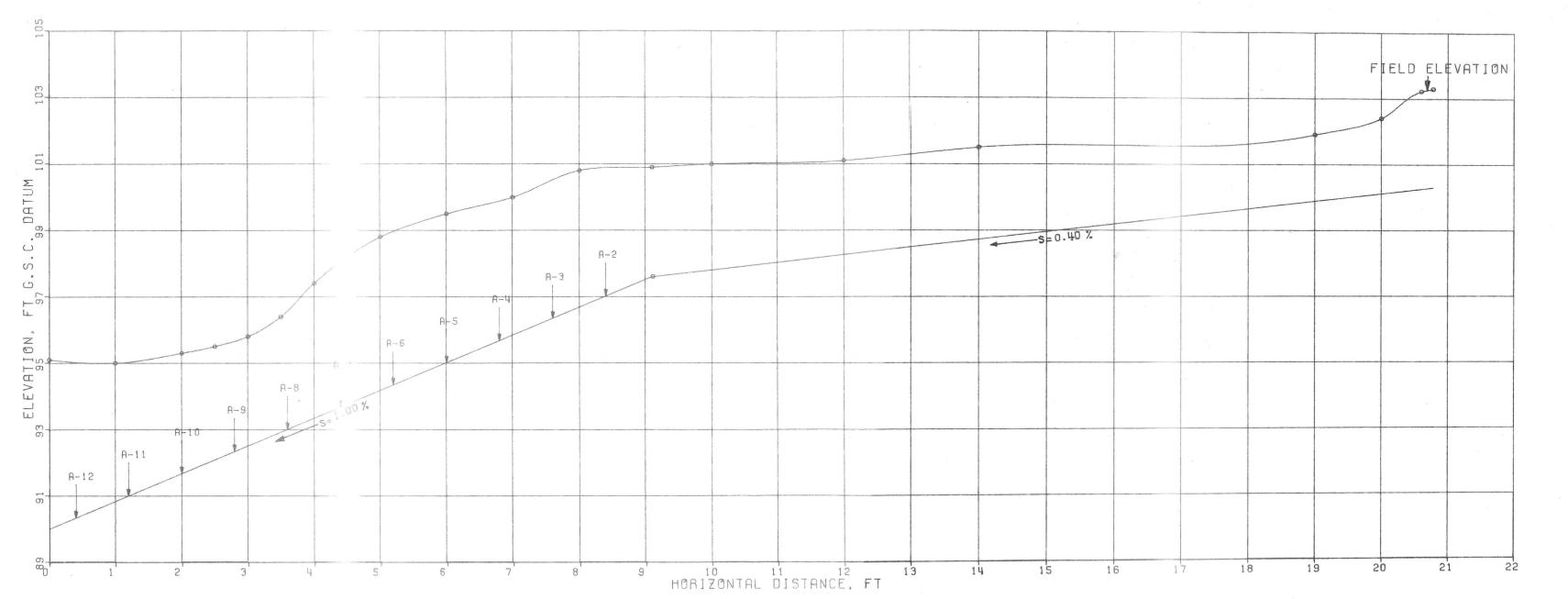
However, the programs developed in this study can be used with minor


modifications, i.e., changing the labels from feet to meters, etc.,

if the plotters used are designed in metric specifications. Currently,
new machines manufactured by Calcomp (Guardado, 1979) and Hewlett
Packard (Casola, 1979) are designed in metric specifications. The

programs may be used with those plotters in the foreseeable future.

D12N35B


HORIZONTAL SCALE: 1"= 100'

VERTICAL SCALE: 1"= 1 '

	1			
REVISION	DATE	DESCRIPT	ION	
AGRIC		ENGINEER		PARTMENT
BOX 950	. MACDO	NALD COLLE	EGE, QUE	. H9X 1CO
BASED	ON PL	F CÖLLE AN NO.D TTAWA,	-12-N-	-35B
SCALE	DRA		PERSON	DWG. NO.

CHECKED

REVISED

REVISION DATE DESCRIPTION

AGRICULTURAL ENGINEERING DEPARTMENT MCGILL UNIVERSITY

BOX 950. MACDONALD COLLEGE, QUE. H9X 1CO

PROFILE OF COLLECTOR A
BASED ON PLAN D-12-N-7601
19TH TEE DRIVING RANGE

SCALE

DATE PERSON DWG. NO.

URANN
CHECKED D12N7601

HORIZONTAL SCALE: 1"= 50 '

VERTICAL SCALE: 1"= 2 "

file for land surface and collector drain

CHAPTER IV

RESULTS AND DISCUSSION

4.1 General

A systematic approach for designing subsurface drainage systems has been developed. Programs have been developed to direct a computer plotter to draw drainage plans. The entire process can be completed in four steps after the spot elevations of the field have been obtained. The block diagrams shown in Figure 30 illustrate the functions in each step.

The spot elevation topographic program (TOPMAP) developed by Murphy (1978) was modified and used to compute the X-Y coordinates for each of the spot elevations (Z) from the field survey data. The spot elevations were plotted at appropriate X-Y positions after the values of X-Y were determined. It was found that TOPMAP can be used to draw topographic spot elevation maps at any desired scale. Figures 31 and 32 are examples of spot elevation maps produced with different scales. Figure 31 was drawn on a paper 11 inches (28 cm)

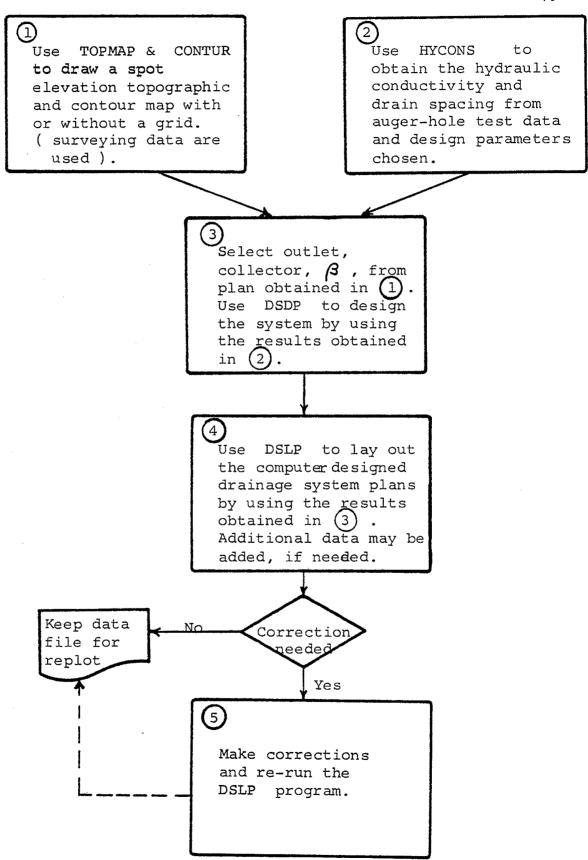
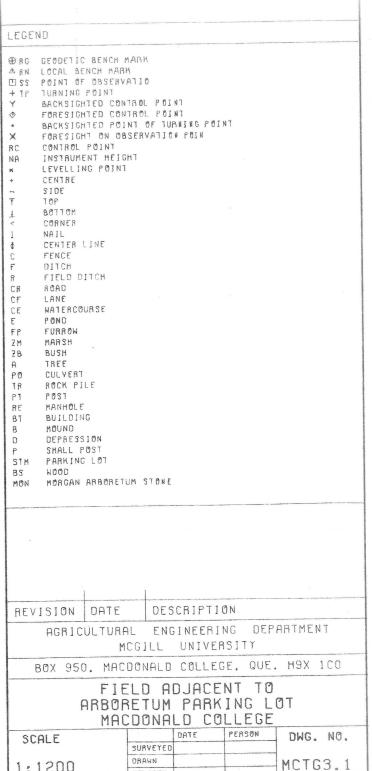



Figure 30. Steps' Functions in Computer-aided Design and Layout System.

ARBORETUM FIELD

WOODS

157.1 <	159.8-83	160.9 - 83	160.5 - 89		159.0-89	158.4 - 83	159.4-3 159.5-83158.0-83156.4-83 155.4-83 152.7** th
		160.3		160.5	158.4	158.3	159,
	157.8		160.3	158.0			156.7 158.1
		157.8			156.5	157.1	157.5 156.9 156.4
	157.7		156.7	156.5		57.6 A	156.5
		156.9			156.3	. 8	156.7 157.0 156.6 156.4 * * CB
	158.8	156.2	155.6	155.4			150.4- ** 156.8 ARBORETUM
155.6-8						.0	156.7 160.3 159.5 146.8 161.3 158.9 4 6 5 Ph
	156.8	156.3	155.2	155.1			160.7
						55.8	156.0 * 157.5 [58.9 - 159.1 * 37.7] 157.7 157.7 146.8
	155.8	155.3	155.4				PARKING 157.0
						54.9	146.4
						\$2.7 * *	154.4 < 97h

FIELD IN MORGAN ARBORETUM	

A much reduced size reproduction of a spot elevation topographic map produced by program TOPMAP. On the full size drawing at a scale of 1:600 the spot elevations and notes are all clear. Figure 32.

high with a scale of 1 inch to 100 feet (1:1200). Figure 32 was plotted on 30-inch (76 cm) height paper with a scale of 1 foot to 600 feet (1:600).

It must be mentioned here that most of the drawings reported in this dissertation were drawn in Imperial units because the equipment used such as surveying instruments, recording devices, and Calcomp plotter, use inches and feet. Conversion to metric units is found to be impractical. It was found that rounding errors occur in converting figures, lengths of drain lines and elevations of the ground from Imperial to Metric units. Since there is a scale factor involved in drawing drainage plans, a small deviation in the length or height may end up with troublesome error on the plan.

However, programs developed in this study can be easily adjusted to work with equipment made for metric system, when such equipment becomes available.

It was found that in order to program TOPMAP in an efficient way, a good background of programming knowledge is needed. TOPMAP involves several complicated Job Control Language (JCL) setup procedures. Some of these JCL procedures are found to be difficult to follow for those who are not familiar with JCL. It is felt that TOPMAP could be simplified if it is used for production of a large number of maps.

The contour maps, as shown in Figures 33 and 34, were drawn by using the contouring program (CONTUR) developed by Kok and Bégin

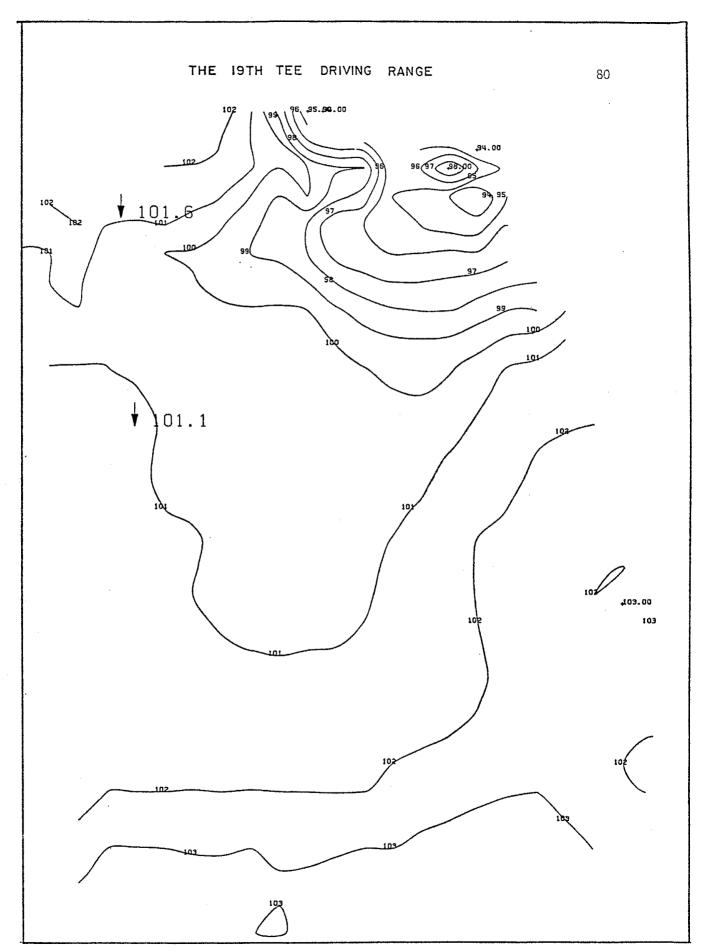


Figure 33. Contour map produced by program CONTUR (The 19th tee driving range).

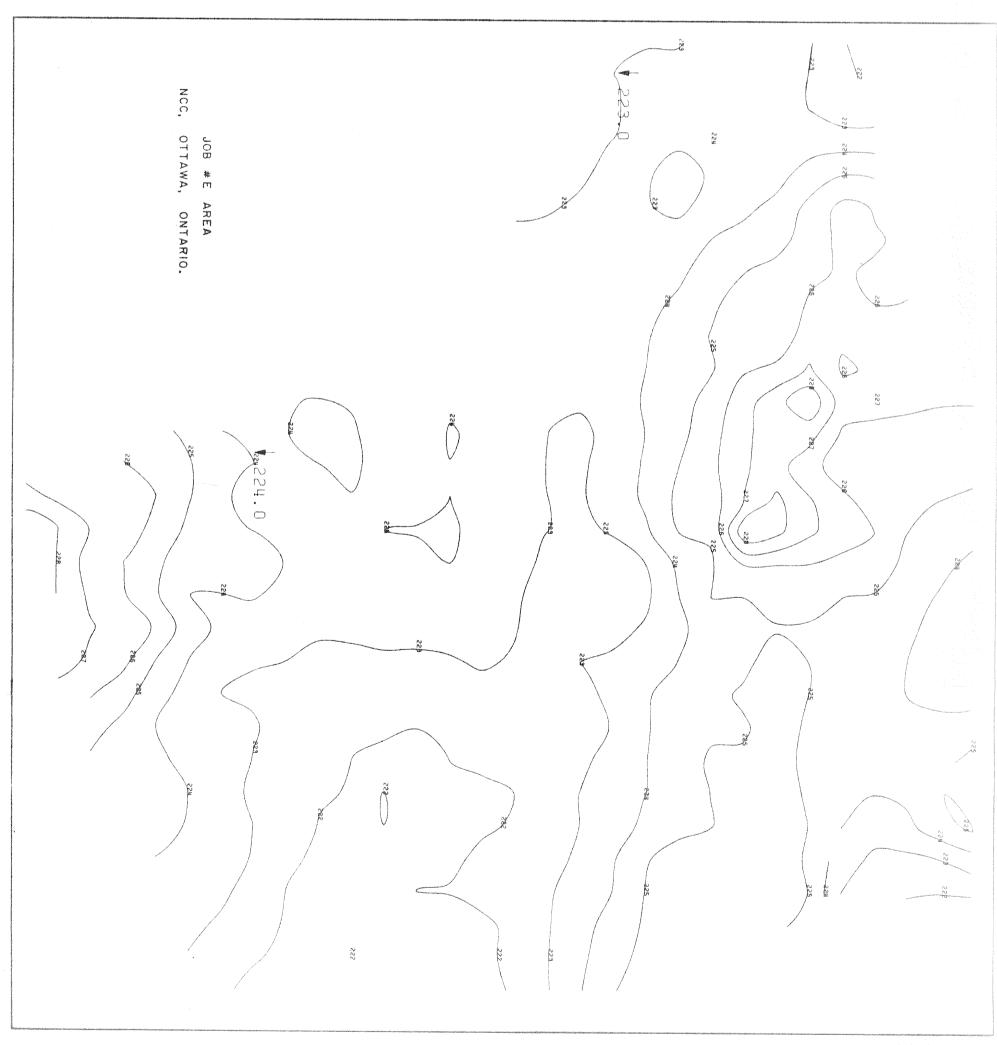


Figure 34. Contour map produced by program CONTUR (Job #E, N.C.C., Ottawa).

(1978). It was found that, unlike TOPMAP's complicated setup procedure cedures, CONTUR only requires a simple single-step setup procedure and it can easily be followed by a person with little programming experience. The main reason may be the fact that TOPMAP handles most of the complicated parts of computations, transformations and conversions for spot elevation calculation from surveyed data.

CONTUR simply uses the results, i.e., X, Y, Z values, computed by TOPMAP.

It should be noted that the original CONTUR program drew the contour lines but did not print the spot elevation value on the map. In order to have the contour lines drawn as well as the spot elevations printed, CONTUR was modified. Figure 35 shows a map of spot elevation and contour lines produced by the modified CONTUR program.

Generally, it can be said that CONTUR can produce results similar to those of a draftsman for drainage areas whose slopes are less than 7 per cent. More spot elevation data are needed for areas with a rapid change in slopes, i.e., a valley or a mound, in order to obtain more accurate contour lines.

4.2 Advantage of the computer-aided drafting system

DSDP and DSLP programs provide a faster way to design a drainage system and prepare the designed system plans. It was realized that many advantages can be gained by using a computer-aided

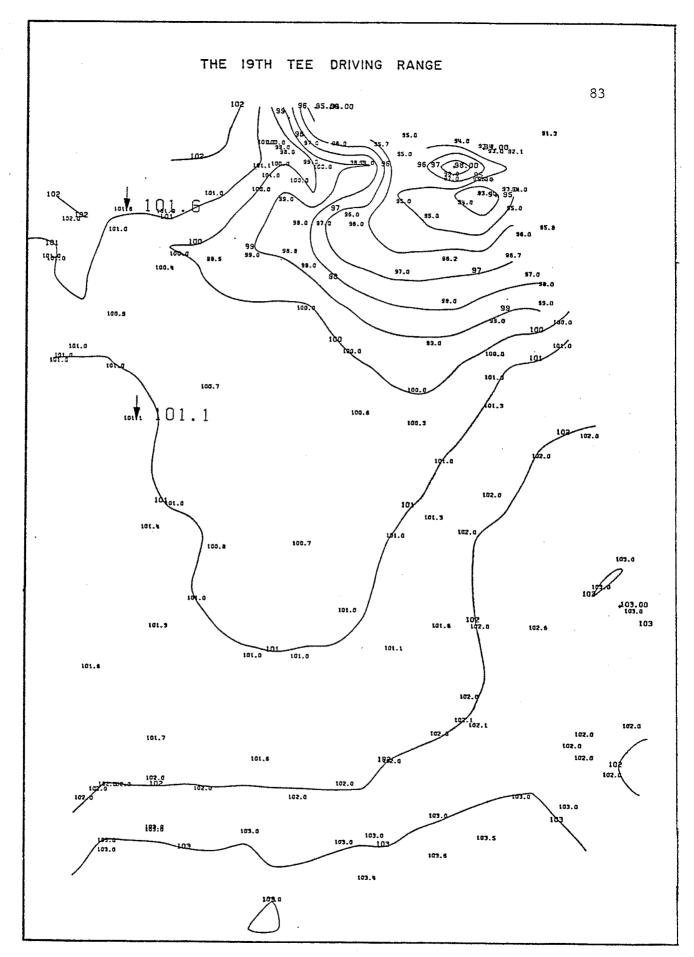


Figure 35. Spot elevation topographic and contour map produced by modified CONTUR program.

drafting system in subsurface drainage system design. The most distinct advantages are:

1. The speed of the drafting was increased. The author experienced that the speed of computer plotting is very much faster than manual drawing. Although some engineering consulting firms claimed that computer drafting systems could cut map-drawing man-hours from 2 1/2 man-years to 1 man-week (Civil Eng. ASCE, 1977; Computer Data, July 1978), it is the author's observation that computer drafting can speed up work by only 5 to 10 times, depending on the size of the jobs. Table 3 compares the time spent by conventional manual drafting methods and computer drafting methods developed in this study for the same drainage area.

Appendices G1, G2 and H1, H2 show plans done by a draftsman and computer plotter, respectively. Note in Appendices H1 and H2 that the lists of materials needed in the designed systems were presented by computer.

It can be seen in Table 3 that more time can be saved in steps 1 and 5 if the spot elevation data were recorded on a recording device and an interactive screen terminal were used to edit the data or generated results.

During the development of the DSLP program, it was found that some of the irregular shapes and lines or curves are extremely difficult to express in mathematical forms. Those irregular shapes or lines may be drawn by draftsmen. However, a light pen

TABLE 3. Comparision of time spent for manual and computer-aided drafting methods

Step	Manual drafting	Computer drafting
1	Writing spot elevations at appropriate positions on a master plan: 2 hours	Punching spot elevation data on cards (using IBM 029 key-punch machine with drum control): 2 hours
2.	Interpolation for spot elevations and drawing contour lines: 3 hours	Contour lines drawing and spot elevations lettering: 31 minutes
3.	System design parameters d	etermined by designers
4.	Design and draw the first draft of designed system on the tracing paper and obtain a blueprint: 8 hours	Design and draw the first draft of designed plan by using DSDP and DSLP: 1.5 hours
5.	Modifications on the first draft: 3 hours	Modifications on the first draft: 3 hours
6	Draw the complete drainage plan on a master sheet: 24 hours	Replot drainage plan: 52 minutes
7	Contingencies: 1 hour	Contingencies: hour*
	Total : 41 hours	Total : 9 hours

 $[\]pm Including$ system downtime and data handling.

or digitizer can be used together with a CRT screen terminal to trace special lines or draw irregular shapes. The digitizer manufactured by Hewlett-Packard has demonstrated its applicability in handling the task mentioned above. Due to financial constraints, it was impossible for the author to set up such an integrated system in this study. It is suggested that further investigation for an integrated system should be carried out when financially feasible; for example, when the computer-aided drafting of plans becomes a commercial operation.

2. The cost of the drafting can be reduced. By using computer drafting systems, less drafting time is required for each drafting job. This not only results in labour-saving but also reduces space costs per job. By providing good draftspersons and technicians with computer-aided drafting tools, the drafting group of a company can produce plans for more land per year, with less time delay and costs for the clients - in this case for the farmers and the people who buy food.

A comparison between costs for the same job as discussed in Table 3 is listed in Table 4.

3. Errors are reduced. It can be said that when drawings are made and calculations done manually, errors are occasionally made in looking up trigonometric functions, pressing wrong keys on calculators, or on the drafting table in plotting wrong grades or elevations. Since the computer is an error-free machine, the errors can be reduced to a minimum when it is used for computing and

TABLE 4. Cost comparison between manual and computer-aided drafting methods

Item	Manual drafting	Computer-aided drafting
1	2 hr x \$8/hr*= \$ 16.00	2 hr x \$8/hr = \$16.00
2	3 hr x \$8/hr = 24.00	Execution charges** = 9.90 16 min plotting x \$20/hr**= 5.33
3	S A M	E
4	8 hr x \$8/hr = 64.00	DSDP execution charges = 3.71 DSLP execution charges = 6.06 18 min plotting x \$20/hr = 6.00
5	3 hr x \$8/hr = 24.00	3 hr x \$8/hr = 24.00
6	24 hr x \$8/hr = 192.00	Execution charges = 12.64 51 min plotting x \$20/hr = 17.00
7	1 hr x \$8/hr = 8.00	1 hr x \$8/hr = 8.00
	Total \$328.00	Total \$108.64

 $^{\,}$ * The pay for drafting work varies with skill and may range between \$6 and \$10 per hour. \$8 per hour is the average pay.

 $\star\star\star$ McGill Computing Centre charges \$20 per hour for Calcomp plotting jobs.

 $[\]ensuremath{\mbox{**}}$ See Table 5 for the execution charges.

TABLE 5. Samples of execution charges*

Chargeable items	TOPMAP and CONTUR program (\$)	DSDP (\$)	DSLP (first draft) (\$)	DSLP (complete plan) (\$)
СРИ	5.38	0.50	2.47	7.24
I/O	0.42	0.05	0.46	0.89
U/R	1.30	2.36	0.33	1.71
Setup	2.00	-	2.00	2.00
Handling	0.80	0.80	0.80	0.80
Total	9.90	3.71	6.06	12.64

^{*} Based on McGill University Computing Centre commercial charges.

plotting under instructions from bug-free (or debugged) programs.

Quinn (reported by Godfrey, 1977) states that computer drafting cuts off errors by 90 per cent.

4.3 <u>Discussion of features of programs and nomographs</u>

It should be mentioned that all subprograms in DSLP developed in this study were generalized. They can be used in DSLP as well as in other standard Fortran programs where the Calcomp software package is accessible.

In addition to DSDP and DSLP, two short programs, i.e., HYCONS and PROFILE, were written. HYCONS was used to compute the hydraulic conductivity (K) and drain spacing (S) between laterals from auger hole measurement data. PROFILE was employed in drawing the profiles of collectors or laterals of the drainage system. Their functions and examples were given in sections 3.5.1 and 3.5.4, respectively.

Since the single auger hole equation and the Hooghoudt equation were utilized in the HYCONS for K and S computations, the equivalent depth (de) should be defined when using HYCONS. In this report, nomographs for obtaining de for some commonly used drain tube outside diameters, i.e., 100 mm, 120 mm, 150 mm, 175 mm, 240 mm, 300 mm, and 360 mm, are presented (see Figures 8 to 14, inclusive).

When K is obtained by other methods rather than auger hole test, one may get the drain spacing from the multiple correlation graph which has been developed and is given in Figure 36.

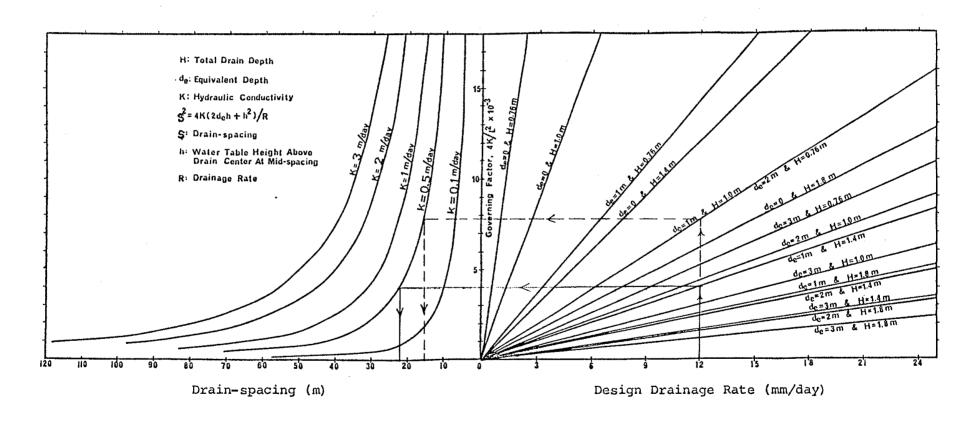
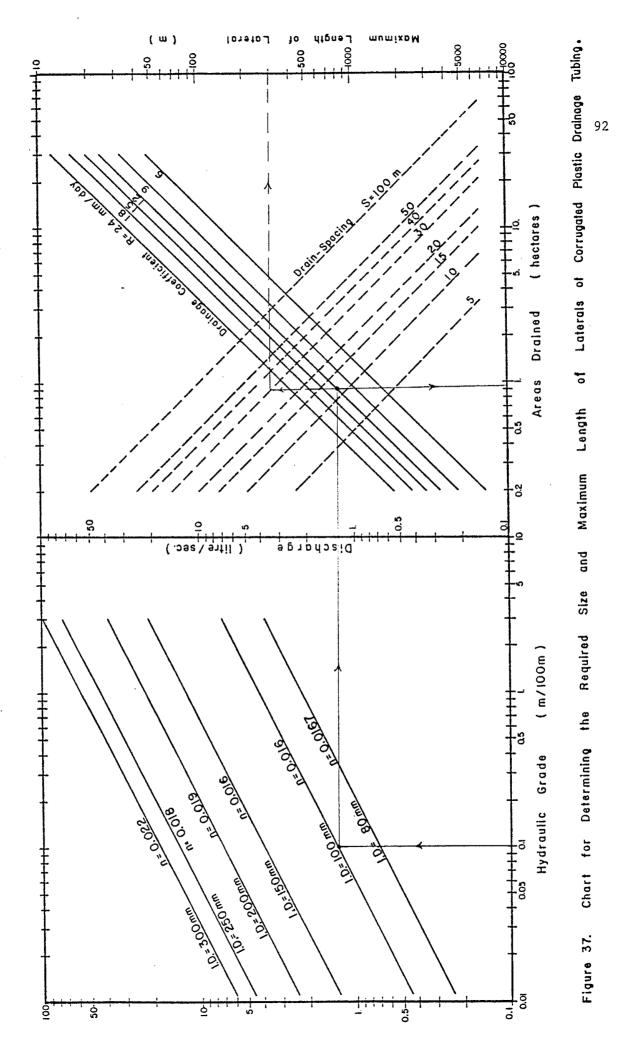



Figure 36. The Graph for Determining the Spacing Between Drain Laterals.

Figure 36 is based on Hooghoudt's equation for a homogeneous soil use, h = H - 0.40 m. The 0.40 m in this case is the desirable water table depth below the soil surface. For example, when design drainage rate (R) = 12 mm/day, K = 0.5 m/day and de = 1 m, Figure 36 gives the drain spacing (S) of 22 m for a drain depth (H) of 1.4 m, a spacing of 15 m when H is 1 m.

Another new multiple correlation graph (Figure 37), which shows the relations between the areas drained (A), maximum allowable length of the lateral (L), drain spacing (S), drainage rate (R), slope of the drain line (SL), drain tube inside diameter (ID), and drain tube hydraulic capacity (Q) was developed. Figure 37 provides an easier and faster way to obtain certain numbers when other parameter numbers are known. For example, if ID, S, R, SL are known, L or A can be obtained from the graph immediately, i.e., ID = 100 mm, SL = 0.1%, S = 30 m and R = 12 mm/day, L and A are found to be 300 m and 0.95 ha respectively.

In general, it can be concluded that all the programs and nomographs developed in this study give benefits of reducing the time and cost of producing drainage plans per unit of land area.

CHAPTER V

SUMMARY AND CONCLUSIONS

The design of subsurface drainage systems is a complex of multi-disciplinary activities requiring both time and money. To operate successfully, the designer needs to understand the process of design and its component parts in order to be aware of the full range of activities necessary for the satisfactory execution of the project.

The principal objectives of this study were to develop computer programs for drainage design calculations and for producing drainage maps by computer controlled plotters.

The conclusions of this research work are summarized as follows:

1. Adequate design drainage coefficients for different areas in different regions can be obtained by using the computer drainage model developed by Chieng et al. (1978). The model can be used to run with as many years of weather data as are available for a

particular region for different soil parameters. The recommended drainage coefficients presented in Table 1 are based on the 35 years of weather data from the Ste. Hyacinthe, Quebec, area.

- 2. The topographic mapping program developed by Murphy (1978) was modified to prepare the spot elevation topographic maps from survey data. The program can produce maps with different scales and orientations as required. It was found that the program can prepare good topographic maps with less time and cost compared with manual drafting methods.
- 3. The contouring program developed by Kok and Bégin (1979) was modified and used to draw contour lines from the spot elevation data obtained in part 2. The program is able to produce contour lines similar to those drawn by draftsmen. However, it was found that more spot elevation data are required to obtain more accurate contours for those areas where the slopes change rapidly.
- 4. Programs DSDP and DSLP were developed for drainage systems design and produce the plans of those designs with the aid of computers and computer plotters. The additional two programs, HYCONS and PROFILE, were written. HYCONS can be used to obtain hydraulic conductivity and the drain spacing between laterals from auger hole tests and design parameters. PROFILE is used to draw the profiles of a collector or lateral when required. Both DSLP and PROFILE conform to Fortran language and Calcomp software. These programs can produce drawings in any desired scale.

- 5. A list of materials needed for the drainage system can be provided by one of the subprograms in DSLP. It lists the lengths of laterals and collectors as well as their diameters alongside the drain lines and in tables. The lists of materials needed can be printed on separate paper by a line printer or plotted on the drainage plan.
- 6. Samples of some designed drainage system plans produced by the developed programs are given. All the necessary symbols and figures such as slopes, flow directions, positions of laterals and collectors, lengths and sizes of the drain lines, locations of fence lines, streams and roads; north arrow and other key notes are provided. It is found that the drafting done by computer plotters is faster and cheaper than by manual drafting methods. However, the use of a light pen or digitizer may increase the speed in drawing irregular shapes or lines which cannot be easily expressed in mathematical forms.

CHAPTER VI

RECOMMENDATIONS FOR FURTHER RESEARCH

The following topics related to the work of this dissertation are considered important for further investigations:

- 1. The spot elevation mapping programs need to be further modified in order to provide an easier access for users who have little programming experience. It should be modified to suit surveying methods other than the stadia survey method.
- 2. An integral computer system containing a card reader, line printer, disk and tape drives, CRT screen graphic terminal with a light pen or digitizer is believed to be an ideal drafting system for drainage design works. The performance of this sort of integral graphic system should be investigated, when financially feasible; that is, when production scale mapping is organized.
- 3. Methods other than stadia survey to obtain spot elevation data should be studied. Electronic surveying instruments may be investigated. Surveying work is considered to be an important but

time-consuming and costly activity in drainage system design processes. New electronic instruments may be able to help to speed up the work and reduce cost.

- 4. New methods of survey data handling such as recording the survey data directly onto a recording device during the field work should be investigated. This should be able to reduce greatly the time and effort in transferring data from notebooks to punched cards as currently required.
- 5. Methods for obtaining hydraulic conductivity other than single auger hole method should be investigated in order to obtain the data when the field conditions are not suitable for use of the auger hole method. Methods like the air entry permeameter test or soil cores for laboratory measurement of hydraulic conductivity; and correlation of qualitative field observations of soil texture and structure with hydraulic conductivity should be considered.

REFERENCES

- Ami, S. R., R. S. Broughton and A. M. Shady. 1978. Designing and installing subsurface drainage laterals less than 100 mm in diameter. Can. Agric. Eng. 20: 16-19.
- April, N. 1967. Rapport de la Commission d'Enquete sur l'Agriculture au Québec. Gouvernement du Québec, Québec, Canada.
- Aronovici, V. S. and W. W. Donna. 1946. Soil permeability as a criterion for drainage design. Trans. Am. Geophys. Union 27: 95-101.
- Asselin, R. 1978. Personal communications.
- Bhattacharya, A. K. 1977. Hydrologic and economic models for subsurface drainage. Thesis presented to McGill Univ., Montreal, Quebec, Canada, in partial fulfilment of the requirements for the degree of Doctor of Philosophy.
- Bhattacharya, A. K. and R. S. Broughton. 1979. Development and verification of a water balance model for subsurface drainage design. Water Resources Ass. 15(3): 671-683.
- Bleackley, B. 1978. Computer graphics report. Comput. Data 3(7): 25-46.
- Broughton, R. S. 1972. The performance of subsurface drainage systems on two St. Lawrence low land soils. Thesis presented to McGill Univ., Montreal, Quebec, Canada, in partial fulfilment of the requirements for the degree of Doctor of Philosophy.
- . 1976. Land drainage in Canada. Presented at the Dec. 14-16
 ASAE Winter Meeting, held at Palmer House, Chicago, Ill.
 (Paper No. 76-2512).
- Broughton, R. S. and S. Ami. 1975. Designing subsurface drainage systems with laterals less than four inches in diameter to save money and energy. Presented at the June 22-26 CSAE Annual Meeting, held at Brandon Univ., Man. Canada (Paper No. 75-403).

- Broughton, R. S. and S. Negi. 1971. Tests of hydraulic capacity of 6-inch corrugated plastic drain tubing manufactured by Big 'O' Plastics (Quebec) Ltd. Agr. Eng. Dept., Macdonald Coll., McGill Univ., Que., Canada. Unpublished report.
- Casola, J. 1979. Hewlett-Packard 9874A digitizer. HP Colorado, U. S. A.
- Chieng, S. T. 1975. The effects of subsurface drain depths and drainage rates on water table levels. Thesis presented to McGill Univ., Montreal, Quebec, Canada, in partial fulfilment of the requirements for the degree of Master of Science.
- Chieng, S. T., R. S. Broughton and N. Foroud. 1978. Drainage rates and water table depths. J. Irr. & Drain. Div., ASCE 104 (1R4): 413-433.
- . 1975. A study of the effect of drain depth and design drainage coefficient on water table depths. Presented at the June 22-26 CSAE Annual Meeting, held at Brandon Univ., Man., Canada.
- Chow, V. T. 1959. Open channel hydraulic. McGraw-Hill Book Co., New York.
- Computer Data. 1979. July Issue, 4(7): 30-39.
- Donnan, W. W. 1947. Model tests of a tile-spacing formula. Soil Soc. Am. Proc. II: 131-136.
- Foroud, N. and R. S. Broughton. 1974. The effects of different drainage coefficients on the duration of high water table in southwestern Quebec, Canada. CSAE Annual Meeting, Ste-Foy, Quebec, Canada.
- Fox, B. 1978. Calcomp digital plotter user's manual. McGill Univ. Computing Centre, Montreal, Quebec, Canada.
- Godfrey, K. A. 1977. Making maps by computer. Civil Eng. ASCE 47(2): 37-45.
- Guardado, J. 1979. Personal communications.
- Harrington, G. J. 1976. Contour plans drawn by computer using random stadia survey data. N.Z. Surveyor 28: 495-502.
- Hedstorm, W. E., A. T. Corey and H.R. Duke. 1971. Models for subsurface drainage. Hydrology Paper No. 48, Colorado State Univ., U. S. A.

- Hermsmier, L. F. and L. S. Willardson. 1970. Friction factors for corrugated plastic tubing. Proc. ASCE, J. Irr. & Drain. 96: 265-271.
- Holsambre, D. G. and G. Sinai. 1979. Personal communications.
- Hore, F. R., R. W. Irwin, B. C. Mathews and F. J. Parrish. 1968.

 Drainage guide for Ontario. Pub. 29, Ont. Dept. of Agric. & Food, Toronto, Ont., Canada.
- Irwin, R. W. 1971. Friction losses in drains. Agdex 752/555, Univ., of Guelph, Guelph, Ont., Canada.
- Irwin, R. W. and J. Motycka. 1979. Friction factors for corrugated plastic drainage pipe. J. Irr. & Drain. Div., Proc. ASCE 105 (IRI): 29-36.
- Jutras, P. J. 1967. Extent of agricultural drainage needs in Quebec. Can. Agric. Eng., 9(1): 117-125.
- Jutras, P. J. and R. W. Irwin. 1970. Guide de drainage pour le Quebéc et l'Ontario. Pub. of Agric. Eng.Dept., Macdonald Campus, McGill Univ., Quebec, Canada.
- Kellie, A. 1979. Meteorologists save time, improve working conditions. Computer Data 4(7): 33.
- Kok, R. and J. Bégin. 1979. Development and evaluation of computeraided contour plotting for topographic plans. Dept. Agric. Eng., Macdonald Campus, McGill Univ., Quebec, Canada.
- Kirkham, D. 1949. Flow of ponded water into drain tubes in soils overlying an impervious layer. Trans. Am. Geophys. Union 30(5): 369-385.
- in the surface stratum. Trans. Am. Geophys. Union, 32(3):422-442.
- Lagace, R. and G. Sylvestre. L976. Guyon model and the experimental subsurface drainage behaviour. Proc. Specialty Conf., Irr. & Drain. Div., ASCE, held at Univ. of Ottawa, Canada, p.229-245.
- Luthin, J. N. 1973. Drainage Engineering. R.E. Creiger Publishing Co., Huntington, New York, U. S. A.
- Calcomp Digital Plotter User's Guide. 1978. McGill Computing Centre, McGill Univ., Quebec, Canada.
- Ministry of Agriculture, Quebec. 1978. Drainage souterrain. Ministry of Agric., Quebec, Canada.

- Ministry of Agriculture & Food, Ontario. 1976. Drainage guide for Ontario. Ministry of Agric. & Food, Ont., Canada.
- Moody, W. T. 1966. Nonlinear differential equation of drain spacing. Proc. ASCE, J. Irr. & Drain. Div. 92(1R2): 1-9.
- Murphy, R.C. 1978. Computer-aided topographic mapping system for use in agricultural drainage planning. Dept. of Agric. Eng., Macdonald College, McGill Univ., Quebec, Canada.
- Murphy, R. C., R. S. Broughton and R. Kok. 1979. Computer-aided plotting of topographic survey data. Can. Agric. Eng. 21(1): 31-37.
- Parslow, R. D., R. W. Prowse and R. E. Green. 1967. Computer graphics. Plenum Press, London, England.
- Potts, J. 1975. Computer graphics where and hence. Compuer & Graphics 1: 137-156.
- Renner, D. M. and C. C. Mueller. 1974. Drainage system design and analysis by computer. Proc. ASCE, J. Irr. & Drain. Div. 100(1R3): 255-265.
- Skkas, J. G. 1975. Generalized nomographic solution of Hooghoudt's equation. Proc. ASCE, J. Irr. & Drain. Div. 101(IR1): 21-39.
- Schwab, G. O., R. K. Frevert, T.W. Edminster and K.K. Barns. 1970. Soil and water conservation engineering. John Wiley & Sons, Inc., New York, U. S. A.
- Sedgewick, R. 1974. Computer graphics for drafting. Computer Graphics & Image Processing 3: 91-124.
- Skaggs, R. W. 1976. Evaluation of drainage water table control systems using a watre management model. 3rd Nat. Drainage Symp., Proc. ASAE, p. 61-68.
- Taylor, P. A. and D. G. Watts. 1967. An empirical model for predicting drainage system performance. Trans. ASAE 10(6): 723-726, 729.
- Van Beers, W. F. J. 1965. Some nomographs for the calculations of drain spacings. Bull. No. 8, ILRI, P. 0. Box 45, Wageningen, The Netherlands.
- . 1970. The auger-hole method. Bull. No. 1, ILRI, P.O. Box 45, Wageningen, The Netherlands.

- Van Dort, J. A. 1972. Drainage principles and applications, Vol.4, Chapter 29. ILRI, P. O. Box 45, Wageningen, The Netherlands.
- Van Schilfgaarde, J. 1963. Design of tile drainage for falling water tables. J. Irr. & Drain.Div., ASCE 89(IR2): 1-11.
- Proc. ASAE, Drainage for Efficient Crop Production Conference, St. Joseph, Mich., U. S. A.
- Vaskevitch, D. 1979. Programming languages: special tools for special tasks. Computer Data, March Issue, p. 40-46.
- Wesseling, J. and F. Homma. 1967. Hydraulic resistances of drain pipes. Bull. 50, Neth. J. Agric. Sci. 15.
- Whitsed, R. J. 1978. Computer Data, July Issue, Toronto, Ont., Canada.
- Wright, T. J. 1975. Practical computer graphics for scientific users. Computer & Graphics, 1: 157-160.
- Young, T. C. 1970. Water table and soil moisture probilities with tile drainage. M. Sc. thesis, Agric. Eng. Dept., Clemson Univ., U. S. A.
- Young, T. C. and J. T. Ligon. 1972. Water table and soil moisture probabilities with tile drainage. Trans. ASAE 15(3): 448-451.

APPENDICES

APPENDIX A

LISTING OF COMPUTER PROGRAM FOR HYDRAULIC CONDUCTIVITY AND DRAIN SPACING CALCULATIONS, HYCONS

```
C
      C
      ************************
C
     ************
C
С
     ***
                                                             **
C
     ***
           Χ
                           PROGRAM HYCONS
                                                        Х
                                                             * * *
C
           ХХ
                                                        X = X
      ***
                                 RΥ
                                                             **
С
     ***
          X
            X
                           SIE-TAN CHIENG
                                                       X
                                                             * * *
C
                                                      X 179 X ***
     *** X DEC.X
C
                   AGRICULTURAL ENGINEERING DEPARTMENT
     ***
          X X
                                                       Χ
                                                         X
                                                             * * *
C
     ***
           X X
                                                        X X
                                                             ***
С
                  MACDONALD COLLEGE. MCGILL UNIVERSITY
     ***
                                                             * * *
                                                         X
С
     ***
                                                             ***
Ċ
C
     **********************************
C
     **********************************
С
      ***********************
C
C
C
C
      PROGRAM FOR CALCULATING THE HYDRAULIC CONDUCTIVITY FROM THE
C
     FIELD MEASUREMENTS ( AUGER HOLE METHOD ).
C
     AFTER THE K HAS BEEN CALCULATED. THE DRAIN SPACING OF THAT
C
     FIELD WILL BE COMPUTED BY USING THE HOOGHOUDT EQUATION FOR
C
     HOMOGENEOUS SOIL OR TWO LAYERED SOIL WHATEVER IS APPLICABLE.
C
С
C
. C
     R = DESIGN DRAINAGE RATE.
     AWT = ALLOWABLE WATER TABLE DEPTH FROM SOIL SURFACE.
С
C
     H = WATER TABLE HEIGHT ABOVE DRAIN CENTER.
C
     DD = DRAIN DEPTH.
C
     DE = EQUIVALENT DEPTH.
C
     WT = WATER TABLE BELOW SOIL SURFACE.
C
     D = DEPTH TO HOLE'S BOTTOM FROM WATER TABLE.
C
     RAD = RADIUS OF THE AUGER HOLE.
C
      DELT = DIFFERENCE IN TIME.
C
     DELY = CHANGE IN WATER TABLE.
C
     HK = HYDRAULIC CONDUCTIVITY.
C
C
C
      DIMENSION T(30).Y(30).DELY(30)
      INTEGER HOLE
C
      READ IN DESIGN PARAMETERS.
     READ(5,2,END=550) R,AWT,DD,DE
  1
  2
     FORMAT(F10.4.3F5.1)
     H=DD-AWT
C
      READ IN AUGER HOLE DIMENSIONS.
  5
     READ(5.10.END=551) WT.D.RAD
      FORMAT(2F5.2,F10.5)
     HW=D-WT
 20
      READ(5.30.END=553) HOLE.JOB
 30
      FORMAT([2,2X,11)
```

```
106
      WRITE(6,560)
      00 50 I=1.30
 40
      Y(I) = 0.0
      T(I)=0.0
      DELY(I)=0.0
 50
      CONTINUE
      N\Omega = 1
C
C
      DATA INPUT.
С
      T IN COL. 1-5. Y IN COL. 6-10.
                                           ID IN COL. 15. LAYER IN COL. 20.
      READ(5.70) T(NO).Y(NO).ID .LAYER
 60
 70
      FORMAT(2F5.1,4X,11,4X,11)
      NO=NO+1
      IF(ID.EQ.1) GO TO 80
      GD TO 60
 80
      N\Omega = N\Omega - 1
      YO = Y(1) - WI
      DY = Y(1) - Y(N0)
      YY = YO - DY/2.0
      CHK=Y0/4.0
      IN=0
      SUM=0.0
      DO 100 I=2,NO
      OBS=Y(I-1)-Y(I)
      IF(OBS.GT.CHK) GO TO 110
90
      DELY(I) = OBS
      SUM=SUM+DELY(I)
      GO TO 100
110
      WRITE(6,120) HOLE, JOB, Y(I-1), Y(I), CHK
      FORMAT(1X, 'THE OBSERVATION LISTED BELOW GIVES A ',/,
120
               IX, "DELY" GREATER THAN (YO*1/4). IF IT IS ',/,
     *
               1X. THE LAST OBSERVATION. IT WILL NOT BE './,
               1X. USED IN THE COMPUTATION FOR K : 1.//.
     *
     * 5X. HOLE= '.I2.2X. 'JOB= '.I2.2X. /.
     * 5X. 'Y(I) = '.F7.2.3X. 'Y(I+1) = ',F7.2./.5X, 'CHK=YN*1/4=',F8.4.///)
      IF(I.LT.NO) GO TO 90
      IN=IN+1
100
      CONTINUE
      DELT=ABS(T(1)-T(NO))
      IF(IN.NE.O) DELT=ABS(T(1)-T(NO-1))
      AVE=SUM/DELT
      A=4000.*RAD**2
      B = (HW + 20. *RAD) * (2.0 - YY/HW) * YY
      HK=AVE*A/B
      [F(JOB-1) 130,140,150
130
      WRITE(6.135) HOLE
135
      FORMAT(2X.' JOB # IS O. ==> CHECK INPUT DATA FOR HOLE NO.'. I2.//)
      GO TO 500
140
      HKl=HK
      GO TO 230
150
      HK2=HK
      SA=(8.0*HK2*DE*H)/R
      SB = (4.0 + HK1 + H + 2)/R
      SPACE=SORT(SA+SB)
```

```
C
      PRINT OUT RAW DATA AND COMPUTED RESULTS.
      WRITE(6.242) HOLE, JOB
      WRITE(6.244)
      WRITE(6.245) (I,T(I),Y(I),DELY(I),I=1,NO)
      WRITE(6.246) DEL [.SUM
      WRITE(6,247) YO, DY, YY, D, WT, HW
      WRITE(6.248) R.AWT.DD.DE.H
      WRITE(6,250) HK1, HK2 , SPACE
      FORMAT(//.5X. 'HOLE NO.'. 12.3X. 'JOB NO.'. 12.//)
242
244
      FORMAT(/,5X,'NO,',5X,'T',9X,'Y',6X,'DELY',/,5X,29('-'),/)
245
      FORMAT(5X, 12, 3X, F5, 1, 5X, F5, 1, 4X, F5, 1)
246
      FORMAT(/.5X.*DELT=*.65.1.5X.*SUM-DELY=*.65.1.//)
247
      FORMAT(//.1x. RESULTS : 1.//.5x, YO = 1.F6.2./.
     * 5X, DY = 1, F6.2,/, 5X, Y = 1, F6.2,/, 5X, D = 1, F6.2,/,
     * 5X, WT = 1, F6, 2, /, 5X, 'HW = 1, F6, 2, //)
248
      FORMAT (5x, 'DESIGN DRAINAGE RATE = ', F7.4, ' M/DAY', /,
               5X. ALLOWABLE WATER TABLE= 1.F5.2.
                                                       M1 ./.
     炸
               5X. DRAIN DEPTH
                                         = 1.F5.2.1
                                                       M+,/,
     *
               5X. EQUIVALENT DEPTH
                                         = 1.F5.2.!
                                                       M1./.
               5X. WATER TABLE HEIGHT
                                         = ',F5.2,'
                                                       M!,/)
250
      FORMAT(///,5X, THE HYDRAULIC CONDUCTIVITY : 1,/,
               5X, UPPER LAYER K
                                         = 1, E5.2, 1
                                                       M/DAY',/,
     *
               5X. LOWER LAYER K
                                         = 1.65.2.1
                                                       MIDAY! . / .
               5X. DRAIN SPACING
                                         = 1, F5.2, 1
                                                       M1,//,
     * 5X. **** FIELD WITH TWO LAYERED SOIL ****,///)
      GO TO 1
230
      SPACE=SORT((4.*HK1*(2.*DE*H+H**2))/R)
      PRINT OUT RAW DATA AND COMPUTED RESULTS.
C.
      WRITE(6,242) HOLE, JOB
      WRITE(6.244)
      WRITE(6.245) (I,\Gamma(I),Y(I),DELY(I),I=1,NO)
      WRITE(6,246) DELT, SUM
      WRITE(6.247) YO.DY.YY.D.WT.HW
      WRITE(6.248) R.AWI,DD.DE.H
      IF(LAYER.NE.2) WRITE(6.260) HK1.SPACE
      IF(LAYER.EQ.2) WRITE(6.270) HK1
260
      FORMAT(///.5X. 'HYDRAULIC CONDUCTIVITY = ',F5.2,' M/DAY',/,
               5X. DRAIN SPACING
                                         = 1, E5.2, M1, //,
     * 5X, **** THE FIELD WITH HOMOGENEOUS SOIL ***!,///)
270
      FORMAT(///.5X. 'HYDRAULIC CONDUCTIVITY = ',F5.2,' M/DAY',/,
               5X. TWO LAYERED SOIL --- DRAIN SPACING',/,
     * /.
     * /, 5X, 'WILL BE CALCULATED IN NEXT STEP.',///)
      IF(LAYER.EQ.2) GO TO 20
      GO TO 1
500
      WRITE(6.510) HOLE
510
      FORMAT(//,1X, ****ERROR*** JOB # = 9 FOR HOLE #', 12,/)
551
      WRITE(6,552)
      FORMAT(1X, 'MISSING DATA FOR WT.D.RAD -- CHECK STATEMENT 5',/)
552
      GO TO 550
553
      WRITE(6.554)
554
      FORMAT(1X, 'MISSING DATA FOR HOLE, JOB -- CHECK STATEMENT 201,/)
550
      WRITE(6.560)
560
      FORMAT( 111)
      STOP
      END
```

APPENDIX B

LISTING OF COMPUTER PROGRAM FOR DRAINAGE SYSTEM DESIGN PROGRAM, DSDP

```
C
     ****************
C
     *************************************
C
     ***************
С
                                                          ** ** **
C
     ***
                                                          ***
С
     水水水
           Χ
                          PROGRAM
                                DSDP
                                                     Χ
                                                          * * *
C
     ***
          XX
                               ΒY
                                                    XX
C
     ***
         Χ
           X
                         SIE-TAN CHIENG
                                                    Χ
                                                          * * *
C
     *** X DEC.X
                                                   X 179 X
                                                         ***
C
         X X
                 AGRICULTURAL ENGINEERING DEPARTMENT
                                                    Χ
                                                       Χ
                                                          ***
C
     ***
          XX
                                                    X X
                                                          **
C
     ***
           X
                MACDONALD COLLEGE. MCGILL UNIVERSITY
                                                          ***
C
                                                          ***
C
     ** ** **
                                                          * * *
C
     *****************
C
     *****************
C
     ******************
C
                                                           C.
C
                                                           C
C
     ENTIRE PACKAGE CONSISTS OF:
                                                           С
C
           MAIN.SLOPE.ALIGN.TORITE.TOLEFT.AXX.DRAIN1.DRAIN2.
                                                           C
C
           D1P2,D1P3,D2P2.
                                                           C
C
C 1
     NB (I2) ---- # OF FIELD BOUNDARY.
C2
     BX.BY (2F10.2) ----- CO-ORDINATES OF FIELD BOUNDARY.
C3
     SP, BETA, DSCALE (3F10.2) ----- SPACING, ANGLE BETWEEN LATERAL
C4
       AND COLLECTOR, AND THE SCALE OF THE DRAWING PLAN.
C 5
     NC (12) ----- # OF BOUNDARY FOR DRAINAGE SUB-AREA.
C6
     CX,CY (2F10.2) ----- COORDINATES OF SUB-AREA BOUNDARY.
C7
     INUT, JOINT, JNO (12.2X, 11.4X, 11) ---- # OF COORDINATES OF COLLECTOR
C8
       IF JOINT=1 CONNECTING POINTS EXIST FOR COLLECTOR & OUTLET.
C9
     JNO IS THE # OF CONNECTING POINTS.
C10
     OX.OY (2F10.2) ----- CO-ORDINATES OF COLLECTOR.
C11
     PJX, PJY (2F10.2) ----- CO-ORDINATES OF CONNECTING POINTS.
C
     DIMENSION BX(10), BY(10), CX(10,10), CY(10,10)
    1
            •X1(10,50),Y1(10,50),X2(10,50),Y2(10,50)
    2
            ,X3(10,50),Y3(10,50),XLEN(10,50),XLMIN(10)
    3
            .0X(10,10),0Y(10,10),0X1(10),0Y1(10),0X2(10),0Y2(10)
            ,PJX(10,5),PJY(10,5),LINE(10),S(10,10),SPAC(10)
    5
            .NONC(10).SECLEN(10).COSEC(10,5).TLSUM(10)
            ,BANGLE(10),NOUT(10),JOINT(10)
C
     INITIALIZATION OF ARRAYS.
     DO 04 I=1.10
    LINE(I)=0
     SECLEN(I) = 0.0
     XLMIN(I) = 999.0
     DO 03 J=1.50
     X1(I.J) = 0.0
     Y1(I,J)=0.0
     (0.0 = (1.1)5)
```

```
Y2(I,J)=0.0
                                                                     110
      X3(I,J)=0.0
      Y3(I,J)=0.0
  03
      CONTINUE
  04
      CONTINUE
      RAD=3.1415926/180.0
      SUMLEN=0.0
      IDA = 0
      LTSUM=0
      IGO=0
C
      NB = # OF BOUNDARY CORNERS.
С
      ICOPY BRANCHING DECISION.
                                    ICOPY=1 COPY RESULTS TO DISK.
C
      NO COPY TO DISK FILE WILL BE DONE IF ICOPY NOT =1.
C
      [WRT = DISK OR TAPE DEVICE UNIT #.
      READ(5.1000) NB.ICOPY.IWRT
1000
      FORMAT(312)
      READ(5,1050) BX(1),BY(1)
      BXL=BX(1)
      BXS=BX(1)
      BYL=BY(1)
      BYS=BY(1)
      DO 1100 I=2.NB
      READ(5,1050) BX(I),BY(I)
1050
      FORMAT(2F10.2)
      IF(BX(I).GE.BXL) BXL=BX(I)
      IF(BX(I).LE.BXS) BXS=BX(I)
      IF(BY(I).GE.BYL) BYL=BY(I)
      [F(BY(I).LE.BYS) BYS=BY(I)
1100
      CONTINUE
1150
      IDA = IDA + 1
      READ(5,1155, END=6500 ) SP. BETA . DSCALE
1155
      FORMAT(3F10,2)
      BANGLE(IDA)=BETA
      IF(SP.E0.0.0.AND.BETA.E0.0.0) GO TO 6500
      READ(5,1200) NC
1200
      FORMAT(12)
      SUM=0.0
      NONC(IDA) = NC
      READ(5,1300) (CX(IDA,I),CY(IDA,I),I=1,NC)
1300
      FORMAT(2F10.2)
      CALL SLOPE(IDA.NC.CX.CY.S)
      READ(5.1400) NOUT(IDA), JOINT(IDA)
1400
      FORMAT(I2.1X.I2)
      IOUT=NOUT(IDA)
      READ(5,1500) (OX(IDA,I),OY(IDA,I),I=1,IOUT)
1500
      FORMAT(2F10.2)
      IF(IOUT.NE.2) GO TO 1600
      OXI(IDA) = OX(IDA.1)
      OY1(IDA) = OY(IDA \cdot 1)
      OX2(IDA)=OX(IDA,2)
      OY2(IDA) = OY(IDA,2)
      50 TO 1800
1600
      CALL ALIGN (OX.OY.IDA.IOUT.OX1.OY1.OX2,OY2.BETA.RAD,W.W1,W2)
1800
      IF(JOINT(IDA).EQ.O) GO TO 2000
      (ACI) THIOL=ONL
```

```
111
      READ(5.1900) (PJX(IDA.I).PJY(IDA.I).I=1.JNO)
1900
      FORMAT(2F10-2)
2000
      CONTINUE
      TL = SQRT((OX2(IDA)-OX1(IDA))**2 + (OY2(IDA)-OY1(IDA))**2)
      IF(IOUT.NE.2) GO TO 2200
      TLSUM(TDA) = TI
      50 TO 2400
2200
      TLSUM(IDA)=0.0
      DO 2300 I=2.IOUT
      TL1=SORT((OX(IDA,I)-OX(IDA,I-1))**2 +
                (OY(IDA,I)-OY(IDA,I-1))**2)
      COSEC(IDA, I-1) = TL1
      FLSUM(IDA) = FLSUM(IDA) + TL1
2300
      CONTINUE
2400
      DELC=SP/(DSCALE*2.0*SIN(BETA*RAD))
      DELC=ABS(DELC)
      NOL=TL/(2.0*DELC)
      IF(NOL*2*DELC.EQ.TL) GO TO 2600
      XN=TL/(2.0*DELC)
      NX=TL/(2.0*DELC)
      DIFF=XN-NX
      IF(DIFF.EQ.O.O) GO TO 2500
      NOL = NX + 1
      GO TO 2600
2500
      NOL=NX
2600
      DELC=TL/(2.0*NOL)
      SPAC(IDA) = ABS(DELC*2.0*SIN(BETA*RAD))
      LINE(IDA)=NOL
C
      TO GET THE TOTAL # OF LATERALS .
      LTSUM=LTSUM+NOL
C
      IF(IOUT.EQ.2) GO TO 2800
      \Gamma LA = SQRT((OX(IDA,2)-OX(IDA,1))**2 + (OY(IDA,2)-OY(IDA,1))**2)
      NOL1 = (TLA - DELC)/(2.0*DELC) + 1
      NOL2=NOL-NOL1
      NOLS=NOL1+1
2800
      XCHK=OX2(IDA)-OX1(IDA)
      YCHK = 0Y2(IDA) - 0Y1(IDA)
      WRITE(6,2900)
2900
      FORMAT(111)
      WRITE(6,2910) (I,BX(I),BY(I),I=1,NB) \cdot
      FORMAT(1X, 12, 3X, '(BX, BY) = '.2F8.2)
2910
      WRITE(6,2920) BXL,BYL,BXS,BYS
2920
      FORMAT(/,2X,'BXL=',F8.2,T23, 'BYL=',F8.2,/,
     * 2X, 'BXS=', F8.2, T23, 'BYS=', F8.2,/)
      IF(IOUT.EQ.2) GO TO 2950
      WRITE(6.101) OX1(IDA),OY1(IDA),OX2(IDA),OY2(IDA), W,W1,W2,BETA
 101
      FORMAT(1X, (OX1, OY1) = (.2F8, 2, 2X, (OX2, OY2) = (.2F8, 2, /, .2F8, 2, /)

★ 1X, 'W = ', F7, 2, 2X, 'W1 = ', F7, 2, 2X, 'W2 = ', F7, 2, 2X, 'BETA= ', F7, 2, /)

2950
     WRITE(6,3000) IDA,NC,BETA,DELC,SPAC(IDA),SP,TL,NOL
      FORMAT(2X, IDA=1.17, T23, INC=1,17,/,
     1 2X, 'BETA=',F7.2, T23, 'DELC=',F7.3,/,
     2 2X. 'SPACING=',F6.2, F23. 'DRIGINAL SPACING=',F7.2,/,
     3 2X, 'TL=',F7.2, [23, 'NOL=', [7,/)
      WRITE(6,3100)
```

```
112
3100
      FORMAT( 2X. INPUT FIELD BOUNDARIES : 1)
      DO 3500 I=1.NC
3500
      WRITE(6,3600) I,CX(IDA,I),CY(IDA,I),S(IDA,I)
      FORMAT(2X,13, 3X, (CX,CY) = 1, 2(F7,2,3X),2X,1S(OPF=1,F7,2)
3600
      WRITE(6.3800)
3800
      FORMAT(/,2X, 'COLLECTOR CO-ORDINATES : ',/)
      WRITE(6,4000) (IDA,I,OX(IDA,I),IDA,I,OY(IDA,I),I=1,IOUT)
4000
     FORMAT(2X.*OX(*, 12.*, 11.*) = *, F7.2.3X,
                  'OY(', I2, ',', I1, ') =',F7.2,/)
      [F(IOUT.E0.2) GO TO 4200
      ITS=IOUT-1
      WRITE(6,4100) (I,COSEC(IDA,I),I=1,ITS)
4100
      FORMAT(2X, ' COSEC', II, '=', F7.2,/)
4200
      WRITE(6.4300) IDA.TLSUM(IDA)
4300
      FORMAT(2X, 'TLSUM(', I2, ')=', F8,2,/)
      IF(JOINT(IDA).EQ.0) GO TO 4700
      WRITE(6,4500)
4500
      FORMAT('0', COLLECTOR CONNECTING-POINTS CO-ORDINATES : ',/)
      WRITE(6,4600) (IDA,I,PJX(IDA,I),IDA,I,PJY(IDA,I),I=1,JNO)
      FORMAT(2X, 'PJX(', I2, ', ', I1, ')=', F7, 2, 3X,
     * 'PJY('.I2. '.'.I1.' )='.F7.2./)
      50 TO 5000
4700
      WRITE(6,4800) IDA
      FORMAT('0', MAIN: FIELD #', 12, ', JOINT=1 NOT ENCOUNTERED.',/,
4800
     * ' NO CONNECTING POINT FOR COLLECTOR FOR THIS AREA.',/)
5000
      IF(BETA.LT.0.0) GO TO 5100
             TOLEFT
      CALL
                         (NC, IDA, BETA, S, CX, CY, X1, Y1, X2, Y2, X3, Y3, DELC,
     * OX1.0Y1, OX2.0Y2.0X.OY, LINE, XLEN, SPAC, XCHK, YCHK, NOL, ALPHA,
     * SL.DELX.DELY.W1.W2,W.NOLS.IOUT,RAD)
      GO TO 5500
5100
     CALL
             TORITE
                         (NC.IDA, BETA, S, CX, CY, X1, Y1, X2, Y2, X3, Y3, DELC,
     * OX1.OY1.OX2.OY2.OX.OY.LINE.XLEN.SPAC.XCHK,YCHK,NOL.ALPHA,
     * SL, DELX, DELY, W1, W2, W, NOLS, IOUT, RAD)
     CONTINUE
      IF(IGO.EQ.1) GO TO 1150
      WRITE(6.5600) ALPHA.SL.DELX.DELY
     FORMAT(2X, 'ALPHA=', F7.2.10X, 'SL=', F7.2./,
     1 2X, 'DELX=', F7.2,10X, 'DELY=', F7.2,/)
      LINE(IDA)=NOL
      WRITE(6.5700) LINE(IDA).IDA
5700
      FORMAT(2X, THE TOTAL NUMBER OF LATERAL IS 1, 14,
          FOR FIELD NO. 1,12,//,
     2 2X,'NO',7X,'X1',7X,'Y1',7X,'X2',7X,'Y2',7X,'X3',7X,'Y3',
     3 6X, TXLENT, /, 2X, 67(1-1), /)
      DO 5900 J=1.NOL
      SUM=SUM+XLEN(IDA.J)
      IF(XLMIN(IDA).GT.XLEN(IDA,J)) XLMIN(IDA)=XLEN(IDA,J)
      WRITE(6.5800)J.X1(IDA,J),Y1(IDA,J),X2(IDA,J),Y2(IDA,J),
     L X3(IDA,J),Y3(IDA,J),XLEN(IDA,J)
5800
      FORMAT(1X, 13, 4X, 7(F7, 2, 2X),/)
5900
      CONTINUE
      WRITE(6,6000)
```

6000

FORMAT(2X,67(!-!),//)

WRITE(6.6100) SECLEN(IDA), XLMIN(IDA)

SECLEN(IDA) = SUM

```
6100 FORMAT(2X, THE TOTAL LENGTH OF ALL THE LATERALS FOR THIS SECTION .
     * , 'IS : ', F8.2.//.2X.
     * 'THE SHORTEST LATERAL IN THIS SECTION IS : ',F9.2,/)
      SUMLEN=SUMLEN+SECLEN(IDA)
      CONTINUE
6200
      GO TO 1150
6500
      IDA = IDA - 1
      PRINT OUT THE TOTAL LENGTH OF PIPE NEEDED FOR THIE FIELD.
                                                                          C.
      WRITE(6,6600) LTSUM, SUMLEN
6600
      FORMAT(2X,67('-'), //, 2X, 'THIS FIELD HAS ',13,' LATERALS AND',
     * ! THE TOTAL LENGTH IS : ', F14.2, //.2X.67(!-!) )
C
      IF(ICOPY.NE.1) GO TO 9999
      WHEN ICOPY=1 THAT MEANS ALL DATA SHOULD BE COPIED TO DISK
С
C
      OR TAPE FOR FUTURE PLOTTING PURPOSES.
C
      THIS WILL BE DONE IN THIS SECTION
C
C
С
      COPYING DATA TO DISK FOR FUTURE PLOTTING PURPOSES.
C
      IWRT IS THE UNIT OF THE DEVICE USED .
C
      WRITE(IWRT.8000) NB.IDA
8000
      FORMAT(212)
      DO 8100 I=1.NB
8100
      WRITE(IWRT.8200) BX(I).BY(I)
8200
      FORMAT(2F10.2)
      WRITE(IWRT,8300) BXL,BYL,BXS,BYS
8300
      FORMAT(4F10.2)
      00 9000 I=1.IDA
      WRITE(IWRT.8400)SPAC(I).BANGLE(I).NONC(I).LINE(I).NOUT(I).JOINT(I)
8400
      FORMAT(2F10.3.415)
      IOUT=NOUT(I)
      WRITE(IWRT.8200) (OX(I.J).OY(I.J).J=1.IOUT)
      LN=LINE(I)
      DO 8500 K=1.LN
      J=LN-(K-1)
8500
     WRITE(IWRT,8600) X1(I,J),Y1(I,J),X2(I,J),Y2(I,J),X3(I,J),Y3(I,J),
     1 XLEN(I.J)
8600
     FORMAT(7F10.2)
      IF(JDINT(I).EQ.O) GO TO 8800
      (I) TWIOL=OWL
      WRITE(IWRT, 8200) (PJX(I,J), PJY(I,J), J=1,JNO)
8800
      WRITE(IWRT, 8200) XLMIN(I), SECLEN(I)
9000
      CONTINUE
      WRITE(IWRT,9100) SUMLEN
9100
      FORMAT(F10.2)
C
C
      END OF COPYING DATA TO DISK-FILE.
9999
      STOP
      END
```

```
C
C
                   SUB-PROGRAM
                                AL IGN
C
      THIS SUBROUTINE ALIGNS THE COLLECTOR-SEGMENTS INTO ONE MAIN
                                                                          C
C
             AFTER LOCATES THE (X1.Y1) POINTS ON THE MAIN LINE,
                                                                          C
C
      PROGRAM WILL PROJECTS THE POINTS BACK TO THE ORIGINAL
                                                                          C.
C
      COLLECTOR-SEGMENT.
                                                                          C
SUBROUTINE ALIGN (OX, 0Y, IDA, IOUT, OX1, 0Y1, OX2, 0Y2, BETA,
     本 RAD.W.W1.W2)
      DIMENSION OX(10,10),0Y(10,10),0X1(10),0Y1(10),0X2(10),0Y2(10)
      X\Delta = \bigcap X (ID\Delta \cdot 2) - \bigcap X (ID\Delta \cdot 1)
      YA = OY(IDA \cdot 2) - OY(IDA \cdot 1)
      IF(XA.EQ.O.O.AND.YA.EQ.O.O) GO TO 10
      W1 = \Delta T \Delta N 2 (Y \Delta \cdot X \Delta) / R \Delta D
      IF(XA.LT.O.O.AND.YA.LT.O.O) W1=ATAN2(ABS(YA),ABS(XA))/RAD
      GO TO 20
  10
     W1 = 90.0
  20
      XB = OX(IDA.3) - OX(IDA.2)
      YB = OY(IDA.3) - OY(IDA.2)
      IF(XB.EQ.O.O.AND.YB.EQ.O.O) GO TO 30
      W2 = ATAN2(YB, XB)/RAD
      IF(XB.LT.O.O.AND.YB.LT.O.O) W2=ATAN2(ABS(YB),ABS(XB))/RAD
      50 TO 40
      W2 = 90.0
  30
 40
     [F(BETA-0.0) 45,50,55
      IF(ABS(BETA).EQ.W1) W=0.0
      IF(ABS(BETA).LT.W1) W=W1-ABS(BETA)
      IF(ABS(BETA).GT.W1) W=W1+180.0-ABS(BETA)
      60 TO 100
  50
      WRITE(6.47)
  47
      FORMAT('0', 'BETA=0.0.
                             CHECK #50 IN ALIGN!)
      GO TO 100
      TESTW=180.0-ARS(RETA)
      IF(TESTW.LT.W1) W=W1-TESTW
      IF(TESTW.EQ.W1) W=0.0
      IF(TESTW.GT.W1) W=W1+ABS(BETA)
 100
      [F(W.EQ.90.0) GO TO 105
      \Delta X = (OY(IDA,1)-OY(IDA,3)-OX(IDA,1)*T\Delta N(W1*RAD)+
     * OX(IDA,3)*TAN(W*RAD) )/(TAN(W*RAD)-TAN(W1*RAD) )
      GO TO 110
 105
      4X = 0X(IDA.3)
 110
      \Delta Y = OY(IDA,1)+TAN(W1*RAD)*(AX-OX(IDA,1))
      OX1(IDA) = OX(IDA,1)
      OY1(IDA) = OY(IDA.1)
     OX2(IDA) = AX
     OY2(IDA) = AY
      RETURN
      END
```

```
C
C
                                                                C
     SUBROUTINE SLOPE
C
C
     THE SUB-PROGRAM SLOPE COMPUTES THE SLOPES OF ALL THE BOUDARIES
                                                                C
     OF THE DRAINAGE FIELD. SIDE #1 IS THE ONE THAT THE OUTLET
C
                                                                C
C
     LIES IN IT.
                                                                C
C
                                                                C
SUBROUTINE SLOPE(IDA.NC.CX.CY.S)
     DIMENSION CX(10.10), CY(10.10), S(10.10)
     DO 10 I=2.NC
     DY = CY(IDA \cdot I) - CY(IDA \cdot I - 1)
     DX=CX(IDA,I)-CX(IDA,I-1)
     [F(DX.EQ.0.0) GO TO 20
     S(IDA \cdot I) = DY/DX
     60 TO 10
 20
     S(IDA,I) = 999.0
     CONTINUE
     DY=CY(IDA.1)-CY(IDA.NC)
     DX = CX(IDA,1) - CX(IDA,NC)
     IF(DX.EQ.O.O) GO TO 30
     S(IDA_{\bullet}I)=DY/DX
     GO TO 40
  30
     S(IDA \cdot 1) = 999 \cdot 0
  40
     RETURN
     END
```

```
C
C
    FUNCTION SUBROUTINE
                     \Delta X X
                                                        C
C
                                                        C
C
    THE FUNCTION SUB-PROGRAM CALCULATES THE ANGLE OF AX1.
                                                        C
C
    AXI IS THE ANGLE FORMS BY THE LINES (X1,Y1)-(CX1,CY1) AND
                                                        C
C
    (X1,Y1) - (0X2,0Y2).
                                                        C
    IF AX1 < BETA THEN THE FIRST (X2.Y2) POINT WILL BE LIED IN
                                                        С
C
C
    FIRST FIELD BOUDARY.
                      IF AX1 > BETA THE (X2, Y2) POINT WILL
                                                        C
C
    START IN SECOND FIELD BOUNDARY.
                                                        C
FUNCTION AXX(IDA,CX,CY,X1,Y1,OX1,OY1,OX2,OY2)
    DIMENSION CX(10,10),CY(10,10),X1(10,50),Y1(10,50),OX1(10),
```

```
* OY1(10).OX2(10).OY2(10)

SA=SORT((CX(IDA.1)-X1(IDA.1))**2+(CY(IDA.1)-Y1(IDA.1))**2)

SB=SORT((X1(IDA.1)-OX2(IDA))**2+ (Y1(IDA.1)-OY2(IDA))**2)

SC=SORT((CX(IDA.1)-OX2(IDA))**2+(CY(IDA.1)-OY2(IDA))**2)

AXX=(SA**2+SB**2-SC**2)/(2.0*SA*SB)

RETURN

END
```

```
C
C
                                                                                                                                                                                                 C
                                                   SUBROUTINE TOLEFT
C
                                                                                                                                                                                                 C
C
                 IF THE LATERALS ARE ON THE LEFT HAND SIDE OF THE MAIN COLLECTOR
                                                                                                                                                                                                 C
C
                THIS SUB-PROGRAM ( TOLEFT ) WILL BE CALLED TO DESIGN THEM.
                                                                                                                                                                                                 C
SUBROUTINE TOLEFT (NC.IDA.BETA.S.CX.CY.X1.Y1.X2.Y2.X3.Y3.DELC.
              * OX1.OY1,OX2.OY2.OX,OY.LINE.XLEN.SPAC.XCHK.YCHK.NOL.ALPHA.
              * SL.DELX.DELY.W1.W2.W.NOLS.IOUT.RAD)
                DIMENSION OX(10,10), 0Y(10,10)
                DIMENSION CX(10,10), CY(10,10), X1(10,50), Y1(10,50), X2(10,50),
              1 Y2(10.50), X3(10.50), Y3(10.50), S(10.10), 0X1(10), 0Y1(10),
              2 OX2(10), OY2(10), LINE(10), XLEN(10,50), SPAC(10)
                 IF((YCHK.EQ.O.O).OR.(ABS(YCHK).LT.O.001)) GO TO 100
                 IF((XCHK.EQ.O.O).OR.(ABS(XCHK).LT.O.OO1)) GO TO 200
                 ALPHA=ATAN2(YCHK,XCHK)/RAD
                 [F(ALPHA.LT.O.O) ALPHA=180.0-ABS(ALPHA)
                DELX=SPAC(IDA) *COS(ALPHA*RAD)/(2.0*SIN(BETA*RAD))
                DELY=SPAC(IDA)*SIN(ALPHA*RAD)/(2.0*SIN(BETA*RAD))
                DELX=ABS(DELX)
                DELY=ABS(DELY)
                 IF(ALPHA.GT.90.0) GO TO 110
                GO TO 118
                 IF(OX1(IDA),LT,OX2(IDA),AND,OY1(IDA),GT,OY2(IDA)) GO TO 111
   110
                00 112 I=1.NOL
                 X1(IDA,I)=OX1(IDA)-DELX*(2*I-1)
   112
                Y1(IDA,I)=OY1(IDA)+DELY*(2*I-1)
                 GO TO 115
                DO 113 I=1.NOL
   111
                 X1(IDA \cdot I) = OX1(IDA) + DELX*(2*I-1)
   113
                Y1(IDA,I)=OY1(IDA)-DELY*(2*I-1)
                 IF(IOUT.E0.2) GO TO 125
   115
                DO 116 I=NOLS, NOL
                 X1(IDA \cdot I) = (Y1(IDA \cdot I) - OY(IDA \cdot 2) + TAN(W2 \times RAD) \times OX(IDA \cdot 2) - OX(IDA \cdot 2) + OX(IDA \cdot 2)

★ TAN(W#RAD) #X1(IDA,I) )/( TAN(W2#RAD)-TAN(W#RAD))
               Y1(IDA \cdot I) = OY(IDA \cdot 2) + TAN(W2 \times RAD) \times (X1(IDA \cdot I) + OX(IDA \cdot 2))
                GO TO 125
   118
                 IF(OX1(IDA).LT.OX2(IDA).AND.OY1(IDA).LT.OY2(IDA)) GO TO 119
```

```
117
     DO 120 I=1.NOL
      X1(IDA \cdot I) = OX1(IDA) - DELX*(2*I-1)
120
     Y1(IDA \cdot I) = OY1(IDA) - DELY*(2*I-1)
     GO TO 115
119
     00 121 I=1,NOL
      X1(IDA,I)=OX1(IDA)+DELX*(2*I-1)
121
     Y1(IDA \cdot I) = OY1(IDA) + DELY*(2*I-1)
      GO TO 115
125
      \Delta X = \Delta XX(IDA \cdot CX \cdot CY \cdot X1 \cdot Y1 \cdot OX1 \cdot OY1 \cdot OX2 \cdot OY2)
      \Delta X1 = ARCOS(\Delta X) * (1.0/RAD)
      WRITE(6.126) AX1
126
      FORMAT(/,2X,'AX1=',F7.2,' AFTER STATEMENT #125 IN TOLEFT.',/)
      IF(ALPHA+BETA-180.0) 130.140.150
130
      IF((ALPHA+BETA).E0.90.0) GO TO 135
      SL=TAN((ALPHA+BETA)*RAD)
      GO TO 160
     SL=999.0
135
      GO TO 160
140
     SL=0.0
      GO TO 160
150
      IF((ALPHA+BETA).E0.270.0) GO TO 135
      SL=TAN((ALPHA+BETA-180.0) *RAD)
     IF(AX1.GE.BETA) GO TO 170
160
             DRAIN1 (IDA, CX, CY, X1, Y1, X2, Y2, X3, Y3, S, OX1, OY1,
     * OX2. OY2. XLEN. SPAC. BETA. ALPHA. NC. SL. AX1. NOL. RAD)
     GO TO 350
170
            DRAIN2 (IDA.CX,CY,X1,Y1,X2,Y2,X3,Y3,S,OX1,OY1,
     * OX2, OY2, XLEN, SPAC, BETA, ALPHA, NC, SL, AX1, NOL, RAD)
     GO TO 350
100
      \Delta LPH\Delta = 0.0
      DELX=DELC
      DELY=0.0
      IF(OX1(IDA) \cdot LT \cdot OX2(IDA) \cdot AND \cdot OY1(IDA) \cdot EO \cdot OY2(IDA)) GO TO 212
      DO 210 I=1.NOL
      X1(IDA \cdot I) = OX1(IDA) - DELX * (2 * I - 1)
210
     Y1(IDA,I)=OY1(IDA)
      GO TO 214
212
      DO 213 I=1.NOL
      X1(IDA \cdot I) = OX1(IDA) + DELX*(2*I-1)
213
      Y1(IDA \cdot I) = OY1(IDA)
214
      IF(IOUT.EQ.2) GO TO 218
      DO 216 I=NOLS, NOL
      X1(IDA,I) = (Y1(IDA,I)-OY(IDA,2)+TAN(W2*RAD)*OX(IDA,2)-
     * TAN(W*RAD)*X1(IDA.I) )/( TAN(W2*RAD)-TAN(W*RAD))
216
     Y1(IDA,I)=OY(IDA,2)+IAN(W2*RAD)*(X1(IDA,I)-OX(IDA,2))
218
      IF(BETA.EQ.90.0) GO TO 220
      [F(BETA.GE.89.95.AND.BETA.LE.90.05) GO TO 220
      GO TO 125
220
      AX = AXX(IDA,CX,CY,X1,Y1,OX1,OY1,OX2,OY2)
      \Delta X1 = \Delta RCOS(\Delta X) * (1.0/RAD)
      WRITE(6,221) AX1
221
      FORMAT(/,2X,'AX1=',F7.2,' AFTER STATEMENT #220 IN TOLEFT.',/)
      [F(AX1-RETA) 230,240,240
230
             DRAIN1 (IDA,CX,CY,X1,Y1,X2,Y2,X3,Y3,S,OX1,OY1,
```

* OX2,OY2,XLEN.SPAC,BETA,ALPHA,NC,SL,AX1,NOL,RAD)

```
GO TO 350
240
     CALL DRAIN2 (IDA, CX, CY, X1, Y1, X2, Y2, X3, Y3, S, OX1, OY1,
    * OX2, OY2, XLEN, SPAC, BETA, ALPHA, NC, SL, AX1, NOL, RAD)
     GO TO 350
200
     \Delta I.PH\Delta = 90.0
     DELX=0.0
     DELY=DELC
     IF(OXI(IDA),EQ_OX2(IDA),AND_OYI(IDA),GI_OY2(IDA)) GO IO 261
     DO 260 I=1.NOL
     X1(IDA,I)=OX1(IDA)
260
     Y1(IDA \cdot I) = OY1(IDA) + DELY*(2*I-1)
     90 TO 263
261
     DO 262 T=1.NOL
     X1(IDA \cdot I) = OX1(IDA)
262
     Y1(IDA \cdot I) = OY1(IDA) - DELY*(2*I-1)
263
     IF(IOUT.EQ.2) GO TO 268
     DO 266 I=NOLS.NOL
     X1(IDA,I) = (Y1(IDA,I)-OY(IDA,2)+TAN(W2*RAD)*OX(IDA,2)-
    * TAN(W*RAD)*X1(IDA,I) )/( TAN(W2*RAD)-TAN(W*RAD))
266
     Y1(IDA \cdot I) = OY(IDA \cdot 2) + \GammaAN(W2*RAD)*(X1(IDA \cdot I) - OX(IDA \cdot 2))
268
     IF(BETA_EQ_90_0) GO TO 270
     IF(BETA.GE.89.95.AND.BETA.LE.90.05) GO TO 270
     GO TO 125
270
     4X = AXX(IDA,CX,CY,X1,Y1,OX1,OY1,OX2,OY2)
      \Delta X1 = \Delta RCOS(\Delta X) * (1.0/R\DeltaD)
     WRITE(6,271) AX1
      FORMAT(/,2x,'AX1=',F7,2,' AFTER STATEMENT #270 IN TOLFFT,',/)
     IF(AX1-BETA) 280,290,290
280
            DRAIN1 (IDA,CX,CY,X1,Y1,X2,Y2,X3,Y3,S,OX1,OY1,
    * OX2.OY2.XLEN.SPAC.BETA.ALPH4.NC.SL.AX1.NOL.RAD)
     GO TO 350
290
     CALL DRAIN2 (IDA.CX.CY.X1.Y1.X2.Y2.X3.Y3.S.OX1.OY1.
    * OX2.0Y2,XLEN.SPAC.BETA.ALPHA.NC.SL.AX1.NOL,RAD)
350
     RETURN
     END
```

```
ეკენები გენები გენე
C
                                                                     C
C
                                                                     C
                  SUBROUTINE TORITE
С
                                                                     C
C
     IF THE LATERALS ARE ON THE RIGHT HAND SIDE OF THE MAIN COLLECTOR
                                                                    C
     THIS SUB-PROGRAM ( TORITE ) WILL BE CALLED TO DESIGN THEM.
SUBROUTINE FORITE (NC. IDA. BEFA.S.CX.CY. X1. Y1. X2, Y2, X3, Y3, DELC,
    * OX1.OY1,OX2.OY2.OX.OY.LINE.XLEN.SPAC.XCHK,YCHK,NOL.ALPHA,
    * SL.DELX.DELY.W1.W2.W.NOLS.IOUT,RAD)
     DIMENSION OX(10.10).0Y(10.10)
```

```
DIMENSION CX(10.10).CY(10.10).X1(10.50).Y1(10.50).X2(10.50)
    1 \ Y2(10,50), X3(10,50), Y3(10,50), S(10,10), DX1(10), DY1(10),
    2 \text{ DX2}(10) \cdot \text{DY2}(10) \cdot \text{LINE}(10) \cdot \text{XLEN}(10.50) \cdot \text{SPAC}(10)
      RFT\Delta = \Delta RS(RFT\Delta)
      IF((YCHK.EQ.O.O).OR.(ABS(YCHK).LT.O.001)) GO TO 100
      IF((XCHK.EQ.O.O).OR.(ABS(XCHK).LT.O.OO1)) GO TO 200
      ALPHA=ATAN2(YCHK,XCHK)/RAD
      IF(ALPHA.LT.O.O) ALPHA=180.0-ABS(ALPHA)
     DELX=SPAC(IDA)*COS(ALPHA*RAD)/(2.0*SIN(BETA*RAD))
      DELY=SPAC(IDA) *SIN(ALPHA*RAD)/(2.0*SIN(BETA*RAD))
     DELX=ABS(DELX)
      DELY=ABS(DELY)
      [F(ALPHA.GT.90.0) GO TO 110
      GO TO 118
110
      IF(OX1(IDA) \cdot LT \cdot OX2(IDA) \cdot AND \cdot OY1(IDA) \cdot GT \cdot OY2(IDA)) GO TO 111
      DO 112 I=1, NOL
      X1(IDA,I)=OX1(IDA)-DELX*(2*I-1)
112
      Y1(IDA \cdot I) = OY1(IDA) + DELY * (2 * I - 1)
     GO TO 115
111
      DO 113 I=1.NOL
      X1(IDA,I)=OX1(IDA)+DELX*(2*I-1)
113
      Y1(IDA \cdot I) = OY1(IDA) - DELY * (2*I-1)
115
      [F(IOUT.EQ.2) GO TO 125
      DO 116 I=NOLS, NOL
      X1(IDA,I) = (Y1(IDA,I)-OY(IDA,2)+TAN(W2*RAD)*OX(IDA,2)-

★ TAN(W*RAD) *X1(IDA,I) )/( TAN(W2*RAD) - TAN(W*RAD))
      Y1(IDA \cdot I) = OY(IDA \cdot 2) + TAN(W2*RAD)*(X1(IDA \cdot I) - OX(IDA \cdot 2))
      GO TO 125
118
      IF(OX1(IDA) \cdot LT \cdot OX2(IDA) \cdot AND \cdot OY1(IDA) \cdot LT \cdot OY2(IDA)) GO TO 119
      DO 120 I=1.NOL
      X1(IDA \cdot I) = OX1(IDA) - DELX*(2*I-1)
120
      Y1(IDA \cdot I) = OY1(IDA) - DELY*(2*I-1)
      GO TO 115
      DO 121 I=1, NOL
119
      X1(IDA,I)=OX1(IDA)+DELX*(2*I-1)
121
      YI(IDA,I)=OYI(IDA)+DELY*(2*I-1)
      60 TO 115
125
      \Delta X = \Delta XX (ID\Delta, CX, CY, X1, Y1, OX1, OY1, OX2, OY2)
      \Delta X1 = ARCOS(\Delta X) * (1.0/RAD)
      WRITE(6,126) AX1
126
      FORMAT(/,2X,'AX1=',F7.2,' AFTER STATEMENT #125 IN TORITE.',/)
      IF(ALPHA-0.0) 128.130.130
128
      ALPHA=180.0+ALPHA
130
      IF(ALPHA-BETA) 135,140,150
135
      [F((ABS(ALPHA-BETA)).EQ.90.0) GO TO 138
      SL=TAN((ALPHA-BETA)*RAD)
      SO TO 160
      SL=999.0
138
      50 TO 160
140
      SL=0.0
      90 TO 150
      IF((ALPHA-BETA).EQ.90.0) GO TO 138
150
      SL=TAN((ALPHA-BEIA)*RAD)
160
      IF(AX1.GE.BETA) GO TO 170
      CALL DRAIN1 (IDA.CX.CY.X1.Y1.X2.Y2.X3.Y3.S.OX1.OY1.
```

```
* OX2, OY2, XLEN, SPAC, BETA, ALPHA, NC, SL, AX1, NOL, RAD)
170 CALL DRAIN2 (IDA.CX,CY,XI,YI,X2,Y2,X3,Y3,S,OX1,NY1,
    * DX2.OY2.XLEN.SPAC.BETA.ALPHA.NC.SL.AX1.NOL,RAD)
     GD TO 350
100
     ALPHA=0.0
     DELX=DELC
     DELY=0.0
     IF(OX1(IDA) \cdot LT \cdot OX2(IDA) \cdot AND \cdot OY1(IDA) \cdot EO \cdot OY2(IDA)) GO FO 212
     DO 210 I=1.NOL
     X1(IDA \cdot I) = OX1(IDA) - DELX*(2*I-1)
210
     Y1(IDA,I)=OY1(IDA)
     GO TO 214
212
     00 213 I=1.NOL
     X1(IDA,I)=OX1(IDA)+DELX*(2*I-1)
213
     Y1(IDA,I)=OY1(IDA)
214
     IF(IOUT.EQ.2) GO TO 218
     DO 216 [=NOLS.NOL
     X1(IDA \cdot I) = (Y1(IDA \cdot I) - OY(IDA \cdot 2) + TAN(W2 \times RAD) \times OX(IDA \cdot 2) -

★ TAN(W*RAD) *X1(IDA.I) )/( TAN(W2*RAD)-TAN(W*RAD))
216
     Y1(IDA,I)=OY(IDA,2)+TAN(W2*RAD)*(X1(IDA,I)-OX(IDA,2))
      [F(BETA.E0.90.0) GO TO 220
218
      IF(BETA.GE.89.95.AND.BETA.LE.90.05) GO TO 220
220
     AX=AXX(IDA,CX,CY,X1,Y1,OX1,OY1,OX2,OY2)
     4X1 = ARCOS(AX) * (1.0/RAD)
     WRITE(6.221) AX1
221
     FORMAT(/.2X, 'AX1=', F7.2, ' AFTER STATEMENT #220 IN TORITE.',/)
      IF(AX1-BETA) 230,240,240
           DRAINI (IDA.CX.CY.X1.Y1.X2.Y2.X3.Y3.S.OX1.OY1.
    * OX2.OY2.XLEN.SPAC.BETA.ALPHA.NC.SL.AX1.NOL,RAD)
     GO TO 350
240
            DRAIN2 (IDA.CX.CY.X1.Y1.X2.Y2.X3.Y3,S,OX1,OY1,
    * NX2. NY2. XLEN. SPAC. BETA. ALPHA. NC. SL. AX1. NOL, RAD)
     GO TO 350
200
     ALPHA=90.0
     DELX=0.0
     DELY=DELC
      IF(OX1(IDA).EO.OX2(IDA).AND.OY1(IDA).GT.OY2(IDA)) GO TO 261
     DO 260 I=1.NOL
     X1(IDA \cdot I) = OX1(IDA)
260
     Y1(IDA \cdot I) = OY1(IDA) + DELY*(2*I-1)
     GO TO 263
261
     00 262 I=1,NOL
     X1(IDA,I)=OX1(IDA)
262
     Y1(IDA \cdot I) = OY1(IDA) - DELY*(2*I-1)
263
      IF(IOUT.EQ.2) GO TO 268
     DO 266 I=NOLS,NOL
     X1(IDA \cdot I) = (Y1(IDA \cdot I) - OY(IDA \cdot 2) + TAN(W2 \times RAD) \times OX(IDA \cdot 2) -
    * TAN(W*RAD) * X1(IDA.I) )/( TAN(W2*RAD) - TAN(W*RAD))
266
     Y1(IDA,I)=OY(IDA,2)+FAN(W2*RAD)*(X1(IDA,I)-OX(IDA,2))
268
      [F(BETA.E0.90.0) GO TO 270
      IF(BETA.GE.89.95.AND.BETA.LE.90.05) GO TO 270
     GO TO 125
270
     AX=AXX(IDA,CX,CY,X1,Y1,OX1,OY1,OX2,OY2)
```

```
C
                                                                  C
                 SUBROUTINE DRAIN1
C
                                                                  C
C
                                                                  C
     SUBPROGRAM DRAINL IS USED TO DESIGN THE SYSTEM WHEN AX1 < BETA.
C
SUBROUTINE DRAIN! (IDA, CX, CY, X1, Y1, X2, Y2, X3, Y3, S,
    * OX1.OY1.OX2.OY2.XLEN.SPAC.BETA.ALPHA.NC.SL.AX1.NOL.RAD)
     DIMENSION CX(10,10), CY(10,10), X1(10,50), Y1(10,50), X2(10,50),
    1 Y2(10,50), X3(10,50), Y3(10,50), S(10,10), OX1(10), OY1(10),
    2 0x2(10).0y2(10).LINE(10).XLEN(10,50).SPAC(10)
     MS=1
     NL=1
     K\Omega = 1
     TS = S(IDA \cdot KO)
     TX=OX1(IDA)
      FY=OY1(IDA)
      TTS = S(IDA,KO+1)
     TTX=CX(IDA,KO)
      TTY=CY(IDA,KO)
 101
     BL = SQRT((TTX-TX) **2+(TTY-TY) **2)
      CALL D1P2 (ALPHA, BETA, AX1, IDA, NL, TS, TX, TY, FTS, TTX, TTY,
     * X1,X2,Y1,Y2,SL,NOXY2)
      SEG1=SQRT((TX-X2(IDA,NL))**2+(TY-Y2(IDA,NL))**2)
      IF(NL.EQ.NOL) GO TO 210
     NL = NL + 1
     CALL D1P2 (ALPHA.BETA.AX1.IDA.NL.TS.TX.TY,TTS,TTX,TTY,
     * X1,X2,Y1,Y2,SL,NOXY2)
     DELB=SQRT((X2(IDA,NL)-X2(IDA,NL-1))**2+
     * (Y2(IDA,NL)-Y2(IDA,NL-1))**2)
      SEG=SORT((X2(IDA,NL)-TX) **2+(Y2(IDA,NL)-TY)**2)
     IF(BL-SEG) 100.110.120
 102
     [F(NL.EQ.2) GO TO 103
 100
      IF(BL-SEGO) 130,140,150
      [F(BL-SEG1) 130,140,150
 103
```

```
130
     WRITE(6,135)
    FORMAT(3X. | ERROR --- NO LATERAL IS NEEDED FOR THIS FIELD',
135
    * . PROGRAM TERMINATED AT STATEMENT #100 IN DRAIN1',/)
     IGO=1
     GO TO 260
     NL=NL+1
140
     X2(IDA.NI) = TTX
     Y2(IDA, NL)=TTY
200
     XM2=SL
     XML = TS
     IF(XM2.EQ.999.0) GO TO 201
     IF(XM1.E0.999.0) GO TO 202
     GO TO 203
     H=SPAC(IDA)/2.0
201
     GO TO 205
     P1P2=SQRT((X1(IDA,NL)-X2(IDA,NL))**2+(Y2(IDA,NL)-Y2(IDA,NL))**2)
202
     H=SPAC(IDA)*P1P2/(2.0*(X1(IDA.NL)-X2(IDA.NL)))
     GO TO 205
203
     BX=\Delta T\Delta N((XM2-XM1)/(1.0+XM1*XM2))
     BX = ABS(BX)
     H=SPAC(IDA)/(2.0*SIN(BX))
205
    CALL DIP3 (ALPHA.BETA.AXI, MS.NL, XI, YI, X2, Y2, H, SL, SPAC,
    # IDA.X3,Y3,XLEN.NOXY3)
     IF(NOXY3.EQ.O)
                      STOP
     NL = NL + 1
     MS=NL
     IF(NL.GT.NOL) GO TO 260
     くり=くり+1
     TS=TTS
     TX = TTX
     TY=TTY
     IF(KO.EO.NC) GO TO 145
     TTS = S(ID\Delta,KO+1)
     TTX=CX(IDA,K\Pi)
     TTY=CY([DA,KO)
     GO TO 101
145
     TTS = S(IDA,1)
     TTX=CX(IDA,KO)
     TTY=CY(IDA,KO)
     SO TO 101
     GO TO 200
150
110
     X2(IDA,NL)=TTX
     Y2(IDA,NL)=TTY
     NL=NL+1
     GO TO 200
120
     [F(NL.LT.NOL) GO TO 170
210
     XM2=SL
     XM1=TS
      IF(XM2.EQ.999.0) GO TO 211
      [F(XM].EQ.999.0) GO TO 212
     GO TO 213
     H=SPAC([DA)/2.0
211
      GO TO 215
     P1P2=SQRT((X1(IDA.NL)-X2(IDA.NL))**2+(Y2(IDA.NL))-Y2(IDA.NL))**2)
212
      H=SPAC(IDA)*P1P2/(2.0*(X1(IDA,NL)-X2(IDA,NL)))
```

```
GO TO 215
     BX = \Delta T \Delta N ((XM2 - XM1) / (1.0 + XM1 * XM2))
213
     BX = \Delta BS(BX)
     H=SPAC(IDA)/(2.0*SIN(BX))
     CALL DIP3 (ALPHA.BETA.AXI.MS.NL.XI.YI.X2,Y2,H,SL,SPAC,
215

★ IDA.X3.Y3.XLEN.NOXY3)
     IF(NOXY3.EQ.O)
                       STOP
     GO TO 260
170
     [F(BL-SEG-DELB) 230,240,250
230
     GO TO 200
240
     NL = NL + 1
     X2(IDA.NL) = TTX
     Y2(IDA, NL)=TTY
     GD TO 200
250 NL=NL+1
     CALL DIP2 (ALPHA.BETA.AX1, IDA.NL.TS, TX.TY, TTS, TTX, TTY,
    * X1.X2.Y1.Y2.SL.NOXY2)
     SEGO=SEG
     SEG=SORT((X2(IDA,NL)-TX)**2+(Y2(IDA,NL)-TY)**2)
     IF(NL.LT.NOL) GO TO 102
     GO TO 210
     RETURN
260
     END
```

```
С
C
                                                               C
C
                 SUBROUTINE DRAIN2
                                                               C
C
     SUBPROGRAM DRAINZ IS USED TO DESIGN THE SYSTEM WHEN AX1 > BETA.
                                                               C
С
C
SUBROUTINE DRAIN2 (IDA, CX, CY, X1, Y1, X2, Y2, X3, Y3, S,
    * OX1,OY1.OX2,OY2.XLEN.SPAC,BETA,ALPHA.NC,SL,AX1,NOL,RAD)
     DIMENSION CX(10,10),CY(10,10),X1(10,50),Y1(10,50),X2(10,50),
    1 \ Y2(10.50), X3(10.50), Y3(10.50), S(10.10), DX1(10), DY1(10),
    2 OX2(10),OY2(10),LINE(10),XLEN(10,50),SPAC(10)
     NL = 1
     MS=1
     K0=1
     rs=s(ID4,Kn)
     TX=CX(IDA,KO)
     TY=CY(IDA,KO)
     TTS = S(IDA \cdot KO + 1)
     TTX=CX([DA.KO+1)
     TTY=CY(IDA,K\Pi+1)
     \beta L = SQRT((TTX-TX) **2+(TTY-TY) **2)
 101
     CALL D2P2 (ALPHA, BETA, AX1, IDA, NL, TS, TX, TY, FTS, TTX, TTY,
    * X1,X2,Y1,Y2,SL,N0XY2,S,K0)
```

```
SEG1 = SORT((TX-X2(IDA,NL))**2+(TY-Y2(IDA,NL))**2)
     IF(NL.EQ.NOL) GO TO 210
     NL=NL+1
     CALL D2P2 (ALPHA, BETA, AX1, IDA, NL, TS, TX, TY, TTS, TTX, TTY,
    * X1.X2,Y1,Y2,SL,NOXY2,S,KO)
     DELB=SORT((X2(IDA.NL)-X2(IDA.NL-1))**2+
    * (Y2(IDA,NL)-Y2(IDA,NL-1))**2)
     SEG=SORT((X2(IDA,NL)-TX)**2+(Y2(IDA,NL)-TY)**2)
102
     IF(BL-SEG) 100,110,120
100
     [F(NL.EQ.2) GO TO 103
     IF(BL-SEGO) 130,140,150
103
     IF(BL-SEG1) 130,140,150
130
     WRITE(6.135)
     FORMAT(3X. FRROR --- NO LATERAL IS NEEDED FOR THIS FIELD',
135
    * , PROGRAM TERMINATED AT STATEMENT #100 IN DRAIN2',/)
     IGO=1
     GO TO 260
140
     NL = NL + 1
     X2(IDA.NL)=TTX
     Y2(IDA,NL)=TTY
200
     XM2=SL
     XM1 = TTS
     IF(XM2.E0.999.0) GO TO 201
     [F(XM1.E0.999.0) GO TO 202
     GO TO 203
     H=SPAC([DA)/2.0
201
     GO TO 205
     P1P2=SQRT((X1(IDA,NL)-X2(IDA,NL))**2+(Y2(IDA,NL)-Y2(IDA,NL))**2)
202
     H=SPAC(IDA)*P1P2/(2.0*(X1(IDA.NL)-X2(IDA.NL)))
     GO TO 205
203
     BX = \Delta T \Delta N((XM2 - XM1)/(1.0 + XM1 * XM2))
     BX = ABS(BX)
     H=SPAC(IDA)/(2.0*SIN(BX))
     CALL DIP3 (ALPHA, BETA, AXI, MS, NL, X1, Y1, X2, Y2, H, SL, SPAC,
205
    # IDA.X3.Y3.XLEN.NOXY3)
      IF(NOXY3.EQ.O) STOP
     NL = NL + 1
     MS=NL
      IF(NL.GT.NOL) GO TO 260
      K\Omega = K\Omega + 1
      TS=TTS
      TX = TTX
      TY=TTY
      IF(KO.EQ.NC) GO TO 145
      TTS = S(IDA \cdot KO + 1)
      TTX=CX(IDA,KO+1)
      TTY=CY(IDA,KO+1)
      SO TO 101
145
     TTS = S(IDA \cdot 1)
      FTX=CX(IDA.1)
      TTY=CY([DA,1)
      50 TO 101
150
      GO TO 200
      X2(IDA.NL) = TTX
110
      Y2(IDA, NL)=TTY
```

```
125
```

```
NL = NL + 1
     GO TO 200
120
     IF(NL.LT.NOL) GO TO 170
210
     XM2=SL
     XM1=TTS
     IF(XM2.EQ.999.0) GO TO 211
     IF(XM1.E0.999.0) GO TO 212
     GO TO 213
211
     H=SPAC(IDA)/2.0
     GO TO 215
212
     P1P2=SQRT((X1(IDA.NL)-X2(IDA.NL))**2+(Y2(IDA.NL)-Y2(IDA.NL))**2)
     H=SPAC(IDA)*P1P2/(2.0*(X1(IDA.NL)-X2(IDA.NL)))
     GO TO 215
213
     BX = \Delta T \Delta N((XM2 - XM1)/(1.0 + XM1 * XM2))
     BX = ABS(BX)
     H=SPAC(IDA)/(2.0*SIN(BX))
215 CALL DIP3 (ALPHA.BETA.AXI.MS.NL.X1.Y1.X2.Y2.H.SL.SPAC.
    # IDA.X3.Y3.XLEN.NOXY3)
     IF(NOXY3.EQ.O)
     GO TO 260
     IF(BL-SEG-DELB) 230,240,250
170
230
     GO TO 200
240
     NL = NL + 1
     X2(IDA.NL)=TTX
     Y2(IDA.NI_)=TTY
     GO TO 200
250
     NL = NL + 1
     CALL
            D2P2 (ALPHA, BETA, AX1, IDA, NL, TS, TX, TY, TTS, TTX, TTY,
    * X1, X2, Y1, Y2, SL, NOXY2, S, KO)
     SEGO=SEG
     SEG=SQRT((X2(IDA,NL)-TX)**2+(Y2(IDA,NL)-TY)**2)
     IF(NL.LT.NOL) GO TO 102
     GO TO 210
260
     RETURN
     €ND
```

```
C
                                                 C
                                                 С
C
             SUBROUTINE D1P2
C
                                                 C
C
    SUBPROGRAM DIP2 COMPUTES ALL THE (X2.Y2) POINTS FOR DRAIN1.
                                                 C
SUBROUTINE DIP2 (ALPHA, BETA, AXI, IDA, NL, TS, TX, TY,
    TTS.TTX.TTY.X1.X2.Y1.Y2.SL.NOXY2)
    DIMENSION X1(10.50).Y1(10.50).S(10.10).X2(10.50).Y2(10.50).
   # SPAC(10), XLEN(10,50)
    AD=3.1415926/180.0
```

```
IF((ΔLPHA.ΕΟ.Ο.Ο).AND.(ΒΕΤΑ.ΕΟ.9Ο.Ο).AND.(ΔΧ1.LT.ΒΕΤΔ)) GO TO 100
     [F((ALPHA.EQ.90.0).AND.(BETA.EQ.90.0).AND.(AX1.LT.BETA))GO TO 200
     IF((ALPHA,NE,0.0),AND,(BETA,NE,180.),AND,(AX1.LT.BETA)) GO TO 300
     MOXY2=0
     WRITE(6.50)
     FORMAT( 1
               ERROR---NO (X2,Y2) POINT --- CHECK DIP2 SUBPROGRAM',//)
     GO TO 500
100
     IF(TS.E0.999.0) GO TO 110
     X2(IDA,NL)=X1(IDA,NL)
     Y2(IDA,NL)=TY+TS*(X2(IDA,NL)-\GammaX)
     GO TO 500
110
     WRITE(6.120)
120
     FORMAT(' ERROR--- LATERAL IS PARELLEL TO BOUNDARY BUT ',
    l'INTERSECTION OCCURS. CHECK STATEMENT NO. 100 IN D1P2.')
     GO TO 500
200
     IF(TS.E0.999.0) GO TO 210
     Y2(IDA,NL)=Y1(IDA,NL)
     X2(IDA,NL)=TX+(Y2(IDA,NL)-TY)/TS
     GO TO 500
210
     Y2(IDA.NL)=Y1(IDA.NL)
     X2(IDA,NL)=TTX
     50 TO 500
300
     IF(TS.E0.999.0.OR.SL.E0.999.0) GO TO 310
     X2(IDA,NL)=(Y1(IDA,NL)-TFY+FS*FFX-SL*X1(IDA,NL))/(TS-SL)
     Y2(IDA,NL) = \Gamma TY + \Gamma S * (X2(IDA,NL) + \Gamma TX)
     GO TO 500
310
     IF(SL.NE.999.0) GD TD 330
     WRITE(6.320)
320
     FORMAT(! IMPOSSIBLE OUTCOME OCCURS ! SL & TS ARE VERTICAL LINES
    *--- CHECK STATEMENTS 300-310 IN D1P2')
     GO TO 500
330
     IF((ALPHA+BETA).EQ.180.0) GO TO 350
     X2(IDA,NL)=TX
     Y2(IDA,NL)=Y1(IDA,NL)+SL*(X2(IDA,NL)-X1(IDA,NL))
     GO TO 500
350
     X2(IDA,NL)=TX
     Y2(IDA,NL)=Y1(IDA,NL)
500
     RETURN
     END
```

```
* TTS.TTX.TTY.X1.X2.Y1.Y2.SL.NOXY2.S.KO)
     DIMENSION X1(10.50).Y1(10.50).S(10.10).X2(10.50).Y2(10.50)
    * SPAC(10).XLEN(10,50)
     RAD=3.1415926/180.0
     [F((ALPHA.EQ.O.O).AND.(BETA.EQ.90.0).AND.(AX1.GE.BETA)) GO TO 100
     IF((ALPHA.EQ.90.0).AND.(ΒΕΓΑ.ΕQ.90.0).AND.(AX1.GE.ΒΕΓΑ)) GO TO 200
     [F((ALPHA.NE.0.0).AND.(BETA.NE.180.).AND.(AX1.GE.BETA)) GD TO 300
     NOXY2=0
     WRITE(6.50)
 50
     FORMAT(' ERROR---NO (X2,Y2) POINT --- CHECK D2P2 SUBPROGRAM',//)
100
     [F(TTS.E0.999.0) GO TO 110
     X2(IDA,NL)=X1(IDA,NL)
     Y2(IDA \cdot NL) = TY + TTS * (X2(IDA \cdot NL) - TX)
     GO TO 500
110
     WRITE(6.120)
120
     FORMAT(
              ERROR--- LATERAL IS PARELLEL TO BOUNDARY BUT ',
    1'INTERSECTION OCCURS. CHECK STATEMENT NO. 100 IN D2P2.')
     GO TO 500
200
     [F(TTS.EQ.999.0) GO TO 210
     Y2(IDA.NL)=Y1(IDA.NL)
     X2(IDA,NL)=TX+(Y2(IDA,NL)-TY)/TTS
     GO TO 500
210
     Y2(IDA,NL)=Y1(IDA,NL)
     X2(IDA,NL)=TTX
     GO TO 500
300
     IF(TTS.E0.999.0) GO TO 310
     X2(IDA,NL)=(Y1(IDA,NL)-TY+TTS*TX-SL*X1(IDA,NL))/(TTS-SL)
     Y2(IDA,NL)=TY+TTS*(X2(IDA,NL)-TX)
     GO TO 500
310
     IF(SL.EQ.999.0) GO TO 350
     IF(SL.EQ.O.O) GO TO 340
     X2(IDA,NL)=TX
     Y2(IDA.NL)=Y1(IDA.NL)+SL*(X2(IDA.NL)-X1(IDA.NL))
     GO TO 500
     X2(IDA,NL)=TX
340
     Y2(IDA,NL)=Y1(IDA,NL)
     GO TO 500
350
     X2(IDA,NL)=X1(IDA,NL)
     Y2(IDA,NL)=TTY+(X2(IDA,NL)-TTX)* S(IDA,KO+1)
500
     RETURN
     END
```

```
С
SUBROUTINE DIP3 (ALPHA.BETA.AXI.MS.NL.XI.YI.X2.Y2.H.SI.SPAC.
     * IDA.X3.Y3.XLEN.NOXY3)
       DIMENSION X1(10,50), Y1(10,50), S(10,10), X2(10,50), Y2(10,50),
      * SPAC(10).XLEN(10.50).X3(10.50).Y3(10.50)
       RAD=3.1415926/180.0
       IF((ALPHA.EQ.O.O).AND.(BETA.EQ.90.0)) GO TO 100
       IF((ALPHA.EQ.90.0).AND.(BETA.EQ.90.0)) GO TO 300
       IF((ALPHA.NE.O.O).AND.(BETA.NE.180.)) GO TO 500
       NOXY3=0
       WRITE(6,50)
  50
       FORMAT( : ERROR---NO (X2.Y2) POINT --- CHECK D1P3 SUBPROGRAM , //)
       GO TO 800
 100
       DO 200 I=MS.NL
       X3(IDA \cdot I) = X1(IDA \cdot I)
       Y3(IDA,I) = Y2(IDA,I) - SPAC(IDA)/2.0
 200
       X LEN(IDA \cdot I) = SQR\Gamma((Y3(IDA \cdot I) - Y1(IDA \cdot I)) **2+
                             (X3(IDA \cdot I) - X1(IDA \cdot I)) **2)
       GO TO 700
 300
       DO 400 I=MS.NL
       X3(IDA \cdot I) = X2(IDA \cdot I) - SPAC(IDA)/2 \cdot 0
       Y3(IDA,I) = Y1(IDA,I)
 400
       XLEN(IDA \cdot I) = SORT((Y3(IDA \cdot I) - Y1(IDA \cdot I)) **2+
                             (X3(IDA,I)-X1(IDA,I))**2)
       GO TO 700
 500
       IF((ALPHA+BETA).E0.90..OR.(ALPHA+BETA).E0.270.) GO TO 100
       [F((ALPHA+BETA).E0.180.0) GO TO 300
       FACTOR = SORT(H ** 2/(1.0 + SL ** 2))
       ASL=ABS(SL)
       IF(X2(IDA,MS)-X1(IDA,MS)) 510,520,530
 510
       IF(Y2(IDA,MS)-Y1(IDA,MS)) 610,620,630
 610
       DO 640 I=MS.NL
       X3(IDA \cdot I) = X2(IDA \cdot I) + FACTOR
       Y3(IDA,I)=Y2(IDA,I)+ASL*(X3(IDA,I)-X2(IDA,I))
 640
       XLEN(IDA \cdot I) = SORF((Y3(IDA \cdot I) - Y1(IDA \cdot I)) **2+
                             (X3(IDA,I)-X1(IDA,I))**2)
       GO TO 700
       DO 650 I=MS.NL
 620
       X3(ID\Delta \cdot I) = X2(IDA \cdot I) + FACTOR
       Y3(IDA,I)=Y2(IDA,I)
       XLEN(IDA,I) = SORT((Y3(IDA,I)-Y1(IDA,I))**2+
 650
                             (X3(IDA \cdot I) - X1(IDA \cdot I)) **2)
       90 TO 700
 630
       DO 660 I=MS, NL
       X3(IDA \cdot I) = X2(IDA \cdot I) + FACFOR
       Y3(IDA,I)=Y2(IDA,I)-ASL*(X3(IDA,I)-X2(IDA,I))
 660
       XLEN(IDA \cdot I) = SQRT((Y3(IDA \cdot I) - Y1(IDA \cdot I)) **2+
      *
                             (X3(IDA,I)-X1(IDA,I))**2)
       50 TO 700
 520
       IF(Y2(IDA,MS)-Y1(IDA,MS)) 710,720,730
       00 740 I=MS.NL
 710
       X3(IDA \cdot I) = X2(IDA \cdot I)
       \forall 3(IDA,I)=\forall 2(IDA,I)+\Delta SL*(X3(IDA,I)-X2(IDA,I))
 740
       XLEN(IDA \cdot I) = SQRI((Y3(IDA \cdot I) - Y1(IDA \cdot I)) **2+
```

```
:
                             (X3(IDA \cdot I) - X1(IDA \cdot I)) * * 2)
      GO TO 700
720
     DO 750 I=MS.NL
      X3(IDA,I)=X2(IDA,I)
      Y3(IDA,I)=Y2(IDA,I)
750
     XLEN(IDA,I) = SORT((Y3(IDA,I)-Y1(IDA,I)) **2+
                             (X3(IDA,I)-X1(IDA,I)) \Rightarrow \Rightarrow 2)
      GO TO 700
     DO 760 [=MS.NL
730
      X3(IDA \cdot I) = X2(IDA \cdot I)
      Y3(IDA,I)=Y2(IDA,I)-ASL*(X3(IDA,I)-X2(IDA,I))
760
     XLEN(IDA,I) = SORF((Y3(IDA,I)-Y1(IDA,I))**2+
                             (X3(IDA,I)-X1(IDA,I)) **2)
      GO TO 700
530
      [F(Y2(IDA, MS)-Y1(IDA, MS)) 810,820,830
810
     DO 840 I=MS.NL
      X3(IDA,I)=X2(IDA,I)-FACTOR
      Y3(IDA,I)=Y2(IDA,I)-ASL*(X3(IDA,I)-X2(IDA,I))
840
     XLEN(IDA,I) = SORF((Y3(IDA,I)-Y1(IDA,I))**2+
                             (X3(IDA \cdot I) - X1(IDA \cdot I)) * \times 2)
     SD TD 700
      DO 850 I=MS.NL
820
      X3(IDA,I) = X2(IDA,I) - FACTOR
      Y3(ID\Delta,I)=Y2(IDA,I)
850
      XLEN(IDA,I) = SQR\Gamma((Y3(IDA,I)-Y1(IDA,I)) **2+
                             (X3(IDA,I)-X1(IDA,I))**2)
     90 TO 700
830
      DO 860 I=MS,NL
      X3(IDA,I)=X2(IDA,I)-FACTOR
      Y3(IDA \cdot I) = Y2(IDA \cdot I) + ASL * (X3(IDA \cdot I) - X2(IDA \cdot I))
860
     XLEN(IDA \cdot I) = SQR\Gamma((Y3(IDA \cdot I) - Y1(IDA \cdot I)) **2+
                             (X3(IDA,I)-X1(IDA,I))**2)
700
     NOXY3=999
800
      RETURN
      END
```

APPENDIX C

LISTING OF COMPUTER PROGRAM FOR DRAINAGE SYSTEM LAYOUT PROGRAM, DSLP

```
****************
     **********************
С
     ************************
C
                                                              ***
С
                                                              * * *
C
     本字本
                           PROGRAM DSLP
                                                         Χ
                                                              ** *
C
     华华华
           Χ
                                                              * * *
          X \quad X
                                                        XX
C
     ***
                           SIE-TAN CHIENG
                                                              ***
                                                       Χ
С
     ***
          Χ
                                                       X 179 X
                                                              * * *
C
     ***
        X DEC.X
                  AGRICULTURAL ENGINEERING DEPARTMENT
                                                       Χ
                                                           X
                                                              水水水
C
     ***
            X
                                                        X X
                                                              * * *
          X X
C
     ***
                  MACDONALD COLLEGE. MCGILL UNIVERSITY
                                                         Χ
                                                              ***
C
     华米华
           Χ
                                                              水水水
C
     ***
                                                              ***
C
     * * * *
     ****************
     ***************
C
     ************************
C
C
     PROGRAM "DSLP" (DRAINAGE SYSTEM LAYOUT PROGRAM) IS WRITTEN
C
     FOR DRAWING ALL THE INFORMATION AND SYMBOLS FOR A DRAINAGE
С
C
     PLAN.
C
     THE ENTIRE PACKAGE CONSISTS OF A MAIN PROGRAM AND
C
     TWENTY-FIVE SUBPROGRAMS.
C
     SUBPROGRAMS ARE: AROL. DDXY, MULTI. BUILD2, BOUND3, COLEN4,
C
                    DRAW5, FLOWA, FLOWB, ELE6, FENCE7, GRADE8,
C
                     MARSH9, PKEY10, POUT11, RAIL12, REF13,
С
                     ROAD14, STM15, TAB16, TBLK17, TREE18,
C
                     XTOY19. BM20. WRIT21. OUT22.
C
     DIMENSION X1(10.50).Y1(10.50).X3(10.50).Y3(10.50).XLEN(10.50)
               .PJX(10.5).PJY(10.5).XLMIN(10).SECLEN(10)
              .BX(10).BY(10).SPAC(10).BANGLE(10).NOUF(10).NONC(10)
    يبر
              .LINE(10).JOINT(10).X2(10.50).Y2(10.50).OX(10.5)
    :::
              .OY(10.5).S31(10.50)
     INTEGER*2 LAR, LARAL(15)
     DATA LABAL/ : A1.1 B1.1 C1.1 D1,1 E1.1 F1,1 G1,1 H1,1 J1,
                1 KI, 1 LI, 1 MI, 1 NI, 1 OI, 1 PI/
     MAIN PROGRAM
C
     CALL PLOTON
     READ(5,7700) IRD.IWRT.IGRID.IFLO.NGRIDX.NGRIDY
7700
     FORMAT(412,213)
     READ(5.7800) DSCALE, CHH, CHC, DW, DH, WP , CEM
7800
     FORMAT(7F10.4)
     TW=5.0
      IF(DH.GT.15.0) TW=7.0
      AD=3.1415926/180.0
      X(1) = 0.0
      YD = 0.0
     XL1=1.0
     YL1=1.0
     XL2=DW-TW
      YL2=DH-1.0
      XP1=DW+9.1
```

```
YP1=DW+0.1
      CALL PLTSZE(XP1, YP1)
C
      READ IN DATA FROM CARDS OR STORAGE DEVICE
C
C
      READ(IRD, 8000) NB, IDA
8000
      FORMAT(212)
      DO 8100 I=1.NB
      READ ( [RD,8200) BX(I),BY(I)
8100
8200
      FORMAT(2F10.2)
      READ ( IRD,8300) BXL,BYL,BXS,BYS
      FORMAT(4F10.2)
8300
      DO 9000 I=1.JDA
      READ ( IRD.8400)SPAC(I), BANGLE(I), NONC(I), LINE(I), NOUT(I), JOINT(I)
      FORMAT(2F10.3.415)
8400
      IOUT=NOUT(I)
      READ ( IRD.8200) (OX(I.J).OY(I.J).J=1.IOUT)
      LN=LINE(I)
      DO 8500 J=1.LN
      READ ( IRD, 8600) X1(I,J), Y1(I,J), X2(I,J), Y2(I,J), X3(I,J), Y3(I,J),
8500
       XLEN(T.J)
      FORMAT(7F10.2)
8600
      IF(JOINT(I).EQ.O) GO TO 8800
      (I) TWICL=OWL
      READ ( IRD,8200) (PJX(I,J),PJY(I,J),J=1,JNO)
      READ ( IRD, 8200) XLMIN(I), SECLEN(I)
8800
9000
      CONTINUE
      READ ( IRD, 9100) SUMLEN
9100
      FORMAT(F10.2)
      DO 9500 J=1.IDA
      LN=LINE(J)
      DO 9400 JJ=1.LN
      READ(5,9250) S31(J,JJ)
9250
      FORMAT(F10.5)
9400
      CONTINUE
9500
      CONTINUE
      PS --- PENSIZE OR CHARACTER HEIGHT FOR FLOW ARROW PLOTTING
C
      PS=0.10
C
      DECISION AND BRANCHING TO DIFFERENT SUBROUTINES.
\mathsf{C}
      READ (5,310, END=900) L1. L2. L3. L4. DATA1. DATA2, DATA3, DATA4,
 300
                           DATA5. DA ΓΔ6. DA ΓΔ7. DA ΓΔ8. NO 1
       FORMAT(211,12,11,5X,8F7,2,4X,12)
 310
       [F(L1.E0.0.AND.L2.E0.0) GO TO 902
       IF(L3.E0.0) GO TO 300
       [F(L2.E0.2) GO TO 400
      GO TO (401,402,403,404,405,406,407,408,409,410,411,412,413,414,
              415,416,417,418,419,420,421,422), 6
       GO TO 300
      CHANGE THE PLOTTER PEN SIZE.
 400
       CALL PLNT(0.0.0.0.-3)
       SO TO 300
              ARN1(L3,L4,XL1,YL1,XL2,YL2,DATA1,DATA2,DATA3,DATA4)
       CALL
 401
       GO TO 300
```

```
402
     CALL BUILD2(L3.L4.DATA1.DATA2.DATA3)
     GO TO 300
     CALL BOUND3 (L3.L4.XL2,DW,DH,DATA1,DATA2,DATA3,DATA4)
403
     GO TO 300
404
     CALL COLEN4(L3,L4,DATA1,DATA2,DATA3,10)
     GO TO 300
                DRAW5(OX,OY,X1,Y1,X3,Y3,XLEN,NOUT,LINE,IDA,PS,S31,
405
     CALL
    * XO.YO.RAD.BX.BY.NB.LABAL.DSCALE.IFLO.CEM)
     GO TO 300
                (L3.L4.DATA1.DATA2.DATA3.DATA4.NO1)
406
     CALL ELEG
     GO TO 300
407
     CALL FENCE7(L3.L4.DATA1.DATA2.DATA3.DATA4.DATA5)
     GO TO 300
     CALL GRADE8(L3, L4, DATA1, DATA2, DATA3, DATA4, DATA5, NO1)
408
     GO TO 300
409
     CALL MARSH9(L3,L4,DATA1,DATA2,DATA3)
     GO TO 300
410
     CALL PKFY10(13.L4.DW.DH.TW.DATA1)
     GO TO 300
411
     CALL POUT11(L3,L4.DATA1,DATA2,DATA3,DATA4,DATA5,DATA6)
     GO TO 300
     CALL RAIL12(L3.L4.DATA1.DATA2.DATA3.DATA4.DATA5)
412
     GO TO 300
     CALL REF13 (L3,L4,DW,DH,TW,DATA1,DATA2,DATA3,NO1)
413
     GO TO 300
414
     CALL ROAD14(L3.L4.DATA1.DATA2.DATA3.DATA4.DATA5)
     GO TO 300
     CALL STM15 (L3,L4,DATA1,DATA2,DATA3,DATA4,DATA5,DATA6)
415
     GO TO 300
416
     CALL
                 TAB16(CHH.CHC.DSCALE.DH.XO.YO.LAB.LABAL.IDA.
    * LINE, XLEN, SUMLEN, CEM, DATA1)
     60 TO 300
     CALL TBLK17(L1,L2,L3,L4,DW,DH,TW,XL2)
417
     GO TO 300
418
     CALL TREE18(L3,L4,DATA1,DATA2,DATA3)
     GO TO 300
419
     CALL XTOY19(L3,L4,DATA1,DATA2,DATA3,DATA4)
     GO TO 300
     CALL BM20
                (L3.L4.DATA1.DATA2.DATA3)
420
     GO TO 300
421
     CALL WRIT21(L3,L4,DATA1,DATA2,DATA3)
     GO TO 300
422
     CALL DUT22(L3.L4.DATA1.DATA2.DATA3)
     50 TO 300
                         L1.L2.L3,L4.DATA1,DATA2,DATA3,DATA4,
900
     WRITE(6,901)
                         DATA5, DATA6, DATA7, DATA8, NO1
     FORMAT('O', UNIT 5 ENCOUNTERED. LAST CARD READ WAS : ',/,
901
             1X,211,12,11,5X,8F7,2,4X,12)
    25
     IF(IGRID.NE.1) GO TO 905
902
     IF(NGRIDX.LE.O.OR.NGRIDY.LE.O) GO TO 903
     CALL GRID(1.0.1.0.1.0.1.0.NGRIDX.NGRIDY)
     SO TO 905
903
     WRITE(6,904)
     FORMAT(/, ' GRID # IS LESS OR EQUAL TO 0 FOR X/Y DIRECTION',/)
904
```

905

CONTINUE

```
STOP
END
```

C C

C

C

C

C

```
ARO1(L3,L4,XL1,YL1,XL2,YL2,X1,Y1,D1,A1)
   SUBROUTINE
   ARROW: TO DRAW A NORTH ARROW
   X1.Y1 --- CO-ORDINATES OF THE LOCATION FOR NORTH ARROW.
   D1 ---- TOTAL LENGTH OF THE ARROW.
   AT ----- ANGLE OF THE ARROW WITH RESPECT TO X-AXIS.
   DIMENSION A(2,19)
   DATA A/ 0.4375, 0.0250, 0.5000, 0.0250, 0.4500,-0.0250,
           0.5000,-0.0250, 0.4375,-0.0250, 0.4875, 0.0250,
           0.3750, 0.0 , 0.1000, 0.0250, 0.1250, 0.0
  2
           0.1000,-0.0250,-0.4375, 0.0 ,-0.4625, 0.0250,
  3
  4
          -0.2125, 0.0250,-0.1875, 0.0
                                           ·-0·2125·-0·0250·
  5
           -0.4625,-0.0250, 0.0 , 0.0750, 0.0
                                                    ,-0.0750,
           0.0 , 0.0/
   [F(X1.LT.XL1.OR.X1.GE.XL2)GO TO 07
   IF(Y1.LT.YL1.OR.Y1.GE.YL2)GO TO 07
   DO 01 J=1.19
   DO O1 I=1.2
   \Delta(I,J) = D1*\Delta(I,J)
01 CONTINUE
   DO 02 J=1.19
   CALL DDXY(A(1,J),A(2,J),XM,YM,A1)
   A(l,J) = XM
   \Delta(2,J) = YM
02 CONTINUE
   DO 03 J=1.19
   \Delta(1.J) = \Delta(1.J) + X1
   \Delta(2,J) = \Delta(2,J) + Y1
03 CONTINUE
   XR1 = 0.0188 * D1
   XR2 = 0.0375 *D1
   CALL DASH(A(1,1),A(2,1),A(1,2),A(2,2),O.O)
   CALL MULTI(4(1,2),A(2,2),A(1,6),A(2,6),A(1,3),A(2,3),
               A(1,5), A(2,5), 4)
   CALL DASH(A(1.5).A(2.5).A(1.4).A(2.4).O.O)
   CALL MULTI(\Delta(1.8), \Delta(2.8), \Delta(1.9), \Delta(2.9), \Delta(1.7), \Delta(2.7),
               A(1,7),A(2,7),5)
   CALL DASH(A(1,7),A(2,7),A(1,10),A(2,10),0.0)
   CALL DASH(\Delta(1.9).\Delta(2.9).\Delta(1.8).\Delta(2.8).0.0)
   CALL DASH(A(1.9).A(2.9).A(1.14).A(2.14).0.0)
   SALL DASH(A(1.17).A(2.17).A(1.18).A(2.18).0.0)
```

```
CALL DASH(\Delta(1.10).\Delta(2.10).\Delta(1.9).\Delta(2.9).0.0)
   SALL CIRCLE(\Lambda(1.19).\Lambda(2.19).XR1)
   CALL CIRCLE(\Delta(1.19).\Delta(2.19).XR2)
   CALL MULTI(A(1.14).A(2.14).A(1.15).A(2.15).A(1.11).A(2.11).
               A(1,16),A(2,16),5)
   CALL DASH(A(1.16).A(2.16).A(1.11).A(2.11).0.0)
   CALL DASH(A(1,11),A(2,11),A(1,12),A(2,12),0.0)
   CALL DASH(A(1.12).A(2.12).A(1.13).A(2.13).0.0)
   CALL DASH(A(1,13),A(2,13),A(1,14),A(2,14),O.O)
   CALL DASH(A(1.14).A(2.14).A(1.15).A(2.15).O.O)
   GO TO 15
07 WRITE(6.12)
   GO TO 15
12 FORMAT('O'.'ARROW: NORTH ARROW FALLS OUTSIDE OF MAP BOUNDARY.')
15 RETURN
   END
```

```
SUBROUTINE DDXY(X,Y,XM,YM,A1)
C
Č
       DDXY: THIS SUBROUTINE CALCULATES THE NEW X-Y COORDINATES OF A POIN
C
       ROTATED COUNTER-CLOCKWISE ABOUT ITS ORIGIN.
       IF(X.EQ.O.O.AND.Y.EQ.O.O)GO TO 01
         = SQRT(X**2 + Y**2)
          = \Delta T \Delta N 2 (Y \cdot X)
         = A + A1 \times 3.1415926/180.0
       XM = R * C \cap S(A)
       YM = R *SIN(\Delta)
       GO TO 02
   01 \text{ XM} = 0.0
       YM = 0.0
   02 CONTINUE
       RETURN
       END
```

```
\Gamma 2 = Y1 - Y2
   X\Delta = T1/N
   YA = T2/N
   T1 = X3 - X4
   T2 = Y3 - Y4
   XB = T1/N
   YB = T2/N
   K = N+1
   DO 03 I=1.K
   XS = X1 - (I-1) * X\Delta
   YS = Y1 - (I-1)*Y\Delta
   XF = X3 - (I-1)*XB
   YF = Y3 - (I-1) *YB
   CALL DASH(XS.YS.XF.YF.O.O)
03 CONTINUE
   RETURN
   END
```

RETURN

```
SUBROUTINE BUILD2(L3,L4,X0,Y0,H)
C
            ______
C
      SUBPROGRAM BLOCK IS USED TO DRAW THE SYMBOL OF THE BUILDING
C
      XO.YO --- THE X-Y POSITION OF THE CENTER OF THE BUILDING
C
C
C
      H --- THE HEIGHT OR WIDTH DF THE BUILDING
      IF H IS A POSITIVE NUMBER .HEIGHT WILL BE GREATER THAN WIDTH.
      IF H IS A NEGATIVE NUMBER . HEIGHT WILL BE SMALLER THAN WIDTH.
C
      IF(H.LT.0.0) GO TO 20
      XL=H/4.0
      YL=H/2.0
  10
      X1 = X \cap + X \cup
      Y1 = Y0 + YL
      X2 = X0 - X1
      Y2=Y0+YI_{-}
      X3 = X \cap -X \setminus
      Y3=Y0-Y1_
      X4=X0+X1
      Y4=Y0-Y1
      60 TO 30
  20
      H = ABS(H)
      XL=H/2.0
      YL=H/4.0
      GO TO 10
      CALL PLOT(X1,Y1,3)
      CALL PLOT(X2,Y2,2)
      CALL PLOT(X3,Y3,2)
      CALL PLOT (X4.Y4.2)
      CALL PLOT(X1.Y1.2)
```

END

```
SUBROUTINE BOUND3(L3,L4,X2,DW,DH,XL,YL,XR,YR)
C
C
      BOUNDS : FIELD BOUNDARY PLOTTING.
      IF(XL.EQ.O.O.OR.YL.EQ.O.O.OR.XR.EQ.O.O.OR.YR.EQ.O.O) GO TO 10
      X22=XR-XL
      CALL PLOT(XL,YL+0.01.3)
      CALL PLOT(XL, YR, 2)
      CALL PLOT (XR, YR, 2)
      CALL PLOT(XR,YL+0.01,2)
      CALL PLOT(XL,YL+0.01.2)
      CALL PLOT(X22, YL+0.01.3)
      CALL PLOT (X22, YR, 2)
      GO TO 20
  10
     CONTINUE
      CALL PLOT(0.0.0.01.3)
      CALL PLOT (0.0.DH.2)
      CALL PLOT(DW.DH.2)
      CALL PLOT (DW.O.01.2)
      CALL PLOT(0.0.0.01.2)
      CALL PLOT (X2.0.01.3)
      CALL PLOT(X2.DH.2)
  20
     CONTINUE
      RETURN
      END
```

```
SUBROUTINE COLEN4(L3,L4,X1,Y1,DLEN,N1)
C
C
      SUBPROGRAM IS DESIGNED TO CONSTRUCT A TABLE FOR LENGTH OF
C
      COLLECTOR.
Ċ
      X1.Y1 ---- THE LOWER LEFT COORDINATES OF THE TABLE.
C
      DLEN ---- LENGTH OF THE TABLE
Č
         ---- NO. OF ROW OF THE TABLE
C
      DIMENSION DIA(5), LAB(10)
      DATA DIA/100..150..200..250..300./
      DATA LAB/'A ', 'B ', 'C ', 'D ', 'E ', 'F ', 'G ', 'H ', 'J ', 'K '/
      NR = 10
      IF(N1.GT.NR) NR=N1
```

```
DX=DLEN/6.3
      H = DX/10.0
      X2=X1+DLEN
      Y2=Y1+4.0*0.3+NR*0.25
      CALL PLOT(X1.Y1.3)
      CALL PLOT(X2, Y1, 2)
      CALL PLOT(X2.Y2.2)
      CALL PLOT(X1, Y2,2)
      CALL PLOT(X1,Y1,2)
      CALL PLOT(X1+1.3*DX,Y2-0.3.3)
      CALL PLOT (X2, Y2-0.3,2)
      CALL PLOT(X1, Y1+0.3,3)
      CALL PLOT (X2, Y1+0.3,2)
      CALL PLOT(X1+1.3*DX,Y1+0.3,3)
      CALL PLOT(X1+1.3*DX,Y2.2)
      CALL SYMBOL(X1, Y2-0.4, H. COLLECTOR', 0.0, 10)
      CALL SYMBOL (X1+1.3*DX+10*H.Y2-0.23.H. DRAIN TUBE REQUIRED',0.0,19)
      CALL SYMBOL (X1+1.3*DX+32*H,Y2-0.23,H*0.85, FEET ',0.0,6)
      CALL SYMBOL(X1+3*H.Y1+0.39,H,'TOTAL',0.0,5)
      CALL SYMBOL(X1+3*H.Y1+0.09,H.'OVERALL TOTAL:',0.0,14)
      NORMALLY LIGHT CHACTERTER STRING AND LINES.
C
C
      X = X1 + H + 1.5 * D X
      CALL NUMBER(X, Y2-0.55, H, DIA(1), 0.0,-1)
      CALL SYMBOL (X+H*3.2.Y2-0.55.H*0.85,'MM',0.0,2)
      D0 20 I = 2.5
      X = X + DX
      CALL NUMBER(X, Y2-0.55, H, DIA(I), 0.0.-1)
      CALL SYMBOL (X+H*3.2.Y2-0.55.H*0.85.'MM',0.0,2)
      CONTINUE
  20
      X = X1 + H + 1.5 \times DX
      DO 25 J=2.5
      X = X + DX
      CALL PLOT(X-H-0.2*DX,Y2-0.30.3)
      CALL PLOT(X-H-0.2*DX,Y1+0.3,2)
  25 CONTINUE
      Y = Y2 - 0.6
      CALL PLOT(X1.Y.3)
      CALL PLOT (X2,Y,2)
      DO 30 I=1.NR
      Y = Y - 0.25
      CALL SYMBOL (X1+5.0*H.Y+0.05,H.LAB(I).0.0,1)
      CALL PLOT(X1,Y,3)
      CALL PLOT(X2,Y,2)
      CONTINUE
  30
      CALL SYMBOL(X1+5.0*DX,Y1+0.05,H*0.9,' FEET ',0.0,6)
  50
      RETURN
      END
```

```
SUBROUTINE DRAW5(AX.DY.X1.Y1,X3,Y3,XLEN,NOUT,LINE,IDA.PS,S31,
     * XO, YO, RAD, BX, BY, NB, LABAL, DSCALE, IFLO, CEM)
С
      DRAW IS USED TO LABEL THE LATERALS! LENGTH
      WHEN THE DIRECTION OF THE FLOW IS NEEDED, FLOWA & FLOWB ARE CALLED
C
      DIMENSION X1(10,50), Y1(10,50), X3(10,50), Y3(10,50), XLEN(10,50)
                .BX(10).BY(10).SPAC(10).BANGLE(10).NOUT(10).NONC(10)
                .LINE(10).JOINT(10).OX(10.5).OY(10.5).S31(10.50)
      INTEGER*2 LAB, LABAL(15)
      DO 112 I=1.IDA
       IOUT=NOUT(I)
      LN=LINE(I)
       IF(IOUT.EQ.2) GO TO 110
      SALL PLOT(OX(I.1).0Y(I.1).3)
      CALL PLOT(OX(I,2),OY(I,2),2)
      CALL PLOT(X1(I \cdot 1) \cdotY1(I \cdot 1) \cdot2)
      GO TO 113
 110
      CALL PLOT(OX(I,1),OY(I,1),3)
       CALL PLOT(X1(I,1), Y1(I,1),2)
      DO 111 J=1,LN
 113
       CALL PLOT(X1(I,J),Y1(I,J),3)
       CALL PLOT(X3(I,J),Y3(I,J),2)
       CONTINUE
 111
      CONTINUE
 112
       SLAB=16*PS
       DO 200 LC=1.IDA
       LN=LINE(LC)
       LAB=LABAL(LC)
 115
       IF(X3(LC.1)-X1(LC.1)) 120.140.160
       IF((Y3('_C.1)-Y1(LC.1)).EQ.0.0) GO TO 125
 120
       ANGLE=ATAN ((Y3(LC.1)-Y1(LC.1))/(X3(LC.1)-X1(LC.1)))/RAD
       SO TO 130
 122
       ANGLE=90.0
       GO TO 130
 125
       ANGLE=0.0
       COSX=PS*COS(ANGLE*RAD)
 130
       SINY=PS*SIN(ANGLE*RAD)
       00 135 I=1.LN
       \Delta = -I
       X\Delta = X3(LC \cdot I) + 2 * COSX
       YA=Y3(LC,I)+2*SINY
       CALL SYMBOL (XA, YA, PS, LAB, ANGLE, 2)
       XB = X3(LC \cdot I) + 4.5 \times COSX
       YB=Y3(LC,I)+4.5*SINY
       CALL NUMBER (XB, YB, PS, A, ANGLE, -1)
       IF(XLEN(LC.I).LT.SLAB) GO TO 135
       XC = X3(LC \cdot I) + 11 * COSX
       YC=Y3(LC.I)+11*SINY
       CALL NUMBER(XC.YC.PS.XLEN(LC.I) *DSCALE/CEM, ANGLE, 1)
       XD=X3(LC.I)+17.5*COSX
       YD=Y3(LC,I)+17.5*SINY
       CALL SYMBOL (XD.YD.PS. FT', ANGLE, 2)
 135
       CONTINUE
```

```
GO TO 200
140
      IF(Y3(LC,1)-Y1(LC,1)) 122,150,165
150
     WRITE(6.155)X1(LC.1),Y1(LC.1),X3(LC.1),Y3(LC.1)
      FORMAT([X. *** ERROR*** (X1.Y1) = (X3.Y3). TERMINATION OCCURRED',
     * ! AT #150 IN "DRAW". . . / .
     *2X,'(X1,Y1) = ',2F8,2,3X,'(X3,Y3) = ',2F8,2)
     GO TO 200
     IF((Y3(LC.1)-Y1(LC.1)).EQ.0.0) GO TO 180
      ANGLE=ATAN ((Y3(LC.1)-Y1(LC.1))/(X3(LC.1)-X1(LC.1)))/RAD
      GO TO 190
      ANGLE=90.0
165
      GO TO 190
      ANGLE=0.0
180
      COSX=PS*COS(ANGLE*RAD)
190
      SINY=PS*SIN(ANGLE*RAD)
      DO 195 I=1.LN
      \Delta = -1
      XA = XI(LC,I) + 2.0 * COSX
      YA=Y1(LC.I)+2.0*SINY
      CALL SYMBOL(XA, YA, PS, LAB, ANGLE, 2)
      XB=XI(LC \cdot I)+4.5*COSX
      YB=Y1 (LC.I)+4.5*SINY
      CALL NUMBER (XB.YB.PS. A.ANGLE.-1)
      IF(XLEN(LC.I).LT.SLAB) GO TO 195
      XC = X1(LC \cdot I) + 11 * COSX
      YC=Y(LC,I)+11*SINY
      CALL NUMBER(XC.YC.PS.XLEN(LC.I)*DSCALE/CEM, ANGLE.1)
      XD=X1(LC \cdot I)+17.5*COSX
      YD=Y1(LC,I)+17.5*SINY
      CALL SYMBOL (XD. YD. PS. 'FT', ANGLE, 2)
 195
     CONTINUE
 200
      CONTINUE
      [F(IFLO.NE.1) GO TO 310
      DRAWING ARROW TO SHOW FLOW DIRECTION.
C
      DO 300 J1=1.IDA
      LN=LINE(J1)
      DO 290 J2=1,LN
      IF(XLEN(J1.J2).Lf.(PS+0.80)) GO TO 290
      X11 = X1(J) \cdot J2
      X33 = X3(J1.J2)
      Y11 = Y1(J1.J2)
      Y33 = Y3(J1.J2)
                  FLOWA(X11,Y11,X33,Y33,PS,RAD,RX1,RY1,RX2,RY2,
      CALL
     * RX3,RY3,RX4,RY4,AN)
      CALL AROHD(RX2.RY2.RX1.RY1.0.10.0.06.16)
      IF(S31(J1.J2).E0.0.0) GD TO 280
      CALL SYMBOL(RX3.RY3.PS.'S=
                                        %1.AN.8)
      CALL NUMBER(RX4, RY4, PS, S31(J1, J2), AN, 2)
      50 TO 290
 280
      CALL SYMBOL (RX3.RY3.PS. 'S= N.G.'.AN,7)
      CONTINUE
 290
 300
      CONTINUE
      GO TO 330
 310
      WRITE(6.320)
      FORMAT(/. FLOW DIRECTION NOT SHOWN-- IFLO=1 NOT ENCOUNTERED! //)
 320
```

```
330 RETURN END
```

```
SUBROUTINE FLOWA(X11, Y11, X33, Y33, PS, RAD, RX1, RY1, RX2, RY2,
     * RX3,RY3,RX4,RY4,AN)
C
C
      FLOW & FLOWB : DRAW THE ARROW TO SHOW THE DIRECTION OF THE FLOW
C
      X33, Y33 -- X1-Y1 OF THE LATERAL
C
      X33.Y33 -- X3-Y3 OF THE LATERAL
C
C
C
      PS -- PEN SIZE OR CHARACTER HEIGHT
      ALL RX-RY S VALUES ARE X-Y COORDINATES OF THE ARROW
      AN -- ANGLE OF THE ARROW WITH RESPECT TO X-AXIS
      IF(X33-X11) 40.50.60
      RR1=PS
      RR2=RR1+0.40
      R3=RR2+9*PS
      RR4=RR3-2*PS
      GO TO 90
  50
      IF(Y33.LT.Y11) GO TO 40
      RR1 = PS
  60
      RR2=RR1+0.40
      RR3=RR2+PS
      RR4=RR3+2.0*PS
                  FLOWB(X11, Y11, X33, Y33, RR1, PS, RAD, X, Y, AN)
  90
      CALL
      RX1 = X
      RY1=Y
      CALL
                  FLOWB(X11.Y11.X33.Y33.RR2.PS.RAD,X,Y,AN)
      RX2=X
      RY2=Y
                  FLOWB(X11, Y11, X33, Y33, RR3, PS, RAD, X, Y, AN)
      CALL
      RX3=X
      2Y3=Y
      CALL
                  FLOWB(X11, Y11, X33, Y33, RR4, PS, RAD, X, Y, AN)
      RX4=X
      RY4=Y
      RETURN
      END
```

```
DY=Y33-Y11
      DL = SORT(DX **2 + DY **2)
       [F(DX.E0.0.0) GO TO 200
       IF(DY.EQ.O.O) GO TO 300
       AN=ATAN2(DY.DX)/RAD
       ANGLE=AN
       \Delta NN = \Delta N
       IF(ANN.GT.90.0) ANGLE=ANN-180.0
       IF(ANN.LT.-90.0) ANGLE=ANN+180.0
       \Delta N = \Delta B S (\Delta N)
       IF(AN.GT.90.0) AN=180.0-AN
       DINX=1.2*PS/SIN(AN*RAD)
       DINY=1.2*PS/COS(AN*RAD)
       ARO=0.60*DL-9.0*PS+RR
       FX = ARD * COS(AN * RAD)
       FY=ARO*SIN(AN*RAD)
       [F(ARO.LT.O.O) FX=0.0
       IF(ARD.LT.0.0) FY=0.0
       [F(X33-X11) 100,200,150
100
       IF(Y33-Y11) 105,300,125
 105
       X4 = X11
       Y4=Y11-DINY
       X = X4 - FX
       Y = Y4 - FY
       GO TO 500
 125
       X4=X11-DINX
       Y4=Y11
       X = X4 - FX
       Y = Y4 + FY
       GO TO 500
150
       [F(Y33-Y11) 155,300,165
 155
       X4 = X11
       Y4=Y11-DINY
       X = X4 + FX
       Y = Y4 - FY
       GO TO 500
 165
       X4=X11+DINX
       Y4=Y11
       X = X + FX
       Y = Y4 + FY
       60 TO 500
 200
       ANGLE=90.0
       D=1.2*PS
       AR0=DL/2.0-9.0*PS+RR
       [F(Y33-Y11) 210,220,230
 210
       X4 = X11 + D
       Y4=Y11
       X = X4
       Y=Y4-ARA
       GO TO 500
       WRITE(6,225) X11,Y11,X33,Y33
220
225
       FORMAT(1X, (X1, Y1) = (X3, Y3) --- \cdot, 2F7.2 \cdot 2X.2F7.2 \cdot
      * 'CHECK #200 IN FLOW!./)
       GD TO 500
 230
      X4=X11+D
```

```
Y4 = Y11
      X = X4
      Y = Y4 + \Delta R \Omega
      SO TO 500
300
      ANGLE=0.0
      D=1.2*PS
      ARO=DL/2.0-9.0*PS+RR
      [F(X33-X11) 310,220,330
310
      X4 = X11
      Y4 = Y11 - D
      X = X4 - \Delta RO
      Y = Y4
      GO TO 500
330
      X4 = X11
      Y4=Y11-D
      X = X4 + \Delta R \cap
      Y = Y4
500
     RETURN
      END
```

SUBROUTINE ELE6 (L3.L4.X.Y.DD.BE.N)

```
C
      ______
C
     ROUND --- SUBPROGRAM TO DRAW SYMBOL SHOWING DRAIN DEPTH &
C
                DRAIN'S BOTTOM-ELEVATION.
C
     X.Y --- POSITION OF THE POINT
C
         --- QUADRANT OF THE CIRCLE TO BE DRAWN. 1 = 1ST QUAD.
C
     2 = 2ND OUAD. 3 = 3RD OUAD. 4 = 4TH OUAD.
C
     IF N HAS A VALVE WHICH IS NOT 1,2,3 OR 4 SYMBOL WILL BE PLOTTED
C
     AT THE X-Y POINT GIVEN (CENTERED AT X-Y).
С
     DO --- DRAIN DEPTH
С
             DRAIN BOTTOM ELEVATION
C
     GO TO (10.20.30.40),N
     XC = X
     YC = Y
     GO TO 50
     XC = X + 0.251
     YC = Y + 0.251
     GO TO 50
 20
     XC = X - 0.251
     YC=Y+0.251
     GD TO 50
     XC = X - 0.251
  30
     YC=Y-0.251
     50 TO 50
     XC = X + 0.251
  40
     YC=Y-0.251
 50
     IF(DD.E0.0.0.AND.BE.E0.0.0) GO TO 60
```

```
CALL CIRCLE(XC.YC.0.250)

CALL DASH(XC-0.2.YC.XC+0.2.YC.0.0)

CALL NUMBER(XC-0.090.YC+0.06.0.08.DD.0.0.1)

CALL NUMBER(XC-0.158.YC-0.127.0.08.BE.0.0.1)

GO TO 70

CALL CIRCLE(XC.YC.0.20)

RETURN

END
```

```
SUBROUTINE FENCE7(L3,L4,XA,YA,XB,YB,S)
С
       С
      FENCE IS WRITTEN FOR DRAWING THE FENCE LINE
C
      XA,YA,XB,YB ---- TWO POINTS , STARTING & ENDING POINTS, OF
C
                           THE FENCE LINE ARE GIVEN
C
         -- THE SPACING BETWEEN CROSSES.
      DIMENSION X(100), Y(100)
      \Delta L = SORT((XA - XB) **2 + (YA - YB) **2)
      XN=AL/S
      IF(XN.GT.100.0) XN=99.0
      N\Omega = XN
      IF(NO.GT.100) NO=99
      IF(NO.EO.XN) GO TO 10
      IF(XN-NO.LE.O.5#S) NO=NO+1
  10
      SS=4L/NO
      RAD=3.1415926/180.0
      DX = XA - XB
      DY = YA - YB
      IF(DX.E0.0.0) GO TO 100
      IF(DY.EQ.O.O) GO TO 200
      \Delta N = \Delta T \Delta N \quad (DY/DX)/R\Delta D
      DDX = ABS(SS * CDS(AN * RAD))
      DDY=ABS(SS*SIN(AN*RAD))
      IF(XA.LT.XB.AND.YA.GT.YB) GO TO 20
      IF(XA.GT.XB.AND.YA.LT.YB) GO TO 30
      TF(XA.LT.XB.AND.YA.LT.YB) GO TO 40
      IF(XA.GT.XB.AND.YA.GT.YB) GO TO 50
      50 TO 90
  20
     X(1) = XB
      Y(1) = YB
      X(NO+1)=X\Delta
      Y(N\cap+1)=Y\Delta
      GO TO 33
  30
      X(1) = X\Delta
      Y \in \{1\} = YA
      X(NO+1) = XB
      Y(NO+1)=YB
  33 DO 35 I=2,NO
```

```
X(I) = X(I-1) - DDX
35
     Y(I) = Y(I-1) + DDY
      GO TO 300
40
     X(1) = XA
      Y(1) = YA
      X(NO+1) = XB
      Y(NO+1) = YB
      GO TO 55
 50
      X(1) = XB
      Y([]) = YB
      X(NO+1)=X\Delta
      Y(N\cap+1)=Y\Delta
 55
      DO 60 I=2.NO
      X(I) = X(I-1) + DDX
      Y(I) = Y(I-1) + DDY
 60
      GO TO 300
      WRITE(6.95) XA, YA, XB, YB, S
 90
      FORMAT('0'.'NO FENCE LINE ----'.5F8.2)
 95
      GO TO 350
      4N = 90.0
100
      IF(YA.GT.YB) GO TO 110
      X(1) = X\Delta
      Y(1) = YA
      X(NO+1)=XB
      Y(NO+1)=YB
      DO 105 I=2.NO
101
      X(I) = XA
105
      Y(I)=Y(I-1)+SS
      GO TO 300
      X(1) = XB
110
      Y(1) = YB
      X(N\cap+1)=X\Delta
      Y(NO+1)=Y\Delta
      SO TO 101
200
      \Delta N=0.0
      [F(XA.GT.XB) GO TO 210
      X(1) = XA
      Y(1) = YA
      X(NO+1) = XB
      Y(NO+1) = YB
201
      DO 205 I = 2.00
      X(I) = X(I-1) + SS
205
      Y(I) = Y\Delta
      GO TO 300
210
      X(1) = XB
      Y(l)=YB
      X(NO+1)=X\Delta
      Y(N\cap+1)=Y\Delta
      GO TO 201
300
      CALL PLOT (XA.YA.3)
      CALL PLOT(XB, YB, 2)
      M=N\cap+1
      DO 310 I=1.M
310
      CALL SYMBOL(X(I),Y(I),0,10, 4,AN,-1)
350
      RETURN
```

```
SUBROUTINE GRADES(L3,L4,X,Y,ANGLE,AL,DIR,ITEM)
C
       SYMBOL TO SHOW THE CHANGE OF GRADE OR PIPE-SIZE OF A LINE.
C
       X,Y -- COORDINATES OF TRIANGLE TIP ON THE LINE
C
       ANGLE -- THE SLOPE OF THE LINE (IN DEGREE)
C
       AL -- THE HEIGHT OF THE TRIANGLE SYMBOL
C
C
       DIR -- DIRECTION OF THE TRIANGLE POINTING
                           SYMBOL PLOT ON THE LEFT HAND SIDE OF THE LINE
C
              IF DIR > 0
                             SYMBOL PLOT ON THE RIGHT HAND SIDE OF THE LINE
C
               IF DIR < 0
       ITEM --- CONTROL NO. ITEM=1 V-SHAPE SYMBOL IS PLOTTED FOR
C
C
                CHANGING PIPE-SIZE. OTHERWISE SOLID TRIANGLE SYMBOL
C
                 IS PLOTTED FOR GRADE CHANGE.
       RAD=3.1415926/180.0
       AN=ANGLE*RAD
       IF(DIR.GE.O.O) GO TO 200
C
       PLOT TRIANGLE SYMBOL ON LEFT HAND SIDE OF THE LINE.
       IF(ANGLE.EQ.0.0 ) GO TO 220
       [F(ANGLE.EO.180.0) GO TO 210
       IF(ANGLE.EQ. 90.0) GO TO 260
       IF(ANGLE.EQ.-90.0) GO TO 250
       CO=1.0/T\Delta N(\Delta N)
       [F(ANGLE.LT.0.0.AND.ANGLE.GT.-180.0) GO TO 150
       XA=X-SQRT(AL**2/(1.0+CD**2))
       YA = Y + CD * \{X - XA\}
       GO TO 300
 150
       X\Delta = X + SQRT(\Delta L **2/(1.0+CD**2))
       YA = Y + C \cap * (X - XA)
       GO TO 300
 200
       IF(ANGLE.E0.0.0) GO TO 210
       [F(ANGLE.E0.180.0) GO TO 220
       IF(ANGLE.EQ. 90.0) GO TO 250
       IF(ANGLE.EQ.-90.0) GO TO 260
       CO=1.0/TAN(AN)
       IF(ANGLE.GT.O.O.AND.ANGLE.LT.180.0) GO TO 230
       XA=X-SQRT(AL**2/(1.0+CO**2))
       Y\Delta = Y + C \cap * (X - X \Delta)
       GO TO 300
       X\Delta = X + SQRT(\Delta L **2/(1.0+C\Pi **2))
 230
       Y\Delta = Y + C \cap * (X - X\Delta)
       GO TO 300
 210
       X \Delta = X
       YA = Y - AL
       GO TO 300
 220
       X \Delta = X
```

```
Y\Delta = Y + \Delta L
       GO TO 300
250
       X\Delta = X + \Delta L
       Y \Delta = Y
       GO TO 300
260
       X\Delta = X - \Delta L
       Y \Delta = Y
300
       CONTINUE
       IF(ITEM.EQ.1) GO TO 310
       CALL AROHD (XA, YA, X, Y, AL, AL, 16)
       GO TO 320
310
       CALL AROHD(XA, YA, X, Y, AL, AL, 14)
320
       RETURN
       END
```

```
SUBROUTINE MARSH9(L3.L4.X.Y.H)
С
      MARSH : FOR MARSH OR SWAMP SYMBOL.
      X.Y ---- X-Y POSITION OF THE TREE.
С
      X.Y --- X-Y COORDINATE OF THE CENTER OF THE MARSH.
С
      H --- RADIUS OF THE MARSH.
      H=ABS(H)
      ANGLE=0.0
      DO 10 I=1.7
      A = ANGLE \pm 3.1415926/180.0
      DX = H * COS(A)
      DY=H*SIN(A)
      X1 = X + DX
      Y1 = Y + DY
      CALL PLOT(X,Y,3)
      CALL PLOT(X1,Y1,2)
      ANGLE=ANGLE+30.0
      CONTINUE
  10
      RETURN
      END
```

```
0=0.12*24+0.20*8
IF(D.GT.TW) GO TO 50
X2 = DW - TW
Y2=Y1-0.25
CALL SYMBOL(X2+12*0.1,Y2+0.07.0.2, KEY TO PLAN',0.0,11)
CALL DASH(X2+12*0.1-0.02,Y2+0.04,X2+12*0.1+11*0.2,Y2+0.04,0.0)
CALL DASH(X2+12*0.1-0.02,Y2,X2+12*0.1+11*0.2,Y2,0.0)
X2 = X2 + 0.12
Y2=Y2-0.30
CALL SYMBOL(X2,Y2,0.12, 'RELATIVE ELEVATIONS',0.0,19)
CALL SYMBOL(X2+27*0.12, Y2, 0.14, 198.61, 0.0,4)
Y2 = Y2 - 0.23
CALL SYMBOL(X2,Y2,0.12, 23HCONTOURS (1' INTERVALS), 0.0,23)
CALL SYMBOL(X2+27*0.12, Y2, 0.12, '288', 0.0, 3)
CALL DASH(X2+24*0.12,Y2+0.07,X2+26.8*0.12,Y2+0.07,0.0)
CALL DASH(X2+30.2*0.12,Y2+0.07.X2+33*0.12,Y2+0.07.0.0)
Y2 = Y2 - 0.23
CALL SYMBOL(X2, Y2, 0.12, FENCES AND BOUNDARIES, 0.0, 21)
XXA = X2 + 0.12 \times 24
YYA=Y2+0.07
XXB = X2 + 0.12 * 32
CALL FENCE7(7,4,XXA,YYA,XXB,YYA,0.3)
Y2=Y2-0.23
CALL SYMBOL(X2, Y2, 0.12, LENGTH & SIZE OF DRAIN, 0.0, 22)
CALL SYMBOL(X2+24.0*0.12.Y2+0.03.0.10.'ABOVE DRAINS'.0.0.12)
Y2=Y2-0.23
CALL SYMBOL(X2, Y2, 0.12, 'GRADES', 0.0, 6)
CALL SYMBOL(X2+24.0*0.12, Y2+0.03.0.10, 'BELOW DRAINS', 0.0, 12)
Y2 = Y2 - 0.23
CALL SYMBOL(X2, Y2, 0.12, 'NATURAL GRADE', 0.0, 13)
CALL SYMBOL(X2+27*0.12.Y2.0.13.'N.G.'.0.0,4)
Y2=Y2-0.23
CALL SYMBOL(X2, Y2.0.12. CHANGE IN DRAIN SIZE 1,0.0,20)
CALL DASH(X2+24*0.12,Y2,X2+32*0.12,Y2,0.0)
CALL GRADE8( 8,4,X2+28.0*0.12,Y2,0.0,0.16,-1,1)
Y2=Y2-0.28
CALL SYMBOL(X2, Y2, 0.12, 'CHANGE IN DRAIN GRADE', 0.0, 21)
CALL DASH(X2+24*0.12,Y2+0.16,X2+32*0.12,Y2+0.16,0.0)
CALL GRADE8(8,4,X2+28*0.12,Y2+0.16,0.0,0.16,1,0)
Y2=Y2-0.23
CALL SYMBOL(X2.Y2.0.12, BENCH MARK', 0.0,10)
CALL SYMBOL (X2+25*0.12, Y2+0.02, 0.12, 'B.M.', 0.0, 4)
CALL SYMBOL(X2+29.5*0.12.Y2+0.07.0.16.1.0.0,-1)
CALL SYMBOL (X2+29.5*0.12, Y2+0.07, 0.16, 3, 0.0, -1)
Y2 = Y2 - 0.23
CALL SYMBOL(X2, Y2, 0.12, 'HUB STAKE', 0.0,9)
CALL SYMBOL(X2+25*0.12, Y2+0.02.0.12, 'H.S.', 0.0.4)
CALL SYMBOL(X2+29.5 \pm 0.12, Y2+0.07, 0.16, 1.0.0, -1)
CALL SYMBOL(X2+29.5*0.12,Y2+0.07.0.16,3.0.0,-1)
Y2=Y2-0.30
CALL SYMBOL(X2, Y2+0.05, 0.12, TREE, 0.0,4)
CALL TREE18(18.4.X2+28*0.12,Y2+0.10,0.18)
Y2=Y2-0.28
CALL SYMBOL(X2, Y2, 0.12, 'BUILDING', 0.0.8)
CALL BUILD2(2,4,X2+28*0.12,Y2+0.06,-0.2)
```

```
Y2=Y2-0.25
    CALL SYMBOL(X2, Y2, 0.12, 'OPEN DITCH', 0.0, 10)
    CALL STM15 (15,4,X2+32*0.12,Y2+0.07,X2+24*0.12,Y2+0.07,0.2,0.06)
    Y2=Y2-0.23
    CALL SYMBOL (X2, Y2, 0.12, DITCH BOTTOM ELEVATION, 0.0, 22)
    CALL SYMBOL(X2+26*0.12, Y2, 0.14, 'B98.2', 0.0,5)
    Y2=Y2-0.28
    CALL SYMBOL(X2, Y2-0.01, 0.12, 'DEPTH OF TRENCH BOTTOM', 0.0, 22)
    XXA = X2 + 27.5 \pm 0.12
    CALL ELE6(6,4,XXA,Y2-0.02,4.5,93.5,5)
    Y2=Y2-0.28
    CALL SYMBOL(X2.Y2+0.06.0.12, TRENCH BOTTOM ELEVATION:,0.0,23)
    Y2=Y2-0.26
    CALL SYMBOL(X2, Y2.0.12, 'OUTLET NO.'.0.0.10)
    CALL SYMBOL(X2+27*0.12-0.01,Y2-0.03,0.09,'3',0.0,1)
    CALL SYMBOL(X2+27*0.12.Y2+0.01.0.40.53.0.0.1)
    CALL SYMBOL(X2+27*0.12, Y2+0.01, 0.40, 54, 0.0, 1)
    Y2=Y2-0.28
    CALL SYMBOL(X2,Y2,0.12, 'RAILROAD',0.0,8)
    XXA = X2 + 24 \times 0.12
    XXB=X2+32*0.12
    YY = Y2 + 0.07
    CALL RAIL12(12,4,XXA,YY,XXB,YY,0.13)
    Y2=Y2-0.30
    CALL SYMBOL(X2.Y2.0.12. ROAD AND LANE 1.0.0,13)
    YY4 = Y2 + 0.08
    CALL ROAD14(14.4.XXA.YYA.XXB.YYA.0.2)
50 RETURN
    END
```

```
SUBROUTINE POUT11(L3,L4,X1,Y1,X2,Y2,SLOPE,PEN)
C
C
      SUBROUTINE POUTLE ---- DRAWS THE FLOW DIRECTION AND LABELS
C
      THE SLOPE OF THE COLLECTOR
C
      X1.Y1 --- COORDINATE OF THE ARROW'S TIP.
C
      X2.YI --- COORDINATE OF THE ARROW'S TAIL.
C
      SLOPE --- SLOPE OF THE COLLECTOR.
C
      PEN --- CHARACTER HEIGHT OR PENSIZE
      IF(L3.NF.11) GO TO 10
      RAD=3.1415926/180.0
      IF(PEN.EQ.O.O) PEN=0.10
      CALL FLOWA (X1.Y1.X2.Y2.PEN.RAD.RX1.RY1.RX2.RY2.RX3.RY3.
     * RX4,RY4,AN)
      CALL AROHD(RX2.RY2.RX1.RY1.PEN .0.06.16)
      IF(SLOPE, EQ.O.O) GO TO 5
      CALL SYMBOL(RX3.RY3.PEN. S=
                                     21.AN.8)
      CALL NUMBER (RX4, RY4, PEN, SLOPE, AN, 2)
```

```
GO TO 10

5 CALL SYMBOL (RX3.RY3.PEN. 'S= N.G.'.AN.7)

10 CONTINUE

RETURN

END
```

```
SUBROUTINE RAIL12(L3,L4,X1,Y1,X2,Y2,D)
C
C
       RAILWAY SUBPROGRAM IS CALLED WHEN YOU WANT TO DRAW A RAIL ROAD.
C
       TWO POINTS COORDINATES ARE NEEDED ===> START & END POINTS
C
       SPECIFY THE DISTANT BETWEEN THE TIES ===> D.
C
       DIMENSION A(200), B(200)
       RAD=3.1415926/180.0
       IF(D.EQ.O.O) D=0.20
       DX = X2 - X1
       DY=Y2-Y1
       [F(DX.E0.0.0.AND.DY.E0.0.0) GO TO 500
       DO 90 I=1,200
       A(I) = 0.0
  90
       B(I) = 0.0
       ABLEN = SORT(DX ** 2 + DY ** 2)
       NO=ABLEN/D
       IF(NO.GE.200) NO=199
       \Delta(1) = X1
       B(1)=Y1
       4(NO+1)=X2
       B(NO+1) = Y2
       IF(DX.E0.0.0) GO TO 300
       [F(DY.EQ.O.O) GO FO 400
C
       WHEN DX AND DY ARE NOT = 0.0 ====> ANGLE=ATAN2(DY,DX).
       \Delta N = \Delta T \Delta N 2 (DY \cdot DX)
       ANGLE=AN/RAD
       FA=ABS(D*COS(AN))
       FB = ABS(D * SIN(AN))
       IF(X1.GT.X2) GO TO 200
       IF(Y1.GT.Y2) GO TO 150
       DO 110 I=2.NO
       \Delta(I) = \Delta(I-1) + F\Delta
 110
       \beta(I) = \beta(I-1) + F\beta
       GO TO 600
 150
       DO 160 I=2.NO
       \Delta ( I ) = \Delta ( I - 1 ) + F\Delta
 160
       B(I) = B(I-1) - FB
       GO TO 600
 200
       IF(Y1.GT.Y2) GO TO 250
       DO 210 I=2.NO
       \Delta(I) = \Delta(I-1) - F\Delta
```

```
210
     B(I)=B(I-1)+FB
     90 TO 600
250
     DO 260 I=2.NO
      A(I) = A(I-1) - FA
260
     B(I) = B(I-1) - FB
     GO TO 600
     WHEN DX=0.0 ====> ANGLE=90.0
300
     ANGLE=90.0
      IF(Y1.GT.Y2) GO TO 350
     00 310 T=2.NO
     \Delta(I) = XI
310
     B(I) = B(I-1) + D
     GD TO 600
350
     DO 360 I=2.NO
     \Delta(I) = XI
360
     \beta(I) = \beta(I-1) - D
     GO TO 600
     WHEN DY=0.0 ====> ANGLE=0.0
400
     ANGLE=0.0
     IF(X1.6T.X2) GO TO 450
     DO 410 I=2.NO
     A(I) = A(I-1) + D
410
     B(I) = Y1
     GO TO 600
450
     DO 460 I=2,NO
     \Delta(I) = \Delta(I-1) - D
460
     B(I) = Y1
     90 TO 600
500
     WRITE(6.510) X1.Y1.X2.Y2
     FORMAT(1X. SINGLE POINT DATA ==> NO RAIL LINE CAN BE PLOTTED ..
510
    *2X.4(F7.2.2X)./)
     GO TO 700
600
     NN=NO+1
     CALL PLOT(X1,Y1,3)
     CALL PLOT(X2, Y2, 2)
     DO 610 J=1.NN
610
     CALL SYMBOL (A(J), B(J), D*0.80, 13, ANGLE, -1)
700
     RETURN
     END
```

```
SUBROUTINE REF13 (L3.L4.DW.DH.TW.X1.Y1.H1,NO)

REF13: TO LABEL THE SPECIAL NOTES OR LABELS ON THE PLAN

X1.Y1 -- COORDINATE OF THE LOWER LEFT CORNER OF THE START POINT

OF THE LABEL.

H1 -- CHARACTER HEIGHT (0.2" IS RECOMMENDED).
```

C

C

C

С

С

C A1 -- ANGLE OF THE LABELLING WITH RESPECT TO X-AXIS (0.0 DEGREE)
C LEN -- TOTAL NUMBER OF CHARACTERS OF THE LABEL.

```
C
      DIMENSION A(10)
      RAD=3.1415926/180.0
      \Delta 1 = 0.0
      [F(H1.EQ.O.O) H1=0.15]
      IF(NO.EO.O) NO=40
      D1 = H1 *NO
      IF(X1.EQ.O.O) X1=DW-TW
      [F(Y1.E0.0.0) Y1=DH-0.50
      READ(5,10,END=20) L1,L2,L3,L4,A
      FORMAT(211,12,11,5X,10A4)
  10
      IF(L3.NE.13) GO TO 6
      IF(L4.NE.4) GO TO 8
      X2=X1+D1*COS(A1*RAD)
      Y2=Y1+D1*SIN(\Delta1*R\DeltaD)
      IF(X1.LT.0.0.0R.X1.GE.DW) GO TO 11
      [F(Y1.LT.0.0.OR.Y1.GE.DH) GO TO 11
      IF(X2.LT.0.0.0R.X2.GE.DW) GO TO 11
      IF(Y2.LT.0.0.OR.Y2.GE.DH) GO TO 11
      CALL SYMBOL (X1+0.8 * H1, Y1, H1, 4, A1, NO)
      Y1=Y1-1.8*H1
      GO TO 4
  11
      WRITE(6.12)
      FORMAT('0', ' REF13: LABEL EXTENDS BEYOND MAP BOUNDARY.')
  12
      GO TO 4
      WRITE(6.7)
      FORMAT('0', ' REF13: CONTROL L3=13 NOT ENCOUNTERED.')
      GO TO 20
      WRITE(6.9) L1.L2.L3,L4.A
      FORMAT('0', REF13: CONTROL L4=4 NOT ENCOUNTERED.',/,
      * 1X. LAST CARD READ WAS : 1,211,12,11,5X,1044)
      GO TO 4
  20
      RETURN
       END
```

```
SUBROUTINE ROAD14(L3,L4,X1,Y1,X2,Y2,W)
C
      ROAD --- A SUBPROGRAM TO DRAW ROAD OR LANE SYMBOL
С
      (X1.Y1) & (X2.Y2) --- STARTING & ENDING POINTS OF THE ROAD
C
C
                              ( ITS CENTER-LINE. )
С
      W --- WIDTH OF THE ROAD
      R\Delta D=3.1415926/180.0
      IF(W.EQ.O.O) W=0.25
      DX = X1 - X2
      0Y=Y1-Y2
      IF(DX.EQ.O.O) GO TO 20
      [F(DY.E0.0.0) GO TO 30
```

```
[F(DY.EQ.O.O) GO TO 30
    GO TO 40
20
    4N = 90.0
    X3U=X1+0.5*W
    X3L=X1-0.5*W
    CALL PLOT(X3U, Y1.3)
    CALL PLOT (X3U, Y2, 2)
    CALL PLOT(X3L, Y2,3)
    CALL PLOT(X3L,Y1,2)
    CALL SYMBOL (X1+0.25*W, (Y1+Y2)/2.-W.O.4*W, 'ROAD', AN, 4)
    GO TO 100
    AN=0.0
30
    Y3U=Y1+0.5*W
    Y3L=Y1-0.5*W
    CALL PLOT(X1.Y3U.3)
    CALL PLOT(X2.Y3U.2)
    CALL PLOT(X2, Y3L, 3)
    CALL PLOT(X1, Y3L, 2)
    CALL SYMBOL( (X1+X2)/2.-W.Y1-0.25*W.0.4*W. ROAD .AN.4)
    GO TO 100
    \Delta N = \Delta T \Delta N (DY/DX)/RAD
40
    IF(X1.GT.X2) GO TO 50
    90 TO 70
    IF(Y1.GT.Y2) GO TO 60
50
    X = (X1 + X2) / 2.0 - W
    DDX = X - XS
    DDY=TAN(AN*RAD)*DDX
    DDY=ABS(DDY)
    Y=Y2-0.25*W-DDY
    GO TO 90
60
    X = (X1 + X2)/2.0 - W
    DDX = X - X2
    DDY=TAN(AN*RAD)*DDX
    DDY = ABS(DDY)
    Y=Y2-0.25*W+DDY
    GO TO 90
    [F(Y1.GT.Y2) GO TO 80
    X = (X1 + X2)/2.0 - W
    DDX = X - X1
     DDY=TAN(AN*RAD)*DDX
    DDY=ABS(DDY)
     Y=Y1-0.25*W+DDY
    SO TO 90
    X = (X1 + X2)/2.0 - W
80
     DDX = X - X1
     DDY=TAN(AN*RAD)*DDX
    DDY=ABS(DDY)
     Y=Y1-0.25*W-DDY
    Y3L=Y1-0.5*W
90
     Y3U=Y1+0.5*W
     Y4L=Y2-0.5*W
     Y4U=Y2+0.5*W
     CALL PLOT(X1.Y3U.3)
     CALL PLOT(X2, Y4U, 2)
     CALL PLOT(X2, Y4L, 3)
```

```
CALL PLOT(X1, Y3L, 2)
CALL SYMBOL(X, Y, 0.4*W, 'ROAD', AN, 4)
RETURN
END
```

```
SUBROUTINE STM15 (L3, L4, XS, YS, XE, YE, AROL, AROS)
C
C
      SUBPROGRAM STREAM IS USED TO DRAW A SERIES OF ARROW TO SHOW
C
      THE DIRECTION OF A STREAM OR CHANNEL.
C
C
      XS.YS -- X-Y COORDINATE OF THE POINT AT DOWNSTREAM END
С
      XE, YE -- X-Y COORDINATE OF THE POINT AT UPSTREAM END
      AROL -- LENGTH OF THE ARROW.
С
      ARDS -- SPACE BETWEEN THE ARROWS.
      DIMENSION RX1(100).RY1(100).RX2(100).RY2(100)
      IF(AROL.EQ.O.O) AROL=0.30
      IF(AROS.EQ.O.O) AROS=0.150
      00 10 1=1.100
      RXI(I) = 0.0
      311(1)=0.0
      RX2(I) = 0.0
  10
      3Y2(I) = 0.0
      \Delta L = SQRT((XS-XE)**2 + (YS-YE)**2)
      NOARO = AL/(AROL+AROS)
      IF(NOARO.GT.100) NOARO=100
      DX = XE - XS
      DY=YE-YS
      3\times1(1)=\times5
      RY1(1)=Y.S
      RX2(NOARD) = XE
      RY2(NOARO) = YE
      IF(DX.EQ.O.O.AND.DY.EQ.O.O) GO TO 800
       IF(DX.EQ.O.O) GO TO 100
      [F(DY.EQ.O.O) GO TO 200
      GO TO 300
 100
      ANGLE=90.0
       IF(YS.GT.YE) GO TO 150
      DO 110 T=2.NOARO
       RX1(I) = RX1(I-1)
       RYL(I) = RYL(I-1) + (\Delta ROL + \Delta ROS)
       RX2(I-1) = RX1(I-1)
 110
      RY2(I-1)=RY1(I-1)+AROL
       GO TO 700
 150
      00 160 I=2.NOARO
       RX1(I) = RX1(I-1)
       RYL(I) = RYL(I-1) - (AROL+AROS)
       RX2(I-1) = RX1(I-1)
```

```
160
    RY2(I-1)=RY1(I-1)-AROL
     GO TO 700
200
     ANGLE=0.0
     IF(XS.GT.XE) GO TO 250
     DO 210 I=2.NOARO
     RX1(I) = RX1(I-1) + (AROL + AROS)
     RY1(I) = RY1(I-1)
     RX2(I-1)=RX1(I-1)+AROL
210
     RY2(I-1) = RY1(I-1)
     GO TO 700
250
     DO 260 1=2.NOARO
     RX1(I) = RX1(I-1) - (AROL + AROS)
     RYI(I) = RYI(I-I)
     RX2(I-1)=RX1(I-1)-AROL
260
     RY2(I-1) = RY1(I-1)
     GO TO 700
300
     ANGLE=ATAN2(DY.DX)
     FA = ABS((AROL + AROS) *COS(ANGLE))
     FB=ABS( (AROL+AROS)*SIN(ANGLE))
     FAA=ABS(AROL*COS(ANGLE))
     FBB=ABS(AROL*SIN(ANGLE))
     IF(XE.GT.XS) GO TO 500
     IF(YE,GT,YS) GO TO 400
     DO 350 I=2.NOARO
     QXI(I) = QXI(I-I) - FA
     RY1(I) = RY1(I-1) - FB
     RX2(I-1)=RX1(I-1)-FAA
350
     RY2(I-1) = RY1(I-1) - FBB
     GO TO 700
     DO 450 I=2, NOARO
400
     RX1(I) = RX1(I-1) - FA
     RY1(I) = RY1(I-1) + FB
     2X2(I-1)=RX1(I-1)-FAA
450
     RY2(I-1) = RY1(I-1) + FBB
     GO TO 700
500
     IF(YE.GT.YS) GO TO 600
     DO 550 I=2.NOARO
     RX1(I) = RXI(I-1) + FA
     RY1(I) = RY1(I-1) - FB
     RX2(I-1)=RX1(I-1)+FAA
550
     RY2(I-1)=RY1(I-1)-FBB
     GO TO 700
600
     DO 650 I=2.NOARO
     RX1(I) = RX1(I-1) + FA
     \forall Y \mid (I) = \forall Y \mid (I-1) + FB
     RX2(I-1)=RX1(I-1)+FAA
     RY2(I-I) = RY1(I-I) + FBB
650
700
     DO 750 J=1.NOARO
750
     CALL AROHD(RX2(J).RY2(J).RX1(J).RY1(J).0.12.0.08.16)
     GO TO 850
800
     WRITE(6,801) XS, YS, XE, YE
     FORMAT(1X. SINGLE POINT X.Y --- NO STREAM LINE CAN BE PLOTTED!,/)
801
850
     RETURN
     END
```

```
SUBROUTINE TAB16(CHH, CHC. DSCALE, DH. XO. YO. LAB, LABAL, IDA,
     * LINE.XLEN.SUMLEN.CEM.Y2)
С
С
      TABLE : TABLE OF LENGTHS OF LATERALS OF THE ENTIRE SYSTEM
C
      DIMENSION XLEN(10.50), LINE(10)
      INTEGER $2 LAB, LABAL (15)
      MAXL = (DH-1.0-5*CHH)/(1.5*CHC)
      X1 = X0 + 0.5
      Y1 = Y0 + 0.5
      IF(Y2.E0.0.0) Y2=Y1+MAXL*1.5*CHC+5*CHH
      J1 = 0
      DO 90 J=1.IDA
      LN=LINE(J)
  90
      J_1 = J_1 + J_N
      NCOL=1
      IF(J1.GT.MAXL.AND.J1.LT.2*MAXL) NCOL=2
      IF(J1.GT.2*MAXL.AND.J1.LT.3*MAXL) NCOL=3
      CALL PLOT(X1,Y2,3)
      CALL PLOT(X1+NCOL *18*CHH, Y2,2)
      CALL PLOT(X1.Y2-2*CHH.3)
      CALL PLOT(X1+NCOL*18*CHH, Y2-2*CHH, 2)
      T1 = X1 + CHH
      T2=Y2-1.5*CHH
      00 100 I=1.NCOL
      T\Delta = T1 + (I-1) *18 *CHH
      CALL SYMBOL (TA. 12. CHH. 'LAT. NO LENGTH', 0.0, 14)
      CALL SYMBOL(TA+15*CHH, T2, CHH*0.80, 'FT', 0.0, 2)
 100
      CONTINUE
      X3=X1+CHH
      Y3=Y2-2*CHH
      K=0
      SUMLEN=0.0
      DO 140 K1=1.IDA
      LN=LINE(K1)
      LAB=LABAL(K1)
      DO 120 K2=1.LN
      SUMLEN=SUMLEN+XLEN(K1.K2)
      Y3=Y3-1.5*CHC
      K=K+1
      \Delta = -K2
      I=LN-(K2-1)
      CALL SYMBOL(X3.Y3.CHC.LAB.0.0.2)
      X4=X3+3*CHC
      CALL NUMBER (X4.Y3.CHC.A.O.O.-1)
      X5=X3+7*CHH
      TX=XLEN(K1.K2) ≠DSCALE/CEM
      IF(TX.LT.10.0) X5=X5+3.0*CHH+3.0*CHC
```

```
IF(TX.GE.10.0.AND.TX.LT.100.0) X5=X5+3.0*CHH+2.0*CHC
     IF(TX.GE.100.0.AND.TX.LT.1000.0) X5=X5+3.0*CHH+CHC
     IF(TX.GE.1000.0) X5=X5+3.0*CHH
     CALL NUMBER (X5, Y3, CHC, TX, 0.0, 1)
     IF(K.LT.MAXL) GO TO 120
     IF(I.EQ.1.AND.K1.EQ.IDA) GO TO 150
     X3=X3+18*CHH
     Y3=Y2-2*CHH
     K=0
120
     CONTINUE
     Y3=Y3-1.5*CHC
140
     CONTINUE
150
     X6=X1
     CALL PLOT(X6.Y3.3)
     CALL PLOT (X6,Y2,2)
     DO 160 I=1.NCOL
     CALL PLOT (X6+7.5*CHH, Y2,3)
     CALL PLOT (X6+7.5*CHH.Y3.2)
     CALL PLOT(X6+18*CHH, Y3,3)
     CALL PLOT(X6+18*CHH,Y2,2)
     X6=X6+18*CHH
    CONTINUE
160
     CALL PLOT(X1,Y3,3)
     CALL PLOT(X1, Y3-2*CHH, 2)
     CALL PLOT(X1+NCOL*18*CHH,Y3-2*CHH,2)
     CALL PLOT(X1+NCOL*18*CHH, Y3.2)
     CALL PLOT(X1,Y3,2)
     CALL SYMBOL (X1, Y3-1.5 *CHH, CHH, ' TOTAL', 0.0,6)
     CALL NUMBER(X1+8.5*CHH.Y3-1.5*CHH.CHH.SUMLEN*DSCALE/CEM.O.O.1)
     CALL SYMBOL(X1+16*CHH.Y3-1.5*CHH.CHH*0.85, 'FT', 0.0,2)
     RETURN
     END
```

```
SUBROUTINE TBLK17(L1,L2,L3,L4,DW,DH,TW,X2)
C
C
      TTLBLK : DRAWING FITLE-BLOCK
C
      X2 -- THE STARTING POSITION OF THE TITLE-BLOCK
C
      DW -- WIDTH OF THE PAPER
C
      TW -- WIDTH OF THE TITLE-BLOCK ( MINIMUM 4". 5" FOR 11" PAPER,
C
                                        7" FOR 30" PAPER IS THE BEST ).
C
      T -- THE TITLE OF THE JOB ( 3 LINES )
C
      SCALE -- THE SCALE USED FOR THE JOB
C
      DWG -- THE DRAWING NUMBER OR REFERENCE NUMBER OF THE JOB
C
      DIMENSION T(9), SCALE(3), DWG(3)
      F = TW/7.0
      IF(L1.E0.5) GO TO 5
C
      NORMALLY HEAVY LINES.
```

```
CALL DASH(X2+F*2.7.F*3.8.X2+F*2.7.F*3.1.0.0)
      CALL DASH(X2+F*1.5,F*3.1,X2+F*1.5,F*3.8,0.0)
      CALL DASH(X2,F*3.5,DW,F*3.5,0.0)
      CALL DASH(DW,F*3.1,X2,F*3.1,0.0)
      CALL DASH(X2,F*2.4,DW,F*2.4,0.0)
      CALL DASH(DW.F*2.0.X2.F*2.0.0.0)
      CALL DASH(X2,F*1.0,DW,F*1.0,0.0)
      CALL PLOT(X2.0.01.3)
      CALL PLOT(X2,F*3.8,2)
      CALL PLOT (DW.F*3.8.2)
      CALL PLOT(DW.O.01.2)
      CALL PLOT(X2.0.01.2)
C
C
      NORMALLY FINE LINES AND CHARACTER STRINGS.
      CALL DASH(X2+F*2.3,F*1.00,X2+F*2.3,0.0
                                                +0.0}
      CALL DASH(X2+F*3.2.0.0
                               •X2+F*3•2•F*1•00•0•0)
      CALL DASH(X2+F*4.2,F*1.00,X2+F*4.2,0.0 ,0.0)
      CALL DASH(X2+F*5.2.0.0 ,X2+F*5.2.F*1.00.0)
      CALL DASH(X2+F*5.2,F*0.75,X2+F*2.3,F*0.75,0.0)
      CALL DASH(X2+F*2.3,F*0.50,X2+F*5.2,F*0.50,0.0)
      CALL DASH(X2+F*5.2,F*0.25,X2+F*2.3,F*0.25,0.0)
      CALL SYMBOL(X2+F*3.3,F*0.825,F*0.1,'DAFE',0.0,4)
      CALL SYMBOL(X2+F*4.3,F*0.825,F*0.1,'PERSON', 0.0,6)
      CALL SYMBOL(X2+F*2.4.F*0.575.F*0.1.*DRAWN*, 0.0.5)
      CALL SYMBOL(X2+F*2.4,F*0.325,F*0.1,'CHECKED',0.0,7)
      CALL SYMBOL(X2+F*2.4.F*0.075.F*0.1.'REVISED'.0.0.7)
С
      NORMALLY MEDIUM CHARACTER STRINGS.
      CALL SYMBOL(X2+F*0.15,F*3.225,F*0.15,'REVISION',0.0.8)
      CALL SYMBOL(X2+F*1.65,F*3.225,F*0.15,'DATE',0.0,4)
      CALL SYMBOL(X2+F*2.85,F*3.225,F*0.15,'DESCRIPTION',0.0,11)
      CALL SYMBOL(X2+F*0.76.F*2.825.F*0.15.'AGRICULTURAL ENGINEERING
     LEPARTMENT',0.0.37)
      CALL SYMBOL(X2+F*2.18,F*2.525,F*0.15, MCGILL UNIVERSITY, 0.0,18)
      CALL SYMBOL(X2+F*0.53,F*2.125,F*0.15,'BOX 950, MACDONALD COLLEGE,
     1QUE. H9X 1CO',0.0,40)
C
      NORMALLY HEAVY VARIABLE CHARACTER STRINGS.
      CALL SYMBOL(X2+F*0.15,F*0.775,F*0.15, SCALE)
                                                    ,0.0,5)
      CALL SYMBOL(X2+F*5.35,F*0.775,F*0.15, 'DWG. NO.1,0.0,8)
      GO TO 30
   5 DO 8 I=1.3
      READ(5.7) L1, L2, L3, L4, T
      FORMAT(211,12,11,5X,8A4,A1)
      CALL SYMBOL (X2+F*0.24.F*(2.0-I*0.3).F*0.20.T
                                                     •0.0.331
     CONTINUE
      READ(5,9) L1, L2, L3, L4, SCALE, DWG
      FORMAT(211,12,11,5X,2A4,A2,2A4,A2)
      CALL SYMBOL (X2+F*0.15,F*0.2,F*0.20,SCALE,0.0,10)
      CALL SYMBOL(X2+F*5.35,F*0.2,F*0.16,DWG,0.0,10)
  30
      RETURN
      END
```

```
SUBROUTINE TREE18(L3,L4,X,Y,H)
C
C
      TREE : TO DRAW THE SYMBOL OF THE TREE OR BUSH.
C
      X.Y --- THE POSITION OF THE TREE ( X-Y COORDINATE )
C
      H --- THE HEIGHT OF THE TREE (0.3" IS RECOMMENDED)
      DIMENSION X1(6), Y1(6), X2(6), Y2(6)
      [F(H.50.0.0)] H=0.20
      4N=0.0
      BN=30.0
      RAD=3.1415926/180.0
      00 \ 20 \ I = 1.6
      A=AN≠RAD
      B=BN*RAD
      X1(I) = X + H * COS(\Delta)
      Y1(I)=Y+H*SIN(A)
      X2(I) = X + 0.7 + H + COS(B)
      Y2(I)=Y+0.7*H*SIN(B)
      \Delta N = \Delta N + 60
      BN=BN+60
     CONTINUE
  20
      CALL CIRCLE(X,Y,0.03)
      CALL FIT(X2(6),Y2(6),X1(1),Y1(1),X2(1),Y2(1))
      00 30 J=1.5
      CALL FIT(X2(J), Y2(J), X1(J+1), Y1(J+1), X2(J+1), Y2(J+1))
     CONTINUE
      RETURN
      END
```

```
SUBROUTINE XTOY19(L3,L4,X1,Y1,X2,Y2)
C
      XTOYL9 --- SUBROUTINE TO JOIN TWO POINTS .
C
     (X1.Y1). (X2.Y2) ---- POINTS TO BE JOINED
C
     L3 --- CONTROL NO. L3=19 IN THIS CASE.
C
     L4 --- PLOTTING COMMAND L4=4 IF PLOTING REQUIRED.
     IF(L3.NE.19) GO TO 10
     IF(L4.NE.4) GO TO 15
     CALL PLOT(X1.Y1.3)
     CALL PLOT(X2,Y2,2)
     GO TO 20
 10
     WRITE(6,11)
  11
     FORMAT('0', ' XTOY19 : L3=19 NOT ENCOUNTERED')
     GO TO 20
  15
     WRITE(6,16)
```

```
20
      RETURN
      END
      SUBROUTINE BM20 (L3,L4,X,Y,ELE)
C
C
      SUBPROGRAM BM20 DRAWS THE SYMBOL FOR A BENCH MARK
C
      X.Y --- THE EXACT LOCATION OF THE BENCH MARK.
      IF(L3.NE.20) GO TO 20
      IF(L4.NE.4) GO TO 20
      CALL SYMBOL(X.Y.0.18,1.0.0.-1)
      CALL SYMBOL(X,Y,0.18,3,0.0,-1)
      CALL NUMBER (X+0.43,Y-0.09,0.18,ELE,0.0,-1)
      GO TO 30
  20
      WRITE(6.25)
  25
      FORMAT(1X. 13=20 OR L4=4 NOT ENCOUNTERED 1./)
  30
      RETURN
      END
      SUBROUTINE WRIT21(L3,L4,X,Y,H)
C
      WRITE IS PREPARED TO LABEL A CHARACTER STRING
C
      X.Y --- COORDINATE OF THE LOWER LEFT HAND CORNER OF THE FIRST
              LETTER OF THE CHARACTER STRING.
С
      H ---- HEIGHT OF THE LETTER.
C
      L3 --- CONTROL NO. L3=21 IN THIS CASE.
C
      L4 --- PLOTTING COMMAND. L4=4 IF PLOTTING NEEDED.
      DIMENSION A(13)
      IF(L3.NE.21) GO TO 20
      IF(L4.NE.4) GO TO 30
      IF(H.EQ.O.O) H=0.22
      READ(5.10, END=30) L1.L2,L3,L4,A,A1,N
  10
    FORMAT(211, I2, I1, 5X, 13A4, 3X, F5, 1, I2)
```

FORMAT('0', ' XTOY19 : L4=4 NOT ENCOUNTERED!)

16

IF(N.EQ.O) N=50

GO TO 30 WRITE(6.25)

RETURN

20 25

30

CALL SYMBOL(X,Y,H,A,A1,N)

FORMAT(' L3=21 NUT ENCOUNTERED: ./)

END

```
SUBROUTINE OUT22 (L3,L4,X,Y,XNO)
C
Ċ
     SUBPROGRAM IS PREPARED FOR PLOTTING THE SYMBOL OF THE OUTLET.
C
     X.Y --- POSITION OF THE OUTLET.
C
     XNO -- NUMBER OF THE OUTLET. EX. 1.2 OR 3
     IF(L3.NE.22) GO TO 10
     CALL RECT(X-0.2.Y-0.1.0.2.0.4.0.0.3)
     CALL NUMBER(X,Y-0.05,0.1,XNO,0.0,-1)
     GO TO 30
     WRITE(6,20)
 10
 20
     FORMAT(1X, 1,3=22 NOT ENCOUNTERED. 1,/)
 30
     RETURN
     END
```

.....

APPENDIX D

JOB CONTROL LANGUAGE STATEMENTS SETUP AND INPUT FORMATS FOR COMPUTER PROGRAMS DSDP AND DSLP

JCL SETUP FOR PROGRAM DSDP

A. FOR A SOURCE PROGRAM.

THE COMPLETE SET OF JCL STATEMENTS FOR RUNNING PROGRAM DSDP USING THE FORTRAN IV (G-LEVEL):

//DSDPCARD JOB (AE33,000,010,0100,0000,22.1), 'DRAINAGE', MSGLEVEL=1
//*PASSWORD=XXXXX
// EXEC FORTGCLG
//FORT.SYSIN DD *

FORTRAN SOURCE DECK (DSDP PROGRAM IN THIS CASE)

/*
//GO.SYSIN DD *

DATA CARDS

/* //

B. FOR A LOAD MODULE.

THE SAME PROGRAM. DSDP. IF IT IS STORED AS A LOAD MODULE IN THE PARTITIONED DATA SET "AE33.MAP" CAN BE EXECUTED BY SIMILAR JCL SETUP. HERE THE NAME ON THE JOB STATEMENT HAS BEEN CHANGED TO "DSDPLDAD" TO INDICATE THAT A LOAD MODULE. RATHER THAN A SOURCE PROGRAM. IS BEING EXECUTED.

```
//DSDPLOAD JOB (AE33.000.010.0100.0000.22.1).'DRAINAGE'.MSGLEVEL=1
//*PASSWORD=XXXXX
// EXEC PGM=DSDP
//STEPLIB DD DSN=AE33.MAP.DISP=DLD
//FT06F001 DD SYSOUT=A
//FT05F001 DD *
```

DATA CARDS

/***

A. FOR A SOURCE PROGRAM.

```
THE COMPLETE SET OF JCL STATEMENTS FOR RUNNING THE PROGRAM DSLP USING THE FORTRAN IV ( G-LEVEL ):
```

```
//DSLPCARD JOB (AE33.000.010.0100.0000.22.1). DRAINAGE .MSGLEVEL=1
//*PASSWORD=XXXXX

// EXEC SETUP
//SETUP.SYSIN DD *
T8=PLOTTP(RI.SL.30" PLAIN PAPER. PENS: 0.2MM AT #003 START)
( CONTINUATION.. 0.4MM AT #004. AND 0.8MM AT #005. THANKS)
// EXEC FORTGCLG
//FORT.SYSIN DD *

FORTRAN PLOT PROGRAM
( DSLP PROGRAM IN THIS CASE )

//GO.PLOTTAPE DD UNIT=TAPE8.VOL=SER=PLOTTP.LABEL(1.SL).DISP=NEW
//GO.SYSIN DD *

DATA CARDS
/*
```

B. FOR A LOAD MODULE.

```
IF DSLP IS STORED AS LOAD MODULE IN THE PARTITIONED DATA SET "AE33.MAP" THE FOLLOEING JCL STATEMENTS SHOULD BE USED:
```

```
//DSLPLOAD JOB (AE33.000.010.0100.0000.22.1).'DRAINAGE'.MSGLEVEL=1
//*PASSWORD=XXXXX

T8=PLOTTP(RI.SL.30" PLAIN PAPER. PENS: 0.2MM AT #003 START)
(CONTINUATION.. 0.4MM AT #004. AND 0.8MM AT #005. THANKS)
//SETUP EXEC PGM=DSLP
//STEPLIB DD DISP=SHR.DSN=AE33.MAP
//FT05F001 DD #
```

DATA CARDS

```
//FT06F001 DD SYSOUT=A.
// DCB=(RECFM=FA.BLKSIZE=133.BUFNO=1)
//PLOTTAPE DD UNIT=TAPE8.VOL=SER=PLOTTP.DISP=NEW.DCB=BLKSIZE=8300
/*
//
```

INPUT FORMATS FOR DSDP

THE FOLLOWING INPUT FORMATS SPECICATIONS MUST BE USED FOR PREPARING THE DATA CARDS TO RUN DSDP PROGRAM.
FIELD BOUNDARY AND OPTION CARD. FIELD BOUNDARY POINT COORDINATES CARD DESIGN PARAMETERS CARD. DESIGN-AREA CORNERS CARD. COORDINATES OF DESIGN-AREA CORNERS CARD. NO. OF OUTLET AND SPECIAL JOINT. COLLECT POINT AND COORDINATES. SPECIAL JOINT POINT COORDINATES.
NOTE: REPEAT STEPS 3 TO 7 INCLUSIVE IF THERE IS ANY OTHER DESIGN-
AREA TO BE DESIGNED IN A SINGLE RUN.
I. FIELD BOUNDARY AND OPTION CARD.
1. NB: NO. OF BOUNDARY (I2)COL. 1-2. 2. ICOPY: IF ICOPY=1. ALL RAW DATA AND COMPUTED RESULTS WILL BE WRITTEN ONTO DISK OR TAPE AS SPECIFIED FOR IWT (I2)
3. IWT: UNIT NO. OF STORAGE DEVICE (DISK OR TAPE) (12)COL.5-6.
II. BOUNDARY POINT COORDINATES CARD. BOUNDARY POINT X.Y COORDINATES (AS MANY AS NB) ONE POINT PER CARD (2F10.2)
III. DESIGN PARAMETERS CARD.
1. SP: DRAIN SPACING (F10.2)
IV. DESIGN-AREA CORNER CARD.
NC: NO. OF CORNER FOR THE DESIGN-AREA (12) COL.1-2.

V. COORDINATES OF DESIGN-AREA CORNERS.

CX,CY: COORDINATES OF DESIGN-AREA CORNERS (AS MANY AS NC SPECIFIED), ONE POINT PER CARD. (2F10.2) ----- COL.1-20.

- VI. NO. OF COLLECTOR POINT AND SPECIAL JOINT.
- 1. NOUT: NO. OF COLLECTOR POINT (12) ----- COL.1-2.
- 2. JOINT: NO. OF SPECIAL JOINT POINT (12) ----- COL.4-5.
- VII. COLLECTOR POINT COORDINATES.

OX.OY: COORDINATES OF COLLECTOR POINTS (AS MANY AS NOUT SPECIFIED). ONE POINT PER CARD (2F10.2) ---- COL.1-20.

VIII. SPECIAL JOINT COORDINATES.

PUX.PUY: COORDINATES OF SPECIAL JOINTS (AS MANY AS JOINT SPECIFIED). ONE POINT PER CARD (2F10.2) ---- COL.1-20.

INPUT FORMATS FOR DSLP FOLLOWING DATA CARDS MUST BE SUPPLIED FOR THE DSLP PROGRAM TO RUN. OPTIONS SPECIFICATIONS CARD. PLOTTING PARAMETERS CARD. BOUNDARY AND DESIGN-AREA. BOUNDARY POINT COORDINATES. UPPER AND LOWER LIMITS FOR BOUNDARY POINTS. DESIGN PARAMETERS. COLLECTOR POINT COORDINATES. START AND END POINT AND LENGTH OF LATERAL. SPECIAL JOINT POINT COORDINATES. SHORTEST LATERAL AND SUBTOTAL LATERAL-LENGTH. TOTAL LENGTH OF LATERALS FOR ALL DESIGN-AREAS. ADDITIONAL DATA FOR SPECIAL SYMBOLS PLOTTING. NOTE: IF THE FIELD HAS MORE THAN ONE DESIGN-AREA, STEPS 6 TO 11 INCLUSIVE WILL BE REPEATED FOR ALL DESIGN-AREAS. GENERALLY, DATA FROM STEPS 3 TO 11 ARE GENERATED AND STORED ON DISK OR TAPE BY PROGRAM " DSDP ". THE PROGRAM DSLP SIMPLY READS THE STORED DATA FROM THE STORAGE DEVICE BY USING THE SAME FORMATS THAT USED BY DSDP DURING THE STORING PROCESSES. DATA IN STEPS 1.2. AND 12 ARE PUNCHED ON CARDS. OPTIONS SPECIFICATIONS CARD. I. 1. IRD: UNIT NO. FOR READER (12) ------ COL.1-2. IWRT: UNIT NO. FOR PRINTER OR STORAGE DEVICE(12) ---- COL.3-4. 2. IGRID: IF IGRID=1. A GRID WILL BE DRAWN ON THE 3. DRAINAGE PLAN (12) ----- COL.5-6. 4. IFLO: IF IFLO=1. FLOW DIRECTIONS FOR ALL LATERALS ARE DRAWN (12) ----- COL.7-8. NGRIDX: NO. OF GRID ALONE X-DIRECTION (I3) ----- COL.9-11. 5. NGRIDY: NO. OF GRID ALONE Y-DIRECTION (I3) ----- COL.12-14. 6. II. PLOTTING PARAMETERS CARD. 1. DSCALE: DRAWING SCALE (F10.4) ----- COL.1-10.

III.	BOUNDARY AND DESIGN-AREA.	
1. 2.	NB: NO. OF BOUNDARY OF THE FIELD (I2)	COL.1-2.
IV.	BOUNDARY POINT COORDINATES.	
	BOUNDARY POINTS X.Y COORDINATES (AS MANY AS NR SPECIFIED). ONE POINT PER CARD (2F10.2)	COL.1-20.
٧.	UPPER AND LOWER LIMITS FOR BOUNDARY POINTS.	
1. 2. 3. 4.	BXL: LARGEST BX (F10.2)	COL.11-20.
VI.	DESIGN PARAMETERS.	
1. 2. 3. 4. 5. 6.	SPAC: DRAIN SPACING (F10.3)	COL.11-20. COL.21-25. COL.26-30. COL.31-35.
VII.	COLLECTOR POINT COORDINATES.	
	COLLECTOR POINTS X.Y COORDINATES (AS MANY AS NOUT SPECIFIED), ONE CARD PER POINT (2F10.2)	COL.1-20.
VIII.	START AND END POINT AND LENGTH OF LATERAL.	
1.	(X1.Y1). (X2.Y2). (X3.Y3) POINTS X-Y COORDINATES (6F19.2)	COL 1-40
2.	XLEN: LENGTH OF LATERAL (F10.2)	COL.61-70.
IX.	SPECIAL JOINT POINT COORDINATES.	
	P.IX.P.JY POINT X-Y COORDINATES (AS MANY AS JOINT SPECIFIED) (2F10.2)	COL.1-20.

Х.	SHORTEST LATERAL AND SUBTOTAL LATERAL-LENGTH.	
1.2.	XLMIN: LENGTH OF SHORTEST LATERAL (F10.2)	
X1.	TOTAL LENGTH OF LATERALS FOR ALL DESIGN-AREAS. SUMLEN: TOTAL LENGTH OF ALL LATERALS FOR ALL THE DESIGN-AREAS (F10.2)	COL.1-10.
	ADDITIONAL DATA FOR SPECIAL SYMBOLS PLOTTING. SEE STATEMENT NO. 300 AND 310 IN THE "MAIN" PROGRAM OF DSLP.	

APPENDIX E

LISTING OF COMPUTER PROGRAM PROFILE

36

*

```
兴兴
                                                                                                        *
                                                                                                             Ā
                                                                                                                                                                                                              ٦
                                                                × 6/1
                                               ××
×
                                                                      ×
                                                                                                                                                                                                                                                                         DIMENSION X(100), Y(100), TITLE(6), PX(5,15), PY(5,15), HD(5,100) 
*•DATA1(5), NSTR(10), XLAB(5,100), SEGL(10), AN(10), S(10), XKEY(13)
                                                                               ×
                                                                                                                                                                                                              OFILE
                                                                                                                                                                                                                                                                                                                            JOB
                                                        ×
                                                                       ×
                                                               ×
                                                                                                                                                           PROGRAM "PROFILE" IS WRITTEN FOR DRAWING THE PROFILES OF LATERAL OR COLLECTOR OF THE SUBSURFACE DRAINAGE SYSTEM. IT IS CONSIDERED AS A COMPONENT OF THE SYSTEM DESIGN
                                                                                                                                                                                                              PR
                                                                                                                                                                                                                                                                                                                            L
L
                                                                                                                                                                                                              THE
                                                                                                                                                                                                                                                                                                                    \sim \omega
                                                                                                                                                                                                                                                                                                                   SCALES
                                                                      DEPARTMENT
                                                                                                                                                                                                              F
                                                                                      MCGILL UNIVER
                                                                                                                                                                                                                                                                                                                  N FROM CARDS: HORIZONTAL AND VERTICAL SORIGIN OF CO-ORDINATES AND 5) HS.VS.XO.YO.TW.DH.TITLE.ITTLE (255.1.4F5.2.6A4.5X.11)
                                                                                                                                                                                                          XO.YO -- COORDINATE OF LOWER LEFT HAND CORNER IW --- TITLE BLOCK'S WIDTH
DH --- HEIGHT OF THE DRAWING WIDTH (PAPER)
                                                                                                                                                                                                                                                                                                                                                                   CO-ORDINATE
                                                                      AGRICUL TURAL ENGINEERING
                                      PROGRAM PROFILE
                                                      CHIENG
                                                                                                                                                                                                                                                  ELEVATION DATA
                                               MACDONALD COLLEGE.
                                                                                                                                                                                                                                                                                                                                                         READ IN FIELD ELEVATION DATA.
AND FIND THE MAX. & MIN. OF THE
                                                      SIE-TAN
                                                                                                                                                                                                                                                                                                                                                                               IC).Y(IC).IEND.
                                                                                                                                                                                                                                  JOB
                                                                                                                                                                                   AND LAYOUT PACKAGE.
HS --- HORIZONTAL SCALE
VS --- VERTICAL SCALE
                                                                                                                                                                                                                                          SLOPE: FIELD
                                                                                                                                                                                                                                  -- TITLE OF THE
                                                                                                                                                                                                                                                                                                   5.-3)
                                                                                                                                                                                                                                                                                                 CALL PLOT(0.0.0.0.5.-3
RAD=3.1415926/180.0
READ IN FROM CARDS
                                                                                                                                                                                                                                          ARRAY OF SI
                                                                                                                                                                                                                                                                                                                                                                                READ(5.20) X(
FORMAT(2F10.2
                                                             DEC.X
                                                                                                                                                                                                                                                                                          CALL PLOTON
                                                      ×
                                                                                                                                                                                                                                                                                                                                                                                               XMAX=X(1)
XMIN=X(1)
YMAX=Y(1)
YMIN=Y(1)
[C=IC+1
                                              ×
                                                                         `×
×
                                                                                                                                                                                                                                        ARF
                                                      ×
                                                                                                                                                                                                                                                  1
                                                                    ×
                                                                                                                                                                                                                                                                                                                                 READ(5.
FORMAT(
                                                                                                                                                                                                                                 TITLE
S ---
                                                                                                                                                                                                                                                                                                                                                                         IC=1
                              计计
                                       ₩
₩
₩
                                              计计
                                                      **
                                                             *
*
                                                                    *
*
                                                                             计计计
                                                                                      关并并
                       共
                                                                                              计计
                                                                                                                                                                                                                                                  ≻-×
                                                                                                      **
                                                                                                                                                                                                                                                                                                                                         S
                                                                                                                                                                                                                                                                                                                                                                                         0
                                                                                                                                                                                                                                                                                                                                                                                                                                10
\circ
                                                                                                                                                                                                                                                                                                                                                 \circ \circ \circ
```

```
READ(5,20) X(IC),Y(IC),IEND1
      IF(X(IC).GT.XMAX) XMAX=X(IC)
      IF(Y(IC).GT.YMAX) YMAX=Y(IC)
      IF(X(IC).LT.XMIN) XMIN=X(IC)
      IF(Y(IC).LT.YMIN) YMIN=Y(IC)
      [F(IEND1.EQ.1) GO TO 30
      GO TO 10
 30
      CONTINUE
C
С
      NO. OF SEGMENTS OR TURNING-POINTS TO BE DRAWN.
C
      IF NTP=1 --- MAIN LINE HAS A SINGLE SEGMENT ONLY.
C
      IF JOINT=1 --- NO LINE JOINS TO THE MAIN LINE.
C
      CALL PLTSZE(XMAX+10.0.DH+1.0)
      READ(5,40) NTP, JOINT
  40
      FORMAT(211)
C
      READ IN : COORDINATES OF SEGMENTS AND THEIR SLOPES.
      DO 60 I=1.NTP
      READ(5,50) PX(I,1),PY(I,1),PX(I,2),PY(I,2),S(I)
  50
      FORMAT(4F10.2.F5.2)
      F1 = PX(I \cdot 2) - PX(I \cdot 1)
      F2=PY(I,2)-PY(I,1)
      SEGL(I) = SORT(F1 ** 2 + F2 ** 2)
      F11=F1/HS
      F22=F2/VS
      AN(I) = ATAN2(F22 + F11)/RAD
  60
      CONTINUE
      [F(PX(NTP.2).GI.XMAX) XMAX=PX(NTP.2)
      IF(PX(1.1).LI.XMIN) XMIN=PX(1.1)
      IF(JOINT.EQ.1) GO TO 120
      DO 100 I=1,NTP
      N1 = 1
C
C
      HD IS THE ARRAY OF HORIZONTAL DISTANCE.
      XLAB IS THE LABEL FOR THE JOINING SEGMENT.
      READ(5,80) HD(I,N1),XLAB(I,N1),IEND2
  70
  80
      FORMAT(F10.2.A4.5X.I1)
      IF(IEND2.EQ.1) GO TO 90
      N1 = N1 + 1
      GO TO 70
      NSTR(I)=N1
  90
      IF(HD(I,N1).E0.-999.0) NSTR(I)=0
 100
      CONTINUE
 120
      [F(PY(1,1),L_{,YMIN})] YMIN=PY(1,1)
      MINY=YMIN-1.0
      IF(YMIN.LE.1.0) MINY=YMIN
      YMIN=MINY
С
      DETERMINE THE NO. OF GRIDS FOR X-Y DIRECTIONS.
C
      NX = (XM\Delta X - XMIN)/HS + 1.5
      NY=(YMAX-YMIN)/VS+1.5
      IF(NX.LT.5) NX=5
      IF(NY.LT.4) NY=4
      XL=NX*1.0
      YL=NY*1.0
```

```
CALL GRID(XO,YO,1.0.1.0.NX,NY)
       CALL AXS(XO, YO, 'HORIZONTAL DISTANCE, FT', -23,XL,0.0,0.0,1.0,
      * -l.0.0.1.0)
       CALL AXS(XO, YO, 'ELEVATION, FT G.S.C. DATUM', 26,YL,90.0,
      * YMIN. VS. -1.0.0.1.0)
C
С
       DRAW THE FIELD ELEVATION ( A SMOOTH CURVE ).
C
       TX = XO + (X(1) - XMIN)/HS
       TY=YO+(Y(1)-YMIN)/VS
       CALL CIRCLE( [X. [Y. 0.03)
       CALL SMOOT(TX, TY, 0)
       DO 130 I=2.IC
       TX = XO + (X(I) - XMIN)/HS
       TY=YO+(Y(I)-YMIN)/VS
       CALL CIRCLE([X.TY.0.03]
       CALL SMOOT(TX,TY,-2)
       CONTINUE
       CALL SMOOT (TX, TY, -24)
C
С
       LABELLING THE CURVE.
С
       XRT = X(IC-1) + (X(IC) - X(IC-1))/2.0
       YRT=Y(IC-1)+(Y(IC)-Y(IC-1))/2.0
       XRS=XRT+0.5*COS(60.0*RAD)
       YRS=YRT+0.5*SIN(60.0*RAD)
       XRT = X\Pi + (XRT - XMIN)/HS
       YRT=YO+(YRT-YMIN)/VS
       XRS=XD+(XRS-XMIN)/HS
       YRS=YN+(YRS-YMIN)/VS
       CALL AROHD(XRS, YRS, XRT, YRT, 0.15, 0.08, 16)
       CALL SYMBOL(XRS-0.70, YRS+0.05,0.14, FIELD ELEVATION, 0.0, 15)
      DO 140 J=1.NTP
       TX1 = XO + (PX(I \cdot I) - XMIN)/HS
       TYl = YO + (PY(I,1) - YMIN)/VS
       TX2=X\Pi+(PX(I,2)-XMIN)/HS
       \Gamma Y2 = Y\Pi + (PY(I,2) - YMIN)/VS
      CALL PLOT(TX1.TY1.3)
      CALL PLOT(TX2,TY2,2)
       IF(I.GT.1) CALL CIRCLE(TX1.TY1.0.03)
 140
      CONTINUE
С
       FLOW DIRECTION & SLOPE ASSOCIATED.
C
       STORE=PX(1,1)
      ON 250 I=1.NTP
       IF((SEGL(I)/HS).LE.0.90) GO TO 250
      DA = (SEGL(I)/HS-0.70-7*0.10)/2.0
      XA = XO + PX(I \cdot I) / HS + DA * COS(AN(I) * RAD)
      Y\Delta A = PY(I, 1) + D\Delta *SIN(AN(I) *RAD)
      Y\Delta = Y\Pi + (Y\Delta\Delta - YMIN)/VS - 0.12
      XB = XA + 0.70 \times COS(AN(I) \times RAD)
      YB=YA+0.70*SIN(AN(I)*RAD)
      SALL AROHD(XR, YB, XA, YA, 0.10, 0.06, 16)
      CALL SYMBOL (XB+0.05, YB-0.05, 0.10, 'S=
                                                      %', AN(I),8)
      XC = XB + 2.8 \pm 0.10 \pm CDS(AN(I) \pm RAD)
```

```
YC=YB+2.8*0.10*SIN(AN(I)*RAD)-0.05
      CALL NUMBER(XC.YC.O.10.S(I).AN(I).2)
С
      DRAW THE JOINTS FOR THE LATERAL OR COLLECTOR
C
      N3 = NSTR(I)
      IF(N3.E0.0) GO TO 250
      SLOPE=(PY(I,2)-PY(I,1))/(PX(I,2)-PX(I,1))
      DO 240 K=1.N3
      DX = PX(I_{\bullet}I) + (HD(I_{\bullet}K) - STORE)
      2X = XO + (DX - XMIN)/HS
      DY=PY(I,1)+(HD(I,K)-STORE)*SLOPE
      RY = YO + (DY - YMIN) / VS
      RXX = RX
      RYY = RY + 0.50
      CALL AROHD(RXX,RYY,RX,RY,0.10,0.06,16)
      CALL SYMBOL(RXX-0.10,RYY+0.08,0.10,XLAB(I,K), 0.0,4)
 240
      CONTINUE
      STORE=PX(I,2)
 250
      CONTINUE
      XT = XO + (XL - 24 * 0.20) / 2.0
      YT = YO + YI + 0.5
      CALL SYMBOL(XT,YT,0.20.TITLE,0.0,24)
      CALL SYMBOL (0.5.0.75.0.12, 26HHORIZONTAL SCALE: 1"=
                                                                   1,0.0,26)
      XXS = 22.0 \times 0.12 + 0.50
      CALL NUMBER(XXS,0.75,0.12.HS,0.0,-1)
      CALL SYMBOL(0.5,0.40,0.12, 25HVERTICAL
                                                    SCALE: 1"=
                                                                  1,0.0,25)
      CALL NUMBER (XXS.0.40.0.12.VS.0.0.-1)
      X2=XL+XQ+1.0
      DW = X2 + TW
C
      IF(ITTL.EQ.O) GU TO 300
                  TTLBLK(X2.DW.TW)
      CALL
      CALL PLOT(0.0.0.0.3)
      CALL PLOT(0.0.YT+0.5.2)
      CALL PLOT(DW.YT+0.5,2)
      CALL PLOT (DW.O.O.2)
      CALL PLOT(0.0.0.0.2)
C
      GO TO 350
 300 CALL PLOT(0.0.0.0.3)
      CALL PLOT(0.0.YT+0.5.2)
      CALL PLOT(XL+XO+1.0.YT+0.5.2)
      CALL PLOT(XL+X0+1.0.0.0.2)
      CALL PLOT (0.0.0.0.2)
 350
      CALL ENDPLI
      STOP
      END
```

```
SUBROUTINE TILBLK (X2.DW.TW)
      DIMENSION T(9).SCALE(3).DWG(2)
      F = TW/7.0
      CALL DASH(X2+F*2.7.F*3.8,X2+F*2.7,F*3.1,0.0)
      CALL DASH(X2+F*1.5.F*3.1,X2+F*1.5,F*3.8.0.0)
      CALL DASH(X2,F*3.5,DW,F*3.5,0.0)
      CALL DASH(DW.F*3.1.X2.F*3.1.0.0)
      CALL DASH(X2,F*2.4.DW,F*2.4.0.0)
      CALL DASH(DW.F*2.0, X2.F*2.0,0.0)
      CALL DASH(X2,F*1.0.DW.F*1.0.0.0)
      CALL PLOT (X2,0.0.3)
      CALL PLOT(X2.F*3.8.2)
      CALL PLOT (DW.F*3.8.2)
      CALL PLOT(DW.O.O.2)
      CALL PLOT (X2.0.0.2)
      CALL DASH(X2+F*2.3,F*1.00,X2+F*2.3,0.0
                                                ,0.0)
      CALL DASH(X2+F*3.2.0.0 ,X2+F*3.2.F*1.00.0.0)
      CALL DASH(X2+F*4.2.F*1.00.X2+F*4.2.0.0
      CALL DASH(X2+F*5.2.0.0 ,X2+F*5.2.F*1.00.0.0)
      CALL DASH(X2+F*5.2,F*0.75,X2+F*2.3.F*0.75,0.0)
      CALL DASH(X2+F*2.3,F*0.50,X2+F*5.2.F*0.50,0.0)
      CALL DASH(X2+F*5.2.F*0.25.X2+F*2.3.F*0.25.0.0)
      CALL SYMBOL(X2+F*3.3.F*0.825.F*0.1.'DATE',0.0.4)
      CALL SYMBOL (X2+F*4.3,F*0.825,F*0.1, PERSON:, 0.0,6)
      CALL SYMBOL(X2+F*2.4.F*0.575.F*0.1. DRAWN', 0.0.5)
      CALL SYMBOL (X2+F*2.4.F*0.325,F*0.1. CHECKED ,0.0,7)
      CALL SYMBOL(X2+F*2.4,F*0.075,F*0.1,'REVISED',0.0,7)
      CALL SYMB()L(X2+F*0.15,F*3.225,F*0.15,'REVISION',0.0,8)
      SALL SYMBOL(X2+F*1.65,F*3.225,F*0.15,'DATE',0.0.4)
      CALL SYMBOL(X2+F*2.85,F*3.225,F*0.15,'DESCRIPTION',0.0,11)
      CALL SYMBOL(X2+F*0.76.F*2.825.F*0.15.'AGRICULTURAL ENGINEERING D
     LEPARTMENT', 0.0.37)
      SALL SYMBOL(X2+F*2.18.F*2.525,F*0.15, MCGILL UNIVERSITY, 0.0,18)
      CALL SYMBOL (X2+F*0.53,F*2.125,F*0.15, BOX 950, MACDONALD COLLEGE,
     19UE. H9X 1001,0.0.40)
      CALL SYMBOL(X2+F*0.15,F*0.775.F*0.15,'SCALE' .0.0,5)
      CALL SYMBOL(X2+F*5.35,F*0.775,F*0.15, 'DWG. NO.',0.0,8)
C
      READ IN TITLE BLOCK INFORMATION.
C
      T: TITLE OF THE DRAWING.
C
      SCALE: SCALE USED IN THE DRAWING.
C
      DWG: REFERENCE NO. OF DRAWING.
C
      DO 20 J=1.3
      READ(5.10) T
  10
      FORMAT(8A4,A1)
      CALL SYMBOL(X2+F*0.24,F*(2.0-J*0.3),F*0.20,T,0.0,33)
  20
      CONTINUE
      READ(5,30,END=100) SCALE,DWG
  30
      FORMAT(204,02,2X,204)
      CALL SYMBOL (X2+F*0.15,F*0.2,F*0.20,SCALE,0.0,10)
      CALL SYMBOL (X2+F*5.35,F*0.2,F*0.20,DWG,0.0,8)
 100
      RETURN
      END
```

APPENDIX F

SUBSURFACE DRAINAGE PLAN OF JOB #1 AREA, OTTAWA, ONTARIO, PRODUCED BY COMPUTER PLOTTER

CONCESSION 4 F., GLOUCESTER TWI

LAT. NO LENGTH FT

TOTAL

581.0 585.0 589.0

137.0 200.0 263.0 325.0 388.0 451.0 514.0 576.0

4609.0 FT

TON CO., ONTARIO

COLLECTOR	100 mm	150 mm	To the Mark	250 mm	300 mm
А	1891	65			
В	3544				
С					
D			Addition		
E					
F					
G					
Н					
J					
К					
TOTAL	5435	65	entre sabelanció de la contraction del contraction de la contraction de la contraction de la contracti		Name of the Control o

NOTES

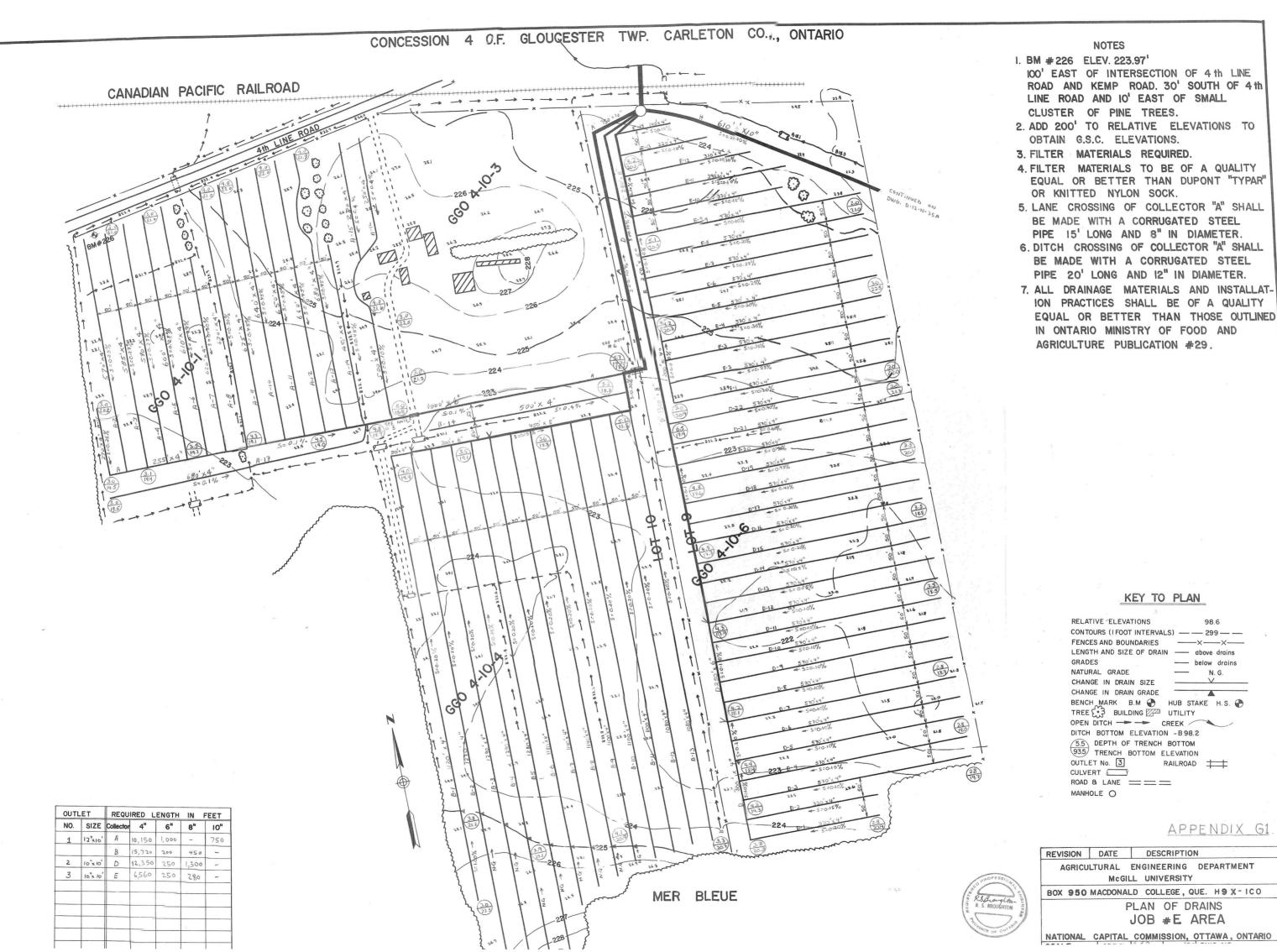
- 1. BM #55 ELEV. [25.49' VERTICAL NAIL IN EAST ROOT OF ELM TREE ON SOUTH SIDE OF DITCH, ABOUT 700' SOUTH OF CNR TRACKS, 1800' EAST OF ANDERSON ROAD.
- 2. DRAINAGE MATERIALS: CORRUGATED POLYETHYLENE DRAINAGE TUBING.
- 3. ALL LATERALS HRE 100 MM DIA. UNLESS LABELLED OTHERWISE.

K	E	Y	O	PL	AN	

RELATIVE ELEVATIONS 98.6 CONTOURS (1' INTERVALS) -288-FENCES AND BOUNDARIES LENGTH & SIZE OF DRAIN BELOW DRAINS GRADES N.G. NATURAL GRADE CHANGE IN DRAIN SIZE CHANGE IN DRAIN GRADE B.M.⊕ BENCH MARK HUB STAKE TREE BUILDING OPEN DITCH B98.2 DITCH BOTTOM ELEVATION 93.5 DEPTH OF TRENCH BOTTOM TRENCH BOTTOM ELEVATION **B** OUTLET NO. RAILROAD ROAD ROAD AND LANE

APPENDIX F

REVISI	ON	DATE	DES	CRIPTION			
AG	RIC	ULTURAL	ENG	INEERING	DEPF	ARTME	NT
		MCG.	ILL	UNIVERSI	ΤΥ		
вох	950	, MACDØN	VALD	COLLEGE,	QUE.	н9Х	1 C O
			-	DRAINS AREA			


NCC OTTAWA, ONTARIO

SCALE PERSON DWG. NO. 1" = 100' D-12-N-110

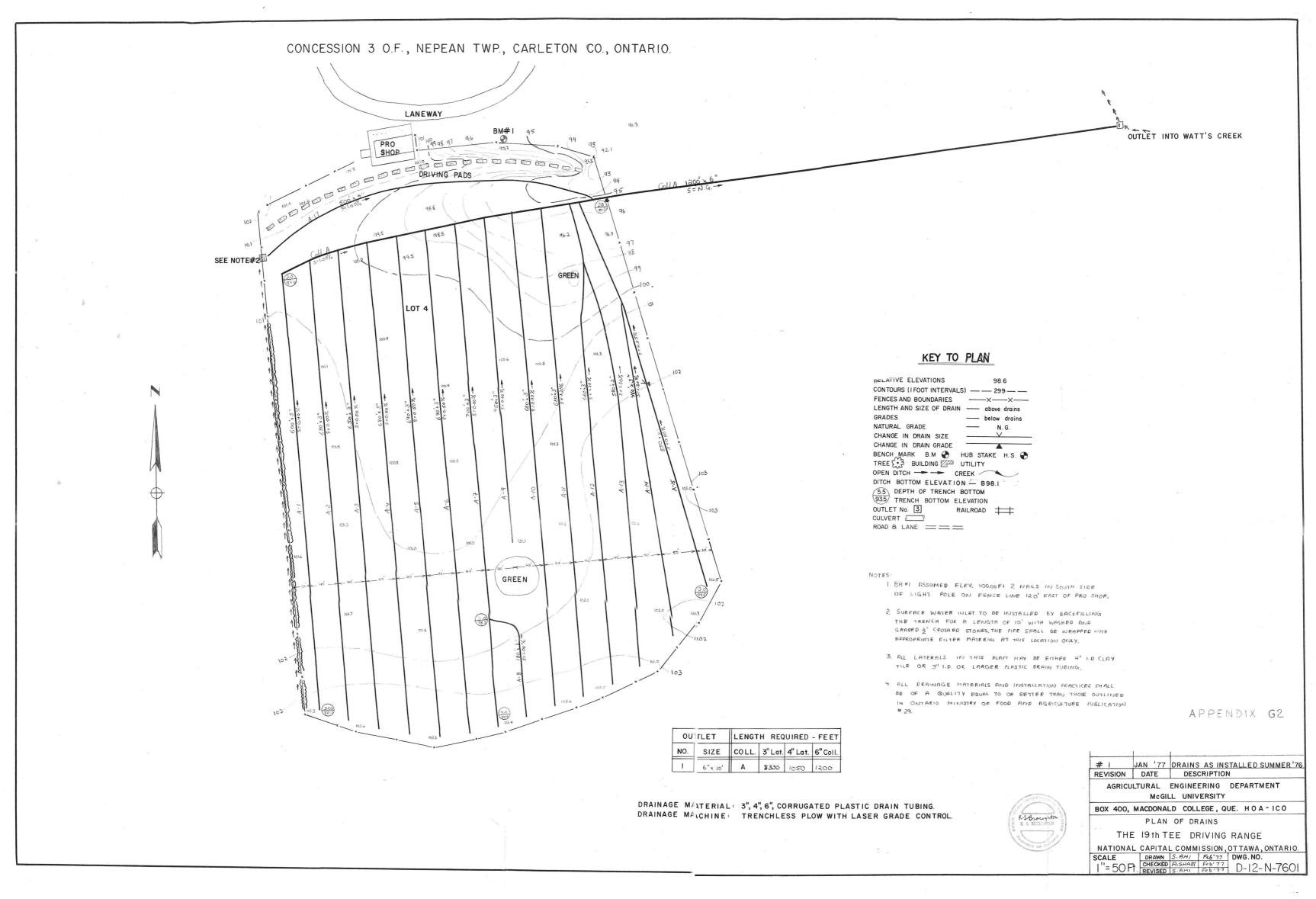
3

APPENDICES G1 AND G2

- G1. DRAINAGE PLAN OF JOB #E AREA, OTTAWA, ONTARIO, DRAWN BY DRAFTSMAN
 - G2. DRAINAGE PLAN OF THE 19th TEE DRIVING RANGE, OTTAWA, ONTARIO, DRAWN BY DRAFTSMAN

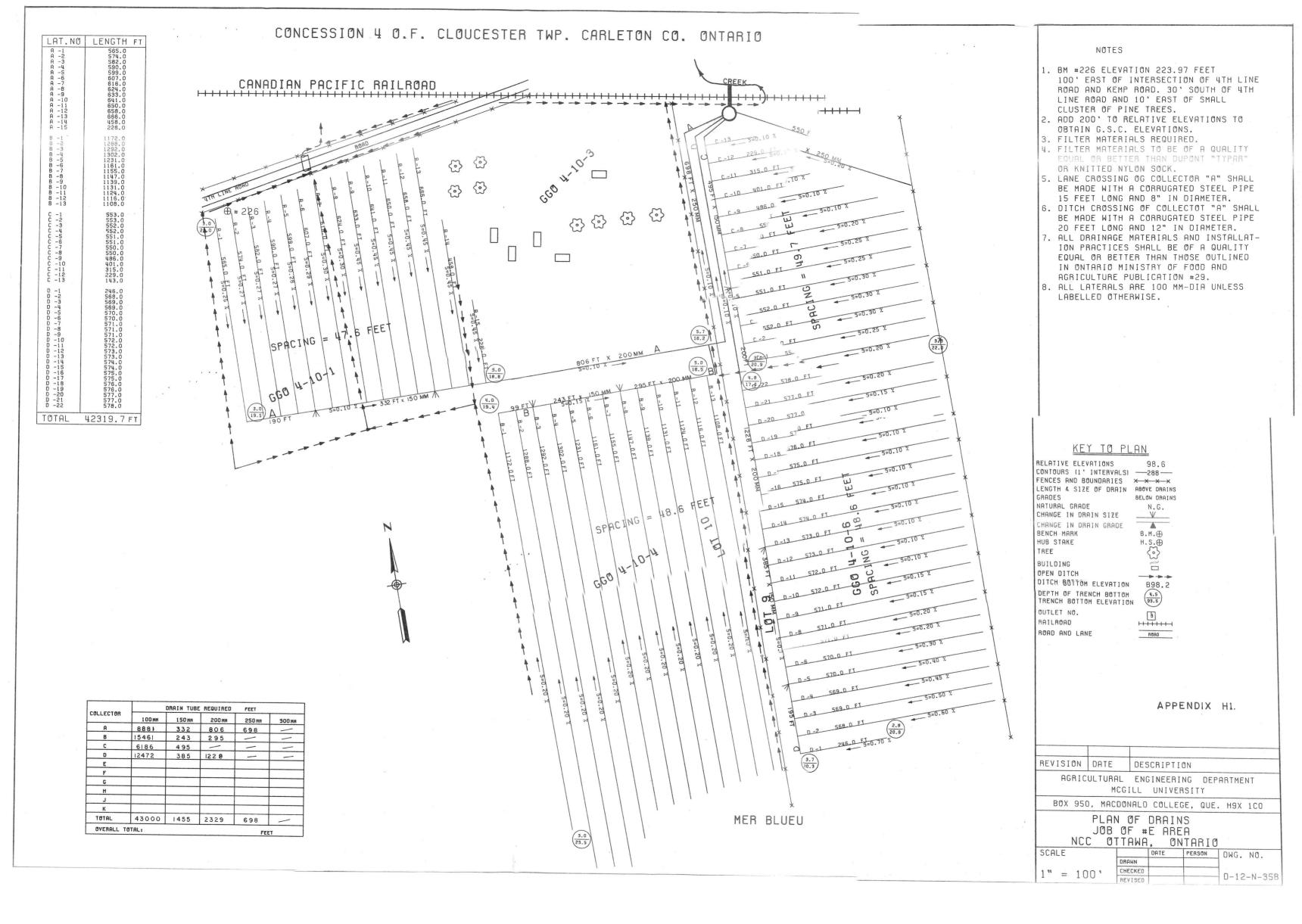
NOTES

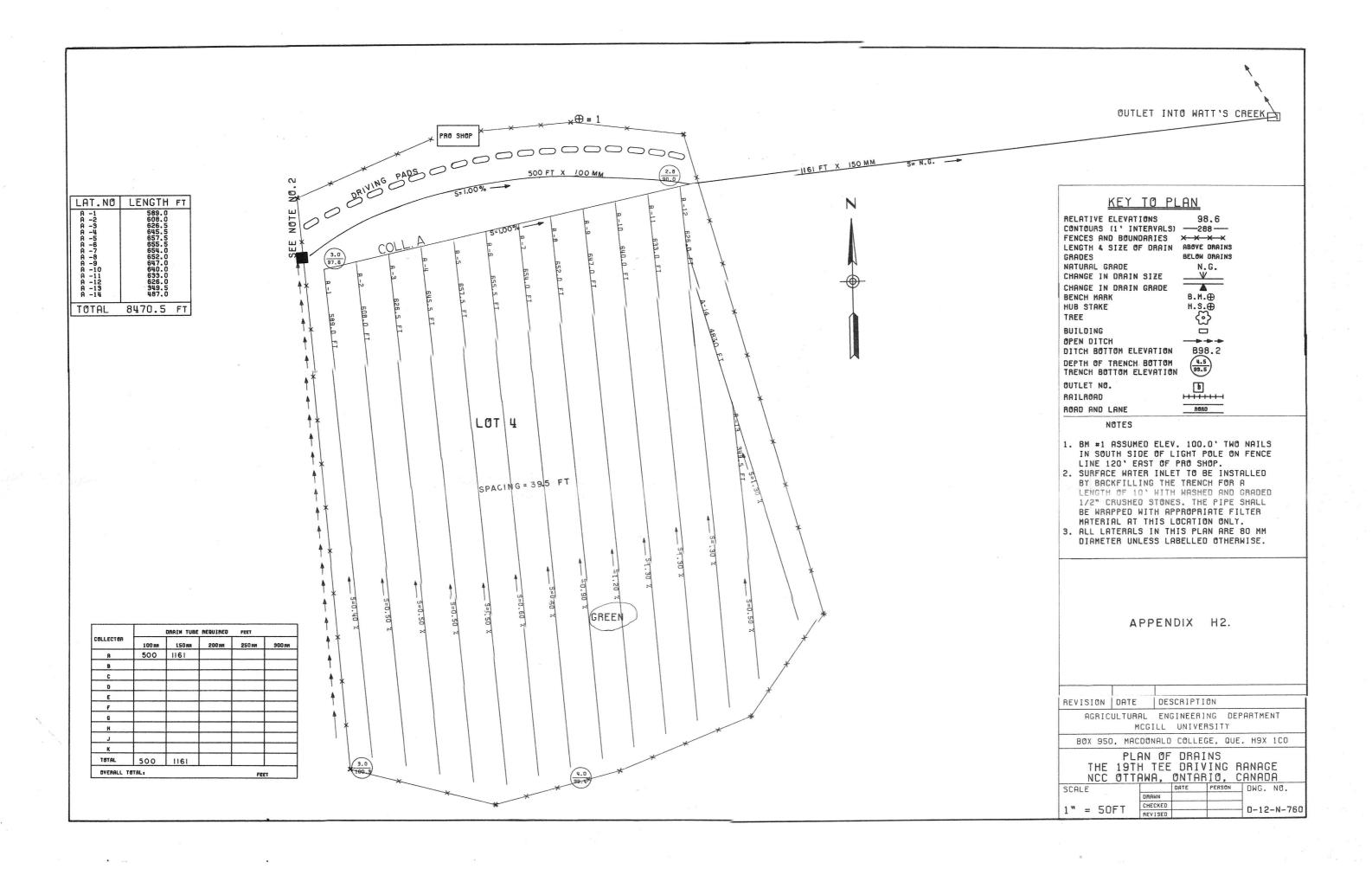
KEY TO PLAN


--- below drains

RAILROAD ##

McGILL UNIVERSITY


PLAN OF DRAINS JOB #E AREA


APPENDIX G1

APPENDICES H1 AND H2

- H1. DRAINAGE PLAN OF JOB #E AREA, OTTAWA, ONTARIO, DESIGNED AND DRAWN BY COMPUTER
- H2. DRAINAGE PLAN OF THE 19th TEE DRIVING RANGE, OTTAWA, ONTARIO, DESIGNED AND DRAWN BY COMPUTER

